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Preface

Linear algebra has evolved as a branch of mathematics with wide range of
applications to the natural sciences, to engineering, to computer sciences, to
management and social sciences, and more.
This book is addressed primarely to second and third year college engineering
students who have already had a course in calculus and analytic geometry. It
is the result of lecture notes given by the author at Arkansas Tech University.
I have included as many problems as possible of varying degrees of difficulty.
Most of the exercises are computational, others are routine and seek to fix
some ideas in the reader’s mind; yet others are of theoretical nature and have
the intention to enhance the reader’s mathematical reasoning.

Marcel B. Finan
Russellville, Arkansas
January 2012
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Linear Systems of Equations

In this chapter we shall develop the theory of general systems of linear equa-
tions. The tool we will use to find the solutions is the row-echelon form of
a matrix. In fact, the solutions can be read off from the row- echelon form
of the augmented matrix of the system. The solution technique, known as
elimination method, is developed in Section 4.
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8 LINEAR SYSTEMS OF EQUATIONS

1. Systems of Linear Equations

Consider the following problem: At a carry-out pizza restaurant, an order of
3 slices of pizza, 4 breadsticks, and 2 soft drinks cost $13.35. A second order
of 5 slices of pizza, 2 breadsticks , and 3 soft drinks cost $19.50. If four bread
sticks and a can of soda cost $0.30 more than a slice of pizza, what is the
cost of each item?
Let x1 be the cost of a slice of pizza, x2 the cost of a breadsticks, and x3

the cost of a soft drink. The assumptions of the problem yield the following
three equations: 

3x1 + 4x2 + 2x3 = 13.35
5x1 + 2x2 + 3x3 = 19.50

4x2 + x3 = 0.30 + x1

or equivalently 
3x1 + 4x2 + 2x3 = 13.35
5x1 + 2x2 + 3x3 = 19.50
−x1 + 4x2 + x3 = 0.30.

Thus, the problem is to find the values of x1, x2, and x3. A system like the
one above is called a linear system.
Many practical problems can be reduced to solving systems of linear equa-
tions. The main purpose of linear algebra is to find systematic methods for
solving these systems. So it is natural to start our discussion of linear algebra
by studying linear equations.

A linear equation in n variables is an equation of the form

a1x1 + a2x2 + ...+ anxn = b (1.1)

where x1, x2, ..., xn are the unknowns (i.e. quantities to be found) and
a1, · · · , an are the coefficients ( i.e. given numbers). We assume that the
a′is are not all zero. Also given the number b known as the constant term.
In the special case where b = 0, Equation (1.1) is called a homogeneous
linear equation.
Observe that a linear equation does not involve any products, inverses, or
roots of variables. All variables occur only to the first power and do not
appear as arguments for trigonometric, logarithmic, or exponential functions.
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Example 1.1
Determine whether the given equations are linear or not (i.e., non-linear):
(a) 3x1 − 4x2 + 5x3 = 6.
(b) 4x1 − 5x2 = x1x2.
(c) x2 = 2

√
x1 − 6.

(d) x1 + sinx2 + x3 = 1.
(e) x1 − x2 + x3 = sin 3.

Solution
(a) The given equation is in the form given by (1.1) and therefore is linear.
(b) The equation is non-linear because the term on the right side of the equa-
tion involves a product of the variables x1 and x2.
(c) A non-linear equation because the term 2

√
x1 involves a square root of

the variable x1.
(d) Since x2 is an argument of a trigonometric function, the given equation
is non-linear.
(e) The equation is linear according to (1.1)

In the case of n = 2, sometimes we will drop the subscripts and use in-
stead x1 = x and x2 = y. For example, ax + by = c. Geometrically, this is a
straight line in the xy−coordinate system. Likewise, for n = 3, we will use
x1 = x, x2 = y, and x3 = z and write ax + by + cz = d which is a plane in
the xyz−coordinate system.
A solution of a linear equation (1.1) in n unknowns is a finite ordered
collection of numbers s1, s2, ..., sn which make (1.1) a true equality when
x1 = s1, x2 = s2, · · · , xn = sn are substituted in (1.1). The collection of
all solutions of a linear equation is called the solution set or the general
solution.

Example 1.2
Show that (5 + 4s− 7t, s, t), where s, t ∈ R, is a solution to the equation

x1 − 4x2 + 7x3 = 5.

Solution
x1 = 5 + 4s − 7t, x2 = s, and x3 = t is a solution to the given equation
because

x1 − 4x2 + 7x3 = (5 + 4s− 7t)− 4s+ 7t = 5
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Many problems in the sciences lead to solving more than one linear equation.
The general situation can be described by a linear system.
A system of linear equations or simply a linear system is any finite
collection of linear equations. A linear system of m equations in n variables
has the form 

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2

........................ ....
am1x1 + am2x2 + ...+ amnxn = bm

Note that the coefficients aij consist of two subscripts. The subscript i in-
dicates the equation in which the coefficient occurs, and the subscript j
indicates which unknown it multiplies.
When a linear system has more equations than unknowns, we call the sys-
tem overdetermined. When the system has more unknowns than equations
then we call the system underdetermined.
A solution of a linear system in n unknowns is a finite ordered collection of
numbers s1, s2, ..., sn for which the substitution

x1 = s1, x2 = s2, · · · , xn = sn

makes each equation a true statement. In compact form, a solution is an
ordered n−tuple of the form

(s1, s2, · · · , sn).

The collection of all solutions of a linear system is called the solution set
or the general solution. To solve a linear system is to find its general
solution.
A linear system can have infinitely many solutions (dependent system),
exactly one solution (independent system) or no solutions at all. When a
linear system has a solution we say that the system is consistent. Otherwise,
the system is said to be inconsistent. Thus, for the case n = 2, a linear
system is consistent if the two lines either intersect at one point (independent)
or they coincide (dependent). In the case the two lines are parallel, the system
is inconsistent. For the case, n = 3, replace a line by a plane.

Example 1.3
Find the general solution of the linear system{

x + y = 7
2x + 4y = 18.
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Solution.
Multiply the first equation of the system by −2 and then add the resulting
equation to the second equation to find 2y = 4. Solving for y we find y = 2.
Plugging this value in one of the equations of the given system and then
solving for x one finds x = 5

Example 1.4
Solve the system {

7x + 2y = 16
−21x − 6y = 24.

Solution.
Graphing the two lines we find

Thus, the system is inconsistent

Example 1.5
Solve the system {

9x + y = 36
3x + 1

3
y = 12.

Solution.
Graphing the two lines we find
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Thus, the system is consistent and dependent. Note that the two equa-
tions are basically the same: 9x + y = 36. Letting y = t, where t is called a
parameter, we can solve for x and find x = 36−t

9
. Thus, the general solution

is defined by the parametric equations

x =
36− t

9
, y = t

Example 1.6
By letting x3 = t, find the general solution of the linear system{

x1 + x2 + x3 = 7
2x1 + 4x2 + x3 = 18.

Solution.
By letting x3 = t the given system can be rewritten in the form{

x1 + x2 = 7− t
2x1 + 4x2 = 18− t.

By multiplying the first equation by −2 and adding to the second equation
one finds x2 = 4+t

2
. Substituting this expression in one of the individual

equations of the system and then solving for x1 one finds x1 = 10−3t
2
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Practice Problems

Problem 1.1
Which of the following equations are not linear and why:
(a) x2

1 + 3x2 − 2x3 = 5.
(b) x1 + x1x2 + 2x3 = 1.
(c) x1 + 2

x2
+ x3 = 5.

Problem 1.2
Show that (2s+ 12t+ 13, s,−s− 3t− 3, t) is a solution to the system{

2x1 + 5x2 + 9x3 + 3x4 = −1
x1 + 2x2 + 4x3 = 1

Problem 1.3
Solve each of the following systems graphically:
(a) {

4x1 − 3x2 = 0
2x1 + 3x2 = 18

(b) {
4x1 − 6x2 = 10
6x1 − 9x2 = 15

(c) {
2x1 + x2 = 3
2x1 + x2 = 1

Which of the above systems is consistent and which is inconsistent?

Problem 1.4
Determine whether the system of equations is linear or non-linear.

(a) 
lnx1 + x2 + x3 = 3
2x1 + x2 − 5x3 = 1
−x1 + 5x2 + 3x3 = −1.

(b) 
3x1 + 4x2 + 2x3 = 13.35
5x1 + 2x2 + 3x3 = 19.50
−x1 + 4x2 + x3 = 0.30.
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Problem 1.5
Find the parametric equations of the solution set to the equation −x1 +5x2 +
3x3 − 2x4 = −1.

Problem 1.6
Write a system of linear equations consisting of three equations in three
unknowns with
(a) no solutions.
(b) exactly one solution.
(c) infinitely many solutions.

Problem 1.7
For what values of h and k the system below has (a) no solution, (b) a unique
solution, and (c) many solutions.{

x1 + 3x2 = 2
3x1 + hx2 = k.

Problem 1.8
True/False:
(a) A general solution of a linear system is an explicit description of all the
solutions of the system.
(b) A linear system with either one solution or infinitely many solutions is
said to be inconsistent.
(c) Finding a parametric description of the solution set of a linear system is
the same as solving the system.
(d) A linear system with a unique solution is consistent and dependent.

Problem 1.9
Find a linear equation in the variables x and y that has the general solution
x = 5 + 2t and y = t.

Problem 1.10
Find a relationship between a, b, c so that the following system is consistent.

x1 + x2 + 2x3 = a
x1 + x3 = b
2x1 + x2 + 3x3 = c.
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2. Equivalent Systems and Elementary Row

Operations: The Elimination Method

Next, we shift our attention for solving linear systems of equations. In this
section we introduce the concept of elementary row operations that will be
vital for our algebraic method of solving linear systems.
First, we define what we mean by equivalent systems: Two linear systems
are said to be equivalent if and only if they have the same set of solutions.

Example 2.1
Show that the system {

x1 − 3x2 = −7
2x1 + x2 = 7

is equivalent to the system
8x1 − 3x2 = 7
3x1 − 2x2 = 0
10x1 − 2x2 = 14.

Solution.
Solving the first system one finds the solution x1 = 2, x2 = 3. Similarly,
solving the second system one finds the solution x1 = 2 and x2 = 3. Hence,
the two systems are equivalent

Example 2.2
Show that if x1 + kx2 = c and x1 + `x2 = d are equivalent then k = l and
c = d.

Solution.
For arbitrary t the ordered pair (c−kt, t) is a solution to the second equation.
That is c − kt + `t = d for all t ∈ R. In particular, if t = 0 we find c = d.
Thus, kt = `t for all t ∈ R. Letting t = 1 we find k = `

Our basic algebraic method for solving a linear system is known as the
method of elimination. The method consists of reducing the original
system to an equivalent system that is easier to solve. The reduced sys-
tem has the shape of an upper (resp. lower) triangle. This new system can
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be solved by a technique called backward-substitution (resp. forward-
substitution): The unknowns are found starting from the bottom (resp.
the top) of the system.
The three basic operations in the above method, known as the elementary
row operations, are summarized as follows:
(I) Multiply an equation by a non-zero number.
(II) Replace an equation by the sum of this equation and another equation
multiplied by a number.
(III) Interchange two equations.

To indicate which operation is being used in the process one can use the
following shorthand notation. For example, r3 ← 1

2
r3 represents the row

operation of type (I) where each entry of row 3 is being replaced by 1
2

that
entry. Similar interpretations for types (II) and (III) operations.
The following theorem asserts that the system obtained from the original
system by means of elementary row operations has the same set of solutions
as the original one.

Theorem 2.1
Suppose that an elementary row operation is performed on a linear system.
Then the resulting system is equivalent to the original system.

Example 2.3
Use the elimination method described above to solve the system

x1 + x2 − x3 = 3
x1 − 3x2 + 2x3 = 1
2x1 − 2x2 + x3 = 4.

Solution.
Step 1: We eliminate x1 from the second and third equations by performing
two operations r2 ← r2 − r1 and r3 ← r3 − 2r1 obtaining

x1 + x2 − x3 = 3
− 4x2 + 3x3 = −2
− 4x2 + 3x3 = −2

Step 2: The operation r3 ← r3 − r2 leads to the system{
x1 + x2 − x3 = 3
− 4x2 + 3x3 = −2



2. EQUIVALENT SYSTEMS AND ELEMENTARY ROW OPERATIONS: THE ELIMINATION METHOD17

By assigning x3 an arbitrary value t we obtain the general solution x1 =
t+10

4
, x2 = 2+3t

4
, x3 = t. This means that the linear system has infinitely

many solutions (consistent and dependent). Every time we assign a value to
t we obtain a different solution

Example 2.4
Determine if the following system is consistent or not

3x1 + 4x2 + x3 = 1
2x1 + 3x2 = 0
4x1 + 3x2 − x3 = −2.

Solution.
Step 1: To eliminate the variable x1 from the second and third equations
we perform the operations r2 ← 3r2 − 2r1 and r3 ← 3r3 − 4r1 obtaining the
system 

3x1 + 4x2 + x3 = 1
x2 − 2x3 = −2

− 7x2 − 7x3 = − 10.

Step 2: Now, to eliminate the variable x3 from the third equation we apply
the operation r3 ← r3 + 7r2 to obtain

3x1 + 4x2 + x3 = 1
x2 − 2x3 = −2

− 21x3 = − 24.

Solving the system by the method of backward substitution we find the
unique solution x1 = −3

7
, x2 = 2

7
, x3 = 8

7
. Hence the system is consistent

and independent

Example 2.5
Determine whether the following system is consistent:{

x1 − 3x2 = 4
−3x1 + 9x2 = 8.

Solution.
Multiplying the first equation by 3 and adding the resulting equation to the
second equation we find 0 = 20 which is impossible. Hence, the given system
is inconsistent
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Practice Problems

Problem 2.1
Solve each of the following systems using the method of elimination:
(a) {

4x1 − 3x2 = 0
2x1 + 3x2 = 18

(b) {
4x1 − 6x2 = 10
6x1 − 9x2 = 15

(c) {
2x1 + x2 = 3
2x1 + x2 = 1

Which of the above systems is consistent and which is inconsistent?

Problem 2.2
Find the values of A,B,C in the following partial fraction

x2 − x+ 3

(x2 + 2)(2x− 1)
=
Ax+B

x2 + 2
+

C

2x− 1
.

Problem 2.3
Find a quadratic equation of the form y = ax2 + bx + c that goes through
the points (−2, 20), (1, 5), and (3, 25).

Problem 2.4
Solve the following system using the method of elimination.

5x1 − 5x2 − 15x3 = 40
4x1 − 2x2 − 6x3 = 19
3x1 − 6x2 − 17x3 = 41

Problem 2.5
Solve the following system using elimination.

2x1 + x2 + x3 = −1
x1 + 2x2 + x3 = 0
3x1 − 2x3 = 5
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Problem 2.6
Find the general solution of the linear system{

x1 − 2x2 + 3x3 + x4 = −3
2x1 − x2 + 3x3 − x4 = 0

Problem 2.7
Find a, b, and c so that the system

x1 + ax2 + cx3 = 0
bx1 + cx2 − 3x3 = 1
ax1 + 2x2 + bx3 = 5

has the solution x1 = 3, x2 = −1, x3 = 2.

Problem 2.8
Show that the following systems are equivalent.

7x1 + 2x2 + 2x3 = 21
− 2x2 + 3x3 = 1

4x3 = 12

and 
21x1 + 6x2 + 6x3 = 63

− 4x2 + 6x3 = 2
x3 = 3

Problem 2.9
Solve the following system by elimination.

3x1 + x2 + 2x3 = 13
2x1 + 3x2 + 4x3 = 19
x1 + 4x2 + 3x3 = 15

Problem 2.10
Solve the following system by elimination.

x1 − 2x2 + 3x3 = 7
2x1 + x2 + x3 = 4
−3x1 + 2x2 − 2x3 = −10
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3. Solving Linear Systems Using Augmented

Matrices

In this section we apply the elimination method described in the previous
section to the rectangular array consisting of the coefficients of the unknowns
and the right-hand side of a given system rather than to the individual equa-
tions. To elaborate, consider the linear system

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2

........................ ....
am1x1 + am2x2 + ...+ amnxn = bm

We define the augmented matrix corresponding to the above system to be
the rectangular array 

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

... · · · ...
...

am1 am2 · · · amn bm

 .
We then apply elementary row operations on the augmented matrix and
reduces it to a triangular matrix. Then the corresponding system is tri-
angular as well and is equivalent to the original system. Next, use either
the backward-substitution or the forward-substitution technique to find the
unknowns. We illustrate this technique in the following examples.

Example 3.1
Solve the following linear system using elementary row operations on the
augmented matrix:

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9.

Solution.
The augmented matrix for the system is 1 −2 1 0

0 2 −8 8
−4 5 9 −9
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Step 1: The operations r2 ← 1
2
r2 and r3 ← r3 + 4r1 give 1 −2 1 0

0 1 −4 4
0 −3 13 −9


Step 2: The operation r3 ← r3 + 3r2 gives 1 −2 1 0

0 1 −4 4
0 0 1 3


The corresponding system of equations is

x1 − 2x2 + x3 = 0
x2 − 4x3 = 4

x3 = 3

Using back-substitution we find the unique solution x1 = 29, x2 = 16, x3 =
3

Example 3.2
Solve the following linear system using the method described above.

x2 + 5x3 = −4
x1 + 4x2 + 3x3 = −2
2x1 + 7x2 + x3 = −1.

Solution.
The augmented matrix for the system is 0 1 5 −4

1 4 3 −2
2 7 1 −1


Step 1:The operation r2 ↔ r1 gives 1 4 3 −2

0 1 5 −4
2 7 1 −1
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Step 2: The operation r3 ← r3 − 2r1 gives the system 1 4 3 −2
0 1 5 −4
0 −1 −5 3


Step 3: The operation r3 ← r3 + r2 gives 1 4 3 −2

0 1 5 −4
0 0 0 −1


The corresponding system of equations is

x1 + 4x2 + 3x3 = −2
x2 + 5x3 = −4

0 = −1

From the last equation we conclude that the system is inconsistent

Example 3.3
Determine if the following system is consistent.

x2 − 4x3 = 8
2x1 − 3x2 + 2x3 = 1
5x1 − 8x2 + 7x3 = 1.

Solution.
The augmented matrix of the given system is 0 1 −4 8

2 −3 2 1
5 −8 7 1


Step 1: The operation r3 ← r3 − 2r2 gives 0 1 −4 8

2 −3 2 1
1 −2 3 −1


Step 2: The operation r3 ↔ r1 leads to 1 −2 3 −1

2 −3 2 1
0 1 −4 8
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Step 3: Applying r2 ← r2 − 2r1 to obtain 1 −2 3 −1
0 1 −4 3
0 1 −4 8


Step 4: Finally, the operation r3 ← r3 − r2 gives 1 −2 3 −1

0 1 −4 3
0 0 0 5


Hence, the equivalent system is

x1 − 2x2 + 3x3 = 0
x2 − 4x3 = 3

0 = 5

This last system has no solution ( the last equation requires x1, x2, and x3

to satisfy the equation 0x1 + 0x2 + 0x3 = 5 and no such x1, x2, and x3 exist).
Hence the original system is inconsistent

Pay close attention to the last row of the trinagular matrix of the previ-
ous exercise. This situation is typical of an inconsistent system.
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Practice Problems

Problem 3.1
Solve the following linear system using the elimination method of this section.

x1 + 2x2 = 0
−x1 + 3x2 + 3x3 = −2

x2 + x3 = 0.

Problem 3.2
Find an equation involving g, h, and k that makes the following augmented
matrix corresponds to a consistent system. 2 5 −3 g

4 7 −4 h
−6 −3 1 k


Problem 3.3
Solve the following system using elementary row operations on the augmented
matrix: 

5x1 − 5x2 − 15x3 = 40
4x1 − 2x2 − 6x3 = 19
3x1 − 6x2 − 17x3 = 41

Problem 3.4
Solve the following system using elementary row operations on the augmented
matrix: 

2x1 + x2 + x3 = −1
x1 + 2x2 + x3 = 0
3x1 − 2x3 = 5

Problem 3.5
Solve the following system using elementary row operations on the augmented
matrix: 

x1 − x2 + 2x3 + x4 = 0
2x1 + 2x2 − x4 = 0
3x1 + x2 + 2x3 + x4 = 0



3. SOLVING LINEAR SYSTEMS USING AUGMENTED MATRICES 25

Problem 3.6
Find the value(s) of a for which the following system has a nontrivial solution.
Find the general solution.

x1 + 2x2 + x3 = 0
x1 + 3x2 + 6x3 = 0
2x1 + 3x2 + ax3 = 0

Problem 3.7
Solve the linear system whose augmented matrix is given by 1 1 2 8

−1 −2 3 1
3 −7 4 10


Problem 3.8
Solve the linear system whose augmented matrix is reduced to the following
triangular form  1 −3 7 1

0 1 4 0
0 0 0 1


Problem 3.9
Solve the linear system whose augmented matrix is reduced to the following
triangular form  1 0 0 −7 8

0 1 0 3 2
0 0 1 1 −5


Problem 3.10
Reduce the matrix to triangular matrix.

−1 −1 0 0
0 0 2 3
4 0 −2 1
3 −1 0 4


Problem 3.11
Solve the following system using elementary row operations on the augmented
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matrix: 
3x1 + x2 + 7x3 + 2x4 = 13
2x1 − 4x2 + 14x3 − x4 = −10
5x1 + 11x2 − 7x3 + 8x4 = 59
2x1 + 5x2 − 4x3 − 3x4 = 39
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4. Echelon Form and Reduced Echelon Form:

Gaussian Elimination

The elimination method introduced in the previous section reduces the aug-
mented matrix to a “nice” matrix ( meaning the corresponding equations
are easy to solve). Two of the “nice” matrices discussed in this section are
matrices in either row-echelon form or reduced row-echelon form, concepts
that we discuss next.
By a leading entry of a row in a matrix we mean the leftmost non-zero
entry in the row.
A rectangular matrix is said to be in row-echelon form if it has the follow-
ing three characterizations:

(1) All rows consisting entirely of zeros are at the bottom.
(2) The leading entry in each non-zero row is 1 and is located in a column
to the right of the leading entry of the row above it.
(3) All entries in a column below a leading entry are zero.

The matrix is said to be in reduced row-echelon form if in addition to
the above, the matrix has the following additional characterization:

(4) Each leading 1 is the only nonzero entry in its column.

Remark 4.1 From the definition above, note that a matrix in row-echelon
form has zeros below each leading 1, whereas a matrix in reduced row-echelon
form has zeros both above and below each leading 1.

Example 4.1
Determine which matrices are in row-echelon form (but not in reduced row-
echelon form) and which are in reduced row-echelon form
(a)  1 −3 2 1

0 1 −4 8
0 0 0 1


(b)  1 0 0 29

0 1 0 16
0 0 1 1
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Solution.
(a)The given matrix is in row-echelon form but not in reduced row-echelon
form since the (1, 2)−entry is not zero.
(b) The given matrix satisfies the characterization of a reduced row-echelon
form

The importance of the row-echelon matrices is indicated in the following
theorem.

Theorem 4.1
Every nonzero matrix can be brought to (reduced) row-echelon form by a
finite number of elementary row operations.

The process of reducing a matrix to a row-echelon form is known as Gaussian
elimination. That of reducing a matrix to a reduced row-echelon form is
known as Gauss-Jordan elimination.

Example 4.2
Use Gauss-Jordan elimination to transform the following matrix first into
row-echelon form and then into reduced row-echelon form

0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1

1 4 5 −9 −7


Solution.
The reduction of the given matrix to row-echelon form is as follows.

Step 1: r1 ↔ r4 
1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1

0 −3 −6 4 9


Step 2: r2 ← r2 + r1 and r3 ← r3 + 2r1

1 4 5 −9 −7
0 2 4 −6 −6
0 5 10 −15 −15
0 −3 −6 4 9
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Step 3: r2 ← 1
2
r2 and r3 ← 1

5
r3

1 4 5 −9 −7
0 1 2 −3 −3
0 1 2 −3 −3
0 −3 −6 4 9


Step 4: r3 ← r3 − r2 and r4 ← r4 + 3r2

1 4 5 −9 −7
0 1 2 −3 −3
0 0 0 0 0
0 0 0 −5 0


Step 5: r3 ↔ r4 

1 4 5 −9 −7
0 1 2 −3 −3
0 0 0 −5 0
0 0 0 0 0


Step 6: r5 ← −1

5
r5 

1 4 5 −9 −7
0 1 2 −3 −3
0 0 0 1 0
0 0 0 0 0


Step 7: r1 ← r1 − 4r2 

1 0 −3 3 5
0 1 2 −3 −3
0 0 0 1 0
0 0 0 0 0


Step 8: r1 ← r1 − 3r3 and r2 ← r2 + 3r3

1 0 −3 0 5
0 1 2 0 −3
0 0 0 1 0
0 0 0 0 0
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Example 4.3
Use Gauss-Jordan elimination to transform the following matrix first into
row-echelon form and then into reduced row-echelon form 0 3 −6 6 4 −5

3 −7 8 −5 8 9
3 −9 12 −9 6 15


Solution.
By following the steps in the Gauss-Jordan algorithm we find

Step 1: r3 ← 1
3
r3  0 3 −6 6 4 −5

3 −7 8 −5 8 9
1 −3 4 −3 2 5


Step 2: r1 ↔ r3  1 −3 4 −3 2 5

3 −7 8 −5 8 9
0 3 −6 6 4 −5


Step 3: r2 ← r2 − 3r1  1 −3 4 −3 2 5

0 2 −4 4 2 −6
0 3 −6 6 4 −5


Step 4: r2 ← 1

2
r2  1 −3 4 −3 2 5

0 1 −2 2 1 −3
0 3 −6 6 4 −5


Step 5: r3 ← r3 − 3r2  1 −3 4 −3 2 5

0 1 −2 2 1 −3
0 0 0 0 1 4


Step 6: r1 ← r1 + 3r2  1 0 −2 3 5 −4

0 1 −2 2 1 −3
0 0 0 0 1 4
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Step 7: r1 ← r1 − 5r3 and r2 ← r2 − r3 1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4


Remark 4.2
It can be shown that no matter how the elementary row operations are varied,
one will always arrive at the same reduced row-echelon form; that is the
reduced row echelon form is unique. On the contrary row-echelon form is
not unique. However, the number of leading 1’s of two different row-echelon
forms is the same. That is, two row-echelon matrices have the same number
of nonzero rows. This number is knwon as the rank of the matrix.

Example 4.4
Consider the system {

ax + by = k
cx + dy = l.

Show that if ad− bc 6= 0 then the reduced row-echelon form of the coefficient
matrix is the matrix [

1 0
0 1

]
Solution.
The coefficient matrix is the matrix[

a b
c d

]
Assume first that a 6= 0. Using Gaussian elimination we reduce the above
matrix into row-echelon form as follows:

Step 1: r2 ← ar2 − cr1 [
a b
0 ad− bc

]
Step 2: r2 ← 1

ad−bcr2 [
a b
0 1

]
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Step 3: r1 ← r1 − br2 [
a 0
0 1

]
Step 4: r1 ← 1

a
r1 [

1 0
0 1

]
Next, assume that a = 0. Then c 6= 0 and b 6= 0. Following the steps of
Gauss-Jordan elimination algorithm we find

Step 1: r1 ↔ r2 [
c d
0 b

]
Step 2: r1 ← 1

c
r1 and r2 ← 1

b
r2 [

1 d
c

0 1

]
Step 3: r1 ← r1 − d

c
r2 [

1 0
0 1

]
Example 4.5
Find the rank of each of the following matrices
(a)

A =

 2 1 4
3 2 5
0 −1 1


(b)

B =

 3 1 0 1 −9
0 −2 12 −8 −6
2 −3 22 −14 −17


Solution.
(a) We use Gaussian elimination to reduce the given matrix into row-echelon
form as follows:
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Step 1: r2 ← r2 − r1  2 1 4
1 1 1
0 −1 1


Step 2: r1 ↔ r2  1 1 1

2 1 4
0 −1 1


Step 3: r2 ← r2 − 2r1  1 1 1

0 −1 2
0 −1 1


Step 4: r3 ← r3 − r2  1 1 1

0 −1 2
0 0 −1


Thus, rank(A) = 3.
(b) As in (a), we reduce the matrix into row-echelon form as follows:

Step 1: r1 ← r1 − r3  1 4 −22 15 8
0 −2 12 − 8 − 6
2 −3 22 −14 −17


Step 2: r3 ← r3 − 2r1 1 4 −22 15 25

0 − 2 12 − 8 − 6
0 −11 −22 −44 −33


Step 3: r2 ← −1

2
r2  1 4 −22 15 8

0 1 − 6 4 3
0 −11 −22 −44 −33
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Step 4: r3 ← r3 + 11r2  1 4 −22 15 8
0 1 − 6 4 3
0 0 −88 0 0


Step 5: r3 ← 1

8
r3  1 4 −22 15 8

0 1 − 6 4 3
0 0 1 0 0


Hence, rank(B) = 3
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Practice Problems

Problem 4.1
Use Gaussina elimination to reduce the given matrix to row echelon form.[

1 −2 3 1 −3
2 −1 3 −1 0

]
Problem 4.2
Use Gaussina elimination to reduce the given matrix to row echelon form. −1 0 2 −3

0 3 −1 7
3 2 0 7


Problem 4.3
Use Gaussina elimination to reduce the given matrix to row echelon form. 5 −5 −15 40

4 −2 − 6 19
3 −6 −17 41


Problem 4.4
Use Gaussina elimination to reduce the given matrix to row echelon form. 2 1 1 −1

1 2 1 0
3 0 −2 5


Problem 4.5
Which of the following matrices are not in reduced row-ehelon form and
why?
(a) 

1 −2 0 0
0 0 0 0
0 0 1 0
0 0 0 1


(b)  1 0 0 3

0 2 0 −2
0 0 3 0
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(c)  1 0 4
0 1 −2
0 0 0


Problem 4.6
Use Gaussian elimination to convert the following matrix into a row-echelon
matrix. 

1 −3 1 −1 0 −1
−1 3 0 3 1 3

2 −6 3 0 −1 2
−1 3 1 5 1 6


Problem 4.7
Use Gauss-Jordan elimination to convert the following matrix into reduced
row-echelon form. 

−2 1 1 15
6 −1 −2 −36
1 −1 −1 −11
−5 −5 −5 −14


Problem 4.8
Use Gauss-Jordan elimination to convert the following matrix into reduced
row-echelon form. 

3 1 7 2 13
2 −4 14 −1 −10
5 11 −7 8 59
2 5 −4 −3 39

 .
Problem 4.9
Use Gauss elimination to convert the following matrix into row-echelon form.

−1 −1 0 0
0 0 2 3
4 0 −2 1
3 −1 0 4

 .
Problem 4.10
Use Gauss elimination to convert the following matrix into row-echelon form. 1 1 2 8

−1 −2 3 1
3 −7 4 10

 .
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Problem 4.11
Find the rank of each of the following matrices.
(a) 

−1 −1 0 0
0 0 2 3
4 0 −2 1
3 −1 0 4


(b)  1 −1 3

2 0 4
−1 −3 1


Solution.
(a) We reduce the given matrix to row-echelon form.

Step 1: r3 ← r3 + 4r1 and r4 ← r4 + 3r1
−1 −1 0 0

0 0 2 3
0 −4 −2 1
0 −4 0 4


Step 2: r4 ← r4 − r3 

−1 −1 0 0
0 0 2 3
0 −4 −2 1
0 0 2 3


Step 3: r1 ← −r1 and r2 ↔ r3

1 1 0 0
0 −4 −2 1
0 0 2 3
0 0 2 3


Step 4: r4 ← r3 − r4 

1 1 0 0
0 −4 −2 1
0 0 2 3
0 0 0 0
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Step 5: r2 ← −1
4
r2 and r3 ← 1

2
r3
1 1 0 0
0 1 .5 −.25
0 0 1 1.5
0 0 0 0


Thus, the rank of the given matrix is 3.
(b) Apply the Gauss algorithm as follows.

Step 1: r2 ← r2 − 2r1 and r3 ← r3 + r1 1 −1 3
0 2 −2
0 −4 4


Step 2: r3 ← r3 + 2r2  1 −1 3

0 2 −2
0 0 0


Step 3: r2 ← 1

2
r2  1 −1 3

0 1 −1
0 0 0


Hence, the rank is 2
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5. Echelon Forms and Solutions to Linear Sys-

tems

In this section we give a systematic procedure for solving systems of linear
equations; it is based on the idea of reducing the augmented matrix to either
the row-echelon form or the reduced row-echelon form. The new system is
equivalent to the original system.
Unknowns corresponding to leading entries in the echelon augmented matrix
are called dependent or leading variables. If an unknown is not dependent
then it is called free or independent variable.

Example 5.1
Find the dependent and independent variables of the following system

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution.
The augmented matrix for the system is

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6


Using the Gaussian algorithm we bring the augmented matrix to row-echelon
form as follows:

Step 1: r2 ← r2 − 2r1 and r4 ← r4 − 2r1
1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6


Step 2: r2 ← −r2 

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 5 10 0 15 5
0 0 4 8 0 18 6
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Step 3: r3 ← r3 − 5r2 and r4 ← r4 − 4r2
1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2


Step 4: r3 ↔ r4 

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 6 2
0 0 0 0 0 0 0


Step 5: r3 ← 1

6
r3 

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3

0 0 0 0 0 0 0


The leading variables are x1, x3, and x6. The free variables are x2, x4, and x5

One way to solve a linear system is to apply the elementary row opera-
tions to reduce the augmented matrix to a (reduced) row-echelon form. If
the augmented matrix is in reduced row-echelon form then to obtain the gen-
eral solution one just has to move all independent variables to the right side
of the equations and consider them as parameters. The dependent variables
are given in terms of these parameters.

Example 5.2
Solve the following linear system.

x1 + 2x2 + x4 = 6
x3 + 6x4 = 7

x5 = 1.

Solution.
The augmented matrix is already in row-echelon form. The free variables are
x2 and x4. So let x2 = s and x4 = t. Solving the system starting from the
bottom we find x1 = −2s− t+ 6, x3 = 7− 6t, and x5 = 1



5. ECHELON FORMS AND SOLUTIONS TO LINEAR SYSTEMS 41

If the augmented matrix does not have the reduced row-echelon form but
the row-echelon form then the general solution also can be easily found by
using the method of backward substitution.

Example 5.3
Solve the following linear system

x1 − 3x2 + x3 − x4 = 2
x2 + 2x3 − x4 = 3

x3 + x4 = 1.

Solution.
The augmented matrix is in row-echelon form. The free variable is x4 = t.
Solving for the leading variables we find, x1 = 11t + 4, x2 = 3t + 1, and
x3 = 1− t

The questions of existence and uniqueness of solutions are fundamental ques-
tions in linear algebra. The following theorem provides some relevant infor-
mation.

Theorem 5.1
A system of m linear equations in n unknowns can have exactly one solution,
infinitely many solutions, or no solutions at all.
(1) If the reduced augmented matrix has a row of the form [0, 0, · · · , 0, b]
where b is a nonzero constant, then the system has no solutions.
(2) If the reduced augmented matrix has indepedent variables and no rows
of the form [0, 0, · · · , 0, b] with b 6= 0 then the system has infinitely many
solutions.
(3) If the reduced augmented matrix has no independent variables and no
rows of the form [0, 0, · · · , 0, b] with b 6= 0, then the system has exactly one
solution.

Example 5.4
Find the general solution of the system whose augmented matrix is given by 1 2 −7

−1 −1 1
2 1 5
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Solution.
We first reduce the system to row-echelon form as follows.

Step 1: r2 ← r2 + r1 and r3 ← r3 − 2r1 1 2 −7
0 1 −6
0 −3 19


Step 2: r3 ← r3 + 3r2  1 2 −7

0 1 −6
0 0 1


The corresponding system is given by

x1 + 2x2 = −7
x2 = −6
0 = 1

Because of the last equation the system is inconsistent

Example 5.5
Find the general solution of the system whose augmented matrix is given by

1 −2 0 0 7 −3
0 1 0 0 −3 1
0 0 0 1 5 −4
0 0 0 0 0 0


Solution.
By adding two times the second row to the first row we find the reduced
row-echelon form of the augmented matrix.

1 0 0 0 1 −1
0 1 0 0 −3 1
0 0 0 1 5 −4
0 0 0 0 0 0


It follows that the free variables are x3 = s and x5 = t. Solving for the leading
variables we find x1 = −1− t, x2 = 1 + 3t, and x4 = −4− 5t
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Example 5.6
Determine the value(s) of h such that the following matrix is the augmented
matrix of a consistent linear system[

1 4 2
−3 h −1

]
Solution.
By adding three times the first row to the second row we find[

1 4 2
0 12 + h 5

]
The system is consistent if and only if 12 + h 6= 0; that is, h 6= −12

Example 5.7
Find (if possible) conditions on the numbers a, b, and c such that the following
system is consistent 

x1 + 3x2 + x3 = a
−x1 − 2x2 + x3 = b
3x1 + 7x2 − x3 = c

Solution.
The augmented matrix of the system is 1 3 1 a

−1 −2 1 b
3 7 −1 c


Now apply Gaussian elimination as follows.

Step 1: r2 ← r2 + r1 and r3 ← r3 − 3r1 1 3 1 a
0 1 2 b+ a
0 −2 −4 c− 3a


Step 2: r3 ← r3 + 2r2  1 3 1 a

0 1 2 b+ a
0 0 0 c− a+ 2b


The system has no solution if c − a + 2b 6= 0. The system has infinitely
many solutions if c − a + 2b = 0. In this case, the solution is given by
x1 = 5t− (2a+ 3b), x2 = (a+ b)− 2t, x3 = t
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Practice Problems

Problem 5.1
Using Gaussian elimination, solve the linear system whose augmented matrix
is given by  1 1 2 8

−1 −2 3 1
3 −7 4 10


Problem 5.2
Solve the linear system whose augmented matrix is reduced to the following
reduced row-echelon form  1 0 0 −7 8

0 1 0 3 2
0 0 1 1 −5


Problem 5.3
Solve the linear system whose augmented matrix is reduced to the following
row-echelon form  1 −3 7 1

0 1 4 0
0 0 0 1


Problem 5.4
Solve the following system using Gauss-Jordan elimination.

3x1 + x2 + 7x3 + 2x4 = 13
2x1 − 4x2 + 14x3 − x4 = −10
5x1 + 11x2 − 7x3 + 8x4 = 59
2x1 + 5x2 − 4x3 − 3x4 = 39

Problem 5.5
Solve the following system.

2x1 + x2 + x3 = −1
x1 + 2x2 + x3 = 0
3x1 − 2x3 = 5
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Problem 5.6
Solve the following system using elementary row operations on the augmented
matrix: 

5x1 − 5x2 − 15x3 = 40
4x1 − 2x2 − 6x3 = 19
3x1 − 6x2 − 17x3 = 41

Problem 5.7
Reduce the following system to row echelon form and then find the solution.

2x1 + x2 − x3 + 2x4 = 5
4x1 + 5x2 − 3x3 + 6x4 = 9
−2x1 + 5x2 − 2x3 + 6x4 = 4
4x1 + 11x2 − 4x3 + 8x4 = 2.

Problem 5.8
Reduce the following system to row echelon form and then find the solution.

2x1 − 5x2 + 3x3 = −4
x1 − 2x2 − 3x3 = 3
−3x1 + 4x2 + 2x3 = −4.

Problem 5.9
Reduce the following system to reduced row echelon form and then find the
solution. 

2x1 + 4x2 + 2x3 + 4x4 + 2x5 = 4
2x1 + 4x2 + 3x3 + 3x4 + 3x5 = 4
3x1 + 6x2 + 6x3 + 3x4 + 6x5 = 6

x3 − x4 − x5 = 4.

Problem 5.10
Using the Gauss-Jordan elimination method, solve the following linear sys-
tem. 

x1 + 2x2 + 3x3 + 4x4 + 3x5 = 1
2x1 + 4x2 + 6x3 + 2x4 + 6x5 = 2
3x1 + 6x2 + 18x3 + 9x4 + 9x5 = −6
4x1 + 8x2 + 12x3 + 10x4 + 12x5 = 4
5x1 + 10x2 + 24x3 + 11x4 + 15x5 = −4.
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6. Homogeneous Systems of Linear Equations

A homogeneous linear system is any system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

........................ ....
am1x1 + am2x2 + · · ·+ amnxn = 0.

Every homogeneous system is consistent, since x1 = 0, x2 = 0, · · · , xn = 0
is always a solution. This solution is called the trivial solution; any other
solution is called nontrivial.
A homogeneous system has either a unique solution (the trivial solution) or
infinitely many solutions. The following theorem provides a criterion where
a homogeneous system is assured to have a nontrivial solution (and therefore
infinitely many solutions).

Theorem 6.1
A homogeneous system in n unknowns and m equations has infinitely many
solutions if either
(1) the rank of the coefficient matrix is less than n or
(2) the number of unknowns exceeds the number of equations, i.e. m < n.
That is, the system is underdetermined.

Example 6.1
Solve the following homogeneous system using Gauss-Jordan elimination.

2x1 + 2x2 − x3 + x5 = 0
−x1 − x2 + 2x3 − 3x4 + x5 = 0
x1 + x2 − 2x3 − x5 = 0

x3 + x4 + x5 = 0.

Solution.
The reduction of the augmented matrix to reduced row-echelon form is out-
lined below. 

2 2 −1 0 1 0
−1 −1 2 −3 1 0

1 1 −2 0 −1 0
0 0 1 1 1 0
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Step 1: r3 ← r3 + r2 
2 2 −1 0 1 0
−1 −1 2 −3 1 0

0 0 0 −3 0 0
0 0 1 1 1 0


Step 2: r3 ↔ r4 and r1 ↔ r2

−1 −1 2 −3 1 0
2 2 −1 0 1 0
0 0 1 1 1 0
0 0 0 −3 0 0


Step 3: r2 ← r2 + 2r1 and r4 ← −1

3
r4

−1 −1 2 −3 1 0
0 0 3 −6 3 0
0 0 1 1 1 0
0 0 0 1 0 0


Step 4: r1 ← −r1 and r2 ← 1

3
r2

1 1 −2 3 −1 0
0 0 1 −2 1 0
0 0 1 1 1 0
0 0 0 1 0 0


Step 5: r3 ← r3 − r2 

1 1 −2 3 −1 0
0 0 1 −2 1 0
0 0 0 3 0 0
0 0 0 1 0 0


Step 6: r4 ← r4 − 1

3
r3 and r3 ← 1

3
r3

1 1 −2 3 −1 0
0 0 1 −2 1 0
0 0 0 1 0 0
0 0 0 0 0 0
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Step 7: r1 ← r1 − 3r3 and r2 ← r2 + 2r3
1 1 −2 0 −1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0


Step 8: r1 ← r1 + 2r2 

1 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0


The corresponding system is

x1 + x2 + x5 = 0
x3 + x5 = 0

x4 = 0

The free variables are x2 = s, x5 = t and the general solution is given by the
formula: x1 = −s− t, x2 = s, x3 = −t, x4 = 0, x5 = t

Example 6.2
Solve the following homogeneous system using Gaussian elimination.

x1 + 3x2 + 5x3 + x4 = 0
4x1 − 7x2 − 3x3 − x4 = 0
3x1 + 2x2 + 7x3 + 8x4 = 0

Solution.
The augmented matrix for the system is 1 3 5 1 0

4 −7 −3 −1 0
3 2 7 8 0


We reduce this matrix into a row-echelon form as follows.
Step 1: r2 ← r2 − r3  1 3 5 1 0

1 −9 −10 −9 0
3 2 7 8 0
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Step 2: r2 ← r2 − r1 and r3 ← r3 − 3r1 1 3 5 1 0
0 −12 −15 −10 0
0 − 7 − 8 5 0


Step 3: r2 ← − 1

12
r2  1 3 5 1 0

0 1 5
4

5
6

0
0 −7 −8 5 0


Step 4: r3 ← r3 + 7r2  1 3 5 1 0

0 1 5
4

5
6

0
0 0 3

4
65
6

0


Step 5: r3 ← 4

3
r3  1 3 5 1 0

0 1 5
4

5
6

0
0 0 1 130

9
0


We see that x4 = t is the only free variable. Solving for the leading variables
using back substitution we find x1 = 176

9
t, x2 = 155

9
t, and x3 = −130

9
t

Remark 6.1
Part (2) of Theorem 6.1 applies only to homogeneous linear systems. A
non-homogeneous system (right-hand side has non-zero entries) with more
unknowns than equations need not be consistent as shown in the next exam-
ple.

Example 6.3
Show that the following system is inconsistent.{

x1 + x2 + x3 = 0
2x1 + 2x2 + 2x3 = 4.

Solution.
Multiplying the first equation by −2 and adding the resulting equation to the
second we obtain 0 = 4 which is impossible. So the system is inconsistent
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Example 6.4
Show that if a homogeneous system of linear equations in n unknowns has a
nontrivial solution then rank(A) < n, where A is the coefficient matrix.

Solution.
Since rank(A) ≤ n, either rank(A) = n or rank(A) < n. If rank(A) < n
then we are done. So suppose that rank(A) = n. Then there is a matrix B
that is row equivalent to A and that has n nonzero rows. Moreover, B has
the following form 

1 a12 a13 · · · a1n 0
0 1 a23 · · · a2n 0
...

...
...

...
...

0 0 0 · · · 1 0


The corresponding system is triangular and can be solved by back substitu-
tion to obtain the solution x1 = x2 = · · · = xn = 0 which is a contradiction.
Thus we must have rank(A) < n
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Practice Problems

Problem 6.1
Find the value(s) of a for which the following system has a nontrivial solution.
Find the general solution.

x1 + 2x2 + x3 = 0
x1 + 3x2 + 6x3 = 0
2x1 + 3x2 + ax3 = 0

Problem 6.2
Solve the following homogeneous system.

x1 − x2 + 2x3 + x4 = 0
2x1 + 2x2 − x4 = 0
3x1 + x2 + 2x3 + x4 = 0

Problem 6.3
Solve the homogeneous linear system.

x1 + x2 − 2x3 = 0
3x1 + 2x2 + 4x3 = 0
4x1 + 3x2 + 3x3 = 0

Problem 6.4
Solve the homogeneous linear system.

x1 + x2 − 2x3 = 0
3x1 + 2x2 + 4x3 = 0
4x1 + 3x2 + 2x3 = 0

Problem 6.5
Solve the homogeneous linear system.{

2x1 + 4x2 − 6x3 = 0
4x1 + 8x2 − 12x3 = 0.

Problem 6.6
Solve the homogeneous linear system.

x1 + x2 + 3x4 = 0
2x1 + x2 − x3 + x4 = 0
3x1 − x2 − x3 + 2x4 = 0
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Problem 6.7
Solve the homogeneous linear system.

x1 + x2 − x4 = 0
−2x1 − 3x2 + 4x3 + 5x4 = 0
2x1 + 4x2 − 2x4 = 0



Matrices

Matrices are essential in the study of linear algebra. The concept of matrices
has become a tool in all branches of mathematics, the sciences, and engi-
neering. They arise in many contexts other than as augmented matrices for
systems of linear equations. In this chapter we shall consider this concept as
objects in their own right and develop their properties for use in our later
discussions.

53
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7. Matrices and Matrix Operations

In this section, we discuss several types of matrices. We also examine four
operations on matrices- addition, scalar multiplication, trace, and the trans-
pose operation- and give their basic properties. Also, we introduce symmet-
ric, skew-symmetric matrices.

A matrix A of size m× n is a rectangular array of the form

A =


a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn


where the aij’s are the entries of the matrix, m is the number of rows, n
is the number of columns. The zero matrix 0 is the matrix whose entries
are all 0. The n × n identity matrix In is a square matrix whose main
diagonal consists of 1′s and the off diagonal entries are all 0. A matrix A can
be represented with the following compact notation A = [aij]. The ith row
of the matrix A is

[ai1, ai2, ..., ain]

and the jth column is 
a1j

a2j
...
amj


In what follows we discuss the basic arithmetic of matrices.

Two matrices are said to be equal if they have the same size and their cor-
responding entries are all equal. If the matrix A is not equal to the matrix
B we write A 6= B.

Example 7.1
Find x1, x2 and x3 such that x1 + x2 + 2x3 0 1

2 3 2x1 + 4x2 − 3x3

4 3x1 + 6x2 − 5x3 5

 =

 9 0 1
2 3 1
4 0 5
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Solution.
Because corresponding entries must be equal, this gives the following linear
system 

x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0

The augmented matrix of the system is 1 1 2 9
2 4 −3 1
3 6 −5 0


The reduction of this matrix to row-echelon form is

Step 1: r2 ← r2 − 2r1 and r3 ← r3 − 3r1 1 1 2 9
0 2 − 7 −17
0 3 −11 −27


Step 2: r2 ↔ r3  1 1 2 9

0 3 −11 −27
0 2 − 7 −17


Step 3: r2 ← r2 − r3  1 1 2 9

0 1 −4 −10
0 2 −7 −17


Step 4: r3 ← r3 − 2r2  1 1 2 9

0 1 −4 −10
0 0 1 3


The corresponding system is

x1 + x2 + 2x3 = 9
x2 − 4x3 = −10

x3 = 3

Using backward substitution we find: x1 = 1, x2 = 2, x3 = 3
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Example 7.2
Solve the following matrix equation for a, b, c, and d[

a− b b+ c
3d+ c 2a− 4d

]
=

[
8 1
7 6

]
Solution.
Equating corresponding entries we get the system

a − b = 8
b + c = 1

c + 3d = 7
2a − 4d = 6

The augmented matrix is 
1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
2 0 0 −4 6


We next apply Gaussian elimination as follows.

Step 1: r4 ← r4 − 2r1 
1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
0 2 0 −4 −10


Step 2: r4 ← r4 − 2r2 

1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
0 0 −2 −4 −12


Step 3: r4 ← r4 + 2r3 

1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
0 0 0 2 2
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Using backward substitution to find: a = −10, b = −18, c = 19, d = 1

Next, we introduce the operation of addition of two matrices. If A and
B are two matrices of the same size, then the sum A + B is the matrix
obtained by adding together the corresponding entries in the two matrices.
Matrices of different sizes cannot be added.

Example 7.3
Consider the matrices

A =

[
2 1
3 4

]
, B =

[
2 1
3 5

]
, C =

[
2 1 0
3 4 0

]
Compute, if possible, A+B, A+ C and B + C.

Solution.
We have

A+B =

[
4 2
6 10

]
A + B and B + C are undefined since A and B are of different sizes as well
as A and C

From now on, a constant number will be called a scalar. If A is a matrix
and c is a scalar, then the product cA is the matrix obtained by multiplying
each entry of A by c. Hence, −A = (−1)A. We define, A − B = A + (−B).
The matrix cIn is called a scalar matrix.

Example 7.4
Consider the matrices

A =

[
2 3 4
1 2 1

]
, B =

[
0 2 7
1 −3 5

]
Compute A− 3B.

Solution.
Using the above definitions we have

A− 3B =

[
2 −3 −17
−2 11 −14

]
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Let Mmn be the collection of all m×n matrices. This set under the operations
of addition and scalar multiplication satisfies algebraic properties which will
remind us of the system of real numbers. The proofs of these properties
depend on the properties of real numbers. Here we shall assume that the
reader is familiar with the basic algebraic properties of R. The following
theorem list the properties of matrix addition and multiplication of a matrix
by a scalar.

Theorem 7.1
Let A,B, and C be m× n and let c, d be scalars. Then

(i) A+B = B + A,
(ii) (A+B) + C = A+ (B + C) = A+B + C,
(iii) A+ 0 = 0 + A = A,
(iv) A+ (−A) = 0,
(v) c(A+B) = cA+ cB,
(vi) (c+ d)A = cA+ dA,
(vii) (cd)A = c(dA),
(viii) ImA = AIn = A.

Example 7.5
Solve the following matrix equation.[

3 2
−1 1

]
+

[
a b
c d

]
=

[
1 0
−1 2

]
Solution.
Adding and then equating corresponding entries we obtain a = −2, b =
−2, c = 0, and d = 1

If A is a square matrix then the sum of the entries on the main diagonal
is called the trace of A and is denoted by tr(A).

Example 7.6
Find the trace of the coefficient matrix of the system

− x2 + 3x3 = 1
x1 + 2x3 = 2
−3x1 − 2x2 = 4
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Solution.
If A is the coefficient matrix of the system then

A =

 0 −1 3
1 0 2
−3 −2 0


The trace of A is the number tr(A) = 0 + 0 + 0 = 0

Two useful properties of the trace of a matrix are given in the following
theorem.

Theorem 7.2
Let A = (aij) and B = (bij) be two n× n matrices and c be a scalar. Then
(i) tr(A+B) = tr(A) + tr(B),
(ii) tr(cA) = c tr(A).

Proof.
(i) tr(A+B) =

∑n
i=1(aii + bii) =

∑n
i=1 aii +

∑n
i=1 bii = tr(A) + tr(B).

(ii) tr(cA) =
∑n

i=1 caii = c
∑n

i=1 aii = c tr(A)

If A is an m× n matrix then the transpose of A, denoted by AT , is defined
to be the n×m matrix obtained by interchanging the rows and columns of
A, that is the first column of AT is the first row of A, the second column of
AT is the second row of A, etc. Note that, if A = (aij) then AT = (aji). Also,
if A is a square matrix then the diagonal entries on both A and AT are the
same.

Example 7.7
Find the transpose of the matrix

A =

[
2 3 4
1 2 1

]
,

Solution.
The transpose of A is the matrix

AT =

 2 1
3 2
4 1


The following result lists some of the properties of the transpose of a matrix.
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Theorem 7.3
Let A = (aij), and B = (bij) be two m × n matrices, C = (cij) be an n × n
matrix, and c a scalar. Then
(i) (AT )T = A,
(ii) (A+B)T = AT +BT ,
(iii) (cA)T = cAT ,
(iv) tr(CT ) = tr(C).

Proof.
(i) (AT )T = (aji)

T = (aij) = A.
(ii) (A+B)T = (aij + bij)

T = (aji + bji) = (aji) + (bji) = AT +BT .
(iii) (cA)T = (caij)

T = (caji) = c(aji) = cAT .
(iv) tr(CT ) =

∑n
i=1 cii = tr(C)

Example 7.8
A square matrix A is called symmetric if AT = A. A square matrix A is
called skew-symmetric if AT = −A.
(a) Show that the matrix

A =

 1 2 3
2 4 5
3 5 6


is a symmetric matrix.
(b) Show that the matrix

A =

 0 2 3
−2 0 −4
−3 4 0


is a skew-symmetric matrix.
(c) Show that for any square matrix A the matrix S = 1

2
(A+AT ) is symmetric

and the matrix K = 1
2
(A− AT ) is skew-symmetric.

(d) Show that if A is a square matrix, then A = S+K, where S is symmetric
and K is skew-symmetric.
(e) Show that the representation in (d) is unique.

Solution.
(a) A is symmetric since

AT =

 0 2 3
−2 0 −4
−3 4 0

 = A
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(b) A is skew-symmetric since

AT =

 0 −2 −3
2 0 4
3 −4 0

 = −A

(c) Because ST = 1
2
(A+ AT )T = 1

2
(A+ AT ) then S is symmetric. Similarly,

KT = 1
2
(A − AT )T = 1

2
(AT − A) = −1

2
(A − AT ) = −K so that K is skew-

symmetric.
(d) S +K = 1

2
(A+ AT ) + 1

2
(A− AT ) = A.

(e) Let S ′ be a symmetric matrix and K ′ be skew-symmetric such that A =
S ′ +K ′. Then S +K = S ′ +K ′ and this implies that S − S ′ = K −K ′. But
the matrix S − S ′ is symmetric and the matrix K ′ −K is skew-symmetric.
This equality is true only when S − S ′ is the zero matrix. That is S = S ′.
Hence, K = K ′

Example 7.9
Let A be an n× n matrix.
(a) Show that if A is symmetric then A and AT have the same main diagonal.
(b) Show that if A is skew-symmetric then the entries on the main diagonal
are 0.
(c) If A and B are symmetric then so is A+B.

Solution.
(a) Let A = (aij) be symmetric. Let AT = (bij). Then bij = aji for all
1 ≤ i, j ≤ n. In particular, when i = j we have bii = aii. That is, A and AT

have the same main diagonal.
(b) Since A is skew-symmetric, we have aij = −aji. In particular, aii = −aii
and this implies that aii = 0.
(c) Suppose A and B are symmetric. Then (A + B)T = AT + BT = A + B.
That is, A+B is symmetric

Example 7.10
Let A be an m× n matrix and α a real number. Show that if αA = 0 then
either α = 0 or A = 0.

Solution.
Let A = (aij). Then αA = (αaij). Suppose αA = 0. Then αaij = 0 for all
0 ≤ i ≤ m and 0 ≤ j ≤ n. If α 6= 0 then aij = 0 for all indices i and j. In
this case, A = 0
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Practice Problems

Problem 7.1
Compute the matrix

3

[
2 1
−1 0

]T
− 2

[
1 −1
2 3

]
Problem 7.2
Find w, x, y, and z.  1 2 w

2 x 4
y −4 z

 =

 1 2 −1
2 −3 4
0 −4 5


Problem 7.3
Determine two numbers s and t such that the following matrix is symmetric.

A =

 2 s t
2s 0 s+ t
3 3 t


Problem 7.4
Let A be the matrix

A =

[
a b
c d

]
Show that

A = a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
Problem 7.5
Let A =

[
1 1 −1

]
, B =

[
0 1 2

]
, C =

[
3 0 1

]
. If rA+sB+tC =

0 show that s = r = t = 0.

Problem 7.6
Compute [

1 9 −2
3 6 0

]
+

[
8 −4 3
−7 1 6

]
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Problem 7.7
Determine whether the matrix is symmetric or skew-symmetric.

A =

 11 6 1
6 3 −1
1 −1 −6


Problem 7.8
Determine whether the matrix is symmetric or skew-symmetric.

A =


0 3 −1 −5
−3 0 7 −2
1 −7 0 0
5 2 0 0

 .
Problem 7.9
Consider the matrix

A =


0 3 −1 −5
−3 0 7 −2
1 −7 0 0
5 2 0 0

 .
Find (a) 4tr(7A).

Problem 7.10
Consider the matrices

A =

 11 6 1
6 3 −1
1 −1 −6

 , B =

 0 3 −1
−3 0 7
1 −7 0

 .
Find tr(AT − 2B).
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8. Matrix Multiplication

In the previous section we discussed some basic properties associated with
matrix addition and scalar multiplication. Here we introduce another impor-
tant operation involving matrices-the product.
Let A = (aij) be a matrix of size m × n and B = (bij) be a matrix of size
n× p. Then the product matrix is a matrix of size m× p and entries

cij = ai1b1j + ai2b2j + ...+ ainbnj,

that is, cij is obtained by multiplying componentwise the entries of the ith

row of A by the entries of the jth column of B. It is very important to keep
in mind that the number of columns of the first matrix must be equal to the
number of rows of the second matrix; otherwise the product is undefined.
An interesting question associated with matrix multiplication is the following:
If A and B are square matrices then is it always true that AB = BA?
The answer to this question is negative. In general, matrix multiplication is
not commutative, as the following example shows.

Example 8.1
Let

A =

[
1 2
3 2

]
, B =

[
2 −1
−3 4

]
Show that AB 6= BA. Hence, matrix multiplication is not commutative.

Solution.
Using the definition of matrix multiplication we find

AB =

[
−4 7

0 5

]
, BA =

[
−1 2

9 2

]
Hence, AB 6= BA

Example 8.2
Consider the matrices

A =

[
2 1
3 4

]
, B =

[
2 1
3 5

]
, C =

[
−1 −2
11 4

]
(a) Compare A(BC) and (AB)C.
(b) Compare A(B + C) and AB + AC.
(c) Compute I2A and AI2, where I2 is the 2× 2 identity matrix.
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Solution.
(a)

A(BC) = (AB)C =

[
70 14
235 56

]
(b)

A(B + C) = AB + AC =

[
16 7
59 33

]
(c) AI2 = I2A = A

Example 8.3
Let A be a 3× 2 and B be a 2× 4 matrices.Show that if
(a) B has a column of zeros then the same is true for AB.
(b) A has a row of zeros then the same is true for AB.

Solution.
Write

A =

 a11 a12

a21 a22

a31 a32

 and B =

[
b11 b12 b13 b14

b21 b22 b23 b24

]

Then

AB =

 a11b11 + a12 + b21 a11b12 + a12 + b22 a11b13 + a12 + b23 a11b14 + a12 + b24

a21b11 + a22b21 a21b12 + a22b22 a21b13 + a22b23 a21b14 + a22b24

a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b23 a31b14 + a32b24


(a) Suppose that b11 = b21 = 0. Then

AB =

 0 a11b12 + a12 + b22 a11b13 + a12 + b23 a11b14 + a12 + b24

0 a21b12 + a22b22 a21b13 + a22b23 a21b14 + a22b24

0 a31b12 + a32b22 a31b13 + a32b23 a31b14 + a32b24


(b) Suppose that a21 = a22 = 0. Then

AB =

 a11b11 + a12 + b21 a11b12 + a12 + b22 a11b13 + a12 + b23 a11b14 + a12 + b24

0 0 0 0
a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b23 a31b14 + a32b24
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Next, consider a system of linear equations
a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2

........................ ....
am1x1 + am2x2 + ...+ amnxn = bm

Then the matrix of the coefficients of the xi’s is called the coefficient ma-
trix:

A =


a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn


The matrix of the coefficients of the xi’s and the right hand side coefficients
is called the augmented matrix:

a11 a12 ... a1n b1
a21 a22 ... a2n b2
... ... ... ... ...
am1 am2 ... amn bm


Now, if we let

x =


x1

x2
...
xn


and

b =


b1
b2
...
bm


then the above system can be represented in matrix notation as

Ax = b.
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Example 8.4
Consider the linear system

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = − 9.

(a) Find the coefficient and augmented matrices of the linear system.
(b) Find the matrix notation.

Solution.
(a) The coefficient matrix of this system is 1 −2 1

0 2 −8
−4 5 9


and the augmented matrix is 1 −2 1 0

0 2 −8 8
−4 5 9 −9


(b) We can write the given system in matrix form as 1 −2 1

0 2 −8
−4 5 9

 x1

x2

x3

 =

 0
8
−9


As the reader has noticed so far, most of the basic rules of arithmetic of real
numbers also hold for matrices but a few do not. In Example 8.1 we have
seen that matrix multiplication is not commutative. The following exercise
shows that the cancellation law of numbers does not hold for matrix product.

Example 8.5
(a) Consider the matrices

A =

[
1 0
0 0

]
, B =

[
0 0
1 0

]
, C =

[
0 0
0 1

]
Compare AB and AC. Is it true that B = C?
(b) Find two square matrices A and B such that AB = 0 but A 6= 0 and
B 6= 0.
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Solution.
(a) Note that B 6= C even though AB = AC = 0.
(b) The given matrices satisfy AB = 0 with A 6= 0 and B 6= 0

Matrix multiplication shares many properties of the product of real num-
bers which are listed in the following theorem

Theorem 8.1
Let A be a matrix of size m× n. Then
(a) A(BC) = (AB)C, where B is of size n× p, C of size p× q.
(b) A(B + C) = AB + AC, where B and C are of size n× p.
(c) (B + C)A = BA+ CA, where B and C are of size l ×m.
(d) c(AB) = (cA)B = A(cB), where c denotes a scalar.

The next theorem describes a property about the transpose of a matrix.

Theorem 8.2
Let A = (aij), B = (bij) be matrices of sizes m × n and n ×m respectively.
Then (AB)T = BTAT .

Example 8.6
Let A be any matrix. Show that AAT and ATA are symmetric matrices.

Solution.
First note that for any matrix A the matrices AAT and ATA are well-
defined. Since (AAT )T = (AT )TAT = AAT then AAT is symmetric. Simi-
larly, (ATA)T = AT (AT )T = ATA

Finally, we discuss the powers of a square matrix. Let A be a square ma-
trix of size n× n. Then the non-negative powers of A are defined as follows:
A0 = In, A

1 = A, and for k ≥ 2, Ak = (Ak−1)A.

Example 8.7
suppose that

A =

[
1 2
3 4

]
Compute A3.
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Solution.
Multiplying the matrix A by itself three times we obtain

A3 =

[
37 54
81 118

]
Theorem 8.3
For any non-negative integers s, t we have
(a) As+t = AsAt

(b) (As)t = Ast.

Example 8.8
Let A and B be two n× n matrices.
(a) Show that tr(AB) = tr(BA).
(b) Show that AB −BA = In is impossible.

Solution.
(a) Let A = (aij) and B = (bij). Then
tr(AB) =

∑n
i=1(
∑n

k=1 aikbki) =
∑n

i=1(
∑n

k=1 bikaki) = tr(BA).
(b) If AB−BA = In then 0 = tr(AB)− tr(BA) = tr(AB−BA) = tr(In) =
n ≥ 1, a contradiction
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Practice Problems

Problem 8.1
Write the linear system whose augmented matrix is given by 2 −1 0 −1

−3 2 1 0
0 1 1 3


Problem 8.2
Consider the linear system

2x1 + 3x2 − 4x3 + x4 = 5
−2x1 + x3 = 7

3x1 + 2x2 − 4x3 = 3

(a) Find the coefficient and augmented matrices of the linear system.
(b) Find the matrix notation.

Problem 8.3
Let A be an arbitrary matrix. Under what conditions is the product AAT

defined?

Problem 8.4
An n× n matrix A is said to be idempotent if A2 = A.
(a) Show that the matrix

A =
1

2

[
1 1
1 1

]
is idempotent.
(b) Show that if A is idempotent then the matrix (In−A) is also idempotent.

Problem 8.5
The purpose of this exercise is to show that the rule (ab)n = anbn does not
hold with matrix multiplication. Consider the matrices

A =

[
2 −4
1 3

]
, B =

[
3 2
−1 5

]
Show that (AB)2 6= A2B2.
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Problem 8.6
Show that AB = BA if and only if ATBT = BTAT .

Problem 8.7
Let A and B be symmetric matrices. Show that AB is symmetric if and only
if AB = BA.

Problem 8.8
A matrix B is said to be the square root of a matrix A if BB = A. Find
two sqaure roots of the matrix

A =

[
2 2
2 2

]
.

Problem 8.9
Find k such that

[
k 1 1

]  1 1 0
1 0 2
0 2 −3

 k
1
1

 = 0.

Problem 8.10
Express the matrix notation as a system of linear equations. 3 −1 2

4 3 7
−2 1 5

 x1

x2

x3

 =

 2
−1
4

 .
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9. The Inverse of a Square Matrix

Most problems in practice reduces to a system with matrix notation Ax = b.
Thus, in order to get x we must somehow be able to eliminate the coeffi-
cient matrix A. One is tempted to try to divide by A. Unfortunately such an
operation has not been defined for matrices. In this section we introduce a
special type of square matrices and formulate the matrix analogue of numer-
ical division. Recall that the n × n identity square matrix is the matrix In
whose main diagonal entries are 1 and off diagonal entries are 0.
A square matrix A of size n is called invertible or non-singular if there
exists a square matrix B of the same size such that AB = BA = In. In this
case B is called the inverse of A. A square matrix that is not invertible is
called singular.

Example 9.1
Show that the matrix

B =

[
−2 1

3
2
−1

2

]
is the inverse of the matrix

A =

[
1 2
3 4

]
Solution.
Using matrix multiplication one checks that AB = BA = I2

Example 9.2
Show that the matrix

A =

[
1 0
0 0

]
is singular.

Solution.
Let B = (bij) be a 2 × 2 matrix. If BA = I2 then the (2, 2)-th entry of
BA is zero while the (2, 2)−entry of I2 is 1, which is impossible. Thus, A is
singular

It is important to keep in mind that the concept of invertibility is defined
only for square matrices. In other words, it is possible to have a matrix A of
size m × n and a matrix B of size n ×m such that AB = Im. It would be
wrong to conclude that A is invertible and B is its inverse.
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Example 9.3
Let

A =

[
1 0 0
0 1 0

]
, B =

 1 0
0 1
0 0


Show that AB = I2.

Solution.
Simple matrix multiplication shows that AB = I2. However, this does not
imply that B is the inverse of A since BA is undefnied so that the condition
BA = I2 fails

Example 9.4
Show that the identity matrix is invertible but the zero matrix is not.

Solution.
Since InIn = In, In is nonsingular and its inverse is In. Now, for any n × n
matrix B we have B0 = 0 6= In so that the zero matrix is not invertible

Now if A is a nonsingular matrix then how many different inverses does
it possess? The answer to this question is provided by the following theorem.

Theorem 9.1
The inverse of a matrix is unique.

Proof.
Suppose A has two inverses B and C. We will show that B = C. Indeed,
B = BIn = B(AC) = (BA)C = InC = C

Since an invertible matrix A has a unique inverse, we will denote it from
now on by A−1.
For an invertible matrix A one can now define the negative power of a square
matrix as follows: For any positive integer n ≥ 1, we define A−n = (A−1)n.
The next theorem lists some of the useful facts about inverse matrices.

Theorem 9.2
Let A and B be two square matrices of the same size n× n.
(a) If A and B are invertible matrices then AB is invertible and (AB)−1 =
B−1A−1.
(b) If A is invertible then A−1 is invertible and (A−1)−1 = A.
(c) If A is invertible then AT is invertible and (AT )−1 = (A−1)T
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Proof.
(a) If A and B are invertible then AA−1 = A−1A = In and BB−1 = B−1B =
In. In This case, (AB)(B−1A−1) = A[B(B−1A−1)] = A[(BB−1)A−1] =
A(InA

−1) = AA−1 = In. Similarly, (B−1A−1)(AB) = In. It follows that
B−1A−1 is the inverse of AB.
(b) Since A−1A = AA−1 = In, A is the inverse of A−1, i.e. (A−1)−1 = A.
(c) Since AA−1 = A−1A = In, by taking the transpose of both sides we get
(A−1)TAT = AT (A−1)T = In. This shows that AT is invertible with inverse
(A−1)T

Example 9.5
(a) Under what conditions a diagonal matrix is invertible?
(b) Is the sum of two invertible matrices necessarily invertible?

Solution.
(a) Let D = (dii) be a diagonal n×n matrix. Let B = (bij) be an n×n matrix
such that DB = In and let DB = (cij). Then using matrix multiplication
we find cij =

∑n
k=1 dikbkj. If i 6= j then cij = diibij = 0 and cii = diibii = 1.

If dii 6= 0 for all 1 ≤ i ≤ n then bij = 0 for i 6= j and bii = 1
dii
. Thus, if

d11d22 · · · dnn 6= 0 then D is invertible and its inverse is the diagonal matrix
D−1 = ( 1

dii
).

(b) The following two matrices are invertible but their sum , which is the
zero matrix, is not.

A =

[
1 0
0 −1

]
,

[
−1 0
0 1

]

Example 9.6
Consider the 2× 2 matrix

A =

[
a b
c d

]
.

Show that if ad− bc 6= 0 then A−1 exists and is given by

A−1 =
1

ad− bc

[
d −b
−c a

]
.
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Solution.
Let

B =

[
x y
z w

]
be a matrix such that BA = I2. Then using matrix multiplication we find[

ax+ cy bx+ dy
az + cw bz + dw

]
=

[
1 0
0 1

]
Equating corresponding entries we obtain the following systems of linear
equations in the unknowns x, y, z and w.{

ax + cy = 1
bx + dy = 0

and {
az + cw = 0
bz + dw = 0

In the first system, using elimination we find (ad − bc)y = −b and (ad −
bc)x = d. Similarly, using the second system we find (ad − bc)z = −c and
(ad − bc)w = a. If ad − bc 6= 0 then one can solve for x, y, z, and w and in
this case B = A−1 as given in the statement of the problem

Finally, we mention here that matrix inverses can be used to solve systems
of linear equations as suggested by the following theorem.

Theorem 9.3
If A is an n×n invertible matrix and b is a column matrix then the equation
Ax = b has a unique solution x = A−1b.

Proof.
Since A(A−1b) = (AA−1)b = Inb = b, we find that A−1b is a solution to the
equation Ax = b. Now, if y is another solution then y = Iny = (A−1A)y =
A−1(Ay) = A−1b

Example 9.7
If A is invertible and k 6= 0 show that (kA)−1 = 1

k
A−1.

Solution.
Suppose that A is invertible and k 6= 0. Then (kA)A−1 = k(AA−1) = kIn.
This implies (kA)( 1

k
A−1) = In. Thus, kA is invertible with inverse equals to

1
k
A−1
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Practice Problems

Problem 9.1
(a) Find two 2× 2 singular matrices whose sum in nonsingular.
(b) Find two 2× 2 nonsingular matrices whose sum is singular.

Problem 9.2
Show that the matrix

A =

 1 4 0
2 5 0
3 6 0


is singular.

Problem 9.3
Let

A =

[
1 2
1 3

]
. Find A−3.

Problem 9.4
Let

A−1 =

[
2 −1
3 5

]
Find A.

Problem 9.5
Let A and B be square matrices such that AB = 0. Show that if A is
invertible then B is the zero matrix.

Problem 9.6
Find the inverse of the matrix

A =

[
sin θ cos θ
− cos θ sin θ

]
Problem 9.7
Find the matrix A given that

(I2 + 2A)−1 =

[
−1 2
4 5

]
.
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Problem 9.8
Find the matrix A given that

(5AT )−1 =

[
−3 −1
5 2

]
.

Problem 9.9
Show that if a square matrix A satisfies the equation A2 − 3A+ In = 0 then
A−1 = 3In − A.

Problem 9.10
Simplify: (AB)−1(AC−1)(D−1C−1)−1D−1.
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10. Elementary Matrices

In this section we introduce a special type of invertible matrices, the so-called
elementary matrices, and we discuss some of their properties. As we shall see,
elementary matrices will be used in the next section to develop an algorithm
for finding the inverse of a square matrix.
An n×n elementary matrix is a matrix obtained from the identity matrix
by performing one single elementary row operation.

Example 10.1
Show that the following matrices are elementary matrices
(a)  1 0 0

0 1 0
0 0 1

 ,
(b)  1 0 0

0 0 1
0 1 0

 ,
(c)  1 0 3

0 1 0
0 0 1


Solution.
We list the operations that produce the given elementary matrices.
(a) r1 ← 1r1.
(b) r2 ↔ r3.
(c) r1 ← r1 + 3r3

Example 10.2
Consider the matrix

A =

 1 0 2 3
2 −1 3 6
1 4 4 0
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(a) Find the row equivalent matrix to A obtained by adding 3 times the first
row of A to the third row. Call the equivalent matrix B.
(b) Find the elementary matrix E corresponding to the above elementary
row operation.
(c) Compare EA and B.

Solution.
(a)

B =

 1 0 2 3
2 −1 3 6
4 4 10 9


(b)

E =

 1 0 0
0 1 0
3 0 1


(c) EA = B

The conclusion of the above example holds for any matrix of size m× n.

Theorem 10.1
If the elementary matrix E results from performing a certain row operation
on Im and if A is an m × n matrix, then the product of EA is the matrix
that results when this same row operation is performed on A.

It follows from the above theorem that a matrix A is row equivalent to
a matrix B if and only if B = EkEk−1 · · ·E1A, where E1, E2, · · · , Ek are
elementary matrices.
The above theorem is primarily of theoretical interest and will be used for
developping some results about matrices and systems of linear equations.
From a computational point of view, it is preferred to perform row operations
directly rather than multiply on the left by an elementary matrix. Also, this
theorem says that an elementary row operation on A can be achieved by
premultiplying A by the corresponding elementary matrix E.
Given any elementary row operation, there is another row operation ( called
its inverse) that reverse the effect of the first operation. The inverses are
described in the following chart.
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Type Operation Inverse operation
I ri ← cri ri ← 1

c
ri

II rj ← cri + rj rj ← −cri + rj
III ri ↔ rj ri ↔ rj

The following theorem gives an important property of elementary matrices.

Theorem 10.2
Every elementary matrix is invertible, and the inverse is an elementary ma-
trix.

Example 10.3
Write down the inverses of the following elementary matrices:

(a)E1 =

 0 1 0
1 0 0
0 0 1

 , (b)E2 =

 1 0 0
0 1 0
0 0 9

 , (c)E3 =

 1 0 5
0 1 0
0 0 1


Solution.
(a) E−1

1 = E1.
(b)

E−1
2 =

 1 0 0
0 1 0
0 0 1

9


(c)

E−1
3 =

 1 0 −5
0 1 0
0 0 1


Example 10.4
If E is an elementary matrix show that ET is also an elementary matrix of
the same type.

Solution.
Suppose that E is the elementary matrix obtained by interchanging rows i
and j of In with i < j. This is equivalent to interchanging columns i and j
of In. But then ET is obtained by interchanging rows i and j of In and so is
an elementary matrix. If E is obtained by multiplying the ith row of In by a
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nonzero constant k then this is the same thing as multiplying the ith column
of In by k. Thus, ET is obtained by multiplying the ith row of In by k and so
is an elementary matrix. Finally, if E is obtained by adding k times the ith
row of In to the jth row then ET is obtained by adding k times the jth row
of In to the ith row. Note that if E is of Type I or Type III then ET = E
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Practice Problems

Problem 10.1
Which of the following are elementary matrices?
(a)  1 1 0

0 0 1
0 1 0


(b) [

1 0
−5 1

]
(c)  1 0 0

0 1 9
0 0 1


(d) 

2 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1


Problem 10.2
Let A be a 4×3 matrix. Find the elementary matrix E, which as a premulti-
plier of A, that is, as EA, performs the following elementary row operations
on A :
(a) Multiplies the second row of A by -2.
(b) Adds 3 times the third row of A to the fourth row of A.
(c) Interchanges the first and third rows of A.

Problem 10.3
For each of the following elementary matrices, describe the corresponding
elementary row operation and write the inverse.
(a)

E =

 0 0 1
0 1 0
1 0 0
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(b)

E =

 1 0 0
−2 1 0

0 0 1


(c)

E =

 1 0 0
0 1 0
0 0 5


Problem 10.4
Consider the matrices

A =

 3 4 1
2 −7 −1
8 1 5

 , B =

 8 1 5
2 −7 −1
3 4 1

 , C =

 3 4 1
2 −7 −1
2 −7 3


Find elementary matrices E1, E2, E3, and E4 such that
(a)E1A = B, (b)E2B = A, (c)E3A = C, (d)E4C = A.

Problem 10.5
What should we premultiply a 3 × 3 matrix if we want to interchange rows
1 and 3?

Problem 10.6
Let

E1 =

 1 0 0
0 2 0
0 0 1

 , E2 =

 1 1 0
0 1 0
0 0 1

 , E3 =

 1 0 0
0 0 1
0 1 0


Find the corresponding inverse operations.

Problem 10.7
List all 3 × 3 elementary matrices corresponding to type I elementary row
operations.

Problem 10.8
List all 3 × 3 elementary matrices corresponding to type II elementary row
operations.
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Problem 10.9
Write down the inverses of the following elementary matrices:

E1 =

 0 0 1
0 1 0
1 0 0

 , E2 =

 3 0 0
0 1 0
0 0 1

 , E3 =

 1 0 0
−2 1 0
0 0 1


Problem 10.10
Consider the following elementary matrices:

E1 =

 0 0 1
0 1 0
1 0 0

 , E2 =

 3 0 0
0 1 0
0 0 1

 , E3 =

 1 0 0
−2 1 0
0 0 1


Find

E1E2E3

 1 0 2
−2 3 4
0 5 −3
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11. Finding A−1 Using Elementary Matrices

Before we establish the main results of this section, we recall the reader
of the following method of mathematical proofs. To say that statements
p1, p2, · · · , pn are all equivalent means that either they are all true or all
false. To prove that they are equivalent, one assumes p1 to be true and
proves that p2 is true, then assumes p2 to be true and proves that p3 is true,
continuing in this fashion, assume that pn−1 is true and prove that pn is true
and finally, assume that pn is true and prove that p1 is true. This is known
as the proof by circular argument.
Now, back to our discussion of inverses. The following result establishes
relationships between square matrices and systems of linear equations. These
relationships are very important and will be used many times in later sections.

Theorem 11.1
If A is an n× n matrix then the following statements are equivalent.
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) A is row equivalent to In.
(d) rank(A) = n.

Proof.
(a)⇒ (b) : Suppose that A is invertible and x0 is a solution to Ax = 0. Then
Ax0 = 0. Multiply both sides of this equation by A−1 to obtain A−1Ax0 =
A−10, that is x0 = 0. Hence, the trivial solution is the only solution.
(b) ⇒ (c) : Suppose that Ax = 0 has only the trivial solution. Then the
reduced row-echelon form of the augmented matrix has no rows of zeros or
free variables. Hence it must look like

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0
... 1 0


If we disregard the last column of the previous matrix we can conclude that
A can be reduced to In by a sequence of elementary row operations, i.e. A
is row equivalent to In.
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(c) ⇒ (d) : Suppose that A is row equivalent to In. Then rank(A) =
rank(In) = n.

(d)⇒ (a) : Suppose that rank(A) = n. Then A is row equivalent to In. That
is In is obtained by a finite sequence of elementary row operations performed
on A. Then by Theorem 10.1, each of these operations can be accomplished
by premultiplying on the left by an appropriate elementary matrix. Hence,
obtaining

EkEk−1 . . . E2E1A = In,

where k is the necessary number of elementary row operations needed to re-
duceA to In.Now, by Theorem 10.2, eachEi is invertible. Hence, EkEk−1 . . . E2E1

is invertible and A−1 = EkEk−1 . . . E2E1

Using the definition, to show that an n × n matrix A is invertible we find
a matrix B of the same size such that AB = In and BA = In. The next
theorem shows that one of these equality is enough to assure invertibilty.

Theorem 11.2
If A and B are two square matrices of size n × n such that AB = In then
BA = In and B−1 = A.

Proof
Suppose that Bx = 0. Multiply both sides by A to obtain ABx = 0. That
is, x = 0. This shows that the homogenenous system Bx = 0 has only the
trivial solution so by Theorem 11.1 we see that B is invertible, say with in-
verse C. Hence, C = InC = (AB)C = A(BC) = AIn = A so that B−1 = A.
Thus, BA = BB−1 = In

As an application of Theorem 11.1, we describe an algorithm for finding
A−1. We perform elementary row operations on A until we get In; say that
the product of the elementary matrices is EkEk−1 . . . E2E1. Then we have

(EkEk−1 . . . E2E1)[A|In] = [(EkEk−1 . . . E2E1)A|(EkEk−1 . . . E2E1)In]

= [In|A−1]

We ask the reader to carry the above algorithm in solving the following
problems.
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Example 11.1
Find the inverse of

A =

 1 2 3
2 5 3
1 0 8


Solution.
We first construct the matrix 1 2 3 | 1 0 0

2 5 3 | 0 1 0
1 0 8 | 0 0 1


Applying the above algorithm to obtain

Step 1: r2 ← r2 − 2r1 and r3 ← r3 − r1 1 2 3 | 1 0 0
0 1 −3 | −2 1 0
0 −2 5 | −1 0 1


Step 2: r3 ← r3 + 2r2  1 2 3 | 1 0 0

0 1 −3 | −2 1 0
0 0 −1 | −5 2 1


Step 3: r1 ← r1 − 2r2  1 0 9 | 5 −2 0

0 1 −3 | −2 1 0
0 0 −1 | −5 2 1


Step 4: r2 ← r2 − 3r3 and r1 ← r1 + 9r3 1 0 0 | −40 16 9

0 1 0 | 13 −5 −3
0 0 −1 | − 5 2 1


Step 5: r3 ← −r3  1 0 0 | −40 16 9

0 1 0 | 13 −5 −3
0 0 1 | 5 −2 −1
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It follows that

A−1 =

 −40 16 9
13 −5 −3
5 −2 −1


Example 11.2
Show that the following homogeneous system has only the trivial solution.

x1 + 2x2 + 3x3 = 0
2x1 + 5x2 + 3x3 = 0
x1 + 8x3 = 0.

Solution.
The coefficient matrix of the given system is invertible by the previous ex-
ample. Thus, by Theorem 11.1 the system has only the trivial solution

The following result exhibit a criterion for checking the singularity of a square
matrix.

Theorem 11.3
If A is a square matrix with a row consisting entirely of zeros then A is
singular.

Proof.
The reduced row-echelon form will have a row of zeros. So the rank of the
coefficient matrix of the homogeneous system Ax = 0 is less than n. By
Theorem 6.1, Ax = 0 has a nontrivial solution and as a result of Theorem
11.1, the matrix A must be singular

How can we tell when a square matrix A is singular? i.e., when does the
algorithm of finding A−1 fail? The answer is provided by the following theo-
rem

Theorem 11.4
An n× n matrix A is singular if and only if A is row equivalent to a matrix
B that has a row of zeros.

Proof.
Suppose first that A is singular. Then by Theorem 11.1, A is not row equiv-
alent to In. Thus, A is row equivalent to a matrix B 6= In which is in reduced
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echelon form. By Theorem 11.1, B must have a row of zeros.
Conversely, suppose that A is row equivalent to matrix B with a row con-
sisting entirely of zeros. Then B is singular by Theorem 11.1. Now, B =
EkEk−1 . . . E2E1A. If A is nonsingular then B is nonsingular, a contradiction.
Thus, A must be singular

The following theorem establishes a result of the solvability of linear sys-
tems using the concept of invertibility of matrices.

Theorem 11.5
An n×n square matrix A is invertible if and only if the linear system Ax = b
is consistent for every n× 1 matrix b.

Proof.
Suppose first that A is invertible. Then for any n × 1 matrix b the linear
system Ax = b has a unique solution, namely x = A−1b.
Conversely, suppose that the system Ax = b is solvable for any n× 1 matrix
b. In particular, Axi = ei, 1 ≤ i ≤ n, has a solution, where ei is the ith
column of In. Construct the matrix

C =
[
x1 x2 · · · xn

]
Then

AC =
[
Ax1 Ax2 · · · Axn

]
=
[
e1 e2 · · · en

]
= In.

Hence, by Theorem 11.2, A is non-singular

Example 11.3
Solve the following system by using the previous theorem

x1 + 2x2 + 3x3 = 5
2x1 + 5x2 + 3x3 = 3
x1 + 8x3 = 17

Solution.
Using Example 11.1 and Theorem 11.5 we have x1

x2

x3

 =

 −40 16 9
13 −5 −3
5 −2 −1

 5
3
17


=

 1
−1

2
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Example 11.4
If P is an n×n matrix suxh that P TP = In then the matrix H = In−2PP T is
called the Householder matrix. Show that H is symmetric and HTH = In.

Solution.
Taking the transpose of H we have HT = ITn −2(P T )TP T = H. That is, H is
symmetric. On the other hand, HTH = H2 = (In− 2PP T )2 = In− 4PP T +
4(PP T )2 = In − 4PP T + 4P (P TP )P T = In − 4PP T + 4PP T = In

Example 11.5
Let A and B be two square matrices. Show that AB is nonsingular if and
only if both A and B are nonsingular.

Solution.
Suppose that AB is nonsingular. Suppose that A is singular. Then C =
EkEk−1 · · ·A with C having a row consisting entirely of zeros. But then
CB = EkEk−1 · · · (AB) and CB has a row consisting entirely of zeros (Ex-
ample 8.3). This implies that AB is singular, a contradiction.
The converse is just Theorem 9.2 (a)
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Practice Problems

Problem 11.1
Determine if the following matrix is invertible. 1 6 4

2 4 −1
−1 2 5


Problem 11.2
For what values of a does the following homogeneous system have a nontrivial
solution? {

(a− 1)x1 + 2x2 = 0
2x1 + (a− 1)x2 = 0

Problem 11.3
Find the inverse of the matrix  1 1 1

0 2 3
5 5 1


Problem 11.4
Prove that if A is symmetric and nonsingular than A−1 is symmetric.

Problem 11.5
If

D =

 4 0 0
0 −2 0
0 0 3


find D−1.

Problem 11.6
Prove that a square matrix A is nonsingular if and only if A is a product of
elementary matrices.

Problem 11.7
Prove that two m × n matrices A and B are row equivalent if and only if
there exists a nonsingular matrix P such that B = PA.
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Problem 11.8
Let A and B be two n×n matrices. Suppose A is row equivalent to B. Prove
that A is nonsingular if and only if B is nonsingular.

Problem 11.9
Show that a 2×2 lower triangular matrix is invertible if and only if a11a22 6= 0
and in this case the inverse is also lower triangular.

Problem 11.10
Let A be an n × n matrix and suppose that the system Ax = 0 has only
the trivial solution. Show that Akx = 0 has only the trivial solution for any
positive integer k.

Problem 11.11
Show that if A and B are two n× n invertible matrices then A is row equiv-
alent to B.



Determinants

With each square matrix we can associate a real number called the determi-
nant of the matrix. Determinants have important applications to the theory
of systems of linear equations. More specifically, determinants give us a
method (called Cramer’s method) for solving linear systems. Also, determi-
nant tells us whether or not a matrix is invertible.
Throughout this chapter we use only square matrices.

93
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12. Determinants by Cofactor Expansion

The determinant of a 2× 2 matrix

A =

[
a11 a12

a21 a22

]
is the number

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12.

The determinant of a 3 × 3 matrix can be found using the determinants of
2× matrices using a cofactor expansion which we discuss next.
If A is a square matrix of order n then the minor of entry aij, denoted
by Mij, is the determinant of the submatrix obtained from A by deleting
the ith row and the jth column. The cofactor of entry aij is the number
Cij = (−1)i+jMij.

Example 12.1
Let

A =

 3 1 −4
2 5 6
1 4 8


Find the minor and the cofactor of the entry a32 = 4.

Solution.
The minor of the entry a32 is

M32 =

∣∣∣∣ 3 −4
2 6

∣∣∣∣ = 26

and the cofactor is C32 = (−1)3+2M32 = −26

Example 12.2
Find the cofactors C11, C12, and C13 of the matrix a11 a12 a13

a21 a22 a23

a31 a32 a33
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Solution.
We have

C11 = (−1)1+1

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ = a22a33 − a32a23

C12 = (−1)1+2

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ = −(a21a33 − a31a23)

C13 = (−1)1+3

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ = a21a32 − a31a22

The determinant of a matrix A of order n can obtained by multiplying the
entries of a row (or a column) by the corresponding cofactors and adding the
resulting products. Any row or column chosen will result in the same answer.
More precisely, we have the expansion along row i is

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

The expansion along column j is given by

|A| = a1jC1j + a2jC2j + · · ·+ anjCnj.

Any row or column chosen will result in the same answer.

Example 12.3
Find the determinant of the matrix a11 a12 a13

a21 a22 a23

a31 a32 a33


Solution.
Using the previous example, we can find the determinant using the cofactor
along the first row to obtain

|A| =a11C11 + a12C12 + a13C13

=a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
=a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13a21a32 − a31a22
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Remark 12.1
In general, the best strategy for evaluating a determinant by cofactor ex-
pansion is to expand along a row or a column having the largest number of
zeroes.

Example 12.4
Find the determinant of each of the following matrices.
(a)

A =

 0 0 a13

0 a22 a23

a31 a32 a33


(b)

A =


0 0 0 a14

0 0 a23 a24

0 a32 a33 a34

a41 a42 a43 a44


(c)

A =


a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44


Solution.
(a) Expanding along the first column we find

|A| = a31C31 = −a31a22a13.

(b) Again, by expanding along the first column we obtain

|A| = a41C41 = a41a32a23a34

(c) Expanding along the last column we find

|A| = a44C44 = a11a22a33a44

Example 12.5
Evaluate the determinant of the following matrix.∣∣∣∣∣∣∣∣∣∣

2 7 −3 8 3
0 −3 7 5 1
0 0 6 7 6
0 0 0 9 8
0 0 0 0 4

∣∣∣∣∣∣∣∣∣∣
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Solution.
The given matrix is upper triangular so that the determinant is the product
of entries on the main diagonal, i.e. equals to −1296

Example 12.6
Use cofactor expansion along the first column to find |A| where

A =


3 5 −2 6
1 2 −1 1
2 4 1 5
3 7 5 3


Solution.
Expanding along the first column we find

|A| = 3C11 + C21 + 2C31 + 3C41

= 3M11 −M21 + 2M31 − 3M41

= 3(−54) + 78 + 2(60)− 3(18) = −18
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Practice Problems

Problem 12.1
Evaluate the determinant of each of the following matrices
(a)

A =

[
3 5
−2 4

]
(b)

A =

 −2 7 6
5 1 −2
3 8 4


Problem 12.2
Find all values of t for which the determinant of the following matrix is zero.

A =

 t− 4 0 0
0 t 0
0 3 t− 1



Problem 12.3
Solve for x ∣∣∣∣ x −1

3 1− x

∣∣∣∣ =

∣∣∣∣∣∣
1 0 −3
2 x −6
1 3 x− 5

∣∣∣∣∣∣
Problem 12.4
Evaluate the determinant of the following matrix

A =

 1 2 3
4 5 6
0 0 0


Problem 12.5
Let

A =


4 −1 1 6
0 0 −3 3
4 1 0 14
4 1 3 2


Find M23 and C23.
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Problem 12.6
Find all values of λ for which |A| = 0, where

A =

[
λ− 1 0

2 λ+ 1

]
.

Problem 12.7
Evaluate the determinant of the matrix

A =

 3 0 0
2 −1 5
1 9 −4


(a) along the first column.
(b) along the third row.

Problem 12.8
Evaluate the determinant of the matrix by a cofactor expansion along a row
or column of your choice.

A =


3 3 0 5
2 2 0 −2
4 1 −3 0
2 10 3 2


Problem 12.9
Evaluate the determinant of the following matrix by inspection.

A =


1 2 7 −3
0 1 −4 1
0 0 2 7
0 0 0 3


Problem 12.10
Evaluate the determinant of the following matrix.

A =

 sin θ cos θ 0
− cos θ sin θ 0

sin θ − cos θ sin θ + cos θ 1
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Problem 12.11
Find all values of λ such that |A| = 0.
(a)

A =

[
λ− 1 −2

1 λ− 4

]
,

(b)

A =

 λ− 6 0 0
0 λ −1
0 4 λ− 4
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13. Evaluating Determinants by Row Reduc-

tion

In this section we provide a simple procedure for finding the determinant of a
matrix. The idea is to reduce the matrix into row-echelon form which in this
case is a triangular matrix. Recall that a matrix is said to be triangular if
it is upper triangular, lower triangular or diagonal. The following theorem
provides a formula for finding the determinant of a triangular matrix.

Theorem 13.1
If A is an n× n triangular matrix then |A| = a11a22 . . . ann.

Example 13.1
Compute |A|.
(a)

A =

 1 2 3
0 4 5
0 0 6

 ,
(b)

A =

 1 0 0
2 3 0
4 5 6

 ,
Solution.
(a) Since A is triangular, |A| = (1)(4)(6) = 24.
(b) |A| = (1)(3)(6) = 18

Example 13.2
Compute the determinant of the identity matrix In.

Solution.
Since the identity matrix is triangular with entries equal to 1 on the main
diagonal, |In| = 1

The following theorem is of practical use. It provides a technique for eval-
uating determinants by greatly reducing the labor involved. We shall show
that the determinant can be evaluated by reducing the matrix to row-echelon
form.
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Theorem 13.2
Let A be an n× n matrix.
(a) Let B be the matrix obtained from A by multiplying a row by a scalar
c. Then |B| = c|A|.
(b) Let B be the matrix obtained from A by interchanging two rows of A.
Then |B| = −|A|.
(c) Let B be the matrix obtained from A by adding c times a row to another
row. Then |B| = |A|.
(d) If A is a square matrix then |AT | = |A|.

Example 13.3
Use Theorem 13.2 to evaluate the determinant of the following matrix

A =

 0 1 5
3 −6 9
2 6 1


Solution.
We use Gaussian elimination as follows.

Step 1: r1 ↔ r2 ∣∣∣∣∣∣
3 −6 9
0 1 5
2 6 1

∣∣∣∣∣∣ = −|A|

Step 2: r1 ← r1 − r3 ∣∣∣∣∣∣
1 −12 8
0 1 5
2 6 1

∣∣∣∣∣∣ = −|A|

Step 3: r3 ← r3 − 2r1 ∣∣∣∣∣∣
1 −12 8
0 1 5
0 30 −15

∣∣∣∣∣∣ = −|A|

Step 4: r3 ← r3 − 30r2 ∣∣∣∣∣∣
1 −12 8
0 1 5
0 0 −165

∣∣∣∣∣∣ = −|A|
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Thus,

|A| = −

∣∣∣∣∣∣
1 −12 8
0 1 5
0 0 −165

∣∣∣∣∣∣ = 165

Theorem 13.3
(a) If a square matrix has two identical rows or two identical columns then
its determinant is zero.
(b) If a square matrix has a row or a column of zeroes then its determinant
is zero.

Example 13.4
Find, by inspection, the determinant of the following matrix.

A =


3 −1 4 −2
6 −2 5 2
5 8 1 4
−9 3 −12 6


Solution.
Since the first and the fourth rows are proportional, the determinant is zero
by the above theorem

Example 13.5
Show that if a square matrix has two proportional rows or two proportional
columns then its determinant is zero.

Solution.
Suppose that A is a square matrix such that row j is k times row i with k 6= 0.
By adding − 1

k
rj to ri then the ith row will consist of 0. By Thereom 13.2

(c), |A| = 0

Example 13.6
Show that if A is an n× n matrix and c is a scalar then |cA| = cn|A|.

Solution.
The matrix cA is obtained from the matrix A by multiplying the rows of A by
c 6= 0. By mutliplying the first row of cA by 1

c
we obtain |B| = 1

c
|cA| where

B is obtained from the matrix A by multiplying all the rows of A, except the
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first one, by c. Now, divide the second row of B by 1
c

to obtain |B′| = 1
c
|B|,

where B′ is the matrix obtained from A by multiplying all the rows of A,
except the first and the second, by c. Thus, |B′| = 1

c2
|cA|. Repeating this

process, we find |A| = 1
cn
|cA| or |cA| = cn|A|

Example 13.7
(a) Let E1 be the elementary matrix corresponding to type I elementary row
operation. Find |E1|.
(b) Let E2 be the elementary matrix corresponding to type II elementary
row operation. Find |E2|.
(c) Let E3 be the elementary matrix corresponding to type III elementary
row operation. Find |E3|.

Solution.
(a) The matrix E1 is obtained from the identity matrix by multiplying a row
of In by a nonzero scalar c. In this case,|E1| = c|In| = c.
(b) E2 is obtained from In by adding a multiple of a row to another row.
Thus, |E2| = |In| = 1.
(c) The matrix E3 is obtained from the matrix In by interchanging two rows.
In this case, |E3| = −|In| = −1
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Practice Problems

Problem 13.1
Use the row reduction technique to find the determinant of the following
matrix.

A =


2 5 −3 −2
−2 −3 2 −5

1 3 −2 2
−1 −6 4 3


Problem 13.2
Given that ∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣ = −6,

find
(a) ∣∣∣∣∣∣

d e f
g h i
a b c

∣∣∣∣∣∣ ,
(b) ∣∣∣∣∣∣

3a 3b 3c
−d −e −f
4g 4h 4i

∣∣∣∣∣∣
(c) ∣∣∣∣∣∣

a+ g b+ h c+ i
d e f
g h i

∣∣∣∣∣∣
(d) ∣∣∣∣∣∣

−3a −3b −3c
d e f

g − 4d h− 4e i− 4f

∣∣∣∣∣∣
Problem 13.3
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Determine by inspection the determinant of the following matrix.
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
2 4 6 8 10


Problem 13.4
Let A be a 3× 3 matrix such that |2A| = 6. Find |A|.

Problem 13.5
Find the determinant of the following elementary matrix by inspection.

1 0 0 0
0 1 0 0
0 0 −5 0
0 0 0 1


Problem 13.6
Find the determinant of the following elementary matrix by inspection.

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Problem 13.7
Find the determinant of the following elementary matrix by inspection.

1 0 0 0
0 1 0 −9
0 0 1 0
0 0 0 1


Problem 13.8
Use the row reduction technique to find the determinant of the following
matrix.

A =


2 1 3 1
1 0 1 1
0 2 1 0
0 1 2 3
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Problem 13.9
Use row reduction to find the determinant of the following Vandermonde
matrix.

A =

 1 1 1
a b c
a2 b2 c2


Problem 13.10
Let a, b, c be three numbers such that a+ b+ c = 0. Find the determinant of
the following matrix.

A =

 b+ c a+ c a+ b
a b c
1 1 1
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14. Properties of the Determinant

In this section we shall exhibit some of the fundamental properties of the
determinant. One of the immediate consequences of these properties will be
an important determinant test for the invertibility of a square matrix.
The first result relates the invertibility of a square matrix to its determinant.

Theorem 14.1
If A is an n× n matrix then A is nonsingular if and only if |A| 6= 0.

Combining Theorem 11.1 with Theorem 14.1, we have

Theorem 14.2
The following statements are all equivalent:
(i) A is nonsingular.
(ii) |A| 6= 0.
(iii) A is row equivalent to In.
(iv) The homogeneous systen Ax = 0 has only the trivial solution.
(v) rank(A) = n.

Example 14.1
Prove that |A| = 0 if and only if Ax = 0 has a nontrivial solution.

Solution.
If |A| = 0 then according to Theorem 14.2 the homogeneous system Ax = 0
must have a nontrivial solution. Conversely, if the homogeneous system
Ax = 0 has a nontrivial solution then A must be singular by Theorem 14.2.
By Theorem 14.2 (a), |A| = 0

Our next major result in this section concerns the determinant of a product
of matrices.

Theorem 14.3
If A and B are n× n matrices then |AB| = |A||B|.

Example 14.2
Is it true that |A+B| = |A|+ |B|?
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Solution.
No. Consider the following matrices.

A =

[
1 0
0 −1

]
, B =

[
−1 0
0 1

]
Then |A+B| = |0| = 0 and |A|+ |B| = −2

Example 14.3
Show that if A is invertible then |A−1| = 1

|A| .

Solution.
If A is invertible then A−1A = In. Taking the determinant of both sides we
find |A−1||A| = 1. That is, |A−1| = 1

|A| . Note that since A is invertible then

|A| 6= 0

Example 14.4
Let A and B be two similar square matrices , i.e. there exists a nonsingular
matrix P such that A = P−1BP. Show that |A| = |B|.

Solution.
Using Theorem 14.3 and Example 14.3 we have, |A| = |P−1BP | = |P−1||B||P | =
1
|P | |B||P | = |B|. Note that since P is nonsingular then |P | 6= 0
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Practice Problems

Problem 14.1
Show that if n is any positive integer then |An| = |A|n.

Problem 14.2
Show that if A is an n× n skew-symmetric and n is odd then |A| = 0.

Problem 14.3
Show that if A is orthogonal, i.e. ATA = AAT = In then |A| = ±1. Note
that A−1 = AT .

Problem 14.4
If A is a nonsingular matrix such that A2 = A, what is |A|?

Problem 14.5
Find out, without solving the system, whether the following system has a
nontrivial solution 

x1 − 2x2 + x3 = 0
2x1 + 3x2 + x3 = 0
3x1 + x2 + 2x3 = 0

Problem 14.6
For which values of c does the matrix

A =

 1 0 −c
−1 3 1

0 2c −4


have an inverse.

Problem 14.7
If |A| = 2 and |B| = 5, calculate |A3B−1ATB2|.

Problem 14.8
Show that |AB| = |BA|.

Problem 14.9
Show that |A+BT | = |AT +B| for any n× n matrices A and B.

Problem 14.10
Let A = (aij) be a triangular matrix. Show that |A| 6= 0 if and only if aii 6= 0,
for 1 ≤ i ≤ n.
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15. Finding A−1 Using Cofactor Expansions

In Section 14 we discussed the row reduction method for computing the
determinant of a matrix. This method is well suited for computer evaluation
of determinants because it is systematic and easily programmed. In this
section we introduce a method for evaluating determinants that is useful for
hand computations and is important theoretically. Namely, we will obtain a
formula for the inverse of an invertible matrix as well as a formula for the
solution of square systems of linear equations.
If A is an n × n square matrix and Cij is the cofactor of the entry aij then
the transpose of the matrix

C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn


is called the adjoint of A and is denoted by adj(A).

Example 15.1
Let

A =

 3 2 −1
1 6 3
2 −4 0

 ,
Find adj(A).

Solution.
We first find the matrix of cofactors of A. C11 C12 C13

C21 C22 C23

C31 C32 C33

 =

 12 6 −16
4 2 16

12 −10 16


The adjoint of A is the transpose of this cofactor matrix.

adj(A) =

 12 4 12
6 2 −10
−16 16 16
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Our next goal is to find another method for finding the inverse of a nonsin-
gular square matrix based on the adjoint. To this end, we need the following
result.

Theorem 15.1
For i 6= j we have

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn = 0.

Proof.
Let B be the matrix obtained by replacing the jth row of A by the ith row of
A. Then B has two identical rows and therefore |B| = 0(See Theorem 13.2
(c)). Expand |B| along the jth row. The elements of the jth row of B are
ai1, ai2, . . . , ain. The cofactors are Cj1, Cj2, . . . , Cjn. Thus

0 = |B| = ai1Cj1 + ai2Cj2 + · · ·+ ainCjn

This concludes a proof of the theorem

The following theorem states that the product A · adj(A) is a scalar ma-
trix.

Theorem 15.2
If A is an n× n matrix then A · adj(A) = |A|In.

Proof.
The (i, j) entry of the matrix

A.adj(A) =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann



C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
...

C1n C2n . . . Cnn


is given by the sum

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn = |A|

if i = j and 0 if i 6= j. Hence,

A.adj(A) =


|A| 0 . . . 0
0 |A| . . . 0
...

...
...

0 0 . . . |A|

 = |A|In.
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This ends a proof of the theorem

The following theorem provides a way for finding the inverse of a matrix
using the notion of the adjoint.

Theorem 15.3
If |A| 6= 0 then A is invertible and A−1 = adj(A)

|A| . Hence, adj(A) = A−1|A|.

Proof.
By the previous theorem we have that A(adj(A)) = |A|In. If |A| 6= 0 then

A(adj(A)
|A| ) = In. By Theorem 11.2, A is invertible with inverse A−1 = adj(A)

|A| .

Example 15.2
Let

A =

 3 2 −1
1 6 3
2 −4 0


Use Theorem 15.3 to find A−1.

Solution.
First we find the determinant of A given by |A| = 64. By Theorem 15.3

A−1 =
1

|A|
adj(A) =

 3
16

1
16

3
16

3
32

1
32
− 5

32

−1
4

1
4

1
4


In the next theorem we discuss three properties of the adjoint matrix.

Theorem 15.4
Let A and B denote invertible n× n matrices. Then,
(a) adj(A−1) = (adj(A))−1.
(b) adj(AT ) = (adj(A))T .
(c) adj(AB) = adj(B)adj(A).

Proof.
(a) Since A(adj(A)) = |A|In, adj(A) is invertible and (adj(A))−1 = A

|A| =

(A−1)−1|A−1| = adj(A−1).
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(b) adj(AT ) = (AT )−1|AT | = (A−1)T |A| = (adj(A))T .

(c) We have adj(AB) = (AB)−1|AB| = B−1A−1|A||B| = (B−1|B|)(A−1|A|) =
adj(B)adj(A)

Example 15.3
Show that if A is singular then A · adj(A) = 0, the zero matrix.

Solution.
If A is singular then |A| = 0. But then A · adj(A) = |A|In = 0
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Practice Problems

Problem 15.1
Let

A =

 3 −2 1
5 6 2
1 0 −3


(a) Find adj(A).
(b) Compute |A|.

Problem 15.2
Let A be an n× n matrix. Show that |adj(A)| = |A|n−1.

Problem 15.3
If

A−1 =

 3 0 1
0 2 3
3 1 −1


find adj(A).

Problem 15.4
If |A| = 2, find |A−1 + adj(A)|.

Problem 15.5
Show that adj(αA) = αn−1adj(A).

Problem 15.6
Consider the matrix

A =

 1 2 3
2 3 4
1 5 7


(a) Find |A|.
(b) Find adj(A).
(c) Find A−1.

Problem 15.7
Prove that if A is symmetric then adj(A) is also symmetric.
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Problem 15.8
Prove that if A is a nonsingular triangular matrix then adj(A) is a lower
triangular matrix.

Problem 15.9
Prove that if A is a nonsingular triangular matrix then A−1 is also triangular.

Problem 15.10
Let A be an n× n matrix.
(a) Show that if A has integer entries and |A| = 1 then A−1 has integer
entries as well.
(b) Let Ax = b. Show that if the entries of A and b are integers and |A| = 1
then the entries of x are also integers.
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16. Application of Determinants to Systems:

Cramer’s Rule

Cramer’s rule is another method for solving a linear system of n equations
in n unknowns. This method is reasonable for inverting, for example, a 3×3
matrix by hand; however, the inversion method discussed before is more
efficient for larger matrices.

Theorem 16.1
Let Ax = b be a matrix equation with A = (aij), x = (xi), b = (bi). Then we
have the following matrix equation

|A|x1

|A|x2
...

|A|xn

 =


|A1|
|A2|

...
|An|


where Ai is the matrix obtained from A by replacing its ith column by b. It
follows that

(1) If |A| 6= 0 then the above system has a unique solution given by

xi =
|Ai|
|A|

,

where 1 ≤ i ≤ n.
(2) If |A| = 0 and |Ai| 6= 0 for some i then the system has no solution.
(3) If |A| = |A1| = · · · = |An| = 0 then the system has an infinite number of
solutions.

Proof.
We have the following chain of equalities

|A|x = |A|(Inx)

= (|A|In)x

= adj(A)Ax

= adj(A)b
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The ith entry of the vector |A|x is given by

|A|xi = b1C1i + b2C2i + · · ·+ bnCni.

On the other hand by expanding |Ai| along the ith column we find that

|Ai| = C1ib1 + C2ib2 + · · ·+ Cnibn.

Hence

|A|xi = |Ai|.

Now, (1), (2), and (3) follow easily. This ends a proof of the theorem

Example 16.1
Use Cramer’s rule to solve

−2x1 + 3x2 − x3 = 1
x1 + 2x2 − x3 = 4
−2x1 − x2 + x3 = −3.

Solution.
By Cramer’s rule we have

A =

 −2 3 −1
1 2 −1
−2 −1 1

 , |A| = −2.

A1 =

 1 3 −1
4 2 −1
−3 −1 1

 , |A1| = −4.

A2 =

 −2 1 −1
1 4 −1
−2 −3 1

 , |A2| = −6.

A3 =

 −2 3 1
1 2 4
−2 −1 −3

 , |A3| = −8.

Thus, x1 = |A1|
|A| = 2, x2 = |A2|

|A| = 3, x3 = |A3|
|A| = 4



16. APPLICATION OF DETERMINANTS TO SYSTEMS: CRAMER’S RULE119

Example 16.2
Use Cramer’s rule to solve

5x1 − 3x2 − 10x3 = −9
2x1 + 2x2 − 3x3 = 4
−3x1 − x2 + 5x3 = 1.

Solution.
By Cramer’s rule we have

A =

 5 −3 −10
2 2 − 3
−3 −1 5

 , |A| = −2.

A1 =

 −9 −3 −10
4 2 − 3
1 −1 5

 , |A1| = 66.

A2 =

 5 −9 −10
2 4 − 3
−3 1 5

 , |A2| = −16.

A3 =

 5 −3 −9
2 2 4
−3 −1 1

 , |A3| = 36.

Thus, x1 = |A1|
|A| = −33, x2 = |A2|

|A| = 8, x3 = |A3|
|A| = −18
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Practice Problems

Problem 16.1
Use Cramer’s Rule to solve

x1 + 2x3 = 6
−3x1 + 4x2 + 6x3 = 30
−x1 − 2x2 + 3x3 = 8

Problem 16.2
Use Cramer’s Rule to solve

5x1 + x2 − x3 = 4
9x1 + x2 − x3 = 1
x1 − x2 + 5x3 = 2

Problem 16.3
Use Cramer’s Rule to solve

4x1 − x2 + x3 = −5
2x1 + 2x2 + 3x3 = 10
5x1 − 2x2 + 6x3 = 1.

Problem 16.4
Use Cramer’s Rule to solve

3x1 − x2 + 5x3 = −2
−4x1 + x2 + 7x3 = 10
2x1 + 4x2 − x3 = 3.

Problem 16.5
Use Cramer’s Rule to solve

−x1 + 2x2 + 3x3 = −7
−4x1 − 5x2 + 6x3 = −13
7x1 − 8x2 − 9x3 = 39.

Problem 16.6
Use Cramer’s Rule to solve

3x1 − 4x2 + 2x3 = 18
4x1 + x2 − 5x3 = −13
2x1 − 3x2 + x3 = 11.
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Problem 16.7
Use Cramer’s Rule to solve

5x1 − 4x2 + x3 = 17
6x1 + 2x2 − 3x3 = 1
x1 − 4x2 + 3x3 = 15.

Problem 16.8
Use Cramer’s Rule to solve

2x1 − 3x2 + 2x3 = 1
3x1 + 2x2 − x3 = 16
x1 − 5x2 + 3x3 = −7.

Problem 16.9
Use Cramer’s Rule to solve

x1 − 2x2 + 2x3 = 5
3x1 + 2x2 − 3x3 = 13
2x1 − 5x2 + x3 = 2.

Problem 16.10
Use Cramer’s Rule to solve

5x1 − x2 + 3x3 = 10
6x1 + 4x2 − x3 = 19
x1 − 7x2 + 4x3 = −15.
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The Theory of Vector Spaces

In Chapter 2, we saw that the operations of addition and scalar multiplica-
tion on the set Mmn of m × n matrices possess many of the same algebraic
properties as addition and scalar multiplication on the set R of real num-
bers. In fact, there are many other sets with operations that share these
same properties. Instead of studying these sets individually, we study them
as a class.
In this chapter, we define vector spaces to be sets with algebraic operations
having the properties similar to those of addition and scalar multiplication
on R and Mmn. We then establish many important results that apply to all
vector spaces, not just R and Mmn.

123
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17. Vector Spaces and Subspaces

In this section, we define vector spaces to be sets with algebraic operations
having the properties similar to those of addition and scalar multiplication
on Rn and Mmn.

Let n be a positive integer. Let Rn be the collection of elements of the
form (x1, x2, . . . , xn), where the xis are real numbers. Define the following
operations on Rn :

(a) Addition: (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, . . . , xn + yn)
(b) Multiplication of a vector by a scalar:

α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn).

The basic properties of addition and scalar multiplication of vectors in Rn

are listed in the following theorem.

Theorem 17.1
The following properties hold, for u, v, w in Rn and α, β scalars:
(a) u+ v = v + u
(b) u+ (v + w) = (u+ v) + w
(c) u+ 0 = 0 + u = u where 0 = (0, 0, . . . , 0)
(d) u+ (−u) = 0
(e) α(u+ v) = αu+ αv
(f) (α + β)u = αu+ βu
(g) α(βu) = (αβ)u
(h) 1u = u.

The set Rn with the above operations and properties is called the Euclidean
space.

A vector space is a set V together with the following operations:
(i) Addition: If u, v ∈ V then u + v ∈ V. We say that V is closed under
addition.
(ii) Multiplication of an element by a scalar: If α ∈ R and u ∈ V then
αu ∈ V . That is, V is closed under scalar multiplication.
(iii) These operations satisfy the properties (a) - (h) of Theorem 17.1.
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Example 17.1
Let Mmn be the collection of all m× n matrices. Show that Mmn is a vector
space using matrix addition and scalar multiplication.

Solution.
(i) A + B = (aij) + (bij) = (aij + bij) = (bij + aij) = (bij) + (aij) = B + A,
since addition of scalars is commutative.
(ii) Use the fact that addition of scalars is associative.
(iii) A+ 0 = (aij) + (0) = (aij + 0) = (aij) = A.
We leave the proofs of the remaining properties to the reader

Example 17.2
Let V = {(x, y) : x ≥ 0, y ≥ 0}. Show that the set V fails to be a vector
space under the standard operations on R2.

Solution.
For any (x, y) ∈ V with x, y > 0 we have −(x, y) 6∈ V. Thus, V is not a vector
space

The following theorem exhibits some properties which follow directly from
the axioms of the definition of a vector space and therefore hold for every
vector space.

Theorem 17.2
Let V be a vector space, u a vector in V and α is a scalar. Then the following
properties hold:
(a) 0u = 0.
(b) α0 = 0
(c) (−1)u = −u
(d) If αu = 0 then α = 0 or u = 0.

Proof.
(a) For any scalar α ∈ R we have 0u = (α + (−α))u = αu + (−α)u =
αu+ (−(αu)) = 0.
(b) Let u ∈ V. Then α0 = α(u+ (−u)) = αu+ α(−u) = αu+ (−(αu)) = 0.
(c) u+ (−u) = u+ (−1)u = 0. So that −u = (−1)u.
(d) Suppose αu = 0. If α 6= 0 then α−1 exists and u = 1u = (α−1α)u =
α−1(αu) = α−10 = 0
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Now, it is possible that a vector space in contained in a larger vector space.
A subset W of a vector space V is called a subspace of V if the following
two properties are satisfied:

(i) If u, v are in W then u+ v is also in W.
(ii) If α is a scalar and u is in W then αu is also in W.

Every vector space V has at least two subspaces:V itself and the subspace
consisting of the zero vector of V. These are called the trivial subspaces of
V.

Example 17.3
Show that a subspace of a vector space is itself a vector space.

Solution.
All the axioms of a vector space hold for the elements of a subspace

The following example provides a criterion for deciding whether a subset
S of a vector space V is a subspace of V.

Example 17.4
Show that W is a subspace of V if and only if αu + v ∈ W for all u, v ∈ W
and α ∈ R.

Solution.
Suppose that W is a subspace of V. If u, v ∈ W and α ∈ R then αu ∈ W and
therefore αu + v ∈ W. Conversely, suppose that for all u, v ∈ W and α ∈ R
we have αu + v ∈ R. In particular, if α = 1 then u + v ∈ W. If v = 0 then
αu+ v = αu ∈ W. Hence, W is a subspace

Example 17.5
Let M22 be the collection of 2× 2 matrices. Show that the set W of all 2× 2
matrices having zeroes on the main diagonal is a subspace of M22.

Solution.
The set W is the set

W =

{[
0 a
b 0

]
: a, b ∈ R

}
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Clearly, the 2× 2 zero matrix belongs to W. Also,

α

[
0 a
b 0

]
+

[
0 a′

b′ 0

]
=

[
0 αa+ a′

αb+ b′ 0

]
∈ W

Thus, W is a subspace of M22
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Practice Problems

Problem 17.1
Let D([a, b]) be the collection of all differentiable functions on [a, b]. Show
that D([a, b]) is a subspace of the vector space of all functions defined on
[a, b].

Problem 17.2
Let A be an m × n matrix. Show that the set S = {x ∈ Rn : Ax = 0} is a
subspace of Rn.

Problem 17.3
Let P be the collection of polynomials in the indeterminate x. Let p(x) =
a0 + ax + a2x

2 + · · · and q(x) = b0 + b1x + b2x
2 + c . . . be two polynomials

in P. Define the operations:
(a) Addition: p(x) + q(x) = a0 + b0 + (a1 + b1)x+ (a2 + b2)x

2 + · · ·
(b) Multiplication by a scalar: αp(x) = αa0 + (αa1)x+ (αa2)x

2 + · · · .
Show that P is a vector space.

Problem 17.4
Let F (R) be the set of functions f : R→ R. Define the operations

(f + g)(x) = f(x) + g(x)

and
(αf)(x) = αf(x).

Show that F (R) is a vector space under these operations.

Problem 17.5
Define on R2 the following operations:
(i) (x, y) + (x′, y′) = (x+ x′, y + y, );
(ii) α(x, y) = (αy, αx).
Show that R2 with the above operations is not a vector space.

Problem 17.6
Let U = {p(x) ∈ P : p(3) = 0}. Show that U is a subspace of P.

Problem 17.7
Let Pn denote the collection of all polynomials of degree n. Show that Pn is
a subspace of P.
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Problem 17.8
Show that the set S = {(x, y) : x ≤ 0} is not a vector space of R2 under the
usual operations of R2.

Problem 17.9
Show that the collection C([a, b]) of all continuous functions on [a, b] with
the operations:

(f + g)(x) = f(x) + g(x)
(αf)(x) = αf(x)

is a vector space.

Problem 17.10
Let S = {(a, b, a+ b) : a, b ∈ R}. Show that S is a subspace of R3 under the
usual operations.

Problem 17.11
Let V be a vector space. Show that if u, v, w ∈ V are such that u+v = u+w
then v = w.

Problem 17.12
Let H and K be subspaces of a vector space V.
(a) The intersection of H and K, denoted by H ∩ K, is the subset of V
that consists of elements that belong to both H and K. Show that H ∩ V is
a subspace of V.
(b) The union of H and K, denoted by H ∪ K, is the susbet of V that
consists of all elements that belong to either H or K. Give, an example of
two subspaces of V such that H ∪K is not a subspace.
(c) Show that if H ⊂ K or K ⊂ H then H ∪K is a subspace of V.
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18. Basis and Dimension

The concepts of linear combination, spanning set, and basis for a vector space
play a major role in the investigation of the structure of any vector space.
In this section we introduce and discuss these concepts.
The concept of linear combination will allow us to generate vector spaces
from a given set of vectors in a vector space .
Let V be a vector space and v1, v2, · · · , vn be vectors in V. A vector w ∈ V is
called a linear combination of the vectors v1, v2, . . . , vn if it can be written
in the form

w = α1v1 + α2v2 + · · ·+ αnvn

for some scalars α1, α2, . . . , αn.

Example 18.1
Show that the vector ~w = (9, 2, 7) is a linear combination of the vectors
~u = (1, 2,−1) and ~v = (6, 4, 2) whereas the vector ~w′ = (4,−1, 8) is not.

Solution.
We must find numbers s and t such that

(9, 2, 7) = s(1, 2,−1) + t(6, 4, 2)

This leads to the system 
s + 6t = 9
2s + 4t = 2
−s + 2t = 7

Solving the first two equations one finds s = −3 and t = 2 both values satisfy
the third equation.
Turning to (4,−1, 8), the question is whether s and t can be found such that
(4,−1, 8) = s(1, 2,−1) + t(6, 4, 2). Equating components gives

s + 6t = 4
2s + 4t = −1
−s + 2t = 8

Solving the first two equations one finds s = −11
4

and t = 9
8

and these values
do not satisfy the third equation. That is the system is inconsistent

The process of forming linear combinations leads to a method of constructing
subspaces, as follows.
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Theorem 18.1
Let W = {v1, v2, . . . , vn} be a subset of a vector space V. Let span(W ) be
the collection of all linear combinations of elements of W. Then span(W ) is
a subspace of V.

Example 18.2
Show that Pn = span{1, x, x2, · · · , xn}.

Solution.
If p(x) ∈ Pn then there are scalars a0, a1 · · · , an such that p(x) = a0 + a1x+
· · ·+ anx

n ∈ span{1, x, · · · , xn}

Example 18.3
Show that Rn = span{e1, e2, · · · , en} where ei is the vector with 1 in the ith
component and 0 otherwise.

Solution.
We must show that if u ∈ Rn then u is a linear combination of the e′is.
Indeed, if u = (x1, x2, · · · , xn) ∈ Rn then

u = x1e1 + x2e2 + · · ·+ xnen

Hence u lies in span{e1, e2, · · · , en}

If every element of V can be written as a linear combination of elements
of W then we have V = span(W ) and in this case we say that W is a span
of V or W generates V.

Example 18.4
(a)Determine whether ~v1 = (1, 1, 2), ~v2 = (1, 0, 1) and ~v3 = (2, 1, 3) span R3.

(b) Show that the vectors~i = (1, 0, 0),~j = (0, 1, 0), and ~k = (0, 0, 1) span R3.

Solution.
(a) We must show that an arbitrary vector ~v = (a, b, c) in R3 is a linear com-
bination of the vectors ~v1, ~v2, and ~v3. That is ~v = s~v1 + t~v2 +w~v3. Expressing
this equation in terms of components gives

s + t + 2w = a
s + + w = b
2s + t + 3w = c
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The problem is reduced of showing that the above system is consistent. This
system will be consistent if and only if the coefficient matrix A

A =

 1 1 2
1 0 1
2 1 3


is invertible. Since |A| = 0, the system is inconsistent and therefore R3 6=
span{~v1, ~v2, ~v3}.
(b) See Example 18.3

Next, we introduce a concept which guarantees that any vector in the span
of a set S has only one representation as a linear combination of vectors in
S. Spanning sets with this property play a fundamental role in the study of
vector spaces as we shall see later in this section.
If v1, v2, . . . , vn are vectors in a vector space with the property that

α1v1 + α2v2 + · · ·+ αnvn = 0

holds only for α1 = α2 = · · · = αn = 0 then the vectors are said to be
linearly independent. If there are scalars not all 0 such that the above
equation holds then the vectors are called linearly dependent.

Example 18.5
Show that the set S = {1, x, x2, · · · , xn} is a linearly independent set in Pn.

Solution.
Suppose that a0+a1x+a2x

2+· · ·+anxn = 0 for all x ∈ R. By the Fundamental
Theorem of Algebra, a polynomial of degree n has at most n roots. But by
the above equation, every real number is a root of the equation. This forces
the numbers a0, a1, · · · , an to be 0

Example 18.6
Let u be a nonzero vector. Show that {u} is linearly independent.

Solution.
Suppose that αu = 0. If α 6= 0 then we can multiply both sides by α−1 and
obtain u = 0. But this contradicts the fact that u is a nonzero vector
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Example 18.7
(a) Show that the vectors ~v1 = (1, 0, 1, 2), ~v2 = (0, 1, 1, 2), and ~v3 = (1, 1, 1, 3)
are linearly independent.
(b) Show that the vectors ~v1 = (1, 2,−1), ~v2 = (1, 2,−1), and ~v3 = (1,−2, 1)
are linearly dependent.

Solution.
(a) Suppose that s, t, and w are real numbers such that s~v1 = t~v2 +w~v3 = 0.
Then equating components gives

s + w = 0
t + w = 0

s + t + w = 0
2s + 2t + 3w = 0

The second and third equation leads to s = 0. The first equation gives w = 0
and the second equation gives t = 0. Thus, the given vectors are linearly
independent.
(b) These vectors are linearly dependent since ~v1 + ~v2 − 2~v3 = 0

Example 18.8
Show that the unit vectors e1, e2, · · · , en in Rn are linearly independent.

Solution.
Suppose that x1e1 +x2e2 + · · ·+xnen = (0, 0, · · · , 0). Then (x1, x2, · · · , xn) =
(0, 0, · · · , 0) and this leads to x1 = x2 = · · · = xn = 0. Hence the vectors
e1, e2, · · · , en are linearly independent

Let S = {v1, v2, . . . , vn} be a subset of a vector space V . We say that S
is a basis for V if

(i) S is linearly independent set.
(ii) V = span(S).

Example 18.9
Let ei be the vector of Rn whose ith component is 1 and zero otherwise.
Show that the set S = {e1, e2, . . . , en} is a basis for Rn. This is called the
standard basis of Rn.
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Solution.
By Example 18.3, we have Rn = span{e1, e2, · · · , en}. By Example 18.8,
the vectors e1, e2, · · · , en are linearly independent. Thus {e1, e2, · · · , en} is a
basis of R3

Example 18.10
Show that {1, x, x2, · · · , xn} is a basis of Pn.

Solution.
By Example 18.2, Pn = span{1, x, x2, · · · , xn} and by Example 18.5, the set
S = {1, x, x2, · · · , xn} is linearly independent. Thus, S is a basis of Pn

If S = {v1, v2, . . . , vn} is a basis for V then we say that V is a finite di-
mensional space of dimension n. We write dim(V ) = n. A vector space
which is not finite dimensional is said to be infinite dimensional vector
space. We define the zero vector space to have dimension zero. The vector
spaces Mmn,Rn, and Pn are finite-dimensional spaces whereas the space P
of all polynomials and the vector space of all real-valued functions defined
on R are inifinite dimensional vector spaces.
Unless otherwise specified, the term vector space shall always mean a finite-
dimensional vector space.

Example 18.11
Determine a basis and the dimension for the solution space of the homoge-
neous system

2x1 + 2x2 − x3 + + x5 = 0
−x1 − x2 + 2x3 − 3x4 + x5 = 0
x1 + x2 − 2x3 − x5 = 0

x3 + x4 + x5 = 0

Solution.
By Example 15.3, we found that x1 = −s− t, x2 = s, x3 = −t, x4 = 0, x5 = t.
So if S is the vector space of the solutions to the given system then S =
{(−s − t, s,−t, 0, t) : s, t ∈ R} = {s(−1, 1, 0, 0, 0) + t(−1, 0,−1, 0, 1) : s, t ∈
R} = span{(−1, 1, 0, 0, 0), (−1, 0,−1, 0, 1)}. Moreover, if s(−1, 1, 0, 0, 0) +
t(−1, 0,−1, 0, 1) = (0, 0, 0, 0, 0) then s = t = 0. Thus the set {(−1, 1, 0, 0, 0), (−1, 0,−1, 0, 1)}
is a basis for the solution space of the homogeneous system
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The following theorem will indicate the importance of the concept of a basis
in investigating the structure of vector spaces. In fact, a basis for a vector
space V determines the representation of each vector in V in terms of the
vectors in that basis.

Theorem 18.2
If S = {v1, v2, . . . , vn} is a basis for V then any element of V can be written
in one and only one way as a linear combination of the vectors in S.

Remark 18.1
A vector space can have different bases; however, all of them have the same
number of elements.
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Practice Problems

Problem 18.1
Let W = span{v1, v2, · · · , vn}, where v1, v2, · · · , vn are vectors in V. Show
that any subspace U of V containing the vectors v1, v2, · · · , vn must con-
tain W, i.e. W ⊂ U. That is, W is the smallest subspace of V containing
v1, v2, · · · , vn.

Problem 18.2
Show that the polynomials p1(x) = 1− x, p2(x) = 5 + 3x− 2x2, and p3(x) =
1 + 3x− x2 are linearly dependent vectors in P2.

Problem 18.3
Express the vector ~u = (−9,−7,−15) as a linear combination of the vectors
~v1 = (2, 1, 4), ~v2 = (1,−1, 3), ~v3 = (3, 2, 5).

Problem 18.4
(a) Show that the vectors ~v1 = (2, 2, 2), ~v2 = (0, 0, 3), and ~v3 = (0, 1, 1) span
R3.
(b) Show that the vectors ~v1 = (2,−1, 3), ~v2 = (4, 1, 2), and ~v3 = (8,−1, 8)
do not span R3.

Problem 18.5
Show that

M22 = span{
[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
}

Problem 18.6
Show that the vectors ~v1 = (2,−1, 0, 3), ~v2 = (1, 2, 5,−1), and ~v3 = (7,−1, 5, 8)
are linearly dependent.

Problem 18.7
Show that the vectors ~v1 = (4,−1, 2) and ~v2 = (−4, 10, 2) are linearly inde-
pendent.

Problem 18.8
Show that the {u, v} is linearly dependent if and only if one is a scalar
multiple of the other.
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Problem 18.9
Let V be the vector of all real-valued functions with domain R. If f, g, h are
twice differentiable functions then we define w(x) by the determinant

w(x) =

∣∣∣∣∣∣
f(x) g(x) h(x)
f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

∣∣∣∣∣∣
We call w(x) the Wronskian of f, g, and h. Prove that f, g, and h are linearly
independent if and only if w(x) 6= 0.

Problem 18.10
Use the Wronskian to show that the functions ex, xex, x2ex are linearly inde-
pendent.

Problem 18.11
Find a basis for the vector space M22 of 2× 2 matrices.
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors arise in many physical applications such as the
study of vibrations, electrical systems, genetics, chemical reactions, quantum
mechanics, economics, etc. In this chapter we introduce these two concepts
and we show how to find them.

139
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19. The Eigenvalues of a Square Matrix

Consider the following linear system

dx1

dt
=x1 − 2x2

dx2

dt
=3x1 − 4x2.

In matrix form, this sysem can be written as[
x1

x2

]′
=

[
1 −2
3 −4

] [
x1

x2

]
A solution to this system has the form x = eλty where

x =

[
x1

x2

]
and y =

[
y1

y2

]
That is, x is known once we know λ and y. Substituting, we have

λeλty = eλtAy

where

A =

[
1 −2
3 −4

]
or

Ay = λy.

Thus, we need to find λ and y from this matrix equation.

If A is an n× n matrix and x is a nonzero vector in Rn such that Ax = λx
for some real number λ then we call x an eigenvector corresponding to the
eigenvalue λ.

Example 19.1

Show that x =

[
1
2

]
is an eigenvector of the matrix

A =

[
3 0
8 −1

]
corresponding to the eigenvalue λ = 3.
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Solution.
The value λ = 3 is an eigenvalue of A with eigenvector x since

Ax =

[
3 0
8 −1

] [
1
2

]
=

[
3
6

]
= 3x

Eigenvalues can be either real numbers or complex numbers. To find the
eigenvalues of a square matrix A we rewrite the equation Ax = λx as

Ax = λInx

or equivalently
(λIn − A)x = 0.

For λ to be an eigenvalue, there must be a nonzero solution to the above
homogeneous system. But, the above system has a nontrivial solution if and
only if the coefficient matrix (λIn − A) is singular, that is , if and only if

|λIn − A| = 0.

This equation is called the characteristic equation of A.

Example 19.2
Find the characteristic equation of the matrix

A =

 0 1 0
0 0 1
4 −17 8


Solution.
The characteristic equation of A is the equation∣∣∣∣∣∣

λ −1 0
0 λ −1
−4 17 λ− 8

∣∣∣∣∣∣ = 0

That is, the equation: λ3 − 8λ2 + 17λ− 4 = 0

It can be shown that

p(λ) =|λIn − A|
=λn − (a11 + a22 + · · ·+ ann)λn−1 + terms of lower degree (19.1)

That is, p(λ) is is a polynomial function in λ of degree n and leading coeffi-
cient 1. This is called the characteristic polynomial of A.



142 EIGENVALUES AND EIGENVECTORS

Example 19.3
Find the characteristic polynomial of the matrix

A =

 5 8 16
4 1 8
−4 −4 −11


Solution.
The characteristic polynomial of A is

p(λ) =

∣∣∣∣∣∣
λ− 5 −8 −16
−4 λ− 1 −8
4 4 λ+ 11

∣∣∣∣∣∣
Expanding this determinant we obtain p(λ) = (λ + 3)(λ2 + 2λ − 3) = (λ +
3)2(λ− 1)

Example 19.4
Show that the constant term in the characteristic polynomial of a matrix A
is (−1)n|A|.

Solution.
The constant term of the polynomial p(λ) corresponds to p(0). It follows that
p(0) = constant term = | − A| = (−1)n|A|

Example 19.5
Find the eigenvalues of the matrices

(a)

A =

[
3 2
−1 0

]
(b)

B =

[
−2 −1

5 2

]
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Solution.
(a) The characteristic equation of A is given by∣∣∣∣ λ− 3 −2

1 λ

∣∣∣∣ = 0

Expanding the determinant and simplifying, we obtain

λ2 − 3λ+ 2 = 0

or
(λ− 1)(λ− 2) = 0.

Thus, the eigenvalues of A are λ = 2 and λ = 1.

(b) The characteristic equation of the matrix B is∣∣∣∣ λ+ 2 1
−5 λ− 2

∣∣∣∣ = 0

Expanding the determinant and simplifying, we obtain

λ2 − 9 = 0

and the eigenvalues are λ = ±3

Example 19.6
Find the eigenvalues of the matrix

A =

 0 1 0
0 0 1
4 −17 8


Solution.
According to Example 19.2 the characteristic equation of A is λ3 − 8λ2 +
17λ− 4 = 0. Using the rational root test we find that λ = 4 is a solution to
this equation. Using synthetic division of polynomials we find

(λ− 4)(λ2 − 4λ+ 1) = 0.

The eigenvalues of the matrix A are the solutions to this equation, namely,
λ = 4, λ = 2 +

√
3, and λ = 2−

√
3
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Example 19.7
Show that λ = 0 is an eigenvalue of a matrix A if and only if A is singular.

Solution.
If λ = 0 is an eigenvalue of A then it must satisfy |0In−A| = |−A| = 0. That
is |A| = 0 and this implies that A is singular. Conversely, if A is singular
then 0 = |A| = |0In − A| and therefore 0 is an eigenvalue of A

Example 19.8
(a) Show that the eigenvalues of a triangular matrix are the entries on the
main diagonal.
(b) Find the eigenvalues of the matrix

A =

 1
2

0 0
−1 2

3
0

5 −8 −1
4


Solution.
(a) Suppose that A is upper triangular n × n matrix. Then the matrix
λIn − A is also upper triangular with entries on the main diagonal are λ −
a11, λ − a22, · · · , λann. Since the determinant of a triangular matrix is just
the product of the entries of the main diaginal, the characteristic equation
of A is

(λ− a11)(λ− a22) · · · (λ− ann) = 0.

Hence, the eigenvalues of A are a11, a22, · · · , ann.
(b) Using (a), the eigenvalues of A are λ = 1

2
, λ = 2

3
, and λ = −1

4

Example 19.9
Show that A and AT have the same characteristic polynomial and hence the
same eigenvalues.

Solution.
We use the fact that a matrix and its transpose have the same determinant.
Hence,

|λIn − AT | = |(λIn − A)T | = |λIn − A|.
Thus, A and AT have the same characteristic equation and therefore the
same eigenvalues

The algebraic multiplicity of an eigenvalue λ of a matrix A is the multi-
plicity of λ as a root of the characteristic polynomial.
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Example 19.10
Find the algebraic multiplicity of the eigenvalues of the matrix

A =

 2 1 0
0 2 0
2 3 1


Solution.
The characteristic equation of the matrix A is λ− 2 −1 0

0 λ− 2 0
−2 −3 λ− 1


Expanding the determinant and simplifying we obtain

(λ− 2)2(λ− 1) = 0.

The eigenvalues of A are λ = 2 (of algebraic multiplicity 2) and λ = 1 (of
algebraic multiplicity 1)

There are many matrices with real entries but with no real eigenvalues. An
example is given next.

Example 19.11
Show that the following matrix has no real eigenvalues.

A =

[
0 1
−1 0

]
Solution.
The characteristic equation of the matrix A is[

λ −1
1 λ

]
Expanding the determinant we obtain

λ2 + 1 = 0.

The solutions to this equation are the imaginary complex numbers λ = i and
λ = −i
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We next introduce a concept for square matrices that will be fundamental
in the next section. We say that two n× n matrices A and B are similar if
there exists a nonsingular matrix P such that B = P−1AP. We write A ∼ B.
The matrix P is not unique. For example, if A = B = In then any invertible
matrix P will satisfy the definition.

Example 19.12
Let A and B be similar matrices. Show the following:
(a) |A| = |B|.
(b) tr(A) = tr(B).
(c) |λIn − A| = |λIn −B|.

Solution.
Since A ∼ B, there exists an invertible matrix P such that B = P−1AP.
(a) |B| = |P−1AP | = |P−1||A||P | = |A| since |P−1| = |P |−1.
(b) tr(B) = tr(P−1(AP )) = tr((AP )P−1) = tr(A) (See Example 9.9(a)).
(c) Indeed, |λIn − B| = |λIn − P−1AP | = |P−1(λIn − A)P | = |λIn − A|. It
follows that two similar matrices have the same eigenvalues

Example 19.13
Show that the following matrices are not similar.

A =

[
1 2
2 1

]
, B =

[
1 1
1 1

]

Solution.
The eigenvalues of A are λ = 3 and λ = −1. The eigenvalues of B are λ = 0
and λ = 2. According to Example 19.12 (c), these two matrices cannot be
similar

Example 19.14
Let A be an n×n matrix with eigenvalues λ1, λ2, · · · , λn including repetitions.
Show the following.
(a) tr(A) = λ1 + λ2 + · · ·+ λn.
(b) |A| = λ1λ2 · · ·λn.
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Solution.
Factoring the characteristic polynomial of A we find

p(λ) =(λ− λ1)(λ− λ2) · · · (λ− λn)

=λn − (λ1 + λ2 + · · ·+ λn)λn−1 + · · ·+ (−1)nλ1λ2 · · ·λn

(a) By Equation 19.1, tr(A) = λ1 + λ2 + · · ·+ λn.
(b) | − A| = p(0) = (−1)nλ1λ2 · · ·λn. But | − A| = (−1)n|A|. Hence, |A| =
λ1λ2 · · ·λn

Example 19.15
(a) Find the characteristic polynomial of

A =

[
1 2
3 4

]
(b) Find the matrix A2 − 5A−−2I2.
(c) Compare the result of (b) with (a).

Solution.

(a) p(λ) =

∣∣∣∣ λ− 1 −2
−3 λ− 4

∣∣∣∣ = λ2 − 5λ− 2.

(b) Simple algebra shows A2 − 5A−−2I2 = 0.
(c) A satisfies p(A) = 0. That is, A satisfies its own characteristic equation
More generally, we have

Theorem 19.1 (Cayley-Hamilton)
Every square matrix is the zero of its characteristic polynomial.

Example 19.16
Use the Cayley-Hamilton theorem to find the inverse of the matrix

A =

[
1 2
3 4

]
Solution.
Since |A| = 4 − 6 = −2 6= 0, A−1 exists. By Cayley-Hamilton Theorem we
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have

A2 − 5A− 2I2 =0

2I2 =A2 − 5A

2A−1 =A− 5I2

2A−1 =

[
1 2
3 4

]
−
[

5 0
0 5

]
=

[
−4 2
3 −1

]
A−1 =

[
−2 1
3
2
−1

2

]

Example 19.17
Show that if D is a diagonal matrix then Dk, where k is a positive integer, is
a diagonal matrix whose entries are the entries of D raised to the power k.

Solution.
We will show by induction on k that if

D =


d11 0 · · · 0
0 d22 · · · 0
...

...
...

0 0 · · · dnn


then

Dk =


dk11 0 · · · 0
0 dk22 · · · 0
...

...
...

0 0 · · · dknn
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Indeed, the result is true for k = 1. Suppose true up to k − 1 then

Dk =Dk−1D =


dk−1

11 0 · · · 0
0 dk−1

22 · · · 0
...

...
...

0 0 · · · dk−1
nn



d11 0 · · · 0
0 d22 · · · 0
...

...
...

0 0 · · · dnn



=


dk11 0 · · · 0
0 dk22 · · · 0
...

...
...

0 0 · · · dknn
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Practice Problems

Problem 19.1
Find the eigenvalues of the matrix

A =

 5 8 16
4 1 8
−4 −4 −11


Problem 19.2
Find the eigenvalues of the matrix

A =

[
3 0
8 −1

]
Problem 19.3
Find the eigenvalues of the matrix

A =

 2 1 1
2 1 −2
−1 0 −2


Problem 19.4
Find the eigenvalues of the matrix

A =

 −2 0 1
−6 −2 0
19 5 −4


Problem 19.5
Show that if λ is a nonzero eigenvalue of an invertible matrix A then 1

λ
is an

eigenvalue of A−1.

Problem 19.6
Show that if λ is an eigenvalue of a matrix A then λm is an eigenvalue of Am

for any positive integer m.

Problem 19.7
Show that if A is similar to a diagonal matrix D then Ak is similar to Dk.
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Problem 19.8
Show that the identity matrix In has exactly one eigenvalue.

Problem 19.9
Let A be an n×n nilpotent matrix, i.e. Ak = 0 for some positive ineteger k.

(a) Show that λ = 0 is the only eigenvalue of A.
(b) Show that p(λ) = λn.

Problem 19.10
Suppose that A and B are n × n similar matrices and B = P−1AP. Show
that if λ is an eigenvalue of A with corresponding eigenvector x then λ is an
eigenvalue of B with corresponding eigenvector P−1x.

Problem 19.11
Let A be an n × n matrix with n odd. Show that A has at least one real
eigenvalue.

Problem 19.12
Consider the following n× n matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3


Show that the characterisitc polynomial of A is given by p(λ) = λ4 + a3λ

3 +
a2λ

2 + a1λ + a0. Hence, every monic polynomial (i.e. the coefficient of the
highest power of λ is 1) is the characteristic polynomial of some matrix. A
is called the companion matrix of p(λ).
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20. Finding Eigenvectors and Eigenspaces

In this section, we turn to the problem of finding the eigenvectors of a square
matrix. Recall that an eigenvector is a nontrivial solution to the matrix
equation (λIn − A)x = 0.
For a square matrix of size n × n, the set of all eigenvectors together with
the zero vector is a vector space as shown in the next result.

Theorem 20.1
Let Vλ denote the set of eigenvectors of a matrix corresponding to an eigen-
value λ. The set V λ = Vλ ∪ {0} is a subspace of Rn. This subspace is called
the eigenspace of A corresponding to λ.

Proof.
Let Vλ = {x ∈ Rn : Ax = λx}. We will show that V λ = Vλ ∪ {0} is a
subspace of Rn.
(i) Let u,v ∈ V λ. If u = 0 or v = 0 then the sum is either u,v, or 0
which belongs to V λ. So assume that both u,v ∈ Vλ. We have A(u + v) =
Au + Av = λu + λv = λ(u + v). That is u + v ∈ V λ.
(ii) Let u ∈ V λ and α ∈ R. Then A(αu) = αAu = λ(αu) so αu ∈ V λ. Hence,
V λ is a subspace of Rn

By the above theorem, determining the eigenspaces of a square matrix is
reduced to two problems: First find the eigenvalues of the matrix, and then
find the corresponding eigenvectors which are solutions to linear homoge-
neous systems.
Consider the matrix

A =

 3 −2 0
−2 3 0

0 0 5


The characteristic equation of the matrix A is λ− 3 2 0

2 λ− 3 0
0 0 λ− 5


Expanding the determinant and simplifying we obtain

(λ− 5)2(λ− 1) = 0.
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The eigenvalues of A are λ = 5 and λ = 1.
A vector x = (x1, x2, x3)

T is an eigenvector corresponding to an eigenvalue λ
if and only if x is a nontrivial solution to the homogeneous system

(λ− 3)x1 + 2x2 = 0
2x1 + (λ− 3)x2 = 0

(λ− 5)x3 = 0
(20.1)

If λ = 1, then the above system becomes
−2x1 + 2x2 = 0
2x1 − 2x2 = 0

− 4x3 = 0

Solving this system yields

x1 = s, x2 = s, x3 = 0

The eigenspace corresponding to λ = 1 is

V 1 =


 s
s
0

 : s ∈ R


If λ = 5, then (20.1) becomes

2x1 + 2x2 = 0
2x1 + 2x2 = 0

0x3 = 0

Solving this system yields

x1 = −t, x2 = t, x3 = s

The eigenspace corresponding to λ = 5 is

V 5 =


 −tt

s

 : s ∈ R


=

t
 −1

1
0

+ s

 0
0
1

 : s, t ∈ R
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Now, a vector v in Rn is said to be a linear combination of the vectors
v1,v2, · · · ,vm if there are real numbers α1, α2, · · · , αm such that

v = α1v1 + α2v2 + · · ·+ αmvm.

The set of all linear combinations of the vectos v1,v2, · · · ,vm is a subspace
of Rn denoted by

span{v1,v2, · · · ,vm}

Thus, in the example above, we have

V 1 = span


 1

1
0


and

V 5 = span


 −1

1
0

 ,
 0

0
1

 .

Now recall that if v1,v2, . . . ,vn are vectors in a vector space with the prop-
erty that

α1v1 + α2v2 + · · ·+ αnvn = 0

holds only for α1 = α2 = · · · = αn = 0 then the vectors are said to be
linearly independent. If there are scalars not all 0 such that the above
equation holds then the vectors are called linearly dependent.

Example 20.1
(a) Show that x = [1, 1, 0]T is linearly independent.
(b) Show that the vectors x = [−1, 1, 0]T and y = [0, 0, 1]T are linearly
indenpent.

Solution.
(a) Suppose that αx = 0. Then [α, α, 0]T = [0, 0, 0]T and this implies that
α = 0.
(b) Suppose that αx + βy = 0. This implies

−α =0

α =0

β =0
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Now, since

V 1 =


 s
s
0

 : s ∈ R

 = span


 1

1
0


and 

 1
1
0


is a linearly independent set, we say that

 1
1
0


is a basis of V 1 and we call the number of elements in the basis the dimen-
sion of V 1. We write dim(V 1) = 1.

Example 20.2
Find the dimension of V 5.

Solution.
We have that

V 5 = span


 −1

1
0

 ,
 0

0
1


and 

 −1
1
0

 ,
 0

0
1


is a linearly indepndent set so that

 −1
1
0

 ,
 0

0
1


is a basis of V 5. Hence dim(V 5) = 2
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Example 20.3
Find bases for the eigenspaces of the matrix

A =

 0 0 −2
1 2 1
1 0 3


Solution.
The characteristic equation of the matrix A is λ 0 2

−1 λ− 2 −1
−1 0 λ− 3


Expanding the determinant and simplifying we obtain

(λ− 2)2(λ− 1) = 0.

The eigenvalues of A are λ = 2 and λ = 1.
A vector x = [x1, x2, x3]

T is an eigenvector corresponding to an eigenvalue λ
if and only if x is a solution to the homogeneous system

λx1 + 2x3 = 0
−x1 + (λ− 2)x2 − x3 = 0
−x1 + (λ− 3)x3 = 0

(20.2)

If λ = 1, then (20.2) becomes
x1 + 2x3 = 0
−x1 − x2 − x3 = 0
−x1 − 2x3 = 0

(20.3)

Solving this system yields

x1 = −2s, x2 = s, x3 = s

The eigenspace corresponding to λ = 1 is

V 1 =


 −2s

s
s

 : s ∈ R

 = span


 −2

1
1
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and [−2, 1, 1]T is a basis for V 1. Hence, dim(V 1) = 1.

If λ = 2, then (20.2) becomes
2x1 + 2x3 = 0
−x1 − x3 = 0
−x1 − x3 = 0

(20.4)

Solving this system yields

x1 = −s, x2 = t, x3 = s

The eigenspace corresponding to λ = 2 is

V 2 =


 −st

s

 : s ∈ R


=

s
 −1

0
1

+ t

 0
1
0

 : s, t ∈ R


=span


 −1

0
1

 ,
 0

1
0


One can easily check that the vectors [−1, 0, 1]T and [0, 1, 0]T are linearly
independent and therefore these vectors form a basis for V 2

The algebraic multiplicity of an eigenvalue λ of a matrix A is the multi-
plicity of λ as a root of the characteristic polynomial, and the dimension of
the eigenspace corresponding to λ is called the geometric multiplicity of
λ.

Example 20.4
Find the algebraic and the geometric multiplicity of the eigenvalues of the
matrix

A =

 2 1 0
0 2 0
2 3 1
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Solution.
The characteristic equation of the matrix A is λ− 2 −1 0

0 λ− 2 0
−2 −3 λ− 1


Expanding the determinant and simplifying we obtain

(λ− 2)2(λ− 1) = 0.

The eigenvalues of A are λ = 2 (of algebraic multiplicity 2) and λ = 1 (of
algebraic multiplicity 1).
A vector x = [x1, x2, x3]

T is an eigenvector corresponding to an eigenvalue λ
if and only if x is a solution to the homogeneous system

(λ− 2)x1 − x2 = 0
(λ− 2)x2 = 0

−2x1 − 3x2 + (λ− 1)x3 = 0
(20.5)

If λ = 1, then (20.5) becomes
−x1 − x2 = 0

− x2 = 0
−2x1 − 3x2 = 0

Solving this system yields

x1 = 0, x2 = 0, x3 = s

The eigenspace corresponding to λ = 1 is

V 1 =


 0

0
s

 : s ∈ R

 = span


 0

0
1


and [0, 0, 1]T is a basis for V 1. The geometric multiplicity of λ = 1 is
dim(V 1) = 1.

If λ = 2, then (20.5) becomes{
− x2 = 0

−2x1 − 3x2 + x3 = 0
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Solving this system yields

x1 =
1

2
s, x2 = 0, x3 = s

The eigenspace corresponding to λ = 2 is

V 2 =


 1

2
s

0
s

 : s ∈ R


= span


 1

2

0
1


and the vector [1

2
, 0, 1]T is a basis for V 2 so that the geometric multiplicity

of λ = 2 is 1

Example 20.5
Solve the homogeneous linear system

dx1

dt
=x1 − 2x2

dx2

dt
=3x1 − 4x2.

using eigenvalues and eigenvectors.

Solution.
In matrix form, this sysem can be written as[

x1

x2

]′
=

[
1 −2
3 −4

] [
x1

x2

]
A solution to this system has the form x = eλty where

x =

[
x1

x2

]
and y =

[
y1

y2

]
That is, x is known once we know λ and y. Substituting, we have

λeλty = eλtAy
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where

A =

[
1 −2
3 −4

]
or

Ay = λy.

To find λ, we solve the characteristic equation

|λI2 − A| = λ2 + 3λ+ 2 = 0.

The eigenvalues are λ = −1 and λ = −2. Next, we find the eigenspaces of A.
A vector x = [x1, x2, x3]

T is an eigenvector corresponding to an eigenvalue λ
if and only if x is a solution to the homogeneous system{

(λ− 1)x1 + 2x2 = 0
−3x1 + (λ+ 4)x2 = 0

(20.6)

If λ = −1, then (20.6) becomes{
−2x1 + 2x2 = 0
−3x1 + 3x2 = 0

Solving this system yields

x1 = s, x2 = s.

The eigenspace corresponding to λ = −1 is

V −1 =

{[
s
s

]
: s ∈ R

}
= span

{[
1
1

]}

If λ = −2, then (20.6) becomes{
−3x1 + 2x2 = 0
−3x1 + 2x2 = 0

Solving this system yields

x1 =
2

3
s, x2 = s.
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The eigenspace corresponding to λ = −2 is

V −2 =

{[
3
2
s
s

]
: s ∈ R

}
=span

{[
3
2

1

]}
The general solution to the system is

x = c1e
−t
[

1
1

]
+ c2e

−2t

[
3
2

1

]
=

[
c1e
−t + 3

2
c2e
−2t

c1e
−t + c2e

−2t

]



162 EIGENVALUES AND EIGENVECTORS

Practice Problems

Problem 20.1
Show that λ = −3 is an eigenvalue of the matrix

A =

 5 8 16
4 1 8
−4 −4 −11


and then find the corresponding eigenspace V −3.

Problem 20.2
Find the eigenspaces of the matrix

A =

[
3 0
8 −1

]
Problem 20.3
Find the eigenspaces of the matrix

A =

 2 1 1
2 1 −2
−1 0 −2


Problem 20.4
Find the bases of the eigenspaces of the matrix

A =

 −2 0 1
−6 −2 0
19 5 −4


Problem 20.5
Find the eigenvectors and the eigenspaces of the matrix

A =

 −1 4 −2
−3 4 0
−3 1 3


Problem 20.6
Find the eigenvectors and the eigenspaces of the matrix

A =

 0 0 −2
1 2 1
1 0 3
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Problem 20.7
Find the eigenvectors and the eigenspaces of the matrix

A =

 2 4 3
−4 −6 −3
3 3 1


Problem 20.8
Find the eigenvectors and the eigenspaces of the matrix

A =


−1 1 1 −2
−1 1 3 2
1 1 −1 −2
0 −1 −1 1


Problem 20.9
Find the geometric and algebraic multiplicities of the matrix

A =

 1 1 0
0 1 1
0 0 1


Problem 20.10
When an n× n matrix has a eigenvalue whose geometric multiplicity is less
than the algebraic multiplicity, then it is called a defective matrix. Is A
defective?

A =

 1 1 −1
0 2 −1
0 0 1
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21. Diagonalization of a Matrix

In this section we shall discuss a method for finding a basis of Rn consisting
of eigenvectors of a given n×n matrix A. It turns out that this is equivalent
to finding an invertible matrix P such that P−1AP is a diagonal matrix. The
latter statement suggests the following terminology.
A square matrix A is called diagonalizable if A is similar to a diagonal
matrix. That is, there exists an invertible matrix P such that P−1AP = D
is a diagonal matrix.
The next theorem gives a characterization of diagonalizable matrices and tells
how to construct a suitable characterization. In fact, it supports our state-
ment mentioned at the beginning of this section that the problem of finding
a basis of Rn consisting of eigenvectors of A is equivalent to diagonalizing A.

Theorem 21.1
If A is an n× n square matrix, then the following statements are all equiva-
lent.
(a) A is diagonalizable.
(b) A has n linearly independent eigenvectors.

How do we find P and D? The following is a procedure for diagonalizing a
diagonalizable matrix.

Step 1. Find n linearly independent eigenvectors of A, say p1, p2, · · · , pn.
Step 2. Form the matrix P having p1, p2, · · · , pn as its column vectors.
Step 3. The matrix P−1AP will then be diagonal with λ1, λ2, . . . , λn as its
diagonal entries, where λi is the eigenvalue corresponding to pi, 1 ≤ i ≤ n.

Example 21.1
Find a matrix P that diagonalizes

A =

 3 −2 0
−2 3 0
0 0 5


Solution.
From Section 20, the eigenspaces corresponding to the eigenvalues λ = 1 and
λ = 5 are

V 1 =


 s
s
0

 : s ∈ R

 = span


 1

1
0
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and

V 5 =


 −tt

s

 : s, t ∈ R


=

t
 −1

1
0

+ s

 0
0
1

 : s, t ∈ R


=span


 −1

1
0

 ,
 0

0
1


Let ~v1 = [1, 1, 0]T , ~v2 = [−1, 1, 0]T , and ~v3 = [0, 0, 1]T . It is easy to verify that
these vectors are linearly independent. The matrices

P =

 1 −1 0
1 1 0
0 0 1


and

D =

 1 0 0
0 5 0
0 0 5


satisfy AP = PD or D = P−1AP

Example 21.2
Show that the matrix

A =

[
−3 2
−2 1

]
is not diagonalizable.

Solution.
The characteristic equation of the matrix A is[

λ+ 3 −2
2 λ− 1

]
Expanding the determinant and simplifying we obtain

(λ+ 1)2 = 0.
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The only eigenvalue of A is λ = −1.
A vector x = (x1, x2)

T is an eigenvector corresponding to an eigenvalue λ if
and only if x is a solution to the homogeneous system{

(λ+ 3)x1 − 2x2 = 0
2x1 + (λ− 1)x2 = 0

(21.1)

If λ = −1, then (21.1) becomes{
2x1 − 2x2 = 0
2x1 − 2x2 = 0

(21.2)

Solving this system yields x1 = s, x2 = s. Hence the eigenspace corresponding
to λ = −1 is

V −1 =

{[
s
s

]
: s ∈ R

}
= span

{[
1
1

]}
Since dim(V −1) = 1, A does not have two linearly independent eigenvectors
and is therefore not diagonalizable

In many applications one is concerned only with knowing whether a ma-
trix is diagonalizable without the need of finding the matrix P. The answer
is provided with the following theorem.

Theorem 21.2
If A is an n× n matrix with n distinct eigenvalues then A is diagonalizable.

Example 21.3
Show that the following matrix is diagonalizable.

A =

 1 0 0
1 2 −3
1 −1 0


Solution.
The characteristic equation of the matrix A is λ− 1 0 0

−1 λ− 2 3
−1 1 λ
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Expanding the determinant and simplifying we obtain

(λ− 1)(λ− 3)(λ+ 1) = 0

The eigenvalues are 1, 3 and −1, so A is diagonalizable by Theorem 21.1
The converse of Theorem 21.2 is false. See Example 21.1.

Example 21.4
Find a matrix P that diagonalizes

A =

 0 0 −2
1 2 1
1 0 3


Solution.
The eigenspaces corresponding to the eigenvalues λ = 1 and λ = 2 are

V 1 = span


 −2

1
1


and

V 2 = span


 −1

0
1

 ,
 0

1
0


Let ~v1 = (−2, 1, 1)T , ~v2 = (−1, 0, 1), and ~v3 = (0, 1, 0)T . It is easy to verify
that these vectors are linearly independent. The matrices

P =

 −2 −1 0
1 0 1
1 1 0


and

D =

 1 0 0
0 2 0
0 0 2


satisfy AP = PD or D = P−1AP
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Practice Problems

Problem 21.1
Recall that a matrix A is similar to a matrix B if and only if there is an
invertible matrix P such that P−1AP = B. In symbol, we write A ∼ B.
Show that if A ∼ B then
(a) AT ∼ BT .
(b) A−1 ∼ B−1.

Problem 21.2
If A is invertible show that AB ∼ BA for all B.

Problem 21.3
Show that the matrix A is diagonalizable.

A =

 0 1 0
0 0 1
4 −17 8


Problem 21.4
Show that the matrix A is not diagonalizable.

A =

 2 1 1
2 1 −2
−1 0 −2


Problem 21.5
Show that the matrix

A =

[
3 0
0 3

]
is diagonalizable with only one eigenvalue.

Problem 21.6
Show that A is diagonalizable if and only if AT is diagonalizable.

Problem 21.7
Show that if A and B are similar then A is diagonalizable if and only if B is
diagonalizable.
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Problem 21.8
Give an example of two diagonalizable matrices A and B such that A+B is
not diagonalizable.

Problem 21.9
Find P and D such that P−1AP = D where

A =

 1 1 −1
0 2 −1
0 0 1


Problem 21.10
Find P and D such that P−1AP = D where

A =


−1 1 1 −2
−1 1 3 2
1 1 −1 −2
0 −1 −1 1
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Linear Transformations

In this chapter we shall discuss a special class of functions whose domains
and ranges are vector spaces. Such functions are referred to as linear trans-
formations, a concept to be defined in Section 23.

171
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22. An Example of Motivation

Linear transformations play an important role in many areas of mathematics,
the physical and social sciences, engineering, and economics. Let’s look at
an application in Cryptography theory.

Suppose we want to send the following message to our friend,

MEET TOMORROW

For the security, we first code the alphabet as follows:

A B C · · · X Y Z
1 2 3 · · · 24 25 26

Thus, the code message is

M E E T T O M O R R O W
13 5 5 20 20 15 13 15 18 18 15 23

The sequence

13 5 5 20 20 15 13 15 18 18 15 23

is the original code message. To encrypt the original code message, we can
apply a linear transformation to original code message. Let T : R3 → R3 be
given by T (x) = Ax where

A =

 1 2 3
1 1 2
0 1 2


Then, we break the original message into 4 vectors first, 13

5
5

 ,
 20

20
15

 ,
 13

15
18

 ,
 18

15
23


and use the linear transformation to obtain the encrypted code message

T

 13
5
5

 =

 1 2 3
1 1 2
0 1 2

 13
5
5

 =

 38
28
15
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T

 20
20
15

 =

 1 2 3
1 1 2
0 1 2

 20
20
15

 =

 105
70
50


T

 13
15
18

 =

 1 2 3
1 1 2
0 1 2

 13
15
18

 =

 97
64
51


T

 18
15
23

 =

 1 2 3
1 1 2
0 1 2

 18
15
23

 =

 117
79
61


Then, we can send the encrypted message code

38 28 15 105 70 50 97 64 51 117 79 61

Suppose our friend wants to encode the encrypted message code. Our friend
can find the inverse matrix of A first

A−1 =

 0 1 −1
2 −2 −1
−1 1 1


and then

A−1

 38
28
15

 =

 1 2 3
1 1 2
0 1 2

 38
28
15

 =

 13
5
5


A−1

 105
70
50

 =

 1 2 3
1 1 2
0 1 2

 105
70
50

 =

 20
20
15


A−1

 97
64
51

 =

 1 2 3
1 1 2
0 1 2

 97
64
51

 =

 13
15
18


A−1

 117
79
61

 =

 1 2 3
1 1 2
0 1 2

 117
79
61

 =

 18
15
23


Thus, our friend can find the original message code

13 5 5 20 20 15 13 15 18 18 15 23
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via the inverse matrix of A.

Example 22.1
What is the decrypted message for

77 54 38 71 49 29 68 51 33 76 48 40 86 53 52

Solution.
We first break the message into 5 vectors, 77

54
38

 ,
 71

49
29

 ,
 68

51
33

 ,
 76

48
40

 ,
 86

53
52

 .
and then the original message code can be obtained by

A−1

 77
54
38

 =

 1 2 3
1 1 2
0 1 2

 77
54
38

 =

 16
8
15



A−1

 71
49
29

 =

 1 2 3
1 1 2
0 1 2

 71
49
29

 =

 20
15
7


A−1

 68
61
33

 =

 1 2 3
1 1 2
0 1 2

 68
61
33

 =

 18
1
16


A−1

 76
48
40

 =

 1 2 3
1 1 2
0 1 2

 76
48
40

 =

 8
16
12


A−1

 86
53
52

 =

 1 2 3
1 1 2
0 1 2

 86
53
52

 =

 1
14
19

 .
Thus, the original message from our friend is

16 8 15 20 15 7 18 1 16 8 16 12 1 14 19
P H O T O G R A P H P L A N S
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23. Linear Transformation: Definition and El-

ementary Properties

A linear transformation T from a vector space V to a vector space W is
a function T : V → W that satisfies the following two conditions
(i) T (u+ v) = T (u) + T (v), for all u, v in V.
(ii) T (αu) = αT (u) for all u in V and scalar α.

If W = R then we call T a linear functional on V.
It is important to keep in mind that the addition in u+v refers to the addition
operation in V whereas that in T (u) + T (v) refers to the addition operation
in W. Similar remark for the scalar multiplication.

Example 23.1
Show that T : R2 → R3 defined by

T

([
x
y

])
=

 x
x+ y
x− y


is a linear transformation.

Solution.
We verify the two conditions of the definition. Given [x1, y1]

T and [x2, y2]
T

in R2, compute

T

([
x1

y1

]
+

[
x2

y2

])
=T

([
x1 + y1

x2 + y2

])

=

 x1 + x2

x1 + x2 + y1 + y2

x1 + x2 − y1 − y2


=

 x1

x1 + y1

x1 − y1

+

 x2

x2 + y2

x2 − y2


=T

([
x1

y1

])
+ T

([
x2

y2

])
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This proves the first condition. For the second condition, we let α ∈ R and
compute

T

(
α

[
x1

y1

])
=T

([
αx1

αy1

])

=

 αx1

αx1 + αy1

αx1 − αy1

 = α

 x1

x1 + y1

x1 − y1


=αT

([
x1

y1

])
Hence T is a linear transformation

Example 23.2
Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
1

 .
Show that T is not linear.

Solution.
We show that the first condition of the definition is violated. Indeed, for any
two vectors [x1, y1]

T and [x2, y2]
T we have

T

([
x1

y1

]
+

[
x2

y2

])
=T

([
x1 + x2

y1 + y2

])

=

 x1 + x2

y1 + y2

1


6=

 x1

y1

1

+

 x2

y2

1

 = T

([
x1

y1

])
+ T

([
x2

y2

])

Hence the given transformation is not linear

Example 23.3
Show that an m× n matrix defines a linear transforamtion from Rn to Rm.
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Solution.
Given x and y in Rm and α ∈ R, matrix arithmetic yields T (x + y) =
A(x + y) = Ax +Ay = Tx + Ty and T (αx) = A(αx) = αAx = αTx. Thus,
T is linear

Example 23.4
(a) Show that the identity transformation defined by I(v) = v for all v ∈ V
is a linear transformation.
(b) Show that the zero transformation is linear.

Solution.
(a) For all u, v ∈ V and α ∈ R we have I(u + v) = u + v = Iu + Iv and
I(αu) = αu = αIu. So I is linear.
(b) For all u, v ∈ V and α ∈ R we have 0(u + v) = 0 = 0u + 0v and
0(αu) = 0 = α0u. So 0 is linear

The next theorem collects four useful properties of all linear transformations.

Theorem 23.1
If T : V → W is a linear transformation then

(a) T (0) = 0
(b) T (−u) = −T (u)
(c) T (u− w) = T (u)− T (w)
(d) T (α1u1 + α2u2 + · · ·+ αnun) = α1T (u1) + α2T (u2) + · · ·+ αnT (un).

The following theorem provides a criterion for showing that a transformation
is linear.

Theorem 23.2
A function T : V → W is linear if and only if T (αu+ v) = αT (u) + T (v) for
all u, v ∈ V and α ∈ R.

Example 23.5
Let Mmn denote the vector space of all m× n matrices.
(a) Show that T : Mmn → Mnm defined by T (A) = AT is a linear transfor-
mation.
(b) Show that T : Mnn → R defined by T (A) = tr(A) is a linear functional.
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Solution.
(a) For any A,B ∈ Mmn and α ∈ R we find T (αA + B) = (αA + B)T =
αAT +BT = αT (A) + T (B). Hence, T is a linear transformation.
(b) For any A,B ∈ Mnn and α ∈ R we have T (αA + b) = tr(αA + B) =
αtr(A) + tr(B) = αT (A) + T (B) so T is a linear functional

Example 23.6
Let {v1, v2, . . . , vn} be a basis for a vector space V and let T : V → W be a
linear transformation. Show that if T (v1) = T (v2) = · · · = T (vn) = 0 then
T (v) = 0 for any vector v in V.

Solution.
Let v ∈ V. Then there exist scalars α1, α2, · · · , αn such that v = α1v1+α2v2+
· · ·+ αnvn. Since T is linear then T (v) = αTv1 + αTv2 + · · ·+ αnTvn = 0

Example 23.7
Let S : V → W and T : V → W be two linear transformations. Show the
following:
(a) S + T and S − T are linear transformations.
(b) αT is a linear transformation where α denotes a scalar.

Solution.
(a) Let u, v ∈ V and α ∈ R then

(S ± T )(αu+ v) =S(αu+ v)± T (αu+ v)

=αS(u) + S(v)± (αT (u) + T (v))

=α(S(u)± T (u)) + (S(v)± T (v))

=α(S ± T )(u) + (S ± T )(v)

(b) Let u, v ∈ V and β ∈ R then

(αT )(βu+ v) =(αT )(βu) + (αT )(v)

=αβT (u) + αT (v)

=β(αT (u)) + αT (v)

=β(αT )(u) + (αT )(v)

Hence, αT is a linear transformation

The following theorem shows that two linear transformations defined on V
are equal whenever they have the same effect on a basis of the vector space
V.
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Theorem 23.3
Let V = span{v1, v2, · · · , vn}. If T and S are two linear transformations from
V into a vector space W such that T (vi) = S(vi) for each i then T = S.

The following very useful theorem tells us that once we say what a linear
transformation does to a basis for V, then we have completely specified T.

Theorem 23.4
Let V be an n−dimensional vector space with basis {v1, v2, · · · , vn}. If T :
V −→ W is a linear transformation then for any v ∈ V , Tv is completely
determined by {Tv1, T v2, · · · , T vn}.
Theorem 23.5
Let V and W be two vector spaces and {e1, e2, · · · , en} be a basis of V. Given
any vectors w1, w2, · · · , wn in W , there exists a unique linear transformation
T : V −→ W such that T (ei) = wi for each i.

Example 23.8
Let T : Rn → Rm be a linear transformation. Show that there exists an
m× n matrix A such that T (x) = Ax for all x ∈ Rn. The matrix A is called
the standard matrix of T.

Solution.
Consider the standard basis of Rn, {e1, e2, · · · , en} where ei is the vector
with 1 at the ith component and 0 otherwise. Let x = [x1, x2, · · · , xn]T ∈ Rn.
Then x = x1e1 + x2e2 + · · ·+ xnen. Thus,

T (x) = x1T (e1) + x2T (e2) + · · ·+ xnT (en) = Ax

where A = [ T (e1) T (e2) · · · T (en) ]

Example 23.9
Find the standard matrix of T : R3 → R2 defined by

T

 x
y
z

 =

[
x− 2y + z
x− z

]
Solution.
Indeed, by simple inspection one finds that

T

 x
y
z

 =

[
1 −2 1
1 0 −1

] x
y
z
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Practice Problems

Problem 23.1
Consider the matrix

E =

[
0 1
1 0

]
,

Show that the transformation

TE

([
x
y

])
=

[
y
x

]
is linear. This transformation is a reflection in the line y = x.

Problem 23.2
Consider the matrix

F =

[
α 0
0 1

]
,

Show that

TF

([
x
y

])
=

[
αx
y

]
is linear. Such a transformation is called an expansion if α > 1 and a
compression if α < 1.

Problem 23.3
Consider the matrix

G =

[
1 1
0 1

]
Show that

TG

([
x
y

])
=

[
αx+ y
y

]
is linear. This transformation is called a shear

Problem 23.4
Show that the function T : R2 → R3 defined by

T

([
x
y

])
=

 x+ y
x− 2y

3x


is a linear transformation.
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Problem 23.5
(a) Show that D : Pn −→ Pn−1 given by D(p) = p′ is a linear transformation.
(b) Show that I : Pn −→ Pn+1 given by I(p) =

∫ x
0
p(t)dt is a linear transfor-

mation.

Problem 23.6

If T : R3 −→ R is a linear transformation with T

 3
−1
2

 = 5 and

T

 1
0
1

 = 2. Find T

 −1
1
0

 .

Problem 23.7
Let T : R3 −→ R2 be the transformation

T

 x
y
z

 =

[
x
y

]
.

Show that T is linear. This transformation is called a projection.

Problem 23.8
Show that the following transformation is not linear: T : Mnn −→ R.

Problem 23.9
If T1 : U −→ V and T2 : V −→ W are linear transformations, then T2 ◦ T1 :
U −→ W is also a linear transformation.

Problem 23.10
Let T be a linear transformation on a vector space V such that T (v−3v1) = w
and T (2v − v1) = w1. Find T (v) and T (v1) in terms of w and w1.



182 LINEAR TRANSFORMATIONS

24. Kernel and Range of a Linear Transforma-

tion

In this section we discuss two important subspaces associated with a linear
transformation T, namely the kernel of T and the range of T. Also, we discuss
some further properties of T as a function such as, the concepts of one-one,
onto and the inverse of T.
Let T : V → W be a linear transformation. The kernel of T (denoted by
ker(T )) and the range of T (denoted by R(T )) are defined by

ker(T ) ={v ∈ V : T (v) = 0}
R(T ) ={w ∈ W : T (v) = w, v ∈ V }

The following theorem asserts that ker(T ) and R(T ) are subspaces.

Theorem 24.1
Let T : V → W be a linear transformation. Then
(a) ker(T ) is a subspace of V .
(b) R(T ) is a subspace of W.

Proof.
(a) Let v1, v2 ∈ ker(T ) and α ∈ R. Then T (αv1 + v2) = αTv1 + Tv2 = 0.
That is, αv1 + v2 ∈ ker(T ). This proves that ker(T ) is a subspace of V.
(b) Let w1, w2 ∈ R(T ). Then there exist v1, v2 ∈ V such that Tv1 = w1 and
Tv2 = w2. Let α ∈ R. Then T (αv1 + v2) = αTv1 + Tv2 = αw1 + w2. Hence,
αw1 + w2 ∈ R(T ). This shows that R(T ) is a subspace of W

Example 24.1
If T : R3 → R3 is defined by

T

 x
y
z

 =

 x− y
z

y − x

 ,
find ker(T ) and R(T ).
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Solution.

If

 x
y
z

 ∈ ker(T ) then

 0
0
0

 = T

 x
y
z

 =

 x− y
z

y − x

 .
This leads to the system

x − y = 0
−x + y = 0

z = 0

The general solution is given by

 s
s
0

 and therefore

ker(T ) = span


 1

1
0

 .

Now, let

 u
v
w

 ∈ R(T ) be given. Then there is a vector

 x
y
z

 ∈ R3 such

that T

 x
y
z

 =

 u
v
w

 . This yields the following system


x − y = u
−x + y = w

z = v

and the solution is given by

 u
v
−u

 . Hence,

R(T ) = span


 1

0
−1

 ,
 0

1
0
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Example 24.2
Let T : Rn → Rm be given by Tx = Ax. Find ker(T ) and R(T ).

Solution.
We have

ker(T ) = {x ∈ Rn : Ax = 0}
and

R(T ) = {Ax : x ∈ Rn}

Example 24.3
Let V be any vector space and α be a scalar. Let T : V → V be the trans-
formation defined by T (v) = αv.

(a) Show that T is linear.
(b) What is the kernel of T?
(c) What is the range of T?

Solution.
(a) Let u, v ∈ V and β ∈ R. Then T (βu + v) = α(βu + v) = αβu + αv =
βT (u) + T (v). Hence, T is linear
(b) If v ∈ ker(T ) then 0 = T (v) = αv. If α = 0 then ker(T ) = V. If α 6= 0
then ker(T ) = {0}.
(c) If α = 0 then R(T ) = {0}. If α 6= 0 then R(T ) = V since T ( 1

α
v) = v for

all v ∈ V

Since the kernel and the range of a linear transformation are subspaces of
given vector spaces, we may speak of their dimensions. The dimension of the
kernel is called the nullity of T (denoted nullity(T )) and the dimension of
the range of T is called the rank of T (denoted rank(T )).

Example 24.4
Let T : R2 −→ R3 be given by

T

([
x
y

])
=

 x
x+ y
y

 .
(a) Show that T is linear.
(b) Find nullity(T ) and rank(T ).
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Solution.

(a) Let

[
x1

y1

]
and

[
x2

y2

]
be two vectors in R2. Then for any α ∈ R we have

T

(
α

[
x1

y1

]
+

[
x2

y2

])
=T

([
αx1 + x2

αy1 + y2

])

=

 αx1 + x2

αx1 + x2 + αy1 + y2

αy1 + y2


=

 αx1

α(x1 + y1)
αy1

+

 x2

x2 + y2

y2


=αT

([
x1

y1

])
+ T

([
x2

y2

])

(b) Let

[
x
y

]
∈ ker(T ). Then

 0
0
0

 = T

([
x
y

])
=

 x
x+ y
y

 and this

leads to ker(T ) =

{[
0
0

]}
. Hence, nullity(T ) = 0.

Now, let

 u
v
w

 ∈ R(T ). Then there exists

[
x
y

]
∈ R2 such that

 x
x+ y
y

 =

T

([
x
y

])
=

 u
v
w

 .Hence, R(T ) =


 x
x+ y
y

 : x, y ∈ R

 = span


 1

1
0

 ,
 0

1
1

 .

Thus, rank(T ) = 2

Since linear transformations are functions, it makes sense to talk about one-
to-one and onto functions. We say that a linear transformation T : V → W is
one-to-one if Tv = Tw implies v = w. We say that T is onto if R(T ) = W.
If T is both one-to-one and onto we say that T is an isomorphism and the
vector spaces V and W are said to be isomorphic and we write V ∼= W.
The identity transformation is an isomorphism of any vector space onto it-
self. That is, if V is a vector space then V ∼= V.

The following theorem is used as a criterion for proving that a linear trans-
formation is one-to-one.
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Theorem 24.2
Let T : V → W be a linear transformation. Then T is one-to-one if and only
if ker(T ) = {0}.

Proof.
Suppose first that T is one-to-one. Let v ∈ ker(T ). Then Tv = 0 = T0.
Since T is one-to-one, v = 0. Hence, ker(T ) = {0}.
Conversely, suppose that ker(T ) = {0}. Let u, v ∈ V be such that Tu = Tv,
i.e T (u−v) = 0. This says that u−v ∈ ker(T ), which implies that u−v = 0.
Thus, T is one-to-one

Another criterion of showing that a linear transformation is one-to-one is
provided by the following theorem.

Theorem 24.3
Let T : V → W be a linear transformation. Then the following are equiva-
lent:
(a) T is one-to-one.
(b) If S is linearly independent set of vectors then T (S) is also linearly inde-
pendent.

Proof.
(a) ⇒ (b): Let S = {v1, v2, · · · , v3} consists of linearly independent vectors.
Then T (S) = {T (v1), T (v2), · · · , T (vn)}. Suppose that α1T (v1) + α2T (v2) +
· · ·+ αnT (vn) = 0. Then we have

T (0) = 0 =α1T (v1) + α2T (v2) + · · ·+ αnT (vn)

=T (α1v1 + α2v2 + · · ·+ αnvn)

Since T is one-to-one, we must have α1v1 + α2v2 + · · ·+ αnvn = 0. Since the
vectors v1, v2, · · · , vn are linear, we have α1 = α2 = · · · = αn = 0. This shows
that T (S) consists of linearly independent vectors.
(b) ⇒ (a): Suppose that T (S) is linearly independent for any linearly inde-
pendent set S. Let v be a nonzero vector of V. Since {v} is linearly indepen-
dent, {Tv} is linearly independent. That is, Tv 6= 0. Hence, kerT = {0} and
by Theorem 21.2, T is one-to-one

Example 24.5

Consider the transformation T : R3 → R2 given by T

 x
y
z

 =

[
x+ y
x− y

]
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(a) Show that T is linear.
(b) Show that T is onto but not one-to-one.

Solution.

(a) Let

 x1

y1

z1

 and

 x2

y2

z2

 be two vectors in R3 and α ∈ R. Then

T

α
 x1

y1

z1

+

 x2

y2

z2

 =T

 αx1 + x2

αy1 + y2

αz1 + z2


=

[
αx1 + x2 + αy1 + y2

αx1 + x2 − αy1 − y2

]
=

[
α(x1 + y1)
α(x1 − y1)

]
+

[
x2 + y2

x2 − y2

]

=αT

 x1

y1

z1

+ T

 x2

y2

z2



(b) Since

 0
0
1

 ∈ ker(T ), by Theorem 24.2 T is not one-to-one. Now, let u
v
w

 ∈ R3 be such that T

 u
v
w

 =

[
x
y

]
. In this case, x = 1

2
(u + v)

and y = 1
2
(u− v). Hence, R(T ) = R3 so that T is onto

Example 24.6

Consider the transformation T : R2 → R3 given by T

([
x
y

])
=

 x+ y
x− y
x

 .
(a) Show that T is linear.
(b) Show that T is one-to-one but not onto.
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Solution.

(a) Let

[
x1

y1

]
and

[
x2

y2

]
be two vectors in R2. Then for any α ∈ R we have

T

(
α

[
x1

y1

]
+

[
x2

y2

])
=T

([
αx1 + x2

αy1 + y2

])

=

 αx1 + x2 + αy1 + y2

αx1 + x2 − αy1 − y2

αx1 + x2


=

 α(x1 + y1)
α(x1 − y1)

αx1

+

 x2 + y2

x2 − y2

x2


=αT

([
x1

y1

])
+ T

([
x2

y2

])
Hence, T is linear.

(b) If

[
x
y

]
∈ ker(T ) then

 0
0
0

 = T

([
x
y

])
=

 x+ y
x− y
x

 and this leads

to

[
x
y

]
=

[
0
0

]
. Hence, ker(T ) =

{[
0
0

]}
so that T is one-to-one.

To show that T is not onto, take the vector

 0
0
1

 ∈ R3. Suppose that

[
x
y

]
∈ R2 is such that T

([
x
y

])
=

 0
0
1

 . This leads to x = 1 and x = 0

which is impossible. Thus, T is not onto

Example 24.7
Let T : V → W be a one-one linear transformation. Show that if {v1, v2, . . . , vn}
is a basis for V then {T (v1), T (v2), . . . , T (vn)} is a basis for R(T ).

Solution.
The fact that {T (v1), T (v2), · · · , T (vn)} is linearly independent follows from
Theorem 24.3. It remains to show thatR(T ) = span{T (v1), T (v2), · · · , T (vn)}.
Indeed, let w ∈ R(T ). Then there exists v ∈ V such that T (v) = w.
Since {v1, v2, · · · , vn} is a basis of V, v can be written uniquely in the form
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v = αv1 + α2v2 + · · ·+ αnvn. Hence, w = T (v) = α1T (v1) + α2T (v2) + · · ·+
αnT (vn). That is, w ∈ span{T (v1), T (v2), · · · , T (vn)}. We conclude that
{T (v1), T (v2), · · · , T (vn)} is a basis of R(T )

The following important result is called the dimension theorem.

Theorem 24.4
If T : V → W is a linear transformation with dim(V ) = n, then

nullity(T ) + rank(T ) = n.

Theorem 24.5
If W is a subspace of a finite dimensional vector space V and dim(W ) =
dim(V ) then W = V.

We have seen that a linear transformation T : V → W can be one-to-one and
onto, one-to-one but not onto, and onto but not one-to-one. The foregoing
theorem shows that each of these properties implies the other if the vector
spaces V and W have the same dimension.

Theorem 24.6
Let T : V → W be a linear transformation such that dim(V ) = dim(W ) = n.
Then
(a) if T is one - one, then T is onto;
(b) if T is onto, then T is one-one.

Proof.
(a) If T is one-one then ker(T ) = {0}. Thus, dim(ker(T )) = 0. By Theorem
24.4 we have dim(R(T )) = n. Hence, R(T ) = W. That is, T is onto.
(b) If T is onto then dim(R(T )) = n. By Theorem 24.4, dim(ker(T )) = 0.
Hence, ker(T ) = {0}, i.e. T is one-one

A linear transformation T : V → W is said to be invertible if and only
if there exists a unique function T−1 : W → V such that T ◦ T−1 = idW and
T−1 ◦ T = idV .

Theorem 24.7
Let T : V → W be an invertible linear transformation. Then
(a) T−1 is linear.
(b) (T−1)−1 = T.
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Proof.
(a) Suppose T−1(w1) = v1, T

−1(w2) = v2 and α ∈ R. Then αw1 + w2 =
αT (v1) + T (v2) = T (αv1 + v2. That is, T−1(αw1 + w2) = αv1 + v2 =
αT−1(w1) + T−1(w2).
(b) Follows from the definition of invertible functions

What types of linear transformations are invertible?

Theorem 24.8
A linear transformation T : V → W is invertible if and only if ker(T ) = {0}
and R(T ) = W.

Example 24.8
Let T : R3 → R3 be given by T (x) = Ax where A is the matrix

A =

 1 1 1
0 1 2
1 2 2


(a) Prove that T is invertible.
(b) What is T−1(x)?

Solution.

(a) We must show that T is one-to-one and onto. Let x =

 x1

y1

z1

 ∈ ker(T ).

Then Tx = Ax =

 0
0
0

 . Since |A| = −1 6= 0, A is invertible and therefore

x =

 0
0
0

 . Hence, ker(T ) =


 0

0
0

 . Now since A is invertible the

system Ax = b is always solvable. This shows that R(T ) = R3. Hence, by
the above theorem, T is invertible.
(b) T−1x = A−1x
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Practice Problems

Problem 24.1
Let T : Mmn → Mmn be given by T (X) = AX for all X ∈ Mmn, where A is
an m×m invertible matrix. Show that T is both one-one and onto.

Problem 24.2
Let T : V −→ W be a linear transformation. Show that if the vectors

T (v1), T (v2), · · · , T (vn)

are linearly independent then the vectors v1, v2, · · · , vn are also linearly in-
dependent.

Problem 24.3

Show that the projection transformation T : R3 → R2 defined by T

 x
y
z

 =[
x
y

]
is not one-one.

Problem 24.4
Let Mnn be the vector space of all n × n matrices. Let T : Mnn → Mnn be
given by T (A) = A− AT .
(a) Show that T is linear.
(b) Find ker(T ) and R(T ).

Problem 24.5
Let T : V → W. Prove that T is one-one if and only if dim(R(T )) = dim(V ).

Problem 24.6
Show that the linear transformation T : Mnn →Mnn given by T (A) = AT is
an isomorphism.

Problem 24.7
Consider the linear transformation T : R2 → R3 defined by

T

([
x
y

])
=

 x+ y
x+ 2y
y

 .
Show that T is one-to-one.
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Problem 24.8
Consider the linear transformation T : R3 → R3 defined by

T

 x
y
z

 =

[
1 1 1
1 2 3

] x
y
z

 .
Find a basis for Ker(T ).

Problem 24.9
Consider the linear transformation T : M22 → M22 defined by T (X) =
AX −XA. Find the rank and nullity of T.

Problem 24.10
Consider the linear transformation T : R2 → R2 defined by

T

([
x
y

])
=

[
0
x

]
.

Find ker(T ) and R(T ).
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25. Matrix Representation of a Linear Trans-

formation

In this section we shall see the relation between linear transformation, basis
and matrices.
Let S = {v1, v2, · · · , vn} be an ordered basis of a vector space V. Then for
any vector v ∈ V there are unique scalars α1, α2, · · · , αn such that

v = α1v1 + α2v2 + · · ·+ αnvn.

The coordinate vector of v relative to S is defined by

[v]S =


α1

α2

. . .
αn


Example 25.1
Let v1 = (1, 0, 0), v2 = (1, 1, 0), and v3 = (1, 1, 1). The set S = {v1, v2, v3} is
a basis of R3. Find the coordinate vector v = (x, y, z) relative to S.

Solution.
We want to find scalars α1, α2, α3 such that

(x, y, z) = α1(1, 0, 0) + α2(1, 1, 0) + α3(1, 1, 1).

This leads to the system
α1 + α2 + α3 = x

α2 + α3 = y
α3 = z

Solving this system we find α1 = x − y, α2 = y − z, α3 = z. Thus, the
coordinate vector v with respect to S is

[v]S =

 x− y
y − z
z
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Theorem 25.1
Let V and W be two vector spaces such that dim(V ) = n and dim(W ) = m.
Let T : V → W be a linear transformation. Let S = {v1, v2, · · · , vn} and
S ′ = {u1, u2, · · · , um} be ordered bases for V and W respectively. Then there
is a unique m× n matrix A such that T (x) = Ax. That is,

[T (v)]S′ = [T ]S
′

S [v]S.

The j−th column of [T ]S
′

S is the coordinate vector of T (vj) with respect to
the basis S ′.

The matrix [T ]S
′

S is called the matrix representation of T relative to
the ordered bases S and S ′.

Example 25.2
Let T : R2 → R2 be defined by the formula

T

([
x
y

])
=

[
x+ 2y
2x− y

]
.

Let S = {e1, e2} be the standard basis of R2. Find the matrix representation
of T relative to S.

Solution.
We have the following computation

T

([
1
0

])
=

[
1
2

]
T

([
0
1

])
=

[
2
−1

]
Thus, the matrix representation of T with respect to S is

[T ]S
′

S =

[
1 2
2 −1

]
Example 25.3
Let T : R3 → R3 be defined by the formula

T

 x
y
z

 =

 3x+ y
x+ z
x− z

 .
Let and S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and S ′ = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}.
Find the matrix representation of T relative to S and S ′.



25. MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION195

Solution.
We have the following computation

[T (1, 0, 0)]S′ =T

 1
0
0


=

 3
1
1


=2(1, 0, 0) + 0(1, 1, 0) + 1(1, 1, 1)

[T (0, 1, 0)]S′ =T

 0
1
0

 =

 1
0
0


=1(1, 0, 0) + 0(1, 1, 0) + 0(1, 1, 1)

[T (0, 0, 1)]S′ =T

 0
0
1

 =

 0
1
−1


=− 1(1, 0, 0) + 2(1, 1, 0)− 1(1, 1, 1).

Thus, the matrix representation of T relative to S and S ′ is

[T ]S
′

S =

 2 1 −1
0 0 2
1 0 −1



Example 25.4
Let T : R2 → R2 be defined by the formula

T

([
x
y

])
=

[
x+ 2y
2x− y

]
.

Let S = {(1, 0), (0, 1)} and S ′ = {(−1, 2), (2, 0)}. Find the matrix represen-
tation of T relative to S and S ′.
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Solution.
We have

T

([
1
0

])
=

[
1
2

]
=

[
−1
2

]
+

[
2
0

]
T

([
0
1

])
=

[
2
−1

]
=− 1

2

[
−1
2

]
+

3

4

[
2
0

]
Thus,

[T ]S
′

S =

[
1 −1

2

1 3
4

]
Matrices of Composition of Linear Transformations
Let V,W, and Z be finite-dimensional vector spaces with ordered bases S, S ′,
and S ′′ respectively. Let T : V → W and U : W → Z be linear transforma-
tions. Then

[UT ]S
′′

S = [U ]S
′′

S′ [T ]S
′

S .

Example 25.5
Let T : R3 → R2 and U : R2 → R4 be defined by T (x, y, z) = (x − y +
2z, 2x+ y − 4z) and U(x, y) = (2x+ 3y, 5x, 4y, 3x− y).
(a) Find the matrix representation of UT relative to the standard bases.
(b) Find a formula for (UT )(x, y, z).

Solution.
Let

S ={(1, 0, 0), (0, 1, 0), (0, 0, 1)},
S ′ ={(1, 0), (0, 1)},
S ′′ ={(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

We have

T (1, 0, 0) =(1, 2)

T (0, 1, 0) =(−1, 1)

T (0, 0, 1) =(2,−4)
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Thus,

[T ]S
′

S =

[
1 −1 2
2 1 −4

]
.

Likewise,

U(1, 0) =(2, 5, 0, 3)

U(0, 1) =(3, 0, 4,−1)

Thus,

[U ]S
′′

S′ =


2 3
5 0
0 4
3 −1

 .
Finally,

[US]S
′′

S =


2 3
5 0
0 −4
3 −1

[ 1 −1 2
2 1 −4

]
=

[
1 −1 2
2 1 −4

]

(b) We have

(UT )(x, y, z) =

[
1 −1 2
2 1 −4

] x
y
z

 =


8x+ y − 8z
5x− 5y + 10z
8x+ 4y − 16z
x− 4y + 10z


Matrices of Inverse Linear Transformations
Let S be an ordered basis of a vector space V and S ′ and ordered basis of
a vector space W. Let T : V → W be an invertible linear transformation.
Then T−1 is a linear transformation from W to V and [T−1]SS′ = ([T ]S

′
S )−1.

Example 25.6
Let T : R3 → R3 be given by

T

 x
y
z

 =

 x+ 2y + 3z
x+ y + 2z
y + 2z

 .
(a) Prove that T is invertible.
(b) Find matrix representation of T relative to the standard basis of R3.
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Solution.
(a) Note that Tx = Ax where

A =

 1 2 3
1 1 2
0 1 2



We must show that T is one-to-one and onto. Let x =

 x1

y1

z1

 ∈ ker(T ).

Then Tx = Ax =

 0
0
0

 . Since |A| = −1 6= 0, A is invertible and therefore

x =

 0
0
0

 . Hence, ker(T ) =


 0

0
0

 . Now since A is invertible the

system Ax = b is always solvable. This shows that R(T ) = R3.
(b) We have

[T ]S = A =

 1 2 3
1 1 2
0 1 2


So that

[T−1]S = A−1 =

 0 1 −1
2 −2 −1
−1 1 1





25. MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION199

Practice Problems

Problem 25.1
Let T : P2 → P1 be the linear transformation Tp = p′. Consider the standard
ordered bases S = {1, x, x2} and S ′ = {1, x}. Find the matrix representation
of T with respect to the basis S and S ′.

Problem 25.2
Let T : R2 → R2 be defined by

T

([
x
y

])
=

[
x
−y

]
Find the matrix representation of T with respect to the standard basis S of
R2.

Problem 25.3
Let T : R2 → R2 be defined by

T

(
x
y

)
=

(
x
−y

)
Let

S ′ = {
(

1
1

)
,

(
−1

1

)
}

and S the standard basis of R2. Find the matrix representation of T with
repspect to the bases S and S ′.

Problem 25.4
Let V be the vector space of continuous functions on R with the ordered basis
S = {sin t, cos t}. Find the matrix representation of the linear transformation
T : V → V defined by T (f) = f ′ with respect to S.

Problem 25.5
Let T : R3 → R3 be the linear transformation whose matrix representation
with the respect to the standard basis of R3 is given by

A =

 1 3 1
1 2 0
0 1 1
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Find

T

 1
2
3


.

Problem 25.6
Consider the linear transformation T : P4(x) → P4(x) defined by T (p) =
p′′ + 3p′, where P4(x) is the vector space of polynomials of degree 4. Find
the matrix representation of T relative to the basis S = {1, x, x2, x3, x4}.

Problem 25.7
Consider the linear transformations S : R2 → R2 and T : R2 → R2 defined
by

S

([
x
y

])
=

[
x+ 2y
3x− y

]
and T

([
x
y

])
=

[
2x+ 4y
−5x+ 7y

]
(a) Find a formula for the composition TS.
(b) Find the matrix representation of TS relative to the standard basis S of
R2.

Problem 25.8
Consider the linear transformation T : P2(x)→ P1(x) defined by T (p) = p′.
Let S = {1, x, x2} be an ordered basis of P2(x) and S ′ = {1, x} be an ordered
basis of P1(x). Find [T ]S

′
S .

Problem 25.9
Let T : R3 → R3 be the linear transformation whose matrix representation
with the respect to the standard basis of R3 is given by

[T ]S =

 1 3 1
1 2 0
0 1 1


Find

T

 1
2
3


.
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Problem 25.10
Let V be a vector space with ordered basis S = {v1, v2, · · · , vn}. Consider
the linear transformation T : V → V defined by

T (vi) = λivi, i = 1, 2, · · · , n.

Find [T ]S.



202 LINEAR TRANSFORMATIONS



Answer Key

Section 1

1.1
(a) Linear (b) Non-linear (c) Non-linear.

1.2
Substituting these values for x1, x2, x3, and x4 in each equation.

2x1 + 5x2 + 9x3 + 3x4 = 2(2s+ 12t+ 13) + 5s+ 9(−s− 3t− 3) + 3t = −1
x1 + 2x2 + 4x3 = (2s+ 12t+ 13) + 2s+ 4(−s− 3t− 3) = 1.

Since both equations are satisfied, it is a solution for all s and t.

1.3
(a) The two lines intersect at the point (3, 4) so the system is consistent.
(b) The two equations represent the same line. Hence, x2 = s is a parameter.
Solving for x1 we find x1 = 5+3t

2
.The system is consistent.

(c) The two lines are parallel. So the given system is inconsistent.

1.4
(a) Non-linear because of the term lnx1.
(b) Linear.

1.5
x1 = 1 + 5w − 3t− 2s, x2 = w, x3 = t, x4 = s.

1.6

203
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(a) 
x1 + x2 + 2x3 = 9
x1 + 2x2 + 2x3 = 4
3x1 + 6x2 − 5x3 = 0.

Note that the first two equations imply 2 = 9 which is impossible.
(b) 

x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0.

Solving for x3 in the third equation, we find x3 = 3
5
x1 + 6

5
x2. Substituting

this into the first two equations we find the system{
11x1 + 17x2 = 45
x1 + 2x2 = 5.

Solving this system by elimination, we find x1 = 1 and x2 = 2. Finally,
x3 = 3.
(c) 

x1 + x2 + 2x3 = 1
2x1 + 2x2 + 4x3 = 2
−3x1 − 3x2 − 6x3 = 3.

The three equations reduce to the single equation x1 + x2 + 2x3 = 1. Letting
x3 = t, x2 = s, we find x1 = 1− s− 2t.

1.7
(a) The system has no solutions if k 6= 6 and h = 9.
(b) The system has a unique solution if h = 9 and any k. In this case,

x2 = k−6
h−9

and x1 = 2− 3(k−6)
h−9

.
(c) The system has infinitely many solutions if h = 9 and k = 6 since in
this case the two equations reduces to the single equation x1 + 3x2 = 2.
All solutions to this equation are given by the parametric equations x1 =
2− 3t, x2 = t.

1.8
(a) True (b) False (c) True (d) False.

1.9
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x− 2y = 5.

1.10
c = a+ b.
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Section 2

2.1
(a) The unique solution is x1 = 3, x2 = 4.
(b) The system is consistent. The general solution is given by the parametric
equations: x1 = 5+3t

2
, x2 = t.

(c) System is inconsistent.

2.2
A = −1

9
, B = −5

9
, and C = 11

9
.

2.3
a = 3, b = −2, and c = 4.

2.4
x1 = −11

2
, x2 = −6, x3 = −5

2
.

2.5
x1 = 1

9
, x2 = 10

9
, x3 = −7

3
.

2.6
Thus x3 = s and x4 = t are parameters. Solving one finds x1 = 1− s+ t and
x2 = 2 + s+ t, x3 = s, x4 = t.

2.7
a = 1, b = 2, c = −1.

2.8
Solving both systems using backward-substitution technique, we find that
both systems have the same solution x1 = 1, x2 = 4, x3 = 3.

2.9
x1 = 2, x2 = 1, x3.

2.10
x1 = 2, x2 = −1, x3 = 1.
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Section 3

3.1
x1 = 2, x2 = −1, x3 = 1.

3.2
−5g + 4h+ k = 0.

3.3
x1 = −11

2
. x2 = −6, x3 = −5

2
.

3.4
x1 = 1

9
, x2 = 10

9
, x3 = −7

3
.

3.5
x1 = −s, x2 = s, x3 = s, and x4 = 0.

3.6
x1 = 9s and x2 = −5s, x3 = s.

3.7
x1 = 3, x2 = 1, x3 = 2.

3.8
Because of the last row the system is inconsistent.

3.9
x1 = 8 + 7s, x2 = 2− 3s, x3 = −5− s, x4 = s.

3.10 
−1 −1 0 0
0 −4 −2 1
0 0 2 3
0 0 0 0

 .
3.11
x1 = 4− 3t, x2 = 5 + 2t, x3 = t, x4 = −2.
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Section 4

4.1 [
1 −2 3 1 −3
0 3 −3 −3 6

]
4.2  1 0 −2 3

0 1 −7 9
0 0 1 − 1


4.3  1 −1 −3 8

0 1 2 −4
0 0 1 −5

2


4.4  1 2 1 0

0 1 1
3

1
3

0 0 1 −7
3


4.5
(a) No, because the matrix fails condition 1 of the definition. Rows of zeros
must be at the bottom of the matrix.
(b) No, because the matrix fails condition 2 of the definition. Leading entry
in row 2 must be 1 and not 2.
(c) Yes. The given matrix satisfies conditions 1 - 4.

4.6 
1 −3 1 −1 0 −1
0 0 1 2 1 2
0 0 0 0 1 −1
0 0 0 0 0 0

 .
4.7
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1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .
4.8 

1 0 3 0 4
0 1 −2 0 5
0 0 0 1 −2
0 0 0 0 0

 .
4.9 

1 1 0 0
0 1 .5 −.25
0 0 1 1.5
0 0 0 0

 .
4.10  1 1 2 8

0 1 −5 −9
0 0 1 2

 .
4.11
(a) 3 (b) 2.
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Section 5

5.1
x1 = 3, x2 = 1, x3 = 2.

5.2
x1 = 8 + 7s, x2 = 2− 3s, and x3 = −5− s.

5.3
The system is inconsistent.

5.4
x1 = 4− 3t, x2 = 5 + 2t, x3 = t, x4 = −2.

5.5
x1 = 1

9
, x2 = 10

9
, x3 = −7

3
.

5.6
x1 = −11

2
, x2 = −6, x3 = −5

2
. 5.7

x1 = 1, x2 = −2, x3 = 1, x4 = 3.

5.8
x1 = 2, x2 = 1, x3 = −1.

5.9
x1 = 2− 2t− 3s, x2 = t, x3 = 2 + s, x4 = s, x5 = −2.

5.10
x1 = 4− 2s− 3t, x2 = s, x3 = −1, x4 = 0, x5 = t.
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Section 6

6.1
x1 = 9s, x2 = −5s, x3 = s.

6.2
x1 = −s, x2 = s, x3 = s, x4 = 0.

6.3
x1 = x2 = x3 = 0.

6.4
Infinitely many solutions: x1 = −8t, x2 = 10t, x3 = t.

6.5
x1 = −s+ 3t, x2 = s, x3 = t.

6.6
x1 = −7

3
t, x2 = −2

3
t, x3 = −13

3
t, x4 = t.

6.7
x1 = 8s+ 7t, x2 = −4s− 3t, x3 = s, x4 = t.



212 ANSWER KEY

Section 7

7.1[
4 −1
−1 −6

]
7.2
w = −1, x = −3, y = 0, and z = 5.

7.3
s = 0 and t = 3.

7.4
We have

a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
=[

a 0
0 0

]
+

[
0 b
0 0

]
+

[
0 0
c 0

]
+

[
0 0
0 d

]
=[

a b
c d

]
= A

7.5
A simple arithmetic yields the matrix

rA+ sB + tC =
[
r + 3t r + s −r + 2s+ t

]
The condition rA+ sB + tC = 0 yields the system

r + 3t = 0
r + s = 0
−r + 2s + t = 0

The augmented matrix is  1 0 3 0
1 1 0 0
−1 2 1 0


Step 1: r2 ← r2 − r1 and r3 ← r3 + r1 1 0 3 0

0 1 −3 0
0 2 4 0
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Step 2: r3 ← r3 − 2r2  1 0 3 0
0 1 −3 0
0 0 10 0


Solving the corresponding system we find r = s = t = 0

7.6 [
9 5 1
−4 7 6

]
7.7
The transpose of A is equal to A.

7.8
AT = 0A so the matrix is skew-symmetric.

7.9
4tr(7A) = 0.

7.10
tr(AT − 2B) = 8.
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Section 8

8.1 
2x1 − x2 = −1
−3x1 + 2x2 + x3 = 0

x2 + x3 = 3

8.2
(a) If A is the coefficient matrix and B is the augmented matrix then

A =

 2 3 −4 1
−2 0 1 0

3 2 0 −4

 , B =

 2 3 −4 1 5
−2 0 1 0 7

3 2 0 −4 3


(b) The given system can be written in matrix form as follows 2 3 −4 1

−2 0 1 0
3 2 0 −4

 x1

x2

x3

 =

 0
8
−9


8.3
AAT is always defined.

8.4
(a) Easy calculation shows that A2 = A.
(b) Suppose that A2 = A then (In−A)2 = In−2A+A2 = In−2A+A = In−A.

8.5
We have

(AB)2 =

[
100 −432
0 289

]
and

A2B2 =

[
160 −460
−5 195

]
8.6
AB = BA if and only if (AB)T = (BA)T if and only if BTAT = ATBT .

8.7
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AB is symmetric if and only if (AB)T = AB if and only if BTAT = AB if
and only if AB = BA.

8.8 [
1 1
1 1

]
,

[
−1 −1
−1 −1

]
8.9
k = −1.

8.10 
3x1 − x2 + 2x3 = 2
4x1 + 3x2 + 7x3 = −1
−2x1 + x2 + 5x3 = 4.
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Section 9

9.1
(a)

A =

[
1 0
0 0

]
, B =

[
0 0
0 1

]
(b)

A =

[
1 0
0 1

]
, B =

[
−1 0
0 −1

]
.

9.2
If B is a 3× 3 matrix such that BA = I3 then

b31(0) + b32(0) + b33(0) = 0

But this is equal to the (3, 3) entry of I3 which is 1. A contradiction.

9.3[
41 −30
−15 11

]
9.4[

5
13

1
13

− 3
13

2
13

]
.

9.5
If A is invertible then B = InB = (A−1A)B = A−1(AB) = A−10 = 0.

9.6

A−1 =

[
sin θ − cos θ
cos θ sin θ

]
.

9.7

A =

[
− 9

13
1
13

2
13

− 6
13

]
.

9.8

(5AT )−1 = − 1
25

[
10 −25
5 −15

]
.

9.9
We have
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A(A− 3In) = In and (A− 3In)A = In.

Hence, A is invertible with A−1 = A− 3In.

9.10
B−1.
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Section 10

10.1
(a) No. This matrix is obtained by performing two operations: r2 ↔ r3 and
r1 ← r1 + r3.
(b) Yes: r2 ← r2 − 5r1.
(c) Yes: r2 ← r2 + 9r3.
(d) No: r1 ← 2r1 and r1 ← r1 + 2r4.

10.2
(a) 

1 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 1


(b) 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 3 1


(c) 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


10.3
(a) r1 ↔ r3, E

−1 = E.
(b) r2 ← r2 − 2r1  1 0 0

2 1 0
0 0 1


(c) r3 ← 5r3  1 0 0

0 1 0
0 0 1

5

 .



219

10.4
(a)

E1 =

 0 0 1
0 1 0
1 0 0


(b) E2 = E1.
(c)

E3 =

 1 0 0
0 1 0
−2 0 1


(d)

E4 =

 1 0 0
0 1 0
2 0 1

 .
10.5  0 0 1

0 1 0
1 0 0

 .
10.6
r2 ← 1

2
r2, r1 ← −r2 + r1, r2 ↔ r3.

10.7 a 0 0
0 1 0
0 0 1

 ,
 1 0 0

0 a 0
0 0 1

 ,
 1 0 0

0 0 1
0 0 a

 .
10.8 1 a 0

0 1 0
0 0 1

 ,
 1 0 a

0 1 0
0 0 1

 ,
 1 0 0
a 1 0
0 0 1

 ,
 1 0 0

0 1 a
0 0 1

 ,
 1 0 0

0 1 0
a 0 1

 ,
 1 0 0

0 1 0
0 a 1

 .
10.9
(a) E−1

1 = E1.
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(b)

E−1
2 =

 1
3

0 0
0 1 0
0 0 1


(c)

E−1
3 =

 1 0 −0
2 1 0
0 0 1


10.10 0 5 −3
−4 3 0
3 0 2

 .
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Section 11

11.1
The matrix is singular.

11.2
a = −1 or a = 3.

11.3

A−1 =

 13
8
−1

2
−1

8

−15
8

1
2

3
8

5
4

0 −1
4

 .
11.4
Let A be an invertible and symmetric n×n matrix. Then (A−1)T = (AT )−1 =
A−1. That is, A−1 is symmetric.

11.5
According to Example 9.5(a), we have

D−1 =

 1
4

0 0
0 −1

2
0

0 0 1
3

 .
11.6
Suppose first that A is nonsingular. Then by Theorem 11.1, A is row equiva-
lent to In. That is, there exist elementary matrices E1, E2, · · · , Ek such that
In = EkEk−1 · · ·E1A. Then A = E−1

1 E−1
2 · · ·E−1

k . But each E−1
i is an ele-

mentary matrix by Theorem 10.2.
Conversely, suppose that A = E1E2 · · ·Ek. Then (E1E2 · · ·Ek)−1A = In.
That is, A is nonsingular.

11.7
Suppose that A ∼ B. Then there exist elementary matrices E1, E2, · · · , Ek
such that B = EkEk−1 · · ·E1A. Let P = EkEk−1 · · ·E1. Then by Theorem
10.2 and Theorem 9.2 (a), P is nonsingular.
Conversely, suppose that B = PA, for some nonsingular matrix P. By The-
orem 11.1, P is row equivalent to In. That is, In = EkEk−1 · · ·E1P. Thus,
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B = E−1
1 E−1

2 · · ·E−1
k A and this implies that A is row equivalent to B.

11.8
Suppose that A is row equivalent to B. Then by the previous exercise,
B = PA, with P nonsingular. If A is nonsingular then by Theorem 9.2
(a), B is nonsingular. Conversely, if B is nonsingular then A = P−1B is
nonsingular.

11.9

A−1 =

[ 1
a11

0

− a21

a11a22

1
a22

]
.

11.10
Since Ax = 0 has only the trivial solution, A is invertible. By induction on k
and Theorem 9.2(a), Ak is invertible and consequently the system Akx = 0
has only the trivial solution by Theorem 11.1.

11.11
Since A is invertible, by Theorem 11.1, A is row equivalent to In. That is,
there exist elementary matrices E1, E2, · · · , Ek such that In = EkEk−1 · · ·E1A.
Similarly, there exist elementary matrices F1, F2, · · · , Fl such that In =
FlFl−1 · · ·F1B. Hence, A = E−1

1 E−1
2 · · ·E−1

k FlFl−1 · · ·F1B. That is, A is row
equivalent to B.
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Section 12

12.1
(a) |A| = 22 (b) |A| = 0.

12.2
t = 0, t = 1, or t = 4.

12.3
x1 = 3−

√
33

4
and x2 = 3+

√
33

4
.

12.4
|A| = 0.

12.5
M23 = −96, C23 = 96.

12.6
λ = ±1.

12.7
(a) −123 (b) −123.

12.8
−240

12.9
|A| = 6.

12.10
|A| = 1.

12.11
(a) λ = 3 or λ = 2 (b) λ = 2 or λ = 6.
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Section 13

13.1
|A| = −4.

13.2
(a) ∣∣∣∣∣∣

d e f
g h i
a b c

∣∣∣∣∣∣ = −6

(b) ∣∣∣∣∣∣
3a 3b 3c
−d −e −f
4g 4h 4i

∣∣∣∣∣∣ = 72

(c) ∣∣∣∣∣∣
a+ g b+ h c+ i
d e f
g h i

∣∣∣∣∣∣ = −6

(d) ∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 18

13.3
The determinant is 0 since the first and the fifth rows are proportional.

13.4
|A| = 3

4
.

13.5
The determinant is −5.

13.6
The determinant is −1.

13.7
The determinant is 1.
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13.8
The determinant is 6.

13.9
(b− c)(c− a)(a− b).

13.10
The determinant is 0.
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Section 14

14.1
The proof is by induction on n ≥ 1. The equality is valid for n = 1. Suppose
that it is valid up to n. Then |An+1| = |AnA| = |An||A| = |A|n|A| = |A|n+1.

14.2
Since A is skew-symmetric, AT = −A. Taking the determinant of both sides
we find |A| = |AT | = | − A| = (−1)n|A| = −|A| since n is odd. Thus,
2|A| = 0 and therefore |A| = 0.

14.3
Taking the determinant of both sides of the equality ATA = In to obtain
|AT ||A| = 1 or |A|2 = 1 since |AT | = |A|. It follows that |A| = ±1.

14.4
Taking the determinant of both sides to obtain |A2| = |A| or |A|(|A|−1) = 0.
Hence, either A is singular or |A| = 1.

14.5
The coefficient matrix

A =

 1 −2 1
2 3 1
3 1 2


has determinant |A| = 0. By Theorem 14.2, the system has a nontrivial so-
lution.

14.6
Finding the determinant we get |A| = 2(c + 2)(c− 3). The determinant is 0
if c = −2 or c = 3.

14.7
|A3B−1ATB2| = |A|3|B|−1|A||B|2 = |A|4|B| = 80.

14.8
We have |AB| = |A||B| = |B||A| = |BA|.

14.9
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We have |A+BT | = |(A+BT )T | = |AT +B|.

14.10
Let A = (aij) be a triangular matrix. By Theorem 14.2, A is nonsingular if
and only if |A| 6= 0 and this is equivalent to a11a22 · · · ann 6= 0.
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Section 15

15.1

(a) adj(A) =

 −18 17 −6
− 6 −10 −2
−10 − 1 28

 . (b) |A| = 94.

15.2
Suppose first that A is invertible. Then adj(A) = A−1|A| so that |adj(A)| =
||A|A−1| = |A|n|A−1| = |A|n

|A| = |A|n−1. If A is singular then adj(A) is
singular. To see this, suppose there exists a square matrix B such that
Badj(A) = adj(A)B = In. Then A = AIn = A(adj(A)B) = (Aadj(A))B = 0
and this leads to adj(A) = 0 a contradiction to the fact that adj(A) is non-
singular. Thus, adj(A) is singular and consequently |adj(A)| = 0 = |A|n−1.

15.3

adj(A) = |A|A−1 =

 −1
7

0 − 1
21

0 − 2
21
−1

7

−1
7
− 1

21
1
21

 .
15.4
|A−1 + adj(A)| = 3n

2
.

15.5
The equality is valid for α = 0. So suppose that α 6= 0. Then adj(αA) =
|αA|(αA)−1 = (α)n|A| 1

α
A−1 = (α)n−1|A|A−1 = (α)n−1adj(A).

15.6
(a) |A| = 1(21− 20)− 2(14− 4) + 3(10− 3) = 2.
(b) The matrix of cofactors of A is 1 −10 7

1 4 −3
−1 2 −1


The adjoint is the transpose of this cofactors matrix

adj(A) =

 1 1 −1
−10 4 2

7 −3 −1
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(c)

A−1 =
adj(A)

|A|
=

 1
2

1
2
−1

2

−5 2 1
7
2
−3

2
−1

2


15.7
Suppose thatAT = A. Then (adj(A))T = (|A|A−1)T = |A|(A−1)T = |A|(AT )−1 =
|A|A−1 = adj(A).

15.8
Suppose that A = (aij) is a lower triangular invertible matrix. Then aij = 0
if i < j. Thus, Cij = 0 if i > j since in this case Cij is the determinant
of a lower triangular matrix with at least one zero on the diagonal. Hence,
adj(A) is lower triangular.

15.9
Suppose that A is a lower trinagular invertible matrix. Then adj(A) is also

a lower triangular matrix. Hence, A−1 = adj(A)
|A| is a lower triangular matrix.

15.10
(a) If A has integer entries then adj(A) has integer entries. If |A| = 1 then
A−1 = adj(A) has integer entries.
(b) Since |A| = 1, A is invertible and x = A−1b. By (a), A−1 has integer
entries. Since b has integer entries, A−1b has integer entries.
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Section 16

16.1
x1 = |A1|

|A| = −10
11
, x2 = |A2|

|A| = 18
11
, x3 = |A3|

|A| = 38
11
.

16.2
x1 = |A1|

|A| = −3
4
, x2 = |A2|

|A| = 83
8
, x3 = |A3|

|A| = 21
8
.

16.3
x1 = |A1|

|A| = −1, x2 = |A2|
|A| = 3, x3 = |A3|

|A| = 2.

16.4
x1 = |A1|

|A| = 212
187
, x2 = |A2|

|A| = 273
187
, x3 = |A3|

|A| = 107
187
.

16.5
x1 = |A1|

|A| = 4, x2 = |A2|
|A| = −1, x3 = |A3|

|A| = −1
3
.

16.6
x1 = |A1|

|A| = 2, x2 = |A2|
|A| = −1, x3 = |A3|

|A| = 4.

16.7
x1 = |A1|

|A| = 2, x2 = |A2|
|A| = −1, x3 = |A3|

|A| = 3.

16.8
x1 = |A1|

|A| = 4, x2 = |A2|
|A| = 1, x3 = |A3|

|A| = −2.

16.9
x1 = |A1|

|A| = 5, x2 = |A2|
|A| = 2, x3 = |A3|

|A| = 2.

16.10
x1 = |A1|

|A| = 1, x2 = |A2|
|A| = 4, x3 = |A3|

|A| = 3.
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Section 17

17.1
We know from calculus that if f, g are differentiable functions on [a, b] and
α ∈ R then αf+g is also differentiable on [a, b]. Hence, D([a, b]) is a subspace
of F ([a, b].

17.2
Let x, y ∈ S and α ∈ R. Then A(αx + y) = αAx + Ay = α × 0 + 0 = 0.
Thus, αx+ y ∈ S so that S is a subspace of Rn.

17.3
Since P is a subset of the vector space of all functions defined on R, it suf-
fices to show that P is a subspace. Indeed, the sum of two polynomials is
again a polynomial and the scalar multiplication by a polynomial is also a
polynomial.

17.4
The proof is based on the properties of the vector space R.
(a) (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g+ f)(x) where we have used
the fact that the addition of real numbers is commutative.
(b) [(f + g) + h](x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x) = f(x) +
(g(x) + h(x)) = f(x) + (g + h)(x) = [f + (g + h)](x).
(c) Let 0 be the zero function. Then for any f ∈ F (R) we have (f + 0)(x) =
f(x) + 0(x) = f(x) = (0 + f)(x).
(d) [f + (−f)](x) = f(x) + (−f(x)) = f(x)− f(x) = 0 = 0(x).
(e) [α(f + g)](x) = α(f + g)(x) = αf(x) + αg(x) = (αf + αg)(x).
(f) [(α + β)f ](x) = (α + β)f(x) = αf(x) + βf(x) = (αf + βf)(x).
(g) [α(βf)](x) = α(βf)(x) = (αβ)f(x) = [(αβ)f ](x)
(h)(1f)(x) = 1f(x) = f(x).
Thus, F (R) is a vector space.

17.5
Let x 6= y. Then α(β(x, y)) = α(βy, βx) = (αβx, αβy) 6= (αβ)(x, y). Thus,
R2 with the above operations is not a vector space.

17.6
Let p, q ∈ U and α ∈ R. Then αp+ q is a polynomial such that (αp+ q)(3) =
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αp(3) + q(3) = 0. That is, αp+ q ∈ U. This says that U is a subspace of P.

17.7
Let p(x) = a0 + a1x + · · · + anx

n, q(x) = b0 + b1x + · · · + bnx
n, and α ∈ R.

Then (αp + q)(x)(αa0b0) + (αa1b1)x + · · · + (αanbn)xn ∈ Pn. Thus, Pn is a
subspace of P.

17.8
(−1, 0) ∈ S but −2(−1, 0) = (2, 0) 6∈ S so S is not a vector space.

17.9
Since for any continuous functions f and g and any scalar α the function
αf + g is continuous, C([a, b]) is a subspace of F ([a, b]) and hence a vector
space.

17.10
Indeed, α(a, b, a+ b) + (a′, b′, a′+ b′) = (α(a+a′), α(b+ b′), α(a+ b+a′+ b′)).

17.11
Using the properties of vector spaces we have v = v + 0 = v + (u+ (−u)) =
(v + u) + (−u) = (w + u) + (−u) = w + (u+ (−u)) = w + 0 = w.

17.12
(a) Let u, v ∈ H ∩K and α ∈ R. Then u, v ∈ H and u, v ∈ K. Since H and
K are subspaces, αu+ v ∈ H and αu+ v ∈ K that is αu+ v ∈ H ∩K. This
shows that H ∩K is a subspace.
(b) One can easily check that H = {(x, 0) : x ∈ R} and K = {(0, y) : y ∈ R}
are subspaces of R2. The vector (1, 0) belongs to H and the vector (0, 1)
belongs to K. But (1, 0) + (0, 1) = (1, 1) 6∈ H ∪K. It follows that H ∪K is
not a subspace of R2.
(c) If H ⊂ K then H ∪K = K, a subspace of V. Similarly, if K ⊂ H then
H ∪K = H, again a subspace of V.
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Section 18

18.1
Let U be a subspace of V containing the vectors v1, v2, · · · , vn. Let x ∈ W.
Then x = α1v1 + α2v2 + · · · + αnvn for some scalars α1, α2, · · · , αn. Since U
is a subspace, x ∈ U . This gives x ∈ U and consequently W ⊂ U.

18.2
Indeed, 3p1(x)− p2(x) + 2p3(x) = 0.

18.3
The equation ~u = α~v1 + β ~v2 + γ ~v3 gives the system

2α + β + 3γ = −9
α − β + 2γ = −7
4α + 3β + 5γ = −15

Solving this system (details omitted) we find α = −2, β = 1 and γ = −2.

18.4
(a) Indeed, this follows because the coefficient matrix

A =

 2 2 2
0 0 3
0 1 1


of the system Ax = b is invertible for all b ∈ R3 ( |A| = −6).
(b) This follows from the fact that the coefficient matrix with rows the vec-
tors ~v1, ~v2, and ~v3 is singular.

18.5

Indeed, every

[
a b
c d

]
can be written as

a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
}.

18.6
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Suppose that α1 ~v1 + α2 ~v2 + α3 ~v3 = ~0. This leads to the system
2α1 + α2 + 7α3 = 0
−α1 + 2α2 − α3 = 0

5α2 + 5α3 = 0
3α1 − α2 + 8α3 = 0

The augmented matrix of this system is 2 −1 0 3 0
1 2 5 −1 0
7 −1 5 8 0


The reduction of this matrix to row-echelon form is carried out as follows.

Step 1: r1 ← r1 − 2r2 and r3 ← r3 − 7r2 0 − 5 −10 6 0
1 2 5 −1 0
0 −15 −30 15 0


Step 2: r1 ↔ r2  1 2 5 −1 0

0 − 5 −10 6 0
0 −15 −30 15 0


Step 2: r3 ← r3 − 3r2  1 2 5 −1 0

0 −5 −10 6 0
0 0 0 −3 0


The system has a nontrivial solution so that {~v1, ~v2, ~v3} is linearly dependent.

18.7
Suppose that α(4,−1, 2) + β(−4, 10, 2) = (0, 0, 0) this leads to the system

4α1 − 4α2 = 0
−α1 + 10α2 = 0
2α2 + 2α2 = 0
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This system has only the trivial solution so that the given vectors are linearly
independent.

18.8
Suppose that {u, v} is linearly dependent. Then there exist scalars α and β
not both zero such that αu + βv = 0. If α 6= 0 then u = −β

α
v, i.e. u is a

scalar multiple of v. A similar argument if β 6= 0.
Conversely, suppose that u = λv then 1u+(−λ)v = 0. This shows that {u, v}
is linearly dependent.

18.9
Suppose that αf(x) + βg(x) + γh(x) = 0 for all x ∈ R. Then this leads to
the system  f(x) g(x) h(x)

f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

 α
β
γ


Thus {f(x), g(x), h(x)} is linearly independent if and only if the coefficient
matrix of the above system is invertible and this is equivalent to w(x) 6= 0.

18.10
Indeed,

w(x) =

∣∣∣∣∣∣
ex xex x2ex

ex ex + xex 2xex + x2ex

ex 2ex + xex 2ex + 4xex + x2ex

∣∣∣∣∣∣ = 2ex 6= 0.

18.11
We have already shown that

M22 = span

{
M1 =

[
1 0
0 0

]
,M2 =

[
0 1
0 0

]
,M3 =

[
0 0
1 0

]
,M4

[
0 0
0 1

]}
Now, if α1M1 + α2M2 + α3M3 + α4M4 = 0 then[

α1 α2

α3 α4

]
=

[
0 0
0 0

]
and this shows that α1 = α2 = α3 = α4 = 0. Hence, {M1,M2,M3,M4} is a
basis for M22.



236 ANSWER KEY

Section 19

19.1
λ = −3 and λ = 1.

19.2
λ = 3 and λ = −1.

19.3
λ = 3 and λ = −1.

19.4
λ = −8.

19.5
Let x be an eigenvector of A corresponding to the nonzero eigenvalue λ. Then
Ax = λx. Multiplying both sides of this equality by A−1 and then dividing
the resulting equality by λ to obtain A−1x = 1

λ
x. That is, x is an eigenvector

of A−1 corresponding to the eigenvalue 1
λ
.

19.6
Let x be an eigenvector of A corresponding to the eigenvalue λ. Then Ax =
λx. Multiplying both sides by A to obtain A2x = λAx = λ2x. Now, multi-
plying this equality by A to obtain A3x = λ3x. Continuing in this manner,
we find Amx = λmx.

19.7
Suppose that D = P−1AP. Then D2 = (P−1AP )(P−1AP ) = P−1AP 2. Thus,
by induction on k one finds that Dk = P−1AkP.

19.8
The characteristic equation of In is (λ − 1)n = 0. Hence, λ = 1 is the only
eigenvalue of In.

19.9
(a) If λ is an eigenvalue of A then there is a nozero vector x such that
Ax = λx. By Exercise 19.6, λk is an eigenvalue of Ak and Akx = λkx. But
Ak = 0 so λkx = 0 and since x 6= 0 we must have λ = 0.
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(b) Since p(λ) is of degree n and 0 is the only eigenvalue of A, then p(λ) = λn.

19.10
Since λ is an eigenvalue of A with corresponding eigenvector x, we have
Ax = λx. Postmultiply B by P−1 to obtain BP−1 = P−1A. Hence, BP−1x =
P−1Ax = λP−1x. This says that λ is an eigenvalue of B with corresponding
eigenvector P−1x.

19.11
The characteristic polynomial is of degree n. The Fundamental Theorem of
Algebra asserts that such a polynomial has exactly n roots. A root in this
case can be either a complex number or a real number. But if a root is
complex then its conjugate is also a root. Since n is odd then there must be
at least one real root.

19.12
The characterisitc polynomial of A is

p(λ) =

∣∣∣∣∣∣∣∣
λ −1 0 0
0 λ −1 0
0 0 λ −1
a0 a1 a2 λ+ a3

∣∣∣∣∣∣∣∣
Expanding this determinant along the first row we find

p(λ) = λ

∣∣∣∣∣∣
λ −1 0
0 λ −1
a1 a2 λ+ a3

∣∣∣∣∣∣+

∣∣∣∣∣∣
0 −1 0
0 λ −1
a0 a2 λ+ a3

∣∣∣∣∣∣
= λ[λ(λ2 + a3λ+ a2) + a1] + a0

= λ4 + a3λ
3 + a2λ

2 + a1λ+ a0
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Section 20

20.1

V −3 =


 −2t− s

s
t

 : s, t ∈ R

 = span


 −2

0
1

 ,
 −1

1
0


20.2

V 3 =

{[
1
2
s
s

]
: s ∈ R

}
= span

{[
1
2

1

]}
and

V −1 =

{[
0
s

]
: s ∈ R

}
= span

{[
0
1

]}
.

20.3

V 3 =


 −5s
−6s
s

 : s ∈ R

 = span


 −5
−6
1


and

V −1 =


 −s2s

s

 : s ∈ R

 = span


 −1

2
1

 .

20.4

V −8 =


 −1

6
s

−1
6
s

s

 : s ∈ R

 = span


 −1

6

−1
6

1

 .

20.5

V 1 =


 s
s
s

 : s ∈ R

 = span


 1

1
1

 .

V 2 =


 2

3
s
s
s

 : s ∈ R

 = span


 2

3

1
1

 .
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and

V 3 =


 1

4
s

3
4
s
s

 : s ∈ R

 = span


 1

4
3
4

1

 .

20.6
The eigenspace corresponding to λ = 1 is

V 1 =


 −2s

s
s

 : s ∈ R

 = span


 −2

1
1

 .

and

V 2 =


 −st

s

 : s, t ∈ R

 = span


 −1

0
1

 ,
 0

1
0

 .

20.7

V 1 =


 s
−s
s

 : s ∈ R

 = span


 1
−1
1

 .

and

V −2 =


 −ss

0

 : s ∈ R

 = span


 −1

1
0

 .

20.8

V 1 =



−s
s
−s
s

 : s ∈ R

 = span



−1
1
−1
1


 .

V −1 =




s
−s
s
0

 : s ∈ R

 = span




1
−1
1
0


 .
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V 2 =



−s
0
−s
s

 : s ∈ R

 = span



−1
0
−1
1


 .

and

V −2 =




0
−s
s
0

 : s ∈ R

 = span




0
−1
1
0


 .

20.9
Algebraic multiplicity of λ = 1 is equal to the geometric multiplicity of 1.

20.10
The matrix is non-defective.
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Section 21

21.1
(a) Suppose that A ∼ B and let P be an invertible matrix such that B =
P−1AP. Taking the transpose of both sides we obtain BT = (P T )−1ATP T ;
that is, AT ∼ BT .
(b) Suppose that A and B are invertible and B = P−1AP. Taking the inverse
of both sides we obtain B−1 = P−1A−1P. Hence A−1 ∼ B−1.

21.2
Suppose that A is an n× n invertible matrix. Then BA = A−1(AB)A. That
is AB ∼ BA.

21.3
The eigenvalues of A are λ = 4, λ = 2 +

√
3 and λ = 2 −

√
3. Hence, by

Theorem 21.2 A is diagonalizable.

21.4
The eigenspaces of A are

V −1 =


 −s2s

s

 : s ∈ R

 = span


 −1

2
1


and

V 3 =


 −5s
−6s
s

 : s ∈ R

 = span


 −5
−6
1


Since there are only two eigenvectors, A A is not diagonalizable.

21.5
The characteristic equation of the matrix A is∣∣∣∣ λ− 3 0

0 λ− 3

∣∣∣∣ = 0

Expanding the determinant and simplifying we obtain

(λ− 3)2 = 0.
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The only eigenvalue of A is λ = 3. By letting P = In and D = A we see that
D = P−1AP, i.e. A is diagonalizable.

21.6
Suppose that A is diagonalizable. Then there exist matrices P and D such
that D = P−1AP, with D diagonal. Taking the transpose of both sides to
obtain D = DT = P TAT (P−1)T = Q−1ATQ with Q = (P−1)T = (P T )−1.
Hence, AT is diagonalizable. Similar argument for the converse.

21.7
Suppose that A ∼ B. Then there exists an invertible matrix P such that
B = P−1AP. Suppose first that A is diagonalizable. Then there exist
an invertible matrix Q and a diagonal matrix D such that D = Q−1AQ.
Hence, B = P−1QDQ−1 and this implies D = (P−1Q)−1B(P−1Q). That
is, B is diagonalizable. For the converse, repeat the same argument using
A = (P−1)−1BP−1.

21.8
Consider the matrices

A =

[
2 1
0 −1

]
, B =

[
−1 0
0 2

]
The matrix A has the eigenvalues λ = 2 and λ = −1 so by Theorem 21.2, A
is diagonalizable. Similar argument for the matrix B. Let C = A+B then

C =

[
1 1
0 1

]
This matrix has only one eigenvalue λ = 1 with corresponding eigenspace
(details omitted)

V 1 = span

{[
1
0

]}
.

Hence, there is only one eigenvector of C and by Theorem 21.1, C is not
diagonalizable.

21.9
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P =

 1 0 1
0 1 1
0 1 0

 and D =

 1 0 0
0 1 0
0 0 2


21.10

P =


−1 1 −1 0
1 −1 0 −1
−1 1 −1 1
1 0 1 0

 and D =


1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 −2

 .
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Section 23

23.1
Given [x1, y1]

T and [x2, y2]
T is R2 and α ∈ R we find

TE

([
x1

y1

]
+

[
x2

y2

])
=TE

([
x1 + x2

y1 + y2

])
=

[
y1 + y2

x1 + x2

]
=

[
y1

x1

]
+

[
y2

x2

]
= TE

([
x1

y1

])
+ TE

([
x2

y2

])
and

TE

(
α

[
x
y

])
=TE

([
αxx
αy

])
=

[
αy
αx

]
=α

[
y
x

]
= αTE

([
x
y

])
Hence, TE is linear.

23.2
Given [x1, y1]

T and [x2, y2]
T is R2 and β ∈ R we find

TF

([
x1

y1

]
+

[
x2

y2

])
=TF

([
x1 + x2

y1 + y2

])
=

[
α(x1 + x2)
y1 + y2

]
=

[
αx1

y1

]
+

[
αx2

y2

]
=TF

([
x1

y1

])
+ TF

([
x2

y2

])
and

TF

(
β

[
x
y

])
=TF

([
βx
βy

])
=

[
βαx
βy

]
= β

[
αx
y

]
= βTF

([
x
y

])
Hence, TF is linear.
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23.3
Given [x1, y1]

T and [x2, y2]
T is R2 and α ∈ R we find

TG

([
x1

y1

]
+

[
x2

y2

])
=TF

([
x1 + x2

y1 + y2

])

=

[
x1 + x2 + y1 + y2

y1 + y2

]
=

[
x1 + y1

y1

]
+

[
x2 + y2

y2

]
=TG

([
x1

y1

])
+ TG

([
x2

y2

])
and

TG

(
α

[
x
y

])
=TG

([
αx
αy

])
=

[
α(x+ y)
αy

]
= α

[
x+ y
y

]
= αTG

([
x
y

])
Hence, TG is linear.

23.4
Let [x1, y1]

T , [x2, y2]
T ∈ R2 and α ∈ R. Then

T

(
α

[
x1

y1

]
+

[
x1

y1

])
=T

([
αx1 + x2

αy1 + y2

])

=

 αx1 + x2 + αy1 + y2

αx1 + x2 − 2αy1 − 2y2

3αx1 + 3x2


=α

 x1 + y1

x1 − 2y1

3x1

+

 x2 + y2

x2 − 2y2

3x2


=αT

([
x1

y1

])
+ T

([
x2

y2

])
Hence, T is a linear transformation.

23.5
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(a) Let p, q ∈ Pn and α ∈ R then

D[αp(x) + q(x)] =(αp(x) + q(x))′

=αp′(x) + q′(x) = αD[p(x)] +D[q(x)]

Thus, D is a linear transformation.
(b) Let p, q ∈ Pn and α ∈ R then

I[αp(x) + q(x)] =

∫ x

0

(αp(t) + q(t))dt

=α

∫ x

0

p(t)dt+

∫ x

0

q(t)dt = αI[p(x)] + I[q(x)]

Hence, I is a linear transformation.

23.6

Suppose that

 −1
1
0

 = α

 3
−1
2

+ β

 1
0
1

 . This leads to a linear system

in the unknowns α and β. Solving this system we find α = −1 and β = 2.
Since T is linear, we have

T

 −1
1
0

 = −T

 3
−1
2

+ 2T

 1
0
1

 = −5 + 4 = −1.

23.7
Let [x1, y1, z1]

T ∈ R3, [x2, y2, z2]
T ∈ R3 and α ∈ R. Then

T

α
 x1

y1

z1

+

 x2

y2

z2

 =T

 αx1 + y1

αx2 + y2

αz1 + z2


=

[
αx1 + x2

αy1 + y2

]
= α

[
x1

y1

]
+

[
x2

y2

]

=αT

α
 x1

y1

z1

+ T

α
 x2

y2

z2


Hence, T is a linear transformation.
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23.8
Since |A+B| 6= |A|+ |B| in general, the given transformation is not linear.

23.9
Let u1, u1 ∈ U and α ∈ R. Then

(T2 ◦ T1)(αu1 + u2) =T2(T1(αu1 + u2))

=T2(αT1(u1) + T1(u2))

=αT2(T1(u1)) + T2(T1(u2))

=α(T2 ◦ T1)(u1) + (T2 ◦ T1)(u2).

23.10
Consider the system in the unknowns T (v) and T (v1){

T (v) − 3T (v1) = w
2T (v) − 2T (v1) = w1

Solving this system to find T (v) = 1
5
(3w1 − w) and T (v1) = 1

5
(w1 − 2w).
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Section 24

24.1
We first show that T is linear. Indeed, let X, Y ∈ Mmn and α ∈ R. Then
T (αX+Y ) = A(αX+Y ) = αAX+AY = αT (X)+T (Y ). Thus, T is linear.
Next, we show that T is one-one. Let X ∈ ker(T ). Then AX = 0. Since A
is invertible, X = 0. This shows that ker(T ) = {0} and thus T is one-one.
Finally, we show that T is onto. Indeed, if B ∈ R(T ) then T (A−1B) = B.
This shows that T is onto.

24.2
Suppose that α1v1 + α2v2 + · · · + αnvn = 0. Then α1T (v1) + α2T (v2) +
· · ·+ αnT (vn) = T (0) = 0. Since the vectors T (v1), T (v2), · · · , T (vn) are lin-
early independent, α1 = α2 = · · · = αn = 0. This shows that the vectors
v1, v2, · · · , vn are linearly independent.

24.3

Since

 0
0
1

 ∈ ker(T ), by Theorem 21.2, T is not one-one.

24.4
(a) Let A,B ∈Mnn and α ∈ R. Then T (αA+B) = (αA+B− (αA+B)T =
α(A− AT ) + (B −BT ) = αT (A) + T (B). Thus, T is linear.
(b) Let A ∈ ker(T ). Then T (A) = 0. That is AT = A. This shows that A
is symmetric. Conversely, if A is symmetric then T (A) = 0. It hollows
that ker(T ) = {A ∈ Mnn : A is symmetric}. Now, if B ∈ R(T ) and
A is such that T (A) = B then A − AT = B. But then AT − A = BT .
Hence, BT = −B,i.e. B is skew-symmetric. Conversely, if B is skew-
symmetric then B ∈ R(T ) since T (1

2
B) = 1

2
(B − BT ) = B. We conclude

that R(T ) = {B ∈Mnn : B is skew − symmetric}.

24.5
Suppose that T is one-one. Then ker(T ) = {0} and therefore dim(ker(T )) =
0. By Theorem 24.4, dim(R(T )) = dimV. The converse is similar .

24.6
If A ∈ ker(T ) then T (A) = 0 = AT . This implies that A = 0 and conse-
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quently ker(T ) = {0}. So T is one-one. Now suppose that A ∈ Mmn. Then
T (AT ) = A and AT ∈ Mnn. This shows that T is onto. It follows that T is
an isomorphism.

24.7

Let

[
x
y

]
∈ Ker(T ). Then

T

([
x
y

])
=

 x+ y
x+ 2y
y

 =

 0
0
0

 .
This implies that x = y = 0 so that T is one-to-one.

24.8

ker(T ) = span


 1
−2
1

 .

24.9

Let X =

[
x y
z w

]
∈ ker(T ). This leads to the system


3y − 2x = 0

2x + 3y − 3w = 0
−3x − 3z + 3w = 0

− 3y + 2z = 0.

Solving, we find

X =

[
−z + w 2

3
z

z w

]
= z

[
−1 2

3

1 0

]
+ w

[
1 0
0 1

]
.

Hence,

ker(T ) = span

{[
−1 2

3

1 0

]
,

[
1 0
0 1

]}
.

Thus, nullity(T ) = 2 and rank(T ) = 4− 2 = 2.

24.10

kert(T ) = R(T ) =

{[
0
a

]
: a ∈ R

}
.
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Section 25

25.1 [
0 1 0
0 0 2

]
.

25.2 [
1 0
0 −1

]
.

25.3 [
1
2

1
2

−1
2

1
2

]
.

25.4 [
0 −1
1 0

]
.

25.5 9
5
5

 .
25.6

[T ]S =


0 3 2 0 0
0 0 6 6 0
0 0 0 9 12
0 0 0 0 12
0 0 0 0 0

 .
25.7

(a) (TS)

([
x
y

])
=

[
14x

16x− 17y

]
.

(b)

[TS]S′ = [T ]S′ [S]S′ =

[
2 4
−5 7

] [
1 2
3 −1

]
=

[
14 0
16 = 17

]
.
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25.8

[T ]S
′

S =

[
0 1 0
0 0 2

]
.

25.9 10
5
5

 .
25.10

[T ]S =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
... · · · ...

0 0 0 · · · λn

 .


