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Introduction

Functional analysis plays an important role in the applied sciences as well as in mathematics
itself. These notes are intended to familiarize the student with the basic concepts, principles and
methods of functional analysis and its applications, and they are intended for senior undergraduate
or beginning graduate students.

The notes are elementary assuming no prerequisites beyond knowledge of linear algebra and
ordinary calculus (with ǫ-δ arguments). Measure theory is neither assumed, nor discussed, and
no knowledge of topology is required. The notes should hence be accessible to a wide spectrum
of students, and may also serve to bridge the gap between linear algebra and advanced functional
analysis.

Functional analysis is an abstract branch of mathematics that originated from classical anal-
ysis. The impetus came from applications: problems related to ordinary and partial differential
equations, numerical analysis, calculus of variations, approximation theory, integral equations,
and so on. In ordinary calculus, one dealt with limiting processes in finite-dimensional vector
spaces (R or Rn), but problems arising in the above applications required a calculus in spaces of
functions (which are infinite-dimensional vector spaces). For instance, we mention the following
optimization problem.

Problem. A copper mining company intends to remove all of the copper ore from a region that
contains an estimated Q tons, over a time period of T years. As it is extracted, they will sell it
for processing at a net price per ton of

p = P − ax(t) − bx′(t)

for positive constants P , a, and b, where x(t) denotes the total tonnage sold by time t. If the
company wishes to maximize its total profit given by

I(x) =

∫ T

0

[P − ax(t) − bx′(t)]x′(t)dt,

where x(0) = 0 and x(T ) = Q, how might it proceed?

?

0 T

Q

The optimal mining operation problem: what curve gives the maximum profit?
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We observe that this is an optimization problem: to each curve between the points (0, 0) and
(T, Q), we associate a number (the associated profit), and the problem is to find the shape of the
curve that minimizes this function

I : {curves between (0, 0) and (T, Q)} → R.

This problem does not fit into the usual framework of calculus, where typically one has a function
from some subset of the finite dimensional vector space Rn to R, and one wishes to find a vector
in Rn that minimizes/maximizes the function, while in the above problem one has a subset of an
infinite dimensional function space.

Thus the need arises for developing calculus in more general spaces than Rn. Although we have
only considered one example, problems requiring calculus in infinite-dimensional vector spaces arise
from many applications and from various disciplines such as economics, engineering, physics, and so
on. Mathematicians observed that different problems from varied fields often have related features
and properties. This fact was used for an effective unifying approach towards such problems, the
unification being obtained by the omission of unessential details. Hence the advantage of an
abstract approach is that it concentrates on the essential facts, so that these facts become clearly
visible and one’s attention is not disturbed by unimportant details. Moreover, by developing a
box of tools in the abstract framework, one is equipped to solve many different problems (that
are really the same problem in disguise!). For example, while fishing for various different species
of fish (bass, sardines, perch, and so on), one notices that in each of these different algorithms,
the basic steps are the same: all one needs is a fishing rod and some bait. Of course, what bait
one uses, where and when one fishes, depends on the particular species one wants to catch, but
underlying these minor details, the basic technique is the same. So one can come up with an
abstract algorithm for fishing, and applying this general algorithm to the particular species at
hand, one gets an algorithm for catching that particular species. Such an abstract approach also
has the advantage that it helps us to tackle unseen problems. For instance, if we are faced with
a hitherto unknown species of fish, all that one has to do in order to catch it is to find out what
it eats, and then by applying the general fishing algorithm, one would also be able to catch this
new species.

In the abstract approach, one usually starts from a set of elements satisfying certain axioms.
The theory then consists of logical consequences which result from the axioms and are derived as
theorems once and for all. These general theorems can then later be applied to various concrete
special sets satisfying the axioms.

We will develop such an abstract scheme for doing calculus in function spaces and other
infinite-dimensional spaces, and this is what this course is about. Having done this, we will be
equipped with a box of tools for solving many problems, and in particular, we will return to the
optimal mining operation problem again and solve it.

These notes contain many exercises, which form an integral part of the text, as some results
relegated to the exercises are used in proving theorems. Some of the exercises are routine, and the
harder ones are marked by an asterisk (∗).

Most applications of functional analysis are drawn from the rudiments of the theory, but not
all are, and no one can tell what topics will become important. In these notes we have described
a few topics from functional analysis which find widespread use, and by no means is the choice
of topics ‘complete’. However, equipped with this basic knowledge of the elementary facts in
functional analysis, the student can undertake a serious study of a more advanced treatise on the
subject, and the bibliography gives a few textbooks which might be suitable for further reading.

It is a pleasure to thank Prof. Erik Thomas from the University of Groningen for many useful
comments and suggestions.

Amol Sasane
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Chapter 1

Normed and Banach spaces

1.1 Vector spaces

In this section we recall the definition of a vector space. Roughly speaking it is a set of elements,
called “vectors”. Any two vectors can be “added”, resulting in a new vector, and any vector can
be multiplied by an element from R (or C, depending on whether we consider a real or complex
vector space), so as to give a new vector. The precise definition is given below.

Definition. Let K = R or C (or more generally1 a field). A vector space over K, is a set X

together with two functions, + : X × X → X , called vector addition, and · : K × X → X , called
scalar multiplication that satisfy the following:

V1. For all x1, x2, x3 ∈ X , x1 + (x2 + x3) = (x1 + x2) + x3.

V2. There exists an element, denoted by 0 (called the zero vector) such that for all x ∈ X ,
x + 0 = 0 + x = x.

V3. For every x ∈ X , there exists an element, denoted by −x, such that x+(−x) = (−x)+x = 0.

V4. For all x1, x2 in X , x1 + x2 = x2 + x1.

V5. For all x ∈ X , 1 · x = x.

V6. For all x ∈ X and all α, β ∈ K, α · (β · x) = (αβ) · x.

V7. For all x ∈ X and all α, β ∈ K, (α + β) · x = α · x + β · x.

V8. For all x1, x2 ∈ X and all α ∈ K, α · (x1 + x2) = α · x1 + α · x2.

Examples.

1. R is a vector space over R, with vector addition being the usual addition of real numbers,
and scalar multiplication being the usual multiplication of real numbers.

1Unless stated otherwise, the underlying field is always assumed to be R or C throughout these notes.

1



2 Chapter 1. Normed and Banach spaces

2. Rn is a vector space over R, with addition and scalar multiplication defined as follows:

if






x1

...
xn




 ,






y1

...
yn




 ∈ Rn, then






x1

...
xn




+






y1

...
yn




 =






x1 + y1

...
xn + yn




 ;

if α ∈ R and






x1

...
xn




 ∈ Rn, then α ·






x1

...
xn




 =






αx1

...
αxn




 .

3. The sequence space ℓ∞. This example and the next one give a first impression of how
surprisingly general the concept of a vector space is.

Let ℓ∞ denote the vector space of all bounded sequences with values in K, and with addition
and scalar multiplication defined as follows:

(xn)n∈N + (yn)n∈N = (xn + yn)n∈N, (xn)n∈N, (yn)n∈N ∈ ℓ∞; (1.1)

α(xn)n∈N = (αxn)n∈N, α ∈ K, (xn)n∈N ∈ ℓ∞. (1.2)

4. The function space C[a, b]. Let a, b ∈ R and a < b. Consider the vector space comprising
functions f : [a, b] → K that are continuous on [a, b], with addition and scalar multiplication
defined as follows. If f, g ∈ C[a, b], then f + g ∈ C[a, b] is the function given by

(f + g)(x) = f(x) + g(x), x ∈ [a, b]. (1.3)

If α ∈ K and f ∈ C[a, b], then αf ∈ C[a, b] is the function given by

(αf)(x) = αf(x), x ∈ [a, b]. (1.4)

C[a, b] is referred to as a ‘function space’, since each vector in C[a, b] is a function (from
[a, b] to K). ♦

Exercises.

1. Let ya, yb ∈ R, and let

S(ya, yb) = {x ∈ C[a, b] | x(a) = ya and x(b) = yb}.

For what values of ya, yb is S(ya, yb) a vector space?

2. Show that C[0, 1] is not a finite dimensional vector space.

Hint: One can prove this by contradiction. Let C[0, 1] be a finite dimensional vector space
with dimension d, say. First show that the set B = {x, x2, . . . , xd} is linearly independent.
Then B is a basis for C[0, 1], and so the constant function 1 should be a linear combination
of the functions from B. Derive a contradiction.

3. Let V be a vector space, and let {Vn | n ∈ N} be a set of subspaces of V . Prove that
∞⋂

n=1

Vn

is a subspace of V .

4. Let λ1, λ2 be two distinct real numbers, and let f1, f2 ∈ C[0, 1] be

f1(x) = eλ1x and f2(x) = eλ2x, x ∈ [0, 1].

Show that the functions f1 and f2 are linearly independent in the vector space C[0, 1].
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1.2 Normed spaces

In order to do ‘calculus’ (that is, speak about limiting processes, convergence, approximation,
continuity) in vector spaces, we need a notion of ‘distance’ or ‘closeness’ between the vectors of
the vector space. This is provided by the notion of a norm.

Definitions. Let X be a vector space over R or C. A norm on X is a function ‖ ·‖ : X → [0, +∞)
such that:

N1. (Positive definiteness) For all x ∈ X , ‖x‖ ≥ 0. If x ∈ X , then ‖x‖ = 0 iff x = 0.

N2. For all α ∈ R (respectively C) and for all x ∈ X , ‖αx‖ = |α|‖x‖.

N3. (Triangle inequality) For all x, y ∈ X , ‖x + y‖ ≤ ‖x‖ + ‖y‖.

A normed space is a vector space X equipped with a norm.

If x, y ∈ X , then the number ‖x − y‖ provides a notion of closeness of points x and y in X ,
that is, a ‘distance’ between them. Thus ‖x‖ = ‖x − 0‖ is the distance of x from the zero vector
in X .

We now give a few examples of normed spaces.

Examples.

1. R is a vector space over R, and if we define ‖ · ‖ : R → [0, +∞) by

‖x‖ = |x|, x ∈ R,

then it becomes a normed space.

2. Rn is a vector space over R, and let

‖x‖2 =

(
n∑

i=1

|xi|2
) 1

2

, x =






x1

...
xn




 ∈ Rn.

Then Rn is a normed space (see Exercise 5a on page 5).

This is not the only norm that can be defined on Rn. For example,

‖x‖1 =

n∑

i=1

|xi|, and ‖x‖∞ = max{|x1|, . . . , |xn|}, x =






x1

...
xn




 ∈ Rn,

are also examples of norms (see Exercise 5a on page 5).

Note that (Rn, ‖ · ‖2), (Rn, ‖ · ‖1) and (Rn, ‖ · ‖∞) are all different normed spaces. This
illustrates the important fact that from a given vector space, we can obtain various normed
spaces by choosing different norms. What norm is considered depends on the particular
application at hand. We illustrate this in the next paragraph.

Suppose that we are interested in comparing the economic performance of a country from
year to year, using certain economic indicators. For example, let the ordered 365-tuple
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x = (x1, . . . , x365) be the record of the daily industrial averages. A measure of differences in
yearly performance is given by

‖x − y‖ =

365∑

i=1

|xi − yi|.

Thus the space (R365, ‖·‖1) arises naturally. We might also be interested in the monthly cost
of living index. Let the record of this index for a year be given by 12-tuples x = (x1, . . . , x12).
A measure of differences in yearly performance of the cost of living index is given by

‖x − y‖ = max{|x1 − y1|, . . . , |x12 − y12|},

which is the distance between x and y in the normed space (R12, ‖ · ‖∞).

3. The sequence space ℓ∞. This example and the next one give a first impression of how
surprisingly general the concept of a normed space is.

Let ℓ∞ denote the vector space of all bounded sequences, with the addition and scalar
multiplication defined earlier in (1.1)-(1.2).

Define
‖(xn)n∈N‖∞ = sup

n∈N

|xn|, (xn)n∈N ∈ ℓ∞.

Then it is easy to check that ‖ · ‖∞ is a norm, and so (ℓ∞, ‖ · ‖∞) is a normed space.

4. The function space C[a, b]. Let a, b ∈ R and a < b. Consider the vector space comprising
functions that are continuous on [a, b], with addition and scalar multiplication defined earlier
by (1.3)-(1.4).

ǫ

ǫ

f
g

a b

Figure 1.1: The set of all continuous functions g whose graph lies between the two dotted lines is
the ‘ball’ B(f, ǫ) = {g ∈ C[a, b] | ‖g − f‖∞ < ǫ}.

Define
‖f‖∞ = sup

x∈[a,b]

|f(x)|, f ∈ C[a, b]. (1.5)

Then ‖ · ‖∞ is a norm on C[a, b]. Another norm is given by

‖f‖1 =

∫ b

a

|f(x)|dx, f ∈ C[a, b]. (1.6)

♦

Exercises.

1. Let (X, ‖ · ‖) be a normed space. Prove that for all x, y ∈ X , |‖x‖ − ‖y‖| ≤ ‖x − y‖.

2. If x ∈ R, then let ‖x‖ = |x|2. Is ‖ · ‖ a norm on R?
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3. Let (X, ‖ ·‖) be a normed space and r > 0. Show that the function x 7→ r‖x‖ defines a norm
on X .

Thus there are infinitely many other norms on any normed space.

4. Let X be a normed space ‖ · ‖X and Y be a subspace of X . Prove that Y is also a normed
space with the norm ‖ · ‖Y defined simply as the restriction of the norm ‖ · ‖X to Y . This
norm on Y is called the induced norm.

5. Let 1 < p < +∞ and q be defined by 1
p

+ 1
q

= 1. Then Hölder’s inequality2 says that if
x1, . . . , xn and y1, . . . , yn are any real or complex numbers, then

n∑

i=1

|xiyi| ≤
(

n∑

i=1

|xi|p
) 1

p
(

n∑

i=1

|yi|q
) 1

q

.

If 1 ≤ p ≤ +∞, and n ∈ N, then for

x =






x1

...
xn




 ∈ Rn,

define

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

if 1 ≤ p < +∞, and ‖x‖∞ = max{|x1|, . . . , |xn|}. (1.7)

(a) Show that the function x 7→ ‖x‖p is a norm on Rn.

Hint: Use Hölder’s inequality to obtain

n∑

i=1

|xi||xi + yi|p−1 ≤ ‖x‖p‖x + y‖
p

q
p and

n∑

i=1

|yi||xi + yi|p−1 ≤ ‖y‖p‖x + y‖
p

q
p .

Adding these, we obtain the triangle inequality:

‖x + y‖p
p =

n∑

i=1

|xi + yi||xi + yi|p−1 ≤
n∑

i=1

|xi||xi + yi|p−1 +

n∑

i=1

|yi||xi + yi|p−1.

(b) Let n = 2. Depict the following sets pictorially:

B2(0, 1) = {x ∈ R2 | ‖x‖2 < 1},
B1(0, 1) = {x ∈ R2 | ‖x‖1 < 1},
B∞(0, 1) = {x ∈ R2 | ‖x‖∞ < 1}.

(c) Let x ∈ Rn. Prove that (‖x‖p)p∈N is a convergent sequence in R and lim
p→∞

‖x‖p = ‖x‖∞.

Describe what happens to the sets Bp(0, 1) = {x ∈ R2 | ‖x‖p < 1} as p tends to ∞.

6. A subset C of a vector space X is said to be convex if for all x, y ∈ C, and all α ∈ [0, 1],
αx + (1 − α)y ∈ C; see Figure 1.2.

(a) Show that the unit ball B(0, 1) = {x ∈ X | ‖x‖ < 1} is convex in any normed space
(X, ‖ · ‖).

(b) Sketch the curve {(x1, x2) ∈ R2 |
√

|x1| +
√

|x2| = 1}.
2A proof of this inequality can be obtained by elementary calculus, and we refer the interested student to §1.4

at the end of this chapter.
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convex not convex

Figure 1.2: Examples of convex and nonconvex sets in R2.

(c) Prove that

‖x‖ 1
2

:=
(√

|x1| +
√

|x2|
)2

, x =

[
x1

x2

]

∈ R2,

does not define a norm on R2.

7. (a) Show that the polyhedron

Pn =












x1

...
xn




 ∈ Rn

∣
∣
∣
∣
∣
∣
∣

∀i ∈ {1, . . . , n}, xi > 0 and

n∑

i=1

xi = 1







is convex in Rn. Sketch P2.

(b) Prove that

if






x1

...
xn




 ∈ Pn, then

n∑

i=1

1

xi

≥ n2. (1.8)

Hint: Use Hölder’s inequality with p = 2.

(c) In the financial world, there is a method of investment called dollar cost averaging.
Roughly speaking, this means that one invests a fixed amount of money regularly
instead of a lumpsum. It is claimed that a person using dollar cost averaging should
be better off than one who invests all the amount at one time. Suppose a fixed amount
A is used to buy shares at prices p1, . . . , pn. Then the total number of shares is then
A
p1

+ · · ·+ A
pn

. If one invests the amount nA at a time when the share price is the average

of p1, . . . , pn, then the number of shares which one can purchase is n2A
p1+···+pn

. Using the

inequality (1.8), conclude that dollar cost averaging is at least as good as purchasing
at the average share price.

8. (∗) (p-adic norm) Consider the vector space of the rational numbers Q over the field Q. Let
p be a prime number. Define the p-adic norm | · |p on the set of rational numbers as follows:
if r ∈ Q, then

|r|p =

{ 1
pk where r = pk m

n
, k, m, n ∈ Z and p 6 |m, n, if r 6= 0,

0 if r = 0.

So in this context, a rational number is close to 0 precisely when it is highly divisible by p.

(a) Show that | · |p is well-defined on Q.

(b) If r ∈ Q, then prove that |r|p ≥ 0, and that |r|p = 0 iff r = 0.

(c) For all r1, r2 ∈ Q, show that |r1r2|p = |r1|p|r2|p.
(d) For all r1, r2 ∈ Q, prove that |r1 + r2|p ≤ max{|r1|p, |r2|p}. In particular, for all

r1, r2 ∈ Q, |r1 + r2|p ≤ |r1|p + |r2|p.
9. Show that (1.6) defines a norm on C[a, b].
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1.3 Banach spaces

In a normed space, we have a notion of ‘distance’ between vectors, and we can say when two
vectors are close by and when they are far away. So we can talk about convergent sequences. In
the same way as in R or C, we can define convergent sequences and Cauchy sequences in a normed
space:

Definition. Let (xn)n∈N be a sequence in X and let x ∈ X . The sequence (xn)n∈N converges to
x if

∀ǫ > 0, ∃N ∈ N such that for all n ∈ N satisfying n ≥ N, ‖xn − x‖ < ǫ. (1.9)

Note that (1.9) says that the real sequence (‖xn − x‖)n∈N converges to 0: lim
n→∞

‖xn − x‖ = 0,

that is the distance of the vector xn to the limit x tends to zero, and this matches our geometric
intuition. One can show in the same way as with R, that the limit is unique: a convergent sequence
has only one limit. We write

lim
n→∞

xn = x.

Example. Consider the sequence (fn)n∈N in the normed space (C[0, 1], ‖ · ‖∞), where

fn =
sin(2πnx)

n2
.

The first few terms of the sequence are shown in Figure 1.3.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

x

Figure 1.3: The first three terms of the sequence (fn)n∈N.

From the figure, we see that the terms seem to converge to the zero function. Indeed we have

‖fn − 0‖∞ =
1

n2
‖ sin(2πnx)‖∞ =

1

n2
< ǫ for all n > N > 1√

ǫ
. ♦

Definition. The sequence (xn)n∈N is a called a Cauchy sequence if

∀ǫ > 0, ∃N ∈ N such that for all m, n ∈ N satisfying m, n ≥ N, ‖xm − xn‖ < ǫ. (1.10)

Every convergent sequence is a Cauchy sequence, since ‖xm − xn‖ ≤ ‖xm − x‖ + ‖x − xn‖.
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Definition. A normed space (X, ‖ · ‖) is called complete if every Cauchy sequence is convergent.

Complete normed spaces are called Banach spaces after the Polish mathematician Stephan
Banach (1892-1945) who was the first to set up the general theory (in his Ph.D. thesis in 1920).

Thus in a complete normed space, or Banach space, the Cauchy condition is sufficient for
convergence: the sequence (xn)n∈N converges iff it is a Cauchy sequence, that is if (1.10) holds. So
we can determine convergence a priori without the knowledge of the limit. Just as it was possible
to introduce new numbers in R, in the same way in a Banach space it is possible to show the
existence of elements with some property of interest, by making use of the Cauchy criterion. In
this manner, one can sometimes show that certain equations have a unique solution. In many cases,
one cannot write them explicitly. After existence and uniqueness of the solution is demonstrated,
then one can do numerical approximations.

The following theorem is an instance where one uses the Cauchy criterion:

Theorem 1.3.1 Let (xn)n∈N be a sequence in a Banach space and let sn = x1 + · · · + xn. If

∞∑

n=1

‖xn‖ < +∞, (1.11)

then the series

∞∑

n=1

xn converges, that is, the sequence (sn)n∈N converges.

If we denote lim
n→∞

sn by
∞∑

n=1

xn, then we have

∥
∥
∥
∥
∥

∞∑

n=1

xn

∥
∥
∥
∥
∥
≤

∞∑

n=1

‖xn‖.

Proof For k > n, we have sk − sn =

k∑

i=n+1

xi so that:

‖sk − sn‖ ≤
k∑

i=n+1

‖xi‖ ≤
∞∑

i=n+1

‖xi‖ < ǫ

for k > n ≥ N sufficiently large. It follows that (sn)n∈N is a Cauchy sequence and hence is
convergent. If s = lim

n→∞
sn, then using the triangle inequality (see Exercise 1 on page 5), we have

|‖s‖ − ‖sn‖| ≤ ‖s − sn‖ so that ‖s‖ = lim
n→∞

‖sn‖. Since

‖sn‖ ≤
n∑

i=1

‖xi‖ ≤
∞∑

i=1

‖xi‖,

we obtain ‖∑∞
n=1 xn‖ ≤∑∞

n=1 ‖xn‖ by taking the limit.

We will use this theorem later to show that eA converges, where A is a square matrix. This
matrix-valued function plays an important role in the theory of ordinary differential equations.

Examples.

1. The space Rn equipped with the norm ‖·‖p, given by (1.7) is a Banach space. We must show
that these spaces are complete. Let (x(n))n∈N be a Cauchy sequence in Rn (respectively Cn).
Then we have

‖x(k) − x(m)‖ < ǫ for all m, k ≥ N
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that is
n∑

i=1

|x(k)
i − x

(m)
i |2 < ǫ2 for all m, k ≥ N. (1.12)

Thus it follows that for every i ∈ {1, . . . , n}, |x(k)
i − x

(m)
i | < ǫ for all m, k ≥ N , that is

the sequence (x
(m)
i )m∈N is a Cauchy sequence in R (respectively C) and consequently it is

convergent. Let xi = lim
m→∞

x
(m)
i . Then x = (x1, . . . , xn) belongs to Rn (respectively Cn).

Now let k go to infinity in (1.12), and we obtain:

n∑

i=1

|xi − x
(m)
i |2 ≤ ǫ2 for all m ≥ N,

that is
‖x − x(m)‖2 ≤ ǫ for all m ≥ N

and so x = lim
m→∞

x(m) in the normed space. This completes the proof.

2. The spaces ℓp.

Let 1 ≤ p < +∞. Then one defines the space ℓp as follows:

ℓp =

{

x = (xi)i∈N

∣
∣
∣
∣
∣

∞∑

i=1

|xi|p < +∞
}

with the norm

‖x‖p =

( ∞∑

i=1

|xi|p
) 1

p

. (1.13)

For p = +∞, we define the space ℓ∞ by

ℓ∞ =

{

x = (xi)i∈N

∣
∣
∣
∣
sup
i∈N

|xi| < +∞
}

with the norm
‖x‖∞ = sup

i∈N

|xi|.

(See Exercise 1 on page 12.) The most important of these spaces are ℓ1, ℓ∞ and ℓ2.

Theorem 1.3.2 The spaces ℓp are Banach spaces for 1 ≤ p ≤ +∞.

Proof We prove this for instance in the case of the space ℓ2. From the inequality |xi+yi|2 ≤
2|xi|2 + 2|yi|2, we see that ℓ2, equipped with the operations

(xn)n∈N + (yn)n∈N = (xn + yn)n∈N, (xn)n∈N, (yn)n∈N ∈ ℓ2,

α(xn)n∈N = (αxn)n∈N, α ∈ K, (xn)n∈N ∈ ℓ2,

is a vector space.

We must now show that ℓ2 is complete. Let (x(n))n∈N be a Cauchy sequence in ℓ2. The
proof of the completeness will be carried out in three steps:

Step 1. We seek a candidate limit x for the sequence (x(n))n∈N.

We have
‖x(k) − x(n)‖2 < ǫ for all n, k ≥ N,
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that is
∞∑

i=1

|x(k)
i − x

(n)
i |2 < ǫ2 for all n, k ≥ N. (1.14)

Thus for every i ∈ N, |x(k)
i − x

(n)
i | < ǫ for all n, k ≥ N , that is, the sequence (x

(n)
i )n∈N is a

Cauchy sequence in R (respectively C) and consequently, it is convergent. Let xi = lim
n→∞

x
(n)
i .

Step 2. We show that indeed x belongs to the desired space (here ℓ2).

The sequence x = (xi)i∈N belongs to ℓ2. Let m ∈ N. Then from (1.14) it follows that

m∑

i=1

|x(k)
i − x

(n)
i |2 < ǫ2 for all n, k ≥ N.

Now we let k go to ∞. Then we see that

m∑

i=1

|xi − x
(n)
i |2 ≤ ǫ2 for all n ≥ N.

Since this is true for all m ∈ N, we have

∞∑

i=1

|xi − x
(n)
i |2 ≤ ǫ2 for all n ≥ N. (1.15)

This means that for n ≥ N , the sequence x−x(n), and thus also the sequence x = x−x(n) +
x(n), belongs to ℓ2.

Step 3. We show that indeed ‖x− x(n)‖ goes to 0, that is, x(n) converges to x in the given
normed space (here ℓ2).

The equation (1.15) is equivalent with

‖x − x(n)‖2 ≤ ǫ for all n ≥ N,

and so it follows that x = lim
n→∞

x(n) in the normed space ℓ2. This completes the proof.

3. Spaces of continuous functions.

Theorem 1.3.3 Let a, b ∈ R and a < b. The space (C[a, b], ‖ · ‖∞) is a Banach space.

Proof It is clear that linear combinations of continuous functions are continuous, so that
C[a, b] is a vector space. The equation (1.5) defines a norm, and the space C[a, b] is a normed
space.

We must now show the completeness. Let (fn)n∈N be a Cauchy sequence in C[a, b]. Let
ǫ > 0 be given. Then there exists a N ∈ N such that for all x ∈ [a, b], we have

|fk(x) − fn(x)| ≤ ‖fk − fn‖∞ < ǫ for all k, n ≥ N. (1.16)

Thus it follows that (fn(x))n∈N is a Cauchy sequence in K. Since K (= R or C) is complete,
the limit f(x) = lim

n→∞
fn(x) exists. We must now show that the limit is continuous. If we

let k go to ∞ in (1.16), then we see that for all x ∈ [a, b],

|f(x) − fn(x)| ≤ ǫ for all n ≥ N. (1.17)
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Using the continuity of the fn’s and (1.17) above, we now show that f is continuous on [a, b].
Let x0 ∈ [a, b]. Given any ζ > 0, let ǫ = ζ

3 . Choose N ∈ N large enough so that (1.17) holds.
As fN is continuous on [a, b], it follows that there exists a δ > 0 such that

for all x ∈ [a, b] such that |x − x0| < δ, |fN(x) − fN(x0)| < ǫ.

Consequently, for all x ∈ [a, b] such that |x − x0| < δ, we have

|f(x) − f(x0)| ≤ |f(x) − fN (x) + fN (x) − fN (x0) + fN(x0) − f(x0)|
≤ |f(x) − fN (x)| + |fN (x) − fN (x0)| + |fN (x0) − f(x0)|
< ǫ + ǫ + ǫ = ζ.

So f must be continuous, and hence it belongs to C[a, b].

Finally, from (1.17), we have

‖f − fn‖∞ ≤ ǫ for all n ≥ N,

and so fn converges to f in the normed space C[a, b].

It can be shown that C[a, b] is not complete when it is equipped with the norm

‖f‖1 =

∫ b

a

|f(x)|dx, f ∈ C[a, b];

see Exercise 6 below.

Using the fact that (C[0, 1], ‖ · ‖∞) is a Banach space, and using Theorem 1.3.1, let us show
that

∞∑

n=1

sin(nx)

n2
(1.18)

converges in (C[0, 1], ‖ · ‖∞). Indeed, we have

∥
∥
∥
∥

sin(2πnx)

n2

∥
∥
∥
∥
∞

≤ 1

n2
,

and as
∞∑

n=1

1

n2
< ∞, it follows that (1.18) converges in the ‖ · ‖∞-norm to a continuous

function.

In fact, we can get a pretty good idea of the limit by computing the first N terms (with
a large enough N) and plotting the resulting function–the error can then be bounded as
follows: ∥

∥
∥
∥
∥

∞∑

n=N+1

sin(2πnx)

n2

∥
∥
∥
∥
∥
∞

≤
∞∑

n=N+1

∥
∥
∥
∥

sin(2πnx)

n2

∥
∥
∥
∥
∞

≤
∞∑

n=N+1

1

n2
.

For example, if N = 10, then the error is bounded above by

∞∑

n=11

1

n2
=

π2

6
−
(

1 +
1

4
+

1

9
+ · · · + 1

100

)

≈ 0.09516637.

Using Maple, we have plotted the partial sum of (1.18) with N = 10 in Figure 1.4. Thus the
sum converges to a continuous function that lies in the strip of width 0.96 around the graph
shown in the figure. ♦
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Figure 1.4: Partial sum of (1.18).

Exercises.

1. Show that if 1 ≤ p ≤ +∞, then ℓp is a normed space. (That is, ℓp is a vector space and that
‖ · ‖p defined by (1.13) gives a norm on ℓp.)

Hint: Use Exercise 5 on page 5.

2. Let X be a normed space, and let (xn)n∈N be a convergent sequence in X with limit x.
Prove that (‖xn‖)n∈N is a convergent sequence in R and that

lim
n→∞

‖xn‖ = ‖x‖.

3. Let c00 denote the set of all sequences that have only finitely many nonzero terms.

(a) Show that c00 is a subspace of ℓp for all 1 ≤ p ≤ +∞.

(b) Prove that for all 1 ≤ p ≤ +∞, c00 is not complete with the induced norm from ℓp.

4. Show that ℓ1 ( ℓ2 ( ℓ∞.

5. (∗) Let C1[a, b] denote the space of continuously differentiable3 functions on [a, b]:

C1[a, b] = {f : [a, b] → K | f is continuously differentiable},

equipped with the norm

‖f‖1,∞ = ‖f‖∞ + ‖f ′‖∞, f ∈ C1[a, b]. (1.19)

Show that (C1[a, b], ‖ · ‖1,∞) is a Banach space.

6. (∗) Prove that C[0, 1] is not complete if it is equipped with the norm

‖f‖1 =

∫ 1

0

|f(x)|dx, f ∈ C[0, 1].

Hint: See Exercise 5 on page 54.

7. Show that a convergent sequence (xn)n∈N in a normed space X has a unique limit.

3A function f : [a, b] → K is continuously differentiable if for every c ∈ [a, b], the derivative of f at c, namely
f ′(c), exists, and the map c 7→ f ′(c) : [a, b] → K is a continuous function.
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8. Show that if (xn)n∈N is a convergent sequence in a normed space X , then (xn)n∈N is a
Cauchy sequence.

9. Prove that a Cauchy sequence (xn)n∈N in a normed space X is bounded, that is, there exists
a M > 0 such that for all n ∈ N, ‖xn‖ ≤ M .

In particular, every convergent sequence in a normed space is bounded.

10. Let X be a normed space.

(a) If a Cauchy sequence (xn)n∈N in X has a convergent subsequence, then show that
(xn)n∈N is convergent.

(b) (∗) If every series in X with the property (1.11) is convergent, then prove that X is
complete.

Hint: Construct a subsequence (xnk
)k∈N of a given Cauchy sequence (xn)n∈N pos-

sessing the property that if n > nk, then ‖xn − xnk
‖ < 1

2k . Define u1 = xn1
,

uk+1 = xnk+1
− xnk

, k ∈ N, and consider

∞∑

k=1

‖uk‖.

11. Let X be a normed space and S be a subset of X . A point x ∈ X is said to be a limit point
of S if there exists a sequence (xn)n∈N in S \{x} with limit x. The set of all points and limit
points of S is denoted by S. Prove that if Y is a subspace of X , then Y is also a subspace
of X . This subspace is called the closure of Y .

1.4 Appendix: proof of Hölder’s inequality

Let p ∈ (1 + ∞) and q be defined by 1
p

+ 1
q

= 1. Suppose that a, b ∈ R and a, b ≥ 0. We begin by
showing that

a

p
+

b

q
≥ a

1
p b

1
q . (1.20)

If a = 0 or b = 0, then the conclusion is clear, and so we assume that both a and b are positive.
We will use the following result:

Claim: If α ∈ (0, 1), then for all x ∈ [1,∞), α(x − 1) + 1 ≥ xα.

Proof Given α ∈ (0, 1), define f : [1,∞) → R by

fα(x) = α(x − 1) − xα + 1, x ∈ [1,∞).

Note that

fα(1) = α · 0 − 1α + 1 = 0,

and for all x ∈ [1,∞),

f ′
α(x) = α − α · xα−1 = α

(

1 − 1

x1−α

)

≥ 0.

Hence using the fundamental theorem of calculus, we have for any x > 1,

fα(x) − fα(1) =

∫ x

0

f ′
α(y)dy ≥ 0,

and so we obtain fα(x) ≥ 0 for all x ∈ [1,∞).
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As p ∈ (1,∞), it follows that 1
p
∈ (0, 1). Applying the above with α = 1

p
and

x =

{
a
b

if a ≥ b
b
a

if a ≤ b

we obtain inequality (1.20).

Hölder’s inequality is obvious if

n∑

i=1

|xi|p = 0 or

n∑

i=1

|yi|q = 0.

So we assume that neither is 0, and proceed as follows. Define

ai =
|xi|p

n∑

i=1

|xi|p
and bi =

|yi|q
n∑

i=1

|yi|q
, i ∈ {1, . . . , n}.

Applying the inequality (1.20) to ai, bi, we obtain for each i ∈ {1, . . . , n}:

|xiyi|
(

n∑

i=1

|xi|p
) 1

p
(

n∑

i=1

|yi|q
) 1

q

≤ |xi|p

p

n∑

i=1

|xi|p
+

|yi|p

q

n∑

i=1

|yi|q
.

Adding these n inequalities, we obtain Hölder’s inequality.



Chapter 2

Continuous maps

In this chapter, we consider continuous maps from a normed space X to a normed space Y . The
spaces X and Y have a notion of distance between vectors (namely the norm of the difference
between the two vectors). Hence we can talk about continuity of maps between these normed
spaces, just as in the case of ordinary calculus.

Since the normed spaces are also vector spaces, linear maps play an important role. Recall
that linear maps are those maps that preserve the vector space operations of addition and scalar
multiplication. These are already familiar to the reader from elementary linear algebra, and they
are called linear transformations.

In the context of normed spaces, it is then natural to focus attention on those linear trans-
formations that are also continuous. These are important from the point of view of applications,
and they are called bounded linear operators. The reason for this terminology will become clear
in Theorem 2.3.3.

The set of all bounded linear operators is itself a vector space, with obvious operations of
addition and scalar multiplication, and as we shall see, it also has a natural notion of a norm,
called the operator norm. Equipped with the operator norm, the vector space of bounded linear
operators is a Banach space, provided that the co-domain is a Banach space. This is a useful
result, which we will use in order to prove the existence of solutions to integral and differential
equations.

2.1 Linear transformations

We recall the definition of linear transformations below. Roughly speaking, linear transformations
are maps that respect vector space operations.

Definition. Let X and Y be vector spaces over K (R or C). A map T : X → Y is called a linear
transformation if it satisfies the following:

L1. For all x1, x2 ∈ X , T (x1 + x2) = T (x1) + T (x2).

L2. For all x ∈ X and all α ∈ K, T (α · x) = α · T (x).

15
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Examples.

1. Let m, n ∈ N and X = Rn and Y = Rm. If

A =






a11 . . . a1n

...
...

am1 . . . amn




 ∈ Rm×n,

then the function TA : Rn → Rm defined by

TA






x1

...
xn




 =






a11x1 + · · · + a1nxn

...
am1x1 + · · · + amnxn




 =












n∑

k=1

a1kxk

...
n∑

k=1

amkxk












for all






x1

...
xn




 ∈ Rn, (2.1)

is a linear transformation from the vector space Rn to the vector space Rm. Indeed,

TA











x1

...
xn




+






y1

...
yn









 = TA






x1

...
xn




+ TA






y1

...
yn




 for all






x1

...
xn




 ,






y1

...
yn




 ∈ Rn,

and so L1 holds. Moreover,

TA




α ·






x1

...
xn









 = α · TA






x1

...
xn




 for all α ∈ R and all






x1

...
xn




 ∈ Rn,

and so L2 holds as well. Hence TA is a linear transformation.

2. Let X = Y = ℓ2. Consider maps R, L from ℓ2 to ℓ2, defined as follows: if (xn)n∈N ∈ ℓ2, then

R((x1, x2, x3, . . . )) = (x2, x3, a4, . . . ) and L((x1, x2, x3, . . . )) = (0, x1, x2, x3, . . . ).

Then it is easy to see that R and L are linear transformations.

3. The map T : C[a, b] → K given by

Tf = f

(
a + b

2

)

for all f ∈ C[a, b],

is a linear transformation from the vector space C[a, b] to the vector space K. Indeed, we
have

T (f + g) = (f + g)

(
a + b

2

)

= f

(
a + b

2

)

+ g

(
a + b

2

)

= T (f) + T (g), for all f, g ∈ C[a, b],

and so L1 holds. Furthermore

T (α · f) = (α · f)

(
a + b

2

)

= αf

(
a + b

2

)

= αT (f), for all α ∈ K and all f ∈ C[a, b],

and so L2 holds too. Thus T is a linear transformation.
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Similarly, the map I : C[a, b] → K given by

I(f) =

∫ b

a

f(x)dx for all f ∈ C[a, b],

is a linear transformation.

Another example of a linear transformation is the operation of differentiation: let X =
C1[a, b] and Y = C[a, b]. Define D : C1[a, b] → C[a, b] as follows: if f ∈ C1[a, b], then

(D(f))(x) =
df

dx
(x), x ∈ [a, b].

It is easy to check that D is a linear transformation from the space of continuously differen-
tiable functions to the space of continuous functions. ♦

Exercises.

1. Let a, b ∈ R, not both zeros, and consider the two real-valued functions f1, f2 defined on R

by

f1(x) = eax cos(bx) and f2(x) = eax sin(bx), x ∈ R.

f1 and f2 are vectors belonging to the infinite-dimensional vector space over R (denoted by
C1(R, R)), comprising all continuously differentiable functions from R to R. Denote by V

the span of the two functions f1 and f2.

(a) Prove that f1 and f2 are linearly independent in C1(R, R).

(b) Show that the differentiation map D, f 7→ df
dx

, is a linear transformation from V to V .

(c) What is the matrix [D]B of D with respect to the basis B = {f1, f2}?
(d) Prove that D is invertible, and write down the matrix corresponding to the inverse of

D.

(e) Using the result above, compute the indefinite integrals

∫

eax cos(bx)dx and

∫

eax sin(bx)dx.

2. (Delay line) Consider a system whose output is a delayed version of the input, that is, if u

is the input, then the output y is given by

y(t) = u(t − ∆), t ∈ R, (2.2)

where ∆ (≥ 0) is the delay.

Let D : C(R) → C(R) denote the map modelling the system operation (2.2) corresponding
to delay ∆:

(Df)(t) = f(t − ∆), t ∈ R, f ∈ C(R).

Show that D is a linear transformation.

3. Consider the squaring map S : C[a, b] → C[a, b] defined as follows:

(S(u))(t) = (u(t))2, t ∈ [a, b], u ∈ C[a, b].

Show that S is not a linear transformation.
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2.2 Continuous maps

Let X and Y be normed spaces. As there is a notion of distance between pairs of vectors in either
space (provided by the norm of the difference of the pair of vectors in each respective space), one
can talk about continuity of maps. Within the huge collection of all maps, the class of continuous
maps form an important subset. Continuous maps play a prominent role in functional analysis
since they possess some useful properties.

Before discussing the case of a function between normed spaces, let us first of all recall the
notion of continuity of a function f : R → R.

2.2.1 Continuity of functions from R to R

In everyday speech, a ‘continuous’ process is one that proceeds without gaps of interruptions or
sudden changes. What does it mean for a function f : R → R to be continuous? The common
informal definition of this concept states that a function f is continuous if one can sketch its graph
without lifting the pencil. In other words, the graph of f has no breaks in it. If a break does
occur in the graph, then this break will occur at some point. Thus (based on this visual view of
continuity), we first give the formal definition of the continuity of a function at a point below.
Next, if a function is continuous at each point, then it will be called continuous.

If a function has a break at a point, say x0, then even if points x are close to x0, the points
f(x) do not get close to f(x0). See Figure 2.1.

x0

f(x0)

Figure 2.1: A function with a break at x0. If x lies to the left of x0, then f(x) is not close to
f(x0), no matter how close x comes to x0.

This motivates the definition of continuity in calculus, which guarantees that if a function
is continuous at a point x0, then we can make f(x) as close as we like to f(x0), by choosing x

sufficiently close to x0. See Figure 2.2.

f(x0) + ǫ

f(x0)

f(x0) + ǫ

f(x)

x0 − δ x0 x0 + δx

Figure 2.2: The definition of the continuity of a function at point x0. If the function is continuous
at x0, then given any ǫ > 0 (which determines a strip around the line y = f(x0) of width 2ǫ), there
exists a δ > 0 (which determines an interval of width 2δ around the point x0) such that whenever
x lies in this width (so that x satisfies |x − x0| < δ) and then f(x) satisfies |f(x) − f(x0)| < ǫ.
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Definitions. A function f : R → R is continuous at x0 if for every ǫ > 0, there exists a δ > 0
such that for all x ∈ R satisfying |x − x0| < δ, |f(x) − f(x0)| < ǫ.

A function f : R → R is continuous if for every x0 ∈ R, f is continuous at x0.

For instance, if α ∈ R, then the linear map x 7→ x is continuous. It can be seen that sums
and products of continuous functions are also continuous, and so it follows that all polynomial
functions belong to the class of continuous functions from R to R.

2.2.2 Continuity of functions between normed spaces

We now define the set of continuous maps from a normed space X to a normed space Y .

We observe that in the definition of continuity in ordinary calculus, if x, y are real numbers,
then |x− y| is a measure of the distance between them, and that the absolute value | · | is a norm
in the finite (1-)dimensional normed space R.

So it is natural to define continuity in arbitrary normed spaces by simply replacing the absolute
values by the corresponding norms, since the norm provides a notion of distance between vectors.

Definitions. Let X and Y be normed spaces over K (R or C). Let x0 ∈ X . A map f : X → Y

is said to be continuous at x0 if

∀ǫ > 0, ∃δ > 0 such that ∀x ∈ X satisfying ‖x − x0‖ < δ, ‖f(x) − f(x0)‖ < ǫ. (2.3)

The map f : X → Y is called continuous if for all x0 ∈ X , f is continuous at x0.

We will see in the next section that the examples of the linear transformations given in the
previous section are all continuous maps, if the vector spaces are equipped with their usual norms.
Here we give an example of a nonlinear map which is continuous.

Example. Consider the squaring map S : C[a, b] → C[a, b] defined as follows:

(S(u))(t) = (u(t))2, t ∈ [a, b], u ∈ C[a, b]. (2.4)

The map is not linear, but it is continuous. Indeed, let u0 ∈ C[a, b]. Let

M = max{|u(t)| | t ∈ [a, b]}

(extreme value theorem). Given any ǫ > 0, let

δ = min

{

1,
ǫ

2M + 1

}

.

Then for any u ∈ C[a, b], such that ‖u − u0‖ < δ, we have for all t ∈ [a, b]

|(u(t))2 − (u0(t))
2| = |u(t) − u0(t)||u(t) + u0(t)|

< δ(|u(t) − u0(t) + 2u0(t)|)
≤ δ(|u(t) − u0(t)| + 2|u0(t)|)
≤ δ(‖u − u0‖ + 2M)

< δ(δ + 2M)

≤ δ(1 + 2M) ≤ ǫ.
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Hence for all u ∈ C[a, b] satisfying ‖u − u0‖ < δ, we have

‖S(u) − S(u0)‖ = sup
t∈[a,b]

|(u(t))2 − (u0(t))
2| ≤ ǫ.

So S is continuous at u0. As the choice of u0 ∈ C[a, b] was arbitrary, it follows that S is continuous
on C[a, b]. ♦

Exercises.

1. Let (X, ‖ · ‖) be a normed space. Show that the norm ‖ · ‖ : X → R is a continuous map.

2. (∗) Let X, Y be normed spaces and suppose that f : X → Y is a map. Prove that f is
continuous at x0 ∈ X iff

for every convergent sequence (xn)n∈N contained in X with limit x0,
(f(xn))n∈N is convergent and lim

n→∞
f(xn) = f(x0).

(2.5)

In the above claim, can “and lim
n→∞

f(xn) = f(x0)” be dropped from (2.5)?

3. (∗) This exercise concerns the norm ‖ · ‖1,∞ on C1[a, b] considered in Exercise 5 on page 12.

Since we want to be able to use ordinary calculus in the setting when we have a map with
domain as a function space, then, given a function F : C1[a, b] → R, it is reasonable to
choose a norm on C1[a, b] such that F is continuous.

(a) It might seem that induced norm on C1[a, b] from the space C[a, b] (of which C1[a, b]
as a subspace) would be adequate. However, this is not true in some instances. For
example, prove that the arc length function L : C1[0, 1] → R given by

L(f) =

∫ 1

0

√

1 + (f ′(x))2dx (2.6)

is not continuous if we equip C1[0, 1] with the norm induced from C[0, 1].

Hint: For every curve, we can find another curve arbitrarily close to the first in the
sense of the norm of C[0, 1], whose length differs from that of the first curve by a factor
of 10, say.

(b) Show that the arc length function L given by (2.6) is continuous if we equip C1[0, 1]
with the norm given by (1.19).

2.3 The normed space L (X, Y )

In this section we study those linear transformations from a normed space X to a normed space
Y that are also continuous, and we denote this set by L (X, Y ):

L (X, Y ) = {F : X → Y | F is a linear transformation}
⋂

{F : X → Y | F is continuous}.

We begin by giving a characterization of continuous linear transformations.

Theorem 2.3.1 Let X and Y be normed spaces over K (R or C). Let T : X → Y be a linear
transformation. Then the following properties of T are equivalent:
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1. T is continuous.

2. T is continuous at 0.

3. There exists a number M such that for all x ∈ X, ‖Tx‖ ≤ M‖x‖.

Proof

1 ⇒ 2. Evident.

2 ⇒ 3. For every ǫ > 0, for example ǫ = 1, there exists a δ > 0 such that ‖x‖ ≤ δ implies
‖Tx‖ ≤ 1. This yields:

‖Tx‖ ≤ 1

δ
‖x‖ for all x ∈ X. (2.7)

This is true if ‖x‖ = δ. But if (2.7) holds for some x, then owing to the homogeneity of T and of
the norm, it also holds for αx, for any arbitrary α ∈ K. Since every x can be written in the form

x = αy with ‖y‖ = δ (take α = ‖x‖
δ

), (2.7) is valid for all x. Thus we have that for all x ∈ X ,
‖Tx‖ ≤ M‖x‖ with M = 1

δ
.

3 ⇒ 1. From linearity, we have: ‖Tx − Ty‖ = ‖T (x − y)‖ ≤ M‖x − y‖ for all x, y ∈ X . The
continuity follows immediately.

Owing to the characterization of continuous linear transformations by the existence of a bound
as in item 3 above, they are called bounded linear operators.

Theorem 2.3.2 Let X and Y be normed spaces over K (R or C).

1. Let T : X → Y be a linear operator. Of all the constants M possible in 3 of Theorem 2.3.3,
there is a smallest one, and this is given by:

‖T ‖ = sup
‖x‖≤1

‖Tx‖. (2.8)

2. The set L (X, Y ) of bounded linear operators from X to Y with addition and scalar multi-
plication defined by:

(T + S)x = Tx + Sx, x ∈ X, (2.9)

(αT )x = αTx, x ∈ X, α ∈ K, (2.10)

is a vector space. The map T 7→ ‖T ‖ is a norm on this space.

Proof 1. From item 3 of Theorem 2.3.3, it follows immediately that ‖T ‖ ≤ M . Conversely we
have, by the definition of ‖T ‖, that ‖x‖ ≤ 1 ⇒ ‖Tx‖ ≤ ‖T ‖. Owing to the homogeneity of T

and of the norm, it again follows from this that:

‖Tx‖ ≤ ‖T ‖‖x‖ for all x ∈ X (2.11)

which means that ‖T ‖ is the smallest constant M that can occur in item 3 of Theorem 2.3.3.

2. We already know from linear algebra that the space of all linear transformations from a vector
space X to a vector space Y , equipped with the operations of addition and scalar multiplication
given by (2.9) and (2.10), forms a vector space. We now prove that the subset L (X, Y ) comprising
bounded linear transformations is a subspace of this vector space, and consequently it is itself a
vector space.
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We first prove that if T, S are in bounded linear transformations, then so are T + S and αT .
It is clear that T + S and αT are linear transformations. Moreover, there holds that

‖(T + S)x‖ ≤ ‖Tx‖ + ‖Sx‖ ≤ (‖T ‖ + ‖S‖)‖x‖, x ∈ X, (2.12)

from which it follows that T + S is bounded. Also there holds:

‖αT ‖ = sup
‖x‖≤1

‖αTx‖ = sup
‖x‖≤1

|α|‖Tx‖ = |α| sup
‖x‖≤1

‖Tx‖ = |α|‖T ‖. (2.13)

Finally, the 0 operator, is bounded and so it belongs to L (X, Y ).

Furthermore, L (X, Y ) is a normed space. Indeed, from (2.12), it follows that ‖T + S‖ ≤
‖T ‖ + ‖S‖, and so N3 holds. Also, from (2.13) we see that N2 holds. We have ‖T ‖ ≥ 0; from
(2.11) it follows that if ‖T ‖ = 0, then Tx = 0 for all x ∈ X , that is, T = 0, the operator 0, which
is the zero vector of the space L (X, Y ). This shows that N1 holds.

So far we have shown that the space of all continuous linear transformations (which we also call
the space of bounded linear operators), L (X, Y ), can be equipped with the operator norm given
by (2.8), so that L (X, Y ) becomes a normed space. We will now prove that in fact L (X, Y ) with
the operator norm is in fact a Banach space provided that the co-domain Y is a Banach space.

Theorem 2.3.3 If Y is complete, then L (X, Y ) is also complete.

Proof Let (Tn)n∈N be a Cauchy sequence in L (X, Y ). Then given a ǫ > 0 there exists a number
N such that: ‖Tn − Tm‖ ≤ ǫ for all n, m ≥ N , and so, if x ∈ X , then

∀n, m ≥ N, ‖Tnx − Tmx‖ ≤ ‖Tn − Tm‖‖x‖ ≤ ǫ‖x‖. (2.14)

This implies that the sequence (Tnx)n∈N is a Cauchy sequence in Y . Since Y is complete, lim
n→∞

Tnx

exists:
Tx = lim

n→∞
Tnx.

This holds for every point x ∈ X . It is clear that the map T : x 7→ T (x) is linear. More-
over, the map T is continuous: we see this by observing that a Cauchy sequence in a normed
space is bounded. Thus there exists a number M such that ‖Tn‖ ≤ M for all n (take M =
max(‖T1‖, . . . , ‖TN−1‖, ǫ + ‖TN‖)). Since

∀n ∈ N, ∀x ∈ X, ‖Tnx‖ ≤ M‖x‖,

by passing the limit, we obtain:

∀x ∈ X, ‖Tx‖ ≤ M‖x‖,

and so T is bounded.

Finally we show that lim
n→∞

‖Tn − T ‖ = 0. By letting m go to ∞ in (2.14), we see that

∀n ≥ N, ∀x ∈ X, ‖Tnx − Tx‖ ≤ ǫ‖x‖.

This means that for all n ≥ N , ‖Tn − T ‖ ≤ ǫ, which gives the desired result.

Corollary 2.3.4 Let X be a normed space over R or C. Then the normed space L (X, R)
(L (X, C) respectively) is a Banach space.
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Remark. The space L (X, R) (L (X, C) respectively) is denoted by X ′ (sometimes X∗) and is
called the dual space. Elements of the dual space are called bounded linear functionals.

Examples.

1. Let X = Rn, Y = Rm, and let

A =






a11 . . . a1n

...
...

am1 . . . amn




 ∈ Rm×n.

We equip X and Y with the Euclidean norm. From Hölder’s inequality with p = 2, it follows
that





n∑

j=1

aijxj





2

≤





n∑

j=1

a2
ij



 ‖x‖2,

for each i ∈ {1, . . .m}. This yields ‖TAx‖ ≤ ‖A‖2‖x‖ where

‖A‖2 =





m∑

i=1

n∑

j=1

a2
ij





1
2

. (2.15)

Thus we see that all linear transformations in finite dimensional spaces are continuous, and
that if X and Y are equipped with the Euclidean norm, then the operator norm is majorized
by the Euclidean norm of the matrix:

‖A‖ ≤ ‖A‖2.

Remark. There does not exist any ‘formula’ for ‖TA‖ in terms of the matrix coefficients
except in the special cases n = 1 or m = 1). The map A 7→ ‖A‖2 given by (2.15) is also a
norm on Rm×n, and is called the Hilbert-Schmidt norm of A.

2. Integral operators. We take X = Y = C[a, b]. Let k : [a, b] × [a, b] → K be a uniformly
continuous function, that is,

∀ǫ > 0, ∃δ > 0 such that ∀(x1, y1), (x2, y2) ∈ [a, b] × [a, b] satisfying
|x1 − x2| < δ and |y1 − y2| < δ, |k(x1, y1) − k(x2, y2)| < ǫ.

(2.16)

Such a k defines an operator

K : C[a, b] → C[a, b]

via the formula

(Kf)(x) =

∫ b

a

k(x, y)f(y)dy. (2.17)

We first show that Kf ∈ C[a, b]. Let x0 ∈ X , and suppose that ǫ > 0. Then choose a δ > 0
such that

if |x1 − x2| < δ and |y1 − y2| < δ, then |k(x1, y1) − k(x2, y2)| <
ǫ

‖f‖∞(b − a)
.
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Then we obtain

|(Kf)(x) − (Kf)(x0)| =

∣
∣
∣
∣
∣

∫ b

a

k(x, y)f(y)dy −
∫ b

a

k(x0, y)f(y)dy

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ b

a

(k(x, y) − k(x0, y))f(y)dy

∣
∣
∣
∣
∣

≤
∫ b

a

|k(x, y) − k(x0, y)||f(y)|dy

≤ (b − a)
ǫ

‖f‖∞(b − a)
‖f‖∞ = ǫ.

This proves that Kf is a continuous function, that is, it belongs to X = C[a, b]. The map
f 7→ Kf is clearly linear. Moreover,

|(Kf)(t)| ≤
∫ b

a

|k(t, s)| |f(s)|ds ≤
∫ b

a

|k(t, s)|ds ‖f‖∞

so that if ‖k‖∞ denotes the supremum1 of |k| on [a, b]2, we have:

‖Kf‖∞ ≤ (b − a)‖k‖∞‖f‖∞ for all f ∈ C[a, b].

Thus it follows that K is bounded, and that

‖K‖ ≤ (b − a)‖k‖∞.

Remark. Note that the formula (2.17) is analogous to the matrix product

(Kf)i =
n∑

j=1

kijfj .

Operators of the type (2.17) are called integral operators. It used to be common to call the
function k that plays the role of the matrix (kij), as the ‘kernel’ of the integral operator.
However, this has nothing to do with the null space: {f | Kf = 0}, which is also called the
kernel. Many variations of the integral operator are possible. ♦

Exercises.

1. Let X, Y be normed spaces with X 6= 0, and T ∈ L (X, Y ). Show that

‖T ‖ = sup{‖Tx‖ | x ∈ X and ‖x‖ = 1} = sup

{‖Tx‖
‖x‖

∣
∣
∣
∣

x ∈ X and x 6= 0

}

.

So one can think of ‖T ‖ as the maximum possible ‘amplification factor’ of the norm as a
vector x is taken by T to the vector Tx.

2. Let (λn)n∈N be a bounded sequence of scalars, and consider the diagonal operator D : ℓ2 → ℓ2

defined as follows:

D(x1, x2, x3, . . . ) = (λ1x1, λ2x2, λ3x3, . . . ), (xn)n∈N ∈ ℓ2. (2.18)

Prove that D ∈ L (ℓ2) and that
‖D‖ = sup

n∈N

|λn|.

1This is finite, and can be seen from (2.16), since [a, b]2 can be covered by finitely many boxes of width 2δ.
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3. An analogue of the diagonal operator in the context of function spaces is the multiplication
operator. Let l be a continuous function on [a, b]. Define the multiplication operator M :
C[a, b] → C[a, b] as follows:

(Mf)(x) = l(x)f(x), x ∈ [a, b], f ∈ C[a, b].

Is M a bounded linear operator?

4. A linear transformation on a vector space X may be continuous with respect to some norm
on X , but discontinuous with respect to another norm on X . To illustrate this, let X be
the space c00 of all sequences with only finitely many nonzero terms. This is a subspace of
ℓ1 ∩ ℓ2. Consider the linear transformation T : c00 → R given by

T ((xn)n∈N) = x1 + x2 + x3 + . . . , (xn)n∈N ∈ c00.

(a) Let c00 be equipped with the induced norm from ℓ1. Prove that T is a bounded linear
operator from (c00, ‖ · ‖1) to R.

(b) Let c00 be equipped with the induced norm from ℓ2. Prove that T is not a bounded
linear operator from (c00, ‖ · ‖2) to R.

Hint: Consider the sequences
(
1, 1

2 , 1
3 , . . . , 1

m
, 0, . . .

)
, m ∈ N.

5. Prove that the averaging operator A : ℓ∞ → ℓ∞, defined by

A(x1, x2, x3, . . . ) =

(

x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . .

)

, (2.19)

is a bounded linear operator. What is the norm of A?

6. (∗) A subspace V of a normed space X is said to be an invariant subspace with respect to
a linear transformation T : X → X if TV ⊂ V .

Let A : ℓ∞ → ℓ∞ be the averaging operator given by (2.19). Show that the subspace (of ℓ∞)
c comprising convergent sequences is an invariant subspace of the averaging operator A.

Hint: Prove that if x ∈ c has limit L, then Ax has limit L as well.

Remark. Invariant subspaces are useful since they are helpful in studying complicated op-
erators by breaking down them into smaller operators acting on invariant subspaces. This is
already familiar to the student from the diagonalization procedure in linear algebra, where
one decomposes the vector space into eigenspaces, and in these eigenspaces the linear trans-
formation acts trivially. One of the open problems in modern functional analysis is the
invariant subspace problem:

Does every bounded linear operator on a separable Hilbert space X over C have a non-trivial
invariant subspace?

Hilbert spaces are just special types of Banach spaces, and we will learn about Hilbert spaces
in Chapter 4. We will also learn about separability. Non-trivial means that the invariant
subspace must be different from 0 or X . In the case of Banach spaces, the answer to the
above question is ‘no’: during the annual meeting of the American Mathematical Society
in Toronto in 1976, the young Swedish mathematician Per Enflo announced the existence
of a Banach space and a bounded linear operator on it without any non-trivial invariant
subspace.

7. (∗) (Dual of C[a, b]) In this exercise we will learn a representation of bounded linear func-
tionals on C[a, b].

A function w : [a, b] → R is said to be of bounded variation on [a, b] if its total variation
Var(w) on [a, b] is finite, where

Var(w) = sup
P

n∑

j=1

|w(xj) − w(xj−1)|,
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the supremum being taken over the set P of all partitions

a = x0 < x1 < · · · < xn = b (2.20)

of the interval [a, b]; here, n ∈ N is arbitrary and so is the choice of the values x1, . . . , xn−1

in [a, b], which, however, must satisfy (2.20).

Show that the set of all functions of bounded variations on [a, b], with the usual operations
forms a vector space, denoted by BV[a, b].

Define ‖ · ‖ : BV[a, b] → [0, +∞) as follows: if w ∈ BV[a, b], then

‖w‖ = |w(a)| + Var(w). (2.21)

Prove that ‖ · ‖ given by (2.21) is a norm on BV[a, b].

We now obtain the concept of a Riemann-Stieltjes integral as follows. Let f ∈ C[a, b] and
w ∈ BV[a, b]. Let Pn be any partition of [a, b] given by (2.20) and denote by ∆(Pn) the
length of a largest interval [xj−1, xj ], that is,

∆(Pn) = max{x1 − x0, . . . , xn − xn−1}.

For every partition Pn of [a, b], we consider the sum

S(Pn) =

n∑

j=1

f(xj)(w(xj) − w(xj−1)).

Then the following can be shown:

Fact: There exists a unique number S with the property that for every ǫ > 0 there is a
δ > 0 such that if Pn is a partition satisfying ∆(Pn) < δ, then |S − S(Pn)| < ǫ.

S is called the Riemann-Stieltjes integral of f over [a, b] with respect to w, and is denoted
by

∫ b

a

f(x)dw(x).

It can be seen that

∫ b

a

f1(x) + f2(x)dw(x) =

∫ b

a

f1(x)dw(x) +

∫ b

a

f2(x)dw(x) for all f1, f2 ∈ C[a, b], (2.22)

∫ b

a

αf(x)dw(x) = α

∫ b

a

f(x)dw(x) for all f ∈ C[a, b] and all α ∈ K. (2.23)

Prove the following inequality:

∣
∣
∣
∣
∣

∫ b

a

f(x)dw(x)

∣
∣
∣
∣
∣
≤ ‖f‖∞Var(w),

where f ∈ C[a, b] and w ∈ BV[a, b]. Conclude that every w ∈ BV[a, b] gives rise to a bounded
linear functional Tw ∈ L (C[a, b], K) as follows:

f 7→
∫ b

a

f(x)dw(x),

and that ‖Tw‖ ≤ Var(w).

The following converse result was proved by F. Riesz:
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Theorem 2.3.5 (Riesz’s theorem about functionals on C[a, b]) If T ∈ L (C[a, b], K), then
there exists a w ∈ BV[a, b] such that

∀f ∈ C[a, b], T (f) =

∫ b

a

f(x)dw(x),

and ‖T ‖ = Var(w).

In other words, every bounded linear functional on C[a, b] can be represented by a Riemann-
Stieltjes integral.

Now consider the bounded linear functional on C[a, b] given by f 7→ f(b). Find a corre-
sponding w ∈ BV[a, b].

8. (a) Consider the subspace c of ℓ∞ comprising convergent sequences. Prove that the limit
map l : c → K given by

l(xn)n∈N = lim
n→∞

xn, (xn)n∈N ∈ c, (2.24)

is an element in the dual space L (c, K) of c, when c is equipped with the induced norm
from ℓ∞.

(b) (∗) The Hahn-Banach theorem is a deep result in functional analysis, which says the
following:

Theorem 2.3.6 (Hahn-Banach) Let X be a normed space and Y be a subspace of X.
If l ∈ L (Y, K), then there exists a L ∈ L (X, K) such that L|Y = l and ‖L‖ = ‖l‖.

Thus the theorem says that bounded linear functionals can be extended from subspaces
to the whole space, while preserving the norm.

Consider the following set in ℓ∞:

Y =

{

(xn)n∈N ∈ ℓ∞
∣
∣
∣
∣

lim
n→∞

x1 + · · · + xn

n
exists

}

.

Show that Y is a subspace of ℓ∞, and that for all x ∈ ℓ∞, x−Sx ∈ Y , where S : ℓ∞ →
ℓ∞ denotes the shift operator:

S(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ), (xn)n∈N ∈ ℓ∞.

Furthermore, prove that c ⊂ Y .

Consider the limit functional l on c given by (2.24). Prove that there exists an L ∈
L (ℓ∞, K) such that L|c = l and moreover, LS = L.

This gives a generalization of the concept of a limit, and Lx is called a Banach limit of
a (possibly divergent!) sequence x ∈ ℓ∞.

Hint: First observe that L0 : Y → K defined by

L0(xn)n∈N = lim
n→∞

x1 + · · · + xn

n
, (xn)n∈N ∈ Y,

is an extension of the functional l from c to Y . Now use the Hahn-Banach theorem to
extend L0 from Y to ℓ∞.

(c) Find the Banach limit of the divergent sequence ((−1)n)n∈N.
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2.4 The Banach algebra L (X). The Neumann series

In this section we study L (X, Y ) when X = Y , and X is a Banach space.

Let X, Y, Z be normed spaces over K.

Theorem 2.4.1 If B : X → Y and A : Y → Z are bounded linear operators, then the composition
AB : X → Z is a bounded linear operator, and there holds:

‖AB‖ ≤ ‖A‖‖B‖. (2.25)

Proof For all x ∈ X , we have

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖

and so AB is a bounded linear operator, and ‖AB‖ ≤ ‖A‖‖B‖.

We shall use (2.25) mostly in the situations when X = Y = Z. The space L (X, X) is denoted
in short by L (X), and it is an algebra.

Definitions. An algebra is a vector space X in which an associative and distributive multiplication
is defined, that is,

x(yz) = (xy)z, (x + y)z = xz + yz, x(y + z) = xy + xz

for x, y, z ∈ X , and which is related to scalar multiplication so that

α(xy) = x(αy) = (αx)y (2.26)

for x, y ∈ X and α ∈ K. An element e ∈ X is called an identity element if

∀x ∈ X, ex = x = xe.

From the previous proposition, we have that if A, B ∈ L (X), then AB ∈ L (X). We see that
L (X) is an algebra with the product (A, B) 7→ AB. Moreover L (X) has an identity element,
namely the identity operator I.

Definitions. A normed algebra is an algebra equipped with a norm that satisfies (2.25). A Banach
algebra is a normed algebra which is complete.

Thus we have the following theorem:

Theorem 2.4.2 If X is a Banach space, then L (X) is a Banach algebra with identity. Moreover,
‖I‖ = 1.

Remark. (To be read after a Hilbert spaces are introduced.) If instead of Banach spaces, we are
interested only in Hilbert spaces, then still the notion of a Banach space is indispensable, since
L (X) is a Banach space, but not a Hilbert space in general.

Definition. Let X be a normed space. An element A ∈ L (X) is invertible if there exists an
element B ∈ L (X) such that:

AB = BA = I.
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Such an element B is then uniquely defined: Indeed, if AB′ = B′A = I, then thanks to the
associativity, we have:

B′ = B′I = B′(AB) = (B′A)B = IB = B.

The element B, the inverse of A, is denoted by A−1. Thus we have:

AA−1 = A−1A = I.

In particular,
AA−1x = A−1Ax = x for all x ∈ X

so that A : X → X is bijective2.

Theorem 2.4.3 Let X be a Banach space.

1. Let A ∈ L (X) be a linear operator with ‖A‖ < 1. Then the operator I −A is invertible and

(I − A)−1 = I + A + A2 + · · · + An + · · · =

∞∑

n=0

An. (2.27)

2. In particular, I−A : X → X is bijective: for all y ∈ X, there exists a unique solution x ∈ X

of the equation
x − Ax = y,

and moreover, there holds that:

‖x‖ ≤ 1

1 − ‖A‖‖y‖.

The geometric series in (2.27) is called the Neumann series after Carl Neumann, who used
this in connection with the solution of the Dirichlet problem for a convex domain.

In order to prove Theorem 2.4.3, we we will need the following result.

Lemma 2.4.4 There holds
‖An‖ ≤ ‖A‖n for all n ∈ N. (2.28)

Proof This follows by using induction on n from (2.25): if (2.28) holds for n, then from (2.25)
we have ‖An+1‖ ≤ ‖An‖ ‖A‖ ≤ ‖A‖n‖A‖ = ‖A‖n+1.

Proof (of Theorem 2.4.3.) Since ‖A‖ < 1, we have

∞∑

n=0

‖An‖ ≤
∞∑

n=0

‖A‖n =
1

1 − ‖A‖ < +∞,

so that the Neumann series converges in the Banach space L (X) (see Theorem 1.3.1). Let

Sn = I + A + · · · + An and S = I + A + · · · + An + · · · =

∞∑

n=0

An = lim
n→∞

Sn.

From the inequality (2.25), it follows that for a fixed A ∈ L (X), the maps B 7→ AB and B 7→ BA

are continuous from L (X) to itself. We have: ASn = SnA = A + A2 + · · ·+ An+1 = Sn+1 − I. In

2In fact if X is a Banach space, then it can be shown that every bijective linear operator is invertible, and this
is a consequence of a deep theorem, known as the open mapping theorem.
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the limit, this yields: AS = SA = S− I, and so (I −A)S = S(I −A) = I. Thus I −A is invertible
and (I − A)−1 = S. Again, using Theorem 1.3.1, we have ‖S‖ ≤ 1

1−‖A‖ .

The second claim is a direct consequence of the above.

Example. Let k be a uniformly continuous function on [a, b]2. Assume that (b − a)‖k‖∞ < 1.
Then for every g ∈ C[a, b], there exists a unique solution f ∈ C[a, b] of the integral equation:

f(x) −
∫ b

a

k(x, y)f(y)dy = g(x) for all x ∈ [a, b]. (2.29)

Integral equations of the type (2.29) are called Fredholm integral equations of the second kind.

Fredholm integral equations of the first kind, that is:

∫ b

a

k(x, y)g(y)dy = g(x) for all x ∈ [a, b]

are much more difficult to handle.

What can we say about the solution f ∈ C[a, b] except that it is a continuous function? In
general nothing. Indeed the operator I − K is bijective, and so every f ∈ C[a, b] is of the form
(I − K)−1g for g = (I − K)f . ♦

Exercises.

1. Consider the system
x1 = 1

2x1 + 1
3x2 + 1,

x2 = 1
3x1 + 1

4x2 + 2,

}

(2.30)

in the unknown variables (x1, x2) ∈ R2. This system can be written as (I −K)x = y, where
I denotes the identity matrix,

K =

[
1
2

−1
3

1
3

1
4

]

, y =

[
1
2

]

and x =

[
x1

x2

]

.

(a) Show that if R2 is equipped with the norm ‖ · ‖2, then ‖K‖ < 1. Conclude that the
system (2.30) has a unique solution (denoted by x in the sequel).

(b) Find out the unique solution x by computing (I − K)−1.

approximate solution relative error (%)

n xn = (I + K + K2 + · · · + Kn)y ‖x−xn‖2

‖x‖2

2 (3.0278, 3.4306) 38.63
3 (3.6574, 3.8669) 28.24
5 (4.4541, 4.4190) 15.09
10 (5.1776, 4.9204) 3.15
15 (5.3286, 5.0250) 0.66
20 (5.3601, 5.0469) 0.14
25 (5.3667, 5.0514) 0.03
30 (5.3681, 5.0524) 0.01

Table 2.1: Convergence of the Neumann series to the solution x ≈ (5.3684, 5.0526).

(c) Write a computer program to compute xn = (I + K + K2 + K3 + · · · + Kn)y and the

relative error ‖x−x0‖
‖x‖2

for various values of n (say, until the relative error is less than
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1%). See Table 2.1. We see that the convergence of the Neumann series converges very
slowly.

2. (a) Let X be a normed space, and let (Tn)n∈N be a convergent sequence with limit T in
L (X). If S ∈ L (X), then show that (STn)n∈N is convergent in L (X), with limit ST .

(b) Let X be a Banach space, and let A ∈ L (X) be such that ‖A‖ < 1. Consider the
sequence (Pn)n∈N defined as follows:

Pn = (I + A)(I + A2)(I + A4) . . . (I + A2n

), n ∈ N.

i. Using induction, show that (I − A)Pn = I − A2n+1

for all n ∈ N.

ii. Prove that (Pn)n∈N is convergent in L (X) in the operator norm. What is the limit
of (Pn)n∈N?
Hint: Use ‖Am‖ ≤ ‖A‖m (m ∈ N). Also use part 2a with S = (I − A)−1.

2.5 The exponential of an operator

Let X be a Banach space and A ∈ L (X) be a bounded linear operator. In this section, we will
study the exponential eA, where A is an operator.

Theorem 2.5.1 Let X be a Banach space. If A ∈ L (X), then the series

eA :=

∞∑

n=0

1

n!
An (2.31)

converges in L (X).

Proof That the series (2.31) converges absolutely is an immediate consequence of the inequality:
∥
∥
∥
∥

1

n!
An

∥
∥
∥
∥
≤ ‖A‖n

n!
,

and the fact that the real series

∞∑

n=0

1

n!
xn converges for all real x ∈ R. Using Theorem 1.3.1, we

obtain the desired result.

The exponential of an operator plays an important role in the theory of differential equations.
Let X be a Banach space, for example, Rn, and let x0 ∈ X . It can be shown that there exists
precisely one continuously differentiable function t 7→ x(t) ∈ X , namely x(t) = etAx0 such that:

dx

dt
(t) = Ax(t), t ∈ R (2.32)

x(0) = x0. (2.33)

Briefly: The Cauchy initial value problem (2.32)-(2.33) has a unique solution.

Exercises.

1. A matrix A ∈ Bn×n is said to be nilpotent if there exists a n ≥ 0 such that An = 0. The
series for eA is a finite sum if A is nilpotent. Compute eA, where

A =

[
0 1
0 0

]

. (2.34)
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2. Let D ∈ Cn×n be a diagonal matrix

D =






λ1

. . .

λn




 ,

for some λ1, . . . , λn ∈ C. Find eD.

3. If P is an invertible n×n matrix, then show that for any n×n matrix Q, ePQP−1

= PeQP−1.

A matrix A ∈ Cn×n is said to be diagonalizable if there exists a matrix P and a diagonal
matrix D such that A = PDP−1.

Diagonalize

A =

[
a b

−b a

]

,

and show that

eA = ea

[
cos b sin b

− sin b cos b

]

.

4. It can be shown that if X is a Banach space and A, B ∈ L (X) commute (that is, AB = BA),
then eA+B = eAeB.

(a) Let X be a Banach space. Prove that for all A ∈ L (X), eA is invertible.

(b) Let X be a Banach space and A ∈ L (X). Show that if s, t ∈ R, then e(s+t)A = esAetA.

(c) Give an example of 2 × 2 matrices A and B such that eA+B 6= eAeB.

Hint: Take for instance A given by (2.34) and B = −A⊤.

2.6 Left and right inverses

We have already remarked that the product in L (X) is not commutative, that is, in general,
AB 6= BA (except when X = K and so L (X) = K). This can be already seen in the case of
operators in R2 or C2. For example a rotation followed by a reflection is, in general, not the same
as this reflection followed by the same rotation.

Definitions. Let X be a normed space and suppose that A ∈ L (X). If there exists a B ∈ L (X)
such that AB = I, then one says that B is a right inverse of A. If there exists a C ∈ L (X) such
that CA = I, then C is called the left inverse of A.

If A has both a right inverse (say B) and a left inverse (say C), then we have

B = IB = (CA)B = C(AB) = CI = C.

Thus if the operator A has a left and a right inverse, then they must be equal, and A is then
invertible.

If X is finite dimensional, then one can show that A ∈ L (X) is invertible iff A has a left (or
right) inverse. For example, AB = I shows that A is surjective, which implies that A is bijective,
and hence invertible.

However, in an infinite dimensional space X , this is no longer the case in general. There exist
injective operators in X that are not surjective, and there exist surjective operators that are not
injective.
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Example. Consider the right shift and left shift operators R : ℓ2 → ℓ2, L : ℓ2 → ℓ2, respectively,
given by

R(x1, x2, . . . ) = (0, x1, x2, . . . ) and L(x1, x2, . . . ) = (x2, x3, x4, . . . ), (xn)n∈N ∈ ℓ2.

Then R is not surjective, and L is not injective, but there holds: LR = I. Hence we see that L has
a right inverse, but it is not bijective, and a fortiori not invertible, and that R has a left inverse,
but is not bijective and a fortiori not invertible. ♦

Remark. The term ‘invertible’ is not always used in the same manner. Sometimes the operator
A ∈ L (X) is called invertible if it is injective. The inverse is then an operator which is defined on
the image of A. However in these notes, invertible always means that A ∈ L (X) has an inverse
in the algebra L (X).

Exercises.

1. Verify that R and L are bounded linear operators on ℓ2. (R is in fact an isometry, that is,
it satisfies ‖Rx‖ = ‖x‖ for all x ∈ ℓ2).

2. The trace of a square matrix

A =






a11 . . . a1n

...
...

an1 . . . ann




 ∈ Cn×n

is the sum of its diagonal entries:

tr(A) = a11 + · · · + ann.

Show that tr(A + B) = tr(A) + tr(B) and that tr(AB) = tr(BA).

Prove that there cannot exist matrices A, B ∈ Cn×n such that AB − BA = I, where I

denotes the n × n identity matrix.

Let C∞(R, R) denote the set of all functions f : R → R such that for all n ∈ N, f (n) exists
and is continuous. It is easy to see that this forms a subspace of the vector space C(R, R)
with the usual operations, and it is called the space of infinitely differentiable functions.

Consider the operators A, B : C∞(R, R) → C∞(R, R) given as follows: if f ∈ C∞(R, R),
then

(Af)(x) =
df

dx
(x) and (Bf)(x) = xf(x), x ∈ R.

Show that AB − BA = I, where I denotes the identity operator on C∞(R, R).

3. Let X be a normed space, and suppose that A, B ∈ L (X). Show that if I +AB is invertible,
then I + BA is also invertible, with inverse I − B(I + AB)−1A.

4. Consider the diagonal operator considered in Exercise 2 on page 24. Under what condition
on the sequence (λn)n∈N is D invertible?
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Chapter 3

Differentiation

In the last chapter we studied continuity of operators from a normed space X to a normed space
Y . In this chapter, we will study differentiation: we will define the (Frechet) derivative of a map
F : X → Y at a point x0 ∈ X . Roughly speaking, the derivative of a nonlinear map at a point is
a local approximation by means of a continuous linear transformation. Thus the derivative at a
point will be a bounded linear operator. This theme of local approximation is the basis of several
computational methods in nonlinear functional analysis.

As an application of the notion of differentiation, we will indicate the use of the derivative in
solving optimization problems in normed spaces. We outline this below by reviewing the situation
in the case of functions from R to R.

Consider the quadratic function f(x) = ax2 + bx + c. Suppose that one wants to know the
points x0 at which f assumes a maximum or a minimum. We know that if f has a maximum
or a minimum at the point x0, then the derivative of the function must be zero at that point:
f ′(x0) = 0. See Figure 3.1.

x xx0x0

ff

Figure 3.1: Necessary condition for x0 to be an extremal point for f is that f ′(x0) = 0.

So one can then one can proceed as follows. First find the expression for the derivative:
f ′(x) = 2ax + b. Next solve for the unknown x0 in the equation f ′(x0) = 0, that is,

2ax0 + b = 0 (3.1)

and so we find that a candidate for the point x0 which minimizes or maximizes f is x0 = − b
2a

,
which is obtained by solving the algebraic equation (3.1) above.

We wish to do the above with maps living on function spaces, such as C[a, b], and taking
values in R. In order to do this we need a notion of derivative of a map from a function space
to R, and an analogue of the fact above concerning the necessity of the vanishing derivative at
extremal points. We define the derivative of a map I : X → Y (where X , Y are normed spaces)
in §3.1, and in the case that Y = R, we prove Theorem 3.2.1, which says that this derivative must
vanish at local maximum/minimum of the map I.

35
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In the last section of the chapter, we apply Theorem 3.2.1 to the concrete case where X

comprises continuously differentiable functions, and I is the map

I(x) =

∫ T

0

(P − ax(t) − bx′(t))x′(t)dt. (3.2)

Setting the derivative of such a functional to zero, a necessary condition for an extremal curve can
be obtained. Instead of an algebraic equation (3.1), a differential equation (3.12) is obtained. The
solution x0 of this differential equation is the candidate which maximizes/minimizes the function
I.

3.1 The derivative

Recall that for a function f : R → R, the derivative at a point x0 is the approximation of f around
x0 by a straight line. See Figure 3.2.

f(x0)

x0
x

Figure 3.2: The derivative of f at x0.

In other words, the derivative f ′(x0) gives the slope of the line which is tangent to the function f

at the point x0:

f ′(x0) = lim
x→x0

f(x) − f(x0)

x − x0
.

In other words,

lim
x→x0

∣
∣
∣
∣

f(x) − f(x0) − f ′(x0)(x − x0)

x − x0

∣
∣
∣
∣
= 0,

that is,

∀ǫ > 0, ∃δ > 0 such that ∀x ∈ R\{x0} satisfying |x−x0| < δ,
|f(x) − f(x0) − f ′(x0)(x − x0)|

|x − x0|
< ǫ.

Observe that every real number α gives rise to a linear transformation from R to R: the operator
in question is simply multiplication by α, that is the map x 7→ αx. We can therefore think of
(f ′(x0))(x − x0) as the action of the linear transformation L : R → R on the vector x− x0, where
L is given by

L(h) = f ′(x0)h, h ∈ R.

Hence the derivative f ′(x0) is simply a linear map from R to R. In the same manner, in the
definition of a derivative of a map F : X → Y between normed spaces X and Y , the derivative of
F at a point x0 will be defined to be a linear transformation from X to Y .

A linear map L : R → R is automatically continuous1 But this is not true in general if R is
replaced by infinite dimensional normed linear spaces! And we would expect that the derivative

1Indeed, every linear map L : R → R is simply given by multiplication, since L(x) = L(x · 1) = xL(1).
Consequently |L(x) − L(y)| = |L(1)||x − y|, and so L is continuous!
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(being the approximation of the map at a point) to have the same property as the function itself
at that point. Of course, a differentiable function should first of all be continuous (so that this
situation matches with the case of functions from R to R from ordinary calculus), and so we
expect the derivative to be a continuous linear transformation, that is, it should be a bounded
linear operator. So while generalizing the notion of the derivative from ordinary calculus to the
case of a map F : X → Y between normed spaces X and Y , we now specify continuity of the
derivative as well. Thus, in the definition of a derivative of a map F , the derivative of F at a
point x0 will be defined to be a bounded linear transformation from X to Y , that is, an element
of L (X, Y ).

This motivates the following definition.

Definition. Let X, Y be normed spaces. If F : X → Y be a map and x0 ∈ X , then F is said to
be differentiable at x0 if there exists a bounded linear operator L ∈ L (X, Y ) such that

∀ǫ > 0, ∃δ > 0 such that ∀x ∈ X\{x0} satisfying ‖x−x0‖ < δ,
‖F (x) − F (x0) − L(x − x0)‖

‖x − x0‖
< ǫ.

(3.3)
The operator L is called a derivative of F at x0. If F is differentiable at every point x ∈ X , then
it is simply said to be differentiable.

We now prove that if F is differentiable at x0, then its derivative is unique.

Theorem 3.1.1 Let X, Y be normed spaces. If F : X → Y is differentiable at x0 ∈ X, then the
derivative of F at x0 is unique.

Proof Suppose that L1, L2 ∈ L (X, Y ) are derivatives of F at x0. Given ǫ > 0, choose a δ such
that (3.3) holds with L1 and L2 instead of L. Consequently

∀x ∈ X \ {x0} satisfying ‖x − x0‖ < δ,
‖L2(x − x0) − L1(x − x0)‖

‖x − x0‖
< 2ǫ. (3.4)

Given any h ∈ X such that h 6= 0, define

x = x0 +
δ

2‖h‖h.

Then ‖x − x0‖ = δ
2 < δ and so (3.4) yields

‖(L2 − L1)h‖ ≤ 2ǫ‖h‖. (3.5)

Hence ‖L2 − L1‖ ≤ 2ǫ, and since the choice of ǫ > 0 was arbitrary, we obtain ‖L2 − L1‖ = 0. So
L2 = L1, and this completes the proof.

Notation. We denote the derivative of F at x0 by DF (x0).

Examples.

1. Consider the nonlinear squaring map S from the example on page 19. We had seen that S

is continuous. We now show that S : C[a, b] → C[a, b] is in fact differentiable. We note that

(Su − Su0)(t) = u(t)2 − u0(t)
2 = (u(t) + u0(t))

︸ ︷︷ ︸
(u(t) − u0(t)). (3.6)
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As u approaches u0 in C[a, b], the term u(t)+ u0(t) above approaches 2u0(t). So from (3.6),
we suspect that (DS)(u0) would be the multiplication map M by 2u0:

(Mu)(t) = 2u0(t)u(t), t ∈ [a, b].

Let us prove this. Let ǫ > 0. We have

|(Su − Su0 − M(u − u0))(t)| = |u(t)2 − u0(t)
2 − 2u0(t)(u(t) − u0(t))|

= |u(t)2 + u0(t)
2 − 2u0(t)u(t)|

= |u(t) − u0(t)|2

≤ ‖u − u0‖2.

Hence if δ := ǫ > 0, then for all u ∈ C[a, b] satisfying ‖u − u0‖ < δ, we have

‖Su − Su0 − M(u − u0)‖ ≤ ‖u − u0‖2,

and so for all u ∈ C[a, b] \ {u0} satisfying ‖u − u0‖ < δ, we obtain

‖Su − Su0 − M(u − u0)‖
‖u − u0‖

≤ ‖u − u0‖ < δ = ǫ.

Thus DS(u0) = M .

2. Let X, Y be normed spaces and let T ∈ L (X, Y ). Is T differentiable, and if so, what is its
derivative?

Recall that the derivative at a point is the linear transformation that approximates the map
at that point. If the map is itself linear, then we expect the derivative to equal the given
linear map! We claim that (DT )(x0) = T , and we prove this below.

Given ǫ > 0, choose any δ > 0. Then for all x ∈ X satisfying ‖x − x0‖ < δ, we have

‖Tx− Tx0 − T (x − x0)‖ = ‖Tx − Tx0 − Tx + Tx0‖ = 0 < ǫ.

Consequently (DT )(x0) = T .

In particular, if X = Rn, Y = Rm, and T = TA, where A ∈ Rm×n, then (DTA)(x0) = TA. ♦

Exercises.

1. Let X, Y be normed spaces. Prove that if F : X → Y is differentiable at x0, then F is
continuous at x0.

2. Consider the functional I : C[a, b] → R given by

I(x) =

∫ b

a

x(t)dt.

Prove that I is differentiable, and find its derivative at x0 ∈ C[a, b].

3. (∗) Prove that the square of a differentiable functional I : X → R is differentiable, and find
an expression for its derivative at x ∈ X .

Hint: (I(x))2 − (I(x0))
2 = (I(x) + I(x0))(I(x) − I(x0)) ≈ 2I(x0)DI(x0)(x − x0) if x ≈ x0.

4. (a) Given x1, x2 in a normed space X , define

ϕ(t) = tx1 + (1 − t)x2.

Prove that if I : X → R is differentiable, then I ◦ ϕ : [0, 1] → R is differentiable and

d

dt
(I ◦ ϕ)(t) = [DI(ϕ(t))](x1 − x2).

(b) Prove that if I1, I2 : X → R are differentiable and their derivatives are equal at every
x ∈ X , then I1 and I2 differ by a constant.
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3.2 Optimization: necessity of vanishing derivative

In this section we take the normed space Y = R, and consider maps maps I : X → R. We wish
to find points x0 ∈ X that maximize/minimize I.

In elementary analysis, a necessary condition for a differentiable function f : R → R to have
a local extremum (local maximum or local minimum) at x0 ∈ R is that f ′(x0) = 0. We will prove
a similar necessary condition for a differentiable function I : X → R.

First we specify what exactly we mean by a ‘local maximum/minimum’ (collectively termed
‘local extremum’). Roughly speaking, a point x0 ∈ X is a local maximum/minimum for I if for
all points x in some neighbourhood of that point, the values I(x) are all less (respectively greater)
than I(x0).

Definition. Let X be a normed space. A function I : X → R is said to have a local extremum at
x0 (∈ X) if there exists a δ > 0 such that

∀x ∈ X \ {x0} satisfying ‖x − x0‖ < δ, I(x) ≥ I(x0) (local minimum)

or

∀x ∈ X satisfying ‖x − x0‖ < δ, I(x) ≤ I(x0) (local maximum).

Theorem 3.2.1 Let X be a normed space, and let I : X → R be a function that is differentiable
at x0 ∈ X. If I has a local extremum at x0, then (DI)(x0) = 0.

Proof We prove the statement in the case that I has a local minimum at x0. (If instead I has
a local maximum at x0, then the function −I has a local minimum at x0, and so (DI)(x0) =
−(D(−I))(x0) = 0.)

For notational simplicity, we denote (DI)(x0) by L. Suppose that Lh 6= 0 for some h ∈ X .
Let ǫ > 0 be given. Choose a δ such that for all x ∈ X satisfying ‖x− x0‖ < δ, I(x) ≥ I(x0), and
moreover if x 6= x0, then

|I(x) − I(x0) − L(x − x0)|
‖x − x0‖

< ǫ.

Define the sequence

xn = x0 −
1

n

Lh

|Lh|h, n ∈ N.

We note that ‖xn − x0‖ = ‖h‖
n

, and so with N chosen large enough, we have ‖xn − x0‖ < δ for all
n > N . It follows that for all n > N ,

0 ≤ I(xn) − I(x0)

‖xn − x0‖
<

L(xn − x0)

‖xn − x0‖
+ ǫ = −|Lh|

‖h‖ + ǫ.

Since the choice of ǫ > 0 was arbitrary, we obtain |Lh| ≤ 0, and so Lh = 0, a contradiction.

Remark. Note that this is a necessary condition for the existence of a local extremum. Thus
a the vanishing of a derivative at some point x0 doesn’t imply local extremality of x0! This is
analogous to the case of f : R → R given by f(x) = x3, for which f ′(0) = 0, although f clearly
does not have a local minimum or maximum at 0. In the next section we study an important
class of functions I : X → R, called convex functions, for which a vanishing derivative implies the
function has a global minimum at that point!



40 Chapter 3. Differentiation

3.3 Optimization: sufficiency in the convex case

In this section, we will show that if I : X → R is a convex function, then a vanishing derivative
is enough to conclude that the function has a global minimum at that point. We begin by giving
the definition of a convex function.

Definition. Let X be a normed space. A function F : X → R is convex if for all x1, x2 ∈ X and
all α ∈ [0, 1],

F (αx1 + (1 − α)x2) ≤ αF (x1) + (1 − α)F (x2). (3.7)

X

x1

αx1 + (1 − α)x2

x2

Figure 3.3: Convex function.

Examples.

1. If X = R, then the function f(x) = x2, x ∈ R, is convex. This is visually obvious from
Figure 3.4, since we see that the point B lies above the point A:

B

A

x1 x2

f(x1)

f(x2)

︷ ︸︸ ︷

αx1 + (1 − α)x2

f(αx1 + (1 − α)x2)

αf(x1) + (1 − α)f(x2)

0

Figure 3.4: The convex function x 7→ x2.

But one can prove this as follows: for all x1, x2 ∈ R and all α ∈ [0, 1], we have

f(αx1 + (1 − α)x2) = (αx1 + (1 − α)x2)
2 = α2x2

1 + 2α(1 − α)x1x2 + (1 − α)2x2
2

= αx2
1 + (1 − α)x2

2 + (α2 − α)x2
1 + (α2 − α)x2

2 + 2α(1 − α)x1x2

= αx2
1 + (1 − α)x2

2 − α(1 − α)(x2
1 + x2

2 − 2x1x2)

= αx2
1 + (1 − α)x2

2 − α(1 − α)(x1 − x2)
2

≤ αx2
1 + (1 − α)x2

2 = αf(x1) + (1 − α)f(x2).

A slick way of proving convexity of smooth functions from R to R is to check if f ′′ is
nonnegative; see Exercise 1 below.
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2. Consider I : C[0, 1] → R given by

I(f) =

∫ 1

0

(f(x))2dx, f ∈ C[0, 1].

Then I is convex, since for all f1, f2 ∈ C[0, 1] and all α ∈ [0, 1], we see that

I(αf1 + (1 − α)f2) =

∫ 1

0

(αf1(x) + (1 − α)f2(x))2dx

≤
∫ 1

0

α(f1(x))2 + (1 − α)(f2(x))2dx (using the convexity of y 7→ y2)

= α

∫ 1

0

(f1(x))2dx + (1 − α)

∫ 1

0

(f2(x))2dx

= αI(f1) + (1 − α)I(f2).

Thus I is convex. ♦

In order to prove the theorem on the sufficiency of the vanishing derivative in the case of a
convex function, we will need the following result, which says that if a differentiable function f is
convex, then its derivative f ′ is an increasing function, that is, if x ≤ y, then f ′(x) ≤ f ′(y). (In
Exercise 1 below, we will also prove a converse.)

Lemma 3.3.1 If f : R → R is convex and differentiable, then f ′ is an increasing function.

Proof Let x < u < y. If α = u−x
y−1 , then α ∈ (0, 1), and 1 − α = y−u

y−x
. From the convexity of f ,

we obtain
u − x

y − x
f(y) +

y − u

y − x
f(x) ≥ f

(
u − x

y − x
y +

y − u

y − x
x

)

= f(u)

that is,
(y − x)f(u) ≤ (u − x)f(y) + (y − u)f(x). (3.8)

From (3.8), we obtain (y − x)f(u) ≤ (u − x)f(y) + (y − x + x − u)f(x), that is,

(y − x)f(u) − (y − x)f(x) ≤ (u − x)f(y) − (u − x)f(x),

and so
f(u) − f(x)

u − x
≤ f(y) − f(x)

y − x
. (3.9)

From (3.8), we also have (y − x)f(u) ≤ (u − y + y − x)f(y) + (y − u)f(x), that is,

(y − x)f(u) − (y − x)f(y) ≤ (u − y)f(y) − (u − y)f(x),

and so
f(y) − f(x)

y − x
≤ f(y) − f(u)

y − u
. (3.10)

Combining (3.9) and (3.10),

f(u) − f(x)

u − x
≤ f(y) − f(x)

y − x
≤ f(y) − f(u)

y − u
.

Passing the limit as u ց x and u ր y, we obtain f ′(x) ≤ f(y) − f(x)

y − x
≤ f ′(y), and so f ′ is

increasing.
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We are now ready to prove the result on the existence of global minima. First of all, we mention
that if I is a function from a normed space X to R, then I is said to have a global minimum at
the point x0 ∈ X if for all x ∈ X , I(x) ≥ I(x0). Similarly if I(x) ≤ I(x0) for all x, then I is said
to have a global maximum at x0. We also note that the problem of finding a maximizer for a map
I can always be converted to a minimization problem by considering −I instead of I. We now
prove the following.

Theorem 3.3.2 Let X be a normed space and I : X → R be differentiable. Suppose that I is
convex. If x0 ∈ X is such that (DI)(x0) = 0, then I has a global minimum at x0.

Proof Suppose that x1 ∈ X and I(x1) < I(x0). Define f : R → R by

f(α) = I(αx1 + (1 − α)x0), α ∈ R.

The function f is convex, since if r ∈ [0, 1] and α, β ∈ R, then we have

f(rα + (1 − r)β) = I((rα + (1 − r)β)x1 + (1 − rα − (1 − r)β)x0)

= I(r(αx1 + (1 − α)x0) + (1 − r)(βx1 + (1 − β)x0))

≤ rI(αx1 + (1 − α)x0) + (1 − r)I(βx1 + (1 − β)x0)

= rf(α) + (1 − r)f(β).

From Exercise 4a on page 38, it follows that f is differentiable on [0, 1], and

f ′(0) = ((DI)(x0))(x1 − x0) = 0.

Since f(1) = I(x1) < I(x0) = f(0), by the mean value theorem2, there exists a c ∈ (0, 1) such
that

f ′(c) =
f(1) − f(0)

1 − 0
< 0 = f ′(0).

This contradicts the convexity of f (see Lemma 3.3.1 above), and so I(x1) ≥ I(x0). Hence I has
a global minimum at x0.

Exercises.

1. Prove that if f : R → R is twice continuously differentiable and f ′′(x) > 0 for all x ∈ R,
then f is convex.

2. Let X be a normed space, and f ∈ L (X, R). Show that f is convex.

3. If X is a normed space, then prove that the norm function, x 7→ ‖x‖ : X → R, is a convex.

4. Let X be a normed space, and let f : X → R be a function. Define the epigraph of f by

U(f) =
⋃

x∈X

{x} × (f(x), +∞) ⊂ X × R.

This is the ‘region above the graph of f ’. Show that if f is convex, then U(f) is a convex
subset of X × R. (See Exercise 6 on page 5 for the definition of a convex set).

5. (∗) Show that if f : R → R is convex, then for all n ∈ N and all x1, . . . , xn ∈ R, there holds
that

f

(
x1 + · · · + xn

n

)

≤ f(x1) + · · · + f(xn)

n
.

2The mean value theorem says that if f : [a, b] → R is a continuous function that is differentiable in (a, b), then

there exists a c ∈ (a, b) such that
f(b)−f(a)

b−a
= f ′(c).
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3.4 An example of optimization in a function space

Example. A copper mining company intends to remove all of the copper ore from a region that
contains an estimated Q tons, over a time period of T years. As it is extracted, they will sell it
for processing at a net price per ton of

p(x(t), x′(t)) = P − ax(t) − bx′(t)

for positive constants P , a, and b, where x(t) denotes the total tonnage sold by time t. (This
pricing model allows the cost of mining to increase with the extent of the mined region and speed
of production.)

If the company wishes to maximize its total profit given by

I(x) =

∫ T

0

p(x(t), x′(t))x′(t)dt, (3.11)

where x(0) = 0 and x(T ) = Q, how might it proceed?

Step 1. First of all we note that the set of curves in C1[0, T ] satisfying x(a) = 0 and x(T ) = Q

do not form a linear space! So Theorem 3.2.1 is not applicable directly. Hence we introduce a
new linear space X , and consider a new function Ĩ : X → R which is defined in terms of the old
function I.

Introduce the linear space

X = {x ∈ C1[0, T ] | x(0) = x(T ) = 0},

with the C1[0, T ]-norm:
‖x‖ = sup

t∈[0,T ]

|x(t)| + sup
t∈[0,T ]

|x′(t)|.

Then for all h ∈ X , x0+h satisfies (x0+h)(0) = 0 and (x0+h)(T ) = Q. Defining Ĩ(h) = I(x0+h),
we note that Ĩ : X → R has an extremum at 0. It follows from Theorem 3.2.1 that (DĨ)(0) = 0.
Note that by the 0 in the right hand side of the equality, we mean the zero functional, namely the
continuous linear map from X to R, which is defined by h 7→ 0 for all h ∈ X .

Step 2. We now calculate Ĩ ′(0). We have

Ĩ(h) − Ĩ(0) =

∫ T

0

P − a(x0(t) + h(t)) − b(x′
0(t) + h′(t))dt −

∫ T

0

P − ax0(t) − bx0(t)dt

=

∫ T

0

P − ax0(t) − 2bx′
0(t))h

′(t) − ax′
0(t)h(t)dt +

∫ T

0

−ah(t)h′(t) − bh′(t)h′(t)dt.

Since the map

h 7→
∫ T

0

(P − ax0(t) − 2bx′
0(t))h

′(t) − ax′
0(t)h(t)dt

is a functional from X to R and since
∣
∣
∣
∣
∣

∫ T

0

−ah(t)h′(t) − bh′(t)h′(t)dt

∣
∣
∣
∣
∣
≤ T (a + b)‖h‖2,

it follows that

[(DĨ)(0)](h) =

∫ T

0

(P − ax0(t) − 2bx′
0(t))h

′(t) − ax′
0(t)h(t)dt =

∫ T

0

(P − 2bx′
0(t))h

′(t)dt,
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where the last equality follows using partial integration:

∫ T

0

ax′
0(t)h(t)dt = −

∫ T

0

ax0(t)h
′(t)dt + ax0(t)h(t)|Tt=0 = −

∫ T

0

ax0(t)h
′(t)dt.

Step 3. Since (DĨ)(0) = 0, it follows that

∫ T

0

(

P − ax0(t) − 2bx′
0(t) − a

∫ t

0

x′
0(τ)dτ

)

h′(t)dt = 0

for all h ∈ C1[0, T ] with h(0) = h(T ) = 0. We now prove the following.

Claim: If k ∈ C[a, b] and
∫ b

a

k(t)h′(t)dt = 0

for all h ∈ C1[a, b] with h(a) = h(b) = 0, then there exists a constant c such that k(t) = c for all
t ∈ [a, b].

Proof Define the constant c and the function h via

∫ b

a

(k(t) − c)dt = 0 and h(t) =

∫ t

a

(k(τ) − c)dτ.

Then h ∈ C1[a, b] and it satisfies h(a) = h(b) = 0. Furthermore,

∫ b

a

(k(t) − c)2dt =

∫ b

a

(k(t) − c)h′(t)dt =

∫ b

a

k(t)h′(t)dt − c(h(b) − h(a)) = 0.

Thus k(t) − c = 0 for all t ∈ [a, b].

Step 4. The above result implies in our case that

∀t ∈ [0, T ], P − 2bx′
0(t) = c. (3.12)

Integrating, we obtain x0(t) = At + B, t ∈ [0, T ], for some constants A and B. Using x0(0) = 0
and x0(T ) = Q, we obtain

x0(t) =
t

T
Q, t ∈ [0, T ]. (3.13)

Step 5. Finally we show that this is the optimal mining operation, that is I(x0) ≥ I(x) for all x

such that x(0) = 0 and x(T ) = Q. We prove this by showing −Ĩ is convex, and so by Theorem
3.3.2, −Ĩ in fact has a global minimum at 0.

Let h1, h2 ∈ X , and α ∈ [0, 1], and define x1 = x0 + h1, x2 = x0 + h2. Then we have

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))
2dt ≤

∫ T

0

α(x′
1(t))

2 + (1 − α)(x′
2(t))

2dt, (3.14)
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using the convexity of y 7→ y2. Furthermore, x1(0) = 0 = x2(0) and x1(T ) = Q = x2(T ), and so

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))(αx1(t) + (1 − α)x2(t))dt

=
1

2

∫ T

0

d

dt
(αx1(t) + (1 − α)x2(t))

2dt

=
1

2
Q2 = α

1

2
Q2 + (1 − α)

1

2
Q2

= α

∫ T

0

x′
1(t)x1(t)dt + (1 − α)

∫ T

0

x′
2(t)x2(t)dt.

Hence

−Ĩ(αh1 + (1 − α)h2) = −I(x0 + αh1 + (1 − α)h2)

= −I(αx0 + (1 − α)x0 + αh1 + (1 − α)h2)

= −I(αx1 + (1 − α)x2)

= b

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))
2dt

+a

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))(αx1(t) + (1 − α)x2(t))dt

−P

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))dt

≤ α

∫ T

0

(x′
1(t))

2dt + (1 − α)

∫ T

0

(x′
2(t))

2dt

+α

∫ T

0

x′
1(t)x1(t)dt + (1 − α)

∫ T

0

x′
2(t)x2(t)dt

−αP

∫ T

0

x′
1(t)dt − (1 − α)P

∫ T

0

x′
2(t)dt

= α

(
∫ T

0

x′
1(t)(bx

′
1(t) + ax1(t) − P )dt

)

+(1 − α)

(
∫ T

0

x′
2(t)(bx

′
2(t) + ax2(t) − P )dt

)

= α(−I(x1)) + (1 − α)(−I(x2)) = α(−Ĩ(h1)) + (1 − α)(−Ĩ(h2)).

Hence −Ĩ is convex. ♦

Remark. Such optimization problems arising from applications fall under the subject of ‘calculus
of variations’, and we will not delve into this vast area, but we mention the following result. Let
I be a function of the form

I(x) =

∫ b

a

F

(

x(t),
dx

dt
(t), t

)

dt,

where F (α, β, γ) is a ‘nice’ function and x ∈ C1[a, b] is such that x(a) = ya and x(b) = yb. Then
proceeding in a similar manner as above, it can be shown that if I has an extremum at x0, then
x0 satisfies the Euler-Lagrange equation:

∂F

∂α

(

x0(t),
dx0

dt
(t), t

)

− d

dt

(
∂F

∂β

(

x0(t),
dx0

dt
(t), t

))

= 0, t ∈ [a, b]. (3.15)

(This equation is abbreviated by Fx − d
dt

Fx′ = 0.)
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Chapter 4

Geometry of inner product spaces

In a vector space we can add vectors and multiply vectors by scalars. In a normed space, the
vector space is also equipped with a norm, so that we can measure the distance between vectors.
The plane R2 or the space R3 are examples of normed spaces.

However, in the familiar geometry of the plane or of space, we can also measure the angle
between lines, provided by the notion of ‘dot’ product of two vectors. We wish to generalize this
notion to abstract spaces, so that we can talk about perpendicularity or orthogonality of vectors.

Why would one wish to have this notion? One of the reasons for hoping to have such a notion
is that we can then have a notion of orthogonal projections and talk about best approximations in
normed spaces. We will elaborate on this in §4.3. We will begin with a discussion of inner product
spaces.

4.1 Inner product spaces

Definition. Let K = R or C. A function 〈·, ·〉 : X × X → K is called an inner product on the
vector space X over K if:

IP1 (Positive definiteness) For all x ∈ X , 〈x, x〉 ≥ 0. If x ∈ X and 〈x, x〉 = 0, then x = 0.

IP2 (Linearity in the first variable) For all x1, x2, y ∈ X , 〈x1 + x2, y〉 = 〈x1, y〉 + 〈x2, y〉.
For all x, y ∈ X and all α ∈ K, 〈αx, y〉 = α〈x, y〉.

IP3 (Conjugate symmetry) For all x, y ∈ X , 〈x, y〉 = 〈y, x〉∗, where ·∗ denotes complex conjuga-
tion1.

An inner product space is a vector space equipped with an inner product.

It then follows that the inner product is also antilinear with respect to the second variable,
that is additive, and such that

〈x, αy〉 = α∗〈x, y〉.
It also follows that in the case of complex scalars, 〈x, x〉 ∈ R for all x ∈ X , so that IP1 has
meaning.

1If z = x + yi ∈ C with x, y ∈ R, then z∗ = x − yi.

47
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Examples.

1. Let K = R or C. Then Kn is an inner product space with the inner product

〈x, y〉 = x1y
∗
1 + · · · + xny∗

n, where x =






x1

...
xn




 and y =






y1

...
yn




 .

2. The vector space ℓ2 of square summable sequences is an inner product space with

〈x, y〉 =
∞∑

n=1

xny∗
n for all x = (xn)n∈N, y = (yn)n∈N ∈ ℓ2.

It is easy to see that if

∞∑

n=1

|xn|2 < +∞ and

∞∑

n=1

|yn|2 < +∞,

then the series

∞∑

n=1

xny∗
n converges absolutely, and so it converges. Indeed, this is a conse-

quence of the following elementary inequality:

|xny∗
n| = |xn||yn| ≤

|xn|2 + |yn|2
2

.

3. The space of continuous K-valued functions on [a, b] can be equipped with the inner product

〈f, g〉 =

∫ b

a

f(x)g(x)∗dx, (4.1)

We use this inner product whenever we refer to C[a, b] as an inner product space in these
notes. ♦

We now prove a few ‘geometric’ properties of inner product spaces.

Theorem 4.1.1 (Cauchy-Schwarz inequality) If X is an inner product space, then

for all x, y ∈ X, |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉. (4.2)

There is equality in (4.2) iff x and y are linearly dependent.

Proof From IP3, we have 〈x, y〉 + 〈y, x〉 = 2 Re(〈x, y〉), and so

〈x + y, x + y〉 = 〈x, x〉 + 〈y, y〉 + 2Re(〈x, y〉). (4.3)

Using IP1 and (4.3), we see that 0 ≤ 〈x + αy, x + αy〉 = 〈x, x〉 + 2Re(α∗〈x, y〉) + |α|2〈y, y〉. Let
α = reiΘ, where Θ is such that 〈x, y〉 = |〈x, y〉|eiΘ, and r ∈ R. Then we obtain:

〈x, x〉 + 2r|〈x, y〉| + 〈y, y〉r2 ≥ 0 for all r ∈ R

and so it follows that the discriminant of this quadratic expression is ≤ 0, which gives (4.2).
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Cauchy-Schwarz

Finally we show that equality in (4.2) holds iff x and y are linearly independent, by using the
fact that the inner product is positive definite. Indeed, if the discriminant is zero, the equation
〈x, x〉+2r|〈x, y〉|+ 〈y, y〉r2 = 0 has a root r ∈ R, and so there exists a number α = reiΘ such that
〈x + αy, x + αy〉 = 0, from which, using IP1, it follows that x + αy = 0.

We now give an application of the Cauchy-Schwarz inequality.

Example. Let C[0, T ] be equipped with the usual inner product. Let F be the filter mapping
C[0, T ] into itself, given by

(Fu)(t) =

∫ t

0

e−(t−τ)u(τ)dτ, t ∈ [0, T ], u ∈ C[0, T ].

Such a mapping arises quite naturally, for example, in electrical engineering, this is the map from
the input voltage u to the output voltage y for the simple RC-circuit shown in Figure 4.1. Suppose
we want to choose an input u ∈ X such that ‖u‖2 = 1 and (Fu)(T ) is maximum.

R

Cu y

Figure 4.1: A low-pass filter.

Define h ∈ C[0, T ] by h(t) = et, t ∈ [0, T ]. Then if u ∈ X , (Fu)(T ) = e−T 〈h, u〉. So from the
Cauchy-Schwarz inequality

|(Fu)(T )| ≤ e−T‖h‖‖u‖
with the equality being taken when u = αh, where α is a constant. In particular, the solution of
our problem is

u(t) =

√

2

e2T − 1
et, t ∈ [0, T ].

Furthermore,

(Fu)(T ) = e−T

√

e2T − 1

2
=

√

1 − e−2T

2
.

♦
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If 〈·, ·〉 is an inner product, then we define

‖x‖ =
√

〈x, x〉. (4.4)

The function x 7→ ‖x‖ is then a norm on the inner product space X . Thanks to IP2, indeed we
have: ‖αx‖ = |α|‖x‖, and using Cauchy-Schwarz inequality together with (4.3), we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re(〈x, y〉) ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖ + ‖y‖)2

so that the triangle inequality is also valid. Since the inner product is positive definite, the norm
is also positive definite. For example, the inner product space C[a, b] in Example 3 on page 48
gives rise to the norm

‖f‖2 =

(
∫ b

a

|f(x)|2dx

) 1
2

, f ∈ C[a, b],

called the L2-norm.

Note that the inner product is determined by the corresponding norm: we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re(〈x, y〉) (4.5)

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2Re(〈x, y〉) (4.6)

so that Re(〈x, y〉) = 1
4

(
‖x + y‖2 − ‖x − y‖2

)
. In the case of real scalars, we have

〈x, y〉 =
1

4

(
‖x + y‖2 − ‖x − y‖2

)
. (4.7)

In the complex case, Im(〈x, y〉) = Re(−i〈x, y〉) = Re(〈x, iy〉), so that

〈x, y〉 =
1

4

(
‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2

)
=

1

4

4∑

k=1

ik‖x + iky‖2. (4.8)

(4.7) (respectively (4.8)) is called the polarization formula.

If we add the expressions in (4.5) and (4.6), we get the parallelogram law:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X. (4.9)

(The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of
the other two sides; see Figure 4.2.)

xx

y

y

x − y x + y

Figure 4.2: The parallelogram law.

If x and y are orthogonal, that is, 〈x, y〉 = 0, then from (4.5) we obtain Pythagoras’ theorem:

‖x + y‖2 = ‖x‖2 + ‖y‖2 for all x, y with x ⊥ y. (4.10)



4.1. Inner product spaces 51

If the norm is defined by an inner product via (4.4), then we say that the norm is induced by an
inner product. This inner product is then uniquely determined by the norm via the formula (4.7)
(respectively (4.8)).

Definition. A Hilbert space is a Banach space in which the norm is induced by an inner product.

The hierarchy of spaces considered in these notes is depicted in Figure 4.3.

Hilbert spaces
Banach spaces

Normed spaces

Inner product spaces

Vector spaces

Figure 4.3: Hierarchy of spaces.

Exercises.

1. If A, B ∈ Rm×n, then define 〈A, B〉 = tr(A⊤B), where A⊤ denotes the transpose of the
matrix A. Prove that 〈·, ·〉 defines an inner product on the space of m × n real matrices.
Show that the norm induced by this inner product on Rm×n is the Hilbert-Schmidt norm
(see the remark in Example 1 on page 23).

2. Prove that given an ellipse and a circle having equal areas, the perimeter of the ellipse is
larger.

a

a

b

b

Figure 4.4: Congruent ellipses.

Hint: If the ellipse has major and minor axis lengths as 2a and 2b, respectively, then observe
that the perimeter is given by

P =

∫ 2π

0

√

(a cosΘ)2 + (b sinΘ)2dΘ =

∫ 2π

0

√

(a sin Θ)2 + (b cosΘ)2dΘ,

where the last expression is obtained by rotating the ellipse through 90◦, obtaining a new
ellipse with the same perimeter; see Figure 4.4. Now use Cauchy-Schwarz inequality to prove
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that P 2 is at least as large as the square of the circumference of the corresponding circle
with the same area as that of the ellipse.

3. Let X be an inner product space, and let (xn)n∈N, (yn)n∈N be convergent sequences in X

with limits x, y, respectively. Show that (〈xn, yn〉)n∈N is a convergent sequence in K and
that

lim
n→∞

〈xn, yn〉 = 〈x, y〉. (4.11)

4. (∗) (Completion of inner product spaces) If an inner product space (X, 〈·, ·〉X) is not com-
plete, then this means that there are some ‘holes’ in it, as there are Cauchy sequences that
are not convergent–roughly speaking, the ‘limits that they are supposed to converge to’, do
not belong to the space X . One can remedy this situation by filling in these holes, thereby
enlarging the space to a larger inner product space (X, 〈·, ·〉X) in such a manner that:

C1 X can be identified with a subspace of X and for all x, y in X , 〈x, y〉X = 〈x, y〉X .

C2 X is complete.

Given an inner product space (X, 〈·, ·〉X), we now give a construction of an inner product
space (X, 〈·, ·〉X), called the completion of X , that has the properties C1 and C2.

Let C be the set of all Cauchy sequences in X . If (xn)n∈N, (yn)n∈N are in C , then define
the relation2 R on C as follows:

((xn)n∈N, (yn)n∈N) ∈ R if lim
n→∞

‖xn − yn‖X = 0.

Prove that R is an equivalence relation on C .

X

C

[(xn)n∈N] [(yn)n∈N] [(zn)n∈N]

y1

y2

y3

Figure 4.5: The space X.

Let X be the set of equivalence classes of C under the equivalence relation R. Suppose
that the equivalence class of (xn)n∈N is denoted by [(xn)n∈N]. See Figure 4.5. Define vector
addition + : X × X → X and scalar multiplication · : K → X by

[(xn)n∈N] + [(yn)n∈N] = [(xn + yn)n∈N] and α · [(xn)n∈N] = [(αxn)n∈N].

2Recall that a relation on a set S is a simply a subset of the cartesian product S × S. A relation R on a set S

is called an equivalence relation if

ER1 (Reflexivity) For all x ∈ S, (x, x) ∈ R.

ER2 (Symmetry) If (x, y) ∈ R, then (y, x) ∈ R.

ER3 (Transitivity) If (x, y), (y, z) ∈ R, then (x, z) ∈ R.

If x ∈ S, then the equivalence class of x, denoted by [x], is defined to be the set {y ∈ S | (x, y) ∈ R}. It is easy to
see that [x] = [y] iff (x, y) ∈ R. Thus equivalence classes are either equal or disjoint. They partition the set S, that
is the set can be written as a disjoint union of these equivalence classes.
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Show that these operations are well-defined. It can be verified that X is a vector space with
these operations.

Define 〈·, ·〉X : X × X → K by

〈[(xn)n∈N], [(yn)n∈N]〉X = lim
n→∞

〈xn, yn〉X .

Prove that this operation is well-defined, and that it defines an inner-product on X.

X X C

[(x)n∈N]

[(y)n∈N]

x

x x
x

yyy
y

ι

Figure 4.6: The map ι.

Define the map ι : X → X as follows:

if x ∈ X, then ι(x) = [(x)n∈N],

that is, ι takes x to the equivalence class of the (constant) Cauchy sequence (x, x, x, . . . ).
See Figure 4.6. Show that ι is an injective bounded linear transformation (so that X can be
identified with a subspace of X), and that for all x, y in X , 〈x, y〉X = 〈ι(x), ι(y)〉X .

We now show that X is a Hilbert space. Let ([(xk
1)n∈N])k∈N be a Cauchy sequence in X. For

each k ∈ N, choose nk ∈ N such that for all n, m ≥ nk,

‖xk
n − xk

m‖X <
1

k
.

Define the sequence (yk)k∈N by yk = xk
nk

, k ∈ N. See Figure 4.7. We claim that (yk)k∈N

belongs to C .

X

[(x1
n)n∈N] [(x2

n)n∈N] [(x3
n)n∈N] [(yn)n∈N]

x1
1

x1
2

x1
3

x2
1

x2
2

x2
3

x3
1

x3
2

x3
3

y1 = x1
n1

y2 = x2
n2

y3 = x3
n3

n1 n2
n3

Figure 4.7: Completeness of X.

Let ǫ > 0. Choose N ∈ N such that 1
N

< ǫ. Let K1 ∈ N be such that for all k, l > K1,

‖[(xk
n)n∈N] − [(xl

n)n∈N]‖X < ǫ,
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that is,
lim

n→∞
‖xk

n − xl
n‖X < ǫ.

Define K = max{N, K1}. Let k, l > K. Then for all n > max{nk, nl},

‖yk − yl‖X = ‖yk − xk
n + xk

n − xl
n + xl

n − yl‖X

≤ ‖yk − xk
n‖X + ‖ + xk

n − xl
n‖X + ‖xl

n − yl‖X

≤ 1

k
+ ‖ + xk

n − xl
n‖X +

1

l

≤ 1

K
+ ‖ + xk

n − xl
n‖X +

1

K

< ǫ + ‖xk
n − xl

n‖X + ǫ.

So
‖yk − yl‖X ≤ ǫ + lim

n→∞
‖xk

n − xl
n‖X + ǫ < ǫ + ǫ + ǫ = 3ǫ.

This shows that (yn)n∈N ∈ C , and so [(yn)n∈N] ∈ X . We will prove that ([(xk
n)n∈N])k∈N

converges to [(yn)n∈N] ∈ X.

Given ǫ > 0, choose K1 such that 1
K1

< ǫ. As (yk)k∈N is a Cauchy sequence, there exists a
K2 ∈ N such that for all k, l > K2, ‖yk − yl‖X < ǫ. define K = max{K1, K2}. Then for all
k > K and all m > max{nk, K}, we have

‖xk
m − ym‖X ≤ ‖xk

m − xk
nk
‖X + ‖xk

nk
− ym‖X

<
1

k
+ ‖yk − ym‖X

<
1

K
+ ǫ

< ǫ + ǫ = 2ǫ.

Hence
‖[(xk

m)m∈N] − [(ym)m∈N]‖X = lim
m→∞

‖xk
m − ym‖X ≤ 2ǫ.

This completes the proof.

5. (∗) (Incompleteness of C[a, b] and L2[a, b]) Prove that C[0, 1] is not a Hilbert space with
the inner product defined in Example 3 on page 48.

Hint: The functions fn in Figure 4.8 form a Cauchy sequence since for all x ∈ [0, 1] we have
|fn(x) − fm(x)| ≤ 2, and so

‖fn − fm‖2 =

∫ 1
2
+max{ 1

n
, 1

m}
1
2

|fn(x) − fm(x)|2dx ≤ 4 max

{
1

n
,

1

m

}

.

But the sequence does not converge in C[0, 1]. For otherwise, if the limit is f ∈ C[0, 1], then
for any n ∈ N, we have

‖fn − f‖2 =

∫ 1
2

0

|f(x)|2dx +

∫ 1
2
+ 1

n

1
2

|fn(x) − f(x)|2dx +

∫ 1

1
2
+ 1

n

|1 − f(x)|2dx.

Show that this implies that f(x) = 0 for all x ∈ [0, 1
2 ], and f(x) = 1 for all x ∈ (1

2 , 1].
Consequently,

f(x) =

{
0 if 0 ≤ x ≤ 1

2 ,

1 if 1
2 < x ≤ 1,

which is clearly discontinuous at 1
2 .
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0

1

11
2

1
n

fn

Figure 4.8: Graph of fn.

The inner product space in Example 3 on page 48 is not complete, as demonstrated in
above. However, it can be completed by the process discussed in Exercise 4 on 52. The
completion is denoted by L2[a, b], which is a Hilbert space. One would like to express this
new inner product also as an integral, and it this can be done by extending the ordinary
Riemann integral for elements of C[a, b] to the more general Lebesgue integral. For continuous
functions, the Lebesgue integral is the same as the Riemann integral, that is, it gives the
same value. However, the class of Lebesgue integrable functions is much larger than the
class of continuous functions. For instance it can be shown that the function

f(x) =

{
0 if x ∈ [0, 1] \ Q

1 if x ∈ [0, 1] ∩ Q

is Lebesgue integrable, but not Riemann integrable on [0, 1]. For computation aspects,
one can get away without having to go into technical details about Lebesgue measure and
integration.

However, before we proceed, we also make a remark about related natural Hilbert spaces
arising from Probability Theory. The space of random variables X on a probability space
(Ω, F , P ) for which E(X2) < +∞ (here E(·) denotes expectation), is a Hilbert space with
the inner product 〈X, Y 〉 = E(XY ).

6. Let X be an inner product space. Prove that

for all x, y, z ∈ X, ‖z − x‖2 + ‖z − y‖2 =
1

2
‖x − y‖2 + 2

∥
∥
∥
∥
z − 1

2
(x + y)

∥
∥
∥
∥

2

.

(This is called the Appollonius identity.) Give a geometric interpretation when X = R2.

7. Let X be an inner product space over C, and let T ∈ L (X) be such that for all x ∈ X ,
〈Tx, x〉 = 0. Prove that T = 0.

Hint: Consider 〈T (x + y), x + y〉, and also 〈T (x + iy), x + iy〉. Finally take y = Tx.

4.2 Orthogonal sets

Two vectors in R2 are perpendicular if their dot product is 0. Since an inner product on a
vector space is a generalization of the notion of dot product, we can talk about perpendicularity
(henceforth called orthogonality3) in the general setting of inner product spaces.

Definitions. Let X be an inner product space. Vectors x, y ∈ X are said to be orthogonal if
〈x, y〉 = 0. A subset S of X is said to be orthonormal if for all x, y ∈ S with x 6= y, 〈x, y〉 = 0 and
for all x ∈ S, 〈x, x〉 = 1.

3The prefix ‘ortho’ means straight or erect.
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Examples.

1. Let en denote the sequence with nth term equal to 1 and all others equal to 0. The set
{en | n ∈ N} is an orthonormal set in ℓ2.

2. Let n ∈ Z, and let Tn ∈ C[0, 1] denote the trigonometric polynomial defined as follows:

Tn(x) = e2πinx, x ∈ [0, 1].

The set {Tn | n ∈ Z} is an orthonormal sequence in C[0, 1] with respect to the inner product
defined by (4.1). Indeed, if m, n ∈ Z and n 6= m, then we have

∫ 1

0

Tn(x)Tm(x)∗dx =

∫ 1

0

e2πinxe−2πimxdx =

∫ 1

0

e2πi(n−m)xdx = 0.

On the other hand, for all n ∈ Z,

‖Tn‖2
2 = 〈Tn, Tn〉 =

∫ 1

0

e2πinxe−2πinxdx =

∫ 1

0

1dx = 1.

Hence the set of trigonometric polynomials is an orthonormal set in C[0, 1] (with the usual
inner product (4.1)). ♦

Orthonormal sets are important, since they have useful properties. With vector spaces, linearly
independent spanning sets (called Hamel bases) were important because every vector could be
expressed as a linear combination of these ‘basic’ vectors. It turns out that when one has infinite
dimensional vector spaces with not just a purely algebraic structure, but also has an inner product
(so that one can talk about distance and angle between vectors), the notion of Hamel basis is not
adequate, as Hamel bases only capture the algebraic structure. In the case of inner product spaces,
the orthonormal sets play an analogous role to Hamel bases: if a vector which can be expressed as
a linear combination of vectors from an orthonormal set, then there is a special relation between
the coefficients, norms and inner products. Indeed if

x =

n∑

k=1

αkuk

and the uk’s are orthonormal, then we have

〈x, uj〉 =

〈
n∑

k=1

αkuk, uj

〉

=

n∑

k=1

αk〈uk, uj〉 = αj ,

and

‖x‖2 = 〈x, x〉 =

〈
n∑

k=1

〈x, uk〉uk, x

〉

=

n∑

k=1

〈x, uk〉〈uk, x〉 =

n∑

k=1

|〈x, uk〉|2.

Theorem 4.2.1 Let X be an inner product space. If S is an orthonormal set, then S is linearly
independent.

Proof Let x1, . . . , xn ∈ S and α1, . . . , αn ∈ K be such that α1x1 + · · · + αnxn = 0. For
j ∈ {1, . . . , n}, we have 0 = 〈0, xj〉 = 〈α1x1 + · · ·+ αnxn, xj〉 = α1〈x1, xj〉+ · · ·+αn〈xn, xj〉 = αj .
Consequently, S is linearly independent.

Thus every orthonormal set in X is linearly independent. Conversely, given a linearly inde-
pendent set in X , we can construct an orthonormal set such that span of this new constructed
orthonormal set is the same as the span of the given independent set. We explain this below, and
this algorithm is called the Gram-Schmidt orthonormalization process.
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Theorem 4.2.2 (Gram-Schmidt orthonormalization) Let {x1, x2, x3, . . . } be a linearly indepen-
dent subset of an inner product space X. Define

u1 =
x1

‖x1‖
and un =

xn − 〈xn, u1〉u1 − · · · − 〈xn, un−1〉un−1

‖xn − 〈xn, u1〉u1 − · · · − 〈xn, un−1〉un−1‖
for n ≥ 2.

Then {u1, u2, u3, . . . } is an orthonormal set in X and for n ∈ N,

span{x1, . . . , xn} = span{u1, . . . , un}.

Proof As {x1} is a linearly independent set, we see that x1 6= 0. We have ‖u1‖ = ‖x1‖
‖x1‖ = 1 and

span{u1} = span{x1}.

For some n ≥ 1, assume that we have defined un as stated above, and proved that {u1, . . . , un}
is an orthonormal set satisfying span{x1, . . . , xn} = span{u1, . . . , un}. As {x1, . . . , xn+1} is a
linearly independent set, xn+1 does not belong to span{x1, . . . , xn} = span{u1, . . . , un}. Hence it
follows that

xn+1 − 〈xn+1, u1〉u1 − · · · − 〈xn+1, un〉un 6= 0.

Clearly ‖un+1‖ = 1 and for all j ≤ n we have

〈un+1, uj〉 =
1

‖xn+1 − 〈xn+1, u1〉u1 − · · · − 〈xn+1, un〉un‖

(

〈xn+1, uj〉 −
n∑

k=1

〈xn+1, uk〉〈uk, uj〉
)

=
1

‖xn+1 − 〈xn+1, u1〉u1 − · · · − 〈xn+1, un〉un‖
(〈xn+1, uj〉 − 〈xn+1, uj〉)

= 0,

since 〈uk, uj〉 = 0 for all k ∈ {1, . . . , n} \ {j}. Hence {u1, . . . , un+1} is an orthonormal set. Also,

span{u1, . . . , un, un+1} = span{x1, . . . , xn, un+1} = span{x1, . . . , xn, xn+1}.

By mathematical induction, the proof is complete.

Example. For n ∈ N, let xn be the sequence (1, . . . , 1, 0, . . . ), where 1 occurs only in the first
n terms. Then the set {xn | n ∈ N} is linearly independent in ℓ2, and the Gram-Schmidt
orthonormalization process gives {en | n ∈ N} as the corresponding orthonormal set. ♦

Exercises.

1. (a) Show that the set {1, x, x2, x3, . . . } is linearly independent in C[−1, 1].

(b) Let the orthonormal sequence obtained via the Gram-Schmidt orthonormalization pro-
cess of the sequence {1, x, x2, x3, . . . } in C[−1, 1] be denoted by {u0, u1, u2, u3, . . . }.
Show that for n = 0, 1 and 2,

un(x) =

√

2n + 1

2
Pn(x), (4.12)

where

Pn(x) =
1

2nn!

(
d

dx

)n

(x2 − 1)n. (4.13)

In fact it can be shown that the identity (4.12) holds for all n ∈ N. The polynomials
Pn given by (4.13) are called Legendre polynomials.

2. Find an orthonormal basis for Rm×n, when it is equipped with the inner product 〈A, B〉 =
tr(A⊤B), where A⊤ denotes the transpose of the matrix A.
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4.3 Best approximation in a subspace

Why are orthonormal sets useful? In this section we give one important reason: it enables one to
compute the best approximation to a given vector in X from a given subspace. Thus, the following
optimization problem can be solved:

Let Y = span{y1, . . . , yn}, where y1, . . . , yn ∈ X .
Given x ∈ X , minimize ‖x−y‖, subject to y ∈ Y .

(4.14)

See Figure 4.9 for a geometric depiction of the problem in R3.

x

y1 y2Y e1

e2

y∗

Figure 4.9: Best approximation in a plane of a vector in R3.

Theorem 4.3.1 Let X be an inner product space. Suppose that Y = span{y1, . . . , yn}, where
y1, . . . , yn are linearly independent vectors in X. Let {u1, . . . , un} be an orthonormal set such that
span{u1, . . . , un} = Y . Suppose that x ∈ X, and define

y∗ =
n∑

k=1

〈x, uk〉uk.

Then y∗ is the unique vector in Y such that for all y ∈ Y , ‖x − y‖ ≥ ‖x − y∗‖.

Proof If y ∈ Y = span{y1, . . . , yn} = span{u1, . . . , un} = Y , then y =

n∑

k=1

〈y, uk〉uk, and so

〈x − y∗, y〉 =

〈

x −
n∑

k=1

〈x, uk〉uk, y

〉

= 〈x, y〉 −
n∑

k=1

〈x, uk〉〈uk, y〉

= 〈x, y〉 −
〈

x,

n∑

k=1

〈y, uk〉uk

〉

= 〈x, y〉 − 〈x, y〉
= 0.

Thus by Pythagoras’ theorem (see (4.10)), we obtain

‖x − y‖2 = ‖x − y∗ + y∗ − y‖2 = ‖x − y∗‖2 + ‖y∗ − y‖2 ≥ ‖x − y∗‖2,

with equality iff y∗ − y = 0, that is, y = y∗. This completes the proof.



4.3. Best approximation in a subspace 59

Example. Least square approximation problems in applications can be cast as best approximation
problems in appropriate inner product spaces. Suppose that f is a continuous function on [a, b]
and we want to find a polynomial p of degree at most m such that the ‘error’

E (p) =

∫ b

a

|f(x) − p(x)|2dx (4.15)

is minimized. Let X = C[a, b] with the inner product defined by (4.1), and let Pm be the
subspace of X comprising all polynomials of degree at most m. Then Theorem 4.3.1 gives a
method of finding such a polynomial p∗.

Let us take a concrete case. Let a = −1, b = 1, f(x) = ex for x ∈ [−1, 1], and m = 1. As

Pm = span{1, x, x2},

by a Gram-Schmidt orthonormalization process (see Exercise 1b on page 57), it follows that

Pm = span

{

1√
2
,

√
3√
2
x,

3
√

10

4

(

x2 − 1

3

)}

.

We have

〈f, u0〉 =
1√
2

(

e − 1

e

)

, 〈f, u1〉 =

√
6

e
, 〈f, u2〉 =

√
5√
2

(

e − 7

e

)

,

and so from Theorem 4.3.1, we obtain that

p∗(x) =
1

2

(

e − 1

e

)

+
3

e
x +

15

4

(

e − 7

e

)(

x2 − 1

3

)

.

This polynomial p∗ is the unique polynomial of degree at most equal to 2 that minimizes the
L2-norm error (4.15) on the interval [−1, 1] when f is the exponential function.

0.5

1

1.5

2

2.5

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

x

Figure 4.10: Best quadratic approximation the exponential function in the interval [−1, 1]: here
the dots indicate points (x, ex), while the curve is the graph of the polynomial p∗.

In Figure 4.10, we have graphed the resulting polynomial p∗ and ex together for comparison.
♦
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Exercises. (The least squares regression line) The idea behind the technique of least squares is
as follows. Suppose one is interested in two variables x and y, which are supposed to be related
via a linear function y = mx + b. Suppose that m and b are unknown, but one has measurements
(x1, y1), . . . , (xn, yn) from an experiment. However there are some errors, so that the measured
values yi are related to the measured values xi by yi = mxi + b + ei, where ei is the (unknown)
error in measurement i. How can we find the ‘best’ approximate values of m and b? This is a very
common situation occurring in the applied sciences.

0
x

y

x1

y1

xn

yn

e1

en

b

Figure 4.11: The least squares regression line.

The most common technique used to find approximations for a and b is as follows. It is
reasonable that if the m and b we guessed were correct, then most of the errors ei := yi −mxi + b

should be reasonably small. So to find a good approximation to m and b, we should find the m

and b that make the ei’s collectively the smallest in some sense. So we introduce the error

E =

√
√
√
√

n∑

i=1

e2
i =

√
√
√
√

n∑

i=1

(yi − mxi − b)2

and seek m, b such that E is minimized. See Figure 4.11.

Convert this problem into the setting of (4.14).

Month Mean temperature Inland energy consumption
(◦C) (million tonnes coal equivalent)

January 2.3 9.8
February 3.8 9.3
March 7.0 7.4
April 12.7 6.6
May 15.0 5.7
June 20.9 3.9
July 23.4 3.0

August 20.0 4.1
September 17.9 5.0
October 11.6 6.3

November 5.8 8.3
December 4.7 10.0

Table 4.1: Data on energy consumption and temperature.

The Table 4.1 shows the data on energy consumption and mean temperature in the various
months of the year.
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1. Draw a scatter chart and fit a regression line of energy consumption on temperature.

2. What is the intercept, and what does it mean in this case?

3. What is the slope, and how could one interpret it?

4. Use the regression line to forecast the energy consumption for a month with mean temper-
ature 9◦C.

4.4 Fourier series

Under some circumstances, an orthonormal set can act as a ‘basis’ in the sense that every vector
can be decomposed into vectors from the orthonormal set. Before we explain this further in
Theorem 4.4.1, we introduce the notion of dense-ness.

Definition. Let X be a normed space. A set D is dense in X if for all x ∈ X and all ǫ > 0, there
exists a y ∈ D such that ‖x − y‖ < ǫ.

Examples.

1. Let c00 denote the set of all sequences with at most finitely many nonzero terms. Clearly,
c00 is a subspace of ℓ2. We show that c00 is dense in ℓ2. Let x = (xn)n∈N ∈ ℓ2, and suppose
that ǫ > 0. Choose N ∈ N such that

∞∑

n=N+1

|xn|2 < ǫ2.

Defining y = (x1, . . . , xN , 0, 0, 0, . . . ) ∈ c00, we see that ‖x − y‖2 < ǫ.

2. c00 is not dense in ℓ∞. Consider the sequence x = (1, 1, 1, . . . ) ∈ ℓ∞. Suppose that ǫ = 1
2 > 0.

Clearly for any y ∈ c00, we have

‖x − y‖∞ = 1 >
1

2
= ǫ.

Thus c00 is not dense in ℓ∞. ♦

Theorem 4.4.1 Let {u1, u2, u3, . . . } be an orthonormal set in an inner product space X and
suppose that span{u1, u2, u3, . . . } is dense in X. Then for all x ∈ X,

x =

∞∑

n=1

〈x, un〉un (4.16)

and

‖x‖2 =

∞∑

n=1

|〈x, un〉|2. (4.17)

Furthermore, if x, y ∈ X, then

〈x, y〉 =
∞∑

n=1

〈x, un〉〈y, un〉∗. (4.18)
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Proof Let x ∈ X , and ǫ > 0. As span{u1, u2, u3, . . . } is dense in X , there exists a N ∈ N and
scalars γ1, . . . , γN ∈ K such that

∥
∥
∥
∥
∥
x −

N∑

k=1

γkuk

∥
∥
∥
∥
∥

< ǫ. (4.19)

Let n > N . Then
N∑

k=1

γkuk ∈ span{u1, . . . , un},

and so from Theorem 4.3.1, we obtain

∥
∥
∥
∥
∥
x −

n∑

k=1

〈x, uk〉uk

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
x −

N∑

k=1

γnun

∥
∥
∥
∥
∥

. (4.20)

Combining (4.19) and (4.20), we have shown that given any ǫ > 0, there exists a N ∈ N such that
for all n > N , ∥

∥
∥
∥
∥
x −

n∑

k=1

〈x, uk〉uk

∥
∥
∥
∥
∥

< ǫ,

that is, (4.16) holds. Thus if x, y ∈ X , we have

〈x, y〉 =

〈

lim
n→∞

n∑

k=1

〈x, uk〉uk, lim
n→∞

n∑

k=1

〈y, uk〉uk

〉

= lim
n→∞

〈
n∑

k=1

〈x, uk〉uk,

n∑

k=1

〈y, uk〉uk

〉

(see (4.11) on page 52)

= lim
n→∞

n∑

k=1

〈x, uk〉
〈

uk,

n∑

j=1

〈y, uj〉uj

〉

= lim
n→∞

n∑

k=1

〈x, uk〉〈y, uk〉∗

=

∞∑

n=1

〈x, un〉〈y, un〉∗,

and so we obtain (4.18). Finally with y = x in (4.18), we obtain (4.17).

Remarks.

1. Note that Theorem 4.4.1 really says that if an inner product space X has an orthonormal
set {u1, u2, u3, . . . } that is dense in X , then computations in X can be done as if one is in
the space ℓ2: indeed the map x 7→ (〈x, u1〉, ) is in injective bounded linear operator from X

to ℓ2 that preserves inner products.

2. (4.17) and (4.18) are called Parseval’s identities.

3. We observe in Theorem 4.4.1 that every vector in X can be expressed as an ‘infinite linear
combination’ of the vectors u1, u2, u3, . . . . Such a ‘spanning’ orthonormal set {u1, u2, u3, . . . }
is therefore called an orthonormal basis.

Example. Consider the Hilbert space C[0, 1] with the usual inner product. It was shown in
Example 2 on page 56 that the trigonometric polynomials Tn, n ∈ Z, form an orthonormal set.
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Furthermore, it can be shown that the set {T1, T2, T3, . . . } is dense in C[0, 1]. Hence by Theorem
4.4.1, it follows that every f ∈ C[0, 1] has the following Fourier expansion:

f =

∞∑

k=−∞
〈f, Tk〉Tk.

It must be emphasized that the above means that the sequence of functions (fn) given by

fn =

n∑

k=−n

〈f, Tk〉Tk

converges to f in the ‖ · ‖2-norm: lim
n→∞

∫ 1

0

|fn(x) − f(x)|2dx = 0. ♦

Exercises.

1. (∗) Show that an inner product space X is dense in its completion X .

2. (∗) A normed space X is said to be separable if it has a countably dense subset {u1, u2, u3, . . . }.

(a) Prove that ℓp is separable if 1 ≤ p < +∞.

(b) What happens if p = +∞?

3. (Isoperimetric theorem) Among all simple, closed piecewise smooth curves of length L in the
plane, the circle encloses the maximum area.

0

s

A

L

Figure 4.12: Parameterization of the curve using the arc length as a parameter.

This can be proved by proceeding as follows. Suppose that (x, y) is a parametric represen-
tation of the curve using the arc length s, 0 ≤ s ≤ L, as a parameter. Let t = s

L
and

let

x(t) = a0 +
√

2

∞∑

n=1

(an cos(2πnt) + bn sin(2πnt))

y(t) = c0 +
√

2

∞∑

n=1

(cn cos(2πnt) + dn sin(2πnt))

be the Fourier series expansions for x and y on the interval 0 ≤ t ≤ 1.

It can be shown that

L2 =

∫ 1

0

[(
dx

dt

)2

+

(
dy

dt

)2
]

dt =

∞∑

n=1

4π2n2(a2
n + b2

n + c2
n + d2

n)
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and the area A is given by

A =

∫ 1

0

x(t)
dy

dt
(t)dt =

∞∑

n=1

2πn(andn − bncn).

Prove that L2 − 4πA ≥ 0 and that equality holds iff

a1 = d1, b1 = −c1, and an = bn = cn = dn = 0 for all n ≥ 2,

which describes the equation of a circle.

4. (Riesz-Fischer theorem) Let X be a Hilbert space and {u1, u2, u3, . . . } be an orthonormal

sequence in X . If (αn)n∈N is a sequence of scalars such that

∞∑

n=1

|αn|2 < +∞, then

∞∑

n=1

αnun

converges in X .

Hint: For m ∈ N, define xm =

m∑

n=1

αnun. If m > l, then

‖xm − xl‖2 =

m∑

n=l+1

|αn|2.

Conclude that (xm)m∈N is Cauchy, and hence convergent.

4.5 Riesz representation theorem

If X is a Hilbert space, and x0 ∈ X , then the map

x 7→ 〈x, x0〉 : X → K

is a bounded linear functional on X . Indeed, the linearity follows from the linearity property of
the inner product in the first variable (IP2 on page 47), while the boundedness is a consequence
of the Cauchy-Schwarz inequality:

|〈x, x0〉| ≤ ‖x0‖‖x‖.

Conversely, it turns out that every bounded linear functional on a Hilbert space arises in this
manner, and this is the content of the following theorem.

Theorem 4.5.1 (Riesz representation theorem) If T ∈ L (X, K), then there exists a unique x0 ∈
X such that

∀x ∈ X, Tx = 〈x, x0〉. (4.21)

Proof We prove this for a Hilbert space X with an orthonormal basis {u1, u2, u3, . . . }.

Step 1. First we show that

∞∑

n=1

|Tun|2 < +∞. For m ∈ N, define

ym =

m∑

n=1

(T (un))∗un.
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Since {u1, u2, u3, . . . } is an orthonormal set,

‖ym‖2 = 〈ym, ym〉 =
m∑

n=1

|T (un)|2 = km (say).

Since

T (ym) =

m∑

n=1

(T (un))∗T (un) = km,

and |T (ym)| ≤ ‖T ‖‖ym‖, we see that km ≤ ‖T ‖
√

km, that is, km ≤ ‖T ‖2. Letting m → ∞, we
obtain ∞∑

n=1

|T (un)|2 ≤ ‖T ‖2 < +∞.

Step 2. From the Riesz-Fischer theorem (see Exercise 4 on page 64), we see that the series

∞∑

n=1

(T (un))∗un

converges in X to x0 (say). We claim that (4.21) holds. Let x ∈ X . This has a Fourier expansion

x =
∞∑

n=1

〈x, un〉un.

Hence

T (x) =
∞∑

n=1

〈x, un〉T (un) =
∞∑

n=1

〈x, (T (un))∗un〉 =

〈

x,

∞∑

n=1

(T (un))∗un

〉

= 〈x, x0〉.

Step 3. Finally, we prove the uniqueness of x0 ∈ X . If x1 ∈ X is another vector such that

∀x ∈ X, Tx = 〈x, x1〉,

then letting x = x0 − x1, we obtain 〈x0 − x1, x0〉 = T (x0 − x1) = 〈x0 − x1, x1〉, that is,

‖x0 − x1‖2 = 〈x0 − x1, x0 − x1〉 = 0.

Thus x0 = x1.

Thus the above theorem characterizes linear functionals on Hilbert spaces: they are precisely
inner products with a fixed vector!

Exercise. In Theorem 4.5.1, show that also ‖T ‖ = ‖x0‖, that is, the norm of the functional is
the norm of its representer.

Hint: Use Theorem 4.1.1.

4.6 Adjoints of bounded operators

With every bounded linear operator on a Hilbert space, one can associate another operator,
called its adjoint, which is geometrically related. In order to define the adjoint, we prove the
following result. (Throughout this section, X denotes a Hilbert space with an orthonormal basis
{u1, u2, u3, . . . }.)
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Theorem 4.6.1 Let X be a Hilbert space. If T ∈ L (X), then there exists a unique operator
T ∗ ∈ L (X) such that

∀x, y ∈ X, 〈Tx, y〉 = 〈x, T ∗y〉. (4.22)

Proof Let y ∈ X . The map Ly given by x 7→ 〈Tx, y〉 from X to K is a linear functional. We
verify this below.

Linearity: If x1, x2 ∈ X , then

Ly(x1 + x2) = 〈T (x1 + x2), y〉 = 〈Tx1 + Tx2, y〉 = 〈Tx1, y〉 + 〈Tx2, y〉 = Ly(x1) + Ly(x2).

Furthermore, if α ∈ K and x ∈ X , then Ly(αx) = 〈T (αx), y〉 = 〈αTx, y〉 = α〈Tx, y〉 = αLy(x).

Boundedness: For all x ∈ X ,

|Ly(x)| = |〈Tx, y〉| ≤ ‖Tx‖‖y‖ ≤ ‖T ‖‖y‖‖x‖,

and so ‖Ly‖ ≤ ‖T ‖‖y‖ < +∞.

Hence Ly ∈ L (X, K), and by the Riesz representation theorem, it follows that there exists a
unique vector, which we denote by T ∗y, such that for all x ∈ X , Ly(x) = 〈x, T ∗y〉, that is,

∀x ∈ X, 〈Tx, y〉 = 〈x, T ∗y〉,

In this manner, we get a map y 7→ T ∗y from X to X . We claim that this is a bounded linear
operator.

Linearity: If y1, y2 ∈ X , then for all x ∈ X we have

〈x, T ∗(y1 + y2)〉 = 〈Tx, y1 + y2〉 = 〈Tx, y1〉 + 〈Tx, y2〉 = 〈x, T ∗y1〉 + 〈x, T ∗y2〉 = 〈x, T ∗y1 + T ∗y2〉.

In particular, taking x = T ∗(y1+y2)−(T ∗y1+T ∗y2), we conclude that T ∗(y1+y2) = T ∗y1+T ∗y2.
Furthermore, if α ∈ K and y ∈ X , then for all x ∈ X ,

〈x, T ∗(αy)〉 = 〈T (x), αy〉 = α∗〈Tx, y〉 = α∗〈x, T ∗y〉 = 〈x, αT ∗y〉.

In particular, taking x = T ∗(αy) − α(T ∗y), we conclude that T ∗(αy) = α(T ∗y). This completes
the proof of the linearity of T ∗.

Boundedness: From the Exercise in §4.5, it follows that for all y ∈ X , ‖T ∗y‖ = ‖Ly‖ ≤ ‖T ‖‖y‖.
Consequently, ‖T ∗‖ ≤ ‖T ‖ < +∞.

Hence T ∗ ∈ L (X). Finally, if S is another bounded linear operator on X satisfying (4.22),
then for all x, y ∈ X , we have

〈x, T ∗y〉 = 〈Tx, y〉 = 〈x, Sy〉,
and in particular, taking x = T ∗y − Sy, we can conclude that T ∗y = Sy. As this holds for all y,
we obtain S = T ∗. Consequently T ∗ is unique.

Definition. Let X be a Hilbert space. If T ∈ L (X), then the unique operator T ∗ ∈ L (X)
satisfying

∀x, y ∈ X, 〈Tx, y〉 = 〈x, T ∗y〉,
is called the adjoint of T .

Before giving a few examples of adjoints, we will prove a few useful properties of adjoint
operators.
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Theorem 4.6.2 Let X be a Hilbert space.

1. If T ∈ L (X), then (T ∗)∗ = T .

2. If T ∈ L (X), then ‖T ∗‖ = ‖T ‖.

3. If α ∈ K and T ∈ L (X), then (αT )∗ = α∗T .

4. If S, T ∈ L (X), then (S + T )∗ = S∗ + T ∗.

5. If S, T ∈ L (X), then (ST )∗ = T ∗S∗.

Proof 1. For all x, y ∈ X , we have

〈x, (T ∗)∗y〉 = 〈T ∗x, y〉 = 〈y, T ∗x〉∗ = 〈Ty, x〉∗ = 〈x, T y〉,

and so (T ∗)∗y = Ty for all y, that is, (T ∗)∗ = T .

2. From the proof of Theorem 4.6.1, we see that ‖T ∗‖ ≤ ‖T ‖. Also, ‖T ‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖.
Consequently ‖T ‖ = ‖T ∗‖.

3. For all x, y ∈ X , we have

〈x, (αT )∗y〉 = 〈(αT )x, y〉 = 〈α(Tx), y〉 = α〈Tx, y〉 = α〈x, T ∗y〉 = 〈x, α∗(T ∗y)〉 = 〈x, (α∗T ∗)y〉,

and so it follows that (αT )∗ = α∗T ∗.

4. For all x, y ∈ X , we have

〈x, (S + T )∗y〉 = 〈(S + T )x, y〉
= 〈Sx + Tx, y〉
= 〈Sx, y〉 + 〈Tx, y〉
= 〈x, S∗y〉 + 〈x, T ∗y〉
= 〈x, S∗y + T ∗y〉
= 〈x, (S∗ + T ∗)y〉,

and so (S + T )∗ = S∗ + T ∗.

5. For all x, y ∈ X , we have

〈x, (ST )∗y〉 = 〈(ST )x, y〉 = 〈S(Tx), y〉 = 〈Tx, S∗y〉 = 〈x, T ∗(S∗y)〉 = 〈x, (T ∗S∗)y〉,

and so it follows that (ST )∗ = T ∗S∗.

The adjoint operator T is geometrically related to T . Before we give this relation in Theorem
4.6.3 below, we first recall the definitions of the kernel and range of a linear transformation, and
also fix some notation.

Definitions. Let U, V be vector spaces and T : U → V a linear transformation.

1. The kernel of T is defined to be the set ker(T ) = {u ∈ U | T (u) = 0}.

2. The range of T is defined to be the set ran(T ) = {v ∈ V | ∃u ∈ U such that T (u) = v}.
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Notation. If X is a Hilbert space, and S is a subset of X , then S⊥ is defined to be the set of all
vectors in X that are orthogonal to each vector in S:

S⊥ = {x ∈ X | ∀y ∈ S, 〈x, y〉 = 0}.

We are now ready to give the geometric relation between the operators T and T ∗.

Theorem 4.6.3 Let X be a Hilbert space, and suppose that T ∈ L (X). Then ker(T ) = (ran(T ∗))⊥.

Proof If x ∈ ker(T ), then for all y ∈ X , we have 〈x, T ∗y〉 = 〈Tx, y〉 = 0, and so x ∈ (ran(T ∗))⊥.
Consequently ker(T ) ⊂ (ran(T ∗))⊥.

Conversely, if x ∈ (ran(T ∗))⊥, then for all y ∈ X , we have 0 = 〈x, T ∗y〉 = 〈Tx, y〉, and in
particular, with y = Tx, we obtain that 〈Tx, Tx〉 = 0, that is Tx = 0. Hence x ∈ ker(T ). Thus
(ran(T ∗))⊥ ⊂ ker(T ) as well.

We now give a few examples of the computation of adjoints of some operators.

Examples.

1. Let X = Cn with the inner product given by

〈x, y〉 =

n∑

i=1

xiy
∗
i .

Let TA : Cn → Cn be the bounded linear operator corresponding to the n × n matrix A of
complex numbers:

A =






a11 . . . a1n

...
...

an1 . . . ann




 .

What is the adjoint T ∗
A? Let us denote by A∗ the matrix obtained by transposing the matrix

A and by taking the complex conjugates of each of the entries. Thus

A∗ =






a∗
11 . . . a∗

n1
...

...
a∗
1n . . . a∗

nn




 .

We claim that T ∗
A = TA∗ . Indeed, for all x, y ∈ Cn,

〈TAx, y〉 =
n∑

i=1





n∑

j=1

aijxj



 y∗
i

=
n∑

i=1

n∑

j=1

aijxjy
∗
i

=

n∑

j=1

xj

n∑

i=1

aijy
∗
i

=

n∑

j=1

xj

(
n∑

i=1

a∗
ijyi

)∗

= 〈x, TA∗y〉.
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2. Recall the left and right shift operators on ℓ2:

R(x1, x2, . . . ) = (0, x1, x2, . . . ), L(x1, x2, . . . ) = (x2, x3, x4, . . . ).

We will show that R∗ = L. Indeed, for all x, y ∈ ℓ2, we have

〈Rx, y〉 = 〈(0, x1, x2, . . . ), (y1, y2, y3, . . . )〉

=

∞∑

n=1

xny∗
n+1

= 〈(x1, x2, x3, . . . ), (y2, y3, y4, . . . )〉
= 〈x, Ly〉.

♦

Exercises.

1. Let (λn)n∈N be a bounded sequence of scalars, and consider the diagonal operator D : ℓ2 → ℓ2

defined by (2.18) on page 24. Determine D∗.

2. Consider the anticlockwise rotation through angle Θ in R2, given by the operator TA : R2 →
R2 corresponding to the matrix

A =

[
cosΘ − sinΘ
sinΘ cosΘ

]

What is T ∗
A? Give a geometric interpretation.

Let X be a Hilbert space with an orthonormal basis {u1, u2, u3, . . . }.

3. If T ∈ L (X) is such that it is invertible, then prove that T ∗ is also invertible and that
(T ∗)−1 = (T−1)∗.

4. An operator T ∈ L (X) is called self-adjoint (respectively skew-adjoint) if T = T ∗ (respec-
tively T = −T ∗). Show that every operator can be written as a sum of a self-adjoint
operator and a skew-adjoint operator.

5. (Projections) A bounded linear operator P ∈ L (X) is called a projection if it is idempotent
(that is, P 2 = P ) and self-adjoint (P ∗ = P ). Prove that the norm of P is at most equal to
1.

Hint: ‖Px‖2 = 〈Px, Px〉 = 〈Px, x〉 ≤ ‖Px‖‖x‖.
Consider the subspace Y = span{u1, . . . , un}. Define Pn : X → X as follows:

Pnx =
n∑

k=1

〈x, uk〉uk, x ∈ X.

Show that Pn is a projection. Describe the kernel and range of Pn.

Suppose that {u1, u2, u3, . . . } is an orthonormal basis for X . Prove that

∀x ∈ X, Pnx
n→∞−→ x in X.

6. Let X be a Hilbert space. Let A ∈ L (X) be fixed. We define Λ : L (X) → L (X) by

Λ(T ) = A∗T + TA, T ∈ L (X).

Show that Λ ∈ L (L (X)). Prove that if T is self-adjoint, then so is Λ(T ).
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Chapter 5

Compact operators

In this chapter, we study a special class of linear operators, called compact operators. Compact
operators are useful since they play an important role in the numerical approximation of solutions
to operator equations. Indeed, compact operators can be approximated by finite-rank operators,
bringing one in the domain of finite-dimensional linear algebra.

In Chapter 2, we considered the following problem: given y, find x such that

(I − A)x = y. (5.1)

It was shown that if ‖A‖ < 1, then the unique x is given by a Neumann series. It is often the case
that the Neumann series cannot be computed. If A is a compact operator, then there is an effective
way to construct an approximate solution to the equation (5.1): we replace the operator A by a
sufficiently accurate finite rank approximation and solve the resulting finite system of equations!
We will elaborate on this at the end of this chapter in §5.2.

We begin by giving the definition of a compact operator.

5.1 Compact operators

Definition. Let X be an inner product space. A linear transformation T : X → X is said to be
compact if

∀ bounded sequence (xn)n∈N contained in X , (Txn)n∈N has a convergent subsequence.

Before giving examples of compact operators, we prove the following result, which says that
the set of compact operators is contained in the set of all bounded operators.

Theorem 5.1.1 Let X be an inner product space. If T : X → X is a compact operator, then
T ∈ L (X).

Proof Suppose that there does not exist a M > 0 such that

∀x ∈ X such that ‖x‖ ≤ 1, ‖Tx‖ ≤ M.

71
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Let x1 ∈ X be such that ‖x1‖ ≤ 1 and ‖Tx1‖ > 1. If xn ∈ X has been constructed, then let
xn+1 ∈ X be such that ‖xn+1‖ ≤ 1 and

‖Txn+1‖ > 1 + max{‖Tx1‖, . . . , ‖Txn‖}.

Clearly (xn)n∈N is bounded (indeed for all n ∈ N, ‖xn‖ ≤ 1). However, (Txn)n∈N does not have
any convergent subsequence, since if n1, n2 ∈ N and n1 < n2, then

‖Txn1
− Txn2

‖ ≥ ‖Txn2
‖ − ‖Txn1

‖ > 1 + max{‖Tx1‖, . . . , ‖Txn2−1‖} − ‖Txn1
‖ ≥ 1.

So T is compact.

However, the converse of Theorem 5.1.1 above is not true, as demonstrated by the following
Example which says that the identity operator in any infinite-dimensional inner product space is
not compact. Later on we will see that all finite-rank operators are compact, and in particular,
the identity operator in a finite-dimensional inner product space is compact.

Example. Let X be an infinite-dimensional inner product space. Then we can construct an
orthonormal sequence u1, u2, u3, . . . in X (take any countable infinite independent set and use the
Gram-Schmidt orthonormalization procedure). Consider the identity operator I : X → X . The
sequence (un)n∈N is bounded (for all n ∈ N, ‖un‖ = 1). However, the sequence (Iun)n∈N has no
convergent subsequence, since for all n, m ∈ N with n 6= m, we have

‖Iun − Ium‖ = ‖un − um‖ =
√

2.

Hence I is not compact. However, I is clearly bounded (‖I‖ = 1). ♦

It turns out that all finite rank operators are compact. Recall that an operator T is called a
finite rank operator if its range, ran(T ), is a finite-dimensional vector space.

Theorem 5.1.2 Let X be an inner product space and suppose that T ∈ L (X). If ran(T ) is
finite-dimensional, then T is compact.

Proof Let {u1, . . . , um} be an orthonormal basis for ran(T ). If (xn)n∈N is a bounded sequence
in X , then for all n ∈ N and each k ∈ {1, . . . , m}, we have

|〈Txn, uk〉| ≤ ‖Txn‖‖uk‖2 ≤ ‖T ‖‖xn‖ ≤ ‖T ‖ sup
n∈N

‖xn‖. (5.2)

Hence (〈Txn, u1〉)n∈N is a bounded sequence. By the Bolzano-Weierstrass theorem, it follows that

it has a convergent subsequence, say (〈Tx
(1)
n , u1〉)n∈N. From (5.2), it follows that (〈Tx

(1)
n , u2〉)n∈N

is a bounded sequence, and again by the Bolzano-Weiertrass theorem, it has a convergent subse-

quence, say (〈Tx
(2)
n , u2〉)n∈N. Proceeding in this manner, it follows that (xn)n∈N gas a subsequence

(x
(m)
n )n∈N such that the sequences

(〈Tx(m)
n , u1〉)n∈N, . . . , (〈Tx(m)

n , um〉)n∈N

are all convergent, with limits say α1, . . . , αm, respectively. Then

∥
∥
∥
∥
∥
Tx(m)

n −
m∑

k=1

αkuk

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

m∑

k=1

〈Tx(m)
n , uk〉uk −

m∑

k=1

αkuk

∥
∥
∥
∥
∥

2

=
m∑

k=1

|〈Tx(m)
n , uk〉 − αk|2 n→∞−→ 0,

and so it follows that (Tx
(m)
n )n∈N is a convergent subsequence (with limit

m∑

k=1

αkuk) of the sequence

(Txn)n∈N. Consequently T is compact, and this completes the proof.
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Next we prove that if X is a Hilbert space, then the limits of compact operators are compact.
Thus the subspace C (X) of L (X) comprising compact operators is closed, that is C (X) = C (X).
Hence C (X), with the induced norm from L (X) is also a Banach space.

Theorem 5.1.3 Let X be a Hilbert space. Suppose that (Tn)n∈N is a sequence of compact opera-
tors such that it is convergent in L (X), with limit T ∈ L (X). Then T is compact.

Proof We have
lim

n→∞
‖T − Tn‖ = 0.

Suppose that (xn)n∈N is a sequence in X such that for all n ∈ N, ‖xn‖ ≤ M . Since T1 is compact,

(T1xn)n∈N has a convergent subsequence (T1x
(1)
n )n∈N, say. Again, since (x

(1)
n )n∈N is a bounded

sequence, and T2 is compact, (T2x
(1)
n )n∈N contains a convergent subsequence (T2x

(2)
n )n∈N. We

continue in this manner:
x1 x2 x3 . . .

x
(1)
1 x

(1)
2 x

(1)
3 . . .

x
(2)
1 x

(2)
2 x

(2)
3 . . .

...
...

...
. . .

Consider the diagonal sequence (x
(n)
n+1)n∈N, which is a subsequence of (xn)n∈N. For each k ∈ N,

(Tkx
(n)
n )n∈N is convergent in X . For n, m ∈ N, we have

‖Tx(n)
n − Tx(m)

m ‖ ≤ ‖Tx(n)
n − Tkx(n)

n ‖ + ‖Tkx
(n)
n − Tkx(m)

m ‖ + ‖Tkx(m)
m − Tx(m)

m ‖
≤ ‖T − Tk‖‖x(n)

n ‖ + ‖Tkx(n)
n − Tkx(m)

m )‖ + ‖Tk − T ‖‖xm
m‖

≤ 2M‖T − Tk‖ + ‖Tkx(n)
n − Tkx(m)

m )‖.

Hence (Tx
(n)
n )n∈N is a Cauchy sequence in X and since X is complete, it converges in X . Hence

T is compact.

We now give an important example of a compact operator.

Example. Let

K =








k11 k12 k13 . . .

k21 k22 k23 . . .

k31 k32 k33 . . .
...

...
...

. . .








be an infinite matrix such that ∞∑

i=1

∞∑

j=1

|kij |2 < +∞.

Then K defines a compact linear operator on ℓ2.

If x = (x1, x2, x3, . . . ) ∈ ℓ2, then

Kx =





∞∑

j=1

k1jxj ,

∞∑

j=1

k2jxj ,

∞∑

j=1

k3jxj



 .

As ∞∑

i=1

∞∑

j=1

|kij |2 < +∞,
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it follows that for each i ∈ N,

∞∑

j=1

|kij |2 < +∞, and so ki := (ki1, ki2, ki3, . . . ) ∈ ℓ2. Thus

〈kix〉 =
∞∑

j=1

kijxj

converges. Hence Kx is a well-defined sequence. Moreover, we have

‖Kx‖2
2 =

∞∑

i=1

∣
∣
∣
∣
∣
∣

∞∑

j=1

kijxj

∣
∣
∣
∣
∣
∣

2

≤
∞∑

i=1





∞∑

j=1

|kij ||xj |





2

≤
∞∑

i=1





∞∑

j=1

|kij |2








∞∑

j=1

|xj |2


 (Cauchy-Schwarz)

=





∞∑

j=1

|xj |2








∞∑

i=1

∞∑

j=1

|kij |2


 = ‖x‖2
∞∑

i=1

∞∑

j=1

|kij |2.

This shows that Kx ∈ ℓ2 and that K ∈ L (ℓ2), with

‖K‖ ≤

√
√
√
√

∞∑

i=1

∞∑

j=1

|kij |2.

Define the operator Kn ∈ L (ℓ2) as follows:

Knx =





∞∑

j=1

k1jxj , . . . ,

∞∑

j=1

knjxj , 0, 0, 0, . . .



 , x ∈ ℓ2.

This is a finite rank operator corresponding to the matrix

Kn =











k11 . . . k1n . . .
...

...
kn1 . . . knn . . .

0 . . . 0 . . .
...

...











and is simply the operator PnK, where Pn is the projection onto the subspace Y = span{e1, . . . , en}
(see Exercise 4.6 on page 69). As Kn is finite rank, it is compact. We have

K − Kn =











0 . . . 0 . . .
...

...
0 . . . 0 . . .

k(n+1)1 . . . k(n+1)n . . .
...

...











and so

‖K − Kn‖2 ≤
∞∑

i=n+1

∞∑

j=1

|kij |2 n→∞−→ 0.

Thus K is compact. This operator is the discrete analogue of the integral operator (2.17) on page
23, which can be also shown to be a compact operator on the Lebesgue space L2(a, b). ♦
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It is easy to see that if S, T are compact operators then S + T is also a compact operator.
Furthermore, if α ∈ K and T is a compact operator, then αT is also a compact operator. Clearly
the zero operator 0, mapping every vector x ∈ X to the zero vector in X is compact. Hence the
set of all compact operators is a subspace of C (X).

In fact, C (X) is an ideal of the algebra L (X), and we prove this below in Theorem 5.1.4.

Definition. An ideal I of an algebra R is a subset I of R that has the following three properties:

I1 0 ∈ I.

I2 If a, b ∈ I, then a + b ∈ I.

I3 If a ∈ I and r ∈ R, then ar ∈ I and ra ∈ I.

Theorem 5.1.4 Let X be a Hilbert space.

1. If T ∈ L (X) is compact and S ∈ L (X), then TS is compact.

2. If T ∈ L (X) is compact, then T ∗ is compact.

3. If T ∈ L (X) is compact and S ∈ L (X), then ST is compact.

Proof 1. Let (xn)n∈N be a bounded sequence in X . As S is a bounded linear operator, it
follows that (Sxn)n∈N is also a bounded sequence. Since T is compact, there exists a subsequence
(T (Sxnk

))k∈N that is convergent. Thus TS is compact.

2. Let (xn)n∈N be a bounded sequence in X . From the part above, it follows that TT ∗ is compact,
and so there exists a subsequence (TT ∗xnk

)k∈N that is convergent. Hence

‖T ∗xnk
− T ∗xnl

‖2 = 〈TT ∗(xnk
− xnl

), (xnk
− xnl

)〉 ≤ ‖TT ∗xnk
− TT ∗xnl

‖‖xnk
− xnl

‖.

hence (T ∗xnk
)k∈N is a Cauchy sequence and as X is a Hilbert space, it is convergent. This shows

that T ∗ is compact.

3. As T is compact, it follows that T ∗ is also compact. Since S∗ ∈ L (X), it follows that T ∗S∗ is
compact. From the previous part, we obtain that (T ∗S∗)∗ = ST is compact.

Summarizing, the set C (X) is a closed ideal of L (X).

Exercises.

1. Let X be an infinite-dimensional Hilbert space. If T ∈ L (X) is invertible, then show that
T cannot be compact.

2. Let X be an infinite-dimensional Hilbert space. Show that if T ∈ L (X) is such that T is
self-adjoint and T n is compact for some n ∈ N, then T is compact.

Hint: First consider the case when n = 2.

3. Let (λn)n∈N be a bounded sequence of scalars, and consider the diagonal operator D : ℓ2 → ℓ2

defined by (2.18) on page 24. Show that D is compact iff lim
n→∞

λn = 0.



76 Chapter 5. Compact operators

4. Let X be a Hilbert space. Let A ∈ L (X) be fixed. We define Λ : L (X) → L (X) by

Λ(T ) = A∗T + TA, T ∈ L (X).

Show that the subspace of compact operators is Λ-invariant, that is,

{Λ(T ) | T ∈ C (X)} ⊂ C (X).

5. Let X be a Hilbert space with an orthonormal basis {u1, u2, u3, . . . }. An operator T ∈ L (X)
is called Hilbert-Schmidt if ∞∑

n=1

‖Tun‖2 < +∞.

(a) Let T ∈ L (X) be a Hilbert-Schmidt operator. If m ∈ N, then define Tm : X → X by

Tmx =

m∑

n=1

〈x, un〉Tun, x ∈ X.

Prove that Tm ∈ L (X) and that

‖(T − Tm)x‖ ≤ ‖x‖

√
√
√
√

∞∑

n=m+1

‖Tun‖2. (5.3)

Hint: In order to prove (5.3), observe that

‖(T − Tm)x‖ =

∥
∥
∥
∥
∥

∞∑

n=m+1

〈x, un〉Tun

∥
∥
∥
∥
∥
≤

∞∑

n=m+1

|〈x, un〉|‖Tun‖,

and use the Cauchy-Schwarz inequality in ℓ2.

(b) Show that every Hilbert-Schmidt operator T is compact.

Hint: Using (5.3), conclude that T is the limit in L (X) of the sequence of finite rank
operators Tm, m ∈ N.

5.2 Approximation of compact operators

Compact operators play an important role since they can be approximated by finite rank operators.
This means that when we want to solve an operator equation involving a compact operator, then
we can replace the compact operator by a sufficiently good finite-rank approximation, reducing
the operator equation to an equation involving finite matrices. Their solution can then be found
easily using tools from linear algebra. In this section we will prove Theorem 5.2.3, which is the
basis of the Projection, Sloan and Galerkin methods in numerical analysis.

In order to prove Theorem 5.2.3, we will need Lemma 5.2.2, which relies on the following deep
result.

Theorem 5.2.1 (Uniform boundedness principle) Let X be a Banach space and Y be a normed
space. If F ⊂ L (X, Y ) is a family of bounded linear operators that is pointwise bounded, that is,

∀x ∈ X, sup
T∈F

‖Tx‖ < +∞,

then the family is uniformly bounded, that is, sup
T∈F

‖T ‖ < +∞.
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Proof See Appendix B on page 81.

Lemma 5.2.2 Let X be a Hilbert space. Suppose that (Tn)n∈N is a sequence in L (X), T ∈ L (X)
and S ∈ C (X). If

∀x ∈ X, Tnx
n→∞−→ Tx in X,

then TnS
n→∞−→ TS in L (X).

Proof Step 1. Suppose that TnS −TS does not converge to 0 in L (X) as n → ∞. This means
that

¬ [∀ǫ > 0 ∃N ∈ N such that ∀n > N, ∀x ∈ X with ‖x‖ = 1, ‖(TnS − TS)x‖ ≤ ǫ] .

Thus there exists an ǫ > 0 such that

∀N ∈ N, ∃n > N, ∃xn ∈ X with ‖xn‖ = 1 and ‖(TnS − TS)xn‖ > ǫ.

So we can construct a sequence (xnk
)k∈N in X such that ‖xnk

‖ = 1 and ‖(Tnk
S − TS)xnk

‖ > ǫ.

Step 2. As (xnk
)k∈N is bounded and S is compact, there exists a subsequence, say (Sxnkl

)l∈N,
of (Snk

)k∈N, that is convergent to y, say. Then we have

ǫ < ‖(Tnkl
S − TS)xnkl

‖ = ‖(Tnkl
− T )y + (Tnkl

− T )(Sxnkl
− y)‖

≤ ‖Tnkl
y − Ty‖ + ‖Tnkl

− T ‖‖Sxnkl
− y‖. (5.4)

Choose L ∈ N large enough so that if l > L, then

‖Tnkl
y − Ty‖ <

ǫ

2
and ‖Sxnkl

− y‖ <
ǫ

2(M + ‖T ‖) ,

where M := supn∈N ‖Tn‖ (< ∞, by Theorem 5.2.1). Then (5.4) yields the contradiction that
ǫ < ǫ. This completes the proof.

Theorem 5.2.3 Let X be a Hilbert space and let K be a compact operator on X. Let (Pn)n∈N be
a sequence of projections of finite rank and let KP

n = PnK, KS
n = KPn, KG

n = PnKPn, n ∈ N. If

∀x ∈ X, Pnx
n→∞−→ x in X,

then the operators KP
n , KS

n , KG
n all converge to K in L (X) as n → ∞.

Proof From Lemma 5.2.2, it follows that KP
n

n→∞−→ K in L (X). As Pn = P ∗
n , and K∗ is compact,

we also have similarly that P ∗
nK∗ n→∞−→ K∗ in L (X), that is, lim

n→∞
‖P ∗

nK∗ − K∗‖ = 0. Since

‖P ∗
nK∗ − K∗‖ = ‖(P ∗

nK∗ − K∗)∗‖ = ‖KPn − K‖ = ‖KS
n − K‖,

we obtain that lim
n→∞

‖KS
n − K‖ = 0, that is, KS

n

n→∞−→ K in L (X). Finally,

‖KG
n − K‖ = ‖PnKPn − PnK + PnK − K‖

≤ ‖Pn(KPn − K)‖ + ‖PnK − K‖
≤ ‖Pn‖‖KS

n − K‖ + ‖KP
n − K‖

which tends to zero as n → ∞, since ‖Pn‖ ≤ 1.
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Theorem 5.2.4 Let X be a Hilbert space and K be a compact operator on X such that I − K is
invertible. Let K0 ∈ L (X) satisfy

ǫ := ‖(K − K0)(I − K)−1‖ < 1.

Then for given y, y0 ∈ X, there are unique x, x0 ∈ X such that

x − Kx = y and x0 − K0x0 = y0,

and

‖x − x0‖ ≤ (I − K)−1

1 − ǫ
(ǫ‖y‖ + ‖y − y0‖). (5.5)

Proof As X is a Hilbert space and ‖(K −K0)(I −K)−1‖ = ǫ < 1, it follows from Theorem 2.4.3
that

I − K0 = (I − K) + K − K0 = (I + (K − K0)(I − K)−1)(I − K)

is invertible with inverse (I − K)−1(I + (K − K0)(I − K)−1)−1, and that

‖(I − K0)
−1‖ = ‖(I − K)−1(I + (K − K0)(I − K)−1)−1‖

≤ ‖(I − K)−1‖‖(I + (K − K0)(I − K)−1)−1‖

≤ ‖(I − K)−1‖
1 − ‖(K − K0)(I − K)−1‖ =

‖(I − K)−1‖
1 − ǫ

.

Furthermore, we have

(I − K)−1 − (I − K0)
−1 = (I − K0)

−1((I − K0)(I − K)−1 − I)

= (I − K0)
−1((I − K0) − (I − K))(I − K)−1

= (I − K0)
−1(K − K0)(I − K)−1,

and so

‖(I − K)−1 − (I − K0)
−1‖ ≤ ‖(I − K0)

−1‖‖(K − K0)(I − K)−1‖ ≤ ‖(I − K)−1‖
1 − ǫ

ǫ.

Let y, y0 ∈ X . Since I − K and I − K0 are invertible, there are unique x, x0 ∈ X such that

x − Kx = y and x0 − K0x0 = y0.

Also, x − x0 = (I − K)−1y − (I − K0)
−1y0 = [(I − K)−1 − (I − K0)

−1]y + (I − K0)
−1(y − y0).

Hence

‖x − x0‖ ≤ ǫ‖(I − K)−1‖
1 − ǫ

‖y‖ +
‖(I − K)−1‖

1 − ǫ
‖y − y0‖,

as desired.

Remark. Observe that as K0 and y0 become closer and closer to K and y, respectively, the error
bound on ‖x− x0‖ (left hand side of (5.5)) converges to 0. In particular, if we take K0 = PnKPn

and y0 = Pny, where Pn is a projection as in Theorem 5.2.3, then we see that the approximate
solutions x0 converge to the actual solution x. We illustrate this procedure in a specific case below.

Example. Consider the following operator on ℓ2:

K =








0 1
2 0 0 . . .

0 0 1
3 0 . . .

0 0 0 1
4 . . .

...
...

...
...

. . .








.



5.3. Appendix A: Bolzano-Weierstrass theorem 79

We observe that

‖Kx‖2 =

∞∑

n=1

∣
∣
∣
∣

xn+1

n + 1

∣
∣
∣
∣

2

≤ 1

4

∞∑

n=1

|xn+1|2 ≤ 1

4
‖x‖2,

and so ‖K‖ ≤ 1
2 . Consequently I − K is invertible. As

∞∑

i=1

∞∑

j=1

|kij |2 =

∞∑

n=1

1

(n + 1)2
< +∞,

it follows that K is compact.

Let y = (1
3 , 1

4 , 1
5 , . . . ) ∈ ℓ2. To find approximate solutions of the equation x − Kx = y, we fix

an n ∈ N, and solve x − PnKPnx = Pny, that is, the system















1 − 1
2

1 − 1
3

1
. . .

. . . − 1
n

1
1

. . .






























x1

x2

x3

...
xn

xn+1

...















=













1
3
1
4
...
1

n+2

0
...













.

The approximate solutions for n = 1, 2, 3, 4, 5 are given (correct up to four decimal places) by

x(1) = (0.3333, 0, 0, 0, . . .)

x(2) = (0.4583, 0.2500, 0, 0, 0, . . .)

x(3) = (0.4917, 0.3167, 0.2000, 0, 0, 0, . . .)

x(4) = (0.4986, 0.3306, 0.2417, 0.1667, 0, 0, 0, . . .)

x(5) = (0.4998, 0.3329, 0.2488, 0.1952, 0.1428, 0, 0, 0, . . .),

while the exact unique solution to the equation (I − K)x = y is given by x :=
(

1
2 , 1

3 , 1
4 , . . .

)
∈ ℓ2.

♦

5.3 Appendix A: Bolzano-Weierstrass theorem

We used the Bolzano-Weierstrass theorem in the proof of Theorem 5.1.2. In this appendix, we
give a proof of this theorem, which says that every bounded sequence in R has a convergent
subsequence. In order to prove this result, we need two auxiliary results, which we prove first.

Lemma 5.3.1 If a sequence in R is monotone and bounded, then it is convergent.

Proof

1◦ Let (an)n∈N be an increasing sequence. Since (an)n∈N is bounded, it follows that the set

S = {an | n ∈ N}

has an upper bound and so supS exists. We show that in fact (an)n∈N converges to sup S. Indeed
given ǫ > 0, then since supS − ǫ < supS, it follows that supS − ǫ is not an upper bound for S

and so ∃aN ∈ S such that supS − ǫ < aN , that is

sup S − aN < ǫ.



80 Chapter 5. Compact operators

Since (an)n∈N is an increasing sequence, for n > N , we have aN ≤ an. Since supS is an upper
bound for S, an ≤ sup S and so |an − sup S| = supS − an, Thus for n > N we obtain

|an − sup S| = supS − an ≤ sup S − aN < ǫ.

2◦ If (an)n∈N is a decreasing sequence, then clearly (−an)n∈N is an increasing sequence. Further-
more if (an)n∈N is bounded, then (−an)n∈N is bounded as well (| − an| = |an| ≤ M). Hence by
the case considered above, it follows that (−an)n∈N is a convergent sequence with limit

sup{−an | n ∈ N} = − inf{an | n ∈ N} = − inf S,

where S = {an | n ∈ N}. So given ǫ > 0, ∃N ∈ N such that for all n > N , | − an − (− inf S)| < ǫ,
that is,

|an − inf S| < ǫ.

Thus (an)n∈N is convergent with limit inf S.

Lemma 5.3.2 Every sequence in R has a monotone subsequence.

We first give an illustration of the idea behind this proof. Assume that (an)n∈N is the given
sequence. Imagine that an is the height of the hotel with number n, which is followed by hotel
n + 1, and so on, along an infinite line, where at infinity there is the sea. A hotel is said to have
the seaview property if it is higher than all hotels following it. See Figure 5.1. Now there are only

1 2 3 4 5 6

. . .

. . .

Figure 5.1: The seaview property.

two possibilities:

1◦ There are infinitely many hotels with the seaview property. Then their heights form a decreasing
subsequence.

2◦ There is only a finite number of hotels with the seaview property. Then after the last hotel
with the seaview property, one can start with any hotel and then always find one that is at least
as high, which is taken as the next hotel, and then finding yet another that is at least as high as
that one, and so on. The heights of these hotels form an increasing subsequence.

Proof Let
S = {m ∈ N | for all n > m, an < am}.

Then we have the following two cases.

1◦ S is infinite. Arrange the elements of S in increasing order: n1 < n2 < n3 < . . . . Then (ank
)k∈N

is a decreasing subsequence of (an)n∈N.

2◦ S is finite. If S empty, then define n1 = 1, and otherwise let n1 = maxS +1. Define inductively

nk+1 = min{m ∈ N | m > nk and am ≥ ank
}.
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(The minimum exists since the set {m ∈ N | m > nk and am ≥ ank
} is a nonempty subset of N:

indeed otherwise if it were empty, then nk ∈ S, and this is not possible if S was empty, and also
impossible if S was not empty, since nk > maxS.)

The Bolzano-Weiertrass theorem is now a simple consequence of the above two lemmas.

Theorem 5.3.3 (Bolzano-Weierstrass theorem.) Every bounded sequence in R has a convergent
subsequence.

Proof Let (an)n∈N be a bounded sequence. Then there exists a M > 0 such that for all n ∈ N,
|an| ≤ M . From Lemma 5.3.2 above, it follows that the sequence (an)n∈N has a monotone
subsequence (ank

)k∈N. Then clearly for all k ∈ N, |ank
| ≤ M and so the sequence (ank

)k∈N is
also bounded. Since (ank

)k∈N is monotone and bounded, it follows from Lemma 5.3.1 that it is
convergent.

5.4 Appendix B: uniform boundedness principle

In this appendix, we give a proof of the uniform boundedness principle.

Theorem 5.4.1 (Uniform boundedness principle) Let X be a Banach space and Y be a normed
space. If F ⊂ L (X, Y ) is a family of bounded linear operators that is pointwise bounded, that is,

∀x ∈ X, sup
T∈F

‖Tx‖ < +∞,

then the family is uniformly bounded, that is, sup
T∈F

‖T ‖ < +∞.

Proof We will assume that F is pointwise bounded, but not uniformly bounded, and obtain a
contradiction. For each x ∈ X , define

M(x) = sup
T∈F

‖Tx‖.

Our assumption is that for every x ∈ X , M(x) < +∞. Observe that if F is not uniformly
bounded, then for any pair of positive numbers ǫ and C, there must exist some T ∈ F with
‖T ‖ > C

ǫ
, and hence some x ∈ X with ‖x‖ = ǫ, but ‖Tx‖ > C. We can therefore choose sequences

(Tn)n∈N in F and (xn)n∈N in X as follows. First choose T1 and x1 so that

‖x1‖ =
1

2
and ‖T1x1‖ ≥ 2

(ǫ = 1
2 , C = 2 case). Having chosen x1, . . . , xn−1 and T1, . . . , Tn−1, choose xn and Tn to satisfy

‖xn‖ =
1

2n supk<n ‖Tk‖
and ‖Tnxn‖ ≥

n−1∑

k=1

M(xk) + 1 + n. (5.6)

Now let

x =

∞∑

n=1

xn.
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The sum converges, since

m∑

k=n+1

‖xk‖ ≤ 1

‖T1‖

m∑

k=n+1

1

2k
≤ 1

‖T1‖

∞∑

k=n+1

1

2k
=

1

‖T1‖
1

2n

n→∞−→ 0,

and since X is complete. For any n ≥ 2,

‖Tnx‖ =

∥
∥
∥
∥
∥
∥

Tnxn +
∑

k 6=n

Tnxk

∥
∥
∥
∥
∥
∥

≥ ‖Tnxn‖ −

∥
∥
∥
∥
∥
∥

∑

k 6=n

Tnxk

∥
∥
∥
∥
∥
∥

.

Using (5.6), we bound the subtracted norm above:

∥
∥
∥
∥
∥
∥

∑

k 6=n

Tnxk

∥
∥
∥
∥
∥
∥

≤
n−1∑

k=1

‖Tnxk‖ +
∞∑

k=n+1

‖Tn‖‖xk‖

≤
n−1∑

k=1

M(xk) +

∞∑

k=n+1

‖Tn‖
1

2k supj<k ‖Tj‖

≤
n−1∑

k=1

M(xk) +

∞∑

k=n+1

1

2k
≤

n−1∑

k=1

M(xk) + 1.

Consequently, ‖Tnx‖ ≥ n, contradicting the assumption that F is pointwise bounded. This
completes the proof.
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