
253 Homological Algebra

Mariusz Wodzicki
Notes by Qiaochu Yuan

Fall 2012



1 Introduction

Homological algebra established itself as a separate branch of mathematics around

the time of WWII. Nowadays it is a profound branch of mathematics and an essential

tool. For example, the study of class field theory relies crucially on homological

algebra.

An example is the following. Let G is a group. We want to study representations

ρ : G→ Aut(V ) where V is a k-module, k some commutative ring. Equivalently, we

want to study left k[G]-modules. There is a functor V 7→ V G which sends V to the

invariant submodule {v : gv = v∀g ∈ G}. This functor is representable; in fact, it is

just Hom(1,−) where 1 is the trivial module.

(Some asides. The category of left k[G]-modules is enriched over k-modules, so in

particular it is pre-additive. It also admits direct sums (that is, biproducts), so it is

additive.)

The invariant functor V 7→ V G is a functor k[G]-Mod → k-Mod, but since there

is a natural inclusion k-Mod→ k[G]-Mod we may regard it as a functor k[G]-Mod→
k[G]-Mod. This functor is additive, and in fact it preserves limits, but it does not

preserve short exact sequences. There is a dual functor, the functor V 7→ VG of

coinvariants, given by V/span(gv−v∀g ∈ G). This functor can also be written −⊗1.

There is an adjunction

Hom(V ⊗ 1,W ) ∼= Hom(V,Hom(1,W )) (1)

showing that − ⊗ 1 preserves colimits, but it also does not preserve short exact

sequences. Homological algebra in some sense repairs this failure of exactness by

associating to a functor a sequence of derived functors. In this particular case we

obtain group homology and group cohomology. In general derived functors give us

many other examples of homology and cohomology.

In this course we will aim towards some modern developments, e.g. derived cate-

gories, exact categories, triangulated categories.

2 Reflections

Let F : C → D be a functor and let d ∈ D be an object (both fixed). Consider pairs

(d′, η) where d′ ∈ Ob(C) and η is a morphism η : d→ F (d′) in D. This data induces
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a map

τc : HomC(d′, c) 3 α 7→ F (α) ◦ η ∈ HomD(d, F (c)) (2)

for every c ∈ C. This is natural in c so we get a natural transformation of

contravariant functors τ : HomC(d′,−)→ HomD(d, F (−)).

Definition A pair (d′, η) is a reflection of d in C (along F ) if all of the above maps

are bijections for all c ∈ C. Equivalently, the natural transformation is a natural

isomorphism.

By the Yoneda lemma, if a reflection exists it is unique up to unique isomorphism.

(A reflection is precisely a representing object of HomC(d, F (−)) in C together with

the induced morphism HomC(d′, d′) 3 idd′ 7→ η ∈ HomD(d, F (d′)).)

Let φ : d → e be a morphism and let (d′, ηd) and (e′, ηe) be reflections of d, e

respectively. By uniqueness, there is a unique morphism φ′ : d′ → e′ such that the

diagram

d

φ

��

ηd // F (d′)

F (φ′)
��

e ηe
// F (e′)

(3)

commutes. This induces a commutative diagram

HomC(d′, c)
τc // HomD(d, F (c))

HomC(e′, c)

(φ′)∗

OO

τc // HomD(e, F (c))

φ∗

OO
(4)

for every c (in fact of functors).

Suppose we are given that every d ∈ D has a reflection d′. Then we can write

down a functor G : D → C given by G(d) = d′ and G(φ) = φ′, and the morphisms ηd
give a natural transformation η : idD → F ◦ G. The statement that the maps τ are

all bijective is now the statement that this is actually the unit of an adjunction

HomC(G(d), c) ∼= HomD(d, F (c)) (5)
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where the bijection (natural in c and d) is determined by acting by F , giving a

map HomD(F ◦G(d), F (c)), then precomposing with η.

The counit G ◦ F → idC gives a family of maps F (G(c)) → c (coreflections of

objects in C along G).

3 Adjoint functors

Conversely, let F : C → D and G : D → C be a pair of adjoint functors (F right

adjoint to G) and let

θc,d : HomC(G(d), c)→ HomD(d, F (c)) (6)

be the corresponding family of bijections. Naturality in c, d is a commutative

diagram

HomC(G(d′), c)
θc,d′

//

G(ψ)∗

��

HomD(d′, F (c))

ψ∗

��

HomC(G(d), c)
θc,d

//

φ∗
��

HomD(d, F (c))

F (ψ)∗
��

HomC(G(d), c′)
θc′,d

// HomD(d, F (c′))

(7)

where ψ : d′ → d and φ : c → c′ are arbitrary morphisms. In particular, we can

define the unit

ηd = θG(d),d(idG(d)) ∈ HomD(d, F ◦G(d)) (8)

and the counit

εc = θ−1
c,F (c)(idF (c)) ∈ HomC(G ◦ F (c), c) (9)

of the adjunction. If α : G(d) → c is an arbitrary map, we have a commutative

diagram
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HomC(G(d), G(d))
θG(d),d

//

α∗
��

HomD(d, F ◦G(d))

F (α)∗
��

HomC(G(d), c)
θc,d

// HomD(d, F (c))

(10)

and examining the image of idG(d) on the top left in the bottom right, we conclude

that

θc,d(α) = F (α)∗ ◦ ηd. (11)

It follows that morphisms β : d→ F (c) can be written uniquely as F (θ−1
c,d(β))◦ηd,

so indeed the adjunction provides reflections. In other words, every morphism β :

d→ F (c) factors uniquely through ηd : d→ F ◦G(d).

Exercise 3.1. Show that if G is left adjoint to F , then the composite

G(d)
G(ηd)−−−→ GFG(d)

εG(d)−−−→ G(d) (12)

is the identity. Dually,

F (c)
ηF (c)−−−→ FGF (c)

F (εc)−−−→ F (c) (13)

is the identity. As an identity of natural transformations, ε(G) ◦G(η) = idG and

F (ε) ◦ η(F ) = idF .

4 Special cases

Let C be a category and I be a small category. Let CI denote the category of functors

I → C; we call this a diagram of shape I in C. There is a diagonal functor

∆ : C → CI (14)

sending every c ∈ C to the constant diagram I → C with value c (all morphisms

are sent to idc). When I is non-empty, ∆ identifies C with a subcategory of CI .

When I is connected, ∆ identifies C with a full subcategory of CI .

(Aside: it is straightforward to produce subcategories which are not full. In fact

there is a functor Cat→ Gpd sending a small category to the groupoid of its invertible
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morphisms, which is a non-full subcategory in general.)

To see this, recall that a morphism ∆c → ∆c′ is a natural transformation, so a

family of morphisms ϕi : ∆c(i)→ ∆c′(i) such that the squares

∆c(i)

∆c(f)

��

ϕi // ∆c′(i)

∆c′ (f)

��

∆c′(i
′)

ϕi′ // ∆c′(i
′)

(15)

commute, where f : i→ i′ is a morphism in I. But ∆c(i) = c,∆c′(i) = c′,∆c(f) =

idc,∆c′(i) = idc′ , so it follows that in factϕi = ϕi′ whenever a morphism exists from

i to i′. To say that I is connected is to say that any pair of objects is connected by

a chain of morphisms, so ϕi is constant in i.

When I is empty, CI is the terminal category 1, and the diagonal functor is the

unique functor C → 1.

In general, let D be a diagram (an object in CI). A reflection of D is a colimit

(direct limit, generalizing inductive limit) of the diagram, denoted lim−→. A coreflection

of D is a limit (inverse limit, generalizing projective limit) of the diagram, denoted

lim←−. Both are unique up to unique isomorphism. Functorial reflection means that ∆

has a left adjoint, the colimit functor, and functorial coreflection means that ∆ has a

right adjoint, the limit functor.

(An equivalent description is that limits and colimits are terminal and initial

objects in the categories of cones and cocones over the diagram, where a cone is a

morphism ∆c → D and a cocone is a morphism D → ∆c.)

Example Let I = 2 be the discrete category with two objects. A diagram 2 → C

is a pair of objects c0, c1. A colimit is then a coproduct c0 t c1 and a limit is then

a product c0 × c1. If I is replaced by a more general discrete category we get more

general coproducts and products.

Example Let I = {• ⇒ •} be the pair of parallel arrows. A diagram I → C is a

pair of parallel morphisms f, g : c0 → c1. A colimit is then a coequalizer and a limit

is then an equalizer. In an Ab-enriched category these are equivalently given by the

cokernel and kernel of f − g.

Example Let I be the category
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•

��
• // •

. (16)

A limit of a diagram of this shape is a pullback, and the resulting square

lim←−

��

// X

f

��

Y
g
// Z

(17)

is called a Cartesian square. (lim←− is sometimes called the fiber product X ×Z Y
in this context, especially if we work in the category of sets or a similar category.)

Dually we can talk about pushouts and co-Cartesian squares.

Classical homological algebra may be regarded as the study of the failure of certain

functors to preserve finite limits or colimits.

5 Chain complexes

Read chapter 1 of Weibel! (There are mistakes.)

Let A be an additive category (enriched over Ab with finite biproducts).

Definition A chain complex (C•, ∂•) in A is a sequence Cq, q ∈ Z of objects in A

together with a sequence ∂q : Cq → Cq−1 of morphisms (the boundary morphisms)

such that ∂q ◦ ∂q−1 = 0 for all q. A cochain complex (C•, d•) in A is a sequence

Cq, q ∈ Z of objects in A together with a sequence dq : Cq → Cq+1 of morphisms (the

coboundary morphisms or the differentials) such that dq+1 ◦ dq = 0 for all q.

When A is a concrete category (e.g. a category of modules), elements of Cq resp.

Cq are called chains resp. cochains. A chain complex is precisely an additive functor

into A from the preadditive (Ab-enriched) category Γ

...− 1← 0← 1← 2← ... (18)

whose objects are the integers Z such that Hom(p, q) = Z if p − q = 0, 1 and 0

otherwise, and such that all nontrivial composites are zero. A cochain complex is an
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additive functor into A from the opposite of this category (e.g. a contravariant addi-

tive functor into A from this category). This defines the category of chain complexes

as the (additive) functor category Γ⇒ A; morphisms of chain complexes are natural

transformations, or more explicitly maps fq : Cq → Dq which are compatible with

boundary maps in the sense that ∂D,qfq = fq−1∂C,q.

There is a collection of functors [i], i ∈ Z on Γ (the shifts) which acts on objects

by sending q to q + i. These are automorphisms. They induce functors from the

category of chain complexes to itself as follows: (C•, ∂•) is sent to the chain com-

plex (C[i]•, ∂[i]•) where C[i]q = Cq−i, ∂[i]q = (−1)i∂q−i. The corresponding shifts on

cochain complexes takes the form C[i]q = Cq+i and d[i]q = (−1)idq+i. The extra

signs are a manifestation of the Koszul sign rule, since the shift and the boundary /

coboundary maps both have degree 1 and we switch them with each other i times.

(The contravariant functor q 7→ −q on Γ is a contravariant equivalence. Conse-

quently, the categories of chain complexes and cochain complexes in A are isomorphic,

and the isomorphism intertwines the shifts above.)

6 Homology

Let C be a category.

Definition A morphism a
µ−→ b is a monomorphism, or monic, if for any parallel pair

φ, ψ : x ⇒ a, we have µ ◦ φ = µ ◦ ψ ⇒ φ = ψ. Dually, a morphism a
µ−→ b is an

epimorphism, or epic, if for any parallel pair φ, ψ : b ⇒ x, we have φ ◦ µ = ψ ◦ µ ⇒
φ = ψ.

In the category of sets, the monomorphisms are precisely the injections and the

epimorphisms are precisely the surjections.

Definition Consider any parallel pair α, β : b ⇒ c as a diagram of shape {• ⇒ •}.
A limit of this diagram is an equalizer.

Exercise 6.1. Equalizers are monomorphisms.

Exercise 6.2. In the category CRing of commutative unital rings, an epimorphism

ϕ : A→ B is a homomorphism of rings such that the multiplication map B×B → B

induces an isomorphism B ⊗A B → B.
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Exercise 6.3. In the category of Hausdorff topological spaces, a morphism f : X → Y

is an epimorphism if f(X) is dense in Y .

Assume that C has zero objects. Then for a, b ∈ C there is a distinguished

morphism 0 : a→ 0→ b, the zero morphism.

Definition The kernel ker(α) of a morphism a
α−→ b is the equalizer of α, 0. The

cokernel coker(α) of a morphism is the coequalizer of α, 0.

In particular, kernels are equalizers and cokernels are coequalizers. In an Ab-

enriched category, the converse is true: every equalizer is a kernel and every coequal-

izer is a cokernel (subtract the morphisms).

Definition An additive category A is abelian if equalizers and coequalizers exist,

every monomorphism is an equalizer, and every epimorphism is a coequalizer.

This is equivalent to requiring that kernels and cokernels exist, that every monomor-

phism is a kernel, and that every epimorphism is a cokernel. This gives us kernel and

cokernel functors.

In a category with zero objects where every morphism has a kernel and a cokernel,

given a morphism α we can canonically construct a diagram

• ker(α)
// •

coker(ker(α))

��

α // •coker(α)
// •

• •
ker(coker(α))

OO . (19)

Write coker(ker(α)) = coim(α) (the coimage) and ker(coker(α)) = im(α) (the

image). Using the universal properties of kernels and cokernels we obtain two maps

on the bottom making the above diagram commute, and using the fact that certain

maps in the above diagram are monomorphisms and epimorphisms, these two maps

are equal. So any morphism admits a factorization

α = im(α) ◦ α′ ◦ coim(α). (20)

Exercise 6.4. Find examples where α′ is not an isomorphism.

Now assume that every monomorphism is a kernel and every epimorphism is a

cokernel. Then (probably?) α′ is an isomorphism.
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Exercise 6.5. In any category, the following are equivalent:

1. α is an isomorphism.

2. α is an equalizer and an epimorphism.

3. α is a coequalizer and a monomorphism.

Certainly α′ is an isomorphism if in addition C is an additive category. (This gives

one definition of an abelian category: an additive category with kernels and cokernels

in which α′ is always an isomorphism.)

Now let (C•, ∂•) be a chain complex. Consider the diagram

Cq−1 Cq
∂q
oo Cq+1

∂q+1
oo

˜∂q+1

��

Zq

kq

OO

Bq

ιq

aa
(21)

where kq : Zq → Cq is the kernel of ∂q and ιq : Bq → Cq is the image of ∂q+1. We

call Zq the q-cycles and Bq the q-boundaries.

Exercise 6.6. If h = f ◦ g is a monomorphism, then g is a monomorphism. If h is

an epimorphism, then f is an epimorphism.

Because ∂q ◦ ∂q+1 = 0 and because Bq is a kernel, we get additional arrows

coker(∂q+1)

yy

Cq−1 Cq
∂q

oo

OO

Cq+1

∂q+1
oo

˜∂q+1

��

Hq Zq
coker(ι̃q)
oo

kq

OO

Bq

ιq

ff

ĩq

oo

(22)

where the homology Hq is given by the cokernel of ι̃q. So we obtain a sequence

of functors Hq : Ch(A) → A assuming only that A has zero objects, kernels, and

cokernels.

Definition A chain complex (C•, ∂•) is acyclic if Hq(C•) = 0 for all q.
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Definition A chain complex (C•, ∂•) is contractible if there exists a sequence of

arrows hq : Cq → Cq+1 such that the supercommutator

[∂, h] = ∂ ◦ h+ h ◦ ∂ (23)

is the identity idC• . (The supercommutator is the correct commutator to take

because ∂ and h have degree −1 and +1 respectively.)

Exercise 6.7. If C is contractible then Hq(C) = 0 for all q.

The converse is false in general.

Exercise 6.8. If C is a chain complex, show that cone(idC•) is contractible, where

the cone is defined as follows: if f• : C• → D• is a chain map, cone(f) is a chain

complex with

cone(f)q = Cq ⊕Dq+1 (24)

and

∂cone(f)
q =

[
∂Cq 0

fq −∂Dq+1

]
. (25)

It is a nice exercise to show that if A is an abelian category then so is Ch(A).

Furthermore, a chain map is a monomorphism if and only if it is pointwise a monomor-

phism, and similarly for epimorphisms. Warning: this is false for the category of short

exact sequences in A. An explicit example is the morphism

0 Z/4Zoo

��

Zoo

idZ
��

Z4oo

2

��

0oo

0 Z/2Zoo Zoo Z2oo 0oo

(26)

which has trivial kernel but is not pointwise a monomorphism.

Let F : A→ B be an additive functor between abelian categories. Then we get a

diagram of functors

Ch(A)

Hq

��

F // Ch(B)

Hq

��

A
F // B

(27)
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and this diagram does not commute in general; we will be studying this. In the

special case that we want to study the action of F on an acyclic complex, this is

equivalent to studying the action of F on short exact sequences (an acyclic complex

breaks up into short exact sequences), and this leads to the following definition.

Definition An additive functor F : A → B is left exact if for any short exact

sequence 0 → a → b → c → 0, the sequence 0 → F (a) → F (b) → F (c) remains

exact. Dually, it is right exact if F (a)→ F (b)→ F (c)→ 0 remains exact. (For chain

complexes we should turn these arrows around.)

To any additive functor F : A → B we will associate a sequence of functors

Rq(F ) and Lq(F ), the right and left derived functors. There are canonical natural

transformations F → R0(F ) and L0(F ) → F , and F is left exact iff Rq(F ) is an

isomorphism iff Rq(F ) = 0 for all q ≥ 1. Dually, F is right exact iff L0(F )→ F is an

isomorphism iff Lq(F ) = 0 for all q ≥ 1.

An important point is that although F does not preserve acyclicity, it preserves

contractibility (which is one way to see that the two are not equivalent). A special kind

of complex (projective objects bounded below or injective objects bounded above)

has the property that if it is acyclic, it is automatically contractible, and these will

be important: we will try to replace objects of abelian categories with complexes

homotopy equivalent to them.

Definition A chain map f• : C• → D• is null-homotopic if there exist hq : Cq → Dq+1

such that

[∂, h] = ∂Cq+1 ◦ hq + hq−1 ◦ ∂Cq = f. (28)

Two chain maps f, g are chain homotopic if f − g is null-homotopic, and a chain

map f is a chain homotopy equivalence if there is a map g in the other direction such

that fg, gf are both chain homotopic to identities.

Exercise 6.9. Let f• : C• → D• be a chain map. Show that in the diagram

C•
f

zz

D• cone(idD)oo D[−1]•oo

(29)
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it is possible to lift f to a chain map C• → cone(idD) if and only if f is null-

homotopic. The set of liftings is in one-to-one correspondence with the set of con-

tracting homotopies of f .

Exercise 6.10. If an epimorphism is the cokernel of some morphism, and its kernel

exists, then it is the cokernel of its kernel.

7 Homological algebra

Let A be an abelian category. We will prove three fundamental lemmas that encap-

sulate much of homological algebra.

Definition An object P of A is projective if for any diagram of the form

P

f
��

f̃

��

Q′ Qp
oooo

(30)

with p an epimorphism, there exists a morphism (not necessarily unique) f̃ : P →
Q making the above diagram commute. We say that f̃ is a lift of f to Q.

Definition Dually, an object I of A is injective if for any diagram of the form

I

Q′

f

OO

//
p
// Q

f̃
__ (31)

with p a monomorphism, there exists a morphism (not necessarily unique) f̃ :

Q → I making the above diagram commute. We say that f̃ is an extension of f to

Q.

Extension also has another meaning. Namely, we say that a short exact sequence

of the form

Q′′ � Q� Q′ (32)
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exhibits Q as an extension of Q′′ by Q′. We may construct a category Ext(Q′′, Q′)

whose objects are all such extensions (Q′′, Q′ fixed, Q varying) and whose morphisms

are commutative diagrams (the maps between copies ofQ′′, Q′ being identities). When

we have finite biproducts, we can define the Baer sum of two extensions. This sum

operation descends to isomorphism classes and can be used to define the Ext group (at

least in an abelian category), which can also be obtained by considering the derived

functors of Hom functors.

Definition An abelian category has enough projectives if for every object M there

exists an epimorphism P �M where P is projective. Dually, it has enough injectives

if for every object M there exists a monomorphism M � I where I is injective.

We now assume that A has enough projectives. This is always true, for example, in

categories of modules, where free modules are projective. More generally, if F : C →
Set is a functor with a left adjoint G : Set→ C, then G(X) is projective; morphisms

G(X) → Q are identified with functions X → F (Q), and such functions can clearly

be lifted. Any object M therefore admits an epimorphism G(F (M))→M .

Definition A projective resolution of an object M is an acyclic chain complex

· · · 0←M
∂0←− P0

∂1←− P1 · · · (33)

with all Pi projective.

This is a common definition, but actually a projective resolution should be thought

of as the following, and the above is an augmented resolution.

Definition A projective resolution of an object M is a quasi-isomorphism (induces

isomorphisms on homology)

0

��

P0

��

oo P1

��

∂1
oo P2

��

∂2
oo · · ·oo

0 Moo 0oo 0oo · · ·oo

(34)

from a non-negatively graded chain complex all of whose components are projec-

tive to M .

Dually we can define injective resolutions.
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Theorem 7.1. (First fundamental lemma) For any diagram in an abelian category

of the form

0 Moo

f
��

P0
∂0oo P1

∂1oo P2
∂2oo · · ·oo

0 Noo Q0
∂′0

oo Q1
∂′1

oo Q2
∂′2

oo · · ·oo

(35)

where the bottom and top row are chain complexes, the Pi are projective, and the

bottom row is acyclic, there exist morphisms fi : Pi → Qi making the above diagram

commute.

Proof. We proceed inductively. The composition f ◦ ∂0 is a map to the image of an

epimorphism (by acyclicity). By the projectivity of P0, there exists a lift f0 : P0 → Q0

making the diagram commute:

0 Moo

f
��

P0

f0
��

∂0oo P1
∂1oo P2

∂2oo · · ·oo

0 Noo Q0
∂′0

oo Q1
∂′1

oo Q2
∂′2

oo · · ·oo

(36)

The composite ∂′0 ◦ f0 ◦ ∂1 : P1 → N is 0 by commutativity, so f0 ◦ ∂1 factors

through the kernel of ∂′0, hence by acyclicity through the image of ∂′1. But the map

from Q1 to im(∂′1) is an epimorphism, so by the projectivity of P1 there exists a lift

f1 : P1 → Q1 making the diagram commute:

0 Moo

f
��

P0

f0
��

∂0oo P1

f1
��

∂1oo P2
∂2oo · · ·oo

0 Noo Q0
∂′0

oo Q1
∂′1

oo Q2
∂′2

oo · · ·oo

(37)

The rest of the argument is the same.

Dually we get a corresponding result for complexes with injective terms:

0 //M
d0 // I0

d1 // I1
d2 // I2

// · · ·

0 // N

f

OO

d′0

// Q0

f0

OO

d′1

// Q1

f1

OO

d′2

// Q2

f2

OO

// · · ·

(38)
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Note that if we wanted both of these results for categories of modules we would

be forced to prove the projective and injective results separately because the opposite

of a category of modules is usually not a category of modules. But we proved the

lemma for abelian categories, and the opposite of an abelian category is an abelian

category.

Above we lifted non-uniquely infinitely many times. Do these choices matter?

Theorem 7.2. (Second fundamental lemma) Any two choices fi, f
′
i of liftings making

the above diagram commute are chain homotopic as morphisms of chain complexes

(including f).

These two lemmas imply that, although projective resolutions are not unique, a

morphism between any two objects M,N extends to a morphism between projective

resolutions which is unique up to chain homotopy equivalence, and an isomorphism

between any two objects M,N lifts to a chain homotopy equivalence between any two

projective resolutions; moreover, this chain homotopy equivalence is itself unique up

to chain homotopy.

Proof. It suffices to show by subtraction that any lift of the morphism f = 0 is

null-homotopic:

0 Moo

0
��

0

  

P0

f0
��

∂0oo

h0

  

P1

f1
��

∂1oo

h1

  

P2
∂2oo

  

· · ·oo

0 Noo Q0
∂′0

oo Q1
∂′1

oo Q2
∂′2

oo · · ·oo

(39)

That is, we want to find a sequence of maps hi : Pi → Qi+1 such that fi =

∂′i+1hi+hi−1∂i. This is clear for i = −1. For i = 0 we need to find a map h0 : P0 → Q1

such that f0 = ∂′1h0. By commutativity, ∂′0 ◦ f0 = 0◦∂0 = 0, hence f0 factors through

ker(∂′0), hence by acyclicity through im(∂′1). The map from Q1 to its image is an

epimorphism, so by the projectivity of P0, the corresponding map lifts to a map to

Q1, which gives our desired h0.

For general i we proceed inductively. If hi−1 has already been found, we want to

find hi such that ∂′i+1hi = fi − hi−1∂i. By commutativity and the assumption that

fi−1 = ∂′ihi−1 + hi−2∂
′
i−1, we compute that

15



∂′i(fi − hi−1∂i) = fi−1∂i − (∂′ihi−1)∂i (40)

= fi−1∂i − (fi−1 − hi−2∂i−1)∂i (41)

= 0. (42)

By acyclicity and projectivity, it follows as above that fi− hi−1∂i factors through

∂′i+1, and the conclusion follows.

8 First approximation to derived functors

Definition A non-unital subcategory I of an Ab-enriched category A is an ideal if

it has the same objects as A and if its morphisms are closed under addition and

under composition by morphisms from A. (In practice A will in fact be enriched over

k-Mod for some commutative ring k.) The quotient category A/I is the cokernel of

the inclusion I → A in Ab-enriched categories.

Example Let A be the category of chain complexes Ch(B) over an additive category

B and let I be the non-unital subcategory of null-homotopic morphisms. The quotient

A/I is the homotopy category of chain complexes K(B).

Let F be an additive functor between two additive (?) categories C,D. We

may define, as an approximation, the left derived functor LF : K(C) → K(D) to

be K(F ) ◦ P where P is any projective resolution functor P : C → K(C). This

is a functor sending objects to projective resolutions; such a functor exists and is

determined by its action on objects by the first and second fundamental lemmas.

K(F ) is well-defined because additive functors preserve null-homotopic morphisms.

We can now define a sequence of functors

Lq(F ) = Hq ◦K(F ) ◦ P : C → D. (43)

Moreover, we get a natural transformation L0(F )→ F coming from the fact that

P : C → K(C) is left adjoint (?) to zeroth homology H0 : K(C) → C. We say

that F is right exact if this natural transformation is an isomorphism. Dually we can

use cochain complexes, injective resolutions, and cohomology functors to define right

derived functors R(F ), Rq(F ).
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This is not quite the correct definition of total derived functor. We really want

to define the left and right derived functor on a category which is closer to chain

complexes.

We say that an object M is F -acyclic if (LqF )(M) = 0 for q > 0 and L0F (Q)

is canonically isomorphic to Q (this condition is unnecessary if F is right exact). To

compute LqF it suffices to use an F -acyclic resolution.

9 Bar resolutions and the classical theory of de-

rived functors

10 Double complexes

Let A be an Ab-enriched category. A double complex (C••, ∂
←, ∂↓) is a collection Cpq

of objects in A (p, q ∈ Z) together with boundary maps

Cp−1,q

∂←pq←−− Cp,q (44)

and

Cpq
∂↓pq−−→ Cp,q−1 (45)

such that (∂← + ∂↓)2 = 0. More explicitly, every row (C•q, ∂
←
•q ) and every column

(Cp•, ∂
↓
p•) is a chain complex, and vertical and horizontal boundaries supercommute:

[∂←, ∂↓] = ∂←∂↓ + ∂↓∂← = 0. (46)

We say that an element of Cpq has total degree p + q. A portion of a double

complex looks like

Cp,q−1 Cpq
∂←pq
oo

∂↓pq
��

Cp−1,q

(47)

There is a natural generalization to triple complexes, etc. and in each case the

condition we want on the differentials ∂′, ...∂(n) is that their sum (the total differential)
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squares to zero. Equivalently, every plane is a double complex. So in some sense

nothing new happens after double complexes.

The category of double complexes is isomorphic to the category of complexes of

complexes; that is, Ch(Ch(A)). A complex of complexes gives rise to horizontal and

vertical differentials which commute rather than anticommute. Flipping some signs

addresses this; this amounts to modifying the notion of degree to be total degree.

Exercise 10.1. What are the projective objects in Ch(A)? In bounded-below com-

plexes? Bounded-above complexes? Bounded complexes? Assume that A has enough

projectives.

The category of double complexes has a natural involution giving by switching

horizontal and vertical directions. This would be more annoying to do with complexes

of complexes, where various signs would need to be switched.

Associated to every double complex (in a category where suitable limits and col-

imits exist) is various total complexes, all of whose differentials are given by the total

differential ∂← + ∂→. The idea is that we want the nth component to be obtained

from combining the elements of the diagonal Cpq, p + q = n. We can do this using

either the direct sum or the product, giving two double complexes

Tot⊕n =
⊕
p+q=n

Cpq ↪→
∏

p+q=n

Cpq = TotΠ
n . (48)

The direct sum consists of elements of the direct product with finite support.

We can also talk about elements with support bounded on the left or with support

bounded on the right, which gives two more complexes

Tot+
n =

⊕
p+q=n,q<0

Cpq ⊕
∏

p+q=n,q≥0

Cpq (49)

Tot−n =
⊕

p+q=n,p<0

Cpq ⊕
∏

p+q=n,p≥0

Cpq (50)

(but the choice to split at 0 is arbitrary).

Many double complexes in practice are supported on a half-plane or even only

on the first quadrant p, q ≥ 0, in which case all of the above total complexes are

equivalent. The same is true of the third quadrant. In the second and fourth quadrant,

there are two types of total complexes.
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Every double complex gives rise to two spectral sequences. To get one of them,

forget about the horizontal arrows. This gives a collection of columns, each of which

are chain complexes. We can compute the homology of all of these complexes, and

the horizontal arrows descend to maps on homology. The zeroth page or E0 term of

the spectral sequence is

E0
pq = Cpq (51)

and it is equipped with differentials d0
pq = ∂↓pq. The first page or E1 term of the

spectral sequence is the homologies of the columns

E1
pq = H↓pq (52)

and it is equipped with differentials d1
pq given by the maps induced on homology

by ∂←pq . The second page or E2 term of the spectral sequence is the homologies of the

first page

E2
pq = Hp(E

1
•q, d

1
•q). (53)

Elements of E2
pq are represented by vertical cycles whose horizontal boundaries

are also vertical boundaries; that is, by elements zpq ∈ Cpq such that ∂↓pqzpq = 0 and

such that ∂←pqzpq ∈ ∂↓(Cp−1,q+1). Such an element is said to survive to the E2 term.

E2 itself has a differential as follows, at least when the underlying abelian category

is a category of modules. Write ∂←pqzpq = ∂↓wp−1,q+1. Then ∂←wp−1,q+1 ∈ Cp−2,q+1

survives to E2; moreover, as an element [wp−1,q+1] ∈ E2
p−2,q+1 it is unique. This is the

differential d2
pq[zpq]. This generalizes.

Exercise 10.2. Construct this differential using only universal constructions; in par-

ticular, do not use elements.

Switching the vertical and horizontal indices gives a second spectral sequence.

In general, Er
pq is a subquotient of Cpq. When we can talk about elements, it is

represented by elements wpq ∈ Cpq for which there exists a sequence

wp−1,q+1, wp−2,q+2, ..., wp−r+1,q+r−1 (54)

in Cp−1,q+1, etc. such that
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∂↓wp−i,q+i + ∂←wp−i+1,q+i−1 = 0 (55)

for all r− 1 pairs of neighboring ws, together with the condition ∂↓wpq = 0. If we

have an infinite such sequence, then we can regard them as describing an element of

Tot+
p+q(C••), and this element has zero total differential; that is, it is a cycle of the

total complex. If we consider elements wpq ∈ Cpq satisfying the above condition up

to a suitable equivalence relation, then Er
pq approximates as r →∞ the homology of

the total complex.

drpq takes wpq satisfying the above condition to ∂←wp−r,q+r. We then define

Er+1
pq = Ker(drpq)/Im(drp+r,q−r+1). (56)

From every double complex we therefore obtain a pair of spectral sequences. If

the double complex is first-quadrant, then both spectral sequences converge to the

homology of the total complex.

Spectral sequences can be used to compute derived functors using F -acyclic ob-

jects.

Suppose in that in the total complex Tot(C••) we are given an element (wpq)p+q=n
with wij = 0 for i < p0 (so the element belongs to Tot−) and ∂←wp0q0 = 0. Assume

furthermore that (C•q0 , ∂
←) is acyclic. Then there exists vp0+1,q0 ∈ Cp0+1,q0 such that

∂←vp0+1,q0 = wp0,q0 and such that, writing

v = (0, ...0, vp0+1,q0 , 0, ...), (57)

we have

w = ∂totv + (0, ...0, 0, w̃p0+1,q0−1, wp0+2,q0−2, ...) (58)

where wp0+1,q0+1 = ∂↓vp0+1,q0 + w̃p0+1,q0−1. Thus by subtracting a total differen-

tial, we can replace w with another element of the total complex whose support has

been moved down one place and which is equal to w two or more places down. If

∂←w̃p0+1,q0−1 = 0, then we can continue this process. This is an archetypal diagram

chasing argument.

A sample application: if C•• is a double complex in the first quadrant whose rows

and columns are all acyclic except for the leftmost column and bottom row, then the

total complex admits two maps, one to the bottom homology complex and one to the
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left homology complex, both of which are quasi-isomorphisms. This shows that their

homologies are isomorphic, but the isomorphism is not induced by a map of chain

complexes but by a morphism in the derived category.

11 Long exact sequences

Suppose we have a short exact sequence of chain complexes

C ′′• � C• � C ′• (59)

of, say, R-modules. We may regard it as a double complex. If wq ∈ Cq, then

p : C• → C ′′• sends it to some z′′q ∈ C ′′q , and then the boundary sends it to ∂′′z′′q ∈ C ′′q−1.

By commutativity, this is also p∂wq. Let z′q−1 be the unique element of C ′q−1 such

that i(z′q−1) = ∂wq where i is th emap from C ′• to C•. Then

0 = ∂2wq = (i ◦ ∂′)z′q−1 (60)

and since i is a monomorphism, ∂′z′q−1 = 0, hence z′q−1 ∈ Z ′q−1.

Suppose that wq, w̃q are sent to the same z′′q . Then p(wq−w̃q) = 0, so by exactness

wq − w̃q = i(v′q) for some v′q ∈ C ′q. Then

∂(wq − w̃q) = (∂ ◦ i)(v′q) = i∂′v′q. (61)

Let z′q−1, z̃
′
q−1 be the corresponding elements of Z ′q−1. Then

i(z′q−1 − z̃′q−1) = ∂wq − ∂w̃q = i∂v′q (62)

and since i is a monomorphism, we conclude that z′q−1 − z̃′q−1 ∈ B′q−1.

Consequently the assignment z′′q → z′q−1 gives a well-defined map Z ′′q → H ′q−1.

This map is an R-module homomorphism, as one can verify by choosing lifts appro-

priately. Moreover, the kernel of this homomorphism contains B′′q , and in fact it is a

submodule of B′′q + p(Zq). In fact the kernel of the map H ′′q → H ′q−1 (the connecting

homomorphism) is the image of Hq
p−→ H ′′q .

Exercise 11.1. Show that in fact we have a long exact sequence

· · ·H ′q−1 ← H ′′q ← Hq ← H ′q ← H ′′q+1 · · · (63)
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12 A categorical interlude

Let C be a category and a an object. The category a� of monomorphisms into a is

the category whose objects are monomorphisms µ : x� a and whose morphisms are

commuting triangles.

Exercise 12.1. Show that a� is a preorder.

In other words, if a monomorphism factors through another monomorphism, the

factorization is unique. Moreover, any two isomorphic objects in a� are isomorphic

via a unique isomorphism. A subobject of a is an isomorphism class of objects in a�.

If C is a preorder and C0 is a collection of objects, then the lower bounds of C0

are the elements of C with a morphism to every element of C0, and the upper bounds

of C0 are the elements of C with a morphism from every element of C0. An infimum

is a terminal object of the lower bounds and a supremum is an initial object of the

upper bounds.

Exercise 12.2. Show that in a�, infimum is the categorical product.

Exercise 12.3. Show that in a�, infimum is the categorical limit.

For a pair of elements s1, s2 ∈ a� we may write their infimum as s1 ∩ s2; it

generalizes the intersection. We can write the infimum as a pullback

s1��

��

s1 ×a s2
oo

zz ��
a s2
oo

(64)

because the pullback of a monomorphism is a monomorphism. Dually, the pushout

of an epimorphism is an epimorphism.

A category is well-powered if a� is essentially small. In this case we can talk

about infima of arbitrary collections of subobjects.

An epimorphism η : a→ b is strong if for every commutative diagram of the form

a

α

��

η
// // b

κ
��

β

��
x //

µ
// y

(65)

there exists an arrow κ : b→ x such that α = κ ◦ η, β = µ ◦ κ.
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Exercise 12.4. Show that in a commutative diagram of the above form together with

an arrow κ : b→ x, we have α = κ ◦ η if and only if β = µ ◦ κ.

Exercise 12.5. Show that κ is unique if it exists.

An epimorphism η : a→ b is extremal if, whenever η factors through a monomor-

phism ν : c→ b, then ν is an isomorphism.

Exercise 12.6. Show that a coequalizer is a strong epimorphism.

Exercise 12.7. Show that a strong epimorphism is an extremal epimorphism.

A strong epi-mono factorization of a morphism α : a → b is a factorization of

α into the product of a monomorphism and a strong epimorphism. A category has

strong epi-mono factorization if every morphism has this property.

Exercise 12.8. Show that a morphism is an isomorphism if and only if it is a

monomorphism and a strong epimorphism.

Exercise 12.9. The supremum of a family of subobjects exists if a category has strong

epi-mono factorization and coproducts exist.

Let A be an abelian category. Consider a diagram

M0

f0
��

M ′
g0
oo

g1

��

M ′′ M1.f1
oo

(66)

This square commutes if and only if the sequence

M ′′ f0−f1←−−−M0 ⊕M1
g0⊕g1←−−−M ′ (67)

is a chain complex. It is cartesian if and only if the sequence

M ′′ f0−f1←−−−M0 ⊕M1
g0⊕g1←−−−M ′ ← 0 (68)

is exact, and it is cocartesian if and only if the sequence

0←M ′′ f0−f1←−−−M0 ⊕M1
g0⊕g1←−−−M ′ (69)
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is exact. Hence it is both cartesian an cocartesian if and only if the sequence

0←M ′′ f0−f1←−−−M0 ⊕M1
g0⊕g1←−−−M ′ ← 0 (70)

is exact.

Corollary 12.10. The pullback of an epimorphism is an epimorphism.

(In other words, abelian categories are regular categories. It is true in any category

that the pullback of a monomorphism is a monomorphism.)

That is, let f1 : M1 → M ′′ be an epimorphism and let f0 : M0 → M ′′ be a

morphism. The pullback of f1 along f0 is a cartesian square

M0

f0
��

M0 ×M ′′ M1
f̃1

oo

f̃0
��

M ′′ M1.f1
oooo

(71)

and the claim is that f̃1 is still an epimorphism. This is because the above diagram

is actually also cocartesian.

To show that a morphism in an Ab-enriched category is an epimorphism, it suffices

to show that if h◦ f̃1 = 0, then h = 0, where h : M0 → X is some morphism. Together

with the zero map 0 : M1 → X, it follows by cocartesianness that h, 0 factor through

a map h′′ : M ′′ → X. But since f1 is an epimorphism, h′′ = 0, hence h = 0.

Exercise 12.11. Show that the pullback of a short exact sequence is a short exact

sequence.

We now construct the connecting homomorphism in homology without elements.

Consider the diagram

C ′′q+1

∂′′

��

Cq+1φ
oooo

∂

��

C ′′q

∂′′

��

Cqp
oooo

∂

��

C ′qoooo

∂′

��

C ′′q−1 Cq−1p
oooo C ′q−1.oooo

(72)
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There is a monomorphism j : Z ′′q → C ′′q , and we pull back the middle by the

inclusion Z ′′q → C ′′q to get another short exact sequence (of preimages of Z ′′q ).

(To be continued...)

13 Diagrammatics

Let f : a→ c, g : b→ c be a pair of orphisms and let h : c� c′ be a monomorphism.

Exercise 13.1. The canonical map a×c b→ a×c′ b is an isomorphism.

Now in an abelian category, consider a commutative diagram

M

0~~

f
��

M ′
h̃

oo

f̃
��

n′′ Ng
oo N ′

h
oo

(73)

such that the bottom row is exact (so im(h) = ker(g)) and such that the square

is cartesian.

Exercise 13.2. h̃ is an epimorphism.

(Sketch: write down a new pullback square using im(h). The corresponding pull-

back is the same by the previous exercise. Use the fact that pullbacks of epimorphisms

are epimorphisms in an abelian category.)

Consider a commutative diagram

C ′′

f ′′

��

C
g
oo

��

f
��

C ′
hoo

f ′
����

D′′ Dioo D′oo

(74)

with exact rows, where f is a monomorphism and f ′ is an epimorphism.

Exercise 13.3. f ′′ is a monomorphism.

Some general comments. Let A,B be two filtered objects in an abelian category;

that is, there is an increasing collection of subobjects F0 ⊂ F1 ⊂ ... ⊂ A and F ′0 ⊂
F ′1 ⊂ ... ⊂ B whose union is A,B respectively. Then a filtered morphism A → B

(one inducing maps Fi → F ′i induces a maps on associated graded objects
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gr(A) =
⊕
n

Fn/Fn−1, gr(B) =
⊕
n

F ′n/F
′
n−1. (75)

If A is a filtered chain complex, then so is its associated graded, and this can be

used to construct the E0 page of a spectral sequence. In general, spectral sequences

attempt to compute the homology of a filtered complex using the filtration. Taking

different filtrations gives different spectral sequences which (hopefully) converge to

the same homology.

Consider a commutative diagram

C ′′��

f ′′

��

C
p
oo

f
��

C ′
ioo

��

f ′

��

D′′ D
q
oo D′

j
oo

(76)

where f ′, f ′′ are monomorphisms and the rows are exact.

Lemma 13.4. f is a monomorphism.

Proof. Consider the inclusion k : K → C of the kernel of f into C. By assumption

f ◦ k = 0, hence q ◦ f ◦ k = f ′′ ◦ p ◦ k = 0. Since f ′′ is a monomorphism, p ◦ k = 0,

hence by exactness of the top row k factors through a map k̃ : K → C ′. Since

0 = f ◦ k = j ◦ f ′ ◦ k̃ and j and f ′ are both monomorphisms, we conclude that k̃ = 0,

hence K = 0.

Dually, if f ′, f ′′ are epimorphisms, then f is an epimorphism.

Hence with hypotheses as above, if f ′, f ′′ are isomorphisms, then f is an isomor-

phism.

Lemma 13.5. (Five lemma) Consider a morphism of complexes

C−2
��

f−2

��

C−1

f−1

��

∂−1
oo C0

f0
��

∂0oo C1

f1
��

∂1oo C2

f2
����

∂2oo

C ′−2 C ′−1

∂′−1
oo C ′0

∂′0oo C ′1
∂′1oo C ′2

∂′2oo

. (77)

where f±1 are isomorphisms, f−2 is a monomorphism, and f2 is an epimorphism.

Then f0 is an isomorphism.
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Proof. We can obtain the above diagram by splicing together the following three

commutative diagrams:

C−2
��

f−2

��

C−1

f−1

��

∂−1
oo Z−1

f̃−1

��

oooo C0

f0
��

∂0oo Z0

f̃0
��

oooo C1

f1
��

∂1oo C2

f2
����

∂2oo

C ′−2 C ′−1

∂′−1
oo Z ′−1

oooo C ′0
∂′0oo Z ′0oooo C ′1

∂′1oo C ′2
∂′2oo

. (78)

(To be continued...)

Aside. Every chain complex (C•, ∂•) naturally has two filtrations. The stupid

filtration is

(F stupid
p C)n =

Cn if n ≥ p

0 otherwise
(79)

and the good filtration is

(F good
p C)n =


Cn if n > p

Zn if n = p

0 otherwise

. (80)

Consider a diagram of the form

A′′

i′′

��

A
f
oo

��

i
��

A′
g

oo
��

i′

��

B′′ B
h
oo

k
��

B′
j

oo

k′

��

C C ′oo`oo

(81)

where f ◦ g = 0 and the middle row and columns are exact (and ` is a monomor-

phism).

Lemma 13.6. The top row is exact.

Proof. Consider the factorization of g through maps g̃ : A′ → K,m : K → A where

K = Ker(f). We want to show that this is the image factorization of g. Consider the
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composition i ◦m : K → B and its pullback n : K ×B B′ ∼= L→ B′. Let j̃ : L→ K

denote the other projection map. By commutativity, ` ◦ k′ ◦ n = k ◦ i ◦m = 0, and

since ` is a monomorphism, k′ ◦ n = 0. By exactness of columns, n factors through

a morphism ñ : L → A′. By commutativity and the universal property of L, we

conclude that i ◦ m ◦ j̃ = i ◦ g ◦ ñ = i ◦ m ◦ g̃ ◦ ñ. Since i,m are monomorphisms,

we conclude that j̃ = g̃ ◦ ñ. Since j̃ is an epimorphism, g̃ is an epimorphism, and the

conclusion follows.

Consider now a commutative diagram of the form

A��

i′′
��

A
f

oo

i
��

B′′

p′′

��

B
hoooo

p

��

B′
j

oo

p′
����

C ′′ C
k
oo C ′

`
oo

(82)

where rows and columns are exact.

Lemma 13.7. f is an epimorphism.

Proof. Let D be the pullback of A,B′′, B with maps h̃ : D → A and m : D → B.

Let n : D → C be the composite p ◦m. Let E be the pullback of D,C,B′ with maps

q̃ : E → D, ñ : E → B′. Then

p ◦m ◦ q̃ = n ◦ q̃ = q ◦ ñ = ` ◦ p′ ◦ ñ = p ◦ j ◦ ñ (83)

hence

p ◦ (m ◦ q̃ − j ◦ ñ) = 0. (84)

Let r = m ◦ q̃ − j ◦ ñ. Let F be the pullback of A,B,E with maps r̃ : F → A, ĩ :

F → E. Then

28



i′′ ◦ f ◦ r̃ = h ◦ ı ◦ r̃ (85)

= h ◦ r ◦ ĩ (86)

= h ◦ (m ◦ q̃ − j ◦ ñ) ◦ ĩ (87)

= h ◦m ◦ q̃ ◦ ĩ− h ◦ j ◦ ñ ◦ ĩ (88)

= h ◦m ◦ q̃ ◦ ĩ (89)

= i′′ ◦ h̃ ◦ q̃ ◦ ĩ. (90)

Since i′′ is a monomorphism,

f ◦ r̃ = h̃ ◦ q̃ ◦ ĩ. (91)

Since a composition of epimorphisms is an epimorphism, we conclude.

The hypothesis that p′ is an epimorphism can be dropped. Doing this will give us

the zigzag lemma.

Consider a diagram of the form

A
0

~~

f
��

A×B B′
h̃

oooo

��

B′′ Bg
oo B′

h
oo

(92)

where A×BB′ is the pullback, g ◦h = g ◦f = 0, and the induced map A→ H(B)

is zero.

Then the following modified form of lemma 2 holds: h̃ is an epimorphism.

We will need the following going-up and down construction. Consider a diagram

of the form
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A′′

i′′

��

E
h̃

oooo

��

B̄oooo

ker(h)
zz

B′′ B
h

oooo

p

��

B′
j

oo

OOOO

q
zz

C

����

Coker(q)

. (93)

Then there is a well-defined map from E to Coker(q) which lifts to a map from A

to Coker(q).

Consider now a diagram of the form

A′′��

��

A
f

oo

��

B′′

��

Boo

��

B′′oo

q
yy

C ′′ Coo

��

Coker(q)

(94)

with first column semiexact and second column exact.

Then the following modified form of lemma 7 holds: f is an epimorphism. This

can be used to prove the zigzag lemma.

Consider a diagram of the form

C0

f0
��

C ′
g0
oo

g1

��

C ′′ C1
f1
oo

(95)

where C0, C
′, C1 are complexes. This induces a diagram

C ′′
f0−f1←−−− C0 ⊕ C1

(g0,g1)←−−−− C ′ (96)
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which, as we recall, is a chain complex if and only if the diagram commutes and

is a short exact sequence if and only if the diagram is cartesian and cocartesian. Any

such short exact sequence induces a long exact sequence in homology

· · · ← H ′′q ← H0
q ⊕H1

q ← H ′q ← H ′′q+1 · · · (97)

which specializes to the Mayer-Vietoris sequence, etc.

As an application, if C•• is a double complex, then the square

Tot+(C)

��

Totb(C)oo

��

Tot(C) Tot−(C)oo

(98)

is both cartesian and cocartesian, hence we get a long exact sequence

· · · ← Hq(C)← H+
q (C)⊕H−q (C)← Hb

q(C)← Hq+1(C) · · · (99)

where Hq is the homology of the total complex, H+
q is the homology of Tot+, etc.

In particular, if the rows of C are acyclic, then Tot+ is acyclic, and if the columns

are acyclic, then Tot− is acyclic. If rows and columns are both acyclic, then we

conclude that Hb
q(C) ∼= Hq+1(C).

In particular, let C be an acyclic complex. Then we can form a double complex

...

��

...

��

...

��

· · · C0
oo

��

C1
oo

��

C2
oo

��

· · ·oo

· · · C−1
oo

��

C0
oo

��

C1
oo

��

· · ·oo

· · · C−2
oo

��

C−1
oo

��

C0
oo

��

· · ·oo

...
...

...

(100)

where the pth diagonal consists of copies of Cp and every map is the corresponding
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boundary in C. This double complex has acyclic rows and columns, so the above

applies to it. But Hb
q
∼= Zq(C), hence Hq+1

∼= Zq(C).

14 The third fundamental lemma

Consider a diagram of the form

M ′
��

��

Q0

∂′0oooo

��

Q1

∂′1oo

��

Q2

∂′2oo

��

· · ·
∂′3oo

M

����

P0 ⊕Q0

��

P1 ⊕Q1

��

P2 ⊕Q2

��

· · ·

M ′′ P0∂0
oo P1∂1

oo P2∂2
oo · · ·

∂3
oo

(101)

where the top row is acyclic, the bottom row is a chain complex with the Pi
projective, and the maps in and out of the biproduct are the canoncial maps. Then

there exists a filling of the diagram so that the middle row is a chain complex. The

filling consists of maps of the form[
∂i 0

−φi ∂′i

]
: Pi ⊕Qi → Pi−1 ⊕Qi−1 (102)

with the φi defined inductively.

Given a short exact sequence 0 → M ′ → M → M ′′ → 0 in an abelian category,

we can choose resolutions of M ′ and M ′′ and construct the above diagram. Applying

a functor which is exact in the appropriate direction and taking homology gives the

corresponding long exact sequence.

15 Various

Suppose that C•• is a double complex and Λ ⊂ Z× Z is a subset of Z× Z equipped

with the product partial order which is left-saturated (downward-closed) in the sense

that if (p, q) ∈ Λ and (p′, q′) ≤ (p, q) (so p′ ≤ p and q′ ≤ q) then (p′, q′) ∈ Λ.

From this data we can write down two double complexes. The first is
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(CΛ)pq =

Cpq if (p, q) ∈ Λ

0 otherwise
(103)

and the second is

(CΛ)pq =

Cpq if (p, q) 6∈ Λ

0 otherwise.
(104)

All differentials are inherited from C. The first should be regarded as a subcomplex

while the second should be regarded as a quotient complex. There is a short exact

sequence

0← Tot(CΛ)← Tot(C)← Tot(CΛ)← 0 (105)

(and similarly for the other total functors) which induces a long exact sequence

in homology. Moreover, if C has exact rows, then we get a quasi-isomorphism

Tot+(CΛ)→ Tot+(CΛ)[1].

Tot(C) is in fact the cone of a certain morphism. Recall that the cone is defined

as follows: if f• : C• → D• is a chain map, cone(f) is a chain complex with

cone(f)q = Cq ⊕Dq+1 (106)

and

∂cone(f)
q =

[
∂Cq 0

fq −∂Dq+1

]
. (107)

This is in fact the total complex of the double complex formed by f•, C•, D•. The

cone of a morphism is always an extension

0← C ← cone(f)← D[−1]← 0 (108)

and f induces the connecting homomorphism in the corresponding long exact

sequence in homology. This suggests the following question: when is an extension of

chain complexes isomorphic to a cone extension as above?

From any chain complex C• we may write down two short exact sequences
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0← Hq ← Zq ← Bq ← 0 (109)

and

0← Bq−1 ← Cq ← Zq. (110)

Choose a projective resolution P •qH of Hq and projective resolutions PB
•q of Bq. This

gives a direct sum projective resolution P •qZ of Zq and P •qC of Cq. Totalizing gives a

map P• → C• which is not a homotopy equivalence but which is a quasi-isomorphism.

Exercise 15.1. When is an extension of chain complexes 0 ← C ′′
p←− C

i←− C ′ ← 0

isomorphic to a cone extension?

In other words, when does there exist a map f : C ′′ → C ′[1] such that the

corresponding extension

0← C ′′
(id,0)←−−− Cone(f)

(0,id)←−−− C ′ ← 0 (111)

is isomorphic to 0← C ′′ ← C ← C ′ ← 0?

Suppose that (p, r) : C → Cone(f) induces such an isomorphism. Then commu-

tativity means [
p

r

]
◦ ∂ = ∂Cone(f) ◦

[
p

r

]
=

[
∂′′ 0

f ∂′

][
p

r

]
. (112)

This gives [
p ◦ ∂
r ◦ ∂

]
=

[
∂′′ ◦ p

f ◦ p+ ∂′ ◦ r

]
. (113)

Hence f ◦p+[∂, r] = 0 (supercommutator). In other words, f ◦p is nullhomotopic

and r is a contracting homotopy for f ◦p. Commutativity also implies that r◦i = idC′ .

Given r, the corresponding f , if it exists, is unique. To see this, we compute that

[∂, [∂, r]] = 0 (114)

where [·, ·] denotes the supercommutator as usual.

Remark: consider a morphism in the category of short exact sequences of chain

complexes. By the five lemma, if the leftmost and rightmost maps are isomorphisms,
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so is the middle map. By the five lemma and the long exact sequence in homology if

the leftmost and rightmost maps are quasi-isomorphisms, so is the middle map. In

other words, quasi-isomorphisms are closed under extensions.

However, if the leftmost and rightmost maps are chain homotopy equivalences,

the middle map is not guaranteed to be a chain homotopy equivalence. For a coun-

terexample, consider the short exact sequence of complexes

0

��

0

��

C��

i
��

Coo

id
��

A

id
��

B
p
oooo

p
����

Coo
ioo

��

A A
idoo

��

0

0

. (115)

The leftmost and rightmost complexes are contractible. The middle complex is

contractible if and only if the short exact sequence 0← A← B ← C ← 0 splits.

If C,D are two complexes, we can define a double complex Hompq(C,D) =

Hom(C−q, Dp). Define

L∂ = L∂D : f 7→ ∂d ◦ f (116)

R∂ = R∂C : f 7→ f ◦ ∂C (117)

ε : f 7→ (−1)deg ff = (−1)p+qf. (118)

Then the differentials are ∂← = L∂, ∂
↓ = R∂ ◦ ε. The total differential is the su-

percommutator f 7→ [∂, f ], and the corresponding total complex is the Hom complex

Homn(C,D) =
∏

p+q=n

Hompq(C,D). (119)

This complex has cycles given by chain maps of a given degree and boundaries
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given by null-homotopic chain maps of a given degree. The corresponding homologies

are chain homotopy classes of chain maps of a given degree.

Exercise 15.2. Show that a chain map f : C → D is a quasi-isomorphism if and

only if Cone(f) is acyclic.

Suppose that

h =

[
h11 h12

h21 h22

]
∈ Hom1(Cone(f),Cone(f)) (120)

is a contracting homotopy for Cone(f), hence idCone(f) = [∂Cone(f), h]. Note that

h11, h22 have degree 1 and h12, h21 have degrees 0, 2. This gives four conditions

[
idC 0

0 idD[−1]

]
=

[
[∂c, h11] + h12f ∂Ch12 − h12∂

D

h21∂
C − ∂Dh21 + h22f + fh11 fh12 − [∂D, h22]

]
. (121)

The top right condition asserts that h12 is a chain map D → C. Denote h12 by g,

denote −h11 by hC , and denote h22 by hD. The top left condition asserts that hC is a

contracting homotopy for gf − idC . The bottom right condition asserts that hD is a

contracting homotopy for fg− idD. In particular, f is a chain homotopy equivalence;

moreover, specifying a homotopy inverse and contracting homotopies is equivalent to

specifying three conditions describing a contracting homotopy for Cone(f).

The fourth condition may be rewritten

−[∂, h21] = fhC − hDf = [f, h]. (122)

We compute that

∂D[−1] ◦ (fhC − hDf)− (fhC − hDf) ◦ ∂C = −∂DfhC + ∂DhDf − fhC∂C + hDf∂C(123)

= −f [∂C , hC ] + [∂D, hD]f (124)

= [[∂, h], f ] (125)

= −f(gf − idC) + (fg − idD)f (126)

= 0. (127)
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In other words, the fourth condition asserts that h21 contracts the chain map

fhC − hDf : C → D[−1].

So the data of a homotopy inverse to f is not quite the same as the data of a

contraction of Cone(f): there is the additional data of the contraction h21 above.

We will call such a thing a strict homotopy equivalence, and we will call a homotopy

equivalence such that some h21 exists an exact homotopy equivalence.

Suppose (f, g, hC , hD) and (f, g,′ hC , hD) are two exact homotopy equivalences.

Then we compute that f(′hC − hC) is null-homotopic, hence gf(′hC − hC) is null-

homotopic, hence ′hC − hC is null-homotopic. We also have [∂, hC ] = [∂,′ hC ], hence
′hC − hC is a morphism of chain complexes C → C[−1].

In other words, we can modify hC by a null-homotopic chain map C → C[−1].

Similarly, we can modify hD by a null-homotopic chain map D → D[−1]. Consider

the pairing

HomK(A)(C,C[−1])× HomK(A)(D,D[−1])→ HomK(A)(C,D[−1]) (128)

sending a pair (χ, ϑ) to the class of f(hC +χ)− (hD +ϑ)f . This pairing is nonde-

generate in the sense that if one of χ, ϑ is fixed then the map induces an isomorphism.

Suppose (f, g, hC , hD) is the data of a chain homotopy equivalence. Let χ =

−g[f, h]. Then (f, g, hC +χ, hD) is the data of an exact chain homotopy equivalence.

To verify this, we compute that

∂Hom(−h[f, h]) = −∂h[f, h] + h[f, h]∂ (129)

= (−∂DhD − hD∂D)[f, h] (130)

= (idD − fg)[f, h] (131)

= [f, h]− fg[f, h] (132)

= f(hC − g[f, h])− hDf (133)

= f(′hC)− hDf (134)

where ′hC = hC + χ.

Exercise 15.3. With hypotheses as above, show that ghD−′ hCg = ∂Hom(h2g+ gh2−
hgh).
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16 More about projective resolutions and left de-

rived functors

Consider an object M in an abelian category A and consider the category of quasi-

isomorphisms Q• →M (where M is regarded as a complex concentrated in degree 0)

where Qi = 0 for i < 0. The homotopy category of this category has an initial object,

namely any projective resolution. The identity M → M is the final object. Any

additive functor F : A→ B induces a functor from the homotopy category above to

the homotopy category of chain complexes in B.

Abelian categories have a notion of cohomological dimension which can be defined

as follows. Given an abelian category A, let A0 denote the subcategory of projective

objects, let A1 denote the subcategory of subobjects of projective objects, and in

general let An denote the subcategory of subobjects of the objects in An−1. Elements

of An may be thought of as syzygies.

Exercise 16.1. The projective abelian groups are the free groups.

Exercise 16.2. Subgroups of free abelian groups are free.

The cohomological dimension or global dimension or homological dimension cd(A)

is the smallest positive integer n such that A = An. If this is not true for any n

then the cohomological dimension is ∞. An abelian category A has cohomological

dimension 0 if and only if every object is projective, if and only if every short exact

sequence splits, if and only if A is semisimple.

Recall that an object Q is F -acyclic if LqF (Q) = 0 for q > 0 and L0F (Q) ∼= Q.

Theorem 16.3. Let Q• be an F -acyclic resolution. Then the canonical morphisms

LqF (Q•)→ HqF (Q•) are isomorphisms.

17 Generators and cogenerators

Theorem 17.1. (Baer) An abelian group is an injective object in Ab if and only if

it is divisible.

Proof. Suppose I is injective. Let a ∈ I and consider the diagram
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I

Z

α

OO

// n // Z

(135)

where α(1) = a. By injectivity we get an extension α̃ : Z→ I such that nα̃(1) = a,

hence I is divisible.

Conversely, suppose I is divisible. Consider a diagram of the form

I

A

α

OO

// // B

(136)

and consider the poset of partial extensions (A′, α′) where A ⊂ A′ ⊂ B and

α′ : A′ → I extends α. This poset satisfies the hypotheses of Zorn’s lemma since it is

non-empty and one can take suprema, so it has a maximal element (A1, α1).

If A1 is not all of B, then there exists b ∈ B\A1. Let A′ = Zb+A1. If Zb∩A1 = {0},
then A′ is a direct sum, and we can extend α1, which contradicts maximality. Thus

nb ∈ A1 for some n ∈ Z, and by divisibility we can find some i ∈ I such that

ni = α1(nb), so we can still extend α1, which still contradicts maximality.

More generally, in the category of R-modules (R a principal ideal domain), to

show an object is injective it suffices to show that it is injective for inclusions of

ideals into R.

Baer’s theorem shows in particular that all Q-vector spaces are injective.

Definition A right R-module Q is flat if the functor Q⊗R − is exact.

Exercise 17.2. Show that Q is flat if and only if Q is − ⊗M-acyclic for every left

R-module M .

Exercise 17.3. Show that an abelian group is flat if and only if A is torsion-free.

Exercise 17.4. Let R be a ring. Show that the following conditions are equivalent:

1. Every submodule of a flat left R-module is flat.

2. Every submodule of a projective left R-module is flat.
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3. Every submodule of a free left R-module is flat.

4. Every left ideal of R is flat.

Note that free implies projective implies flat for left R-modules.

Theorem 17.5. An R-module is flat if and only if it is a filtered colimit of free finite

rank modules.

Exercise 17.6. Let D be a division algebra which is finite-dimensional over its center

F . Show that D ⊗F Dop is a matrix algebra over F .

A generator of a category C is an object g such that Hom(g,−) is faithful. A

cogenerator of C is a generator of Cop.

Exercise 17.7. If C has arbitrary coproducts, then g is a generator if and only if

for any c ∈ C there exists an epimorphism tγ∈Hom(g,c)g → c. Dually, if C has

arbitrary coproducts, then g is a cogenerator if and only if for any c ∈ C there exists

a monomorphism c→
∏

γ∈Hom(c,g) g.

Exercise 17.8. In an abelian category with a projective generator (resp. injective

cogenerator) and arbitrary coproducts (resp. arbitrary products), every object is a

quotient of a projective object (resp. subobject of an injective object). In particular,

any such category has enough projectives (resp. enough injectives).

Recall Baer’s theorem that an abelian group is injective iff it is divisible.

Theorem 17.9. Q/Z is an injective cogenerator.

Proof. To show this we must show that if ϕ : A → B is a nonzero homomorphism

of abelian groups, then there exists some r : B → Q/Z such that r ◦ ϕ = 0. Since

ϕ 6= 0, there is some a such that b = ϕ(a) 6= 0 and we can restrict our attention to

b, so WLOG A = Z (and more generally we can restrict our attention to morphisms

from generators). The subgroup 〈b〉 ⊂ B admits a nonzero morphism into Q/Z which

extends to B by injectivity.

Exercise 17.10. For abelian groups there is a canonical short exact sequence A/Tors(A)←
A ← Tors(A). Find a compatible sequence of injective resolutions of length 2, and

conclude that the total right derived functor of ⊗ : Ab × Ab → Ab is A ⊗ B ⊗ Q in

degree 0 and 0 otherwise.
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On the other hand, we can also take right derived functors of the functor −⊗B.

This gives functors (RqF )(A) given by the cohomology of an injective resolution of A

tensored with B. Let I0 → I1 be such an injective resolution. Considering also the

sequence 0← B/Tors(B)← B ← Tors(B)← 0, we get an exact sequence

0← Iq⊗(B/Tors(B))← Iq⊗B ← Iq⊗Tors(B)← Tor1
Z(Iq, B/Tors(B))← Tor1

Z(Iq, B)

(137)

for q = 0, 1. This implies that we can compute the right derived functors by taking

the homology of the complex

0→ A⊗B/Tors(B)→ I0 ⊗B/Tors(B)→ I1 ⊗B/Tors(B)→ 0 (138)

which gives (R0(−⊗B))(A) ∼= A⊗B/Tors(B).

18 Comments on derived functors

Let A,B be abelian categories and F : A→ B be an additive functor. The assignment

F 7→ LqF is itself a functor from the functor category A⇒ B to itself.

Exercise 18.1. For any additive functor, LqF is right exact and RqF is left exact.

There is a natural transformation L0F → F . This is the counit of an adjunction

between functors and right exact functors as follows: applying L0 to both sides gives

L0L0F → F , but since L0F is right exact, L0L0F ∼= F . More generally, if ϕ : G→ F

is a natural transformation where G is right exact, then the diagram

G
ϕ

// F

L0(G)

OO

// L0(F )

OO (139)

commutes; moreover, the map L0(G) → G is an isomorphism. Hence G factors

through L0 as desired. In other words, the right exact functors A → B are a core-

flective subcategory of the additive functors, and the right adjoint to the inclusion is

L0.

What is Lq(LpF )? We compute this by applying LpF to a projective resolution.

However, LpF vanishes on projective objects for p ≥ 1, hence Lq(LpF ) = 0 for p ≥ 1
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and for all q.

What is Lq(L0F )? We compute this by applying L0F to a projective resolution.

On projective objects, the natural map L0F → F is an isomorphism, so Lq(L0F ) ∼=
LqF .

A more interesting question is to compute Lp(R
qF ).

19 Loop and suspension

Associated to any abelian category A is a pair of homotopy categories, the projective

homotopy category A/P and the injective homotopy category A/I. In the first cate-

gory we identify arrows whose difference factors through a projective object, and in

the second category we identify arrows whose difference factors through an injective

object. Choosing for each M ∈ A an epimorphism P → M , and call its kernel LM .

This assignment extends to a unique functor Ω (loop space) from the projective ho-

motopy category of A to itself. Dually, we get a suspension functor Σ by considering

the injective homotopy category.

Ω can be obtained from any functor P (M) from A to the category of epimorphisms

in A with projective source and target M . Dually, Σ can be obtained from any functor

I(M) from A to the category of monomorphisms in A with injective target and source

M .

Given two objects M,N , choose sequences M ← PM ← ΩM and ΣN ← IN ← N .

Then the diagram

M

f
��

PMoo ΩMoo

ΣN INoo Noo

(140)

extends by the fundamental lemmas to a chain map, giving a map Ωf : ΩM → N .

Dually, the diagram

M PMoo ΩMoo

g

��

ΣN INoo Noo

(141)

extends by the fundamental lemmas to a chain map, giving a map Σg : M → ΣN .
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This gives a diagram of homs

HomA/P (M,ΣN) // HomA/P (ΩM,N)

HomA(M,ΣN)

OO

��

HomA(M,ΩN)

OO

��

HomA/I(M,ΣN) HomA/I(M,ΩN)oo

(142)

and if the projectives and injectives in A coincide, we can conclude that Ω and

Σ are adjoint functors. This is true in particular for Frobenius categories, which are

abelian categories with enough projectives and injectives such that the projectives

and injectives coincide.

The topological analogue here is a pair of functors Σ,Ω on the homotopy category

hTop∗ of pointed topological spaces with Σ left adjoint to Ω. This is a special case of

the tensor-hom adjunction, where we tensor and hom with the circle.

In any category there is an adjunction between classes of epimorphisms and classes

of objects as follows: to a class of epimorphisms we associate the objects which have

the lifting property characterizing projective objects, but only with respect to that

class, and to a class of objects we associate the epimorphisms against which they all

live. We can generalize resolutions to these classes.

20 Relative homological algebra

Given a homomorphism ϕ : R→ S of unital rings, there is a restriction functor

S-Mod→ R-Mod (143)

given by precomposing with ϕ and an induction functor

R-Mod→ S-Mod (144)

given by tensoring which is its left adjoint. This is a special case of the tensor-hom

adjunction. For example, if R = k[H], S = k[G] where H is a subgroup of G and k is

a commutative ring, with ϕ : k[H]→ k[G] the obvious inclusion, resriction as defined

above is the usual restriction of representations and its left adjoint is induction of
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representations.

Call an exact sequence of S-modules admissible or relatively acyclic if it splits as

an exact sequence of R-modules. This notion of splitting induces a notion of relatively

projective S-modules. S-Mod has enough relative projectives: in fact, any S-module

induced from an R-module is relatively projective, so the counit

M ← S ⊗RM (145)

is a relative projective covering M . Iterating this construction gives the bar reso-

lution. There is a dual notion of cobar resolution. Eilenberg-Moore has details. They

work in a very general setting. All the fundamental lemmas work in this setting; we

have a more restricted notion of acyclicity but a correspondingly less restricted notion

of projectivity. This induces a notion of relative derived functors.

This is important in Hochschild (co)homology, which should be defined as the

relative derived functors of tensor and hom with A as an A ⊗k Aop-module (relative

tor and ext). These are denoted

Tor(A⊗kA
op,k)

q (A,M) = Hq(A;M) (146)

and

Extq(A⊗kAop,k)(A,M) = Hq(A;M). (147)

Some people use Hochschild cohomology to refer exclusively to Hq(A;A). This

controls infinitesimal deformations of A and has a Gerstenhaber structure given by

the Schouten-Nijenhuis bracket. Hochschild cohomology HHq(A) should properly

speaking refer to Hq(A;A∗) where A∗ is the linear dual of A, whereas Hochschild

homology HHq(A) should refer to Hq(A;A).

Hochschild homology and cohomology reduces in special cases to group and Lie

algebra homology and cohomology (when we take A to be a group algebra resp. a

universal enveloping algebra). However, the standard complex used to compute Lie

algebra (co)homology is not the bar resolution; rather, it is the Chevalley-Eilenberg

complex.

If R is a k-algebra, for any x ∈ R we may define a chain complex

0→ R
x−→ R→ 0. (148)
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Tensoring n versions of this complex over k associated to elements x1, ...xn gives

the Koszul complex for R with respect to x1, ...xn. When R = k[x1, ...xn], this gives

a free resolution of k as an R-module. Writing R = S(V ∗) where V is a free finite k-

module, the Koszul complex can be written in terms of tensor products of symmetric

and exterior algebras. The entire complex may be thought of as a symmetric algebra

on a supermodule. When R = U(g) is a universal enveloping algebra, we may take

x1, ...xn to be a basis of g and we will obtain the Chevalley-Eilenberg resolution.

21 Calculus of (right) fractions

Let C be a category and let Σ be a subcategory. We would like to invert the morphisms

in Σ; furthermore, we would like to represent morphisms in the resulting category

using right roofs

b
β←− x

σ−→ a (149)

where σ ∈ Σ; we want to think of this morphism as a right fraction b
β◦σ−1

←−−− a.

This cannot be done in general (in general we need zigzags of morphisms), but it can

be done if Σ satisfies certain conditions, the Ore conditions.

The first condition is that any left roof

b
σ−→ x

α←− a (150)

can be replaced by a right roof in the sense that there exists a commutative

diagram

x′

α′

��

σ′ // a

α

��
b σ

// x

. (151)

Here σ, τ ∈ Σ and α, β, γ ∈ C. This condition is necessary to make sense of

composition.

The second condition is that if a parallel pair of morphisms α, β is coequalized by

a morphism from Σ, then it is equalized by a morphism from Σ. This is necessary for

a certain relation to be an equivalence relation.
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For any two objects a, b in C, consider the category of right roofs from a to b. The

objects are right roofs and the morphisms are commutative diagrams. Consider the

connected components π0 of this category (the equivalence classes of the equivalence

relation generated by the existence of a morphism between two objects). We would

like to define

HomC[Σ−1](a, b) = π0 (roofs a→ b) (152)

but there are size issues to doing this.

Proposition 21.1. Two right roofs are in the same connected component if and only

if they both admit a morphism to the same right roof.

Example Let C be a category of chain complexes in an abelian category A and let

Σ be the subcategory of quasi-isomorphisms. In general, Σ does not satisfy the Ore

conditions. However, if C is the homotopy category of chain complexes in A, then

the quasi-isomorphisms satisfy the Ore conditions. However, in general there are still

size issues.

The first Ore condition would be satisfied if the pullback of a quasi-isomorphism is

always a quasi-isomorphism. This is not always true; however, the pullback of an epic

quasi-isomorphism is a quasi-isomorphism, and up to homotopy any quasi-ismorphism

is an epic quasi-isomorphism.

A category is well-powered if the category of subobjects of any object is essentially

small. Gabber showed that if A is a well-powered abelian category with enough

projectives, and moreover if all filtered colimits exist in A and are exact, then the

localization D(A) of the homotopy category K(A) by quasi-isomorphisms exists and

has a calculus of right fractions.

The localization D+(A) (the derived category) of K+(A) exists and has a calculus

of right fractions as long as A has enough projectives and the inclusion K+
cofib(A) ⊂

K+(A) (the subcategory of cofibrant objects, namely those with projective terms) is

an equivalence.

Theorem 21.2. A quasi-isomorphism between two cofibrant complexes in C+(A) is

a chain homotopy equivalence.

Derived categories are a natural setting for studying derived functors. For exam-

ple, HomD+(A)(M,N [q]) = Extq(M,N). More generally, if F : A → B is an additive

functor, we may consider the induced functor K+
cofib(A)→ K+(B).
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