
Chapter 1

INFINITE SERIESChap1

This on-line chapter contains the material on infinite series, extracted from the printed
version of the Seventh Edition and presented in much the same organization in which
it appeared in the Sixth Edition. It is collected here for the convenience of instructors
who wish to use it as introductory material in place of that in the printed book. It has
been lightly edited to remove detailed discussions involving complex variable theory
that would not be appropriate until later in a course of instruction. For Additional
Readings, see the printed text.

1.1 INTRODUCTION TO INFINITE SERIESSec1.1

Perhaps the most widely used technique in the physicist’s toolbox is the use of infinite
series (i.e. sums consisting formally of an infinite number of terms) to represent
functions, to bring them to forms facilitating further analysis, or even as a prelude
to numerical evaluation. The acquisition of skill in creating and manipulating series
expansions is therefore an absolutely essential part of the training of one who seeks
competence in the mathematical methods of physics, and it is therefore the first topic
in this text. An important part of this skill set is the ability to recognize the functions
represented by commonly encountered expansions, and it is also of importance to
understand issues related to the convergence of infinite series.

FUNDAMENTAL CONCEPTS

The usual way of assigning a meaning to the sum of an infinite number of terms is
by introducing the notion of partial sums. If we have an infinite sequence of terms
u1, u2, u3, u4, u5,. . . , we define the i-th partial sum as

si =
i∑

n=1

un . (1.1) eq1.1

This is a finite summation and offers no difficulties. If the partial sums si converge
to a finite limit as i →∞,

lim
i→∞

si = S , (1.2) eq1.2

the infinite series
∑∞

n=1 un is said to be convergent and to have the value S. Note
that we define the infinite series as equal to S and that a necessary condition for con-
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2 CHAPTER 1. INFINITE SERIES

vergence to a limit is that limn→∞ un = 0. This condition, however, is not sufficient
to guarantee convergence.

Sometimes it is convenient to apply the condition in Eq. (1.2) in a form called the
Cauchy criterion, namely that for each ε > 0 there is a fixed number N such that
|sj − si| < ε for all i and j greater than N . This means that the partial sums must
cluster together as we move far out in the sequence.

Some series diverge, meaning that the sequence of partial sums approaches ±∞;
others may have partial sums that oscillate between two values, as for example

∞∑
n=1

un = 1− 1 + 1− 1 + 1− · · · − (−1)n + · · · .

This series does not converge to a limit, and can be called oscillatory. Often the
term divergent is extended to include oscillatory series as well. It is important to be
able to determine whether, or under what conditions, a series we would like to use is
convergent.

Example 1.1.1. The Geometric Series

The geometric series, starting with u0 = 1 and with a ratio of successive terms
r = un+1/un, has the form

1 + r + r2 + r3 + · · ·+ rn−1 + · · · .

Its n-th partial sum sn(that of the first n terms) is1

sn =
1− rn

1− r
. (1.3) eq1.3

Restricting attention to |r| < 1, so that for large n, rn approaches zero, sn possesses
the limit

lim
n→∞

sn =
1

1− r
, (1.4) eq1.4

showing that for |r| < 1, the geometric series converges. It clearly diverges (or is
oscillatory) for |r| ≥ 1, as the individual terms do not then approach zero at large n.

¥

Example 1.1.2. The Harmonic Series

As a second and more involved example, we consider the harmonic series

∞∑
n=1

1
n

= 1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

+ · · · . (1.5) eq1.5

The terms approach zero for large n, i.e. limn→∞ 1/n = 0, but this is not sufficient
to guarantee convergence. If we group the terms (without changing their order) as

1 +
1
2

+
(

1
3

+
1
4

)
+

(
1
5

+
1
6

+
1
7

+
1
8

)
+

(
1
9

+ · · ·+ 1
16

)
+ · · · ,

1Multiply and divide sn =
∑n−1

m=0 rm by 1− r.
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each pair of parentheses encloses p terms of the form

1
p + 1

+
1

p + 2
+ · · ·+ 1

p + p
>

p

2p
=

1
2

.

Forming partial sums by adding the parenthetical groups one by one, we obtain

s1 = 1, s2 =
3
2

, s3 >
4
2

, s4 >
5
2

, . . . , sn >
n + 1

2
,

and we are forced to the conclusion that the harmonic series diverges.
Although the harmonic series diverges, its partial sums have relevance among

other places in number theory, where Hn =
∑n

m=1 m−1 are sometimes referred to as
harmonic numbers.

¥

We now turn to a more detailed study of the convergence and divergence of series,
considering here series of positive terms. Series with terms of both signs are treated
later.

COMPARISON TEST

If term by term a series of terms un satisfies 0 ≤ un ≤ an, where the an form a
convergent series, then the series

∑
n un is also convergent. Letting si and sj be

partial sums of the u series, with j > i, the difference sj − si is
∑j

n=i+1 un, and
this is smaller than the corresponding quantity for the a series, thereby proving
convergence. A similar argument shows that if term by term a series of terms vn

satisfies 0 ≤ bn ≤ vn, where the bn form a divergent series, then
∑

n vn is also
divergent.

For the convergent series an we already have the geometric series, whereas the
harmonic series will serve as the divergent comparison series bn. As other series are
identified as either convergent or divergent, they may also be used as the known series
for comparison tests.

Example 1.1.3. A Divergent Series

Test
∑∞

n=1 n−p, p = 0.999, for convergence. Since n−0.999 > n−1 and bn = n−1

forms the divergent harmonic series, the comparison test shows that
∑

n n−0.999 is
divergent. Generalizing,

∑
n n−p is seen to be divergent for all p ≤ 1.

¥

CAUCHY ROOT TEST

If (an)1/n ≤ r < 1 for all sufficiently large n, with r independent of n, then
∑

n an is
convergent. If (an)1/n ≥ 1 for all sufficiently large n, then

∑
n an is divergent.

The language of this test emphasizes an important point: the convergence or
divergence of a series depends entirely upon what happens for large n. Relative to
convergence, it is the behavior in the large-n limit that matters.

The first part of this test is verified easily by raising (an)1/n to the nth power.
We get

an ≤ rn < 1 .
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Since rn is just the nth term in a convergent geometric series,
∑

n an is convergent
by the comparison test. Conversely, if (an)1/n ≥ 1, then an ≥ 1 and the series must
diverge. This root test is particularly useful in establishing the properties of power
series (Section 1.2).

D’ALEMBERT (OR CAUCHY) RATIO TEST

If an+1/an ≤ r < 1 for all sufficiently large n and r is independent of n, then
∑

n an

is convergent. If an+1/an ≥ 1 for all sufficiently large n, then
∑

n an is divergent.
This test is established by direct comparison with the geometric series (1+r+r2+

· · · ). In the second part, an+1 ≥ an and divergence should be reasonably obvious.
Although not quite as sensitive as the Cauchy root test, this D’Alembert ratio test
is one of the easiest to apply and is widely used. An alternate statement of the ratio
test is in the form of a limit: If

lim
n→∞

an+1

an





< 1, convergence,
> 1, divergence,
= 1, indeterminate.

(1.6) eq1.6

Because of this final indeterminate possibility, the ratio test is likely to fail at crucial
points, and more delicate, sensitive tests then become necessary. The alert reader
may wonder how this indeterminacy arose. Actually it was concealed in the first
statement, an+1/an ≤ r < 1. We might encounter an+1/an < 1 for all finite n but
be unable to choose an r < 1 and independent of n such that an+1/an ≤ r for all
sufficiently large n. An example is provided by the harmonic series, for which

an+1

an
=

n

n + 1
< 1 .

Since
lim

n→∞
an+1

an
= 1 ,

no fixed ratio r < 1 exists and the test fails.

Example 1.1.4. D’Alembert Ratio Test

Test
∑

n n/2n for convergence. Applying the ratio test,

an+1

an
=

(n + 1)/2n+1

n/2n
=

1
2

n + 1
n

.

Since
an+1

an
≤ 3

4
for n ≥ 2,

we have convergence.

¥

CAUCHY (OR MACLAURIN) INTEGRAL TEST

This is another sort of comparison test, in which we compare a series with an integral.
Geometrically, we compare the area of a series of unit-width rectangles with the area
under a curve.
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Figure 1.1: (a) Comparison of integral and sum-blocks leading. (b) Comparison of
integral and sum-blocks lagging.Fig1.1

Let f(x) be a continuous, monotonic decreasing function in which f(n) = an.
Then

∑
n an converges if

∫∞
1

f(x)dx is finite and diverges if the integral is infinite.
The ith partial sum is

si =
i∑

n=1

an =
i∑

n=1

f(n) .

But, because f(x) is monotonic decreasing, see Fig. 1.1(a),

si ≥
∫ i+1

1

f(x)dx .

On the other hand, as shown in Fig. 1.1(b),

si − a1 ≤
∫ i

1

f(x)dx .

Taking the limit as i →∞, we have

∫ ∞

1

f(x)dx ≤
∞∑

n=1

an ≤
∫ ∞

1

f(x)dx + a1 . (1.7) eq1.7

Hence the infinite series converges or diverges as the corresponding integral converges
or diverges.

This integral test is particularly useful in setting upper and lower bounds on the
remainder of a series after some number of initial terms have been summed. That is,

∞∑
n=1

an =
N∑

n=1

an +
∞∑

n=N+1

an , (1.8) eq1.8

and ∫ ∞

N+1

f(x) dx ≤
∞∑

n=N+1

an ≤
∫ ∞

N+1

f(x) dx + aN+1 . (1.9) eq1.9
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To free the integral test from the quite restrictive requirement that the interpo-
lating function f(x) be positive and monotonic, we shall show that for any function
f(x) with a continuous derivative, the infinite series is exactly represented as a sum
of two integrals:

N2∑

n=N1+1

f(n) =
∫ N2

N1

f(x)dx +
∫ N2

N1

(x− [x])f ′(x)dx . (1.10) eq1.10

Here [x] is the integral part of x, i.e. the largest integer ≤ x, so x − [x] varies saw-
toothlike between 0 and 1. Equation ((1.10) is useful because if both integrals in
Eq. (1.10) converge, the infinite series also converges, while if one integral converges
and the other does not, the infinite series diverges. If both integrals diverge, the test
fails unless it can be shown whether the divergences of the integrals cancel against
each other.

We need now to establish Eq. (1.10). We manipulate the contributions to the
second integral as follows:

(1) Using integration by parts, we observe that

∫ N2

N1

xf ′(x)dx = N2f(N2)−N1f(N1)−
∫ N2

N1

f(x)dx .

(2) We evaluate

∫ N2

N1

[x]f ′(x)dx =
N2−1∑

n=N1

n

∫ n+1

n

f ′(x)dx =
N2−1∑

n=N1

n
[
f(n + 1)− f(n)

]

= −
N2∑

n=N1+1

f(n)−N1f(N1) + N2f(N2) .

Subtracting the second of these equations from the first, we arrive at Eq. (1.10).
An alternative to Eq. (1.10) in which the second integral has its sawtooth shifted

to be symmetrical about zero (and therefore perhaps smaller) can be derived by
methods similar to those used above. The resulting formula is

N2∑

n=N1+1

f(n) =
∫ N2

N1

f(x)dx +
∫ N2

N1

(x− [x]− 1
2 )f ′(x)dx

+ 1
2

[
f(N2)− f(N1)

]
.

(1.11) eq1.11

Because they do not use a monotonicity requirement, Eqs. (1.10) and (1.11) can
be applied to alternating series, and even those with irregular sign sequences.

Example 1.1.5. Riemann Zeta Function

The Riemann zeta function is defined by

ζ(p) =
∞∑

n=1

n−p , (1.12) eq1.12
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providing the series converges. We may take f(x) = x−p, and then
∫ ∞

1

x−p dx =
x−p+1

−p + 1

∣∣∣∣
∞

x=1

, p 6= 1,

= ln x
∣∣∣
∞

x=1
, p = 1 .

The integral and therefore the series are divergent for p ≤ 1, and convergent for
p > 1. Hence Eq. (1.12) should carry the condition p > 1. This, incidentally, is an
independent proof that the harmonic series (p = 1) diverges logarithmically. The
sum of the first million terms

∑1,000,000
n=1 n−1 is only 14.392 726 · · · .

¥
While the harmonic series diverges, the combination

γ = lim
n→∞

(
n∑

m=1

m−1 − ln n

)
(1.13) eq1.12a

does converge, approaching a limit known as the Euler-Mascheroni constant.

Example 1.1.6. A Slowly Diverging SeriesExam1.1.6

Consider now the series

S =
∞∑

n=2

1
n ln n

.

We form the integral
∫ ∞

2

1
x ln x

dx =
∫ ∞

x=2

d ln x

ln x
= ln ln x

∣∣∣
∞

x=2
,

which diverges, indicating that S is divergent. Notice that the lower limit of the inte-
gral is in fact unimportant so long as it does not introduce any spurious singularities,
as it is the large-x behavior that determines the convergence. Because n ln n > n,
the divergence is slower than that of the harmonic series. But because lnn increases
more slowly than nε, where ε can have an arbitrarily small positive value, we have
divergence even though the series

∑
n n−(1+ε) converges.

¥

MORE SENSITIVE TESTS

Several tests more sensitive than those already examined are consequences of a the-
orem by Kummer. Kummer’s theorem, which deals with two series of finite positive
terms: un and an, states:

1. The series
∑

n un converges if

lim
n→∞

(
an

un

un+1
− an+1

)
≥ C > 0 , (1.14) eq1.13

where C is a constant. This statement is equivalent to a simple comparison test
if the series

∑
n a−1

n converges, and imparts new information only if that sum
diverges. The more weakly

∑
n a−1

n diverges, the more powerful the Kummer
test will be.
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2. If
∑

n a−1
n diverges and

lim
n→∞

(
an

un

un+1
− an+1

)
≤ 0 , (1.15) eq1.14

then
∑

n un diverges.

The proof of this powerful test is remarkably simple. Part 2 follows immediately
from the comparison test. To prove Part 1, write cases of Eq. (1.14) for n = N + 1
through any larger n, in the following form:

uN+1 ≤ (aNuN − aN+1uN+1)/C ,

uN+2 ≤ (aN+1uN+1 − aN+2uN+2)/C ,

. . . ≤ . . . . . . . . . . . . . . . . . . . . . . . . ,

un ≤ (an−1un−1 − anun)/C .

Adding, we get

n∑

i=N+1

ui ≤ aNuN

C
− anun

C
(1.16)

<
aNuN

C
. (1.17) eq1.15

This shows that the tail of the series
∑

n un is bounded, and that series is therefore
proved convergent when Eq. (1.14) is satisfied for all sufficiently large n.

Gauss’s Test is an application of Kummer’s theorem to series un > 0 when
the ratios of successive un approach unity and the tests previously discussed yield
indeterminate results. If for large n

un

un+1
= 1 +

h

n
+

B(n)
n2

, (1.18) eq1.16

where B(n) is bounded for n sufficiently large, then the Gauss test states that
∑

n un

converges for h > 1 and diverges for h ≤ 1: There is no indeterminate case here.
The Gauss test is extremely sensitive, and will work for all troublesome series

the physicist is likely to encounter. To confirm it using Kummer’s theorem, we
take an = n ln n. The series

∑
n a−1

n is weakly divergent, as already established in
Example 1.1.6.

Taking the limit on the left side of Eq. (1.14), we have

lim
n→∞

[
n ln n

(
1 +

h

n
+

B(n)
n2

)
− (n + 1) ln(n + 1)

]

= lim
n→∞

[
(n + 1) ln n + (h− 1) ln n +

B(n) ln n

n
− (n + 1) ln(n + 1)

]

= lim
n→∞

[
−(n + 1) ln

(
n + 1

n

)
+ (h− 1) ln n

]
. (1.19) eq1.17

For h < 1, both terms of Eq. (1.19) are negative, thereby signalling a divergent case
of Kummer’s theorem; for h > 1, the second term of Eq. (1.19) dominates the first
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and is positive, indicating convergence. At h = 1, the second term vanishes, and the
first is inherently negative, thereby indicating divergence.

Example 1.1.7. Legendre SeriesEx1.1.7

The series solution for the Legendre equation (encountered in Chapter 7 has successive
terms whose ratio under certain conditions is

a2j+2

a2j
=

2j(2j + 1)− λ

(2j + 1)(2j + 2)
.

To place this in the form now being used, we define uj = a2j and write

uj

uj+1
=

(2j + 1)(2j + 2)
2j(2j + 1)− λ

.

In the limit of large j, the constant λ becomes negligible (in the language of the Gauss
test, it contributes to an extent B(j)/j2, where B(j) is bounded). We therefore have

uj

uj+1
→ 2j + 2

2j
+

B(j)
j2

= 1 +
1
j

+
B(j)
j2

. (1.20) eq1.18

The Gauss test tells us that this series is divergent.

¥

Exercises

1.1.1. (a) Prove that if lim
n→∞

npun = A < ∞, p > 1, the series
∞∑

n=1
un converges.

(b) Prove that if lim
n→∞

nun = A > 0, the series diverges. (The test fails for
A = 0.)

These two tests, known as limit tests, are often convenient for establishing the
convergence of a series. They may be treated as comparison tests, comparing
with ∑

n

n−q, 1 ≤ q < p.

1.1.2. If lim
n→∞

bn

an
= K, a constant with 0 < K < ∞, show that Σnbn converges

or diverges with Σan.

Hint. If Σan converges, rescale bn to b′n =
bn

2K
. If Σnan diverges, rescale to

b′′n =
2bn

K
.

1.1.3. (a) Show that the series
∞∑

n=2

1
n (ln n)2 converges.
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(b) By direct addition
∑100,000

2 [n(ln n)2]−1 = 2.02288. Use Eq. (1.9) to make a
five-significant-figure estimate of the sum of this series.

1.1.4. Gauss’s test is often given in the form of a test of the ratio

un

un+1
=

n2 + a1n + a0

n2 + b1n + b0
.

For what values of the parameters a1 and b1 is there convergence? divergence?

ANS. Convergent for a1 − b1 > 1,
divergent for a1 − b1 ≤ 1.

1.1.5. Test for convergence

(a)
∞∑

n=2

(lnn)−1 (d)
∞∑

n=1

[n(n + 1)]−1/2

(b)
∞∑

n=1

n!
10n

(e)
∞∑

n=0

1
2n + 1

.

(c)
∞∑

n=1

1
2n(2n + 1)

1.1.6. Test for convergence

(a)
∞∑

n=1

1
n(n + 1)

(d)
∞∑

n=1

ln
(

1 +
1
n

)

(b)
∞∑

n=2

1
n ln n

(e)
∞∑

n=1

1
n · n1/n

.

(c)
∞∑

n=1

1
n2n

1.1.7. For what values of p and q will
∞∑

n=2

1
np(lnn)q converge?

ANS. Convergent for

{
p > 1, all q,

p = 1, q > 1,
divergent for

{
p < 1, all q,

p = 1, q ≤ 1.

1.1.8. Given
∑1,000

n=1 n−1 = 7.485 470 . . . set upper and lower bounds on the Euler-
Mascheroni constant.

ANS. 0.5767 < γ < 0.5778.

1.1.9. (From Olbers’ paradox.) Assume a static universe in which the stars are
uniformly distributed. Divide all space into shells of constant thickness; the
stars in any one shell by themselves subtend a solid angle of ω0. Allowing for
the blocking out of distant stars by nearer stars, show that the total
net solid angle subtended by all stars, shells extending to infinity, is exactly
4π. [Therefore the night sky should be ablaze with light. For more details, see
E. Harrison, Darkness at Night: A Riddle of the Universe. Cambridge, MA:
Harvard University Press (1987).]
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1.1.10. Test for convergence

∞∑
n=1

[
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)

]2

=
1
4

+
9
64

+
25
256

+ · · · .

ALTERNATING SERIES

In previous subsections we limited ourselves to series of positive terms. Now, in con-
trast, we consider infinite series in which the signs alternate. The partial cancellaton
due to alternating signs makes converegence more rapid and much easier to identify.
We shall prove the Leibniz criterion, a general condition for the convergence of an
alternating series. For series with more irregular sign changes, the integral test of
Eq. (1.10) is often helpful.

The Leibniz criterion applies to series of the form
∑∞

n=1(−1)n+1an with an >
0, and states that if an is monotonically decreasing (for sufficiently large n) and
limn→∞ an = 0, then the series converges. To prove this theorem, notice that the
remainder R2n of the series beyond s2n, the partial sum after 2n terms, can be written
in two alternate ways:

R2n = (a2n+1 − a2n+2) + (a2n+3 − a2n+4) + · · ·

= a2n+1 − (a2n+2 − a2n+3)− (a2n+4 − a2n+5)− · · · .

Since the an are decreasing, the first of these equations implies R2n > 0, while the
second implies R2n < a2n+1, so

0 < R2n < a2n+1 .

Thus, R2n is positive but bounded, and the bound can be made arbitrarily small
by taking larger values of n. This demonstration also shows that the error from
truncating an alternating series after a2n results in an error that is negative (the
omitted terms were shown to combine to a positive result) and bounded in magnitude
by a2n+1. An argument similar to that made above for the remainder after an odd
number of terms, R2n+1, would show that the error from truncation after a2n+1 is
positive and bounded by a2n+2. Thus, it is generally true that the error in truncating
an alternating series with monotonically decreasing terms is of the same sign as the
last term kept and smaller than the first term dropped.

The Leibniz criterion depends for its applicability on the presence of strict sign
alternation. Less regular sign changes present more challenging problems for conver-
gence determination.

Example 1.1.8. Series with Irregular Sign Changes

For 0 < x < 2π the series

S =
∞∑

n=1

cos(nx)
n

= − ln
(
2 sin

x

2

)
(1.21) eq1.19

converges, having coefficients that change sign often, but not so that the Leibniz
criterion applies easily. To verify the convergence, we apply the integral test of



12 CHAPTER 1. INFINITE SERIES

Eq. (1.10), inserting the explicit form for the derivative of cos(nx)/n (with respect
to n) in the second integral:

S =
∫ ∞

1

cos(nx)
n

dn +
∫ ∞

1

(
n− [n]

) [
−x

n
sin(nx)− cos(nx)

n2

]
dn . (1.22) eq1.20

Using integration by parts, the first integral in Eq. (1.22) is rearranged to

∫ ∞

1

cos(nx)
n

dn =
[
sin(nx)

nx

]∞

1

+
1
x

∫ ∞

1

sin(nx)
n2

dn ,

and this integral converges because

∣∣∣∣
∫ ∞

1

sin(nx)
n2

dn

∣∣∣∣ <

∫ ∞

1

dn

n2
= 1 .

Looking now at the second integral in Eq. (1.22), we note that its term cos(nx)/n2

also leads to a convergent integral, so we need only to examine the convergence of

∫ ∞

1

(
n− [n]

) sin(nx)
n

dn .

Next, setting (n− [n]) sin(nx) = g′(n), which is equivalent to defining g(N) =
∫ N

1
(n−

[n]) sin(nx)dn, we write

∫ ∞

1

(
n− [n]

) sin(nx)
n

dn =
∫ ∞

1

g′(n)
n

dn =
[
g(n)
n

]∞

n=1

+
∫ ∞

1

g(n)
n2

dn ,

where the last equality was obtained using once again an integration by parts. We do
not have an explicit expression for g(n), but we do know that it is bounded because
sin x oscillates with a period incommensurate with that of the sawtooth periodicity
of n − [n]). This boundedness enables us to determine that the second integral in
Eq. (1.22) converges, thus establishing the convergence of S.

¥

ABSOLUTE AND CONDITIONAL CONVERGENCE

An infinite series is absolutely convergent if the absolute values of its terms form a
convergent series. If it converges, but not absolutely, it is termed conditionally con-
vergent. An example of a conditionally convergent series is the alternating harmonic
series,

∞∑
n=1

(−1)n−1n−1 = 1− 1
2

+
1
3
− 1

4
+ · · ·+ (−1)n−1

n
+ · · · . (1.23) eq1.21

This series is convergent, based on the Leibniz criterion. It is clearly not absolutely
convergent; if all terms are taken with + signs, we have the harmonic series, which
we already know to be divergent. The tests described earlier in this section for series
of positive terms are, then, tests for absolute convergence.
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Exercises

1.1.11. Determine whether each of these series is convergent, and if so, whether it is
absolutely convergent:

(a)
ln 2
2
− ln 3

3
+

ln 4
4
− ln 5

5
+

ln 6
6
− · · · ,

(b)
1
1

+
1
2
− 1

3
− 1

4
+

1
5

+
1
6
− 1

7
− 1

8
+ · · · ,

(c) 1− 1
2
− 1

3
+

1
4

+
1
5

+
1
6
− 1

7
− 1

8
− 1

9
− 1

10
+

1
11
· · ·+ 1

15
− 1

16
· · · − 1

21
+ · · · .

Ex1.1.121.1.12. Catalan’s constant β(2) is defined by

β(2) =
∞∑

k=0

(−1)k(2k + 1)−2 =
1
12
− 1

32
+

1
52
· · · .

Calculate β(2) to six-digit accuracy.

Hint. The rate of convergence is enhanced by pairing the terms:

(4k − 1)−2 − (4k + 1)−2 =
16k

(16k2 − 1)2
.

If you have carried enough digits in your summation,
∑

1≤k≤N 16k/(16k2−1)2,
additional significant figures may be obtained by setting upper and lower bounds
on the tail of the series,

∑∞
k=N+1. These bounds may be set by comparison

with integrals, as in the Maclaurin integral test.

ANS. β(2) = 0.9159 6559 4177 · · · .

OPERATIONS ON SERIES

We now investigate the operations that may be performed on infinite series. In this
connection the establishment of absolute convergence is important, because it can be
proved that the terms of an absolutely convergent series may be reordered according
to the familiar rules of algebra or arithmetic:

• If an infinite series is absolutely convergent, the series sum is independent of
the order in which the terms are added.

• An absolutely convergent series may be added termwise to, or subtracted term-
wise from, or multiplied termwise with another absolutely convergent series,
and the resulting series will also be absolutely convergent.

• The series (as a whole) may be multiplied with another absolutely convergent
series. The limit of the product will be the product of the individual series
limits. The product series, a double series, will also converge absolutely.

No such guarantees can be given for conditionally convergent series, though some
of the above properties remain true if only ne of the series to be combined is condi-
tionally convergent.

Example 1.1.9. Rearrangement of Alternating Harmonic
Series
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Figure 1.2: Alternating harmonic series—terms rearranged to give convergence to
1.5.Fig1.2

Writing the alternating harmonic series as

1− 1
2 + 1

3 − 1
4 + · · · = 1− ( 1

2 − 1
3 )− (1

4 − 1
5 )− · · · , (1.24) eq1.22

it is clear that
∞∑

n=1

(−1)n−1n−1 < 1 . However, if we rearrange the order of the

terms, we can make this series converge to 3
2 . We regroup the terms of Eq. (1.24), as

(1 + 1
3 + 1

5 )− (1
2 ) + ( 1

7 + 1
9 + 1

11 + 1
13 + 1

15 )− ( 1
4 )

+ ( 1
17 + · · ·+ 1

25 )− ( 1
6 ) + ( 1

27 + · · ·+ 1
35 )− ( 1

8 ) + · · · . (1.25) eq1.23

Treating the terms grouped in parentheses as single terms for convenience, we obtain
the partial sums

s1 = 1.5333 s2 = 1.0333
s3 = 1.5218 s4 = 1.2718
s5 = 1.5143 s6 = 1.3476
s7 = 1.5103 s8 = 1.3853
s9 = 1.5078 s10 = 1.4078 .

From this tabulation of sn and the plot of sn versus n in Fig. 1.2, the convergence
to 3

2 is fairly clear. Our rearrangement was to take positive terms until the partial
sum was equal to or greater than 3

2 and then to add negative terms until the partial
sum just fell below 3

2 and so on. As the series extends to infinity, all original terms
will eventually appear, but the partial sums of this rearranged alternating harmonic
series converge to 3

2 .

¥

As the example shows, by a suitable rearrangement of terms, a conditionally
convergent series may be made to converge to any desired value or even to diverge.
This statement is sometimes called Riemann’s theorem.
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Another example shows the danger of multiplying conditionally convergent series.

Example 1.1.10. Square of a Conditionally Convergent Series
May Diverge

The series
∞∑

n=1

(−1)n−1

√
n

converges, by the Leibniz criterion. Its square,

[ ∞∑
n=1

(−1)n−1

√
n

]2

=
∑

n

(−1)n

[
1√
1

1√
n− 1

+
1√
2

1√
n− 2

+ · · ·+ 1√
n− 1

1√
1

]
,

has a general term, in [. . . ], consisting of n−1 additive terms, each of which is bigger
than 1√

n−1
√

n−1
, so the entire [. . . ] term is greater than n−1

n−1 and does not go to zero.
Hence the general term of this product series does not approach zero in the limit of
large n and the series diverges.

¥
These examples show that conditionally convergent series must be treated with cau-
tion.

IMPROVEMENT OF CONVERGENCE

This section so far has been concerned with establishing convergence as an abstract
mathematical property. In practice, the rate of convergence may be of considerable
importance. A method for improving convergence, due to Kummer, is to form a
linear combination of our slowly converging series and one or more series whose sum
is known. For the known series the following collection is particularly useful:

α1 =
∞∑

n=1

1
n(n + 1)

= 1 ,

α2 =
∞∑

n=1

1
n(n + 1)(n + 2)

=
1
4

,

α3 =
∞∑

n=1

1
n(n + 1)(n + 2)(n + 3)

=
1
18

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αp =
∞∑

n=1

1
n(n + 1) · · · (n + p)

=
1

p p!
. (1.26) eq1.24

These sums can be evaluated via partial fraction expansions, and are the subject of
Exercise 1.5.3.

The series we wish to sum and one or more known series (multiplied by coefficients)
are combined term by term. The coefficients in the linear combination are chosen to
cancel the most slowly converging terms.

Example 1.1.11. Riemann Zeta Function ζ(3)Exam1.1.11
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From the definition in Eq. (1.12), we identify ζ(3) as
∑∞

n=1 n−3. Noticing that α2 of
Eq. (1.26) has a large-n dependence ∼ n−3, we consider the linear combination

∞∑
n=1

n−3 + aα2 = ζ(3) +
a

4
. (1.27) eq1.25

We did not use α1 because it converges more slowly than ζ(3). Combining the two
series on the left-hand side termwise, we obtain

∞∑
n=1

[
1
n3

+
a

n(n + 1)(n + 2)

]
=

∞∑
n=1

n2(1 + a) + 3n + 2
n3(n + 1)(n + 2)

.

If we choose a = −1, we remove the leading term from the numerator; then, setting
this equal to the right-hand side of Eq. (1.27) and solving for ζ(3),

ζ(3) =
1
4

+
∞∑

n=1

3n + 2
n3(n + 1)(n + 2)

. (1.28) eq1.26

The resulting series may not be beautiful but it does converge as n−4, faster than
n−3. A more convenient form with even faster convergence is introduced in Exercise
1.1.16. There, the symmetry leads to convergence as n−5.

¥

Sometimes it is helpful to use the Riemann zeta function in a way similar to that
illustrated for the αp in the foregoing example. That approach is practical because
the zeta function has been tabulated (see Table 1.1).

Example 1.1.12. Convergence Improvement

The problem is to evaluate the series
∑∞

n=1 1/(1 + n2). Expanding (1 + n2)−1 =
n−2(1 + n−2)−1 by direct division, we have

(1 + n2)−1 = n−2

(
1− n−2 + n−4 − n−6

1 + n−2

)

=
1
n2
− 1

n4
+

1
n6
− 1

n8 + n6
.

Therefore
∞∑

n=1

1
1 + n2

= ζ(2)− ζ(4) + ζ(6)−
∞∑

n=1

1
n8 + n6

.

The remainder series converges as n−8. Clearly, the process can be continued as
desired. You make a choice between how much algebra you will do and how much
arithmetic the computer will do.

¥
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Table 1.1: Riemann Zeta FunctionTab1.1

s ζ(s)
2 1.64493 40668
3 1.20205 69032
4 1.08232 32337
5 1.03692 77551
6 1.01734 30620
7 1.00834 92774
8 1.00407 73562
9 1.00200 83928

10 1.00099 45751

REARRANGEMENT OF DOUBLE SERIES

An absolutely convergent double series (one whose terms are identified by two sum-
mation indices) presents interesting rearrangement opportunities. Consider

S =
∞∑

m=0

∞∑
n=0

an,m . (1.29) eq1.27

In addition to the obvious possibility of reversing the order of summation (i.e. doing
the m sum first), we can make rearrangements that are more innovative. One reason
for doing this is that we may be able to reduce the double sum to a single summation,
or even evaluate the entire double sum in closed form.

As an example, suppose we make the following index substitutions in our double
series: m = q, n = p − q. Then we will cover all n ≥ 0, m ≥ 0 by assigning p the
range (0,∞), and q the range (0, p), so our double series can be written

S =
∞∑

p=0

p∑
q=0

ap−q,q . (1.30) eq1.28

In the nm plane our region of summation is the entire quadrant m ≥ 0, n ≥ 0; in the
pq plane our summation is over the triangular region sketched in Fig. 1.3. This
same pq region can be covered when the summations are carried out in the reverse
order, but with limits

S =
∞∑

q=0

∞∑
p=q

ap−q,q .

The important thing to notice here is that these schemes all have in common that,
by allowing the indices to run over their designated ranges, every an,m is eventually
encountered, and is encoutered exactly once.

Another possible index substitution is to set n = s, m = r− 2s. If we sum over s
first, its range must be (0, [r/2]), where [r/2] is the integer part of r/2, i.e. [r/2] = r/2
for r even and (r−1)/2 for r odd. The range of r is (0,∞). This situation corresponds
to

S =
∞∑

r=0

[r/2]∑
s=0

as,r−2s . (1.31) eq1.29
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Figure 1.3: The pq index space.Fig1.3

Figure 1.4: Order in which terms are summed with m, n index set, Eq. (1.29).Fig1.4

The sketches in Figs. 1.4–1.6 show the order in which the an,m are summed when
using the forms given in Eqs. (1.29), (1.30), and (1.31).

If the double series introduced originally as Eq. (1.29) is absolutely convergent,
then all these rearrangements will give the same ultimate result.

Exercises

Ex1.1.171.1.13. Show how to combine ζ(2) =
∞∑

n=1
n−2 with α1 and α2 to obtain a series con-

verging as n−4.

Note. ζ(2) has the known value π2/6. See Eq. (1.135).

1.1.14. Give a method of computing

λ(3) =
∞∑

n=0

1
(2n + 1)3
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Figure 1.5: Order in which terms are summed with p, q index set, Eq. (1.30).Fig1.5

Figure 1.6: Order in which terms are summed with r, s index set, Eq. (1.31).Fig1.6

that converges at least as fast as n−8 and obtain a result good to six decimal
places.

ANS. λ(3) = 1.051800.

1.1.15. Show that (a)
∞∑

n=2

[ζ(n)−1] = 1, (b)
∞∑

n=2

(−1)n[ζ(n)−1] =
1
2
,

where ζ(n) is the Riemann zeta function.

Ex1.1.161.1.16. The convergence improvement of Example 1.1.11 may be carried out more ex-
pediently (in this special case) by putting α2, from Eq. (1.26), into a more
symmetric form: Replacing n by n− 1, we have

α′2 =
∞∑

n=2

1
(n− 1)n(n + 1)

=
1
4
.

(a) Combine ζ(3) and α′2 to obtain convergence as n−5.
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(b) Let α′4 be α4 with n → n− 2. Combine ζ(3), α′2, and α′4 to obtain conver-
gence as n−7.

(c) If ζ(3) is to be calculated to six-decimal place accuracy (error 5 × 10−7),
how many terms are required for ζ(3) alone? combined as in part (a)?
combined as in part (b)?

Note. The error may be estimated using the corresponding integral.

ANS. (a) ζ(3) =
5
4
−

∞∑
n=2

1
n3(n2 − 1)

.

1.2 SERIES OF FUNCTIONSSec1.2

We extend our concept of infinite series to include the possibility that each term un

may be a function of some variable, un = un(x). The partial sums become functions
of the variable x,

sn(x) = u1(x) + u2(x) + · · ·+ un(x) , (1.32) eq1.30

as does the series sum, defined as the limit of the partial sums:

∞∑
n=1

un(x) = S(x) = lim
n→∞

sn(x) . (1.33) eq1.31

So far we have concerned ourselves with the behavior of the partial sums as a function
of n. Now we consider how the foregoing quantities depend on x. The key concept
here is that of uniform convergence.

UNIFORM CONVERGENCE

If for any small ε > 0 there exists a number N , independent of x in the interval
[a, b] (that is, a ≤ x ≤ b) such that

∣∣∣S(x)− sn(x)
∣∣∣ < ε , for all n ≥ N , (1.34) eq1.32

then the series is said to be uniformly convergent in the interval [a, b]. This says
that for our series to be uniformly convergent, it must be possible to find a finite N
so that the absolute value of the tail of the infinite series, |∑∞

i=N+1 ui(x)|, will be
less than an arbitrary small ε for all x in the given interval, including the end points.

Example 1.2.1. Nonuniform ConvergenceExam1.2.1

Consider on the interval [0, 1] the series

S(x) =
∞∑

n=0

(1− x)xn .

For 0 ≤ x < 1, the geometric series
∑

n xn is convergent, with value 1/(1 − x), so
S(x) = 1 for these x values. But at x = 1, every term of the series will be zero, and
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therefore S(1) = 0. That is,

∞∑
n=0

(1− x)xn = 1, 0 ≤ x < 1,

= 0, x = 1 . (1.35) eq1.33

So S(x) is convergent for the entire interval [0, 1], and because each term is nonneg-
ative, it is also absolutely convergent. If x 6= 0, this is a series for which the partial
sum sN is 1− xN , as can be seen by comparison with Eq. (1.3). Since S(x) = 1, the
uniform convergence criterion is

∣∣∣1− (1− xN )
∣∣∣ = xN < ε .

No matter what the values of N and a sufficiently small ε may be, there will be an
x value (close to 1) where this criterion is violated. The underlying problem is that
x = 1 is the convergence limit of the geometric series, and it is not possible to have a
convergence rate that is bounded independently of x in a range that includes x = 1.

We note also from this example that absolute and uniform convergence are in-
dependent concepts. The series in this example has absolute, but not uniform con-
vergence. We will shortly present examples of series that are uniformly, but only
conditionally convergent. And there are series that have neither or both of these
properties.

¥

WEIERSTRASS M (MAJORANT) TEST

The most commonly encountered test for uniform convergence is the Weierstrass M
test. If we can construct a series of numbers

∑∞
i=1 Mi, in which Mi ≥ |ui(x)| for all

x in the interval [a, b] and
∑∞

i=1 Mi is convergent, our series ui(x) will be uniformly
convergent in [a, b].

The proof of this Weierstrass M test is direct and simple. Since
∑

i Mi converges,
some number N exists such that for n + 1 ≥ N ,

∞∑

i=n+1

Mi < ε .

This follows from our definition of convergence. Then, with |ui(x)| ≤ Mi for all x in
the interval a ≤ x ≤ b,

∞∑

i=n+1

ui(x) < ε .

Hence S(x) =
∑∞

n=1 ui(x) satisfies

∣∣∣S(x)− sn(x)
∣∣∣ =

∣∣∣∣
∞∑

i=n+1

ui(x)
∣∣∣∣ < ε , (1.36) eq1.34

we see that
∑∞

n=1 ui(x) is uniformly convergent in [a, b]. Since we have specified
absolute values in the statement of the Weierstrass M test, the series

∑∞
n=1 ui(x)

is also seen to be absolutely convergent. As we have already observed in Example
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Example 1.2.1, absolute and uniform convergence are different concepts, and one
of the limitations of the Weierstrass M test is that it can only establish uniform
convergence for series that are also absolutely convergent.

To further underscore the difference between absolute and uniform convergence,
we provide another example.

Example 1.2.2. Uniformly Convergent Alternating Series

Consider the series

S(x) =
∞∑

n=1

(−1)n

n + x2
, −∞ < x < ∞ . (1.37) eq1.35

Applying the Leibniz criterion, this series is easily proven convergent for the entire
interval −∞ < x < ∞, but it is not absolutely convergent, as the absolute values of
its terms approach for large n those of the divergent harmonic series. The divergence
of the absolute value series is obvious at x = 0, where we then exactly have the
harmonic series. Nevertheless, this series is uniformly convergent on −∞ < x < ∞,
as its convergence is for all x at least as fast as it is for x = 0. More formally,

∣∣∣S(x)− sn(x)
∣∣∣ <

∣∣∣un+1(x)
∣∣∣ ≤

∣∣∣un+1(0)
∣∣∣ .

Since un+1(0) is independent of x, uniform convergence is confirmed.

¥

ABEL’S TEST

A somewhat more delicate test for uniform convergence has been given by Abel. If
un(x) can be written in the form anfn(x), and

1. The an form a convergent series,
∑

n an = A,

2. For all x in [a, b] the functions fn(x) are monotonically decreasing in n, i.e. fn+1(x) ≤
fn(x),

3. For all x in [a, b] all the f(n) are bounded in the range 0 ≤ fn(x) ≤ M , where
M is independent of x,

then
∑

n un(x) converges uniformly in [a, b].

This test is especially useful in analyzing the convergence of power series. Details
of the proof of Abel’s test and other tests for uniform convergence are given in the
Additional Readings listed at the end of this chapter.

PROPERTIES OF UNIFORMLY CONVERGENT SERIES

Uniformly convergent series have three particularly useful properties. If a series∑
n un(x) is uniformly convergent in [a, b] and the individual terms un(x) are contin-

uous,

1. The series sum S(x) =
∞∑

n=1

un(x) is also continuous.
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2. The series may be integrated term by term. The sum of the integrals is equal
to the integral of the sum.

∫ b

a

S(x) dx =
∞∑

n=1

∫ b

a

un(x) dx . (1.38) eq1.36

3. The derivative of the series sum S(x) equals the sum of the individual-term
derivatives:

d

dx
S(x) =

∞∑
n=1

d

dx
un(x) , (1.39) eq1.37

provided the following additional conditions are satisfied:

dun(x)
dx

is continuous in [a, b] ,

∞∑
n=1

dun(x)
dx

is uniformly convergent in [a, b] .

Term-by-term integration of a uniformly convergent series requires only conti-
nuity of the individual terms. This condition is almost always satisfied in physical
applications. Term-by-term differentiation of a series is often not valid because more
restrictive conditions must be satisfied.

Exercises

1.2.1. Find the range of uniform convergence of the series

(a) η(x) =
∞∑

n=1

(−1)n−1

nx
(b) ζ(x) =

∞∑
n=1

1
nx

.

ANS. (a) 0 < s ≤ x < ∞.
(b) 1 < s ≤ x < ∞.

1.2.2. For what range of x is the geometric series
∑∞

n=0 xn uniformly convergent?

ANS.− 1 < −s ≤ x ≤ s < 1.

1.2.3. For what range of positive values of x is
∑∞

n=0 1/(1 + xn)

(a) convergent? (b) uniformly convergent?

1.2.4. If the series of the coefficients
∑

an and
∑

bn are absolutely convergent, show
that the Fourier series

∑
(an cosnx + bn sin nx)

is uniformly convergent for −∞ < x < ∞.
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old5.2.151.2.5. The Legendre series
∑

j even uj(x) satisfies the recurrence relations

uj+2(x) =
(j + 1)(j + 2)− l(l + 1)

(j + 2)(j + 3)
x2uj(x),

in which the index j is even and l is some constant (but, in this problem, not a
nonnegative odd integer). Find the range of values of x for which this Legendre
series is convergent. Test the endpoints.

ANS. − 1 < x < 1.

old5.2.161.2.6. A series solution of the Chebyshev equation leads to successive terms having
the ratio

uj+2(x)
uj(x)

=
(k + j)2 − n2

(k + j + 1)(k + j + 2)
x2,

with k = 0 and k = 1. Test for convergence at x = ±1.

ANS. Convergent.

1.2.7. A series solution for the ultraspherical (Gegenbauer) function Cα
n (x) leads to

the recurrence

aj+2 = aj
(k + j)(k + j + 2α)− n(n + 2α)

(k + j + 1)(k + j + 2)
.

Investigate the convergence of each of these series at x = ±1 as a function of
the parameter α.

ANS. Convergent for α < 1,
divergent for α ≥ 1.

TAYLOR’S EXPANSION

Taylor’s expansion is a powerful tool for the generation of power series representations
of functions. The derivation presented here provides not only the possibility of an
expansion into a finite number of terms plus a remainder that may or may not be
easy to evaluate, but also the possibility of the expression of a function as an infinite
series of powers.

We assume that our function f(x) has a continuous nth derivative2 in the interval
a ≤ x ≤ b. We integrate this nth derivative n times; the first three integrations yield

∫ x

a

f (n)(x1)dx1 = f (n−1)(x1)
∣∣∣
x

a
= f (n−1)(x)− f (n−1)(a) ,

∫ x

a

dx2

∫ x2

a

f (n)(x1)dx1 =
∫ x

a

dx2

[
f (n−1)(x2)− f (n−1)(a)

]

= f (n−2)(x)− f (n−2)(a)− (x− a)f (n−1)(a) ,

2Taylor’s espansion may be derived under slightly less restrictive conditions; compare H. Jeffreys
and B. S. Jeffreys, in the Additional Readings, Section 1.133.



1.2. SERIES OF FUNCTIONS 25

∫ x

a

dx3

∫ x3

a

dx2

∫ x2

a

f (n)(x1)dx1 = f (n−3)(x)− f (n−3)(a)

− (x− a)f (n−2)(a)− (x− a)2

2!
f (n−1)(a) .

Finally, after integrating for the nth time,

∫ x

a

dxn · · ·
∫ x2

a

f (n)(x1)dx1 = f(x)− f(a)− (x− a)f ′(a)− (x− a)2

2!
f ′′(a)

− · · · − (x− a)n−1

(n− 1)!
fn−1(a) .

Note that this expression is exact. No terms have been dropped, no approximations
made. Now, solving for f(x), we have

f(x) = f(a) + (x− a) f ′(a)

+
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n−1

(n− 1)!
f (n−1)(a) + Rn , (1.40) eq1.38

where the remainder, Rn, is given by the n-fold integral

Rn =
∫ x

a

dxn · · ·
∫ x2

a

dx1 f (n)(x1) . (1.41) eq1.39

We may convert Rn into a perhaps more practical form by using the mean value
theorem of integral calculus:

∫ x

a

g(x) dx = (x− a) g(ξ) , (1.42) eq1.40

with a ≤ ξ ≤ x. By integrating n times we get the Lagrangian form3 of the remainder:

Rn =
(x− a)n

n!
f (n)(ξ) . (1.43) eq1.41

With Taylor’s expansion in this form there are no questions of infinite series conver-
gence. The series contains a finite number of terms, and the only questions concern
the magnitude of the remainder.

When the function f(x) is such that limn→∞Rn = 0, Eq. (1.40) becomes Taylor’s
series:

f(x) = f(a) + (x− a) f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·

=
∞∑

n=0

(x− a)n

n!
f (n)(a) . (1.44) eq1.42

Here we encounter for the first time n! with n = 0. Note that we define 0! = 1.

3An alternate form derived by Cauchy is Rn =
(x−ξ)n−1(x−a)

(n−1)!
f (n)(ξ).
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Our Taylor series specifies the value of a function at one point, x, in terms of the
value of the function and its derivatives at a reference point a. It is an expansion in
powers of the change in the variable, namely x− a. This idea can be emphasized by
writing Taylor’s series in an alternate form in which we replace x by x + h and a by
x:

f(x + h) =
∞∑

n=0

hn

n!
f (n)(x) . (1.45) eq1.43

POWER SERIES

Taylor series are often used in situations where the reference point, a, is assigned the
value zero. In that case the expansion is referred to as a Maclaurin series, and
Eq. (1.40) becomes

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · · =

∞∑
n=0

xn

n!
f (n)(0) . (1.46) eq1.44

An immediate application of the Maclaurin series is in the expansion of various tran-
scendental functions into infinite (power) series.

Example 1.2.3. Exponential Function

Let f(x) = ex. Differentiating, then setting x = 0, we have

f (n)(0) = 1

for all n, n = 1, 2, 3, . . . . Then, with Eq. (1.46), we have

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
. (1.47) eq1.45

This is the series expansion of the exponential function. Some authors use this series
to define the exponential function.

Although this series is clearly convergent for all x, as may be verified using the
d’Alembert ratio test, it is instructive to check the remainder term, Rn. By Eq. (1.43)
we have

Rn =
xn

n!
f (n)(ξ) =

xn

n!
eξ ,

where ξ is between 0 and x. Irrespective of the sign of x,

|Rn| ≤ |x|ne|x|

n!
;

No matter how large |x| may be, a sufficient increase in n will cause the denominator
of this form for Rn to dominate over the numerator, and limn→∞Rn = 0. Thus, the
Maclaurin expansion of ex converges absolutely over the entire range −∞ < x < ∞.

¥
Now that we have an expansion for exp(x), we can return to Eq. (1.45), and

rewrite that equation in a form that focuses on its differential operator characteristics.
Defining D as the operator d/dx, we have

f(x + h) =
∞∑

n=0

hnDn

n!
f(x) = ehD f(x) . (1.48) eq1.46
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Example 1.2.4. LogarithmExam1.2.4

For a second Maclaurin expansion, let f(x) = ln(1+x). By differentiating, we obtain

f ′(x) = (1 + x)−1 ,

f (n)(x) = (−1)n−1 (n− 1)! (1 + x)−n . (1.49) eq1.47

Equation (1.46) yields

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ Rn

=
n∑

p=1

(−1)p−1 xp

p
+ Rn . (1.50) eq1.48

In this case, for x > 0 our remainder is given by

Rn =
xn

n!
f (n)(ξ) , 0 ≤ ξ ≤ x

≤ xn

n
, 0 ≤ ξ ≤ x ≤ 1 . (1.51) eq1.49

This result shows that the remainder approaches zero as n is increased indefinitely,
providing that 0 ≤ x ≤ 1. For x < 0, the mean value theorem is too crude a tool to
establish a meaningful limit for Rn. As an infinite series,

ln(1 + x) =
∞∑

n=1

(−1)n−1 xn

n
(1.52) eq1.50

converges for −1 < x ≤ 1. The range −1 < x < 1 is easily established by the
d’Alembert ratio test. Convergence at x = 1 follows by the Leibniz criterion. In
particular, at x = 1 we have the conditionally convergent alternating harmonic series,
to which we can now put a value:

ln 2 = 1− 1
2

+
1
3
− 1

4
+

1
5
− · · · =

∞∑
n=1

(−1)n−1 n−1 . (1.53) eq1.51

At x = −1, the expansion becomes the harmonic series, which we well know to be
divergent.

¥

PROPERTIES OF POWER SERIES

The power series is a special and extremely useful type of infinite series, and as
illustrated in the preceding subsection, may be constructed by the Maclaurin formula,
Eq. (1.44). However obtained, it will be of the general form

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · =
∞∑

n=0

anxn , (1.54) eq1.52
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where the coefficients ai are constants, independent of x.
Equation (1.54) may readily be tested for convergence either by the Cauchy root

test or the d’Alembert ratio test. If

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = R−1 ,

the series converges for −R < x < R. This is the interval or radius of convergence.
Since the root and ratio tests fail when x is at the limit points ±R, these points
require special attention.

For instance, if an = n−1, then R = 1 and from Section 1.1 we can conclude that
the series converges for x = −1 but diverges for x = +1. If an = n!, then R = 0 and
the series diverges for all x 6= 0.

Suppose our power series has been found convergent for −R < x < R; then it will
be uniformly and absolutely convergent in any interior interval −S ≤ x ≤ S, where
0 < S < R. This may be proved directly by the Weierstrass M test.

Since each of the terms un(x) = anxn is a continuous function of x and f(x) =∑
anxn converges uniformly for −S ≤ x ≤ S, f(x) must be a continuous function in

the interval of uniform convergence. This behavior is to be contrasted with the strik-
ingly different behavior of series in trigonometric functions, which are used frequently
to represent discontinuous functions such as sawtooth and square waves.

With un(x) continuous and
∑

anxn uniformly convergent, we find that term by
term differentiation or integration of a power series will yield a new power series with
continous functions and the same radius of convergence as the original series. The
new factors introduced by differentiation or integration do not affect either the root
or the ratio test. Therefore our power series may be differentiated or integrated as
ofen as desired within the interval of uniform convergence (Exercise 1.2.16). In view
of the rather severe restriction placed on differentation of infinite series in general,
this is a remarkable and valuable result.

UNIQUENESS THEOREM

We have already used the Maclaurin series to expand ex and ln(1 + x) into power
series. Throughout this book, we will encounter many situations in which functions
are represented, or even defined by power series. We now establish that the power-
series representation is unique.

We proceed by assuming we have two expansions of the same function whose
intervals of convergence overlap in a region that includes the origin:

f(x) =
∞∑

n=0

an xn , −Ra < x < Ra

=
∞∑

n=0

bn xn , −Rb < x < Rb . (1.55) eq1.53

What we need to prove is that an = bn for all n.
Starting from

∞∑
n=0

an xn =
∞∑

n=0

bn xn , −R < x < R, (1.56) eq1.54
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where R is the smaller of Ra and Rb, we set x = 0 to eliminate all but the constant
term of each series, obtaining

a0 = b0 .

Now, exploiting the differentiability of our power series, we differentiate Eq. (1.56),
getting

∞∑
n=1

nan xn−1 =
∞∑

n=1

nbn xn−1 . (1.57) eq1.55

We again set x = 0, to isolate the new constant terms, and find

a1 = b1 .

By repeating this process n times, we get

an = bn ,

which shows that the two series coincide. Therefore our power series representation
is unique.

This theorem will be a crucial point in our study of differential equations, in
which we develop power series solutions. The uniqueness of power series appears fre-
quently in theoretical physics. The establishment of perturbation theory in quantum
mechanics is one example.

INDETERMINATE FORMS

The power-series representation of functions is often useful in evaluating indetermi-
nate forms, and is the basis of L’Hôpital’s rule, which states that if the ratio of
two differentiable functions f(x) and g(x) becomes indeterminate, of the form 0/0,
at x = x0, then

lim
x→x0

f(x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

. (1.58) eq1.XXX

Proof of Eq. (1.58) is the subject of Exercise 1.2.12.
Sometimes it is easier just to introduce power-series expansions than to evaluate

the derivatives that enter L’Hôpital’s rule. For examples of this strategy, see the
following Example and Exercise 1.2.15.

Example 1.2.5. Alternative to l’Hôpital’s Rule

Evaluate
lim
x→0

1− cosx

x2
. (1.59) eq1.56

Replacing cos x by its Maclaurin-series expansion, Exercise 1.2.8, we obtain

1− cosx

x2
=

1− (1− 1
2!x

2 + 1
4!x

4 − · · · )
x2

=
1
2!
− x2

4!
+ · · · .

Letting x → 0, we have

lim
x→0

1− cos x

x2
=

1
2

. (1.60) eq1.57

¥
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The uniquess of power series means that the coefficients an may be identified with
the derivatives in a Maclaurin series. From

f(x) =
∞∑

n=0

an xn =
∞∑

m=0

1
n!

f (n)(0) xn

we have
an =

1
n!

f (n)(0) .

INVERSION OF POWER SERIES

Suppose we are given a series

y − y0 = a1(x− x0) + a2(x− x0)2 + · · · =
∞∑

n=1

an (x− x0)n . (1.61) eq1.58

This gives (y − y0) in terms of (x − x0). However, it may be desirable to have an
explciit expression for (x− x0) in terms of (y − y0). That is, we want an expression
of the form

x− x0 =
∞∑

n=1

bn (y − y0)n , (1.62) eq1.59

with the bn to be determined in terms of the assumed known an. A brute-force
approach, which is perfectly adequate for the first few coefficients, is simnply to
substitute Eq. (1.61) into Eq. (1.62). By equating coefficients of (x − x0)n on both
sides of Eq. (1.62), and using the fact that the power series is unique, we find

b1 =
1
a1

,

b2 = −a2

a3
1

,

b3 =
1
a5
1

(
2a2

2 − a1a3

)
,

b4 =
1
a7
1

(
5a1a2a3 − a2

1a4 − 5a3
2

)
, and so on.

(1.63) eq1.60

Some of the higher coefficients are listed by Dwight.4 A more general and much more
elegant approach is developed by the use of complex variables in the first and second
editions of Mathematical Methods for Physicists.

Exercises

Ex1.2.51.2.8. Show that

(a) sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
,

4H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. New York: Macmillan
(1961). (Compare Formula No. 50.)
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(b) cos x =
∞∑

n=0

(−1)n x2n

(2n)!
.

1.2.9. Derive a series expansion of cot x in increasing powers of x by dividing the
power series for cosx by that for sin x.
Note. The resultant series that starts with 1/x is known as a Laurent series
(cotx does not have a Taylor expansion about x = 0, although cot(x) − x−1

does). Although the two series for sin x and cos x were valid for all x, the
convergence of the series for cot x is limited by the zeros of the denominator,
sin x.

1.2.10. Show by series expansion that

1
2

ln
η0 + 1
η0 − 1

= coth−1 η0, |η0| > 1.

This identity may be used to obtain a second solution for Legendre’s equation.

1.2.11. Show that f(x) = x1/2 (a) has no Maclaurin expansion but (b) has a Taylor
expansion about any point x0 6= 0. Find the range of convergence of the Taylor
expansion about x = x0.

Ex1.2.91.2.12. Prove L’Hôpital’s rule, Eq. (1.58).

old5.6.91.2.13. With n > 1, show that

(a)
1
n
− ln

(
n

n− 1

)
< 0 , (b)

1
n
− ln

(
n + 1

n

)
> 0 .

Use these inequalities to show that the limit defining the Euler-Mascheroni
constant, Eq. (1.13), is finite.

1.2.14. In numerical analysis it is often convenient to approximate d2ψ(x)/dx2 by

d2

dx2
ψ(x) ≈ 1

h2
[ψ(x + h)− 2ψ(x) + ψ(x− h)].

Find the error in this approximation.

ANS. Error =
h2

12
ψ(4)(x).

Ex1.3.41.2.15. Evaluate lim
x→0

[
sin(tanx)− tan(sin x)

x7

]
.

ANS. − 1
30 .

Ex1.3.61.2.16. A power series converges for −R < x < R. Show that the differentiated series
and the integrated series have the same interval of convergence. (Do not bother
about the endpoints x = ±R.)
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1.3 BINOMIAL THEOREM

An extremely important application of the Maclaurin expansion is the derivation of
the binomial theorem.

Let f(x) = (1 + x)m, in which m may be either positive or negative and is not
limited to integral values. Direct application of Eq. (1.46) gives

(1 + x)m = 1 + mx +
m(m− 1)

2!
x2 + · · ·+ Rn . (1.64) eq1.61

For this function the remainder is

Rn =
xn

n!
(1 + ξ)m−n m(m− 1) · · · (m− n + 1) , (1.65) eq1.62

with ξ between 0 and x. Restricting attention for now to x ≥ 0, we note that for
n > m, (1 + ξ)m−n is a maximum for ξ = 0, so for positive x,

|Rn| ≤ xn

n!
|m(m− 1) · · · (m− n + 1)| , (1.66) eq1.63

with limn→∞Rn = 0 when 0 ≤ x < 1. Because the radius of convergence of a power
series is the same for positive and for negative x, the binomial series converges for
−1 < x < 1. Convergence at the limit points ±1 is not addressed by the present
analysis, and depends upon m.

Summarizing, we have established the binomial expansion,

(1 + x)m = 1 + mx +
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)
3!

x3 + · · · , (1.67) eq1.64

convergent for −1 < x < 1. It is important to note that Eq. (1.67) applies whether
or not m is integral, and for both positive and negative m. If m is a nonnegative
integer, Rn for n > m vanishes for all x, corresponding to the fact that under those
conditions (1 + x)m is a finite sum.

Because the binomial expansion is of frequent occurrence, the coefficients appear-
ing in it, which are called binomial coefficients, are given the special symbol

(
m

n

)
=

m(m− 1) · · · (m− n + 1)
n!

, (1.68) eq1.65

and the binomial expansion assumes the general form

(1 + x)m =
∞∑

n=0

(
m

n

)
xn . (1.69) eq1.66

In evaluating Eq. (1.68), notice that when n = 0, the product in its numerator is
empty (starting from m and descending to m+1); in that case the convention is to
assign the product the value unity. We also remind the reader that 0! is defined to
be unity.

In the special case that m is a positive integer, we may write our binomial coeffi-
cient in terms of factorials:

(
m

n

)
=

m!
n! (m− n)!

. (1.70) eq1.67
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Since n! is undefined for negative integer n, the binomial expansion for positive integer
m is understood to end with the term n = m, and will correspond to the coefficients
in the polynomial resulting from the (finite) expansion of (1 + x)m.

For positive integer m, the
(
m
n

)
also arise in combinatorial theory, being the num-

ber of different ways n out of m objects can be selected. That, of course, is consistent
with the coefficient set if (1 + x)m is expanded. The term containing xn has a coeffi-
cient that corresponds to the number of ways one can choose the “x” from n of the
factors (1 + x) and the 1 from the m− n other (1 + x) factors.

For negative integer m, we can still use the special notation for binomial coeffi-
cients, but their evaluation is more easily accomplished if we set m = −p, with p a
positive integer, and write

(−p

n

)
= (−1)n p(p + 1) · · · (p + n− 1)

n!
=

(−1)n (p + n− 1)!
n! (p− 1)!

. (1.71) eq1.68

For nonintegral m, it is convenient to use the Pochhammer symbol, defined for
general a and nonnegative integer n and given the notation (a)n, as

(a)0 = 1, (a)1 = a, (a)n+1 = a(a + 1) · · · (a + n), (n ≥ 1) . (1.72) eq1.69

Both both integral and nonintegral m, the binomial coefficient formula can be written
(

m

n

)
=

(m− n + 1)n

n!
. (1.73) eq1.70

There is a rich literature on binomial coefficients and relationships between them
and on summations involving them. We mention here only one such formula that
arises if we evaluate 1/

√
1 + x, i.e. (1 + x)−1/2. The binomial coefficient

(− 1
2

n

)
=

1
n!

(
−1

2

)(
−3

2

)
· · ·

(
−2n− 1

2

)

= (−1)n 1 · 3 · · · (2n− 1)
2n n!

= (−1)n (2n− 1)!!
(2n)!!

, (1.74) eq1.71

where the “double factorial” notation indicates products of even or odd positive
integers as follows:

1 · 3 · 5 · · · (2n− 1) = (2n− 1)!!

2 · 4 · 6 · · · (2n) = (2n)!! .
(1.75) eq1.72

These are related to the regular factorials by

(2n)!! = 2n n! and (2n− 1)!! =
(2n)!
2n n!

. (1.76) eq1.73

Notice that these relations include the special cases 0!! = (−1)!! = 1.

Example 1.3.1. Relativistic Energy

The total relativistic energy of a particle of mass m and velocity v is

E = mc2

(
1− v2

c2

)−1/2

, (1.77) eq1.74
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where c is the velocity of light. Using Eq. (1.69) with m = −1/2 and x = −v2/c2,
and evaluating the binomial coefficients using Eq. (1.74), we have

E = mc2

[
1− 1

2

(
−v2

c2

)
+

3
8

(
−v2

c2

)2

− 5
16

(
−v2

c2

)3

+ · · ·
]

= mc2 +
1
2
mv2 +

3
8
mv2

(
v2

c2

)
+

5
16

mv2

(
−v2

c2

)2

+ · · · . (1.78) eq1.75

The first term, mc2, is identified as the rest-mass energy. Then

Ekinetic =
1
2
mv2

[
1 +

3
4

v2

c2
+

5
8

(
−v2

c2

)2

+ · · ·
]

. (1.79) eq1.76

For particle velocity v ¿ c, the expression in the brackets reduces to unity and we see
that the kinetic portion of the total relativistic energy agrees with the classical result.

¥
The binomial expansion can be generalized for positive integer n to polynomials:

(a1 + a2 + · · ·+ am)n =
∑ n!

n1!n2! · · ·nm!
an1
1 an2

2 · · · anm
m , (1.80) eq1.76a

where the summation includes all different combinations of nonnegative integers
n1, n2, . . . , nm with

∑m
i=1 ni = n. This generalization finds considerable use in sta-

tistical mechanics.
In everyday analysis, the combinatorial properties of the binomial coefficients

make them appear often. For example, Leibniz’s formula for the nth derivative of a
product of two functions, u(x)v(x), can be written

(
d

dx

)n (
u(x) v(x)

)
=

n∑

i=0

(
n

i

)(
di u(x)

dxi

)(
dn−i v(x)

dxn−i

)
. (1.81) eq1.77

Exercises

1.3.1. The classical Langevin theory of paramagnetism leads to an expression for the
magnetic polarization,

P (x) = c

(
cosh x

sinh x
− 1

x

)
.

Expand P (x) as a power series for small x (low fields, high temperature).

new1.3.21.3.2. Given that ∫ 1

0

dx

1 + x2
= tan−1 x

∣∣∣∣
1

0

=
π

4
,

expand the integrand into a series and integrate term by term obtaining5

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·+ (−1)n 1

2n + 1
+ · · · ,

5The series expansion of tan−1 x (upper limit 1 replaced by x) was discovered by James Gregory
in 1671, 3 years before Leibniz. See Peter Beckmann’s entertaining book, A History of Pi, 2nd ed.
Boulder, CO: Golem Press (1971) and L. Berggren, J. and P. Borwein, Pi: A Source Book , New
York: Springer (1997).
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which is Leibniz’s formula for π. Compare the convergence of the integrand
series and the integrated series at x = 1. Leibniz’s formula converges so slowly
that it is quite useless for numerical work.

old5.7.71.3.3. Expand the incomplete gamma function

γ(n + 1, x) ≡
∫ x

0

e−ttndt

in a series of powers of x. What is the range of convergence of the resulting
series?

ANS.

∫ x

0

e−ttndt = xn+1

[
1

n + 1
− x

n + 2
+

x2

2!(n + 3)

− · · · (−1)pxp

p!(n + p + 1)
+ · · ·

]
.

1.3.4. Develop a series expansion of y = sinh−1 x (that is, sinh y = x) in powers of x
by

(a) inversion of the series for sinh y,
(b) a direct Maclaurin expansion.

new1.3.51.3.5. Show that for integral n ≥ 0,
1

(1− x)n+1
=

∞∑
m=n

(
m

n

)
xm−n .

1.3.6. Show that (1 + x)−m/2 =
∞∑

n=0

(−1)n (m + 2n− 2)!!
2nn!(m− 2)!!

xn,

for m = 1, 2, 3, . . . .

1.3.7. Using binomial expansions, compare the three Doppler shift formulas:

(a) ν′ = ν
(
1∓ v

c

)−1

moving source;

(b) ν′ = ν
(
1± v

c

)
moving observer;

(c) ν′ = ν
(
1± v

c

) (
1− v2

c2

)−1/2

relativistic.

Note. The relativistic formula agrees with the classical formulas if terms of
order v2/c2 can be neglected.

1.3.8. In the theory of general relativity there are various ways of relating (defining)
a velocity of recession of a galaxy to its red shift, δ. Milne’s model (kinematic
relativity) gives

(a) v1 = cδ(1 +
1
2
δ),

(b) v2 = cδ(1 +
1
2
δ)(1 + δ)−2,

(c) 1 + δ =
[
1 + v3/c

1− v3/c

]1/2

.
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1. Show that for δ ¿ 1 (and v3/c ¿ 1) all three formulas reduce to v = cδ.

2. Compare the three velocities through terms of order δ2.

Note. In special relativity (with δ replaced by z), the ratio of observed wave-
length λ to emitted wavelength λ0 is given by

λ

λ0
= 1 + z =

(
c + v

c− v

)1/2

.

1.3.9. The relativistic sum w of two velocities u and v in the same direction is given
by

w

c
=

u/c + v/c

1 + uv/c2
.

If
v

c
=

u

c
= 1− α ,

where 0 ≤ α ≤ 1, find w/c in powers of α through terms in α3.

1.3.10. The displacement x of a particle of rest mass m0, resulting from a constant
force m0g along the x-axis, is

x =
c2

g





[
1 +

(
g

t

c

)2
]1/2

− 1



 ,

including relativistic effects. Find the displacement x as a power series in time
t. Compare with the classical result,

x = 1
2gt2.

1.3.11. By use of Dirac’s relativistic theory, the fine structure formula of atomic spec-
troscopy is given by

E = mc2

[
1 +

γ2

(s + n− |k|)2
]−1/2

,

where
s = (|k|2 − γ2)1/2, k = ±1,±2,±3, · · · .

Expand in powers of γ2 through order γ4 (γ2 = Ze2/4πε0~c, with Z the atomic
number). This expansion is useful in comparing the predictions of the Dirac
electron theory with those of a relativistic Schrödinger electron theory. Exper-
imental results support the Dirac theory.

1.3.12. In a head-on proton-proton collision, the ratio of the kinetic energy in the center
of mass system to the incident kinetic energy is

R = [
√

2mc2(Ek + 2mc2)− 2mc2]/Ek.

Find the value of this ratio of kinetic energies for

(a) Ek ¿ mc2 (nonrelativistic)

(b) Ek À mc2 (extreme-relativistic).
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ANS. (a) 1
2 , (b) 0. The latter answer is a sort of law

of diminishing returns for high-energy particle
accelerators (with stationary targets).

1.3.13. With binomial expansions

x

1− x
=

∞∑
n=1

xn,
x

x− 1
=

1
1− x−1

=
∞∑

n=0

x−n.

Adding these two series yields
∑∞

n=−∞ xn = 0.
Hopefully, we can agree that this is nonsense, but what has gone wrong?

1.3.14. (a) Planck’s theory of quantized oscillators leads to an average energy

〈ε〉 =

∞∑
n=1

nε0 exp(−nε0/kT )

∞∑
n=0

exp(−nε0/kT )
,

where ε0 is a fixed energy. Identify the numerator and denominator as
binomial expansions and show that the ratio is

〈ε〉 =
ε0

exp(ε0/kT )− 1
.

(b) Show that the 〈ε〉 of part (a) reduces to kT , the classical result, for kT À
ε0.

1.3.15. Expand by the binomial theorem and integrate term by term to obtain the
Gregory series for y = tan−1 x (note tan y = x):

tan−1 x =
∫ x

0

dt

1 + t2
=

∫ x

0

{1− t2 + t4 − t6 + · · · } dt

=
∞∑

n=0

(−1)n x2n+1

2n + 1
, −1 ≤ x ≤ 1.

1.3.16. The Klein-Nishina formula for the scattering of photons by electrons contains
a term of the form

f(ε) =
(1 + ε)

ε2

[
2 + 2ε

1 + 2ε
− ln(1 + 2ε)

ε

]
.

Here ε = hν/mc2, the ratio of the photon energy to the electron rest mass
energy. Find lim

ε→0
f(ε).

ANS. 4
3 .

1.3.17. The behavior of a neutron losing energy by colliding elastically with nuclei of
mass A is described by a parameter ξ1,

ξ1 = 1 +
(A− 1)2

2A
ln

A− 1
A + 1

.
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An approximation, good for large A, is

ξ2 =
2

A + 2
3

.

Expand ξ1 and ξ2 in powers of A−1. Show that ξ2 agrees with ξ1 through
(A−1)2. Find the difference in the coefficients of the (A−1)3 term.

1.3.18. Show that each of these two integrals equals Catalan’s constant:

(a)
∫ 1

0

arctan t
dt

t
, (b) −

∫ 1

0

ln x
dx

1 + x2
.

Note. The definition and numerical computation of Catalan’s constant was
addressed in Exercise 1.1.12.

1.4 MATHEMATICAL INDUCTIONSec1.9

We are occasionally faced with the need to establish a relation which is valid for a set
of integer values, in situations where it may not initially be obvious how to proceed.
However, it may be possible to show that if the relation is valid for an arbitrary value
of some index n, then it is also valid if n is replaced by n + 1. If we can also show
that the relation is unconditionally satisfied for some initial value n0, we may then
conclude (unconditionally) that the relation is also satisfied for n0 + 1, n0 + 2, · · · .
This method of proof is known as mathematical induction. It is ordinarily most
useful when we know (or suspect) the validity of a relation, but lack a more direct
method of proof.

Example 1.4.1. Sum of Integers

The sum of the integers from 1 through n, here denoted S(n), is given by the formula
S(n) = n(n + 1)/2. An inductive proof of this formula proceeds as follows:

(1) Given the formula for S(n), we calculate

S(n+1) = S(n)+(n+1) =
n(n + 1)

2
+(n+1) =

[n

2
+ 1

]
(n+1) =

(n + 1)(n + 2)
2

.

Thus, given S(n), we can establish the validity of S(n + 1).

(2) It is obvious that S(1) = 1(2)/2 = 1, so our formula for S(n) is valid for n = 1.

(3) The formula for S(n) is therefore valid for all integer n ≥ 1.
¥

Exercises

1.4.1. Show that
n∑

j=1

j4 =
n

30
(2n + 1)(n + 1)(3n2 + 3n− 1).

new1.4.21.4.2. Prove the Leibniz formula for the repeated differentiation of a product:
(

d

dx

)n [
f(x)g(x)

]
=

n∑

j=0

(
n

j

) [(
d

dx

)j

f(x)

][(
d

dx

)n−j

g(x)

]
.
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1.5 OPERATIONS ON SERIES EXPANSIONS OF
FUNCTIONSSec1.4XX

There are a number of manipulations (tricks) that can be used to obtain series that
represent a function or to manipulate such series to improve convergence. In addition
to the procedures introduced in Section 1.1, there are others that to varying degrees
make use of the fact that the expansion depends on a variable. A simple example
of this is the expansion of f(x) = ln(1 + x), which we obtained in Example 1.2.4 by
direct use of the Maclaurin expansion and evaluation of the derivatives of f(x). An
even easier way to obtain this series would have been to integrate the power series
for 1/(1 + x) term by term from 0 to x:

1
1 + x

= 1− x + x2 − x3 + · · · =⇒

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · .

A problem requiring somewhat more deviousness is given by the following example,
in which we use the binomial theorem on a series which represents the derivative of
the function whose expansion is sought.

Example 1.5.1. Application of Binomial Expansion

Sometimes the binomial expansion provides a convenient indirect route to the Maclau-
rin series when direct methods are difficult. We consider here the power series ex-
pansion

sin−1 x =
∞∑

n=0

(2n− 1)!!
(2n)!!

x2n+1

(2n + 1)
= x +

x3

6
+

3x5

40
+ · · · . (1.82) eq1.81

Starting from sin y = x, we find dy/dx = 1/
√

1− x2, and write the integral

sin−1 x = y =
∫ x

0

dt

(1− t2)1/2
.

We now introduce the binomial expansion of (1− t2)−1/2 and integrate term by term.
The result is Eq. (1.82).

¥

Another way of improving the convergence of a series is to multiply it by a polyno-
mial in the variable, choosing the polynomial’s coefficients to remove the least rapidly
convergent part of the resulting series. Here is a simple example of this.

Example 1.5.2. Multiply Series by Polynomial
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Returning to the series for ln(1 + x), we form

(1 + a1x) ln(1 + x) =
∞∑

n=1

(−1)n−1 xn

n
+ a1

∞∑
n=1

(−1)n−1 xn+1

n

= x +
∞∑

n=2

(−1)n−1

(
1
n
− a1

n− 1

)
xn

= x +
∞∑

n=2

(−1)n−1 n(1− a1)− 1
n(n− 1)

xn .

If we take a1 = 1, the n in the numerator disappears and our combined series con-
verges as n−2; the resulting series for ln(1 + x) is

ln(1 + x) =
(

x

1 + x

) (
1−

∞∑
n=1

(−1)n

n(n + 1)
xn

)
.

¥

Another useful trick is to employ partial fraction expansions, which may con-
vert a seemingly difficult series into others about which more may be known.

If g(x) and h(x) are polynomials in x, with g(x) of lower degree than h(x), and
h(x) has the factorization h(x) = (x − a1)(x − a2) · · · (x − an), in the case that the
factors of h(x) are distinct (i.e., h has no multiple roots), then g(x)/h(x) can be
written in the form

g(x)
h(x)

=
c1

x− a1
+

c2

x− a2
+ · · ·+ cn

x− an
. (1.83) eq1.82

If we wish to leave one or more quadratic factors in h(x), perhaps to avoid the
introduction of imaginary quantities, the corresponding partial-fraction term will be
of the form

ax + b

x2 + px + q
.

If h(x) has repeated linear factors, such as (x− a1)m, the partial fraction expansion
for this power of x− a1 takes the form

c1,m

(x− a1)m
+

c1,m−1

(x− a1)m−1
+ · · ·+ c1,1

x− a1
.

The coefficients in partial fraction expansions are usually found easily; sometimes it
is useful to express them as limits, such as

ci = lim
x→ai

(x− ai)g(x)/h(x) . (1.84) eq1.83

Example 1.5.3. Partial Fraction ExpansionExam1.4.3

Let

f(x) =
k2

x(x2 + k2)
=

c

x
+

ax + b

x2 + k2
.
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We have written the form of the partial fraction expansion, but have not yet deter-
mined the values of a, b, and c. Putting the right side of the equation over a common
denominator, we have

k2

x(x2 + k2)
=

c(x2 + k2) + x(ax + b)
x(x2 + k2)

.

Expanding the right-side numerator and equating it to the left-side numerator, we
get

0(x2) + 0(x) + k2 = (c + a)x2 + bx + ck2 ,

which we solve by requiring the coefficient of each power of x to have the same value
on both sides of this equation. We get b = 0, c = 1, and then a = −1. The final
result is therefore

f(x) =
1
x
− x

x2 + k2
. (1.85) eq1.84

¥

Still more cleverness is illustrated by the following procedure, due to Euler, for
changing the expansion variable so as to improve the range over which an expansion
converges. Euler’s transformation, the proof of which (with hints) is deferred to
Exercise 1.5.4, makes the conversion:

f(x) =
∞∑

n=0

(−1)ncnxn (1.86) eq1.84a

=
1

1 + x

∞∑
n=0

(−1)nan

(
x

1 + x

)n

. (1.87) eq1.84b

The coefficients an are repeated differences of the cn:

a0 = c0, a1 = c1 − c0, a2 = c2 − 2c1 + c0, a3 = c3 − 3c2 + 3c1 − c0, . . . ;

their general formula is

an =
n∑

j=0

(−1)j

(
n

j

)
cn−j . (1.88) eq1.84c

The series to which the Euler transformation is applied need not be alternating. The
coefficients cn can have a sign factor that cancels that in the definition.

Example 1.5.4. Euler Transformation

The Maclaurin series for ln(1 + x) converges extremely slowly, with convergence only
for |x| < 1. We consider the Euler transformation on the related series

ln(1 + x)
x

= 1− x

2
+

x2

3
− · · · , (1.89) eq1.84d

so, in Eq. (1.86), cn = 1/(n + 1). The first few an are: a0 = 1, a1 = 1
2 − 1 = − 1

2 ,
a2 = 1

3 − 2(1
2 ) + 1 = 1

3 , a3 = 1
4 − 3( 1

3 ) + 3( 1
2 )− 1 = − 1

4 , or in general

an =
(−1)n

n + 1
.
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The converted series is then

ln(1 + x)
x

=
1

1 + x

[
1 +

1
2

(
x

1 + x

)
+

1
3

(
x

1 + x

)2

+ · · ·
]

,

which rearranges to

ln(1 + x) =
(

x

1 + x

)
+

1
2

(
x

1 + x

)2

+
1
3

(
x

1 + x

)3

+ · · · . (1.90)

This new series converges nicely at x = 1, and in fact is convergent for all x < ∞.

¥

Exercises

1.5.1. Using a partial fraction expansion, show that for 0 < x < 1,
∫ x

−x

dt

1− t2
= ln

(
1 + x

1− x

)
.

Ex1.4.21.5.2. Prove the partial fraction expansion

1
n(n + 1) · · · (n + p)

=

1
p!

[(
p

0

)
1
n
−

(
p

1

)
1

n + 1
+

(
p

2

)
1

n + 2
− · · ·+ (−1)p

(
p

p

)
1

n + p

]
,

where p is a positive integer.

Hint: Use mathematical induction. Two binomial coefficient formulas of use
here are

p + 1
p + 1− j

(
p

j

)
=

(
p + 1

j

)
,

p+1∑

j=1

(−1)j−1

(
p + 1

j

)
= 1 .

Ex1.4.31.5.3. The formula for αp, Eq. (1.26), is a summation of the form
∞∑

n=1

un(p), with

un(p) =
1

n(n + 1) · · · (n + p)
.

Applying a partial fraction decomposition to the first and last factors of the
denominator, i.e.,

1
n(n + p)

=
1
p

[
1
n
− 1

n + p

]
,

show that un(p) =
un(p− 1)− un+1(p− 1)

p
and that

∞∑
n=1

un(p) =
1

p p !
.

Hint. It is useful to note that u1(p− 1) = 1/p !.
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Ex1.4.41.5.4. Proof of Euler transformation: By substituting Eq. (1.88) into Eq. (1.87), verify
that Eq. (1.86) is recovered.

Hint. It may help to rearrange the resultant double series so that both indices
are summed on the range (0,∞). Then the summation not containing the
coefficients cj can be recognized as a binomial expansion.

1.5.5. Carry out the Euler transformation on the series for arctan(x):

arctan(x) = x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · · .

Check your work by computing arctan(1) = π/4 and arctan(3−1/2) = π/6.

1.6 SOME IMPORTANT SERIESSec1.4YY

There are a few series that arise so often that all physicists should recognize them.
Here is a short list that is worth committing to memory.

exp(x) =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · · , −∞ < x < ∞, (1.91) eq1.85

sin(x) =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,−∞ < x < ∞, (1.92) eq1.86

cos(x) =
∞∑

n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · , −∞ < x < ∞, (1.93) eq1.87

sinh(x) =
∞∑

n=0

x2n+1

(2n + 1)!
= x +

x3

3!
+

x5

5!
+

x7

7!
+ · · · , −∞ < x < ∞, (1.94) eq1.87a

cosh(x) =
∞∑

n=0

x2n

(2n)!
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · · , −∞ < x < ∞, (1.95) eq1.87b

1
1− x

=
∞∑

n=0

xn = 1 + x + x2 + x3 + x4 + · · · , − 1 ≤ x < 1, (1.96) eq1.88

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
= x− x2

2
+

x3

3
− x4

4
+ · · · , − 1 < x ≤ 1, (1.97) eq1.89

(1 + x)p =
∞∑

n=0

(
p

n

)
xn =

∞∑
n=0

(p− n + 1)n

n!
xn, − 1 < x < 1 . (1.98) eq1.90

Reminder: The notation (a)n is the Pochhammer symbol: (a)0 = 1, (a)1 = a, and
for integers n > 1, (a)n = a(a + 1) · · · (a + n − 1). It is not required that a, or p in
Eq. (1.98), be positive or integral.
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Exercises

old5.4.11.6.1. Show that

ln
(

1 + x

1− x

)
= 2

(
x +

x3

3
+

x5

5
+ · · ·

)
, −1 < x < 1.

1.7 BERNOULLI NUMBERS

A generating-function approach is a convenient way to introduce the set of numbers
first used in mathematics by Jacques (James, Jacob) Bernoulli. These quantities
have been defined is a number of different ways, so extreme care must be taken in
combining formulas from works by different authors. Our definition corresponds to
that used in the reference work Handbook of Mathematical Functions (AMS-55). See
Additional Readings.

Since the Bernoulli numbers, denoted Bn, do not depend upon a variable, their
generating function depends only on a single (complex) variable, and the generating-
function formula has the specific form

t

et − 1
=

∞∑
n=0

Bn tn

n!
. (1.99) eqCA.3

The inclusion of the factor 1/n! in the definition is just one of the ways some definitions
of Bernoulli numbers differ. We defer for the moment the important question as to
the range of convergence of the expansion in Eq. (1.99).

Since Eq. (1.99) is a Taylor series, we may identify the Bn as successive derivatives
of the generating function:

Bn =
[

dn

dtn

(
t

et − 1

)]

t=0

. (1.100) eqCA.4

To obtain B0, we must take the limit of t/(et − 1) as t → 0, easily finding B0 = 1.
Applying Eq. (1.100), we also have

B1 =
d

dt

(
t

et − 1

) ∣∣∣∣∣
t=0

= lim
t→0

(
1

et − 1
− tet

(et − 1)2

)
= −1

2
. (1.101) eqCA.5

In principle we could continue to obtain further Bn, but it is more convenient to
proceed in a more sophisticated fashion. Our starting point is to examine

∞∑
n=2

Bn tn

n!
=

t

et − 1
−B0 −B1 t =

t

et − 1
− 1 +

t

2

=
−t

e−t − 1
− 1− t

2
, (1.102) eqCA.6

where we have used the fact that

t

et − 1
=

−t

e−t − 1
− t . (1.103) eqCA.7

Equation (1.102) shows that the summation on its left-hand side is an even function
of t, leading to the conclusion that all Bn of odd n (other than B1) must vanish.
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Table 1.2: Bernoulli NumbersTabCA.1

n Bn Bn

0 1 1.000000000

1 − 1
2 −0.500000000

2 1
6 0.166666667

4 − 1
30 −0.033333333

6 1
42 0.023809524

8 − 1
30 −0.033333333

10 5
66 0.075757576

Note. Further values are given in AMS-55,
see Abramowitz in Additional Readings.

We next use the generating function to obtain a recursion relation for the Bernoulli
numbers. We form

et − 1
t

t

et − 1
= 1 =

[ ∞∑
m=0

tm

(m + 1)!

][
1− t

2
+

∞∑
n=1

B2n
t2n

(2n)!

]

= 1 +
∞∑

m=1

tm
[

1
(m + 1)!

− 1
2m!

]

+
∞∑

N=2

tN
≤N/2∑
n=1

B2n

(2n)!(N − 2n + 1)!

= 1 +
∞∑

N=2

tN

(N + 1)!


−N − 1

2
+
≤N/2∑
n=1

(
N + 1

2n

)
B2n


 . (1.104) eqCA.8

Since the coefficient of each power of t in the final summation of Eq. (1.104) must
vanish, we may set to zero for each N the expression in its square brackets. Changing
N , if even, to 2N and if odd, to 2N − 1, Eq. (1.104) leads to the pair of equations

N − 1
2

=
N∑

n=1

(
2N + 1

2n

)
B2n ,

(1.105) eqCA.9

N − 1 =
N−1∑
n=1

(
2N

2n

)
B2n .

Either of these equations can be used to obtain the B2n sequentially, starting from
B2. The first few Bn are listed in Table 1.2.

To obtain additional relations involving the Bernoulli numbers, we next consider
the following representation of cot t:

cot t =
cos t

sin t
= i

(
eit + e−it

eit − e−it

)
= i

(
e2it + 1
e2it − 1

)
= i

(
1 +

2
e2it − 1

)
.
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Multiplying by t and rearranging slightly,

t cot t =
2it

2
+

2it

e2it − 1
=

∞∑
n=0

B2n
(2it)2n

(2n)!

=
∞∑

n=0

(−1)n B2n
(2t)2n

(2n)!
, (1.106) eqCA.10

where the term 2it/2 has canceled the B1 term that would otherwise appear in the
expansion, and we are left with an expression that contains no imaginary quantities.

Using the methods of complex variable theory (for details, see the section on
Bernoulli numbers in Chapter 12 of the printed text) it can be shown that for 2n ≥ 2,
we can start from Eq. (1.106) and reach the important result

B2n = (−1)n+1 (2n)!
(2π)2n

∞∑
m=1

2
m2n

= (−1)n+1 2(2n)!
(2π)2n

ζ(2n) ,

(1.107) eqCA.13

B2n+1 = 0 .

Notice that this formula correctly shows that Bn of odd n > 1 vanish, and that
the Bernoulli numbers of even n > 0 are identified as proportional to Riemann zeta
functions, which first appeared in this book at Eq. (1.12). We repeat the definition:

ζ(z) =
∞∑

m=1

1
mz

.

Equation (1.107) is important because we already have a straightforward way to
obtain values of the Bn, via Eq. (1.105), and Eq. (1.107) can be inverted to give a
closed expression for ζ(2n), which otherwise was known only as a summation. This
representation of the Bernoulli numbers was discovered by Euler.

It is readily seen from Eq. (1.107) that |B2n| increases without limit as n →
∞. Numerical values have been calculated by Glaisher.6 Illustrating the divergent
behavior of the Bernoulli numbers, we have

B20 = −5.291× 102

B200 = −3.647× 10215.

Some authors prefer to define the Bernoulli numbers with a modified version of
Eq. (1.107) by using

Bn =
2(2n)!
(2π)2n

ζ(2n) , (1.108) eqCA.14

the subscript being just half of our subscript and all signs positive. Again, when using
other texts or references, you must check to see exactly how the Bernoulli numbers
are defined.

The Bernoulli numbers occur frequently in number theory. The von Staudt-
Clausen theorem states that

B2n = An − 1
p1
− 1

p2
− 1

p3
− · · · − 1

pk
, (1.109) eqCA.15

6J. W. L. Glaisher, table of the first 250 Bernoulli’s numbers (to nine figures) and their logarithms
(to ten figures). Trans. Cambridge Philos. Soc. 12: 390 (1871-1879).



1.7. BERNOULLI NUMBERS 47

in which An is an integer and p1, p2, . . . , pk are all the prime numbers such that pi−1
is a divisor of 2n. It may readily be verified that this holds for

B6 (A3 = 1, p = 2, 3, 7),
B8 (A4 = 1, p = 2, 3, 5),

B10 (A5 = 1, p = 2, 3, 11),

and other special cases.
The Bernoulli numbers appear in the summation of integral powers of the integers,

N∑

j=1

jp, p integral,

and in numerous series expansions of the transcendental functions, including tanx,
cot x, ln | sinx|, (sin x)−1, ln | cos x|, ln | tan x|, (cosh x)−1, tanh x, and cothx. For
example,

tanx = x +
x3

3
+

2
15

x5 + · · ·+ (−1)n−122n(22n − 1)B2n

(2n)!
x2n−1 + · · · . (1.110) eqCA.16

The Bernoulli numbers are likely to come in such series expansions because of the
definition, Eq. (1.99), the form of Eq. (1.106), and the relation to the Riemann zeta
function, Eq. (1.107).

BERNOULLI POLYNOMIALS

If Eq. (1.99) is generalized slightly, we have

tets

et − 1
=

∞∑
n=0

Bn(s)
tn

n!
(1.111) eqCA.17

defining the Bernoulli polynomials, Bn(s). It is clear that Bn(s) will be a polyno-
mial of degree n, since the Taylor expansion of the generating function will contain
contributions in which each instance of t may (or may not) be accompanied by a
factor s. The first seven Bernoulli polynomials are given in Table 1.3.

If we set s = 0 in the generating function formula, Eq. (1.111), we have

Bn(0) = Bn, n = 0, 1, 2, . . . , (1.112) eqCA.18

showing that the Bernoulli polynomial evaluated at zero equals the corresponding
Bernoulli number.

Two other important properties of the Bernoulli polynomials follow from the defin-
ing relation, Eq, (1.111). If we differentiate both sides of that equation with respect
to s, we have

t2ets

et − 1
=

∞∑
n=0

B′
n(s)

tn

n!

=
∞∑

n=0

Bn(s)
tn+1

n!
=

∞∑
n=1

Bn−1(s)
tn

(n− 1)!
, (1.113) eqCA.19
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Table 1.3: Bernoulli PolynomialsTabCA.2

B0 = 1

B1 = x− 1
2

B2 = x2 − x + 1
6

B3 = x3 − 3
2x2 + 1

2x

B4 = x4 − 2x3 + x2 − 1
30

B5 = x5 − 5
2x4 + 5

3x3 − 1
6x

B6 = x6 − 3x5 + 5
2x4 − 1

2x2 + 1
42

where the second line of Eq. (1.113) is obtained by rewriting its left-hand side using
the generating-function formula. Equating the coefficients of equal powers of t in the
two lines of Eq. (1.113), we obtain the differentiation formula

d

ds
Bn(s) = nBn−1(s), n = 1, 2, 3, . . . . (1.114) eqCA.20

We also have a symmetry relation, which we can obtain by setting s = 1 in Eq. (1.111).
The left-hand side of that equation then becomes

tet

et − 1
=

−t

e−t − 1
. (1.115) eqCA.21

Thus, equating Eq. (1.111) for s = 1 with the Bernoulli-number expansion (in −t) of
the right-hand side of Eq. (1.115), we reach

∞∑
n=0

Bn(1)
tn

n!
=

∞∑
n=0

Bn
(−t)n

n!
,

which is equivalent to
Bn(1) = (−1)nBn(0) . (1.116) eqCA.22

These relations are used in the development of the Euler-Maclaurin integration for-
mula.

Exercises

1.7.1. Verify the identities, Eqs. (1.103) and (1.115).

1.7.2. Show that the first Bernoulli polynomials are

B0(s) = 1

B1(s) = s− 1
2

B2(s) = s2 − s + 1
6 .

Note that Bn(0) = Bn, the Bernoulli number.
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1.7.3. Show that

tan x =
∞∑

n=1

(−1)n−122n(22n − 1)B2n

(2n)!
x2n−1, −π

2
< x <

π

2
.

Hint. tan x = cot x− 2 cot 2x.

1.8 EULER-MACLAURIN INTEGRATION
FORMULASecCA.3

One use of the Bernoulli polynomials is in the derivation of the Euler-Maclaurin
integration formula. This formula is used both to develop asymptotic expansions
(treated later in this chapter) and to obtain approximate values for summations. An
important application of the Euler-Maclaurin formula is its use to derive Stirling’s
formula, an asymptotic expression for the gamma function.

The technique we use to develop the Euler-Maclaurin formula is repeated integra-
tion by parts, using Eq. (1.114) to create new derivatives. We start with

∫ 1

0

f(x) dx =
∫ 1

0

f(x)B0(x) dx , (1.117) eqCA.27

where we have, for reasons that will shortly become apparent, inserted the redundant
factor B0(x) = 1. From Eq. (1.114), we note that

B′
1(x) = B0(x) ,

and we substitute B′
1(x) for B0(x) in Eq. (1.117), integrate by parts, and identify

B1(1) = −B1(0) = 1
2 , thereby obtaining

∫ 1

0

f(x) dx = f(1)B1(1)− f(0)B1(0)−
∫ 1

0

f ′(x)B1(x) dx

=
1
2

[
f(1) + f(0)

]
−

∫ 1

0

f ′(x)B1(x) dx . (1.118) eqCA.28

Again using Eq. (1.114), we have

B1(x) =
1
2

B′
2(x) .

Inserting B′
2(x) and integrating by parts again, we get

∫ 1

0

f(x) dx =
1
2

[
f(1) + f(0)

]
− 1

2

[
f ′(1)B2(1)− f ′(0)B2(0)

]

+
1
2

∫ 1

0

f (2)(x)B2(x) dx . (1.119) eqCA.29

Using the relation

B2n(1) = B2n(0) = B2n, n = 0, 1, 2, . . . , (1.120) eqCA.30
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Eq. (1.119) simplifies to

∫ 1

0

f(x) dx =
1
2

[
f(1)+f(0)

]
− B2

2

[
f ′(1)−f ′(0)

]
+

1
2

∫ 1

0

f (2)(x)B2(x) dx . (1.121) eqCA.31

Continuing, we replace B2(x) by B′
3(x)/3 and once again integrate by parts. Be-

cause
B2n+1(1) = B2n+1(0) = 0, n = 1, 2, 3, . . . , (1.122) eqCA.32

the integration by parts produces no integrated terms, and

1
2

∫ 1

0

f (2)(x)B2(x) dx =
1

2 · 3
∫ 1

0

f (2)(x)B′
3(x) dx = − 1

3!

∫ 1

0

f (3)(x)B3(x) dx .

(1.123) eqCA.33

Substituting B3(x) = B′
4(x)/4 and carrying out one more partial integration, we

get integrated terms containing B4(x), which simplify according to Eq. (1.120). The
result is

− 1
3!

∫ 1

0

f (3)(x)B3(x) dx =
B4

4!

[
f (3)(1)− f (3)(0)

]
+

1
4!

∫ 1

0

f (4)(x)B4(x) dx . (1.124) eqCA.34

We may continue this process, with steps that are entirely analogous to those that
led to Eqs. (1.123) and (1.124). After steps leading to derivatives of f of order 2q−1,
we have

∫ 1

0

f(x) dx =
1
2

[
f(1) + f(0)

]
−

q∑
p=1

1
(2p)!

B2p

[
f (2p−1)(1)− f (2p−1)(0)

]

+
1

(2q)!

∫ 1

0

f (2q)(x)B2q(x) dx . (1.125) eqCA.35

This is the Euler-Maclaurin integration formula. It assumes that the function f(x)
has the required derivatives.

The range of integration in Eq. (1.125) may be shifted from [0, 1] to [1, 2] by
replacing f(x) by f(x + 1). Adding such results up to [n− 1, n], we obtain

∫ n

0

f(x) dx = 1
2f(0) + f(1) + f(2) + · · ·+ f(n− 1) + 1

2f(n)

−
q∑

p=1

1
(2p)!

B2p

[
f (2p−1)(n)− f (2p−1)(0)

]

+
1

(2q)!

∫ 1

0

B2q(x)
n−1∑
ν=0

f (2q)(x + ν) dx . (1.126) eqCA.36

Notice that the derivative terms at the intermediate integer arguments all cancel.
However, the intermediate terms f(j) do not, and 1

2f(0) + f(1) + · · ·+ 1
2f(n) appear

exactly as in trapezoidal integration, or quadrature, so the summation over p may be
interpreted as a correction to the trapezoidal approximation. Equation (1.126) may
therefore be seen as a generalization of Eq. (1.10).
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In many applications of Eq. (1.126) the final integral containing f (2q), though
small, will not approach zero as q is increased without limit, and the Euler-Maclaurin
formula then has an asymptotic, rather than convergent character. Such series, and
the implications regarding their use, are the topic of a later section of this chapter.

One of the most important uses of the Euler-Maclaurin formula is in summing
series by converting them to integrals plus correction terms.7 Here is an illustration
of the process.

Example 1.8.1. Estimation of ζ(3)ExamCA.3.1

A straightforward application of Eq. (1.126) to ζ(3) proceeds as follows (noting that
all derivatives of f(x) = 1/x3 vanish in the limit x →∞):

ζ(3) =
∞∑

n=1

1
n3

=
1
2

f(1) +
∫ ∞

1

dx

x3
−

q∑
p=1

B2p

(2p)!
f (2p−1)(1) + remainder. (1.127) eqCA.37

Evaluating the integral, setting f(1) = 1, and inserting

f (2n−1)(x) = − (2n + 1)!
2 x2n+2

with x = 1, Eq. (1.127) becomes

ζ(3) =
1
2

+
1
2

+
q∑

p=1

(2p + 1)B2p

2 x2p+2
+ remainder. (1.128) eqCA.38

To assess the quality of this result, we list, in the first data column of Table 1.4,
the contributions to it. The line marked “explicit terms” consists presently of only
the term 1

2f(1). We note that the individual terms start to increase after the B4 term;
since it our intention not to evaluate the remainder, the accuracy of the expansion is
limited. As discussed more extensively in the section on asymptotic expansions, the
best result available from these data is obtained by truncating the expansion before
the terms start to increase; adding the contributions above the marker line in the
table, we get the value listed as “Sum”. For reference the accurate value of ζ(3) is
1.202057.

We can improve the result available from the Euler-Maclaurin formula by ex-
plicitly calculating some initial terms and applying the formula only to those that
remain. This strategem causes the derivatives entering the formula to be smaller
and diminishes the correction from the trapezoid-rule estimate. Simply starting the
formula at n = 2 instead of n = 1 reduces the error markedly; see the second data
column of Table 1.4. Now the “explicit terms” consist of f(1) + 1

2f(2). Starting the
Euler-Maclaurin formula at n = 4 further improves the result, then reaching better
than 7-figure accuracy.

¥

When the Euler-Maclaurin formula is applied to sums whose summands have a
finite number of nonzero derivatives, it can evaluate them exactly. See Exercise 1.8.1.

7See R. P. Boas and C. Stutz, Estimating sums with integrals. Am. J. Phys. 39: 745 (1971), for
a number of examples.



52 CHAPTER 1. INFINITE SERIES

Table 1.4: Contributions to ζ(3) of terms in Euler-Maclaurin formula. Left column:
formula applied to entire summation; central column: formula applied starting from
second term; right column: formula starting from fourth term.TabCA.3

n0 = 1 n0 = 2 n0 = 4

Explicit terms 0.500000 1.062500 1.169849∫∞
n0

x−3 dx 0.500000 0.125000 0.031250

B2 term 0.250000 0.015615 0.000977

B4 term −0.083333 −0.001302 −0.000020

B6 term 0.083333 0.000326 0.000001

B8 term −0.150000 −0.000146 −0.000000

B10 term 0.416667 0.000102 0.000000

B12 term −1.645238 −0.000100 −0.000000

B14 term 8.750000 0.000134 0.000000

Suma 1.166667 1.201995 1.202057

a. Sums only include data above horizontal marker.

Exercises

old5.9.51.8.1. The Euler-Maclaurin integration formula may be used for the evaluation of
finite series:

n∑
m=1

f(m) =
∫ n

1

f(x) dx +
1
2
f(1) +

1
2
f(n) +

B2

2!

[
f ′(n)− f ′(1)

]
+ · · · .

Show that

(a)
n∑

m=1

m = 1
2 n(n + 1).

(b)
n∑

m=1

m2 = 1
6 n(n + 1)(2n + 1).

(c)
n∑

m=1

m3 = 1
4 n2(n + 1)2.

(d)
n∑

m=1

m4 = 1
30 n(n + 1)(2n + 1)(3n2 + 3n− 1).

old5.10.111.8.2. The Euler-Maclaurin integration formula provides a way of calculating the
Euler-Mascheroni constant γ to high accuracy. Using f(x) = 1/x in Eq. (1.126)
(with interval [1, n]) and the definition of γ, Eq. (1.13), we obtain

γ =
n∑

s=1

s−1 − ln n− 1
2n

+
N∑

k=1

B2k

(2k)n2k
.
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Using double precision arithmetic, calculate γ for N =1,2,.. .

Note. See D. E. Knuth, Euler’s constant to 1271 places. Math. Comput. 16:
275 (1962).

ANS. For n = 1000, N=2
γ = 0.5772 1566 4901.

1.9 DIRICHLET SERIES

Series expansions of the general form

S(s) =
∑

n

an

ns

are known as Dirichlet series, and our knowledge of Bernoulli numbers enables us
to evaluate a variety of expressions of this type. One of the most important Dirichlet
series is that of the Riemann zeta function,

ζ(s) =
∞∑

n=1

1
ns

. (1.129) eqCA.39

Example 1.9.1. Evaluation of ζ(2)

Here is an alternative derivation of the formula for ζ(2). By methods of complex
variable theory one can establish the summation formula

T (a) =
∞∑

n=1

1
n2 + a2

=
π cothπa

2a
− 1

2a2
.

Simply by taking the limit a → 0, we have

ζ(2) = lim
a→0

STa) = lim
a→0

[
π

2a

( 1
πa

+
πa

3
+ · · ·

)
− 1

2a2

]
=

π2

6
. (1.130) eqCA.40

¥

From the relation with the Bernoulli numbers, we find

ζ(4) =
π4

90
.

Values of ζ(2n) through ζ(10) are listed in Exercise 1.9.1. The zeta functions of
odd integer argument seem unamenable to evaluation in closed form, but are easy to
compute numerically (see Example 1.8.1).
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Other useful Dirichlet series, in the notation of AMS-55 (see Additional Readings),
include

η(s) =
∞∑

n=1

(−1)n−1n−s = (1− 21−s) ζ(s) , (1.131) eqCA.41

λ(s) =
∞∑

n=0

(2n− 1)−s = (1− 2−s) ζ(s) , (1.132) eqCA.42

β(s) =
∞∑

n=0

(−1)n(2n + 1)−s . (1.133) eqCA.43

Closed expressions are available (for integer n ≥ 1) for ζ(2n), η(2n), and λ(2n),
and for β(2n − 1). The sums with exponents of opposite parity cannot be reduced
to ζ(2n) or performed by the contour-integral methods we discuss in Chapter 11.
An important series that can only be evaluated numerically is that whose result is
Catalan’s constant, which is

β(2) = 1− 1
32

+
1
52
− · · · = 0.91596559 . . . . (1.134) eqCA.44

For reference, we list a few of these summable Dirichlet series:

ζ(2) = 1 +
1
22

+
1
32

+ · · · = π2

6
, (1.135) eqCA.45

ζ(4) = 1 +
1
24

+
1
34

+ · · · = π4

90
, (1.136) eqCA.46

η(2) = 1− 1
22

+
1
32

+ · · · = π2

12
, (1.137) eqCA.47

η(4) = 1− 1
24

+
1
34

+ · · · = 7π4

720
, (1.138) eqCA.48

λ(2) = 1 +
1
32

+
1
52

+ · · · = π2

8
, (1.139) eqCA.49

λ(4) = 1 +
1
34

+
1
54

+ · · · = π4

96
, (1.140) eqCA.50

β(1) = 1− 1
3

+
1
5
− · · · = π

4
, (1.141) eqCA.51

β(3) = 1− 1
33

+
1
53
− · · · = π3

32
. (1.142) eqCA.52

Exercises

ExCA.5.111.9.1. From

B2n = (−1)n−1 2(2n)!
(2π)2n

ζ(2n),

show that
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(a) ζ(2) =
π2

6
, (d) ζ(8) =

π8

9450
,

(b) ζ(4) =
π4

90
, (e) ζ(10)=

π10

93, 555
,

(c) ζ(6) =
π6

945
.

1.9.2. The integral ∫ 1

0

[ln(1− x)]2
dx

x

appears in the fourth-order correction to the magnetic moment of the electron.
Show that it equals 2ζ(3).

Hint. Let 1− x = e−t.

1.9.3. Show that ∫ ∞

0

(ln z)2

1 + z2
dz = 4

(
1− 1

33
+

1
53
− 1

73
+ · · ·

)
.

Note. This series evaluates to π3/8.

old5.9.151.9.4. Show that Catalan’s constant, β(2), may be written as

β(2) = 2
∞∑

k=1

(4k − 3)−2 − π2

8
.

Hint. π2 = 6ζ(2).

1.9.5. Show that

(a)
∫ 1

0

ln(1 + x)
x

dx =
1
2

ζ(2) , (b) lim
a→1

∫ a

0

ln(1− x)
x

dx = ζ(2) .

Note that the integrand in part (b) diverges for a = 1 but that the integral is
convergent.

1.9.6. (a) Show that the equation ln 2 =
∞∑

s=1

(−1)s+1s−1, Eq. (1.53), may be rewritten

as

ln 2 =
n∑

s=2

2−sζ(s) +
∞∑

p=1

(2p)−n−1

[
1− 1

2p

]−1

.

Hint. Take the terms in pairs.
(b) Calculate ln 2 to six significant figures.

1.9.7. (a) Show that the equation π/4 =
∞∑

s=1

(−1)s+1(2s− 1)−1, Eq. (1.141), may be

rewritten as

π

4
= 1− 2

n∑
s=1

4−2sζ(2s)− 2
∞∑

p=1

(4p)−2n−2

[
1− 1

(4p)2

]−1

.
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(b) Calculate π/4 to six significant figures.

1.10 ASYMPTOTIC SERIESSecCA.7

Asymptotic series frequently occur in physics. In fact, one of the earliest and still
important approximations of quantum mechanics, the WKB expansion (the initials
stand for its originators, Wenzel, Kramers, and Brillouin), is an asymptotic series. In
numerical computations, these series are employed for the accurate computation of a
variety of functions. We consider here two types of integrals that lead to asymptotic
series: first, integrals of the form

I1(x) =
∫ ∞

x

e−uf(u) du ,

where the variable x appears as the lower limit of an integral. Second, we consider
the form

I2(x) =
∫ ∞

0

e−uf
(u

x

)
du ,

with the function f to be expanded as a Taylor series (binomial series). Asymptotic
series often occur as solutions of differential equations; we encounter many examples
in later chapters of this book.

EXPONENTIAL INTEGRAL

The nature of an asymptotic series is perhaps best illustrated by a specific example.
Suppose that we have the exponential integral function8

Ei(x) =
∫ x

−∞

eu

u
du , (1.143) eqCA.65

which we find more convenient to write in the form

−Ei(−x) =
∫ ∞

x

e−u

u
du = E1(x) , (1.144) eqCA.66

to be evaluated for large values of x. This function has a series expansion that
converges for all x, namely

E1(x) = −γ − ln x−
∞∑

n=1

(−1)nxn

n n!
, (1.145) eqCA.67

which we derive in Chapter 13, but the series is totally useless for numerical evaluation
when x is large. We need another approach, for which it is convenient to generalize
Eq. (1.144) to

I(x, p) =
∫ ∞

x

e−u

up
du , (1.146) eqCA.68

where we restrict consideration to cases in which x and p are positive. As already
stated, we seek an evaluation for large values of x.

8This function occurs frequently in astrophysical problems involving gas with a Maxwell-
Boltzmann energy distribution.
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Integrating by parts, we obtain

I(x, p) =
e−x

xp
− p

∫ ∞

x

e−u

up+1
du =

e−x

xp
− pe−x

xp+1
+ p(p + 1)

∫ ∞

x

e−u

up+2
du .

Continuing to integrate by parts, we develop the series

I(x, p) = e−x

(
1
xp
− p

xp+1
+

p(p + 1)
xp+2

− · · ·+ (−1)n−1 (p + n− 2)!
(p− 1)!xp+n−1

)

+ (−1)n (p + n− 1)!
(p− 1)!

∫ ∞

x

e−u

up+n
du . (1.147) eqCA.69

This is a remarkable series. Checking the convergence by the d’Alembert ratio
test, we find

lim
n→∞

|un+1|
|un| = lim

n→∞
(p + n)!

(p + n− 1)!
· 1
x

= lim
n→∞

p + n

x
= ∞ (1.148) eqCA.70

for all finite values of x. Therefore our series as an infinite series diverges everywhere!
Before discarding Eq. (1.148) as worthless, let us see how well a given partial sum
approximates our function I(x, p). Taking sn as the partial sum of the series through
n terms and Rn as the corresponding remainder,

I(x, p)− sn(x, p) = (−1)n+1 (p + n)!
(p− 1)!

∫ ∞

x

e−u

up+n+1
du = Rn(x, p) .

In absolute value

|Rn(x, p)| ≤ (p + n)!
(p− 1)!

∫ ∞

x

e−u

up+n+1
du .

When we substitute u = v + x, the integral becomes
∫ ∞

x

e−u

up+n+1
du = e−x

∫ ∞

0

e−v

(v + x)p+n+1
dv

=
e−x

xp+n+1

∫ ∞

0

e−v
(
1 +

v

x

)−p−n−1

dv .

For large x the final integral approaches 1 and

|Rn(x, p)| ≈ (p + n)!
(p− 1)!

e−x

xp+n+1
. (1.149)

This means that if we take x large enough, our partial sum sn will be an arbitrarily
good approximation to the function I(x, p). Our divergent series, Eq. (1.147), there-
fore is perfectly good for computations of partial sums. For this reason it is sometimes
called a semiconvergent series. Note that the power of x in the denominator of
the remainder, namely p+n+1, is higher than the power of x in the last term included
in sn(x, p), namely p+n.

Thus, our asymptotic series for E1(x) assumes the form

exE1(x) = ex

∫ ∞

x

e−u

u
du

≈ sn(x) =
1
x
− 1!

x2
+

2!
x2
− 3!

x4
+ · · ·+ (−1)n n!

xn+1
, (1.150) eqCA.72



58 CHAPTER 1. INFINITE SERIES

Figure 1.7: Partial sums of exE1(x) |x=5. FigCA.3

where we must choose to terminate the series after some n.
Since the remainder Rn(x, p) alternates in sign, the successive partial sums give

alternately upper and lower bounds for I(x, p). The behavior of the series (with p = 1)
as a function of the number of terms included is shown in Fig. 1.7, where we have
plotted partial sums of exE1(x) for the value x = 5. The optimum determination of
exE1(x) is given by the closest approach of the upper and lower bounds, that is, for
x = 5, between s6 = 0.1664 and s5 = 0.1741. Therefore

0.1664 ≤ exE1(x)
∣∣∣
x=5

≤ 0.1741 . (1.151) eqCA.73

Actually, from tables,

exE1(x)
∣∣∣
x=5

= 0.1704 , (1.152) eqCA.74

within the limits established by our asymptotic expansion. Note that inclusion of
additional terms in the series expansion beyond the optimum point reduces the ac-
curacy of the representation. As x is increased, the spread between the lowest upper
bound and the highest lower bound will diminish. By taking x large enough, one
may compute exE1(x) to any desired degree of accuracy. Other properties of E1(x)
are derived and discussed in Section 13.6.

COSINE AND SINE INTEGRALS

These integrals, defined by

Ci(u) = −
∫ ∞

u

cos t

t
dt , (1.153) eqCA.75

si(u) = −
∫ ∞

u

sin t

t
dt , (1.154) eqCA.76
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have useful asymptotic expansions. By methods developed in detail in Chapter 12 of
the printed text, we find the formulas

Ci(u) ≈ sin u

u

N∑
n=0

(−1)n (2n)!
u2n

− cosu

u

N∑
n=0

(−1)n (2n + 1)!
u2n+1

, (1.155) eqCA.80

si(u) ≈ −cosu

u

N∑
n=0

(−1)n (2n)!
u2n

− sin u

u

N∑
n=0

(−1)n (2n + 1)!
u2n+1

. (1.156) eqCA.81

DEFINITION OF ASYMPTOTIC SERIES

Poincaré has introduced a formal definition for an asymptotic series9. Following
Poincaré, we consider a function f(x) whose asymptotic expansion is sought, the
partial sums sn in its expansion, and the corresponding remainders Rn(x). Though
the expansion need not be a power series, we assume that form for simplicity in the
present discussion. Thus,

xnRn(x) = xn[f(x)− sn(x)] , (1.157) eqCA.82

where
sn(x) = a0 +

a1

x
+

a2

x2
+ · · ·+ an

xn
. (1.158) eqCA.83

The asymptotic expansion of f(x) is defined to have the properties that

lim
x→∞

xnRn(x) = 0, for fixed n, (1.159) eqCA.84

and
lim

n→∞
xnRn(x) = ∞, for fixed x. (1.160) eqCA.85

These conditions were met for our examples, Eqs. (1.150), (1.155), and (1.156).10

For power series, as assumed in the form of sn(x), Rn(x) ≈ x−n−1. With the
conditions of Eqs. (1.159) and (1.160) satisfied, we write

f(x) ∼
∞∑

n=0

anx−n . (1.161) eqCA.86

Note the use of ∼ in place of =. The function f(x) is equal to the series only in the
limit as x →∞ and with the restriction to a finite number of terms in the series.

Asymptotic expansions of two functions may be multiplied together, and the result
will be an asymptotic expansion of the product of the two functions. The asymptotic
expansion of a given function f(t) may be integrated term by term (just as in a
uniformly convergent series of continuous functions) from x ≤ t < ∞, and the result
will be an asymptotic expansion of

∫∞
x

f(t)dt. Term-by-term differentiation, however,
is valid only under very special conditions.

9Poincaré’s definition allows (or neglects) exponentially decreasing functions. The refinement of
his definition is of considerable importance for the advanced theory of asymptotic expansions, par-
ticularly for extensions into the complex plane. However, for purposes of an introductory treatment
and especially for numerical computation of expansions for which the variable is real and positive,
Poincaré’s approach is perfectly satisfactory.

10Some writers feel that the requirement of Eq. (1.160), which excludes convergent series of inverse
powers of x, is artificial and unnecessary.
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Some functions do not possess an asymptotic expansion; ex is an example of such
a function. However, if a function has an asymptotic expansion of the power-series
form in Eq. (1.161), it has only one. The correspondence is not one to one; many
functions may have the same asymptotic expansion.

One of the most useful and powerful methods of generating asymptotic expansions,
the method of steepest descents, is developed in Chapter 12 of the printed text.

Exercises

old5.10.21.10.1. Integrating by parts, develop asymptotic expansions of the Fresnel integrals

(a) C(x) =
∫ x

0

cos
πu2

2
du (b) s(x) =

∫ x

0

sin
πu2

2
du.

These integrals appear in the analysis of a knife–edge diffraction pattern.

1.10.2. Rederive the asymptotic expansions of Ci(x) and si(x) by repeated integration
by parts.

Hint. Ci(x) + i si(x) = −
∫ ∞

x

eit

t
dt .

old5.10.41.10.3. Derive the asymptotic expansion of the Gauss error function

erf(x) =
2√
π

∫ x

0

e−t2dt

≈ 1− e−x2

√
π x

(
1− 1

2x2
+

1 · 3
22x4

− 1 · 3 · 5
23x6

+ · · ·+ (−1)n (2n− 1)!!
2nx2n

)
.

Hint: erf(x) = 1− erfc(x) = 1− 2√
π

∫ ∞

x

e−t2dt .

Normalized so that erf(∞) = 1, this function plays an important role in prob-
ability theory. It may be expressed in terms of the Fresnel integrals (Exercise
1.10.1), the incomplete gamma functions (Section 13.6), or the confluent hyper-
geometric functions (Section 18.6).

1.10.4. The asymptotic expressions for the various Bessel functions, Section 14.6, con-
tain the series

Pν(z) ∼ 1 +
∞∑

n=1

(−1)n

∏2n
s=1[4ν2 − (2s− 1)2]

(2n)!(8z)2n
,

Qν(z) ∼
∞∑

n=1

(−1)n+1

∏2n−1
s=1 [4ν2 − (2s− 1)2]
(2n− 1)!(8z)2n−1

.

Show that these two series are indeed asymptotic series.

1.10.5. For x > 1,

1
1 + x

=
∞∑

n=0

(−1)n 1
xn+1

.

Test this series to see if it is an asymptotic series.
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1.10.6. Derive the following Bernoulli-number asymptotic series for the Euler-Mascheroni
constant, defined in Eq. (1.13):

γ ∼
n∑

s=1

s−1 − ln n− 1
2n

+
∞∑

k=1

B2k

(2k)n2k
.

Here n plays the role of x.

Hint. Apply the Euler-Maclaurin integration formula to f(x) = x−1 over the
interval [1, n] for N = 1, 2, · · · .

1.10.7. Develop an asymptotic series for
∫ ∞

0

e−xv

(1 + v2)2
dv .

Take x to be real and positive.

ANS.
1
x
− 2!

x3
+

4!
x5
− · · ·+ (−1)n(2n)!

x2n+1
.


