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Chapter 1

Basic concepts

1.1 References

The main reference for this course is the book Introduction to Lie Algebras, by
Karin Erdmann and Mark J. Wildon; this is reference [4]. Another important
reference is the book [6], Introduction to Lie Algebras and Representation The-
ory, by James E. Humphreys. The best references for Lie theory are the three
volumes [1], Lie Groups and Lie Algebras, Chapters 1-3, [2], Lie Groups and Lie
Algebras, Chapters 4-6, and [3], Lie Groups and Lie Algebras, Chapters 7-9, all
by Nicolas Bourbaki.

1.2 Motivation

Briefly, Lie algebras have to do with the algebra of derivatives in settings where
there is a lot of symmetry. As a consequence, Lie algebras appear in various
parts of advanced mathematics. The nexus of these applications is the theory
of symmetric spaces. Symmetric spaces are rich objects whose theory has com-
ponents from geometry, analysis, algebra, and number theory. With these short
remarks in mind, in this course we will begin without any more motivation,
and start with the definition of a Lie algebra. For now, rather than be con-
cerned about advanced applications, the student should instead exercise critical
thinking as basic concepts are introduced.

1.3 The definition

Lie algebras are defined as follows. Throughout this chapter F' be an arbitrary
field. A Lie algebra over F' is an F-vector space L and an F-bilinear map

[ ] LxL—L

that has the following two properties:
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1. [z,2z] =0 for all z € L;
2. [z, [y, 2] + [y, [z, 2] + [z, [z, 9]] = 0 for all z,y, 2z € L.

The map [-, ] is called the Lie bracket of L. The second property is called the
Jacobi identity.

Proposition 1.3.1. Let L be a Lie algebra over F. If x,y € L, then [z,y] =

Proof. Let x,y € L. Then

0=[z+y,z+y
= [z, 2] + [z, y] + [y, 2] + [y, Y]
= [2,y] + [y, 2],

so that [z,y] = —[y, x]. O

If Ly and Lo are Lie algebras over F', then a homomorphism 7' : L1 — Lo
is an F-linear map that satisfies T'([z, y]) = [T'(z),T(y)] for all z,y € Ly. If L
is a Lie algebra over F, then a subalgebra of L is an F-vector subspace K of
L such that [z,y] € K for all z,y € K; evidently, a subalgebra is a Lie algebra
over F' using the same Lie bracket. If L is a Lie algebra over F, then an ideal
I of L is an F-vector subspace of L such that [z,y] € I for all x € L and y € I;
evidently, an ideal of L is also a subalgebra of A. Also, because of Proposition
1.3.1, it is not necessary to introduce the concepts of left or right ideals. If L is
a Lie algebra over F', then the center of L is defined to be

Z(Ly={x € L:|z,y)=0forall y € L}.
Clearly, the center of L is an F-subspace of L.

Proposition 1.3.2. Let L be a Lie algebra over F'. The center Z(L) of L is
an ideal of L.

Proof. Let y € L and x € Z(L). If z € L, then [[y, z], 2] = —[[z,y], 2] = 0. This
implies that [y, z] € Z(L). O

If L is a Lie algebra over F, then we say that L is abelian if Z(L) = L, i.e.,

if [z,y] =0 for all x,y € L.

Proposition 1.3.3. Let Ly and Ly be Lie algebras over F, and letT : L1 — Lo
be a homomorphism. The kernel of T is an ideal of L.

Proof. Let y € ker(T) and z € Ly. Then T([z,y]) = [T(x),T(y)] = [T(z),0] =
0, so that [z,y] € ker(T). O
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1.4 Some important examples
Proposition 1.4.1. Let A be an associative F-algebra. For x,y € A define

[x,y] =Ty — Yz,

so that [z,y] is just the commutator of x and y. With this definition of a Lie
bracket, the F-vector space A is a Lie algebra.

Proof. Tt is easy to verify that [-,-] is F-bilinear and that property 1 of the
definition of a Lie algebra is satisfied. We need to prove that the Jacobi identity
is satisfied. Let z,y,2z € A. Then

[, [y, 2]] + [y, [z, 2]] + [z, [z, y]] = 2(yz — 2y) — (yz — 2y)z
+ylzae —xz) + (za — z2)y
+ 2y — yo) + (wy — yo)2
= XYz — T2Y — YT + ZYx
+Yzxr —yrz — 2zTY + T2Y
+ 2xY — 2Yr — TYZ + Yrz

This completes the proof. O

Note that in the last proof we indeed used that the algebra was associative.

If V is an F-vector space, then the F-vector space gl(V) of all F-linear
operators from V' to V is an associative algebra over F’ under composition, and
thus defines a corresponding Lie algebra over F', also denoted by gl(V'), with Lie
bracket as defined in Proposition 1.4.1. Similarly, if n is a non-negative integer,
then F-vector space gl(n, F') of all n x n matrices is an associative algebra under
multiplication of matrices, and thus defines a corresponding Lie algebra, also
denoted by gl(n, F).

The example gl(n, F) shows that in general the Lie bracket is not associative,
i.e., it is not in general true that [z, [y, z]] = [[z,y], 2] for all z,y, z € gl(n, F).
For example, if n = 2, and

[ o)

2.y, 2]] = 2(yz — 2y) = wyz — a2y = ay2 - 1] 1] — ayz

then

and

[[x,y],z]:(xy—yx)z:xyz—ymz:xyz—{ 1_{ l:zmyz—{ 1]

We describe some more important examples of Lie algebras.
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Proposition 1.4.2. Let n be a non-negative integer, and let sl(n,F) be the
subspace of gl(n, F') consisting of elements x such that tr(z) = 0. Then sl(n, F)
is a Lie subalgebra of gl(n, F).

Proof. It will suffice to prove that tr([z,y]) = 0 for z,y € sl(n, F). Let z,y €
sl(n, F). Then tr([z,y]) = tr(zy — yz) = tr(zy) — tr(yz) = tr(zy) — tr(zy) =
0. O

The example sl(2, F) is especially important. We have
G2, F) ={|% P l.abcer)
sI2,F) ={], _ | a&bec .

An important basis for sl(2, F) is

We have:
le, f] = h, [e, h] = —2e, [f,h] = 2f.

Proposition 1.4.3. Let n be a non-negative integer, and let S € gl(n, F'). Let
gls(n, F) ={z € gl(n,F) : 'zS = —Sx}.
Then glg(n, F) is a Lie subalgebra of gl(n, F).
Proof. Let x,y € glg(n, F). We need to prove [z,y] € glg(n, F'). We have
[z, y)S ="(zy — y2)S
= ("y'z —"a'y)S
_ tyth o txtys
= —tySx + xSy
= Syx — Sxy
= Sy, 7]

This completes the proof. O

_ L
s=],, 1

so(n, F) =so(2¢, F) = glg(n, F).
If n=2¢+1is odd, and

If n = 2{ is even, and

then we write



1.5. THE ADJOINT HOMOMORPHISM )

then we write
so(n,F) =so(20 + 1, F) =glg(n, F).

_ L
5=, "),

sp(n, F) =sp(2¢, F) = glg(n, F).

Also, if n = 2/ is even and

then we write

If the F-vector space V is actually an algebra R over F, then the Lie algebra
gl(R) admits a natural subalgebra. Note that in the next proposition we do not
assume that R is associative.

Proposition 1.4.4. Let R be an F-algebra. Let Der(R) be the subspace of gl(R)
consisting of derivations, i.e., D € gl(R) such that

D(ab) = aD(b) + D(b)a
for all a,b € R. Then Der(R) is a Lie subalgebra of gl(R).

Proof. Let Dy, Dy € Der(R) and a,b € R. Then

[D1, D3](ab) = (D1 o Dy — Do o Dy)(ab)
= (D1 o Ds)(ab) — (D3 o Dy)(ab)
= D;(D2(ab)) — Da(D1(ab))
= Dy (aDs2(b) + Da(a)b) — Da(aD1(b) + D1(a)b)
= aD1(D2(b)) + D1(a)D2(b) + D2(a)D1(b) + D1(D2(a))b
—aDy(D1(b)) — D2(a)D1(b) — D1(a)D2(b) — D2(D1(a))b
= a([D1, D2|(b)) + ([D1, D2](a))b.

This proves that [Dq, Ds] is in Der(R). O

1.5 The adjoint homomorphism

The proof of the next proposition uses the Jacobi identity.
Proposition 1.5.1. Let L be a Lie algebra over F'. Define
ad: L — gl(L)
by
(ad(2))(y) = [z, y]

for x,y € L. Then ad is a Lie algebra homomorphism. Moreover, the kernel of
ad is Z(L), and the image of ad lies in Der(L). We refer to ad as the adjoint
homomorphism.

1

1\
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Proof. Let x1,x9,y € L. Then

(ad([z1, 22])) (y) = [[21, 22], y].

Also,

([ad(21), ad(22)]) (y) = (ad(z1) 0 ad(22)) (y) — (ad(z2) o ad(z1)) (y)
= ad($1)([$2,y]) - ad($2)([$1,y])

(21, [22, Y]] — [@2, [z1, Y]]

It follows that

(ad([xhxz]))(y) - ([ad($1)7ad($2)])(y>
= [[z1, 22], y] — [z1, [22,y]] + [22, [21, Y]]
= —y, [x1, z2]] — [21, [w2, y]] — [22, [y, 21]]
=0

by the Jacobi identity. This proves that ad is a Lie algebra homomorphism. It
is clear that the kernel of the adjoint homomorphism is Z(L). We also have
ad(z)([y1,2]) = [z, [y1, 3]

and

[y1,ad(z)(y2)] + [ad(x) (y1), y2] = [y1, [2, y2]] + [z, y1], y2].

Therefore,

ad(z)([y1,y2]) — [y1,ad(x)(y2)] — [ad(z)(y1), y2]
[, [y1, 92]] = 1, [z, yol] — [z, 91, vo]

[z, [y1, y2l] + [y1, [y2, 2]] + [y2, [, y1]]

07

again by the Jacobi identity. This proves that the image of ad lies in Der(L). O

The previous proposition shows that elements of a Lie algebra can always
be thought of as derivations of an algebra. It turns out that if L is a finite-
dimensional semi-simple Lie algebra over the complex numbers C, then the
image of the adjoint homomorphism is Der(L).



Chapter 2

Solvable and nilpotent Lie
algebras

In this chapter F' is an arbitrary field.

2.1 Solvability

Proposition 2.1.1. Let L be a Lie algebra over F', and let I and J be ideals of
L. Define [I,J] to be the F-linear span of all the brackets [x,y] for x € I and
y € J. The F-vector subspace [I,J] of L is an ideal of L.

Proof. Let x € L,y € I and z € J. We need to prove that [z,[y, z]] € [I,J].
We have

[z, [y, 2l = =y, [z, 2]] = [z, [2, ]

by the Jacobi identity. We have [z,x] € J because J is an ideal, and [z,y] € T
because I is an ideal. It follows that [, [y, z]] € [I,J]. Note that we also use
Proposition 1.3.1. O

By Proposition 1.3.1, if L is a Lie algebra over F', and I and J are ideals of
L, then [1,J] = [J, I].

If L is a Lie algebra over F', then the derived algebra of L is defined to be
L'=[L,L].

Proposition 2.1.2. The derived algebra of sl(2, F) is sl(2, F).
Proof. This follows immediately from [e, f] = h, [e, h] = —2¢,[f, h] = 2. O

Proposition 2.1.3. Let L be a Lie algebra over F. The quotient algebra L)L’
1s abelian.

Proof. This follows immediately from the definition of the derived algebra. O

7
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Let L be a Lie algebra over I'. We can consider the following descending
sequence of ideals:

Lo L =L, L] > (L) =[L, L] (L)) = [(L), ()]

Each term of the sequence is actually an ideal of L; also, the successive quotients
are abelian. To improve the notation, we will write

LO) — L,
LW =r,
L® = (LY,

L(k-i—l) — (Lk)/

We have then
L=LO>1MW 512 5.

This is called the derived series of L. We say that L is solvable if L(*¥) =0

for some non-negative integer k.

Proposition 2.1.4. Let L be a Lie algebra over F. Then L is solvable if and
only if there exists a sequence Iy, 11,15, ..., Ly, of ideals of L such that

L:I()DIlDIQD"’DImleIm:O
and Iy_1 /1y is abelian for k € {1,...,m}.

Proof. Assume that a sequence exists as in the statement of the proposition; we
need to prove that L is solvable. To prove this it will suffice to prove that L(¥) ¢
I for k € {0,1,...,m}. We will prove this by induction on k. The induction
claim is true if & = 0 because L(®) = L = I. Assume that k € {1,...,m} and
that L) C I; for all j € {0,1,...,k — 1}; we will prove that L) C I;. By
hypothesis, I_1 /I is abelian. This implies that [Ix_1, [x—1] C Ix. We have:

L®) = [L*=D L*=D] ¢ [Ty, I_1] C L.
This completes the argument. O

Lemma 2.1.5. Let L, and Lo be Lie algebras over F. Let T : L — Lo be
a surjective Lie algebra homomorphism. If k is a non-negative integer, then
T(Lgk)) = Lgk). Consequently, if Ly is solvable, then so is Ly = T(Lq).

Proof. We will prove that T (Lgk)) = Lgk) by induction on k. This is clear if
k = 0. Assume that the statement holds for k; we will prove that it holds for
k+ 1. Now

k k k
(L) =1L, L)
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k k
= (L), (L]
= [Lék)a Lék)]
k
= L.

This completes the proof. O

Lemma 2.1.6. Let L be a Lie algebra over F. We have L 7)) = (L)) for
all non-negative integers k and j.

Proof. Fix a non-negative integer k. We will prove that L*+7) = (L(¥)() by
induction on j. If j = 0, then L*+79) = [(®) = (L)) = (L)) Assume
that the statement holds for j; we will prove that it holds for j + 1. By the
induction hypothesis,

L(k+it+1) — [L(kJrj)’L(kJrj)]
- [(L(k))(j)’ (L(k))(j)]_
Also,
(L(k))(jH) - [(L(k))(j)7 (L(k))(j)].
The lemma is proven. O

Lemma 2.1.7. Let L be a Lie algebra over F'. Let I be an ideal of L. The Lie
algebra L is solvable if and only if I and L/I are solvable.

Proof. If L is solvable then I is solvable because I*) ¢ L) for all non-negative
integers; also, L/I is solvable by Lemma 2.1.5. Assume that I and L/I are
solvable. Since L/I is solvable, there exists a non-negative integer k such that
(L/T)®) = 0. This implies that L®) + T = I, so that L®¥) ¢ I. Since I is
solvable, there exists an non-negative integer j such that 1) = 0. It follows
that (L)) ¢ 1U) = 0. Since L) = (L)) by Lemma 2.1.6, we conclude
that L is solvable. O

Lemma 2.1.8. Let L be a Lie algebra over F, and let I and J be solvable ideals
of L. Then I + J is solvable.

Proof. We consider the sequence
I+J>J>0.

We have (I + J)/J = I/(I NJ) as Lie algebras. Since I is solvable, these
isomorphic Lie algebras are solvable by Lemma 2.1.5. The Lie algebra I + J is
now solvable by Lemma 2.1.7. O

Proposition 2.1.9. Let L be a finite-dimensional Lie algebra over F. Then
there exists a solvable ideal I of L such that every solvable ideal of L is contained
m .
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Proof. Since L is finite-dimensional, there exists a solvable ideal I of L of max-
imal dimension. Let J be a solvable ideal of L. The ideal I + J is solvable by
Lemma 2.1.8. Since I has maximum dimension we must have I +.J = I, so that
JcClI O

If L is a finite-dimensional Lie algebra over F', then the ideal from Proposi-
tion 2.1.9 is clearly unique; we refer to it as the radical of L, and denote it by
rad(L). We say that finite-dimensional Lie algebra L over F' is semi-simple if
L # 0 and the radical of L is zero, i.e., rad(L) = 0. Because the center Z(L)
of a Lie algebra L is abelian, the center Z(L) is a solvable ideal of L. Hence,
rad(L) contains Z(L). If L is a semi-simple Lie algebra, then Z(L) = 0.

Proposition 2.1.10. Let L be a finite-dimensional Lie algebra over F. The
Lie algebra L/rad(L) is semi-simple.

Proof. Let I be a solvable ideal in L/rad(L); we need to prove that I = 0. Let
p: L — L/rad(L) be the projection map; this is a Lie algebra homomorphism.
Define J = p~1(I). Evidently, J is an ideal of L containing rad(L). Let k be a
non-negative integer. By Lemma 2.1.5 we have p(J®*)) = p(J)*) = I*). There
exists a positive integer k such that 1) = 0. Tt follows that p(J®*)) = 0. This
implies that J*) C rad(L). Since rad(L) is solvable, it follows for some positive
integer j we have (J(®))J = 0. Consequently, by Lemma 2.1.6, the ideal J is
solvable. This implies that J C rad(L), which in turn implies that / =0. O

The following theorem will not be proven now, but is an important reduction
in the structure of Lie algebras.

Theorem 2.1.11 (Levi decomposition). Assume that the characteristic of F
is zero. Let L be a finite dimensional Lie algebra over F. Then there exists a
subalgebra S of L such that L =rad(L) @ S as vector spaces.

Proposition 2.1.12. Assume that the characteristic of F is not two. The
Lie algebra s1(2, F) is semi-simple. In fact, sl(2, F) has no ideals except 0 and
sl(2, F).

Proof. Let I be an ideal of sl(2, F). Let x = ae + bh + ¢f be an element of I,
with a,b,c € F. Assume that a # 0. We have

[h, x] = 2ae — 2¢f,
[f,x] = —ah +2bf,

so that

[f; [, 2] = —2ah,
[fv [fa ‘TH - 72af'

It follows that h and f are contained in I. This implies that e is contained in
1, so that T =sl(2, F'). The argument is similar if b # 0 or ¢ # 0. O
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We say that a Lie algebra L over F is reductive if rad(L) = Z(L).

Proposition 2.1.13. Assume that the characteristic of F is not two. The Lie
algebra gl(2, F) is reductive.

Proof. Since tr([z,y]) = 0 for any z,y € gl(2, F), it follows that sl(2, F) is
an ideal of gl(2,F). Let I = rad(gl(2,F)). Then I Nsl(2,F) is an ideal of
gl(2, F) and an ideal of sl(2,F). By Proposition 2.1.12, we must have I N

sl(2, F) = sl(2,F) or INsl(2,F) = 0. Assume that I Nsl(2, F) = sl(2, F), so
that sl(2, F') C I. By Lemma 2.1.7, s1(2, F') is solvable. This contradicts the fact
that sl(2, F') is semi-simple by Proposition 2.1.12. We thus have INsl(2, F) = 0.
Let _
_|la b
v lc d
be in I. We have
c d—al
[e,x]:[ e eInsl(2,F)=0,
[f, 2] = b eInsl(2,F)=0
’ a—d b ’ ’

It follows that

z € Z(gl(2,F)) = {[“

so that I C Z(gl(2, F)). Since Z(gl(2, F)) C I =rad(gl(2, F)), the proposition
is proven. O

a] ca € F},

Proposition 2.1.14. Let b(2, F) be the F-subspace of gl(2,F) consisting of
upper triangular matrices. Then b(2,F) is a Lie subalgebra of gl(2, F), and
b(2, F) is solvable.

Proof. Let

_|ax by _ a2 )
xl - dl ’ 1‘2 - d2

[ bido — bady + a1bs —a2b1:| c |: *:|

be in b(2, F'). Then
[21, 2] =

From this formula it follows that b(2, F) is a Lie subalgebra of gl(2, F'). More-
over, it is clear that

b2.r) =[],
b(2, F)® =0,

so that b(2, F') is solvable. O



12 CHAPTER 2. SOLVABLE AND NILPOTENT LIE ALGEBRAS

The following corollary is a consequence of Proposition 2.1.14.

Corollary 2.1.15. The F-subspace of sl(2, F) consisting of upper triangular
matrices is a Lie subalgebra of sl(2, F') and is solvable.

More generally, one has the following theorem, the proof of which will be
omitted:

Theorem 2.1.16. Let b(n, F') be the Lie algebra over F consisting of all upper
triangular n X n matrices with entries from F. Then b(n, F') is solvable.

2.2 Nilpotency

There is a stronger property than solvability. Let L be a Lie algebra over F.
We define the lower central series of L to the sequence of ideals:

L’ =1L, L'=1, JLF=[L,LFY, k>2.

Evidently, every element of the sequence L°, L', L?,... is an ideal of L. Also,
we have that

L=IL'>L'>L?’>---

and L(®¥) C L*. The significant difference between the derived series and lower
central series is that while L) /L®*+1Y and L¥/L¥*+! are both abelian, the quo-
tient L*/L¥*1 is in the center of L/L¥T!. We say that L is nilpotent if L¥ =0
for some non-negative integer k. It is clear that if L is nilpotent, then L is
solvable.

It is not true that if a Lie algebra is solvable, then it is nilpotent. Consider
b(2, F), the upper triangular 2 x 2 matrices over F'. We have

*

b(2, F)' = ,
b2, F)2=| |,
b, =] *|, k>1

On the other hand, the Lie algebra n(2, F') of strictly upper triangular 2 x 2
over F' is nilpotent:

n(2,F)f=0, k>1.

Proposition 2.2.1. Let L be a Lie algebra over F. If L is nilpotent, then any
Lie subalgebra of L is nilpotent. If L/Z(L) is nilpotent, then L is nilpotent.
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Proof. The first assertion is clear. Assume that L/Z (L) is nilpotent. We claim
that (L/Z(L))* = (L* + Z(L))/Z(L) for all non-negative integers k. This
statement is clear if £ = 0. Assume that the statement holds for k; we will
prove that it holds for £ 4+ 1. Now

(L/Z(L)*+ = [L/Z(L), (L/Z(L))"]
= [L/Z(L), (L* + Z(L))/Z(L))
= (LF' + Z(L))/Z(L).
This proves the statement by induction. Since L/Z(L) is nilpotent, there

exists a non-negative integer k such that (L/Z(L))* = 0. Tt follows that
(L* + Z(L))/Z(L) = 0; this means that L* C Z(L). Therefore, L*** =0. O

Theorem 2.2.2. Let n(n, F') be the Lie algebra over F consisting of all strictly
upper triangular n X n matrices with entries from F. Then n(n, F') is nilpotent.
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Chapter 3

The theorems of Engel and
Lie

3.1 The theorems

In this chapter we will prove the following theorems:

Theorem 3.1.1 (Engel’s Theorem). Assume that F has characteristic zero
and is algebraically closed. Let V' be a finite-dimensional vector space over F.
Suppose that L is a Lie subalgebra of gl(V'), and that every element of L is a
nilpotent linear transformation. Then there exists a basis for V such that in this
basis every element of L is a strictly upper triangular matrix.

Theorem 3.1.2 (Lie’s Theorem). Assume that F' has characteristic zero and is
algebraically closed. Let V' be a finite-dimensional vector space over F. Suppose
that L is a solvable Lie subalgebra of gl(V'). Then there exists a basis for V' such
that in this basis every element of L is an upper triangular matrix.

3.2 Weight spaces

Let V' be a vector space over F', and let A be a Lie subalgebra of gl(V'). Let
A: A — F be a linear map; we refer \ as a weight of L. We define

Via={veV:av=Aa)v forall a € A},
and refer to V), as the weight space for .

Lemma 3.2.1 (Invariance Lemma). Assume that F' has characteristic zero. V
be a finite-dimensional vector space over F, and let L be a Lie subalgebra of

gl(V), and let A be an ideal of L. Let A : A — F be a weight for A. The weight
space V) is invariant under L.

15
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Proof. Let w € V) and y € L. We must prove that yw is in V), i.e., that
a(yw) = Aa)yw for all a € A. If w = 0, then this is clear; assume that w # 0.
Let a € A. Let a € A. We have

a(yw) = (ay)w
= ([a,y] + ya)w

= [a, y]w + yaw
= A, y))w + Aa) (yw).

Since w # 0, this calculation shows that we must prove that A([a,y]) = 0.
To prove this, we consider the subspace U of V' spanned by the vectors

2
w, yw, Yy w, . ..

The subspace U is non-zero (because w # 0) and finite-dimensional (because V
is finite-dimensional). Let m be the largest non-negative integer such that

2 m
w,Yyw,y w, ...,y w

are linearly independent. This set is a basis for U. We claim that for all z € A
we have zU C U, and that moreover the matrix of z with respect to the basis
w, yw, y2w, ..., y™w has the form

Az) = *
A(2) *
A(2)

We will prove this claim by induction on the columns. First of all, if z € A,
then zw = A(z)w; this proves that the first column has the claimed form for all
z € A. For the second column, if z € A, then

2(yw) = [z,ylw + yzw
= A[z, y))w + Az)yw.
This proves the claim for the second column. Assume that the claim has been

proven for the first k£ columns with k& > 2; we will prove it for the £+ 1 column.
Let z € A. Then

2(y*Fw) = zyy*
= [ y] (" w) + g2yt ).
By the induction hypothesis, since [z,9] € A, the vector u; = [z, y](y*tw) is
in the span of w,yw, y?w,...,y* 'w. Also, by the induction hypothesis, there
exists ug in the span of w,yw, y?w, ..., y* 2w such that
k—1

w) = A2)y* w4+ us.
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It follows that

2(y"w) = wr + y(A(=)y ™ + u2)

= \2)y"w + uy + yuy.

k=1, our claim

Since the vector u; + yus is in the span of w,yw,y%w, ...,y
follows.

Now we can complete the proof. We recall that we are trying to prove that
A([a,y]) = 0. Let 2 = [a, y]; then z € A. By the last paragraph, z acts on U, and
we have that the trace of the action of z on U is (m+ 1)A(2) = (m + 1)A([a, y]).
On the other hand, z = [a, y] = ay—ya, and a and y both act on U. This implies

that trace of the action of z on U is zero. We conclude that A([a,y]) =0. O

Corollary 3.2.2. Assume that F' has characteristic zero and is algebraically
closed. Let V be a finite-dimensional vector space over C. Let x,y € gl(V). If
x and y commute with [z,y], then [x,y] is nilpotent.

Proof. Since our field is algebraically closed, it will suffice to prove that the only
eigenvalue of [z, y] is zero. Let ¢ be an eigenvalue of [z, y].
Let
L=Fz+ Fy+ Flz,y].

Since [z, [z, y]] = [y, [z, y]] = 0, the vector space L is a Lie subalgebra of gl(V).
Let
A = Flz,y].
Evidently, A is an ideal of L; in fact [z,a] =0 for all z € L. Let A\: A — F be
the linear functional such that A([z,y]) = ¢. Then the weight space V) is
Ww={veV:av=Aa)v for all a € A}
={veV:|z,ylv=cv}

By the Lemma 3.2.1, the Invariance Lemma, V) is mapped by L into itself. Pick
a basis for V), and write the action of x and y on V) in this basis as matrices X
and Y, respectively. On the one hand, we have tr[X,Y] = 0, as usual. On the

other hand, [X,Y] acts by ¢ on V), which implies that tr[X,Y] = (dim V))e. It
follows that ¢ = 0. O

3.3 Proof of Engel’s Theorem

Lemma 3.3.1. Let V be a finite-dimensional vector space over F', and let L be
a Lie subalgebra of gl(V). Let x € L. If x is nilpotent as a linear operator on
V, then ad(zx) is nilpotent as an element of gl(L).

Proof. Let y € L. By definition,

ad(x)(y) = [z, 4] = 2y - ya,
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ad(z)?(y) = ad(z)(ad()(y))
= ad(z)(zy — yx)
= [z, 2y — ya]
w(zy —yx) — (vy — yz)w
= :czy — 2zyx + yx2,
ad(z)*(y) = ad(z)(ad(2)*(y))
= [z, 2%y — 2zyx + y2?]

= 2(2%y — 2zyx + yx?) — (2%y — 2zyx + yx?)x
= 23y — 22%yx + zyx® — 2%y + 2ayar? — yad

= x?’y — 39:2yx + 3xy1’2 — yx3.
We claim that for all positive integers n,
n _ ~ (n k. n—k, k
@) =3 (}) ke taat

We will prove this by induction on n. This claim is true if n = 1. Assume it
holds for n; we will prove that it holds for n + 1. Now

Il
8
3
JF
—
<
+
|
—
SN—
3
+
—
<
5
3
JF
—
+
x>
1
—
RS
> 3

n

= "y (—1) Lyt Z <n 1) (—1)kgn kg k

k=1
n+1
2 01 e
k=0

This proves our claim by induction.
From the formula we see that if m is positive integer such that ™ = 0, then
ad(z)2m = 0.
O
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Lemma 3.3.2. Assume that F has characteristic zero and is algebraically
closed. Let V be a finite-dimensional vector space over F, and let L be a Lie
subalgebra of gl(V). Assume that L is non-zero, and that every element is a
nilpotent linear transformation. Then there exists an non-zero vector v in V
such that xv =0 for all x € L.

Proof. We will prove this lemma by induction on dim L. We cannot have
dim L = 0 because L # 0 by assumption. Assume first that dim L = 1. Then
L = Fz for some x € L. By assumption, z is a non-zero nilpotent linear trans-
formation. This implies that there exists a positive integer such that 2* # 0
and zF+1 = 0. Since ¥ # 0, there exists w € V such that v = zFw # 0. Since
¥+t = 0, we have zv = 0. This proves the lemma in the case dim L = 1.

Assume now that dim L > 1 and that the lemma holds for all Lie algebras
as in the statement of the lemma with dimension strictly less than dim L. We
need to prove that the statement of the lemma holds for L.

To begin, let A be a maximal proper Lie algebra of L; we will prove that A
is an ideal of L and that dim A = dim L — 1. Set L = L/A; this is vector space
over F. Define

o:A—gl(L)
by
pla)(z+A) =[a,z] + A
for a € A and x € L. The map ¢ is well-defined because A is a Lie subalgebra

of L. We claim that ¢ is a Lie algebra homomorphism. Let a,b € A and z € L.
Then

[o(a), p(0)](x + A) = p(a)([b,2] + A) — ¢ (b)([a, 2] + A)
= la, [b;z]] = [b, [a, z]] +
= [a, [b,z]] + [, [z, a]] +
= —[z,[a,b]] + A
= [[a,b],z] + A
= ¢([a, b)) (z + A).

A
A

This proves that ¢ is a Lie algebra homomorphism. Since ¢ is a Lie algebra
homomorphism, it follows that ¢(A) is a Lie subalgebra of gl(L). We claim
that the elements of p(A) are nilpotent as linear transformations in gl(L). Let
a € A. By Lemma 3.3.1, ad(a) is a nilpotent element of gl(L), i.e., there exists
a positive integer k such that map ad(a)* : L — L, defined by = + ad(a)*(z) =
[a,[a, [a,- - [a,z] -], is zero, i.e., [a,]a,[a, --[a,z]---] = 0 for x € L. The
definition of ¢ implies that p(a)® = 0, as desired. We now may apply the
induction hypothesis to ¢(A4) and L. By the induction hypothesis, there exists
a non-zero vector y+ A € L such that ¢(a)(y+A) = 0 for all a € A. This means
that [a,y] € A for all a € A. Now define the vector subspace A’ = A+ Fy of L
Since y + A is non-zero in L, this is actually a direct sum, so that A’ = A @ Fy.
Moreover, because [a,y] € A for all a € A, it follows that A’ is a Lie subalgebra
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of L, and also that A is an ideal in A’. By the maximality of A, we must have
L = A& Fy. This proves that A is an ideal of L and dim A = dim L — 1.

We now use the induction hypothesis again. Evidently, dim A < dim L and
also the elements of the Lie algebra A C gl(V') are nilpotent linear transforma-
tions. By the induction hypothesis, there exists a non-zero vector w € V such
that aw = 0 for all @ € A. Define

Vo={veV:av=0forall a e A}.

We have just noted that Vj is non-zero. By the Invariance Lemma, Lemma
3.2.1, the vector subspace Vj of V' is mapped to itself under the elements of L.
Recall the element y from above such that L = A & Fy. We have yVy C Vj.
Since y is a nilpotent linear transformation of V', the restriction of y to Vj is
also nilpotent. This implies that there exists a non-zero vector v € Vi such that
yv = 0. We claim that zv = 0 for all x € L. Let x € L. Write x = a + cy for
some a € A and ¢ € F. Then

zw=(a+cy)v=av+cyv=0+0=0.

This proves that the assertion of the lemma holds for L. By induction, the
lemma is proven. O

Proof of Theorem 3.1.1, Engel’s Theorem. We prove this theorem by induction
ondim V. If dim V' = 0, then there is nothing to prove. Assume that dimV > 1,
and that the theorem holds for all Lie algebras satisfying the hypothesis of the
theorem that have dimension strictly less than dim V.

By Lemma 3.3.2, there exists a non-zero vector v € V' such that xv = 0 for
all z € L. Let U = Fv. Define V = V/U. We consider the natural map

o: L —gl(V)

that sends z to the element of gl(V') defined by w+ U — xw+ U. This map is a
Lie algebra homomorphism. Consider ¢(L). This is a Lie subalgebra of gl(V),
and as linear transformations from V' to V, the elements of ¢(L) are nilpotent.

By the induction hypothesis, there exists a ordered basis
v1+U,...;00 1+ U

of V such that the elements of ¢(L) are strictly upper triangular in this basis.
The vectors
Vy,V1y...,Un—-1

form an ordered basis for V. It is evident that the elements of L are strictly
upper triangular in this basis. O

3.4 Proof of Lie’s Theorem

Lemma 3.4.1. Assume that F has characteristic zero and is algebraically
closed. Let V be a finite-dimensional vector space over F, and let L be a Lie
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subalgebra of gl(V). Assume that L is solvable. Then there exists a non-zero
vector v € V such that v is an eigenvector for every element of L.

Proof. We will prove this by induction on dim L. If dim L = 0, then there is
nothing to prove. If dim L = 1 then this follows from the assumption that F'
is algebraically closed. Assume that dim L > 1, and that the assertion holds
for all Lie algebras as in the statement with dimension strictly less than dim L.
Since L is solvable, the derived algebra L', which is actually an ideal of L, is a
proper subspace of L. Choose a vector subspace A of L that contains L’ such
that dim A = dim L — 1. We claim that A is an ideal of L. Let x € L and a € A.
Then [z,a] € L' C A, so that A is an ideal of L. Since A is an ideal of a solvable
Lie algebra, A is also solvable; see Lemma 2.1.7. By the induction hypothesis,
there exists a non-zero vector v and a weight A : A — F such that av = A(a)v
for a € A. Thus, the weight space

W ={w e V:aw= Aa)w for a € A}

is non-zero. By the Invariance Lemma, Lemma 3.2.1, the Lie algebra L maps
the weight space V) to itself. Since dim A = dim L — 1, there exists z € L such
that L = A 4+ Fz. Consider the action of z on V). Since F' is algebraically
closed, there exists a non-zero vector w € V) that is eigenvector for z; let d € F
be the eigenvalue. We claim that w is an eigenvector for every element of L.
Let x € L, and write x = a + ¢z for some a € A and ¢ € F. Then

zw = (a+ cz)w = aw + czw = AMa)w + cdw = (A(a) + cd)w,
proving our claim. O

Proof of Theorem 3.1.2, Lie’s Theorem. The proof of this theorem uses the last
lemma, Lemma 3.4.1, and is almost identical to the proof of Engel’s Theorem.
The details will be omitted. O
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Chapter 4

Some representation theory

4.1 Representations

Let L be a Lie algebra over F'. A representation consists of a pair (¢, V'), where
V is a vector space over F and ¢ : L — gl(V) is a Lie algebra homomorphism.
Evidently, if V is a vector space over F', and ¢ : L — gl(V) is a linear map,
then the pair (¢, V) is a representation of L if and only if

ez, yl)v = (@) (e (y)v) — (y) (@ (z)v)

for x,y € L and v € V. Let (¢, V) be a representation of L. We will sometimes
refer to a representation (¢, V') of L as an L-module and omit mention of ¢ by
writing x - v = @(x)v for x € L and v € V. Note that with this convention we
have

[,y v=2-(y-v)—y-(z-v)

for z,y € V and v € V. If (p,V) is a representation of L, and W is an F-
vector subspace of V such that ¢(z)w € W for z € L and w € W, then we can
define another representation of L with F-vector space W and homomorphism
L — gl(W) defined by x +— ¢(x)|w for x € L. Such a representation is a called
a subrepresentation of the representation (¢, V). We will also refer to W as
an L-submodule of V. We say that the representation (p, V) is irreducible if
V # 0 and the only L-submodules of V' are 0 and V. Let (¢1, V1) and (p2, V)
be representations of L. An F-linear map T : Vi — V5 is a homomorphism
of representations of L, or an L-map, if T'(¢1(x)v) = @2(2)T(v) for x € L
and v e V.

Let L be a Lie algebra over F. An important example of a representation
of L is the adjoint representation of L, which has as F-vector space L and
homomorphism ad : L — gl(L) given by

ad(z)y = [z, y]
for z,y € L.

23
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We have also encountered another fundamental example. Assume that V' is
an F-vector space and L is Lie subalgebra of gl(V). This situation naturally
defines a representation of L with F-vector space V and homomorphism L —
gl(V') given by inclusion. This representation is often referred to as the natural
representation.

4.2 Basic results

Theorem 4.2.1. Assume that F has characteristic zero and is algebraically
closed. Let L be a solvable Lie algebra over F. If (¢, V) is an irreducible
representation of L, then V is one-dimensional.

Proof. Assume that (¢, V) is irreducible. We are given a Lie algebra homo-
morphism ¢ : L — gl(V'). Consider the image ¢(L). By Lemma 2.1.5, the Lie
algebra (L) is solvable. The solvable Lie algebra (L) is a subalgebra of gl(V).
By Lemma 3.4.1 there exists a non-zero vector v € V' that is an eigenvector of
every element of L. It follows that Fv is an L-subspace of V. Since (¢, V) is
irreducible, it follows that V' = F'v, so that V is one-dimensional. O

Theorem 4.2.2 (Schur’s Lemma). Assume that F' has characteristic zero and
is algebraically closed. Let L be a Lie algebra over F. Let (v,V) be a finite-
dimensional irreducible representation of L. If T : V. — V is an homomorphism
of representations of L, then there exists a unique ¢ € F such that Tv = cv for
veV.

Proof. Since T is an F-linear map, and F' is algebraically closed, T has a eigen-
vector, i.e., there exists a non-zero vector v € V and ¢ € F such that Tv = cv.
Set R =T — cly. Then R is a homomorphism of representations of L. Con-
sider the kernel ker(7') of T'; this is a nonzero L-submodule of V. Since V is
irreducible, we must have ker(7') = V, so that T' = cly. O

Corollary 4.2.3. Assume that F' has characteristic zero and is algebraically
closed. Let L be a Lie algebra over F. Let (p,V) be a finite-dimensional irre-
ducible representation of L. There exists a linear functional X : Z(L) — F such
that p(z)v = A(z)v for z € Z(L) and v € V.

Proof. To define \ : Z(L) — F let z € Z(L). Consider the F-linear map
p(2) : V — V. We claim that this is a homomorphism of representations of L.
Let x € L and v € V. Then

p(x)(p(2)v) = ¢([z, 2])v + @(2) (p()v)
=0+ ¢(2)(p(z)v)
= o(2)(e(z)v).
This proves our claim. Applying Theorem 4.2.2, Schur’s Lemma, to ¢(z), we

see that there exists a unique ¢ € F such that ¢(z)v = cv for v € V. We now
define \(z) = c. Tt is straightforward to verify that A is a linear map. O
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4.3 Representations of sl(2)

In this section we will determine all the irreducible representations of sl(2, F')
when F' has characteristic zero and is algebraically closed.
We recall that
sl(2,F)=Fe+ Fh+ Ff

where

We have
le, f] =h, le, h] = —2e, [f,h] =2f.

Lemma 4.3.1. Let V be a vector space over F, and let ¢ : sl(2, F) — gl(V) be
an F-linear map. Define

E:W(e)’ H:(p(h>7 FZ‘P(f)~
The map ¢ is a representation of sl(2, F') if and only if
[E,F|=H, |[E,H)=-2E,  [F H|=2F

Proof. Assume that ¢ is a representation. Then, by definition, ¢ is a Lie algebra
homomorphism. Applying ¢ to [e, f] = h,[e,h] = —2e, and [f, h] = 2f yields
[E,F|=H,[E,H] = —-2E, and [F, H] = 2F.

Now suppose that the relations [E, F| = H,[E, H] = —2F, and [F, H] = 2F
hold. By linearity, to prove that ¢ is a Lie algebra homomorphism, it suffices
to prove that ¢(le, f]) = [p(e), (f)], @le,h]) = [p(e), p(R)], and @([f,h]) =
[(f),e(h)]; this follows from the assumed relations and the definitions of E,
F,and H. O

Let d be a non-negative inteber. Let V; be F-vector space of homogeneous
polynomials in the variables X and Y of degree d with coefficients from F'. The
F-vector space V; has dimension d + 1, with basis

x4  xd-ly, xd=2y2 .y,

We define linear maps
E HF:V;— 1V,

by
dp
Ep=X5y
dp
Fr=Y5%
Hp—x 2 _y P

X oY
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Lemma 4.3.2. Let d be a non-negative integer. The F'-linear operators E, F
and H act on Vg and satisfy the relations [E,F) = H,[E,H| = —2E, and
[F,H] = 2F.

Proof. Since E, F, and H are linear operators, it suffices to prove that the
claimed identities hold on the above basis for V. For k and integer we define

pr = X4FYR,
Let k € {0,1,2,...,d}. We calculate:

Ep, = BE(X37Fyk)
_ kXd—(k—l)yk—l
= kpr-1,
Fp, = F(X3kyk)
— (d _ k)Xd_(k+1)Yk+l
= (d - k)pk+11
Hpy = H(X'HYH)
= (d—k)XI=Fy*r _ pxd-Fy*
= (d - 2k)pk.
To summarize:
Epy=k-pr—1, Fpr=(d—k) prr1, Hpy=(d—2k)-py.
These formulas show that E, F and H act on V3. We now have:
[E, Flpx = EFpy, — FEpy,
= (d—k)Epgs1 — kFpr_1
= (d—Fk)(k+ )pr — k(d —k + 1)ps
= (d = 2k)py.
= Hp;c.
This proves that [E, F| = H. Next,
[E, H]py, = EHpy, — HEpy,
= (d — 2k)kpr—1 — k(d — 2k + 2)p—1
= —2kpr—1
= —2Epk-.
This proves that [F, H] = —2E. Finally,

[F, H|py = FHpy — HFpy
= (d — 2k)Fpy, — (d — k) Hpj41
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= (d—2)(d — K)pss — (d— k)(d — 2% — 2)p
= 2(d — k)pk—l
= 2Fpk.

This proves that [F, H| = F, and completes the proof. O

Proposition 4.3.3. Let the notation be as in Lemma 4.3.2. The linear map
@ :8l(2, F) — gl(Vy) determined by setting p(e) = E, o(f) =F, and ¢(h) = H
is a Lie algebra homomorphism, so that (v, Vy) is a representation of sl(2, F).

Proof. This follows from Lemma 4.3.2 and Lemma 4.3.1. O

Let d be a non-negative integer. We note from the proof of Lemma 4.3.1
that the basis pg, k € {0,...,d}, of Vg is such that

H - py = (d —2k)py.

In other words, V; has a basis of eigenvectors for H with one-dimensional
eigenspaces. Moreover, we see that the matrices of E, F', and H are:

0Oo1 0 O --- 00
00 2 0 --- 00
0o 00 3 --- 00
matrixof E=|. . . . R
o 00 --- 0 0 d
o o0 - 0 0 0]
[0 0 0 0 0]
d 0 0 0 0
0 d-1 0 0 0
matrix of F = | 0 d—2 0 of:
10 0 1 0]
[d 0 0 0
0 d-—2 0 0
matrix of H = |0 0 d—4 0
K 0 0 - —d

Proposition 4.3.4. Let d be a non-negative integer. The representation of
sl(2, F) on Vy is irreducible.

Proof. Let W be a non-zero sl(2, F')-subspace of V. Since W is an sl(2, F)-
subspace, the characteristic polynomial of H|y divides the characteristic poly-
nomial of H. The characteristic polynomial of H splits over F' with distinct
roots. It follows that the characteristic polynomial of H|w also splits over F'
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with distinct roots. In particular, H|w has an eigenvector. This implies that
for some k € {0,...,d} we have p, € W. By applying powers of F and F we
find that all the vectors vy, ...,vq are contained in W. Hence, W = V; and Vy
is irreducible. U

Lemma 4.3.5. Let V be a representation of sl(2,F). Assume that v is an
eigenvector for h with eigenvalue A € F. Fither ev = 0, or ev is non-zero and
ev is an eigenvector for h such that

h(ev) = (A + 2)ev.

Similarly, either fv =0, or fv is non-zero and ev is an eigenvector for h such
that

h(fv) = (A =2)fv.

Proof. Assume that ev is non-zero. We have

h(ev) = (eh + [h,€e])v
= (eh +2e)v
= e(hv) + 2ev
= dev + 2ev
= (A +2)ev.

Assume that fv is non-zero. We have

h(fv) = (fh+ [h, f)v
= (fh=2f)v
= f(hw) — 2fv
= Afv—2fv
=(A—2)fv.

This completes the proof. O

Lemma 4.3.6. Assume that F has characteristic zero and is algebraically
closed. Let V be a finite-dimensional representation of sl(2,F). Then there
exists an eigenvector v € V. for h such that ev = 0.

Proof. Since F' is algebraically closed, h has an eigenvector u with eigenvalue
A. Consider the sequence of eigenvectors

u, eu, e*u,
By Lemma 4.3.5, because the numbers A\, A+ 2, A +4, ... are mutually distinct,
if infinitely many of these vectors are non-zero, then V is infinite-dimensional.
Since V is finite-dimensional, all but finitely many of these vectors are non-
zero. In particular, there exists a non-negative integer k such that e*u # 0 but
ety = 0. Set v = e*u. Then v # 0, and by Lemma 4.3.5, v is an eigenvector
for h and ev = 0. O
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Theorem 4.3.7. Assume that F has characteristic zero and is algebraically
closed. LetV be a finite-dimensional irreducible representation of sl(2, F'). Then
V' is isomorphic to Vz where dimV =d + 1.

Proof. Since V is irreducible, we have dim V' > 0 by definition. By Lemma 4.3.6,
there exists an eigenvector v € V for h with eigenvalue A such that Fv = 0.
Consider the sequence of vectors

2
v, fvv f v,

By Lemma 4.3.5, because the numbers A\, A —2, A —4, ... are mutually distinct,
if infinitely many of these vectors are non-zero, then V is infinite-dimensional.
Since V is finite-dimensional, all but finitely many of these vectors are non-
zero. In particular, there exists a non-negative integer d such that f% # 0 but
f* 1y = 0. We claim that the F-subspace W spanned by the vectors

d
v, fvv f2U7 T f’U

is an sl(2, F)-subspace. Since f¢*lv = 0 it follows that W is invariant under
f. The subspace W is invariant under A by Lemma 4.3.5. To complete the
argument that W is invariant under sl(2, F') it will suffice to prove that W
is invariant under e. We will prove that e(f/v) € W by induction on j for
j €40,...,d}. We have ev =0 € W. If d = 0, then we are done; assume
that d > 0. Assume that j is a positive integer such that 1 < j < d, and that
ev,e(fv),...,e(fI71v) € W; we will prove that e(f/v) € W. We have

e(flv) =ef(f/~1v)
= (fe+le, F(F77 ")
= (fe+h)(f77 v)
= f(e(f7710)) + h(f' " v).

The vector f(e(fjflv)) is in W by the induction hypothesis, and the vector
h(f’~'v) is in W because W is invariant under h. This proves our claim by
induction, so that W is an sl(2, F')-subspace of V. Since V is irreducible and W is
non-zero, we obtain V' = W. In particular, we see that dimV = dim W = d+ 1.

Next, we will prove that A\ = d. To prove this, consider the matrix of h with
respect to the basis

v, fu, f*u, ..., f
of V.= W. The matrix of h with respect to this basis is:

A
A—2
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It follows that
trace(h) = (d+ DA —2(1+2+---+d)
=d+1A—=d(d+1)
=({d+1)(A=d).
On the other hand,

trace(h) = trace([e, f])
= trace(ef — fe)
= trace(ef) — trace(fe)
= trace(ef) — trace(ef)
=0.

Since F' has characteristic zero we conclude that A = d.
Now we define an F-linear map T : V' — Vj by setting

T(f*v) = FFX?

for k € {0,...,d}. This map is evidently an isomorphism. To complete the proof
we need to prove that T is an sl(2, F')-map. First we prove that T'(fw) = FT(w)
for w € V. To prove this it suffices to prove that this holds for w = f*v for
ked{o0,...,d}. If ke€{0,...,d— 1}, then
T(f(f*v)) = T(f*v)
— pktixd
= FT(f*v).

If K =d, then

— FdJrle
= FT(f%).

Next we prove that T'(hw) = HT(w) for w € V. Again, it suffices to prove that
this holds for w = f*v for k € {0,...,d}. Let k € {0,...,d}. Then

T(h(f*v)) = T((d — 2k)(f*v))
= (d—2k)T(f*v)
= (d—2k)F* X1

H(f*X?)
= H(T(f*v)).



4.3. REPRESENTATIONS OF SL(2) 31

Finally, we need to prove that T(ew) = ET(w) for w = f*v for k € {0,...,d}.

We will prove this by induction on k. If k = 0, this clear because T(ef%) =

T(0) =0 = EX? = ET(f). Assume that k € {1,...,d} and T(e(f'v)) =

ET(fiv) for j € {0,...,k —1}; we will prove that T'(e(f*v)) = ET(f*v). Now
T(e(f*v)) = T(eff*'v)

((fe+[e, D" v)

(fef* o) + T(hf* 1)

= FT(ef* o) + HT(f*"'v)

= FET(f* ') + HT(f* ')

= (FE+ H)T(f* ')

= EFT(f* ')

= ET(f*v).

T
T(f

By induction, this completes the proof. O
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Chapter 5

Cartan’s criteria

5.1 The Jordan-Chevalley decomposition

Theorem 5.1.1. (Jordan-Chevalley decomposition) Assume that F has charac-
teristic zero and is algebraically closed. Let V' be a finite-dimensional F-vector
space. Let © € gl(V). There exist unique elements xs,x, € gl(V) such that
T = Ts+Tn, Ts is semi-simple (i.e., diagonalizable), x,, is nilpotent, and x5 and
x, commute. Moreover, there exist polynomials s,(X),n.(X) € F[X] such that
$2(X) and n,(X) do not have constant terms and xs = sy(x) and n = n,(x).

Lemma 5.1.2. Assume that F has characteristic zero and is algebraically
closed. Let V be a finite-dimensional F-vector space. Let z,y € gl(V).

1. If x and y commute, then x,y, Ts, Ty, Ys, and Yy, pairwise commute.
2. If x and y commute, then (x +y)s = s + Ys and (x+y)p = Tp + Yn-
Proof. Proof of 1. Assume that x and y commute. We have
zys = z5y(y)
= sy(y)z

= YsT.

Similarly, £ commutes with y,,, ¥y commutes with z,, and y commutes with z,,.
Also, we now have

TslYs = xssy(y)
= Sy (y)s
= YsTs.
Similarly, s commutes with y,,, x,, commutes with y,, and z,, commutes with

Yn.
Proof of 2. Assume that 2 and y commute. Evidently, z + y = (zs +

Ys) + (xn + yn). Since zs and ys commute, z; and ys can be simultaneously

33
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diagonalized; this implies that x5+ ys is semi-simple. Similarly, since z,, and y,
commute and are nilpotent, x, + v, is also nilpotent. Since xs+ x, and ys + yn
commute, by uniqueness we have (z +y)s = s+ ys and (x4 y), = zp +yn. O

Lemma 5.1.3. Assume that F' has characteristic zero and is algebraically
closed. Let V be a finite-dimensional F-vector space. Let © € gl(V'), and con-
sider ad(z) : gl(V) — gl(V). We have ad(z)s = ad(zs) and ad(z), = ad(x,).

Proof. Because x = x5 + x,, we have ad(z) = ad(zs) + ad(z,). To complete
the proof we need to show that ad(xs) is simi-simple, ad(x,,) is nilpotent, and
ad(z,) and ad(z,) commute. By Lemma 3.3.1 the operator ad(x,,) is nilpotent.
To see that ad(zs) is diagonalizable, let vy, . .., v, be an ordered basis for V' such
that x4 is diagonal in this basis. Let A1,..., A\, € F be such that z(v;) = \jv;
forie{l,...,n}. Fori,je{l,...,n} let e;; € gl(V) be the standard basis for
gl(V) with respect to the basis v1,...,v,, so that the matrix of e;; has i, j-th
entry 1 and all other entries 0. Let 4,j € {1,...,n}. We have

ad(zs)(eij) = [xs, €]
= Ts€ij — €ijTs
= )\ieij — )\jeij
= ()\2 — )\j)eij.

It follows that ad(z) is diagonalizable. To see that ad(z;) and ad(x,,) commute,
let y € gl(V). Then

(ad(ms)ad(xn)) (y) = ad(xy) (ad(;vn)(y))
= ad(zs) ([zn, y])
= [z, [z, Y]]
= [‘Tsa TnlY — yxn]
= 25(TnyY — YTn) — (Tny — YTn)Ts
= TsTnl — TYTn — TnYTs + YTnTs
= TpTsl — TsYTp — TnYTs + YTsTn
= xp(T5y — yzs) — (TsY — YT5)T0
= [&n, 2oy — Y]
= [Tn, [2s, Y]]
= (ad(zn)ad(zs)) (y)-

It follows that ad(xs) and ad(x,) commute. O

5.2 Cartan’s first criterion: solvability

Lemma 5.2.1. Assume that F has characteristic zero and is algebraically
closed. Let V be a finite-dimensional F-vector space. Let A and B be F-vector
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subspaces of gl(V') such that A C B. Define
M={xegl(V):[z,B] C A} ={z € gl(V) : ad(z)(B) C A}.
Let x € M. If tr(zy) = 0 for all y € M, then x is nilpotent.

Proof. Assume that © € M and tr(zy) = 0 for all y € M. Set s = x4 and
n = x,. We need to prove that s = 0. Since s is diagonalizable, there exists an

ordered basis vq, ..., v, such that the matrix of s with respect to this basis is
diagonal, i.e., there exist Aq,..., A, € F such that the matrix of s in this basis
is:
A1
>\7L

We need to prove that this matrix is zero. Since F has characteristic zero, F
contains Q. Let W be the Q-vector subspace of F' spanned by Ai,...,A,, so
that

W =QA + - +Q\,.

We need to prove that W = 0. To prove this we will prove that every Q linear
functional on W is zero.

Let f: W — Q be a Q linear map. To prove that f = 0 it will suffice to
prove that f(A) =--- = f(A,) = 0. Define y € gl(V) to be the element with

matrix
f(\)

f(An)

with respect to the ordered basis vi,...,v,. Let E;j;, i,j € {1,...,n} be the
standard basis for gl(V) with respect to the ordered basis v,...,v, for V.
Calculations show that

ad(s) (El) = ()\z — )\j)Eij,

ad(y) (Eij) = (f(\) = FN))Eij = f(Ni — X)) Eyj
for i,5 € {1,...,n}. Consider the set

{()\z — )\J,f()\l — )‘j)) 11, € {17 . ,n}} @] (0,0)

Let r(X) € F[X] be the Langrange interpolation polynomial for this set. Then
r(X) does not have a contant term because r(0) = 0. Also,

(i = Aj) = f(hi = Ay)
fori,j € {1,...,n}. It follows that

r(ad(s)) = ad(y).
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By Lemma 5.1.3 we have ad(s) = ad(z)s. Hence, by Theorem 5.1.1, there exists
a polynomial p(X) € F[X] with no constant term such that

ad(s) = p(ad(x)).

We now have
ad(y) = p(r(ad(z)).

Now, because x € M, we have ad(x)(B) C A. We claim that this implies that
ad(x)*(B) C A for all positive integers k. We prove this claim by induction on
k. The claim holds for £ = 1. Assume it holds for k. Then

ad(2)"+(B) = ad(z)(ad(x)" (B))
C ad(z)(A)
C ad(z)(B)
C A

This proves the claim. Since ad(y) is a polynomial in ad(z) with constant term
we conclude that ad(y)(B) C A. This implies that y € M, by definition. By
our assumption on x we have tr(zy) = 0. This means that:

0=tr(zy) = fO\)M +- + fn) .
Applying f to this equation, we get, because f(A1),..., f(An) € Q,

0=F(fOAD)A + -+ f(An)An)
= f)? + -+ f(n)%

Since f(A1),..., f(An) € Q we obtain f(A\) = --- = f(\,) = 0. This implies
that f =0, as desired. O

Lemma 5.2.2. Let L be a Lie algebra over F. Let K be an extension of F.
Define Ly = K ®p L. Then Li is a K-vector space. There exists a unique
K-bilinear form

[~,~] 2LK XLK%LK

such that
a®@z,b@y|l=ab® [z,y]

for a,b € K and x,y € L. With [-,:], Lk is a Lie algebra over K. The F-Lie
algebra L is solvable if and only if the K-Lie algebra Ly is solvable. The F-Lie
algebra L is nilpotent if and only if the K-Lie algebra Ly is nilpotent.

Proof. Tt is clear that the K-bilinear form mentioned in the statement of the
lemma is unique if it exists. To prove existence, we note first that the abelian
group Hom g (Lk, L) is naturally an K-vector space. For each (a,2) € K X L,
let T4,y : Lk — Lk be the K-linear map such that T, ,)(b®y) = ab ® [z, y]
forb€ K and y € L. The map T\, ,) is exists because the function K x L — Ly
defined by (b,y) — ab® [z,y] for b € K and y € L is F-bilinear; a calculation
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shows that it is K-linear. The map K x L — Hompg(Lk,Lk) defined by
(a,2) = T(q4) for a € K and 2 € L is an F-bilinear map. It follows that
there exists a unique F-linear map B : Ly = K ®p L — Homp(Lk, Lk)
sending a ® x to Ta,x) for a € K and x € L. Now define Lx x Lxg — Lk by
(21,22) — B(z1)(22). Let a,b € K and x,y € L. Then

B(CL ® l‘)(b@ y) = T(a,w)(b(g) y)
=ab® [z,y].

It is easy to verify that the map Lx x Lx — Lk is K-bilinear. It follows that
the desired K-bilinear form exists.

Next, a calculation shows that [,-] : Ly X Lx — Lk is a Lie bracket, so
that Lk is a Lie algebra over K with this Lie bracket.

Let k£ be a non-negative integer. We will prove by induction on k that
Kep LK) = Ly;). This is clear if £ = 0. Assume it holds for k. We have

Kop LY = K op [L(k),L(k)]
=K opr LW K ®@p LV]
= L, LY)]
E+1
= L¢HY.
This completes the proof by induction. It follows that L) = 0 if and only if

L(I?) = 0. Hence, L is solvable if and only if Ly is solvable.
Similarly, L is nilpotent if and only if Lx is nilpotent. O

Lemma 5.2.3. Assume that F has characteristic zero. Let V' be a finite-
dimensional F-vector space. Let L be a Lie subalgebra of gl(V'). If tr(xy) =0
forallz € L' andy € L, then L is solvable.

Proof. Assume that tr(zy) = 0 for all 2z € L' and y € L. We need to prove that
L is solvable.
We will first prove that we may assume that F' is algebraically closed. Let

K = F, the algebraic closure of F. Define Vx = K ®p V. Then Vi is a
K-vector space, and dimg Vx = dimg V. There is a natural inclusion

K® HOIHF(‘/, V) — HOIHK(VK, VK)

of K-algebras. As both of these K-algebras have the same dimension over K,
this map is an isomorphism. Moreover, the diagram

K ®r Homp(V,V) ——— Homg (Vk, Vi)

id®trJ{ trl

K —_— K
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commutes. Define Ly = K @ L; by Lemma 5.2.2, Ly is a Lie algebra over K
with Lie bracket as defined in this lemma. Also, by this lemma, to prove that
L is solvable it will suffice to prove that L is solvable. In addition, the proof
of Lemma 5.2.2 shows that L)y = K®p L =K®pL' Leta,be K,z € L' and
y € L. Then by the commutativity of the diagram,

tr((a @ z)(b®y)) = tr(ab® zy)
= ab ® tr(zy)
=0.

It follows that tr(wz) = 0 for all w € L} and z € Lk. Consequently, we may
assume that F'is algebraically closed.
We have the following sequence of ideals of L:

0cL cL.

The quotient L/L’ is abelian. Thus, by Proposition 2.1.4, to prove that L is
solvable it will suffice to prove that L’ is solvable; and to prove that L' is solvable,
it will suffice to prove that L’ is nilpotent. By Engel’s Theorem, Theorem 3.1.1,
to prove that L’ is nilpotent it will suffice to prove that every element of L' is
a nilpotent linear transformation (because any subalgebra of gl(n, F') consisting
of strictly upper triangular matrices is nilpotent). Let x € L’. Define A = L'
and B = L. Evidently, A C B C gl(V). If M is as in the statement of Lemma
5.2.1, then we have

M={zegl(V): [z, L] C L'}

Evidently, L C M; in particular, x € M. Let y € M. We claim that tr(zy) = 0.
Since x € L', there exist a positive integer m and z;,z; € L for i € {1,...,m}
such that

x=[z1,21] + -+ [T, 2m]-

Now

I

©
Il
-

tr(zy) = > tr([zi, zi]y)

I

«
Il
-

tr((x;z; — zix;)y)

NE

(tr(xiziy) — tr(Zixiy)))

.
Il
i

I

©
Il
=

(tr(ziziy) — tr(ziyz)))

I

«
I
A

tr(w; (2, y])
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= — Ztr([y, zi)wi).
i=1

If i € {1,...,m}, then since y € M, we have [y, z;] € L'. By our assumption
we now have tr([y, z;Jx;) = 0 for ¢ € {1,...,m}. This implies that tr(xy) = 0,
proving our claim. From Lemma 5.2.1 we now conclude that x is nilpotent. [J

Theorem 5.2.4 (Cartan’s First Criterion). Assume that F' has characteristic
zero. Let L be a finite-dimensional Lie algebra over F. The Lie algebra L is
solvable if and only if tr(ad(z)ad(y)) =0 for allz € L' and y € L.

Proof. Assume that L is solvable; we need to prove that tr(ad(z)ad(y)) = 0
for all x € L' and y € L. We will first prove that we may assume that F is
algebraically closed. Let K = F be the algebraic closure of F. Define Ly =
K ®p L. Then Lk is a Lie algebra over K, with Lie bracket as defined in
Lemma 5.2.2. Moreover, by Lemma 5.2.2 and its proof, we also have that Ly
is solvable, and that L% = K @ L’. The natural inclusion

K ®gl(L) = gl(Lk)
is an isomorphism of K-algebras. Let a,b,c € K and z,y,z € L. Then

(ab® ad(z)ad(y))(c ® z) = abc @ (ad(z)ad(y))(z)
= abc ® ad(z)(ad(y)z))
= abc ® ad(z)([y, #])
= abe ® [z, [y, 2]].

x)
x)

And

(ad(a ® z)ad(b® y))(c® 2) = ad(a ® z) (ad(b @ y)(c ® 2))
ad(a®z)([b®y,c® 2])
aRx, bRy, c® z]]
=la®z,bc® [y, 2]]

= abc ® [z, [y, 2]]-

It follows that
ab ® ad(z)ad(y) = ad(a ® z)ad(b ® y).

The diagram
K®gl(L) — gl(Lk)

id®trl trJ{

Kk 4, K

commutes. Hence, we obtain

ab - tr(ad(z)ad(y)) = tr(ad(a ® z)ad(b @ y)).
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It follows that if tr(ad(w)ad(z)) = 0 for all w € L% and z € Lg, then
tr(ad(z)ad(y)) = 0 for all x € L' and y € L. Thus, we may assume that F
is algebraically closed.

Next, by Lemma 2.1.5, the Lie algebra ad(L) C gl(L) is solvable. By Lie’s
Theorem, Theorem 3.1.2, there exists a basis for L so that in this basis all the
elements of ad(L) are upper triangular; fix such a basis for L, and write the
elements of gl(L) as matrices with respect to this basis. Let z1,22 € L. Then

ad([z1, z2]) = [ad(21), ad(22)].

Since ad(x1) and ad(xs) are upper triangular, a calculation shows that the up-
per triangular matrix [ad(z1),ad(z2)] is strictly upper triangular. This implies
that all the elements of ad(L’) are strictly upper triangular matrices. Another
calculation now shows that ad(z)ad(y) is strictly upper triangular for z € L'
and y € L; therefore, tr(ad(z)ad(y)) =0 for x € L’ and y € L.

Now assume that tr(ad(z)ad(y)) = 0 for x € L' and y € L. Consider ad(L).
By Lemma 2.1.5, ad(L’") = ad(L)’. Therefore, our hypothesis and Lemma 5.2.3
imply that ad(L) is solvable. Now ad(L) & L/Z(L) as Lie algebras. Hence,
L/Z(L) is solvable. Since Z(L) is solvable, we conclude from Lemma 2.1.7 that
L is solvable. O

5.3 Cartan’s second criterion: semi-simplicity
Let L be a finite-dimensional Lie algebra over F'. Define
kK:LxL—F

by
K(z,y) = tr(ad(z)ad(y))

for z,y € L. We refer to k as the Killing form on L.

Proposition 5.3.1. Let L be a finite-dimensional Lie algebra over F. The
Killing form on L is a symmetric bilinear form. Moreover, we have

H([x7y]7z) = H('% [y,z])
forx,y,z € L.

Proof. The linearity of ad and tr imply that kappa is bilinear. The Killing form
is symmetric because in general tr(AB) = tr(BA) for A and B linear operators
on a finite-dimensional vector space. Finally, let x,y,z € L. Then
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= tr(ad(x)[ad(y), ad(2)])
= tr(ad(z)ad([y, z]))
= H(Z‘, [ya Z])

This completes the proof. O

Lemma 5.3.2. Let L be a finite-dimensional Lie algebra over F'. Let I be an
ideal of L. Consider I as a Lie algebra over F', and let k1 be the Killing form
for I. We have k(z,y) = kr(z,y) for xz,y € I.

Proof. Fix a F-vector space basis for I, and extend this to a basis for L. Let
2 € I. Then because I is an ideal, we have ad(x)L C I. It follows that the
matrix of ad(z) in our basis for L has the form

This completes the proof. O

Lemma 5.3.3. Let L be a finite-dimensional Lie algebra over F. Let I be an
ideal of L. Define
It ={z € L:k(x,I) =0}

Then I+ is an ideal of L.

Proof. 1t is evident that I+ is an F-subspace of L. Let x € L,y € I+ and z € I.
Then

H([Z’,y], Z) = "Q(xa [ya Z]) = H('/I:a O) =0.
It follows that [z,y] € I+, as required. O

Let V be an F-vector space and let b: V' x V — F be a symmetric bilinear
form. We say that b is non-degenerate if, for all z € V, if b(z,y) = 0 for all
y € V, then x = 0. Let L be a finite-dimensional Lie algebra over F'. Evidently,
L+ = 0 if and only if the Killing form on L is non-degenerate.

Theorem 5.3.4 (Cartan’s Second Criterion). Assume that F' has characteristic
zero. Let L be a finite-dimensional Lie algebra over F. The Lie algebra L is
semi-simple if and only if the Killing form on L is non-degenerate.
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Proof. Assume that L is semi-simple. We need to prove that L+ = 0. Set I =
L*. By the definition of I, we have x(I, L) = 0. This implies that (I, I’) = 0.
By Lemma 5.3.2 we get (I, I') = 0. By Theorem 5.2.4, Cartan’s first criterion,
the Lie algebra I is solvable. Since L is semi-simple by assumption, we must
have I = 0, as required.

Now assume that the Killing form on L is non-degenerate. Assume that L
is not semi-simple; we will obtain a contradiction. By definition, since L is not
semi-simple, L contains a non-zero solvable ideal I. Consider the sequence I(*)
for k=0,1,2,.... Each element of the sequence is an ideal of L; also, since [ is
solvable, there exists a non-negative integer such that I*) # 0 and I+ = 0,
Set A = I®). Then A is a non-zero ideal of L, and A is abelian. Let z € L and
a € A. Let y € L. Then

(ad(a)ad(z)ad(a))(y) = (ad(a)

Since A is an ideal of L we have [a,y] € A, and hence also [z, [a,y]] € A. Since A
is abelian, this implies that [a, [z, [a,y]]] = 0. Tt follows that ad(a)ad(x)ad(a) =
0 and thus (ad(x)ad(a))? = 0. Since nilpotent operators have trivial traces, we
obtain tr(ad(a)ad(z)) = 0. Thus, k(a,z) = 0. Because = € L was arbitrary, we
have a € L+ = 0. Thus, A = 0, a contradiction. O

5.4 Simple Lie algebras

Lemma 5.4.1. Let V be a finite-dimensional F-vector space and let b be a
symmetric bilinear form on V. Let W be a subspace of V. Then

dim W + dim W+ > dim V.
If b is non-degenerate, then
dim W + dim W+ = dim V.
Proof. Let VV be the dual space of V, i.e., VV = Homp(V, F). Define
V—VY

by v + Ay, where )\, is defined by \,(z) = b(z,v) for z € V. Let V¥ — WV be
the restriction map, i.e., defined by A +— A|y for A € VV. This restriction map
is surjective. Consider the composition

V=SV — WY

The kernel of this linear map is W+. It follows that dimV — dim W+ <
dim WY =dim W, i.e., dimV < dim W + dim W+.
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Assume that b is non-degenerate. Then the map V — V'V is injective; since
V and V'V have the same finite dimension, this map is an isomorphism. It follows
that the above composition is surjective. Hence dim W +dim W+ = dim V. O

Let L be a Lie algebra over F'. Let Lq,...,L; be Lie subalgebras of L. We
say that L is the direct sum of Ly,...,L; if L= L, ®---&® L; as vector spaces
and

[+ Fxp, g1+ oy = [,y o [, v
for x;,y; € Ly, i € {1,...,t}.

Lemma 5.4.2. Let L be a Lie algebra over F. Let Iy,...,I; be ideals of L. If
L is the direct sum of Iy,...,1I; as vector spaces, then L is the direct sum of
I,...,1I; as Lie algebras.

Proof. Assume L is the direct sum of I, ..., I; as vector spaces. To prove that
L is the direct sum of I,...,I; as Lie algebras, it will suffice to prove that
[z,y] =0forz € [ andy € I; fori,j € {1,...,t}. Leti,j € {1,...,t}, z € I;
and y € I;. Then [z,y] € I; N I; because I; and I; are ideals. Since I; N I; =0
we have [z,y] = 0. O

Lemma 5.4.3. Assume that F' has characteristic zero. Let L be a semi-simple
finite-dimensional Lie algebra over F. Let I be a non-zero proper ideal of L.
Then L =1& I+ and I is a semi-simple Lie algebra over F.

Proof. By Lemma 5.4.1 and Lemma 5.4.2, to prove that L = I @I+ it will suffice
to prove that I NI+ =0. Let J = I NI+, Then J is an ideal of L. By Lemma
5.3.2, we have x;(J,J) = 0. In particular, k;(J,J) = 0. By Theorem 5.2.4,
Cartan’s first criterion, the Lie algebra J is solvable. Since L is semi-simple, we
get J = 0, as desired.

By Theorem 5.3.4, Cartan’s second criterion, to prove that I is semi-simple,
it will suffice to prove that if x € I and k;(z,y) = 0 for all y € I, then z = 0.
Assume that & € I is such that x;(z,y) = 0 for all y € I. By Lemma 5.3.2,
k(z,y) = 0 for all y € I. Let z € L. By the first paragraph, we may write
2 = 21+ 29 with 2; € I and 2z € I, We have x(z,2) = x(z, 21) + #(z, 22). Now
k(x,z1) = 0 because z; € I and the assumption on z, and x(x, z2) = 0 because
x €I and 2o € I*. Tt follows that x(z, z) = 0. Since z € L was arbitrary, we
obtain 2 € L*. By Theorem 5.3.4, Cartan’s second criterion, L~ = 0. Hence,
z = 0. O

Let L be a Lie algebra over F. We say that L is simple if L is not abelian
and the only ideals of L are 0 and L. From the definition, we see that a simple
Lie algebra is non-zero.

Lemma 5.4.4. Let L be a Lie algebra over F'. If L is simple, then L is semi-
simple.
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Proof. Assume that L is simple. Since L is simple we must have rad(L) = 0
or rad(L) = L. If rad(L) = 0, then L is semi-simple by definition. Assume
that rad(L) = L; we will obtain a contradiction. Then L is solvable. By the
definition of solvability, and since L # 0, there exists a non-negative integer k
such that L(®) # 0 and L*+1) = 0. Since L*) is a non-zero ideal of L we must
have L*) = L. Since L(®) is abelian, L is abelian, a contradiction. O

Let L be a Lie algebra over F'. Let I be an F-subspace of L. We say that I
is a simple ideal of L if I is an ideal of L and I is simple as a Lie algebra over
F.

Theorem 5.4.5. Assume that F' has characteristic zero. Let L be a finite-
dimensional Lie algebra over F'. The Lie algebra L is semi-simple if and only
if there exist simple ideals I ..., I of L such that

I=L& -8l

Proof. Via induction on dim L, we will prove the assertion that if L is semi-
simple, then there exist simple ideals of L as in the theorem. The assertion is
trivially true when dim L = 0, because in this case L cannot be semi-simple.
Assume that the assertion holds for all Lie algebras over F' with dimension less
than dim L; we will prove the assertion for L. Assume that L is semi-simple.
Let I be an ideal of L with the smallest possible non-zero dimension. Assume
that dim I = dim L, i.e., I = L. Then certainly L has no ideals other than 0 and
L. Moreover, L is not abelian because rad(L) = 0. It follows that L is simple.
Assume that dim I < dim L. By Lemma 5.4.3 we have L = I® I+, and I and I+
are semi-simple Lie algebras over F' with dim I < dim L and dim I+ < dim L.
By induction, there exist simple ideals I, ..., I, of I and simple ideals Jy, ..., Js
of It such that

I=L® @I and ItT=J,® & J,.

We have
L=L& -, 1® --DJ;

as F-vector spaces. It is easy to check that Iy,...,I., J1,...,Js are ideals of L.
The assertion follows now by induction.

Next, assume that there exist simple ideals of L as in the statement of the
theorem. Let x,y,z € L. Write x = o1 + -+ ¢, y = y1 + -+ + y¢, and
z=2z1+4 -+ 2z with z;,y;,2 € I; fori € {1,...,t}. We have

(ad(z)ad(y))(2) = [z, [y, z]]
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t
Zadxzady, )(2i)-

It follows that

ad(z1)ad(y1)
ad(z)ad(y) =
ad(z¢)ad(y;)

Hence, using Lemma 5.3.2,

r(z,y) = tr(ad(z)ad(y)) = ) tr(ad(z;)ad(y;)) = Z w1, (i, Yi)-

i=1

By Theorem 5.3.4, Cartan’s second criterion, to prove that L is semi-simple it
suffices to prove that L+ = 0. Let z € L*. Let i € {1,...,t} and y € I,.
Write ¢ = 21 + -+ - + @, with z; € I; for j € {1,...,t}. By the above general
calculation we have 0 = k(z,y) = Ky, (i, y;). Since I; is semi-simple by Lemma
5.4.4, by Theorem 5.3.4, Cartan’s second criterion applied to I;, we must have
x; = 0. It follows that x = 0. O]

5.5 Jordan decomposition

Let R be an F-algebra; we do not assume that R is associative. We recall
from Proposition 1.4.4 the Lie algebra Der(R) of derivations on R, i.e., the Lie
subalgebra of gl(R) consisting of the linear maps D : R — R such that

D(ab) = aD(b) + D(a)b
for a,b € R.

Proposition 5.5.1. Let F be a field of characteristic zero. Let L be a semi-
simple finite-dimensional Lie algebra over F. Then the ad homomorphism is an
isomorphism of L onto Der(L):

ad : L = Der(L).

Proof. By Proposition 1.4.4, the kernel of ad is Z(L). Since L is semi-simple, we
have Z(L) = 0, so that ad is injective. Set K = ad(L). Because ad is injective,
K is isomorphic to L, and is hence also semi-simple.

By Proposition 1.4.4 we have K C Der(L); we need to prove that K =
Der(L). We first prove that K is an ideal of Der(L). Let € K and D € Der(L).
Let y € L. Then

([D,ad(2)])(y) = (Dad(z) — ad(x)D) (y)
= D(ad(z)(y)) — ad(z)(D(y))
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= D([z,y]) — [z, D(y)]
[z, D(y)] + [D(z),y] — [z, D(y)]
- [D x),y]

This implies that
[D,ad(x)] = ad(D(x)),

so that [D,ad(z)] € K. Next, using the Killing form on Der(L), define as usual
K+ ={D € Der(L) : Kper(r) (D, K) = 0}.
By Lemma 5.3.3, K= is also an ideal of Der(L). Let 2 € K N K*. Then
0 = kper(r)(z, K) = ki (2, K),

where the last equality follows from Lemma 5.3.2. Since K is semi-simple we
must have z = 0 by Theorem 5.3.4, Cartan’s second criterion. Therefore, K N
K+ = 0. Now since K and K+ are both ideals of Der(L) we have [K, K1] C K
and [K,K*] C Kt so that [K,K+] ¢ KN KL, Thus, [K,Kt] = 0. Let
D € Kt andz € L. Then [D, ad(z)] = 0. From above, we also have [D, ad(z)] =
ad(D(z)). Therefore, ad(D(z)) = 0. Since ad is injective, we get D(z) = 0.
Since x € L was arbitrary, we obtain D = 0. Thus, K+ = 0. Now by Lemma
5.4.1 we have dim K + dim K+ > dim Der(L); therefore, dim K = dim Der(L)
so that K = Der(L). O

We recall the following theorem from linear algebra.

Theorem 5.5.2 (Generalized eigenvalue decomposition). Assume that F has
characteristic zero and is algebraically closed. Let V be a finite-dimensional
vector space and let T € gl(V). If A € F, then define V\(T) to be the subset of
v € V such that there exists a non-negative integer such that (T — Ay )*v = 0.
For A € F, V\(T) is an F-subspace of V that is mapped to itself by T. We have

V=W

AEF

Factor the characteristic polynomial of T as
(X = A)™ -+ (X =A™

where the \; € F are pairwise distinct for i € {1,...,t}, and ny,...,n; are
positive integers such that ny +---+ny = dimV. Define E(T) = {\1,..., A},
the set of eigenvalues of T. For A € F we have Vx(T) # 0 if and only if
A€ E(T), and dimVy, = n; fori € {1,...,t}. Let T = s+ n be the Jordan-
Chevalley decomposition of T, with s diagonalizable and n nilpotent. The set of
eigenvalues for T is the same as the set of eigenvalues for s, and Vy(s) = Vy(T)
for A € E(T) = E(s). Moreover, for every A € E(T) = E(s), Va(s) is the usual
A-eigenspace for s.



5.5. JORDAN DECOMPOSITION 47

Lemma 5.5.3. Let L be a Lie algebra over F. Let D € Der(L). Let n be a
non-negative integer. Let A, € F and x,y € L. Then

n

(D= O+ 1) () = 3 (’;) (D= A1), (D — i)™y,
k=0

Proof. We prove this by induction on n. The claim holds if n = 0. Assume it
holds for n for all x,y € L; we will prove that it holds for n+ 1 for all z,y € L.
Now

(D= A+ 1),y

= (D~ A\ +mwi)" (D~ )\+M )11z, y))
= (D= (A4 p)1)"(Dlz,y] — (A + )z, y])
= (D — (A +u)1)"([Dz,y] + [z, Dy] — (A + p)[z,y])
=D - \+pi)"([(D- >\1L ),y + &, (D — plr)y))
= (Z) (D= A1), (D — pln)" Py

k=0

+ Z (Z) (D = M)z, (D — puly) " 1y

k=0

n el —
k.) [(D o )\lL)k+1.’E, (D _ /l]-L) +1 (k+1)y]

+ Z (Z) [(D — AlL)kgg’ (D — ‘ulL)n+1,ky]

0
- i:((k ! 1> + <Z>)[(D — A p)Fa, (D — pl )"t Fy]

1

[(D — )\lL)n+1x, (D - MlL)Oy] + [(D — )\1L)0[L‘7 (D _ MlL)n-Hy]
o

= Z ( k > [(D — /\]—L)kl', (D — NlL)n+1_ky],

This completes the proof. O

Lemma 5.5.4. Assume that F' has characteristic zero and is algebraically
closed. Let L be a finite-dimensional Lie algebra over F. Let D € Der(L),
and let D = S+ N be the Jordan-Chevalley decomposition of D, with S € gl(L)
diagonalizable and N € gl(L) nilpotent. Then S and N are contained in Der(L).
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Proof. Using the notation of Theorem 5.5.2, we have

L= @ Ly(D).

AEF

Let A\, € F. We will first prove that
[LA(D), Lu(D)] € Lasu(D).

To prove this, let € Ly(D) and y € L, (D). Let n be a positive even integer
such that (D —A7)"2z =0 and (D — uly)™?y = 0. By Lemma 5.5.3 we have

(D= A+ m1n)" () =Y (Z) (D = Mp)*a, (D — )"y

k=0

If k€ {0,...,n}, then k >n/2 or n —k > n/2. It follows that
(D= A+ w)1)" (2,3) = 0

so that [z,y] € Lx1,(D).

Now we prove that s is a derivation. We need to prove that S([z,y]) =
[S(z),y] + [z, S(y)] for z,y € L. By linearity, it suffices to prove this for every
z € Ly(D)andy € L,(D) for all \,p € F. Let \,p € F and x € Ly(D) and
y € L, (D). From Theorem 5.5.2, Lx(s) = Lx(D), L,(D) = L,(S), Laypu(D) =
Lx+,(S) and on these three F-subspaces of L the operator o acts by A, u, and
A+ p, respectively. We have [x,y] € Laju(D) = Lx4,(S). Hence,

S([z,y]) = A+ p)[z, y]
= [Az,y] + [=, py]
= [S(z),y] + [z, S(y)].

It follows that S is a derivation. Since N = D — S, N is also a derivation. [

Theorem 5.5.5. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F. Let x € L. Then
there exist unique elements s,n € L such that x = s+n, ad(s) is diagonalizable,
ad(n) is nilpotent, and [s,n] = 0. Moreover, if y € L is such that [x,y] = 0,
then [s,y] = [n,y] = 0.

Proof. First we prove the existence of s and n. By Proposition 1.5.1 we have
ad(z) € Der(L). Let ad(x) = S + N be the Jordan-Chevalley decomposition of
ad(z) with S diagonalizable and N nilpotent. By Lemma 5.5.4, S and N are
derivations. By Proposition 5.5.1, since L is semi-simple, there exist s,n € L
such that ad(s) = S and ad(n) = N. We have ad(z) = ad(s + n). Since L is
semi-simple, ad is injective; hence, z = s+n. Also, ad([s,n]) = [ad(s), ad(n)] =
[S, N] = 0 because the operators S and N commute. Since ad is injective, we
get [s,n] = 0. This proves the existence of s and n.
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To prove uniqueness, assume that s',n’ € L are such that x = s’ +n’, ad(s’)
is diagonalizable, ad(n’) is nilpotent, and [s',n/] = 0. Set S’ = ad(s’) and
N’ = ad(n'). Then ad(z) = " + N’, S’ is diagonalizable, N’ is nilpotent, and
S” and N’ commute. By the uniqueness of the Jordan-Chevalley decomposition
for ad(z) we get ad(s) = S = 5" = ad(s’) and ad(n) = N = N’ = ad(n'). Since
ad is injective, s = s’ and n = n/.

Finally, assume that y € L is such that [z,y] = 0. Then [ad(z),ad(y)] = 0,
i.e., ad(y) commutes with ad(z). By Theorem 5.1.1, there exists a polynomial
P(X) € F[X] such that S = P(ad(x)). Since ad(y) commutes with ad(z), we
get ad(y)P(ad(z)) = P(ad(x))ad(y). Hence, ad(y) commutes with S. Thus,
0 = [S,ad(y)] = [ad(s),ad(y)] = ad([s,y]). By the injectivity of ad, we obtain
[s,y] = 0. Similarly, [n,y] = 0. O

We refer to the decomposition x = s+n from Theorem 5.5.5 as the abstract
Jordan decomposition of x. We refer to s as the semi-simple component
of z, and n as the nilpotent component of x.
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Chapter 6

Weyl’s theorem

6.1 The Casmir operator

Let L be a Lie algebra over F', let V be a finite-dimensional F-vector space, and
let ¢ : L — gl(V) be a representation. Define

By:LxL—F

by
By (z,y) = tr(p(x)e(y))
for x,y € L.
Lemma 6.1.1. Assume that F' has characteristic zero. Let L be a semi-simple
finite-dimensional Lie algebra over F', let V be a finite-dimensional F-vector

space, and let ¢ : L — gl(V) be a faithful representation. Then By is an
associative and non-degenerate symmetric bilinear form on L.

Proof. 1t is clear that [y is a symmetric bilinear form. To see that Sy is
associative, let x,y,z € L. Then

Bv ([z,y], z) = tr(p([z,y])p

Next, let
I={xeL:pBy(z,L)=0}

To prove that By is non-degenerate it will suffice to prove that I = 0. We
claim that I is an ideal of L. Let € I and y,z € L. Then By ([z,y],2) =

51
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Bv (z, [y, z]) = 0. This proves that [z,y] € I, so that I is an ideal of L. Since L
is semi-simple, to prove that I = 0 it will now suffice to prove that I is solvable.
Consider J = ¢(I). Since ¢ is faithful, I 2 J; thus, it suffices to prove that J
is solvable. Now by the definition of I we have tr(zy) = 0 for all x € J and
y € ¢(L); in particular, we have tr(zy) = 0 for all z,y € J. By Lemma 5.2.3,
the Lie algebra J is solvable. O

Let the notation be as in the statement of Lemma 6.1.1. Since the symmetric
bilinear form By is non-degenerate, if z1,...,z, is an ordered basis for L, then
there exists a unique ordered basis zi,...,z, for L such that

Bv (xi,2) = dij

for i,j € {1,...,n}. We refer to z,...,z), as the basis dual to z1,...,z, with
respect to Sy .

Lemma 6.1.2. Assume that F has characteristic zero. Let L be a semi-simple
finite-dimensional Lie algebra over F, let V be a finite-dimensional F-vector
space, and let p : L — gl(V') be a faithful representation. Let x1,...,x, be an
ordered basis for L, with dual basis 2!, ..., x}, defined with respect to By . Define

n

C =Y ol@)p)).

i=1

Then C € gl(V), the definition of C' does not depend on the choice of ordered
basis for L, and Cyp(x) = ¢(x)C for x € L. Moroever, tr(C) = dim L. We refer
to C' as the Casmir operator for .

Proof. To show that the definition of C' does not depend on the choice of basis,
let y1,...,yn be another ordered basis for L. Let (m;;) € GL(n,F) be the

matrix such that N
vi =Y miz;
j=1
and let (n;;) € GL(n, F') be the matrix such that
n
Ti = Znijyj
j=1
for i € {1,...,n}. We have
n n
8ij =Y mamj, Sij =Y namy;
=1 1=1
for i,5 € {1,...,n}. We have, for i,j € {1,...,n},

n n
Bv (i, Y _mija) =Y niiBy (yi, 7))
1=1

=1
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It follows that

for j € {1,...,n}. Therefore,

Z e(yi)p(y;) = Z Z Z mignie(T;)

n n o n
=1 =

I

NaE
5
8
5
8

This proves that the definition of C' does not depend on the choice of ordered
basis for L.
Next, let z € L. We need to prove that Co(z) = ¢(z)C. Let (ajx) € M(n, F)

be such that
QTJ, Za]kxk
for j € {1,...,n}. We claim that
= — Zaijﬁc.
k=1
To see this, let ¢ € {1,...,n}. Then

Ll + Y aia, ) = Bu ([, 2], @) + Y ak; By (zh, 2:)
k=1
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= By (], [z, 2i]) + as

= By (2}, - Z au®r) + ag

=1

:*E azlﬂvﬂi xy) + agj

= —ayj + Qg

=0.
Since By is non-degenerate, we must have [z}, z] = — > p_y akjz). We now
calculate:
Cop(x) — p(x)C =Y o(a;)e(ah)e(x) — ela)pla;)e(a))

=
_ Z (a3, 0l@)] + [ (z5), ol@)le))

- Z ola)e(lel ) + olles, al)ol))

_ Z; (ansoes)(ah) + apple)ela)))
- z: ; ar; () p(xh) + Jz: é ajrp(rr)p(r])

This completes the proof. O
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6.2 Proof of Weyl’s theorem

Lemma 6.2.1. Let L be a finite-dimensional semi-simple Lie algebra over F,
and let I be an ideal of L. Then L/I is semi-simple.

Proof. By Lemma 5.4.3, I+ is also a Lie algebra over F, I and I+ are semi-
simple as Lie algebras over F, and L = I+ as Lie algebras. We have L/I = [+
as Lie algebras; it follows that L/I is semi-simple. O

Lemma 6.2.2. Let L be a finite-dimensional semi-simple Lie algebra over F'.
Then L =L =[L,L].

Proof. By Theorem 5.4.5, there exist simple ideals I,...,I; of L such that
L=1 & - ®I as Lie algebras. We have [L,L| = [[;,1]® --- & [I}, I;]. For
each i € {1,...,t}, I; is not abelian so that [I;, I;] is non-zero; this implies that
[Ii, Il] = [7 Hence, [L, L} = L. O

Lemma 6.2.3. Let L be a Lie algebra over F', and let V and W be L-modules.
Let
M = Hom(V, W)

be the F-vector space of all F-linear maps fromV to W. Forx € L and T € M
definex - T :V — W by

(- T)Yv)=z-Tw)—T(x-v)

for v € V. With this definition, M 1is an L-module. Moreover, the following
statements hold:

1. The F-subspace of T € M such that x-T = 0 for allx € L is Homp(V, W),
the F-vector space of all L-maps from V to W.

2. If W is an L-submodule of V', then the F-subspaces
My, ={T € Hom(V,W) : f|w is a constant}

and
My ={T € Hom(V,W) : flw =0}

are L subspaces of M with My C My and the action of L maps My into
Mp.

Proof. Let x,y € L, T € M, and v € V. Then

([z,9]- T)(v) = [2,y] - T(v) = T([, y] - v)
z(yT(v)) —y(=T (v)) — T(x(yv)) + T(y(zv))

and

(z(yT) — y(=T)) (v)
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= (z(yT)) (v) = (y(=T)) (v)
(1) (v) = (W) (wv) — y((@T)(v)) + (2T)(yv)
= 2(yT(v) = T(yv)) — y(T(xv)) + T(y(zv))
—y(@T(v) = T(zv)) + 2T (yv) = T(x(yv))
2(yT(v)) = 2T (yv) — y(T(zv)) + T(y(zv))
)

I
8

—y(@T(v)) = yT(zv)) + 2T (yv) — T(z(yv))
z(yT(v)) + T(y(zv)) — y(zT'(v)) = T(z(yv)).

It follows that
[z, y] - T = z(yT) — y(2T)

so that with the above definition Hom(V, W) is an L-module.

The assertion 1 of the lemma is clear.

To prove the assertion 2, let 7' € M; and let a € F be such that T'(w) = aw
for w e W. Let x € L. Let w € W. Then

(2T)(w) = 2T (w) — T(zw)

=0.

The assertion 2 follows.
O

Theorem 6.2.4 (Weyl’s Theorem). Let F' be algebraically closed and have char-
acteristic zero. Let L be a finite-dimensional semi-simple Lie algebra over F.
If (¢, V) is a finite-dimensional representation of L, then V is a direct sum of
wrreducible representations of L.

Proof. By induction, to prove the theorem it will suffice to prove that if W is a
proper, non-zero L-subspace of V| then W has a complement, i.e., there exists
an L-subspace W’ of V such that V =W @& W'. Let W be a proper, non-zero
L-subspace of V.

We first claim that W has a complement in the case that dim W = dim V' —1.
Assume that dimW =dimV — 1.

We will first prove our claim when W is irreducible; assume that W is irre-
ducible. The kernel ker(y) of ¢ : L — gl(V) is an ideal of L. By Lemma 6.2.1
the Lie algebra L/ker(y) is semi-simple. By replacing ¢ : L — gl(V') by the
representation ¢ : L/ ker(yp) — gl(V), we may assume that ¢ is faithful. Con-
sider the quotient V/W. By assumption, this is a one-dimensional L-module.
Since [L, L] acts by zero on any one-dimensional L-module, and since L = [L, L]
by Lemma 6.2.2, it follows that L acts by zero on V/W. This implies that
p(L)V C W. In particular, if C is the Casmir operator for ¢, then CV C W.
By Lemma 6.1.2, C is an L-map. Hence, ker(C') is an L-submodule of V'; we will
prove that V = W @ ker(C), so that ker(C') is a complement to W. To prove
that ker(C) is a complement to W it will suffice to prove that W Nker(C) =0
and dim ker(C) = 1. Consider the restriction C|y of C to W. This is an L-map
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from W to W. By Schur’s Lemma, Theorem 4.2.2, since W is irreducible, there
exists a constant a € F' such that C(w) = aw for w € W. Fix an ordered basis
wy,...,ws for W, and let v ¢ V. Then wy,...,ws, v is an ordered basis for V,
and the matrix of C' in this basis has the form

It follows that tr(C) = (dim W)a. On the other hand, by Lemma 6.1.2, we have
tr(C) = dim L. Tt follows that (dim W)a = dim L, and in particular, a # 0.
Thus, C' is injective on W and maps onto W. Therefore, W Nker(C) = 0, and
dimker(C) = dimV — dimim(C) = dimV — dim W = 1. This proves our claim
in the case that W is irreducible.

We will now prove our claim by induction on dimV. We cannot have
dimV = 0 or 1 because W is non-zero and proper by assumption. Suppose
that dimV = 2. Then dim W = 1, so that W is irreducible, and the claim
follows from the previous paragraph. Assume now that dimV > 3, and that
for all L-modules A with dim A < dimV, if B is an L-submodule of A of co-
dimension one, then B has a complement. If W is irreducible, then W has a
complement by the previous paragraph. Assume that W is not irreducible, and
let Wy be a L-submodule of W such that 0 < dimW; < dim W. Consider
the L-submodule W/W; of V/Wj. This L-submodule has co-dimension one in
V/Wi, and dim V/W; < dimV. By the induction hypothesis, there exists an
L-submodule U of V/Wj such that

VW, =U @ W/W,.

We have dimU = 1. Let p : V — V/W; be the quotient map, and set M =
p~1(U). Then M is an L-submodule of V, Wy C M, and M/W; = U. We have

dim M = dimW; +dimU = 1 + dim W3.

Since dm M =1+ dimW; <14+ dimW < dimV, we can apply the induction
hypothesis again: let Wa be an L-submodule of M that is a complement to Wy
in M, i.e.,

M =W, & Ws.

We assert that W5 is a complement to W in V, ie., V. = W & W,. Since
dim W5 = 1, to prove this it suffices to prove that W N Wy = 0. Assume that
w € W N Wsy. Then

w+ Wy e (W/Wy)n (M/Wy) =0.

This implies that w € Wj. Since now w € Wo N W7, we have w = 0, as desired.
The proof of our claim is complete.
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Using the claim, we will now prove that W has a complement. Set

M = Hom(V, W),
M, ={T € Hom(V,W) : f|w is multiplication by some constant},
My =A{T € Hom(V,W) : flw = 0}.

By Lemma 6.2.3, M, M7, My are L-modules; clearly, My C M;. We claim that
dim M7 /My = 1. To prove this, let w € W be non-zero. Define

M, — Fw

by T + T(w). This is a well-defined F-linear map. Clearly, since 1y € My,
this map is surjective; also, the kernel of this map is My. It follows that
dim M7 /My = 1. By the above claim, the L-submodule M, of M; has a com-
plement M| in My, so that

M, = My @ M),

Since M| is one-dimensional, M| is spanned by a single element T € M;; we
may assume that in fact T'(w) = w for w € W. Moreover, since M is one-
dimensional the action of L on M{) is trivial (see earlier in the proof for another
example of this), so that T = 0 for « € L. The definition of the action of L on
M implies that T is an L map. We now claim that

V=W @ ker(T).

To see this, let v € V. Then v = T'(v) + (v —T(v)). Evidently, T'(v) € W. Also,
T(v—TW))=Tw)—T(T(w)) =T(v) — T(v) =0 because T'(v) € W, and the
restriction of T to W is the identity. Thus, V = W + ker(T"). Finally, suppose
that w € W Nker(T). Then w = T'(w) and T'(w) = 0, so that w = 0. O

6.3 An application to the Jordan decomposition

Lemma 6.3.1. Assume that F is algebraically closed and has characteristic
zero. Let V' be a finite-dimensional F-vector space. Let L be a Lie subalgebra
of gl(V), and assume that L is semi-simple. If x € L, and © = x5 + x, is the
Jordan-Chevalley decomposition of x as an element of gl(V), then xs,x, € L.

Proof. We will first prove that [z, L] C L and [z, L] C L. To see this, consider
adgy vy () : gl(V) — gl(V). This linear map has a Jordan-Chevalley decompo-
sition adg(vy(7) = adgv)(z)s + adg(v)(7),. Because x € L, the linear map
adgy(vy(x) maps L into L (i.e., [z, L] C L). Because adg(v)(7)s and adgivy(2)n
are polynomials in adg(y)(z), these linear maps also map L into L. Now by
Lemma 5.1.3 we have adg(v)(7)s = adgi(v)(zs) and adgyvy(2)n = adgivy(Tn)-
It follows that adg vy (zs) and adgvy(2,) map L into L, i.e., [z, L] C L and
[z, L] C L.
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Define
N={yegl(V):[y, L] C L}.

Evidently, L C N; also, we just proved that x4, xz,, € N. Moreover, we claim
that N is a Lie subalgebra of gl(V'), and that L is an ideal of N. To see that N
is a Lie subalgebra of gl(V'), let y1,y2 € N. Let z € L. Then

([y1,92], 2] = — [z, [y1, y2]]
= [ylv [y% Z]] + [y27 [Zvylﬂ'

This is contained in L. Hence, [21, 22] € N. To see that L is an ideal of N, let
y € N and z € L; then [y, z] € L by the definition of N, which implies that L
is an ideal of N.

Next, the Lie algebra L acts on V' (since L consists of elements of gl(V)).
Let W be any L-submodule of V. Define

Ly ={y€gl(V):yW C W and tr(y|w) = 0}.

Evidently, Ly, is a Lie subalgebra of gl(V). We claim that L C Ly, L is an
ideal of Ly, and zs,x, € Ly. Since L is semi-simple, we have by Lemma
6.2.2 that L = [L, L]. Thus, to prove that L C Ly, it will suffice to prove that
[a,b] € Ly for a,b € L. Let a,b € L. Since W is an L-submodule of V', we have
[a,b]WW C W. Also,

tr([a, b]‘W) = tr(a|Wb|W - b|Wa|W) = tI‘(a|wa) - tr(b|Wa\W) =0.

It follows that L C Ly. The argument that L is an ideal of Lyy is similar. Next,
since x maps W to W, z, and z,, also map W to W. Since z,, is nilpotent,
Zn|w is also nilpotent. Since z,|w is nilpotent, tr(x,|w) = 0. We have already
proven that tr(z|w) = 0. Since z|w = 25w +2n|w, it follows that tr(zs|w) = 0.
Hence, x4, 2, € Ly .

Now define

A={yegl(V):[y,L]C L} N N Lyy.
W is an L-submodule of V

By the last two paragraphs, A is a Lie subalgebra of gl(V'), L C A, L is an ideal
of A, and z,,x, € A. We will prove that A = L, which will complete the proof
since this implies that x,,z, € L. We may regard A as an L-module via the
action defined by = - a = ad(z)a = [z, a] for z € L and a € A. Evidently, with
this action, L is an L-submodule of A. By Weyl’s Theorem, Theorem 6.2.4, L
admits a complement Ly in A so that A = L & L. We need to prove that the
L-module L is zero. We claim that [L, Li] = 0, i.e., the action of L on L; is
trivial. To see this we first note that [L, L1] C Ly because Ly is an L-submodule.
On the other hand, since L is an ideal of A, we have [L, A] C L; in particular,
[L, L] C L. We now have [L, L1] C LN L; =0, proving that [L, L1] = 0. Next,
consider the action of L on V; by again Weyl’s Theorem, Theorem 6.2.4, we can
write

V=W @ - oW,
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where W; is an irreducible L-submodule of V for ¢ € {1,...,t}. Let i €
{1,...,t}. Let y € Ly. Because y € A we have y € Ly,. Thus, yW; C W,.
Moreover, since [L, L1] = 0, the map y|w, commutes with the action of L on
W;. By Schur’s Lemma, Theorem 4.2.2, y acts by a scalar on W;. Since we also
have tr(y|w,) = 0 because y € Lyy,, it follows that y|w, = 0. We now conclude
that y = 0, as desired. O

Theorem 6.3.2. Assume that F is algebraically closed and has characteristic
zero. Let V' be a finite-dimensional F-vector space. Let L be a Lie subalgebra
of gl(V), and assume that L is semi-simple. If x € L, © = x5 + z, is the
Jordan-Chevalley decomposition of x as an element of gl(V'), and x = s+ n is
the abstract Jordan decomposition of x, then x5 = s and z,, = n.

Proof. By Lemma 6.3.1 we have x,,x, € L. By the uniqueness of the Jordan-
Chevalley decomposition of elements of gl(L), to prove the theorem it will
suffice to prove that ady(z) = ady(zs) + adp(z,), adp(zs) is diagonalizable,
adr(z,) is nilpotent, and [adf(zs),adr(z,)] = 0, ie., adp(xzs) and adp(z,)
commute. Since x = xs + x, we have ady(z) = adp(zs) + adp(z,). From the
involved definitions, is clear that adg vy (2s)|r = adp(xs) and adg(v)(7,)|z =
adr(z,). By Lemma 5.1.3, adgv)(zs) is diagonalizable and adg vy (2y) is
nilpotent. This implies that adgv)(zs)|r = adp(zs) is diagonalizable and
adgy(vy(2n)|L = adp(2y) is nilpotent. Finally, since adgyv)(zs) and adg vy (2n)
commute, adg(v)(zs)|r = adr(zs) and adg vy (zn)|r = adr(z,) commute. [

Lemma 6.3.3. Let F' have characteristic zero and be algebraically closed. Let
L be a semi-simple finite-dimensional Lie algebra over F'. Let I be an ideal of L.
The Lie algebra L/ is semi-simple. Let x € L, and let © = s+n be the abstract
Jordan decomposition of x, as in Theorem 5.5.5. Thenx+1 = (s+1)+ (n+1)
1s the abstract Jordan decomposition of x + I, with s+ 1 and n + I being the
semi-simple and nilpotent components of x + I, respectively.

Proof. By Lemma 6.2.1 L/ is semi-simple. Since = s + n, we have x + [ =
(s+ 1)+ (n+1I). Let z € L. Let y € L. We have

adz+D)(y+1)=[z+ Ly +1I]
=lz,y]| +1
=ad(z)(y) + 1.

Similarly, if P(X) € F[X] is a polynomial, then
P(ad(z+ I))(y +I) = P(ad(2))(y) + L.
Let M(X) be the minimal polynomial of ad(s). Then
M(ad(s+1)(y+1)=M(ad(s))(y) + I=0+1=1.

Hence, M (ad(s + I)) = 0, so that the minimal polynomial of ad(s + I) divides
M(X). Since s is diagonalizable, M (X) has no repeated roots. Hence, the
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minimal polynomial of ad(s+1) has no repeated roots; this implies that ad(s+1)
is diagonalizable. Similarly, since ad(n) is nilpotent, we see that ad(n + I) is
nilpotent. Finally, we have [s+I,n+ 1] =[s,n]+1=0+1=1. O

Theorem 6.3.4. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F. Let V' be a finite-
dimensional F-vector space, and let § : L — gl(V) be a homomorphism. Let
x € L. Let © = s+ n be the abstract Jordan decomposition of x as in Theorem
5.5.5. Then the Jordan-Chevalley decomposition of 6(x) € gl(V) is given by
O(x) = 6(s) + 0(n), with 0(s) diagonalizable and 6(n) nilpotent.

Proof. Set J = 6(L); this is a Lie subalgebra of gl(V). Since we have an
isomorphism of Lie algebras

0:L/ker(0) — J

and since L/ker(f) is semi-simple by Lemma 6.2.1, it follows that J is semi-
simple. Moreover,  +ker(0) = (s+ker(6)) + (n+ker(9)) is the abstract Jordan
decomposition of  + ker(#) by Lemma 6.3.3. Applying the above isomorphism,
it follows that 6(x) = 6(s) + 0(n) is the abstract Jordan decomposition of 0(x)
inside J. By Theorem 6.3.2, this is the Jordan-Chevalley decomposition of 6(x)
inside gl(V). O
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Chapter 7

The root space
decomposition

Let F' have characteristic zero and be algebraically closed. Let L be a finite-
dimensional Lie algebra over F'. Let H be a Lie subalgebra of L. We say
that H is a Cartan subalgebra of L if H is non-zero; H is abelian; all the
elements of H are semi-simple; and H is not properly contained in another
abelian subalgebra of L, the elements of which are all semi-simple.

Theorem 7.0.1 (Second version of Engel’s Theorem). Let L be a Lie algebra
over F. Then L is nilpotent if and only if for all x € L, the linear map ad(z) €
gl(L) is nilpotent.

Proof. Assume that L is nilpotent. By definition, this means that there exists
a positive integer m such that L™ = 0. The definition of L™ implies that, in
particular,

[ZE, [1‘, [I7 ,[.T,y]”}
'S

for x,y € L. This means that ad(z)™ = 0. Thus, for every « € L, the linear
map ad(z) is nilpotent. Conversely, assume that for every « € L, the linear
map ad(x) € gl(L) is nilpotent. Consider the Lie subalgebra ad(L) of gl(L). By
Theorem 3.1.1, the original version of Engel’s Theorem, there exists a basis for L
in which all the elements of ad(L) are strictly upper triangular; this implies that
ad(L) is a nilpotent Lie algebra. By Proposition 2.2.1, since ad(L) = L/Z(L) is
nilpotent, the Lie algebra L is also nilpotent.

O

Lemma 7.0.2. Let F have characteristic zero and be algebraically closed. Let
L be a semi-simple finite-dimensional Lie algebra over F'. Then L has a Cartan
subalgebra.

Proof. Tt will suffice to prove that L contains a non-zero abelian subalgebra
consisting of semi-simple elements; to prove this, it will suffice to prove that L

63
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contains a non-zero semi-simple element x (because the subalgebra Fz is non-
zero, abelian and contains only semi-simple elements). Assume that L contains
only nilpotent elements. Then by Theorem 7.0.1, the second version of Engel’s
Theorem, L is nilpotent, and hence solvable. This is a contradiction. O

Proposition 7.0.3. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let HY be Homp(H, F'), the F-vector space of all F-linear
maps from H to F. For o € HY, define

L, ={z € L:ad(h)z = a(h)zx for all h € H}.

Let @ be the set of all « € HY such that o # 0 and Lo # 0. There is a direct
sum decomposition

L:LO@@LQ.

Moreover:

1. Ifa,B € HY, then
[La,Lg] C La+6.

2. Ifa,f € HY and o+ B # 0, then
K(La,Lg) =0,
where K s the Killing form on L.

3. The restriction of the Killing form k to Lg is non-degenerate.

Proof. Consider the F-vector space ad(H) of linear operators on L. Since every
element of H is semi-simple, the elements of ad(H) are diagonalizable (recall the
definition of the abstract Jordan decomposition, and in particular, the definition
of semi-simple). Also, the linear operators in ad(H ) mutually commute because
H is abelian. It follows that the elements of ad(H) can be simultaneously
diagonalized, i.e., the above decomposition holds.

To prove 1, let a, 3 € HY. Let € L, and y € Lg. Let h € H. Then

ad(h)([z, y]) = [h, [z, y]]

= —[z, [y, M] — [y, [h, ]|
[, [h, y]] + [[h, 2], 9]

= [z, B(h)y] + [a(h)z,y]

= (a+ B)(h)[z, y].

It follows that [z,y] € Lats-
To prove 2, let o, € HY and assume that o+ 3 # 0. Let € Ly, y € Lg,
and h € H. Then

a(h)r(z,y) = w(a(h)z,y)
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Tt follows that (a+8)(h)k(z,y) = 0. Since this holds for all h € H and o+ # 0,
it follows that x(z,y) = 0. That is, (L4, Lg) = 0.

To prove 3, let € Ly. Assume that x(z,y) = 0 for all y € Ly. By 2, we
have then k(x, L) = 0. Since & is non-degenerate, we must have z = 0. O

We refer to the decomposition of L in Proposition 7.0.3 as the root space
decomposition of L with respect to H; an element of ® is called a root.

Lemma 7.0.4. Let F' have characteristic zero and be algebraically closed. Let
L be a semi-simple finite-dimensional Lie algebra over F. Let H be a Cartan
subalgebra of L. Let h € H be such that dim Cp,(h) is minimal. Then Cr(h) =
CL(H).

Proof. We first claim that for all s € H, we have Cr(h) C Cr(s). Let s € H.
There are filtrations of F-vector spaces:

0CCrh)NnCL(s) CCL(s) c Cp(h)+Cr(s) C L,
0C CL(h)NCr(s) c Cr(h) CCL(h)+ CL(s) C L.

Consider the operators ad(h) and ad(s) on L. Since H is a Cartan subalgebra
of L, ad(h) and ad(s) commute with each other, and both operators are diago-
nalizable. The restrictions of ad(h) and ad(s) to C(h)NCL(s) are zero because
[h,CL(h)] =0 and [s,CL(s)] = 0. Let

T1y..., Tk

be any basis for Cp(h) N CL(s). Next, consider the restrictions of ad(h) and
ad(s) to Cr(s). Since [s,CL(s)] = 0, the restriction of ad(s) to CL(s) is zero.
We claim that ad(h) maps Cp(s) to itself. To see this, let x € Cr(s). We
calculate:

because [z, s] = 0 (since z € C,(s)) and [s, h] = 0 (since H is abelian). It follows
that ad(h)z € CL(s), as claimed. Since both ad(s) and ad(h) map CL(s) to
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itself, since ad(s) and ad(h) commute, and since both ad(s) and ad(h) are diag-
onalizable, the restrictions of ad(s) and ad(h) to CL(s) can be simultaneously
diagonalized, so that there exist elements y1,...,y¢ in CL(s) so that

xla"kaaylw",yf

is a basis for C,(s), and each element is an eigenvector for ad(s) and ad(h) (the
elements x1, ...,z are already in the O-eigenspaces for the restrictions of ad(h)
and ad(s) to Cr(s)). Since ad(s) is zero on Cf(s), the elements y1, ...,y are in
the 0-eigenspace for ad(s). Similarly, there exist elements z1,. .., z, in Cf(h)
such that

Llyeeey Ly Zlye-eylm

is a basis for Cp(h) and each element is an eigenvector for ad(s) and ad(h);
note that since ad(h) is zero on Cp(h), the elements z1,...,z,, are in the 0
eigenspace for ad(h). We claim that

Tisee s ThsYls-o -5 Yty 215+ -5 2m

form a basis for Cr(h) + CL(s). It is evident that these vectors span Cp(h) +
Cr(s). Now

dim(Cr(h) + CL(s))

= dim C(s) + dim(CL(s) + Cr(h))/CL(s)

= dim Cp(s) + dim Cr(h)/(CL(s) N CL(h))

= dim Cf(s) + dim Cr(h) — dim(Cr(s) N CL(h))

=dim(CL(s) NCr(h)) + dim Cp(s) — dim(CL(s) N Cr(h))

+ dim Cp (h) — dim(CL(s) N Cr(h))
=k+{+m.

It follows that this is a basis for Cr(s) + Cr(h). Finally, there exist elements
w1y, ..., W, in L such that

T1yee oy ThyY1ye -5 Yl 215+ -+ 5 2y W1y - -+, Why
is a basis for L and wq,...,w, are eigenvectors for ad(s) and ad(h). Since
wi, ..., w, are not in Cr(s), it follows that the eigenvalues of ad(s) on these
elements do not include zero; similarly, the eigenvalues of ad(h) on wy,...,w,
do not include zero. Let o, ..., o, in F and f4,..., 3, be such that
ad(s)w; = aw;, ad(h)w; = Biw;

for i € {1,...,n}. Now let ¢ be any element of F' such that
c#0, ay+eb #0, ..., ap+eB, #0.
We have:

ad(s + ¢+ h)x; = ad(s)z; + c-ad(h)x; =0,
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ad(s + c¢- h)y; = ad(s)y; + ¢-ad(h)y; = ¢-ad(h)y; = non-zero multiple of y;,
ad(s+ c¢-h)z = ad(s)z; + ¢ - ad(h)z; = ad(s)z; = non-zero multiple of z;,

ad(s + ¢+ h)w; = (a; + ¢8;)w; = non-zero multiple of w;.

Here ¢ - ad(h)y; is a multiple of y; because y; is an ad(h) eigenvector, and this
multiple is non-zero because otherwise [h,y;] = 0, contradicting y; ¢ Cr(s) N
Cr(h). Similary, ad(s)z; is a non-zero multiple of z;. Because

Tiyee s Ty Yty Yty 215+ ooy Zmy W1y o oo, Wiy

is a basis for L we conclude that if € L is such that [s + ¢ h, 2] = 0, then x
is in the span of x1, ..., xk; this means that

Cr(s+c-h)CCL(s)NCL(h).
Since Cr(s) N CL(h) C CL(s + ¢+ h) we get
Cr(s+c-h)=CL(s)NCL(h).
By the definition of h, we must have Cp(h) C CL(s+ ¢ h); hence
Cr(h) C Cr(s)NCr(h).

This means that Cr(h) C Cr(s).
Finally, to see that Cr(h) = CL(H), we note first that C.(H) C Cr(h). For
the converse inclusion, we have by the first part of the proof:

Cr(h) € () Cr(s) = CL(H).

seH
Hence, Cr(h) = CL(H). O

Proposition 7.0.5. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L. Then Cr,(H) = H.

Proof. Clearly, H C C(H). To prove the other inclusion, let x € CL(H); we
need to prove that x € H. By Lemma 7.0.4, there exists h € H such that
Cr(H) = Cr(h). Hence, x € Cr(h). Let x = s + n be the abstract Jordan
decomposition of x. We have [z, h] = 0. By Theorem 5.5.5, we obtain [s,h] =0
and [n, h] = 0. It follows that s,n € C(h) = CL(H). Consider the subalgebra
H' = H + Fs of L. This subalgebra is abelian, and all the elements of it are
semi-simple. By the maximality property of H, we have H' = H; this implies
that s € H. To prove that z € H it will now suffice to prove that n = 0.

We first show that Cp,(h) is a nilpotent Lie algebra. By the second version
of Engel’s Theorem, Theorem 7.0.1, to prove this it will suffice to prove that
adc, (n)(y) is nilpotent for all y € Cp(h). Let y € Cp(h), and let y = r +m be
the abstract Jordan decomposition of y as a element of L, with r semi-simple
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and m nilpotent. As in the previous paragraph, r € Cp(h). Let z € Cr(h).
Then

ade, ) (Y)2z = [y, 2]

The operator ad(m) : L — L is nilpotent; it follows that adc, (n)(y) is also
nilpotent. Hence, Cr(h) is a nilpotent Lie algebra.

Now we prove that the n from the first paragraph is zero. Since Cy,(h) is a
nilpotent Lie algebra, it is a solvable Lie algebra. Consider the Lie subalgebra
ad(CL(h)) of gl(L). Since L is semi-simple, ad is injective (see Proposition
5.5.1). Tt follows that ad(Cyp(h)) is a solvable Lie subalgebra of gl(L). By Lie’s
Theorem, Theorem 3.1.2, there exists a basis for L in which all the elements of
ad(Cr(h)) are upper-triangular. The element ad(n) is a nilpotent element of
gl(L), and is hence strictly upper triangular. Let z € Cp(h). Then

k(n,z) = tr(ad(n)ad(z)) =0

because ad(n)ad(z) is also strictly upper triangular. Now Cr(h) = CL(H) = Lo
for the choice H of Cartan subalgebra, and by Proposition 7.0.3, the restriction
of the Killing form to L¢ is non-degenerate. This implies that n = 0. O

Corollary 7.0.6. Let F' have characteristic zero and be algebraically closed. Let
L be a semi-simple finite-dimensional Lie algebra over F. Let H be a Cartan
subalgebra of L. Then Lo = H.

Proof. By definition, and by Proposition 7.0.5,

Lo={ze€L:[hz]=0foral h e H}
={relL:xeCL(H)}
=H.

This completes the proof. O

Lemma 7.0.7. Let F' have characteristic zero and be algebraically closed. Let
L be a semi-simple finite-dimensional Lie algebra over F. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. If a € ®, then
—a € ®P. Let v € ®, and let x € L, be non-zero. There exists y € L_,, such
that Fx + Fy + Flx,y] is a Lie subalgebra of L isomorphic to sl(2, F).

Proof. Let x € L,, be non-zero. By 3 of Proposition 7.0.3, the Killing form x of
L is non-degenerate; hence, there exists z € L such that x(z, z) # 0. Write

Z=Zo+ZZ5

Bed
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for some zp € H = Lo and 2z € Lg, f € ®. By 2 of Proposition 7.0.3 we have
k(z,Lg) =0 for all B € HY such that 8+ « # 0. Therefore,

k(z,2) = k(z, 20) + Z k(x, 28)

BeD
= Z k(z, z3).
ped
a+5=0

Since k(z, z) # 0, this implies that there exists 8 € ® such that a + 8 =0, i.e,
—a € ®. Also, we have proven that there exists y € L_,, such that x(z,y) # 0.
By 1 of Proposition 7.0.3 and Corollary 7.0.6 we have [z,y] € Ly = H.

Let ¢ € F*. We claim that S(cy) = Fx+ Fy+ F|x,y] is a Lie subalgebra of
L. To prove this it suffices to check that [[x,y], z], [z, y],y] € S(cy). Now since
[x,y] € H, we have by the definition of L,

[[$7 y]? ﬂ = a([x7 y])x,
also, by the definition of L_,

([, y],y] = —a([z, y])y.

This proves that S(cy) is a Lie subalgebra of L.
To complete the proof we will prove that there exists ¢ € F* such that S(cy)
is isomorphic to sl(2, F'). Let ¢ € F*, and set

7 f:cy7 h:[e7f]'

To prove that there exists a ¢ € F* such that S(cy) is isomorphic to sl(2, F') it
will suffice to prove that there exists a ¢ € F'* such that

€eE=T

h#£0, [e, h] = —2e, [f,h] =2f.

We first claim that h is non-zero for all ¢ € F'*. We will prove the stronger
statement that «([z,y]) # 0. Assume that a([z,y]) = 0; we will obtain a
contradiction. From above, we have that [z, y] commutes with z and y. This
implies that ad([z,y]) = [ad(x),ad(y)] commutes with ad(z) and ad(y); these
are elements of gl(L). By Corollary 3.2.2, the element ad([z,y]) is a nilpotent
element of gl(L). However, by the definition of a Cartan subalgebra, ad([z,y])
is semi-simple. It follows that [z,y] = 0. Since « # 0, there exists ¢t € H such
that «a(t) # 0. Now
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This is non-zero, a contradiction. Hence, a([z,y]) # 0 and consequently h # 0
for any ¢ € F*.
Finally, for any ¢ € F'* we have

and

Setting ¢ = 2/a([z,y]) now completes the proof. O

Let the notation be as in Lemma 7.0.7 and its proof. We will write

€a = T, fo = (2/04([$,y]))y, ho = [eo”fa]-

We have e, € L, fo € L_, and h, € H. The subalgebra Fe, + F fo, + Fh, is
isomorphic to sl(2, F). We will write

sl(a) = Feq + Ffo + Fhy,.

We note that
a(ha) = a((2/a([z, )|z, y]) = 2.

Consider the action of sl(«) on L. By Weyl’s Theorem, Theorem 6.2.4, L can be
written as a direct sum of irreducible sl(«) representations. By Theorem 4.3.7
every one of these irreducible representations is of the form V; for some integer
d > 0. Moreover, the explicit description of the representations V; shows that
Vy is a direct sum of h, eigenspaces, and each eigenvalue is an integer. It follows
that L is a direct sum of h,, eigenspaces, and that each eigenvalue is an integer.
As every subspace Lg for § € ® is obviously contained in the 3(h,)-eigenspace
for hg, this implies that for all 5 € ® we have that 5(h,) is an integer.

Proposition 7.0.8. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. Let 5 € ®. The
space Lg 1is one-dimensional, and the only F-multiples of 5 contained in ® are

B and —f.
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Proof. Consider the set
X(B)={ce F:cpe d}.

We have 1 € X(8). By the definition of ®, we have 0 ¢ X (8). Let ¢ € X(B).
Let x € L.g be non-zero. Then
[hg, x] = (cfB)(hp)x
= cB(hg)x

= 2czx.

By the remark preceding the proposition, 2c must be an integer; in particular,
we may say that c is positive or negative. Define

Xi(B)={ceF:cfe€®andc>0}

and
X_(B)={ceF:cfe®andc<0}.

We have
X(B) = X_(B) U X4 (B).

To prove the proposition it will suffice to prove that
#X,.(B)=1 and dimLg = 1.
Let ¢o € X4 (/) be minimal, and define
a = cof.
By definition, o € ®. The map
X, (B) = Xi(a), e e/cy
is a well-defined bijection. Evidently, 1 is the minimal element of X (a); in
particular, 1/2 ¢ X, («).
Now define

M=H®® @ Leo.
ceX (o)

We claim that M is an sl(«) module. Let h € H. Then

[ea, h] = —[h,ea] = —a(h)eq € La,
[fmh] = _[h’ fa] = a(h)fa € L_q,
(e, h] = 0.

It follows that [sl(«), H] C M. Let ¢ € X (). Let © € L. Then

[60”31] S [LonLca] C La-i—ca = L(c+1)a7
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[fomx] S [LfaaLca] C L7a+coc - L(c—l)a7
[ha, 2] = (ca)(ho)T € Leq;

here, we have used 1 of Proposition 7.0.3. This implies that [sl(«), Lco] C M.
Thus, sl(«) acts on M. The subspace M contains several subspaces. Evidently,

slla)CcH®L,®L_, C M.
It is clear that sl(«) is an sl(«) subspace of M. Also, let
K = ker(a) C H.

We claim that
K nsl(a) = 0.

To see this, let k € K Nsl(a). Since K C H, we have k € HNsl(«) = Fhy; write
k = ah, for some a € F. By the definition of K, a(k) = 0. Since a(hy) = 2,
we get a = 0 so that £ = 0. Now let

N = K @sl(a).

We claim that N is an sl(«) subspace of M. To prove this it will certainly suffice
to prove that [sl(«), K] = 0. Let k € K; since K C H, we have:

[ea, k] = —[k,eq] = —a(k)eq = 0,
[favk] = _[kvfa] = a(k)foz =0,
[ha, k] = 0.

It follows that N is an sl(«)-subspace of M. Since K is the kernel of the non-
zero linear functional o on H, it follows that dim K = dim H — 1. Since h, € H
but hy ¢ K, we have H = K @ Fh,. In particular,

HCN.

By Weyl’s Theorem, Theorem 6.2.4, there exists an sl(«)-subspace W of M such
that
M=NggW.

We claim that W is zero. Assume that W # 0; we will obtain a contradiction.
By Weyl’s Theorem, Theorem 6.2.4, we may write W as the direct sum of
irreducible representations of sl(«); by Theorem 4.3.7, each of these representa-
tions is of the form V; for some integer d > 0.
Assume first that W contains a representation V; with d even. By the explicit
description of Vj, there exists a non-zero vector v in Vy such that h,v =0, i.e.,

[hasv] = 0. Write
v="h® @ Vea
ceX(a)
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with h € H and veq € Lo for ¢ € {c € F : ca € ®}. We have
0 = [ha, ]
= [homh]+ Z [homvca}

ceX ()

=0+ Y ca(ha)vea

ceX(a)

= Z 2CVcq -

ceX(a)

Since the vectors v, lie in the summands of

P L

ceX ()

and this sum is direct, we must have v.,, = 0 for all ¢ € X(«). Hence, v =h €
H C N. On the other hand, v € W. Therefore, v € N NW = 0, so that v = 0;
this is a contradiction. It follows that the V; that occur in the decomposition
of W are such that d is odd.

Let d be an odd integer with d > 1 and such that V; occurs in W. By the
explicit description of Vy, there exists a vector v in Vy such that h,v = v, i.e,

[ha,v] = v. Again write
v=h® @ Vea

ceX ()

with h € H and v € Lo for ¢ € X(«). Then
v = [he, V]
= [houh] + Z [h(wvca]

ceX ()

0+ Z ca(ha)Vea

ceX(a)

Z 2CV¢q -

ce{ceX(a)

Therefore,

h® @ Voo = @ 2CV¢q

ceX (o) ceX ()

Since v # 0, this implies that for some ¢ € X (a) we have 2c¢ =1, i.e, c=1/2 €
X (c). This contradicts the fact that 1/2 ¢ X («). It follows that W = 0.

Since W = 0, we have N = M. This implies that #X (o) = 1 and dim L,, =
1. Hence, #X(8) = 1. Since 1 € X (8), we obtain X;(8) = {1}, so that
co = 1. This implies that in fact § = «, so that dimLg = 1. The proof is
complete. O
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Proposition 7.0.9. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. Let a, 8 € ®
with B # ta.

1. We have B(hy) € Z.
2. There exist non-negative integers r and q such that
{(keZ:B+kaecd={kecZ:—r<k<gq}
Moreover, r — g = 8(hq)-
3. If a+ B € D, then [eq, es] is a non-zero multiple of eq+3.
4. We have 8 — B(hy)a € D.

Proof. Proof of 1. Consider the action of sl(a) on L. By Weyl’s Theorem,
Theorem 6.2.4, L is a direct sum of irreducible representations of sl(a). By
Theorem 4.3.7, each of these representations is of the form V; for some integer
d > 0. Each Vj is a direct sum of eigenspaces for h,, and each eigenvalue for h,
is an integer. It follows that L is a direct sum of eigenspaces for h,, with each
eigenvalue being an integer. Let x € Lg be non-zero. Then [hq,z] = B(hqa)z,
so that 8(h,) is an eigenvalue for h,. It follows that S(h,) is an integer.

Proof of 2. Let
M =P Lp -

keZ
We claim that there does not exist a k € Z such that 8 + ka = 0. For suppose
such a k exists; we will obtain a contradiction. We have § = —ka. Hence,

—ka € ®. By Proposition 7.0.8 we must have —k = +1. Thus, 8§ = +a; this
contradicts our hypothesis that 5 # 4+« and proving our claim. It follows that
for every k € Z either S+ ko € ® or Lgyrqo = 0. Next, we assert that M is an
sl(«) module. Let k € Z and © € Lgyrq. Then

[ewx] € [LOMLB-Hfa] - Lﬂ+(k+1)a7
[faax] S [LfomL[%Hca] C Lﬂ+(k71)a7
[ha, z] = (B + ka)(ha)z = (B(ha) + ka(ha))z = (B(ha) + 2k).

Here we have used 1 of Proposition 7.0.3 and the fact that a(hy) = 2. These
formulas show that M is an sl(a) module. We also see from the last formula
that M is the direct sum of h, eigenspaces because h, acts on the zero or
one-dimensional F-subspace Lgira by B(he) + 2k for k € Z; moreover, every
eigenvalue for h, is an integer, and all the eigenvalues for h, have the same
parity. As in the proof of 1, M is a direct sum of irreducible representations
of the form V; for d a non-negative integer. The explicit description of the
representations of the form V; for d a non-negative integer implies that if more
than one such representation V; occurs in the decomposition of M, then either
some h, eigenspace is at least two-dimensional, or the h, eigenvalues do not
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all have the same parity. It follows that M is irreducible, and there exists a
non-negative integer such that M = V,;. The explicit description of V; implies

that
d

M =EPM(d-2n)

n=0
where
M(n)={z e M : hpx =nzx}
for n € {0,...,d}, and that each of the h, eigenspaces M(d — 2n) for n €
{0,...,d} is one-dimensional. Now consider the set
{k€Z:pB+kac d}.
This set is non-empty since it contains 0. Let

kelkeZ:p+kaed®}

Then Lgyra # 0, and from above B(h,) + 2k is an eigenvalue for h,. This
implies that there exists n € {0,...,d} such that d — 2n = 8(hy) + 2k. Solving
for k, we obtain k = (d — 8(ha))/2 — n. It follows that

q=(d—p(ha))/2

is an integer; since £ may assume the value 0, we also see that ¢ is non-negative.
Continuing, we have

d>n>0,

—d<—n<0,
gq—d<q—-n<gq
—(d-q) <k <gq

—-r<k<gq,

where r = d — g. Since k£ may assume the value 0, r is a non-negative integer.
We have proven that

{keZ:f+kaecd®tC{keZ:—r<k<gqg}
Now
#{keZ:f+kaecd®}=dimM =dimVy;=d+ 1.
Also,
#{keZ:—r<k<qg=q—(-r)+1
=q+r+1

=q+d—q+1
=d+1.
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It follows that
(keZ:B+kaecdy={keZ:—r<k<gq},
as desired. Finally,
r—q=d—q—q=d—2¢=d—(d— B(ha)) = B(ha).

This completes the proof of 2.

Proof of 3. Assume that o+ 8 € ®. We have that a + 8 # 0, Losg is
non-zero, and Lq g is spanned by e, g. To prove 3, it will suffice to prove that
[ea, es] is non-zero because by 1 of Proposition 7.0.3 we have [eq,es] € Latp.
Assume that [en, es] = 0; we will obtain a contradiction. Let M be as in the
proof of 2. Now eg € Lg C M; also, it was proven that M = V;. Since
[ea,es] = 0, by the structure of Vg, we have [hq, eg] = deg. On the other hand,
since eg € Lg, we have [ho,eg] = B(ha)eg. It follows that d = S(hq). This
implies that ¢ = 0. By 2, we therefore have

1¢{keZ:p+kacd}.

This contradicts the assumption that o + 8 € ®.
Proof of 4. We have

!
IA
!

r—q) <gq,
—r < _/B(ha) <gq.

Here, r — ¢ = B(hq) by 2. It now follows from 2 that 5 — B(hq)o € ®. O

Proposition 7.0.10. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3.

1. If h € H is non-zero, then there exists a € ® such that a(h) # 0.
2. The elements of ® span HV.

Proof. Proof of 1. Let h € H be non-zero. Assume that a(h) = 0 for all o € P.
Let @ € ®. Then [h,Ly] C a(h)Ly = 0. It follows that [h,2] = 0 for all = € L.
Hence, h € Z(L) = 0; this is a contradiction.

Proof of 2. Let W be the span in HY of the elements of ®. Assume that
W # HV; we will obtain a contradiction. Since W is a proper subspace of H,
there exists a non-zero linear functional f : HY — F such that f(W) = 0. Since
the natural map H — (H")" is an isomorphism, there exists h € H such that
f(A) = A(h) for all A € HY. Now h # 0 because f is non-zero. If A € W, then
A(h) = f(A\) = 0. This contradicts 1. O
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Let F have characteristic zero and be algebraically closed. Let L be a semi-
simple finite-dimensional Lie algebra over F'. Let H be a Cartan subalgebra of
L, and let the notation be as in Proposition 7.0.3. Consider the F-linear map

H— HY (7.1)

defined by h +— k(-, h). By 3 of Proposition 7.0.3 and Corollary 7.0.6, this map
is injective, i.e., the restriction of the Killing form to H is non-degenerate; since
both F-vector spaces have the same dimension, it is an isomorphism. There is
thus a natural isomorphism between H and HV. In particular, for every root
«a € O there exists t, € H such that

a(z) = k(z,ty)
for z € H.

Lemma 7.0.11. Let F' have characteristic zero and be algebraically closed. Let
L be a semi-simple finite-dimensional Lie algebra over F. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. Let o € ®.

1. Forx € Ly and y € L_,, we have

[, y] = k(z, y)ta-

In particular,
ha = [eavfoc] = K/(eayfa)ta-

2. We have

2
hoy = ———1tq.
E(ta,ta)

and
K(tasta)k(ha, he) = 4.

3. If p € ®, then
2(cv, B)

(@, )

Proof. 1. Let h € H, x € L, and y € L_,. We need to prove that [z,y] —
k(z,y)te = 0. Now by 1 of Proposition 7.0.3 we have [z,y] € Lo, and H = Lg
by Corollary 7.0.6. Thus, [z,y] € H. It follows that [x,y] — k(z,y)ts is in H.
Let h € H. Then

(h, k(2 y)ta)
[h> .’L‘], y) - K(LL', y)’i(hv ta)
a(h)z,y) — r(z, y)a(h)
(z

y
y)(h)
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Since this holds for all h € H, and since the restriction of the Killing form to
H is non-degenerate, we obtain [z,y] — k(z,y)ts = 0. This proves the first and
second assertions.

2. We first note that

2 =a(hy)
= k(ha,ta)
= k(k(ea, fa)tarta)
= k(ea fa)k(tasta)
2
PRSI K(eas fa)-

The first claim of 2 now follows now from 1 by substitution. Next, we have:

2 2

R homha =K ta, ta
( ) (m(ta,ta) K(ta,ta) )
22
= ——k(ta, ta
ﬁ(ta,ta)QH( )
B 4
 K(ta,ta)

3. Using the definition of (-,-) and t, and tg, we have

2(a, B) _ 2k(ta,tp)
(o, @) E(ta,ta)

= o)
K(€a, fa) - K(tastp)
= r(k(€a;s fa) - tastp)
k(ha,tp)
= B(ha).
This completes the proof. O

We note that by 2 of Lemma 7.0.11 the element h,, is determined soley by
ta, which in turn is canonically determined by the Killing form.

Proposition 7.0.12. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. If a, 8 € P,
then k(ha, hg) € Z and k(tq,tg) € Q.

Proof. We begin by considering the matrix of the linear operator ad(hy) = [ha, °]
with respect to the decomposition

L=He L,

yED
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Since H is abelian, ad(h,) acts by zero on H. If v € ®, then ad(h,) acts by
multiplication by y(ha) on L, (by the definition of L.). It follows that the
matrix of ad(h, ), with respect to the above decomposition, is:

0

v(ha)

Therefore, the matrix of ad(hy) o ad(hg) is
0

Y (ha)y(hg)

This implies that
#(has h) = tr(ad(ha) 0 ad(hg)) = 3 1(ha) (k).
~yED
By 1 of Proposition 7.0.9 the product y(hq)vy(hg) is in Z for all v € ®. This
implies that x(hq, hg) € Z. Next, using Lemma 7.0.11,
K(tasts) = k(27 K (tas ta)ha, 27 K(ts, tg)hg)
= 471/{(150” ta)ﬁ(tﬁv tﬁ)”(hav hﬁ)

4 4
s o) (g, i) e 1)
o 4K(ha,hﬁ)

B “(haa ha)”(hﬁv hB) -

=41

This completes the proof. O

Let F have characteristic zero and be algebraically closed. Let L be a semi-
simple finite-dimensional Lie algebra over F'. Let H be a Cartan subalgebra of L,
and let the notation be as in Proposition 7.0.3. We introduce a non-degenerate
F-symmetric bilinear form (-,-) on HV via the isomorphism

H = HY
from (7.1). If o, B € @, then we have

(a, B) = k(ta,tp),
and by Proposition 7.0.12,
(o, B) € Q.
Let K be a subfield of F'. Evidently, Q C K. We define Vi to be the K-subspace
of HY generated by ®.
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Proposition 7.0.13. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. Let {aq, ..., a4}
be an F-basis for HY with oy, ..., ap € ®; such a basis exists by 2 of Proposition
7.0.10. Let B € ®, and write

f=cron+-+ oy
forec,...,co € F. Thency,...,ce € Q.
Proof. Let i € {1,...,£}. Then
(i, B) = erlovi, o) + -+ + e, o).
It follows that

(a1, ) c1
: =5
(042,5) Ce
where
(,a1) - (a1, 00)
S = . .
(1) o+ (au, )

Since (-, -) is a non-degenerate symmetric bilinear form the matrix S is invertible.
Therefore,

(ala 6) C1

St : =|:

(alv ﬂ) Cy
By the remark preceding the proposition the entries of all the matrices on the
left are in Q; hence, ¢1,...,c € Q. O

Proposition 7.0.14. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. As a Lie algebra,
L is generated by the root spaces L, for a € ®.

Proof. By the decomposition

L=Ho P La
acd

that follows from Proposition 7.0.3 and Corollary 7.0.6 it suffices to prove that
H is contained in the F-span of the F-subspaces [Ly, L_4] for a € ®. By the
discussion preceding Proposition 7.0.8, the elements h,, for a € ® are contained
in this F-span. By Lemma 7.0.11, this F-span therefore contains the elements ¢,
for o € . By Lemma 7.0.10, the linear forms o € ® span H"; this implies that
the elements ¢, for a € ® span H. The F-span of the F-subspaces [Lq, L_q]
for a € ® therefore contains H. O
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7.1 An associated inner product space

Let F' be algebraically closed and have characteristic zero. Then Q C F'.
Lemma 7.1.1. Let V) be a finite-dimensional vector space over Q, and assume
that (+,)o : Vo x Vo — Q is a positive-definite, symmetric bilinear form. Let

V =R ®qg Vo, so that V is an R vector space. Let (-,-) : V xV — R be the
symmetric bilinear form determined by the condition that

(a®v,b®@w) = ab(v,w)g

fora,b € R and v,w € V. The symmetric bilinear form (-,-) is positive-definite.

Proof. Let vy,...,v, be an orthogonal basis for the Q vector space V{; then
1®wvy,...,1®wv, is an orthogonal basis for the real vector space V. Let x € V.
There exist aq,...,a, € R such that

r=a1(l®v)+ - +a,(1Qv,) =a1 Qv + -+ a, Qvy,.

We have

n

(z,2) = Y (a: ® vi,a; D v;)

ij=1

n
= Z aiaj (’Ui, Uj)()

i,7=1
n
= Z (l?(’Ui, Ui)o.
i=1

Since (-, )¢ is positive-definite, (v;,v;)o > 0 for ¢ € {1,...,n}. It follows that if
(x,z) =0, then ay = --- = a, = 0, so that z = 0. O

Proposition 7.1.2. Let F' be algebraically closed and have characteristic zero.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let the notation be as in Proposition 7.0.3. Let Vi be the
Q subspace of HY = Homp(H,F) spanned by the elements of ®. We have
dimg Vo = dimp HY. The restriction (-,-)o of the symmetric bilinear form on
HY (which corresponds to the Killing form) to Vo x Vi takes values in Q and is
positive-definite.

Proof. Let {a1,...,ap} C ® be as in the statement of Proposition 7.0.13. Then
by Proposition 7.0.13 the set {a1,...,az} is a basis for the Q vector space Vp,
and is also a basis for the I’ vector space HV. Hence, dimg Vp = dimp HY =

To see that (-,-)o takes values in Q it suffices to see that (a, ) € Q for
a, 8 € ®. This follows from Proposition 7.0.12.
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Let y € Vy. Regard y as an element of HY. Let h be the element of H
corresponding to y under the isomorphism H —s HV. By Corollary 7.0.6 and
Proposition 7.0.8 we have

L=He& @ L
acd
and each of the subspaces L, is one-dimensional. Moreover, ad(h) acts by 0 on
H and by a(h) on L, for a € ®. It follows that

(v,y) = r(h, h)
= tr(ad(h) o ad(h))

=Y a(h)?

acd

=Y lta, h)?

acd

= Z(av y)Q'

acd

Since («,y) € R for a € @, we have (y,y) > 0. Assume that (y,y) = 0. By the
above formula for (y, y) we have that a(h) = k(te, h) = (a,y) =0 for all o € P,
or equivalently, a(h) = 0 for all &« € . By Proposition 7.0.10, this implies that
h =0, so that y = 0. O



Chapter 8

Root systems

8.1 The definition

Let V be a finite-dimensional vector space over R, and fix an inner product
(,+) on V. By definition, (-,-) : V x V — R is a symmetric bilinear form such
that (z,x) > 0 for all non-zero z € V. Let v € V be non-zero. We define the
reflection determined by v to be the unique R linear map s, : V — V such
that s,(v) = —v and s,(w) = w for all w € (Rv)*. A calculation shows that s,
is given by the formula
2

(.0),

(v,v)
for z € V. Another calculation also shows that s, preserves the inner product

(), ie.,

sy(z) = —

(sv(2), 50(y)) = (2, y)

for x,y € V; that is, s, is in the orthogonal group O(V'). Evidently,

det(s,) = —1.
We will write (2.9)
2(z,y
z,Y) =
.v) (¥, 9)

for z,y € V. We note that the function (-,-) : V' x ¥V — R is linear in the first
variable; however, this function is not linear in the second variable. We have

sy(x) =2 — (z,v)v

forxz e V.
Let R be a subset of V. We say that R is a root system if R satisfies the
following axioms:

(R1) The set R is finite, does not contain 0, and spans V.

83
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(R2) If & € R, then a and —« are the only scalar multiples of a that are
contained in R.

(R3) If « € R, then s,(R) = R, so that s, permutes the elements of R.

(R4) If o, B € R, then (a, 3) € Z.

8.2 Root systems from Lie algebras

Let F' be algebraically closed and have characteristic zero. Let L be a semi-
simple Lie algebra over F. Let H be a Cartan subalgebra of L, and let

L=Ly® @D La

be the root space decomposition of L with respect to L. Here, for a F linear
functional f: H — F,

Ly={xeL:hx]=f(h)xforall he H}.

In particular,
Lo={zx e L:[h,z]=0forall h € H}.

Here, ® is the subset of a in
HY = Homp(H, F)

such that L, # 0. The elements of ® are called the roots of L with respect to
H. By Corollary 7.0.6 we have Ly = H so that in fact

L=He& @D La.
acd

Previously, we proved that the F' subspaces L, for a € ® are one-dimensional
(Proposition 7.0.8). We also proved that the restriction of the Killing form & to
H is non-degenerate (Proposition 7.0.3 and Corollary 7.0.6). Thus, there is an
induced F' linear isomorphism

H -~ HY.

Via this isomorphism, we defined an F symmetric bilinear form on HV (by
transferring over the Killing form via the isomorphism). Let

Vo = Q span of ® in H".
By Proposition 7.1.2, we have

dimg Vp = dimp HY = dimp H,
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and the restriction (-, -)o of the symmetric bilinear form on H"Y to Vj is an inner
product, i.e., is positive definite, and is QQ valued. Let

V =Reg Vo,

so that V' is an R vector space, and define an R symmetric bilinear form (-, -) on
V by declaring (a ® v,b® w) = ab(v, w)o for a,b € R and v,w € V;. By Lemma
7.1.1, we have that (-,-) is positive-definite.

Proposition 8.2.1. Let the notation be as in the discussion preceding the propo-
sition. The subset ® of the inner product space V is a root system.

Proof. 1t is clear that (R1) is satisfied. (R2) is satisfied by Proposition 7.0.8.
To see that (R3) is satisfied, let o, 8 € ®. Then by 3 of Lemma 7.0.11,

2(8,a)
(a, @)

By 4 of Proposition 7.0.9 we have 8 — f(hq)a € ®. It follows that s.(5) € P,
so that (R3) is satisfied. To prove that (R4) holds, again let «, 5 € ®. We have

sa(B) =B — a=f—p(ha)a.

2(a, B)
a, ) = .
=55
By 3 of Lemma 7.0.11 we have
2(ev, B)
= a(hg).
6.5
Finally, by 1 of Proposition 7.0.9, this quantity is an integer. This proves
(R4). O

8.3 Basic theory of root systems

Let V be a finite-dimensional vector space over R equipt with an inner product
(+,+). The Cauchy-Schwartz inequality asserts that

(@, ) < [l llyll
for z,y € V. It follows that if x,y € V' are nonzero, then
(z,y)
= Ayl —

If z,y € V are nonzero, then we define the angle between = and y to be the
unique number 0 < 6 < 7 such that

(@,9) = l[z[lllyll cos 6.

The inner product measures the angle between two vectors, though it is a bit
more complicated in that the lengths of z and y are also involved. The term
“angle” does make sense geometrically. For example, suppose that V = R? and
we have:
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T
0
> Y
Project z onto y, to obtain ty:
z x
0
)
ty
Then we have
T =z 4+ ty.
Taking the inner product with y, we get
(,y) = (29)+(ty,y)
(z,y) = 0+1i(y,y)
(z,y) = tlyl?
. (w,yQ)_
Iyl
On the other hand,
t
P
]
cosf = tM
[l
M cosf.
Iyl
If we equate the two formulas for ¢t we get (x,y) = ||z||||y|| cos§. We say that

two vectors are orthogonal if (z,y) = 0; this is equivalent to the angle between
x and y being 7/2. If (x,y) > 0, then we will say that x and y form an acute
angle; this is equivalent to 0 < 6 < 7/2. If (z,y) < 0, then we will say that x
and y form an obtuse angle; this is equivalent to 7/2 < 6 < 7.

Non-zero vectors also define some useful geometric objects. Let v € V be
non-zero. We may consider three sets that partition V:

{z €V :(z,v) >0}, P={zeV:(z,v)=0} {y e V: (z,v) <0}
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The first set consists of the vectors that form an acute angle with v, the middle
set is the hyperplane P orthogonal to Rv, and the last set consists of the vectors
that form an obtuse angle with v. We refer to the first and last sets as the half-
spaces defined by P. Of course, v lies in the first half-space. The formula for
the reflection s, shows that

(sv(2),0) = =(2,v)

for z in V, so that S sends one half-space into the other half-space. Also, S
acts by the identity on P. Multiplication by —1 also sends one half-space into
the other half-space; however, while multiplication by —1 preserves P, it is not
the identity on P.

Lemma 8.3.1. Let V be a vector space over R with an inner product (-,-).
Let z,y € V and assume that © and y are both non-zero. The following are
equivalent:

1. The vectors x and y are linearly dependent.
2. We have (z,y)* = (z,2)(y, y) = [[z]?[ly]|*.
3. The angle between x and y is 0 or m.

Proof. 1 = 2. This clear.
2 = 3. Let 6 be the angle between x and y. We have

(z,9)* = [[2|*[ly]|* cos®

Assume that (z,y)* = (z,2)(y,y) = |=[?y|*. Then (z,y)* = |[z]*|ly||* # 0,
and cos? § = 1, so that cos = £1. This implies that § = 0 or § = 7/2.

3 = 2. Assume that the angle 6 between x and y is 0 or m. Then
cos? = 1. Hence, (x,9)? = |lz|?|ly||>

2 = 1. Suppose that (z,y)? = (z,2)(y,y). We have

- 8= {200 = ) - 28w + (2 0.0)
- ) - 0
= (yy) - (gj’(?’(g)’ )
=0.

It follows that y — Exygx =0, so that x and y are linearly dependent. O

x,x
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Lemma 8.3.2. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let a,8 € R, and
assume that o # £8. Then

(a, BY(B, ) € {0,1,2,3}.
Proof. Let 0 be the angle between o and 3. We have
2(a, 8) 2(8, )
aaB Baa =
@ BYP ) =55y Tava)
_ 4a,B)?
e8]
(o, BY(B, @) = 4cos? 6.
Since (a, 8)(B,a) is an integer, the above equality implies that 4cos? 6 is an
integer. Since 0 < cos? 6§ < 1, we must have
(o, B)(B,a) = 4cos” 0 € {0,1,2,3,4}.

We claim that 4cos?f = 4 is impossible. Assume that 4cos?6 = 4; then
cos?@ = 1. This implies that # = 0 or # = 7. By Lemma 8.3.1 it follows that
« and B are linearly dependent, and consequently that § is a scalar multiple of
a. By (R2), we must have 8 = +a; this is a contradiction. O

—~

Lemma 8.3.3. Let V be a finite-dimensional vector space over R equipt with an
inner product (-,-), and let R be a root system in V. Let o, 8 € R, and assume
that a # £6 and ||| > ||||. Let 0 be the angle between o and B. Ezactly one
of the following possibilities holds:

angle type 0 cosf | {a,B) | (B,a) H

7/6=30° | V/3/2 1 3 V3

strictly acute T/4 = 45° V2/2 1 2 V2
m/3=60° | 1/2 1 1 1

right w/2 = 90° 0 0 0 not determined

om/3=120° | —1/2 | -1 | -1 1

strictly obtuse 3w/4=135° | —v/2/2 | -1 -9 V2

57/6 =150° | —/3/2 | —1 -3 V3

Proof. By the assumption ||3|| > ||a|| we have (8, 3) = ||18]|?> > (o, a) = ||a]|?,

so that
_2(B.0)] _ 2(0.9)

B0l =) = (5.5)

= [(a, B)I.
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By (R4) we have that («, 8) and (8, a) are integers, and by Lemma 8.3.2 we
have (a, 8)(8, ) € {0,1,2,3}. These facts imply that the possibilities for {(«, 3)

and (8, a) are as in the table.

Assume first that (8,a) = (a, 3) = 0. From above, (a, 8)(3,a) = 4cos? 6.

It follows that cos@ = 0, so that 6 = 7/2 = 90°.
Assume next that (3, a) # 0. Now

(B,) _ 2(B,a) (B,B) _ (B, D)

(.p) (va) 2(a,B) (a0

so that éggi is positive and

(B.a) _ 1181
(. 8) e’
This yields the ||5]|/||e|| column. Finally,
_ 2, )
@A =165
_ 2[|alll8]| cos &
18112
[lev]
=2—rcosf
(o, B) 2”6“ cos
so that 1181
osf = §m<a7ﬁ>.

This gives the cos @ column.

O

Lemma 8.3.4. Let V be a finite-dimensional vector space over R equipt with
an inner product (,-), and let R be a root system in V. Let a, f € R. Assume

that a # £8 and ||B] > [|c]|.

1. Assume that the angle 0 between o and B is strictly obtuse, so that by
Lemma 8.3.3 we have 0 = 27/3 = 120°, § = 3w /4 = 135°, or 0 = 57/6 =

150°. Then oo+ B € R. Moreover,

0 =3r/4=135° = 2a+ B € R,
0 =51/6=150° = 3a+ 5 € R.

2. Assume that the angle between o and f3 is strictly acute, so that by Lemma

8.3.3 we have § = w/6 = 30°, 0 = /4 = 45°, or § = w/3 = 60°. Then

—a+ B € R. Moreover,

9 =n/d=45° = —2a+BER,
§=m/3=60° = —3a+B€ER.
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Proof. 1. By (R3), we have sg(a) = a—(a, 5) € R. Since the angle between o
and 3 is strictly obtuse, by Lemma 8.3.3 we have that («, 3) = —1. Therefore,
a+ B € R. Assume that § = 37/4 = 135°. By Lemma 8.3.3 we (8,a) = —2.
Hence, s4(8) = 8 — (8,a)a = B+ 2a € R. The case when 6 = 57/6 = 150° is
similar.

2. By (R3), we have sg(a) = o — (o, 8)8 € R. Since the angle between
and f is strictly acute, by Lemma 8.3.3 we have that (o, 3) = 1. Therefore,
a—f € R. Hence, —a+ € R. Assume that § = 7/4 = 45°. By Lemma
8.3.3 we (5,a) = 2. Hence, s4(8) = 8 — (B,a)a =  —2a € R. The case
0 = /3 = 60° is similar. O

Proposition 8.3.5. Let V = R? equipt with the usual inner product (-,-), and
let R be a root system in V. Let £ be the length of the shortest root in R. Let S
be the set of pairs («, B) of non-colinear roots such that ||| = € and the angle
0 between v and [ is obtuse, and B is to the left of a. The set S is non-empty.
Fiz a pair (a, B) in S such that 6 is mazimal. Then

1. (Az root system) If 0 = 120° (so that ||| = ||B]] by Proposition 8.3.3),
then R, a, and [ are as follows:

B a+p
60°
60° 60°
— - >
60° 60°
60°
—a—8 -4

2. (By root system) If § = 135° (so that ||B]| = v/2||a|| by Proposition 8.3.3),
then R, a, and B are as follows:

B e —&: 38 2a0+
45°] 45°
45° 45°
—a a
45° 45°
45° | 45°
Y

~2a-8  -a-§ -8
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3. (G root system) If § = 150° (so that ||B|| = V/3||a|| by Proposition 8.3.3),
then R, a, and B are as follows:

3o+ 28

A

8 a+p 2a0+ B 3a+ 6

—3a—pf —20—-p —a—p —B

4

—3a— 28

4. (A1 x Ay root system) If 0 = 90° (so that the relationship between |5]|
and ||| is not determined by Proposition 8.3.3), then R, «, and 5 are as
follows:

90° | 90°

90° | 90°

Y

B

Proof. Let (a, ) be a pair of non-colinear roots in R such that |«|| = ¢; such
a pair must exist because R contains a basis which includes «. If the angle
between « and f is acute, then the angle between o and —f is obtuse. Thus,
there exists a pair of roots (a, 8) in R such that ||a| = ¢ and the angle between
« and ( is obtuse. If 3 is the right of «, then —3 forms an acute angle with
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« and is to the left of a; in this case, s,(8) forms an obtuse angle with « and
Sa(B) is to the left of 5. It follows that S is non-empty.

Assume that § = 120°, so that ||«|| = ||8]| by Lemma 8.3.3. By Lemma
8.3.4, a+ f € R. Tt follows that «a, 8,a+ 8, —a, —3,—a — § € R. By geometry,
la+ 8| = ||| = ||8]l. Tt follows that R contains the vectors in 1. Assume

that R contains a root v other than «, 8, + 8, —«a, —3,—a — 5. By Lemma
8.3.3 we see that v must lie halfway between two adjacent roots from «, 5, a +
B, —a,—fB,—a — (. This implies that # is not maximal, a contradiction.

Assume that § = 135°, so that ||3| = v/2||a|| by Lemma 8.3.3. By Lemma
8.3.4, we have o + 3,2a + 8 € R. It follows that R contains «, 8, + 3, 2a +
B,—a,—0B,—a — B,—2a — 3, so that R contains the vectors in 2. Assume that
R contains a root v other than «, 5,a + 3,2a + 8, —a, —3,—a — B, —2a — (.
Then v must make an angle strictly less than 30° with one of o, 5, + 3,2 +
B,—a,—0,—a — [, —2a — 3. This is impossible by Lemma 8.3.3.

Assume that @ = 150°, so that ||3]| = v/3||a|| by Lemma 8.3.3. By Lemma
8.3.4 we have a+ 3,3a+ f € R. By geometry, the angle between v and 3« + 8
is 30°. By Lemma 8.3.3, —a+ (3a + 8) = 2o + § € R. By geometry, the angle
between § and 3« + [ is 120°. By Lemma 8.3.3, B +3a+ 8 =3a+28 € R. It
now follows that R contains the vectors in 3. Assume that R contains a vector
v other than «, 8, a4+ 3, 2a+ 5, 3a+ 3, 3a+28, —a, — 3, —a— 5, —2a— 8, —3a—
B, —3a—20. Then Then v must make an angle strictly less than 30° with one of
a, Bya+ 6,20+ 5,3a+5,3a+28, —a, — 3, —a— 3, —2a— 5, —3a— 3, —3a—20.
This is impossible by Lemma 8.3.3.

Finally, assume that 8 = 90°. Assume that R contains a root y other than
a, B, —a, —f. Arguing as in the first paragraph, one can show that the set S
contains a pair with 6 larger than 90°; this is a contradiction. Thus, R is as in
4. O

8.4 Bases

Let V' be a finite-dimensional vector space over R equipt with an inner product
(+,+), and let R be a root system in V. Let B be a subset of R. We say that B
is a base for R if

(B1) B is a basis for the R vector space V.
(B2) Every element a € R can be written in the form
a=> cp)B
BeB

where the coefficients ¢(8) for 8 € B are all integers of the same sign (i.e.,
either all greater than or equal to zero, or all less than or equal to zero).

Assume that B is a base for R. We define

R+={a€R:

« is a linear combination of § € B
with non-negative coefficients ’
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_ « is a linear combination of g € B
R =JdaeR: . . . .
with non-positive coefficients
We have

R=RTUR".

We refer to Rt as the set of positive roots with respect to B and R~ as the
set of negative roots with respect to B. If & € R is written as in (B2), then
we define the height of a to be the integer

ht(a) = Z c(B).

BeB

Let V be a finite-dimensional vector space over R equipt with an inner
product (-, ), and let R be a root system in V. Let v € V be non-zero. We will
say that v is regular with respect to R if (v, ) # 0 for all & € R, i.e., if v does
not lie on any of the hyperplanes

P,={zeV:(z,a)=0}

for a € R. If v is not regular, then we say that v is singular with respect to R.
Evidently, v is regular with respect to R if and only if

S V*UaeRPa.

We denote by Vg the set of all vectors in V' that are regular with respect to R,
so that
Vreg(R) =V —UserPu.

Evidently, Vieg(R) is an open subset of V; however, it is not entirely obvious
that Vieg(R) is non-empty.

Lemma 8.4.1. Let V be a finite-dimensional vector space over R, and let
Ui,...,U, be proper subspaces of V. Define U = U;_U;. If U; is a proper
subset of U for alli € {1,...,n}, then U is not a subspace of V.

Proof. Assume that U; is a proper subset of U for all i € {1,...,n}. Since U; is
a proper subset of U for all ¢ € {1,...,n} we must have n > 2. After replacing
the collection of U; for i € {1,...,n} with a subcollection, we may assume that
U € Ujand U; L U, for 4,5 € {1,...,n}, i # j. We will prove that U is not a
subspace for collections of proper subspaces Uy, . .., U, with n > 2 and such that
that U; € U; and U; € U; for i,j € {1,...,n} by induction on n. Assume that
n = 2 and that U = Uy UU, is a subspace; we will obtain a contradiction. Since
Uy € Uy and Uy € Uy, there exist up € Us such that us ¢ Uy and uy € Uy such
that uy ¢ Us. Since U is a subspace we have u; +us € U. Hence, u1 + ug € Uy
or uy +us € Us. If uy + ug € Uy, then us € Uy, a contradiction; similary, if
u1 + ug € Us, then uy € Us, a contradiction. Thus, the claim holds if n = 2.
Suppose that n > 3 and that the claim holds for n — 1; we will prove that
the claim holds for n. We argue by contradiction; assume that U is a subspace.
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We first note that U; ¢ Uiy ;21 Us; otherwise, U = U;’:L#lUZ- is a subspace,
contradicting the induction hypothesis. Similarly, Us € U, ;,,Ui. Let ug € Uy
be such that u; ¢ Uiz Ui and let us € Us be such that ug ¢ Uit g iz0Ui. Let

A1, ..., An_1 be distinct non-zero elements of R. The n — 1 vectors
wy + Atug,  wp -+ Aguz, ..., U+ Aju
are all contained in U, and hence must each lie in some U; with i € {1,...,n}.

However, no such vector can be in U; because otherwise ug € Uy; similarly, no
such vector can be in U;. By the pigeonhole principle, this means that there exist
distinct 7,k € {2,...,n} and ¢ € {3,...,n} such that us +\juz, u1 + Ayus € U;.
It follows that (A\; — Ag)uz € U;, so that us € U;. This is a contradiction. O

Lemma 8.4.2. Let V be a finite-dimensional vector space over R equipt with
an inner product (-, -), and let R be a root system in V. Assume that dimV > 2.
There exists a v € V such that v is reqular with respect to R, i.e., Vieg(R) is
non-empty.

Proof. Assume that there exists no v € V such that v is regular with respect
to R; we will obtain a contradiction. Since no regular v € V exists, we have
V = UaerP,. Since dimV > 2, and since R contains a basis for V over R, it
follows that #R > 2. Also, dim P, = dimV — 1 for all « € R. We now have a
contradiction by Lemma 8.4.1. O

Assume that v is regular with respect to R. As we have mentioned before,
v can be used to divide V into three components:

{z € V : (z,v) = 0} : the hyperplane of vectors orthogonal to v,
{z € V : (z,v) > 0} : the vectors that form a strictly acute angle with v,
{z € V : (z,v) < 0} : the vectors that form a strictly obtuse angle with v.

We will write

Rt(v) ={a € R: (a,v) > 0},
R (v) ={a € R: (a,v) < 0}.

Evidently,
R=R"(v)UR (v).

Let o € R™(v). We will say that « is decomposable if a = 81 + 2 for some
b1, B2 € RY(v). If a is not decomposable we will say that « is indecomposable.
We define

B(v) = {a € R"(v) : a is indecomposable}.

Lemma 8.4.3. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let v € V be regular
with respect to R (such a v exists by Lemma 8.4.2). The set B(v) is non-empty.
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Proof. Assume that B(v) is empty; we will obtain a contradiction. Let o« € R™
be such that (v, @) is minimal. Since « is decomposable, there exist a1, a2 € RT
such that o« = a1 + a5. Now

(v, ) = (v,01) + (v, ).

By the definition of R™ (v), the real numbers (v, @), (v, 1), and (v, a2) are all
positive. It follows that we must have (v,a) > (v,a1). This contradicts the
definition of «. O

Lemma 8.4.4. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let v € V be regular
with respect to R (such a v exists by Lemma 8.4.2). If a, B € B(v) with o # 3,
then the angle between o and 8 is obtuse, i.e., (a, 8) < 0.

Proof. Assume that the angle between o and f is strictly acute. With out loss
of generality, we may assume that ||a|| < ||8]|. Since (v, ) > 0 and (v, 3) > 0 we
must have o # —f. By Lemma 8.3.4 we have v = —a 4+ € R. Since v € R, we
also have —y € R. Since R = R"(v)UR™ (v), we have y € RT (v) or —y € R*(v).
Assume that v € RT (v). We have y+a = 8 with vy, € RT (v). This contradicts
the fact that 8 is indecomposable. Similarly, the assumption that —y € RT(v)
implies that « = v + (8, contradicting the fact that « is indecomposable. It
follows that the angle between « and S is obtuse, i.e., (o, 8) < 0. O

Lemma 8.4.5. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-). Let v be a non-zero vector in V, and let B C V be a
finite set such that (v,a) >0 for alla« € B. If (o, 8) <0 for all a, 8 € B, then
the set B is linear independent.

Proof. Assume that c¢(a) for o € B are real numbers such that

0= Z cla)a.

a€B

We need to prove that c(a) = 0 for all &« € B. Suppose that c¢(a) # 0 for some
a € B; we will obtain a contradiction. Since c¢(a) # 0 for some o € B, we may
assume that, after possibly multiplying by —1, that there exists o € B such

that ¢(a) > 0. Define
T = Z c(a)a.

a€B, c¢(a)>0

We also have

= Y (~dB)B.

BEB, c(B)<0

Therefore,

(@a)=( Y  ca)a (—c(8))B)

a€B, c(a)>0 BEB, ¢(B)<0



96 CHAPTER 8. ROOT SYSTEMS

(@z)= > cla) (—c(B)(af).
a€B, c¢(a)>0
BEB, c¢(B)<0

By assumption we have (o, 8) < 0 for o, 8 € B. Therefore, (z,x2) < 0. This
implies that z = 0. Now

(v,x) - (’U, Z C(Oz)Oé)

a€B, c¢(a)>0

0= Z c(a) (v, a).

a€B, c(a)>0

By the definition of B we have (v,«) > 0 for all & € B. The last displayed
equation now yields a contradiction since the set of o € B such that c¢(a) > 0
is non-empty. O

Proposition 8.4.6. Let V be a finite-dimensional vector space over R equipt
with an inner product (-,-), and let R be a root system in V. Let v € V be
regular with respect to R (such a v exists by Lemma 8.4.2). The set B(v) is a
base for R, and the set of positive roots with respect to B(v) is R*(v).

Proof. We will begin by proving that (B2) holds. Evidently, since R~ (v) =
—R*(v), to prove that (B2) holds it suffices to prove that every 8 € R¥(v) can
be written as

8= Z cla)a, c(a) € Z>o. (8.1)

aeB(v)

Let S be the set of 8 € RT(v) for which (8.1) does not hold. We need to prove
that S is empty. Suppose that S is not empty; we will obtain a contradic-
tion. Let 8 € S be such that (v, ) is minimal. Clearly, 8 ¢ B(v), i.e., § is
decomposable. Let 31,82 € RT(v) be such that 8 = 81 + 82. We have

(Uaﬁ) = (vvﬁl) + (U’B2)'

By the definition of Rt (v), the real numbers (v, 3), (v, 31), and (v, 82) are all
positive. It follows that we must have (v,8) > (v,61) and (v,3) > (v, Ba2).
The definition of 5 implies that 81 ¢ S and 82 ¢ S. Hence, 51 and (2 have
expressions as in (8.1). It follows that 8 = 81 + 2 has an expression as in (8.1).
This contradiction implies that (B2) holds.

Now we prove that B(v) satisfies (B1). Since R spans V, and since every
element of R is a linear combination of elements of B(v) because B(v) satisfies
(B2), it follows that B(v) spans V. Finally, B(v) is linearly independent by
Lemma 8.4.4 and Lemma 8.4.5. O

Lemma 8.4.7. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-). Let vy,...,v, be a basis for V.. There exists a vector
v €V such that (v,v1) > 0,...,(v,v,) > 0.
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Proof. Let i € {1,...,n}. The subspace V; of V spanned by {v1,...,v,} — {v;}
has dimension n — 1. It follows that the orthogonal complement Vﬁ is one-
dimensional. Let w; € V be such that VX = Rw;. Evidently, by construction
we have (w;,v;) = 0 for j € {1,...,n}, j # 4. This implies that (w;,v;) # 0;
otherwise, w; is orthogonal to every element of V', contradicting the fact that
w; # 0. After possibly replacing w; with —w;, we may assume that (w;,v;) > 0.
Consider the vector
V=w1 + -+ Wy

Let i € {1,...,n}. Then
(v,v;) = (w1 + -+ + Wy, v;) = (w4, v;) > 0.
It follows that v is the desired vector. O

Lemma 8.4.8. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), let R be a root system in V, let B be a base for R, and
let RY be the positive roots in R with respect to B. Let v € V be regular with
respect R, and assume that R*(v) = R*. Then B(v) = B.

Proof. Let B € B. By the assumption R™(v) = RT we have 8 € R (v). We
claim that 8 is indecomposable as an element of RT(v). Suppose not; we will
obtain a contradiction. Since 3 is decomposable there exist 81, 82 € R*(v) such
that 8 = 81 + B2. As RT(v) = RT and B is a base for R, we can write

B = Z c1(a)a,
aEB

By = Z co(a)a

a€EB

for some non-negative integers ¢1 (@), ca(«), o € B. This implies that

8= Z (c1(@) + ca()) .

aEB

Since B is a basis for V and 5 € B, we obtain cz(a) = —¢q(«) for o € B, a # 3,
and c2(8) = 1 — ¢1(a). As c¢1(a) and cp(a) are both non-negative for o € B,
we get ¢1(a) = co(a) = 0 for « € B, a # . Also, since c2(f) = 1 — ¢1(B) is
a non-negative integer, we must have 1 > ¢;1(f); since ¢1(3) is a non-negative
integer, this implies that ¢;(8) = 0 or ¢1(8) = 1. If ¢1(8) = 0, then 8, = 0,
a contraction. If ¢1(8) = 1, then c3(B) = 0 so that Sy = 0; this is also a
contradiction. It follows that g is indecomposable with respect to v. Therefore,
B C B(v). Since #B = dimV = #B(v), we obtain B = B(v). O

Proposition 8.4.9. Let V be a finite-dimensional vector space over R equipt
with an inner product (-,-), and let R be a root system in V. If B is a base for
R, then there exists a vector v € V' that is regular with respect to R and such
that B = B(v).
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Proof. By Lemma 8.4.7 there exists a vector v € V such that (v,a) > 0 for
a € B. We claim that v is regular with respect to R. Let 8 € R, and write

B=>" cla)a,

a€eB

where the coefficients ¢(a) for « € B are integers of the same sign. We have

= Z c(a)(v, ).

a€EB

Since all the coefficients ¢(«), a € B, have the same sign, and since (v, ) > 0
for a € B, it follows that (v, 3) > 0 or (v, 8) < 0. Thus, v is regular with respect
to R. Next, since (v, ) > 0 for @ € B, we have R™ C R*(v) and R~ C R~ (v).
Since R = RTUR™ and R = R™(v) U R~ (v) we now have RT = R™(v) and
R~ = R (v). We now have B = B(v) by Lemma 8.4.8. O

8.5 Weyl chambers

Let V' be a finite-dimensional vector space over R equipt with an inner product
(+,+), and let R be a root system in V. We recall that each root o € R defines
a hyperplane

P,={zeV:(z,a)=0}.

Also, recall that a vector v € V is regular with respect to R if and only if
V€ Vieg(R) =V — UaerPa.

Evidently, Vieg(R) is an open subset of V. A path component of the space
Vieg(R) is called a Weyl chamber of V' with respect to R.

Lemma 8.5.1. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let v € V be regular
with respect R. Let C be the Weyl chamber of V' with respect to R that contains
the vector v. Then

C=X()

where
X(w)={weV:(wa)>0ac B}

Proof. We need prove that X (v) C Vieg(R), v € X (v), and that X (v) is exactly
the set of w € Vieg(R) that are path connected in Vieg(R) to v.

To see that X(v) C Vieg(R) let w € X (v). To prove that w € Vieg(R)
it suffices to prove that (w,8) > 0 for all 8 € R*(v); this follows from the
definition of X (v) and the fact that B(v) is a base for R such that RT (v) is the
set of the positive roots with respect to B(v). Thus, X (v) C Vieg(R).
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By the definition of B(v) we have B(v) C RT(v). It follows that v € X (v).

Next, we show that every element of X is path connected in Vieg(R) to v.
Let w € X (v). Define f : [0,1] = Vieg(R) by f(t) = (1 —t)v + tw for ¢t € [0,1].
To see that f is well-defined, let ¢t € [0,1] and 8 € R. We need to verify that
(f(t),B) # 0. We may assume that 8 € R (v). Write

8= Z c(a)a, cla) € Zso.

aeB(v)

We have

(f(),8) = (-t +tw, >  cla)a)

aeB(v)

=(1-1%) Z cla)(v,a) +t Z () (w, ).

a€B(v) a€B(v)

Since (v, @), (w, &) > 0 for o € B(v) it follows that (f(t), ) > 0; thus, the image
of f is indeed in Vieg(R), so that f is well-defined. Evidently, f is continuous,
and f(0) = v and f(1) = w. It follows that every element of X is path connected
in Vieg(R) to v.

Finally, we prove that if u € Vieg(R) and u ¢ X(v), then u is not path
connected in Vieg(R) to v. Suppose that u € Vieg(R), u ¢ X (v), and that u is
path connected in Vieg(R) to v; we will obtain a contradiction. Since w is path
connected in Vieg(R) to v there exists a continuous function g : [0, 1] — Vieg(R)
such that g(0) = v and g(1) = u. Since u ¢ X (v), there exists a € B(v) such
that (u,a) < 0. Define F': [0,1] = R by F(t) = (g9(t), «) for ¢t € [0,1]. We have
F(0) > 0 and F(1) < 0. Since F is continuous, there exists a t € (0,1) such
that F'(¢t) = 0. This means that (g(¢),a) = 0. However, this is a contradiction
since g(t) is regular with respect to R. O

Proposition 8.5.2. Let V be a finite-dimensional vector space over R equipt
with an inner product (-,-), and let R be a root system in V. The map

Weyl chambers in V'

with respect to R —> Bases for R

that sends a Weyl chamber C to B(v), where v is any element of C, is a well-
defined bijection.

Proof. Let C be a Weyl chamber in V' with respect to R, and let v1,v5 € C. To
prove that the map is well-defined it will suffice to prove that B(vy) = B(v2).
Let o € B(v1). By Lemma 8.5.1, since v and vq lie in the same Weyl chamber
C, we have C = X (v1) = X(v2). This implies that (va,7) > 0 for v € B(vy).
In particular, we have (vg, ) > 0. Now let 8 € RT (vy). Write

8= Z cla)a, c(a) € Zso.

a€B(v1)
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Then

(2. 8)= 3 cl@)(v,).

a€B(v1)

Since (vg, ) > 0 for all o € B(vy) we must have (va, 8) > 0. Thus, R (vy) C
R*(v2). Similarly, R"(v2) C R (v1), so that R (v1) = R™ (v2). We now obtain
B(v1) = B(vz) by Lemma 8.4.8.

To see that the map is injective, suppose that C; and C5 are Weyl chambers
that map to the same base for R. Let v; € Cy and vy € Cy. By assumption, we
have B(v1) = B(vz). Since B(vy) = B(v2) we have X (v;) = X (v2). By Lemma
8.5.1, this implies that C, = Cs.

Finally, the map is surjective by Proposition 8.4.9. O

Lemma 8.5.3. Let V be a finite-dimensional vector space over R equipt with an
inner product (-,-), and let R be a root system in V. Let C be a Weyl chamber
of V with respect to R, and let B be the base of R that corresponds to C, as in
Proposition 8.5.2, so that

C={weV:(w,a) >0 for all « € B}.
The closure C of C is:
C={weV:(wa)>0 for all « € B}.
Every element of V is contained C for some Weyl chamber C of V in R.

Proof. The closure of C' consists of C' and points w € V with w ¢ C such
that there exists a sequence (w, )52 of elements of C' such that w, — w as
n — 0o. Let w be an element of C' of the this second type. Assume that there
exists a € B such that (w,«) < 0. Since (wp,a) = (w,a) as n — oo, there
exists a positive integer n such that (w,,«) < 0. This is a contradiction. It
follows that C is contained in {w € V : (w,a) > 0 for all « € B}. Let w be in
{weV: (w,a) >0 for all @ € B}; we need to prove that w € C. Let wg € C.
Consider the sequence (w + (1/n)w)5> ;. Evidently this sequence converges to
w and is contained in C. It follows that w is in C. This proves the first assertion
of the lemma. For the second assertion, let v € V. If v € Viee(R), then v is by
definition in some Weyl chamber. Assume that v ¢ Vieg(R). Then v € UgerPa.
Define
p:V—R by px)= H(m,a).
a€ER

The function p is a non-zero polynomial function on V', and the set of zeros
of p is exactly UperP,. Thus, p(v) = 0. Since p is a non-zero polynomial
function on V, p cannot vanish on an open set. Hence, for each positive integer
n, there exists v, such that ||[v — v,|| < 1/n and p(v,) # 0. The sequence
(vn)o, converges to v and is contained in Vieg(R); in particular every element
of the sequence is contained in some Weyl chamber. Since the number of Weyl
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chambers of V' with respect to R is finite by Proposition 8.5.2; it follows that
there is a subsequence (vy,, )32, of (v,)52, the elements of which are completely
contained in one Weyl chamber C. Let C' correspond to the base B for R. We
have (vy, ,a) > 0 for all & € B and positive integers k. Taking limits, we find
that (v, ) >0 for all @ € B, so that v € C. O

8.6 More facts about roots

Lemma 8.6.1. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-). Let o € V' be non-zero, let A be an open subset of V', and
let v € A be such that (v,a) = 0. Then there exists w € A such that (w,a) > 0.

Proof. Let eq,...,e, be the standard basis for V. Write a = a1e1 + -+ - + aqe,
for some aq,...,a, € R, and v = vie; + -+ + vp,e, for some vy,...,v, € R.
Since a # 0, there exists ¢ € {1,...,n} such that a; # 0. Let ¢ € R. Define
w = v + (¢/a;)e;. For sufficiently small € we have w € A and

(w,0) = (v + (¢/a;)e;,a) = (v,a) + e =€ > 0.
This completes the proof. O

Lemma 8.6.2. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let « € R. There exists
a base B for R that contains o.

Proof. We first claim that
Pt |J Ps
BER,f#La

Suppose this is false; we will obtain a contradiction. Since P, is contained in
the union of the sets Pg, 3 € R, 8 # £a, we have

Po= |J (PanPy).
BER,B#+a

By Lemma 8.4.1, as P, is a subspace of V', there exists 8 € R, 8 # +a, such
that P, = P,NPg. This implies that P, = Pg; taking orthogonal complements,

this implies that R = Rf, a contradiction. Since P, is not contained in
U  Pg, there exists a vector v € P, such that v¢  |J  Pg. Define a
BER,B#La BER,B#La
function
f:vorRe P R
BER,B#La
by

fw)=w.a)e @ (wp)-|(wa)).

BER,B#+a
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This function is continuous, and we have

fw)=0e P |8

BER,f# L

with |(v,8)| > 0 for 8 € R, 8 # ta. Fix € > 0 be such that |(v, )] > € > 0 for
B € R,B # +a. Since f is continuous, there exists an open set A containing v

such that
fAc(-e9e @ () -6lwp) +e.
BER,B#+a
Moreover, by Lemma there exists w € A such that (w,«) > 0. Let 8 € R,
B # +a. Since w € A, we have

0 <|(v, B)| — € < [(w, B)] = |(w, )| = [(w, B)| = (w, )

so that

(w, ) < |(w, B)].
Consider now the base B(w). We claim that « € B(w). We have (w, ) > 0, so
that o € RT(w). Assume that o = 81 + 2 for some 1, B2 € BT (w); we obtain
a contradiction, proving that a € B(w). We must have 51 # +a; and 2 # ta;
otherwise, 0 € R or 2a € R, a contradiction. Now

(w,a) = (’U),Bl) + (waBQ)'

Since (w, 1) > 0 and (w, B2) > 0 we must have (w, ) > (w, B1). This contra-
dicts (w, ) < |(w, f1)] = (w, B1). O

Lemma 8.6.3. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,), and let R be a root system in V. Let B be a base for R.
Let o be a positive root with respect to B such that o ¢ B. Then there exists
B € B such that (a, ) > 0 and oo — 3 is a positive root.

Proof. By Proposition 8.4.9 there exists v € Vieg(R) such that B = B(v). Since
« and the elements of B are all in RT™ = R*(v) (see Proposition 8.4.6) we have
(v,a) >0 and (v,3) >0 for 8 € B. If (o, 8) < 0 for all 3 € B, then by Lemma
8.4.4 Lemma 8.4.5, the set B U {«} is linearly independent, contradicting the
fact that B is a basis for the R vector space V. It follows that there exists § € B
such that (o, 8) > 0. By Lemma 8.3.4 we have o — 8 € R. Since « is positive
we can write
a=cB)B+ DY, c)y
YEB#B

with ¢(8) > 0 and ¢(y) > 0 for v € B,y # (. Since a ¢ B, we must have
¢(y) > 0 for some v € B with v # 3, or ¢(8) > 2. Since

a=B=(cB) -+ Y )

YEBY#£B

we see that a — [ is positive. O
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Lemma 8.6.4. Let V be a finite-dimensional vector space over R equipt with
an inner product (,-), and let R be a root system in V. Let B be a base for R.
If a € RY, then there exist (not necessarily distinct) aq, ..., € B such that
a=a1+ -+ a, and the partial sums

aq,
aq —|—042,

az + ag + ag,

o) +og a3+ -+ oy
are all positive roots.

Proof. We will prove this by induction on ht(«). If ht(e) = 1 this is clear.
Assume that ht(a) > 1 and that the lemma holds for all positive roots v with
ht(y) < ht(a). We will prove that the lemma holds for a. If @ € B, then
ht(a) = 1, contradicting our assumption that ht(a) > 1. Thus, a« ¢ B. By
Lemma 8.6.3 there exists § € B such that a — 8 is a positive root. Now
ht(a— ) = ht(a) — 1. By the induction hypothesis, the lemma holds for o — §;
let ai,...,a4 € B be such that « — 8 = a1 4+ - -+ + a4, and the partial sums

aq,
aq —|—0427

Qg + ag + ag,

ayt+ag+ag+--+ oy
are all positive roots. Since @« = a3 + --- + a; + [, the lemma holds for a. U

Lemma 8.6.5. Let V' be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let B be a base for R.
Let o € B. The reflection s, maps RT — {a} onto Rt —{a}.

Proof. Let 8 € R — {a}. Write
B=> ey
yeB

with ¢(y) € Zx( for v € B. We claim that c(y) > 0 for some vy € B with
Yo # «. Suppose this is false, so that § = ¢(a)«; we will obtain a contradiction.
By (R2), we have c(a) = £1. By hypothesis, a # §; hence, ¢(a) = —1, so that
8 = —a. This contradicts the fact that [ is positive, proving our claim. Now

sa(f) = B — (o, P)a
= (cla) = (@, B)a+ Y ().

YEB £
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This is the expression of the root s, (/) in terms of the base B. Since ¢(yy) > 0,
we see that s, () is a positive root and that s,(8) # «, i.e, so(8) € RT —
{a}. O

Lemma 8.6.6. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let B be a base for R.

Set 1
BERT
If o € B, then
$4(0) =6 —a.
Proof. We have
1 1
s4(0) = sa(ia) + 8q(0 — ia)
1 1
= —504 + - Z 3(1(6)
peRrt —{a}

Il

|
N =
Q

+

| —
@

peRt—{a}
1 1 1
- ta-ta+i Y 8
BERT
=—-a+d.
This completes the proof. O

8.7 The Weyl group

Let V' be a finite-dimensional vector space over R equipt with an inner product
(,), and let R be a root system in V. We define the Weyl group of R to be
the subgroup W of O(V') generated by the reflections s, for a € R.

Lemma 8.7.1. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. The Weyl group W of
R is finite.

Proof. Define a map
W — The group of permutations of R

by sending w to the permutation that sends o € R to w(r). By (R3), this map
is well-defined. This map is a homomorphism because the group law for both
groups is composition of functions. Assume that w € W maps to the identity.
Then w(a) = « for all @ € R. Since R contains a basis for the vector space V,
this implies that w is the identity; hence, the map is injective. It follows to that
W is finite. O
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Lemma 8.7.2. Let V be a finite-dimensional vector space over R equipt with an
inner product (-,-). Let X be a finite subset of V' consisting of non-zero vectors
that span V. Assume that for every a € X, the reflection sq maps X into X.
Let s € GL(V). Assume that s(X) = X, that there is a hyperplane P of V
that s fizes pointwise, and that for some a € X, s(a) = —a. Then s = s, and

P=PF,.

Proof. Let t = ss;! = ss,. We have
t(a) = s(sa(a)) = s(—a) = —(—a) = a.

We must have RaN P = 0; otherwise, @ € P, and so s(a) = «, a contradiction.
Therefore,
V=Ra®P.

On the other hand, by the definition of P, = (Ra)*, we also have
V=Ra® P,.

It follows that the image of P under the projection map V' — V/Ra is all of
V/Rq; similarly, the image of P, under V' — V/Ra is all of V/Ra. Since s fixes
P pointwise, it follows that the endomorphism of V/Ra induced by s is the
identity. Similarly, the endomorphism of V/Ra induced by s, is the identity.
Therefore, the endomorphism of V/Ra induced by t = ss,, is also the identity.
Let v € V. We then have ¢(v) = v + a« for some a € R. Applying ¢ again, we
obtain t?(v) = t(v)+aa. Solving this last equation for ac gives ac = t2(v) —t(v).
Substituting into the first equation yields:

t(v) = v+ t2(v) — t(v)
0 =t*(v) — 2t(v) +v.

That is, p(t) = 0 for p(z) = 22 — 22 +1 = (2 — 1)2. Tt follows that the minimal
polynomial of ¢ divides (z — 1)2. On the other hand, s and s, both send X into
X, so that ¢ also sends X into X. Let 8 € X, and consider the sequence

These vectors are contained in X. Since X is finite, these vectors cannot be
pairwise distinct. This implies that there exists a positive integer k() such that
t*®)(B) = B. Now define

k=] k®.

pBeX

We then have t*(3) = 3 for all 3 € X. Since X spans V, it follows that t* = 1.
This means that the minimal polynomial of ¢ divides z¥ — 1. The minimal
polynomial of ¢+ now divides (z — 1)? and z* — 1; this implies that the minimal
polynomial of ¢t is z — 1, i.e., t = 1. O



106 CHAPTER 8. ROOT SYSTEMS

Lemma 8.7.3. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R be a root system in V. Let s € GL(V). Assume

that s(R) = R. Then

-1
5848 = Ss(a)

for alla € R, and

forall o, 5 € R.

Proof. Let a € R. We consider the element ss,s~! of GL(V). Let 3 € R. We
have

(5557 1)(5(B)) = (s5a)(B) = 5(5a(B))-

This vector is contained in R because s, () is contained in R, and s maps R
into R. Since s(R) = R, it follows that (ss,s 1)(R) = R. Let P = s(P,);
we claim that ss,s™! fixes P pointwise. Let z € P. Write x = s(y) for some
y € P,. We have

By Lemma 8.7.2 we now have that ss,s™! = Ss(a)-

Finally, let o, 8 € R. Since 55,5 ' = Ss(a), We obtain:

(85a57")(B) = s5(a) (B)
=B = (B;s(a)))s(a).

On the other hand, we also have:

(s5a571)(B) = s(sa(s7(8)))

Equating, we conclude that (3,s(a))) = (s71(8),«). Since this holds for all
a, f € R, this implies that {s(«), s(8)) = (a, B) for all a, § € R (substitute s(«)
for 8 and 8 for «). O
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Lemma 8.7.4. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), let R be a root system in V, and let B be a base for
R. Lett > 2 be an integer, and let aq,...,q; be elements of B that are not
necessarily distinct. For convenience, write s1 = Sqy,...,5t = Sa,- If the Toot
(81 8¢t—1)(ay) is negative, then for some integer k with 1 < k < t,

S10 St =81 Sk—18k+1 " St—1-
Proof. Consider the roots

Bo = (81 ce St—l)(at)a
Br = (s2---sp-1) (),
B2 = (83 8t-1)(u),

/6t—2 = St—l(at)v

Bi—1 = ay.
We have
81(/31) = ﬂOa
52(B2) = B,

53(B3) = Ba,

St—1 (5t—1) = Bi_o.

We also have that [y is negative, and [3;_1 is positive. Let k be the smallest
integer in {1,...,t — 1} such that S is positive. Consider si(8x) = Bk—1. By
the choice of k, s, (B;) = Br—1 must be negative. Recalling that s = s,,, by
Lemma 8.6.5 we must have 8 = a. This means that

(Sky1---se-1)(w) = ag.
By Lemma 8.7.3,
(kg1 s-1)8e(Skr1 - 50-1) 71 = S(oppysi1) ()

Sk+1 " St—15tSt—1 """ Sk+1 = Say,

Sk+1 " 5t—15tSt—1" " Sk+1 = Sk

Sk41 " St—15t SkSk+1 " St—1-

Via the last equality, we get:
s1v 8= (517 Sk—1)Sk(Skt1 " 5t)

= (51 Sk—1)5k(SkSkt1 - St—1)

=81 Sk—1Sk+1 """ St—1-

This is the desired result. O
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Proposition 8.7.5. Let V be a finite-dimensional vector space over R equipt
with an inner product (-,-), let R be a root system in V, and let B be a base for
R. Let W be the Weyl group of R. Let s € W with s # 1. Assume that s can
be written as a product of sq for a € B. Let

5= Sa; """ Say

with a1,...,0¢ € B and t > 1 as small as possible. Then s(ay) is negative.

Proof. Ift =1 then s = s,,, and s(ay) = —a; is negative. We may thus assume
that ¢ > 2. Assume that s(ay) is positive; we will obtain a contradiction. Now

3(at> = (8a, "'Sat)(at)
= (5061 e Sat—1)(8at (at))
= (Socl ...Sakl)(—at)

= —(Sal cee 5041,_1)(0“)'

Since this root is positive, the root (sq, ~~~sat_1)(at) must be negative. By
Lemma 8.7.4, this implies that ¢ is not minimal, a contradiction. O

Theorem 8.7.6. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), let R be a root system in V', and let W be the Weyl group
of R. The Weyl group W acts on the set of bases for R by sending a base B to
s(B) for s € W, and the Weyl group acts on the set of Weyl chambers of V' with
respect to R by sending a Weyl chamber C to s(C) for s € W. These actions
are compatible with the bijection

Weyl chambers in V/

with respect to R — Bases for R

from Proposition 8.5.2. These actions are transitive. If B is a base for R, then
the Weyl group W is generated by the reflections s for a € B. The stabilizer
of any point is trivial.

Proof. Let s € W. If B is a base for R, then it is clear that s(B) is a base for
R. Let C be a Weyl chamber of V' with respect to R. Let v € C. By Lemma
8.5.1, we have

C=Xw)={weV:(wa)>0foraecB)}.
It follows that
s(C)=s({w eV : (w,a) >0 for a € B(v)})
={zeV:(s'z),a) > 0for a € B(v)}
(@)

={zeV:(x,s(a)) >0 for « € B(v)}
={zeV:(x,8)>0for B es(B)}
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Since
s(B(v)) =s({a € R: (v,a) > 0})
={B€R:(v,;s7}(p)) >0}
={BeR:(s(v),s) >0}
= B(s(v))
Hence,

s(C)={xeV:(x,8)>0for 8 € B(s(v))}
= X (s(v)).

Thus, s(C) = X (s(v)) is another Weyl chamber of V' with respect to R. To see
that the bijection ¢ respects the actions, again let C' be a Weyl chamber of V'
with respect to R, and let v € C'. Then

proving that the actions are compatible with the bijection i.

To prove that the actions are transitive, fix a base B for R, and define RT
with respect to B. Let W’ be the subgroup of W generated by the reflections
sq for o € B. Let v € Vieg(R) be such that B = B(v); the Weyl chamber of V
with respect to R corresponding to B = B(v) under the bijection i is X (v). Let
C be another Weyl chamber of V' with respect to R, and let w € C. Let

6=% Za.

a€ER*t

Let s € W' be such that (s(w),d) is maximal. We claim that (s(w),a) > 0 for
all « € B. To see this, let « € B. Since s4s is also in W’ we have, by the
maximality of (s(w),d),

That is,

(s(w),8) = (s(w),0) — (s(w), @)
This implies that (s(w),a) > 0. If (s(w),a) = 0, then (w,s 1 (a)) = 0; this
is impossible since s™!(a) is a root and w is regular. Thus, (s(w),a) > 0.
Since (s(w),a) > 0 for all a € B it follows that s(w) € X(v). This implies
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that s(C') = X (v), so that W', and hence W, acts transitively the set of Weyl
chambers of V' with respect to R. Since the bijection ¢ is compatible with the
actions, the subgroup W’, and hence W, also acts transitively on the set of bases
of R.

Let B be a base for R, and as above, let W’ be the subgroup of W generated
by the s, for a« € B. To prove that W = W' it suffices to prove that if o € R,
then s, € W’. Let a € R. By Lemma 8.6.2, there exists a base B’ for R such
that @ € B’. By what we have already proven, there exists s € W’ such that
s(B’) = B. In particular, s(a)) = 8 for some 8 € B. Now by Lemma 8.7.3,

sSg = Ss(a) = 8848
which implies that s, = s 1sgs. Since s~lsgs € W', we get s, € W, as desired.
Finally, suppose that B is a base for R and that s € W is such that s(B) = B.
Assume that s # 1; we will obtain a contradiction. Write s = s4, - - - 8o, With
a1,...,a; € Band t > 1 minimal. By Proposition 8.7.5, s(cy) is negative with
respect to B. This contradicts s(ay) € B. O

Let V be a finite-dimensional vector space over R equipt with an inner
product (-, ), let R be a root system in V', and let W be the Weyl group of R.
Let s € W with s # 1, and write

S = Sa; " Say

with a1,...,a¢4 € B and t minimal. We refer to such an expression for s as
reduced, and define the length of s to be the positive integer ¢(s) = t. We
define £(1) = 0.

Proposition 8.7.7. Let V be a finite-dimensional vector space over R equipt
with an inner product (-,-), let R be a root system in V', and let W be the Weyl
group of R. Let s € W. The length {(s) is equal to the number of positive roots
a such that s(a) is negative.

Proof. For r € W let n(r) be the number of positive roots « such that r(«) is
negative. We need to prove that ¢(s) = n(s). We will prove this by induction on
£(s). Assume first that £(s) = 0. Then necessarily s = 1. Clearly, n(1) = 0. We
thus have ((s) = n(s). Assume now that £(s) > 0 and that £(r) = n(r) for all
r € W with £(r) < £(s). We need to prove that £(s) = n(s). Let s = 54, - - - Sq,
be a reduced expression for s. Set s’ = ss,,. Evidently, ¢(s’) = ¢(s) — 1. By
Lemma 8.6.5,

s(R —{au}) = 8'(sa, (R — {eu}))
=s'(RT — {as}).
Also, by Proposition 8.7.5, s(«;) is negative. Since
s(ar) = s'(sa, ()
= —5"(ay)

we see that s'(«) is positive. It follows that n(s’) = n(s) — 1. By the induction
hypothesis, £(s’) = n(s’). This implies now that £(s) = n(s), as desired. O
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3a+ 20
4V

B a+p 2__&—1—5 3a+

—3a— —20—-p —a—f —B

4

—3a— 28

We consider bases, Weyl chambers, and the Weyl group for the root system
G2, which appears in the above diagram. Define the vector v as in the diagram.
Then v € Vieg(G2). By definition, R™(v) consists of the roots that form a
strictly acute angle with v, i.e.,

R*(v) = {a,3a+ B,2a + B,3a + 23,a + B, B}.

By definition, R~ (v) consists of the roots that form a strictly obtuse angle with
v, that is:

Ri(v) = {—04,3(% _ﬂv —20—5,—304 - 267 —Q _ﬂa_ﬂ}

Evidently, {a, 8} is the set of indecomposable roots in R (v), so that B(v) =
{a, B} is a base for G3. The Weyl chambers of V' with respect to G2 consist
of the circular sectors with cental angle 30° that lie between the roots of G.
There are 12 such sectors, and hence 12 bases for G2. The sector containing v
is

C=Xw)={weV:(a,v)>0,(5,v) >0}

This is the set of vectors that form a strictly acute angle with o and 3, and is
shaded in blue in the diagram. We know that the Weyl group W of G5 acts
transitively on both the set of Weyl chambers and bases, with no fixed points.
This means that the order of W is 12. Define:

S1 = Sa; S2 = S8p3.

We know that W is generated by the two elements s; and s, which each have
order two. This means that W is a dihedral group (the definition of a dihedral
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group is a group generated by two elements of order two). Consider s;s3. This
is an element of SO(V'), and hence a rotation. We have

(s182)() = sa(s5(a))
= sa(a+ )
= sa(a) + sa(B)
=—a+3a+ 3
=2a+

and

(s152)(B) = sa(s5(8))
- _Sa(ﬁ)
= —-3a— 0.

It follows that siss is a rotation in the counterclockwise direction through 60°.
Thus, s1s2 has order six. This means that

§515285152515251525185285152 — 1.

This implies that:
515251528152 = 525152515251

Set
T = S1892.

We have

511"31_1 = 51(5152)51_1

We have
W = (s182) % (s1) = (r) % (s1)

The elements of W are:

1, S1,

T = S182, 52,

72 = 51828182, 598182,

73 = $15281525182, $251528182,
rt = 5518281, 5182818251,
7"5 = 89581, S§15281.
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In the ordered basis «, 8 the linear maps s1, s3 and r have the matrices

-1 3 1o B -1 311 o] _[2 -3
SL= 0 g0 271 a0 TTS2T 0 1)1 -1 T |1 -1

Using these matrices, it is easy to calculate that:

! = a, @ = —a,
3a+8 —3a+p, 3a+p5 = p,
1 2+ 8 = 2a+ 0, o - 2+ 08 +—a+ 8,
' 3a+28 — 3a+ 28, L 3a+28 — 3a+28,
a+p — o+ f, a+f — 2a+ S,
B — 3, B — 3a + B,
@ — 20+ 5, «a — a+ G,
3a+p8 —3a+p, 3a+ 8 = 3a+28,
) 2+ —a+p, o 2+ 3 —2a+ 0,
" 3a+28 — B, S =2 3a+28 — 3a+8,
a+p = —a, a+f —
6 H_Sa_ﬁ7 B H_ﬁa
Q — a+ 3, e = 2a+ 5,
3a+p =B, 3a+f = 3a+p,
.2 204+ - —a, 2 20+ 8 = a,
‘ 3a+28 — —3a-p, v 3a+28 = —f,
a+ 5 — —2a — (3, a+p — —a—f,
I6] — —3a — 20, B — —3a — 20,
e — —a, @ = a,
3a+8 +— —3a-—p, 3a+p8 — —p,
3 20+ 68 = —2a -, 5113 2+ 8 +— —a-—0,
3a+28 +— —3a-—24, 3a+28 — —3a-—24,
a+p — —a—f, a+p = —2a — f,
ﬂ H_Bv ﬁ ’_>_3a_ﬁa
Q@ — —2a — (3, Q@ = —a— 0,
3a+ 8 +— —3a-—24, 3a+ 8 +— —3a-—28,
A 204+ = —a-—j, R 20+ = —2a—p,
‘ 3a+28 = =5, v 3a+28 — —3a—p,
a+p — a+p — —aq,
B — 3o+ B, B — B,
o — —a—f, Q@ — —2a — (3,
3a+8 +— =0, 3a+8 +— —3a-—0,
" 2a+8  w—a, g - 20+ = —a,
' 3a+28 — 3a+8, e 3a+28 — 8,
a+ — 2a+ 3, a+ — a+ 5,
Jé] — 3a+ 20, 8 — 3a+ 20.

Using this and that Proposition 8.7.7, we can calculate the length of each ele-
ment of WW. We see that the expressions of the elements of WV in the list from
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above are in fact reduced, because of Proposition 8.7.7. Thus,

(1) =0, s1) =1,

(r = s189) = 2, l(s9) =1,

0(r? = 518258182) = 4, £(s25182) = 3,
0(r3 = 515281528182) = 6, (8951825152) = b,
0(r* = s3818981) = 4, £(8182815251) = b,
(1 = s981) = 2, 0(s18281) = 3.

8.8 Irreducible root systems

Let V' be a finite-dimensional vector space over R equipt with an inner product
(+,-), and let R C V be a root system. We say that R is reducible if there exist
proper subsets Ry C R and Ry C R such that R = Ry U Ry and (Ry, R2) = 0.
If R is not reducible we say that R is irreducible.

Lemma 8.8.1. Let V be a finite-dimensional vector space over R equipt with an
inner product (-,-), and let R C 'V be a root system. Assume that R is reducible,
so that there exist proper subsets Ry C R and Ry C R such that R = Ry U Ry
and (Ry,R2) = 0. Let V1 and Va be the subspaces of V' spanned by Ry and Ra,
respectively. Then V. =V 1 Vs, and Ry and Ry are root systems in Vi and Vs,
respectively.

Proof. Since (R1, Ry) = 0 it is evident that (V3,V2) = 0. Since Vi & Vo C V
contains R and thus a basis for V, it follows now that V is the orthogonal direct
sum of V7 and Va. Tt is easy to see that axioms (R1), (R2), and (R4) for root
systems are satisfied by R;. To see that (R3) is satisfied, let a, 8 € Ry; we need
to verify that so(8) € R;. Now

sa(B) =B — (B, a)a.

This element of R is contained in Ry or in Rs. Assume that s,(8) € Ra; we
will obtain a contradiction. Since s4(8) € Rz, we have

0= (a,5q(8))
_(04,5)—<ﬂ704>(04,04)
=(a,8) — (B,0) a,
- (@5 - 2200

0:_(a76)7

so that («, 8) = 0. Hence, (o, 8) = 0. We also have:

)=
(8,54(8))

= (8,8) = (B,a)(B, @)
= (8, 9)-

This implies that 8 = 0, a contradiction. It follows that R; is a root system.
Similarly, Ry is a root system. O

0=
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Lemma 8.8.2. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C'V be a root system. Let B be a base for R.
The root system R is reducible if and only if there exist proper subsets By C B
and By C B such that B = By U By and (By, Bz) = 0.

Proof. Assume that R is reducible, so that there exist proper subsets Ry C R
and R2 C R such that R = R1 U R2 and (Rl,Rg) = 0. Define Bl = R1 NnB
and By = Ry N B. Evidently, B = By U By. We claim that By and By are
proper subsets of B. Assume that B; = B; we will obtain a contradiction.
Since By = B we have B C R;. Since B contains a basis for V and since
(R1, R2) = 0, we obtain (V, Ry) = 0. This is a contradiction since (Rg, R2) # 0.
Thus, B is a proper subset of B; similarly, By is a proper subset of B.
Conversely, assume that there exist proper subsets By C B and By C B such
that B = B; U By and (B1, B2) = 0. Let W be the Weyl group of R. Define

Ry = {a € R : there exists s € W such that s(«) € B1},
Ry = {a € R : there exists s € W such that s(a) € Ba}.

By Lemma 8.6.2 and Theorem 8.7.6, for every a € R there exists s € VW such
that s(«) € B. It follows that R = Ry U Rs.

To prove (R1, R2) = 0 we need to introduce some subgroups of W. Let W,
be the subgroup of W generated by the s, with @ € Bj, and let W5 be the
subgroup of W generated by the s, with a € By. We claim that the elements
of Wi commute with the elements of Ws. To prove this, it suffices to verify
that Sq,Say = SaySa, for a1 € By and ag € By. Let a; € By and ag € By. Let
a € By. Then

(S 8as) (@) = 80, (@ — (@, az)as)
= So, (@ —0- a2)
= SO£1 (Oé)

=a— (a,a1)a;.

And
(802801 )(@) = 80, (@ = (@, a1)an)
= Sas (@) = (@, a1)$a, (1)
= Q= <a,a2>a2 - <a70é1>(041 - <a170é2>a2)
=a—(a,a1)a.
Thus, (Sa;8a,)(@) = (SaySa;)(@). A similar argument also shows that this

equality holds for a € By. Since B = B; U By and B is a vector space basis
for V', we have s4,Sa, = Sa,5q, @s claimed. By Theorem 8.7.6 the group W is
generated by the subgroups W; and W, and by the commutativity property
that we have just proven, if s € W, then there exist s; € Wi and sy € Ws such
that s = s1s9 = s2s1. Now let o € Ry. By definition, there exists s € W and
a1 € Ry such that a = s(ap). Write s = s182 with s1 € Wy and s € Wh.
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Since s3 is a product of elements of the form sg for 8 € By, and each such sg
is the identity on By (use the formula for sg and (B, B2) = 0), it follows that
a = s1(a1). Writing s; as a product of elements of the form s, for v € By,
and using the formula for such s, we see that & = s(a1) is in the span of Bj.
Similarly, if & € Rg, then « is in the span of By. Since (B, Bs) = 0, it now
follows that (R, Rz) = 0.

To see that Ry and Ry are proper subsets of R, assume that, say, Ry = R;
we will obtain a contradiction. Since (Rp, Re) = 0 we must have Ry = 0. This
implies that Bs is empty (because clearly B C Ry); this is a contradiction. [

Let V be a finite-dimensional vector space over R equipt with an inner
product (+,-), and let R C V be a root system. Let B be a base for R. Let
v1,v9 € V, and write

v = Z (M), U2 = Z c2(7)7-
yeB yeB

Here, we use that B is also a vector space basis for V. We define a relation >
on R by

V1 = U2

if and only if
c1(y) > co(y) forall vy € B.

The relation > is a partial order on V. Evidently,
Rt={a€eR:a=0} and R ={a€R:a=<0}.
We say that « is maximal if, for all § € R, 8 > « implies that 8 = «.

Lemma 8.8.3. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C V be a root system. Assume that R is
irreducible. Let B be a base for R. With respect to —, there exists a unique
mazximal Toot B in R. Moreover, if 8 is written as

B=>" ba)a,

a€EB
then b(a) > 0 for all o € B.
Proof. There exists at least one maximal root in R; let § € R be any maximal
root in R. Write
8= Z b(a)a.
a€EB

Since f is maximal, we must have b(c) > 0 for all & € B. Define
By ={ae€eB:b(a) >0} and By ={«a€ B:bla)=0}.

We have B = B; U By, and B is non-empty. We claim that By is empty.
Suppose not; we will obtain a contradiction. Since R is irreducible, by Lemma
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8.8.2 we must have (By, B2) # 0. Proposition 8.4.9 and Lemma 8.4.4 imply that
(a1,9) <0 for all ay € By and « € By. For as € By we have

(B,02) = Y bla)(e,az) = > blar)(as, 02)

a€EB a1€B;

where each term is less than or equal to zero. Since (B, Bz) # 0, there exist
oy € By and of, € By such that (o), aj) # 0, so that (o], af) < 0. This implies
that (8,a%) < 0. By Lemma 8.3.4, either § = +a}, or 8+ a, is a root. Assume
that 8 = af. Then (8,0a4) = (B,8) > 0, contradicting (5,a%) < 0. Assume
that § = —ab. Then b(ah) = —1 < 0, a contradiction. It follows that 5 + af, is
a root. Now 3+ of = . Since 8 is maximal, we have 8 + af, = 3. This means
that o = 0, a contradiction. It follows that Bs is empty, so that b(«) > 0 for all
a € B. Arguing similarly, we also see that (5,a) > 0 for all « € B (if (8,«) <0
for some « € B, then 8 + « is a root, which contradicts the maximality of /).
Since B is a basis for V' we cannot have (8, B) = 0; hence, there exists ag € B
such that (8, ag) > 0.
Now suppose that 3’ is another maximal root. Write

B = Z b ()a.

aEB

As in the last paragraph, ¥’ («) > 0 for all « € B. Now

(8.8 =) _V()(B,0a).
aeB
As (B,a) > 0 and b'(a) > 0 for all « € B, and (8,a9) > 0, we see that
(8,8") > 0. By Lemma 8.3.4, either 8 = ', 8 = —p' or 8 — ' is a root.
Assume that 8 = —f’. Then b(a) = —b'(«) for a € B; this contradicts the fact
that b(a) and b(«’) are positive for all & € B. Assume that § — 3’ is a root.
Then either 8 — 3’ = 0 or 8 — 3’ < 0. Assume that 8 — 8" = 0. Then 8 >~ /3,
which implies 8 = 8’ by the maximality of 5’. Therefore, 8 — 8’ = 0; this is not
a root, and hence a contradiction. Similarly, the assumption that § — 8" < 0
leads to a contradiction. We conclude that 8 = 3. O

Lemma 8.8.4. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C V be a root system. Assume that R is
wrreducible. Let B be a base for R. Let 8 be the mazimal root of R with respect
to B. We have 8 = « for all« € R, a # 3. Also, if o € B, then (8,a) > 0.

Proof. Let o € R with a # . Since a # 3, a is not maximal by Lemma 8.8.3.
It follows that there exists 7; € R such that v1 >= a and 1 # «a. If 73 = 3, then
B = a. Assume v; # 3. Since 1 # S, 11 is not maximal by Lemma 8.8.3. It
follows that there exists 72 € R such that vo > 1 and 5 # 1. If v9 = 5, then
B = 71 = «, so that 8 = «. If v5 # B, we continue to argue in the same fashion.
Since R is finite, we eventually conclude that § > «.

Let w € B. Assume that (a, ) < 0. Then certainly « # 3. Also, we cannot
have a = —f because [ is a positive root with respect to B by Lemma 8.8.3.
By Lemma 8.3.4, a4 8 is a root. This contradicts the maximality of 3. O
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Lemma 8.8.5. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C V be a root system. Assume that R is
irreducible. The Weyl group W of R acts irreducibly on V.

Proof. Assume that U is a W subspace of V. We need to prove that U = 0 or
U = V. Assume that U # 0. Since the elements of W lie in the orthogonal
group O(V) of V, the subspace U~ is also a W subspace. We have V =U®U* .
Let a € R. We claim that a € U or o € U*. Write a = u 4+ v/ with v € U and
v € UL. We have

Sa (@) = sa(u) + sa (W)
Sa (1) + sq(u’)

—u—u' = sq(u) + sq(u').

—Q

Since s, € W we have s,(u) € U and s, (u') € UL. It follows that

So(u) = —u and s, (u') = —u'.
These equalities imply that u € Ra and «’ € Ra. Since UNU* = 0, this implies
that w = 0 or v/ = 0, as desired. Now define

Ri={a€R:acU} and Ry={a€R:acUt}.

By we have just proven R = Ry U Ry. It is clear that (R, Ry) = 0. Since R is
irreducible, either Ry is empty or Ry is empty. If Ry is empty, then R C U™, so
that V = U+ and thus U = 0; if Ry is empty, then R C U, so that V =U. O

Lemma 8.8.6. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C V be a root system. Assume that R is
wrreducible, and let W be the Weyl group of R. The function R — Ry sending
a — ||| takes on at most two values. Moreover, if o, 8 € R have the same
length, then there exists s € W such that s(a) = 5.

Proof. Suppose that there exist oy, as, a3 € R such that ||aq]| < ||az|| < ||as]|;
we will obtain a contradiction.
We first assert that there exist roots af, a4, a4 € R such that

ladll = fleall, Nl = llall,  flag]l = llos]

and
(a1, a5) #0,  (ag,a3) #0, (aj,as) #0.

To see this we note that by Lemma 8.8.5, the vectors s(asg) for s € W span V;
it follows that there exists s € W such that (aq,s(az)) # 0. Similarly, there
exists r € W such that (s(ag),r(as3)) # 0. If (a1,7(asz)) # 0, we define

oy =ay, oy =s(az), af=r(as)
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and these vectors have the desired properties. Assume that (ay,7(a3)) = 0. In
this case we define

o =ar, ah=s(az), ah= sy (r(as)).

We have
(o, ) = (s(a2), Sg(ag) (r(@3))) = —(s(a2),r(a3)) # 0.
And
(a7, a3) = (a1, 84(ay) (r(az)))

= (a1, r(az) — (r(as), s(az))s(az))

= (a1, 7(a3)) — (r(az), s(az)) (a1, s(az))

= —(r(az), s(az)) (a1, s(az2))

_ _prlas),slas))

= 2 (5(az), s(a)) *1 (02

£0.

Again, of, o4 and of have the desired properties.
We have [laf | < flagl| < a4l Thus,

loall _ flasll
loall — fledll

Applying Lemma 8.3.3 to the pair o and af, and the pair o} and of, and
taking note of the above inequalities, we must have

/ /
I8 _ /5 ana L8l _ 5

led ]l loa

This implies that

gl _ V3

losl V2
However, Lemma 8.3.3 applied to the pair o/, and o implies that v/3/+/2 is not
an allowable value for ||aj]|/||a5]|. This is a contradiction.

Assume that o, 8 € R have the same length. Arguing as in the last para-
graph, there exists s € W such that (s(a),5) # 0. If s(a) = B, then s is
the desired element of W. If s(a) = —f, then (sgs)(a) = 5, and sgs is the
desired element. Assume that s(a) # £5. Since s(a) and S have the same
length, we have by Lemma 8.3.3 that (s(«), 8) = (8, s(«)) = £1. Assume that
(s(a), B) = 1. We have

(s55(a)58)(5()) = (8854 (5() = {s(a), B))

= (sﬁss(a))(s(a) - ﬂ)
= sB(—S(Oé) - 35(a)(6))
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Assume that (s(«), 8) = —1. Then (s(a), ) = 1 where 5’ = —§ = s3(8). By
what we have already proven, there exists r € W such that r(a) = 8. Tt follows
that (sgr)(a) = B. O

Let V be a finite-dimensional vector space over R equipt with an inner
product (-,-), and let R C V be a root system. Assume that R is irreducible.
By Lemma 8.8.6, there are at most two possible lengths for the elements of R.
If {||o]| : @« € R} contains two distinct elements ¢; and ¢5 with ¢; < ¢, then we
refer to the o € R with ||a|| = ¢ as short roots and the oo € R with ||a| = 43
as long roots. If {||a| : « € R} contains one element, then we say that all the
elements of R are long.

Lemma 8.8.7. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C 'V be a root system. Assume that R is
irreducible. Let B be a base for R, and let § € R be maximal with respect to B.
Then B is a long root.

Proof. Let o € R. We need to prove that (3, ) > (o, ). By Proposition 8.4.9
there exists v € Vieg(R) such that B = B(v). Let C be the Weyl chamber
containing v. By Lemma 8.5.1 we have

C={weV:(w,y) >0foralyeB=DB)}

By Lemma 8.5.3 there exists a Weyl chamber C’ of V with respect to R such
that o € C’. Let B’ be the base corresponding to C’, as in Proposition 8.5.2.
Now by Lemma 8.5.3 we have

C={weV:(wa) >0 foral a € B}
and B
C'={weV:(wa)>0foral a € B'}.

By Theorem 8.7.6 there exists s in the Weyl group of R such that s(C’) = C
and s(B’) = B. It follows that s(C') = C. Replacing a with s(a) (which has
the same length as a), we may assume that a € C. By Lemma 8.8.4 we also
have 8 € C. Next, by Lemma 8.8.4, we have 3 > a. This means that

B—a=> c)y

yEB

with ¢(y) > 0 for all v € B. Let w € C. Then

(wvﬁ - a) = Z c(y)(wgy) > 0.

yeEB
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Applying this observation to a € C' and 8 € C, we get:
(O[,ﬂ*OL)Z()? (ﬂaﬁia)zo

This means that

(a,8) 2 (e, 0),  (B,8) 2 (B, ).
It follows that (8, 8) > («, «), as desired. O
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Chapter 9

Cartan matrices and
Dynkin diagrams

9.1 Isomorphisms and automorphisms

Let V7 and V4 be a finite-dimensional vector spaces over R equipt with an inner
product (-,-); and (-,-)q, respectively, and let Ry C V5 and Ry C Va be root
systems. We say that Ry and Ry are isomorphic if there exists an R vector
space isomorphism ¢ : Vi — V5 such that:

1. ¢(R1) = Rs.
2. If a, 5 € Ry, then (¢(a), ¢(B)) = (o, B).

We refer to such a ¢ as an isomorphism from R; to Rs. Evidently, if ¢ is an
isomorphism from R; to Ry, then ¢! is an isomorphism from Ry to R;.

Lemma 9.1.1. Let V; and V5 be a finite-dimensional vector spaces over R
equipt with an inner product (-,-)1 and (-,-)2, respectively, and let Ry C Vi
and Ry C Vo be root systems. Let Wy and Ws be Weyl groups of Ry and Ra,
respectively. Assume that Ry and Ro are isomorphic via the R wvector space
isomorphism ¢ : Vi3 — Vo, If a, B € Ry, then

So(a) ((8)) = ¢(sa(B))-
The map given by s — ¢ o so ¢~ ! defines an isomorphism of groups
Wi — W,
Proof. Let a, 8 € Ry. We have

So(a) ((8)) = B(B) — (0(B), ¢(a))p(a)
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= ¢(ﬁ - <Bva>a)
= ¢(sa(B))-
Let s € Wi, a € Ry, and o € Ryo. Then

(posacd )(a) =¢(sald™' ()
= 8¢(a)(0/).
It follows that pos,0¢~ ! = S¢(a) is contained in W, so that the map Wy — Ws
is well-defined. This map is evidently a homomorphism of groups. The map

Wy — W defined by s’ = ¢~ 05’ 0 ¢ is also a well-defined homomorphism and
is the inverse of Wi — Wh. O

Let V be a finite-dimensional vector space over R equipt with an inner
product (-,-), and let R C V be a root system. If ¢ : V' — V is an isomorpism
from R to R then we say that ¢ is an automorphism of R.

Lemma 9.1.2. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C'V be a root system. A function ¢ :V —V is
an automorphism of R if and only if ¢ is an R vector space isomorphism from
V toV, and ¢(R) = R. The set of automorphisms of R forms a group Aut(R)
under composition of functions. The Weyl group W of R is a normal subgroup
of Aut(R).

Proof. Let ¢ : V — V be a function. If ¢ is an automorphism of R, then ¢ is
a vector space isomorphism from V' to V and ¢(R) = R by definition. Assume
that ¢ is a vector space isomorphism from V to V and ¢(R) = R. By Lemma
8.7.3 we have (¢(a),¢(8)) = (o, B) for all ,8 € R. It follows that ¢ is an
automorphism of R. It is clear that Aut(R) is a group under composition of
functions, and that W is a subgroup of Aut(R). To see that W is normal in
Aut(R), let a, 8 € R and ¢ € Aut(R). Then

(¢ O 8q© (b_l)(ﬂ) = ¢(Sa(¢_1(5))
= 5¢(a)(ﬂ)'

Since R contains a basis for V this implies that ¢ 0 s, 0 ¢~ = S¢(a)- 1t follows
that W is normal in Aut(R). O

9.2 The Cartan matrix

Let V be a finite-dimensional vector space over R equipt with an inner product

(,-), and let R C V be a root system. Let B be a base for R, and order the

elements of B as aq,...,a;. We define

(a1, a1) -+ (a1, 0q)

Clan, .. ar) = (o, aj))1<ij<e = : :
<Oét,041> (Oénat)

Evidently, the entries of C(ay,...,a;) are integers.



9.2. THE CARTAN MATRIX 125

Lemma 9.2.1. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), let R C 'V be a root system, and let B and B’ be bases
for R. Order the elements of B as a1,...,a; and order the elements of B’ as
af,...,a. There exists a t x t permutation matriz P such that

Clal,...,a)=P-Claq,...,az) - P71

Proof. By Theorem 8.7.6 there exists an element s in the Weyl group of R such
that B’ = s(B). Since B’ = s(B), there exists a t X ¢t permutation matrix P
such that P~ - C(af,...,a}) - P = C(s(a1),.-.,s(ay)). Now

Pt C(a),...,a}) - P =C(s(ay),...,s(ar))
= ((s(cui), s(aj)))1<ij<t

:(M

(s(aj),s(ay)) >1§i,j§t

(0,0 ) >1§z’,j§t
= ({0, 05))1<i i<t
= C(O{l, ey Oét).

This is the assertion of the lemma. O

Let t be a positive integer. We will say that two ¢ x ¢ matrices C and C’
with integer entries are equivalent if there exists a permutation matrix P such
that C' = PCP~1L.

Let V be a finite-dimensional vector space over R equipt with an inner prod-
uct (+,-), and let R C V be a root system. We define the Cartan matrix C'(R)
of R to be the equivalence class determined by C(«1,...,a;) where aq, ..., a4
are the elements of a base for R. By Lemma 9.2.1, the Cartan matrix of R is
well-defined.

Lemma 9.2.2. Let V and V' be a finite-dimensional vector spaces over R equipt
with an inner product (-,-) and (-,-), respectively, and let R CV and R' C V'
be root systems. The root systems R and R’ are isomorphic if and only if R and
R’ have the same Cartan matrices.

Proof. Assume that R and R’ have the same Cartan matrices. Then V and
V' have the same dimension ¢, and there exists bases B = {ay,...,a:} and
B = {da},...,a}} for Ry and Rs, respectively, such that C(ay,...,04) =
C(af,...,a;). Define ¢ : Vi — V2 by ¢(oy) = of for i € {1,...,t}. We
need to prove that ¢(R) = R’ and that (¢p(«), ¢(8)) = («, 8) for o, 8 € R. Let
a,f € B. Since C(ay,...,ap) = C(o,...,a};) we have (¢(8), p(a)) = (B, a).
Therefore,

P(sa(B)) = 68 — (B, a)a)
= ¢(B) — (B, 0)(a)
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= ¢(B) — (0(B), ¢(a))9()
= 5¢(a)(¢(6))

Since every element of R is a linear combination of elements of B, it follows
that
¢($a(ﬂ)) = Stb(a)(d)(ﬂ))

holds for all @« € B and 8 € R. More generally, let s be in the Weyl group of
R;. By Theorem 8.7.6 there exist d1,...,d, € B such that

82851"‘86

n*

Let 8 € R. Repeatedly using the identity we have already proved, we find that:

o(s(B)) = o((ss, -~ 55,)(8))
= S(5) (¢>((852 % %)(5)))

= 5¢(61)56(52) (¢((Sa3 o san)(ﬁ)))

D(s(B)) = 54(8,) - So(5.,) (9(5))-

Again let 8 € R. By Lemma 8.6.2 and Theorem 8.7.6, there exists s in the Weyl
group of R such that s(8) € B. We have ¢(s(8)) € B’. Write s as a product,
as above. Then @(s(8)) = sy(5,) - Sa(5.,) (#(8)). Since ¢(s(3)) € B', we have
56(51) " S¢(5,) (q’)(ﬂ)) € B’. Applying the inverse of s54(5,) - - - 54(s,), We see that
¢(B) € R'. Thus, ¢(R) C R'. A similar argument implies that ¢(R') C R, so
that ¢(R) = R'.

We still need to prove that (¢(«a),d(8)) = (a,B) for o, € R. By the
definition of ¢, and since C(ayq, ..., o) = C(of, ..., a}), we have (¢(a), ¢(8)) =
(o, B) for «, B € B. Since this formula is linear in «, the formula holds for all
a € Rand 8 € B. Let 8 be an arbitrary element of R. As before, there
exists s in the Weyl group of R such that s(8) € B, and dy,...,d, such that
01,...,0p € Band s =s5, ---s5,. Let @ € R. Then

(o, B) =
s(a)), ¢(s(B)))

s(); 89(51) "+ S6(5,) (4(8)))
)
)

(60) " Sp(s)P(s()), H(B

{

{

{

= <37(1§n) T 5;(1(51)¢(3<a))7 o(p
{ (
(655, -+~ s5,5(cx)), ¢(B))
{o(

This completes the proof. O
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We list the Cartan matrices of the examples from Chapter 8.

1. (As root system)
B

60°

a+pf

60°

—a—8
Cartan matrix: [

2. (Bsg root system)

B a+p

45°
45°

200+ B

45°
45°

45°
45°

—2a—0

Cartan matrix: [

—a-p

45°
45°
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3. (G2 root system)

3a+ 26

B a+p 2a+p

—3a—0

—2a—0

—a—8

—3a — 28

Cartan matrix: [ &

4. (A7 x Ap root system)

B

A

90° | 90°

90° | 90°

Y

—B

Cartan matrix: [
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3a+p
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9.3 Dynkin diagrams

Let V be a finite-dimensional vector space over R equipt with an inner product
(,+), and let R C V be a root system. We associate to R a kind of a graph D,
called a Dynkin diagram, as follows. Let B be a base for R. The vertices of
D are labelled with the elements of B. Let o, 8 € B with « # 3. Between the
vertices corresponding to « and 8 we draw

(@B _, (0,07
RSN R PRI Y

lines; recall that in Lemma 8.3.2 we proved that d.g is in {0, 1,2, 3}, and that
dop was computed in more detail in Lemma 8.3.3. By Lemma 8.3.3, if dog > 1,
then a and S have different lengths; in this case, we draw an arrow pointing
to the shorter root. We will also sometimes consider another graph associated
to R. This is called the Coxeter graph, and consists of the Dynkin diagram
without the arrows pointing to shorter roots.

We have the following of examples of Dynkin diagrams:

dag = (0, B)(8,0) = 4

1. (Asg root system)
o——=O

2. (Bsg root system)

Qo

3. (G2 root system)
—r—=0

4. (A; x A; root system)
©) O

Lemma 9.3.1. Let V and V' be a finite-dimensional vector spaces over R equipt
with an inner product (-,-) and (-,-), respectively, and let R C'V and R’ C V'
be root systems. The root systems R and R’ are isomorphic if and only if R and
R’ have the same directed Dynkin diagrams.

Proof. Assume that R and R’ have the same directed Dynkin diagrams. Since
R and R’ have same directed Dynkin diagrams it follows that R and R’ have
bases B = {a1,...,a:} and B’ ={a},...,a}}, respectively, such that for i,j €

1,....t},
dij = {0, o) (e, aq) = (o, o) (o)

o)
and if d;; > 1, then [la;|| > [Ja;]| and || || > ||o/|| (note that if 4,5 € {1,...,t},
then (a;,a;) = (aj, ) = (aj,a}) = (), af) = 2). Let 4,5 € {1,. t} We
claim that (a;, ;) = (aj, ) and (aj,cm = (a],a) If i = j, then this is
clear by the previous comment. Assume that i # j. By Lemma 8.4.4, the angle
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between «; and «;, and the angle between o and a}, are obtuse. By Lemma
8.3.2 we have d;; = 0,1,2 or 3. Assume that d;; = 0. By Lemma 8.3.3 we

have (a;, ;) = (aj, ;) = (o, ) = (o), a;) = 0. Assume that d;; = 1. By

Lemma 8.3.3 we have (a;,a;) = (a},a}) = —1 and (o, ;) = (o), a}) = —1.
Assume that d;; = 2. By Lemma 8.3.3 we have (a;, ;) = (af,a}) = —1 and
(o, ;) = (af,af) = —2. Assume that d;; = 3. By Lemma 8.3.3 we have

(o, o) = (o, af) = —1 and (a;, ;) = (o}, af) = —3. Our claim follows. We

now have an equality of Cartan matrices:
Clag,...,at) =C(a,...,a}).
By Lemma 9.2.2, R and R’ are isomorphic. O

Lemma 9.3.2. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C V be a root system. Let D be the directed
Dynkin diagram of R. Then R is irreducible if and only if D is connected.

Proof. Assume that R is irreducible. Suppose that D is not connected. Let B
be a base for R. Since D is not connected there exist proper subsets B; and By
of B such that B = By U By and (B, B2) = 0. By Lemma 8.8.2 R is reducible,
a contradiction. The opposite implication has a similar proof. O

9.4 Admissible systems

We will determine the isomorphism classes of irreducible root systems by intro-
ducing a new concept.

Let V be a finite-dimensional vector space over R equipt with an inner
product (-, ). Let A be a subset of V. We say that A is an admissible system
if A satisfies the following conditions:

1. A={vy,...,v,} is non-empty and linearly independent.
2. We have (v;,v;) =1 and (v;,v;) <0 ford,j € {1,...,n} with i # j.
3. Ifi,j € {1,...,n} with i # j, then 4(v;,v;)? € {0,1,2,3}.

Let V be a finite-dimensional vector space over R equipt with an inner product
(-,), and let A = {wy,...,v,} CV be an admissible system. We associate to A
a graph I'4 as follows. The vertices of I'y correspond to the elements of A. If
vi,v; € A with i # j, then I'4 has d;; = 4(v;, v;)? edges between v; and v;.

We will classify all the connected I 4 for A an admissible system. We will use
these results to classify all irreducible root systems. For now, we note that there
is natural connection between irreducible root systems and admissible systems
that have connected graphs. Namely, supose that V is a finite-dimensional
vector space over R equipt with an inner product (-,-), and let R C V be an
irreducible root system. Let B be a base for R. To B we associate the set A of
vectors v/4/(v,v) for v € B. Taking note of Lemma 8.4.4, we see that A is an
admissible system; by Lemma 9.3.2, I"4 is connected.
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Lemma 9.4.1. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A = {v1,...,v,} CV be an admissible system.
The number of pairs of vertices {v,w}, v # w, of T'4 that are joined by at least
one edge is bounded by #A — 1.

Proof. Consider the vector v = Z:;l v;. Since A is linearly independent, the
vector v is non-zero. This implies that (v,v) > 0. Now

n

(11,11) = Z ('Ui’vj)

ij=1
n n

= Z(Ui,vi) + Z (v, v5)
i=1 i4=1, i#j

=n+2 Z (vs, v5).
Since (v,v) > 0, we obtain

n+2 Z (’Ui, Uj) >0
which implies

n > Z —2(vs, v5).

1,j=1, i<j

Now since (v;,v;) <0 for ¢,j € {1,...,n} with ¢ # j, we have
Z 72(”01‘,’Uj) = Z \/4(’1)2',’()]')2 = Z \/dij'
1,j=1, 1<y t,j=1, 1<j t,j=1, i<j

Let N be the number of pairs {v;,v;}, i,5 € {1,...,n}, ¢ # j, that are joined
by at least one edge, i.e., for which d;; > 1. We have

i,j=1, 1<j

In conclusion, we find that n > N. This means that N is bounded by n — 1 =
#A— 1. O

Lemma 9.4.2. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A C V be an admissible system. The graph T 4
does not contain a cycle.
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Proof. Assume that I' 4 contains a cycle; we will obtain a contradiction. Let A’
be the set of edges involved in the cycle. Evidently, A’ is an admissible system.
Consider T'4/. Since I' 4, contains the cycle, the number of pairs of vertices of
I 4/ that are joined by at least one edge is at least #A’. This contradicts Lemma
9.4.1. O

Lemma 9.4.3. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A C V be an admissible system. Let v be a

vertex of I'x, and let vy,...,v; be the list of distinct vertices of I' 4 such that
w € {v1,...,vr} if and only if v and w are incident. Then k and all the edges
between v and the elements of {v1,...,vr} are as in one of the following:
1. k=1 and
o——=oO
v (%1
2. k=1 and
O——0
v U1
3. k=1 and
——=0
v U1
4. k=2 and

5. k=2 and

6. k=3 and
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Proof. By Lemma 9.4.2, I" 4 does not contain a cycle; this implies that (v, v;) =
0 fori,j € {1,...,k} with ¢ # j. Consider the subspace U of V spanned by the

linearly independent vectors v, ..., vg,v. There exists a vector vy € U such that
V0, V1, - ..,V is a basis for U, (vo,v9) =1, and (vg,v;) =0 fori € {1,...,k}. Tt
follows that vg, vy, ..., v is an orthonormal basis for U. Now
k
o= 00
i=0

It follows that

By the definition of an admissible system, (v,v) = 1. Therefore,

k
1= Z(v,vi)Q.

i=0
Now (v,vg) # 0 because otherwise (vg,U) = 0. It follows that

k

4> 24(0, 1}1‘)2.

i=1

As 4(v,v;)? is the number of edges between v and v;, it follows that 4(v, v;)? > 1
for all i € {1,...,k}. We conclude that k < 3; moreover, since 4(v,v;)? is the
number of edges between v and v; for i € {1,...,k}, the possibilities are as
listed in the lemma. O

Lemma 9.4.4. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A = {v1,...,v,} CV be an admissible system.
Assume that T 4 is connected and has a triple edge. Then I' 4 is: O——0

Proof. By assumption, I'4 contains &—=0. Assume that ['4 contains another
vertex w not this subgraph; we will obtain a contradiction. Since I'4 is con-
nected, and since I'4 does not contain a cycle by Lemma 9.4.2; exactly one
vertex v of &——=0 is on a path to w, and this path does not contain the other
vertex of &——=0. It now follows that v, the vertices that are incident to v,
and the edges between v and these vertices, are not as in one of the possibilities
listed in Lemma 9.4.3; this is a contradiction. O
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Lemma 9.4.5. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A CV be an admissible system. Assume that T 4
contains the line

V1 V2 Vi

with no other edges between the shown vertices; here k > 2. Define

k
v = Z Vi
i=1
Then v ¢ A. Define

A= (A—{v,...,ve}) U{v}.

Then A’ is an admissible system, and the graph I' 4 is obtained from T'y by
shrinking the above line to a single vertex.

Proof. Since the set A is linearly independent and since k > 2, we must have
v ¢ A. Similarly, the set A’ is linearly independent. To show that property
2 of the definition of an admissible system is satisfied by A’ it will suffice to
prove that (v,v) = 1. Now by assumption we have that 4(v;,v;;1)? = 1 for
ie{l,...,k—1}, or equivalently, (v;,v;41) = —1/2fori € {1,...,k—1}. Also,
by assumption, (v;,v;) =0ford,j € {1,...,k} i <j and j # i+ 1. We obtain:

k k
v) = (Z Vi, Zvj)

k k

=2 (vivy)

i=1 j=1

k—1
= Z(“i’ v;) + 2 Z(vu Vit1)
=1

i=1

E

k

=Z +2Z ~1/2)

- f(kfl)

To prove that property 3 of the definition of an admissible system is satisfied
by A’ it will suffice to prove that 4(w,v)? € {0,1,2,3} for w € A—{vy,..., v}
Let w € A— {v1,...,v5}. If 4(w,v)? = 0 then 4(w,v)? € {0,1,2,3}. Assume
that 4(w,v)? # 0. Then (w,v) # 0. This implies that for some i € {1,...,k}
we have (w,v;) # 0, so that 4(w,v;)? # 0. Therefore, there is at least one edge
between w and v;. By Lemma 9.4.2, " 4 does not contain a cycle. This implies
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that (w,v;) =0 for all j € {1,...,k} with j # i. We now have (w,v) = (w, v;),
so that 4(w, v)? = 4(w,v;)? € {0,1,2, 3}, as desired.

Finally, consider I' 4-. To see that I 4/ is obtained from I' 4 by shrinking the
above line to the single vertex v it suffices to see that, for all i € {1,...,k}, if
there is an edge in I'y between v; and a vertex w with w ¢ {v1,..., v}, then
w is not incident to v; for all j € {1,...,k} with ¢ # j; this was proven in the
last paragraph. O

Let V be a finite-dimensional vector space over R equipt with an inner
product (+,-), and let A = {vy,...,v,} C V be an admissible system. We say
that a vertex v of I' 4 is a branch vertex of I"4 if v is incident to three distinct
vertices of I'4 by single edges, as in the following picture:

U1
V2
U3

This is possibility 6 from Lemma 9.4.3.

Lemma 9.4.6. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A = {v1,...,v,} CV be an admissible system.
Assume that T' 4 is connected. Then:

1. T'4 has at most one double edge.
2. T4 does not have both a branch vertex and a double edge.
3. T'4 has at most one branch vertex.

Proof. By Lemma 9.4.4 we may assume that I'4 does not contain a triple edge.

Proof of 1. Assume that I"4 has at least two double edges; we will obtain
a contradiction. Since I'4 is connected, for every pair of double edges there
exists at least one path joining a vertex of one double edge to a vertex of the
other double edge; moreover, any such joining path must have at least one edge
by Lemma 9.4.3. Chose a pair such that the length of the joining path is the
shortest among all joining paths between pairs of double edges. Let vy, ..., vg
be the vertices on this shortest path, with v; on the first double edge, vy on
the second double edge, and v; joined to v; 41 for i € {1,...,k — 1} by at least
one edge. Since this is the shortest path we cannot have v; and v; joined by
an edge for some i,5 € {1,...,k}, i < j, and j # i+ 1. Also, as this is the
shortest choice, it is not the case that v; is joined to v;11 by a double edge for
i€ {l,....,k—1}. Let A’ be as in Lemma 9.4.5; by Lemma 9.4.5, A’ is an
admissible system. It follows that

O——C0O—0O

is a subgraph of T 4/; this contradicts Lemma 9.4.3.
The proof of 2, and then the proof of 3, are similar and will be omitted. [
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Lemma 9.4.7. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A CV be an admissible system. Assume that T 4
contains the line

o o—— .. — 0O

(% V2 Vi

with no other edges between the shown vertices; here k > 1. Define

k
V= g 1 ;.
i=1

Then
k(k+1
(v,v) = 7( + )
2
Proof. Since the number of edges between v; and v;11 is one for ¢ € {1,... k—
1} it follows that 4(v;,v;41)? = 1, so that (v;,v;11) = —1/2 (recall that by

the definition of an admissible system we have (v;,v;11) < 0). Also, we have
(vi,vj) =0fori,5 € {1,...,k} with i < j and j # i + 1. It follows that

k k
v) = ivi, Y jv)
i—1 j=1

k k—1
= ZiQ(vi,vi) +2 Z’L 7:+ 1)(vi,vi+1)

=1
k k—1
=3 P +2(=1/2)) (1 +1)
=1 =1
k— k—1 k—1
= Z —2 o)
i= =1 i=1
k—
=k? - z'
i=1
g2 kE—1)k
2
C2k*—K*+k
2
_k(k+1)
==
This completes the calculation. O

Lemma 9.4.8. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A = {v1,...,v,} CV be an admissible system.
Assume that T 4 is connected. If T 4 contains a double edge, then I 4 is
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O—0O0—0O0—0O

or one of graphs in the following list:

Proof. By Lemma 9.4.6, since I" 4 has a double edge, I' 4 has exactly one double
edge, I' 4 has no triple edge, and I' 4 does not contain a branch vertex. It follows
that I' 4 has the form

V1 () Vi w Wj—1 w1

with no other edges between the shown vertices; here k > 1 and j > 1. Without
loss of generality we may assume that k > j. Define

k J
U:E 104, wzg RETIN
i=1 i=1

By Lemma 9.4.7 we have

k(k+ 1)

_JjG+1)
2 ’ '

(w,w) = 2L

(Uﬂv) =

We have 4(vk,wj)2 = 2 since there is a double edge joining vy and v;, and
(vi, wg) = 0 since no edge joins v; and wy for all i € {1,...,k} and £ € {1,...,j}
with 7 # k or £ # j. It follows that

k J
(v,w) = (Zz . vi,Z€~wz)
i=1 =1

= kj(vkawj)a
so that )
k=g
5

(v,w)* = k52 (g, w;)* =
By the Cauchy-Schwarz inequality we have
(v,w)* < (v,0)(w, w);

Note that v and w are linearly independent, so that the inequality is strict.
Substituting, we obtain:

k252 - k(k+1)j(+1)

2 2 2
2k%7% < k(k+1)j(j +1),
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2k%5% < k%52 + K% + %k + jk,
2kj < kj+k+j+1,
kj<k+j+1,
kj—k—j<1,
kji—k—j+1<2,
(k-1)G-1) <2

Recalling that £ > j > 1, we find that kK = j = 2, or k is an arbitrary positive
integer and j = 1. This proves the lemma. O

Lemma 9.4.9. Let V be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A = {v1,...,v,} CV be an admissible system.
Assume that T4 is connected, and that T'y has a branch vertex. Then I'4 is

either

Dg,€24: o—0O— - - Q
or

Eg o0—o0 I O o)

or

By oO—0 I O0—0—0
or

Fy : O O I O O O O

Proof. By Lemma 9.4.4 and Lemma 9.4.6, since I'4 is connected and contains
a double edge, I' 4 contains exactly one branch vertex, no double edges, and no
triple edges. It follows that I' 4 has the form



9.4. ADMISSIBLE SYSTEMS 139

O up

O W
O—— -+ O O O - O
V1 Vg z w1 Wi

with k > j > ¢. We define

k J 4
’Uzg v, wzg - wW;, uzg T Uy
i=1 i=1 i=1

Since there are no edges between the vertices in {v1,...,vx} and the vertices
in {wn,...,v;}, the vectors v and w are orthogonal. Similarly, v and u are
orthogonal, and w and u are orthogonal. Define

v , w , U

4 = — w = — U = —:.
[loll” lwll” [[ul

v

The vectors v/, w’ and v’ are also mutually orthogonal, and have norm one.
Let U be the subspace of V' spanned by v',w’,« and z. This space is four-
dimensional as these vectors are linearly independent. The orthonormal vectors
v, w’,u’ can be extended to an orthonormal basis v/, w’, v, 2’ for U. We have

2= (2,00 + (z,w")w + (z,u)u + (2,2")7

so that
1=(22) = (2,0)? + (z,0)? + (z,u')* + (2,2)%

The vector 2z’ cannot be orthogonal to z; otherwise, (z/,U) = 0, a contradiction.
Since (z,2')? > 0, we obtain

(2,0 + (z,w)? + (z,0))? < 1.

Now
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Similarly,
"2 J "2 ¢
= d =
(z,w") G+ 1) an (z,u') 2+ 1)
Substituting, we get:
LA R —
2k+1) 20+1) 20+1) ’
k+1 1 Jj+1 1 {+1 1
- b -+ - <1,
2k+1) 2k+1) 2j+1) 2(j+1) 20+1) 20041
TR S D T S S
2 2(k+1) 2 2(j+1) 2 20+1)
3 1 1 1
5 - - <1,
2 20k+1) 2(+1) 20+1)
3 1 1 1 <9
k+1 j+1 (41 ’
1 1 1

1.

[ S g
Now k > j > ¢ > 1. Hence,
E+1>j+1>04+12>2

and thus
1 1 1

<< <
E4+1 = 5+1 - 0+1~

N | =

It follows that

1 1 1
I T i e
1 1 1
[ I T
3
£+1 ’
3>0+1,
2> (.
Hence, ¢ = 1. Substituting ¢ = 1, we have:
1 1 1
Pl g1 tirr o
1 1 1
kil jr10 2
1 1 1
iTi i iy
2 1
ISR
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2 1
Jj+1
3> 7.

It follows that j =1 or j = 2. Assume that j = 2. Then the inequality is:

! + ! + ! >1
k+1 241 1+1 ’
1 5
Fr1 6o b
1 1
E+1° 6
5> k.

This implies that kK = 3 or k = 4. In summary we have found that
(k,j,0) e {(k,1,1): keZ,k>1}U{(2,2,1),(3,2,1),(4,2,1)}.
This is the assertion of the lemma. O

Theorem 9.4.10. Let V' be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let A = {v1,...,v,} CV be an admissible system.
Assume that T' 4 is connected. Then I"4 is one of the following:

1. (¢ vertices, {>1) O—O0—— -+ ——O0—0
2. (¢ vertices, £ >2)

3. (0 vertices, £ >3) O——O0— -- %
io=——0¢

5. O——C—0O0—-oO0
o
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Proof. Let £ be the number of vertices of I'4. If £ =1, then I'4 is as in 1 with
¢ =1. Assume that ¢/ > 2. By Lemma 9.4.3, there exist no two vertices of I"4
joined by four or more vertices.

Assume that T"4 has a triple edge. By Lemma 9.4.4, T4 is as in 4. Assume
for the remainder of the proof that I' 4 does not have a triple edge.

Assume that I" 4 has a double edge. Then by Lemma 9.4.8, T 4 must be as in
2 or 5. Assume for the remainder of the proof that I'4 does not have a double
edge.

Assume that I'4 has a branch vertex. By Lemma 9.4.9, I'y must be as in
3,6, 7, or 8. Assume for the remainder of the proof that I'y does not have a
branch vertex.

Since no two vertices of I'4 are joined by two or or more vertices, since I'4
does not have a branch vertex, and since I'4 does not contain a cycle by Lemma
9.4.2, it follows that I'4 is as in 1. O

9.5 Possible Dynkin diagrams

Theorem 9.5.1. Let V' be a finite-dimensional vector space over R equipt with
an inner product (-,-), and let R C V be a root system. Assume that R is
irreducible. Let D be the Dynkin diagram of R. Then D belongs to one of the
following infinite families (each of which has ¢ vertices)

By, 0> 2: O O Q) O
Cy, 0> 3: O O O {0

Dy, 0> 4: O

Q

or D is one of the following five diagrams
Gy: O—=F=0
Fy: O—QO 1T 0O0—=0

E@S O

@)
@)
O

Q
o—0O0 O0—=0
Q
Q
O

E72 @
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Es: O O I O O O O

A

Proof. Let B a base for R. Let A be the admissible system associated to R and
B as at the beginning of Section 9.4. Let C be the Coxeter graph of R; this is
the same as I' 4, the graph associated to A. By Theorem 9.4.10, I'y = C' must
be one of the graphs listed in this theorem. This implies the result. O
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Chapter 10

The classical Lie algebras

Let F' have characteristic zero and be algebraically closed. The classical Lie
algebras over F are sl({ + 1, F'), so(2¢ + 1, F), sp(2¢, F'), and so(2¢, F) for £ a
positive integer. In this chapter we will prove that these Lie algebras are simple
(with the exception of so(2¢, F) when £ = 1 or { = 2) We will also determine
the root systems associated to these classical Lie algebras.

10.1 Definitions

sl +1,F)

Let F" have characteristic zero and be algebraically closed, and let £ be a positive
integer. We define sl(¢+ 1, F') to be the F-subspace of g € gl(£+ 1, F') such that
tr(g) = 0. The bracket on sl(¢+1, F') is inherited from gl(¢+1, F'), and is defined
by [X,Y] = XY - YX for X,Y € sl({ + 1, F). Note that [X,Y] € sl({ + 1, F)
for X, Y €sl({+1, F) because tr([X,Y]) = tr(XY) —tr(YX) = XY - XY = 0.
The bracket on sl(¢ + 1, F) satisfies 1 and 2 of the definition of Lie algebra
from Section 1.3 because the bracket on gl(¢+ 1, F') satisfies these properties by
Proposition 1.4.1.

Lemma 10.1.1. Let n be a positive integer. Let S € gl(n,F). Let L be the
F-subspace of X € gl(n, F) such that

XS +S5X =0.

With the bracket inherited from gl(n, F), so that [X,Y] = XY -Y X for X,Y €
L, the subspace L is a Lie subalgebra of gl(n, F). Moreover, if S is invertible,
then L C sl(n, F).

Proof. Let X,Y € L. Then

UX,Y]S + S[X, Y] = XY - YX)S + S(XY — Y X)

145
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=("V'X -'X'Y)S + SXY - SYX

="Y'XS - 'X'YS + SXY - SYX

=—'YS5X +'XSY + SXY — SYX

=5YX - SXY +SXY -SYX

=0.
It follows that [X,Y] € L. The bracket on L satisfies 1 and 2 of the definition
of Lie algebra from Section 1.3 because the bracket on gl(n, F') satisfies these

properties by Proposition 1.4.1. Assume that S is invertible. Let X € L; we
need to prove that tr(X) = 0. We have

XS+ SX =0
XS =-5X
‘X =-5Xx57!

tr(*X) = tr(—SXS™ 1)
tr(X) = —tr(S71SX)
tr(X) = —tr(X).

Since F' has characteristic zero, this implies that tr(X) = 0. O

so(2¢+ 1, F)

Let F have characteristic zero and be algebraically closed, and let ¢ be a positive
integer. Let S € gl(2¢ + 1, F') be the matrix

Here, 1, is the £ x £ identity matrix. We define so(2¢ + 1, F') to be the Lie
subalgebra of gl(2¢+ 1, F') defined by S as in Lemma 10.1.1. By Lemma 10.1.1,
since S is invertible, we have so(2¢ + 1, F') Csl(20 4+ 1, F).

sp(2¢, F7)

Let F have characteristic zero and be algebraically closed, and let £ be a positive
integer. Let S € gl(2¢, F) be the matrix

- {—n “} .

Here, 1, is the £ x ¢ identity matrix. We define sp(2¢, F') to be the Lie subalgebra
of gl(2¢, F) defined by S as in Lemma 10.1.1. By Lemma 10.1.1, since S is
invertible, we have sp(2¢, F') C sl(2¢, F).
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so(2¢, F)

Let F have characteristic zero and be algebraically closed, and let ¢ be a positive
integer. Let S € gl(2¢ + 1, F') be the matrix

- Le 1@].

Here, 1, is the ¢ x £ identity matrix. We define so(2¢, F') to be the Lie subalgebra
of gl(2¢, F) defined by S as in Lemma 10.1.1. By Lemma 10.1.1, since S is
invertible, we have so(2¢, F') C sl(2(, F).

10.2 A criterion for semi-simplicity

Lemma 10.2.1. Assume that F has characteristic zero and is algebraically
closed. Let L be a finite-dimensional Lie algebra over F'.

1. Assume that L is reductive. Then
L=[L1)®Z(L)
as Lie algebras, and [L, L] is semi-simple.

2. Assume that V is a finite-dimensional vector space over F. Let L be a
non-zero Lie subalgebra of gl(V'), and assume that L acts irreducibly on
V. Then L is reductive and dim Z(L) < 1. If L is contained in sl(V),
then L is semi-simple.

Proof. Proof of 1. Assume that L is reductive. By Lemma 2.1.10, L/Z(L) is
semi-simple. Consider the ad action of L/Z(L) on L. By Theorem 6.2.4, Weyl’s
Theorem, this action is completely reducible; it follows that the ad action of
L on L is also completely reducible. Therefore, the L-submodule Z(L) has a
complement, i.e., there exists an L-submodule M of L such that L = M & Z(L)
as F-vector spaces. Since L acts on L via the ad action, M is an ideal of L. We
claim that M = [L, L]. Let z,y € L, and write x = m 4+ u and y = n + v with
m,n € M and u,v € Z(L). Then

[z,9] = [m +w,n+ o] = [m,n] + [m, 0] + [u,n] + [u, v] = [m, n].
Therefore, [x,y] € [M,M] C M. It follows that [L,L] C M. Now by Lemma
6.2.2, since L/Z(L) is semi-simple, we have [L/Z(L),L/Z(L)] = L/Z(L). This
implies that ([L, L] + Z(L))/Z(L) = L/Z(L), so that

dim[L, L] + dim Z(L) = dim L.

Since now dim[L, L] = dim L—dim Z(L) = dim M, we conclude that [L, L] = M.
Hence, L = [L, L]®Z(L) as Lie algebras. Since L = [L, L]®Z(L) as Lie algebras
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we obtain [L,L] = L/Z(L) as Lie algebras; since L/Z(L) is semi-simple, we
conclude that [L, L] is semi-simple.

Proof of 2. Let R = Rad(L). By definition, R is a solvable ideal of L.
By Lemma 3.4.1, there exists a non-zero vector v € V, and a linear functional
A : R — F such that v = A(r)v for all r € R. Let z € L and r € R. Then
[x,7] € R since R is an ideal. Hence,

(2,0 = A, r])o
xrv —razv = A([z,r])v
—r(azv) = =A(r)axv + A([z,r])v
r(zv) = A(r)zv + A([r, z])v.
By assumption, the action of L on V is irreducible. This implies that the vectors

zv for x € L span V. Therefore, there exists vectors vy, ..., v, in V such that
V1,...,Um,v is an ordered basis for V', and constants c1, ..., ¢,, such that

rv; = A(r)v; + ¢v

for r € Rand i € {1,...,m}. If r € R, then the matrix of r in the basis
Vlyeve,Um, U i8S

A(r)
In particular, we see that the tr(r) = A(r) - dim V. Consider [L, R]. This ideal

of L is contained in R, and we have tr([L, R]) = 0. It follows that A([L, R]) = 0.
From this, we conclude that in fact

r(azv) = A(r)zv

for r € R and x € L. Since the action of L on V is irreducible, it follows that
r € R acts by A(r), i.e., the elements of R are contained in F' C gl(V'). Thus,
R C Z(L), so that R = Z(L) and L is hence reductive. Also, dimZ(L) =
dim R < 1. Finally, assume that L C sl(V). Then tr(z) = 0 for all © € L. Since
R C F C gl(V), this implies that R = 0; i.e., L is semi-simple. O

10.3 A criterion for simplicity

Lemma 10.3.1. Let L be a Lie algebra over F', and S C L be a subset. Let K be
the subalgebra of L generated by S. Let X € L. If [X,S] =0, then [X, K] =0.
If[X,8] C K, then [X,K] C K.

Proof. Assume that [X,S] = 0. Inductively define subsets Ki, Ko, K3,... by
letting K7 = S and

k—1
Kp=|J{V.2]:Y € Ki, Z € Ki_i}.

i=1
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Evidently, every element of K is a linear combination of elements from the union
U Kj. Thus, to prove that [X, K] = 0 it suffices to prove that [X, Ki] = 0
for all positive integers k. We will prove this by induction on k. The case k =1
follows by hypothesis. Let k be a positive integer and that [X, K, = 0 for
all positiver integers ¢ < k; we will prove that [X, Kxy1] = 0. To prove this
will suffice to prove that for every pair of positive integers ¢ and j such that
i+j=Fk+1wehave [X,[Y,Z]] =0for Y € K; and Z € K;. Let i and j be
positive integers such that i 4+ j = k+ 1 and let ¥ € K; and Z € K;. By the
Jacobi identity and the induction hypothesis we have

[Xv [Y7 ZH = _[Y7 [Z7X]] - [Z7 [X7Y]]
=-1Y,0] — [Z,0]
=0.

We now obtain [X, K] = 0 by induction.

To prove the second assertion of the lemma, assume that [X,S] € K. To
prove that [X, K| C K it will suffice to prove that [X, Ki] C K for all positive
integers k. We will prove this by induction on k. The case k = 1 is the hypothesis
[X,S] € K. Let k be a positive integer, and assume that [X, K,] C K for all
positive integers ¢ < k; we will prove that [X, Kxy1] € K. To prove this
will suffice to prove that for every pair of positive integers 7 and j such that
i+j=k+1wehave [X,[Y,Z]] € K for Y € K; and Z € K. Let ¢ and j be
positive integers such that ¢ +j =k +1 and let Y € K; and Z € K;. By the
Jacobi identity we have

[X7 [Y,Z]] = _[Yv [ZvXH - [Zv [XvYH

By the induction hypothesis, [Z, X] = —[X, Z],[X,Y] € K. Since Y,Z € K
we obtain [Y,[Z, X]],[Z,[X,Y]] € K. It now follows that [X,[Y,Z]] € K, as
desired. We have proven that [X, K] C K by induction. O

Proposition 10.3.2. Let F' have characteristic zero and be algebraically closed.
Let L be a semi-simple finite-dimensional Lie algebra over F'. Let H be a Cartan
subalgebra of L, and let ® be the root system associated to the pair (L, H) as in
Section 8.2. Then L is simple if and only if ® is irreducible.

Proof. To begin, we recall that as in Section 8.2 we have

L=H® @L
acd

Assume that L is simple. Assume that ® is not irreducible; we will obtain
a contradiction. Since ® is not irreducible, there exist non-empty subsets ®;
and ®, of ® such that ®; NPy = () and (1, Py) = 0. Let K be the subalgebra
generated by the L, for a € ®;. We claim that K is a non-zero, proper ideal
of L; this will contradict the assumption that L is simple. It is clear that K is
non-zero because ®; is non-empty.
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To prove that K is a proper ideal of L we will first prove that [Lg, K] =0
for B € ®5. Let 8 € ®3. By Lemma 10.3.1, to prove that [Lg, K] = 0 it will
suffice to prove that [Lg, L,] = 0 for a € ®7. Let o € ®;. Now by Proposition
7.0.3, [Lg, La) C Lo+p. Assume that L,yg # 0; we will obtain a contradiction.
Consider oo+ 8. We have (a+ 8, a) = (a,a) + (5,a) = (a, ) + 0 = (o, ) > 0;
this implies that o + 8 # 0. Since L4 # 0, and since a + 5 # 0, we have, by
definition, o + § € ®. Hence, a+ 0 € &1 or a+ [ € &y. If a+ 8 € &y, then
(a+ B, 8) = 0; since (a+ B, 8) = (8,5) > 0, this is a contradiction. Similarly,
if  + 8 € ®q, then (a+ 5, a) = 0, a contradiction. It follows that Ly4g = 0,
implying that [Lg, Lo] = 0. Hence, [Lg, K| =0 for all 8 € ®,.

To see that K is proper, assume that K = L. Then [Lg,L] = [Lg, K] =0
for all 8 € ®5. This means that Lg C Z(L) for all § € ®y; since Z(L) = 0
(because L is simple), and since @4 is non-empty, this is a contradiction. Thus,
K is proper.

Finally, we need to prove that K is an ideal of L. By Lemma 10.3.1, since L =
H® @, co La, to prove this it will suffice to prove that [H, L,] C K, [L, La] C
K and [Lg,L,]) C K for all « € ®q1, v € ®y, and § € P1. Let a € P9, v € Py,
and 8 € ®;. Then [H, L,] C L, by the definition of L,. Since L, C K, we get
[H,L,) C K. We have [L,, L,] C K by the definition of K. Finally, we have
already proven that [Lg, Lo] = 0, so that [Lg, L] C K. It follows that K is an
ideal of K, completing the argument that L is irreducible.

Next, assume that @ is irreducible, and that L contains a non-zero, proper
ideal I; we will obtain a contradiction. Since I is an ideal, the mutually com-
muting operators ad(h) € gl(L) for h € H preserve the subspace I. Since every
element of H is semi-simple, the elements of ad(H) C gl(L) are diagonalizable
(recall the definition of the abstract Jordan decomposition, and in particular,
the definition of semi-simple). The restrictions ad(h)|; for h € H are therefore
also diagonalizable. Since the F-subspaces L, for a € ® are one-dimensional
by Proposition 7.0.8, it follows that there exist an F-subspace H; of H and a
subset ®; of ® such that

I=H & @La.
acdy

By Lemma 5.3.3 the subspace I+ of L is also an ideal of L. Hence, there also
exist an F-subspace Ho of H and a subset ®5 of & such that

I*=H,» @ Ls.
BED2

By Lemma 5.4.3 we have L = I & I+, This implies that H = H; & Hs and
that there is a disjoint decomposition ® = ®; Ll &5. Assume that & is empty;
we will obtain a contradiction. Since ®; is empty, we must have &3 = ®, so
that Ls C I+ for all B € ®. By Proposition 7.0.14, L C I+, implying that
I+ = L and hence I = 0, a contradiction. Thus, ®; is non-empty. Similarly, ®,
is non-empty. Let o € ®; and § € ®y; we claim that (a, ) = 0. We have, by 3
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of Lemma 7.0.11,

(a,B8) = = a(hg).
Also, by the definition of L,
a(hg)ea = [hg, eal.

Consider [hg, eq]. On the one hand, since e, € Lo C I, and since I is an ideal
of L, we have [hg,eq] € I. On the other hand, hg = [eg, f3]; since fz € I+,
and It; we must have hs € It. Using again that I+ is an ideal, we see that
[hg,eq] € I+, Now we have [hg,eq] € I NI+ =0, proving that [hg,eq] = 0. It
follows from above that a(hg) = 0, and hence that (c, ) = 0, as claimed. This
contradicts the irreducibility of ®. O

10.4 A criterion for Cartan subalgebras

Lemma 10.4.1. Let F have characteristic zero and be algebraically closed.
Let n be a positive integer. Let h € gl(n, F) be diagonalizable. Then ad(h) :
el(n, F) — gl(n, F) is diagonalizable.

Proof. Since h is diagonalizable, there exists a matrix A € GL(n, F') such that
AhA~! is diagonal. Let d = AhA™", and let

-]

Consider ad(d). Let 4,5 € {1,...,n}. We have
ad(d)(eij) = [d; eij]
= de;j — e;5d
= d;es; — djeg
= (d; — d;)e;j.
Thus, e;; is an eigenvector for d with eigenvalue d; — d;. Since the set {e;; :
1 <14,j <n} is a basis for gl(n, F') it follows that ad(d) is diagonalizable. Now
assume that x € gl(n, F') is an eigenvector for ad(d) with eigenvalue A. We have
ad(h)(A 'zA) = hA 'z A — A 'z Ah
= A Y (AhA e —zARATHA
= A"Yd, z]A
= A tad(d)(z)A
= \A"'zA.
It follows that A=1zA is an eigenvector for ad(h) with eigenvalue A. Since the

vectors A~ 'e;; A for i, € {1,...,n} are basis for gl(n, F') and are eigenvectors
for ad(h), it follows that ad(h) is diagonalizable. O
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We remark that the content of the above lemma is already contained in
Lemma 5.1.3.

Lemma 10.4.2. Let F have characteristic zero and be algebraically closed. Let
n be a positive integer, and let L be a Lie subalgebra of gl(n, F). Let H be the
abelian subalgebra of L consisting of the diagonal matrices in L; assume that H
18 non-zero. Let W be the F-subspace of L consisting of elements with zeros on
the main diagonal. Assume that no non-zero element of W commutes with all
the elements of H, i.e.,

{z €e W :ad(h)(z) = [h,z] =0,h € H} = 0.
Then H is a Cartan subalgebra of L.

Proof. Evidently, H is abelian. Also, by Lemma 10.4.1, the operators ad(h) :
gl(n, F) — gl(n, F) for h € H are diagonalizable. To prove that H is a Cartan
subalgebra it will suffice to prove that if H' is an abelian subalgebra of L, and
H C H', then H = H’'. Assume that H' is an abelian subalgebra of L such that
every element of H and H C H'. Let x € H'. Now

L=HoW.

The operators ad(h) for h € H leave the subspace W invariant; since ad(h) is
diagonalizable, it follows that ad(h)|w is diagonalizable for h € H. For a linear
functional 8 : H — F, let

Ws ={x e W:ad(h)x = 8(h)z,h € H},

and let B be the set of linear functionals 8 : H — F such that W3 # 0. There
is a direct sum decomposition

W= ws.
and hence a direct sum decomposition

L=He @ W;.
peB
The assumption of the lemma is that 0 ¢ B, i.e., 8 # 0 for all § € B. Write
T =x9+ Z g
BEB
where o € H and z3 € Wg for f € B. Let h € H. Then ad(h)z = [h,z] =0
because h,x € H' and H' is abelian. Applying ad(h) to the above sum yields

ad(h)z = ad(h)zo + Y _ ad(h)(zs)
BeB
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0=0+ Y B(h)as

BEB

0=">" B(h)zg

BeB

Since the subspaces Wj for 8 € B form a direct sum, we must have g(h)zg =0
for all 3 € B and h € H. Since every 8 € B is non-zero, we must have g = 0
for all 8 € B. This implies that x = zg € H, as desired. O

10.5 The Killing form

Lemma 10.5.1. Let F' have characteristic zero and be algebraically closed. Let
n be a positive integer. For x,y € gl(n, F') define

t(z,y) = tr(xy).

The function t : gl(n, F) x gl(n, F) — F is an associative, symmetric bilinear
form. If L is a Lie subalgebra of gl(n, F), L is simple, and the restriction of t
to L x L is non-zero, then L is non-degenerate.

Proof. 1t is clear that t is F-linear in each variable. Also, t is symmetric because
tr(zy) = tr(yz) for x,y € gl(n, F). To see that t is associative, let z,y,z €
gl(n, F). Then

tr(z(yz — 2y))

tr(zyz) — tr(zzy)
tr(zyz) — tr(yxz)
tr(
¢

t(x, ly, 2)

r((zy — yx)2)

(’]7

Assume that L is a subalgebra of gl(n, F'), L is simple, and the restriction of ¢
to L x L is non-zero. Let J = {y € L : t(x,y) = 0,2 € L}. We need to prove
that J = 0. We claim that J is an ideal of L. Let y € L and z € J; we need to
see that [y, z] € J. Let € L. Now t(x, [y, z]) = t([z,y],2) = 0 because z € J.
It follows that J is an ideal. Since L is simple, J =0 or J = L. If J = L, then
the restriction of ¢t to L x L is zero, a contradiction. Hence, J = 0. O

Lemma 10.5.2. Let L be a Lie algebra over F, and let (w,V) be a representa-
tion of L. Let
VY =Homp(V, F),

and regard VV as a vector space over F. Define an action w" of L on VV by

setting
(7" (@)N)(v) = =A(m(2)v)

forz e L, \ € VV, and v € V. With this definition, VV is a well-defined
representation of L.
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Proof. We need to prove that the map 7v : L — gl(VV) is a well-defined
Lie algebra homomorphism. This map is clearly well-defined and linear. Let
z,y€ L, A€ VY, and v € V. Then

(" ([z, yDA) (v) = =A(w ([, y])v)

And
(=" (@)n" () — =¥ ()" (@) A
=7 (z) (7" (yA) — 77 (y) (7" (2)N),
so that
((WV(OC T (y) =7 ()" (2)A) (v)
= (7 @A) (x(@)v) + (¥ (2)A) (x(y)v)

It follows that

™ [z, y)A = (7 (@)m" (y) — 7' (y)m (2))A,
proving that 7V is a Lie algebra homomorphism. O

Lemma 10.5.3. Let F' have characteristic zero and be algebraically closed. Let
L be a finite-dimensional simple Lie algebra over F. If t1,to : L Xx L — F are
non-zero, associative, symmetric bilinear forms, then there exists ¢ € F* such
that tQ = Ctl.

Proof. Regard L as a representation 7 of L via the usual definition ad(z)y =
[,y] for z,y € L (see Proposition 1.5.1). Via Lemma 10.5.2 regard LV as a
representation of L. For v € L, define 71 (v) € LY by (r1(v))(w) = t1(v,w). We
claim that r{ : L — LV is a well-defined homomorphism of representations of
L. Let x € L and v,w € L. Then

(ad” (z)(r1(v))) (w).

This proves that r; is a well-defined homomorphism. Since ¢; is non-zero, ry is
non-zero. The kernel of r; is an L-subspace of L and hence is an ideal of L; since
r1 is non-zero and L is simple, the kernel of r; is zero. Since L and LV have
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the same dimension, r; is an isomorphism of representations of L. Similarly,
using t3 we may define another isomorphism ry : LtoL" of representations of L.
Consider r; Yory: L — L. This is also an isomorphism of representations of L.
By Schur’s Lemma, Theorem 4.2.2, there exists ¢ € F' such that 7’1_1 ore = cidp,
or equivalently, 7o = cry. Let v,w € L. Then

(r2(v))(w) = e(r1(v))(w)

ta(v,w) = ctq (v, w).
This completes the proof. O

Lemma 10.5.4. Let F' have characteristic zero and be algebraically closed. Let
n be a positive integer. Let L be a simple Lie subalgebra of gl(n, F'), and let k be
the Killing form of L. There exists c € F* such that k = ct, wheret: LxL — F
is defined by t(x,y) = tr(zy) for z,y € L

Proof. This follows from Lemma 10.5.1 and Lemma 10.5.3. O

10.6 Some useful facts

Let n be a positive integer. Let 4,5 € {1,...,n}. We let ¢;j be the element
of gl(n, F') that has 1 as the (i, j)-th entry and zeros elsewhere. Let 4,7, k, ¢ €
{1,...,n} and a € gl(n, F). Then

[eij, exe] = Ojkeie — duieky,

[eij, €5i] = €ii — €5,

i # L= [eir, ere] = eir,

J# k= lesj, ere] = —ex;j,

i # j = [eij, [eij, a]] = —2aj:€;5.

10.7 The Lie algebra sl(¢ + 1)

Lemma 10.7.1. The dimension of the Lie algebra sl({ + 1, F) is (£ +1)% — 1.

Proof. A basis for the Lie algebra sl(¢+1, F) consists of the elements e;; for ¢, j €
{1,...,£+1}, i # j, and the elements e;; — epy1 41 fori e {1,...,n—1}. O

Lemma 10.7.2. Let F' have characteristic zero and be algebraically closed. The
natural action of sI((+1, F) on V= Mgy 1(F) is irreducible, so that sl(¢+1, F)
18 semi-simple.

Proof. Let ey, ..., epy1 be the standard basis for V. Let W be a non-zero sl(¢ +
1, F)-submodule of V'; we need to prove that W = V. Let w € W be non-zero.

Write
wi

g
I

We41
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Since w is non-zero, there exists j € {1,...,¢ + 1} such that w; # 0. Applying
the elements e;; € sl({ + 1, F) for i € {1,...,0+ 1}, i # j, to w, we find that
the standard basis vectors e; of V for i € {1,...,£+ 1}, i # j are contained in
W. Let k€ {1,...,£+ 1} with k # j. Applying the element e;; — e to w, we
get that w;e; — wyey is in W this implies that e; is in W. Since W contains
the standard basis for V' we have W = V| as desired. By Lemma 10.2.1, the Lie
algebra sl(¢ + 1, F) is semi-simple. O

Lemma 10.7.3. Let F have characteristic zero and be algebraically closed. The
set H of diagonal matrices in sl(¢+ 1, F') is a Cartan subalgebra of sl(¢ + 1, F).

Proof. Let W be the F subspace of sl(£+ 1, F') consisting of matrices with zeros
on the main diagonal. Let w € W, and assume that w commutes with every
element of H. By Lemma 10.4.2, to prove that H is a Cartan subalgebra, it
suffices to prove that w = 0. Write

w = E wijeij
1<4,5<l+1,
1]

for some w;; € F, 1 <4,j <{+1,i#j. Let h € H, with

hi1
h =
het1,e41
for some hi1,...,hey1 641 € F. Then
howl = Y wijh,eij]
1<i,j <0+,
i#£]
0= > wiylhi—hyei.
1<4,5<n,
i#£j

Since the e;; for ¢,j € {1,...,¢+ 1} are linearly independent, we get w;;(h;; —
hj;) = 0 for all 4,5 € {1,...,0+ 1} with ¢ # j and all h € H. Let i,j €
{1,...,0+4+ 1} with ¢ # j. Set h = e;; —ej;. Then h € H, and we have
wij(hii — hjj) = 2w;;. Since F' has characteristic zero, we conclude that w;; = 0.
Thus, w = 0. U

Lemma 10.7.4. Assume that the characteristic of F' is zero and F is alge-
braically closed. Let H be the Cartan subalgebra of L = sl(¢ + 1, F') consisting
of diagonal matrices in sl({ + 1, F), as in Lemma 10.7.5. Then ® consists of
the linear forms

Qj H—F

defined by
aij(h) = hii — hj;
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forhe H; here, 1 <i,j <{+1 and i # j. Moreover
Laij = Feij
Proof. Let 1 <14,j < {41 with i # j. For h € H we have
[h, ei5] = (hii = hjj)ei; = cuj(h)es;.
It follows that o;; € ® and e;; € Ly,;. Since
si¢+1,F)=H® Y Fe; CH® » Lo, Csl((+1,F)
1<i,j<f+1, 1<i,j<f+1,
i£] i#]

the inclusion must be an equality. This implies that ® and L,,, for 1 <4,j <
£+ 1 with i # j are as claimed. O

Lemma 10.7.5. Let F' have characteristic zero and be algebraically closed. Let
£ be a positive integer. Let H be the subalgebra of sl(¢ + 1, F) consisting of
diagonal matrices; by Lemma 10.7.3, H is a Cartan subalgebra of sl(£ + 1, F).
Let ® be the set of roots of sl(€+1, F') defined with respect to H. Let V = R®q Vb,
where Vo is the Q subspace of HY = Homp(H, F) spanned by the elements of
®; by Proposition 8.2.1, ® is a root system in V. Let i € {1,...,¢}, and define

by

Bi(h) = hii — hit1,i41
for h € H. The set B = {f1,...,B¢} is a base for ®. The positive roots in
are the a;; with i < j, and if i < j, then

aij = Bi + Bit1+ -+ Bj-1.

Proof. It was proven in Lemma 10.7.4 that the linear functionals o;; : H — F
defined by «j;(h) = hy — hj; for h € H and 4,j € {1,...,0 + 1}, i # j,
constitute the set of roots ® of sl(¢+ 1, C) with respect to H. Evidently, B C ®.
Also, it is clear that B is linearly independent; since B has £ elements and the
dimension of V' is ¢ (by Proposition 7.1.2), it follows that B is a basis for V.
Let i,j € {1,...,£+ 1}, i # j. Assume that i < j. Then

®ij = Bi + Big1 + -+ + fj-1-
Assume that j < i. Then
aij = —ji = —(Bj + Bj1+ -+ + Bi-1).

It follows that B is a base for ® and the positive roots in ® are as described. [
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—o3 —a3 hss -
—0ry —aiy —aizy haa -

—ais —Qas —a35 —0u45 hss

Figure 10.1: The root spaces in sl(5, F)). For this example, £ = 3. The positions are labeled
with the corresponding root. Note that the diagonal is our chosen Cartan subalgebra. The
positive roots with respect to our chosen base {81, 82, 33,34} are boxed, while the colored
roots form our chosen base. The linear functionals c;; are defined in Proposition 10.7.4.

Lemma 10.7.6. Assume that the characteristic of F' is zero and F is alge-
braically closed. Let £ be a positive integer. The Killing form

k:sll+1,F) xsl¢+1,F) — F
s given by
k(h,h') = (20 +2) - tr(hR')

for h,h' € H. Here, H is the subalgebra of diagonal matrices in sl({+ 1, F); H
is a Cartan subalgebra of sl(¢ + 1, F) by Lemma 10.7.5.

Proof. Let h,h' € H. Then:

k(h,h')
= tr(ad(h) o ad(h'))
= Z a(h)a(h)

acd

- Z (hii — hjj) (hi; — h5)

§,E{L 41},

i#]
DI S
i,5€{L,...,0+1}, ,5€{1,...,0+1},
i7#j 7]

— Y hyhli+ Y hyhl
i,7€{1,....0+1}, i,7€{1,....0+1},
i#j i#j
=20 Y hghl,—2 Y hihl

ie{l,...,04+1} §,5€{1,., 041},

i#]
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=20 tr(hh') — 2 Z hiih';; 42 Z hiih;
i,5€{1 0041} i€{1,. 041}
=20 -tr(hh') — 2 - tr(h) - tr(R') + 2 - tr(hR))
= (20+42) -tr(hh')—=2-0-0
= (20 +2) - tr(hh'),
where we note that tr(h) = tr(h’) = 0 because h,h' € sl({ + 1, F). O
Lemma 10.7.7. Let the notation as in Lemma 10.7.5. If i € {1,...,£}, then

1
tg, = m(en‘ —€it1,i41)-

Leti,je{1,...,4}. Then

2

212 ifi=j,
-1
(Bis Bj) = CYA) if i and j are consecutive,
0 ifi # j and i and j are not consecutive.

Proof. Let i € {1,...,£}, and let h € H. Then

Bi(h) = hii — hig1i41-

Also,
1 1 1
ﬂ(ha m(eii - 6¢+1,¢+1)) = mﬁ(h, €i¢) - mﬁ(h, 61‘+1,¢+1)
20+ 2 20+ 2
= 52 ) = 5 ke

= tr(heii) — tr(hel-+17i+1)
= hii — hit141

By definition, tg, is the unique element of H such that 8;(h) = x(h,tg,) for all
h € H. The last two equalities imply that

1
lg, = o7 (Cii = Cit1,i+1)-
B = gy g (€ ~ CitLit1)

Let 4,5 € {1,...,¢}. By the definition of the inner product on V' and Lemma
10.7.6 we have

(ﬁia B]) = K’(t,ﬁi’tﬂj)
= (25 + Q)tr(tgitgj)

1
= mtr((en —eirriv1)(ej; — €jr1+1))
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1
= (tr(eiiej'j) — tr(eiiej41,+1)

20+2
—tr(eit1,i+1€55) + tr(6i+1,i+1€j+1,j+1)>
1
=212 (5ij —0ij+1 — Oig1,5 + 5i+1,j+1)~
The formula for (5;, ;) follows. O

Lemma 10.7.8. Let F' have characteristic zero and be algebraically closed. The
Dynkin diagram of sl({ + 1, F) is

Ay O O O O

and the Cartan matriz of sl(¢ + 1, F) is

2 -1
-1 2 -1

The Lie algebra sl(£ + 1, F') is simple.
Proof. Let i,j € {1,...,4} with i # j. We have by Lemma 10.7.7,
(Bis B)

—1 if i and j are consecutive,
0 if ¢ and j are not consecutive.

Hence,

B B85 i) = 475555, )

1 if 4 and j are consecutive,
0 if ¢ and j are not consecutive.

It follows that the Dynkin diagram of sl(¢ 4 1, F') is Ay, and the Cartan matrix
of sl(¢+1, F) is as stated. Since Ay is connected, sl(¢+ 1, F') is simple by Lemma
9.3.2 and Proposition 10.3.2. O

Lemma 10.7.9. Assume that the characteristic of F' is zero and F is alge-
braically closed. Let £ be a positive integer. The Killing form

K:sll+1)xsl{+1) — F

s given by
Kz, y) = (20+ 2) - tr(zy).
forz,y esl+1,F).
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Proof. By Lemma 10.5.3, there exists ¢ € F* such that x(x,y) = ctr(zy) for
x,y €sl({+1,F). Let H be the subalgebra of diagonal matrices in sl({+ 1, F);
H is a Cartan subalgebra of s1(¢+ 1, F') by Lemma 10.7.3. By Lemma 10.7.6 we
have k(h,h') = (20+2)-tr(hh') for h, ' € H. Hence, ctr(hh') = (20+2)-tr(hh')
for h,h' € H. Since there exist h,h’ € H such that tr(hh’) # 0 we conclude
that ¢ = 20+ 2. O

Lemma 10.7.10. Let the notation as in Lemma 10.7.4 and Lemma 10.7.5. Let

i,j€{1,...,0+ 1} with i # j. The length of every root is ﬁ.

Proof. Let a € ®*. We know that aq,...,a, is an ordered basis for V. By
Lemma 10.7.7 the matrix of the inner product (-,-) in this basis is

2 -1
-1 2 -1
1 -1 2 -1
M=—
2042 : .
-1 2 -1
- 71 2 -
The coordinate vector of « in this basis has the form
01
0
1
=1
1
0
_O_
A calculation shows that (o, ) = tcMc = ﬁ = H%; hence the length of « is
1
O

VE+1T

10.8 The Lie algebra so(2¢ + 1)

Lemma 10.8.1. The Lie algebra so(2¢ + 1, F') consists of the x € gl(2( + 1, F)
of the form
A
b c } 1
foog|}e
- G —tf|}e
where g = —tg and G = —'G. The dimension of so(2( + 1, F) is 20> + (.

|H~ O}N
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Proof. Let x € gl(2¢ + 1, F), and write

AL L
abc}l
atzBfg}Z
C G hl}te

wherea € F, f € gl(¢, F), h € gl(¢, F), and b, ¢, g, B,C and G are appropriately
sized matrices with entries from F. By definition, s € so(2¢ + 1, F') if and only
if 2S5 = —Sx. We have

ta tB tC| |1 a 'C 'B
S = |tp tf tq L =% ta tf
te tg th 1, te th tg
And:
1 a b c —a —-b —c
—Szr=— Ll |B f g|l=|-C -G —h
1¢ C G h -B —f —g

It follows that « € so(2¢ + 1, F') if and only if:

a =0,
B= -t
C = —'b,
G=-'G,
h=-'f,
g=-'g.
This completes the proof. O

Lemma 10.8.2. Assume that the characteristic of F' is not two. The Lie alge-
bras so(3, F') and sl(2, F') are isomorphic.

Proof. Recalling the structure of sl(2, F'), it suffices to prove that so(3, F) has
a vector space basis e, f, h such that [e, f] = h, [h,e] = 2e and [h, f] = —2f.
Define the following elements of so(3, F):

0 0 1 0 -2 0 00 0
e=|-1 00|, f=1]0o 0 o, h=]02 0
0 00 2 0 0 00 -2

Evidently, e, f and h form a vector space basis for so(3, F'), and calculations
prove that [e, f] = h, [h,e] = 2e and [h, f] = —2f. O
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Lemma 10.8.3. Let ¢ be an integer with £ > 2. Let x € My 1(F) be non-zero.
There exists w € gl(f, F) such that — ‘w = w and wzx # 0.

Proof. Since x # 0 there exists j € {1,...,¢} such that x; # 0. Since £ > 2,
there exists ¢ € {1,...,¢} such that ¢ # j. Set w = e;; — teij = e;; — €j;. Then
wr = xje; — riej # 0. O

Lemma 10.8.4. Let ¢ be an integer with £ > 2. Assume that the characteristic
of F is zero and F is algebraically closed. The natural representation of so(2¢ +
1, F) on Magt1,1(F) given by multiplication of matrices is irreducible. The Lie
algebra so(2¢ + 1, F') is semi-simple.

Proof. Assume that V is a non-zero so(2¢ + 1, F') subspace of Magt1,1(F); we
need to prove that V- = Mo,y 1(F). We will write the elements of Magt1,1(F)
in the form

x] V1
yl| 10 .
z Y4

We first claim that V contains an element of the form

0

Y
0

with y # 0. To see this, let

<
I
SIS

be a non-zero element of V. Assume first that y = z = 0, so that  # 0. Let
c € F' be such that tcx € My (F) is non-zero. Since

0 ¢ 0 0 c| |z 0
~tc 0 0Olv=|-fc¢ 0 O [0| = |-tex| €V,
0 0 0 0 0 0f |0 0

our claim holds in this case. We may thus assume that y # 0 or z # 0. Assume
that z # 0. Let g € My ¢(F) be such that —'g = g and gz # 0; such a g exists
by Lemma 10.8.3. Since

0 0 0 0 0 0] [z 0
0 0 glv=10 0 g| |y| =|gz| €V,
0 0 0 0 0 0] [z 0

our claim holds in this case. We may now assume that z = 0 and y # 0 so that
v has the form

x
v= |y
0



164 CHAPTER 10. THE CLASSICAL LIE ALGEBRAS

Let f € gl(¢, F') be such that fy # 0. Then

00 0 00 01][=z 0
0 f 0 Jv=(0 f 0 [yl =|fyleV
0 0 —'f 0 0 —tf||o 0

proving our claim in this final case. Thus, our claim holds; that is, V' contains
a vector

0
w= |y
0
with y # 0. If f € gl(¢, F), then
0 0 0 0 0 0 0 0
0 f O flw=1|0 f O y|l = |fy|l e V.
0 0 —tf 0 0 —tfl o 0

Since the action of gl(¢, F') on My 1 (F) is irreducible, it follows that V' contains
the subspace
0
M1 (F)
0

Let G € My (F) be such that —*G = G and Gy # 0; such a G exists by Lemma
10.8.3. We have

0
=10 | eV

0 0 0 0 0 0
0 0 Olw=|0 0 0
0 G 0 0 G 0 Gy

ow O

Acting on this vector by elements of so(2¢ + 1, F') by elements of the form

0

o OO
O O

0
_tf

for f € gl(¢, F') we deduce that V' contains the subspace

0
0
Mg (F)

Finally, let b € M, 1(F') and y € My ¢(F) be such that by # 0. Then
0 b 0f |0
0 0 ofllyl=|0]ew
—'% 0 0] |0



10.8. THE LIE ALGEBRA so(2¢+ 1) 165

It follows that V also contains the one-dimensional space

F
0
0

We conclude that V = My (F'), as desired.
Finally, so(2¢+1, F) is semi-simple by Lemma 10.2.1 (note that so(2¢+1, F')
is contained in s1(2¢ + 1, F') by Lemma 10.1.1). O

Lemma 10.8.5. Let F be a field, and let n be a positive integer. Let a €
gl(n, F). If ah = ha for all diagonal matrices h € gl(n, F), then a is a diagonal
matriz. If F does not have characteristic two, and ah = —ha for all diagonal
matrices h € gl(n, F'), then a = 0.

Proof. Assume that ah = ha for all diagonal matrices h € gl(n, F). Let h €
gl(n, F') be a diagonal matrix. Then for all ¢,j € {1,...,n} we have a;;jh;; =
hiiaij; ie., (h“ — hjj)aij = 0. It follows that A5 = 0 for i,] € {1, Ce ,TL} with
i # j; that is, a is a diagonal matrix.

Assume that F' does not have characteristic two. Assume that ah = —ha
for all diagonal matrices h € gl(n, F). Let h € gl(n, F) be a diagonal matrix.
Then for all i,j c {1, N ,n} we have aijhjj = —h“‘aij, i.e., (h”‘ + hjj)aij =0.
This implies that a = 0; note that this uses that F' does not have characteristic
two. O

Lemma 10.8.6. Let F' have characteristic zero and be algebraically closed. The
set H of diagonal matrices in so(2(+1, F') is a Cartan subalgebra of so(20+1, F).

Proof. By Lemma 10.4.2, to prove that H is a Cartan subalgebra of so(2(+1, F'),
it suffices prove that if w € so(2¢ + 1, F') has zero entries on the main diagonal
and wh = hw for h € H, then w = 0. Let w be such an element of so(2(+1, F),
and write, as usual,

0 b c
w=|='c f g
t t
- G —'f
Let h € H, so that h has the form
0 0 O 0 0 O
h=10 d 0 |=|(0 d 0
0 0 - 0 0 —d
with d € gl(¢, F') diagonal. We have
0 b c 0 0 O 0 bd —cd
wh=|-t¢ f ¢ 0 d 0|=|-t¢ fd —gd
-t G —tf| |0 0 —d ~t% Gd ‘'fd
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and
0 0 O 0 b c 0 0 0
hw=1[0 d 0| |=t¢c f ¢ |=|-dle df dg
0 0 —d| |- G -'f b —dG dif
It follows that
bd =0,
cd =0,
fd=df,
gd = —dg,
Gd = —dG.

Since these equations hold for all diagonal matrices d € gl(¢, F'), it follows that
b=0and ¢ =0. Also, by Lemma 10.8.5, f is a diagonal matrix and g = 0 and
G = 0. Since, by assumption, w has zero entries on the main diagonal, we see
that f = 0. Thus, w = 0. O

Lemma 10.8.7. Let £ be an integer with £ > 2. Let F' have characteristic zero
and be algebraically closed. Let £ be a positive integer. Let H be the subalgebra
of so(20+1, F) consisting of diagonal matrices; by Lemma 10.8.6, H is a Cartan
subalgebra of so(20+ 1, F). Let ® be the set of roots of so(20+ 1, F') defined with
respect to H. Let V = R®qVy, where Vy is the Q subspace of HY = Homp(H, F)
spanned by the elements of ®; by Proposition 8.2.1, ® is a root system in V.
For j € {1,...,£}, define a linear functional

O[jZH—>F

by

0

0 1) =hy,

—h

for h € gl(¢,F) and h diagonal. The set ® consists of the following 2% linear
functionals on H:

oy (

o O O
o O

oy, O,
—01, .., — Oy,
o —aj, G,je{l,.... 0}, i#],
a; +aj, ,je{l,... 0}, i<y,
—(a;+ o), 4,5e{l,..., 0}, i<y

The set
B={pi=ar—az, fo=az—as, ..., Be1 =ap1—ay, Br=ay}
s a base for @, and the positive roots with respect to B are

A1y ey Qp,
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o — Qg i,je{l,...,ﬂ}, 1 < g,
Oél'+04j, i,jE{l,...,é}, ’L<]

The root spaces are:

0 0 €15
Laj =F- —t€1j 0 01, j € {1,...7£},
| 0 0 0]
i 0 €1j O-
Lo =F-| 0 0 0, je{l,....e,
_7t61j 0 O_
[0 0 0
Laifozj =F-|0 €ij 0 ) iaje{lw"aé}v 17&]7
_0 0 —€jq
[0 0 0
Lai+aj:F' 0 0 €ij — €5i | i,je{l,...,é}, 1<
10 0 0
[0 0 0]
L (airay) =F- |0 0 0|, d,je{l,....0}, i<
_0 €i5 — €43 0
Proof. Let h € gl(¢, F) be a diagonal matrix. We have
0 O 0 0 €14 0
o n o, o 0 ol
0 0 —h —telj 0 0
_O 0 0 0 €15 0 0 €1j 0 0
=10 h O 0 0 0] — 0 0 0 h
0 0 —h| [~ter; 0 0 [~fe;; 0 0 0
[0 00 0 e jh O
= 0 0 0—-10 0 O
htey; 0 0] [0 0 0
0 00 0 e, 0
=—h;;| 0 0 0l —h;|{0 0 0
~tey; 00 0 0 0
0 €1j 0
—(=hy)-| 0 0 0
7t61j 0 0
That is,
0 0 0 0 €1j 0 €1j 0
(o n ol,| 0 0 0[] =(=hj) 0 0
0 0 —h —t61] 0 0 —t61j 0 0

167
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Taking transposes of this equation yields:

0 0 —€15 0 0 0 0 0 —€15
[ telj 0 0 s 0 h 0 ] = (7hjj) elj 0 0
| 0 0 0 0 0 —h] 10 0 0 |
0 0 0 0 0 —ey [0 0 —ey]
7[ 0 h 0 y telj 0 0 ] = (7}1]']‘) telj 0 0
0 0 —h 0 O 0 | 10 0 0 |
0 0 0 0 0 €1j 0 0 €15
[ 0 h 0 s —telj 0 0 } = hjj —telj 0 0
0 0 —h 0 0 O 0 0 0
And
0 0 0 0 0
0 h 0 0 ey — eﬂ ]
0 0 0 0
[0 0 0 0 0 0 0 0 Tfo o o
=10 h 0 0 0 €ij *eﬂ 0 0 €ij — €ji 0 h 0
0 0 0 0 0 0 0 110 0 —h
[0 0 0 0 0 ]
=10 O h“elj - hneﬂ —10 0 7hjjeij + hiieji
10 0 0 0 0 0 |
[0 0 0
=10 O hiieij — hjjeji + hjjeij — hiiej,;
10 0
[0 0 0
=10 0 (hi + hyj)ei; — (hii + hyjj)eji
10 0
0 0 0
= (hii + hjj) 10 0 e —ej
0 0 0
Taking transposes, we obtain:
[0 0 0 0 0 0] [0 0 0]
[0 0 0l,[0 h 0 |]=(hiu+hj)- |0 0 0
_0 €ji €ij 0 0 0 —]’L_ _0 €ji — €4y 0_
[0 0 07 [0 0 0] [0 0 0]
—[lo h 01,0 0 0[] = (his +hj;)- |0 0 0
_0 0 —h_ _0 €j; — €4 O_ _0 €ji — €45 O_
[0 0 07 [0 0 0] 0 0 0
[fo n o01],]0 0 0[] = —(hii + hyj) - |0 0 0
_0 0 —h_ _0 €ij — €j; O_ 0 eij—eji 0
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And
0 0 0 0 0 0
[ 0 h 0 s 0 €ij 0 ]
0 0 —h 0 0 —6]‘7;
[0 0 0 0 0 0 0 0 0 0 0 O
=10 h 0 0 €ij 0 — 10 €ij 0 0 h 0
_0 0 —h 0 0 —€ji 0 0 —€j; 0 0 —h
0 o 0 0 0 0
=10 hn‘eij 0 — 10 hjjeij 0
0 0 hyjeg 0 0 hieji
[0 0 0
=10 (ki — hjj)ei; 0
0 0 (hii = hyjj)(—€ji)
0 O 0
= (hii = hj;) - |0 ey 0
0 0 —€j;

These calculations show that the linear functionals from the statement of the
lemma are indeed roots, and that the root spaces of these roots are as stated
(recall that any root space is one-dimensional by Proposition 7.0.8). Since the
span of H and the stated root spaces is so(2¢+ 1, F') it follows that these roots
are all the roots of so(2¢ 4+ 1, F') with respect to H. It is straightforward to
verify that B is a base for ®, and that the positive roots of ® with respect to
B are as stated. Note that the dimension of V' is ¢ (by Proposition 7.1.2). O

o o e [

* | ag —aq @z — a2 h3s3 * * 0
* 0 —(a1 + a2) — (a1 + a3) —h11 * *
* * 0 —(a2 + a3) * —hao *
* * * 0 * * —h33

Figure 10.2: The decomposition of so(7,F) = so(2 -3 + 1, F). For this example, £ = 3.
The positions are labeled with the corresponding root. Note that the diagonal is our chosen
Cartan subalgebra. The positive roots with respect to our chosen base {81, 32, 83} are boxed,
while the colored roots form our chosen base. Positions labeled with * are determined by
other entries. The linear functionals a1, a2 and a3 are defined in Proposition 10.8.7.
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Lemma 10.8.8. Assume that the characteristic of F' is zero and F is alge-
braically closed. Let £ be a positive integer. The Killing form

k:so(20+1,F)xso(20+1,F) — F

s given by

k(R B) = (20— 1) - tr(hh)

for h,h/ € H. Here, H is the subalgebra of diagonal matrices in so(2¢ + 1, F);
H is a Cartan subalgebra of so(2¢ + 1, F') by Lemma 10.8.6.

Proof. Let h,h’ € H. Then

0 0
oo
-
0 0]
o)
-

(hi + hyj)(h; 4 b))

)44 D (hiby+ b))
i,je{}l,.}..,ﬁ},
1<J

Y+4 > b4 Y bk
i,je{l,..,0} i,j€{1,....0},
1<J 1<j

00 0 00 0
(10 h 0 |,l0 B 0])
0 0 —h| [0 0 —H
00 0 [0
=tr(ad({0 h 0 |)oad(|0
0 0 —h 0
00 0 [0
=2> a(|0 h 0 |)a(|0
acdt 0 0 -—-h _O
=2 > hhj
i€{l,...0}
+2 > (hi—hy)(h— )
i,7€{1L,....0},
1<g
+2 )
i’je{,l";vz}’
1<J
00 0o 0 o
=tr(|[0 h O] |0 A 0
0 0 —h| |0 0 =N
+2 )
i,jG{‘l,.‘..,f}
1<
0 0 07J0o 0 0
=tr(|0 R 0| |0 B O
0 0 —h| [0 0 —I
0 0 07Jo 0 o0
=tr(|[0 h O] |0 A 0
0 0 —h| |0 0 —I
0 0o 0]Jo 0o o0
=tr(|[0 h O] |0 A 0
0 0 —h| |0 0O —I
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+4 ) (C—Dhhi+4 Y (G- Dyl

ie{1,...,.0} je{l,....¢}
0 0 0]fo 0 0]
=tr(|0 h 0| [0 K 0 |)+4 DY (C—i+i—1)hih]
0 0 —h| [0 O —h] iefL,....0}
(0 0o o]fo o i
=tr(|0 h 0| [0 K 0 |)+4(=1) Dl
0 0 —h| [0 O —A i€{1,...,0}
(0 o0 o]fo o i 00 o0]fo o o0
=tr(|0 h O] |0 B O [)+2(/—Dtx({0 A O] |0 B 0 ])
0 0 —h| [0 O —A] 0 0 —h| |0 0 =W
00 0]Jfo 0o o
=@20—-Dtr(|0 A 0| [0 B 0 |).
0 0 —h| |0 0 —H
This completes the proof. O

Lemma 10.8.9. Let the notation as in Lemma 10.8.7. For i,j € {1,...,(},

2 U
m Zszje{l,...7£—1},
1
—  dfi=j =/,
(Bi, Bj) = 4£__1 2
w_32 if i and j are consecutive,
0 if i and j are not consecutive and i % j.

Proof. Let i € {1,...,£}. We have

0 0 O 1 [0 0 0
Ii( 0 h 0 y T 0 (73 0 )
00 - *¥=2l0 0 —eu
00 o0]fo o 0
20— 1
—4€2tr(0h0 0 e; 0 |)
- 0 0 —h_ 0 0 —€iq
20— 1
=g 2
= hy;
0 0 O
=a(|0 A 0])
0 0 —h
It follows that
1 0 0 0
tai:m 0 €ii 0

0 0 —€iq
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Also let j € {1,...,¢}. Then

(O[i,()éj) = /@(ta“taj)
0 0 0 0 O 0
20 —1
( o ) 0 0 —€4q 0 0 —€55
20— 1 {2 ifi=j,

(40—2)2 0 ifi#j
1 e
_ m le:],
0 if i # j.

Assume that 4,5 € {1,...,£—1}. Then
(Bi, Bj) = (@i — i1, 0 — ajya)
= (ai?aj) - (aia aj+1) - (ai+1; Oéj) + (ai+1, Oéj+1)

2

2 i
-2 N'TO

— -1 i 5 and i .

=93y —— if i and j are consecutive
02 J Ve
0 if ¢ and j are not consecutive and i # j.

Assume that ¢ € {1,...,¢ —1}. Then

(51’»5@) = (Oéi - Oli+1,0l£)
= (

i, o) = (i1, ap)

= —(aiy1, )
1 fi=r—1
—{a—2 "7
0 ifi£0—1.
Finally,
(ﬂfa /BZ) = (Oée, Oég)
1
-2
This completes the proof. O

Lemma 10.8.10. Let ¢ be an integer such that £ > 2. Let F' have characteristic
zero and be algebraically closed. Let £ be a positive integer. The Dynkin diagram
of so(20 + 1, F) is

By: O O O——0
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and the Cartan matriz of so(20 + 1, F) is

2 -1
-1 2 -1

The Lie algebra so(2¢ + 1, F') is simple.
Proof. Let i,j € {1,...,£} with i # j. Then

<B775J> — 2 (Buﬂj)
(85, 55)
—2 if i and j are consecutive and j =/,
=< —1 ifi and j are consecutive and j # /,
0 if ¢ and j are not consecutive.

Hence,

(Biv ﬁj )2
(B, Bi)(Bj, Bj)
2 if 4 and j are consecutive and j = /£ or i =/,
=< 1 if ¢ and j are consecutive and 7 # ¢ and j # /,
0 if ¢ and j are not consecutive.

(Bi, Bi)(Bj, Bi) = 4

Tt follows that the Dynkin diagram of so(2¢+ 1, F') is By, and the Cartan matrix
of so(2¢ 4+ 1, F) is as stated. Since By is connected, so(2¢ + 1, F') is simple by
Lemma 9.3.2 and Proposition 10.3.2. O

Lemma 10.8.11. Assume that the characteristic of F is zero and F is alge-
braically closed. Let £ be a positive integer. The Killing form

k:so(20+1,F) xso(20+1,F) — F

s given by
Kz, y) = (20— 1) - tr(ay).

forxz,y € so(20 4+ 1, F).

Proof. By Lemma 10.5.3, there exists ¢ € F* such that k(z,y) = ctr(zy) for
x,y € so(20+1, F). Let H be the subalgebra of diagonal matrices in so(2(+1, F);
H is a Cartan subalgebra of so(2¢+1, F') by Lemma 10.8.6. By Lemma 10.8.8 we
have k(h,h') = (2¢—1)-tr(hh') for h,h' € H. Hence, ctr(hh') = (20—1)-tr(hh')
for h,h' € H. Since there exist h,h’ € H such that tr(hh’) # 0 we conclude
that ¢ = 2¢ — 1. O
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10.9 The Lie algebra sp(2/)

Lemma 10.9.1. Let £ be a positive integer. The Lie algebra sp(2¢, F) consists
of the matrices

a b

fn

for a,b,c € gl(¢,F) with 'b = b and ‘c = c. The dimension of sp(2(, F) is

20% 4 4.
_|la b
Y= e d
with a,b,¢,d € gl(¢, F'). Then, by definition, x € sp(2¢, F') if and only if ‘28 =

—Sx where
10 1
s_{_lz 0}.

Proof. Let

Thus,

x € sp(2(, F)
— 28 =-Sx

| A R B A
-]
— [: :fl zﬂ = [_ac _bd}

This is the first assertion of the lemma. Using this result it is straightforward
to see that dimpsp(2¢, F) = 202 + ¢. O

ot
SIS
a7
| I
|
e O
~
=N
| I

Lemma 10.9.2. Let ¢ be a positive integer. Let F' have characteristic zero
and be algebraically closed. The natural action of sp(2¢, F) on V = Mg 1(F) is
irreducible, so that sp(2¢, F) is semi-simple.

Proof. Let W be a non-zero sp(2¢, F') subspace of V; we need to prove that
W = V. Since W is non-zero, W contains a non-zero vector

[}

Assume first that z # 0 and y = 0. Now
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for a € gl(¢, F). Since = # 0 and the action of gl(¢, F) on My 1 (F') is irreducible,
it follows that W contains all vectors of the form

ol
b o
e o] o) 7]

for z € My 1 (F'). It follows that W contains all the vectors of the form

il

We conclude that, in the current case, W = V. If x = 0 and y # 0, then a
similar argument shows that W = V. Assume that x # 0 and y # 0. Since
x # 0 and y # 0, there exists a € GL({, F) such that ax = y. Now

a —1
0 —'a
is contained in sp(2¢, F'), and

b 2 B[]

Since a is invertible, and y # 0, we have — ‘ay # 0. We are now in the situation
of a previous case; it follows that W = V.

Finally, sp(2¢, F') is semi-simple by Lemma 10.2.1 (note that sp(2¢, F) is
contained in sl(2¢, F') by Lemma 10.1.1). O

Now

is contained in sp(2¢, F') and

Lemma 10.9.3. Let F' have characteristic zero and be algebraically closed. The
set H of diagonal matrices in sp(2¢, F) is a Cartan subalgebra of sp(2¢, F').

Proof. By Lemma 10.4.2, to prove that H is a Cartan subalgebra of sp(2¢, F),
it suffices prove that if w € sp(2¢, F') has zero entries on the main diagonal and
wh = hw for h € H, then w = 0. Let w be such an element of sp(2¢, F'), and

write, as usual,
a b
w = t .
c —a

By assumption, a has zero on the main diagonal. Let h € H, so that

= 4
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where d € gl(¢, F') is diagonal. We have
ho |8 b ||d 0] |ad —bd
Wh=te —tllo —d| T |ed tad

h_dOab_da db
U=l —dl e —ta| T |=de d'a|”

and

It follows that

ad = da,

bd = —db,
cd = —de,
‘ad = d ‘a.

Lemma 10.8.5 implies that b = ¢ = 0 and that « is diagonal. Since a has zeros
on the main diagonal by assumption, we also get a = 0. Hence, w = 0. O

Lemma 10.9.4. Let ¢ be an integer such that £ > 2. Let F' have character-
istic zero and be algebraically closed. Let ¢ be a positive integer. Let H be
the subalgebra of sp(2¢, F) consisting of diagonal matrices; by Lemma 10.9.3,
H is a Cartan subalgebra of sp(2¢,F). Let ® be the set of roots of sp(2¢, F)
defined with respect to H. Let V = R ®q Vo, where Vy is the Q subspace of
HY = Homp(H, F) spanned by the elements of ®; by Proposition 8.2.1, ® is a
root system in V. Fori € {1,...,L}, define a linear functional

o H— F
by
h 0
aly =

for h € gl(¢,F) and h diagonal. The set ® consists of the following 2¢? linear
functionals on H:

o —aj, G,je{l,... 0}, i#],
201, ..., 200,
—2aq, ..., =2y,
a; +aj, ,je{l,... ), i<y,
—(a; +0y), d,5€{1,..., 0}, i<y
The set

B={fi=a1—ay fa=ar—as, ..., Bi—1 = ar1 — oy, Be=20y}

s a base for @, and the positive Toots with respect to B are the set P, where P
consists of the following roots:

o — Qg Z’je{laag}v Z<.]a
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2001, ..., 200,
Oél'+Oéj, i,jE{l,...,é}, ’L<]

Loj—a, =F- OJ _ei]], i,je{l,....¢}, i#j7,

Lo = F-|” e“’], ief1,....0,

0 0
[0 0 )
L,QQI. =F i 0:| , 1€ {1, . 76},

Lai+0¢_7‘ =F- 8 “i '56]’1] , 4,J € {]—7"',6}7 i< J,

0 0

L (aitay) =F- e 0], ije{l,....0}, i<j.

Proof. Let h € gl({, F) be a diagonal matrix. Let i,5 € {1,...,¢} with i # j.
Then

[ h 0 eij 0 ]7 h 0 eij 0 . eij 0 h 0
0 —h|l’]|O0 —€ij5 o 0 —h 0 —€ij5 0 —€4j 0 —h
hiieij 0 - hjjeij 0
0 —hiieij 0 —hjjeij

= (his — hy5) [661 0 } .

*61‘]‘

This equation proves that o; — o is a root and that L, o, is as stated. Next,
let h € gl(¢, F) be a diagonal matrix, and let ¢,j € {1,...,¢}. Then

[h 0 0 6¢j+6ﬂ]: h 0 0 eij + €j; _ 0 €;; + €j; h 0
0 —h|’|0 0 0 —hl |0 0 0 0 0 —h

|0 hiieij—i—hjjeji B 0 —hjjeij—hiieji
|0 0 0 0

0 e;;+ei

This proves that 2«; is a root for ¢ € {1,...,¢} and that o; + ¢ is a root for
1,7 € {1,...,¢} with ¢ < j; also the root spaces of these roots are as stated.
Again let h € gl(¢, F) be a diagonal matrix, and let i,5 € {1,...,¢}. Taking
tranposes of the last equation, we obtain:

w|h O 0 eij + €5l N y i 0 eij + €j;
[[0 —h}’[o 0 ]]_(h”‘Lhﬂ) 0 0

0 0 h 0 0 0
[[eij + €ej; 0] ’ |:0 —h]] o (hii + hjj) [6ij + €ej; O]
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h O 0 0 0 0
[|:O —h:| ’ |:eij +€j¢ 0:|] - _(hii + hjj) |:eij ‘l‘eji O:| ’

This proves that —2«; is a root for i € {1,...,¢} and that —(a; + ;) is a
root for 4,5 € {1,...,¢} with ¢ < j; also the root spaces of these roots are as
described.

To see that B is a base for ® we note first that dimr V = ¢, and that the
elements of B are evidently linearly independent; it follows that B is a basis for
the F-vector space V. Since B is the disjoint union of P and {—\: A € P}, to
prove that B is a base for @ it will now suffice to prove that every element of P is
a linear combination of elements from B with non-negative integer coefficients.
Let i,5 € {1,...,£} with ¢ < j. Then

o —aj = Pig1+ -+ 5
Also, we have

20&@ = ﬂEa
2001 = 2(ou—1 — ) + 200 = 2301 + B,
2000-9 = 2(owp—2 — ap_1) +20¢-1 = 2Bp—2 + 2801 + fs,

200 =281 + -+ 2Bp-1 + Be-
Finally, let 4,5 € {1,...,¢} with ¢ < j. Then

i +a; = (; —ay) + 205 = Biv1 + -+ B + 261+ + 2801 + Be.

This completes the proof. O
[ h11 - ‘041—043‘ ‘2041‘ ‘a1+a2‘ ‘041-5-043‘ -
az — aq hao - * ‘20[2‘ ‘ag-&-ag‘
a3 — o a3 — ag h33 * * -

—2a1 —(a1 + a2) —(a1 + a3) —h11 * *
* —20a2 —(a2 + 3) * —hao *
I * * —2a3 * * —hss |

Figure 10.3: The decomposition of sp(6, F'). For this example, £ = 3. The positions are
labeled with the corresponding root. Note that the diagonal is our chosen Cartan subalgebra.
The positive roots with respect to our chosen base {81, 82,83} are boxed, while the colored
roots form our chosen base. Positions labeled with * are determined by other entries. The
linear functionals a1, as and as are defined in Proposition 10.9.4.
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Lemma 10.9.5. Assume that the characteristic of F is zero and F 1is alge-
braically closed. Let £ be a positive integer. The Killing form

k:sp(20, F) x sp(2(, F) — F

1s given by
k(h,h') = (20 +2) - tr(hh')

for h,h' € H. Here, H is the subalgebra of diagonal matrices in sp(2¢, F); H is
a Cartan subalgebra of sp(2¢, F') by Lemma 10.9.3.

Proof. Let h,h' € gl(¢, F) be diagonal matrices. Then
(h 0 0 )
o —n' o —n
h 0 o0
way 5eaay )

- Z (hiz — hjj)(hi; — h5)
1,5€{1,...,0},i#j
+2 ) 4k,
ie{1,...,0}
+2 Z (hii + hyj) (hi; + h;'j)
i,5€{1,...0},i<j
Z (hii — hjj)(hy; — h;‘j)
i,7€{1,....0}
+38 Z hiihi;
i€{1,...,0}
+ Z (hii 4 hyjj) (Ri; + h5)
i,j€{1,...0}
- Z (hii + his) (hi; + hiy)
ie{l,...,e}
= Y hihly — hihl; — hyghl + hyhh;
i,j€{1,....0}
+4 > hihl
ie{l,...,.4}
+ ) hahly + hihly + byl + by
i?je{17""[}

=20 Y hiih,

i€{1,...,6}

+4 ) hihi

i€{1,....0}



180 CHAPTER 10. THE CLASSICAL LIE ALGEBRAS

Z huhgi

ze{l
=(40+4) > h”
i€{1,...,4}
h 0] [h O
el 9] [O o
This completes the calculation. O

Lemma 10.9.6. Let ¢ be an integer such that £ > 2. Let the notation as in
Lemma 10.9.4. Fori,j € {1,...,(},

ﬂ%@ ifi,jef{l,....0—1} andi=j

ﬁ ifi,7€{1,...,4—1} and i and j are consecutive,
(Bi, Bj) = 4£f4 if {i,5} = {¢ 1,0},

Mi4 fi=j=t

0 if none of the above conditions hold.

Proof. Let h € gl(¢, F) be a diagonal matrix. Let ¢ € {1,...,¢}. Then

( h 0 1 €ii 0 ) 2€+2t ( h 0 €ii 0 )
Mo —n "4 +4 10 —ey 44+4"M0 —=h| |0 —eyu

— hy;
= ai([g —Oh})'

Since this holds for all diagonal h € gl(¢, F'), it follows that

P 1 e; 0
G440 —ey]

Also let j € {1,...,¢}. Then
(O‘ivo‘j) = H(tawtaj)

. 1 €4 0 1 €jj 0
o (2€+2) tr(4€+4 |:0 —eii:| 45‘1‘4 |: 0 —ejj])

1
A0+ 4

0 if i # j.

if i = 7,
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Let i,5 € {1,...,£ —1}. Then

(Bis By) = (i — g1, 05 — jy1)
= (i, ) — (i, 1) — (@ig1, o) + (@igr, o)

2

2 i
M+a VT

_ —1 if i and i G

=94 —— ifiand j are consecutive
0+4 J e
0 if 1 # j and 7 and j are not consecutive.

Let i € {1,...,£ —1}. Then

(Bis Be) = (i — g1, 20y)
= 2(ay, ) — 2(@ig1, )

= —2(@it1, )
-2
— ifi=(-1
w+a ! ’
0 ifi£40—1.
Finally,
(Be: Be) = 4w, ov)
4
4044
This completes the proof. O

Lemma 10.9.7. Let £ be an integer such that £ > 2. Let F' have characteristic

zero and be algebraically closed. Let £ be a positive integer. The Dynkin diagram
of sp(2¢, F) s

Cy: o—O0— +++ ——O0—==0
and the Cartan matriz of sp(2¢, F') is

2 -1
-1 2 -1

The Lie algebra sp(2¢, F) is simple.
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Proof. Let i,j € {1,...,£} with i # j. Then

(Bi, Bj)
(Bj, Bj)

-1 if4,j€{l,...,£—1} and 7 and j are consecutive,
-1 ifi=¢—1and j=2¢,
-2 ifi=fand j=0-1,

0 if none of the above conditions hold.

Hence,

(ﬁi?ﬂj)z
iy Mg )5 M =4
Vi BsBi- i) = 45 85y, )
1 ifé,je{l,...,£—1} and i and j are consecutive,
=<0 2 ifi=f—1andj=¢,

0 if none of the above conditions hold.

It follows that the Dynkin diagram of sp(2¢, F') is Cp, and the Cartan matrix
of sp(2¢, F) is as stated. Since Cy is connected, sp(2¢, F') is simple by Lemma
9.3.2 and Proposition 10.3.2. O

10.10 The Lie algebra so(2/)

Lemma 10.10.1. Let ¢ be a positive integer. The Lie algebra so(2¢, F') consists
of the matrices

a b

"

for a,b,c € gl(¢, F) with —tb = b and —'c = c. The dimension of so(2(,F) is
20 — 4.

Proof. Let x € gl(2¢, F). Write

_|a b
Y= e d
with a,b,c,d € gl(¢, F). By definition, € so(2¢, F) if and only if ‘2S+ Sz =0,

where
10 1,
S_Lé O]
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Hence
x €s0(2(,F)
— 25 =—9z,
o [a o 1] _ [0 Lfa b
% |1, 0| |1 0|l|c d
— ¢ 'al [-¢ —d
‘d | |—a —b|"
This is the first assertion of the lemma. O

Lemma 10.10.2. Let ¢ be an integer such that £ > 2. Let F have charac-
teristic zero and be algebraically closed. The natural action of so(2¢, F) on
V = Mg 1(F) is irreducible, so that so(2¢, F) is semi-simple.

Proof. Let W be a non-zero so(2¢, F') subspace of V; we need to prove that
W = V. Since W is non-zero, W contains a non-zero vector

[

Assume first that  # 0 and y = 0. Now

R

for a € gl(¢, F). Since z # 0 and the action of gl(¢, F') on M 1 (F) is irreducible,
it follows that W contains all vectors of the form

*k
NE
By Lemma 10.8.3 there exists ¢ € gl(¢, F') such that — ‘¢ = ¢ and cz # 0. The

matrix
0 0
c 0

0 Of|=z| |0
c 0]]0]  |ex
This non-zero. An argument as above shows that W contains all the vectors of

the form
0
ol

We conclude that, in the current case, W = V. If x = 0 and y # 0, then a
similar argument shows that W = V. Assume that x # 0 and y # 0. By Lemma

is contained in so(2¢, F') and
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10.8.3 there exists b € gl(¢, F') such that — b = b and by # 0. Since by # 0 and
x # 0, there exists a € GL(¢, F') such that ax = —by. Now

a b
0 —'a
is contained in so(2¢, F'), and

b B[]

Since a is invertible, and y # 0, we have — ‘ay # 0. We are now in the situation
of a previous case; it follows that W = V.

Finally, so(2¢, F') is semi-simple by Lemma 10.2.1 (note that so(2¢, F) is
contained in sl(2¢, F') by Lemma 10.1.1). O

Lemma 10.10.3. Let ¢ be an integer such that £ > 2. Let F' have characteristic
zero and be algebraically closed. The set H of diagonal matrices in so(2¢, F) is
a Cartan subalgebra of so(2¢, F).

Proof. By Lemma 10.4.2, to prove that H is a Cartan subalgebra of so(2¢, F'),
it suffices prove that if w € so(2¢, F') has zero entries on the main diagonal and
wh = hw for h € H, then w = 0. Let w be such an element of so(2¢, F'), and
write, as usual,

ft
w = t .
c —ua
By assumption, a has zeros on the main diagonal. Let h € H, so that
d 0
i

where d € gl(¢, F) is diagonal. We have
h_ |8 b ||d 0] |ad —bd
WR=le —tal o —d| T |ed ad

h_dOab_da db
Y=o —dlle —'a| T |=de d'al

and

It follows that

ad = da,

bd = —db,
cd = —dc,
‘ad = d"a.

Lemma 10.8.5 implies that b = ¢ = 0 and that « is diagonal. Since a has zeros
on the main diagonal by assumption, we also get a = 0. Hence, w = 0. O
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Lemma 10.10.4. Let £ be an integer such that £ > 2. Let F have charac-
teristic zero and be algebraically closed. Let £ be a positive integer. Let H be
the subalgebra of so(2¢, F) consisting of diagonal matrices; by Lemma 10.10.3,
H is a Cartan subalgebra of so(2¢, F). Let ® be the set of roots of so(2¢, F)
defined with respect to H. Let V = R ®q Vo, where Vy is the Q subspace of
HY = Homp(H, F) spanned by the elements of ®; by Proposition 8.2.1, ® is a
root system in V. Fori € {1,...,L}, define a linear functional

OliZH—>F
by
h 0
Oéi(|:0 —h]) = hj;

for h € gl(¢, F) and h diagonal. The set ® consists of the following 2% — 2¢
linear functionals on H:

Qi — Oy, 7”]6{17a€}, 2#37
a; + aj, Z',jE{l,...,g}, 1 < g,
7(051'4»0@')? Zaj € {L"'&g}a Z<]

The set
B={fi=a1—az, fo=as—a3, ..., i1 =1 —ay, Be=oy_1+ap}

s a base for ®, and the positive Toots with respect to B are the set P, where P
consists of the following roots:

a; — @y, Z’]e{laa€}7 Z<.7a
a; + oy, i,jE{l,...,é}, 1< J.

The root spaces are:

Lo, = F - | 2] il b}, i#)
)
Lai+aj:F-8 e”‘Jorej’], ijell,... 0, i<y,

0
|€ij T+ €ji

0 . .
L—(ozi—&-aj) =F. O] , 1,]€ {1,...,5}, 1< ).

Proof. Let h € gl(¢, F) be a diagonal matrix. Let i,57 € {1,...,¢} with i # j.
Then

B Y R | Y

| hises; 0 | hjseis 0
o 0 —hiieij 0 —hjjeij
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0

This equation proves that «; — oy is a root and that L, —q; is as stated. Next,
let h € gl(¢, F) be a diagonal matrix, and let 7,5 € {1,...,¢} with ¢ < j. Then
0

[ h €ji ] = h 0 e —ej B 0 ej—ejp||h O
0 0 —h| |0 0 0 0 0 —h
_ {0 hiiei; — hjjeji:| B {0 —hjjei; + h“-eﬁ]

186

€ij
= (hii = hy;) { 0

0 0 €ij —
—h|’|0 0

0 0 0 0

eij — sz'
0 .

This proves that that a;+a; is aroot for ¢, j € {1,...,¢} with i < j; also the root
spaces of these roots are as stated. Again let h € gl(¢, F') be a diagonal matrix,
and let 4,5 € {1,...,¢} with ¢ < j. Taking tranposes of the last equation, we
obtain:

0
= (hii + hjj) {0

t -h 0 0 €ij — ej,‘- _ B B ¢ 0 €ij — €45
o h}’[o o [I=this) g g
[0 0] [h 0] 0 0
[ _Eji — €55 0:| ’ |:O —h_ ] - (h“ + hjj) |:eji — €5 0:|
(h 0 0 0] 0 0
[_0 —h:| ’ [eij — eji O_] o 7(h” + hjj) |:eij — eji 0:| ’

This proves that that —(a; + ;) is a root for 4,5 € {1,...,£} with i < j; also
the root spaces of these roots are as described.

To see that B is a base for ® we note first that dimr V = ¢, and that the
elements of B are evidently linearly independent; it follows that B is a basis for
the F-vector space V. Since B is the disjoint union of P and {—\: A € P}, to
prove that B is a base for ® it will now suffice to prove that every element of P is
a linear combination of elements from B with non-negative integer coefficients.
Let i,5 € {1,...,£} with ¢ < j. Then

j—1

o — o = Z(ak — Qkt1)

k=i
j—1
=20
k=i
Also, we have

a; +oj = (-1 +ap) + (o — 1) + (a; — )
= Be+ (a; — ag—1) + (o — ).

Since a; — ay—1 and a; — oy are both linear combinations of elements from B
with non-negative integer coefficients by what we have already proven, it follows
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that o; + «; is linear combination of elements from B with non-negative integer
coefficients. This completes the proof. O

o g e

ag —ai ag —az hss * * 0
0 —(a1 + a2) — (o1 + a3) —h11 * *
* 0 —(a2 + a3) * —hao *
* * 0 * * —hss

Figure 10.4: The decomposition of so(6, F). For this example, £ = 3. The positions are
labeled with the corresponding root. Note that the diagonal is our chosen Cartan subalgebra.
The positive roots with respect to our chosen base {51, 82,83} are boxed, while the colored
roots form our chosen base. Positions labeled with * are determined by other entries. The
linear functionals a1, as and ag are defined in Proposition 10.10.4.

Lemma 10.10.5. Assume that the characteristic of F is zero and F is alge-
braically closed. Let ¢ be a positive integer. The Killing form

k:s0(2¢,F) xso(2(, F) — F

1s given by
k(h,h') = (20 — 2) - tr(hh)

for h,h' € H. Here, H is the subalgebra of diagonal matrices in so(2¢, F); H is
a Cartan subalgebra of so(2¢, F) by Lemma 10.10.5.

Proof. Let h,h' € gl(¢, F) be diagonal matrices. Then
( h 0 o0 )
0 —h|’|0 =N
h 0 o0
wtad(y % [roaay 5
Z (hw - hjj)(h;i - h;’j)
i.G€{1,....0} i
+2 > (i + hyy) (bl + b))
i,5€{1,....0},i<j
> (hii = hyy) (R, — ;)
i,j€{1,....t}

+ > (hai+ hg) (bl + By
i5€{1,...,0) iA]
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Y (hii = hyg)(hi; — hy)

i,5€{1,...,0}
+ Z (hii + hyj) (g + hl;)
i,7€{1,....0}
- Z (hii + hyj) (h; + hi;)
i)je{lv'we}ﬂi:j

Z hiihi; — hahy; — hyjhi; + hyjh’;

ije{l,...6}

+ Z h“h;Z + h“‘h;j + hjjh;i + hjjh/~

Ji
—4 > hihy,

i€{1,...,0}

=4/ Z hiihl; — 4 Z hiihs;

ie{l,...,0} ie{l,...,0}

=(40—4) > hih,

ie{l,....0}

= (20-2) -tr([g _Oh] [lg _(M)

This completes the calculation. O

Lemma 10.10.6. Let ¢ be an integer such that £ > 2. Let the notation as in
Lemma 10.10.4. Assume first that £ > 3. Fori,j € {1,...,¢} we have:

2 e
4[714 ifi,j €{1,...,£—1} and i and j are consecutive,
(Bi Bj) = ]
0 if none of the above conditions hold.

Assume that £ = 2. Then:

(Blaﬁl) = %7
(52352) = %7
(B1,B2) = 0.

Proof. Let h € gl(¢, F) be a diagonal matrix. Let ¢ € {1,...,¢}. Then

(h 0 1 €ii 0 )_26—2t(h 0 €445 0 )
Mo —nl'z—1]0 —eul! " 20=2"Yo —nl]0 —eu
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= hyi
:ai([g Oh})-

Since this holds for all diagonal h € gl(¢, F'), it follows that

+ . 1 (73 0
Y M—40 —ey)

Also let j € {1,...,¢}. Then
(ai?aj) = K’(tai7ta]‘)
1 ei; 0 1 ej; 0
—(20—2)- g L ¥
(26-2) tr(4£_4 [0 —€u‘:| 40 — 4 [ 0 —ejj])

1
_ ) 4—14

0 if i # j.

if i = j,

Let 4,5 € {1,...,£—1}. Then

(Bis Bj) = (i — g1, 05 — vjy1)
= (as, 05) — (@i, 1) — (i1, o) + (@i, jgr)

il
a0—a "'

_ -1 i i and i .

=94 —— ifiand j are consecutive
=4 J ’
0 if 1 # j and 7 and j are not consecutive.

Let i € {1,...,£ —1}. Assume that £ > 3. Then

(Biy Be) = (@i — i1, o1 + )
= (g, ap—1) + (i, ) — (i1, 1) — (Qiy1, )
-1
40— 4
0 ifi #£0—2.

ifi=10-2,

Assume that ¢ = 2. Then necessarily : = 1, and

(Bi, Be) = (B1, B2)
= (01 — az, 1 + ay)
(011,041) (041,012) - (0427041) - (0127042)
=0.
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Finally,

(Bes Be) = (ap—1 + oy, 01 + )
= (ag—1,00-1) + (ap—1,00) + (g, a0—1) + (o, )
2

Ta—4

This completes the proof. O

Lemma 10.10.7. Let £ be an integer such that £ > 3. Let F' have characteristic
zero and be algebraically closed. The Dynkin diagram of so(2¢, F) is

Dg.‘

and the Cartan matriz of so(2¢, F) is

2 -1
-1 2 -1
-1 2 -1
-1 2 -1 -1
-1 2
L _1 2 -
The Lie algebra so(2¢, F) is simple.
Proof. Let 4,5 € {1,...,¢} with i # j. Then
! (B, Bj)
-1 if4,j€{l,...,£—1} and 7 and j are consecutive,
=9 -1 if{i,j} ={¢—2,¢},
0 if none of the above conditions hold.
Hence,

(Bi, Bj)?

B BidBis i) = 435503 30y

1 ifé,je{l,...,£—1} and i and j are consecutive,

1 if {i,j} = {£—2,¢},

0 if none of the above conditions hold.
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It follows that the Dynkin diagram of sp(2¢, F') is Cp, and the Cartan matrix
of sp(2(, F') is as stated. Since Cj is connected, sp(2¢, F) is simple by Lemma
9.3.2 and Proposition 10.3.2. O
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Chapter 11

Representation theory

11.1 Weight spaces again

Let F' be algebraically closed and have characteristic zero. Let L be a finite-
dimensional, semi-simple Lie algebra over F'. Let H be a Cartan subalgebra of
L, let

L=Ho P La

acd

be the root space decomposition of L with respect to L from Chapter 7. Let
(¢, V) be a representation of L, so that V is an F-vector space, and ¢ : L —
¢l(V) is a homorphism of Lie algebras. If A : H — F'is a linear functional, then
we define

Vi={veV:¢(hw=AMhvheH}

If \: H — F is a linear functional and V) # 0, then we say that A\ is a weight
of H on V, and refer to V) as a weight space.

Lemma 11.1.1. Let F be algebraically closed and have characteristic zero. Let
L be a finite-dimensional, semi-simple Lie algebra over F'. Let H be a Cartan
subalgebra of L, let

L=Ho L
aed

be the root space decomposition of L with respect to L from Chapter 7. Let
(¢, V) be a representation of L. Let V' be the F-subspace of V' generated by the
subspaces Vy for X a weight of H on V.

1. Let A : H — F be a linear functional, and let « € ®. If x € L, then
(b(x)V)\ C V>\+a.

2. the F-subspace V' of V is an L-subspace.

193
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3. The F-subspace V' of V is the direct sum of the Vy for A a weight of H

onV, so that
/
V' = B Va.
A is a weight of H on V'

4. If V is finite-dimensional, then V' =V,

Proof. Proof of 1. Let A : H — F be a linear functional, and let o € ®. Let
xz € L, and v € V. We have

o([h, z))v = (6(h)p(x) — ¢(x)d(h))v
$(a(h)z)v = ¢(h)(¢(x)v) — ¢(z)(H(h)v)
a(h)g(z)v = ¢(h) (¢(x)v) — A(h)p(z)v

¢(h)(¢(x)v) = (A(h) + a(h))¢(x)v

This implies that ¢(x)v € Vy4q.

Proof of 2. Clearly, the operators ¢(h) for h € H preserve the subspace
V’. By 1, the operators ¢(z) for € L,, a € ® also preserve V'. Since
L=H® ®ycoly, it follows that L preserves V.

Proof of 3. Assume that V' is not the direct sum of the subspaces V) for
A € HY; we will obtain a contradiction. By our assumption, there exist an
integer t > 2 and distinet Ay, ..., A\ € HY such that Vy, N (Vy, +---+V),) #0.
We may assume that ¢ is the smallest integer with these properties. Let vy €
Va, N (Va, + -+ V)y,) be non-zero. Write

V] =V + -+ U

where v; € V), fori € {2,...,t}. The minimality of ¢ implies that v; is non-zero
fori e {2,...,t}. Let h € H. Then

¢(h)vr = ¢(h)(v2 + -+ + ve)
A(R)vr = Aa(R)va + -+ + Ae(h)v,
and, after multiplying vy = vo + -+ - + vy by Aq(h),
A(h)vr = A (h)vg + -+ + A1 (h)vy.
Subtracting, we obtain:
0= (A1(h) = A2(h))v2 + -+ - + (A1(h) — Ae(h))vr.

The minimality of ¢ implies that Aj(h) — A;(h) = 0 for all h € H and i €
{2,...,t}, i.e, A\ = --- = \;. This is a contradiction.

Proof of 4. Assume that V is finite-dimensional; we need to prove that V C
V'. The operators ¢(h) € gl(V) for h € H are diagonalizable by Theorem 6.3.4
and the definition of a Cartan subalgebra. Since H is abelian, the operators ¢(h)
for h € H mutually commute. It follows that (see Theorem 8 from Section 6.5 of
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[5]) that there exists a basis v1, ..., v, for V such that each v; for i € {1,...,n}
is an eigenvector for every operator ¢(h) for h € H. Let i € {1,...,n}. For
h € H, let A(h) € F be such that ¢(h)v; = A(h)v;. Since the map H — gl(V)
given by h — ¢(h) is linear, and v; is non-zero, the function A : H — F is also
linear. It follows that A is a weight of H on V and that v; € V). We conclude
that V C V. O

11.2 Borel subalgebras

Lemma 11.2.1. Let F' be algebraically closed and have characteristic zero. Let
L be a finite-dimensional, semi-simple Lie algebra over F. Let H be a Cartan
subalgebra of L, let
L=He& @ La
acd
be the root space decomposition of L with respect to L from Chapter 7, and let
B be a base for ®. Let ®T be the positive roots in ® with respect to B. Define

N:ZLa

acdt

and
P=H+N=H+ Z Le.
acdt

Then N and P are subalgebras of L. Moreover,
[P,P] =N,
N is nilpotent, and P 1is solvable.

Proof. Let o, 8 € ®*; we will first prove that [L,, Lg] C N and that [H, L] C
Ly. Since a and f are both positive roots we must have a« + 8 # 0. By
Proposition 7.0.3 we have [L,,Lg] C Lots. If @ + B is not a root, then, as
a+ 8 # 0, we must have L,45 = 0 (by definition), so that [L,, Lg] C Lotg =
0 C N. Assume that o + 8 is a root. Then « + 3 is a positive root because «
and (3 are positive. It follows that [La, Lg] C Layg C N. The definition of L,
implies that [H, L] C Lq.

Since [H, H] = 0, the previous paragraph implies that N and P are subal-
gebras of L, and also that [P, P] C N. To prove that N C [P, P] it suffices to
prove that L, C [P, P] if « is a positive root. Let « be a positive root. Let
x € Lo. Let h € H be such that a(h) # 0. We have [h,z] = a(h)z. Since
[h, x] € [P, P], it follows that a(h)x € [P, P]. Since a(h) # 0, we get x € [P, P].
It follows now that [P, P] = N.

To see that N is nilpotent, we note that by Proposition 7.0.3, for k a positive
integer:

N'=[N,NJC > Latas

o1,a2€PT
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N?=[N.N'|C > Laitastas

ai,o2,03€PT
Nk+1 — [N7 Nk] C Z La1+"'+0tk'

For k a positive integer, define
Sp={a1+-+ap:ag,...,ap € DT}

Evidently, the sets Sy for k a positive integer do not contain the zero linear
functional. Recall the height function from page 93. Let m = max({ht(8) : 8 €
®t1}). Since ht(\) > k for all X € Sy, the set Sy for k > m + 1 cannot contain
any elements of ®. Also, it is clear that Sj does not contain any elements of
the set @~ of negative roots (by the basic properties of the base B). Thus, if
E>m+1, then Ly =0 for all A € Sj,. It follows that N™*+2 = 0 so that N is
nilpotent.

Finally, P is solvable because [P, P] = N and N is nilpotent. O

We refer to P as in Lemma 11.2.1 as a Borel subalgebra.

11.3 Maximal vectors

Let F be algebraically closed and have characteristic zero. Let L be a finite-
dimensional, semi-simple Lie algebra over F'. Let H be a Cartan subalgebra of
L, let
L=He @ L.
acd

be the root space decomposition of L with respect to L from Chapter 7, and
let B be a base for ®. Let ®* be the positive roots in ® with respect to B.

Define N = > L, as in Lemma 11.2.1. Let (¢, V) be a representation of L.
aedt
Let v € V. We say that v generates V if the vectors

p(w1) -~ d(xi)v,

for t a positive integer and xz1,...,x; € L, span the F-vector space V. Assume
that X is a weight of H on V, and let v € V) be non-zero. We say that v is a
maximal vector of weight X if ¢(z)v =0 for all x € N.

Lemma 11.3.1. Let F be algebraically closed and have characteristic zero. Let
L be a finite-dimensional, semi-simple Lie algebra over F'. Let H be a Cartan
subalgebra of L, let ® be the roots of L with respect to H, and let B be a base for
®. Define N and the Borel subalgebra P as as in Lemma 11.2.1. Let (¢, V') be
a representation of L. If V is finite-dimensional, then V' has a mazimal vector
of weight X for some weight X of H on V.
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Proof. Let P be the Borel subalgebra of L defined with respect to our chosen
base. By Lemma 11.2.1, P is solvable. Consider ¢(P) C gl(V). Since ¢ is
a map of Lie algebras, ¢(P) is a Lie subalgebra of gl(V). By Lemma 2.1.5,
¢(P) is solvable. By Lemma 3.4.1, a version of Lie’s Theorem, there exists a
non-zero vector v of V' such that v is a common eigenvector for the operators
¢(z) € gl(V), x € P. For x € P, let ¢(x) € F be such that ¢(z)v = c(x)v. It is
easy to see that the function ¢ : P — F is F-linear. We claim that ¢(N) = 0.
Let x,y € P. Then

o([z,yl)v = ([, y])v

(¢(x)¢(y) — d(y)o(x))v = c([z,y])v
o(@)p(y)v — d(y)p(x)v = e[z, y)v
c(x)e(y)v — Jv = c([z,y]v

Since v is non-zero, we see that c¢([z,y]) = 0. Since, by Lemma 11.2.1, N =
[P, P], we get that ¢(N) = 0. Define A : H — F by A(h) = ¢(h) for h € H.
Evidently, v is in the weight space V). Since ¢(N) = 0 we also have ¢(z)v = 0
for x € N. It follows that v is a maximal vector for the weight A of H on V. O

Theorem 11.3.2. Let F' be algebraically closed and have characteristic zero.
Let L be a finite-dimensional, semi-simple Lie algebra over F. Let H be a
Cartan subalgebra of L, let ® be the roots of L with respect to H, and let B =
{aq,...,an} be a base for ®. Define N and the Borel subalgebra P as as in
Lemma 11.2.1. Let (¢,V) be a representation of L. Let v € V. Assume that v
generates V', and that v is a mazimal vector of weight A. Then

V= & V.

p is a weight of H on V'

Moreover, if u is a weight of H on V, then
p=A—(cra1 + -+ choy)

for some non-negative integers c1, ..., cn. Thus, if i is a weight of H on V| then
w < \. Here, < is the partial order from page 116. For every weight p of H on'V
the subspace V), is finite-dimensional, and the subspace V) is one-dimensional.

Proof. For each 8 € &7, fix a non-zero element y3 in the one-dimensional space
Lg. We first claim that the vector space V is spanned by v and the vectors

w = ¢(yg,) - Py, )V

for k a positive integer and B1,...,08; € ®~. To see this, we recall that, as
a vector space, L is spanned by H, L, for o € ®" and 8 € ®~, and that v
generates V. This implies that the vector space V is spanned by v and the
vectors of the form

P(z1) - Pp(z)v
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for £ a positive integer, and, for ¢ € {1,..., £}, the element z; is in H, or in L,
for some o € @, or in Lg for some S € ®. Since N = @+ L, acts by zero
on v (as v is a maximal vector), and since ¢(h)v = A(h)v for h € H, our claim
follows.

Next, let w = ¢(ya,) - ¢(ys,)v be a vector as above with k a positive
integer. By 1 of Lemma 11.1.1, w is contained in Vyyg, +...45,. Let M be the
set of linear functionals u : H — F such that g = A, or there exists a positive
integer k and B1,...,08r € ®~ such that g = A+ 1 + -+ B and V,, # 0. The
result of the previous paragraph imply that the subspaces V), for u € M span
V. By 3 of Lemma 11.1.1, the span of the subspaces V,, for y € M is direct,
i.e., V is the direct sum of the subspaces V,, for p € M. Let v : H — F be
any weight of H on V. Let u € V,, be non-zero. There exist unique elements
Hi,. .., 1t € M and non-zero vy € V,,,,...,v €V, such that u = vy + -+ v;.
Let h € H. Then

v(h)u = pa(h) (h)
o ) = (o )
v(h)vy + - +V( Jur = pa (h) (h)
Since this equality holds for all A € H, and the sum of V,,,...,V,, is direct, we
must have v = puy = --+ = py. Since pg, ...,y are mutually distinct, we obtain
t =1 and v = 1. Recalling the definition of the set M, and the fact that every
element of ®~ can be uniquely written as a linear combination of the elements
of B = {a1,...,a,} with non-positive integral coefficients, we see that v has
the form as stated in the theorem.

Finally, let i be a weight of H on V. Let u € V,, be non-zero. By the
first paragraph, w can be written as linear combination of v and elements of
the form w = ¢(yg,) - - - d(yp,)v. Hence, there exists a positive integer ¢, ele-
ments ¢, cy,...,c¢ of F, and for each i € {1,...,¢} a positive integer k; and
Biis---,Bik € P~ such that

4
w=cov+ Y cidys,.,) - Hyp.,, v-

i=1

Since ¢(ygp,,) -+ ¢(yp, ,,, )v is contained in Viip, , 4.+, ,,, and since the sum of
weight spaces is direct by 3 of Lemma 11.1.1, we see that for each ¢ € {1,...,¢},
if
Ci(b(yﬁi,l) T ¢(yﬁi,ki )U
is non-zero, then
p=A+Bix+ -+ Bk

or equivalently,
p—=A=PBi1+ -+ Bik,-
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It follows that the dimension of V), is bounded by IV, where IV is 1 plus the
number of m-tuples (81, ..., Bm), where m is a positive integer and S, ..., Bm €
&~ such that

p=A=p1+-+ B

If 4w = A, then N = 1, so that dim V), = 1. Assume p # A. Recall the height
function ht from page 93. If m is a positive integer and f1,...,08, € @~ are
such that g — A= B + -+ + B, then

ht(p — A) = ht(B1 + -+ + B) < —m,

or equivalently, —ht(u — A) > m. Since @~ is finite, it follows that N is finite,
as desired. 0

Let the notation be is as in Theorem 11.3.2. We will say that X\ is the
highest weight for V. By Theorem 11.3.2, if u is a weight of H on V, then
A = p. In particular, if X' is a weight of H on V, and X' = p for all weights of
H on V, then X = ); this fact justifies the uniqueness part of the terminology
“the highest weight”.

Corollary 11.3.3. Let F be algebraically closed and have characteristic zero.
Let L be a finite-dimensional, semi-simple Lie algebra over F. Let H be a
Cartan subalgebra of L. Let (¢, V) be a representation of L. Assume that V is
wrreducible. If v € V and vo € V' are maximal vectors of weights A\ and A2 of
H on V', respectively, then Ay = Ao, and there exists c € F'* such that vy = cv.

Proof. Since V is irreducible, the vectors v; and ve both generate V. By Theo-
rem 11.3.2 we have A\; = Ao. Therefore, V), = V),. Again by Theorem 11.3.2,
dim Vy, = dim V), = 1. This implies that vy is an F'* multiple of v;. O

Corollary 11.3.4. Let the notation and objects be as in Theorem 11.3.2. If W
is an L-subspace of V', then

W= P W,.

o is a weight of H on W

The L-representation V is indecomposable, and has a unique mazimal proper
L-subspace U. The quotient V/U is irreducible, and if W is any L-subspace of
V' such that V/W is non-zero and irreducible, then W = U.

Proof. Let W be an L-subspace of V; we will first prove that W is the direct
sum of its weight spaces. By Theorem 11.3.2; if w € W and is non-zero, then w
has a unique expression as

W=y, o W

where p1, ..., p are distinct weights of H on V, and w,,, is a non-zero element
of V,, for i € {1,...,k}; we need to prove that in fact w,, is contained in W,
for i € {1,...,k}. If w is a non-zero element of W and w,, ¢ W for some
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i € {1,...,k}, then we will say that w has property P. Suppose that there
exists a non-zero w € W which has property P; we will obtain a contradiction.
We may assume that k is minimal. Since k is minimal, we must have k > 1:
otherwise, w = w,, € WNV, =W, a contradiction. Also, we claim that
wy,, ¢ Wforie {1,...,k}. To see this, let X = {i € {1,...,k} : w,, € W},
and assume that X is non-empty. Since w has property P, the set X is a proper
subset of {1,...,k}. We have

w_§ :w#i: § : Wy -

i€X je{l,... .k} —X

This vector is contained W and has property P; since k is minimal, this is a
contradiction. This proves our claim. Next, since pu; and ps are distinct, there
exists h € H such that pi(h) # ua(h). Now

W = Wy, +wu2 +"'+wﬂk
d(h)w = o(h)wy, + ¢(h)wy, + - + d(h)w,,
p(h)w = p1 (h)wy, + p2(h)wy, + -+ pr(h)w, .

Also, we have
pz(h)w = pa(h)wy, + p2(h)wu, + -+ + pa(h)wy, .

Subtracting yields:

p(h)w — pa(h)w
= (1 (h) = pa(h))wy, + (p3(h) = pa(h))wus + - - + (pr(h) — pa(h))wp, -

Since W is an L-subspace, this vector is contained in W. Also, (ui(h) —
po(h))w,, ¢ W. It follows that this vector has property P. This contradicts
the minimality of k. Hence, W is the direct sum of its weight spaces, as desired.

To see that V is indecomposable, assume that there exists L-subspaces Wy
and Wy of W and V = W, & Ws; we need to prove that Wy =V or Wy = V.
Write v = wy + wo with wy; € W7 and we € W5, By the last paragraph,

W1 = Wi,y T+ Wiy,
Wo = W2y + -+ Way,
where 1, ..., g are distinct weights of H on Wy, v, ..., v are distinct weights

of H on Wy, and wy ,, € Wiy, and wa,; € Wy, are non-zero for i € {1,...,k}
and j € {1,...,¢}. We have

V=Wt We = Wiy F o Wy Wopy W,

Now v is a vector of weight A. Since the weight space decomposition is direct,
one of py, ..., g, 1, .-,V is A. Since V), is one-dimensional and spanned by v,
this implies that v € Wy or v € W5, Therefore, Wy =V or Wy = V.
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Let U be the F-subspace spanned by all the proper L-subspaces of V.
Clearly, U is an L-subspace. We claim that U is proper. To prove this it
suffices to prove that v ¢ U. Assume v € U; we will obtain a contradic-

tion. Since v € U, there exists proper L-subspaces Uy, ...,U; of V and vectors
wy € Uy, ..., wy € Uy such that v = wy + -+ + w;. An argument as in the last
paragraph now implies that for some ¢ € {1,...,t} we have v € U;. This implies

that U; = V, contradicting that U; is a proper subspace. The construction of U
implies that U is maximal among proper L-subspaces of V', and that U is the
unique proper maximal L-subspace of V.

To see that V/U is irreducible, assume that @ is an L-subspace of V/U. Let
W={weV:w+U e Q}. Evidently, W is an L-subspace of V. If W =V
then Q = V/U. If W is a proper subspace of V, then by the definition of U,
W C U, so that @ = 0. Thus, V/U is irreducible.

Finally, W be any L-subspace of V such that V/W is non-zero and irre-
ducible. Since V/W is non-zero, W is a proper subspace of V. By the definition
of U we get W C U. Now U/W is an L-subspace of V/W. Since V/W is
irreducible, we have U/W =0 or U/W = V/W. If U/W =0, then W = U, as
desired. If U/W = V/W, then V = U, a contradiction. Thus, W =U. O

Corollary 11.3.5. Let F be algebraically closed and have characteristic zero.
Let L be a finite-dimensional, semi-simple Lie algebra over F. Let H be a
Cartan subalgebra of L. Let (¢1,V1) and (¢2, Va) be irreducible representations
of L. Assume that Vi and Vo are generated by the mazimal vectors v € Vi
and vo € Vo of weights A1 and Ao, respectively. If \y = Ao, then Vi and Vo are
isomorphic.

Proof. Assume that \;y = Ay. Let A = Ay = Ao, Let V. = V; & V5. The F-
vector space V is a representation of L with action ¢ defined by ¢(x)(v1 B vo) =
o1 (z)wy B po(x)ws for wy € Vi, wg € Vo and « € L. Let v = vy ® vg, and
let V' be the L-subspace of V; & V5 generated by v. The vector v is a maximal
vector of V' of weight A. Let p; : V. — Vj and py : V — V5 be the projection
maps. The maps p; and py are L-maps. Since p;(v) = vy and pa(v) = va,
and since V; and V5 are generated by vy and wve, respectively, it follows that
p1 and po are surjective. Therefore, V/ker(p;) = Vi and V/ker(ps) = Vo
since V7 and V5 are irreducible by assumption, the L-spaces V/ker(p;) and
V/ker(ps) are irreducible. By Corollary 11.3.4, we have ker(p;) = ker(pz), so
that V3 2 V/ker(p;) = V/ker(ps) = Vs. O

11.4 The Poincaré-Birkhoff-Witt Theorem

Let F be a field, and let L be a Lie algebra over F'. Let T be the tensor algebra
of the F-vector space L. We have

T=T'eT'eT?>®---
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where T =F =F -1, T' =L, T?> = L ® L, and if k is a positive integer, then
TR = I, R---QL.
k

With tensor multiplication, T" is an associative algebra with identity 1.

Let J be the two-sided ideal of T' generated by all the elements of the form

TRy -y —[r,y]
for x,y € L. We define
UL)=T/J,

and refer to U(L) as the universal enveloping algebra of L. We let
T2 T/L=U(L)

be the natural projection map. Evidently, U(L) is an associative algebra over
F. If u,v € U(L), then we will write the product of u and v as uv. We will
write p(1) = 1. The element 1 € U(L) is an identity for U(L). We have

p(T°) =p(F-1)=F-1cU(L).
Let
T, =T'eT?’eT*®---.

Then
T=T"&T,=F-1¢T,.

Evidently, Ty is a two-sided ideal of T. Since z @ y —y ® x — [z,y] € T for
x,y € L, it follows that
JCTy.

We claim that
p(T%) Np(Ty) = 0.

To see this, let @ € F and z € Ty be such that p(a-1) = p(z). Then p(a-1—2z) = 0.
This means that a-1—z € J. Since J C Ty, we get a-1—2z € Ty, and therefore
a-1€T.. AsT°NT, =0, this yields a = 0, as desired. Letting

U+ = p(T+)a
we obtain the direct sum decomposition
UL)=F-10U,.

If w € U(L), then the component of v in F'-1 is called the constant term of u.
Let
oc:L—U(L)

be the composition
L—T-2U()
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where the first map is the inclusion map, and the second map is the projection
map p. We refer to o as the canonical map of L into U(L). Let x,y € L.
Then

o(@)o(y) —o(ylo(@) =@+ J)(y+J)— (y+J)(z+J)
:(x®y+J)—(y®a:+J)
=rQy-yRr+J
=[ryl+zy—yQx—[z,y|+J

=[x,y +J
= o([z,y)).
That is,
o(x)a(y) —o(y)o(x) = o([z,y])
for z,y € L.

Lemma 11.4.1. Let F be a field, and let L be a Lie algebra over F. Let
o : L — U(L) be the canonical map. Let A be an associative algebra with
identity, and assume that
LA
s a linear map such that
m(2)7(y) — 7(y)7(x) = ([, y])
for x,y € L. There exists a unique F'-algebra homomorphism

U(L) 75 A

such that 7' (1) =1 and 7" o0 = 7, so that

L
o—l <
UL = A

commutes.

Proof. To prove the existence of 7/, we note first that by the universal property
of T, there exists an algebra homomorphism

T -5 A
such that (1) =1, and p(z) = 7(z) for x € L. Let x,y € L. Then

plrey—yer—|r,y]) =y —ely®z) = (z,y])
o(@)p(y) — o)) — 7([z,y])
7(@)7(y) — 7(y)7(x) — 7([2,Y])
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=0.

Since ¢ is an algebra homomorphism, and since ¢ is zero on the generators of
J, it follows that ¢(J) = 0. Therefore, there exists an algebra homorphism
7' U(L) =T/J — A such that 7/(z + J) = p(z) for z € T. Evidently, since
©(1) =1, we have 7/(1) = 1. Also, if z € L, then

This proves the existence of 7/. The uniqueness of 7’ follows from the fact that
U(L) is generated by 1 and o (L), the assumption that 7" is determined on these
elements. 0O

We will consider sequences (i1, . . ., i,) where p is as positive integer, i1, ..., 7,
are positive integers, and
1 <o <.

We let X be the set consisting of all such sequences, along with the empty set (.
Let I € X. If I # (), so that there exists a positive integer p, and i1, ...,i, € Zsq
such that I = (i1,...,4,) with 43 <--- <4, then we define

d(I) =p.
If I = (), then we define

d() = o.

Let F be a field, and let L be a Lie algebra over F. Assume that L is

finite-dimensional and non-zero. We fix an ordered basis

L1, L2,L3y+++,Ln

for L as a vector space over F. We define the images of these vectors in U(L)
as
Y1 =0(z1),y2 = 0(72),y3 = 0(23), .. ., Yn = 0(T0).
Let I € X. If T # 0, so that there exists a positive integer p, and i1, .. .,i, € Zxg
such that I = (iq,...,4,) with 43 <--- <4,, then we define
Y1 = YiYisYis * Yi, € U(L)

If I = (), then we define

yp=1€U(L).
Lemma 11.4.2. Let F be a field, and let L be a finite-dimensional Lie algebra
over F'. Fix an ordered basis x1,...,xy for L, and define y; for I € X as above.

Then the elements y; for I € X span U(L) as a vector space over F.
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For k a non-negative integer, let X be the subset of I € X such that
d(I) < k.
Let n be a positive integer, and let z1, ..., 2z, be indeterminants. We define

P=Flz,... 2]

Let I € X. If I # 0, so that there exists a positive integer p, and i1, ...,i, € Zxq
such that I = (i1,...,4,) with 43 <--- <4, then we define

21 = 24y ZigZiy - 2y € Flz1, ..o, 2]
If I = (), then we define
zg=1€ Flz1,..., 2]

Evidently, the elements z; for I € X form a basis for F[z,...,z,]. For conve-
nience, we define
P=Flz,... 2]

Also, if k is a non-negative integer, then we let Py be the F-subspace of P of
polynomials of degree less than or equal to k. Evidently, if k is a non-negative
integer, then Pj has as basis the elements z; for I € Xj.

Let I € X. Let i € {1,...,n}. We say that ¢ < I if and only if T = {), or,
if I # 0, so that I = (i1,...,14,) for some positive integers p and i1, ...,%, with
il S SZP, thenigil.

Lemma 11.4.3. Let L be a finite-dimensional Lie algebra over F, and let
Z1,...,Ty be a basis for the F wvector space L. Let the notation be as in the
discussion preceding the lemma. For every non-negative integer p, there exists
a unique linear map

fo: L@ P, — P
such that:
(Ap) Ifie{l,...,n} and I € X, with i < I, then

folws ® 21) = 221

(Bp) Ifie{l,...,n}, q is a non-negative integer such that ¢ < p, and I € X,
then

folai ® 21) — 221 € Py.
In particular, fp,(L ® P;) C Pyy1 for non-negative integers q with g < p.

(Cp) If p>1,4,5€{l,...,n} and J € X,_1, then

fo(@i @ [z @ 21)) = fp(2; @ fp(w: ® 2)) + fp([wi, 5] ® 27).

Moreover, for every positive integer p, the restriction of f, to L ® Pp_1 is fp_1.
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Proof. We will prove by induction that the following statement holds for all
non-negative integers p: (Sp) there exists a unique linear map f, : L® P, — P
satisfying (A,), (Bp) and (C,) and such that the restriction of f, to L ® P,_1
is fp—1 when p is positive.

Suppose that p = 0. Clearly, there exists a unique linear map fy : L& Py — P
such that fo(z; ® 1) = z; for i € {1,...,n}. It is clear that (Ay), (Bg) and (Cp)
hold; for this, note that, by definition, Xo = {I € X : d(I) = 0} = {0}, z¢ = 1,
and i <@ for all i € {1,...,n}. It follows that (Sg) holds.

Suppose that p = 1. To define the linear map f, : L ® P; — P it suffices to
define fi(z; ®zr) € Pforie {1,...,n}and I € XgU X;. If i € {1,...,n} and
I € Xy, then I = ), and we define fi(z; ® 21) = fo(v; ® 27) = z;. Assume that
ie€{l,...,n} and I € X;. Write I = (j). There are two cases. Assume first
that ¢ < I, ie., i < j. In this case we define fi(z; ® 21) = 2z;z;. Assume that
i £ 1, so that i > j. We define:

fi(xi @ 21) = zizr + fo([zi, 2;] ® 2p),

ie.,
f1(@i ® 25) = zizj + fol[wi, ;] @ 1).

It is straightfoward to verify that f; satisfies (A;) and (B;). To see that f;
satisfies (Cy), let 4,5 € {1,...,n} and J € X;_1 = Xy. Then J = (). We need
to prove that

fi(zi ® fi(z; @ 29)) = fi(z; © fi(z © 29)) + f1([2i, 2] ® 2p),
which is
fl(xi X Zj) = fl(xj ® Zl) + fo([fEi,Ij] ® 1)
Assume first that ¢ < j. In this case,
fi(zs ® 25) = zizj,

and

filz; @ zi) + fo([zi, 2] ® 1) = zjzi + fo([zj, 2] @ 1) + fo([wi, z;] @ 1)
= zjzi — fo([zi, ;] ® 1) + fo([i, 2] © 1)

= 2;%j.
This proves (Cq) in the case i < j. Now assume that ¢ > j. Then
filzs ® zj) = ziz; + fo(lwi, xj] ® 1),

and
filz; @ zi) + fo(lws, 2] @ 1) = zjzi + fol[zs, z;] @ 1).

This proves (C;) in the remaining case ¢ > j. It follows that (S;) holds.
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Now suppose that p is a positive integer such that p > 2 and that (Sy) holds
for k =0,...,p— 1. To define the linear map f, : L ® P, — P it suffices to
define fp(z; ® z1) € Pfori € {1,...,n} and I € X, with ¢ such that 0 < ¢ < p.
Let ¢ € {1,...,n} and assume that I € X, with 0 < ¢ < p. In this case we
define fp(z; ® z1) = fp—1(x; ® z7). Assume that i € {1,...,n} and [ € X,,. If
i < I, then we define

fp($i & Z[) = Z;2]-

Assume that ¢ £ I. To see how to define f,(x; ® zr) in this case, assume for
the moment that fj exists and satisfies (Ax), (Bx), and (Cy) for non-negative
integers k and that fi_1 is the restriction of fj for k = 1,...,p; we will find a
formula for fp(z; ®2r) in terms of fp_1. Let I = (j,42,...,7p). By the definition
of X, j <igp <--- <4, Sincei £ I, we must have i > j. Define J = (iz,...,ip);
note that the definition of J is meaningful since p > 2. Clearly, J € X with
d(J) =p— 1. We calculate, using (A,_1) and then (Cp):

Now since (Sp—1) holds, we have by (Bp_1),
fpfl(xi & ZJ) — Zi2J € prl.

Define
w(i, J) = fp71($¢ ®zy)— zizJ.

As just indicated, we have that w(i, J) € P,_;1. Continuing the calculation, we
get:

fo(@i ® 21) = fp(z; ® fp—1(z: ® 21)) + fp([zs, 2] ® 2)

= fp(2; ® (zizg + (i, J))) + fp([2i, 25] © 2)

= fp(@; ® zizg) + fp(z; @ w(i, J)) + fp([wi, 2;] @ 27)
= zjzizg + fp—1(zj @ w(i, J)) + fp([zi 25] @ 25)

= ziz1 + fp-1(x; @ w(i, J)) + fp([i, 2] @ 25).
Dropping our temporary assumption, we are now motivated to define:
fo(@i @ 21) = zizr + fp—1(z; @w(i, J)) + fp—1([@i, 7] ® 25).

It is clear that f, extends f,_1; also, it is straightforward to verify that f,
satisfies (Ap) and (Bp). We need to prove that f, satisfies (Cp). Assume that
i,j € {1,...,n} and J € X,_1. The case i = j holds trivially, so we assume
that ¢ # j. There are 5 possible cases.
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Case 1: assume that j < i and j < J. We have

fo(@i ® fplz; ® 21)) = fp(2: @ 2j27)
= fp($1 ®ZI)
= zizr + fp-1(2; @ w(i, J)) + fo—1([2i, 7;] @ 27)

where I = (j,j1,...,Jp—1), J = (j1,...,Jp—1) and we have used the definition
of fp(x; ® zr) from the last paragraph. We note that j < I. Also,

fo(25 ® fp(zi ® 25)) = fp(2; ® fp—1(xi ® 27))
= fpla; @ (2i25 +w(i, J)))
= fo(z; ® zizy) + fp(z; @ w(i, J))
= 2225 + fp-1(z; @ w(i, J))
= ziz1 + fp—1(z; @ w(s, J)).

Substituting, we obtain (Cp) in this case.

Case 2: assume that j < i and ¢ < J. We then have j < i and j < J. Case
1 now applies to prove (Cy).

Case 3: assume that ¢ < j and ¢ < J. Then (C,,) follows from Case 1 with ¢
replaced by j, j replaced by ¢ and noting that [z;, ;] = —[z;, ;).

Case 4: assume that i < j and j < J. We then have i < j and ¢ < J. Case
3 now applies to prove (Cp).

Case 5: assume that ¢ £ J and j £ J. Write J = (k,...,jp-1). By
assumption k¥ < ¢ and k < j. If p > 2, then define K = (ja,...,jp—1); if p =2,
then define K = (0. We have k < K. For the remainder of the proof we will
write fo(z ® z) as = - z for ¢ a non-negative integer with ¢ < p, x € L, and
z € P;. Now

xj-zy = (2k2K)
=z (vg - 2K)

=ap - (¢ - 2r) + [z, 28] - 2K

where the last equality follows from (Cp_1). Now z; - 2x = 22K + w for some
w € P,_5. Therefore,

Tz =k (2j2K) + T W+ [xjvxk] TRK-
Applying x;, we get:
xi- (x50 25) = @i - (2 (252K)) + 23 - (g - w) + i - ([25,22] - 2K)-

Consider z; - (xy, - (zj2K)). We may write z;zx = z); where M is formed from
j and the entries of K. We have k < i and kK < M. By Case 1,

zi (k- (252K)) = @i (@i - (252K)) + [Tis 78] - (252K)-
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Since w € P,_9, we have by (Cp_2),
i (xg - w) =k - (x5 - w) + [T, 2] - w.
Substituting, this yields

zi (x5 27) = a2 (T (22K)) + (26, 78] - (252K)

+ap - (@ w) + [z, 2] - w+ 2 - ([, 28] - 2x)
=g (2 () - 2x)) + (20, 2] - (25 - 25) + 20 - ([25, 28] - 2)
= (zi - (25 - 2K)) + [2i, o8] - (25 - 2K)

+ $j7$k] (i - 2i) + [, [xj,mk}] CRK

where we have applied (Cp_2) to x; - ([, 2k] - zx). The same argument with ¢
and j interchanged yields

zj (i 2g) = (25 (T 2x)) + 25, 0] - (23 - 2K)
+ (i k] - (25 - 25) + [z, [Ti, 28] - 2k
Therefore, the difference is:
.Ti~(.’17j-ZJ)—SL‘j~($i-ZJ)
=i (2 (7 2x)) — 2k (25 - (@ - 2K))

+ (@, [, 2k]] - 2 — [z, [Ti, 2x]) - 2K

=z - (l‘i'(xj'ZK)—xj'(xi'zK))

+ ([ oy, al) = [ o al]) - 2
= ak - ([, 5] 2r) + ([, [y, 2] + 2, [2r, 23])) - 2k
[, 2] - (k- 2i) + ([2r, [0, 25)) + [0, [, 2al] + 25, [2r, 24]]) - 2
= [.%'“.%'j] zJ
This is (Cy). 0

Lemma 11.4.4. Let L be a finite-dimensional Lie algebra over F, and let
T1,...,T, be a basis for the F wvector space L. Let the notation be as in the
discussion preceding Lemma 11.4.3. There exists a representation p of L on
Flz1,...,z,] with the property that

p(xi)zr = zizr
forie{l,...;n} and I € X withi < 1.

Proof. We will use Lemma 11.4.3. For x € L and p(z1,...,2,) € Flz1,...,2n]
define

p($)<p(21, ey Zn)) = fk(x ® p(z1,.- - zn))
where k is any non-negative integer such that p(z1,...,z,) € P;. The assertions

of Lemma 11.4.3 imply that p is a Lie algebra action with the stated property.
O
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Theorem 11.4.5. Let F be a field, and let L be a finite-dimensional Lie algebra
over F. Fiz an ordered basis x1,...,xn, for L, and define y; for I € X as
preceding Lemma 11.4.2. Then the elements y; for I € X are a basis for U(L)
as a vector space over F.

Proof. By Lemma 11.4.2 it suffices to prove that y; for I € X are linearly
independent. Let p be the action of L on Fl[zq,...,z2,] from Lemma 11.4.4.
By Lemma 11.4.1, there exists an action p’ of U(L) on F|z1,..., 2] such that
p' oo =p. Let I € X; we claim that

p'(yr)-1=zr.

We will prove this by induction on d(I). Assume that d(I) = 0. Then I = 0.
We have y; = 1 so that p'(yr) = p(1) = 1, and zy = 1. Hence, p'(yr) - 1 = 2.
Assume that p is a positive integer and the claim holds for all I with d(I) < p.
Let I € X be such that d(I) = p. Write I = (41, ...,1p) for some positive integer
pandiq,....ip € {1,...,n} with iy <--- <i4,. Let J = (i2,...,4p) if p > 2 and
J=0if p=1. We have i; < J. Now

P'(yr) -1 =p'(yiys) - 1
=p'(yi) (P (ys) - 1)
= p(zi,)(27)
=z, 2]

= ZJ.

This proves the claim by induction. It follows now that the y; for I € X are
linearly independent because the z; are linearly independent for I € X. O
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