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1. Groups

1.1. Our starting point. We assume the following notions and results: group, subgroup, normal
subgroup, coset, quotient group, homomorphism, Lagrange theorem, familiarity with the symmetric
group S, cycles, unique factorization into cycles of a permutation, even and odd permutations, the
alternating group A,. The centre of a group, the commutator subgroup.

We also assume the four isomorphism theorems for groups, that we recall for convenience.

Let G be a group:

(1) Let f: G — H be a homomorphism of groups with kernel K and let K3 be a normal subgroup
of G contained in K. There is a unique factorization giving a commutative diagram

N

G/Ki

where T is the canonical homomorphism g +— gKi. The kernel of F is K/K1<G/K1. In
particular, if f is surjective, there is an induced isomorphism F: G/K — H.
(2) Let H<G and K < G. Then HK is a subgroup of G, HN K a normal subgroup of K, and

HK/H= K/(HN K).
(3) Let H<1G, K<G, such that K C H. Then H/K is a normal subgroup of G/K and
(G/K)/(H/K) = G/H.

(4) Let f: G — H be a surjective homomorphism of groups. There is a 1 : 1 correspondence
between subgroups of H and subgroups of G that contain K := Ker(f). It preserves inclusion
and the notion of being a normal subgroup. The correspondence is

Ho C H— Ko := f1(Hp).

1.2. Group actions. Let G be a group and S a non-empty set. An action of G on S is a function
GxS—S, (9,5) — gx*s,

(although we mostly write gs) such that for all s € S, g1, g» € G:

(1) 1xs=s;

(2) g1%(g2%5) =(9192) * 5.
In particular, every g € G defines a function og: S — S by s = g=*s. This function has an inverse,
which is the function associated to g~! (use the two axioms) and so is a permutation. Further,
axiom (2) tells us that

0g,°0g; = 0gigs-

And so we get the following lemma.

Lemma 1.2.1. Let S be a non-empty set, G a group and Xs the group of permutations of S.
There is a natural correspondence between (i) group actions of G on S; (ii) group homomorphisms
G — Zs.

The following definitions are basic to this theory:
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Definition 1.2.2. (Orbit) Let s € S. The orbit of s, denoted Orb(s) is the subset of S given by
Orb(s) ={g*s:g € G}.

Being in the same orbit is an equivalence relation and so S is a disjoint union of orbits.
Definition 1.2.3. (Stabilizer) Let s € S. The stabilizer of s in G is the following subgroup of G,
Stab(s) ={g€ G:g*s=s}.

There is a natural bijection
G/Stab(s) — Orb(s), g¢g-Stab(s)+— g=*s.
In particular, if the orbit is a finite set then Stab(s) is of finite index (and vice-versa) and
ff Orb(s) =[G : Stab(s)].
Example 1.2.4. Let G be a group and H a subgroup of G. Then, H acts on G by

(h,g) = hg

where hg is the product of h and g in the group G. Then, Orb(s) = Hs is a right coset of H. The
stabilizer of any s is trivial and so every coset has [H : {1}] = §H number of elements. Finally, G is
divided into disjoint orbits, namely, disjoint cosets of H, each having the same size {f H and so,

Lagrange Theorem: Let G be a finite group and H a subgroup of G then §H|{G. In fact,
G =[G : H] - tiH.

Example 1.2.5. The Orbit-Stabilizer relationship can be used to understand structures of groups
very effectively. Here is an example!: Consider the group of rotational symmetries G of the cube.
The cube has 6 faces and one easily sees that G acts transitively on the set of faces. This is a
transitive action of G on a set of 6 elements. The stabilizer of a face is the group of order 4 of
rotations around an axes passing through the centre of the face. It has order 4. We conclude
that G = 4 x 6 = 24. We also conclude the existence of cyclic subgroups of order 4. Let H be
such a subgroup. A face and its opposite have the same stabilizer, but this is the only case when
stabilizers are equal. Thus, H is normalized by an element taking a face to its opposite and, in fact,
[Ng(H) : H] = 2.

Similarly, G acts transitively on the set of vertices, and there are 8 of which. The stabilizer J
of a vertex has thus order 3. Indeed, it's generated by a rotation fixing the vertex and rotating
cyclically the 3 faces with that vertex. It must then permutes cyclically the remaining 3 faces as well
(as the remaining 3 faces are a union of orbits of a cyclic group of order 3 and it is easy to see it
cannot fix the 3 faces). It follows that J is also the stabilizer of one more vertex. We conclude that
[Ng(J) : J] = 2 and that there are at least 4 subgroups of order 3. (In fact, an easy application
of Sylow’s theorem (to be proven later) shows that there are precisely 4 subgroups of order 3.)
Furthermore, by consider the action on the set of 12 edges, we find that G has a subgroup K of
order 2 such that KN H = {1}.

L} learned of this nice example from the blog of Gowers.
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1.3. The class equation. Now we take both the group and the set to be the same. Every group
G acts on itself by conjugation:

GxG—G, (g.h)— 9h:=ghg™L.

An element s of G has orbit of size 1, namely, an orbit consisting just of itself, if and only if for all
g € G we have gsg~! = 5. That is, if and only if s € Z(G), the centre of G. The stabilizer of a
general element s is written in this case as Cs(s), the centralizer of G in S and

Ce(s) ={g€G:gs=sg}

The orbit of s is called its conjugacy class conj(s) = {gsg™! : g € G}. The group G is divided
into disjoint conjugacy classes and for a finite group G we have

(1) HG = #2(G) + > _ ticonj(s),

where the sum extends over representatives for the conjugacy classes of size greater than 1. Note,
once more, that ficonj(s) =[G : Cs(s)]. We thus can also write the class equation (1) as

HG
(2) G = 12(G) + _
reps.sZ:QZ(G) uCG(S)

1.4. p-groups. Let p be a prime number. A finite group G is called a p-group if {G = p", for some
r > 0. It is called a non-trivial p-group if r > 0.

Theorem 1.4.1. Let G be a nontrivial p-group then the centre of G is nontrivial.

Proof. Suppose that G = p", r > 0. If Z(G) is trivial, then §Z(G) = 1. The class equation then
gives

1G
reps.s¢Z(G) ﬁCG(S)
But, each summand under the summation sign is a positive power of p. This is a contradiction since
then p divides the left hand side, but not the right hand side. O

We can strengthen this theorem as follows (but we leave the proof as an exercise).

Theorem 1.4.2. ?Let G be a non-trivial p group and H<G a non-trivial normal subgroup. Then,
HN Z(G) is a non-trivial subgroup.

Corollary 1.4.3. Let G be a p-group and H<IG a subgroup of order p. Then H C Z(G).

Theorem 1.4.4. Let G be a finite p group, |G| = p".
(1) For every normal subgroup H<IG, H # G, there is a subgroup K<1G such that H < K < G

and [K : H] = p.
(2) There is a chain of subgroups Ho = {1} < H1 < --- < H, = G, such that each H;<G and
|Hil = p".
Proof. (1) The group G/H is a p-group and hence its center is a non-trivial group. Take an

element e # x € Z(G/H); its order is p” for some r. Then y = x?" ' has exact order
p. Let K/ =<y >. It is a normal subgroup of G/H of order p (y commutes with any
other element). Let K = m,*(K’). Then K is a normal subgroup of G, and K/H = K’ so
[K: H] =p.

2'I'aking H = G gives the theorem.
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(2) The proof just given shows that every p-group has a normal subgroup of p elements. Now
apply repeatedly the first part.
O

END OF LECTURE 1 (September 5)

1.5. Examples of p groups.
1.5.1. Groups of order p. Every such group is cyclic, thus isomorphic to Z/pZ.

1.5.2. Groups of order p>. Every such group G is commutative. Indeed, let x be an element of
order p contained in the centre of G. Let y be an element of G such that its image in the group
G/(x) of order p is a generator (any y & (x) would do). Then, every element of G is of the form
yaxb. Because x is in the centre, yaxPycxd = yatcxbtd — ycydyayb and G is commutative. If G
has an element of order p? then G is cyclic, isomorphic to Z/p°Z. Else, every element of G is of
order p and G is commutative. It follows that we can view G is a vector space (with p> vectors)
over the finite field Z/pZ, where for a € Z/pZ,g € G we let ag = g+ --- + g, a-times. From the
theory of vector spaces we conclude that G = Z/pZ x Z/pZ.

1.5.3. Groups of order p3. First, there are the abelian groups Z/p3Z, Z/p?Z x 7./ pZ and (Z/pZ)3.

An argument similar to the one used for groups of order p? shows that if G is not abelian then
G/Z(G) cannot be cyclic. It follows that Z(G) = Z/pZ and G/Z(G) = (Z/pZ)?. One example of
such a group is provided by the matrices

where a, b, c € F,. The centre consists of the matrices with a = ¢ = 0. Note that if p > 3 then
every element in this group is of order p (use (/ + N)P = [ 4+ NP), yet the group is non-abelian.
(This group, using a terminology to be introduced later, is a semi-direct product (Z/pZ)? x Z/pZ.)
More generally the upper unipotent matrices in GL,(F,) are a group of order p"("=1)/2 in which
every element has order p if p > n. Notice that these groups are non-abelian.

Getting back to the issue of non-abelian groups of order p2, one can prove that there is precisely
one additional non-abelian group of order p3. It is generated by two elements x,y satisfying:
xP = yP* =1, xyx—1 = yP_ (This group is a semi-direct product (Z/p>Z) x Z/pZ. We will return
to this example in §1.8)

Example 1.5.1. Let p = 2. The two non-isomorphic non-abelian groups of order 8 are: (i) Da,
the dihedral group of order 8 - the symmetries of the square; (ii) the quaternion group Qg of order
8, consisting of the elements {41, 4/, 4/, £k} with —1 a central element such that —1% = 1,
?=j2=k>=—1,ij=k,jk=1iki=j (and so ij = —ji and so on).

1.6. The coset representation. This is one of the most important examples of a group action.
Let G be a group and H a subgroup of G. Consider the set S of left cosets gH of H. Then, G acts
on S by left multiplication:

GxS5—S5, (a,gH) — agH.

This is a transitive action and this action, or the corresponding homomorphism G — ¥ s, are called
the coset representation. \We leave it as an exercise to show that to give a subgroup of G of
index n is the same thing as to give a pointed set (S, sp) (namely, a set S with an element 55 € S)
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of n elements, together with an action of G. In one direction - from subgroups to actions - this
is the coset representation. As a consequence, one easily concludes that if G is finitely generated,
it has finitely many subgroups of index n for a given n (and, in fact, a bound on the number of
subgroups of index n).

The kernel of this homomorphism f : G — YXgyy is {a € G agH = gH,Vg € G} ={a€ G :
ac gHg ' Vg e G}, thatis

Ker(f) = NgeggHg™*.

We conclude the following:

Proposition 1.6.1. Let G be a group and H a subgroup of index n of G. Then H contains a
subgroup K, such that K<G and [G : K] < nl.

Proof. Let K = Ker(f), where f : G — ¥4y, is the coset representation. Then K C H and K,
being a kernel of a homomorphism, is a normal subgroup. Further,

G/K — Z{gH} =S,
Since the order of S, is n!, we have [G : K] < n! (in fact [G : K]|n!). O
Using these techniques, one can draw some beautiful consequences (left as exercises).

Proposition 1.6.2. Let G be a finite group, p the smallest prime dividing the order of G (it is allowed
that p?|§iG). Let H be a subgroup of G of index p, then H is normal.

The case p = 2 of this proposition is worth special attention: a subgroup of index 2 is always
normal.

Proposition 1.6.3. Let G be a finite simple group. If G has a subgroup of index n > 1 then §G < n!.

For example, As is a simple group of order 60. It therefore doesn’'t have subgroups of index 2,3
or 4. Is it easy to prove directly?

1.7. The Sylow theorems. \We shall prove the Sylow theorems by making use of various group
actions.

Theorem 1.7.1. (Sylow) Let p be a prime and G a finite group of order p"m, where p + m and
r>0.

(1) Every maximal p-subgroup of G has order p" (such a subgroup is called a p-Sylow subgroup )
and such a subgroup exists.

(2) All Sylow p-subgroups are conjugate to each other.

(3) The number n, of Sylow p-subgroups satisfies: (i) np|m; (ii) n, =1 (mod p).

Remark 1.7.2. To say that a subgroup P is conjugate to a subgroup Q means that thereisa g€ G
such that gPg~! = Q. Recall that the map x — gxg~! is an automorphism of G. This implies
that P and Q are isomorphic as groups.

Another consequence is that to say there is a unique p-Sylow subgroup is the same as saying that
a p-Sylow is normal. This is often used this way: given a finite group G the first check in ascertaining
whether it is simple or not is to check whether the p-Sylow subgroup is unique for some p dividing
the order of G. Often one engages in combinatorics of counting how many p-Sylow subgroups can
be, trying to conclude there can be only one for a given p, and hence getting a normal subgroup
and concluding the G is not simple. The converse is not true; G is not simple does not imply that
one of the p-Sylow subgroups is normal. Take for example S4. It has 4 3-Sylow subgroups and 3

2-Sylow subgroups.
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Note that a consequence of Sylow's theorem is that if p|§G then G has an element of order p.
Indeed, pick any element different from the identity in some p-Sylow subgroup of G and, if needed,
raise it to some power so that it’s order becomes exactly p. This holds whether G is abelian or not.
The proof of Sylow's theorems starts by establishing this conclusion for abelian groups.

Lemma 1.7.3. Let A be a finite abelian group, let p be a prime dividing the order of A. Then A
has an element of order p.

Proof. We prove the result by induction on |A|. Let N be a maximal proper subgroup of A. If p
divides the order of N we are done by induction. Otherwise, let x € N and let B =< x >. By
maximality the subgroup BN is equal to A. On the other hand |BN| = |B]| - |N|/|B N N|. Thus, p
divides the order of B. That is the order of x is pa for some a and so the order of x? is precisely p. O

Proposition 1.7.4. There is a p-subgroup of G of order p’.

Proof. We prove the result by induction on the order of G. Assume first that p divides the order of
the centre Z(G). Let x be an element of Z(G) of order p and let N =< x >, a normal subgroup.
The order of G/N is p"~*m and by induction it has a p-subgroup H’ of order p'~L. Let H be the
preimage of H'. It is a subgroup of G such that H/N = H’ and thus H has order |H'| - [N| = p".

Consider now the case where p does not divide the order of Z(G). Consider which summands
are divisible by p in the class equation

Gl =1ZG)+ >

reps.x¢€Z(G)

Gl
[Ca()|

We see that for some x ¢ Z(G) we have that p does not divide % Thus, p" divides Cg(x).
The subgroup Cg(x) is a proper subgroup of G because x ¢ Z(G). Thus, by induction, Cg(x), and

hence G, has a p-subgroup of order p”. O

Lemma 1.7.5. Let P be a maximal p-subgroup and Q any p-subgroup then
QNP =QNNs(P).

Proof. Since P C Ng(P) also QNP C QN Ng(P). Let H=Q N Ng(P). Then, since P<iNg(P)
we have that HP is a subgroup of Ng(P). Its order is |H| - |P|/|H N P| and so a power of p. Since
P is a maximal p-subgroup we must have HP = P and thus H C P. O

Proof. (Of Theorem) Let P be a Sylow subgroup of G. Such exists by Proposition 1.7.4. Let

be the set of conjugates of P = P;. That is, the subgroups gPg~! one gets by letting g vary over
G. Note that for a fixed g the map P — gPg~1, x — gxg~! is a group isomorphism. Thus, every
P is a Sylow p-subgroup. Our task is to show that every maximal p-subgroup is an element of S
and find out properties of a.

Let Q be any p-subgroup of G. The subgroup Q acts by conjugation on S. The size of Orb(FP;) is
|Q|/|Stabg(P)|. Now Stabg(P) = QN Ng(P) = QN P, by Lemma 1.7.5. Thus, the orbit consists
of one element if @ C P; and is a proper power of p otherwise.

Take first Q to be P;. Then, the orbit of P; has size 1. Since P is a maximal p-subgroup it is
not contained in any other p-subgroup, thus the size of every other orbit is a power of p. It follows,
using that S is a disjoint union of orbits, that a = 1+ tp for some t. Note also that a = |G|/|Ng(P)|
and thus divides |G]|.

We now show that all maximal p-subgroups are conjugate. Suppose, to the contrary, that Q is a
maximal p-subgroup which is not conjugate to P. Thus, for all /, Q # P, and so QN P, is a proper
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subgroup of Q. It follows then that S is a union of disjoint orbit all having size a proper power of
p. Thus, pla. This is a contradiction. O

1.7.1. Examples and applications.
Example 1.7.6. p-groups. Every finite p-group is of course the only p-Sylow subgroup (trivial case).

Example 1.7.7. Z/6Z. In every abelian group the p-Sylow subgroups are normal and unique. The
2-Sylow subgroup is < 3 > and the 3-Sylow subgroup is < 2 >.

Example 1.7.8. S3. Consider the symmetric group Ss. Its 2-Sylow subgroups are given by {1, (12)},
{1,(13)},{1,(23)}. Note that indeed 3|3 = 3!/2 and 3 = 1 (mod 2). It has a unique 3-Sylow
subgroup {1, (123),(132)}. This is expected since n3|2 = 3!/3 and n3 = 1 (mod 3) implies n3 = 1.

Example 1.7.9. S;. We want to find the 2-Sylow subgroups. Their number ny|3 = 24/8 and is
congruent to 1 modulo 2. It is thus either 1 or 3. Note that every element of S4 has order 1,2, 3, 4.
The number of elements of order 3 is 8 (the 3-cycles). Thus, we cannot have a unique subgroup of
order 8 (it will contain any element of order 2 or 4). We conclude that n, = 3. One such subgroup
is Dg C S4; the rest are conjugates of it.

Further, n3|24/3 and n3 =1 (mod 3). If n3 = 1 then that unique 3-Sylow would need to contain
all 8 element of order 3 but is itself of order 3. Thus, n3 = 4.

Remark 1.7.10. A group of order 24 is never simple, though it does not mean that one of the Sylow
subgroups is normal, as the example of S4 shows. However, consider the representation of a group
G of order 24 on the cosets of P, where P is its 2-Sylow subgroup. It gives us, as we have seen in
the past, a normal subgroup of G, contained in P, whose index divides 6 = [G : P]! and hence is
non-trivial.

Call this subgroup K. Then, we see that |K| = 4; it is preserved under conjugation hence is a
subgroup of all three 2-Sylow subgroups, say P, P’, P”. \We have the following picture

Sa4
1N
P.P
NS
|
{e}

Example 1.7.11. Groups of order pg. Let p < g be primes. Let G be a group of order pg. Then
nglp, ng = 1 (mod ). Since p < g we have ng = 1 and the g-Sylow subgroup is normal (in
particular, G is never simple). Also, np|q, n, =1 (mod p). Thus, either n, =1, or n, = g and the
last possibility can happen only for g =1 (mod p).

We conclude that if p /(g — 1) then both the p-Sylow P subgroup and the g-Sylow subgroup Q
are normal. Note that the order of PNQ divides both p and g andsoisequaltol. Letx e P,y € Q
then [x, y] = (xyx 1)y ! = x(yx~ty~1) € PNQ = {1}. Thus, PQ, which is equal to G, is abelian.

We shall later see that whenever p|(g — 1) there is a non-abelian group of order pqg (in fact,
unique up to isomorphism). The case of S5 falls under this.

P//

Example 1.7.12. Groups of order p?q. Let G be a group of order p?q, where p and g are distinct
primes. We prove that G is not simple:

If g < pthen n, =1 (mod p) and np|g < p, which implies that n, = 1 and the p-Sylow subgroup
is normal.
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Suppose that p < g, then ng = 1 (mod q) and ng|p?, which implies that ny = 1 or p2. |If
ng = 1 then the g-Sylow subgroup is normal. Assume that n; = p2. Each pair of the p? g-Sylow
subgroups intersect only at the identity (since g is prime). Hence they account for 1 + p2(q —-1)
elements. Suppose that there were 2 p-Sylow subgroups. They intersect at most at a subgroup
of order p. Thus, they contribute at least 2p®> — p new elements. All together we got at least
1+p?(q—1)+2p? —p=p?q+p>—p+1> p?q elements. That's a contradiction and so n, = 1;
the p-Sylow subgroup is normal.

Remark 1.7.13. A theorem of Burnside states that a group of order p?g® with a+ b > 1 is not
simple. We leave it as an exercise to show that groups of order pgr (p < g < r primes) are not
simple. Note that |As| = 60 = 22.3-.5 and As is simple. A theorem of Feit and Tompson says that
a finite simple group is either of prime order, or of even order.

END OF LECTURE 2 (September 10)

1.8. Semi-direct product. Given two groups B, N we can construct their direct product G = N x B.
Identifying B, N with their images {1} x B, N x {1} in G, we find that:

(1) G = NB;

(2) NNB={1};

(3) N<G, B<G.
Conversely, one can easily prove that if G is a group with subgroups B, N such that: (i) G = NB,
(i) N<G, B<G, (iii) NNB = {1}, then G = N x B. The definition of a semi-direct product relaxes
the conditions a little.
Definition 1.8.1. Let G be a group and let B, N be subgroups of G such that:

(1) G = NB;

(2) NnB ={1};

(3) N«G.
Then we say that G is a semi-direct product of N and B.

Let N be any group. Let Aut(N) be the set of automorphisms of the group N. It is a group in its
own right under composition of functions. Let B be another group and ¢ : B — Aut(N), b — ¢y
be a homomorphism (so ¢p,p, = ¢p, © ¢p,). Define a group

G=N >4¢ B
as follows: as a set G = N x B, but the group law is defined as
(n1, b1)(n2, b2) = (1 - @b, (n2), b1b2).
We check associativity:
[(n1, b1)(n2, b2)](n3, b3) = (1 - pp, (n2), b1ba)(n3, b3)
= (n1 - @b, (n2) - Py, (N3), brbab3)
= (N1 ¢p, (N2 - P, (n3)), brbabs)
= (n1, br)(n2 - @p,(n3), bob3)
= (n1, b1)[(n2, b2)(ns, b3)].
The identity is clearly (1y,1g). The inverse of (n, by) is (¢b2_1(n2’1), by1'). Thus G is a group.

The two bijections
N— G, n—(n1); B—G, b~ (1,b),
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are group homomorphisms. We identify N and B with their images in G. We claim that G is a
semi-direct product of N and B.

Indeed, clearly the first two properties of the definition hold. It remains to check that N is normal
and it's enough to verify that B C Ng(N). According to the calculation above:

(1,6)(n, 1)(1,b71) = (¢p(n), 1).

We now claim that every semi-direct product is obtained this way: Let G be a semi-direct product
of N and B. Let ¢, : N — N be the map n+ bnb~!. This is an automorphism of N and the map

¢ B — Aut(N)
is a group homomorphism. We claim that N x4 B = G. Indeed, define a map
(n, b) — nb.

It follows from the definition that the map is surjective. It is also bijective since nb = 1 implies
that n = b~1 € NN B hence n = 1. It remains to check that this is a group homomorphism, but
(n1 - @b, (M), brb2) = Ny, (M2)b1ba = n1bynaby biba = (n1by)(nabz).

Proposition 1.8.2. A semi-direct product N x4 B is the direct product N x B if and only if ¢ :
B — Aut(N) is the trivial homomorphism.

Proof. Indeed, that happens iff for all (n1, b1), (n2, ba) we have (nigp, (n2), bibz) = (n1n2, biby).
That is, iff for all by, no we have ¢p,(n2) = no, which implies ¢, = id for all by. That is, ¢ is the
trivial homomorphism. O

Example 1.8.3. The Dihedral group D, is a semi-direct product. Take N =< x >2 Z/nZ and
B=<y>=7/27. Then Do, =2 Z/nZ %y Z/27 with ¢ = —1.

1.8.1. Application to groups of order pqg. We have seen in § 1.7.11 that if p < g and p f(g — 1)
then every group of order pq is abelian. Assume therefore that p|(g — 1).

Proposition 1.8.4. /f p|(q—1) there is a unique non-abelian group, up to isomorphism, of order pq.

Proof. Let G be a non-abelian group of order pg. We have seen that in every such group G the
g-Sylow subgroup @ is normal. Let P be any p-Sylow subgroup. Then PN Q = {1} and G = QP.
Thus, G is a semi-direct product of Q and P.

It is thus enough to show that there is a non-abelian semi-direct product and that any two such
products are isomorphic. We may consider the case Q = Z/qZ, P = 7/ pZ.

Lemma 1.8.5. Aut(Q) = (Z/qZ)*. In fact, for any positive integer N, Aut(Z/NZ) = (Z/NZ)*,
the group of units of the ring Z/NZ.

Proof. Since Z/NZ is cyclic any group homomorphism f : Z/NZ — H to a group H is determined
by its value on a generator of Z/NZ, say 1. Conversely, if h € H is of order dividing N then there
is such a group homomorphism with f(1) = h. Now take H = Z/NZ. The image of f is the
cyclic subgroup < h > and thus f is surjective (equivalently, an isomorphism) iff h is a generator.
Thus, any element h € (Z/NZ)* determines an automorphism f, of Z/NZ by a — ah. Note
that f4(fg)(a) = fn(ag) = agh = frg(a) and so the association h <+ f, is a group isomorphism
(Z/NZ)* = Aut(Z/NZ). O

Since (Z/qZ)* is a cyclic group of order g — 1 (because it is the group of non-zero elements of
a finite field), and since p|(q — 1), there is an element h of exact order p in (Z/qZ)*. Let ¢ be the
homomorphism determined by ¢1 = f and let G = Q x4 P. G is not abelian by Proposition 1.8.2
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We now show that G is unique up to isomorphism. If H is another such semi-direct product then
H =7/qZ xy 7/ pZ, where 11 is an element of order p (if it is the identity H is abelian) and thus
Y1 = @] = ¢, for some r prime to p.

Define a map

L/qZ Xy L] pZ — L/ qZ g Z/PZ, (n, b) — (n, rb).

This function is easily checked to be injective, hence bijective. We check it is a group homomorphism:
In G we have (ny, rby)(nz, rba) = (n1+ ¢rp, (n2), r(br + b)) = (N1 + Pp, (n2), r(b1 + b)) which
is the image of (n1 + Yp, (n2), b1 + b2), the product (n1, b1)(n2, ba) in H. O

Example 1.8.6. Is there a non-abelian group of order 165 containing Z /5577

In such a group G, the subgroup Z/557Z must be normal (its index is the minimal prime dividing
the order of G). Since there is always a 3-Sylow, we conclude that G is a semi-direct product
7,/55Z x 7./3Z. This is determined by a homomorphism Z/3Z — Aut(Z/55Z) = (Z/55Z)*. The
right hand side has order ¢(55) = 4 - 10. Thus, the homomorphism is trivial and G is a direct
product. It follows that G must be commutative.

1.8.2. Cases where two semi-direct products are isomorphic. It is useful to generalize the last ar-
gument. Consider a map ¢ : B — Aut(N) be a homomorphism and consider the group

G=NxyB.

Consider two automorphisms f : N — N,g: B — B. Let S be G considered as a set and consider
the self map

S—=S, (nb)— (f(n) g(b)).
We may define a new group law on S by
(1, b1) x (2, b2) = fo g [(FH(m), g~ (b1))(F (), g7 (b2))]
= fog[(FH(m) [o(g~ (b )I(F (1)), g~ (b1)g™ (b2))]
= (- F([¢(g~ (bL)I(F (1)), brb2)

Clearly, S with the new group law is isomorphic as groups to G. This suggests the following, define
an action of Aut(B) x Aut(N) on Hom(B, Aut(N)) via the embedding Aut(B) x Aut(N) — Aut(B) x
Aut(Aut(N)). Thatis, g € Aut(B) acts by ¢ — ¢pog and f € Aut(N) acts by ¢ — cro @, where cr
is conjugation by f. That is, (cr o ¢)(b) = f¢(b)f~L. Then, we see that every orbit for this action
gives isomorphic groups N x4 B. Note that the action of Aut(B) x Aut(N) on Hom(B, Aut(N))
factors through Aut(B) x Aut(N)/Z(Aut(N)).

Example 1.8.7. As we have seen, this action shows that there is a unique non-abelian group of order
pq, where p < g, p|(g—1), up to isomorphism. Indeed, first we showed that such a group is a semi-
direct product Z/qZ x 7/ pZ relative to 6 : Z/pZ — Aut(Z/qZ) = 7Z./qZ>*. The homomorphism 6
is determined by 6(1) which is an element of order p. Now, Aut(Z/pZ) = (Z/pZ)* and an element
bactson @by 8 — fob. AsBob(1) = 8(b) = 6(1), which is another element of order p of Z/qZ*.
In fact, any element of order p is of the form 8(1) for some b (the cyclic subgroup Z/qZ>* of order
(g—1) has a unique cyclic subgroup of order p; every element of order p of Z/qZ>* thus belongs to
it, and thus there are p — 1 elements of order p which are all powers of each other). This already
shows that all the non-abelian semi-direct products Z/qZ x Z/ pZ are isomorphic. The other action,
Aut(Z/qZ) acting on itself by conjugation is trivial because Aut(Z/qZ) is an abelian group.

Example 1.8.8. We consider non-abelian semi-direct products

7./p%7 % 7] pZ.



7./p?Z* is a cyclic group of order p(p — 1), a fact left as an exercise. It thus has precisely p — 1
elements of order p, comprising the non-trivial elements of the unique subgroup of p elements.
They are each powers of each other. Again, a nontrivial homomorphism 6 : Z/pZ — Aut(Z/p?Z) is
determined by 6(1), which is an element of exact order p. An argument as above shows that any two
non abelian semidirect products are isomorphic Z/p?Z » Z/pZ. The group we get has an element
of order p2. In fact, for p > 2, any non-abelian group of order p3 having an element of order p? is
isomorphic to this group. To prove that one only needs to show that such a group is a semi-direct
product Z/p2Z X Z/pZ. This is not that easy, and a guided proof appears in the exercises.

END OF LECTURE 3 (September 12)

1.8.3. Groups of small order. Using our results thus far, we can get a pretty good idea of the groups

of small order.
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order H abelian H non-abelian

2 7./27. -

3 7./37 -

4 7./27 x 7.]27 -
7./AZ

5 7./57. -

6 7./6Z S3 2 D3 2 7/37 x 7./ 27

7 777 -

8 (Z.]27)3 Q = {£1, i/, +j, £k}
7.)27, x 7|47 Dy =2 7./47 x 7./ 27
7./87

9 (Z./37.)? -
7./97

10 7./107Z Ds = 7./57 x 7./ 27,

11 7117 -

12 (Z/27)? x 7./3Z Ay =2 (Z)27)? % 7./3Z
7./A7 x 7./37 D¢ =2 7,/67 x 7.)27 = 7./37 x (Z./27)?

T = 7/37 % 7./AZ

13 7./137 -

14 7./147 D7 2 7/77 x 7] 27

15 7./157 -

In the following table we list for every n the number G(n) of subgroups of order n (this is taken
from J. Rotman/An introduction to the theory of groups):

n 1 23 456 7 8 9 10 11 12 13 14 15 16 17 18 19
Gnjf1 112121522 1 5 1 2 1 141 5 1
n 20 21 22 23 24 25 26 27 28 29 30 31 32
G(n){5 2 2 1 152 2 5 4 1 4 1 51

There are 2328 isomorphism classes of groups of order 128.3

3James, Newman and O'Brien, Journal of Algebra 129, Issue 1, 1990, 136 -158.
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1.9. The Cauchy-Frobenius formula and applications to combinatorics.

Theorem 1.9.1. (CFF) Let G be a finite group acting on a finite set non-empty S. Let N be the
number of orbits of G in S. Define

Fix(9) =|{s€ S:g*s=s}|

(the number of elements of S fixed by the action of g). Then

(3) N = |c1;y > Fix(g).

geG

Remark 1.9.2. If N = 1 we say that G acts transitively on S. It means exactly that: For every
s1, S € S there exists g € G such that g x s = s».

Proof. We define a function

1 g*xs=s

T:GxS—{0,1}, T(g,s)—{O grsts

Note that for a fixed g € G we have

Fix(9) = > T(g.5).

sesS

and that for a fixed s € S we have

|Stab(s)| = > T(g.s).

geG
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Let us fix representatives sy, .. ., sy for the N disjoint orbits of G in' S. Now,

> Fix(9) =) (Z T(9. s))

geG geG \seS

ses

_ G|
3 |Orb(s)]

1 s€O0rb(s;)

s G|
. 10mb(s))]

_ 1G] |
- Z ’Ol’b(S,)’ ' |Orb(s,)|

O

Corollary 1.9.3. Let G be a finite group acting transitively on a finite non-empty set S. Suppose
that |S| > 1. Then there exists g € G without fixed points.

Proof. By contradiction. Suppose that every g € G has a fixed point in S. That is, suppose that
for every g € G we have

Fix(g) = 1.
Since Fix(e) = |S| > 1 we have that
> Fix(g) > |G|.
geG
By Cauchy-Frobenius formula, the number of orbits N is greater than 1. Contradiction. U

1.9.1. Applications to combinatorics.

Example 1.9.4. How many roulettes with 11 wedges painted 2 blue, 2 green and 7 red are there
when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers

1,..., 11. The set S is a set of (121> <2) = 1980 elements (choose which 2 are blue, and then

choose out of the nine left which 2 are green).
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Let G be the group Z/11Z. It acts on S by rotations. The element 1 rotates a painted roulette
by angle 27/11 anti-clockwise. The element n rotates a painted roulette by angle 2n7/11 anti-
clockwise. We are interested in N — the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus Fix(0) = 1980. We claim thatif 1 </ < 10
then / doesn't fix any element of S. Indeed, suppose that 1 </ < 10 and / fixes s. Then so does
(i) = Z/11Z (the stabilizer is a subgroup). But any coloring fixed under rotation by 1 must be
single colored! Contradiction.

Applying CFF we get

1 & 1
N=— ; Fix(n) = - 1980 = 180.

Example 1.9.5. How many roulettes with 12 wedges painted 2 blue, 2 green and 8 red are there
when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers

1,..., 12. The set S is a set of <122> (120> = 2970 elements (choose which 2 are blue, and then

choose out of the ten left which 2 are green).

Let G be the group Z/12Z. It acts on S by rotations. The element 1 rotates a painted roulette
by angle 2m/12 anti-clockwise. The element n rotates a painted roulette by angle 2nm/12 anti-
clockwise. We are interested in N — the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus Fix(0) = 2970. We claim that if 1 </ <11
and / # 6 then / doesn't fix any element of S. Indeed, suppose that / fixes a painted roulette. Say
in that roulette the r-th sector is blue. Then so must be the i + r sector (because the r-th sector
goes under the action of / to the r+ i-th sector). Therefore so must be the r+ 2/ sector. But there
are only 2 blue sectors! The only possibility is that the r + 2/ sector is the same as the r sector,
namely, i = 6.

If / is equal to 6 and we enumerate the sectors of a roulette by the numbers 1, ..., 12 we may
write / as the permutation

(17)(28)(39)(4 10)(5 11)(6 12).

In any coloring fixed by i = 6 the colors of the pairs (1 7), (2 8),(3 9), (4 10), (5 11) and (6 12)
must be the same. We may choose one pair for blue, one pair for green. The rest would be red.
Thus there are 30 = 6 - 5 possible choices. We summarize:

element g | Fix(g)
0 2970
i #6 0
I=6 30

Applying CFF we get that there are
1
N = 5(2970 +30) =250
different roulettes.

Example 1.9.6. In this example S is the set of necklaces made of four rubies and four sapphires
laid on the table. We ask how many necklaces there are when we allow rotations and flipping-over.
We may talk of S as the colorings of a regular octagon, four vertices are green and four are red.
The group G = D16 acts on S and we are interested in the number of orbits for the group G.
The results are the following
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element g Fix(g)
e 70

X, x3,x°, x" 0

x2, x° 2

x4 6
yx'fori=0,..., 716

We explain how the entries in the table are obtained:

The identity always fixes the whole set S. The number of elements in S is <8> = 70 (chossing

4
which 4 would be green).

The element x cannot fix any coloring, because any coloring fixed by x must have all sections
of the same color (because x = (123456 7 8)). If x” fixes a coloring so so does (x)" = x(r*)
because the stabilizer is a subgroup. Apply that for r = 3,5, 7 to see that if x” fixes a coloring so
does x , which is impossible. 4

Now, x? written as a permutation is (1 3 5 7)(2 4 6 8). We see that if, say 1 is green so are
3,5,7 and the rest must be red. That is, all the freedom we have is to choose whether the cycle
(1 357) is green or red. This gives us two colorings fixed by x2. The same rational applies to
x®=(864 2)(7531).

Consider now x*. It may written in permutation notation as (1 5)(2 6)(3 7)(4 8). In any coloring
fixed by x* each of the cycles (1 5)(2 6)(3 7) and (4 8) must be single colored. There are thus

(g) = 6 possibilities (Choosing which 2 out of the four cycles would be green).

It remains to deal with the elements yx'. We recall that these are all reflections. There are two
kinds of reflections. One may be written using permutation notation as

(i1 12) (i3 1a) (5 Ig)
(with the other two vertices being fixed. For example y = (2 8)(3 7)(4 6) is of this form). The
other kind is of the form
(i1 12) (i3 1a) (15 16) (17 Ig).-
(For example yx = (1 8)(2 7)(3 6)(4 5) is of this sort). Whatever is the case, one uses similar
reasoning to deduce that there are 6 colorings preserved by a reflection.

One needs only apply CFF to get that there are
1
N:E(7O+2'2+6+8-6):8
distinct necklaces.

Example 1.9.7. Suppose we have n-colours and we want to count the number of distinct colour-
ings of a tetrahedron under rotational symmetries (we colour the faces). Number the vertices as
{1,2,3,4} to represent the symmetries as a subgroup of S4, that clearly contains all 3-cycles. It
must then be isomorphic to either A4, S4. But the symmetry (12) is not rotational (it doesn't
preserve orientation). Thus, the group of symmetries we are interested in is A4. It has the
identity elements, 8 elements that are 3-cycles, and 3 elements that form the Klein four group
{(12)(34), (13)(24), (14)(23)}.

The number of possible colourings is n*. Each colouring is preserved by the identity. A 3-cycle
leaves on face stable, and permutes cyclically the other 3. Thus, a 3-cycle preserves n? colourings (n

4

2
4.X(3 ) = X9 = x because X8 = e, etc.
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choices for the fixed face, n choices for the colour of the 3 faces permuted cyclically). A permutation
such as (12)(34) switches the faces in pairs and so again fixed n® colourings. Applying the CFF
formula, we find that there are

14 2

—(n"+11n
distinct colourings of the tetrahedron using n colours. It is a healthy instinct to check at this point
that this number is always an integer (it is!).

1.10. Simplicity of PSL,(IF;). You have seen in the first course on group theory that the alternating
groups A, are simple for n > 5. Here we provide another infinite family of finite simple groups. This
family is constructed from algebraic groups. The construction applies to other algebraic groups and
by the classification theorem of finite simple groups - one of the monumental achievements of the
20t century - this list, together with the cyclic groups of prime order, covers all finite simple groups
except for a very short list of exceptional groups, called the sporadic groups.

Let F be a finite field with g = p" elements, where p is a prime. The group SL,(F) is the
group of n x n matrices with entries in IF and determinant 1. The set of scalar matrices in SL,, is
a normal subgroup, consisting of the matrices {diag(u, &, ..., &) : u € F, u" = 1}, and has order
d =gcd(n, g —1). In fact, it is the centre of SL,(F). Denote it by K. We wish to prove that for
n>1,

PSL,(F) :=SL,(F)/K,

is a simple group, except in the two cases n =2 and g < 3.

We say that a group acts faithfully on a set S if the homomorphism G — ¥ s is injective. That is,
if g € G is not the identity element then there is an s € S such that gs # s. We say that G acts
doubly-transitively on S if for each a# bin S and ¢ # d in S there is an element g € G such that
ga=c,gb=d.

We say that G acts primitively on a set S if G acts transitively, |S| > 1, and there is no partition
of S preserved by the action of G besides the trivial partitions (S = S and S = [[,cs{s}). For
example, if the action is 2-transitive, it's primitive. If |S| > 2 there is no need to require that the
action of G is transitive in the definition of primitive action; it is so automatically.

Lemma 1.10.1. Let G act transitively on a set S. Then, G acts primitively if and only if the point
stabilizer of a point of S is a proper maximal subgroup of G.

Proof. We prove the direction needed in the sequel. Suppose that G acts primitively and let s € S
with stabilizer H. We may assume without loss of generality that the action is the action of G on
the cosets space G/H. Suppose that there is a proper subgroup J that strictly contains H. G acts
on the coset space G/J. Each coset of J is a disjoint union of cosets of H and that produces a
non-trivial partition of G/H, which is preserved by the action of G. O

Lemma 1.10.2 (lwasawa). Let G be a finite perfect group, i.e., G = G', acting faithfully and
primitively on a set S, such that the stabilizer H of some point in S has a normal abelian subgroup
A whose conjugates generate G, then G is simple.

Proof. Suppose not. Let K be a non-trivial normal subgroup of G. K doesn't fix every element of
S, because of the faithfulness assumption. Remark that the conditions of the lemma hold for every
point s € S if they hold for one point in S. Therefore, we may choose a point stabilizer H such that
K ¢ H. Say H is the stabilizer of sp.
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Since K is normal, HK is a subgroup of G and it strictly contains H. The action being primitive
implies that H is a maximal subgroup of G. Therefore,

HK =G.

It follows that every element of G is of the form hk with h € H and k € K. If a € A then
k—Ih~lahk = k~1a’k € AK. Therefore, all the conjugates of A lie in the subgroup AK and thus,
G = AK. But then

G/K = AK/K 2 AJAN K,

is a non-trivial abelian group, contradicting the assumption that G is perfect. [l

END of lecture 4 (September 17)

It remains to examine when does PSL,(IF) satisfy the assumptions of the Lemma. We first
explain the set on which PSL,(F) acts. This set S is the set of lines in the vector space F”; it is
called the projective space of dimension n — 1 over F and denoted IP’]’F”l (and in many other ways
too). The natural action of SL,(F) factors through PSL,(FF). Moreover, the action is 2-transitive,

hence primitive. The stabilizer of a line H is the matrices in PSL,(F) of the form (é /\Z) where

t - det(M) = 1. As our subgroup A we take the matrices of the form (é ‘//”—1
n—1

any vector of length n. It is an abelian subgroup which is normal in H, being the kernel of the
homomorphism to GL,_;(FF), <é *> — M.

>, where v,_1 is

We note that every element of H is a transvection: a transformation T such that T —/, has rank
1 and (T — /,)? = 0. We claim that every transvection of SL,(FF) is conjugate within SL,(F) to a
transvection in A. Indeed, the minimal polynomial of a transvection is (x—1)2. The Jordan canonical
form together with the rank condition supply us with a basis uq, . . ., up for which (T —1,)(u;) =0,
except for (T —1,)(u2) = u1. This being true for every transvection proves that they are all conjugate
in GL,(IF). Thus, given two transvections S, T there is matrix M such that MSM~! = T, where we

11 0 ... 0
suppose T is represented by 1 0 ... 0]. To make M have determinant 1 we replace
/n—2

it by M x diag(d, 1, ..., 1) at the cost of arriving at

11 0 ... 0 1 d 0 ... 0
diag(d, 1, ..., 1) 1 0 ... 0]dag(d7t1,..., 1) = 1 0 ... 0
/n72 /nf2

Lemma 1.10.3. The group SL,(IF) is generated by transvections.

Proof. We leave the proof as an exercise. |t amounts to the statement that every matrix of de-
terminant 1 can be reduced to the identity matrix using column and row operations of the form
Ci = Ci + A¢ and rj = r; + Arj, noting that we can use any transvection. O

At this point, we have our group, our set and the subgroup A. The only thing missing is the
following.

Lemma 1.10.4. The group SL,(F), and hence PSL,(IF), is perfect, except for the case SLo(IF2)
and SLQ (Fg)
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Proof. Since the derived group is normal, it is enough to show that every transvection of the form

Lt 0 ... 0 is a commutator. One checks that
0 /n—l
1 —x 0 10 O 1 0 x
0o 1 0],1{0 1 -1 =({0 1 O
0 0 1 0 0 1 0 01
which, by the calculation above (taking M to be the permutation matrix of the transposition (23)
1 —x 0
and d = —1) is conjugate to [0 1 0. That shows that all transvections belong to the
0 0 1

commutator subgroup if n > 3.
For n = 2 we check that

626 -6

For g > 3 this is an arbitrary element of A. O
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2. The Jordan-Holder theorem and solvable groups

2.1. Composition series and composition factors. Let G be a group. A normal series for G is a
series of subgroups

G=Gy>Gi > > G,={1}.
A composition series for G is a series of subgroups

G:G01>61D"'I>Gn:{1},
such that G;_1/G; is a nontrivial simple group for all i =1, .. ., n. The composition factors are the
quotients {G,_1/G; : i =1,2,..., n}. The quotients are considered up to isomorphism, where the

order of the quotients doesn’'t matter, but we do take the quotients with multiplicity. For example,
the group D4 has a composition series

Da > (y) > (y*) > {1}.
The composition factors are {Z/27,7./27, 7./ 27} .
A group G is called solvable if it has a normal series in which all the composition factors are
abelian groups. If G is finite then G is solvable if and only if it has a composition series whose
composition factors are cyclic groups of prime order.

2.2. Jordan-Holder Theorem. The Jordan-Holder theorem clarifies greatly the yoga behind the
concept of composition series.

Theorem 2.2.1. Let G be a finite group. Any two composition series for G have the same compo-
sition factors (considered with multiplicity).

Note that a consequence of the theorem is that any two composition series have the same length,
since the length determines the number of composition factors.

The proof of the theorem is quite technical, unfortunately. It rests on the following lemma.®

Lemma 2.2.2. (Zassenhaus) Let A<A*, B<IB* be subgroups of a group G. Then
A(A* N B)<A(A* N BY), B(B*NA)<B(B* N A"),

and
A(A* N B¥) ~ B(B* N A*)

A(A*NB) ~ B(B*NA)"

Before the proof, recall some easy to prove facts: (i) Let S<G, T < G be subgroups of a group G.
Then ST is a subgroup of G (and ST =TS). (ii) If also T<G then ST<G.

Proof. Let D be the following set:

D= (A"nB)(An B").
We show that D is a normal subgroup of A* N B*, D = (AN B*)(A*N B) and
B(B*NA*) _ A*nB*
B(B*NA) D
The lemma then follows from the symmetry of the roles of A and B.
It is easy to check directly from the definitions that (A*NB)<A*NB* and, similarly, (ANB*)<A*N

B*. It follows that D<A* N B* and that D = (AN B*)(A* N B). The subtle point of the proof is
to construct a homomorphism

A*NB*

f:B(B*NA") = =5

50ur proof follows Rotman’s in An introduction to the theory of groups.
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Let x € B(B*N A*), say x = bc for b€ B,c € (B*N A*). Let
f(x)=cD

(which is an element of %.)

First, f is well defined. If x = byc;y then cic™! = by'b € (B*NA*)N B C D. As D<I(B* N A*)
and ¢; € (B*NA*) also ¢ 1c; € D, and so cD = ¢;D. Next, f is a homomorphism. Suppose that
x = bc,y = bic; and so xy = bcbic;. Note that chic™! € B (as B is normal in B* and ¢ € B*)
and so xy = bb'ccy for some b’ € B. It now follows that f(xy) = f(x)f(y).

It is clear from the definition that f is a surjective homomorphism. When is x = bc € Ker(f)?
This happens if and only if ¢ € D, that is x € B(A*N B)(AnN B*) = B(AN B*). This shows that
B(AN B*)<iB(A* N B*) and the desired isomorphism. O

END of lecture 5 (September 19)

Theorem 2.2.3. Let G be a group. Any two finite composition series for G are equivalent; namely,
have the same composition factors.

Proof. More generally, we prove that any two normal series for G have refinements that are equiv-
alent; namely, have the same composition factors (with the same multiplicities). This holds also
for infinite groups that may not have composition series, and so is useful in other situations. In the
case of composition series, since they cannot be refined in a non-trivial, as the quotients are simple
groups, we get that any two composition series for G (if they exist at all) are equivalent.
Thus, let

G=Gy> G > > Gp,={1},
and

GZH()DHlD"'DHm:{l}.
First, use the second series to refine the first. Define:

Gij = Gi+1(Gi N Hj).

For fixed /7, this is a descending series of sets, beginning at Gjop = G; and ending at G;; = Gj41.
Taking in the Zassenhaus lemma A = G4, A* = G;, B = Hj1, B* = H; gives us that G; ;11 =
A(A*B)<1Gjj = A(A* N B*) (and, in particular, that these are subgroups).

Similarly, now use the first series to refine the second by defining

H,'J' = HJ'_H(HJ' N G,‘).

As above, the series H; = Hygj D Hy; D -+ D Hpj = Hj4q Is a series of subgroups, each normal in the
former. Finally, applying the Zassenhaus lemma again to A = G;;1,A* = G;, B = Hj11, B* = H|,

we find that
Gj A(A* N B¥) ~ B(B* N A*) _ Hj

Gijy1  AA*NB)  B(B*NA)  Hiuj
This gives a precise matching of the factors. O

Note that every finite group G has a composition series. While the composition series itself is
not unique, the composition factors are. So, in a sense, the Jordan-Holder theorem is a unique
factorization theorem for groups. From this point of view, the simplest groups are the solvable
groups. These are the groups with the simplest factors - cyclic groups of prime order. We therefore
now focus our attention on solvable groups for a while. Their study is further motivated by Galois
theory and we shall return to this point later in §?7.
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2.3. Solvable groups. Recall that a group G is called solvable if there is a finite normal series for
G,
G=Gy>Gi > > G,={1},

with abelian quotients. Every abelian group is solvable. Any group of order pg, where p < g are
primes is solvable as the g-Sylow is always normal and the quotient is a group of order p, hence
cyclic. Similarly, we have seen that groups of order p2>q and pqgr, where p, g, r are distinct primes,
are solvable. A theorem of Burnside states that groups of order p?gP are solvable.

Of course, not every group is solvable. Any non-abelian simple group (such as A, for n > 5, and
PSL,(FFy) for n > 2 and (n, g) # (2,2) or (2,3)) is non solvable.

The class of solvable groups is closed under basic operations. More precisely.

Proposition 2.3.1. A subgroup of a solvable group is solvable. A homomorphic image of a solvable
group is solvable.

Proof. Let G be a solvable group with a finite normal series,
G=Gy> Gy > > G,={1},
with abelian quotients. Let H be a subgroup of G. One checks that
H=GoNnH>GINH> - --->G,NH={1}

is a normal series for H with abelian quotients.
Let f : G — K be a surjective homomorphism. One checks that

K =1(Go) > f(G1) > -+~ > (Gp) = {1}
is a normal series for K with abelian quotients. O

Proposition 2.3.2. Let
0—-Gy—>G—G,—0

be an exact sequence of groups. Then G is solvable if and only if both G1 and Gy are solvable.

This too is left as an exercise. Note that we had already shown one direction: if G is solvable so
are G; and Go.
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3. Free groups and free products

3.1. Categories: Definition of a category. A category C consists in two things: objects and
morphisms. Thus, a category C is a collection of objects Ob(C) and for any two objects X, Y of
C a set Mor(X,Y), called the morphisms from X to Y. If we need to specify the category in our
notation, we shall write Morc(X,Y'). Further, for any three objects X, Y, Z there is a composition
function

Mor(Y, Z) x Mor(X,Y) — Mor(X, Z), (9. f)—gof,

such that composition is associative: ho(go f) = (hog)of. In addition, for every object X there
is @ morphism 1x € Mor(X, X) such that go1x = g for all g € Mor(X,Y) and 1x o f = f for all
f € Mor(Y, X).

It should be stressed that there is no assumption that objects are sets, or that morphisms are
actually functions. The notation g o f is formal. Nonetheless, the notation is suggestive and
by-and-large categories behave as if their objects were sets and their morphisms functions.

3.1.1. Example: Sets. The category of sets Sets is the category whose objects are sets and whose
morphisms are functions.

3.1.2. Example: Gp. The category of groups Gp is the category whose objects are groups and for
any two groups G, H, the morphisms Mor(G, H) are the group homomorphisms f : G — H.

3.1.3. Example: AbGp. The category of abelian groups AbGp is the category whose objects are
abelian groups and for any two abelian groups G, H, the morphisms Mor(G, H) are the group ho-
momorphisms f : G — H.

In general a category D is called a subcategory of a category C if Ob(D) C Ob(C) and for
any X,Y objects of D, Morp(X,Y) C Morc(X,Y). If, in fact, for every X,Y objects of D,
Morp(X,Y) = Morc(X,Y), one calls D a full subcategory. For example, AbGp is a full subcategory
of Gp.

Here is an artificial example of a subcategory E of Gp that is not a full subcategory. The
objects of E are groups of order, say, 32 and the morphisms are defined as Mor(G, G) = {15} and
Mor(G, H) = 0 if G # H. (In the same vain, we could have taken as the objects of E the same
objects of Gp. )

3.1.4. Example: VSp,. Let k be a field and let VSp, be the category of k-vector spaces. The
morphisms are k-linear maps.

3.1.5. Example: 2°. Let S be a set and let 2° be the category whose objects are subsets of S.
Further, Mor(X,Y) = {Ixy} (a formal symbol) if X C Y and, whenever defined, Iyz o Ixy = Ixz.
Note that /xx serves as 1x in the definition of a category.

3.2. Categories: initial and final objects. An initial object in a category C is an object A such
that for every object X of C the set Mor(A, X) has a single element. A final object in a category
C is an object Z such that for every object X of C the set Mor(X, Z) has a single element.

Two objects X, Y in a category are called isomorphic if there are morphisms f € Mor(X,Y), g €
Mor(Y, X) such that fog =1y and go f = 1x. We denote this by X = Y. An initial object, if it
exists, is unique up to unique isomorphism. The same holds for a final object. To see that, let A
and A’ be initial objects of a category C. There is a unique morphism f € Mor(A, A), because A is
initial, and there is a unique morphism g € Mor(A’, A), because A’ is initial. Then gof € Mor(A, A).
But, since A is initial Mor(A, A) has a single element and so we must have go f = 14. Similarly,
fog = 1x. This shows that A and A’ are isomorphic. Further, since Mor(A, A’) has a single
element, this isomorphism is unique.
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Example 3.2.1. The category Sets has an initial object - the empty set (). Any set of one element
is a final object. The category Gp has an initial object - the group of one element. This element is
also a final object. One calls an object which is both initial and final a zero object. The same holds
for AbGp and VSp,. The category 2° has an initial object () and a final object S. The category
of fields doesn’t have initial and final objects. The category of fields of characteristic zero has an
initial object Q but doesn’t have a final object. The category of fields of characteristic p, p a prime,
has an initial object the field Z/pZ but doesn’t have a final object.

3.2.1. The opposite category. Let C be a category. Define the opposite category C°P as a category
with the same objects and with Morcer (X, Y) = Morc (Y, X). In the category C°P we define

go°pf:fog, gEMOI’Cop(Y,Z)nyMorCOP(XvY)

This is indeed a category and (C°P)°P = C. One can prove that if A is an initial (final) object of C
then A is a final (reps., initial) object for C°P.

Exercise 3.2.2. Let G be a group. We can define a group G°P as the same underlying set but with
X * y = yx, where x % y denotes the product in G°P. Prove that this is a group, which is, in fact,
isomorphic to G. At the same time, we can associate to G a category G. It has a single object,
say e and Mor(e, e) := G, where x o y = xy (the product in G). Show that there is a natural
identification (G)°P with G°P.

3.3. Free groups. Let X be a set. Consider the category with objects being a function f : X — G
from X into any group G. Morphisms in this category are commutative diagrams

XLGl

ig
f

X —— Go,

where g is a group homomorphism. A group G is called a free group on the set X if it is an initial
object in this category. Since initial objects are unique up to unique isomorphism - if they exist at
all - a free group is unique up to unique isomorphism (but be careful what morphisms we are talking
about!).

Let f : X — G be a free group. We also say that G has the universal property: given any function
fi : X — G; there is a unique group homomorphism g : G — Gy such that

9(f(x)) = fi(x), Vx € X.

One often uses the language of universal property, but, in fact, in all cases this amounts to saying
that some related object is an initial object in an appropriate category. We shall see plenty of
examples in the sequel.

Theorem 3.3.1. Given a set X there is a free group G on X, i.e. an initial object f : X — G.

Before the proof, we develop some terminology. A word w in the alphabet X is a finite string
W = WiWs ...w,, where each w; is equal to either x € X or x~! for x € X. Here x~! is a formal
symbol. So, for example, if X = {x} then words in X are x, xxx~1x, 0, etc. If X = {x, y} we have
as examples x, v, x tyyxy, x~ty~ly, and so on. We say that two words w, o are equivalent if one
can get from one word to the other performing the following basic operations:

Replace wy ... wixx *wiy1...wy and wy .. . wix xwiy1 ... wy by Wy ... wiwjy1 ... wy, and the
opposite of those operations (i.e., inserting xx~1 or x"1x at some point in the word).

We denote this equivalence relation by w ~ o. For example, for X = {x, y} we have

X ~ xyy_1 ~ xyxx_ly_1 ~ ny_lyxx_ly_l.
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A word is called reduced if it doesn't contain a string of the form xx~! or x~1x for some x € X.
One can show that every equivalence class contains a unique reduced word and that word is the
string of minimal length in the equivalence class. This is not needed for the proof of the present
theorem, and we shall come back to this point after proving the Theorem.

Proof. (Theorem 3.3.1) The elements of the group G are equivalence classes
[w] = {o]o ~ w}
of words in the alphabet X. Multiplication is defined using representatives:
[o][T] = o7

(the two words are simply written one after the other). It is easy to see that this is well-defined
on equivalence classes: the operations performed on o to arrive at an equivalent word ¢’ can be
performed on the initial part of o7 to arrive at o/, etc. The identity element is the empty word; we
also denote it 1, for convenience. The inverse of [w] where w = ws ...w, is the equivalence class
of wyl.. . wy?t (where we define (x~1)~1 = x for x € X). Finally, the associative law is clear.

We have constructed a group. The function f : X — G is just x — [x], where now x is considered
as a word of length 1 in G and we take its equivalence class [x]. Given a function > : X — G, we
define a function

g9:G— Gy, 9([w]) = fo(w1) - F2(wn),
where w = w1 - -w,, w = xT* where x € X and by f(x~1) we mean (f(x))~! which is a well
defined element of Go. We leave the verification that g is well-defined as an exercise. It is clear
that this is the only possibility and that g is a group homomorphism. [l

END of lecture 6 (September 24)
Theorem 3.3.2. Any word is equivalent to a unique reduced word.

Proof. We need to show that two reduced words that are equivalent are in fact equal. Let w and 7
be equivalent reduced words. Then, there is a sequence

Ww=09g~01~ " ~0p=T,

where at each step we either insert, or delete, one couple of the form xx~1 or x 1x, x € X. Let us

look at the lengths of the words. The length function, evaluated along the chain, receives a relative
minimum at w and 7. Suppose it receives another relative minimum first at o, (so the length of
or—1 is bigger than that of o, and the length of o, is smaller than that of o,41. We can take o,
and reduce it be erasing repeatedly pairs of the form xx~1, or x~1x, until we cannot do that any
more. We get a chain of equivalences o, = ag ~ a1 ~ as, where as is a reduced word. We now
modify our original chain to the following chain

W=0g~01~ " ~0p=0g~ " ""~0s_1~Y0Os~Y g1~ """ ~YOX)=0y~Y0Op41...0p=T.
A moment reflection shows that by this device, we can reduce the original claim to the following.
Let o and T be two reduced words that are equivalent as follows
W=0g~01~ "~0p=T

where the length increases at every step from og to o, and decreases from o, to 0, = 7. Then
o=T.

We view o and 7 as two reduced words obtained by cancellation only from the word o,. We
argue by induction on the length of o,.

If o, is reduced, there's nothing to prove because then necessarily 0 = a = n and we are
considering a tautology. Else, there is a pair of the form dd~! or d~1d in o,. We allow ourselves
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here (d=1)~! = d and then we may that there is a pair dd~! where d or d~! are in X. Let us
highlight that pair using a yellow marker and keep track of it. If in the two cancellations processes
(one leading to o, the other to T) the first step is to delete the highlighted pair, then using induction
for the word o, with the highlighted pair deleted, we may conclude that o = 7. If in the cancellation
process leading to o at some point the highlighted pair is deleted, then we may change the order of
the cancellations so that the highlighted pair is deleted first. Similarly concerning the reduction to
7. And so, in those cases we return to the previous case. Thus, we may assume that in either the
reduction to o, or the reduction to T, the highlighted pair is not deleted. Say, in the reduction to o.
How then can o be reduced? The only possibility is that at some point in the reduction process (not

necessarily the first point at which it occurs) we arrive at a word of the form -~d‘1~ .- or

d and then it is reduced to---é’l--- or------. But note that the end

result is the same as if we strike out the highlighted pair. So we reduce to the previous case. O

Note that as a consequence, if w € [w] is a word whose length is the minimum of the lengths of
all words in [w] then w is the unique reduced word in the equivalence class [w].

Corollary 3.3.3. Let f : X — G be a free group on X then f is an injective map.
Proof. We may assume that G is the group we have constructed. The map f : X — G is of course
just the map

f(x) =Ix]

(the equivalence class of the word x). If x # y are in X, the two words x and y are reduced and
different, so are not equivalent. O

3.4. Categories: universal objects. As we have already discussed above, a universal object in a
category is an object defined by the fact that it has a universal property and that determines it up
to a unique isomorphism. Having a universal property just means being an initial object in a related
category, depending on the situation. We discussed that for free groups. Let us give a few more
examples.

(1) Free abelian groups. Let X be a set. We consider the category of functions f : X — A,
where A is an abelian group and morphisms are diagrams

X e A

J/g
h

X —— Ao,

where g is a group homomorphism. Then f : X — A is a free abelian group on X if it is
an initial object for this category. We can prove directly that if we take for A the vectors

{(n)xex 1 Nx € Z, all but finitely many ny = 0}

then this is a free abelian group on X. For example, if X = {1,2,...,n} the group we
construct is just Z". The function f: X — Ais y — 6(y) = (6(¥)x)xex, Where
1 x=y
B -
S {O otherwise.

It is an exercise to check that this is a free abelian group on X.
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(2) Let G be a fixed group. Consider the category whose objects are homomorphisms f : G — A
from G to abelian groups A. The morphisms are commutative diagrams

GLAl

\Lg
f

G —— Ax.
There is an initial object in this category. It is the object
m:G— G/G,
where G’ is the commutator subgroup of G and 7 the canonical map. The quotient G/G’
is called the abelianization of G and denoted also G?°.

3.5. Free groups: further properties.

Lemma 3.5.1. Let X be a set and G a free group on X, f : X = G. Let A = G2 and consider
the composition f, : X =+ G — A, where G — A is the canonical map. Then f, : X — A is a free
abelian group.

Note this gives an alternative construction of a free abelian group.

Proof. We show f; : X — A is an initial object in the respective category. Let f, : X — As be a
function into an abelian group As>. Then, since f : X — G is universal for groups and As is a group,
there is a unique homomorphism g : G — A> making the diagram commutative:

J/g
h

X — As.

Since A, is abelian, we have unique factorization

x“sg

N

g Gab
f2 gab
X ——= Az

It remains to show that any homomorphism h: G2° — A, such that ho f, = £ is necessarily g%,
But this too follows from the universal property of G, because (hom) : G — Az is a homomorphism
such that (hom) o f = f, and so (hom) = g and that implies h = g°°. 0

Corollary 3.5.2. Let f : X = G and g : Y — H be free groups on X and Y, respectively. Then
G = H ifand only if | X| =|Y].

Proof. If |X| = |Y| then it is easy to see that G = H, for example from the explicit construction.
Conversely, suppose that G = H the also G2 = H3: say h: G2° — H?P is an isomorphism. Consider
the subgroups 2G2®, 2H2> . That is 2G?® = {g+ g : g € G?®}. Then h induces an isomorphism
2G3 = 2H3 and G /2GP = H3 /243 Using the specific model for a free abelian group we have
constructed above, we see that G2 /2G?P is isomorphic to a vector space over Z/27Z of dimension | X|
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(for example, {5(x) : x € X} form a basis). Similarly for H3°/2H3 Using that two vector spaces
over a field k are isomorphic if and only if they have the same dimension, conclude | X| =|Y|. O

3.5.1. Generators and relations. Let X be a set. Denote by F(X) "“the” free group on X. Let
R = {ry} a collection of words in the alphabet X. We define the group G generated by X, subject
to the relations R as follows. Let N be the minimal normal subgroup of F(X) containing [r] for
all r € R. Define G as F(X)/R. Note that in G any word r becomes trivial. Note also that G is
a universal object for this property. Namely, it is an initial object for the category whose objects
are f : X — H, H a group, f a function such that f(r) = 14 for all r € R, where if r = w1 ... wp,
w; = x* for x € X, then f(r) := f(w1) - - flwy) (with F(x~1) := f(x)~1). We denote G also by

(XIR).
A presentation of a group H is an isomorphism
H = (X|R)

for some X and R. A group can have many presentations. There is always the tautological presen-
tation. Take X = {g : g € G}, so that we can distinguish between g as an element of the group G
and g an element of X, and take

R ={r=uwi...w,:in the group G we have that the product w; - --w, = 15}.

But usually there are more interesting, and certainly more economical presentations.

(1) Let F(X)' be the commutator subgroup of F(X) then (X : F(X)') is a presentation of the
free abelian group on X. But, for example, for X = {x, y}, we have the more economical
presentation

({xy}oxyx7ty ™).
Lets prove it. First, from the universal property, since in Z? all commutators are trivial,
there is a unique homomorpism

{x, vy} oxyx ty ™ = 72, x+—(1,0),y — (0,1).
Clearly this is a surjective homomorphism. Define now a homomorphism
Z2 = ({x,y} xyx7ty7h, f(m, ) =x"y".

We need to show that f is a homomorphism. Namely, that in the group ({x, y} : xyx~ty—1)
we have

Xaybxcyd _ Xa+cy

b+d
It's enough to show that xy = yx because then we may pass the powers of x through those
of y one at the time. But we have the equality yx = (xyx 'y~ 1)(yx) = xy. It is easy to
check that f is an inverse to the previous homomorphism.

(2) S, is generated by the permutations (12) and (12---n) and so it follows that it has a
presentation ({x, y} : R) for some set of relations R; for example, R could be the kernel of
the surjective homomorphism F({x,y}) — S, that takes x to (12) and y to (12---n). As
such, R is an infinite set. But, can we replace R be a finite list of relations. The answer is
yes. It follows from the following two theorems, that we will not prove in the course, one
reason being that the best proofs use the theory of covering spaces and fundamental groups

that we do not assume as prerequisites.
Theorem 3.5.3. (Nielsen-Schreier) A subgroup of a free group is free.

Theorem 3.5.4. Let F be a free group of rank r and let H be a subgroup of F of finite
index h. The H is free of rank h(r — 1) + 1.
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It follows that we can determine all the relations in S, as a consequence of certain n! + 1
relations. However, this is far from optimal. For example, Sz has the presentation

({x v} X% y2 xyxy)

The explanation for this particular saving is that we take the minimal normal subgroup
generated by the relations and not the minimal subgroup generated by the relations. In this
example, the minimal normal subgroup has rank 7 = 3! 4 1, while the minimal subgroup has
rank at most 3. We leave it as an exercise to prove that this is indeed a presentation for Sz
and to find a similar presentation for S4.

(3) After experimenting a little with examples, one easily concludes that it is in general difficult
to decide whether a finitely presented group is isomorphic to a given one. In fact, a theorem
(which is essentially “the word problem” for groups) says that there is no algorithm that given
a finite presentation (X|R), X and R finite, will decide in finite time (that is independent
of the presentation) whether this is a presentation of the finite group or not.

End of lecture 7 (October 1)

3.6. Free products. Let Gy, G be groups. The free product of G; and G,, denoted Gy * G5 is
the initial object in the following category: the objects are diagrams

where h is a homomorphism making the diagram commutative. By taking H = G, h; the identity
homomorphism and hy the trivial homomorphism. We see that G1 * G> contains Gq, and also Go».
Thus, in a sense, it is the minimal group containing Gy and G such that no further relationship
between the images is assumed. The problem is to show it exists.

Let (X;|R;) be a presentation of G, and, without loss of generality, X1 N X, = (). We claim that

<X1 UX2|R1 U R2>

is the free product G1*G>. The proof is straightforward and is left as an exercise. Note, for example,
the following examples:
(1) For disjoint sets X1, Xo we have F(X1) * F(X2) = F(X1 U X>).
(2) Z/27Z «Z/2Z is an infinite group (exercise; for example, find a suitable homomorphism into
a group of 2 x 2 matrices).

3.7. Category theory: functors and adjoint functors. We take this opportunity to discuss some
key concepts in category theory and illustrate them using some of the material developed above. The
first notion is a notion of a functor. There are two variants - the covariant and the contravariant
functors. Both arise when one wants to define a notion of a morphism between categories. Let
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C, D be categories. What should a morphism F : C — D be? In some sense it should transform the
category C into part of the category D. Thus, it is natural to require:

(1) For every object ¢ of C there is given an object F(c) of D.
Equally important is that morphisms should be transformed. F is called a covariant functor if
(2) For a morphism f € Morc(c, d) there is a morphism F(f) € Mor(F(c), F(d)). This respects
composition, F(fog)= F(f)o F(g), and F(1c) = 1¢().
F is called a contravariant functor if

(2) For a morphism f € Morc(c, d) there is a morphism F(f) € Mor(F(d), F(c)). This respects
composition, F(fog) = F(g)o F(g), and F(1c) = 1¢().

3.7.1. Examples of functors.

1. The forgetful functor. Let C be a category whose objects are, in particular, sets and whose
morphisms are, in particular, functions between sets. For example, C could be the category of
groups, the category of abelian groups, the category of topological spaces, the category of vector
spaces over a field k. The forgetful functor

¢ : C — Sets,

is the functor sending each object of C to its underlying set and the morphisms of C are viewed as
functions. This is a covariant functor.

A covariant functor F : C — D is called full if for every objects ¢, d of C and any morphism
g € Morp(F(c), F(d)), there is a morphism f € Morc(c,d) such that F(f) = g. Otherwise
said, Morc(c, d) — Morp(F(c), F(d)) is surjective. Typically ® is not full, because typically in
categories morphisms are functions with additional properties. For example, ® : Gps — Sets is not
full. Take ¢ = d to be the group Z/nZ. Then Morsets(Z/nZ,7Z/nZ) is a set of cardinality n”, while
Morgps(Z/nZ, Z/nZ) is a set of n elements. A similar definition is made for contravariant functors.

A covariant functor F : C — D is called faithful if Morc(c, d) — Morp(F(c), F(d)) is injective.
Usually ® : C — Sets is faithful, because very often morphisms are determined by the map they
induce on the underlying sets. This holds for groups, abelian groups, topological spaces and k-
vector spaces, for instance. A similar definition is made for contravariant functors. Finally, a
morphism is fully faithful if it is both full and faithful. That is, for any two objects in ¢, the map
Morc(c, d) — Morp(F(c), F(d)) is bijective (Morc(c, d) — Morp(F(d), F(c)), for contravariant
functors). An example of a fully faithful functor are subcategories. For example, the functor
AbGps — Gps is fully faithful. For another example, let k = Z/pZ, p prime. The functor from the
category of k-vector spaces to the category of abelian groups is fully-faithfull.

2. Free construction. Let X be a set and F(X) the free group on X. Any function f : X =Y
between sets induces a homomorhism F(f) : F(X) — F(Y). This is evident from our construction
of free groups. Another way to see that is that we have a diagram

X*’;F(X)

|
f
Yy —= F(Y)
The homomorphism F(X) — F(Y), denoted F(f), exists by the universal property of F(X). In
fact, it not hard to show that

X = F(X), f F(f),
gives a functor

F : Sets — Gps.
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This is the free construction functor. There are many variants of this functor, as the category of
groups is replaced by other categories (modules, for example) and one uses the same terminology.

3.7.2. Adjoint functors. A pair of covariant functors (F, G)
F:C—D, G:D—C,
are called an adjoint pair if one is given a bijection
oc.q - Morp(F(c), d) = Morc(c, G(d))

for every pair of objects ¢ of C and d of D, such that for any morphism f : ¢ — ¢; the diagram
Morp(F(c), d) —=> Morc(c, G(d))
()oF(f)T ()ofT
Morp(F(c1), d) —-% Morc(cy, G(d))
is commutative, and for every morphism f : d — d; the diagram
Morp (F(c), d) —= Morc(c, G(d))
J/fO() J{G(f)O()
Morp(F(c), di) ok Morc(c, G(d1))

is commutative as well. One says that F is left-adjoint to G and G is right-adjoint to F. A similar
definition is made for contravariant functors.
Here are some examples.

(1) Let @ : Gps — Sets be the forgetful functor and let F : Sets — Gps be the free construction
functor. Then the pair (F, ®) is an adjoint pair. Namely, there are natural bijections

MOFGPS(F(X), G) = Morsets(X, P(G)).

We leave it as an exercise to supply the details.
(2) In a similar vein one constructs a free construction functor

G : Sets — AbGps.

The pair (G, @) is an adjoint pair.

(3) Let Top be the category of topological spaces. Let ® : Top — Sets be the forgetful functor
and define two functors Gi, G» : Sets — Top. The first gives a set X the trivial topology
whose open sets are only () and X. The second gives a set X the discrete topology - every
subset of X is open. Then each of the G, forms an adjoint pair with ®, but one is left-adjoint
to @ and the other is right-adjoint. We leave it as an exercise to check that G; are functors
and to find which is the left-adjoint and which is the right-adjoint.



COURSE NOTES - MATH 570 31

4. Modules

4.1. Recall. Let R be aring. For us, rings are always associative, with 1, and a ring homomorphism
must take 1 to 1. A module R over a ring R is an abelian group M together with a function

RxM—M, (r,m)—rxm

(although often we just write rm) such that the following holds for all ri, » € R, m,m" € M:

(1) nx(roxm)=(rr)*xm.

(2) (n+nr)*xm=rsxm+nrnxm.

(3) ]-R *mMm=m

(4 nx(m+m)y=nrn«m+rxm.
Otherwise said, since M is an abelian group End(M) is a ring under addition and composition of
functions and to say that M is a module over R is the same thing as to give a homomorphism of
rings R — End(M). (Given an action define a homomorphism by r — f, where f.(m) = r x m,
etc. )

The notions of a submodule, a module homomorphism, quotient module, direct sum and product
of modules and isomorphism are entirely as expected. The analogues of the 4 isomorphism theorems
for groups hold for modules. An R-module M is called finitely generated if there is a finite set
my, ..., my, of elements of M such that M = Rmy +- - -+ Rmjy. Equivalently, if there is a surjective
R-module homomorphism R” — M.

For a module M we definite Tor(M) to be the torsion elements of M,

Tor(M)={meM:3re R, r #0,rm=0}.

If R is an integral domain then this is a submodule of M. It consists, in fact, of all finite sums
iimy + -+ i1my, where j € [, m; € M.

If I'is a left ideal of R and M is an R-module then /M denotes the submodule generated by the
elements {im:ie/l,me M}.

4.2. Localization of rings and modules. Let R be a commutative ring and S C R a subset. S is
called multiplicative if:

(1) 1e€S, and

(2) x,ye S=xye€S.

Example 4.2.1. Here are some key examples of multiplicative sets.

(1) Let f € R. Then S ={1,f,f2, 3, ...} is a multiplicative set.
(2) Let p<iR be a prime ideal. Then S = R — p is a multiplicative set.
(3) Suppose that R is an integral domain. Then S = R — {0} is a multiplicative set.

End of lecture 8 (October 3)

Our goal is to construct a ring R[S™!] with a ring homomorphism R — R[S™!] (that will satisfy a
universal property) and to construct a functor kMod — gis-1;Mod.
Let M be an R-module and S C R a multiplicative set. Consider formal fractions 2, where

S
m € M and s € S. Define a relation by
m m .
102 ifforsome s € S,s(somp — symp) = 0.
51 So

It is not hard to verify that this is an equivalence relation. We denote the equivalence classes by
M[S™1] and call it the localization of M by S. Abuse notation and write 2 also for the equivalence
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class of . Define addition by
my M2 Spmp+ Spmp
571 - 572 B 5152 '
One checks that this is well-defined and provides M[S~!] with a structure of an abelian group. The

zero element is the equivalence class of % In the particular case M = R we also define multiplication
by

my mz  mino

% s s
And one checks that this gives R[S™!] a commutative ring structure. The identity element is the
equivalence class of % Further M[S~!] become an R[S™!]-module where we define

n m nm r m
22220 LeR[sl, = emsTh.
S1 S 518 51 S
4.2.1. On localization of rings. There is a natural ring homomorphism
r

it R— R[STY], re o

One should be careful that this is not an injection in general. Indeed the kernel of j is the elements
rsuch that £ ~ 9. That is,

Ker(i)={re R:3se S,sr =0}.

And so, in general there could be a kernel, but if R is an integral domain and 0 € S then i is injective.
S

The ring R[S™!] has the property that all the elements 3 are invertible in it. In fact, this is the
universal property that characterizes it.

Proposition 4.2.2. [et K be a commutative ring and let f : R — K be a ring homomorphism
such that f(s) is invertible in K for all s € S. Then there exists a unique ring homomorphism
g : R[S™] — K such that the following diagram is commutative:

R—>R[S7Y].

\ \L
g
f
K
Proof. The definion of g is straight-forward. Define

9(<) = F(DF()

First, f(s) is invertible in K so the formula makes sense. Next, g is well-defined. Suppose that
o ;—1 so for some s, € S we have sy(s;r—sr;) = 0. Thus, f(sp)(f(s1)f(r)—f(s)f(r1)) = 0. Since

f(s5) is invertible, we conclude that f(s;)f(r) — f(s)f(r;) = 0 and so f(r)f(s)~t = f(r;)f(s1) .
The verification that g is a ring homomorphism and that go/ = f is automatic. [l

4.2.2. The field of fractions. Let R be an integral domain and S = R—{0}, which is a multiplicative
set. The localization R[S™!] is a commutative ring which is in fact a field. First, R < R[S™!] as
follows from our calculation of the kernel in general and using that R is an integral domain. So,
in particular, 0 # 1 in R[S™!]. Finally, if r/s € R[S™!] is a non-zero element then r € S and
(s/r)-(r/s) = 1/1 s the unit element of R[S™]. Thus, every non-zero element is invertible and so
R[S~ ] is a field. By the universal property, it is the minimal field into which R embeds. We denote
this localization by Frac(R), or Quot(R) and refer to it as the field of fractions of R.
For example, it is quite visible that Frac(Z) = Q and, for a field k, Frac(k[x]) = k(x).
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4.2.3. On localization of modules. The next point we want to make is that in fact M — M[S™?]
can be made into a functor

RMOd — R[571]M0d.
Given an R-module homomorphism f : M; — M, define a map

FIS™] : Mi[S™] = Mo[SY, g — f(;”).

The verification that this is a well-defined homomorphism of R[S~!]-modules is straightforward and
would not be done here. Let us also remark that the localization of the zero module of R is the
zero module of R[S™!] and both are denoted 0.

Theorem 4.2.3. The localization functor is exact. That is, if

OleM2g/V/3O

is an exact sequence of R-modules and S is a multiplicative set in R, then the sequence

F[S~1 s
0—= M54 2 w1 B sy —— 0

is an exact sequence of R[S~ ]-modules.

Proof. To simplify notation and write f for f[S71], etc. Let mi/s € M such that f(my/s) =
f(m1)/s = 0. Then, for some s’ € S we have s'f(m;) = 0. But, s'f(my) = f(s'm;) = 0. Since
is injective s'm; = 0 and so my/s = 0.

Since g(f(my/s)) = g(f(my))/s = 0/s =0, Ker(g) 2 Im(f). Let my/s € Ker(g). Then, for
some s’ € S we have s'"g(my) = 0. Thatis, g(s'my) = 0. Let m; € My be such that f(my) = s'mo.
Then, f(m1/ss’) = my/s and so Im(f) 2 Ker(g).

Finally, given ms/s € M3[S™1] choose mo € My such that g(mz) = ms. Then g(my/s) = ms/s
and so g : Ma[S™Y] — M3[S™1] is surjective. O

4.2 4. |deals under localization.

Theorem 4.2.4. Let S be a multiplicative set in R and let f: R — R[S™!] be the canonical homo-
morphism of rings.

(1) Let J<IR[S™Y] be an ideal and let J° := f=Y(I). Then J¢ is an ideal of R. If J is prime
then J¢ is prime.

(2) Let | be an ideal of R. Then I[S™1] can be identified with f(I)R[S™'] and is an ideal of
R[S™Y], denoted I¢. If I is prime and | NS = () then I€ is prime.

(3) Let J be an ideal of R[S™]. Then J°¢ = J.

(4) Let | be a prime ideal of R such that IN'S = () then /€ = |.

(5) The functions | — 1€, I<IR, J > J°, JAR[S™1], give a bijection between prime ideals of R
that are disjoint from S and prime ideals of R[S™!].

(6) Letyp be a prime ideal of R and S = R —p. The ring R[S™'], which is denoted in this case
Ry, Is a local ring with a maximal ideal pRy,.

Proof. To prove (1) we first recall that the pre-image of an ideal J under a ring homomorphism
f: R — T is always an ideal. Since R/f~1(J) < T/J and the latter is an integral domain, also
R/f~1(J) is an integral domain. That is, f~1(J) is a prime ideal of R.

The exact sequence of R modules, 0 — / — R, gives an exact sequence of R[S™!]-modules,

0—I[S7 — R[S7!].
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That is, /[S7!] can be viewed as a submodule of R[S™!], that is to say, an ideal. It is clear from
the definitions that /[S™1] is the ideal generated by f(/) in R[S™!]. Thus, (2) follows (we check
that /€ is prime below).

To show (3) we first note that from the definitions J°¢ C J. Let j/s € J. Then also j/1 =
s/1-j/s € Jand soj € J° and hence j/1 € J°¢. Thus, also 1/s-j/1 = j/s € J¢ and we have
proven J C J¢€.

We now prove (4). Let /<R be a prime ideal disjoint from S. Then /¢ = {i/e : i € I} and so
/€€ are the elements t € R such that t/1 =i/s for some i € I,s € S. Equivalently, the elements ¢t
such that for some s’ € S, s'st = s'i. We see that if t € / this is always satisfied (take s = s’ = 1).
Conversely, for such t, we have (s’s)t € . Since S is multiplicative s’s € S. Since [ is prime, either
s'selortel But, SN/ =0andsot e [. We also check that /¢ is prime. Suppose that
rn/si-ra/s» € I¢. Thus, for some i € [ and s € S, (nr2)/(s152) = i/s. So, for some s3 € S we
have equality s3srifr = s3s15/ € . Once more, using that / is prime and s35 € S,SN /1 =0, we
find that either r; or r» belong to /. Then, either ri/s; =1/s1- /1, or n/ss =1/s, - /1 belong
to /¢, and we are done.

Part (5) is a direct consequence of the results we have just proven. For (6), note that the set
of prime ideals /<R that are disjoint from S has a maximal ideal, i.e., p. Since | — /€ preserves
inclusion, we conclude that R, has a unique maximal ideal, which is pR),. O

End of lecture 9 (October 10)

4.3. Free modules and rank. Let R be a ring. We may as well assume R is not the zero ring
(equivalently, 0 # 1 in R) because every module over the zero ring is the zero module and there is
nothing of interest there. Let X be a set. A free module on X is an R-module M together with a
function f: X — M that has the following universal property. For every R-module N and a function
J: X = N there is a unique R-module homomorphism g: M — N such that the following diagram
commutes:

X =M

N

At this point, it should not be hard to prove that M exists, for example by defining M as the module
of all vectors

{(r)xex : rx € R, rx = 0 for all but finitely many x}.

(The operations are of course (ry)xex + (r)xex = (rx + r)xex and r- (re)xex = (rre)xex.) The
map f: X — M takes t € X to the vector e; all whose coordinates are zero, except for the t
coordinate which is 1. This module is also denoted Gxex R

If we let ®: RMod — Sets be the forgetful functor from the category of left R-modules to the
category of sets and we let F: Sets — rMod be the free-construction functor associating to a set
X the free module on X, then (F, ®) is an adjoint pair.

Lemma 4.3.1. A module M is isomorphic to a free module on a set X if and only if there are
elements {my : x € X} of M such that every element in M can be written as a unique linear
combination of the elements {my}. Namely, given m € M there are unique elements ry € R, all but
finitely many of which are zero, such that m = Y .y rxmx. We shall also say that M is free on
the elements {m, : x € X}.
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Proof. Indeed, if f: X — M is a free module then M = @&,cx R and the set {my : x € X} can be
taken to be the set {ex : x € X} appearing above. Conversely, given such a set of elements, we find
that the map
DxexR — M, (rx)xex = Z Ix - Mx,
xeX
is an isomorphism. O

Assume henceforth that R be a commutative ring.

Lemma 4.3.2. Let X,Y be sets and M, N free modules on X,Y. Then M = N (as an R-module)
if and only if | X| 2 |Y| (as sets).

Proof. We may assume M = @©yecxR and N = @,¢cyR. Clearly a bijection ¢: X — Y induces an
isomorphism M = N by (rc)xex = (¢y)yey, where ¢, = r,-1(,). Conversely, if M = N, choose a
maximal ideal p of R, which exists by Zorn's lemma. Let k = R/p, which is a field. Since M = N,
pM = pN and so M/pM = N/pN. But M/pM is a module over R/p; that is, a k-vector space and
it is easy to see that {ex : x € X} is a basis. Similarly {e, : y € Y} is a basis for N/pN. Thus,
(Xl =1Y]. O

In general, a subset {my, : & € A} of a module M is called linearly independent if a finite linear
combination > ramgq = 0 (1 € R, all but finitely many are zero) implies all r, = 0. It is a spanning
set or a generating set if every element of M is of the form > romq for some ro € R, all but
finitely many are zero. It is a basis if every element of M is of the form ) romq for unique ry € R,
all but finitely many are zero. A set is a basis if and only if it is spanning and linearly independent.
But, unlike in the situation of vector spaces (that is, modules over a field) a maximal independent
set is not necessarily a basis. For example, for R = Z = M, the set {2} is maximal independent
but is not a basis. We define the rank of a module M to be the maximal cardinality of a linearly
independent subset of M.

From this point on we assume R is an integral domain

Proposition 4.3.3. Let M be a free module on {my, : o« € A}. Then the rank of M is |A].
particular, the rank of R" is n.

Proof. Let F = Frac(R) be the quotient field. We have M = ©4caR C ©qecaF, a vector space of
dimension |A|. The set {ey : @ € A} clearly becomes a basis of ®qcaf. If {ng : B € B} is any other
linearly independent set in M then viewed in ©4caF it is still linearly independent. Indeed, given a

finite linear combination Y7, L1 = 0, by passing to a common denominator s = s;---s, and
1 1 si 1

rl = w weget > s’ = 0. Therefore, >.7 1 r/-mqy, = 0 and, since {my} is independent,

aII r’ =0 and also all r; = 0. Therefore IB| < |A|. O

The proof suggests that a stronger statement is true:

Proposition 4.3.4. Let R be an integral domain and let S = R — {0}. M is of rank o if and only
if M[S~1] has dimension a over F = Frac(R).

Proof. As above (but without needing to assume M is free), let {ng : 3 € B} be a linearly inde-
pendent set in M then {Z : 3 € B} viewed in M[S™] is still linearly independent. Indeed, give a

m,
finite linear combination Y7 7+ = 0, by passing to a common denominator s = s; --- s, and
I 51---si---snn r ma, —
r= we get 3oL 7

= 0. Therefore, >.7
all r, = O and also all r; = 0.

/ls'

! 1% mg = and, since {mq} is independent,
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Now, suppose that {ng : 3 € B} is a maximal linearly independent set in M. Let 2 € M[S™1].
The set {m}U{ng : B € B} is a subset of M that must be linearly dependent and a non-trivial linear
dependence involving m must exist, say, rm + 3./_; rima, = 0. Then also £ 4 37 G7% — g,
That is, {% : B € B} is a maximal linearly independent set in M[S™!] and so |B| is the dimension
of M[S™]. O

Corollary 4.3.5. Let R be an integral domain. Let
0> M — M, — M3 —0
be an exact sequence of R-modules. Then
rk(Ma) = rk(My) + rk(Ms).
Proof. Indeed, rk(M;) = dimg(M,;[S™]) and the sequence
0— M[STY = Mo[ST1] = Ms[S7Y ] =0

is an exact sequence of vector spaces. The theorem of the kernel and image in linear algebra says
exactly that
dime(Ma[S™Y]) = dimpe(My[S™Y]) + dimp(M3[S 1),

and we are done. ]
Since R is an integral domain, tor(M) is a submodule of M. One checks that tor(M/tor(M)) = 0.

Corollary 4.3.6. Let R be an integral domain. rk(M) = rk(M/tor(M)). In particular, a module has
rank Q if and only if it is torsion.

Proof. We have an exact sequence
0 — tor(M) - M — M/tor(M) — O.

Since rk(M) = rk(tor(M)) + rk(M/tor(M)), it is enough to show that rk(tor(M)) = 0. Given
m € tor(M) there is s € R, s # 0 such that sm = 0. This shows that the & of M[S™!] is equal to
0. Therefore, any element 2 of M[S™!] is equal to zero. That is, if M is a torsion module then
M[S~1] = 0 and so of dimension 0.

If a module M is torsion then rk(M) = rk(M/tor(M) = rk(0) = 0. If a module M has rank 0
then M[S™1] has dimension 0 and so is 0. If M[S™!] = 0 then for every m € M, T = 0 and so
there is some s # 0 such that sm = 0. This shows that M is torsion. U

Consider a multiplicative set S in a ring R and an R-module M. There is a map

M — M[S71], mr—>%.

This map is a homomorphism of R-modules (when we view M[S™!] as an R-module via i/ :
R — R[S™1!]). The map is injective if sm = 0 for s € S and m € M implies m = 0. For ex-
ample, if R is an integral domain, this is so when tor(M) = 0. The map is surjective if M is divisible
by s. Namely, if given s € S and m € M there is an m; € M such that sm; = m. Then we get the
following consequence.

Proposition 4.3.7. Let R be an integral domain and F = Frac(R). Let M C V be an R-module
contained in an F-vector space V' of finite dimension d. Then rk(R) < d, with equality if and only
if R contains a basis for V.

Proof. Indeed, we have an exact sequence 0 - M — V of R-modules that yields an exact sequence
0 — M[S™1] = V[S71], where S = R — {0}. Since V is divisible by S and is torsion-free, we have
V[S™!] = V and so M[S™!] C V, with equality if and only if M contains a basis for V. Since
rk(M) = dimg(M[S™1]), we are done. O
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Finally, the following property of free modules (that one proves directly from the definition) is left
as an exercise.

Proposition 4.3.8. Let 0 - M; — My — M3 — 0 be an exact sequence of R-modules. Then, if
My and M5 are free also M is free.

4.4. Local properties. As previously, let R be a commutative ring. A property of modules is called a
local property if an R-module M has that property if and only if the R,-modules M, := M[(R—p)™1]
have that property for all prime ideals p of R.

Proposition 4.4.1. “Being zero” is a local property.
Proof. Certainly, if M is the zero R-module, then M, is the zero Rp-module for any prime ideal p.
Conversely, suppose that M # 0. Let m € M be a non-zero element and consider

Ann(m) ={re R:rm=0}.

This is an ideal of R, which is proper as 1 ¢ Ann(m). Let p be a maximal ideal containing Ann(m).
It is a prime ideal too. Consider 2 € M. If 2 = 2 then for some s € R —p,sm = 0. But then

s € Ann(m) and that is a contradiction. O
The following would appear on the exercise list.

Proposition 4.4.2. “Being equal” is a local property. Suppose that A, B are two submodules of a
module M then A = B if and only if for all p prime A, = B,.

Proposition 4.4.3. A morphism f : M — N of R-modules is the zero morphism if and only if
fo - My — N, is the zero morphism for all prime ideals p.

End of lecture 10 (October 17)

4.5. Equivalence of categories.

4.5.1. Definition of a natural transformation. Let F, G : C — D be two covariant functors from the
category C to the category D (similar definitions are made for a pair of contravariant functors; this
is left to the reader). A natural transformation or a morphism of functors o from F to G is a
map associating to every object A of C a morphism a, : F(A) — G(A), such that for every arrow
f:A— B in C we have a commutative diagram:

A F(A) -5 G(A)
lf lF(f) lc‘(f)
B F(B) -2~ G(B).

If each ap is an isomorphism, we say that F and G are naturally equivalent, or isomorphic. Note
that in that case, we get isomorphisms

Mor(F(A), F(B)) = Mor(G(A),G(B)), h+ agohoay’.
We only give a few examples at this point. Given a set S there are two trivial topologies on it:

the topology gisc consisting of all subsets of S, and the topology %,y consisting of the empty set
and the total space alone. We get two functors F, G : Sets — TopSp:

F(S) = (S Thise),  F(f) =T,

and
G(S) = (S, Fv), G(f)=T.
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There is natural transformation o : F — G given by aa = 14. Note, though, that there is no
natural transformation G — F.

Here is a another example. Consider the abelianization functor " — /', now as a functor
from the category of groups Gps to itself (and not to the category AbGps of abelian groups). The
natural homomorphism o : [T — I/I"" defines a natural transformation from the identity functor
to the abelianization functor. There is a natural transformation in the other direction, but it is not
really interesting. It assigns the trivial homomorphism I7/I" — I (taking every element of [/ to
1r).

As a final example, consider the double-dual functor on the category of k-vector spaces V' +— V**,
The natural map V' — V**, mapping a vector v to the function sending a functional ¢ on V to ¢(v),
defines a natural transformation of the identity functor to the functor (-)**.

4.5.2. Definition of equivalence. Using the concept of a natural transformation between functors
we can define the notion of equivalence of categories. It is a relaxation of the natural impulse to
define two categories C and D as equivalent if there are functors F : C — D, G : D — C such that
F oG and G o F are the identity functors. Indeed, what we want to capture in the definition to
be given is that a category C "much smaller” than a category D may still capture “everything that
is going on in D" and so should be considered as equivalent to it. For example, the whole theory
of finite dimensional k-vector spaces can be captured through the category whose objects are just
{0}, k, k2, k3, ... with linear transformations between them, while the objects of the category of
finite dimensional k-vector spaces are so numerous that they can’t even be assigned a cardinality.

Let C and D be categories. We say that they are equivalent if there are functors F : C — D and
G : D — C such that the compositions satisfy GF = 1¢ (the identity functor of C) and FG = 1p
(the identity functor of D).

We have similarly the notion of antiequivalence. The definition is the same, only that both
F and G are assumed to be contravariant (note that the compositions are still covariant, so the
requirements GF = 1¢, FG = 1p make sense).

4.5.3. Some examples. Here are some important examples.

(1) The categories of subfields of a Galois extension and subgroups of the Galois group, cf.
§ 77 are antiequivalent.

(2) The functor x on the category of k-vector spaces yMod is not an antiequivalence; in general,
we only have a natural transformation 1 — *x which is not an equivalence. The problem
being that for infinite dimensional vector spaces the map V — V** is only an inclusion.

Let D be a category. Recall that a subcategory C of D is a category whose objects are
a subcollection of those of D and such that for every A, B € Ob C we have Morc(A, B) C
Morp(A, B). For example, the category of finite sets is a subcategory of the category of
sets. A subcategory is called full if in fact we have Morc(A, B) = Morp(A, B) for any
A, B € Ob C. Thus, the category of finite sets is a full subcategory of the category of sets.
The category of abelian groups is a full subcategory of the category of groups. The category
of finite dimensional vector spaces over k, fVSp, is a full subcategory of the category of
vector spaces over k, VSp, = (Mod. On the category fVSp, the duality functor * is an
anti-equivalence.

Consider now another category, say B. The objects of B are the vector spaces

KO, k, k% k3, ...,

one for each non-negative integer. The morphisms are just linear maps. There is an obvious
functor F : B — fVSp,, realizing B as a full subcategory. Define a functor G : fVSp, — B.
Given an object A in fVSp,, choose an isomorphism na : A — kdim(A). if A = k" then we
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may choose M4 to be the identity. Define now G(A) = k9™(4) and for f € Mor(A, B) the
map G(f) = anngl.

4.5.4. A criterion for equivalence. There is a general criteria for a functor F to be a natural equiv-
alence of categories.

Theorem 4.5.1. Let F : C — D be a covariant (respectively, contravariant) functor. There exists a
covariant (respectively, contravariant) functor G : D — C such that (F, G) is an (respectively, anti-)
equivalence of categories if and only if:

(1) F is full and faithful,
(2) F is essentially surjective, namely, for every object D of D there is an object C of C such
that F(C) is isomorphic to D.

Proof. We consider the covariant case. The argument in the contravariant case is the same.
Suppose that there exists such a functor G and let

v: GF =5 1¢c, 6: FG — 1p,
be isomorphisms. Consider Morc(A, B) and Morp(F(A), F(B)). It is easy to check that the

isomorphism v: GF — 1¢ induces an isomorphism
Morc(GF(A), GF(B)) — Morc(A, B),
for every A, B € Ob C.
Since the inverse of this map, namely the isomorphism
Morc(A, B) = Morc(GF(A),GF(B))

factors through the map Morc(A, B) — Morp(F(A), F(B)) induced by the functor F, this map too
is injective. That is, F is faithful. There is a little point to worry about in this argument. For the
argument to work, we need that the isomorphism Morc(GF(A), GF(B)) = Morc(A, B), or rather
its inverse Morc (A, B) — Morc(GF(A), GF(B)), agrees with the composition of the functor maps

Morc (A, B) 5 Morp(F(A), F(B)) % Morc(GF(A), GF(B)).
Well, the isomorphisms y4 : GF(A) — A, vg : GF(B) — B satisfy, by definition, GF(h) = 'yglh'yA,
for h € Morc(A, B), and that is exactly the compatibility we are looking for.
Likewise, the isomorphism,
FG : Morp(F(A), F(B)) — Morp(FGF(A), FG(B)),

factors through F : Morc(GF(A), GF(B)) — Morp(FGF(A), FGF(B)) and so this map F is sur-
jective too. Since GF = 1c we get
Morc(A, B) = Morc(GF(A), GF(B)) — Morp(FGF(A), FGF(B)) = Morp(F(A), F(B))

is surjective, too. This shows that F is full. Furthermore, let D be an object of D then C = G(D)
is an object of C and we have an isomorphism 6rg(p)y : FG(D) — D, and so the last condition is
also satisfied.

We now prove the converse. Let F be a functor that is fully-faithful and essentially surjective. To
define G first choose in an arbitrary fashion an isomorphism

0p : D — F(cp),
for every object D in D, where ¢p is a suitable object of C. Such exists by the “essentially surjective”

property. Define G on objects by
G(D) = Cp
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and on morphisms as follows. Given a morphism g € Morp(D, E) we get a morphism ¢’ = 659651 €
Mor(F(Cp), F(Cg)). There is a unique morphism f € Mor(Cp, Cg) = Mor(G(D), G(E)) such that
F(f)=¢. We let

G(g) =f.

We denote this f also by fy. To rephrase, for a morphism g € Morp(D, E), G(g) is the unique
morphism fy € Mor(Cp, Cg) such that the diagram

1
D — F(Cp)
lg lF(fg)
0
E—> F(Cg)

is a commutative diagram.
The following diagram shows that 4 : 1p — FG is an isomorphism.

To construct an isomorphism a : 1¢ = GF we proceed as follows. Given an object A of C we
have an isomorphism 6r(a) : F(A) = F(Crea)) = F(G(A)). Since F is fully faithful, there is an
isomorphism

as:A—=G(A), F(aa)=0Fa)-

We now find the diagram

ap
A F(A) GF(A) = Cr(a)
F G
g > F(9) b f/:(g)
B F(B) GF(B) = Cr(g)

ag
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To check that the outer square commutes (and hence that a : 1¢ — GF is an isomorphism), it is
enough to check that after apply F, because F is faithful. That is, we need to check that

F(aa)=0r(a)

F(A) F(Cra))
i/‘_(g) J/F(fF(g))
Flag)=5
F(B) (ap)=0F(B) F(CF(B)

End of lecture 11 (October 22)

4.6. Modules over a PID. Let R be a PID (principal ideal domain). That is, R is an integral
domain and every ideal of R is principal, meaning of the form Rr for some r € R. Two of the main
examples are Z - the ring of integers - and k[x] - the ring of polynomials in one variable over a field
k. The structure theorem for finitely generated modules over R has two spectacular applications:
the classification of finitely generated abelian groups and the Jordan canonical form (and a more
general structure theorem for linear transformations). We recall that theorem, but do not prove it
here. It was proven in the previous course MATH 370 and a proof can also be found in Dummit &
Foote, and in many algebra books. It rests of the following extremely useful theorem.

Theorem 4.6.1. (Elementary divisors theorem) Let M be a free module of rank n over a PID

R. Let N < M be a submodule. There exists a basis {x, ..., Xn} of M and non-zero elements
..., rm of R such that:

(1) nlral--|rm.

(2) The set {rnx1, X, ..., rmXm} is @ basis of N.
In particular, N is free. Furthermore, m and the ideals (r;), i=1,..., m, are uniquely determined.

One common application is the following. Let M, N be free modules of finite rank over a PID R
and let f : M — N be a homomorphism of R-modules. There are bases of M and N in which f is
represented by a diagonal matrix

rn 0 . 0
0 n
In
0
0 o 0
where r1|r| -« - |r, are non-zero elements of R.

Theorem 4.6.2. (Structure theorem for modules over a PID) Let R be a PID and M a finitely
generated R-module. There exists an integer n > 0 and non-zero, non-unit, elements ry, . . ., rm of
R such that r|ra| -+ |rm and

M=R"® P R/(r).
=1

As the proof of the existence part of the structure theorem is easy given the elementary divisors
theorem we give it here.
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Suppose that M is generated by t elements y1, ..., y+. The R-module homomorphism Rt — M,
(a1, ..., ar) Zle ajy; is surjective. Let K be the kernel. We may assume then that M = Rt /K.
We apply the elementary divisors theorem for K < Rt and find a basis xq, .. ., x; for Rt and elements
r| -« |rw, ri # 0, such that K has a basis r1xi, ..., FryXpe . 1t follows that

M=R" @ @™ R/(r).

If any of the r; are units, we may omit them and remain with r,|ra41|- - - |y, Nnon-zero and non-unit
elements. And,

M= RS g @™ R/(n).
It only remains to denote t — m’ by n and rename the r; to get the statement as it appears in the
theorem.

The uniqueness requires some argument. First note that n can be characterized as rk(M) and so
is an invariant of M itself and not of the presentation. The submodule ®,R/(r;) is characterized
as tor(M) and so is an invariant of M as well. This allows to reducing the proof of uniqueness to
proving that if M = @7, R/(r;) = ®7_;R/(r]) where the r{ satisfy the same properties as the r;,
then a = m and (r;) = (r/). This is a bit of combinatorics and we refer for details to Dummit and
Foote.

This theorem has beautiful applications to the theory of abelian groups and to the theory of vector
spaces. Before giving them, we develop a bit of language concerning categories.

4.7. Applications of the Structure theorem for modules over PID. There are two important
applications that we discuss in turn.

4.7.1. Finitely generated abelian groups. In this case the PID is the ring of integers Z. Every abelian
group can be viewed as a Z-module and vice-versa. (We could have said that the category of abelian
groups is equivalent to the category of Z-modules, but that would be an abuse of power.) Thus,
the structure theorem gives the following result:

Theorem 4.7.1. Every finitely generated abelian group M is isomorphic to an abelian group of the
form 7" ® @ Z/rZ where 1 < ri|---|rm, for a unique n, which is the rank of M, and unique
elements r;. The torsion subgroup of M is precisely the subgroup mapping to 7,7/ r,Z.

4.7.2. Vector spaces. Let k be a field. We claim that the category ||, Mod of k[x]-modules is
equivalent to the following category C. The objects of C are pairs (V, T) consisting of a k-vector
space V and a linear transformation 7 : V — V. A morphism f : (V4, T1) — (V4, T2) is a linear map
f:Vi —>VWsuchthat foT; =Tsof.

Indeed, given a k[x]-module V/, view V' as a k-vector space and define a transformation T : VareV
by the formula

T(v)=x-v,

where the multiplication is the module multiplication between the element x of the ring k[x] and the
element v of the k[x]-module V. A k[x]-module homomophism f : \j — V4 is naturally a k-linear
map f : V4 — V4 and since f(x-v) = x- f(v) it is a morphism (\4, T1) — (W5, T2).

Conversely, given a pair (V, T) define a k[x]-module structure by

g(x) - v =g(T)(v).
Since (g+ h)(T) =g(T)+ h(T),(gh)(T) = g(T)h(T), etc. this a module structure. A morphism

f. (M, T1) = (W, Ty) satisfies f o Ty = To o f and so it satisfies for any polynomial expression g in
Ty that f o g(T1) = g(T2) o f. Therefore, f becomes a morphism of k[x]-modules.
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In this case, the composition of the functors in either order are the identity maps, so the equiv-
alence of categories is straightforward. We shall often refer to the module associated to (V,T) as
the k[x]-module V, leaving T to be understood from the context.

It is now interesting to see what module theory says about vector spaces and vice-versa. Some very
simple observations are:

(1) T invariant subspaces of (V, T') correspond to sub k[x]-modules of V. And then, quotients
correspond to quotients.

(2) For a polynomial f(x) € k[x], f(T) is the zero linear map if and only if f(x) € Annyq(V).

3) (V\T)= (W, T1)® (Va, Tp) if and only if V=V, & V5 as k[x]-modules.

Proposition 4.7.2. Let VV be a k-vector space of finite dimension. Let T :V — V be a linear map.

Then the k[x]-module V' is a torsion module. Conversely, every finitely-generated torsion module
arises this way.

Proof. Write V' as a sum of k[x]-modules.
V= (k[x])" @ el k[x]/(fi(x)),

where we may choose the f; to be monic and fi(x)| - - - |fm(x), and that determines these polynomials
uniquely. The dimension of k[x] as a k-module is infinite, because 1, x, x2, x3, ... are independent
over k. Thus, our assumption forces n = 0 and so V is torsion.

Conversely, given a finitely generated torsion k[x]-module, we may write it as
i1 k[x]/ (i(x)).
Since the equivalence of categories commutes with direct sums, it is enough to whose that k[x]/(f;)

arises from a finite dimensional vector space, but this is clear; in fact, the dimension of this vector
space is precisely the degree of f;. O

Applying the Proposition and the observations above we find the following.

Theorem 4.7.3. Let (V,T) be a finite-dimensional k-vector space with a linear transformation T
and decompose it as a k[x]-module:
V =il klx]/(ci(x)),
where the ¢; are monic polynomials satisfying c1(x)|ca(x)| -+ - |cm(x). Let
(V. T) =2 (Vi. T)
be the corresponding decomposition of V' into T -invariant subspaces. Then,
(1) dim (Vi) = deg(ci(x)).
(2) The minimal polynomial of T; is equal to its characteristic polynomial and both are equal
to ci(x).
(3) Fix i and write ¢j(x) = x? 4+ ag_1x9™1 +--- + ag. There is a basis for V; in which T; is
given by the matrix

000 - —ap
100 - -a
010 - —o
000 -+ —ag1

(4) We have dimy (V) = Y7 deg(ci(x)).
(5) The minimal polynomial of T onV is cym(x), while its characteristic polynomial is given by
c(x)ca(x) -+ am(x).
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(6) T is diagonalizable over some extension field of k if and only if c,,(x) has no repeated roots,
that is, gcd(cm(x), c,(x)) = 1. It is diagonalizable over k if and only if cm(x) factors into
linear terms over k.

End of lecture 12 (October 24)

4.7.3. The Jordan canonical form. We assume here that the characteristic polynomial of T, and
hence the invariant factors ¢j(x), factors into linear terms over the field k. That would be the case
if k is algebraically closed, which is often the setting in which one develops the theory of Jordan
canonical form, but in fact this is not necessary. The weaker assumption we make suffices.

Let us focus on one invariant factor c(x) = ¢j(x). It factors as c(x) = []r_;(x — X\;)?. Here the
A; are some of the eigenvalues of T and the b; > 0 are multiplicities bounded by the multiplicities
in the characteristic polynomial of 7. We apply the Chinese Remainder theory and get

KX/ (e(x)) = @y kIXT/((x = X)),
And, so, it behooves us to analyze modules of the form k[x]/((x — X)?). A change of variable

X — y = x — X allows us to study k[y]/(y?), which corresponds to a vector space of dimension a
and a linear transformation with a matrix of the form

0 1 0

0 01 0

e 1

0 e 0
(The corresponding basis for the polynomials is x?~1, x?, ..., x,1.) Therefore, k[x]/((x — X\)?)
corresponds to a vector space of dimension a and a linear transformation with a matrix of the form

A1 e 0

o x1 -0

e 1

0 Y

We call such a matrix a Jordan block and denote it J(X, a). Putting it all together, we find the
following.

Theorem 4.7.4. (Jordan canonical form) Every matrix T whose characteristic polynomial factors
into linear terms over k is conjugate to a block diagonal matrix of the form

diag(J(A1, a1), ..., J(Xp. ab))

of Jordan blocks. The \; (that need not be distinct) are the eigenvalues of T. Each eigenvalue X
of T appears and ) (=} @i is the algebraic multiplicity of X in the characteristic polynomial of
T. Furthermore, the set of Jordan blocks is uniquely determined by T .

4.8. Morita equivalence.



MO ﬂ‘I'D-. ZﬁleQﬂQ\AQ

M (S(Jec:alma. d- Mdrl\'a‘s ‘|'L0.¢R‘d)
LA R bk a (Ing. Tha m&e&m‘a aMed  and Mh@z)M‘J
ave  Equvalut.
Poof: Tefur a fundr
Fighod — y ey Mad
FM)=M" , R an R—wodule. C(cdomn vickws)
F=() e LN phod

™ s ay b chek Fois a fedor. oy, Fis Aot ful
(FP=F@ = $=3). Furbler, F 1s addive. We et check
Fr Al

Av\j morphsm P M —N" s 4 Jhe ’@)rwx vcm)=?~q(m,..,w;)
Now, ¢ (Q(N,o,-voﬂ =4( Eu*(m,o,,.,ol) = Enl‘PCZM,o,._,a))=('~P|"(h,o,,,,o))o,,,p)
(Ey ave He amevtory Wakrics; €y has 4 ok the Y the and
else 6) We Me‘m Conclde  Hhat A i1, ¥, vomishes owm
(w\,o,-.,o). 1’3 s\omwdfh, "9;_ vomishea on ™€, V\‘)*i./ MéE M.
“Thaa, sivg Bineacy,

Y mad)= S(g ), . ., @, (n)

(whez (m;\--:‘(’f(a,-,,o,;v\.;,o,.--,a) )
'Furlh.r, ‘dw’v/tv\ 6ceSa Ik E(F) b_J{uz ferwLJ«o«\ Wxa)‘tﬁ%
asspcabed o 7 50 Mt

12-11-01 13:19:46 1/4 Morita equivalence (#11)




ey i) = L)
Than,

9 (E0) e, )= 8 (g, ) = (00, 9 )
oTod, “P(EQ)* My, mn)= E(c) ¥ M, m,.) , braowe W ik a
howmom. o MR —modiudis. T,
H4 (g - e Orgo) = ELO) gm0, )< (8 G0 ), @ )
“This mplies,

Y. =Yeuw 6 ¥Yi, ¥6eS,.

Tha, Y=(9,.,9)=F), ad Fru L.
Swa a fuudor & an equivalonce d adegures Y and unly i
s plpd, A, ond essadally Qufedve, wo kel oub
poe e oo prgacty. Nawady, hok oy MR -modils i
1Sowocphic =D ‘—gvr some @-module. N.

Lk I ke an Ma(R)-modul. e shafl wabe wse ¢ Jhe
’Ffwsjr. we clai\m that
M2 EME -OEM a Roweddey

—n\% 8 20gy '\'b VL(#(*O lLSlha 1V\= 'Eu-l'-""'Evm. _\-LL W\a‘)ﬁ bu;«b
MmM— (ﬁllm/--: Evmm) ! Z aQ; <— (Q\,- Y ay\)

@: EIAM=EU.M° (Ejualxb,m-)' judt "é).

Todel, €M =€, M so we gt OTol, EyM=E 5 M
and we )J' 2.

12-11-01 13:19:46 2/4 Morita equivalence (2/4)



—l'\w»{m,

M=EMOE, MO - --©E M , whee , I, Ta 10,0
o €4y M =G M \:a @+ Ey,a Cretvchon o M-»‘EMM).
“The s s E b < b
(Ths 1 ey b vesrdy  aller ha|-wa Yok By acks as e iduhly on
Eyl and STEATH N ads as Mo tdahdy on € M).

We condlude dhat

W= Eqhe- - $ELM , ®
where e map rhs—fLks. s (G @) —(Eya,,E, 8, .. By Q)=
=3 €1 %

We Gk N=EuM , 6n R-wmodde. Qs R-wmodetos
¥t U‘” M bu.’c Wwe \M_ul“b C—l«\a.ck J iS Ow 160w\'fk\s\~\ =
MR- o duty, Gud #is anouch b check 1} commuben wih
Mo wakias Epy. By Dy, we sed oy chal wih
E_Qk"to,-,,i,o,_.,a)) ok 0.¢ €, M.
‘IJ[ itk b s 'uro.'q i=f thes s (o, - ,a .0). e
ownd s sk b Eppa wade @. OTOR, “(o,...4,..,0) is
Sewk b E; 0 wde ® awd Eyp Epo r{gui#b. oy

So t chechs! .

Sugpose that R=D 1 a Quigion Oy, Theonly Wawmel Lf
|c!a4}L i< Soﬁ chl so D 14 JLb lA.NC)lu. ST\M?\.L O—\Moduaﬂ,.

12-11-01 13:19:47 3/4 Morita equivalence (3/4)



Mj D is WS’\W(L owd  So Lrry D-wmodule lsowfkic
bo D e some Gardvoltly of, e, ¥ @D, for sowstndax
%t T o caddralty «

We condudy that M (D) has o gl Sl wodule D"
aod W @)= 060 (00 W D-modilia) 15 Swicimyle.
Furtler,

\—\rwv\Mn(D)(D“, p") = Hu% (0,D) =D " (twndr {1— 0.
ole g4 1 GOW= (4= £ 500, hea P nogr)

‘\QQBMB Jl\fs wreducible TL‘)M 4 a ‘?s»\\-c frowe , s W hed
dowe, one fude Hah i Vp) s an iveed. v 4 G Hhan
Owy auks 4 (\p) 15 4 scalar

12-11-01 13:19:47 4/4 Morita equivalence (4/4)




COURSE NOTES - MATH 570

End of lecture 13 (October 29)

4.9. Injective and projective limits.

49
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4.9.1. More Examples: injective limits.
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4.9.2. More Examples: projective limits. For the discussion of infinite Galois groups we will need
to consider projective limits of groups. We consider here the general problem, leaving the more
thorough discussion of projective limits of finite groups to the chapter on Galois theory.

Proposition 4.9.1. Projective limits exist in the category of groups.

Proof. The proof is verbatim the proof for R-modules. Therefore, we will be brief. Given an index
set / and an inverse system ({G;}ics. {fij : Gj — G;}i<;) of groups, let

116 ={(9)ici g€ G},
il
be the direct product of the underlying sets. We make it into a group by
(gi)i - (hi)i = (gihi)i.
Consider now the subset
G = {(9)i : fij(g;) = 9i. Vi < Jj}.
One easily checks it is a subgroup of G, using that all f;; are group homomorphisms. The projections
pi : [l;je; Gi = Gj induce by restriction group homomorphisms
ai: G — G, ai((9))j) = 9i-

The homomorphisms a; satisfy a; o fi; = a;:

G
2\
O

fij

Gi G

Given a group D and homomorphisms 3; : D — G; such that 5, o f;; = (3; define a group homomor-
phism h: D — G by h = (B;);. Clearly h satisfies aj o h = 3; and, in fact, this property determines
h uniquely. O

Proposition 4.9.2. Projective limits exist in the category of topological spaces.
Proof. Let ({X;}, {fij : X; = Xi}i<j) be an inverse system of sets indexed by an index set /. Let
X ={(xi)ier : fij(x)) = xi, Vi < j}.

We consider X as a subspace of [[;.; X;. The proof is as for the case of groups. O

il
Proposition 4.9.3. Projective limits exist in the category of sets.
Proof. Let ({X;}, {fij : X; = X,}i<j) be an inverse system of topological spaces indexed by an index
set |. Let

X ={(x)ier : fij(x) = x;, Vi <J}.
We consider X as a subspace of H,E, X, where the latter is equipped with the product topology.
Then

X =lim X;.
icl
The proof is as in the case of groups, only that one needs to justify that the “obvious” maps are
continuous. ([

A group G, whose multiplication map and inverse map are denoted, respectively,
m:GxG— G, L:G— G,

is called a topological group if there is a topology given on G such that the functions m and ¢ are
continuous, where we provide G x G with the product topology.
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Proposition 4.9.4. Projective limits exist in the category of topological groups.

Proof. Let ({G;}, {fij : G; = Gi}i<;) be an inverse system of topological groups indexed by an index
set |. Let

G ={(91)ies : fij(9;) = 9i, VI < j}.
We consider G as a subgroup of [[,c; G;, where the latter is equipped with the product topology
and with coordinate-wise multiplication and that makes the product a topological group and makes
G into a sub topological group relative to the subspace topology (this requires verification that is
omitted here). Then

G =IlimG;.
i€l
The proof proceeds as in the case of groups and topological spaces combined, only that one needs
to justify that the “obvious” maps are continuous and are homomorphisms. O

A topological group is a homogenous space; namely, for every x, y € G there is an homeomor-
phism ¢ of the topological space underlying G such ¢(x) = y. Thus, G - as a topological space -
“looks the same from every point”. Indeed, given an element g € G denote by [g] the function

9] : G — G, [g](x)=gx.

It is easy to check that [g] is a continuous map with inverse given by [g~], hence a homeomorphism.
Given x, y as above take the homeomorphism [yx~1]. Let X be a homogenous topological space
and x € X a point. The topology of X is completely determined by the knowledge of the open sets
of X that contain x. Indeed, if U is an open set containing x, y € X and ¢(x) = y then (V) is an
open set containing y. If U is any open set, choose for every y € U a homeomorphism ¢y, of X
such that @, (x) = y then @5} (U) is an open set containing x.

In particular, the topology of a topological group is completely determined by the knowledge of
open sets containing the identity. Further, suppose that we have a collection € of open sets of
G such that each U € € contains the identity and every open set containing the identity contains
some U € . Then the collection & determines the topology of G. Indeed, given an open set V
and y € V choose an open set U, C (pl”}l,(V) such that U, € €. Then V = Uy ey 1, (Uy).

Proposition 4.9.5. Let ({G,},{f;j : G; = G;}i<j) be an inverse system of topological groups such
that each G; is a Hausdorff topological group. Then lim G; is a closed subgroup of H,e | Gi.

— el
Proof. We have defined G =Ilim G as
— el
G ={(g)rer € [ Gr : fi(g)) = 9i. Vi < j}.
rel
We may write then
G =nici{lgr) €[] Gr: fii(g) = i},
rel
and so it is enough to prove that for every i,/ the set {(g,) € [[,¢; Gr : fij(g;) = gi} is closed.
This set is equal to Hre{,‘j} Gr x {(9i,9/) € Gi x Gj : f;j(g9;) = 9i}. The complement of this set
is [T, Gr X (Gi x G\ {(gi,9j) € Gi x Gj : fj(g;) = g}, and so it is enough to prove that
{(9i,9j) € Gi x Gj : f;j(g;) = gi} is a closed subset of G; x G;.
Let A = {(x,x) : x € G;} be the diagonal of G; x G;. Let Id x f;; : G; x Gj = G; x G; be the
continuous map taking (g;, g;) to (g, fij(g;). Then,

{(9i.9) € Gi x Gj = fi(gj) = gi} = (Id x ;) 7H(D).
Since G; is Hausdorff A is closed in G; x G; and thus so is {(g/, g;) € G; x G; : f;;(9;) = gi}. O
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Corollary 4.9.6. Let ({G;},{fij : Gj = Gi}i<j) be an inverse system of finite groups, made into

topological groups by the discrete topology on each G;. Then G = L@ G; is a compact Hausdorff
iel

topological group. G has a local basis of open sets at the identity consisting of normal open subgroups

of finite index in G.

Proof. Since the product of Hausdorff spaces is Hausdorff and a subspace of a Hausdorff space is
Hausdoff, G is Hausdorff. By Tychonoff's theorem [] G; is a compact Hausdorff space. Since G is
a closed subset of a compact space, G is compact too. Finally, any open subset of [ G; containing
the identity contains an open set V of the form
V = H U,' X H G,',
i€ly il

for some finite subset /y of / and where the U; are open in G;. Note that 1, € U;. Since {1¢,} is
itself on open subset of G;, we see that this set contains the open set

U=][{16} <[] G
i€ly iZly
which is a normal subgroup of [[G; of finite index [[;c; [Gi|. As the open sets in G are of the

form V N G and this contains U N G, which is a normal subgroup of G of finite index, the proof is
complete. 0
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5. Infinite Galois theory

5.1. A quick review of Galois theorey of finite extensions.
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5.2. First definitions. Let K/IF be an algebraic extension. We that that K/F is Galois if it is
a separable and normal extension. That is, every k € K solves a separable non-zero polynomial
f(x) € F[x] and any irreducible polynomial f(x) € F[x] that has a root in K splits over K.

Lemma 5.2.1. K/F is Galois if and only if K = UL, the union being over all finite Galois extensions
L/F contained in K.

Proof. Suppose that K = UL, the union being over all finite Galois extensions L/F contained in K.
Let k € K. Then k € L for some L/F a finite Galois sub extension of K. Thus, k solves a separable
non-zero polynomial over F. That shows that K/F is separable. Given f(x) € F[x] an irreducible
polynomial that has a root k € K. Take again L/F finite Galois sub extension such that k € L.
Then f(x) splits over L, hence over K.

Conversely, let K/F be Galois. For each k € K choose a separable polynomial fx(x) that k
satisfies. Since a factor of a separable polynomial is separable and k is a root of one of the factors
of fx(x) we may as well assume that f(x) is irreducible. Let Ly be the splitting field of f(x) in K.
Then k € Ly, Li/F is a Galois extension and so K = Ugek Lk, which gives K = UL, the union being
over all finite Galois extensions L/IF contained in K. (]

Corollary 5.2.2. K/F is Galois if and only if K is the splitting field of a collection of separable
polynomials {fy(x) : a € 1} of F[x].

Proof. Suppose that k/IF is Galois. For every k € K choose an irreducible polynomial that k solves.
Then, as we saw, K is the union of the splitting fields of the polynomials {fx(x) : k € K}, which is
a collection of separable polynomials over F[x].

Conversely, suppose that K is the splitting field of a collection of separable polynomials {fy(x) :
a € I} of F[x]. For every finite subset J C [ let L, be the splitting field in K of the polynomials
{fi(x) : j € J}. Then L,/F is a finite Galois extension and K = U, c/ J finiteL s, hence K/F is
Galois. O

Let K/F be a Galois extension. Let
I={L:K2DLDTF,L/F finite Galois}.

Then [ is a poset where we say that L < L' if L C L’. Further, | is directed, because given L1, Lo
in [, the compositum L1L5 is a subfield of K which is also a finite Galois extension of F. Thus,
Lilo, el and L; < L1L>. We note that

K =Ilim L.

— Lel

If Lo>Lo O F are Galois, we know from Galois theory that we have surjective group homomorphism
res;, 1, . Gal(L1/F) — Gal(Ly/F), o 0olL,,
the kernel of which is Gal(L1/L>). Let
G = Im LelGaI(L/F),
the limit taken over all finite Galois extensions L /F relative to the homomorphisms res;, ,.
Theorem 5.2.3. G = Aut(K/F).
Proof. Recall that G was defined as a subgroup of [], ., Gal(L/F),
G={(o)L:Li2L1 =0, =0}

Given o € K, o induces an automorphism of every finite Galois extension L/F. Indeed, if L/F is
the splitting field of a polynomial f(x) € F[x] then o(L) is the splitting field of the polynomial o(f),
obtained from f by applying o to its coefficients. But, o(f) = f and so o(L) = L. Therefore,
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we have o, = 0|, € Gal(L/F) for all L/F finite Galois. Clearly o,|;, = 01,. This gives a group
homomorphism Aut(K/F) — G.

Conversely, let (o.), € G. Define o € Aut(K/F) as follows. Given k € K choose a finite Galois
extension L such that k € L. Let

o(k) = o (k).
This is well-defined. If k € L1 N Ly then

oL, (k) = o1nL,(k) = o, (k).

Finally, given k1, ko € K, there are Galois extensions L; such that k; € L;. Then kq, k» are both in
L = LiL,. We then calculate that O'(kl * k2) = O'L(kl * k2) = O'L(kl) * UL(k2) = O'(kl) * O'(kz),
where % stands for either 4+ or x. Thus, o is a homomorphism of fields. Finally, since K = U ¢/L,
0(K) = Upegio(L) = Upe/L = K, where we have used that for every L/F finite Galois (L) = L.
Thus, 0 € Aut(K/F). It is also easily checked that this is the inverse function to the homomorphism
constructed in the first part of the proof. Thus, we have constructed an isomorphism between the
groups. O

As usual, if K/F is a Galois extension, we shall denote
Gal(K/F) := Aut(K/TF).
A group G is called a profinite group if G = L@ ({Gi}ier {fij : G; — Gj}), where
i€l
(1) /is a directed index set;
(2) G; if a finite group;
(3) all given group homomorphisms f;; are surjective.

The group Gal(K/TF) is a profinite group. If G is a profinite group then, since each G; is compact
Hausdorff, G is a closed subset of the compact topological space [];c, G; and so G is compact
Hausdorff as well (Corollary 4.9.6). The following proposition shows that pro finite groups have a
topology which is very well controlled and that will be very useful in our discussion of infinite Galois
extensions.

Before that, we discuss some properties of general topological groups G. For such a group, and
an element g € G we have a function

[9]: G — G, [9](x) = gx.

This is a continuous function: let m : G — G be the multiplication map and U C G an open subset,
then {g} x [g]71(U) = m~Y(U)n {g} x G. Since {g} x G is homeomorphic to G, we get that
[9]71 (V) is open.

Further, [g] is a homeomorphism because [g71] is its inverse. We see that a topological group is a
homogenous space - for every x, y € G there is a homeomorphism ¢ : G — G such that p(x) =y
(indeed, take @ = [yx1]).

Proposition 5.2.4. Let G = L@ ({Gi}iei {fij : G — G;}) be a profinite group.
iel
(1) For every finite subset J C | define

G =|[[{1e} x[]G | n G

jed igJ

Then G is a normal subgroup of G of finite index. Further, G is open.
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(2) Let U be an open subset of G containing the identity element 1. Then U D G for some J.
Every open subset of G is a union of cosets of the subgroups G,. If U is a subgroup then
U has finite index.

(3) Every open subgroup of G has finite index and is closed.

(4) Every closed subgroup of G of finite index is open.

(5) The intersection of open subgroups is a closed subgroup. Every closed subgroup is the
intersection of open subgroups.

(6) G is totally disconnected. Namely, every set with more than 1 element is not connected.

Proof. We observe that HJ-EJ{]_(;J} X H,€J Gj is a normal subgroup of G. It is open, because, due
to the discrete topology on each G;, {1(51} is an open subset of G;. It is of finite index, equals in
fact to HJGJ |Gj|. Thus, G, is a normal open subgroup of G of finite index.

Let U be now an open subset of G such that 15 € U. Write U = V N G where V is open in

H,e, G;. We have 15 € V and so, since V is open, by the definition of the product topology, for

some finite subset J C | we have
1te[Jvix]]Gcv
jed iZJ

Necessarily, 1, € Vj and so

[T{6 < J[Gicv.
jed igJ
and it follows that G, C U.

Let U be any open subset of G. For every x € U choose a group Gy C [x !](U), where
J(x) C I'is a suitable finite subset. Then U = Uxcu[x](G(x)) = Uxeux - G (x is a union of cosets
of groups G.

Finally, if U is an open subgroup then U D G, for some J. Since G, has finite index in G, so does
U. That concludes the proof of (2).

For (3), we have just seen that U has finite index. Since G — U = UygyxU and each xU is open,
it follows that G — U is open and so U is closed. Similarly, if U is a closed subgroup of finite index,
the union UygyuxU is really a union of finitely many closed subsets and so is closed; it follows that
U is open. This proves (4).

Let U, be a collection of open subgroups. Then, each U, is closed and so the subgroup Ng Uy
is closed. Conversely, let H be a closed subgroup. Consider the sets HG,. Since G, is a normal
subgroup of G, HG, is a subgroup of G. Since HG; = UpecyhG, it follows that HG, is an open
subgroup. We claim that

H = NJc1, finite HG .

The inclusion C is clear. Suppose then that x € H. We shall show x is not in the right hand side.
Since x € H, 1¢ € Hx = H™!x. Since Hx is closed, G — Hx is open and so there is some finite set
J C I such that

16 € Gy, GJﬂHflx:(/).

It follows that x € HG . Indeed, if x = hg then h™'x = g € H 1xN G, which is contradiction.
Finally, to prove (6) let U be an open set and x # y elements of U. Let G, C x~*U. By adding
to J an index j for which that j-th component of x~1y is not 1g,, we may assume x~ly & G,. And
so xG is an open subset of U to which y does not belong. But xG is also open. It follows that U
is disconnected. O
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5.3. The main theorem of Galois theory.

Theorem 5.3.1. Let K/F be a Galois extension, G = Gal(K/F). There is an inclusion-reversing

bijection
KODOMDTF PN HCG
M any subfield H a closed subgroup |’

M= Hy :={c€G:oly=Id}

under which

and
H KM ={k e K:o(k) =k,Yo € H}.
Furthermore:

(1) M is a finite extension of F if and only if Hy, is an open subgroup.

(2) K/M is a Galois extension with Galois group Hyy.

(3) M/F is Galois if and only if Hy <G, in which case Gal(M/F) = G/H.

(4) Let My, My be subfields. Then MiN M, corresponds to (Hp,, Hm,)€ and My M, corresponds
to Hy, N Hp,, where here © stands for taking the closure.

Before the proof proper, let us make a remark about the topology of G. By the general theory a
basis at the identity for the topology of G is given as follows: pick L1, ..., L, finite Galois extensions
of F and let

of a local basis at the identity. It consists of all subgroups of the form
Gyry = {o € Aut(K/F) : ol.},
where L runs over all finite, Galois extensions of I contained in K.
Proof. We first check that the correspondence is well-defined. Clearly, K" is a subfield of K that
contains IF and Hjy, a subgroup of G.. We need to show that Hy, is a closed subgroup of G. Before

that, note that K/M is the splitting field of the same collection of separable polynomials of F[x]
that shows K/ is Galois. Thus, K/M is Galois and

Gal(K/M) = {o € Aut(K) : o|y = Id}
= {0 € Aut(K/F);o|m = Id}
= Huy.
Let 0 € G — Hy = G — Gal(K/M). We need to show that there is an open set U C G such that

o€ U and UN Gal(K/M) = 0. It is enough (and, essentially, necessary) to find some finite Galois
extension L /T such that

o-GyyNGal(K/M) = o - Gal(K/L) N Gal(K/M) = (.

Now, since o ¢ Gal(K/M), there is an element m € M such that o(m) # m. Let f(x) be the
minimal polynomial of m over F. It is a separable polynomial and its splitting field L over F is a
finite Galois extension, and m € L. Let 7 € Gal(K/L) then

or(m) =a(m) # m.
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That shows that o - Gal(K/L) N Gal(K/M) = (. Thus, we have proved the the correspondence is
well-defined. It is also clear from the definition that it is inclusion reversing. The next step is to
check that the maps

M Hy, H— KH,

are mutual inverses.

Clearly M C K. To show they are equal we will show that if k ¢ M then 3o € Aut(K/M)
such that o(k) # k. That implies k & K.

First, let L be the splitting field over M of the minimal polynomial of k over F. Then L 2 M,
L /M is Galois and by finite Galois theory, 3o € Gal(L/M) such that o(k) # k. If we can extend o
to an automorphism ¢ : K — K, we are done. This follows immediately from the following Lemma.

Lemma 5.3.2. Let L be a subfield of K and o : L — L a field automorphism, then Jo € Aut(K)
such that the following diagram commutes

K

L

> ={(L1,01):01: Ly — Ly an automorphism, L1 D L, 01|, = 0}.

G
—_—

K
40>J:

Proof. (of Lemma) Let

Note that X is not empty, because (L, o) € ¥, and is partially ordered under the relation
(Ll,O'l) < (LQ,O'Q) <— [1C Ly and O'2|L1 =01.
Every chain {(Ly, 0a)} has a supremum in X. Indeed, let Lo = UgLq. It is a field. One defines
00, Lo — Lo, by og(a) = o4(a) if @ € Ly. It is easy to check that op is a well defined field
homomorphism. We have 0o(Lg) = 00(UgLa) = Ua00(Le) = Ua0a(La) = Ugla = Lo.
By Zorn's lemma, ¥ has a maximal element (L1, 01). We claim that L; = K (and so the lemma
is proved). If not, let k € K — L1. Let Ly be the splitting field over L of the minimal polynomial

f of k over F. Then, by finite Galois theory (using that o7 acts trivially on the coefficients of f),
there is an automorphism o5 : Lo — L5 such that the diagram is commutative:

Ly 2> 1,

], ]

Ly —— [

Thus,
(L1,01) = (L2,02),
and that is a contradiction. (]
Having proven that M = K" let’s prove that
Hyn = H.
Again, one inclusion is clear: Hyxn 2 H. Let L /K" be a finite Galois extension. The restriction map
Gal(K/K") = Gal(L/K"), 0 — o],

is a well-defined homomorphism (surjective, by the Lemma). Also, for every such L, the restriction
map
H — Gal(L/KH), ool
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is a well-defined homomorphism. As L'™(F) = | n K" = KH, by finite Galois theory Im(H) =
Gal(L/K™). Thatis, H — Gal(L/K") is surjective homomorphism, too.

Suppose that there is an automorphism o € Gal(K/K™) and o ¢ H. Since H is closed, there
exists a finite Galois extension L1/ such that o - Gal(K/L1) N H = (. The extension L/K",
where L = L1K" is a finite Galois extension, and ¢ being an automorphism of K/K" induces an
automorphism o|; of L/KH. By what we had shown above, there is 7 € H such that

oL =Tl

But this implies that 0=17|; =Id, so 0717 € Gal(K/L1) and so T € oGal(K/L1). Contradiction.

At this point in the proof we have established that M — Hy, and H — K" are well-defined
mutual inverses. We know that K/M is Galois and Hy, = Gal(K/M).

Suppose that M/F is a finite extension. Let L be the normal closure of M in K. Then L/F is
a finite Galois extension and Hy, 2 Hp = Gy}, which is an open subgroup. It follows that Hy is
open too. Conversely, suppose that K is an open subgroup. Say H = Hyp;. Then Hy, 2 G{L} for
some L /F finite Galois extension. Then, L O M 2 F and so M/F is a finite extension.

Next, we note that the statement about H; N H> and (Hi, H2)<f are a formal consequence, as
Hi N Hs is the maximal subgroup contained in both in H; and H» and so K™ is the minimal
field containing both K™ and K2, etc.

We note that the Galois correspondence is equivariant in the following sense. G acts both on the
set of subfields by M +— o(M), which is another subfield of K containing F. It acts on subgroups
by H +— oHo ™1, which is another closed subgroup of G. The equivariance property is

Ha(l\/l) = O'HMO'_l.
It follows that the fixed points of the action must correspondence under the Galois correspondence.
On the level of subgroups, this is the collection of normal subgroups of G. On the level of subfields,
we prove the following statement.®

Lemma 5.3.3. Let M, K O M D F, be a subfield. Then M/F is Galois if and only if c(M) = M for
allo € G.

Proof. (Of lemma) Suppose that M/F is Galois; say, M is the splitting field of a collection of
separable polynomials {fy(x) € F[x]}. Let R be the set of roots of {fy(x)} in K. Then, M =TF(R).
If 0 € G then 0(R) = R and so o(M) = M.

Suppose, conversely, that o(M) = M for all 0 € G. Let m € M and let f,,(x) be the minimal
polynomial of m over F[x]. Let m’ be another root of f,,(x). We have the following diagram for
some field isomorphism ¢ : F(m) — F(m’), such that o(m) = m’.

F(m) — F(m')

I

F F

Extend o to an element (still denoted o) of G, using Lemma 5.3.2. As o(M) = M it follows that
o(m) =m', m" € M too. If follows that M is the splitting field of the collection of separable
polynomials {f,(x) : m € M} of F[x] and so M/F is Galois. O

6\We have in fact used this lemma above more than once of finite Galois extensions, since we allowed ourselves to
assume finite Galois theory. But, in fact, the proof here is self-contained and proves the case of finite Galois extensions
as well.
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Finally, suppose that M/ is Galois. There is a injective homomorphism
G/HM—>GaI(/\/l/IF), O"—>O"M.

Lemma 5.3.2 shows this is a surjective homomorphism. The proof of the theorem is complete.

O
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5.4. Zp. Thering of p-adic integers Z, can be defined in several ways. We first approach it as an
inverse limit, in concert with the construction of infinite Galois extensions. Thus, for us,

— i n
Zp = “ﬂ nZ/p Z,
relative to the transition maps
Z)p"7 —7/p"7Z, x (mod p")— x (mod p™), m < n.

Thus Z,, is a profinite group, compact and Hausdorf in particular. In fact, since the transition maps
are ring homomorphisms (continuous for the discrete topology, of course), Z, is a topological ring.
Namely, the multiplication map is continuous too. We have a hands-on description of Z, as

{(....x3,x0,x1) 1 X; €EZ/P'Z, xi41 =X (mod p'),i=1,273,...}.

In this notation, addition and multiplication are done component-wise. Recalling the basis for the
topology of a profinite group at the identity, we see that for Z, a basis for the topology at 0 are
the subgroups of finite index

In=A{(x1)i €Zp:x, =0 (mod p")}
={(..., Xp+1.0,...,0,0) : xip1 =X, (mod p')}.

Lemma 5.4.1. The map
Z — ZLp, arra=(...,aaa),

is an injective ring homomorphism. The image of Z is dense. Z, is an integral domain.

Proof. First, note that a is indeed in Z,. The definitions give immediately that this is a ring
homomorphism. If a is in the kernel then a = 0, which means that the n coordinate is zero for every
n, thatis, a=0 (mod p") for every n and so a = 0.

To show the image is dense, we need to show that given x = (..., x2, x1) € Zp and n, there is
a € Z such that a € x + /,. But that just meansthat a—x = (..., a—x3,a—Xx2,a — x1) € /5.
Therefore, we only need to choose some a € Z such that a = x, (mod p").

If x,y € Zp and xy = 0 and, say x # 0O, then for some n, x, # 0 mod p". For every N then
Xppn Z 0 mod p". Since Xpinyoin = 0 (mod p"tN) we get that y,,ny = 0 (mod p)N*1. Given
now any i, choose N > i — 1 to get y,ony = 0 (mod p') and so that y; = 0 (mod p'). It follows
that y = 0. ]

Proposition 5.4.2. The subgroups I, are principal ideals and
In=p"Zp.

We have
Zp/ln =7/p"Z.
Every closed subgroup of Z,, is equal to some |, and, in particular, open of finite index.

Proof. Suppose S is a dense set of a topological space X and U is a subset of X which is open and
close, then U is equal to the closure C of UNS. Indeed, C is contained in U because U is closed.
On the other hand, if there is an element x € U — C, then in the open subset U — C there is no
element of S, and that contradicts the fact that S is dense. Thus, U = C.

Apply that to /, which is open, hence closed, and to the set Z. The intersection ZN I, = p"Z,
clearly. Its closure is p"Zp: on the one hand, because multiplication by p” is continuous and Z, is
compact Hausdorff, p"Z, is closed. On the other hand, if C C p"Z, is closed and contains Z then
p~"C is well defined, closed and contains Z. Thus, p~"C = Z,.

We can also show more directly that /, is equal to p"Z,. On the one hand, it is clear from
the definition that /, is an ideal and that p” € [/, and so that /, 2 p"Z,. On the other hand,
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let x = (..., Xp+1,0,..., 0,0) € I,. For every m define an element y,, as follows. The element
Xpim € Z/p™T"Z is congruent to zero modulo p” and so, there is an element y,, € Z/p™""Z such
that p"ym = Xptm. Let

Ym = ¥m (mod p™).
We claim that y = (..., y2, 1) € Zp and p"y = x.

First, Ym+1 (mod p") = Jmy1 (mod p™) and y,, (mod p™) = ¥, (mod p™), so it’s enough to
show Jmi1 — ¥m =0 mod p™. Now, because p"Vmi1 = Xpimi1 = Xnom = P"Vm (mod p"tM), it
follows that p"(Vm+1 — ¥m) =0 mod p™*" and so that Vi1 — Jm =0 mod p™.

Secondly, the equation p"Vm = Xpem (mod p"t™) gives upon reduction modulo p™, p"ym = xm
(mod p™), so p"y = x.

We have a ring homomorphism

Zp — Z/P"Z, X — Xp.

The kernel is clearly /,. The map is surjective, because the composition Z — Z, — Z/p"Z is
surjective. Thus,
Zp/ln =7/p"Z.

Lemma 5.4.3. The units of Z,, consist of the elements x = (..., Xz, x1) such that x; # 0 (mod p).

Proof. Clearly, if xy =1 then x1y3 =1 (mod p) and so x; # 0 (mod p). Conversely, suppose that
x1 # 0 (mod p). Then, for every n, x, is a unit in Z/p"Z (the non-units are pZ/p"7Z) because
it is not zero modulo p. Thus, for every n there is a y, such that x,y, = 1 (mod p"). We need
only to check that y,11 =y, (mod p”). But, Xp+1Yn+1 = Xn¥n+1 = 1 (mod p”) and so ypir1 = Vn
(mod p") O

Let / be any closed subgroup of Z,. If x € [ then Zx C | and so Zpx C [, as | is closed. That
is, / is an ideal. Suppose / is not zero and let x = (..., x2, x1) € | be a non-zero element. Let n be
the maximal such that x, = 0 (mod p"). Then, as we saw, there is y € Z, such that x, = p"y.
Since xp11 Z 0 (mod p" + 1), ypr1 Z 0 (mod p), but y,r1 = y1 (mod p). Therefore y is a unit.
It follows that xy~ = p” € [ and so | D /,,. However, the only ideals of Zp/ln = Z/p"Z are the
images of /; for i =0,1,..., n and so | =/, for some n. O

Corollary 5.4.4. Z, is a principal ideal domain which is a local ring. It has, up to a unit, a unique
prime element, which is p.

Proof. Let | be any non-zero ideal. As the proof above shows, if x € | and n is the maximum so
that x, = 0 (mod p") then we may write x = p”y. Further, since x,41 Z 0 (mod p"™1) it follows
p1¥nt1 and so y1 # 0 (mod p). That is, y is a unit and hence | D (x) = (p") = I,. It follows
that | = I, for some m < n (because //I, is an ideal of Z/p"Z, as above). Thus, we have shown
that every ideal of Z,, is one of the ideal /,. Clearly I = (p) is maximal. For m > 1, I, is not prime
because Zp/lm = Z/p™Z is not an integral domain. If x # 0 then (x) = [, for some m and is not a
prime element if m > 1. So it follows that there is a unique, up to a unit irreducible element, which
we can choose to be p. O

Here is another approach to understanding Z,. Define a function
v:Zp,— 17, v(x) =max{n:x,=0 (mod p")}.

(We formally put v(0) = 4+o00.) This function is an example of a discrete valuation which means
that it satisfies:

(1) v(xy) = v(x)v(y);

(2) v(x+y) = min{v(x), v(y)}.
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Note that an equivalent way to define v is to use unique factorization and define
vix)=n if x=puucZy.
At any rate, with this information it is easy to check that v has the said properties. Define now
d(x,y) = p 0.

One can then check that d is a metric. The topology d induces on Z, agrees with the given
topology. Indeed, the ideals /, are none other then the closed balls of radius p~", which are the
open balls of radius p~("=1), around the origin. Zp is thus a compact metric space, containing Z
as a dense subset. It follows that Z, can be viewed as the metric completion of Z. Note that a
sequence of integers a(i) of Z converges to zero in Zp,

a(i) —0 < v(a(i)) — + oo,
that is if and only if the integers a(/) become more and more divisibly by p. A concrete example is
p,pz,p3,... — 0.

Finally, let Q, be the fraction field of Z,; it is called the field of p-adic numbers. We can extend v
to Qp by defining

v(a/b) = v(a) — v(b).
Properties (1), (2) above still hold and Z, = {x € Q, : v(x) > 0}.

5.5. Hensel’s lemma. Rings such as Z, play a very important role in number theory. If a polynomial
with integer coefficients has a solution in integers, then it has a solution in Z, for every prime p (and
in R). The converse need not be true. Yet, a good first step is to examine whether that polynomial
has indeed a solution in Z, for all p and in R. Although at first sight the ring Z, looks much more
complicated than Z, it is in fact much easier to work with. A case in point in Hensel's lemma that
goes a long way towards giving a definite answer as to when a polynomial has a solution in Z,.

Recall that we can identify the quotient Z,/pZ, with Z/pZ. Given a polynomial f(x) € Zp[x]
we can look at its reduction f(x) modulo p, namely, we reduce all the coefficients modulo p and
so at the value f(a) for a € Z,. However, to simplify notation we will simply write f(a). Same for
acZ/p"L="17p/p"Lp.

Theorem 5.5.1. (Hensel's lemma) Let f(x) € Zy[x] be a monic, non constant polynomial. Let
oy € Z/pZ be a simple root of f(x), namely
(1) f(ea) =0,
(2) f'(a1) # 0.
(Both statement hold in Z/pZ.) Then, there exists a unique o € Z,, such that
(1) f(a) =0 (inZp);
(2) a=a; (mod pZp).
Proof. We prove by induction on n that for all n there exists a, € Z/p"7Z such that
f(ap) =0 (mod p"), ap,=a,_1 (mod p™1).
It then follows that o = (..., ap, .. ., o, 01) € Zp and f(a) = 0.
For n =1, oy is given. Assume that we have already constructed o, with the desired properties.
The binomial formula (x + y)" = x" + nx""1y + (5)x""2y% 4+ -+ + y" gives
F(x+y) =)+ (x)y +g(x,y)y%
for some polynomial g(x, y) with coefficients in Z, if f(x) € Zp[x].
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Now, choose any B € Z/p"™1Z such that B = a, (mod p”). Any other choice is of the form
B+, where v € p"Z/p" 1 Z. We have

F(B+7) = f(B) + f'(B)y +7°9(B.7).
As ¥ =0 (mod p?") and g(B,7) € Z,, we have

F(B+7)=rf(B)+f(B)yy (modp™™).

Write f(B) = p"B,y = p"C. We can choose y so that B+ f'(6)C =0 (mod p), because modulo
p we have f'(8) = f'(a1) £ 0 (mod p). For such v we have f(8+) =0 (mod p™1) and we let

ant1 =B +1.

Examining the proof shows that 7y is uniquely determined, because f'(8) # 0 (mod p). Thus,
any1 is uniquely determined, and thus so is . Arguing differently, we can say that if f(x) =
(x —a)(x — a’)h(x), where o, @' € Z,, and a = o’ (mod p) then (o) = 0 (mod p), that is
f'(a1) =0 (mod p) and that’s a contradiction. O

Example 5.5.2. Z, contains the p — 1-st roots of unity. Indeed, the polynomial f(x) = xP — x is
separable modulo p. Pick any non-zero a3 modulo p. Then f(a1) =0, /(1) # 0. Let uy be the
solution of f in Zp such that u; = a; (mod p), as guaranteed by Hensel's lemma. We find that
f(x) = fo’z_ll (x — uj and the w; are p — 1-st roots of unity that are distance (even after reduction
modulo p).

It is difficult, perhaps impossible, to write these roots explicitly. Take for example a5, the mod
p? approximation to the modulo p root given by 2 to the polynomial x? — x, where p > 2 is a prime.
We know that a = 2+ kp. We also need that (2 + kp)? = 2+ kp (mod p?) and this is equivalent
to k = 2pp’2. Here is a table of k that shows that its behaviour is erratic. The first prime for which
k = 0is 1093. This is relevant to Fermat's last theorem through the “Wieferich criterion” .

prime |3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
K 21410 6 9 6 11 2 12 2 5 7 41 19 16

5.6. Finite fields. \We summarize here the main facts about finite fields. Let F = F,, be a finite
field of p elements, where p is a prime. Let F,, be an algebraic closure of [F,.

Theorem 5.6.1. (1) For every integer m, E, contains a unique subfield having p™ elements.
We denote it by F. The field Fpm is the solutions in F, to the equation xP" — x =0 and
is therefore Galois over F,.
(2) We have Fpn D Fpn if and only if m|n. Every finite subfield of F,, is Fpm for some m. We
have:

Fpgcd(m,n) = IE?pm N Fp”. Fplcm(m,n) - Fpm . Fpn.

(3) Let f(x) € Fpm[x] be an irreducible polynomial of degree n and a a root of f inF, then
Fpm(a) = Fpom,

and it is the splitting field of f.
(4) Let L be any field (not necessarily a subfield of F,) with p™ elements, then L = Fpm.
(5) Fp is the algebraic closure of any of the fields Fpm.
(6) Define the Frobenius map

Frp:Fp, — Fp, Frp(x) = xP.
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Let
Frpm =Frpo---oFr, (m times).

Then Frpm(x) = xP™ and it is a field automorphism whose fixed points are the field F pm.
(7) Fp = Uy Fpm.

Let us now consider the situation from the point of view of infinite Galois theory. Fp is an infinite
Galois extension of .. Its Galois group is

I(@ nGaI(Fpn/IFp) = I(@ nZ/nZ.

Where the order is m < n if m|n, the identification Gal(F,»/F,) = Z/nZ is such that Fr, — 1,
and the homomorphisms Z/nZ — Z/mZ are just x (mod n) — x (mod n). This inverse limit is
denoted Z. It is a compact Hausdorff topological ring and

Z 7, mw> Frpm.

In fact, the image of Z is dense in Z. We also have
z=1]z
p

In particular, there is a surjection Z — Z, that shows that there is a Galois sub extension K/F, of
F, whose Galois group Gal(K/F,) = Z,. It is not hard to construct this extension by hand.
For every n consider the Galois extension Fppm/Fp with Galois group Z/p™Z. Let

k — Ugozl}Fppm .

Then
— i mey __
Gal(K/Fp) = lim nZ/p Z=17p.

Since we know that closed subgroups of Z, we see that the only proper subfields of K are the fields
F,»m and those are finite field extensions of F.

One can prove that every closed subgroup of Z is equal to a product Hp Hp, where Hp is a closed
subgroup of Z, (it is easy to show these are closed subgroups; for the converse one proves first
that every closed subgroup is a product by showing first that every closed subgroup is an ideal and
then making use of idempotents). Thus, with our knowledge of Z, we can write down all the closed
subgroups of Z and hence all the subfields of F,. Here is one concrete conclusion. There is no
proper subfield L of Fj, such that F,/L is a finite extension.

5.7. Cyclotomic fields. Once more, since we assume that the reader had seen the example of
cyclotomic fields before, we only summarize some of their key aspects.
Let u, denote that n-th roots of unity in C.
27i

pup={aeC:a"=1}={e*» :a=0,1,...,n—1}.

The field Q(un) is the splitting field of x” —1. It is called a cyclotomic field. Note that Z/nZ = u,
by a — e Consequently, an element e generates w, if and only if (a, n) = 1. Therefore u,
has ¢(n) generators, where ¢ is Euler’s p-function. They are called primitive roots of order n.

We also note that ug C w, if and only if d|n. As a matter of notation, define

2mi

(h=en.
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Define the n-th cyclotomic polynomial ¢, by
eax)= [ -0
(Epn primitive

Note that

x"—1= chd(x).
d|n
One proves that ®,(x) € Z[x] and is, of course, a monic polynomial of degree ¢(n).
A key fact is that ®,(x) is an irreducible polynomial over Q, from that we deduce that Q(u,)/Q
is a Galois extension with Galois group of order ¢(n). Such an automorphism is determined by its
action of ¢, and must take it to {2 for some (a, n) = 1. This allows us to deduce that

(2/nZ)* = Gal(Q(un)/Q).,  a—{{— (7}

Namely, the automorphism corresponding to a congruence class a is the one uniquely determined
by the property that it acts on the n-th roots of unity by raising to a-th power.
Furthermore,

Qun) NQem) = Qibged(mm).  Qn) - Qltm) = Q(licrn(m,n))-
Let K =U,Q(uy). Then K/Q is a Galois extension and
Gal(K/Q) = lim Gal(Q(k,)/Q) =lim (Z/nZ)",
where the identification takes the element a € Z/nZ to the automorphism determined by ¢, — (2.
This implies that the transition maps are
(Z/nZ)* — (Z/mZ)*, x (mod n)— x (mod m), min.

This inverse limit is a bit complicated. Let p > 2 be a prime; we shall consider a sub Galois extension
L of K,

L = UnQ(upn).
We have
— i — i n X
Gal(L/Q) = lim Gal(Q(kp)/Q) = lim (Z/p"Z)".
Now, at each level n we have an isomorphism
(Z/p"2)* = Z)(p-1)Z x Z/p" L.

What matters to us is that the inclusion Z/p"~1Z — (Z/p"Z)* is given by a + (14 p)? (mod p").
Using this, one deduces that the transition maps induce maps

anXBn:Z/(p—1)ZXxZ/p"Z— Z/(p—1)Z x Z/p”‘lz,
where a, is an isomorphism and B,(a (mod p”)) = a (mod p"~1). Consequently,

Gal(L/Q) = Z/(p— 1)Z x Zp.

L
y YDZ) X

Q(up) M

(Z/pZ)\ A
Q

We deduce the following diagram
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where MNQ(up) = Q and L = MQ(up). In particular, we have contracted a Z, Galois extension of
@, which is a non-trivial task. This extension is not easily described using polynomials. To convince
yourself of that, try writing the Z/pZ Galois extension of Q one gets from M. It is the subfield of
Q(up2) that has degree p over Q.
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6. Kummer Theory

6.1. Cyclic Galois extensions. Let [F be a field and n a positive integer not divisible by the char-
acteristic of F. Assume that [F contains the n-th roots of unity: the polynomial x" — 1 is separable
and its roots are in F. We denote the roots by w,, of u,(F) if we need to clarify the field involved;
it is a cyclic group of order n under multiplication. Given an element a € F we denote by /a any
fixed solution of the polynomial x™ — a. Recall that a cyclic Galois extension, or simply a cyclic
extension of fields is a finite Galois extension of fields with cyclic Galois group. In the same vain,
one talks about abelian extension, solvable extension, etc.

Theorem 6.1.1. Let a € F* then F(y/a)/F is a cyclic Galois extension of order dividing n. Con-
versely, if L/F is a cyclic Galois extension of order m, m|n, then L = F( {/a) for some a € F*.

Proof. F(+y/a) is the splitting field of the polynomial x” — a, because the roots of this polynomial
are precisely {¢ - v/a : ¢ € un}. Moreover, there are n elements in u,, so x” — a is a separable
polynomial and so F(+/a)/F is a Galois extension.

Let o € Gal(IF(y/a)/FF), then

o(Va)={(s-Va,
for some (5, € w,. Note that o = Id if and only if {, = 1. Further,
or - Va=(o7)(Va)
— 0(¢:/3)
— ¢0(V/3)
—¢to V3
= ¢olr - V2
Therefore,
0 (o,

is an injective homomorphism Gal(F(v/a)/F) — wn. Since w, is a cyclic group, so is Gal(F(v/a)/F).
Conversely, let L/F be a cyclic Galois extension of order m|n; say, Gal(L/F) = (o). Given a € L
and ¢ € um, define the Lagrange resolvent:

(4) [, {]=a+ o)+ + {7 o Ha).
This is an element of L and the action of ¢ on it is given by o([a,(]) = o(a) + (o?(a) + - -+ +
(M 1o™(a). Using that o™ = Id, we find that
o(le, () = ¢ - [a, ¢
It follows that [a, {]™ = (0([er, ¢]))™ = o([e, ¢]™) and so that
o, C]™ € F.

By independence of characters, for every ( there is an a € L such that [o, (] # 0. Let { be a
primitive m-th root of unity. Then F C F([e, ¢]) € L and o/([a, ¢]) = ¢/ - [, ¢] implies that o' is
not the identity on F([e, ¢]). Thus, by the Galois correspondence,

L =F([a. <]).
O
Remark 6.1.2. Let L/F be a cyclic Galois extension of order m|n, where F is as above. Let G = (o)
be the Galois group, a cyclic group of order m. Given an element v of L whose m-th power is in

F*, we get a map _ _
G — pp, CFX, o' = a'(7)/v.
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This map is a homomorphism. The set of such homomorphisms forms a group under multiplication
of functions and the Lagrange resolvent allows us to show that there is such a homomorphism,
obtained from taking v = [(, af for ¢ a primitive m-th root of unity, whose order is m.

6.2. Kummer extensions. Let [F be a field and n a positive integer not divisible by the characteristic
of F. Assume that IF contains the n-th roots of unity. Recall that the exponent of a group G is the
minimal integer n such that every element of G has order divisibly by n. If G is finite abelian, there
is then an element of order nin G. A Kummer n-extension of I is an abelian Galois extension
L/F of finite order such that the Galois group has exponent m|n. In this section we shall describe
all such Galois extensions. Note that the case of G is cyclic is precisely the case we have dealt with
above. We shall need some basic facts about character group of a finite abelian group.

6.2.1. Characters of finite groups. Let G be a finite abelian group. A character x of G is a group
homomorphism

x:G — C*.

We denote the set of all characters of G by G. They form a group under multiplication of functions

(x1x2)(9) = x1(9)x2(9).

G is called the character group of G. If G is of exponent n and we are given a field F as above,
we can and often identify the n-th roots of unity in C* with the n-th roots of unity w, in F,
wn(C) = py(F), and view G is the group of homomorphisms

G — pn(F).

Suppose that G is cyclic of order m|n, say G = (o). Then, to give a homomorphism x : G — C*
is equivalent to choosing an m-th root of unity ¢ and defining

xc(o') = ¢,

And, conversely, every character arises this way. That is, we find that G 2 G, but the isomorphism
is not canonical, it depends on the choice of . More generally wr|t|ng G = Gy x---x G, a product
of cyclic groups, we have canonically, G = G; x --- x G, and so G = G for any finite abelian group.
Using this it is not hard to show the following statements.

Let G be a finite abelian group of exponent n:

(1) Let g € G, g # 1. There exists x € G such that x(g) # 1.

(2) The pairing G x G — wn, (a,%x) — x(a) is a bi-additive perfect pairing. It identifies G with
G in a canonical way.

(3) Aset {x1,..., Xr} of characters generated G if and only if x;(g) = 1 for all / implies that
g=1.

6.2.2. Kummer extensions. Let L/F be a finite abelian Galois extension of exponent m|n. Let
M(L)y={¢eL:2"€F*}, N(L)={€":¢ec M(L)}.

M(L) is a subgroup of L* and N(L) is a subgroup of F*. Of course, M(L) D F*, N(L) D F*" =
N(F).

Theorem 6.2.1. Let G = Gal(L/F). There is an exact sequence of groups

15 F S ML)D 61,
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where the first map is just the inclusion. The map X is the following. Let £ € M(L) and o € G,
then 0(£) = (g4 - £, for some root of unity (s 4 € um, depending on o and £, because F(£)/F is a
cyclic Galois extension of order m|n. We let

A €eG  AO(0)=Cop
We have L = F(M(L)) and L = F(¢y, ..., L,) for elements £y, ..., 2, € M(L) if and only if the
cosets £;F* generate M(L)/F*.

a(

Proof. We first check that x := A\(£) is a character. Indeed x (o) = Te) and so

OTE(Z) _ U(XET)E) = x(7) - 0'(;) = x(o)x(T).

Further, X is a homomorphism. Let £, k € M(L). Then

o(lk) o(€) o(k)
tkk Lk

x(oT) =

and so A(£k) = X(£) - M\(k).

It follows easily from the definitions, and Galois theory, that F* = Ker(\).

To show that X is surjective, decompose G is a product of cyclic groups Gy X --- X G,. Fix
r,1 < r < a. Note that we can identify G, = (o) with the Galois group of a cyclic Galois extension
L,/F of order m|n contained in L. Suppose that x € G,. In (4) we constructed a non-zero element
[c, €] that generated L,/F, M = (¢ tand [a, ¢]™ € F* (and so [a, ¢]" € F*). That is, we see

o]
now that if we choose ¢ to a primitive m-th of unity, then [o, {] € M(L,) C M(L) and

Ao, C])(0') = ¢

It follows that A([, ¢]) is an element of G, of order m and so the map X is surjective onto G,
(cf. Remark 6.1.2). Doing it separately for each of the extensions L;/IF we find that X is surjective
onto G.

Now, we clearly have L D F(M(L)). Suppose that o € G acts trivially on F(M(L)). Then
A(€)(c) =1 for all £ € M(L) and so x(c) = 1 for all x € G. That implies that ¢ = 1 and so, by
the Galois correspondence, that L = F(M(L)). Now, by the same argument, L = F(4y, ..., L) if
and only if {\(¢;)} generate G, if and only if {¢;} generate the quotient group M(L)/F*; that is, if
and only if {£;F*} generate M(L)/F*. O

Remark 6.2.2. The significance of the last part of the theorem is that if FF is an infinite field, the
set M(L) is infinite. It is therefore useful to know when we can choose finitely many elements
£;i € M(L) such that L =TF(4y, ..., 2).

Noting that raising to n-th power provides an isomorphism M(L)/F* = N(L)/F*", we conclude
the following.

Corollary 6.2.3. There is an isomorphism
N(L)/F*" = G.
Here N(L)/F*" is a finite subgroup of F*/F*". Let ay, ..., ar be elements of F* that generate

N(L)/F*", then L = F(/a1. . ... v/ar).

We wish now to complete our discussion by showing that every finite subgroup H of F* /F*"
arises as N(L)/F*" for a finite abelian extension of I or exponent n. It is quite clear what to do.
Choose finitely many elements ay, ..., a, of F* that generate H modulo F*". Let

L=F(ar, ... Ua).
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Clearly L, being the compositum of the cyclic extensions F(+y/a,), is a finite Galois extension with
abelian Galois group of exponent dividing N. Moreover, N(L) O H. Now, we proved in Theo-
rem 6.2.1 that if L = F(/a1, ..., V/ar) then {/ar - F*, ..., V/ar - F*} generate M(L)/F* and so
we obtain that {a; - F*", ..., ar - F*"} generate N(L)/F*". But, they also generate H. Therefore,
H= N(L)/F*".

Theorem 6.2.4. Let F be a field containing the n-th roots of unity where n is not divisible by the
characteristic of IF.

There is a bijection between the lattice of finite abelian Galois extensions L/ of exponent m|n
and finite subgroups H of F*/F*". To a Galois extension one associates H = N(L)/F*" and
to a subgroup H, generated by elements aq, ..., a, of F*, one associates the Galois extension
L=F/a,..., V/ar). Furthermore, we have

H = Gal(L/F).

Let M/F be the union of all finite abelian Galois extensions L/F of exponent dividing n, and let
G = Gal(M/FF). Let G be the character group of G, comprising continuous homomorphisms G — L,
where u, Is endowed with the discrete topology, then

G =2 F*/F*".
The proof of the theorem follows from the discussion above, apart from the conclusions concerning
G. This is left as an exercise.

Example 6.2.5. Quadratic extensions of R. The group RX/R*? = R* /R~ is isomorphic to Z/27Z.
Thus, R has a unique quadratic extension. Since —1 gives a non-zero coset, this extension is
R(v/—1).

Example 6.2.6. Quadratic extensions of F, (q = p", p an odd prime). This is rather similar. The
map x — x? has kernel +1 and so Fy /F? is isomorphic to Z/2Z. It follows that there is a unique
quadratic extension of ;. We know all that already, of course. Contrary to the case of the real
numbers, there is no canonical element in ]F; that is not a square. We just know that such a exists
and then the said quadratic extension is F,(+1/a).

Example 6.2.7. Quadratic and bi-quadratic extensions of Q. The structure of Q*/Q*? is of an
infinite abelian group, each element of which, different from the identity, has order 2. Let k, £ € Q*.
The extensions Q(vk) and Q(v/2) are isomorphic if and only if kQ*? = ¢Q*2, namely, if and only
if k/£ is a square of a rational number.

In a similar way, bi-quadartic extensions of Q correspond to subgroups of order 4 of Q*/Q*?.
Let £, k be two non-zero rational numbers such that k/£ is not a square. Then Q(vk,v2€)/Q is
a bi-quadratic extension. Every bi-quadratic extension is obtained this way. Q(v'k, v¢)/Q is equal
to Q(v/k’,\/2¢")/Q precisely when the subgroup of Q*/Q*? generated by k, £ is equal to the one
generated by k', ¢'.

The Galois extension Q(us)/Q has Galois group (Z/8Z)* = Z/27xZ/2Z (as abstract groups). It
is a bi-quadratic extension. One quadratic extension is the one generated by Q(/). Since i = Cg, this
is the extension which is the fixed field of the subgroup {1, 5}. The quadratic extension corresponding
to {1,7} = {#£1} is generated by a = (g + (g and is a real quadratic extension and the Galois group
acts by a — (34 (3. Take the Lagrange resolvent [, —1] = (g + (s — ({3 +(3) = (s — 5 — 5+ (&
This element should be a square of a rational number. And indeed

[a, —1]% = 8.
And so we get the quadratic field Q(+/2). Thus,
Q(¢s) = Q(V~-1,v2).
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7. Calculation of Galois groups

The main problem is this. Let F be a field and f(x) € F[x] a monic, separable irreducible
polynomial of degree n. Let L be the splitting field of f over F and G = Gal(L/F). Calculate G.

A priori, we only know that G is a transitive subgroup of S,,. Here is the list of possibilities (up
to conjugation) for small n.

n | groups

2 S5

3 S3, Az

4 S4,A4,D4,V, Cy
5| Ss, As, F20, D10, Cs

Here V is the Klein four group {1,(12)(34),(13)(24),(14)(23)} and C4 = ((1234)). Cs =
((12345)) and Fag = ((12345), (2354)).

7.1. The discriminant. This is a tool that allows us to decide if G C A, or not. Assume that the
characteristic of I is different from 2. Write

F) = [[(x - ),
=1

in L. We view G as a subgroup of the permutation group of a1, ..., ap,, which is identified naturally
with S,. Consider the action of G on
0:= H(a,- — ;).

i<j
For 0 € G we have
o(0) =sgn(o) - 9;

Indeed, this is one of the ways one defines the sign of a permutation. Since G fixes §°, 6> € F. Let

D(f) == 6% = [ J(ai — ))*.

i<j

We call D(f) the discriminant of f. To say G fixes § is to say that D(f) is square in F.
Proposition 7.1.1. G C A, if and only if D(f) is a square in .

Example 7.1.2. Consider the polynomial
f(x) = (x — o1)(x —as) = x> + bx + c.
We have
D(f) = (o1 — a2)® = (o1 + a2)? — daron = b* — 4c,
which is the usual discriminant of the quadratic polynomial.
Example 7.1.3. For a cubic polynomial x3 4 ax + b, a brute force calculation gives
D(f) = —4a> — 27h°.

Given a general monic cubic polynomial x3 4+ ax® +B8x 4+, put x = y — % to obtain
a a
v=3P+aly=3) 4=y +ay+b,

where a, b are explicit expressions in o, 3,7. We note that in general, D(f(x)) = D(f(x — a)) for
any f(x) € F[x] monic and o € F, because the roots are just shifted by a. Hence the substitution
we made above allows to reduce the calculation of D(f) to the case of x3 4 ax + b.
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As a concrete example, take the polynomial f(x) = x® — x + 1. It is an irreducible polynomial.
Indeed, if it is reducible over Q then by Gauss's lemma it is reducible over Z. Which implies it's
reducible modulo 2 and therefore that it has a root modulo 2, but 0,1 are not roots modulo 2.
Alternately, one argues that if there is a root over Z it must be {£1} and we verify this is not the
case. * Now, we have

D(f) =4 —27 = -23,
which is not a square in Q. Therefore, the Galois group is not contained in Az, yet a transitive
subgroup of S3. Therefore, the Galois group is Ss.
As another concrete example take f(x) = x® — 21x — 7 which is an irreducible polynomial by

Eisenstein's criterion. The discriminant D(f) is 3672 which is a square in Q and so the Galois group
is A3.

Example 7.1.4. To construct a family of cubic polynomials over Q with Galois group As is the same
as finding rational points on the curve

y2 = —4A% — 2782,

except that one needs to prove these polynomials are also irreducible. For a fixed B, the complex
solutions are an elliptic curve and they form a group under the addition law pictured in Figure 1.

P3

Pa=P1 TPy

Figure 1. Addition on an elliptic curve

If we take B = 7, we have the solution (y, A) = (337, —21) (derived from the example above). It
turns out that this is a point of infinite order on the curve, and so we get infinitely many polynomials

X3+ ax+7,

with Galois group Az (if they are irreducible). Note that a is a rational number in general. Note that
these polynomials cannot be obtained from each other by a linear change of co-ordinates. Thus,
this is a “genuinely” infinite family. Can you prove that they are almost always irreducible? | believe
that's true but | didn't prove it.

“In general, if F(x) = x"+ ap_1x""1 4 -~ 4 a0 € Z[x] and a is a root of f in Z then alao.
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7.2. Calculating Galois groups by reduction modulo p. This method rests on the following the-
orem that we shall not prove in this course.

Theorem 7.2.1. Let f(x) € Z[x] be a monic irreducible polynomial of degree n. Let G C S, be its
Galois group. Suppose that p is a prime and that modulo p we have

f(x)=f(x)---f(x) (mod p),
a product of distinct monic irreducible polynomials for degree deg(fj) = n;. Then G contains a

permutation of cycle type (n1, ..., ne).

This theorem is a very powerful theorem. For example, for n = 3, we know that G = A3 or S3
and we can distinguish between the possibilities by deciding if G contains a transposition or not. For
n = 4 we have the following table:

AIEAPAE?
(12) X | X |V | x|V
(123) X | x| x|V |V
(12)B4) || v [V |V |V |V
(1234) Vi ix |V |x |V

The table shows that we can distinguish between all the transitive subgroups of S4 by knowing
the cycle types of permutations belonging to it. An even deeper theorem tells us that every cycle
type belonging to G arises this way from p large enough. The catch though is that we cannot bound
p (although we can do it condition on the Generalized Riemann Hypothesis).

Example 7.2.2. Consider the polynomial f(x) = x3 — x + 1. This polynomial is irreducible modulo
2 and so G has a 3 cycle. Modulo 7 we have f(x) = (x —2)(x? + 2x + 3) and so G contains a
transposition. It follows that G = Ss.

Example 7.2.3. Consider the polynomial f(x) = x* — 4x? + 2. It is an irreducible polynomial by
Eisenstein's criterion. One verifies by a somewhat tedious calculation that f is irreducible modulo 3
and so G has a 4 cycle. Consider the polynomial y? — 4y + 2 and let o, &’ be the roots. We have

a=2+v2, ,d=2-V2 %:(1+f2)2.
The splitting field of f is
K =Q(Va,Va') = Q(Va),
and so [K : Q] = 4. It follows that G = C4.

We remark that having proved that |G| = 4, we can prove G is cyclic “by hand”. Consider the
diagram

Q(va) —— Q(Va)

Q(a) —— Q(a')

_—

We first construct o : Q(a) — Q(a’) = Q(a) that takes a to o’. It takes the irreducibly polynomial
x?>—a to x°—a’ and so o can be lifted to an automorphism, still denoted o between the fields Q(v/@)

and Q(va'). It takes \/a to V!, o(y/a) = Vo'. We calculate the o(Va!) = o(y/o'Ja - y/a) =
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o((1+v2)1-Va)=010-v2)"1 - Vo' = —(1+V2)Va/ = —/a. From that we see that ¢ has

order 4 and so that G is cyclic.

Example 7.2.4. Consider the polynomial x* — 2 over Q. It is irreducible by Eisenstein's criterion.
The Galois group G is therefore a transitive subgroup of S;. The splitting field is Q(~v/2, /). It
contains Q(v/2, /) which is a biquadratic extension. We see that Q(+/2, /) has degree 8 over Q.
Thus, G = Dy.

Example 7.2.5. Consider x* + 3x + 15, irreducible by Eisenstein. Modulo 2 the polynomial is
x* 4+ x + 1. It has no root modulo 2. The quadratic irreducible polynomials modulo 2 are just
x>+ x +1 and so x* + x + 1 is irreducible modulo 2. Thus, the Galois group contains a 4-cycle.
Modulo 5 we find the polynomial x(x3+43) = x(x—3)(x?+3x —1) and we conclude that G contains
a transposition, so G D Dag.

The discriminant of a polynomial of the form x* + gx + r is —27q¢* + 256r3. & So, for our
polynomial, the discriminant is 861813 = 335954 and so is not a square. So G is not a subgroup
of A4. However, from the classification of subgroups as in the table above, we already know that.
It remains to decide if D = S4 or D = Dq.

Testing the polynomial modulo 7 we find a unique root 3, x*+3x+15 = (x—3)(x3+3x?+2x+2)
and the polynomial x3 + 3x2 4+ 2x + 2 doesn’t have a root modulo 7, hence it is irreducible. Thus,
G contains a 3 cycle and so G = S4.

Example 7.2.6. Constructing S, Galois extensions. This is based on the group theoretic fact that
for n prime, S, is generated by o, T, where o can be taken to be any transposition and 7 any cycle
of length n. Given n prime, find a polynomial f over Z/2Z which is irreducible. Also, let p be an
odd prime that is greater or equal to n — 2 and let h(x) be a quadratic irreducible polynomial in
Z/pZ]x]. Let g(x) = h(x) - H?;:(x —1). Then g(x) is a polynomial of degree n as well. Using the
Chinese remainder theorem we may find a polynomial a(x) € Z[x] such that

a(x) =f(x) (mod 2), a(x) =g(x) (mod p).

It follows that the Galois group of a(x) is S,. This technique can be extended to n that is not
prime. We illustrate this is one example below.

It's fun to work some examples. Here is the table of irreducible polynomials of degree at most 5
over Z/27.

SMore generally (see Dummit and Foote p. 613 ff.) the discriminant of a polynomial of the form x* + px? 4+ gx +r
is

16p"r — 4p>q® — 128p°r? + 144pq°r — 274" + 2561°.

You will also find there a thorough discussion of the determination of the Galois group of a quartic polynomial which
is guaranteed to work and doesn't use the method of reducing modulo a prime.
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degree H polynomials

1 X

x+1

2 x>+ x+1

3 X +x2+1

X34+ x+1

4 XX EXxP+Hx+1
x+x3+1
xt+x+1

5 X+ x4+ x2+x+1
XS xt x4 x+1
XS+ xt+x3+x+1
XS+ xt+x3+x%+1
x>+ x3+1
x>+ x> +1

(This table should be checked again)

So, to construct a cubic polynomial over Z with Galois group S3 we take the polynomials
x>+ x+1 (mod ?2), (x> +1)x (mod 3)
and find a simultaneous lift to Z[x], for instance x3 + x + 3.
To construct a polynomial of degree 5 over Z with Galois group Ss we take the polynomials
xX°+x24+1 (mod 2), (x®>+Dx(x+1)(x—1)=x>—-x (mod 3)
and find a simultaneous lift to Z[x], for instance x> + 3x° 4 2x + 3.

To construct a polynomial of degree 4 over Z with Galois group S4 we use that S, is generated
by any choice of a 4 cycle and a 3 cycle. take the polynomials

x*+x+1 (mod2), (x> —x+1)x=x*-x24+x (mod 3)
and find a simultaneous lift to Z[x], for instance x* + 2x° 4+ x + 3.

Example 7.2.7. For n = 5 we have the table

| Cs | As | Do | Fao | Ss
(12) X | x| x| x|V
(123) X | v | x X |V
(1234) X | x| x | vV |V
(12345) | v | v | v | v |V
(12)(34) | x| vV | vV | vV |V
(12)(345) || x | x | x X |V

For example, consider the polynomial x> —2, an irreducible polynomial by Eisenstein's criterion. The
splitting field L contains Q((s) and L/Q({s) is cyclic of degree 1 or 5, according to Kummer theory.
Degree 1 is not possible as [Q({5) : Q] = 4 and we know that 5|[L : Q]. Thus, G has degree 20
and so, necessarily, G = Foq.
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