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CHAPTER 0

Introduction

These notes are intended as an to introduction general topology. They should be sufficient for further
studies in geometry or algebraic topology.

Comments from readers are welcome. Thanks to Micha l Jab lonowski and Antonio Dı́az Ramos for
pointing out misprinst and errors in earlier versions of these notes.
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CHAPTER 1

Sets and maps

This chapter is concerned with set theory which is the basis of all mathematics. Maybe it even can
be said that mathematics is the science of sets. We really don’t know what a set is but neither do the
biologists know what life is and that doesn’t stop them from investigating it.

1. Sets, functions and relations

1.1. Sets. A set is a collection of mathematical objects. We write a ∈ S if the set S contains the
object a.

1.1. Example. The natural numbers 1, 2, 3, . . . can be collected to form the set Z+ = {1, 2, 3, . . .}.

This näıve form of set theory unfortunately leads to paradoxes. Russel’s paradox 1 concerns the
formula S 6∈ S. First note that it may well happen that a set is a member of itself. The set of all infinite
sets is an example. The Russel set

R = {S | S 6∈ S}
is the set of all sets that are not a member of itself. Is R ∈ R or is R 6∈ R?

How can we remove this contradiction?

1.2. Definition. The universe of mathematical objects is stratified. Level 0 of the universe consists
of (possibly) some atomic objects. Level i > 0 consists of collections of objects from lower levels. A set is
a mathematical object that is not atomic.

No object of the universe can satisfy S ∈ S for atoms do not have elements and a set and an element
from that set can not be in the same level. Thus R consists of everything in the universe. Since the
elements of R occupy all levels of the universe there is no level left for R to be in. Therefore R is outside
the universe, R is not a set. The contradiction has evaporated!

Axiomatic set theory is an attempt to make this precise formulating a theory based on axioms, the
ZFC-axioms, for set theory. (Z stands for Zermelo, F for Fraenkel, and C for Axiom of Choice.) It is not
possible to prove or disprove the statement ”ZFC is consistent” within ZFC – that is within mathematics
[12].

If A and B are sets then

A ∩B = {x | x ∈ A and x ∈ B} A ∪B = {x | x ∈ A or x ∈ B}
A×B = {(x, y) | x ∈ A and y ∈ B} AqB = {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}

and
A−B = {x | x ∈ A and x 6∈ B}

are also sets. These operations satisfy

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A− (B ∪ C) = (A−B) ∩ (A− C) A− (B ∩ C) = (A−B) ∪ (A− C)

as well as several other rules.
We say that A is a subset of B, or B a superset of A, if all elements of A are elements of B. The

sets A and B are equal if A and B have the same elements. In mathematical symbols,

A ⊂ B ⇐⇒ ∀x ∈ A : x ∈ B
A = B ⇐⇒ (∀x ∈ A : x ∈ B and ∀x ∈ B : x ∈ A) ⇐⇒ A ⊂ B and B ⊂ A

The power set of A,
P(A) = {B | B ⊂ A}

is the set of all subsets of A.

1If a person says ”I am lying” – is he lying?
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8 1. SETS AND MAPS

1.2. Functions. Functions or maps are fundamental to all of mathematics. So what is a function?

1.3. Definition. A function from A to B is a subset f of A × B such that for all a in A there is
exactly one b in B such that (a, b) ∈ f .

We write f : A→ B for the function f ⊂ A× B and think of f as a rule that to any element a ∈ A
associates a unique object f(a) ∈ B. The set A is the domain of f , the set B is the codomain of f ;
dom(f) = A, cod(f) = B.

The function f is

• injective or one-to-one if distinct elements of A have distinct images in B,
• surjective or onto if all elements in B are images of elements in A,
• bijective if both injective and surjective, if any element of B is the image of precisely one element

of A.

In other words, the map f is injective, surjective, bijective iff the equation f(a) = b has at most one
solution, at least one solution precisely one solution, for all b ∈ B.

If f : A→ B and g : B → C are maps such that cod(f) = dom(g), then the composition is the map
g ◦ f : A→ C defined by g ◦ f(a) = g(f(a)).

1.4. Proposition. Let A and B be two sets.

(1) Let f : A→ B be any map. Then

f is injective ⇐⇒ f has a left inverse

f is surjective AC⇐⇒ f has a right inverse
f is bijective ⇐⇒ f has an inverse

(2) There exists a surjective map A � B
AC⇐⇒ There exits an injective map B � A

Two of the statements in Proposition 1.4 require the Axiom of Choice (1.27).
Any left inverse is surjective and any right inverse is injective.
If f : A→ B is bijective then the inverse f−1 : B → A is the map that to b ∈ B associates the unique

solution to the equation f(a) = b, ie

a = f−1(b) ⇐⇒ f(a) = b

for all a ∈ A, b ∈ B.
Let map(A,B) denote the set of all maps from A to B. Then

map(X,A×B) = map(X,A)×map(X,B), map(AqB,X) = map(A,X)×map(B,X)

for all sets X, A, and B. Some people like to rewrite this as

map(X,A×B) = map(∆X, (A,B)), map(AqB,X) = map((A,B),∆X)

Here, (A,B) is a pair of spaces and maps (f, g) : (X,Y )→ (A,B) between pairs of spaces are defined to
be pairs of maps f : X → A, g : Y → B. The diagonal, ∆X = (X,X), takes a space X to the pair (X,X).
These people say that the product is right adjoint to the diagonal and the coproduct is left adjoint to
the diagonal.

1.5. Relations. There are many types of relations. We shall here concentrate on equivalence rela-
tions and order relations.

1.6. Definition. A relation R on the set A is a subset R ⊂ A×A.

1.7. Example. We may define a relation D on Z+ by aDb if a divides b. The relation D ⊂ Z+×Z+

has the properties that aDa for all a and aDb and bDc =⇒ aDc for all a, b, c. We say that D is reflexive
and transitive.

1.5.1. Equivalence relations. Equality is a typical equivalence relation. Here is the general definition.

1.9. Definition. An equivalence relation on a set A is a relation ∼⊂ A×A that is

Reflexive: a ∼ a for all a ∈ A
Symmetric: a ∼ b =⇒ b ∼ a for all a, b ∈ A
Transitive: a ∼ b and b ∼ c =⇒ a ∼ c for all a, b, c ∈ A
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The equivalence class containing a ∈ A is the subset

[a] = {b ∈ A | a ∼ b}

of all elements of A that are equivalent to a. There is a canonical map [ ] : A→ A/∼ onto the set

A/∼= {[a] | a ∈ A} ⊂ P(A)

of equivalence classes that takes the element a ∈ A to the equivalence class [a] ∈ A/∼ containing a.
A map f : A→ B is said to respect the equivalence relation ∼ if a1 ∼ a2 =⇒ f(a1) = f(a2) for

all a1, a2 ∈ A (f is constant on each equivalence class). The canonical map [ ] : A→ A/∼ respects the
equivalence relation and it is the universal example of such a map: Any map f : A→ B that respects the
equivalence relation factors uniquely through A/∼ in the sense that there is a unique map f such that
the diagram

A
f //

[ ]   A
AA

AA
AA

B

A/∼
∃!f

>>}}}}}}}

commutes. How would you define f?

1.10. Example. (1) Equality is an equivalence relation. The equivalence class [a] = {a} contains
just one element.
(2) a mod b mod n is an equivalence relation on Z. The equivalence class [a] = a + nZ consists of all
integers congruent to a modn and the set of equivalence classes is Z/nZ = {[0], [1], . . . , [n− 1]}.
(3) x ∼ y

def⇐⇒ |x| = |y| is an equivalence relation in the plane R2. The equivalence class [x] is a circle
centered at the origin and R2/∼ is the collection of all circles centered at the origin. The canonical map
R2 → R2/∼ takes a point to the circle on which it lies.
(4) If f : A→ B is any function, a1 ∼ a2

def⇐⇒ f(a1) = f(a2) is an equivalence relation on A. The
equivalence class [a] = f−1(f(a)) ⊂ A is the fibre over f(a) ∈ B. we write A/f for the set of equivalence
classes. The canonical map A→ A/f takes a point to the fibre in which it lies. Any map f : A→ B can
be factored

A
f //

[ ] !! !!B
BB

BB
BB

B B

A/f
== f

=={{{{{{{

as the composition of a surjection followed by an injection. The corestriction f : A/f → f(A) of f is a
bijection between the set of fibres A/f and the image f(A).
(5) [Ex 3.2] (Restriction) Let X be a set and A ⊂ X a subset. Declare any two elements of A to be
equivalent and any element outside A to be equivalent only to itself. This is an equivalence relation. The
equivalence classes are A and {x} for x ∈ X −A. One writes X/A for the set of equivalence classes.
(6) [Ex 3.5] (Equivalence relation generated by a relation) The intersection of any family of equivalence
relations is an equivalence relation. The intersection of all equivalence relations containing a given relation
R is called the equivalence relation generated by R.

1.11. Lemma. Let ∼ be an equivalence relation on a set A. Then

(1) a ∈ [a]
(2) [a] = [b] ⇐⇒ a ∼ b
(3) If [a] ∩ [b] 6= ∅ then [a] = [b]

Proof. (1) is reflexivity, (2) is symmetry, (3) is transitivity: If c ∈ [a] ∩ [b], then a ∼ c ∼ b so a ∼ b
and [a] = [b] by (2). �

This lemma implies that the set A/∼⊂ P(A) is a partition of A, a set of nonempty, disjoint subsets
of A whose union is all of A. Conversely, given any partition of A we define an equivalence relation by
declaring a and b to be equivalent if they lie in the same subset of the partition. We conclude that an
equivalence relation is essentially the same thing as a partition.
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1.5.2. Linear Orders. The usual order relation < on Z or R is an example of a linear order. Here is
the general definition.

1.12. Definition. A linear order on the set A is a relation <⊂ A×A that is

Comparable: If a 6= b then a < b or b < a for all a, b ∈ A
Nonreflexive: a < a for no a ∈ A
Transitive: a < b and b < c =⇒ a < c for all a, b, c ∈ A

What are the right maps between ordered sets?

1.13. Definition. Let (A,<) and (B,<) be linearly ordered sets. An order preserving map is a map
f : A→ B such that a1 < a2 =⇒ f(a1) < f(a2) for all a1, a2 ∈ A. An order isomorphism is a bijective
order preserving map.

An order preserving map f : A→ B is always injective. If there exists an order isomorphism f : A→ B,
then we say that (A,<) and (B,<) have the same order type.

How can we make new ordered sets out of old ordered sets? Well, any subset of a linearly ordered set
is a linearly ordered set in the obvious way using the restriction of the order relation. Also the product
of two linearly ordered set is a linearly ordered set.

1.14. Definition. Let (A,<) and (B,<) be linearly ordered sets. The dictionary order on A×B is
the linear order given by

(a1, b1) < (a2, b2)
def⇐⇒ (a1 < a2) or (a1 = a2 and b1 < b2)

The restriction of a dictionary order to a product subspace is the dictionary order of the restricted
linear orders. (Hey, what did that sentence mean?)

What about orders on AqB, A ∪B, map(A,B) or P(A)?
What are the invariant properties of ordered sets? In a linearly ordered set (A,<) it makes sense to

define intervals such as

(a, b) = {x ∈ A | a < x < b}, (−∞, b] = {x ∈ A | x ≤ b}

and similarly for other types of intervals, [a, b], (a, b], (−∞, b] etc.
If (a, b) = ∅ then a is the immediate predecessor of b, and b the immediate successor of a.
Let (A,<) be an ordered set and B ⊂ A a subset.

• M is a largest element of B if M ∈ B and b ≤ M for all b ∈ B. The element m is a smallest
element of B if m ∈ B and m ≤ b for all b ∈ B. We denote the largest element (if it exists) by
maxB and the smallest element (if it exists) by minB.

• M is an upper bound for B if M ∈ A and b ≤M for all b ∈ B. The element m is a lower bound
for B if m ∈ A and m ≤ b for all b ∈ B. The set of upper bounds is

⋂
b∈B [b,∞) and the set of

lower bounds is
⋂
b∈B(−∞, b].

• If the set of upper bounds has a smallest element, min
⋂
b∈B [b,∞), it is called the least upper

bound forB and denoted supB. If the set of lower bounds has a largest element, max
⋂
b∈B(−∞, b],

it is called the greatest lower bound for B and denoted inf B.

1.15. Definition. An ordered set (A,<) has the least upper bound property if any nonempty subset
of A that has an upper bound has a least upper bound. If also (x, y) 6= ∅ for all x < y, then (A,<) is a
linear continuum.

1.16. Example. (1) R and (0, 1) have the same order type. [0, 1) and (0, 1) have distinct order
types for [0, 1) has a smallest element and (0, 1) doesn’t. {−1} ∪ (0, 1) and [0, 1) have the same order
type as we all can find an explicit order isomorphism between them.

(2) R × R has a linear dictionary order. What are the intervals (1 × 2, 1 × 3), [1 × 2, 3 × 2] and
(1× 2, 3× 4]? Is R×R a linear continuum? Is [0, 1]× [0, 1]?

(3) We now consider two subsets of R×R. The dictionary order on Z+× [0, 1) has the same order type
as [1,∞) so it is a linear continuum. In the dictionary order on [0, 1) × Z+ each element (a, n) has
(a, n+1) as its immediate successor so it is not a linear continuum. Thus Z+× [0, 1) and [0, 1)×Z+ do
not have the same order type. (So, in general, (A,<)× (B,<) and (B,<)× (A,<) represent different
order types. This is no surprise since the dictionary order is not symmetric in the two variables.)

(4) (R, <) is a linear continuum as we all learn in kindergarten. The sub-ordered set (Z+, <) has the
least upper bound property but it is not a linear continuum as (1, 2) = ∅.
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(5) (−1, 1) has the least upper bound property: Let B be any bounded from above subset of (−1, 1)
and let M ∈ (−1, 1) be an upper bound. Then B is also bounded from above in R, of course, so there
is a least upper bound, supB, in R. Now supB is the smallest upper bound so that supB ≤M < −1.
We conclude that supB lies in (−1, 1) and so it is also a least upper bound in (−1, 1). In fact, any
convex subset of a linear continuum is a linear continuum.

(6) R − {0} does not have the least upper bound property as the subset B = {−1,− 1
2 ,−

1
3 , . . .} is

bounded from above (by say 100) but the set of upper bounds (0,∞) has no smallest element.

2. The integers and the real numbers

We shall assume that the real numbers R exists with all the usual properties: (R,+, ·) is a field,
(R,+, ·, <) is an ordered field, (R, <) is a linear continuum (1.15).

What about Z+?

1.17. Definition. A subset A ⊂ R is inductive if 1 ∈ A and a ∈ A =⇒ a+ 1 ∈ A.

There are inductive subsets of R, for instance R itself and [1,∞).

1.18. Definition. Z+ is the intersection of all inductive subsets of R.

We have that 1 ∈ Z+ and Z+ ⊂ [1,∞) because [1,∞) is inductive so 1 = min Z+ is the smallest
element of Z+.

1.19. Theorem. (Induction Principle) Let J be a subset of Z+ such that

1 ∈ J and ∀n ∈ Z+ : n ∈ J =⇒ n+ 1 ∈ J

Then J = Z+.

Proof. J is inductive so J contains the smallest inductive set, Z+. �

1.20. Theorem. Any nonempty subset of Z+ has a smallest element.

Before the proof, we need a lemma.
For each n ∈ Z+, write

Sn = {x ∈ Z+ | x < n}
for the set of positive integers smaller than n (the section below n). Note that S1 = ∅ and Sn+1 = Sn∪{n}.

1.21. Lemma. For any n ∈ Z+, any nonempty subset of Sn has a smallest element.

Proof. Let J ⊂ Z+ be the set of integers for which the lemma is true. It is enough (1.19) to show
that J is inductive. 1 ∈ J for the trivial reason that there are no nonempty subsets of S1 = ∅. Suppose
that n ∈ J . Consider a nonempty subset A of Sn+1. If A consists of n alone, then n = minA is the
smallest element of A. If not, A contains integers < n, and then min(A ∩ Sn) is the smallest element of
A. Thus n+ 1 ∈ J . �

Proof of Theorem 1.20. Let A ⊂ Z+ be any nonempty subset. The intersection A ∩ Sn is
nonempty for some n, so it has a smallest element (1.21). This is also the smallest element of A. �

1.22. Theorem (General Induction Principle). Let J be a subset of Z+ such that

∀n ∈ Z+ : Sn ⊂ J =⇒ n ∈ J

Then J = Z+.

Proof. We show the contrapositive. Let J be a proper subset of Z+. Consider the smallest element
n = min(Z+ − J) outside J . Then n 6∈ J and Sn ⊂ J (for n is the smallest element not in J meaning
that all elements smaller than n are in J). Thus J does not satisfy the hypothesis of the theorem. �

1.23. Theorem (Archimedean Principle). Z+ has no upper bound in R: For any real number there
is a natural number which is greater.

Proof. We assume the opposite and derive a contradiction. Suppose that Z+ is bounded from
above. Let b = sup Z+ be the least upper bound (R has the least upper bound property). Since b− 1 is
not an upper bound (it is smaller than the least upper bound), there is a positive integer n ∈ Z+ such
that n > b− 1. Then n+ 1 is also an integer (Z+ is inductive) and n+ 1 > b. This contradicts that b is
an upper bound for Z+. �
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1.24. Theorem (Principle of Recursive Definitions). For any set B and any function

ρ :
⋃
{map(Sn, B) | n ∈ Z+} → B

there exists a unique function h : Z+ → B such that h(n) = ρ(h|Sn) for all n ∈ Z+.

Proof. See [8, Ex 8.8]. �

This follows from the Induction Principle, but we shall not go into details. It is usually considered
bad taste to define h in terms of h but the Principle of Recursive Definition is a permit to do exactly
that in certain situations. Here is an example of a recursive definition from computer programing
fibo := func< n | n le 2 select 1 else Self(n-1) + Self(n-2) >;

of the Fibonacci function. Mathematicians (sometimes) prefer instead to apply the Principle of Recursive
Definitions to the map

ρ(Sn
f−→ Z+) =

{
1 n < 2
f(n− 1) + f(n− 2) n > 2

Recursive functions can be computed by Turing machines.
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j∈J Aj ⊂ J ×

⋃
j∈J Aj

-
J

⋃
j∈J Aj 6

Figure 1. The coproduct

3. Products and coproducts

1.25. Definition. An indexed family of sets consists of a set A of sets, an index set J , and a
surjective function f : J → A.

We often denote the set f(j) by Aj and the whole indexed family by {Aj}j∈J . Any set A of sets can
be made into an indexed family of sets by using the identity map A → A as the indexing function.

We define the union, the intersection, the product, and the coproduct of the indexed family as⋂
j∈j

Aj = {a | a ∈ Aj for all j ∈ J},
⋃
j∈j

Aj = {a | a ∈ Aj for at least one j ∈ J}

∏
j∈J

Aj = {x ∈ map(J,
⋃
Aj) | ∀j ∈ J : x(j) ∈ Aj}

∐
j∈J

Aj =
⋃
j∈J
{(j, a) ∈ J ×

⋃
j∈J

Aj | a ∈ Aj}

There are natural maps
∐
Aj

Aj→j //JQ
Aj

hh

πj :
∏
j∈J

Aj → Aj (projection) ιj : Aj →
∐
j∈J

Aj (injection)

given by πj(x) = x(j) and ιj(a) = (j, a) for all j ∈ J . These maps are used in establishing the identities

map(X,
∏
j∈J

Aj) =
∏
j∈J

map(X,Aj), map(
∐
j∈J

Aj , Y ) =
∏
j∈J

map(Aj , Y )

for any sets X and Y . This gives in particular maps

∆:
⋂
j∈J

Aj →
∏
j∈J

Aj (diagonal), ∇ :
∐
j∈J

Aj →
⋃
j∈J

Aj (codiagonal)

If the index set J = Sn+1 = {1, . . . , n} then we also write

A1 ∪ · · · ∪An, A1 ∩ · · · ∩An, A1 × · · · ×An A1 q · · · qAn
for
⋃
j∈Sn+1

Aj ,
⋂
j∈Sn+1

Aj ,
∏
j∈Sn+1

Aj
∐
j∈Sn+1

Aj , respectively. If also and Aj = A for all j ∈ Sn+1

we write An for the product
∏
j∈Sn+1

A. The elements of An are all n-tuples (a1, . . . , an) of elements
from A.

If the index set J = Z+ then we also write

A1 ∪ · · · ∪An ∪ · · · , A1 ∩ · · · ∩An ∩ · · · , A1 × · · · ×An × · · · A1 q · · · qAn × · · ·
for
⋃
j∈Z+

Aj ,
⋂
j∈Z+

Aj ,
∏
j∈Z+

Aj ,
∐
j∈Z+

Aj , respectively. If also Aj = A for all j we write Aω for the
product

∏
j∈Z+

A, the set of all functions x : Z+ → A, i.e. all sequences (x1, . . . , xn, . . .) of elements from
A. 2

1.26. Example. (1) S1 ∪ S2 ∪ · · · ∪ Sn · · · =
⋃
n∈Z+

Sn = Z+.
(2) If the set A = {A} consists of just one set A then

⋂
j∈J A = A =

⋃
j∈J A,

∏
j∈J A = map(J,A),

and
∐
j∈J A = J ×A.

(3) There is a bijection (which one?) between {0, 1}ω = map(Z+, {0, 1}) and P(Z+). More generally,
there is a bijection (which one) between the product

∏
j∈J{0, 1} = map(J, {0, 1}) and the power set

P(J).

Even though we shall not specify our (ZF) axioms for set theory, let us mention just one axiom which
has a kind of contended status since some of its consequences are counter-intuitive. ��

��
•

����•n•
2ω is the formal set within set theory corresponding to the näıve set Z+ [12, V.1.5]
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1.27. Axiom (Axiom of Choice (AC)). For any nonempty set of nonempty disjoint sets, A, there
exists a set C ⊂

⋃
A∈AA such that C ∩A contains exactly one element for all A ∈ A.

If the ZF axioms of set theory are consistent, then both ZF+AC (Gödel 1938) and ZF+¬AC (Fraenkel
and Mostowsski, Cohen) are consistent theories [12, IV.2.8]. You may take or leave AC without penalty.
(Just like you may take or leave Euclid’s axiom on parallels depending on what kind of geometry you like
to do.) We shall here include AC and work within ZFC (ZF + AC).

Unlike the other axioms of set theory, the AC does not determine the set C uniquely.

1.28. Theorem. [3, Thm B.18] The following statements are equivalent:
(1) The Axiom of Choice
(2) Any surjective map has a right inverse.
(3) For any nonempty indexed family of (not necessarily disjoint) nonempty sets, {Aj}j∈J , there

exists a function c : J →
⋃
j∈J Aj (a choice function) such that c(j) ∈ Aj for all j ∈ J .

(4)
∏
j∈J Aj 6= ∅ for any nonempty indexed family of nonempty sets.

Proof. (1) =⇒ (2): Let f : A→ B be a surjective map. Define the right inverse g : B → A by {g(b)} =
C ∩ f−1(b) where C ⊂ A =

⋃
b∈B f

−1(b) is a set such that C ∩ f−1(b) contains exactly one point for each
b ∈ B.
(2) =⇒ (3): Define c to be J →

∐
Aj

∇−→
⋃
Aj where the first map is a right inverse to the function∐

j∈J Aj → J taking Aj to j for all j ∈ J .
(3) ⇐⇒ (4): By definition, the product is the set of choice functions.
(3) =⇒ (1): Let A be a nonempty set of nonempty sets. Put C = c(A) where c : A →

⋃
A∈AA is a choice

function. �

c : J →
∐
j∈J Aj

-
J

⋃
j∈J Aj 6

•

•

•

•

•
•

•

•

Figure 2. A choice function

Here is a special, but often used, case. Let A be any nonempty set and P ′(A) = P(A)−{∅} the set of
nonempty subsets of A. Then there exists (1.28.(3)) a choice function c : P ′(A)→ A such that c(B) ∈ B
for any nonempty B ⊂ A. (The choice function selects an element in each nonempty subset of A.) If A
is the set R of real numbers, then the Axiom of Choice is a permit to work with a function that to every
nonempty subset of R associates an element of that subset. How would you write down such a function?

4. Finite and infinite sets

1.29. Definition. A set A is finite if Sn+1 ∼ A for some n ∈ Z+. A set is infinite if it is not finite.

We write X ∼ Y if there is a bijection between the two sets X and Y .

1.30. Lemma. Let n ∈ Z+ and let B be a proper subset of Sn+1.
(1) It is impossible to map B onto Sn+1.
(2) Sm+1 ∼ B for some m < n.

Proof. Both statements are proved by induction.
(1) If n = 1, then S2 = {1} and B = ∅ so the assertion is true in this case. Assume it is true for some
n ∈ Z+. Consider a proper subset B of Sn+1+1. Suppose that there exists a surjection f : B → Sn+1+1.
By permuting the elements of B and Sn+1+1 if necessary, we can assume that f(n + 1) = n + 1. Then
B − f−1(n + 1) is a proper subset of Sn+1 which is mapped onto Sn+1 by f . But that is impossible by
induction hypothesis.
(2) If n = 1, then S2 = {1} and B = ∅ so S1 ∼ B. Assume the assertion is true for some n ∈ Z+.
Consider a proper subset B of Sn+1+1. By permuting the elements of Sn+1+1 if necessary, we can assume
that n+ 1 6∈ B so that B is a subset of Sn+1. If B = Sn+1, then B ∼ Sn+1, of course. Otherwise, B is a
proper subset of Sn+1 and then Sm+1 ∼ B for some m < n < n+ 1 by induction hypothesis. �
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1.31. Corollary. Let A be a finite set.
(1) If Sm+1 ∼ A ∼ Sn+1, then m = n.
(2) Any subset of A is finite.

Proof. (1) Suppose that m 6= n. We may then assume that m < n. But then Sm+1 is a proper
subset of Sn+1 which can be mapped onto Sn+1. That is not possible.
(2) Since this is true for the model finite set Sn+1, it is true for all finite sets. �

We have just learned that if A is finite then Sn+1 ∼ A for a unique n ∈ Z+. This n is called the
cardinality of A and it is denoted cardA or |A|. We also learned that if B ⊂ A then B is finite, |B| ≤ |A|,
and

(1.32) |B| < |A| ⇐⇒ B ( A

which is often called the ‘pidgeon-hole principle’.

1.33. Theorem (Characterization of finite sets). Let A be a set. The following statements are
equivalent

(1) A is finite
(2) There exists a surjection Sn+1 → A for some n ∈ Z+

(3) There exists an injection A→ Sn+1 for some n ∈ Z+

Proof. (1) =⇒ (2): There even exists a bijection Sn+1 → A.
(2) ⇐⇒ (3): 1.4.(2)
(3) =⇒ (1): If there exists an injection A→ Sn+1, then there exists a bijection between A and a subset
of Sn+1. But we have just seen that all subsets finite sets are finite. �

1.34. Corollary (Hereditary properties of finite sets).
(1) Subsets of finite sets are finite.
(2) Images of finite sets are finite.
(3) Finite unions of finite sets are finite.
(4) Finite Cartesian products of finite sets are finite.

Proof. (1) Proved already in 1.31.
(2) Sn+1 � A � B.
(3) To see that the union of two finite sets is finite, it is enough to show Sm+1 q Sn+1 is finite (for the
union of any two finite sets is an image of this set). But it is immediate that Sm+n+1 ∼ Sm+1 q Sn+1.
Induction now shows that A1 ∪ · · · ∪An is finite when A1, . . . , An are finitely many finite sets.
(4) Let A and B be finite. Since A × B =

∐
a∈AB is the union of finitely many finite sets, it is finite.

Induction now shows that A1 × · · · ×An is finite when A1, . . . , An are finitely many finite sets. �

Are all sets finite? No!

1.35. Corollary. Z+ is infinite.

Proof. There is a surjective map of the proper subset Z+ − {1} onto Z+. �

1.36. Theorem (Characterization of infinite sets). Let A be a set. The following are equivalent:
(1) A is infinite
(2) There exists an injective map Z+ → A
(3) There exists a surjective map A→ Z+

(4) A is in bijection with a proper subset of itself

Proof. (1) =⇒ (2): Let c : P ′(A)→ A be a choice function. Define h : Z+ → A recursively by

h(1) = c(A)

h(i) = c(A− {h(1), . . . , h(i− 1)}), i > 1

Then h is injective (if i < j then h(j) ∈ A− {h(1), . . . , h(i), . . . , h(j − 1)} so h(i) 6= h(j)).
(2) ⇐⇒ (3): 1.4.(2)
(2) =⇒ (4): We view Z+ as a subset of A. Then A = (A − Z+) ∪ Z+ is in bijection with the proper
subset A− {1} = (A− Z+) ∪ (Z+ − {1}).
(4) =⇒ (1): This is 1.30. �

Here we applied the Principle of Recursive Definitions (1.24) to ρ(Sn
f−→ Z+) = c(A− f(Sn)).
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5. Countable and uncountable sets

1.37. Definition. A set C is countably infinite if Z+ ∼ C. It is countable if it is finite or countably
infinite. It is uncountable if it is not countable.

1.38. Lemma. Any subset of Z+ is either finite or countably infinite (in bijection with Z+).

Proof. Let C ⊂ Z+ be an infinite set of positive integers. We show (the stronger statement) that
C has the order type of Z+. Define a function h : Z+ → C recursively (1.24) by

h(1) = minC

h(i) = min(C − {h(1), . . . , h(i− 1)}), i > 1

using 1.20. Note that C − {h(1), . . . , h(i− 1)} is nonempty since C is infinite (1.33). We claim that h is
bijective.
h is order preserving: If i < j, then

h(i) = min(C − {h(1), . . . , h(i− 1)}) < min(C − {h(1), . . . , h(i− 1), . . . , h(j − 1)}) = h(j)

because C − {h(1), . . . , h(i− 1)} ) C − {h(1), . . . , h(i− 1), . . . , h(j − 1)}.
h is surjective: Let c ∈ C. We must find a positive integer m such that c = h(m). Our only hope is

m = min{n ∈ Z+ | h(n) ≥ c}

(Note that this has a meaning since the set {n ∈ Z+ | h(n) ≥ c} is nonempty as we can not inject the
infinite set Z+ into the finite set {1, . . . , c − 1} = Sc (1.31). Note also that again we use 1.20.) By
definition of m,

h(m) ≥ c and h(n) ≥ c⇒ n ≥ m
The last of these two properties is equivalent to n < m ⇒ h(n) < c, so c 6∈ {h(1), . . . , h(m − 1)}, or
c ∈ C − {h(1), . . . , h(m− 1)}, and therefore

h(m) = min(C − {h(1), . . . , h(m− 1)}) ≤ c

by definition of h. Thus h(m) = c. �

Here we applied the Principle of Recursive Definitions (1.24) to ρ(Sn
f−→ C) = min(C − f(Sn)).

1.39. Theorem (Characterization of countable sets). Let A be a set. The following statements are
equivalent

(1) A is countable
(2) There exists a surjection Z+ → A
(3) There exists an injection A→ Z+

Proof. If A is finite, the theorem is true, so we assume that A is countably infinite.
(1) =⇒ (2): Clear.
(2) ⇐⇒ (3): 1.4.(2)
(3) =⇒ (1): We may as well assume that A ⊂ Z+. Since A is assumed to infinite, A is countably infinite
by Lemma 1.38. �

1.40. Example. Z+ is obviously infinitely countable. The map f : Z+ × Z+ → Z+ given by f(m,n) =
2m3n is injective by uniqueness of prime factorizations. The map g : Z+ × Z+ → Q+ given by g(m,n) =
m
n , is surjective. Thus Z+ × Z+ and Q+ are infinitely countable.

1.41. Corollary (Hereditary properties of countable sets).
(1) A subset of a countable set is countable
(2) The image of a countable set is countable.
(3) A countable union of countable sets is countable (assuming AC).3

(4) A finite product of countable sets is countable.

Proof. (1) B � A � Z+.
(2) Z+ � A � B.
(3) Let {Aj}j∈J be an indexed family of sets where J is countable and each set Aj is countable. It is
enough to show that

∐
Aj is countable. We leave the case where the index set J is finite as an exercise

3In set theory without AC, R is a countable union of countable sets [12, p 228]
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and consider only the case where J is infinite. Then we may as well assume that J = Z+. Choose (!) for
each n ∈ Z+ an injective map fn : An → Z+. Then we have injective maps∐

An

‘
fn−−−→
∐

Z+ = Z+ × Z+
(1.40)−−−−→ Z+

so
∐
An is countable.

(4) If A and B are countable, so is A × B =
∐
a∈AB as we have just seen. Now use induction to show

that if A1, . . . , An are countable, so is A1 × · · · ×An. �

You may think that a countable product of countable sets is countable or indeed that all sets are
finite or countable – but that’s false.

1.42. Theorem. Let A be any set.
(1) There is no injective map P(A)→ A
(2) There is no surjective map A→ P(A)

Proof. (Cantor’s diagonal argument.) It is a general fact (1.4.(2)) that (1) ⇐⇒ (2). Thus it
suffices to show (2). Let g : A→ P(A) be any function. Then

{a ∈ A | a 6∈ g(a)} ∈ P(A)

is not in the image of g. Because if this set were of the form g(b) for some b ∈ A, then we’d have

b ∈ g(b) ⇐⇒ b 6∈ g(b)  

�

1.43. Corollary. The set P(Z+) = map(Z+, {0, 1}) =
∏
n∈Z+

{0, 1} = {0, 1}ω is uncountable.

Russel’s paradox also exploits Cantor’s diagonal argument.
We have seen (1.38) that any subset of Z+ is either finite or in bijection with Z+. What about

subsets of R?

1.44. Conjecture (Cantor’s Continuum Hypothesis, CH). Any subset of R is either countable or
in bijection with R.

CH is independent of the ZFC axioms for set theory in that if ZFC is consistent then both ZFC+CH
(Gödel 1950) and ZFC+¬CH (Cohen 1963) are consistent theories [12, VII.4.26] [4]. Our axioms are not
adequate to settle the CH.

Look up the generalized continuum hypothesis (GCH) [Ex 11.8] (due to Hausdorff) somewhere [15,
16]. It is not customary to assume the GCH; if you do, the AC becomes a theorem.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Cantor.html
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6. Well-ordered sets

We have seen that all nonempty subsets of (Z+, <) have a smallest element and we have used this
property in quite a few places so there is reason to suspect that this is an important property in general.
This is the reason for the following definition. You may think of well-ordered sets as some kind of
generalized versions of Z+.

1.45. Definition. A set A with a linear order < is well-ordered if any nonempty subset has a smallest
element.

Any well-ordered set has a smallest element. Any element a ∈ A (but the largest element, if there is
one) in a well-ordered set has an immediate successor a+, the smallest successor. (And any element (but
the smallest) has an immediate predecessor?) A well-ordered set can not contain an infinite descending
chain x1 > x2 > · · · , in fact, a linearly ordered set is well-ordered if and only if it does not contain a
copy of the negative integers Z− [Ex 10.4].

Let (A,<) be a well-ordered set and α an element of A. The subset of predecessors of α,

Sα(A) = Sα = (−∞, α) = {a ∈ A | a < α}

is called the section of A by α.
The induction principle and the principle of recursive definitions apply not only to Z+ but to any

well-ordered set.

1.46. Theorem (Principle of Transfinite Induction). (Cf 1.22) Let (A,<) be a well-ordered set and
J ⊂ A a subset such that

∀α ∈ A : Sα ⊂ J =⇒ α ∈ J

Then J = A.

Proof. Formally identical to the proof of 1.22. �

1.47. Theorem (Principle of Transfinite Recursive Definitions). Let (A,<) be a well-ordered set. For
any set B and any function

ρ :
⋃
{map(Sα, B) | α ∈ A} → B

there exists a unique function h : A→ B such that h(α) = ρ(h|Sα) for all α ∈ A.

1.48. Proposition (Hereditary properties of well-ordered sets).

(1) A subset of a well-ordered set is well-ordered.
(2) The coproduct of any well-ordered family of well-ordered sets is well-ordered [Ex 10.8].
(3) The product of any finite family of well-ordered sets is well-ordered.

Proof. (1) Clear.
(2) Let J be a well-ordered set and {Aj}j∈J a family of well-ordered sets indexed by J . For i, j ∈ J
and x ∈ Ai, y ∈ Aj , define

(i, x) < (j, y) def⇐⇒ i < j or (i = j and x < y)

and convince yourself that this is a well-ordering.
(3) If (A,<) and (B,<) well-ordered then A × B =

∐
a∈AB is well-ordered. Now use induction to

show that the product A1 × · · · ×An of finitely many well-ordered sets A1, . . . , An is well-ordered.
�

If C a nonempty subset of A × B then minC = (c1,minπ2(C ∩ π−1
1 (c1))) where c1 = minπ1(C) is

the smallest element of C.

1.49. Example. (1) The positive integers (Z+, <) is a well-ordered set.
(2) Z and R are not well-ordered sets.
(3) Any section Sn+1 = {1, 2, . . . , n} of Z+ is well-ordered (1.48.(1)).
(4) The product Sn+1×Z+ is well-ordered (1.48.(3)). The finite products Zn+ = Z+×Z+ · · · ×Z+ are
well-ordered (1.48.(3)).

(5) The infinite product {0, 1}ω is not well-ordered for it contains the infinite descending chain (1, 0, 0, 0, . . .) >
(0, 1, 0, 0, . . .) > (0, 0, 1, 0, . . .) > · · · .
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(6) The set Sω = [1, ω] = Z+ q {ω} is well-ordered (1.48.(2)). It has ω as its largest element. The
section Sω = [1, ω) = Z+ is countably infinite but any other section is finite. Any finite subset A of
[1, ω) has an upper bound because the set of non-upper bounds

{x ∈ [1, ω) | ∃a ∈ A : x < a} =
⋃
a∈A

Sa

is finite (1.34.(3)) but [1, ω) is infinite. Sω has the same order type as the interval [1 × 1, 2 × 1] in
Z+ × Z+.
Which of these well-ordereds have the same order type [Ex 10.3]? Draw pictures of examples of

well-ordered sets.

We can classify completely all finite well-ordered sets.

1.50. Theorem (Finite order types). [Ex 6.4] Any finite linearly ordered set A of cardinality n has
the order type of (Sn+1, <); in particular, it is well-ordered and it has a largest element.

Proof. Define h : Sn+1 → A recursively by h(1) = minA and

h(i) = min(A− {h(1), . . . , h(i− 1)}, i > 1

Then h is order preserving. In particular, h is injective and hence bijective (by the pigeon hole principle
(1.32)) since the two sets have the same cardinality. �

Can you find an explicit order preserving bijection Sm+1 × Sn+1 → Sm+n+1?
So there is just one order type of a given finite cardinality n. There are many countably infinite

well-ordered sets (1.49). Is there an uncountable well-ordered set? Our examples, R and {0, 1}ω, of
uncountable sets are not well-ordered (1.49.(2), 1.49.(5)).

1.51. Theorem (Well-ordering theorem). (Zermelo 1904) Any set can be well-ordered.

We focus on the minimal criminal, the minimal uncountable well-ordered set. (It may help to look at
1.49.(6) again.)

1.52. Lemma. There exists a well-ordered set SΩ = [0,Ω] with a smallest element, 0, and a largest
element, Ω, such that:

(1) The section SΩ = [0,Ω) by Ω is uncountable but any other section, Sα = [0, α) for α < Ω, is
countable.

(2) Any countable subset of SΩ = [0,Ω) has an upper bound in SΩ = [0,Ω)

Proof. (Cf 1.49.(6)) Take any uncountable well-ordered set A (1.51). Append a greatest element to
A. Call the result A again. Now A has at least one uncountable section. Let Ω be the smallest element
of A such that the section by this element is uncountable, that is Ω = min{α ∈ A | Sα is uncountable}.
Put SΩ = [0,Ω] where 0 is the smallest element of A. This well-ordered set satisfies (1) and (2). Let C
be a countable subset of SΩ = [0,Ω). We want to show that it has an upper bound. We consider the set
of elements of SΩ that are not upper bounds, i.e

{x ∈ SΩ | x is not an upper bound for C} = {x ∈ SΩ | ∃c ∈ C : x < c} =

countable︷ ︸︸ ︷⋃
c∈C

Sc (
uncountable︷︸︸︷

SΩ

This set of not upper bounds is countable for it is a countable union of countable sets (1.41.(4)). But SΩ

is uncountable, so the set of not upper bounds is a proper subset. �

See [SupplExI : 8] for an explicit construction of a well-ordered uncountable set. Z+ is the well-
ordered set of all finite (nonzero) order types and SΩ is the well-ordered set of all countable (nonzero)
order types. See [Ex 10.6] for further properties of SΩ.

Recall that the ordered set Z+ × [0, 1) is a linear continuum of the same order type as [1,∞) ⊂ R.
What happens if we replace Z+ by SΩ [Ex 24.6, 24.12]?

7. Partially ordered sets, The Maximum Principle and Zorn’s lemma

If we do not insist on comparability in our order relation (Definition 1.12) we obtain a partial order:

1.53. Definition. A strict partial order on a set A is a non-reflexive and transitive relation ≺⊂ A×A:
(1) a ≺ a holds for no a ∈ A
(2) a ≺ b and b ≺ c implies a ≺ c.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Zermelo.html
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A partially ordered set (a poset, for short) is a set with a strict partial order. We do not require
that any two elements can be compared. For instance, power sets are strictly partially ordered by strict
inclusion ( (in fact, it is good idea to read ≺ as ”is contained in”). Here is an example of a finite poset:
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1.54. Definition. Let (A,≺) be a set with a strict partial order and m an element of A.
• m is maximal if it has no successors, ∀a ∈ A : m � a =⇒ m = a
• m is an upper bound for B ⊂ A if all elements of B precedes or equals m, ∀b ∈ B : b � m.

In the above example, the elements A51 and A52 are maximal because they have no successors. The
element A51, but not the element A452, is an upper bound for the set {A33, A42}

1.55. Theorem (Hausdorff’s Maximum Principle). Any linearly ordered subset of a poset is contained
in a maximal linearly ordered subset.

Proof. We shall only consider the case where the linearly ordered subset is empty where the state-
ment is that any poset contains maximal linearly ordered subsets. As a special case, suppose that the
poset is infinitely countable. We may as well assume that the poset is Z+ with some partial order ≺.
Define h : Z+ → {0, 1} recursively by h(1) = 0 and

h(i) =

{
0 {j < i|h(j) = 0} ∪ {i} is linearly ordered wrt ≺
1 otherwise

for i > 0. Then H = h−1(0) is a maximal linearly ordered subset.
For the proof in the general case, let (A,<) be a poset, well-order A (1.51), apply the Principle of

Transfinite Recursion (1.47) to the function

ρ(Sα
f−→ {0, 1}) =

{
0 f−1(0) ∪ {α} is a linearly ordered subset of A
1 otherwise

and get a function h : A→ {0, 1}. �

1.56. Theorem (Zorn’s lemma). Let (A,<) be a poset. Suppose that all linearly ordered subsets of
A have upper bounds. Then any linearly ordered subset is bounded from above by a maximal element. In
particular, for any element a of A there is a maximal element m of A such that a � m.

Proof. Let H ⊂ A be a maximal linearly ordered subset. According to Hausdorff’s Maximum
Principle, we may assume that H is maximal. By hypothesis, H has an upper bound m, i.e. x � m for
all x ∈ H. By maximality of H, m must be in H, and there can be no element in A greater than m.
(Suppose that m ≺ d for some d. Then x � m ≺ d for all elements of H so H ∪ {d} is linearly ordered,
contradicting maximality of H.) �

We shall later use Zorn’s lemma to prove Tychonoff’s theorem (2.149) that a product of compact
spaces is compact. In fact, The Axiom of Choice, Zermelo’s Well-ordering theorem, Hausdorff’s maximum
principle, Zorn’s lemma, and Tychonoff’s theorem are equivalent.

Here are two typical applications. Recall that a basis for a vector space over a field is a maximal
independent subset and that a maximal ideal in a ring is a maximal proper ideal.

1.57. Theorem. Any linearly independent subset of a vector space is contained in a basis.

Proof. Apply Zorn’s lemma to the poset of independent subsets of the vector space. Any linearly
ordered set of independent subsets has an upper bound, namely its union. �

1.58. Theorem. Any proper ideal of a ring is contained in a maximal ideal.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Cantor.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Zorn.html
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Proof. Apply Zorn’s lemma to the poset of proper ideals. Any linearly ordered set of proper ideals
has an upper bound, namely its union. �

As a corollary of (1.57) we see that R and R2 are isomorphic as vector spaces over Q.
Other authors prefer to work with partial orders instead of strict partial orders.

1.59. Definition. Let A be a set. A relation � on A is said to be a partial order precisely when
it is symmetric (that is a � a for all a in A), transitive (that is a � b and b � c implies a � c), and
anti-symmetric (that is a � b and b � a implies a = b).

> SubgroupLattice(AlternatingGroup(5));

Partially ordered set of subgroup classes
----------------------------------------------

[1] Order 1 Length 1 Maximal Subgroups:
---
[2] Order 2 Length 15 Maximal Subgroups: 1
[3] Order 3 Length 10 Maximal Subgroups: 1
[4] Order 5 Length 6 Maximal Subgroups: 1
---
[5] Order 4 Length 5 Maximal Subgroups: 2
[6] Order 6 Length 10 Maximal Subgroups: 2 3
[7] Order 10 Length 6 Maximal Subgroups: 2 4
---
[8] Order 12 Length 5 Maximal Subgroups: 3 5
---
[9] Order 60 Length 1 Maximal Subgroups: 6 7 8

Table 1. The poset of subgroups of the alternating group A5





CHAPTER 2

Topological spaces and continuous maps

1. Topological spaces

What does it mean that a map f : X → Y between two sets is continuous? To answer this question,
and much more, we equip sets with topologies.

2.1. Definition. Let X be a set. A topology on X is a set T ⊂ P(X) of subsets of X, called open
sets, such that

(1) ∅ and X are open
(2) The intersection of finitely many open sets is open
(3) Any union of open sets is open

A topological space is a set X together with a topology T on X.

2.2. Example (Examples of topologies). (1) In the trivial topology T = {∅, X}, only two subsets
are open.

(2) In the discrete topology T = P(X), all subsets are open.
(3) In the particular point topology , the open sets are ∅, X and all subsets containing a particular point
x ∈ X. For instance, the Sierpinski space is the set X = {0, 1} with the particular point topology for
the point 0. The open sets are T = {∅, {0}, X}.

(4) In the finite complement topology (or cofinite topology), the open sets are ∅ and X and all subsets
with a finite complement.

(5) The standard topology on the real line R is T = {unions of open intervals}.
(6) More generally, suppose that (X, d) is a metric space. The open r-ball centered at x ∈ X is the
set Bd(x, r) = {y ∈ X | d(x, y) < r} of points within distance r > 0 from x. The metric topology on
X is the collection Td = {unions of open balls}. The open sets of the topological space (X, Td) and
the open sets in the metric space (X, d) are the same. (See §.8 for more on metric topologies.)
The Sierpinski topology and the finite complement topology on an infinite set are not metric topolo-

gies.

Topologies on X are partially ordered by inclusion. For instance, the finite complement topology
(2.2.(4)) on R is contained in the standard topology (2.2.(5), and the indiscrete topology (2.2.(1)) on
{0, 1} is contained in the Sierpinski topology (2.2.(3)) is contained in the discrete topology (2.2.(2)).

2.3. Definition (Comparison of topologies). Let T and T ′ be two topologies on X.

T is finer than T ′

T ′ is coarser than T

}
def⇐⇒ T ⊃ T ′

The finest topology is the topology with the most opens sets, the coarsest topology is the one with
fewest open sets. (Think of sandpaper!) The discrete topology is finer and the indiscrete topology coarser
than any other topology: P(X) ⊃ T ⊃ {∅, X}. Of course, two topologies may also be incomparable.

2.4. Definition. A neighborhood of a point x ∈ X is an open set containing x. A neighborhood of
a set A ⊂ X is an open set containing A.

2.5. Subbasis and basis for a topology. In a metric topology (2.2.(6)) the open sets are unions
of balls. This is a special case of a topology basis. Remember that, in a metric topology, any point is
contained in an open ball and the intersection of two open balls is a union of open balls.

2.6. Definition (Basis and subbasis). A topology basis is a set B ⊂ P(X) of subsets of X, called
basis sets, such that

(1) Any point of X lies in a basis set, ie X =
⋃
B.

(2) The intersection of any two basis sets is a union of basis sets.
A topology subbasis is a set S ⊂ P(X) of subsets of X, called subbasis sets, such that

23
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(1) Any point of X lies in a subasis set, ie X =
⋃
S

If B is a topology basis then the set of subsets of X

TB = {unions of basis sets}
is called the topology generated by B. Note that TB is a topology, the coarsests topology in which the
basis sets are open.

If S is a topology subbasis then the set of subsets of X

TS = {unions of finite intersections of subbasis sets}
is called the topology generated by S. Note that TS is a topology, the coarsests topology in which the
subbasis sets are open. (Use the distributive laws [§1] for ∪ and ∩.) The set

(2.7) BS = {Finite intersections of S-sets}
is a topology basis generating the same topology as the subbasis: TBS = TS .

A topology is a topology basis is a topology subbasis.
Given a topology T and a topology basis B, we say that B a basis for T if B generates T , ie TB = T .

Given a topology T and a topology subbasis S, we say that S a subbasis for T if S generates T , ie
TS = T .

2.8. Proposition (Finding a (sub)basis for a given topology). The topology basis B is a basis for
the topology T if and only if

(1) the basis sets are open, and,
(2) all open sets are unions of basis sets

The subbasis S is a subbasis for the topology T if and only if
(1) the subbasis sets are open, and,
(2) all open sets are unions of finite intersections of subbasis sets

2.9. Example. (1) The set of all open rays S = {(−∞, b) | b ∈ R} ∪ {(a,+∞) | a ∈ R} is a
subbasis and the set B = {(a, b) | a, b ∈ R, a < b} of all open intervals is a basis for the standard
topology on R (2.2.(5)).

(2) The set of all open balls is a basis for the metric topology on a metric space (2.2.(6)).

How can we compare topologies given by bases? How can we tell if two bases, or a subbasis and a
basis, generate the same topology? (Two topologies, bases or subbases are said to be equivalent if they
generate the same topology.)

2.10. Lemma (Comparison). Let B and B′ be two bases and S a subbasis.
(1)

TB ⊂ TB′ ⇐⇒ B ⊂ TB′ ⇐⇒ All B-sets are open in TB′
(2)

TB = TB′ ⇐⇒

{
All B-sets are open in TB′
All B′-sets are open in TB

}
(3)

TB = TS ⇐⇒
{All B-sets are open in TS

All S-sets are open in TB

}
Proof. (1) is obvious since TB is the coarsest topology containing B. Item (2) is immediate from (1).

Item (3) is proved in the same way since TB = TS iff TB ⊂ TS and TB ⊃ TS iff B ⊂ TS and TB ⊃ S. �

2.11. Example. [Topologies on R] We consider three topologies on R:
R: The standard topology with basis the open intervals (a, b).
R`: The right half-open interval topology with basis the right half-open intervals [a, b).
RK : The K-topology with basis {(a, b)} ∪ {(a, b)−K} where K = {1, 1

2 ,
1
3 ,

1
4 , . . .}.

The right half-open interval topology is strictly finer than the standard topology because any open interval
is a union of half-open intervals but not conversely (2.10) ((a, b) =

⋃
a<x<b[x, b), and [0, 1) is open in R`

but not in R; an open interval containing 0 is not a subset of [0, 1)). The K-topology is strictly finer
than the standard topology because its basis contains the standard basis and R−K is open in RK but
not in R (an open interval containing 0 is not a subset of R −K). The topologies R` and RK are not
comparable [Ex 13.6].
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2.12. Example. (1) In a metric space, the set B = {B(x, r) | x ∈ X, r > 0} of open balls is (by
definition) a basis for the metric topology Td. The collection of open balls of radius 1

n , n ∈ Z+, is an
equivalent topology basis for Td.

(2) The collection of rectangular regions (a1, b1)×(a2, b2) in the plane R2 is a topology basis equivalent
to the standard basis of open balls B(a, r) = {x ∈ R2 | |x− a| < r}. you can always put a ball inside
a rectangle and a rectangle inside a ball.

(3) Let f : X → Y be any map. If T is a topology on Y with basis B or subbasis S , then the pull-back
f−1(T ) is a topology, the initial topology for f , on X with basis f−1(B) and subbasis f−1(S).

(4) More generally, let X be a set, {Yj} a collection of topological spaces, and fj : X → Yj , j ∈ J , a set
of maps. Let Tj be the topology on Yj , Bj a basis and Sj a subbasis for all j ∈ J . Then

⋃
f−1
j (Tj),⋃

f−1
j (Bj),

⋃
f−1
j (Sj) are equivalent subbases on X. The topology they generate is called the initial

topology for the maps fj , j ∈ J .

2. Order topologies

We associate a topological space to any linearly ordered set and obtain a large supply of examples
of topological spaces. You may view the topological space as a means to study the ordered set, to find
invariants, or you may view this construction as a provider of interesting examples of topological spaces.

Let (X,<) be a linearly ordered set containing at least two points. The open rays in X are the
subsets

(−∞, b) = {x ∈ X | x < b}, (a,+∞) = {x ∈ X | a < x}
of X. The set S< of all open rays is clearly a subbasis (2.8) for a topology on X (just as in 2.9).

2.13. Definition. The order topology T< on the linearly ordered set X is the topology generated by
all open rays. A linearly ordered space is a linearly ordered set with the order topology.

The open intervals in X are the subsets of the form

(a, b) = (−∞, b) ∩ (a,+∞) = {x ∈ X | a < x < b}, a, b ∈ X, a < b.

2.14. Lemma (Basis for the order topology). Let (X,<) be a linearly ordered set.
(1) The union of all open rays and all open intervals is a basis for the order topology T<.
(2) If X has no smallest and no largest element, then the set {(a, b) | a, b ∈ X, a < b} of all open

intervals is a basis for the order topology.

Proof. We noted in (2.7) that BS<
= {Finite intersections of S<-sets} = S<∪{(a, b) | a, b ∈ X, a <

b} is a topology basis for the topology generated by the subbasis S<.
If X has a smallest element a0 then (−∞, b) = [a0, b) is open. If X has no smallest element, then

the open ray (−∞, b) =
⋃
a<c(a, c) is a union of open intervals and we do not need this open ray in the

basis. Similar remarks apply to the greatest element when it exists. �

2.15. Example. (1) The order topology on the ordered set (R, <) is the standard topology (2.9).
(2) The order topology on the ordered set R2 has as basis the collection of all open intervals (a1 ×
a2, b1 × b2). An equivalent basis (2.10) consists of the open intervals (a × b1, a × b2). The order
topology R2

< is strictly finer than the metric topology R2
d.

(3) The order topology on Z+ is the discrete topology because (−∞, n) ∩ (∞, n+ 1) = {n} is open.
(4) The order topology on Z+ ×Z+ is not discrete. Any open set that contains the element 2× 1 also
contains elements from {1} × Z+. Thus the set {1× 2} is not open.

(5) The order topology on Z× Z is discrete.
(6) Is the order topology on SΩ discrete?
(7) I2 = [0, 1]2 with the order topology is denoted I2

o and called the ordered square. The open sets
containing the point x× y ∈ I2

o look quite different depending on whether y ∈ {0, 1} or 0 < y < 1.

3. The product topology

Let (Xj)j∈J be an indexed family of topological spaces. Let πk :
∏
j∈J Xj → Xk be the projection

map. An open cylinder is a subset of the product space of the form

π−1
k (Uk), Uk ⊂ Xk open, k ∈ J.

The set π−1
k (Uk) consists of the points (xj) ∈

∏
Xj with kth coordinate in Uk. Alternatively, π−1

k (Uk)
consists of all choice functions c : J →

⋃
j∈J Uj such that c(k) ∈ Uk (Figure 2).
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2.16. Definition. The product topology on
∏
j∈J Xj is the topology with subbasis

SQ =
⋃
j∈J
{π−1

j (Uj) | Uj ⊂ Xj open}

consisting of all open cylinders or, equivalently, with basis (2.7)

BQ = {
∏
j∈J

Uj | Uj ⊂ Xj open and Uj = Xj for all but finitely many j ∈ J}

The product topology is the coarsest topology making all the projection maps πj :
∏
Xj → Xj , j ∈ J ,

continuous.
This becomes particularly simple when we consider finite products.

2.17. Lemma. Let X = X1 ×X2 × · · ·Xk be a finite Cartesian product. The collection

B = {U1 × U2 × · · · × Uk | U1 open in X1, U2 open in X2, . . . , Uk open in Xk}
of all products of open sets is a basis for the product topology.

2.18. Corollary. Suppose that Bj is a basis for the topology on Xj, j = 1, . . . , k. Then B1×· · ·×Bk
is a basis for the product topology on X1 × · · · ×Xk.

Proof. Note that B1 × · · · × Bk is indeed a basis. Compare it to the basis of 2.17 using 2.10. �

2.19. Products of linearly ordered spaces. When (X,<) and (Y,<) are linearly ordered sets, we
now have two topologies on the Cartesian product X ×Y : The product topology of the order topologies,
(X, T<) × (Y, T<), and the order topology of the product dictionary order, (X × Y, T<). These two
topologies are in general not identical or even comparable. It is difficult to imagine any general relation
between them since X< × Y< is essentially symmetric in X and Y whereas the dictionary order has no
such symmetry. But even when X = Y there does not seem to be a general pattern: The order topology
(Z+×Z+, T<) is coarser than the product topology (Z+, T<)×(Z+, T<) (which is discrete) (2.15.(4)–(5)).
On the other hand, the order topology (R×R, T<) is finer than the product topology (R, T<)× (R, T<)
which is the standard topology, see 2.15.(1)–(2) and [Ex 16.9].

2.20. Corollary (Cf [Ex 16.9]). Let (X,<) and (Y,<) be two linearly ordered sets. Suppose that Y
does not have a largest or a smallest element. Then the order topology (X × Y )< = Xd × Y< where Xd

is X with the discrete topology. This topology is finer than X< × Y<.

Proof. The equations

(−∞, a× b) =
⋃
x<a

{x} × Y ∪ {a} × (−∞, b), (a× b,+∞) = {a} × (b,+∞) ∪
⋃
x>a

{x} × Y

show that the order topology is coarser than the product of the discrete and the order topology. On the
other hand, the sets {x}× (c, d) is a basis for = Xd× Y< (2.14.(2), 2.18) and {x}× (c, d) = (x× c, x× d)
is open in the order topology since it is an open interval. �

The corollary shows that the order topology on X×Y does not yield anything new in case the second
factor is unbounded in both directions. As an example where this is not the case we have already seen
Z+ × Z+ and I2

o (2.15.(4), 2.15.(7)).

2.21. The coproduct topology. The coproduct topology on the coproduct
∐
Xj (Chapter 1.3)

is the finest topology making all the inclusion maps ιj : Xj →
∐
Xj , j ∈ J , continuous.

This means that
U ⊂

∐
j∈J

Xj is open ⇐⇒ ι−1
j (U) is open for all j ∈ J

Alternatively, the open sets of the coproduct
∐
Xj are the coproducts

∐
Uj of open set Uj ⊂ Xj .

4. The subspace topology

Let (X, T ) be a topological space and Y ⊂ X a subset. We make Y into a topological space.

2.22. Definition. The subspace topology on Y is the topology T⊂ = Y ∩ T = {Y ∩ U | U ∈ T }. A

subset V ⊂ Y is
{

open
closed

}
relative to Y if it is

{
open

closed

}
in T⊂.

It is immediate that T⊂ is indeed a topology.
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2.23. Lemma. If B is a basis for T , then Y ∩B = {Y ∩U | U ∈ B} is a basis for the subspace topology
Y ∩ T . If S is a subbasis for T , then Y ∩ S = {Y ∩ U | U ∈ S} is a subbasis for the subspace topology
Y ∩ T .

Proof. This is 2.12.(3) applied to the inclusion map A ↪→ X. �

2.24. Lemma. Assume that A ⊂ Y ⊂ X. Then

(1) A is
{

open
closed

}
in Y ⇐⇒ A = Y ∩ U for some

{
open

closed

}
set U in X

(2) If Y is
{

open
closed

}
then: A is

{
open

closed

}
in Y ⇐⇒ A is

{
open

closed

}
in X

Proof. (1) This is the definition of the subspace topology.
(2) Suppose that Y is open and that A ⊂ Y . Then

A open in Y ⇐⇒ A = Y ∩ U for some open U ⊂ X ⇐⇒ A open in X

in that A = A ∩ Y . Similarly, if Y is closed. �

The lemma says that an open subset of an open subset is open and that a closed subset of a closed
subset is closed.

The next theorem says that the subspace and the product space operations commute.

2.25. Theorem. Let Yj ⊂ Xj, j ∈ J . The subspace topology that
∏
Yj inherits from

∏
Xj is the

product topology of the subspace topologies on Yj.

Proof. The subspace topology on
∏
Yj has subbasis∏

Yj ∩ SQ
Xj

=
∏

Yj ∩
⋃
k∈j

{π−1
k (Uk)} =

⋃
k∈J

{
∏

Yj ∩ π−1
k (Uk)}, Uk ⊂ Xk open,

and the product topology on
∏
Yj has subbasis

SQ
Yj

=
⋃
k∈J

{π−1
k (Yk ∩ Uk)}, Uk ⊂ Xk open

These two subbases are identical for π−1
k (Yk ∩ Uk)

[8, Ex 2.2]
= π−1

k (Yk) ∩ π−1
k (Uk) = (

∏
Yj) ∩ π−1

k (Uk). �

2.26. Subspaces of linearly ordered spaces. When (X,<) is a linearly ordered set and Y ⊂ X
a subset we now have two topologies on Y . We can view Y as a subspace of the topological space X<

with the order topology or we can view Y as a sub-ordered set of X and give Y the order topology. Note
that these two topologies are not the same when X = R and Y = [0, 1) ∪ {2} ⊂ R: In the subspace
topology {2} is open in Y but {2} is not open in the order topology because Y has the order type of
[0, 1]. See 2.28 for more examples. The point is that

• Any open ray in Y is the intersection of Y with an open ray in X
• The intersection of Y with an open ray in X need not be an open ray in Y

However, if Y happens to be convex then open rays in Y are precisely Y intersected with open rays in
X.

2.27. Lemma (Y< ⊂ Y ∩X<). Let (X,<) be a linearly ordered set and Y ⊂ X a subset. The order
topology on Y is coarser than the subspace topology Y in general. If Y is convex, the two topologies on
Y are identical.

Proof. The order topology on Y has subbasis

S< = {Y ∩ (−∞, b) | b ∈ Y } ∪ {Y ∩ (a,∞) | a ∈ Y }
and the subspace topology on Y has subbasis

S⊂ = {Y ∩ (−∞, b) | b ∈ X} ∪ {Y ∩ (a,∞) | a ∈ X}
Clearly, S< ⊂ S⊂, so the order topology on Y is coarser than the subspace topology in general.

If Y is convex and b ∈ X − Y then b is either a lower or an upper bound for Y as we cannot have
y1 < b < y2 for two points y1 and y2 of Y . If b is a lower bound for Y , then Y ∩ (−∞, b) = ∅, and if b is
an upper bound for Y , then Y ∩ (−∞, b) = Y . Therefore also S⊂ ⊂ T< so that in fact T< = T⊂.

�

2.28. Example. (1) S2×1 = 1×Z+ ∪ {2× 1} = [1× 1, 2× 1] is a convex subset of Z+ ×Z+. The
subspace topology (2.15.(4)) is the same as the order topology.
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(2) The subset Z+×Z+ is not convex in Z×Z so we expect the subspace topology to be strictly finer
than the order topology. Indeed, the subspace topology that Z+×Z+ inherits from the discrete space
Z× Z is discrete but the order topology is not discrete (2.15.(4)–(5)).

(3) Consider X = R2 and Y = [0, 1]2 with order topologies. Y is not convex so we expect the subspace
topology to be strictly finer than the order topology. Indeed, the subspace topology on [0, 1]2, which
is [0, 1]d × [0, 1], is strictly finer than I2

o (2.15.(7)): The set

[0,
1
2

]× [0, 1] = ([0, 1]× [0, 1]) ∩ (−∞, 1
2
× 2)

is open in the subspace topology on Y but it is not open in the order topology on Y as any basis open
set (2.14) containing 1

2 × 1 also contains points with first coordinate > 1
2 .

(4) Consider X = R2 and Y = (0, 1)2 with order topologies. Y is not convex so we expect the subspace
topology to be strictly finer than the order topology. But it isn’t! The reason is that (0, 1) does not
have a greatest nor a smallest element (2.20).

(5) The subset Q of the linearly ordered set R is not convex but nevertheless the subspace topology
inherited from R is the order topology. Again, the reason seems to be that Q does not have a greatest
nor a smallest element.
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5. Closed sets and limit points

2.29. Definition. A subset of a topological space is closed if its complement is open.

2.30. Lemma. The closed subsets of a topological space X have these properties:
(1) ∅ and X are closed
(2) The union of finitely many closed sets is closed
(3) Any intersection of closed sets is closed.

Conversely, any set of subsets of X with these properties, are the closed sets for a topology.

2.31. Example. (1) [a, b] is closed in R, [a, b) is neither closed nor open, R is both closed and
open.

(2) Let X = [0, 1]∪ (2, 3). The subsets [0, 1] and (2, 3) of X are both closed and open (they are clopen)
as subsets of X.

(3) K = {1, 1
2 ,

1
3 , . . .} is not closed in R but it is closed in RK (2.11).

(4) R` is (2.11) the set of real numbers equipped with the topology generated by the basis sets [a, b)
of right half-open intervals. All sets that are (open) closed in the standard topology R are also
(open) closed in the finer topology R`. Sets of the form (−∞, a) =

⋃
x<a[x, a) = R − [a,∞),

[a, b) = (−∞, b) ∩ [a,∞), and [a,∞) =
⋃
a<x[a, x) = R− (−∞, a) are both open and closed. Sets of

the form (−∞, b] or [a, b] are closed (since they are closed in the standard topology) and not open
since they are not unions of basis sets. Sets of the form (a,∞) are open (since they are open in
standard topology) and not closed. Sets of the form (a, b] are neither open nor closed.

(5) Let X be a well-ordered set (§6). In the order topology (§2), sets of the form (a,∞) = [a+,∞) =
X − (−∞, a], (−∞, b] = (∞, b+) = X − (b,∞) and (a, b] = (a,∞) ∩ (−∞, b] are closed and open.
(Here, b+ denotes b if b is the largest element and the immediate successor of b if b is not the largest
element.)

(6) Let R be a ring and Spec(R) the set of prime ideals of R. (We adopt the convention that R itself
is not a prime ideal. The zero ideal is a prime ideal if R is a domain.) For any subset S of R let

V (S) = {a ∈ Spec(R) | a ⊃ S}
be the set of prime ideals containing S. Then ∅ = V (1), Spec(R) = V (0), V (S1) ∪ V (S2) = V (S1S2),
and

⋂
V (Si) = V (

⋃
Si). The Zariski topology on Spec(R) is the topology where the closed sets are the

sets V (S) for S ⊂ R. Thus the closed sets are intersections of the closed sets V (r) = {a ∈ Spec(R) |
a 3 r}, r ∈ R. The closed sets of Spec(Z) = {0} ∪ {p | p > 0 is prime} are intersections of the closed
sets V (0) = Spec(Z) and V (n) = {p | p|n}, 0 6= n ∈ Z, consisting of the prime divisors of n. The closed
sets of Spec(C[X]) = {(0)} ∪ {(X − a) | a ∈ C} are intersections of the closed sets V (0) = Spec(Z)
and V (P ) = {a ∈ C | P (a) = 0} consisting of the roots of the complex polynomial 0 6= P ∈ C[X].
The subspace topology on C ⊂ Spec(C[X]) is the finite complement topology (2.2.(4)).

2.32. Closure, interior, and boundary. We consider the largest open set contained in A and the
smallest closed set containing A.

2.33. Definition. The interior of A is the union of all open sets contained in A,

IntA =
⋃
{U ⊂ A | U open} = A◦,

the closure of A is the intersection of all closed sets containing A,

ClA =
⋂
{C ⊃ A | C closed} = A,

and the boundary of A is ∂A = A−A◦.

2.34. Proposition (Properties of interior and closure). Let A,B ⊂ X and let x ∈ X. Then
(1) x ∈ A◦ ⇐⇒ There exists a neighborhood U of x such that U ⊂ A
(2) X −A = (X −A)◦ and X −A◦ = X −A
(3) x ∈ A ⇐⇒ U ∩A 6= ∅ for all neighborhoods U of x
(4) x ∈ ∂A ⇐⇒ U ∩A 6= ∅ and U ∩ (X −A) 6= ∅ for all neighborhoods U of x
(5) A◦ ⊂ A ⊂ A
(6) A◦ is open, it is the largest open set contained in A, and A is open iff A◦ = A
(7) A is closed, it is the smallest closed set containing A, and A is closed iff A = A
(8) (A ∩B)◦ = A◦ ∩B◦, A ∪B = A ∪B, (A ∪B)◦ ⊃ A◦ ∪B◦, A ∩B ⊂ A ∩B,

(9) A ⊂ B =⇒
{

IntA ⊂ IntB
ClA ⊂ ClB
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(10) X = A◦ ∪ ∂A ∪ (X −A) is a disjoint union.

Proof. The first assertion is clear as A◦ is the union of the open sets contained in A. The second
claim follows from:

X −A = X −
⋂
{C ⊃ A | C closed} =

⋃
{X − C ⊂ X −A | X − C open}

=
⋃
{U ⊂ X −A | U open} = (X −A)◦

or one can simply say that X − A is the largest open subset of X − A since A is the smallest closed
superset of A. The third assertion is just a reformulation of the first one,

x 6∈ A ⇐⇒ x ∈ X −A ⇐⇒ x ∈ (X −A)◦ ⇐⇒ x has a neighborhood disjoint from A,

since X −A = (X −A)◦. The remaining facts are easily proved. �

2.35. Proposition (Closure with respect to subspace). Let A ⊂ Y ⊂ X. Then
(1) A is closed in Y ⇐⇒ A = Y ∩ C for some closed set C in X
(2) ClY (A) = Y ∩A.
(3) If Y is closed, then ClY (A) = A.

Proof. (1) This is 2.24.1.
(2) The set ClY (A) is the intersection of all relatively closed sets containing A. The relatively closed sets
are the sets of the form Y ∩ C where C is closed in X. This means that

ClY (A) =
⋂
{Y ∩ C | C ⊃ A,C closed} = Y ∩

⋂
{C | C ⊃ A,C closed} = Y ∩A

by a direct computation.
(3) As Y is closed and A ⊂ Y , also A ⊂ Y so that ClY (A) = Y ∩A = A. �

If A ⊂ Y ⊂ X, Y ∩ Int(A) ⊂ IntY (A) for Y ∩ Int(A) is a relatively open set contained in A. These
two sets are equal if Y is open but they are distinct in general (consider A = [0, 1) ⊂ [0, 1] = Y ).

2.36. Definition. A subset A ⊂ X is said to be dense if A = X, or, equivalently, if every open
subset of X contains a point of A.

2.37. Proposition. Let A be a dense and U an open subset of X. Then A ∩ U = U .

Proof. The inclusion A ∩ U ⊂ U is general. For the other inclusion, consider a point x ∈ U . Let V
be any neighborhood of x. Then V ∩ (A∩U) = (V ∩U)∩A is not empty since V ∩U is a neighborhood
of x and A is dense. But this says that x is in the closure of A ∩ U . �

2.38. Limit points and isolated points. Let X be a topological space and A a subset of X.

2.39. Definition (Limit points, isolated points). A point x ∈ X is a limit point of A if U∩(A−{x}) 6=
∅ for all neighborhoods U of x. The set of limit points1 of A is denoted A′. A point a ∈ A is an isolated
point if a has a neighborhood that intersects A only in {a}.

Equivalently, x ∈ X is a limit point of A iff x ∈ A− {x}, and a ∈ A is an isolated point of A iff {a}
is open in A. These two concepts are almost each others opposite:

x is not a limit point of A ⇐⇒ x has a neighborhood U such that U ∩ (A ∪ {x}) = {x}
⇐⇒ x is an isolated point of A ∪ {x}

2.40. Proposition. Let A be a subset of X and A′ the set of limit points of A. Then A ∪ A′ = A
and A ∩A′ = {a ∈ A | a is not an isolated point of A} so that

A ⊃ A′ ⇐⇒ A is closed

A ⊂ A′ ⇐⇒ A has no isolated points

A ∩A′ = ∅ ⇐⇒ A is discrete

A′ = ∅ ⇐⇒ A is closed and discrete

If B ⊂ A then B′ ⊂ A′.

1The set of limit points of A is sometimes denotes Ad and called the derived set of A
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Proof. It is clear that all limit points of A are in A, so that A ∪A′ ⊂ A, and that all points in the
closure of A that are not in A are limit points,

A−A = {x ∈ X −A | all neighborhoods of x meet A} ⊂ A′ ⊂ A,
so that A = A ∪ (A − A) ⊂ A ∪ A′. This shows that A ∪ A′ = A. From the above discussion we have
that the set of limit points in A, A ∩ A′ = A − (A − A′), is the set of non-isolated points of A. If
A∩A′ = ∅ then all all points of A are isolated so that the subspace A has the discrete topology. We have
A′ = ∅ ⇐⇒ A ⊃ A′, A ∩A′ = ∅ ⇐⇒ A is closed and discrete. �

2.41. Example. (1) Q = R = R−Q (R−Q contains (Q−{0})
√

2). Cl Int Q = ∅, Int Cl Q = R.
(2) Let Cr ⊂ R2 be the circle with center (0, r) and radius r > 0. Then⋃

n∈Z+

C1/n =
⋃
n∈Z+

C1/n,
⋃
n∈Z+

Cn = (R× {0}) ∪
⋃
n∈Z+

Cn

The first set of decreasing circles (known as the Hawaiian Earring [8, Exmp 1 p 436]) is closed because
it is also the intersection of a collection (which collection?) of closed sets.

(3) The set of limit points of K = { 1
n | n ∈ Z+} is {0} in R and R` and ∅ in RK .

(4) LetX be a linearly ordered space (2.13). Closed intervals [a, b] are closed because their complements
X − [a, b] = (−∞, a)∪ (b,∞) are open. Therefore the closure of an interval of the form [a, b) is either
[a, b) or [a, b]. If b has an immediate predecessor b− then [a, b) = [a, b−] is closed so that [a, b) = [a, b).
Otherwise, [a, b) = [a, b] because any neighborhood of b contains an interval of the form (c, b] for some
c < b and [a, b) ∩ (c, b], which equals [a, b] or (c, b], is not empty.

2.42. Convergence, the Hausdorff property, and the T1-axiom. Let xn, n ∈ Z+, be a se-
quence of points in X, ie a map Z+ → X.

2.43. Definition. The sequence xn converges to the point x ∈ X if for any neighborhood U of x
there exists some N such that xn ∈ U for all n > N .

If a sequence converges in some topology on X it also converges in any coarser topology but not
necessarily in a finer topology.

2.44. Example. In the Sierpinski space X = {0, 1} (2.2.(3)), the sequence 0, 0, · · · converges to 0
and to 1. In R with the finite complement topology (2.2.(4)), the sequence 1, 2, 3, · · · converges to any
point. In RK , the sequence 1

n does not converge; in R and R` it converges to 0 (and to no other point).
The sequence − 1

n converges to 0 in R and RK , but does not converge in R`. In the ordered space
[1, ω] = Z+ q {ω} (1.49.(6)), the sequence n converges to ω (and to no other point). Can you find a
sequence in the ordered space [0,Ω] (1.52) that converges to Ω?

2.45. Definition (Separation Axioms T0, T1, and T2). A topological space X is a T0-space (or a
Kolmogorov space) if for any two distinct points x1 6= x2 in X there exists an open set U containing one
but not both points.

A topological space is T1-space if points are closed: For any two distinct points x1 6= x2 in X there
exists an open set U such that x1 ∈ U and x2 6∈ U .

A topological space X is a T2-space (or a Hausdorff space) if there are enough open sets to separate
points: For any two distinct points x1 6= x2 in X there exist disjoint open sets, U1 and U2, such that
x1 ∈ U1 and x2 ∈ U2.

All Hausdorff spaces are T1. X is T1 iff all finite subsets are closed. Cofinite topologies are T1 by
construction and not T2 when the space has infinitely many points. Particular point topologies are not
T1 (on spaces with more than one point).

All linearly ordered [Ex 17.10] or metric spaces are Hausdorff; in particular, R is Hausdorff. R` and
RK are Hausdorff because the topologies are finer than the standard Hausdorff topology R.

2.46. Theorem. A sequence in a Hausdorff space can not converge to two distinct points.

A property of a topological space is said to be (weakly) hereditary if any (closed) subspace of a space
with the property also has the property. Hausdorffness is hereditary and also passes to product spaces.

2.47. Theorem (Hereditary properties of Hausdorff spaces). [Ex 17.11, 17.12] Any subset of a Haus-
dorff space is Hausdorff. Any product of Hausdorff spaces is Hausdorff.

2.48. Theorem. Suppose that X is T1. Let A be a subset of and x a point in X. Then

x is a limit point ⇐⇒ All neighborhoods of x intersect A in infinitely many points

http://www-history.mcs.st-andrews.ac.uk/Biographies/Kolmogorov.html
http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Hausdorff.html
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Proof. ⇐=: If all neighborhoods of x intersect A in infinitely many points, then, clearly, they also
intersect A in a point that is not x.
=⇒: Assume that x is a limit point and let U be a neighborhood of x. Then U contains a point a1 of
A different from x. Remove this point from U . Since points are closed, U − {a1} is a new neighborhood
of x. This new neighborhood of x contains a point a2 of A different from x and a1. In this way we
recursively find a whole sequence of distinct points in U ∩A. �

6. Continuous functions

Let f : X → Y be a map between two topological spaces.

2.49. Definition. The map f : X → Y is continuous if all open subsets of Y have open preimages
in X: V open in Y =⇒ f−1(V ) open in X

If TX is the topology on X and TY is the topology on Y then

(2.50) f is continuous ⇐⇒ f−1(TY ) ⊂ TX ⇐⇒ f−1(BY ) ⊂ TX ⇐⇒ f−1(SY ) ⊂ TX
where BY is a basis and SY a subbasis for TY . The finer the topology in Y and the coarser the topology
in X are, the more difficult is it for f : X → Y to be continuous.

2.51. Theorem. Let f : X → Y be a map between two topological spaces. The following are equivalent:
(1) f is continuous
(2) The preimage of any open set in Y is open in X: V open in Y =⇒ f−1(V ) open in X
(3) The preimage of any closed set in Y is closed in X: C closed in Y =⇒ f−1(C) closed in X
(4) f−1(B◦) ⊂ (f−1(B))◦ for any B ⊂ Y
(5) f−1(B) ⊂ f−1(B) for any B ⊂ Y
(6) f(A) ⊂ f(A) for any A ⊂ X
(7) For any point x ∈ X and any neighborhood V ⊂ Y of f(x) there is a neighborhood U ⊂ X of x

such that f(U) ⊂ V .

Proof. It is easy to see that (7),(1),(2), and (3) are equivalent.

(2) =⇒ (4):
f−1(B◦) ⊂ f−1(B)
f−1(B◦) open

}
=⇒ f−1(B◦) ⊂ (f−1(B))◦.

(4) =⇒ (2): Let B be any open set in Y . Then f−1(B) B=B◦= f−1(B◦)
(4)
⊂ (f−1(B))◦ ⊂ f−1(B) so f−1(B)

is open since it equals its own interior.
(3) ⇐⇒ (5): Similar to (2) ⇐⇒ (4).

(3) =⇒ (6):
A ⊂ f−1(f(A)) ⊂ f−1(f(A))
f−1(f(A)) is closed

}
=⇒ A ⊂ f−1(f(A)) ⇐⇒ f(A) ⊂ f(A).

(6) =⇒ (5): f(f−1(B))
(6)
⊂ f(f−1(B))

f(f−1(B))⊂B
⊂ B �

2.52. Example (Examples of continuous maps). (1) If X and Y and Y have metric topologies
(2.2.(6)) then f : X → Y is continuous if and only if for all x ∈ X and all ε > 0 there is a δ > 0 so
that fB(x, δ) ⊂ B(f(x), ε).

(2) If X has the discrete topology (2.2.(2)) or Y has the trivial topology (2.2.(1)) then any map
f : X → Y is continuous.

(3) If X and Y have the particular point topologies (2.2.(3)) then f : X → Y is continuous if and only
if f preserves the particular points.

(4) If X and Y have finite complement topologies (2.2.(4)) then f : X → Y is continuous if and only
if f has finite fibres.

(5) The function f(x) = −x is continuous R → R, but not continuous RK → RK (K is closed
in RK but f−1(K) is not closed (2.44)) and not continuous R` → R` ([0,∞) is open in R` but
f−1([0,∞)) = (−∞, 0] is not open (2.31.(4))).

(6) Since [a, b) is closed and open in R` (2.31.(4)) the map 1[a,b) : R` → {0, 1}, with value 1 on [a, b)
and value 0 outside [a, b), is continuous.

(7) Any ring homomorphism R→ S induces a map Spec(S)→ Spec(R) taking any prime ideal x ⊂ S
to the prime ideal f−1x ⊂ R. This map is continuous because it takes Zariski closed set to Zariski
closed sets (2.31.(6)).

2.53. Theorem. (1) The identity function is continuous.
(2) The composition of two continuous functions is continuous.
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(3) Let B be a subspace of Y , A a subspace of X, and f : X → Y a map taking values in B. Then

f : X → Y is continuous =⇒ f |A : A→ Y is continuous (restriction)

f : X → Y is continuous ⇐⇒ B|f : X → B is continuous (corestriction)

(4) Let fj : Xj → Yj, j ∈ J , be an indexed set of maps. Then∏
fj :

∏
Xj →

∏
Yj is continuous ⇐⇒ fj : Xj → Yj is continuous for all j ∈ J

(5) (Glueing lemma) Let B be a covering of X. Suppose either that X is covered by the interiors of
the sets in B or that B is a locally finite closed covering. (The covering B is locally finite if any
point in X has a neighborhood that intersects only finitely many of the sets from B.) Then

f |B : B → Y is continuous for all B in B =⇒ f : X → Y is continuous

for any map f : X → Y .

Proof. Most of these observations are easy to check. The =⇒-part of (4) uses 2.64 below. In (5),
let us consider the case where B is a locally finite closed covering (or just a closed covering so that any
point in X has a neighborhood that is contained in a finite union of sets from B. Suppose that A ∩B is
open in B for all B ∈ B. We claim that A is open. Let a be a point in A. Choose a neighborhood U of a
and finitely many sets B1, . . . , Bm ∈ B such that a ∈ U ⊂ B1 ∪ · · · ∪Bm. We may assume that a ∈ Bi for
all i = 1, . . . ,m for otherwise we just replace U by U − Bi. Since A ∩ Bi is open in Bi there is an open
set Ui such that A ∩Bi = Ui ∩Bi for all i = 1, . . . ,m. Now U ∩ U1 ∩ · · · ∩ Um is an open neighborhood
of a and

U ∩ U1 ∩ · · · ∩ Um ⊂ (B1 ∪ · · · ∪Bm) ∩ (U1 ∩ · · · ∩ Um) ⊂ (B1 ∩ U1) ∪ · · · ∪ (Bm ∩ Um) ⊂ A
This shows that A is open. �

2.54. Homeomorphisms and embeddings. One of the central problems in topology is to decide
if two given spaces are homeomorphic.

2.55. Definition (Homeomorphism). A bijective continuous map f : X → Y is a homeomorphism
if its inverse is continuous.

A bijection f : X → Y induces a bijection between subsets of X and subsets of Y , and it is a home-
omorphism if and only if this bijection restricts to a bijection{

Open (or closed) subsets of X
}
oo U→f(U)

f−1(V )←V
//
{

Open (or closed) subsets of Y
}

between open (or closed) subsets of X and open (or closed) subsets of Y .
We now extend the subspace topology (2.22) to a slightly more general situation.

2.56. Definition (Embedding topology). Let X be a set, Y a topological space, and f : X → Y an
injective map. The embedding topology on X (for the map f) is the collection

f−1(TY ) = {f−1(V ) | V ⊂ Y open}
of subsets of X.

The subspace topology for A ⊂ X is the embedding topology for the inclusion map A ↪→ X.

2.57. Proposition (Characterization of the embedding topology). Suppose that X has the embedding
topology for the map f : X → Y . Then

(1) X → Y is continuous and,
(2) for any map A→ X into X,

A→ X is continuous ⇐⇒ A→ X
f−→ Y is continuous

The embedding topology is the only topology on X with these two properties. The embedding topology is
the coarsest topology on X such that f : X → Y is continuous.

Proof. This is because

A
g−→ X is continuous

(2.50)⇐⇒ g−1(TX) ⊂ TA ⇐⇒ g−1(f−1TY ) ⊂ TA ⇐⇒

(fg)−1(TY ) ⊂ TA ⇐⇒ A
g−→ X

f−→ Y is continuous

by definition of the embedding topology. The identity map of X is a homeomorphism whenever X is
equipped with a topology with these two properties. �
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2.58. Definition (Embedding). An injective continuous map f : X → Y is an embedding if the
topology on X is the embedding topology for f , ie TX = f−1TY .

Any injective map f : X → Y induces a bijection between subsets of X and subsets of f(X), and it
is an embedding if and only if this bijection restricts to a bijection

(2.59)
{

Open (or closed) subsets of X
}
oo U→f(U)

f−1(V )←V
//
{

Open (or closed) subsets of f(X)
}

between open (or closed) subsets of X and open (or closed) subsets of f(X).
Alternatively, the injective map f : X → Y is an embedding if and only if the bijective corestriction

f(X)|f : X → f(X) is a homeomorphism. An embedding is a homeomorphism followed by an inclusion.
The inclusion A ↪→ X of a subspace is an embedding. Any open (closed) continuous injective map is an
embedding.

2.60. Example. (1) The map f(x) = 3x+ 1 is a homeomorphism R→ R.
(2) The identity map R` → R is bijective and continuous but not a homeomorphism.
(3) The map [0, 1)→ S1 : t 7→ (cos(2πt), sin(2πt)) is continuous and bijective but not a homemorphism.
The image of the open set [0, 1

2 ) is not open in S1.
(4) Find an example of an injective continuous map R→ R2 that is not an embedding.
(5) The obvious bijection [0, 1) ∪ {2} → [0, 1] is continuous but not a homeomorphism (the domain
has an isolated point, the codomain has no isolated points). There does not exist any continuous
surjection in the other direction.

(6) The spaces [1× 1, 2× 1] ⊂ Z+ × Z+ and K = { 1
n | n ∈ Z+} ⊂ R are homeomorphic.

(7) The map R → R ×R : t 7→ (t, t) is an embedding. For any continuous map f : X → Y , the map
X → X × Y : x 7→ (x, f(x)) is an embedding; see (3.25) for a generalization.

(8) Rn embeds into Sn via stereographic projection.
(9) R2 embeds in R3. Does R3 imbed in R2? (See notes on algebraic topology for the answer.)
(10) Are the spaces

⋃
Cn and

⋃
C1/n of 2.41.(2) homeomorphic?

(11) A knot is in embedding of S1 in R3 (or S3). Two knots, K0 : S1 ↪→ R3 and K1 : S1 ↪→ R3, are
equivalent if there exists a homeomorphism h of R3 such that h(K0) = K1. The fundamental problem
of knot theory [1] is to classify knots up to equivalence.

2.61. Lemma. If f : X → Y is a homeomorphism (embedding) then the corestriction of the restriction
f(A)|f |A : A→ f(A) (B|f |A : A→ B) is a homeomorphism (embedding) for any subset A of X (and any
subset B of Y containing f(A)). If the maps fj : Xj → Yj are homeomorphisms (embeddings) then the
product map

∏
fj :

∏
Xj →

∏
Yj is a homeomorphism (embedding).

Proof. In case of homeomorphisms there is a continuous inverse in both cases. In case of embed-
dings, use that an embedding is a homeomorphism followed by an inclusion map. �

2.62. Lemma (Composition of embeddings). Let X
f //Y

g //Z be continuous maps. Then

f and g are embeddings =⇒ g ◦ f is an embedding =⇒ f is an embedding

Proof. To prove he second implication, note first that f is an injective continuous map. Let U ⊂ X
be open. Since g ◦ f is an embedding, U = (g ◦ f)−1W for some open W ⊂ Z. But (g ◦ f)−1 = f−1g−1W
where g−1W is open in Y since g is continuous. This shows that f is an embedding. �

2.63. Maps into products. There is an easy test for when a map into a product space is contin-
uous.

2.64. Theorem (Characterization of the product topology). Give
∏
Yj the product topology. Then

(1) the projections πj :
∏
Yj → Yj are continuous, and,

(2) for any map f : X →
∏
j∈J Yj into the product space we have

X
f−→
∏
j∈J

Yj is continuous ⇐⇒ ∀j ∈ J : X
f−→
∏
j∈J

Yj
πj−→ Yj is continuous

The product topology is the only topology on the product set with these two properties.

http://www.math.ku.dk/~moller/f03/algtop/notes/homology.pdf
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Proof. Let TX be the topology on X and Tj the topology on Yj . Then SQ =
⋃
j∈J π

−1
j (Tj) is a

subbasis for the product topology on
∏
j∈J Yj (2.16). Therefore

f : X →
∏
j∈J

Yj is continuous
(2.50)⇐⇒ f−1(

⋃
j∈J

π−1
j (Tj)) ⊂ TX

⇐⇒
⋃
j∈J

f−1(π−1
j (Tj)) ⊂ TX

⇐⇒ ∀j ∈ J : (πj ◦ f)−1(Tj) ⊂ TX
⇐⇒ ∀j ∈ J : πj ◦ f is continuous

by definition of continuity (2.50).
We now show that the product topology is the unique topology with these properties. Take two

copies of the product set
∏
j∈J Xj . Equip one copy with the product topology and the other copy with

some topology that has the two properties of the theorem. Then the identity map between these two
copies is a homeomorphism. �

The reason for the great similarity between 2.64 and 2.57 is that in both cases we use an initial
topology.

2.65. Example. Suppose that J and K are sets and that (Xj)j∈J and (Yk)k∈K are indexed families
of topological spaces. Given a map g : J → K between index sets and an indexed family of continuous
maps (fj : Yg(j) → Xj)j∈J . Then there is a unique map between product spaces such that∏

k∈K Yk //

πg(j)

��

∏
j∈J Xj

πj

��
Yg(j)

fj

// Xj

commutes and this map of product spaces is continuous by 2.64.

2.66. Theorem. Let (Xj)j∈J be an indexed family of topological spaces with subspaces Aj ⊂ Xj.
Then

∏
j∈J Aj is a subspace of

∏
j∈J Xj.

(1)
∏
Aj =

∏
Aj.

(2)
(∏

Aj
)◦ ⊂∏A◦j and equality holds if Aj = Xj for all but finitely many j ∈ J .

Proof. (1) Let (xj) be a point of
∏
Xj . Since SQ =

⋃
j∈J π

−1
j (Tj) is a subbasis for the product topology

on
∏
Xj (2.16) we have:

(xj) ∈
∏

Aj ⇐⇒ ∀k ∈ J : π−1
k (Uk) ∩

∏
Aj 6= ∅ for all neighborhoods Uk of xk

⇐⇒ ∀k ∈ J : Uk ∩Ak 6= ∅ for all neighborhoods Uk of xk

⇐⇒ ∀k ∈ J : xk ∈ Ak

⇐⇒ (xj) ∈
∏

Aj

(2)
(∏

Aj
)◦ ⊂ ∏A◦j because πj is an open map (2.71) so that πj

((∏
Aj
)◦) ⊂ A◦j for all j ∈ J . If

Aj = Xj for all but finitely many j ∈ J then
∏
A◦j ⊂

(∏
Aj
)◦ because

∏
A◦j is open and contained in∏

Aj . �

It follows that a product of closed sets is closed. (Whereas a product of open sets need not be open
in the product topology.)

2.67. Maps out of coproducts.

2.68. Theorem. Let f :
∐
j∈J Xj → Y be a map out of a coproduct space. Then

f :
∐
j∈J

Xj → Y is continuous ⇐⇒ f ◦ ιj : Xj → Y is continuous for all j ∈ J

where ιj : Xj →
∐
j∈J Xj is the inclusion map.

Let fj : Xj → Yj , j ∈ J , be an indexed set of maps. Then∐
fj :

∐
Xj →

∐
Yj is continuous ⇐⇒ fj : Xj → Yj is continuous for all j ∈ J
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7. The quotient topology

In this section we will look at the quotient space construction. But first we consider open and closed
maps.

2.1. Open and closed maps. [2, I.§5] Let X and Y be topological spaces and f : X → Y a map.

2.69. Definition. The map f : X → Y is
{

open
closed

}
if for all U ⊂ X we have:

U

{
open

closed

}
in X =⇒ f(U)

{
open

closed

}
in Y

The restriction (2.80) of an open (or closed) map to an arbitrary subspace need not be open (closed).
However,

2.70. Proposition. [8, Ex 22.5] The restriction of an open (or closed) map f : X → Y to an open
(closed) subspace A ⊂ X is an open (closed) map f(A)|f |A : A→ f(A) or f |A : A→ Y .

Proof. Suppose that f : X → Y is an open map and A ⊂ X an open subset. Let U be an open
subset of A. The implications

U is open in A (A is open in X)

=⇒ U open in X (f is open)

=⇒ f(U) open in Y

=⇒ f(U) open in f(A)

show that f |A : A→ f(A) is open. �

2.71. Proposition (Projections are open). The projection map πj :
∏
Xj → Xj is open.

Proof. The map πj takes the basis BQ (2.16) for the product topology into the topology on Xj . �

2.72. Lemma (Characterization of open or closed continuous maps). Let f : X → Y be a continuous
map.

(1) f is open if and only if f−1(B◦) = f−1(B)◦ for all B ⊂ Y .
(2) f is closed if and only if f(A) = f(A) for all A ⊂ X

Proof. See Solution June 04 (Problem 1) and Solution Jan 05 (Problem 1). �

A bijective continuous map that is open or closed is a homeomorphism.

2.73. Example. (1) The projection π1 : X × Y → X is continuous and open (2.71). It is closed
if Y is compact. (Use 2.143 to see this.) The projection map π1 : R×R→ R is not closed for
H = {(x, y) ∈ R×R | xy = 1} is closed but π1(H) = R−{0} is not closed. Thus the product of two
closed maps (the identity map of R and the constant map R→ ∗) need not be closed.

(2) The map f : [−1, 2]→ [0, 1] given by

f(x) =


0 −1 ≤ x ≤ 0
x 0 ≤ x ≤ 1
1 1 ≤ x ≤ 2

is continuous and closed (2.141.(1)). It is not open for f([−1,−1/2)) = {0} is not open.

2.2. Quotient topologies and quotient maps. Quotient maps are continuous surjective maps
that generalize both continuous, open surjective maps and continuous, closed surjective maps.

2.74. Definition (Quotient topology). Let X be a topological space, Y a set, and p : X → Y a
surjective map. The quotient topology on Y is the collection

{V ⊂ Y | p−1(V ) is open in X}
of subsets of Y .

The quotient topology is sometimes called the final topology [2, I.§2.4] with respect to the map p.

2.75. Lemma (Characterization of the quotient topology). Suppose that Y has the quotient topology
with respect to the map p : X → Y . Then

(1) p : X → Y is continuous, and,

http://www.math.ku.dk/~moller/e02/3gt/opg/ans.jun04.pdf
http://www.math.ku.dk/~moller/e02/3gt/opg/ans.jan05.pdf
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(2) for any map g : Y → Z out of Y

Y
g−→ Z is continuous ⇐⇒ X

p−→ Y
g−→ Z is continuous

The quotient topology is the only topology on Y with these two properties. The quotient topology is the
finest topology on Y such that p : X → Y is continuous.

Proof. This is because

Y
g−→ Z is continuous ⇐⇒ g−1(TZ) ⊂ TY ⇐⇒ p−1g−1(TZ) ⊂ TX

⇐⇒ (gp)−1(TZ) ⊂ TX ⇐⇒ X
p−→ Y

g−→ Z is continuous

by definition of the quotient topology.
If we give Y some topology with these two properties then the identity map between the two topologies

is a homeomorphism. �

2.76. Definition (Quotient map). A surjective continuous map p : X → Y is a quotient map if the
topology on Y is the quotient topology.

This means that the surjective map p : X → Y is a quotient map if and only if for all V ⊂ Y :

p−1(V ) is open in X ⇐⇒ V is open in Y

Quotient maps and embeddings (2.58) are dual concepts.
Subsets A of X of the form A = p−1(B) =

⋃
y∈B p

−1(y) for some subset B of Y are called saturated
subsets of X. They are the subsets that are unions of fibres f−1(y), y ∈ Y . The saturation of A ⊂ X is
the union f−1f(A) =

⋃
y∈f(A) f

−1(y) of all fibres that meet A. A is saturated if and only if A = f−1f(A).

2.77. Proposition. For a surjective map p : X → Y the following are equivalent:

(1) p : X → Y is a quotient map

(2) For all V ⊂ Y we have: p−1(V ) is
{

open
closed

}
in X ⇐⇒ V is

{
open

closed

}
in Y .

(3) p : X → Y is continuous and maps saturated
{

open
closed

}
sets to

{
open

closed

}
open sets

Proof. Condition (1) and condition (2) with the word “open” are clearly equivalent. Suppose now
that: p−1(V ) is open ⇐⇒ V is open. Then we get

p−1(C) is closed ⇐⇒ X − p−1(C) is open ⇐⇒ p−1(Y − C) is open
⇐⇒ Y − C is open ⇐⇒ C is closed

for all C ⊂ Y . This shows that the two conditions of (2) are equivalent. The content of (3) is just a
reformulation of (2). �

A surjective map p : X → Y induces a bijection between subsets of Y and saturated subsets of X,
and it is a quotient map if and only if this bijection restricts to a bijection{

Saturated open (closed) subsets
of X

}
oo U→p(U)

p−1(V )←V
//
{

Open (closed) subsets
of Y

}
between open (or closed) subsets of Y and open (or closed) saturated subsets of X.

2.78. Corollary. (1) Any
{

open
closed

}
continuous surjective map is a quotient map.

(2) A quotient map f : X → Y is
{

open
closed

}
if and only if all

{
open

closed

}
sets A ⊂ X have

{
open

closed

}
saturations f−1f(A).

(3) A bijective continuous map is a quotient map if and only if it is a homeomorphism.

Proof. (1) Let f : X → Y be an open map. Then

f−1(V ) is open
f open
=⇒ ff−1(V ) is open ⇐⇒ V is open

f is continuous
=⇒ f−1(V ) is open

for all V ⊂ Y . This shows that f is quotient.
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(2) Suppose that f : X → Y is quotient. Then

f is open
(2.69)⇐⇒ f(A) is open in Y for all open sets A ⊂ X
(2.76)⇐⇒ f−1f(A) is open in X for all open sets A ⊂ X

which is the claim.
(3) If f : X → Y is a bijective, any subset of X is saturated, and if f is also quotient, then it determines a
bijection between the open (saturated) subsets of X and open subsets of Y . So f is a homeomorphism. �

There are quotient maps that are neither open nor closed [8, Ex 22.3] [2, Ex 10 p 135] and there are
(non-identity) quotient maps that are both open and closed (2.83) [2, Ex 3 p 128].

2.79. Corollary (Composition of quotient maps). Let X
f //Y

g //Z be continuous maps.
Then

f and g are quotient =⇒ g ◦ f is quotient =⇒ g is quotient

Proof. The first assertion is a tautology: Assume that f and g are quotient. Then

(g ◦ f)−1(V ) open in X ⇐⇒ f−1g−1(V ) open in X
f is quotient=⇒ g−1(V ) open in Y

g is quotient=⇒ V open in Z

for any set V ⊂ Y . Next, suppose that X
f−→ Y

g−→ Z is a quotient map. Then the last map g is surjective
and

g−1(V ) is open in Y
f continuous=⇒ (g ◦ f)−1(V ) is open in X

g ◦ f quotient=⇒ V is open in Z

for any set V ⊂ Z. �

2.80. Example. (1) The projection map π1 : R×R→ R is (2.73.(1)) open, continuous, and sur-
jective so it is a quotient map. The restriction π1|H ∪ {(0, 0)} is continuous and surjective, even
bijective, but it is not a quotient map (2.77) for it is not a homeomorphism: {(0, 0)} is open and
saturated in H ∪ {(0, 0)} but π1({(0, 0)}) = {0} is not open.

Thus the restriction of a quotient map need not be a quotient map in general. On the positive side
we have

2.81. Proposition. The restriction-corestriction of a quotient map p : X → Y to an open (or closed)
saturated subspace A ⊂ X is a quotient map p(A)|p|A : A→ p(A).

Proof. (Similar to the proof of 2.70.) Let p : X → Y be a quotient map and B ⊂ Y an open set.
(The case where B is closed is similar.) The claim is that B|p|p−1(B) : p−1(B)→ B is quotient. For any
U ⊂ B the implications

p−1(U) open in p−1(B) (p−1(B) is open)

=⇒ p−1(U) open in X (p is quotient)
=⇒ U is open in Y

=⇒ U is open in B

show that B|p|p−1(B) : p−1(B)→ B is quotient. �

A typical situation is when R is an equivalence relation on the space X and X → X/R is the map
that takes a point to its equivalence class. We call X/R with the quotient topology for the quotient space
of the equivalence relation R. A set of equivalence classes is an open subset of X/R if and only if the
union of equivalence classes is an open subset of X: V ⊂ X/R is open ⇐⇒

⋃
[x]∈V [x] ⊂ X is open. We

shall often say that X/R is the space obtained by identifying equivalent points of X.
A continuous map f : X → Y respects the equivalence relation R if equivalent points have identical

images, that is if x1Rx2 =⇒ f(x1) = f(x2). The quotient map X → X/R respects the equivalence
relation R and it is the universal example of such a map.

2.82. Theorem (The universal property of quotient spaces). Let R be an equivalence relation on the
space X and let f : X → Y be a continuous map.

(1) The map p : X → X/R respects the equivalence relation R.
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(2) If the continuous map f : X → Y respects R then there exists a unique continuous map f : X/R→ Y
such that

X
f //

p   A
AA

AA
AA

A Y

X/R

f

>>}}}}}}}

commutes. (We say that f factors uniquely through X/R.) Conversely, if f factors through
X/R then f respects R.

(3) If f exists then: f is quotient ⇐⇒ f is quotient

Proof. If f exists then clearly f respects R. Conversely, if f respects R then we can define f [x] =
f(x) and this map is continuous by 2.75 and it is the only possibility. The rest follows from 2.79:
f is quotient ⇐⇒ fp is quotient ⇐⇒ f is quotient. �

The theorem says that there is a bijective correspondence{
Continuous maps X → Y

that respect R

}
oo f→f

g◦p←g
//
{

Continuous maps
X/R→ Y

}
taking quotient maps to quotient maps.

2.83. Example (Orbit spaces for group actions). (1) Real projective n-space RPn is the quotient
space of Sn by the equivalence relation with equivalence classes {±x}, x ∈ Sn. The quotient map
p : Sn → RPn is both open and closed since (2.78) the saturation ±U of an open (closed) set U ⊂ Sn is
open (closed) because x→ −x is a homeomorphism. Elements of RPn can be thought of as lines through
the origin of Rn+1. A set of lines is open if the set of intersection points with the unit sphere is open.
(2) More generally, let G × X → X be the action of a discrete group G on a space X. Give the orbit
space G\X the quotient topology and let pG : X → G\X be the quotient map. The points in the orbit
space are orbits of points in X and the open subsets are orbits of open subsets of X. The saturation of
any subset A of X is the orbit GA =

⋃
g∈G gA of A. If A is open, GA is open as a union of open sets; if

A is closed and G is finite, GA is closed. Thus the quotient map pG is always open (2.78), and if G is
finite, it is also closed.
(3) The n-dimensional Möbius band is the orbit space MBn = 〈(−1,−1)〉\(Sn−1 × R) for the action
(x, t) → (−x,−t) of the group with two elements. (Take n = 2 to get the standard Möbius band.)
The (n− 1)-dimensional real projective space RPn−1 is a retract of MBn as there are continuous maps
RPn−1 //MBnoo induced by the the maps Sn−1 //Sn−1 ×Roo . The homeomorphism Sn−1 ×R→
Sn−{N,S} between the cylinder over Sn−1 and Sn with two points removed induces a homeomorphism
between MBn and RPn with one point removed.

2.84. Example. (1) Let f : X → Y be any surjective continuous map. Consider the equivalence
relation corresponding to the partition X =

⋃
y∈Y f

−1(y) of X into fibres f−1(y), y ∈ Y . Let X/f
denote the quotient space. Thus X/f is the set of fibres equipped with the quotient topology. By
constuction, the map f respects this equivalence relation so there is a unique continuous map f such
that the diagram

X

!!C
CC

CC
CC

C
f // Y

X/f
f

=={{{{{{{{

commutes. Note that f is bijective. The bijective continuous map f : X/f → Y is a homeomorphism if
and only if f is quotient (2.78.(3), 2.82). In particular, all quotient maps have (up to homeomorphism)
the form X → X/R for some equivalence relation R on X.

(2) Let f : X → Y be any surjective continuous map. The induced map f : X/f → Y is a continuous
bijection but in general not a homeomorphism. Instead, the topology on the quotient space X/f
is finer than the topology on Y because the quotient topology is the maximal topology so that the
projection map is continuous. This can sometimes be used to show that X/f is Hausdorff if Y is
Hausdorff.

(3) Let f : X → Y be any continuous map. Then f has a canonical decomposition

X
p−→ X/f

f−→ f(X) ι−→ Y
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where p is a quotient map, f is a continuous bijection, and ι is an inclusion map.
(4) Let X be a topological space and A1, A2, . . . , Ak a finite collection of closed subsets. Consider the
equivalence relation where the equivalence classes are the sets A1, A2, . . . , Ak together with the sets
{x} for x 6∈ A1 ∪A2 ∪ · · · ∪Ak. The quotient space X/(A1, . . . , Ak) is obtained from X by identifying
each of the sets Ai to the point p(Ai). The quotient map p : X → X/(A1, . . . , Ak) is closed because
(2.78) closed sets A ⊂ X have closed saturations A∪

⋃
Ai∩A 6=∅Ai. A continuous map f : X → Y factors

through the quotient spaceX/(A1, . . . , Ak) if and only if it sends each of the setsAi ⊂ X to a point in Y
(2.82). The restriction p|X−(A1∪· · ·∪Ak) : X−(A1∪· · ·∪Ak)→ X/(A1, . . . , Ak)−{p(A1), . . . , p(Ak)}
to the complement of A1 ∪ · · · ∪ Ak is a homeomorphism (2.81, 2.78.(3)). In case of just one closed
subspace A ⊂ X, the quotient space is denoted X/A.

(5) The standard map f : [0, 1]→ S1 that takes t ∈ [0, 1] to (cos(2πt), sin(2πt)) is quotient because it
is continuous and closed. (If you can’t see this now, we will prove it later (2.140.(1)).) The induced
map [0, 1]/{0, 1} → S1 is a homeomorphism. More generally, the standard map Dn/Sn−1 → Sn is a
homeomorphism where Dn ⊂ Rn, the unit disc, is the set of vectors of length ≤ 1.

(6) Let R be the equivalence relation “zero or not zero” on R. The quotient space R/R is homeomor-
phic to Sierpinski space {0, 1}.

(7) There is an obvious continuous surjective map f :
∐

Z+
S1 = Z+×S1 →

⋃
Cn (2.41.(2)) that takes

Z+×{1} to the point common to all the circles. This map is continuous because its restriction to each of
the open sets {n}×S1 is continuous (2.53.(5). However, f is not a quotient map (2.77) for the image of
the closed saturated set consisting of the points n×(cos(π2 ), sin(π2 )) is not closed as it does not contain
all its limit points. The induced bijective continuous map f : Z+×S1/Z+×{1} →

⋃
Cn is therefore not

a homeomorphism. There is an obvious continuous surjective map g :
∐

Z+
S1 = Z+ × S1 →

⋃
C1/n

(2.41.(2)) that takes Z+×{1} to the point common to all the circles. This map is continuous because
its restriction to each of the open sets {n}× S1 is continuous (2.53.(5)). However, g is not a quotient
map for the image of the closed saturated set Z+ × {−1} is not closed as it does not contain all its
limit points. The induced bijective continuous map g : Z+ × S1/Z+ × {1} →

⋃
C1/n is therefore not

a homeomorphism either. (Actually (2.98.(7)), the quotient space Z+ × S1/Z+ × {1}, known as the
countable wedge of circles

∨
n∈Z+

S1 [8, Lemma 71.4], is not homeomorphic to any subspace of the
plane.)

(8) [8, p 451] Let P4g be a regular 4g-gon and with edges labeled a1, b1, a1, b1, . . . , ag, bg, ag, bg in
counter-clockwise direction. The closed orientable surface Mg of genus g ≥ 1 is (homeomorphic
to) the quotient space P4g/R where R is the equivalence relation that makes the identifications
a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g on the perimeter and no identifications in the interior of the polygon. See
[8, p 452] for the case g = 2. Are any of these surfaces homeomorphic to each other? [8, Thm 77.5]

(9) [8, p 452] Let P2g be a regular 2g-gon with edges labeled a1, a1, . . . , ag, ag in counter-clockwise
direction. The closed non-orientable surface Ng of genus g ≥ 1 is the quotient space P2g/R where R is
the equivalence relation that makes the identifications a2

1 · · · a2
g on the perimeter and no identifications

in the interior of the polygon. For g = 1 we get the projective plane RP 2 and for g = 2 we get the
Klein Bottle [8, Ex 74.3].

2.85. Example. (The adjunction space) [8, Ex 35.8] [5, p 93] [10, Chp 1, Exercise B p 56] Consider

the set-up X A? _
ioo f //Y consisting of a space X and a continuous map f : A→ Y defined on the

closed subspace A ⊂ X. Let R be the smallest equivalence relation on X q Y such that aRf(a) for all
a ∈ A; the equivalence classes of R are {a} q f(a) for a ∈ A, {x} for x ∈ X − A, and f−1(y) q {y} for
y ∈ Y . The adjunction space is the quotient space

X ∪f Y = X q Y/R

for the equivalence relation R. Let f : X → X ∪f Y be the map X → X q Y → X ∪f Y and let
i : Y → X ∪f Y be the map Y → X q Y → X ∪f Y . These two continuous maps agree on A in the sense
that f ◦ i = i ◦ f and the adjunction space is the universal space with this property. For any other space
Z receiving maps X → Z ← Y that agree on A there exists a unique continuous map X ∪f Y → Z such
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that the diagram

A_�

i

��

f // Y

i
��

��

X
f //

,,

X ∪f Y
∃!

##
Z

commutes. The map i : Y → X ∪f Y is closed, for closed sets B ⊂ Y ⊂ X q Y have closed saturations
f−1(B) q B. Since i is injective it is an embedding (2.58); its image is a closed subspace of X ∪f Y
homeomorphic to Y . The map f |X −A : X −A→ X ∪f Y is open, for open sets U ⊂ X − A ⊂ X q Y
have open saturations U q ∅. Since f |X − A is also injective, it is an embedding; its image is an open
subspace of X ∪f Y homeomorphic to X −A.

It is useful to know that X ∪f Y is normal when X and Y are normal [8, Ex 35.8].
There is an induced continuous map A\f̄/Y : X/A→ X ∪f Y/Y so that the diagram

A X X/A

Y X ∪f Y X ∪f Y/Y

f f̄ A\f̄/Y

i

ī

commutes. Assume that the attaching map f : A→ X is closed. Then the quotient map XqY → X∪f Y
is closed as we already know that ī is closed and closed subsets B ⊂ X ⊂ X q Y have closed saturations
B ∪ f−1f(B ∩A)q f(A∩B) as f is closed. Then f̄ is closed as the composition X ↪→ X q Y → X ∪f X
of two closed maps. Now X

f̄−→ X ∪f Y → X ∪f Y/Y is a closed quotient map and A\f̄/A is a quotient
map (2.79). But A\f̄/A is clearly bijective and hence a homeomorphism (2.78.(3)).

Only few topological properties are preserved by quotient maps. The reason is that surjective open
maps and surjective closed maps are quotient maps so that any property invariant under quotient maps
must also be invariant under both open and closed maps.

As we saw in 2.84.(6) the quotient space of a Hausdorff space need not be Hausdorff, not even T1. In
general, the quotient space X/R is T1 if and only if all equivalence classes are closed sets. (For instance,
if X and Y are T1 then also the adjunction space X ∪f Y is T1.) The quotient space X/R is Hausdorff if
and only if any two distinct equivalence classes are contained in disjoint open saturated sets. We record
an easy criterion for Hausdorfness even though you may not yet know the meaning of all the terms.

2.86. Proposition. If X is regular and A ⊂ X is closed then the quotient space X/A is Hausdorff.

The product of two quotient maps need not be a quotient map [2, I.§5.3] in general but here is an
important case where it actually is the case.

2.87. Theorem. Let p : A→ B and q : C → D be quotient maps. If B and C are locally compact
Hausdorff spaces (2.170) then p× q : A× C → B ×D is a quotient map.

Proof. Using Lemma 2.88 below we see that the map p× q is the composition

A× C
p×1 //B × C

1×q //B ×D

of two quotient maps and therefore itself a quotient map. �

2.88. Lemma (Whitehead Theorem). [5, 3.3.17] Let p : X → Y be a quotient map and Z a locally
compact space. Then

p× 1: X × Z → Y × Z
is a quotient map.

Proof. Let A ⊂ X × Z. We must show: (p× 1)−1(A) is open =⇒ A is open. This means that for
any point (x, y) ∈ (p× 1)−1(A) we must find a saturated neighborhood U of x and a neighborhood V of
y such that U × V ⊂ (p× 1)−1(A).

Since (p×1)−1(A) is open in the product topology there is a neighborhood U1 of x and a neighborhood
V of y such that U1 × V ⊂ (p × 1)−1(A). Since Y is locally compact Hausdorff we may assume (2.170)
that V is compact and U1×V ⊂ (p×1)−1(A). Note that also p−1(pU1)×V is contained in (p×1)−1(A).
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The tube lemma 2.143 says that each point of p−1(pU1) has a neighborhood such that the product of
this neighborhood with V is contained in the open set (p × 1)−1(A). Let U2 be the union of these
neighborhoods. Then p−1(pU1) ⊂ U2 and U2 × V ⊂ (p × 1)−1(A). Continuing inductively we find open
sets U1 ⊂ U2 ⊂ · · · ⊂ Ui ⊂ Ui+1 ⊂ · · · such that p−1(pUi) ⊂ Ui+1 and Ui+1 × V ⊂ (p × 1)−1(A). The
open set U =

⋃
Ui is saturated because U ⊂ p−1(pU) =

⋃
p−1(pUi) ⊂

⋃
Ui+1 = U . Thus also U × V is

saturated and U × V ⊂
⋃
Ui × V ⊂ (p× 1)−1(A). �

For instance, if p : X → Z is a quotient map, then also p× 1: X × [0, 1]→ Z × [0, 1] is a quotient
map. This is important for homotopy theory.
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8. Metric topologies

If X is a set with a metric d : X ×X → [0,∞) the collection {Bd(x, ε) | x ∈ X, ε > 0} of balls
Bd(x, ε) = {y ∈ X | d(x, y) < ε} is a basis for the metric topology Td induced by d.

2.89. Definition. A metric space is the topological space associated to a metric set. A topological
space is metrizable if the topology is induced by some metric on X.

Hausdorff dimension, fractals, or chaos are examples of metric, rather than topological, concepts.

2.90. Theorem (Continuity in the metric world). Let f : X → Y be a map between metric spaces
with metrics dX and dY , respectively. The following conditions are equivalent:

(1) f is continuous
(2) ∀x ∈ X∀ε > 0∃δ > 0∀y ∈ X : dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε
(3) ∀x ∈ X∀ε > 0∃δ > 0: f(BX(x, δ)) ⊂ BY (f(x), ε)

Proof. Essentially [8, Ex 18.1]. �

2.91. Proposition (Comparison of metric topologies). Let d and d′ be metrics on X and Td, Td′ the
associated metric topologies. Then

Td ⊂ Td′ ⇐⇒ ∀x ∈ X∀ε > 0∃δ > 0: Bd′(x, δ) ⊂ Bd(x, ε)

Proof. Td ⊂ Td′ if and only if the identity map (X, Td′)→ (X, Td) is continuous [8, Ex 18.3] . �

2.92. Lemma (Standard bounded metric). Let d be a metric on X. Then d′(x, y) = min{d(x, y), 1}
is a bounded metric on X (called the standard bounded metric corresponding to d) that induce the same
topology on X as d.

Proof. Either use the above proposition or use that for any metric the collection of balls of radius
< 1 is a basis for the metric topology. These bases are the same for the two metrics. �

2.93. Theorem (Hereditary properties of metrizable spaces). Any subspace of a metrizable space is
a metrizable. Any countable product of metrizable spaces is metrizable.

Proof. See [8, Ex 21.1] for the first assertion. To prove the second assertion, let Xn, n ∈ Z+, be a
countable collection of metric spaces. We may assume that each Xn has diameter at most 1 (2.92). Put

d((xn), (yn)) = sup{ 1
n
dn(xn, yn) | n ∈ Z+}

for points (xn) and (yn) of
∏
Xn and convince yourself that d is a metric. The idea here is that

1
ndn(xn, yn) ≤ 1

n becomes small when n becomes large. For any ε > 0

d((xn), (yn)) ≤ ε ⇐⇒ ∀n ≤ N :
1
n
dn(xn, yn) ≤ ε

where N is such that Nε > 1.
The claim is that the metric toplogy coincides with the product topology on

∏
Xn. We need to

show that the metric topology enjoys the two properties that characterizes the product topology (2.64).
First, the projection maps πn :

∏
Xn → Xn are continuous because d(x, y) < ε =⇒ dn(x, y) < nε (2.90).

Second, let f : X →
∏
Xn be a map such that X

f−→
∏
Xn

πn−−→ Xn is continuous for all n. Given x ∈ X
and ε > 0, there exist neighborhoods Un of x such that dn(πnf(x), πnf(y)) < nε for all y ∈ Un. Then
d(f(x), f(y)) < ε for all y ∈ U1∩ . . .∩UN where Nε > 1 (remember that all the spaces Xn have diameter
at most 1). This shows that f : X →

∏
Xn is continuous. �

2.94. The first countability axiom. Which topological spaces are metrizable? To address this
question we need to build up an arsenal of metrizable and non-metrizable spaces and to identify properties
that are common to all metrizable spaces. Here are the first such properties: All metric spaces are
Hausdorff and first countable.

2.95. Definition (Neighborhood basis). A neighborhood basis at x ∈ X is a collection of neighbor-
hoods of x such that any neighborhood of x contains a member of the collection.

2.96. Definition (First countable spaces). Let X be a space and x a point in X. We say that X has
a countable basis at x if there is a countable neighborhood basis at x. X is first countable if all points of
X have a countable neighborhood basis.

All metrizable spaces are first countable since {B(x, 1/n) | n ∈ Z+} is a countable neighborhood
basis at x.
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2.97. Proposition (Hereditary properties of first countable spaces). [8, Thm 30.2] Any subspace of
a first countable space is first countable. Any countable product of first countable spaces is first countable.

Proof. The first assertion is immediate. Let
∏
Xn be a countable product of first countable spaces.

Let (xn) be a point of
∏
Xn. Let Bn be countable basis at xn ∈ Xn. The collection of all products∏

Un where Un ∈ Bn for finitely many n and Un = Xn for all other n is then a countable (1.41) basis at
(xn). �

2.98. Example. (1) R is first countable because it is a metric space.
(2) R` is first countable. The collection of half-open intervals [a, b) where b > a is rational is a
countable basis of neighborhoods at the point a. Is R` metrizable? (3.3) [8, Ex 30.6]

(3) Is RK first countable? Is it metrizable?
(4) The ordered space SΩ = [0,Ω] (1.52) is not first countable at Ω but it is first countable at any
other point. Let {Un} be any countable collection of neighborhoods of Ω. Choose an < Ω such that
(an,Ω] ⊂ Un and chose a such that an < a < Ω for all n. This is possible because the countable set
{an} ⊂ [0,Ω) of left end-points has an upper bound in [0,Ω) (1.52.(2)). Then (a,Ω] is a neighborhood
of Ω that does not contain any of the Un because it does not even contain any of the intervals (an,Ω].
The section SΩ, however, is first countable: {1} = [1, 2) is open so SΩ has a finite basis at the first
element 1. For any other element, α > 1, we can use the countable collection of neighborhoods of the
form (β, α] for β < α (2.31.(5)). Is SΩ metrizable? (2.164)[8, Exmp 3 p 181, Ex 30.7].

(5) RJ is not first countable at any point when J is uncountable: Let {Un}n∈Z+ be any countable
collection of neighborhoods of, say, the point (0)j∈J of RJ . I claim that there is a neighborhood that
does not contain any of the Un. This is because there is an index j0 ∈ J such that πj0(Un) = R for
all n. Indeed, the set of js for which this is not true

{j ∈ J | ∃n ∈ Z+ : πj(Un) 6= R} =
⋃
n∈Z+

{j ∈ J | πj(Un) 6= R}

is a countable union of finite sets, hence countable (1.41.(3)). Then the neighborhood π−1
j0

(R− {1})
of (0)j∈J does not contain any of the neighborhoods Un in the countable collection. (RJ does not
even satisfy the sequence lemma (2.100.(1)) [8, Exmp 2 p 133].)

(6) The closed (2.84.(4)) quotient map R→ R/Z takes the first countable space R to a space that is
not first countable [5, 1.4.17] at the point corresponding to Z. This can be seen by a kind of diagonal
argument: Let {Un}n∈Z be any countable collection of open neighborhoods of Z ⊂ R. Let U be the
open neighborhood of Z such that U ∩ (n, n+ 1), n ∈ Z, equals Un ∩ (n, n+ 1) with one point deleted.
Then U does not contain any of the Un.

(7) The quotient map p :
∐
n∈Z+

S1 →
∨
n∈Z+

S1 is closed (2.84.(4)). The domain
∐
n∈Z+

S1 = Z+ ×
S1 ⊂ R ×R2 is first countable (2.97) but the image

∨
n∈Z+

S1 (2.84.(7)) is not: Let {Un}n∈Z+ be
any collection of saturated neighborhoods of Z+×{1}. The saturated neighborhood U which at level
n equals Un with one point deleted (cf Cantor’s diagonal argument (1.43)) does not contain any of
the Un. It follows (2.97) that

∨
n∈Z+

S1 does not embed in R2 nor in any other first countable space.
For instance, the universal property of quotient spaces (2.82) gives a factorization

(2.99)
∐
n∈Z+

S1 f //

p
%%KKKKKKKKKK

∏
n∈Z+

S1

∨
n∈Z+

S1

f

99ssssssssss

of the continuous map f such that πm(f |{n} × S1) is the identity function when m = n and the
constant function when m 6= n. The induced map f is an injective continuous map. It can not be an
embedding for the countable product

∏
S1 of circles is first countable (2.97). The topology on

∨
S1

is finer than the subspace topology inherited from
∏
S1.

These examples show that the uncountable product of first countable (even metric) spaces and the
quotient of a first countable space may fail to be first countable (2.98.(5), 2.98.(7)). Some linearly ordered
spaces are first countable, some are not (2.98.(1), 2.98.(4)).

In a first countable (eg metric) space X, the points of the closure of any A ⊂ X can be approached
by sequences from A in the sense that they are precisely the limit points of convergent sequences in A.
This is not true in general (2.98.(4)).

2.100. Lemma. Let X be a topological space.
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(1) (The sequence lemma) Let A ⊂ X be a subspace and x a point of X. Then

x is the limit of a sequence of points from A =⇒ x ∈ A
The converse holds if X is first countable.

(2) (Continuous map preserve convergent sequences) Let f : X → Y be a map of X into a space Y .
Then

f is continuous =⇒ f(xn)→ f(x) whenever xn → x for any sequence xn in X

The converse holds if X is first countable.

Proof. (1) The direction =⇒ is clear. Conversely, suppose that x ∈ A. Let Un be a countable basis
at x. We may assume that U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ Un+1 ⊃ · · · as we may replace Un by U1 ∩ . . . ∩ Un.
For each n choose a point xn ∈ A ∩ Un. We claim that the sequence (xn) converges to x. Let U be any
neighborhood of x. Then Un ⊂ U for some n so that xm ∈ Um ⊂ Un ⊂ U for m ≥ n.
(2) The direction =⇒ is clear. Conversely, suppose that f(xn) → f(x) whenever xn → x. We want to
show that f is continuous, ie (2.51.(6)) that f(A) ⊂ f(A) for any A ⊂ X. Let x ∈ A. Since X is first
countable, there is by (1) a sequence of points an ∈ A converging to x. By hypothesis, the sequence
f(an) ∈ f(A) converges to f(x). Thus f(x) ∈ f(A) by (1) again. �

We say that X satisfies the sequence lemma1 if for any A ⊂ X and for any x ∈ A there is a sequence
of points in A converging to x.

To summarize:

X is metrizable =⇒ X is 1st countable =⇒ X satisfies the sequence lemma (is Frechét)

Examples show that neither of these arrows reverse.
The largest element Ω is a limit point of [0,Ω) but it is not the limit of any sequence in [0,Ω) as any

such sequence has an upper bound in [0,Ω) (1.52.(2)). Thus [0,Ω] does not satisfy the sequence lemma.
Hence it is not 1st countable and not metrizable.

2.101. The uniform metric. Let Y be a metric space with a bounded metric d and let J be a set.
We shall discuss uniform convergence which is a metric, not a topological, concept.

2.102. Definition. [8, pp 124, 266] The uniform metric on Y J =
∏
j∈J Y = map(J, Y ) is the metric

given by d(f, g) = sup{j ∈ J | d(f(j), g(j))}.

It is easy to see that this is indeed a metric.

2.103. Theorem. On RJ we have: product topology ⊂ uniform topology ⊂ box topology

Proof. Omitted. �

The elements of Y J are functions f : J → Y . Note that a sequence of functions fn : J → Y converges
in the uniform metric to the function f : J → Y if and only if

∀ε > 0∃N > 0∀j ∈ J∀n ∈ Z+ : n > N =⇒ d(fn(j), f(j)) < ε

We say that the sequence of functions fn : J → Y converges uniformly to the function f : J → Y .

2.104. Theorem (Uniform limit theorem). (Cf [8, Thm 43.6]) Suppose that J is a topological space
and that Y is a metric space. The uniform limit of any sequence (fn) of continuous functions fn : J → Y
is continuous.

Proof. Well-known. �

1Aka a Frechét space
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9. Connected spaces

2.105. Definition. The topological space X is connected if it is not the union X = X0 ∪X1 of two
disjoint open non-empty subsets X0 and X1.

Two subsets A and B of a space X are separated if A∩B = ∅ = A∩B. This means that the two sets
are disjoint and neither contains a limit point of the other. Two disjoint open (closed) sets are separated.
If C ⊂ A and D ⊂ B and A and B are separated, then C and D are separated. A separation of X
consists of two separated non-empty subsets A and B with union X = A ∪B.

2.106. Theorem. The following are equivalent:
(1) X is connected
(2) The only clopen (closed and open) subsets of X are ∅ and X
(3) X has no separations
(4) Every continuous map X → {0, 1} to the discrete space {0, 1} is constant.

Proof. We show that the negated statements are equivalent.
¬(1) =⇒ ¬(2): Suppose that X = U1 ∪U2 where U1 and U1 are disjoint, open, and non-empty. Then U1

is an open, closed, non-empty, proper subset of X.
¬(2) =⇒ ¬(3): If C is a closed, open, nonempty, proper subset of X then X = C∪(X−C) is a separation
of X.
¬(3) =⇒ ¬(4): Suppose that X = A ∪ B where A and B are separated. Then A ⊂ A, for A does not
meet B, so A is closed. The map f : X → {0, 1} given by f(A) = 0 and f(B) = 1 is continuous since all
closed subsets of the co-domain have closed pre-images.
¬(4) =⇒ ¬(1): Let f : X → {0, 1} be a surjective continuous map. Then X = f−1(0) ∪ f−1(1) is the
union of two disjoint non-empty open subsets. �

2.107. Theorem. If X is connected, then f(X) is connected for any continuous map f : X → Y .

Proof. We use the equivalence of (1) and (4) in Theorem 2.106. Let f : X → Y be a continuous
map. If f(X) is not connected, there is a non-constant continuous map f(X) → {0, 1} and hence a
non-constant continuous map X → {0, 1}. So X is not connected. �

2.108. Example. (1) R−{0} = R− ∪R+ is not connected for it is the union of two disjoint open
non-empty subsets.

(2) We shall later prove that R is connected (2.119) and that the connected subsets of R are precisely
the intervals, rays, R, and ∅.

(3) R` is not connected for [a, b) is a closed and open subset whenever a < b (2.31.(4)). In fact, any
subset Y of R` containing at least two points a < b is disconnected as Y ∩ [a, b) is closed and open
but not equal to ∅ or Y . (R` is totally disconnected.)

(4) RK is connected [8, Ex 27.3].
(5) Q is totally disconnected (and not discrete): Let Y be any subspace of Q containing at least two
points a < b. Choose an irrational number t between a and b. Then Y ∩ (t,∞) = Y ∩ [t,∞) is an
open, closed, non-empty, proper subset of Y .

(6) Particular point topologies (2.2.(3)) are connected.

A subspace of X is said to be connected if it is connected in the subspace topology. A subspace of a
connected space need obviously not be connected. So how can we tell if a subspace is connected?

2.109. Lemma. Let Y ⊂ X be a subspace. Then

Y is connected ⇐⇒ Y is not the union of two separated non-empty subsets of X

Proof. Suppose that Y = Y1 ∪ Y2 is the union of two subspaces. Observe that

(2.110) Y1 and Y2 are separated in Y ⇐⇒ Y1 and Y2 are separated in X

because ClY (Y1)∩ Y2
2.35.(2)

= Y1 ∩ Y ∩ Y2 = Y1 ∩ Y2. The lemma now follows immediately from 2.106, the
equivalence of (1) and (3). �

2.111. Corollary. Suppose that Y ⊂ X is a connected subspace. For every pair A and B of
separated subsets of X such that Y ⊂ A ∪B we have either Y ⊂ A or Y ⊂ B.

Proof. The subsets Y ∩ A and Y ∩ B are separated (since the bigger sets A and B are separated)
with union Y . By 2.109, one of them must be empty, Y ∩A = ∅, say, so that Y ⊂ B. �
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2.112. Corollary. The closure of any connected subspace is connected. Indeed, if C ⊂ Y ⊂ C and
C is connected, then Y is connected.

Proof. Let f : Y → {0, 1} be a continuous map. Then f(C) is a single point since C is connected.
Moereover, f(y) = f(C) for all y ∈ Y since otherwise we could separate y and C by disjoint open sets.
Thus f is constant. �

2.113. Theorem. Let {Yj | j ∈ J} be a set of connected subspaces of the space X. Suppose that there
is an index j0 ∈ J such that Yj and Yj0 are not separated for any j ∈ J . Then the union

⋃
j∈J Yj is

connected.

Proof. Let f :
⋃
j∈J Yj → {0, 1} be a continuous map. The image f(Yj) of Yj is a single point for

each j ∈ J since Yj is connected. In fact, f(Yj) = f(Yj0) as otherwise we could separate Yj and Yj0 by
disjoint open sets. Thus f is constant. �

2.114. Corollary. The union of a collection of connected subspaces with a point in common is
connected.

Proof. Apply 2.113 with any of the subspaces as Yj0 . �

2.115. Corollary. Suppose that for any two points in X there is a connected subspace containing
both of them. Then X is connected.

Proof. Let x0 be some fixed point of X. For each point x ∈ X, let Cx be a connected subspace
containing x0 and x. Then X =

⋃
Cx is connected as

⋂
Cx 6= ∅ (2.114). �

2.116. Theorem. Products of connected spaces are connected.

Proof. We prove first that the product X × Y of two connected spaces X and Y is connected. In
fact, for any two points (x1, y1) and (x2, y2) the subspace X × {y1} ∪ {x2} × Y contains the two points
and this subspace is connected since (2.114) it is the union of two connected subspaces with a point in
common. Thus X × Y is connected by Corollary 2.115.

Next, induction shows that the product of finitely many connected spaces is connected.
Finally [8, Ex 23.10], consider an arbitrary product

∏
Xj of connected spaces Xj , j ∈ J . Choose

(1.28) a point xj in each of the spaces Xj (assuming that all the spaces of the product are non-empty).
For every finite subset F of J let CF ⊂

∏
Xj be the product of the subspaces Xj if j ∈ F and {xj}

if j 6∈ F . Since CF is connected for each finite subset F and these subsets have the point (xj)j∈J in
common, the union

⋃
F∈F CF , where F is the collection of all finite subsets of J , is connected (2.114).

This union is not all of
∏
Xj but its closure is, so

⋃
F∈F CF =

∏
j∈J Xj is connected (2.112). �

2.117. Connected subspaces of linearly ordered spaces. We determine the connected subsets
of R, or, more generally, of any linear continuum.

Recall that a subset C of a linearly ordered set X is convex if a, b ∈ C =⇒ [a, b] ⊂ C. Connected
subspaces are convex. But are convex subspaces connected? Not always: The convex subset [0, 1] is not
connected in Z but it is connected in R.

2.118. Lemma. Suppose that X is a linear continuum (1.15). Then

{connected subsets of X} = {convex subsets of X}
The inclusion ⊂ holds in any linearly ordered space.

Proof. Suppose first that X is any linearly ordered space and let C ⊂ X a subspace that is not
convex. Then there exist points a < x < b in X such that a and b are in C and x is outside C. Since
C ⊂ (−∞, x) ∪ (x,+∞) is contained in the union of two separated subsets and meet both of them, C is
not connected (2.111).

Let now X be a linear continuum and C a convex subset of X. We claim that C is connected. Pick
a fixed point a ∈ C and note that C is a union of closed intervals with a as one of their end-points.
Therefore it suffices (2.114) to prove the claim in case C = [a, b] is a closed interval. Suppose that
[a, b] = A∪B is the union of two disjoint relative open nonempty subsets A. We may assume that b ∈ B.
The sets A and B are closed and open in [a, b]. As the closed interval [a, b] is closed in X (2.13), A and
B are also closed in X (2.35). The nonempty bounded set A has a least upper bound, c = supA. Now,
c ≤ b since b is an upper bound and c ∈ A since A is closed in X. (The least upper bound of any bounded
set always belongs to the closure of the set since otherwise it wouldn’t be the least upper bound.) So
c < b (for b 6∈ A) and A ⊂ [a, b). But A is also open in [a, b] and in the subspace [a, b) (which has the
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subspace topology which is the order topology (2.27)). This contradicts c ∈ A for no element of an open
subset A of [a, b) can be an upper bound for A: For any point d ∈ A there exists an open interval (x, y)
around d such that [a, b)∩ (x, y) ⊂ A and since [d, y) 6= ∅, d is not an upper bound for A. (In short, c ∈ A
since A is closed in X and c 6∈ A since A is open in [a, b).) This is a contradiction and therefore A must
be empty. �

The inclusion ⊃ does not hold for all linearly ordered spaces as for instance Z+ is convex but not
connected (there are gaps).

In particular, the connected subsets of R are precisely the convex subsets which are ∅, R, and all
intervals (bounded or unbounded, closed, open or halfopen).

We shall now identify the linearly ordered spaces that are connected.

2.119. Theorem. [2, Ex 7 p 382, Prop 1 p 336] Let X be a linearly ordered space. Then

X is connected in the order topology ⇐⇒ X is a linear continuum

The connected subsets of a linear continuum X are: X, ∅, intervals and rays.

Proof. =⇒: [8, Ex 24.4] [5, Problem 6.3.2] [2, Ex 7 p 382]. Suppose that X is a linearly ordered
set that is not a linear continuum. Then there are nonempty, proper, clopen subsets of X:

• If (x, y) = ∅ for some points x < y then (−∞, x] = (∞, y) is clopen and 6= ∅, X.
• If A ⊂ X is a nonempty subset bounded from above which has no least upper bound then the

set of upper bounds B =
⋂
a∈A[a,∞) =

⋃
b∈B(b,∞) is clopen and 6= ∅, X.

Therefore X is not connected (2.106).
⇐=: Assume X is a linear continuum. From 2.118 we know that the the connected and the convex
subsets of X are the same. In particular, the linear continuum X, certainly convex in itself, is connected
in the order topology. Let C be a nonempty convex subset of X. We look at two cases:

• C is neither bounded from above nor below. Let x be any point of X. Since x is neither a lower
nor an upper bound for C there exist a, b ∈ C so that a < x < b. Then x ∈ C by convexity.
Thus C = X.

• C is bounded from above but not from below. Let c = supC be its least upper bound. Then
C ⊂ (−∞, c]. Let x < c be any point. Since x is neither a lower nor an upper bound for C
there exist a, b ∈ C so that a < x < b. Then x ∈ C by convexity. Thus (∞, c) ⊂ C ⊂ (−∞, c]
and C is either (−∞, c) or (−∞, c].

The arguments are similar for the other cases. Recall that X also has the greatest lower bound property
[8, Ex 3.13]. �

The real line R, the ordered square I2
o (2.15.(7)), the (ordinary) (half) line [1, ω) = Z+ × [0, 1)

(1.49.(6)), and the long (half) line [0,Ω)× [0, 1) (1.52) [8, Ex 24.6, 24.12] are examples of linear continua.

2.120. Theorem. [Intermediate Value Theorem] Let f : X → Y be a continuous map of a connected
topological space X to a linearly ordered space Y . Then f(X) is convex. If Y is a linear continuum,
f(X) is an interval (bounded or unbounded, closed, half-open, or open)

Proof. X connected
(2.107)
=⇒ f(X) connected

(2.119)
=⇒ f(X) convex. For subsets of a linear continuum

we know (2.119) that connected = convex = interval. �

Any linearly ordered space containing two consecutive points, two points a and b with (a, b) = ∅ is
not connected as X = (−∞, b) ∪ (a,+∞) is the union of two disjoint open sets.

Any well-ordered set X containing at least two points is totally disconnected in the order topology.
For if C ⊂ X contains a < b then a 6∈ C ∩ (a, b] 3 b is closed and open in C since (a, b] is closed and open
in X.

2.121. Path connected spaces. Path connectedness is a stronger property than connectedness.

2.122. Definition. The topological space X is path connected if for any two points x0 and x1 in X
there is a continuous map (a path) f : [0, 1]→ X with f(0) = x0 and f(1) = x1.

The image under a continuous map of a path connected space is path connected, cf 2.107. Any
product of path connected spaces is path connected [8, Ex 24.8], cf 2.113.

2.123. Example. The punctured euclidian plane Rn − {0} is path connected when n ≥ 2 since any
two points can be joined by a path of broken lines. Thus also the (n−1)-sphere Sn−1, which is the image
of Rn − {0} under the continuous map x 7→ x/|x|, is path connected for (n− 1) ≥ 1.
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Since the unit interval I is connected (2.119), all paths f(I) are also connected (2.107) so all path
connected spaces are, as unions of paths emanating from one fixed point, connected (2.115). The converse
is not true, not all connected spaces are path connected.

2.124. Example. (1) (Topologist’s sine curve) Let S be the graph of the function sin(1/x), 0 <
x ≤ 1, considered as a subspace of the plane R2. The (closed) topologist’s sine curve is the subspace
S = S ∪ ({0} × [−1, 1]) of the plane. It follows from 2.107 and 2.112 that S is connected. We shall
soon see that S is not path connected (2.133.(2)).

(2) The ordered square I2
o (2.15.(7)) is connected since it is a linear continuum [8, Ex 3.15] but it is

not path connected. For suppose that f : [0, 1]→ I2
o is a path from the smallest element (the lower

left corner) f(0) = 0 × 0 to the largest element (the upper right corner) f(1) = 1 × 1. Then f is
surjective for the image contains (2.120) the interval [0 × 0, 1 × 1] = I2

o . But this is impossible since
the ordered square I2

o contains uncountably many open disjoint subsets (eg x× (0, 1) = (x× 0, x× 1),
0 ≤ x ≤ 1) but [0, 1] does not contain uncountably many open disjoint subsets (choose a rational
number in each of them).

(3) RK (2.11) is connected but not path-connected space [8, Ex 27.3].
(4) The Stone–Čech compactification βR of R is connected but not path-connected [8, Ex 38.9].

2.125. Components and path components. The relations on X defined by

x ∼ y ⇔ There is a connected subset C ⊂ X such that x ∈ C and y ∈ C

x
p∼ y ⇔ There is a path in X between x and y

are equivalence relations. Check transitivity! (You may need the Glueing lemma (2.53.(5)).)

2.126. Definition. The components of X are the equivalence classes of the first equivalence relation.
The path components of X are the equivalence classes of the second equivalence relation

The component containing the point x ∈ X is, by definition, the union of all connected subspaces
containing x. The path component of the point x ∈ X consists, by definition, of all points with a path
to x.

2.127. Theorem. (1) The components are connected closed disjoint subsets with union X. Any
connected subset of X is contained in precisely one of the components.

(2) If X =
⋃
Cα, where the Cα are connected subspaces such that for all α 6= β there is a separation

A ∪B of X with Cα ⊂ A and Cβ ⊂ B, then the Cα are the components of X.
(3) The path components of X are path connected disjoint subsets with union X. Any path connected
subset is contained in precisely one of the path components.

(4) The path components are connected. The components are unions of path components.

Proof. (1) The components form a partition of X since they are equivalence classes (1.11). The
components are connected by the definition of the relation ∼ and 2.115. All the points of a connected
subset are equivalent so they are contained in the same equivalence class. In particular (2.115), C ⊂ C
for any component C so C is closed.
(2) Since each Cα is connected, it is contained in precisely one component (2.127.(1)). Could there be
two of the Cαs, say Cα and Cβ , inside one component, say C? No: Choose a separation X = A∪B such
that Cα ⊂ A and Cβ ⊂ B. Then C ⊂ X = A∪B and C meets both A and B which is impossible (2.111).
(3) The path components are path-connected by their very definition. All path-connected spaces are
connected, so each path-component is contained in precisely one component. Thus the components are
unions of path-components. �

If X has only finitely many components the components are closed and open. If X = C1 ∪ · · · ∪ Cn
where the finitely many subspaces Ci are connected and separated then the Ci are the components of X.

The path components can be closed, open, closed and open, or neither closed nor open. However, for
locally connected spaces (2.129) components and path components coincide (2.131).

2.128. Locally connected and locally path connected spaces.

2.129. Definition. The space X is locally (path) connected at the point x if every neighborhood of
x contains a (path) connected neighborhood of x. The space X is locally (path) connected if it is locally
(path) connected at each of its points.

Thus a space is locally (path) connected iff it has a basis of (path) connected subsets.
Consider this table
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R R− {0} S Q
Connected YES NO YES NO
Locally connected YES YES NO NO

before you draw any conclusions about the relationship between connected and locally connected spaces.
Note in particular that a space can be connected (even path connected (2.133)) and not locally connected.

On the positive side, note that open subsets of locally (path) connected spaces are locally (path)
connected and that quotient spaces of locally connected spaces are locally connected (2.132).

2.130. Proposition. The space X is locally (path) connected if and only if open subsets have open
(path) components (open in X or, what is the same (2.24), open in the open set). In a locally (path-)
connected space the (path-) components are clopen.

Proof. Assume that X is locally connected and let U be an open subset. Consider a component,
C, of U . The claim is that C is open. Let x be a point in C. Choose a connected neighborhood V of x
such that V ⊂ U . Since V is connected and intersects C, V ⊂ C (2.127). This shows that C is open. In
particular, the components (of the open set X) are open and, since they form a partition, also closed.

Conversely, assume that open subsets have open components. Let x be a point of X and U a neigh-
borhood of x. Let C be the component of U containing x. Then C is an open connected neighborhood
of x contained in U . �

It follows for instance that the open subsets of R are unions of at most countably many open
intervals. For any open set is the union of its components which are open, since R is locally connected,
and connected, so they are open intervals. Since each of the open intervals contains a rational number,
there are at most countably many components. Any closed subset of R is the complement to a union of
at most countably many open intervals.

2.131. Theorem. In a locally path-connected space the path-components and the components are the
same.

Proof. Suppose that X is locally path-connected. Each path-component P is contained (2.127) in
a unique component, C. Since C is connected and P is clopen (2.130), P = C (2.106). �

For instance, the components and the path components of a locally Euclidean space, such as a
manifold, are the same. A locally path-connected space is path-connected if and only if it is connected.

2.132. Proposition. [8, Ex 25.8] [2, I.§11.6] Locally (path) connected spaces have locally (path)
connected quotient spaces.

Proof. Let X be a locally connected space and p : X → Y a quotient map. Let V be a subset
of Y and C a component of V . Then p−1(C) is a union of components of p−1(V ) because continuous
maps preserve connectedness (2.107). If V is open in Y , p−1(V ) is open in X, and since X is locally
connected it follows (2.130) that p−1(C) is open in X. This means (2.74) that C is open in Y . Since thus
open subsets of Y have open components, Y is locally connected (2.130). (The same proof applies with
‘connected’ replaced by ‘path connected’.) �

2.133. Example. (1) The comb space X = ([0, 1]× {0}) ∪ (({0} ∪ {1/n | n ∈ Z+})× [0, 1]) ⊂ R2

is clearly path connected but it is not locally connected for (2.131) the open set U = X − [0, 1]× {0}
has a component (use (2.127.(2)) to identify the components) that is not open. (The same is true for
any (small) neighborhood of (0, 1/2).) See [8, Ex 25.5] for a similar example.

(2) The closed topologist’s sine curve S is not locally connected: Let U be a small neighborhood
(well, not too big) around (0, 1/2). Then U has a component that is not open. For instance, U =
S− ([0, 1]×{0} has a component (2.127.(2)), {0}× (0, 1] that is not open (no neighborhood of (0,± 1

2 )
is disjoint from S). It follows (2.132, 2.141.(2)) that S is not path-connected for it can not be a
quotient space of the locally connected compact space [0, 1]. In fact, S has two path-components:
S = S ∩ (R+ ×R), which is open and not closed for its closure is S, and {0} × [0, 1], which is closed
and not open for S is not closed. Since there are two path components and one component, S is not
locally path connected (2.131). (The Warsaw circle, the union of S with an arc from one end of S to
[0, 1]) is an example of a path connected not locally connected space, so is the next example.)

(3) The space X =
⋃
Cn (2.41.(2)) is even path connected but still not locally connected for the

component R+ × {0} of the open set X − {(0, 0)} (use (2.127.(2)) to identify the components) is not
open (any neighborhood of (1, 0) contains points from the circles). Alternatively, X is not locally
connected since any small neighborhood of (1, 0) has a separation.
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(4) Any linear continuum is locally connected since the basis for the topology consists of connected
sets (2.119). It need not be locally path connected [8, Ex 25.3].

(5) The (generalized) Jordan curve theorem says that Rn−h(Sn−1) has two path-components for any
embedding h : Sn−1 → Rn of an (n−1)-sphere into Rn, n ≥ 1. This is usually proved using algebraic
topology.

Figure 1. The Warsaw circle
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10. Compact spaces

2.135. Definition. A topological space X is compact if it satisfies one of the following two equivalent
conditions:

(1) Every collection of open subsets whose union is X contains a finite subcollection whose union
is X.

(2) Every collection of closed subsets whose intersection is ∅ contains a finite subcollection whose
intersection is ∅.

A collection of open subsets whose union is the whole space is called an open covering. Thus a space
is compact if any open covering contains a finite open covering.

Any finite space is compact as there are only finitely many open subsets. Any compact discrete
space is finite. The real line R is not compact as the open covering {(−n, n) | n ∈ Z+} has no finite
subcovering.

How can we recognize the compact subspaces of a given topological space?

2.136. Proposition. Let Y be a subspace of X. The following are equivalent:
(1) Y is compact
(2) Every collection of open subsets of X whose union contains Y contains a finite subcollection

whose union contains Y
(3) Every collection of closed subsets of X whose intersection is disjoint from Y contains a finite

subcollection whose intersection is disjoint from Y

Proof. (1) =⇒ (2): Let {Uj | j ∈ J} be a collection of open subsets of X such that Y ⊂
⋃
Uj .

Then {Y ∩ Uj | j ∈ J} is an open covering of Y . Since Y is compact, Y =
⋃
j∈J′ Y ∩ Uj for some finite

index set J ′ ⊂ J . This means that Y ⊂
⋃
j∈J′ Uj .

(2) =⇒ (1): Let {Vj | j ∈ J} be an open covering of Y . Then Vj = Y ∩ Uj for some open set
Uj ⊂ X and Y ⊂

⋂
j∈J Uj . By assumption, Y ⊂

⋃
j∈J′ Uj for some finite index set J ′ ⊂ J . Therefore

Y = Y ∩
⋃
j∈J′ Uj =

⋃
j∈J′ Y ∩ Uj =

⋃
j∈J′ Vj . This shows that Y is compact.

(2) ⇐⇒ (3): Clear from DeMorgan’s laws. �

2.137. Theorem. Closed subspaces of compact spaces are compact.

Proof. Suppose that X is a compact space and Y ⊂ X a closed subset. Let Fj , j ∈ J , be a
collection of closed subsets of X such that Y ∩

⋂
j∈J Fj =

⋂
j∈J Y ∩ Fj = ∅. By compactness of X,

∅ =
⋂
j∈J′ Y ∩ Fj = Y ∩

⋂
j∈J′ Fj for some finite index set J ′ ⊂ J . Thus Y is compact by 2.136. �

2.138. Theorem. If X is compact, then f(X) is compact for any continuous map f : X → Y .

Proof. Let Uj , j ∈ j, be a collection of open subsets of Y that cover the image f(X). Then
X =

⋃
j∈J f

−1(Uj) is an open covering of X. Since X is compact, X =
⋃
j∈J′ f

−1(Uj) for some finite
index set J ′ ⊂ J . Then f(X) = f

(⋃
j∈J′ f

−1(Uj)
)

=
⋃
j∈J′ ff

−1(Uj) ⊂
⋃
j∈J′ Uj . This shows that f(X)

is compact (2.135). �

Compact subspaces of Hausdorff spaces behave to some extent like points.

2.139. Theorem. (1) Compact subspaces of Hausdorff spaces are closed.
(2) Any two disjoint compact subspaces of a Hausdorff space can be separated by disjoint open sets.

Proof. Let L and K be two disjoint compact subspaces of X. Consider first the special case where
L = {x0} is a point. For each point x ∈ K, the Hausdorff property implies that there are disjoint open
sets Ux, Vx such that and x ∈ Ux and x0 ∈ Vx. Since K is compact (2.136), K ⊂ Ux1 ∪ . . . ∪ Uxt for
finitely many points x1, . . . , xt ∈ K. Set U = Ux1 ∪ . . . ∪ Uxt

and V = Vx1 ∩ . . . ∩ Vxt
. The existence of

V alone says that K is closed.
Assume next that L is any compact subspace of X. We have just seen that for each point y ∈ L

there are disjoint open sets Uy ⊃ K and Vy 3 y. By compactness, L is covered by finitely many of the
Vy. Then K is contained in the intersection of the corresponding finitely many Uy. �

2.140. Corollary. Let X be a compact Hausdorff space.
(1) {compact subspaces of X} = {closed subspaces of X}
(2) If A and B are disjoint closed sets in X then there exist disjoint open sets U , V such that A ⊂ U

and B ⊂ V .
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Proof. (1) ⊂ is 2.139 and ⊃ is 2.137.
(2) Let A and B be disjoint closed subsets of X. Then A and B are compact as just shown. Now apply
2.139. �

2.141. Lemma (Closed Map Lemma). Suppose that X is a compact space, Y is a Hausdorff space,
and f : X → Y is a continuous map.

(1) f is closed (2.69).
(2) If f is surjective, it is a closed quotient map (2.76).
(3) If f is injective, it is an embedding (2.58).
(4) If f is bijective, it is a homeomorphism (2.55).

Proof. Let f : X → Y be a continuous map of a compact space X into a Hausdorff space Y .
(1) We have

C is closed in X
2.137=⇒ C is compact 2.138=⇒ f(C) is compact 2.139=⇒ f(C) is closed in Y

which shows that f is a closed map.
(2) Every closed continuous surjective map is a closed quotient map (2.78).
(3) Every closed continuous injective map is an embedding (2.59).
(4) Every closed bijective continuous map is a homeomorphism (2.78.(3)).

�

2.142. Corollary. If f : X → Y is continuous and X is compact and locally connected and Y is
Hausdorff, then f(X) is compact and locally connected.

Proof. We know (2.141) that f : X → f(X) is a (closed) quotient map. The quotient image of a
locally connected space is locally connected (2.132). �

2.143. Lemma (The Tube Lemma). Let X and Y be topological spaces where Y is compact. Let x0

be a point of X. For any neighborhood N ⊂ X × Y of the slice {x0} × Y there is a neighborhood U of x0

such that {x0} × Y ⊂ U × Y ⊂ N .

Proof. For each point y ∈ Y there is a product neighborhood such that x0 × y ⊂ Uy × Vy ⊂ N .
Since Y is compact, there are finitely many points y1, . . . , yk ∈ Y such that Y = V1 ∪ . . . ∪ Vk where
Vi = Vyi . Put U = U1 ∩ . . . ∩ Uk. �

2.144. Theorem. (Cf 2.149) The product of finitely many compact spaces is compact.

Proof. We show that the product X×Y of two compact spaces X and Y is compact. The theorem
in its general form follows by induction. Suppose that Aj , j ∈ J , is an open covering of X × Y . We
show that there is a finite subcovering. For each point x ∈ X, the slice {x} × Y , homeomorphic to Y ,
is compact and therefore {x} × Y ⊂

⋃
j∈Jx

Aj for some finite index set Jx ⊂ J (2.136). Thanks to the
tube lemma (2.143) we know that the open set

⋃
j∈Jx

Aj actually contains a whole tube Ux×Y for some
neighborhood Ux of x. By compactness, X = Ux1 ∪ . . . ∪ Uxk

can be covered by finitely many of the
neighborhoods Ux. Now

X × Y =
( ⋃

1≤i≤k

Uxi

)
× Y =

⋃
1≤i≤k

(Uxi
× Y ) =

⋃
1≤i≤k

⋃
j∈Jxi

Aj =
⋃

j∈
S

1≤i≤k Jxi

Aj

where
⋃

1≤i≤k Jxi
⊂ J is finite (1.34). �

Here are two small lemmas that are used quite often.

2.145. Lemma (Criterion for noncompactness). If X contains an infinite closed discrete subspace,
then X is not compact.

Proof. Any closed subspace of a compact space is compact (2.137). A discrete and compact space
is finite. �

2.146. Lemma (Intersection of a nested sequence of compact sets). [8, Ex 28.5] [5, 3.10.2] Let C1 ⊃
C2 ⊃ · · · ⊃ Cn ⊃ · · · be a descending sequence of closed nonempty subsets of a compact space. Then⋂
Cn 6= ∅.

Proof. If
⋂
Cn = ∅ then Cn = ∅ for some n ∈ Z+ by 2.135.(2). �

2.147. Theorem. [Cf [8, Ex 27.5]] A nonempty compact Hausdorff space without isolated points
(2.39) is uncountable.
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Proof. Let xn be a sequence of points in X. It suffices (1.39) to show that {xn | n ∈ Z+} 6= X.
Since X is Hausdorff and has no isolated points there is a descending sequence

V1 ⊃ V2 ⊃ · · · ⊃ Vn−1 ⊃ Vn ⊃ · · ·

of nonempty open sets such that xn 6∈ V n for all n. These are constructed recursively. Put V0 = X.
Suppose that Vn−1 has been constructed for some n ∈ Z+. Since xn is not isolated, {xn} 6= Vn−1. Choose
a point yn ∈ Vn−1 distinct from xn and choose disjoint (separated) open sets Un ⊂ X, Vn ⊂ Vn−1 such
that xn ∈ Un and yn ∈ Vn. Then Un ∩ V n = ∅ so xn 6∈ V n.

By construction, the intersection
⋂
V n contains none of the points {xn} of the sequence and by

compactness (2.146),
⋂
V n 6= ∅. Thus X contains a point that is not in the sequence. �

The Alexandroff compactification (2.167) ωZ+ = K = K ∪ {0}, where K is as in 2.11, is a countable
compact Hausdorff space with isolated points.

Is it true that a connected Hausdorff space is uncountable?

2.148. Example. (1) The (unreduced) suspension of the space X is the quotient space

SX = [0, 1]×X/({0} ×X, {1} ×X)

What is the suspension of the n-sphere Sn? Define f : [0, 1]× Sn → Sn+1 to be the (continuous)
map that takes (t, x), t ∈ [0, 1], to the geodesic path from the north pole (0, 1) ∈ Sn+1, through the
equatorial point (x, 0) ∈ Sn ⊂ Sn+1, to the south pole (0,−1) ∈ Sn+1. (Coordinates in Rn+2 =
Rn+1×R.) By the universal property of quotient spaces there is an induced continuous and bijective
map f : SSn → Sn+1. Since SSn is compact (as a quotient of a product of two compact spaces) and
Sn+1 is Hausdorff (as a subspace of a Hausdorff space), f is a homeomorphism (2.141). We often
write SSn = Sn+1, n ≥ 0, where the equality sign stands for ‘is homeomorphic to’.

(2) Every injective continuous map S1 → R2 is an embedding. Can you find an injective continuous
map R1 → R2 that is not an embedding?

(3) Alexander’s horned sphere [7, Example 2B.2] is a wild embedding of the 2-sphere S2 in R3 such
that the unbounded component of the complement R3 − S2 (2.133.(5)) contains non-contractible
loops. It may be easier instead to consider Alexander’s horned disc [3, p 232]. (The horned sphere is
obtained by cutting out a disc of the standard sphere and replacing it a horned disc.)

(4) Let X be a Hausdorff space and

X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X

an ascending sequence of closed subspaces. Assume that the topology on X is coherent with this
filtration in the sense that

A is closed ⇐⇒ A ∩Xn is closed for all n

holds for all subsets A of X. Then any compact subspace C of X is contained in a finite stage of the
filtration. To see this, choose a point tn ∈ C ∩ (Xn−Xn−1) for all n ∈ Z+ for which this intersection
is nonempty. Let T = {tn} be the set of these points. We want to prove that T is finite. Certainly,
T ∩ Xn is finite, hence closed in the Hausdorff space Xn for all n ≥ 0. Therefore T is closed. In
fact, any subset of T is closed by the same argument and thus T is discrete. But any closed discrete
subspace of the compact space C is finite (2.145).

2.149. Theorem (Tychonoff theorem). The product
∏
j∈J Xj of any collection (Xj)j∈J of compact

spaces is compact.

Proof. Put X =
∏
j∈J Xj . Let us say that a collection of subsets of X is an FIP-collection (finite

intersection property) if any finite subcollection has nonempty intersection. We must (2.135.(2)) show

A is FIP =⇒
⋂
A∈A

A 6= ∅

holds for any collection A of subsets of X.
So let A be a FIP-collection of subsets of X. Somehow we must find a point x in

⋂
A∈AA.

Step 1. The FIP-collection A is contained in a maximal FIP-collection.
The set (supercollection?) A of FIP-collections containing A is a strictly partially ordered by strict
inclusion. Any linearly ordered subset (subsupercollection?) B ⊂ A has an upper bound, namely the
FIP-collection

⋃
B =

⋃
B∈B B containing A. Now Zorn’s lemma (1.56) says that A has maximal elements.

We can therefore assume that A is a maximal FIP-collection.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Tikhonov.html
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Step 2. Maximality of A implies

(2.150) A1, . . . , Ak ∈ A =⇒ A1 ∩ · · · ∩Ak ∈ A
and for any subset A0 ⊂ X we have

(2.151) ∀A ∈ A : A0 ∩A 6= ∅ =⇒ A0 ∈ A
To prove (2.150), note that the collection A∪ {A1 ∩ · · · ∩Ak} is FIP, hence equals A by maximality. To
prove (2.151), note that the collection A∪{A0} is FIP: Let A1, . . . , Ak ∈ A. By (2.150), A1∩· · ·∩Ak ∈ A
so A1 ∩ · · · ∩Ak ∩A 6= ∅ by assumption.
Step 3. {πj(A) | A ∈ A} is FIP for all j ∈ J .
πj(A1) ∩ · · · ∩ πj(Ak) ⊃ πj(A1 ∩ · · · ∩Aj) 6= ∅ for any finite collection of sets A1, . . . , Ak ∈ A.

Since Xj is compact and {πj(A) | A ∈ A} is an FIP collection of closed subsets of Xj , the intersection⋂
A∈A πj(A) ⊂ Xj is nonempty (2.135.(2)). Choose a point xj ∈

⋂
πj(A) for each j ∈ J and put

x = (xj) ∈ X.
Step 3. x ∈

⋂
A∈AA.

The point is that π−1
j (Uj) ∈ A for any neighborhood Uj of xj . This follows from (2.151) since π−1

j (Uj)∩
A 6= ∅, or equivalently, Uj ∩ πj(A) 6= ∅, for any A ∈ A as xj ∈ πj(A). Since A has the FIP it follows that
π−1
j1

(Uj1) ∩ · · · ∩ π−1
jk

(Ujk) ∩A 6= ∅ whenever Uji are neighborhoods of the finitely many points xji ∈ Xji

and A ∈ A. Thus x ∈ A for all A in the collection A; in other words x ∈
⋂
A∈AA. �

2.152. Compact subspaces of linearly ordered spaces. We show first that any compact sub-
space of a linearly ordered space is contained in a closed interval.

2.153. Lemma. Let X be a linearly ordered space and ∅ 6= C ⊂ X a nonempty compact subspace.
Then C ⊂ [m,M ] for some elements m,M ∈ C.

Proof. The claim is that C has a smallest and a largest element. The proof is by contradiction.
Assume that C has no largest element. Then C ⊂

⋃
c∈C(−∞, c) as there for any a ∈ C is a c ∈ C such

that a < c. By compactness

C ⊂ (−∞, c1) ∪ · · · ∪ (−∞, ck) ⊂ (−∞, c)
where c = max{c1, . . . , ck} is the largest (1.50) of the finitely many elements c1, . . . , ck ∈ C. But this is
a contradiction as c ∈ C and c 6∈ (∞, c). �

We now show that the eg the unit interval [0, 1] is compact in R. Note that the unit interval [0, 1]
is not compact in R− { 1

2}. (The intersection all the closed subspaces [− 1
n + 1

2 ,
1
n + 1

2 ] ⊂ [0, 1], n ≥ 2, is
empty but the intersection of finitely many of them is not empty.) The reason for this difference is that
R, but not R− { 1

2} (1.16.(6)), has the least upper bound property (1.15).

2.154. Theorem. Let X be a linearly ordered space with the least upper bound property. Then every
closed interval [a, b] in X is compact.

Proof. Let [a, b] ⊂ X be a closed interval and A and open covering of [a, b] (with the subspace
topology which is the order topology (2.27)). We must show that [a, b] is covered by finitely many of the
sets from the collection A. The set

C = {x ∈ [a, b] | [a, x] can be covered by finitely many members of A}
is nonempty (a ∈ C) and bounded from above (by b). Let c = supC be the least upper bound of C.
Then a ≤ c ≤ b. We would like to show that c = b.
Step 1 If x ∈ C and x < b then C ∩ (x, b] 6= ∅.
Proof of Step 1. Suppose first that x has an immediate successor y > x. We can not have x < b < y
for then y would not be an immediate successor. So x < y ≤ b. Clearly [a, y] = [a, x] ∪ {y} can be
covered by finitely many members of A. Suppose next that x has no immediate successor. Choose an
open set A ∈ A containing x. Since A is open in [a, b] and contains x < b, A contains an interval of the
form [x, d) for some d ≤ b. Since d is not an immediate successor of x there is a point y ∈ (x, d). Now
[a, y] ⊂ [a, x] ∪ [x, d) ⊂ [a, x] ∪A can be covered by finitely sets from A.
Step 2 c ∈ C.
Proof of Step 2. The claim is that [a, c] can be covered by finitely many members of A. From Step 1 we
have that C contains elements > a so the upper bound c is also > a. Choose A ∈ A such that c ∈ A.
Since A is open in [a, b] and a < c, A contains an interval of the form (d, c] for some d where a ≤ d.
Since d is not an uppe bound for C, there are points from C in (d, c]. Let y be such a point. Now
[a, c] = [a, y] ∪ (d, c] ⊂ [a, y] ∪A can be covered by finitely many sets from A.
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Step 3 c = b.
Proof of Step 3. By Step 2, c ∈ C. But then c = b for Step 1 says that if c < b, then c can not be an
upper bound. �

For instance, the ordered square I2
o = [0×0, 1×1], Z+ = [1,∞], and SΩ = [1,Ω] are compact linearly

ordered spaces [8, Ex 10.1]. More importantly, since the linearly ordered space R has the least upper
bound property, we get that all closed intervals in R are compact.

See [8, Ex 27.1] for the converse.

2.155. Corollary. Let X be a linearly ordered space and ∅ 6= C ⊂ X a nonempty subspace. Then

C is compact and connected =⇒ C is a closed interval

The converse holds when X is a linear continuum.

Proof. Since C is compact, C ⊂ [m,M ] for some m,M ∈ C (2.153) and [m,M ] ⊂ C because C is
connected, hence convex (2.118). In a a linear continuum every closed interval is compact (2.154) and
connected (2.118). �

In particular, the compact and connected subsets of the linear continuum R are precisely the closed
intervals.

2.156. Theorem (Heine–Borel). A subset C of the euclidean space Rn is compact if and only if it is
closed and bounded in the euclidean metric.

Proof. Let C ⊂ Rn be compact. Since C is compact and {(−R,R)n | R > 0} an open covering of
Rn, there is an R > 0 such that C ⊂ [−R,R]n. Thus C is bounded. Compact subspaces of Hausdorff
spaces are closed (2.139), so C is closed.

Conversely, if C is closed and bounded then C is a closed subset of [−R,R]n for some R > 0.
But [−R,R]n is compact (2.155, 2.144) and closed subsets of compact spaces are compact (2.137); in
particular, C is compact. �

Can you now answer question 2.60.(10)?

2.157. Theorem (Extreme Value theorem). Let f : X → Y be a continuous map of a nonempty
topological space X into a linearly ordered space Y .

(1) If X is compact then there exist m,M ∈ X such that f(X) ⊂ [f(m), f(M)].
(2) If X is compact and connected then there exist m,M ∈ X such that f(X) = [f(m), f(M)].

Proof. (1) Since the image f(X) is compact (2.138) we can apply (2.153).
(2) Since the image f(X) is compact (2.138) and connected (2.107) we can apply (2.155). �

2.158. Compactness in metric spaces. Since any open covering of compact space contains a
finite subcovering we see that any open covering of a compact metric space contains a subcovering of
open sets of size bounded from below. This observation is expressed in the Lebesgue lemma.

2.159. Lemma (Lebesgue lemma). Let X be a compact metric space. For any open covering of X
there exists a positive number δ > 0 (the Lebesgue number of the open covering) such that any subset of
X with diameter < δ is contained in one of the open sets in the covering.

Proof. Cover X by finitely many open balls, X = B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xk, δk), such that
each double radius ball B(xi, 2δi) is contained in one of the open sets of the covering. Let δ be any
positive number smaller than all the δi. Then any subset of diameter < δ is contained in one of the
balls B(xi, 2δi) and therefore in one of the open sets from the covering. (Let A ⊂ X be a subset with
diam(A) < δ. Choose any point a in A. Then a is in one of the open balls B(xi, δi). For any point
b ∈ A, the distance d(b, xi) ≤ d(b, a) + d(a, xi) < δ + δi < 2δi which means that the point b is contained
in B(xi, 2δi).) �

The open covering of R consisting of the open intervals (−1, 1) and (x−1/|x|, x+1/|x|) for all x ∈ R
with |x| > 1 does not have a Lebesgue number.

2.160. Definition. A map f : X → Y between metric spaces is uniformly continuous if for all ε > 0
there is a δ > 0 such that dY (f(x1), f(x2)) < ε whenever dX(x1, x2) < δ:

∀ε > 0∃δ > 0∀x1, x2 ∈ X : dX(x1, x2) < δ ⇒ dY (f(x1), f(x2)) < ε

2.161. Theorem (Uniform continuity theorem). Let f : X → Y be a continuous map between metric
spaces. If X is compact, then f is uniformly continuous.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Heine.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Borel.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lebesgue.html
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Proof. Given ε > 0. Let δ be the Lebesgue number of the open covering {f−1B(y, 1
2ε) | y ∈ Y }.

Then we have for all x1, x2 ∈ X
dX(x1, x2) < δ =⇒ diam{x1, x2} < δ

=⇒ ∃y ∈ Y : {x1, x2} ⊂ f−1B(y,
1
2
ε)

=⇒ ∃y ∈ Y : {f(x1), f(x2)} ⊂ B(y,
1
2
ε)

=⇒ dY (f(x1), f(x2)) < ε

�

2.159. Limit point compactness and sequential compactness.

2.162. Definition. A space X is
(1) limit point compact if any infinite subset of X has a limit point
(2) sequentially compact if any sequence in X has a convergent subsequence.

In other words, a space is limit point compact if it contains no infinite closed discrete subspaces
(2.40).

We shall not say much about these other forms of compactness (see [5, §3.10] for a more thorough
discussion).

2.163. Theorem. (Cf [8, Ex 28.4, Ex 35.3]) For any topological space X we have

X is compact =⇒ X is limit point compact 1st countable + T1=⇒ X is sequentially compact

All three forms of compactness are equivalent for a metrizable space.

Proof. X is compact =⇒ X is limit point compact: A subset with no limit points is closed and
discrete (2.40), hence finite (2.145).
X is limit point compact, 1st countable and T1 =⇒ X is sequentially compact: Let (xn) be a sequence
in X. Consider the set A = {xn | n ∈ Z+} of points in the sequenec. If A is finite there is a constant
subsequence (1.34.(3)). If A is infinite, A has a limit point x by hypothesis. If X is 1st countable, there
is a countable nested countable basis, U1 ⊃ U2 ⊃ · · · , at x just as in the proof of (2.100). Since x is a
limit point, there is a sequence element xn1 ∈ U1. Suppose that we have found n1 < · · · < nk such that
xni
∈ Ui. Since x is a limit point and X is T1, there are infinitely many points from A in Uk+1 (2.48). In

particular, there is nk+1 < nk such that xnk+1 is in Uk+1. The subsequence xnk
converges to x.

X is sequentially compact and metrizable =⇒ X compact: This is more complicated (but should also be
well-known from your experience with metric spaces) so we skip the proof. �

2.164. Example. (1) The well-ordered space SΩ of all countable ordinals is limit point compact
and sequentially compact but it is not compact. SΩ is not compact (2.153) for it is a linearly ordered
space with no greatest element [8, Ex 10.6]. On the other hand, any countably infinite subset of SΩ

is contained in a compact subset (1.52.(2), 2.154). Therefore (2.163) any countably infinite subset,
indeed any infinite subset (2.40), has a limit point and any sequence has a convergent subsequence.
(Alternatively, use that SΩ is first countable (2.98.(4)).) It follows (2.163) that SΩ is not metrizable.

(2) The Stone–Čech compactification (3.37) βZ+ of the positive integers is compact but it is not limit
point compact as the sequence (n)n∈Z+ has no convergent subsequence. Indeed, no point of the
remainder βZ+ − Z+ is the limit of a sequence in Z+ [8, Ex 38.9]. (It follows that βZ+ is not first
countable and not metrizable).
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11. Locally compact spaces and the Alexandroff compactification

2.165. Definition. A space X is locally compact at the point x ∈ X if x lies in the interior of some
compact subset of X. A space is locally compact if it is locally compact at each of its points.

This means that X is locally compact at the point x if x ∈ U ⊂ C where U is an open and C a
compact subset of X.

Compact spaces are locally compact (U = X = C). The real line R (more generally, Rn) is locally
compact but not compact. All linearly ordered spaces (2.13) with the least upper bound property are
locally compact. The space Q ⊂ R of rational numbers is not locally compact [8, Ex 29.1].

2.166. Definition. A compactification of the space X is an embedding c : X → cX of X into a
compact Hausdorff space cX such that c(X) is dense in cX.

The only compactification of a compact space X is X itself as X is closed and dense in cX.
Let X be a locally compact Hausdorff space. Let ωX = X ∪ {ω} denote the union of X with a set

consisting of a single point ω. The collection

T = {U | U ⊂ X open} ∪ {ωX − C | C ⊂ X compact}

is a topology on ωX: It is easy to see that finite intersections and arbitrary unions of open sets of the
first (second) kind are again open of the first (second) kind. It follows that T is closed under arbitrary
unions. It is also closed under finite intersections since U ∩ (ωX−C) = U −C is open in X (2.139). And
ωX = ωX − ∅ and ∅ are open.

If X is compact, then ωX is X with an added isolated point. The next theorem describes ωX in the
more interesting case when X is not compact.

2.167. Theorem (Alexandroff). Let X be a locally compact but not compact Hausdorff space.
(1) The map X → ωX is a compactification missing one point.
(2) If c : X → cX is another compactification of X then there is a unique closed quotient map

c : cX → ωX = cX/(cX −X) such that the diagram

X

c
}}||

||
||

||

!!C
CC

CC
CC

C

cX c
// ωX

commutes.

Proof. We must verify the following points:
The subspace topology on X is the topology on X: The subspace topology X ∩ T is clearly the original
topology on X.
X is dense in ωX: The intersection of X and some neighborhood of ω has the form X − C where C is
compact. Since X is assumed non-compact, X − C is not empty.
ωX is Hausdorff: Let x1 and x2 be two distinct points in ωX. If both points are in X then there are
disjoint open sets U1, U2 ⊂ X ⊂ ωX containing x1 and x2, respectively. If x1 ∈ X and x2 = ω, choose an
open set U and a compact set C in X such that x ∈ U ⊂ C. Then U 3 x and ωX − C 3 ω are disjoint
open sets in ωX.
ωX is compact: Let {Uj}j∈J be any open covering of ωX. At least one of these open sets contains ω. If
ω ∈ Uk, k ∈ J , then Uk = (X −C) ∪ {ω} for some compact set C ⊂ X. There is a finite set K ⊂ J such
that {Uj}j∈K covers C. Then {Uj}j∈K∪{k} is a finite open covering of ωX = X ∪ {ω}.

Let now c : X → cX be another compactification X. Define c : cX → ωX by c(x) = x for all x ∈ X
and c(cX − X) = ω. We check that c is continuous. For any open set U ⊂ X ⊂ ωX, c−1(U) is
open in X and hence (2.24.(2)) in cX since X is open in cX (2.168). For any compact set C ⊂ X,
c−1(ωX − C) = cX − C is open in cX since the compact set C is closed in the Hausdorff space cX
(2.140.(1)). This shows that c is continuous. By construction, c is surjective and hence (2.141) a closed
quotient map by the Closed Map Lemma (2.141). �

The theorem says that ωX = cX/(cX −X) where cX is any compactification of X. In particular, if
cX consists of X and one extra point then the map c is a bijective quotient map, ie a homeomorphism
(3). The space ωX is called the Alexandroff compactification or the one-point compactification of X.

2.168. Lemma. Any locally compact and dense subspace of a Hausdorff space is open.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Aleksandrov.html
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Proof. Suppose that Y is Hausdorff and that the subspace X ⊂ Y is locally compact and dense.
Let x ∈ X. Since X is locally compact Hausdorff the point x has a neighborhood X ∩ U , where U is
open in Y , such that its relative closure

ClX(X ∩ U) 2.35= X ∩X ∩ U 2.37= X ∩ U

is compact and hence closed in the Hausdorff space Y (2.139). But no part of U can stick outside X ∩U
for since U − (X ∩ U) is open

U − (X ∩ U) 6= ∅ X dense=⇒ (X ∩ U)− (X ∩ U) 6= ∅  

which is absurd. Thus we must have U ⊂ X ∩ U , in particular, U ⊂ X. This shows that X is open. �

2.169. Example. (1) The n-sphere Sn = ωRn is the Alexandroff compactification of the locally
compact Hausdorff space Rn for there is (2.60.(8)) a homeomorphism of Rn onto the complement of
a point in Sn.

(2) The real projective plane is the Alexandroff compactification of the Möbius band. More generally,
real projective n-space RPn = ωMBn is the Alexandroff compactification of the n-dimensional Möbius
band MBn (2.83) which is a locally compact Hausdorff space (indeed a manifold (3.40)).

(3) Let X be a linearly ordered space with the least upper bound property and let [a, b) be a half-
open interval in the locally compact space X. Then ω[a, b) = [a, b]. For instance the Alexandroff
compactifications of the half-open intervals [0, 1) ⊂ R, Z+ = [1, ω) ⊂ Z+×Z+, and SΩ = [1,Ω) ⊂ SΩ

are [0, 1], [1, ω], [1,Ω] = SΩ, respectively.
(4) The Alexandroff compactification of a countable union of disjoint copies of the real line

ω
( ∐
n∈Z+

R
)

= ω(Z+ ×R)
2.172.(4)

= ωZ+ ∧ S1 =
⋃
n∈Z+

C1/n

is the Hawaiian Earring (2.41.(2)) (which is compact by the Heine-Borel theorem (2.156)).
(5) The Warsaw circle W (which compact by the Heine-Borel theorem (2.156)) (2.133.(2)) is a com-
pactification of R and the quotient space W/(W −R) = ωR = S1.

2.170. Corollary (Characterization of locally compact Hausdorff spaces). For a Hausdorff space
X the following conditions are equivalent:

(1) X is locally compact
(2) X is homeomorphic to an open subset of a compact space
(3) For any point x ∈ X and any neighborhood U of x there is an open set V such that x ∈ V ⊂

V ⊂ U and V is compact.

Proof. (1) =⇒ (2): The locally compact Hausdorff space X is homeomorphic to the open subspace
ωX − {ω} of the compact Hausdorff space ωX (2.167).
(2) =⇒ (3): Suppose that Y is a compact Hausdorff space and that X ⊂ Y is an open subset. X is
Hausdorff since subspaces of Hausdorff spaces are Hausdorff (2.47). Let x be a point of X and U ⊂ X
a neighborhood of x in X. Then U is open also in Y (2.24) so that the complement Y − U is closed
and compact (2.137) in the compact space Y . In the Hausdorff space Y we can separate (2.140.(2)) the
disjoint closed subspaces {x} and Y −U by disjoint open sets, V 3 x and W ⊃ Y −U or Y −W ⊂ U . As
V is disjoint from W it is contained in the closed subset Y −W and then also V ⊂ Y −W ⊂ U . Here,
V is compact as a closed subspace of the compact space Y (2.137). Note (2.35) that the closure of V in
X equals the closure of V in Y because V , the closure of V in Y , is contained in U and X.
(3) =⇒ (1): Let x be a point of X. By property (3) with U = X there is an open set V such that
x ∈ V ⊂ V ⊂ X and V is compact. Thus X is locally compact at x. �

2.171. Corollary. (1) Closed subsets of locally compact spaces are locally compact.
(2) Open or closed subsets of locally compact Hausdorff spaces are locally compact Hausdorff.

Proof. (1) Let X be a locally compact space and A ⊂ X a closed subspace. We use the definition
(2.165) directly to show that A is locally compact. Let a ∈ A. There are subsets a ∈ U ⊂ C ⊂ X such
that U is open and C is compact. Then A ∩ U ⊂ A ∩ C where A ∩ U is a neighborhood in A and C ∩A
is compact as a closed subset of the compact set C (2.137).
(2) If X is locally compact Hausdorff and A ⊂ X open, it is immediate from 2.170.(2) that A is locally
compact Hausdorff. �
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An arbitrary subspace of a locally compact Hausdorff space need not be locally compact (2.172.(1)).
The product of finitely many locally compact spaces is locally compact but an arbitrary product of locally
compact spaces need not be locally compact [8, Ex 29.2]; for instance Zω+ is not locally compact. The
image of a locally compact space under an open continuous [8, 29.3] or a perfect map [8, Ex 31.7] [5,
3.7.21] is locally compact but the image under a general continuous map of a locally compact space need
not be locally compact; indeed, the quotient of a locally compact space need not be locally compact
(2.172.(2)) [5, 3.3.16].

2.172. Example. (1)
⋃
n∈Z+

Cn ⊂ R2 (2.41.(2)) is not locally compact at the origin: Any neigh-
borhood of 0× 0 contains a countably infinite closed discrete subspace so it can not be contained in
any compact subspace (2.145).

(2) The quotient space R/Z (2.98.(6)) is not locally compact at the point corresponding to Z: Any
neighborhood of this point contains an infinite closed discrete subspace so it can not be contained in
any compact subspace (2.145).

(3) In diagram (2.99), the space
∐
S1 is locally compact but not compact,

∏
S1 is compact, and

∨
S1

is not locally compact (at the one point common to all the circles).
(4) (Wedge sums and smash products) A pointed space is a topological space together with one of its
points, called the base point. The wedge sum of two pointed disjoint spaces (X,x0) and (Y, y0) is the
quotient space

X ∨ Y = (X q Y )/({x0} ∪ {y0})
obtained from the disjoint union ofX and Y (2.21) by identifying the two base points. Let f : X ∪ Y → X × Y
be the continuous map given by f(x) = (x, y0), x ∈ X, and f(y) = (x0, y), y ∈ Y . The image
f(X ∪ Y ) = X × {y0} ∪ {x0} × Y = π−1

2 ({y0}) ∪ π−1
1 ({x0}) is closed when X and Y are T1–spaces.

In fact, f is a closed map for if C ⊂ X is closed then f(C) = {(x, y0) | x ∈ C} = π−1
1 (C) ∩ π−1

2 ({y0})
is also closed. Thus f is a quotient map onto its image and its factorization f as in the commutative
diagram (2.82.(2))

X ∪ Y

$$I
IIIIIIII

f // X × Y

X ∨ Y
f

::uuuuuuuuu

is an embedding. We can therefore identify X ∨ Y and X × {y0} ∪ {x0} × Y . The smash product of
the pointed spaces (X,x0) and (Y, y0) is defined to be

X ∧ Y = (X × Y )/(X ∨ Y ) = X × Y/(X × {y0} ∪ {x0} × Y )

the quotient of the product space X × Y by the closed subspace X ∨ Y (×− ∨ = ∧).
If A ⊂ X and B ⊂ Y are closed subspaces, the universal property of quotient maps (2.82.(2))

produces a continuous bijection g such that the diagram

X × Y

))RRRRRRRRRRRRRR
gX×gY // X/A× Y/B

gX/A×Y/B // X/A ∧ Y/B

(X × Y )/(X ×B ∪A× Y )

g

55kkkkkkkkkkkkkkk

commutes. However, g may not be a homeomorphism since the product gX × gY of the two closed
quotient maps gX : X → X/A and gY : Y → Y/B may not be a quotient map. But if X and Y are
locally compact Hausdorff spaces then gX ×gY is quotient (2.87) so that g is a homeomorphism (2.79,
2.82.(3), 2.78.(3)) and

(2.173) (X × Y )/(X ×B ∪A× Y ) = X/A ∧ Y/B

in this case.
(5) The torus S1 × S1 is a compactification of R×R with remainder S1 ∨ S1.
(6) (The Alexandroff compactification of a product space) If X and Y are locally compact Hausdorff
spaces the map X × Y → ωX × ωY → ωX ∧ ωY is an embedding. This follows from (2.81, 2.78.(3))
when we note that the first map embeds X × Y into an open saturated subset of ωX × ωY (2.61).
The universal property of the Alexandroff compactification (2.167) implies that

(2.174) ω(X × Y ) = ωX ∧ ωY



11. LOCALLY COMPACT SPACES AND THE ALEXANDROFF COMPACTIFICATION 61

for any two locally compact Hausdorff spaces X and Y . In particular,

Sm ∧ Sn = ωRm ∧ ωRn (2.174)
= ω(Rm ×Rn) = ωRm+n = Sm+n

when we view the spheres as Alexandroff compactifications of euclidean spaces.
(7) The n–sphere Sn is (homeomorphic to) the quotient space I/∂I. Hence

Sn = S1 ∧ . . . ∧ S1 = I/∂I ∧ . . . ∧ I/∂I = In/∂In

by (2.173) and the formula (Exam June 2003) for the boundary of the product of two sets.
(8) (The p-adic integers.) Let p be a prime number. The product ring

∏∞
n=1 Z/pnZ of all the residue

(discrete topological) rings Z/pnZ, 0 < n < ∞, is compact according to the Tychonoff theorem
(2.149). The subring, called the p-adic integers,

Zp = {(an) | ∀n : an ≡ an+1 mod pn} ⊂
∞∏
n=1

Z/pnZ

is closed and therefore also compact (2.137). Indeed, the sets {(an)∞n=1 | ai ≡ aj mod pi} are closed
(and open) whenever 0 < i < j because the projection maps are continuous (2.64). The diagonal ring
homomorphism

Z ∆−→ Zp ⊂
∞∏
n=1

Z/pnZ, ∆(a) = (a mod pn)∞n=1

embeds the ring of integers into Zp. By the definition of the product topology (2.16), ∆Z is dense
in Zp in that any neighborhood of a point in Zp contains a point from Z. Thus Zp = ∆Z is a
compact topological ring containing the integers as a dense subring and the map ∆: Z→ Zp is a
compactification (2.166) of the discrete space Z. As a ring, Zp is quite different from Z. For instance,
the integer 1−p is invertible in Zp with inverse (1−p)−1 = (1, 1+p, 1+p+p2, . . .) =

∑∞
n=0 p

n. Actually,
any x = (x1, x2, . . .) ∈ Zp with nonzero reduction mod p is invertible because any xn ∈ Z/pnZ with
nonzero reduction mod p is invertible [9, Prop 2, p 12].

Some mathematicians prefer to include Hausdorffness in the definition of (local) compactness. What
we call a (locally) compact Hausdorff space they simply call a (locally) compact space; what we call a
(locally) compact space they call a (locally) quasicompact space.

http://www.math.ku.dk/~moller/e02/3gt/opg/ans.jun03.pdf




CHAPTER 3

Regular and normal spaces

1. Countability Axioms

Let us recall the basic question: Which topological spaces are metrizable? In order to further analyze
this question we shall look at a few more properties of topological spaces.

We have already encountered the first countability axiom (2.94). There are three more axioms using
the term ’countable’. Here are the four countability axioms.

3.1. Definition. A topological space
• that has a countable neighborhood basis at each of its points is called a first countable space
• that has a countable basis is called a second countable space
• that contains a countable dense subset is said to contain a countable dense subset1

• in which every open covering has a countable subcovering is called a Lindelöf space

A subset A ⊂ X is dense if A = X, that is if every nonempty open subset contains a point from A.
Any second countable space is first countable. Any subspace of a (first) second countable space is

(first) second countable. A countable product of (first) second countable spaces is (first) second countable
(2.97). Quotient spaces of first coountable spaces need not be first countable (2.98.(7)).

The real line R is second countable for the open intervals (a, b) with rational end-points form a
countable basis for the topology. R` is first but not second countable (3.8).

Metric spaces are first countable but not necessarily second countable [8, Example 2 p 190].
Any compact space is Lindelöf. Any closed subset of a Lindelöf space is Lindelöf [8, Ex 30.9] (with

a proof that is similar to that of 2.137). A product of two Lindelöf spaces need not be Lindelöf (3.9).
The next result implies that R, in fact any subset of the 2nd countable space R, is Lindelöf.

3.2. Theorem. Let X be a topological space. Then

X has a countable dense subset X is 2nd countableks +3

��

X is Lindelöf

X is 1st countable

If X is metrizable, the three conditions of the top line equivalent.

Proof. Suppose first that X is second countable and let B be a countable basis for the topology.
X has a countable dense subset: Pick a point bB ∈ B in each basis set B ∈ B. Then {bB | B ∈ B} is
countable (1.41.(2)) and dense.
X is Lindelöf: Let U be an open covering of X. For each basis set B ∈ B which is contained in some open
set from the collection U , pick any UB ∈ U such that B ⊂ UB . Then the at most countable collection
{UB} of these open sets from U is an open covering: Let x be any point in X. Since x is contained in a
member U of U and every open set is a union of basis sets, we have x ∈ B ⊂ U for some basis set B ∈ B.
But then x ∈ B ⊂ UB .
Any metric space with a countable dense subset is 2nd countable: Let X be a metric space with a count-
able dense subset A ⊂ X. Then the collection {B(a, r) | a ∈ A, r ∈ Q+} of balls centered at
points in A and with a rational radius is a countable (1.41.(4)) basis for the topology: It suffices
to show that for any open ball B(x, ε) in X and any y ∈ B(x, ε) there are a ∈ A and r ∈ Q+

such that y ∈ B(a, r) ⊂ B(x, ε). Let r be a positive rational number such that 2r + d(x, y) < ε
and let a ∈ A ∩ B(y, r). Then y ∈ B(a, r), of course, and B(a, r) ⊂ B(x, ε) for if d(a, z) < r then
d(x, z) ≤ d(x, y) + d(y, z) ≤ d(x, y) + d(y, a) + d(a, z) < d(x, y) + 2r < ε.
Any metric Lindelöf space is 2nd countable: Let X be a metric Lindelöf space. For each positive rational
number r, let Ar be a countable subset of X such that X =

⋃
a∈Ar

B(a, r). Then A =
⋃
r∈Q+

Ar is a

1Or to be separable

63

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Lindelof.html
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dense countable (1.41.(3)) subset: For any open ball B(x, ε) and any positive rational r < ε there is an
a ∈ Ar such that x ∈ B(a, r). Then a ∈ B(x, r) ⊂ B(x, ε). �

3.3. Example. The ordered square I2
o is compact (2.154) and therefore Lindelöf but it is not second

countable since it contains uncountably many disjoint open sets (x × 0, x × 1), x ∈ I. Thus I2
o is not

metrizable [8, Ex 30.6].

2. Separation Axioms

In Definition 2.45 we introduced the separation axioms T0, T1 and T2. We now define T3 and T4.

3.4. Definition (Separation Axioms T3 and T4). A space X is called a
• T3-space or a regular space if points are closed and for any point x ∈ X and any closed set
B ⊂ X not containing x there exist disjoint open sets U, V ⊂ X such that x ∈ U and B ⊂ V

• T4-space or a normal space if points are closed and for every par of disjoint closed sets A,B ⊂ X
there exist disjoint open sets U, V ⊂ X such that A ⊂ U and B ⊂ V .

We have the following sequence of implications

X is normal =⇒ X is regular =⇒ X is Hausdorff =⇒ X is T1

where none of the arrows reverse (3.9, 3.10, [8, Ex 22.6]).

3.5. Lemma. Let X be a T1-space. Then
(1) X is regular ⇐⇒ For every point x ∈ X and every neighborhood U of x there exists an open

set V such that x ∈ V ⊂ V ⊂ U .
(2) X is normal ⇐⇒ For every closed set A and every neighborhood U of A there is an open set

V such that A ⊂ V ⊂ V ⊂ U .

Proof. Let B = X − U . �

3.6. Theorem. (Cf 2.47) Any subspace of a regular space is regular. Any product of regular spaces
is regular.

Proof. Let X be a regular space and Y ⊂ X a subset. Then Y is Hausdorff (2.47)). Consider a
point y ∈ Y and a and a closed set B ⊂ X such that y 6∈ Y ∩B. Then y 6∈ B and since Y is regular there
exist disjoint open sets U and V such that y ∈ U and B ⊂ V . The relatively open sets U ∩ Y and V ∩ Y
are disjoint and they contain y and B ∩ Y , respectively.

Let X =
∏
Xj be the Cartesian product of regular space Xj , j ∈ J . Then X is Hausdorff (2.47)). We

use 3.5.(1) to show that X is regular. Let x = (xj) be a point in X and U =
∏
Uj a basis neighborhood

of x. Put Vj = Xj whenever Uj = Xj . Otherwise, choose Vj such that xj ∈ Vj ⊂ V j ⊂ Uj . Then
V =

∏
Vj is a neighborhood of x in the product topology and (2.66) V =

∏
V j ⊂

∏
Uj = U . Thus X is

regular. �

3.7. Theorem. [8, Ex 32.1] A closed subspace of a normal space is normal.

Proof. Quite similar to the proof (3.6) that a subspace of a regular space is regular. �

An arbitraty subspace of a normal space need not be normal (3.32) and the product of two normal
spaces need not be normal ((3.9),[8, Example 2 p 203], [5, 2.3.36]).

3.8. Example (Sorgenfrey’s half-open interval topology). The half-open intervals [a, b) form a basis
for the space R` (2.11, 2.31.(4), 2.98.(2), 2.108.(3)).

R` is 1st countable: At the point x the collection of open sets of the form [x, b) where b > x is
rational, is a countable local basis at x.

R` is not 2nd countable: Let B be any basis for the topology. For each point x choose a member
Bx of B such that x ∈ Bx ⊂ [x, x + 1). The map R → B : x 7→ Bx is injective for if Bx = By
then x = inf Bx = inf By = y.

R` has a countable dense subset: Q is dense since any (basis) open set in R` contains rational
points.

R` is Lindelöf: It suffices (!) to show that any open covering by basis open sets contains a
countable subcovering, ie that if R =

⋃
j∈J [aj , bj) is covered by a collection of right half-open

intervals [aj , bj) then R is actually already covered by countably many of these intervals. (Note
that this is true had the intervals been open as R is Lindelöf.) Write

R =
⋃
j∈J

(aj , bj) ∪
(
R−

⋃
j∈J

(aj , bj)
)
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as the (disjoint) union of the corresponding open intervals and the complement of this union.
The first set can be covered by countably many of the intervals (aj , bj) for any subset of R (with
the standard topology) is 2nd countable and hence Lindelöf (3.2). Also the second set can be
covered by countably many of the intervals (aj , bj) simply because it is countable: The second
set

R−
⋃
j∈J

(aj , bj) =
⋃
j∈J

[aj , bj)−
⋃
j∈J

(aj , bj) = {ak | ∀j ∈ J : ak 6∈ (aj , bj)}

consists of some of the left end-points of the intervals. The open intervals (ak, bk) are disjoint for
ak in this set. But there is only room for countably many open disjoint intervals in R (choose
a rational point in each of them) so there are at most countaly many left end-dpoints ak in the
second set.

R` is normal: Let A,B ⊂ R` be disjoint closed sets. For each point a ∈ A ⊂ R − B there
is an xa ∈ R such that [a, xa) ⊂ R − B. Let UA =

⋃
a∈A[a, xa). Define UB =

⋃
b∈B [b, xb)

similarly. Then UA and UB are open sets containing A and B, respectively. If UA ∩ UB 6= ∅
then [a, xa) ∩ [b, xb) 6= ∅ for some a ∈ A, b ∈ B. Say a < b; then b ∈ [a, xa) ⊂ R−B which is a
contradiction  So UA and UB are disjoint. (R` is even completely normal [8, Ex 32.6] by this
argument.)

Since R` has a dense countable subset and is not second countable (3.8) it is not metrizable (3.2).

3.9. Example (Sorgenfrey’s half-open square topology). The half-open rectangles [a, b)× [c, d) form
a basis (2.18) for the product topology R` ×R`. The anti-diagonal L = {(x,−x) | x ∈ R} is a closed
(clear!) discrete (L ∩ [x,∞) × [−x,∞) = {(x,−x)}) subspace of the same cardinality as R. Q ×Q is a
countable dense subspace.

R` ×R` is not Lindelöf: A Lindelöf space can not contain an uncountable closed discrete sub-
space (cf 2.145, [8, Ex 30.9]).

R` ×R` is not normal: A normal space with a countable dense subset can not contain a closed
discrete subspace of the same cardinality as R [5, 2.1.10]. (Let X be a space with a countable
dense subset. Since any continuous map of X into a Hausdorff space is determined by its
values on a dense subspace [8, Ex 18.13], the set of continuous maps X → R has at most the
cardinality of RZ =

∏
Z R. Let X be any normal space and L a closed discrete subspace. The

Tietze extension theorem (3.15) says that any map L→ R extends to continuous map X → R.
Thus the set of continuous maps X → R has at least the cardinality of RL. If L and R have the
same cardinality, RL = RR =

∏
R R which is greater (1.42) than the cardinality of

∏
Z R.) See

[8, Ex 31.9] for a concrete example of two disjoint closed subspaces that can not be separated
by open sets.

R` ×R` is (completely) regular: since it is the product (3.30) of two (compeletely) regular
(3.28) (even normal (3.8)) spaces.

Example 3.8 shows that the arrows of Theorem 3.2 do not reverse. Example 3.9 shows that the
product of two normal spaces need not be normal, that the product of two Lindelöf spaces need not be
Lindelöf, and provides an example of a (completely) regular space that is not normal.

3.10. Example (A Hausdorff space that is not regular). The open intervals plus the sets (a, b)−K
where K = { 1

n | n ∈ Z+} form a basis for the topology RK (2.11, 2.124.(3)). This is a Hausdorff topology
on R since it is finer than the standard topology. But RK is not regular. The set K is closed and 0 6∈ K.
Suppose that U 3 0 and V ⊃ K are disjoint open sets. We may choose U to be a basis open set. Then U
must be of the form U = (a, b)−K for the other basis sets containing 0 intersect K. Let k be a point in
(a, b) ∩K (which is nonempty). Since k is in the open set V , there is a basis open set containing k and
contained in V ; it must be of the form (c, d). But U ∩V ⊃ ((a, b)−K)∩ (c, d) and ((a, b)−K)∩ (c, d) 6= ∅
for cardinality reasons. This is a contradiction  
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3. Normal spaces

Normal spaces can be characterized in two ways.

3.11. Corollary. Let X be a T1-space. Then the following conditions are equivalent:
(1) X is normal: For any pair of disjoint closed sets A,B ⊂ X there exist disjoint open sets

U, V ⊂ X such that A ⊂ U and B ⊂ V .
(2) (Urysohn’s characterization of normality) For any pair of disjoint closed sets A,B ⊂ X there

exists a continuous function f : X → [0, 1] such that f(A) = 0 and f(B) = 1.
(3) (Tietze’s characterization of normality) For any closed subset A of X and any continuous func-

tion f : A→ [0, 1] there exists a continuous function F : X → [0, 1] such that F |A = f .

The proof relies on Urysohn’s lemma (3.12) and Tietze’s extension theorem (3.15).

3.12. Theorem (Urysohn lemma). Let X be a normal space and let A and B be disjoint closed subsets
of X. Then there exists a continuous function (a Urysohn function) f : X → [0, 1] such that f(a) = 0 for
a ∈ A and f(b) = 1 for b ∈ B.

Proof. We shall recursively define open sets Ur ⊂ X for all r ∈ Q∩[0, 1] such that (make a drawing!)

(3.13) r < s =⇒ A ⊂ U0 ⊂ Ur ⊂ Ur ⊂ Us ⊂ Us ⊂ U1 ⊂ X −B

To begin, let U1 be any open set such that A ⊂ U1 ⊂ X − B, for instance U1 = X − B. By normality
(3.5.(2)) there is an open set U0 such that A ⊂ U0 ⊂ U0 ⊂ U1. To proceed, arrange the elements of
Q ∩ [0, 1] into a sequence

Q ∩ [0, 1] = {r0 = 0, r1 = 1, r2, r3, r4, . . .}
such that the first two elements are r0 = 0 and r1 = 1. Assume that the open sets Uri satisfying condition
(3.13) have been defined for i ≤ n, where n ≥ 1. We shall now define Urn+1 . Suppose that if we put the
numbers r0, r1, . . . , rn, rn+1 in order

0 = r0 < · · · < r` < rn+1 < rm < · · · < r1 = 1

the immediate predecessor of rn+1 is r` and rm is the immediate successor. Then Ur`
⊂ Urm

by (3.13).
By normality (3.5.(2)) there is an open set Urn+1 such that Ur`

⊂ Urn+1 ⊂ Urn+1 ⊂ Urm
. The sets Uri

,
i ≤ n+ 1, still satisfy (3.13).

We are now ready to define the function. Consider the function f : X → [0, 1] given by

f(x) =

{
inf{r ∈ Q ∩ [0, 1] | x ∈ Ur} x ∈ U1

1 x ∈ X − U1

Then f(B) = 1 by definition and f(A) = 0 since A ⊂ U0. But why is f continuous? It suffices (2.50) to
show that the subbasis intervals (2.13) [0, a), a > 0, and (b, 1], b < 1, have open preimages. Since

f(x) < a ⇐⇒ ∃r < a : x ∈ Ur ⇐⇒ x ∈
⋃
r<a

Ur

f(x) > b ⇐⇒ ∃r′ > b : x 6∈ Ur′ ⇐⇒ ∃r > b : x 6∈ Ur ⇐⇒ x ∈
⋃
r>b

(X − Ur)

the sets
f−1([0, a)) =

⋃
r<a

Ur and f−1((b, 1]) =
⋃
r>b

(X − Ur)

are open. �

3.14. Example. Let X = R and let A = (−∞,−1] and B = [2,∞). If we let Ur = (−∞, r) for
r ∈ Q ∩ [0, 1] then

f(x) =


0 x ≤ 0
x 0 < x < 1
1 1 ≤ x

is the Urysohn function with f(A) = 0 and f(B) = 1.

3.15. Theorem (Tietze extension theorem). Every continuous map from a closed subspace A of a
normal space X into (0, 1), [0, 1) or [0, 1] can be extended to X.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Urysohn.html
http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Tietze.html
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3.16. Lemma. Let X be a normal space and A ⊂ X a closed subspace. For r > 0 and any continuous
map f0 : A→ [−r, r] there exists a continuous map g : X → R such that

(3.17) ∀x ∈ X : |g(x)| ≤ 1
3
r and ∀a ∈ A : |f0(a)− g(a)| ≤ 2

3
r

Proof. Since the sets f−1
0 ([−r,− 1

3r]) ⊂ A and f−1
0 ([ 1

3r, r]) ⊂ A are closed and disjoint in A they are
also closed and disjoint in X. Choose (3.12) a Urysohn function g : X → [− 1

3r,
1
3r] such that g(x) = − 1

3r

on f−1
0 ([−r,− 1

3r]) and g(x) = 1
3r on f−1

0 ([ 1
3r, r]). From

f−1
0 ([−r, r]) = f−1

0 ([−r,−1
3
r])︸ ︷︷ ︸

g=− 1
3 r

∪ f−1
0 ([−1

3
r,

1
3
r])︸ ︷︷ ︸

|g|≤ 1
3 r

∪ f−1
0 ([

1
3
r, r])︸ ︷︷ ︸

g= 1
3 r

we see that the second inequality of (3.17) is satisfied. �

Proof of 3.15. We shall first prove the theorem for functions from A to [0, 1] or rather to the
homeomorphic interval [−1, 1] which is more convenient for reasons of notation.

Given a continuous function f : A→ [−1, 1]. We have just seen (3.16) that there exists a continuous
real function g1 : X → R such that

∀x ∈ X : |g1(x)| ≤ 1
3

and ∀a ∈ A : |f(a)− g1(a)| ≤ 2
3

Now Lemma 3.16 applied to the function f − g1 on A says that there exists a continuous real function
g2 : X → R such that

∀x ∈ X : |g2(x)| ≤ 1
3

2
3

and ∀a ∈ A : |f(a)− (g1(a) + g2(a))| ≤
(

2
3

)2

Proceeding this way we recursively (1.24) define a sequence g1, g2, · · · of continuous real functions on X
such that

(3.18) ∀x ∈ X : |gn(x)| ≤ 1
3

(
2
3

)n−1

and ∀a ∈ A : |f(a)−
n∑
i=1

gi(a)| ≤
(

2
3

)n
By the first inequality in (3.18), the series

∑∞
n=1 gn(x) converges uniformly and the sum function F =∑∞

n=1 gn is continuous by the uniform limit theorem (2.104). By the first inequality in (3.18),

|F (x)| ≤ 1
3

∞∑
n=1

(
2
3

)n−1

=
1
3
· 3 = 1,

and by the second inequality in (3.18), F (a) = f(a) for all a ∈ A.
Assume now that f : A→ (−1, 1) maps A into the open interval between −1 and 1. We know that

we can extend f to a continuous function F1 : X → [−1, 1] into the closed interval between −1 and 1. We
want to modify F1 so that it does not take the values −1 and 1 and stays the same on A. The closed sets
F−1

1 ({±1}) and A are disjoint. There exists (3.12) a Urysohn function U : X → [0, 1] such that U = 0 on
F−1

1 ({±1}) and U = 1 on A. Then F = U · F1 is an extension of f that maps X into (−1, 1).
A similar procedure applies to functions f : A→ [−1, 1) into the half-open interval. �

Proof of Corollary 3.11. The Urysohn lemma (3.12) says that (1) =⇒ (2) and the converse
is clear. The Tietze extension theorem (3.15) says that (1) =⇒ (3). Only eg (3) =⇒ (2) remains.
Assume that X is a T1-space with property (3). Let A, B be two disjoint closed subsets. The function
f : A ∪B → [0, 1] given by f(A) = 0 and f(B) = 1 is continuous (2.53.(5)). Let f : X → [0, 1] be a
continuous extension of f . Then f is a Urysohn function for A and B. �

Many familiar classes of topological spaces are normal.

3.19. Theorem. Compact Hausdorff spaces are normal.

Proof. See 2.140.(2). �

In fact, every regular Lindelöf space is normal [8, Ex 32.4] [5, 3.8.2].

3.20. Theorem. Metrizable spaces are normal.
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Proof. Let X be a metric space with metric d and let A, B be disjoint closed sets. The continuous
function f : X → [0, 1] given by

f(x) =
d(x,A)

d(x,A) + d(x,B)

is a Urysohn function with f(A) = {0} and f(B) = {1}. This shows that X is normal (3.11). �

3.21. Theorem. [5, Problem 1.7.4]. Linearly ordered spaces are normal.

Proof. We shall only prove the special case that every well-ordered space is normal. The half-open
intervals (a, b], a < b, are (closed and) open (2.31.(5)). Let A and B be two disjoint closed subsets and
let a0 denote the smallest element of X. Suppose that neither A nor B contain a0. For any point a ∈ A
there exists a point xa < a such that (xa, a] is disjoint from B. Similarly, for any point b ∈ B there
exists a point xb < b such that (xb, b] is disjoint from A. The proof now proceeds as the proof (3.8) for
normality of R`. Suppose next that a0 ∈ A ∪ B, say a0 ∈ A. The one-point set {a0} = [a0, a

+
0 ) is open

and closed (as X is Hausdorff). By the above, we can find disjoint open sets U , V such that A−{a0} ⊂ U
and B ⊂ V . Then A ⊂ U ∪ {a0} and B ⊂ V − {a0} where the open sets U ∪ {a0} and V − {a0} are
disjoint. �

In particular, the well-ordered spaces SΩ and SΩ are normal (the latter space is even compact
Hausdorff).

4. Second countable regular spaces and the Urysohn metrization theorem

We investigate closer the class of regular spaces. We start with an embedding theorem that is used
in other contexts as well.

3.22. An embedding theorem. We discuss embeddings into product spaces.

3.23. Definition. A set {fj : X → Yj | j ∈ J} of continuous functions is said to separate points and
closed sets if for any point x ∈ X and any closed subset C ⊂ X we have

x 6∈ C =⇒ ∃j ∈ J : fj(x) 6∈ fj(C)

3.24. Lemma. Let f : X → Y be a map that separates points and closed sets. Assume also that f is
injective (eg that X is T1). Then f is an embedding.

Proof. If X is T1, points are closed so that f separates points, ie f is injective. For any point x ∈ X
and any closed set C ⊂ X we have that

f(x) ∈ f(C)
f separates

=⇒ x ∈ C =⇒ f(x) ∈ f(C)

so we get that f(X) ∩ f(C) = f(C). But this equality says that f(C) is closed in f(X). Hence the
bijective continuous map f : X → f(X) is closed, so it is a homeomorphism. �

3.25. Theorem (Diagonal embedding theorem). Let {fj : X → Yj | j ∈ J} be a family of continuous
functions that separates points and closed sets. Assume that X is T1 or that at least one of the functions
fj is injective. Then the diagonal map f = (fj) : X →

∏
j∈J Yj is an embedding.

Proof. Also the map f separates points and closed sets because

f(x) ∈ f(C) ⇐⇒ f(x) ∈
∏

fj(C) 2.66⇐⇒ f(x) ∈
∏

fj(C)

⇐⇒ ∀j ∈ J : fj(x) ∈ fj(C)
(fj) separates

=⇒ x ∈ C

for all points x ∈ X and all closed subsets C ⊂ X. The theorem now follows from 3.24. �

In particular, if one of the functions fj is injective and separates points and closed sets then f = (fj)
is an embedding. For instance, the graph X → X×Y : x→ (x, g(x)) is an embedding for any continuous
map g : X → Y .
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3.26. A universal second countable regular space. We say that a space X is universal for
some property if X has this property and any space that has this property embeds into X.

3.27. Theorem (Urysohn metrization theorem). The following conditions are equivalent for a second
countable space X:

(1) X is regular
(2) X is normal
(3) X is homeomorphic to a subspace of [0, 1]ω

(4) X is metrizable

The Hilbert cube [0, 1]ω is a universal second countable metrizable (or normal or regular) space.

Proof. (1) =⇒ (2): Let X be a regular space with a countable basis B. We claim that X is normal.
Let A and B be disjoint closed sets in X. By regularity (3.5.(1)), each point a ∈ A ⊂ X −B has a basis
neighborhood Ua ∈ B such that a ∈ Ua ⊂ Ua ⊂ X − B. Let U1, U2, . . . be the elements in the image of
the map A→ B : a 7→ Ua. Then

A ⊂
∞⋃
n=1

Un and Un ∩B = ∅ for n = 1, 2 . . .

Similarly, there is a sequence V1, V2, . . . of basis open sets such that

B ⊂
∞⋃
n=1

Vn and V n ∩A = ∅ for n = 1, 2 . . .

The open sets
⋃∞
n=1 Un and

⋃∞
n=1 Vn may not be disjoint. Consider instead the open sets

U ′1 = U1 − V 1 V ′1 = V1 − U1

U ′2 = U2 − (V 1 ∪ V 2) V ′2 = V2 − (U1 ∪ U2)
...

...

U ′n = Un − (V1 ∪ · · · ∪ V n) V ′n = Vn − (U1 ∪ · · · ∪ Un)

Even though we have removed part of Un we have removed no points from A from Un, and we have
removed no points from B from Vn. Therefore the open sets U ′n still cover A and the open sets V ′n still
cover B:

A ⊂
∞⋃
n=1

U ′n and B ⊂
∞⋃
n=1

V ′n

and in fact these sets are disjoint:
∞⋃
n=1

U ′n ∩
∞⋃
n=1

V ′n =
( ⋃
m≤n

U ′m ∩ V ′n
)
∪
( ⋃
m>n

U ′m ∩ V ′n
)

= ∅

because U ′m ⊂ Um does not intersect V ′n ⊂ X−Um if m ≤ n and U ′m ⊂ X−Vn does not intersect V ′n ⊂ Vn
if m > n. (Make a drawing of U1, U2 and V1, V2.)
(2) =⇒ (3): Let X be a normal space with a countable basis B. We show that there is a countable set
{fUV } of continuous functions X → [0, 1] that separate points and closed sets. Namely, for each pair
U, V of basis open sets U, V ∈ B such that U ⊂ V , choose a Urysohn function fUV : X → [0, 1] (3.12)
such that fUV (U) = 0 and fUV (X − V ) = 1. Then {fUV } separates points and closed sets: For any
closed subset C and any point x 6∈ C, or x ∈ X − C, there are (3.5) basis open sets U , V such that
x ∈ U ⊂ U ⊂ V ⊂ X −C (choose V first). Then fUV (x) = 0 and fUV (C) = 1 so that fUV (x) 6∈ fUV (C).
According to the Diagonal embedding theorem (3.25) there is an embedding X → [0, 1]ω with the fUV
as coordinate functions.
(3) =⇒ (4): [0, 1]ω is metrizable and any subspace of a metrizable space is metrizable. (2.93).
(4) =⇒ (1): Any metrizable space is regular, even normal (3.20). �

The point is that in a second countable regular hence normal space there is a countable set of
(Urysohn) functions that separate points and closed sets. Therefore such a space embeds in the Hilbert
cube.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Urysohn.html
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We have (3.27, 3.2) the following identities{
2nd countable

regular

}
=
{

2nd countable
normal

}
=
{

2nd countable
metrizable

}
=
{

Countable dense subset
metrizable

}
=
{

Lindelöf
metrizable

}
=
{

Subspace of
Hilbert cube

}
between classes of topological spaces.
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5. Completely regular spaces and the Stone–Čech compactification

There is no version of the Tietze extension theorem (3.15) for regular spaces, ie it is in general not
true that continuous functions separate closed sets and points in regular spaces. Instead we have a new
class of spaces where this is true.

3.28. Definition. A space X is completely regular if points are closed in X and for any closed
subset C of X and any point x 6∈ C there exists a continuous function f : X → [0, 1] such that f(x) = 0
and f(C) = 1.

Clearly

normal =⇒ completely regular =⇒ regular =⇒ Hausdorff =⇒ T1

and none of these arrows reverse (3.9, [8, Ex 33.11]).
In a completely regular space there are enough continuous functions X → [0, 1] to separate points

and closed sets.
It is easy to see that any subspace of a completely regular space is completely regular [8, 33.2].

3.29. Theorem. The following conditions are equivalent for a topological space X:

(1) X is completely regular
(2) X is homeomorphic to a subspace of [0, 1]J for some set J
(3) X is homeomorphic to a subspace of a compact Hausdorff space

Proof. (1) =⇒ (2): If X is completely regular then the set C(X) of continuous maps X → [0, 1]
separates points and closed sets. The evaluation map

∆: X →
∏
j∈C(X)[0, 1], πj(∆(x)) = j(x), j ∈ C(X), x ∈ X,

is therefore an embedding (3.25).
(2) =⇒ (3): [0, 1]J is compact Hausdorff by the Tychonoff theorem (2.149).
(3) =⇒ (1): A compact Hausdorff space is normal (3.19), hence completely regular and subspaces of
completely regular spaces are completely regular. �

Closed subspaces of compact Hausdorff spaces are compact Hausdorff (2.140), open subspaces are
locally compact Hausdorff (2.170), and arbitrary subspaces are completely regular (3.29).

3.30. Corollary. (Cf 2.47, 3.6) Any subspace of a completely regular space is completely regular.
Any product of completely regular spaces is completely regular.

Proof. The first part is easily proved [8, 33.2] (and we already used it above). The second part
follows from (3.29) because (2.61) the product of embeddings is an embedding. �

3.31. Corollary. Any locally compact Hausdorff space is completely regular.

Proof. Locally compact Hausdorff spaces are open subspaces of compact spaces (2.170). Completely
regular spaces are subspaces of compact spaces (3.29). �

3.32. Example (A normal space with a non-normal subspace). Take any completely regular but not
normal space (for instance (3.9) R`×R`) and embed it into [0, 1]J for some set J (3.29). Then you have
an example of a normal (even compact Hausdorff) space with a non-normal subspace.

3.33. The Stone–Čech construction. For any topological space X let C(X) denote the set of
continuous maps j : X → I of X to the unit interval I = [0, 1] and let

∆: X →
∏
j∈C(X) I = map(C(X), I)

be the continuous evaluation map given by ∆(x)(j) = j(x) or πj∆ = j for all j ∈ C(X). (The space
map(C(X), I) is a kind of double-dual of X). This construction is natural: For any continuous map
f : X → Y of X into a space Y , there is an induced map C(X) ← C(Y ) : f∗ of sets and yet an induced
continuous map (2.65)

(3.34) map(C(X), I) =
∏

j∈C(X)

I
f∗∗−−→

∏
k∈C(Y )

I = map(C(Y ), I)
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such that the diagram

(3.35) X
f //

∆X

��

Y

∆Y

��∏
j∈C(X) I

f∗∗
//

πf∗k=πkf

%%LLLLLLLLLLL

∏
k∈C(Y ) I

πk

yyrrrrrrrrrrr

I

commutes: The lower triangle commutes by the definition of the map f∗∗ (2.65) and then the upper
square commutes because πkf∗∗∆X = πkf∆X = kf = πk∆Y f . Put βX = ∆(X) and define ∆: X → βX
to be the corestriction of ∆: X →

∏
j∈C(X) I to βX. Then βX is a compact Hausdorff space (it is a

closed subspace of the compact (2.149) Hausdorff space
∏
I) and ∆ is, by design, a continuous map with

a dense image ∆X in βX. This construction is natural: For any continuous map f : X → Y , the induced
map f∗∗ (3.34) takes βX into βY for

f∗∗(βX) = f∗∗(∆XX) ⊂ f∗∗∆XX
(3.35)

= ∆Y f(X) ⊂ ∆Y Y = βY

and thus we obtain from (3.35) a new commutative diagram of continuous maps

(3.36) X
f //

∆X

��

Y

∆Y

��
βX

βf
// βY

where βf : βX → βY is the corestriction to βY of the restriction of f∗∗ to βX. (This makes β into a
functor with a natural transformation from the identity functor from the category of topological spaces
to the category of compact Hausdorff spaces.)

The next result says that the map X → βX is the universal map from X to a compact Hausdorff
space.

3.37. Theorem (Stone–Čech compactification). Let X be a topological space.
(1) The map X → βX is a continuous map of X into a compact Hausdorff space.
(2) For any continuous map f : X → Y of X into a compact Hausdorff space Y there exists a unique

continuous map f : βX → Y such that the diagram

(3.38) X

!!B
BB

BB
BB

B
f // Y

βX
f

>>||||||||

commutes. (We say that f : X → Y factors uniquely through βX.)
(3) Suppose X → αX is a map of X to a compact Hausdorff space αX such that any map of X to

a compact Hausdorff space factors uniquely through αX. Then there exists a homeomorphism
αX → βX such that

X

}}||
||

||
||

!!B
BB

BB
BB

B

αX
' // βX

commutes.
(4) If X is completely regular then X → βX is an embedding. If X is compact Hausdorff then

X → βX is a homeomorphism.

Proof. (4): Since the corestriction of an embedding is an embedding (2.61) and X →
∏
I is an

embedding when X is completely regular (3.29), also X → βX is an embedding. If X is compact
Hausdorff, X is normal (3.19), hence completely regular, so we have just seen that ∆: X → βX is an
embedding. The image of this embedding is closed (2.141.(1)) and dense. Thus the embedding is bijective
so it is a homeomorphism.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Stone.html
http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Cech.html
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(1) and (2): If Y is compact Hausdorff then by item (4) ∆Y is a homeomorphism in diagram (3.36) and
hence f = ∆−1

Y ◦ βf is a possibility in (3.38). It is the only possibility [8, Ex 18.13], for the image of X
is dense in βX.
(3) Let X → αX be a map to a compact Hausdorff space satisfying the above universal property. Then
there exist continuous maps αX //βXoo that, by uniqueness, are inverse to each other. (All universal
constructions are essentially unique.) �

If X is completely regular then X → βX is a compactification (3.37.(4)) and it is called the Stone–
Čech compactification of X. Conversely, if X has a compactification then X is homeomorphic to a
subspace of a compact space and therefore (3.29) completely regular. We state these observations in

3.39. Lemma. X has a compactification (2.166) if and only if X is completely regular.

The Stone–Čech compactification βX of a completely regular spaceX is the maximal compactification
in the sense that for any other compactification X → cX there is a closed quotient map βX → cX map
such that

X

}}||
||

||
||

  B
BB

BB
BB

B

βX // cX

commutes. The map βX → cX is closed by 2.141 and surjective because its image is closed and dense.
The Alexandroff compactification ωX of a noncompact locally compact Hausdorff space X is the

minimal compactification in the sense that ωX = cX/(cX −X) for any other compactification X → cX.
Indeed we saw in 2.167 that there is a closed quotient map cX → ωX, taking cX−X to ω, such that

X

}}||
||

||
||

!!C
CC

CC
CC

C

cX // ωX

commutes. (What is the minimal compactification of a compact Hausdorff space?)
For instance, there are quotient maps

[0, 1]

((QQQQQQQ

βR

88pppppp

''OOOOOOO ωR = S1

C

55llllllll

of compactifications of R. Here

C = {0} × [−1, 1] ∪ {(x, sin 1
x

) | 0 < x ≤ π−1} ∪ L

is the Warsaw circle, a compactification of R with remainder C − R = [−1, 1], which is obtained by
closing up the closed topologist’s sine curve S by (a piece-wise linear) arc from (0, 0) to (π−1, 0). In
particular, C/[−1, 1] = S1. More generally, there are quotient maps βRn → [0, 1]n → ωRn = Sn of
compactifications of euclidean n-space Rn.

Investigations of the Stone–Čech compactification of the integers βZ raise several issues of a very
fundamental nature [13, 14, 11] whose answers depend on your chosen model of set theory.

6. Manifolds

3.40. Definition. A manifold is a locally euclidean second countable Hausdorff space.

Manifolds are locally compact and locally path connected since they are locally euclidean. All locally
compact Hausdorff spaces are (completely) regular. Thus manifolds are second countable regular spaces
and hence they are normal, metrizable, Lindelöfand they have countable dense subsets.

The line with two zeroes is an example of a locally euclidean space that is not Hausdorff. The long
line [8, Ex 24.12] is a locally euclidean space that is not 2nd countable.

The n–sphere Sn and the real projective n–space RPn (2.83) are examples of manifolds. Sn lies
embedded in Rn+1 from birth but what about RPn? Does RPn embed in some euclidean space?

3.41. Theorem (Embeddings of compact manifolds). Any compact manifold embeds in RN for some
N .
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Proof. We may assume that M is connected. Let n be the dimension of M (we assume that this
is well-defined). Let B = {x ∈ Rn | |x| ≤ 1} be the unit ball in Rn. Cover M by finitely many closed
sets B1, . . . , Bk such that each Bi is homeomorphic to B and such that the interiors of the Bi cover M .
Let fi : M → Sn be the continuous map obtained by collapsing the complement to the interior of Bi to
a point. The map f = (f1, . . . , fk) : M → Sn × · · · × Sn is injective: If x lies in the interior of Bi then
fi(x) 6= fi(y) for all y 6= x. Since M is compact and (Sn)k Hausdorff, f is an embedding. Finally, each
sphere Sn embeds into Rn+1 so that (Sn)k embeds into (Rn+1)k. �

In particular RP 2 (2.83) embeds into some euclidean space. Which one?
There is up to homeomorphism just one compact manifold of dimension 1, the circle. Compact

manifolds of dimension 2 are described by a number, the genus, and orientability. In particular, any simply
connected 2-dimensional compact manifold is homeomorphic to S2. We do not know (December 2003)
if there are any simply connected compact 3-dimensional manifolds besides S3 (Poincaré conjecture).
Classification of 4-dimensional compact manifolds is logically impossible.

Any manifold admits a partition of unity. We shall prove the existence in case of compact manifolds.

3.42. Theorem (Partition of unity). Let X = U1 ∪ · · · ∪ Uk be a finite open covering of the normal
space X. Then there exist continuous functions φi : X → [0, 1], 1 ≤ i ≤ k, such that

(1) {φi > 0} ⊂ Ui
(2)

∑k
i=1 φi(x) = 1 for all x ∈ X.

Proof. We show first that there is an open covering {Vi} of X such that V i ⊂ Ui (we shrink the
sets of the covering). Since the closed set X − (U2 ∪ · · · ∪ Uk) is contained in the open set U1 there is an
open set V1 such that

X − (U2 ∪ · · · ∪ Uk) ⊂ V1 ⊂ V 1 ⊂ U1

by normality (3.5). Now V1 ∪U2 ∪ · · · ∪Uk is an open covering of X. Apply this procedure once again to
find an open set V2 such that V 2 ⊂ U2 and V1 ∪ V2 ∪ U3 ∪ · · · ∪ Uk is still an open covering of X. After
finitely many steps we have an open covering {Vi} such that V i ⊂ Ui for all i.

Do this one more time to obtain an open covering {Wi} such that Wi ⊂ W i ⊂ Vi ⊂ V i ⊂ Ui for
all i. Now choose a Urysohn function (3.12) ψi : X → [0, 1] such that ψi(W i) = 1 and ψi(X − Vi) = 0.
Then {x | ψi(x) > 0} ⊂ V i ⊂ Ui and ψ(x) =

∑
ψi(x) > 1 for any x ∈ X since x ∈ Wi for some i.

Hence φi = ψi

ψ is a well-defined continuous function on M taking values in the unit interval such that∑k
i=1 φi(x) =

∑k
i=1

ψi(x)
ψ(x) = 1

ψ(x)

∑k
i=1 ψi(x) = ψ(x)

ψ(x) = 1. �
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