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I was Des’s Ph.D. supervisor at the University of Edinburgh. I prefer the
German name \Doktorvater", and Des was in fact very much a mathemati-
cal son to me. We quickly found that we shared the same passion for math-
ematics. I suggested that he work on the computation of high-dimensional
boundary link cobordism. Des’s Ph.D. thesis was a complete solution of this
30-year old problem. The solution was beautiful, clever and original { as
indeed was Des himself.

Des and I kept in close touch in the years after he left Edinburgh, and the
relationship naturally evolved into one of mathematical brothers and collabo-
rators. Des was not only a wonderful student but also a wonderful teacher. I
certainly learned a lot from him myself ! The students of his topology course
at IUB were especially in°uenced by his teaching. Des made such an im-
pression at IUB that he was invited to apply for a more permanent position
there. In my letter of recommendation I wrote: \Dr. Sheiham is committed
to both teaching and research in mathematics. He is a highly talented young
mathematician who has a bright future ahead of him." It is a tragedy that
he denied himself this future.

A.R.
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Preface

Noncommutative localization is a powerful algebraic technique for construct-
ing new rings by inverting elements, matrices and more generally morphisms
of modules. The applications to topology are via the noncommutative lo-
calizations of the fundamental group rings.

The volume is the proceedings of a workshop on ‘Noncommutative lo-
calization in algebra and topology’ held at the International Centre for the
Mathematical Sciences in Edinburgh on April 29 and 30, 2002, with 25
participants. The collection could be used as an introduction to noncom-
mutative localization and its applications, but it is not an encyclopedia.
Neither is it just a record of the talks at the meeting: the papers submitted
by the participants are much more extensive than their talks, and in addi-
tion the volume contains papers commissioned from non-participants. The
‘Historical Perspective’ overleaf sets the papers in a historical context.

The meeting and the proceedings have the aim of bringing together the
algebraists and topologists interested in noncommutative localization. I was
particularly pleased that Professor Paul Cohn attended the meeting and
contributed to the proceedings. He invented the universal ‘Cohn noncom-
mutative localization’ technique which has turned out to be so useful both
in its original algebraic setting and in its applications to topology.

The meeting was supported by a Scheme 1 Grant of the London Mathe-
matical Society, and was an activity of the European Union TMR Network
ERB FMRX CT-97-0107 ‘Algebraic K-Theory, Linear Algebraic Groups and
Related Structures’. The papers in the proceedings were refereed individ-
ually. I am grateful to all the participants, to the speakers, to the authors
of the papers, to the referees, to the LMS and the EU, and to the stafi at
ICMS, for their contributions to the success of both the meeting and the
proceedings.

Additional material (such as errata) will be posted on

http://www.maths.ed.ac.uk/~aar/books

Andrew Ranicki

Edinburgh, July 2005
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Historical Perspective

The localization of commutative rings is a classic technique of commuta-
tive algebra, notably in the construction of the quotient fleld of an integral
domain. The localization of noncommutative rings was pioneered by Ore
in 1931, who introduced the ‘Ore condition’ which allows noncommutative
fractions. However, the flrst general reference to noncommutative localiza-
tion in Mathematical Reviews only dates back to 1967; since then, the topic
has grown in importance, and by now there are 525 references in total.

The history of noncommutative localization in algebra is outlined in
the article of Cohn in this volume, including both the Ore localization and
the more general universal localization technique he himself introduced in
1971. The article of Beachy characterizes Ore localizations as °at universal
localizations. In the last 10 years the universal localization of group rings
has been used to investigate the rationality of the L2-Betti numbers and the
Isomorphism Conjecture in algebraic K-theory, as described in the articles
of Linnell and Reich.

Commutative localization entered algebraic topology with Serre’s funda-
mental contributions to homotopy theory in the early 1950’s. Some 20 years
later the work of Sullivan, Quillen, Kan and Bousfleld developed the local-
ization of spaces, which is now a standard method. The article of Dwyer
gives a homotopy-theoretic interpretation of the Cohn universal localization,
making a direct link between localization in algebra and topology.

In the last 20 years noncommutative localization has been applied to the
topology of manifolds via the Cappell-Shaneson homology version (1974) of
the Browder-Novikov-Sullivan-Wall surgery theory (1962-1970), as well as
to the circle-valued Morse-Novikov theory, and to codimension 1 splitting
obstruction theory. The article of Ranicki surveys these applications. The
article of Sheiham uses noncommutative localization to give a new interpre-
tation of the high-dimensional boundary link cobordism invariants obtained
in his 2001 Edinburgh Ph.D. thesis.

Noncommutative localization is closely related to the quotient construc-
tion of categories, particularly the Verdier quotient of triangulated categories
developed in the 1960’s. The article of Neeman makes this relation quite
explicit, and also explains the connections with algebraic geometry via the
work of Thomason.

The Ore noncommutative localization is a useful tool in the recent devel-
opment of noncommutative geometry, as described in the article of •Skoda.
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On °atness and the Ore condition

John A. Beachy

In the standard theory of localization of a commutative Noetherian ring
R at a prime ideal P , it is well-known that the localization RP is a °at R-
module. In the case of a prime ideal of a noncommutative Noetherian ring,
it is not always possible to obtain a similar ring of fractions. An exposition
of the standard theory in this more general situation can be found in [5].
The largest set in RnP that we can hope to invert is

C(P ) = fc 2 RnP j cr 2 P or rc 2 P implies r 2 P g :

It is well-known that there exists a ring of left fractions RP in which each
element of C(P ) is invertible if and only if C(P ) satisfles the left Ore condi-
tion; that is, if and only if for each a 2 R and c 2 C(P ) there exist b 2 R

and d 2 C(P ) with da = bc. In this case RP is °at as a right R-module, as
shown in Proposition II.3.5 of [5].

Even if C(P ) does not satisfy the left Ore condition, it was shown by
Cohn in [4] that it is still possible to obtain a localization at P , by inverting
matrices rather than elements. Let ¡(P ) be the set of all square matrices C

such that C is not a divisor of zero in the matrix ring Matn(R=P ) (where C

is an n£n matrix). The universal localization R¡(P ) of R at ¡(P ) is deflned
to be the universal ¡(P )-inverting ring. As shown in [4], the universal
localization always exists, and has the desirable property that the canonical
¡(P )-inverting homomorphism µ : R ! R¡(P ) is an epimorphism of rings.
Furthermore, R¡(P )=J(R¡(P )) is naturally isomorphic to Qcl(R=P ), which is
a simple Artinian ring by Goldie’s theorem. (Here J(R¡(P )) is the Jacobson
radical of R¡(P ) and Qcl(R=P ) is the classical ring of left quotients of R=P .)

It was shown by the author in [1] that R¡(P ) is °at as a right R-module
only when the Ore condition is satisfled, in which case R¡(P ) coincides with
RP , the Ore ring of left fractions with denominators in C(P ). There are
similar results due to Braun [3] and Teichner [6] (see Corollaries 3 and 4,
respectively). The goal of this paper is to flnd a general setting in which it
is possible to give a common proof.

1



2 On °atness and the Ore condition

We will use the characterization of °at modules given in Proposition 10.7
of Chapter I of [5], which can be written in vector notation in the following
way. The module MR is °at () if m ¢ rt = 0 for m = (m1; : : : ; mn) 2 Mn

and r = (r1; : : : ; rn) 2 Rn, then there exist A = (aij) 2 Matk;n(R) and
x = (x1; : : : ; xk) 2 Mk with Art = 0 and xA = m. As a consequence,
if µ : R ! T is a ring homomorphism, then µ induces on T the structure
of a °at right R-module () if t ¢ µ(r)t = 0 for t = (t1; : : : ; tn) 2 T n

and r = (r1; : : : ; rn) 2 Rn, then there exist A = (aij) 2 Matk;n(R) and
u = (u1; : : : ; uk) 2 T k with Art = 0 and uµ(A) = m.

This brief discussion brings us to the main theorem. Note that the
statement of the theorem is independent of any chain conditions on the ring
R.

Theorem 1. Let ` : R ! Q be a ring homomorphism such that for all
q1; : : : ; qn 2 Q there exists a unit u 2 Q with uqi 2 `(R), for 1 • i • n. Let
S µ R be the set of elements inverted by `. If there exists an S-inverting
ring homomorphism µ : R ! T such that

(i) there exists a ring homomorphism · : T ! Q with ·µ = `, and

(ii) T is °at as a right R-module,

then S satisfles the left Ore condition.

Proof. Given a 2 R and c 2 S, we must flnd b 2 R and d 2 S with da = bc.
To clarify the situation, we give the following commutative diagram.

R
µ

-

@
@

@
@R

`

T

?
·

Q

Since c 2 S and µ is S-inverting, it follows that µ(c) is invertible in T . If
we let t = (µ(a)µ(c)¡1; 1) and r = (c; ¡a), then t ¢ µ(r)t = µ(a)µ(c)¡1µ(c) ¡
µ(a) = 0. As in the comments preceding the theorem, by Proposition I.10.7
of [5] there exist u 2 T k and A 2 Mat2;k(R) such that Ar = 0 and uµ(A) = t.

From the second component of t we obtain
Pk

i=1 uiµ(ai2) = 1. By as-
sumption there exists a unit u 2 Q with u·(ui) 2 `(R), for 1 • i • k.
Thus there exist b1; : : : ; bk 2 R with u·(ui) = `(bi), for 1 • i • k. If we let
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d =
Pk

i=1 biai2, then

`(d) =
Pk

i=1 `(bi)`(ai2) =
Pk

i=1 u·(ui)·µ(ai2)

= u·(
Pk

i=1 uiµ(ai2)) = u·(1) = u ;

and so d 2 S.
From the equation Ar = 0 we obtain ai2a = ai1c, for 1 • i • k. If we

let b =
Pk

i=1 biai1, then

da = (
Pk

i=1 biai2)a =
Pk

i=1 bi(ai2a) =
Pk

i=1 bi(ai1c) = (
Pk

i=1 biai1)c = bc :

Thus the left Ore condition holds in S, completing the proof. End of proof.

Corollary 2 ([1], Corollary 3.2). Let I be a semiprime left Goldie ideal of
the ring R, and let R¡(I) be the universal localization of R at I. If R¡(I) is
a °at right R-module, then C(I) is a left Ore set.

Proof. Since I is assumed to be a semiprime left Goldie ideal, the ring
R=I has a semisimple Artinian classical ring of left quotients Qcl(R=I).
Let Q = Qcl(R=I), and let ` be the projection R ! R=I followed by the
canonical embedding R=I ! Q. An element c 2 R is in C(I) if and only if
it is inverted by `. It is well-known that the classical ring of left quotients
has common denominators, so for q1; : : : ; qk 2 Q there exists an element
d 2 R such that d 2 C(I) and `(d)qi 2 R=I, for 1 • i • k. Note that `(d)
is a unit of Q since d 2 C(I). The canonical ¡(I)-inverting homomorphism
µ : R ! R¡(I) inverts the subset C(I) µ ¡(I), and the universality of µ

guarantees the existence of · : R¡(I) ! Q with ·µ = `, so the conditions of
the theorem are satisfled. End of proof.

Corollary 3 ([3], Theorem 16). Let I be a semiprime left Goldie ideal of
the ring R, and let T be an extension ring of R such that R \ J(T ) = I

and T=J(T ) is naturally isomorphic to the left classical ring of quotients
Qcl(R=I). If T is a °at right R-module, then C(I) satisfles the left Ore
condition.

Proof. Deflne Q and ` : R ! Q as in the proof of Corollary 2. If µ : R ! T

is the inclusion mapping, and · : T ! T=J(T ) is the canonical projection,
then ·µ = ` since we have assumed that the given isomorphism T=J(T ) »=
Qcl(R=I) is natural. It follows that µ is a C(I)-inverting homomorphism,
since any element that is invertible modulo the Jacobson radical of a ring is
invertible in the ring. Thus the conditions of the theorem are satisfled. End
of proof.



4 On °atness and the Ore condition

Corollary 4 ([6], Main Theorem). Let I be an ideal of the ring R, let
` : R ! R=I be the canonical projection, and let S be the set of elements
inverted by `. If the universal S-inverting ring is a °at right R-module, then
S satisfles the left Ore condition.

Proof. If RS is the universal S-inverting ring, and µ : R ! RS is the
canonical S-inverting homomorphism, then by the universality of RS there
exists a homomorphism · : RS ! R=I with ·µ = `. Since ` maps R onto
R=I, the remaining hypotheses of the theorem are certainly satisfled. End
of proof.
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Localization in general rings, a historical survey

P. M. Cohn

1 Introduction

The process of introducing fractions in a ring, or localization, has been
applied in many difierent ways in algebra and geometry, and more recently
it has also been used for noncommutative rings. Our object here is to survey
the difierent methods of forming fractions, with particular emphasis on the
noncommutative case. After a statement of the problem in x2 we look in x3 at
difierent classes of rings that permit the introduction of fractions but are not
embeddable in skew flelds, and in x4 describe some topological methods. x5
deals with fractions in a general ring, including a statement of the necessary
and su–cient conditions for embeddability in a skew fleld. Various classes
of rings are considered in x6 and speciflc examples of such rings are given in
x7. I should like to thank George Bergman, whose careful reading provided
comments which resulted in a number of improvements. I am also indebted
to a referee whose comments helped to clarify the text.

Throughout, all rings are associative, with a unit element, denoted by 1,
which is inherited by subrings, preserved by homomorphisms and which acts
unitally on modules. If 1 6= 0 and every non-zero element has an inverse,
we speak of a skew fleld, but we shall frequently omit the preflx \skew", so
that a \fleld" will mean a not necessarily commutative division ring.

5



6 Localization in general rings

2 The embedding problem

It is well known that a commutative ring is embeddable in a fleld if and only
if it is an integral domain, i.e. 1 6= 0 and a; b 6= 0 =) ab 6= 0.

The constructive proof of the fleld of fractions is well known: write
R£ = Rnf0g and take the set of all formal expressions as¡1, where a 2 R,
s 2 R£ and deflne as¡1 = a1s¡1

1 whenever as1 = a1s; now it is easy to
verify that the result is a fleld of fractions for R.

For rings that are not necessarily commutative we have the following
general result. Given a ring R and a subset S, a homomorphism f : R ! R0

will be called S-inverting if every element of Sf is invertible in R0. The
homomorphism f is called universal S-inverting if it is S-inverting and every
S-inverting homomorphism to a ring can be factored uniquely by f . Now
we can state:

Theorem 2.1. For every ring R and subset S of R there exists a ring RS

and a homomorphism f : R ! RS which is universal S-inverting.

The proof is almost immediate: we take R and for each s 2 S adjoin
an element s0 with relations ss0 = s0s = 1. The resulting ring RS with the
obvious map f : R ! RS clearly satisfles the conditions.

The same method allows us to adjoin formal inverses for any set of
matrices. The only drawback of this result is that it gives us no indication
when f is injective; in fact RS might even be the zero ring. When R is
an integral domain and S = R£, f need not be injective and even if it is,
the ring RR£ need not be a fleld. In fact van der Waerden had written in
1930 (in [29]): \Die Mõglichkeit der Einbettung nichtkommutativer Ringe
ohne Nullteiler in einen sie enthaltenden Schiefkõrper bildet ein ungelõstes
Problem, au…er in ganz speziellen Fãllen."

In the following year O. Ore [26] posed a very natural question and
gave a complete answer. He asked under what conditions a (not necessarily
commutative) ring R had a fleld of fractions in which each element had
the form as¡1, where a 2 R, s 2 R£. A necessary condition is that every
expression of the form s¡1a can also be written as a0s0¡1, or multiplying up,
as0 = sa0, for some a0 2 R, s0 2 R£. It turns out that this condition (and
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the absence of zero-divisors) is also su–cient; thus we have the following
result:

Theorem 2.2. (O. Ore [26]) A ring R can be embedded in a fleld in which
every element has the form as¡1 (a 2 R; s 2 R£) if and only if

O.1. R is an integral domain,

O.2. Given a 2 R, s 2 R£, there exist a0 2 R, s0 2 R£ such that as0 = sa0.

The proof is a straightforward veriflcation, along the lines of the proof
in the commutative case.

We note that O.2 may be expressed as: aR \ bR 6= 0 for any a; b 2 R£.

A ring satisfying O.1-2 is called a right Ore domain. Left Ore domains
are deflned similarly and for a right and left Ore domain the qualiflers are
omitted. For example, any principal ideal domain is an Ore domain; this
is easily verifled and also follows from the next result, flrst noted by Goldie
[16]:

Theorem 2.3. Any right Noetherian domain satisfles O.2; hence every
Noetherian domain is an Ore domain.

Proof. Let R be right Noetherian; for a; b 2 R£ we have to show that
aR\bR 6= 0. Consider the elements b; ab; a2b; : : : . The right ideal generated
by them is flnitely generated, so we have an equation

bc0 + abc1 + a2bc2 + ¢ ¢ ¢ + an¡1bcn¡1 ¡ anb = 0 :

Let cr be the flrst non-zero ci; cancelling ar, we obtain the equation

bcr + abcr+1 + ¢ ¢ ¢ + an¡r¡1bcn¡1 ¡ an¡rb = 0 ;

which shows that aR \ bR 6= 0.

3 Rings that are almost embeddable

To clarify the situation we shall introduce the following classes of rings
(following Bokut [6]). We denote by D0 the class of all integral domains



8 Localization in general rings

(not necessarily commutative), by D1 the class of all rings R such that R£

is embeddable in a group, by D2 the class of all rings such that the universal
R£-inverting map is injective, and by E the class of all rings embeddable in
(skew) flelds. Then it is clear that

D0 ¶ D1 ¶ D2 ¶ E :

The question raised by van der Waerden was whether D0 = E . It was
answered in 1937 by A. I. Malcev [20], who showed that D0 6= D1 (essentially
the example below) and asked whether D1 = E . This question was answered
in 1967 by three people independently: A.J. Bowtell [7] and A. A. Klein [18]
gave examples showing that D2 6= E , and L. A. Bokut [4, 5] gave examples
showing that D1 6= D2. The proofs of Bowtell and Klein are fairly short and
an example to show that D1 6= E follows easily by general theory (see x5
below), but Bokut’s proof has not been simplifled.

A. I. Malcev’s example was of a semigroup with cancellation which was
not embeddable in a group. Its group ring over Z is an integral domain which
is not embeddable in a fleld. His example may be described as follows. Let
R be a ring on 8 generators, arranged as two 2 £ 2 matrices A, B, with
deflning relations (expressed in matrix form)

AB =

µ
0 ⁄
0 0

¶
(1)

This ring is an integral domain (by [9], Th.2.11.2), but if we adjoin inverses
of all non-zero elements of R, then we can reduce the (1,1)-entry of A to 0
by row operations and the (2,2)-entry of B to 0 by column operations, all
of which leaves the right-hand side of (1) unchanged, so the (1,2)-entry on
the right is 6= 0 whereas on the left-hand side it is now equal to 0. This
shows that the adjunction of inverses has mapped some elements to zero.
Two years later Malcev in [21] gave necessary and su–cient conditions for
a semigroup to be embeddable in a group, but this had no consequences for
rings.

4 Topological methods

Some embedding methods are adapted to particular types of rings. Here we
shall give two examples, group rings and flltered rings, exemplifled by the
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universal envelopes of Lie algebras; for both there is an embedding method
which is essentially topological.

Let G be a group and k a commutative fleld. Then the group algebra
kG of G may be described as the k-algebra with the elements of G as basis
and the multiplication given by the group law in G. Of course this algebra is
not always an integral domain; if G has elements of flnite order, say an = 1,
then a ¡ 1 is a zero-divisor, as is easily seen. Even for torsion-free groups
it is not known whether the group algebra is an integral domain. One case
of ensuring that we have an integral domain is to take an ordered group.
We recall that a group G is said to be (totally) ordered if there is a total
ordering on G such that for all a; b; c; d 2 G, a 6 b, c 6 d implies ac 6 bd.
For an ordered group the group algebra can be embedded in a fleld, by the
procedure of forming series. For any element f =

P
agg (g 2 G; ag 2 k) of

the group algebra its support is deflned as

sup(f) = fg 2 G j ag 6= 0g :

Thus the group algebra may be described as the set of all expressions f =P
agg which have flnite support. We now consider the set k((G)) of all series

f =
P

agg whose support is well-ordered. This set admits multiplication, for
if f1 =

P
agg, f2 =

P
bgg, then in the product

P
ahbh¡1gg the coe–cient of

each g is a flnite (possibly empty) sum. This algebra k((G)) could be called
the ordered series ring of G over k; clearly it contains kG as a subalgebra.

Theorem 4.1. Let G be a totally ordered group. Then the ordered series
ring k((G)) over any fleld k is again a fleld; hence the group algebra of any
totally ordered group can be embedded in a fleld.

For the proof one takes a general element a0g0 + a1g1 + : : : and writes it
as a0g0(1 ¡ f), where all elements in the support of f are > 1. Its inverse is
(1 + f + f2 + : : : )a¡1

0 g¡1
0 and now the well-ordering of the support is used

to show that only flnitely many terms f; f2; : : : contribute to the coe–cient
of a given group element. For the details see [9], Th.8.7.5, or [10], Th.2.4.5;
the method is due to Malcev [22] and Neumann [25] and is usually called the
Malcev-Neumann construction. It shows that for example the group algebra
of any free group can be embedded in a fleld, since the free group can be
totally ordered by writing its elements as inflnite power products of basic
commutators and taking the lexicographic ordering of the exponents (see
[17]).



10 Localization in general rings

A second method applies to certain classes of flltered rings. We recall
that by a flltered ring one understands a ring R with a chain of submodules

R = R0 ¶ R1 ¶ R2 ¶ : : :

such that RiRj µ Ri+j , \Rn = 0. With every flltered ring one can associate
a graded ring: G(R) =

L
grn(R), where grn(R) = Rn=Rn+1. Now we have:

Theorem 4.2. Let R be a flltered ring whose associated graded ring is an
Ore domain. Then R can be embedded in a fleld.

There have been a number of difierent proofs; without giving complete
details, we shall mention the methods used. It is easy to see that R is an
integral domain, and R£, the multiplicative semigroup of non-zero elements
has a system of congruences, whose intersection is the trivial (diagonal)
congruence. The quotients are embeddable in groups, and by taking their
inverse limit one embeds R£ in a group. Now it is just a matter of phrasing
the deflnition of a skew fleld as a group with an additional operation x 7!
1¡x and showing that the group obtained satisfles this deflnition. This was
the original proof in [8]. A variant of this method, using a difierent method
to deflne the additive structure on a ‘group with 0’: G [ f0g, was given by
Dauns in [13].

Another proof, by Wehrfritz [30], uses inverse limits of quotient groups
of p-jets, and a proof using the matrix ideals described in x5 below was
given by Valitskas [28]; he extends the flltration to matrices and constructs
a prime matrix ideal disjoint from the set of non-zero scalar matrices. The
shortest proof so far is due to Lichtman [19] (see [10], 2.6); he describes the
flltration by means of a variable t, leading to a t-adic valuation and then
forming the localization at the multiplicative set generated by t.

5 Matrix localization

The examples of the last section show that in general the conditions for
embeddability are likely to be quite complicated, and it seems natural to
phrase the question more generally by asking for homomorphisms into a
skew fleld, not necessarily injective. Even this may have a negative answer:
a 2 £ 2 matrix ring over a fleld, F2, has no homomorphisms to a skew fleld,
for F2 is a simple ring with zero-divisors.
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Let us for a moment look at the commutative case. Given a homomor-
phism f : R ! K, where K is a fleld and R, K are commutative, the kernel
is a prime ideal p, and we have the following analysis of f :

R //

²²

R=p

²²
Rp // K

Suppose that K is the fleld generated by the image of f ; then we can form
K either by putting all the elements in p equal to zero, thus obtaining an
integral domain R=p, and forming the fleld of fractions gives us K (up to
isomorphism). Or we can make all the elements outside p invertible, which
gives us a local ring Rp, whose residue class fleld is again K.

When R is noncommutative, the rings R=p, Rp are not of much help,
but we can try to replace p by the set P of all square matrices mapping
to singular matrices; this set P will be called the singular kernel of f . The
elements of K may then be described as components of the solutions of
matrix equations

Au = b ; where A =2 P : (1)

Here A is a matrix over R but we shall not distinguish between the entries
of A as elements of R and their images in K. It will be more convenient to
combine A and b to a single matrix

¡¡b A
¢
, replacing b by ¡A0 and A by¡

A⁄ A1
¢

and renaming
¡
A0 A⁄ A1

¢
as A, we can write the equation

for x 2 K

Au =
¡
A0 A⁄ A1

¢
0
@

1
u⁄
x

1
A = 0 ; (2)

where A0, A1 are columns and A⁄ is an n £ (n ¡ 1) matrix. The square
matrix

¡
A0 A⁄

¢
is called the numerator and

¡
A⁄ A1

¢
the denominator

of the equation (2), while A⁄ is the core. We have an analogue of Cramer’s
rule: ¡

A⁄ ¡A0

¢
=

¡
A⁄ A1

¢ µ
I u⁄
0 x

¶
: (3)

In the commutative case consider (1) and let Ui be the matrix obtained
from the unit matrix by replacing the i-th column by u; then AUi = A(i)

is the matrix obtained from A by replacing the i-th column by b. Thus
det A(i) = det A: det Ui = (det A):ui. In the general case we no longer
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have determinants, but (3) can be used for many of the purposes served
by Cramer’s rule in the classical case.

When inverting elements we had the problem that in general a sum
as¡1 + bt¡1 or product as¡1:bt¡1 cannot be written in the form cw¡1, but
when we invert matrices, this problem is overcome, for if the equations for
p and q are

¡
A0 A⁄ A1

¢
0
@

1
u

p

1
A = 0 ;

¡
B0 B⁄ B1

¢
0
@

1
v

q

1
A = 0

then the equations for p ¡ q, pq are easily verifled to be

µ
B0 B⁄ B1 0 0
A0 0 A1 A⁄ A1

¶
0
BBBB@

1
v

q

u

p ¡ q

1
CCCCA

= 0 ;

µ
B0 B⁄ B1 0 0
0 0 A0 A⁄ A1

¶
0
BBBB@

1
v

q

uq

pq

1
CCCCA

= 0 :

We note that the denominators of p ¡ q and pq are each a triangular
matrix sum of the denominators of p and q.

Our aim will be to study the properties of the set P; we shall flnd that it
bears close resemblance to an ideal. Its properties are the following, where
by a full matrix we understand a matrix A which is square, say n £ n, and
in any factorization

A = P Q ; where P is n £ r and Q is r £ n ;

we have r > n. We shall also abbreviate the diagonal sum

µ
A 0
0 B

¶
as

A ' B.

P.1. Every non-full (square) matrix is in P.
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P.2. A 2 P =) A ' B 2 P for all B.

P.3. 1 =2 P and if A; B =2 P, then A ' B =2 P.

P.4. Suppose that A = (A1; A2; : : : ; An), A0 = (A0
1; A2; : : : ; An) 2 P; then

ArA0 = (A1 + A0
1; A2; : : : ; An) 2 P :

This operation ArA0 is called the determinantal sum; of course a similar
rule holds for other columns and for rows; which column or row is intended
will usually be clear from the context.

Given a homomorphism f : R ! K to a fleld, with singular kernel P, we
cannot form R=P as in the commutative case, but the localization RP still
exists; it is formed by adjoining formal inverses of all the square matrices
over R that are not in P. As in the commutative case, here it is important
to distinguish R§, the ring obtained by formally inverting all the matrices
in § and RP which is R§, where § is the set of all square matrices over R

that are not in P. Moreover, RP is a local ring.

Theorem 5.1. Let R be a ring with a homomorphism f : R ! K to a fleld,
with singular kernel P. Then RP is a local ring.

Proof. The equation for x 2 RP has the form

Au =
¡
A0 A⁄ A1

¢
0
@

1
u⁄
x

1
A = 0 ;

and Cramer’s rule states

¡
A⁄ ¡A0

¢
=

¡
A⁄ A1

¢ µ
I u⁄
0 x

¶
: (4)

Since the denominator is non-singular, we have
¡
A⁄ A1

¢
=2 P. To prove

that RP is a local ring we show that if x is a non-unit in RP , then 1 ¡ x

is a unit. If x is a non-unit, then so is the left-hand side of (4), hence¡
A⁄ ¡A0

¢ 2 P . We have:

¡
A⁄ A1

¢
=

¡
A⁄ A1 + A0

¢ r ¡
A⁄ ¡A0

¢
=2 P
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and it follows that the flrst term on the right is a unit over R. Now the
equation

¡
A0 + A1 A⁄ A1

¢
0
@

1
u⁄

x ¡ 1

1
A = 0

shows that 1 ¡ x is a unit in RP .

This result suggests that we use the above properties of P to deflne it
abstractly, as a certain class of matrices and try to prove that we still get
a local ring. We use M(R) to denote the set of all square matrices over R

and make the following deflnitions.

Deflnition 1. In any ring R a matrix ideal is a subset A of M(R) such that

I.1. A contains all non-full matrices,

I.2. If C 2 A and B 2 M(R) then C ' B 2 A ,

I.3. Any determinantal sum of matrices in A , when deflned, lies in A .

Deflnition 2. A prime matrix ideal for R is a matrix ideal P such that
1 =2 P and A; B =2 P =) A ' B =2 P .

Just as in the commutative case one can now prove:

Theorem 5.2. Every proper matrix ideal is contained in a maximal matrix
ideal, and every maximal matrix ideal is prime.

We can also prove a result which justifles the introduction of matrix
ideals:

Theorem 5.3. Let R be a ring with a prime matrix ideal P. Then the
localization RP is a local ring and if K is the residue-class fleld, then the
natural map R ! RP ! K has the singular kernel P.

The proof is not di–cult, but quite long (see [9], Th.7.4.8 or [10], Th
4.3.1). It leads to a criterion for embeddability:

Theorem 5.4. Let R be any ring and denote by N the least matrix ideal
(generated by all non-full matrices). Then
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(i) R has a homomorphism to a fleld if and only if N is proper,

(ii) R can be embedded in a fleld if and only if N contains no diagonal
matrix with non-zero elements along the main diagonal.

Proof (Sketch). It is clear from Th.5.3 that to flnd a homomorphism from R

to a fleld we must flnd a prime matrix ideal, and by Th.5.2 this is possible
if there is a proper matrix ideal, i.e. if the least matrix ideal is proper, so
(i) is established.

The condition in (ii) is clearly necessary, for any diagonal matrix with
non-zero elements along the diagonal cannot lie in the singular kernel for
an embedding in a fleld. When (ii) is satisfled, then the set S of all these
diagonal matrices is disjoint from N , and an extension of Th.5.2 will show
that there is a matrix ideal containing N and disjoint from S and maximal
subject to these conditions, and further any such matrix ideal is prime.
Clearly it will lead to a fleld K with a homomorphism from R to K, which
is injective, by construction.

Above we have been concerned with inverting elements of R and more
generally, certain full matrices over R. Even more generally one can formally
invert any matrices, even rectangular ones. Such matrices may be regarded
as describing homomorphisms between free modules. A further generaliza-
tion allows us to invert homomorphisms between flnitely generated projec-
tive R-modules. We recall that a pair of such modules is specifled by a pair
of idempotent matrices E,F and a mapping from one to the other is given
by a matrix A such that AE = A = FA. An inverse is given by a matrix X

such that

EX = X = XF ; XA = E ; AX = F : (5)

Thus to invert A formally we introduce indeterminates forming the matrix
X with (5) as deflning relations. Bergman and Dicks in [3] proved that the
property of being hereditary is preserved by such localizations (recall that
a ring is called hereditary if all its ideals are projective).

Another way of looking at the embedding of a ring R in a fleld K is
to deflne for each R-module its rank as the dimension, considered as a K-
module. This allows one to deflne a dependence relation which may be
regarded as a matroid with the exchange property. It has been used in an
alternative approach to construct the fleld K by Bergman in [2].
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Sometimes it is convenient to express the information specifying an ele-
ment of R§ in a single matrix. An element of R§ is determined by a ‘matrix

block’

µ
A q

p c

¶
where A 2 §, c 2 R, p is a row and q a column over R (see

[15], [23]). The kernel of the natural mapping ‚ : R ! R§ can be shown to
consist of all c 2 R such that

0
@

A 0 0
0 B q

p 0 c

1
A =

µ
U

u

¶ ¡
V v

¢

where A; B; U; V 2 §, p; u are rows and q; v are columns over R. This is
known as Malcolmson’s criterion and in certain cases it leads to a precise
description of the kernel of ‚ (see Th.6.4 below).

6 Specializations, Semiflrs and Sylvester Domains

For any ring R we understand by an R-fleld a fleld K with a homomorphism
f : R ! K. If K is the fleld generated by im f , it is called an epic R-fleld.
We shall denote the singular kernel of f (deflned in x5) by Ker f or also
Ker K. Given epic R-flelds K, L such that Ker K µ Ker L, let us take R

and localize at KerL; this gives a local ring R0 say, with L as residue-class
fleld (by Theorem 5.3). Since Ker K µ Ker L, there is a homomorphism
R0 ! K; the image R1, say, is a local ring; hence L is a homomorphic
image of R1. Thus we have a subring of K, a local ring generated as local
ring by the image of R, with a homomorphism to L. Any homomorphism
from a local subring containing R to L will be called a specialization from
K to L over R. The set of all epic R-flelds is partially ordered with respect
to specialization by regarding K as greater than or equal to L if there is
a specialization from K to L over R; a greatest element, if one exists, will
be called a universal R-fleld. Clearly it is unique if it does exist; it is the
epic R-fleld which has every other epic R-fleld as specialization. If R is
embedded in its universal R-fleld U , then U will be called a universal fleld
of fractions for R. The concept of specialization has been generalized to
a situation involving more than two R-flelds by Bergman [1] (see also [10],
Ch.7).

Our flrst task is to deflne a class of rings which have a universal fleld of
fractions. A ring in which every right ideal is free, of unique rank, is called
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a free right ideal ring, or right flr for short. Left flrs are deflned similarly
and by a flr we understand a left and right flr. A ring in which every right
ideal on at most n generators is free, of unique rank, is called an n-flr.
Strictly speaking this should be called a \right n-flr", but the deflnition can
be shown to be left-right symmetric. Let Fn denote the class of n-flrs; thenT Fn = F is the class of rings in which every flnitely generated (left or)
right ideal is free of unique rank; such a ring will be called a semiflr. In
an integral domain every non-zero principal (left or) right ideal is free on
one generator, and conversely, if every non-zero principal right ideal is free
of unique rank 1, then we have an integral domain. Thus a 1-flr is just an
integral domain, and as n increases, the class of n-flrs shrinks, so

F1 ¾ F2 ¾ F3 ¾ : : : ; \ Fn = F :

Here all the inclusions are proper, again by Th.2.11.2 of [9], and we observe
that a ring in F2nF3 shows that D1 6= E (see x3). Now we have:

Theorem 6.1. In every semiflr the set of non-full matrices is a prime ma-
trix ideal and the corresponding fleld is a universal fleld of fractions.

We shall not give the proof here (see [9], Cor. 7.5.11 or [10], Cor.4.5.9),
but remark that an essential part of the proof is the fact that Sylvester’s
law of nullity holds in semiflrs:

Given any two n £ n matrices A; B

‰(AB) > ‰A + ‰B ¡ n : (1)

This is well known to hold for matrices over a fleld (even skew); for more
general cases we flrst have to extend the notion of rank. Given an n £ n

matrix A, consider a factorization

A = PQ (2)

where P is n £ r and Q is r £ n. If for a given A, r is minimal among all
such factorizations, then (2) will be called a rank factorization of A and r

the inner rank of A, denoted by ‰A. This deflnes the rank of a matrix over
any ring, and it is easily verifled that over a fleld it reduces to the usual
notion. We also note that a full matrix is just an n £ n matrix of inner rank
n.

Proposition 6.2. Every semiflr satisfles Sylvester’s law of nullity.



18 Localization in general rings

Proof. We flrst prove the following special case of (1):

For any n £ n matrices A,B, if AB = 0, then ‰A + ‰B 6 n. (3)

An easy induction shows that in a free module over a semiflr, any flnitely
generated submodule is again free, of unique rank. Let A, B be n £ n

matrices over a semiflr R, such that AB = 0. If B 6= 0, this tells us that the
submodule of Rn (as right R-module) generated by the columns of A is not
free on these columns. Since this submodule is free, of rank r say, the induced
map Rn ! Rr splits, so the kernel is free of rank n¡r (by the uniqueness of
the rank in semiflrs). The resulting isomorphism Rn ! Rr ' Rn¡r yields an
invertible matrix P such that AP has its flrst r columns linearly independent
and the remainder zero. The relation AB = 0 now becomes AP:P ¡1B = 0,
so PB has its flrst r rows zero. It follows that ‰A 6 r, ‰B 6 n ¡ r and
(3) follows. To deduce (1), suppose that ‰(AB) = r and write AB = PQ,
where P has r columns. Then

¡
A P

¢ µ
B

¡Q

¶
= 0 ;

hence

‰A + ‰B 6 ‰
¡
A P

¢
+ ‰

µ
B

¡Q

¶
6 n + r ;

and therefore ‰A + ‰B ¡ n 6 r = ‰(AB), as we had to show.

The law of nullity is so useful that it is worthwhile studying the class
of rings deflned by it. Following Dicks and Sontag [14] we call a ring (6= 0)
satisfying the law of nullity a Sylvester domain. Clearly the inner rank of
the zero element, regarded as a 1 £ 1 matrix, is 0, for we can write 0 as
product of two \empty" matrices, i.e. a 1 £ 0 by a 0 £ 1 matrix. Any
non-zero element clearly has rank 1, hence if a; b are any elements such that
ab = 0, then ‰a+‰b 6 1, so either a = 0 or b = 0. It follows that a Sylvester
domain is indeed an integral domain. Further, by Prop.6.2, every semiflr is
a Sylvester domain.

In Th.5.4 we had a criterion for the existence of R-flelds, which was
not very explicit. That can now be remedied with the help of Sylvester
domains. We recall that for any S µ R, RS denotes the universal S-inverting
ring; this should not be confused with RP , an ambiguity familiar from the
commutative case.
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Theorem 6.3. Let R be any ring and ' the set of all full matrices over R.
Then the localization R' is a fleld, the universal fleld of fractions of R, if
and only if R is a Sylvester domain.

A complete proof can be found in [9], Th.7.5.10. As a sample we shall
show that for a Sylvester domain R' is a fleld. Thus assume that R is a
Sylvester domain and let x 2 R' be a non-unit; if we can show that x = 0,
then R' is a fleld, which is what is claimed. Let

Au = 0 (4)

be an equation for x. Since x is a non-unit, the numerator N =
¡
A0 A⁄

¢
is

not invertible over R' and hence is not full over R. Thus N = PQ, where
P is n £ (n ¡ 1) and Q is (n ¡ 1) £ n. Therefore we have

A =
¡
A0 A⁄ A1

¢
=

¡
P Q A1

¢
=

¡
P A1

¢ µ
Q 0
0 1

¶
:

Here the denominator is full, hence
¡
P A1

¢
, as a left factor of the denom-

inator, is also full, and so is invertible over R'. Substituting this expression
for A into (4) we can cancel the left factor

¡
P A1

¢
in (4) and conclude

that x = 0.

For a Sylvester domain Malcolmson’s criterion leads to the following
explicit description of the kernel:

Theorem 6.4. Let R be a Sylvester domain. Then a matrix block over R

represents 0 if and only if it is not full.

The proof depends on the fact that for a Sylvester domain the product
(or diagonal sum) of full matrices is again full (see [10], Th.4.5.11).

7 Examples

It only remains to give some actual examples of flrs, semiflrs and Sylvester
domains. As already noted, every principal ideal domain is a flr, hence the
polynomial ring in one variable over a fleld, k[x], is a flr. For more than
one variable this is no longer true, but if we do not allow the variables
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to commute, we obtain the free associative algebra khx1; : : : ; xni, and this
is a flr, even when the number of variables is inflnite. The proof is by
a weakened form of the Euclidean algorithm, called the weak algorithm,
and can be found in [9], Cor.2.4.3, [10], Th.5.4.1, [11], Th.5.15, 17). More
generally, any family of flrs having a common subfleld has a coproduct, which
is again a flr ([10], Th.5.3.9). This shows in particular that any family of
flelds with a common subfleld has a coproduct which is a flr. An example of
a Sylvester domain (apart from the flrs and semiflrs already mentioned) is
the polynomial ring k[x; y] in two variables over a fleld. However, when the
number of variables exceeds two, the ring obtained is no longer a Sylvester
domain. For 3 variables this is most easily seen by considering the matrix

0
@

0 z ¡y

¡z 0 x

y ¡x 0

1
A

which is full (as some trials will show) and yet a zero-divisor:

0
@

0 z ¡y

¡z 0 x

y ¡x 0

1
A

0
@

x

y

z

1
A = 0 :

We also note that Sylvester’s law of nullity fails even for full matrices:

0
@

0 z ¡y

¡z 0 x

y ¡x 0

1
A

0
@

1 0 0
0 1 0
0 0 z

1
A =

0
@

0 z

¡z 0
y ¡x

1
A

µ
1 0 ¡x

0 1 ¡y

¶
:

Of course the polynomial ring in any number of variables over a fleld
has a universal fleld of fractions; all the above argument shows is that over
a polynomial ring in more than two variables some full matrices cannot be
inverted.
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Noncommutative localization in homotopy theory

William G. Dwyer

1 Introduction

In a sense, noncommutative localization is at the center of homotopy theory,
or even more accurately, one form of it is homotopy theory. After all, Gabriel
and Zisman [9] and later Quillen [18] observed that the homotopy category
of CW-complexes can be obtained from the category of topological spaces by
formally inverting the maps which are weak homotopy equivalences. More
generally, the homotopy category of any Quillen model category [6] [11] can
be built by formally inverting maps. In a slightly difierent direction, the
process of localization with respect to a map (x2) has recently developed into
a powerful tool for making homotopy-theoretic constructions [2, x4]; roughly
speaking, localizing with respect to f involves converting an object X into
a new one, Lf (X), with the property that, as far as mapping into Lf (X)
goes, f looks like an equivalence.

In this paper we will show how the Cohn noncommutative localization
described in [19] can be interpreted as an instance of localization with respect
to a map (3.2). Actually, we produce a derived form of the Cohn localization,
and show that the circumstances in which the Cohn localization is most
useful are exactly those in which the higher derived information vanishes
(3.3). Finally, we sketch how the derived Cohn localization can sometimes be
computed by using a derived form of the categorical localization construction
from Gabriel and Zisman (x4).

1.1 The context. It is necessary to choose what to work with: algebraic
objects, such as rings, chain complexes, and difierential graded algebras
(DGAs), or geometric ones, such as ring spectra and module spectra [7]
[12]. Since this paper focuses mostly on Cohn localization, we’ve picked
the algebraic option. If R is a ring, the term R-module will refer to an
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(unbounded) chain complex over R. See [21], [1], or [22, x10] for algebraic
accounts of how to work with these complexes, and [13] for a topological
approach. The difierentials in our complexes always lower degree by one,
and all unspecifled modules are left modules. To maintain at least a little
topological standing, we denote the i’th homology group of an R-module
X by …iX; this is in fact isomorphic to the i’th homotopy group of the
Eilenberg-MacLane spectrum corresponding to X [7]. A map between R-
modules which induces an isomorphism on …⁄ is called a quasi-isomorphism
or equivalence; the homotopy category of R-modules (also knows as the de-
rived category of R) is obtained from the category of R-modules by formally
inverting the equivalences. A coflbration sequence of R-modules is one which
becomes a distinguished triangle in the derived category. If f : X ! Y is
a map of R-modules, the coflbre C of f is the chain complex mapping cone
of f [22, 1.2.8], and there is a coflbration sequence X ! Y ! C. We use §
for the shift or suspension operator.

An ordinary module M over R gives rise to an R-module in our sense
by treating M as a chain complex concentrated in degree 0; we refer to such
an M as a discrete module over R, and we do not distinguish in notation
between M and its associated complex.

We will sometimes work in a context which includes difierential graded
algebras (DGAs) [22, 4.5.2]. In this setting a ring is identifled with the
associated DGA concentrated in degree 0.

1.2 Tensor and Hom. The symbol ›R refers to the tensor product of
two R-modules, and HomR to the complex of homomorphisms between two
R-modules (for this last, see [22, 2.7.4], but reindex so that all of the dif-
ferentials reduce degree by one). For our purposes, both ›R and HomR are
always taken in the derived sense, so that modules are to be replaced by
suitable resolutions before the tensor product or function object is formed.
Along the same lines, EndR(X) denotes the DGA given by the derived en-
domorphism complex of the R-module X.

These conventions are such that if R is a ring, M a discrete right module
over R, and N a discrete left module, then M ›R N is a complex with

…i(M ›R N) »=
(

TorR
i (M; N) i ‚ 0

0 i < 0 :

Similarly, if M and N are discrete left R-modules, HomR(M; N) is a complex
with

…i HomR(M; N) »=
(

Ext¡i
R (M; N) i • 0

0 i > 0 :
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In particular, …i EndR(M) »= Ext¡i
R (M; M).

2 Localization with respect to a map

Suppose that R is a ring and that f : A ! B is a map of R-modules.

2.1 Deflnition. An R-module Y is said to be f-local if f induces an equiv-
alence HomR(B; Y ) ! HomR(A; Y ).

In other words, Y is f -local if, as far as mapping into Y is concerned, f

looks like an equivalence.

2.2 Deflnition. A map X ! X 0 of R-modules is said to be an f-local
equivalence if it induces an equivalence HomR(X 0; Y ) ! HomR(X; Y ) for
every f -local R-module Y . An f-localization of X is a map † : X ! Lf (X),
such that Lf (X) is f -local and † is an f -local equivalence.

2.3 Remark. It is not hard to see that any two f -localizations of X are
equivalent, so that we can speak loosely of the f -localization of X. For
any map f and R-module X, the f -localization Lf (X) of X exists, and the
construction of Lf (X) can be made functorial in X (see [10], or 2.12 below).
The functor Lf preserves equivalences, is idempotent up to equivalence, and
preserves coflbration sequences up to equivalence. An R-module X is f -local
if and only if X ! Lf (X) is an equivalence. A map g of R-modules is an
f -local equivalence if and only if Lf (g) is an equivalence.

2.4 Remark. Let C be the coflbre of f . For any R-module Y there is a
coflbration sequence

HomR(C; Y ) ! HomR(B; Y ) ! HomR(A; Y ) :

This shows that Y is f -local if and only HomR(C; Y ) is contractible, i.e, if
and only if Y is local with respect to 0 ! C. This last condition is sometimes
expressed by saying that Y is C-null [8, 1.A.4]. The f -localization functor
Lf can also be interpreted as a C-nulliflcation functor.

2.5 Proposition. Up to equivalence, the R-module Lf (R) is a DGA, in
such a way that the localization map R ! Lf (R) is a morphism of DGAs.

Proof. Let Y = Lf (R) and E be the endomorphism DGA EndR(Y ). Since
Y is f -local, the map R ! Y induces an equivalence

E = EndR(Y )
»¡! HomR(R; Y ) = Y :
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The action of R on Y then gives a double commutator map

R ! EndE(Y ) » EndE(E) » E » Y :

It is easy to see that this is essentially the localization map R ! Y . Identi-
fying Y with EndE(Y ) gives the required DGA structure.

From now on we will treat Lf (R) as a DGA and R ! Lf (R) as a
homomorphism of DGAs.

2.6 Deflnition. The localization functor Lf is smashing if for every R-
module X the map X » R ›R X ! Lf (R) ›R X is an f -localization map.

2.7 Remark. For any R-module X, the natural map X ! Lf (R) ›R X is an
f -local equivalence; one way to see this is to pick an f -local Y and consider
the chain of equivalences

HomR(Lf (R) ›R X; Y ) » HomR(X; HomR(Lf (R); Y )) » HomR(X; Y ) :

The question of whether Lf is smashing, then, is the question of whether
for every X the R-module Lf (R) ›R X is f -local.

2.8 Remark. If Lf is smashing then the category of f -local R-modules
is equivalent, from a homotopy point of view, to the category of Lf (R)-
modules. In particular, the homotopy category of f -local R-modules is
equivalent to the homotopy category of Lf (R)-modules.

2.9 Examples. Let R = Z, pick a prime p, and let f be the map Z p¡! Z.
Then Lf is smashing, and Lf (X) » Z[1=p] ›Z X.

On the other hand, if f is the map Z[1=p] ! 0, then Lf is the Ext-
p-completion functor [2, 2.5], which is the total left derived functor of the
p-completion functor. In particular, Lf (Z) » Zp and Lf (Z=p1) » §Zp.
Since §Zp is not equivalent to Zp ›Z Z=p1, Lf is not smashing in this case.

The main positive result about smashing localizations is due to Miller.
Recall that an R-module A is said to be small if HomR(A; {) commutes up
to equivalence with arbitrary coproducts. This is the same as saying that A

is flnitely built from R, or that A is equivalent to a chain complex of flnite
length made up of flnitely generated projective R-modules.

2.10 Proposition. [15] Let f : A ! B be a map of R-modules. If A and B

are small, or more generally if the coflbre C of f is equivalent to a coproduct
of small R-modules, then Lf is smashing.
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2.11 Lemma. If the coflbre C of f : A ! B is equivalent to a coproduct
of small R-modules, then the class of f-local R-modules is closed under
arbitrary coproducts.

Proof. Write C » ‘
fi Cfi, where each Cfi is small. Then Y is f -local if and

only if Y is C-null (2.4), which is the case if and only if Y is Cfi-null for
each fi. The lemma now follows from the fact that HomR(Cfi; {) commutes
up to equivalence with coproducts.

Proof of 2.10. Consider the class of R-modules X for which Lf (R)›RX is f -
local. We have to show that this is the class of all R-modules (2.7). However,
the class contains R itself, is closed under coflbration sequences (2.3), is
closed under arbitrary coproducts (2.11), and is closed under equivalences.
The usual method for constructing resolutions shows that this is enough to
give the desired result.

2.12 Construction of Lf (X). We will sketch an explicit description of
Lf (X), at least up to equivalence, in the case in which the coflbre C of f

is equivalent to a coproduct of small R-modules. Actually, we will assume
that C itself is small, since the adjustments to handle the general case are
mostly notational.

Recall that the homotopy colimit of a sequence X0
¾0¡! X1

¾1¡! ¢ ¢ ¢ of
R-modules is the coflbre of the map ¾ :

‘
Xi ! ‘

Xi given by ¾(xi) =
¾i(xi) ¡ xi. The description of Lf (X) depends on two observations.

1. HomR(C; {) commutes up to equivalence with sequential homotopy
colimits.

2. If U is a coproduct of copies of suspensions of C, g : U ! X is a map
of R-modules, and X 0 is the coflbre of g, then X ! X 0 is an f -local
equivalence.

Item (1) is clear from the description above of sequential homotopy colimits.
For (2), pick an f -local Y , consider the coflbre sequence

HomR(X 0; Y ) ! HomR(X; Y ) ! HomR(U; Y ) ;

and observe that the term on the right is trivial (2.4).

Consider a set of representatives gfi : §nfiC ! X for all nontrivial ho-
motopy classes of maps from suspensions of C to X. Let U =

‘
fi §nfiC, let

g : U ! X be the sum of the maps fgfig, and let '(X) denote the coflbre
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of g. There is a natural map X ! '(X). Iterate the process to construct a
sequential diagram

X ! '(X) ! '2(X) ! ¢ ¢ ¢ ! 'n(X) ! ¢ ¢ ¢ ; (2.13)

and let '1(X) = hocolimn 'n(X). We claim that X ! '1(X) is an f -
localization map, so that '1(X) » Lf (X). The fact that '1(X) is f -local
follows from 2.4 and (1) above, since every map from a suspension of C into
'1(X) factors up to homotopy through 'n(X) for some n, and so is null
homotopic, since it becomes null homotopic by construction in 'n+1(X). To
see that X ! '1(X) is an f -local equivalence, observe that by (2) above
and induction the map X ! 'n(X) is an f -local equivalence for each n ‚ 1.
For an f -local Y it is now possible to compute

HomR('1(X); Y ) » holimn HomR('n(X); Y )

» holimn HomR(X; Y )

» HomR(X; Y ) :

2.14 Remark. The standard construction of Lf (X) is similar to the above,
but slightly more complicated [10, 4.3]. To make the construction functorial,
and not just functorial up to equivalence, it is necessary to build '(X) by
using all maps from suspensions of C to X, not just a set of representatives of
nontrivial homotopy classes. We neglected to mention above that C should
have been replaced up to equivalence by a projective complex (coflbrant
model); in the general setting there’s also a slight adjustment [10, 4.2.2]
to deal with the fact that X might not be flbrant, in other words, to deal
with the fact that not every map §nC ! X in the homotopy category is
necessarily represented by an actual map §nC ! X. Finally, if C is not
small the countable homotopy colimit in 2.13 has to be replaced by a parallel
transflnite construction [10, 10.5].

2.15 Other structure. There is more that can be said if the coflbre C of
f is small. Let C# = HomR(C; R). There is a \homology theory" on the
category of R-modules determined by the functor X 7! …⁄(C# ›R X); let
X ! X̂ denote Bousfleld localization with respect to this theory [8, 1.E.4]
[10, xi]. Then for any X there is a homotopy flbre square

X ¡¡¡¡! X̂??y
??y

Lf (X) ¡¡¡¡! Lf (X̂) :
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In the case in which R = Z and f is the map Z p¡! Z, this is the arithmetic
square

X ¡¡¡¡! X p̂??y
??y

Z[1=p] ›Z X ¡¡¡¡! Z[1=p] ›Z (X p̂) :

See [3] for other results along these lines and for some (mostly commutative)
examples.

3 The Cohn localization

In this section we construct the Cohn localization from the point of view of
x2. Let R be a ring and let fffi : Pfi ! Qfig be some set of maps between
discrete (1.1) flnitely generated projective R-modules. Let f denote

‘
fi ffi.

The main results are as follows.

3.1 Proposition. The DGA Lf (R) is (¡1)-connected, i.e., …iLf (R) van-
ishes for i < 0.

If P is a discrete R-module, let P # = Ext0
R(P; R) denote its usual dual,

and note that P # is a discrete right R-module. For each ffi : Pfi ! Qfi, let
f

#
fi : Q

#
fi ! P

#
fi be the dual of ffi, and let S denote the set ff

#
fi g. Recall

that a ring homomorphism R ! R0 is said to be S-inverting if for each fi

the map TorR
0 (f#

fi ; R0) is an isomorphism. A Cohn localization of R with
respect to S is an initial object R ! S¡1R in the category of S-inverting
ring homomorphisms R ! R0 [19, Part 1].

The map R ! Lf (R) of DGAs (2.5) induces a ring homomorphism
R = …0R ! …0Lf (R).

3.2 Proposition. The map R ! …0Lf (R) is a Cohn localization of R with
respect to S.

From now on we will denote …0Lf (R) by L. In light of 3.2, we think of
the DGA Lf (R) as a derived Cohn localization of R with respect to S.

Recall [17] that the ring homomorphism R ! L is said to be stably °at if
TorR

i (L; L) = 0 for i > 0. It is in the stably °at case that Cohn localization
leads to K-theory localization sequences.

3.3 Proposition. The map R ! L is stably °at if and only if the groups
…iLf (R) vanish for i > 0.
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In other words, R ! L is stably °at if and only if Lf (R) is equivalent
as a DGA to L, or if and only if the \higher derived functors" of Cohn
localization, given by …iLf (R), i > 0, vanish.

The rest of this section is taken up with proofs. Observe to begin with
that the objects Pfi and Qfi are small (x2) as R-modules, and so the coflbre
of f is a coproduct of small objects. It follows that Lf is smashing (2.10) and
that up to equivalence there is a relatively simple construction for Lf (X)
(2.12).

3.4 Proposition. An R-module X is f-local if and only if each group …iX

is f-local.

3.5 Remark. It might be useful to spell out the meaning of this. The object
R is an ordinary ring and the object X is a chain complex over R. Each
group …iX is a discrete R-module, which can be treated as a chain complex
over R concentrated in degree 0. The proposition states that X is f -local if
and only if, for each i 2 Z, the R-module obtained from …iX is f -local.

Proof of 3.4. If P is a discrete projective module over R, it is not hard to
see that there are natural isomorphisms

…i HomR(P; X) »= Ext0
R(P; …iX) :

This is clearly true if P is free, and follows in general from a retract argu-
ment. The proposition then follows from deflnition 2.1.

3.6 Lemma. Suppose that h : P ! Q is a map of discrete flnitely generated
projective R-modules, W is the coflbre of h, X is an R-module which is (¡1)-
connected, g : §nW ! X is a map which is not null homotopic, and X 0 is
the coflbre of g. Then X 0 is (¡1)-connected.

Proof. By a retract argument, we can assume that P and Q are free, so that
P »= Ri and Q »= Rj . In view of the deflnition of W , there is a coflbration
sequence

HomR(W; X) ! Xj ! Xi :

The corresponding long exact homotopy sequence shows that …k HomR(W; X)
vanishes for k < ¡1. Since g : §nW ! X is essential, it follows that n ‚ ¡1.
This gives a coflbration sequence

X ! X 0 ! §n+1W (3.7)
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with n + 1 ‚ 0. It is clear that there are isomorphisms

…kW =

8
><
>:

coker(h) k = 0

ker(h) k = 1

0 otherwise

and so in particular that …kW = 0 for k < 0. The proof is completed by
looking at the long exact homotopy sequence of 3.7.

Proof of 3.1. This follows from 3.6 and the construction of Lf (R) sketched
in 2.12.

Proof of 3.2. If P is a discrete flnitely generated projective R-module, then
for any discrete R-module M , there is a natural isomorphism

TorR
0 (P #; M) »= Ext0

R(P; M) :

In particular, as in the proof of 3.4, the map TorR
0 (f#

fi ; M) is an isomorphism
for all fi if and only if M is f -local. By 3.4, L is f -local, and it follows that
R ! L is S-inverting.

Now, suppose that R ! R0 is an arbitrary S-inverting ring homomor-
phism. As above, the ring R0 is f -local as an R-module, and this implies
that the map R ! Lf (R) induces an equivalence

HomR(Lf (R); R0) ! HomR(R; R0) » R0 : (3.8)

In conjunction with 3.1, the universal coe–cient spectral sequence

Exti
R(…jLf (R); R0) ) …¡i¡j HomR(Lf (R); R0)

shows that …0 HomR(Lf (R); R0) is isomorphic to Ext0
R(L; R0). Applying …0

to the equivalence 3.8 thus shows that every homomorphism R ! R0 of
discrete modules over R extends uniquely to a homomorphism L ! R0.
In particular, the given ring homomorphism u : R ! R0 extends uniquely
to v : L ! R0. To show that v is a ring homomorphism, it is enough to
show that for each element ‚ of L, the two maps a; b : L ! R0 given by
a(x) = v(x‚) and b(x) = v(x)v(‚) are the same. Both a and b are maps of
discrete R-modules, and so it is in fact enough to show that a and b agree
when composed with the map R ! L. But this is just the statement that v

is a map of discrete R-modules.
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3.9 Lemma. Suppose that X and Y are respectively right and left R-modules
such that …iX and …iY vanish for i < 0. Then there are natural isomor-
phisms

…i(X ›R Y ) »=
(

TorR
0 (…0X; …0Y ) i = 0

0 i < 0 :

Proof. This follows from the Kũnneth spectral sequences

…i((…jX) ›R Y ) ) …i+j(X ›R Y )

TorR
i (M; …jY ) ) …i+j(M ›R Y ) :

In the second spectral sequence, M is a discrete right R-module (e.g., …kX

for some k ‚ 0).

3.10 Lemma. The natural map

Lf (R) » R ›R Lf (R) ! Lf (R) ›R Lf (R)

is an equivalence. The natural map L »= TorR
0 (R; L) ! TorR

0 (L; L) is an
isomorphism.

Proof. Since Lf (Lf (R)) » Lf (R), the flrst statement follows from the fact
that Lf is smashing (2.10). The second then follows from 3.1 and 3.9.

Proof of 3.3. Suppose that …iLf (R) = 0 for i > 0, or in other words (3.1),
that Lf (R) » L. It follows from 3.10 that L ›R L » L; applying …⁄ then
gives isomorphisms

TorR
i (L; L) »= …i(L ›R L) »=

(
L i = 0

0 otherwise:

Suppose on the other hand that …i(L ›R L) »= TorR
i (L; L) vanishes for

i > 0. Consider the class of all L-modules X with the property that the
natural map

X » R ›R X ! L ›R X

is an equivalence. This class includes L (3.9, 3.10), is closed under equiva-
lences, is closed under coflbration sequences, and is closed under arbitrary
coproducts. As in the proof of 2.10, this is enough to show that the class
contains all L-modules. In particular, for any discrete L-module M there
are isomorphisms

TorR
i (L; M) »=

(
M i = 0

0 i > 0 :
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Each group …jLf (R) is a module over L = …0Lf (R), and so it follows from
the Kũnneth spectral sequence

TorR
i (L; …jLf (R)) ) …i+j(L ›R Lf (R))

that the natural map Lf (R) ! L›RLf (R) is an equivalence, and in particu-
lar that the R-module structure on Lf (R) extends to an L-module structure.
This structure can be used to factor the natural map R ! Lf (R) as a com-
posite R ! L ! Lf (R). Applying Lf to this composite gives a diagram

Lf (R) ! L ! L2
f (R)

in which we have used 3.4 to identify Lf (L) » L. The composite map
Lf (R) ! L2

f (R) is an equivalence, since R ! Lf (R) is an f -local equiva-
lence. Applying …⁄ shows that …iLf (R) »= 0 for i > 0.

4 Localization of categories

In this section we sketch without proof a connection between the Cohn
localization of a ring and the process of forming the derived localization of
a category. The connecting link between the two is the notion of ring with
several objects.

4.1 Derived localization of categories. Suppose that C is a small cat-
egory and W a subcategory which contains all the objects of C. The lo-
calization of C with respect to W is a functor C ! W¡1C which is initial
in the category of all functors with domain C which take the arrows in W
into isomorphisms. A derived form of this localization can be constructed
by forming a free simplicial resolution (FC; FW) of the pair (C; W) and
taking the dimensionwise localization (FW)¡1FC [5]. This results in a cat-
egory L(C; W) with the same objects as C, but enriched over simplicial
sets. Up to an enriched analog of categorical equivalence, L(C; W) is the
same as the hammock localization of [4], and from this point of view there is
a natural functor C ! L(C; W). This functor is universal, in an appropri-
ate sense, among functors from C to categories enriched over simplicial sets
which send the arrows of W into maps which are invertible up to homotopy.

4.2 Examples. The following examples do not involve small categories, but it
is still possible to make sense of them. Let C be the category of topological
spaces and W the subcategory of weak homotopy equivalences. Let X and
Y be spaces with CW -approximations X 0 and Y 0. Then the set of maps
X ! Y in W¡1C is isomorphic to the set of homotopy classes of maps
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X 0 ! Y 0; the simplicial set of maps X ! Y in L(C; W) is equivalent to the
singular complex of the mapping space Map(X 0; Y 0).

Let R be a ring, C the category of unbounded chain complexes over
R, i.e., the category of R-modules, and W ‰ C the subcategory of quasi-
isomorphisms. Then W¡1C is the derived category of R. If X and Y are
R-modules, then the homotopy groups of the simplicial set of maps X ! Y

in L(C; W) are …i HomR(X; Y ), i ‚ 0.

4.3 Rings with several objects. A ring T with several objects is a small
additive category [16]; a discrete T -module is an additive functor from T

to abelian groups. There is a category of discrete T -modules in which the
morphisms are natural transformations between functors. Deflne a T -module
to be a chain complex of discrete T -modules, i.e., an additive functor from T

to the category of chain complexes over Z. One can build a homotopy theory
of T -modules in which the weak equivalences are natural transformations
which are objectwise quasi-isomorphisms (see [20] for geometric versions of
this). We use the notation HomT (X; Y ) for the derived chain complex of
maps between two T -modules X, Y .

Every object x 2 T gives rise to a discrete small projective T -module
Px, where Px assigns to y the group of maps x ! y in T . Suppose that
fffi : Pxfi ! Pyfig is a set of maps between such projectives, and let f =‘

fi ffi. The ideas in x2 give for any T -module X an f -local module Lf (X)
and an f -local equivalence X ! Lf (X). There is an associated category
Lf (T ) enriched over chain complexes (in other words, Lf (T ) is \a DGA with
several objects"); this has the same objects as T , and the function complex
of maps x to y in Lf (T ) is given by HomT (Lf (y); Lf (x)). There is a functor
i : T ! Lf (T ) and by the same smallness argument used in the proof of
2.10, the functor Lf can be identifled as (derived) left Kan extension along i.

If C is a simplicial category, let ZC denote the simplicial additive cate-
gory obtained by applying the free abelian group functor dimensionwise to
the morphism sets of C. There is an associated category NZC enriched over
chain complexes, formed by normalizing the simplicial abelian groups which
appear as morphism objects in ZC and using the Eilenberg-Zilber formula
[22, 6.5.11] to deflne composition. If C is an ordinary category treated as a
simplicial category with discrete morphism sets, then NZC is the additive
category obtained by taking free abelian groups on the morphism sets of C,
so at what we hope is minimal risk of confusion we will just denote it ZC.

If (C; W) is a pair of categories as above (4.1), then for each morphism
w : x ! y in W let fw : Py ! Px be the corresponding map between
projective ZC-modules and let fW =

‘
fw.
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4.4 Proposition. Let (C; W) and f = fW be as above. Then in an ap-
propriate enriched sense the two categories NZL(C; W) and Lf (ZC) are
equivalent.

\Equivalence" here means that the two categories are related by a zigzag
of morphisms between enriched categories with the property that these mor-
phisms give the identity map on object sets and induce quasi-isomorphisms
on function complexes.

4.5 Rings. Suppose that T is a ring with a flnite number of objects, in other
words, a small additive category with a flnite number of objects. Let P =‘

x Px, where the coproduct runs through all of the objects in T and Px is
the projective from 4.3. Let E be the endomorphism ring of P in the category
of discrete T -modules, and P(T ) the ring Eop. The notation P(T ) is meant
to suggest that this is a kind of path algebra of T . As an abelian group,
P(T ) is isomorphic to the sum

‘
x;y T (x; y) of all of the morphism groups of

T ; products are deflned by using the composition in T to the extent possible
and otherwise setting the products equal to 0. Since P is a small projective
generator for the category of discrete T -modules, ordinary Morita theory
shows that Ext0

T (P; {) gives an equivalence between the category of discrete
T -modules and the category of discrete P(T )-modules. Not surprisingly,
this extends to a homotopy-theoretic equivalence between the category of
T -modules and the category of P(T )-modules.

The construction P({) can be extended to categories enriched over chain
complexes; if T 0 is such a category, then P(T 0) is a DGA.

4.6 Proposition. Suppose that T is a ring with a flnite number of objects,
f : P ! Q is a map between discrete small projective T -modules, and g :
P 0 ! Q0 the corresponding map between discrete flnitely-generated P(T )-
modules. Then the DGA P(Lf (T )) is, in an appropriate sense, equivalent
to the DGA Lg(P(T )).

4.7 Remark. The word \equivalent" in the proposition signifles that the
DGA Lg(P(T )) is related to P(Lf (T )) by a zigzag of quasi-isomorphisms
between DGAs.

4.8 An example. This is along the lines of [19, 2.4]. Let H ˆ G ! K be
a two-source of groups. Form a category C with three objects, x, y, and z

and the following pattern of morphisms

y
H¡̂ x

K¡! z

j j j
H G K



W.G.Dwyer 37

This signifles, for instance, that H is the set of maps x ! y, and G is the
monoid of endomorphisms of x. The action of G on H by composition is
then the translation action determined by the given homomorphism G ! H.

Let » denote the pushout of the diagram H ˆ G ! K of groups and X

the homotopy pushout of the diagram BH ˆ BG ! BK of spaces. By the
van Kampen theorem, …1X »= ».

4.9 Lemma. The nerve of C is equivalent to X.

Let W ‰ C be the subcategory whose nonidentity morphisms are the
maps x ! y and x ! z corresponding to the identity elements of H and
K, respectively. Note that all of the morphisms in W¡1C are invertible; in
fact, W¡1C is isomorphic to a connected groupoid with three objects x, y,
and z and vertex groups isomorphic to ». Let ›X denote the simplicial loop
group of X.

4.10 Proposition. [5] The simplicial category L(C; W) is weakly equivalent
to a connected simplicial groupoid with three objects x, y, and z and vertex
group ›X.

Let f = fW be map between projective ZC modules determined as above
by W, and g the corresponding map between projective P(ZC)-modules.
Note that P(ZC) is the matrix ring associated in [19, 2.4] to the amalga-
mated product ZH ⁄ZG ZK and that g is the sum of the two maps ¾1 and
¾2 described there. Concatenating 4.4 with 4.6 gives the following result.

4.11 Proposition. The DGA LgP(ZC) is equivalent in an appropriate
sense to the 3 £ 3-matrix algebra on the chain algebra C⁄(›X;Z). In par-
ticular, for i ‚ 0 there are natural isomorphisms

…iLgP(ZC) »= Hi(›X;Z) ' ¢ ¢ ¢ ' Hi(›X;Z) (9 times) :

This Cohn localization is stably °at (3.3) if and only if the universal cover
of X is acyclic and X itself is equivalent to B»; this occurs, for instance, if
the maps G ! H and G ! K are injective. It does not occur if G = Z and
H and K are the trivial group.

Here’s another example, which can be treated along the same lines. Let
X be a connected space and M the monoid constructed by McDufi [14] with
BM weakly equivalent to X. Let R be the monoid ring ZM , and for each
m 2 M let fm : R ! R be given by right multiplication by m. Denote the
sum

‘
m fm by f . Then for i ‚ 0 there are natural isomorphisms

…iLf (R) »= Hi(›X;Z) :
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Noncommutative localization in group rings

Peter A. Linnell

Abstract

This paper will brie°y survey some recent methods of localization
in group rings, which work in more general contexts than the classical
Ore localization. In particular the Cohn localization using matrices
will be described, but other methods will also be considered.

1 Introduction

Let R be a commutative ring and let S = fs 2 R j sr 6= 0 for all
r 2 R n 0g, the set of non-zerodivisors of R. Then, in the same manner
as one constructs Q from Z, we can form the quotient ring RS¡1 which
consists of elements of the form r=s with r 2 R and s 2 S, and in which
r1=s1 = r2=s2 if and only if r1s2 = s1r2. We can consider R as a subring
RS¡1 by identifying r 2 R with r=1 2 RS¡1. Then RS¡1 is a ring containing
R with the property that every element is either a zerodivisor or invertible.
Furthermore, every element of RS¡1 can be written in the form rs¡1 with
r 2 R and s 2 S (though not uniquely so). In the case R is an integral
domain, then RS¡1 will be a fleld and will be generated as a fleld by R (i.e.
if K is a subfleld of RS¡1 containing R, then K = RS¡1). Moreover if K

is another fleld containing R which is generated by R, then K is isomorphic
to RS¡1 and in fact there is a ring isomorphism RS¡1 ! K which is the
identity on R.

The question we will be concerned with here is what one can do with
a noncommutative ring R; certainly many of the above results do not hold
in general. In particular, Malcev [24] constructed domains which are not
embeddable in division rings. We will concentrate on the case when our ring

Keywords Cohn localization, Ore condition, ring of quotients
AMS Classiflcation Primary: 16S10; Secondary: 16U20, 20C07
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is a crossed product k⁄G, where k is a division ring and G is a group [25], and
in particular when the crossed product is the group ring kG with k a fleld. A
fleld will always mean a commutative fleld, and we shall use the terminology
\division ring" for the noncommutative case. Though our main interest is in
group rings, often it is a trivial matter to extend results to crossed products.
This has the advantage of facilitating induction arguments, because if H ¢G

and k ⁄ G is a crossed product, then k ⁄ G can also be viewed as a crossed
product (k ⁄ H) ⁄ (G=H) [25, p. 2].

2 Ore Localization

We shall brie°y recall the deflnition of a crossed product, and also establish
some notational conventions for this paper. Let R be a ring with a 1 and let
G be a group. Then a crossed product of G over R is an associative ring R⁄G

which is also a free left R-module with basis f„g j g 2 Gg. Multiplication
is given by „x„y = ¿(x; y)xy where ¿(x; y) is a unit of R for all x; y 2 G.
Furthermore we assume that „1 is the identity of R ⁄ G, and we identify R

with R„1 via r 7! r„1. Finally „xr = r¾(x)„x where ¾(x) is an automorphism of
R for all x 2 G; see [25, p. 2] for further details.

We shall assume that all rings have a 1, subrings have the same 1, and
ring homomorphisms preserve the 1. We say that the element s of R is a non-
zerodivisor (sometimes called a regular element) if sr 6= 0 6= rs whenever
0 6= r 2 R; otherwise s is called a zerodivisor. Let S denote the set of
non-zerodivisors of the ring R. The simplest extension to noncommutative
rings is when the ring R satisfles the right Ore condition, that is given r 2 R

and s 2 S, then there exists r1 2 R and s1 2 S such that rs1 = sr1. In
this situation one can form the Ore localization RS¡1, which in the same
way as above consists of elements of the form frs¡1 j r 2 R; s 2 Sg. If
s1s = s2r, then r1s¡1

1 = r2s¡1
2 if and only if r1s = r2r; this does not

depend on the choice of r and s. To deflne addition in RS¡1, note that
any two elements can be written in the form r1s¡1; r2s¡1 (i.e. have the
same common denominator), and then we set r1s¡1 + r2s¡1 = (r1 + r2)s¡1.
To deflne multiplication, if s1r = r2s, we set (r1s¡1

1 )(r2s¡1
2 ) = r1r(s2s)¡1.

Then RS¡1 is a ring with 1 = 11¡1 and 0 = 01¡1, and fr1¡1 j r 2 Rg is a
subring isomorphic to R via the map r 7! r1¡1. Furthermore RS¡1 has the
following properties:

† Every element of S is invertible in RS¡1.

† Every element of RS¡1 is either invertible or a zerodivisor.
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† If µ : R ! K is a ring homomorphism such that µs is invertible for all
s 2 S, then there is a unique ring homomorphism µ0 : RS¡1 ! K such
that µ0(r1¡1) = µr for all r 2 R; in other words, µ can be extended in
a unique way to RS¡1.

† RS¡1 is a °at left R-module [32, Proposition II.3.5].

Of course one also has the left Ore condition, which means that given r 2 R

and s 2 S, one can flnd r1 2 R and s1 2 S such that s1r = r1s, and
then one can form the ring S¡1R, which consists of elements of the form
s¡1r with s 2 S and r 2 R. However in the case of the group ring kG for
a fleld k and group G, they are equivalent by using the involution on kG

induced by g 7! g¡1 for g 2 G. When a ring satisfles both the left and right
Ore condition, then the rings S¡1R and RS¡1 are isomorphic, and can be
identifled. In this situation, we say that RS¡1 is a classical ring of quotients
for R. When R is a domain, a classical ring of quotients will be a division
ring. On the other hand if already every element of R is either invertible or
a zerodivisor, then R is its own classical quotient ring. For more information
on Ore localization, see [13, x9].

Problem 2.1. Let k be a fleld. For which groups G does kG have a classical
quotient ring?

One could ask more generally given a division ring D, for which groups G

does a crossed product D ⁄G always have a classical quotient ring? We have
put in the \always" because D and G do not determine a crossed product
D⁄G. One could equally consider the same question with \always" replaced
by \never".

For a nonnegative integer n, let Fn denote the free group on n generators,
which is nonabelian for n ‚ 2. If G is abelian in Problem 2.1, then kG

certainly has a classical quotient ring because kG is commutative in this
case. On the other hand if G has a subgroup isomorphic to F2, then D ⁄ G

cannot have a classical quotient ring. We give an elementary proof of this
well-known statement, which is based on [18, Theorem 1].

Proposition 2.2. Let G be a group which has a subgroup isomorphic to the
free group F2 on two generators, let D be a division ring, and let D ⁄ G be
a crossed product. Then D ⁄ G does not satisfy the right Ore condition, and
in particular does not have a classical quotient ring.

Proof. First suppose G is free on a; b. We prove that („a¡1)D⁄G\(„b¡1)D⁄
G = 0. Write A = hai and B = hbi. Suppose fi 2 („a¡1)D ⁄G\ („b¡1)D ⁄G.
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Then we may write

fi =
X

i

(ui ¡ 1)xidi =
X

i

(vi ¡ 1)yiei (2.1)

where ui = „aq(i) for some q(i) 2 Z, vi = „br(i) for some r(i) 2 Z, di; ei 2 D

and xi; yi 2 G. The general element g of G can be written in a unique way
g1 : : : gl, where the gi are alternately in A and B, and gi 6= 1 for all i; we
shall deflne the length ‚(g) of g to be l. Of course ‚(1) = 0. Let L be the
maximum of all ‚(xi); ‚(yi), let s denote the number of xi with ‚(xi) = L,
and let t denote the number of yi with ‚(yi) = L. We shall use induction
on L and then on s + t, to show that fi = 0. If L = 0, then xi; yi = 1 for
all i and the result is obvious. If L > 0, then without loss of generality, we
may assume that s > 0. Suppose ‚(xi) = L and xi starts with an element
from A, so xi = aph where 0 6= p 2 Z and ‚(h) = L ¡ 1. Then

(ui ¡ 1)xidi = („aq(i) ¡ 1)„ap„hddi = („aq(i)+p ¡ 1)„hddi ¡ („ap ¡ 1)„hddi

for some d 2 D. This means that we have found an expression for fi with
smaller s + t, so all the xi with ‚(xi) = L start with an element from B.
Therefore if fl =

P
i uixidi where the sum is over all i such that ‚(xi) = L,

then each xi starts with an element of B and hence ‚(aq(i)xi) = L + 1. We
now see from (2.1) that fl = 0. Since s > 0 by assumption, the expression
for fl above is nontrivial and therefore there exists i 6= j such that aq(i)xi =
aq(j)xj . This forces q(i) = q(j) and xi = xj . Thus ui = uj and we may
replace (ui ¡ 1)xidi + (uj ¡ 1)xjdj with (ui ¡ 1)xi(di + dj), thereby reducing
s by 1 and the proof that („a ¡ 1)D ⁄ G \ („b ¡ 1)D ⁄ G = 0 is complete.

In general, suppose G has a subgroup H which is free on the elements
x; y. Then the above shows that (x ¡ 1)D ⁄ H \ (y ¡ 1)D ⁄ H = 0, and it
follows that (x ¡ 1)D ⁄ G \ (y ¡ 1)D ⁄ G = 0. Since x ¡ 1 and y ¡ 1 are
non-zerodivisors in D ⁄ G, it follows that D ⁄ G does not have the right Ore
property.

Recall that the class of elementary amenable groups is the smallest class
of groups which contains all flnite groups and the inflnite cyclic group Z,
and is closed under taking group extensions and directed unions. It is not
di–cult to show that the class of elementary amenable groups is closed
under taking subgroups and quotient groups, and contains all solvable-by-
flnite groups. Moreover every elementary amenable group is amenable, but
F2 is not amenable. Thus any group which has a subgroup isomorphic to F2

is not elementary amenable. Also Thompson’s group F [4, Theorem 4.10]



44 Noncommutative localization in group rings

and the Gupta-Sidki group [14] are not elementary amenable even though
they do not contain F2. The Gupta-Sidki has sub-exponential growth [10]
and is therefore amenable [26, Proposition 6.8]. The following result follows
from [17, Theorem 1.2]

Theorem 2.3. Let G be an elementary amenable group, let D be a division
ring, and let D ⁄ G be a crossed product. If the flnite subgroups of G have
bounded order, then D ⁄ G has a classical ring of quotients.

It would seem plausible that Theorem 2.3 would remain true without
the hypothesis that the flnite subgroups have bounded order. After all, if G

is a locally flnite group and k is a fleld, then kG is a classical quotient ring
for itself. However the lamplighter group, which we now describe, yields a
counterexample. If A; C are groups, then A o C will indicate the Wreath
product with base group B := AjCj, the direct sum of jCj copies of A.
Thus B is a normal subgroup of A o C with corresponding quotient group
isomorphic to C, and C permutes the jCj copies of A regularly. The case
A = Z=2Z and C = Z is often called the lamplighter group. Then [21,
Theorem 2] is

Theorem 2.4. Let H 6= 1 be a flnite group, let k be a fleld, and let G be a
group containing H oZ. Then kG does not have a classical ring of quotients.

Thus we have the following problem.

Problem 2.5. Let k be a fleld. Classify the elementary amenable groups
G for which kG has a classical ring of quotients. If H 6 G and kG has a
classical ring of quotients, does kH also have a classical ring of quotients?

The obstacle to constructing a classical quotient ring in the case of ele-
mentary amenable groups is the flnite subgroups having unbounded order,
so let us consider the case of torsion-free groups. In this situation it is un-
known whether kG is a domain, so let us assume that this is the case. Then
we have the following result of Tamari [33]; see [8, Theorem 6.3], also [23,
Example 8.16], for a proof.

Theorem 2.6. Let G be an amenable group, let D be a division ring, and
let D ⁄G be a crossed product which is a domain. Then D ⁄G has a classical
ring of quotients which is a division ring.

What about torsion-free groups which do not contain F2, yet are not
amenable? Given such a group G and a division ring D, it is unknown
whether a crossed product D ⁄ G has a classical quotient ring. Thompson’s
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group F is orderable [4, Theorem 4.11]; this means that it has a total order
• which is left and right invariant, so if a • b and g 2 F , then ga • gb and
ag • bg. Therefore if D is a division ring and D⁄F is a crossed product, then
by the Malcev-Neumann construction [5, Corollary 8.7.6] the power series
ring D((F )) consisting of elements with well-ordered support is a division
ring. It is still unknown whether Thompson’s group is amenable. We state
the following problem.

Problem 2.7. Let F denote Thompson’s orderable group and let D be a
division ring. Does D ⁄ F have a classical ring of quotients?

If the answer is negative, then Theorem 2.6 would tell us that Thomp-
son’s group is not amenable. Since Thompson’s group seems to be right on
the borderline between amenability and nonamenability, one would expect
the answer to be in the a–rmative.

3 Cohn’s Theory

What happens when the ring R does not have the Ore condition, in other
words R does not have a classical ring of quotients? Trying to form a ring
from R by inverting the non-zerodivisors of R does not seem very useful.
The key idea here is due to Paul Cohn; instead of trying to invert just
elements, one inverts matrices instead. Suppose § is any set of matrices
over R (not necessarily square, though in practice § will consist only of
square matrices) and µ : R ! S is a ring homomorphism. If M is a matrix
with entries mij 2 R, then µM will indicate the matrix over S which has
entries µ(mij). We say that µ is §-inverting if µM is invertible over S for all
M 2 §. We can now deflne the universal localization of R with respect to §,
which consists of a ring R and a universal §-inverting ring homomorphism
‚ : R ! R§. This means that given any other §-inverting homomorphism
µ : R ! S, then there is a unique ring homomorphism ` : R§ ! S such
that µ = `‚. The ring R§ always exists by [5, Theorem 7.2.1], and by the
universal property is unique up to isomorphism. Furthermore ‚ is injective
if and only if R can be embedded in a ring over which all the matrices in §
become invertible.

A related concept is the §-rational closure. Given a set of matrices §
over R and a §-inverting ring homomorphism µ : R ! S, the §-rational
closure R§(S) of R in S consists of all entries of inverses of matrices in
µ(§). In general R§(S) will not be a subring of S. We say that § is upper

multiplicative if given A; B 2 §, then

µ
A C

0 B

¶
2 § for any matrix C of the
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appropriate size. If in addition permuting the rows and columns of a matrix
in § leaves it in §, then we say that § is multiplicative.

Suppose now that § is a set of matrices over R and µ : R ! S is a §-
inverting ring homomorphism. If § is upper multiplicative, then R§(S) is
a subring of S [5, Theorem 7.1.2]. Also if ' is the set of matrices over R

whose image under µ becomes invertible over S, then ' is multiplicative [5,
Proposition 7.1.1]. In this situation we call R'(S) the rational closure RS(R)
of R in S. By the universal property of R', there is a ring homomorphism
R' ! R'(S) = RS(R) which is surjective. A very useful tool is the following
consequence of [5, Proposition 7.1.3], which we shall call Cramer’s rule; we
shall let Mn(R) denote the n £ n matrices over R.

Proposition 3.1. Let § be an upper multiplicative set of matrices of R and
let µ : R ! S be a §-inverting ring homomorphism. If p 2 R§(S), then p

is stably associated to a matrix with entries in µ(R). This means that there
exists a positive integer n and invertible matrices A; B 2 Mn(S) such that
A diag(p; 1; : : : ; 1)B 2 Mn(µR).

Given a ring homomorphism µ : R ! S and an upper multiplicative set
of matrices § of R, the natural epimorphism R§ ‡ R§(S) will in general
not be isomorphism, even if µ is injective, but there are interesting situations
where it is; we describe one of them. Let k be a PID (principal ideal domain),
let X be a set, let khXi denote the free algebra on X, let khhXii denote
the noncommutative power series ring on X, and let ⁄ denote the subring
of khhXii generated by khXi and f(1 + x)¡1 j x 2 Xg. Then ⁄ »= kF where
F denotes the free group on X [5, p. 529]. Let § consist of those square
matrices over ⁄ with constant term invertible over k, and let §0 = §\khXi.
If we identify ⁄ with kF by the above isomorphism, then § consist of those
matrices over kF which become invertible under the augmentation map
kF ! k. Since § and §0 are precisely the matrices over ⁄ and khXi which
become invertible over khhXii respectively, we see that khXi§0(khhXii) =
⁄§(khhXii) = RkhhXii(khXi) = RkhhXii(⁄). By universal properties, we
have a sequence of natural maps

⁄
fi¡! khXi§0

fl¡! ⁄§
°¡! khXi§0(khhXii):

The map °fl is an isomorphism by [7, Theorem 24]. Therefore the image
under fi of every matrix in § becomes invertible in khXi§0 , hence there is a
natural map ` : ⁄§ ! khXi§0 such that fl` and `fl are the identity maps.
We deduce that ° is also an isomorphism. It would be interesting to know
if ° remains an isomorphism if k is assumed to be only an integral domain.
We state the following problem.
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Problem 3.2. Let X be a set, let F denote the free group on X, and let k be
an integral domain. Deflne a k-algebra monomorphism µ : kF ! khhXii by
µ(a) = a for a 2 k and µ(x) = 1 + x for x 2 X, let § be the set of matrices
over kF which become invertible over khhXii via µ, and let ` : kF§ ! khhXii
be the uniquely deflned associated ring homomorphism. Determine when `

is injective.

If R is a subring of the ring T , then we deflne the division closure DT (R)
of R in T to be the smallest subring DT (R) of T containing R which is closed
under taking inverses, i.e. x 2 DT (R) and x¡1 2 T implies x¡1 2 DT (R). In
general DT (R) µ RT (R), i.e. the division closure is contained in the rational
closure [5, Exercise 7.1.1]. However if T is a division ring, then the rational
closure is a division ring and is equal to the division closure.

It is clear that taking the division closure is an idempotent operation; in
other words DT (DT (R)) = DT (R). It is also true that taking the rational
closure is an idempotent operation; we sketch the proof below.

Proposition 3.3. Let R be a subring of the ring T and assume that R and
T have the same 1. Then RT (RT (R)) = RT (R).

Proof. Write R0 = RT (R) and let M be a matrix over R0 which is invert-
ible over T ; we need to prove that all the entries of M¡1 are in R0. We
may assume that M 2 Md(R0) for some positive integer d. Cramer’s rule,
Proposition 3.1, applied to the inclusion Md(R) ! Md(R0) tells us that M

is stably associated to a matrix with entries in Md(R). This means that for
some positive integer e, there exists a matrix L 2 Me(Md(R)) = Mde(R) of
the form diag(M; 1; : : : ; 1) and invertible matrices A; B 2 Mde(R0) such that
ALB is a matrix X 2 Mde(R).

Since A; L; B are all invertible in Mde(T ), we see that X¡1 has (by
deflnition of rational closure) all its entries in Mde(R0). But L¡1 = BX¡1A,
which shows that L¡1 2 Mde(R0). Therefore M¡1 2 Md(R0) as required.

We also have the following useful result.

Proposition 3.4. Let n be a positive integer, let R be a subring of the ring
T , and assume that R and T have the same 1. Then RMn(T )(Mn(R)) =
Mn(RT (R)).

Proof. Write R0 = RT (R) and S = Mn(T ). Suppose M 2 RS(Mn(R)).
Then M appears as an entry of A¡1, where A 2 Md(Mn(R)) for some
positive integer d is invertible in Md(S). By deflnition all the entries of
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A¡1 (when viewed as a matrix in Mdn(T )) are in R0, which shows that
M 2 Mn(R0).

Now let M 2 Mn(R0). We want to show that M 2 RS(Mn(R)). Since
RS(Mn(R)) is a ring, it is closed under addition, so we may assume that
M has exactly one nonzero entry. Let a be this entry. Then a appears
as an entry of A¡1 where A is an invertible matrix in Mm(R) for some
positive integer m which is a multiple of n. By permuting the rows and
columns, we may assume that a is the (1; 1)-entry. Now form the p £
p matrix B = diag(1; : : : ; 1; A; 1; : : : ; 1), so that the (1; 1)-entry of A is
in the (n; n)-entry of B (thus there are n ¡ 1 ones on the main diag-
onal and then A) and m divides p. By considering B¡1, we see that
diag(1; : : : ; 1; a) 2 RS(Mn(R)). Since diag(1; : : : ; 1; 0) 2 RS(Mn(R)), it
follows that diag(0; : : : ; 0; a) 2 RS(Mn(R)). By permuting the rows and
columns, we conclude that M 2 RS(Mn(R)).

When one performs a localization, it would be good to end up with a
local ring. We now describe a result of Sheiham [30, x2] which shows that
this is often the case. For any ring R, we let Jac(R) indicate the Jacobson
radical of R. Let µ : R ! S be a ring homomorphism, let § denote the set
of all matrices A over R with the property that µ(A) is an invertible matrix
over S, and let ‚ : R ! R§ denote the associated map. Then we have a ring
homomorphism ` : R§ ! S such that µ = `‚, and Sheiham’s result is

Theorem 3.5. If S is a local ring, then `¡1 Jac(S) = Jac(R§)

Thus in particular if S is a division ring, then R§ is a local ring.

4 Uniqueness of Division Closure and Unbounded

Operators

If R is a domain and D is a division ring containing R such that DD(R) = D

(i.e. R generates D as a fleld), then we say that D is a division ring of
fractions for R. If R is an integral domain and D; E are division rings of
fractions for R, then D and E are flelds and are just the Ore localizations
of R with respect to the nonzero elements of R. In this case there exists a
unique isomorphism D ! E which is the identity on R. Furthermore any
automorphism of D can be extended to an automorphism of R.

When D and E are not commutative, i.e. it is only assumed that they
are division rings, then this is not the case; in fact D and E may not be
isomorphic even just as rings. Therefore we would like to have a criterion



P.A.Linnell 49

for when two such division rings are isomorphic, and also a criterion for the
closely related property of when an automorphism of R can be extended to
an automorphism of D.

Consider now the complex group algebra R = CG. Here we may embed
CG into the ring of unbounded operators U(G) on L2(G) a–liated to CG;
see e.g. [20, x8] or [23, x8]. We brie°y recall the construction and state some
of the properties. Let L2(G) denote the Hilbert space with Hilbert basis
the elements of G; thus L2(G) consists of all square summable formal sumsP

g2G agg with ag 2 C and inner product hPg agg;
P

h bhhi =
P

g;h agbh.

We have a left and right action of G on L2(G) deflned by the formulaeP
h ahh 7! P

h ahgh and
P

h ahh 7! P
h ahhg for g 2 G. It follows that CG

acts faithfully as bounded linear operators on the left of L2(G), in other
words we may consider CG as a subspace of B(L2(G)), the bounded linear
operators on L2(G). The weak closure of CG in B(L2(G)) is the group
von Neumann algebra N (G) of G, and the unbounded operators a–liated
to G, denoted U(G), are those closed densely deflned unbounded operators
which commute with the right action of G. We have a natural injective C-
linear map N (G) ! L2(G) deflned by µ 7! µ1 (where 1 denotes the element
11 of L2(G)), so we may identify N (G) with a subspace of L2(G). When
H 6 G, we may consider L2(H) as a subspace of L2(G) and using the above
identiflcation, we may consider N (H) as a subring of N (G). Also given
fi 2 L2(G), we can deflne a C-linear map fî : CG ! L2(G) by fî(fl) = fifl for
fl 2 L2(G). Since CG is a dense linear subspace of L2(G), it yields a densely
deflned unbounded operator on L2(G) which commutes with the right action
of G, and it is not di–cult to see that this deflnes a unique element of U(G),
which we shall also call fî. We now have N (G) µ L2(G) µ U(G). Obviously
if G is flnite, then N (G) = L2(G) = U(G), because all terms are equal to
CG. In fact the converse is true, that is if G is inflnite, then we do not have
equality: more precisely

Proposition 4.1. Let G be an inflnite group. Then N (G) 6= L2(G) 6= U(G).

Proof. Given p 2 (1; 1), the Lp-conjecture in the case of discrete groups
states that if G is an inflnite group, then Lp(G) is not closed under multi-
plication. This was solved in the a–rmative for p ‚ 2 in [28, Theorem 3],
and in general for not necessarily discrete groups in [29, Theorem 1]. Thus
L2(G) is not closed under multiplication. Since N (G) and U(G) are closed
under multiplication, the result follows.

Some results related to Proposition 4.1 on the various homological di-
mensions of N (G) and U(G) can be found in [34, x6].
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At this stage it is less important to understand the construction of U(G)
than to know its properties. Recall that R is a von Neumann regular ring
means that given r 2 R, there exists x 2 R such that rxr = r. All matrix
rings over a von Neumann regular ring are also von Neumann regular [12,
Lemma 1.6], and every element of a von Neumann regular ring is either
invertible or a zerodivisor. We now have that U(G) is a von Neumann
regular ring containing N (G), and is a classical ring of quotients for N (G)
[2, proof of Theorem 10] or [23, Theorem 8.22(1)]. Thus the embedding
of N (H) in N (G) for H 6 G as described above extends to a natural
embedding of U(H) in U(G). Also U(G) is rationally closed in any overing.
Furthermore U(G) is a self injective unit-regular ring which is the maximal
ring of quotients of N (G) [2, Lemma 1, Theorems 2 and 3]. Thus we have
embedded CG in a ring, namely U(G), in which every element is either
invertible or a zerodivisor. In fact every element of any matrix ring over
U(G) is either invertible or a zerodivisor. Of course the same is true for any
subfleld k of C, that is kG can be embedded in a ring in which every element
is either invertible or a zerodivisor. Let us write D(kG) = DU(G)(kG) and
R(kG) = RU(G)(kG). Then if H 6 G, we may by the above identify D(kH)
with DU(G)(kH) and R(kH) with RU(G)(kH). More generally, we shall write
Dn(kG) = DMn(U(G))(Mn(kG)) and Rn(kG) = RMn(U(G))(Mn(kG)). Thus
D1(kG) = D(kG) and R1(kG) = R(kG). Also, we may identify Dn(kH)
with DMn(U(G))(Mn(kH)) and R(kG) with RMn(U(G))(Mn(kH)).

Often R(kG) is a very nice ring. For example when G has a normal free
subgroup with elementary amenable quotient, and also the flnite subgroups
of G have bounded order, it follows from [19, Theorem 1.5(ii)] that R(CG)
is a semisimple Artinian ring, i.e. a flnite direct sum of matrix rings over
division rings. Thus in particular every element of R(CG) is either invertible
or a zerodivisor. We state the following problem.

Problem 4.2. Let G be a group and let k be a subfleld of C. Is every
element of Rn(kG) either invertible or a zerodivisor for all positive integers
n? Furthermore is Dn(kG) = Rn(kG)?

The answer is certainly in the a–rmative if G is amenable.

Proposition 4.3. Let G be an amenable group, let n be a positive integer,
and let k be a subfleld of C. Then every element of Rn(kG) is either a
zerodivisor or invertible. Furthermore Dn(kG) = Rn(kG).

Proof. Write R = Rn(kG) and let A 2 R. By Cramer’s rule Proposition 3.1,
there is a positive integer d and invertible matrices X; Y 2 Md(R) such that
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B := X diag(A; 1; : : : ; 1)Y 2 Mdn(kG). Suppose ZA 6= 0 6= AZ whenever
0 6= Z 2 Mn(kG). Then B is a non-zerodivisor in Mdn(kG). We claim
that B is also a non-zerodivisor in Mdn(CG). If our claim is false, then
either BC = 0 or CB = 0 for some nonzero C 2 Mdn(CG). Without loss of
generality, we may assume that BC = 0. Then for some positive integer m,
we may choose e1; : : : ; em 2 C which are linearly independent over k such
that we may write C = C1e1 + ¢ ¢ ¢ + Cmem, where 0 6= Ci 2 Mdn(kG) for all
i. The equation BC = 0 now yields BC1 = 0, contradicting the fact that B

is a non-zerodivisor in Mdn(kG), and the claim is established.

Now B induces by left multiplication a rightCG-monomorphism CGdn !
CGdn. This in turn induces a right N (G)-map N (G)dn ! N (G)dn, and the
kernel of this map has dimension 0 by [22, Theorem 5.1]. It now follows
from the theory of [22, x2] that this kernel is 0, consequently B is a non-
zerodivisor in Mdn(N (G)). Since U(G) is a classical ring of quotients for
N (G), we see that B is invertible in Mdn(U(G)) and hence B is invertible
in Md(R). Therefore A is invertible in R and the result follows.

One could ask the following stronger problem.

Problem 4.4. Let G be a group and let k be a subfleld of C. Is R(kG) a
von Neumann regular ring?

Since being von Neumann regular is preserved under Morita equivalence
[12, Lemma 1.6] and Rn(kG) can be identifled with Mn(R(kG)) by Propo-
sition 3.4, we see that this is equivalent to asking whether Rn(kG) is a von
Neumann regular ring. Especially interesting is the case of the lamplighter
group, speciflcally

Problem 4.5. Let G denote the lamplighter group. Is R(CG) a von Neu-
mann regular ring?

Suppose H • G and T is a right transversal for H in G. Then
L

t2T L2(H)t
is a dense linear subspace of L2(G), and U(H) is naturally a subring of U(G)
as follows. If u 2 U(H) is deflned on the dense linear subspace D of L2(H),
then we can extend u to the dense linear subspace

L
t2T Dt of L2(G) by the

rule u(dt) = (ud)t for t 2 T , and the resulting unbounded operator com-
mutes with the right action of G. It is not di–cult to show that u 2 U(G)
and thus we have an embedding of U(H) into U(G), and this embedding does
not depend on the choice of T . In fact it will be the same embedding as
described previously. It follows that R(kH) is naturally a subring of R(kG).
Clearly if fi1; : : : ; fin 2 U(H) and t1; : : : ; tn 2 T , then fi1t1 + ¢ ¢ ¢ + fintn = 0
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if and only if fii = 0 for all i, and it follows that if fl1; : : : ; fln 2 R(kH) and
fl1t1 + ¢ ¢ ¢ + flntn = 0, then fli = 0 for all i.

The above should be compared with the theorem of Hughes [15] which we
state below. Recall that a group is locally indicable if every nontrivial flnitely
generated subgroup has an inflnite cyclic quotient. Though locally indicable
groups are left orderable [3, Theorem 7.3.1] and thus k ⁄ G is certainly a
domain whenever k is a division ring, G is a locally indicable group and
k ⁄G is a crossed product, it is still unknown whether such crossed products
can be embedded in a division ring. Suppose however k⁄G has a division ring
of fractions D. Then we say that D is Hughes-free if whenever N ¢ H 6 G,
H=N is inflnite cyclic, and h1; : : : ; hn 2 N are in distinct cosets of N , then
the sum DD(k ⁄ N)h1 + ¢ ¢ ¢ + DD(k ⁄ N)hn is direct.

Theorem 4.6. Let G be a locally indicable group, let k be a division ring,
let k ⁄ G be a crossed product, and let D; E be Hughes-free division rings
of fractions for k ⁄ G. Then there is an isomorphism D ! E which is the
identity on k ⁄ G.

This result of Hughes is highly nontrivial, even though the paper [15]
is only 8 pages long. This is because the proof given by Hughes in [15] is
extremely condensed, and though all the steps are there and correct, it is
di–cult to follow. A much more detailed and somewhat difierent proof is
given in [6].

Motivated by Theorem 4.6, we will extend the deflnition of Hughes free
to a more general situation.

Deflnition. Let D be a division ring, let G be a group, let D⁄G be a crossed
product, and let Q be a ring containing D⁄G such that RQ(D⁄G) = Q, and
every element of Q is either a zerodivisor or invertible. In this situation we
say that Q is strongly Hughes free if whenever N¢H 6 G, h1; : : : ; hn 2 H are
in distinct cosets of N and fi1; : : : ; fin 2 RQ(D⁄N), then fi1h1+¢ ¢ ¢+finhn =
0 implies fii = 0 for all i (i.e. the hi are linearly independent over RQ(D⁄N)).

Then we would like to extend Theorem 4.6 to more general groups, so
we state

Problem 4.7. Let D be a division ring, let G be a group, let D ⁄ G be a
crossed product, and let Q be a ring containing D⁄G such that RQ(D⁄G) =
Q, and every element of Q is either a zerodivisor or invertible. Suppose P; Q

are strongly Hughes free rings for D ⁄ G. Does there exists an isomorphism
P ! Q which is the identity on D ⁄ G?
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It is clear that if G is locally indicable and Q is a division ring of fractions
for D⁄G, then Q is strongly Hughes free implies Q is Hughes free. We present
the following problem.

Problem 4.8. Let G be a locally indicable group, let D be a division ring,
let D ⁄ G be a crossed product, and let Q be a division ring of fractions for
D ⁄ G which is Hughes free. Is Q strongly Hughes free?

It would seem likely that the answer is always \yes". Certainly if G is
orderable, then RD((G))(D⁄G), the rational closure (which is the same as the
division closure in this case) of D ⁄ G in the Malcev-Neumann power series
ring D((G)) [5, Corollary 8.7.6] is a Hughes free division ring of fractions for
D ⁄ G. Therefore by Theorem 4.6 of Hughes, all Hughes free division ring
of fractions for D ⁄ G are isomorphic to RD((G))(D ⁄ G). It is easy to see
that this division ring of fractions is strongly Hughes free and therefore all
Hughes free division ring of fractions for D ⁄ G are strongly Hughes free.

5 Other Methods

Embedding CG into U(G) has proved to be a very useful tool, but what
about other group rings? In general we would like a similar construction
when k is a fleld of nonzero characteristic. If D is a division ring, then we
can always embed D ⁄ G into a ring in which every element is either a unit
or a zerodivisor, as follows. Let V = D ⁄ G viewed as a right vector space
over D, so V has basis f„g j g 2 Gg. Then D ⁄ G acts by left multiplication
on V and therefore can be considered as a subring of the ring of all linear
transformations EndD(V ) of V . This ring is von Neumann regular. However
it is too large; it is not even directly flnite (that is xy = 1 implies yx =
1) when G is inflnite. Another standard method is to embed D ⁄ G in
its maximal ring of right quotients [11, x2.C]. If R is a right nonsingular
ring, then its maximal ring of right quotients Q(R) is a ring containing R

which is a right injective von Neumann regular ring, and furthermore as a
right R-module, Q(R) is the injective hull of R [11, Corollary 2.31]. By
[31, Theorem 4], when k is a fleld of characteristic zero, kG is right (and
left) nonsingular, consequently Q(kG) is a right self-injective von Neumann
regular ring. However again it is too large in general. If G is a nonabelian
free group, then kG is a domain which by Proposition 2.2 does not satisfy
the Ore condition, so we see from [11, Exercise 6.B.14] that Q(R) is not
directly flnite.

A very useful technique is that of ultrafllters, see [16, p. 76, x2.6] for
example. We brie°y illustrate this in an example. Let k be a fleld and



54 Noncommutative localization in group rings

let G be a group. Suppose G has a descending chain of normal subgroups
G = G0 > G1 > ¢ ¢ ¢ such that k[G=Gn] is embeddable in a division ring
for all n. Then can we embed kG in a division ring? It is easy to prove
that kG is a domain, but to prove the stronger statement that G can be
embedded in division ring seems to require the theory of ultrafllters. For
most applications (or at least for what we are interested in), it is su–cient
to consider ultrafllters on the natural numbers N = f1; 2; : : : g. A fllter on
N is a subset ! of the power set P(N) of N such that if X; Y 2 ! and
X µ Z µ N, then X \ Y 2 ! and Z 2 !. A fllter is proper if it does not
contain the empty set ;, and an ultrafllter is a maximal proper fllter. By
considering the maximal ideals in the Boolean algebra on P(N), it can be
shown that any proper fllter can be embedded in an ultrafllter (this requires
Zorn’s lemma), and an ultrafllter has the following properties.

† If X; Y 2 !, then X \ Y 2 !.

† If X 2 ! and X µ Y , then Y 2 !.

† If X 2 P(N), then either X or its complement are in !.

† ; =2 !.

An easy example of an ultrafllter is the set of all subsets containing n for
some flxed n 2 N; such an ultrafllter is called a principal ultrafllter. An
ultrafllter not of this form is called a non-principal ultrafllter.

Given division rings Dn for n 2 N and an ultrafllter ! on N, we can
deflne an equivalence relation » on

Q
n Dn by (d1; d2; : : : ) » (e1; e2; : : : ) if

and only if there exists S 2 ! such that dn = en for all n 2 S. Then the set
of equivalence classes (

Q
n Dn)= » is called the ultraproduct of the division

rings Di with respect to the ultrafllter !, and is a division ring [16, p. 76,
Proposition 2.1]. This can be applied when R is a ring with a descending
sequence of ideals I1 ¶ I2 ¶ : : : such that

T
n In = 0 and R=In is a division

ring. The set of all coflnite subsets of N is a fllter, so here we let ! be any
ultrafllter containing this fllter. The corresponding ultraproduct D of the
division rings R=In is a division ring. Furthermore the natural embedding
of R into

Q
n R=In deflned by r 7! (r + R=I1; r + R=I2; : : : ) induces an

embedding of R into D. This proves that R can be embedded in a division
ring.

In their recent paper [9], G¶abor Elek and Endre Szab¶o use these ideas to
embed the group algebra kG over an arbitrary division ring k in a nice von
Neumann regular ring for the class of soflc groups. The class of soflc groups
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is a large class of groups which contains all residually amenable groups and
is closed under taking free products.

Suppose fan j n 2 Ng is a bounded sequence of real numbers and ! is
a non-principal ultrafllter. Then there is a unique real number l with the
property that given † > 0, then l is in the closure of fan j n 2 Sg for all
S 2 !. We call this the !-limit of fang and write l = lim! an.

Now let G be a countable amenable group. Then G satisfles the F¿lner
condition and therefore there exist flnite subsets Xi of G (i 2 N) such that

† S
i Xi = G.

† jXij < jXi+1j for all i 2 N.

† If g 2 G, then limi!1 jgXi \ Xij=jXij = 1.

Let k be a division ring and let Vi denote the right k-vector space with basis
Xi (i 2 N). The general element of

Q
i Endk(Vi) (Cartesian product) is of

the form
L

i fii where fii 2 Endk(Vi) for all i. For fl 2 Endk(Vi), we deflne

rki(fl) =
dimk(flVi)

dimk Vi
;

a real number in [0; 1]. Now choose a non-principal ultrafllter ! for N. Then
for fi 2 Q

i Endk(Vi), we deflne rk(fi) = lim! rkn(fin) and

I = ffi 2
Y

i

Endk(Vi) j rk(fi) = 0g :

It is not di–cult to check that I is a two-sided ideal of
Q

i Endk(Vi). Now
set

Rk(G) =

Q
i Endk(Vi)

I

and let [fi] denote the image of fi in Rk(G). Since Endk(Vi) is von Neumann
regular and direct products of von Neumann regular rings are von Neumann
regular, we see that

Q
i Endk(Vi) is von Neumann regular and we deduce

that Rk(G) is also von Neumann regular. Next we deflne rk([fi]) = rk(fi).
It can be shown that rk is a well-deflned rank function [12, p. 226, Chapter
16] and therefore Rk(G) is directly flnite [12, Proposition 16.11].

For g 2 G and x 2 Xi, we can deflne `(g)x = gx if gx 2 Xi and `(g)x =
x if gx =2 Xi. This determines an embedding (which is not a homomorphism)
of G into

Q
i Endk(Vi), and it is shown in [9] that the composition with the

natural epimorphism
Q

i Endk(Vi) ‡ Rk(G) yields a homomorphism G !
Rk(G). This homomorphism extends to a ring homomorphism µ : kG !
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Rk(G) and [9] shows that ker µ = 0. Thus we have embedded kG into
Rk(G); in particular this shows that kG is directly flnite because Ri(G)
is. In fact this construction for G amenable can be extended to the case
G is a soflc group, consequently kG is directly flnite if k is a division ring
and G is soflc. The direct flniteness of k ⁄ G for k a division ring and G

free-by-amenable had earlier been established in [1].
Another type of localization is considered in [27]. Recall that a monoid

M is a semigroup with identity, that is M satisfles the axioms for a group
except for the existence of inverses. If A is a monoid with identity 1, then
M is an A-monoid means that there is an action of A on M satisfying
a(bm) = (ab)m and 1m = m for all a; b 2 A and m 2 M . In the case
A is a ring with identity 1 (so A is a monoid under multiplication) and
M is a left A-module, then M is an A-monoid. Let End(M) denote the
monoid of all endomorphisms of the A-monoid M . Given a submonoid S

of End(M), Picavet constructs an A-monoid S¡1M with the property that
every endomorphism in S becomes an automorphism of M , in other words
the elements of S become invertible. To achieve this, he requires that S is a
localizable submonoid of End(M). This means that the following Ore type
conditions hold:

† For all u; v 2 S, there exist u0; v0 2 S such that u0u = v0v.

† For all u; v; w 2 S such that uw = vw, there is s 2 S such that su = sv.

The construction is similar to Ore localization. We describe this in the
case R is ring, M is an R-module and S = fµn j n 2 Ng where µ is an
endomorphism of M . Clearly S is localizable. For m; n 2 N with m • n, we
set Mn = M and µmn = µn¡m : Mm ! Mn. Then (Mn; µmn) forms a direct
system of R-modules, and S¡1M is the direct limit of this system. Clearly
µn induces an R-automorphism on S¡1M for all n, so we have inverted
µ. In the case R is a division ring, M is flnitely generated and µ is a
noninvertible nonnilpotent endomorphism of M , the sequence of R-modules
Mµn eventually stabilizes to a proper nonzero R-submodule of M , which is
S¡1M . It would be interesting to see if this construction has applications
to group rings.
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A non-commutative generalisation of Thomason’s

localisation theorem

Amnon Neeman

Abstract

In this survey we remind the reader of Thomason’s localisation the-
orem of [19]. Then we review the generalisation given in my article [9].
After this background, we explain how the article [11], by myself and
Ranicki, applies the generalised Thomason localisation theorem of [9]
to the universal localisation of a (non-commutative) ring R.

Introduction

This article attempts to give a brief survey of recent joint work by Ranicki
and the author [11]. Since this is a survey article rather than a research one,
we make an attempt to present the results in historical perspective.

Let us begin with an old theorem of Serre’s. Suppose X is a quasi-
projective, noetherian scheme, and U is an open subset. In his 1955 paper
Faisceaux alg¶ebriques coh¶erents [17], Serre tells us that every coherent sheaf
on U can be extended to a coherent sheaf on X. Given a vector bundle V

on U , Serre’s result permits us to extend V to a coherent sheaf S on all of
X. If it so happens that X is smooth, then the coherent sheaf S admits
a flnite resolution by vector bundles. There is a flnite complex C of vector
bundles on X, whose restriction to U ‰ X is quasi{isomorphic to V. Using
this, Quillen obtained a long exact sequence in K{theory, of the form

Ki+1(U) ¡¡¡¡! Gi(X ¡ U) ¡¡¡¡! Ki(X) ¡¡¡¡! Ki(U) ¡¡¡¡! Gi¡1(X ¡ U):

Here, Gi(X ¡ U) means the G{theory of X ¡ U , that is the Quillen K{
theory of the abelian category of coherent sheaves on X ¡ U . See Quillen’s
article [12].

Keywords Scheme, derived category, localisation, K{theory

60
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It is natural to ask if this procedure still works when X is singular, and
the answer is No. It is easy to construct a pair U ‰ X, with U an open
subset of a (singular) scheme X, so that the map

K0(X) ¡¡¡¡! K0(U)

is not surjective1. This means that there exists on U a vector bundle V which
is not the formal difierence of the restriction to U of any vector bundles from
X. It certainly implies that V cannot be quasi{isomorphic to the restriction
to U of a complex C of vector bundles on X.

One would still like to have a localisation long exact sequence in the
K{theory of singular schemes. To keep the discussion short and clear, let
us sacriflce some generality. In this survey, X will be a quasi{projective,
noetherian scheme. We want to have a long exact sequence

K(i+1)(U) ¡¡¡¡! KZ
i (X) ¡¡¡¡! Ki(X) ¡¡¡¡! Ki(U) ¡¡¡¡! KZ

(i¡1)(X):

In other words, one has a map of spectra K(X) ¡! K(U), and one wants
a simple description of the homotopy flber, preferably not much more com-
plicated than Quillen’s G(X ¡ U). To be useful, the description must be
\local" in a neighbourhood of X¡U ‰ X. It took 17 years between Quillen’s
paper [12], and Thomason’s [19], which satisfactorily solves the problem.

Remark 0.1. Thomason proves his theorems in the generality of quasi{
compact, quasi{separated schemes. But the special case where X is quasi{
projective and noetherian is already quite interesting enough. In Remark 2.6,
we will very brie°y outline what modiflcations are needed for more general
X.

Remark 0.2. In the 17 years between Quillen’s paper [12] and Thoma-
son’s [19] there was some progress. There are results by Gersten [4], Levine [8]
and Weibel [24] and [25].

The foundational tool which Thomason uses is Waldhausen’s localisa-
tion theorem. But the point is that the straight-forward, obvious way to
apply Waldhausen’s theorem does not work. The obvious thing to try is the
following.

1Take a normal variety X, and inside it a Weil divisor D which is not Cartier. Let U

be the complement of the singular locus. Then on U the divisor D gives a line bundle
(and a section). This line bundle gives a class in K0(U) which does not extend.
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Let X be our quasi{projective, noetherian scheme, let U be a Zariski
open subset, and let Z = X ¡ U be the (closed) complement. There is a
map of derived categories

Db(Vect=X) ¡¡¡¡! Db(Vect=U)

which takes a bounded chain complex of vector bundles on X and restricts
it to U . Let the kernel of this functor be denoted Db

Z(Vect=X). The objects
of Db

Z(Vect=X) are the bounded chain complexes of vector bundles on X,
whose cohomology is supported on Z. In other words, if we restrict a chain
complex in Db

Z(Vect=X) to U = X ¡ Z, we get an acyclic complex.
The composite

Db
Z(Vect=X) ¡¡¡¡! Db(Vect=X)

…¡¡¡¡! Db(Vect=U)

vanishes, and hence the map … factors through the quotient
Db(Vect=X)

Db
Z(Vect=X)

.

We have a diagram

Db
Z(Vect=X) // Db(Vect=X)

&&NNNNNNNNNNN
… // Db(Vect=U)

Db(Vect=X)

Db
Z(Vect=X)

i

88qqqqqqqqqqq

Applying Waldhausen’s K{theory to a suitable model for this diagram, we
have a diagram in the category of spectra

K
¡
Db

Z(Vect=X)
¢

// K(X)

&&MMMMMMMMMMM

K(…)
// K(U)

K

µ
Db(Vect=X)

Db
Z(Vect=X)

¶K(i)

88qqqqqqqqqqq

The part of the diagram below

K
¡
Db

Z(Vect=X)
¢

// K(X)

&&MMMMMMMMMMM

K

µ
Db(Vect=X)

Db
Z(Vect=X)

¶
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is a homotopy flbration. We would certainly be very happy if we knew that
the map

K(i) : K

µ
Db(Vect=X)

Db
Z(Vect=X)

¶
¡¡¡¡! K(U)

is a homotopy equivalence. But the counterexample in the footnote on
page 61 shows that already the map

K0(i) : K0

µ
Db(Vect=X)

Db
Z(Vect=X)

¶
¡¡¡¡! K0(U)

is not surjective. So for many years, the prevailing opinion was that Wald-
hausen’s K{theory did not give one any useful information here. Thomason’s
inspiration was to realise that the functor i is just an idempotent comple-
tion, and that this is quite enough to give a great deal of information in
K{theory.

In this survey, we begin by giving a brief account of Waldhausen’s [22]
general localisation theorem in K{theory. Then we explain the way Thoma-
son [19] applies Waldhausen’s general theorem to get a long exact sequence
for the K{theory of schemes. Next we recall my own paper [9], generalising
Thomason’s Key Lemma. Finally there is an account of recent work [11] by
Ranicki and myself.

When I found the proof of the Key Lemma given in [9], I did not have
in mind any application of the more general result. I advertised the article
mostly for the fact that the proof of the more general statement turns out to
be much simpler than Thomason’s. Thomason’s Key Lemma is a statement
about extending vector bundles (or more precisely complexes of vector bun-
dles) from an open subscheme U to all of X. My version of the Key Lemma
is a formal statement about triangulated categories, devoid of any obvious
reference to algebraic geometry. The remarkable fact is that the \abstract
nonsense" statement is much easier to prove.

In November 2000, Ranicki asked me if Thomason’s theorem could be
applied to the universal (Cohn) localisation of a non-commutative ring R.
Thomason’s statements are in algebraic geometry, and all the rings are
commutative. But it turns out that my generalisation of Thomason’s Key
Lemma does apply. We end this article with a brief resum¶e of the recent
paper [11], in which Ranicki and the author study this.

1 Preliminaries, based on Waldhausen’s work

Thomason’s theorem is an application of Waldhausen’s localisation theorem.
For this reason, we begin with a brief review of Waldhausen’s work. Wald-
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hausen’s foundational article, on which this is based, is [22]. In Section 1 of
[19], Thomason specialises some of Waldhausen’s more general theorems, to
the situation of interest in his article.

Let C be a category with coflbrations and weak equivalences. Out of C

Waldhausen constructs a spectrum, denoted K(C). In Thomason’s [19], the
category C is assumed to be a full subcategory of the category of chain com-
plexes over some abelian category, the coflbrations are maps of complexes
which are split monomorphisms in each degree, and the weak equivalences
contain the quasi{isomorphisms. We will call such categories permissible
Waldhausen categories. In this article, we may assume that all categories
with coflbrations and weak equivalences are permissible Waldhausen cate-
gories.

Remark 1.1. Thomason’s term for them is complicial biWaldhausen cate-
gories.

Given a permissible Waldhausen category C, one can form its derived cate-
gory; just invert the weak equivalences. We denote this derived category by
D(C). We have two major theorems here, both of which are special cases of
more general theorems of Waldhausen. The flrst theorem may be found in
Thomason’s [19, Theorem 1.9.8]:

Theorem 1.2. (Waldhausen’s Approximation Theorem). Let F :
C ¡! D be an exact functor of permissible Waldhausen categories (cat-
egories of chain complexes, as above). Suppose that the induced map of
derived categories

D(F ) : D(C) ¡! D(D)

is an equivalence of categories. Then the induced map of spectra

K(F ) : K(C) ¡! K(D)

is a homotopy equivalence.

In this sense, Waldhausen’s K{theory is almost an invariant of the derived
categories. To construct it one needs to have a great deal more structure.
One must begin with a permissible category with coflbrations and weak
equivalences. But the Approximation Theorem asserts that the dependence
on the added structure is not strong.

Next we state Waldhausen’s Localisation Theorem. The statement we
give is an easy consequence of Theorem 1.2, coupled with Waldhausen’s [22,
1.6.4] or Thomason’s [19, 1.8.2]:
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Theorem 1.3. (Waldhausen’s Localisation Theorem). Let R, S and
T be permissible Waldhausen categories. Suppose

R ¡! S ¡! T

are exact functors of permissible Waldhausen categories. Suppose further
that the induced triangulated functors of derived categories

D(R) ¡! D(S) ¡! D(T)

compose to zero, that the functor D(R) ¡! D(S) is fully faithful, and that
the natural map

D(S)
D(R)

¡¡¡¡! D(T)

is an equivalence of categories. Then the sequence of spectra

K(R) ¡! K(S) ¡! K(T)

is a homotopy flbration.

To obtain a homotopy flbration using Waldhausen’s localisation theorem,
we need to produce three permissible Waldhausen categories, and a sequence

R ¡! S ¡! T

so that
D(S)
D(R)

¡¡¡¡! D(T)

is an equivalence of categories. In particular, we want to flnd triangulated
categories Rc = D(R), Sc = D(S) and Tc = D(T) so that Tc = Sc=Rc.
Of course, it is not enough to just flnd the triangulated categories Rc, Sc

and Tc; to apply the localisation theorem, we must also flnd the permissible
Waldhausen categories R, S and T, and the exact functors

R ¡! S ¡! T:

In Theorem 1.2, we learned that the K{theory is largely independent of the
choices of R, S and T. This being a survey article, we will allow ourselves
some latitude. Thomason is careful to check that the choices of permissible
Waldhausen categories can be made; we will consider this a technical point,
and explain only how to produce Rc = D(R), Sc = D(S) and Tc = D(T).
We will also commit the notational sin of writing K(Rc) for K(R), where
Rc = D(R), and similarly K(Sc) for K(S), and K(Tc) for K(T).
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2 Thomason’s localisation theorem

Now it is time to state Thomason’s localisation theorem.

Theorem 2.1. (Thomason’s localisation theorem). Let X be a quasi{
projective, noetherian scheme, let U be an open subset, and let Z = X ¡ U

be the complement. Let Db(Vect=X) be the derived category of bounded com-
plexes of vector bundles on X, and let Db(Vect=U) be the derived category of
bounded complexes of vector bundles on U . Let Db

Z(Vect=X) be the derived
category of bounded complexes of vector bundles on X, which are supported
on Z; that is, they become acyclic when restricted to U = X ¡ Z.

Then there is a localisation exact sequence

Ki+1(Db(Vect=X))??y
Ki+1(Db(Vect=U)) ¡¡¡¡! Ki(D

b
Z(Vect=X)) ¡¡¡¡! Ki(D

b(Vect=X))??y
Ki(D

b(Vect=U))

which is exact as long as i ‚ 0. No assertion is being made about the
surjectivity of K0(Db(Vect=X)) ¡! K0(Db(Vect=U)).

Note: we know that K(Db(Vect=X)) = K(X) and K(Db(Vect=U)) = K(U).
That is, Waldhausen’s K{theory, of the derived category of bounded com-
plexes of vector bundles, agrees with Quillen’s K{theory of the exact cat-
egory of vector bundles. Waldhausen set up the machinery and explicitly
proved special cases of the above. The general statement may be found in
Gillet’s [5, 6.2]. More discussion may be found in Thomason’s [19, 1.11.7].
Using the isomorphisms K(Db(Vect=X)) = K(X) and K(Db(Vect=U)) =
K(U), the exact sequence of Theorem 2.1 becomes the localisation exact
sequence for singular varieties, as discussed at the beginning of the Intro-
duction.

The proof of Thomason’s localisation theorem follows from the following
lemma

Lemma 2.2. (Thomason’s Key Lemma). Suppose Db
Z(Vect=X), Db(Vect=X)

and Db(Vect=U) are as in Theorem 2.1. Then the natural map

i :
Db(Vect=X)

Db
Z(Vect=X)

¡¡¡¡! Db(Vect=U)
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is nearly an equivalence of categories. It is a fully faithful functor. While
not every object of Db(Vect=U) lies in the image, up to splitting idempotents
it does. That is, given any object t 2 Db(Vect=U), there exists an object
t0 2 Db(Vect=U), with t ' t0 isomorphic to an object i(s) in the image of
Db(Vect=X)

Db
Z(Vect=X)

.

By Waldhausen’s localisation theorem (Theorem 1.3), there is a homotopy
flbration

K(Db
Z(Vect=X)) ¡¡¡¡! K(Db(Vect=X)) ¡¡¡¡! K

µ
Db(Vect=X)

Db
Z(Vect=X)

¶
:

Next one has Grayson’s Coflnality Theorem [7]. In this context, it says the
following. We know that

i :
Db(Vect=X)

Db
Z(Vect=X)

¡¡¡¡! Db(Vect=U)

is fully faithful, and every object of Db(Vect=U) is a direct summand of an
object in the image of i. Hence the map

K(i) : K

µ
Db(Vect=X)

Db
Z(Vect=X)

¶
¡¡¡¡! K(Db(Vect=U))

is an isomorphism in …i for all i ‚ 1, and is an injection on …0. Using this,
Theorem 2.1 easily follows from Lemma 2.2.

Remark 2.3. The key to everything is Thomason’s Key Lemma (Lemma 2.2).
It is perhaps enlightening to realise that before Thomason’s [19], all that was
known was that the functor

i :
Db(Vect=X)

Db
Z(Vect=X)

¡¡¡¡! Db(Vect=U)

is not onto; the counterexample in the footnote on page 61 shows that the
image is not all of Db(Vect=U). Before Thomason’s work, one knew the
counterexample; and one therefore knew that the functor i could not always
be an equivalence. It is probably for this reason that nobody thought there
was much chance of being able to apply Waldhausen’s localisation theorem.
Thomason’s true inspiration was to realise that the counterexample is a red
herring. Sure, the functor i is not an equivalence. But it very nearly is,
and the very nearly is quite good enough for a localisation exact sequence
in K{theory.
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Let me state, more concretely, what Thomason’s Key Lemma means for
chain complexes of vector bundles on X. The Key Lemma is, at some level,
a statement about extending bounded complexes of vector bundles from U

to X, and also about extending morphisms of such complexes from U to X.
The following combines Propositions 5.2.2, 5.2.3 and 5.2.4 of [19].

Lemma 2.4. (Thomason’s Key Lemma, without mention of the
word \category"). Let X be a quasi{projective, noetherian scheme, U an
open subset, Z = X ¡ U the complement. Then we have

(i) If t is a bounded chain complex of vector bundles on U , then there
exists a bounded chain complex of vector bundles t0 on U , with t '
t0 quasi{isomorphic to the restriction of a bounded chain complex of
vector bundles on X.

(ii) Suppose s and s0 are bounded chain complexes of vector bundles on X,
and suppose f : sjU ¡! s0jU is a chain map of chain complexes of
vector bundles, given over U ‰ X. Then there exists another bounded
chain complex of vector bundles s on X, and a diagram of morphisms
of vector bundles on X

s
f¡¡¡¡! s0

p

??y
s

so that, when we restrict to U ‰ X, the map pjU is a quasi{isomorphism,
and

f – fpjU g »= f jU ;

that is, the maps f – fpjU g and f jU are homotopic.

(iii) Suppose s and s0 are chain complexes of vector bundles on X, and
suppose f : s ¡! s0 is a chain map. Suppose that the restriction f jU
factors through an acyclic complex of vector bundles on U . Then there
is a map f 0 homotopic to f , so that f 0 factors through a chain complex
of vector bundles on X with an acyclic restriction to U .

Remark 2.5. The proof of the Key Lemma given by Thomason has since
been simplifled, and the statement generalised. But this detracts nothing
from Thomason’s achievement. He was the one who realised that, notwith-
standing the counterexample in the footnote on page 61, there was a positive
theorem to be proved.
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In the introduction to [19], Thomason tells us that the inspiration for the
Key Lemma came from the ghost of a deceased friend, who kept haunting
his dreams. In fact, Thomason made the friend a coauthor of the paper.
Clearly, it is not for me to make judgements about the sources of other
peoples’ inspirations. There is very little doubt that the theorem really was
an inspired improvement over what was known before.

Remark 2.6. As was mentioned in the Introduction, Thomason treats the
case where X is not necessarily quasi{projective or noetherian. The more
general theorem requires some modiflcation. First, we must assume both X

and U to be quasi{compact and quasi{separated. Next, we need to replace
the derived categories of vector bundles by the derived categories of perfect
complexes. That is, we replace

Db
Z(Vect=X) by Dperf

Z (X)

Db(Vect=X) by Dperf(X)

Db(Vect=U) by Dperf(U):

There is still a functor

i :
Dperf(X)
Dperf

Z (X)
¡¡¡¡! Dperf(U)

The functor i is still fully faithful, and every object of Dperf(U) is a di-
rect summand of an object in the image of i. It is no longer clear whether
K

¡
Dperf(X)

¢
and K

¡
Dperf(U)

¢
agree with Quillen’s K(X) and K(U), respec-

tively. Thomason makes the point that if they do not, then K
¡
Dperf(X)

¢
and K

¡
Dperf(U)

¢
should be taken as the \good" deflnition for K(X) and

K(U).
Thomason also develops a non{connective version of these spectra, al-

lowing one to continue the long exact sequence of K{groups. The reader is
referred to Thomason’s own account of his work, in the survey article [18].
Unlike this survey, Thomason lays stress on the generality of his results.

3 A generalisation

The proof of Thomason’s Key Lemma has since been substantially simplifled,
and the statement generalised. The flrst generalisation was due to Dongyuan
Yao [26], a student of Thomason’s. Yao proved a more general statement
than Thomason, but his proof followed the outlines of Thomason’s. It was
not a simpliflcation; rather, it was a tour de force, pushing the methods to
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their limits. Since Yao’s work, I have given two simpler proofs of much more
general theorems, by completely difierent methods.

The idea of my generalisation of the Key Lemma is to look at a larger
diagram. So far, we have been looking at functors of triangulated categories

Db
Z(Vect=X) ¡¡¡¡! Db(Vect=X) ¡¡¡¡! Db(Vect=U):

Now we wish to embed this in a larger diagram

Db
Z(Vect=X) ¡¡¡¡! Db(Vect=X) ¡¡¡¡! Db(Vect=U)??y

??y
??y

DZ(qc=X) ¡¡¡¡! D(qc=X) ¡¡¡¡! D(qc=U)

The categories D(qc=X) and D(qc=U) are the unbounded derived cate-
gories of quasi-coherent sheaves on X and on U , respectively. The category
DZ(qc=X) is the full subcategory of all objects in D(qc=X) which become
acyclic when restricted to U .

It is very easy to see that

D(qc=X)

DZ(qc=X)
= D(qc=U):

In the world of quasi{coherent sheaves, there is no obstruction to extend-
ing from U to X. There is even a functor which does the extension, the
pushforward by the inclusion U ¡! X. The problem is to understand the
relation between the top and the bottom rows. Let us now give a couple of
deflnitions.

Deflnition 3.1. Let T be a triangulated category, containing all small co-
products of its objects. An object c 2 T is called compact if every map from
c to any coproduct factors through a flnite part of the coproduct. That is,
any map

c ¡¡¡¡!
a

‚2⁄

t‚

factors as

c ¡¡¡¡!
na

i=1

t‚i
¡¡¡¡!

a

‚2⁄

t‚:

Deflnition 3.2. The full subcategory Tc ‰ T has for its objects all the
compact objects of T.



A.Neeman 71

The relation between the top and bottom rows of the diagram

Db
Z(Vect=X) ¡¡¡¡! Db(Vect=X) ¡¡¡¡! Db(Vect=U)??y

??y
??y

DZ(qc=X) ¡¡¡¡! D(qc=X) ¡¡¡¡! D(qc=U)

turns out to be that the top row is just the compact objects in the bottom
row. The generalisation of Thomason’s localisation theorem, which may be
found in my article [9], asserts the following.

Theorem 3.3. Let S be a triangulated category containing all small co-
products. Let R ‰ S be a full triangulated subcategory, closed under the
formation of the coproducts in S of any set of its objects. Form the category
T = S=R. We always have a diagram

Rc Sc Tc

??y
??y

??y
R ¡¡¡¡! S ¡¡¡¡! T

Assume further that there exist

(i) A set of objects S ‰ Sc so that, for any s 2 S, we have

f8c 2 S; Hom(c; s) = 0g =) fs = 0g:

(ii) A set of objects R ‰ R \ Sc so that, for any r 2 R, we have

f8c 2 R; Hom(c; r) = 0g =) fr = 0g:

Then the natural map R ¡! S takes compact objects to compact objects,
and so does the natural map S ¡! T. In other words, our diagram may be
completed to

Rc ¡¡¡¡! Sc ¡¡¡¡! Tc

??y
??y

??y
R ¡¡¡¡! S ¡¡¡¡! T

Of course, the composite Rc ¡! Sc ¡! Tc must vanish, since it is just
the restriction to Rc of a vanishing functor on R. We therefore have a
factorisation of Sc ¡! Tc as

Sc ¡¡¡¡! Sc=Rc i¡¡¡¡! Tc:

The functor i : Sc=Rc ¡! Tc is fully faithful, and every object of Tc is a
direct summand of an object in the image of i.
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Remark 3.4. In other words, Thomason’s Key Lemma is a special case of
a very general theorem about triangulated categories. In a recent book [10],
I generalise the theorem even further, to deal with the large cardinal case.
There are now three proofs of Thomason’s Key Lemma. The original proof
Thomason gave in [18], the proof presented in my old paper [9], and the
proof in the book [10]. My two proofs, in [9] and [10], are quite difierent
from each other.

4 The generalisation to universal localisation

In November 2000, I happened to be passing through Edinburgh. Ranicki
asked me whether it is possible to apply Thomason’s localisation theorem to
the universal localisation of non{commutative rings. My flrst question was
\What is the universal localisation of non{commutative rings"? Fortunately
the readers of this volume are undoubtedly inflnitely more knowledgeable
about this than I was in November 2000.

The answer to Ranicki’s question turns out to be \Yes". At least, as long
as we are willing to apply my generalisation of Thomason’s Key Lemma. In
the remainder of this article I sketch the joint work which Ranicki and I
have done on this problem.

Suppose we are given a non-commutative ring A, and a set ¾ of maps fsi :
Pi ¡! Qig of flnitely generated, projective left A{modules. From Cohn [1]
and Schofleld [16] we know that there exists a universal homomorphism
A ¡! ¾¡1A. We remind the reader what this means. Consider the category
of all ring homomorphisms A ¡! B so that, for all i, the map

B ›A Pi
1›Asi¡¡¡¡! B ›A Qi

is an isomorphism. The homomorphism A ¡! ¾¡1A is, by deflnition, the
initial object in this category. Now we wish to apply the generalised Key
Lemma (Theorem 3.3) to this situation.

The generalised Key Lemma begins with triangulated categories R ‰ S.
Both categories are assumed to contain the coproducts of any set of their
objects, and the inclusion is assumed to preserve the coproducts. If we are
going to apply the Key Lemma, we need to begin by intelligently choosing
the categories R ‰ S. Moreover, there is not a lot to work with. The only
reasonable choice for S is S = D(A), the unbounded derived category of all
left A{modules. Next we deflne R.



A.Neeman 73

Deflnition 4.1. We are given a set of maps ¾ = fsi : Pi ¡! Qig. We can
view these as objects in S = D(A) just by turning them into complexes

¢ ¢ ¢ ¡¡¡¡! 0 ¡¡¡¡! Pi
si¡¡¡¡! Qi ¡¡¡¡! 0 ¡¡¡¡! ¢ ¢ ¢

The category R ‰ S is deflned to be the smallest triangulated subcategory
of S = D(A), which contains ¾ and is closed in S under the formation of
arbitrary coproducts of its objects.

Remark 4.2. It is easy to show that the categories R ‰ S above satisfy the
hypotheses (i) and (ii) of Theorem 3.3. For the set S ‰ Sc one may take
S = f§nA; n 2 Zg. For R ‰ R \ Sc we can take the set ¾ of all complexes

¢ ¢ ¢ ¡¡¡¡! 0 ¡¡¡¡! Pi
si¡¡¡¡! Qi ¡¡¡¡! 0 ¡¡¡¡! ¢ ¢ ¢

This also makes it clear why we need to assume Pi and Qi flnitely generated
and projective; it is to guarantee that the complexes lie in Sc.

The conclusions of the generalised Key Lemma therefore hold. The in-
terest becomes in seeing what, if anything, the diagram

Rc //

²²

Sc

""EEEEEEEE
… //

²²

Tc

²²

Sc=Rc

i

<<yyyyyyyy

R // S …
// T

tells us about the ring ¾¡1A and its K{theory. What follows is a list of some
of the results Ranicki and I obtained in [11].

In the diagram above we have a functor … : S ¡! T. As the diagram
shows, we allow ourselves to name the restriction of … to Sc ‰ S by the same
symbol …. There is an object A 2 S = D(A), namely the complex which is
A in degree 0 and vanishes in all other degrees. The functor … takes A to
an object …A in T. The functor … takes morphisms A ¡! A to morphisms
…A ¡! …A. Being an additive functor, it must respect the addition and
composition of such maps. Hence it gives a ring homomorphism

… : EndS(A; A) ¡¡¡¡! EndT(…A; …A):

But EndS(A; A) = Aop, since the homomorphisms of A as a left A{module
are just right multiplication by A. The flrst result we have is
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Theorem 4.3. The ring homomorphism above

… : Aop = EndS(A; A) ¡¡¡¡! EndT(…A; …A)

satisfles the universal property deflning ¾¡1A. That is,

¾¡1A =
n

EndT(…A; …A)
oop

:

Proof. This is Theorem 3.21 coupled with Propositions 2.7 and 2.8 of [11].

The next question to ask is whether the triangulated category T is equiv-
alent to D(¾¡1A), with an equivalence taking ¾¡1A 2 D(¾¡1A) to …A 2 T.
Fortunately, we know necessary and su–cient conditions for this. The next
theorem is a result of ‘tilting theory’, and may be found in the work of
Rickard.

Theorem 4.4. For there to exist a natural isomorphism D(¾¡1A) ¡! T

taking ¾¡1A 2 D(¾¡1A) to …A 2 T, it is necessary and su–cient to have

HomT(…A; §n…A) =

‰
¾¡1A if n = 0

0 if n 6= 0

Proof. The object A is a compact generator for S = D(A). Theorem 3.3
tells us that the object …A must be a compact object in T. The fact that
A generates S immediately gives that …A generates T = S=R. But now the
statement is a very easy consequence of tilting theory; see Rickard’s [15].

In the light of Rickard’s theorem, it becomes interesting to compute when
the groups HomT(…A; §n…A) vanish. In this direction, we have

Proposition 4.5. For any choice of a ring A and a set ¾ = fsi : Pi ¡! Qig
of maps of flnitely generated, projective left R{modules, we have

fn > 0g =) fHomT(…A; §n…A) = 0g:

We also know the following:

f8n < 0; HomT(…A; §n…A) = 0g () f8n > 0; TorA
n (¾¡1A; ¾¡1A) = 0g:

Proof. Theorem 10.8 of [11].
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Comment 4.6. The proofs of Theorem 4.3 and Proposition 4.5 turn out to
amount to computations of groups of the form HomT(…A; §n…A). This is
obvious for Proposition 4.5, and less obvious but true for Theorem 4.3. The
proofs of these theorems hinge on the fact that the functor … : S ¡! T has
a right adjoint G. Therefore,

HomT(…A; §n…A) = HomS(A; §nG…A) by adjunction
= Hn(G…A) because, for any X 2 S = D(A);

HomS(A; §nX) = Hn(X):

The proof therefore turns into a study of the object G…A and its cohomol-
ogy. In fact, many of the statements cited in [11] are phrased in terms of
Hn(G…A), rather than HomT(…A; §n…A).

Caution 4.7. In Proposition 4.5, the reader should note that we are not
asserting that, for n ‚ 0, there is an isomorphism

HomT(…A; §¡n…A) ’ TorA
n (¾¡1A; ¾¡1A):

Rather, the two are related by a spectral sequence, which permits one to
prove Proposition 4.5. The most precise statement is that, up to a shift
by 1, the flrst non-vanishing HomT(…A; §¡n…A) agrees with the flrst non-
vanishing TorA

n (¾¡1A; ¾¡1A). The precise statement runs as follows.

(i) TorA
1 (¾¡1A; ¾¡1A) = 0.

(ii) If, for all 1 • i • n we have

HomT(…A; §¡i…A) = 0;

then for all 1 • i • n we also have TorA
i+1(¾¡1A; ¾¡1A) = 0. Further-

more
TorA

n+2(¾¡1A; ¾¡1A) »= HomT(…A; §¡n¡1…A):

The proof of (i), that is the vanishing of TorA
1 (¾¡1A; ¾¡1A), may be found

in Corollary 3.27 of [11]. For the proof of (ii) see Corollary 3.31 loc.cit.

Deflnition 4.8. We say that a universal localisation A ¡! ¾¡1A is stably
°at if, for all n ‚ 1, TorA

n (¾¡1A; ¾¡1A) = 0.

Remark 4.9. Combining Rickard’s Theorem 4.4 and Proposition 4.5, we
have a complete understanding of what Thomason’s Key Lemma yields in
the stably °at case. If A ¡! ¾¡1A is stably °at, then T = D(¾¡1A), which
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makes Tc = Dc(¾¡1A). (For any ring B, Dc(B) will be our notation for the
compact objects fD(B)gc). Our pretty diagram becomes

Rc //

²²

Dc(A)

##FF
FF

FF
FF

F
… //

²²

Dc(¾¡1A)

²²

Dc(A)

Rc

i

::uuuuuuuuuu

R // D(A) …
// D(¾¡1A)

We know that, for any ring B, Waldhausen’s K{theory of Dc(B) agrees with
Quillen’s K{theory of B. We have a homotopy flbration

K(Rc) ¡¡¡¡! K(A) ¡¡¡¡! K

µ
Dc(A)

Rc

¶
:

Grayson’s coflnality theorem, coupled with the fact that the functor i is only
an idempotent completion, tells us that the map

K

µ
Dc(A)

Rc

¶
K(i)¡¡¡¡! K(¾¡1A)

is an isomorphism in …i for i ‚ 1, and an injection on …0.

The only thing we might wish to have is a better understanding of Rc

and its K{theory. For this, the following result is useful:

Theorem 4.10. If our set ¾ = fsi : Pi ¡! Qig consists only of monomor-
phisms, then we deflne an exact category E. In our paper [11], E is called
the category of (A; ¾){modules. The objects of E are the A{modules M of
projective dimension • 1, such that

(i) f¾¡1Ag ›A M = 0, and

(ii) TorA
1 (¾¡1A; M) = 0.

We assert that Rc = Db(E), and hence the Waldhausen K{theory K(Rc)
equals the Quillen K{theory K(E).

Proof. Lemma 11.9 in [11]. Note that Theorem 4.10 does not assume that
A ¡! ¾¡1A is stably °at.

It remains to discuss what we know in the case where A ¡! ¾¡1A is
not stably °at. In this case, we know that T is not equal to D(¾¡1A). But
it turns out that one always has
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Lemma 4.11. The natural functor S = D(A) ¡! D(¾¡1A), taking X 2
D(A) to f¾¡1Ag ›L

A X, factors uniquely through … : D(A) = S ¡! T. That
is, we have a factorisation

D(A)
…¡¡¡¡! T

T¡¡¡¡! D(¾¡1A):

Furthermore, the functor T : T ¡! D(¾¡1A) takes compact objects in T to
compact objects in D(¾¡1A).

Proof. Proposition 5.1 in [11].
This allows us to extend the commutative diagram of Thomason’s Key

Lemma, to obtain a better version

Rc //

²²

Dc(A)

##FF
FF

FF
FF

F
… //

²²

Tc

²²

T // Dc(¾¡1A)

²²

Dc(A)

Rc

i

>>||||||||

R // D(A) …
// T

T
// D(¾¡1A)

One way to state Remark 4.9 is that, assuming A ¡! ¾¡1A is stably °at,
we have that the functor T above is an isomorphism. Without any stable
°atness hypothesis, we always have

Proposition 4.12. The map T : Tc ¡! Dc(¾¡1A) always induces isomor-
phisms on K0 and K1.

Proof. For K0 this is Theorem 8.5 of [11], for K1 it is Corollary 9.2 loc.cit.

Remark 4.13. Proposition 4.12 gives us, without any stable °atness hy-
pothesis, the exact sequence in low dimensional K{theory

K1(Rc) ¡! K1(A) ¡! K1(¾¡1A) ¡! K0(Rc) ¡! K0(A) ¡! K0(¾¡1A):

Remark 4.14. It seems only right to mention that much work has been done
on this by others, with many beautiful results by, for example, Grayson [6],
Vogel [20] and [21], Schofleld [16], Farber and Vogel [3], Farber and Ran-
icki [2], Ranicki [13], Ranicki and Weiss [14] and Weibel and Yao [23]. In the
introduction to [11] we give a review of what the other authors obtained,
and of the extent to which our results give an improvement. Let me not
repeat this here. The point of this survey was to explain how our approach
was descended from the work of Thomason.
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Noncommutative localization in topology

Andrew Ranicki

Introduction

The topological applications of the Cohn noncommutative localization con-
sidered in this paper deal with spaces (especially manifolds) with inflnite
fundamental group, and involve localizations of inflnite group rings and
related triangular matrix rings. Algebraists have usually considered non-
commutative localization of rather better behaved rings, so the topological
applications require new algebraic techniques.

Part 1 is a brief survey of the applications of noncommutative localization
to topology: flnitely dominated spaces, codimension 1 and 2 embeddings
(knots and links), homology surgery theory, open book decompositions and
circle-valued Morse theory. These applications involve chain complexes and
the algebraic K- and L-theory of the noncommutative localization of group
rings.

Part 2 is a report on work on chain complexes over generalized free prod-
ucts and the related algebraic K- and L-theory, from the point of view of
noncommutative localization of triangular matrix rings. Following Bergman
and Schofleld, a generalized free product of rings can be constructed as a
noncommutative localization of a triangular matrix ring. The novelty here
is the explicit connection to the algebraic topology of manifolds with a gen-
eralized free product structure realized by a codimension 1 submanifold,
leading to noncommutative localization proofs of the results of Waldhausen
and Cappell on the algebraic K- and L-theory of generalized free prod-
ucts. In a sense, this is more in the nature of an application of topology
to noncommutative localization! But this algebra has in turn topological
applications, since in dimensions > 5 the surgery classiflcation of manifolds
within a homotopy type reduces to algebra.

81
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Part 1. A survey of applications

We start by recalling the universal noncommutative localization of P.M.Cohn
[6, 7]. Let A be a ring, and let § = fs : P ! Qg be a set of morphisms
of f.g. projective A-modules. A ring morphism A ! R is §-inverting
if for every s 2 § the induced morphism of f.g. projective R-modules
1 › s : R ›A P ! R ›A Q is an isomorphism. The noncommutative localiza-
tion A ! §¡1A is §-inverting, and has the universal property that any §-
inverting ring morphism A ! R has a unique factorization A ! §¡1A ! R.
The applications to topology involve homology with coe–cients in a non-
commutative localization §¡1A.

Homology with coe–cients is deflned as follows. Let X be a connected
topological space with universal cover eX, and let the fundamental group
…1(X) act on the left of eX, so that the (singular) chain complex S( eX) is a free
left Z[…1(X)]-module complex. Given a morphism of rings F : Z[…1(X)] ! ⁄
deflne the ⁄-coe–cient homology of X to be the ⁄-modules

H⁄(X; ⁄) = H⁄(⁄ ›Z[…1(X)] S( eX)) :

If X is a CW complex then S( eX) is chain equivalent to the cellular free
Z[…1(X)]-module chain complex C( eX) with one generator in degree r for
each r-cell of X, and

H⁄(X; ⁄) = H⁄(⁄ ›Z[…1(X)] C( eX)) :

1.1 Finite domination

A topological space X is flnitely dominated if there exist a flnite CW complex
K, maps f : X ! K, g : K ! X and a homotopy gf ’ 1 : X ! X.
The singular chain complex S( eX) of the universal cover eX of X is chain
equivalent to a flnite f.g. projective Z[…1(X)]-module chain complex P . Wall
[42] deflned the flniteness obstruction of X to be the reduced projective class

[X] =
1X

r=0

(¡1)r[Pr] 2 eK0(Z[…1(X)]) ;

and proved that [X] = 0 if and only if X is homotopy equivalent to a flnite
CW complex.
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In the applications of the flniteness obstruction to manifold topology
X = M is an inflnite cyclic cover of a compact manifold M { see Chap-
ter 17 of Hughes and Ranicki [18] for the geometric wrapping up procedure
which shows that in dimension > 5 every tame manifold end has a neigh-
bourhood which is a flnitely dominated inflnite cyclic cover M of a compact
manifold M . Let f : M ! S1 be a classifying map, with Z-equivariant lift

f : M = f⁄R ! R. The non-compact manifold M
+

= f
¡1

[0; 1) is flnitely

dominated, with boundary @M
+

= f
¡1

(0) (assuming f is transverse regular

at 0 2 S1) and one tame end, and …1(M
+

) = …1(M). The flniteness obstruc-

tion [M
+

] 2 eK0(Z[…1(M)]) is the end obstruction of Siebenmann [38], such

that [M
+

] = 0 if and only if the tame end can be closed, i.e. compactifled
by a manifold with boundary.

Given a ring A let › be the set of square matrices ! 2 Mr(A[z; z¡1])
over the Laurent polynomial extension A[z; z¡1] such that the A-module

P = coker(! : A[z; z¡1]r ! A[z; z¡1]r)

is f.g. projective. The noncommutative Fredholm localization ›¡1A[z; z¡1]
has the universal property that a flnite f.g. free A[z; z¡1]-module chain
complex C is A-module chain equivalent to a flnite f.g. projective A-module
chain complex if and only if H⁄(›¡1C) = 0 (Ranicki [29, Proposition 13.9]),
with ›¡1C = ›¡1A[z; z¡1] ›A[z;z¡1] C.

Let M be a connected flnite CW complex with a connected inflnite cyclic
cover M . The fundamental group …1(M) flts into an extension

f1g ! …1(M) ! …1(M) ! Z ! f1g
and Z[…1(M)] is a twisted Laurent polynomial extension

Z[…1(M)] = Z[…1(M)]fi[z; z¡1]

with fi : …1(M) ! …1(M); g 7! z¡1gz the monodromy automorphism. For
the sake of simplicity only the untwisted case fi = 1 will be considered here,
so that …1(M) = …1(M)£Z. The inflnite cyclic cover M is flnitely dominated
if and only if H⁄(M ; ›¡1Z[…1(M)]) = 0, with A = Z[…1(M)] and Z[…1(M)] =
A[z; z¡1]. The Farrell-Siebenmann obstruction '(M) 2 Wh(…1(M)) of an
n-dimensional manifold M with flnitely dominated inflnite cyclic cover M

is such that '(M) = 0 if (and for n > 6 only if) M is a flbre bundle over
S1 { see [29, Proposition 15.16] for the expression of '(M) in terms of the
›¡1Z[…1(M)]-coe–cient Reidemeister-Whitehead torsion

¿(M ; ›¡1Z[…1(M)]) = ¿(›¡1C(fM)) 2 K1(›¡1Z[…1(M)]) :
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1.2 Codimension 1 splitting

Surgery theory asks whether a homotopy equivalence of manifolds is homo-
topic (or h-cobordant) to a homeomorphism { in general, the answer is no.
There are obstructions in the topological K-theory of vector bundles, in the
algebraic K-theory of modules and in the algebraic L-theory of quadratic
forms. The algebraic K-theory obstruction lives in the Whitehead group
Wh(…) of the fundamental group …. The L-theory obstruction lives in one
of the surgery groups L⁄(Z[…]) of Wall [43], and is deflned when the topo-
logical and algebraic K-theory obstructions vanish. The groups L⁄(⁄) are
deflned for any ring with involution ⁄ to be the generalized Witt groups of
nonsingular quadratic forms over ⁄. For manifolds of dimension > 5 the
vanishing of the algebraic obstructions is both a necessary and su–cient
condition for deforming a homotopy equivalence to a homeomorphism. See
Ranicki [28] for the reduction of the Browder-Novikov-Sullivan-Wall surgery
theory to algebra.

A homotopy equivalence of m-dimensional manifolds f : M 0 ! M splits
along a submanifold Nn ‰ Mm if f is homotopic to a map (also denoted by
f) such that N 0 = f¡1(N) ‰ M 0 is also a submanifold, and the restriction
f j : N 0 ! N is also a homotopy equivalence. For codimension m ¡ n > 3
the splitting obstruction is just the ordinary surgery obstruction ¾⁄(f j) 2
Ln(Z[…1(N)]). For codimension m ¡ n = 1; 2 the splitting obstructions
involve the interplay of the knotting properties of codimension (m ¡ n)
submanifolds and Mayer-Vietoris-type decompositions of the algebraic K-
and L-groups of Z[…1(M)] in terms of the groups of Z[…1(N)], Z[…1(MnN)].

In the case m ¡ n = 1 …1(M) is a generalized free product, i.e. either
an amalgamated free product or an HNN extension, by the Seifert-van
Kampen theorem. Codimension 1 splitting theorems and the algebraic K-
and L-theory of generalized free products are a major ingredient of high-
dimensional manifold topology, featuring in the work of Stallings, Brow-
der, Novikov, Wall, Siebenmann, Farrell, Hsiang, Shaneson, Casson, Wald-
hausen, Cappell, : : : , and the author. Noncommutative localization provides
a systematic development of this algebra, using the intuition afiorded by the
topological applications { see Part 2 below for a more detailed discussion.

1.3 Homology surgery theory

For a morphism of rings with involution F : Z[…] ! ⁄ Cappell and Shaneson
[4] considered the problem of whether a ⁄-coe–cient homology equivalence
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of manifolds with fundamental group … is H-cobordant to a homeomor-
phism. Again, the answer is no in general, with obstructions in the topolog-
ical K-theory of vector bundles and in the homology surgery groups ¡⁄(F),
which are generalized Witt groups of ⁄-nonsingular quadratic forms over
Z[…]. Vogel [39], [40] identifled the ⁄-coe–cient homology surgery groups
with the ordinary L-groups of the localization §¡1Z[…] of Z[…] inverting the
set § of ⁄-invertible square matrices over Z[…]

¡⁄(F) = L⁄(§¡1Z[…]) ;

and identifled the relative L-groups L⁄(Z[…] ! §¡1Z[…]) in the localization
exact sequence

¢ ¢ ¢ ! Ln(Z[…]) ! Ln(§¡1Z[…]) ! Ln(Z[…] ! §¡1Z[…]) ! Ln¡1(Z[…]) ! : : :

with generalized Witt groups L⁄(Z[…]; §) of nonsingular §¡1Z[…]=Z[…])-
valued quadratic linking forms on §-torsion Z[…]-modules of homological
dimension 1.

1.4 Codimension 2 embeddings

Suppose given a codimension 2 embedding Nn ‰ Mn+2 such as a knot or
link. By Alexander duality the Z[…1(M)]-modules

H⁄(MnN ;Z[…1(M)]) »= Hn+2¡⁄(M; N ;Z[…1(M)]) (⁄ 6= 0; n + 2)

are determined by the homotopy class of the inclusion N ‰ M . See Ranicki
[29] for a general account of high-dimensional codimension 2 embedding the-
ory, including some of the applications of the noncommutative localization
§¡1A inverting the set § of matrices over A = Z[…1(MnN)] which become
invertible over Z[…1(M)]. The §¡1A-modules H⁄(MnN ; §¡1A) and their
Poincar¶e duality properties re°ect more subtle invariants of N ‰ M such as
knotting and linking.

1.5 Open books

An (n + 2)-dimensional manifold Mn+2 is an open book if there exists a
codimension 2 submanifold Nn ‰ Mn+2 such that the complement MnN is
a flbre bundle over S1. Every odd-dimensional manifold is an open book.
Quinn [25] showed that for k > 2 a (2k + 2)-dimensional manifold M is
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an open book if and only if an asymmetric form over Z[…1(M)] associated
to M represents 0 in the Witt group. This obstruction was identifled in
Ranicki [29] with an element in the L-group L2k+2(›¡1Z[…1(M)][z; z¡1]) of
the Fredholm localization of Z[…1(M)][z; z¡1] (cf. section 1.1 above).

1.6 Boundary link cobordism

An n-dimensional „-component boundary link is a codimension 2 embedding

Nn =
G
„

Sn ‰ Mn+2 = Sn+2

with a „-component Seifert surface, in which case the fundamental group
of the complement X = MnN has a compatible surjection …1(X) ! F„

onto the free group on „ generators. Duval [11] used the work of Cap-
pell and Shaneson [5] and Vogel [40] to identify the cobordism group of
n-dimensional „-component boundary links for n > 2 with the relative L-
group Ln+3(Z[F„]; §) in the localization exact sequence

¢ ¢ ¢ ! Ln+3(Z[F„]) ! Ln+3(§¡1Z[F„]) ! Ln+3(Z[F„]; §) ! Ln+2(Z[F„]) ! : : :

with § the set of Z-invertible square matrices over Z[F„]. The even-dimen-
sional boundary link cobordism groups are L2⁄+1(Z[F„]; §) = 0. The cobor-
dism class of a (2k¡1)-dimensional boundary link t„S2k¡1 ‰ S2k+1 (k > 2)
was identifled with the Witt class in L2k+2(Z[F„]; §) of a §¡1Z[F„]=Z[F„]-
valued nonsingular (¡1)k+1-quadratic linking form on Hk(X;Z[F„]), gener-
alizing the Blanchfleld pairing on the homology of the inflnite cyclic cover
of a knot S2k¡1 ‰ S2k+1. The localization §¡1Z[F„] was identifled by Dicks
and Sontag [10] and Farber and Vogel [16] with a ring of rational functions
in „ noncommuting variables. The high odd-dimensional boundary link
cobordism groups L2⁄+2(Z[F„]; §) have been computed by Sheiham [35],
[37]. Part I of Ranicki and Sheiham [32] deals with the algebraic K-theory
of A[F„] and §¡1A[F„] for any ring A; Part II will deal with the algebraic
L-theory of A[F„] and §¡1A[F„] for any ring with involution A.

1.7 Circle-valued Morse theory

Novikov [23] initiated the study of the critical points of Morse functions
f : M ! S1 on compact manifolds M using the ‘Novikov ring’

Z((z)) = Z[[z]][z¡1] :
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The ‘Novikov complex’ C(M; f) over Z((z)) has one generator for each crit-
ical point of f , and the difierentials count the gradient °ow lines of the
Z-equivariant real-valued Morse function f : M ! R on the non-compact
inflnite cyclic cover M = f⁄R. The ‘Novikov homology’

H⁄(C(M; f)) = H⁄(M ;Z((z)))

provides lower bounds on the number of critical points of Morse functions
in the homotopy class of f , generalizing the inequalities of the classical
Morse theory of real-valued functions M ! R. Suppose the Morse function
f : M ! S1 has monodromy fi = 1 : …1(M) ! …1(M) (for the sake of
simplicity), so that …1(M) = …1(M) £ Z . Let § be the set of square
matrices over Z[…1(M)][z] which become invertible over Z[…1(M)] under the
augmentation z 7! 0. There is a natural morphism from the localization to
the completion

§¡1Z[…1(M)] ! \Z[…1(M)] = Z[…1(M)][[z]][z¡1]

which is an injection if …1(M) is abelian or F„ (Dicks and Sontag [10], Farber
and Vogel [16]), but may not be an injection in general (Sheiham [34]). See
Pajitnov [24], Farber and Ranicki [15], Ranicki [30], and Cornea and Ran-
icki [9] for the construction and properties of Novikov complexes of f over
\Z[…1(M)] and §¡1Z[…1(M)]. Naturally, noncommutative localization also

features in the more general Morse theory of closed 1-forms { see Novikov
[23] and Farber [13],[14].

1.8 3- and 4-dimensional manifolds

See Garoufalidis and Kricker [17], Quinn [26] for applications of noncommu-
tative localization in the topology of 3- and 4-dimensional manifolds.

1.9 Homotopy theory

Noncommutative localization also features in homotopy theory { see the pa-
per by Dwyer [12] in these proceedings. The homotopy theoretic localization
of Vogel has applications to links (cf. Le Dimet [19], Cochran [8], Levine,
Mio and Orr [20]). However, these applications are beyond the scope of this
survey.
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Part 2. The algebraic K- and L-theory of general-

ized free products via noncommutative localization

A generalized free product of groups (or rings) is either an amalgamated free
product or an HNN extension. The expressions of Schofleld [33] of gener-
alized free products as noncommutative localizations of triangular matrix
rings combine with the localization exact sequences of Neeman and Ranicki
[21] to provide more systematic proofs of the Mayer-Vietoris decomposi-
tions of Waldhausen [41] and Cappell [3] of the algebraic K- and L-theory
of generalized free products. The topological motivation for these proofs
comes from a noncommutative localization interpretation of the Seifert-van
Kampen and Mayer-Vietoris theorems. If (M; N µ M) is a two-sided pair
of connected CW complexes the fundamental group …1(M) is a general-
ized free product: an amalgamated free product if N separates M , and an
HNN extension otherwise. The morphisms …1(N) ! …1(MnN) determine
a triangular k £ k matrix ring A with universal localization the full k £ k

matrix ring §¡1A = Mk(Z[…1(M)]) (k = 3 in the separating case, k = 2 in
the non-separating case), such that the corresponding presentation of the

Z[…1(M)]-module chain complex C(fM) of the universal cover fM is the as-
sembly of an A-module chain complex constructed from the chain complexes

C( eN), C(M̂nN) of the universal covers eN , M̂nN of N , MnN . The two cases
will be considered separately, in sections 2.3, 2.4.

2.1 The algebraic K-theory of a noncommutative localiza-
tion

Given an injective noncommutative localization A ! §¡1A let H(A; §) be
the exact category of homological dimension 1 A-modules T which admit a
f.g. projective A-module resolution

0 // P
s // Q // T // 0

such that 1 › s : §¡1P ! §¡1Q is an §¡1A-module isomorphism. The
algebraic K-theory localization exact sequence of Schofleld [33, Theorem
4.12]

K1(A) ! K1(§¡1A) ! K1(A; §) ! K0(A) ! K0(§¡1A)

was obtained for any injective noncommutative localization A ! §¡1A,
with K1(A; §) = K0(H(A; §)). Neeman and Ranicki [21] proved that if
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A ! §¡1A is injective and ‘stably °at’

TorA
i (§¡1A; §¡1A) = 0 (i > 1)

then

(i) §¡1A has the chain complex lifting property : every flnite f.g. free
§¡1A-module chain complex C is chain equivalent to §¡1B for a flnite
f.g. projective A-module chain complex B,

(ii) the localization exact sequence extends to the higher K-groups

¢ ¢ ¢ ! Kn(A) ! Kn(§¡1A) ! Kn(A; §) ! Kn¡1(A) ! ¢ ¢ ¢ ! K0(§¡1A)

with Kn(A; §) = Kn¡1(H(A; §)).

See Neeman, Ranicki and Schofleld [22] for explicit examples of injective
noncommutative localizations A ! §¡1A which are not stably °at.

2.2 Matrix rings

The amalgamated free product of rings and the HNN construction are spe-
cial cases of the following type of noncommutative localization of triangular
matrix rings.

Given rings A1; A2 and an (A1; A2)-bimodule B deflne the triangular
2 £ 2 matrix ring

A =

µ
A1 B

0 A2

¶
:

An A-module can be written as

M =

µ
M1

M2

¶

with M1 an A1-module, M2 an A2-module, together with an A1-module
morphism B ›A2 M2 ! M1. The injection

A1 £ A2 ! A ; (a1; a2) 7!
µ

a1 0
0 a2

¶

induces isomorphisms of algebraic K-groups

K⁄(A1) ' K⁄(A2) »= K⁄(A)
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(Berrick and Keating [2]). The columns of A are f.g. projective A-modules

P1 =

µ
A1

0

¶
; P2 =

µ
B

A2

¶

such that

P1 ' P2 = A ; HomA(Pi; Pi) = Ai (i = 1; 2) ;

HomA(P1; P2) = B ; HomA(P2; P1) = 0 :

The noncommutative localization of A inverting a non-empty subset § µ
HomA(P1; P2) = B is the 2 £ 2 matrix ring

§¡1A = M2(C) =

µ
C C

C C

¶

with C the endomorphism ring of the induced f.g. projective §¡1A-module
§¡1P1

»= §¡1P2. The Morita equivalence

f§¡1A-modulesg ! fC-modulesg ; L 7! (C C) ›§¡1A L

induces isomorphisms in algebraic K-theory

K⁄(M2(C)) »= K⁄(C) :

The composite of the functor

fA-modulesg ! f§¡1A-modulesg ; M 7! §¡1M = §¡1A ›A M

and the Morita equivalence is the assembly functor

fA-modulesg ! fC-modulesg ;

M =

µ
M1

M2

¶
7! (C C) ›A M

= coker(C ›A1 B ›A2 M2 ! C ›A1 M1 ' C ›A2 M2)

inducing the morphisms

K⁄(A) = K⁄(A1) ' K⁄(A2) ! K⁄(§¡1A) = K⁄(C)

in the algebraic K-theory localization exact sequence. If B and C are °at

A1-modules and C is a °at A2-module then the A-module

µ
C

C

¶
has a 1-

dimensional °at A-module resolution

0 !
µ

B

0

¶
›A2 C !

µ
A1

0

¶
›A1 C '

µ
B

A2

¶
›A2 C !

µ
C

C

¶
! 0

so that §¡1A =

µ
C

C

¶
'

µ
C

C

¶
is stably °at.

There are evident generalizations to k £ k matrix rings for any k > 2.
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2.3 HNN extensions

The HNN extension R ⁄fi;fl fzg is deflned for any ring morphisms fi; fl :
S ! R, with

fi(s)z = zfl(s) 2 R ⁄fi;fl fzg (s 2 S) :

Deflne the triangular 2 £ 2 matrix ring

A =

µ
R Rfi ' Rfl

0 S

¶

with Rfi the (R; S)-bimodule R with S acting on R via fi, and similarly for
Rfl. Let § = f¾1; ¾2g ‰ HomA(P1; P2), with

¾1 =

µ
(1; 0)

0

¶
; ¾2 =

µ
(0; 1)

0

¶
: P1 =

µ
R

0

¶
! P2 =

µ
Rfi ' Rfl

S

¶
:

The A-modules P1; P2 are f.g. projective since P1 ' P2 = A. Theorem 13.1
of [33] identifles

§¡1A = M2(R ⁄fi;fl fzg) :

Example Let (M; N µ M) be a non-separating pair of connected CW com-
plexes such that N is two-sided in M (i.e. has a neighbourhood N £ [0; 1] µ
M) with MnN = M1 connected

M = M1 [N£f0;1g N £ [0; 1]

N £ [0; 1]

M1

By the Seifert-van Kampen theorem, the fundamental group …1(M) is the
HNN extension determined by the morphisms fi; fl : …1(N) ! …1(M1)
induced by the inclusions N £ f0g ! M1, N £ f1g ! M1

…1(M) = …1(M1) ⁄fi;fl fzg ;
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so that
Z[…1(M)] = Z[…1(M1)] ⁄fi;fl fzg :

As above, deflne a triangular 2 £ 2 matrix ring

A =

µ
Z[…1(N)] Z[…1(M1)]fi ' Z[…1(M1)]fl

0 Z[…1(M)]

¶

with noncommutative localization

§¡1A = M2(Z[…1(M1)] ⁄fi;fl fzg) = M2(Z[…1(M)]) :

Assume that …1(N) ! …1(M) is injective, so that the morphisms fi; fl are

injective, and the universal cover fM is a union

fM =
[

g2[…1(M):…1(M1)]

g fM1

of translates of the universal cover fM1 of M1, and

g1
fM1 \ g2

fM1 =

8
><
>:

h eN if g1 \ g2z = h 2 […1(M) : …1(N)]

g1
fM1 if g1 = g2

; if g1 6= g2 and g1 \ g2z = ;
with h eN the translates of the universal cover eN of N . In the diagram it is
assumed that fi; fl are isomorphisms

fM z¡2 fM1 z¡1 fM1
fM1 z fM1 z2 fM1

z¡1 eN eN z eN z2 eN
The cellular f.g. free chain complexes C(fM1), C( eN) are related by Z[…1(M1)]-
module chain maps

ifi : Z[…1(M1)]fi ›Z[…1(N)] C( eN) ! C(fM1) ;

ifl : Z[…1(M1)]fl ›Z[…1(N)] C( eN) ! C(fM1)

deflning a f.g. projective A-module chain complex

ˆ
C(fM1)

C( eN)

!
with assembly

the cellular f.g. free Z[…1(M)]-module chain complex of fM

coker

µ
ifi ¡ zifl : Z[…1(M)]fi ›Z[…1(N)] C( eN) ! Z[…1(M)] ›Z[…1(M1)] C(fM1)

¶

= C(fM)
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by the Mayer-Vietoris theorem.

Let R ⁄fi;fl fzg be an HNN extension of rings in which the morphisms
fi; fl : S ! R are both injections of (S; S)-bimodule direct summands, and
Rfi; Rfl are °at S-modules. (This is the case in the above example if …1(N) !
…1(M) is injective). Then the natural ring morphisms

R ! R ⁄fi;fl fzg ; S ! R ⁄fi;fl fzg ;

A =

µ
R Rfi ' Rfl

0 S

¶
! §¡1A = M2(R ⁄fi;fl fzg)

are injective, and §¡1A is a stably °at universal localization, with

H(A; §) = Nil(R; S; fi; fl)

the nilpotent category of Waldhausen [41]. The chain complex lifting prop-
erty of §¡1A gives a noncommutative localization proof of the existence
of Mayer-Vietoris presentations for flnite f.g. free R ⁄fi;fl fzg-module chain
complexes C

0 // R ⁄fi;fl fzg ›S E
ifi¡zifl// R ⁄fi;fl fzg ›R D // C // 0

with D (resp. E) a flnite f.g. free R- (resp. S-) module chain complex ([41],
Ranicki [31]). The algebraic K-theory localization exact sequence of [21]

¢ ¢ ¢ ! Kn+1(A; §) = Kn(S) ' Kn(S) ' fNiln(R; S; fi; fl)
0
@fi fl 0

1 1 0

1
A

// Kn(A) = Kn(R) ' Kn(S)

! Kn(§¡1A) = Kn(R ⁄fi;fl fzg) ! : : :

is just the stabilization by 1 : K⁄(S) ! K⁄(S) of the Mayer-Vietoris exact
sequence of [41]

: : : // Kn(S) ' fNiln(R; fi; fl)
(fi¡fl)'0// Kn(R) // Kn(R ⁄fi;fl fzg) // : : :

In particular, for fi = fl = 1 : S = R ! R the HNN extension is just
the Laurent polynomial extension

R ⁄fi;fl fzg = R[z; z¡1]
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and the Mayer-Vietoris exact sequence splits to give the original splitting of
Bass, Heller and Swan [1]

K1(R[z; z¡1]) = K1(R) ' K0(R) ' fNil0(R) ' fNil0(R)

as well as its extension to the Quillen higher K-groups K⁄.

2.4 Amalgamated free products

The amalgamated free product R1 ⁄S R2 is deflned for any ring morphisms
i1 : S ! R1, i2 : S ! R2, with

r1i1(s) ⁄ r2 = r1 ⁄ i2(s)r2 2 R1 ⁄S R2 (r1 2 R1; r2 2 R2; s 2 S) :

Deflne the triangular 3 £ 3 matrix ring

A =

0
@

R1 0 R1

0 R2 R2

0 0 S

1
A

and the A-module morphisms

¾1 =

0
@

1
0
0

1
A : P1 =

0
@

R1

0
0

1
A ! P3 =

0
@

R1

R2

S

1
A ;

¾2 =

0
@

0
1
0

1
A : P2 =

0
@

0
R2

0

1
A ! P3 =

0
@

R1

R2

S

1
A :

The A-modules P1; P2; P3 are f.g. projective since P1 ' P2 ' P3 = A. The
noncommutative localization of A inverting § = f¾1; ¾2g is the full 3 £ 3
matrix ring

§¡1A = M3(R1 ⁄S R2)

(a modiflcation of Theorem 4.10 of [33]).

Example Let (M; N µ M) be a separating pair of CW complexes such that
N has a neighbourhood N £ [0; 1] µ M and

M = M1 [N£f0g N £ [0; 1] [N£f1g M2
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with M1; M2; N connected.

M1 M2N £ [0; 1]

By the Seifert-van Kampen theorem, the fundamental group of M is the
amalgamated free product

…1(M) = …1(M1) ⁄…1(N) …1(M2) ;

so that
Z[…1(M)] = Z[…1(M1)] ⁄Z[…1(N)] Z[…1(M2)] :

As above, deflne a triangular matrix ring

A =

0
@
Z[…1(M1)] 0 Z[…1(M1)]

0 Z[…1(M2)] Z[…1(M2)]
0 0 Z[…1(N)]

1
A

with noncommutative localization

§¡1A = M3(Z[…1(M1)] ⁄Z[…1(N)] Z[…1(M2)]) = M3(Z[…1(M)]) :

Assume that …1(N) ! …1(M) is injective, so that the morphisms

ij : …1(N) ! …1(Mj) ; …1(Mj) ! …1(M) (j = 1; 2)

are all injective, and the universal cover fM of M is a union

fM =
[

g12[…1(M):…1(M1)]

g1
fM1 [ S

h2[…1(M):…1(N)]

h eN
[

g22[…1(M):…1(M2)]

g2
fM2

of […1(M) : …1(M1)] translates of the universal cover fM1 of M1 and […1(M) :

…1(M2)] translates of the universal cover fM2 of M2, with intersection the
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[…1(M) : …1(N)] translates of the universal cover eN of N .

eN fM2
fM1

The cellular f.g. free chain complexes C(fMj), C( eN) are related by the
Z[…1(Mj)]-module chain maps

ij : Z[…1(Mj)] ›Z[…1(N)] C( eN) ! C(fMj) (j = 1; 2)

induced by the inclusions ij : N ! Mj , deflning a f.g. projective A-module

chain complex

0
B@

C(fM1)

C(fM2)

C( eN)

1
CA with assembly the cellular f.g. free Z[…1(M)]-

module chain complex of fM

coker

µ ˆ
1 › i1

1 › i2

!
: Z[…1(M)] ›Z[…1(N)] C( eN) !

Z[…1(M)] ›Z[…1(M1)] C(fM1) ' Z[…1(M)] ›Z[…1(M1)] C(fM2)

¶

= C(fM)

by the Mayer-Vietoris theorem.

Let R1 ⁄S R2 be an amalgamated free product of rings in which the mor-
phisms i1 : S ! R1, i2 : S ! R2 are both injections of (S; S)-bimodule
direct summands, and R1; R2 are °at S-modules. (This is the case in the
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above example if …1(N) ! …1(M) is injective). Then the natural ring mor-
phisms

R1 ! R1 ⁄S R2 ; R2 ! R1 ⁄S R2 ; S ! R1 ⁄S R2 ;

A =

0
@

R1 0 R1

0 R2 R2

0 0 S

1
A ! §¡1A = M3(R1 ⁄S R2)

are injective, and §¡1A is a stably °at noncommutative localization, with

H(A; §) = Nil(R1; R2; S)

the nilpotent category of Waldhausen [41]. The chain complex lifting prop-
erty of §¡1A gives a noncommutative localization proof of the existence
of Mayer-Vietoris presentations for flnite f.g. free R1 ⁄S R2-module chain
complexes C

0 // R1 ⁄S R2 ›S E // R1 ⁄S R2 ›R1 D1 ' R1 ⁄S R2 ›R2 D2 // C // 0

with Di (resp. E) a flnite f.g. free Ri- (resp. S-) module chain complex
([41], Ranicki [31]). The algebraic K-theory localization exact sequence of
[21]

¢ ¢ ¢ ! Kn+1(A; §) = Kn(S) ' Kn(S) ' fNiln(R1; R2; S)
0
BB@

i1 0 0
0 i2 0
1 1 0

1
CCA

// Kn(A) = Kn(R1) ' Kn(R2) ' Kn(S)

! Kn(§¡1A) = Kn(R1 ⁄S R2) ! : : :

is just the stabilization by 1 : K⁄(S) ! K⁄(S) of the Mayer-Vietoris exact
sequence of [41]

: : : // Kn(S) ' fNiln(R1; R2; S)
0
@i1 0

i2 0

1
A

// Kn(R1) ' Kn(R2) // Kn(R1 ⁄S R2) // : : :
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2.5 The algebraic L-theory of a noncommutative localization

See Chapter 3 of Ranicki [27] for the algebraic L-theory of a commutative
or Ore localization.

The algebraic L-theory of a ring A depends on an involution, that is a
function : A ! A; a 7! a such that

a + b = a + b ; ab = b a ; a = a ; 1 = 1 (a; b 2 A) :

Vogel [40] extended the quadratic L-theory localization exact sequence of
[27]

¢ ¢ ¢ ! LI
n(A) ! Ln(§¡1A) ! Ln(A; §) ! LI

n¡1(A) ! : : :

to the noncommutative case, with A ! §¡1A injective, LI
n(A) the projective

L-groups of A decorated by

I = ker(K0(A) ! K0(§¡1A))

= im(K1(A; §) ! K0(A)) µ K0(A) ;

Ln(§¡1A) the free L-groups of §¡1A and Ln(A; §) = Ln¡1(H(A; §)). (See
[21] for the symmetric L-theory localization exact sequence in the stably °at
case). At flrst sight, it does not appear possible to apply this sequence to
the triangular matrix rings of sections 2.2, 2.3, 2.4. How does one deflne an
involution on a triangular matrix ring

A =

µ
A1 B

0 A2

¶
?

The trick is to observe that if A1; A2 are rings with involution, and (B; fl) is
a nonsingular symmetric form over A1 such that B is an (A1; A2)-bimodule
then A has a chain duality in the sense of Deflnition 1.1 of Ranicki [28],

sending an A-module M =

µ
M1

M2

¶
to the 1-dimensional A-module chain

complex

TM : TM1 =

µ
M⁄

1

0

¶
! TM0 =

µ
B ›A2 M⁄

2

M⁄
2

¶
:

The quadratic L-groups of A with respect to this chain duality are just the
relative L-groups in the exact sequence

¢ ¢ ¢ ! Ln(A) ! Ln(A2)
(B;fl)›A2

¡
// Ln(A1) ! Ln¡1(A) ! : : : :
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In particular, for generalized free products of rings with involution the tri-
angular matrix rings A of section 2.3, 2.4 have such chain dualities, and in
the injective case the torsion L-groups L⁄(A; §) = L⁄¡1(H(A; §)) in the
localization exact sequence

¢ ¢ ¢ ! LI
n(A) ! Ln(§¡1A) ! Ln(A; §) ! LI

n¡1(A) ! : : :

are just the unitary nilpotent L-groups UNil⁄ of Cappell [3].

References

[1] H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial
extension, Publ. Math. I.H.E.S. 22, 61{80 (1964)

[2] A. J. Berrick and M. E. Keating, The K-theory of triangular matrix
rings, Contemp. Maths. 55, 69{74, A.M.S. (1986)

[3] S. Cappell, Unitary nilpotent groups and hermitian K-theory, Bull.
A.M.S. 80, 1117{1122 (1974)

[4] and J. Shaneson, The codimension two placement problem, and
homology equivalent manifolds, Ann. of Maths. 99, 277{348 (1974)

[5] and , Link cobordism, Comm. Math. Helv. 55, 20{49
(1980)

[6] P. M. Cohn, Free rings and their relations, Academic Press (1971)

[7] , Free ideal rings and localization in general rings, CUP (2005)

[8] T. D. Cochran, Localization and flniteness in link concordance. Pro-
ceedings of the 1987 Georgia Topology Conference (Athens, GA, 1987).
Topology Appl. 32, 121{133 (1989)

[9] O. Cornea and A. Ranicki, Rigidity and glueing for the Morse and
Novikov complexes, http://arXiv.math.AT/0107221, J. Eur. Math. Soc.
5, 343{394 (2003)

[10] W. Dicks and E. Sontag, Sylvester domains, J. Pure Appl. Algebra 13,
243{275 (1978)

[11] J. Duval, Forme de Blanchfleld et cobordisme d’entrelacs bords, Comm.
Math. Helv. 61, 617{635 (1986)



100 Noncommutative localization in topology

[12] W. G. Dwyer, Noncommutative localization in homotopy theory, in this
volume, pp. 23{39.

[13] M. Farber, Morse-Novikov critical point theory, Cohn localization and
Dirichlet units, Commun. Contemp. Math 1, 467{495 (1999)

[14] , Topology of closed one-forms, Mathematical Surveys and
Monographs 108, A.M.S. (2004)

[15] and A. Ranicki, The Morse-Novikov theory of circle-valued func-
tions and noncommutative localization, http://arXiv.math.DG/9812122,
Proc. 1998 Moscow Conference for S.P.Novikov’s 60th Birthday, Proc.
Steklov Inst. 225, 381{388 (1999)

[16] and P. Vogel, The Cohn localization of the free group ring, Math.
Proc. Camb. Phil. Soc. 111, 433{443 (1992)

[17] S. Garoufalidis and A. Kricker, A rational noncommutative invariant
of boundary links, http://arXiv.math.GT/0105028
Geometry and Topology 8, 115{204 (2004)

[18] B. Hughes and A. Ranicki, Ends of complexes, Cambridge Tracts in
Mathematics 123, CUP (1996)

[19] J-Y. Le Dimet, Cobordisme d’enlacements de disques, M¶em. Soc. Math.
France (N.S.) No. 32, (1988)

[20] J. Levine, W. Mio and K. E. Orr, Links with vanishing homotopy in-
variant. Comm. Pure Appl. Math. 46, 213{220 (1993)

[21] A. Neeman and A. Ranicki, Noncommutative localization and chain
complexes I. Algebraic K- and L-theory,
http://arXiv.math.RA/0109118, Geometry and Topology 8, 1385{1421
(2004)

[22] , and A. Schofleld, Representations of algebras as uni-
versal localizations, http://arXiv.math.RA/0205034, Math. Proc. Camb.
Phil. Soc. 136, 105{117 (2004)

[23] S. P. Novikov, The hamiltonian formalism and a multi-valued analogue
of Morse theory, Russian Math. Surveys 37:5, 1{56 (1982)

[24] A. Pajitnov, Incidence coe–cients in the Novikov complex for
Morse forms: rationality and exponential growth properties,



A.A.Ranicki 101

http://arXiv.math.DG-GA/9604004, St. Petersburg Math. J. 9,
969{1006 (1998)

[25] F. Quinn, Open book decompositions, and the bordism of automor-
phisms, Topology 18, 55{73 (1979)

[26] , Dual decompositions of 4-manifolds II. Linear link invariants,
http://arXiv.math.GT/0109148 (2001)

[27] A. Ranicki, Exact sequences in the algebraic theory of surgery, Mathe-
matical Notes 26, Princeton (1981)

[28] , Algebraic L-theory and topological manifolds, Cambridge
Tracts in Mathematics 102, CUP (1992)

[29] , High dimensional knot theory, Springer Mathematical Mono-
graph, Springer (1998)

[30] , The algebraic construction of the Novikov complex of a circle-
valued Morse function, http://arXiv.math.AT/9903090, Math. Ann.
322, 745{785 (2002)

[31] , Algebraic and combinatorial codimension 1 transversality,
http://arXiv.math.AT/0308111, Geometry and Topology Monographs
7, Proc. Casson Fest, 145{180 (2004)

[32] and D. Sheiham, Blanchfleld and Seifert algebra in
high dimensional boundary link theory I. Algebraic K-theory,
arXiv:math.AT/0508405

[33] A. Schofleld, Representations of rings over skew flelds, LMS Lecture
Notes 92, Cambridge (1985)

[34] D. Sheiham, Noncommutative characteristic polynomials and Cohn lo-
calization, J. London Math. Soc. 64, 13{28 (2001)

[35] , Invariants of boundary link cobordism, Edinburgh Ph. D. thesis
(2001) http://arXiv.math.AT/0110249, A.M.S. Memoir 165 (2003)

[36] , Whitehead groups of localizations and the endomorphism class
group, http://arXiv.math.KT/0209311, J. Algebra 270, 261{280 (2003)

[37] , Invariants of boundary link cobordism II. The
Blanchfleld-Duval form, in this volume, pp. 143{219,
http://arXiv.math.AT/0404229.



102 Noncommutative localization in topology

[38] L. Siebenmann, The obstruction to flnding the boundary of an open
manifold of dimension greater than flve, Princeton Ph.D. thesis (1965).
http://www.maths.ed.ac.uk/~aar/surgery/sieben.pdf

[39] P. Vogel, On the obstruction group in homology surgery, Publ. Math.
I.H.E.S. 55, 165{206 (1982)

[40] , Localisation non commutative de formes quadratiques, Springer
Lecture Notes 967, 376{389 (1982)

[41] F. Waldhausen, Algebraic K-theory of generalized free products, Ann.
of Maths. 108, 135{256 (1978)

[42] C.T.C. Wall, Finiteness conditions for CW complexes, Ann. of Maths.
81, 55{69 (1965)

[43] , Surgery on compact manifolds, Academic Press (1970), 2nd
edition A.M.S. (1999)

School of Mathematics
University of Edinburgh
James Clerk Maxwell Building
King’s Buildings
Mayfleld Road
Edinburgh EH9 3JZ
SCOTLAND, UK

e-mail a.ranicki@ed.ac.uk



L2-Betti numbers, Isomorphism Conjectures and

Noncommutative Localization

Holger Reich

Abstract

In this paper we want to discuss how the question about the ratio-
nality of L2-Betti numbers is related to the Isomorphism Conjecture
in algebraic K-theory and why in this context noncommutative local-
ization appears as an important tool.

L2-Betti numbers are invariants of spaces which are deflned analogously to
the ordinary Betti-numbers but they take information about the fundamen-
tal group into account and are a priori real valued.

The Isomorphism Conjecture in algebraic K-theory predicts that K0(C¡),
the Grothendieck group of flnitely generated projective C¡-modules, should
be computable from the K-theory of the complex group rings of flnite sub-
groups of ¡.

Given a commutative ring one can always invert the set of all non-zerodivisors.
Elements in the resulting ring have a nice description in terms of fractions.
For noncommutative rings like group rings this may no longer be the case
and other concepts for a noncommutative localization can be more suitable
for speciflc problems.

The question whether L2-Betti numbers are always rational numbers was
asked by Atiyah in [1]. The question turns out to be a question about mod-
ules over the group ring of the fundamental group ¡. In [33] Linnell was
able to answer the question a–rmatively if ¡ belongs to a certain class of

Keywords Novikov-Shubin Invariants, Noncommutative Power Series
Research supported by the SFB "Geometrische Strukturen in der Mathematik" in
Mũnster, Germany
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groups which contains free groups and is stable under extensions by ele-
mentary amenable groups (one also needs a bound on the orders of flnite
subgroups). In fact Linnell proves the stronger result that there exists a
semisimple subring in U¡, the algebra of operators a–liated to the group
von Neumann algebra, which contains the complex group ring.
The main purpose of this short survey is to give a conceptual framework
for Linnell’s result, to explain how the question about the rationality of
L2-Betti numbers relates to the Isomorphism conjecture, and why this may
involve studying noncommutative localizations of group rings. (The impa-
tient reader should right away take a look at Proposition 3.4, Theorem 6.3
and Addendum 6.4.)
Since probably not every reader is familiar with all three circles of ideas { L2-
Betti numbers { Isomorphism Conjectures { Noncommutative Localization
{ the paper contains introductions to all of these.
After a brief introduction to group von Neumann algebras and the notion
of ¡-dimension we proceed to explain the algebra U¡ of operators a–liated
to a group von Neumann algebra and introduce L2-Betti numbers in a very
algebraic fashion. (Once U¡ has been deflned there is no more need for
Hilbert-spaces.) Section 3 explains the Atiyah Conjecture and contains in
particular Proposition 3.4 which is a kind of strategy for its proof. That
Proposition says that if one can factorize the inclusion C¡ ‰ U¡ over a
ring S¡ with good ring-theoretical properties in such way that a certain
K-theoretic condition is satisfled, then the Atiyah conjecture follows. In
Section 5 we present a number of candidates for the ring S¡. To do this
we flrst review a number of concepts from the theory of noncommutative
localization in Section 4. One of the candidates is the universal localization
of C¡ with respect to all matrices that become invertible over U¡. Section 6
contains Linnell’s result. We would like to emphasize that the intermediate
rings Linnell constructs can also be viewed as universal localizations, see
Addendum 6.4 (U). In Section 7 we discuss the Isomorphism Conjecture
which seems to be closely related to the K-theoretical condition mentioned
above. In the last Section we discuss to what extent the functor ¡ ›C¡ U¡,
which plays an important role when one studies L2-Betti numbers, is exact.
The only new result in this paper is the following.

Theorem. Let D¡ denote the division closure of C¡ inside U¡. The °at
dimension of D¡ over C¡ is smaller than 1 for groups in Linnell’s class
which have a bound on the orders of flnite subgroups.

For the division closure see Deflnition 4.8, for Linnell’s class of groups see
Deflnition 6.1. The result is proven as Theorem 8.6 below. As an immediate
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corollary one obtains.

Corollary. If the inflnite group ¡ belongs to Linnell’s class C and has a
bound on the orders of flnite subgroups then the L2-Euler characteristic (and
hence the ordinary one whenever deflned) satisfles

´(2)(¡) • 0:

We also would like to mention that the above theorem leads to interesting
non-trivial examples of stably °at universal localizations which appear in
[45].
A reader who is interested in more information about L2-Betti numbers
and the Atiyah Conjecture should consult the book [39]. Almost all topics
discussed here are also treated there in detail. More information and further
results about the Atiyah Conjecture can be found in [34], [24], [55] and [56].
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1 The von Neumann Dimension

In this section we want to introduce group von Neumann algebras and ex-
plain a notion of dimension for flnitely generated projective modules over
such algebras.
For a (discrete) group ¡ we denote by C¡ the complex group ring and by l2¡
the complex Hilbert space with orthonormal basis ¡. Each group element
operates from the left on l2¡. Linearly extending this action we obtain an
inclusion

C¡ ! B(l2¡)

into the algebra B(l2¡) of bounded linear operators on the Hilbert space
l2¡. The group von Neumann algebra N ¡ is deflned as the closure of C¡
inside B(l2¡) with respect to the weak (or strong, it doesn’t matter) operator
topology. This algebra is closed under taking the adjoint, i.e. a⁄ 2 N ¡ for
every operator a 2 N ¡.
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Digression 1.1. A von Neumann algebra is by deflnition a ⁄-closed subalge-
bra of the algebra of bounded linear operators on some Hilbert-space which
is closed with respect to the strong (or weak, it doesn’t matter) operator
topology. Similarly a C⁄-algebra can be deflned as a ⁄-closed subalgebra
of the algebra of bounded operators on some Hilbert space which is closed
with respect to the topology given by the operator-norm. Every von Neu-
mann algebra is in particular a C⁄-algebra. In the situation described above
the operator-norm closure of C¡ inside B(l2¡) deflnes the so called reduced
C⁄-algebra C⁄

r ¡ and we have a natural inclusion of C⁄
r ¡ in N ¡.

The bicommutant theorem of von Neumann (see for example Theorem 5.3.1
in [28]) is a flrst hint that the deflnition of N ¡ is very natural also from
a purely algebraic point of view (at least if we agree to consider B(l2¡) as
something natural). It says that the von Neumann algebra is the double
commutant of C¡, i.e.

N ¡ = C¡00;

where for a subset A ‰ B(l2¡) we write A0 = fb 2 B(l2¡)jba = ab for all a 2
Ag for the commutant of A in B(l2¡).
The group von Neumann algebra comes equipped with a natural trace. This
trace is given as follows:

tr¡ : N ¡ ! C
a 7! ha(e); ei:

Here h¡; ¡i denotes the inner product in l2¡ and e is the unit element of
the group considered as a vector in l2¡. Applied to an element a =

P
agg

in the group ring C¡ the trace yields the coe–cient of the identity element
ae. Of course we have the trace property tr¡(ab) = tr¡(ba). Once we have
such a trace there is a standard procedure to assign a complex number to
each flnitely generated projective N ¡-module: if p = p2 = (pij) 2 Mn(N ¡)
is an idempotent matrix over N ¡ which represents P , i.e. such that P »=
im(p : N ¡n ! N ¡n) then we set

dim¡ P = §n
i=1tr¡(pii) (1)

and call it the ¡-dimension of P . We have the following standard facts.

Proposition 1.2. The ¡-dimension has the following properties.

(i) dim¡ P is a nonnegative real number.

(ii) dim¡ P depends only on the isomorphism class of P .
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(iii) Normalization. We have dim¡ N ¡ = 1.

(iv) Additivity. If 0 ! L ! M ! N ! 0 is a short exact sequence of
flnitely generated projective modules then

dim¡ M = dim¡ L + dim¡ N:

(v) Faithfulness. dim¡ P = 0 if and only if P = 0.

Proof. (i) follows since one can always arrange that the idempotent p = p2

in (1) is a projection, i.e. p = p2 = p⁄ (see for example Proposition 4.6.2 on
p.23 in [5]). (v) follows from the fact that the trace is faithful, i.e. tr(a⁄a) = 0
implies a = 0. (ii)-(iv) are straightforward.

Let K0(N ¡) denote the Grothendieck-group of flnitely generated projective
N ¡-modules then because of (i)-(iv) above we obtain a homomorphism

K0(N ¡)
dim¡ // R:

We recall some terminology, compare page 5 in [57].

Deflnition 1.3. A projective rank function ‰ on a ring R is a homomor-
phism ‰ : K0(R) ! R satisfying ‰([R1]) = 1 and ‰([P ]) ‚ 0 for every flnitely
generated projective R-module P . It is called faithful if moreover ‰([P ]) = 0
implies P = 0.

In this terminology we can summarize the content of the proposition above
by saying that dim¡ : K0(N ¡) ! R is a faithful projective rank function.

Other natural examples of faithful projective rank functions occur as follows:
Suppose the ring R is embedded in a simple artinian ring Mn(D), where D

is a skew fleld. Then P 7! 1
n dimD P ›R Mn(D) deflnes a faithful projective

rank function on R.

We would like to emphasize the following additional properties of the ¡-
dimension for N ¡-modules which are not true for arbitrary projective rank
functions. They give further justiflcation for the use of the word \dimension"
in this context.

Proposition 1.4. The ¡-dimension satisfles:

(v) Monotony. The N ¡-dimension is monotone, i.e. P ‰ Q implies that
dim¡ P • dim¡ Q.
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(vi) Coflnality. If P =
S

i2I Pi is a directed union of submodules then

dim¡ P = sup
i2I

dim¡ Pi:

Of course coflnality implies monotony. To convince the reader that these
properties are not automatic for projective rank functions we would like to
treat an example.

Example 1.5. Let ¡ be a free group on two generators x and y. By work
of Cohn [11] we know that C¡ is a free ideal ring. In particular every
flnitely generated projective module is free and taking its rank yields an
isomorphism

K0(C¡)
»= // Z:

This is a faithful projective rank function with values in Z. However there
is an exact sequence

0 // C¡2
(x¡1;y¡1) // C¡ // C // 0

which shows that the rank function is not monotone. (Geometrically the
above resolution of C is obtained as the cellular chain complex with complex
coe–cients of the universal cover E¡ of the model for the classifying space
B¡ given by the wedge of two circles.)

In fact one can always compose dim¡ with the natural map K0(C¡) !
K0(N ¡). In this way we obtain naturally a faithful projective rank function
on C¡ for every group ¡. One rediscovers the example above in the case
where ¡ is the free group on two generators.

2 The Algebra of Operators a–liated to N ¡.

The category of flnitely generated projective N ¡-modules has one draw-
back: it is not abelian. In particular if we start out with a complex of
flnitely generated projective N ¡-modules then the homology modules are
not necessarily flnitely generated projective and hence the N ¡-dimension as
explained above is a priori not available. But this is exactly what we would
like to do in order to deflne L2-Betti numbers, i.e. we want to consider

Ccell
⁄ ( eX) ›Z¡ N ¡
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the cellular chain-complex of the universal covering of a CW-complex X

of flnite type tensored up to N ¡ and assign a dimension to the homology
modules.

There are several ways to get around this problem. The traditional way
to deal with it is to work with certain Hilbert spaces with an isometric ¡-
operation instead of modules, e.g. with l2¡n instead of N ¡n. These Hilbert
spaces have a ¡-dimension and one (re-)deflnes the homology as the kernel
of the difierentials modulo the closure of their images. This is then again a
Hilbert space with an isometric ¡-action and has a well deflned ¡-dimension.

A difierent approach is taken in [36]: flnitely presented N ¡-modules do
form an abelian category (because N ¡ is a semihereditary ring) and the
N ¡-dimension can be extended to these modules in such a way that the
properties (i)-(vi) still hold. (In fact in [37] the ¡-dimension is even extended
to arbitrary N ¡-modules.)

A third possible approach is to introduce the algebra U¡ of operators a–l-
iated to N ¡. This algebra has better ring-theoretic properties and indeed
flnitely generated projective U¡-modules do form an abelian category. More-
over the notion of ¡-dimension extends to that algebra. We want to explain
this approach in some detail in this section.

Recall that an unbounded operator a : dom(a) ! H on a Hilbert space H

is a linear map which is deflned on a linear subspace dom(a) ‰ H called the
domain of a. It is called densely deflned if dom(a) is a dense subspace of
H and it is called closed if its graph considered as a subspace of H ' H is
closed. Each bounded operator is closed and densely deflned. For unbounded
operators a and b the symbol a ‰ b means that restricted to the possibly
smaller domain of a the two operators coincide. The following deflnition
goes back to [44].

Deflnition 2.1 (A–liated Operators). A closed and densely deflned (pos-
sibly unbounded) operator a : dom(a) ! l2¡ is a–liated to N ¡ if ba ‰ ab

for all b 2 N ¡0. The set

U¡ = fa : dom(a) ! l2¡ j a is
closed,
densely deflned
and a–liated to N ¡

g

is called the algebra of operators a–liated to N ¡.

Remark 2.2. Each group element ° 2 ¡ acts by right multiplication on l2¡.
This deflnes an element r° 2 N ¡0 (we had ¡ acting from the left when we
deflned N ¡). In order to prove that a closed densely deflned operator a
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is a–liated it su–ces to check that its domain dom(a) is ¡-invariant and
that for all vectors v 2 dom(a) we have r°a(v) = ar°(v) for all ° 2 ¡. In
this sense the a–liated operators are precisely the ¡-equivariant unbounded
operators.

Observe that the naive composition of two unbounded operators c and d

yields an operator dc which is only deflned on c¡1(dom(d)). Similarly ad-
dition is only deflned on the intersection of the domains. It is hence not
obvious that U¡ is an algebra.

Proposition 2.3. The set U¡ becomes a C-algebra if we deflne addition
and a product as the closure of the naive addition respectively composition
of operators.

Proof. This is proven in Chapter XVI in [44]. A proof is reproduced in
Appendix I in [53] and also in Chapter 8 of [39].

The subalgebra of all bounded operators in U¡ is N ¡. In contrast to N ¡
there seems to be no useful topology on U¡. So we left the realm of C⁄-
algebras and C⁄-algebraic methods. The reason U¡ is nevertheless very
useful is that we have gained good ringtheoretic properties. Let us recall
the deflnition of von Neumann regularity.

Deflnition 2.4. A ring R is called von Neumann regular if one of the
following equivalent conditions is satisfled.

(i) Every R-module M is °at, i.e. for every module M the functor ¡›RM

is exact.

(ii) Every flnitely presented R-module is already flnitely generated projec-
tive.

(iii) The category of flnitely generated projective R-modules is abelian.

(iv) For all x 2 R there exists a y 2 R such that xyx = x.

Proof. For (i) , (iv) see for example Theorem 4.2.9 in [64]. (i) ) (ii)
follows since every flnitely presented °at R-module is projective, see The-
orem 3.2.7 in [64]. Since the tensor product is compatible with colimits,
directed colimits are exact and every module is a directed colimit of flnitely
presented modules we obtain (ii) ) (i). For (ii) ) (iii) one needs to check
that cokernels and kernels between flnitely generated projectives are again
flnitely generated projective. But a cokernel is essentially a flnitely presented
module. The argument for the kernel and (iii) ) (ii) are elementary.
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Note that in particular flelds, skew flelds, simple artinian rings and semi-
simple rings are von Neumann regular (every module is projective over such
rings). The flrst condition says that von Neumann regular rings form a very
natural class of rings from a homological algebra point of view: they consti-
tute precisely the rings of weak homological dimension 0. The last condition,
which seems less conceptional to modern eyes, was von Neumann’s original
deflnition [61] and has the advantage that one can explicitly verify it in the
case we are interested in. More information about von Neumann regular
rings can be found in [21].

Proposition 2.5. The algebra U¡ is a von Neumann regular ring.

Proof. Using the polar decomposition and functional calculus one can ex-
plicitly construct a y as it is required in the characterization 2.4 (iii) of von
Neumann regularity given above. Compare Proposition 2.1 (v) in [54].

In order to deflne L2-Betti numbers it remains to establish a notion of di-
mension for flnitely generated projective U¡-modules.

Proposition 2.6. We have the following facts about the inclusion N ¡ ‰
U¡.

(i) The natural map K0(N ¡) ! K0(U¡) is an isomorphism. In particular
there is a ¡-dimension for flnitely generated projective U¡-modules
which we simply deflne via the following diagram:

K0(N ¡)
dim¡

##HHHHHHHHH

»= // K0(U¡)
dim¡

{{wwwwwwwww

R

(ii) The ring U¡ is the Ore-localization (compare Proposition 4.3) of N ¡
with respect to the multiplicative subset of all non-zerodivisors. In
particular ¡ ›N ¡ U¡ is an exact functor.

Proof. See [54] Proposition 6.1 (i) and Proposition 2.1 (iii).

If we now start with a flnitely presented (as opposed to flnitely generated
projective) C¡-module M then because of 2.4 (ii) we know that M ›C¡ U¡
is a flnitely generated projective U¡-module and it makes sense to consider
its ¡-dimension.
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Remark 2.7. The assignment M 7! dim¡(M ›C¡ U¡) is a Sylvester module
rank function for flnitely presented C¡-modules in the sense of Chapter 7 in
[57].

We are now prepared to give a deflnition of L2-Betti numbers using the ¡-
dimension for U¡-modules. Let X be a CW-complex of flnite type, i.e. there
are only flnitely many cells in each dimension. Let eX denote the universal
covering. It carries a natural CW-structure and a cellular free ¡ = …1(X)-
action. There is one ¡-orbit of cells in eX for each cell in X and in particular
the cellular chain complex Ccell⁄ ( eX) is a complex of flnitely generated free
Z¡-modules.

Deflnition 2.8. For a CW-complex X of flnite type we deflne its L2-Betti
numbers as

b(2)
p (X) = dimU¡ Hp(Ccell

⁄ ( eX) ›Z¡ U¡):

Note that by 2.4 (iii) the homology modules are flnitely generated projective
U¡-modules and hence have a well deflned U¡-dimension.

Remark 2.9. As already mentioned it is possible to extend the notion of
¡-dimension to arbitrary N ¡-modules in such a way that one still has \ad-
ditivity" and \coflnality" [37]. Of course one has to allow the value 1, and
in cases where this value occurs one has to interpret \additivity" and \cofl-
nality" suitably. In [54] it is shown that analogously there is a ¡-dimension
for arbitrary U¡-modules which is compatible with the one for N ¡-modules
in the sense that for an N ¡-module M we have

dimU¡ M ›N ¡ U¡ = dimN ¡ M: (2)

Both notions of extended dimension can be used to deflne L2-Betti numbers
for arbitrary spaces by working with the singular instead of the cellular chain
complex. From 2.6 (ii) we conclude that for a complex C⁄ of N ¡-modules
we have

H⁄(C⁄ ›N ¡ U¡) = H⁄(C⁄) ›N ¡ U¡:

If we combine this with (2) we see that the two possible deflnitions of L2-
Betti numbers coincide. In the following we will not deal with L2-Betti
numbers in this generality. We restrict our attention to CW-complexes of
flnite type and hence to flnitely generated projective U¡-modules.

In order to illustrate the notions deflned so far we would like to go through
two easy examples.
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Example 2.10. Suppose ¡ is a flnite group of order #¡. In this case all the
functional analysis is irrelevant. We have C¡ = N ¡ = U¡ and l2¡ = C¡. A
flnitely generated projective module P is just a flnite dimensional complex
¡-representation. One can check that

dim¡ P =
1

#¡
dimC P:

Example 2.11. Suppose ¡ = C is the inflnite cyclic group written multi-
plicatively with generator z 2 C. In this case (using Fourier transformation)
the Hilbert-space l2¡ can be identifled with L2(S1), the square integrable
functions on the unit circle equipped with the standard normalized measure
„ = 1

2… dz. Under this correspondence the group element z corresponds to
the function z 7! z, where we think of S1 as embedded in the complex plane.
The algebras C¡, N ¡ and U¡ can be identifled as follows:

C¡ $ C[z§1]
Laurent-polynomials considered
as functions on S1

N ¡ $ L1(S1)
essentially bounded
functions on S1

U¡ $ L(S1)
measurable functions
on S1

The action on L2(S1) in each case is simply given by multiplication of func-
tions. The trace on N ¡ becomes the integral f 7! R

S1 fd„. For a measurable
subset A ‰ S1 let ´A denote its characteristic function. Then p = ´A is
a projection and PA = pL1(S1) is a typical flnitely generated projective
L1(S1)-module. We have

dim¡ PA = tr¡(p) =

Z

S1

´Ad„ = „(A):

In particular we see that every nonnegative real number can occur as the ¡-
dimension of a flnitely generated projective N ¡- or U¡-module. The module
L1(S1)=(z¡1)L1(S1) is an example of a module which becomes trivial (and
hence projective) over L(S1), because (z ¡ 1) becomes invertible. In fact
one can show that there is an isomorphism

K0(L1(S1)) »= K0(L(S1))
»= // L1(S1;Z);

where L1(S1;Z) denotes the space of integer valued measurable bounded
functions on S1, compare Proposition 6.1 (iv) in [54]. Every such function



114 L2-Betti numbers and Noncommutative Localization

can be written in a unique way as a flnite sum f =
P1

n=¡1 n ¢ ´An with
An = f¡1(fng) ‰ S1 and corresponds to

P1
n=¡1 n[PAn ] under the above

isomorphism.

Once we have the notion of L2-Betti numbers it is natural to deflne

´(2)(X) =
X

(¡1)ib
(2)
i (X):

A standard argument shows that for a flnite CW-complex this L2-Euler char-
acteristic coincides with the ordinary Euler-characteristic. But in fact since
L2-Betti numbers tend to vanish more often than the ordinary Betti-numbers
the L2-Euler characteristic is often deflned in cases where the ordinary one
is not. We also deflne L2-Betti numbers and the L2-Euler characteristic of
a group as

b(2)
p (¡) = b(2)

p (B¡) and ´(2)(¡) = ´(2)(B¡):

As an example of an application we would like to mention the following
result which is due to Cheeger and Gromov [8].

Theorem 2.12. Let ¡ be a group which contains an inflnite amenable nor-
mal subgroup, then

b(2)
p (¡) = 0 for all p, and hence ´(2)(¡) = 0:

3 The Atiyah Conjecture

The question arises which real numbers do actually occur as values of L2-
Betti numbers. This question was asked by Atiyah in [1] where he flrst
introduced the notion of L2-Betti numbers. (The deflnition of L2-Betti
numbers at that time only applied to manifolds and was given in terms
of the Laplace operator on the universal covering.) It turns out that the
question about the values can be phrased as a question about the passage
from flnitely presented Z¡- or Q¡-modules to U¡-modules.

Proposition 3.1. Let ⁄ be an additive subgroup of R which contains Z. Let
¡ be a flnitely presented group. The following two statements are equivalent.

(i) For all CW-complexes X of flnite type with fundamental group ¡ and
all p ‚ 0 we have

b(2)
p (X) 2 ⁄:

(ii) For all flnitely presented Z¡-modules M we have

dimU¡(M ›Z¡ U¡) 2 ⁄:
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Proof. Using the additivity of the dimension and the fact that the flnitely
generated free modules of the complex Ccell⁄ ( eX)›Z¡ U¡ have integer dimen-
sions (ii) ) (i) is straightforward. For the reverse direction one needs to
construct a CW-complex X with fundamental group ¡ such that the presen-
tation matrix of M appears as the, say 5-th difierential in Ccell⁄ ( eX) whereas
the 4-th difierential is zero. This is possible by standard techniques. For
details see Lemma 10.5 in [39].

More generally one can induce up flnitely presented modules over R¡ for
every coe–cient ring R with Z ‰ R ‰ C and ask about the values of the
corresponding ¡-dimensions. Let S ‰ R be a multiplicatively closed subset.
Since each flnitely presented (S¡1R)¡-module is induced from a flnitely
presented R¡-module (clear denominators in a presentation matrix) we can
without loss of generality assume that R is a fleld. In the following we will
work for simplicity with the maximal choice R = C.
Let us describe a candidate for ⁄. We denote by 1

#Fin¡Z the additive
subgroup of R which is generated by the set of numbers

f 1

jHj j H a flnite subgroup of ¡g :

If there is a bound on the orders of flnite subgroups then 1
#Fin¡Z = 1

lZ
where l is the least common multiple of the orders of flnite subgroups. If ¡
is torsionfree then 1

#Fin¡Z = Z.
The following Conjecture turned out to be too optimistic in general (compare
Remark 3.8 below). But it still has a chance of being true if one additionally
assumes a bound on the orders of flnite subgroups.

Conjecture 3.2 (Strong Atiyah Conjecture). Let M be a flnitely presented
C¡-module then

dimU¡ M ›C¡ U¡ 2 1

#Fin¡
Z:

We will see below in 5.3 that this Conjecture implies the Zero-Divisor Con-
jecture.

Remark 3.3. As explained above the conjecture makes sense with any fleld
F such that Q ‰ F ‰ C as coe–cients for the group ring. With F = Q the
conjecture is equivalent to the corresponding conjecture about the values of
L2-Betti numbers. The conjecture with F = C clearly implies the conjecture
formulated with smaller flelds.

To get a flrst idea let us discuss the Conjecture in the easy case where ¡
is the inflnite cyclic group. We have already seen in Example 2.11 that in
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this case the inclusion C¡ ‰ U¡ can be identifled with C[z§1] ‰ L(S1), the
Laurent polynomials considered as functions on S1 inside the algebra of all
measurable functions on S1. Clearly C¡ corresponds to C[z§1]. The crucial
observation now is that in this case we flnd a fleld in between C¡ and U¡.
Let C(z) denote the fleld of fractions of the polynomial ring C[z] then we
have

C[z§1] ‰ C(z) ‰ L(S1):

Now let M be a flnitely presented C[z§1]-module then M ›C[z§1] C(z) is
a flnitely generated free C(z)-module because C(z) is a fleld and hence
M ›C[z§1] L(S1) is a flnitely generated free L(S1)-module. In particular
its ¡-dimension is an integer as predicted by Conjecture 3.2.
Note that C(z) is not contained in the group von Neumann algebra L1(S1)
because a rational function like for example z 7! 1

z¡1 which has a pole on

S1 can not be essentially bounded. It hence was crucial for this proof that
we had the algebra of a–liated operators U¡, here L(S1), available.
The following generalizes these simple ideas.

Proposition 3.4. Suppose the inclusion map C¡ ! U¡ factorizes over a
ring S¡ such that the following two conditions are fulfllled.

(K) The composite map

colimH2Fin¡K0(CH) // K0(C¡) // K0(S¡)

is surjective.

(R) The ring S¡ is von Neumann regular.

Then Conjecture 3.2 holds for the group ¡.

In the source of the map in (K) the colimit is taken over the flnite subgroups
of ¡. The structure maps in the colimit are induced by inclusions K ‰ H

and conjugation maps cg : H ! Hg, h 7! ghg¡1.
We will see below (compare Theorem 6.3) that there is a reasonably large
class of groups for which a factorization of the inclusionC¡ ! U¡ as required
above is known to exist. In order to prove Proposition 3.4 we need one more
fact about ¡-dimensions.

Proposition 3.5. The ¡-dimension is compatible with induction, i.e. if G

is a subgroup of ¡ then there is a natural inclusion UG ‰ U¡ and for a
flnitely generated projective UG-module P we have

dimU¡ P ›UG U¡ = dimUG P:
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Proof. There exists a natural inclusion i : UG ! U¡ which extends the
inclusion i : N G ! N ¡ because UG is the Ore localization of N G. The
latter inclusion is compatible with the trace, i.e. tr¡(i(a)) = trG(a) for a 2
N ¡, see Lemma 1.24 in [39]. The claim follows from these facts.

Proof of Proposition 3.4. Let M be a flnitely presented C¡-module. Then
also M ›C¡ S¡ is flnitely presented and hence flnitely generated projective
by 2.4 (ii) because we assume that S¡ is von Neumann regular. In particular
M ›C¡ S¡ deflnes a class in K0(S¡). Our second assumption implies that
this class comes from colimH2Fin¡K0(CH) via the natural map. It remains
to check that the composition

colimH2Fin¡K0(CH) // K0(C¡) // K0(S¡) // K0(U¡)
dim¡ // R

lands inside the subgroup 1
#Fin¡Z of R. But from Example 2.10 together

with Proposition 3.5 we conclude that for a flnite subgroup H and a flnitely
generated projective CH-module P we have

dimU¡ P ›CH U¡ = dimCH P =
1

#H
dimC P:

Remark 3.6. From 2.4 (iv) it follows that the homomorphic image of a von
Neumann regular ring is again von Neumann regular. In particular the
image of S¡ in U¡ would be von Neumann regular if S¡ is. (But it is not
clear that the induced map for K0 is surjective, compare Question 7.5.)

Note 3.7. Suppose S¡ is a subring of U¡ which contains C¡. If we assume
the properties (K) and (R) and additionally we assume that ¡ has a bound
on the orders of flnite subgroups, then S¡ is semisimple.

Proof. The assumptions imply that the projective rank function

P 7! dim¡ P ›S¡ U¡

for flnitely generated S¡ modules takes values in 1
lZ, where l is the least

common multiple of the orders of flnite subgroups. Since each flnitely gener-
ated projective S¡-module is a subset of a U¡-module it is easy to see that
the projective rank function is faithful. In order to prove that a von Neu-
mann regular ring is semisimple it su–ces to show that there are no inflnite
chains of ideals, see page 21 in [21]. Since each ideal is a direct summand
of S¡ and each subideal of a given ideal is a direct summand this can be
checked using the faithful projective rank function with values in 1

lZ.
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Remark 3.8. The lamplighter group is the semidirect product of Z andL1
¡1 Z=2 where Z acts via shift on

L1
¡1 Z=2. The orders of flnite sub-

groups that occur are precisely all powers of 2. Conjecture 3.2 hence predicts
Z[1

2 ] as the range for the dimensions. However in [24] a flnitely presented
Q¡-module is constructed whose ¡-dimension is 1

3 .

4 Noncommutative Localization

Our next aim is to present several candidates for the ring S¡ which appears
in Proposition 3.4. In order to do this we flrst want to flx some language
and review a couple of concepts from the theory of localization for noncom-
mutative rings. For more on this subject the reader should consult Chapter
II in [58], Chapter 7 in [12] and Chapter 4 in [57].

Ore Localization

Classically the starting point for the localization of rings is the wish that
certain elements in the ring should become invertible. In mathematical
terms we have the following universal property.

Deflnition 4.1. Let T ‰ R be a subset which does not contain any zero-
divisors. A ring homomorphism f : R ! S is called T -inverting if f(t) is
invertible for all t 2 T . A T -inverting ring homomorphism i : R ! RT

is called universally T -inverting if it has the following universal property:
given any T -inverting ring homomorphism f : R ! S there exists a unique
ring homomorphism ' : RT ! S such that

RT

'
²²

R

i

88ppppppppppppp f // S

commutes.

A generator and relation construction shows that there always exists a uni-
versal T -inverting ring and as usual it is unique up to canonical isomorphism.
Given a ring homomorphism R ! S let us agree to write

T (R ! S)

for the set of elements in R which become invertible in S. If one replaces T

by T = T (R ! RT ) the universal inverting ring does not change. We can
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hence always assume that T is multiplicatively closed. A natural maximal
choice for T is the set NZD(R) of all non-zerodivisors of R.

If the ring R is commutative it is well known that there is a model for RT

whose elements are \fractions" or more precisely equivalence classes of pairs
(a; t) 2 R£T . For noncommutative rings the situation is more complicated.
It goes back to Ore that under a suitable assumption such a calculus of
fractions still exists.

Deflnition 4.2. A multiplicatively closed subset T ‰ R which does not
contain zero-divisors or zero itself satisfles the right Ore-condition if for
given (a; s) 2 R £ T there always exists a (b; t) 2 R £ T such that at = sb.

It is clear that this condition is necessary if a calculus of right fractions
exists because we need to be able to write a given wrong way (left) fraction
s¡1a as bt¡1. It is a bit surprising that this is the only condition.

Proposition 4.3. Let T ‰ R be a multiplicatively closed subset without
zero divisors which satisfles the right Ore condition, then there exists a ring
RT ¡1 and a universal T -inverting ring-homomorphism i : R ! RT ¡1 such
that every element of RT ¡1 can be written as i(a)i(t)¡1 with (a; t) 2 R £ T .

Proof. Elements in RT ¡1 are equivalence classes of pairs (a; t) 2 R £ T .
The pair (a; t) is equivalent to (b; s) if there exist elements u, v 2 R such
that au = bv, su = tv and su = tv 2 S. For more details see Chapter II in
[58].

Remark 4.4. Ore-localization is an exact functor, i.e. RT ¡1 is a °at R-
module, see page 57 in [58].

Example 4.5. Let ¡ be the free group on two generators x and y. The group
ring C¡ does not satisfy the Ore condition with respect to the set NZD(C¡)
of all non-zerodivisors. Let C ‰ ¡ be the inflnite cyclic subgroup generated
by x. Now x ¡ 1 is a non-zerodivisor since it becomes invertible in UC

(compare Example 2.11) and therefore in the overring U¡. In fact every non-
trivial element in C¡ is a non-zerodivisor since one can embed C¡ in a skew
fleld. The Ore condition would imply the existence of (b; t) 2 C¡£NZD(C¡)
with (y ¡ 1)t = (x ¡ 1)b alias

(x ¡ 1)¡1(y ¡ 1) = bt¡1:

This implies that (¡b; t)tr is in the kernel of the map (x ¡ 1; y ¡ 1) : C¡2 !
C¡. But this map is injective, compare Example 1.5.
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Localizing Matrices

Instead of elements one can try to invert maps. Let § be a set of homo-
morphisms between right R-modules. A ring homomorphism R ! S is
called §-inverting if for every map fi 2 § the induced map fi ›R idS is an
isomorphism.

Deflnition 4.6. A §-inverting ring homomorphism i : R ! R§ is called
universal §-inverting if it has the following universal property. Given any
§-inverting ring homomorphism f : R ! S there exists a unique ring ho-
momorphism “ : R§ ! S such that the following diagram commutes.

R§

“
²²

R
f //

i

88ppppppppppppp
S:

From now on let us assume that § is a set of matrices over R. For a ring
homomorphism R ! S we will write

§(R ! S)

for the set of all matrices over R which become invertible over S. One
can always replace a given set of matrices § by § = §(R ! R§) without
changing the universal §-inverting ring homomorphism. There are difierent
constructions which prove the existence of a universal §-inverting ring ho-
momorphism. One possibility is a generator and relation construction where
one starts with the free ring on a set of symbols ai;j where (ai;j) runs through
the matrices in § and imposes the relations which are given in matrix form
as AA = AA = 1, compare Theorem 2.1 in [12]. For more information the
reader should consult Chapter 7 in [12] and Chapter 4 in [57].

Another construction due to Malcolmson [41] (see also [4]), a kind of calculus
of fractions for matrices, allows a certain amount of control over the ring
R§.

As an easy example we would like to mention the following: A set of matrices
is lower multiplicatively closed if 1 2 § and a, b 2 § implies that

µ
a 0
c b

¶
2 §

for arbitrary matrices c of suitable size. Observe that §(R ! S) is always
lower multiplicatively closed.
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Proposition 4.7 (Cramer’s rule). Let R be a ring and § be a lower multi-
plicatively closed set of matrices over R then every matrix a over R§ satisfles
an equation of the form

s

µ
1 0
0 a

¶ µ
1 x

0 1

¶
= b

with s 2 §, x 2 M(R§) and b 2 M(R).

Proof. See Theorem 4.3 on page 53 in [57].

In particular every matrix a over R§ is stably associated over R§ to a matrix
b over R, i.e. there exist invertible matrices c, d 2 GL(R§) such that

c

µ
a 0
0 1n

¶
d¡1 =

µ
b 0
0 1m

¶

with suitable m and n.

Division Closure and Rational Closure

Recall that for a given ring homomorphism R ! S we denoted by T (R ! S)
the set of all elements in R which become invertible in S and by §(R ! S)
the set of all matrices over R that become invertible over S. The universal
localizations RT (R!S) and R§(R!S) come with a natural map to S. In the
case where R ! S is injective one may wonder whether these maps embed
the universal localizations into S. The intermediate rings in the following
deflnition serve as potential candidates for such embedded versions of the
universal localizations.

Deflnition 4.8. Let S be a ring.

(i) A subring R ‰ S is called division closed in S if T (R ‰ S) = R£, i.e.
for every element r 2 R which is invertible in S the inverse r¡1 lies
already in R.

(ii) A subring R ‰ S is called rationally closed in S if §(R ‰ S) = GL(R),
i.e. for every matrix A over R which is invertible over S the entries of
the inverse matrix A¡1 are all in R.

(iii) Given a subring R ‰ S the division closure of R in S denoted

D(R ‰ S)

is the smallest division closed subring of S which contains R.
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(iv) Given a subring R ‰ S the rational closure of R in S denoted by

R(R ‰ S)

is the smallest rationally closed subring of S containing R.

Note that the intersection of division closed intermediate rings is again di-
vision closed and similarly for rationally closed rings. This proves the exis-
tence of the division and rational closure. Moreover we really have closure-
operations, i.e.

D(D(R ‰ S) ‰ S) = D(R ‰ S) and

R(R(R ‰ S) ‰ S) = R(R ‰ S):

In [12, Chapter 7, Theorem 1.2] it is shown that the set

fai;j 2 S j (ai;j) invertible over S; (ai;j)¡1 matrix over Rg (3)

is a subring of S and that it is rationally closed. Since this ring is contained
in R(R ‰ S) the two rings coincide. The following observation is very useful
in our context.

Proposition 4.9. A von Neumann regular ring R is division closed and
rationally closed in every overring.

Proof. Suppose a 2 R is not invertible in R, then the corresponding multi-
plication map la : R ! R is not an isomorphism. Therefore the kernel or
the cokernel is non-trivial. Both split of as direct summands because the
ring is von Neumann regular. The corresponding projection onto the kernel
or cokernel is given by left multiplication with a suitable idempotent. This
idempotent shows that a must be a zerodivisor and hence can not become
invertible in any overring. A matrix ring over a von Neumann regular ring is
again von Neumann regular and the same reasoning applied to matrix rings
over R yields that R is also rationally closed in every overring.

In particular note that once we know that the division closure D(R ‰ S) is
von Neumann regular then it coincides with the rational closure R(R ‰ S).
The following proposition relates the division respectively rational closure
to the universal localizations RT (R‰S) and R§(R‰S).

Proposition 4.10. Let R ‰ S be a ring extension.
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(i) The map RT (R‰S) ! S given by the universal property factorizes over
the division closure.

RT (R‰S)

'
²²

R
‰ //

::vvvvvvvvvv D(R ‰ S)
‰ // S

(ii) If the pair (R; T (R ‰ S)) satisfles the right Ore condition, then ' is
an isomorphism.

(iii) The map R§(R‰S) ! S given by the universal property factorizes over
the rational closure.

R§(R‰S)

“
²²²²

R

::vvvvvvvvvv ‰ // R(R ‰ S)
‰ // S

The map “ is always surjective.

Proof. (i) This follows from the deflnitions. (ii) Note that T (R ‰ S) always
consists of non-zerodivisors. Thus we can choose a ring of right fractions
as a model for RT (R‰S). Every element in im' is of the form at¡1 with
t 2 T (R ‰ S). Such an element is invertible in S if and only if a 2 T (R ‰ S).
We see that the image of ' is division closed and hence ' is surjective. On
the other hand the abstract fraction at¡1 2 RT (R ‰ T )¡1 is zero if and
only if a = 0 because T (R ‰ S) contains no zerodivisors, so ' is injective.
(iii) Only the last statement is maybe not obvious. By Cohn’s description of
the rational closure (compare (3)) we need to flnd a preimage for ai;j , where
(ai;j) is a matrix invertible over S whose inverse lies over R. The generator
and relation construction of the universal localization immediately gives such
an element.

In general it is not true that the map “ is injective.

5 Some Candidates for S¡

We are now prepared to describe the candidates for the ring S¡ which
appears in Proposition 3.4. We consider the ring extension C¡ ‰ U¡ and
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deflne

D¡ = D(C¡ ‰ U¡);

R¡ = R(C¡ ‰ U¡);

C¡T = C¡T (C¡‰U¡) and

C¡§ = C¡§(C¡‰U¡):

These rings are organized in the following diagram

C¡T
//

²²

C¡§

²²
C¡

‰ //

<<yyyyyyyy
D¡

‰ // R¡
‰ // U¡

(4)

A flrst hint that the rational or division closure may be a good candidate
for S¡ is the following result which is implicit in [33]. At the same time its
proof illustrates the usefulness of Cramer’s rule 4.7.

Proposition 5.1. If ¡ is a torsionfree group then the Strong Atiyah Con-
jecture 3.2 implies that R¡ is a skew fleld.

Proof. For x 2 U¡ let lx : U¡ ! U¡ denote left multiplication with x. From
the additivity and faithfulness of the dimension it follows that x is invertible
if and only if dim im(lx) = 1 or equivalently dim ker(lx) = 0 or equivalently
dim coker(lx) = 0. Now let X be a matrix over R¡ then by 4.10 (iii) we
know that we can lift it to a matrix over C¡§. Using Cramer’s rule 4.7 and
projecting down again we see that we can flnd invertible matrices A and
B 2 GL(R¡) such that

C = A

µ
1n 0
0 X

¶
B

is a matrix over C¡. In particular if 0 6= x 2 R¡ then for X = (x) we know
that there exists an n such that

dim im(lx) + n = dim(im

µ
1n 0
0 lx

¶
) = dim(imC) 2 Z

because we assume for the matrix C over C¡ that the dimension of its image
is an integer. It follows that dim im(lx) = 1 and hence that x is invertible
in R¡.

Note 5.2. If one of the rings D¡ or R¡ is a skew fleld then so is the other
and the two coincide.
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Proof. If D¡ is a skew fleld then it is also rationally closed, see 4.9. If R¡
is a skew fleld then D¡ is a division closed subring of a skew fleld and hence
itself a skew fleld.

Corollary 5.3. The Atiyah Conjecture 3.2 implies the Zero-Divisor Con-
jecture, i.e. the conjecture that the complex group ring of a torsionfree group
does not contain any zero-divisors.

Remark 5.4. One can show that for a torsionfree amenable group the Atiyah
Conjecture 3.2 is equivalent to the Zero-Divisor Conjecture, see Lemma 10.16
in [39].

Another natural question is in how far the rings discussed above depend
functorially on the group. Since an arbitrary group homomorphism G ! G0

does not induce a map from UG to UG0 we can not expect functoriality but
at least we have the following.

Note 5.5. An injective group homomorphism induces maps on the rings
D¡, R¡, C¡T and C¡§. These maps are compatible with the maps in
diagram 4 above.

Proof. We already know that the inclusion C¡ ‰ U¡ is functorial for in-
jective group homomorphisms. Let G be a subgroup of ¡. Since UG is
von Neumann regular it is division closed and rationally closed in every
overring, compare 4.9. Therefore D¡ \ UG is division-closed in U¡ and
DG ‰ D¡ \ UG ‰ D¡. Analogously one argues for the rational clo-
sure. One immediately checks that T (CG ‰ UG) ‰ T (C¡ ‰ U¡) and
§(CG ‰ UG) ‰ §(C¡ ‰ U¡). The universal properties imply the state-
ment for C¡T and C¡§.

6 Linnell’s Result

Before we state Linnell’s result we would like to introduce the class of groups
it applies to.

Deflnition 6.1 (Linnell’s class of groups). Let C be the smallest class of
groups which has the following properties.

(LC1) Free groups are contained in C.

(LC2) If 1 ! G ! ¡ ! H ! 1 is an exact sequence of groups such that G

lies in C and H is flnite or flnitely generated abelian then ¡ lies in C.
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(LC3) The class C is closed under directed unions, i.e. if a group ¡ =
S

i2I ¡i

is a directed union of subgroups ¡i which lie in C then ¡ also lies in C.

To put this deflnition into perspective we would like to make a couple of
remarks.

Remark 6.2. (i) If one replaces (LC1) above by the requirement that the triv-
ial group belongs to C one obtains the smaller class of elementary amenable
groups. Compare [9] and [29]. Elementary amenable groups are in particu-
lar amenable (see [16]) but it is not easy to flnd amenable groups that are
not elementary amenable [23]. A group which contains a non-abelian free
subgroup is not amenable.
(ii) One can show that if ¡ lies in C and A is an elementary amenable normal
subgroup then ¡=A also belongs to C.
(iii) The class C is closed under free products.

In [33] Linnell proves Conjecture 3.2 for groups in the class C which addi-
tionally have a bound on the orders of flnite subgroups. In fact by carefully
investigating the proof given there one can obtain the following statements.

Theorem 6.3. Suppose the group ¡ lies in C and has a bound on the orders
of flnite subgroups then

(K) The composition

colimH2Fin¡K0(CH) ! K0(C¡) ! K0(D¡)

is surjective.

(R) The ring D¡ is semi-simple and hence D¡ = R¡ by Proposition 4.9.

As already mentioned this result is essentially contained in [33]. In the above
formulation it is proven in [53]. The proof is published in Chapter 10 in [39].
Below we will only make a couple of remarks about the proof.
Since we formulated the theorem with the division closure D¡ the reader
may get the impression that this is the best candidate for an intermediate
ring S¡ as in Proposition 3.4. But in fact the situation is not so clear. We
already stated that D¡ = R¡ when the theorem applies. Moreover one can
show the following.

Addendum 6.4.

(U) In the situation of Theorem 6.3 the natural map C¡§ ! R¡ is an
isomorphism and hence D¡ = R¡ »= C¡§.
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(O) If ¡ lies in the smaller class of elementary amenable groups and has a
bound on the orders of flnite subgroups then C¡ satisfles the right Ore
condition with respect to the set NZD(C¡) of all non-zerodivisors and
this set coincides with T (C¡ ‰ U¡). Hence C¡T can be realized as a
ring of fractions and the natural map C¡T ! D¡ is an isomorphism,
compare 4.10 (iii).

The statement (O) about the Ore localization appears already in [31]
We will now make some comments about the proof of Theorem 6.3 and
the Addendum 6.4. As one might guess from the description of the class
of groups to which the Theorem (and the Addendum) applies the proof
proceeds via transflnite induction on the class of groups, i.e. one proves the
following statements.

(I) (K), (R) and (U) hold for free groups.

(II) If 1 ! G ! ¡ ! H ! 1 is an extension of groups where H is flnite or
inflnite cyclic and (K), (R) and (U) hold for G then they hold for ¡.
Similar with (O) replacing (U).

(III) If ¡ is the directed union of the subgroups ¡i and (K), (R) and (U)
hold for all ¡i then they hold for ¡ if ¡ has a bound on the orders of
flnite subgroups. Similar with (O) replacing (U).

(I) The Kadison Conjecture says that there are no non-trivial idempotents
in the group C⁄-algebra of a torsionfree group. Linnell observed that Connes
conceptional proof of this Conjecture for the free group on two generators
given in [14] (see also [27]) can be used to verify the stronger Conjecture 3.2
in this case. Combined with Proposition 5.1 and Note 5.2 one concludes
that D¡ = R¡ is a skew fleld. This yields (R) and also (K) since K0 of a
skew fleld is Z. Every flnitely generated free group is a subgroup of the free
group on two generators and every free group is a directed union of flnitely
generated free subgroups. This is used to pass to arbitrary free groups.
Some rather non-trivial facts about group rings of free groups (see [25] and
[30]) are used to verify that R¡ also coincides with the universal localization
C¡§ and hence to verify (U) in this case. Recall that we saw in Example 4.5
that (O) is false for free groups.
(II) For information about crossed products we refer the reader to [46] and
to Digression 6.5 below. If 1 ! G ! ¡ ! H ! 1 is an extension of groups
then every set-theoretical section „ of the quotient map ¡ ! H (we can
always assume „(e) = e and „(g¡1) = „(g)¡1) allows to describe the group
ring C¡ as a crossed product CG ⁄ H of the ring CG with the group H.
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Similarly crossed products DG ⁄ H, RG ⁄ H and CG§ ⁄ H exist and can
serve as intermediate steps when one tries to prove the statements (R), (K)
and (U) for ¡. For example there are natural inclusions

CG ⁄ H ! DG ⁄ H ! D¡:

If H is a flnite group and DG is semisimple then DG⁄H is semisimple and co-
incides with D¡. It is relatively easy to verify that DG⁄H is noetherian and
semiprime if H is an inflnite cyclic group and then Goldie’s theorem (a crite-
rion for the existence of an Ore-localization, see Section 9.4 in [13]) together
with results from [32] are used to verify that D¡ is the Ore-localization of
DG ⁄ H with respect to the set of all non-zerodivisors. This is roughly the
line of argument in order to verify that condition (R) survives extensions by
flnite or inflnite cyclic groups. Once we know that D¡ is an Ore localization
of DG ⁄ H we can combine this with the assumption (which implies that
CG§ ⁄ H ! DG ⁄ H is an isomorphism) in order to verify (U). Similarly
iterating Ore localizations one obtains that (O) is stable under extensions
with an inflnite cyclic group. Moody’s Induction Theorem (see Theorem 7.3
below) plays a crucial role in the argument for (K). Moreover one has to
assume that the class of groups which appears in the induction hypothesis
is already closed under extensions by flnite subgroups. Hence one is forced
to start the induction with virtually free groups and in particular one has
to prove that (K) holds for such groups. For this purpose results of Wald-
hausen [62] about generalized free products can be used. Moreover the map
induced by C¡ ! C¡§ on K0 needs to be studied, compare Question 7.5.
Here it is important to deal with the universal matrix localization.
(III) If ¡ is the directed union of the subgroups ¡i, i 2 I then D¡ is the
directed union of the subrings D¡i and similar for R¡. A directed union
of von Neumann regular rings is again von Neumann regular (use Defln-
ition 2.4 (iv)) so D¡ is at least von Neumann regular if all the D¡i are
semisimple. The fact that K-theory is compatible with colimits yields that
(K) holds for ¡ if it holds for all the ¡i. Now the assumption on the bound of
the orders of flnite subgroups implies that D¡ is even semisimple by Note 3.7.
That (U) and (O) are stable under directed unions is straightforward.

Digression 6.5. A crossed product R ⁄ G = (S; „) of the ring R with the
group G consists of a ring S which contains R as a subring together with an
injective map „ : G ! S£ such that the following holds.

(i) The ring S is a free R-module with basis „(G).

(ii) For every g 2 G the conjugation map c„(g) : S ! S, „(g)s„(g)¡1 can
be restricted to R.
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(iii) For all g, g0 2 G the element ¿(g; g0) = „(g)„(g0)„(gg0)¡1 lies in R£.

7 The Isomorphism Conjecture in algebraic K-theory

Condition (K) in Proposition 3.4 requires that the composite map

colimH2Fin¡K0(CH) // K0(C¡) // K0(S¡)

is surjective. About the flrst map in this composition there is the following
conjecture.

Conjecture 7.1 (Isomorphism Conjecture - Special Case). For every group
¡ the map

colimH2Fin¡K0(CH) // K0(C¡)

is an isomorphism. In particular for a torsionfree group ¡ we expect

K0(C¡) »= Z:

To form the colimit we understand Fin¡ as the category whose objects are
the flnite subgroups of ¡ and whose morphisms are generated by inclusion
maps K ‰ H and conjugation maps cg : H ! Hg, h 7! ghg¡1 with g 2 ¡.
Observe that in the torsionfree case the colimit reduces to K0(C) »= Z.

In fact Conjecture 7.1 would be a consequence of a much more general con-
jecture which predicts the whole algebraic K-theory of a group ring R¡ in
terms of the K-theory of the coe–cients and homological data about the
group. This more general conjecture is known as the Farrell-Jones Isomor-
phism Conjecture for algebraic K-theory [19]. A precise formulation would
require a certain amount of preparation and we refer the reader to [15], [2]
and in particular to [40] for more information.

Conjecture 7.1 would have the following consequence.

Consequence 7.2. For every flnitely generated projective C¡-module P we
have

dim¡(P ›C¡ U¡) 2 1

#Fin¡
Z:

Proof. Use Example 2.10 and Proposition 3.5.

So if all flnitely presented C¡-modules were also flnitely generated projective
then the Isomorphism Conjecture would imply the Strong Atiyah Conjec-
ture. But of course this is seldom the case.
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Conjecture 7.1 is true for inflnite cyclic groups and products of such by the
Bass-Heller-Swan formula [3]. Cohn’s results in [11] imply the Conjecture
for free groups. Work of Waldhausen [62] deals with generalized free prod-
ucts and HNN-extensions. (The reader should consult [52] and [45] for a
\noncommutative localization"-perspective on these results.) A version of
the following result plays also an important role in the proof of 6.3.

Theorem 7.3 (Moody’s induction theorem - Special case). Let ¡ be a
polycyclic-by-flnite group then the map

colimH2Fin¡K0(CH) ! K0(C¡)

is surjective.

Proof. See [42], [43], [10] and Chapter 8 in [46].

What happens if we replace the complex coe–cients in Conjecture 7.1 by
integral coe–cients? Thinking about the situation for flnite groups it is
at flrst glance very surprising that for inflnite groups there are a lot of
cases where there are results about K0(Z¡) whereas nothing is known about
K0(C¡). See for example [19]. The reason is that the elements of algebraic
K-groups of the integral group ring have a topological interpretation. They
occur as obstruction groups in certain topological problems. Many people
put a lot of efiort into solving these topological problems and each time this
is successful one obtains a result about the algebraic K-groups of Z¡.

However with integral coe–cients one does not expect an isomorphism as
in Conjecture 7.1. In the case where ¡ is torsionfree one would still expect
K0(Z¡) »= Z, but in general so called Nil-groups and also negative K-groups
should enter in a \computation" of K0(Z¡). Moreover by a result of Swan
(see Theorem 8.1 in [59]) the map K0(ZH) ! K0(QH) is almost the trivial
map for a flnite group H, i.e. the map on reduced K-groups ~K0(ZH) !
~K0(QH) is trivial. Summarizing: In general in the square

colimH2Fin¡K0(ZH)

²²

// K0(Z¡)

²²
colimH2Fin¡K0(QH) // K0(Q¡):

neither the upper horizontal arrow nor the vertical arrows are surjective.
We see that the comparison to the integral group ring is not very useful for
the question we are interested in.
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The main techniques to prove results about the K-theory of Z¡ stems from
\controlled topology". See [51], [49], [50], [17], [18] and [26]. The set-up has
been adapted to a more algebraic setting [48] and this \controlled algebra"
(see [48],[6] and [47]) was used successfully to obtain \lower bounds" for the
K-theory of group rings with arbitrary coe–cients under certain curvature
conditions on the group [7].
A result about Conjecture 7.1 which uses this \controlled algebra" is the
following result from [2]. Recall that a ring is called (right)-regular if it is
right noetherian and every flnitely generated right R-module admits flnite
dimensional projective resolution.

Theorem 7.4. Let ¡ be the fundamental group of a closed riemannian man-
ifold with strictly negative sectional curvature. Let R be a regular ring, e.g.
R = C then

K0(R) »= K0(R¡):

Moreover K¡n(R¡) = 0 and K1(R¡) = ¡ab ›Z K0(R) ' K1(R), where ¡ab

denotes the abelianized group.

The assumption about ¡ implies that ¡ is torsionfree so the above verifles
Conjecture 7.1.
The author is optimistic that in the near future techniques similar to the
ones used in [2] will lead to further results about Conjecture 7.1. In view
of condition (K) in Proposition 3.4 the following seems to be an important
question.

Question 7.5. Are the maps

K0(C¡) ! K0(C¡§);

K0(C¡) ! K0(R¡)

or K0(C¡) ! K0(D¡)

surjective?

Note that this is true for groups in Linnell’s class C with a bound on the
orders of flnite subgroups by Theorem 6.3 (K).

8 Exactness Properties

In this section we want to investigate to what extent the functor ¡ ›C¡ U¡
and related functors are exact. Recall that this functor is crucial for the
deflnition of L2-Betti numbers, compare Deflnition 2.8.
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Note 8.1. If ¡ is elementary amenable and there is a bound on the orders
of flnite subgroups then ¡ ›C¡ U¡ is exact.

Proof. From Addendum 6.4 (O) we know that for these groups D¡ is an
Ore-localization of C¡. In particular in this case ¡ ›C¡ D¡ is exact. Since
by Theorem 6.3 (R) D¡ is also semisimple (and hence von Neumann regular)
we know that every module is °at over D¡.

The following tells us that we cannot always have exactness.

Note 8.2. Suppose for the inflnite group ¡ the functor ¡ ›C¡ U¡ is exact,
then all L2-Betti numbers and also the Euler-characteristic ´(2)(¡) of the
group ¡ vanishes.

Proof. Flatness implies

Hp(C⁄(E¡) ›Z¡ U¡) = T orZ¡
p (Z; U¡) = TorZ¡

p (Z;Z¡) ›Z¡ U¡ = 0

for p > 0. Moreover b
(2)
0 (¡) = 0 for every inflnite group (see Theorem 6.54 (8) (b)

in [39]).

In particular we see that for the free group on two generators we cannot
have exactness. We saw this phenomenon already in Example 1.5 because
exactness of ¡ ›C¡ N ¡ would contradict the monotony of the dimension.
(Recall from Proposition 2.6 (ii) that ¡ ›N ¡ U¡ is always exact.)

More generally we have.

Note 8.3. If ¡ contains a nonabelian free group, then neither D¡ nor R¡,
C¡§ or U¡ can be °at over C¡.

Proof. Every free group contains a free group on two generators. Let G ‰ ¡
be a free subgroup on two generators. Let CG2 ! CG be the injective
homomorphism from Example 1.5. Since C¡ is °at over CG we obtain an
injective map C¡2 ! C¡. On the other hand since DG is a skew-fleld
we know that the non-trivial kernel of the corresponding map DG2 ! DG

(which must appear for dimension reasons since ¡›DGUG is exact and the ¡-
dimension is faithful) is a one-dimensional free module which splits ofi DG2

as a direct summand. The same remains true for every overring of DG. In
particular for D¡, R¡ and U¡. But also for C¡§ because DG = RG »= CG§

by Addendum 6.4 (O) and since there is a natural map CG§ ! C¡§.

In this context we would also like to mention the following result from [38].



H.Reich 133

Theorem 8.4. If ¡ is amenable then N ¡ (and hence U¡) is dimension-°at
over C¡, i.e. for p > 0 and every C¡-module M we have

dimN ¡ TorC¡
p (M; N ¡) = dimU¡ TorC¡

p (M; U¡) = 0:

Proof. See [38] or Theorem 6.37 on page 259 in [39] and recall that U¡ is °at
over N ¡ and the U¡-dimension and the N ¡-dimension are compatible.

Given these facts it is tempting to conjecture that ¡ ›C¡ U¡ is exact if and
only if ¡ is amenable. However in [35] it is shown that the condition about
the bound on the orders of flnite subgroups in Note 8.1 is necessary.

Example 8.5. Let H be a nontrivial flnite group and let H o Z denote the
semidirect product

L1
¡1 HoZ, where Z is acting via shift on the

L1
¡1 H.

Then neither D¡ nor U¡ is °at over C¡ (see Theorem 1 in [35]).

The main purpose of this section is to prove the following result which
measures the deviation from exactness for groups in Linnell’s class.

Theorem 8.6. Let ¡ be in the class C with a bound on the orders of flnite
subgroups, then

TorC¡
p (¡; D¡) = 0 for all p ‚ 2:

Note that for these groups D¡ = R¡ »= C¡§ is semisimple and therefore the
functor ¡›D¡ U¡ is exact. The functor ¡›Z¡C¡ is always exact. Therefore
we obtain the corresponding statements for TorC¡

p (¡; U¡), TorZ¡
p (¡; D¡)

and TorZ¡
p (¡; U¡).

As an immediate consequence we obtain interesting examples of stably °at
universal localizations.

Corollary 8.7. If ¡ lies in Linnell’s class C and has a bound on the orders
of flnite subgroups then D¡ »= C¡§ is stably °at over C¡, i.e. we have

TorC¡
p (D¡; D¡) = 0 for all p ‚ 1:

Proof. We know that D¡ »= C¡§ is a universal localization of C¡ and hence
C¡ ! C¡§ is an epimorphism in the category of rings, see page 56 in [57].
By Theorem 4.8 b) in [57] we know that TorC¡

1 (D¡; D¡) = 0. For p ‚ 2 the
result follows from Theorem 8.6.

Recent work of Neeman and Ranicki [45] show that for universal localiza-
tions which are stably °at there exists a long exact localization sequence
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which extends Schofleld’s localization sequence for universal localizations
(see Theorem 4.12 in [57]) to the left. In the case of Ore-localizations the
corresponding sequence was known for a long time, see [20], [22], [65] and
[60]. Observe that because of Note 8.3 we know that whenever ¡ contains a
free group C¡§ cannot be an Ore-localization.

Here is another consequence of Theorem 8.6.

Corollary 8.8. If the inflnite group ¡ belongs to C and has a bound on the
orders of flnite subgroups, then

´(2)(¡) • 0:

Proof. Since the group is inflnite we have b
(2)
0 (¡) = 0. Because of

Hp(¡; U¡) = TorC¡
p (C; U¡) = 0 for all p ‚ 0

we know that b
(2)
1 (¡) is the only L2-Betti number which could possibly be

nonzero.

The L(2)-Euler characteristic coincides with the usual Euler-characteristic
and the rational Euler-Characteristic of [63] whenever these are deflned.

Before we proceed to the proof of Theorem 8.6 we would also like to mention
the following consequences for L2-homology.

Corollary 8.9 (Universal Coe–cient Theorem). Let ¡ be in C with a bound
on the orders of flnite subgroups. Then there is a universal coe–cient the-
orem for L2-homology: Let X be a ¡-space whose isotropy groups are all
flnite, then there is an exact sequence

0 ! Hn(X;Z) ›Z¡ U¡ ! H¡
n (X; U¡) ! Tor1(Hn¡1(X;Z); U¡) ! 0:

Proof. We freely use the dimension theory for arbitrary U¡-modules, com-
pare Remark 2.9. If X has flnite isotropy, then the set of singular simplices
also has only flnite isotropy groups. If H is a flnite subgroup of ¡, then
C [¡=H] »= C¡ ›CH C is induced from the projective CH-module C and
therefore projective. We see that the singular chain complex with complex
coe–cients C⁄ = C

sing
⁄ (X;C) is a complex of projective C¡-modules. The

E2-term of the Kũnneth spectral sequence (compare Theorem 5.6.4 on page
143 in [64])

E2
pq = TorC¡

p (Hq(C⁄); D¡) ) Hp+q(C⁄ › D¡) = Hp+q(X; D¡)
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is concentrated in two columns. The spectral sequence collapses, and we get
exact sequences

0 ! Hn(X;C) ›C¡ D¡ ! Hn(X; D¡) ! TorC¡
1 (Hn¡1(X;C); D¡) ! 0:

Applying the exact functor ¡ ›D¡ U¡ yields the result.

The proof of Theorem 8.6 depends on the following Lemma.

Lemma 8.10. (i) Let R⁄G ‰ S⁄G be compatible with the crossed product
structure. Let M be an R ⁄G-module. There is a natural isomorphism
of right S-modules

TorR⁄G
p (M ; S ⁄ G) »= TorR

p (resR⁄G
R M ; S)

for all p ‚ 0.

(ii) Suppose R ‰ S is a ring extension and R =
S

i2I Ri is the directed
union of the subrings Ri. Let M be an R-module. Then there is a
natural isomorphism of right S-modules

TorR
p (M ; S) »= colimi2ITorRi

p (resR
Ri

M ; Si) ›Si
S

for all p ‚ 0.

Proof. (i) We start with the case p = 0. We denote the crossed product
structure map by „, compare Digression 6.5. Deflne a map

hM : resR⁄G
R M ›R S ! M ›R⁄G S ⁄ G

by m › s 7! m › s. Obviously h is a natural transformation from the
functor resR⁄G

R (¡) ›R S to ¡ ›R⁄G S ⁄ G. If M = R ⁄ G the map h¡1
R⁄G :

R⁄G›R⁄G S ⁄G »= S ⁄G ! resR⁄G
R R⁄G›R S given by s„(g) 7! g ›c¡1

g (s) is
a well-deflned inverse. Since h is compatible with direct sums we see that hF

is an isomorphism for all free modules F . Now if M is an arbitrary module
choose a free resolution F⁄ ! M of M and apply both functors to

F1 ! F0 ! M ! 0 ! 0:

Both functors are right exact, therefore an application of the flve lemma
yields the result for p = 0. Now let P⁄ ! M be a projective resolution of
M , then

TorR
p (resR⁄G

R M ; S) = Hp(resR⁄G
R P⁄ ›R S)

»=! Hp(P⁄ ›R⁄G S ⁄ G)

= TorR
p (M ; S ⁄ G):
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(ii) Again we start with the case p = 0. The natural surjections resR
Ri

M ›Ri

S ! M ›R S induce a surjective map

hM : colimi2IresR
Ri

M ›Ri
S ! M ›R S

which is natural in M . Suppose the element of the colimit represented byP
k mk › sk 2 resR

Ri
M ›Ri

S is mapped to zero in M ›R S. By construction
the tensor product M ›R S is the quotient of the free module on the set
M £ S by a relation submodule. But every relation involves only flnitely
many elements of R, so we can flnd a j 2 I such that

P
k mk ›sk = 0 already

in resR
Rj

M ›Rj
S. We see that hM is an isomorphism. Now let P⁄ ! M be

a projective resolution. Since the colimit is an exact functor it commutes
with homology and we get

colimi2ITorRi
p (M ; S) = colimi2IHp(resR

Ri
P⁄ ›Ri

S)

= Hp(colimi2I(resR
Ri

P⁄ ›Ri
S))

»=! Hp(P⁄ ›R S)

= TorR
p (M ; S):

Proof of Theorem 8.6. The proof works via transflnite induction over the
group as for the proof of Linnell’s Theorem 6.3 itself, compare (I), (II) and
(III) on page 127.

(I) The statement for free groups is well known: let ¡ be the free group
generated by the set S. The cellular chain complex of the universal covering
of the obvious 1-dimensional classifying space gives a projective resolution
of the trivial module of length one

0 !
M

S

C¡ ! C¡ ! C ! 0:

Now if M is an arbitrary C¡-module we apply ¡›CM to the above complex
and get a projective resolution of length 1 for M (diagonal action). (Use
that for P a projective C¡-module P ›C M with the diagonal respectively
the left ¡-action are noncanonically isomorphic C¡-modules.)

(II) The next step is to prove that the statement remains true under exten-
sions by flnite groups. So let 1 ! G ! ¡ ! H ! 1 be an exact sequence
with H flnite. We know that D¡ = DG ⁄ H, see Lemma 10.59 on page
399 in [39] or Proposition 8.13 in [53]. Let M be a C¡-module, then with
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Lemma 8.10 and the induction hypothesis we conclude

TorC¡
p (M ; D¡) = TorCG⁄H

p (M ; DG ⁄ H)

»= TorCG
p (resCG⁄H

CG M ; DG)

= 0 for p > 1:

The case H inflnite cyclic is only slightly more complicated. This time
we know from Lemma 10.69 in [39] or Proposition 8.18 in [53] that D¡ =
(DG ⁄ H)T ¡1 is an Ore localization, where T = T (DG ⁄ H ‰ U¡), i.e. the
set of all elements in DG ⁄ H which become invertible in U¡. Since Ore
localization is an exact functor we get

TorC¡
p (M ; D¡) = TorCG⁄H

p (M ; (DG ⁄ H)T ¡1)

»= TorCG⁄H
p (M ; DG ⁄ H) ›DG⁄H D¡

and conclude again with Lemma 8.10 that this module vanishes if p > 1.
(III) The behaviour under directed unions remains to be checked. Let
¡ =

S
i2I ¡i be a directed union, then using Deflnition 2.4 we see thatS

i2I D¡i is von Neumann regular and it is easy to check that it coincides
with the division closure D¡. Now Lemma 8.10 gives

TorC¡
p (M ; D¡) »= colimi2ITorC¡i

p (resC¡
C¡i

M ; D¡)

= colimi2ITorC¡i
p (resC¡

C¡i
M ; D¡i) ›D¡i

D¡

= 0 for p > 1:
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Invariants of boundary link cobordism II.

The Blanchfleld-Duval form.

Desmond Sheiham

Abstract

We use the Blanchfleld-Duval form to deflne complete invariants for
the cobordism group C2q¡1(F„) of (2q ¡ 1)-dimensional „-component
boundary links (for q ‚ 2).

The author solved the same problem in earlier work via Seifert
forms. Although Seifert forms are convenient in explicit computations,
the Blanchfleld-Duval form is more intrinsic and appears naturally in
homology surgery theory.

The free cover of the complement of a link is constructed by pasting
together inflnitely many copies of the complement of a „-component
Seifert surface. We prove that the algebraic analogue of this construc-
tion, a functor denoted B, identifles the author’s earlier invariants with
those deflned here. We show that B is equivalent to a universal local-
ization of categories and describe the structure of the modules sent
to zero. Taking coe–cients in a semi-simple Artinian ring, we deduce
that the Witt group of Seifert forms is isomorphic to the Witt group
of Blanchfleld-Duval forms.

1 Introduction

This paper is the second in a series on cobordism (=concordance) groups of
a natural class of high-dimensional links. Chapter 1 of the flrst work [51]
discusses background to the problem at greater length but we summarize
here some of the key ideas.

143



144 Invariants of boundary link cobordism II.

1.1 Background

A knot is an embedding of spheres1 Sn ‰ Sn+2. The following are general-
izations:

† A „-component link is an embedding of „ disjoint spheres

L =

„z }| {
Sn t ¢ ¢ ¢ t Sn ‰ Sn+2:

† A boundary link is a link whose components bound disjoint (n + 1)-
manifolds. The union of these (n + 1)-manifolds is called a Seifert
surface.

† An F„-link is a pair (L; µ) where L is a link and µ is a homomor-
phism from the fundamental group …1(X) of the link complement
X = Sn+2nL onto the free group F„ on „ (distinguished) genera-
tors such that some meridian of the ith link component is sent to the
ith generator.

Not every link is a boundary link; a link L can be reflned to an F„-link (L; µ)
if and only if L is a boundary link.

Let us call a homomorphism µ : …1(X) ! F„ permissible if it sends some
meridian of the ith link component to the ith generator. There may be
many permissible homomorphisms for a given boundary link but if µ and
µ0 are permissible then µ0 = fiµ where fi is some \generator conjugating"
automorphism of F„ (Cappell and Shaneson [6], Ko [27, p660-663]). Ho-
momorphisms …1(X) ! F„ correspond to homotopy classes of maps from
the link complement X to a wedge of „ circles and the permissible homo-
topy classes correspond, by the Pontrjagin-Thom construction, to cobordism
classes of Seifert surfaces (rel L).

Every knot is a (1-component) boundary link and admits precisely one
permissible homomorphism, namely the abelianization

µ : …1(X) ! …1(X)ab »= Z:

Among the three generalizations above it is the theory of F„-links which
seems to bear the closest resemblance to knot theory.

1Manifolds are assumed oriented and embeddings are assumed locally °at. One may
work in the category of smooth, P L or topological manifolds according to taste, with the
understanding that Sn is permitted exotic structures if one selects the smooth category.
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Although one does not hope for a complete classiflcation of knots or F„-
links in higher dimensions much is known about their classiflcation up to
the equivalence relation known as cobordism (or concordance). Two links
L0 and L1 are called cobordant if there is an embedding

LI = (Sn t ¢ ¢ ¢ t Sn) £ [0; 1] ‰ Sn+2 £ [0; 1]

which joins L0 ‰ Sn+2 £ f0g to L1 ‰ Sn+2 £ f1g. One requires2 that
(Snt¢ ¢ ¢tSn)£fig ‰ Sn+2£fig for i = 0 and i = 1 but no such requirement
is made when 0 < i < 1. Boundary links are said to be boundary cobordant if
there is a cobordism LI whose components bound disjoint (n+2)-manifolds
in Sn+2 £ [0; 1]. Two F„-links (L0; µ0) and (L1; µ1) are called cobordant if
there is a pair

(LI ; £ : …1(Sn+2 £ [0; 1]nLI) ! F„)

such that the restrictions of £ to …1(X0) and …1(X1) coincide with µ0 and
µ1 (up to inner automorphism).

The cobordism classes of knots form an abelian group Cn(F1) under
(ambient) connected sum but this operation does not extend to links in
any obvious way. If one attempts to add links L0 and L1 there are many
inequivalent choices of connecting arc from the ith component of L0 to the
ith component of L1.

However when n ‚ 2 connected sum [L1; µ1]+[L2; µ2] of cobordism classes
of F„-links is well-deflned; one can remove the ambiguity in the choice of
paths by assuming, perhaps after some surgery, that µ1 and µ2 are isomor-
phisms. The set Cn(F„) of cobordism classes of F„-links is therefore an
abelian group.

When n is even, Cn(F„) is in fact the trivial group [24, 6, 27, 38]; we
sketch a proof in [51, Ch1x4.1]. On the other hand J.Levine obtained a
complete system of invariants for odd-dimensional knot cobordism groups
C2q¡1(F1) for q ‚ 2 [31] and showed that each is isomorphic to a countable
direct sum

C2q¡1(F1) »= Z'1 '
µ
Z
2Z

¶'1
'

µ
Z
4Z

¶'1
: (1)

2LI is also required to meet Sn+2 £ f0g and Sn+2 £ f1g transversely.
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The computation of C1(F1) remains open. In [51] the author obtained a
complete system of invariants for odd-dimensional F„-link cobordism groups
C2q¡1(F„), q ‚ 2 (including some secondary invariants deflned only if certain
primary invariants vanish) and found that

C2q¡1(F„) »= Z'1 '
µ
Z
2Z

¶'1
'

µ
Z
4Z

¶'1
'

µ
Z
8Z

¶'1
(2)

for all q ‚ 2 and all „ ‚ 2.
Both (1) and (2) were deduced from a purely algebraic reformulation of

F„-link cobordism associated to Seifert surfaces: It was proved by Levine [32]
in the knot theory case „ = 1 and by Ko [27] and Mio [38] independently
in the general case that C2q¡1(F„) is isomorphic to the \Witt group of
Seifert forms". In the notation of the present paper, which we explain more
carefully in Sections 2.4, 4.1 and 4.3,

C2q¡1(F„) »= W (¡1)q

(Sei(Z)) (q ‚ 3): (3)

The symbol Sei(Z) denotes3 a category of \Seifert modules" designed to
contain the homology modules of Seifert surfaces among the objects (see
Notation 4.1). In the case „ = 1 an object in Sei(Z) is a flnitely generated
free Z-module V together with an endomorphism V ! V which carries
information about how a Seifert surface is embedded. If „ > 1 then the
deflnition of Seifert module also includes a direct sum decomposition V =
V1 ' ¢ ¢ ¢ ' V„ which re°ects the connected components of a Seifert surface.

The intersection form in a Seifert surface is an isomorphism ` : V ! V ⁄

in Sei(Z) which satisfles `⁄ = (¡1)q`. Such (¡1)q-hermitian forms are the
generators of the Witt group W (¡1)q

(Sei(Z)). The relations say that certain
\metabolic forms" are identifled with zero; see Deflnitions 2.22 and 2.23
below.

Although Seifert surface methods are convenient in explicit computa-
tions, it is preferable to deflne F„-link invariants without making a choice
of Seifert surface. In the present paper we focus instead on the covering
space X ! X of a link complement determined by the homomorphism
µ : …1(X) ‡ F„. This approach sits more naturally in homology surgery
theory and is more amenable to generalization from boundary links to arbi-
trary links or other manifold embeddings.

We take as starting point the identiflcation

C2q¡1(F„) »= W (¡1)q+1
(F lk(Z)) (q ‚ 3) (4)

3The category Sei(Z) was denoted (P„{Z)-Proj in [51].
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where F lk(Z) is a category designed to contain homology modules of the
cover X (see Deflnition 2.1 and Notation 2.2). The objects in F lk(Z) are
certain modules over the group ring Z[F„] of the free group; they are called
F„-link modules in the present paper although they are more commonly
known as link modules.

The F„-equivariant Poincar¶e duality in X leads to a (¡1)q+1-hermitian
form ` in the category F lk(Z). This is the Blanchfleld-Duval form of
the title, originally introduced by Blanchfleld [3] in the knot theory case
„ = 1. The identity (4) was proved by Kearton for „ = 1 [23, 22] and by
Duval [14] for „ ‚ 2. Cappell and Shaneson earlier identifled the cobor-
dism group Cn(F„) with a ¡-group, an obstruction group in their homol-
ogy surgery theory [5, 6]. The identiflcation of this ¡-group with the Witt
group W (¡1)q+1

(F lk(Z)) was due to Pardon [39, 40], Ranicki [42, x7.9] and
Smith [52] for „ = 1 and to Duval [14] for „ ‚ 2. More general results
of Vogel [54, 55] on homology surgery and universal localization are stated
elsewhere in this volume [45, x1.4]. An outline of their application to Cn(F„)
is given in [51, Ch1,x4.4,5.3].

1.2 Overview

Universal localization plays two roles in this paper. Firstly the \augmenta-
tion localization" of the group ring Z[F„] of the free group appears in the
deflnition of the Blanchfleld-Duval form, our main object of study. Secondly,
we prove that the category F lk(Z) of F„-link modules is (equivalent to) a
universal localization of the category Sei(Z) of Seifert modules.

Our flrst aim is to use (4) to distinguish the elements of C2q¡1(F„).
We deflne complete invariants (and secondary invariants if certain primary
invariants vanish) by analyzing the Witt groups W (¡1)q+1

(F lk(Q)). We
proceed in three steps, explained in more detail in Section 3, which run
parallel to steps 2, 3 and 4 in chapter 2 of [51]:

1. Obtain a direct sum decomposition of W (¡1)q+1
(F lk(Q)) by \devis-

sage". One must prove that F lk(Q) is an abelian category in which
each module has a flnite composition series.

2. Use hermitian Morita equivalence to show that each summand of the
group W (¡1)q+1

(F lk(Q)) is isomorphic to some group W 1(E) where E

is a division ring of flnite dimension over Q.

3. Recall from the literature invariants of each W 1(E).
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In the knot theory case „ = 1 there is one summand of W (¡1)q+1
(F lk(Q)) for

each maximal ideal (p) 2 Q[z; z¡1] which is invariant under the involution
z 7! z¡1. The generator p is often called an Alexander polynomial. The
division ring E coincides with the quotient fleld Q[z; z¡1]=(p) and W 1(E) is
the Witt group of hermitian forms over E (compare Milnor [37]).

The following theorem and corollary are restated and proved in Section 3;
see Theorem 3.2 and Corollary 3.3.

Theorem 1.1. The invariants (and secondary invariants) deflned in Sec-
tion 3 are su–cient to distinguish the elements of the Witt groups W §(F lk(Q))
of Blanchfleld-Duval forms with coe–cients in Q.

Corollary 1.2. Let q > 1 and suppose `0 and `1 are the Blanchfleld-Duval
forms for the (2q¡1)-dimensional F„-links (L0; µ0) and (L1; µ1) respectively.
These two F„-links are cobordant if and only if all the invariants (and pos-
sible secondary invariants) of

[Q›Z (`0 ' ¡`1)] 2 W (¡1)q+1
(F lk(Q))

deflned in Section 3 are trivial.

Corollary 1.2 follows from (4) and the fact that the canonical map

W (¡1)q+1
(F lk(Z)) ! W (¡1)q+1

(F lk(Q))

is an injection, which we deduce from Theorem 1.3 at the end of Section 3.1.
Corollary 1.2 is also a consequence of Theorem 1.4 and Theorem B of [51].

Our second aim is to understand the algebraic relationship between the
Seifert forms and the Blanchfleld-Duval form of an F„-link and prove that
the cobordism invariants deflned in [51] using Seifert forms are equivalent
to those deflned in Section 3 via the Blanchfleld-Duval form. Example 4.3
gives a sample calculation of the Seifert form invariants in [51].

In the knot theory case „ = 1, the relationship between Seifert and
Blanchfleld forms has been investigated extensively by Kearton [23], Levine [33,
x14], Farber [15, x7.1] and Ranicki ([43, ch32],[44]). For „ ‚ 1 K.H.Ko [28]
used geometric arguments to obtain a formula for Cappell and Shaneson’s
homology surgery obstruction in terms of the Seifert form. A formula for
the Blanchfleld-Duval form in terms of the Seifert form, again based on geo-
metric arguments, can also be found in Cochran and Orr [7, Thm4.2] in the
slightly more general context of \homology boundary links".

M.Farber related Seifert and Blanchfleld-Duval forms of F„-links in a
purely algebraic way [16, 17]. Although the present paper is logically inde-
pendent of his work, we take up a number of his ideas in Sections 4 and 5,
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providing a systematic treatment in the language of hermitian categories.
Whereas Farber takes coe–cients in a fleld or in Z, in these sections we
allow the coe–cients to lie in an arbitrary associative ring A.

The flrst step is to show that an F„-link module admits a canonical
Seifert module structure (cf [16, p193]). An F„-link module M 2 F lk(A) is
not in general flnitely generated (or projective) as an A-module so we intro-
duce a larger category Sei1(A) which contains Sei(A) as a full subcategory
(see Notation 4.1). We obtain a \forgetful" functor

U : F lk(A) ! Sei1(A):

For example, in the case „ = 1 of knot theory, an object in F lk(A) is a
module M over the ring A[z; z¡1] of Laurent polynomials with a presentation

0 ! (A[z; z¡1])m ¾¡! (A[z; z¡1])m ! M ! 0

such that 1 ¡ z : M ! M is an isomorphism. The Seifert module U(M) is
the A-module M together with the endomorphism (1 ¡ z)¡1.

If A = k is a fleld, Farber deflned, for each M 2 F lk(k), the \minimal
lattice" [16, p194-199] of M , a Seifert submodule of U(M) which is of flnite
k-dimension. We prefer to work directly with U(M) which is deflned regard-
less of the coe–cients and avoids technicalities of Farber’s deflnition. His
minimal lattice becomes isomorphic to U(M) after one performs a universal
localization of categories which we describe a few paragraphs below.

Given a Seifert surface for an F„-link one can construct the free cover by
cutting the link complement along the Seifert surface and gluing together
inflnitely many copies of the resulting manifold in the pattern of the Cayley
graph of F„. Figure 1 illustrates the geometric construction in the case of a
2-component link.

The algebraic analogue of this geometric construction is a functor

B : Sei(A) ! F lk(A)

from Seifert modules to F„-link modules (see Deflnition 5.1). Since U

takes values in the larger category Sei1(A) we expand the domain of B

to Sei1(A), by necessity replacing F lk(A) by a larger category F lk1(A).
This process of enlargement stops here for there are functors

U : F lk1(A) ! Sei1(A)

B : Sei1(A) ! F lk1(A):
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Figure 1

We show in Section 5.2 that B is left adjoint to U . Roughly speaking,
this means that B(V ) is the \free" F„-link module generated by the Seifert
module V (with respect to the functor U). In other words, B is universal (up
to equivalence) among functors from Seifert modules to F„-link modules.

Returning our attention to the subcategories Sei(A) and F lk(A) whose
deflnitions involve a \flnitely generated projective" condition we show that
B is compatible with the notions of duality in Sei(A) and F lk(A), extending



D.Sheiham 151

B to a \duality-preserving functor" between \hermitian categories"

(B; '; ¡1) : Sei(A) ! F lk(A): (5)

(see deflnitions 2.13 and 2.24 and proposition 5.4). The following theorem
concerns the induced homomorphism of Witt groups:

B : W §(Sei(A)) ! W ¤(F lk(A)): (6)

Recall that by Wedderburn’s Theorem, a ring A is semi-simple and Artinian
if and only if it is a product of matrix rings over division rings.

Theorem 1.3. If A is a semi-simple Artinian ring then (6) is an isomor-
phism.

The map (6) will be considered for more general rings A in subsequent work
(joint with A.Ranicki) [46]. It follows from the isomorphisms (3) and (4)
above that (6) is an isomorphism when A = Z.

Theorem 1.4. The duality-preserving functor (B; '; ¡1) identifles the Seifert
form invariants of [51] with the Blanchfleld-Duval form invariants of Sec-
tion 3.

Theorem 6.5 below is a more precise statement of Theorem 1.4. The
invariants of [51] are outlined in Section 4.3. Theorem 1.3 is proved in
two stages. The flrst stage is to establish that, for any ring A, there is an
equivalence between (B; '; ¡1) and a certain universal localization of her-
mitian categories. Taking up Farber’s terminology we call a Seifert module
V 2 Sei1(A) primitive if B(V ) »= 0. We denote by Prim1(A) the category
of primitive modules. One may write

Prim1(A) = Ker( B : Sei1(A) ! F lk1(A) ):

The category quotient

F : Sei1(A) ! Sei1(A)=Prim1(A) (7)

is universal among functors which make invertible morphisms whose kernel
and cokernel are primitive. In particular, primitive modules in Sei1(A) are
made isomorphic to 0 in Sei1(A)=Prim1(A).

Since B : Sei1(A) ! F lk1(A) is left adjoint to U it follows that B

exhibits the same universal property as F although only \up to natural
isomorphism" (Proposition 5.14). We conclude that B is equivalent to F
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and, with a little extra work, establish that (B; '; ¡1) : Sei(A) ! F lk(A) is
equivalent to a universal localization of hermitian categories (Theorem 5.17
and Proposition 5.22).

In the knot theory case „ = 1 the category Sei1(A) coincides with
the category of (left) modules over the polynomial ring A[s] in a central
indeterminate s. Setting t = s(1 ¡ s), the functor (7) is the central localiza-
tion A[s; t¡1] ›A[s] from the category of A[s]-modules to the category of
A[s; t¡1]-modules; see Farber [15, Thm2.6] and Ranicki [44].

Pere Ara recently gave an independent proof [2, Thm 6.2] using Farber’s
minimal lattice that if A = k is a fleld then F lk(k) is equivalent to a local-
ization of Sei(k) by a category of primitive modules (for all „ ‚ 1)4.

The second stage in the proof of Theorem 1.3 involves the analysis of
primitive modules. A Seifert module V is called \trivially primitive" if
the endomorphism with which it is endowed is either zero or the identity.
In Proposition 5.28 we show that every primitive module V 2 Prim1(A)
is composed of (possibly inflnitely many) trivially primitive modules. Re-
stricting attention to Sei(A) we show that if A is semi-simple and Artinian
then every primitive module is composed of flnitely many trivially primitive
modules in Sei(A) (cf Farber [17, x3,x7.10]). The proof of Theorem 1.3 is
completed in Section 6.1 by establishing that the Witt group of the subcat-
egory Prim(A) ‰ Sei(A) of primitive modules is trivial. See Proposition 6.3
and part 2. of Lemma 6.4.

The deflnitions of Blanchfleld-Duval form invariants in Section 3 parallel
the author’s Seifert form invariants in [51, Ch2]. The three steps outlined
above to analyze W §(F lk(Q)) were applied to W §(Sei(Q)) in [51]. The-
orem 1.4 is proved in Section 6.2 by checking that the duality-preserving
functor (B; '; ¡1) respects each of these three steps.

Let us summarize the contents of this paper. Section 2 discusses F„-
link modules over an arbitrary ring A and uses universal localization (cf
Vogel [54, 55] and Duval [14]) to describe hermitian structure in the category
F lk(A). We deflne the Witt groups W §(F lk(A)) of Blanchfleld-Duval forms.

In Section 3 we set A = Q and deflne invariants of W §(F lk(Q)), obtain-

4His context difiers slightly in that the free algebra khXi on a set X = fx1; ¢ ¢ ¢ ; x„g
takes the place of the group ring k[F„] in the present paper; the category denoted Z in [2]
plays the role of F lk(k). Consequently, there is only one kind of \trivially primitive"
module (denoted M0 in [2]) as compared with the two kinds in [17] and Section 5.5 below.
Ara also related the modules in Z to modules over the Leavitt algebra L. By deflnition, L

is the universal localization of khXi which makes invertible the map (x1 ¢ ¢ ¢ x„) : khXi„ !
khXi (compare the Sato condition, Lemma 2.3 below). The category Z turns out to be
equivalent to the category of flnitely presented L-modules of flnite length.
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ing intrinsic cobordism invariants for F„-links. We discuss each of the steps
1-3. listed above, reformulating and proving Theorem 1.1 and Corollary 1.2.

In Section 4 we deflne Seifert modules and Seifert forms with coe–cients
in an arbitrary ring A. We treat a worked example of the invariants deflned
in [51] and we deflne a forgetful functor U : F lk1(A) ! Sei1(A).

Section 5 begins to study the functor B : Sei1(A) ! F lk1(A) from
Seifert modules to F„-link modules. We prove that B is left adjoint to
U : F lk1(A) ! Sei1(A) and show that B factors through a category
equivalence Sei1(A)=Prim1(A) ! F lk1(A). We describe the structure of
the primitive modules { those which are sent to zero by B { and outline
a construction of the localization Sei1(A) ! Sei1(A)=Prim1(A). We
construct a duality-preserving functor (B; '; ¡1) : Sei(A) ! F lk(A) which
is natural in A and factors through an equivalence Sei(A)=Prim1(A) !
F lk(A) of hermitian categories. If A is a semi-simple Artinian ring we give a
simplifled description of the primitive modules and the universal localization
of hermitian categories.

Section 6 contains a proof of Theorem 1.3 and a reformulation and proof
of Theorem 1.4.
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my thesis work at the University of Edinburgh under the guidance of Andrew
Ranicki. I am also indebted to Andrew for several more recent conversations
and e-mails and for encouragement to complete this paper. I am grateful to
John Baez and James Dolan for helpful discussions in category theory, and
to Pere Ara and to the referee for their comments and corrections.

I thank the London Mathematical Society for flnancial support to at-
tend the ICMS workshop on \Noncommutative Localization in Algebra and
Topology" in April 2002 and the Edinburgh Mathematical Society who fl-
nanced my visit to Edinburgh in August 2002.

2 The Blanchfleld-Duval form

2.1 F„-link Modules

Let A be an associative ring with 1. Modules will be left modules except
where otherwise stated. Let A[F„] denote the group ring of the free group
F„; an element of A[F„] is a formal sum of elements of F„, with coe–cients
in A. Note that elements of the group F„ commute with elements of A and
A[F„] »= A ›Z Z[F„].
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The symbols † and j will be used for three slightly distinct purposes but
the meaning will be clear from the context. Firstly, j denotes the inclusion
of A in A[F„]. Secondly j denotes the functor V 7! A[F„] ›A V from
the category of A-modules to the category of A[F„]-modules. For brevity
we write V [F„] in place of A[F„] ›A V . Thirdly, we use j to denote the
inclusion of a module V in V [F„] given by

V »= A ›A V
j›1¡¡! A[F„] ›A V = V [F„]:

In the opposite direction † : A[F„] ! A denotes the ring morphism which
sends every element of F„ to 1 2 A and is the identity on A. We also write
† for the functor A ›A[F„] from the category of A[F„]-modules to the
category of A-modules. Thirdly, † : V [F„] ! V denotes the morphism

V [F„] = A[F„] ›A V
†›1¡¡! A ›A V »= V:

Note that the composite †j of ring morphisms is the identity idA and the
composite †j of module morphisms is the identity on V . The composite
†j of functors is naturally isomorphic to the identity functor on A-modules
and we sometimes suppress the natural isomorphism identifying A ›A[F„]

(A[F„] ›A V ) with V .

Deflnition 2.1. An F„-link module is an A[F„]-module M which lies in an
exact sequence:

0 ! V [F„]
¾¡! V [F„] ! M ! 0 (8)

such that V is an A-module and †(¾) : V ! V is an isomorphism.

As we remarked in the introduction, the examples of F„-link modules
in the literature are more often called \link modules". Note that if V is a
flnitely generated A-module then the F„-link module M is flnitely generated
as an A[F„]-module but usually not as an A-module (see Lemma 2.3 below).

It will be helpful to make the following observation about the deflnition
of F„-link modules: The condition that †(¾) is an isomorphism implies that
¾ is an injection (see Lemma 2.8 below).

Notation 2.2. Let F lk1(A) denote the category of F„-link modules and
A[F„]-module homomorphisms. Thus F lk1(A) is a full subcategory of the
category of A[F„]-modules.

Let F lk(A) ‰ F lk1(A) denote the category of modules with a presenta-
tion (8) such that V is a flnitely generated projective A-module and †(¾) is
an isomorphism. The morphisms in F lk(A) are, as usual, the A[F„]-module
morphisms so F lk(A) is a full subcategory of F lk1(A).
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We show in Lemma 2.9 below that F lk1( ) and F lk( ) are functorial
in A. The following lemma gives an alternative characterization of F„-link
modules. Let z1; ¢ ¢ ¢ ; z„ denote generators for F„.

Lemma 2.3. (Sato [47]) Suppose M is an A[F„]-module which has a pre-
sentation

0 ! V [F„]
¾¡! V 0[F„] ! M ! 0: (9)

for some A-modules V and V 0. The augmentation †(¾) : V ! V 0 is an
isomorphism if and only if the A-module homomorphism

° : M'„ ! M

(m1; ¢ ¢ ¢ ; m„) 7!
„X

i=1

(1 ¡ zi)mi

(10)

is an isomorphism.

Proof. There is an exact sequence

0 ! (A[F„])'„ °¡! A[F„]
†¡! A ! 0 (11)

where °(l1; ¢ ¢ ¢ ; l„) =
P„

i=1(1 ¡ zi)li for all l1; ¢ ¢ ¢ ; l„ 2 A[F„]. Now (11) is
split (by j) when regarded as a sequence of right A-modules so the functors

›A V and ›A V 0 lead to a commutative diagram

0

²²

0

²²

0

²²

0 // (V [F„])'„ ¾'„
//

1›°
²²

(V 0[F„])'„ //

1›°
²²

M'„

°
²²

// 0

0 // V [F„]
¾ //

†
²²

V 0[F„] //

†
²²

M

²²

// 0

0 // V
†(¾)

//

²²

V 0 //

²²

0

0 0

in which the flrst two rows and the flrst two columns are exact. A standard
diagram chase (e.g. [36, p49]) shows that the third row is exact if and only
if the third column is exact and the Lemma follows.

We discuss next completions of A[F„]-modules, which we shall need both
to reflne Deflnition 2.1 (in Lemma 2.8) and later to study the universal
augmentation localization of A[F„] (see Lemma 2.15).
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Let I = Ker(† : A[F„] ! A). If N is an A[F„]-module one deflnes

bN = lim¡̂
n

N

InN
:

An A[F„]-module morphism N ! N 0 maps InN to InN 0 for each n and

therefore induces a homomorphism bN ! cN 0.

Caveat 2.4. The natural isomorphisms (A[F„]=In) ›A[F„] N ! N=(InN)

induce a map \A[F„]›N ! bN but the latter is not in general an isomorphism.

In the examples with which we are most concerned, N = V [F„] =

A[F„] ›A V for some A-module V . One can describe \V [F„] as a module
of power series as follows. Let X = fx1; ¢ ¢ ¢ ; x„g and let ZhXi denote the
free ring generated by X (in other words the ring of \polynomials" in non-
commuting indeterminates x1; ¢ ¢ ¢ ; x„). Let AhXi = A ›Z ZhXi so that
the elements of A are formal sums of words in the alphabet X with coef-
flcients in A. Let V hXi be the AhXi-module AhXi ›A V and denote by
XnV hXi ‰ V hXi the submodule whose elements are formal sums of words
of length at least n with coe–cients in V . We may now deflne the X-adic
completion

V hhXii = lim¡̂
n

V hXi
XnV hXi :

in which an element is a formal power series in non-commuting indetermi-
nates x1; ¢ ¢ ¢ ; x„ with coe–cients in V .

Lemma 2.5. There is a natural isomorphism V hhXii »= \V [F„].

Proof. The required isomorphism is induced by the isomorphisms

V [F„]

InV [F„]
»= V hXi

XnV hXi
zi 7! 1 + xi

z¡1
i 7! 1 ¡ xi + x2

i ¢ ¢ ¢ + (¡1)n¡1xn¡1
i

Lemma 2.6. If V is an A-module, the canonical map V [F„] ! \V [F„] is an
injection.

Proof. The argument of Fox [19, Corollary 4.4] implies that
1\

n=0

InV [F„] = 0

and the Lemma follows.
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Lemma 2.7. If V is an A-module and ¿ : V [F„] ! V [F„] is an A[F„]-
module morphism such that †(¿) = 0 : V ! V then ¿(V [F„]) ‰ IV [F„] and

the map 1 + ¿ : \V [F„] ! \V [F„] is invertible.

Proof. The commutative diagram

V [F„]

†
²²

¿ // V [F„]

†
²²

V
†(¿)

// V

implies that if †(¿) = 0 then

¿(V [F„]) µ Ker(† : V [F„] ! V ) = Ker(† › 1 : A[F„] ›A V ! A ›A V )

Since the surjection † : A[F„] ! A is split by j we obtain

¿(V [F„]) µ I ›A V = I(A[F„] ›A V ) = IV [F„]:

By induction, ¿n(V [F„]) ‰ InV [F„] for all n so 1 + ¿ : \V [F„] ! \V [F„] has
inverse

(1 + ¿)¡1 = 1 ¡ ¿ + ¿2 ¡ ¿3 + ¢ ¢ ¢ :

Lemma 2.8. If V and V 0 are A-modules and ¾ : V [F„] ! V 0[F„] is an
A[F„]-module homomorphism such that †(¾) : V ! V 0 is an isomorphism

then ¾ is an injection and the induced map ¾ : \V [F„] ! \V 0[F„] is an iso-
morphism.

Proof. Let ¾0 = (j†(¾))¡1¾ : V [F„] ! V [F„]. Now †(¾0) = 1V [F„] so we may

write ¾0 = 1 + ¿ where †(¿) = 0. Now ¾0 : \V [F„] ! \V [F„] is an isomorphism

by Lemma 2.7 so ¾ : \V [F„] ! \V 0[F„] is an isomorphism. The commutative
diagram

V [F„]
²²

²²

¾0
// V [F„]

²²

²²

\V [F„]
¾0

// \V [F„]

implies that ¾0 : V [F„] ! V [F„] and ¾ : V [F„] ! V 0[F„] are injections.

Lemma 2.9. A homomorphism A ! A0 of rings induces functors

A0[F„] ›A[F„] : F lk1(A) ! F lk1(A0) and

A0[F„] ›A[F„] : F lk(A) ! F lk(A0)
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Proof. If M 2 F lk1(A) then M has a presentation (8) such that †(¾) is
invertible. Applying A0[F„] ›A[F„] one obtains an exact sequence

A0[F„] ›A[F„] V [F„]
1›¾¡¡! A0[F„] ›A[F„] V [F„] ! A0[F„] ›A[F„] M ! 0:

The naturality of the identiflcations A0 ›A (A ›A[F„] V [F„]) »= A0 ›A V »=
A0 ›A0[F„] (A0[F„] ›A[F„] V [F„]) implies that †(1 › ¾) = 1 › †(¾) : A0 ›A V !
A0 ›A V . But 1› †(¾) is an isomorphism so 1› ¾ is injective by Lemma 2.8.
Thus A0[F„]›A[F„] M 2 F lk1(A0). The argument for F lk( ) is similar, for
if V is a flnitely generated projective A-module then A0 ›A V is a flnitely
generated projective A0-module.

2.2 Hermitian Categories

Recall that an involution on a ring A is a map A ! A; a 7! a such that a = a,
a + b = a + b and (ab) = ba for all a; b 2 A. If A is a ring with involution
then the category F lk(A) can be endowed with a notion of duality. But let
us begin with simpler examples:

Example 2.10. Suppose A is a ring with an involution. Let A-Proj denote
the category of flnitely generated projective (left) A-modules. There is a
duality functor deflned on modules by V 7! V ⁄ = Hom(V; A) for V 2 A-Proj
and on morphisms by f 7! f⁄ = – f : (V 0)⁄ ! V ⁄ for f 2 HomA(V; V 0).
In short,

⁄ = HomA( ; A) : A-Proj ! A-Proj:

Note that HomA(V; A) is a left A-module with

(a:»)(x) = »(x)a

for all a 2 A, » 2 HomA(V; A) and x 2 V .

Example 2.11. The category of flnite abelian groups admits the duality
functor

^ = ExtZ( ;Z): (12)

A flnite abelian group M bears similarity to an F -link module in that
there exists a presentation

0 ! Zn ¾¡! Zn ! M ! 0 (13)

and 1 › ¾ : Q ›Z Zn ! Q ›Z Zn is an isomorphism. A more explicit
description of the duality functor in Example 2.11 is the following:



D.Sheiham 159

Lemma 2.12. There is a natural isomorphism

ExtZ( ;Z) »= HomZ

µ
;
Q
Z

¶
:

Proof. Suppose M is a flnite abelian group. The short exact sequence

0 ! Z ! Q ! Q=Z ! 0

gives rise to a long exact sequence

0 = Hom(M;Q) ! Hom(M;Q=Z) ! Ext(M;Z) ! Ext(M;Q) ! ¢ ¢ ¢

which is natural in M . The presentation (13) implies that

Ext(M;Q) = Coker(Hom(Zn;Q)
¾⁄¡! Hom(Zn;Q)) = 0

so Hom(M;Q=Z) ! Ext(M;Z) is an isomorphism.

The following general deflnition subsumes Examples 2.10 and 2.11 and
the category F lk(A) which we wish to study:

Deflnition 2.13. A hermitian category is a triple (C; ⁄; i) where

† C is an additive category,

† ⁄ : C ! C is an (additive) contravariant functor and

† (iV )V 2C : id ! ( ⁄)⁄ = ⁄⁄ is a natural isomorphism such that
i⁄
V iV ⁄ = idV ⁄ for all V 2 C.

The functor ⁄ is called a duality functor. We usually abbreviate
(C; ⁄; i) to C and identify V with V ⁄⁄ via iV . It follows from Deflnition 2.13
that if C is an abelian hermitian category then ⁄ is an equivalence of cat-
egories and hence respects exact sequences.

If A is a ring with involution then there is a unique involution on A[F„]
such that g = g¡1 for each g 2 F„ and such that the inclusion of A in
A[F„] respects the involutions. The category of flnitely generated projective
A[F„]-modules therefore admits a duality functor as in Example 2.10.

Returning to F lk(A), duality is deflned in a manner analogous to Ex-
ample 2.11.

Deflnition 2.14. Deflne ^ = ExtA[F„]( ; A[F„]) : F lk(A) ! F lk(A).
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Note that if M has presentation (8) then M^ = ExtA[F„](M; A[F„]) has
presentation

0 ! (V [F„])⁄ ¾⁄¡! (V [F„])⁄ ! M^ ! 0

where (V [F„])⁄ = HomA[F„](V [F„]; A[F„]) »= HomA(V; A)[F„] = V ⁄[F„]; see
Lemma 2.17 and Remark 2.18 below. The natural isomorphism

V [F„] ! (V [F„])⁄⁄

induces a natural isomorphism iM : M ! M^^ with i^
M iM^ = idM^ .

There is also a more explicit description of M^ which is analogous to
Lemma 2.12; see Lemma 2.17 below. Unlike Z, the ring A[F„] is in general
highly non-commutative so universal localization will be required.

2.3 Universal Localization

Let R be a ring (associative with unit) and let § be a set of (isomorphism
classes of) triples (P1 ; P0 ; ¾ : P1 ! P0) where P0 and P1 are flnitely
generated projective R-modules. In our application R will be A[F„] and §
will contain the endomorphisms ¾ : V [F„] ! V [F„] such that V is flnitely
generated and projective as an A-module and †(¾) is an automorphism of
V .

A homomorphism ” : R ! S is said to be §-inverting if

1 › ¾ : S › P1 ! S › P0

is invertible for each morphism ¾ 2 §. There exists a universal §-inverting
homomorphism5 which, for consistency with the other papers in the volume,
will be denoted i§ : R ! R§. The universal property is that every §-
inverting homomorphism ” : R ! S may be written uniquely as a composite

R
i§¡! R§

”¡! S;

If R is commutative and each ¾ 2 § is an endomorphism then the localiza-
tion is the ring of fractions

R§ = RS = fp=q j p 2 R; q 2 Sg
whose denominators lie in the multiplicative set S µ R generated by the
determinants of the morphisms in §:

S =

(
rY

i=1

det(¾i) j r 2 Z; r ‚ 0; ¾i 2 §

)

5The ring R§ was denoted §¡1R in [51]
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More general constructions of i§ may be found in [49, Ch4], [9, p255] or [11].

If R = A[F„] and § is deflned as above, the inclusion of A[F„] in \A[F„]
is §-inverting; see Lemmas 2.6 and 2.8. By the universal property of A[F„]§
there is therefore a commutative diagram

A[F„]
44

i§ // A[F„]§
°

// \A[F„] »= AhhXii : (14)

where the natural isomorphism \A[F„] »= AhhXii is deflned as in Lemma 2.5.
The image of ° is the ring ArathhXii of rational power series (see [50, x4]).

If A is a fleld or a principal ideal domain then ° is known to be injective so
A[F„]§ can be identifled with ArathhXii (Cohn and Dicks [12, p416], Dicks
and Sontag [13, Thm 24], Farber and Vogel [18]). In the knot theory case
„ = 1, if A is commutative then the localization is a ring of fractions

A[F1]§ »= fp=q j p; q 2 A[z; z¡1]; q(1) is invertibleg »= Arat[[x]]:

and ° is injective. However, there exist non-commutative rings A such that
° is not injective [50, Prop 1.2].

Diagram (14) and Lemma 2.6 imply:

Lemma 2.15. The localization i§ : A[F„] ! A[F„]§ is injective.

The following is a generalization of Lemma 2.8:

Lemma 2.16. If i§ : R ! R§ is injective then each ¾ 2 § is injective.

Proof. Suppose ¾ : P1 ! P0 is in §. There is a commutative diagram

R ›R P1
i§›1

//

1›¾

²²

R§ ›R P1

1›¾

²²

R ›R P0 i§›1
// R§ ›R P0

and 1 › ¾ : R§ ›R P1 ! R§ ›R P0 is an isomorphism. If i§ is injective then
1 › ¾ : R ›R P1 ! R ›R P0 is also injective so ¾ is injective.

Lemma 2.17. Suppose i§ : R ! R§ is an injection and M = Coker(¾)
with ¾ 2 §.

1. The (right) R-module M^ = ExtR(M; R) is isomorphic to Coker(¾⁄).

2. There is a natural isomorphism ExtR(M; R) »= HomR(M; R§=R).
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If R has involution one can regard these right modules as left modules.

Proof of Lemma 2.17. (Compare Example 2.11).
1. By Lemma 2.16, the map ¾ is injective so M has presentation

0 ! P1
¾¡! P0 ! M ! 0: (15)

There is therefore an exact sequence

P ⁄
0

¾⁄¡! P ⁄
1 ! ExtR(M; R) ! ExtR(P0; R) = 0

2. The short exact sequence of (R; R)-bimodules

0 ! R ! R§ ! R§=R ! 0

induces a long exact sequence of right R-modules

¢ ¢ ¢ ! HomR(M; R§) ! HomR(M; R§=R)

! ExtR(M; R) ! ExtR(M; R§) ! ¢ ¢ ¢
which is natural in M . It remains to prove that HomR(M; R§) = ExtR(M; R§) =
0. The presentation (15) gives rise to the long exact sequence

0 ! HomR(M; R§) ! HomR(P0; R§)
¾⁄¡! HomR(P1; R§)

! ExtR(M; R§) ! 0:

There is a natural isomorphism

HomR§
(R§ ›R ; R§) ! HomR(R ›R ; R§)

induced by i§ : R ! R§ and, in particular, a commutative diagram

HomR§
(R§ ›R P0; R§)

(id ›¾)⁄
//

»=
²²

HomR§
(R§ ›R P1; R§)

»=
²²

HomR(P0; R§)
¾⁄

// HomR(P1; R§)

(16)

The upper horizontal arrow is an isomorphism since id ›¾ is an isomorphism
so the lower horizontal arrow is also an isomorphism. Thus

HomR(M; R§) = ExtR(M; R§) = 0

as required.
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Remark 2.18. If R ! R§ is injective and ¾ 2 § then the sequence 0 !
P1

¾¡! P0
q¡! M ! 0 is exact by Lemma 2.16. Now Lemma 2.17 gives an

exact sequence

P ⁄
0

¾⁄¡! P ⁄
1

q0
¡! HomR(M; R§=R) ! 0:

Let us give an explicit formula for q0. There is a short exact sequence of
right R-module chain complexes

0 // HomR(P0; R) //

¾⁄
²²

HomR(P0; R§) //

¾⁄ »=
²²

HomR(P0; R§=R) //

¾⁄
²²

0

0 // HomR(P1; R) // HomR(P1; R§) // HomR(P1; R§=R) // 0

and the natural isomorphism

ExtR(M; R) =
HomR(P1; R)

Image(¾⁄)
¡! HomR(M; R§=R)

is inverse to the boundary map in the induced long exact homology sequence
from the kernel of the right-most ¾⁄ to the cokernel of the left-most ¾⁄.
Written out at length, the map q0 : P ⁄

1 ! HomR(M; R§=R) is the composite

HomR(P1; R) ! HomR§
(R§ › P1; R§)

»=¡̂¡¡¡¡
(id ›¾)⁄

HomR§
(R§ › P0; R§)

»=¡! HomR(P0; R§) ! HomR(P0; R§=R);

the image of which lies in the submodule HomR(M; R§=R) ‰ Hom(P0; R§=R).
Suppose f 2 P ⁄

1 = HomR(P1; R) and m 2 M . Choose x 2 P0 such that
q(x) = m and write 1 › x 2 R§ › P0. Now

q0(f)(m) = (id ›f)
¡
(id ›¾)¡1(1 › x)

¢ 2 R§=R:

Combining Lemmas 2.17 and 2.15 we have

Proposition 2.19. There is a natural isomorphism of contravariant func-
tors

ExtA[F„]( ; A[F„]) »= HomA[F„]( ; A[F„]§=A[F„]) : F lk(A) ! F lk(A):
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2.4 Hermitian forms and the Witt group

As we noted in the introduction (equations (3) and (4)), the cobordism
group Cn(F„) can be identifled with a Witt group of Seifert or Blanchfleld-
Duval forms. Let us recall the deflnition of a hermitian form in a hermitian
category and the appropriate deflnition of Witt group.

Deflnition 2.20. Let ‡ = 1 or ¡1. A ‡-hermitian form in a hermitian
category (C; ⁄; i) is a pair (V; `) where ` : V ! V ⁄ and `⁄iV = ‡`. If ` is
an isomorphism then ` is called non-singular.

For example, in the category F lk(A) a ‡-hermitian form is an A[F„]-
module isomorphism ` : M ! M^ = Hom(M; A[F„]§=A[F„]) such that
`^ = ‡` (we suppress the natural isomorphism iM ).

Deflnition 2.21. An object V in a hermitian category (C; ⁄; i) is called
self-dual if V is isomorphic to V ⁄. If there exists a non-singular ‡-hermitian
form (V; `) then V is called ‡-self-dual.

When one has a suitable notion of exact sequences in a hermitian cat-
egory one can deflne the Witt group of the category. For simplicity, sup-
pose C is a full subcategory of an abelian category A, so that every mor-
phism in C has kernel, image and cokernel in A. Suppose further that
C is admissible in A in the following sense: If there is an exact sequence
0 ! V ! V 0 ! V 00 ! 0 and the modules V and V 00 lie in C then V 0 lies in
C. In Section 4 below we consider a Serre subcategory of an abelian category
which is deflned by V 0 2 C if and only if V 2 C and V 00 2 C. For the present
we maintain greater generality; in particular an admissible subcategory C is
not required to be an abelian category.

Deflnition 2.22. Let ‡ = 1 or ¡1. A non-singular ‡-hermitian form (V; `)
is called metabolic if there is a submodule L ‰ V such that i) L and V=L

are in C and ii) L = L?. By deflnition L? = Ker(j⁄` : V ! L⁄) where
j : L ! V is the inclusion.

Deflnition 2.23. The Witt group W ‡(C) is the abelian group with one
generator [V; `] for each isomorphism class of non-singular ‡-hermitian forms
(V; `) 2 C subject to relations

(
[V 0; `0] = [V; `] + [V 00; `00]; if (V 0; `0) »= (V; `) ' (V 00; `00)
[V; `] = 0; if (V; `) is metabolic:
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Two forms represent the same Witt class [V; `] = [V 0; `0] if and only if there
exist metabolic forms (H; ·) and (H 0; ·0) such that

(V ' H; ` ' ·) »= (V 0 ' H 0; `0 ' ·0):

For example, a non-singular ‡-hermitian form ` : Z2n ! Z2n in the
category Z-proj (see Example 2.10) is metabolic if there exists a summand
L »= Zn with `(L)(L) = 0.

In the category F lk(A) a metabolizer L for a form ` : M ! M^ need
not be a summand but L and M=L must lie in F lk(A) and one must have
`(L)(L) = 0 and `(x)(L) 6= 0 if x =2 L. Now that the notation is deflned,
we repeat equation (4):

C2q¡1(F„) »= W (¡1)q+1
(F lk(Z)): (q ‚ 3) (17)

2.5 Duality-preserving functors

A functor between hermitian categories which respects their structure is
called duality-preserving. Our flrst examples will be functors induced by a
morphism of rings with involution. Duality-preserving functors will also play
an essential role in later sections (see Theorem 1.3 above and Theorem 3.19
below).

Deflnition 2.24. A duality-preserving functor from (C; ⁄; i) to (D; ⁄; i)
is a triple (G; “; ·) where

† G : C ! D is a functor,

† “ = (“V )V 2C : G( ⁄) ! G( )⁄ is a natural isomorphism,

† · = 1 or ¡1

such that

“⁄
V iG(V ) = ·“V ⁄G(iV ) : G(V ) ! G(V ⁄)⁄ (18)

for all V 2 C.

We sometimes abbreviate (G; “; ·) to G.

Deflnition 2.25. The composite of duality-preserving functors is deflned
by

(G; “; ·) – (G0; “0; ·0) = (GG0; “G(“0); ··0): (19)
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Example 2.26. A homomorphism ” : A ! A0 of rings with involution in-
duces a duality-preserving functor (A0 ›A ; ƒ; 1) from the category A-Proj
of flnitely generated projective A-modules to the category A0-Proj of flnitely
generated projective A0-modules. Explicitly

ƒV : A0 ›A (V ⁄)
»=¡! (A0 ›A V )⁄

a0
1 › µ 7! (a0

2 › x 7! a0
2”(µ(x))a0

1):
(20)

for all a0
1; a0

2 2 A0, µ 2 V ⁄ and x 2 V .

We are particularly concerned with the category F lk(A):

Lemma 2.27. A homomorphism ” : A ! A0 of rings with involution in-
duces a canonical duality-preserving functor

(A0[F„] ›A[F„] ; ¤; 1) : F lk(A) ! F lk(A0):

The natural isomorphism ¤ : A0[F„] ›A[F„]
^ ! (A0[F„] ›A[F„] )^ will

be deflned in the course of the proof.

Proof. We saw in Lemma 2.9 that there is a functor A0[F„] ›A[F„] from
F lk(A) to F lk(A0). The dual M^ of a module M 2 F lk(A) has presentation

0 ! (V [F„])⁄ ¾⁄¡! (V [F„])⁄ ! M^ ! 0

(see Remark 2.18). Applying Example 2.26 to ” : A[F„] ! A0[F„] one
obtains a natural isomorphism

ƒV [F„] : A0[F„] ›A[F„] (V [F„])⁄ »= (A0[F„] ›A[F„] V [F„])⁄

and hence a commutative diagram

0 // A0[F„] ›A[F„] (V [F„])⁄ //

»=
²²

A0[F„] ›A[F„] (V [F„])⁄

»=
²²

// A0[F„] ›A[F„] M^ //

¤M
²²

0

0 // (A0[F„] ›A[F„] V [F„])⁄ // (A0[F„] ›A[F„] V [F„])⁄ // (A0[F„] ›A[F„] M)^ // 0:

We must check that the induced isomorphism

¤M : A0[F„] ›A[F„] M^ ! (A0[F„] ›A[F„] M)^

is independent of the choice of presentation ¾ and that ¤ is natural with
respect to M . If C denotes the chain complex V [F„]

¾¡! V [F„] and C 0 denotes
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an alternative choice of resolution for M , say C 0 = (V 0[F„]
¾0¡! V 0[F„]) then

the identity map id : M ! M lifts to a chain equivalence C ! C 0. The
naturality of ƒ in Example 2.26 implies that the diagram

A0[F„] › C⁄ //

²²

A0[F„] › (C 0)⁄

²²

(A0[F„] › C)⁄ // (A0[F„] › C 0)⁄

commutes. The horizontal arrows induce the identity map on A0[F„] ›
M^ and (A0[F„] › M)^ respectively, so the vertical arrows induce the same
map ¤M . The naturality of ¤ follows similarly from the naturality of the
transformation ƒ in Example 2.26.

Remark 2.28. Identifying M^ with Hom(M; A[F„]§=A[F„]) by Proposi-
tion 2.19, an explicit formula for ¤M is

¤M : A0[F„] ›A[F„] Hom

µ
M;

A[F„]§
A[F„]

¶
! Hom

µ
A0[F„] ›A[F„] M ;

A0[F„]§
A0[F„]

¶

a0
1 › µ 7! (a0

2 › m 7! a0
2”(µ(m))a0

1)

We conclude this section by noting the efiect of duality-preserving func-
tor on Witt groups:

Lemma 2.29. A duality-preserving functor (G; “; ·) : C ! D which respects
exact sequences induces a homomorphism of Witt groups

G : W ‡(C) ! W ‡·(D)

[V; `] 7! [G(V ); “V G(`)]

Proof. See for example [51, p41-42].

3 Intrinsic Invariants

In [51] the author deflned invariants of the cobordism group C2q¡1(F„) of
F„-links using the identiflcation (3) due to Ko [27] and Mio [38] of C2q¡1(F„)
with a Witt group of „-component Seifert forms, denoted W (¡1)q

(Sei(Z))
below (q ‚ 3). To distinguish F„-links one flrst chooses a Seifert surface for
each and then computes invariants of the associated Seifert forms.

In the present section we deflne F„-link cobordism invariants via Duval’s
identiflcation C2q¡1(F„) »= W (¡1)q

(F lk(Z)). The deflnitions will parallel
those in [51] and we shall prove in Section 6 that the invariants obtained
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are equivalent. Whereas Seifert forms are convenient for computing the in-
variants in explicit examples, the Blanchfleld-Duval form has the advantage
that it is deflned without making a choice of Seifert surface.

3.1 Overview

Let ‡ = 1 or ¡1. The inclusion Z ‰ Q induces a duality-preserving functor
F lk(Z) ! F lk(Q) (see Lemma 2.27 above) and hence a homomorphism of
Witt groups

W ‡(F lk(Z)) ! W ‡(F lk(Q)): (21)

It follows from Theorem 1.3 that (21) is an injection; see the proof of Corol-
lary 3.3 below. We proceed to compute W ‡(F lk(Q)) in three steps, which
were outlined in the introduction. We list them again here in more detail:

1. Devissage. We prove that F lk(Q) is an abelian category with as-
cending and descending chain conditions. Recall that a module M 2
F lk(Q) is called simple (or irreducible) if M 6= 0 and there are no sub-
modules of M in F lk(Q) other than 0 and M . If M is a simple module
then F lk(Q)jM ‰ F lk(Q) denotes the full subcategory in which the
objects are direct sums of copies of M . Recall that M is called ‡-self-
dual if there is an isomorphism b : M ! M^ such that b^ = ‡b. We
obtain, by \hermitian devissage", the decomposition

W ‡(F lk(Q)) »=
M

W ‡(F lk(Q)jM ) (22)

with one summand for each isomorphism class of ‡-self-dual simple
F„-link modules M . Let pM denote the projection of W ‡(F lk(Q))
onto W ‡(F lk(Q)jM ).

2. Morita equivalence. For each ‡-self-dual simple module M we choose a
non-singular ‡-hermitian form b : M ! M^. We obtain by hermitian
Morita equivalence an isomorphism

£M;b : W ‡(F lk(Q)jM ) ! W 1(E) (23)

where E = EndQ[F„] M is the endomorphism ring of M and is endowed
with the involution f 7! b¡1f^b. By Schur’s Lemma E is a division
ring and, as we discuss, E turns out to be of flnite dimension over Q.

3. We recall from the literature invariants of each group W 1(E). In most
cases some combination of dimension modulo 2, signatures, discrimi-
nant and Hasse-Witt invariant are su–cient to distinguish the elements
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of W 1(E) (see the table (29) below). One class of division algebra with
involution requires a secondary invariant, such as the Lewis µ, which
is deflned only if all the other invariants vanish.

Let us make two remarks about the modules M which appear in item 1.
Firstly, every simple module M 2 F lk(Q) such that M »= M^ is either
1-self-dual or (¡1)-self-dual (or both). Secondly, M is both 1-self-dual and
(¡1)-self-dual if and only if the involution f 7! b¡1f^b induced on E =
EndQ[F„](M) is not the identity map for some (and therefore every) ‡-self-
dual form b : M ! M^. See lemmas 5.5 and 5.6 of [51] for details.

Example 3.1. In the knot theory case „ = 1 we can add simplifying remarks
to each of the three steps:

1. A simple self-dual module M 2 F lk(Q) may be written

M = Q[z; z¡1]=(p)

where p is an irreducible polynomial and (p(z¡1)) = (p(z)) C Q[z; z¡1].

2. The endomorphism ring E = EndQ[z;z¡1](M) may also be written as
a quotient Q[z; z¡1]=(p) and is an algebraic number fleld of flnite di-
mension over Q. The involution on E is given by z 7! z¡1 and does
not depend on the choice of form b.

Setting aside the case M = Q[z; z¡1]=(1+z), the involution on E is not
the identity so every self-dual M is both 1-self-dual and (¡1)-self-dual.
The exceptional module M = Q[z; z¡1]=(1 + z) is only 1-self-dual but
plays little role since ¡1 is not a root of any polynomial p 2 Z[z; z¡1]
such that p(1) = §1. In other words, the projection of W 1(F lk(Z))
on this exceptional summand of W 1(F lk(Q)) is zero.

3. As discussed in 2., one need only consider the Witt groups W 1(E) of
number flelds with non-trivial involution, or in other words, hermitian
forms over number flelds. The dimension modulo 2, signatures and
discriminant are su–cient to distinguish the elements of W 1(E).

Equation (1) can be derived as a consequence of this analysis.

Returning to the general case „ ‚ 1 and putting together steps 1-3. we
obtain the following restatement of Theorem 1.1.

Theorem 3.2. Let ‡ = 1 or ¡1. An element fi 2 W ‡(F lk(Q)) is equal
to zero if and only if for each flnite-dimensional ‡-self-dual simple F„-link
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module M and non-singular ‡-hermitian form b : M ! M^, the dimension
modulo 2, the signatures, the discriminant, the Hasse-Witt invariant and
the Lewis µ-invariant of

£M;b pM (fi) 2 W 1(EndQ[F„] M)

are trivial (if deflned).

Note that if the invariants corresponding to one form b : M ! M^ are
trivial then pM (fi) = 0 so the invariants are trivial for any other choice
b0 : M ! M^. We now restate Corollary 1.2:

Corollary 3.3. Suppose (L0; µ0) and (L1; µ1) are (2q ¡ 1)-dimensional F„-
links, where q > 1. Let Xi denote the free cover of the complement of Li, let
Ni = Hq(Xi)=(Z¡torsion) and let `i : Ni ! Hom(Ni;Z[F„]§=Z[F„]) denote
the Blanchfleld-Duval form for (Li; µi).

The F„-links (L0; µ0) and (L1; µ1) are cobordant if and only if for each
flnite-dimensional ‡-self-dual simple F„-link module M and each non-singular
‡-hermitian form b : M ! M^, the dimension modulo 2, the signatures, the
discriminant, the Hasse-Witt invariant and the Lewis µ-invariant of

£M;b pM [Q›Z (N0 ' N1; `0 ' ¡`1)] 2 W 1(EndQ[F„] M)

are trivial (if deflned).

Proof. We deduce Corollary 3.3 from Theorem 1.1 (=Theorem 3.2) and
Theorem 1.3. As we remarked in the introduction, Corollary 3.3 also follows
from Theorem 1.4 and Theorem B of [51].

Proposition 5.7 below says that the duality-preserving functor

(B; '; ¡1) : Sei(A) ! F lk(A)

of Section 5 respects coe–cient change so there is a commutative diagram

W (¡1)q
(Sei(Z))

²²

B // W (¡1)q+1
(F lk(Z))

²²

W (¡1)q
(Sei(Q))

B
// W (¡1)q+1

(F lk(Q)):

(24)

The category Sei(A) is deflned in Section 4.1. The lower horizontal map
in (24) is an isomorphism by Theorem 1.3 and the upper horizontal map
is an isomorphism by (3) and (4) above (see also Remark 5.6). It is easy
to prove that the left hand vertical map is an injection (see for example
Lemma 11.1 of [51]). Thus the right-hand vertical map is also an injection.
Corollary 3.3 therefore follows from Theorem 3.2
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3.2 Step 1: Devissage

Let us brie°y recall some deflnitions. If A is an additive category and M

is an object in A the symbol AjM denotes the full subcategory such that
N 2 A if and only if N is a summand of some flnite direct sum of copies of
M . If A is a hermitian category and M is self-dual then AjM is a hermitian
subcategory.

Suppose now that A is an abelian category. A non-zero module M in A
is called simple (or irreducible) if there are no submodules of M in A other
than 0 and M . The category A has both ascending and descending chain
conditions if and only if every module M in A has a flnite composition series

0 = M0 ‰ M1 ‰ M2 ‰ M3 ‰ ¢ ¢ ¢ ‰ Ms = M (25)

where Mi=Mi¡1 is simple for i = 1; ¢ ¢ ¢ ; s. If M is simple then every module
in AjM is a direct sum of copies of M . Let ‡ = 1 or ¡1. If (A; ⁄; i) is
a hermitian category then a module M is called ‡-self-dual if there is an
isomorphism ` : M ! M⁄ such that `⁄iM = ‡`.

The general decomposition theorem we need is the following:

Theorem 3.4 (Devissage). Suppose A is an abelian hermitian category
with ascending and descending chain conditions. There is an isomorphism
of Witt groups

W ‡(C) »=
M

W ‡(CjM )

with one summand for each isomorphism class of simple ‡-self-dual modules
in C.

Proof. See [51, Theorem 5.3] or [41].

To prove equation (22) it therefore su–ces to show:

Proposition 3.5. If k is a (commutative) fleld then the category F lk(k) is
an abelian category with ascending and descending chain conditions.

We take coe–cients in a fleld for simplicity. With little extra work one
can show that Proposition 3.5 holds when k is replaced by any semi-simple
Artinian ring. See also Remark 3.18 below.

Caveat 3.6. When „ ‚ 2 a simple module in the category F lk(k) is not a
simple module in the category of k[F„]-modules.
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We prove Proposition 3.5 as follows: We flrst show that F lk(k) is a
subcategory of the category Tk[F„] of \torsion" modules which P.M.Cohn
introduced and proved to be an abelian category with ascending and de-
scending chain conditions (see Proposition 3.13 below). After giving details
of Cohn’s work, we conclude the proof of Proposition 3.5 by checking that
F lk(k) is closed under direct sums and that the kernel and cokernel of every
morphism in F lk(k) again lie in F lk(k).

3.2.1 Firs and torsion modules

To describe Cohn’s results we must state some properties of the group ring
k[F„].

Deflnition 3.7. A ring R has invariant basis number (IBN) if Rn »= Rm

implies n = m. In other words R has IBN if every flnitely generated free
left R-module has unique rank.

The existence of the augmentation † : k[F„] ! k implies that k[F„] has
IBN for if k[F„]n »= k[F„]m then

kn »= k ›k[F„] k[F„]n »= k ›k[F„] k[F„]m »= km

so m = n.

Note that if R has IBN then one can use the duality functor Hom( ; R)
to prove that flnitely generated free right R-modules also have unique rank.

Deflnition 3.8. An associative ring R is called a free ideal ring (flr) if R

has IBN, every left ideal in R is a free left R-module and every right ideal
is a free right R-module.

Cohn showed in [8, Corollary 3] that if k is a fleld then the group ring
k[F„] of the free group F„ is a flr.

If R is a flr then every submodule of a free R-module is free (Cohn [10,
p71]). Hence every R-module has a presentation 0 ! F1 ! F0 ! M ! 0
where F1 and F0 are free.

Deflnition 3.9. If an R-module M has a presentation

0 ! Rn ¾¡! Rm p¡! M ! 0 (26)

the Euler characteristic of M is ´(M) = m ¡ n.
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If a flnite presentation exists the Euler characteristic is independent of
the choice of presentation by Schanuel’s Lemma. Note also that an exact
sequence 0 ! M ! M 0 ! M 00 ! 0 of flnitely presented modules implies
the equation ´(M 0) = ´(M) + ´(M 00) (compare the diagram (27) below).

If R is a flr then the category of flnitely presented R-modules (and R-
module maps) is an abelian category; in other words direct sums of flnitely
presented modules are flnitely presented and the cokernel and kernel of a
map between flnitely presented modules are flnitely presented. In fact, if
R is any ring such that every flnitely generated one-sided ideal is flnitely
related then the flnitely presented R-modules form an abelian category
(e.g. Cohn [10, p554-556]).

Deflnition 3.10. A morphism ¾ : Rn ! Rn between free left R-modules is
called full if every factorization

Rn

¾

((

¾2

// F ¾1

// Rn

where F is a free module has Rank(F ) ‚ n.

Lemma 3.11. Suppose R is a flr and M is a flnitely presented R-module
with ´(M) = 0. The following are equivalent:

1. In every flnite presentation (26) of M , the map ¾ is full.

2. There exists a presentation (26) such that ¾ is full.

3. ´(N) ‚ 0 for all flnitely generated submodules N of M .

4. ´(M=N) • 0 for all flnitely generated submodules N of M .

Proof. The implication 1) 2 is immediate. To show 2 implies 3, suppose we
are given a presentation (26) such that m = n and ¾ is full. If N is a flnitely
generated submodule of M then ¾(Rn) ‰ p¡1(N) ‰ Rn. Now p¡1(N) is a
free module because R is a flr and p¡1(N) has rank at least n since ¾ is full.
The exact sequence

0 ! Rn ! p¡1(N) ! N ! 0

implies that ´(N) ‚ 0. This completes the proof that 2 implies 3.
The equation ´(M) = ´(N) + ´(M=N) implies that 3 and 4 are equiva-

lent so we can conclude the proof of the Lemma by showing that 3 implies 1.
The equation ´(M) = 0 says that every flnite presentation (26) has m = n.
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We must prove that ¾ is full. Suppose ¾ can be written as a composite
Rn ¾2¡! Rk ¾1¡! Rn. We aim to show k ‚ n. Now ¾(Rn) and ¾1(Rk) are free
modules since R is a flr and

¾1(Rk)

¾(Rn)
µ Rn

¾(Rn)
= M:

By statement 3, ´(¾1(Rk)=¾(Rn)) ‚ 0 so Rank(¾1(Rk)) ‚ Rank(¾(Rn)) =
n. Thus k ‚ n and hence ¾ is full.

A module which satisfles the equivalent conditions in Lemma 3.11 is
called a torsion module. The symbol TR denote the category of torsion
modules and R-module maps.

Lemma 3.12. (Cohn [10, p166]) If 0 ! M ! M 0 ! M 00 ! 0 is an exact
sequence and M and M 00 are torsion modules then M 0 is a torsion module.
In particular a direct sum of torsion modules is again a torsion module.

Proof. If M and M 00 are flnitely presented then M 0 is also flnitely presented
(compare (27) below). Since ´(M) = ´(M 00) = 0 we have ´(M 0) = 0.
Now if N • M 0 is flnitely generated it su–ces by Lemma 3.11 to show
that ´(N) ‚ 0. Note flrst that ´(N) = ´(N \ M) + ´(N=(N \ M)). Now
N \ M • M so ´(N \ M) ‚ 0 and N=(N \ M) »= (N + M)=M • M 00 so
´(N=(N \ M)) ‚ 0. Thus ´(N) ‚ 0.

Proposition 3.13. (Cohn [10, p167,234]) Suppose R is a flr.

1. The category TR of torsion modules is an abelian category.

2. Every module in TR has a flnite composition series (25) in TR.

Proof. To establish statement 1, it su–ces to show that if M and M 0 lie
in TR then M ' M 0 2 TR and the kernel and cokernel of every morphism
f : M ! M 0 are in TR. Lemma 3.12 gives M ' M 0 2 TR. Suppose then
that f : M ! M 0 is an R-module morphism. Since the flnitely presented
R-modules are an abelian category the kernel, image and cokernel of f are
flnitely presented. Now f(M) is a submodule of M 0 and a quotient module of
M so ´(f(M)) ‚ 0 and ´(f(M)) • 0 by Lemma 3.11. Thus ´(f(M)) = 0
and it follows that ´(Ker(f)) = 0 and ´(Coker(f)) = 0. Every flnitely
generated submodule N • Ker(f) is a submodule of M so ´(N) ‚ 0 and
hence Ker(f) 2 TR. Similarly every quotient N 0 of Coker(f) is a quotient of
M 0 and hence has ´(N 0) • 0. Thus Coker(f) 2 TR also.



D.Sheiham 175

To prove part 2. of Proposition 3.13 we note flrst that it is su–cient
to check the ascending chain condition. Indeed, if M 2 TR then M^ =
ExtR(M; R) is a torsion right R-module and a descending chain

M = M0 ¶ M1 ¶ M2 ¶ ¢ ¢ ¢

in TR gives rise to an ascending chain

µ
M

M0

¶^
µ

µ
M

M1

¶^
µ

µ
M

M2

¶^
µ ¢ ¢ ¢

In fact Cohn showed that a larger class of modules, the flnitely related
bound modules, have the ascending chain condition.

Deflnition 3.14. An R-module M is bound if Hom(M; R) = 0.

Lemma 3.15. Every torsion module over a flr is bound.

Proof. If M is an R-module and µ : M ! R then µ(M) is a free module so
M »= Ker(µ) ' µ(M). Now µ(M) is a quotient module of M so if M is a
torsion module then ´(µ(M)) • 0. It follows that µ(M) = 0 so µ = 0. Thus
HomR(M; R) = 0.

Lemma 3.16. (Cohn [10, p231]) If R is a flr and M is a flnitely related
R-module then every bound submodule of M is flnitely presented.

Proof. There is an exact sequence 0 ! Rn ! F
p¡! M ! 0 where F is a

free R-module. A submodule B • M has presentation

0 ! Rn ! p¡1(B) ! B ! 0

and p¡1(B) is a free module since R is a flr. The image of Rn is contained
in a flnitely generated summand of p¡1(B) so B is a direct sum of a free
module and a flnitely presented module. If B is bound then B does not have
any non-zero free summand so B itself is flnitely presented.

Thus every torsion submodule of a torsion module M is flnitely generated
so we have the ascending chain condition on torsion submodules. It follows
that TR has both ascending and descending chain conditions and the proof
of Proposition 3.13 is complete.

We are now in a position to deduce Proposition 3.5.

Lemma 3.17. The category F lk(k) is a full subcategory of the category
Tk[F„] of torsion modules.
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Proof. It su–ces to show that every module in F lk(k) is a torsion module.
By deflnition, a module in F lk(k) has a presentation (8) where †(¾) is an
isomorphism. Since †(¾) is full we can deduce that ¾ is full since each
factorization of ¾ induces a corresponding factorization of †(¾).

Proof of Proposition 3.5. Since Tk[F„] has ascending and descending chain
conditions and F lk(k) ‰ Tk[F„] we need only show that F lk(k) is an abelian
category.

Suppose M and M 0 are in F lk(k). It follows directly from the deflnition
of F lk(k) that M ' M 0 2 F lk(k). We must show that the kernel and
cokernel of each map f : M ! M 0 lie in F lk(k). By Proposition 3.13 the
kernel, image and cokernel all lie in Tk[F„] so

´(Ker(f)) = ´(f(M)) = ´(Coker(f)) = 0:

After choosing presentations ¾ and ¾0 for Ker(f) and f(M) respectively one
can flll in the dotted arrows below to obtain a commutative diagram with
exact rows and exact columns:

0
²²

0
²²

0
²²

0 // k[F„]n

²²

¾ // k[F„]n //

²²

Ker(f) //

²²

0

0 // k[F„]n+n0 ¾00
//

²²

k[F„]n+n0 //

²²

M //

²²

0

0 // k[F„]n
0 ¾0

//

²²

k[F„]n
0 //

²²

f(M)

²²

// 0

0 0 0

(27)

The map ¾00 is given by

µ
¾ ¿

0 ¾0

¶
for some ¿ . Since M 2 F lk(k), the

augmentation †(¾00) is an isomorphism by Lemma 2.3 above. It follows that
†(¾) and †(¾00) are isomorphisms and hence Ker(f) and f(M) are in F lk(k).
The same argument, applied to the exact sequence 0 ! f(M) ! M 0 !
Coker(f) ! 0 shows that Coker(f) is also in F lk(k).

Remark 3.18. The arguments above can be adapted to generalize Propo-
sitions 3.13 and 3.5 as follows. Suppose every flnitely generated one-sided
ideal of a ring R is a projective module (i.e. R is semi-hereditary). Suppose
S is a ring with the property that Sn ' P »= Sn implies P = 0 (i.e. S is
weakly flnite) and ” : R ! S is a ring homomorphism. The Grothendieck
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group K0(S) admits a partial order in which x • y if and only y ¡ x lies in
the positive cone

f[P ] j P 2 S-Projg ‰ K0(S):

Now the following category T” is an abelian category: An R-module M lies
in T” if M has a flnite presentation by projective modules 0 ! P1

¾¡! P0 !
M ! 0 such that 1 › ¾ : S ›R P1 ! S › P0 is full with respect to the
partial order on K0(S). The subcategory of modules for which 1 › ¾ is
invertible is also an abelian category. Under the additional hypotheses that
all the one-sided ideals of R are projective modules (i.e. R is hereditary)
and that the equation S ›R P = 0 implies P = 0 for projective R-modules
P , one can also conclude that these abelian categories have ascending and
descending chain conditions. One recovers Proposition 3.13 when R is a
flr by setting ” = id : R ! R and one recovers Proposition 3.5 by setting
” = † : k[F„] ! k.

3.3 Step 2: Morita Equivalence

Having reduced W ‡(F lk(Q)) to a direct sum of Witt groups W ‡(F lk(Q)jM )
where M is simple and ‡-self-dual (see equation (22)) we pass next from
W ‡(F lk(Q)jM ) to the Witt group W 1(EndQ[F„] M) of the endomorphism
ring of M .

Recall that if C is an additive category then an object in CjM is a sum-
mand of a direct sum of copies of M . The general theorem we employ in
this section is the following:

Theorem 3.19 (Hermitian Morita Equivalence). Let · = +1 or ¡1. Sup-
pose that b : M ! M⁄ is a non-singular ·-hermitian form in a hermitian
category C, and assume further that every idempotent endomorphism in the
hermitian subcategory CjM splits. Let E = EndC M be endowed with the
involution f 7! f = b¡1f⁄b. Then there is an equivalence of hermitian
categories

£M;b = (Hom(M; ); ›b; ·) : CjM ! E-Proj

where for N 2 CjM the map ›b
N (°) = (fi 7! ·b¡1fi⁄°) is the composite of

natural isomorphisms

HomC(M; N⁄) ! HomC(N; M) ! HomE(HomC(M; N); E)

° 7! b¡1°⁄; – 7! (fi 7! –fi):
(28)

Proof. See [51, Theorem 4.7], [26, xI.9,ch.II] or [41].
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The following is a corollary of Theorem 3.19 and Lemma 2.29.

Corollary 3.20. If M is a simple module in F lk(k) and b : M ! M^ is a
non-singular ‡-hermitian form then the duality-preserving functor £M;b of
Theorem 3.19 induces an isomorphism of Witt groups

W ‡(F lk(k)jM ) ! W 1(Endk[F„] M)

[N; `] 7! [Hom(M; N); ›b
N `⁄]

where `⁄ : Hom(M; N) ! Hom(M; N⁄) and

(›b
N `⁄)(fi)(fl) = ‡b¡1fl⁄`fi 2 Endk[F„] M

for all fi; fl 2 Hom(M; N). Equation (22) implies that

W ‡(F lk(k)) »=
M

M

W 1(Endk[F„] M) :

with one summand for each isomorphism class of ‡-self-dual simple F„-link
modules M .

Proof. Every exact sequence in F lk(k)jM splits, so £M;b is exact and hence
induces a morphism of Witt groups

W ‡(F lk(k)jM ) ! W 1(Endk[F„](M)):

Since £M;b is an equivalence of hermitian categories it follows by Lemma A.2
of Appendix A that the induced map of Witt groups is an isomorphism.

Equation (23) above is a special case of corollary 3.20 so the following
proposition completes step 2:

Proposition 3.21. The endomorphism ring of every module in F lk(k) is
of flnite dimension over k.

Proposition 3.21 follows from Theorem 5.17 and Lemma 5.34 below.
Theorem 5.17 can be considered analogous to the geometric fact that one
can choose a Seifert surface for an F„-link. Since the homology of a Seifert
surface is flnite-dimensional the endomorphism ring of the associated Seifert
module is flnite-dimensional. Using chapter 12 of [51], part 2. of Lemma 6.1
and part 2. of Lemma 6.2 we can also deduce that every division ring with
involution which is flnite-dimensional over Q arises as

(EndQ[F„] M ; f 7! f = b¡1f^b)
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for some pair (M; b) where M is a simple module in F lk(Q).

The proofs of the results cited in the previous paragraph do not use
Proposition 3.21 (i.e. the arguments presented are not circular). However,
the spirit of this section is to deflne invariants of F„-links by studying the
category F lk(Q) directly so we desire a proof of Theorem 3.21 which avoids
any choice of Seifert surface or Seifert module. One such proof is due to
Lewin [34]. In a subsequent paper we shall give a proof which applies when
k[F„] is replaced by a wider class of rings.

Before leaving the subject of Morita equivalence we pause to note the
following \naturality" statement which we will need in Section 6 to prove
Theorem 1.4. The reader may refer to equation (19) for the deflnition of
composition for duality-preserving functors.

Proposition 3.22. Suppose (G; “; ·0) : C ! D is a duality-preserving func-
tor between hermitian categories and b : M ! M⁄ is an ·-hermitian form
in C. Let E = EndC(M) and let E0 = EndD G(M). The following diagram
of duality-preserving functors commutes up to natural isomorphism:

CjM
(G ; “ ; ·0)

//

(Hom(M; ) ; ›b ; ·)
²²

DjG(M)

(Hom(G(M); ) ; ›·0“G(b) ; ··0)
²²

E-Proj
(E0›E ; ƒ ; 1)

// E0-Proj:

Proof. See Section A.2 of Appendix A.

Corollary 3.23. If G is exact then the following square also commutes:

W ‡(CjM )
G //

»=£M;b
²²

W ‡·0
(DjG(M))

»= £G(M);·0“G(b)
²²

W ‡·(E)
G

// W ‡·(E0):

3.4 Step 3: Invariants

Equation (22) leads one to consider invariants to distinguish Witt classes
of forms over division algebras E of flnite dimension over Q. Such division
algebras are well understood (see Albert [1, p149,p161], Scharlau [48] or our
earlier summary in [51, x11.1,11.2]).

One considers flve distinct classes of division algebras with involution.
Firstly a division algebra E may be commutative or non-commutative. Sec-
ondly, if I is an involution on E let Fix(I) = fa 2 E j I(a) = ag. The
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involution is said to be \of the flrst kind" if Fix(I) contains the center
K = Z(E) of E. Otherwise, the involution is \of the second kind". Finally,
one of these four classes is further partitioned. A non-commutative division
algebra with involution of the flrst kind is necessarily a quaternion algebra,
with presentation Khi; j j i2 = a; j2 = b; ij = ¡jii for some number fleld K

and some elements a; b 2 K. If Fix(I) = Z(E) = K then the involution is
called \standard". On the other hand if Fix(I) strictly larger than K then
the involution is called \non-standard".

Table (29) below lists su–cient invariants to distinguish the Witt classes
of forms over each class of division algebras with involution. The symbol
m (2) denotes dimension modulo 2. The letter ¾ signifles all signature
invariants (if any) each of which takes values in Z. The discriminant ¢ is
the determinant with a possible sign adjustment and takes values in the
group of \square classes"

Fix(I) \ K

faI(a) j a 2 K†g
where K is the center of E and K† = K n 0.

Kind Commutative? Involution Invariants

1st Yes (Trivial) m (2), ¾, ¢, c

1st No Standard m (2), ¾

1st No Non-standard m (2), ¾, ¢, µ

2nd Yes (Non-trivial) m (2), ¾, ¢

2nd No (Non-trivial) m (2), ¾, ¢

(29)

Two symbols in the table have not yet been mentioned. The Hasse-Witt
invariant, c, which appears in the flrst row takes values in a direct sum of
copies of f1; ¡1g, one copy for each prime of the number fleld K. Finally,
if E is a quaternion algebra with non-standard involution of the flrst kind
then the local-global principle fails and one requires a secondary invariant
such as the Lewis µ which is deflned if all the other invariants vanish. The
value group for µ is the quotient f1; ¡1gS= » where S is the set of primes
p of K such that the completion Ep is a division algebra and the relation »
identifles each element f†pgp2S with its antipode f¡†pgp2S .

4 Seifert forms

In this section we describe algebraic structures arising in the study of a
Seifert surface of an F„-link. We deflne in Section 4.1 a category Sei1(A)
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of \Seifert modules" and a full subcategory Sei(A) ‰ Sei1(A) in which the
objects are flnitely generated and projective as A-modules. The category
Sei(A) was denoted (P„{A)-Proj in [51].

In Section 4.2 we prove that every F„-link module is also a Seifert module
in a canonical way (cf Farber [16]) and obtain a \forgetful" functor

U : F lk1(A) ! Sei1(A):

The image of F lk(A) is usually not contained in Sei(A) which explains
our motivation for introducing Sei1(A). We construct later (Section 5) a
functor B from Sei(A) to F lk(A) which extends in an obvious way to a
functor B : Sei1(A) ! F lk1(A) and is left adjoint to U .

In Section 4.3 we put hermitian structure on Sei(A). We will see in
Section 6 below that the functor B induces an isomorphism of Witt groups
W ‡(Sei(A)) ! W ¡‡(F lk(A)) when A is semi-simple and Artinian and, in
particular, when A = Q.

4.1 Seifert modules

Suppose V is a flnite-dimensional vector space over a fleld k and fi : V ! V

is an endomorphism. A time-honoured technique in linear algebra regards
the pair (V; fi) as a module over a polynomial ring k[s] in which the action
of s on V is given by fi. Equivalently, (V; fi) is a representation of Z[s] in the
category of flnite-dimensional vector spaces over k. We shall use the words
\module" and \representation" interchangeably.

Given a Seifert surface Un+1 ‰ Sn+2 for a knot Sn ‰ Sn+2, small trans-
lations in the directions normal to U induce homomorphisms

f+; f¡ : Hi(U) ! Hi(S
n+2 n U):

Using Alexander duality one flnds that f+ ¡ f¡ is an isomorphism for i 6=
0; n + 1, so Hi(U) is endowed with an endomorphism (f+ ¡ f¡)¡1f+ and
may therefore be regarded as a representation of a polynomial ring Z[s].
The homology of a Seifert surface for a „-component boundary link has, in
addition to the endomorphism (f+ ¡ f¡)¡1f+, a system of „ orthogonal
idempotents which express the component structure of the Seifert surface.
Following Farber [17] (see also [51]) we regard Hi(U) as a representation of
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the ring

P„ = Z

*
s; …1; ¢ ¢ ¢ ; …„

flflflfl …2
i = …i; …i…j = 0 for i 6= j;

„X

i=1

…i = 1

+
:

»= Z[s] ⁄Z
ˆY

„

Z

!
:

P„ is also the path ring of a quiver which we illustrate in the case „ = 2:

† ((
99 †hh ee

Notation 4.1. Let Sei1(A) denote the category of representations of P„ by
A-modules. An object in Sei1(A) (called a Seifert module) is a pair (V; ‰)
where V is an A-module and ‰ : P„ ! EndA(V ) is a ring homomorphism.

Let Sei(A) denote the category of representations of P„ by flnitely gen-
erated projective A-modules. In other words, Sei(A) is the full subcategory
of pairs (V; ‰) such that V is flnitely generated and projective.

We sometimes omit ‰, confusing an element of P„ with its image in
EndA(V ).

4.2 Seifert structure on F„-link modules

Every F„-link module has a canonical Seifert module structure which we
describe next. In fact F lk1(A) can be regarded as a full subcategory of
Sei1(A). Note however that a module in F lk(A) is in general neither flnitely
generated nor projective as an A-module (e.g. see Lemma 2.3 above) and
therefore does not lie in Sei(A).

If M 2 F lk1(A) then Lemma 2.3 implies that the A-module map

° : M'„ ! M

(m1; ¢ ¢ ¢ ; m„) 7!
„X

i=1

(1 ¡ zi)mi

is an isomorphism. Let pi denote the projection of M'„ onto its ith com-
ponent and let

! : M'„ ! M

(m1; ¢ ¢ ¢ ; m„) 7!
„X

i=1

mi
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denote addition. Deflne ‰ : P„ ! EndA M by

‰(…i) = °pi°
¡1

‰(s) = !°¡1:
(30)

We denote by U(M) the A-module M with the Seifert module structure
‰. As remarked in the introduction, in the case „ = 1 the Seifert module
structure ‰ : P„ ! EndA(M) can be described more simply by the equation

‰(s) = (1 ¡ z)¡1:

The following lemma says that U : F lk1(A) ! Sei1(A) is a full and faithful
functor, so F lk1(A) can be regarded as a full subcategory of Sei1(A).

Lemma 4.2. An A-module morphism f : M ! M 0 between F„-link modules
M and M 0 is an A[F„]-module morphism if and only if f is a morphism of
Seifert modules. In other words, f 2 HomSei1(A)(U(M); U(M 0)) if and only
if f 2 HomF lk1(A)(M; M 0).

Proof. If f : M ! M 0 is an A[F„]-module morphism then the diagram

M'„
f'„

//

°
²²

M 0'„

°
²²

M
f

// M 0

(31)

is commutative. Conversely, if the diagram (31) commutes then the equation
f((1 ¡ zi)x) = (1 ¡ zi)f(x) holds for each x 2 M and i = 1; ¢ ¢ ¢ ; „, so
f(zix) = zif(x) for each i and hence f is an A[F„]-module morphism.

It remains to show that (31) commutes if and only if f is a Seifert
morphism. If (31) commutes then

f(°pi°
¡1x) = °pi°

¡1f(x) and f(!°¡1x) = !°¡1f(x)

for each x 2 M so f is a Seifert morphism. Conversely, suppose f is a Seifert
morphism. Now

°¡1 =

0
BBB@

!p1°¡1

!p2°¡1

...
!p„°¡1

1
CCCA =

0
BBB@

(!°¡1)(°p1°¡1)
(!°¡1)(°p2°¡1)

...
(!°¡1)(°p„°¡1)

1
CCCA : M ! M'„

so the diagram (31) commutes.
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4.3 Seifert forms

Let us make Sei(A) a hermitian category, assuming A is a ring with involu-
tion. Recall that if V is a flnitely generated projective left A-module then
V ⁄ = Hom(V; A) is a left A-module with (a:µ)(x) = µ(x)a for all a 2 A,
µ 2 V ⁄ and x 2 V .

If (V; ‰) is an object in Sei(A) deflne (V; ‰)⁄ = (V ⁄; ‰⁄) where

‰⁄(…i) = ‰(…i)
⁄ : V ⁄ ! V ⁄ and ‰⁄(s) = 1 ¡ ‰(s)⁄ : V ⁄ ! V ⁄:

It is easy to see that if f : V ! V 0 is a morphism in Sei(A) then the
dual f⁄ : (V 0)⁄ ! V ⁄ again lies in Sei(A). Equivalently, if one gives the
ring P„ the involution deflned by s = 1 ¡ s and …i = …i for each i then
‰⁄ : P„ ! End(V ⁄) is given by ‰⁄(r)(µ)(x) = µ(‰(r)x) for all x 2 V , µ 2 V ⁄

and r 2 P„.

If V = Hq(U2q)=torsion then the intersection form ` : V ! V ⁄ is a
morphism in Sei(Z). In other words, the intersection form respects the pro-
jections …i and respects the endomorphism (f+ ¡ f¡)¡1f+ (see section 4.1)
in the sense that

`((f+ ¡ f¡)¡1f+x)(y) = `(x)((1 ¡ (f+ ¡ f¡)¡1f+)y):

for all x; y 2 V . Furthermore, ` is an isomorphism by Poincar¶e duality and
is (¡1)q-hermitian. This form ` will be called the Seifert form associated
to a Seifert surface. Kervaire [25, p94] or Lemma 3.31 of [51] shows that by
an elementary change of variables, this form ` is equivalent to the Seifert
matrix of linking numbers more commonly encountered in knot theory.

By Ko [27] and Mio [38] (see also Lemma 3.31 of [51]), the association
of this form ` to a Seifert surface induces the isomorphism

C2q¡1(F„) »= W (¡1)q

(Sei(Z)) (q ‚ 3):

mentioned in the introduction. Every (¡1)q-hermitian Seifert form is as-
sociated to some 2q-dimensional Seifert surface. Although there are many
possible Seifert surfaces for a given F„-link, all are cobordant and the cor-
responding Seifert forms lie in the same Witt class.

In [51] the author applied to Sei(Q) the steps 1-3. described in Section 3.1
obtaining explicit invariants to distinguish F„-link cobordism classes. Al-
though the Blanchfleld-Duval form is more intrinsic, the advantage of the
Seifert form is that it is easier to compute the numerical invariants. For
illustration, we treat a worked example:
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Example 4.3. Setting „ = 2, consider the Seifert module V = Z6 with the
endomorphism s and (¡1)-hermitian form ` given by

s =

0
BBBBBB@

1 0 1 0 0 0
0 1 ¡1 ¡1 ¡1 0
0 1 0 0 0 ¡1
0 0 0 0 0 0

0 1 0 0 1 ¡1
0 0 1 0 1 0

1
CCCCCCA

and ` =

0
BBBBBB@

0 0 0 1 0 0
0 0 ¡1 0 0 0
0 1 0 0 0 0

¡1 0 0 0 0 0

0 0 0 0 0 ¡1
0 0 0 0 1 0

1
CCCCCCA

The horizontal and vertical lines indicate the component structure of the
Seifert form. In other words, …1 projects onto the span of the flrst four basis
elements while …2 projects onto the span of the last two. The corresponding
Seifert matrix of linking numbers is

`s =

0
BBBBBB@

0 0 0 0 0 0
0 ¡1 0 0 0 1
0 1 ¡1 ¡1 ¡1 0

¡1 0 ¡1 0 0 0

0 0 ¡1 0 ¡1 0
0 1 0 0 1 ¡1

1
CCCCCCA

but we shall work directly with s and `.
The flrst step is to pass from Z to Q so we regard the entries in the

matrices as rational numbers. Devissage is next; let e1; ¢ ¢ ¢ ; e6 denote the
standard basis of Q6. Now Qe1 is s-invariant and `(e1)(e1) = 0 so our Seifert
form is Witt-equivalent to the induced form on e?

1 =Qe1
»= Qfe2; e3; e5; e6g.

We have reduced s and ` to

s0 =

0
BB@

1 ¡1 ¡1 0
1 0 0 ¡1

1 0 1 ¡1
0 1 1 0

1
CCA and `0 =

0
BB@

0 ¡1 0 0
1 0 0 0

0 0 0 ¡1
0 0 1 0

1
CCA

The two-dimensional representation (over Q) of Z[s] given by the matrix

r =

µ
1 ¡1
1 0

¶
is simple (=irreducible) since there do not exist eigenvalues

in Q. It follows that the Seifert module V 0 = Q4 with the action s0 and
…1; …2 shown is simple. The devissage process is therefore complete.

Turning to the Morita equivalence step, the endomorphism ring of this

module V 0 has Q-basis consisting of the identity and

µ
r 0

0 r

¶
. The mini-

mum polynomial of r is x2 ¡x+1 so EndSei(Q)(V
0) is isomorphic to Q(

p¡3).
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We may choose b = ¡`0 : V 0 ! (V 0)⁄. It is easy to verify that the involution
f 7! b¡1f⁄b is not the identity map so it must send

p¡3 to ¡p¡3. Morita
equivalence sends the form `0 : V 0 ! V 0⁄ to the composite

HomSei(Q)(V
0; V 0) `0

¡! HomSei(Q)(V
0; V 0⁄)

›b
V 0¡¡! HomQ(

p¡3)(Hom(V 0; V 0⁄); Hom(V 0; V 0))

which is given by

›b
V 0`0

⁄(fi)(fl) = ¡b¡1fl⁄`0fi = flfi:

for fi; fl 2 Hom(V 0; V 0). This form may be written h1i as a form over
Q(

p¡3).
Reading the fourth line of the table (29), an element of the Witt group

W (Q(
p¡3)) for non-trivial involution is determined by signatures and dis-

criminant (and rank modulo 2 if there are no signatures). Up to complex
conjugation there is precisely one embedding of Q(

p¡3) in C (with the
complex conjugate involution), so there is in fact one signature, which takes
value 1 2 Z with our choice of b. The discriminant is

1 2 Q n 0

Q(
p¡3)Q(

p¡3)
=

Q n 0

fa2 + 3b2 j a; b 2 Qg :

5 The Covering construction

In this section we introduce a functor B : Sei1(A) ! F lk1(A) which is
the algebraic analogue of the geometric construction of the free cover of
an F„-link complement from a Seifert surface. (illustrated in Figure 1 on
page 150). The restriction of B to Sei(A) takes values in F lk(A) and extends
to a duality-preserving functor

(B; '; ¡1) : Sei(A) ! F lk(A)

which is natural in A (see Propositions 5.4 and 5.7).
We show that B : Sei1(A) ! F lk1(A) is left adjoint to the full and

faithful functor U : F lk1(A) ! Sei1(A); in other words, among functors
Sei1(A) ! F lk1(A), the geometrically motivated functor B satisfles a
universal property with respect to U (see Deflnition 5.8). In particular
there is a natural transformation µV : V ! UB(V ) for V 2 Sei(A) and a
natural isomorphism ˆM : BU(M) ! M for M 2 F lk1(A). The reader is
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referred to chapter 3 of Borceux [4] or chapter IV of Mac Lane [35] for a
detailed treatment of adjoint functors.

We use the adjunction in Section 5.3 to show that the covering con-
struction B : Sei1(A) ! F lk1(A) is equivalent to a universal localization
Sei1(A) ! Sei1(A)=Prim1(A) of categories. We describe the structure
of the \primitive" modules V 2 Prim1(A) in Section 5.5 and outline a
construction of the quotient category in Section 5.6.

We show in Sections 5.3 and 5.4 that B : Sei(A) ! F lk(A) is equivalent
to a localization Sei(A) ! Sei(A)=Prim1(A) of hermitian categories. In
the case where A is a semi-simple Artinian ring we simplify the descriptions
of the quotient and primitive modules in Section 5.7.

5.1 Deflnition

To simplify notation in this section and Section 5.2, we suppress the symbol
‰ which appears in the deflnition of a Seifert module (V; ‰), identifying an
element r 2 P„ with ‰(r) 2 EndA(V ). We shall extend Seifert structure from
an A-module V to the induced module A[F„] ›A V by s(fi › v) = fi › s(v)
and …i(fi › v) = fi › …i(v) for fi 2 A[F„].

Recall that z1; ¢ ¢ ¢ ; z„ are distinguished generators of F„; let us now write
z =

P
zi…i.

Deflnition 5.1. If V is a module in Sei1(A) let

B(V ) = Coker ((1 ¡ s(1 ¡ z)) : V [F„] ! V [F„]) :

Since †(1 ¡ s(1 ¡ z)) = 1, it is clear that B(V ) lies in F lk1(A). To
achieve more symmetric notation we write zi = y2

i and deduce z = y2 where
y =

P
yi…i. We write F„ = F„(y2) when we wish to indicate that elements

of F„ are to be written as words in the symbols y§2
i . The A[F„]-module

„M

i=1

…iV [F„(y2)yi] is isomorphic to V [F„] and will be written V [F„(y2)y] for

brevity. Now we have

B(V ) »= Coker
¡
(1 ¡ s(1 ¡ y2))y¡1 : V [F„(y2)y] ! V [F„(y2)]

¢

= Coker
¡
(1 ¡ s)y¡1 + sy : V [F„(y2)y] ! V [F„(y2)]

¢
:

(32)

In detail,

(1 ¡ s)y¡1 + sy =

„X

i=1

(1 ¡ s)…iy
¡1
i + s…iyi : vwyi 7! (1 ¡ s)(v)w + s(v)wy2

i
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for v 2 …i(V ), w 2 F„(y2) and i 2 f1; ¢ ¢ ¢ ; „g. A morphism f : V ! V 0

induces a commutative diagram

0 // V [F„]
¾ //

f
²²

V [F„]
q

//

f
²²

B(V ) //

B(f)
²²

0

0 // V 0[F„]
¾0

// V 0[F„]
q0

// B(V 0) // 0

(33)

where ¾ = 1 ¡ s(1 ¡ z) and hence induces an A[F„]-module map B(f) as
shown.

Lemma 5.2. The functor B is exact. In other words, if V ! V 0 ! V 00 is
an exact sequence in Sei1(A) then the sequence B(V ) ! B(V 0) ! B(V 00)
induced is also exact.

Proof. It su–ces to show that B preserves short exact sequences. Suppose
0 ! V ! V 0 ! V 00 ! 0 is exact. There is a commutative diagram

0
²²

0
²²

0
²²

0 // V [F„] //

²²

V [F„] //

²²

B(V ) //

²²

0

0 // V 0[F„] //

²²

V 0[F„]

²²

// B(V 0)
²²

// 0

0 // V 00[F„] //

²²

V 00[F„] //

²²

B(V 00) //

²²

0

0 0 0

in which the rows and the two left-most columns are exact. It follows that
the right-hand column is also exact.

The category Sei1(A) has limits and colimits. For example, the coprod-
uct of a system of modules is the direct sum. Since B is exact and respects
arbitrary direct sums B respects all colimits:

Lemma 5.3. The functor B is cocontinuous.

In particular if V is a direct limit V = lim¡! Vi then B(V ) = lim¡! B(Vi).
On the other hand B does not respect inflnite limits. For example one flnds
B(

Q
Vi) �

Q
(B(Vi)) because (

Q
Vi)[F„] �

Q
(Vi[F„]). However, B does

respect flnite limits.
The idea behind the proof of the following proposition is due to A.Ranicki.

Proposition 5.4. The functor B extends to a duality-preserving functor
(B; '; ¡1) : Sei(A) ! F lk(A).
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Proof. For each flnitely generated projective A-module V there is a natural
isomorphism ƒV : V ⁄[F„] ! (V [F„])⁄ by Example 20. Naturality asserts
that for each morphism fi : V ! W the diagram

W ⁄[F„]
fi⁄

//

ƒW
²²

V ⁄[F„]

ƒV
²²

(W [F„])⁄ fi⁄
// (V [F„])⁄

is commutative. Moreover one can check commutativity of

V ⁄[F„]
z¡1

i //

ƒV
²²

V ⁄[F„]

ƒV
²²

(V [F„])⁄ z⁄
i // (V [F„])⁄

where, as usual, zi : V [F„] ! V [F„] and zi : V ⁄[F„] ! V ⁄[F„] denote
multiplication on the right by zi.

Now if V 2 Sei(A) then there is a commutative diagram:

0 // V ⁄[F„]

¡ƒV (1¡z)
²²

¾(V ⁄)
// V ⁄[F„] //

ƒV (1¡z¡1)
²²

B(V ⁄)

'V
²²

// 0

0 // (V [F„])⁄ ¾(V )⁄
// (V [F„])⁄ // B(V )^ // 0

(34)

where ¾(V ⁄) = 1¡(1¡s⁄)(1¡z) and ¾(V )⁄ = (1¡s(1¡z))⁄. By deflnition,
'V : B(V ⁄) ! B(V )^ is the induced morphism. Plainly 'V is a natural
transformation.

The duality-preserving functor ƒ has the property

ƒ⁄
V iV [F„] = ƒV ⁄iV : V [F„] ! (V ⁄[F„])⁄

(indeed, this equation features in Deflnition 2.24). The equations

(ƒV (1 ¡ z¡1))⁄iV [F„] = ƒV ⁄(1 ¡ z)iV

(ƒV (1 ¡ z))⁄iV [F„] = ƒV ⁄(1 ¡ z¡1)iV

imply that
'^

V iB(V ) = ¡'V ⁄B(iV ):

To show that (B; '; ¡1) is a duality-preserving functor it remains to check
that ' is an isomorphism. There is a commutative diagram

0 // (V [F„])⁄

¡(1¡s⁄)ƒ¡1
V ²²

¾(V )⁄
// (V [F„])⁄ //

¡(1¡s⁄)zƒ¡1
V²²

B(V )^

²²

// 0

0 // V ⁄[F„]
¾(V ⁄)

// V ⁄[F„] // B(V ⁄) // 0
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and the composite morphisms of chain complexes

V ⁄[F„]

(1¡s⁄)(1¡z)
²²

¾(V ⁄)
// V ⁄[F„]

1

xx
(1¡s⁄)(1¡z)

²²

V ⁄[F„]
¾(V ⁄)

// V ⁄[F„]

and

(V [F„])⁄

(1¡z¡⁄)(1¡s⁄)
²²

¾(V )⁄
// (V [F„])⁄

z¡⁄

ww
¡(1¡z⁄)(1¡s⁄)z¡⁄

²²

(V [F„])⁄
¾(V )⁄

// (V [F„])⁄

are chain homotopic to the identity by the indicated chain homotopies.
[Chain complexes are drawn horizontally and morphisms of chain complexes
are given by vertical arrows. The symbol z¡⁄ is shorthand for (z¡1)⁄]. These
composite chain maps therefore induce the identity on B(V ⁄) and B(V )^

respectively so 'V is an isomorphism and (B; '; ¡1) is a duality-preserving
functor.

Since B is an exact functor we have:

Corollary 5.5. The functor (B; '; ¡1) induces a homomorphism of Witt
groups

B : W ‡(Sei(A)) ! W ¡‡(F lk(A)):

If (V; `) is a ‡-hermitian form in Sei(A) then the covering construction
gives B(V; `) = (B(V ); 'V B(`)) (Lemma 2.29) which can be described ex-
plicitly as follows. The morphism ` : V ! V ⁄ induces ` : V [F„] ! V ⁄[F„].

Let è : V [F„] ! HomA[F„]§(V [F„]§; A[F„]§) denote the composition of `

with

ƒV : V ⁄[F„] ! (V [F„])⁄ = HomA[F„](V [F„]; A[F„])

(see Example 2.26) and the localization

HomA[F„](V [F„]; A[F„]) ! HomA[F„]§(V [F„]§; A[F„]§):

If m; m0 2 B(V ) we may write m = q(x), m0 = q(x0) for some x; x0 2 V [F„].
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It follows from Remark 2.18 that in
A[F„]§
A[F„]

we have

'V B(`)(m)(m0) = 'V B(`)(q(x))(q(x0))

= q0(ƒV (1 ¡ z¡1)`(x))(q(x0)) (using (34))

= (id ›ƒV (1 ¡ z¡1)`(x))(id ›¾)¡1(1 › x0)

= è(x)((1 ¡ z)(id ›¾)¡1(1 › x0)): (35)

Remark 5.6. If V 2 Sei(Z) and ` : V ! V ⁄ is the Seifert form corre-
sponding to a Seifert surface for an F„-link then by (35) 'V B(`) : B(V ) !
B(V )^ is the corresponding Blanchfleld-Duval form for the F„-link; compare
Kearton [23], Levine [33, Prop 14.3], Cochran and Orr [7, Thm4.2] and Ran-
icki [43, Defn32.7]. For example, setting r = `(x), s = `(x0), ¡ = z, µ = `s,
and † = ‡ one obtains from (35) the equations appearing immediately prior
to Theorem 4.2 in [7].

For the proof of Theorem 1.4 in Section 6 we will need the observa-
tion that (B; '; ¡1) respects a change of coe–cients from Z to Q. Let us
make a more general statement. Recall from equation (19) the deflnition of
composition for duality-preserving functors.

Proposition 5.7. A ring homomorphism A ! A0 induces a diagram of
duality-preserving functors

Sei(A)

(B;';¡1)
²²

(A0›A ;ƒ;1)
// Sei(A0)

(B;';¡1)
²²

F lk(A)
(A0[F„]›A[F„] ;¤;1)

// F lk(A0):

which commutes up to natural isomorphism. Consequently, there is a com-
mutative diagram of Witt groups

W ‡(Sei(A))
B ²²

// W ‡(Sei(A0))
B²²

W ¡‡(F lk(A)) // W ¡‡(F lk(A0)):
(36)

Proof. See Appendix A.
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5.2 Adjunction

We leave duality structures behind for the present and prove that the functor
B : Sei1(A) ! F lk1(A) is left adjoint to U : F lk1(A) ! Sei1(A).

Deflnition 5.8. Suppose F : C ! D is a functor. A functor G : D ! C is
called left adjoint to F if there exists a natural transformation µ : idD ! F G

such that for every object D 2 D the morphism µD : D ! FG(D) has
the following universal property: For every morphism d in D of the form
d : D ! F (C) there is a unique morphism c : G(D) ! C in C such that
d = F (c)µD.

D
d //

µD
$$III

II F (C)

FG(D)
F (c)

88
(37)

Let us recall a few examples: 1) The inclusion of the category of abelian
groups in the category of groups has left adjoint known as \abelianization"
which sends a group G to G=[G; G]. 2) The inclusion of the category of
compact Hausdorfi topological spaces in the category of (all) topological
spaces has a left adjoint known as \Stone-•Cech compactiflcation". 3) Colimit
constructions (e.g. direct limit or coproduct) can be expressed via a left
adjoint as follows. Suppose C is a category, J is a small category and CJ

denotes the category of functors J ! C. If there is a left adjoint to the
constant functor C ! CJ then that left adjoint sends each functor J ! C to
its colimit in C (and the colimit exists).

Proposition 5.9. The functor B : Sei1(A) ! F lk1(A) is left adjoint to
U : F lk1(A) ! Sei1(A).

The required map µV : V ! UB(V ) is the restriction of the map q :
V [F„] ! B(V ) in the diagram (33) above. In symbols µV = qj : V !
UB(V ). During the proof of Proposition 5.9 below we show that µV is a
morphism of Seifert modules. It follows from the diagram (33) that µ : id !
UB is a natural transformation.

Before proving Proposition 5.9, we note some consequences:

Corollary 5.10. Let V 2 Sei1(A) and M 2 F lk1(A). There is a natural
isomorphism ˆM : BU(M) ! M and the composites

U(M)
µU(M)¡¡¡¡! UBU(M)

U(ˆM )¡¡¡¡! U(M)

B(V )
B(µV )¡¡¡¡! BUB(V )

ˆB(V )¡¡¡¡! B(V )

are identity morphisms. In particular µU(M) and B(µV ) are isomorphisms.
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The existence of a natural transformation ˆM : BU(M) ! M follows
from Proposition 5.9 alone. To prove that ˆ is an isomorphism one requires
the additional information that U is full and faithful. We are not claim-
ing that µV : V ! UB(V ) is an isomorphism. Indeed, U and B are not
equivalences of categories.

Proof of Corollary 5.10. Let ˆM : BU(M) ! M be the unique morphism
such that idU(M) = U(ˆM )µU(M). One can check that ˆM is a natural
transformation and that ˆB(V )B(µV ) = idB(V ) (see for example Theorem
3.1.5 of [4]). The functor U : F lk1(A) ! Sei1(A) is full and faithful by
Lemma 4.2 so ˆM is an isomorphism (see Theorem 3.4.1 of [4]). It follows
that µU(V ) and B(µV ) are isomorphisms.

Proof of Proposition 5.9. By Deflnition 5.8 there are two statements to prove:

1. The map µV : V ! UB(V ) is a morphism of Seifert modules.

2. If M 2 F lk1(A) and f : V ! U(M) is a morphism in Sei1(A) then
there is a unique morphism g : B(V ) ! M such that f = U(g)µV .

As we remarked above, it follows from the diagram (33) that µ : id ! UB

is a natural transformation. We shall need the following lemma which is
proved shortly below:

Lemma 5.11. Suppose V 2 Sei1(A), M 2 F lk1(A) and f : V ! M is an
A-module morphism. Let ef : V [F„] ! M denote the induced A[F„]-module
morphism. The map f : V ! U(M) is a morphism in Sei1(A) if and only
if f(x) = ef(s(1 ¡ z)x) for all x 2 V .

Let us deduce statement 1. above. By the deflnition of B(V ) there is an
exact sequence

0 ! V [F„]
1¡s(1¡z)¡¡¡¡¡¡! V [F„]

q¡! B(V ) ! 0

so q(x) = q(s(1 ¡ z)x) for all x 2 V . By Lemma 5.11, µV = qjV is a
morphism of Seifert modules.

We turn now to statement 2. Since V generates B(V ) as an A[F„]-
module, an A[F„]-module morphism g : B(V ) ! M satisfles f = U(g)µV if
and only if g flts into the diagram

0 // V [F„]
1¡s(1¡z)

// V [F„]
q

//

ef ((QQQQQQQQQ B(V )
g

²²

// 0

M
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Since f is a morphism of Seifert modules we have f(x) = ef(s(1 ¡ z)x) for
all x 2 V by Lemma 5.11. So ef¾ = 0, and therefore there exists unique
g : B(V ) ! M such that gq = ef . It follows that there exists unique g

such that f = U(g)µV . Thus we have established both 1. and 2. assuming
Lemma 5.11.

Proof of Lemma 5.11. The Seifert module structure on U(M) is given by (30)
above so f is a Seifert morphism if and only if
a) !°¡1f(x) = f(sx) and
b) °pi°

¡1f(x) = f(…ix) for each x 2 V .

To prove the ‘if’ part of Lemma 5.11, suppose f(x) = ef(s(1 ¡ z)x).

a) The equations !°¡1

ˆ
„X

i=1

(1 ¡ zi)xi

!
=

„X

i=1

xi and

f(x) = ef(s(1 ¡ z)x) =

„X

i=1

ef(s(1 ¡ zi)…ix) =

„X

i=1

(1 ¡ zi)f(s…ix):

imply that !°¡1f(x) = !°¡1
„X

i=1

(1 ¡ zi)f(s…ix) =

„X

i=1

f(s…ix) = f(sx).

b) Observe that

f(…ix) = ef(s(1 ¡ z)…ix) =

„X

j=1

ef(s(1 ¡ zj)…j…ix) = (1 ¡ zi)f(s…ix):

while

°pi°
¡1f(x) = °pi°

¡1 ef(s(1 ¡ z)x) = °pi°
¡1

„X

j=1

(1 ¡ zj)f(s…jx)

= (1 ¡ zi)f(s…ix):

Thus f(…ix) = °pi°
¡1f(x).

To prove the \only if" part of Lemma 5.11, suppose we have a) and b)



D.Sheiham 195

above. Now

ef(s(1 ¡ z)x) =

„X

i=1

(1 ¡ zi)f(s…ix)

=

„X

i=1

(1 ¡ zi)(!°¡1)(°pi°
¡1)f(x)

=

„X

i=1

(1 ¡ zi)!pi°
¡1f(x)

= f(x):

This completes the proof of Proposition 5.9.

5.3 Localization

When one passes from Seifert modules to F„-link modules, certain Seifert
modules disappear altogether; following Farber we shall call such modules
primitive.

Deflnition 5.12. Let Prim1(A) denote the full subcategory of Sei1(A)
containing precisely the modules V such that B(V ) = 0. Modules in
Prim1(A) will be called primitive.

For example, if V is a Seifert module with ‰ : P„ ! EndA V such that
‰(s) = 0 or ‰(s) = 1 then

(1 ¡ ‰(s))y¡1 + ‰(s)y : V [F„(y2)y] ! V [F„(y2)]

is an isomorphism and therefore has zero cokernel. A module in Sei1(A)
with ‰(s) = 0 or 1 will be called trivially primitive. We show in Section 5.5
that all the primitive Seifert modules in Sei1(A) can be \built" from triv-
ially primitive modules. If A is semi-simple Artinian then a similar result
applies when one restricts attention to the category Sei(A) of representa-
tions of P„ by flnitely generated projective A-modules: Every primitive in
Sei(A) can be \built" from a flnite number of trivially primitive modules in
Sei(A) (see Proposition 5.33). This statement is not true for all rings A; one
must consider primitives which exhibit a kind of nilpotence. Such primitives
were described by Bass, Heller and Swan when „ = 1 (see also Ranicki [44]).
The general case „ ‚ 1 will be analyzed in a subsequent paper (joint work
with A.Ranicki) [46].
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In the present section we construct an equivalence between F lk1(A)
and a quotient category Sei1(A)=Prim1(A). This quotient is an example
of universal localization for categories; the objects in Sei1(A)=Prim1(A)
are the same as the objects in Sei1(A) but the morphisms are difierent.
The universal property is that a morphism in Sei1(A) whose kernel and
cokernel are in Prim1(A) has an inverse in Sei1(A)=Prim1(A). A more
detailed construction of the quotient appears in Section 5.6. We proceed
to derive an equivalence between F lk(A) and a corresponding quotient of
Sei(A).

Deflnition 5.13. The functor F : Sei1(A) ! Sei1(A)=Prim1(A) is the
universal functor which makes invertible all morphisms whose kernel and
cokernel are primitive. In other words, any functor which makes these mor-
phisms invertible factors uniquely through F .

We outline in Section 5.6 one construction of F which will be conve-
nient for our purposes; see Gabriel [20] or Srinivas [53, Appendix B.3] for
further details. A more general construction can be found in Gabriel and
Zisman [21] or Borceux [4, Ch5]. It follows directly from the deflnition that
the localization F is unique (up to unique isomorphism).

Applying Deflnition 5.13 to the functor B : Sei1(A) ! F lk1(A), there
is a unique functor B such that B = BF :

Sei1(A)

B

))

F
// Sei1(A)=Prim1(A)

B

// F lk1(A)

U

ii

Proposition 5.9 stated that B : Sei1(A) ! F lk1(A) is left adjoint to
the forgetful functor U . We deduce in the next proposition that B satisfles
the same universal property as F , but only \up to natural isomorphism". If
f is a morphism in Sei1(A) let us write f 2 ¥1 if the kernel and cokernel
of f both lie in Prim1(A).

Proposition 5.14. If G : Sei1(A) ! B is a functor which sends every
morphism in ¥1 to an invertible morphism then there is a functor

eG : F lk1(A) ! B

such that eGB is naturally isomorphic to G. The functor eG is unique up to
natural isomorphism.
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Proof. We prove uniqueness flrst. If there is a natural isomorphism G ’ eGB

then GU ’ eGBU ’ eG by Corollary 5.10.
To prove existence we must show that if eG = GU then eGB ’ G. Indeed,

by Corollary 5.10 B(µV ) : B(V ) ! BUB(V ) is an isomorphism for each
V 2 Sei1(A). Since B respects exact sequences we have µV 2 ¥1. It
follows that G(µ) : G ! GUB = eGB is a natural isomorphism.

The following is an immediate consequence of the fact that F and B

have the same universal property (up to natural isomorphism):

Corollary 5.15. The functor B : Sei1(A)=Prim1(A) ! F lk1(A) is an
equivalence.

We turn now to the categories Sei(A) and F lk(A).

Deflnition 5.16. Let Sei(A)=Prim1(A) ‰ Sei1(A)=Prim1(A) denote
the full subcategory whose objects are precisely the modules in Sei(A)
(i.e. the modules which are flnitely generated and projective as A-modules).

There is a commutative diagram of functors

Sei1(A)

B

))

F
// Sei1(A)=Prim1(A)

B

// F lk1(A)

Sei(A)

OO

B

55F
// Sei(A)=Prim1(A)

OO

B

// F lk(A)

OO

(38)

in which all the vertical arrows are inclusions of full subcategories.

Theorem 5.17. The functor B : Sei(A)=Prim1(A) ! F lk(A) is an equiv-
alence of categories.

We will use the following general lemma in the proof of Theorem 5.17.
Recall that a functor G : C ! D is called full and faithful if it induces an
isomorphism HomC(V; V 0) ! HomD(G(V ); G(V 0)) for every pair of objects
V; V 0 2 C.

Lemma 5.18. A functor G : C ! D is an equivalence of categories if and
only if G is full and faithful and every object in D is isomorphic to G(V )
for some V 2 C.

Proof. See for example Borceux [4, Prop 3.4.3].
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It follows from Corollary 5.15 and Lemma 5.18 that

B : Sei(A)=Prim1(A) ! F lk(A)

is full and faithful. Theorem 5.17 is therefore a consequence of the following
proposition:

Proposition 5.19. Every module in F lk(A) is isomorphic to B(V ) for
some V 2 Sei(A).

Proof. By deflnition, every module M 2 F lk(A) has presentation

0 ! V [F„]
¾¡! V [F„] ! M ! 0

where V is a flnitely generated projective A-module and †(¾) : V ! V is an
isomorphism. Given any A-module W there is a canonical isomorphism

HomA[F„](V [F„]; W [F„]) »= HomA(V; W )[F„]

and in particular ¾ can be expressed uniquely as a sum
P

w2F„
¾ww with

each ¾w 2 HomA(V; V ).

Lemma 5.20. Every M 2 F lk(A) is isomorphic to the cokernel of an en-
domorphism ¾ : V [F„] ! V [F„] of the form

¾ = 1 + ¾1(1 ¡ z1) + ¢ ¢ ¢ + ¾„(1 ¡ z„)

where V is flnitely generated and projective and ¾1; ¢ ¢ ¢ ; ¾„ 2 HomA(V; V ).

Proof of Lemma. By the deflnition of F lk(A), the module M is isomorphic
to the cokernel of some map ¾ : V [F„] ! V [F„] where V is flnitely gener-
ated and projective. The idea of this proof is to reduce the support of ¾

to f1; z1; ¢ ¢ ¢ ; z„g ‰ F„ at the expense of replacing V by a larger flnitely
generated projective module. Note flrst that

Coker(¾) »= Coker

µ
¾ 0
0 1

¶
: (V ' V 0)[F„] ! (V ' V 0)[F„]

where V 0 is any A-module and 1 denotes the identity morphism. The equa-
tion µ

1 ¡b

0 1

¶ µ
a + bc 0

0 1

¶ µ
1 0
c 1

¶
=

µ
a ¡b

c 1

¶
; (39)
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therefore implies that Coker

µ
a ¡b

c 1

¶
is isomorphic to Coker(a + bc). Re-

peated application of equation (39) implies that M is isomorphic to the cok-
ernel of an endomorphism ¾ = ¾0 +

P„
i=1 ¾+

i zi +
P„

i=1 ¾¡
i z¡1

i with ¾0, ¾+
i

and ¾¡
i in HomA(V; V ) for some V . For each of the indices i = 1; ¢ ¢ ¢ ; „

in turn, one can apply the identity Coker(¾) = Coker(¾zi) followed by
further equations (39). One obtains an identity M »= Coker(fl) where
fl = fl0 + fl1z1 + ¢ ¢ ¢ + fl„z„ and fli 2 HomA(V; V ) for some flnitely gen-
erated projective module V over A. By Lemma 2.3, †(fl) is an isomorphism.
Let ¾ = †(fl)¡1fl. Now †(¾) = 1 and so

¾ = 1 + ¾1(z1 ¡ 1) + ¢ ¢ ¢ ¾„(z„ ¡ 1)

for some ¾1; ¢ ¢ ¢ ; ¾„ 2 HomA(V; V ). This completes the proof of Lemma 5.20.

We may now flnish the proof of Proposition 5.19. If

¾ = 1 +
X

i

¾i(1 ¡ zi)

then the equation

ˆ 1 0 ¢¢¢ 0
1 1 ¢¢¢ 0
...

...
. . .

...
1 0 ¢¢¢ 1

! 0
@

1 ¾2(1¡z2) ¢¢¢ ¾„(1¡z„)
0 1 ¢¢¢ 0
...

...
. . .

...
0 0 ¢¢¢ 1

1
A

ˆ ¾ 0 ¢¢¢ 0
0 1 ¢¢¢ 0
...

...
. . .

...
0 0 ¢¢¢ 1

! 0
@

1 0 ¢¢¢ 0¡1 1 ¢¢¢ 0
...

...
. . .

...¡1 0 ¢¢¢ 1

1
A

=

0
B@

1+¾1(1¡z1) ¾2(1¡z2) ¢¢¢ ¾„(1¡z„)
¾1(1¡z1) 1+¾2(1¡z2) ¢¢¢ ¾„(1¡z„)

...
...

. . .
...

¾1(1¡z1) ¾2(1¡z2) ¢¢¢ 1+¾„(1¡z„)

1
CA

implies that

Coker(¾) »= Coker
¡
1 ¡ s(1 ¡ z) : V '„[F„] ! V '„[F„]

¢

where …i acts as projection on the ith component of V '„ and s acts as
0
BBB@

¾1 ¾2 ¢ ¢ ¢ ¾„

¾1 ¾2 ¢ ¢ ¢ ¾„
...

...
. . .

...
¾1 ¾2 ¢ ¢ ¢ ¾„

1
CCCA :

Thus M »= B(V '„).

This completes the proof of Theorem 5.17.
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5.4 Duality in the quotient

Having established that B : Sei(A)=Prim1(A) ! F lk(A) is an equivalence,
we may use B to give duality structure to Sei(A)=Prim1(A) and make the
lower part of (38) a commutative diagram of duality-preserving functors.
Since the objects in Sei(A)=Prim1(A) coincide with those in Sei(A) we
deflne F (V )⁄ = F (V ⁄) and iF (V ) = F (iV ) : F (V ) ! F (V )⁄⁄ where

F : Sei(A) ! Sei(A)=Prim1(A)

is the canonical functor. If f : V ! V 0 is a morphism in Sei(A)=Prim1(A)
let

f⁄ = B
¡1

('¡1
V B(f)^'V 0) : V 0⁄ ! V ⁄: (40)

It is easy to see that ⁄ is a contravariant functor and that i⁄
V iV ⁄ = idV ⁄

for all V so Sei(A)=Prim1(A) is a hermitian category.

Recall that the composite of duality-preserving functors is deflned by

(G; “; ·) – (G0; “0; ·0) = (GG0; “G(“0); ··0):

Proposition 5.21. The duality-preserving functor

(B; '; ¡1) : Sei(A) ! F lk(A)

coincides with the composite (B; '; ¡1) – (F; id; 1).

Proof. It follows from equation (40) and Proposition 5.4 that (B; '; ¡1) is
a duality-preserving functor.

By deflnition F (V )⁄ = F (V ⁄) and iF (V ) = F (iV ); to show that

(F; id; 1) : Sei(A) ! Sei(A)=Prim1(A)

is a duality-preserving functor we must check that F (f)⁄ = F (f⁄) for each
morphism f : V ! V 0 in Sei(A). Indeed,

F (f)⁄ = B
¡1

('¡1
V BF (f)^'V 0)

= B
¡1

('¡1
V B(f)^'V 0)

= B
¡1

(B(f⁄)) (since ' is natural)

= F (f⁄):

It is easy to verify that (B; '; ¡1) = (B; '; ¡1) – (F; id; 1).
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Proposition 5.22. Let ‡ = 1 or ¡1. The duality-preserving functor

(B; '; ¡1) : Sei(A)=Prim1(A) ! F lk(A)

is an equivalence of hermitian categories and induces an isomorphism of
Witt groups

B : W ‡ (Sei(A)=Prim1(A)) ! W ¡‡(F lk(A)): (41)

Proof. Since B is an equivalence of categories (by Theorem 5.17 above) it
follows that (B; '; ¡1) is an equivalence of hermitian categories (see Propo-
sition II.7 of [51]). It also follows that B preserves limits and colimits so B

preserves exact sequences and hence induces a homomorphism (41) of Witt
groups. By Lemma A.2 of Appendix A this homomorphism is an isomor-
phism (41).

5.5 Structure of Primitives

Recall that a module (V; ‰) in Sei1(A) is called trivially primitive if ‰(s) = 0
or ‰(s) = 1. In this section we prove that every primitive module in Sei1(A)
is composed of trivially primitive modules.

Lemma 5.23. If (V; ‰) 2 Sei1(A) and there exists a non-zero element
x 2 V such that ‰(s…i)x = 0 for all i then V has a non-zero submodule
(V 0; ‰0) such that ‰0(s) = 0.

Proof. Note that x =
P

…ix and at least one of the terms …ix must be
non-zero. Choose non-zero V 0 = A…ix and deflne ‰0 by

‰0(…j) =

(
1 if j = i

0 if j 6= i
; ‰0(s) = 0:

Now (V 0; ‰0) is the required non-zero submodule of (V; ‰).

Lemma 5.24. If (V; ‰) is primitive and non-zero then there exists a non-
zero trivially primitive submodule (V 0; ‰0).

Proof. (compare Lemma 7.10c in Farber [17]) Since (V; ‰) is primitive,

‰(1 ¡ s)y¡1 + ‰(s)y : V [F„(y2)y] ! V [F„(y2)]

is an isomorphism with inverse fi say. Now fi can be written as a flnite sumP
w2S fiww where S is a flnite subset of

S„
i=1 F„(y2)yi and fiw : V ! V has
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non-zero image in …iV for each w 2 S. Choose an element w 2 S whose
expression in reduced form as a product of letters y§

i is of maximal length.
We consider two cases:

Case 1: w = w0yi for some w0 2 F„(y2) and some i. The equation

((1 ¡ ‰(s))y¡1 + ‰(s)y)fi = 1 (42)

implies that ‰(s…j)fiw = 0 for each j. Any element x in the image of fiw

satisfles the conditions of Lemma 5.23 so (V; ‰) has a non-zero submodule
(V 0; ‰0) with ‰0(s) = 0.

Case 2: w = w0y¡1
i for some w0 2 F„(y2). The equation (42) implies that

‰((1¡s)…i)fiw = 0 for each i. By Lemma 5.23 there is a non-zero submodule
(V 0; ‰0) with ‰0(1 ¡ s) = 0 or in other words ‰0(s) = 1.

Recall that a module V is called simple if there are no submodules other
than 0 and V . The following remark is a consequence of Lemma 5.24.

Remark 5.25. Every simple primitive module is trivially primitive.

Deflnition 5.26. If A is an abelian category then a non-empty full sub-
category E ‰ A is called a Serre subcategory if for every exact sequence
0 ! V ! V 0 ! V 00 ! 0 in A one has

V 0 2 E , V 2 E and V 00 2 E :

Note that every Serre subcategory of an abelian category is again an
abelian category. Since B preserves exact sequences and arbitrary direct
sums Prim1(A) is a Serre subcategory of Sei1(A) and is closed under
direct sums.

Lemma 5.27. Suppose E ‰ A is a Serre subcategory of an abelian category
and E is closed under arbitrary direct sums. Every module V 2 A contains
a unique maximal submodule U • V such that U 2 E. If U 0 • V and U 0 2 E
then U 0 • U .

Proof. Let U be the sum in V of all the submodules Ui • V with Ui 2 E .
Since U is a factor module of

L
Ui, one flnds U 2 E .

Proposition 5.28. The category Prim1(A) is the smallest Serre subcate-
gory of Sei1(A) which a) contains the trivially primitive modules and b) is
closed under arbitrary direct sums.
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Proof. Let P1(A) denote the smallest full subcategory of Sei1(A) satisfying
the conditions of the Proposition. Now Prim1(A) satisfles these conditions
so P1(A) ‰ Prim1(A).

Conversely, we must show that Prim1(A) ‰ P1(A). Suppose B(V ) =
0. Let W • V be the maximal submodule such that W 2 P1(A) (the
module W exists by Lemma 5.27). Now B(V=W ) = 0 since B respects
exact sequences so Lemma 5.24 implies that either V=W = 0 or there is a
non-zero submodule V 0 of V=W which lies in P1(A). In the latter case, let
p : V ! V=W denote the projection and note the exact sequence

0 ! W ! p¡1(V 0)
pj¡! V 0 ! 0:

Since W 2 P1(A) and V 0 2 P1(A) we have p¡1(V ) 2 P1(A) which con-
tradicts the maximality of W . Thus V=W = 0 and hence V = W , so V lies
in P1(A).

5.6 Construction of the quotient

We outline next a construction of Sei1(A)=Prim1(A). We will use this
construction in Section 6 to show that B : W ‡(Sei(A)) ! W ¡‡(F lk(A)) is
an isomorphism when A is a semi-simple Artinian ring. The notion of Serre
subcategory was deflned in the preceding section. Let us note some basic
properties:

Lemma 5.29. Suppose A is an abelian category and E is a Serre subcate-
gory. Suppose V 2 A, W • V and W 0 • V .

1. If W 2 E and W 0 2 E then W + W 0 2 E.

2. If V=W 2 E and V=W 0 2 E then V=(W \ W 0) 2 E.

Proof. 1. There is an exact sequence

0 ! W ! W + W 0 ! (W + W 0)=W ! 0

and (W + W 0)=W is isomorphic to W 0=(W \ W 0) 2 E . Hence W + W 0 2 E .
2. There is an exact sequence

0 ! W=(W \ W 0) ! V=(W \ W 0) ! V=W ! 0:

Now W=(W \ W 0) is isomorphic to (W + W 0)=W 0 which is contained in
V=W 0 and so W=(W \ W 0) 2 E and hence V=W \ W 0 2 E .
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We may now recall a construction for the quotient of an abelian category
by a Serre subcategory. See Gabriel [20] or Srinivas [53, Appendix B.3] for
further details.

Suppose A is an abelian category and E is a Serre subcategory. The
symbol A=E will denote a category with the same objects as A but dif-
ferent groups of morphisms. To deflne HomA=E(V; V 0), consider the pairs
(W; U 0) where W • V , U 0 • V 0, V=W 2 E and U 0 2 E . One says that
(W1; U 0

1) • (W2; U 0
2) if W2 • W1 and U 0

1 • U 0
2 [note the directions of inclu-

sion]. Lemma 5.29 above implies that these pairs are a directed set. Indeed,
given pairs (W1; U 0

1) and (W2; U 0
2) one flnds (W1; U 0

1) • (W1 \ W2; U 0
1 + U 0

2)
and (W2; U 0

2) • (W1 \ W2; U 0
1 + U 0

2). The following deflnition can now be
made:

HomA=E(V; V 0) = lim¡!
(W;U 0)

HomA(W; V 0=U 0): (43)

We leave to the reader the deflnition of composition of morphisms and the
canonical functor F : A ! A=E . Proofs of the following statements can be
found in the references cited above:

(a) The quotient category A=E is an abelian category and F is an exact
additive functor.

(b) If f is a morphism in A then F (f) is an isomorphism if and only if
Coker(f) 2 E and Ker(f) 2 E .

In particular if V is an object in A then F (V ) »= 0 if and only if V 2 E .
As we indicated in earlier sections, the functor F : A ! A=E is universal

with respect to property (b). In detail, if G : A ! B makes invertible every
morphism whose kernel and cokernel lie in E then there is a unique functor
eG : A=E ! B such that eGF = G. In particular the functor

F : Sei1(A) ! Sei1(A)=Prim1(A)

satisfles Deflnition 5.13. Let us be explicit about eG:
If V is an object in A=E then one writes eG(V ) = G(V ). Every morphism

f 2 HomA=E(V; V 0) is represented by some f 2 HomA(W; V 0=U 0) with U 0 2
E and V=W 2 E If i : W ! V and p : V 0 ! V 0=U 0 denote the canonical
monomorphism and epimorphism respectively one must deflne

eG(f) = G(p)¡1G(f)G(i)¡1 : G(V ) ! G(V 0):

In our particular example Lemma 5.27 provides one simpliflcation in our
description of the quotient category Sei1(A)=Prim1(A). If V 2 Sei1(A)
let us call a submodule W • V coprimitive if V=W 2 Prim1(A).
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Lemma 5.30. If V; V 0 2 Sei1(A) and U 0 denotes the maximal primitive
submodule of V 0 then

HomSei1(A)=Prim1(A)(V; V 0) = lim¡!
W

HomSei1(A)(W; V 0=U 0)

where the direct limit is over coprimitive submodules W of V .

Note that there is not in general a minimal coprimitive in V ; the functor B

does not respect inflnite limits and an inflnite intersection of coprimitives is
not in general coprimitive (but see Lemma 5.31 below).

5.7 Global dimension zero

In this section the ring A will be assumed semi-simple and Artinian or,
in other words, a flnite product of matrix rings over division rings. The
basic theory of semi-simple Artinian rings can be found in many algebra
textbooks (e.g. Lam [29, x1-4] or Lang [30, Ch.XVII]). In particular, all
A-modules are projective and Sei(A) is an abelian category with ascending
and descending chain conditions; these facts lead to simpliflcations of results
in Sections 5.5 and 5.6 above. We show that the primitive modules in
Sei(A) are composed of a flnite number of simple trivially primitive modules
(Proposition 5.33) and give a simplifled description of the hermitian category
Sei(A)=Prim1(A). We shall consider semi-simple Artinian rings again in
Section 6 but it is not essential to read the present section before Section 6.

The key lemma we will need is the following:

Lemma 5.31. Suppose A is an abelian category with ascending and de-
scending chain conditions and E is a Serre subcategory.

1. Every module V 2 A contains a unique maximal submodule in E which
contains all others in E.

2. Every module V 2 A contains a unique submodule W • V which is
minimal with respect to the property V=W 2 E. If V=W 0 2 E then
W • W 0.

Proof. 1. Since A has the ascending chain condition there is a submodule
U • V which is maximal with respect to the property U 2 E . In other words,
if U • U 0 • V and U 0 2 E then U 0 = U . If U 0 is any other submodule in E
then U + U 0 2 E by Lemma 5.29 so U + U 0 = U and hence U 0 • U .
2. Since A has the descending chain condition there is a submodule W • V

which is minimal with respect to the property V=W 2 E (i.e. if W 0 • W • V



206 Invariants of boundary link cobordism II.

and V=W 0 2 E then W 0 = W ). If V=W 0 2 E then V=(W \ W 0) 2 E by
Lemma 5.29 so W \ W 0 = W and hence W • W 0.

Recall that if V 2 Sei(A), a submodule W • V is called coprimitive
if V=W is primitive. Since A is Artinian and Noetherian, Lemma 5.31
implies that there is a maximal primitive submodule U • V and a minimal
coprimitive submodule W • V for each V 2 Sei(A).

5.7.1 Structure of Primitives

Deflnition 5.32. Let Prim(A) denote the intersection of Prim1(A) and
Sei(A). In other words, Prim(A) ‰ Sei(A) is the full subcategory containing
those modules V such that B(V ) = 0.

Note that Prim(A) is both a Serre subcategory and a hermitian subcat-
egory of Sei(A). Moreover, Sei(A)=Prim(A) = Sei(A)=Prim1(A).

Proposition 5.33. The category Prim(A) is the smallest Serre subcategory
of Sei(A) which contains the trivially primitive modules in Sei(A).

Proof. We proceed as in the proof of Proposition 5.28, using Lemma 5.31
in place of Lemma 5.27. Let P(A) denote the smallest Serre subcategory
of Sei(A) which contains all the trivially primitive modules. To show that
P(A) ‰ Prim(A) it su–ces to observe that Prim(A) is a Serre subcategory
which contains these modules.

Conversely, to show Prim(A) ‰ P(A) suppose V 2 Prim(A). There
exists, by Lemma 5.31, a maximal submodule U • V such that U 2 P(A).
Now B(V=U) = 0 so either V = U or by Lemma 5.24 V=U has a non-
zero trivially primitive submodule U 0. If p : V ‡ V=U is the canonical
map then the exact sequence 0 ! U ! p¡1(U 0) ! U 0 ! 0 implies that
p¡1(U 0) 2 P(A) contradicting the maximality of U . Thus V = U and
V 2 P(A).

5.7.2 Construction of the quotient

With the beneflt of Lemma 5.31 we can give a simpler description of the
quotient category than Lemma 5.30.

Lemma 5.34. The morphisms in Sei(A)=Prim(A) are

HomSei(A)=Prim(A)(V; V 0) = HomSei(A)(W; V 0=U 0): (44)

where W • V is the minimal coprimitive and U 0 • V 0 is the maximal
primitive.
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We simplify next the hermitian structure on Sei(A)=Prim(A). We have
seen that the duality-preserving functor (B; '; ¡1) : Sei(A) ! F lk(A) fac-
tors through an equivalence of hermitian categories (B; '; ¡1):

Sei(A)

(B;';¡1)

))

(F;id;1)
// Sei(A)=Prim(A)

(B;';¡1)

// F lk(A)

(Theorem 5.17 and Proposition 5.21 above). The duality functor on the
quotient Sei(A)=Prim(A) was deflned in Section 5.4 above by F (V )⁄ =
F (V ⁄) and by equation (40). Using the assumption that A is Artinian we
can re-interpret equation (40). Suppose that f 2 HomSei(A)=Prim(A)(V; V 0).
As usual, let W denote the minimal coprimitive submodule of V and let
U 0 denote the maximal primitive submodule of V 0. The morphism f is
identifled with some f 2 HomSei(A)(W; V 0=U 0). Since ⁄ preserves exact
sequences the following are exact

0 ! (V=W )⁄ ! V ⁄ ! W ⁄ ! 0 (45)

0 ! (V 0=U 0)⁄ ! (V 0)⁄ ! (U 0)⁄ ! 0: (46)

Now (B; '; 1) is a duality-preserving functor, so for each V 2 Sei(A) one
has B(V ) = 0 if and only if B(V ⁄) = 0. Thus Prim(A) is a hermitian
subcategory of Sei(A) and in particular (U 0)⁄ and (V=W )⁄ are primitive.
It follows that (V=W )⁄ is the maximal primitive in V ⁄ and (V 0=U 0)⁄ is the
minimal coprimitive in (V 0)⁄. Since (F; id; 1) is a duality-preserving functor,
f⁄ is represented by

f
⁄ 2 Hom((V 0=U 0)⁄; W ⁄): (47)

6 Equivalence of Invariants

Cobordism invariants of F„-links have been deflned in two difierent ways in
Sections 3 and [51]. In this section we use the duality-preserving functor
(B; '; ¡1) which was studied in Section 5 to relate the two approaches,
proving Theorems 1.3 and 1.4. To prove Theorem 1.4 we show that the
functor B respects each of the three steps laid out in Sections 3.1 and 4.3.
A more detailed version of Theorem 1.4 is set out in Theorem 6.5 below.

6.1 Proof of Theorem 1.3

Suppose A is an abelian category with ascending and descending chain con-
ditions and E is a Serre subcategory. Let F : A ! A=E denote the quotient
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functor. Recall that a module V in A is called simple if V is not isomorphic
to 0 and V does not have submodules other than 0 and V .

Lemma 6.1. 1. If V 2 A is simple then either V 2 E or F (V ) is simple.

2. Every simple module in A=E is isomorphic to F (V ) for some simple
module V 2 A which does not lie in E.

Proof. 1. Suppose V 2 A is simple, V =2 E and i : V 0 ! F (V ) is the inclusion
of a submodule in A=E . Now i is represented by some morphism i : W 0 ! V

where W 0 • V 0 and V 0=W 0 2 E . Either i = 0 in which case V 0 »= 0 in A=E or
i is an epimorphism which implies that V 0 = F (V ) (recall that F is exact).
2. Every module in A=E is F (V ) for some module V 2 A. Suppose F (V )
is simple. Now V has a flnite flltration 0 = V0 • V1 • ¢ ¢ ¢ • Vn = V

where each quotient Vi=Vi¡1 is a simple module. Since F respects exact
sequences F (Vi=Vi¡1) = 0 for all i 2 f1; ¢ ¢ ¢ ; ng except one, for which there
is an isomorphism F (Vi=Vi¡1) »= F (V ). This module Vi=Vi¡1 does not lie in
E .

Suppose now that A and A=E are hermitian categories and the quotient
functor extends to a duality-preserving functor

(F; id; 1) : A ! A=E :

Lemma 6.2. 1. The Serre subcategory E is a hermitian subcategory.

2. Let ‡ = 1 or ¡1. If V 2 A is simple and V =2 E then V is ‡-self-dual
if and only if F (V ) is ‡-self-dual.

Proof. 1. If V 2 E then F (V ⁄) = F (V )⁄ »= 0 2 A=E so V ⁄ 2 E .
2. To prove the \only if" part it su–ces to recall that for ` : V ! V ⁄ one
has F (`⁄) = F (`)⁄. For the \if" part, note also that

F : HomA(V; V ⁄) ! HomA=E(V; V ⁄)

is an isomorphism.

Proposition 6.3. Suppose A and A=E are hermitian categories and

(F; id; 1) : A ! A=E
is a duality-preserving functor. For each ‡-self-dual simple module V 2 A
such that V =2 E there is a canonical isomorphism

W ‡(AjV ) »= W ‡((A=E)jV ):
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If A has ascending and descending chain conditions then there is a canonical
isomorphism

W ‡(A) »= W ‡(E) ' W ‡(A=E):

Proof. If V 2 A is a simple module and V =2 E then F (V ) is simple by part
1. of Lemma 6.1. Every module in AjV is a direct sum of copies of V so
by equation (43) the restriction F : AjV ! (A=E)jF (V ) is a full and faithful
functor and hence an equivalence of categories.

By part 2. of Lemma 6.2, V is ‡-self-dual if and only if F (V ) is ‡-self-
dual, in which case (F; id; 1) : F : AjV ! (A=E)jF (V ) is an equivalence of
hermitian categories and induces an isomorphism

W ‡(AjV ) ! W ‡
¡
(A=E)jF (V )

¢
: (48)

To prove the last sentence of the Lemma, note flrst that by part 1. of
Lemma 6.2, E is a hermitian subcategory of A. Theorem 3.4 provides canon-
ical decompositions

W ‡(A) »=
M

W ‡(AjV )

W ‡(E) »=
M

W ‡(EjV )

W ‡(A=E) »=
M

W ‡ ((A=E)jV )

where the right hand side of each identity has one summand for each iso-
morphism class of ‡-self-dual simple modules V .

By part 2. of Lemma 6.1 and part 2. of Lemma 6.2 every summand of
W ‡(A=E) is the isomorphic image of W ‡(AjV ) for some simple ‡-self-dual
module V in A.

On the other hand, if V 2 E is simple and ‡-self-dual then (F; id; 1) sends
W ‡(AjV ) to zero. The last sentence of the Lemma follows.

In our application, we set A = Sei(A) and E = Prim(A) where A

is semi-simple Artinian. Recall that Prim(A) = Prim1(A) \ Sei(A) is
an abelian category with ascending and descending chain conditions and
Sei(A)=Prim(A) = Sei(A)=Prim1(A).

Lemma 6.4. 1. None of the simple primitive modules in Prim(A) are
self-dual.

2. W ‡(Prim(A)) = 0.
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Proof. By Remark 5.25 above, every simple primitive module is trivially
primitive. If (V; ‰) 2 Prim(A) then ‰(s) = 0 if and only if ‰⁄(s) = 1 so
none of the simple trivially primitive modules are self-dual. Thus part 1. is
proved, and part 2. follows immediately from Theorem 3.4.

Proof of Theorem 1.3. By Proposition 5.21 the duality-preserving functor
(B; '; ¡1) is the composite (B; '; ¡1) – (F; id; 1). Setting A = Sei(A) and
E = Prim(A) in Proposition 6.3, and invoking also Lemma 6.4, we learn
that (F; id; 1) induces an isomorphism

W ‡(Sei(A)) ! W ‡ (Sei(A)=Prim(A)) :

By Theorem 5.17, (B; '; 1) is an equivalence and hence induces an isomor-
phism

W ‡ (Sei(A)=Prim(A)) ! W ¡‡(F lk(A)):

(see Lemma A.2 in Appendix A). Thus (B; '; ¡1) induces an isomorphism

W ‡(Sei(A)) ! W ¡‡(F lk(A)):

This completes the proof of Theorem 1.3.

6.2 Proof of Theorem 1.4

We prove in this section that the functor (B; '; ¡1) identifles the invariants
deflned in [51] with those of Section 3. More precisely, we prove the following
theorem:

Theorem 6.5. (Equivalence of invariants)

1. If V 2 Sei(Q) is simple and (¡1)q-self-dual then B(V ) 2 F lk(Q) is
simple and (¡1)q+1-self-dual.

2. Every simple (¡1)q+1-self-dual module M 2 F lk(Q) is isomorphic to
B(V ) for some simple (¡1)q-self-dual module V 2 Sei(Q).

3. If V 2 Sei(Q) and B(V ) 2 F lk(Q) are simple then the functor B in-

duces an isomorphism of rings B : EndSei(Q)(V )
»=¡! EndF lk(Q)(B(V )).

4. Suppose V 2 Sei(Q) is simple and b : V ! V ⁄ is a ‡-hermitian form.
The ring isomorphism in part 3. respects involutions. Explicitly, if
f 2 EndSei(Q) V then B(b¡1f⁄b) = ('V B(b))¡1B(f)^'V B(b).
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5. Suppose W 2 Sei(Z) and ` : W ! W ⁄ is a (¡1)q-hermitian form. The
dimension modulo 2, signatures, discriminant, Hasse-Witt invariant
and Lewis µ-invariant of

£V;bpV [Q›Z (W; `)] 2 W 1(EndSei(Q)(V ))

coincide (if deflned) with the corresponding invariants of

£(B(V );¡'V B(b))pB(V ) [Q›Z(B(W ); 'W B(`))] 2 W 1(EndF lk(Q)(B(V ))):

Recall that B = B – F and B : Sei(Q)=Prim(Q) ! F lk(Q) is an equiv-
alence of categories. In parts 1. through 3. of Theorem 6.5 it therefore
su–ces to prove corresponding statements with the functor F in place of B

and (¡1)q in place of (¡1)q+1:
1. The statement follows from part 1. of Lemma 6.1, part 2. of Lemma 6.2
and part 1. of Lemma 6.4.
2. The statement follows from part 2. of Lemma 6.1 and part 2. of Lemma 6.2.
3. This is a consequence of equation (44).
4. Since B(b¡1f⁄b) = B(b¡1)B(f⁄)B(b) it su–ces to prove that

B(f⁄) = '¡1
V B(f)^'V :

This equation is a consequence of the fact that ' is a natural isomorphism.
The proof of part 5. of Theorem 6.5 is slightly more involved. Recall from

proposition 5.7 that B respects changes of coe–cients and, in particular, that
the inclusion of Z in Q induces the commutative diagram (24). One must
check that (B; '; ¡1) respects each of the three steps in the deflnitions of
the F„-link invariants (see Section 3.1).

Devissage: Let V 2 Sei(Q) be a ‡-self-dual simple module. If W is iso-
morphic to a direct sum of copies of V then B(W ) is isomorphic to a direct
sum of copies of B(V ). Hence the image of W ‡(Sei(Q)jV ) under B lies in
W ¡‡(F lk(Q)jB(V )) and there is a commutative diagram of isomorphisms

W ‡(Sei(Q))
B //

OO

²²

W ¡‡(F lk(Q))
OO

²²M

V

W ‡(Sei(Q)jV ) L
Bj

//

M

V

W ¡‡(F lk(Q)jB(V )):
(49)

where the direct sums are indexed by the isomorphism classes of simple
‡-self-dual modules in Sei(Q).

Morita Equivalence: Suppose V 2 Sei(Q) is a simple module and

b : V ! V ⁄
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is a non-singular ‡-hermitian form. Let us denote the endomorphism rings
E = EndSei(Q) V and E0 = EndF lk(Q) B(V ). By Corollary 3.23 above the
duality-preserving functor (B; '; ¡1) induces a commutative diagram

W ‡(Sei(Q)jV )

£V;b
²²

B // W ¡‡(F lk(Q)jB(V ))

£B(V );¡'V B(b)
²²

W 1(E)
B

// W 1(E0):
(50)

Invariants: The isomorphism E ! E0 in part 4. induces isomorphisms
between the target groups for the invariants in part 5. For example, if E

and E0 are commutative with trivial involution then the discriminant ¢ of
£V;bpV [Q ›Z (W; `)] lies in E=E2 and the functor B induces an isomor-
phism E=E2 ! E0=(E0)2. The word \coincide" in part 5. is understood
to mean that the image of ¢ in E0=(E0)2 is equal to the discriminant of
£(B(V );¡'V B(b))pB(V ) [Q›Z (B(W ); 'W B(`))].

The isomorphism B : E ! E0 of rings with involution induces an iso-
morphism W 1(E) ! W 1(E0). We leave it to the reader to check that if
fi 2 W 1(E) then all the listed invariants of fi coincide (in this sense) with
the corresponding invariants of B(fi) 2 W 1(E0). Further details of the in-
variants can be found in chapter 11 of [51].

This completes the proof of part 5. and hence of theorems 1.4 and 6.5.

A Naturality of constructions

In this appendix we prove naturality theorems for the covering construction
(B; '; ¡1) and for hermitian Morita equivalence, proving Propositions 5.7
and 3.22 above.

To compare duality-preserving functors one requires the following defln-
ition.

Deflnition A.1. Suppose (G; “; ·) : C ! D and (G0; “0; ·) : C ! D are
duality-preserving functors between hermitian categories C and D. A nat-
ural transformation fi : (G; “; ·) ! (G0; “0; ·) is a natural transformation
between the underlying functors, fi : G ! G0, such that

“V = fi⁄
V “0

V fiV ⁄ (51)

for each object V 2 C.
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If fi : G ! G0 is a natural isomorphism between the underlying functors
and fi satisfles (51) then fi¡1 : G0 ! G also satisfles (51) so fi is in fact a
natural isomorphism of duality-preserving functors.

We noted in Lemma 2.29 that an exact duality-preserving functor in-
duces a homomorphism of Witt groups. The following lemma says that
naturally isomorphic duality-preserving functors induce the same homomor-
phism on Witt groups.

Lemma A.2. Suppose (G; “; ·); (G0; “0; ·) : C ! D are duality-preserving
functors which respect exact sequences and fi : (G; “; ·) ! (G0; “0; ·) is
a natural isomorphism. If (V ; ` : V ! V ⁄) is a hermitian form in C
then there is a natural isomorphism between the induced hermitian forms
(G(V ); “G(`)) »= (G0(V ); “0G0(`)). Let ‡ = 1 or ¡1. The duality-preserving
functors (G; “; ·) and (G0; “0; ·) induce the same homomorphism of Witt
groups W ‡(C) ! W ‡·(D).

Proof. In the diagram

G(V )
fiV ²²

G(`)
// G(V ⁄)
fiV ⁄

²²

“V // G(V )⁄

G0(V )
G0(`)

// G0(V ⁄)
“0

V

// G0(V )⁄
fi⁄

V

OO

the left-hand square commutes by the naturality of fi while the right-hand
square commutes because fi satisfles equation (51). The Lemma follows
easily.

It is a consequence of Lemma A.2 that an equivalence of hermitian cat-
egories induces an isomorphism of Witt groups.

A.1 The covering construction

In this section we prove that the covering construction B respects changes
to coe–cients (Proposition 5.7). We need one more observation which is
straightforward to verify:

Lemma A.3. If A ! A0 ! A00 are ring homomorphisms then the diagram

A00 ›A V ⁄

²²

// A00 ›A0 (A0 ›A V ⁄)
,,ZZZ
A00 ›A0 (A0 ›A V )⁄

rrdd
(A00 ›A V )⁄ (A00 ›A0 (A0 ›A V ))⁄oo

of natural isomorphisms is commutative.
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Proof of Proposition 5.7. Suppose A ! A0 is a ring homomorphism and V

is a module in Sei(A). The natural isomorphism

(A0 ›A V )[F„] ! A0[F„] ›A[F„] (V [F„])

induces a natural isomorphism (see Lemma 2.9)

ffiV gV 2Sei(A) : B(A0 › V ) ! A0[F„] ›A[F„] B(V ):

We aim to show that fi is a natural isomorphism between duality-preserving
functors

(B; '; ¡1) – (A0 ›A ; ƒ; 1) ! (A0[F„] ›A[F„] ; ¤; 1) – (B; '; ¡1):

Applying Lemma A.3 to both composites in the commutative square

A //

²²

A[F„]

²²

A0 // A0[F„]

of ring homomorphisms one obtains commutative diagrams

(A0 ›A V ⁄)[F„] //

²²

(A0 ›A V )⁄[F„]
°

// (A0 ›A V [F„])⁄

A0[F„] ›A[F„] (V ⁄[F„])
–

// A0[F„] ›A[F„] (V [F„])⁄ // (A0[F„] ›A[F„] V [F„])⁄
OO

where ° = §ƒA0›V (1 ¡ z§) and – = 1 › §ƒV (1 ¡ z§) and hence the
commutative diagram

B(A0 ›A V ⁄)
B(ƒV )

//

fiV ⁄
²²

B((A0 ›A V )⁄)
'A0›V

// B(A0 › V )^

A0[F„] ›A[F„] B(V ⁄)
1›'V

// A0[F„] ›A[F„] B(V )^
¤B(V )

// (A0[F„] ›A[F„] B(V ))^
(fiV )^ :

OO

Thus fi is a natural transformation between duality-preserving functors as
claimed. It follows by Lemma A.2 that the diagram (36) of Witt group
homomorphisms commutes. The proof of Proposition 5.7 is complete.
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A.2 Hermitian Morita Equivalence

In this section we prove that hermitian Morita equivalence respects duality-
preserving functors (Proposition 3.22). Let (G; “; ·0) : C ! D denote
a duality-preserving functor and let M 2 C, E = EndC M and E0 =
EndD G(M).

We shall deflne a natural isomorphism between the composite functors

fi : (E0 ›E ; ƒ; 1) – (Hom(M; ); ›b; ·)
’¡! (Hom(G(M); ); ›·0“M G(b); ··0) – (G; “; ·0)

If N 2 CjM then Hom(M; N) is a left E-module for the action

f:µ = µf = µb¡1f⁄b

where f 2 E and µ 2 Hom(M; N). The group Hom(G(M); G(N)) is re-
garded as a left E0-module in the same way. Deflne

fiN : E0 ›E HomC(M; N) ! HomD(G(M); G(N))

f › ° 7! f:G(°) = G(°)f = G(°)(·0“M G(b))¡1f⁄(·0“M G(b)):
(52)

Since fiN is an isomorphism in the case N = M it follows that fiN is an
isomorphism for all N 2 CjM . It is easy to see that ffigN2CjM is a natural
transformation

(E0 ›E ) – Hom(M; ) ! Hom(G(M); ) – G:

One must check that fi is a natural transformation of duality-preserving
functors. By equations (19) and (51) one must show that

fi⁄
N ›

·0“M G(b)
G(N) Hom(G(M); “N )fiN⁄ = ƒHom(M;N)(1 › ›b

N )

This equation can be checked by direct calculation, substituting the for-
mulae (52), (28) and (20) for fi, › and ƒ respectively and applying the
naturality of ' and the equation (18). This completes the proof of Propo-
sition 3.22.
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Noncommutative localization

in noncommutative geometry

Zoran •Skoda

Abstract

The aim of these notes is to collect and motivate the basic localiza-
tion toolbox for the geometric study of \spaces" locally described by
noncommutative rings and their categories of modules.

We present the basics of the Ore localization of rings and modules
in great detail. Common practical techniques are studied as well. We
also describe a counterexample to a folklore test principle for Ore sets.
Localization in negatively flltered rings arising in deformation theory is
presented. A new notion of the difierential Ore condition is introduced
in the study of the localization of difierential calculi.

To aid the geometrical viewpoint, localization is studied with em-
phasis on descent formalism, °atness, the abelian categories of quasi-
coherent sheaves and generalizations, and natural pairs of adjoint func-
tors for sheaf and module categories. The key motivational theorems
from the seminal works of Gabriel on localization, abelian categories
and schemes are quoted without proof, as well as the related statements
of Popescu, Eilenberg-Watts, Deligne and Rosenberg.

The Cohn universal localization does not have good °atness prop-
erties, but it is determined by the localization map already at the ring
level, like the perfect localizations are. Cohn localization is here related
to the quasideterminants of Gelfand and Retakh; and this may help
the understanding of both subjects.
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1 Introduction

1.1 Objectives and scope. This is an introduction to Ore localizations
and generalizations, with geometric applications in mind.

The existing bibliography in localization theory is relatively vast, includ-
ing several monographs. Localizations proliferate particularly in category
theory, with °avours adapted to various situations, like bicategories, toposes,
Quillen’s model categories, triangulated categories etc. A noncommutative
algebraic geometer replaces a space with a ring or more general ‘algebra’,
or with some category whose objects mimic modules over the ‘algebra’, or
mimic sheaves over a space, or he/she studies a more general category which
is glued together from such local ingredients. This setup suggests that we
may eventually need a similar toolbox to the one used by the category and

AMS classiflcation: 16A08, 16U20, 18E35, 14A22
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homotopy theorists; however the simplest cases are in the area of ring and
module theory. Even so, we shift the emphasis from purely ring-theoretic
questions to more geometrical ones.

A localized ring is typically structurally simpler than the original, but
retaining some of its features. A controlled but substantial simpliflcation of
a ring is a useful tool for a ring theorist, often as extreme as passing to a
local ring or a quotient skewfleld. On the contrary, our main geometrical
goals are those localizations which may play the role of noncommutative
analogues of (rings of regular functions on principal Zariski) open sets in an
(a–ne, say) variety. Rings of functions on these open sets may be slightly
simpler than the rings of global functions, but not as radically as when,
say, passing to a local ring. We start with the very basics of localization
procedures. The geometric notion of a cover by localizations is studied in the
noncommutative context as well. Only recent geometrically minded works
include some elements of such a study, as some key features of covers, the
globalization lemma in particular, were recognized only in the mid-eighties.

We use an elementary method to prove the existence and simple prop-
erties of the Ore localized rings, in line with the original 1931 paper of
O. Ore [98] (who however assumed no zero divisors). Modern treatments
often neglect details when sketching the elementary method. Another mod-
ern method (to prove existence etc. ([91])), following Asano ([6]), is cheap,
but does not give an equivalent experience with the Ore method. Calcula-
tions similar to the ones in our proofs appear in concrete examples when
using or checking Ore conditions in practice. We also use this method to
examine when there is an induced localization of a flrst order difierential cal-
culus over a noncommutative ring, and come to a condition, not previously
observed, which we call the \difierential Ore condition". The elementary
method has the advantage of being parallel to the calculus of (left) fractions
in general categories, which has an aura of being a di–cult subject, but is
more transparentafter learning Ore localization the elementary way.

Our next expositional goal is to obtain some practical criteria for flnding
and dealing with Ore localizations in practice. Folklore strategies to prove
that some set is Ore are examined in detail. In a section on Ore localization
in ‘negatively’ flltered rings, we explore similar methods.

While Ore localization is treated in a comprehensive introductory style,
more general localizations are sketched in a survey style. For advanced
topics there are often in place good references, assuming that the reader
knows the motivation, and at least the Ore case. Both requisites may be
fulfllled by reading the present notes. We emphasize facts important in
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geometry, often omitted, or which are only folklore. In order to clear up
some sources of confusion, we sketch and compare several levels of generality;
mention competing terminologies; and examine the di–culties of geometrical
interpretation and usage.

We focus on localizations of the category R ¡ Mod of all left modules
over a flxed ring R. Localizations in other speciflc categories, e.g. central
bimodules (symmetric localization, cf. [62]), bimodules, and the standard
approach via injective hulls are omitted. One of the reasons is that often
there are too few central bimodules over a noncommutative ring and 2-sided
ideals in particular. Bimodules in general are interpreted as generalizing
the maps of noncommutative rings, as explained in the text. Generalities on
localization in arbitrary categories, and abelian in particular, are outlined
for convenience.

As Cohn localization can be found in other works in this volume, we
include only a short introduction with two goals: putting it in our context
and, more importantly, relating it to the recent subject of quasideterminants.
Anybody aware of both subjects is aware of some connection, and we try to
spell it out as precisely as we can.

1.2 Prerequisites on algebraic structures. Basic notions on rings
and modules are freely used: unital ring, left ideal, center, left module,
bimodule, domain (ring with no zero divisors), skewfleld (division ring),
graded rings and modules, and operations with those.

1.3 Prerequisites on categories. The language of categories and
functors is assumed, including a (universal) initial and terminal object,
(projective=inverse) limit, colimit (= inductive/direct limit), (co)products,
adjoint functors, Yoneda lemma, and the categorical duality (inverting ar-
rows, dual category, dual statements about categories).

Appendix A in [145] su–ces for our purposes; for more see [23, 21, 84].

1.4 A morphism f : B ! C is epi (mono) if for any pair e; e0 of mor-
phisms from C to any D (resp. from any A to B), equality ef = e0f (resp.
fe = fe0) implies e = e0.

A subobject is an equivalence class of monomorphisms. A pair (F; in)
consisting of a functor F , and a natural transformation of functors in :
F ,! G, is a subfunctor of functor G, if all inM : F (M) ,! G(M) are
monomorphisms. Explicitly, the naturality of in reads 8f : M ! N , inN –
F (f) = G(f) – inM : F (M) ! G(N). Clearly, if F is a subfunctor of an
additive (k-linear) functor G, between additive (k-linear) categories, then
F is additive (k-linear) as well.

1.5 A (small) diagram d in the category C will be viewed as a functor
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from some (small) category D into C. For flxed D, such functors and natural
transformations make a category CD. Every object c in C gives rise to a
constant diagram cD sending each X in D into c. This rule extends to a
functor ()D : C ! CD. A cone over diagram d : D ! C is a natural
transformation Ic : cD ) d for some c 2 C. A morphism Ic ! Ic0 of cones
over d is a morphism ` : c0 ! c such that Ic0 = Ic – `D. A terminal among
the cones over D will be called a limiting cone over D. A colimiting
cone in C is a limiting cone in opposite category Cop. Consider a ‘parallel’
family of morphisms ff° : A ! Bg°2¡ as a diagram D with 2 objects and
j¡j arrows in an obvious way. In this case, a cone over D is given by a single

map I : c ! A. We call the diagram c
I! A

f°) B a fork diagram. It is
called an equalizer (diagram) if I : c ! A is in addition a limiting cone;
by abuse of language one often calls I, or even c an equalizer. Equalizers
in Cop are referred to as coequalizers. A morphism I ! A of the cone of
an equalizer diagram with ¡ = f1; 2g is also called a kernel of parallel pair
f1; f2 : A ! B. Cokernels are deflned dually.

A zero object 0 is an object which is simultaneously initial and terminal.
In that case, composition X ! 0 ! Y is also denoted by 0 : X ! Y . A
(co)kernel of a single morphism f : A ! B in a category with 0 is by
deflnition a (co)kernel of pair f; 0 : A ! B.

1.6 A functor F : C ! C0 induces a (pullback) functor for diagrams
F– : CD ! (C0)D. It is deflned by d 7! F – d for every diagram d : D ! C,
and fi 7! F (fi) where (F (fi))M := F (fiM ) for fi : d ) d0.

F preserves limits of some class P of diagrams in A if it sends any
limiting cone p0 ! p over any p 2 P in A into a limiting cone in A0. F

re°ects limits if any cone p0 ! p over any p 2 P in A must be a limiting
cone if F sends it to a limiting cone in A0. The same holds whenever the
word ‘limit’ is replaced by ‘colimit’, and cone p0 ! p by a cocone p ! p0.

1.7 An Ab-category (or preadditive category) is a category A with an
abelian group operation + on each set A(X; Y ), such that each composition
map – : A(X; Y ) £ A(Y; Z) ! A(Y; Z) is bilinear. An Ab-category is
additive if it contains a zero object and pairwise, hence all flnite, products.
Automatically then, flnite products agree with flnite coproducts. Recall
that an additive category A is abelian if each morphism f in A has a
kernel and a cokernel morphism, and the kernel object of a cokernel equals
the cokernel object of the kernel. We assume that the reader is comfortable
with elementary notions on abelian groups like exact sequences and left
(right) exact functors in the greater generality of abelian categories.

1.8 Gabriel-Mitchell-Popescu embedding theorem. Every small
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abelian category is equivalent as an abelian category to a subcategory of the
category of left modules over a certain ring R. Proof: [103].

1.9 Prerequisites on spaces of modern geometry. We expect fa-
miliarity with the notions of a presheaf, separated presheaf and sheaf, and
with some examples describing a geometry via a topological space with a
structure sheaf on it; as well as the idea of gluing from some sort of lo-
cal models, behind the concepts of (super)manifolds, analytic spaces and
schemes. Earlier exposure to commutative algebraic (or analytic) varieties
and schemes is assumed in style of some sections, but no speciflc facts are
required; an abstract sketch of the main features of scheme-like theories is
supplied in the text below.

1.10 Conventions. The word map means a set-theoretic map unless
it is accompanied with a speciflcation of the ambient category in ques-
tion when it means a (homo)morphism, e.g. a map of rings means a ring
(homo)morphism. The word noncommutative means \not necessarily com-
mutative". Though for many constructions this is not necessary, we mostly
deal with unital rings and modules, unless said otherwise. Ideal without a
modifler always means ‘1-sided (usually left) ideal’.

The symbol for inclusion ‰ may include the case of equality. The un-
adorned tensor symbol is over Z, except for elements in given tensor prod-
ucts, like a › b := a ›R b 2 A ›R B. For algebras and modules over a
commutative ring, this ring is usually denoted k. These conventions may be
locally overridden by contextual remarks.

2 Noncommutative geometry

Descartes introduced the method of coordinates, which amounted to the
identiflcation of real vector spaces with the spaces described by the axioms
of Euclid. Lagrange considered more general curvilinear coordinates in
analytic mechanics to obtain exhaustive treatments of space. Topological
spaces do not have distinguished coordinate functions, but the whole algebra
of functions su–ces. The Gelfand-Neimark theorem (e.g. [74]) states that
the category of compact Hausdorfi topological spaces is equivalent to the op-
posite of category of commutative unital C⁄-algebras. This is accomplished
by assigning to a compact X the Banach ?-algebra C(X) of all continuous
C-valued functions (with the supremum-norm and involution f⁄(x) = f(x)).
In the other direction one (re)constructs X as a Gelfand spectrum of the al-
gebra A, which is a space whose points are continuous characters ´ : A ! C⁄

endowed with spectral topology. These characters appear as the evaluation
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functionals ´x on A at points x 2 X, where ´x(f) = f(x). Each annihilator
Ann ´ = fa 2 A j ´(a) = 0g is a maximal ideal of A and all maximal ideals
are of that form.

2.1 Towards noncommutative algebraic geometry. For any com-
mutative ring R, Grothendieck replaced maximal ideals from the theory
of a–ne varieties and from the Gelfand-Neimark picture, by arbitrary prime
ideals, which behave better functorially, and he endowed the resulting spec-
trum Spec R with a non-Hausdorfi Zariski topology and a structure sheaf,
deflned with the help of commutative localization. This amounts to a fully
faithful contravariant functor Spec from CommRings to the category lSp

of locally ringed spaces. In other words, the essential image of this func-
tor, the category of geometric a–ne schemes Afi = Spec(CommRings) is
equivalent to the formal category of a–ne schemes which is by the defln-
ition CommRingsop. Notions of points, open subspaces and sheaves are
used to deflne lSp and the functor Spec. The functor Spec takes values in
a category described in local geometrical terms, translating algebraic con-
cepts into geometric ones. The functor enables the transfer of intuition and
methods between algebra and geometry. This interplay is to a large extent
the basic raison d’être for the subject of algebraic geometry. The spaces in
lSp may be glued via topologies and sheaves, and certain limit constructions
may be performed there which give a great °exibility in usage of a range of
other subcategories in lSp e.g. schemes, algebraic spaces, formal schemes,
almost schemes etc. Useful constructions like blow-ups, quotients by actions
of groups, °at families, inflnitesimal neighborhoods etc. take us often out of
the realm of a–ne schemes.

The dictionary between the geometric properties and abstract algebra
may be partially extended to include noncommutative algebra. Noncommu-
tative geometry means exploring the idea of faithfully extending the Spec
functor (or, analogously, the Gelfand functor above) to noncommutative al-
gebras as a domain and some geometrical universe nlSp generalizing the
category lSp as a target, and thinking geometrically of the consequences of
such construction(s). The category nlSp should ideally contain more gen-
eral noncommutative schemes, extending the fact that spaces in lSp feature
topology, enabling us to glue a–ne schemes over such subsets. Useful exam-
ples of noncommutative spaces are often studied in contexts which are much
more restricted then what we require for nlSp; for instance one abandons
topology or points, or one works only with Noetherian algebras close to com-
mutative (say of flnite GK-dimension, or flnite dimensional over the center,
when the latter is a fleld), or the category is not big enough to include the
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whole of lSp. For example, van Oystaeyen and his school ([139, 140, 142])
consider a certain class of graded rings for which they can use localizations to
deflne their version of a noncommutative Proj-functor. A more restricted
class of graded rings providing examples very close in behaviour to com-
mutative projective varieties is studied by Artin, Zhang, Stafford and
others (see [5, 127] and refs. therein). Y. Soibelman ([126]) advocates ex-
amples of natural compactiflcations of moduli spaces of commutative spaces
with noncommutative spaces as points on the boundary.

Thus we often restrict ourselves either to smaller geometric realms Ns ‰
nlSp than nlSp containing for example only projective \noncommutative va-
rieties" of some sort, or to give up points, topological spaces in ordinary sense
and work with a more intrinsic embedding of the category of a–ne schemes
(now Ringsop into some category of (pre)sheaves over Ringsop using Yoneda
lemma, Grothendieck topologies and related concepts ([69, 99, 110]). In the
commutative case, while both the spectral and functorial approaches are
interchangeably used (EGA prefers spectral, while SGA and Demazure-
Gabriel [31] choose functorial; the latter motivated by niceties in the
treatment of group schemes), the more di–cult foundational constructions
of theoretical nature are done using the Yoneda embedding approach (alge-
braic geometry over model categories ([133, 134]); Thomason’s work ([135])
on K-theory and derived categories (cf. also [7]); A1-homotopy theory of
schemes ([92])).

2.2 One often stops consciously half way toward the construction of
the functor Ringsop ! nlSp; e.g. start with rings and do nothing except
for introducing a small class of open sets, e.g. commutative localizations,
ignoring other natural candidates, because it is di–cult to work with them.
Unlike in the above discussed case of restricting the class of spaces Ns ‰
nlSp, we are conservative in the details of the spectral description, thus
landing in some intermediate \semilocal" category slSp by means of a fully
faithful embedding Ringsop ! slSp.

2.2a An example of slSp is as follows. Consider the center Z(R) of a ring
R and construct the commutative ring Spec Z(R). Then for each principal
open set U in Z(R), one localizes R at U (a commutative localization) and
this essentially gives the structure sheaf U ! RU = O(U). The problem
arises if the center is small, hence Spec Z(R) is small as well, hence all the
information on R is kept in a few, maybe one, rings RU , and we did not
get far. In some cases the base space Spec Z 0 is big enough and we may
glue such spectra to interesting more general \schemes" ([106]). Taking the
center is not functorial, so we have to modify the categories a bit, to allow
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for pairs (R; C), C ‰ Z(R) from the start, and construct from them some
\space" Spec2(R; C) (see more in Ch. 10). It is argued in [106] that, when R

is small relative to Z 0, this construction is a satisfactory geometrization and
the standard tools from cohomology theory may be used. They call such a
situation semiquantum geometry.

A fruitful method is to add a limited class fQigi of other localizations on
R ¡ Mod, and think of QiR as the structure ring RUi

over open subset Ui.
However, now Ui is not really a subset in Spec Z(R), but rather a \geomet-
ric" label for Qi viewed as certain open set on hypothetical noncommutative
Spec R. Of course the latter point of view is central ([69, 62, 111, 138, 139,
142]) for our subject far beyond the idea of a small enrichment of the Zariski
topology on the spectrum of the center.

In summary, restricting sharply to a small class of localizations and/or
working with small spectra, projects a coarser local description slSp(R)
than often desired.

2.3 Alternatively, one may lose some information, for instance consid-
ering the points of spectra but not the sheaves, or types of spectra with
insu–ciently many points for the reconstruction of rings. We may think of
such correspondences as nonfaithful functors from slSp into some partial
geometric realms Featurefi(nlSp).

2.4 Manin has suggested ([89]) a functor from graded rings into abelian
categories: to a Noetherian ring R assign the quotient of the category of
flnitely generated graded R-modules by the subcategory of the flnitely gen-
erated graded R-modules of flnite length. In the commutative case, by a
theorem of Serre, this category is equivalent to the category of coherent
sheaves over Proj R. This is one of the candidates for projective noncommu-
tative geometry and we view it as an example of functor of type slSp. Manin
here actualizes Grothendieck’s advice that to do geometry one does not
need the space itself but only the category of sheaves on that would-be space.
In this spirit, Grothendieck deflned a topos ([63] and [21], vol.3) as an ab-
stract category satisfying a list of axioms, whose consequence is that it is
equivalent to the category of sheaves Fas C over some site C (a category with
a Grothendieck topology). Two difierent sites may give rise to the same
topos, but their cohomological behaviour will be the same. Thus they are
thought of as the same generalized space. Likewise, in algebraic geometry,
we have examples for the same heuristics, where abelian categories of quasi-
coherent sheaves of O-modules take the place of the topos of all sheaves of
sets. The suitable notion of a morphism between the topoi is recognized to
be ‘geometrical morphism’ what is also an adjoint pair of functors with cer-
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tain additional properties. In topos theory and applications, Grothendieck
actually utilizes an interplay (’yoga’) of 6 standard functors attached to the
same ‘morphism’. We shall discuss the basic pairs of adjoint functors for
the categories of modules and sheaves. They appear in the disguise of maps
of (noncommutative) rings (a–ne maps and their abstract version), as bi-
modules for two rings, as direct and inverse maps for OX -modules, and as
localization functors.

2.5 Grothendieck categories (G.c.) [62, 125]. A Grothendieck cat-
egory is a cocomplete (having all small limits) abelian category, having
enough injectives and a small generator. The category of left R-modules,
and the category of all sheaves of left R-modules over a flxed topological
space, are G.c.’s. Given a coalgebra C, the category of C-comodules is G.c.
Given a bialgebra B and a B-comodule algebra E, the category of relative
(E; B)-Hopf modules is a G. c. [146].

Theorem. (P. Gabriel, [42]) The category QcohX of quasicoherent
sheaves of OX-modules over a quasicompact quasiseparated scheme X is a
Grothendieck category.

It is not known if QcohX for a general scheme X is cocomplete, or if it
has enough injectives. This fact is behind our decision not to strictly require
our abelian categories of noncommutative geometry to be a G.c. (which
is fashionable). Rosenberg [109] requires the weaker property (sup) (=
categories with exact limits) introduced by Gabriel ([42]): for any object
M and any ascending chain of subobjects there is a supremum subobject,
and taking such suprema commutes with taking the join (minimum) with a
flxed subobject N ‰ M . This holds for R-mod, Fas C (for a small site C)
and QcohX (for any scheme X).

2.6 Theorem. (P. Gabriel for noetherian schemes ([42], Ch. VI);
A.L. Rosenberg in quasicompact case ([108]); and in general case ([115]))

Every scheme X can be reconstructed from the abelian category QcohX

uniquely up to an isomorphism of schemes.

This motivates the promotion to a \space" of any member of a class of
abelian categories, usually required to obey some additional axioms, allow-
ing (some variant) of R-mod (R possibly noncommutative) and QcohX as
prime examples. A distinguished object O in A, corresponding to the struc-
ture sheaf is often useful part of a data, even at the abstract level, hence the
spaces could be actually pairs (A; O). The study of functors for the cate-
gories of modules and categories of sheaves shows that there is a special role
for functors having various exactness properties ([109]), e.g. having a right
adjoint, hence such properties are often required in general. Gluing cate-
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gories over localizations, and variants thereof, should be interpreted in good
cases as gluings of spaces from local models. In noncommutative geometry,
a local model is usually the full category of modules over a noncommutative
ring.

2.7 The so-called derived algebraic geometry, treating in more natural
terms and globalizing the inflnitesimal picture of moduli spaces governed by
the deformation theory, appeared recently ([12, 133]). Its cousin, homotopi-
cal algebraic geometry appeared promising in the study of homotopy theories
for algebraic varieties, and also in using the reasoning of algebraic geometry
for ring spectra of homotopy theory and for their globalization. In such
generalizations of algebraic geometry the basic gadgets are higher categories
(e.g. simplicially enriched, DG, Segal, A1, cf. [34, 65, 105, 133, 134]). The
lack of smoothness in some examples of moduli spaces is now explained as an
artifact of the truncation process replacing the natural and smooth ‘derived
moduli spaces’ by ordinary moduli spaces (the ‘hidden smoothness princi-
ple’ due to Bondal, Deligne, Drinfeld, Kapranov, Hinich, Kontse-
vich...).

Part of the relevant structure here may be already expressed by replac-
ing rings by difierential graded algebras (dga-s) ([12]), or, more generally, by
introducing sequences of higher (e.g. ‘Massey’) products, as in the theory
of A1 (strongly homotopy associative) and L1 (strongly homotopy Lie)
algebras. Such generalizations and special requirements needed to do local-
ization in such enriched settings, are beyond the scope of the present article.
A noncommutative algebraic geometry framework designed by O.A. Lau-
dal ([75]), with emphasis on the problem of noncommutative deformation
of moduli, implicitly includes the higher Massey products as well. In the
viewpoint put forward by Kontsevich and Fukaya, some of the ‘dualities’
of modern mathematical physics, e.g. the homological mirror symmetry, in-
volve A1-categories deflned in terms of geometric data ([70, 88, 126]). The
so-called quantization ([30, 67, 74, 148]) in its many versions is gener-
ally of deformational and noncommutative nature. Thus it is not surprising
that the formalisms combining the noncommutative and homological (or
even homotopical) structures beneflt from the geometrically sound models
of quantum physics. Manin suggested that a more systematic content of a
similar nature exists, programmatically named quantized algebraic geometry,
which may shed light on hidden aspects of the geometry of (commutative)
varieties, including the deep subject of motives.

An interesting interplay of derived categories of coherent sheaves on va-
rieties and their close analogues among other triangulated categories, moti-
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vates some ‘noncommutative’ geometry of the latter ([20, 19]). Triangulated
categories are also only a \truncation" of some other higher categories.

One should also mention that some important classes of rings in quan-
tum algebra, for example quantum groups, may be constructed using cate-
gories of (perverse) sheaves over certain commutative conflguration spaces
([83]). Thus the structure of various sheaf categories is an ever repeating
theme which relates the commutative and noncommutative world. See the
essay [26] for further motivation.

3 Abstract localization

We discuss localization of 1. algebraic structures; 2. categories. These two
types are related: typically a localization of a ring R induces a localization
of the category R ¡ Mod of left modules over R.

A recipe G for a localization takes as input a structure R (monoid, lat-
tice, ring), or a category A, and distinguished data § in R (or A). The
localizing data § are selected from some class U(R) of structural data, for
example elements, endomorphisms or ideals of R; similarly U(A) could be
a class of subcategories or a collection of morphisms in A. Usually not all
obvious subclasses of U(R) may serve as distinguished data for G, and some
‘localizability’ conditions apply.

A localization procedure G(R; §) should replace R by another object Y

and a map i : R ! Y , which induces, for given G, some canonical correspon-
dence G(i) : § ˆ §⁄ between the localization data § and some other data
§⁄ chosen from U(Y ). The subclass §⁄ should satisfy some natural require-
ment, for example that it consist of invertible elements. Pair (i; Y ) should
be in some sense smallest, or universal among all candidates satisfying the
given requirements. For given requirements only certain collections § built
from elements in U(R) give rise to a universal (i; Y ). Such § are generically
called localizable and the resulting Y is denoted §¡1R.

In the case of a category C, a map i is replaced by a localization func-
tor Q⁄ : C ! §¡1C. In this article, a localization of a category will be
equivalent to an abstract localization with respect to a class of morphisms
§ in C, often using some other equivalent data (e.g. ‘localizing subcate-
gory’). Following [43], we sketch the general case of a localization at a class
of morphisms §, cf. also [21].

3.1 An abstract 1-diagram E is a structure weaker then a category: it
consists of a class Ob E of objects and a class Mor E of morphisms equipped
with a source and a target maps s; t : Mor E ! Ob E . No composition, or
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identity morphisms are supplied. As usual, for two objects A; B by E(A; B)
we denote class of morphisms f with s(f) = A and t(f) = B. If each
E(A; B) is a set, one may use the word (multiple-edge) graph instead. If
E ; C are diagrams, an E-diagram in C, or a morphism d : E ! C, is any
pair of maps Ob E ! Ob C and Mor E ! Mor C which commute with the
source and target maps. Small abstract 1-diagrams and their morphisms
form a category Diagr1. To each category one assigns its underlying abstract
diagram. This correspondence induces a forgetful functor from the category
Cat of small categories to Diagr1. The construction of a category of paths
below provides the left adjoint to this functor.

If n ‚ 0 is an integer, a path of length n from A to B in an abstract
diagram E is a tuple (A; f1; f2; : : : ; fn; B), where A is an object and fi are
morphisms in E , such that s(fi+1) = t(fi) for i = 1; : : : ; n¡1, and s(f1) = A,
t(fn) = B if n > 0, and A = B if n = 0. For any abstract 1-diagram E
deflne a category Pa E of paths in E as follows. The class of objects is

Ob Pa E := Ob E

and the morphism class (Pa E)(A; B) consists of all paths from A to B. One
declares IdA := (A; A), s0(A; f1; : : : ; fn; B) = A and t0(A; f1; : : : ; fn; B) = B

to be the identity morphisms, and the source and target maps for Pa E(A; B).
The composition rule is

(A; f1; : : : ; fn; B) – (B; g1; : : : ; gm; C) = (A; f1; : : : ; fn; g1; : : : ; gm; C):

If each (Pa E)(A; B) is small we indeed obtain a category.
Consider the canonical E-diagram iE : E ! Pa E which is tautological

on objects as well as on paths of length 1. Pa E has the following universal
property: an E-diagram d in any category C gives rise to a unique functor
d0 : Pa E ! C such that d = d0 – iE .

3.2 Let § be a family of morphisms in the category C. If J : C ! D is
any functor let §⁄ := J(§) be the class of all morphisms J(f) where f 2 §.
Given C and §, consider the diagram scheme E = E(C; §) with Ob E := Ob C
and Mor E := Mor C ‘

§, sE = s
‘

sj§, tE = t
‘

tj§. One has canonical
inclusions in1 : Mor C ! Mor E , in2 : § ,! Mor E . Let » be the smallest
equivalence relation on Pa E such that

(in1v) – (in1u) » in1(v – u) if v – u is deflned in C;

in1(idA) » (A; A); A 2 C;

(in2f) – (in1f) » (s(f); s(f))
(in1f) – (in2f) » (t(f); t(f))

¾
f 2 §:
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It is direct to show that operation – induces a composition on classes of
morphisms with respect to this particular equivalence relation. In this way
we obtain a quotient §¡1C of the category Pa E together with the canonical
functor Q⁄

§ : C ! Pa E which is tautological on objects and equals iE – in1

followed by the projection to the classes of equivalence on morphisms.

3.3 Proposition. If f 2 § then the functor Q⁄
§ : C ! §¡1C sends f

to an invertible map Q⁄
§(f). If T : C ! D is any functor such that T (s) is

invertible for any s 2 § then there is a unique functor H : §¡1A ! B such
that T = H – Q⁄

§.

§¡1C is category of fractions of C at §. This construction has a defect,
in that there is no general recipe to determine when two morphisms in Pa E
represent the same morphism in §¡1C. If § satisfles the Ore conditions,
below, there is one.

3.4 Proposition. [43] Let T ⁄ a T⁄ be an adjoint pair of functors (this
notation means that T ⁄ is left adjoint to T⁄), where T ⁄ : A ! B. with ad-
junction counit † : T ⁄T⁄ ) 1B. Let § = §(T⁄) be the class of all morphisms
f in A such that T ⁄(f) is invertible, and Q⁄

§ : A ! §¡1A the natural
functor. Then the following are equivalent:

(i) T⁄ is fully faithful.

(ii) † : T ⁄T⁄ ) 1B is an isomorphism of functors.

(iii) The unique functor H : §¡1A ! B such that T ⁄ = H – Q⁄
§ is an

equivalence; in particular Q⁄
§ has a right adjoint Q§⁄.

(iv) (If A is small) For each category X , functor Cat(¡; X ) : Cat(B; X ) !
Cat(A; X ) is fully faithful.

Throughout the paper, any functor T ⁄ agreeing with a functor Q⁄
§ :

C ! §¡1C as above up to category equivalences will be referred to as a
localization functor. A functor T ⁄ satisfying (i)-(iii) will be referred to
as a continuous localization functor.

3.5 ([79]) Suppose Q⁄ : A ! B is a localization functor (cf. 3.4), and
F : A ! A an endofunctor. If there is a functor G : B ! B and a natural
equivalence of functors fi : Q⁄ – F ) G – Q⁄ then there is a unique functor
FB : B ! B such that Q⁄ – F = FB – Q⁄. In that case, we say that F is
compatible with Q⁄.

Proof. Suppose f : M ! N is a morphism in A. Suppose that Q⁄(f)
is invertible. Then GQ⁄(f) : GQ⁄(M) ! GQ⁄(N) also has some inverse s.
The naturality of fi and fi¡1 implies

fi¡1
M – s – fiN – Q⁄F (f) = fi¡1

M – s – GQ⁄(f) – fiM = idM ;

Q⁄F (f) – fi¡1
M – s – fiN = fi¡1

N – GQ⁄(f) – s – fiN = idN ;
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hence fi¡1
M – s – fiN : Q⁄F (N) ! Q⁄F (M) is the inverse of Q⁄F (f). The

conclusion is that for any f with Q⁄(f) invertible, Q⁄F (f) is invertible as
well. In other words, (by the universal property of the localization), functor
Q⁄F factors through the quotient category B, i.e. 9! FB : B ! B with
Q⁄ – F = FB – Q⁄. Q.E.D.

4 Ore localization for monoids

4.1 A semigroup is a set R with a binary associative operation. A
semigroup with unit element 1 2 R is called a monoid. By deflnition,
maps of semigroups are set maps which respect the multiplication, and maps
of monoids should preserve unit element as well. Monoids and maps of
monoids form a category Mon, which has arbitrary products. The notion of
a submonoid is the obvious one.

A subset S of a monoid R is multiplicative if 1 2 S and whenever
s1; s2 2 S then s1s2 2 S. For a set S1 ‰ R there is a smallest multiplicative
subset S ‰ R containing S1, namely the set of all products s1 ¢ ¢ ¢ sn where
si 2 S1, including the product of the empty set of elements which equals 1
by deflnition. We say that S is multiplicatively generated by S1.

4.2 A multiplicative subset S ‰ R is a left Ore set if

† (8s 2 S 8r 2 R 9s0 2 S 9r0 2 R) (r0s = s0r) (left Ore condition);

† (8n1; n2 2 R 8s 2 S) (n1s = n2s) ) (9s0 2 S; s0n1 = s0n2)

(left reversibility).

4.3 In traditional ring-theoretic terminology, S is a left Ore set if the
flrst condition holds and S is a left denominator set if both conditions
hold. We often say \left Ore set" for a left denominator set, as is increasingly
common among geometers, and the notion of satisfying just the left Ore
condition may be said simply \satisfying left Ore condition". By saying
(plural:) \left Ore conditions" we subsume both the left Ore condition and
the left reversibility.

4.4 A monoid R can be viewed as a small category Cat(R) with a single
object R. Left multiplication by an element a 2 R is a morphism in CatR
denoted by La. We compose the morphisms by composing the maps. Any
small category having one single object is clearly equivalent to Cat(R) for a
suitable R.

This suggests a generalization of the notion of a denominator set (as well
as its applications below) by replacing Cat(R) by an arbitrary category. A
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multiplicative system in a category A is a class § of morphisms in A
where all identity morphisms 1A, where A 2 Ob A, are in §, and for any
two composable morphism s; t 2 § (i.e., the target (range) of t matches the
source (domain) of s), also s – t 2 §.

A multiplicative system § satisfles the left Ore conditions if it satisfles the
ordinary left Ore condition with all quantiflers conditioned on the matching
of the source and target maps appropriately.

More precisely, § satisfles the left Ore condition if

8(s : A ! B) 2 §; 8r : A0 ! B; 9(s0 : D ! A0) 2 §; 9r0 : D ! A;

so that r0 – s = s0 – r. § satisfles left reversibility (’simpliflability’) if

(8n1; n2 : A ! B; 8(s : C ! A) 2 §) (n1 – s = n2 – s)
) (9(s0 : B ! D) 2 §; s0 – n1 = s0 – n2):

We may picture the left simpliflability by the diagram

C
s¡¡!A

n1¡¡!¡¡!
n2

B
s0

99K D

We say that § is a left denominator system, or equivalently, that the pair
(A; §) forms a left calculus of fractions if the left Ore and left simpli-
flability condition hold. The book [104] has a good graphical treatment of
that subject. See also [21, 35, 43, 103].

4.5 Lemma. Let f : R ! R0 be a surjective map of monoids and S ‰ R

left Ore. Then f(S) is left Ore in R0.
4.6 Let D be some category of monoids with additional structure, i.e. a

category with a faithful functor (¡)mon : D ! Mon preserving and re°ecting
flnite equalizers. If R is an object in D, a multiplicative set in R is by
deflnition any multiplicative set S ‰ (R)mon.

Deflnition. Given a multiplicative set S in R 2 D we introduce the
category CD(R; S) as follows. The objects of CD(R; S) are all pairs (j; Y )
where Y 2 Ob D and j : R ! Y is a morphism in D satisfying

† (8s 2 S) (9u 2 Y ) (uj(s) = j(s)u = 1) in (Y )mon;

The morphisms of pairs ¾ : (j; Y ) ! (j0; Y 0) are precisely those morphisms
¾ : Y ! Y 0 in D for which ¾ – j = j0.

In plain words, we consider those morphisms which invert all s 2 S.
Now we would like the multiplication j(s1)¡1j(r1) ¢ j(s2)¡1j(r2) to ob-

tain again a ‘left fraction’ j(s)¡1j(r). For this it is enough to be able to
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‘commute’ the two middle terms in the sense j(r1)j(s2)¡1 = j(s0)¡1j(r0) as
j(s1)¡1j(s0)¡1) = j(s0s1)¡1 and j(r0)j(r2) = j(r0r2) and we are done. This
reasoning is the origin of the left Ore condition. Here is a formal statement:

4.7 Proposition. (i) For (j; Y ) 2 Ob 2 CMon(R; S), j(S) is left Ore in
j(R) ifi

j(S)¡1j(R) = fj(s)¡1j(r) j s 2 S; r 2 Rg ‰ Y

is a submonoid of Y . In particular, if S is left Ore in R, j(S)¡1j(R) is a
submonoid of Y for each (j; Y ) 2 Ob(C(R; S)).
(ii) If the equivalent conditions in (i) hold, then

8(s; r) 2 S £ R

j(s)¡1j(r) = j(s0)¡1j(r0) ,
8
<
:

9~s 2 S; 9~r 2 R;

j(~s)j(s0) = j(~r)j(s)
j(~s)j(r0) = j(~r)j(r):

(1)

Proof. (i) ()) Let s1; s2 2 S r1; r2 2 R. By the left Ore condi-
tion 9s0 2 S 9r0 2 R with j(s0)j(r1) = j(r0)j(s2). Hence the product
j(s1)¡1j(r1) ¢ j(s2)¡1j(r2) = j(s0s1)¡1j(r0r2) belongs to Y .
(() If j(S)¡1j(R) is a monoid then j(r)j(s)¡1 2 j(S)¡1j(R). In other
words, 9s0 2 S 9r0 2 R such that j(r)j(s)¡1 = j(s0)¡1j(r0). Thus j(s1)j(r) =
j(r1)j(s).

(ii) By multiplying from the left by j(s0) one gets j(s0)j(s¡1)j(r) = j(r0).
As S is left Ore, 9~s 2 S 9~r 2 R such that ~ss0 = ~rs. This implies j(~s)j(s0) =
j(~r)j(s) and, consequently, j(s0)j(s¡1) = j(~s)¡1j(~r); then j(~s)¡1j(~r)j(r) =
j(r0) and, flnally, j(~r)j(r) = j(~s)j(r0).

4.8 Proposition. Let S; R; Y; j be as in 4.7, and let R; Y be each
equipped with a binary operation, in both cases denoted by +0, such that ¢ is
left distributive with respect to +0. If j(S)¡1j(R) is a submonoid of Y , then
it is closed with respect to +0 as well.

Proof. The following calculation is valid in Y :

j(s1)¡1j(r1) +0 j(s2)¡1j(r2) = j(s1)¡1(j(r1) +0 j(s1)j(s2)¡1j(r2))
= j(s1)¡1(j(r1) +0 j(~s)¡1j(~r)j(r2))
= j(~ss1)¡1(j(~s)j(r1) +0 j(~r)j(r2)) 2 j(S)¡1j(R);

where j(~s)j(s1) = j(~r)j(s2) for some ~s, ~r by the left Ore condition which
holds due 4.7.

4.9 Remark. We do not require j(a +0 b) = j(a) +0 j(b) here.
4.9a Exercise. Generalize this to a family F of n-ary left distributive

operations in place of +0, i.e., of operations of the form F : X£n ! X, for
various n ‚ 0, such that La – F = F – L£n

a .
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4.10 From now on we limit to the case where the category D above
corresponds to a variety D of algebras (A; LA) (in the sense of universal
algebra) of signature L = (¢; 1; F), where FA is a family of left distributive
operations on A on a (A; ¢A; 1A). The reader who does not care for this
generality (suitable say for algebras with operators) can consider 3 basic
cases: 1) F = ; when D = Mon; 2) F = f+g and algebras are unital
rings; 3) F = f+g and algebras are associative unital k-algebras over a
commutative ring k.

4.11 Denote by Cl;D(R; S) the full subcategory of CD(R; S) consisting of
those objects (j; Y ) which satisfy

† (8r; r0 2 R) (j(r) = j(r0) , 9s 2 S (sr = sr0)).

† j(S)¡1j(R) is a subring of Y

Similarly, C¡
l;D(R; S) by deflnition consists of objects satisfying the flrst, but

not necessarily the second property. Denote by Cr;D(R; S) the full subcat-
egory of CD(R; S) consisting of those objects (j; Y ) which satisfy the sym-
metric conditions

† (8r; r0 2 R) (j(r) = j(r0) , 9s 2 S (rs = r0s)).

† j(R)j(S)¡1 is a subring of Y

Finally, the objects in C¡
r;D(R; S), by deflnition, satisfy the flrst, but not

necessarily the second property. If there is a universal initial object in
Cl(R; S) (Cr(R; S)), we denote it by (¶; S¡1R) (resp.(¶; RS¡1) ) and we call
the pair, or by abuse of language, also the ring S¡1R (RS¡1 resp.), the left
(right) Ore localization of R at set S, and map ¶ the localization map. An
alternative name for S¡1R (RS¡1) is the left (right) ring of fractions (of
ring R at set S).

4.12 Proposition. If 8(j; Y ) in C¡
l;Mon

(R; S) the subset j(S)¡1j(R) is a

submonoid (i.e.9(j; Y ) 2 Cl;Mon(R; S)), then it is so 8(j; Y ) in C¡
l;Mon

(R; S),

i.e. the categories Cl;Mon(R; S) and C¡
l;Mon

(R; S) coincide. In that case, S is
a left denominator set in R.

Proof. Let j(S)¡1j(R) be a subring for some (j; Y ). Then j(S)¡1j(R)
is Ore in j(R) by the previous proposition. Thus for every s 2 S, r 2
R 9s0 2 S 9r0 2 R such that j(r)j(s)¡1 = j(s0)¡1j(r0) and therefore
j(s0)j(r) = j(r0)j(s) which means j(s0r) = j(r0s). That implies 9s+ 2 S

with s+s0r = s+r0s). Therefore for any other (j0; Y 0) in Cl;Mon(R; S) the
subset j0(S)¡1j0(R) is a subring. Moreover we have s+s0 2 S and s+r0 sat-
isfy (s+s0)r = (s+r0)s. Since they were constructed for an arbitrary s and
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r, S is left Ore in R.
Left reversibility: Let r; r0 2 R; s 2 S. Then rs = r0s ) j(r)j(s) =
j(r0)j(s), so by invertibility of j(s) also j(r) = j(r0). But (j; Y ) is object in
Cl;Mon(R; S) so j(r) = j(r0) ) 9s0 2 S; s0r = s0r0.

4.13 Lemma. (i) Let S be a left denominator set. Deflne the relation
» on S £ R by

(s; r) » (s0; r0) , (9~s 2 S 9~r 2 R) (~ss0 = ~rs and ~sr0 = ~rr):

Then » is an equivalence relation.
(ii) Let § be a system of left fractions in a category C. For any pair of

objects X; Y in C let (§ £ C)(X; Y ) be the class of all diagrams of the form‡
X

r! Z
sˆ Y

·
in C. Deflne a relation » on (§ £ C)(X; Y ) by

‡
X

r! Z
sˆ Y

·
»

‡
X

r0! Z 0 s0ˆ Y
·

, 9
‡

X
~rˆ B

~s! Y
·

;

‰
~s – s0 = ~r – s : B ! Z

~s – r0 = ~r – r : B ! Z 0 :

The latter condition can be depicted by saying that the diagram

Z

X

r0
ÃÃA

AA
AA

AA
A

r
>>}}}}}}}}
B

~r //~soo Y

s0
~~}}

}}
}}

}

s
``AAAAAAAA

Z 0

commutes. Conclusion: » is an equivalence relation.

Here
‡

X
~rˆ B

~s! Y
·

is not a diagram in (§op £ C)(X; Y ).

Proof. Re°exivity is trivial.
Symmetry: By Ore 9r1 2 R; s1 2 S with r1s = s1s0. Also 9r2 2 R; s2 2 S

with r1s = s1s0. Thus

r2~rs0 = r2~ss = s2r1s = s2s1s0:

In other words r2~r ¡ s2s1 2 IS . Thus by the left reversibility, 9t 2 S with
t(r2~r ¡ s2s1) = 0. Therefore t(r2~r ¡ s2s1)r0 = 0, hence ts2s1r0 = tr2~sr.
Compare with ts2s1s0 = tr2~ss to see that (s0; r0) » (s; r).
Transitivity: Assume (s; r) » (s0; r0) and (s0; r0) » (s00; r00). This means

9 ~s; ~~s 2 S 9 ~r; ~~r 2 R

‰
~ss = ~rs0 ~~ss0 = ~~rs00

~sr = ~rr0 ~~sr0 = ~~rr00
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S is left Ore, hence 9s⁄ 2 S 9r⁄ 2 R with s⁄~r = r⁄~~s. Therefore

(s⁄~s)s = s⁄~rs0 = r⁄~~ss0 = (r⁄~~s)s00

(s⁄~s)r = s⁄~rr0 = r⁄~~sr0 = (r⁄~~s)r00

Hence (s; r) » (s00; r00).
4.14 Simplifying observation. Consider a family of arrows (s; r) !

((ps)¡1; (pr)) where ps 2 S. Then (s; r) » ((ps)¡1; (pr)). If some property
P of elements of S £ R does not change along such arrows, then P is well-
deflned on classes s¡1r := [s; r]= » 2 S £ R= ».

Proof. Clearly every »-arrow is a composition of one such arrow and the
inverse of another such arrow.

4.15 Lemma. If t 2 S and tr = tr0 (by reversibility even better if
rt = r0t) then (s; r1rr2) » (s; r1r0r2).

Proof. There are t0 2 S, r0
1 2 R with r0

1t = t0r1. Then (s; r1rr2) »
(t0s; t0r1rr2) » (t0s; r0

1trr2) » (t0s; r0
1tr0r2) » (t0s; t0r1r0r2) » (s; r1r0r2).

4.16 Proposition. For (j; Y ) in Ob Cl;D(R; S) the statement

(8y 2 Y 9s 2 S 9r 2 R) (y = j(s)¡1j(r)) (2)

holds ifi (j; Y ) is a universal initial object in C = CD(R; S).

Proof. (() Let (j; Y ) 2 Cl be universal in C. Suppose Y0 := j(S)¡1j(R)
is a proper subring of Y . We’ll denote by j0 the map from R to Y0 agreeing
with j elementwise. Then (j0; Y0) is an object in Cl and the inclusion i : Y0 !
Y is a morphism from (j0; Y0) into (j; Y ). By universality of (j; Y ) there is
a morphism i0 : (j; Y ) ! (j0; Y0). The composition of morphisms i – i0 is an
automorphism of (j; Y ) clearly difierent from the identity, contradicting the
universality of (j; Y ).

()) Let (j; Y ) satisfy (2) and let (j0; Y 0) be any object in C(R; S). We
want to prove that there is unique map i : Y ! Y 0 which satisfles i(j(r)) =
j0(r) 8r 2 R. Note that i(j(s)¡1j(s)) = i(j(s)¡1)j0(s) implies i(j(s)¡1) =
j0(s)¡1. Thus i(j(s)¡1j(r)) = j0(s)¡1j0(r) so that the value of i is forced for
all elements in Y proving the uniqueness.

This formula sets i independently of choice of s and r. Indeed, if
j(s)¡1j(r) = j(s0)¡1j(r0) then j(r) = j(s)j(s0)¡1j(r0). As j(S) is left Ore in
j(R), we can flnd ~s 2 S and ~r 2 R such that j(~r)j(s0) = j(~s)j(s) and there-
fore j(s)j(s0)¡1 = j(~s)¡1j(~r). Thus j(r) = j(~s)¡1j(~r)j(r0) or j(~s)j(r) =
j(~r)j(r0) and, flnally, j(~sr) = j(~rr0). Thus 9s+ 2 S; s+~sr = s+~rr0. Starting
here and reversing the chain of arguments, but with j0 instead of j, we get
j0(s)¡1j0(r) = j0(s0)¡1j0(r0).



240 Noncommutative localization in noncommutative geometry

4.17 Theorem. If S is a left denominator set in R, then the universal
object (j; Y ) in Cl;Mon(R; S) exists.

Proof. We will construct a universal object (j; Y ) · (¶; S¡1R). As a set,
S¡1R := (S £ R)= ». Let [s; r], and, by abuse of notation, let s¡1r also
denote the »-equivalence class of a pair (s; r) 2 S £ R. Notice that 1¡1r =
1¡1r0 may hold even for some r 6= r0, namely when 9s 2 S and r; r0 with
sr = sr0. The equivalence relation is forced by (1).

Multiplication s¡1
1 r1 ¢ s¡1

2 r2 := (~ss1)¡1(~rr2) where ~r 2 R, ~s 2 S satisfy

~rs2 = ~sr1 (thus ~s¡1~r = r1s¡1
2 ), as in the diagram:

†

†
~r

??~~~~~~~ †
~s

__@@@@@@@

†

r1

??~~~~~~~ †

s1

__@@@@@@@
r2

??~~~~~~~ †

s2

__@@@@@@@

If we choose another pair of multipliers ~~r 2 R; ~~s 2 S with ~~rs2 = ~~sr1 instead,
then by the left Ore condition we can choose r⁄ 2 R; s⁄ 2 S with s⁄~s = r⁄~~s.
Then

r⁄~~rs2 = r⁄~~sr1 = s⁄~sr1 = s⁄~rs2

and therefore r⁄~~r ¡ s⁄~r 2 IS .

In other words, 9s+ 2 S with s+r⁄~~r = s+s⁄~r.

Therefore we have
s+s⁄~rr2 = s+r⁄~~rr2

s+s⁄~ss1 = s+r⁄~~ss1

which proves (~ss1)¡1(~rr2) = (~~ss1)¡1(~~rr2). Thus multiplication is well de-
flned as a map „1 : (S £ R) £ (S £ R) ! S¡1R.

We have to show that „1 factors to „ : S¡1R £ S¡1R ! S¡1R.

By 4.14, it is su–cient to show that a = „1((s1; r1); (s2; r2)) equals
b = „1(((rs)1; (rr1)); ((ps)2; (pr2))) whenever rs 2 S and ps 2 S.

s0
2r1 = r0

1s2 for some s0
2 2 S and r0

1 2 R. Then a = (s0
2s1)¡1(r0

1r2).
As ps2 2 S, 9p0 2 R; s⁄ 2 S with p0(ps2) = s⁄r0

1s2 = s⁄s0
2r1. Fur-

thermore, s]r = p]s⁄s0
2 for some s] 2 S and p] 2 R. Putting these to-

gether, we infer s](rr1) = p]s⁄s0
2r1 = p]p

0ps2 and therefore (rr1)(ps2)¡1 !
s¡1

] (p]p
0), i.e., by deflnition, that b = (s]rs1)¡1(p]p

0pr2), hence by above,

b = (p]s⁄s0
2s1)¡1(p]p

0pr2). Now use lemma 4.15 and (p0p)s2 = (s⁄r0
1)s2 to

conclude b = (p]s⁄s0
2s1)¡1(p]s⁄r0

1r2) = (s0
2s1)¡1(r0

1r2) = a.
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Hence „ is well-deflned. The unit element is clearly 1 = 1¡11. We need
to show the associativity of „. The product s¡1

1 r1 ¢ s¡1
2 r2 ¢ s¡1

3 r3 does not
depend on the bracketing, essentially because one can complete the following
commutative diagram of elements in R (the composition is the multiplication
in R: any pair of straight-line (composed) arrows with the same target is
identifled with a pair in S £ R):

†

†

r⁄
??~~~~~~~ †

s⁄
__@@@@@@@

†
~r

??~~~~~~~ †
~s

__@@@@@@@
~~r

??~~~~~~~ †

~~s
__@@@@@@@

†

r1

??~~~~~~~ †

s1

__@@@@@@@
r2

??~~~~~~~ †

s2

__@@@@@@@
r3

??~~~~~~~ †

s3

__@@@@@@@

Finally, the construction gives the universal object because it clearly
satisfles the equivalent condition in 4.16.

5 Ore localization for rings

5.1 Exercise. The two left Ore conditions together immediately imply
the combined left Ore condition:

If n 2 R is such that ns = 0 for some s 2 S, then for every r 2 R there
are s0 2 R, r0 2 R such that r0n = s0r.

It is sometimes useful to quote this property in order to avoid introducing
the additional variables needed for deriving it.

5.2 Lemma. Let f : R ! R0 be a ring morphism and S ‰ R Ore. Then
f(S) is an Ore set in R.

5.3 Notation. In this section we are concerned only with the category
of unital rings. Thus C(R; S) := CRings(R; S).

5.4 Notation. For any S ‰ R let IS := fn 2 R j 9s 2 S; sn = 0g.
IS is clearly a right ideal. If S is a left Ore set, then sn = 0 and the left
Ore condition imply that 8r 2 R 9s0 2 S; r0 2 R with r0s = s0r, hence
s0rn = r0sn = 0. Thus IS is then a 2-sided ideal.

5.5 Corollary. If S¡1R exists then 8(j; Y ) 2 C(R; S), ker j ‰ IS . In
particular, an Ore localization of a domain is a domain.

5.6 Theorem. If S is a left denominator set in R then the universal
object (j; Y ) in Cl(R; S) exists.
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Proof. In 4.17, we have constructed a monoid structure on Y = S £
R= ». We exhibit an additive structure on Y such that j is a ring map and
(j; Y ) is indeed universal.
Addition: Suppose we are given two fractions with representatives (s1; r1)
and (s2; r2). By the left Ore condition, 9~s 2 S, 9~r 2 R, such that ~ss1 = ~rs2.
The sum is then deflned as

s¡1
1 r1 + s¡1

2 r2 := (~ss1)¡1(~sr1 + ~rr2)

Suppose we have chosen (~~s; ~~r
0
) 2 S £ R with ~~ss1 = ~~rs2, instead of (~s; ~r).

Then by left Ore we flnd s⁄ 2 S and r⁄ 2 R such that s⁄~s = r⁄~~s. Then

r⁄~~rs2 = r⁄~~ss1 = s⁄~ss1 = s⁄~rs2

hence (s⁄~r ¡ r⁄~~s) 2 IS , i.e. 9s] 2 S with

s]s⁄~r = s]r⁄~~s

Then
(s]s⁄)(~sr1 + ~rr2) = (s]r⁄)(~sr1 + ~~sr2)

(s]s⁄)(~ss1) = (s]r⁄)(~~ss2)

Conclusion: (~ss; ~sr1 + ~rr2) » (~~ss; ~~sr1 + ~~rr2), as required.
Now let’s check that the sum does not depend on the choice of the rep-

resentative of the flrst summand. Suppose we are given two representatives
of the flrst fraction s¡1

1 r1 = s0¡1
1 r0

1. Then for some (s⁄; r⁄) 2 S £ R we have

s⁄s1 = r⁄s0
1 and s⁄r1 = r⁄r0

1

The second fraction is s¡1
2 r2. Choose

(~~s; ~~r) 2 S £ R with ~~ss0
1 = ~~rs2:

Now choose (s]; r]) 2 S £ R such that s]r⁄ = r]
~~s. Then (r]

~~r)s2 = r]
~~ss0

1 =
s]r⁄s0

1 = (s]s⁄)s1 and (r]
~~s)r0

1 = s]r⁄r0
1 = (s]s⁄)r1. Therefore

s¡1
1 r1 + s¡1

2 r2 = (s]s⁄s1)¡1(s]s⁄r1 + r]
~~rr2)

= (r]
~~ss0

1)¡1(r]
~~sr0

1 + r]
~~rr2)

= (~~ss0
1)¡1(~~sr0

1 + ~~rr2)

= s0¡1
1 r0

1 + s¡1
2 r2

We should also check that the sum does not depend on the second summand.
This proof cannot be symmetric to the previous one as our deflnition of the
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sum is not symmetric. We shall choose an indirect proof. Denote the set-
theoretic quotient map by p : S £ R ! S¡1R. By now we have completed
the proof that addition as a map from

~+ : S¡1R £ (S £ R) ! S¡1R

is well deflned. Now we prove that the map

~+(p £ id)¿ : (S £ R) £ (S £ R) ! S¡1R

where ¿ is the transposition of factors coincides with ~+(p £ id). Thus we
have a well-deflned addition as a map deflned on S¡1R £ S¡1R which is
then automatically commutative. It is su–cient to prove that for any two
pairs (s1; r1) and (s2; r2) and any

~s; ~~s 2 S; ~r; ~~r 2 R with ~ss1 = ~rs2; ~~rs1 = ~~ss2;

the classes
(~ss1)¡1(~sr1 + ~rr2)

(~~ss2)¡1(~~rr1 + ~~sr2)

coincide in S¡1R. For that purpose, choose s] 2 S and r] 2 R such that
s]~r = r]

~~s. Then
r]~ss1 = s]~rs2 = r]

~~ss2:

Next r]
~~rs1 = r]

~~ss2 = s]~rs2 = s]~ss1, and therefore (r]
~~r ¡ s]~s) 2 IS (5.4).

Thus 9s+ 2 S with
s+r]

~~r ¡ s+s]~s = 0:

In particular, s+r]
~~rr1 = s+s]~sr1 = 0. Thus

(~ss1)¡1(~sr1 + ~rr2) = (s+s]~ss1)¡1(s+s]~sr1 + s+s]~rr2)

= (s+r]
~~ss1)¡1(s+r]

~~rr1 + s+r]
~~sr2)

= (~~ss1)¡1(~~rr1 + ~~sr2)

The associativity of addition is left to the reader.
The distributivity law follows by 4.8.
The element 1¡10 in S¡1R is the zero and thus S¡1R is equipped with

a natural unital ring structure.
Deflne ¶ : R ! S¡1R by ¶(r) = [1; r] = 1¡1r. Check that ¶ is a unital ring

homomorphism. Check that ¶(S) consists of units and that ¶(S)¡1¶(R) = Y .
Pair (¶; S¡1R) is a universal object in Cl(R; S), as it clearly satisfles the
equivalent condition in 4.16.

5.7 Right Ore conditions, and right Ore localizations with respect to S ‰
R, are by deflnition the left Ore conditions and localizations with respect
to S ‰ Rop. The right ring of fractions is denoted RS¡1 := (S¡1Rop)op. It
consists of certain equivalence pairs rs¡1 := [(r; s)], where (r; s) 2 R £ S.
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6 Practical criteria for Ore sets

This section is to be read only by those who want to test in practice whether
they have an Ore set at hand.

6.1 Theorem. (i) Let S and S0 be multiplicative sets in ring R, where
S is also left Ore in R. Assume

1. for a map j : R ! Y of unital rings, the image j(S) consists of units
in Y ifi the image j(S0) consists of units in Y ;

2. sr = 0 for some s 2 S ifi 9s0 2 S0 with s0r = 0.
Then S0 is left Ore as well and S¡1R is canonically isomorphic to S0¡1R.

Proof. Under the assumptions the categories Cl(R; S) and Cl(R; S0) are iden-
tical, so call them simply C. The left Ore condition is equivalent to the exis-
tence of an initial object in C; and the 2 localizations are just the 2 choices
of an initial object, hence there is a unique isomorphism in C between them;
its image under the forgetful functor C ! R ¡ Mod into the category of
unital rings, is the canonical isomorphism as required.

6.2 The left Ore condition is often checked inductively on a flltration,
or an ordered set of generators. For this purpose we shall temporarily use
some nonstandard notation which generalizes the left Ore condition. One
flxes an (only) multiplicative set S ‰ R. For any subset A ‰ R, and any
(s; r) 2 S £ A ‰ S £ R, introduce predicate

lOre(s; r " A) := lOreS;R(s; r " A) · (9s0 2 S; 9r0 2 A; s0r = r0s);

where S; R in subscripts may be skipped if known from context. More-
over if A = R then " A may be skipped from the notation. For example,
lOre(s; r) = lOreS;R(s; r " R).

For any subsets A0 ‰ A and S0 ‰ S, abbreviate

lOre(S0; A0 " A) · ( 8s 2 S0; 8r 2 R0; lOreS;R(s; r " A) ) ;

with rules for skipping " A as before. For example, lOre(S; R) is simply the
left Ore condition for S ‰ R.

Finally,
slOre(S0; A) · lOreS;R(S0; A " A):

For an additive subgroup A ‰ R consider also the relative versions, e.g.

rel ¡ lOreS;R(s; r; I) · (9s0 2 S; 9r0 2 R; s0r ¡ r0s 2 A):

If A = I is an ideal, then this predicate is suitable for the study of some
(non-Ore) generalizations (cf. [38] for such).
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6.3 Extending the Ore property Let A; B ‰ R be additive subgroups
of R, A ‰ B ‰ R, and S ‰ R a multiplicative subset.

(i) (lOre(S; A) and rel ¡ lOre(S; R; A)) ) lOre(S; R)
(ii) (lOre(S; A " B) and rel ¡ slOre(S; B; A)) ) lOre(S; B)
(iii) (lOre(S; A " B) and rel ¡ slOre(S; B; A)

and SB ‰ B) ) slOre(S; B)

Proof. (i) is clearly the B = R case of (ii). Let b 2 B and s 2 S. Then
rel ¡ slOre(S; B; A)) means that 9s0 2 S, 9b0 2 B, 9a 2 A such that
s0b ¡ b0s = a. Now we compare s and a. There are b1 2 B, s1 2 S such that
b1s = s1a. Thus s1s0b ¡ s1b0s = s1a = b1s, and flnally, (s1s0)b = (s1b0 + b1)s.
S is multiplicative hence (ii), and if SB ‰ R then s1b0 + b1 2 B hence (iii).

6.3a Remark. The above condition is usually checked for genera-
tors only. Also we can iterate the above criterion if we have a flnite or
denumerable family of nested subrings, for which the induction is conve-
nient. One may also need to nest subsets of S, with reflned criteria, like
lOre(S1 " S2; A1 " A2), where the " S2 means that s0 may be chosen in S2.

6.4 Lemma. If S1 multiplicatively generates S, and A ‰ R then

lOre(S1; R) , lOre(S; R);

slOre(S1; A) , slOre(S; A):

Proof. The flrst statement is clearly a particular case of the second.
Hence we prove the second statement; the nontrivial direction is ). By
assumption, the set S can be written as a nested union [n‚0Sn where Sn

consists of all those s 2 S which can be expressed as a product
Qn0

k=1 sk with
n0 • n and sk 2 Sk; (hence S1 is as the same as before). The assumption is
slOre(S1; A), hence by induction it is enough to prove that slOre(Sn; A) )
slOre(Sn+1; A) for all n ‚ 1. Take s = s1s2 ¢ ¢ ¢ sn. Then slOre(Sn; A)
means that for any a 2 A we have

9a0 2 A 9s0 2 S (a0s2 ¢ ¢ ¢ sn = s0a);
9a00 2 A 9s00 2 S (a00s1 = s00a0)

and consequently

a00s1s2 : : : sn = s00a0s2 : : : sn = (s00s0)a;

with the desired conclusion by the multiplicative closedness of S.
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6.5 Lemma. If A+
0 ; A+ ‰ R are the additive closures of A0; A respec-

tively, then (obviously)

lOre(S; A0 " A) ) lOre(S; A+
0 " A+):

6.6 Lemma. If A generates R as a ring, then

lOre(S; A) ) lOre(S; R):

Proof. By 6.5 it is enough to check this multiplicativity:

(8i; lOre(S; ci)) ) lOre(S; cn ¢ ¢ ¢ c1);

when ci 2 A. However, this general statement holds for any choice of ci

whatsoever. Namely, if we do not require ci 2 A, we see, by induction on n,
that it is enough to prove this statement for n = 2. For s 2 S and c1; c2 2 R

we can flnd r0
1; r0

2 2 R and s0; s00 2 S, so that r0
1s = s0c1 and r0

2s0 = s00c2.
The result is

r0
2r0

1s = r0
2s0c1 = s00c2c1;

hence the lemma is proved.

6.7 Theorem. If A ‰ B and the subring „A ‰ R is also contained in
B, then for any S1 multiplicatively generating a multiplicatively closed set S

we have
slOre(S1; A) ) lOre(S; „A " B);

lOre(S; A) ) lOre(S; „A):

Proof. We know slOre(S1; A) ) slOre(S; A). Hence the flrst assertion
follows from the second by „A ‰ B. We proved the second statement in
the case „A = R. If S ‰ „A, the statement clearly does not say anything
more than it would say after replacing R by its subring „A. The proof of the
general case is exactly the same, as s 2 R is never used, and our calculations
and quantiflers may be taken over a bigger overring.

6.8 Warning-theorem. If A generates R as a ring and S1 generates
S multiplicatively, then it is NOT necessarily true that

lOre(S1; A) ) lOre(S; R); (3)

even if S1 has only one multiplicative generator. We know from 6.4 that (3)
holds if we replace lOre by the stronger condition slOre. Nevertheless,
various intermediate conditions, standing between lOre and slOre, often
utilizing flltrations and combined arguments, are widely used in practice.
However it is also common to use (3) without proper justiflcation.
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6.8a Counterexample. (proving the warning statement above)

Let R be the unital ring generated by 4 generators z1; z2; z3; D modulo
the following relations:

Dz1 = z2z3D;

D2z2 = z3z1D;

D3z3 = z1z2D:

(4)

Clearly the (4) are simply the identities needed to check lOre(S1; A) where
S1 = fDg, and A = fz1; z2; z3g. The powers of D on the left-hand side,
which are 1; 2; 3 may be replaced by 1; p; q respectively, where p > 0 and
q > 1 are any integers, and the same proof applies, but the inequality q > 1
is indeed essential: if p = q = 1, this is not a counterexample at all.

We claim that for any nonnegative integer n, Dnz1 = PD2 does not
have a solution for P 2 R, hence the left Ore condition is not satisfled for
the multiplicative set S = f1; D; D2; : : :g. The proof of the claim will be by
contradiction, but we need flrst to study a convenient basis of ring R.

A basis of R consists of all ordered monomials where the right-hand side
of any of the equations (4) does not appear as a factor. This is obtained using
Shirshov-Bergman’s diamond lemma ([15, 17]) with the reduction system
K having 3 reductions corresponding to the relations (4) with production
arrows from right to left. This reduction system has clearly no ambiguities
whatsoever and all reductions send monomials into monomials in generators
z1; z2; z3; D. It is direct to see using this basis that D is not a zero divisor.

Suppose then, that S is left Ore. Then there exist n such that

Dnz1 = P D2; for some P 2 R: (5)

We suppose that n ‚ 3, and leave the remaining case to the reader. Equa-
tion (5) implies Dn¡1z2z3D = PD2. D is not a divisor, hence Dn¡1z2z3 =
P D. Now write P as a sum of linearly independent K-reduced mono-
mials Pi. Because D is not a zero divisor, monomials PiD are also lin-
early independent. Since the reductions in K send monomials to mono-
mials, and Dn¡1z2z3 is a K-reduced monomial, we see that Dn¡1z2z3 can
not be obtained as a sum of more than one of the linearly independent
monomials PiD, hence P has to be a monomial. The only way that PD

in K-reduced form (which is Dn¡1z2z3) has z3 as the most right-hand
side factor is that P = P 0z1z2 for some P 0 in K-reduced form. Hence
we obtain Dn¡1z2z3 = P 0z1z2D = P 0Dz3. Again using basis one can
check directly that Qz3 = 0 implies Q = 0, hence Dn¡1z2 = P 0D. Now
Dn¡3D2z2 = Dn¡3z3z1D = P 0D implies Dn¡3z3z1 = P 0. This substituted
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back in the expression for P and the equation (5) gives

Dnz1 = P 0z1z2D = Dn¡3z3z1z1z2D2 = Dn¡1z2D2z3D:

This is a contradiction as the two sides difier even though they are K-
reduced.

6.9 Proposition. Let S and T be left Ore sets in some ring R. Then
the set of all elements of the form st where s 2 S and t 2 T satisfles the left
Ore condition in R (but it is not necessarily multiplicatively closed).

Proof. Suppose the contrary, i.e. there is st 2 ST and r 2 R, such that
we can not flnd s0 2 S; t0 2 T and r0 2 B, so that r0st = s0t0r. The set T is
Ore, so there are t0 2 T and r1 2 R with r1t = t0r. Next we can flnd s0 2 S

and r2 2 R so that r2s = s0r1. Combining, we obtain

s0t0r = s0r1t = r2st;

a contradiction.

6.10 Proposition. Let S be a left Ore set in a k-algebra R. The set
1 › S of all elements of R ›k R of the form 1 › s where s 2 S satisfles the
left Ore condition.

Proof. 1 › S is obviously multiplicatively closed.

If the Ore condition is not true, there is an element y =
Pn

i=1 ai › bi and
an element s 2 S such that (1 › S)y \ (R › R)(1 › s) = ;.

We use induction by n to flnd an element in the intersection. If n = 1 we
simply use that S is left Ore to flnd r0 2 R and s0 2 S such that r0s = s0b1

and we have

(1 › s0)(a1 › b1) = (a1 › r0)(1 › s);

which proves the basis of induction.

Suppose we found s0
j 2 S and z =

Pj
i=1 ai › r

0j
i so that

(1 › s0
j)(

jX

i=1

ai › bi) = (

jX

i=1

ai › r0
i)(1 › s):

Now we use again the property that S is left Ore to flnd r
0j+1
j+1 2 R and

„sj+1 2 S such that

r
0j+1
j+1 s = „sj+1s0

jbj+1:

S is a multiplicatively closed set so s0
j+1 = „sj+1s0

j is an element of S. Now
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we have

(1 › s0
j+1)(

Pj+1
i=1 ai › bi) = (1 › „sj+1)(1 › s0

j)(
Pj

i=1 ai › bi) +

+ (1 › „sj+1)(1 › s0
j)(aj+1 › bj+1)

= (
Pj

i=1 ai › „sj+1r
0j
i )(1 › s) + (aj+1 › r

0j+1
j+1 )(1 › s)

= (
Pj+1

i=1 ai › r
0j+1
i )(1 › s)

where we denoted r
0j+1
i = „sj+1r

0j
i for i < j + 1 and r

0j+1
j+1 has already been

deflned.

7 Ore localization for modules

The modern point of view on Ore localization is to express it as a localization
functor on some category of modules. The localization map ¶ : R ! S¡1R

will be replaced by a localization functor Q⁄
S from R¡mod to S¡1R¡mod.

7.1 Let S be a left Ore set in a ring R, and M a left R-module. No-
tice that S¡1R may be viewed as an S¡1R-R-bimodule. The module of
fractions S¡1M of M with respect to Ore set S is the left S¡1R-module

Q⁄
S(M) = S¡1M := S¡1R ›R M: (6)

For each morphism f : M ! N , set Q⁄
S(f) := 1›f : S¡1R›RM ! S¡1R›R

N . This deflnes a localization functor Q⁄
S : R ¡ mod ! S¡1R ¡ mod whose

right adjoint is the obvious forgetful functor QS⁄ : S¡1R ¡mod ! R ¡mod.
If ¶ = ¶R : R ! S¡1R is the localization map, then deflne the map of R-
modules ¶M : M ! S¡1M via ¶M = ¶R ›R id i.e. m 7! 1›m, also called the
localization map. The maps ¶M deflne a natural transformation of functors,
namely the adjunction ¶ : Id ! QS⁄Q⁄

S .
7.1a Remark. If S is a right Ore set, and M a left R-module, then

M [S¡1] := R[S¡1] ›R M . If N is a right R-module then view RS¡1 (or
S¡1R) as a R-RS¡1- (resp. R-S¡1R)- bimodule and deflne Q⁄

S(N) := N ›R

R[S¡1] (resp. N ›R S¡1R). We emphasize that the choice of right vs. left
Ore sets is not correlated with the choice of right or left R-module categories,
at least in the principle of the construction.

7.2 Universal property. For given R; M; S as above we deflne the
category M = M(R; M; S). The objects of M are pairs (N; h) where N is
a left S¡1R-module and h : M ! RN a map of left R-modules. A morphism
of pairs „ : (N; h) ! (N 0; h0) is a map „ : N ! N 0 of S¡1R-modules such
that h0 = „ – h.

Proposition. The pair (S¡1M; ¶M ) is an initial object in M.
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Proof. For any pair (N; h) 2 Ob(M) there is a well-deflned morphism

fi : (S¡1M; ¶M ) ! (N; h) by fi(s¡1 ›R m) = s¡1h(m): (7)

Let now fi0 be any morphism from (S¡1M; ¶) to (N; h). By h = fi0 – i we
conclude

fi0(1 › m) = h(m) = fi(1 › m); 8m 2 M:

The elements of the form 1›m generate S¡1M as a module over S¡1R and
therefore fi = fi0.

7.3 Elements in the tensor product (6) are of the form
P

i s¡1
i › mi but

such can be added up to a single term of that form, as the fractions can be
always put to the common denominator. Namely, by the left Ore condition
8s; s0 2 S 9~s 2 S 9~r 2 R, s0s¡1 = ~s¡1~r, and therefore

s¡1 › m + s0¡1 › m0 = s0¡1s0s¡1 › m + s0¡1~s¡1~s › m0

= s0¡1~s¡1 › (~rm + ~sm0): (8)

Thus every element in S¡1M may be written in the form s¡1 ›R m, hence
there is a surjection of sets ” : S £ M ! S¡1M . The set S £ M may
be viewed as a set retract S £ f1g £ M of S £ R £ M via the retraction
(s; r; m) 7! (s; rm). Clearly ” extends to ” 0 : S £ R £ M ! S¡1M . By the
universality of the free abelian group Z(S £ R £ M) with basis S £ R £ M ,
9! ~” 0 : Z(S £R£M) ! S¡1M which is additive and extends ” 0. It is clear by
checking on the basis elements (s; r; m) and uniqueness that the composition
of the canonical projections Z(S £ R £ M) ! Z(S¡1R £ M) ! S¡1R ›R M

equals ~” 0.
For r 2 R for which rs 2 S, s¡1 ›R m = (rs)¡1r ›R m = (rs)¡1 ›R rm

implying that ker ” 0 ‰ Z(S £ M) contains all difierences (s; m) ¡ (s0; m0) in
Z(S £ M) of pairs in S £ M which are equivalent via

(s; m) » (s0; m0) , 9r; r0 2 R rs = r0s0 2 S and rm = r0m0: (9)

Lemma. (i) On (S £M)= » there is a unique binary operation + such that

(s; m) + (s; m0) » (s; m + m0): (10)

(ii) ((S £ M)= »; +) is an abelian group. Hence by the universality of the
free abelian group, the composition S £ R £ M ! S £ M ! (S £ M)= »
extends to a unique map p : Z(S £ R £ M) ! (S £ M)= » of abelian groups.

(iii) The map p factors through a map p0 : S¡1R ›R M ! (S £ M)= ».
(iv) p0 is an inverse of ”, hence p0 respects addition.
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Proof. (i) Uniqueness. Suppose there are two such operations, +1; +2

and two classes (s1; m1) and (s2; m2) on which +1 and +2 disagree. By the
left Ore condition choose ~s 2 S; ~r 2 R with ~ss1 = ~rs2. Then (s1; m1) +i

(s2; m2) » (~ss1; ~sm1) +i (~rs2; ~rm2) » (~ss1; ~sm1 + ~rm2) which agree for i =
1; 2, giving a contradiction.

Existence. Take (s1; m1) + (s2; m2) := (~r1s1; ~r1m1 + ~r2m2) with any
choice of ~r1; ~r2 such that ~r1s1 = ~r2s2 2 S. We verify that the class of
the result does not depend on the choices. If s1; m1 are replaced by rs1 2
S; rm1 2 M we can by the combined Ore condition choose r⁄; s⁄ with s⁄r =
r⁄~r1, hence S 3 s⁄rs1 = r⁄~r1s1 = r⁄~r2s2. Hence the rule for the sum gives
(s⁄rs1; s⁄rm1 + r⁄~r2m2) » (r⁄~r1s1; r⁄~r1m1 + r⁄~r2m2) » (~r1s1; ~r1m1 + ~r2m2).
By symmetry, we have the same independence for choice of (s2; m2). Finally,
suppose that instead of choosing ~r1; ~r2 we choose ~b1;~b2. As ~r1s1 2 S by
the combined Ore condition we may choose s] 2 S, r] 2 R, such that
r]~r1 = s]

~b1 with r]~r1s1 = s](~b1s1) 2 S. Hence (~r1s1; ~r1m1 + ~r2m2) »
(r]~r1s1; r]~r1m1+r]~r2m2) » (s]

~b1s1; s]
~b1m1+r]~r2m2): Now r]~r2s2 = r]~r1s1 =

s]
~b1s1 = s]

~b2s2, hence by left reversibility, there is s⁄
2 such that s⁄

2r]~r2 =
s⁄

2s]
~b2. Thus (s]

~b1s1; s]
~b1m1 + r]~r2m2) » (s⁄

2s]
~b1s1; s⁄

2s]
~b1m1 + s⁄

2s]
~b2m2) »

(~b1s1;~b1m1 + ~b2m2); as required.

(ii) In the proof of existence in (i) we have seen that + is commutative.
Notice also that the class of (s; 0) (independent on S) is the neutral element.
For any pair, and hence for any triple of elements in S£M= », we can choose
representatives such that all three are of the form (s; m) with the same s.
For such triples the associativity directly follows by applying (10).

(iii) As p and the projection S £ R £ M ! S £ M ! (S £ M)= » are
additive it is su–cient to show that p sends the kernel of the projection to
0 2 (S £ M)= ». The kernel of the projection is spanned by the elements of
several obvious types, so we check on generators.

1. (s; r; m) ¡ (s0; r0; m) where s¡1r = (s0)¡1r0. This means that for
some ~s 2 S, ~r 2 R we have ~ss = ~rs0 and ~sr = ~rr0. Compute p(s; r; m) ¡
p(s0; r0; m0) = (s; rm) + (s0; ¡r0m0) = (~ss; ~srm) + (~rs0; ¡~rr0m0) = (~ss; ~srm ¡
~rr0m0) = 0.

2. Elements (s; r+r0; m)¡(s; r; m)¡(s; r+r0; m), as well as (s; rr0; m)¡
(s; r; r0m) and (s; r; m + m0) ¡ (s; r; m) ¡ (s; r; m0) go to 0 because, by (ii),
in computing p one has to flrst act with the second component to the third.

7.4 Proposition. (S £ M)= » is additively canonically isomorphic to
S¡1M . This isomorphism equips (S £ M)= » with the canonical left S¡1R-
module structure for which the following formulas can be taken as deflning:

t¡1r(s; m) = (s⁄t; r⁄m) 2 (S £ M)= »
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where s⁄ 2 S and r⁄ 2 R such that s⁄r = r⁄s.
Proof. By the lemma we have the flrst statement and hence we can view

the class of (s; m) as s¡1 › m and the formulas follow. They are deflned
because the formulas agree with the action transferred by an isomorphism,
hence the existence, and by the left Ore condition for any t¡1r and (s; m)
there are s⁄, r⁄ qualifying for the formulas, hence the uniqueness.

7.4a Corollary. Let S ‰ R be left Ore and M a left R-module. Then
m = 0 for some s ifi 9s 2 S and sm = 0.

7.4b (long) Exercise. Let S; W be two left Ore sets in R, and M = RM

a left R-module. The relation » on S £ W £ M given by

(s; w; m) » (s0; w0; m0) ,
8
<
:

9r; r0; u; u0; ~r; ~r0 2 R; 9 ~w; ~w0 2 W;

rs = r0s0 2 S; u ~w = u0 ~w0 2 W;

~wr = ~rw; ~w0r0 = ~r0w0; z~rm = z0~r0m0;

is an equivalence relation. The map (S £ W £ M= ») ! S¡1W ¡1M given
by (s; w; m) 7! s¡1 › w¡1 › m is well-deflned and bijective.

8 Monads, comonads and gluing

8.1 A monoidal category is a category C equipped with a ‘tensor’ product
bifunctor › : C £ C ! C; a distinguished object 1C , a family of associativity
isomorphisms cABC : (A › B) › C ! A › (B › C), natural in objects
A; B; C in C; the left unit lA : 1C › A ! A isomorphism and the right unit
isomorphism rA : A › 1C ! A are both indexed by and natural in objects
A in C; furthermore, require some standard coherence conditions (pentagon
axiom for associativity coherence; left and right unit coherence conditions,
cf. [21, 84]). A monoidal category ( ~C; ›; 1C ; c; r; l) is strict if cABC ; lA; rA

are actually all identity morphisms.

8.2 Monads and comonads. Given a diagram of categories A; B; C,
functors f1; f2; g1; g2 and natural transformations F; G as follows

A
f1¡¡!
*F¡¡!
f2

B
g1¡¡!
*G¡¡!
g2

C; (11)

one deflnes the natural transformation G ? F : g2 – f2 ) g1 – f1 by

(G ? F )A := Gf1(A) – g2(FA) = g1(FA) – Gf2(A) : g2(f2(A)) ! g1(f1(A)):

(F; G) 7! F ?G is called the Godement product (’horizontal composition’,
cf. (11)). It is associative for triples for which F ? (G ? H) is deflned.
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Given functors f; g; h : A ! B and natural transformations fi : f ) g,
fl : g ) h, deflne their ‘vertical’ (or ordinary) composition fl – fi : f ) h to
be their composition taken objectwise: (fl – fi)A := flA – fiA : f(A) ! h(A).

Note the interchange law: (fi – fl) ? (° – –) = (fi ? °) – (fl ? –).

If T; T 0 are endofunctors in A and fi : T ) T 0, fl : T 0 ) T natural transformations,

one may also use the concatenation notation: fiT : T T ) T 0T is given by (fiT )M :=

fiT M : T (T M) ! T 0(T M), i.e. fiT · fi ? 1T ; similarly, T fi equals 1T ? fi, or, (T fi)M =

T (fiM ) : T T M ! T T 0M . This notation extends to the sequences with more functors but

only one natural transformation { it is preferable to specify the product – versus ? among

the words if each has some natural transformation mixed in. Here concatenation is higher

binding than any of the composition signs. Notice that 1T ? 1S = 1T –S .

Given a strict monoidal category ~C := (C; ›; 1 ~C) a monoid in C is a pair
(X; „) of an object X and a multiplication morphism „ : X ›X ! X which
is associative and there is a ‘unit’ map · : 1 ~C ! X such that „ – (· › id) =
„ – (id › ·) »= id (here the identiflcation 1 ~C › X »= X is assumed). As this
characterizes the unit map uniquely, one may or may not include · in the
data, writing triples (X; „; ·) when convenient.

For a flxed small category A, the category EndA of endofunctors (as
objects) and natural transformations (as morphisms) is a strict monoidal
category: the product of endofunctors is the composition, the product of
natural transformations is the Godement product, and the unit is IdA.

A monad (T; „; ·) in an arbitrary category A is a monoid in EndA, and
a comonad (?; –; ·) in A is a monad in Aop. The natural transformations
– :?!? – ? and † :?! IdA are also called the coproduct and the counit of
the comonad respectively.

An action of a monad T = (T; „; ·) on an object M in A is a morphism
” : T (M) ! M such that the diagram

TT (M)
„M! T (M)

T (”) # # ”

T (M)
”! M

commutes and ” – ·M = IdM . We say that (M; „) is a module (older
terminology: algebra) over T. A map (M; „) ! (N; ”) is a morphism
f : M ! N in A intertwining the actions in the sense that f – ”M =
”N – T (f) : T (M) ! N . For a flxed T, modules and their maps constitute
a category AT · T ¡ Mod, called the Eilenberg-Moore category of T
([37]). The natural forgetful functor UT : AT ! A, (M; ”) 7! M is faithful,
re°ects isomorphisms and has a left adjoint F : M 7! (M; „M ). The unit of
adjunction · : IdA ) UTF = T coincides with the unit of T, and the counit
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† : F UT ! IdAT is given by †(M;”) = ”. The essential image of F , is a full

and replete subcategory AT ‰ AT and it is called the Kleisli category of
T, while its objects are called free T-modules.

Dually, for a comonad G = (G; –; †) in A, a G-comodule is an object in
the category G ¡ Comod := ((Aop)G)op = (G ¡ Mod)op; equivalently it is a
pair (M; ¾) where M is an object in A and ¾ : M ! G(M) is a morphism
in A such that

M
¾! G(M)

¾ # # G(¾)

G(M)
–! GG(M)

and †M – ¾ = IdM . A map (M; ‰M ) ! (N; ”N ) is a morphism f : M ! N

in A intertwining the coactions in the sense that ¾N – f = T (f) – ¾M :
M ! T (N). The forgetful functor G ¡ Mod ! Aop may be interpreted
as a functor UG : G ¡ Comod ! A which thus has a right adjoint H :
M 7! (G(M); –) whose essential image by deflnition consists of cofree G-
comodules. The counit of the adjunction agrees with the counit of the
comonad † : G = UGH ) IdA and the unit · : IdG¡Comod ) HUG is given
by ·(M;¾) = ¾ : (M; ¾) ! (G(M); –).

8.3 An archetypal example of a monad is constructed from a pair of
adjoint functors Q⁄ a Q⁄ where Q⁄ : B ! A. In other words there are
natural transformations · : IdA ) Q⁄Q⁄ called the unit and † : Q⁄Q⁄ ) IdB,
called the counit of the adjunction, such that the composites in the two
diagrams

Q⁄
·Q⁄! Q⁄Q⁄Q⁄

Q⁄(†)! Q⁄; Q⁄ Q⁄(·)! Q⁄Q⁄Q⁄ †Q⁄! Q⁄;

are the identity transformations. Then T := (Q⁄Q⁄; 1Q⁄ ? † ? 1Q⁄ ; ·) is a
monad in A. In other words, the multiplication is given by

„M = Q⁄(†Q⁄(M)) : Q⁄Q⁄Q⁄Q⁄(M) = TT (M) ! Q⁄Q⁄(M) = T (M):

The comparison functor KT : B ! AT is deflned by

M 7! (Q⁄(M); Q⁄(†M )); F 7! Q⁄(f):

It is full and Q⁄ factorizes as B KT! AT UT! A. More than one adjunction
(varying B) may generate the same monad in A in this vein.

Dually, G := (Q⁄Q⁄; Q⁄·Q⁄; †) is a comonad, i.e. a monad in Bop.
The comparison functor KG : Aop ! (Bop)T is usually identifled with a
‘comparison functor’ KG : A ! ((Bop)T)op · G ¡ Comod which is hence
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given by N 7! (Q⁄(N); ·Q⁄(N)). KG is full and Q⁄ factorizes as A KG!
G ¡ Comod

UG! B.

8.4 A map of monoids f : (A; „; ·) ! (A0; „0; ·0) in a monoidal category
(A; ›; 1A; a; l; r) is a morphism f : A ! A0 in A, commuting with multipli-
cation: „ – (f › f) = f – „; and with the unit map: ·0 – „ = · › ·, where on
the left the application of one of the isomorphisms l1A ; r1A : 1A ›1A ! 1A is
assumed. In particular, the morphism ` : (T; „; ·) ! (T 0; „0; ·0) of monads
in A is a natural transformation ` : T ! T 0 such that „ – (` ? `) = ` – „ :
T T ) T 0 and ·0 – „ = · ? · : TT ) IdA. If M is an object in A and ” a T 0-
action on M , then ” 0 – `M : TM ) M is a T -action on M . More precisely,
a natural transformation ` : T ) T 0 and rules A`(M; ”) = (M; ”0 –`M ) and
A`(f) = f deflne a functor

A` : AT0 ! AT

ifi ` is a morphism of monads and every functor AT0 ! AT inducing the
identity on A is of that form.

8.5 Let ¢ be the ‘simplicial’ category: its objects are nonnegative inte-
gers viewed as flnite ordered sets n := f0 < 1 < : : : < ng and its morphisms
are nondecreasing monotone functions. Given a category A, denote by SimA
the category of simplicial objects in A, i.e. functors F : ¢op ! A. Rep-
resent F in SimA as a sequence Fn := F (n) of objects, together with the
face maps @n

i : Fn ! Fn¡1 and the degeneracy maps ¾n
i : Fn ! Fn+1 for

i 2 n satisfying the familiar simplicial identities ([145, 84]). The notation
F† for this data is standard.

Given a comonad G in A one deflnes the sequence G† of endofunctors
Z‚0 3 n 7! Gn := Gn+1 := G – G – : : : – G, together with natural trans-
formations @n

i : Gi†Gn¡i : Gn+1 ! Gn and ¾n
i : Gi–Gn¡i : Gn+1 ! Gn+2,

satisfying the simplicial identities. Use †G – – = G† – – = IdA in the proof.
Hence any comonad G canonically induces a simplicial endofunctor, i.e. a
functor G† : ¢op ! EndA, or equivalently, a functor G† : A ! SimA. The
counit † of the comonad G satisfles † – @1

0 = † – @1
1 , hence † : G† ! IdA is in

fact an augmented simplicial endofunctor.
This fact is widely used in homological algebra ([8, 84, 145]), and now

also in the cohomological study of noncommutative spaces ([109]).

8.6 Barr-Beck lemma. ([9, 85]) Let Q⁄ a Q⁄ be an adjoint pair T its
associated monad, and G its associated comonad (as in 8.3). Recall the
notions of preserving and re°ecting (co)limits from 1.6.

If Q⁄ preserves and re°ects coequalizers of all parallel pairs in A (for
which coequalizers exists) and if any parallel pair mapped by Q⁄ into a pair
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having a coequalizer in B has a coequalizer in A then the comparison functor
K : B ! AT is an equivalence of categories.

If Q⁄ preserves and re°ects equalizers of all parallel pairs in B (for which
equalizers exists) and if any parallel pair mapped by Q⁄ into a pair having
an equalizer in A has an equalizer in B then the comparison functor K 0 :
A ! G ¡ Comod is an equivalence of categories.

Left (right) exact functors by deflnition preserve flnite limits (colim-
its) and faithful functors clearly re°ect both. In particular, this holds for
(co)equalizers of parallel pairs. In abelian categories such (co)equalizers
always exist. Hence

Corollary. Consider an adjoint pair Q⁄ a Q⁄ of additive functors be-
tween abelian categories. If Q⁄ is faithful and exact, then the comparison
functor for the associated comonad is an equivalence. If Q⁄ is faithful and
exact, then the comparison functor for the associated monad is an equiva-
lence.

Given a functor U : ~M ! M one may ask when there is a monad T in M
and an equivalence H : ~M ! MT such that UT H = U . The conditions are
given by the Beck monadicity (=tripleability) theorem(s) ([9, 11, 84, 85]).
If we already know that U has left adjoint, this may be rephrased by asking
if the comparison functor for the associated monad is an equivalence. The
Barr-Beck lemma gives only su–cient conditions for this case, it is easier to
use, and is widely applicable.

8.7 ([109]) A comonad associated to a family of continuous func-
tors. Let fQ⁄

‚ : A ! B‚g‚2⁄ be a small family of continuous (= having a
right adjoint) functors. The categories B‚ are not necessarily constructed
from A by a localization.

One may consider the category B⁄ :=
Q

‚2⁄ B‚ whose objects are fam-
ilies

Q
‚2⁄ M‚ of objects M‚ in B‚ and morphisms are families

Q
‚2⁄ f‚ :Q

‚2⁄ M‚ ! Q
‚2⁄ N‚ where f‚ : M‚ ! N‚ is a morphism in B‚, with

componentwise composition. This makes sense as the family of objects is
literally a function from ⁄ to the disjoint union

‘
‚ Ob B‚ which is in the

same Grothendieck universe.

The family of adjoint pairs Q⁄
‚ a Q‚⁄ deflnes an inverse image functor

Q⁄ =
Q

Q⁄
‚ : A ! A⁄ by Q⁄(M) :=

Q
‚2⁄ Q⁄

‚(M) on objects and Q⁄(f) :=Q
‚ Q⁄

‚(f) on morphisms. However, a direct image functor may not exist.
We may naturally try Q⁄ :

Q0
‚ M‚ 7! Q0

‚ Q⁄(M‚) where
Q0 is now the

symbol for the Cartesian product in A which may not always exist. For
flnite families, with A abelian, these trivially exist. Let A⁄ =

Q
‚2⁄ A be

the power category. Assume a flxed choice of the Cartesian product for all
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⁄-tuples in A. Then fM‚g‚ 7! Q0
‚2⁄ M‚ extends to a functor A⁄ ! A, and

the universality of products implies that the projections p0
”fM‚g‚

:
Q

‚ M‚ !
M” form a natural transformation of functors p0

” :
Q0

‚ IdA ) p” where
p” : A⁄ ! A is the ”-th formal projection

Q
‚ M‚ ! M” . The unique

liftings ·M : M ! Q⁄Q⁄(M) of morphisms ·”M : M ! Q”⁄Q⁄
”(M) in

the sense that (8”) ·”M = p0
”M – ·M hence form a natural transformation

· : IdA ) Q⁄Q⁄.

Deflne † · Q
‚ †‚ :

Q
‚ Q⁄

‚Q‚⁄ ) Q
‚ IdB‚

= IdB⁄
componentwise. This

way we obtain an adjunction Q⁄ a Q⁄. If Q‚⁄ is faithful and exact for every
‚ then Q⁄ is as well.

Consider the comonad G in B⁄ associated to Q⁄ a Q⁄. We are interested
in situation when the comparison functor KG is an equivalence of categories.
That type of a situation arises in practice in two difierent ways:

† 1) All categories A; B‚ and °at localization functors Q⁄
‚; Q‚⁄ are given

at start and the construction is such that we know the faithfulness of
Q⁄.

† 2) Only categories B‚ are given (not A) but equipped with gluing
morphisms i.e. the family ' of °at functors (not necessarily local-
izations) `⁄

‚;‚0 : B‚ ! B‚0 for each pair ‚; ‚0, where ' satisfles some
cocycle condition.

8.7a In 1), to ensure the faithfulness of Q⁄ we require that the family
fQ⁄

‚g‚2⁄ is a °at cover of A. That means that this is a small °at family
of functors with domain A which is conservative, i.e. a morphism f 2 A
is invertible ifi Q⁄

‚(f) is invertible for each ‚ 2 ⁄. A °at map whose direct
image functor is conservative is called almost a–ne. In particular, this
is true for adjoint triples f⁄ a f⁄ a f ! coming from a map f : R ! S

of rings. Adjoint triples where the direct image functor is conservative are
called a–ne morphisms.

8.7b In 2), we a posteriori construct A to be B⁄ as before but equipped
with functors Q⁄

‚ a Q‚⁄ constructed from `-functors. The cocycle con-
dition for gluing morphism is equivalent to the associativity of the asso-
ciated comonad ([21]). The remaining requirements are made to ensure
that the comparison functor is an equivalence and the other original data
may be reconstructed as well. The Eilenberg-Moore category of the asso-
ciated monad may be constructed directly from gluing morphisms, and it
appears to be just a reformulation of the descent category. In a generaliza-
tion, the category B‚‚0 which is the essential image of `‚‚0 in B‚0 may be
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replaced by any ‘external’ category B‚‚0 , but then, instead of `⁄
‚‚0 one re-

quires not only °at functors `⁄
‚‚0 =: `‚⁄

‚‚0 : B‚ ! B‚‚0 , but also °at functors
~̀⁄

‚‚0 := `‚0⁄
‚‚0 : B‚0 ! B‚‚0 . This generalization is essentially more general

only if we allow the direct image functors (of the second type, i.e. `‚0
‚‚0⁄),

to be not necessarily fully faithful (hence B‚‚0 may not be viewed as a full
subcategory of B‚0). Another generalization of this descent situation, which
can be phrased as having a pseudofunctor from a flnite poset ⁄ (viewed as
a 2-category with only identity 2-cells) to the 2-category of categories has
been studied by V. Lunts ([78]). This analogue of the descent category is
called a conflguration category.

8.7c The usual formalism of descent is via flbred categories, cf. [143].
For the correspondence between the two formalisms see, e.g. [110].

8.8 Globalization lemma. (Version for Gabriel fllters: in [112] p.
103) Suppose fQ⁄

‚ : R ¡ Mod ! M‚g‚2⁄ is a flnite cover of R ¡ Mod
by °at localization functors (e.g. a conservative family of Ore localizations
fS¡1

‚ Rg‚2⁄). Denote Q‚ := Q‚⁄Q⁄
‚ where Q‚⁄, is the right adjoint to Q⁄

‚.
Then for every left R-module M the sequence

0 ! M
¶⁄;M¡!

Y

‚2⁄

Q‚M
¶⁄⁄;M¡!

Y

(„;”)2⁄£⁄

Q„Q”M

is exact, where ¶⁄M : m 7! Q
¶‚;M (m), and

¶⁄⁄M :=
Y

‚

m‚ 7!
Y

(„;”)

(¶„
„;”;M (m„) ¡ ¶”

„;”;M (m”)):

Here the order matters: pairs with „ = ” may be (trivially) skipped, but,
unlike in the commutative case, we can not conflne to the pairs of
indices with „ < ” only. Nota bene!

Proof. A direct corollary of Barr-Beck lemma. For proofs in terms of
Gabriel fllters and torsion see [113], pp. 23{25, and [62, 138, 139].

8.9 A monad T = (T; „; ·) in A is idempotent if the multiplication
„ : T T ) T is an equivalence of endofunctors. As „M is the left inverse of
·T M , and of T (·M ), then „M is invertible ifi any of them is, hence both,
and then ·T M = T (·M ) = „¡1

M .

If ” : TM ! M is a T-action, then by naturality ·M – ” = T (”) – ·T M =
T (”) – T (·M ) = T (” – ·M ) = IdT M , hence ·M is 2-sided inverse of ” in A,
hence every T-action is an isomorphism. Conversely, If every T-action is an
isomorphism, „M is in particular, and T is idempotent. Moreover, if every
action ” : T M ! M is an isomorphism, then its right inverse ·M must be
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the 2-sided inverse, hence there may be at most one action on a given object
M in A. By naturality of ·, its inverse ” which is well-deflned on the full
subcategory of A generated by objects in the image of UT : AT ! A, is
also natural, i.e. it intertwines the actions, hence it is in fact a morphism
in AT, hence the forgetful functor UT : AT ! A is not only faithful but
also full. Its image is strictly full (full and closed under isomorphisms) as
the existence of T-actions on M depends only on the isomorphism class of
M in A. To summarize, AT includes via UT as a strictly full subcategory
into A and the inclusion has a left adjoint F T.

In general, a (co)re°ective subcategory B ,! A is a strictly full
subcategory, such that the inclusion U : B ,! A has a (right) left adjoint,
say F . As F T a UT, we have just proved that AT is canonically isomorphic
to a re°ective subcategory of A via inclusion UT if T is idempotent. On the
other hand, it may be shown that for any re°ective subcategory U : B ,! A
the corresponding monad (UF; U(†F ); ·) is idempotent and the comparison
functor K : B »= AT is an isomorphism. Similarly, core°ective subcategories
are in a natural correspondence with idempotent comonads.

9 Distributive laws and compatibility

9.1 A distributive law from a monad T = (T; „T ; ·T ) to an endo-
functor P is a natural transformation l : TP ) PT such that

l – (·T )P = P (·T ); l – („T )P = P („T ) – lT – T (l): (12)

Then P lifts to a unique endofunctor P T in AT, in the sense that UTP T =
P UT. Indeed, the endofunctor P T is given by (M; ”) 7! (P M; P (”) – lM ).

9.1a A distributive law from a monad T = (T; „T ; ·T ) to a monad
P = (P; „P ; ·P ) in A ([10]) (or \of T over P") is a distributive law from T
to the endofunctor P , compatible with „P ; ·P in the sense that

l – T (·P ) = (·P )T ; l – T („P ) = („P )T – P (l) – lP :

For clarity, we show the commutative diagram for one of the relations.

TP P
lP //

T („P )
²²

PT P
P (l) // PP T

P („T )
²²

TP
l // PT

Then P lifts to a unique monad PT = (P T; ~„; ~·) in AT, such that P T lifts P ,
and for all N 2 AT we have UT(~·N ) = (·P )UTN and UT(~„N ) = („P )UTN .
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Indeed, such a lifting is deflned by the formulas P T(M; ”) := (P M; P (”) –
lM ), „P

(M;”) = „M , ·P
(M;”) = ·M . On the other hand, if PT is a lifting of P

then a distributive law l = flM g is deflned, namely lM is the composition

T PM
T P (·M )¡! TP T M

UT(†
P F TM

)¡! P T M:

where F T : A ! AT is the free T-module functor from 8.2.
Distributive laws from T to P are in a canonical bijective correspondence

with those monads in A whose underlying functor is P T , whose unit is
·P ? ·T , such that P·T : P ! PT , and ·P

T : T ! PT are triple maps and
which satisfy the middle unitary law „ – (P (·T ) ? ·P

T ) = id : PT ! PT

(cf. [10]). In this correspondence, „P T
M : P TP T M ! PT M is obtained by

„P T
M = („P ? „T ) – P (lT M ), and conversely, lM by composition TP M

T P (·M )!
TP T M

·T P T M! PT P T M
„P T

M! P TM .
9.1b Distributive law from a comonad G = (G; –G; †G) to a

comonad F = (F; –F ; †F ) is a natural transformation l : F – G ) G – F

such that

G(†F ) – l = (†F )G; (–G)F – l = G(l) – lG – F (–G);
(†G)F – l = F (†G); G(–F ) – l = lF – F (l) – (–F )G:

9.1c Mixed distributive law from a monad T to a comonad G:
a natural transformation l : TG ) GT such that

†T – l = T (†); l – „G = G(„) – lT – T (l);
l – ·G = G(·); l – T (–) = –T – G(l) – lG:

Such an l corresponds to a lifting of the comonad G to a comonad GT in
AT, where GT(M; ”) = (MG; G(”) – lM ).

9.1d Mixed distributive law from a comonad G to a monad T:
a natural transformation l : GT ) TG such that

T (†) – l = †T ; l – G(„) = „G – T (l) – lT
l – ·G = G(·); T (–) – l = lG – G(l) – –T :

Such distributive laws are in a correspondence with liftings of a monad T
to a monad TG in G ¡ Comod.

9.2 Examples are abundant ([21, 119]; [131],II). In a common scenario,
the objects in a category of interest are in fact objects in a simpler ‘base’
category, together with multiple extra structures, satisfying \compatibil-
ity" conditions between the structures, which correspond to a flxed choice



Z.•Skoda 261

of distributive laws. Consider, left R-modules and right S-modules, where
the base category is the category Ab of abelian groups. The rebracketing
map (R›?) › S 7! R › (? › S) gives rise to a distributive law from R›?
and ? › S in Ab. Thus, it induces a monad V with underlying functor
V = (S›?) – (T›?). V-modules over U are precisely R ¡ S-bimodules.
Similarly, for a group (or Hopf algebra) G, one can describe G-equivariant
versions of many standard categories of sheaves or modules with extra struc-
ture, by considering one (co)monad for the underlying structure and another
expressing the G-action.

9.3 A monad (T; „; ·) in arbitrary 2-category (even bicategory) C has
been studied ([131]): T : X ! X is now a 1-cell, where X is a flxed 0-
cell, and 2-cells „ and · should satisfy analogous axioms as in the usual
case, which corresponds to C = Cat. On the other hand, if C is a bicategory
with a single object X, it may be identifled with a monoidal 1-category. The
distributive laws in that case supply a notion of compatibility of monoids and
comonoids in an arbitrary monoidal category. The distributive laws between
monoids and comonoids in Veck are called entwining structures ([24]).

9.4 Let T := (T; „; ·) be a monad, and Q⁄ : A ! B a localization
functor. The monad T is compatible with the localization if its underlying
endofunctor T is compatible with the localization, i.e. there is a functor
TB : B ! B with Q⁄T = TBQ⁄, cf. 3.5. In that case, TB is the underlying
endofunctor of a unique monad TB := (TB; „B; ·B) in B such that („B)Q⁄N =
Q⁄(„N ) for every N in Ob A.

Proof. Let f : N ! N 0 be a morphism in A, and g : Q⁄N 0 ! M an
isomorphism in B. Consider the diagram

TBTBQ⁄N
= //

TBTBQ⁄f

²²

Q⁄TT N
Q⁄„N //

Q⁄T T f

²²

Q⁄T N
= //

Q⁄T f

²²

TBQ⁄N

TBQ⁄f

²²
TBTBQ⁄N 0 = //

TBTBg

²²

Q⁄T T N 0Q
⁄„N0 // Q⁄TN 0 = // TBQ⁄N 0

TBg

²²
TBTBM

(„B)M // TBM:

The upper part of the diagram clearly commutes. In particular, if Q⁄f is
identity, then Q⁄„N = Q⁄„N 0 . The vertical arrows in the bottom part are
isomorphisms, so there is a map („B)M fllling the bottom line. One has
to show that this map does not depend on the choices and that such maps
form a natural transformation. The localization functor is a composition
of a quotient functor onto the quotient category and an equivalence. We
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may assume that Q⁄ is the functor onto the quotient category. Then, by the
construction of the quotient category, every morphism g is of the zig-zag form
as a composition of the maps of the form Q⁄f and formal inverses of such
maps, and if g is an isomorphism, both kinds of ingredients are separately
invertible in B. To show that („B)M = (TBg) – Q⁄(„N 0) – (TBTBg)¡1 for
every isomorphism g : Q⁄N 0 ! M is the consistent choice, we use the upper
part of the diagram repeatedly (induction by the length of zig-zag) for the
zig-zag isomorphism h = (g1)¡1g2 : Q⁄N2 ! Q⁄N1 where gi : Q⁄Ni ! M .
One obtains TBh – Q⁄„N2 – (TBTBh)¡1 = Q⁄„N1 , hence (TBg2) – Q⁄(„N2) –
(TBTBg2)¡1 = (TBg1) – Q⁄(„N1) – (TBTBg1)¡1.

Upper part of the diagram also shows the naturality for „B with respect
to each arrow of the form Q⁄f and with respect to formal inverses of such.
For any morphism h : M ! M 0 in B, using its zig-zag representation, we
extend this to the naturality diagram („B)M 0 – TBTBh = TBTBh – („B)M .
Uniqueness of „B is clear by the requirement („B)Q⁄N = Q⁄(„N ) and the
naturality. The unit morphism · : 1B ! TB satisfles g – ·B

M = TB(g) –
Q⁄(·N ) for every isomorphism g : Q⁄N ! M in B such that N 2 Ob A. In
particular, (·B)Q⁄N = Q⁄(·N ). The very axioms of a monad may be checked
in a similar vein.

9.4b If G = (G; –; †) is a comonad and the endofunctor G is compatible
with each localization in family fQ⁄

‚ : A ! B‚g‚2⁄, then there is a unique
family of comonads fG‚ = (G‚; –‚; †‚)g‚2⁄ such that Q⁄

‚G = G‚Q⁄
‚ for

each ‚. We have then (–‚)Q⁄
‚M = Q⁄

‚(–M ) and (†‚)Q⁄
‚M = Q⁄

‚(†M ) for every
M 2 Ob A.

9.5 If Q⁄ : A ! B is a localization with right adjoint Q⁄, and T 0 is
an endofunctor in B, then Q⁄T 0Q⁄ is compatible with Q⁄. Indeed † is an
isomorphism by 3.4, hence †T 0Q⁄ : Q⁄Q⁄T 0Q⁄ ) T 0Q⁄ is an isomorphism,
and the assertion follows by 3.5.

9.6 Example from Hopf algebra theory. Let B be a k-bialgebra and
(E; ‰) a right B-comodule together with a multiplication „ : E ›k E ! E

making it a B-comodule algebra, i.e. an algebra in the category of right
B-comodules. The coaction ‰ : E ! E › H is compatible with a flxed Ore
localization ¶ : E ! S¡1E if there is a coaction ‰S : S¡1E ! S¡1E › H

which is an algebra map and such that ‰S – ¶ = (¶ › idB) – ‰. B induces
a natural comonad T = T (B; E) in E ¡ Mod, such that (E ¡ Mod)T is a
category of so-called (E; B)-Hopf modules. The compatibility above ensures
that the localization lifts to a localization of (E ¡Mod)T ([122], 8.5). Hence,
T is compatible with the localization in the usual sense, with numerous
applications of this type of situation ([118, 120, 121, 122]).
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9.7 The compatibility of certain localizations of noncommutative spaces
with difierential functors is central in the treatment [79, 80, 81, 82] of D-
modules on noncommutative spaces.

9.8 Distributive laws become a much simpler issue when both monads in
question are idempotent in the sense of 8.9. In the localization literature this
is roughly the situation treated under the name of mutual compatibility
of localizations.

Let S; W be two Ore sets. Then the set SW of products fswjs 2 S; w 2
W g is not necessarily multiplicatively closed.

Suppose SW is multiplicatively closed. This means that 8s 2 S, 8w 2 W

if the product ws is in SW then 9w0 2 W , 9s0 2 S such that ws = s0w0.
Suppose now M := RM 2 R¡Mod. Each element in S¡1R›RW ¡1R›RM is
of the form s¡1 › w¡1 › m with s 2 S, w 2 W and m 2 M . By a symmetric
argument, ws 2 SW , and thus 9w0 2 W , 9s0 2 S such that ws = s0w0.
Choosing s0; w0 by this rule we obtain an assignment s¡1 › w¡1 › m 7!
(w0)¡1 › (s0)¡1 › m. We claim that this assignment is well-deflned and a
map of left R-modules S¡1R ›R W ¡1R ›R M ! W ¡1R ›R S¡1R ›R M .
As M runs through R ¡ Mod, such maps form a natural transformation
QSQW ! QW QS of functors, which is clearly an isomorphism.

In fact, this natural transformation is a distributive law. Although the
compatibility of QS and QW is symmetric, the converse does not hold: com-
patibility does not mean that SW is multiplicatively closed. Indeed, let R be
a C-algebra with two generators a; b and relation ab = qba where q 6= §1; 0.
Then the set multiplicatively generated by A and set multiplicatively gener-
ated by B are 2-sided Ore sets, and the corresponding localization functors
are compatible; however AB is not multiplicatively closed.

If S; W are left Ore in R, that does not mean that ¶W (S) is left Ore in
W ¡1R. Namely, the left Ore condition for (the image of) S in W ¡1R in-
cludes the following: 8s 2 S; 8t 2 T; 9s0 2 S; 9(w0)¡1r0 2 W ¡1R; (w0)¡1r0s =
s0w¡1. If R is a domain, this means that r0sw = w0s0. This is almost the
same condition as that SW is multiplicatively closed (above), except that
one can choose extra r0. In the same away as in the former case, we derive
the compatibility of QS and QW . If we change left Ore sets to right Ore
sets, or S being Ore in W ¡1R to W being Ore in S¡1R we get similar \Ore"
equations swr = w0s0, wsr = s0w0 etc. From the abstract point of view (say
torsion theories) these compatibilities are indistinguishable.

The compatibility implies that the localization at the smallest multiplica-
tive set generated by S and W is isomorphic to the consecutive localization
by S and then by W . This simplifles the formalism of localization (cf. semi-



264 Noncommutative localization in noncommutative geometry

separated schemes and •Cech resolutions of [109], cf. 8.8, [62] etc.).

10 Commutative localization

Here we describe speciflcs in the commutative case, and further motivation
from commutative algebraic geometry, and its abstractions.

10.1 Suppose R is a unital associative ring, Z(R) its center, and S ‰
Z(R) a multiplicative subset. Obviously, S is automatically a left and right
Ore subset in R, with simpler proofs for the construction and usage of the
Ore localization. We say that S¡1R = S £ R= » is the commutative
localization of R at S. The equivalence relation » (4.13) simplifles to

s¡1r » s0¡1r0 , 9~s 2 S; ~s(sr0 ¡ s0r) = 0: (13)

Proof. By the deflnition, 9~s 2 S, 9~r 2 R, such that ~sr = ~rr0 and ~ss = ~rs0.
Therefore,

~ssr0 = ~rs0r0 = ~rr0s0 = ~srs0 = ~ss0r:

Unlike sometimes (mis)stated in the literature (e.g. [139],p.14), the com-
mutative formula (13) (and variants of it) is inappropriate even for mildly
noncommutative rings and even 2-sided Ore sets which are not in center. E.g.
take the unital C-algebra generated by two elements b and d with bd = qdb,
where C 3 q 6= 1. That algebra has no zero divisors. Let S be the 2-sided
Ore set multiplicatively generated by b and d. Formula b¡1 = (db)¡1d, and
the criterion above would imply that db = bd with contradiction.

For general R and S, formula (13) is actually not even an equivalence
relation on R £ S.

10.2 General requirements on scheme-like theories. One wants
to mimic several major points from the classical case. We flrst decide which
geometric objects constitute the category C of a–ne schemes; then flnd
a suitable larger geometric category Esp of spaces, in the sense that it is
equipped with a fully faithful functor C ,! Esp, where the objects in the
image will be called here geometric a–ne schemes; flnally there is a gluing
procedure which assigns to a collection fChgh2H of geometric a–ne schemes
and some additional ‘gluing’ data Z, a space which may be symbolically
denoted by (

‘
h Ch) =Z 2 Esp, together with canonical morphisms Ch !

(
‘

h Ch) =Z in Esp. For a flxed (type of) gluing procedure G, and including
all the isomorphic objects, one constructs this way a subcategory of locally
a–ne spaces of type (C; G) in Esp.

Additional requirements and typical choices are in place.
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10.2a Abstract a–ne schemes. Most often one deals with some
monoidal category ~A = (A; ›; 1 ~A). Then C = Afi( ~A) := (Alg( ~A))opp is
the category of a–ne schemes in A i.e. the opposite to the category of
algebras (monoids) in ~A. The basic example is the monoidal category of
R-bimodules, where R is a k-algebra over a commutative ring k. The a–ne
schemes in this category are given by k-algebra maps f : R ! R0 (making
such R0 an R-bimodule).

If A is symmetric via a symmetry ¿ where ¿AB : A›B ! B›A, then one
may consider only ¿ -commutative algebras (A; „; ·), i.e. for which „–¿ = „.
¿ -commutative a–ne schemes in A are the objects of the opposite of
the category of ¿ -commutative algebras C = cAfi( ~A; ¿) := (cAlg( ~A; ¿))opp

(one often skips ¿ in the notation). Examples are (super)commutative a–ne
schemes in a ›-category of k-modules and also the opposite to the category
cdga

k
of commutative difierential graded k-algebras, which is important in

recent ‘derived algebraic geometry’ program ([133, 134]).

10.2b Gluing for ringed topological spaces (and a version for local
(l.) rings). A (locally) ringed space is a pair (X; F ) consisting of a topolog-
ical space X, and a (’structure’) sheaf F of (l.) rings on X. A morphism of
(l.) ringed spaces is a continuous map f : X ! X 0 with a comorphism i.e.
a map of sheaves of (l.) rings F 0 ! f⁄X 0 over X 0. We obtain a category
rSp (lSp). Given a full subcategory A of rSp, considered as a category of
(heuristic term here) \local models" we may consider all (l.) ringed space
X for which there is a cover (in usual sense) X = [fiXfi of underlying topo-
logical spaces and for each fi an isomorphism X0

fi
»= Xfi in rSp (lSp) where

X0
fi is in A. More abstractly, but equivalently, consider all families of mor-

phisms fifi : Xfi ! Xgfi, which are ‘covers by embeddings’: topologically
covers of X by families of monomorphisms (continuous, open and injective),
and sheaf-wise isomorphisms on stalks. The intersections Xfi \ Xfl repre-
sent flbred products Xfi £X Xfl in rSp. Spaces glued from objects in A are

nothing but the colimits of the diagrams of the type
‘

fifl Yfifl // //
‘

Yfi

where each of the morphisms Yfifl ! Yfi and Yfifl ! Yfl are embeddings, and
Yfl 2 Ob A. There is a natural condition on A: each X in A as a topological
space has a basis of topology made out of (spaces of) some family of objects
in A (or isomorphic to them); and this family may be chosen so that the
restrictions of the structure sheaf agree. In the theory of schemes, a–ne
schemes are such models: a–ne subschemes make a basis of topology, but
not every open subset is a–ne; nor their intersections. Still the intersections
and colimits exist from the start, in our ambient category of ringed spaces
which is big enough.
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10.2c Grothendieck (pre)topologies (G.(p)t.) and gluing in com-
mutative algebraic geometry ([85, 143]). Schemes are glued from a–ne
schemes in the Zariski topology (which may be considered both as an ordi-
nary topology and a G.(p)t.); useful generalizations (e.g. algebraic spaces)
in °at and ¶etale G.(p)t. etc. A sieve is an assignment of a collection
J(R) of morphisms in C ([85]) with target R, such that if the target of f

is J(R) and g : R ! R0 then g – f 2 J(R0). A G.t. is a collection of
sieves J(R) with target R for each R in Ob C, such that if f 2 J(R) and
g : R ! R0 then g – f 2 J(R0)), satisfying some axioms ([85]). A G.pt. in
a category C with flbred products is a class T of families fUfi ! Ugfi of
morphisms (with one target per family), such that fId : U ! Ug 2 T ; if
fffi : Ufi ! Ugfi 2 T and 8fi fgfifl : Ufifl ! Ufigfl 2 T then fffi–gfiflgfi;fl 2 T ;
and flnally if fffi : Ufi ! Ugfi 2 T and g : V ! U is a morphism then
fg⁄(ffi) : V £U Ufi ! V g 2 T . Elements of T are called covers (in T ),
and the pair (C; T ) a site. To any (ordinary) topological space X one asso-
ciates a \small" site OuvX : objects are open subsets in X; morphisms are
inclusions; fUfi ,! Ugfi is a cover if [fiUfi = U .

A presheaf F of sets on X is a functor F : (OuvX)op ! Sets; a presheaf
F on any site (C; T ) with values in a category D with products is a func-
tor F : Cop ! D. Given a cover fUfi ! Ugfi 2 T , there are two ob-

vious embeddings
Q

Ufi £U Ufl // //
Q

fi Ufi . A presheaf is a sheaf on

(C; T ) if fUfi ! Ugfi 2 T if for every such cover the induced diagram

F (U) //
Q

fi F (Ufi) ////
Q

fifl F (Ufi £U Ufl) is an equalizer diagram.

For gluing, one again needs some bigger ambient category (or, instead,
some universal construction). Our local models are now (commutative)
a–ne schemes Afi := Afi(Ab) with a G.pt. T . The Yoneda embedding
X 7! X̂ := Afi(?; X) is a fully faithful functor from Afi into the category
PFas (Afi) of presheaves of sets on Afi. One typically deals with subcanonical
G.t. which means that the presheaves in the Yoneda image (representable
functors) are sheaves. As in the case of ordinary topologies, to construct
the global locally T -a–ne spaces, one needs colimits of certain diagrams of

the form
Q

fifl Vfifl ////
Q

fi Ufi , where, in the addition, the colimit coneQ
Ufi ! U corresponds to a cover in T . As for example, the nonseparated

schemes in Zariski topology, some locally T -a–ne spaces may not be pro-
duced this way with Vfifl being in Afi. Similar problems for bi°at covers by
localizations in noncommutative geometry are known (lack of compatibility
of localizations; nonsemiseparated covers). Furthermore, one needs to ex-
tend the notion of T -covers to the target category of sheaves. We hope that
the reader sees at this point the meaning of this abstract machinery. We
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won’t proceed with the full construction. Namely, in the commutative case,
it is usually replaced by equivalent constructions. For example, to construct
the algebraic spaces, one usually does not glue a–ne schemes \over inter-
sections" but rather starts with an equivalence relation in the category of
all separated schemes. In the noncommutative case, G.t.’s are elaborated
in [69, 110] and partly in [115]. There is also an approach to G.t.’s and
quasicoherent sheaves for noncommutative a–ne schemes by Orlov ([99]),
utilizing ringed sites and sheaves of groupoids, but implicit application to
the construction of noncommutative locally a–ne spaces is not given.

10.3 Though we assume that the reader has been exposed to the com-
mutative scheme theory, we here sketch the basic construction of an a–ne
scheme, as a part of a widely-known easy generalization to pairs of the form
(noncommutative ring, central subring), cf. [106].

A left ideal p ‰ R is prime if for any two left ideals I; J , if IJ ‰ p

then I ‰ p or J ‰ p. A left ideal p ‰ R is completely prime if fg 2 p

then f 2 p or g 2 p; equivalently R=p is a domain; or Rnp is multiplicative.
Each completely prime ideal is prime: otherwise one could flnd f 2 Inp and
g 2 Jnp, such that fg 2 IJ ‰ p with contradiction. If R is commutative the
converse holds, as one can see by specializing the deflnitions to the principal
left ideals I = Rf , J = Rg, IJ = RfRg = Rfg.

Consider the category R, whose objects are pairs (R; C), of a unital ring
R and a central subring C ‰ Z(R); and morphisms (R; C) ! (R0; C 0) are
maps of rings ` : R ! R0 such that `(C) ‰ C 0.

Spec C is the set of all prime ideals p of C. For any ideal I ‰ C, deflne
V (I) ‰ Spec C as the set of all p ‰ C, such that I ‰ p. Sets of the form
V (I) depend only (contravariantly with respect to inclusions) on the radicalp

I (the intersection of all prime ideals containing I) and satisfy the axioms
of antitopology. Complements of such sets hence form a topology on Spec C,
called Zariski topology. Principal open sets are the sets of the form
Uf = V ((f)), where (f) is the (principal) ideal generated by f 2 C. They
make a basis of Zariski topology, i.e., any Zariski open set is a union of sets
of that form. Open sets and inclusions form category OuvC . Principal open
sets and inclusions form its full subcategory OuvPC .

Deflne O0
C(Uf ) := C[f¡1] and O0

R;C(Uf ) := R[f¡1]. Every inclusion
Uf ,! Ug induces the unital ring maps `f;g;i : O0

i(Ug) ! O0
i(Uf ), i 2

fC; (R; C)g. Hence we have contravariant functors O0
i : OuvPC ! Rings.

Natural inclusions inf : C[f¡1] ! R[f¡1] form a natural transformation,
i.e., O0

C is a subfunctor of O0
C;R. Functors O0

i extend naturally to functors
Oi : OuvC ! Rings which are sheaves, and this requirement flxes sheaves
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Oi uniquely up to isomorphism of sheaves. Namely, represent any open set
U as the union [Uf of a family U of (some or all) Uf ‰ U . Deflne a dia-
gram ¢(U) in Rings as follows. Vertices are of the form Oi(Uf ) and of the
form Oi(Ufg) = Oi(Uf \ Ug) where Uf ; Ug 2 U , and the arrows are `f;fg;i.
Then Oi(U) has to be isomorphic to the inverse limit of the diagram ¢(U)
and may be consistently set so. Moreover the natural transformation in
extends making OC a subfunctor of OC;R. In fact, OC;R is an algebra in the
monoidal category of (2-sided) OC-modules. All the stalks (OC)p of OC are
local rings, namely the localizations Cp := C[ff¡1gf =2p] ’at prime ideal p’.

Let ˆ : R ! R0 be a map of unital rings. The inverse image ˆ¡1(p) of a
completely prime ideal is completely prime. Let ˆ : (R; C) ! (R0; C 0) be a
morphism in R, and let map ` : C ! C 0 agrees with ˆ on C. One has map
`⁄ : Spec C 0 ! Spec C given by `⁄ : p 7! `¡1(p). If U ‰ Spec C 0 is open,
then `¡1(U) ‰ Spec C is open as well, because `⁄(V (I)) = V (`¡1(I)) for
each ideal I ‰ C 0. Hence, `⁄ is continuous. If g =2 `¡1(p) then `(g) =2 p.
Thus all elements g 2 C, newly inverted in C`¡1(p) (and R`¡1(p)) are also
invertible in C 0

p (and R0
p). Hence, by the universality of localization, one

has a unique map ˆp : (R`¡1(p); C`¡1(p)) ! (R0
p; C 0

p) such that ˆp – ¶`¡1(p) =
¶p – ˆ. Deflne `U : OR;C(`⁄U) ! OR0;C0(U) by (`U (r))p = ˆp(r`¡1(p)). One
has to check that `U (r) is indeed in OR0;C0(U), i.e., that p 7! ˆp(r`¡1(p))
is indeed a section. For this consider Uf ‰ U a–ne, i.e., Uf = fp j f =2
pg and `⁄Uf := f`¡1(p); p 63 fg. An argument as above gives map ˆf :
OR;C(`⁄Uf ) ! OR0;C0(Uf ) satisfying ˆf – ¶`¡1(Uf ) = ¶Uf

– ˆ. It is easy to
check then that ˆf induces ˆp in stalk over p 2 Uf . As a result, we obtain
a map ˆ] : `⁄OR;C ! OR0;C0 of sheaves over Spec C 0.

10.3a Let lSp2 be a category whose object are locally ringed spaces
(X; O) in lSp together with a sheaf Onc of noncommutative algebras in the
category of O-modules. A morphism ˆ : (X; OX ; Onc

X ) ! (Y; OY ; Onc
Y ) in

lSp2 is a morphism ˆc : (X; OX) ! (Y; OY ) in lSp, together with a map of
sheaves of OX -modules ˆ] : Onc

Y ! ˆ⁄Onc
X .

We have above constructed a functor Spec2 : R ! lSp2.

10.3b In fact, Onc is in a smaller category of quasicoherent sheaves of
O-modules (shortly: quasicoherent modules). A presheaf F of O-modules on
a ringed space (X; O) is quasicoherent (EGA 0.5.1.1) if 8x 2 X 9Uopen 3 x

with an exact sequence OI ! OJ ! F ! 0 where OI , OJ are free O-
modules (of possibly inflnite rank). If the ringed space is locally T -a–ne
for some Grothendieck topology T on the category of commutative a–ne
schemes, then one may take U a–ne, and an equivalent deflnition of quasi-
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coherence is that for any pair of a–ne open subsets W ‰ V ‰ X,

F (W ) = O(W ) ›O(V ) F (V ): (14)

The noncommutative structure sheaf Onc of Spec2(R; C) is a quasicoher-
ent O-module. For presheaves of Onc left modules one may use the same
formula (14). For bimodules one distinguishes left and right quasicoher-
ence [67, 78, 148] (in the right hand version the tensoring with O(W ) in
formula (14) is from the RHS instead). Formula (14) is nothing else but the
formula for a localization functor Q⁄ : F (V ) 7! F (W ) from O(V )-modules
to O(W )-modules. In this case, both Q⁄ and its right adjoint Q⁄ are ex-
act functors. Ring theorists call such localizations of full module categories
perfect localizations ([62]). Equivalently, the canonical forgetful functor
from the localized category to the category of modules over the localized
ring is an equivalence of categories.

F. van Oystaeyen ([139]) deflnes quasicoherent presheaves on the lat-
tice of hereditary torsion theories (= localizations where Q⁄ is exact and
the torsion subcategory is core°ective) over a Z‚0-graded rings, by using
the appropriate localization instead of tensoring. For a–ne case see [113],
I 6.0.3 (b) and I 6.2. One has theorems on gluing of such modules using
Barr-Beck lemma.

D. Orlov ([99]) deflnes quasicoherent (pre)sheaves on X where X is a
presheaf of sets (in particular, by Yoneda, on any object) on a given ringed
site (C; T ).

10.4 Now we will quote two theorems. A theorem of Deligne shows
that in the context of commutative a–ne schemes, a formula which can
be recognized as a localization at a Gabriel fllter (see below), describes
the behaviour of the category of quasicoherent sheaves under passage to a
not necessarily a–ne subset. Hence the \noncommutative localization" is
already seen there! The theorem may be proved directly, and we suggest to
the reader to at least convince oneself that the RHS formula is indeed an
A-module. \Deligne theorem" ([59]) in fact, cf. ([60], Appendix)2, has been
originally inferred from the Gabriel theorem below { the general statement
that quasicompact open subsets of (nona–ne) schemes correspond always
to exact localizations of abelian categories; combined with the Gabriel’s
formulas on how such localizations look like ([42]).

10.4a Deligne’s theorem. Let X = Spec A be an a–ne Noetherian
scheme, i.e. A is a commutative Noetherian ring. Let U be a Zariski open
set (not necessarily a–ne!), and I an ideal such that V (I) = XnU . Let

2I thank Prof. Hartshorne for an email on the history of the result.
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M be an A-module, and ~M the corresponding quasicoherent OX -module.
Denote by ~M jU its restriction to U . Then

¡( ~M jU ) »= lim
n!1 HomA(In; M):

This isomorphism of A-modules is natural in M .
10.4b (P. Gabriel [42], VI.3) Let (X; OX) be a scheme, and U an open

subset of X, such that the canonical injection j : U ,! X is quasicompact.
Let Q⁄

U : QcohX ! QcohU be a functor which associates to every quasico-
herent OX -module M the restriction M jU of M to subscheme (U; OX jU ).

Functor Q⁄
U canonically decomposes as QcohX ! QcohX=Ker Q⁄

U

»=! QcohU

into the canonical projection onto the quotient category by Ker Q⁄
U and an

isomorphism.

11 Ring maps vs. module functors

11.1 As usual, we write RM when we want to emphasize that M is (un-
derstood as) a left R-module; R ¡ Mod is the category of left R-modules.
Let f : R ! S be any map of (not necessarily unital) rings. We have the
following functors induces by map f :

† extension of scalars f⁄ : R ¡ Mod ! S ¡ Mod, M 7! S ›R M ;

† restriction of scalars (forgetful functor) f⁄ : S ¡ Mod ! R ¡ Mod,

SM 7! RM ;

† f ! : R ¡ Mod ! S ¡ Mod, M 7! HomR(RS; M).

Denote F a G when functor F is left adjoint to functor G. Easy fact:
f⁄ a f⁄ a f !. Hence f⁄ is left exact, f ! right exact and f⁄ exact.

11.2 It is of uttermost importance to have in mind the geometrical
picture of this situation in the case when R and S are commutative and
unital. Denote by lSp the category of locally ringed spaces. An object
(X; OX) 2 lSp is a pair of a topological space X and a sheaf of commutative
local rings OX over X; and a morphism is a pair (fo; f ]) where fo : X ! Y

is a map of topological spaces and a ‘comorphism’ f ] : f†OY ! OX is a
map of sheaves of local rings over X, and f† a sheaf-theoretic pullback func-
tor. There is a contravariant functor Spec : CommRings ! lSp assigning
spectrum to a ring. A map f : R ! S is replaced by a map of locally ringed
spaces

Spec f = (f0; f ]) : Spec S ! Spec R:
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The comorphism f ] is important: e.g. if fo : X ,! Y is an inclusion,
the difierence between a subvariety (X; OX) and, say, its n-th inflnitesimal
neighborhood in (Y; OY ), may be expressed by a proper choice of f ].

11.3 After geometrizing rings, one may proceed to geometrize mod-
ules. The basic fact here is the a–ne Serre’s theorem establishing a cor-
respondence M $ ~M between the R-modules and quasicoherent sheaves
of OX -modules, for X = Spec R. This correspondence is an equivalence of
categories R¡Mod $ QcohX. Using this equivalence of categories, functors
f⁄ and f⁄ may be rephrased as additive functors

f⁄ : QcohX ! QcohY; f⁄ : QcohY ! QcohX;

and moreover, these can be deflned for any morphism f = (fo; f ]) between
locally ringed spaces. In this wider context, functor f⁄ is called the inverse
image functor of f , given by f⁄F := OY ›OX

f†F where f†F is usual, sheaf
theoretic, pullback of sheaf F via fo. The restriction of scalars functor then
generalizes to the direct image functor for sheaves which is on presheaf
level given by

f⁄F(U) := F(f¡1(U));

and which sends OX -modules to OY -modules via OY -action given by the
composition of f ] £ id and the OX -action. Functors f⁄ and f⁄ are naturally
deflned between the bigger categories, OX ¡ Mod and OY ¡ Mod, where
they simply preserve the quasicoherence.

11.4 Functor f⁄ (in all settings above) is a right adjoint to f⁄, hence it is
left exact and the inverse image functor f⁄ is right exact. This suggests that
a pair of adjoint additive functors between abelian categories may be viewed
as (coming from) a morphism in geometrical sense. Actually this point of
view appears fruitful. On the other hand, surely the choice of a functor in
its equivalence class is not essential; and the emphasis on the inverse image
vs. direct image functor is the matter of choice as well.

Given two abelian categories A, B, (equivalent to small categories) a
morphism f : B ! A is an equivalence class of right exact additive functors
from A to B. An inverse image functor f⁄ : A ! B of f is simply a
representative of f , which is usually assumed to be made.

An additive functor f⁄ : B ! A between abelian categories is ([109])

† continuous if it has a right adjoint, say f⁄;

† °at if it is continuous and exact;

† almost a–ne if it is continuous and its right adjoint f⁄ is faithful and
exact;
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† a–ne if it is almost a–ne, and its right adjoint f⁄ has its own right
adjoint, say f !, cf. 11.1.

Morphism f is continuous (°at, almost a–ne, a–ne) if its inverse image
functor f⁄ is. Some authors say that a functor F is continuous if it has a left
adjoint instead, which means that they view F as a direct image functor f⁄
of some continuous morphism f . On the other hand, a continuous morphism
is co°at if its direct image is exact, and bi°at if it is °at and co°at. Usually
one equips the categories with distinguished objects (\structure sheaves");
then the morphisms respect the distinguished object.

11.4a Rosenberg ([109]) introduced an abstract notion of a quasi-
compact relative noncommutative scheme (A; O) over a category C
as an abelian category A with a distinguished object O, flnite bi°at a–ne
cover by localizations Q⁄

‚ : A ! B⁄, with a continuous morphism g from
A to C (think of it as a direct image of a morphism X ! Spec k) such
that each g⁄ – Q‚⁄ : B‚ ! C is a–ne. This guarantees application of many
usual geometric procedure (for basic cohomological needs one does not need
f !). Such ’schemes’ can be related to some spectra and some Grothendieck
topologies on Afi(Ab) ([115]). Quotient spaces for comodule algebras over
Hopf algebras may be sometimes constructed as nona–ne noncommutative
schemes [120].

11.5 If R and S are rings and SBR a S ¡ R-bimodule, then the functor
fB : M 7! SBR ›R M is a right exact functor from R ¡ Mod to S ¡ Mod.
If S = Z then BR is called °at right R-module if fB : M 7! BR ›R M is
exact.

Proposition. (Watts [144], Eilenberg [36]) (i) Let R be a (not nec-
essarily unital) ring, and f⁄ a °at endofunctor in the category of nonunital
left R-modules. Then f⁄ is equivalent to the functor

M 7! f⁄(R1) ›R M;

where R1 is the corresponding unital ring. In particular, f⁄(R1) is °at as a
left R-module.

(ii) Let R be a unital ring, and f⁄ a °at endofunctor in the category
R ¡ Mod of unital left R-modules. Then f⁄ is equivalent to the functor
M 7! f⁄(R) ›R M .

(iii) Let f⁄ : R ¡ Mod ! S ¡ Mod be a continuous functor. Then
there is a S ¡ R-bimodule SBR such that f⁄ is equivalent to the functor
M 7! B ›R M .

Notice that when applied to localizations word \°at" is here used in
the sense that Q⁄ is °at (weaker), and in some other works means that
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Q := Q⁄Q⁄ is °at. The latter case, for R ¡ Mod, is the situation of Watts
theorem, and it is known under the name of perfect localization. Equiv-
alently ([103]), the canonical forgetful functor from the localized category
(R ¡ Mod)=KerQ to the modules over the localized ring (QR) ¡ Mod is an
equivalence of categories.

11.6 A bicategory (= weak 2-category) A consists of

(1) a class Ob A of objects (’1-cells’);

(2) for each pair of objects A; B a small category A(A; B); The objects of
A(A; B) are called arrows (or ‘morphisms’ or ‘1-cells’), and the morphisms
in A(A; B) are called 2-cells;

(3) for each triple of objects A; B; C a bifunctor (’composition map’)

'A;B;C : A(A; B) £ A(B; C) ! A(A; C);

(4) for each object A 2 A, an arrow 1A 2 A(A; A) (’identity arrow’);

together with natural equivalences

aABCD : 'ACD('ABC £ Id) ) 'ABD(Id £ 'BCD);
‚ABC : Id £ 'ABC ) 'ABC ; ‰ABC : 'ABC £ Id ) 'ABC ;

satisfying some natural conditions. If aABCD; ‰ABC ; ‚ABC are all identities,
then the bicategory is called (strict) 2-category.

We omit further details in the deflnition, and sketch just the most im-
portant example to us: the bicategory of rings and bimodules Bim. Be-
forehand, notice that from any monoidal category ~C = (C; ›; 1C ; a; l; r) we
can tautologically form a bicategory § ~C with one object 0 := C, and with
§ ~C(0; 0) := ~C and with the composition M –§ ~C N := M › N ; one further
deflnes a(M; N; P ) := a0;0;0(M; N; P ), lA := ‚0;0(A) and rA := ‰0;0(A). The
deflnitions may be reversed to form a monoidal category out of any bicat-
egory with a distinguished object 0 (forgetting the other objects). Hence
monoidal categories may be viewed as bicategories with a single object; the
notion of being ‘strict’ in both senses agrees as well.

The objects of Bim are unital rings. For any R; S 2 Ob Bim let Bim(R; S)
be the category of R-S-bimodules and (R; S)-bilinear mappings between
them. The composition

Bim(R; S) £ Bim(S; T ) ! Bim(R; T )

is given by the tensor product bifunctor (M; N) 7! RMS ›S SNT , and the
rest of the data is obvious. These data indeed deflne a bicategory.
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The invertible 1-cells of Bim are called Morita equivalences. It has been
observed in various applications of noncommutative geometry, for instance in
physics, that Morita invariance is a common feature of natural constructions.

The Eilenberg-Watts’ theorem identifles bimodules with °at functors. As
a pair of adjoint functors, they resemble geometric morphisms among topoi.
M. Van den Bergh ([136]) deflnes a (generalized) bimodule to be any pair
of adjoint functors between Grothendieck categories. He also considers right
exact functors as so-to-say weak (versions of) bimodules. Some situations,
for example the duality for coherent sheaves, involve functors for which the
right and left adjoints ([60]). coincide. They are known as Frobenius func-
tors ([25]). In the spirit of Van den Bergh’s terminology, Pappacena calls
Frobenius bimodules those adjoint pairs F a G where F is simultaneously
left and right adjoint of G. In the abstract homotopy theoretic setting, the
existence of two-sided adjoints is studied with appropriate (Bousfleld-type)
localization arguments ([90, 96]).

One of motivations for this ([96]) is to extend the Grothendieck du-
ality theory for coherent sheaves on varieties to D-modules. This may be
viewed as an example of noncommutative geometry. Namely, the role of
the structure sheaf O is played by the sheaf D of regular difierential op-
erators which is a sheaf of noncommutative O-algebras (cf. [149, 102] for
the viewpoint of noncommutative geometry at D-modules). In triangulated
categories, the Serre-Grothendieck duality is axiomatized as an existence of
so-called Serre functor ([18, 19, 20, 100]), with applications at the border-
line between the commutative and noncommutative geometry.

It is a remarkable observation ([73]), that the noncommutative geometry
via operator algebras, could be also organized around similar bicategories.
Roughly speaking, operator algebras (C⁄-algebras; von Neumann algebras
respectively) are 0-cells, appropriate bimodules as 1-cells (Hilbert bimodules;
correspondences), and bimodule morphisms as 2-cells; while the monoidal
products of 1-cells are speciflc tensor products which became prominent
earlier in noncommutative geometry a la Connes, and related K-theories
(Riefiel interior tensor product of Hilbert bimodules; Connes fusion prod-
uct). Invertible 1-cells are called Morita equivalences in all these cases.
There are also analogues concerning regular bibundles over Lie groupoids,
and also analogues in symplectic and Poisson geometry. The latter may be
viewed as a quasiclassical limit of noncommutative geometry. For Morita
equivalence of Poisson manifolds and a similar notion of symplectic dual
pairs see [74, 117].
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12 Ore localization in flltered rings

After prerequisites on flltrations, we prove some general lemmas on localiza-
tions in flltered rings, mainly easy generalizations of some statements quoted
without proof in [81] and in the manuscript [82]3.

We focus on ‘negative’ flltrations. The main application in mind is the
noncommutative deformation of commutative objects. Such flltrations arise
from expanding the algebra operations in power series in the deformation
parameter q ¡ 1 ([4, 67, 78]). There is a more reflned technique in alge-
braic analysis, algebraic microlocalization, see [137, 139] and the references
in [137]. ‘Positive’ flltrations involve difierent techniques than ours. In the
study of noncommutative projective algebraic geometry there is a (negative)
flltration related to deformation, but also a positive grading corresponding
to the study of projective schemes. The latter grading may be reflned to
Z£n-grading or grading with respect to the weight lattice P , as in the study
of the quantum °ag varieties ([81, 82]). If the latter, positive, grading com-
plicates the picture, one restricts attention to homogeneous Ore sets only.

12.1 Given a (typically abelian) category C, e.g. the category of modules
over a ring k, a Z-flltration on an object M in C is a nested (unbounded)
sequence of subobjects F⁄M = f¢ ¢ ¢ ‰ Fn¡1M ‰ FnM ‰ Fn+1M ¢ ¢ ¢ ‰ Mg.
A Z-flltered object in C an object with a Z-flltration on it. All flltrations
in this article are assumed to be exhaustive i.e. the supremum subobject
supn2ZFnM exists and equals M (e.g. for modules M = [nFnM).

Let M = [n2ZFnM be a flltered k-module. The degree d(m) of an
element m 2 M is the smallest integer n, if it exists (otherwise ¡1), such
that m 2 FnM and m =2 Fn¡1M . Conversely, if d : M ! f¡1g [ Z is
subadditive d(a + b) • d(a) + d(b), and d(0) = ¡1, then d is the degree
function of a unique exhaustive flltration on M , indeed the one where a 2
FnM ifi d(a) • n. An (exhaustive) flltration is separated if \nFnM = 0.
Then d(m) is flnite for all m 6= 0. This will be our assumption from now on.

12.1a A Z-flltered k-algebra is a k-algebra (E; „) with a flltration F⁄E

on E as a k-module where the multiplication „ restricted to FnE£FmE takes
values within Fn+mE, for all n; m. This obviously generalizes to algebras
in any monoidal category ~C := (C; ›; 1C) (notice that the resulting notion is
difierent than if we consider these algebras as auxiliary objects in an abstract
category C0 of algebras, when 12.1a applies, rather than as algebras in a
monoidal category ~C). For k = Z we talk about Z-flltered rings.

Given a flltered k-algebra (F⁄E; „) a Z-flltered F⁄E-module is a Z-

3I thank Valery Lunts for introducing me to this subject and sharing his notes.
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flltered k-module F⁄M such that FnE acting on FmM takes values within
Fn+mM for all n and m. In particular, F⁄E is a Z-flltered module over itself.

Given a flltered k-algebra E = [nFnE, an associated graded algebra
is the Z-graded k-module gr E = 'n(gr E)n := 'nFnE=Fn¡1E with the
multiplication deflned as follows. The symbol map „ : E ! gr E, e 7! „e,
maps e to the class „e of e in Fd(e)E=Fd(e)¡1E. An element c 2 gr E is in
the image of the symbol map ifi c is homogeneous. For c = „e; c0 = „e0, the
formula cc0 := „e„e0 := ee0 does not depend on the choice of e; e0. Therefore it
deflnes a binary operation. The additive extension of this operation is the
associative multiplication on gr E.

It is always true d(e+e0) • maxfd(e); d(e0)g, with equality if d(e) 6= d(e0).
On the other hand, if d(e) = d(e0) then d(e + e0) may be in general anything
less or equal d(e), as e and e0 may cancel in several of the top degrees.
Consequently the symbol map is not additive. However...

12.2 ...if gr E is a domain, then d(ab) = d(a)d(b), hence the symbol
map E ! gr E is multiplicative.

12.3 For any subset S ‰ E not containing 0, we can always deflne a
flltration on the set S £ E, by formula d(s; e) := d(e) ¡ d(s). If S is left Ore,
the localized ring S¡1E may be constructed as in 5.6, as certain quotient
of S £ E. Hence we have a flltration on S¡1E as a set with degree function
d(s¡1e) = infs0¡1e0=s¡1e d(s0; e0). Recall that (s; e) » (s0; e0) means 9~s 2 S,
9~e 2 E, ~ss = ~es0 and ~se = ~ee0.

If the degree function is multiplicative, e.g. E is a domain, then

d(s; e) = d(e) ¡ d(s)
= d(e) ¡ d(~e) ¡ (d(e) ¡ d(~s))
= d(~sr) ¡ d(~ss)
= d(~ee0) ¡ d(~es0)
= d(e0) ¡ d(s0)
= d(s0; e0);

hence taking the inflmum in the expression for d(s¡1e) is super°uous, as
all the representatives of s¡1e give the same result. Therefore the degree is
well-deflned by d(s¡1e) := d(e) ¡ d(s).

The symbol image of a set S ‰ E is denoted by S. If S is left Ore in E,
and gr E is a domain, then S is clearly left Ore in gr E.

12.4 Lemma. If the symbol map E ! gr E is multiplicative, then the
induced degree function on S¡1E is multiplicative as well.

12.5 Proposition. ([81], II 3.2)(i) We have a well-deflned map µ :
„S¡1gr E ! gr S¡1E given by („s)¡1„e 7! s¡1e.
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(ii) This map is an isomorphism of graded rings.

Proof. (i) Let s1; s2 2 S with „s1 = „s2. By s¡1
1 s2 = 1 + s¡1

1 (s2 ¡ s1)
we get s¡1

1 e = s¡1
2 e + s¡1

1 (s2 ¡ s1)s¡1
2 e. Using 12.4 and d(s2 ¡ s1) < d(s1),

we see that for each 0 6= e 2 E, s¡1
1 (s2 ¡ s1)s¡1

2 e is lower degree than s¡1
2 e.

Thus s¡1
1 e = s¡1

2 e 2 S¡1E. In the same vein, but easier, we see that s¡1e

does not depend on the choice of e 2 „e.

Finally, choose difierent classes „t and „f with („t)¡1 „f = („s)¡1„e. That is
9„s⁄ 2 „S; 9„e⁄ 2 gr E with „s⁄„t = „e⁄„s 2 „S and „s⁄ „f = „e⁄„e. Then s⁄t = e⁄s and
s⁄f = e⁄e for any choice of representatives e⁄; s⁄ of „e⁄; „s⁄. Hence there are
r1; r2 of lower degrees than e⁄s; e⁄e respectively, such that s⁄t = e⁄s+r1 and
s⁄f = e⁄e + r2. Then t¡1f = (s⁄t)¡1s⁄f = (e⁄s + r1)¡1(e⁄e + r2) which by
the above equals (e⁄s)¡1(e⁄e) = s¡1e up to elements of lower order, provided
that e⁄s 2 S. As e⁄s+r1 2 S, this is always true if S is saturated, see below.
However, the conclusion follows without that assumption. Indeed, by the
left Ore condition, choose s]; e] with S 3 s](e⁄s + r1) = e]s. Then e]e =
e]ss¡1e = s]e⁄e + s]r1s¡1e, where, by the multiplicativity, s]r1s¡1e is of
lower order. Consequently, t¡1f = [s](e⁄s+r1)]¡1s](e⁄e+r2) = (e]s)¡1e]e+
lower order = s¡1e + lower order, as required.

(ii) Since both the degree of („s)¡1„e and of s¡1e are d(e) ¡ d(s), this map
respects the grading. The obvious candidate s¡1e 7! („s)¡1„e for the inverse
is well-deflned by more straightforward reasons than the map µ. Namely, if
t¡1f = s¡1e then 9h of lower order with t¡1f = s¡1e + h = s¡1(e + sh).
As e = e + sh it is enough to check the case h = 0. For some s⁄ 2 S, r⁄ 2 r

we have s⁄t = r⁄s 2 S and s⁄f = r⁄e. Then „s⁄„t = „r⁄„s 2 „S and „s⁄ „f = „r⁄„e,
hence „t¡1 „f = „s¡1„e, as required.

12.6 Let N = [k2ZFkN , be a right and M = [k2ZFkM a left flltered E-
module, then N ›k M is flltered with respect to the unique degree function
additively extending formulas d(n ›k m) = d(n) + d(m). The canonical
quotient map pE : N ›k M ! N ›E M induces the flltration Fk(N ›E M) :=
pE(Fk(N ›k M)). If N is a flltered E0 ¡E-bimodule, one obtains a flltration
of N ›E M as a left E0-module. In particular, given E = [kFkE, where
gr E is a domain, and given a flltered left E-module M = [kFkM , any Ore
localization S¡1M = S¡1E ›E M is a flltered left S¡1E-module with the
degree function

d(s¡1m) = d(s¡1 ›E m) = d(s¡11E) + d(m) = d(m) ¡ d(s).

12.7 Lemma. If the symbol map E ! gr E is multiplicative, and M a
flltered left E-module, then the degree functions are compatible with action
in the sense that dM (e:m) = dE(e)dM (m). Furthermore, for any left Ore
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set S ‰ E,

dS¡1M (s¡1e:t¡1m) = dS¡1E(s¡1e)dS¡1M (t¡1m)
= dE(e) + dM (m) ¡ dE(s) ¡ dE(t):

12.8 Proposition. (i) For a flltered ring E, for which gr E is a domain,
and any flltered E-module M , we have a well-deflned map µM : „S¡1gr M !
gr S¡1M given by („s)¡1 „m 7! s¡1m.

(ii) µM is an isomorphism of graded gr S¡1E = S
¡1

gr E-modules.

The proof is by the same techniques as 12.5. The compatibility with
the action 12.7 replaces the multiplicativity, and the formula (9) for the
equivalence relation » on S £ M (with (S £ M= ») »= S¡1M) replaces the
equivalence relation » from 4.13 on S £ R in that proof.

12.9 Ore conditions recursively. (i) Let S be a multiplicative set in
a ring E with an exhaustive flltration

F⁄E = f: : : ‰ F¡rE ‰ F¡r+1E ‰ : : : ‰ F¡1E ‰ F0E ‰ F1E ‰ ¢ ¢ ¢ ‰ Eg:

Let S satisfy the bounded below flltered-relative left Ore condition
in F⁄E:

9r, 1 > r ‚ ¡n, 8s 2 S, 8k, ¡r • k • n, 8e 2 FkE, 9s0 2 S, 9e0 2 E

such that s0e ¡ e0s 2 Fk¡1E if k > ¡r, and s0e ¡ e0s = 0 if k = ¡r.

Then S satisfles the left Ore condition for S in E.

(ii) Assume that S is bounded flltered left reversible in F⁄E:

9r < 1, 8ek 2 FkE, if 9s 2 S with eks 2 Fk¡1E then 9s0 2 S such that
s0ek 2 Fk¡1E if k > ¡r, and s0ek = 0 if k = ¡r.

Then S is left reversible in E.

Proof. (i) Let s 2 S and e = en 2 FnE. By induction, we can complete
sequences en; : : : ; e¡r, e0

n; : : : ; e0¡r (here ek; e0
k 2 FkE) and s0

n; : : : ; s0¡r 2 S,
with e0

ks = s0
kek ¡ ek¡1 for all k with e¡r¡1 := 0. By descending induction

on k,

(e0
k + s0

ke0
k+1 + : : : + s0

k ¢ ¢ ¢ s0
n¡1e0

n) s = s0
k ¢ ¢ ¢ s0

nen ¡ ek¡1;

for each k > ¡r, and flnally,

(e0
¡r + s0

¡re0
¡r+1 + : : : + s0

¡rs0
¡r+1 ¢ ¢ ¢ s0

n¡1e0
n) s = s0

¡r ¢ ¢ ¢ s0
nen:

(ii) Suppose e 2 FkE = E and es = 0 for some s 2 S. It is su–cient to
inductively choose a descending sequence and s0

k+1 = 1; s0
k; s0

k¡1; : : : ; s0¡r 2
S, with requirements s0

je 2 Fj¡1E for all j > ¡r and s0¡re = 0. Suppose we
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have chosen sk; : : : ; sj+1. Then (s0
j+1e)s = s0

j+1(es) = 0 with s0
j+1e 2 FjE,

hence by the assumption there exist some ~s 2 S such that ~ss0
j+1e 2 Fj¡1E.

Set therefore s0
j := ~ss0

j+1 2 S.
12.9a Let F⁄E be an exhaustive flltration of E with F¡rE = 0 for some

flnite r, and S ‰ E be a multiplicative set. If its image „S under the symbol
map satisfles the left Ore condition in gr E, then the conditions in 12.9 hold.
Hence S satisfles the left Ore condition in E as well.

12.9b Let t 2 E be a regular element (tE = Et) in a ring E. Then for
each n > 0 the ideal tnE is 2-sided, hence En := E=(tnE) is a quotient ring
in which the element t is nilpotent of order less or equal n. Rule F¡kEn =
(tkE)=(tnE) ‰ E=(tnE) · En deflnes a bounded ‘negative’ flltration

F⁄En = f0 = F¡nEn ‰ : : : ‰ F¡1En ‰ F0En = Eng
in which (the image of) t is of degree ¡1. If gr E is a domain then both the
symbol map E ! gr E, and its truncation En ! gr En are multiplicative.

12.10 Theorem. Let S be a left Ore set in some ring En = F0En with
a bounded negative flltration F†En. Suppose S0 ‰ En is a multiplicative set
such that s0 2 S0 \ FjE ifi 9b 2 Fj¡1E such that s0 = s ¡ b. Then S0 is left
Ore as well and S¡1En = (S0)¡1En as graded rings.

Proof. Since the left Ore localization is a universal object in the category
Cl(En; S) (cf. Chap.4) it is enough to see that a map of rings j : En ! Y is
in it ifi it is in Cl(En; S0). If j(s) is invertible in Y , let c = j(s)¡1j(b). The
mapping j induces a (non-separated in general) flltration on Y such that j is
a map of flltered rings, by taking the degree to be the inflmum of expressions
d(e)¡d(t) for elements which can be represented in the form j(t)¡1j(e) and
¡1 otherwise. With our numerical constraints on the degree, for nonvan-
ishing e 2 En this difierence can not be less than ¡n. As d(c) < 0 we obtain
d(cn) < n ¡ 1, hence cn = 0. Thus we can invert j(s)¡1(j(s ¡ b)) = 1 ¡ c to
obtain the geometrical progression

Pn¡1
j=0 cj . Then

Pn¡1
j=0 cjj(s)¡1j(s¡b) = 1

hence j(s ¡ b) is invertible in Y .
It remains to check that se = 0 for some s 2 S ifi 9s00 2 S0 with

s00e = 0. We proceed by induction on the degree j of e starting at ¡n where
s0e ¡ se 2 F¡n¡1 = 0 for s0 = s ¡ b with the degree of b smaller than of
s0 hence negative. For any j, s0e = (s ¡ b)e = ¡be has the degree at most
j ¡ 1. On the other hand, by the left Ore condition, we can flnd s⁄ 2 S,
and b⁄ 2 E with s⁄be = b⁄se = 0, hence s⁄(s0e) = 0. Set e0 := s0e. Since
s⁄e0 = 0 with d(e0) < d(e), by the inductive assumption there exists s0⁄ 2 S0

with s0⁄s0e = s0⁄e0 = 0. Set s00 := s0⁄s0.
The induced grading on the two localized rings is the same after the

identiflcation, because the symbol maps evaluate to the same element on s
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and s0 = s + b (or, alternatively, after the identiflcation, the gradings on the
localization are induced by the same ring map).

Deflnition. A multiplicative subset S ‰ En is
† admissible if 8s 2 S, 0 6= „s 2 gr En;
† saturated if S = fs 2 En j „s 2 „Sg.

12.11 Corollary. Let E; t; En; F†En be as in 12.9. Suppose gr E is a
commutative domain. Let S be a multiplicative subset in En. Then

a) S is left and right Ore.
b) S¡1En 6= 0 ifi S is admissible.
c) S¡1En depends only on „S ‰ „E.
d) S¡1En is flltered by powers of t and (S¡1En)=hti »= „S¡1En.
e) Any two saturated Ore sets S, T are compatible, i.e. S¡1T ¡1En

»=
T ¡1S¡1En and ST = fst j s 2 S; t 2 Tg is also saturated.

f) Let S be admissible. Then gr(S¡1En) »= „S¡1grEn. In particular,

S¡1En
»= S

¡1
En.

Sketch of the proof. a) follows as a simple case of 12.9; b) is trivial; c)
follows by 12.10; d) is evident; f) follows from 12.8 after truncating both
sides from E to the quotient flltered ring En (it is not a special case of 12.8,
though, as En is not a domain); e) Because T is saturated, (T ¡1E)n

»=
T ¡1En. In T ¡1En, set S is still multiplicative, hence by a) applied to
(T ¡1E)n it is left Ore. This is equivalent to compatibility (cf. Sec. 10).

13 Difierential Ore condition

An extensive literature is dedicated to difierential structures of various kind
associated to objects of noncommutative geometry: derivations and rings of
regular difierential operators on NC rings, 1st and higher order difierential
calculi, with and without (bi)covariance conditions, NC connections and de
Rham complexes etc.

13.1 Let @ : R ! R be an R-valued derivation on R and S a left Ore
set in R. Then the formula

„@(s¡1r) = s¡1@(r) ¡ s¡1@(s)s¡1r; s 2 S; r 2 R; (15)

deflnes a derivation „@ : S¡1R ! S¡1R.
The same conclusion if we started with @ : R ! S¡1R instead.
Proof. 1. „@ is well defined.
Suppose s¡1r = t¡1r0 for some r; r0 2 R, s; t 2 S. Then

9~s 2 S; 9~r 2 R; ~st = ~rs; ~sr0 = ~rr:
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s¡1 = t¡1~s¡1~r

t¡1@(r0) = t¡1~s¡1~s @(r0)
= t¡1~s¡1[@(~sr0) ¡ @(~s)r0]
= t¡1~s¡1[@(~rr) ¡ @(~s)r0]

t¡1@(t) = t¡1~s¡1~s @(t)
= t¡1~s¡1[@(~st) ¡ @(~s)t]
= t¡1~s¡1[@(~rs) ¡ @(~s)t]

„@(t¡1r0) = t¡1@(r0) ¡ t¡1@(t)t¡1r0

= t¡1~s¡1[@(~rr) ¡ @(~s)r0] ¡ t¡1~s¡1[@(~rs) ¡ @(~s)t]t¡1r0

= t¡1~s¡1@(~rr) ¡ t¡1~s¡1@(~rs)t¡1r0

= t¡1~s¡1@(~rr) ¡ t¡1~s¡1@(~rs)s¡1r

= t¡1~s¡1@(~r)r + t¡1~s¡1~r@(r)
¡t¡1~s¡1@(~r)ss¡1r ¡ t¡1~s¡1~r@(s)s¡1r

= s¡1@(r) ¡ s¡1@(s)s¡1r

= „@(s¡1r)

2. „@ is a derivation. We have to prove that for all s; t 2 S and r; r0 2 R

„@(s¡1rt¡1r0) = „@(s¡1r) t¡1r0 + s¡1r „@(t¡1r0): (16)

The argument of „@ on the left hand side has to be flrst changed into a
left fraction form before we can apply the deflnition of „@. By the left Ore
condition, we can flnd r⁄ 2 R, s⁄ 2 S such that r⁄t = s⁄r i.e. rt¡1 = s¡1⁄ r⁄.

We flrst prove identity (16) in the case s = r0 = 1 i.e.

„@(rt¡1) = @(r) t¡1 + r „@(t¡1): (17)

The left-hand side of (17) is

„@(rt¡1) = „@(s¡1⁄ r⁄)
= s¡1⁄ @(r⁄) ¡ s¡1⁄ @(s⁄)s¡1⁄ r⁄
= s¡1⁄ @(r⁄) + „@(s¡1⁄ )r⁄:

The right-hand side of (17) is

@(r)t¡1 ¡ rt¡1@(t)t¡1 = @(r)t¡1 ¡ s¡1⁄ r⁄@(t)t¡1

= @(r)t¡1 ¡ s¡1⁄ @(r⁄t)t¡1 ¡ s¡1⁄ @(r⁄)tt¡1

= @(r)t¡1 ¡ „@(s¡1⁄ r⁄t)t¡1 + „@(s¡1⁄ )r⁄ ¡ s¡1⁄ @(r⁄)
= @(r)t¡1 ¡ @(r)t¡1 ¡ „@(s¡1⁄ )r⁄ ¡ s¡1⁄ @(r⁄)
= „@(s¡1⁄ )r⁄ ¡ s¡1⁄ @(r⁄):
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Hence (17) follows. Using (17), we prove (16) directly:

„@(s¡1rt¡1r0) = „@((s⁄s)¡1r⁄r0)
= (s⁄s)¡1@(r⁄r0) ¡ (s⁄s)¡1@(s⁄s)(s⁄s)¡1r⁄r0

= s¡1s¡1⁄ @(r⁄)r0 + s¡1s¡1⁄ r⁄@(r0)
¡s¡1s¡1⁄ @(s⁄)s¡1⁄ r⁄r0 ¡ s¡1@(s)s¡1s¡1⁄ r⁄r0

= s¡1s¡1⁄ @(r⁄)r0 + s¡1t¡1r@(r0) + s¡1 „@(s¡1⁄ )r⁄r0 + „@(s¡1)s¡1⁄ r⁄r0

= s¡1 „@(s¡1⁄ r⁄)r0 ¡ s¡1 „@(s¡1⁄ )r⁄r + s¡1rt¡1@(r0) + „@(s¡1)rt¡1r0

= s¡1 „@(rt¡1) ¡ s¡1 „@(s¡1⁄ )r⁄r + s¡1rt¡1@(r0) + „@(s¡1)rt¡1r0
(17)
= s¡1@(r)t¡1r0 + s¡1r „@(t¡1)r0 + s¡1rt¡1@(r0) + „@(s¡1)rt¡1r0

= „@(s¡1r)t¡1r0 + s¡1r „@(t¡1r0):

Standard textbooks have incomplete proofs of 13.1, e.g. [32, 116].

13.2 Deflnition. A Poisson bracket on a unital associative k-algebra
is an antisymmetric bilinear operation f; g : A›A ! A satisfying the Jacobi
identity ff; fg; hgg+fh; ff; ggg+fg; fh; fgg = 0 for all f; g; h 2 A and such
that for each f , k-linear map Xf : g 7! ff; gg is a k-derivation of A. A
Poisson algebra is a commutative algebra with a Poisson bracket.

Proposition. Let A be a k-algebra with a Poisson bracket f; g, and
S ‰ Anf0g a central multiplicative set. Then

(i) S¡1A posses a bilinear bracket f; g = f; gS such that the localization
map ¶S : A ! S¡1A intertwines the brackets: f; gS – (¶S ›k ¶S) = ¶S – f; g.

(ii) If either fs; tg 2 Ker ¶S for all s; t 2 S, or if A is commutative, then
there is a unique such bracket f; gS which is, in addition, skew-symmetric.

(iii) If A is commutative then this unique f; gS is a Poisson bracket.
Proof. (i) Each Xb by 13.1 induces a unique derivation XS

b = „@ on
S¡1A by (15) for @ = Xb. The map b 7! XS

b is k-linear by uniqueness as
XS

b + XS
c is a derivation extending Xb+c as well. For each s¡1a 2 S¡1A

deflne k-linear map Ys¡1a : A ! S¡1A by

Ys¡1a : b 7! ¡XS
b (s¡1a) = ¡s¡1fb; ag + s¡1fb; sgs¡1a:

Because s is central, Ys¡1a is a k-linear derivation. Namely,

Ys¡1a(bc) = ¡s¡1fbc; ag + s¡1fbc; sgs¡1

= ¡s¡1fb; agc ¡ s¡1bfc; ag+
+ s¡1bfc; sgs¡1a + s¡1fb; sgcs¡1a;

and, on the other hand,

Ys¡1a(b)c + bYs¡1a(c) = ¡s¡1fb; agc + s¡1fb; sgs¡1ac¡
¡ bs¡1fc; ag + bs¡1fc; sgs¡1a:
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Hence Ys¡1a extends to a derivation Y S
s¡1a

on S¡1A ! S¡1A by formula
(15) as well. Deflne fs¡1a; t¡1bg := Y S

s¡1a
(t¡1b).

(ii) To show the skew-symmetry, we calculate,

Y S
s¡1a

(t¡1b) = t¡1Ys¡1a(b) ¡ t¡1Ys¡1at¡1b

= ¡t¡1XS
b (s¡1a) + t¡1XS

t (s¡1a)t¡1b

= ¡t¡1s¡1Xb(a) + t¡1s¡1Xb(s)s¡1a

+t¡1s¡1Xt(a)t¡1b ¡ t¡1s¡1Xt(s)s¡1at¡1b:

Y S
t¡1b

(s¡1a) = s¡1Yt¡1b(a) ¡ s¡1Yt¡1b(s)s¡1a

= ¡s¡1XS
a (t¡1b) + s¡1XS

s (t¡1b)s¡1a

= ¡s¡1t¡1Xa(b) + s¡1t¡1Xa(t)t¡1b

+s¡1t¡1Xs(b)s¡1a ¡ s¡1t¡1Xs(t)t¡1bs¡1a:

Using Xb(a) = ¡Xa(b) etc. and centrality of s; t we see that the flrst 3 terms
in Y S

s¡1a
(t¡1b) match with negative sign the flrst 3 terms (in order 1,3,2) in

expression for Y S
t¡1b

(s¡1a). If a and b mutually commute, the 4th term agrees
the same way, and if they don’t but Xs(t) = 0 in the localization S¡1A, then
they are simply 0, implying skew-symmetry fs¡1a; t¡1bg+ft¡1b; s¡1ag = 0.

Uniqueness: Zs¡1a(t¡1b) := fs¡1a; t¡1bg deflnes a derivation Zs¡1a on
S¡1A, which restricts to a derivation Zs¡1aj : A ! S¡1A. On the other
hand, s¡1a 7! Zs¡1a(b) is ¡XS

b by its deflnition. Hence the value of Zs¡1aj
is determined at every b, and by 13.1 this flxes Zs¡1a.

(iii) We’ll prove that if the Jacobi rule holds for given (a; b; c) and (s; b; c)
in S¡1A£3, then it follows for (s¡1a; b; c) provided s is invertible. By sym-
metry of the Jacobi rule and by renaming s¡1a 7! a we infer that it follows
for (s¡1a; t¡1b; c), as well, and flnally for the general case by one more ap-
plication of this reasoning. Thus we only need to show that Jacobi(a; b; c)
implies Jacobi(s¡1a; b; c). For commutative S¡1A this is a straightforward
calculation, using the Jacobi identity, lemma above and skew-symmetry. We
name the summands:

fs¡1a; fb; cgg = s¡1fa; fb; cgg ¡ s¡2fs; fb; cgga =: (A1) + (A2)
fb; fc; s¡1agg = s¡1fb; fc; agg ¡ s¡2fb; sgfc; ag ¡ s¡2fb; fc; sgga

¡ s¡2fc; sgfb; sga ¡ s¡1fc; sgfb; ag
=: (B1) + (B2) + (B3) + (B4) + (B5)

fc; fs¡1a; bgg = s¡1fc; fa; bgg ¡ s¡2fc; sgfa; bg ¡ s¡2fc; fs; bgga

+ s¡3fs; bgfc; sga ¡ s¡2fs; bgfc; ag
=: (C1) + (C2) + (C3) + (C4) + (C5):

Then (A1) + (B1) + (C1) = 0 and (A2) + (B3) + (C3) = 0 by Jacobi
for (a; b; c), and (b; c; s) respectively. By skew-symmetry (B2) + (C5) = 0,
(B5) + (C2) = 0 and (B4) + (C4) = 0 which flnishes the proof.
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This fact for A (super)commutative is used for example in the theory of integrable

systems, sometimes in connection to ‘quantization’ which is a rich source of examples in

noncommutative geometry.

13.3 Let (R; ¢; +) be a ring (k-algebra), not necessarily unital. A flrst
order difierential calculus (FODC) is a R¡R-bimodule ›1(R) together with
an additive (k-linear) map d : R ! ›1(R) satisfying Leibnitz identity

d(ab) = d(a)b + ad(b); a; b 2 R;

and such that ›1(R) is generated by difierentials dr, r 2 R as a left module.
Deflne a category Fodc: objects are pairs of a ring R and a FODC (›1(R); d)
on R. A morphisms is a pair (f; e) : (R; ›1(R); d) ! (R0; ›1(R0); d0) of a
ring map f : R ! R0 and a map e : ›1(R) ! ›1(R0) of R ¡ R-bimodules
such that e – d = d0 – f . Fixing R and allowing only morphisms of the form
(IdR; d) we obtain a (non-full) subcategory FodcR of Fodc. If R is unital,

then (Ker(R ›k R
¢! R; d) where da = 1 › a ¡ a › 1, and the R-bimodule

structure is RR ›k RR, is an initial object of that category.

Two objects cR = (R; ›1(R); d), cR0 = (R0; ›1(R0); d0) in Fodc are com-
patible along f : R ! R0 if there is an e such that (f; e) 2 Fodc(cR; cR0).

Difierential calculi restrict: Given cR0 2 FodcR0 and f as above, deflne
f1

››1(R0) to be the smallest additive subgroup of ›1(R0) containing all the
elements of the form f(a)@0(f(b)), a; b 2 R. It appears to be an R ¡ R-
bimodule. Deflne f ](cR0) := (R; f1

››1(R0); d0 – f). Then f ](cR0) 2 FodcR

because @(b):c = @0(f(b))f(c) = @0(f(bc)) ¡ f(b)@0(f(c)) = @(bc) ¡ b:@(c) 2
f ]›1(R0); where @ = @0 – f : R ! f ]›1(R0) is the restricted difierential.
Note the decomposition of (f; e) : cR ! cR0 into (f; e) : cR ! f ]cR0 and
(idR0 ; incl) : f ]cR0 ! cR0 , where incl : f1

››1(R0) ! ›1(R0) is the inclusion of
R0-bimodules.

Unlike restricting, there is no general recipe for extending the calculus
along ring maps f : R ! R0, except for the special case when R0 = S¡1R and
›1R = RRR, treated in 13.1. That case is of central importance in the study
of the regular difierential operators and D-modules over noncommutative
spaces ([79, 80, 81]). We’ll just mention a slight generalization.

13.4 Theorem. Let S ‰ R be a left Ore set in a ring R, and suppose
fx 2 ›1(R) j 9t 2 S; xt = 0g = 0.

The following are then equivalent:

(i) The S¡1R-R-bimodule structure on S¡1›1(R) · S¡1R ›R ›1(R)
extends to an (actually unique) S¡1R-bimodule structure which may carry a
difierential dS : S¡1R ! S¡1›1(R) such that the pair of localization maps
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(¶S ; ¶S;›1(R)) is a morphism in Fodc (i.e. ‘the calculi are compatible along
the localization’).

(ii) The difierential Ore condition is satisfled:

8t 2 S; 8r 2 R; 9s 2 S; 9! 2 ›1(R); s dr = !t:

Proof. (i) ) (ii). If S¡1›1(R) · S¡1R ›R ›1(R) is a S¡1R-bimodule then
(dr)t¡1 2 S¡1›1(R) for t 2 S, r 2 R. All the elements in S¡1›1(R) are
of the form s¡1! where s 2 S and › 2 ›1(R). Hence 9s 2 S; 9! 2 ›1(R)
such that s dr = !t in the localization. By 7.4 this means s dr = !t + !0

in ›1(R), where s0!0 = 0 for some s0 2 S. Pre-multiplying by s0 we obtain
(s0s)dr = (s0!)t, of the required form.

(ii) ) (i). The right S¡1R action if it exists is clearly forced by

s¡1
1 ad(r)t¡1b = s¡1

1 as¡1!b (18)

for s; ! chosen as above. On the other hand, if (18) holds, this right action
does extend the right R-action. One has to prove that (18) can be taken as
a deflnition of the right S¡1R-action (compatible with the left action), i.e.
it does not depend on choices. If we choose s0; !0 such that s0d(r) = !0t then
s¡1!t = (s0)¡1!0t. As t does not annihilate from the right, s¡1! = (s0)¡1!0.
Other cases are left to the reader. Hence S¡1›1(R) is a bimodule; its
elements are of the form s¡1adb.

To prove that it is su–cient, deflne dS from d by the generalization of
formula (15) by „@ and @ replaced by dS and d and proceed with the rest of
the proof as in 13.1 { all the calculations there make sense.

14 A Gabriel fllter LS for any S ‰ R

14.1 A lattice is a poset (W; ´) such that for any two elements z1; z2 the
least upper bound z1 _z2 and the greatest lower bound z1 ^z2 exist. In other
words, the binary operations meet ^ and join _ are everywhere deflned. A
poset is bounded if it contains a maximum and a minimum element, which
we denote 1 and 0 respectively. A (’proper’) fllter in a bounded lattice
(W; ´) is a subset L ‰ W such that 1 2 L, 0 =2 L, (z1; z2 2 L ) z1 ^ z2 2 L)
and (z 2 L; z0 ´ z ) z0 2 L).

E.g. in any bounded lattice (W; ´), given m 2 W , the set mW of all
n ´ m is a fllter.

14.2 Notation. Given a left ideal J in R and a subset w ‰ R deflne

(J : w) := fz 2 R j zw ‰ Jg
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Then (J : w) is a left ideal in R. If w =: K is also a left ideal, then (J : K)
is 2-sided ideal. In particular, if w = K = R, then (J : R) is the maximal
2-sided ideal contained in J . For r 2 R we write (J : r) for (J; frg).

Given subsets v; w ‰ R, set ((J : v) : w) contains precisely all t1 such
that t1w ‰ (J : v), i.e. t1wv ‰ J . Hence ((J : v) : w) = (J : wv).

14.3 Preorders on left ideals. Let IlR be the set of all left ideals in
a ring R. It is naturally a preorder category with respect to the inclusion
preorder. This category is a lattice. For the localization and spectral ques-
tions another partial order ´ on IlR is sometimes better: K ´ J (category
notation: J ! K) ifi either J ‰ K, or there exist a flnite subset w ‰ R

such that (J : w) ‰ K. Any fllter in (IlR; ´) is called a uniform fllter.

14.4 Let R be a unital ring and S ‰ R a multiplicative set. Consider

LS := fJ left ideal in R j 8r; (J : r) \ S 6= ;g ‰ IlR: (19)

We make the following observations:

† As (R : r) = R, R 2 LS .

† Suppose J; K 2 LS . Given r 2 R, 9s; t, such that s 2 (J : r) \ S and
t 2 (K : sr) \ S. Hence tsr 2 J \ K. The set S is multiplicative,
hence ts 2 S and ts 2 (J : r) \ (K : r) \ S = (J \ K : r) \ S. Thus
J \ K 2 LS .

† (J : r) \ S 6= ; then, a fortiori, (K : r) \ S 6= ; for K ¾ J .

† If J 2 LS then 8r (J : r) \ S 6= ;. In particular, this holds with r

replaced by rr0. Using ((J : r) : r0) = (J : r0r) we see that (J : r) 2 LS

for all r 2 R.

† If 8r0 2 R (J : r0) \ S 6= ; and ((J 0 : j) : r) \ S 6= ; for all j 2 J ,
r 2 R, then 9s 2 S such that srj 2 J 0 and 9s0 2 S such that s0r0 2 J .
In particular for r = 1 and j = s0r0 we have ss0r0 2 J . Now ss0 2 S

and r0 is arbitrary so J 0 2 LS .

These properties can be restated as the axioms for a Gabriel fllter L ‰ IlR

(synonyms \radical set", \radical fllter", \idempotent topologizing fllter"):

† (F1) R 2 L and ; =2 L.

† (F2) If J; K 2 L, then J \ K 2 L.

† (F3) If J 2 L and J ‰ K then K 2 L.
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† (UF) J 2 L , (8r 2 R; (J : r) 2 L).

† (GF) If J 2 L and 8j 2 J the left ideal (J 0 : j) 2 L, then J 0 2 LS .

Axioms (F1-3) simply say that a set L of ideals in R is a fllter in (IlR; ‰).
Together with (UF) they exhaust the axioms for a uniform fllter (cf. 14.3).
Axioms (GF) and (UF) imply (F2): If j 2 J , (I \ J : j) = (I : j) \ (J : j) =
(I : j) 2 L by (UF). Since 8j 2 J (I \ J : j) 2 L, (GF) implies I \ J 2 L.
(GF) & (F1) imply (F3): (8j 2 J ‰ K) (K : j) = R 2 L, hence K 2 L.

There are examples of Gabriel fllters L, even for commutative R, which
are not of the form LS for a multiplicative S ‰ R. Moreover, for rings
without unity (F1-3,UF,GF) still make sense, whence a good notion of a
multiplicative set and fllters LS fails to exist.

Notice that if a multiplicative set S satisfles the left Ore condition, then
LS = L0

S := fJ is left ideal j J \S 6= ;g. Namely, (J : 1)\S = J \S for any
S, hence LS ‰ L0

S ; and the left Ore condition implies that given an element
s 2 J \S and r 2 R we can flnd s0 2 S, and r0 2 R with s0r = r0s 2 r0J ‰ J ,
hence s0 2 (J : r) \ S; hence L0

S ‰ LS .

14.5 Exercise. Check that the intersection of any family of Gabriel
fllters is a Gabriel fllter.

Remark: this is not always true for the union: (GF) often fails.

14.6 For given R-module M and a fllter L in (IlR; ‰), the inclusions
J ,! J 0 induce maps HomR(J 0; M) ! HomR(J; M) for any M , hence
we obtain an inductive system of abelian groups. The inclusion also in-
duce the projections R=J ! R=J 0 and hence, by composition, the maps
HomR(R=J 0; M) ! HomR(R=J; M). This gives another inductive system
of abelian groups. If a fllter L is uniform, we consider the same systems
and limits of groups (without new morphisms), and use (UF) as ingenious
device to deflne the R-module structure on them.

14.7 Proposition. Let L be a uniform fllter and M a left R-module.
(i) The inductive limit of abelian groups taken over downwards directed

family of ideals
HL(M) := limJ2LHomR(J; M)

has a canonical structure of an R-module. HL extends to an endofunctor.
(ii) The abelian subgroup

¾L(M) := fm 2 M j 9J 2 L; Jm = 0g ‰ M

is a R-submodule of M .
(iii) If f : M ! N is a map of R-modules, Im f j¾L(M) ‰ ¾L(N), hence

the formula f 7! ¾L(f) := f j¾L(M) extends ¾L to a subfunctor of identity.
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(iv) The inductive limit of abelian group ¾0
L(M) := limJ2LHomR(R=J; M)

has a structure of a left R-module.
(v) If 1 2 R then the endofunctors ¾L and ¾0

L (on the categories of
modules M with 1Rm = m, where m 2 M) are equivalent.

Proof. (i) Given f 2 HL(M), represent it as fJ in HomR(J; M) for some
J 2 L. By (UF), 8r 2 R, (J : r) 2 L. The rule x 7! fJ(xr) deflnes a map
(rf)(J :r) in HomR((J : r); M) which we would like to represent the class rf .
Suppose we have chosen another representative fI , then there is K 2 L,
K ‰ I \ J , such that fI jK = fJ jK =: h. Then (K : r) ‰ (I \ J : r) = (I :
r) \ (J : r) and the map x 7! h(xr) : K ! M agrees with (rf)(J :r)jK and
(rf)(I:r)jK hence the class rf is well deflned.

This is a left action: ((rr0)f)(J :rr0)(x) = fJ(xrr0) = (r0f)(J :r0)(xr) =
(r(r0f))((J :r0):r)(x) = (r(r0f))(J :rr0)(x). We used ((J : r0) : r) = (J : rr0).

(ii) Suppose m 2 ¾L(M), i.e. Jm = 0 for some J 2 L. For arbitrary
r 2 R the ideal (J : r) 2 L by (UF). Let k 2 (J : r). Then kr 2 J , hence
krm = 0. This is true for any such k, hence (J : r)rm = 0 and rm 2 ¾L(M).
As r was arbitrary, R¾L(M) ‰ ¾L(M).

(iii) If m 2 ¾L(M) then 0 = f(0) = f(Jm) = Jf(m) for some J in L.
Hence f(m) 2 ¾L(N).

(iv) Let r 2 R and f 2 lim HomR(R=J; M). Take a representative
fJ 2 HomR(R=J; M). Let (rf)(J :r) 2 HomR(R=(J : r); M) be given by
(rf)(J :r)(r

0 + (J : r)) = fJ(r0r + J). This formula does not depend on r0

because changing r0 by an element –r0 2 (J : r) changes r0r by an element
(–r0)r in (J : r)r ‰ J . Suppose fI » fJ . In this situation, with projections
as connecting morphisms, this means that fI(x + I) = fJ(x + J) for all
x 2 R, and in particular for x = r0r, hence (rf)(J :r) » (rf)(I:r) and rf is
well deflned.

Finally, f 7! rf is a left R-action. Indeed, for all r; r0; t 2 R,

((rr0)f)(J :rr0)(t + (J : rr0)) = (fJ)(trr0 + J)

= (r0f)(J :r0)(tr + (J : r0))
= (r(r0f))((J :r0):r)(t + ((J : r0) : r))

= (r(r0f))(J :rr0)(t + (J : rr0))

If R and M are unital, then 1Rf = f as well.
(v) To make the statement precise, we should flrst extend ¾L to a functor

by deflning it on morphisms as well (¾0
L is obviously a functor as the formula

on object is explicitly written in terms of a composition of functors applied
on M). As ¾L(M) ‰ M , it is su–cient to show that f(¾L(M)) = ¾L(f(M))
and then deflne ¾L(f) := ¾L – f . Element f(m) 2 f(¾L(M)) ifi Jm = 0 for
some J 2 L. This is satisfled ifi f(Jm) = Jf(m) = 0, i.e. f(m) 2 ¾L(f(M)).
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The equivalence ” : ¾0
L ) ¾L is given by ”M ([fJ ]) := fJ(1R+J) 2 ¾L(M)

(because JfJ(1R + J) = fJ(0 + J) = 0), with inverse m 7! [µ
(m)
J ] where

µ
(m)
J : r + J 7! rm and any Jm = 0 (such J exists and the formulas for µ

(m)
J

for difierent J agree, hence a fortiori deflne a limit class). Starting with [fJ ]

with m := fJ(1R + J) and µ
(m)
J : r + J 7! rfJ(1R + J) = fJ(r + J), hence

µ
(m)
J = fJ . Other way around, start with m 2 ¾L(M), then ”M (µ

(m)
J ) =

µ
(m)
J (1R + J) = 1Rm = m. Hence we see that each ”M is an isomorphism of

modules. The reader may check that ”, ”¡1 are natural transformations.

14.8 If A is any abelian category, then a subfunctor ¾ of the iden-
tity (i.e. ¾(M) ‰ M and ¾(f)j¾(M) = f j¾(M), cf. 1.4) with the property
¾(M=¾(M)) = 0 is called a preradical in A. A preradical ¾ in R ¡ Mod
is left exact ifi J ‰ K implies ¾(J) = ¾(K) \ J . A radical is a left exact
preradical.

14.9 Proposition. If L is Gabriel fllter, ¾L is an idempotent radical
in the category of left R-modules, i.e. it is a radical and ¾L¾L = ¾L.

14.10 To any Gabriel fllter L, one associates a localization endofunctor
QL on the category of left modules by the formula

QL(M) := HL(M=¾L(M)) = limJ2LHomR(J; M=¾L(M)): (20)

Left multiplication by an element r 2 R deflnes a class [r] 2 QL(R).
There is a unique ring structure on QL(R), such that the correspondence
iL : r 7! [r] becomes a ring homomorphism iL : R ! QL(R).

Notice that (20) generalizes the RHS of Deligne’s formula, 10.4a.

14.11 Not only every Gabriel fllter deflnes an idempotent radical, but
also ([62]):

Proposition. Every radical deflnes a Gabriel fllter by the rule

L¾ := fJ left ideal in R j ¾(R=J) = R=Jg:

More generally, if M is a left R-module and ¾ is a radical, deflne

LM;¾ := fL left R-submodule in M j ¾(M=L) = M=Lg:

Then LM := LM;¾ satisfles the following properties

† (GT1) M 2 LM .

† (GT2) If L; K 2 LM , then L \ K 2 L.

† (GT3) If L 2 LM , K ‰ M a left submodule and L ‰ K, then K 2 LM .



290 Noncommutative localization in noncommutative geometry

† (GT4) If J 2 LM and K 2 LJ the left submodule K 2 LM .

14.11a When we restrict to the idempotent radicals, then the rule ¾ 7!
L¾ gives a bijection between the idempotent radicals and Gabriel fllters.

15 Localization in abelian categories

The language of Gabriel fllters is not suited for some other categories where
additive localization functors are useful. Subcategories closed with respect
to useful operations (e.g. extensions of objects) are often used as the local-
ization data, particularly in abelian and triangulated categories. We conflne
ourselves just to a summary of basic notions in abelian setting and com-
ment on the connection to the language of Gabriel fllters, as a number of
references is available ([21, 42, 43, 62, 103, 107]).

15.1 Let A be an additive category. Let P be a full subcategory of
A. Deflne the left and right orthogonal to P to be the full subcategories
?P and P? consisting of all objects A 2 A such that A(P; A) = 0 (resp.
A(A; P ) = 0) for all P 2 P. The zero object is the only object in P \ ?P.
It is clear that taking (left or right) orthogonal reverses inclusions and that
P ‰ ?(P?) and P ‰ (?P)?. We leave as an exercise that P? = (?(P?))?

and ?P = ?((?P)?).

15.2 A thick subcategory of an abelian category A is a strictly full sub-
category T of A which is closed under extensions, subobjects and quotients.
In other words, an object M 0 in a short sequence 0 ! M ! M 0 ! M 00 ! 0
in A belongs to T ifi M and M 00 do.

Given a pair (A; T ) where A is abelian and T ‰ A is thick, consider the
class

§(T ) := ff j Ker f 2 Ob T ; and Coker f 2 Ob T g:

The quotient category A=T is deflned as follows. Ob A=T = Ob A and
Mor A=T := Mor A ‘

§¡1(T ), where §¡1(T ) is the class of formal inverses
of morphisms f 2 §; impose the obvious relations. A=T is additive in a
unique way making the quotient functor additive. In fact ([42, 43]), it is
abelian.

Proposition. (Grothendieck [58]) Let T be a thick subcategory in A
and §(T ) as above. Then § is a left and right calculus of fractions in A
and A[§(T )]¡1 is naturally isomorphic to A=T .

A thick subcategory T is a localizing subcategory if the morphisms
which are invertible in the quotient category A=T are precisely the images
of the morphisms in §(T ).
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Every exact localization functor T ⁄ : A ! B (i.e. an exact functor with
fully faithful right adjoint T⁄) of an abelian category A is the localization
at the localizing subcategory § consisting of those morphisms f such that
T ⁄f is either a kernel or cokernel morphism of an invertible morphism in B.

If T ⁄ : A ! B is any exact localization functor, then set T := Ker T ⁄ to
be the full subcategory of A generated by all objects X such that T ⁄(X) = 0.

Then T ⁄ factors uniquely as A Q⁄! A=T ! B where Q⁄ is the natural quotient
map.

More than one thick subcategory may give the same quotient category,
and that ambiguity is removed if we consider the corresponding localizing
subcategories instead ([103]).

A composition of localization functors corresponds to Gabriel multi-
plication † on thick subcategories. For any two subcategories B, D of
an abelian category A one deflnes D † B to be the full subcategory of A
consisting of precisely those A in A for which there is an exact sequence
0 ! B ! A ! D ! 0 with B in Ob B and D in Ob D. In categories of
modules one can redeflne Gabriel multiplication in terms of radical fllters,
cf. ([113]).

15.3 In this article, we often view exact localizations (and quotient cat-
egories, cf. 10.4b) as categorical analogues of open spaces. Their comple-
ments should then be the complementary data to the quotient categories,
and such data are localizing subcategories. A more precise and detailed
discussion of those subcategories, which may be considered as subschemes
and closed subschemes, may be found in [79], Part I and [113, 124]. Cf. the
notion of a (co)re°ective subcategory in 8.9.

Thus, in our view, it is geometrically more appealing to split the data of
a category to a localizing subcategory and a quotient category, than into two
subcategories. However, the latter point of view is more traditional, under
the name of \torsion theory’ and has geometrically important analogues for
triangulated categories. A torsion theory ([21, 62]) in an abelian category
A is a pair (T ; F) of subcategories of A closed under isomorphisms and such
that F? = T and ?T = F .

For any idempotent radical ¾ in A (14.9), the class T¾ of ¾-torsion
objects and the class F¾ of ¾-torsion free objects are deflned by formulas

T¾ = fM 2 Ob A j ¾(M) = Mg; F¾ = fM 2 Ob A j ¾(M) = 0g:

This pair (T¾; F¾) is an example of a torsion theory and T¾ is a thick subcat-
egory of A. Not every torsion theory corresponds to a radical, but hereditary
theories do. That means that a subobject of a torsion object is torsion. The
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Cohn localization of the next section is not necessarily hereditary, but it is
always a torsion theory as shown there.

16 Quasideterminants and Cohn localization

Notation. Let Mn
m(R) be the set of all n £ m matrices over a (noncommu-

tative) ring R, so that Mn(R) := Mn
n (R) is a ring as well. Let I; J be the

ordered tuples of row and column labels of A = (ai
j) 2 Mn

m(R) respectively.

For subtuples I 0 ‰ I; J 0 ‰ J and A = (ai
j) 2 Mn

m(R), denote by AI0
J 0 the

submatrix of AI
J := A consisting only of the rows and columns with included

labels; e.g. A
fig
fjg = ai

j is the entry in i-th row and j-th column. When I is

known and K ‰ I, then jKj is the cardinality of K and^is the symbol for
omitting, i.e. K̂ = InK is the complementary (jKj ¡ jIj)-tuple.

We may consider the r-tuple ~I = (I1; : : : ; Ir) of sub-tuples which parti-
tions the n-tuple I = (i1; i2; : : : ; in), i.e. Ik are disjoint and all labels from I

are included; then j~Ij := r. Given ~I; ~J form the corresponding block ma-

trix in M
~I
~J

out of A, i.e. the j~Ij £ j ~J j matrix A
~I
~J

whose entries are matrices

A
~Ik
~Jl

:= AIk
Jl

cut-out from A by choosing the selected tuples. Forgetting the

partition gives the canonical bijection of sets M
~I
~J

! M I
J . The multiplica-

tion of block matrices is deflned by the usual matrix multiplication formula
(AB)Ii

Jj
=

Pr
l=1 AIi

Kl
AKl

Jj
if AB and the sizes of subtuples for columns of

A and rows of B match. One can further nest many levels of partitions
(block-matrices of block-matrices : : :). Some considerations will not depend
on whether we consider matrices in R or block matrices, and then we’ll just
write M I

J etc. skipping the argument. More generally, the labels may be
the objects in some abelian category A, and entries ai

j 2 A(i; j); I will be
the sum 'i2Ii, hence A : I ! J . Ring multiplication is replaced by the
composition, deflned whenever the labels match.

Observation. Multiplication of block matrices commutes with forgetting
(one level) of block-matrix structure. In other words we may multiply in
stages (if working in A this is the associativity of '). Corollaries:

(i) if ~I = ~J then M~I(R) := M
~I
~I
(R) is a ring.

(ii) We can invert matrices in stages as well (’heredity’).

(iii) The same for linear equations over noncommutative rings.

Any pair (i; j) 2 I £ J determines partitions ~I = (i; î) and ~J = (j; ĵ).

For each A in M I
J it induces a 2 £ 2 block-matrix A

~I
~J
. Reader should do the

exercise of inverting that block matrix (with noncommutative entries), in
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terms of the inverses of blocks. As we will see, the (i; j)-quasideterminant
of A is the inverse of the (j; i)-entry of A¡1 if the latter is deflned; though
it may be deflned when the latter is not.

16.1 The (i; j)-th quasideterminant jAjij of A is

jAjij = ai
j ¡ P

k 6=i;l 6=j ai
l(A

î
ĵ
)¡1
lk ak

j (21)

provided the right-hand side is deflned (at least in the sense of evaluating a
rational expression, which will be discussed below). In alternative notation,
the distinguished labels ij may be replaced by a drawing of a box around
the entry ai

j as in

flflflflflflfl

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

flflflflflflfl
·

flflflflflfl

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

flflflflflfl
32

At most n2 quasideterminants of a given A 2 Mn(R) may be deflned.

16.2 If all the n2 quasideterminants jAjij exist and are invertible then
the inverse A¡1 of A exists in A 2 Mn(R) and

(jAjji)
¡1 = (A¡1)i

j : (22)

Thus we also have

jAjij = ai
j ¡

X

k 6=i;l 6=j

ai
ljAî

ĵ
j¡1
kl ak

j (23)

16.3 Sometimes the RHS of (21) makes sense while (23) does not. So
for subtle existence questions one may want to be careful with alternative
formulas for quasideterminants. Some identities are often proved using al-
ternative forms, so one has to justify their validity. Difierent expressions
difier by rational identities ([1, 27]), and under strong assumptions on
the ring R (e.g. a skewfleld which is of 1 dimension over the center which
is also inflnite), the rational identities induce a well-behaved equivalence on
the algebra of rational expressions and the results of calculations extend
in an expected way to alternative forms once they are proved for one form
having a nonempty domain of deflnition ([1, 27, 123])

16.4 On the other hand, the existence of an inverse A¡1 does not imply
the existence of quasideterminants. For example, the unit 2£2 matrix 12£2

over fleld Q has only 2 quasideterminants, not 4. Or, worse, the matrix
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µ
3 2
2 3

¶
over the commutative ring Z[1

5 ] is invertible, but no single entry

is invertible, and in particular no quasideterminants exist.

16.5 Quasideterminants are invariant under permutation of rows or
columns of A if we appropriately change the distinguished labels.

16.6 Suppose now we are given an equation of the form

Ax = »

where A 2 Mn(R) and x; » are n-tuples of indeterminates and free coe–-
cients in R respectively (they are column \vectors"). Then one can attempt
to solve the system by flnding the inverse of the matrix A and multiply the
equation by A¡1 from the left, or one can generalize the Cramer’s rule to
the noncommutative setup.

Deflne thus A(j; ») as the n £ n matrix whose entries are the same as of
A except that the j-th column is replaced by ». Then the noncommutative
left Cramer’s rule says

jAjijxj = jA(j; »)jij

and the right-hand side does not depend on i.
To see that consider flrst n = 2 case:

a1
1x1 + a1

2x2 = »1

a2
1x1 + a2

2x2 = »2

Then
jAj11x1 = a1

1x1 ¡ a1
2(a2

2)¡1a2
1x1

= (»1 ¡ a1
2x2) ¡ a1

2(a2
2)¡1a2

1x1

= »1 ¡ a1
2(a2

2)¡1a2
2x2 ¡ a1

2(a2
2)¡1a2

1x1

= »1 ¡ a1
2(a2

2)¡1»2 = jA(1; »)j11:

The general proof is exactly the same, just one has to understand which
indices are included or omitted in the sums involved:

jAjijxj = ai
jxj ¡ P

k 6=j;l 6=i ai
k(Aî

ĵ
)¡1
kl al

jxj

= (»i ¡ P
h6=j ai

hxh) ¡ P
k 6=j;l 6=i ai

k(Aî
ĵ
)¡1
kl al

jxj

= »i ¡ P
h6=j;k 6=j;l 6=i ai

k(Aî
ĵ
)¡1
kl al

hxh ¡ P
k 6=j;l 6=i ai

k(Aî
ĵ
)¡1
kl al

jxj

= »i ¡ P
1•h•n;k 6=j;l 6=i ai

k(Aî
ĵ
)¡1
kl al

hxh

= »i ¡ P
1•h•n;k 6=j;l 6=i ai

k(Aî
ĵ
)¡1
kl al

hxh

= jA(j; »)jij :
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Similarly consider equation
P

k ykBl
k = ‡ l. Apparently the individual

coe–cients multiply yk from the right, but the combinatorics of matrix labels
is organized as if we multiply By (alas, otherwise the rule of writing upper
indices for rows would force us to write such equations upside-down!). The
canonical antiisomorphism R ! Rop clearly sends any quasideterminant
into the quasideterminant of the transposed matrix. Hence the left Cramer’s
rule implies the right Cramer’s rule

yj jBT jji = j(B(j; ‡))T jji:

16.7 Row and column operations. Ordinary determinants do not
change if we add a multiple of one row to another, and similarly for the
columns.

We have to distinguish between left and right linear combinations.
If jAjij is deflned and i 6= l, then it is unchanged under left-row operation

Al ! Al +
X

s 6=l

‚sAs

Proof. We may assume i = 1. Deflne the row matrix

~‚ = (‚2; : : : ; ‚n):

Then ~‚T =
P

s6=k ‚sT s for any matrix T with row-labels s = 2; : : : ; n. Then
⁄T =

P
s6=k ‚sT s. Assume the matrix A is in the block-form written as

µ
a ~b

~cT D

¶

with a of size 1 £ 1. Then
flflflflfl

a + ~‚~cT ~b + ~‚D

~cT D

flflflflfl = a + ~‚~cT ¡ (~b + ~‚D) D¡1 ~cT

= a ¡~bD¡1~cT :

If we multiply the l-th row from the left by an invertible element „ then
the quasideterminant jAjij won’t change for i 6= l and will be multiplied
from the left by „ if i = l. Actually, more generally, left multiply the i-th
row by „ and the block matrix consisting of other rows by invertible square
matrix ⁄ (i.e. other rows can mix among themselves, and scale by difierent
factors):

A !
µ

„ 0
0 ⁄

¶
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Then jAjij gets left-multiplied by „:

flflflflfl
„a „~b

⁄~cT ⁄D

flflflflfl
11

= „a ¡ „~b (⁄D)¡1 ⁄~cT

= „ (a ¡~bD¡1~cT ) = „ jAjij :

16.8 Jacobi’s ratio theorem. ([46]) Let A be a matrix with possibly
noncommutative entries such that the inverse B = A¡1 is deflned. Choose
some row index i and some column index j. Make a partition of the set of
row indices as I [ fig [ J and a partition of the set of column indices as
I 0 [ fjg [ J 0, with the requirements card I = card I 0 and card J = card J 0.
Then

(jAI[fig;I0[fjgjij)¡1 = jBJ 0[fjg;J[figjji:

Proof. ([71]) The block decomposition of matrices does not change the
multiplication, i.e. we can multiply the block matrices and then write out the
block entries in detail, or we can write the block entries of the multiplicands
in detail and then multiply and we get the same result. In particular, as
A = B¡1, the block-entries of A can be obtained by block-inversion of B.

After possible permutation of labels, we may flnd the block-entry of the
matrix A = B¡1 at the intersection of rows I [ fig and columns I 0 [ fjg by
means of block-inverting the block matrix

A =

µ
AI[fig;I0[fjg AI[fig;J 0

AJ;I0[fjg AJ;J 0

¶

Then AI[fig;I0[fjg = (BI[fig;I0[fjg ¡ BI[fig;J 0(BJJ 0)¡1BJ;I[fig)¡1 or, equiv-
alently,

(AI[fig;I0[fjg)¡1 = BI[fig;I0[fjg ¡ BI[fig;J 0(BJJ 0)¡1BJ;I0[fjg

This is a matrix equality, and therefore it implies the equality of the (i; j)-th
entry of both sides of the equation. We obtain

((AI[fig;I0[fjg)¡1)ij = bij ¡
X

k2J 0;l2J

bi;k(BJJ 0)¡1
kl blj :

Finish by applying the formula (jCjji)
¡1 = (C¡1)ij at LHS.

16.9 Muir’s law of extensionality. ([46, 48, 49]) Let an identity I
between quasiminors of a submatrix AI

J of a generic matrix A be given. Let
K \ I = ;, L \ J = ; and K = L. If every quasiminor jAU

V juv of AI
J in the
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identity I is replaced by the quasiminor jAU[K
V [L juv of AI[K

J[L then we obtain
a new identity I 0 called the extensional to I.

16.10 Quasitelescoping sum. Let A = (ai
j) be a generic n£n matrix.

For any k > 2, and i; j 2 f1; k ¡ 1g consider the quasiminor

jAi;k;k+1;:::;n
j;k;k+1;:::;njij :

The quasitelescoping sum involves such minors:

QT (A1;:::;n
1;:::;n) =

nX

k=3

jA1;k;:::;n
k¡1;k;:::;nj1;k¡1jAk¡1;k;:::;n

k¡1;k;:::;nj¡1
k¡1;k¡1jAk¡1;k;:::;n

1;k;:::;n jk¡1;1

Then, by Muir’s law and induction on n, we obtain

QT (A1;:::;n
1;:::;n) = a1

1 ¡ jAj11: (24)

For n = 3 this is simply the identity obtained by extending by the third
row and column the identity expressing the expansion of the 2£2 upper left
quasiminor. Suppose now we have proved (24) for n. Take an (n+1)£(n+1)-
matrix A. Then, by induction, this is true for the submatrix

A2̂
2̂

= A
1;3;:::;n
1;3;:::;n:

But

QT (A1;:::;n
1;:::;n) = QT (A1;3;:::;n

1;3;:::;n) + jA1;3;:::;n
2;3;:::;nj1;2jA2;3;:::;n

2;3;:::;nj¡1
2;2jA2;3;:::;n

1;3;:::;nj2;1

= a1
1 ¡ jA1;3;:::;n

1;3;:::;nj11 + jA1;3;:::;n
2;3;:::;nj1;k¡1jA2;3;:::;n

2;3;:::;nj¡1
k¡1;k¡1jA2;3;:::;n

1;3;:::;njk¡1;1

= a1
1 ¡ jA1;2;3;:::;n

1;2;3;:::;nj11

where the last two summands were added up, using the identity which rep-
resents the expansion of 2 £ 2 upper left corner of A and extending the
identity by rows and columns having labels 3; : : : ; n.

16.11 Homological relations. Start with the identity

(a1
1 ¡ a1

2(a2
2)¡1a2

1)(a2
1)¡1 = ¡(a1

2 ¡ a1
1(a2

1)¡1a2
2)(a2

2)¡1:

which in the quasideterminant language reads

flflflflfl
a1

1 a1
2

a2
1 a2

2

flflflflfl (a2
1)¡1 = ¡

flflflflfl
a1

1 a1
2

a2
1 a2

2

flflflflfl (a2
1)¡1
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and extend the latter applying Muir’s law, adding the rows 3; : : : ; n of A to
each minor in the expression. Renaming the indices arbitrarily we obtain
the row homological relations:

jAjij jAî
ĵ0 j¡1

i0j = ¡jAjij0 jAî
ĵ
j¡1
i0j0 (25)

for j 6= j0. Similarly, starting with the identity

(a1
2)¡1(a1

1 ¡ a1
2(a2

2)¡1a2
1) ¡ (a2

2)¡1(a2
1 ¡ a2

2(a2
2)¡1a2

1);

we obtain the column homological relations

jAî0
ĵ

j¡1
ij0 jAjij = ¡jAî

ĵ
j¡1
i0j0 jAji0j : (26)

16.12 Laplace expansion for quasideterminants. Start with the
identity X

j

ai
j(A¡1)j

k = –i
k:

If i 6= k and A¡1 exists, then substituting (A¡1)j
k = jAj¡1

kj this becomes

X

j

ai
j jAj¡1

ij = 1:

Multiply this equation from the right by jAjil and split the sum into the
part with j 6= l and the remaining term:

ai
l +

X

j 6=l

ai
j jAj¡1

ij jAjil = jAjil

and apply the row homological relations (25) to obtain the following Laplace
expansion for the (i; j)-th quasideterminant by the k-th row:

ai
l ¡ P

j 6=l ai
j jAî

l̂
j¡1
kj jAî

ĵ
jkl = jAjil (27)

Similarly, multiplying from the left the equation
P

i jAj¡1
ij ai

j = 1 by jAjlj
and splitting the sum into two terms we obtain

al
j +

X

i6=l

jAjlj jAj¡1
ij ai

j = jAjlj ;
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which after the application of the column homological relations (26) gives
the following Laplace expansion for the (i; j)-th quasideterminant by the
k-th column:

al
j ¡ P

j 6=l jAî
ĵ
jlkjAl̂

ĵ
j¡1
ik ai

l = jAjlj (28)

Notice that the summation sign involves (n¡1) summands whereas the sim-
ilar summation in the recursive formula (23) for quasideterminants involves
(n ¡ 1)2 summands.

16.13 ([27, 28]) Let R be an associative unital ring, and § a given set
of square matrices of possibly difierent (flnite) sizes with entries in R. The
map f : R ! S of rings is §-inverting if each matrix in § is mapped to an
invertible matrix over S. A §-inverting ring map i§ : R ! R§ is called a
Cohn localization (or equivalently a universal §-inverting localization) if
for every §-inverting ring map f : R ! S there exists a unique ring map
~f : R§ ! S such that f = ~f – i§.

A set § of matrices is called (upper) multiplicative if 1 2 § and, for

any A; B 2 § and C of right size over R,

µ
A C

0 B

¶
is in §. If § is

the smallest multiplicative set of matrices containing §0, then a map is §0-
inverting ifi it is §-inverting. Inclusion §0 ‰ § makes every §-inverting map
f : R ! S also §0-inverting. Conversely, if each of the diagonal blocks can
be inverted, a block-triangular matrix can be inverted, hence §0-inverting
maps are §-inverting.

The universal §-inverting localization can be constructed by the \inver-
sive method", as follows. Represent R as a free algebra F on a generating
set f modulo a set of relations I. For each quadratic matrix A 2 § of size
n £ n, add n2 generators (A; i; j) to f . In this way we obtain a free algebra
F 0 over some generating set f 0. All (A; i; j) for flxed A clearly form a n £ n-
matrix A0 over F 0. Then §¡1R = F 0=I 0 where I 0 is the ideal generated by
I and by all elements of matrices AA0 ¡ I and A0A ¡ I for all A 2 §. Then
i§ : R ! §¡1R is the unique map which lifts to the embedding F ,! F 0.

16.14 Warning. A naive approach to quotient rings, would be just
adding new generators a0 and relations aa0 = a0a = 1 for each a 2 Rnf0g
which needs to be inverted in the flrst place. In geometrical applications this
could induce pretty unpredictable behaviour on modules etc. But suppose
we just want to do this in an extreme special case: constructing a quotient
skewfleld. After inverting all the nonzero elements, we try inverting all their
nonzero sums and so on. The problem arises that one may not know which
elements from m-th step will be forced to be zero by new relations added
a few steps later. So one should skip inverting some new elements, as they
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will become zeros after a few more steps of inverting other elements. There
is no recipe for which elements to leave out at each step. For a given ring
R, there may be none (no quotient fleld) or multiple possibilities for such
a recipe. More precisely, given two embeddings R ,! Ki into skewflelds
K1 6= K2, there may be difierent smallest subskewflelds Li ,! Ki containing
R.

16.15 Proposition. Let § be a multiplicative set of square matrices
over R and let f : R ! S be a §-inverting map. Let S(i; §) ‰ R consist
of all the components of solutions over S of all the equations f(A)x = f(b)
where A 2 §, b is a column-vector over R and x a column of unknowns.

(i) S(i; §) is a subring of S.

(ii) S(i; §) coincides with the image of R§ under the unique map ~f :
R§ ! S for which f = ~f – i§.

In particular, if f is 1-1 then ~f is isomorphism and i§ is 1-1.

(i) If the components xi and yj of column vectors x and y over S are
in S(i; §), with f(A)x = b and f(B)y = c, then, possibly after enlarging
x; y; b; c by zeroes and A and B by diagonal unit blocks, we may always make

i = j and b and c of the same length. Then f

µ
A ¡A + B

0 B

¶ µ
x + y

y

¶
=

f

µ
b + c

c

¶
and as the left-hand side matrix is in f(§) by multiplicativ-

ity, then xi + yi 2 S(i; §), as claimed. For z a (row or column) vec-
tor consider the diagonal square matrix diag(z) with diagonal z. Then
diag(z)(1; 1; : : : ; 1)T = (z1; : : : ; zn). For a flxed i, there is a matrix Pi such

that Pi(y1; : : : ; yn)T = (yi; : : : ; yi)
T . Hence, f

µ
B ¡diag(c)Pi

0 A

¶ µ
y

x

¶
=

f

µ
0
b

¶
has as the j-th component (f(B)¡1f(c))j(f(A)¡1f(b))i. But our

block-triangular matrix is in §, hence xiyj is in S(i; §). Similarly, had we
worked with algebras over k, we could have considered all possible weights
on the diagonal instead of just using the non-weighted diagonal diag(c) to
obtain any possible k-linear combination of such.

(ii) The corestriction of i onto S(i; §) is also §-inverting. Hence there is
a unique map form R§. But, by construction, there is no smaller ring than
S(i; §) containing f(R§). As i(R§) is a ring they must coincide. If the map
is 1-1 it has no kernel hence ~f is an isomorphism.

16.16 Proposition. (left-module variant of P. M. Cohn [28], 2.1) If
§ is multiplicative, then 9! subfunctor ¾§ : R ¡ Mod ! R ¡ Mod of identity
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such that, as a subset, ¾§(M) equals

fm 2 M j 9u = (u1; : : : ; un)T 2 M£n; 9i; m = ui and 9A 2 §; Au = 0g
for every M 2 R ¡ Mod. Moreover, ¾§ is an idempotent preradical.

Proof. 1. ¾§(M) is an R-submodule of M . It is su–cient to show
that for any r 2 R, m; m0 2 ¾§(M) the left linear combination m + rm0 2
¾§(M). Choose A; B 2 §, Au = 0; Bv = 0, u 2 M£k; v 2 M£l, m =
ui; m0 = vj . We may assume k = l, i = j, hence m + rm0 = (u + rv)i,
by adjusting A; B; u; v. For example, ~A := diag (Is; A; It) 2 § and ~u :=
(0s; u1; : : : ; uk; 0t)

T 2 M s+k+t satisfy ~A~u = 0 with m = ~ui+s.

Then

µ
A ¡Ar

0 B

¶
2 § and

µ
A ¡Ar

0 B

¶ µ
u + rv

v

¶
=

µ
0
0

¶
.

2. M 7! ¾§(M) extends to a unique subfunctor of identity. If m =
ui 2 § for some i and A(u1; : : : ; uk)T = 0 then A(f(u1); : : : ; f(uk))T = 0
whenever f : M ! N is R-module map. As f(m) = f(ui) this proves that
f(¾§(M)) ‰ ¾§(f(M)) as required.

3. ¾§(M) is a preradical: ¾§(M=¾§(M)) = 0. If m 2 ¾§(M), then
9u1; : : : ; uk 2 M , 9A 2 §, 9p • k, such that A~uT = 0mod ¾§(M) and
m = up where ~u := (u1; : : : ; uk). Hence 9v1; : : : ; vk 2 ¾§(M) such that
A~uT = (v1; : : : ; vk)T and there are matrices B1; : : : ; Bk, where Bs is of size
hs£hs, and vectors (w1s; : : : ; whss) of size hs, such that Bs(w1s; : : : ; whs)T =
0 for all s; and we have that vi = wsii for some correspondence i 7! si. Let
~w = (w11; : : : ; wh11; w12; : : : ; wksk

). Let the matrix J = (J i
j) be deflned by

J i
si

= 1 for each i and all other entries are 0. This matrix satisfles J ~wT =
~v by construction. Deflne also the block matrix B := diag fB1; : : : ; Bkg.
Clearly B ~wT = 0 by construction and B 2 § by the multiplicativity of §.
In this notation a summary of the above is encoded in the block identity

µ
A ¡J

0 B

¶
(~u;~v)T = 0;

µ
A ¡J

0 B

¶
2 §; m = up:

4. ¾§(¾§(M)) = ¾§(M). If m = ui for some i and A(u1; : : : ; uk)T = 0
for some A 2 § with all uj 2 ¾§(M), then in particular, all uj 2 M .

Exercise. Let §, §0 be multiplicative sets of matrices over R.
If for every A 2 § there are permutation matrices w; w0 2 GL(k;Z) such

that wAw0 2 §0 then ¾§0(M) ‰ ¾§(M) for all M .

16.17 Warning. ¾§ is not necessarily left exact. Equivalently, the
associated torsion theory is not always hereditary (i.e. a submodule of a ¾§-
torsion module is not necessarily ¾§-torsion). Hereditary torsion theories
correspond to Gabriel localizations.
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16.18 Quasideterminants vs. Cohn localization. Quasidetermi-
nants are given by explicit formulas. It is sometimes more algorithmically
manageable to invert them, than the matrices (if the inverse can not be
expressed in terms of them anyway). The two procedures often disagree,
as some simple (e.g. diagonal) matrices do not possess all the n2 possible
quasideterminants. One may combine the process, by flrst inverting qua-
sideterminants which exist, and then performing the Cohn localization for
the simpler matrix so obtained. The combination is not necessarily a Cohn
localization.

Thus, let § be as before. For each A 2 § and pair (ij) such that jAjij
exists and is nonzero add a variable Bij and require Bij jAjij = jAjijBij = 1.

One obtains a localization j : R ! R
q0
§ . Then one inverts j(§) by the Cohn

method, which amounts to adding formal variables just for those entries
which are not added before as quasideterminants, and adding relations for
them. The result is some localization i

q
§ : R ! R

q
§ which is §-inverting and

clearly a quotient ring of the Cohn localization. If i
q
§ is injective, it is just

the Cohn localization.

There are obvious variants of this method, (cf. the reasoning in 16.14,
and recall that quasideterminants may be deflned inductively by size). Some
rings may be quotiented by ideals to get commutative or Ore domains. A
quasideterminant may be proven to be nonzero, as its image in the quotient
is nonzero, which is a good procedure for some concrete § (cf.[122], Th.7).

We have seen in Ch.8 that for the usual descent of quasicoherent sheaves
one needs °atness, which is often lacking for Cohn localization. In the special
case of Cohn localization at a 2-sided ideal, the °atness of the localization
map i§ as a map of left modules implies the right Ore condition ([132]).
Though in geometrical situations one inverts sets of matrices for which this
theorem does not apply, °atness is not expected for useful non-Ore uni-
versal localizations. Less essential, but practically di–cult, is to flnd the
kernel of the localization map i§ (there is a criterium using the normal form
mentioned below).

We would still like, in the spirit of an example [122], Th.7 (more accu-
rately described in [123]), to be able to consider some global noncommutative
spaces where the local coordinates are compared using non°at Cohn local-
izations. Localizations between full categories of modules (’perfect localiza-
tions’) are described by their underlying rings (the forgetful functor from
the localized category to the category of modules over localized ring is an
equivalence). Similarly, the knowledge of the restriction of the Cohn local-
ization functor to the category of flnitely generated (f.g.) projective modules
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is equivalent to the knowledge of the localization morphism on the level of
rings. Of course, the theory is here not any more complicated if one in-
verts any multiplicative set of morphisms between f.g. projectives than only
matrices. The localization functor for f.g. projectives has an explicit descrip-
tion (Gerasimov-Malcolmson normal form ([50, 86])) (analogous to the
description of Ore localization as S £ R= » where » is from 4.13) and has
an interesting homological interpretation and properties ([97]). Thus while
the torsion theory corresponding to Cohn localization is bad (nonhereditary,
cf. 10.3,15.3,16.17), other aspects are close to perfect localizations (thus
better than arbitrary hereditary torsion theory). This suggests that there
is hope for a geometry of \covers by Cohn localizations" if we flnd a way
beyond the case of °at descent for full categories of modules.
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irreplacable. The literature which is obscure to me in a major way is naturally not
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theories by Golan MR88c:16934 and on localization by Jatageonkar MR88c:16005 and
by Golan MR51:3207. Many equivalent approaches to Gabriel localization have been
multiply discovered (Goldman (1969) [53], Silver (1967) MR36:205, Maranda (1964)
MR29:1236 etc.) in various formalisms, e.g. torsion theories (the term is basically from
Dickson (1965) MR32:2472).

Despite their historical importance, we ignore these, and recommend the system-
atic treatment in Gabriel’s thesis [42] as well as the books [62, 103, 130] and Ch. 6
of [23]. For abelian categories see [21, 39, 42, 44, 45, 62, 103, 125, 58, 145]; for lo-
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bibliography survey noncommutative geometry beyond the localization aspects; rather
consult [26, 30, 55, 74, 75, 89, 113, 117, 125, 127, 136, 139, 141] and bibliographies
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jid MR90k:16008, MR97g:17016, MR2003f:17014; Klimyk-Schmũdgen MR99f:17017;
V¶arilly MR2004g:58006); and, for the physics, also [33]. Abbrev.: LMS = London Math-
ematical Society, MPI = Max Planck Inst. preprint (Bonn). & for Springer series: GTM
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(Graduate Texts in Math.), LNM (Lecture Notes in Math.), Grundl.MW (Grundlehren
Math.Wiss.).
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geometry, Birkhãuser Advanced Texts: Basler Lehb¶ucher, 2001, xviii+685 pp.

[56] A. Grothendieck, ¶El¶ements de g¶eom¶etrie alg¶ebrique. IV. ¶Etude locale de sch¶emas
et de morphismes de sch¶emas, Publ. Math. IHES 32 (1967).

[57] A. Grothendieck et al., Revêtements ¶etales et groupe fondamental, S¶eminaire de
G¶eometrie Alg¶ebrique du Bois Marie 1960{1961 (SGA 1), LNM 224, Springer (1971),
retyped as: arXiv:math.AG/0206203.

[58] A. Grothendieck, Sur quelques points d’algµebre homologique, Tôhoku Math. J.(2)
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