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Introductory Remarks

These notes were written for an introductory real analysis class, Math 4031, at
LSU in the Fall of 2006. In addition to these notes, a set of notes by Professor L.
Richardson were used.

There are several different ideologies that would guide the presentation of
concepts and proofs in any course in real analysis:

(i) the historical way

(ii) the most natural way

(iii) the most efficient way

(iv) a comprehensive way, explaining the insights from several different ap-
proaches

The reality of constraints of time makes (iii) the most convenient approach,
and perhaps the best example of this approach is Rudin’s Principles of Mathemat-
ical Analysis [5]. The downside is that there is little possibility of conveying any
insights or intuition.

In studying the notion of completeness, a choice has to be made whether to
treat the Cauchy sequence point of view or the existence of suprema as funda-
mental. I have chosen the latter; it conforms to the classical geometric notion of
a positive real number being specified by quantities greater than it and those less
than it. This point of view also guides the choice of approach in the treatment of
the Riemann integral; the Riemann integral of a function is the unique real number
lying between the upper Riemann sums and lower Riemann sums.

The notes here do not include a chapter on continuous functions, for which we
followed the Richardson notes.

These notes have not been proof read carefully. I will update them time to
time. Comments from many students have helped improve the notes. Among
those who deserve thanks are John Tate (in-class comments) and Daniel Donovan
(email 2014).



6 Ambar N. Sengupta



Chapter 1

Ordered Fields and The Real
Number System

In this chapter we go over the essential, foundational, facts about the real number
system.

Positive real numbers arose from geometry in Greek mathematics, as ratios of
magnitudes, such as segments or planar regions or even angles. In the discussion
below we focus on segments.

In Euclid’s Elements, a segment EF is taken to exceed a segment GH, symbol-
ically

EF>GH

if EF is congruent to a segment GK, where K is some point between E and F. An
important feature of this order relation is encapsulated in the archimedean axiom:
given any two segments, some multiple of any one of them exceeds the other.

Then aAa pair PQ and RS if for any positive numbers n and m, the segment
nAB (which is n copies of AB laid contiguously) exceeds the segment mCD if
and only if the segment nPQ exceeds the segment mRS. The ratio

AB
CD

is then essentially the equivalence class of all segment pairs which are in the same
ratio as AB is to CD. Euclid also defines the ratio XY/ZW to be greater than the
ratio PQ/RS :

XY
ZW

>
PQ
RS

if they are unequal and if whenever mZW>nXY then also mRS>nPQ.

7
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A special case is that of commensurate segments: if a whole multiple of AB,
say nAB, is congruent to a whole multiple of CD, say mCD, then the ratio AB

CD is
rational, and is denoted by

m
n
.

It is readily checked that
m
n
=

p
q

if and only if
qm = pn.

Such ratios are the rational numbers. Other ratios are irrational. In either case,
Euclid’s considerations suggest that a ratio of segments may be understood in
terms of a set of rational numbers, for example the set of all those rationals which
exceed the given ratio.

The axioms of geometry, and the Euclidean construction procedures, show
that ratios of segments can be added and multiplied and, when 0 and negatives
are included, an algebraic structure called a field emerges (this is discussed at
length by Hilbert [3]). The maximal such field, respecting the axioms of geometry
pertaining to the order relation and congruence, constitutes the real number system
R.

Leaving aside the historical background, the real number system may be con-
structed by starting with the empty set, constructing the natural numbers, then the
rationals, and then the real numbers by Dedekind’s method of identifying a real
number with a splitting of the rationals into two disjoint classes with members of
one class exceeding those of the other.

Dedekind’s method has beed generalized in a striking, and vastly more power-
ful way, by Conway [1], who shows how the Dedekind cut method can be applied
to abstract sets leading to the construction of all real numbers as well as tran-
scendentals and infinitesimals. Knuth’s novel [4] is an unusual and entertaining
presentation of this construction.

1.1 Ordered Fields
In this section we define and prove simple properties of fields, ordered fields, and
absolute values. The reader wishing to move on to properties of the real numbers
may skim the contents of the first few subsections, and proceed to subsection
1.1.4.
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1.1.1 Fields
A field F is a set along with two binary operations

Addition : F×F→ F : (a,b) 7→ a+b (1.1)

and
Multiplication : F×F→ F : (a,b) 7→ ab (1.2)

satisfying the following axioms:

1. The associative law holds for addition

a+(b+ c) = (a+b)+ c for all a,b,c ∈ F (1.3)

2. There is an element 0 ∈ F, the zero or additive identity element, for which

a+0 = a = 0+a for all a ∈ F (1.4)

3. Every element a ∈ F has an additive inverse −a, called the negative of a:

a+(−a) = 0 = (−a)+a (1.5)

4. The commutative law holds for addition:

a+b = b+a for all a,b ∈ F (1.6)

5. The associative law holds for multiplication

6. The associative law holds for addition

a(bc) = (ab)c for all a,b,c ∈ F (1.7)

7. There is an element 1 ∈ F, the unit or multiplicative identity element, for
which

a1 = a = 1a for all a ∈ F (1.8)

8. Every non-zero element a ∈ F has an multiplicative inverse a−1, called the
reciprocal of a:

aa−1 = 1 = a−1a for all non-zero a ∈ F (1.9)
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9. The commutative law holds for multiplication:

ab = ba for all a,b ∈ F (1.10)

10. The distributive law holds:

a(b+ c) = ab+ac, (b+ c)a = ba+ ca for all a,b,c ∈ F (1.11)

11. The element 1 is not equal to the element 0:

1 6= 0

We have not attempted to provide a minimal axiom set, and some of the axioms
may be deduced from others. For instance, the commutativity of addition can be
deduced from the other axioms.

Because of the associative laws, we will just write

a+b+ c

instead of a+(b+ c), and
abc

instead of abc.
Let us note a few simple consequences:

Theorem 1 If x ∈ F is such that

a+ x = a for some a ∈ F

and y ∈ F is such that

by = b for some non-zero b ∈ F

then
x = 0 and y = 1.

In particular, the additive identity and the multiplicative identity are unique. More-
over,

−0 = 0 and 1−1 = 1
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Proof. Adding −a to
a+ x = a

shows that x is 0. Multiplying
by = b

by b−1 shows that y is 1. The other claims follow from

0+0 = 0 and 1 ·1 = 1. QED

Theorem 2 If a,b ∈ F, and b 6= 0, then

−(−a) = a, and (b−1)−1 = b.

Moreover,
(−a)b =−ab, and (−a)(−b) = ab.

The multiplicative inverse a−1 is best written as the reciprocal:

1
b
= b−1,

and the product ab−1 as
a
b
= ab−1

There are many other easy consequences of the axioms which we will use
without comment.

We denote the set of natural numbers by P:

P= {1,2,3, ...}, (1.12)

and the set of integers by

Z= {0,1,−1,2,−2,3,−3, ...}, (1.13)

We can multiply any element a ∈ F by an integer as follows. First define

1a = a,

where now 1 is the number one in Z. Next,

2a def
= a+a,
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and, inductively,
(n+1)a def

= na+a (1.14)

for all a ∈ F and all n ∈ P. Next define negative multiples by

(−n)a =−(na) (1.15)

for all n ∈ P and all a ∈ F. Finally,

0a = a (1.16)

where 0 is the integer 0. The following facts can be readily verified:

x(ya) = (xy)a for all x,y ∈ Z and all a ∈ F (1.17)
x(a+b) = xa+ xb for all x ∈ Z and all a,b ∈ F (1.18)
(x+ y)a = xa+ ya for all x,y ∈ Z and all a ∈ F (1.19)

There is a multiplicative analog of this given by powers of elements. If m is a
positive integer and a ∈ F we define

a1 = a

and
am+1 = ama.

We also define
a0 = 1 for non-zero a ∈ F

and, for any positive integer m and non-zero a ∈ F,

a−m = (a−1)n =
1

am

We will use without comment simple facts such as

(am)n = amn,

valid for suitable a ∈ F and m,n ∈ Z.
The simplest example of a field is the two-element field

Z2 = {0,1},

with addition and multiplication defined modulo 2; for example,

1+1 = 0 in Z2

We will, however, be concerned with fields which permit a consistent ordering of
their elements.
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1.1.2 Order Relations
An order relation on a set S is a set O of ordered pairs (x,y) of elements of S sat-
isfying the conditions O1 and O2 below. It is convenient to adopt the convention
that

x < y means (x,y) ∈ O

We also write
y > x

to mean x < y. The axioms of order are:

O1. For any x,y ∈ F exactly one of the following hold:

x = y, or x < y, or y < x.

O2. If x < y and y < z then x < z.

It is also convenient to use the notation:

x≤ y means x = y or x < y

and, similarly,
x≥ y means x = y or x > y

If T is a subset of an ordered set S then an element u ∈ S is said to be an upper
bound of T if

t ≤ u for all t ∈ T (1.20)

If there is a least such upper bound then that element is called the supremum of T :

supT = the least upper bound of T (1.21)

We define similarly lower bounds and infimums:

if l ≤ t for every t ∈ T then l is called a lower bound of T (1.22)

and
infT = the greatest lower bound of T (1.23)

Of course, the sup or the inf might not exist.
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1.1.3 Ordered Fields
An ordered field is a field F with an order relation in which, in addition to the field
and order axioms stated above, the following hold:

OF1. If x,y,z ∈ F and x < y then x+ z < y+ z:

x < y implies x+ z < y+ z for all x,y,z ∈ F (1.24)

OF2. If x,y,z ∈ F and x < y, and if also z > 0, then xz < yz:

x < y and z > 0 imply xz < yz for all x,y,z ∈ F. (1.25)

If x > 0 we say that x is positive. If x < 0 we say that x is negative.
We have the following simple observations for an ordered field:

Theorem 3 Let F be an ordered field. Then

(i) x > 0 if and only if −x < 0

(ii) For any non-zero x ∈ F we have x2 > 0

(iii) 1 > 0

(iv) For any r ∈ Z the element r1 ∈ F is > 0 if r is a positive integer and is < 0
if r is a negative integer

(v) x > y holds if and only if x− y > 0

(vi) If x ∈ F and x > 0 then 1/x > 0

(vii) The product of two positive elements is positive

(viii) The product of a positive and negative is negative

(ix) The product of two negative elements is positive

(x) If x > y and z < 0 then xz < yz.

(xi) If x > y then −x <−y

(xii) If x > y > 0 then 1/x < 1/y
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Proof. We prove some of the results.
(i) Suppose x > 0. Then we have

x+(−x)> 0+(−x),

and so
0 >−x.

Conversely, if −x < 0 then adding x to both sides shows that x > 0.
(ii) If x > 0 then, by OF2, we have

x2 = xx > x0 = 0.

On the other hand, if x < 0 then we know that −x > 0 and so

x2 = (−x)(−x)> (−x)0 = 0.

(iii) Since 1 is 12, it follows that 1 > 0.
(vi) Suppose x > 0. Since x(1/x) = 1, and 1 6= 0, it follows that 1/x cannot be

zero. If 1/x < 0 then, however, x(1/x) would have to be < 0, but we know that
1 > 0. Thus, 1/x > 0.

(xi) If x > y then, adding −x− y shows that −y <−x.
(xii) If x > y > 0 then xy > 0 and hence 1/(xy)> 0. Multiplying x > y by the

positive element 1/(xy) gives 1/y > 1/x. QED
Observe that if x > 0 then

2x = x+ x > x+0 = x,

and
3x = 2x+ x > 2x+0 = 2x,

and, proceeding inductively, we have

0 < x < 2x < 3x < · · ·< nx < (n+1)x < · · · for all n ∈ P and x > 0 in F
(1.26)

In particular, inside the ordered field F we have a copy of the natural numbers
1,2,3, ... on identifying n ∈ P with n1F, where 1F is the unit element in F. This
then leads to a copy of the integers inside F, and we can assume that

Z⊂ F (1.27)
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Going further, if m,n ∈ Z, and n 6= 0, we have then the ratio

m
n
∈ F.

The set of all such ratios m/n is the set of rationals

Q⊂ F (1.28)

and is an ordered subfield of the ordered field F.

1.1.4 The absolute value function
The absolute value | · | function in an ordered field F is defined by

|x|=

{
x if x≥ 0
−x if x≤ 0

(1.29)

For instance,
|1|= 1, and |−1|= 1.

The definition of |x| shows directly that

|− x|= |x| ≥ 0 for all x ∈ F (1.30)

It is also useful to observe that

|x| is the larger of x and −x (1.31)

We think of
|a−b|

as measuring the difference between a and b.
We have then

Theorem 4 For any a,b ∈ F we have:

(i) the triangle inequality
|a+b| ≤ |a|+ |b| (1.32)

Equality holds if and only if a and b are both ≥ 0 or both ≤ 0.
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(ii) the absolute values differ by at most the difference in a and b:∣∣∣|a|− |b|∣∣∣≤ |a−b| (1.33)

(iii) |ab|= |a||b|.

Proof. Recall that |x| is the larger of x and−x. Therefore, |a|+ |b| is greater or
equal to ±a+(±b); in particular, it is greater or equal to a+b and (−a)+(−b).
Consequently, |a|+ |b| is greater or equal to a+b and −(a+b), and so

|a|+ |b| ≥ |a+b|.

Equality holds if and only if |a|= a and |b|= b or |a|=−a and |b|=−b. Thus,
equality holds if and only if a and b are either both ≥ 0 or both ≤ 0.

Next, using the triangle inequality we have

|a−b|+ |b| ≥ |a+b −b|= |a|,

and so
|a−b| ≥ |a|− |b|.

Interchanging a and b yields:

|b−a| ≥ |b|− |a|.

Observe that
|b−a|= |a−b|.

Thus,
|a−b| is ≥ to both |a|− |b| and −(|a|− |b|).

Since the larger of the latter is
∣∣∣|a|− |b|∣∣∣, we have proved (1.33).

We know that |x| is x or−x, whichever is≥ 0. Consequently, the product |a||b|
is one of the elements

ab,(−a)b,a(−b),(−a)(−b),

i.e. one of the elements ab and −ab. Thus, |a||b| is ab or −ab, whichever is ≥ 0,
and so it is |ab|. QED
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1.1.5 The Archimedean Property
An ordered field F is said to have the archimedean property if for any x,y ∈ F,
with x > 0, there exists a multiple of x which exceeds y:

nx > y for some n ∈ {1,2,3, ...} (1.34)

The field Q of rationals is clearly archimedean:

Theorem 5 The ordered field Q of rationals is acrhimedean.

Proof. Let x,y ∈ Q, with x > 0. If y ≥ 0 then we have 1x > y and we are done.
Now suppose x,y > 0. Then

x =
p
q

y =
r
s
,

where p,q,r,s ∈ P. Take
n = qr+1.

Then
nx = qr(p/q)+ p/q > pr ≥ r

s
= y,

and we are done. QED
In an archimedean ordered field there are no infinities, and there are also no

infinitesimals:

Theorem 6 If F is an archimedean field then for any w > 0 in F there is an n ∈ P
such that

1
n

w < x.

Proof. Simply choose n for which nx is > w. QED

1.2 The Real Number System R
We shall work with the real number system in an axiomatic way. We will assume
that it is an ordered field in which the completeness axiom of completeness holds.

Needless to say, it is essential to actually construct such a system so as to be
sure that there is no hidden contradiction between the axioms, but we shall not
describe a construction in these notes.
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1.2.1 Hilbert Maximality and the Completeness Property
As we have mentioned before, the structure of Euclidean geometry, as formalized
through the axioms of Hilbert, produces an archimedean ordered field. To com-
plete the story, one can add to these axioms the further requirement that this field
is maximal in the sense that it cannot be embedded inside any larger archimedean
ordered field. It turns out then that any such ordered field is isomorphic to any
other, and thus there is essentially one such ordered field. This ordered field is the
real number system R.

A crucial fact about R is the completeness property:

If L and U are non-empty subsets of R such that every element of L
is ≤ every element of U, then there is a real number m which lies
between L and U :

l ≤ m≤ u for all l ∈ L and all u ∈U . (1.35)

This property is also often expressed as:

If R is partitioned into two disjoint subsets L and U whose union is
R, and if every element of L is ≤ every element of U then there is a
unique element x ∈ R which lies between L and U :

l ≤ x≤ u for all l ∈ L and all u ∈U . (1.36)

It is useful to view the real numbers geometrically. Consider a line, with two
special points O and I marked on it. For any point P on the line on the same side of
O as P we think of the ratio OP/OI as a positive real number. Points on the other
side from I correspond to negative real numbers, and the point O itself should be
thought of as 0. The completebess property says that there are no ‘gaps’ in the
line.

The completeness property can be formulated equivalently as:

Every non-empty subset of R which has an upper bound has a least upper bound.
(1.37)

The completeness property implies the archimedean peoperty:

Theorem 7 If in an ordered field the property (1.37) holds then the archimedean
property also holds.
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A proof of this is outlined in an exercise below.
The modern understanding and point of view on completeness grew out of the

work of Richard Dedekind [2].

1.2.2 Completeness of R and measurement
Even in Euclid’s geometry, a real number was, implicitly, understood in terms of
all rationals which exceeded it and all rationals below it. However, the traditional
axioms of Euclidean geometry, with requirements on intersections of lines and
circles, can work with a field which is larger than the rationals but smaller than R,
and completeness is not essential.

The simplest measurement problem is to devise a measure of sets of points
in the plane which are made up of a finite collection of segments constructed by
Euclidean geometry. Two such sets should have the same measure if they can be
decomposed into a finite collection of congruent segments. For this we would
not need the full complete system R of real numbers. Moving up a dimension,
with the task of measuring areas of polygonal regions constructed by Euclidean
geometry, one could still get away with a less-than-complete system of numbers.
However, it was shown by Max Dehn in 1900, in resolving Hilbert’s Third Prob-
lem, that there are polyedra in three dimensions which have equal volumes (as
defined by requirements of ‘upper’ and ‘lower’ approximations) which cannot be
decomposed into congruent pieces. This, along with, of course, the utility of
measuring areas of curved regions even in two dimensions, makes it absolutely
essential to work with a notion of measure that goes beyond simply decomposing
into geometrically congruent figures. For a truly useful theory of measure, the
completeness of the number system is essential.

Capturing a real number between upper approximations and lower approxima-
tions proves to be very useful. Archimedes and others computed areas of curved
regions by such upper and lower approximations. In modern calculus, this method
lives on in the Riemann integral, as we shall see later.

Problem Set 1
1. Prove that in any ordered field, between any two distinct elements there is

at least one other element.

2. Prove that in any ordered field, between any two distinct element lie in-
finitely many elements.
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3. If F is an archimedean ordered field, such as R, show that between any two
distinct elements there is a rational element.

4. Let F be an archimedean ordered field, and let x,y ∈ F with x < y. If z ∈ F
show that there is a rational multiple qz of z for which x < qz < y.

5. Suppose x ∈R is≥ all elements of a non-empty subset S⊂R. Explain why
this implies x≥ supS.

6. Suppose S is a non-empty subset of R and x ∈ R is not an upper bound of
S. Show that there exists y > x which is also not an upper bound of S.

7. Prove that the completeness property (1.37) implies the property (1.36).
[Hint: Suppose (1.37) holds. If S ⊂ R is a non-empty set which is bounded
above, then we can take U to be the set of all upper bounds of S and L to be
the complement, i.e. all real numbers which are < some element of S. Let
x ∈ F be provided by (1.36). Show that x is the least upper bound of S.]

8. Prove that (1.36) implies the completeness property (1.37).

9. Prove that the completeness property implies the archimdean propery. [Hint:
Suppose F is an ordered field in which (1.37) holds. Let x,y ∈ F, with
x > 0. Suppose that no positive integral multiple of x exceeds y, and let
S = {nx : n ∈ P}. Then y is, by assumption, an upper bound for S. Let
u = supS, the least upper bound of S. Consider the element u− 1

2x. This,
being < u, is not an upper bound. Use this to produce an element of S
greater than u, thus reaching a contradiction.]

10. Suppose L and U are non-empty subsets of R such that (i) every element
of L is ≤ every element of R, and (ii) for any ε > 0 there is an element
l ∈ L and an element u ∈U with u− l < ε. Prove that there is a unique real
number which is ≤ all elements of U and ≥ all elements of L.
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Chapter 2

The Extended Real Line and Its
Topology

In this chapter we study topological concepts in the context of the real line. For
technical purposes, it will be convenient to extend the real line R by adjoining
to it a largest element ∞ and a smallest element −∞. No metaphysical meaning
need be attached to these infinities. The primary reason for introducing them is to
simplify the statements of several theorems.

2.1 The extended real line
The extended real line is obtained by a largest element ∞, and a smallest element
−∞, to the real line R:

R∗ = R∪{−∞,∞} (2.1)

Here ∞ and −∞ are abstract elements. We extend the order relation to R by
declaring that

−∞ < x < ∞ for all x ∈ R (2.2)

Much of our work will be on R∗, instead of just R.
We define addition on R∗ as follows:

x+∞ = ∞ = ∞+ x for all x ∈ R∗ with x >−∞ (2.3)
y+(−∞) = −∞ = (−∞)+ y for all y ∈ R∗ with y < ∞. (2.4)

Note that
∞+(−∞) is not defined,

23
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i.e. there is no useful or consistent definition for it.
The following algebraic facts continue to hold in R∗:

x+ y = y+ x, x+(y+ z) = (x+ y)+ z, (2.5)

whenever either side of these equations holds (i.e. if one side is defined then so is
the other and the equality

2.2 Neighborhoods
A neighborhood of a point p ∈ R is an interval of the form

(p−δ, p+δ)

where δ > 0 is any positive real number. Thus, the neighborhood consists of all
points distance less than δ from p:

(p−δ, p+δ) = {x ∈ R : |x− p|< δ}. (2.6)

For example,
(1.2,2.8)

is a neighborhood of 2.
A typical neighborhood of 0 is of the form

(−ε,ε)

for any positive real number ε.
A neighborhood of ∞ in R∗ = R∪{−∞,∞} is a ray of the form

(t,∞] = {x ∈ R∗ : x > t}

with t any real number. For example,

(5,∞]

is a neigborhood of ∞.
A neighborhood of −∞ in R∗ is a ray of the form

[−∞,s) = {x ∈ R∗ : x < s}
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where s ∈ R. An example is
[−∞,4)

Observe that if U and V are neighborhoods of p then U ∩V is also a neighbor-
hood of p. In fact, either U contains V as a subset of vice versa, and so U ∩V is
just the smaller of the two neighborhoods.

Observe also that if N is a neighborhood of a point p, and if q ∈ N then q had
a neighborhood lying entirely inside N. For example, the neighborhood (2,4) of 3
contains 2.5, and we can form the neighborhood (2,3) of 2.5 lying entirely inside
(2,4).

Here is a simple but fundamental observation:

Distinct points of R∗ have disjoint neighborhoods. (2.7)

This is called the Hausdorff property of R∗.
For example, 3 and 5 have the neighborhoods

(2,4) and (4.5,5.5)

The points 2 and ∞ have disjoint neighborhoods, such as

(−1,5) and (12,∞]

Exerise Give examples of disjoint neighborhoods of

(i) 2 and −4

(ii) −∞ and 5

(iii) ∞ and −∞

(iv) 1 and −1

2.3 Types of points for a set
Consider a set

S⊂ R∗.

A point p ∈R∗ is said to be an interior point of S if it has a neighborhood U lying
entirely inside S, i.e. with

U ⊂ S.
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For example, for the set

E = (−4,5]∪{6,8}∪ [9,∞],

the points −2,3,11 are interior points. The point ∞ is also an interior point of E.
A point p is an exterior point if it has a neighborhood U lying entirely outside

S, i.e.
U ⊂ Sc.

For example, for the set E above, points −5, 7, and −∞ are exterior to E.
A point which is neither interior to S nor exterior to S is a boundary point of

S. Thus p is a boundary point of S if every neighborhood of p intersects both S
and Sc.

In the example above, the boundary points of E are

−4, 5, 6, 8, 9, ∞.

Next consider the set
{3}∪ (5,∞)

The boundary points are 3,5, and ∞. It is important to observe that if we work
with the real line R instead of the extended line R∗ then we must exclude ∞ as a
boundary point, because it doesn’t exist as far as R is concerned.

Example For the set A = [−∞,4)∪{5,9}∪ [6,7), decide which of the following are
true and which false:

(i) −6 is an interior point (T)

(ii) 6 is an interior point (F)

(iii) 9 is a boundary point (T)

(iv) 5 is an interior point (F)

Exerise For the set B = [−∞,−5)∪{2,5,8}∪ [4,7), decide which of the following
are true and which false:

(i) −6 is an interior point

(ii) −5 is an interior point

(iii) 5 is a boundary point

(iv) 4 is an interior point

(v) 7 is a boundary point.



Notes in Introductory Real Analysis 27

2.4 Interior, Exterior, and Boundary of a Set
The set of all interior points of a set S is denoted

S0

and is called the interior of S.
The set of all boundary points of S is denoted

∂S

and is called the boundary of S.
The set of all points exterior to S is the exterior of S, and we shall denote it

Sext.

Thus, the whole extended line R∗ is split up into three disjoint pieces:

R∗ = S0∪∂S∪Sext (2.8)

Recall that a point p is on the boundary of S if every neighborhood of the
point intersects both S and Sc. But this is exactly the condition for p to be on the
boundary of Sc. Thus

∂S = ∂Sc. (2.9)

The interior of the entire extended line R∗ is all of R∗. So

∂R∗ = /0.

Example For the set A = [−∞,4)∪{5,9}∪ [6,7),

(i) A0 = [−∞,4)∪ (6,7)
(ii) ∂A = {4,5,9,7,6}

(iii) Ac = [4,5)∪ (5,6)∪ [7,9)∪ (9,∞]

(iv) the interior of the complement Ac is

(Ac)0 = (4,5)∪ (5,6)∪ (7,9)∪ (9,∞]
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For the set
G = (3,∞)

the boundary of G, when viewed as a subset of R∗, is

∂G = {3,∞}.

But if we decide to work only inside R then the boundary of G is just {3}.

Exerise For the set B = {−4,8}∪ [1,7)∪ [9,∞),

(i) B0 =

(ii) ∂B =

(iii) Bc =

(iv) the interior of the complement Bc is

(Bc)0 =

2.5 Open Sets and Topology
We say that a set is open if it does not contain any of its boundary points. For
example,

(2,3)∪ (5,9)

is open.
Also

(4,∞]

is open.
But

(3,4]

is not open, because the point 4 is a boundary point.
The entire extended line R∗ is open, because it has no boundary points.
Moreove, the empty set /0 is open, because, again, it doesn’t have any boundary

points.
Notice then that every point of an open set is an interior point. Thus, a set S is

open means that
S0 = S.
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Thus for an open set S each point has a neighborhood contained entirely inside
S. In other words, S is made up of a union of neighborhoods.

Viewed in this way, it becomes clear that the union of open sets is an open set.
Now consider two open sets A and B. We will show that A∩B is open. Take

any point
p ∈ A∩B.

Then p is in both A and B. Since p∈A and since A is open, there is a neighborhood
U of p which is a subset of A:

U ⊂ A.

Similarly there is a neighborhood V of p which is a subset of B:

V ⊂ B

But then U ∩V is a neighborhood of p which is a subset of both A and B:

U ∩V ⊂ A∩B.

Thus every point in A∩B has a neighborhood lying inside A∩B. Consequently,
A∩B is open.

Now consider three open sets A,B,C. The intersection

A∩B∩C

can be viewed as
(A∩B)∩C

But here both A∩B and C are open, and hence so is their intersection. Thus,

A∩B∩C

is open. This type of argument works for any finite number of open sets. Thus:
The intersection of a finite number of open sets is open.

Exerise Check that the intersection of the sets (4,∞) and (−35) and (2,6) is open.

The collection of all open subsets of R is called the topology of R.
The set of all open subsets of R∗ is called the topology of R∗.
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2.6 Closed Sets
A set S is said to be closed if it contains all its boundary points.

In other words, S is closed if
∂S⊂ S

Thus,
[4,8]∪ [9,∞]

is closed.
But

[4,5)

is not closed because the boundary point 5 is not in this set.
The set

[3,∞)

is not closed (as a subset of R∗) because the boundary point ∞ is not inside the
set. But, viewed as a subset of R it is closed. So we need to be careful in deciding
what is close and what isn’t: a set may be closed viewed as a subset of R but not
as a subset of R∗.

The full extended line R∗ is closed.
The empty set /0 is also closed.
Note that the sets R∗ and /0 are both open and closed.

2.7 Open Sets and Closed Sets
Consider a set S⊂ R∗.

If S is open then its boundary points are all outside S:

∂S⊂ Sc.

But recall that the boundary of S is the same as the boundary of the complement
Sc. Thus, for S to be open we must have

∂(Sc)⊂ Sc,

which means that Sc contains all its boundary points. But this means that Sc is
closed.

Thus, if a set is open then its complement is closed.
The converse is also true: if a set is closed then its complement is open. Thus,
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Theorem 8 A subset of R∗ is open if and only if its complement is closed.

Exercise. Consider the open set (1,5). Check that its complement if closed.
Exercise. Consider the closed set [4,∞]. Show that its complement is open.

2.8 Closed sets in R and in R∗

The set
[3,∞)

is closed in R, but is not closed in R∗. This is because in R it has only the boundary
point 3, which it contains; in contrast, in R∗ the point ∞ is also a boundary point
and is not in the set. Thus, when working with closed sets it is important to bear
in mind the distinction between being closed in R and being closed in R∗. There
is no such distinction for open sets.

2.9 Closure of a set
The closure of a set S is obtained by throwing in all its boundary points:

S = S∪∂S (2.10)

Of course, if S is closed then its closure is itself.
For example, the closure of (3,5) is [3,5]. The closure of

(3,∞)

is [3,∞]. (But, in R the closure of (3,∞) is [3,∞).)
Let us see what the closure of Q is. Now every point in R∗ is a boundary point

of Q:
∂Q = R∗,

because any neighborhood of any point contains both rationals (points in Q) and
irrationals (points outside Q).

It is useful to think of the closure

S = S∪∂S

in this way:
A point p is in S if and only if every neighborhood of p intersects S.
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2.10 The closure of a set is closed
Consider the closure S of a set S. We will show that S is a closed set.

Take any boundary point p ∈ ∂S. We have to show that p is actually in S. Now
let N be any neighborhood of p. Then N contains a point q in S. Choose (as we
may) a neighborhood W of q lying entirely inside N. Since q ∈ S it follows that W
contains a point of S. Thus, N contains a point of S. So we have seen that every
neighborhood of p contains a point of S. This means p ∈ S. Thus, we have shown
that every boundary point of S is in S, and so S is closed.

2.11 S is the smallest closed set containing S

Consider any closed set K with
S⊂ K

Take any p ∈ S. Then every neighborhood of p intersects S, and hence also K.
Thus every neighborhood of p intersects K. So, either p is in the interior of K or
on its boundary. But K is closed, and so in either case p is in K. Thus,

S⊂ K

What we hae shown then is that S is the smallest closed set containing S as a
subset.

2.12 R∗ is compact
There is a special property of R∗ whose full significance is best appreciated at a
later stage. However, we have the language and tools to state and prove it now
and shall do so.

An open cover of R∗ is a collection U of open sets whose union covers all of
R∗. For example,

{[−∞,5),(−1,8),(7,9)∪ (11,15),(8,∞]}

is an open cover of R∗. It is best to draw a picture for yourself to make this clear.
More formaly, an open cover of R∗ is a set U of open subsets of R∗ such that

every point x ∈ R∗ falls inside some open set U in the collection U, i.e. for each
x ∈ R∗ there exists U ∈U such that

x ∈U ∈U.
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Another example of an open cover of R∗ is

{[−∞,50),(2,100),(8,200)∪ (701,800),(150,750),(760,∞]}.

The examples of open covers of R∗ given above are both finite collections of
sets. Let us look at an example of a cover which uses infinitely many sets.

We start with an open cover of R, as opposed to R∗: take all intervals of the
form (a,a+2), where a runs over all integers:

...,(−8,−6),(−7,−5), ...(−2,0),(−1,1),(0,2),(1,3), ...

In short we are looking at the collection

U′ = {(a,a+2) : a ∈ Z},

where, recall that Z is the set of all integers. This collection fails to include −∞

and ∞.
To obtain an open cover of R∗ from U′ we could, for example, just throw in

the open sets [−∞,−4) and (5,∞]. Thus, this gives us an open cover of R∗:

U = {[−∞,−4),(5∞]}∪{(a,a+2) : a ∈ Z}.

If you look at this, however, you realize that even though this collection does
contain infinitely many open sets, we don’t reall need all of them to cover R∗.
Indeed, we could just use the sub-collection

V = {[−∞,−4),(−3,−1),(−2,0),(−1,1),(0,2),(1,3),(2,4),(3,5),(4,6),(5,∞]}

and this would cover all of R∗.
This is not just a feature of one particular example. It turns out that
Every open cover of R∗ has a finite subcover.
This property is called compactness, and so

Theorem 9 R∗ is compact.

We can prove the compactness of R∗ using the completeness of the real line.
Proof of compactness of R∗. Let U be an open cover of R∗. This is a collection

of open sets such that every point of R∗ falls inside some set in the collection. In
particular, −∞ is in some open set W ∈U. Thus W contains a neighborhood of
−∞, i.e.

[−∞, t)⊂W
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for some t ∈ R. So, for one thing, all the elements of R∗ less than t are covered
by just the one set W in U; we would not need any other set from the cover if we
are to stick to points to the left of t. Now let

S = {x ∈ R∗ : finitelymanysets inU cover [−∞,x]}

This set is not empty because−∞ ∈ S. In fact, t−1 is also in S. By completeness,
the set S has a supremum supS. Let

m = supS.

We will argue in three steps:

(i) First we explain that m isn’t −∞.

(ii) Next we prove that m is in fact, ∞.

(iii) Finally we prove that [∞,m], i.e. all of R∗, can be covered by just finitely
many sets in U.

For (i), note, as before, that there is a real number t such that t−1 is in S, and
so m (being an upper bound of S) has to be ≥ t− 1. In particular, m is certainly
not −∞.

Now we show that m = ∞. Suppose to the contrary that m < ∞. Now there is
some open set U ∈U such that m ∈U , because U covers all points of R∗. Since
m is not −∞, and is being assumed to be also not ∞, it is in R and so there is some
neighborhood

(m− ε,m+ ε)⊂U,

where ε is a positive real number. Now m−ε being less than the least upper bound
m of S, there has to be some x ∈ S which is greater than m− ε. Thus

m− ε < x≤ m for some x ∈ S.

So, x being in S, there are finitely many sets, say U1, ...,UN , in U, which cover the
ray segment [−∞,x]. The set U covers (m− ε,m+ ε). Thus, the collection

{U1, ...,UN ,U}

covers all of
[−∞,m+ ε).
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But this means that, for example, m+ 1
2ε is in S, for the ray segment [−∞,m+1/2]

is covered by the finite collection U1, ...,UN ,U . But now we have a contradiction,
because we have found a number, m+ ε/2, greater than m, which is in S. Thus,
our original hypothesis concerning m must have been wrong. So m = ∞.

Finally we prove that R∗ is covered by finitely many sets in U. The element
∞ ∈ R∗ falls inside some open set V in the collection U. Therefore, there is some
‘ray-neighborhood’ of ∞

(r,∞]⊂V,

for some real number r. Now r being less than m = ∞, and the latter being the
least upper bound of S, there must be some y ∈ (r,∞] which is in S. Thus,

[−∞,y]

is covered by finitely many open sets, say V1, ...,Vk, in U. Note that

[−∞,y]∪ (r,∞] = R∗.

But then
V1, ...,Vk,V

cover all of [−∞,∞], since V covers the segment (r,∞]. This prove that finitely
many sets from U cover all of R∗.

2.13 Compactness of closed subsets of R∗.
Consider now any closed subset D of R∗. We will prove that it is compact, i.e.
that any open cover of D has a finite sub-cover.

Consider any open cover U of D. This is a collection of open sets such that
every point of D is covered by some set in the collection. Now the set Dc, being
the complement of a closed set, is an open set. Throw this into the collection, and
consider

U′ = U∪{Dc}.

This covers all of R∗: any point of D would be covered by a set in U while any
point in Dc is, of course, covered by Dc. Then we know that there has to be a finite
sub-collection

V ′ ⊂U′
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which covers R∗. Now throw out Dc from V ′ in case it is there, and consider the
collection

V = V ′ \{Dc}.

Of course, this is a finite subcollection of U. Moreover, it covers all points of D,
because no point in D could have been covered by the ‘rejected’ set Dc. Thus, D
is covered by a finite sub-collection of sets from U.

Thus, every closed subset of R∗ is compact. The converse is also true, and we
can state:

Theorem 10 A subset of R∗ is compact if and only if it is closed.

We will leave out the proof of the converse part of this result.

2.14 The Heine-Borel Theorem: Compact subsets
of R

A subset B of R is said to be bounded if

B⊂ [−N,N]

for some real number N. Thus, for B to be bounded, there should exist a real
number N such that

|x|< N for all x ∈ B.

Recall that a subset of R is closed in R if it contains no boundary point. Equiv-
alently, if a subset of R is closed if its complement in R is open.

Consider, for instance, the set

[4,∞)⊂ R.

This is a closed subset of R because, in R, its only boundary point is 4, and this
point lies in the set. Note that [4,∞) is not closed when considered as a subset of
R∗.

We can now state the Heine-Borel theorem:

Theorem 11 Every closed and bounded subset of R is compact. Conversely, ev-
ery compact subset of R is closed and bounded.
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We shall prove half of this. Suppose K ⊂ R is closed and bounded as a subset
of R. Boundedness implies that

K ⊂ [−N,N]

for some real number N. Then K is closed also as a subset of R∗. Let’s check
this. We will show that the complement U of K in R∗ is open. Consider any
point p ∈ U . If p ∈ R then we already know, by closedness of K, that p has a
neighborhood lying inside U . If p = ∞ then the neighborhood of p given by

(N +1,∞]

lies entirely outside K. If p =−∞ then the neighborhood

[−∞,−N−1)

is entirely outside K. Thus, in all cases, p has a neighborhood outside K in R∗. So
the complement of K in R∗ is open, and hence K is closed in R∗. We know that
then K must be compact.

2.15 Sequences
A sequence of elements in a set A is a string

a1,a2,a3, ...

of elements of A.
More precisely, the sequence is actually a mapping

a : P→ A : n 7→ an.

We will often be concerned with sequences in R∗.
Sometimes out sequence will be specified explicitly as a string of numbers;

for example,
−5,−3,5,6,9,12, ...

Sometimes we may have a formula for the n-th term:

an =
(−1)n

n+1
.
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Sometimes we have a sequence specified recursively. For example, we might
know that

b1 = 1,b2 = 1

and then
bn = bn−1 +bn−2,

for all n≥ 3. This generates the Fibonacci numbers

1,1,2,3,5,8,13,21, ...

Sometimes it is better to label a sequence starting with the index 0:

a0,a1,a2, ...

For example, for a fixed real number r we can form the sequence

r0 = 1, r1 = r, r2, r3, ...

2.16 Limits points of a sequence
Consider a sequence

x1,x2,x3, ....

in R∗. A point p ∈ R∗ is said to be a limit point of this sequence if every neigh-
borhood of p is visited infinitely often by the sequence.

For example, for the sequence

1
2
, 4,

1
3
, 4+

1
3
,

1
4
, 4+

1
4
,

1
5
, 4+

1
5
,

1
6
, 4+

1
6
, ...

it is intuitively clear that both 0 and 4 are limit points.
Suppose a sequence (xn) lies entirely inside a set S⊂ R:

xn ∈ S, for all n ∈ P

Consider then any limit point p of this sequence. Let U be any neighborhood of
p. We know that this neighborhood is visited infinitely often by the sequence.
Therefore, at least one point of S must be in U . Thus, every neigborhood of p
contains a point of S, and so

p ∈ S.

Thus, any limit point of a sequence which lies always in a set S must be in the
closure of S.
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2.17 Bolzano-Weierstrass Theorem
Consider any sequence in R∗. We shall prove that it must have at least one limit
point.

Suppose to the contrary that no point is a limit of the given sequence. Then
each point p of R∗ has a neighborhood Up which is visited only finitely often by
the sequence. The neighborhoods Up form an open cover of all of R∗. Then, by
compactness of R∗, there are finitely many of them, say

Up1 , ...,UpN

which cover all of R∗. But this is impossible: we have covered all of the extended
real line R∗ with finitely many sets each of which is visited only finitely many
times by the sequence! Thus, we have a contradiction and so there exist a limit of
the sequence.

Notice that all we needed above was the compactness of R∗. Thus, we have
the more general Bolzano-Weierstrass theorem:

Theorem 12 Every sequence in a compact set has at least one limit point.

Of course, we have seen that a sequence may well have more than one limit
point. For example, the sequence,

1,1,2,1,2,3,1,2,3,1,2,3,4,1,2,3,4,5, ...

visits every natural number infinitely often and so every natural number is a limit
point of the sequence.

In the next subsection we will show how to actually obtain a limit point of a
sequence.

2.18 Limit points and suprema and infima
Consider a sequence

x1,x2,x3, ...

Let p be any limit point of this sequence.
Now let S1 be the least upper bound of the set {x1,x2, ...}:

S1 = sup{x1,x2, ...}
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In particular,
S1 ≥ xn for each n.

Then it is clear that no point ‘to the right’ of S1 could possibly be a limit of the
sequence: indeed any point r > S1 would have a neighborhood lying entirely to
the ‘right’ of S1 and this would never be visited by the sequence. Thus, p cannot
be > S1. So

p≤ S1

Now we can apply the same argument to

S2 = sup{x2,x3,x4, ...}

Again, p could not be greater than S2 for then it would have a neighborhood to the
right of S2 and this would have to be visited infinitely often by x1,x2, ... and so at
least once by x2,x3, .... Thus,

p≤ S2

In this way, we can form
S3 = sup{x3,x4, ...}

and have again
p≤ S3

. Thus, p is a lower bound for all the Sk’s:

p≤ Sk for all k.

Now the inf of a set is the greatest lower bound of the set. Therefore,

p≤ inf{S1,S2,S3, ...}.

The infemum on the right is an important object and is called the limsup of the
given sequence:

limsupn→∞ xn
def
= inf{supn≥k xn} : k ∈ P} (2.11)

So we have proved that

Every limit point is ≤ the limsup
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for any sequence.
Similarly, we have the notion of liminf: it is the supermum of the sequence of

infemums:

liminfn→∞ xn
def
= sup{infn≥k xn} : k ∈ P} (2.12)

In just the same way as before, we can prove

Every limit point is ≥ the limsup

Thus, for any limit point p if any sequence (xn) we have

liminfn→∞ xn ≤ anylimitpoint≤ limsupn→∞ xn. (2.13)

In fact, the limsup and liminf of the sequence are also limit points, but we won’t
prove this here.

2.19 Limit of a sequence
A sequence (sn) is said to lie in a set S eventually if after a certain value of n, all
the sn lie in S. Put another way, we say that sn lies in S for large n, if sn ∈ S for all
values of n beyond some value, say n0.

For example, the sequence

−5,−4,−3,−2,−1,0,1,2,3, ...

will lie in the set (20,∞) eventually.
Let us note again: a sequence (sn) lies in a set S eventually if there is an n0 ∈ P

such that
sn ∈ S

for all n ∈ P with n≥ n0.
A sequence (xn) in R∗ is said to have limit L ∈ R∗ if for any neighborhood U

of L the sequence lies in this neighborhood eventually.
We denote this symbolically as

xn→ L, as n→ ∞.
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We shall see later that if a limit exists then it is unique; the limit L is denoted

lim
n→∞

xn.

The notion of limit is one of the central notions in mathematics.
For example, the sequence

1,2,3,4, ....

has limit ∞. For, if we take any neighborhood of ∞, say

(t,∞]

then eventually n will exceed t (by the archimidean property) and so the sequence
will stay in (t,∞] from the n-th term onwards.

The sequence

1,
1
2
,
1
3
,
1
4
, ...

has limit 0. We will look at this more carefully soon.

2.20 Simple Examples of limits
Let us look at some examples of sequences and try to see what their limits are.

The simplest sequence is a constant sequence which keeps repeating the same
value. For example,

3,3,3,3, ....

The limit of the this sequence is 3: clearly every neighborhood of 3 is hit even-
tually by the sequence (indeed it is hit every time, since the sequence is stuck at
3).

The sequence
−1,4,5,7,8,8,8,8,8, ....

which eventually stabilizes at the constant value 8 has limit 8. For, again, given
any neighborhood of 8 the sequence falls inside this neighborhood eventually and
stays there.

In contrast, the sequence

1, 3, 4, 1, 3, 4, 1, 3, 4, 1, 3, 4, ...



Notes in Introductory Real Analysis 43

does not have a limit. For example, the point 3 cannot be the limit of the sequence
because, for instance,

(2.5,3.5)

is a neighborhood of 3, but the sequence keeps falling outside this neighborhood
(when it hits 1 or 4).

The sequence
1, 3, 5, 7, ...

has limit ∞. If you take any neighborhood of ∞, an interval of the form

(t,∞]

then eventually the sequence falls inside the nighborhood and stays in there.

2.21 The sequence 1/n

Consider again the sequence

1, 1/2, 1/3, 1/4, ...

It is intuitively clear that this sequence has limit 0. But let us prove this.
Note first that the n-th term of the sequence is

xn = 1/n.

We have to show that given any neighborhood of 0, our sequence will eventu-
ally lie inside this neighborhood. So consider any neighborhood of 0:

(−ε,ε),

where ε is a positive real number. We have to show that xn lies in (−ε,ε) for all n
beyond some value. Thus we should show that

1
n
< ε

for all n beyond some initial value. Now the condition 1/n < ε is equivalent to

nε > 1.
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The archimedean property guarantees the existence of an n0 ∈ P for which

n0ε > 1.

Therefore, nε > 1 for all integers n ≥ n0. This proves that the sequence does
indeed tend to the limit 0:

1
n
→ 0, as n→ ∞

2.22 The sequence Rn

Consider the sequence
30,31,32,33, ...

It is clear that in this sequence the terms get large very quickly, and intuitively it
is clear that the sequence has limit ∞.

Consider now the sequence of powers

Rn

where R > 1.
Let us see by how much each term exceeds the preceding:

Rn−Rn−1 = Rn−1(R−1)

But R is > 1, and so the multiplier Rn−1 is ≥ 1 (it is equal to 1 when n is actually
1). Thus,

Rn−Rn−1 ≥ R−1.

Let us write x for R−1, and note that

x > 0

and we have
Rn−Rn−1 > x.

Now it takes n ‘steps’ to climb from R0 to Rn, and so

Rn ≥ 1+nx,
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because each step is at least x. Now it is clear that Rn→∞ as n→∞. We just have
to show that for any given t,

1+nx > t

when n is large enough. But this is just Archimedes again: some multiple n0x of
xexceeds t−1, and then

nx > t−1

for all n ≥ n0. Note again that it is important that x > 0, and this comes from the
fact that R > 1.

Thus,
lim
n→∞

Rn = ∞ for all R > 1.

Now consider the case R = 1. In this case the sequence is just all powers of 1,
and so it is

1,1,1,1, ....

Thus
lim
n→∞

Rn = 1 if R = 1.

Next consider the case
0 < R < 1.

As an example, we have R = 1/3 and the sequence

1,
1
3
,

1
32 ,

1
33 , ...

We have here a sequence with denomiantor going to ∞ and numerator fixed at 1.
It seems then clear that the sequence goes to 0. Indeed, for any real ε > 0 we just
have to wait till

3n > 1/ε

and this would ensure that
1
3n < ε,

and so
1
3n ∈ (−ε,ε) for large n.

Now consider the general case of
Rn
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where R > 1. Observe that
R =

1
r
,

where r = R−1 is > 1. Thus
Rn =

1
rn ,

where r > 1. Now, as we have seen above, the denominator rn goes to infinity,
and so it seems clear that 1/rn should decrease to 0. So we will prove that

Rn→ 0

in this case. Consider any neighborhood of 0:

(−ε,ε)

where ε > 0 is a positive real number. We want Rn to be in this neighborhood, i.e.
Rn should be < ε. But this means we should show that rn is > 1/ε for all n large
enough. But we know that

rn→ ∞

So, after some n0, we have
rn > ε

−1

for all n≥ n0. Consequently,

Rn =
1
rn < ε

and so
Rn ∈ (ε,ε),

for all n≥ n0. Thus
lim
n→∞

Rn = 0 if 0 < R < 1.

Now it is also clear that

lim
n→∞

Rn = 0 if R = 0.

Next consider negative values. Suppose

−1 < R < 0.

For example, for R =−1/3 we have the sequence

1,−1
3
,

1
32 ,−

1
33 ,

1
34 , ...
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It is clear that this is the same sequence as 1/3n except it swings back and forth
between negative and positive values. Thus, this sequence has limit 0.

More generally, if
−1 < R < 0

we can look at the distance between Rn and 0:

|Rn−0|= |Rn|= |R|n

and
|R|n→ 0 as n→ ∞,

because
0 < |R|< 1.

Thus, the conclusion is that

lim
n→∞

Rn = 0 if −1 < R < 0.

In short,

limn→∞ Rn = 0 if |R|< 1. (2.14)

Lastly, one should look at the case

R≤−1.

You should examine a few examples and convince yourself that then there is no
limit, for the sequence swings back and forth between widely separated positive
and negative values.

Exerise Examine the sequence given by powers of −2:

1,−2,4,−8,16, ...

Does this sequence visit every neighborhood of ∞? Does it visit every
neighborhood of −∞?
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2.23 Monotone Sequences
A sequence such as

1,2,5,8,9,11, ...

where each term is ≥ the preceding term is said to be monotone increasing. An-
other example is the sequence

1,1.1,1.11,1.111,1.1111, ...

Thus, a sequence (xn) is

monotone increasing if xn ≤ xn+1 for all n ∈ P (2.15)

We say that (xn) is

monotone decreasing if xn ≥ xn+1 for all n ∈ P (2.16)

An example of a monotone decreasing sequence is

1,1/2,1/3,1/4,1/5, ...

It is intuitively clear that a monotone increasing sequence (xn) will tend to the
limit sup{x1,x2, ...}. This is indeed true:

If (xn) is a monotone increasing sequence then

lim
n→∞

xn = sup
n≥1

xn.

To prove this let
L = sup

n≥1
xn.

The most extreme case is when L is −∞; as will become clear shortly, we need to
take care of this case separately. If L =−∞ each xn must be −∞. But in this case

lim
n→∞

xn =−∞,

since xn is just stuck at −∞. Now consider the other situation: L is not −∞. We
will show again that xn→ L, i.e. we will show that for any neigborhood U of L, the
sequence (xn) falls eventually in U and stays there. So consider any neighborhood
U of L. Pick a point t of U to the left of L, i.e.

t < L and t ∈U .
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(Note that there would be no such t if L is −∞.) Since L is the least upper bound
of {x1,x2,x3, ...}, the number t can’t be an upper bound, and so some xn0 is > t:

xn0 > t.

But recall that we are dealing with a monotone increasing sequence. Conse-
quently,

xn > t for all n≥ n0.

But recall that L is an upper bound of {x1,x2, ...}; therefore,

all the xn are ≤ t.

Those xn which are > t but ≤ L are, of course, in the neighborhood U of L. Thus,

xn ∈U for all n≥ n0.

This proves that L is indeed the limit of the sequence (xn).
In a similar way, if xn is a monotone decreasing sequence then

lim
n→∞

xn = inf
n≥1

xn.

2.24 The limit of a sequence is unique
Now we shall prove that a sequence can have at most one limit.

Consider a sequence (xn) and suppose both L and L′ are limits of the sequence,
and L 6= L′. We will arrive at a contradiction. Since L and L′ are distinct, they have
disjoint neighborhoods U and U ′ respectively. Since xn→ L we know that xn ∈U
eventually. But xn→ L′, and so xn ∈U ′ eventually. But this is impossible since U
and U ′ are disjoint and thus have no element in common.

Thus, a sequence which has a limit must have a unique limit.

2.25 Convergent sequences and Cauchy sequences
A sequence (xn) in R is said to be convergent if it has a limit and the limit is a real
number. If xn→ L, and L ∈ R, we also say that the sequence xn converges to L.

Note that xn→ L ∈ R if for any real r > 0 there is an n0 ∈ P such that

|xn−L|< r
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for all natural numbers n > n0.
This has a consequence: since the xn’s are all accumulating to L they are also

getting close to each other. More precisely, for any ε > 0 we can find N ∈ P such
that

|xn− xm|< ε for all natural numbers n,m > N.

To prove this, observe that there is some N ∈ P such that

|xk−L|< ε/2

for all k ∈ P with k > N. But then for any n,m ∈ P with n,m > N we have

|xn− xm| = |xn−L + L− xm|
≤ |xn−L| + |L− xm|
= |xn−L| + |xm−L|
< ε/2+ ε/2
= ε.

A sequence (xn) in R which bunches up on itself in the sense above is said to
be a Cauchy sequence, i.e. if for any δ > 0 there is an N ∈ P such that

|xn− xm|< ε for all natural numbers n,m > N.

2.26 Every Cauchy sequence is bounded
Consider a Cauchy sequence (xn) in R. Then, eventually the points of this se-
quence are at most distance 1 from each other; in fact, there is an N ∈ P such
that

|xn− xm|< 1

for all natural numbers n,m > N. In particular, fixing a particular j > N we have

xn ∈ (x j−1,x j +1),

for all n≥ N. So
x j−1 < xn < x j +1

for all n ∈ {N + 1,N + 2, ...}. Thus, at least from the (N + 1)-th term on, the
sequence is bounded. But the terms not counted here,

x1, ...,xN
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are just finitely many, and so they have a largest B and a smallest A among them.
Thus,

every xn is ≤max{B,x j +1}

and

every xn is ≥min{B,x j−1}

Thus the entire sequence is bounded.

2.27 Every Cauchy sequence is convergent
The completeness property of the real line R has an equivalent formulation:

Theorem 13 Every Cauchy sequence in R converges.

Let us prove this.
Consider a Cauchy sequence (xn) in R. We have seen that it is bounded. Thus,

a≤ xn ≤ b for all n ∈ P

for some real numbers a and b.
We know that a sequence always has a limit point in R∗. Let L be a limit point

of (xn). We will prove that L is a real number and xn→ L.
First it is clear that L must also be in [a,b]. Therefore, L is not ∞ or −∞, and

is a real number.
Take any neighborhood

(L−δ,L+δ)

of L, where δ > 0 is a real number.
The sequence (xn) visits the neighborhood

(L− δ

2
,L+

δ

2
)

infinitely often. Now we also know that eventually, the terms of the sequence vary
from each other by < δ/2, i.e. there is some N ∈ P such that

|xn− xm|< δ/2 for all n,m ∈ P with n,m > N.



52 Ambar N. Sengupta

We can choose some j > N such that

x j ∈ (L− δ

2
,L+

δ

2
)

because the sequence visits this neighborhood infinitely often. Then

|xn−L| = |xn− x j + x j−L|
≤ |xn− x j| + |x j−L|

<
δ

2
+

δ

2
= δ.

This means that
xn ∈ (L−δ,L+δ)

for all n > N. Thus,
xn→ L.

2.28 The rationals are countable
A set is set to be countable if it is finite or if its elements can be enumerated in a
sequence. Thus, S is countable if there is a sequence x1,x2, ... such that

S = {x1,x2,x3, ...}

For example, the even numbers form a countable set:

{2,4,6,8, ...}

It may seem at first that the set Z of integers is not countable, but we can certainly
lay out all the integers in a sequence:

0,1,−1,2,−2,3,−3, ...

It is much harder to see that the rationals Q are also countable. This is what we
shall prove now.

We will constuct a sequence which enumerates all the rationals, i.e. a sequence
r1,r2, ... such that

{r1,r2,r3, ...}= Q.
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Put another way, we will encode each rational by a unique natural number; thus
to each natural number n we would associate a rational rn, and in this way we will
cover all rationals.

There can be many such encoding schemes. Here is one: Take any rational
x≥ 0 and write it as p

q where p and q are non-negative integers (of course q≥ 1)
and q is the smallest possible denominator among all such ways of writing x. (For
example, 0.6 can be written as both 6/10 and 3/5, but we would take 3/5 as our
representation.) We know that every non-negative rational can be represented in
this way uniquely. Associate to this x the natural number

f (x) = 2q×3p

For example,

f (0) = f (0/1) = 21×30 = 2

f (1) = f (1/1) = 2131 = 6, f (4/5) = 25×34 = 32×81 = 2592.

This associates a unique natural number f (x) to each non-negative rational x. If
x ∈Q is negative, x < 0, let us define f (x) to be just 5 times f (−x):

f (x) = f (−x)×5 if x < 0

Now we have labeled each rational by a unique natural number. To enumerate the
rationals in a sequence all we have to do then is to run this in reverse: let r1 be
the rational number x with the smallest value for f (x) (so r1 is in fact 0 because
f (0) = 2 is the lowest value possible for f ); let r2 be the rational number with the
next lowest value for f (x), and so on. Thus, rn is the rational for which f (rn) is
the first value of f (x) greater than f (r1), ..., f (rn−1). For example,

r1 = 0

and

r2 = 1 because f (1) = 2131 = 6, the next value for f (x) after 2

Thus we have produced a sequence of distinct elements r1,r2, ... such that

{r1,r2, ...}= Q
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2.29 The real numbers are uncountable

We will prove that R is not countable, i.e. there is no sequence which touches on
all the real numbers.

In fact we will show that even the real numbers between 0 and 1 cannot be
enumerated in a sequence.

The argument used here is the celebrated diagonal method due to Georg Can-
tor (1845-1912). The strategy is to make a list of strings, then take the main
diagonal string, and then form a new string by altering each element of the diago-
nal.

Consider any sequence x1,x2, ... lying in (0,1). Now each real number y in
(0,1) can be expressed uniquely in the form

y = 0.y1y2y3...=
y1

10
+

y2

102 +
y3

103 + · · · ,

where y1,y2, ... ∈ {0,1,2,3, ...,9} and we exclude all such representations which
use an infinite string of 9’s at the end (for example, instead of 0.19999.... we would
use 0.20000....). Thus each of the numbers x1, x2, also has such an expansion:

x1 = 0.x11x12x13 . . .

x2 = 0.x21x22x23 . . .

x3 = 0.x31x32x33 . . .

... = · · ·

Now form a number

w = 0.w1w2w3...

as follows: take w1 to be any number in {1,2, ...,8} other than x11 ; then choose
w2 ∈ {1,2, ...,8} other than x22, and so on. This way we make the n-th decimal
place of w different from the n-th decimal place of xn, for every n. Then w cannot
be equal to any of the xn, and w ∈ (0,1). Thus the original sequence cannot
possibly have covered all of (0,1). [The reason we excluded 0 and 9 from our
choices for wn was to avoid ending up at 0 or 1.]
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2.30 Connected Sets
Consider a subset S of R∗. If U is an open set then the part of U in S, i.e. U ∩S is
said to be open in S.

For example, in [2,5] the set
[2,4)

is open because, for example,

[2,4) = (1,4)∩ [2,5]

Put another way, a subset J of S is said to be open in S if every p ∈ J has a
neighborhood N such that every point of N which is in S is in fact in J, i.e.

N∩ J ⊂ S

A set S is said to be connected if it cannot be split into two non-empty disjoint
pieces A and B each of which is open in S. The main result for connected sets is:

Theorem 14 A subset of R, or of R∗, is connected if and only if it is an interval.
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Chapter 3

Integration

Modern integration theory was built from the works of Newton, Riemann, and
Lebesgue, but the origins of integration theory lie in the computation of areas
and volumes. The idea of measuring area of a curved region by lower and upper
bounds is present even Archimedes’ study of the area enclosed by a circle.

The area of a rectangle whose sides are 2 units and 3 units is 6 square units,
because if you tile the rectangle with unit squares you will need three rows of such
squares, each row having 2 tiles. By extension, the area of a rectangle of sides 1/4
unit and 1/5 unit should be 1/20 square units because we would need 20 of these
rectangles to cover a unit square. Thus, it is clear that the area enclosed by a
rectangle whose sides are a units and b units, where a and b are rational numbers,
is ab square units. Consider now a rectangle R whose sides a and b are possibly
not rational. Take any rationals a′,a′′, and b′,b′′ with

a′ < a < a′′, and b′ < b < b′′.

Then a rectangle R′ of sides a′ by b′ sits inside R, while a rectangle R′′ of sides a′′

by b′′ contains R. Thus, it makes sense to suppose that

area of R′ ≤ area of R≤ area of R′′

which is to say:
a′b′ ≤ area of R≤ a′′b′′

It is intuitively clear, and not hard to prove, that ab is the unique real number that
lies between all the possible values of a′b′ and a′′b′′. Thus,

area of R = ab

57
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The rectangle R is made up of two congruent right angled triangles, and so each
of these would have area (ab)/2. This makes it possible to compute the areas of
all kinds of polygonal figures but cutting up these fgures into right angled trian-
gles. However, this strategy fails when we try to compute the area enclosed by a
circle. No amount of cutting would turn a disc into a finite number of right angled
triangles.

Archimedes computed area enclosed by a circle C by consider polygons P′

and P′′, where P lies inside the circle C and P′′ encloses the circle C; thus

area A′ enclosed by P′ ≤ area enclosed by C ≤ area A′′ enclosed by P′′

Some computation shows that for any ε > 0 there are such polygons P′ and P′′

such that
A′′−A′ < ε

This implies that there is a unique real number A which lies between the area of
all the polygons P′ and the polygons P′′. Clearly then this number should be the
area enclosed by the circle C.

Our development of the theory of the Riemann integrals is based on these
ideas.

3.1 Approaching the Riemann Integral
Consider a function

f : [a,b]→ R
and think of its graph. Assume, for convenience of visualization, that f ≥ 0. Then
f specifies a region which lies below its graph and above the x-axis. In general,
this is a region whose upper boundary, given by the graph of f , is curved. The
integral ∫ b

a
f

which is also, conveniently, written as∫ b

a
f (x)dx

measures the area of this region.
The strategy used for computing the area is to cut up the region into vertical

slices. The area of each such slice is between the area of a larger ‘upper’ rectangle
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and a smaller ‘lower’ rectangle. Thus we should expect the actual area to be the
unique real number lying between these ‘upper rectangle’ areas and the ‘lower
rectangle’ areas.

3.2 Riemann Sums
We will work with functions on an interval

[a,b]⊂ R

] where < b.
A partition X of [a,b] is specified by a sequence

X = (x0,x1, ...,xN)

of points x0,x1, ...,xN ∈ [a,b] with

a = x0 < x1 < · · ·< xN = b

Here N ∈ {1,2,3, ...}.
We will often use the notation

∆x j
def
= x j− x j−1 (3.1)

to denote the length of the j-th interval

[x j−1,x j]

marked out by the partition X .
The width or norm of the partition X is the maximum size of these intervals:

||X ||= max
j∈{1,...,N}

∆x j (3.2)

Consider a function
f : [a,b]→ R

on an interval [a,b]⊂ R, where a < b.
Let

M j( f ) = sup
x∈[x j−1,x j]

f (x) (3.3)
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and
m j( f ) = inf

x∈[x j−1,x j]
f (x) (3.4)

Thus, if A j were the area of the region under the graph of f over [x j−1,x j] then

m j( f )∆x j ≤ A j ≤M j( f )∆x j.

Our objective is to specify the actual area A under the graph of f , and this would
be the sum of the A j.

The upper Riemann sum U( f ,X) is defined to be

U( f ,X)
def
=

N

∑
j=1

M j( f )∆x j (3.5)

and the lower Riemann sum L( f ,X) is

L( f ,X)
def
=

N

∑
j=1

m j( f )∆x j (3.6)

Note that
L( f ,X)≤U( f ,X) (3.7)

We will show later that in fact every lower sum if less or equal to every upper sum,
i.e. L( f ,X) is less or equal to U( f ,Y ) for every partitions X and Y of [a,b].

Now consider a sequence

X∗ = (x∗1, ...,x
∗
N)

obtained by picking a point from each interval [x j−1,x j]::

x∗j ∈ [x j−1,x j]

We shall indicate this by writing

X∗ < X

The Riemann sum S( f ,X ,X∗) is

S( f ,X ,X∗) =
N

∑
j=1

f (x∗j)∆x j (3.8)
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Note that the upper sum is ∞ if and only if one of the M j is ∞, and this occurs
if and only if the superemum of f is ∞:

U( f ,X) = ∞ if and only if sup
x∈[a,b]

f (x) = ∞ (3.9)

However, U( f ,X) cannot be −∞, because that would mean that at least one of
the M j is −∞ which can only be if f is equal to −∞ on that interval [x j−1,x j]
which contradicts the fact that f is real-valued. (Note that we are working with
non-empty intervals because x j−1 < x j.)

Similarly,

L( f ,X) =−∞ if and only if inf
x∈[a,b]

f (x) =−∞ (3.10)

and L( f ,X) can never be ∞.
It is useful then to observe that the difference

U( f ,X)−L( f ,X)

is always defined, i.e. we never have the ∞−∞ situation.

3.3 Definition of the Riemann Integral
Consider a function

f : [a,b]→ R

on an interval [a,b] ⊂ R, where a < b. This function is said to be Riemann inte-
grable if there is a unique real number I lying between all the lower sums and all
the upper sums:

L( f ,X)≤ I ≤U( f ,X) (3.11)

for every partition X of [a,b]. This number I is the integral of f over [a,b] and
denoted ∫ b

a
f or

∫ b

a
f (x)dx (3.12)

The set of all Riemann integrable functions on [a,b] is denote

R [a,b] (3.13)
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3.4 Refining Partitions
We work with a function

f : [a,b]→ R.
We use the notation

M( f , [s, t]) = sup
x∈[s,t]

f (x), and m( f , [s, t]) = inf
x∈[s,t]

f (x) (3.14)

Let
X = (x0,x1, ...,xN)

be a partition of the interval [a,b] and let X ′ be a partition obtained by adding one
more point x′ to X . Let us say that x′ lies in the j-th interval

x′ ∈ [x j−1,x j]

Thus, X ′ cuts up [x j−1,x− j] into two intervals

[x j−1,x′] and [x′,x j]

Let us compare the upper sums U( f ,X) and U( f ,X ′). To this end, let us write

M j = M( f , [x j−1,x j]), M′j = M( f , [x j−1,x′]), M′′j = M( f , [x′,x j])

It is important to observe that

M j ≥M′j, and M j ≥M′′j (3.15)

These sums differ only in the contribution that comes from [x j−1,x j]:

U( f ,X)−U( f ,X ′) = M j(x j− x j−1)

−
[
M′j(x

′− x j−1)+M′′j (x j− x′)
]

= (M j−M′j)(x
′− x j−1)+(M j−M′′j )(x j− x′)

≥ 0.

Thus
U( f ,X ′)≤U( f ,X), (3.16)

i.e. adding a point to a partition lowers upper sums.
If we keep adding points to the initial partition, we keep lower the upper sums.
Arguing similarly, it follows that adding points to a partition raises lower

sums.
This observation is important enough to state as a theorem:
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Theorem 15 Adding points to a partition lowers upper sums and raises lower
sums. Thus if X and X ′ are partitions of [a,b], with X ′ containing all the points of
X and some more, then

L( f ,X)≤ L( f ,X ′)≤U( f ,X ′)≤U( f ,X) (3.17)

for every function f : [a,b]→ R.

Using this we can prove that upper sums always dominate lower sums:

Theorem 16 If f : [a,b]→R is a function on an interval [a,b]⊂R, where a < b,
and if X and Y are any partitions of [a,b] then

L( f ,X)≤U( f ,Y ) (3.18)

Thus, every lower sum is dominated above by every upper sum.

Proof. Here is a useful trick: we can combine the partitions X and Y to form a
partition Z which contains all points of X and all the points of Y as well. Therefore,

U( f ,Z)≤U( f ,Y )

and
L( f ,X)≤ L( f ,Z)

Stringing these together we have

L( f ,X)≤ L( f ,Z)≤U( f ,Z)≤U( f ,Y )

and this gives the desired result. QED
We have used the fact that adding a point to a partition lowers upper sums and

raises lower sums. It will be useful to take a closer look at this and estimate by
how much the upper and lower sums move as points are added to the partition.
Recall the formula

U( f ,X)−U( f ,X ′) = (M j−M′j)(x
′− x j−1)+(M j−M′′j )(x j− x′) (3.19)

where X ′ is the partition obtained from X by adding the single point x′ to the j-th
interval [x j−1,x j] of the partition X = (x0, ...,xT ). Now suppose instead of adding
just the one point x′, we add m distinct points y1, ...,ym to the interval [x j−1,x j] to
form the new partition X ′. We label the new points yi in increasing order

y1 < · · ·< ym.
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For convenience of notation we write y0 for x j−1 and ym+1 for x j. Thus

x j−1 = y0 < y1 < · · ·< ym < ym+1 = x j

The intervals
[yk−1,yk]

make up the interval
[x j−1,x j]

Then:

U( f ,X)−U( f ,X ′) =
m+1

∑
k=1

[
M( f , [x j−1,x j])−M( f , [yk−1,yk])

]
(yk−yk−1) (3.20)

Now
0≤M( f , [x j−1,x j])−M( f , [yk−1,yk])≤ 2|| f ||sup,

where || f ||sup is supremum of | f | over the full original interval [a,b]. The interval
lengths yk− yk−1 add up to ∆x j. Consequently,

U( f ,X)−U( f ,X ′)≤ 2|| f ||sup∆x j ≤ 2|| f ||sup||X || (3.21)

This provides an upper bound for how much the upper sum is decreased by addi-
tion of points all in one single interval of the original partition X .

If we add points to each of N′ intervals to create a new partition X ′ then

U( f ,X)−U( f ,X ′)≤ 2N′|| f ||sup||X || (3.22)

Similarly,
L( f ,X ′)−L( f ,X)≤ 2N′|| f ||sup||X || (3.23)

Note that
N′ ≤ N,

where N is the total number of new points added. Consequently, we have

Lemma 1 If
X = (x0, ...,xT )

is a partition of the interval [a,b] ⊂ R, where a < b, and X ′ is a partition of the
same interval containing all the points of X and possibly some more, then

U( f ,X ′)−L( f ,X ′)≤U( f ,X)−L( f ,X) (3.24)

but the decrease in the value of U−L is at most 2N|| f ||sup||X ||:
[U( f ,X)−L( f ,X)]−

[
U( f ,X ′)−L( f ,X ′)

]
≤ 2N|| f ||sup||X || (3.25)

where N is the number of new points added.
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3.5 The Darboux Criterion
Now that we know that the upper sums dominate the lower sums, it is clear that
there will be a unique real number between them if and only if the sup of the lower
sums equals the inf of the upper sums:

Theorem 17 A function f : [a,b]→ R is Riemann integrable if and only if

sup{U( f ,X) : all partitions X of [a,b]}= inf{L( f ,X) : all partitions X of [a,b]}
(3.26)

The common value is
∫ b

a f .

Thus, the function f is Riemann integrable if and only if there is no ‘gap’
between the lower sums and upper sums. Thus, another equivalent formulation is
the Darboux criterion:

Theorem 18 T:Darbouxcrit A function f : [a,b]→R is Riemann integrable if and
only if for any ε > 0 there is a partition X of [a,b] for which

U( f ,X)−L( f ,X)< ε (3.27)

This is an extremely useful result: virtually all of our results on integrability
will use the Darboux criterion.

Proof. Suppose f is integrable. Then there is a unique real number I which
lies between all upper sums and all lower sums. Take any ε > 0. Consider the
interval

[I, I + ε/2)

All the lower sums lie to the left, i.e. ≤ I. All upper sums lie to the right (≥) of I.
So since I is the only real number lying between the upper sums and lower sums,
there must be at least one upper sum which lies in [I, I + ε/2). Thus, there is a
partition Y for which

I ≤U( f ,Y )< I + ε/2

Similarly, there is a partition Z for which

I− ε/2 < L( f ,Z)≤ I.

Let X be the partition obtained by pooling together Y and Z. Then

I− ε/2 < L( f ,Z)≤ L( f ,X)≤U( f ,X)≤U( f ,Z)< I + ε/2 (3.28)
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Since both L( f ,X) and U( f ,X) lie in

(I− ε/2, I + ε/2)

it follows that
U( f ,X)−L( f ,X)< ε. (3.29)

Conversely, suppose that for every ε> 0 there is a partition for which (3.29) holds.
Suppose that I and I′ are distinct real numbers which both lie between all upper
sums and all lower sums. Let

ε = |I′− I|

We know that there is a partition X satifying (3.29). Now I and I′ both lie between
U( f ,X) and L( f ,X). So the difference between I and I′ is < ε:

|I′− I|< ε

But this contradicts the deifnition of ε taken above. Thus I and I′ must be equal.
So there is a unique real number between all the upper sums and all the lower
sums. Thus, f is integrable. QED

3.6 Integrable functions are bounded
Suppose f : [a,b]→ R is integrable. We will prove that f must be bounded.

Theorem 19 Every Riemann integrable function is bounded.

Proof. Consider
f : [a,b]→ R

where [a,b]⊂ R and a < b. Assume that f ∈ R [a,b].
Let us suppose that f is unbounded. Then we will reach a contradiction.
Suppose, for example, that f is not bounded above, i.e.

sup
x∈[a,b]

f (x) = ∞.

Consider any partition
X = (x0, ...,xN)
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of [a,b]. Then there is some subinterval, say [x j−1,x j], on which f is not bounded
above, i.e.

M j = ∞.

But then the supper sum for f with this partition is also ∞:

U( f ,X) =
N

∑
k=1

Mk∆xk = ∞

Thus, every upper sum for f is ∞. Now let

I =
∫ b

a
f

and recall that this is the unique real number lying between all upper sums and all
lower sums. Then

L( f ,X)≤ I < I +1 < ∞ =U( f ,X) (3.30)

for every partition X . But then I + 1 would also be a real number lying between
all upper sums and all lower sums. Thus, we have a contradiction. QED

3.7 Variation of a Function
For any non-empty subset S⊂ R the diameter of S is

diam(S) = sup{a−b : a,b ∈ S} (3.31)

It is easy to believe and not hard to prove that the diameter of S is the difference
between supS and infS:

diam(S) = supS− infS (3.32)

Now consider a function f on an interval [s, t]. It will be useful to have a
measure of the fluctuation of f over this interval.

The simplest such measure is given by the diameter of the range of f :

Var( f ) = diam(Rangeoff) (3.33)

More explicitly, the variation of f on the interval [s, t] is:

Var( f , [s, t]) = sup
x,y∈[s,t]

( f (x)− f (y)) (3.34)
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It is also equal to

Var( f , [s, t]) = M( f , [s, t])−m( f , [s, t]) (3.35)

Sometimes we may drop [s, t] and just write Var( f ):

Var( f ) = M( f )−m( f ) (3.36)

We record the following algebraic facts about the variation of functions, which
will be very useful in proving corresponding facts about Riemann integration.

Lemma 2 For any functions f and g on an interval [a,b] ⊂ R with a < b, we
have:

(i) Var( f )≥ 0;

(ii) Var(k) = 0 if and only if k is constant;

(iii) the variation scales like length, i.e. the variation of a constant times a func-
tion is the absolute value of the function time the variation in the function:

Var(k f ) = |k|Var( f ) for any k ∈ R.

(iv) the variation satifies the triangle inequality:

Var( f +g)≤ Var( f )+Var(g) (3.37)

(v) the variation of the product of two functions is bounded above by the sum
of their variations, weighted by their sup-norms:

Var( f g)≤ || f ||supVar(g)+ ||g||supVar( f ) (3.38)

(vi) the variations in f and in g differ by at most the variation in | f −g|:∣∣∣Var( f )−Var(g)
∣∣∣≤ Var( f −g) (3.39)

(vii) if f is not equal to zero anywhere then

Var(1/ f )≤M(| f |−1)2Var( f ) (3.40)
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(viii) the variation of a function increases montonically with the interval of vari-
ation:

Var( f , [s, t])≤ Var( f , [a,b]) if [s, t]⊂ [a,b] (3.41)

(ix) The variation in the absolute value of f is bounded by the variation in f :

Var(| f |)≤ Var( f ) (3.42)

(x) The variation of f is bounded above by twice || f ||sup:

Var( f )≤ 2|| f ||sup (3.43)

(xi) If s, t,u ∈ [a,b] with s < t < u then

Var( f , [s,u])≤ Var( f , [s,u])+Var( f , [u, t]) (3.44)

(xii) If f is monotone on an interval [s, t] then

Var( f , [s, t]) =

{
f (t)− f (s) if f (t)≥ f (s)
f (s)− f (t) if f (t)≤ f (s)

(3.45)

We also record the following result on variations and partitions for continuous
functions:

Lemma 3 If f : [a,b]→R is continuous, where [a,b]⊂R and a < b, then for any
ε > 0 there is a partition X = (x0, ...,xN) of [a,b] such that

Var( f , [x j−1,x j])< ε

for every j ∈ {1, ...,N}.

Proof. Since f is continuous on the compact set [a,b] it is uniformly continu-
ous. So for any ε > 0 there is a δ > 0 such that

| f (x)− f (x′)|< ε/2

whenever x,x′ ∈ [a,b] with |x− x′| < δ. Take any partition X = (x0, ...,xN) with
all the intervals having length less than δ. Then, for each j ∈ {1, ...,N},

f (x)− f (x′)< ε/2
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for every x,x′ ∈ [x j−1,x j] since these intervals all have length < δ. Consequently,

Var( f , [x j−1,x j])≤ ε/2

and we are done. QED
The sup-norm bound on the variation has the following consequence:

Proposition 1 If f1, f2, ... : [a,b]→R converge uniformly to a function f : [a,b]→
R, then

lim
n→∞

Var( fn) = Var( f ) (3.46)

It will be convenient to use the notation

Var j( f ) def
= Var( f , [x j−1,x j]) (3.47)

The reason why we are interested in the variation is summarized by

Theorem 20 For any function f : [a,b]→ R, where [a,b] ⊂ R and a < b, and
every partition X of [a,b] we have

U( f ,X)−L( f ,X) =
N

∑
j=1

Var j( f )∆x j (3.48)

Proof. Observe that
Var j( f ) = M j( f )−m j( f ). (3.49)

Multiplying this by ∆x j and adding up over all j ∈ {1, ...,N} gives the result
(3.48). QED

3.8 The algebra R [a,b]

Recall that
R [a,b]

is the set of all Riemann integrable functions on [a,b].
Our main objective now is

Theorem 21 The set R [a,b] has the following properties:

(i) Every constant function belongs to R [a,b]
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(ii) If f ,g ∈ R [a,b] then f +g ∈ R [a,b]

(iii) If f ,g ∈ R [a,b] then f g ∈ R [a,b]

(iv) If f ∈ R [a,b], and f is never equal to zero and 1/ f is bounded, then 1/ f ∈
R [a,b].

(v) If f ∈ R [a,b] then | f | ∈ R [a,b] and

∣∣∣∫ b

a
f
∣∣∣≤ ∫ b

a
| f | (3.50)

Properties (i)-(iii) say that R [a,b] is an algebra under pointwise addition and
multiplication of functions. It is important to note that the converse of (v) does not
hold, i.e. there are functions which are not Riemann integrable but whose absoulte
values are Riemann integrable.

Proof For a constant function k on [a,b] we have

L( f ,X) = k(b−a) =U( f ,X)

for every partition X and so k(b−a) is the unique real number lying between all
upper sums and all lower sums. Thus

∫ b

a
k = k(b−a)

Now supppose f ,g ∈ R [a,b]. Let ε > 0. By the Darboux condition, there are
partitions Y and Z of [a,b] such that

U( f ,Y )−L( f ,Y )< ε/2 and U(g,Z)−L(g,Z)< ε/2

Let X be the partition obtained by combining Y and Z. Then, because upper sums
decrease and lower sums increase when points are added to a partition, we have

U( f ,X)−L( f ,X)< ε/2 and U(g,X)−L(g,X)< ε/2

Then, with X = (x0, ...,xN),
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U( f +g,X)−L( f +g,X) =
N

∑
j=1

[
M j( f +g)−m j( f +g)

]
∆x j

=
N

∑
j=1

Var( f +g, [x j−1,x j])∆x j

≤
N

∑
j=1

Var( f , [x j−1,x j])∆x j +
N

∑
j=1

Var(g, [x j−1,x j])∆x j

(by Lemma 2 (ii))
= U( f ,X)−L( f ,X) + U(g,X)−L(g,X) by (3.48)
< ε/2+ ε/2 = ε.

Thus, by the Darbox criterion, f +g is Riemann integrable.
The other results follow in a similar way by applying other parts of Lemma

2. QED
Consider the function g on [0,1] given by

g(x) =

{
1 if x is rational
−1 if x is irrational

Then g is not Riemann integrable, because no matter what partition X we take of
[0,1] the upper sum is always

U(g,X) = 1

and the lower sum is always
L(g,X) =−1

But the absolute value of g is the constant function 1:

|g|= 1

and so |g| is Riemann integrable.

3.9 C[a,b]⊂ R [a,b]

Every continuous function on a compact interval is integrable. This is a central
result of integration theory.
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Theorem 22 For any interval [a,b]⊂ R, with a < b, the set C[a,b] of continuous
functions on [a,b] is contained in the set R [a,b] of Riemann integrable functions
on [a,b]:

C[a,b]⊂ R [a,b]

The proof has been presented in class. The key result used is Lemma 3 which says
that the variation of a continuous function can be controlled suitably to apply the
Darboux criterion for integrability.

It should be noted that discontinuous functions might also be integrable. In-
deed, any function which is dicontinuous at only finitely many points is integrable.

3.10 The Integral as a Non-negative Linear Func-
tional

We have seen that the set
R [a,b]

of all Riemann integrable functions on a compact interval [a,b] ⊂ R, with a < b,
is a linear space, i.e. that sums and constant multiples of Riemann integrable
functions are again Riemann integrable. Our next objective is to show that the
Riemann integral viewed as a function

R [a,b]→ R : f 7→
∫ b

a
f (3.51)

is linear:

Theorem 23 For interval [a,b]⊂R, where a < b, and any f ,g∈R [a,b], we have∫ b

a
( f +g) =

∫ b

a
f +

∫ b

a
g (3.52)

and, for any k ∈ R, ∫ b

a
(k f ) = k

∫ b

a
f (3.53)

Thus, the Riemann integral

R [a,b]→ R : f 7→
∫ b

a
f (3.54)

is a linear functional on the linear space R [a,b].
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Proof Let f ,g ∈ R [a,b], and k ∈ R. We have already seen, in Theorem 21,
that f +g and k f are also in R [a,b]. Now let

X = (x0, ...,xN)

be any partition of [a,b]. As usual, let Vark(h) denote the variation of a function h
over the interval [x j−1,x j]:

Vark(h) = sup
s,t∈[x j−1,x j]

(h(s)−h(t)) = M j(h)−m j(h) (3.55)

Then

U( f +g,X) =
N

∑
j=1

Vark( f +g)∆ jx

≤
N

∑
j=1

Vark( f )∆ jx+
N

∑
j=1

Vark(g)∆ jx

= U( f ,X)+U(g,X)

Similarly,
L( f +g,X)≥ L( f ,X)+L(g,X) (3.56)

Thus, L( f +g,X) and U( f +g,X) are squeezed into the interval

[L( f ,X)+L(g,X),U( f ,X)+U(g,X)] (3.57)

Now let ε > 0. By the usual trick of combining partitions, there is a partition X of
[a,b] such that

U( f ,X)−L( f ,X)< ε/2

and
U(g,X)−L(g,X)< ε/2

So

U( f +g,X)−L( f +g,X)≤U( f ,X)+U(g,X)− [L( f ,X)+L(g,X)]< ε (3.58)

which, by the Darboux criterion implies that f +g ∈ R [a,b]. (Of course, we have
just repeated the proof of Theorem 21 (ii).)
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Let

I( f ) =
∫ b

a
f , I(g) =

∫ b

a
g, (3.59)

I( f +g) =
∫ b

a
( f +g) (3.60)

Then I( f ) lies between U( f ,X) and L( f ,X), and I(g) lies between U(g,X) and
L(g,X). Consequently,

L( f ,X)+L(g,X)≤ I( f )+ I(g)≤U( f ,X)+U(g,X)

Moreover,
L( f +g,X)≤ I( f +g)≤U( f +g,X)

Putting all this together, we see that I( f + g) and the sum I( f )+ I(g) both lie in
the interval

[L( f ,X)+L(g,X),U( f ,X)+U(g,X)] (3.61)

and the width of this interval is < ε. Therefore, I( f )+ I(g) and I( f +g) differ by
less than ε. But ε is any positive real number. Therefore,

I( f +g) = I( f )+ I(g) (3.62)

Next, consider the function k f , where k ∈ R. Let

X = (x0, ...,xN)

be a partition of [a,b] such that

U( f ,X)−L( f ,X)<
ε

1+ |k|
(3.63)

(The 1+ in the denominator is to avoid trouble if k happens to be 0.) Then

U(k f ,X)−L(k f ,X) =
N

∑
j=1

Var j(k f )∆x j

=
N

∑
j=1
|k|Var j( f )∆x j (by Lemma 2 (iii))

= |k| [U( f ,X)−L( f ,X)]

≤ |k| ε

1+ |k|
< ε.
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Thus, the interval
[L(k f ,X),U(k f ,X)]

has width less than ε. The Darboux criterion implies that k f is integrable. Let

I(k f ) =
∫ b

a
(k f ) (3.64)

Now for k ≥ 0 we have

M(k f , [s, t]) = sup
x∈[s,t]

k f (x) = k sup
x∈[a,b]

f (x) = kM( f , [s, t]) (3.65)

and for k < 0 we have

M(k f , [s, t]) = sup
x∈[s,t]

k f (x) = k inf
x∈[a,b]

f (x) = km( f , [s, t]), (3.66)

because multiplying by a negative number reverses inequalities and transforms
sup into inf, and inf into sup. Thus, also

m(k f , [s, t]) = km( f , [s, t]) if k ≥ 0 (3.67)
m(k f , [s, t]) = kM( f , [s, t]) if k ≤ 0 (3.68)

(3.69)

Doing this for each interval [x j−1,x j], and mutiplying everything by ∆x j and
adding up, we see that I(k f ) lies in the interval

[kL( f ,X),kU( f ,X)] if k ≥ 0

and it lies in
[kU( f ,X),kL( f ,X)] if k ≤ 0

Now I( f ) lies between L( f ,X) and U( f ,X), and so kI( f ) lies in the same interval
mentioned above as I(k f ) does. Consequently,∣∣∣I(k f )− kI( f )

∣∣∣≤ |k| [U( f ,X)−L( f ,X)]< ε, (3.70)

as before. Now since ε > 0 is any positive real number we have

I(k f ) = kI( f ).

This completes the proof. QED
The Riemann integral is a non-negative linear functional in the sense that it

carried non-negative functions into non-negative numbers:
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Theorem 24 If [a,b]⊂R with a < b, and f ∈ R [a,b] is non-negative, i.e. f (x)≥
0 for all x ∈ [a,b] then

∫ b
a f ≥ 0:

f ∈ R [a,b] and f ≥ 0 imply that
∫ b

a f ≥ 0 (3.71)

Consequently, the integral is order-preserving

f ,∈ R [a,b] and f ≥ g imply that
∫ b

a f ≥
∫ b

a g (3.72)

Proof. This is simply because if f ≥ 0 then all the lower sums are ≥ 0 and so the
integral

∫ b
a f , being ≥ all lower sums, is also ≥ 0.

Next, suppose f ,g ∈ R [a,b] and f ≥ g. Observe that

f −g = f +(−1)g

is also in R [a,b], and is, of course, ≥ 0. Thus,

f = ( f −g)+g

and so, by linearity, ∫ b

a
f =

∫ b

a
( f −g) +

∫ b

a
g

Now we have just shown that the first term on the right is ≥ 0. Therefore,∫ b

a
f ≥

∫ b

a
g. QED

The linear functional given by the Riemann integral is a bounded linear func-
tional on R [a,b] for the sup-norm in the following sense:

Theorem 25 For any compact interval [a,b] ⊂ R, with a < b, and for any f ∈
R [a,b] we have ∣∣∣∫ b

a
f
∣∣∣≤ || f ||sup(b−a) (3.73)

Proof We know that if f ∈ R [a,b] then | f | ∈ R [a,b] and∣∣∣∫ b

a
f
∣∣∣≤ ∫ b

a
| f | (3.74)



78 Ambar N. Sengupta

Now the function | f | is bounded above by the constant || f ||sup (recall from Theo-
rem 19 that this is finite.) Therefore,∫ b

a
| f | ≤

∫ b

a
|| f ||sup = || f ||sup(b−a)

and we are done. QED
A useful but simple consequence of this result is:

Theorem 26 For any compact interval [a,b]⊂R, with a< b, if f1, f2, ...∈R [a,b]
converge uniformly to a function f on [a,b] then f ∈ R [a,b] and

lim
n→∞

∫ b

a
fn =

∫ b

a
f (3.75)

Proof First let us show that f ∈ R [a,b]. Let ε > 0. By uniform convergence, we
have an n ∈ P such that

|| fn− f ||sup <
ε

4(b−a)
(3.76)

By integrability of fn we know that there is a partition X = (x0, ...,xN) of [a,b]
such that

U( fn,X)−L( fn,X) =
N

∑
j=1

Var j( fn)∆x j <
ε

2
(3.77)

Now ∣∣∣Var j( fn)−Var j( f )
∣∣∣ ≤ Var j( fn− f )

≤ 2|| fn− f ||sup

< 2
ε

4(b−a)
=

ε

2(b−a)

and so
Var j( f )≤ Var j( fn)+

ε

2(b−a)
(3.78)

Therefore,

U( f ,X)−L( f ,X) =
N

∑
j=1

Var j( f )∆x j

≤
N

∑
j=1

Var j( fn)∆x j +
ε

2(b−a)

N

∑
j=1

∆x j

<
ε

2
+

ε

2
= ε.
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Thus, f ∈ R [a,b].
Next, we have∣∣∣∫ fn−

∫
f
∣∣∣≤ || fn− f ||sup(b−a)→ 0, as n→ ∞. QED

3.11 Additivity of the Integral
We will show that the integral of a function over an interval [a,b] is the sum of the
integrals of the function over [a,c] and [c,b] for any point c ∈ (a,b).

If
F : S→U

is a function, and T is a non-empty subset of S, then

F |T

denotes the restriction of F to the smaller domain T , i.e. F |T is the function
whose domain is T and whse values are given through F :

(F |T )(x) = F(x) for all x ∈ T (3.79)

Theorem 27 Let a,c,b be real numbers with a< c< b, and consider any function

f : [a,b]→ R

which is intergable over [a,c] and over [c,b]. Then f ∈ R [a,b], and∫ b

a
f =

∫ c

a
f +

∫ b

c
f (3.80)

Proof. Let ε > 0. By Darboux, there is a partition Y of [a,c] and a partition Z of
[c,b] such that

U( f |[a,c],Y )−L( f |[a,c],Y )< ε/2 (3.81)

and
U( f |[c,b],Z)−L( f |[c,b],Z)< ε/2 (3.82)

Now put together the points of Y and Z. This yields a partition X of the combined
interval [a,b]. Then,

U( f ,X) =U( f |[a,c],Y )+U( f |[c,b],Z)≥
∫ c

a
f +

∫ b

c
f (3.83)
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and

L( f ,X) = L( f |[a,c],Y )+L( f |[c,b],Z)≤
∫ c

a
f +

∫ b

c
f (3.84)

Consequently,

U( f ,X)−L( f ,X) = U( f |[a,c],Y )+U( f |[c,b],Z) − [L( f |[a,c],Y )+L( f |[c,b],Z)]
= U( f |[a,c],Y )−L( f |[a,c],Y ) + U( f |[c,b],Z)−L( f |[c,b],Z)
< ε/2+ ε/2
= ε

Therefore, by Darboux, f ∈ R [a,b].
Now from (3.83) and (3.84) it follows that the sum∫ c

a
f +

∫ b

c
f

lies between L( f ,X) and U( f ,X), and, of course, so does
∫ b

a f . Therefore,∫ c
a f +

∫ b
c f and

∫ b
a f differ by less than ε.

Since ε > 0 is arbitrary, it follows that∫ b

a
f =

∫ c

a
f +

∫ b

c
f . QED

Now we prove that if a function is ingtergable on an interval then it is inte-
grable on any sub-interval:

Theorem 28 If [a,b] ⊂ R, with a < b, and if s, t ∈ [a,b] with s < t then for any
function f ∈ R [a,b] we have f |[s, t] ∈ R [s, t].

Proof This is, as always, a matter of applying Darboux using one of the properties
of Var. Let ε > 0. Since f ∈ R [a,b] there is a partition Y of [a,b] such that

U( f ,Y )−L( f ,Y )< ε.

Add to Y the points s and t, in case they are not in Y , to obtain a partition

Z = (z0, ...,zM)
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of [a,b]. We know that this lowers the upper sum and raises the lower sum and so

U( f ,Z)−L( f ,Z)< ε.

Now let X be the partition of [s, t] obtained by taking the points of Z which are in
[s, t]. Then

U( f ,Z)−L( f ,Z) =U( f |[s, t],X)−L( f |[s, t],X)+ ∑
j∈J

[
M j( f )−m j( f )

]
∆x j

(3.85)
where J consists of those j ∈ {1, ...,M} for which the interval [z j−1,z j] is not
contained in [s, t]. Therefore,

U( f ,Z)−L( f ,Z)≤U( f |[s, t],X)−L( f |[s, t],X)< ε,

and we are done. QED

3.12 Monotone Functions are Riemann Integrable
We have made the remark that not every Riemann integrable function is continu-
ous. We will now prove that every monotone function is Riemann integrable on
any compact interval.

Let
f : [a,b]→ R

be a monotone function, where [a,b]⊂ R and a < b. Let

X = (x0,x1, ...,xN)

be any partition of [a,b]. Then

U( f ,X)−L( f ,X) =
N

∑
j=1

Var j( f )∆x j

≤

(
N

∑
j=1

Var j( f )

)
||X ||

where
||X ||= max

1≤ j≤N
∆x j,
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is the maximum width of the intervals making up the partition.
Suppose for convenience that f is monotone non-decreasing, i.e.

f (x)≤ f (y) for all x,y ∈ [a,b] with x≤ y

Then, by the property of Var for monotone functions given in (3.41) we have

Var j( f ) = f (x j)− f (x j−1) for all j ∈ {1, ...,N}

Therefore, the sum of the variations over all the intervals is simply the variation
over the full interval:

N

∑
j=1

Var j( f ) = Var( f , [a,b]) (3.86)

The same conclusion holds even if f is monotone non-increasing, i.e. if

f (x)≤ f (y) for all x,y ∈ [a,b] with x≥ y

Thus, in either case, we have

U( f ,X)−L( f ,X) = Var( f , [a,b])||X || (3.87)

To make this less than any chosen ε > 0 all we have to do is take a partition X
with all the interval sizes less than

ε/[1+Var( f , [a,b])].

For example, we could divide [a,b] into N equal pieces, with N chosen large
enough that

b−a
N

<
ε

1+Var( f , [a,b])
.

Thus we have proved:

Theorem 29 If f is a monotone function on a compact interval [a,b] ⊂ R, with
a < b, then f ∈ R [a,b].
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3.13 Riemann Sums and the Riemann Integral
We have used the Archimedean strategy of capturing the value of the integral
between upper sums and lower sums. This approach led to a smooth development
of the central results of the theory. However, this method is not the most intuitive
in understanding concepts such as arc length. It is therefore useful to understand
the Riemann integral in terms of Riemann sums as well. This method is also
amenable to generalizations such as the notion of line integrals. Furthermore, the
Riemann sum approach motivates the construction of more advanced notions such
as the stochastic integral of Itô.

So consider a function
f : [a,b]→ R

where [a,b]⊂ R with a < b. Let

X = (x0, ...,xN)

be any partition of [a,b]. Recall that the norm or width of X is the length of the
largest interval

||X ||= max
j

∆x j

Now consider any sequence

X∗ = (x∗1, ...,x
∗
N)

subordinate to X , i.e. with x∗j ∈ [x j−1,x j] for each j. We denote this by

X∗ < X

Recall the Riemann sum

S( f ,X ,X∗) =
N

∑
j=1

f (x∗j)∆x j (3.88)

Now
m j ≤ f (x∗j)≤M j,

for each j, and so
L( f ,X)≤ S( f ,X ,X∗)≤U( f ,X) (3.89)

If f is integrable, with I =
∫ b

a , then for any ε > 0 we can choose partition X such
that

U( f ,X)−L( f ,X)< ε.
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Since both I and S( f ,X ,X∗) are squeezed in between the upper and lower sums,
it follows that

|S( f ,X ,X∗)− I|< ε (3.90)

The following result is is often used to define the Riemann integral in alterna-
tive approaches to the theory.

Theorem 30 A function f : [a,b]→ R is Riemann integrable if and only if there
is a real number I such that for any ε > 0 there is a δ > 0 such that

|S( f ,X ,X∗)− I|< ε (3.91)

for every partition X of norm < δ and every X∗ < X. In this case,

I =
∫ b

a
f

Proof. Suppose the given condition holds. Then there is a real number I such
that for any ε > 0 there is a δ > 0 for which the condition

|S( f ,X ,X∗)− I|< ε/4 (3.92)

holds for all partitions X of [a,b] of width < δ and all X∗ < X . Thus,

I− ε/4 <
N

∑
j=1

f (x∗j)∆x j < I + ε/4

for every sequence X∗ < X . Then, taking the supremum over all possible x∗1 in the
first interval [x0,x1], we see that

M1∆x1 +
N

∑
j=2

f (x∗j)∆x j ≤ I + ε/4

and, taking the infimum over all possible x∗1 in [x0,x1], we have

I− ε/4≤ m1∆x1 +
N

∑
j=2

f (x∗j)∆x j

Carrying this successively for j = 2,3, ...,N, we conclude that

I− ε/4≤ L( f ,X)≤U( f ,X)≤ I + ε/4



Notes in Introductory Real Analysis 85

Consequently,
U( f ,X)−L( f ,X)≤ ε/2 < ε

and so, by Darboux, f ∈ R [a,b]. Moreover, since both I and the integral
∫ b

a f
are trapped in the interval [L( f ,X),U( f ,X)] whose width is ε it follows that I and∫ b

a f differ by less than ε. But, ε is any positive real number. Thus,

I =
∫ b

a
f .

For the converse, suppose f ∈ R [a,b]. Let ε > 0. By Darboux, there is a
partition

Y = (y0, ...,yN)

of [a,b] such that U( f ,Y ) and L( f ,Y ) differ by less than ε:

U( f ,Y )−L( f ,Y )< ε/2 (3.93)

Now let

δ =
ε/2

1+2N|| f ||sup
. (3.94)

(Where we get this from will be clear later.) Consider any partition

X = (x0, ...,xT )

of [a,b] of norm less than δ:
||X ||< δ

We will compare U − L for X with that for Y and conclude that U − L for X is
indeed less than ε. Using our standard trick, let Z be the partition of [a,b] obtained
by combining X and Y . Then

U( f ,Z)−L( f ,Z)≤U( f ,Y )−L( f ,Y )< ε/2 (3.95)

We also know by Lemma 1 that U −L for Z differs from that for X by at most
2N|| f ||sup||X ||, because at most N points were added to X to obtain Z. Thus, the
most U−L for X could be is

U( f ,Z)−L( f ,Z)+2N|| f ||sup||X || (3.96)

Thus,
U( f ,X)−L( f ,X)< ε/2+2N|| f ||supδ (3.97)
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In (3.94) we chose δ just so this right side now works out to ε:

U( f ,X)−L( f ,X)< ε/2+ ε/2 = ε (3.98)

Now take any X∗ < X . Then the Riemann sum S( f ,X ,X∗) is sandwiched between
the lower sum L( f ,X) and the upper sum U( f ,X), and so it the integral

∫ b
a f .

Therefore, S( f ,X ,X∗) and
∫ b

a f both lie in the interval

[L( f ,X),U( f ,X)]

whose width is < ε. Thus, ∣∣∣S( f ,X ,X∗)−
∫ b

a
f
∣∣∣< ε (3.99)

We have shown that for any ε > 0 there is a δ > 0 such that (3.99) holds for any
partition X of width < δ and any X∗ < X . QED
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Appendix A

Question Bank

Set 1

1. Prove that there is no rational number whose square is 7.

89



90 Ambar N. Sengupta

2. Let ε be any positive real number.

(i) Show that there is an n0 ∈ N such that

1
n2 < ε

for all n ∈ N with n≥ n0.

(ii) Let a be any real number. Show that there is some n1 ∈ N such that

2a
1
n
< ε

for all n ∈ N with n≥ n1.
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3. Suppose a is a positive real number with a2 < 7. Show that(
a+

1
n

)2
< ε

for all n ∈N large enough (i.e. there is some n′ ∈N such that the preceding
inequality holds for all natural numbers n≥ n′).
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4. Let
S = {x ∈ R : x > 0andx2 < 7}.

(i) Show that S 6= /0.

(ii) Show that S is bounded above in R.
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(iii) Let a = supS. Prove that a2 ≥ 7. (Hint: Suppose a2 were less than 7.
Then use the result of Problem 3.)

(iv) Prove that a2 is, in fact, equal to 7. Thus, there is a real number whose
square is 7.
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Set 2

1. For the set B = {−4,8}∪ [1,7)∪ [9,∞), viewed as a subset of R∗:

(i) B0 =

(ii) ∂B =

(iii) Bc =

(iv) the interior of the complement Bc is

(Bc)0 =

(v) (B0)c =

(vi) B =

(vii) ∂B =

(viii) ∂B0 =

(ix) The interior of (B0)c is:

(x) The closure of Bc is:
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2. Provide brief explanations/answers for the following:

(i) If U is an open set then U0 =

(ii) For any set A, the interior of the interior of A is the interior of A, i.e.
(A0)0 = A0.

(iii) The set [0,∞) is closed as a subset of R.

(iv) If S is closed then its closure S is S itself, i.e. S = S.

(v) Is there a subset of R whose boundary in R is all of R?
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3. Give an example of an open cover of (−1,1) which does not have a finite
subcover.
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Set 5

1. Consider the partition
X = (.25, .5, .75,1)

of [0,1]. For the function f on [0,1] given by

f (x) = x2 for all x ∈ [0,1]

(i) Work out the upper sum U( f ,X)

(ii) Work out the Riemann sum S( f ,X ,X∗), where

X∗ = (0.1,0.3,0.6,0.8)
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2. Consider the partition

X =

(
1
N
,

2
N
, ...,

N
N

)

of [0,1]. For the function f on [0,1] given by

f (x) = x2 for all x ∈ [0,1]

(i) Show that

U( f ,X) =
1
6

(
1+

1
N

)(
2+

1
N

)

[Hint: Use the sum formula 12 +22 + · · ·+ k2 = k(k+1)(2k+1)/6.]

(ii) Show that

L( f ,X) =
1
6

(
1− 1

N

)(
2− 1

N

)
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(iii) Assuming that f is integrable, prove that∫ 1

0
x2 dx =

1
3

using the definition of the Riemann integral and the results of (i) and
(ii).
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3. Consider the function g on [0,1] given by

g(x) =

{
1 if x is rational
−1 if x is irrational

Prove that g is not Riemann integrable.
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4. Prove that, for a,b ∈ R with a < b, if f ,g ∈ R [a,b], then f +g ∈ R [a,b].
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Set 6

1. Write out in a complete and neat way the proof that every continuous func-
tion on a compact interval is Riemann integrable.
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2. For a function
f : [a,b]→ R

we define the variation Var( f ) by

Var( f ) = sup
x,y∈[a,b]

( f (x)− f (y)) = M( f )−m( f ),

where
M( f ) = sup

x∈[a,b]
f (x), andm( f ) = inf

x∈[a,b]
f (x).

Prove that for functions f and g on [a,b],

Var( f g)≤M(| f |)Var(g)+m(|g|)Var( f )
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3. Explain the notion of the Riemann integral by clearly stating the definitions
of upper sums and lower sums, all properly explained in your own terms,
and then stating and explaining the definition of the Riemann integral. Work
out a simple integral in such a way as to illustrate the definition of the Rie-
mann integral. Clearly explain, in your own words, the Darboux criterion.
(Please note that every piece of notation you bring in must explained.)
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Test 1

1. Mark True or False:

(i) If S is a bounded subset of R then it contains a largest element

(ii) If S is a bounded, non-empty subset of R then it has a least upper
bound in R

(iii) The point ∞ is a boundary point of [1,∞]

(iv) The point 1 is an interior point of [0,1]

(v) The point 4 is a boundary point of [0,4)

(vi) The set [0,∞) is a closed subset of R∗

(vii) The set [0,∞) is a closed subset of R

(viii) Every real number is a boundary point of Q

(ix) The set {1,2,3} is compact

(x) The set (1,5] is compact



106 Ambar N. Sengupta

2. Prove one of the following statements:

(i) The union of any collection of open sets is open.

(ii) The complement of a closed set is open.

(ii) If S is a non-empty subset of R∗ then supS is in the closure S.
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3. State

(i) the Heine-Borel Theorem

(ii) the Bolzano-Weierstrass theorem.
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4. State the definitions of the following:

(i) Limit point of a sequence (xn) in R∗.

(ii) Limit of a sequence (xn)in R∗.

(iii) A Cauchy sequence in R.
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Test 2

1. Mark True or False:

(i) A continuous function on any subset of R is bounded.

(ii) A continuous function on any closed subset of R is bounded.

(iii) A continuous function on a compact set is bounded.

(iv) A continuous function on a compact set attains a mimimum value at
some point in the set.

(v) If a sequence of functions converges to a function pointwise then it
converges uniformly.

(vi) If a sequence of functions converges to a function unformly then it
converges pointwise.

(vii) If fn : [0,1]→ R is a sequence of functions, and fn → f , as n→ ∞,
pointwise, and if each fn is continuous at a point p ∈ [0,1], then f is
continuous at p.

(viii) Every uniformly Cauchy sequence of functions converges uniformly.

(ix) Every uniformly convergent sequence of functions is uniformly Cauchy.

(x) The uniform limit of a sequence of continuous functions is continuous.
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2. Suppose f : [0,1]→R is continuous, and f (p)> 0 for some p∈ [0,1]. Show
that there is a neighborhood U of p such that f (x)> 0 for all x ∈U ∩ [0,1].



Notes in Introductory Real Analysis 111

3. State

(i) the Intermediate Value Theorem

(ii) the Extreme Value theorem.
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4. Show that the equation
x3 +5x−2 = 0

has a solution in the interval (0,1).
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Test 3

1. Consider a function f on an interval [a,b]⊂ R, where a < b,:

f : [a,b]→ R.

(i) Let X = (a,b) be the simplest partition of [a,b]. Write down an ex-
pression for L( f ,X), explaining your notation clearly. (5pts)

(ii) Now consider a partition X ′ which contains one addtional point t, i.e.

X ′ = (a, t,b),

where a < t < b. Write down an expression for L( f ,X ′), again ex-
plaining the notation clearly. (5pts)
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(iii) Show that (5pts)

L( f ,X ′)≥ L( f ,X).
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2. Consider a function f : [a,b]→R, where [a,b]⊂R and a < b. Let X and Y
be partitions of [a,b] with Y containing all the points of X and some more.
Prove that (5pts)

U( f ,Y )−L( f ,Y )≤U( f ,X)−L( f ,X)
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3. If f ∈ R [a,b] and [c,d]⊂ [a,b] prove that f ∈ R [c,d]. (5pts)
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4. Mark TRUE or FALSE: (10pts)

a. For any function f : [a,b]→ R and any partition X = (x0, ...,xN) of
[a,b],

U( f ,X)−L( f ,X) =
N

∑
j=1

Var j( f )∆x j,

where Var j( f ) = supx∈[x j−1,x j] f (x)− infx∈[x j−1,x j] f (x), and ∆x j = x j−
x j−1.

b. Every Riemann integrable function is bounded.

c. Every bounded function is Riemann integrable.

d. Every monotone function is Riemann integrable.

e. Every continuous function is Riemann integrable.

f. Every Riemann integrable function is continuous.

g. If f ∈ R [a,b] and f is never zero then 1/ f ∈ R [a,b].

h. For a bounded function on an interval [a,b]⊂R, there is always a real
number which is ≥ all the lower sums and ≤ all the upper sums.

i. If | f | ∈ R [a,b] then f ∈ R [a,b].

j. If f ∈ R [a,b] then | f | ∈ R [a,b].
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Cumulative Question Set

1. Consider the set
S = [2,4)∪ (5,6)∪{1,8}.

Mark True or False:

(i) 2 is an interior point of S.

(ii) 4 is an interior point of S.

(iii) 4 is a boundary point of S.

(iv) 9 is an isolated point of S.

(v) 1 is an isolated point of S.

(vi) S is an open set.

(vii) S is a closed set.

(viii) S is compact.

(ix) Every sequence in S has a subsequence which is convergent.

(x) Every sequence in S has a subsequence converging to a point in S.
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2. Let S be a non-empty subset of R.

(i) If t a real number with t < supS. Explain why there exists x ∈ S with
x > t.

(ii) Show that there is a sequence of elements sn ∈ S such that sn→ supS.
[Hint: Let U = supS. First assume that S is bounded above; in this
case U ∈ R. Now apply (i) to produce an sn using 1/n for t. If you
have time, try also the case U = ∞.]
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3. Suppose f is continuous at a point p, and f (p) > 2. Prove that there is
a δ > 0 such that f (x) > 0 for all x in the domain of f which lie in the
neighborhood (p−δ, p+δ).
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4. Let f be a continuous function on a closed and bounded set S ⊂ R. Prove
that f reaches its maximum value on S, i.e. there is a point p ∈ S such that
f (p) = supx∈S f (x). [Hint: Let U = supx∈S f (x). Then choose a sequence
of points sn ∈ S such that f (sn)→U . Apply Bolzano-Weierstrass.]
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5. Let a,b ∈R, with a < b. Let ( fn) be a sequence of functions on [a,b]. Mark
True or False:

(i) If there is a function f on [a,b] such that fn(x)→ f (x) for all x ∈ [a,b]
then fn→ f uniformly.

(ii) If fn→ f uniformly then fn(x)→ f (x) for all x ∈ [a,b].

(iii) If ( fn) is Cauchy in sup-norm then fn→ f uniformly, for some func-
tion f on [a,b].

(iv) If fn→ f uniformly and each fn is continuous then f is continuous.

(v) If fn(x)→ f (x) for every x ∈ [a,b], and if each fn is continuous, then
f is continuous.
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6. Consider an interval [a,b]⊂ R. Mark true or false.

(i) C[a,b]⊂ R[a,b].

(ii) If f ∈ R[a,b] then ∣∣∣∫ b

a
f
∣∣∣≤ ∫ b

a
| f |

(iii) If fn ∈ R[a,b], for n ∈ N, and fn(x)→ f (x) for every x ∈ [a,b] then∫ b
a fn→

∫ b
a f .

(iv) If X is a partition of [a,b], and f ∈ R[a,b], then

L( f ,X)≤
∫ b

a
f

(v) If f is a function on [a,b], and X and Y are partitions of [a,b] with
X ⊂ Y then

U( f ,X)<U( f ,Y )
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