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Introduction

The material of these notes is manifestly incomplete with respect to the present knowl-
edge of Mathematical Oncology, naïve from the biomedical viewpoint, often not rigorous
from the Mathematical side. We apologize for the mistakes and, with several experts and
colleagues, for the lack of references. The only reason to write these notes in the present
poor form is to provide notes for lectures and the beginning of discussion with groups of
students. I thank several master and Ph.D. students in Pisa (Manuela Benedetti, Michele
Coghi, Valeria De Mattei, Dario Domingo, Mario Maurelli, Giovanni Zanco and others)
for sharing with me the first steps in this activity and the Ph.D. program and students in
Padova for giving me the opportunity to prepare these notes and give the lectures.
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Part I

Macroscopic models

1





Chapter 1

Introduction to macroscopic and
microscopic models

1.1 Introduction to a few elements of biology of cancer

Cancer starts from a single normal cell which, due to external factors or just random
mutations, undergoes a number of genetic modification which give her the characteristics
of a cancel cell. The first one of these characteristics (phenotypes) is that it duplicates
without need of special inputs and ignoring all alarm systems which would stop it or kill
it (5-6 special genetic mutations are necessary, hence tumors arise either by chance after a
considerable time of life, or due to strong external factors like radiations, smoke etc.); and
the generated cells are able to duplicate again. The full cell cycle (duplication) takes an
average of 16 hours. Plus some rest, we may roughly think that with a frequency higher
than one day each cancer cell duplicates. Thus, from the single initial cell, in a relatively
short period a very large number of new cancer cells appear.

These cells occupy a portion of some tissue (skin, liver, etc.). The tumor mass starts
to be detectable when there are around 109 cancer cells, a portion of tissue of diameter of
few millimeters. The diameter of a single (normal or cancer) cell is of the order of 10 µn
(1/100 millimeters). Usually, before, it is invisible and innocuous. But 1012 cancer cells is
the usual order of magnitude leading to death, so in principle the distance separating the
two scales is not so large.

Let us stop to "admire" a light micrograph (photomicrograph) of tumor cells in the
epithelial region. These pictures (visit the indicated sites) give us a rather realistic idea of
the complexity of the medium in which a tumor takes place.

From: http://www.pathologyatlas.ro/index.php

see http://www.pathologyatlas.ro/squamous-cell-carcinoma-skin.php

3
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See also pictures at the sites:
http://histol.narod.ru/atlas-en/content-en.htm
http://histology-world.com/photoalbum
A tumor can be in different phases. The initial phase is called in situ. Cancer cells of

such tumor have the proliferating phenotype but not worse. They duplicate and, due to
pressure caused by the volume they have to occupy (each duplication doubles the occupied
volume), the tumor mass spreads, increases. But cells keep close one to the other, they
still are bounded by adhesion forces.

Later on, let us say at a random time, some cancer cell acquires the invasive phenotype
and the tumor enter a new phase, the invasive phase: the cell may move, adhesion to
other cancer cells is no more imposed, so the cell starts to move (very slowly!) in the
surrounding space, called stroma, filled in with Extracellular Matrix (ECM), a compound
of several objects and ingredients. The cell performs some sort of erratic motion, with a
tendency to move in the direction of gradients of some quantity, that can be Oxygen or
density of ECM. When an invasive cell reaches a blood vessel, it tries to enter it. Entering
the blood stream requires special skills, phenotypes. If it succeeds, it moves in the flow and
tries to attach somewhere, to colonize, namely to exit the stream and restart proliferating
(other phenotypes). This is a very complex procedure, where only few cells over millions
survive, but it is the metastatic phase, the most dangerous of course.

A tumor, both in the in situ or invasive phase, may start the so called angiogenic
cascade, namely it enters the angiogenic phase. Primarily, this is due to the scarcity of
Oxygen inside the tumor mass. Thus cells inside the tumor send messengers to blood
vessels which sprout, send filaments of microvessels in the direction of the tumor. When
the tumor is reached by these new vessels, oxygen supply is restored. This has the bad
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consequence that the tumor becomes stronger, but even worse the consequence that a
huge amount of cancer cells come in contact with blood vessels (not only the invasive cells
which move). Moreover, the microvessels created by this procedure are less strong than the
already existing vessels, and thus it is easier for the tumor cells to enter the blood stream.
Thus angiogenesis is often associated with a higher risk of metastasis.

Tumors are attached either by means of surgery, or by chemotherapy, or both. In both
cases there is a possibility that some cells have not been taken away or killed. In the case
of surgery, the main problem is the amount of tissue, the boarder: it should be a little more
extended than the mass observed by ultrasonography, or other means, but how much? Of
course, more extend, more invasive is the surgery. Similarly, in the case of chemotherapy
typically only a percentage of cells is killed, not all. Chemotherapy has the advantage to
kill cells everywhere, hence also those which moved away from the main mass; but it has
the disadvantage to kill also sane cells, typically those which proliferate for physiological
reasons.

It is obvious that one should say much more to introduce problems of tumor biology
and medicine, but let us stop and say more in subsequent sections.

1.2 Macroscopic and microscopic models

Cancer is a phenomenon at cell level, a few micron, which become visible and dangerous
at the scale of a few millimeters or centimeters, the tissue level. These two levels, cell and
tissue ones, will be called microscopic and macroscopic levels.

This is different from statistical physics, where microscopic refers to molecular level.
Another possible misunderstanding is that macroscopic refers to the tissue level, or even
just to a portion of tissue, not the full human body.

A macroscopic tumor, as we said above, has 108 − 1012 cells. It is reasonable to apply
ideas similar to statistical physics, although gap of scales is much smaller.

At the microscopic level, stochasticity is essential, even more than in the common
descriptions of molecular dynamics in statistical physics. At the macroscopic level, it is
reasonable to use deterministic models.

To exemplify, we have in mind to use stochastic particle systems to describe cell motion
and interaction; deterministic partial differential equations to describe a tumor from the
macroscopic viewpoint.

The concept of macroscopic limit is essential for the sequel: it is the link between
the two levels. When we can, we try to understand which are the PDEs arising from a
microscopic model of interacting particles, in the limit when the number of particles tends
to infinity.
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1.2.1 Mechanical perspective

We adopt a mechanical perspective: we are interested in the phenomena that can be
described and explained by mechanical ideas: motion of cells (considered like particles),
change in time of the density of cells. In the biomedical study of tumors there are a lot of
other aspects, like those related to genetic mutations, protein networks which we do not
touch.

1.2.2 Special pedagogical path

If the mathematical theory of tumors would be more mature, it could be convenient to
proceed step by step, from the most elementary ideas and models to the more diffi cult
ones.

It is not so, the literature is rich but still disorganized. Thus I prefer to start in a
more provocative way: I will present a very advanced PDE, macroscopic, model of invasive
tumor with angiogenesis.

Motivated by it, we shall make steps in a backward direction, to understand its pieces,
identifying also some drawbacks of the big model, asking questions which lead us in other
directions. At the end I hope that some coherent picture arises, but not "given from above",
as in well structured mathematical theories.

Thus:

• the remaining part of Chapter 1 is devoted to formulate the big complex model, its bi-
ological motivation, and also start thinking to a corresponding microscopic stochastic
model of cells.

• Chapter 2 extracts a small part of the big model, a sub-model, called Fisher-KPP (it
existed long time before the big one) and start analyzing it in some detail, rigorous
and numerical. Again we see some element of microscopic description, but just a few
ones.

• Chapter 3 goes back to the big model and identifies a number of diffi culties, critical
points, which to a large extent I do not know how to solve. Numerics of the big model
will be shown. Chapters 1-2-3 have been devoted mainly to macroscopic aspects, with
few initial remarks on particle systems.

• Chapters 4-5-6 are more intensively devoted to microscopic stochastic models, and
their macroscopic limits. Thus we restart from cells, learn more and describe them
from scratch, directly (not as a by-product of the PDE description). Chapter 4 is
also devoted to the in situ phase and to the mathematics of proliferation.

• Chapter 5 describes, in rather informal way, different regimes of interaction (long
range, short range, intermediate one) and different expected PDEs in the macroscopic
limit.
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• Chapter 6 is devoted to some mathematical details about these interacting particle
systems and their large scale limit. We present in particular some elements of the
mean field theory and of the intermediate regime case. At the end we reach a picture
of micro and macroscopic models, with different level of complexity.

1.3 Role of Mathematics

Nowadays the mathematical models are still too rough to give really useful informations
for cancer medicine. The question is what we may hope to get. It is better to discuss this
topic at the end of the lectures but at least one sentence is useful now.

Assume that, thanks to a few observations (like three radiographies, once a week, for
three weeks) we may compare different models and decide whether it is more plausible
that a tumor is in the in situ phase instead of the beginning of the invasive phase or the
angiogenic phase. To understand this by visual inspection (by ultrasonography etc.) is not
easy. The mathematical model captures the differences in evolution and may reveal which
model fits better the recorded evolution.

Then, the doctor has more informations to decide about surgery/chemotherapy and
their amount.

For this reason, we shall pay particular attention, in these lectures, to the mathematical
differences in the description of different phases.

Let us also mention that another, more mainstream, declared purpose is the possibility
to run simulations under different therapies, schedules of chemotherapy, combination of
surgery and chemotherapy, looking for optimal choices.

1.4 An advanced model of invasive tumor with angiogenesis

Let us describe a model introduced by [22]. This model is made of 7 coupled PDE-ODE.
Let us immediately emphasize that this is not "the model" of cancer growth. It is one
model, with its own degree of sophistication, and describing a tumor in a particular phase.
It is a model of mechanical type, dealing with aspects like random motion, motion along
gradients, proliferation, change of type.

1.4.1 Normoxic, hypoxic and apoptotic cells

Cancer cells are mainly characterized by their tendency to duplicate. However, when they
receive an insuffi cient amount of oxygen, or when they do not have space enough, their
proliferation is inhibited.

The model of [22] splits the category of cancer cells in three classes:

1. normoxic cells: healthy, proliferating tumor cells, with normal oxygen supply
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2. hypoxic cells: quiescent tumor cells, with poor oxygen supply

3. apoptotic cells: death or programmed to death tumor cells

The figure below shows schematically the obvious fact that in a three-dimensional tumor
mass the hypoxic cells are those inside, with an even smaller core of apoptotic cells.

PDE for normoxic cells

The model prescribes the following PDE for normoxic cells:

∂N
∂t

= k1∆N︸ ︷︷ ︸
background diffusion

(N (t, x) = normoxic cell density)

div (σ (N )∇N )︸ ︷︷ ︸
crowding-driven diffusion

+ c1N (Vmax − V)︸ ︷︷ ︸
proliferation

− χ1 div (N∇m)︸ ︷︷ ︸
transport along ECM gradient

− αN→H1o≤oHN︸ ︷︷ ︸
normoxic → hypoxic

+ αH→N 1o>oHH︸ ︷︷ ︸
hypoxic → normoxic

• First, a background diffusion is admitted; and no adhesion constraint is imposed; this
is the invasive phase. The value of the constant k1 is, however, extremely small, the
diffusion is extremely slow.

• Second, a crowding-driven diffusion is introduced. This is a very interesting term,
which will occupy our effort quite often, but not now, it is too early. Just as a first
idea, this term enforces the diffusion when the density of cells is larger.

• Third, proliferation. If we neglect space, the time evolution of a complete proliferation
is given by the differential equation x′ (t) = λx (t), where λ is the proliferation rate.
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One can consider a model with time-dependent rate. In the PDE above the time-
dependent rate is c1 (Vmax − V): it decreases to zero when the total density of cell
(plus ECM)

V = N +H+A+ E +m = total density of cells plus ECM

approaches the threshold Vmax.

• Then, transport: normoxic cells, beyond the random motion described by k1∆N ,
have a tendency to move along the gradient of m, the ECM density.

• Finally, some normoxic cells become hypoxic (when o≤oH, namely the oxygen is too
low) and some hypoxic cells are restored to the normoxic state (when o>oH).

ODE for hypoxic cells

Hypoxic cells do not move and do not proliferate. Their number increases when some
normoxic cell deteriorate to the hypoxic state (for o≤oH). And decreases either when they
are restored to the normoxic state (for o>oH) or when they degenerate to apoptotic cells
(for o≤oA):

dH
dt

= αN→H1o≤oHN︸ ︷︷ ︸
normoxic → hypoxic

− αH→N 1o≥oHH︸ ︷︷ ︸
hypoxic → normoxic

− αH→A1o≤oAH︸ ︷︷ ︸
hypoxic → apoptotic

(H (t, x) = hypoxic cell density)

ODE for apoptotic cells

These cells are programmed to death. It means that they dissolve in a regulated way, not
by necrosis and causing infections. The number of apoptotic cells can only increase, due
to the hypoxic cells that deteriorate:

dA
dt

= αH→A1o≤oAH︸ ︷︷ ︸
hypoxic → apoptotic

(A (t, x) = apoptotic cell density)

ODE for ECM

In this model, it is assumed that the Extracellular Matrix can only deteriorate, due to the
invasion of normoxic cells:

dm

dt
= − βmN︸ ︷︷ ︸

degradation by normoxic cells

(m (t, x) = ExtraCellular Matrix)
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Crowding-driven diffusion

In the equation for normoxic cells we have the term

div (σ (N )∇N )

which we have called crowding-driven diffusion. The prescription for σ (N ) in [22] is (up
to constants)

σ (N ) = max (N −N0, 0) .

In other words, when the density of normoxic cells passes the threshold N0, an additional
diffusion starts. This term is very intriguing and typical of [22]. It is similar to (up to
constants)

σ (N ) = N

which corresponds to
1

2
∆N 2

also called porous media diffusion.

1.4.2 The endothelial cascade

Hypoxic cells need more oxygen to survive. Thus they initiate a cascade of cellular inter-
actions. The result is angiogenesis: new vascularization is developed to supply the tumor
(microvessels branching from main vessels in the direction of the tumor).

A messenger from hypoxic cells is sent to endothelial cells: it is called VEGF (Vascular
Endothelial Growth Factor). Here are two pictures taken from the web (see [30] for the
second one, which includes some of the complicate molecular details):
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See also the movies at the web sites [28], [29].

PDEs for the VEGF concentration

VEGF is a density of object at molecular level. These proteins have always a diffusion
(opposite to cells, which diffuse only under special circumstances):

∂g

∂t
= k4∆g︸ ︷︷ ︸
diffusion

(g (t, x) = VEGF concentration)

+ αH→gH︸ ︷︷ ︸
production by hypoxic cells

− αg→EEg︸ ︷︷ ︸
uptake by endothelial cells

and the constant k4 is much bigger than k1.
Moreover, the concentration of VEGF is produced by the hypoxic cells, hence increases

due to their presence, and VEGF is absorbed by endothelial cells (those forming the bound-
ary of blood vessels).

PDEs for endothelial ramification

As the pictures above show, endothelial cells do not diffuse as isolated individuals but
they propagate as microvessels. However, keeping track of their topological structure is
diffi cult and perhaps not so important (in the opinion of the authors of this model), hence
the concept of density of endothelial cells, or maybe more precisely density of endothelial
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ramification, is introduced. The PDE is:

∂E
∂t

= k2∆E︸ ︷︷ ︸
diffusion

(E (t, x) = density of endothelial ramification)

− χ2 div (E∇g)︸ ︷︷ ︸
transport along VEGF gradient

+ c2Eg (Vmax − V)︸ ︷︷ ︸
proliferation under VEGF presence

where

• random motion is considered (however, as for normoxic cells, the value of the constant
k1 is extremely small)

• endothelial cells move along the VEGF gradient, in order to reach the area occupied
by hypoxic cells

• in order to build new vessels, they need to proliferate; the rate of proliferation is
c2g (Vmax − V), namely it is proportional to VEGF concentration, and is inhibited
by the same volume constraint of normoxic proliferation.

PDEs for oxygen concentration

Oxygen is also molecular-level hence it diffuses, with k3 is much bigger than k1 (also bigger
than k4)

∂o

∂t
= k3∆o︸ ︷︷ ︸
diffusion

(o (t, x) = oxygen concentration)

+ c3E (omax − o)︸ ︷︷ ︸
production by endothelial cells

− αo→N ,H,E (N +H+ E) o︸ ︷︷ ︸
uptake by all living cells

− γo︸︷︷︸
oxygen decay

and

• oxygen concentration increases proportionally to the density of endothelial ramifica-
tion, but only up to omax

• it decreases due to absorption by various cells (not the apoptotic ones)

• it decays (slowly).
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Summary of variables

It may be useful to summarize the list of variables:
N (t, x) = density of normoxic cells
H (t, x) = density of hypoxic cells
A (t, x) = density of apoptotic cells
E (t, x) = density of endothelial cells (or density of vasculature)
o (t, x) = oxygen concentration
g (t, x) = angiogenic growth factor (VEGF) concentration
m (t, x) = ECM (ExtraCellular Matrix)

Summary of constants. Diffi culties

The next list of constants is given mostly to emphasize a main diffi culty with this kind of
complex models: some of these constants are poorly known and parameter fit is excluded
by the impossibility of real experiment.

k1 = background random motility coeffi cient of normoxic cells
k2 = random motility coeffi cient of endothelial cells
k3 = diffusion coeffi cient of oxygen
k4 = diffusion coeffi cient of angiogenic factor
χ1 = transport coeffi cient of normoxic cells along ECM gradient
χ2 = transport coeffi cient of endothelial cells along VEGF gradient
Vcr = threshold for crowding-driven diffusion
Vmax = limit to total volume of cells and ECM
c1 = proliferation rate of normoxic cells
c2 = proliferation rate of endothelial cells
c3 = production rate of oxygen
αN→H = decay rate from normoxic to hypoxic cells
αH→N = restoration rate from hypoxic to normoxic cells
αH→A = decay rate from hypoxic to apoptotic cells
αH→g = production rate of VEGF from hypoxic cells
αo→N ,H,E = uptake rate of oxygen from all living cells
αg→E = uptake rate of VEGF from endothelial cells
omax = maximum oxygen concentration
oH = oxygen threshold for transition normoxic ↔ hypoxic
oA = oxygen threshold for transition hypoxic ↔ apoptotic
β = rate of ECM degradation
γ = oxygen decay rate
To stress the diffi culties, let us also mention the fact that a tissue is a highly com-

plex environment, possibly highly heterogeneous. The first picture of Chapter one, like
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for instance the next one, are examples of the geometrical complexity of a tissue. This
complexity is not considered by the model above, at least is this idealized form.

Simulations

In Chapter 3 we shall devote some time to discuss numerical simulation of the full system
and a number of its reductions. However, just to give a first impression, let us see some of
the pictures reported by the paper [22].

Blue: density of normoxic cells; light blue (green): extracellular matrix

Dotted black: density of hypoxic cells; red: density of endothelial ramification.
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We see a front of normoxic cells propagating in the medium (they degradate ECM),
followed by a front of hypoxic cells (it also apparently disappears due to the decay to
apoptotic cells, which are not shown). The endothelial ramification is silent for a while,
then it is triggered.

1.5 Stochastic dynamics associated to some element of the
previous model

Some elements of the previous model have a straightforward translation into a microscopic,
cell level, random dynamics.

1.5.1 SDE and Fokker-Planck equation

Let us recall, for this purpose, the relation between Fokker-Planck equations and SDEs. Let
(Wt)t≥0 be a Brownian motion in Rk, defined on a probability space (Ω,F , P ). Let

(
FBt
)
t≥0

be the associated completed filtration. Let b : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×k be
continuous functions such that, for some constants Lb, Lσ > 0,

|b (t, x)− b (t, y)| ≤ Lb |x− y|
|σ (t, x)− σ (t, y)| ≤ Lσ |x− y|
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for all x, y ∈ Rd and all t ∈ [0, T ]. Let X0 be an F0-measurable r.v. with values in Rd.
Consider the SDE in Rd

dXt = b (t,Xt) dt+ σ (t,Xt) dWt (1.1)

and say that a stochastic process (Xt)t∈[0,T ] is a strong solution if it is continuous, adapted

to
(
FBt
)
t∈[0,T ]

and a.s. satisfies

Xt = X0 +

∫ t

0
b (s,Xs) ds+

∫ t

0
σ (s,Xs) dWs

for all t ∈ [0, T ]. Two solutions coincide if they are indistinguishable processes. Let us
recall the following classical result:

Theorem 1 There exists a unique strong solution.

Consider now the following parabolic PDE on [0, T ]× Rd

∂p

∂t
=

1

2

∑
∂i∂j (aijp)− div (pb) , p|t=0 = p0 (1.2)

called Fokker-Planck equation. Here

a = σσT .

Although in many cases it has regular solutions, in order to minimize the theory it is
convenient to introduce the concept of measure-valued solution. We restrict to the case of
probability measures. We loosely write

∂µt
∂t

=
1

2

d∑
i,j=1

∂i∂j (aijµt)− div (µtb) , µ|t=0 = µ0 (1.3)

but we mean the following concept. By 〈µt, φ〉 we mean
∫
Rd φ (x)µt (dx). By C∞c

(
Rd
)
we

denote the space of smooth compact support functions φ : Rd → R, and by C0
c

(
[0, T ]× Rd

)
the space of continuous compact support functions ϕ : [0, T ]× Rd → R,

Definition 2 A measure-valued solution of the Fokker-Planck equation (1.3) is a family
of Borel probability measures (µt)t∈[0,T ] on Rd such that t 7→ 〈µt, ϕ (t, .)〉 is measurable for
all ϕ ∈ C0

c

(
[0, T ]× Rd

)
and

〈µt, φ〉 − 〈µ0, φ〉 =
1

2

d∑
i,j=1

∫ t

0
〈µs, aij (s, .) ∂i∂jφ〉 ds+

∫ t

0
〈µs, b (s, .) · ∇φ〉 ds

for every φ ∈ C∞c
(
Rd
)
.
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Denote now by µt the law of Xt, the solution of equation (1.1). To simplify the proof
we need a little extra assumption. The simplest is to assume that σ is bounded (otherwise
see Remark 4 below).

Theorem 3 The law µt of Xt is a measure-valued solution of the the Fokker-Planck
equation (1.3).

Proof. By Itô formula for φ (Xt):

dφ (Xt) = ∇φ (Xt) · dXt +
1

2

d∑
i,j=1

∂i∂jφ (Xt) aij (t,Xt) dt

= ∇φ (Xt) · b (t,Xt) dt+∇φ (Xt) · σ (t,Xt) dWt +
1

2

d∑
i,j=1

∂i∂jφ (Xt) aij (t,Xt) dt.

We have E
∫ T

0 |∇φ (Xt) · σ (t,Xt)|2 dt <∞ (we use here that σ is bounded; and also ∇φ is
bounded), hence E

∫ t
0 ∇φ (Xs) · σ (s,Xs) dWs = 0 and thus

E [φ (Xt)]−E [φ (X0)] = E

∫ t

0
∇φ (Xs) · b (t,Xs) ds+

1

2

d∑
i,j=1

E

∫ t

0
∂i∂jφ (Xs) aij (s,Xs) ds.

Since E [φ (Xt)] =
∫
Rd φ (x)µt (dx) (and similarly for the other terms) we get the weak for-

mulation of equation (1.3). The preliminary property that t 7→ 〈µt, ϕ (t, .)〉 = E [ϕ (t,Xt)]
is measurable for all ϕ ∈ C0

c

(
[0, T ]× Rd

)
is easy.

Remark 4 Instead of assuming σ bounded, it is suffi cient to assume that E
[
|X0|2

]
<∞.

This implies E
[
supt∈[0,T ] |Xt|2

]
< ∞, which, along with the linear growth of σ, will give

us the estimate E
∫ T

0 |∇φ (Xt) · σ (t,Xt)|2 dt <∞ needed in the proof above.

Remark 5 Under suitable assumptions, like the simple case when aij is the identity ma-
trix, if µ0 has a density p0 then also µt has a density p (t, ·), often with some regularity
gained by the parabolic structures, and thus the Fokker-Planck equation in the differential
form (1.2) holds. We do not insist rigorously in this direction since our purpose here is
only to understand the modeling aspects, more precisely the shape of the microscopic model
behind the PDEs of the previous sections.

1.5.2 Non-interacting particles and Fokker-Planck as macroscopic limit

We may reformulate Theorem 3 as a macroscopic limit of a system of non-interacting
particles.
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Let Wn
t , n ∈ N, be a sequence of independent Brownian motions in Rk, defined on a

probability space (Ω,F , P ). Let b, σ as above. Consider the sequence of SDEs in Rd

dXn
t = b (t,Xn

t ) dt+ σ (t,Xn
t ) dWn

t

with Xn
0 given independent Rd-r.v.’s, F0-measurable, with the same law µ0. Then, since

weak uniqueness holds for the SDE, the processes Xn
t have the same law; in particular,

with the notations above, the marginal at time t of Xn
t is µt. Moreover, the processes X

n
t

are independent, since each Xn
t is adapted to the corresponding Brownian motion W

n
t ,

which are independent.
Consider, for each N ∈ N, the random probability measure, called empirical measure,

SNt :=
1

N

N∑
n=1

δXn
t

namely, for φ ∈ C0
c

(
Rd
)
, 〈

SNt , φ
〉

=
1

N

N∑
n=1

φ (Xn
t ) .

It is a sort of discrete density of particles. The following simple theorem is our first example
of macroscopic limit of a system of microscopic particles.

Theorem 6 For every t ∈ [0, T ] and φ ∈ C0
c

(
Rd
)
, a.s.

lim
N→∞

〈
SNt , φ

〉
= 〈µt, φ〉 .

In other words, SNt converges weakly, a.s., to a measure-valued solution of the Fokker-
Planck equation (1.3).

Proof. Since, at each time t, the r.v. φ (Xn
t ) are bounded i.i.d., by the strong law of large

numbers we have, a.s.,

lim
N→∞

〈
SNt , φ

〉
= E

[
φ
(
X1
t

)]
= 〈µt, φ〉 .

And by Theorem 3 above, µt is a measure-valued solution of the the Fokker-Planck equation
(1.3). The only technical detail that we could discuss more deeply is the precise meaning
of the sentence "converges weakly, a.s.". The simplest meaning is the a.s. convergence
limN→∞

〈
SNt , φ

〉
= 〈µt, φ〉, for every a priori given φ ∈ C0

c

(
Rd
)
. But this implies the

stronger concept that, chosen a priori ω ∈ Ω a.s., we have limN→∞
〈
SNt , φ

〉
= 〈µt, φ〉

for every φ ∈ C0
c

(
Rd
)
(namely the null set of ω’s where the convergence could fail is

independent of φ). To reach this result it is suffi cient to notice first that it holds for any
given countable set {φn}. Then, it is possible to chose such set {φn} ⊂ C0

c

(
Rd
)
in a way
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that it is dense in C0
c

(
Rd
)
, in the topology of uniform convergence on the full space Rd.

Therefore, taken φ ∈ C0
c

(
Rd
)
, taken a subsequence

{
φnk
}
which converges uniformly to φ,

one has∣∣〈SNt , φ〉− 〈µt, φ〉∣∣ ≤ ∣∣〈SNt , φ〉− 〈SNt , φnk〉∣∣+
∣∣〈SNt , φnk〉− 〈µt, φnk〉∣∣+

∣∣〈µt, φnk〉− 〈µt, φ〉∣∣
≤ 2

∥∥φnk − φ∥∥0
+
∣∣〈SNt , φnk〉− 〈µt, φnk〉∣∣ .

Choose ω ∈ Ω such that limN→∞
〈
SNt (ω) , φnk

〉
=
〈
µt, φnk

〉
for all k ∈ N. Given ε > 0, we

first take k such that
∥∥φnk − φ∥∥0

< ε
4 ; then we takeN0 such that

∣∣〈SNt (ω) , φnk
〉
−
〈
µt, φnk

〉∣∣ <
ε
2 for allN > N0. We get

∣∣〈SNt (ω) , φ
〉
− 〈µt, φ〉

∣∣ < ε for allN > N0. Hence limN→∞
〈
SNt , φ

〉
=

〈µt, φ〉 on the same set of ω’s where the convergence was true for all φnk , k ∈ N. The proof
is complete.

1.5.3 Fragments of microscopic model associated to the PDE system

The full system of 7 equations above cannot be split into exact sub-systems. But we can
consider simplified versions just to start understanding the translation from Macroscopic
to Microscopic. Consider for instance the closed system between normoxic cell density and
ECM, neglecting all other terms and equations:

∂N
∂t

= k1∆N︸ ︷︷ ︸
background diffusion

− χ1 div (N∇m)︸ ︷︷ ︸
transport along ECM gradient

dm

dt
= − βmN︸ ︷︷ ︸

degradation by normoxic cells

If m would be a priori given, we could say that N is the weak limit of

SNn (t) :=
1

n

n∑
i=1

δXNi (t)

where XNi (t), i = 1, 2, ... are the positions of independent normoxic cells subject to the
microscopic dynamics

dXNi (t) = χ1∇m
(
t,XNi (t)

)
dt+

√
2k1dW

N
i (t) .

But m (t, x) is not given. To simplify, we could decide that the dynamics acts in two
steps, like in the numerical methods called slitting up or decomposition: in one step, m
is considered as a given function, and the scheme above applies; in the next step, N (t, x)
is considered as a given function, and m is computed from equation dm

dt = −βmN ; to be
realistic, the two steps should be short.
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Otherwise, if we do not want to use a two-step mechanism, we have to couple the two
equations. In this case we have to solve the system

dm

dt
= −βmN

N (t, ·) = lim
n→∞

1

n

n∑
i=1

δXNi (t)

dXNi (t) = χ1∇m
(
t,XNi (t)

)
dt+

√
2k1dW

N
i (t) .

Even more realistically, we should not pass to the limit inside the system, but only a
posteriori. We mane that we should define some relatively smooth function Nn (t, x) based
on 1

n

∑n
i=1 δXNi (t) and consider the system

dmn

dt
= −βmnNn

dXNi (t) = χ1∇mn

(
t,XNi (t)

)
dt+

√
2k1dW

N
i (t) .

In absence of better ideas, to define Nn (t, x) one could take the convolution of the measure
1
n

∑n
i=1 δXNi (t) with a smooth mollifier θn (x) = ε−dn θ

(
ε−1
n x

)
(under usual assumptions on

θ), namely

Nn (t, x) =
1

n

n∑
i=1

θn
(
x−XNi (t)

)
.

Now the limit as n→∞ of the solution of the system

dmn (t, x)

dt
= −β

n

n∑
i=1

θn
(
x−XNi (t)

)
mn (t, x)

dXNi (t) = χ1∇mn

(
t,XNi (t)

)
dt+

√
2k1dW

N
i (t)

has to be investigated ex novo, it is not a simple consequence of the facts seen above on
Fokker-Planck equations.

Similar arguments can be applied to the equation for endothelial density,

∂E
∂t

= k2∆E︸ ︷︷ ︸
diffusion

− χ2 div (E∇g)︸ ︷︷ ︸
transport along VEGF gradient

by introducing the positions of single endothelial cells XEi (t), i = 1, 2, ..., subject to the
equations

dXEi (t) = χ2∇g
(
t,XEi (t)

)
dt+

√
2k2dW

E
i (t) .



1.5. STOCHASTIC DYNAMICS ASSOCIATED TO SOME ELEMENTOF THE PREVIOUSMODEL21

Clearly, to reach a full microscopic description we should be able to describe other
diffi cult terms, like nonlinear diffusions

div (σ (N )∇N )︸ ︷︷ ︸
crowding-driven diffusion

change of type
αH→N 1o≥oHH︸ ︷︷ ︸
hypoxic → normoxic

proliferation
c1N (Vmax − V)︸ ︷︷ ︸

proliferation

and so on. The message of this section is that linear diffusion terms and transport ones have
a simple microscopic counterpart, suggested by the theory of Fokker-Planck equations.
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Chapter 2

Fisher-Kolmogorov-Petrovskii-
Piskunov
model

2.1 Introduction

The complexity of the model of Chapter 1, invasive with angiogenesis, does not allow a
straightforward mathematical analysis and thus it is convenient to start by understanding
an easier model, considered in the earlier literature on oncology and other applications in
biology.

It deals with the space-time evolution of a single quantity, the density of tumor cells.
It is assumed subject to diffusion and proliferation:

∂u

∂t
= D∆u+ ρu (umax − u) , u|t=0 = u0. (2.1)

The diffusion term is the usual one, based on Fick law, with constant diffusion coeffi cient
D. Proliferation happens at each point x. Proliferation rate is ρ (umax − u), ρ a positive
constant, hence damped by the factor (umax − u) which reduces proliferation to zero when
u reaches the threshold umax. Where the density is higher, proliferation is inhibited.

The dynamical mechanism can be intuitively described as follows: if only the term
ρu (umax − u) was present, the density u would increase up to umax at each point x; diffusion
redistributes the density from higher to lower zones. Progressively, the density will occupy
new and new space (due to diffusion) and at the same time will increase towards umax.

23
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2.1.1 Scaling transformations

Setting U = u/umax, dividing (2.1) by umax we get

∂U

∂t
= D∆U + ρ̃U (1− U)

with ρ̃ = ρumax, hence we may replace umax by 1 with a simple transformation (modifying
ρ). Setting V (t, x) = U (λt, µx), with λ, µ > 0, we have

∂V

∂t
(t, x) = λ

∂U

∂t
(λt, µx) = λD (∆U) (λt, µx) + λρ̃U (λt, µx) (1− U (λt, µx))

= D̂∆V (t, x) + ρ̂V (t, x) (1− V (t, x))

with D̂ = λD
µ2
, ρ̂ = λρ̃. Thus, by a simple transformation, we may arbitrarily change both

diffusion and proliferation constants. For these reasons, it is suffi cient to restrict to the
canonical model

∂u

∂t
=

1

2
∆u+ u (1− u) . (2.2)

Moreover, the function v = 1− u satisfies
∂v

∂t
= −∂u

∂t
= −1

2
∆u− u (1− u)

=
1

2
∆v − uv =

1

2
∆v − (1− v) v

hence we may either study (2.2), or

∂v

∂t
=

1

2
∆v + v2 − v.

2.1.2 Simulations

The R codes for the numerical simulations shown here are given in the Appendix (Chapter
7).
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2.2 Traveling waves

Simulations with 0 ≤ u ≤ 1 clearly reveal the existence of a front, a wave, which moves.
Assume there is a solution of the form

u (t, x) = w (x− ct) .

Substituting into equation (2.2) we get

−cw′ = 1

2
w′′ + w − w2. (2.3)

Assume we start with the initial condition u (0, x) = 1x<0 (x). If it happens that it becomes
closer and closer to one of these traveling waves (for a suitable value of c), then the function
w must fulfill

lim
x→−∞

w (x) = 1, lim
x→+∞

w (x) = 0. (2.4)

Let us also ask that w is decreasing.

Theorem 7 If 0 ≤ c <
√

2, there are no solutions of (2.3)-(2.4). If c ≥
√

2, there exists
one and only one solution, denoted in the sequel by wc (x).

Proof. Let us sketch the proof of [7]. Equation (2.3) is equivalent to the system

w′ = z

z′ = −2cz − 2w + 2w2.

To have a better dynamical intuition, let us write t for x (time) and (x, y) for (w,w′).
Hence we study the system

x′ (t) = y (t)

y′ (t) = −2cy (t)− 2x (t) + 2x (t)2 .
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We are looking for solutions (x (t) , y (t)) defined on the whole R, such that

lim
t→−∞

x (t) = 1, lim
t→+∞

x (t) = 0.

The fixed points (x, y) of the system satisfy

y = 0

−2cy − 2x+ 2x2 = 0

hence −2x+ 2x2 = 0, x = 0 or x = 1, namely

A = (0, 0) , B = (1, 0) .

Denoting by f (x, y) the vector field on the right of the system, we have

Df (x, y) =

(
0 1

−2 + 4x −2c

)
hence

Df (A) =

(
0 1
−2 −2c

)
, Df (B) =

(
0 1
2 −2c

)
.

With some computations (here done by Maple) one discovers that Df (A) has eigenvectors

eA1 =

(
1
2

√
c2 − 2− 1

2c
1

)
, eA2 =

(
−1

2c−
1
2

√
c2 − 2

1

)
with eigenvalues

−c−
√
c2 − 2,

√
c2 − 2− c

while Df (B) has eigenvectors

eB1 =

(
1
2c−

1
2

√
c2 + 2

1

)
, eB2 =

(
1
2c+ 1

2

√
c2 + 2

1

)
with eigenvalues

−c−
√
c2 + 2,

√
c2 + 2− c.

We always have c ≥ 0, hence both eigenvalues of Df (A) are negative, therefore A is a
locally attractive stationary point; while Df (B) has eigenvalues of opposite sign, namely
it is an hyperbolic point with unstable manifold tangent to eB2 , which spans a line through
the first and third quadrant.

The intuition is the following one: if we have a solution, it arises at time −∞ from B
(since limt→−∞ x (t) = 1) and converges to A as t → +∞ (because limt→+∞ x (t) = 0);
from B, being forced to exit along the unstable manifold, and being constrained to have
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x ∈ [0, 1], it must exit in the third quadrant (centered at B), along −eB2 . The next picture
shows a numerical simulation of the system, for c =

√
2, with an initial condition of the

form −εeB2 with very small ε. It goes precisely to A.

The R codes for the numerical simulations shown here are given in the Appendix (Chap-
ter 7).

A rigorous proof that, for c ≥
√

2, a solution exists, requires additional arguments
which we omit. One should for instance consider the triangle shown in the figure, given by
the axes and the line through −eB2 , and prove that the vector field f is directed inside the
triangle at every non critical boundary point.

The non existence for c <
√

2 can be understood, on the contrary, from the fact that,
for c <

√
2, point A attracts spiraling, as shown in the figure (c = 0.8):

which violates the constraint x ∈ [0, 1]. Spiraling can be analytically seen looking for
the solutions of the linearized system x′ = y, y′ = −2cy−2x, namely x′′ = −2cx′−2x, which

have the form C1 exp
(
−t
(
c+
√
c2 − 2

))
+C2 exp

(
−t
(
c−
√
c2 − 2

))
, understanding the

exponential also in the complex case; they are decreasing exponentials for c ≥
√

2, but
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oscillate for c <
√

2.

Theorem 8 If u (0, x) = 1x<0 (x), the solution converges to the traveling profile with c =√
2. Precisely

lim
t→+∞

u (t,mt + x) = w√2 (x)

for every x ∈ R, where mt is the unique point such that u (t,mt) = 1/2.

A probabilistic proof can be found in [10].

Remark 9 One should not think that every initial condition converges to such traveling
wave. One can prove, for instance, that if u0 ∈ [0, 1] is such that for some b ∈ (0,

√
2] the

limit limx→+∞ ebx (1− f (x)) exists finite and different from zero, then limt→+∞ u (t, ct+ x) =
wc (x), with c = 1/b+ b/2.

2.3 A probabilistic representation

Consider the equation
∂v

∂t
=

1

2
∆v + λ

(
v2 − v

)
.

McKean proved the following probabilistic representation

u (t, x) = 1− E
[
Nt∏
i=1

u0

(
x+Xi

t

)]

where the processes Xi
t , Nt are defined as follows. First we give an informal definition, then

we formalize it. At time t = 0, from x = 0 a Brownian motion X1
t starts. At the random

time T0 ∼ Exp (λ), independent of X1, the process X1 ends its existence and, at position
X1
T0
, two new and independent Brownian motions start, X1

t and X
2
t . Each one lives an

exponential time Exp (λ) (independent of the previous objects) then dies and generates two
new Brownian motions; and so on. At any time t there are Nt points alive, that we call Xi

t ,
i = 1, ..., Nt. They are the random points which appear in the probabilistic representation
formula above.

Let us write a rigorous scheme. On a probability space (Ω,F , P ) assume we have a
countable family of independent exponential times, Exp (λ), indexed by finite sequences of
1,2: Ti1,...,in , ik ∈ {1, 2}, k = 1, ..., n, n ∈ N; for n = 0 let us write T0. This family identifies
a binary tree with branches of random length, but the tree structure in itself can be
maintained behind, hidden, in or description. Set τ i1,...,in = T0 +Ti1 +Ti1,i2 + ...+Ti1,...,in ,
τ0 = T0. Assume moreover that we have a countable family of independent Brownian
motions (independent among themselves and with respect to the random times above)
Bi1,...,in (t), ik ∈ {1, 2}, k = 1, ..., n, n ∈ N; for n = 0 let us write B0 (t). Now define a
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countable family of processes Xi1,...,in (t), ik ∈ {1, 2}, k = 1, ..., n, n ∈ N, taking values in
R∪δ, where δ is an auxiliary point outside R; for n = 0 let us write X0 (t). All processes X
take the values δ except on a random time interval that we are going to define. For t ∈ [0, τ0)
set X0 (t) = B0 (t). For t ∈ [τ0, τ i1), i1 = 1, 2, set Xi1 (t) = X0 (τ0) + Bi1 (t− τ0). For
t ∈ [τ i1 , τ i1+i2), i1, i2 ∈ {1, 2}, set Xi1+i2 (t) = Xi1 (τ i1)+Bi1+i2 (t− τ i1). By induction, for
t ∈ [τ i1,...,in , τ i1,...,in,in+1) set Xi1,...,in,in+1 (t) = Xi1,...,in (τ i1,...,in)+Bi1,...,in,in+1 (t− τ i1,...,in).
Denote by Λt the set of multi-indices (i1, ..., in) such that Xi1,...,in (t) 6= δ. The precise
meaning of the formula above is now

u (t, x) = 1− E
[∏
a∈Λt

u0 (x+Xa (t))

]
.

From this formula one can immediately see a few facts, like the property u (t, x) ∈ [0, 1]
when u0 ∈ [0, 1], or the fact that the function x 7→ u (t, x) is decreasing if u0 is decreasing.
In [10] it is used to prove several facts stated above on traveling waves.

Let us finally see the proof of the formula. We disintegrate the expected value with
respect to T0:

v (t, x) :=

E

[∏
a∈Λt

u0 (x+Xa (t))

]
= P (T0 > t)E

[∏
a∈Λt

u0 (x+Xa (t)) |T0 > t

]

+

∫ t

0
λe−λsE

[∏
a∈Λt

u0 (x+Xa (t)) |T0 = s

]
ds

= e−λtE [u0 (x+B0 (t))]

+

∫ t

0
λe−λsE

∏
a∈Λ1t

u0 (x+Xa (t))
∏
a∈Λ2t

u0 (x+Xa (t)) |T0 = s

 ds
where Λkt is the set of elements (i1, ..., in) ∈ Λt such that i1 = k, k = 1, 2

= e−λt
(
e
1
2

∆tu0

)
(x) +

∫ t

0
λe−λsE

E
 ∏
a∈Λt−s

u0

(
x′ +Xa (t− s)

)2

x′=x+B0(s)

 ds
=
(
e(

1
2

∆−λ)tu0

)
(x) +

∫ t

0

(
e(

1
2

∆−λ)sλv2 (t− s, ·)
)

(x) ds

and this is the PDE in the mild sense.
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2.4 Is FKPP the macroscopic equation of the tree structure?

The previous probabilistic formula is based on a particle system which seems a reasonable
microscopic model of cells: each cell moves like a Brownian motion and at a random time
duplicates. However, FKPP is not the macroscopic limit of this particle system. To see
this, let us discover the true macroscopic limit of this particle system.

In Chapter 1 we have shown (in greater generality) that given a family of independent
Brownian motions Bi

t, w.r.t. a filtration Ft, and i.i.d. F0-adapted initial conditions Xi
0,

the empirical measure SNt := 1
N

∑N
i=1 δXi

t
of the particle system

Xi
t = Xi

0 +Bi
t

weakly converges to a measure-valued solution of the heat equation

∂u

∂t
=

1

2
∆u

with initial condition given by the law of X1
0 . In this particular case we also have the

representation formula

u (t, x) = E
[
u0

(
X1
t

)]
but this coincidence should not be translated to more non-linear mechanisms.

Consider now the process defined in the previous section and let us investigate its
macroscopic limit. What do we send to infinity? As in the case just recalled of independent
Brownian motions Bi

t, let us consider an family of N independent processes of that form,
with i.i.d. initial conditions Xi

0, independent of the Brownian motions and exponential
times of the process. Consider the empirical measure

SNt :=
1

N

N∑
i=1

∑
a∈Λit

δXi
a(t).

Theorem 10 SNt weakly converges to a measure-valued solution of the equation

∂u

∂t
=

1

2
∆u+ λu. (2.5)

Proof. Let us apply also here the LLN:

〈
SNt , φ

〉
=

1

N

N∑
i=1

∑
a∈Λit

φ
(
Xi
a (t)

)
→ E

[∑
a∈Λt

φ (Xa (t))

]
=: 〈ut, φ〉 .
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Now we have to find the equation satisfied by the time-dependent probability measure ut.
Introduce ρφ (t, x):

ρφ (t, x) := E

[∑
a∈Λt

φ (x+Xa (t))

]

= P (T0 > t)E

[∑
a∈Λt

φ (x+Xa (t)) |T0 > t

]
+

∫ t

0
λe−λsE

[∑
a∈Λt

φ (x+Xa (t)) |T0 = s

]
ds

= e−λtE [φ (x+B0 (t))] +

∫ t

0
λe−λsE

∑
a∈Λ1t

φ (x+Xa (t)) +
∑
a∈Λ2t

φ (x+Xa (t)) |T0 = s

 ds
= e−λt

(
e
1
2

∆tφ
)

(x) +

∫ t

0
λe−λsE

2E

 ∑
a∈Λt−s

φ
(
x′ +Xa (t− s)

)
x′=x+B0(s)

 ds
=
(
e(

1
2

∆−λ)tφ
)

(x) + 2

∫ t

0

(
e(

1
2

∆−λ)sλρφ (t− s, ·)
)

(x) ds.

This implies

∂

∂t
ρφ (t, x) =

1

2
∆ρφ (t, x)− λρφ (t, x) + 2λρφ (t, x)

=
1

2
∆ρφ (t, x) + λρφ (t, x)

ρφ (0, x) = φ (x) .

We aim to prove that ut satisfies

∂ut
∂t

=
1

2
∆ut + λut

knowing that ρφ (t, 0) = 〈ut, φ〉 satisfies the equation written above. We have ρφ (t, x) =
〈ut, φ (x+ ·)〉 hence

∂

∂t
〈ut, φ (x+ ·)〉 =

1

2
∆ 〈ut, φ (x+ ·)〉+ λ 〈ut, φ (x+ ·)〉

but ∆ 〈ut, φ (x+ ·)〉 = 〈ut, (∆φ) (x+ ·)〉 hence

∂

∂t
〈ut, φ (x+ ·)〉 =

1

2
〈ut, (∆φ) (x+ ·)〉+ λ 〈ut, φ (x+ ·)〉

hence (x = 0)
∂

∂t
〈ut, φ〉 =

1

2
〈ut,∆φ〉+ λ 〈ut, φ〉

that is the PDE we wanted, in weak form.
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Remark 11 Equation (2.5) is not FKPP.

Remark 12 The solutions equation (2.5) increase exponentially. The solutions of FKPP
cannot overcome a threshold.

Remark 13 In order to find a microscopic model of FKPP we have to modulate the birth
rate by the factor 1−u (t, x). But u (t, x) is not known at the microscopic level. One could
then use 1−

(
θεN ∗ SNt

)
(x), where θεN is a mollifier which goes to the delta Dirac at zero.

It allows one to talk of "SNt at point x". We shall deal with this problem in Chapter 4.

2.5 Existence, uniqueness, invariant regions

Consider the equation (we drop 1/2 since we do not use probabilistic arguments in this
section)

∂u

∂t
= ∆u+ u (1− u) (2.6)

for t ∈ [0, T ] and x ∈ Rd. We are interested in solutions which are bounded, precisely
u ∈ [0, 1], and of class C1,2 (u ∈ C1,2 if the partial derivatives ∂u

∂t , ∂xiu, ∂xj∂xiu exist and
are continuous); we shall call them classical solutions.

About the regularity of the initial condition u0, maybe we ask a little bit too much. Let
UCb

(
Rd
)
be the space of uniformly continuous and bounded functions f : Rd → R. We

assume that u0 ∈ C2
(
Rd
)
with u and its first and second derivatives in UCb

(
Rd
)
; we write

u0 ∈ UC2
b

(
Rd
)
. We address [19], Chapter 14, Section A for a discussion of the advantages

of UCb
(
Rd
)
in this framework.

When we write expressions like u0 ∈ [0, 1], u ∈ [0, 1], we mean that the property holds
for all values of the independent variables x, (t, x) etc.

Theorem 14 Equation (2.6) with UC2
b

(
Rd
)
-initial condition u0 ∈ [0, 1], has one and only

one classical solution u ∈ [0, 1] (uniqueness holds in the larger class of mild solutions, see
the proof; the solution is also UCb

(
Rd
)
at every time, plus other regularity properties).

Proof. Let us only sketch the main steps, some of which will be expanded in Section 2.6.
Step 1. We prove the result for the auxiliary equation

∂u

∂t
= ∆u+ u (1− u) + h (u) (2.7)

where h (·) is a smooth function, strictly negative for u = 1, strictly positive for u = 0.
This step is divided in three sub-steps.

Notice that the introduction of the auxiliary term h (u) is not always needed. It depends
on the proof we make of the invariance of the region [0, 1] (Step 1c). We present two proofs;
the first one does not need h (u), the second (deeper) one requires h (u).
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Step 1a. For a general equation of the form

∂u

∂t
= ∆u+ f (u) (2.8)

with smooth f , one can prove local existence and uniqueness of mild solutions (bounded
continuous functions satisfying the mild form of the equation). If we then prove an a priori
bound on solutions in uniform norm, this will lead to global existence (of mild solutions).

Step 1b. One can prove that mild solutions are also classical ones, when u0 is regular.
Step 1c. For the particular equation (2.7) an a priori bound in uniform norm is proved

(this is the main conceptual step). Precisely, we prove that, if u is a classical solution with
u0 (x) ∈ [0, 1], then u (t, x) ∈ [0, 1]. Putting together the three sub-steps, one gets the
theorem for equation (2.7).

Step 2. (This step is needed only if we had to introduce h (u) above.) Consider now
the problem

∂uδ

∂t
= ∆uδ + b (t, x) · ∇uδ + uδ

(
1− uδ

)
− δh

(
uδ
)

where h (u) is like above. We have uδ ∈ [0, 1] by Step 1. One can prove that uδ converges
uniformly on compact sets (first locally in time, then globally), as δ → 0. Then one can
prove that the limit u is a solution of the original equation. Therefore there exists a solution
u ∈ [0, 1].

Step 3. Uniqueness holds locally by Step 1a. This completes the proof.
See Section 2.6 for additional details.

2.6 Some proofs about Theorem 14

2.6.1 Homogeneous and non-homogeneous heat equation

Consider equation
∂u

∂t
= ∆u+ g, u|t=0 = u0 (2.9)

where u0 ∈ UC2
b

(
Rd
)
, g : [0, T ] × Rd → R is of class C

(
[0, T ] ;UC2

b

(
Rd
))
. We say that

u : [0, T ] × Rd → R is a classical solution if it is of class C1,2 and satisfies the equation
pointwise, on [0, T ] × Rd. One can check that, for g = 0 and u0 ∈ UC2

b

(
Rd
)
, there exists

one and only one classical solution, given by

u (t, x) =

∫
Rd
G (t, x− y)u0 (y) dy

G (t, x) = (4πkt)−d/2 exp

(
−|x|

2

4kt

)
.
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That this expression defines a function of class C1,2 and that this function satisfies the
equation can be checked by several but elementary computations, that we do not repeat.
Conversely, if u is a classical solution, we multiply the equation by G (t, x′ − x), integrate
on Rd, integrate by parts and get the formula.

Introduce the operator Pt : Cb
(
Rd
)
→ Cb

(
Rd
)
given by

(Ptv) (x) =

∫
Rd
G (t, x− y) v (y) dy, v ∈ Cb

(
Rd
)
.

One can check that, for g ∈ C
(
[0, T ] ;UC2

b

(
Rd
))
, there exists one and only one classical

solution of equation (2.9), given by

u (t, x) = (Ptu0) (x) +

∫ t

0
(Pt−sg (s)) (x) ds.

2.6.2 Mild and regular solutions (inside Step 1b)

Definition 15 We say that u : [0, T ]×Rd → R is a mild solution of equation (2.8) if it is
of class Cb

(
Rd
)
(bounded continuous) and satisfies pointwise the identity

u (t, x) = (Ptu0) (x) +

∫ t

0
(Pt−sf (u (s))) (x) ds.

Proposition 16 If u is a classical solution, then it is a mild solution. If u is a mild
solution and u0 ∈ UC2

b

(
Rd
)
, then it is a classical solution.

2.6.3 Local existence and uniqueness

Assume that f , in equation (2.8), is a locally Lipschitz continuous function.

Theorem 17 Given u0 ∈ UCb
(
Rd
)
, there exists one and only one mild solution of equa-

tion (2.8) on some interval [0, τ ]. The size τ depends only on the uniform norm of u0.

Proof. Consider the Banach space C
(
[0, τ ] ;UCb

(
Rd
))
and letXτ ,θ ⊂ C

(
[0, τ ] ;UCb

(
Rd
))

be the set of all functions v such that

‖v‖0 := sup
(t,x)∈[0,τ ]×Rd

|v (t, x)| ≤ θ.

Given v ∈ Xτ ,θ, set

(Γv) (t, x) = (Ptu0) (x) +

∫ t

0
(Pt−sf (v (s))) (x) ds
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for t ∈ [0, τ ]. The function Γv is well defined and of class C
(
[0, τ ] ;UCb

(
Rd
))
. We have

‖Γv‖0 ≤ sup
(t,x)∈[0,τ ]×Rd

∣∣∣∣∫ t

0
(Pt−sf (v (s))) (x) ds

∣∣∣∣ ≤ Cf,θτ
where

Cf,θ = max
|u|≤θ

|f (u)| .

Moreover we have

‖Γv − Γw‖0 ≤ sup
(t,x)∈[0,τ ]×Rd

∣∣∣∣∫ t

0
(Pt−s (f (v (s))− f (w (s)))) (x) ds

∣∣∣∣
≤
∫ τ

0
Lf,θ ‖v − w‖0 ds = τLf,θ ‖v − w‖0

where

Lf,θ = max
|u|≤θ

|∇f (u)| .

It is now easy to verify that, for τ small enough, the set Xτ ,θ is invariant under Γ and on
such set Γ is a contraction. This gives us local existence and uniqueness, by the contraction
principle.

2.6.4 Invariant regions (Step 1c and completion of Step 1)

Approach by linear equations

Let u be a local classical solution. Just for notational simplicity, we assume it is define on
[0, T ]. Setting λ (t, x) = 1− u (t, x), we have

∂u

∂t
= ∆u+ λu.

For this kind of equations it is well known that:

Lemma 18 If u is a classical solution on [0, T ] with u0 ≥ 0, then u ≥ 0 on [0, T ].

Proof. Among different proof let us choose a probabilistic one: by the well-known
Feynman-Kac formula

u (t, x) = E
[
e
∫ t
0 λ(t−s,x+

√
2Bs)dsu0

(
x+
√

2Bt

)]
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we immediately deduce the result. Here Bt is a Brownian motion in Rd. Let us recall
the proof of Feynman-Kac formula in this simple case. Given T0 > 0, by Itô formula for
t ∈ [0, T0] we have

du
(
T0 − t, x+

√
2Bt

)
= −∂u

∂t

(
T0 − t, x+

√
2Bt

)
dt+∇u

(
T0 − t, x+

√
2Bt

)
·
√

2dBt

+ ∆u
(
T0 − t, x+

√
2Bt

)
dt

= −λu
(
T0 − t, x+

√
2Bt

)
dt+∇u

(
T0 − t, x+

√
2Bt

)
·
√

2dBt

hence the process ξt := u
(
T0 − t, x+

√
2Bt

)
satisfies dξt = −λtξtdt + dMt, where λt =

λ
(
T0 − t, x+

√
2Bt

)
, Mt =

∫ t
0 ∇u

(
T0 − s, x+

√
2Bs

)
·
√

2dBs, whence

d
(
e
∫ t
0 λsdsξt

)
= λt

(
e
∫ t
0 λsdsξt

)
dt+ e

∫ t
0 λsds (−λtξtdt+ dMt) = e

∫ t
0 λsdsdMt.

This implies

E
[
e
∫ T0
0 λsdsu0

(
x+
√

2BT0

)]
= u (T0, x)

which is the desired formula.
Now let us set, as we have done above, v = 1− u. We have

∂v

∂t
= ∆v − v (1− v)

hence
∂v

∂t
= ∆v + λ̃v

where λ̃ = v − 1 = −u. By the lemma we deduce

Corollary 19 If u is a classical solution on [0, T ] with u0 ≤ 1, then u ≤ 1 on [0, T ].

Proof. The lemma applied to the equation for v gives us v ≥ 0 on [0, T ]. Hence u ≤ 1 on
[0, T ].

Approach by the theory of invariant regions

The previous approach is very fast but it has the disadvantage to be applicable only when
the algebraic structure of the terms is particularly simple. In order to deal with the full
system described in Chapter 1, we think it is convenient to know the following somewhat
deeper approach. We address to [19], Chapter 14 for more details on this approach.

Our aim is to prove that the interval [0, 1] is an invariant region for equation (2.7) (it
will be also for equation (2.6)).
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Let u be a classical solution of

∂u

∂t
= ∆u+ u (1− u) + h (u)

on some interval [0, τ ]. We want to prove that, if u0 ∈ [0, 1], then u ∈ [0, 1] on [0, τ ]. For
simplicity of notation we take τ = T .

Let us argue by contradiction; hence, assume that u0 ∈ [0, 1] but [0, 1] is not invariant
(there is some (t′, x′) with u (t′, x′) /∈ [0, 1]).

Assume that, due to the lack of invariance, we can prove that there is t0 ∈ [0, T ] with
the following properties:

i) t0 > 0
ii) u (t, x) ∈ [0, 1] for every x ∈ Rd and every t ∈ [0, t0]
iii) u (t0, x0) ∈ {0, 1} for some x0 ∈ Rd.
Let us analyze the case u (t0, x0) = 1. We deduce:
a) ∇u (t0, x0) = 0 and ∆u (t0, x0) ≤ 0 (because u (t0, x) ≤ 1 for all x and u (t0, x0) = 1,

and u (t0, ·) is C2)
b) ∂u∂t (t0, x0) < 0 (from the equation, because∆u (t0, x0) ≤ 0, u (t0, x0) (1− u (t0, x0)) =

0, h (u (t0, x0)) < 0)
c) ∂u

∂t (t0, x0) ≥ 0 (because u (t, x0) ≤ 1 for t ∈ [0, t0] and u (t0, x0) = 1).
Thus there is a contradiction. In the case u (t0, x0) = 0 we have
a’) ∇u (t0, x0) = 0 and ∆u (t0, x0) ≥ 0 (because u (t0, x) ≥ 0 for all x and u (t0, x0) = 0,

and u (t0, ·) is C2)
b’) ∂u∂t (t0, x0) > 0 (from the equation, because∆u (t0, x0) ≥ 0, u (t0, x0) (1− u (t0, x0)) =

0, h (u (t0, x0)) > 0)
c’) ∂u

∂t (t0, x0) ≤ 0 (because u (t, x0) ≥ 0 for t ∈ [0, t0] and u (t0, x0) = 0)
hence again a contradiction.
Thus it remains to prove that t0 ∈ [0, T ] exists with properties (i)-(iii). Intuitively this

is reasonable, so we may split the proof in two parts: the main conceptual part is the one
just given; a second part deals with the proof of existence of such t0. This second part is
complicated by two potential diffi culties.

Let us start with the definition of t0:

t0 = inf
{
t′ ∈ [0, T ] : ∃x′ such that u

(
t′, x′

)
/∈ [0, 1]

}
or equivalently

t0 = sup {t ∈ [0, T ] : ∀x we have u (t, x) ∈ [0, 1]} . (2.10)

The first diffi culty comes from the fact that t0 may be equal to zero, violating property
(i). To avoid this, one could argue as follows: we first assume u0 ∈ [ε, 1− ε] for some ε > 0.
In this case, since we know from the existence theorem that t 7→ u (t) is continuous in the
space UCb

(
Rd
)
, there is some small time interval [0, δ] such that that u (t, x) ∈ [ε/2, 1− ε/2]

for t ∈ [0, δ]; therefore t0 defined above by (2.10) is strictly positive. Later, when the
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proof of invariance is done for initial conditions satisfying u0 ∈ [ε, 1− ε], given a general
u0 ∈ [0, 1] it is suffi cient to take un0 =

(
1− 1

n

)
u0 + 1

2n and prove that the solutions u
n with

initial conditions un0 converge uniformly on compact sets to u. The continuous dependence
on initial conditions can be established similarly to the proof of existence by contraction
principle (or the proof of continuous dependence on δ in step 2 above).

The second diffi culty is related to lack of compactness. Given the definition above of
t0, with properties (i)-(ii), can we say that (iii) holds? We know that for every ε > 0
there is t′ε ∈ (t0, t0 + ε) and x′ε ∈ Rd such that u (t′ε, x

′
ε) /∈ [0, 1], so by continuity there is

t′′ε ∈ [t0, t0 + ε) and x′′ε ∈ Rd such that u (t′′ε , x
′′
ε ) ∈ {0, 1}. Obviously limε→0 t

′′
ε = t0, but

what about the family {x′′ε }?
One way to solve this problem is to prove that there is a compacts set K ⊂ Rd such that

u (t, x) ∈ (0, 1) for all t ∈ [0, T ] and x /∈ K. When this is proved, we know that {x′′ε } ⊂ K,
hence we may extract a sequence which converges to a point x0, so that u (t0, x0) ∈ {0, 1}.

The existence of K requires some technical work but, conceptually, it is based on simple
ingredients: the property of decay to zero at infinity is preserved by the heat semigroup,
the image of the heat semigroup is made of functions which are strictly positive everywhere
(infinite speed of diffusion). Notice that this way of solving the problem restricts the set
of initial conditions: they have to decay to zero at infinity. Using other arguments one can
treat more general u0 ∈ [0, 1].

2.6.5 Continuous dependence on h (Step 2)

This part can be done in two ways. One is by estimating the distance between u and
uδ, by triangle inequality and suitable estimates. The other by proving that Ascoli-Arzelà
theorem can be applied, and then passing to the limit.



Chapter 3

Remarks on the full invasive model
with angiogenesis

3.1 Invariant regions for the full system?

3.1.1 The total volume constraint is not fulfilled

The full system of Chapter 1 seems apparently based on the same ingredients of the FKPP
equation and contains terms, like the proliferation term N (Vmax − V), which have been
devised having in mind that the total volume V keeps below a maximum value Vmax.

However, there are troubles. To understand a first one, let us consider the reduced
system

∂N
∂t

= k1∆N + c1N (Vmax − V)− αN→AN
dA
dt

= αN→AN

with V = N +A.
The natural invariant region is now

Σ = {(N ,A) : N ≥ 0,A ≥ 0,N +A ≤ Vmax} .

For the biological meaning of the equation, it is necessary to prove that Σ is invariant:
if the constraints N ≥ 0,A ≥ 0 are lost, the meaning of N , A is lost; if the constraint
N +A ≤ Vmax is violated, the proliferation term c1N (Vmax − V) changes sign, it becomes
a killing term, without meaning!

But Σ is not invariant. The properties N ≥ 0,A ≥ 0 persist but the constraint
N +A ≤ Vmax is violated. The best way to understand it is to repeat the proof of

39
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invariance and see where it fails. So, assume we are dealing with the equation modified by
h (u). Assume there is t0 ∈ [0, T ] with the following properties:

i) t0 > 0
ii) (N ,A) (t, x) ∈ Σ for every x ∈ Rd and every t ∈ [0, t0]
iii) (N +A) (t0, x0) = Vmax for some x0 ∈ Rd.
Can we deduce a contradiction? Following the intuition and also the prescriptions of

[19], Chapter 14, we should consider the function V = N +A and compute ∂V
∂t , looking for

a contradiction of signs. We have

∂V
∂t

= k1∆N + c1N (Vmax − V) + h

because

∂V
∂t

=
∂N
∂t

+
∂A
∂t

= k1∆N + c1N (Vmax − V)− αN→AN+αN→AN + h

= k1∆N + c1N (Vmax − V) + h.

From (i)-(iii) above we deduce
∂V
∂t

(t0, x0) ≥ 0

∇V (t0, x0) = 0, ∆V (t0, x0) ≤ 0

and from the equation (recall h)

∂V
∂t

(t0, x0) < k1∆N (t0, x0)

but we have no reason to claim that ∆N (t0, x0) ≤ 0 and deduce a contradiction.
This argument is not only logical: it indicates what goes wrong: when and where V

approaches the threshold, ∆N may remain > 0, with the effect that some portion of N
diffuses there instead of diffusing away. N may continue to increase when and where
V = Vmax.

Are we wrong? Is there another argument which proves that Σ is invariant? Unfor-
tunately not. I am sure that one can construct an analytic proof based on the following
idea, but mostly the numerical simulation below is unambiguous. The analytical idea, in
dimension 1, is to take at time t = 0

N (0, x) = Vmax · 1[5,10] (x) + Vmax · 1[−10,−5] (x)

A (0, x) = Vmax · 1[−5,5] (x) .

The constraint N +A ≤ Vmax is fulfilled. But a second later part of the density N will be
diffused in the region [−5, 5], because of the term k1∆N , while A cannot go down in that
region. Thus we shall have points in the interval [−5, 5] where N +A > Vmax.
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It remains the doubt that this problem is caused by the simplification of this reduced
system, with respect to the full one, but I do not think so. A more rigorous or precise
investigation should be done.

The figure shows normoxic in black, apoptotic in red, total volume in green. The R
codes for the numerical simulations shown here are given in the Appendix (Chapter 7).

Problem 20 How could we modify the system to have Σ invariant?

3.1.2 Invariant regions for different diffusion operators

Consider, as a model problem, the equation

∂u

∂t
= Du+ u (1− u)

where Du is one of the following operators, all (except the first one) having something to
do with the idea that the diffusion is damped when we approach the threshold u = 1:

D1u = ∆u

D2u = (1− u) ∆u

D3u = div ((1− u)∇u)

D4u = ∆ ((1− u)u) .

We state the next result as a Proposition but it is only the verification of a key ingredient
of the result, following the proof of invariant regions given in Chapter 2.

Proposition 21 The region [0, 1] is invariant in cases 1,2,3. In case 4 solutions remain
positive but the constraint u ≤ 1 is not necessarily preserved.
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Proof. Assume we are dealing with the equation modified by h (u). Assume there is
t0 ∈ [0, T ] with the following properties:

i) t0 > 0
ii) u (t, x) ∈ [0, 1] for every x ∈ Rd and every t ∈ [0, t0]
iii) u (t0, x0) ∈ {0, 1} for some x0 ∈ Rd.
Let us analyze the case u (t0, x0) = 1. We deduce:
a) ∇u (t0, x0) = 0 and ∆u (t0, x0) ≤ 0
b) ∂u

∂t (t0, x0) ≥ 0 (because u (t, x0) ≤ 1 for t ∈ [0, t0] and u (t0, x0) = 1).
These facts were already known. In addition we now have:

D2u (t0, x0) = 0

D3u (t0, x0) = 0

D4u = −u (t0, x0) ∆u (t0, x0) ≥ 0

because
D3u = ∇ (1− u) · ∇u+D2u = − |∇u|2 +D2u

D4u = D2u− u∆u− 2 |∇u|2 .

Hence, from the equation:
c) ∂u

∂t (t0, x0) < 0 in cases 1, 2, 3, but not in case 4.
Then we get a contradiction in the first three cases only.
Let us finally analyze the case u (t0, x0) = 0. We deduce:
a) ∇u (t0, x0) = 0 and ∆u (t0, x0) ≥ 0
b) ∂u

∂t (t0, x0) ≤ 0
These facts were already known. In addition we now have:

D2u (t0, x0) ≥ 0 (we know that 1− u ≥ 0)

D3u (t0, x0) ≥ 0

D4u ≥ 0.

Hence, from the equation:
c) ∂u

∂t (t0, x0) > 0 in all cases.
Then we get a contradiction in all cases.
Consider now the following operators, all (except the first one) having something to do

with the idea that the diffusion increases when the density is larger (like for pressure-driven
diffusion):

D5u = u∆u

D6u = div (u∇u) =
1

2
∆u2

Proposition 22 The region [0, 1] is invariant in both cases 5,6.
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Proof. Assume we are dealing with the equation modified by h (u). Assume there is
t0 ∈ [0, T ] with the following properties:

i) t0 > 0

ii) u (t, x) ∈ [0, 1] for every x ∈ Rd and every t ∈ [0, t0]

iii) u (t0, x0) ∈ {0, 1} for some x0 ∈ Rd.
Let us analyze the case u (t0, x0) = 1. We deduce:
a) ∇u (t0, x0) = 0 and ∆u (t0, x0) ≤ 0

b) ∂u
∂t (t0, x0) ≥ 0 (because u (t, x0) ≤ 1 for t ∈ [0, t0] and u (t0, x0) = 1).

These facts were already known. In addition we now have:

D5u (t0, x0) ≤ 0

D6u (t0, x0) ≤ 0

because
D6u = div (u∇u) = |∇u|2 +D5u.

Hence, from the equation:
c) ∂u

∂t (t0, x0) < 0 in both cases 5, 6.
Then we get a contradiction in both cases.
Let us finally analyze the case u (t0, x0) = 0. We deduce:
a) ∇u (t0, x0) = 0 and ∆u (t0, x0) ≥ 0

b) ∂u
∂t (t0, x0) ≤ 0

These facts were already known. In addition we now have:

D5u (t0, x0) = 0

D6u (t0, x0) = 0.

Hence, from the equation:
c) ∂u

∂t (t0, x0) > 0 in both cases.
Then we get a contradiction in both cases.

Remark 23 The intuition (concerning the constraint u ≤ 1) in the group 2-3 is opposite
to the case of group 5-6 but the result is the same. The factor (1− u) damps the diffusion
when we approach u = 1, so the diffusion term does not contribute to the motion of mass;
what happens depends on the other terms of the equation. The factor u increases the
diffusion when u is larger and thus helps to damp the profile, when it is closer to u = 1.

Remark 24 If the other terms of the equation preserve the constraint u ≤ 1, the factor
(1− u) is just innocuous, it is neutral; but it cannot help if someone of the other terms
violates the constraint. On the contrary, the factor u has a damping effect and thus it may
help.
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Remark 25 The simpler method of invariance described in Chapter 2, based on the linear
equation, does not apply here, at least not so easily.

Remark 26 If the region [0, 1] is preserved by two of the previous operators Di and Dj,
then it is preserved by the sum Di +Dj. In particular, the example

∂u

∂t
= k1∆u+ k2∆u2 + u (1− u)

preserves [0, 1].

Exercise 27 Investigate the invariance of [0, 1] for the crowding-driven diffusion operator

D7u = div (σ (u)∇u)

with
σ (u) = max (u− u0, 0)

for some u0 ∈ (0, 1).

3.1.3 Back to the system of Section 3.1.1

The previous section investigates nonlinear operators for single equations but the ideas can
be extended to systems. Let us solve Problem 20 using these ideas. One possibility is to
consider the system

∂N
∂t

= k1 (Vmax − V) ∆N + c1N (Vmax − V)− αN→AN
dA
dt

= αN→AN

namely to replace ∆N by (Vmax − V) ∆N . Let us show that the method of invariant
regions work for this case.

Proposition 28 The region

Σ = {(N ,A) : N ≥ 0,A ≥ 0,N +A ≤ Vmax}

is invariant.

Proof. Assume we are dealing with the equation modified by h (u). Assume there is
t0 ∈ [0, T ] with the following properties:

i) t0 > 0
ii) (N ,A) (t, x) ∈ Σ for every x ∈ Rd and every t ∈ [0, t0]
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iii) (N +A) (t0, x0) = Vmax for some x0 ∈ Rd.
Consider the function V = N +A. We have

∂V
∂t

=
∂N
∂t

+
∂A
∂t

= k1 (Vmax − V) ∆N + c1N (Vmax − V) + h

From (i)-(iii) above we deduce

∂V
∂t

(t0, x0) ≥ 0

∇V (t0, x0) = 0, ∆V (t0, x0) ≤ 0

and from the equation (recall h)

∂V
∂t

(t0, x0) < 0

hence we have a contradiction. Concerning the constraint N ≥ 0, at the critical point,
using V ≤ Vmax, we get

∂N
∂t

(t0, x0) = k1 (Vmax − V (t0, x0)) ∆N (t0, x0) + c1N (t0, x0) (Vmax − V (t0, x0))− αN→AN (t0, x0)

= k1 (Vmax − V (t0, x0)) ∆N (t0, x0) ≥ 0

which yields the contradiction. The constraint A ≥ 0 is then obvious, since A is non
decreasing.

Exercise 29 Investigate the invariance of Σ when the diffusion operator is of the form

div ((Vmax − V)∇N )

∆ (Vmax − V)N
W∆N
div (W∇N )

∆ (WN ) .

with W = V or W = N .

The following numerical simulations confirm the prediction of the theorem. The R
codes for the numerical simulations shown here are given in the Appendix (Chapter 7).
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3.1.4 Brainstorming on the problem of bounds on cell density

1. The bound on the total cell density V ≤ Vmax is something new, not common when
we deal with fluids or gases of molecules. For cells, it has a meaning.

2. But is necessary to impose it strictly, or a mild form is suffi cient? Living tissues
may deform, stretch, may accommodate higher density a little bit. How to describe
mathematically this mild accommodation possibility?

3. For a single equation like
∂u

∂t
= ∆u+ b · ∇u+ cu

the constraint
u ≥ 0
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holds (is maintained). On the contrary, the constraint

u ≤ u0

holds (is maintained) only when c ≤ 0. Otherwise, we only have

u (t, x) ≤ supu0 · esup[c]+t.

4. For a single equation of Fokker-Planck type

∂u

∂t
= ∆u− div (bu)

we have

u ≥ 0∫
udx = const

but only
u (t, x) ≤ supu0 · esup[− div b]+t.

In other words, if the vector field b has positive or null divergence, all right, otherwise
there is concentration and a threshold on the density may be easily overcome.

5. For a single equation, preservation of bounds like

0 ≤ u ≤ 1

hold also for certain diffusion operators different from ∆u. See above.

6. But for systems, if we want to preserve V (t, x) ≤ Vmax, diffusion terms have to be
modified, ∆u is not suffi cient, as we have showed above.

7. Even worse, for systems, terms transport terms of the form

−div (u∇θ)

which couple different variables, may be very critical and diffi cult, they may even lead
to blow-up. One should have and estimate on the quantity [−div∇θ]+ = [−∆θ]+

which is not under control. Every place where θ is more concentrated becomes an
attracting place.

8. Should we expect this phenomenon in our full model? If instead of having a smooth
distribution of endothelial cells we more realistically assume they are concentrated in
vessels, this could be more dangerous (but actually we do not know what precisely
could happen). Presumably, with the present model, θ does not concentrate too much
and thus, when V is not to close to Vmax, problems should not occur.



48CHAPTER 3. REMARKS ON THE FULL INVASIVEMODELWITH ANGIOGENESIS

9. Even if we discover how to handle these complicate couplings, it is hardly plausible
that invariant regions exist. One should then try to include special mechanisms into
the model, to avoid concentration.

3.1.5 Transport terms and possibility of blow-up

It is well known that terms of the form b · ∇u transport the profile u along characteristic
lines; hence u cannot increase or decrease beyond its maximum and minimum values, due
to the term b · ∇u.

But all our terms are in divergence form

div (b (t, x)u (t, x)) . (3.1)

This reduces to b·∇u only when b is divergence free. Under (3.1), the profile u may increase
beyond the original maximum, when the flux lines concentrate. The next pictures show
the case of the simple heat equation with transport (d = 1)

∂u

∂t
= ∆u− div (bu)

along the vector field
b (x) = −5 (x− x0) e−0.08|x−x0|2

which is very concentrated around x0 and has flux lines which move in the direction of x0

from both sides:

The divergence of b around x0 is roughly div b (x) ∼ −5e−0.08|x−x0|2 . See the code in
the appendix.

On the contrary, let us show that positivity is maintained. We do it for instance for

∂N
∂t

= k1 (Vmax − V) ∆N + div (bN ) + c1N (Vmax − V)− αN→AN
dA
dt

= αN→AN .



3.2. SIMULATIONS ABOUT THE FULL SYSTEM 49

If (t0, x0) is a usual critical point, where N (t0, x0) = 0 and before N (t, x) ≥ 0, we get

∂N
∂t

(t0, x0) = k1 (Vmax − V (t0, x0)) ∆N (t0, x0) + div (b (t0, x0)N (t0, x0)) + c1N (t0, x0) (Vmax − V (t0, x0))− αN→AN (t0, x0)

= k1 (Vmax − V (t0, x0)) ∆N (t0, x0) + b (t0, x0) · ∇N (t0, x0) +N (t0, x0) div b (t0, x0)

= k1 (Vmax − V (t0, x0)) ∆N (t0, x0) ≥ 0

which yields a contradiction.

The proof that V ≤ Vmax is maintained, on the contrary, does not work, since

∂V
∂t

(t0, x0) = k1 (Vmax − V (t0, x0)) ∆N (t0, x0) + b (t0, x0) · ∇N (t0, x0) +N (t0, x0) div b (t0, x0) + c1N (t0, x0) (Vmax − V (t0, x0))

= b (t0, x0) · ∇N (t0, x0) +N (t0, x0) div b (t0, x0)

and nothing is known of these two terms.

Not only the profile could increase beyond the required limits but, even worse, it may
blow-up in special cases. It may happen when the drift b depends on the solution, maybe
the solution of an associated PDE (it is the case of our example). Let us mention an
example which received a lot of attention in the literature: the chemotaxis equations, in
particular the Keller-Siegel model (see also models under the name "aggregation models").
An example is the system, in dimension ≥ 2

∂u

∂t
= ∆u− χdiv (u∇v)

∆v = 1− u.

It is known that there is a value χ∗ > 0 such that, for all χ > χ∗, radially symmetric
positive solutions can be constructed which blow-up in finite time. However, blow-up does
not happen for small values of χ and in dimension 1.

3.2 Simulations about the full system

First we show a reduced system with only normoxic (blue), hypoxic (red) and apoptotic
(black) (total volume in green, again over the threshold) (no angiogenic cascade):
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Then we show (a simplified version of) the full system. Each picture presents two
figures, above the profiles of normoxic (blue), hypoxic (grey), apoptotic (black), endothelial
(red) with the initial profile of endothelial (orange) for comparison (since they move very
slowly). Below, we see the profile of oxygen (red) ECM (yellow), VEGF (grey).



3.3. FICK OR FOKKER-PLANCK? 51

The R codes for the numerical simulations shown here are given in the Appendix (Chap-
ter 7).

3.3 Fick or Fokker-Planck?

Another unclear issue is concerned with the terms generically speaking of the form

div (a (t, x)∇u (t, x)) (3.2)

∆ (a (t, x)u (t, x)) . (3.3)

Assume we want to include a function a (t, x) in the diffusion term (usually a (t, x) is not
given a priori but it depends on the unknown densities), either because of inhomogenuities
or, more important, to modulate the diffusion with some logic as described above. From
the modelling viewpoint is it more correct (3.2) or (3.3)?

We mention these two forms for the following reason. Form (3.2) is the celebrated in-
homogeneous Fick law, so often used in the biological literature. On the contrary, (3.3) is
the Fokker-Planck type of diffusion, compare with the Fokker-Planck equation in Chapter
1.

Usually the literature based on Fick law does not even discuss the other possibility.
There are a few papers in the physical literature which make a comparison between the two
forms and have some tendency to prefer Fokker-Planck but one should carefully understand
whether the objects considered there correspond to the applications to cell dynamics; this
is not so clear. From my side the problem is unsolved, except that above we have seen a
good algebraic reason (Proposition 21) to prefer Fick law (3.2), when a (t, x) = 1−u (t, x).
Moreover, we shall see in Chapters 5-6 that the macroscopic limit of certain microscopic
dynamics lead to Fick law.
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A natural question for probabilists is: which SDE corresponds to Fick law? Consider
the model problem, in Fick form

∂p

∂t
=

1

2

∂

∂x

(
σ2 ∂

∂x
p

)
.

Obviously
∂p

∂t
=

1

2

∂2

∂x2

(
σ2p
)
− ∂

∂x

(
σ′σp

)
.

Hence, recalling the theorem on Fokker-Planck equation in Chapter 1, we may associate
the SDE

dXt = σ′ (t,Xt)σ (t,Xt) dt+ σ (t,Xt) dBt

to the Fick diffusion. However, is this a natural equation, from the viewpoint of microscopic
dynamics, in some suitable sense, or does it just look like an artificial association? Is
there any physical justification of the drift term σ′ (t,Xt)σ (t,Xt) dt? I cannot answer this
question. Let me only remark that this is not Stratonovich equation

dXt =
√

2σ (t,Xt) ◦ dBt.

If it were, since Stratonovich equations are for good reasons more physical than Itô equa-
tions, we would have a wonderful reason to prefer Fick diffusion. But it is not so. The
rewriting of our Stratonovich equation in Itô form is

dXt =
1

2
σ′ (t,Xt)σ (t,Xt) dt+ σ (t,Xt) dBt.

Just by the factor 1
2 , we miss this very interesting interpretation.

3.4 Modelling the crowding-driven diffusion

3.4.1 Different nonlinear diffusion terms

We have found the nonlinear diffusion term

div (N∇N ) .

The model at the beginning prescribed

div (max ((N −Nmin) ∧ 0)∇N )

which is similar. Even if not equal, it is of Fick type!
Which one is more correct is not clear but I tend to vote for max ((N −Nmin) ∧ 0). If

so, we have found a microscopic interacting model which is very similar to the expected
one but not exactly.
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We are working to find microscopic models which are more flexible, to produce

div (g (N )∇N )

for suitable functions g.
Remark. It is known that hydrodynamic limits of discrete exclusion-type models also

give rise to such Fick terms but perhaps not so flexible again.

3.5 Conclusions

The first three Chapters have been devoted mainly to the macroscopic viewpoint, based on
nonlinear versions of Fokker-Planck equations, possibly systems. We have also discussed
a few topics about the microscopic description by stochastic processes and SDEs, but the
viewpoint has been to associate the correct processes and SDEs to the PDEs; we didn’t
analyze in detail the microscopic view. Thus, a first problem that we aim to treat in the
next Chapters is:

• restart from the biology of cells and give a direct microscopic description; then develop
the inverse path to the one above, namely try to go from micro to macro.

Concerning tools at the microscopic level, the simple diffusion of Brownian motion and
transport terms are clear, in clear correspondence with the macroscopic ones. But we have
understood very little of:

• the tools to describe proliferation

• how to get different nonlinear diffusion operators, by means of microscopic particle
systems.

All these questions are interesting in themselves but may also help to throw light into
the problems and diffi culties which emerged in the previous macroscopic analysis:

• which models preserve, at least approximately, the global density of cells?

• which diffusion operators are more natural?
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Part II

Microscopic models

55





Chapter 4

The tumor from the microscopic
viewpoint

4.1 Cell models

Let us start this second part of the lectures from a microscopic viewpoint. We want to
build microscopic models, based on stochastic systems, and investigate their macroscopic
limits. Tumors are cell anomalies, opposite to other diseases which involve the function of
tissues and organs. Hence a cell-level description is very appropriate, although until now
we have given a tissue-level description to capture global features.

Let us distinguish between continuous and discrete space models, the first ones based
on stochastic differential equations, the second ones on the so called cellular automata,
where the position is constrained on some discrete structure.

A cell occupies a volume, a portion of space. It is not pointwise, as we usually assume
to be molecules when we treat a gas. A cell can be widely deformed and a little bit
compressed, but we cannot ignore the fact that it is not pointwise. Cellular automata take
this fact into account intrinsically, when they ask that a cell may occupy only a position
of a grid and each position may be occupied only by a cell (exclusion type models). If we
consider only one class of cells, it is suffi cient to associate 0 (empty) or 1 (occupied) to
each site of the grid. If we consider cells of different types (like normoxic, hypoxic etc.),
it is suffi cient to associate colors or numbers 0, 1, ..., N to each site (the so called Potts
models).

On the contrary, when we study continuous space models, and we associate a point,
a position, to each cell, the volume constraint must be "simulated" by means of an inter-
action term between the pointwise cells, interaction that forbids (maybe in a mild sense,
to accommodate some degree of compression and deformation) two point to become too
close. One has to introduce a repulsive potential, ideally with compact support (opposite
to most potentials of physics) because the volume constraint acts only when cells are close

57
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each other. Sometimes also a damping term is introduced; combined with a non-compact
support potential it has similar performances to compact support ones.

Normal cells, with the exception of a few types like those of the blood, have adhesion
constraint, usually with cells of the same class. This adhesion guarantees solidity to tissues.
Some tumor cells maintain this feature but others, after additional genetic changes, loose
it. Usually, the cells of the initial phase of the tumor are still attached each other (tumor
in situ); later, after several mutations, they loose this property and may move (invasive
tumor), very slowly (on the scale of days) through the surrounding ECM and then at long
distance if they succeed to penetrate blood vessels or lymphatic system. Sometimes they
move in groups, like that adhesion is only partially lost.

In principle, we may choose between a Newtonian dynamics (second order differential
equations) where we have to specify the set of forces acting on particles, and a first order
dynamics, more phenomenological, where we have to prescribe the sources of variation of
position. We follow the second approach.

To simplify the notations in this initial section, assume we have cells of only one type,
just tumor cells. Denote their positions by X1 (t), X2 (t), ... If we take into account only
volume and adhesion constraints, and we impose a Brownian behavior when the adhesion
is lost, we have the following equations

d

dt
Xi (t) =

∑
j 6=i

Kvol

(
Xi (t)−Xj (t)

)
+
∑
j 6=i

Kadh

(
Xi (t)−Xj (t)

)
︸ ︷︷ ︸

in the adhesive phase

d

dt
Xi (t) =

∑
j 6=i

Kvol

(
Xi (t)−Xj (t)

)
+

d

dt
W i (t)︸ ︷︷ ︸

in the invasive phase

The volume interaction Kvol (·) may be assumed for simplicity of gradient form

Kvol (x) = −∇Uvol (x)

and in addition we may assume that the potential Uvol (x) depends only on the distance,
Uvol (x) = Uvol (|x|) (with little abuse of notations) where Uvol (r) is a function defined for
r > 0. Hence

Kvol (x) = −U ′vol (|x|)
x

|x| .

The volume constraint is repulsive. This means that the contributionKvol

(
Xi (t)−Xj (t)

)
to the displacement of Xi (t) is oriented as Xi (t)−Xj (t). This translates in the condition

U ′vol (r) < 0, r > 0

Moreover, the function Uvol (·) should be assumed compact support, with support related
to the typical radius of a cell; with Kvol (x) very strong, possibly diverging, when x → 0,
because some compression of the cell is acceptable but not to a point.
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Similarly we assume that the adhesion interactionKadh (·) is of gradient form,Kadh (x) =
−∇Uadh (x) and that Uadh (x) = Uadh (|x|), hence

Kadh (x) = −U ′adh (|x|) x

|x| .

Opposite to the previous case, it is an attractive force, Kadh

(
Xi (t)−Xj (t)

)
is oriented

as −
(
Xi (t)−Xj (t)

)
. This translates into

U ′had (r) > 0, r > 0.

Moreover, Uadh (x) acts only when the distance between two cells is close to the typical
one: when the cells are far away, they do not attract each other. So also Uadh (·) is compact
support, with a little larger support than Uvol (·).

The free motion when adhesion forces are lost has been described above by a simple
Brownian motion, but this is clearly a first simplification. For instance one can include
systematic drifts related to chemical gradients.

Sometimes a damping term of the form

−αXi (t)

is added, which generically describes the viscosity of the medium in which the motion
takes place (the ECM). It is useful in simulations and it may allow one to use non-compact
support potentials.

What has been described until now is just the motion, the part of the evolution of
the system that is described by differential equations. In addition, we have to incorporate
proliferation and change of type (from normoxic to hypoxic etc.) and cell death in some
model (we mean that cells may disappear, natural after apoptosis). These aspects of the
evolution are not incorporated into the differential equations but must be super-imposed
by means of discrete-event techniques, like Poisson processes; we shall see below. For the
time being, let us remark that proliferation of tumor cells is not unconditional but it may
be slowed down or inhibited by excessive cell density or lack of nutrients.

We may now state the main purposes of our future investigation. We want to consider
a large family of cells described by the microscopic dynamics introduced here and send
the number of cells to infinity, namely investigate the macroscopic limit. We already guess
that in the invasive phase the presence of Brownian motion will lead to a diffusion term of
the form ∆u. We already know that, if we incorporate a drift along a chemical gradient,
it will converge to a transport term of the form div (u∇g). We guess that a suitable
Poissonian mechanism of duplication, modulated by the density of cells, may converge to
the proliferation terms of the form u (1− u) (this fact is still among those we have to
clarify at the technical level, recall the exponential growth model of Chapter 2). But what
is more obscure is what happens to the local interactions given by the volume constraint
(always working) and the adhesion constraint (working in the in situ phase). Maybe they
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produce additional diffusion operators, presumably nonlinear, but of which shape? Can
we explain the crowding-driven diffusion operator of the previous chapters in this way,
or other interesting nonlinear operators investigated in Chapter 3, having the property
of maintaining regions invariant? Could it be that we find operators which control the
transport terms, also in presence of negative divergence of a drift?

To summarize, two specific aims are:

1. describe proliferation at microscopic scale and find its macroscopic limit

2. find the macroscopic limit of volume and adhesion constraint.

In the rest of this chapter we investigate 1 and also the in situ phase from some particular
viewpoints, not yet those based on 2. In the next two chapters we shall then investigate
more deeply the macroscopic limit of interacting particle systems and try to approach a
partial answer to question 2.

4.2 The non invasive (in situ) phase

4.2.1 Prediction of the exponential model

Let us forget for a moment about the motion of cells and let us assume that each cell
has an exponential clock such that, when it rings, the cell duplicates. And let us assume
that the two new cells which replace the original cell will undergo the same mechanism,
independently of each other and of the past. The spatial aspect will only be superimposed
to the duplication mechanism.

Since exponential clocks are memory free, if we know the number Nt of cells at some
time t, we may restart all the clocks and make future predictions independently of the past.
Hence Nt can be taken as the "state" of the system.

It is a jump Markov process, on positive integers (a pure birth process, in the language
of birth-and-death processes). The transition rate from n to n+ 1 is nλ

P (Nt+h = n+ 1|Nt = n) = nλh+ o (h)

(the minimum between exponential r.v.’s T1, ..., Tn with parameters λ1, ..., λn is an expo-
nential r.v. with parameter λ1 + ... + λn) and it is equal to zero for all other transitions.
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Approximately we thus have

E [Nt+h] =

∞∑
n=0

E [Nt+h|Nt = n]P (Nt = n)

∼
∞∑
n=0

(nP (Nt+h = n|Nt = n) + (n+ 1)P (Nt+h = n+ 1|Nt = n))P (Nt = n)

∼
∞∑
n=0

(n (1− nλh) + (n+ 1)nλh)P (Nt = n)

= E [Nt] + λhE [Nt]

namely
d

dt
E [Nt] = λE [Nt]

which yields (with E [N0] = 1, a single initial cell)

E [Nt] = eλt.

This result is simple but wrong: experimentally this exponential increase is roughly
true only in very first stages of development of the tumor; very soon the number of cells
increases like t3. See [6].

4.2.2 Damping proliferation in absence of space and nutrients

Without spatial structure we cannot develop a precise argument but let us make a rough
computation. Assume that, if the cells alive at time t, in number Nt, are grouped in roughly
spherical fashion, just the external part of the sphere, of thickness δt, proliferates. Let us
recall a few formulae about the sphere:

i) the surface of a sphere or radius R is 4πR2

ii) the volume of a sphere or radius R is 4
3πR

3 (it comes from (i) integrating 4πr2 in r,
from r = 0 to r = R)

iii) for a sphere or radius R, the volume of an external layer of thickness δ, namely of the
portion of sphere which has distance less than δ from the boundary, is 4

3πR
3− 4

3π (R− δ)3

(by difference between the volumes of the original sphere and the complementary part to
the external layer, again a sphere).

Hence, assuming cells of equal volume Vcell and no empty space, the radius Rt at time
t satisfies the relation

4

3
πR3

t = VcellNt.

The external layer of thickness δt has volume 4
3πR

3
t − 4

3π (Rt − δt)3 and thus the number
Mt of cells which belong to it satisfies the relation

4

3
πR3

t −
4

3
π (Rt − δt)3 = VcellMt.
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If we assume that only the cells of the external layer proliferate, we get

Nt+h −Nt ∼
(
eλh − 1

)
Mt ∼ λh

(
4

3Vcell
πR3

t −
4

3Vcell
π (Rt − δt)3

)
namely

d

dt
Nt ∼ λ

(
4

3Vcell
πR3

t −
4

3Vcell
π (Rt − δt)3

)
namely

d

dt
R3
t = λ

(
R3
t − (Rt − δt)3

)
3R2

t

d

dt
Rt = λ

(
R3
t − (Rt − δt)3

)
d

dt
Rt = λ

R3
t − (Rt − δt)3

3R2
t

.

Since
R3
t − (Rt − δt)3 = 3R2

t δt − 3Rtδ
2
t + δ3

t

we get
d

dt
Rt = λ

3R2
t δt − 3Rtδ

2
t + δ3

t

3R2
t

= λδt

(
− δt
Rt

+
δ2
t

3R2
t

)
.

If δt is small with respect to Rt, essentially we obtain a linear growth, hence Nt ∼ t3.

4.2.3 Fisher-Kolmogorov

The model
∂u

∂t
= k∆u+ χu (umax − u)

contains some dynamical features that resembles those just described. First of all, let us
clarify the meaning of u (x). If a cell occupies a volume Vcell, in a (much larger) volume
V we have at most Nmax = V

Vcell
cells. The density of cells, at this level of approximation,

should be understood as the ratio between the number of cells and the volume under
consideration; hence it is smaller than Nmax

V = 1
Vcell

. Hence

umax =
1

Vcell
.

Proliferation will be very week where the cells saturate the volume at disposal, intense
where there are rarefied. Hence the term χu (umax − u) corresponds to the ideas of the
previous section.

The term k∆u is necessary to increase the volume occupied by the cells. This mech-
anism of increase is not entirely correct, since it should be due just to pressure, not to
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random Brownian diffusion. In this sense the term k∆u is not realistic for in situ tumors.
However, it is a good mathematical simplification. An interesting problem is to devise
other operators, different from k∆u, which are more realistic.

Assume we start, at time t = 0, from a small cluster of cancer cells, roughly spherical,
around the origin

u0 (x) = u01|x|≤ρ0 (x) .

How does the solution u (t, x) develop? Let us discuss only a 1D model for shortness. From
the theory of Chapter 2 we know that u (t, x) remains between 0 and umax = 1

Vcell
.

Let us think to the evolution in time of the solution by means of a splitting method
(we use it in our simulations, see Chapter 7). Because of the term k∆u, the density
spreads; if ρ0 is small, the solution is qualitatively of the form Cte

−µtx2 . Because of the
term χu (umax − u), the profile u increases everywhere, percentually more where it is small,
infinitesimally when it is very close to umax. The combination of these two elements creates,
asymptotically, a traveling profile of the form

u (t, x) = φ (x− vt) .

The profile moves linearly in t, in accordance with the rule discovered in the previous
section: if we think to the portion of space where u is very high as a sphere, its radius
increases linearly, as in the previous section.

4.3 FKPP as macroscopic limit. The mathematics of prolif-
eration

This section has two aims. Inside this Chapter, devoted to microscopic models and specif-
ically to the in situ phase, it serves as an example of microscopic model giving rise to a
PDE which is a first approximate model of in situ tumors, the FKPP equation. More
generally, this section presents the elements needed to treat proliferation, a building block
of all models of tumor growth, in all regimes and degree of complexity.

The result we are going to present is a particular case of [13]; see also [21]. We present
some detail in a different manner.

4.3.1 Time-inhomogeneous Poisson processes

Let λ (t) be a non-negative locally integrable function. A non-homogeneous Poisson process
Nt with intensity λ (t) on a probability space (Ω,F , P ) with a filtration Gt is an adapted
process, null at zero, taking values in the non negative integer numbers, with càdlàg tra-

jectories, with independent increments and Nt−Ns distributed as P
(∫ t

s λ (u) du
)
, namely

P (Nt −Ns = k) = e−Λ(s,t) Λ (s, t)k

k!
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having set Λ (t) =
∫ t

0 λ (u) du, Λ (s, t) = Λ (t) − Λ (s). When λ (t) = 1, we say it is a
standard Poisson process. If N0

t is a standard Poisson process w.r.t. a filtration Ft, then

Nt := N0
Λ(t)

is a non-homogeneous Poisson process Nt with intensity λ (t), w.r.t. the filtration Gt =
FΛ(t). Indeed it has the same properties of adaptedness and independence, and of trajec-
tories, and

Nt −Ns = N0
Λ(t) −N

0
Λ(s) ∼ P (Λ (s, t)) .

The process Nt − Λ (t) is a martingale w.r.t. Gt:

E [Nt −Ns − Λ (s, t) |Gs] = E [Nt −Ns]− Λ (s, t) = 0.

Because of this, the function Λ (t) is called the compensator of Nt.
Under suitable assumptions, the same result remains true when λ (t) is a stochastic

process. This is a delicate theory which we address to specialized books. It is the concept
of random time change. The a priori exceptional feature of this theory is that λ (t) may
depend on N0 itself.

Mix of SDE and Poisson jumps

SDEs driven by jump processes (instead of Brownian motion) is a delicate and specialized
subject and presumably it is possible to restate what we are going to do in those terms.
But here, precisely in the next section, we need only a special combination of SDEs and
jumps. To prepare it, let us consider a model problem.

Assume to have two SDEs

dX1
t = b1

(
t,X1

t

)
dt+ dW 1

t

dX2
t = b2

(
t,X2

t

)
dt+ dW 2

t

and to have a standard Poisson process N0 (t), with the three processes W 1
t ,W

2
t , N0 (t)

that are independent. Assume that we start with an F0-measurable initial condition X0 by
solving the equation for X1

t . And that, at a random time T which we are going to describe,
we "jump" to the equation for X2

t , namely we start the evolution of such equation at time
T from the initial condition X1

T (the precise technical meaning of starting an SDE at a
random time requires some attention but it is intuitive, it can be done and thus it is left to
the interested reader). Overall, we consider the process Xt defined by X1

t on the random
interval [0, T ) and by X2

t on [T,∞).
If T is a priori given, stopping time w.r.t. Ft, the previous description works. But we

are interested in the case when T depends on Xt itself. This makes things less obvious.
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We assume that the time T is the first jump time of the non-homogeneous Poisson
process Nt with intensity λ (t), explicitly given by a deterministic function g (t, x) > 0 (say
continuous, to simplify) composed with the solution Xt:

λ (t) = g (t,Xt) .

This is a random intensity function. We then consider the process Nt defined as

Nt = N0

(∫ t

0
g (s,Xs) ds

)
.

The first jump of this process is the random time T we want to define.
It can be described also without explicit use of Poisson processes. Let T0 be an ex-

ponential r.v. of rate 1 independent of W 1
t ,W

2
t , X0; it can be the first random jumps of

N0 (t). Define T by the equation ∫ T

0
g (s,Xs) ds = T0.

This is a stopping time and it is precisely the first jump time of the process Nt above.
There is a recursion in the previous definition of the dynamics: we need to know the

final process Xt, which includes informations about T , in the definition of the intensity
λ (t), and thus in the definition of T , which is needed to define Xt. This recursion must be
solve by a fixed point argument. We suggest the reader to think about this delicate issue
and accept it is solvable, with a little degree of intuition. One possibility to understand
the solution is to consider a retarded approximation scheme, which mimics a discrete-
time scheme (indeed in the discrete-time case we could easily avoid the implicit recursion,
making only an explicit recursion).

4.3.2 Proliferating Brownian particles modulated by the density

In Chapter 2 we have seen a rigorous definition of a family of proliferating Brownian
particles. However, there the rate of proliferation was constant and equal for all particles.
The consequence was the exponential increase of the number of particles. Here we want to
modulate proliferation in a way that it is smaller when the density is closer to the threshold
1.

We generically write a for a multi-index (k, i1, ..., in) with i1, ..., in ∈ {1, 2} and k =
1, ..., N , where N ∈ N is given. We include a = (k) in the class of multi-indices. Denote
by Λ the set of all multi-indices. If a = (k, i1, ..., in−1, in), we write (a, j) for (k, i1, ..., in, j)
and (a,−) for (i0, i1, ..., in−1).

We are going to describe a dynamic of particles denoted by Xa
t , a ∈ Λ, not all alive at

time t (to formalize this concept it is suffi cient to introduce a point δ outside Rd and say
that the particle is not alive when Xa

t = δ). The life period of particle Xa
t is the interval

Ia := [T a0 , T
a
1 )
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with the stopping times T a0 , T
a
1 have to be specified. Denote by Λt the set of all a ∈ Λ such

that Xa
t is alive at time t (namely t ∈ Ia) and set

SNt =
1

N

∑
a∈Λt

δXa
t

=
1

N

∑
a∈Λ

δXa
t
1t∈Ia

which is the empirical measure at time t.
Let Na,0

t , Ba
t , a ∈ Λ, Xk

0 , k ∈ N, be independent processes (adapted to a filtration
Ft) and r.v.’s (F0-measurable), where N

a,0
t are standard Poisson processes, Bi

t Brownian
motions, Xi

0 r.v.’s with the same given pdf u0. When T a0 and X
a
Ta0
will be defined for all a,

we set
Xa
t = Xa

Ta0
+Ba

t −Ba
Ta0
, t ≥ T a0

namely we solve the SDE
dXa

t = dBa
t

on [T a0 ,∞) with initial condition Xa
Ta0
. It remains to specify Xa

Ta0
, T a0 , T

a
1 . We set

T a0 = T
(a,−)
1 , Xa

Ta0
= X

(a,−)

T
(a,−)
1

.

It remains to specify the family T a1 , a ∈ Λ, and the first step of the "iteration", namely

T
(k)
0 and X(k)

T
(k)
0

. The latter is simply

T
(k)
0 = 0, X

(k)
0 = Xk

0 .

On the contrary, the definition of T a1 , a ∈ Λ, is the diffi cult part of the story (until now it
was just book-keeping).

Let θε be a family of classical mollifiers and εN → 0 to be specified later on. Set

gNt (x) =
(
θεN ∗ SNt

)
(x) =

∫
θεN (x− y)SNt (dy) .

Then introduce the intensities

λa (t) =
[
1− gNt (Xa

t )
]+
, t ≥ T a0

Λa (t) =

∫ t

Ta0

λa (s) ds, t ≥ T a0 .

Finally, let us introduce the process

Na
t = Na,0

Λa(t), t ≥ T a0

and denote by T a1 the first jump time of N
a
t .
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We omit the proof that this set of self-referring definitions is well given (the intensities,
necessary to define the stopping times, are based on the empirical process which is based
on the stopping times). One possibility is to discretize time and avoid implicit references
in the recursion; another is to delay some times; see the previous section.

Instead of using a full process Na
t , it is equivalent to have just the family T

a,0 of the
first random jumps of Na,0

t , which are independent exponential r.v. of rate 1 and define
T a1 by the equation

Λa (T a1 ) = T a,0.

The process Xa
t is defined on [T a0 ,∞), but it will be considered alive only on [T a0 , T

a
1 ).

The intuition is that the particle a at position Xa
Ta1
is replaced by two particles which move

like
X

(a,j)
t := Xa

Ta1
+B

(a,j)
t −B(a,j)

Ta1
, t ≥ T a1 , j = 1, 2.

Then process X(a,j)
t is stopped at time T (a,j)

1 , when it splits in two new independent
processes, and so on.

The proof of macroscopic limit is made in a few steps:

1. Proof that the family of laws of SN· is tight.

2. Proof that, if SNkt converges weakly to µt, then µt is a weak solution of the PDE.

3. Proof that µt is the unique solution and has a density u (t, x), so that the full sequence
SNt converges to u (t, x) dx.

Let us only sketch point 2, since the other two ones are technical; but point 2 reveals
why the particle system should converge to the right PDE, if it converges (namely if 1
holds true).

Let ϕ ∈ C2
c

(
Rd
)
be given. With a little interpretation of dϕ (Xa

t ) as increment on
infinitesimal interval (the problem is with jumps) we can write

dϕ (Xa
t ) = 1t∈Ia∇ϕ (Xa

t ) · dBa
t + 1t∈Ia∆ϕ (Xa

t ) dt+ 1t=Ta0 ϕ
(
Xa
Ta0

)
− 1t=Ta1 ϕ

(
Xa
Ta1

)
namely

ϕ (Xa
t )− ϕ (Xa

0 ) =

∫ t

0
1s∈Ia∇ϕ (Xa

s ) · dBa
s +

∫ t

0
1s∈Ia∆ϕ (Xa

s ) ds

+1Ta0 ∈[0,t]ϕ
(
Xa
Ta0

)
− 1Ta1 ∈[0,t]ϕ

(
Xa
Ta1

)
Hence〈
SNt , ϕ

〉
−
〈
SN0 , ϕ

〉
=

1

N

∑
a∈Λ

∫ t

0
1s∈Ia∇ϕ (Xa

s ) · dBa
s +

1

N

∑
a∈Λ

∫ t

0
1s∈Ia∆ϕ (Xa

s ) ds

+
1

N

∑
a∈Λ

1Ta0 ∈[0,t]ϕ
(
Xa
Ta0

)
− 1

N

∑
a∈Λ

1Ta1 ∈[0,t]ϕ
(
Xa
Ta1

)
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namely

〈
SNt , ϕ

〉
−
〈
SN0 , ϕ

〉
= M1,N

t +

∫ t

0

〈
SNs ,∆ϕ

〉
ds+

1

N

∑
a∈Λ

1Ta1 ∈[0,t]ϕ
(
Xa
Ta1

)
where M1,N

t = 1
N

∑
a∈Λ

∫ t
0 1s∈Ia∇ϕ (Xa

s ) · dBa
s satisfies

E

[∣∣∣M1,N
t

∣∣∣2] =
1

N2

∑
a∈Λ

E

∫ t

0
1s∈Ia |∇ϕ (Xa

s )|2 ds =
1

N

∫ t

0
E
[〈
SNs , |∇ϕ|

2
〉]
ds ≤ T ‖∇ϕ‖20

N
→ 0

as N →∞. We have simplified

1

N

∑
a∈Λ

1Ta0 ∈[0,t]ϕ
(
Xa
Ta0

)
− 1

N

∑
a∈Λ

1Ta1 ∈[0,t]ϕ
(
Xa
Ta1

)
=

1

N

∑
a∈Λ

1Ta1 ∈[0,t]ϕ
(
Xa
Ta1

)
.

because two particles appear in the same position whenever a particle disappears. The key
result is now:

Theorem 30 The process

M2,N
t =

1

N

∑
a∈Λ

1Ta1 ∈[0,t]ϕ
(
Xa
Ta1

)
− 1

N

∑
a∈Λ

∫ t

0
ϕ (Xa

s ) 1s∈Iaλ
a
sds

is a martingale, and

lim
N→∞

E

[∣∣∣M2,N
t

∣∣∣2] = 0.

Due to this result we rewrite the equation above in the form

〈
SNt , ϕ

〉
−
〈
SN0 , ϕ

〉
= M1,N

t +M2,N
t +

∫ t

0

〈
SNs ,∆ϕ

〉
ds+

∫ t

0

〈
SNs , ϕ

[
1− gNs

]+〉
ds

because
1

N

∑
a∈Λ

∫ t

0
ϕ (Xa

s ) 1s∈Iaλ
a
sds =

∫ t

0

〈
SNs , ϕ

[
1− gNs

]+〉
ds.

The theorem heuristically gives us

〈ρt, ϕ〉 − 〈ρ0, ϕ〉 =

∫ t

0
〈ρs,∆ϕ〉 ds+

∫ t

0

〈
ρs (1− ρs)+ , ϕ

〉
ds

in the limit. For this equation one can prove preservation of the domain [0, 1], and thus
(1− ρs)+ = (1− ρs). This is the weak form of FKPP equation.
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Concerning the proof of Theorem 30, it requires a good part of the theory of Pois-
son processes and the corresponding stochastic integration. Let us give only some hint.
Consider for simplicity the case a = (k). Take the standard Poisson process Na,0

t and
time-change it by Λa (t):

λa (t) =
[
1− gNt (Xa

t )
]+
, t ≥ 0

Λa (t) =

∫ t

0
λa (s) ds, t ≥ 0

Na
t = Na,0

Λa(t), t ≥ 0.

The process Na
t −Λa (t) is a martingale, w.r.t. a suitable filtration and the stopped process

Na
t∧Ta1

− Λa (t ∧ T a1 ) is also a martingale. But

Na
t∧Ta1 = 1Ta1 ∈[0,t]

thus Λa (t ∧ T a1 ) is the compensator of the random time 1Ta1 ∈[0,t]. We may interpret

1Ta1 ∈[0,t]ϕ
(
Xa
Ta1

)
as

1Ta1 ∈[0,t]ϕ
(
Xa
Ta1

)
=

∫ t

0
ϕ (Xa

s ) 1s∈IadN
a
s .

The process ∫ t

0
ϕ (Xa

s ) 1s∈Iad (Na
s − Λa (s))

is again a martingale and its quadratic variation is equal to∫ t

0
ϕ2 (Xa

s ) 1s∈IadN
a
s

so

E

[∣∣∣∣∫ t

0
ϕ (Xa

s ) 1s∈Iad (Na
s − Λa (s))

∣∣∣∣2
]

= E

[∫ t

0
ϕ2 (Xa

s ) 1s∈IadN
a
s

]
= E

[∫ t

0
ϕ2 (Xa

s ) 1s∈Iaλ
a (s) ds

]
.

One can also show that the joint quadratic variation between different a’s is zero since
jumps cannot occur at the same time. It follows

E

[∣∣∣M2,N
t

∣∣∣2] =
1

N2

∑
a∈Λ

E

[∣∣∣∣∫ t

0
ϕ (Xa

s ) 1s∈Iad (Na
s − Λa (s))

∣∣∣∣2
]

=
1

N2

∑
a∈Λ

E

[∫ t

0
ϕ2 (Xa

s ) 1s∈Iaλ
a (s) ds

]
=

1

N

∫ t

0

〈
SNs , ϕ

2
[
1− gNs

]+〉
ds

≤ 1

N
‖ϕ‖20 → 0.
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Chapter 5

Different interactions and
macroscopic limits

5.1 Preliminaries and summary

5.1.1 Number of particles in a volume.

Our interacting system will always have eitherN particles, in the case without proliferation,
or a number which is larger than N but still comparable, at least on short times.

This family of particles, up to a few of them, will occupy a finite portion of space, which
to some extent we may idealize to be a compact set. Up to finite multiples, it is like the
cube of size one (in length).

If we take a cube with side of length ε, or a ball of diameter ε, its volume is proportional
to εd.

If the particles are fairly distributed, still with differences in local concentration but of
finite size, there are

εdN particles in a cube of diameter ε

up to constants.
The global empirical measure at time t is

SNt =
1

N

∑
Rd

δXi
t

where N is the initial number of particles and the symbol
∑
Rd means the sum extended

to all particles Xi
t ∈ Rd, all the particles which are alive at time t.

If we take a set Uε, cube or ball or similar, of linear size ε, the empirical measure in Uε
at time t will be defined as

SN,Uεt =
1

Nεd

∑
Uε

δXi
t

71
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where the symbol
∑
Uε means the sum extended to all particles Xi

t ∈ Uε, all the particles
which are alive and belong to Uε at time t.

5.1.2 Our model

Both volume constraint and cell adhesion work between cells in contact, hence points at a
distance of the order 1

N1/d . Hence we deal with a system

dXi
t =

∑
j

KN

(
Xi
t −X

j
t

)
dt+ σdW i

t (5.1)

where

KN (x) =
1

αN
K
(
N1/dx

)
, K compact support.

The question is: which αN (and which K)? The shape of K can be decided on the basis of
the two interactions. But the intensity, αN , how large should it be? More precisely, when
N increases to infinity, how large should αN be? Notice that the sum

∑
j has a finite

number of addends.
Deducing from the physics the precise asymptotics of αN is obscure to me. For sure,

1
αN

must be very large, compared to σ, since the speed of the local displacement produced
by volume constraint and adhesion is enormous, on the scale of seconds, compared to other
sources of motions, which are on the scale of days.

Thus, in absence of a more strict motivation, our choice is that we are in the case of
short range interactions with 1

αN
= N .

5.2 Different interactions

Different classes of interactions, for systems of type (5.1), are considered in the literature.
A general source of inspiration is [20], although mainly devoted either to deterministic
ODEs or cellular automata. More specific references are given below.

5.2.1 Long range (mean field)

It is the case

KN (x) =
1

N
K (x)

without special restrictions on K (just bounded and Lipschitz). It means that each particle
interacts with each other, with a weak intensity ∼ 1

N , hence each particle feels an average
of inputs; it is not surprising that in the limit each particle feels an average input ρ, the
so called mean field of the system.
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5.2.2 Short range

It is the case (like contact interaction):

KN (x) = aNK
(
N1/dx

)
, K compact support.

It means that particles interact only if they are at distance 1
N1/d each other, which is

the typical distance between nearest neighbor particles in a set of N particles in a finite
volume (when no accumulation occurs), hence only nearest neighbor particles (or close to
it) interact. The amplitude aN is not prescribed a priori, we may have in mind different
regimes. If we set εN = 1

N1/d , we may think to the ball (or cube) UεN or diameter εN
centered at Xi

t and we have that X
i
t interacts with particles in UεN only, which are a finite

number.
In the figure we have denoted by "1" the strength of each single interaction but other

cases are also interesting.

5.2.3 Intermediate range

Intermediate between long and short range is the case (called moderate interactions in part
of the literature)

KN (x) = aNK
(
Nβ/dx

)
, β ∈ (0, 1) , K compact support.
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It is an intermediate regime between the previous two ones. If we set εN = 1
Nβ/d , we may

think to the ball (or cube) UεN or diameter εN centered at Xi
t and we have that X

i
t interacts

with particles in UεN only; the number of such particles is of the order εdNN = N
Nβ = N1−β.

5.2.4 Common notations

To unify notations, we may always write

KN (x) = aNK
(
Nβ/dx

)
and distinguish:

1. long range: β = 0, aN = 1
N

2. short range: β = 1, K compact support

3. intermediate range: β ∈ (0, 1), K compact support.

5.2.5 Mean field amplitude

The literature focuses on two choices of the amplitude aN . The first one will be called
mean field amplitude and is given by

aN =
1

N
Nβ =


1
N long range
1

N1−β intermediate range
1 short range.

SinceN1−β = NεdN is proportional to the number of particles in UεN (when no accumulation
occurs), the input on each particle is bounded, like in the long range case; hence tightness
is "easy". If K (x) = θ (x) v where θ is a classical mollifier and v is a given vector, then

KN (x) = aNθ
(
Nβ/dx

)
v

=
1

N
Nβθ

(
Nβ/dx

)
v
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looks like a mean field problem with kernel converging to δ0. However, only in the inter-
mediate range case we still expect a law of large numbers, while in the short range case
not, since it is an average over a finite number of values.

5.2.6 Large amplitude

The second typical example of amplitude in the literature, that here will be called with
large amplitude, is inspired to the choice

K (x) = ∇θ (x)

where θ is a classical mollifier. It is

aN =
1

N
Nβ(1+ 1

d) =


1
N long range
1

N
1−β(1+ 1

d)
intermediate range

N1/d short range

(hence in the long range case it reduces again to the mean field situation). It is natural
because

KN (x) = aN (∇θ)
(
Nβ/dx

)
=

1

N
NβNβ/d (∇θ)

(
Nβ/dx

)
=

1

N
∇θN (x)

where θN (x) = Nβθ
(
Nβ/dx

)
→ δ0 (x). It looks like a mean field problem with kernel

converging to ∇δ0. This case is singular: think to the short range case to understand why
(the other case is similar). We have∑

j

KN

(
Xi
t −X

j
t

)
= N1/d

∑
j

(∇θ)
(
N1/d

(
Xi
t −X

j
t

))
.

The sum is typically finite, hence this input to the motion of Xi
t diverges with N , opposite

to the mean field cases above. This divergence must be compensated by a special symmetry

of K, a symmetry which typically makes
∑

jK
(
N1/d

(
Xi
t −X

j
t

))
very small.

5.3 Different PDE limits

In all cases, given

SNt =
1

N

∑
i

δXi
t
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we have to understand the limit of the identity〈
SNt , ϕ

〉
−
〈
SN0 , ϕ

〉
=

1

N

∑
i

∫ t

0
∇ϕ

(
Xi
s

)
·
∑
j

KN

(
Xi
s −Xj

s

)
ds

+
σ2

2

∫ t

0

〈
SNs ,∆ϕ

〉
ds+MN

t

where

MN
t = σ

1

N

∑
i

∫ t

0
∇ϕ

(
Xi
s

)
· dW i

s .

Assume we already know that SNt ⇀ ρt. We have to identify the equation satisfied by ρt.
The only diffi cult issue is to understand the limit of

1

N

∑
i

∫ t

0
∇ϕ

(
Xi
s

)
·
∑
j

KN

(
Xi
s −Xj

s

)
ds.

This term is equal to ∫ t

0

〈
SNs ,∇ϕ

∑
j

KN

(
· −Xj

s

)〉
ds

and to

N

∫ t

0

∫ ∫
∇ϕ (x)KN (x− y)SNs (dx)SNs (dy) ds.

If we use the first formula, the problem is to understand the function

x 7→
∑
j

KN

(
x−Xj

s

)
.

5.3.1 Long range, mean field, case

Exercise 31 If µN ⇀ µ then µN ⊗µN ⇀ µ⊗µ (use Skorohod representation theorem and
two independent copies of the space).

If

KN (x) =
1

N
K (x)

then

N

∫ t

0

∫ ∫
∇ϕ (x)KN (x− y)SNs (dx)SNs (dy) ds

=

∫ t

0

∫ ∫
∇ϕ (x)K (x− y)SNs (dx)SNs (dy) ds
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which converges to ∫ t

0

∫ ∫
∇ϕ (x)K (x− y) ρs (dx) ρs (dy) ds

by the exercise and dominated convergence theorem in ds. The result is∫ t

0
〈ρs,∇ϕ · (ρs ∗K)〉 ds = −

∫ t

0
〈ϕ,div (ρs (ρs ∗K))〉 ds.

The final PDE is
∂ρ

∂t
=
σ2

2
∆ρ− div (ρ (ρ ∗K)) .

It is a non-local non-linear PDE. A general main reference is [23].

5.3.2 Intermediate range with mean field amplitude

Consider the case

KN (x) =
1

N
NβK

(
Nβ/dx

)
, K compact support

We have

N

∫ t

0

∫ ∫
∇ϕ (x)KN (x− y)SNs (dx)SNs (dy) ds

=

∫ t

0

∫ ∫
∇ϕ (x)NβK

(
Nβ/d (x− y)

)
SNs (dx)SNs (dy) ds.

Assume for simplicity K (x) = vθ (x) where θ is a classical mollifier. Hence the natural
limit is ∫ t

0

∫ ∫
∇ϕ (x) · vδ0 (x− y) ρs (x) ρs (y) dxdyds

=

∫ t

0

∫ ∫
∇ϕ (x) · vρ2

s (x) dxds = −
∫ t

0

∫ ∫
ϕ (x) div

(
vρ2

s (x)
)
dxds.

The final PDE is
∂ρ

∂t
=
σ2

2
∆ρ− div

(
vρ2
)
.

It is a local semi-linear PDE. A result in this direction can be found in [12].
Is such limit so natural? Let us mention the following simple fact.

Lemma 32 Let µn, µ, ρn := θn ∗ µn. Then 〈µn, φ〉 → 〈µ, φ〉 for all φ ∈ UCb if and only if
〈ρn, φ〉 → 〈µ, φ〉 for all φ ∈ UCb.
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Proof. 〈µn, φ〉 → 〈µ, φ〉 and 〈ρn, φ〉 → 〈µ, φ〉 differ by

〈µn, φ〉 − 〈ρn, φ〉

and thus it is suffi cient to show that this difference goes to zero for all φ ∈ UCb. We have

〈ρn, φ〉 =

∫ (∫
θn (x− y)µn (dy)

)
φ (x) dx

=

∫ (∫
θn (x− y)φ (x) dx

)
µn (dy) =

〈
µn, θ̃n ∗ φ

〉
hence we have to show that 〈

µn, θ̃n ∗ φ− φ
〉
→ 0.

We have ∣∣∣〈µn, θ̃n ∗ φ− φ〉∣∣∣ ≤ 〈µn, ∣∣∣θ̃n ∗ φ− φ∣∣∣〉 ≤ ∥∥∥θ̃n ∗ φ− φ∥∥∥
0

and it is a simple exercise to show that
∥∥∥θ̃n ∗ φ− φ∥∥∥

0
→ 0 as n→∞, when φ ∈ UCb.

Based on this lemma,
∫
NβK

(
Nβ/d (x− y)

)
SNs (dy) "weakly" converges to ρs (x) (by

"weakly" we mean against UCb functions, suffi cient if we reformulate the problem on a
torus; to reach Cb functions one needs ad hoc control on several objects at infinity). But
then we have to compute〈∫

NβK
(
Nβ/d (· − y)

)
SNs (dy) ,∇ϕ (x)SNs

〉
so we have a classical problem of convergence of product of two weakly convergent objects.
The result is not unique, it depends on details of the sequences.

In the intermediate range case the intuition is that it works, the limit is the product
of the weak limits: this is due to the fact that the family of mollifiers NβK

(
Nβ/d (x− y)

)
"observe" a large part of points of SNs .

Completely different would be the short range case, when the interaction isNK
(
N1/d (x− y)

)
.

In this case, if particles do not aggregate too much, only very few, a finite number of par-
ticles are "observed" by the mollifiers. Think to the extreme case when the support of θ is
too small compared to the typical distance between neighbor particles. The mollifiers do
not match any pair of particles, or just very few due to some fluctuation, hence∫ t

0

∫ ∫
∇ϕ (x)N1K

(
N1/d (x− y)

)
SNs (dx)SNs (dy) ds

is zero or almost zero, opposite to the conjectured limit
∫ t

0

∫ ∫
∇ϕ (x) · vρ2

s (x) dxds.
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5.3.3 Intermediate range with large amplitude

Consider the case

KN (x) =
1

N
Nβ(1+ 1

d) (∇θ)
(
Nβ/dx

)
=

1

N
∇θN (x) , K compact support

where θN (x) = Nβθ
(
Nβ/dx

)
. We have

N

∫ t

0

∫ ∫
∇ϕ (x)KN (x− y)SNs (dx)SNs (dy) ds =

∫ t

0

∫ ∫
∇ϕ (x)∇θN ((x− y))SNs (dx)SNs (dy) ds.

The intuition is that it converges to∫ t

0

∫ ∫
∇ϕ (x)∇δ0 (x− y) ρs (x) ρs (y) dxdyds

= −
∫ t

0

∫
∇ϕ (x) ρs (x)∇ρs (x) dxds

=

∫ t

0

∫
ϕ (x) div (ρs (x)∇ρs (x)) dxds.

The final PDE is
∂ρ

∂t
=
σ2

2
∆ρ+ div (ρ∇ρ) .

It is a local quasi-linear PDE. When σ = 0 it is known as porous media equation and it
has the property of maintaining compact support of solutions. The basic reference for us
will be [12]. See also [17].

Obviously the same remarks apply here as in the mean field case: only in the true
intermediate range case we may expect the result to be true; it cannot be extended to
short range.

5.3.4 Short range and other regimes

Under appropriate conditions, the limit PDE has the form

∂ρ

∂t
= ∆P (ρ) .

Unfortunately, the function P is not known explicitly; it is the pressure of a certain equi-
librium ensemble. The basic reference on this problem is [27]. See also [25] and [14].

Let us also mention that other regimes, not explicitly discussed here, can be found in
[2].
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5.4 Simulations

We have seen in Chapter 2 and 3 several simulations of FKPP and other examples. We
add here the simulation of two equations with nonlinear diffusion term, of the form found
above. The first one is the so called porous media equation,

∂ρ

∂t
= ∆ρ2

(notice that ∆ρ2 = 2 div (ρ∇ρ)). The solution, which initially is an exponential, tends to
become "compact support". It is known, for this equation, that a compact support initial
condition remains compact support.

The previous pictures are just nonlinear diffusion. The next ones add proliferation:

∂ρ

∂t
= ∆ρ2 + ρ (1− ρ)
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This looks very promising to describe accurately the growth of a tumor in situ. We
presumably have a sort of traveling wave here too, like for FKPP. Let us sketch the analysis
of this problem, with factor 1

2 for comparison with FKPP.
Consider the equation

∂u

∂t
=

1

2
∆u2 + u (1− u) .

Assuming we have a solution of the form

u (t, x) = w (x− ct)

we find, by substitution
−cw′ = w′w′ + ww′′ + w − w2. (5.2)

We impose again
lim

x→−∞
w (x) = 1, lim

x→+∞
w (x) = 0 (5.3)
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and that w is decreasing.
Equation (2.3), with the notations x (t) := w, y (t) = w′, is equivalent to the system

x′ = y

y′ =
−cy − y2 − x+ x2

x
= −cy

x
− y2

x
− 1 + x.

We look for solutions (x (t) , y (t)) defined on the whole R such that

lim
t→−∞

x (t) = 1, lim
t→+∞

x (t) = 0.

The fixed points are the pairs (x, y) such that

y = 0

−cy − y2 − x+ x2 = 0

hence −x+ x2 = 0, x = 0 or x = 1, therefore

A = (0, 0) , B = (1, 0) .

Denoting the vector field by f (x, y), we have

Df (x, y) =

(
0 1

c y
x2

+ y2

x2
+ 1 −c 1

x − 2 yx

)
=

1

x2

(
0 x2

cy + y2 + x2 −cx− 2xy

)

By Maple we have found that Df (B) =

(
0 1
1 −c

)
has eigenvectors

eB1 =

(
1
2c−

1
2

√
c2 + 4

1

)
, eB2 =

(
1
2c+ 1

2

√
c2 + 4

1

)
with eigenvalues

−1

2
c− 1

2

√
c2 + 4,

1

2

√
c2 + 4− 1

2
c.

HenceDf (B) has eigenvalues of opposite signs, an hyperbolic point with unstable manifold
tangent to eB2 , pointing in the first and third quadrant. As for FKPP, a solution exists
from B along −eB2 . It moves in the forth quadrant initially in south-west direction, then
turns towards the origin in the north-west direction.

The analysis of point A is more diffi cult because Df (w, z) diverges as (w, z) → A, a
fact that could be a signature of a faster approach and a compact support profile. Let us
see a simulation for c = 3. The figure on the left is the heterocline. The figure on the right
is the corresponding profile.
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Chapter 6

Some mathematical details on the
macroscopic limits

6.1 Mean field limit

The next discussion is partially based on [23].
Consider the equation

dXi
t =

1

N

∑
j

K
(
Xi
t −X

j
t

)
dt+ σdW i

t , i = 1, ..., N (6.1)

with
K bounded Lipschitz continuous.

We shall also write it in the form

dXi
t = bNt

(
Xi
t

)
dt+ σdW i

t (6.2)

where

bNt (x) :=
1

N

∑
j

K
(
x−Xj

t

)
=

∫
K (x− y)SNt (dy) .

To simplify, assume that the initial conditions Xi
0, F0-measurable, are i.i.d. with law

µ0 ∈ Pr1

(
Rd
)
(defined in the next lines). There are two main approaches, described in the

next subsections.
As a general preliminary, denote by Pr1

(
Rd
)
the space of probability measures on Rd

with finite first moment, endowed with the 1-Wasserstein metric W1. Recall that

W1 (µ, ν) = inf E [|X − Y |]

85
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where the infimum is taken over all the pairs (X,Y ) of r.v. having laws L (X) = µ,
L (Y ) = ν. And one also has

W1 (µ, ν) = sup

∣∣∣∣∫ φ (x) (µ− ν) (dx)

∣∣∣∣
over all φ : Rd → R with [φ]Lip ≤ 1, ‖φ‖0 ≤ 1. Consider also the space C

(
[0, T ] ; Pr1

(
Rd
))

of continuous families (µt)t∈[0,T ], with µt ∈ Pr1

(
Rd
)
, endowed with the metric

d (µ, ν) = sup
t∈[0,T ]

W1 (µt, νt) .

A known tightness criterion for the family of laws of a sequence of measure-valued processes
(µn· )n∈N with paths in C

(
[0, T ] ; Pr1

(
Rd
))
(see [8]) requires that:

i) for every ε > 0 there is compact set Kε ⊂ Pr1

(
Rd
)
such that

P (µnt ∈ Kε for all t ∈ [0, T ]) > 1− ε (6.3)

for all n ∈ N; and that
ii)

E [W1 (µnt , µ
n
s )p] ≤ C |t− s|1+α (6.4)

for some p, α > 0.

6.1.1 Compactness approach

The first one could be summarized under the sentence "by compactness". It consists in
three steps. First one has to prove:

Theorem 33 The family of laws of the empirical measure processes

SNt :=
1

N

∑
j

δ
Xj
t

is tight in C
(
[0, T ] ; Pr1

(
Rd
))
.

Proof. We do not discuss the proof of (6.3) which is a little technical; the reader who
wants to have a complete result could restrict the framework to diffusions on the torus (as
in [27]). Let us prove (6.4), by the following elegant computation: for every φ : Rd → R
with [φ]Lip ≤ 1, ‖φ‖0 ≤ 1,

W1

(
SNt , S

N
s

)
≤
∣∣∣∣∫ φ (x)

(
SNt − SNs

)
(dx)

∣∣∣∣
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≤ 1

N

∑
i

∣∣φ (Xi
t

)
− φ

(
Xi
s

)∣∣ ≤ 1

N

∑
i

∣∣Xi
t −Xi

s

∣∣
≤ 1

N

∑
i

∫ t

s

∣∣bNr (Xi
r

)∣∣ dr + σ
1

N

∑
i

∣∣W i
t −W i

s

∣∣
≤ ‖K‖0 |t− s|+ σ

1

N

∑
i

∣∣W i
t −W i

s

∣∣
from (6.2) and the boundedness of K. Moreover,

(
1
N

∑∣∣W i
t −W i

s

∣∣)4 ≤ 1
N

∑∣∣W i
t −W i

s

∣∣4,
hence

E

( 1

N

∑
i

∣∣W i
t −W i

s

∣∣)4
 ≤ 3 (t− s)2 .

Thus we get

E
[
W1

(
SNt , S

N
s

)4] ≤ 4 ‖K‖40 |t− s|
4 + 12σ4 |t− s|2

which implies (6.4).
The second step consists in proving that all weak limit points of SNt satisfy the PDE.

Let us take a weakly converging subsequence, still denoted by SNt for notational simplicity
(at the end the question of uniqueness of the limit is important). Denote by µt its limit,
which a priori is a measure-valued stochastic process. We have to identify the equation
satisfied, in weak sense, by µt. We have already outlined this step in Chapter 5: from Itô
formula, for every φ ∈ C2

c

(
Rd
)
we have

d
〈
SNt , φ

〉
=

1

N

∑
i

dφ
(
Xi
t

)
=

1

N

∑
i

∇φ
(
Xi
t

) 〈
SNt ,K

(
Xi
t − ·

)〉
dt+

1

N

∑
i

∇φ
(
Xi
t

)
σdW i

t +
1

N

∑
i

σ2

2
∆φ

(
Xi
t

)
dt.

Think to the integrated version in t: on the left we have〈
SNt , φ

〉
−
〈
SN0 , φ

〉
which converges to

〈µt, φ〉 − 〈µ0, φ〉 .
Similarly the term ∫ t

0

1

N

∑
i

σ2

2
∆φ

(
Xi
s

)
ds =

∫ t

0

σ2

2

〈
SNs ,∆φ

〉
ds

converges to ∫ t

0

σ2

2
〈µs,∆φ〉 ds.
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The term 1
N

∑
i

∫ t
0 ∇φ

(
Xi
s

)
σdW i (s) converges to zero in mean square:

E

∣∣∣∣∣ 1

N

∑
i

∫ t

0
∇φ

(
Xi
s

)
σdW i (s)

∣∣∣∣∣
2
 =

σ2

N2

∑
i

∫ t

0
E
[∣∣∇φ (Xi

s

)∣∣2] ds
≤ σ2

N2

∑
i

‖∇φ‖2∞ t =
σ2

N
‖∇φ‖2∞ t→ 0.

Finally,∫ t

0

1

N

∑
i

∇φ
(
Xi
s

) 〈
SNt ,K

(
Xi
s − ·

)〉
ds =

∫ t

0

∫ ∫
∇φ (x)K (x− y)SNs (dx)SNs (dy) ds

converges to ∫ t

0

∫ ∫
∇φ (x)K (x− y)µs (dx)µs (dy) ds

as explained rigorously in Chapter 5. Thus µt satisfies the identity

〈µt, φ〉 − 〈µ0, φ〉 =

∫ t

0

∫ ∫
∇φ (x)K (x− y)µs (dx)µs (dy) ds+

∫ t

0

σ2

2
〈µs,∆φ〉 ds (6.5)

which is the weak form of

∂µt
∂t

=
σ2

2
∆µt − div

(
µt

∫
K (x− y)µt (dy)

)
. (6.6)

The third and last step requires to prove that this PDE has a unique weak solution.
This can be done as in Theorem 37 below. Since SN0 convergence weakly, a.s., to the
deterministic measure µ0, it follows that µt is deterministic. Moreover, it is the same for
every converging subsequence of SNt , hence the full sequence S

N
t converges to µt. We have

proved:

Theorem 34 SNt converges, in the topology of C
(
[0, T ] ; Pr1

(
Rd
))
, to the unique deter-

ministic measure-valued solution (µt)t∈[0,T ] of equation (6.6) with initial condition µ0 ∈
Pr1

(
Rd
)
.

6.1.2 By comparison with the mean field SDE

The second approach (following e.g. [23]) is potentially less general than the compactness
one but it gives more informations. It starts with a preliminary analysis of the limit SDE

dXt = bt (Xt) dt+ σdWt (6.7)
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bt (x) =

∫
K (x− y)µt (dy) (6.8)

µt = Law of Xt (6.9)

with X0 a given F0-measurable r.v.; assume for simplicity E [|X0|] < ∞. One can prove
that:

Theorem 35 There is a unique strong solution (X,µ) of problem (6.7)-(6.9).

Proof. We give only the scheme of the proof (the details are not diffi cult). Denote by
Pr1

(
Rd
)
the space of probability measures on Rd with finite first moment, endowed with

the 1-Wasserstein metricW1. Consider the space C
(
[0, T ] ; Pr1

(
Rd
))
of continuous families

(µt)t∈[0,T ], with µt ∈ Pr1

(
Rd
)
, endowed with the metric

d (µ, ν) = sup
t∈[0,T ]

W1 (µt, νt) .

First, one consider the map Γ in C
(
[0, T ′] ; Pr1

(
Rd
))
, T ′ to be chosen, defined as

(Γµ)t = Law (Y µ
t )

dY µ
t = bµt (Y µ

t ) dt+ σdWt, Y µ
0 = X0

bµt (x) =

∫
K (x− y)µt (dy) .

It is a contraction (for small T ′). Let us show only this computation. By definition/characterization
of 1-Wasserstein metric, we have

W1 ((Γµ)t , (Γν)t) ≤ E [|Y µ
t − Y ν

t |] .

By the equation,

|Y µ
t − Y ν

t | ≤
∫ t

0
|bµs (Y µ

s )− bνs (Y ν
s )| ds

≤
∫ t

0
|bµs (Y µ

s )− bµs (Y ν
s )| ds+

∫ t

0
|bµs (Y ν

s )− bνs (Y ν
s )| ds

≤ LK

∫ t

0
|Y µ
s − Y ν

s | ds+ LK

∫ t

0
W1 (µs, νs) ds

because ∣∣bµt (x)− bµt
(
x′
)∣∣ ≤ ∫ ∣∣K (x− y)−K

(
x′ − y

)∣∣µt (dy) ≤ LK
∣∣x− x′∣∣

|bµt (x)− bνt (x)| = LK

∣∣∣∣∫ L−1
K K (x− y) (µt − νt) (dy)

∣∣∣∣ ≤ LKW1 (µt, νt)
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by the other definition/characterization of 1-Wasserstein metric. Thus, by Gronwall lemma,

|Y µ
t − Y ν

t | ≤ eLKLK
∫ t

0
W1 (µs, νs) ds.

We conclude

W1 ((Γµ)t , (Γν)t) ≤ e
LKLK

∫ T ′

0
W1 (µs, νs) ds.

Then Γ is a contraction in C
(
[0, T ′] ; Pr1

(
Rd
))
for T ′ small enough, namely such that

eLKLKT
′ < 1.

This gives us local existence and uniqueness of µ, fixed point of Γ, from which one
deduces existence and uniqueness of a strong solution on [0, T ′] by a classical result on
SDE’s and identification of µ as the law of this solution, due to the definition of Γ. The
argument can then be repeated on intervals of equal length, because the choice of T ′

depends only on LK .

Definition 36 A measure-valued solution (µt)t∈[0,T ] of equation (6.6) with initial con-

dition µ0 ∈ Pr1

(
Rd
)
is a family in C

(
[0, T ] ; Pr1

(
Rd
))
such that (6.5) holds for every

φ ∈ C2
c

(
Rd
)
.

Theorem 37 Given µ0 ∈ Pr1

(
Rd
)
, there exists a unique measure-valued solution (µt)t∈[0,T ]

of equation (6.6) with initial condition µ0 ∈ Pr1

(
Rd
)
.

Proof. We give only the scheme of the proof. Existence readily follows from the previous
theorem: it is suffi cient to apply the result on Fokker-Planck equations given in Chapter 1.
The proof of uniqueness is more involved.

First (this is the more technical step) one can prove uniqueness of measure-valued
solutions (µt)t∈[0,T ] of the linear (Fokker-Planck) equation

∂µt
∂t

=
σ2

2
∆µt − div (µtbt)

with initial condition µ0 ∈ Pr1

(
Rd
)
. The definition is

〈µt, φ〉 − 〈µ0, φ〉 =

∫ t

0
〈bsµs,∇φ〉 ds+

∫ t

0

σ2

2
〈µs,∆φ〉 ds

for all φ ∈ C2
c

(
Rd
)
. The assumption on b here is that it is a given uniformly-in-time

Lipschitz continuous vector field b : [0, T ] × Rd → Rd. One proof is by duality: one first
prove that, given an arbitrary pair T ′ ∈ [0, T ] and g ∈ C2

c

(
Rd
)
, the backward Kolmogorov

equation on [0, T ′]
∂ut
∂t

+
σ2

2
∆ut + bt · ∇ut = 0 uT ′ = g
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has a suffi ciently regular solution to apply the rules of calculus required in the next
argument. Second, one extends the definition of measure-valued solution from every
φ ∈ C2

c

(
Rd
)
to every time-dependent test function ut in the call of regularity of solu-

tions of the previous Kolmogorov equation. At this point we know that

〈µt, ut〉 − 〈µt′ , ut′〉 =

∫ t

t′

〈
µs,

∂us
∂s

〉
ds+

∫ t

t′
〈bsµs,∇us〉 ds+

∫ t

0

σ2

2
〈µs,∆us〉 ds

for every 0 ≤ t′ ≤ t ≤ T ′. By the equation satisfied by u we get

〈µt, ut〉 = 〈µt′ , ut′〉

and in particular
〈µt, g〉 = 〈µ0, u0〉 .

Since g ∈ C2
c

(
Rd
)
is arbitrary, this identifies µt. Hence the linear equation has a unique

solution.
Now, let νt be a measure-valued solution of equation (6.6) with initial condition µ0 ∈

Pr1

(
Rd
)
. It is solution of

∂νt
∂t

=
σ2

2
∆νt − div (νtbt)

where bt = K ∗ νt. It is unique (by the argument just explained); but also the marginal of
the law ν of a process Y solving

dYt = bt (Yt) dt+ σdBt

is a solution. Hence (Yt, νt) is another solution of problem (6.7)-(6.9), thus it is equal to
(Xt, µt); namely νt is equal to µt.

Now, for every i ∈ N, consider

dX
i
(t) = v

(
X
i
(t) , t

)
dt+ σdW i (t)

v (x, t) =

∫
K (x− y)µt (dy)

µt = Law of X
i
(t) .

The next theorem is the key step in the proof of the macroscopic limit but it is also a very
interesting result in itself: it describes the asymptotic (in N) dynamics of each particle Xi

t .
It immediately has an interesting corollary, called propagation of chaos.

Theorem 38 We have

E

[
sup
t∈[0,T ]

∣∣∣Xi
t −X

i
t

∣∣∣] ≤ C√
N
.
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Proof. We have

Xi
t −X

i
t =

∫ t

0

1

N

∑
j

K
(
Xi
s −Xj

s

)
ds−

∫ t

0
v
(
X
i
s, s
)
ds

=

∫ t

0

1

N

∑
j

(
K
(
Xi
s −Xj

s

)
−K

(
X
i
s −Xj

s

))
ds

+

∫ t

0

1

N

∑
j

(
K
(
X
i
s −Xj

s

)
−K

(
X
i
s −X

j
s

))
ds

+

∫ t

0

 1

N

∑
j

K
(
X
i
s −X

j
s

)
− v

(
X
i
s, s
) ds

hence

E
[∣∣∣Xi

t −X
i
t

∣∣∣] ≤ LK ∫ t

0
E
[∣∣∣Xi

s −X
i
s

∣∣∣] ds+ LK
1

N

∑
j

∫ t

0
E
[∣∣∣Xj

s −X
j
s

∣∣∣] ds
+

∫ t

0
E

∣∣∣∣∣∣ 1

N

∑
j

K
(
X
i
s −X

j
s

)
− v

(
X
i
s, s
)∣∣∣∣∣∣
 ds.

By exchangeability

E
[∣∣∣Xi

t −X
i
t

∣∣∣] ≤ 2LK

∫ t

0
E
[∣∣∣Xi

s −X
i
s

∣∣∣] ds+∫ t

0
E

∣∣∣∣∣∣ 1

N

∑
j

K
(
X
i
s −X

j
s

)
− v

(
X
i
s, s
)∣∣∣∣∣∣
 ds

which implies, by Gronwall lemma,

E
[∣∣∣Xi

t −X
i
t

∣∣∣] ≤ e2LKT

∫ t

0
E

∣∣∣∣∣∣ 1

N

∑
j

K
(
X
i
s −X

j
s

)
− v

(
X
i
s, s
)∣∣∣∣∣∣
 ds.

This is a great estimate: it controls the difference between the solution of a coupled system
and the solution of the independent one, by an expression which depends only on the
independent one.

We have

E

∣∣∣∣∣∣ 1

N

∑
j

K
(
X
i
s −X

j
s

)
− v

(
X
i
s, s
)∣∣∣∣∣∣
 = E

E
∣∣∣∣∣∣ 1

N

∑
j

K
(
x−Xj

s

)
− v (x, s)

∣∣∣∣∣∣

x=X

i
s
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E

∣∣∣∣∣∣ 1

N

∑
j

K
(
x−Xj

s

)
− v (x, s)

∣∣∣∣∣∣
 ≤ E

∣∣∣∣∣∣ 1

N

∑
j

K
(
x−Xj

s

)
− v (x, s)

∣∣∣∣∣∣
21/2

≤
(
V ar [K (x−Xs)]

N

)1/2

≤ C√
N

hence

E

∣∣∣∣∣∣ 1

N

∑
j

K
(
X
i
s −X

j
s

)
− v

(
X
i
s, s
)∣∣∣∣∣∣
 ≤ C√

N

E
[∣∣∣Xi

t −X
i
t

∣∣∣] ≤ e2LKT
CT√
N
.

Before we complete the main program about the convergence of SNt , we may deduce
from the previous theorem the so called property of propagation of chaos: the independence
of initial conditions propagates to an approximate independence of positions at any time
t, in the limit as N → ∞. And, the previous theorem also tells us, in the limit each
independent particle satisfies an SDE (the equation for X

i
t) in interaction with a mean

field (the density of X
i
t itself), no more with single particles.

Corollary 39 For every given k and every ϕ1, ..., ϕk ∈ Cb
(
Rd
)
∩ Lip

(
Rd
)
, we have

lim
N→∞

E

[
k∏
i=1

ϕi
(
Xi
t

)]
=

k∏
i=1

E [ϕi (Xt)] =

k∏
i=1

〈ϕi, µt〉 .

Proof. It is suffi cient to explain the proof for k = 2. We have

E
[
ϕ1

(
X1
t

)
ϕ2

(
X2
t

)]
− E [ϕ1 (Xt)]E [ϕ2 (Xt)]

= E
[
ϕ1

(
X1
t

)
ϕ2

(
X2
t

)
− ϕ1

(
X

1
t

)
ϕ2

(
X

2
t

)]
and in absolute value it is bounded above by

≤ E
[∣∣∣ϕ1

(
X1
t

)
ϕ2

(
X2
t

)
− ϕ1

(
X

1
t

)
ϕ2

(
X

2
t

)∣∣∣]
≤ ‖ϕ1‖0E

[∣∣∣ϕ2

(
X2
t

)
− ϕ2

(
X

2
t

)∣∣∣]+ ‖ϕ2‖0E
[∣∣∣ϕ2

(
X2
t

)
− ϕ2

(
X

2
t

)∣∣∣]
≤ 2 ‖ϕ1‖Lip ‖ϕ2‖LipE

[∣∣∣X1
t −X

1
t

∣∣∣]
which converges to zero as N →∞.
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Remark 40 The proof also shows that∣∣E [ϕ1

(
X1
t

)
ϕ2

(
X2
t

)]
− E [ϕ1 (Xt)]E [ϕ2 (Xt)]

∣∣ ≤ 2C ‖ϕ1‖Lip ‖ϕ2‖Lip /
√
N . (6.10)

We complete the section with the following result, which solves the problem of the
macroscopic limit, since we already know that µt is the solution of the PDE:

Theorem 41 If µt denotes the law of Xt, we have

E
[∣∣〈SNt , φ〉− 〈µt, φ〉∣∣2] ≤ C√

N

for all φ ∈ Cb
(
Rd
)
∩ Lip

(
Rd
)
, for a suitable constant C > 0.

Proof. We give only an idea of proof. One has

E
[∣∣〈SNt , φ〉− 〈µt, φ〉∣∣2] = E

[〈
SNt , φ

〉2
]

+ 〈µt, φ〉2 − 2E
[〈
SNt , φ

〉]
〈µt, φ〉 .

By exchangeability,

E
[〈
SNt , φ

〉2
]

=
1

N2

∑
ij

E
[
φ
(
Xi
t

)
φ
(
Xj
t

)]
=

1

N2

∑
i

E
[
φ
(
X1
t

)2]
+

1

N2

∑
i 6=j

E
[
φ
(
X1
t

)
φ
(
X2
t

)]
=

1

N
E
[
φ
(
X1
t

)2]
+
N − 1

N
E
[
φ
(
X1
t

)
φ
(
X2
t

)]
〈µt, φ〉2 = E [φ (Xt)]

2

E
[〈
SNt , φ

〉]
〈µt, φ〉 =

1

N

∑
i

E
[
φ
(
Xi
t

)]
E [φ (Xt)] = E

[
φ
(
X1
t

)]
E [φ (Xt)] .

Hence

E
[〈
SNt , φ

〉2
]

=
1

N
E
[
φ
(
X1
t

)2]
+
N − 1

N
E
[
φ
(
X1
t

)
φ
(
X2
t

)]
+ E [φ (Xt)]

2 − 2E
[
φ
(
X1
t

)]
E [φ (Xt)]

=
1

N
E
[
φ
(
X1
t

)2]− 1

N
E
[
φ
(
X1
t

)
φ
(
X2
t

)]
+E

[
φ
(
X1
t

)
φ
(
X2
t

)]
− E [φ (Xt)]

2

+2E [φ (Xt)]
2 − 2E

[
φ
(
X1
t

)]
E [φ (Xt)] .

The term in the first line is bounded by 2 ‖φ‖20 /N . The term in the second line is bounded
by 2C ‖φ‖2Lip /

√
N (see the remark above) and similarly the term in the third line.
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6.2 Intermediate regime with large amplitudes

We consider now the case

dXi
t = − 1

N

∑
j

∇VN
(
Xi
t −X

j
t

)
dt+ σdW i

t

in the intermediate regime with large amplitudes, namely when VN are standard mollifiers
converging to δ0 and the guess is that the limit PDE is

∂u

∂t
=
σ2

2
∆u+ div (u∇u) .

The approach above based on the comparison with the mean-field SDE, Section 6.1.2,
has been extended to a problem of this form (under some special assumptions on the
smallness of parameters, and also with σ = σN → 0) by [17]. We limit ourselves here to a
short description of the other approach, by compactness, following [12], see also [14].

We want to prove tightness of the empirical measure SNt . The size of the input
1
N

∑
j ∇VN

(
Xi
t −X

j
t

)
is too large to make easy a priori estimates as in Theorem 33 above.

Specifically, we cannot estimate so easily 1
N

∑∣∣Xi
t −Xi

s

∣∣. The idea then comes from the
limit PDE. For this equation, the standard energy estimate reads

d

dt

1

2

∫
u2dx =

∫
u
∂u

∂t
dx =

∫
u

(
σ2

2
∆u+ div (u∇u)

)
dx

= −σ
2

2

∫
|∇u|2 dx−

∫
u |∇u|2 dx

hence
1

2

∫
u2
tdx+

∫ t

0

(
σ2

2

∫
|∇u|2 dx+

∫
u |∇u|2 dx

)
ds =

1

2

∫
u2

0dx.

This provides estimates on ∇u. Potentially, in a very intuitive sense, they are what we
need. indeed,

− 1

N

∑
j

∇VN
(
Xi
t −X

j
t

)
dt = −∇uN

(
t,Xi

t

)
where

uN (t, x) =
(
VN ∗ SNt

)
(x) =

1

N

∑
j

VN

(
x−Xj

t

)
and, due to the mollifier property of VN , we expect (intuitively) uN (t, x) → u (t, x) (in
some sense). Thus we could expect a bound on ∇uN , similarly to the bound on ∇u. And
a bound on ∇uN may provide tightness of SNt since

dXi
t = −∇uN

(
t,Xi

t

)
dt+ σdW i

t . (6.11)
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Thus the idea is to look for an "energy estimate" for uN , in place of u. But uN does not
satisfy a PDE. Is it true? Does it satisfy some modified PDE? Let us first argue heuristically.

From Itô formula we have

d
〈
SNt , ϕ

〉
=

1

N

∑
i

∇ϕ
(
Xi
t

)
·

− 1

N

∑
j

∇VN
(
Xi
t −X

j
t

)
dt+ σdW i

t

+
σ2

2N

∑
i

∆ϕ
(
Xi
t

)
dt

= −
〈
SNt ,∇ϕ · ∇VN ∗ SNt

〉
dt+ dMN

t +
σ2

2

〈
SNt ,∆ϕ

〉
dt

hence, if we neglect dMN
t , we formally have the equation

∂SNt
∂t

= div
(
SNt ∇VN ∗ SNt

)
+
σ2

2
∆SNt .

In order to write an energy estimate we have to mollify SNt , we need a function and not a
pointwise measure. Apply the convolution with a mollifier WN (in fact the next equation
can be obtained rigorously from the formula above for d

〈
SNt , ϕ

〉
, by a suitable choice of ϕ)

∂
(
WN ∗ SNt

)
∂t

= div
(
WN ∗

(
SNt ∇VN ∗ SNt

))
+
σ2

2
∆
(
WN ∗ SNt

)
where the rigorous meaning of WN ∗

(
SNt ∇VN ∗ SNt

)
is

WN ∗
(
SNt ∇VN ∗ SNt

)
(x) :=

∫
WN (x− y)

(
∇VN ∗ SNt

)
(y)SNt (dy) .

Now we have

d

dt

1

2

∫ (
WN ∗ SNt

)2
dx = −σ

2

2

∫ ∣∣∇ (WN ∗ SNt
)∣∣2 dx−∫ ∇WN∗SNt ·WN∗

(
SNt ∇VN ∗ SNt

)
dx.

We cannot say anything of the sign of the last term. But is we make the very special choice

VN = WN ∗W−N
∇VN = ∇WN ∗W−N = W−N ∗ ∇WN

the last term becomes

= −
∫
W−N ∗ ∇WN ∗ SNt · ∇VN ∗ SNt SNt (dx)

= −
∫
∇VN ∗ SNt · ∇VN ∗ SNt SNt (dx)

= −
∫ ∣∣∇VN ∗ SNt ∣∣2 SNt (dx) .
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This incredible trick provides the estimate

d

dt

1

2

∫ (
WN ∗ SNt

)2
dx+

σ2

2

∫ ∣∣∇ (WN ∗ SNt
)∣∣2 dx+

∫ ∣∣∇VN ∗ SNt ∣∣2 SNt (dx) = 0

in the case σ = 0 (which is not our case, but it has been treated in the literature).
We have used the following simple facts.

Lemma 42 i) f ∗ g = g ∗ f
ii)

(f ∗ g) ∗ h = f ∗ (g ∗ h)

hence we may write
f ∗ g ∗ h

without ambiguities
iii) ∫

(f ∗ g)h =

∫
g
(
f− ∗ h

)
where f− (x) = f (−x).

Proof.

((f ∗ g) ∗ h) (x) =

∫
(f ∗ g) (x− y)h (y) dy

=

∫ ∫
f (x− y − z) g (z)h (y) dzdy

=

∫ ∫
f
(
x− y′

)
g (z)h

(
y′ − z

)
dzdy′

=

∫
f
(
x− y′

)
dy′
∫
g (z)h

(
y′ − z

)
dz.

∫
(f ∗ g) (x)h (x) dx =

∫ ∫
f (x− y) g (y) dyh (x) dx

=

∫ ∫
f (x− y)h (x) dxg (y) dy.

Let us formalize a few details outlined above, also to show how to deal with the sto-
chastic case, σ 6= 0..

Theorem 43 The empirical measure process

SNt :=
1

N

∑
j

δ
Xj
t

is tight in C
(
[0, T ] ; Pr1

(
Rd
))
.
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Proof. From

d
〈
SNt , ϕ

〉
=

1

N

∑
i

∇ϕ
(
Xi
t

)
·

− 1

N

∑
j

∇VN
(
Xi
t −X

j
t

)
dt+ σdW i

t

+
σ2

2N

∑
i

∆ϕ
(
Xi
t

)
dt

= −
〈
SNt ,∇ϕ · ∇VN ∗ SNt

〉
dt+ dMN,ϕ

t +
σ2

2

〈
SNt ,∆ϕ

〉
dt

with ϕ (y) = ϕx (y) := WN (x− y) and 〈., .〉 interpreted as
∫
...dy, where

dMN,ϕ
t =

σ

N

∑
i

∇ϕ
(
Xi
t

)
· dW i

t

we get

d
(
WN ∗ SNt

)
(x) =

1

N

∑
i

∇ϕ
(
Xi
t

)
·

− 1

N

∑
j

∇VN
(
Xi
t −X

j
t

)
dt+ σdW i

t

+
σ2

2N

∑
i

∆ϕ
(
Xi
t

)
dt

= div
(
WN ∗

(
SNt ∇VN ∗ SNt

))
dt+

σ2

2
∆
(
WN ∗ SNt

)
(x) dt+ dM

N,ϕx
t

because 〈
SNt ,∆ϕx

〉
= ∆

(
WN ∗ SNt

)
(x)

〈
SNt ,∇ϕx · ∇VN ∗ SNt

〉
=

∫
∇yWN (x− y) ·

(
∇VN ∗ SNt

)
(y)SNt (dy)

= −div

∫
WN (x− y)

(
∇VN ∗ SNt

)
(y)SNt (dy)

= −div
(
WN ∗

(
SNt ∇VN ∗ SNt

))
.

Therefore, by Itô formula,

d
1

2

∣∣(WN ∗ SNt
)

(x)
∣∣2 =

(
WN ∗ SNt

)
(x)

(
div
(
WN ∗

(
SNt ∇VN ∗ SNt

))
dt+

σ2

2
∆
(
WN ∗ SNt

)
(x) dt

)
+
(
WN ∗ SNt

)
(x) dM

N,ϕx
t

+d
[
MN,ϕx

]
t

and now we use the brilliant computation done above on the term
∫ (
WN ∗ SNt

)
div
(
WN ∗

(
SNt ∇VN ∗ SNt

))
dx:

d
1

2

∫ ∣∣(WN ∗ SNt
)∣∣2 dx+

σ2

2

∫ ∣∣∇ (WN ∗ SNt
)∣∣2 dxdt+

∫ ∣∣∇VN ∗ SNt ∣∣2 SNt (dx) dt

=

∫ (
WN ∗ SNt

)
(x) dM

N,ϕx
t dx+

σ2

N2

∑
i

∣∣∇ϕ (Xi
t

)∣∣2 dt.
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The last term goes to zero and the previous one ha zero expectation. Hence at least we get

E

[
1

2

∫ ∣∣(WN ∗ SNt
)∣∣2 dx]+

σ2

2

∫ t

0

∫
E
[∣∣∇ (WN ∗ SNt

)∣∣2] dxdt+

∫ t

0

∫
E
[∣∣∇VN ∗ SNt ∣∣2 SNt (dx)

]
dt

≤ E

[
1

2

∫ ∣∣(WN ∗ SN0
)∣∣2 dx]+

Cσ2

N
=: cN .

Under appropriate assumptions on initial conditions one has

C : sup
N
cN <∞.

This is the surrogate of the estimate on ∇u guessed above. Now we have to use it rigorously
to prove tightness. As in the proof of Theorem 33, we initially have

W1

(
SNt , S

N
s

)
≤ 1

N

∑
i

∣∣Xi
t −Xi

s

∣∣
≤ 1

N

∑
i

∫ t

s

∣∣∇uN (r,Xi
r

)∣∣ dr + σ
1

N

∑
i

∣∣W i
t −W i

s

∣∣
and

E

[(
1

N

∑∣∣W i
t −W i

s

∣∣)2p
]
≤ cp (t− s)p

for every p ≥ 1. Here we have used (6.11). Moreover,∫ t

s

1

N

∑∣∣∇uN (r,Xi
r

)∣∣ dr =

∫ t

s

〈
|∇uN (r, ·)| , SNr

〉
dr ≤ (t− s)1/2

(∫ t

s

〈
|∇uN (r, ·)|2 , SNr

〉
dr

)1/2

and recall uN (t, x) =
(
VN ∗ SNt

)
(x). Hence

E

[(∫ t

s

1

N

∑∣∣∇uN (r,Xi
r

)∣∣ dr)2
]
≤ (t− s)

∫ t

0

∫
E
[∣∣∇VN ∗ SNt ∣∣2 SNt (dx)

]
dt

≤ C (t− s) .

Hence we get the bound

E
[∥∥SNt − SNs ∥∥2

W

]
≤ (C + 1) (t− s) .

To reach (t− s)2 on the right-hand-side (we need (6.4)), it requires additional work with
stopping times, that we omit, see [12]; similarly for the proof of (6.3).

With due little effort, the bound∫ t

0

∫
E
[∣∣∇ (WN ∗ SNt

)∣∣2] dxdt ≤ C
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gives us the information that the limit measure µt of S
N
t has a density ρt w.r.t. Lebesgue

measure and ∫ t

0

∫
E
[
|∇ρt (x)|2

]
dxdt ≤ C.

We omit the non trivial remaining parts of the proof (and also the precise statement of
the theorem), namely the fact that ρt (x) satisfies in a weak sense the PDE and that it is
deterministic and unique. In a certain philosophy of PDE theory, we pretend that the a
priori bounds are the hard core of the matter, the part without which the result cannot
be true, hence we felt the urgency to show them, in contrast to other (still very tricky)
details. See [12].



Chapter 7

Appendix on R codes

We copy here some of the R codes used to produce the pictures above, that the reader may
cut and paste on R. These are highly non-professional codes, that every scientist with a
minimum of experience may improve.

7.1 Codes of Chapter 2

7.1.1 FKPP equation

Next code simulates FKPP equation. It allows us to see the beginning of formation of
a traveling wave. Moreover, in the first phases, one can see first the diffusive depletion
followed by the proliferating expansion, up to the threshold.

The simulation is done in such a way that we can see pictures every Temp time steps.
The numerical method is based on the so called splitting method. The parabolic step is
done by finite differences. The ODE nonlinear step is done by explicit Euler method. At
the boundary we impose no flux conditions, to avoid depletion.

Temp=20; NT0 = 500
NT= NT0*Temp; Nx=1000; dx=0.1; K=1; npas=4
L=dx*Nx
dt=(dx^2)/(4*K)
Nx.virt=Nx+1
u = matrix(nrow=Nx.virt, ncol=NT)
v = matrix(nrow=Nx.virt, ncol=npas+1)
w = matrix(nrow=Nx.virt, ncol=npas+1)
X=seq(0,L,dx)
u[,1]=exp(-2*abs((X-L/2)^2))
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1

101
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v[,1]=u[,t]
for (k in 1:npas) {
for (i in 2:Nx) {
v[i,k+1] = v[i,k] + K * dt * ((v[i+1,k]-2*v[i,k]+v[i-1,k])) / (dx^2)
}
v[1,k+1]=v[2,k+1]; v[Nx.virt,k+1]=v[Nx,k+1]
}
w[,1]=v[,npas+1]
for (k in 1:npas) {
for (i in 1:Nx.virt) {
w[i,k+1] = w[i,k] + dt * w[i,k]*(1-w[i,k])
}
}
u[,t+1]=w[,npas+1]
}
plot(c(0,L),c(-0.5,1.5),type="n")
lines(X,u[,t+1])
lines(c(0,L),c(1,1))
lines(c(0,L),c(0,0))
}

7.1.2 ODEs for traveling waves

We have "proved" the existence and no existence of traveling waves by solving an ODE,
which is simulated here.

The first code shows the heteroclinic orbit of the ODE which proves existence of a
traveling wave, for c=sqrt(2):

N=30000; X=1:N; Y=1:N; dt=0.001; c=sqrt(2); eps=0.0001
ex=0.5*c+0.5*sqrt(c^2+2); ey=1
X[1]=1-eps*ex; Y[1]=-eps*ey
for (i in 1:(N-1)) {
X[i+1]=X[i]+dt*Y[i]
Y[i+1]=Y[i]+dt*(-2*c*Y[i]-2*X[i]+2*X[i]^2)
}
plot(c(0,1),c(-0.6,0),type="n")
lines(X,Y)
lines(c(0,1),c(0,0))
lines(c(0,0),c(-0.6,0))
lines(c(0,1),c(-1/ex,0))
The second code shows the heteroclinic orbit for c=1 which turns around the origin

and thus proves the non-existence of traveling wave:
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N=30000; X=1:N; Y=1:N; dt=0.001; c=0.8; eps=0.0001
ex=0.5*c+0.5*sqrt(c^2+2); ey=1
X[1]=1-eps*ex; Y[1]=-eps*ey
for (i in 1:(N-1)) {
X[i+1]=X[i]+dt*Y[i]
Y[i+1]=Y[i]+dt*(-2*c*Y[i]-2*X[i]+2*X[i]^2)
}
plot(c(0,1),c(-0.6,0),type="n")
lines(X,Y)
lines(c(0,1),c(0,0))
lines(c(0,0),c(-0.6,0))
lines(c(0,1),c(-1/ex,0))

7.2 Chapter 3

7.2.1 Normoxic + apoptotic cells only

The following code simulates a system composed only by normoxic (black) + apoptotic
(red) cells. It is useful to show that the total volume (in green) may exceed the threshold.

Temp=10; NT0 = 100
NT= NT0*Temp; Nx=600; dx=0.1; K=1; chi=0.1; npas=4; int=0
L=dx*Nx
dt=(dx^2)/(4*K)
Nx.virt=Nx+1
u = matrix(nrow=Nx.virt, ncol=NT)
a = matrix(nrow=Nx.virt, ncol=NT)
v = matrix(nrow=Nx.virt, ncol=npas+1)
w = matrix(nrow=Nx.virt, ncol=npas+1)
z = matrix(nrow=Nx.virt, ncol=npas+1)
X=seq(0,L,dx)
u[,1]=exp(-2*abs((X-L/2)^2))
a[,1]=exp(-2*abs((X-L/3)^2))*int
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1
v[,1]=u[,t]
for (k in 1:npas) {
for (i in 2:Nx) {
v[i,k+1] = v[i,k] +K* dt * ((v[i+1,k]-2*v[i,k]+v[i-1,k])) / (dx^2)
}
v[1,k+1]=v[2,k+1]; v[Nx.virt,k+1]=v[Nx,k+1]
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}
w[,1]=v[,npas+1]
z[,1]=a[,t]
for (k in 1:npas) {
for (i in 1:Nx.virt) {
w[i,k+1] = w[i,k] + dt * w[i,k]*(1-w[i,k]-z[i,k]) - dt *chi*w[i,k]
z[i,k+1] = z[i,k] + dt * chi*w[i,k]
}
}
u[,t+1]=w[,npas+1]
a[,t+1]=z[,npas+1]
}
plot(c(0,L),c(-0.5,1.5))
lines(X,u[,t+1],col="black")
lines(X,a[,t+1],col="red")
lines(X,u[,t+1]+a[,t+1],col="green")
lines(c(0,L),c(1,1))
lines(c(0,L),c(0,0))
}

7.2.2 Normoxic + apoptotic but with damped diffusion

The previous example is modified by pre-multiplying the diffusion operator by *(1-v[i,k]-
a[i,t])

The threshold is not overcome, as the theory of invariant regions prove.
Temp=20; NT0 = 500
NT= NT0*Temp; Nx=600; dx=0.1; K=1; chi=0.1; npas=4; int=0
L=dx*Nx
dt=(dx^2)/(4*K)
Nx.virt=Nx+1
u = matrix(nrow=Nx.virt, ncol=NT)
a = matrix(nrow=Nx.virt, ncol=NT)
v = matrix(nrow=Nx.virt, ncol=npas+1)
w = matrix(nrow=Nx.virt, ncol=npas+1)
z = matrix(nrow=Nx.virt, ncol=npas+1)
X=seq(0,L,dx)
u[,1]=exp(-2*abs((X-L/2)^2))
a[,1]=exp(-2*abs((X-L/3)^2))*int
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1
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v[,1]=u[,t]
for (k in 1:npas) {
for (i in 2:Nx) {
v[i,k+1] = v[i,k] +K* dt * ((v[i+1,k]-2*v[i,k]+v[i-1,k])) / (dx^2) *(1-v[i,k]-a[i,t])
}
v[1,k+1]=v[2,k+1]; v[Nx.virt,k+1]=v[Nx,k+1]
}
w[,1]=v[,npas+1]
z[,1]=a[,t]
for (k in 1:npas) {
for (i in 1:Nx.virt) {
w[i,k+1] = w[i,k] + dt * w[i,k]*(1-w[i,k]-z[i,k]) - dt *chi*w[i,k]
z[i,k+1] = z[i,k] + dt * chi*w[i,k]
}
}
u[,t+1]=w[,npas+1]
a[,t+1]=z[,npas+1]
}
plot(c(0,L),c(-0.5,1.5))
lines(X,u[,t+1],col="black")
lines(X,a[,t+1],col="red")
lines(X,u[,t+1]+a[,t+1],col="green")
lines(c(0,L),c(1,1))
lines(c(0,L),c(0,0))
}

7.2.3 Trasport terms may overcome given thresholds

The next code simulate the heat equation with a drift (transport) which concentrates mass
around a point.

Temp=20; NT0 = 500; npas=4
NT= NT0*Temp; Nx=1000; dx=0.1; K=1; chi=0.1; int=0
L=dx*Nx
dt=(dx^2)/(4*K)
Nx.virt=Nx+1
u = matrix(nrow=Nx.virt, ncol=NT)
v = matrix(nrow=Nx.virt, ncol=npas+1)
w = matrix(nrow=Nx.virt, ncol=npas+1)
z = matrix(nrow=Nx.virt, ncol=npas+1)
X=seq(0,L,dx)
b = -5*(X-L/2-10)*exp(-0.08*abs((X-L/2-10)^2))
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u[,1]=exp(-0.1*abs((X-L/2)^2))
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1
v[,1]=u[,t]
for (k in 1:npas) {
for (i in 2:Nx) {
v[i,k+1] = v[i,k] +K*dt*((v[i+1,k]-2*v[i,k]+v[i-1,k]))/(dx^2) - dt*(b[i+1]*v[i+1,k]-b[i]*v[i,k])/dx
}
v[1,k+1]=v[2,k+1]; v[Nx.virt,k+1]=v[Nx,k+1]
}
u[,t+1]=v[,npas+1]
}
plot(c(0,L),c(-0.5,1.5))
lines(X,u[,t+1],col="black")
lines(c(0,L),c(1,1))
lines(c(0,L),c(0,0))
}

7.2.4 Normoxic + hypoxic + apoptotic

Temp=10; NT0 = 100; npas=4
NT= NT0*Temp; Nx=600; dx=0.1; K=1; chi1=0.1; chi2=0.1 ; int=0
L=dx*Nx
dt=(dx^2)/(4*K)
Nx.virt=Nx+1
n = matrix(nrow=Nx.virt, ncol=NT)
h = matrix(nrow=Nx.virt, ncol=NT)
a = matrix(nrow=Nx.virt, ncol=NT)
nd = matrix(nrow=Nx.virt, ncol=npas+1)
nn = matrix(nrow=Nx.virt, ncol=npas+1)
hh = matrix(nrow=Nx.virt, ncol=npas+1)
aa = matrix(nrow=Nx.virt, ncol=npas+1)
X=seq(0,L,dx)
n[,1]=exp(-2*abs((X-L/2)^2))
h[,1]=exp(-2*abs((X-L/3)^2))*int
a[,1]=exp(-2*abs((X-L/3)^2))*int
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1
nd[,1]=n[,t]
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for (k in 1:npas) {
for (i in 2:Nx) {
nd[i,k+1] = nd[i,k] +K* dt * ((nd[i+1,k]-2*nd[i,k]+nd[i-1,k])) / (dx^2)
}
nd[1,k+1]=nd[2,k+1]; nd[Nx.virt,k+1]=nd[Nx,k+1]
}
nn[,1]=nd[,npas+1]
hh[,1]=h[,t]
aa[,1]=a[,t]
for (k in 1:npas) {
for (i in 1:Nx.virt) {
nn[i,k+1] = nn[i,k] + dt * nn[i,k]*(1-nn[i,k]-hh[i,k]-aa[i,k]) - dt *chi1*nn[i,k]
hh[i,k+1] = hh[i,k] + dt *chi1*nn[i,k] - dt *chi2*hh[i,k]
aa[i,k+1] = aa[i,k] + dt * chi2*hh[i,k]
}
}
n[,t+1]=nn[,npas+1]
h[,t+1]=hh[,npas+1]
a[,t+1]=aa[,npas+1]
}
plot(c(0,L),c(-0.5,1.5))
lines(X,n[,t+1],col="blue")
lines(X,h[,t+1],col="red")
lines(X,a[,t+1],col="black")
lines(X,n[,t+1]+h[,t+1]+a[,t+1],col="green")
lines(c(0,L),c(1,1))
lines(c(0,L),c(0,0))
}

7.2.5 Full system

Temp=5; NT0 = 400; npas=4; NT= NT0*Temp
Nx=200; dx=0.1; L=dx*Nx; Nx.virt=Nx+1; X=seq(0,L,dx)
Kn=0.1; xhi =1; Kg=15; rho=5; Ke=0.1; Ko=15; OH=0.5; OA=0.2; Vmax=1; rho2=5;

Omax=1; rho3=10
Cnh=1; Cha=0.1 ; Cmn=2; Cgh=10; Ceg=1; Chn=1; Cocell=0.1; gam=0.000
int=0; m0=0.5
dt=(dx^2)/(4*max(Kn,Kg,Ke,Ko))
n = matrix(nrow=Nx.virt, ncol=NT); h = matrix(nrow=Nx.virt, ncol=NT); a =

matrix(nrow=Nx.virt, ncol=NT)
m = matrix(nrow=Nx.virt, ncol=NT); g = matrix(nrow=Nx.virt, ncol=NT)
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e = matrix(nrow=Nx.virt, ncol=NT); o = matrix(nrow=Nx.virt, ncol=NT)
nd = matrix(nrow=Nx.virt, ncol=npas+1); gd = matrix(nrow=Nx.virt, ncol=npas+1)
ed = matrix(nrow=Nx.virt, ncol=npas+1); od = matrix(nrow=Nx.virt, ncol=npas+1)
nn = matrix(nrow=Nx.virt, ncol=npas+1); hh = matrix(nrow=Nx.virt, ncol=npas+1)
aa = matrix(nrow=Nx.virt, ncol=npas+1); b = 1:Nx.virt; mm = matrix(nrow=Nx.virt,

ncol=npas+1)
gg = matrix(nrow=Nx.virt, ncol=npas+1); ee = matrix(nrow=Nx.virt, ncol=npas+1)
oo = matrix(nrow=Nx.virt, ncol=npas+1)
n[,1]=exp(-10*abs((X-L/2)^2)); h[,1]=0; a[,1]=0; m[,1]=m0; g[,1]=0
e[,1]=(sign(X-3*L/4)+1)/2 + (sign(L/4-X)+1)/2; o[,1]=1
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1; nd[,1]=n[,t]; gd[,1]=g[,t]; ed[,1]=e[,t]; od[,1]=o[,t]
for (i in 2:Nx.virt) {
b[i] = (m[i,t]-m[i-1,t])/dx
}
for (k in 1:npas) {
for (i in 2:Nx) {
nd[i,k+1] = nd[i,k] +Kn* dt * ((nd[i+1,k]-2*nd[i,k]+nd[i-1,k])) / (dx^2)-

dt*(b[i+1]*nd[i+1,k]-b[i]*nd[i,k])/dx
gd[i,k+1] = gd[i,k] +Kg* dt * ((gd[i+1,k]-2*gd[i,k]+gd[i-1,k])) / (dx^2)
ed[i,k+1] = ed[i,k] +Ke* dt * ((ed[i+1,k]-2*ed[i,k]+ed[i-1,k])) / (dx^2)
od[i,k+1] = od[i,k] +Ko* dt * ((od[i+1,k]-2*od[i,k]+od[i-1,k])) / (dx^2)
}
nd[1,k+1]=nd[2,k+1]; nd[Nx.virt,k+1]=nd[Nx,k+1]
gd[1,k+1]=gd[2,k+1]; gd[Nx.virt,k+1]=gd[Nx,k+1]
ed[1,k+1]=ed[2,k+1]; ed[Nx.virt,k+1]=ed[Nx,k+1]
od[1,k+1]=od[2,k+1]; od[Nx.virt,k+1]=od[Nx,k+1]
}
nn[,1]=nd[,npas+1]; hh[,1]=h[,t]; aa[,1]=a[,t]; mm[,1]=m[,t]; gg[,1]=gd[,npas+1];

ee[,1]=ed[,npas+1]; oo[,1]=od[,npas+1]
for (k in 1:npas) {
for (i in 1:Nx.virt) {
nn[i,k+1] = nn[i,k] + dt * rho* nn[i,k]*(Vmax-nn[i,k]-hh[i,k]-aa[i,k]-ee[i,k])

- dt *Cnh*nn[i,k]*(sign(OH-oo[i,k])+1)/2 + dt *Chn*hh[i,k]*(sign(oo[i,k]-OH)+1)/2
hh[i,k+1] = hh[i,k] + dt *Cnh*nn[i,k]*(sign(OH-oo[i,k])+1)/2 - dt *Chn*hh[i,k]*(sign(oo[i,k]-OH)+1)/2

- dt *Cha*hh[i,k]*(sign(OA-oo[i,k])+1)/2
aa[i,k+1] = aa[i,k] + dt * Cha*hh[i,k]*(sign(OA-oo[i,k])+1)/2
mm[i,k+1] = mm[i,k] - dt * Cmn*nn[i,k]*mm[i,k]
gg[i,k+1] = gg[i,k] + dt * Cgh*hh[i,k] - Ceg*ee[i,k]*gg[i,k]
ee[i,k+1] = ee[i,k] + dt * rho2* ee[i,k]*gg[i,k]*(Vmax-nn[i,k]-hh[i,k]-aa[i,k]-ee[i,k])
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oo[i,k+1] = oo[i,k] + dt * rho3* ee[i,k]*(Omax-oo[i,k])- Cocell*oo[i,k]*(nn[i,k]+hh[i,k])
- gam*oo[i,k]

}
}
n[,t+1]=nn[,npas+1]; h[,t+1]=hh[,npas+1]; a[,t+1]=aa[,npas+1]; m[,t+1]=mm[,npas+1];

g[,t+1]=gg[,npas+1]
e[,t+1]=ee[,npas+1]; o[,t+1]=oo[,npas+1]
}
plot(c(0,L),c(-1.1,1.2))
lines(X,n[,t+1],col="blue"); lines(X,h[,t+1],col="grey"); lines(X,a[,t+1],col="black");

lines(X,e[,t+1],col="red")
lines(X,m[,t+1]-1,col="yellow"); lines(X,g[,t+1]-1,col="grey"); lines(X,o[,t+1]-1,col="red")
lines(X,e[,1],col="orange")
lines(c(0,L),c(1,1)); lines(c(0,L),c(0,0))
}

7.3 Chapter 5

7.3.1 Porous media equation

The following code simulates the porous media equation, a nonlinear diffusion:
Temp=20; NT0 = 500; npas=4
NT= NT0*Temp; Nx=1000; dx=0.1; K=1; chi=0.1; int=0
L=dx*Nx
dt=(dx^2)/(4*K)
Nx.virt=Nx+1
u = matrix(nrow=Nx.virt, ncol=NT)
v = matrix(nrow=Nx.virt, ncol=npas+1)
w = matrix(nrow=Nx.virt, ncol=npas+1)
z = matrix(nrow=Nx.virt, ncol=npas+1)
X=seq(0,L,dx)
u[,1]=exp(-0.1*abs((X-L/2)^2))
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1
v[,1]=u[,t]
for (k in 1:npas) {
for (i in 2:Nx) {
v[i,k+1] = v[i,k] +K*dt*((v[i+1,k]^2-2*v[i,k]^2+v[i-1,k]^2))/(dx^2)
}
v[1,k+1]=v[2,k+1]; v[Nx.virt,k+1]=v[Nx,k+1]
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}
u[,t+1]=v[,npas+1]
}
plot(c(0,L),c(-0.5,1.5))
lines(X,u[,t+1],col="black")
lines(c(0,L),c(1,1))
lines(c(0,L),c(0,0))
}

7.3.2 Porous media equation with proliferation

The next code simulates the porous media equation with proliferation; we presumably see
a traveling wave.

Temp=20; NT0 = 500; npas=4
NT= NT0*Temp; Nx=1000; dx=0.1; K=1; chi=0.1; int=0
L=dx*Nx
dt=(dx^2)/(4*K)
Nx.virt=Nx+1
u = matrix(nrow=Nx.virt, ncol=NT)
v = matrix(nrow=Nx.virt, ncol=npas+1)
w = matrix(nrow=Nx.virt, ncol=npas+1)
z = matrix(nrow=Nx.virt, ncol=npas+1)
X=seq(0,L,dx)
u[,1]=exp(-0.1*abs((X-L/2)^2))
for (t0 in 1:(NT0-1)) {
for (t1 in 1:Temp) {
t=(t0-1)*Temp + t1
v[,1]=u[,t]
for (k in 1:npas) {
for (i in 2:Nx) {
v[i,k+1] = v[i,k] +K*dt*((v[i+1,k]^2-2*v[i,k]^2+v[i-1,k]^2))/(dx^2)
}
v[1,k+1]=v[2,k+1]; v[Nx.virt,k+1]=v[Nx,k+1]
}
w[,1]=v[,npas+1]
for (k in 1:npas) {
for (i in 1:Nx.virt) {
w[i,k+1] = w[i,k] + dt * w[i,k]*(1-w[i,k])
}
}
u[,t+1]=w[,npas+1]
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}
plot(c(0,L),c(-0.5,1.5))
lines(X,u[,t+1],col="black")
lines(c(0,L),c(1,1))
lines(c(0,L),c(0,0))
}

7.3.3 Traveling wave for porous media with proliferation

N=100000; X=1:N; Y=1:N; dt=0.0004; c=3; eps=0.0001
ex=0.5*c+0.5*sqrt(c^2+4); ey=1
X[1]=1-eps*ex; Y[1]=-eps*ey
for (i in 1:(N-1)) {
X[i+1]=X[i]+dt*Y[i]
Y[i+1]=Y[i]+dt*(-c*Y[i]/X[i]-Y[i]^2/X[i]-1+X[i])
}
plot(c(0,1),c(-0.4,0))
lines(X,Y)
lines(c(0,1),c(0,0))
lines(c(0,0),c(-0.4,0))
Asking ts.plot(X) one gets, in addition, the front.
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