Google Android on the Beagleboard
Introduction to the Android API, HAL and SDK

Bill Gatliff
bgat@billgatliff.com

Freelance Embedded Systems Developer

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 1/80

What is Android?

“Android delivers a complete set of software for
mobile devices: an operating system, middleware and
key mobile applications.”

-- http://android.com/about/

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

2180

What is Android?

A software stack:

¢ ... and nothing more

(Albeit a pretty good one!)

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

3/80

What is Android?

A ton of new code:

* Linux kernel port to MSM (Qualcomm) chipset
* Graphics, Audio and other APIs, implementations
¢ Development, debugging tools

¢ Includes “key mobile applications”

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

4/80

What is Android?

Borrows heavily from existing code:
* Linux kernel for hardware abstraction
* SQLite
* libpng

http://source.android.com/projects

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 5/80

http://source.android.com/projects

Configuring the BYOES Beagleboard

Steps:

* Select the Android kernel, rootfs

* Boot

On your workstation:

¢ Install Android development tools

* Set up USB networking

We can't do all of that today!

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

6/80

Configuring the BYOES Beagleboard

[switchboot

wmkx SWITCH-UR-BOOT sk
Choose which file system to boot upon next reboot:

ESC-120
ESC-160
ESC-140
ESC-228
ESC-208
ESC-208
ESC-180

NogsrwhPE

Please enter:

Kridner: Beagle 101

Van Gend/MontaVista: debugging+power
Fisher/RidgeRun

Fisher/RidgeRun

Gatliff: Android 1024x768

Gatliff: Android 800x600
Yau/HY-research: Bluetooth

5

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

7180

Configuring the BYOES Beagleboard

/ switchboot

*x SUCCESS

The correct ulmage and boot.scr have been setup.
You can press the reset button now.

#

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 8/80

Configuring the BYOES Beagleboard

Some notes:

* Keyboard and mouse work differently
* (Just ignore the mouse altogether)

* You don't have a GSM modem!

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

9/80

Demonstration

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 10/80

The Genesis of Android

Open Handset Alliance:

* Google, eBay, OMRON, PacketVideo, ...
* ASUSTeK, HTC, LG, Garmin, Motorola, ...
¢ Sprint Nextel, T-Mobile, ...

* ARM, Atheros, Broadcomm, Qualcomm, TI, ...

To date, more than 47 organizations

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 11/80

Noteworthy Features

Android uses Java:
e ... everywhere
And so will you:

* But nothing prevents native processes

* Some native interfaces are available

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

12/80

Noteworthy Features

Broad Java support:
* java.io
* java.net
* java.security
* java.sql
But only the mobile-appropriate bits!

* “Android is almost but not quite Java(tm)”

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

13/80

Noteworthy Features

Strong security:

* Permissions-based
¢ Applications sandboxed in separate VMs

* Pervasive use of Linux process model

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

14/80

Noteworthy Features

Built-in SQL.:
* Property storage, retrieval
¢ Utilized by nearly all standard components
* Preferred, but not required

Specialized APIs:

¢ SurfaceFlinger

* AudioFlinger

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

15/80

Noteworthy Features

Highly-optimized Java implementation:

* “Dalvik” VM implemented by Google
¢ Custom bytecode format, processor model

* Register-based, not stack-based

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

16/80

Noteworthy Features

Why?
¢ “Didn’t want to pay Sun” (probably untrue)

* Very memory- and performance-efficient

¢ Highly tuned to limitations of small hardware

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

17180

Noteworthy Features

Centralized obiject lifetime management:

* Tied to component model
¢ Tied to process model
* Tied to user interface model

¢ Tied to security model

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 18/80

Noteworthy Features

No main() functions per se:

* “Applications” are built from components on-the-fly
* “Activities”, “Intents”, etc.

¢ “Manifests” describe what components are available

See http://developer.android.com

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

19/80

http://developer.android.com

Terminology

Activity:
¢ A single visual user interface component

¢ List of menu selections, icons, checkboxes, ...

* A reusable component

Service:

¢ “Headless” activity component

¢ Background processes

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

20/80

Terminology

Broadcast receiver:

* Component that receives announcements
* No user interface

* May launch an Activity in response

Content provider:

* Provides application data to others

* The only way to share data

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

21/80

Terminology

Intent:

* Message to a component (or broadcast)
¢ Similar to a remote procedure call

* “Make a phone call”, “the battery is low”, ...

Intent filter:

¢ Specifies which Intents a component can handle

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

22/80

Terminology

Application:

* Sequence of one or more Activities
* Manifest tells which Activity to run first

* Activities might come from other applications
Process model:

* Each application is a unique Linux user
* Each application is a unique process

* Activities often in different processes

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

23/80

Terminology

Task stack:

¢ Sequences of application-centric Activity classes
¢ Foreground is visible to user

* BACK key returns to most-recent Activity

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

24180

Terminology

In other words:

* Not the Linux concept of “application”!

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 25/80

Example

Display a map:
¢ Utilize a preexisting Activity class
¢ Call startActivity() to launch it

¢ Control returns when the map activity exits

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

26/80

Power Management

Obviously important!

* Can be a difficult problem to solve
* Too much model exposure is bad
* Too little is also bad

Extends the Linux device model:

* Introduces “wake locks”

* See android.os.PowerManager

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

27180

Power Management

In a nutshell:

¢ Applications don’t control power at all
* Applications hold “locks” on power states

¢ If no locks are held, Android powers down

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

28/80

Power Management

PARTIAL_WAKE_LOCK

* CPU on, screen off, keyboard off

¢ Cannot power down via power button

SCREEN_DIM_WAKE_LOCK

* CPU on, screen dim, keyboard off

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

29/80

Power Management

SCREEN_BRIGHT_WAKE_LOCK

* CPU on, screen bright, keyboard off

FULL_WAKE_LOCK

* CPU on, screen on, keyboard bright

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

30/80

WONOU D WN R

Example

PowerManager pm =

(PowerManager) getSystemService(Context. POWER_SERVIC E);
PowerManager.WakeLock wl =

pm.newWakeLock(PowerManager. SCREEN_DIM_WAKE_LOCK, "t ag");

wl.acquire();
/Il ..screen will stay on during this section..
wl.release();

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

31/80

Audio and Video APIs

MediaPlayer class:

e Standard support for many data formats
* URI invokes appropriate input method

¢ Consistent API regardless of data source

MediaRecorder class:

* Support for audio recording only

* Video recording is “planned”

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

32/80

NO U WN R

Example

MediaPlayer mp = new MediaPlayer();

mp.setDataSource(PATH_TO_FILE);
mp.prepare();

mp.start();

mp.pause();

mp.stop();

Copyright © Bill Gatliff, 2009

Google Android on the Beagleboard

33/80

Audio and Video APIs

Surfaceflinger:

* Centralized framebuffer management

* Related to 2D h/w acceleration
Audioflinger:

¢ Centralized audio stream management

You don’t work with these directly!

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 34/80

Android Build System

Usual suspects:
* git , repo
* ant
* make
Plus enhancements:

* Package management

¢ Application templates

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

35/80

Android Package System

APK files:

¢ Package manifests
¢ Classes
¢ Dalvik bytecodes

¢ Signatures, if any

Term.apk

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 36/80

Developer Tasks

Generally speaking, only two:

* Implement HAL requirements

¢ Implement application-specific Activity classes

As always, however:

* The devil is in the details!

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

37/80

Developer Tasks

HAL requirements:

* Ak.a. “Linux kernel port”
¢ Adapt init.rc

* Native code, as needed
Activity classes:

* “Writing the application”

See, it isn’t so different!

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

38/80

System Initialization

init.rc

¢ Functionally equivalent to inittab

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 39/80

P

POOWO~NOUBRWNERE

System Initialization

on init
sysclktz 0
loglevel 3

setup the global environment

export
export
export
export
export
export
export

Copyright © Bill Gatliff, 2009

PATH /sbin:/system/shin:/system/bin:/system/xb in
LD_LIBRARY_PATH /system/lib

ANDROID_BOOTLOGO 1

ANDROID_ROOT /system

ANDROID_ASSETS /system/app

ANDROID_DATA /data

EXTERNAL_STORAGE /sdcard

Google Android on the Beagleboard

40/80

7
78
79
80
81
82
83
84
85
86
87
88
89
920

System Initialization

on boot

basic network init
ifup lo
hostname localhost
domainname localdomain

set RLIMIT_NICE to allow priorities from 19 to -20
setrlimit 13 40 40

Define the oom_adj values for the classes of processes that
killed by the kernel. These are used in ActivityManagerSer
setprop ro.FOREGROUND_APP_ADJ 0
setprop ro.VISIBLE_APP_ADJ 1
setprop ro.SECONDARY_SERVER_ADJ 2

Copyright © Bill Gatliff, 2009

can be
vice.

Google Android on the Beagleboard

41/80

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

System Initialization

Daemon processes to be run by init.
#t
service console /system/bin/sh

console

adbd is controlled by the persist.service.adb.enable sys
service adbd /sbin/adbd
disabled

adbd on at boot in emulator
on property:ro.kernel.gemu=1
start adbd

on property:persist.service.adb.enable=1
start adbd

Copyright © Bill Gatliff, 2009

tem property

Google Android on the Beagleboard

42 /80

Linux Kernel

Important enhancements:

* logger

° binder

* ram_console
* timed_gpio

* Double-buffered framebuffer (*)

All are staged for kernel.org release

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

43 /80

Linux Kernel

logger
* Miscdevice for lodfile-like functionality
binder

* Android IPC subsystem

¢ High performance, security-aware

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 44180

Linux Kernel

ram_console

* RAM-based console device

¢ /proc/last_kmsg
timed_gpio

¢ GPIO that automagically turns itself back off

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

45/80

Linux Kernel

Double-buffered framebuffer:

* Added by platform support authors

* Not Android-specific, but not widely available

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

46 /80

Building the Android Runtime

General procedure:

* Get the code
* Build it
* |nstall it

0:)

http://source.android.com/

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 47180

Building the Android Runtime

The code:

* 2.1GB (!) of git trees

* Uses the repo tool to manage

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 48180

Building the Android Runtime

repo init -b cupcake -u
git://android.git.kernel.org/platfornm nmanifest.git
repo sync
. apply tweaks ...

make [TARGET_PRODUCT=fr eer unner]

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 49 /80

Installing Android into a Target

Build products:

¢ userdata.img
¢ ramdisk.img
¢ system.img

¢ kernel.img

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 50/80

Installing Android into a Target

And also:

° out/target/product/<name>/root
¢ out/target/product/<name>/system

¢ out/target/product/<name>/data

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

51/80

Installing Android into a Target

“What's in there?”

* The Android filesystem

|s root

data/ init init.rc sys/
default.prop init.goldfish.rc proc/ system/
dev/ initlogo.rle shin/

|s system
app/ build.prop fonts/ lib/ ustr/
bin/ etc/ framework/ media/ xbin/

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

52/80

Installing Android into a Target

Combine into unified tree:

* ... to export over NFS, perhaps

nkdir /exports/android
cd root & tar ¢ » | tar x -C /exports/android
cd system & tar ¢ = | tar x -C /exports/android

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

53/80

Installing Android into a Target

Or, of course:

* Install images into the target system as-is

¢ (Formats vary depending on the target)

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 54 /80

The Android SDK

Key components:

* Compilers, other tools
* Documentation

* Examples

* Hardware emulator

* Android Debug Bridge (adb)

See http://android.com

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 55/80

http://android.com

Preparing the Beagleboard

Getting ready:

¢ Configure USB network connection

* Test adb

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 56 /80

Preparing the Beagleboard

Connect OTG port:

* Configure USB networking, verify

$ dnesg

$ sudo ifconfig eth2 192.168.99.101 up
$ ping 192.168.99. 100

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

57180

Preparing the Beagleboard

Launch a shell via adb:
* The shell is actually on the target!
$ ADBHOST=192. 168.99. 100 adb kill -server

$ ADBHOST=192. 168. 99. 100 adb shel |
#

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 58/80

Hello, Android!

Let's start simple:

* “Hello, world!”

¢ Command-line tools only

$ activitycreator --out helloworld
exanpl e. hel | owor | d. Hel | oWor | d

$ cd hel | oworl d/
$ vi src/exanpl e/ hel |l oworl d/ Hel | oWorl d.j ava

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 59/80

©CONOU D WNE

Hello, Android!

package example.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.widget. TextView;

public class HelloWorld extends Activity

/++ Called when the activity is first created. */
@Override
public void onCreate(Bundle savedinstanceState)
{
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
tv.setText("Hello, ESC BYOE attendees!");
setContentView(tv);

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

60 /80

Hello, Android!

Now:
* Build

* |nstall

* Browse to the icon, tap to launch

$ ant
$ ADBHOST=192. 168. 99. 100 adb
install bin/HelloWrld-debug. apk

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

61/80

Hello, Android!

Or:

* Launch from the shell

$ ADBHOST=192. 168. 99. 100 adb shel |
amstart -a android.intent.action.MAIN -n
exanpl e. hel | owor | d/ exanpl e. hel | owor | d. Hel | oWor | d

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 62 /80

Hello, Android!

Tidy up:

* Uninstall the application

$ ADBHOST=192. 168. 99. 100 adb
uni nstal |l exanpl e. hel | owor | d

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

63/80

Eclipse Android Plugin

Android Development Tool (ADT):
* Custom plugin for Eclipse IDE
Helps automate:

* Set up new Android projects
¢ Create new applications, components

* Debugging

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

64 /80

Eclipse Android Plugin

Install Eclipse, then:

* Click Help | Software Updates...
¢ https://dl-ssl.google.com/android/eclipse/
¢ Click Install...

Then:

¢ Point Eclipse to the Android SDK directory

* Window | Preferences | Android

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

65 /80

Demonstration

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 66 /80

Declarative vs. Procedural Programming

“Programmatic” Ul layout:
* Ul comes directly from source code
* Manual connections between views
¢ Small Ul changes can mean big source code changes

* Application is “brittle”

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 67 /80

Declarative vs. Procedural Programming

A better way:

* Use a declarative approach
* Describe what you want, not how to get it

* Let the Ul framework fill in the details

In Android:

* XML-based layouts, values

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 68 /80

Hello, Android! with XML

Applied to “Hello, Android!”:
* Move the layout to XML
* Move the text to a resource
Why?
¢ Swap main.xml files to change layouts

* Swap strings.xml files to translate

* Separate logic from presentation

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

69 /80

abwN R

Hello, Android! with XML

res/layout/main.xml

¢ Describes the layout

<?xml version="1.0" encoding="utf-8"?>

<TextView xmins:android="http://schemas.android.com/ apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="@string/hello"/>

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

70/80

abwN R

Hello, Android! with XML

res/values/strings.xml

¢ Defines the string resource

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="hello">Welcome to Android string resources I</string>
<string name="app_name">Hello, Android</string>

</resources>

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

71/80

©CO~NOOBRWNERE

Hello, Android! with XML

HelloWorld class then becomes:

¢ “Just do what main.xml says”

package com.example.hello;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
/+x Called when the activity is first created. */
@Override
public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.main);

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

72180

Demonstration

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 73180

Emulation

Android SDK includes QEMU:

* Complete hardware emulation
* ... without the hardware!

¢ Includes a Linux kernel, filesystem

... and Eclipse can't tell the difference!

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

74180

“But what does all this mean?”

Why I'm excited about Android:

* New ideas on current challenges
* New developers, community
* Relatively feature-complete

e Still under active development

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

75180

“But what does all this mean?”

But expecially:

* Intended, designed for community development
* (And delivers on that promise)

* Easy to get started, but still challenging

Not just a new API:

* Also an entirely new approach, context

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

76 /80

“But what does all this mean?”

What Android seems good for:

* Open development models

* Highly-configurable systems

And obviously:

* Mobile platforms
* Touch-oriented interfaces

* Network-centric applications

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

77180

“But what does all this mean?”

What Android might not be good for:
* Very low-end hardware
* Highly proprietary systems

Maybe, maybe not:

¢ Static systems
* Single-task systems

* No networking requirements

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

78180

“But what does all this mean?”

But who knows, really? :)

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 79/80

Google Android on the Beagleboard
Introduction to the Android API, HAL and SDK

Bill Gatliff
bgat@billgatliff.com

Freelance Embedded Systems Developer

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 80/80

	Overview
	What is Android?
	Configuring the BYOES Beagleboard
	Demonstration

	The Genesis of Android
	Noteworthy Features
	Terminology
	Example

	Power Management
	Example

	Audio and Video APIs
	Example

	Android Build System
	Android Package System
	Developer Tasks
	System Initialization
	Linux Kernel
	Building the Android Runtime
	Installing Android into a Target
	The Android SDK
	Preparing the Beagleboard
	Hello, Android!
	Eclipse Android Plugin
	Demonstration

	Declarative vs. Procedural Programming
	Hello, Android! with XML
	Demonstration

	Emulation
	``But what does all this mean?''

