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What is Android?

“Android delivers a complete set of software for
mobile devices: an operating system, middleware and
key mobile applications.”

-- http://android.com/about/

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

2180



What is Android?

A software stack:

¢ ... and nothing more

(Albeit a pretty good one!)
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What is Android?

A ton of new code:

* Linux kernel port to MSM (Qualcomm) chipset
* Graphics, Audio and other APIs, implementations
¢ Development, debugging tools

¢ Includes “key mobile applications”
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What is Android?

Borrows heavily from existing code:
* Linux kernel for hardware abstraction
* SQLite
* libpng

http://source.android.com/projects
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Configuring the BYOES Beagleboard

Steps:

* Select the Android kernel, rootfs

* Boot

On your workstation:

¢ Install Android development tools

* Set up USB networking

We can't do all of that today!
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Configuring the BYOES Beagleboard

# [ switchboot

wmkx SWITCH-UR-BOOT sk
Choose which file system to boot upon next reboot:

ESC-120
ESC-160
ESC-140
ESC-228
ESC-208
ESC-208
ESC-180

NogsrwhPE

Please enter:

Kridner: Beagle 101

Van Gend/MontaVista: debugging+power
Fisher/RidgeRun

Fisher/RidgeRun

Gatliff: Android 1024x768

Gatliff: Android 800x600
Yau/HY-research: Bluetooth

5
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Configuring the BYOES Beagleboard

# / switchboot

*x  SUCCESS

The correct ulmage and boot.scr have been setup.
You can press the reset button now.

#
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Configuring the BYOES Beagleboard

Some notes:

* Keyboard and mouse work differently
* (Just ignore the mouse altogether)

* You don't have a GSM modem!
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Demonstration

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 10/80



The Genesis of Android

Open Handset Alliance:

* Google, eBay, OMRON, PacketVideo, ...
* ASUSTeK, HTC, LG, Garmin, Motorola, ...
¢ Sprint Nextel, T-Mobile, ...

* ARM, Atheros, Broadcomm, Qualcomm, TI, ...

To date, more than 47 organizations
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Noteworthy Features

Android uses Java:
e ... everywhere
And so will you:

* But nothing prevents native processes

* Some native interfaces are available
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Noteworthy Features

Broad Java support:
* java.io
* java.net
* java.security
* java.sql
But only the mobile-appropriate bits!

* “Android is almost but not quite Java(tm)”
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Noteworthy Features

Strong security:

* Permissions-based
¢ Applications sandboxed in separate VMs

* Pervasive use of Linux process model
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Noteworthy Features

Built-in SQL.:
* Property storage, retrieval
¢ Utilized by nearly all standard components
* Preferred, but not required

Specialized APIs:

¢ SurfaceFlinger

* AudioFlinger
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Noteworthy Features

Highly-optimized Java implementation:

* “Dalvik” VM implemented by Google
¢ Custom bytecode format, processor model

* Register-based, not stack-based
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Noteworthy Features

Why?
¢ “Didn’t want to pay Sun” (probably untrue)

* Very memory- and performance-efficient

¢ Highly tuned to limitations of small hardware
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Noteworthy Features

Centralized obiject lifetime management:

* Tied to component model
¢ Tied to process model
* Tied to user interface model

¢ Tied to security model
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Noteworthy Features

No main() functions per se:

* “Applications” are built from components on-the-fly
* “Activities”, “Intents”, etc.

¢ “Manifests” describe what components are available

See http://developer.android.com
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Terminology

Activity:
¢ A single visual user interface component

¢ List of menu selections, icons, checkboxes, ...

* A reusable component

Service:

¢ “Headless” activity component

¢ Background processes
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Terminology

Broadcast receiver:

* Component that receives announcements
* No user interface

* May launch an Activity in response

Content provider:

* Provides application data to others

* The only way to share data
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Terminology

Intent:

* Message to a component (or broadcast)
¢ Similar to a remote procedure call

* “Make a phone call”, “the battery is low”, ...

Intent filter:

¢ Specifies which Intents a component can handle
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Terminology

Application:

* Sequence of one or more Activities
* Manifest tells which Activity to run first

* Activities might come from other applications
Process model:

* Each application is a unique Linux user
* Each application is a unique process

* Activities often in different processes
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Terminology

Task stack:

¢ Sequences of application-centric Activity classes
¢ Foreground is visible to user

* BACK key returns to most-recent Activity
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Terminology

In other words:

* Not the Linux concept of “application”!
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Example

Display a map:
¢ Utilize a preexisting Activity class
¢ Call startActivity() to launch it

¢ Control returns when the map activity exits
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Power Management

Obviously important!

* Can be a difficult problem to solve
* Too much model exposure is bad
* Too little is also bad

Extends the Linux device model:

* Introduces “wake locks”

* See android.os.PowerManager
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Power Management

In a nutshell:

¢ Applications don’t control power at all
* Applications hold “locks” on power states

¢ If no locks are held, Android powers down
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Power Management

PARTIAL_WAKE_LOCK

* CPU on, screen off, keyboard off

¢ Cannot power down via power button

SCREEN_DIM_WAKE_LOCK

* CPU on, screen dim, keyboard off
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Power Management

SCREEN_BRIGHT_WAKE_LOCK

* CPU on, screen bright, keyboard off

FULL_WAKE_LOCK

* CPU on, screen on, keyboard bright
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WONOU D WN R

Example

PowerManager pm =

(PowerManager) getSystemService(Context. POWER_SERVIC E);
PowerManager.WakeLock wl =

pm.newWakeLock(PowerManager. SCREEN_DIM_WAKE_LOCK, "t ag");

wl.acquire();
/Il ..screen will stay on during this section..
wl.release();
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Audio and Video APIs

MediaPlayer class:

e Standard support for many data formats
* URI invokes appropriate input method

¢ Consistent API regardless of data source

MediaRecorder class:

* Support for audio recording only

* Video recording is “planned”
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NO U WN R

Example

MediaPlayer mp = new MediaPlayer();

mp.setDataSource(PATH_TO_FILE);
mp.prepare();

mp.start();

mp.pause();

mp.stop();
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Audio and Video APIs

Surfaceflinger:

* Centralized framebuffer management

* Related to 2D h/w acceleration
Audioflinger:

¢ Centralized audio stream management

You don’t work with these directly!
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Android Build System

Usual suspects:
* git , repo
* ant
* make
Plus enhancements:

* Package management

¢ Application templates
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Android Package System

APK files:

¢ Package manifests
¢ Classes
¢ Dalvik bytecodes

¢ Signatures, if any

Term.apk
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Developer Tasks

Generally speaking, only two:

* Implement HAL requirements

¢ Implement application-specific Activity classes

As always, however:

* The devil is in the details!
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Developer Tasks

HAL requirements:

* Ak.a. “Linux kernel port”
¢ Adapt init.rc

* Native code, as needed
Activity classes:

* “Writing the application”

See, it isn’t so different!
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System Initialization

init.rc

¢ Functionally equivalent to inittab

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 39/80



P

POOWO~NOUBRWNERE

System Initialization

on init
sysclktz 0
loglevel 3

# setup the global environment

export
export
export
export
export
export
export

Copyright © Bill Gatliff, 2009

PATH /sbin:/system/shin:/system/bin:/system/xb in
LD_LIBRARY_PATH /system/lib

ANDROID_BOOTLOGO 1

ANDROID_ROOT /system

ANDROID_ASSETS /system/app

ANDROID_DATA /data

EXTERNAL_STORAGE /sdcard

Google Android on the Beagleboard

40/80



7
78
79
80
81
82
83
84
85
86
87
88
89
920

System Initialization

on boot

# basic network init
ifup lo
hostname localhost
domainname localdomain

# set RLIMIT_NICE to allow priorities from 19 to -20
setrlimit 13 40 40

# Define the oom_adj values for the classes of processes that
# killed by the kernel. These are used in ActivityManagerSer
setprop ro.FOREGROUND_APP_ADJ 0
setprop ro.VISIBLE_APP_ADJ 1
setprop ro.SECONDARY_SERVER_ADJ 2
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System Initialization

## Daemon processes to be run by init.
#t
service console /system/bin/sh

console

# adbd is controlled by the persist.service.adb.enable sys
service adbd /sbin/adbd
disabled

# adbd on at boot in emulator
on property:ro.kernel.gemu=1
start adbd

on property:persist.service.adb.enable=1
start adbd
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Linux Kernel

Important enhancements:

* logger

° binder

* ram_console
* timed_gpio

* Double-buffered framebuffer (*)

All are staged for kernel.org release
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Linux Kernel

logger
* Miscdevice for lodfile-like functionality
binder

* Android IPC subsystem

¢ High performance, security-aware
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Linux Kernel

ram_console

* RAM-based console device

¢ /proc/last_kmsg
timed_gpio

¢ GPIO that automagically turns itself back off

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

45/80



Linux Kernel

Double-buffered framebuffer:

* Added by platform support authors

* Not Android-specific, but not widely available
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Building the Android Runtime

General procedure:

* Get the code
* Build it
* |nstall it

0:)

http://source.android.com/
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Building the Android Runtime

The code:

* 2.1GB (!) of git trees

* Uses the repo tool to manage
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Building the Android Runtime

# repo init -b cupcake -u
git://android.git.kernel.org/platfornm nmanifest.git
# repo sync
. apply tweaks ...

# make [ TARGET_PRODUCT=fr eer unner]
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Installing Android into a Target

Build products:

¢ userdata.img
¢ ramdisk.img
¢ system.img

¢ kernel.img
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Installing Android into a Target

And also:

° out/target/product/<name>/root
¢ out/target/product/<name>/system

¢ out/target/product/<name>/data
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Installing Android into a Target

“What's in there?”

* The Android filesystem

# |s root

data/ init init.rc  sys/
default.prop init.goldfish.rc  proc/ system/
dev/ initlogo.rle shin/

# |s system
app/ build.prop fonts/ lib/ ustr/
bin/ etc/ framework/ media/ xbin/
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Installing Android into a Target

Combine into unified tree:

* ... to export over NFS, perhaps

# nkdir /exports/android
# cd root & tar ¢ » | tar x -C /exports/android
# cd system & tar ¢ = | tar x -C /exports/android
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Installing Android into a Target

Or, of course:

* Install images into the target system as-is

¢ (Formats vary depending on the target)
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The Android SDK

Key components:

* Compilers, other tools
* Documentation

* Examples

* Hardware emulator

* Android Debug Bridge (adb)

See http://android.com

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard 55/80


http://android.com

Preparing the Beagleboard

Getting ready:

¢ Configure USB network connection

* Test adb
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Preparing the Beagleboard

Connect OTG port:

* Configure USB networking, verify

$ dnesg

$ sudo ifconfig eth2 192.168.99.101 up
$ ping 192.168.99. 100
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Preparing the Beagleboard

Launch a shell via adb:
* The shell is actually on the target!
$ ADBHOST=192. 168.99. 100 adb kill -server

$ ADBHOST=192. 168. 99. 100 adb shel |
#
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Hello, Android!

Let's start simple:

* “Hello, world!”

¢ Command-line tools only

$ activitycreator --out helloworld
exanpl e. hel | owor | d. Hel | oWor | d

$ cd hel | oworl d/
$ vi src/exanpl e/ hel |l oworl d/ Hel | oWorl d.j ava
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©CONOU D WNE

Hello, Android!

package example.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.widget. TextView;

public class HelloWorld extends Activity

/++ Called when the activity is first created. */
@Override
public void onCreate(Bundle savedinstanceState)
{
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
tv.setText("Hello, ESC BYOE attendees!");
setContentView(tv);
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Hello, Android!

Now:
* Build

* |nstall

* Browse to the icon, tap to launch

$ ant
$ ADBHOST=192. 168. 99. 100 adb
install bin/HelloWrld-debug. apk
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Hello, Android!

Or:

* Launch from the shell

$ ADBHOST=192. 168. 99. 100 adb shel |
# amstart -a android.intent.action.MAIN -n
exanpl e. hel | owor | d/ exanpl e. hel | owor | d. Hel | oWor | d
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Hello, Android!

Tidy up:

* Uninstall the application

$ ADBHOST=192. 168. 99. 100 adb
uni nstal |l exanpl e. hel | owor | d
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Eclipse Android Plugin

Android Development Tool (ADT):
* Custom plugin for Eclipse IDE
Helps automate:

* Set up new Android projects
¢ Create new applications, components

* Debugging
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Eclipse Android Plugin

Install Eclipse, then:

* Click Help | Software Updates...
¢ https://dl-ssl.google.com/android/eclipse/
¢ Click Install...

Then:

¢ Point Eclipse to the Android SDK directory

* Window | Preferences | Android
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Demonstration
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Declarative vs. Procedural Programming

“Programmatic” Ul layout:
* Ul comes directly from source code
* Manual connections between views
¢ Small Ul changes can mean big source code changes

* Application is “brittle”
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Declarative vs. Procedural Programming

A better way:

* Use a declarative approach
* Describe what you want, not how to get it

* Let the Ul framework fill in the details

In Android:

* XML-based layouts, values
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Hello, Android! with XML

Applied to “Hello, Android!”:
* Move the layout to XML
* Move the text to a resource
Why?
¢ Swap main.xml files to change layouts

* Swap strings.xml files to translate

* Separate logic from presentation
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Hello, Android! with XML

res/layout/main.xml

¢ Describes the layout

<?xml version="1.0" encoding="utf-8"?>

<TextView xmins:android="http://schemas.android.com/ apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="@string/hello"/>
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abwN R

Hello, Android! with XML

res/values/strings.xml

¢ Defines the string resource

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="hello">Welcome to Android string resources I</string>
<string name="app_name">Hello, Android</string>

</resources>
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Hello, Android! with XML

HelloWorld class then becomes:

¢ “Just do what main.xml says”

package com.example.hello;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
/+x Called when the activity is first created. */
@Override
public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.main);
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Demonstration
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Emulation

Android SDK includes QEMU:

* Complete hardware emulation
* ... without the hardware!

¢ Includes a Linux kernel, filesystem

... and Eclipse can't tell the difference!
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“But what does all this mean?”

Why I'm excited about Android:

* New ideas on current challenges
* New developers, community
* Relatively feature-complete

e Still under active development
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“But what does all this mean?”

But expecially:

* Intended, designed for community development
* (And delivers on that promise)

* Easy to get started, but still challenging

Not just a new API:

* Also an entirely new approach, context
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“But what does all this mean?”

What Android seems good for:

* Open development models

* Highly-configurable systems

And obviously:

* Mobile platforms
* Touch-oriented interfaces

* Network-centric applications
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“But what does all this mean?”

What Android might not be good for:
* Very low-end hardware
* Highly proprietary systems

Maybe, maybe not:

¢ Static systems
* Single-task systems

* No networking requirements

Copyright © Bill Gatliff, 2009 Google Android on the Beagleboard

78180



“But what does all this mean?”

But who knows, really? :)
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