
Introduction to Spread Spectrum EEL 6593

Direct-Sequence Spread Spectrum

Consider a binary discrete-time communication system with the

received signal a time sequence frmg
1

m=0 de�ned by

rm = Ebm + wm

where bm is the sequence of information symbols (antipodal binary,

bm 2 f�1g) and wm is additive zero-mean white Gaussian noise

(AWGN), i.e.,
E[wm] = 0; E[wmwm+l] = �2�(l):
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We use a correlation receiver to determine whether a +1 or a �1

was transmitted at a time instant m. We assume that the

transmitter is connected to an information source which outputs

+1's and �1's with equal probability. In this case, such a receiver

is a simple level detector:

rm � 0 : decide that + 1 was sent

rm < 0 : decide that � 1 was sent

Here rm = ym is known as the decision variable. Its statistics

determine the performance of the receiver. It is easy to see that it

is a normal (Gaussian) random variable with mean Ebm and

variance �2.
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Now consider modulating each symbol with another �1-valued

sequence (a spreading sequence) fcng
n=N�1

n=0 such that each symbol

bm results in the transmission of

either c0; c1; :::; cN�1 or � c0;�c1; :::;�cN�1;

depending on the value of bm.

Thus each bit of duration T is coded into a sequence of N chips of

duration Tc = T=N: The increase in signaling rate spreads the

spectrum of the transmitted signal by a factor of N .

The received sequence can be described as (dropping the subscript

m for clarity)

rn = Ecbcn + wn; n = 0; 1; :::; N � 1:

where Ec =

E
N

and E[w2
n] =

�2
N

:
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Now let us specify two properties of the spreading sequence fcng: it

has a mean value of approximately zero, i.e.,

N�1X
n=0

cn � 0;

and an autocorrelation given by

N�1X
n=0

cncn+i �
8<

:
N; i = 0

0; otherwise.

These conditions are ideal, but can be closely approached in

practice. These properties give sequences of this type a noise-like

appearance; thus the name pseudo-noise (PN) sequences.
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Then, the correlation receiver performs the following operation to

obtain the decision variable y:
y =

N�1X
n=0

rncn

or

y =
N�1X

n=0
(Ecbcn + wn)cn;

which yields, based on the properties of the spreading sequence,

y = NEcb+
N�1X

n=0
wncn:
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Hence our decision variable is normal with mean NEcb = Eb and

variance �2. Comparing this result with the non-spread system

above shows that spreading yields no improvement in the ideal

AWGN channel. This can be seen intuitively by noting that the

signaling rate is increased by a factor of N , but this also increases

the signal bandwidth, and therefore the noise power, by a factor of

N .
As we will see, the power of spreading comes from its e�ect on

narrowband or correlated signals. These include interference,

multipath, or signals from other transmitters the network.
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Now suppose the channel contains an interferer: an unknown

constant is added to the received signal. Then we have

rn = Ecbcn + in + wn; n = 0; 1; :::; N � 1:

where in = I, a real constant. Then our correlation receiver

produces the decision variable

y =
N�1X

n=0
(Ecbcn + in + wn)cn

which becomes

y = NEcb+ I
N�1X

n=0
cn +

N�1X
n=0

wncn

or

y � NEcb+ 0 +
N�1X

n=0
wncn;
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yielding again a decision variable with mean NEcb = Eb and

variance �2, so the interference is suppressed by the despreading

(correlation) operation.

In contrast, the decision variable in non-spread system would have

a mean of Eb+ I, which will render the system unusable for jIj

su�ciently large.

Remark: Notice that the recovery of the signal requires that the

receiver's own copy of the spreading sequence be synchronized with

the received version. This is a key requirement in spread spectrum

system design.

Note: From now on, we normalize to Ec = 1 (unit chip energy) for

simplicity, so that the bit energy is N .

Paul Flikkema/USF 8



Introduction to Spread Spectrum EEL 6593

Now consider a multipath channel, with a direct path and a

specular (re
ected) path which causes another copy of the signal to

arrive at a delay of l with unknown attenuation �:

rn =
8<

:
bmcn + �bm�1cN�l+n; n = 0; :::l � 1

bmcn + �bmcn�l; n = l; :::N � 1;

where we assume that l < N , i.e., the delay is less than one symbol

duration.a

Notice the specular path causes interference from both a delayed

version of the desired symbol and the previously transmitted

symbol bm�1.

a

This assumption can be relaxed using straightforward methods.
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Here,

ym = Nbm + �bm�1
l�1X

n=0
cN�l+ncn + �bm

N�1X
n=l

cn�lcn +
N�1X

n=0
wncn;

which becomes

ym � Nbm + 0 + 0 +
N�1X

n=0
wncn:

The multipath signal is suppressed by the despreading. In the case

of the unspread system, this channel could cause severe ISI,

resulting in a performance loss.
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Direct-Sequence Code Division Multiple Access

Now assume there are K users (transmitters), where the kth

transmitter modulates its data with the spreading sequence fc
(k)

n g.

This set of signature sequences or spreading codes has the

crosscorrelation property

N�1X
n=0

c(k)n c
(j)

n+i �
8<

:
N; k = j; i = 0

0; otherwise

Thus we have a set of K sequences with zero crosscorrelations and

impulse-valued autocorrelations. (Note that this includes the

earlier autocorrelation as a special case.)
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Assume that all K users simultaneously transmit, and we are

interested only in the signal from user k = 1. Assuming time

synchronization between users, the received signal is

rn =

KX
k=1

b(k)m c(k)n + wn

It follows that the correlation receiver for user 1 generates the

decision variable

y(1)m = b(1)m

N�1X
n=0

(c(1)n )2 +

KX
k=2

b(k)m

N�1X
n=0

c(k)n c(1)n +
N�1X

n=0
wnc
(1)

n

Using the crosscorrelation property,

y(1)m � Nb(1)m + 0 +
N�1X

n=0
wnc
(1)

n :
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Therefore, the crosscorrelation property of the sequences allows

simultaneous transmissions in the same channel to be successfully

detected. This property allows spread spectrum to be used as a

multiple-access method (like TDMA or FDMA); it is usually called

code-division multiple access, or CDMA.

Note: Normally, the di�erent transmitters would not be

time-synchronized, so all signals would be received with di�erent relative

delays. However, due to the crosscorrelation property, it is easy to show

that the same result is true when the other K � 1 signals have arbitrary

delays relative to the desired signal.
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DS Spread Spectrum { Summary

Notice that the multipath and multi-user interferences are additive.

Therefore, the previous results can be combined to show the spread

spectrum provides resistance combinations of

� multipath

� multi-user interference

Considerations:

� The sequence properties used here are idealized; degradation

can occur in practice. Solutions include coding, power

control, and multi-user receivers.

� The sequences are periodic; the period may be greater than a

symbol duration to prevent performance loss.
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