802.16 MAC layer: structure and QoS support

PhD student: Le Minh Duong

Content

- 1. Introduction
- 2. 802.16 MAC layer
 - 2.1. MAC Service-Specific Convergence Sublayer
 - 2.2. Common Part Sublayer
- 3. QoS support
 - 3.1. Bandwidth request-grant mechanisms
 - 3.2. Services classes
 - 3.3. QoS architecture for 802.16
- 4. Conclusion

- WiMAX is defined as Worldwide Interoperability for Microwave Access by the WiMAX Forum, formed in June 2001 to promote conformance and interoperability of the IEEE 802.16 standard (WirelessMAN).
- Two available standards:
 - IEEE 802.16-2004: fixed WiMAX
 - IEEE 802.16e-2005: amendment to IEEE 802.16-2004, mobile WiMAX support added

- WiMAX salient features:
 - Speed: 70Mbps (more practicaly 10Mbps at 10km)
 - Range: many kilometers (WiFi meters)
 - OFDM-based physical layer
 - Link layer retransmissions: support ARQ
 - Flexible and dynamic per user resource allocation
 - Quality-of-Service support
 - Support for mobility.

WiMAX terms:

- BS (Base Station), SS (Subscriber Station), MS (Mobile Station).
- Fixed WiMAX: BS and SSs communicate with each other, no direct links between SSs.
- Mobile WiMAX: MSs can operate in the way of adhoc mechanism.
- Two directions between BS and SSs: uplink (from SS to BS) and downlink (from BS to SS).

- Fixed WiMAX operation overview:
 - TDD frame

Fixed WiMAX operation overview:

- Downlink:
 - Only BS transmits in broadcast manner. Each SS picks up the data destined to it.
 - BS determines the number of time slots that each SS will be allowed to transmit in an uplink subframe.

Uplink:

- Upon power up, SSs synchronize with chanel.
- Get UL-MAP from downlink subframe, determine transmision opportunities.
 UL-MAP is scheduled by BS.

- Fixed WiMAX operation overview (cont):
 - Uplink (cont):
 - Perform Initialization and Registration setup.
 - SSs request for transmission opportunities on the UL channel by sending BW-Request.
 - Scheduling:
 - BS gathers and then schedules these requests.
 - The information is broadcasted in the DL channel by BS using the UL-MAP message at the beginning of each DL subframe.

- The MAC layer consists of 3 sublayers:
 - 1. The Service-specific Convergence Sublayer (CS)
 - Classifying external network service data units (SDUs)
 - Associating SDUs to the proper MAC service flow identifier (SFID) and connection identifier (CID).
 - Payload header suppression (PHS).
 - 2. The MAC Common Part Sublayer (CPS)
 - Provides the core MAC functionality of system access
 - Fragments or combines SDUs to appropriate MAC PDUs
 - 3. The Security Sublayer (SS)
 - Authentication, secure key exchange, and encryption

The Service-specific Convergence Sublayer

- Classification of the higher-layer protocol PDU into the appropriate connection
- Suppression of payload header information (optional)
- Delivery of the resulting CS PDU to the MAC SAP associated with the service flow for transport to the peer MAC SAP
- Receipt of the CS PDU from the peer MAC SAP
- Rebuilding of any suppressed payload header information (optional)

The Service-specific Convergence Sublayer

Classification:

Classification and CID mapping (BS to SS) [2]

Classification and CID mapping (SS to BS) [2]

802.16 MAC layer The Service-specific Convergence Sublayer

- Packet Header Suppression
 - Avoid the transmission of redundant information in the headers of the MAC SDUs (optional)
 - A packet is mapped to a PHS rule by classifier
 - In sender: each MAC SDU is prefixed with a PHSI which references the Payload Header Suppression Field (PHSF)
 - In receiver: uses CID and PHSI to restore the PHSF

- Addressing and Connections
 - Each SS has a 48-bit universal MAC address
 - The primary addresses used during operation are the 16-bit CIDs
 - Three management connections reflecting the three different QoS requirements used by different management levels:
 - Basic connection for short and critical MAC and RLC messages,
 - Primary management connection for longer and more delaytolerant messages such as authentication and connection setup.
 - The secondary management connection transfers standardsbased messages such as DHCP, TFTP, and SNMP.
 - Transport connections are unidirectional to facilitate different UL and DL QoS and traffic parameters.

- MAC PDU format:
 - The MAC PDU is the data unit exchanged between the MAC layers of the BS and its SSs
 - 3 parts:
 - Fixed-length generic header with two formats (generic and bandwidth request).
 - Payload: optional and varies in length
 - CRC: optional

- MAC PDU format (cont):
 - Payload may contain zero or more subheaders and zero or more MAC SDUs and/or fragments thereof.
 - Three types of MAC subheader:
 - Grant management subheader
 - Fragmentation subheader (FSH)
 - Packing subheader (PSH)

- Contruction and transmission of MAC PDUs:
 - Incoming MAC SDUs from corresponding convergence sublayers are formatted according to the MAC PDU format.
 - IEEE 802.16 takes advantage of incorporating the packing and fragmentation processes.
 - Multiple MAC PDUs may be concatenated into a single transmission in either the uplink or downlink directions:
 - Fragmentation is the process in which a MAC SDU is divided into one or more MAC SDU fragments.
 - Packing is the process in which multiple MAC SDUs are packed into a single MAC PDU payload.

- The 802.16 MAC protocol is connectionoriented and uses strict admission control.
 - At the start of each frame, the BS schedules the DL and UL bandwidth grants and time schedule in order to meet the negotiated QoS requirements.
 - All information are communicated to the SSs by the BS in the UL-MAP at the start of the DL subframe of each frame.
 - SSs are allowed to transmit data only in their own predetermined transmission opportunity.

Bandwidth request-grant mechanisms

- There are four request-granting mechanisms used for bandwidth allocation for UL:
 - unsolicited granting of a fixed bandwidth requested by the SS only during the set-up phase of an UL connection;
 - unicast polling allocating just enough bandwidth for the polled UL connection to transmit a bandwidth request;
 - broadcast polling by the BS to all UL connections for sending requests; and
 - 4. piggy-backed request onto a PDU when there is backlog in the UL.

Bandwidth request-grant mechanisms

QoS support Service classes

- The WiMAX Standard specifies the 5 different service classes:
 - Unsolicited Grant Service (UGS):
 - No need to request bandwidth for each packet
 - The BS periodically assigns slots
 - Scheduling for DL UGS traffic is not required
 - Real-time Polling Service (rtPS):
 - Packets are not fixed in size
 - BS polls the connection of this class periodically (unicast polling) to ask how much bandwidth is needed.

QoS support Service classes

- Non real-time Polling Service (nrtPS):
 - Used to support traffic with no QoS.
 - May have additional bandwidth allocated through non periodic polling.
- Best Effort (BE):
 - Used to support traffic with no QoS.
 - There is possibility that BE traffic is starved by the lack of bandwidth.
- Extended real-time Polling Service (ErtPS):
 - In mobile WiMAX
 - Used for VoIP with silence suppressed

QoS support QoS architecture for 802.16

QoS support QoS architecture for 802.16

- "Undefined details such as UL and DL bandwidth scheduling and admission control and traffic policing, are subjects of research and propriety implementation".
- Various detailed QoS architectures have been proposed by researchers:
 - Downlink scheduler in BS
 - Uplink scheduler in BS
 - Uplink scheduler in SS

QoS support QoS architecture for 802.16

- Cross-layer scheduling
 - Scheduling based on information from physical layer only is called *channel-aware* scheduling.
 - Scheduling based on information of higher layer is called *queue-aware* scheduling.
 - cross-layer packet scheduling: manage the users' access to resources according to both instantaneous traffic requirements (higher layer) and dynamic channel conditions (physical layer).

Conclusion

- WiMAX is a new trend for network and communication.
- 802.16 standard has many undefined subjects for researchers.
- Bandwidth scheduling has two research directions:
 - MAC scheduling
 - Cross-layer scheduling

