Physics BooksOptics Books

Physical Optics Lecture Notes (PDF 44P)

Advertisement

Physical Optics Lecture Notes (PDF 44P)

Physical Optics Lecture Notes (PDF 44P)

This note covers the following topics: elementary electromagnetic waves, maxwells equations, the material equations and boundary conditions, Poynting's vector and the energy law, the wave equation and the speed of light, scalar waves, pulse propagation in a dispersive medium, general electromagnetic plane wave, harmonic electromagnetic waves of arbitrary form time averages, harmonic electromagnetic plane wave polarisation, reflection and refraction of a plane wave.

Author(s):

s44 Pages
Similar Books
Small Angle Scattering and Diffraction

Small Angle Scattering and Diffraction

This book shows how the existing technology of material characterization can contribute to science and applied technology. The authors who contributed with this book sought to show the importance of applying the existing techniques in the development of their works.

sNA Pages
Optics Lecture Notes by Michigan State University

Optics Lecture Notes by Michigan State University

This lecture note covers following topics: Nature of Light, Geometrical Optics, Optical Instrumentation, Dispersion, Prisms, and Aberrations, Wave Equations, EM Waves, Polarization, Fresnel Equations, Production of Polarized Light, Superposition of Waves Interference of Light, Coherence, Fraunhofer Diffraction, Fourier Optics, Characteristics of Laser Beams, Optics of the Eye.

sNA Pages
Lectures On Geometrical Optics

Lectures On Geometrical Optics

This lecture note explains following topics: Basics of optics, Laws of Reflection and Refraction, Reflection from spherical mirrors, Velocity of image, Refraction at Plane Surfaces, Prism Theory, Defects of images, Refraction from curved surfaces.

s196 Pages
Optics Lecture Notes by M P Vaughan

Optics Lecture Notes by M P Vaughan

This book covers the following topics: Waves and Photons, The Physics of Waves,The Huygens-Fresnel Principle, Diffraction, Maxwell's Equations, Polarisation, Fermats Principle, Spherical Lenses and Mirrors, Crystal Symmetry and Optical Instruments.

sNA Pages
Optical Imaging

Optical Imaging

This note describes the following topics: Linear systems and the Fourier transform in optics, Properties of Light, Geometrical Optics, Wave Optics, Fourier Optics, Spatial and Temporal Field Correlations, Low-coherence Interferometry, Optical Coherence Tomography, Polarization, Waveplates, Electro-optics and Acousto-optics.

sNA Pages
Nonlinear Optics

Nonlinear Optics

Rapid development of optoelectronic devices and laser techniques poses an important task of creating and studying, from one side, the structures capable of effectively converting, modulating, and recording optical data in a wide range of radiation energy densities and frequencies, from another side, the new schemes and approaches capable to activate and simulate the modern features. Topics covered includes: Stimulated Raman Scattering in Quantum Dots and Nanocomposite Silicon Based Materials, Reflection and Transmission of a Plane TE-Wave at a Lossy, Saturating, Nonlinear Dielectric Film, Nonlinear Ellipsometry by Second Harmonic Generation, Stimulated Raman Scattering in Quantum Dots and Nanocomposite Silicon Based Materials, Nonlinear Ellipsometry by Second Harmonic Generation, Donor-Acceptor Conjugated Polymers and Their Nanocomposites for Photonic Applications.

s236 Pages
Engineering Optics

Engineering Optics

The main goal of this note is to introduce engineers to the characteristics of light that can be used to accomplish a variety of engineering tasks especially in mechanical analysis at macro and micro scales. Topics covered includes: Geometric Optics and Electromagnetic wave Theory Introduction to Light sources and photodetectors Geometric Moire: In-plane displacement measurement and out of plane displacement measurement, Geometric Moire, Moire Interferometry: Interference and Diffraction, Grating fabrication, Moire Interferometry: Holographic and Laser Speckle, Interferometry, Photoelasticity: theory, techniques and Multilayer structure: waveguide, filters, Introduction to fiber optic and waveguide delivery and detection, Periodic structure sensors.

sNA Pages
Physics of Light and Optics

Physics of Light and Optics

This curriculum was originally developed for a senior-level optics course in the Department of Physics and Astronomy at Brigham Young University. Topics are addressed froma physics perspective and include the propagation of light in matter, reflection and transmission at boundaries, polarization effects, dispersion, coherence, ray optics and imaging, diffraction, and the quantumnature of light. Students using this book should be familiar with differentiation, integration, and standard trigonometric and algebraic manipulation.

s345 Pages

Advertisement