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Chapter 1

Introduction to the Theory of
Distributions

1.1 Introduction

James Clerk Maxwell (1831–1879), pictured on page 2, was a Scottish mathematician
and physicist who is attributed with formulating classical electromagnetic theory, unit-
ing all previously unrelated observations, experiments and equations of electricity,
magnetism and even optics into one consistent theory. Maxwell’s equations demon-
strated that electricity, magnetism and even light are all manifestations of the same
phenomenon, namely the electromagnetic field. By the end of the course we’ll have
built up the mathematical foundation that we need in order to understand this fully
(more so than Maxwell himself!), and we’ll have derived and used Maxwell’s famous
equations. Although they bear his name, like much of mathematics, his equations (in
earlier forms) come from the work of other mathematicians, but they were brought
together for the first time in his paper, On Physical Lines of Force, published between
1861 and 1862∗.

The first chapter of this course is concerned with putting together a mathematically
sound foundation which we can build Maxwell’s theory of electrodynamics upon. Max-
well’s theory introduces functions that don’t have derivatives in the classical sense,
so we use a relatively new addition to analysis in order to understand this. This
foundation is the Theory of Distributions. Distributions (not related to probability
distributions) are the far-reaching generalisations of the notion of a function and their
theory has become an indispensable tool in modern analysis, particularly in the theory
of partial differential equations. The theory as a whole was put forth by the French†

mathematician Laurent Schwartz in the late 1940s, however, its most important ideas
(of so-called ‘weak solutions’) were introduced back in 1935 by the Soviet mathem-
atician Sergei Sobolev. This course will cover only the very beginnings of this theory.

∗Paraphrased from Wikipedia
†Honest!
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1.2 Definitions and notation

Let me start by reminding you of some definitions and notation:

Definition 1.1 A compact set K in a domain Ω, denoted K ⋐ Ω is a closed, bounded
set.

Notation 1.2 C∞(Ω) is the set of continuous functions which can be differentiated
infinitely many times in a domain Ω.

Notation 1.3 C0(Ω) is the set of continuous functions which are equal to 0 outside
some compact K ⋐ Ω. That is to say, if f ∈ C0, ∀x /∈ K, f(x) = 0. This is known as
the set of continuous functions with compact support

Notation 1.4 C∞0 (Ω) is the set of continuous, infinitely differentiable functions with
compact support

Notation 1.5 We use Br(x0) to denote the closed ball of radius r centred at a point
x0 in our domain Ω: that is to say,

Br(x0) = {x ∈ Ω : |x− x0| ≤ r}
where | · | is the norm of our domain. For this course we’ll always say that our
domains are subsets of Rn, so we don’t need to worry about special types of norm:
|v| is the standard (Euclidean) length of the vector v, which we work out in the usual
Pythagorean way.∗

Note: we’ll use the convention of writing vectors in boldface (e.g. v) from chapter 2
onwards—the first chapter deals heavily in analysis and since we are being general in
which domain we’re working in (R, R2 or R3), the distinction between one-dimensional
scalars and higher-dimensional vectors is unnecessary; most of our results hold in n
dimensions, and excessive boldface would clutter the notes. As such we’ll use standard
italic (e.g. v) unless clarity demands it of us.

1.2.1 The du Bois-Reymond lemma and test functions

We start by proving a very useful lemma, first proved by the German mathematician
Paul du Bois-Reymond.

Lemma 1.6 Let Ω ⊂ Rn be an open domain (bounded or unbounded). Let f(x) ∈
C(Ω). Assume that for any φ ∈ C∞0 (Ω),

∫

Ω

f(x)φ(x)dx = 0.

∗You may find that other authors use the notations B(x0, r), B(x0, r) or Bc(x0, r) (where the bar
and c denote ‘closed’).
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Chapter 1. Introduction to the Theory of Distributions

Then f ≡ 0.

Proof: We’ll approach this using contradiction. Say we have x0 ∈ Ω such that
f(x0) > 0.

f ∈ C(Ω), i.e.

∀ ε > 0, ∃ δ > 0 s.t. |x− x0| < δ =⇒ |f(x)− f(x0)| < ε

Let ε = 1
2
f(x0), i.e. there exists a ball of radius δ, Bδ(x0) such that f(x) > 1

2
f(x0) for

all x ∈ Bδ(x0).

Choose φ from C∞0 such that:

1. φ(x) ≥ 0 for all x

2. φ(x) = 1 for x ∈ B δ
2

(x0)

3. φ(x) = 0 for x /∈ Bδ(x0).

Then look at ∫

Ω

f(x)φ(x)dx =

∫

Bδ(x0)

f(x)φ(x)dx

since φ is zero outside of this ball. But
∫

Bδ(x0)

f(x)φ(x)dx ≥
∫

B δ
2

(x0)

f(x)φ(x)dx

since all the f(x)φ(x) terms are positive. Then
∫

B δ
2

(x0)

f(x)φ(x)dx =

∫

B δ
2

(x0)

f(x)dx

since φ(x) = 1 by condition 2 above. Then
∫

B δ
2

(x0)

f(x)dx ≥ 1

2
f(x0) · Vol(B δ

2

(x0)) > 0

by our choice of ε above.

But our initial assumption was that
∫

Ω

f(x)φ(x)dx = 0

which is a contradiction.

The crucial result underlining the proof of this lemma is the following:
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Proposition 1.7 Let K1 and K2 be two compacts in Rn such that K1 ⋐ K2. Then
there exists φ ∈ C∞0 (Rn) such that

1. 0 ≤ φ(x) ≤ 1 on Rn;

2. φ(x) = 1 on K1;

3. φ(x) = 0 on Rn \K2.

K1

φ = 1

K2

Rn

φ = 0

Figure 1.1: Proposition 1.7 tells us this exists

We can take from the lemma a simple corollary:

Corollary 1.8 Let f, g ∈ C(Ω). Then if ∀φ ∈ C∞0 (Ω),
∫

Ω

f(x)φ(x)dx =

∫

Ω

g(x)φ(x)dx

then f = g.

Proof: Subtracting one side from the other gives
∫

Ω

f(x)φ(x)dx−
∫

Ω

g(x)φ(x)dx = 0

∫

Ω

(f(x)− g(x))φ(x)dx = 0

Then f(x)− g(x) = 0 by Lemma 1.6, i.e. f(x) = g(x).

To understand the importance of this result, remember that normally to test whether
two functions f and g are equal, we have to compare their values at all points x ∈ Ω.
By the Du Bois-Reymond lemma, however, this is equivalent to the fact that integrals
of f and g with all φ ∈ C∞0 (Ω) are equal. Thus, functions are uniquely characterised by
their integral with C∞0 (Ω) functions. It is, of course, crucial that we look at the values
of integrals of f with all C∞0 (Ω) functions, i.e. to test f with all C∞0 (Ω) functions
which are, therefore, called test functions.
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Chapter 1. Introduction to the Theory of Distributions

Definition 1.9 C∞0 (Ω) is called the space of test functions and is often denoted
D(Ω)

1.2.2 Topological vector spaces and multi-indices

Definition 1.10 D(Ω) is a topological vector space, i.e.

1. It is a linear vector space, i.e. if f, g ∈ D(Ω) and λ, µ ∈ R,

h(x) = (λf + µg)(x) = λf(x) + µg(x) ∈ D(Ω) x ∈ Ω

and h(x) = 0 for x /∈ Kf ∪Kg, i.e. x not in the compact support of either.

2. There is a notion of convergence, i.e. there is a meaning to fk −−−→
k→∞

f . This is

defined shortly.

For the next few definitions we need to introduce a further few convenient definitions:

Definition 1.11 A multi-index α is an n-dimensional vector, where n = dim(Ω),
with non-negative integer components:

α = (α1, α2, . . . , αn), αi = 0, 1, . . . i = 1, . . . , n

Multi-indices are convenient when we want to write high-order partial derivatives,
namely

∂αφ(x) =
∂|α|φ

∂xα1

1 · · ·∂xαn
n

, j = 1, . . . , n, |α| = α1 + · · ·+ αn.

1.2.3 Null set and support

Definition 1.12 The null set of a function f , N (f), is the maximal open set in Ω
where f ≡ 0. In other words, x0 ∈ N (f) if it has a neighbourhood x0 ∈ U ⊂ Ω with
f(x) = 0 when x ∈ U and if any other open set A holds this property, then A ⊂ N (f)

Definition 1.13 The support of a function f , supp(f) is the complement of N (f)
in Ω, i.e.

supp(f) = Ω \ N (f)

Note that by this definition, supp(f) is always closed in Ω.
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Example 1.14 Let Ω = R and

f(x) =

{
0 if x ≤ 0
x if x > 0

Then N (f) = (−∞, 0) and supp(f) = [0,∞).

f(x) 6

-
x

Figure 1.2: Look, a picture of the function!

1.2.4 Convergence

Definition 1.15 A function φk converges to φ in D(Ω) if the following two conditions
are satisfied:

1. For any multi-index α and any x ∈ Ω,

∂αφp(x)→ ∂αφ(x), as p→∞

i.e. all derivatives converge

2. There is a compact K ⋐ Ω such that

supp(φp), supp(φ) ⊂ K, p = 1, 2, . . .

Problem 1.16 For any φ ∈ D(Ω) and any multi-index β, show that

∂βφ ∈ D(Ω)

Proof:
N (∂βφ) ⊃ N (φ) =⇒ supp(∂βφ) ⊂ supp(φ) ⋐ Ω

10
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supp φp supp φ

K

Ω

Figure 1.3: Definition 1.15(2) in picture form

Problem 1.17 If ζ ∈ C∞(Ω), then for any φ ∈ D(Ω), show

ψ = ζφ ∈ D(Ω)

Proof:

supp(ψ) ⊂ supp(φ) ⋐ Ω

Problem 1.18 Let φp → φ in D(Ω) and let β = (β1, . . . , βn) be some fixed multi-
index. Show that

∂βφp → ∂βφ in D(Ω).

Solution This just follows from condition 1 of the definition of φp converging to
φ. X

Problem 1.19 ∗ Let ζ ∈ C∞(Ω), i.e. ζ is an infinitely differentiable function in Ω.
Show that, for φp → φ in D(Ω),

ζφp → ζφ in D(Ω).

Solution Want to show that if ψp = ζφp, ψ = ζφ, that

1. ∀β, ∂βψp → ∂βψ

2. ∃K s.t. supp(ψp), supp(ψ) ⊂ K

So let’s do it.

11
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1.

∂βψp = ∂β(ζφp)

=
∑

γ:γ≤β

(
β
γ

)(
∂β−γζ

)
(∂γφp)

which is the sum of C∞ terms. So as p→∞, since φp → φ in D(Ω),

→
∑

γ:γ≤β

(
β
γ

)(
∂β−γζ

)
(∂γφ)

= ∂β(ζφ).

2. N (ψ) ⊃ N (φ) =⇒ supp(ψ) ⊂ supp(φ) ⋐ Ω since φp → φ in D(Ω).
N (ψp) ⊃ N (φp) =⇒ supp(ψp) ⊂ supp(φp) ⋐ Ω.

And so ∃K ⋐ Ω such that supp(ψ), supp(ψp) ∈ K.

X

Problem 1.20 If φp → φ, ψp → ψ in D(Ω) and λ, µ ∈ R, show that

λφp + µψp → λφ+ µψ in D(Ω)

Problem 1.21 If φp → φ, ψp → ψ in D(Ω) and λp → λ, µp → µ in R, show that

λpφp + µpψp → λφ+ µψ in D(Ω)

1.3 Functionals

Now we move on to functionals :

Definition 1.22 A function F : V → R, mapping from a vector space onto the
reals, is called a functional.

Definition 1.23 A continuous, linear functional F has the properties,

1. Linearity:

F (λv + µw) = λF (v) + µF (w); v,w ∈ V ; λ, µ ∈ R (1.1)

2. Continuity:
F (vp)→ F (v) as vp → v (1.2)

12
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Problem 1.24 1. Let F be a linear functional on a topological vector space V .
Show that F (0) = 0, where 0 is the zero vector in V .

2. Assume, in addition, that F satisfies

F (vp)→ 0, as vp → 0

Show that then F is continuous.

1.3.1 Dual space

Definition 1.25 The space of continuous linear functionals on V is called the dual
space to V and is denoteda by V ′.

The dual space is itself a topological vector space if, for λ, µ ∈ R and F,G ∈ V ′ we
define λF + µG by

(λF + µG)(v) = λF (v) + µG(v), v ∈ V (1.3)

and Fp → F if, for any v ∈ V ,

Fp(v)→ F (v), as p→∞. (1.4)

Problem 1.26 Show that H = λF + µG defined by (1.3) is a continuous linear
functional on V , i.e. H satisfies (1.1), (1.2).

Proof: We need to check that this object is linear and continuous:

1. Linearity:

(λF + µG)(αv + βw) = λF (αv + βw) + µG(αv + βw)

and each F,G are linear functionals, therefore

= λ(αF (v) + βF (w)) + µ(αG(v) + βG(w))

= α[λF (v) + µG(v)] + β[λF (w) + µG(w)]

= α(λF + µG)(v) + β(λF + µG)(w)

2. Continuity:

(λF + µG)(vp) =λF (vp) + µG(vp)

−−−→
p→∞

λF (v) + µG(v)

=(λF + µG)(v)

†Other, if not most, authors denote the dual space to V by V ∗

13
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Problem 1.27 ∗ Show that if Fp → F and Gp → G, where Fp, F, Gp, G ∈ V ′, then

λFp + µGp → λF + µG.

Solution Again, just like above,

(λFp + µGp)(v) = λFp(v) + µGp(v)

and, by the information given in the question,

−−−→
p→∞

λF (v) + µG(v)

= (λF + µG)(v)

X

Problem 1.28 If Fp → F , Gp → G, λp → λ, µp → µ, show that

λpFp + µpGp → λF + µG

Solution We want to show then that

(λpFp + µpGp)(v)→ (λF + µG)(v)

So here we go, quite succinctly.

(λpFp + µpGp)(v) = λpFp(v) + µpGp(v)

−−−→
p→∞

λF (v) + µG(v)

= (λF + µG)(v)

X

Example 1.29 Let V = R2, the space of 2-dimensional vectors. Recall that vp → v
iff ‖vp − v‖ → 0. Then V ′ is actually V itself and we define, for w ∈ V ′ (which is
again just a 2-vector) and v ∈ V ,

w(v) = w · v = w1v1 + w2v2

i.e. the scalar product of w and v.

1.4 Distributions

Let us return to the topological vector space D(Ω) = C∞0 (Ω). Then it has a dual space
of its functionals.

14



Chapter 1. Introduction to the Theory of Distributions

Definition 1.30 The topological vector space D′(Ω) of continuous linear functionals
on D(Ω) is called the space of distributions on Ω.

Let me just remind you of a definition and result from real analysis (MATH7102):

Definition 1.31 We say that φp converges to φ (φp −−−→
p→∞

φ) uniformly if:

∀ε > 0 ∃P (ε) s.t. p > P (ε) =⇒ |φp(x)− φ(x)| < ε ∀x ∈ Ω

Lemma 1.32 Let φp ∈ C(Ω) and φp(x) → φ(x) for any x ∈ Ω. Then for any
compact K ⋐ Ω, φp → φ uniformly.

What are some examples of distributions?

Proposition 1.33 Take any f ∈ C(Ω). For any φ ∈ D(Ω), consider

Ff (φ) =

∫

Ω

f(x)φ(x)dx.

Then Ff is a distribution (a continuous linear functional on D(Ω)) called a distribution
associated with the function f . That is to say, the integrals form a linear continuous
functional in D(Ω).

Proof:

1. Linearity:

Ff(λφ+ µψ) =

∫

Ω

f(x) (λφ(x) + µψ(x)) dx

= λ

∫

Ω

f(x)φ(x)dx+ µ

∫

Ω

f(x)ψ(x)dx

= λFf(φ) + µFf(ψ) (1.5)

i.e Ff satisfies (1.1).

2. Continuity:

Let φp → φ in D(Ω).
Then we’re told in definition 1.15 that for any multi-index α,

∂αφp(x)→ ∂αφ(x) x ∈ Ω

So take α = (0, . . . , 0), then obviously since ∂0φ = φ, we get

φp(x)→ φ(x), x ∈ Ω

=⇒ f(x)φp(x)→ f(x)φ(x)

But we can’t say that
∫
f(x)φp(x) dx→

∫
f(x)φ(x) dx because this simply isn’t

true.

15
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Counterexample: Take the interval (0, 1) and

φp(x) =

{
p if x ∈ (0, 1

p
)

0 if x ∈ [1
p
, 1)

Then ∀x ∈ (0, 1), φp(x)→ 0 but
∫ 1

0
φp(x)dx = 1.

We need the extra condition that φp → φ uniformly.

Recall that the definition of convergence (1.15) says that there is a compact
K ⋐ Ω such that

supp(φp), supp(φ) ⊂ K, p = 1, 2, . . .

Then by Lemma 1.32 above, we have all we need and

Ff(φp) =

∫

K

f(x)φp(x)dx→
∫

K

f(x)φ(x)dx = Ff(φ). (1.6)

This completes the proof.

So in summary, every f ∈ C(Ω) defines a distribution Ff ∈ D′(Ω), where

Ff(φ) =

∫

Ω

f(x)φ(x)dx

Moreover, the Du Bois-Reymond lemma says that to two different functions f1 and
f2, we associate different Ff1 and Ff2 .

So we say that C is embedded in D′, C(Ω) ⊂ D′(Ω), and this embedding is continuous.

Previously we defined uniform convergence of a function, let us state what it means
for a function to converge pointwise:

Definition 1.34 A function fp −−−→
p→∞

f pointwise in C(Ω) if

fp(x)→ f(x) ∀x ∈ Ω

Problem 1.35 ∗ If fp, f ∈ C(Ω) and fp → f pointwise, show that

Ffp → Ff in D′(Ω)

Proof: Ffp → Ff in D′(Ω) means that

∀φ ∈ D′(Ω), Ffp(φ)→ Ff(φ) ⇐⇒
∫

Ω

fp(x)φ(x)dx→
∫

Ω

f(x)φ(x)dx

⇐⇒
∫

K

fp(x)φ(x)dx→
∫

K

f(x)φ(x)dx

16
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where K = supp(φ).

Since fpφ→ fφ pointwise, and fpφ and fφ are continuous, then fpφ → fφ uniformly
in K.

1.4.1 Distributions of different forms

This leads us to the next question: are there any distributions F ∈ D′(Ω) which are
not of the form Ff for some f ∈ C(Ω)?

Definition 1.36 Let y ∈ Ω. Define the Dirac delta functional,

δy(φ) := φ(y). (1.7)

Problem 1.37 Show that the Dirac delta functional is a distribution.

Proof:

1. Linearity:

δy(λφ+ µψ) = (λφ+ µψ)(y)

= λφ(y) + µψ(y)

= λδy(φ) + µδy(ψ)

2. Continuity: if φp → φ in D, then, in particular, φp(y)→ φ(y), so that

δy(φp) = φp(y)→ φ(y) = δy(φ)

Problem 1.38 Show that there is no f ∈ C(Ω) such that δy = Ff .

Solution Without loss of generality, take y = 0. Assume δ = Ff with f ∈ C(Ω) and
take a function φε ∈ D(Ω) such that





0 ≤ φε(x) ≤ 1 in Ω

φε(x) = 1 in Bε

φε(x) = 0 outside B2ε

17
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δ(φε) = φε(0) = 1 so

1 = δ(φε) = Ff(φε) =

∣∣∣∣∣∣

∫

Ω

f(x)φε(x) dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

B2ε

f(x)φε(x) dx

∣∣∣∣∣∣

≤
∫

B2ε

|f(x)| |φε(x)| dx

≤
∫

B2ε

|f(x)| dx

Let f ∈ C(Ω). Since f is continuous, it is bounded in any compact, i.e.

|f(x)| ≤ C in B1

(where we’ve picked the radius of the ball to be 1 fairly arbitrarily). Therefore

1 ≤ C

∫

B2ε

dx

= C · (vol. of ball in n-dim. case) · (2ε)n
→ 0 as ε→ 0

which is a contradiction. X

Now for more examples of distributions:

Example 1.39 Let Ω = R3. Consider the plane, say x3 = a. Let h(x1, x2) be a
continuous function of two variables, i.e. h ∈ C(R2). Define

Fa,h(φ) =

∫
h(x1, x2)φ(x1, x2, a) dx1 dx2,

i.e. the integral over the plane x3 = a:

=

∫

plane
x3=a

h(x)φ|R dA

Then Fa,h ∈ D′(R3) (we could denote this by hδa(x3)).

Example 1.40 More generally, let S ⊂ Ω ⊂ R3 be a surface and h a continuous
function on S. Define

FS,h(φ) =

∫

S

hφ dAS,

where dAS is the area element on S, known as the surface integral from MATH1402.
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Example 1.41 Let now, L be a curve in Ω ⊂ R2 or Ω ⊂ R3 and h be some continuous
function on L. We define

FL,h(φ) =

∫

L

hφ dℓ

where dℓ is the length element on L.

Problem 1.42 Show that Fa,h ∈ D′(R3), as well as FS,h, FL,f ∈ D′(Ω).

1.5 Support of a Distribution

We know what supp(f) is when f ∈ C(Ω): this is the closure of the set of points where
f(x) 6= 0. This definition uses the values of the function at all points. Can we find
supp(f) looking only at

Ff(φ) =

∫

Ω

f(x)φ(x)dx?

To this end, observe that if supp(φ) ⊂ N (f), then

Ff(φ) = 0.

Moreover, by the Du Bois-Reymond lemma, if U ⊂ Ω is open and, for any φ ∈ D(Ω)
with supp(φ) ⊂ U ,

Ff (φ) =

∫

Ω

f(x)φ(x)dx = 0,

then f = 0 in U , i.e. U ⊂ N (f). This makes it possible to find N (f) and, therefore,
supp(f), looking only at Ff .

This also motivates the following definition:

Definition 1.43 Let F ∈ D′(Ω). We say that F = 0 in an open U ⊂ Ω (we can
denote this F |U) if

F (φ) = 0, φ ∈ D(Ω), supp(φ) ⊂ U. (1.8)

This is a very natural definition: that, the distribution F is zero in U if, for whichever
function φ ∈ D = C∞0 we put into it, the result is zero so long as the support of φ (i.e.
the non-zero bits) is contained entirely in U .

Definition 1.44 The null-set N (F ) is the largest open set U in Ω such that (1.8) is
valid when supp(φ) ⊂ U (i.e. the largest open set where F = 0).
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Definition 1.45 The support supp(F ) is the closed set

supp(F ) = Ω \ N (F ).

The consistency of this definition is based on the fact (which I shan’t prove) that

F = 0 in U1 and F = 0 in U2 =⇒ F = 0 in U1 ∪ U2. (1.9)

Problem 1.46 Show that supp(δy) = {y}

Proof: If supp(φ) ⊂ Ω \ {y}, then φ(y) = 0. Therefore,

δy(φ) = φ(y) = 0.

Thus
(Ω \ {y}) ⊂ N (δy).

Now let’s assume that y ∈ N (δy). Then N (δy) = Ω since we’ve just added {y} to
(Ω \ {y}), and

N (δy) = Ω ⇐⇒ δy(φ) = 0 ∀φ ∈ D(Ω).
But Proposition 1.7 says that there exists φ ∈ D(Ω) such that φ(y) = 1. But then
δy(φ) = φ(y) = 1, which is clearly a contradiction.

Hence y /∈ N (δy).

Problem 1.47 Suppose S ⊂ Ω and h is a continuous function on S. Show that
supp(FS,h) ⊂ S.

Proof:

FS,h(φ) =

∫

S

h(x)φ|S(x) dA

Look at the supports:
Ω \ S ⊂ N (FS,h)

since F is integrating over an area S (if you take away S you’re left with nothing).
Hence, taking complements,

S ⊃ supp(FS,h)

Actually, supp(FS,h) = S ∩ supp(h).

Problem 1.48 ∗ Show that supp(FL,h) ⊂ L.
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Proof:

FL,h(φ) =

∫

L

h(x)φ|L(x) dℓ

Look at the supports:
Ω \ L ⊂ N (FL,h)

since F is integrating over a line L (if you take away L you’re left with nothing).
Hence, taking complements,

L ⊃ supp(FL,h)

1.5.1 Distributions with compact support (E ′)

The subclass of distributions with compact support is denoted by

E ′(Ω) ⊂ D′(Ω).

Definition 1.49 F ∈ E ′(Ω) if supp(F ) is compact in Ω.

The importance of E ′(Ω) is that we can unambiguously define F (ψ) for any ψ ∈ C∞(Ω)
when F ∈ E ′(Ω).

Indeed, let supp(F ) ⊂ K1 ⊂ K2 ⋐ Ω, where K1 and K2 satisfy the conditions of
Proposition 1.7.

Let

φ(x) ∈ D(Ω) =
{

1 if x ∈ K1

0 if x ∈ Ω \K2

(the existence of such φ is guaranteed by Proposition 1.7).

We now define
F (ψ) := F (φψ). (1.10)

Note that this definition is independent of the choice of φ satisfying

φ(x) = 1 x ∈ supp(F ).

Indeed, if φ̂ is another function with this property, then

F (φψ)− F (φ̂ψ) = F ((φ− φ̂)ψ) = 0,

since supp(F ) ∩ supp((φ− φ̂)ψ) = ∅.

Definition 1.50 We say that Fp → F in E ′(Ω) if Fp → F in D′(Ω). That is to
say, Fp(φ) → F (φ) for any φ ∈ D(Ω) and there is a compact K ⋐ Ω such that
supp(Fp), supp(F ) ⊂ K.
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1.6 Differentiation of Distributions

Take a function f ∈ C∞(Ω). Then, for any multi-index β, define

g := ∂βf =
∂|β|f

∂xβ1

1 · · ·∂xβn
n

Obviously g ∈ C∞(Ω) as well. So

Fg(φ) =

∫

Ω

g(x)φ(x) dx

=

∫

Ω

∂βf(x)φ(x) dx

= (−1)|β|
∫

Ω

f(x) ∂βφ(x)︸ ︷︷ ︸
∈D(Ω)

dx (1.11)

= (−1)|β|Ff (∂
βφ) (1.12)

where line 1.11 has been achieved by integrating by parts |β| times. You can think of
this process like repeating this:

[
φ(x)∂β−1f(x)

]
︸ ︷︷ ︸
This disappears since

f, φ = 0 at the boundaries

−
∫

Ω

∂φ(x) ∂β−1f(x) dx

Therefore:

Definition 1.51 For F ∈ D′(Ω) and a multi-index β, then ∂βF ∈ D′(Ω) is the
distribution of the form

∂βF (φ) = (−1)|β|F (∂βφ)
and is called the β-derivative of the distribution F .

Let us just show that this definition is OK.

First, since φ has infinitely many derivatives, then ∂βφ also has infinitely many deriv-
atives. Moreover, since φ = 0 on the open set N (φ), then (−1)|β|∂βφ = 0 on N (∂βφ),
which is larger than N (φ) and

supp(∂βφ) ⊂ supp(φ).

This implies that supp(∂βφ) is a compact in Ω. Therefore, line 1.12 above is well-
defined.

Now, to show that (1.12) is a distribution, we should prove the relations of linearity
(1.5) and continuity (1.6).
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1. Linearity:

∂βF (λ1φ1 + λ2φ2) = (−1)|β|F (∂β[λ1φ1 + λ2φ2])

= (−1)|β|F (λ1∂βφ1 + λ2∂
βφ2)

= (−1)|β|λ1F (∂βφ1) + (−1)|β|λ2F (∂βφ2)

= λ1∂
βF (φ1) + λ2∂

βF (φ2).

2. Continuity: by the definition of convergence, if φp → φ, then

∂βφp → ∂βφ

Thus,

∂βF (φp) = (−1)|β|F (∂βφp)→ (−1)|β|F (∂βφ) = ∂βF (φ).

Thus, for distributions associated with smooth functions, the derivatives of these dis-
tributions are associated with the derivatives of the corresponding functions. This
observation shows that our definition 1.51 is a natural extension of the notion of dif-
ferentiation from functions to distributions.

Problem 1.52 The Heaviside step function, Θ(x) or H(x), for x ∈ R, is given by

H(x) =

{
0 if x < 0
1 if x ≥ 0

.

Show that H ′ = δ, where H represents the distribution derived from the function
H(x).

Proof:

H ′(φ) = (−1)H(φ′)

= −
∫ ∞

0

φ′(x) dx

= φ(0) [since φ(∞) = 0 because of compact support]

= δ(φ)

Problem 1.53 The sign (or signum) function, sgn(x), for x ∈ R is given by





−1 if x < 0
0 if x = 0
1 if x > 0

.

Show that sgn′ = 2δ.
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Proof:

sgn′(φ) = (−1) sgn(φ′)

= −
∫ ∞

−∞
sgn(x)φ′(x) dx

= −
(∫ 0

−∞
sgn(x)φ′(x) dx+

∫ ∞

0

sgn(x)φ′(x) dx

)

= −
(
−
∫ 0

−∞
φ′(x) dx+

∫ ∞

0

φ′(x) dx

)

= −
(
− [φ(x)]0−∞ + [φ(x)]∞0

)

= − (− (φ(0)− φ(−∞)) + (φ(∞)− φ(0)))
= 2φ(0) [since φ(∞) = φ(−∞) = 0 because of compact support]

= 2δ(φ)

Problem 1.54 Show that, for any multi-index α and any y ∈ Ω,

∂αδy(φ) = (−1)|α|(∂αφ)(y).

Solution

∂αδy(φ) = (−1)|α|δy(∂αφ)
= (−1)|α|(∂αφ)(y)

X

Note, in a matter unrelated to the problem above, that if F ∈ D′ is a distribution and
ψ ∈ C∞, then

(ψF )(φ) = F (ψφ), ψ ∈ D(Ω)

1.7 Convolution

An important operation acting on distributions is convolution. To define it, we start,
as usual, with continuous functions.
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Definition 1.55 Let

f ∈ C0(R
n)

g ∈ C(Rn)

i.e. f has compact support, supp(f) ⊂ K ⋐ Rn. Then define

h(x) = (f ∗ g)(x) :=
∫

Rn

f(x− y)g(y) dy

=

∫

Rn

f(y)g(x− y)dy

= (g ∗ f)(x),

which is called the convolution of f and g. Clearly, f ∗ g ∈ C(Rn).

Consider the corresponding distribution Fh,

Fh(φ) = Ff∗g(φ) =

∫

Rn



∫

Rn

f(x− y)g(y)dy


φ(x)dx

=

∫

Rn



∫

Rn

f(x− y)φ(x)dx


 g(y)dy

(z := x− y) =⇒ =

∫

Rn



∫

Rn

f(z)φ(z + y)dz


 g(y)dy

(x := z) =⇒ =

∫

Rn



∫

Rn

f(x)φ(x+ y)dx


 g(y)dy

(φy(x) := φ(x+ y)) =⇒ =

∫

Rn



∫

Rn

f(x)φy(x)dx


 g(y)dy

=

∫

Rn

Ff (φ
y)︸ ︷︷ ︸

Φ(y)

g(y)dy

= Fg(Φ)

= Fg(Ff (φ
y))

Here, for any y ∈ Rn, we denoted by φy the translation of φ,

φy(x) = φ(x+ y).

Therefore,
Ff∗g(φ) = Fg (Ff(φ

y)) . (1.13)

It turns out that formula (1.13) makes sense for any F ∈ E ′(Rn), G ∈ D′(Rn).
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Definition 1.56 For F ∈ E ′(Rn), G ∈ D′(Rn), we can define the convolution, H =
F ∗G ∈ D′(Ω) by

(F ∗G)(φ) = G(F (φy)).

We will now show that this definition is (1) well-defined, (2) linear and (3) continuous.

1. Well-defined:

(a) Support:

Since F ∈ E ′(Rn),
=⇒ supp(F ) ⋐ R

n

i.e. ∃b > 0 such that Rn \ Bb(0) ⊂ N (F ), where Bb(0) is a ball of radius b
centred at 0.

Since φ ∈ D(Rn),

=⇒ ∃a > 0 such that supp(φy) ⊂ Ba(y)

i.e. supp(φ) ⊂ Ba(0)

Thus if |y| > b+ a,
supp(F ) ∩ supp(φy) = ∅

=⇒ F (φy) = 0

Denote Φ(y) = F (φy). Then supp(Φ) ⊂ Bb+a(0).

(b) Is Φ(y) ∈ C∞(Rn)?

We will show that Φ is infinitely differentiable by proving that

∂αΦ = F (∂αφy),

using induction on |α|.
Assume

∂αΦ = F (∂αφy), |α| ≤ m

and let us show that

∂βΦ = F (∂βφy), |β| = m+ 1.

Let β = α+ ei, where

ei = (0, . . . , 0, 1, 0, . . . , 0)

with the 1 in the ith place.

By our inductive hypothesis,

∂i∂
αΦ = ∂iF (∂

αφy)

but we need to prove that the right hand side exists. In order to do this,
we need to show that:

ψs −−→
s→0

ψ in D(Ω)
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Where

ψs(y) =
∂αφy+sei − ∂αφy

s
, ψ(y) = ∂βφy

So we need, for any multi-index γ:

∂γψs −−→
s→0

∂γψ

For |γ| = 0, we have:

ψs(y) =
∂αφy+sei − ∂αφy

s
=
∂αφ(x+ y + sei)− ∂αφ(x+ y)

s
−−→
s→0

∂α+eiφ(x+ y)

=∂βφy = ψ(y)

Now, for an arbitrary multi-index γ, we want to show that:

∂γψs = ∂γ
[
∂αφ(x+ y + sei)− ∂αφ(x+ y)

s

]
−−→
s→0

∂γ+βφ(x+ y) = ∂γψ

Well,

∂γ+αφ(x+ y + sei)− ∂γ+αφ(x+ y)

s
= ∂i∂

γ+αφ(x+ y)

= ∂γ+α+eiφ(x+ y)

= ∂γ+βφ(x+ y)

So ψs −−→
s→0

ψ in D(Ω), which means that F (ψs) −−→
s→0

F (ψ), now:

∂βΦ = ∂iF (∂
αφy) = lim

s→0

F (∂αφy+sei)− F (∂αφy)

s

= lim
s→0

F

(
∂αφy+sei − ∂αφy

s

)

= lim
s→0

F (ψs)

= F (ψ) = F (∂βφy)

So then, by induction, for any multi-index α

∂αF (φy) = F (∂αφy) (1.14)

Therefore F (φy) ∈ C∞(Rn). Thus G(F (φy)) is well defined.

2. Linearity: Clearly, the functional

φ 7→ G (F (φy))

is linear.

27



MATH3308 Maxwell’s Theory of Electrodynamics

3. Continuity: This is also a pain, but it’s the same type of pain.

Let φk → φ in D. We need

(F ∗G)φk → (F ∗G)(φ)

i.e.
G(F (φy

k)) −−−→
k→∞

G(F (φy)).

It is sufficient to show that

F (φy
k) = Φk(y)→ Φ(y) = F (φy) in D.

So let’s check support and differentials

(a) Check support: Let us show that supp(Φk), supp(Φ) lie in the same ball.

As φk → φ in D, ∃a > 0 such that supp(φk), supp(φ) ⊂ Ba.

Then supp(Φk), supp(Φ) ⊂ Bb+a (where supp(F ) ⊂ Bb).

(b) Show ∂αΦk(y)→ ∂αΦ(y)

i.e. show F (∂αφy
k)→ F (∂αφy)

Since φk → φ in D(Rn), this implies that φy
k → φy in D(Rn).

Then by Proposition 1.7, ∂αφy
k → ∂αφy in D(Ω) ∀α.

Therefore F (∂αφy
k)→ F (∂αφy)

Congratulations!!! You did it!

Proposition 1.57 Convolution is a continuous map from E ′(Ω) × D′(Ω) to D′(Ω),
i.e. if Fp → F in E ′(Ω) and Gp → G in D′(Ω), then

Fp ∗Gp → F ∗G.

We won’t prove this as it’s too difficult.

Problem 1.58 ∗ If Fp → F in E ′(Ω) and G ∈ D′(Ω), show that

Fp ∗G→ F ∗G

Solution

(Fp ∗G)(φ) = G(Fp(φ
y))

G is continuous, and Fp → F in E ′(Ω), so Fp(φ
y)→ F (φy), and hence

−−−→
p→∞

G(F (φy))

= (F ∗G)(φ)

X
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Lemma 1.59
F ∗G = G ∗ F. (1.15)

Remark 1.60 We prove (1.15) later, although it’s obvious for distributions from the
functions: if F = Ff , G = Fg,

G ∗ F = Fh h(x) =

∫
g(x− y)f(y) dy

F ∗G = Fĥ ĥ(x) =

∫
f(x− y)g(y) dy

which are clearly equal.

Although the convolution of distribution is usually defined only for Ω = Rn, in some
cases it may be defined for general Ω. In particular, when 0 ∈ Ω, F ∗ G is defined for
F = ∂αδ, where α is arbitrary.

Problem 1.61 Show that
(∂αδ) ∗G = ∂αG.

Solution

[(∂αδ) ∗G](φ) = G[(∂αδ)(φy)]

= G[(−1)|α|δ(∂αφy)]

= (−1)|α|G[δ(∂αφy)]

= (−1)|α|G[∂αφ]
= (∂αG)(φ)

X

Now we will show that we can move about derivatives:

Proposition 1.62 Let F ∗G ∈ D′(Ω) be the convolution of two distributions. Then,
for any multi-index α,

∂α(F ∗G) = (∂αF ) ∗G = F ∗ (∂αG).

Proof: By the definition of differentiation (definition 1.51),

∂α(F ∗G)(φ) = (−1)|α|(F ∗G)(∂αφ)
= (−1)|α|G(F (∂αφy))

by the definition of convolution (definition 1.56).

To proceed, notice that

∂αφy(x) =
∂αφ(x+ y)

∂xα
=
∂αφ(x+ y)

∂yα
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Therefore

F (∂αφy) = F

(
∂αφy

∂yα

)

=
∂α

∂yα
(F (φy))

by equation 1.14. So, proceeding,

∂α(F ∗G)(φ) = (−1)|α|(F ∗G)(∂αx φ)
= (−1)|α|G(F (∂αx φy))

= (−1)|α|G(F (∂αy φy))

= (−1)|α|G(∂αy F (φy))

= ∂αy G(F (φ
y))

= (F ∗ ∂αG)(φ)

Note the importance of which variable we differentiate with respect to. And since
F ∗G = G ∗ F , swapping F and G holds.

Corollary 1.63

∂β+γ(F ∗G) = ∂β(F ) ∗ ∂γ(G)

1.8 Density

Now for a little notation

Notation 1.64

F : C(Ω) 7→ D′(Ω) F(f) = Ff

As we know F(C(Ω)) 6= D′(Ω). However, we have the following density result

Theorem 1.65

cl (F(C0(Ω))) = D′(Ω),
i.e. for any F ∈ D′(Ω), Ω ⊂ Rn, there is a sequence fp ∈ D(Ω) such that

Ffp −−−→
p→∞

F in D′(Ω) (1.16)

Sketch of proof: We will prove this theorem in 2 parts:

1. We will show that the distributions with compact support, E ′(Ω) are dense in
the space of all distributions D′(Ω), i.e. we show that cl(E ′(Ω)) = D′(Ω).

30



Chapter 1. Introduction to the Theory of Distributions

2. We will show that the space of distributions of compact support due to continu-
ous functions with compact support is dense in the space of distributions with
compact support, i.e. we show that cl (F(C0(Ω))) = E ′(Ω). We will do this in
three steps:

(a) For F , a distribution with compact support, we will construct a sequence
of distributions converging to F in D′(Ω).

(b) Then we will show that in fact these distributions all have compact support,
lying in the same compact, so that they converge to F in E ′(Ω).

(c) Finally we will show that they are in fact all distributions due to continuous
functions with compact support.

Once we have proven these facts we see that F(C0(Ω)) is dense in E ′(Ω) which is, in
turn, dense in D′(Ω). Recall, by the nature of the closure operation, this then means
that cl(F(C0(Ω))) = D′(Ω). (Since D′(Ω) = cl(E ′(Ω)) = cl(cl(C0(Ω))) = cl(C0(Ω)) as
the closure of a closed set is itself).

1. We will show that any distribution can be approximated by distributions with
compact support, i.e.

∀F ∈ D′(Ω), ∃Fp ∈ E ′(Ω) s.t. Fp → F

First, let Kp, p = 1, 2, . . . , be a sequence of compacts exhausting Ω, i.e.

Kp ⋐ Ω, Kp ⊂ int(Kp+1),

∞⋃

p=1

Kp = Ω.

In fact we can define them as

Kp =

{
x ∈ Ω : |x| ≤ p, dist(x, ∂Ω) ≥ 1

p

}

Now let χp ∈ D(Ω) be functions with the properties described by Proposition
1.7, where K1 = Kp and K2 = Kp+1, i.e.

χp(x) =

{
1 if x ∈ Kp

0 if x ∈ Ω \Kp+1

Let F ∈ D′(Ω), then define Fp by:

Fp = χpF

Fp(φ) = χpF (φ) = F (χpφ).

Note that
supp(Fp) ⊂ Kp+1. (1.17)

Indeed, if φ ∈ D(Ω) and supp(φ) ∩Kp+1 = ∅, then

Fp(φ) = χpF (φ) = F (χpφ︸︷︷︸
0

) = 0.
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Also, Fp → F . To prove this, we want to show that

F (χpφ) = Fp(φ) −−−→
p→∞

F (φ) ∀φ ∈ D(Ω)

which clearly it does. Indeed, for large p, K ⊂ Kp

Proof:
dist(K, ∂Ω) = d > 0

since K ⋐ Ω. As K is a compact, K ⊂ BR, for some radius R > 0.

Hence for p > max(R, 1
d
), K ⊂ Kp.

2. (a) Any distribution with compact support can be approximated by distribu-
tions of functions with compact support, i.e.

∀F ∈ E ′(Ω), ∃fp ∈ D(Ω) s.t. Ffp → F ∈ E ′(Ω)

Let us introduce a function χ(x) ∈ D(Rn) such that

i. supp(χ) ⊂ B1(0)

ii. χ(x) =

{
1 if x ∈ B1/2(0)
0 if x ∈ Ω \B1(0)

iii.

∫

Rn

χ(x)dx = 1

iv. χ = χ(|x|) (i.e. χ is a radial function)

The existence of such χ follows easily from proposition 1.7.

Now consider, for sufficiently small ε > 0, a function χε(x) ∈ D(Rn) such
that

i. supp(χε) ⊂ Bε(0)

ii. χε(x) =

{
1 if x ∈ Bε/2(0)
0 if x ∈ Ω \Bε(0)

iii.

∫

Rn

χε(x)dx = 1

iv. χε(x) =
1

εn
χ
(x
ε

)

Now define
F ε := χε ∗ F ∈ E ′(Ω) (1.18)

then for φ ∈ D(Ω), by the definition of convolution,

F ε(φ) = (χε ∗ F )(φ) = F (χε(φy))

= Fχε(φy)

:=

∫

Rn

χε(x)φ(x+ y) dx ∈ D(Rn)

and we’ll show now that

χε(φy)→ φ(y) ∈ D(Ω).
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First note that

χε(φy) =

∫

|x|≤ε

χε(x)φ(x+ y) dx

=

∫

|x|≤ε

χε(x) [φ(y) + φ(x+ y)− φ(y)] dx

= φ(y)

∫

|x|≤ε

χε(x) dx+

∫

|x|≤ε

χε(x) [φ(x+ y)− φ(y)] dx

= φ(y) +

∫

|x|≤ε

χε(x) [φ(x+ y)− φ(y)] dx

As

∫

|x|≤ε

χε(x) dx = 1.

So we can write

χε(φy) = φ(y) +

∫

|x|≤ε

χε(x)[φ(x+ y)− φ(y)] dx

Observe that

sup
|x|≤ε
|φ(x+ y)− φ(y)| −−→

ε→0
0 ∀y ∈ Ω

i.e. pointwise in Ω, which means that φ(x+ y)− φ(y) −−→
ε→0

0 uniformly on

any K ⋐ Ω. Hence

ψǫ(y) = χε(φy) = φ(y) +

∫

|x|≤ε

χε(x) [φ(x+ y)− φ(y)]︸ ︷︷ ︸
→0 ∀y∈Ω

dx

−−→
ε→0

φ(y) uniformly on any compact

i.e.
ψǫ(y) = χε(φy)→ φ(y) ∀y ∈ Ω

and uniformly on any compact.

And the same goes for the derivative. If we replace χε(φy) by ∂αχε(φy), we
use the same trick and

∂αχε(φy)→ ∂αφ(y) ∀y ∈ Ω,α

This means that χε(φy) = ψε → φ in E(Ω) = C∞(Ω).

So (χε ∗ F )(φ) = F (χε(φy)) −−→
ε→0

F (φ) since F ∈ E ′(Ω) and χε(φy) → φ in

E(Ω)

So χε ∗ F → F in D′(Ω).
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(b) Now we show that χε ∗ F ∈ E ′(Ω), i.e. We show that χε ∗ F has compact
support. First, we find supp(χε(φy)).

Suppose d(y, supp(φ)) > ε then d(x + y, supp(φ)) > 0 for |x| ≤ ε, which
means that x+ y /∈ supp(φ), so:

χε(φy) =

∫

|x|≤ε

χε(x)φ(x+ y) dx = 0 ∀y s.t. d(y, supp(φ)) > ε

So, supp(χε(φy)) ⊂ {y : d(y, supp(φ)) ≤ ε}, i.e. supp(χε(φy)) lies in an
ε-vicinity of supp(φ).

Now we claim that supp(χε ∗ F ) ⊂ {x : d(x, supp(F )) ≤ ε} = supp(F )ε, i.e
supp(χε ∗ F ) lies in an ε-vicinity of supp(F ).

Let φ be such that:

supp(φ) ∩ supp(F )ε = ∅

Then:

d(supp(φ), supp(F )) > ε

i.e. the ε-vicinity of supp(φ) lies outside of supp(F ). Thus:

supp(χε(φy)) ∩ supp(F ) = ∅

So:

(χε ∗ F )(φ) = F (χε(φy)) = 0 ∀φ s.t. supp(φ) ∩ supp(F )ε = ∅

Which means that:

supp(χε ∗ F ) ⊂ supp(F )ε

Now take ε0 =
1
2
d(supp(F ), ∂Ω) so that supp(F )ε0 is compact in Ω. Then:

∀ε ≤ ε0 supp(χε ∗ F ) ⊂ supp(F )ε ⊂ supp(F )ε0 ⋐ Ω

So that supp(χε ∗ F ) ⋐ Ω which means that:

χε ∗ F ∈ E ′(Ω)

(c) Now we show that, for ε < 1
2
d(supp(F ), ∂Ω), χε ∗ F ∈ C∞0 (Ω)

In other words, there are functions hε ∈ C∞0 (Ω) s.t. χε ∗ F = Fhε
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We approach this problem as we always do; in order to construct hε we first
look at the case when F = Ff , then:

(χε ∗ Ff )(φ) = Ff (χ
ε(φy))

=

∫
f(y)

(∫
χε(x)φ(x+ y)dx

)
dy

=

∫ (∫
f(y)χε(z − y)φ(z)dz

)
dy

︸ ︷︷ ︸
z=x+y,dz=dx

=

∫ (∫
f(y)χε(z − y)φ(z)dy

)
dz

=

∫
φ(z)

(∫
χε(z − y)f(y)dy

)
dz

= Fhε(φ)

Where: hε(z) =

∫
f(y)χε(y − z)dy

= Ff (χ
ε,−z)

Where we have denoted χε,−z(x) = χε(x − z). Now we generalise this to
the case when F is any distribution, by trying to show that:

If hε = F (χε,−z) ∈ C∞0 (Ω), then χε ∗ F = Fhε

Now observe that:

χε(φy) =

∫
χε(x)φ(x+ y)dx =

∫
χε(z − y)φ(z)dz

= lim
δ→0

∑

i

χε(zi − y)φ(zi)δn

:= lim
δ→0

Rε
δ(y)

Also that:

∂αy χ
ε(φy) = ∂αy

∫
χε(z − y)φ(z)dz =

∫
∂αy χ

ε(z − y)φ(z)dz

= lim
δ→0

∑

i

∂αy χ
ε(zi − y)φ(zi)δn

= lim
δ→0

∂αy
∑

i

χε(zi − y)φ(zi)δn

= lim
δ→0

∂αy R
ε
δ(y)
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Thus

χε(φy) = lim
δ→0

Rε
δ in D(Ω)

=⇒ (χε ∗ F )(φ) = F (χε(φy))

= lim
δ→0

F (Rε
δ)

= lim
δ→0

F

(
∑

i

χε(zi − y)φ(zi)δn
)

= lim
δ→0

(
∑

i

(
F (χε,−zi)

)
φ(zi)δ

n

)

=

∫
F (χε,−z)φ(z)dz

=

∫
hε(z)φ(z)dz hε(z) = F (χε,−z) ∈ C∞0 (Ω)

= Fhε(φ)

These three parts prove that cl(F(C∞0 (Ω)) = E ′(Ω)

So we see that cl(F(C∞0 (Ω)) = D′(Ω) since cl(E ′(Ω)) = D′(Ω).

Problem 1.66 ∗ Prove that χε −−→
ε→0

δ (where χε represents the distribution from

the function χε defined in part 2a above).

Solution

Fχε(φ) =

∫

R2

χε(x)φ(x) dx ∈ D(R2)

and since χε(x) = 0 outside of Bε,

=

∫

Bε

χε(x)φ(x) dx

=

∫

Bε

χε(x)φ(x) dx+ φ(0)− φ(0)

and since φ(0) = φ(0)
∫
Bε
χε dx =

∫
Bε
χεφ(0) dx,

=

∫

Bε

χε(x) [φ(x)− φ(0)] dx+ φ(0)

and as ε→ 0, the integral → 0, leaving us with

→ φ(0)

Hence χε → δ. X
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Now we return to a lemma from earlier:

Lemma 1.59
F ∗G = G ∗ F. (1.15)

Proof: Let Ffp → F , where fp ∈ D(Ω) and Ggp → G, where gp ∈ C(Ω). We know,
by remark 1.60, that:

Ffp ∗Ggp = Ggp ∗ Ffp

and that, by proposition 1.57,

Ffp ∗Ggp −−−→
p→∞

F ∗G

so

F ∗G = lim
p→∞

(Ffp ∗Ggp) = lim
p→∞

(Ggp ∗ Ffp) = G ∗ F.

1.9 Integration of Distributions

We complete this section with the notion of integration of distributions with respect
to some parameter τ = (τ1, . . . , τn) ∈ A ⊂ Rn. Let Fτ ∈ D′(Ω) be continuous with
respect to τ , i.e. Fτ → Fτ0

, in D′(Ω), when τ → τ 0. Recall that this means that,

Fτ (φ)→ Fτ0
(φ), as τ → τ 0; φ ∈ D(Ω).

Then, if g ∈ C0(A), we define a distribution Gg ∈ D′(Ω) by

Gg =

∫

A

g(τ )Fτdτ .

Gg(φ) =

∫

A

g(τ )Fτ (φ)dτ . (1.19)

We can check that if
Fτ = Ff(τ )

where f(τ ) = f(x, τ ) ∈ C(Ω×A)
then

Gg = Fh

h(x) =

∫

A

g(τ )f(x, τ ) dτ .

37



MATH3308 Maxwell’s Theory of Electrodynamics

Anyway, now let’s consider A = Ω = Rn.

As a particular case, consider the operation of translation. As usual, we start with
f ∈ C(Ω), which we then continue by 0 on the whole Rn. Let y ∈ Rn. By translation
of f by y we understand the operation

Ty : f 7→ fy, fy(x) = f(x− y).

Let us consider the corresponding distribution TyFf = Ffy ,

TyFf(φ) =

∫

Ω

f(x− y)φ(x) dx

=

∫

Rn

f(x− y)φ(x) dx

=

∫

Rn

f(x)φ(x+ y) dx

= Ff (φ
y). (1.20)

We would like to use formula (1.20) to define the translation of distributions. However,
in general, φy /∈ D(Ω) but just in C∞(Ω). Thus, assuming that F ∈ E ′(Ω) we find the
following definition

Definition 1.67 Let F ∈ E ′(Ω), y ∈ Rn. Then,

TyF (φ) = F (φy), φ ∈ D(Ω), (1.21)

and we continue it by 0 outside Ω.

There are a few different notations for translation, one of Prof. Kurylev’s favourites is
TyF = F (· − y), which the editors wish he wouldn’t use because it sucks. Another is
TyF = Fy.

Example 1.68
Ty(δ) = δy

Proof:

(Tyδ)(φ) = δ(φy)

= φy(0)

= φ(y)

= δy(φ)

Observe that the operation of translation TyF is a distribution in D′(Rn), which de-
pends continuously on y:

TyF → Ty0F as y → y0.
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Is it true that

(Ty(F ))(φ) = F (φy) −→
?

(Ty0F )(φ) = F (φy0)?

Yes it is because if y → y0,

φy = φ(x+ y)→ φ(x+ y0) = φy0 in D(Rn)

And clearly

∂αφ(x+ y) −−−→
y→y0

∂αφ(x+ y0) ∀α ∀x ∈ R
n

since the supports lie in the same compact (see the compacts of φy and φy0 moving
towards each other as y → y0).

Thus, if g(y) ∈ C0(R
n), we can define using equation 1.19

Gg =

∫

Rn

g(y)(TyF ) dy

Gg(φ) =

∫

Rn

g(y)F (φy) dy

Problem 1.69 Show that Gg = Fg ∗ F

Problem 1.70 ∗ Let f(x) = 3
4
(1 − x2) for |x| ≤ 1, f(x) = 0 for |x| > 1, x ∈ R.

Denote fn(x) = nf(nx), n = 1, 2, . . . and let Fn ∈ D′(R) be a distribution given by

Fn(φ) =

∫ ∞

−∞
fn(x)φ(x) dx, φ ∈ C∞0 (R).

Show that Fn → δ0, as n→∞, in D′(R).

Solution

Fn(φ) =

∫ ∞

−∞
fn(x)φ(x) dx

and because f(x) has compact support on [−1, 1], f(nx) has compact support on[
− 1

n
, 1
n

]
, and fn(x) = nf(nx),

=

∫ 1/n

−1/n
fn(x)φ(x) dx.
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Now, by the mean value theorem, since fn(x) does not change sign on
[
− 1

n
, 1
n

]
, there

exists a point x0 ∈
(
− 1

n
, 1
n

)
such that

= φ(x0)

∫ 1/n

−1/n
fn(x) dx

= φ(x0)

∫ 1/n

−1/n
n
3

4
(1− x2n2) dx

= φ(x0)

[
3n

4

(
x− x3n2

3

)]1/n

−1/n

= φ(x0)

[
3n

4

(
1

n
− n2

3n3

)
+

3n

4

(
1

n
− n2

3n3

)]

= φ(x0)

[
2 · 3n

4

(
2

3n

)]

= φ(x0)

and since x0 ∈
(
− 1

n
, 1
n

)
, as n→∞, x0 → 0, so

Fn(φ)→ φ(0)

i.e.
Fn → δ0

X

Problem 1.71 ∗ Let

gn(x) =

{
−3

2
n3x if |x| < 1

n

0 if |x| ≥ 1
n

.

Show that Gn → δ′0, as n→∞, in D′(R).

Solution Note that

gn(x) =
d

dx
fn(x)

using the definition of f from Problem 1.70

=
d

dx

[
3n

4

(
1− n2x2

)]
on |x| < 1

n

= −3n
4
2n2x

= −3
2
n3x on |x| < 1

n

and since Fn → δ0, we conclude that Gn → δ′0, so long as I can show that ∂Hn → ∂H
for some distribution H . And I can do this by pointing out that

∂Hn(φ) = Hn(−∂φ)
−−−→
n→∞

H(−∂φ)
= ∂H(φ)
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since Hn = Fn and H = δ0. X

Problem 1.72 Let f ∈ C(Rn) satisfy

∫

Rn

f(x)dx = 1,

∫

Rn

|f(x)|dx <∞.

Let
fp(x) = pnf(px), p = 1, 2, . . . .

Show that fp → δ, as p→∞, in D′(Rn). (here fp stands for the distribution Ffp)

Solution

Ffp(φ) = pn
∫

Rn

f(px)φ(x) dx

Letting y = px, then dy = pn dx, since x is an n-dimensional vector

=

∫

Rn

f(y)φ

(
y

p

)
dy

=

∫

Rn

f(y)φ(0) dy +

∫

Rn

f(y)

[
φ

(
y

p

)
− φ(0)

]

︸ ︷︷ ︸
→0 pointwise

dy

= φ(0)

∫

Rn

f(y) dy

︸ ︷︷ ︸
1 by definition

= φ(0)

Now, pointwise convergence is OK but we really want uniform convergence for rigour,
i.e. we want to show

∀ε ∃P (ε) s.t. p > P (ε) =⇒

∣∣∣∣∣∣

∫

Rn

f(y)

[
φ

(
y

p

)
− φ(0)

]
dy

∣∣∣∣∣∣
< ε

The trick we’ll employ is that ∫

Rn

=

∫

BA

+

∫

Rn\BA

Let’s deal with the area outside the ball of radius A first. Using part of the question
setup, ∫

Rn

|f(x)|dx = C <∞ =⇒ ∀δ ∃A(δ) s.t.
∫

Rn\BA

|f(x)|dx < δ
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So if we define

M = max |φ(y)|

and take

δ =
ε

4M

then we have
∫

Rn\BA

∣∣∣∣f(y)
[
φ

(
y

p

)
− φ(0)

]∣∣∣∣ dy ≤ 2M

∫

Rn\BA

|f(y)|dy

≤ ε

2

Now, inside the ball of radius A,
∣∣∣∣
y

p

∣∣∣∣ ≤
A

p
−−−→
p→∞

0

which we can write analysis-style as
∣∣∣∣φ
(
y

p

)
− φ(0)

∣∣∣∣ ≤
ε

2C
if p ≥ P (ε)

(picking ε
2C

for use later!) Therefore

∫

BA

|f(y)|
∣∣∣∣φ
(
y

p

)
− φ(0)

∣∣∣∣ dy ≤
ε

2C

∫

Rn

|f(y)|dy = ε

2

X

1.10 The Laplace Operator and Green’s Function

Let us have φα ∈ C∞(Ω) and F ∈ D′(Ω), and

DF =
∑

|α|≤m
φα(x)∂

αF.

Can we solve the equation DF = δy?

If we can, then we have a distribution Gy ∈ D′(Ω) which we call Green’s function.
Typically Gy depends continuously on y.

Recall that the Laplacian, ∇2, in Rn is given by

∇2φ =
n∑

i=1

∂2φ

∂x2i
.
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Definition 1.73 A function (or, more generally, a distribution), Φy ∈ D′(Rn) is
called Green’s function (or a fundamental solution) for the Laplacian, ∇2, at the point
y ∈ Rn, if

−∇2Φy = δy.

In the study of electromagnetism, the most important case is n = 3 (and, sometimes,
n = 1 or n = 2). So, let us look for Green’s function in R3.

Lemma 1.74 The function

Φy(x) =
1

4π|x− y| (1.22)

is the fundamental solution for ∇2 in R3.

Before proving the lemma, let us make some remarks. The notation Φy(x) for the
Green’s function is typical in physics, in mathematics we tend to use Gy(x). Note also
that this fundamental solution is a distribution associated with the function (1.22).
Note that Φy(x) /∈ C(R3), as it has a singularity at x = y, however, Φy(x) ∈ L1

loc(R
3).

Strictly speaking we should write, instead of Φy, FΦy
but from now on we will identify

f as representing Ff and just write

f(φ) = Ff (φ).

Proof: We need to show that

− (∇2Φy)(φ) = δy(φ) = φ(y). (1.23)

By definition

(∇2Φy)(φ) = Φy(∇2φ)

=

∫

R3

∇2φ(x)

4π|x− y|dx.

Denote by Bε(y) a ball of radius ε centred at y and observe that

∫

R3

∇2φ(x)

4π|x− y|dx = lim
ε→0

∫

R3\Bε(y)

∇2φ(x)

4π|x− y|dx. (1.24)

Since 1
4π|x−y| is smooth in R3 \ Bε(y) we can integrate by parts in the above integral.

Recall the second of Green’s identities from MATH1402,

∫

V

(
g∇2f − f∇2g

)
dV =

∫

S

(
∂f

∂n
g − f ∂g

∂n

)
dS, (1.25)

where S is the surface surrounding V and n is the exterior unit normal to S.
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We take

V = R
3 \Bε(y)

f = φ

g =
1

4π|x− y| .

Note that since φ ∈ D(R3), we can integrate over the infinite domain R3 \Bε(y). Note
also that on the sphere Sε(y), the normal vector n exterior to V looks into Bε(y). At
last, note that

∇2g = ∇2

(
1

4π|x− y|

)
= 0. (1.26)

So ∫

V

(
g∇2f − f∇2g

)
dV =

∫

S

(
∂f

∂n
g − f ∂g

∂n

)
dS,

becomes

∫

R3\Bε(y)

∇2φ

4π|x− y|dV =

∫

Sε

(
∂φ

∂n

(
1

4π|x− y|

)
− φ ∂

∂n

(
1

4π|x− y|

))
dS (1.27)

Now, plugging this into equation 1.24 gives us

lim
ε→0

∫

R3\Bε(y)

∇2φ(x)

4π|x− y|dx = lim
ε→0

∫

Sε

(
∂φ

∂n

(
1

4π|x− y|

)
− φ ∂

∂n

(
1

4π|x− y|

))
dS

=
1

4π
lim
ε→0

∫

Sε

(
∂φ

∂n

(
1

|x− y|

)
− φ ∂

∂n

(
1

|x− y|

))
dS

Now recall that y is fixed—this is really important because it means we can do the
following substitutions

z := x− y
Then convert to spherical coordinates

(z = ρ, θ, ϕ)

So φ(x) becomes a function of φ(y + ρω), where ω is a unit vector made up of θ and
ϕ. In fact,

ω = (sin θ cosϕ, sin θ sinϕ, cos θ)

Observe that
∂

∂n
= − ∂

∂ρ

Giving us
1

4π
lim
ε→0

∫

ρ=ε

(
−∂φ
∂ρ

(
1

ρ

)
+ φ

∂

∂ρ

(
1

ρ

))
dS
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=
1

4π
lim
ε→0

∫

ρ=ε

(
−∂φ
∂ρ

(
1

ε

)
− φ 1

ε2

)
dS

and dS = ε2 sin θ dθ dϕ which gives us that

(∇2Φy)(φ) = −
1

4π
lim
ε→0

∫

ρ=ε

(
∂φ

∂ρ

1

ε
+ φ

1

ε2

)
ε2 sin θ dθ dϕ

and of course

∫

ρ=ε

=

∫∫

0≤θ≤π
0≤ϕ≤2π

.

Now note that ∫∫
∂φ

∂ρ

1

ε
ε2 sin θ dθ dϕ −−→

ε→0
0

since ∂φ
∂ρ

is bounded, and from what’s left,

− 1

4π

∫∫

θ,ϕ

φ(y + εω) sin θ dθ dϕ −−→
ε→0
− 1

4π
φ(y)

∫∫

θ,ϕ

sin θ dθ dϕ

︸ ︷︷ ︸
vol. of sphere

of radius 1 = 4π

= −φ(y).

So we have shown that

−∇2

(
1

4π|x− y|

)
= δy.

We want to let y = 0:

−∇2

(
1

4π|x|

)
= δ0?

Well,

−∇2

(
Ty

1

4π|x|

)
= Tyδ0,

and noting that Ty ◦ δα = δα ◦ Ty,

Ty

(
−∇2 1

4π|x|

)
= Tyδ0 = δy,

So it’s sufficient to prove that

−∇2

(
1

4π|x|

)
= δ0

and use commutativity to solve

−∇2

(
1

4π|x− y|

)
= δy
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1.10.1 Motivation

Why is knowledge of Green’s function such a useful thing?

Say we want to solve a differential equation with constant coefficients. Let cα be
constants and D be the differential operator:

D =
∑

|α|≤m
cα∂

α.

Suppose we wish to solve the differential equation:

DF = H

where H is a known function (or distribution) and F is our unknown. Now suppose
we know G such that DG = δ, i.e. we know the Green’s function for our differential
operator D. Now construct F = G ∗H so that:

DF = D(G ∗H)

=
∑

|α|≤m
cα∂

α(G ∗H).

By Proposition 1.62 and linearity

=


∑

|α|≤m
cα∂

αG


 ∗H

= δ ∗H
= H.

So we see that knowledge of the Green’s function for a differential operator, allows us
to solve a differential equation with any right hand side, by use of the comparatively
simple operation of convolution.

For example if you ever wanted to solve −∇2F = g in Ω ⊂ R3, then

F =
1

4π|x| ∗ g.

Observe that if g ∈ C0(R
3),

F (x) =
1

4π

∫

R3

g(y)

|x− y|dy.
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Electrostatics

Now finally we can apply this mathematics. In this chapter we apply it to electrostatics
and in the following chapter, we’ll apply it to magnetism (which is very similar), and
in doing so, derive Maxwell’s famous equations.

2.1 Introduction to electrostatics

2.1.1 Coulomb’s law

F1←2

�

x1

q1

F2←1
*x2

q2

Figure 2.1: Two charged particles exerting a force on each other

If we have two charged particles of charges q1, q2 at points x1,x2 ∈ R3, then Coulomb’s
law tells us that

F1←2 = kq1q2
x1 − x2

|x1 − x2|3
(2.1)

where k is a constant to do with our choice of units (typically 1
4πε0

).

How do they exert a force on each other? Scientists used to think there was an ether
which gave a transfer material for charge to go through. This was later rubbished, of
course, and it turns out that when you place a charged particle in space, it propagates
a magnetic field.

If we place a charge q2 in an electric field E(x), the force exerted on the particle is

Fq2(x) = q2E(x).
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Combining this with Coulomb’s law (2.1) above,

E(x) = kq1
x1 − x2

|x1 − x2|3
= kq1

̂(x1 − x2)

|x1 − x2|2

Electric fields add linearly.

2.1.2 Electric potential

If we have an electric field E, then we define the (scalar) electric potential Φ by

E(x) = −∇Φ(x)

(note that ∇×E = 0 and the domain is simply connected, so by what we learnt in
MATH1402, E has a potential Φ.)

Obviously Φ is defined up to a constant, so it has no physical meaning, but the
difference of potentials does, of course.

So, taking a path ℓ between our two charges at x1 and x2, at any point x̃ along the
path,

F(x̃) = qE(x̃).

The work done then getting from x̃ to x̃+ δx̃ is then dW = F(x̃) · dx̃, so

Work =W =

∫

ℓ

F(x̃) · dx̃

= q

∫

ℓ

E(x̃) · dx̃

= −q
∫

ℓ

∇Φ(x̃) · dx̃

= −q [Φ(x2)− Φ(x1)]

= q [Φ(x1)− Φ(x2)]

The convention is that Φ = 0 at infinity.

2.2 The fundamental equations of electrostatics

We are now going to derive the fundamental equations of electrostatics, first in the case
of discrete point charges, and second in the case of a continuous charge distribution.
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2.2.1 The discrete case

Definition 2.1 If we have a group of electric charges qi at positions yi, for i =
1, . . . , p, then we say that the electric potential at the point x is

Φt(x) =

p∑

i=1

qi
4πε0|x− yi|

(the t is for total!)

Definition 2.2 The electric field created by these charges is defined as

Et(x) = −∇Φt(x)

Definition 2.3 The charge density distribution created by these charges is defined
as

ρ =

p∑

i=1

qiδyi

Lemma 2.4 If Φ is Green’s function and ρ is the discrete distribution as described
above, then the electrostatic potential due to the distribution ρ of charges is

Φt = Φ ∗ ρ
ε0

Proof:

Φ ∗ ρ
ε0

=
1

4π|x| ∗
1

ε0

p∑

i=1

qiδyi

=
1

ε0

p∑

i=1

(
1

4π|x| ∗ qiδyi

)

︸ ︷︷ ︸
What is this?

Recall that, for a distribution H ,

(δz ∗H)(φ) := H(δzφ
y)

= H(φy(z))

= H(φz) (since φy(z) = φz(y))

= (TzH)(φ)

so δz ∗H = TzH .

So
1

4π|x| ∗ qiδyi
=

qi
4π|x− yi|
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and we get
p∑

i=1

qi
4πε0|x− yi|

= Φt(x)

2.2.2 The continuous case

Now we are given a distribution ρ ∈ E ′(R3). So what is Φρ, the electrostatic potential
due to ρ?

Well, we want to use
p∑

i=1

qi
4πε0|x− yi|

but we want to make it continuous.

So consider that inside a small cube centred at xi in R3, the approximate charge is

qi = ρ(xi) δx δy δz.

Now take the limit as δx, δy, δz → 0.

lim
δx
δy
δz

}
→0

∑

i

ρ(xi) δx δy δz

4πε0|x− xi|
=

1

4πε0

∫

R3

ρ(y)

|x− y|dy

=
1

4π|x| ∗
ρ

ε0

= Φ ∗ ρ
ε0

= Φρ

So we get the same result as we did in the discrete case in Lemma 2.4, i.e.

Φρ = Φ ∗ ρ
ε0

2.2.3 The equations

Take the Laplacian of our potential distribution Φρ:

−∇2Φρ = −∇2Φ ∗ ρ
ε0

(by definition of Φ) = δ ∗ ρ
ε0

=
ρ

ε0
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And recall that the definition of the electric field due to a particle distribution ρ is

Eρ = −∇Φρ

which gives us. . .

Definition 2.5 The fundamental equations of electrostatics are

1. ∇ · Eρ =
ρ

ε0
(Gauss’ law in differential form)

2. ∇× Eρ = 0

2.3 Divergence theorem and Stokes’ theorem

Problem 2.6 If F ∈ D′(Ω), where Ω ⊂ R3, then

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
= ∇F ∈ D′(Ω)3.

Show that
∇×∇F = 0 and ∇ · (∇F ) = ∇2F

Taking the fundamental equations of electrostatics, let us put these into the divergence
theorem from MATH1402, for a domain V with boundary S:

∫

S

Eρ · n dS =

∫

V

∇ ·Eρ dV

But ∇ · Eρ = ρ
ε0

=⇒

=
1

ε0

∫

V

ρ dV =
Q(V )

ε0
(Gauss’ law in integral form)

where Q(V ) is the total charge in V . This is known as Gauss’ law in integral form.

Now what about putting Eρ into Stokes’ law? Recall that Stokes’ law, for some vector
F, is ∫

S

(∇× F) · n dS =

∮

C

F · dr

Substituting F = Eρ gives us

0 =

∫

S

(∇× Eρ)︸ ︷︷ ︸
0

·n dS =

∮

C

Eρ · dr

but remember that Stokes’ law is only valid for simply connected domains.
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2.4 Finding E and Φ for different ρ

Problem 2.7 Suppose that charge distribution is a function of radius alone, i.e.

ρ = ρ(r) r2 = x2 + y2 + z2 = |x|2.

1. Find Eρ(x).

2. Then using part 1, find Φρ(x) in terms of ρ(r).

Solution 1. Because of spherical symmetry,

E = E(r) = Ẽ(r)r̂

where r̂ is a unit vector in the radial direction.

By Gauss’ law in integral form, we have

∫∫

Sr

E · n dS =
1

ε0
Q(Br)

=
1

ε0

∫

Br

ρ dV

=
1

ε0

∫ r

0

ρ(r′)r′2 dr′

︸ ︷︷ ︸
:=R(r)

∫

S2

dω

︸ ︷︷ ︸
4π

=
4π

ε0
R(r)

where ω = sin θ dθ dϕ.

But we also have
∫∫

Sr

E · n dS =

∫∫

Sr

E · r dS

= Ẽ(r)

∫∫

Sr

dS

= 4πr2Ẽ(r)

Therefore

Ẽ(r) =
R(r)

ε0r2
.

Note that Ẽ → 0 as r → 0 since R(r) ∼ r3.

2. Now to find Φρ. We know by definition that

−∇Φ(r) = E
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Therefore, setting up Φ so that it is 0 at ∞,

Φ(r) = −
∫ r

∞
Ẽ(r′) dr′

=

∫ ∞

r

Ẽ(r′) dr′

=

∫ ∞

r

R(r′)

r′2
dr′

We could be done at this point but it would be nice to integrate by parts since
R itself is an integral. So, letting our ‘first’ be R(r) and our ‘second’ be 1/r2,

=

[
R(r)

−1
r

]∞

r

+

∫ ∞

r

R′(r′)
1

r′
dr′

=
R(r)

r
+

∫ ∞

r

ρ(r′)r′ dr′

X

Problem 2.8 ∗ Let ρ = ρ(r) in cylindrical coordinates (r, ϕ, z), i.e. r2 = x2 + y2.
Find Eρ (using Gauss’ law).

Solution By symmetry, Eρ = E(r) = Ẽ(r)r̂, so

∇ · Eρ = ∇ · Ẽ(r)r̂

=
1

r

d

dr

(
rẼ(r)

)

=
ρ

ε0

And so

Ẽ(r)− Ẽ(0)︸︷︷︸
0

=
1

rε0

∫ r

0

r̃ρ(r̃) dr̃

=⇒ Ẽ(r) =
1

rε0

∫ r

0

r̃ρ(r̃) dr̃

and Eρ = Ẽ(r)r̂. X

2.5 Dipoles

We now introduce the idea of dipoles.
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Definition 2.9 If we have a charge distribution

ρ = p · ∇yδy = −p · ∇xδy p = pu

where u is a unit vector, then p · ∇δy is called the dipole of size p in the direction u
at the point y.

Recall for maths’ sake that

p · ∇δy = p

(
∂δy
∂x

u1 +
∂δy
∂y

u2 +
∂δy
∂z

u3

)

= p
∂δy
∂u

Consider placing a charge p
s
at the point y+ su, and a charge −p

s
at the point y. This

is, physically, a dipole.

Then the electrostatic potential Φs = Φs
p,y due to the two point charges

(p
s
δy+su −

p

s
δy

)

is

Φs =
p

sε0

[
1

4π|x− (y + su)| −
1

4π|x− y|

]

Now take s→ 0:

lim
s→0

Φs(x) =
p

ε0

∂

∂uy
Φy(x)

= − p

ε0

∂

∂ux
Φy(x)

Now in order to find Φd
p,y, we first look at:

∇
(

1

4π|x|

)

Taking each component of ∇ in turn:

∂

∂x

(
1√

x2 + y2 + z2

)
= −1

2
· 2x · 1

(x2 + y2 + z2)3/2

= − x

|x|3

∂

∂y

(
1√

x2 + y2 + z2

)
= − y

|x|3

∂

∂z

(
1√

x2 + y2 + z2

)
= − z

|x|3
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hence

∇
(

1

4π|x|

)
= − x

4π|x|3

But we know that for a dipole (d), of size p in direction u sitting on the point y,

Φd
p,y =

1

ε0
Φ ∗ (p · ∇yδy)

=
1

ε0
Φ ∗ (−p · ∇xδy)

= − 1

ε0
p · ∇x(Φ ∗ δy)

= − 1

ε0
(p · ∇Φ) ∗ δy

= − 1

ε0

(
p · ∇

(
1

4π|x|

))
∗ δy

= − 1

ε0

(
p ·
(
− x

4π|x|3
))
∗ δy

=
1

4πε0

(
p ·
(

x

|x|3
))
∗ δy

=
1

4πε0

p · (x− y)

|x− y|3

Since convolution with δy is the same as translation by −y

And so we get:

Definition 2.10 The potential of a dipole of size p in the direction u at a point y is

Φd
p,y =

1

4πε0

p · (x− y)

|x− y|3

Now to find the corresponding electric field. Ed
p,y.

We know

Ed
p,y = −∇Φd

p,y

so let’s work it out.

Let y = 0 for ease. Then

Φd
p,0 =

1

4πε0

(p1x1 + p2x2 + p3x3)

|x|3
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and working out Ed
p,0 component-wise, we get

Ed
p,y = −∇Φd

p,y

so
∂Φd

p,0

∂x1
= − 1

4πε0

(
p1
|x|3 −

3p1x
2
1

|x|5
)
.

Continuing this process we end up with

Ed
p,0 =

1

4πε0

(
3(p · x̂)x̂− p

|x|3
)

2.5.1 Jumps

Recall that for a surface S and h ∈ C0(S),

Fh,S(φ) =

∫

S

h(x)φ(x) dSx

We want to find, for the h-surface charge distribution, Φh,S and Eh,S.

Lemma 2.11

Φh,S(x) :=
1

ε0
Φ ∗ Fh,S =

1

4πε0

∫

S

h(y)

|x− y|dSy

Proof: We have

Φh,S(φ) =
1

ε0
Φ ∗ Fh,S(φ

y)

Fh,S(φ
y) =

∫

S

h(x)φ(x+ y)dSx ∈ D(R3)

(where y is fixed in dSx). Therefore

Φh,S(φ) =
1

4πε0

∫

R3

1

|y|



∫

S

h(x)φ(x + y)dSx


 dy

=
1

4πε0

∫

S

h(x)



∫

R3

φ(x+ y)

|y| dy


 dSx

=
1

4πε0

∫

S

h(x)



∫

R3

φ(z)

|x− z|dz


 dSx

=

∫

R3

φ(z)


 1

4πε0

∫

S

h(x)

|x− z|dSx


 dz
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Hence

Φh,S(x) =
1

4πε0

∫

S

h(y)

|x− y|dSy

Note that Φh,S is continuous over S. However, Eh,S has a jump discontinuity across
S.

To find E, we need to find ∇Φ, and h(y)
|x−y| becomes like ∼ 1

r2
r dr and we have problems.

But this is how we get around it:

Imagine we have a surface S upon which we have a charge density h. Take a cylinder
of circular area ω and of height 2ε. Push this through the surface at a point so that
it’s perfectly half-way through the surface. So, denoting the cylinder C,

C = ω × (−ε, ε)n

Gauss’ law in integral form, applied to this cylinder, tells us that

∫

∂C

(Eh,S · ν)dS =
Q(C)

ε0

where ν is normal to ∂C

=
1

ε0

∫

ω

h dS (2.2)

because the only charge in the cylinder is in the disc of area ω.

Now, let’s take a look at the left hand side.

∫

∂Cε
ω

=

∫

ω+
ε

+

∫

ω−

ε

+

∫

Sε

where

ω±ε = {ω ± εn} the top and bottom of the cylinder

Sε = {∂ω × (−ε, ε)n} the side surface of the cylinder

Let’s take a look at these three integrals as we take ε→ 0

∫

Sε

E · ν dS → 0
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since Area(Sε)→ 0

∫

ω+
ε

E · ν dS =

∫

ω

E(x+ εn) · n dSx

−−−→
ε→0+

∫

ω

lim
ε→0

E(x+ εn) · n dSx

=

∫

ω

E+(x) · n dSx

and similarly

∫

ω−

ε

E · ν dS =

∫

ω

E(x− εn) · (−n) dSx

−−−→
ε→0−

−
∫

ω

E−(x) · n dSx

Therefore,

lim
ε→0

∫

∂Cε
ω

Eh,S · ν dS =

∫

ω

[
E+(x)−E−(x)

]
· n dS

So taking that and comparing it with the right-hand side of equation 2.2, we get

[
E+(x)− E−(x)

]
· n =

h(x)

ε0
(2.3)

i.e. the normal component of Eh,S has a jump across S of size
h

ε0
.

2.5.2 Tangential continuity

We are now going to show that despite the normal component of the electric field
having a jump, the tangential component is continuous.

To do this, let’s take a line ℓ from point x0 to x1 upon a surface S. Draw similar lines
at a distance ε above and below ℓ. Now join lines at the sides connecting them up,
forming a loop. Suppose we decide on an anticlockwise direction round this loop. So
the four lines, mathematically speaking, are

Lε = x0 × (ε,−ε)n (left)

Rε = x1 × (−ε, ε)n (right)

ℓ−ε = ℓ×−εn (bottom)

ℓ+ε = ℓ× εn (top)
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Now, ∮

Cℓ
ε

E · dr = 0 (2.4)

and, using a similar trick to last time,
∮

Cℓ
ε

=

∫

ℓ−ε

+

∫

ℓ+ε

+

∫

Lε

+

∫

Rε

Notice that

lim
ε→0



∫

Lε

+

∫

Rε


 = 0

since the length is 2ε→ 0. And for the other two,

lim
ε→0



∫

ℓ−ε

+

∫

ℓ+ε


 =

∫

ℓ

[
E−(x)−E+(x)

]
· dr

= 0 (2.5)

by the initial observation in equation 2.4.

Say that dr = ṙ dt, where ṙ is a tangential vector to S, which we’ll define as t.

Change ℓ through any x ∈ S (i.e. rotate ℓ) to have all possible tangential directions.
Then 2.5 means that [

E+(x)−E−(x)
]
· t = 0

for any tangential t, i.e. the tangential part of the electric field is continuous!

2.5.3 Brief recap of definitions

If we have a dipole p · ∇δy at y,

Φp,y(x) =
1

4πε0

p · (x− y)

|x− y|3

and across the whole surface,

Φd
p,S(x) =

1

4πε0

∫

S

p · (x− y)

|x− y|3 dSy

Problem 2.12 ∗ Let S = {z = 0}, the xy-plane. Assume the magnitude of the
dipole is constant p = p0.

1. Find Φ(x), the corresponding electrostatic potential of this surface.

2. Find the jump of Φ(x) across z = 0.
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Solution From the above,

Φ(x) =
1

4πε0

∫

z=0

p · (x− y)

|x− y|3 dSy

Now, letting

x =



x1
x2
x3


 y =



y1
y2
y3




and using the fact that p = p0ẑ,

=
1

4πε0

∫

z=0

p0 · (x3 − y3)
|x− y|3 dSy

And since on the surface z = 0, y3 = 0,

=
1

4πε0

∫

z=0

p0x3
|x− y|3 dSy

=
p0x3
4πε0

∫

z=0

1

|x− y|3 dSy

=
p0x3
4πε0

∫

z=0

1

[(x1 − y1)2 + (x2 − y2)2 + (x3)2]
3/2

dSy

=
p0x3
4πε0

∫ ∞

−∞

∫ ∞

−∞

1

[(x1 − y1)2 + (x2 − y2)2 + (x3)2]
3/2

dy1 dy2

Using the substitutions

y′1 = y1 − x1 y′2 = y2 − x2 dy′1 = dy1 dy′2 = dy2

=
p0x3
4πε0

∫ ∞

−∞

∫ ∞

−∞

1

[(y′1)
2 + (y′2)

2 + (x3)2]
3/2

dy′1 dy
′
2

Then converting to polar coordinates

r2 = (y′1)
2 + (y′2)

2

=
p0x3
4πε0

∫ 2π

0

∫ ∞

0

1

[r2 + x32]
3/2
r dr dθ

=
p0x3
4πε0

2π

∫ ∞

0

r

[r2 + x32]
3/2

dr

=
p0x3
2ε0

[
−1

(r2 + x32)
1/2

]∞

0
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=
p0x3
2ε0

1

|x3|
=

p0
2ε0

sgn(x3)

and the jump, therefore, is
p0
ε0
. X

2.6 Conductors

A conductor is a very good man metal. Assume we have a conductor in a domain D,
placed into an electrostatic field Eext.

All the positively charged particles want to move along Eext, but they’re too heavy so
they don’t. All the negatively charged particles want to move along −Eext under the
action of the electric field, and they can because they’re small. (Hand-waving much?)

Eventually then, inside this conductor, the electric field is 0 for our study of elec-
trostatics, since all the negatively charged particles at the boundary somehow compete
with Eext, creating E = 0.

So electrons move to the boundary on one side.

To put it another way: in conductors, elementary charges can move freely. As a result,
there will be redistribution of these elementary charges inside D and the total electric
field becomes zero in D.

As Etotal = E+ Eext = 0 in D, =⇒ Φ = const inside D.

By the Poisson equation,

−∇2Φ =
ρ

ε0
i.e. ρ = 0 inside D.

Therefore the charges are concentrated on S = ∂D, i.e. we have a surface charge FS,σ,
where σ is the charge distribution over the surface.

Using E := Etotal from now on, recall that for jumps of the electric field across a
charged surface, 




[
E+(y)− E−(y)

]
· ny =

σ(y)

ε0
[E+(y)− E−(y)] · t = 0

for any tangential vector t. But E− = 0 since E = 0 inside D. Therefore

E+(y) =
1

ε0
σ(y) ny.

Also,
Φ+(y) = Φ−(y)

61



MATH3308 Maxwell’s Theory of Electrodynamics

because Φ is continuous across the boundary, for y on the surface. And since Φ is
constant on the surface,

Φ+(y) = Φ−(y)
∣∣
y∈S = const.

Now, suppose we have a large conductor D3 with a big hole cut out of it. Inside
the cavity are two small conductors D1, D2 which do not touch. Call the cavity Ω =
R3 \ (D1 ∪D2 ∪D3). And let Si be the boundary of Di.

For x ∈ Ω,

Φ|S1
= c1

Φ|S2
= c2

Φ|S3
= c3

Now assume we divide D1 into two by a thin insulator running somewhere through
it. Then the electrostatic potential in the two halves are different. Calling the two
boundaries S±1 ,

Φ|S+
1
= c+1

Φ|S−

1
= c−1

which are different. Keep on dividing D1 into smaller and smaller pieces, each giving
a different value of Φ, i.e. we obtain

Φ|∂Ω = φ,

an arbitrary continuous function, where φ tells you the charge at a point.

Therefore, when considering Φ(x), x ∈ Ω, we can often assume that we know, for a
given φ,

Φ|∂Ω = φ (Dirichlet boundary condition)

but we also know that Φ in Ω satisfies

−∇2Φ =
ρ

ε0
. (Poisson’s equation)

The combination of these two equations is called in mathematics, the Dirichlet bound-
ary value problem for Poisson’s equation. How original.
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Problem 2.13 Let us have a paraboloid sitting centrally on top of the xy-plane,
and a potential

Φ(x) =

{
sin x if z ≥ x2 + y2

sin x+ ez(z − x2 − y2) if z < x2 + y2

1. Find the charge density ρ inside the paraboloid.

2. Find the charge density ρ outside the paraboloid.

3. Find the surface charge density σ on the paraboloid z − (x2 + y2) = 0.

Recall that if your surface is given by the equation

S = {f(x, y, z) = 0}

then

n =
∇f
|∇f |

Solution 1. If we ever want to find out ρ then we want to be using the equation

−∇2Φ =
ρ

ε0
.

Inside the paraboloid, z ≥ x2 + y2 and so Φ = sin x, hence

−∇2Φ = −(− sin x)

and so
ρ = ε0 sin x.

2. Outside the paraboloid, Φ = sin x+ ez(z − x2 − y2), so

−∇2Φ = −
(
− sin x+ ez(z − x2 − y2 − 2)

)

and so
ρ = ε0

(
sin x− ez(z − x2 − y2 − 2)

)

3. By equation (2.3), for a surface charge distribution σ,

(E+ − E−) · n =
σ

ε0

and of course we know E+ and E− since we know Φ+ and Φ−, if we denote the
inside as ‘+’ and the outside as ‘−’.

E+ − E− = −∇Φ+ +∇Φ−

= −∇
(
Φ+ − Φ−

)

= −∇
(
−ez(z − x2 − y2)

)

=




ez(−2x)
ez(−2y)

ez(z − x2 − y2 + 1)
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Now what is n? As we’re reminded, if the surface is given by the equation
f(x, y, z) = 0, which in this case is

f(x, y, z) = z − x2 − y2 = 0

then

n =
∇f
|∇f | =

1√
1 + 4(x2 + y2)



−2x
−2y
1




Calculating,

(E+ −E−) · n =
1√

1 + 4(x2 + y2)




ez(−2x)
ez(−2y)

ez(z − x2 − y2 + 1)


 ·



−2x
−2y
1




=
ez[4x2 + 4y2 + z − x2 − y2 + 1]√

1 + 4(x2 + y2)

So

σ = ε0(E
+ − E−) · n

=
ε0e

z[4x2 + 4y2 + z − x2 − y2 + 1]√
1 + 4(x2 + y2)

σ(x, y) =
ε0e

x2+y2 [4x2 + 4y2 + x2 + y2 − x2 − y2 + 1]√
1 + 4(x2 + y2)

=
ε0e

x2+y2 [4x2 + 4y2 + 1]√
1 + 4(x2 + y2)

and that’s the answer. A bit ugly but there you go. Not everything in mathem-
atics is beautiful.

X

2.7 Boundary value problems of electrostatics

Say we have a domain (cavity) Ω ⊂ R3, and we have the following three conditions:

(O)





−∇2Φ =
ρ

ε
in Ω

Φ|∂Ω = φ (given φ)

Φ(x)→ 0 if |x| → ∞

The third condition is strictly not necessary in simple cases, so we “have it with a
pinch of salt”.
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Then this problem actually reduces to the following case. Let Φ1, Φ2 solve problems
(A) and (B) below:

(A)





−∇2Φ1 =
ρ

ε
in Ω

Φ1|∂Ω = 0

Φ1(x)→ 0 if |x| → ∞

(B)





−∇2Φ2 = 0 in Ω

Φ2|∂Ω = φ (given φ)

Φ2(x)→ 0 if |x| → ∞
Then Φ = Φ1 + Φ2 solves (O). Nice, huh?

Notice that (B).1 is Laplace’s equation: Φ2 is a harmonic function.

Now, let’s take a particular case when ρ = δ. So we’re looking for Green’s function
(where we use G notation as not to confuse ourselves!) corresponding to (A). It is a
distribution (actually a discontinuous function) in D′(Ω)

G(x,y) y ∈ Ω fixed

So we have

(A′)





−∇2G(x,y) = δy(x)

G(x,y)|x∈∂Ω = 0

G(x,y)→ 0 if |x| → ∞

If Ω = R3 then

G0 =
1

4π|x− y|
where we use the convention of using the subscript 0 to denote free space, i.e. R3.

Let
Ψy(x) = G(x,y)−G0(x,y).

Then

−∇2Ψy = −∇2
xG− (−∇2

xG0)

(where y is constant)

= δy(x)− δy(x)
= 0

So −∇2Ψy = 0 in Ω.

Meanwhile, let’s have a look what happens on the boundary.

Ψy(x)|x∈∂Ω = G(x,y)|
x∈∂Ω − G0(x,y)|x∈∂Ω (2.6)
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but G on the boundary is 0

= − 1

4π|x− y|

∣∣∣∣
x∈∂Ω

(2.7)

So as x→∞, Ψy → 0.

So we’ve reduce the problem (A′) to

(B′)





−∇2Ψy = 0 in Ω

Ψy(x)|x∈∂Ω = − 1

4π|x− y|

∣∣∣∣
x∈∂Ω

Ψ(x,y)→ 0 if |x| → ∞

Now what about solving Φ for any ρ ∈ C0(Ω)? Let

Φ =
1

ε0

∫
G(x,y)ρ(y) dy

−∇2
x(Φ) =

1

ε0

∫
−∇2

xG(x,y)ρ(y) dy

=
1

ε0

∫
δ(x− y)ρ(y) dy

=
1

ε0
ρ(x)

So we’ve proved the following lemma!

Lemma 2.14 Let G(x,y) be known, x,y ∈ Ω. Then, for any ρ ∈ C0(Ω),

Φρ(x) =
1

ε0

∫

Ω

G(x,y)ρ(y) dy

solves 


−∇2Φρ =

1

ε0
ρ

Φρ|∂Ω = 0

2.7.1 To summarise

We had 



−∇2Φ =
ρ

ε
Φ|∂Ω = 0

Φ(x)→ 0 as |x| → ∞
Which we reduced to finding the Green’s function





−∇2
xG = δy y ∈ Ω

G|∂Ω = 0

G(x)→ 0 as |x| → ∞
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and then since G(x,y) = G0(x,y) + Ψy(x), it reduces to find Ψ such that





−∇2
xΨy(x) = 0 y ∈ Ω

Ψy(x)|x∈∂Ω = − 1

4π|x− y|
Ψy(x)→ 0 as |x| → ∞

and this last set of equations dictate the special Dirichlet boundary value problems for
Laplace’s equation.

2.8 Dirichlet boundary value problems for Laplace’s

equation

Now we’ll use u instead of Φ so as not to imply R3, since this result holds for any Rn.
We have the system 




−∇2u = 0

u|x∈∂Ω = φ ∈ C(∂Ω)
u(x)→ 0 as |x| → ∞

Recalling that ∇2u = 0 in Ω ⇐⇒ u(x) is a harmonic function in Ω.

Problem 2.15 ∗ Assume that u ∈ C2(Ω) is harmonic. Show that, in 3D (i.e.
Ω ⊂ R3), ∫

∂Ω

∂u

∂n
dS = 0

(hint: use Green’s identities)

Solution Green’s identity in 3D is, for Ω ⊂ R3,

∫

Ω

[f∇2g − g∇2f ] dV =

∮

∂Ω

[
f
∂g

∂n
− g ∂f

∂n

]
dS

Letting f = 1, g = u, ∫

Ω

∇2u dV =

∫

∂Ω

∂u

∂n
dS

And u is harmonic ⇐⇒ ∇2u = 0, so

=⇒
∫

∂Ω

∂u

∂n
dS = 0

which is what we were looking for. X
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Problem 2.16 Assume that u ∈ C2(S) is harmonic. Show that, in 2D (i.e. S ⊂ R2),

∫

∂S

∂u

∂n
dℓ = 0

Solution Again, we need to use Green’s identity, but we first need to find Green’s
identity in 2D. Let me write down the identity in 3D again:

∫

Ω

[f∇2g − g∇2f ] dV =

∮

∂Ω

[
f
∂g

∂n
− g ∂f

∂n

]
dS

Now let
Ω = S × {−h, h} f = f(x, y) g = g(x, y)

i.e., turn Ω into a cylinder of height 2h. What does this mean for our integrals?

∮

∂Ω

= 2h

∫

∂S

+ 2

∫

S∮

Ω

= 2h

∫

S

So Green’s theorem becomes

2h

∫

S

[f∇2g − g∇2f ] dS = 2h

∫

∂S

[
f
∂g

∂n
− g ∂f

∂n

]
dℓ+ 2

∫

S

[
f
∂g

∂z
− g∂f

∂z

]
dS

where we’ve made the observation that n = z on the top and bottom of the cylinder.
This means that ∂g

∂z
= ∂f

∂z
= 0, since f and g are functions of x, y alone.

= 2h

∫

∂S

[
f
∂g

∂n
− g ∂f

∂n

]
dℓ

=⇒
∫

S

[f∇2g − g∇2f ] dS =

∫

∂S

[
f
∂g

∂n
− g ∂f

∂n

]
dℓ

which gives us Green’s identity for 2 dimensions.

Now, to solve the problem, just like last time we let f = 1 and g = u to give

0 =

∫

S

∇2u dS =

∫

∂S

∂u

∂n
dℓ

once again. X

Let us introduce a theorem to help us do more stuff.
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Theorem 2.17 (The Mean Value Theorem)

Let u be harmonic in Ω ⊂ R3 (i.e. ∇2u = 0), and BR(x0) ⊂ Ω. Then in the 3D case,

u(x0) =
1

4πR2

∫

∂BR(x0)
=SR(x0)

u(x) dSx

and in the 2D case,

u(x0) =
1

2πR

∫

CR(x0)

u(x) dℓx.

Proof: (The 3D case)

0 =

∫

BR(x0)

=0︷︸︸︷
∇2u

( −1
4π|x− x0|

)
dx

which, by Green’s formula,

=

∫

BR(x0)

u

δ(x−x0)︷ ︸︸ ︷
∇2

( −1
4π|x− x0|

)
dx

︸ ︷︷ ︸
u(x0)

+

∫

SR(x0)

∂u

∂n

( −1
4π|x− x0|

)
dS

+

∫

SR(x0)

u
∂

∂n

(
1

4π|x− x0|

)
dS

= u(x0)−
1

4πR

∫

SR(x0)

∂u

∂n
dS

︸ ︷︷ ︸
=0 by problem

+

∫

SR(x0)

u
∂

∂n

(
1

4π|x− x0|

)
dS

= u(x0) +
1

4π

∫

SR(x0)

u(x)
∂

∂n

(
1

|x− x0|

)
dS

= u(x0) +
1

4π

∫

SR(x0)

u(x)
∂

∂r

(
1

r

)∣∣∣∣
r=|x−x0|

dS

0 = u(x0) +
1

4π

∫

SR(x0)

u(x)

(
− 1

r2

)
dS

and, by rearranging

=⇒ u(x0) =
1

4π

∫
u(x)

1

R2
dS

=
1

4πR2

∫
u(x) dS
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Problem 2.18 ∗ Prove the theorem for the 2D case.

Solution The fundamental solution to the equation ∇2G = δ is:

G(x) =
1

2π
ln |x|

So we shall use Green’s identity in 2D as proved in problem 2.16. Once again, that is
∫

S

[f∇2g − g∇2f ] dS =

∫

∂S

[
f
∂g

∂n
− g ∂f

∂n

]
dℓ

Letting g = u, f = G,

0 =

∫

SR(x0)

=0︷︸︸︷
∇2u

(
ln |x− x0|

2π

)
dx

=

∫

SR

u

δ(x−x0)︷ ︸︸ ︷
∇2

(
ln |x− x0|

2π

)
dx

︸ ︷︷ ︸
u(x0)

+

∫

∂S

∂u

∂n

(
ln |x− x0|

2π

)
dℓ

−
∫

∂S

u
∂

∂n

(
ln |x− x0|

2π

)
dℓ

= u(x0)−
1

2π
ln(R)

∫

∂S

∂u

∂n
dℓ

︸ ︷︷ ︸
=0 by prob 2.16

−
∫

∂S

u
∂

∂n

(
ln |x− x0|

2π

)
dℓ

= u(x0)−
1

2π

∫

∂S

u(x)

|x− x0|
dℓ

= u(x0)−
1

2πR

∫

∂S

u(x) dℓ

and so, by rearranging

=⇒ u(x0) =
1

2πR

∫

CR(x0)

u(x) dℓ

which proves the theorem. X

Problem 2.19 Prove this version of the Mean Value Theorem: Let u be harmonic
in Ω ⊂ R3 (i.e. ∇2u = 0), and BR(x0) ⊂ Ω. Then

u(x0) =
1

4π
3
R3

∫

BR(x0)

u(x) dV
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Solution If you consider integrating over the volume as being equivalent to integ-
rating over all the surfaces of balls with radius 0 through to R, we have

∫

BR(x0)

u(x) dV =

∫ R

r=0



∫

Sr(x0)

u(x) dS


 dr

=

∫ R

r=0

4πr2u(x0) dr

= 4πu(x0)
R3

3

=⇒ u(x0) =
1

4π
3
R3

∫

BR(x0)

u(x) dV

as desired. X

Time for another theorem.

Theorem 2.20 (The Maximum Principle) Let us have a bounded domain D ⊂
R3. On this domain, let us have a function u ∈ C2(Dint)∩C(D) which has the property
∇2u = 0. That is to say, let u be harmonic and D-bounded.

If we let M = max
x∈∂D

u(x), then

u(x) ≤M ∀x ∈ D
Moreover, if D is connected, and there exists a point x0 ∈ Dint such that u(x0) =M ,
then

u(x) ≡M ∀x ∈ D.

Proof: Assume that there exists a point x0 ∈ Dint such that

u(x0) = max
x∈D

u(x) := A

Let d = dist(x0, ∂D) > 0. Now consider a ball of this radius at the point x0, i.e.
Bd(x0) ⊂ D. By Problem 2.19,

A = u(x0) =
1

4π
3
d3

∫

Bd

u(x) dx.

By the definition of A, we have that u(x) ≤ A in Bd. Therefore

1
4π
3
d3

∫

Bd

u(x) dx ≤ A · 1
4π
3
d3

∫

Bd

dx

︸ ︷︷ ︸
= vol

vol
=1

= A

If u(y) < A for some y ∈ Bd (and therefore nearby), then

1
4π
3
d3

∫

Bd

u(x) dx < A
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Therefore, assuming that there exists a point y ∈ Bd such that u(y) < A we get

A = u(x0) =
1

4π
3
d3

∫

Bd

u(x) dx < A

which is clearly a contradiction.

Therefore u(x) ≡ A inside Bd. Now for a bit of tidying up to complete the proof of
the first part.

As d = dist(x0, ∂B), this implies that Sd ∩ ∂D 6= ∅. Therefore there exists a point
z0 ∈ ∂D such that u(z0) = A = maxx∈D u(x).

Therefore
M = max

z∈∂D
u(z) = max

x∈D
u(x) = A

which proves the first part. � (part 1)

Now, let’s again have
u(x0) = max

x∈D
u(x) = A

Take any y ∈ D and connect x0 and y by a curve γ lying in Dint. Then let

ρ = dist(γ, ∂D) > 0.

Assume y is not in the ball, since this would makes things trivial: y ∈ Bd =⇒ u(y) =
A.

Let x1 be the last point on γ and Sd. Then

u(x1) = A = max
x∈D

u(x).

So then take a ball of radius ρ (so as it doesn’t touch the boundary) centred at x1,
Bρ(x1). The same arguments show that u(x) = A in Bρ(x1).

We continue this process until y ∈ Bρ(xn). We need only a finite number of steps as
γ has finite length. This proves the second part which proves the whole thing.

Problem 2.21 Prove, either by rewriting the above proof, or as a corollary, the
Minimum Principle Theorem, i.e.

min
z∈∂D

u(z) = min
x∈D

u(x)

Solution It falls trivially out of the Maximum Principle Theorem if we say

ũ(x) = −u(x).

X

There is, however, a stronger form of the theorem, but it needs these definitions first:
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Definition 2.22 A point x0 is a local maximum of u(x) if there exists Bε(x0) such
that

u(x0) = sup
x∈Bε(x0)

u(x)

Definition 2.23 A point x0 is a local minimum of u(x) if there exists Bε(x0) such
that

u(x0) = inf
x∈Bε(x0)

u(x)

And the strong version of the theorem is:

Theorem 2.24 (Strong version of the theorem) If D is connected and u(x) 6≡
const and ∇2u = 0 then u has no local maxima and minima inside Dint.

We shan’t prove this theorem.

2.8.1 Now, gentlemen, we move to physics

Let’s have a domain D with no charges inside it. So

∇2Φ = 0 in D

Introduce a point charge e into the domain. Then eΦ is the electrostatic (potential)
energy of the charge e.

Now recall that if we have Φ, then we also have E such that E = −∇Φ.

Then there is a force F = eE. This electrostatic force tries to decrease the electrostatic
energy of e. And since, by problem 2.21, min eΦ is achieved on ∂D, the charge ends
up on the boundary.

2.8.2 Unbounded domains

Now we shall take a look at what happens in unbounded domains. Let’s have





∇2u = 0 in D

u|x∈∂Ω = φ ∈ C(∂Ω)
u(x)→ 0 as |x| → ∞

We shall consider the unbounded domain as the limit of the following set. Let

DR = D ∩ BR.
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By the maximum principle theorem,

u(x)|x∈DR
≤ max

z∈∂DR

u(z).

Now what is the boundary of DR?

∂DR = (∂D ∩BR) ∪ (SR ∩D)

So

u(x)|
x∈DR

≤ max

[
max

z∈∂D∩BR

u(z), max
x∈SR∩D

u(x)

]

≤ max

[
max
z∈∂D

u(z), max
x∈SR∩D

u(x)

]

since the first term is now the maximum of a smaller set. Note that the first term
then does not depend on R. And what happens as R→∞? The second term goes to
0, since u→ 0 as x→∞.

=⇒ u(x)|x∈D ≤ max

[
max
z∈∂D

u(z), 0

]
.

But we can do the same thing using the minimum principle theorem, which gives us

u(x)|x∈D ≥ min

[
min
z∈∂D

u(z), 0

]
.

So in the case when D = R3, then ∂D = ∅, which implies that

u(x)|x∈R3 = 0.

2.8.3 Uniqueness of solutions for Dirichlet boundary condi-

tions in bounded domains

Let us have a bounded domain D once again. Then the Dirichlet boundary conditions
are {

∇2u = 0 in D

u|x∈∂Ω = φ ∈ C(∂Ω)

Proposition 2.25 For any bounded D any any φ ∈ C(∂D), there exists a unique
uφ ∈ C2(Dint) ∩ C(D) which solves the Dirichlet boundary conditions.

We can’t prove the existence: this requires potential theory for Dirichlet problems for
Laplace’s equation. But we can prove uniqueness:

Proof: Uniqueness Assume we have two functions uφ1 , u
φ
2 which solve the Dirichlet

boundary conditions. Let
u = uφ1 − uφ2 .
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Then {
∇2u = 0 inD

u|x∈∂Ω = 0

By the maximum principle, u(x) ≤ 0 for x ∈ D.

By the minimum principle, u(x) ≥ 0 for x ∈ D. Therefore

u ≡ 0 =⇒ uφ1 = uφ2

which is what we want.

Now what happened to distributions, you ask. Let’s look at D′φ(D) ⊂ D′(D), i.e. those
distributions which have a ‘meaningful’ restriction on ∂D which is equal to φ.

If u ∈ D′φ(D) is harmonic, then ∇2u = 0, i.e. u ∈ C∞(Dint).
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Chapter 3

Magnetism

3.1 The laws for magnetostatics

The Danish physicist Hans Christian Ørsted noticed during a lecture in 1820 that if
we have an electric current flowing through a circuit, it affects a magnetic dipole, i.e.
there is a force which acts on magnets.

So let us have two electric circuits with two currents I1 and I2. Turn on I1, then turn
on I2. Then there is a force applied to the first circuit.

Taking a small part of each circuit,

I1 dl1 I2 dl2

and defining x12 as the vector distance from piece 2 to piece 1, they found the relation
for the force by 2 on 1 as

F1←2 =
µ0

4π

(I1 dl1)× (I2 dl2 × x12)

|x12|3

3.1.1 Gauss’s law for magnetism

Definition 3.1 The Biot-Savart law is an equation in electromagnetism that de-
scribes the magnetic field B generated by an electric current. (In English literature,
the term ‘magnetic field’ is commonplace, foreign literature uses the phrase ‘magnetic
flux density’.) It’s given by

B =
µ0

4π

I2 dl2 × (x− x2)

|x− x2|3
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Definition 3.2 Suppose we have a flow of charges J(y). Then

B(x) =
µ0

4π

∫

R3

J(y)× (x− y)

|x− y|3
dVy

where we can say
J(y) = ẏ(s)δI2,C

where

C = {y = y(s)}, the curve around the circuit with current I2

ẏ(s) is tangent to the curve

δI2,C is like δh,L in Problem 1.42

I2 is constant

so
ẏ(s) ds = dl

Then
B(x) = J ∗× ∇Φ

(this is vector-valid convolution, i.e. it’s valid for each component of Ji.)

Let us have an electric field E(x). If we have a charge q, in electrostatics,

F(x) = qE(x).

If ρ(x) is an electric charge distribution (i.e. we don’t have point charges but a con-
tinuous distribution instead), then

Ftotal =

∫

D

ρ(x)E(x) dV.

Now suppose we have a body with some J̃(x) inside. Then

Ftotal
mag =

∫

D

J̃(x)×B(x) dV

which is Ampère’s law of magnetic forces. (Ampère was a big boy: he had lots of laws)

But first we need to review some vector identities.

Problem 3.3 Show that
∇×(af(x)) = −a×∇f

Problem 3.4 Show that

∇×∇×F = ∇(∇ · F)−∇2F
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Solution In fact, this is just a rearrangement of the definition of the vector Laplacian

∇2F. But you can show it explicitly in 3D by letting F =
(

F1

F2

F3

)
, if you like wasting

your time. X

Problem 3.5 Show that
∇ · (af(x)) = a · ∇f

Problem 3.6 Show that
∫

F · ∇f dV = −
∫

(∇ · F)f dV

(hint: use the divergence theorem, and that ∇ · (Ff) = F · ∇f + (∇ · F)f).

Now we’re going to take B(x) from Definition 3.2 and manipulate it. First, note that

− x− y

|x− y|3
= ∇ 1

|x− y|

and that J(y) is constant with respect to x. Let J(y) ∈ D(R3). Then

B(x) =
µ0

4π

∫

R3

J(y)× (x− y)

|x− y|3
dVy

=
µ0

4π

∫

R3

J(y)×∇ −1
|x− y| dVy

and by Problem 3.3,

=
µ0

4π
∇×

∫

R3

J(y)

|x− y| dVy (3.1)

= ∇×


µ0

4π

∫

R3

J(y)

|x− y| dVy




so B is the curl of some magnetic field. So it follows, since div(curl(·)) = 0,

∇ ·B = 0

Definition 3.7 Gauss’s law for magnetism is

∇ ·B = 0
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3.1.2 Ampère’s law

But what is ∇×B? Combining the identity from Problem 3.4 with equation line (3.1)
above,

∇×B =
µ0

4π

∫

R3

[
∇x×∇x

(
J(y)

|x− y|

)]
dVy

=
µ0

4π

∫

R3

[
∇x

(
∇x ·

J(y)

|x− y|

)]
dVy

︸ ︷︷ ︸
B

−µ0

4π

∫

R3

[
∇2

x

(
J(y)

|x− y|

)]
dVy

︸ ︷︷ ︸
A

Looking at the terms A and B in turn,

A = −µ0

4π

∫

R3

[
J(y)∇2

x

(
1

|x− y|

)]
dVy

= µ0

∫

R3

J(y)δx−ydVy

= µ0J(x)

and

B =

∫

R3

[
∇x

(
∇x ·

J(y)

|x− y|

)]
dVy

= ∇x



∫

R3

∇x ·
J(y)

|x− y|dVy




which, by Problem 3.5 is

= ∇x

∫

R3

J(y) · ∇x

(
1

|x− y|

)
dVy

= −∇x

∫

R3

J(y) · ∇y

(
1

|x− y|

)
dVy

which, by Problem 3.6 is

= ∇x



∫

R3

(∇ · J︸ ︷︷ ︸
0

)(y) · 1

|x− y|dVy


 (3.2)

claiming that in magneto-electrostatics, ∇·J = 0, (we prove this ahead in Lemma 3.9)

= 0

which gives us
∇×B = µ0J(x)
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Definition 3.8 Ampère’s law is

∇×B = µ0J(x)

Now we prove the claim:

Lemma 3.9 In magneto-electrostatics,

∇ · J = 0

Proof: This claim really comes from the philosophy of life: nothing comes from
nothing. We don’t want deus ex machina here, else we should shut our doors and go
to church.

Take a region V and look for the total charge Q in the region

Q(t) =

∫

V

ρ(x, t) dVx.

We believe that charge doesn’t come from nothing. If the charge changes, then there
is some charge coming in and out of the region: i.e. if Q as a function of time changes,
there should be an in/outflux of charge in the region. Mathematically, if ∂Q

∂t
6= 0, there

should be a current flux through S = ∂V . But this current flux is
∫

S

J(x, t) · n dS.

So the continuity law is essentially, before we tidy it up,
∫

V

∂ρ

∂t
(x, t) dV = −

∫

S

J(t) · n dS

where we have a minus sign since if ρ increases, J should be pointing inwards. Using
the divergence theorem on the right-hand side,

∫

V

∂ρ

∂t
(x, t) dV = −

∫

V

∇ · J(t) dV

and since V is arbitrary,
∂ρ

∂t
= −∇ · J(x, t)

which of course we can rewrite in the more usual form,

∂ρ

∂t
+∇ · J = 0 (Continuity equation)

Now since we’re talking about statics at the moment, ∂ρ
∂t

= 0, so we get

∇ · J = 0

which is what we claimed.

So we’ve derived the four laws of electromagnetostatics. In differential form, they are
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1. ∇ · E =
ρ

ε0
Gauss’s law (Def .n 2.5)

2. ∇×E = 0 (Def .n 2.5)

3. ∇×B = µ0J Ampère’s law (Def .n 3.8)

4. ∇ ·B = 0 Gauss’s law for magnetism (Def .n 3.7)

In integral form, they are

1.

∫

S=∂V

E · n dS =
1

ε0

∫

V

ρ dV

2.

∮

C

E · dr = 0

3.

∮

C=∂S

B · dr = µ0

∫

S

J · n dS

4.

∫

S

B · n dS = 0

3.2 The laws of magnetodynamics

3.2.1 Maxwell–Ampère law

In the dynamical case, ∇ · J 6= 0 like we used in Lemma 3.9. Instead,

∇ · J = −∂ρ
∂t
.

What does this mean for our equations? Recall in equation (3.2) we had

∇×B = −µ0

4π
∇x

∂

∂t

∫
ρ(y, t)

|x− y| dVy + µ0J(x).

But what is
1

4πε0

∫
ρ(y, t)

|x− y| dVy?

What is that? What is that? It’s Φρ(x, t)! So

∇×B = ε0µ0
∂

∂t
(−∇xΦ

ρ) + µ0J(x)

= ε0µ0
∂

∂t
E(x, t) + µ0J(x)
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and so by rearranging we get

∇×(µ−10 B) =
∂

∂t
(ε0E) + J (Maxwell-Ampère eqn in vacuum)

What are µ0, ε0? In the vacuum (or any isotropic material), they are just some con-
stants. But if we go to the brick, we have to replace them by matrices ε, µ. These

Figure 3.1: ε and µ are no longer constants if we go to the brick

matrices are different for each material, and they depend on x and t. Pretty cool,
huh?

We can define two new things to make our equations a bit nicer.

Definition 3.10 The magnetic H field, or magnetic field strength is defined as

H := µ−1B

Definition 3.11 The electric displacement in a vacuum is

D := εE

So the Maxwell–Ampère equation becomes...

Definition 3.12 The Maxwell–Ampère equation is

∇×H =
∂D

∂t
+ J

and this is for any material.

3.2.2 Maxwell–Faraday equation

How does the statics equation ∇×E = 0 change for dynamics? In the 1830s, Michael
Faraday (of 1991 £20 note fame) carried out his famous experiment. He took a closed
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(i.e. circular) piece of wire and he produced a magnetic flux through it by placing
another wire with a current flowing through it next to it (by the Biot-Savart law). If
he changed the magnetic field, there appeared a current in the wire. We change the
flux, which creates a force through it, proportional to the flux. What produces forces?
Electric fields! So he concluded that when you change an electric field in time, you
change a magnetic field. After all these fantastic experiments he found that

Definition 3.13 The Maxwell–Faraday equation is

∇×E = −∂B
∂t

Now, gentlemen and ladies, we shall show that all of Faraday’s work (and the two
knighthoods which he declined!) was unnecessary since we shall derive the Maxwell–
Faraday law from Ampère’s law alone.

Let us have a circuit C as given in Figure 3.2. The top bar (U) is moving upwards at

6
y

-
x

-
ℓ

6
C

�
U

6
v

q

St = area?

h(t)

Figure 3.2: The circuit we’re looking at

a speed v = h′(t). Let B = B0k̂, where B0 is the magnetic field of the Earth. Take a
charge q along the bar U at height h(t).

J = qv = qv̂j

Then by Ampère’s law of forces,

F = qv×B = qvB0̂i.

But we know that F = qE, so

E = v×B = vB0̂i.

Now let’s have a look at the integral around the circuit.∮

C(t)

E · dr =
∫

U

vB0̂i · dr

= −vB0ℓ (3.3)
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and
∫

St

B · n dS =

∫

St

B · k̂ dS

=

∫

St

B0k̂ · k̂ dS

= B0

∫

St

dS

= B0 area(St)

= B0ℓh(t) (3.4)

=⇒ ∂

∂t

∫

St

B · n dS =
d

dt
B0ℓh(t)

= B0ℓv (3.5)

And by equating (3.3) and (3.5),

−
∮

C(t)

E · dr = ∂

∂t

∫

St

B · n dS

or putting in the dependencies,

−
∮

C(t)

E(x, t) · dr = ∂

∂t

∫

St

B(t) · n dS. (3.6)

Now here comes the trick. Say the change is not because of area, but instead because
of changing flux. By Stokes’ law, the left hand side of equation (3.6) is equal to

−
∮

C(t)

E(x, t) · dr =
∫

S

(−∇×E) · n dS

and because S is not dependent on t, the right hand side of equation (3.6) is equal to

∂

∂t

∫

St

B(t) · n dS =

∫

St

∂B

∂t
· n dS

i.e. ∫

S

(−∇×E) · n dS =

∫

St

∂B

∂t
· n dS

And by the lemma we’re about to prove, since S is arbitrary, it’s safe to say that

∇×E = −∂B
∂t
.
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Lemma 3.14 The step above is valid.

Proof: Basically this step is valid because it’s a version of the DuBois-Reymond
lemma. We start with ∫ (

∇×E+
∂B

∂t

)
· n dS = 0 (3.7)

and say that this is

⇐⇒ F := ∇×E+
∂B

∂t
= 0.

Why? Assume it is not zero at some point. Then there exists a point x0 such that
F(x0) 6= 0.

Take a plane Π perpendicular to F through the point x0, and call the disc of radius ε
in Π, Sε. We know that, by equation (3.7),

∫

Sε

F · n̂ dS = 0.

But by our clever choice of plane,

n̂ =
F(x0)

|F(x0)|

And so

F · n̂|x=x0
= |F(x0)| > 0.

But F is continuous on Π, so

F · n̂ > 1

2
|F(x0)|

if ε is sufficiently small. Thus

∫

Sε

F · n̂ dS > 1

2
|F(x0)| area(Sε)

> 0

which is a contradiction. Hence F(x) = 0 ∀x.

So we’ve proved the Maxwell–Faraday equation another way.

3.3 Maxwell’s equations

And so we have derived Maxwell’s equations in any material. Recalling that, for
matrices ε and µ,

D = εE and B = µH,

In differential form:
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1. ∇ ·D = ρ Gauss’s law (Def .n 2.5)

2. ∇×E = −∂B
∂t

Maxwell–Faraday equation (Def .n 3.13)

3. ∇ ·B = 0 Gauss’s law for magnetism (Def .n 3.7)

4. ∇×H =
∂D

∂t
+ J Maxwell–Ampère equation (Def .n 3.12)

In integral form:

1.

∫

S

D · n dS =

∫

V

ρ dV

2.

∫

C

E · dr = −
∫

S

∂B

∂t
· n dS

3.

∫

S

B · n dS = 0

4.

∫

C

H · dr =
∫

S

(
∂D

∂t
+ J

)
· n dS

3.4 Étude on differential forms

Coordinates do not come from God. What we want to be able to say is that Maxwell’s
equations (particularly in integral form) are valid for any set of coordinates that we
choose to integrate along. So let’s have a brief discussion about differential forms.

∫

C

E · dr =
∫

C

E1dx
1 + E2dx

2 + E3dx
3

Let x1 = x1(t), x2 = x2(t), x3 = x3(t), then

=

∫ b

a

[
E1(x(t))

∂x1

∂t
dt+ E2(x(t))

∂x2

∂t
dt+ E3(x(t))

∂x3

∂t
dt

]

=

∫ b

a

[
E1(x(t))

∂x1

∂t
+ E2(x(t))

∂x2

∂t
+ E3(x(t))

∂x3

∂t

]
dt

So what if xi = xi(yk), where i, k = 1, 2, 3, i.e. our x-coordinates are in terms of
y-coordinates, e.g. polars in Cartesians. Then

dx1 =
∂x1

∂y1
dy1 +

∂x1

∂y2
dy2 +

∂x1

∂y3
dy3
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and similarly for dx2 and dx3 so in this case,

∫

C

E · dr =
∫

C

E1dx
1 + E2dx

2 + E3dx
3

=

∫ [
E1
∂x1

∂y1
+ E2

∂x2

∂y1
+ E3

∂x3

∂y1

]
dy1

+

∫ [
E1
∂x1

∂y2
+ E2

∂x2

∂y2
+ E3

∂x3

∂y2

]
dy2

+

∫ [
E1
∂x1

∂y3
+ E2

∂x2

∂y3
+ E3

∂x3

∂y3

]
dy3

=

∫
Ê · dy

where Ê is E in y-coordinates, i.e.

Ê1 =
∂x

∂y1
· E =

3∑

i=1

∂xi

∂y1
Ei

or generally,

Êj =

3∑

i=1

∂xi

∂yj
Ei

so we can interchange
3∑

i=1

Ei(x)dx
i ←→

3∑

j=1

Êj(y)dy
j

i.e. Maxwell’s equations are valid for any choice of coordinates. This means that we
can apply them, with suitable considerations of course, in any manifold.

3.4.1 Vectors and covectors

Velocity is a real vector.

vi =
dxi

dt

=
dxi(y)

dt

=

3∑

j=1

∂xi

∂yj
∂yj

∂t

=
3∑

j=1

∂xi

∂yj
v̂j.
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See how we’re summing over j, in contrast to Ê, where we’re summing over i. So

v̂ =

(
∂x

∂y

)−1
v

Ê =

(
∂x

∂y

)T

E

So when you’re looking at a point, v is a vector, and E is a covector.

Generally, E,H are one-forms, and B,D are two-forms.
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Chapter 4

Electromagnetic Waves

Solutions to Maxwell’s equations in the absence of sources and sinks, i.e. with ρ = 0,
Jext = 0, are called electromagnetic waves.

Definition 4.1 Ohm’s law, as generalised by Gustav Kirchhoff, says that

J = Jext + σE

where σ is the conductivity matrix, a function of x and t. σ has to be positive definite.

In our study of (the very beginnings!) of the theory of electromagnetic waves we will
also assume that

σ = 0,

i.e. the conductivity is 0.

We will also assume that ε = ε(x), µ = µ(x), i.e. the electric and magnetic permitiv-
ities are time-independent. These reduce Maxwell’s equations to

1. ∇ ·D = 0

2. ∇×E = −∂B
∂t

3. ∇ ·B = 0

4. ∇×H =
∂D

∂t
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4.1 Electromagnetic energy

Electromagnetic waves carry with them electromagnetic energy. The energy density
E(x, t) of this energy is given by

E(x, t) = 1

2
[D · E+B ·H]

=
1

2
[(εE) · E+ (µH) ·H] . (4.1)

Now we look at how E changes with time t in some domain V ⊂ R3,

d

dt

∫

V

E(x, t) dV =

∫

V

∂E(x, t)
∂t

dV

=

∫

V

∂

∂t

(
1

2
[(εE) · E+ (µH) ·H]

)
dV

and using ∂
∂t
[(εE) · E] = 2

[
∂
∂t
(εE) · E

]
,

=

∫

V

[(
ε
∂E

∂t

)
·E+

(
µ
∂H

∂t

)
·H
]
dV

=

∫

V

[
∂D

∂t
·E+

∂B

∂t
·H
]
dV. (4.2)

Using what’s left of Maxwell’s equations, rewrite (4.2) as

=

∫

V

[(∇×H) · E−H · (∇×E)] dV

= −
∫

V

∇ · (E×H) dV, (4.3)

where we use that −∇ · (a× b) = (∇×b) · a− b · (∇× a) for any vector fields a,b.

Problem 4.2 Show that

−∇ · (a× b) = (∇×b) · a− b · (∇× a)

Solution Let a =
(

a1
a2
a3

)
and b =

(
b1
b2
b3

)
, and just do the computation. Boring but

trivial. X

Let’s now introduce the Poynting vector field.
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Definition 4.3 The Poynting vector field S, named after its inventor John Henry
Poynting, who was a professor at the University of Birmingham from 1880, is defined
as

S = E×H.

With this definition, (4.3) gives rise to
∫

V

∂E(x, t)
∂t

dV = −
∫

V

∇ · S dV

and then using the divergence theorem

= −
∫

∂V

S · n dA, (4.4)

where dA is an area element and n is the exterior unit normal to ∂V .

Equation (4.4) implies that the Poynting vector S describes the flow of electromagnetic
energy. Rewritten in the differential form it gives rise to the following continuity
equation

∂E(x, t)
∂t

+∇ · S(x, t) = 0,

cf. the charge continuity equation ∂ρ
∂t

+∇ · J = 0.

Problem 4.4 Show that

∂E(x, t)
∂t

+∇ · S(x, t) = 0.

Solution

∇ · S = ∇ · (E×H)

= (∇×E) ·H−E · (∇×H)

=

(
−∂B
∂t

)
·H− E ·

(
∂D

∂t

)

= −
[(

∂B

∂t

)
·H+ E ·

(
∂D

∂t

)]

and

∂E
∂t

=
∂

∂t

1

2
[D · E+B ·H]

=
∂

∂t

1

2
[(εE) ·E+ (µH) ·H]

=
∂

∂t
(εE) · E+

∂

∂t
(µH) ·H

=
∂D

∂t
· E+

∂B

∂t
·H

=⇒ ∂E
∂t

+∇ · S = 0, as desired. X
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4.2 Electromagnetic waves in an homogeneous iso-

tropic medium

In the following we assume that the electric and magnetic permittivities ε and µ are
isotropic and homogeneous (i.e. independent of x),

εij(x) = εδij µij(x) = µδij,

An example of such a medium is the vacuum, where ε = ε0, µ = µ0. An example of
one that is not is the brick that we introduced in section 3.2.1.

Rewriting Maxwell’s equations, taking into account the above,

1. ∇ ·D = 0

2. ∇×E = −µ∂H
∂t

3. ∇ ·B = 0

4. ∇×H = ε
∂E

∂t

Differentiating equations 2 and 4 with respect to t, we get

∇×
(
∂E

∂t

)
= −µ∂

2H

∂t2

∇×
(
∂H

∂t

)
= ε

∂2E

∂t2
.

Using Maxwell’s equations as rewritten above, for ∂E
∂t
, ∂H

∂t
, we get

∇× (∇×H) = −εµ∂
2H

∂t2
(4.5)

∇× (∇×E) = −εµ∂
2E

∂t2
. (4.6)

Recall that, by the definition of the vector Laplacian ∇2H,

∇× (∇×H) = ∇ (∇ ·H)−∇2H,

where
∇2H = (∇2H1,∇2H2,∇2H3).

Then using equation 3 in Maxwell’s equations, ∇ ·H = 0, so we get

∇× (∇×H) = −∇2H

and (4.5) becomes
∂2H

∂t2
=

1

εµ
∇2H.

Similarly we can also derive
∂2E

∂t2
=

1

εµ
∇2E.
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Problem 4.5 Derive
∂2E

∂t2
=

1

εµ
∇2E.

Component wise, this is equivalent to six scalar wave equations for the components
Ei(x, t), Hi(x, t), where i = 1, 2, 3,

∂2Ei(x, t)

∂t2
− c2∇2Ei(x, t) = 0

∂2Hi(x, t)

∂t2
− c2∇2Hi(x, t) = 0, (4.7)

where

c =
1√
εµ

(4.8)

is the speed of electromagnetic waves (the speed of light) in the medium. (Note that
in vacuum, c0 =

1√
ε0µ0

).

4.3 Plane waves

An important special case of electromagnetic waves are the plane waves. In this case,
E and H depend, in addition to t, only on one space variable xe = x · ê, where
ê = (e1, e2, e3) is a unit vector. Since we’re in isotropic material, we can take ê = î,
and xe = x1. Explicitly,

E = E(x1, t) H = H(x1, t) (4.9)

Clearly, in this case, E and H remain the same, at any fixed time t, in any plane
orthogonal to î, which explains the name “plane waves”. Then, the 3D wave equations
(4.7) become 1D wave equations (which we studied in MATH1302∗),

∂2Ei(x1, t)

∂t2
− c2∂

2Ei(x1, t)

∂x21
= 0

∂2Hi(x1, t)

∂t2
− c2∂

2Hi(x1, t)

∂x21
= 0 (4.10)

We also do know the general solution in this case,

Ei(x, t) = E+
i (x1 + ct) + E−i (x1 − ct)

Hi(x, t) = H+
i (x1 + ct) +H−i (x1 − ct). (4.11)

i.e. in each case we have the superposition of two waves, one going to the right and
one going to the left.

∗LOL
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Problem 4.6 Show that if E = E(x1, t), H = H(x1, t), then

Ei(x, t) = E+
i (x1 + ct) + E−i (x1 − ct)

Hi(x, t) = H+
i (x1 + ct) +H−i (x1 − ct)

for i = 1, 2, 3 and some functions E±i (x1), H
±
i (x1).

Solution Look at the wave equation

∂2f

∂t2
= c2∇2f,

assuming that f = f(x1, t).

Use the substitution
ζ = x1 − ct η = x1 + ct

Then

∂f

∂η
=

∂f

∂x1

∂x1
∂η

+
∂f

∂t

∂t

∂η

=
∂f

∂x1
+

1

c

∂f

∂t

:= F (x1, t)

∂2f

∂ζ∂η
=

∂

∂ζ

(
∂f

∂x1
+

1

c

∂f

∂t

)

=
∂F

∂x1

∂x1
∂ζ

+
∂F

∂t

∂t

∂ζ

=

(
∂2f

∂x21
+

1

c

∂2f

∂x1∂t

)
+

(
∂2f

∂x1∂t
+

1

c

∂2f

∂t2

)
·
(
−1
c

)

=
∂2f

∂x21
− 1

c2
∂2f

∂t2

=
∂2f

∂x21
− 1

c2
(c2∇2f)

=
∂2f

∂x21
− ∂2f

∂x21
= 0.

So
∂F

∂ζ
= 0

since F = ∂f
∂η
. Therefore F is an arbitrary function of η: F = F (η). That is to say

∂f

∂η
= F (η),

an arbitrary function of η. So
f = α(η) + β(ζ)
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where

α(η) =

∫ η

0

F (η̃) dη̃

hence

f = α(x1 − ct) + β(x1 + ct)

X

This formula shows that, indeed, the waves propagate with speed c in the î-direction,
or, more precisely, E(x1 − ct),H(x1 − ct) is the wave propagating in the î-direction

while E(x1 + ct),H(x1 + ct) is the wave propagating in the −̂i-direction. Note that
to satisfy Maxwell’s equations, each of these two waves should satisfy these equations
inpedendently.

Using the original Maxwell equations, rather than the 1D wave equation (4.7), we can
further analyse E,H in this case. However, we will concentrate on one special type of
plane waves.

4.4 Harmonic plane waves

An electromagnetic wave is harmonic if its dependence on t is periodic and of the form
e±iωt, where ω is the frequency of oscillation. Thus, a harmonic electromagnetic wave
has the form

E(x, t) = E+(x)eiωt + E−(x)e−iωt,

H(x, t) = H+(x)eiωt +H−(x)e−iωt.

If the electromagnetic wave is harmonic and plane, then the above equation, together
with (4.11), implies that

E(x, t) = E+ei(kx1+ωt) + E−ei(kx1−ωt) + complex conjugate

H(x, t) = H+ei(kx1+ωt) +H−ei(kx1−ωt) + complex conjugate, (4.12)

where E±,H± are (complex) constant vectors and ω
k
= c.

Again, to satisfy Maxwell’s equations, each of the terms in these two sums of four
terms should satisfy them. Thus, it is sufficient to concentrate on, say, E−ei(kx1−ωt)

and H−ei(kx1−ωt). We’ll drop the minus sign to signal our generalisation.

Recall the divergence pair of Maxwell’s equations: ∇·B = ∇·D = 0. Obviously then
∇ ·H = ∇ · E = 0 so

0 = ∇ ·
(
Eei(kx1−ωt))

= (E · î)ikei(kx1−ωt)

=⇒ 0 = (E · î)
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and similarly

=⇒ 0 = (H · î) (4.13)

i.e. E,H lie in the plane orthogonal to the direction of the wave propagation î.

Next, the Maxwell-Faraday equation tells that

∇×E = −∂B
∂t

= −µ∂H
∂t

and (4.12) tells us that

−µ∂H
∂t

= ickµH

And we can work out that
∇×E = ik(̂i×E)

Problem 4.7 Show that
∇×E = ik(̂i×E)

Solution Recall that from equation (4.9), E = E(x1, t). So

∇×E =

∣∣∣∣∣∣

î ĵ k̂
∂

∂x1

∂
∂x2

∂
∂x3

E1(x1, t) E2(x1, t) E3(x1, t)

∣∣∣∣∣∣

=
∂E2

∂x1
k̂− ∂E3

∂x1
ĵ

which by equation (4.12),

= ik(E2k̂−E3̂j)

and on the other side,

ik(̂i×E) = ik

∣∣∣∣∣∣

î ĵ k̂
1 0 0

E1(x1, t) E2(x1, t) E3(x1, t)

∣∣∣∣∣∣

= ik(E2k̂−E3̂j)

which is clearly equivalent. X

so this implies

H =
1

cµ
(̂i× E) (4.14)

=

√
ε

µ
(̂i× E)

=
1

Z
(̂i×E)
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where

Z =

√
µ

ε

is called the electromagnetic impedance.

Similarly, the Maxwell-Ampère equation implies that

E = −Z î×H. (4.15)

Note that (4.15) follows from (4.14) if we apply î× to both parts.

Let us analyse these equations. In principle, E is a complex vector. By shifting t, we
can assume

E = E1u1 + E2e
iαu2,

where E1, E2 are positive and u1,u2, î form a right-hand triple of orthonormal vectors.
Then,

ZH = E1u2 − E2e
iαu1.

This means that the real parts of E and H are orthogonal, and the same is true for
their imaginary parts.

The last remark is about polarisation. When α ∈ {0,±π}, then the direction of
E exp i(kx1 − ωt) does not depend on (x, t): we have linearly polarised waves since
eiα = ±1. However, for other α, if we fix any x, the direction of physical electric field
(which is the real part of E exp i(kx1 − ωt)) will rotate with period T = 2π

ω
.

For example, if E1 = E2 and α = π
2

Ephysical(x, t) = E1 (cos(kx1 − ωt)u1 − sin(kx1 − ωt)u2) .

which gives you an ellipse.

Problem 4.8 Let α 6= π
2
,u2 6= 0. So eiα is not real. Find the formula of Ephysical

and show that we get a slanted ellipse.

This problem is left as an exercise for the reader!

And that concludes our study of Maxwell’s Theory of Electrodynamics. The exam in
2011, for which these notes were given, featured two questions from chapter 1, two
questions from chapters 2 and 3, and one question from chapter 4. Please report any
errors you have noticed in the document to the editors, whose details can be found on
page 4. Chocolate, beer and any other form of appreciation will be warmly received.

谢谢
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Figure 4.1: Class of 2011
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