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Preface

Ben Mottelson was the only physicist I personally knew who thought equally
clearly quantum-mechanically and classically, the rest of us are not so lucky. Still,
I have never understood why my colleagues say that “while we understand classi-
cal mechanics,” quantum mechanics is mysterious. I never got the memo: to me
it is equally magical that both classical and quantum mechanics follow variational
principles.

https://en.wikipedia.org/wiki/Ben_Roy_Mottelson
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The partition sum that accounts for all things allowed by quantum and statis-
tical physics,

eΓ[Φ]+J·Φ =

∫
[dφ] eS [φ]+J·φ , (1)

expresses the quantum action Γ[Φ] of mid-20th century quantum field theory as
a ‘path integral’ weighted by the work S [φ] of the late 17th century classical me-
chanics. That’s The Law. All else - Hamilton’s equations, Maxwell’s equations,
Schrödinger equation - is nipping at the edges. If you now join a hedge fund, steal
a gazillion dollars, destroy the planet, go hide on Mars, and decide to reconstruct
all of physics at your leisure, this is all you have to remember. This is the whole
of physics; the rest is commentary. Isn’t that aaaa-maaaa-zing?

Almost every single thing we learn about quantum mechanics and thus come
to believe is quantum mechanics –operators, commutators, complex amplitudes,
unitary evolution operators, Green’s functions, Hilbert spaces, spectra, path in-
tegrals, spins, angular momenta– under a closer inspection has nothing quantum
mechanical to it. It is machinery equally suited to classical, statistical and stochas-
tic mechanics, which in ChaosBook.org are thought of together - in terms of evo-
lution operators and their spectra. The common theme of the three theories is that
things fall apart, and infinitely many fragments have to be pieced together to craft
a theory. In the end it is only the i/~ granularity of phase space that is the mys-
tery of quantum mechanics; and why, a century later, quantum mechanics is still
a theory that refuses to fail?

Over the years I have watched study group after study group of graduate stu-
dents grovel in orgies of spacetime, spin and color indices, and have tried des-
perately to deprogram them through my ChaosBook.org/FieldTheory book [1],
but all in vain: students want Quantum Field Theory to be mysterious and ac-
cessed only by pages of index summations. Or two-forms. Or Borcher classes.
These notes are yet another attempt to demystify most of field theory, inspired by
young Feynman driving yet younger Dyson across the continent to Los Alamos,
hands off the steering wheel and gesticulating: “Path integrals are everything!”
These lectures are about “everything.” The theory is developed here at not quite
the pedestrian level, perhaps at a cyclist level. We start out on a finite lattice,
without any functional voodoo; all we have to know is how to manipulate finite
dimensional vectors and matrices. Then we restart on a more familiar ground,
by reformulating the old fashioned Schrödinger quantum mechanics as Feynman
path integral in chapter 2. More of such stuff can be found in ref. [1].

This version of field theory presupposes some prior exposure to statistical
mechanics, electromagnetism and quantum mechanics.

Acknowledgments. These notes owe its existence to the 1980’s Niels Bohr
Institute’s and Nordita’s hospitable and nurturing environment, and the private,
national and cross-national foundations that have supported this research over a
span of many decades. I am indebted to Benny Lautrup both for my first intro-
duction to lattice field theory, and for the sect. 1.3 interpretation of the Fourier
transform as the spectrum of the shift operator. I have learned much about spectra
of lattice operators from Han Liang. And last but not least– profound thanks to all
the unsung heroes–students and colleagues, too numerous to list here–who have

https://youtu.be/https://www.youtube.com/watch?v=ECBc0yzSEBA&list=PLVcaOb64gCp-fjXWtFCBKL7OPoOwmXkOH&index=4
http://ChaosBook.org
http://ChaosBook.org/FieldTheory
http://chaosbook.org/FieldTheory/quefithe.html
https://youtu.be/1Rr3ZWt1ULQ?si=rXIRHpo8ZYUF2Fvd
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supported this project over many years in many ways, by surviving courses based
on these notes, by providing invaluable insights, by teaching us, by inspiring us.
I thank the Carlsberg Foundation and Glen P. Robinson for partial support, and
Dorte Glass, Tzatzilha Torres Guadarrama and Raenell Soller for typing parts of
the manuscript.

Who is the 3-legged dog reappearing throughout the book? Long ago, when
I was innocent and knew not Borel measurable α to Ω sets, I asked V. Baladi a
question about dynamical zeta functions, who then asked J.-P. Eckmann, who then
asked D. Ruelle. The answer was transmitted back: “The master says: ‘It is holo-
morphic in a strip’.” Hence His Master’s Voice (H.M.V.) logo, and the 3-legged
dog is us, still eager to fetch the bone, or at least a missing figure, if a reader is
kind enough to draw one for us. What is depicted on the cover? Roberto Ar-
tuso found the smørrebrød at the Niels Bohr Institute indigestible, so he digested
H.M.V.’s wisdom on a strict diet of two Carlsbergs and two pieces of Danish pas-
try for lunch every day. Frequent trips down to Milano’s ancestral home is what
kept him alive.

ackn.tex 9dec2013 version 4.1 - Mar 10 2024
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Lattice field theory

Be wise, discretize.
— Mark Kac
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We motivate path integrals to come by formulating the simplest example of
a propagator, Green’s function for the random walk on a lattice, as a sum over
paths. In order to set the stage for the continuum formulation, we then describe
lattice derivatives and lattice Laplacians, and explain how symmetry under trans-
lations enables us to diagonalize the free propagator by means of a discrete Fourier
transform.
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CHAPTER 1. LATTICE FIELD THEORY 6

1.1 Wanderings of a drunken snail

Statistical mechanics is formulated in a Euclidean world in which
there is no time, just space. Q. What do we mean by ‘propagation’ in
such a space?

We have no idea what the structure of our space on distances much shorter
than interatomic might be. The very space-time might be discrete rather than
continuous, or it might have geometry different from the one we observe at the ac-
cessible distance scales. The formalism we use should reflect this ignorance. We
deal with this problem by coarse-graining the space into small cells and requiring
that our theory be insensitive to distances comparable to or smaller than the cell
sizes.

Our next problem is that we have no idea why there are “particles,” and why
or how they propagate. The most we can say is that there is some probability that
a particle steps from one cell to another cell. At the beginning of the century, the
discovery of Brownian motion showed that matter was not continuous but was
made up of atoms. In quantum physics we have no experimental indication of
having reached the distance scales in which any new space-time structure is being
sensed: hence for us this stepping probability has no direct physical significance.
It is a phenomenological parameter which - in the continuum limit - is related to
the “mass” of the particle.

Assume that the state of a particle is given by its position i = (x1, x2, · · · , xd) ,
and that the particle is a ‘scalar’, i.e., it has no further internal degrees of freedom,
such as spin or color. What is it like to be free? A free particle exists only in
itself and for itself; it neither sees nor feels the others; it is, in this chilly sense,
free. But if it is not at once paralyzed by the vast possibilities opened to it, it soon
becomes perplexed by the problems of realizing any of them alone. Born free, it
is constrained by the very lack of constraint. Sitting in its cell, it is faced by a
choice of doing nothing (s = stopping probability) or stepping into any of the 2d
neighboring cells (h = stepping probability):

The number of neighboring cells defines the dimension of the space. The
stepping and stopping probabilities are related by the probability conservation:

1 = s + 2dh , d = the dimension of spacetime . (1.1)

Taking the stepping probability to be the same in all directions means that we have
assumed that the space is isotropic.

Our next assumption is that the space is homogeneous, i.e., that the stepping
probability does not depend on the location of the cell; otherwise the propagation
is not free, but is constrained by some external geometry. This can either mean

lattFT - 10jan2024 version 4.1 - Mar 10 2024



CHAPTER 1. LATTICE FIELD THEORY 7

that the space is infinite, or that it is compact and periodic (a torus; a Lie group
manifold). That is again something beyond our ken - we proceed in the hope that
the predictions of our theory will be insensitive to very large distances.

The isotropy and homogeneity assumptions imply that at distances much larger
than the lattice spacing, our theory should be invariant under rotations and trans-
lations. A theory that is insensitive to the very short and very long distances is
said to be well behaved in the ‘ultraviolet’ and ‘infrared’ limits.

While counting continuum Brownian paths might be tricky, counting them in
a discretized space is a breeze. Divade the space into little d-dimensional hyper-
cubes (‘cells’, ‘tiles’). Let the snail start in the cell z and hop along until it stops
in the cell z′.

a Brownian walk:

a walk on a lattice:

The probability of this path is h`s, where ` is the number of steps. The total
probability that a particle wanders from the zth cell and stops in the z′th cell is the
sum of probabilities associated with all distinct paths between them:

∆zz′ = s
∞∑
`=0

h`Tzz′(`) , (1.2)

where Tzz′(`) is the number of all paths of ` steps connecting lattice sites z and
z′. In order to compute Tzz′(`), define a shift operator, and its inverse (also its
transpose)

(r j)zz′ = δz+e j,z′ , (r−1
j )zz′ = δz,z′+e j , (1.3)

where e j is a unit step in direction j. If a particle is introduced into the z′th cell by
a source Jz = δz′z , the shift operator moves it into a neighboring cell:

(r jJ)z = δz′+e j,z ⇒
z′

z′ + e j
(1.4)

The hopping operator

Tzz′ =

d∑
j=1

(r j + r−1
j )zz′ (1.5)

generates all steps of length 1:

T J =

11

1 1
, (1.6)

(the examples are drawn in two dimensions, so the lattice does not look square as
this is meant to be a sidewise view from above the lattice). The paths of length 2

lattFT - 10jan2024 version 4.1 - Mar 10 2024



CHAPTER 1. LATTICE FIELD THEORY 8

are counted by

T 2J =

12

42

2

2

1

1 1

. (1.7)

There are 4 ways of returning, 2 ways of reaching a diagonal corner, and so on.
Note –and this is the key observation– that the zth component of the vector T `J
counts the number of paths of length ` connecting the zth and the z′th cells. The
probability that the particle stops in the zth cell is given by the ‘path sum’

φz = s
∞∑
`=0

h`(T `J)z , (1.8)

the sum of all paths connecting the two cells. The value of the field φz is the
probability that the particle introduced into the cell z′ by the source J ends in the
cell z. According to (1.6), (1.7), the numbers of paths originating in cell z′ are∑

z

(T J)z = 2d ,
∑

z

(T 2J)z = (2d)2 , · · ·

so, by the stepwise probability conservation (1.1), φz is a correctly normalized
probability field (probability density on lattice site z),∑

z

φz = s (1 + 2dh + (2d)2h2 + · · · ) =
s

1 − 2dh
= 1 . (1.9)

Actually, the powers of the hopping operator (1.5) also form a geometric series,
which we can sum up like we would sum up a matrix series,

φz = ∆J , ∆zz′ =

( s
1 − hT

)
zz′
, (1.10)

yielding an explicit formula for the Euclidean free scalar particle propagator (1.2).

A. The probability ∆zz′ that a drunken snail starting out in the cell z
ends up in the cell z′ is given by the sum of all paths starting in z′ and
ending in z.

1.1.1 Fields

Let us set up some ‘lattice field theory’ notation, conventional in solid
state physics and quantum field theory. We’ll return to the evalua-
tion of the Euclidean free massive scalar particle propagator (1.10) in
sect. 1.4.7.

In a d-dimensional hypercubic discretization of a Euclidean space, the d con-
tinuous Euclidean coordinates x ∈ Rd are replaced by a hypercubic integer lattice

L =
{ d∑

j=1

z je j | z ∈ Zd
}
, e j ∈ {e1, e2, · · · , ed} , (1.11)

lattFT - 10jan2024 version 4.1 - Mar 10 2024



CHAPTER 1. LATTICE FIELD THEORY 9

(a) (b)

Figure 1.1: Discretization of a field over two-dimensional spacetime. (a) A periodic scalar field
configuration φ(x) over a primitive cell of spatial period L, temporal period T , plotted as a function
of continuous coordinates x ∈ R2. (b) The corresponding discretized field configuration (1.13) over
[10×7]0 primitive cell, with the field value φz at the lattice site z ∈ Z2 indicated by a dot. (Han
Liang [7].)

spanned by a set of orthogonal unit vectors e j, with lattice spacing a j = |e j| = ∆x j

along the direction of unit vector e j. We shall use lattice units, always setting
a j = 1. A field φ(x) over d continuous coordinates x j is represented by a discrete
array of field values over lattice sites

φz = φ(x) , x j = a jz j = lattice site, z ∈ Zd , (1.12)

as sketched in figure 1.1. A lattice field configuration is a d-dimensional array of
field values (in what follows, illustrative examples will be presented in one or two
spatiotemporal dimensions)

Φ =

· · · · · · · · · · · · · · · · · · · · ·

· · · φ−2,1 φ−1,1 φ0,1 φ1,1 φ2,1 · · ·

· · · φ−2,0 φ−1,0 φ0,0 φ1,0 φ2,0 · · ·

· · · φ−2,−1 φ−1,−1 φ0,−1 φ1,−1 φ2,−1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

. (1.13)

A field configuration is a point in system’s state space

M =
{
Φ | φz ∈ R , z ∈ Zd

}
, (1.14)

the totality of states Φ, given by all possible values of site fields, where φz can be
a single scalar field, or a multitplet of real or complex fields.

While we refer here to such discretization as a lattice field theory, the lattice
might arise naturally from a many-body setting with the nearest neighbors inter-
actions, such as many-body quantum chaos models, with a multiplet of fields at
every site.

1.1.2 Periodic field configurations

Q. What are these ‘operators’, such as the shift operator (1.3)? The
hypercubic lattice z ∈ Zd is infinite in all directions, so these are not
matrices, they are infinite-dimensional objects. Our bridge to this
infinity will be to tile the infinite lattice by repeats of finite tiles.

To get a grip on these ‘operators’, let’s start small, and make the lattice 1-
dimensional and finite, a chain of L lattice sites. For a hyper-cubic lattice the

lattFT - 10jan2024 version 4.1 - Mar 10 2024
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(a)

a1

a2

(b)

a1

a2

Figure 1.2: (a) The intersection points z of the light grey lines form the integer square lattice (1.12).
The primitive vectors a1 = (3, 0) and a2 = (1, 2) form the primitive cell A = [3×2]1 (see (1.17)),
whose translations tile the Bravais lattice LA (red points). (b) The intersection points k of the light
grey lines form the reciprocal square lattice. Translations of reciprocal primitive vectors ã1 and ã2

generate the reciprocal lattice LÃ (red points). (Shaded) The reciprocal primitive cell Ã. A wave
vector outside this region is equivalent to a wave vector within it by a reciprocal lattice translation.
Note that the number of lattice sites within the reciprocal primitive cell Ã equals the number of sites
within the spatiotemporal primitive cell A. (Han Liang [7].)

translations in different directions commute, r jri = rir j, so it is sufficient to under-
stand the action of a shift on a 1-dimensional lattice. So we can write down r (1.3)
in its full [L×L] matrix glory. Writing the finite lattice shift operator as an ‘upper
shift’ matrix

r =


0 1

0 1
. . .

. . .
0 1

0 0

 ,
is no good, as r so defined is nilpotent, and after L steps the particle marches off the
lattice edge, and nothing is left, rL = 0. The smart way to approximate an infinite
lattice by a finite one is to insist that the discretization preserve the translational
invariance, and represent the periodic lattice operator. On a periodic lattice every
point is equally far from the ‘boundary’ L/2 steps away, the ‘surface’ effects are
equal for all points, and the shift operator rzz′ = δz+1,z′ acts as a cyclic permutation
matrix

r =


0 1

0 1
. . .

. . .
0 1

1 0

 , (1.15)

with ‘1’ in the lower left corner assuring periodicity. Now, lets go back to the
infinite lattice, by tiling the infinite lattice by repeats of a finite periodic field
configuration.

A lattice field configuration is LA-periodic if

φz+r = φz (1.16)

lattFT - 10jan2024 version 4.1 - Mar 10 2024



CHAPTER 1. LATTICE FIELD THEORY 11

for any discrete translation r = n1a1 + n2a2 + · · · ndad in the Bravais lattice

LA =
{ d∑

j=1

n ja j | n j ∈ Z
}
, (1.17)

where the [d×d] matrix A = [a1, a2, · · · , ad] formed from primitive lattice vectors
{a j} defines a d-dimensional primitive cell [2, 6] (see figure 1.2 (a)).

Primitive cell A field configuration lattice-site fields (1.13) take values in the
VA-dimensional state space

MA =
{
Φ | φz ∈ R , z ∈ A

}
. (1.18)

The volume of Bravais lattice LA equals the number of lattice sites z ∈ A within
the primitive cell (see figure 1.2 (a)):

VA = |DetA | . (1.19)

For example, repeats of the VA = 15-dimensional [5×3] primitive cell field con-
figuration

Φ =

 φ−2,1 φ−1,1 φ0,1 φ1,1 φ2,1
φ−2,0 φ−1,0 φ0,0 φ1,0 φ2,0
φ−2,−1 φ−1,−1 φ0,−1 φ1,−1 φ2,−1

 (1.20)

tile periodically the doubly-infinite state space (1.13).

A. While an operator, such as the shift operator (1.3), is an infinite-
dimensional object, periodic tilings of spacetime enable us to treat
operators as though they were finite-dimensional matrices.

1.1.3 Orbits

These periodic field configurations are described by a finite number
VA of field values.
Q. Does the way they are laid out on the lattice matter?

Consider a one-dimensional primitive cell A, defined by a single primitive
vector a1 = n in (1.17). One-lattice-spacing shift operator (6.13) is a cyclic per-
mutation operator that translates a field configuration by one lattice site,

Φ = [φ0 φ1 φ2 φ3 · · · φn−1]

rΦ = [φ1 φ2 φ3 · · · φn−1 φ0] , or (rΦ)z = φz+1 ,

· · · (1.21)

rn−1Φ = [φn−1 φ0 φ1 φ2 · · · φ3] ,

rnΦ = [φ0 φ1 φ2 φ3 · · · φn−1] , so rnΦ = Φ .

While each field configuration r jΦ might be a distinct point in the primitive cell’s
state space (1.18), they are equivalent, in the sense that all consist of the same set
of lattice site fields {φz}, up to a cyclic relabelling of lattice sites.
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In this way actions of a group of relabelling permutations g ∈ G on field
configurations over a multi-periodic primitive cell A foliate the state space into a
union

MA = {Φ} = ∪pMp (1.22)

of orbits,

Mp = {gΦp | g ∈ G} (1.23)

each a set of equivalent field configurations, labelled p, or perhaps by Φp, one
of the configurations in the set. Each orbit is a fixed point of G, as any element
gMp = Mp simply permutes the configurations within the set. The number of
distinct field configurations in the orbit is known as the index of orbit Mp. It
can be as large as |G|, the number of elements in G, or as small as 1, if the field
configuration is φz = φ, a constant (or a ‘steady state’).

A. While an operator, such as the shift operator (1.3), is an infinite-
dimensional object, periodic tilings of spacetime enable us to treat
operators as finite-dimensional matrices.

1.2 Lattice derivatives

In order to measure spatial variations of fields, we need to define
lattice derivatives.

Consider a function φ(x) discretized on a d-dimensional lattice (1.12). Each
set of field values φ -a vector φz- is a possible field configuration.

Assume the lattice is a hypercubic integer lattice (1.11), and let {e j} be the unit
lattice cell vectors pointing along the d positive directions. The forward lattice
derivative is then

(∂ jφ)z =
φ(x + ae j) − φ(x)

a
=
φz+e j − φz

a
. (1.24)

The backward lattice derivative is its transpose

(∂ jφ)>z =
φ(x − ae j) − φ(x)

a
=
φz−e j − φz

a
. (1.25)

Anything else with the correct a → 0 limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linear operator, by introducing
the shift operator (or stepping operator) (1.3) in the direction j. The partial lattice
derivative (1.25) can now be written as a multiplication by the operator:

∂ jφz =
1
a

(
r j − 1

)
zz′
φz′ .

In the 1-dimensional case the [L×L] matrix representation of the lattice derivative
is:

∂ =
1
a



−1 1
−1 1

−1 1
. . .

1
1 −1


. (1.26)
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CHAPTER 1. LATTICE FIELD THEORY 13

To belabor the obvious: On a finite lattice of L points a derivative is simply a finite
[L×L] matrix. Continuum field theory is a world in which the lattice is so fine that
it looks smooth to us. Whenever someone calls something an “operator,” think
“matrix.” For finite-dimensional spaces a linear operator is a matrix; things get
subtler for infinite-dimensional spaces.

Looking forward, the continuum limit of this operator will be related to what
field theorists call particle ‘momentum’, so we find it convenient to refer to the for-
ward lattice difference operator in jth lattice direction as the ‘lattice momentum’
operator

p j = r j − 11 , (1.27)

where the lattice spacing is set to a = 1 (easily reinstated, if needed).

1.2.1 Lattice Laplacian

I’m the field φz on lattice site z.
Q. What’s up with my neighbors?

In lattice field theory ‘locality’ means that a field at site z interacts only with
its neighbors. To keep the exposition as simple as possible, we shall -for time
being- treat the spatial and temporal directions on equal footing, with the graph
Laplace operator [4, 8, 14, 18]

� φz =

||z′−z||=1∑
z′

(φz′ − φz) for all z, z′ ∈ Zd (1.28)

comparing the field on lattice site z to its 2d nearest neighbors.
On the d-dimensional hyper-cubic lattice, Laplacian is the centered, reflection

symmetric second lattice derivative,

� =

d∑
j=1

(r j − 2 11 + r−1
j ) . (1.29)

For example, the two-dimensional square lattice Laplace operator is given by

� = r1 + r2 − 4 11 + r−1
2 + r−1

1 , (1.30)

and in the 1-dimensional finite periodic chain case the [L×L] matrix representation
of the lattice Laplacian is

� =
1
a2



−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2


. (1.31)

The lattice Laplacian measures the second variation of a field φz across three
neighboring sites: it is spatially non-local. You can easily check that it does what
the second derivative is supposed to do by applying it to a parabola restricted to the
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CHAPTER 1. LATTICE FIELD THEORY 14

lattice, φz = φ(az), where φ(az) is defined by the value of the continuum function
φ(x) = φ2 at the lattice point x = az.

We can write it in terms of the ‘lattice momentum’ operator (1.27), and relate
it to T , the hopping operator (1.5),

� = −

d∑
j=1

p>j p j = −

d∑
j=1

(
r−1

j − 1
) (

r j − 1
)

=
1
a2 (T − 2d1) . (1.32)

The Euclidean free scalar particle propagator (1.10) can thus be written as

∆ =
1

1 − h
s a2�

. (1.33)

In what follows it will be convenient to reinterpret and rescale this drunken-walk
propagator ∆ (1.4) together with the probability density fields φz in (1.10), and
consider instead the “free field action” (??) of form

S [φ] = −
1
2
φ> · J−1 · φ . (1.34)

where the “free” or “bare” massive scalar propagator J is parametrized as

J =
1

p2 + µ2 . (1.35)

What this parametrization says is that the mass squared m2 of the Euclidean scalar
particle is proportional to m2 ∼ s/h: the heavier the particle, the less likely it is to
hop, the more likely is it to stop.

A. Laplacian measures local curvature, how much I stick out among
my neighbors.

1.2.2 Integration by parts

(Please skip this and all other bits marked ‘cyclist’ on the first reading - not essen-
tial at this time.)

In the continuum, integration by parts moves ∂ around,∫
[dx]φ>∂2φ→ −

∫
[dx]∂φ> · ∂φ ;

on a lattice this amounts to a matrix transposition[(
r j − 1

)
φ
]
> ·

[(
r j − 1

)
φ
]

= φ> ·
(
r−1

j − 1
) (

r j − 1
)
φ .

If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity

∂> =
1
a

(
r−1 − 1

)
= −r−1 1

a
(r − 1) = −r−1∂ .

Integrating by parts is now “summing by parts.” Let ai and bi be n-periodic vec-
tors, and (∂a)i = ai − ai−1 be the difference operator. Then

n∑
i=1

(∂a)ibi = −

n∑
i=1

ai(∂b)i+1 . (1.36)
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1.2.3 Inverting the Laplacian

Evaluation of perturbative corrections to be undertaken in (5.29) requires that we
come to grips with the “free” or “bare” propagator J . While the Laplacian is a
simple difference operator (1.31), the propagator is a messier object. A way to
compute is to start expanding the propagator J as a power series in the Laplacian

J =
1

p2 + µ2 =
1

m2

∞∑
k=0

1
m2k�

k . (1.37)

As � is a finite matrix, the expansion is convergent for sufficiently large m2. To
get a feeling for what is involved in evaluating such series, evaluate �2 in the
1-dimensional case:

�2 =
1
a4



6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

1 −4
. . . 1

1 6 −4
−4 1 1 −4 6


. (1.38)

What �3, �4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while the inverse
propagator is differential operator connecting only the nearest neighbors, the prop-
agator is integral, non-local operator, connecting every lattice site to any other
lattice site. Due to the periodicity, these are all Toeplitz matrices, meaning that
each successive row is a one-step cyclic shift of the preceding one. In statistical
mechanics,J is the (bare) 2-point correlation. In quantum field theory, it is called
a propagator.

These matrices can be evaluated as is, on the lattice, and sometime it is eval-
uated this way, but in case at hand a wonderful simplification follows from the
observation that the lattice action is translationally invariant. We show how this
works in sect. 1.3.

1.3 Periodic lattices

Our task now is to transform J into a form suitable to evaluation of Feynman
diagrams. The theory we will develop in this section is applicable only to trans-
lationally invariant saddle point configurations; i.e., if no translation invariance,
no diagonalization by Fourier transforms, and even a propagator might be hard to
evaluate.

Consider the effect of a lattice translation φ→ rφ on the matrix polynomial

S [rφ] = −
1
2
φ>

(
r>J−1r

)
φ .

As J−1 is constructed from r and its inverse, J−1 and r commute, and S [φ] is
invariant under translations,

S [rφ] = S [φ] = −
1
2
φ> ·

1
J
· φ . (1.39)
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If a function defined on a vector space commutes with a linear operator r, then the
eigenvalues of r can be used to decompose the φ vector space into invariant sub-
spaces. For a hyper-cubic lattice the translations in different directions commute,
r jri = rir j, so it is sufficient to understand the spectrum of the 1-dimensional shift
operator (6.13).

To develop a feeling for how this reduction to invariant subspaces works in
practice, let us proceed cautiously, by expanding the scope of our deliberations to
a lattice consisting of 2 points.

1.3.1 A 2-point lattice diagonalized

The action of the shift operator r (6.13) on a 2-point lattice φ = (φ0, φ1) is to
permute the two lattice sites

r =

[
0 1
1 0

]
.

As exchange repeated twice brings us back to the original state, r2 = 1, the char-
acteristic polynomial of r is

(r + 1)(r − 1) = 0 ,

with eigenvalues ω0 = 1, ω1 = −1. The symmetrization, antisymmetrization
projection operators are

P0 =
r − ω11
ω0 − ω1

=
1
2

(1 + r) =
1
2

[
1 1
1 1

]
(1.40)

P1 =
r − 1
−1 − 1

=
1
2

(1 − r) =
1
2

[
1 −1
−1 1

]
. (1.41)

Noting that P0 + P1 = 1, we can project a lattice state φ onto the two normalized
eigenvectors of r:

φ = 1 φ = P0 · φ + P1 · φ ,[
φ1
φ2

]
=

(φ0 + φ1)
√

2

1
√

2

[
1
1

]
+

(φ0 − φ1)
√

2

1
√

2

[
1
−1

]
(1.42)

= φ̃0 ϕ0 + φ̃1 ϕ1 . (1.43)

As P0P1 = 0, the symmetric and the antisymmetric states transform separately
under any linear transformation constructed from r and its powers.

In this way the characteristic equation r2 = 1 enables us to reduce the 2-
dimensional lattice state to two 1-dimensional ones, on which the value of the
shift operator r is a number, ω j ∈ {1,−1}, and the normalized eigenvectors are
ϕ0 = 1√

2
(1, 1), ϕ1 = 1√

2
(1,−1). As we shall now see, (φ̃0, φ̃1) is the 2-site periodic

lattice discrete Fourier transform of the field (φ1, φ2).

1.4 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional periodic lattice with L sites.
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1.4.1 Reciprocal primitive cell

Translation invariance of orbits suggests reformulating the theory in a discrete
Fourier basis, a discretization approach that goes all the way back to Hill’s 1886
paper [9].

The n consecutive shifts (1.21) return a period-n field configuration to itself,
so acting on an one-dimensional periodic primitive cell, shift operator satisfies the
characteristic equation

rn − 11 =

n−1∏
m=0

(r − eik 11) = 0 , (1.44)

with the n-th roots of unity eigenvalues {eik} indexed by integers m

k =
2π
n

m , m = 0, 1, · · · , n−1 , (1.45)

and n eigenvectors

rϕ(k) = eikϕ(k) , [ϕ(k)]z = ei kz . (1.46)

The shift (1.21)

[rϕ(k)]z = [ϕ(k)]z+1 = ei k(z+1) = eik[ϕ(k)]z

acts by rotating the eigenvector’s overall phase.
Wave numbers k form a one-dimensional reciprocal lattice,

LÃ =
{
mã1 | m ∈ Z

}
, ã1 · a1 = 2π ,

with the primitive reciprocal lattice vector ã1 = 2π/n, and the reciprocal primitive
cell –the interval [0, 2π)– that contains n distinct wave numbers (1.45).

Each application of r translates the lattice one step; in L steps the lattice is
back in the original state

rL = 1 , (1.47)

so the eigenvalues of r are the L distinct Lth roots of unity

rL − 1 =

L−1∏
k=0

(r − ωk1) = 0 , ω = ei2π/L . (1.48)

As the eigenvalues are all distinct and L in number, the space is decomposed into
L 1-dimensional subspaces.

1.4.2 Projection operators

(Please skip this and all other bits marked ‘cyclist’ on the first reading - not essen-
tial at this time.)
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The general theory (expounded in appendix A1.1) associates with the kth
eigenvalue of r a projection operator that projects a state φ onto kth eigenvector of
r,

Pk =
∏
j,k

r − ω j1
ωk − ω j . (1.49)

A factor (r − ω j1) kills the jth eigenvector ϕ j component of an arbitrary vector
in expansion φ = · · · + φ̃ jϕ j + · · · . The above product kills everything but the
eigen-direction ϕk, and the factor

∏
j,k(ωk − ω j) ensures that Pk is normalized as

a projection operator. The set of the projection operators is complete,∑
k

Pk = 1 , (1.50)

and orthonormal

PkP j = δk jPk (no sum on k) . (1.51)

In the case of discrete translational invariance, or cyclic group CL , it is custom-
ary to write out the projection operator (1.49) as a character-weighted sum, see
example 1.4.4.

As any matrix function J = J(r) of the translation generator r takes a scalar
value on the kth subspace,

J(r) Pk = J(ωk) Pk , (1.52)

the projection operators diagonalize the matrix J , P jJ(r) Pk = J(ωk) Pk δ jk .

The [L×L] projection operator matrix elements can be expressed in terms of
the eigenvectors (1.55), (1.56) as

(Pk)``′ = (ϕk)`(ϕ
†

k)`′ =
1
L

ei 2π
L (`−`′)k , (no sum on k) . (1.53)

The completeness (1.50) follows from (1.58), and the orthonormality (1.51) from
(1.57).

φ̃k, the projection of the L-dimensional state (i.e., vector) φ on the kth subspace
is given by

(Pk · φ)` = φ̃k (ϕk)` , (no sum on k)

φ̃k = ϕ†k · φ =
1
√

L

L−1∑
`=0

e−i 2π
L k`φ` (1.54)

section 1.4.4

1.4.3 Eigenvectors of the translation operator

While constructing explicit eigenvectors is usually not a the best way to fritter
one’s youth away, as choice of basis is largely arbitrary, and all of the content of
the theory is in the projection operators (see appendix A1.1), in case at hand the
eigenvectors are so simple that we can construct and verify the solutions of the
eigenvalue condition

rϕk = ωkϕk (1.55)
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by hand:

1
√

L



0 1
0 1

0 1
. . .
0 1

1 0





1
ωk

ω2k

ω3k

...
ω(L−1)k


= ωk 1

√
L



1
ωk

ω2k

ω3k

...
ω(L−1)k


In words: the cyclic translation generator r shifts all components by one, and the
original vector is recovered by factoring out the common factor ωk. The 1/

√
L

factor normalizes ϕk to a complex unit vector,

ϕ†k · ϕk =
1
L

L−1∑
k=0

1 = 1 , (no sum on k)

ϕ†k =
1
√

L

(
1, ω−k, ω−2k, · · · , ω−(L−1)k

)
. (1.56)

The eigenvectors are orthonormal

ϕ†k · ϕ j = δk j , (1.57)

as the explicit evaluation of ϕ†k · ϕ j yields the Kronecker (circular) delta function
for a periodic lattice

δk j =
1
L

L−1∑
`=0

ei 2π
L (k− j)` . (1.58)

The sum is over the L unit vectors pointing at a uniform distribution of points on
the complex unit circle,

,

they cancel each other unless k = j (mod L), in which case each term in the sum
equals 1.

By the eigenvector condition (1.55), any matrix function J = J(r) of the
translation generator r takes a scalar value on the kth subspace,

J(r)ϕk = J(ωk)ϕk , (1.59)

i.e., in the eigenvector basis, J is a diagonal matrix.
The L-dimensional vector φ̃ of “wavenumbers” (discretized spatial coordi-

nates), or “frequencies,” “eigen-energies” (discretized time evolution steps) φ̃k is
the discrete Fourier transform of state (vector) φ. Hopefully rediscovering it this
way helps you a little toward understanding why Fourier transforms are full of
eix·p factors (they are eigenvalues of generators of translations; r for a discrete
lattice, ∂ /∂x for continuum), and that they are the natural set of basis functions
when a theory is translationally invariant.
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1.4.4 Cyclic group projection operators AKA discrete Fourier trans-
form

(It’s OK to skip this example on the first reading - the explicit Fourier eigen-
vectors and eigenvalues (1.55) are all that we need to carry out discrete Fourier
transforms.)

Consider a cyclic group

CN = {e, g, g2, · · · gN−1} , gN = e .

If M = D(g) is a [d×d] matrix representation of the one-step shift g, it must satisfy
MN − 1 = 0, with eigenvalues given by the zeros of the characteristic polynomial

G(x) = xN − 1 = (x − λ0)(x − λ1)(x − λ2) · · · (x − λN−1) . (1.60)

For the cyclic group the N distinct eigenvalues are the Nth roots of unity λn = ωn,
ω = exp(i 2π/N), n = 0, . . .N − 1.

In the projection operator formulation (A1.3), they split the d-dimensional
space into d/N-dimensional subspaces by means of projection operators

Pn =
∏
m,n

M − ωm I
ωn − ωm =

1∏N−1
m=1(1 − ωm)

N−1∏
m=1

(ω−nM − ωm I) , (1.61)

where we have multiplied all denominators and numerators by ω−n.
The denominator is a polynomial of form G(x)/(x − λ0) , with the zeroth root

(x − ω0) = (x − 1) quotiented out from the characteristic polynomial,

xN − 1
x − 1

= (x − ω)(x − ω2) · · · (x − ωN−1) .

Consider a sum of the first N terms of a geometric series, multiplied by (x−1)/(x−
1):

1 + x + · · · + xN−1 =

N−1∑
m=0

xm =
1

x − 1

N−1∑
m=0

(x − 1) xm =
xN − 1
x − 1

. (1.62)

So, the products in (1.61) can be written as sums

(x − ω)(x − ω2) · · · (x − ωN−1) = 1 + x + · · · + xN−1 . (1.63)

The Pn projection operator (1.61) denominator is evaluated by substituting x→ 1
into (1.63); that adds up to N. The numerator is evaluated by substituting x →
ω−nM. We obtain the projection operator as a discrete Fourier weighted sum of
matrices Mm,

Pn =
1
N

N−1∑
m=0

e−i 2π
N nm Mm , (1.64)

instead of the product form (1.61).
This is the simplest example of the key group theory tool, the projection oper-

ator expressed as a sum over characters,

Pn =
1
|G|

∑
g∈G

χ̄n(g)D(g) .

As CN irreps are all 1-dimensional, for the discrete Fourier transform all characters
are simply χ̄n(gm) = ω−nm, the Nth complex roots of unity.

(B. Gutkin and P. Cvitanović)
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1.4.5 Discrete Fourier transform operator

The [L×L] matrix F jk = L−
1
2ω jk , j, k = 0, 1, 2, · · · , L − 1, formed from column

eigenvectors (1.55),

F =
1
√

L



1 1 1 . . . 1 1
1 ω ω2 . . . ωL−2 ωL−1

...
...

...
. . .

...
...

1 ωk ω2k . . . ω(L−2)k ω(L−1)k

...
...

...
. . .

...
...

1 ωL−2 ω2(L−2) . . . ω(L−2)(L−2) ω(L−1)(L−2)

1 ωL−1 ω2(L−1) . . . ω(L−2)(L−1) ω(L−1)(L−1)


, (1.65)

is the discrete Fourier transform operator (remember, in the discretized world
‘operator’ is a synonym for ‘matrix’). From the orthogonality of eigenvectors
(1.57) it follows that F is a unitary matrix, with det F = 1, and

F F † = 1 . (1.66)

The operator F † is thus the inverse Fourier transform. The discrete Fourier trans-
form (1.54) of a state (vector) φ is given by

φ̃ = F †φ , (1.67)

i.e., Fourier transformation rearranges components of vector φ into averages over
all components (1.54), weighted by complex phases exp(i2π`/L) in all possible
ways.

1.4.6 ‘Configuration-momentum’ Fourier space duality

shift
What does a projection on the kth Fourier subspace mean? The discrete

Fourier transform (1.64) of a state (vector) φ rearranges components of vector
φ into averages over all its components, weighted by complex phases exp(i2π`/L)
in all possible ways.

Consider first the projection on the 0th Fourier mode

P0 =
1
L

L−1∑
m=0

rm .

Applied to a lattice state φ = (φ1, φ2, · · · , φL), the shift matrix r translates the state
by one site, rφ = (φ2, φ3, · · · , φL , φ1), and so on for all powers rm. The result is the
space average (here correctly normalized, so that 〈1〉 = 1) over all values of the
periodic lattice field φm,

1
√

L
φ̃0 =

1
L

L−1∑
`=0

φ` = 〈φ〉 ,

see (1.47) and (1.58). Every finite discrete group has such fully-symmetric rep-
resentation, and in statistical mechanics and quantum mechanics this is often the
most important state (the ‘ground’ state).
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φ̃1 is the average weighted by one oscillation over the L-periodic lattice, and
φ̃k, the projection of the L-dimensional state (i.e., vector) φ on the kth subspace

φ̃k = Pk · φ =
1
√

L

L−1∑
`=0

ωk`φ` , (1.68)

is the average weighted by complex rotating phase ωkm which advances by ωk

in every step, and pulls out oscillating feature φ̃k out of the field φ. For large L,
modes φ̃k with k � L (or (L − k) � L, that is just a counter-rotation)) are called
hydrodynamic modes, corresponding to “configuration” lattice fields φwhich vary
slowly and smoothly over many lattice spacings. Modes with k ' L/2 are suspect,
they are lattice discretization artifacts.

If the lattice state is φ is localized, its Fourier transform will be global, and vice
versa for a localized Fourier state φ̃. For example, if the field φ is concentrated on
the first site, φ0 = 1, rest zero, its Fourier transform will be uniformly distributed
over all Fourier modes, φ̃k = 1/

√
L.

The complex function φ̃ is can sometimes be interpreted as an ‘amplitude
function’, with the square of its magnitude (φ̃† · φ̃) then interpreted as the corre-
sponding ‘total probability’

φ† · φ = φ̃† · φ̃ . (1.69)

The fact that this is the same if evaluated with φ or with its Fourier transform φ̃ is
known as the “Parseval’s identity.”

Furthermore, by (1.59), discrete Fourier transform diagonalizes every trans-
lationally invariant matrix function J , i.e., any matrix that commutes with the
translation operator, [r,J] = 0. To show that, sandwich J with the identity
1 = F F †:

J = 1J1 = F
(
F †JF

)
F † = F J̃F † .

The matrix

J̃ = F †JF (1.70)

is the Fourier transform of J . No need to stop here - the terms in the action
(1.39) that couple four (and, in general, 3, 4, · · · ) fields also have the Fourier
space representations

γ`1`2···`n φ`1φ`2 · · · φ`n = γ̃k1k2···kn φ̃k1 φ̃k2 · · · φ̃kn ,

γ̃k1k2···kn = γ`1`2···`n(ϕk1)`1(ϕk2)`2 · · · (ϕkn)`n

=
1

Ln/2

∑
`1···`n

γ`1`2···`n e−i 2π
L (k1`1+···+kn`n) . (1.71)

The form of any translation-invariant function, such as (1.69), or the path integral
(5.8) does not change under φ→ φ̃ transformation, and it does not matter whether
we compute in the Fourier space, or in the configuration space that we started out
with. For example, the trace of J is the same in either representation

trJ = trF J̃F † = tr J̃F †F = tr J̃ ,
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but, if J commutes with the translation operator r, the Fourier transform tr J̃
is diagonal and trivial to compute. By same reasoning it follows that trJn =

tr J̃n, and from the tr ln = ln tr relation that detJ = det J̃ . In fact, any scalar
combination of φ’s, J’s and couplings, such as the partition function Z[J], has
exactly the same form in the configuration and the Fourier space.

Suppose you have two translationally invariant matrices A, B. Evaluating
their product AB is a matrix computation. However, evaluating the product in
the Fourier space is a simple scalar multiplication of their diagonal elements:

(ÃB)kk′ = (F †A BF )kk′ = Ãk B̃kδkk′ (1.72)

The continuum Fourier transform version of this relation is called the “convolution
theorem.”

OK. But what’s the payback?

1.4.7 Lattice Laplacian diagonalized

We can now use the Fourier transform (1.70) to convert matrix functions of the
r matrix into scalars. As J commutes with r, then (J̃)kk′ = J̃kδkk′ is a diagonal
matrix, where the matrix J acts as a multiplication by the scalar J̃k on the kth
subspace. For example, for the 1-dimensional version of the lattice Laplacian
matrix (1.32), the eigenvalue condition (1.55) yields the diagonalized Laplacian
in the Fourier space,

JAϕk = (−� + µ2 11)ϕk = (p2 + µ2)ϕk
p = 2 sin(k/2) , k = 2π

n m , m = 0, 1, · · · , n − 1 , (1.73)

expresses the Fourier-diagonalized lattice Laplacian as the square of the lattice
momentum p,

(J̃A)mm′ = (p2 + µ2) δmm′ , (1.74)

with n eigenvalues Λm = p2 + µ2 indexed by the integer m. The ‘cord function’
crd(θ) = 2 sin(θ/2) was used already by Hipparchus cc. 130 BC in the same
context, as a discretization of a circle by approximating n arcs by n cords [3, 23].

In the kth subspace the bare propagator is simply a number, and, in contrast to
the mess generated by the configuration space inversion (1.37), there is nothing to
inverting J to J−1:

(ϕ†k · J
−1 · ϕk′) =

δkk′

p2 + µ2 , (1.75)

where k = (k1, k2, · · · , kd) is a d-dimensional vector in the Ld-dimensional dual
lattice, i.e., the discretized “momentum” or “frequency” space.

Example: Orbit Jacobian matrix eigenvalues for primitive cell of period 3.

The wave-number range in (1.73) is k ∈ (0, 2π/3, 4π/3). The Lapla-
cian part of the reciprocal lattice orbit Jacobian matrix (1.74) takes
values (up to a sign)

p(0) = 0 , p(2π/3) =
√

3 , .
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A typical reciprocal lattice site evaluation of p2:

p2
1 = p(2π/3)2 = 3 .

The eigenvalues of the Laplacian p2 in (1.74), evaluated on the VA =

3 lattice sites of the reciprocal primitive cell, indexed by integer m,
are

p2
0 p2

1 p2
2 = 0 3 3 , (1.76)

so, for example, the (J̃A)1 eigenvalue is

Λ2 = 3 + µ2 ,

and so on.

Going back to the partition function (5.29) and sticking in the factors of 1
into the bilinear part of the interaction, we replace the spatial source field J by
its Fourier transform J̃, and the spatial propagator J by the diagonalized Fourier
transformed G̃0

J† · J · J = J† · F
(
F †JF

)
F † · J = J̃† · G̃0 · J̃ . (1.77)

What’s the price? The interaction term S I[φ] (which in (5.29) was local in the
configuration space) now has a more challenging k dependence in the Fourier
transform version (1.71). For example, the locality of the quartic term leads to the
4-vertex momentum conservation in the Fourier space

S I[φ] =
1
4!
γ`1`2`3`4 φ`1φ`2φ`3φ`4 = −βu

Ld∑
`=1

(φ`)4 ⇒

= −βu
1

Ld

L∑
{ki}

δ0,k1+k2+k3+k4 φ̃k1 φ̃k2 φ̃k3 φ̃k4 . (1.78)

1.5 Lattice action

The number of admissible periodic points of period n, i.e., points on loops, or
walks that return to the starting lattice point is given by tr T n. By spatial transla-
tions invariance, all L sites of a periodic lattice (L1L2 · · · Ld for spatial dimension
d) are equivalent, so one should study walks that start in a given site and return to
it (“rooted lattice loop?”), i.e., in one spatial dimension Nn = tr T n/tr 1 = 1

L tr T n.
For example, in one spatial dimension we can enumerate all distinct walks by
treating hopping matrices (1.5) as free (not using the inverse = transpose)

T 2 = (σ + σ>)2 = σ2 + σσ> + σ>σ + σ>
2

T 4 = (σ2 + σσ> + σ>σ + σ>
2)2

= σ4 + (σσ>)2 + (σ>σ)2 + σ>
4

+σ3σ> + σ2σ>σ + σ2σ>
2

+σσ>σ2 + σσ>
2
σ + σσ>

3

+σ>σ3 + σ>σ2σ> + σ>σσ>
2

+σ>
2
σ2 + σ>

2
σσ> + σ>

3
σ . (1.79)

lattFT - 10jan2024 version 4.1 - Mar 10 2024



CHAPTER 1. LATTICE FIELD THEORY 25

The returning walks (red) have equal numbers of left and right steps, so they
multiply out to 1 (clearly, that can be counted combinatorially), and

N2 =
1
L

tr T 2 = 2 , N4 =
1
L

tr T 4 = 4 + N2 , (1.80)

where N4 includes 2 repeats of 2-cycles, and 4 prime 4-cycles.
tr T np picks up contributions from all repeats of prime cycles, with each cy-

cle contributing np periodic points, so Nn, the total number of periodic points of
period n is given by

znNn = zntr T n =
∑
np |n

nptn/np
p =

∑
p

np

∞∑
r=1

δnpr,ntr
p . (1.81)

Here m|n means that m is a divisor of n. In order to get rid of the awkward divis-
ibility constraint n = npr in the above sum, we introduce the generating function
for numbers of periodic points (only cycles of even length can close into loops):

∞∑
n=1

z2nN2n = tr
z2T 2

1 − z2T 2 . (1.82)

where we maybe should have used T = a2� − 21 from (1.32).
The right hand side is the geometric series sum of Nn = tr T n. Substituting

(1.81) into the left hand side, and replacing the right hand side by the eigenvalue
sum tr T n =

∑
ωn
α, we obtain our first example of a trace formula, the topological

trace formula∑
α=0

zωα
1 − zωα

=
∑

p

nptp

1 − tp
. (1.83)

the free, non-interacting partition function

Z = det (� − m2
01)−1/2 = e−

1
2 tr ln(�−m2

01) (1.84)

is the sum over all loops (returning walks), i.e., related to the trace of the propa-
gator (1.2).

1.6 Continuum field theory

The lattice Laplacian kth Fourier component (??) is

�̃kk =
2
a2

(
cos

(
2π
L

k
)
− 1

)
= −

(
2π
aL

)2

k2 +
1
12

(
2π
aL

)4

a2k4 − O(k6) . (1.85)

The quartic term can be neglected for low wave numbers k � L, i.e., low mo-
menta, pµ = 2πkµ/LL, where aL = LL is the lattice size.

In the continuum limit the probability to land in the kth cell is replaced by a
probability density, φk = adφ(xk) → (dx)dφ(x). After rescaling the wave-number
k into momentum p, we obtain the continuum version of the scalar propagator

∆(x, y) =

∫
dd p

(2π)d

eip·(x−y)

m2 + p2 . (1.86)
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1.7 Collective excitations: from particles to fields

One-dimensional harmonic chain is discussed by Ben Simons, in Lecture I: Col-
lective Excitations: From Particles to Fields Free Scalar Field Theory: Phonons
of his online course.

In Lecture 23 of his MIT course, Mehran Kardar [12] discusses elastodynamic
equilibria of two-dimensional solids. Consider a perfect solid at T = 0. The
equilibrium configuration of atoms forms a lattice,

~x0
mn = m~e1 + n~e2 ,

where ~e1 and ~e2 are basis vectors, a j = |~e j| is the lattice spacing along the jth
direction, and {m, n} are integers. At finite temperatures, the atoms fluctuate away
from their equilibrium position, moving to

~xmn = ~x0
mn + ~umn ,

As the low temperature (small kinetic energy) displacements do not vary substan-
tially over nearby atoms, one can define a coarse-grained displacement field ~u(~x),
where ~x = (x1, x2) is treated as continuous, with an implicit short distance cutoff

of the lattice spacing a. Due to translational symmetry, the elastic energy depends
only on the strain matrix,

ui j(~x) = 1
2

(
∂iu j + ∂ jui

)
.

Kardar picks the triangular lattice, as its elastic energy is isotropic, (invariant un-
der lattice rotations, see Landau and Lifshitz [13]). In terms of the Lamé coeffi-
cients λ and µ,

βH =
1
2

∫
d2~x (2µ ui jui j + λ uiiu j j)

= −
1
2

∫
d2~x ui[2µ� δi j + (µ + λ) ∂i∂ j] u j . (1.87)

(here we have assumed either infinite or doubly periodic lattice, so no boundary
terms from integration by parts), with the equations of motion something like
(FIX!)

∂2
t ui = [2µ� δi j + (µ + λ) ∂i∂ j] u j . (1.88)

In general, the number of independent elastic constants depends on the dimen-
sionality and rotational symmetry of the lattice in question. The symmetry of a
square lattice permits an additional term proportional to ∂2

xu2
x + ∂2

yu2
y . Thus in two

dimensions, square lattices have three independent elastic constants, but triangu-
lar lattices are “elastically isotropic” (i.e., elastic properties are independent of
direction and thus are characterized by only two Lamé coefficients [13]).

The Goldstone modes associated with the broken translational symmetry are
phonons, the normal modes of vibrations. Eq. (1.88) supports two types of lattice
normal modes, transverse and longitudinal.

The order parameter describing broken translational symmetry is

ρ ~G(~x) = ei ~G·~r(~x) = ei ~G·~u(~x) ,
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where ~G is any reciprocal lattice vector, where we have used that, by definition,
~G · ~r0 is an integer multiple of 2π. ρ ~G = 1 at zero temperature. Due to the
fluctuations,

〈ρ ~G(~x)〉 = 〈ei ~G·~u(~x)〉

decreases at finite temperatures, and its correlations decay as 〈ρ ~G(~x)ρ∗
~G
(~0)〉 . Kar-

dar computes this in Fourier space by approximating ~G ·~q with its angular average
G2q2/2, ignoring the rotationally symmetry-breaking term cos ~q · ~x, and getting
only the asymptotics of the correlations right (the decay is algebraic).

The translational correlations are measured in diffraction experiments. The
scattering amplitude is the Fourier transform of ρ ~G, and the scattered intensity at
a wave-vector q is proportional to the structure factor. At zero temperature, the
structure factor is a set of delta-functions (Bragg peaks) at the reciprocal lattice
vectors.

The orientational order parameter that characterizes the broken rotational sym-
metry of the crystal can be defined as

Ψ(~x) = e6iθ(~x) ,

where θ(~x) is the angle between local lattice bonds and a reference axis. The factor
of 6 accounts for the equivalence of the 6 possible C3v orientations of the triangu-
lar lattice. (Kardar says the appropriate choice for a square lattice is exp(4iθ(~x)) -
shouldn’t the factor be 8, the order of C4v?) The order parameter has unit magni-
tude at T = 0, and is expected to decrease due to fluctuations at finite temperature.
The displacement u(~x) leads to a change in bond angle given by

θ(~x) = − 1
2

(
∂xuy − ∂yux

)
.

Commentary

Remark 1.1. Collective excitations: from particles to fields. One-dimensional
harmonic chain is discussed by Altland and Simons [1] Condensed Matter Field Theory:
see Chapter 1 Collective Excitations: From Particles to Fields . In Lecture 23 of his MIT
course, Mehran Kardar discusses elastodynamic equilibria of two-dimensional solids. For
taking the infinite lattice limit (the first Brillouin zone, etc.) of (1.75), see Kadanoff [11]
derivation of the Sect. 3.4 Lattice Green Function, eq. (3.20), available online here.

Remark 1.2. Lattice field theory. In his 1983 Six Lectures on Lattice Field Theory
Michael Stone explains that the free, non-interacting partition function (1.84) is the sum
over all loop (returning walks), i.e., related to the trace of the propagator (1.2). This
goes back to Symanzik, and is probably explained at length in Federico Camia Brownian
Loops and Conformal Fields, arXiv:1501.04861.

Check Rosenfelder Path Integrals in Quantum Physics, arXiv:1209.1315.
Meyer [15] Lattice QCD: A brief introduction.
Jansen [10] Lattice field theory.
Check out also online Simons, Lecture I: Simons courses Collective Excitations:

From Particles to Fields Free Scalar Field Theory: Phonons; and Quantum Condensed
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Matter Field Theory; as well as Piers Coleman [5] Introduction to Many-Body Physics +

.
Further reading on lattice field theories: Sommer [21] Introduction to Lattice Gauge

Theories; Wiese [22] An Introduction to Lattice Field Theory; Rothe [19] Lattice Gauge
Theories; Smit [20] Introduction to Quantum Fields on a Lattice; Münster and M. Walzl [17]
Lattice gauge theory - A short primer, arXiv:hep-lat/0012005; Montvay and G. Mün-
ster [16] Quantum Fields on a Lattice; Jorge L. deLyra The Gaussian Model: An Explo-
ration into the Foundations of Quantum Field Theory;

Exercises

1.1. Euclidean free scalar particle propagator. Derive
the Euclidean free scalar particle propagator (1.10).

1.2. Scalar propagator, discrete Fourier representation.
Derive Fourier transform representation (1.75) of free

scalar particle propagator, but with prefactors correct for
starting with (1.10). (The notes probably have wrong
prefactors).

1.3. Scalar propagator, continuum configuration space
Derive the derive the continuum limit of the propaga-
tor (1.75) in the Fourier representation, with prefactors
correct for starting with (1.10).

1.4. 1D lattice Laplacian for period-8 periodic state.
Compute the eigenvalues of the period-8 1D lattice
Laplacian

2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
−1 0 0 0 0 0 −1 2


.

.
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[7] P. Cvitanović and H. Liang, Spatiotemporal cat: An exact classical chaotic
field theory, In preparation, 2019.

[8] C. Godsil and G. F. Royle, Algebraic Graph Theory (Springer, New York,
2013).

[9] G. W. Hill, “On the part of the motion of the lunar perigee which is a func-
tion of the mean motions of the sun and moon”, Acta Math. 8, 1–36 (1886).

exerLattFT - 21aug2018 version 4.1 - Mar 10 2024

http://www.tcm.phy.cam.ac.uk/~bds10/tp3.html
http://www.tcm.phy.cam.ac.uk/~bds10/tp3.html
http://www.physics.rutgers.edu/~coleman/
https://arXiv.org/abs/hep-lat/0012005
http://latt.if.usp.br/books/tgm/
http://dx.doi.org/10.1017/cbo9780511789984
http://dx.doi.org/10.1063/1.3037370
http://dx.doi.org/10.1007/s00220-012-1575-z
https://doi.org/10.1007/s00220-012-1575-z
https://doi.org/10.1007/s00220-012-1575-z
http://dx.doi.org/10.1017/cbo9781139020916
http://dx.doi.org/10.3390/sym14081524
http://dx.doi.org/10.3390/sym14081524
https://doi.org/10.3390/sym14081524
https://arXiv.org/abs/2201.11325
https://arXiv.org/abs/2201.11325
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.1007/bf02417081
http://dx.doi.org/10.1007/bf02417081
https://doi.org/10.1007/bf02417081


EXERCISES 29

[10] K. Jansen, “Lattice field theory”, Int. J. Mod. Phys. E 16, 2638–2679 (2007).

[11] L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization
(World Scientific, Singapore, 2000).

[12] M. Kardar, “Two dimensional solids, two dimensional melting”, in 8.334
Statistical Mechanics II: Statistical Physics of Fields (MIT OpenCourse-
Ware, Cambridge MA, 2014).

[13] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon
Press, Oxford, 1970).

[14] D. A. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Cod-
ing (Cambridge Univ. Press, Cambridge UK, 1995).

[15] H. B. Meyer, “Lattice QCD: A brief introduction”, in Lattice QCD for Nu-
clear Physics, edited by H.-W. Lin and H. B. Meyer (Springer, York New,
2014), pp. 1–34.

[16] I. Montvay and G. Münster, Quantum Fields on a Lattice (Cambridge Univ.
Press, Cambridge UK, 1994).

[17] G. Münster and M. Walzl, Lattice gauge theory - A short primer, 2000.

[18] M. Pollicott, Dynamical zeta functions, in Smooth Ergodic Theory and Its
Applications, Vol. 69, edited by A. Katok, R. de la Llave, Y. Pesin, and H.
Weiss (2001), pp. 409–428.

[19] H. J. Rothe, Lattice Gauge Theories - An Introduction (World Scientific,
Singapore, 2005).

[20] J. Smit, Introduction to Quantum Fields on a Lattice (Cambridge Univ.
Press, Cambridge UK, 2002).

[21] R. Sommer, Introduction to Lattice Gauge Theories, tech. rep. (Humboldt
Univ., 2015).

[22] U.-J. Wiese, An Introduction to Lattice Field Theory, tech. rep. (Univ. Bern,
2009).

[23] Wikipedia contributors, Chord (geometry) — Wikipedia, The Free Ency-
clopedia, 2023.

exerLattFT - 21aug2018 version 4.1 - Mar 10 2024

http://dx.doi.org/10.1142/s0218301307008355
https://doi.org/10.1142/s0218301307008355
http://dx.doi.org/10.1142/4016
https://ocw.mit.edu/courses/physics/8-334-statistical-mechanics-ii-statistical-physics-of-fields-spring-2014/lecture-notes/MIT8_334S14_Lec23.pdf
https://ocw.mit.edu/courses/physics/8-334-statistical-mechanics-ii-statistical-physics-of-fields-spring-2014/lecture-notes/MIT8_334S14_Lec23.pdf
https://ocw.mit.edu/courses/physics/8-334-statistical-mechanics-ii-statistical-physics-of-fields-spring-2014/lecture-notes/MIT8_334S14_Lec23.pdf
https://archive.org/details/TheoryOfElasticity
http://dx.doi.org/10.1017/cbo9780511626302
http://dx.doi.org/10.1017/cbo9780511626302
http://dx.doi.org/10.1007/978-3-319-08022-2_1
https://doi.org/10.1007/978-3-319-08022-2_1
https://doi.org/10.1007/978-3-319-08022-2_1
http://dx.doi.org/10.1017/cbo9780511470783
https://arXiv.org/abs/hep-lat/0012005
https://homepages.warwick.ac.uk/~masdbl/grenoble-16july.pdf
https://doi.org/10.1090/pspum/069
https://doi.org/10.1090/pspum/069
http://dx.doi.org/10.1142/5674
http://dx.doi.org/10.1017/cbo9780511583971
https://www-zeuthen.desy.de/alpha/lgt25-11-11.pdf
http://www.wiese.itp.unibe.ch/lectures/lattice.pdf
https://en.wikipedia.org/wiki/Chord_(geometry)
https://en.wikipedia.org/wiki/Chord_(geometry)


Chapter 2

Path integral formulation of
quantum mechanics

2.1 Quantum mechanics: a brief review . . . . . . . . . . . . 31
2.2 Matrix-valued functions . . . . . . . . . . . . . . . . . . . 33
2.3 Short time propagation . . . . . . . . . . . . . . . . . . . 35
2.4 Path integral . . . . . . . . . . . . . . . . . . . . . . . . . 36

We introduce Feynman path integral and construct semiclassical approximations
to quantum propagators and Green’s functions.

Have: the Schrödinger equation, i.e., the (infinitesimal time) evolution law
for any quantum wavefunction:

i~
∂

∂t
ψ(t) = Ĥψ(t) . (2.1)

Want: ψ(t) at any finite time, given the initial wave function ψ(0).

As the Schrödinger equation (2.1) is a linear equation, the solution can be
written down immediately:

ψ(t) = e−
i
~ Ĥtψ(0) , t ≥ 0 .

Fine, but what does this mean? We can be a little more explicit; using the con-
figuration representation ψ(q, t) = 〈q|ψ(t)〉 and the configuration representation
completness relation

1 =

∫
dqD |q〉〈q| (2.2)

we have

ψ(q, t) = 〈q|ψ(t)〉 =

∫
dq′ 〈q|e−

i
~ Ĥt|q′〉〈q′|ψ(0)〉 , t ≥ 0 . (2.3)

In sect. 2.1 we will solve the problem and give the explicit formula (2.9) for
the propagator. However, this solution is useless - it requires knowing all quantum
eigenfunctions, i.e., it is a solution which we can implement provided that we have
already solved the quantum problem. In sect. 2.4 we shall derive Feynman’s path
integral formula for K(q, q′, t) = 〈q|e−

i
~ Ĥt|q′〉.
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2.1 Quantum mechanics: a brief review

We start with a review of standard quantum mechanical concepts prerequisite to
the derivation of the semiclassical trace formula: Schrödinger equation, propaga-
tor, Green’s function, density of states.

In coordinate representation the time evolution of a quantum mechanical wave
function is governed by the Schrödinger equation (2.1)

i~
∂

∂t
ψ(q, t) = Ĥ(q,

~

i
∂

∂q
)ψ(q, t), (2.4)

where the Hamilton operator Ĥ(q,−i~∂q) is obtained from the classical Hamilto-
nian by substitution p→ −i~∂q. Most of the Hamiltonians we shall consider here
are of form

H(q, p) = T (p) + V(q) , T (p) =
p2

2m
, (2.5)

appropriate to a particle in a D-dimensional potential V(q). If, as is often the
case, a Hamiltonian has mixed terms such as q̇ p, consult any book on quantum
mechanics. We are interested in finding stationary solutions

ψ(q, t) = e−iEnt/~φn(q) = 〈q|e−iĤt/~|n〉 ,

of the time independent Schrödinger equation

Ĥψ(q) = Eψ(q) , (2.6)

where En, |n〉 are the eigenenergies, respectively eigenfunctions of the system. For
bound systems the spectrum is discrete and the eigenfunctions form an orthonor-
mal ∫

dqD φ∗n(q)φm(q) =

∫
dqD 〈n|q〉〈q|m〉 = δnm (2.7)

and complete∑
n

φn(q)φ∗n(q′) = δ(q − q′) ,
∑

n

|n〉〈n| = 1 (2.8)

set of Hilbert space functions. For simplicity we will assume that the system is
bound, although most of the results will be applicable to open systems, where one
has complex resonances instead of real energies, and the spectrum has continuous
components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEnt/~φn(q) ,

where the expansion coefficient cn is given by the projection of the initial wave
function onto the nth eigenstate

cn =

∫
dqD φ∗n(q)ψ(q, 0) = 〈n|ψ(0)〉.
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Figure 2.1: Path integral receives contributions from
all paths propagating from q′ to q in time t = t′ + t′′,
first from q′ to q′′ for time t′, followed by propagation
from q′′ to q in time t′′.

The evolution of the wave function is then given by

ψ(q, t) =
∑

n

φn(q)e−iEnt/~
∫

dq
′Dφ∗n(q′)ψ(q′, 0).

We can write this as

ψ(q, t) =

∫
dq
′DK(q, q′, t)ψ(q′, 0),

K(q, q′, t) =
∑

n

φn(q) e−iEnt/~φ∗n(q′)

= 〈q|e−
i
~ Ĥt|q′〉 =

∑
n

〈q|n〉e−iEnt/~〈n|q′〉 , (2.9)

where the kernel K(q, q′, t) is called the quantum evolution operator, or the propa-
gator. Applied twice, first for time t1 and then for time t2, it propagates the initial
wave function from q′ to q′′, and then from q′′ to q

K(q, q′, t1 + t2) =

∫
dq′′ K(q, q′′, t2)K(q′′, q′, t1) (2.10)

forward in time, hence the name “propagator”, see figure 2.1. In non-relativistic
quantum mechanics the range of q′′ is infinite, meaning that the wave can propa-
gate at any speed; in relativistic quantum mechanics this is rectified by restricting
the forward propagation to the forward light cone.

Since the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, the propagator itself also satisfies the Schrödinger equa-
tion

i~
∂

∂t
K(q, q′, t) = Ĥ(q,

i
~

∂

∂q
)K(q, q′, t) . (2.11)

The propagator is a wave function defined for t ≥ 0 which starts out at t = 0 as a
delta function concentrated on q′

lim
t→0+

K(q, q′, t) = δ(q − q′) . (2.12)

This follows from the completeness relation (2.8).
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The time scales of atomic, nuclear and subnuclear processes are too short for
direct observation of time evolution of a quantum state. For this reason, in most
physical applications one is interested in the long time behavior of a quantum
system.

In the t → ∞ limit the sharp, well defined quantity is the energy E (or fre-
quency), extracted from the quantum propagator via its Laplace transform, the
energy dependent Green’s function

G(q, q′, E + iε) =
1
i~

∫ ∞

0
dt e

i
~Et− ε~ tK(q, q′, t) =

∑
n

φn(q)φ∗n(q′)
E − En + iε

. (2.13)

Here ε is a small positive number, ensuring that the propagation is forward in time.

This completes our lightning review of quantum mechanics.
Feynman arrived to his formulation of quantum mechanics by thinking of fig-

ure 2.1 as a “multi-slit” experiment, with an infinitesimal “slit” placed at every q′

point. The Feynman path integral follows from two observations:

1. Sect. 2.3: For short time the propagator can be expressed in terms of classi-
cal functions (Dirac).

2. Sect. 2.4: The group property (2.10) enables us to represent finite time evo-
lution as a product of many short time evolution steps (Feynman).

2.2 Matrix-valued functions

How are we to think of the quantum operator

Ĥ = T̂ + V̂ , T̂ = p̂2/2m , V̂ = V(q̂) , (2.14)

corresponding to the classical Hamiltonian (2.5)?
Whenever you are confused about an “operator”, think “matrix”. Expressed

in terms of basis functions, the propagator is an infinite-dimensional matrix; if we
happen to know the eigenbasis of the Hamiltonian, (2.9) is the propagator diago-
nalized. Of course, if we knew the eigenbasis the problem would have been solved
already. In real life we have to guess that some complete basis set is good starting
point for solving the problem, and go from there. In practice we truncate such
matrix representations to finite-dimensional basis set, so it pays to recapitulate a
few relevant facts about matrix algebra.

The derivative of a (finite-dimensional) matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′i j(x) =

d
dx

Ai j(x) . (2.15)

Derivatives of products of matrices are evaluated by the chain rule

d
dx

(AB) =
dA
dx

B + A
dB
dx

. (2.16)

A matrix and its derivative matrix in general do not commute

d
dx

A2 =
dA
dx

A + A
dA
dx

. (2.17)
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The derivative of the inverse of a matrix follows from d
dx (AA−1) = 0:

d
dx

A−1 = −
1
A

dA
dx

1
A
. (2.18)

As a single matrix commutes with itself, any function of a single variable
that can be expressed in terms of additions and multiplications generalizes to a
matrix-valued function by replacing the variable by the matrix.

In particular, the exponential of a constant matrix can be defined either by its
series expansion, or as a limit of an infinite product:

eA =

∞∑
k=0

1
k!

Ak , A0 = 1 (2.19)

= lim
N→∞

(
1 +

1
N

A
)N

(2.20)

The first equation follows from the second one by the binomial theorem, so these
indeed are equivalent definitions. For finite N the two expressions differ by or-
der O(N−2). That the terms of order O(N−2) or smaller do not matter is easy to
establish for A→ x, the scalar case. This follows from the bound(

1 +
x − ε

N

)N
<

(
1 +

x + δxN

N

)N
<

(
1 +

x + ε

N

)N
,

where |δxN | < ε accounts for extra terms in the binomial expansion of (2.20). If
lim δxN → 0 as N → ∞, the extra terms do not contribute. I do not have equally
simple proof for matrices - would probably have to define the norm of a matrix
(and a norm of an operator acting on a Banach space) first.

The logarithm of a matrix is defined by the power series

ln(1 − B) = −

∞∑
k=1

Bk

k
. (2.21)

Consider now the trace

tr ln(1 − B) = −

∞∑
k=1

tr (Bk)
k

.

To the leading order in 1/N

det (1 + A/N) = 1 +
1
N

tr A + O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1
N

tr A + O(N−2)
)N

= etr A (2.22)

Defining M = eA we can write this as

ln det M = tr ln M . (2.23)
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Due to non-commutativity of matrices, generalization of a function of several
variables to a function is not as straightforward. Expression involving several ma-
trices depend on their commutation relations. For example, the Baker-Campbell-
Hausdorff commutator expansion

etABe−tA = B + t[A, B] +
t2

2
[A, [A, B]] +

t3

3!
[A, [A, [A, B]]] + · · · (2.24)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics, follows by recursive evaluation of t derivaties

d
dt

(
etABe−tA

)
= etA[A, B]e−tA .

Expanding exp(A + B), exp A, exp B to first few orders using (2.19) yields

e(A+B)/N = eA/NeB/N −
1

2N2 [A, B] + O(N−3) , (2.25)

and the Trotter product formula: if B, C and A = B + C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
. (2.26)

2.3 Short time propagation

Split the Hamiltonian into the kinetic and potential terms Ĥ = T̂ + V̂ and consider
the short time propagator

K(q, q′,∆t) = 〈q|e−
i
~ Ĥ∆t|q′〉 = 〈q|e−T̂λe−V̂λ|q′〉 + O(∆t2) . (2.27)

where λ = i
~∆t. The error estimate follows from (2.25). In the coordinate repre-

sentation the operator

e−V̂λ|q〉 = e−V(q)λ|q〉

is diagonal (a “c-number”). In order to evaluate 〈q|e−T̂λ|q′〉, insert the momentum
eigenstates sum in a D-dimensional configuration space

1 =

∫
dpD |p〉〈p| , 〈p|q〉 = (2π~)−D/2e−

i
~ p·q , (2.28)

and evaluate the Gaussian integral

〈q|e−λT̂ |q′〉 =

∫
dpD 〈q|e−T̂λ|p〉〈p|q′〉 =

∫
dpD

(2π~)D/2 e−λp2/2me
i
~ p·(q−q′)

=

( m
2πi~∆t

) D
2

e
i
~

m
2∆t (q−q′)2

. (2.29)

Replacement (q − q′)/∆t → q̇ leads (up to an error of order of ∆t2) to a purely
classical expression for the short time propagator

K(q, q′,∆t) =

( m
2πi~∆t

)D/2
e

i
~∆t L(q,q̇) + O(∆t2) , (2.30)

where L(q, q̇) is the Lagrangian of classical mechanics

L(q, q̇) = m
q̇2

2
− V(q) . (2.31)
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2.4 Path integral

Next we express the finite time evolution as a product of many short time evolution
steps.

Splitting the Hamiltonian into the kinetic and potential terms Ĥ = T̂ + V̂ and
using the Trotter product formula (2.26) we have

e−
i
~ Ĥt = lim

N→∞

(
e−

i
~ T̂∆te−

i
~ V̂∆t

)N
, ∆t = t/N (2.32)

Turn this into matrix multiplication by inserting the configuration representation
completeness relations (2.2)

K(q, q′, t) = 〈q|e−
i
~ Ĥt|q′〉 (2.33)

=

∫
dqD

1 · · · dqD
N−1〈q|e

−Ĥλ|qN−1〉 · · · 〈q1|e−Ĥλ|q′〉

= lim
N→∞

∫
dqD

1 · · · dqD
N−1〈q

′|e−T̂λe−V̂λ|qN−1〉 · · · 〈q1|e−T̂λe−V̂λ|q〉 .

The next step relies on convolution of two Gaussians being a Gaussian. Substitut-
ing (2.30) we obtain that the total phase shift is given by the Hamilton’s principal
function, the integral of (2.31) evaluated along the given path p from q′ = q(0) to
q = q(t):

R[q] = lim
N→∞

N−1∑
j=0

∆t
(
m
2

(q j+1 − q j

∆t

)2
− V(q j)

)
, q0 = q′

=

∫
dτ L(q(τ), q̇(τ)) , (2.34)

where functional notation [q] indicates that R[q] depends on the vector q = (q′, q1, q2, . . . , qN−1, q)
defining a given path q(τ) in the limit of N → ∞ steps, and the propagator is given
by

K(q, q′, t) = lim
N→∞

∫
[dq] e

i
~R[q] (2.35)

[dq] =

N−1∏
j=1

dqD
j

(2πi~∆t/m)D/2 .

We assume that the energy is conserved, and that the only time dependence of
L(q, q̇) is through (q(τ), q̇(τ)).

Path integral receives contributions from all paths propagating forward from
q′ to q in time t, see figure 2.1. The usual, more compact notation is

K(q, q′, t) =

∫
Dq e

i
~R[q] , or, more picturesquely

= C
∑

p

e
i
~R[qp] , q′ = qp(0), q = qp(t) , (2.36)

where
∫
Dq is shorthand notation for the N → ∞ limit in (2.35),∫
Dq = lim

N→∞

∫
[dq] , (2.37)

and the “sum over the paths C
∑

p” is whatever you imagine it to be.
What’s good and what’s bad about path integrals? First the virtues:
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• conceptual unification of

– quantum mechanics

– statistical mechanics

– chaotic dynamics

• yields analytic solutions to classes of quantum problems

• quantum-classical correspondence

– semiclassical theory

• theory of perturbative corrections

– Feynman diagrams

• relativistic quantum field theory

And now for the bad news:

• N → ∞ continuum limit

– fraught with perils - sides of the road are littered with corpses of the
careless

Exercises

2.1. Dirac delta function, Lorentzian representation.
Derive the representation

δ(E − En) = − lim
ε→+0

1
π

Im
1

E − En + iε
(2.38)

of a delta function as imaginary part of 1/x.
(Hint: read up on principal parts, positive and negative
frequency part of the delta function, the Cauchy theorem
in a good quantum mechanics textbook).

2.2. Green’s function. Verify Green’s function Laplace
transform (2.13),

G(q, q′, E + iε) =
1
i~

∫ ∞

0
dt e

i
~ Et− ε

~ tK(q, q′, t)

=
∑ φn(q)φ∗n(q′)

E − En + iε
,

argue that positive ε is needed (hint: read a good quan-
tum mechanics textbook).

2.3. Scalar field propagator. [M. Srednicki, Quan-
tum Field Theory, Part I arXiv:hep-th/0409035, prob-
lem 8.2]

Starting with

∆(x − x′) =

∫
d4k

(2π)4

eik(x−x′)

k2 + m2 − iε
, (2.39)

verify

∆(x − x′) = i
∫

d̃k eik·(x−x′)−iω|t−t′ | (2.40)

= iθ(t − t′)
∫

d̃k eik(x−x′)

+iθ(t′ − t)
∫

d̃k e−ik(x−x′) . (2.41)

There should be an i in eq. (2.40).
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2.4. Quantum mechanical path integrals.
Consider a particle moving in one dimension with sepa-
rable Hamiltonian:

H =
p2

2m
+ V(q) .

If the particle is at a position q at time t = 0, what is
the probability amplitude that it will be at position q′ at
a later time t = T?
a) Show that the propagator from the initial spacetime
point (q, 0) to the final point (q′,T ) is

A = 〈q′|ψ(T )〉 ≡ K(q′,T ; q, 0) = 〈q′|e−iHT |q〉 (2.42)

(set ~ to 1 throughout).
b) Split the time evolution into two intervals T = (T −
t1) + t1, show that the amplitude can be written as

A =

∫
dq1 K(q′,T ; q1, t1)K(q1, t1; q, 0) . (2.43)

c) Split the time interval T into a large number N of short
time intervals of duration ε = T/N:

A = 〈q′|
(
e−iHε

)N
|q〉 = 〈q′| e−iHεe−iHε · · · e−iHε︸                 ︷︷                 ︸

N times

|q〉 ,

and show that the amplitude can be written as the sum
over the amplitudes of all possible N-segment paths,

A =
∑
paths

Apath ,

where ∑
paths

=

∫
dq1 · · · dqN−1 ,

Apath = KqN ,qN−1 KqN−1,qN−2 · · ·Kq2,q1 Kq1,q0 .

d) Show that the short-time propagator for one sub-
interval is given by

Kq j+1,q j =

∫
dp j

2π
eip j(q j+1−q j)e−iεH(p j,q̄ j)(1+o(ε2)) , (2.44)

where q̄ j = 1
2 (q j + q j+1).

e) Combine N such factors, show that to the order of
o(ε2) the amplitude of a path is

Apath =

∫ N−1∏
j=0

dp j

2π
exp iε

N−1∑
j=0

(p jq̇ j−H(p j, q̄ j)) . (2.45)

f) Show that the propagator is given by

K =

∫ N−1∏
j=1

dq j

∫ N−1∏
j=0

dp j

2π
exp iε

N−1∑
j=0

(p jq̇ j − H(p j, q̄ j)) ,(2.46)

with one momentum integral for each segment (N total),
and one position integral for each intermediate position
(N − 1 total). In the N → ∞ limit, this is a phase-space
path integral integral over all functions p(t), q(t):

K ≡
∫
Dp(t)Dq(t) exp i

∫ T

0
dt (pq̇ − H(p, q)) , (2.47)

with fixed ends q(0) = q, q(T ) = q′.

g) Show that if the Hamiltonian is separable, H =

p2/2m + V(q), one can carry out the momentum inte-
grals in (2.46), and the propagator becomes

K =

∫ N−1∏
j=1

dq j exp−iε
N−1∑
j=0

V(q̄ j)
N−1∏
j=0

√ m
2πiε

exp iε
mq̇2

j

2


=

( m
2πiε

)N/2 ∫ N−1∏
j=1

dq j exp iε
N−1∑
j=0

mq̇2
j

2
− V(q̄ j)

 .(2.48)

The argument of the exponential is the action of a path
passing through the points q0 = q, q1, · · · , qN−1, qN = q′.
This is the configuration space path integral

K =

∫
Dq(t)eiS [q(t)] . (2.49)
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Generating functionals

See P. Cvitanović [1] Field theory, chapter 2. Generating functionals, yours for a
click here.

References
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Copenhagen, 1983).

Exercises

3.1. 2.B.1 Continuous indices (self energy for QCD).
The numbers refer to exercises in P. Cvitanović [1] Field
theory, chapter 2. Generating functionals (click here).

3.2. 2.D.1 Combinatoric weights.

3.3. 2.E.1 Functional derivatives.

3.4. 2.E.2 Feynman rules.

3.5. 2.E.3 Zero-dimensional field theory.
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See P. Cvitanović [2] Field theory, chapter 3. Path integrals, yours for a click
here. The rest of this chapter are notes on some related literature, safely ignored.

4.1 Bell polynomials

[2018-12-22 Predrag] Fiol, Martínez-Montoya and Fukelman [3], Wilson loops
in terms of color invariants (2018), note in passing that the power series for the
logarithm of the full 〈W〉 (the connected ln 〈W〉 partition function) can be in terms
of partial Bell polynomials Bn,k (I do not remember ever seeing this formula).
Defining fk = da1a1...akak

R /NR

ln 〈W〉 =

∞∑
k=1

gk

k!

k∑
j=1

(−1) j−1( j − 1)!Bk, j( f1, f2, . . . , fk− j+1) (4.1)

This expression for ln 〈W〉 is, however, extremely inefficient, and obscures the fact
that the perturbative expansion of ln 〈W〉 is simpler than that of 〈W〉.

More useful, perhaps, is the 1927 Ursell function (see wiki). For other appli-
cations of cumulants, see ChaosBook remark A20.1.

4.2 Legendre transforms

In Cvitanović [2] Field theory, chapter 2. Generating functionals, the Legendre
transform eq. (2.28) comes out for free, just by looking at the 1PI subset of the
connected graphs (that’s why Γ[φ] comes out with the same sign as Γ[φ], unlike
the Hamiltonian / Lagrangian relation in classical mechanics).
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Here is some, mostly undigested reading on the meaning of Legendre trans-
forms.

Probably the most pedagogical exposition is Zia, Redish and McKay [4] Mak-
ing sense of the Legendre transform. I have also found enjoyable several posts by
Baez, starting with Classical Mechanics versus Thermodynamics: “It seems this
whole subject is a monument of austere beauty. . . covered with minus signs, like
bird droppings.” He writes:

If we fix the temperature T and volume V, the system will choose a state that
minimizes the Helmholtz free energy A(T,V).

If we fix the temperature T and pressure P, the system will choose a state that
minimizes the Gibbs free energy G(T,P).

Consider the cotangent bundle T ∗Q, which has local coordinates qi (coming
from the coordinates on Q) and pi (the corresponding coordinates on each cotan-
gent space). We then call pi the conjugate variable of the coordinate qi.

Note that this is a unified picture, it avoids the most common approaches to
classical mechanics, which start with either a ‘Hamiltonian’

H : T ∗Q→ R

or a ‘Lagrangian’

L : T Q→ R

Instead, we started with Hamilton’s principal function

S : Q→ R

where Q is not the usual configuration space describing possible positions for a
particle, but the ‘extended’ configuration space, which also includes time. Only
this way do Hamilton’s equations, like the Maxwell relations, become a trivial
consequence of the fact that partial derivatives commute.”

Back to my Field Theory book: I present Legendre and Fourier transforms
as totally distinct functional transformations; Fourier as a multiplication by a ma-
trix, and Legendre as a subset and (recursive) additions to it. Still, I explain that
path integrals / generating functionals are “Fourier" or “Laplace" transforms of
each other, and in the process of understanding that, one gets that the Legendre
transform of W[J], so they are the same transformation in some sense. That is
discussed by Markus Deserno in his Legendre Transforms lecture notes. For my
taste he is a bit too taken by “How much information is contained in a function?”
but the sect. B. Relation to Laplace transforms and partition functions is of inter-
est to us; Legendre transform emerges from a Laplace saddle point calculation. In
stackexchange Qmechanic says the same thing: “the Legendre transformation can
be e.g. seen as the leading classical tree-level formula of a formal semiclassical
Fourier transformation.” Read also Dan Piponi.

In the same stackexchange Domino Valdano puts it this way: “The mathemat-
ical relationship between Fourier and Legendre conjugates is somewhat analogous
to the relationship between Lie groups and Lie algebras.”
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4.3 Complex actions

[2022-11-01 Predrag] Alexanian, MacKenzie, Paranjape and Ruel [1] Problems
with complex actions (2007), consider Euclidean functional integrals involving
complex actions. In this case there do not exist critical points of the action on the
space of real fields. The proper definition of the function integral then requires
the analytic continuation of the functional integration into the space of complex
fields so as to pass through the complex critical points according to the method of
steepest descent.
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Exercises

4.1. 3.B.1 Gaussian integrals for complex field.

The numbers refer to exercises in P. Cvitanović [2] Field
theory, chapter 3. Path integrals (click here).

4.2. 3.C.1 Wick expansion.

4.3. 3.C.2 Counting QED diagrams.

4.4. 3.F.3 Counting QED diagrams.
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The path integral (2.35) is an ordinary multi-dimensional integral. In the clas-
sical ~→ 0, the action is large (high price of straying from the beaten path) almost
everywhere, except for some localized regions of the q-space. Highly idealized,
the action looks something like the sketch in figure 5.1 (in order to be able to draw
this on a piece of paper, we have suppressed a large number of q` coordinates).

Such integral is dominated by the minima of the action. The minimum value
S [q] states qc are determined by the zero-slope, saddle-point condition

d
dφ `

S [qc] + J` = 0 . (5.1)

The term “saddle” refers to the general technique of evaluating such integrals for
complex q; in the statistical mechanics applications qc are locations of the minima
of S [q], not the saddles. If there is a number of minima, only the one (or the nc

minima related by a discrete symmetry) with the lowest value of −S [qc] − qc ·

J dominates the path integral in the low temperature limit. The zeroth order,
classical approximation to the partition sum (2.35) is given by the extremal state
alone

Z[J] = eW[J] →
∑

c

eWc[J] = eWc[J]+ln nc

Wc[J] = S [qc] + qc · J . (5.2)

43
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Figure 5.1: In the classical ~→ 0 limit (or the low
temperature T = 1/β limit) the path integral (5.8)
is dominated by the minima of the integrand’s ex-
ponent. The location φc of a minimum is deter-
mined by the extremum condition ∂`S [φc]+ J` = 0
.

In the saddlepoint approximation the corrections due to the fluctuations in the
qc neighborhood are obtained by shifting the origin of integration to

q` → qc
` + q` ,

the position of the c-th minimum of S [q] − q · J, and expanding S [q] in a Taylor
series around qc.

For our purposes it will be convenient to separate out the quadratic part S 0[q],
and collect all terms higher than bilinear in q into an “interaction” term S I[q]

S 0[q] = −
∑
`

q`
(
M−1

)
``′

q` ,

S I[q] = −(· · · )``′`′′q`q`′q`′′ + · · · . (5.3)

Rewrite the partition sum (2.35) as

eW[J] = eWc[J]
∫

[dq] e−
1
2 q>·M−1·q+S I [q] .

As the expectation value of any analytic function

f (q) =
∑

fn1n2...q
n1
1 qn2

2 · · · /n1!n2! · · ·

can be recast in terms of derivatives with respect to J∫
[dq] f [q]e−

1
2 q>·M−1·q = f

[
d
dJ

] ∫
[dq] e−

1
2 q>·M−1·q+q·J

∣∣∣∣∣
J=0

,

we can move S I[q] outside of the integration, and evaluate the Gaussian integral
in the usual way

exercise A1.2

eW[J] = eWc[J]eS I [ d
dJ ]

∫
[dq] e−

1
2 q>·M−1·q+q·J

∣∣∣∣∣
J=0

= |det M|
1
2 eWc[J]eS I [ d

dJ ] e
1
2 J>·M·J

∣∣∣∣
J=0

. (5.4)

M is invertible only if the minima in figure 5.1 are isolated, and M−1 has
no zero eigenvalues. The marginal case would require going beyond the Gaussian
saddlepoints studied here, typically to the Airy-function type stationary points [1].
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In the classical statistical mechanics S [q] is a real-valued function, the extremum
of S [q] at the saddlepoint qc is the minimum, all eigenvalues of M are strictly
positive, and we can drop the absolute value brackets | · · · | in (5.4).

exercise A1.5
Expanding the exponentials and evaluating the d

dJ derivatives in (5.4) yields
the fluctuation corrections as a power series in 1/β = T .

The first correction due to the fluctuations in the qc neighborhood is obtained
by approximating the bottom of the potential in figure 5.1 by a parabola, i.e.,
keeping only the quadratic terms in the Taylor expansion (5.3).

5.1 Field theory - setting up the notation

The partition sum for a lattice field theory defined by a HamiltonianH[φ] is

Z[J] =

∫
[dφ]e−β(H[φ]−φ·J)

[
dφ

]
=

dφ1
√

2π

dφ2
√

2π
· · · ,

where β = 1/T is the inverse temperature, and J` is an external probe that we can
twiddle at will site-by-site. For a theory of the Landau type the Hamiltonian

HL[φ] =
r
2
φ`φ` +

c
2
∂µφ`∂µφ` + u

Nd∑
`=1

φ4
` (5.5)

is translationally invariant. Unless stated otherwise, we shall assume the repeated
index summation convention throughout. We find it convenient to bury now some
factors of

√
2π into the definition of Z[J] so they do not plague us later on when

we start evaluating Gaussian integrals. Rescaling φ → (const)φ changes [dφ] →
(const)N[dφ], a constant prefactor in Z[J] which has no effect on averages. Hence
we can get rid of one of the Landau parameters r, u, and c by rescaling. The
accepted normalization convention is to set the gradient term to 1

2 (∂φ)2 by J →
c1/2J, φ→ c−1/2φ, and theHL in (5.5) is replaced by

H[φ] =
1
2
∂µφ`∂µφ` +

m2
0

2
φ`φ` +

g0

4!

∑
`

φ4
`

m2
0 =

r
c
, g0 = 4!

u
c2 . (5.6)

Dragging factors of β around is also a nuisance, so we absorb them by defining
the action and the sources as

S [φ] = −βH[φ] , J` = βJ` .

The actions we learn to handle here are of form

S [φ] = −
1
2

(M−1)``′φ`φ`′ + S I[φ] ,

S I[φ] =
1
3!
γ`1`2`3 φ`1φ`2φ`3 +

1
4!
γ`1`2`3`4 φ`1φ`2φ`3φ`4 + · · · . (5.7)

Why we chose such awkward notation M−1 for the matrix of coefficients of the
φ`φ`′ term will become clear in due course (or you can take a peak at (5.12) now).
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Our task is to compute the partition function Z[J], the “free energy” W[J], and
the full n-point correlation functions

Z[J] = eW[J] =

∫
[dφ]eS [φ]+φ·J (5.8)

= Z[0]

1 +

∞∑
n=1

∑
`1`2···`n

G`1`2···`n

J`1 J`2 . . . J`n

n!

 ,
G`1`2···`n = 〈φ`1φ`2 . . . φ`n〉 =

1
Z[0]

d
dJ `1

. . .
d
dJ `n

Z[J]
∣∣∣∣∣
J=0

. (5.9)

The “bare mass” m0 and the “bare coupling” g0 in (5.6) parameterize the relative
strengths of quadratic, quartic fields at a lattice point vs. contribution from spatial
variation among neighboring sites. They are called “bare” as the 2- and 4-point
couplings measured in experiments are “dressed” by fluctuation contributions.

The action of discretized φ4-theory can be written as

S [φ] =
∑

x

ad

1
2

4∑
µ=1

(∂µφ(x))2 +
m2

0

2
φ(x)2 +

g0

4!
φ(x)4

 .

One usually starts with a finite hypercubic lattice with length L1 = L2 = L3 = L
in every spatial direction and length L4 = T in Euclidean time,

xµ = anµ, nµ = 0, 1, 2, . . . , Lµ − 1,

with finite volume V = L3T . A popular finite volume boundary conditions are
periodic boundary conditions

φ(x) = φ(x + aLµ n̂µ),

where n̂µ is the unit vector in the µ-direction.
In order to get rid of some of the lattice indices it is convenient to employ vec-

tor notation for the terms bilinear in φ, and keep the rest lumped into “interaction,”

S [φ] = −
m2

2
φ> · φ −

C
2

[(
dµ − 1

)
φ
]
> ·

(
dµ − 1

)
φ + S I[φ] . (5.10)

For example, for the discretized Landau Hamiltonian m2/2 = βm2
0/2, C = β/a2,

and the quartic term S I[φ] is local site-by-site,

γ`1`2`3`4 = −4! βu δ`1`2δ`2`3δ`3`4 ,

so this general quartic coupling is a little bit of an overkill, but by the time we get
to the Fourier-transformed theory, it will make sense as a momentum conserving
vertex (1.78).

Consider the action

S [dφ] = −
1
2
φ> · d>M−1d · φ −

βg0

4!

Nd∑
`=1

(dφ)4
` .
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As M−1 is constructed from d and its inverse, M−1 and d commute, and the bilinear
term is d invariant. In the quartic term d permutes cyclically the terms in the sum.
The total action is translationally invariant

S [dφ] = S [φ] = −
1
2
φ> · M−1 · φ −

βg0

4!

Nd∑
`=1

φ4
` . (5.11)

5.2 Free propagation

In many field theory textbooks much time is spent on ‘non-interacting fields’,
‘free propagation’, etc... Attempts to ‘derive’ quantum mechanics from deeper
principles often do not ever get to ‘interacting fields’. Why is that?

Mathematical physics equals three tricks: 1) Gaussian integral, 2) integration
by parts, and 3) (your own more sophisticated trick). As we shall now see, 1)
suffices to solve free field theories.

5.3 Free field theory

There are field theory courses in which months pass while free non-interacting
fields are beaten to pulp. This text is an exception, but even so we get our first
glimpse of the theory by starting with no interactions, S I[φ] = 0. The free-
field partition function (which sometimes ekes living under the name “Gaussian
model”) is

Z0[J] = eW0[J] =

∫
[dφ]e−

1
2φ
>·M−1·φ+φ·J = |det M|

1
2 e

1
2 J>·M·J

W0[J] =
1
2

J> · M · J +
1
2

tr ln M . (5.12)

The full n-point correlation functions (5.9) vanish for n odd, and for n even they
are given by products of distinct combinations of 2-point correlations

G``′ = (M)``′

G`1`2`3`4 = (M)`1`2(M)`3`4 + (M)`1`3(M)`2`4 + (M)`1`4(M)`2`3

G`1`2···`n = (M)`1`2 · · · (M)`n−1`n + (M)`1`3 · · · (M)`n−1`n + · · · (5.13)

Keeping track of all these dummy indices (and especially when they turn into a zoo
of of continuous coordinates and discrete indices) is a pain, and it is much easier
to visualize this diagrammatically. Defining the propagator as a line connecting
2 lattice sites, and the probe J` as a source/sink from which a single line can
originate

(M)`1`2 = `1 `2 , J` = ` , (5.14)

we expand the free-field theory partition function (5.12) as a Taylor series in J> ·
M−1 · J

Z0[J]
Z0[0]

= 1 + · · · . (5.15)
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In the diagrammatic notation the non-vanishing n-point correlations (5.13) are
drawn as

(11 terms) . (5.16)

The total number of distinct terms contributing to the noninteracting full n-point
exercise 5.1

correlation is 1 ·3 ·5 · · · (n−1) = (n−1)!!, the number of ways that n source terms
J can be paired into n/2 pairs M.

5.4 Feynman diagrams

For field theories defined at more than a single point the perturbative corrections
can be visualized by means of Feynman diagrams. It is not clear that this is the
intelligent way to proceed [4], as both the number of Feynman diagrams and the
difficulty of their evaluation explodes combinatorially, but as most physicist stop
at a 1-loop correction, for the purpose at hand this is a perfectly sensible way to
proceed.

5.4.1 Hungry pac-men munching on fattened J’s

The saddle-point expansion is most conveniently evaluated in terms of Feynman
diagrams, which we now introduce. Expand both exponentials in (5.29)

eS I [ d
dJ ] e

1
2 J>·M·J =

1 +
1
4!

+
1
2

1
(4!)2 + · · ·


×

1 + · · ·

 (5.17)

Here we have indicated d
dJ as a pac-man that eats J, leaving a delta function in its

wake
d
dJ j

J` = δ j`

. (5.18)

For example, the rightmost pac-man in the
∑
`(

d
dJ `)

4 interaction term quartic in

derivative has four ways of munching a J from the free-field theory 1
2

(
1
2 J> · M · J

)2

term, the next pac-man has three J’s to bite into in two distinct ways, and so forth:

1
4!

1
23 =

1
3!

1
23 =

1
3!

1
23

 + 2


=
1
23 =

1
8

. (5.19)
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In field theory textbooks this process of tying together vertices by propagators is
called the Wick expansion. Professionals have smarter ways of generating Feyn-

exercise 5.7
man diagrams [3], but this will do for the problem at hand.

It is easy enough to prove this to all orders, but to this order you can simply
check by expanding the exponential (5.8) that the free energy W[J] perturbative
corrections are the connected, diagrams with J = 0

exercise 5.6

W[0] = S [φc]+
1
2

tr ln M+
1
8

+
1

16
+

1
48

. (5.20)

According to its definition, every propagator line M connecting two vertices car-
ries a factor of T = 1/β, and every vertex a factor of 1/T . In the φ4 theory the
diagram with n vertices contributes to the order T n of the perturbation theory. In
quantum theory, the corresponding expansion parameter is ~.

To proceed, we have to make sense of the propagator M of sect. 5.1, and learn
how to evaluate diagrammatic perturbative corrections.

5.5 Saddle-point expansions

Good. You know how to evaluate a Gaussian integral, and now you would like
to master path integrals. What to do? Simple - turn path integrals into Gaussian
integrals, as follows:

Laplace method deals with integrals of form

I =

∫ ∞

−∞

dx e−tΦ(x) (5.21)

where t and Φ(x) are real. If Φ(x) is bounded from below and smooth at minimal
value Φ(x∗), Φ′(x∗) = 0, Φ′′(x∗) > 0, I is dominated by the value of the integrand
at Φ(x∗). For large values of t the Laplace estimate is obtained by expanding
Φ(x∗ + δx) to second order in δx and evaluting the resulting Gaussian integral,

I ≈
∑
x∗

√
2π/tΦ′′(x∗) e−tΦ(x∗) . (5.22)

Generalization to multidimensional integrals is straightforward. The Gaussian
integral in d-dimensions is given by

exercise A1.2∫
[dx]e−

1
2 x>·M−1·x+x·J = (det M)

1
2 e

1
2 J>·M·J , (5.23)

[dx] =
dx1
√

2π

dx2
√

2π
· · ·

dxd
√

2π
,

where M is a real symmetric positive definite matrix, i.e., matrix with strictly
positive eigenvalues.

The stationary phase estimate of (5.21) is

I ≈
∑
x∗

(2π/t)d/2 |det D2Φ(x∗)|−1/2A(xn) etΦ(x∗)− iπ
4 m(x∗) ,

where x∗ are the stationary phase points

d
dxi

Φ(x)
∣∣∣∣∣
x=x∗

= 0 ,
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D2Φ(x∗) denotes the matrix of second derivatives, and m(x∗) is the number of its
negative eigenvalues (when evaluated at the stationary phase point x∗).

These integrals is all that is needed for the semiclassical approximation, with
the proviso that M−1 in (5.23) has no zero eigenvalues. If it has, the integral is
not damped in direction of the associated eigenvector, and higher orders in Taylor
expansion of Φ(x∗ + δx) need to be retained (see (7.4) on Airy integral).

The “path integral” (5.8) is an ordinary multi-dimensional integral. In the
β→ ∞ limit, or the T → 0 low temperature limit, the action is large (high price of
straying from the beaten path) almost everywhere, except for some localized re-
gions of the φ-space. Highly idealized, the action looks something like the sketch
in figure 5.1 (in order to be able to draw this on a piece of paper, we have sup-
pressed a large number of φ` coordinates).

Such integral is dominated by the minima of the action. The minimum value
S [φ] states φc are determined by the zero-slope, saddle-point condition

d
dφ `

S [φc] + J` = 0 . (5.24)

The term “saddle” refers to the general technique of evaluating such integrals for
complex φ; in the statistical mechanics applications φc are locations of the minima
of S [φ], not the saddles. If there is a number of minima, only the one (or the nc

minima related by a discrete symmetry) with the lowest value of −S [φc] − φc ·

J dominates the path integral in the low temperature limit. The zeroth order,
mean field approximation to the partition sum (5.8) is given by the extremal state
alone

Z[J] = eW[J] →
∑

c

eWc[J] = eWc[J]+ln nc

Wc[J] = S [φc] + φc · J . (5.25)

In the saddle-point approximation the corrections due to the fluctuations in
the φc neighborhood are obtained by shifting the origin of integration to

φ` → φc
` + φ` ,

the position of the cth minimum of S [φ]−φ · J, and expanding S [φ] in a Taylor se-
ries around φc. For our purposes it will be convenient to separate out the quadratic
part S 0[φ], and collect all terms higher than bilinear in φ into an “interaction” term
S I[φ]

S 0[φ] = −
∑
`

φ`

(
βr
2c

+ 12
βu
c2 (φc

`)
2
)
φ` +

β

2

∑
`,`′

φ`∆``′φ`′ ,

S I[φ] = −
βu
c2

Nd∑
`=1

φ4
` . (5.26)

Spatially nonuniform φc
` are conceivable. The mean field theory assumption is

that the translational invariance of the lattice is not broken, and φc
` is independent

of the lattice point, φc
` → φc. In the φ4 theory considered here, it follows from

(5.24) that φc = 0 for r > 0, and φc = ±
√
|r|/4u for r < 0 . There are at most

nc = 2 distinct φc states with the same S [φc], and in the thermodynamic limit we
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can neglect the “mean field entropy” ln nc in (5.25) when computing free energy
density per site1,

−β f [J] = lim
N→∞

W[J]/Nd . (5.27)

We collect the matrix of bilinear φ coefficients in

(M−1)``′ = βm′20 δ``′ − βc∆``′ , m′20 = m2
0 + 12u(φc)2 (5.28)

in order to be able to rewrite the partition sum (5.8) as

eW[J] = eWc[J]
∫

[dφ]e−
1
2φ
>·M−1·φ+S I [φ] .

As the expectation value of any analytic function

g(φ) =
∑

gn1n2...φ
n1
1 φ

n2
2 · · · /n1!n2! · · ·

can be recast in terms of derivatives with respect to J∫
[dφ]g[φ]e−

1
2φ
>·M−1·φ = g

[
d
dJ

] ∫
[dφ]e−

1
2φ
>·M−1·φ+φ·J

∣∣∣∣∣
J=0

,

we can move S I[φ] outside of the integration, and evaluate the Gaussian integral
in the usual way, as in (5.4),

exercise A1.2

eW[J] = eWc[J]eS I [ d
dJ ]

∫
[dφ]e−

1
2φ
>·M−1·φ+φ·J

∣∣∣∣∣
J=0

= |det M|
1
2 eWc[J]eS I [ d

dJ ] e
1
2 J>·M·J

∣∣∣∣
J=0

. (5.29)

M is invertible only if the minima in figure 5.1 are isolated, and M−1 has
no zero eigenvalues. The marginal case would require going beyond the Gaussian
saddle-points studied here, typically to the Airy-function type stationary points [1].
In the classical statistical mechanics S [φ] is a real-valued function, the extremum
of S [φ] at the saddle-point φc is the minimum, all eigenvalues of M are strictly
positive, and we can drop the absolute value brackets | · · · | in (5.29).

As we shall show in sect. 5.4, expanding the exponentials and evaluating the
d
dJ derivatives in (5.29) yields the fluctuation corrections as a power series in 1/β =

T .
The first correction due to the fluctuations in the φc neighborhood is obtained

by approximating the bottom of the potential in figure 5.1 by a parabola, i.e.,
keeping only the quadratic terms in the Taylor expansion (5.26). For a single
minimum the “free energy” is in this approximation

W[J]1-loop = Wc[J] +
1
2

tr ln M , (5.30)

where we have used the matrix identity ln det M = tr ln M, valid for any finite-
dimensional matrix. This result suffices to establish the Ginzburg criterion (ex-
plained in many excellent textbooks) which determines when the effect of fluctu-
ations is comparable or larger than the mean-field contribution alone.

exercise 5.4
1For classically chaotic field theories we will not be so lucky - there the number of contributing

saddles grows exponentially with the lattice size.
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5.6 Saddle-point expansions are asymptotic

The first trial ground for testing our hunches about field theory is the zero-dimen-
sional field theory, the field theory of a lattice consisting of one point. As there
are no neighbors, there are no derivatives to take, and the field theory is a humble
1-dimensional integral

Z[J] =

∫
dφ
√

2π
e−

φ2
2M−βuφ4+φJ .

In zero-dimensional field theory M is a [1×1] matrix, i.e. just a number. As
it is in good taste to get rid of extraneous parameters, we rescale φ2 → Mφ2,√

MJ → J, and are left with one parameter which we define to be g = 4βM2u.
As multiplicative constants do not contribute to averages, we will drop an overall
factor of

√
M and study the integral

Z[J] =

∫
dφ
√

2π
e−φ

2/2−gφ4/4+φJ . (5.31)

Substituting M as defined by (5.28) we have g = T/(r + 12u(φc)2), so the small g
expansions is a low temperature expansion. However, as we approach the critical
temperature, r + 12u(φc)2 → 0, the perturbation theory fails us badly, and that is
one of the reasons why we need the renormalization theory.

The idea of the saddle-point expansion (5.29) is to keep the Gaussian part∫
dφ e−φ

2/2+φJ as is, expand the rest as a power series, and then compute the mo-
ments∫

dφ
√

2π
φne−φ

2/2 =

(
d
dJ

)n

eJ2/2
∣∣∣∣
J=0

= (n − 1)!! if n even, 0 otherwise .

We already know the answer. In this zero-dimensional theory we have taken
M = 1, the n-point correlation is simply the number of terms in the diagrammatic
expansion, and according to (5.16) that number is exploding combinatorially, as
(n − 1)!!. And here our troubles start.

To be concrete, let us work out the exact zero-dimensional φ4 field theory in
the saddle-point expansion to all orders:

Z[0] =
∑

n

Zngn ,

Zn =
(−1)n

n!4n

∫
dφ
√

2π
φ4ne−φ

2/2 =
(−1)n

16nn!
(4n)!
(2n)!

. (5.32)

The Stirling formula n! =
√

2π nn+1/2e−n yields for large n

gnZn ≈
1
√

nπ

(
4gn

e

)n

. (5.33)

As the coefficients of the parameter gn are blowing up combinatorially, no matter
exercise 5.2

how small g might be, the perturbation expansion is not convergent! Why? Con-
sider again (5.32). We have tacitly assumed that g > 0, but for g < 0, the potential
is unbounded for large φ, and the integrand explodes. Hence the partition function
in not analytic at the g = 0 point.
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Sterling grows up

@MathMatize

scalar φ4 theory

Figure 5.2: Plot of the saddle-point estimate of Zn vs. the exact result (5.32) for g = 0.2, g = 0.1,
g = 0.05, g = 0.02, g = 0.01.

Is the whole enterprise hopeless? As we shall now show, even though di-
vergent, the perturbation series is an asymptotic expansion, and an asymptotic
expansion can be extremely good [5]. Consider the residual error after inclusion
of the first n perturbative corrections:

Rn =

∣∣∣∣∣∣∣Z(g) −
n∑

m=0

gmZm

∣∣∣∣∣∣∣
=

∫
dφ
√

2π
e−φ

2/2

∣∣∣∣∣∣∣e−gφ4/4 −

n∑
m=0

1
m!

(
−

g
4

)m
φ4m

∣∣∣∣∣∣∣
≤

∫
dφ
√

2π
e−φ

2/2 1
(n + 1)!

(
gφ4

4

)n+1

= gn+1 |Zn+1| . (5.34)

The inequality follows from the convexity of exponentials, a generalization of the
exercise 5.5

inequality ex ≥ 1+ x. The error decreases as long as gn |Zn| decreases. From (5.33)
the minimum is reached at 4g nmin ≈ 1, with the minimum error

gnZn
∣∣∣
min ≈

√
4g
π

e−1/4g. (5.35)

As illustrated by the figure 5.2, a perturbative expansion can be, for all practical
purposes, very accurate. In QED such argument had led Dyson to suggest that the
QED perturbation expansions are good to nmin ≈ 1/α ≈ 137 terms. Due to the
complicated relativistic, spinorial and gauge invariance structure of perturbative
QED, there is not a shred of evidence that this is so. The very best calculations
performed so far stop at n ≤ 5.
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Commentary

Remark 5.1. Gaussian integrals. Kadanoff [6] has a nice discussion of Gaussian
integrals, the central limit theorem and large deviations in Chap. 3 Gaussian Distributions,
available online here.

Remark 5.2. Asymptotic series.

• The Taylor expansion in g fails, as g is precisely on the border of analyticity. The
situation can sometimes be rescued by a Borel re-summation.

• If you really care, an asymptotic series can be improved by resumations “beyond
all orders”, a technically daunting task (see M. Berry’s papers on such topics as
re-summation of the Weyl series for quantum billiards).

• Pairs of nearby and coalescing saddles should be treated by uniform approxima-
tions, where the Airy integrals

Z0[J] =
1

2πi

∫
C

dx e−x3/3!+Jx

play the role the Gaussian integrals play for isolated saddles [1]. In case at hand,
the phase transition φc = 0 → ±φc , 0 is a quartic inflection of this type, and in
the Fourier representation of the partition function one expects instead of |det M|1/2

explicit dependence on the momentum k1/4. Whether anyone has tried to develop
a theory of the critical regime in this way I do not know.

• If there are symmetries that relate terms in perturbation expansions, a perturbative
series might be convergent. For example, individual Feynman diagrams in QED
are not gauge invariant, only their sums are, and QED αn expansions might still
turn out to be convergent series [2].

• Expansions in which the field φ is replaced by N copies of the original field are
called 1/N expansions. The perturbative coefficients in such expansions are con-
vergent term by term in 1/N.
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Exercises

5.1. Free-field theory combinatorics. Check that there
indeed are no combinatorial prefactors in the expansion
(5.16).

5.2. Quality of asymptotic series. Use the saddle-point
method to evaluate Zn

Zn =
(−1)n

n!4n

∫
dφ
√

2π
e−φ

2/2+4n ln φ

Find the smallest error for a fixed g; plot both your error
and the the exact result (5.32) for g = 0.1, g = 0.02,
g = 0.01. The prettiest plot makes it into these notes as
figure 5.2!

5.3. Complex Gaussian integrals. (A repeat of exer-
cise 4.1.) Read sect. 3.B, do exercise 3.B.1 of ref. [3].

5.4. Prove ln det = tr ln. (link here the ln det = tr ln
problem sets, already done).

5.5. Convexity of exponentials. Prove the inequality
(5.34). Matthias Eschrig suggest that a more general
proof be offered, applicable to any monotone descreas-
ing sequence with alternating signs.

5.6. Wick expansion for φ4 theories. Derive (5.20), check
the combinatorial signs.

5.7. Wick expansions. Read sect. 3.C and do exercise
3.C.2 of ref. [3].
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We started out by laying down The Law (1). In Field Theory (1983) we arrived
at it by going fishing: pulling out fishnets of Feynman diagrams (what pros call
“iterating Dyson-Schwinger equations”). The action was split into ‘kinetic’ and
‘potential’ parts S [Φ] = −1

2Φ
>�Φ + V[Φ], with nonlinear, interaction terms col-

lected into a local, site-wise z dependent potential

V[Φ] =
∑

z

V(φz) , V(φ) =
1
2
µ2 φ2 −

g
k!
φk , k ≥ 3 . (6.1)

The lattice-discretized Laplacian is a sparse matrix, with neighbor-neighbor inter-
action given by matrix elements whose size is 1. A Feynman diagram expansion is
then (for all practical purposes, see sect. 5.6) convergent, provided the interaction
coupling constant or constants g are small, relative to ‘kinetic’ term.

At the opposite end, in the limit of very strong potentials, or the anti-integrability
limit [2, 3], the interactions with neighbors is a small correction. That’s best un-
derstood by another piece of classical, 19th century wave mechanics, the WKB
approximation. That we here call deterministic field theory, with support of the
partition sum restricted to the deterministic solutions Φc, only the configurations
that strictly obey The Law,

Z[J]c = eΓ[Φ]+J·Φ =
∑

c

eS [Φc]+J·Φc . (6.2)
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harmonic field theory

tight-binding model
(Helmholtz)

chaotic field theory

Euclidean Klein-Gordon
(damped Poisson)

Figure 6.1: (Color online) The simplest of all chaotic field theories is the ‘spatiotemporal cat’, a
deterministic Klein-Gordon field theory on a hypercubic lattice, with an unstable, “anti-harmonic"
rotor at each lattice site, a cat that runs away rather than pushes back. In contrast to its elliptic
sibling, the Helmholtz equation and its oscillatory solutions, spatiotemporal cat’s periodic states are
hyperbolic and unstable.

That, finally, puts us into the last quarter of 20th century: what one calls the ‘chaos
theory’.

When one refers to a physical phenomenon -such as motions of a Navier-
Stokes fluid- as ‘chaotic’, or ‘turbulent’, one is told: We understand ‘chaos’ for a
system such as Lorenz attractor, but what is a ‘chaotic’ field, a field with infinitely
many degrees of freedom?

Our goal here is to answer this question pedagogically, as a sequence of pencil
and paper calculations. We will explain what is ’deterministic chaos’ by walking
you through its simplest example, the coin toss or Bernoulli map, but reformulated
as problem of determining admissible global solutions on an integer-time lattice.

What emerges is a spacetime which is very much like a big spring mattress,
figure 6.1 (a), that obeys the familiar harmonic oscillator field theory equations,
the discrete Helmholtz equation (or the tight-binding model), but instead of be-
ing ‘springy’, this metamaterial is a dicretization of the Euclidean Klein-Gordon
equation, with a cat at every lattice site, that runs away, figure 6.1 (b), rather than
pushing back, a theory formulated in terms of Hill determinants and zeta func-
tions.

You might have gotten an impression that our field-theoretic formulation of
spatiotemporal turbulence / chaos works only for Hamiltonian / Lagrangian sys-
tems, ie, for Euler, not Navier-Stokes. But our simplest example, the Bernoulli
map, is a non-Hamiltonian dynamical system with infinite contraction ("dissipa-
tion") in one time step, and we have explored the ‘1d Navier-Stokes’, ie., Kuramoto-
Sivashinsky, in a great detail elsewhere (Matt Gudorf [17] and ChaosBook.org/overheads/spatiotemporal).

This is the simplest example of reformulating a space and time translationally
invariant, exponentially unstable ‘turbulent’ field theory as a (D+1)-dimensional
spatiotemporal system which treats space and time on equal footing. Here there is
no ‘evolution in time’: there is only the determination of the repertoire of admis-
sible tilings of spacetime by ‘periodic orbits’, very much as the partition function
of the Ising model is a weighted sum formed by totality of its lattice states.
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(a) (b)

Figure 6.2: (Color online) (a) The ‘coin toss’ map (6.3), together with the 0 fixed point, and
the 01 2-cycle. Preimages of the critical point xc = 1/2 partition the unit interval into {M0,M1},
{M00,M01,M10,M11}, . . . , subintervals. (b) The base-s Bernoulli map, here with the ‘dice throw’
stretching parameter s = 6, partitions the unit interval into 6 subintervals {Mm }, labeled by the
6-letter alphabet (6.7). As the map is a circle map, x5 = 1 = 0 = x0 (mod 1).

6.1 A fair coin toss

Remember? when we started this exposition with wanderings of a drunken snail
(sect. 1.1), we generated all walks that build up the free propagator by assuming
that the snail hops in all available directions with equal probability (1.1). In steps
“chaos”. Or “ergodicity”. The Law is deterministic, and still we end up adding
paths as though they were wanderings of a drunken snail.

The very simplest example of a deterministic law of evolution that gives rise
to ‘chaos’ is the Bernoulli map, figure 6.2 (a), which models a coin toss. Starting
with a random initial state, the map generates, deterministically, a sequence of
tails and heads with 50-50% probability.

We introduce the model in its conventional, time-evolution dynamical formu-
lation, than reformulate it as a lattice field theory, solved by determining all of ad-
missible periodic states, field configurations that satisfy The Law (a global fixed
point condition, really), and use this simple setting to illustrate (1) determination
of periodic states from system’s Euler–Lagrange equations, and (2) the evaluation
of Hill determinants, the stabilities of global solutions.

The base-2 Bernoulli shift map,

xt+1 =

{
f0(xt) = 2xt , xt ∈ M0 = [0, 1/2)
f1(xt) = 2xt (mod 1) , xt ∈ M1 = [1/2, 1) , (6.3)

is shown in figure 6.2 (a). If the linear part of such map has an integer-valued
slope, or ‘stretching’ parameter s ≥ 2,

xt+1 = sxt (6.4)

that maps state xt into a state outside the unit interval, the (mod 1) operation
results in the base-s Bernoulli circle map,

φt+1 = sφt (mod 1) , (6.5)

sketched as a dice throw in figure 6.2 (b). The (mod 1) operation subtracts mt =

bsφtc, the integer part of sφt, or the circle map winding number, to keep φt+1 in
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the unit interval [0, 1), and partitions the unit interval into s subintervals {Mm},

φt+1 = sφt − mt , φt ∈ Mmt , (6.6)

where mt takes values in the s-letter alphabet

m ∈ A = {0, 1, 2, · · · , s − 1} . (6.7)

The Bernoulli map is a highly instructive example of a hyperbolic dynamical
system. Its symbolic dynamics is simple: the base-s expansion of the initial point
φ0 is also its temporal itinerary, with symbols from alphabet (6.7) indicating that
at time t the orbit visits the subintervalMmt . The map is a ‘shift’: a multiplication
by s acts on the base-s representation of φ0 = .m1m2m3 · · · (for example, binary,
if s = 2) by shifting its digits,

φ1 = f (φ0) = .m2m3 · · · . (6.8)

Here we follow the ‘future itinerary’ labelling convention of ChaosBook sect. 14.6.
Periodic points can be counted by observing that the preimages of critical

points {φc1, φc2, · · · φc,s−1} = {1/s, 2/s, · · · , (s−1)/s} partition the unit interval into
s subintervals {M0,M1, · · · ,Ms−1}, s2 subintervals {Mm1m2}, . . . , sn subintervals,
each containing one unstable period-n periodic point φm1m2···mn , with stability mul-
tiplier sn , see figure 6.2. The Bernoulli map is a full shift, in the sense that every
itinerary is admissible, with one exception: on the circle, the rightmost fixed point
is the same as the fixed point at the origin, φs−1 = φ0 (mod 1), so these fixed
points are identified and counted as one, see figure 6.2. The total number of peri-
odic points of period n is thus

Nn = sn − 1 . (6.9)

6.2 Temporal Bernoulli

To motivate our formulation of a spatiotemporal deterministic field theory [11],
we now recast the local initial value, time-evolution Bernoulli map problem as
a temporal lattice fixed point condition, the problem of determining all global
solutions.

‘Temporal’ here refers to the lattice site field φt and the source mt taking their
values on the lattice sites of a one-dimensional temporal integer lattice t ∈ Z. Over
a finite lattice segment, these can be written compactly as a periodic state and the
corresponding symbol block (see sketch figure 1.1)

Φ> = (φt+1, · · · , φt+n) , M> = (mt+1, · · · ,mt+n) , (6.10)

where (· · · )> denotes a transpose. The Bernoulli equation (6.6), rewritten as a
first-order difference Euler–Lagrange equation

−φt+1 + (sφt − mt) = 0 , φt ∈ [0, 1) , (6.11)

takes the matrix form

J Φ −M = 0 , J = −r + s 11 , (6.12)
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where the [n×n] matrix

r jk = δ j+1,k , r =


0 1

0 1
. . .
0 1

1 0

 , (6.13)

implements the shift operation (6.8), a cyclic permutation that translates forward-
in-time periodic state Φ by one site, (rΦ)> = (φ2, φ3, · · · , φn , φ1). We refer
to such local, lattice-site conditions as the Euler–Lagrange equations. The Eu-
ler–Lagrange equation (6.12) must be of the same form for all times, so the oper-
ator r has to be time-translation invariant, with rn+1,n = r1n = 1 matrix element
enforcing its periodicity. After n shifts, a periodic state returns to the initial state,

rn = 11 . (6.14)

As the temporal Bernoulli condition (6.12) is a linear relation, a given block
M, or ‘code’ in terms of alphabet (6.7), corresponds to a unique temporal periodic
state ΦM. That is why Percival and Vivaldi [20] refer to such symbol block M as
a linear code. The temporal Bernoulli, however, is not a linear dynamical system
figure 6.4. As illustrated by figure 6.2, it is a set of piecewise-linear s-stretching
maps and their compositions, one for each state space regionMM.

System’s Euler–Lagrange equations are the law everyone must obey:
look at your left neighbor, right neighbor, remember who you were,
make sure you fit in just right. The set {Φc} of all possible peri-
odic states is system’s ‘Book of Life’ - a catalogue of all possible
‘lives’, possible spatiotemporal patterns that the law allows, each life
a point in system’s infinite-dimensional state space, each life’s likeli-
hood given by its Hill determinant.

6.3 Determining periodic states

You might want to start here by computing period-2, period-3 periodic states by
hand. You will then find the general case, eq. (6.17) easier.

As the temporal Bernoulli condition (6.12) is a linear relation, a given block
M, or ‘code’ in terms of alphabet (6.7), corresponds to a unique temporal periodic
state Φ given by the temporal lattice Green’s function

ΦM = g M , g =
r/s

11 − r/s
. (6.15)

For an infinite lattice t ∈ Z, this Green’s function can be expanded as a series in
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shited off-diagonals (r/Λ)k,

g =
r/Λ

11 − r/Λ
=

∞∑
k=1

rk

Λk

=



0 Λ−1 Λ−2 Λ−3 Λ−4 Λ−5 · · ·

0 0 Λ−1 Λ−2 Λ−3 Λ−4 · · ·

0 0 0 Λ−1 Λ−2 Λ−3 · · ·

0 0 0 0
. . .

0 0 0 0 0 Λ−1 · · ·

0 0 0 0 0 0
. . .

...
...

...
...

...
...

. . .


, (6.16)

where Λ = s, the slope of the Bernoulli map figure 6.2, is the 1-time step stability
multiplier for the Bernoulli system.

For a periodic state (6.10), the symbol block M repeats every n lattice sites,
with an extra factor of 1/Λn . Substituting rn = 11 from (6.14) into (6.16), we can
sum these prefactors as a geometric series, and obtain explicit formula for the field
at any lattice site, as n-ary numbers in base s = Λ,

φ0 =
1

1 − 1/Λn

(m1

Λ
+

m2

Λ2 + · · · +
mn−1

Λn−1 +
mn

Λn

)
. (6.17)

For example, if Λ = 2 and M = 011, the corresponding lattice field is

φ0 =
8
7

(
1
2
· 0 +

1
4
· 1 +

1
8
· 1

)
=

1
7

(2 + 1) =
3
7
.

and the orbitMM consists of the 3 translations / cyclic permutations (Φ011,Φ110,Φ101)
of periodic state

Φ011 =

(
3
7
,

6
7
,

5
7

)
.

So we learn that the relation between finite-period periodic states and the ergodic
periodic states is (her, for temporal Bernoulli, literally) like the relation between
rational and real numbers: rationals have zero Lebesgue measure, but are dense in
the unit interval, and serve as a perfectly fine marker to corsegrain the state space
with.

6.4 Orbit stability

The Euler–Lagrange F[Φc] = 0 condition turns out to be central to the theory
of robust global methods for finding periodic states [5, 14, 16, 22–24]. One dis-
cretizes a periodic state into an n-sites temporal lattice configuration, and lists the
field value at lattice sites

Φ> = (φ0, φ1, · · · , φn−1) . (6.18)

Starting with an initial guess for Φ, a zero of the set of Euler–Lagrange equations
F[Φ]t = 0, one per each lattice site t, can then be found by various methods [10,
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12, 13, 18], for example, by Newton iteration, which requires an evaluation of the
[n×n] orbit Jacobian matrix

Jtt′ =
δF[Φc]t

δφt′
. (6.19)

The temporal Bernoulli Euler–Lagrange equation (6.12) can be viewed as a
search for zeros of the vector of n functions

F[ΦM] = JΦ −M = 0 (6.20)

temporal Bernoulli: J = −r + s 11 , (6.21)

with the entire periodic periodic stateΦM treated as a single point (φ0, φ1, · · · , φn−1)
in the n-dimensional state space unit hypercube Φ ∈ [0, 1)n .

For uniformly stretching systems, such as the temporal Bernoulli, [n×n] orbit
Jacobian matrix J (6.21) is a circulant, time-translation invariant matrix,

J =



s −1 0 0 . . . 0 0
0 s −1 0 . . . 0 0
0 0 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . s −1
−1 0 0 0 . . . 0 s


, (6.22)

While in classical mechanics matrices such as (6.19) are often called “Hessian”,
here we refer to them collectively as ‘orbit Jacobian matrices’, to emphasize that
they describe the stability of any dynamical system, be it energy-conserving, or a
dissipative system, with no Lagrangian formulation.

6.5 Hill determinants

Having shown that the inverse of Hill determinant 1/|DetJc| gives us the periodic
state’s probability weight in the deterministic partition function, our next task is to
compute it. As we shall see in sect. 6.7.1, that is often best done on the reciprocal
lattice. But first we show that on hypercubic lattices we can visualize a Hill deter-
minant geometrically, as the volume of the associated fundamental parallelepiped.

6.5.1 Fundamental fact

Consider what the temporal Bernoulli Euler–Lagrange equation (6.12) means ge-
ometrically. The orbit Jacobian matrix J stretches the state space unit hypercube
Φ ∈ [0, 1)n into the n-dimensional fundamental parallelepiped, and maps each
periodic state ΦM into an integer lattice Zn site, which is then translated by the
winding numbers M into the origin, in order to satisfy the condition (6.20). Hence
Nn , the total number of the solutions of the zero condition equals the number of
integer lattice points within the fundamental parallelepiped, a number given by
what Baake et al. [4] call the ‘fundamental fact’,

Nn = |DetJ| , (6.23)

i.e., fact that the number of integer points in the fundamental parallelepiped is
equal to its volume, or, what we refer to as its Hill determinant.
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(a) (b)

Figure 6.3: (Color online) (a) The Bernoulli map (6.3) periodic states ΦM = (φ0, φ1) of pe-
riod 2 are the 0 = (0, 0) point, and the two 2-cycle periodic states Φ01 = (1/3, 2/3) and Φ10, see
figure 6.2 (a). They all lie within the unit square [0BCD], which is mapped by the orbit Jacobian
matrix −J (6.25) into the fundamental parallelepiped [0B′C′D′]. Periodic points ΦM are mapped
by J onto the integer lattice, JΦM ∈ Z

n , and are sent back into the origin by integer translations
M, in order to satisfy the root condition (6.20). Note that this fundamental parallelepiped is covered
by 3 unit area quadrilaterals, hence |DetJ| = 3. (b) Conversely, in the flow conservation sum rule
(6.29) sum over all periodic states M of period n, the inverse of the Hill determinant defines the
‘neighborhood’ of a lattices state as the corresponding fraction of the unit hypercube volume.

The action of the orbit Jacobian matrixJ for period-2 periodic states (periodic
points) of the Bernoulli map of figure 6.2 (a), suffices to convey the idea. In this
case, the [2×2] orbit Jacobian matrix (6.12), the unit square basis vectors, and
their images are

J =

(
2 −1
−1 2

)
,

Φ(B) =

(
1
0

)
→ Φ(B′) = J Φ(B) =

(
2
−1

)
,

Φ(D) =

(
0
1

)
→ Φ(D′) = J Φ(D) =

(
−1
2

)
, (6.24)

i.e., the columns of the orbit Jacobian matrix are the edges of the fundamental
parallelepiped,

J =
(
Φ(B′)Φ(D′)

)
, (6.25)

drawn in figure 6.3, and N2 = |DetJ| = 3.
In general, the unit vectors of the state space unit hypercube Φ ∈ [0, 1)n point

along the n axes; orbit Jacobian matrix J stretches them into a fundamental par-
allelepiped basis vectors Φ( j), each one a column of the [n×n] matrix

J =
(
Φ(1)Φ(2) · · ·Φ(n)

)
. (6.26)

The Hill determinant

DetJ = Det
(
Φ(1)Φ(2) · · ·Φ(n)

)
, (6.27)

is then the volume of the fundamental parallelepiped whose edges are basis vec-
tors Φ( j). Note that the unit hypercubes and fundamental parallelepipeds are half-
open, as indicated by dashed lines in figure 6.3 (a), so that their translates form a
partition of the extended state space (6.4).

The interpretation of a Hill determinant as a fundamental parallelepiped ap-
plies only to linear Euler–Lagrange equations, basically Bernoulli. To compute it
it in general, the right way to go is the reciprocal lattice, sect. 6.7.
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6.6 Periodic orbit theory

For a general, nonlinear Euler–Lagrange equation root condition F[Φ] =

0, the partition sum (5.2) is given by the sum over periodic states [1, 6, 9]. Ozorio
de Almeida and Hannay [19] were the first to relate the periodic points to their Ja-
cobian matrix generated volume; in 1984 they used such relation as an illustration
of their ‘principle of uniformity’: “periodic points of an ergodic system, counted
with their natural weighting, are uniformly dense in phase space.” In periodic or-
bit theory [6, 8] this principle is stated as a flow conservation sum rule, where the
sum is over all periodic states M of period n,∑

|M|=n

1
|DetJM|

= 1 . (6.28)

For the Bernoulli system the ‘natural weighting’ takes a particularly simple form,
as the Hill determinant of the orbit Jacobian matrix is the same for all periodic
points of period n, DetJM = DetJ . For example, the sum over the n = 2
periodic states is,

1
|DetJ00|

+
1

|DetJ01|
+

1
|DetJ10|

= 1 , (6.29)

see figure 6.3 (b). Furthermore, for any piece-wise linear system all curvature
corrections [7] for orbits of periods k > n vanish, leading to explicit periodic state
formulas of kind displayed here. This is the ‘periodic orbit theory’.

Actually, there is a bit more to it [9].

6.7 Reciprocal lattice

In the {ẽk} Fourier basis (1.46), a real n-dimensional periodic state vector Φ is
mapped onto a n-dimensional complex reciprocal lattice vector

Φ̃ = (ũ0, ũ1, ũ2, . . . , ũn−1) , (6.30)

with the kth Fourier mode of magnitude |ũk| and phase eiθk .
On the reciprocal lattice, the shift matrix (6.13) is diagonal, r̃ jk = ωk δ jk,

and the ‘time’ dynamics is breathtakingly simple: no matter what the dynamical
system is, in one time step Φ → rΦ, the kth Fourier mode phase is incremented
by a fraction of the circle,

(ũ0, ũ1, ũ2, . . . , ũn−1) → (ũ0, ωũ1, ω
2ũ2, . . . , ω

n−1ũn−1)

eiθk → ei(θk+2πk/n) , (6.31)

so reciprocal periodic states literally run in circles; for non-zero k and |ũk|, all re-
ciprocal periodic states lie on vertices of regular complex plane n-gons, inscribed
in circles of radius |ũk|, one circle for each orbit.

As a concrete example, consider the period-3 periodic states of the temporal
Bernoulli (6.11) for stretching parameter s = 2. It is a linear problem and all
periodic states are easily computed by hand, one for each symbol block M. There
is always the point periodic state (0, 0, 0) at the origin, and the remaining periodic
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Figure 6.4: (Color online) The reciprocal lattice (ũ0, ũ1, ũ2) Fourier components of the seven
C3-equivariant period-3 periodic states, s = 2 temporal Bernoulli system (6.11). In ũ1 and ũ2

complex planes, reciprocal periodic states lie on vertices of the 2 equilateral triangles, one for each
C3 orbit, while the component at the origin is the point Φ = (0, 0, 0). The C3 fundamental domain
indicated by red border lines contains non-zero reciprocal periodic states whose phases lie in the
[−2π/6, 2π/6) wedge, one reciprocal periodic state for each distinct C3 orbit.

states belong to M3 = 2 period-3 orbits, where Mn is the number of prime orbits
of period n. Discrete Fourier transform maps these 2 orbits into reciprocal lattice
(ũ0, ũ1, ũ2) triangles, see figure 6.4. The time-step r acts on the ũ1, ũ2 components
by complex 1/3-circle phase rotations exp(2πi/3) and exp(4πi/3), respectively:
reciprocal periodic states connected by blue lines in figure 6.4 lie on a circle and
belong to the same orbit. In this example the two orbits happen to lie on the
same circle, as they are related by the internal D1 : φi → 1 − φi symmetry of the
Bernoulli system, see sect. ??.

6.7.1 Hill determinant: Reciprocal lattice evaluation

Orbit Jacobian matrices of the temporal Bernoulli (6.22) consist of only iden-
tity matrix and cyclic shift matrix, whose eigenvectors are discrete Fourier basis
(1.46), so they are diagonalized by discrete Fourier transform. In the space of re-
ciprocal periodic states, orbit Jacobian matrices (6.21) are diagonal, each diagonal
element an eigenvalue of an orbit Jacobian matrices, for the temporal Bernoulli

(s 11 − r) ẽk = (s − ωk) ẽk . (6.32)

Determinants are products of eigenvalues, so the temporal Bernoulli Hill determi-
nant for any period-n periodic state is simply a polynomial whose roots are the
nth roots of unity,

Det (s 11 − r) =

n−1∏
k=0

(s − ωk) = sn − 1 , (6.33)

in agreement with the time-evolution count (6.9).

6.8 Shadowing

From (6.15) it follows that the influence of a source mt′ back in the past, at site t′,
falls off exponentially with the temporal lattice distance t − t′,

φt =

t−1∑
t′=−∞

gtt′mt′ , gtt′ =
1

Λt−t′ , t > t′ , 0 otherwise . (6.34)
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That means that an ergodic periodic state segment of length n (or a periodic state
of a longer period) is shadowed by the periodic state (6.10) with the same first
n sites symbol block M, with exponentially decreasing shadowing error of order
O(1/Λn+1). The error is controlled by the weight 1/|DetJ| , with the Hill de-
terminant (6.33) arising from inverting the orbit Jacobian matrix J to obtain the
Green’s function (6.12).

This error estimate is deeper than what it might seem at the first glance. In
fluid dynamics, pattern recognition, neuroscience and other high or∞-dimensional
settings distances between ‘close solutions’ (let’s say pixel images of two faces in
a face recognition code) are almost always measured using some arbitrary yard-
stick, let’s say a Euclidean L2 norm, even though the state space is in no sense
“Euclidean.” Not so in the periodic orbit theory: here 1/|DetJ| is the intrinsic,
coordinatization and norm independent measure of the distance between neigh-
boring spatiotemporal states.

6.9 Bernoulli as a first-order difference equation

The discrete time derivative of a lattice configuration Φ evaluated at the
lattice site t is given by the ‘lattice momentum’ operator (1.27), p = r − 11 (the
difference operator [15]),

φ̇t =

[
dΦ
dt

]
t
=
φt+1 − φt

∆t
. (6.35)

The temporal Bernoulli condition (6.12) can be thus viewed as forward Euler
method, a time-discretized, first-order difference equation

dΦ
dt

= pΦ + v(Φ,M) , (6.36)

where the ‘velocity’ vector field v is given by

v(Φ,M) = µΦ −M ,

with the lattice spacing set to ∆t = 1 (easily reinstated, if needed), and perturba-
tions that grow (or decay) with rate µ = s − 1. By inspection of figure 6.2 (a), it is
clear that for shrinking, µ < 0 parameter values the orbit is stable forward-in-time,
with a single linear branch, 1-letter alphabetA = {0}, and the only periodic states
being the single point φ0 = 0, and its repeats Φ = (0, 0, · · · , 0). However, for
stretching, positive ‘mass parameter’ µ > 0 values, the Bernoulli system (more
generally, Rényi’s beta transformations [21]) that we study here, every periodic
state ΦM is unstable, and there is a periodic state for each admissible symbol
block M.

The temporal Bernoulli orbit Jacobian matrix J = d/dt − µ r−1 is a difference
operator whose determinant one can compute by a Fourier transform diagonal-
ization (1.48). The eigenvalues of the temporal Bernoulli orbit Jacobian matrix
(6.12) are (6.32), and its Hill determinant is the product of its eigenvalues, the nth
roots of unity (6.33).
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A fair coin toss, summarized. We refer to the global temporal lattice condition
(6.12) as the ‘temporal Bernoulli’, in order to distinguish it from the 1-time step
Bernoulli evolution map (6.5), in preparation for the study of spatiotemporal sys-
tems to be undertaken in ref. [11]. In the lattice formulation, a global temporal
periodic state ΦM is determined by the requirement that the local temporal lattice
condition (6.11) is satisfied at every lattice site. In spatiotemporal formulation
there is no need for forward-in-time, close recurrence searches for the returning
periodic points. Instead, one determines each global temporal periodic state ΦM

at one go, by finding the zero of the Euler–Lagrange equation (6.12). The most
importantly for what follows, the spatiotemporal field theory of ref. [11], this cal-
culation requires no recourse to any explicit coordinatization and partitioning of
system’s state space.

And if you don’t know, now you know.
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Exercises

6.1. Temporal Bernoulli periodic states. Temporal
Bernoulli (6.11) periodic states can be computed by
hand. Set the stretching factor to s = 2, and determine
periodic states ΦM for all distinct symbol arrays M:

(a) All steady states φt = φ. Explain why their num-
ber is not 2.

(b) All periodic states of period 2, φt = φt+2. Explain
why their number is not 4.

6.2. Temporal Bernoulli periodic states, prime orbits.
Consider the temporal Bernoulli (6.11). The goal of
this exercise is to demonstrate (i) that you can compute
explicitly all of its periodic states, and (ii) you only need
to compute prime orbits.

(a) Given an n-sites symbol block M, derive the ex-
plicit formula (6.17) for the value of temporal
Bernoulli field φ0 at the latice site 0.

(b) What now determines the field values
φ1, φ2, · · · , φn−1?

(c) List all ΦM = (φ0, φ1, φ2, · · · , φn−1) for periods
n = 1, 2, 3, 4, stretching factor s = 2.

(d) As you increase the period n, which periodic
states are new, which ones you have already com-
puted?

6.3. Temporal Bernoulli Hill determinants. Short peri-
ods temporal Bernoulli (6.11) Hill determinants are eas-
ily computed by hand.

(a) What are Hill determinants of periodic states M =

0, 1, 00, 01, 10, arbitrary stretching parameter s?

(b) What are Hill determinants of periodic states of
periods 3, 4, n, · · · ? (Hint: this is mostly a think-
ing exercise).

6.4. Temporal Bernoulli prime orbits, Hill determinants.
Short periods temporal Bernoulli (6.11) Hill determi-
nants are easily computed by hand. The goal of this
exercise is to demonstrate (i) that you can compute ex-
plicitly all of its periodic states, and (ii) you only need
to compute prime orbits.

(a) XXX.

(b) XXX

(c) XXX

(d) XXX

6.5. Temporal Bernoulli ‘path integral’. I’m
skating here on thin ice, so please help me, check it out.

(a) XXX.

(b) XXX

(c) XXX

(d) XXX
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Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay (Niels Bohr
Inst., Copenhagen, 2024).
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The wave function for a particle of energy E moving in a constant potential V
is

ψ = Ae
i
~ pq (7.1)

with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/~, and
p = ±

√
2m(E − V) is the momentum. Here we generalize this solution to the

case where the potential varies slowly over many wavelengths. This semiclassical
(or WKB) approximate solution of the Schrödinger equation fails at deterministic
turning points, configuration space points where the particle momentum vanishes.
In such neighborhoods, where the semiclassical approximation fails, one needs to
solve locally the exact quantum problem, in order to compute connection coef-
ficients which patch up semiclassical segments into an approximate global wave
function.

Two lessons follow. First, semiclassical methods can be very powerful - deter-
ministic mechanics computations yield surprisingly accurate estimates of quantal
spectra, without solving the Schrödinger equation. Second, semiclassical quan-
tization does depend on a purely wave-mechanical phenomena, the coherent ad-
dition of phases accrued by all fixed energy phase space trajectories that connect
pairs of coordinate points, and the topological phase loss at every turning point, a
topological property of the deterministic flow that plays no role in classical me-
chanics.
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Figure 7.1: A 1-dimensional potential with two turn-
ing points at fixed energy E.

7.1 WKB ansatz

If the kinetic term T (p) can be separated as in (2.5), the time-independent Schrödinger
equation takes form

−
~2

2m
ψ′′(q) + V(q)ψ(q) = Eψ(q) . (7.2)

Consider a time-independent Schrödinger equation in 1 spatial dimension, with
potential V(q) growing sufficiently fast as q → ±∞ so that the deterministic par-
ticle motion is confined for any E. Define the local momentum p(q) and the local
wavenumber k(q) by

p(q) = ±
√

2m(E − V(q)), p(q) = ~k(q) . (7.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (7.4)

sugests that the wave function be written as ψ = Ae
i
~S , A and S real functions of

q. Substitution yields two equations, one for the real and other for the imaginary
part:

(S ′)2 = p2 + ~2 A′′

A
(7.5)

S ′′A + 2S ′A′ =
1
A

d
dq

(S ′A2) = 0 . (7.6)

The Wentzel-Kramers-Brillouin (WKB) or semiclassical approximation consists
of dropping the ~2 term in (7.5). Recalling that p = ~k, this amounts to assuming
that k2 � A′′

A , which in turn implies that the phase of the wave function is changing
much faster than its overall amplitude. So the WKB approximation can interpreted
either as a short wavelength/high frequency approximation to a wave-mechanical
problem, or as the semiclassical, ~ � 1 approximation to quantum mechanics.

Setting ~ = 0 and integrating (7.5) we obtain the phase increment of a wave
function initially at q, at energy E

S (q, q′, E) =

∫ q

q′
dq′′p(q′′) . (7.7)

This integral over a particle trajectory of constant energy, called the action, will
play a key role in all that follows. The integration of (7.6) is even easier

A(q) =
C

|p(q)|
1
2

, C = |p(q′)|
1
2ψ(q′) , (7.8)
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Figure 7.2: A 1-dof phase space trajectory of a parti-
cle moving in a bound potential.

where the integration constant C is fixed by the value of the wave function at the
initial point q′. The WKB (or semiclassical) ansatz wave function is given by

ψsc(q, q′, E) =
C

|p(q)|
1
2

e
i
~S (q,q′,E) . (7.9)

In what follows we shall suppress dependence on the initial point and energy in
such formulas, (q, q′, E)→ (q).

The WKB ansatz generalizes the free motion wave function (7.1), with the
probability density |A(q)|2 for finding a particle at q now inversely proportional
to the velocity at that point, and the phase 1

~q p replaced by 1
~

∫
dq p(q), the in-

tegrated action along the trajectory. This is fine, except at any turning point q0,
figure 7.1, where all energy is potential, and

p(q)→ 0 as q→ q0 , (7.10)

so that the assumption that k2 � A′′
A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does the job.
In the q coordinate, the turning points are defined by the zero kinetic energy con-
dition (see figure 7.1), and the motion appears singular. This is not so in the full
phase space: the trajectory in a smooth confining 1-dimensional potential is al-
ways a smooth loop (see figure 7.2), with the “special” role of the turning points
qL, qR seen to be an artifact of a particular choice of the (q, p) coordinate frame.
Maslov proceeds from the initial point (q′, p′) to a point (qA, pA) preceding the
turning point in the ψ(q) representation, then switch to the momentum represen-
tation

ψ̃(p) =
1
√

2π~

∫
dq e−

i
~qpψ(q) , (7.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate representation,

ψ(q) =
1
√

2π~

∫
dp e

i
~qp ψ̃(p) , (7.12)

and so on.
The only rub is that one usually cannot evaluate these transforms exactly. But,

as the WKB wave function (7.9) is approximate anyway, it suffices to estimate
these transforms to the leading order in ~ accuracy. This is accomplished by the
method of stationary phase.
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7.2 Method of stationary phase

All “semiclassical” approximations are based on saddle point evaluations of inte-
grals of the type

I =

∫
dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (7.13)

where s is a real parameter, and Φ(x) is a real-valued function. In our applications
s = 1/~ will always be assumed large.

For large s, the phase oscillates rapidly and “averages to zero” everywhere
except at the extremal points Φ′(x0) = 0. The method of approximating an integral
by its values at extremal points is called the method of stationary phase. Consider
first the case of a 1-dimensional integral, and expand Φ(x0 + δx) around x0 to
second order in δx,

I =

∫
dx A(x) eis(Φ(x0)+ 1

2 Φ′′(x0)δx2+...) . (7.14)

Assume (for time being) that Φ′′(x0) , 0, with either sign, sgn[Φ′′] = Φ′′/|Φ′′| =

±1. If in the neighborhood of x0 the amplitude A(x) varies slowly over many
oscillations of the exponential function, we may retain the leading term in the
Taylor expansion of the amplitude, and approximate the integral up to quadratic
terms in the phase by

I ≈ A(x0) eisΦ(x0)
∫

dx e
1
2 isΦ′′(x0)(x−x0)2

. (7.15)

The one integral that we know how to integrate is the Gaussian integral
∫

dx e−
x2
2b =

√
2πb For for pure imaginary b = i a one gets instead the Fresnel integral formula

exercise 7.1

1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2 ei π4

a
|a| (7.16)

we obtain

I ≈ A(x0)
∣∣∣∣∣ 2π
sΦ′′(x0)

∣∣∣∣∣1/2 eisΦ(x0)±i π4 , (7.17)

where ± corresponds to the positive/negative sign of sΦ′′(x0).

7.3 WKB quantization

We can now evaluate the Fourier transforms (7.11), (7.12) to the same order in ~
as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C
√

2π~

∫
dq

|p(q)|
1
2

e
i
~ (S (q)−qp)

≈
C
√

2π~

e
i
~ (S (q∗)−q∗p)

|p(q∗)|
1
2

∫
dq e

i
2~ S ′′(q∗)(q−q∗)2

, (7.18)
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where q∗ is given implicitly by the stationary phase condition

0 = S ′(q∗) − p = p(q∗) − p

and the sign of S ′′(q∗) = p′(q∗) determines the phase of the Fresnel integral (7.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)|
1
2

e
i
~ [S (q∗)−q∗p]+ iπ

4 sgn[S ′′(q∗)] . (7.19)

As we continue from (qA, pA) to (qB, pB), nothing problematic occurs - p(q∗) is
finite, and so is the acceleration p′(q∗). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as the Legendre transform

S̃ (p) = S (q(p)) − q(p)p

which can be used to expresses everything in terms of the p variable,

q∗ = q(p),
d
dq

q = 1 =
dp
dq

dq(p)
dp

= q′(p)p′(q∗) . (7.20)

As the deterministic trajectory crosses qL, the weight in (7.19),

d
dq

p2(qL) = 2p(qL)p′(qL) = −2mV ′(qL) , (7.21)

is finite, and S ′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant, in-
cluding (qA, pA). Hence, the phase loss in (7.19) is −π4 . To go back from the p
to the q representation, just turn figure 7.2 quarter-turn anticlockwise. Everything
is the same if you replace (q, p) → (−p, q); so, without much ado we get the
semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
~ (S̃ (p∗)+qp∗)− iπ

4

|q∗(p∗)|
1
2

ψ̃sc(p∗) =
C

|p(q)|
1
2

e
i
~ S (q)− iπ

2 . (7.22)

The extra |p′(q∗)|1/2 weight in (7.19) is cancelled by the |q′(p∗)|1/2 term, by the
Legendre relation (7.20).

The message is that going through a smooth potential turning point the WKB
wave function phase slips by −π2 . This is equally true for the right and the left
turning points, as can be seen by rotating figure 7.2 by 180o, and flipping coordi-
nates (q, p) → (−q,−p). While a turning point is not an invariant concept (for a
sufficiently short trajectory segment, it can be undone by a 45o turn), for a com-
plete period (q, p) = (q′, p′) the total phase slip is always −2·π/2, as a loop always
has m = 2 turning points.

The WKB quantization condition follows by demanding that the wave function
computed after a complete period be single-valued. With the normalization (7.8),
we obtain

ψ(q′) = ψ(q) =

∣∣∣∣∣ p(q′)
p(q)

∣∣∣∣∣ 1
2

ei( 1
~

∮
p(q)dq−π)ψ(q′) .

The prefactor is 1 by the periodic orbit condition q = q′, so the phase must be a
multiple of 2π,

1
~

∮
p(q)dq = 2π

(
n +

m
4

)
, (7.23)
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Figure 7.3: S p(E), the action of a periodic orbit p at
energy E, equals the area in the phase space traced out
by the 1-dof trajectory.

where m is the number of turning points along the trajectory - for this 1-dof prob-
lem, m = 2.

The action integral in (7.23) is the area (see figure 7.3) enclosed by the classi-
cal phase space loop of figure 7.2, and the quantization condition says that eigen-
energies correspond to loops whose action is an integer multiple of the unit quan-
tum of action, Planck’s constant ~. The extra topological phase, which, although
it had been discovered many times in centuries past, had to wait for its most recent
quantum chaotic (re)birth until the 1970’s. Despite its derivation in a noninvariant
coordinate frame, the final result involves only canonically invariant deterministic
quantities, the periodic orbit action S , and the topological index m.

7.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose quantum
mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 7.2 is now a circle in the (mωq, p) plane, the action is its area
S = 2πE/ω, and the spectrum in the WKB approximation

En = ~ω(n + 1/2) (7.24)

turns out to be the exact harmonic oscillator spectrum. The stationary phase condi-
tion (7.18) keeps V(q) accurate to order q2, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problems the WKB spectrum
turns out to be very accurate all the way down to the ground state. Surprisingly
accurate, if one interprets dropping the ~2 term in (7.5) as a short wavelength
approximation.

7.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by a π/2 for each turning point.
This π/2 came from a

√
i in the Fresnel integral (7.16), one such factor for every

time we switched representation from the configuration space to the momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (7.14) fails whenever Φ′′(x) = 0, or, in
our the WKB ansatz (7.18), whenever the momentum p′(q) = S ′′(q) vanishes.
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Figure 7.4: Airy function Ai(q).

In that case we have to go beyond the quadratic approximation (7.15) to the first
nonvanishing term in the Taylor expansion of the exponent. If Φ′′′(x0) , 0, then

I ≈ A(x0)eisΦ(x0)
∫ ∞

−∞

dx eisΦ′′′(x0) (x−x0)3

6 . (7.25)

Airy functions can be represented by integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3
3 ) . (7.26)

With a bit of Fresnel/Maslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the WKB quantization
condition given in standard quantum mechanics textbooks rely on expanding the
potential close to the turning point

V(q) = V(q0) + (q − q0)V ′(q0) + · · · ,

solving the Airy equation (with V ′(q0)→ z after appropriate rescalings),

ψ′′ = zψ , (7.27)

and matching the oscillatory and the exponentially decaying “forbidden” region
wave function pieces by means of the WKB connection formulas. That requires
staring at Airy functions (see (7.4)) and learning about their asymptotics - a chal-
lenge that we will have to eventually overcome, in order to incorporate diffraction
phenomena into semiclassical quantization.

The physical origin of the topological phase is illustrated by the shape of the
Airy function, figure 7.4. For a potential with a finite slope V ′(q) the wave function
penetrates into the forbidden region, and accommodates a bit more of a stationary
wavelength then what one would expect from the deterministic trajectory alone.
For infinite walls (i.e., billiards) a different argument applies: the wave function
must vanish at the wall, and the phase slip due to a specular reflection is −π, rather
than −π/2.

Résumé

The WKB ansatz wave function for 1-degree of freedom problems fails at the
turning points of the deterministic trajectory. While in the q-representation the
WKB ansatz at a turning point is singular, along the p direction the deterministic
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trajectory in the same neighborhood is smooth, as for any smooth bound poten-
tial the classical motion is topologically a circle around the origin in the (q, p)
space. The simplest way to deal with such singularities is as follows; follow the
deterministic trajectory in q-space until the WKB approximation fails close to the
turning point; then insert

∫
dp|p〉〈p| and follow the deterministic trajectory in the

p-space until you encounter the next p-space turning point; go back to the q-space
representation, an so on. Each matching involves a Fresnel integral, yielding an
extra e−iπ/4 phase shift, for a total of e−iπ phase shift for a full period of a semi-
classical particle moving in a soft potential. The condition that the wave-function
be single-valued then leads to the 1-dimensional WKB quantization, and its lucky
cousin, the Bohr-Sommerfeld quantization.

Alternatively, one can linearize the potential around the turning point a, V(q) =

V(a) + (q − a)V ′(a) + · · · , and solve the quantum mechanical constant linear po-
tential V(q) = qF problem exactly, in terms of an Airy function. An approximate
wave function is then patched together from an Airy function at each turning point,
and the WKB ansatz wave-function segments in-between via the WKB connec-
tion formulas. The single-valuedness condition again yields the 1-dimensional
WKB quantization. This a bit more work than tracking the deterministic trajec-
tory in the full phase space, but it gives us a better feeling for shapes of quantum
eigenfunctions, and exemplifies the general strategy for dealing with other singu-
larities, such as wedges, bifurcation points, creeping and tunneling: patch together
the WKB segments by means of exact QM solutions to local approximations to
singular points.

Commentary

Remark 7.1. Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization con-
dition [2] was the key result of the old quantum theory, in which the electron trajectories
were purely deterministically. They were lucky - the symmetries of the Kepler problem
work out in such a way that the total topological index m = 4 amount effectively to num-
bering the energy levels starting with n = 1. They were unlucky - because the hydrogen
m = 4 masked the topological index, they could never get the helium spectrum right - the
semiclassical calculation had to wait for until 1980, when Leopold and Percival [1] added
the topological indices.
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Exercises

7.1. WKB ansatz. Try to show that no other
ansatz other than

ψ(q, t) = A(q, t) eiR(q,t)/~ , (7.28)

gives a meaningful definition of the momentum in the
~→ 0 limit.

7.2. Fresnel integral. Derive the Fresnel integral

1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2ei π4

a
|a| .

7.3. Sterling formula for n!. Compute an approximate
value of n! for large n using the stationary phase approx-
imation. Hint: n! =

∫ ∞
0 dt tne−t.

7.4. Airy function for large arguments. Impor-
tant contributions as stationary phase points may arise
from extremal points where the first non-zero term in a
Taylor expansion of the phase is of third or higher order.
Such situations occur, for example, at bifurcation points
or in diffraction effects, (such as waves near sharp cor-

ners, waves creeping around obstacles, etc.). In such
calculations, one meets Airy functions integrals of the
form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3

3 ) . (7.29)

Calculate the Airy function Ai(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value of x the sta-
tionary phase approximation breaks down.
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Chapter 8

Spin

If I had had more time, I would have written less
— Blaise Pascal, a remark made to a correspondent

8.1 Dirac Lagrangian

In a 3-semester QFT course we would study and understand in detail Weyl, Ma-
jorana and Dirac spinors. Here our focus is much narrower - get the tools needed
to do one fundamental QED calculation that establishes the theory as a predictive
description of observed quantum effects in interaction of matter and electromag-
netic fields. For that we need the relativistically correct description of the free
electron propagator.

I find these and these notes concise and non-nonsense discussion. The first
thing to understand, perhaps unfamiliar to a student of non-relativistic quantum
mechanics, is that the signature of the Minkowsky metric makes Lorentz transfor-
mations not unitary, and thus

(complex conjugate transpose spinor) × (complex spinor)

is not a scalar under Lorentz transformation, and thus not the correct definition of
the “length” of the 4-component complex spinor. One has to use the appropriate
Minkowsky metric on the spinor space as well.

The other deep thing to understand is that spinor fields are anticommuting,
Grassmanian numbers. My own understanding is that such fields are imposing
constraints (“negative dimensions”), in this case the Pauli exclusion principle that
two or more identical fermions (particles with half-integer spin) cannot occupy
the same quantum state, the principle that (almost literally) makes the world go
round. As this will not impact our one-loop calculation, we will not discuss it
further here.
Up to date version of these notes is P. Cvitanović [1] Field theory, chapter 7. Spin,
yours for a click here.
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Exercises

8.1. Dirac’s γ matrices.

(a) Verify[
S κλ, S µν] = i

(
gλµS κν −gλνS κµ −gκµS λν + gκνS λµ) .

(8.1)

(b) Verify

M−1(L)γµM(L) = Lµνγν (8.2)

for L = exp(θ)
(i.e., Lµν = δ

µ
ν + θ

µ
ν + 1

2θ
µ
λθ

λ
ν + · · · ) and

M(L) = exp
(
−

i
2
θαβS αβ) . (8.3)

(c) Calculate

{γρ, γλγµγν} , [γρ, γκγλγµγν] , (8.4)

and [S ρσ, γλγµγν].

(d) Show that

γαγα = 4
γαγνγα = −2γν

γαγµγνγα = 4gµν

γαγλγµγνγα = −2γνγµγλ . (8.5)

Hint: use γαγν = 2gνα − γνγα repeatedly.

8.2. Continuous Lorentz transformations of spinors.
Under continuous Lorentz symmetries, Dirac spinor
field Ψ(x) transforms according to Ψ′(x′) = M(L)Ψ(x =

L−1x′) where M
(
L = eθ

)
= exp

(
− i

2θαβS
αβ).

In the Dirac representation

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



is hermitian, whereas the three γ j are not. That, and the
defining (anti-commutator) relation

{γµ, γν} = γµγν + γνγµ = 2ηµνI4

is all we need to know, not the explicit forms of γµ. As
we now check, γ0 plays the role of the metric in the
spinor space, via the Dirac conjugate defined as

Ψ = Ψ†γ0

Consider the transformation rules for the bilinears

S = ΨΨ , Vµ = ΨγµΨ , T µν = Ψγ[µγν]Ψ .

Show that under continuous Lorentz symmetries, the S
transforms as a scalar, the Vµ as a vector, and the T µν as
an antisymmetric tensor.

The important thing to note is that due to the non-
unitarity of Lorentz transformations the transpose (or a
hermitian conjugate) of a Lorentz “rotation" is not its in-
verse, unlike what happens for 3-dimensional Euclidean
rotations. Hence Ψ rather than the Ψ† that shows up in
bilinears of U(n,m).

8.3. QED electron-electron-photon 1-loop Feynman--
parametric integral. Write down the QED electron-
electron-photon vertex 1-loop Feynman integral in the
Feynman-parametric form,

Γ
µ
(2)(p′, p) = −2ie2

1∫∫∫
0

dx dy dz δ(x+y+z−1)
∫

d4`

(2π)4 [· · · ]

8.4. QED electron-electron-photon 1-loop numerator.
Simplify the gamma matrices in the numerator to the
two form factors proportional to γµ and σµν.
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A1.1 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought to unitary
form, and the same is true of all compact Lie groups. Hence, in what follows, we
specialize to unitary and hermitian matrices.

A1.1.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC† =



λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .



. (A1.1)
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Here λi , λ j are the r distinct roots of the minimal characteristic (or secular)
polynomial

r∏
i=1

(M − λi1) = 0 . (A1.2)

In the matrix C(M − λ21)C† the eigenvalues corresponding to λ2 are replaced
by zeroes:

λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .


,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏
j,1

(M − λ j1)C† =
∏
j,1

(λ1 − λ j)



1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .


.

Thus we can associate with each distinct root λi a projection operator Pi,

Pi =
∏
j,i

M − λ j1
λi − λ j

, (A1.3)

which acts as identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†



1
. . .

1
0

0
. . .

0


C . (A1.4)

The diagonalization matrix C is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalism is that we never need
to carry such explicit diagonalization; all we need are whatever invariant matrices
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M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness of Pi: The matrices Pi are orthogonal

PiP j = δi jP j , (no sum on j) , (A1.5)

and satisfy the completeness relation

r∑
i=1

Pi = 1 . (A1.6)

As tr (CPiC†) = tr Pi, the dimension of the ith subspace is given by

di = tr Pi . (A1.7)

It follows from the characteristic equation (A1.2) and the form of the projection
operator (A1.3) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (A1.8)

Hence, any matrix polynomial f (M) takes the scalar value f (λi) on the Pi sub-
space

f (M)Pi = f (λi)Pi . (A1.9)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

A1.1.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have used M1 to decompose the d-dimensional vector
space V = V1 ⊕ V2 ⊕ · · · . Can M2,M3, . . . be used to further decompose Vi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (A1.10)

or, equivalently, if projection operators P j constructed from M2 commute with
projection operators Pi constructed from M1,

PiP j = P jPi . (A1.11)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .

That M(i)
2 commutes with M1 follows from the orthogonality of Pi:

[M(i)
2 ,M1] =

∑
j

λ j[M(i)
2 , P j] = 0 . (A1.12)
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Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decompose

Vi subspace.
An invariant matrix M induces a decomposition only if its diagonalized form

(A1.1) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.

An invariant matrix M commutes with group transformations [G,M] = 0.
Projection operators (A1.3) constructed from M are polynomials in M, so they
also commute with all g ∈ G:

[G, Pi] = 0 (A1.13)

Hence, a [d×d] matrix rep can be written as a direct sum of [di×di] matrix reps:

G = 1G1 =
∑
i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (A1.14)

In the diagonalized rep (A1.4), the matrix g has a block diagonal form:

CgC† =


g1 0 0
0 g2 0

0 0
. . .

 , g =
∑

i

CigiCi . (A1.15)

The rep gi acts only on the di-dimensional subspace Vi consisting of vectors Piq,
q ∈ V . In this way an invariant [d×d] hermitian matrix M with r distinct eigenval-
ues induces a decomposition of a d-dimensional vector space V into a direct sum
of di-dimensional vector subspaces Vi:

V
M
→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (A1.16)
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Exercises

A1.1. Who ordered
√
π ? Derive the Gaussian integral

1
√

2π

∫ ∞

−∞

dx e−
x2
2a =

√
a , a > 0 .

assuming only that you know to integrate the exponen-
tial function e−x. Hint: x2 is a radius-squared of some-
thing. π is related to the area or circumference of some-
thing.

A1.2. d-dimensional Gaussian integrals. Show that the
Gaussian integral in d-dimensions is given by

Z[J] =

∫
ddx e−

1
2 x>·M−1·x+x>·J

= (2π)d/2|det M|
1
2 e

1
2 J>·M·J , (A1.17)

where M is a real positive definite [d × d] matrix, i.e., a
matrix with strictly positive eigenvalues, x and J are d-
dimensional vectors, and (· · · )> denotes the transpose.

This integral you will see over and over in statistical me-
chanics and quantum field theory: it’s called ‘free field
theory’, ‘Gaussian model’, ‘Wick expansion’, etc.. This
is the starting, ‘propagator’ term in any perturbation ex-
pansion.

Here we require that the real symmetric matrix M in the
exponent is strictly positive definite, otherwise the in-
tegral is infinite. Negative eigenvalues can be accom-
modated by taking a contour in the complex plane [1],
see exercise A1.4 Fresnel integral. Zero eigenvalues
require stationary phase approximations that go be-
yond the Gaussian saddle point approximation, typically
to the Airy-function type stationary points, see exer-
cise A1.5 Airy function for large arguments.

A1.3. Convolution of Gaussians.

(a) Show that the Fourier transform of the convolution

[ f ∗ g](x) =

∫
ddy f (x − y)g(y)

corresponds to the product of the Fourier transforms

[ f ∗ g](x) =
1

(2π)d

∫
ddk F(k)G(k)e−ik·x , (A1.18)

where

F(k) =

∫
dd x

(2π)d/2 f (x) e−ik·x , G(k) =

∫
dd x

(2π)d/2 g(x) e−ik·x .

(b) Consider two normalized Gaussians

f (x) =
1

N1
e−

1
2 x>· 1

∆1
·x
, N1 =

√
det (2π∆1)

g(x) =
1

N2
e−

1
2 x>· 1

∆2
·x
, N2 =

√
det (2π∆2)

1 =

∫
ddk f (x) =

∫
ddk g(x) .

Evaluate their Fourier transforms

F(k) =
1

(2π)d/2 e
1
2 k>·∆1·k , G(k) =

1
(2π)d/2 e

1
2 k>·∆2·k .

Show that the convolution of two normalized Gaussians
is a normalized Gaussian

[ f ∗ g](x) =
(2π)−d/2

√
det (∆1 + ∆2)

e−
1
2 x>· 1

∆1+∆2
·x
.

In other words, covariances ∆ j add up. This is the d-
dimenional statement of the familiar fact that cumula-
tive error squared is the sum of squares of individual
errors. When individual errors are small, and you are
adding up a sequence of them in time, you get Brown-
ian motion. If the individual errors are small and added
independently to a solution of a deterministic equation,
you get Langevin and Fokker-Planck equations.

A1.4. Fresnel integral.

(a) Derive the Fresnel integral

1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2ei π4

a
|a| .

Consider the contour integral IR =∫
C(R) exp

(
iz2) dz, where C(R) is the closed cir-

cular sector in the upper half-plane with boundary
points 0, R and R exp(iπ/4). Show that IR = 0 and
that limR→∞

∫
C1(R) exp

(
iz2) dz = 0, where C1(R) is

the contour integral along the circular sector from
R to R exp(iπ/4). [Hint: use sin x ≥ (2x/π) on
0 ≤ x ≤ π/2.] Then, by breaking up the contour
C(R) into three components, deduce that

lim
R→∞

(∫ R

0
eix2

dx − eiπ/4
∫ R

0
e−r2

dr
)

vanishes, and, from the real integration∫ ∞
0 exp

(
− x2) dx =

√
π/2, deduce that∫ ∞

0
eix2

dx = eiπ/4 √π/2 .

Now rescale x by real number a , 0, and complete
the derivation of the Fresnel integral.
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(b) In exercise A1.2 the exponent in the d-
dimensional Gaussian integrals was real, so the
real symmetric matrix M in the exponent had to
be strictly positive definite. However, in quantum
physics one often has to evaluate the d-dimenional
Fresnel integral

1
(2π)d/2

∫
ddφ e−

1
2i φ
>·M−1·φ+i φ·J ,

with a hermitian matrix M. Evaluate it. What are
conditions on its spectrum in order that the inte-
gral be well defined?

A1.5. Airy function for large arguments. Important
contributions as stationary phase points may arise from
extremal points where the first non-zero term in a Taylor
expansion of the phase is of third or higher order. Such
situations occur, for example, at bifurcation points or
in diffraction effects, (such as waves near sharp corners,
waves creeping around obstacles, etc.). In such calcu-
lations, one meets Airy functions integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3

3 ) . (A1.19)

Calculate the Airy function Ai(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value of x the sta-
tionary phase approximation breaks down.

A1.6. Solving the Lyapunov differential equation. Con-
tinuous time Lyapunov evolution equation for a covari-
ance matrix Q(t) is given by

Q̇ = A Q + Q A> + ∆ , (A1.20)

where {Q, A,∆} are [d×d] matrices. The superscript ( )>

indicates the transpose of the matrix. The stability ma-
trix A = A(φ) and the noise covariance matrix ∆ = ∆(φ)
are given. They are evaluated on a trajectory φ(t), and
thus vary in time, A(t) = A(φ(t)) and ∆(t) = ∆(φ(t)).
Determine the covariance matrix Q(t) for a given initial
condition Q(0), by taking the following steps:

(a) Write the solution in the form

Q(t) = J(t)[Q(0) + W(t)]J>(t) ,

with the Jacobian matrix J(t) satisfying

J̇(t) = A(t) J(t) , J(0) = I , (A1.21)

with I the [d×d] identity matrix. The Jacobian
matrix at time t,

J(t) = T̂ e
∫ t

0 dτ A(τ) , (A1.22)

where T̂ denotes the ‘time-ordering’ operation,
can be evaluated by integrating (A1.21).

(b) Show that W(t) satisfies

Ẇ =
1
J

∆
1
J>

, W(0) = 0 . (A1.23)

(c) Integrate (A1.20) to obtain

Q(t) = J(t)

Q(0) +

t∫
0

dτ
1

J(τ)
∆(τ)

1
J>(τ)

 J>(t) .

(A1.24)

(d) If A(t) commutes with itself throughout the inter-
val 0 ≤ τ ≤ t, the time-ordering operation is re-
dundant, and we have the explicit solution
J(t, t′) = exp

∫ t
t′dτ A(τ). Show that in this case the

solution reduces to

Q(t) = J(t) Q(0) J(t)> (A1.25)

+

t∫
0

dτ′ J(t, τ′) ∆(τ′) J(t, τ′)> .

(e) It is hard to imagine a time dependent A(t) =

A(φ(t)) that would be commuting. However, in
the neighborhood of an equilibrium point φ∗ one
can approximate the stability matrix with its time-
independent linearization, A = A(φ∗). Show that
in that case (A1.22) reduces to

J(t, t′) = e(t−t′) A ,

and (A1.25) to what?

A1.7. Solving the Lyapunov differential equation. Prove
that if A is stable, the continuous Lyapunov equation

AQ + QA> = −∆ < 0 .

has a solution

Q =

∞∫
0

dt etA∆etA> , (A1.26)

and that this solution is unique. (P. Cvitanović)

A1.8. Solving the discrete Lyapunov equation. Prove that
if M is contracting, the discrete Lyapunov equation

Q − MQM> = ∆ > 0

has a solution

Q =

∞∑
k=0

Mk∆Mk> , (A1.27)

and that this solution is unique. (P. Cvitanović)
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A1.9. Continuous vs. discrete time Lyapunov equation.
Show that the continuous Lyapunov equation solution
(suited to a Laplace transform),

Q =

∞∫
0

dt etA∆etA> , A < 0 ,

is equivalent to the discrete Lyapunov equation solution
(suited to a Z-transform),

Q =

∞∑
k=0

Mk∆̄Mk> , |M| < 1 ,

where

M = eA , ∆̄ =

1∫
0

dt etA∆etA> .

Parenthetically, often the notation does not distinguish
∆̄ from ∆. It should. (P. Cvitanović)

A1.10. Lyapunov differential equation in resolvent form.
Show that the continuous Lyapunov equation solution,

Q =

∞∫
0

dt etA∆etA> , A < 0 ,

is equivalent to

Q =
1

2π

∞∫
−∞

dω
1

iω − A
∆

1
−iω − A>

.

(P. Cvitanović)

A1.11. Discrete time Lyapunov equation in the resolvent
form. Show that the continuous Lyapunov equation
solution,

Q =

∞∫
0

dt etA∆etA> , A < 0 ,

is equivalent to the discrete Lyapunov equation solution
in resolvent form,

Q =
1

2π

2π∫
0

dω
1

1 − e−iωM
∆̄

1
1 − eiωM>

.

(P. Cvitanović)

A1.12. Noise covariance matrix for a discrete time periodic
orbit.
(a) Prove that the covariance matrix at a periodic point
φa on a limit cycle p,

Qa = Mp,aQaMp,a
> + ∆p,a , (A1.28)

where

∆p,a = ∆a + Ma−1∆a−1Ma−1
> + M2

a−2∆a−2(M2
a−2)>

+ · · · + Mnp−1
a−np+1∆a−np+1(Mnp−1

a−np+1)> (A1.29)

is the noise accumulated per a single transversal of the
periodic orbit, Mp,a = Mp(φa) is the cycle Jacobian ma-
trix evaluated on the periodic point φa, and we have used
the periodic orbit condition φa+np = φa.
(b) Derive the analogous formulas for the adjoint
Fokker-Planck covariance matrix at a periodic point φa

on a repelling cycle p.
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