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Abstract. Much of physics can be condensed and simplified using the principle
of least action from the calculus of variations. After introducing some basic con-
cepts such as a functional, the variation of a functional and the condition required
for a differentiable functional to have an extremum, the action, Lagrangian and
Hamiltonian of a physical system will be introduced. Applying the principle of
least action to a physical system, not only do the Euler-Lagrange equations (the
dynamic equations for particles or field equations for fields) come directly from
the differential of the action but so do all of the conservation laws associated with
the physical system by Noether’s theorem. Applying the main results to particles,
we will derive Newton’s second law of motion and the conservation of energy and
momentum in classical mechanics. Then, applying the results to fields, Maxwell’s
equations for electromagnetism will be derived as well as the energy-momentum
tensor for a classical field.
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1. Introduction

Almost all physical systems, whether they be single particles or systems of par-
ticles, scalar fields or vector fields, can be characterized by a functional called the
action. The action is a function of all the possible states that the physical system
could be in, and it maps each state to a real number. Any physical system with an
action can have its physical laws, ordinary or partial differential equations governing
the evolution of the system defined by the principle of least action. That is, one
can derive the laws of physics by finding the states of the system that minimize the
action. When sufficient initial conditions are imposed on the system, along with the
principle of least action, the system is defined entirely as far as classical physics is
concerned. An interesting thing happens, however, when we make a transformation
to the underlying spacetime. Any system must be defined on some set of coordi-
nates. When a change is made to those coordinates like when the space is translated
or rotated and the physical system remains unchanged, this transformation defines a
symmetry of the physical system. It turns out that each symmetry of a physical sys-
tem determines a unique conservation law, and this is known as Noether’s theorem,
a mathematical theorem of fundamental importance to all of modern physics.

2. Calculus of Variations Basics

In order to understand and work with this concept of action, which takes any
possible state of a physical system and maps it to a real number, we first have to
understand it in a more rigorous mathematical way. The state of a physical system
between time t0 and t1 is defined by a set of functions. Looking at a system of n
particles, those functions would be maps from time to position in space and thus, any
plausible state of the system in a given time interval would be defined by n functions
or n paths through space. An action is a type of function known as a functional. Its
domain is a set of functions, and its codomain is a real number. To begin with, let
us define this domain.

Definition 2.1. A function space is a normed vector space in which the elements
are functions from Rn to Rm.

For our purposes, the function spaces to be dealt with will be C∞(R; R) for our
systems of particles, which we will denote by P and C∞(R4; R) for fields, which we
will denote by F. The derivative of a function f ∈ P will be denoted by a dot over it
ḟ when convenient to simplify notation. An element in R4 will have four components
xµ where the index µ runs from 0 to 3. Partial differentiation of a function f ∈ F
with respect to xµ will be denoted ∂µf . For n particles moving in 3 dimensions, our
function space will be P3n. For n scalar fields, our function space will be Fn.
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Example 2.2. L1[a, b] and C1[a, b] denote integrable functions and differentiable
functions on [a, b], respectively.

Definition 2.3. A functional is a map f : X → R where X is a function space.

Example 2.4. Suppose a < b. The map from f to its integral on [a, b] defines a
functional.

J : L1[a, b]→ R

J(f) =

∫ b

a

f(x) dx.

Example 2.5. Suppose a < b. The map taking f ∈ C1[a, b] to the length of it’s
graph between a and b is a functional that sends

J : C1[a, b]→ R.

J(f) =

∫ b

a

√
1 + f ′(x)2 dx.

Definition 2.6. Let y be a fixed function in a function space X. Let h be another
arbitrary function in X and let ε be a real number. A functional J defined on X is
differentiable at y if:

∆J = J(y + εh)− J(y) = δJ(εh) + o(ε) ∀h ∈ X, ∀ε ∈ R.

Here, δJ denotes a linear functional where linear is defined in the usual way and o(ε)
denotes a function with all terms of order greater than 1 with respect to ε.

Remark 2.7. At any fixed y, if J is differentiable, then it is not difficult to show
that the linear functional δJ is uniquely defined. We call this linear functional δJ
the differential of J at y.

Definition 2.8. A functional J defined on function space X has a relative minimum
at y = y0 if there exists a δ > 0 such that

0 < |ε| < δ ⇒ J(y0) ≤ J(y0 + εh) ∀h ∈ X.
Theorem 2.9. If a functional J defined on X is differentiable and has a minimum
at y0, then δJ(εh) = 0 for all h ∈ X and for all ε at the point y0,.

Proof. By definition of J having a minimum at y0, we have

J(y0 + εh)− J(y0) = δJ(εh) + o(ε) ≥ 0

for all ε satisfying 0 < |ε| < δ for some δ > 0. This implies that δJ(εh) ≥ 0
when ε is small enough since ∆J(εh) ∼ δJ(εh). The ∼ denotes equality of principle
linear parts of two functions or functionals. We will be using this notation a lot
in the next section. Since epsilon can be positive or negative we can also obtain
δJ(−εh) = −δJ(εh) ≥ 0. Therefore, it must be that δJ(εh) = 0 at the point y0. �
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From now on, whenever a functional J has a minimum at some point, we will
simply denote its differential as δJ since it will be identically zero and not depend
on the variation from that point.

Theorem 2.10. Let α be a continuous function in P defined on the interval [t0, t1].
If ∫ t1

t0

α(t)h(t) dt = 0

for any continuous function h on [t0, t1] satisfying the conditions that h(t0) = h(t1) =
0, then α(t) = 0 for all t ∈ [t0, t1].

Proof. Suppose α is nonzero at some point in the interval [t0, t1]. Then this α must
be nonzero in some interval (a, b) contained in [t0, t1]. Let us define a continuous

function h(t) =
∣∣∣∣∣∣t− (a+ b−a

2

)∣∣∣− b−a
2

∣∣∣ if t ∈ (a, b) and h(t) = 0 otherwise. Thus αh

is completely positive or negative on (a, b) so therefore∫ t1

t0

α(t)h(t) dt 6= 0.

which is a contradiction. Consequently, α(t) = 0 for all t ∈ [t0, t1] �

Theorem 2.11. Let ψ be continuous function in F defined on a compact region
R ⊂ R4. If ∫

R

ψ(xµ)Ω(xµ) dxµ = 0

for any arbitrary continuous function Ω in R satisfying the conditions Ω(xµ) = 0 for
all xµ ∈ Γ where Γ is the boundary of R, then ψ(xµ) = 0 for all xµ ∈ R.

Proof. Suppose ψ is nonzero at some point x̂µ ∈ R. Then this ψ must be nonzero in
some ball Bε(x̂µ) ⊂ R. Let us define Ω(xµ) = ||xµ − x̂µ| − ε| for all xµ ∈ Bε(x̂µ) and
Ω(xµ) = 0 elsewhere. ψΩ is completely positive or negative on Bε(x̂µ) so therefore∫

R

ψ(xµ)Ω(xµ) dxµ 6= 0.

which is a contradiction. Consequently, ψ(xµ) = 0 for all xµ ∈ R �

Definition 2.12. Suppose we have a function space X and functional J such that

X = {f : f : Rm → R}.
J : Xn → R

J(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)) = J(fi(xj)) =

∫
R

F
(
xj, fi(xj),

∂fi
∂xj

)
dx.

4



Here, R is a compact region in Rm. Let us introduce a transformation of xj and fi
as such

x∗j = x∗j(xj, fi(xj),
∂fi
∂xj

, ε). f ∗i (x∗j) = f ∗i (xj, fi(xj),
∂fi
∂xj

, ε).

If J(f ∗i (x∗j)) =

∫
R∗
F (x∗j , f

∗
i (x∗j),

∂f ∗i (x∗j)

∂x∗j
) dx∗ = J(fi(xj))

Then we say that J is invariant under the given transformation.

3. The Action, Lagrangian and Lagrangian Density

3.1. Particles. In this section, the action of a general system of particles and its
differential will be considered. The Lagrangian L of a physical system is a function of
time t, each of the particles’ positions qi and each of the particles’ velocities q̇i. The
action I of a physical system is the integral of the Lagrangian over a time interval
[t0, t1]. It is a functional mapping the particles’ paths in the time interval to a real
number. The importance of action as a way of formulating physical laws is that
the dynamics of the particles as well as the conservation laws come directly from
the principle of least action. This principal involves simply finding the minimum of
the action functional. Suppose we have a physical system with a Lagrangian L and
we want to find the minimum of the action functional. The action for a system of
particles with n degrees of freedom is denoted as

I(q1, . . . , qn) = I(qi) =

∫ t1

t0

L(qi(t), q̇i(t)) dt =

∫ t1

t0

Ldt. (1)

Let us introduce the transformation

t∗ = t∗(t, qi, q̇i, ε). q∗i (t
∗) = q∗i (t, qi, q̇i, ε). (2)

t = t∗(t, qi, q̇i, 0). qi(t) = q∗i (t, qi, q̇i, 0). (3)

The action after this transformation is then,

I(q∗i (t
∗)) =

∫ t1∗

t∗0

L(q∗i (t
∗),

d(qi
∗(t∗))

dt∗
dt∗.

By Taylor’s theorem, we know

t∗ = t+
∂t∗

∂ε

∣∣∣
ε=0
ε+ o(ε) q∗i (t

∗) = qi(t) +
∂q∗i (t

∗)

∂ε

∣∣∣
ε=0
ε+ o(ε). (4)

The second terms in both of these equations will be denoted δt and δqi respectively.
They represent the principal linear parts of the differences ∆t = t∗ − t and ∆qi =
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q∗(t∗)− qi(t). We then have that ∆t ∼ δt and ∆qi ∼ δqi Also, we can write

∆q̇i =
d(q∗i (t

∗))

dt∗
− d(qi(t))

dt
∼ d(q∗i (t

∗))

dt
− d(qi(t))

dt∗
=
d(∆qi)

dt
∼ d(δqi)

dt
= δq̇i (5)

where δq̇i is the principal linear part of the difference ∆q̇i. This follows from the fact
that

d

dt
=

d

dt∗
dt∗

dt
∼ d

dt∗

[ d
dt

(t+ δt)
]

=
d

dt∗

[
1 +

d(δt)

dt

]
∼ d

dt∗
. (6)

Our goal is to find the action differential δI. First, we must write out what the
difference ∆I is explicitly.

∆I = I(q∗i (t
∗))− I(qi(t)

=

∫ t∗1

t∗0

L(qi(t) + ∆qi, q̇i(t) + ∆q̇i) dt
∗ −

∫ t1

t0

L(qi(t), q̇i(t)) dt. (7)

In order to get from this to the differential δI, we must eliminate all terms of order
higher than 1 with respect to ε. First, expanding the transformed Lagrangian using
Taylor’s theorem and eliminating higher order terms, we get the expression

∆I ∼
∫ t∗1

t∗0

L+
N∑
i

∂L

∂qi
δqi +

N∑
i

∂L

∂q̇i
δq̇i dt

∗ −
∫ t1

t0

Ldt (8)

Now we will put everything under the same integral and eliminate more higher order
terms. What we arrive at is the actual action differential

∆I ∼
∫ t1

t0

[
L+

N∑
i

∂L

∂qi
δqi +

N∑
i

∂L

∂q̇i
δq̇i

]dt∗
dt
− Ldt

∼
∫ t1

t0

[
L+

N∑
i

∂L

∂qi
δqi +

N∑
i

∂L

∂q̇i
δq̇i

][
1 +

d(δt)

dt

]
− Ldt

∼
∫ t1

t0

N∑
i

∂L

∂qi
δqi +

N∑
i

∂L

∂q̇i
δq̇i + L

d(δt)

dt
dt (9)

= δI.

Now we have an expression for the action differential but we can write it in a way
that reveals much more about the dynamics of the particles and the conservation
laws for the system. Our first manipulation to the expression above is to make a
substitution for the terms δqi and δq̄i. Let us denote ∆q̄i = q∗i (t)− qi(t) and let the
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principal linear difference be δq̄i. Then we can see that

∆qi = q∗i (t
∗)− q∗i (t) + q∗i (t)− qi(t)

∼ dq∗(t∗)

dt
∆t+ ∆q̄i

∼ dq∗(t∗)

dt
δt+ δq̄i

∼ d(q(t) + δqi)

dt
δt+ δq̄i

∼ q̇iδt+ δq̄i = δqi (10)

Also, we can see that

δq̇i ∼
d

dt
(q̇iδt+ δq̄i) =

dq̇i
dt
δt+

d(δq̄i)

dt
. (11)

Plugging these new expressions for δqi and δq̇i into differential of the action and
distributing out, we get

δI =

∫ t1

t0

n∑
i

∂L

∂qi

dqi(t)

dt
δt+

n∑
i

∂L

∂qi
δq̄i +

n∑
i

∂L

∂q̇i

dq̇i
dt
δt+

n∑
i

∂L

∂q̇i

d(δq̄i)

dt

1

+L
d(δt)

dt
2

dt.

(12)

Then we can also notice that by the product rule, the bracketed terms 1 and 2 can
be rewritten as

n∑
i

∂L

∂q̇i

d(δq̄i)

dt

1

=
d

dt

( n∑
i

∂L

∂q̇i
δq̄i

)
−

n∑
i

d

dt

(∂L
∂q̇i

)
. (13)

L
d(δt)

dt
2

=
d(Lδt)

dt
− dL

dt
. (14)
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Plugging these into the expression for the action differential above, moving around
terms and separating the integral into three integrals, we obtain the expression

δI =

∫ t1

t0

n∑
i

∂L

∂qi
δq̄i −

n∑
i

d

dt

(∂L
∂q̇i

)
δq̄i dt (15)

+

∫ t1

t0

[ 1

n∑
i

∂L

∂qi

dq

dt
δt+

n∑
i

∂L

∂q̇i

dq̇

dt
−

2

dL

dt

]
δt dt

∗

+

∫ t1

t0

d

dt

( n∑
i

∂L

∂q̇i
δq̄i +

d(Lδt)

dt

)
dt.

Within the starred bracket, the first and second terms are in fact equal so we arrive
at the simpler expression

δI =

∫ t1

t0

n∑
i

[∂L
∂qi
− d

dt

(∂L
∂q̇i

)]
δq̄i dt+

∫ t1

t0

d

dt

( n∑
i

∂L

∂q̇i
δq̄i + Lδt

)
dt. (16)

Finally, substituting back in for δq̄i using formula (10) and applying the fundamental
theorem of calculus to the second integral, we get our final version of the action
differential

δI =

∫ t1

t0

n∑
i

[∂L
∂qi
− d

dt

(∂L
∂q̇i

)]
δq̄i dt

dynamics

+
( n∑

i

∂L

∂q̇i
δqi −

[
− L+

n∑
i

∂L

∂q̇i
q̇i

]
δt
)∣∣∣t1

t0
.

conservation laws

(17)

When the action differential is written in this form and set equal to zero as dictated
by the principle of least action, it becomes of fundamental importance to physics.
Equation (17) gives us key insights into the dynamics and conservation laws of physi-
cal systems. The first term, labeled ”dynamics”, gives rise to the dynamical equations
governing physical systems. We shall discover how that is in Section 4. The second
part, labeled ”conservation laws”, dictates how each symmetry in a physical system
gives rise to a conservation law. This is due to Noether’s theorem. We shall prove
this and discuss its implications in Section 5. Presently, we will discover an analogous
expression for the differential of the action of a field, and the derivation will follow
in a series of analogous steps.

3.2. Fields. A physical field is a function of space and time. Fields can be scalars,
vectors or tensors. Any field can be represented as a number of scalar fields which are
its independent components. A few good examples of physical fields include the mass
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density of a fluid, the velocity vector field of a fluid, and the electric and magnetic
fields. With a field we can associate a Lagrangian density L which is a function of
the 4 spacetime coordinates xµ, the n scalar field components φi, and the 4n partial
derivatives ∂µφi. Here, x0 = c t where t represents time and c is the speed of light.
x1, x2, x3 are the three spacial coordinates. The action of a field I is the integral
over a region of spacetime of the Lagrangian density L. Our region of spacetime R
is always of the form [t0, t1]×R where [t0, t1] is our time interval and R is our region
of space. The integral of L over R is simply the Lagrangian L so likewise for fields
as for particles, the integral of the Lagrangian over a time interval gives the action.
Applying the principle of least action to the action I of a field, the field equations
of the particular field which govern the field’s dynamics as well as conservation laws
associated with the field come right out of the derivation of the action differential.
To proceed with the derivation of the differential of the action of a field, the action
itself is

I(φ1(xµ), . . . , φn(xµ)) = I(φi(xµ)) =

∫
R

L
(
φi(xµ), ∂µφi(xµ)

)
dxµ =

∫
R

L dxµ. (18)

Introducing a transformation to the spacetime and the field components as such

x∗µ = x∗µ(xµ, φi, ∂µφi, ε) φ∗i (x
∗
µ) = φ∗i (xµ, φi, ∂µφi, ε) (19)

xµ = x∗µ(xµ, φi, ∂µφi, 0) φi(xµ) = φ∗i (xµ, φi, ∂µφi, 0) (20)

the transformed action functional then looks like

I(φ∗i (x
∗
µ)) =

∫
R∗

L
(
φ∗i (x

∗
µ), ∂∗µφ

∗
i (x
∗
µ)
)
dx∗µ. (21)

By Taylor’s theorem, the transformed variables are simply

x∗µ = xµ +
∂x∗µ
∂ε

∣∣∣
ε=0
ε+ o(ε) φ∗i (x

∗
µ) = φi(xµ) +

∂φ∗i (x
∗
µ)

∂ε

∣∣∣
ε=0
ε+ o(ε). (22)

The second terms in each equation will be called δxµ and δφi respectively. Then
∆xµ = x∗µ − xµ ∼ δxµ and ∆φi = φ∗i (x

∗
µ)− φi(xµ) ∼ δφi. Similarly,

∆∂µφi = ∂∗µφ
∗
i (x
∗
µ)− ∂µφi(xµ) ∼ δ∂µφi.

We shall now move on to discover the differential of the action for a field as was done
previously for particles. First of all, the action difference is

∆I

= I(φ∗i (x
∗
µ))− I(φi(xµ))

=

∫
R∗

L
(
φi(xµ) + ∆φi(xµ), ∂µφi + ∆∂µφi) dx

∗
µ −

∫
R

L
(
φi(xµ), ∂µφi

)
dxµ (23)
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To get the action differential from this expression, all terms of order higher than
1 with respect to ε can be eliminated from the expression. First, we use Taylor’s
theorem to expand out the transformed Lagrangian and eliminate higher order terms.
We end up with

∆I ∼
∫
R∗

L +
n∑
i=1

∂L

∂φi
δφi +

3∑
µ=0

n∑
i=1

∂L

∂(∂µφi)
δ∂µφi dx

∗
µ −

∫
R

L dxµ (24)

Then, to get everything under one integral, we transform the variables in the first
integral to our original coordinates and change the region of integration back to R.
We must multiply the integrand by the determinant of the Jacobian matrix in order

to do this. The Jacobian matrix, denoted
[
∂(x∗0,...,x

∗
3)

∂(x0,...,x3)

]
, has entries of the form ∂µx

∗
γ.

Looking at these terms more closely, we see that

∂µx
∗
γ ∼ ∂µ(xγ + δxγ) = δµγ + ∂µδxγ. (25)

From this, it easily follows

det
[∂(x∗0, . . . , x

∗
3)

∂(x0, . . . , x3)

]
∼ 1 +

3∑
µ=0

∂µδxµ (26)

Therefore, our expression now becomes

∆I ∼
∫
R

[
L +

n∑
i=1

∂L

∂φi
δφi +

3∑
µ=0

n∑
i=1

∂L

∂(∂µφi)
δ∂µφi

]
det
[∂(x∗0, . . . , x

∗
3)

∂(x0, . . . , x3)

]
− L dxµ

(27)

∼
∫
R

[
L +

n∑
i=1

∂L

∂φi
δφi +

3∑
µ=0

n∑
i=1

∂L

∂(∂µφi)
δ∂µφi

][
1 +

3∑
µ=0

∂µδxµ

]
− L dxµ (28)

Distributing everything out finally and eliminating more higher order terms, we arrive
at an expression for the action differential itself.

δI =

∫
R

n∑
i=1

∂L

∂φi
δφi +

3∑
µ=0

n∑
i=1

∂L

∂(∂µφi)
δ∂µφi)

)
+ L

3∑
µ=0

∂µδxµ dxµ. (29)

Now that we have an action differential, we can manipulate it into a form that reveals
what fields will actually minimize the action and what quantities will be conserved
in time for these fields. First we must make substitutions for δφi and δ∂µφi. We will
use the notation ∆φ̄i = φ∗i (xµ)−φi(xµ) and its differential shall be denoted δφ̄i. For

10



δφi, we find that

∆φi = φ∗i (x
∗
µ)− φ∗i (xµ) + φ∗i (xµ)− φi(xµ) (30)

∼
3∑

µ=0

∂µφ
∗
i∆xµ + ∆φ̄i

∼
3∑

µ=0

∂µ(φi + δφi)δxµ + δφ̄i

∼
3∑

µ=0

∂µφiδxµ + δφ̄i = δφi. (31)

For δ∂µφi, we find that

∆∂µφi = ∂∗µ(φ∗i (x
∗
µ)− φi(x∗µ)) + ∂µ(φi(x

∗
µ)− φi(xµ)) + (∂∗µ − ∂µ)φi(x

∗
µ) (32)

∼ ∂∗µ(∆φ̄i(x
∗
µ)) + ∂µ

3∑
γ=0

(∂γφi)∆xγ +
(
∂∗µ −

3∑
γ=0

∂µx
∗
γ∂
∗
γ

)
φi(x

∗
µ)

∼ ∂µ(δφ̄i(xµ)) + ∂µ

3∑
γ=0

(∂γφi)δxγ +
(
∂∗µ −

3∑
γ=0

(δγµ + ∂µδxγ)∂
∗
γ

)
φi(x

∗
µ).

∼ ∂µ(δφ̄i(xµ)) +
3∑

γ=0

(∂µ∂γφi)δxγ −
3∑

γ=0

(∂µ(δxγ))∂
∗
γφi(xµ).

∼ ∂µ(δφ̄i) + +
3∑

γ=0

(∂µ∂γφi)δxγ

= δ∂µφi.

11



Therefore, plugging our new expressions into the differential and distributing, we get

δI =

∫
R

n∑
i=1

∂L

∂φi

3∑
µ=0

∂µφiδxµ +
n∑
i=1

∂L

∂φi
δφ̄i (33)

+
3∑

µ=0

n∑
i=1

∂L

∂(∂µφi)
∂µ(δφ̄i)

1

+
n∑
i=1

3∑
µ,γ=0

∂L

∂(∂µφi)
(∂µ∂γφi)δxγ

+ L

3∑
µ=0

∂µ(δxµ)

2

dxµ (34)

Now we can also make substitutions for terms 1 and 2 in this new expression when
we notice that by the product rule

3∑
µ=0

n∑
i=1

∂L

∂(∂µφi)
∂µ(δφ̄i)

1

=
3∑

µ=0

n∑
i=1

∂µ

( ∂L

∂(∂µφi)
δφ̄i

)
−

3∑
µ=0

n∑
i=1

∂µ

( ∂L

∂(∂µφi)

)
δφ̄i (35)

L

3∑
µ=0

∂µ(δxµ)

2

=
3∑

µ=0

∂µ(L δxµ)−
3∑

µ=0

∂µL δxµ (36)

Substituting in these two expressions, redistributing the terms and breaking up the
integral, we get

δI =

∫
R

[ n∑
i=1

∂L

∂φi
−

3∑
µ=0

n∑
i=1

∂µ

( ∂L

∂(∂µφi)

)]
δφ̄i dxµ (37)

+

∫
R

3∑
µ=0

[ 1

n∑
i=1

∂L

∂φi
∂µφiδxµ +

3∑
γ=0

n∑
i=1

∂L

∂(∂γφi)
(∂µ∂γφi)δxµ−

2

∂µL
]

∗

δxµ dxµ

+

∫
R

3∑
µ=0

∂µ

[ n∑
i=1

( ∂L

∂(∂µφi)
δφ̄i

)
+
(
L δxµ

)]
dxµ

12



Noticing that within the starred bracket, the first term and second term are actually
equal, we find that the action differential becomes simply

δI =

∫
R

[ n∑
i=1

∂L

∂φi
−

3∑
µ=0

n∑
i=1

∂µ

( ∂L

∂(∂µφi)

)]
δφ̄i dxµ

+

∫
R

3∑
µ=0

∂µ

( n∑
i=1

( ∂L

∂(∂µφi)
δφ̄i

)
+
(
L δxµ

))
dxµ. (38)

Finally, substituting back in for δφ̄i using equation (31), we arrive at our final ex-
pression for the action differential

δI =

∫
R

[ n∑
i=1

∂L

∂φi
−

3∑
µ=0

n∑
i=1

∂µ

( ∂L

∂(∂µφi)

)]
δφ̄i dxµ

dynamics

+

∫
R

3∑
µ=0

∂µ

( n∑
i=1

∂L

∂(∂µφi)
δφi −

[
− L +

n∑
i=1

∂L

∂(∂µφi)

3∑
µ=0

∂µφiδxµ

]
δxµ

)
dxµ

conservation laws

(39)

4. Canonical Variables, the Euler-Lagrange Equations and Dynamics
in Physics

Now that we have the differential of an action for both particles and fields, the
first thing we want to do is set it equal to zero and find what particle paths or
fields satisfy the principle of least action. First of all, we will introduce a new set of
variables, called canonical variables, which will make notation and presentation of
the mathematics much clearer and give insight into the physics as well. Then, we will
derive the Euler-Lagrange equations of the action for both particles and fields, which
follows almost immediately from the first integral of the action differential. The
Euler-Lagrange equations are the ordinary differential equations governing dynamics
in the case of particles and the partial differential equations known as the field
equations or wave equations in the case of fields. Finally, we will give two important
examples of Euler-Lagrange equations from physics: Newton’s second law of motion
for classical particles and the field equations for electromagnetism.

4.1. Particles. At the outset, let us introduce the canonical variables associated
with the Lagrangian for particles. Our current variables are t, q1, . . . , qn, q̇1, . . . , q̇n, and L.
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Let us change to the following variables t, q1, . . . , qn, p1, . . . , pn, and H, where we de-
fine pi, the momentum, and H, the Hamiltonian, as follows

pi =
∂L

∂q̇i
(40)

H = −L+
n∑
i

piq̇i (41)

Some important relations with the Hamiltonian to note are that

∂H

∂qi
= −∂L

∂qi
and

∂H

∂pi
=
dqi
dt

(42)

Rewriting the action in terms of these new canonical variables and applying the
principle of least action, we get

δI =

∫ t1

t0

n∑
i

[
− ∂H

∂qi
− dpi

dt

]
δq̄i dt+

( n∑
i

piδqi −Hδt
)∣∣∣t1

t0
= 0. (43)

Having introduced the canonical variables, let us derive the Euler-Lagrange equa-
tions. In our initial derivation of the action differential, we considered a general
transformation in the paths of the particles, qi, as well as a transformation of time
itself. Let us consider the special case where we keep time fixed, t∗ = t, and we fix the
end points of the particles at time t0 and t1. That is to say, we consider all particles
in some fixed time frame [t0, t1] and we require that the boundary conditions of the
particles, their positions at the beginning and end of the time interval be the same
no matter what paths we consider them to take. This corresponds to saying that for
all qi, q

∗
i (t
∗) = q∗i (t) = qi(t) for t = t0, t1. From this, it is clear that

δt = 0, δqi = δq̄i and δqi(t)
∣∣∣t1
t0

= 0. (44)

This means, that for this special case, the second integral vanishes from equation
(43) and we get

δI =
n∑
i

∫ t1

t0

[
− ∂H

∂qi
− dpi

dt

]
δq̄i dt = 0. (45)

which we shall call the restricted action differential. Now the term in the brackets
is actually just a function of t and in order for the qi’s to be extremal values, the
integral must equal zero for all admissible δq̄i. Therefore, applying Theorem 2.10,
it follows that the expression in brackets must be zero for all extremal values of qi.
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Thus, we get the Euler-Lagrange equations

−∂H
∂qi
− dpi

dt
= 0 or − ∂H

∂qi
=
dpi
dt

(46)

These are differential equations for each path {qi, pi} that determine, along with
initial conditions, the complete dynamics of the system. Together with the right side
of equation (42), we have

−∂H
∂qi

=
dpi
dt

and
∂H

∂pi
=
dqi
dt
. (47)

These together are known as Hamilton’s equations. These Euler-Lagrange equations
were derived from considering which functions are extremums of the action when the
end-points are fixed and time is unchanged. However, any extremum of the action
must be an extremal relative to any other point in the function space. Therefore, any
extremum must be an extremal relative to all functions with fixed endpoints and so
any extremum of the action must in turn satisfy the condition of the restricted action
differential. Equivalently, any extremum must be a solution to the Euler-Lagrange
equations.

As an example of where this equation arises in physics, consider a system of n
classical particles. Our Lagrangian in classical mechanics is the total potential energy
U subtracted from the total kinetic energy T . If we have n particles each with mass
mi and the path of the ith particle is (xi(t), yi(t), zi(t)), then we have

T =
n∑
i

1

2
mi(ẋi

2 + ẏi
2 + żi

2). (48)

U = U(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = U(xi, yi, zi). (49)

L(xi, yi, zi, ẋi, ẏi, żi) = T − U. (50)

I(xi, yi, zi) =

∫ t1

t0

Ldt. (51)

We shall presently convert our variables t, xi, yi, zi, ẋi, ẏi, żi, and L to canonical vari-
ables t, xi, yi, zi, pxi , pyi , pzi , and H. The momentum variables are not to be confused
with partial derivative notation. They are defined as follows

pxi = miẋi. (52)

pyi = miẏi. and H = T + U.

pzi = miżi.

The new variables are nothing but the x, y and z components of the momentum of
each particle and the Hamiltonian is simply the total energy of the system. By the
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principle of least action, the particles’ paths satisfy the Euler-Lagrange equations.
Before writing them out though, let us find out what the two terms in each Euler-
Lagrange equation really mean.

−∂H
∂xi

= −∂U
∂xi

= Fxi , −∂H
∂yi

= −∂U
∂yi

= Fyi , −∂H
∂zi

= −∂U
∂zi

= Fzi (53)

Fxi , Fyi , and Fzi are none other than the components of the force on the ith particle.
The Euler-Lagrange equations are

−∂H
∂xi

=
dpxi
dt

, −∂H
∂yi

=
dpyi
dt

, −∂H
∂zi

=
dpzi
dt

(54)

Equivalently they are

Fxi =
dpxi
dt

, Fyi =
dpyi
dt

, Fzi =
dpzi
dt

(55)

or simply just

Fi =
dpi

dt
. (56)

where Fi is the force vector on the ith particle and pi is the ith particle’s momentum.
The Euler-Lagrange equations are thus equivalent to Newton’s laws of motion in
classical mechanics.

4.2. Fields. The variables for fields are xµ, φ1(xµ), . . . , φn(xµ), ∂0φ1, ∂0φ2, . . . , ∂0φn, . . . ,
∂3φ1, ∂3φ2, . . . , ∂3φn, and L. We must first transform these to the canonical variables
for fields, which are are xµ, φ1(xµ), . . . , φn(xµ),Π1

0,Π
2
0, . . . ,Π

n
0 , . . . ,Π

1
3,Π

2
3, . . . ,Π

n
3 , and,

Hγ
µ . We define Πi

µ and Hγ
µ as follows

Πi
µ =

∂L

∂(∂µφi)
and Hγ

µ = −L δγµ +
n∑
i

Πi
γ∂µφi. (57)

Now rewriting the action differential using canonical variables and applying the prin-
ciple of least action, we get

δI =

∫
R

n∑
i=1

[ ∂L
∂φi
−

3∑
µ=0

∂

∂xµ
Πi
µ

]
δφ̄i dxµ (58)

+

∫
R

3∑
µ=0

∂µ

( n∑
i=1

(
Πi
µδφi

)
−

3∑
γ=0

Hγ
µδxµ

)
dxµ = 0
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To make notation simpler, let us say that

ε Gµ =
n∑
i=1

(
Πi
µδφi

)
−

3∑
γ=0

Hγ
µδxµ (59)

Then applying Green’s theorem to the second integral, we get

δI =

∫
R

n∑
i=1

[ ∂L
∂φi
−

3∑
µ=0

∂

∂xµ
Πi
µ

]
δφ̄i dxµ (60)

+

∫
Γ

3∑
µ=0

ε Gµvµ dxµ = 0

Here Γ denotes the boundary of R and vµ denotes the outward unit normal vector
to Γ. Consider the special case of a transformation such that the spacetime remains
unchanged and all the scalar fields must take on the same values on the boundary
Γ. These conditions are equivalent to the following:

δxµ = 0, δφi = δφ̄i, and δφi(xµ) = 0 for all xµ ∈ Γ. (61)

That means εGµ = 0 and the action differential becomes just the restricted action
differential which looks like this:

δI =

∫
R

n∑
i=1

[ ∂L
∂φi
−

3∑
µ=0

∂

∂xµ
Πi
µ

]
δφ̄i dxµ = 0.

The quantity in brackets is just a function of xµ, and since the integral is zero for all
admissible δφ̄i, it follows from Theorem 2.11 that

∂L

∂φi
−

3∑
µ=0

∂

∂xµ
Πi
µ = 0. (62)

These equations are the Euler-Lagrange equations for fields, otherwise known as the
field equations for the field (φ1, ..., φn). Along with initial conditions, these equations
govern the complete dynamics of the field.

4.2.1. Example. The most familiar field in physics is the electromagnetic field so
we shall derive the field equations for electromagnetism from the principle of least
action. The electromagnetic field is completely determined by the 4-potential Aµ
which has 4 scalar components A0, A1, A2, and A3. These scalar components of the
4-potential will be in place of our φi’s of the general case. A0 = −V

c
, where V is the
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electric potential and A = (A1, A2, A3) is the magnetic vector potential. The electric
and magnetic fields relate to the 4-potential by the following formulas

E = −∇V − ∂A

∂t
. (63)

B = ∇×A. (64)

The field equations we will be deriving will be Maxwell’s equations which are

∇ · E =
ρ

ε0
. ∇×B = µ0J +

1

c2

∂E

∂t
. (65)

∇ ·B = 0. ∇× E = −∂B

∂t
. (66)

The top two equations (65) are known as Maxwell’s inhomogeneous equations, and
the bottom two equations (66) are Maxwell’s homogeneous equations. The homo-
geneous equations follow directly from our definitions of the electric and magnetic
fields. To see this, first we take the divergence of both sides of equation (64). Since
the divergence of a curl is always zero we get the left homogeneous equation, Gauss’s
law for magnetism. Then, to get the second homogeneous equation we take the curl
of both sides of equation (63). The curl of a gradient is always zero and so the first
term on the right side of equation (63) goes away. The second term is evidently the
negative time derivative of the magnetic field. The inhomogeneous equations we will
derive from a the Lagrangian density but we first must introduce the electromagnetic
field tensor before defining the Lagrangian density. The electromagnetic field tensor
is a useful notation for consolidating information about the electromagnetic field. It
is defined as follows

Fµγ = ∂µAγ − ∂γAµ. (67)

With all of these quantities now defined, we will define the lagrangian density of the
electromagnetic field as

L = −1

4

3∑
γ,µ=0

FµγFµγ − µ0

3∑
γ=0

AγJγ. (68)

Our field equations will look like this:

Πγ
µ =

∂L

∂(∂µAγ)

∂L

∂Aα
−

3∑
µ=0

∂βΠα
β = 0. (69)

Evaluating the terms in the Euler-Lagrange equation further, we realize that

∂L

∂Aα
= −µ0Jα (70)
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and also that

Πα
β =

∂

∂(∂βAα)
(−1

4

3∑
γ,µ=0

FµγFµγ) (71)

= −1

2

3∑
γ,µ=0

Fµγ
∂Fµγ

∂(∂βAα)
(72)

= −1

2

(
Fαβ

∂Fαβ
∂(∂βAα)

+ Fβα
∂Fβα

∂(∂βAα)

)
(73)

= −1

2

(
Fαβ

∂Fαβ
∂(∂βAα)

+−Fαβ
∂(−Fαβ
∂(∂βAα)

)
(74)

= −
(
Fαβ

∂Fαβ
∂(∂βAα)

)
(75)

= −Fαβ. (76)

Thus our field equations look like this:

3∑
β=0

∂βFαβ = µ0Jα. (77)

These are four scalar equations (β = 0, 1, 2, 3). When β = 0, equation (77) corre-
spond’s to Coulomb’s Law, the left inhomogeneous equation. Equation (77) corre-
sponds to the 3 scalar components of the right inhomogeneous equation, Ampere’s
Law, when β = 1, 2, 3. Thus, through the 4-potential definitions of the electric and
magnetic fields and the Euler-Lagrange equations for the electromagnetic Lagrangian
density, we arrive at Maxwell’s four field equations for electromagnetism.

5. Noether’s Theorem and Conservation Laws

We have seen that from the principle of least action, the first term in the action
differential gives rise to the Euler-Lagrange equations which govern dynamics in
physical systems. We shall see presently how the second term in the action differential
gives rise to conservation laws via Noether’s Theorem.

5.1. Particles.

Theorem 5.1.1. Suppose we have the action functional

I(qi) =

∫ t1

t0

L(qi(t), q̇i(t)) dt.
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and suppose it is invariant under the transformation in equation (2). If the action
functional I is invariant under such a transformation, then

n∑
i

pi
∂q∗i
∂ε

∣∣∣
ε=0
−H∂t∗

∂ε

∣∣∣
ε=0

= constant for all t ∈ [t0, t1]. (78)

Proof. First of all, if I is invariant under such a transformation, then

I(q∗i (t
∗))− I(qi(t)) = 0 = ∆I = δI. (79)

In other words, if I is invariant under the transformation, then (q1, . . . , qn) is an
extremum. This implies that

δI =
( n∑

i

piδqi −Hδt
)∣∣∣t1

t0
= 0. (80)

The first integral of the action differential from equation (17) vanishes since the qi’s
satisfy the Euler-Lagrange equations. Recalling equation (4) and the definitions of
the differentials δt and δqi, we get

δI = ε
( n∑

i

pi
∂q∗i
∂ε

∣∣∣
ε=0
−H∂t∗

∂ε

∣∣∣
ε=0

)∣∣∣t1
t0

= 0. (81)

Since this is true for arbitrary ε, it must be that( n∑
i

pi
∂q∗i
∂ε

∣∣∣
ε=0
−H∂t∗

∂ε

∣∣∣
ε=0

)∣∣∣t1
t0

= 0. (82)

It follows from this that what is in the parenthesis remains constant over time since
the end points t0 and t1 were arbitrarily chosen. �

Any transformation that leaves the action functional I invariant is called a sym-
metry because if the action remains the same then the laws of physics (the Euler-
Lagrange equations) remain the same in the transformed coordinates. Therefore,
Noether’s theorem gives an exact formula for a constant of motion, a conservation
law, for every symmetry transformation. To see how truly remarkable this is, we
will derive the laws of conservation of energy and momentum for our old example of
classical mechanics. Our conservation laws will have the form

n∑
i

[
pxi

∂x∗i
∂ε

+ pyi
∂y∗i
∂ε

+ pzi
∂z∗i
∂ε

]∣∣∣
ε=0
−H∂t∗

∂ε

∣∣∣
ε=0

= constant. (83)
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Suppose we have the following two transformations (a time translation and 3 space
translations)

t∗ = t+ ε, x∗i (t
∗) = xi(t), y∗i (t

∗) = yi(t), z∗i (t
∗) = zi(t). (84)

t∗ = t, x∗i (t
∗) = xi(t) + εx, y∗i (t

∗) = yi(t) + εy, z∗i (t
∗) = zi(t) + εz. (85)

It is easy to see the action is invariant under both of these transformations. From
the first one, we see that

∂t∗

∂ε

∣∣∣
ε=0

= 1
∂x∗i
∂ε

∣∣∣
ε=0

= 0
∂y∗i
∂ε

∣∣∣
ε=0

= 0
∂z∗i
∂ε

∣∣∣
ε=0

= 0. (86)

From this, we get that H = constant. We have already shown that H is simply the
total energy so we see that time translation symmetry gives rise to energy conserva-
tion by Noether’s theorem.

Looking at the second transformation, if we set εy = εz = 0 then we get a trans-
formation of one parameter. We find that

∂t∗

∂ε

∣∣∣
ε=0

= 0
∂x∗i
∂ε

∣∣∣
ε=0

= 1
∂y∗i
∂ε

∣∣∣
ε=0

= 0
∂z∗i
∂ε

∣∣∣
ε=0

= 0. (87)

From this, we get
n∑
i

pxi = Px = constant. (88)

Px is the total momentum in x-direction. Likewise, we discover that
n∑
i

pyi = Py = constant
n∑
i

pzi = Pz = constant. (89)

if we let the only nonzero parameters be εy and εz respectively. Hence the vector
P = (Px, Py, Pz) is a constant of motion and we see that space translational symmetry
gives rise to the conservation of linear momentum in classical mechanics by Noether’s
theorem.

5.2. Fields.

Theorem 5.2.1. Suppose we have the action functional

I(φi) =

∫
R

L(φi(xµ), ∂µφi(xµ)) dxµ.

and suppose it is invariant under the transformation given in equation (19). If the
action functional I is invariant under such a transformation, then

3∑
µ=0

∂µGµ = 0. (90)
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Proof. First of all, if I is invariant under such a transformation, then

I(φ∗i (x
∗
µ))− I(φi(xµ)) = 0 = ∆I = δI. (91)

If I is invariant under the transformation, then (φ1, . . . , φn) is an extremum. This
implies that

δI =

∫
R

3∑
µ=0

∂µ

[ n∑
i=1

Πi
µδφi −

3∑
γ=0

Hγ
µδxµ

]
dxµ

=

∫
R

3∑
µ=0

∂µ

[ n∑
i=1

Πi
µδφi −

3∑
γ=0

Hγ
µδxµ

]
dxµ = 0. (92)

since the φi’s satisfy the field equations. Recalling equation (22) and the definitions
of the differentials δxµ and δφi, we get

δI = ε
[ ∫

R

3∑
µ=0

∂µ

[ n∑
i=1

(
Πi
µ

∂φ∗i
∂ε

∣∣∣
ε=0

)
−

3∑
γ=0

Hγ
µ

∂x∗µ
∂ε

∣∣∣
ε=0

]
dxµ

]
dxµ

= ε
[ ∫

R

3∑
µ=0

∂µGµ dxµ

]
dxµ

= 0. (93)

Since this is true for arbitrary ε, it must be the case that∫
R

3∑
µ=0

∂µGµ dxµ = 0 (94)

and so it follows that

3∑
µ=0

∂µGµ = 0. (95)

�

Equation (95) above, the main result of Noether’s theorem, states that the diver-
gence of Gµ is zero. From this, we will derive the conservation laws. First of all, by
Green’s theorem we can get that∫

R

3∑
µ=0

∂µGµ dxµ =

∫
Γ

3∑
µ=0

Gµvµ dxµ = 0. (96)

22



Recalling that R = [t0, t1]×R where R is a region of space (R3), we know that the
boundary of our region Γ = {t0} × R ∪ {t1} × R ∪ (t0, t1) × ∂R. Here ∂R is the
surface of the region R. Now we have that∫

Γ

3∑
µ=0

Gµvµ dxµ =

∫
R

G0(−1) dxk

∣∣∣
t0

+

∫
∂R

Gµvµ dxµ

∗

+

∫
R

G0(1) dxµ = 0
∣∣∣
t1
. (97)

Suppose the region R = B(0, r). If we let r →∞ and require that Gµ = 0 at infinity
as is required for physical fields, we get that the starred term above goes to zero.
Thus we arrive at the formula ∫

R3

G0 dxµ

∣∣∣t1
t0

= 0. (98)

The same logic holds if R is an arbitrary compact region of space and we expand
it indefinitely. We have here an integral over all of space and since t0 and t1 were
arbitrarily chosen, we discover that∫

R3

G0 dxµ = constant. (99)

This is our equation for the conservation laws of a field. Expanded out, conservation
laws are of the form∫

R3

[ n∑
i=1

(
Πi

0

∂φ∗i
∂ε

∣∣∣
ε=0

)
−

3∑
γ=0

Hγ
0

∂x∗0
∂ε

∣∣∣
ε=0

]
dxµ = constant. (100)

5.2.1. Example. Let us consider an arbitrary field and the following sets of transfor-
mations

x∗µ = xµ + εµ φ∗i (x
∗
µ) = φi(xµ). (101)

We are concerned with the four transformations in which only one spacetime coordi-
nate is translated and the other three remain unchanged. The first one, correspond-
ing to ε0, is a time translation. The other three, corresponding to ε1, ε2, and ε3, are
space translations in the x1, x2 and x3 directions, respectfully. Any physical field is
going to have its action be invariant under such transformations. Let us see what
conservation law to associate with each of these four symmetries. We can readily see
that

∂φ∗i
∂εµ

∣∣∣
εµ=0

= 0
∂x∗µ
∂εγ

∣∣∣
εγ=0

= δµγ . (102)
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The constants corresponding to these transformations are∫
R

−
3∑

γ=0

Hγ
0 δ

µ
γ dxk =

∫
R

Hµ
0 dxk = constant. (103)

The term Hγ
µ is the Hamiltonian tensor but it is also known as the energy-momentum

tensor for a field. H0
0 corresponds to the energy density of the field and (H1

0 , H
2
0 , H

3
0 )

corresponds to the momentum density of the field. Therefore the time translational
symmetry corresponds to conservation of energy in fields and space translational
symmetry corresponds to conservation of momentum just like it did in the case of
particles. The 4-vector (H0

0 , H
1
0 , H

2
0 , H

3
0 ) corresponds to the 4-momentum density

and thus, a general translation of spacetime gives rise to the conservation of 4-
momentum for fields via Noether’s theorem.
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