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1 Introduction and Boltzmann’'s
hypothesis

Statistical Mechanics is a microscopic theory of Thermodynamics, i.e. Mechanics (clas-
sical and gqm) of very large (statistical) number of particles.

1.1 Thermodynamic probability

The state of a system is described by the thermodynamic probability €2 i.e. the total
number of possible configurations (microstates) the particles in the system can have to
achieve a given outer state (macrostate). The more freedom (possibilities) the particles
have, the liklier the state.

Equilibrium ist the most probable state i.e.

Qequil = Qmaa: (1.1)

In thermodynamic Systems: Q = Q(N, E, V)

1.2 Criteria for equilibrium

Take two systems A; and Ay with states Q1 (N1, E1, V1) and Qo(Na, Eo, V5). Ay and As
interact and achieve equilibrium. The compound system has state Q0 = 0,0,

Energy exchange

N1, No, Vi, V5 are constant
EO — E1 + E5 = const

As we have equilibrium §Q(®) = 0. As the state only depends on the energy E (or Es
as they are dependent), we get 6Q(©) = BES )5E =0

o0 o ) <092 )
L s = (Z n Q =0
8E1 ‘EI’EQ <8E1 2 Joi o 8E1 By, By

where E, Fy are the energies of A; and Ay in equilibrium.

o

oh 0
0E

8E|

QQ(EQ) + 0 (Er)



We can replace the partial derivative for E; as % gg? aaEQ = _6LE2
o oy
O, 1, Q2(E2) — Ql(El)aE g, =0
BT T T
Q1(Ey) 0E1 F' Qy(Ey) OE, '™
or 9 9
B = 8—&11191\1@1 = 8—15211192\1@2 = o (1.2)

i.e. in equilibrium 01 = 0o
6= 8E In Q is equilibrium parameter (must be related to T by Oth law)

Boltzmann’s hypothesis

Take a look a the entropy: AS©® = AS; + AS,

051 0855
—AF, + —AEFE

9B, = T 9B,

05 055

AFE) +
- OE, om, (AR + 0Fs
Assuming that heat is flowing from A; to Ay. The second Law tells us AS > 0, i.e.

ASO) —

S (AE)

0FE;  0FE,
05, 05
0Fy = O0FE;
Recall the Maxwell relation: 65 =T, therefore
1 1
T
T > 15
Combine aE InQ =7 and 2 b9 L _T
0 o)) 0lnQ
— InQ— =pT =
o8 o5 ~ T = s
According to Boltzmann this is constant
oS 1
olnQ  pT (13)
with a universal constant k (later Boltzmann’s constant). Integrating yields
S+Sy=klnQ
The choice of Sy = 0 (suggested by Planck) leads to
S=klnQ (1.4)

If all "particles" are confined to one state then Q = 1 (impossible), S = kln1l = 0.
Impossibility of attaining 7' = 0 from 3rd Law.



Exchange of Volume

FE1q, Ey, N1, Ny are constant. Similar calculus leads to

n= ai InQ (1.5)
is fixed for A7, As in equilibrium
Exchange of Particles
FEq, Es, V1, V5 are constant
0
=—1InQ 1.
(= cln (1.6

is fixed in equilibrium

1.3 Correlation to Thermodynamics

The quantities

B B 0
B=—"|xyInQ = 2 |lpnInQ = |pyInQ
oE NV I = gy lenn C=gnlevin

must be related to thermodynamic coordinates (i.e. same values for equilibrium). To see
this, we compare the differentials for In 2. On the one hand we have

0ln ) 0ln ) 0ln ()
dlnQ = dE d dN
. o8 Py VN
= BdE 4+ ndV + (dV
On the other hand we have
dln ) 1dS
n)=—
k

The first Law was T'dS = dE + PdV — udN, so we get

1 P I

dInQ = BdE + ndV + (dV

Therefore
P —p
pB=0 n= T =%

and in equilibrium: T} =15, P = Po, pu1 = po



1.4 Example: ideal gas equation
As an application we can derive the ideal gas equation
1. The gas consist of non-interacting, non-overlapping "particles"
2. The probability of any particle to occupy a certain state is the same for all particles

The possibilities for one particle are proportional to V. The possible states for IV particles
are proportional to VN, ie. Qo VNV = ¢V ¥

0 0 Ny
n= aVan— aV(lnc—HnV )=

<|=

asn:%weget
N P
Vo kT
PV = NKT



2 Phase Space, Ensemble and Liouville’s
Theorem

2.1 Phase Space and Ensemble

Usual configuratoin space: (x,y,2) = ¢
Usual momentum space: (pg,py,p:) =0
For a N "particle" system the phase space is (g, p;) with i =1...3N
Ensemble: collection of all states of a system over all time, i.e. a mental copy of all states
Time average of all states = Ensemble average

Density function p(q;,pi,t), p is the density of points in phase-space. The volume-
integral is a norm (not normalized)

/p(éuﬁut)d:ﬂvq"d:ﬂvﬁ: norm Z 0

The ensemble average of a physical quantity f is the 1st momentum of f with respect to
the density p
] F G5l i )

| (@, 7, t)dr

with the volume-element in phase-space dr

()

Equilibrium:

9 _
ot

0 stationary ensemble (2.1)

2.2 Liouville’s Theorem

Criterion for equilibrium: % = 0 must be satisfied
Continuity equation % + V.J = 0. Here we have (G, i, t). The velocity (time-rate-
change) of "points" in phase-space is ¥ = (¢, p;). The current at a point in phase-space

is J = p?. So we get the continuity equation.

ap L
% + V(pt) =0 (2.2)



V = (86*-’ 8%-)7 therefore

N
Vi) = Y- [l + 500

i=1
. @_‘, @Z dp - 8_'1'%
-2 | (B ) (R

Now Hamilton’s equation of motion are

. 0H

using this we get
L Op 0H  0p OH 0 0H 0 0OH
V(P“)—;[<aq—;aﬁi op; aq‘;>+p<8q}3ﬁi op; 8@;)]
B Z Op OH  0p 0H
= \0q; op; 0P 9G;
= {p?H}P.B.

with the Poisson-Brackets. Therefore the continuity equation gives Liouville’s Theorem

Y Ao H)ps (23

1. % = 0 if p is independent of (g;, p;) i.e. constant energy, Microcanonical ensemble

2. % = 0 if p = p([H]),Canonical ensemble



3 Classical Counting

3.1 Stirling Approximation of N! for large N

Q = number of microstates. e.g. N particles (identical), tota rfulhber of aryangements
N!. if N; particles have energy E; then N;! arrangements are identical. then/Q = %]\',Z,
When N >> 1 then N! can be expressed analytically: Integral repres¢ntatign of n!:

o0 e¢]
n! :/ e dx :/ flx,n)dx
0 0

Figure 3.1: Plot of f(x,2)

flx,n) =a"e™™

fl(x,n) =na™ e — g™
— e~ (n o 1)

f'(n,n)=0



f is peaked around x = n, i.e. n! receives most contribution from small range of z around
x = n. Approximate:

o
n! ~ / fapproxz(x,n)dx
0

(z = n)?
2!

(—n"le™™) ...

Japproz(T,n) = f(n,n) + (x —n)f'(n,n) + f(n,n)+...

(z —n)?

_.n_—n
=n"e " +0+ o1

Therefore

n!l ~nte " /00 6_(1_\/2_:)2(133
0

[e.o]

=n"e "V2n enydy
l,_/
o/
nl~n"e "V2nm (3.1)

In the Boltzmann-Hypothesis S = kIn {2 so we need to approximate Inn!:

Inn! =lnn"e "Vvonrw

1 1
:nlnn—nlne+§lnn+§ln27r
~ —i—l 1
~(n 5 nn-—n
Inn!~nlnn—n (3.2)

Ezxample. Hooke’s Law: F' = —kx
Model: N links (each of unit length), length L of the chain, N > L, i.e. lot of creases.

N+ L

# of backward links = ;_
N-L

# of forward links = 5

10



As Q is the number of microstates possible to achieve a given outward state, we have

0_ Total number of arrangements of Links
~ (# of arr. of forward 1.)(# of arr. of backward 1.)
0 N!

So we get:

S =knQ =k [InN!—In (&L1) —1In (55L1)}

k(NN - N (52 In (2 + (M52) - (N52) n (52 + (52

S=k{NIN — (535) In (55F) — (555) In (575) }
=k {(555) In N + (55 L)l N —( +L)hﬂ(”“)—(NEL)ln(N‘L)}
=k {(55%5) [n N —In (835)] + (535) [Im N —In (535)] }

=4 (N+L)1n%+(N—L)1nN*L}

_ N+4L N—-L _ 1 _
Define k = 5, = S5y =1—+k

S=—-kN{xklnk+ (1 —k)In(l — &)}

In 1 dimension, Force = Pressure. The Maxwell-relation was P = — (8—F)T = — (8—F)T
with FF=U — TS = —T5 as U = const since microcanonical ensemble

0
P= 3L (kNT{kInk+ (1 — k) In(1 — x)})

=kNT{lnk+1+ (-1)In(1 — k) + (1)} L

2N
kT
= {Ink —In(1 — K)}
kT N —|—L
~ 2 'N-
4L
kT ( w
L
2 - N
As £ ~ < 1 expand around = = % =2z + 2:1:3 +.
kT
P=—1L
N
3.2 Boltzmann Counting
Phase space:
@l

11



phase cell, labeled by E;, with N, particles in it. The total number of particles is IV,
N=>.N;, E=> . N;E;

No. of arrangements of N particles

No. of microstates =
No. of indistinguishable arrangements

N!
= o (33
S=kln T, (N )

=k [ln N!— ln(H(NZ-!)]

%

=k [lnN!—ZlnNi!]

But N > 1 and N; > 1, therefore approximation with Sterling
S =k [NlnN - N-— Z(NilnNi - NZ-)]

By [NlnN S lnNi)]
It is convenient to introduce w; = %, e, Yw; =1
S =k |NInN =" (NuwiIn(Nw;)|
— kN [lnN — Z(wl InN + w; lnwi)]
— kN[N =N Y wi = Y wilnw|
S = —kNZwi In w; (3.4)

For equilibrium we have S¢q = Siaz, i.e. 65 = 0 with respect to variation dw;

59 = Z 8%

dw; are arbitrary variations of the function w(F;) subject to the constraints:
1. >, Eijw; = const
2. Zz Wi = 1

l.e. set

0S5 + MOE + X20N =0

i.e. vary
S = S+>\12NZEZ-+)\QZNZ-

—— ——
Sl 52

12



o g_ui :—kNa%i (ijjlnwj> :—l{:N(lnwi—i-l)

65 = Z gi = —kN Z(lnwi + 1)dw;

951 _ 0 Y. — .
[ ) 8w:_8_UJ1NZ]EJwJ_NEZ

(551 = NZEZ(SWZ

0S8y _ 0 _
] awz—a—%NZ]wj—N

552 = NZ(st

68 = —kN Z (Inw; + 1)6w; + AlNZ Eidw; + AN dw;

—NZ k(lnw; + 1) + M E; 4+ Ao] dw;

for arbitrary dw;, therefore
—k(lnw; + 1)+ ME;+ X =0 Vi
i.e

lnwi = -+ ﬂEZ

w; = e TPE:

Wehad 1=, w;ie. 1=, w;=e >, e PFije.

O‘:Ze_ﬁEi >0

Z(B) is called "partition function"

3.3 Boltzmann distribution function

The Boltzmann distribution function is then given by

fB(E;) = 7 Z = Ze‘ﬁEi
or for continuous energy spectrum
—BE
fa(B) =" zZ= [

13

(3.7)



3.3.1 Correlation to known quantities

The entropy was S = —kN ), w;Inw; i.e.

e~ PE;
S=-kNY_ —— (-BEi —InZ)

= kN g Z Eie PEi 4 % > ek

i
———
=Z

B —BE;
= kN (EZEZ»@ +InZ

S Eie PEi = —% S e Pk = —%Z ie.

B 307

Total energy

E:ZNZEZ- :NZEM :NZEiT =

N N 0 NoZ
- o—BE; _ 1Y _ Y —BE, _ _ ' T4
7 ZEG 7 Z a8° 7 98

Nz

7 9B

_ p o _

107
—k <—N52% —|—N1nZ>
S=k(BE+ NnZ)

together we get

Relate (3

Correlate the new (8 to known quantities: S applied to Thermodynamics:
S =kBU + kN InZ ()

dS(U, B) = §5dU + $5d6. Calculate dS:

dS = kBdU + <kN%g—g + kU) df = kBdU + (kU — kU)dS =

— kBdU

14

(3.9)

(3.10)



The relevant Maxwell Relation is (g_U)NV = %, ie. kB = % i.e. the "new" G is our

Holdll ﬂ

Average Energy

Calculate the average energy per particle, i.e. the first moment of F; with respect to

IB(E;):

1 B pE,__10Z _
B ZE)B B ZaﬂZ T Zog

Refine notation (U) = —% InZ
Now readjust notation:
ZN = Z{V where Z7 is the partition function per "particle"

0 0 d
U=N(U)=-NgzlnZi =55 ZN = 55 7

) )
U= ZNZ-UZ- :Nzi:wiUi =N <—%anl> = —%mZN

Thermodynamics:
S=kBU +klnZy

Relate o

Helmholtz: F =U —TS=U ~T (;U +klnZy) = —5lnZy

1
F=——InZy
B

Maxwell relations (involving the potential F')

OF P
- _ (& kT1n Z
5 <6T>N’V o T InZN) =

0 10
=klnZ kKT—InZy =klnZy — =—InZy =
nzZy—+ a7 nzZn nzZy T35 nzZy

=kBU 4+ kln Zy nothing new

OF 1/ 0
P=—-|(— =—| = InZ seful
<8V>N,T 3 <5V>N,T nZy usefu

oOF 1 0 1 1
== =—Z(=—=—) mZy=--IlnZ =——Ine*=—
: (azv)V,T ﬂ(aN)V,T A A

« is a chemical potential.

I L

15



3.3.2 Calculate Cy,

_ (U _ 980 (0 N N Rk
Cy = <8_T>V = —8—T% (8_BIHZN) = Wa—BZI kB 8—BQIDZN
2
= w?a—ﬁg InZy (3.11)

3.3.3 Calculate average Energy

In the Boltzmann distribution, E ranges from 0 to co. Consider a system at energy F
and calculate the derivation AF from E (at any observation). Estimate %. If this is
very small, the microcanonical ensemble is equivalent to the canonical ensemble.

_ /Ef(E)dE - /EeﬁEdE

10
=— [ BePPdE = - )
/e a zog) ¢ ¢
107

(E) = _E% (3.12)

(AP = ((E - (E))?) = (E* = 2B (E) + (E)*) =

/E2 E)dE —2(E /Ef )AE + ( >2/f(E)dE:

/E2 E)dE — 2(E)* + (E)* =
Z/E2 PEIE — (E)® =

1 8 _

_ 19z 2 _
_58—52_<E> _

18%2 (102
_Ea—m_<2%>

0 (10Z 107
_%<E%> (%E)a_ﬂ_<zaﬂ>

83;12+1< ) (%)Z

82
a—m lIlZ

16



Recall from (3.11) Cy = k:ﬁ288—ﬁ22 InZji.e.

Cy
(AE)* = e (3.13)
ie.
AE  \/kT?Cy
(E) (E)
3.4 Applications
3.4.1 Equation of state (gas equation)
In canonical ensemble (Boltzmann distribution):
OF 0
Pp=—(2) —ir(Z) mz
<8V>N,T <8V>N,T o
. : —BE 2
1. Ideal gas ( recall Q oc V). Energy spectrum is continuous, f(E) = ¢ —, E = %

i.e. V(x) =0, no forces.

Z1 :/eﬁEdT:/eﬁEdqdp:
P2 P2
:/eﬁ%ndqdp:V/eﬁmdp:

2mm
N VO il
B

This yields a pressure of

0 0
P=kT <W>N,TIHZN = kT <W>NTNII1Z1 =

0 [2mm
0 [2mT

_ NET
Y

2. non-ideal Gas, e.g. VAW

VAl :/eﬁEdT

17



E=L£ +W(g)

7, = / -8 dp/ ﬁW(Q)dq
| 2mm / —AW(q
Qm” —BW (9)
- 1/27”77T (V + / e W (@) _ 1dq)

2mm 1
= T (1L v _ gy
3 < +V/€ ‘

oF 0
P (%) war(f) wa-

0 2mm
_Nk:TW[ Y it 5 +1nv+1n( Vﬂ

19
_Nk:T<V+W1n(1+V>

3.4.2 Equipartition of energy

2m7r

e For a free particle with mass m in 1 dimension we had Z; = V. The average

energy is

E ———lZ
< > 8ﬂn 1

1

= 85 <ln\/2 V—§lnﬂ>
1

:%:5’”

P12

e For a 3 dimensional ideal gas the exact energy is £ = 5 —.

Z1 = /e"gEd?’qd?’p

(%)

18



Therefore the average energy is

<E>——%an1 885 <lnv+gln2mﬂ'—glnﬂ>
31 3
=257

Equipartition: %k:T per degree of freedom.

e Gas of SHO: E = % + %mquQ
—B( -+ imw?e?
Z Z/e ( ’ )dpdq
2

B 2mm 2T
- 3 Bmw?
2
1= —
1 w3

0 11
<E>= —%anl—kT <2+§> kT

Heating bulk system by radiation = system of oscillators (w being the frequency of
the radiation.

0 0
Cy =N (8_T>V < FE>= a—TNk:T—Nk:—const

but this is not experimentally observed.

e Relativistic ideal gas: (only kinetic energy), E = cy/m?c24 + |p]?
Z = /eﬁEd:gpdSq = V/eﬂcV m202+p2p2dp sin 0,df,d¢, =
— V47T/ 2 —ﬂcm(j
0

19



Now take massless particles: m = 0

Zy = 471'V/p2€ﬁ0pdp =

1 d

:4 V - 2_ 7/Bcpd —
" /( Bc)p "7
4

= _LV <0 _ /2pe_ﬁ6pdp> —

B¢

87V 1 d

— —— | ZeBergy —
Be /p< ﬂc>dp€ g

8wV
_ —Bc _
B _6262 <0 a /6 pdp> B

8wV
T BA
0 0 3

3.4.3 Interaction of Radiation with Matter

Radiation = e.m. waves with frequency w

Matter = atoms, molecules, oscillator model with Hooke’s constants given by w of the
radiation

Classically: w has continuous spectrum i.e. from SHO

2
Z1 = /e_ﬁEd?’pd?’q = (i>
wp

1 1
E)= kT + =kT
= (F) 2k +2k

U= N(E)=NkT

Cy = (g_g>v = Nk = const not observed

Planck’s Hypothesis: Energy has discrete spectrum (in the context of radiation interact-
ing with microscopic matter). Energy is absorbed in discrete packets ("quanta')

E,, = nhw
So we get

n 1

00
S (e I
n n=0

20



1.e.

0
E)=——1InZ = —In(1—eP™) =
(E) = —g5n 21 = 55In(1 - e 7¥)
hw
_ —Bhw
T 1o B
 hw
- efhw 1
o(E) oo 1
Cv=N"5r 9T 95 P —1
N -1 o
C KT? (Bl — 1)? N
Bhw
= NW2w?k———— T dependent
(efhw —1)

Examine the limits for 7> 1 (ie. < 1) and T < 1 (i.e. > 1)

e T'> 1,0 « 1, classical limit

hw hw 1
E) = =R =—=kT
(E) efhw — 1 Bhw O
As for the classical SHO (equipartition)
e ' 1,8> 1, qm limit
hw hw ~Ohe
(E) = ePho — 17 e
0(E) B 9 _sp,
- N2 o 9
Cv oT oT 0B

ie. Cy I79, 0 as 3rd Law and agrees with experimental result
Note. Calculate with correct qm energy: E = (n + %)hw

hw 1

0 hw 0
— o B% - _ = -85 L _ o Bhw) _
Zy=e 21_67ﬂﬁw<E> = aﬂlne 2+851n(1 e )
L
2 P

hw

with the zero point enery =5

21



Einstein specific heat

0 [ hw
Cv_a_T<€ﬂhw7_1>_

0 1
p=te  OT (e?g“ — 1>
%

k6? e

T2 5 N2
SER
For system with a range of frequencies sum up all contribution, given the density function
p=p(0)
Einstein: pg(0) = dp(0 — 0g)

Clot = /CV(H,T),pE(G)dH =
= Cy(0g,T)

1 <0p

Debye: =
e {o 0> 0p

C‘eebye = kT - const

3.5 Degenerate levels (states)
e.g. more than one state with energy F. Boltzmann distribution
Z) = /e_ﬁEd,u(E)
du(E) = dE maybe, but not necessary. Typically du(F) = g(E)dE where g(E) =no. of

states/unit energy range.
Recall equipartition:

) 9 3/2
Z1 = /eﬁEdde3q = V/eﬁ;nd:gp = <—7Z7T> |4

22



But
_ —BE 3., —BE _ \ :
Z1= [ e PPdEd’q=V | e ""dE = _ﬂ incorrect

So
2mm 3/2
Z = <—> V= / g(E)e PEdEdg

Invert to find g(F)

1 B’ +ico Zl(ﬂ)
E)=— PEZL 43 =
g( ) 271 B! —ioco ﬂ 271

(2mm)3/2 / ePE a3

53/2

o x>0
Use the result $'4i00 e ds = { n .As E >0

/g en+1
27rz s'—i00 s™ 0 T S 0

1/2
30 BY
1
(3)!
Alternative: Count no. of states of energies up to E: M(FE). The number of states is
proportional to the volume of a ball in state space.

9(E) = (2mm)

4
M(E) o 5p°

with p = V2mEY? we get
4
M(E) z;T(zm)?’/?EW

The number of states per unit energy range is

au

1/2
1B x FE

same result
Ezample. 1. Artificial example: E, = nfw (QM SHO) with degeneracy g(E,) =n

:Zne*ﬁ”ﬁ“’ =
_g hw _
_Z hw@ﬁ !

B maﬁz< )
19 1
hw 0B 1 — e Bhw

€7ﬁﬁw

(1- e‘ﬁ’w)2

23



(E) = —%lnzl = —%(—Bm) + 2%111 (e—ﬂhw - 1) =

2
Bhw __
= hw + PR ,1(—”‘*})6 =

26—,6’hw
:h(,<1_7€_m_1) _
2
=W<1—W> =

1 1
=2w | =+ 57—
<2+eﬁm’—1>

In the limit for T'> 1,0 <« 1

1 1
<E>A~J2hw<§+ >:hw+i

Ghw beta
0(E) 0
=N——"+==—92NKT = = lassi imi
Cy T a7 kT = 2Nk = const classical limit

24



2. SHO with degeneracy g(n) = n?

— Zg(n)e—,ﬁ’nhw _ Zn2€—,6’nhw _
1 0% _
=2 maapt =

= s o (™)' =

1o 1 B
T OR2W20B3%21 — e Phw T
10 e~ Bhw B
_a%(l — e*m”w)2
1 ( — hwe ﬁﬁw2 e 3(_1)(_hw)€_gm> _
hw \ (1 — e=Bh)? 7 (1 — ¢=Fhw)
e~ Bhw e~ Bhw o —Bhw

(1P " (1 ey

e P (1 — =) 4 2e=Fhw e B
(1 — e Bhw)?

e~ P _ e=Phwe=Fho | 9e=Bhwe=lhw

- (1 — e Bhw)3 N
efﬁhw _|_ efﬁﬁw
(1- e‘ﬁ’w)?’
*ﬁﬁw ].+ e —fBhw

(E) :—aa—ﬂanl = 885 [ Shw + In (1—1—675}%}) —3In (1_6 ﬁm)] _

1
— —Bhw

€7ﬁﬁw efﬁﬁw > B

e_’ghw(—hw) =

+3

=hw(1
<+1+effﬁw 1 — e Phw

1 3
:m<1+em+em_1)
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Classical Limit: T'> 1,0« 1

T>1 1 3 B
<E>_}h“’<1+2+57m+5m>_

1 3
~hw(l+-=-+—KT)=
<+2+hw )

1 kT
(14T

huw
9 (E)
T

= 3k = const

Cyv =N

21 21
li.e. each Ejis (21 + 1) fold degenerate

3. QM rotator: By = (H) = M, (H = E) There are 2+ 1 values of m for each

52
Zy = Zg(l)eiﬂEl = Z(Ql + 1)efﬁl(l+1)r27 =

l
= 321+ 1)e DS
l

a) T < 1,8 > 1 extreme QM limit, i.e. we can truncate to [ =0, 1,2

Z1=1+ 3208 4 5698

0 e208 4 5e=608
E)=——1InZ, =60
(E) o n =6 1+ 3e=208 4 5¢—608

i.e. (E) is T dependent and Cy =% agrees with 3rd law

b) T > 1,8 < 1 so we must include high [ (no truncation); we can treat [ as a
continouous variable and replace the sum by an integration.

7 = 9] 1 1)e—tU+1)08 :/ Y —+1)08 1 _
1 /0 (204 1)e dl ; —waze dl

1 [e_z(z+1)ﬁ0r°:

__% .
1 kT
03 6
0 1 0 1

1

=—=kT
B

Cy = k = const
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4 Quantum mechanical counting

4.1 Pauli exclusion principle

No two Fermions can occupy the same state.

If particles are identical then the state function ¢(z1,22) also describes the system with
z1 and xy interchanged. i.e.

(1,20, xn) P = [Y(@, 21, 2w
or
Y(x1, @9, ..., xN) = (22, 21,. .., TN)
i.e. there are two types of (identical ) particles in QM
e 1) is symmetric under interchange, BOSONS, integer spin, e.g. v, g, 7

e 1) is antisymmetric under interchange, FERMIONS, half-integer spin, e.g. e~ ,p,n
Then if we put two (identical) Fermions in the same state
w(afl,xQ, PN ,QSN) = —w(azl,ajl, PN ,.TN)l
v(x1,21,...,2N8) =0

i.e. no two Fermions can occupy the same state.
Now counting dictated by QM.

1. No two Fermions in a state, i.e. 0 or 1 particle per state (cannot use Stirling
approximation)

2. Fermions & Bosons cannot be labeled (indeterministic)

In phase space, a phase cell contains N; > 1 particles of energy F;. Divide each cell into
_ N

G > N elementary cells, n; = ‘7 can be small. For the Boltzmann hypothesis, we need
the thermodynamic probability €. Define:

Q. = thermodynamical probability of each elementary phase-cell

Q= thermodynamical probability of i-th phase cell

G/~

Q, = Y

since each one of the GG elementary phase cells is equaly likely to be occupied by a particle

0. Recover Boltzmann distribution (Classical counting, deterministic)
1. Fermi-Dirac distribution (antisymmetric under interchange)

2. Bose-Einstein distribution (symmetric under interchange)
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4.2 Boltzmann distribution

, as N; > 1 approximate with Stirling.

IHNZ' = Nz lIlNZ - Nz
N' _ eNi lnNi—Ni
AN

AN =N
=N, e

~ GGni gGni Ge \ ™ e\ O
i = (Gn)me <an> B (n_z>
=0, = i/fz =n,; e
= 0= HQZ = Hn;”ie”i

And so the entropy is

S=knQ=kn[[Q=k) Qi =k> (-njlnn; +n;) =~k > (njlnn; —1)

Use Ni = GTLZ

Previous version S = —k ZZ w; Inw; with w; = %
4.3 Fermi-Dirac distribution
~ |
Q, = G!
(G — N;)IN;!
As G > 1, N; > 1 approximate with Sterling
- e_GGG B GG B
i eNi*G(G B Ni)GfNie—NiNiNi (G - NZ,)GfNiNiNi
G¢ G¢
- (G- Gni)(G_G”i)(Gni)G”i o GG_G”i(l _ ni)G—GniGGnianni B
G¢ 1

GGl —ny)G-GrnSm (1 = p,)G—GninCmi

= [nini(l — ni)nifl}G

G

- 7
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So the entropy is

S:k‘lnHQi = kZIHQi :k‘Z[—nilnni—l—(ni— In(l —ny)] =

= —k;z [niInn; + (1 —n;) In(1 — ny)]

4.4 Bose-Einstein distribution

In Bose statistics any number of particles (A) in given state B. States B and particles
A are not individually labeled. Assign each particle A to the state on their left

BAABAAABABAABB...

How many possibilities are there? We have G + N; "particles" to distribute, the left-
most particle has to be a B, so G possibilities for this, the rest can choose freely, i.e.
(G + N; — 1)! possible arrangements. As the particles are indistinguishable N;! are the
same, as the states are indistinguishable, G! are the same. So we get

g _CGG+N—1) _(G+Ni—1)

L G!N;! (G —1)IN;!
G+ Ny e NG Ny G
TGNy e GGGeNiNM
(G + Gni)GJani GGGGni(l + ni)GJer
T UGO(Gm)e T GeGGaln
. (1 +ni)G+Gni .
= o =

(2
= [(1 4 ng) Fn; ™

G

i.e. the entropy is

S = klnHQi = kzln [(1 + ni)1+mni—m] _
= k> [(1+ n) In(L +n;) — nylnng] =

= —kZ [nilnn; — (1 +n;) In(1 + n;)]

4.5 Summarize FD and BE

Define QZ(FD) _ QZ(Jr) QBE) _ QZH- oF) — n; M (1 ng)niFL

) 1

SE =km oM =k [~nilnng + (n; F 1) In(1 F )]

7
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Use calculus of variation:

subject to the constraints of fixed energy and fixed number of particles.

5S + MOE + \od (Z Ni> =0

05 =k 0 {Z[—nilnnH‘(nz’:Fl)lH(l:F”i)]} =

8ni_ 8nl
n; F 1
:k‘[—lnni—l—l—ln(lqini)q:%]
ﬂ_ljFM]:
n; 1:{:TLZ‘

i

=k [ln

1Fn,
— fln— % =

ng
Lz
5S = —k:Zln T

i

1.e.

3 oni [—kln B L ME | =0
: 1:F’I7,Z'

dn; being arbitrary (subject to the constraints imposed)

kln—Y L ME 4+ XA =0 Vi
1Fn;
i.e.
n;
] - E,
anFni (a + BE;)

n; = (1 F ny)e”(@+FE)
ni(l + 6_(a+ﬂEi)) = 6_(a+:6Ei)

e~ (a+BE;)
MY e (ot BE)
o 1
M e tBE 1 1
or with continuous spectrum
1

HE) = s i1
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Evaluate S:
S = kz [—niInn; + (n; F 1) In(1 F n;)] =
= —kZ n; (Inn; —In(1 Fn;)) £ In(1 Fny)] =
— —kz [nz In
:—kZ (a+ BE)n; £In(1 Fn;)| =

=k [aZni+ﬂZE¢ni:len(1:Fni)

=k

iln( :Fni)] =

aN + 0FE F Zln(l Fn;)

)

If we now proceeded like before to employ the Maxwell Realtion (g—g) =T =

N,V

(%)NV = 4, we meet an obstacle. The term > ,In(1 F n;) is not independent of
E, so B cannot be identified as before. %beginalign* Here, we proceed with the alterna-
tive path of subjecting the Helmholz free energy F' = U —T'S to the variational principle.
Note that now T appears explicitly so we do not need the Lagrange multiplier to fix the
energy. Using only the constraint fixing the number of particles, we arrive at exactly
the same result, without having to identify 5. To identify the corresponding Lagrange
multiplier «, recall the Maxwell Relation (g_llff)T,v = u,

F=U-TS=U-Tk aN+ﬁU¢Zln(1:Fni) =

= —kTaN £ kT ) " In(1 Fn,)

i.e.

oF
o= (ov),, =1

)

a=—Pu
i.e. the FD/BE distribution is:
1
E)=———F——— 4.1
fi( ) elg(Efu):lzl ( )
1
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Eo = p=p(T).

X (B~ Eo)
F:NEO:EZlIl(l:Fm):NEOiZID m -

—NE;FY In (1 + eﬂ(EO—E>)

Note. If you don’t take the G root you get a better result for S and do not have to
cheat on E and N. For more realistic considerations you can even take (G; being the
number of states for each energy level. The result is the same

4.6 Sign of p

1. Bose-Einstein: fpp = m. Suppose we calculate the number of particles, it

has to be >0 (E)
. g
N = / @ﬁ(E_:U‘) —1 >0

i.e. eB(E — u) > 1 for arbitrary E i.e. e P > 1
pw<0 VT (4.3)

See Figure 4.1 for plot.

2. Fermi-Dirac frp = Zim

_ 9(E) _
N = / eBE—p) 1 1dE o

_ Bu 9(E)
—° /eﬁE—i—eﬁ“dE

If £ <0 (p=—a?

_ _—fBa? g(E)
N=e /7€ﬁE+€—,@a2dE

Consider now 7" — 0, i.e. 8 — oco. Then feﬂ;&dE — f%dE =1 <

+e—Ba?
which is convergent, i.e.

which is absurd, i.e.
w(T=0)>0 (4.4)

See Figure 4.2 for plot.

For T' = 0 the distribution function is the Heaviside step-function (Figure 4.3)
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Figure 4.1: Bose-Einstein distribution

0.8 | 1
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Figure 4.2: Fermi-Dirac distribution for 7" > 0

0.6 [ 1

fep

04 1

Eo

Figure 4.3: Fermi-Dirac distribution for T'= 0
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4.7 Radiation Laws

Photon gas (E = hw (QM)) obeys Bose-Einstein statistics f(FE) = % Photons

B(E—Eq) _
€
are superrelativistic, i.e. their number is not fixed, i.e. the Lagrangian mulhpher « fixing

N is zero. a = 0= Ey = pu = 0. The total energy is

= /Ef(E dr

dr is the volume-element in phase space, i.e. dr = d3z47p?dp. Because of the uncertainty
relation we cannot make both dz and dp infinitesimaly small, so we have to divide by i3

_47TV/Ef 2dp

As for radiation holds p = % = % we change variables to get

47V B3
U=-"53 /hwf(hw)w?dw
In order to account for the two possible polarisations we have to multiply by 2. The

energy /unit volume is
U 8rh / w3
— = dw
VoA ) efw—1

1. Rayleigh -Jeans: energy/unit volum/frequency for long wavelength

8rh WP 8rh w? 8w 2

CTTE 1B Bhw 603

2. Wien’s law: energy/unit volume/frequency for small wavelength

8th w3 _ 8mh w®  8rh 8,

€= ~ -
3 ePwh _ 1 3 ebhw 3

3. Stefan’s Law: energy dependence on T
U 8nh / w3
— = dw =
1% c3 efhw — 1

8th 1 / x3
= dx‘ g
3 (Bh)r ) er—1

8wkt _, 3
= 33 T / dr =

Skt 7'('_4
c3h3 15

<lq
|
I
S)
T
o]
N
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Ezample. Consider a superrelativistic radiation gas of Bosons/Fermions and give

1 0<E<Ep
9(E) =
0 EF>Ep

Calculate Cy and discuss the limits.

Ep E
U= —dFE =
/0 eBE £+ 1

Ep E Ep E
Uv=[ -2 4E~| L aE-=
/0 ePE £+ 1 /0 ePE

Ep
- / Ee PEQE =
0

ED ED
[ Ees) L [ o -
B 0 ﬂ 0

e QM Limit, > 1

l.e.

as expected of QM Cy,

e (Classical Limit, 0 <« 1

1. BE:
Ep Ep
U:/ dE / —dE——:EDk:T
0 B
i.e.
Cyv = Epk = const
2. FD:

Ep E Ep BED
o P11 0 2+5E ﬁ

1 [PEp 2 1
:B/ 1-— da::—[ac—an(2+a:)]€ED:

2+x 32
ﬂQ [BEp —2In(2+ BEp) +2In(2)] =
52 |:5ED—21 2—|—ﬁED:|

22 LD
U = EpkT —2k°T ln< 2kT>
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ou Ep T Ep
= — = Epk—2k*T<{2In (1 - =
Cv 9T pk — 2k { n< + 2kT> + o ( 2kT2>}

Ep Ep
= Epk —2K*T{2In ( 1 -
pk — 2k { n( +2]<:T> 2]<:T+ED}

i.e. Cy is T dependent which is absurd.
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