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1. Second quantization

Let us start with an obvious statement. Condensed matter is composed of many
particles. Indeed, the relevance of the field was argued by Anderson using his
famous statement more is different [1.1] and the concept of emergence of new
properties upon quantitative changes.1 From the technical point of view, one
soon encounters difficulties when trying to write the state of a system with many
particles from the individual wavefunctions. To do this required a conceptual

jump whose importance is emphasized by the name of second quantization. Historically, it was in-
troduced by Dirac for bosons [1.2] (see also Ref. [1.3]) and one year later by Jordan and Wigner for
fermions [1.4] by writing operators in terms of creation and anihilation of particles.

Detailed chapters on second quantization can be found almost every book on many particle physics or
on relativistic quantum theory (it is an essential ingredient in that case, as particles are not conserved),
also in some quantum mechanics or quantum optics ones. In this chapter we introduce this approach
with a focus on its practical uses.

1.1. Many particle states

When we talk about many particle physics, we may mean that we want to describe systems with really
a lot of particles2. In principle, the state of such a system with say N indistinguishable particles can
be described once the state of each particle. Let us assume we have this information: each particle
i = 1, . . . ,N occupies a given state |φ j〉i, where φ j labels a set of quantum numbers characteristic of
our system (e.g., momentum, spin....). The state of the system will be given by linear combinations of
products of the single particle states of the form:

|p1〉 = |φ1〉1|φ2〉2 . . . |φN〉N (1.1)

and all the possible permutations, e.g. |p2〉 = |φ2〉1|φ1〉2 . . . |φN〉N . It is important to fix a convention in
the order of the states, so φ1 < φ2 < · · · < φN , especially when it comes to fermions3. If the distribution
of particles is such that we have N j particles in state |φ j〉, we will have

N =
N!∏
j N j!

(1.2)

different terms, as illustrated in Fig. 1.1. You can readily see in Fig. 1.2 that things are worse when
dealing with fermions, as two fermions cannot occupy the same state4. Then, one only has to be
careful with the proper symmetrization of the wave function of the total state: the combination must
be symmetric or antisymmetric under the exchange of two particles, if they are bosons or fermions,
respectively5. You need to be patient if N is large!

1The motivation was to fight the reductionist strategy to understand the properties of a system by looking at the behaviour
of its constituents.

2Think on the number of atoms in any piece of material.
3For bosons, it does not really matter, though it is always better to keep things in proper order.
4What is the number of possible combinations in that case?
5Remember your favourite book on quantum mechanics.
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1. Second quantization
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Figure 1.1.:
Fock states for systems of differ-
ent number of particles (bosons) in
a three-state system. States are la-
belled as |α〉, |β〉 and |γ〉. Diagrams
show all possible combinations for
each particle distribution. Extend-
ing to an infinite-dimension Hilbert
space is straightforward.
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Figure 1.2.:
Fock states for fermions. A large
number of particles require a large
number of states to be allocated.

The fact that the particles are indistinguishable helps us, because we do not care about which but
rather how many particles occupy each state. With that, we can construct the state of the system

|~N〉 = |N1,N2,N3, . . . 〉. (1.3)

These are known as Fock states [1.5]. Putting all together, we get:

|~N〉 =
1
√
N

N∑
i=1

±ζi |pi〉, (1.4)

where the sum runs over all possible permutations and the sign ± accounts for bosons and fermions.
Remember that the fermionic statistics imposes that |~N〉 is antisymmetric under the exchange of two
particles The signature ζi is the minimal number of permutations that we need to do on |pi〉 to recover
|p1〉.

1.1.1. Operators

In the paragraphs above, we learned how to write the wavefunction of particular realizations of a system
with a fixed number of particles, N. We now need to know how these states are modified when an
operator acts on them. Also, in some cases, the number of particles is not fixed: think for example on
a system that emits particles, or the question of the energy cost to add an electron to a system. We will
hence consider three types of operators: (i) single particle operators, that act on a single particle6, (ii)
two particle operators, that describe interactions between two particles, and (iii) particle creation and
annihilation operators, you can imagine what they do.

Consider first a single particle operator, ôi , that acts on particle i in the form

ô(i)|φ j〉i =
∑

k

ok j|φk〉i, with ok j = i〈φk|ôi|φ j〉i =

∫
d3riφ

∗
k(ri)ô(i)φ j(ri). (1.5)

6surprise!
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1. Second quantization

It changes the state of particle i into a superposition of other states. On the many particle state, this
means that the operator Ô =

∑
i ôi (acting on all particles in the system) acts on the Fock states as:

|N1, . . . ,N j, . . . ,Nk, . . . 〉 −→ |N1, . . . ,N j−1, . . . ,Nk+1, . . . 〉, (1.6)

i.e., it annihilates particles in state |φ j〉 and creates them in other states |φk〉. Let us see in detail the
matrix elements of 〈~Nf |Ô|~Ni〉. In first quantization, the initial and final states are written as

|~Ni〉 = |N1, . . . ,N j, . . . ,Nk, . . . 〉 =
1
√
Ni

Ni∑
i=1

±ζi |pi〉 (1.7)

|~Nf〉 = |N1, . . . ,N j−1, . . . ,Nk+1, . . . 〉 =
1
√
Nf

Nf∑
i=1

±ζi |p′i〉, (1.8)

where
Ni =

N!
N1! . . .N j! . . .Nk! . . .

and Ni =
N!

N1! . . . (N j−1)! . . . (Nk+1)! . . .
. (1.9)

All the Ni permutations in |~Ni〉 contain N j particles in state |φ j〉. The operator acts on each of them
separately, hence generating a combination of N jNi states of the form |p′i〉,

7 repeating the sum in
Eq. (1.8)Nf times, so we write it asN−1/2

f |~Nf〉 once we multiply by the normalization factor
√
Nf . We

also need to make the necessary permutations f jk to recover the form of |~Nf〉, which will result in a sign
± f jk . In the case j < k, this is f jk =

∑k
n= j+1 Nn.8 In other words:

〈~Nf |Ô|~Ni〉 = 〈~Nf |Ô
1
√
Ni

Ni∑
i=1

±ζi |pi〉 = 〈~Nf |
1
√
Ni
NiN jok j

1
Nf

Nf∑
i=1

±ζi |p′i〉

= 〈~Nf |
1
√
Ni
NiN jok j

± f jk

Nf

√
Nf |~Nf〉 = ± f jk

√
(Nk+1)N jok j.

(1.10)

The diagonal elements:
〈~Ni|Ô|~Ni〉 =

∑
j

N jo j j =
〈
Ô
〉
, (1.11)

give the expected value of the operator.9

+ The action of an operator on a many particle states depends on how many particles occupy the
different states, and can be interpreted as particles changing their state.

It is hence essential to introduce number operators that count the particles in each state, as well as
operators that create and annihilate particles in the different states.

7...and others that will be cancelled out when projecting on 〈~Nf |.
8For bosons, this is obviously not a problem. For fermions, it may help to think on the many-fermion states as Slater

determinants: the operator Ô replaces the |φ j〉 elements on row j of |~Ni〉 by |φk〉. This row needs now to be taken to its
proper position k of the determinant giving |~Nf〉. Unoccupied states (with Nn = 0) do not enter the determinant, so they
are not counted.

9You can convince yourself of all this more easily by considering simple cases with two or three particles occupying two
orbitals (left as exercises)
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1. Second quantization

1.2. Creation and annihilation operators

We have seen in the previous section that the matrix elements of an operator in a many-body Fock space
depend on the number of particles occupying the different microscopic states. The change of a system
between two Fock states can hence be described in terms of operators that create or annihilate particles
in the different states.

A way to obtain a many-particle Fock state |N1, . . . ,Nk, . . . ,N j, . . . 〉 is to take an empty state with no
particles:

|0〉 ≡ |0,0, . . . ,0, . . . 〉 (1.12)

and add particles to it. This is done by introducing operators â†j that create particles in a given state
|φ j〉:10

|N1, . . . ,N j, . . . ,Nk, . . . 〉 ∼ â†1 . . . â
†

1︸   ︷︷   ︸
N1 times

. . . â†j . . . â
†

j︸   ︷︷   ︸
N j times

. . . â†k . . . â
†

k︸   ︷︷   ︸
Nk times

. . . |0〉. (1.13)

Similarly to the previous section, the ordering of the states is important. Note that exchanging the
position of two operators â†j and â†k is equivalent to exchanging two particles. Hence, such operation
needs to respect the symmetry of the wavefunction. In other words:

+ The bosonic/fermionic statistics of the many particle state will be enclosed in the properties of
the creation operators.

Let us see how the creation operator it acts on the many-particle state. For this, we need to relate two
Fock states which differ on one particle in a given state |φk〉. Take the state with one particle more:

|N1, . . . ,N j, . . . ,Nk+1, . . . 〉 ∼ â†1 . . . â
†

1︸   ︷︷   ︸
N1 times

. . . â†j . . . â
†

j︸   ︷︷   ︸
N j times

. . . â†k . . . â
†

k︸   ︷︷   ︸
Nk+1 times

. . . |0〉. (1.14)

By exchanging the leftmost â†k with all the operators with small index j < k, we recover something of
the form âk|N1, . . . ,N j, . . . ,Nk, . . . 〉. We only need to be careful once more with the sign acquired in a
total of sk =

∑ j−1
n=1 Nn particle-exchange operations.

Knowing this, we are ready to define the creation operator as:

â†j | . . . ,N j, . . . 〉 = ±s jαN j

√
N j+1| . . . ,N j+1, . . . 〉, (1.15)

where αN = 1 for bosons, and αN = δN0, for fermions11. The chose of the squared-rooted prefactor is
not arbitrary, as will be clear in a few lines. The sign again accounts for bosons (+) and fermions (−).
Projecting on the state in the right hand side of Eq. (1.17) and conjugating:(

〈. . . ,N j+1, . . . |â†j | . . . ,N j, . . . 〉
)∗

= 〈. . . ,N j, . . . |â j| . . . ,N j+1, . . . 〉 = ±s jαN j

√
N j+1, (1.16)

we get the definition of the annihilation operator:

â j| . . . ,N j, . . . 〉 = ±s jαN j−1

√
N j| . . . ,N j−1, . . . 〉, (1.17)

10The reason of having a dagger in the definition will be obvious soon.
11The Kronecker delta takes care of the Pauli exclusion principle.
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1. Second quantization

The prefactor ensures that one can not annihilate particles in an empty state, neither for bosons nor for
fermions12. The product of the two operators leaves the Fock state unchanged:

â†j â j| . . . ,N j, . . . 〉 = N j| . . . ,N j, . . . 〉 (1.18)

and counts how many particles are there in |φ j〉. This way, we can define the number operator as:

n̂ j = â†j â j. (1.19)

The final goal is to be able to write any kind of operator in terms of products of the form â†k â j.
Comparing Eqs. (1.5), (1.10), (1.17) and (1.15), we see we are not far from there. For instance, the
number operator could clearly be introduced in the diagonal elements in Eq. (1.11) with no harm.
However, one needs to be careful with the signs when creating and annihilating particles in different
states. It becomes clearer if we consider bosons and fermions separately.

1.2.1. Bosons

With bosons, we do not need to take care of signs. This way, it is straightforward to find:

|N1, . . . ,N j, . . . ,Nk, . . . 〉 =
1√

N1! . . .N j! . . .Nk! . . .

(
â†1

)N1
. . .

(
â†j

)N j
. . .

(
â†k

)Nk
. . . |0〉. (1.20)

This shows the advantage of second quantization: there is no need to do any permutation to construct
the many-particle wavefunction!

Symmetry introduces no restriction to the number of particles that can occupy each state. Hence,
similarly to how we obtained Eq. (1.18), we get:

â jâ
†

j | . . . ,N j, . . . 〉 = (N j + 1)| . . . ,N j, . . . 〉, (1.21)

rendering the commutation relation
[â j, â

†

j] = 1. (1.22)

For particles in different states, j , k, the order in which two creation/annihilation operators act on
the state does not change the result:

â jâk| . . . ,N j, . . . ,Nk, . . . 〉 = â jâk| . . . ,N j, . . . ,Nk, . . . 〉 (1.23)

=
√

N jNkâ jâk| . . . ,N j−1, . . . ,Nk−1, . . . 〉

â†j âk| . . . ,N j, . . . ,Nk, . . . 〉 = âkâ†j | . . . ,N j, . . . ,Nk, . . . 〉 (1.24)

=

√
(N j+1)Nkâ jâk| . . . ,N j+1, . . . ,Nk−1, . . . 〉.

These relations can be expressed in a more general way as the commutation relations:

[â j, â
†

k] = δ jk

[â j, âk] = [â†j , â
†

k] = 0.
(1.25)

You must have seen these before (remember the excitations of the harmonic oscillator [1.6]). However,
they apply to any kind of bosonic particles: photons, phonons, magnons, Higgs...

12Nothing to do with the Pauli exclusion principle, this time!
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1. Second quantization

1.2.2. Fermions

We know that two fermions cannot be in the same state. This is a consequence of the antisymmetry of
the wavefunction under the exchange of two particles. Consider for simplicity a system with only two
particles. If they were to be in the same state, the wavefunction would fulfil

â†j â
†

j |0〉 = −â†j â
†

j |0〉. (1.26)

The only way is:
â†j â

†

j = 0, (1.27)

which expresses the Pauli exclusion principle. Hence, the wavefunction in Eq. (1.13) cannot contain
one creation operator repeated, reading:

| . . . ,1 j, . . . ,1k, . . . 〉 = . . . â†j . . . â
†

k . . . |0〉, (1.28)

where he have made explicit that for every state, N j = 0, 1.13 Then, it is obvious that we cannot
annihilate two particles from the same state, so

â jâ j = 0. (1.29)

This way, the definitions of the creation and annihilation operators in Eqs. (1.15) and (1.17) are re-
stricted to the cases:

â†j | . . . , 0 j, . . . 〉 = ±s j | . . . , 1 j, . . . 〉 (1.30)

â j| . . . , 1 j, . . . 〉 = ±s j | . . . , 0 j, . . . 〉. (1.31)

Otherwise, they are zero.
Changing the order on which the creation operators act on any many particle state is also important,

as it affects the sign of the resulting operation. Consider the creation of two particles, â†j and â†k , with
j < k. Then:

â†j â
†

k | . . . ,0 j, . . . ,0k, . . . 〉 = (−1)s0
j (−1)s0

k | . . . ,1 j, . . . ,1k, . . . 〉 (1.32)

â†k â†j | . . . ,0 j, . . . ,0k, . . . 〉 = (−1)s0
k+1(−1)s0

j | . . . ,1 j, . . . ,1k, . . . 〉, (1.33)

where s0
j =

∑ j−1
n=1〈. . . ,0 j, . . . ,0k, . . . |n̂n| . . . ,0 j, . . . ,0k, . . . 〉 counts the particles in the original state.

Therefore:
â†j â

†

k = −â†k â†j . (1.34)

Using a similar argument with â jâk, and taking into account Eqs. (1.27) and (1.29), we arrive to the
anticommutation relations:

{â j, âk} = {â†j , â
†

k} = 0. (1.35)

For creation and annihilation operators, we follow a similar procedure:

â†j âk| . . . ,0 j, . . . ,1k, . . . 〉 = (−1)s1
j (−1)s1

k | . . . ,1 j, . . . ,0k, . . . 〉 = (−1) f jk | . . . ,1 j, . . . ,0k, . . . 〉 (1.36)

âkâ†j | . . . ,0 j, . . . ,1k, . . . 〉 = (−1)s1
k+1(−1)s1

j | . . . ,1 j, . . . ,0k, . . . 〉, (1.37)

13Note that, respecting the order in the successive creation of particles onto the vacuum state (those with the highest index
first), we do not need to worry about sign.
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1. Second quantization

where in this case s1
j =

∑ j−1
n=1〈. . . ,0 j, . . . ,1k, . . . |n̂n| . . . ,0 j, . . . ,1k, . . . 〉. We then have, for j , k:

â†j âk = −âkâ†j . (1.38)

In the case j = k:

â†j â j| . . . ,0 j, . . . 〉 = 0, â†j â j| . . . ,1 j, . . . 〉 = 1,

â jâ
†

j | . . . ,0 j, . . . 〉 = 1, â jâ
†

j | . . . ,1 j, . . . 〉 = 0.
(1.39)

Joining Eqs. (1.38) and (1.39), we get:
{â†j , âk} = δ jk. (1.40)

+ In second quantization, we do not need to care about doing huge numbers of permutations in
order to write the many particle wavefunctions.

+ The definition of the vacuum state, |0〉, together with the (anti)commutation relations —Eq. (1.25),
for bosons, and Eqs. (1.35) and (1.40), for fermions— contain all the statistical properties.

1.2.3. Change of basis

From the beginning of the chapter, we assumed a description of the many particle state in terms of the
different particles occupying states |φ j〉 being elements of a particular basis. Of course, this description
is not unique, and different basis may be most convenient for different configurations. As any operator,
the creation and annihilation operators will then also be different,

Consider two complete and ordered basis, {|ξ〉} and {|ζ〉}, of the single-particle states. We want to
find the operators â†µ out of the â†ν. In both cases, the states are defined from the vacuum: |ζ〉 = â†ζ |0〉

and |ξ〉 = â†ξ |0〉. Then, by simply projecting:

|ζ〉 =
∑
ξ

|ξ〉〈ξ|ζ〉 (1.41)

we get
â†ζ =

∑
ξ

〈ζ |ξ〉∗ â†ξ and âζ =
∑
ξ

〈ζ |ξ〉 âξ. (1.42)

Quantum field operators

A particular case of the above is when we change to the position basis, {|r〉}. The coefficients are then
the single-particle wavefunctions in position space, 〈r|ξ〉 = ψξ(r), hence:

Ψ̂†(r) =
∑
ξ

ψ∗ξ(r) â†ξ (1.43)

is a field operator that describes the creation of a particle, not in a particular state |ξ〉 but in a given
position, r. We can also annihilate it:

Ψ̂(r) =
∑
ξ

ψξ(r) âξ. (1.44)

11



1. Second quantization

1.3. Single and two particle operators

We need now to see how to operators are written in terms of creation and annihilation operators. In
Sec. 1.1.1, we found how a single particle operator, Ô =

∑
i ô(i), acts on a many particle state, cf.

Eq. (1.10)

〈. . . ,N j−1, . . . ,Nk+1, . . . |Ô| . . . ,N j, . . . ,Nk, . . . 〉 = ± f jk

√
(Nk+1)N jok j. (1.45)

It is straightforward now to check that
Ô =

∑
jk

o jkâ†j âk (1.46)

has the same matrix elements14.
One also finds frequently operators that act on two particles,

Ô(2) =
1
2

∑
i,i′

ô(ii′) (1.47)

Think on any type of particle interactions, e.g. the Coulomb interaction, spin exchange... These are
written as

ô(ii′)|φ j〉i|φk〉i′ =
1
2

∑
lm

olm, jk|φl〉i|φm〉i′ , (1.48)

with
olm, jk = i〈φl|i′〈φm|ô(ii′)|φ j〉i|φk〉i′ =

∫
d3rid3ri′φ

∗
l (ri)φ∗m(ri′)ô(i)φ j(ri)φk(ri′). (1.49)

i.e., changing the state of one particle from |φ j〉i to |φl〉i, and of another one from |φk〉i′ to |φm〉i′ . This is
the same as the action of annihilating two particles â jâk and creating other two (âl âm)† = â†mâ†l , so we
can write

Ô(2) =
1
2

∑
jklm

olm, jkâ†mâ†l â jâk. (1.50)

Note that this ordering verifies that if the operator does not change the state of the particles, i.e., l = j
and m = k, no spurious sign is generated, â†k â†j â jâk = (â†k âk)(â†j â j). In the opposite case, l = k and
m = j, the operator corresponds to the exchange of the two particles. Then, fermions get the correct
sign: â†j â

†

k â jâk = −â†k â†j â jâk = −(â†k âk)(â†j â j).
Other operators involving three or more particles, or even different types of particles (e.g., the

electron-photon interaction essential in quantum electrodynamics and quantum optics, electron-phonon
interaction...), but we are not treating them in this course.

1.3.1. Expectation values

Given a many-body state, we can now calculate the expectation values of any operator

〈Ô〉 = 〈~N |Ô|~N〉. (1.51)

For single and two-particle operators, this can be calculated by noticing:

〈â†mâl〉 = 〈n̂m〉δml, (1.52)

14If it is less obvious for fermions, go back to Eq. (1.36)
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1. Second quantization

because the same particle needs to be re-created once it has been annihilated if one needs to recover the
same many-particle state. With similar arguments one finds:〈

â†mâ†nâl âp

〉
=

〈
â†mâp

〉 〈
â†nâl

〉
±

〈
â†mâl

〉 〈
â†nâp

〉
= 〈n̂m〉 〈n̂n〉 (δmpδnl ± δnpδml). (1.53)

An elegant and systematic way to obtain such expressions (quite convenient when the product of op-
erators is long) is Wick’s theorem, which expresses the expectation value of normal-ordered15 products
of creation and annihilation operators as combinations of pairs (called contractions in this context).

1.3.2. Second-quantizing special operators

Let us see some particular cases that will be useful during the course. For the sake of concreteness,
we consider the case of electrons with momentum ~k and spin σ. The corresponding creation and
annihilation operators are written as ĉ†kσ and ĉkσ, respectively. In most cases, it will be useful to
consider the planewave basis, with

ψkσ(r) =
1
√
V

eikrχσ, (1.54)

whereV is the system volume, and χσ is the spinor function.

Hamiltonian of a free particle

For a system of free electrons, the hamiltonian is given by the kinetic energy:

T̂ = −
~2

2m

∑
i

∇2
ri

(1.55)

which we want to write in the form:

T̂ =
∑
k1k2

∑
σ1σ2

Tk1σ1,k2σ2 ĉ†k1σ1
ĉk2σ2

, (1.56)

with the matrix elements

Tk1σ1,k2σ2 =

∫
d3rψ∗k1σ1

(r)
(
−
~2

2m
∇2

r

)
ψk2σ2(r). (1.57)

For free electrons, it is natural to consider planewaves, such that the kinetic energy coefficients become:

Tk1σ1,k2σ2 =
~2k2

2mV

∫
d3rei(k2−k1)rδσ1σ2 =

~2k2
2

2m
δk1,k2δσ1σ2 . (1.58)

Including this in Eq. (1.56), we finally get:

T̂ =
∑
k,σ

~2k2

2m
ĉ†kσĉkσ. (1.59)

The interpretation is clear: ĉ†kσĉkσ counts how many particles have a given momentum ~k.

15When all creation operators are to the left and all annhilation ones to the right.
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1. Second quantization

k1, σ1 k2, σ2

k1 + q, σ1 k2 − q, σ2

Vq Figure 1.3.:
Feynman diagram of the Coulomb
interaction of two electrons with ini-
tial states |k1,σ1〉 and |k2,σ2〉, ac-
cording to Eq. (1.66).

Coulomb interaction of two electrons

The Coulomb interaction is:

V̂e−e =
1
2

∑
i, j

e2∣∣∣ri − r j
∣∣∣ (1.60)

which, being a two-particle operator is written as

V̂e−e =
1
2

∑
k1k2k3k4

∑
σ1σ2

Vk3σ1k4σ2,k1σ1k2σ2 ĉ†k3σ1
ĉ†k4σ2

ĉk2σ2
ĉk1σ1

. (1.61)

in second quantized form. Note that we have taken into account (for simplicity in the later calculation)
that the Coulomb interaction does not change the spin of the electrons. For planewaves:

Vk3σ1k4σ2,k1σ1k2σ2 =
e2

V2

∫
d3r1d3r2

1
|r1 − r2|

ei(k1−k3)r1+i(k2−k4)r2 . (1.62)

Defining q ≡ k2 − k4 and r ≡ r2 − r1, the exponent reads:

(k1 − k3)r1 + (k2 − k4)r2 = (k1 − k3 + k2 − k4)r1 + qr, (1.63)

such that:
Vk3σ1k4σ2,k1σ1k2σ2 =

1
V2 Vq

∫
d3r1ei(k1−k3+q)r1 =

1
V

Vqδk1,k3−q, (1.64)

where we have also defined:

Vq = e2
∫

d3r
1
|r|

eiqr =
4πe2

|q|2
. (1.65)

The calculation of the integral in Eq. (1.65) is left as an exercise. Finally, replacing Eq. (1.64) in
Eq. (1.61), the Coulomb interaction hamiltonian then reads:

V̂e−e =
1

2V

∑
σ1σ2

∑
k1k2

∑
q

Vqĉ†k1+q,σ1
ĉ†k2−q,σ2

ĉk2,σ2
ĉk1,σ1

. (1.66)

This can be easily interpreted as two electrons, initially with wavenumber k1 and k2, which exchange
a momentum ~q. See Fig. 1.3 for a diagrammatic representation of this interaction.
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The density operator

The density operator is ρ̂(r) =
∑

i δ(r − ri), which becomes (that may include spin):

ρ̂(r) =
∑
kk′σ

ρkσ,k′σ′(r)ĉ†kσĉk′σ, with ρkσ,k′σ′(r) =

∫
d3riψ

∗
kσ(ri)δ(r − ri)ψk′σ(ri). (1.67)

The coefficients ρkσ,k′σ′(r) define what is known as the density matrix16. Once more, in the planewave
basis, the integral leads to

ρ̂(r) =
1
V

∑
kk′σ

ei(k′−k)rĉ†kσĉk′σ =
1
V

∑
q

∑
kσ

eiqrĉ†kσĉk+q,σ, (1.68)

so we get, in the reciprocal space:
ρ̂(q) =

∑
kσ

ĉ†kσĉk+q,σ. (1.69)
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The low temperature properties of metals were described by Sommerfeld based on the treatment of
conduction electrons as a noninteracting fermionic gas17. The initial success of this theory to reproduce
experimental evidences contains at least two surprises: (i) it gives a quantum mechanical description
of macroscopic objects, what indeed helped the physics community at that time to take quantum me-
chanics seriously; and (ii) the Coulomb interaction is neglected and nevertheless it works! However we
know since our school years that electrons interact, and their interaction extends over long ranges.

In the chapters forming this part, we will try to understand what is the role of interactions in many
electron systems. We will start from the noninteracting description, identify the difficulties in the
theoretical treatment of electron-electron interactions, and introduce different approaches and models
to address them.

17A. Sommerfeld. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Z. Phys., 47(1):43–60, Jan 1928.



2. Interactions in the electron gas

In this chapter, we will start by reviewing the Sommerfeld model for electrons in
a metal based on purely statistical considerations for non-interacting fermions.
We will then try to justify its rather crude assumptions with the description of
electrons moving in a constant potential (what is known as the jellium model).
A perturbative approach is introduced in the last section for the case of weak
electron-electron interactions which introduces the first notion of emergence,

but also very soon emphasizes its own limitations.

2.1. The free electron gas. Sommerfeld model

In essence, the model introduced by Sommerfeld explores the impact of Pauli-exclusion principle in
the statistics of an ideal gas of particles [2.1]. As such, it can be seen as the minimal approach including
quantum effects. Let us hence start with a brief reminder of statistical mechanics, see e.g., Ref. [2.2]
for more details.

The outcome of a measurement is not given by the expected value of an operator: we need
to know the occupation of each state:〈

Ô
〉

=
∑

ik

ρki
〈
i
∣∣∣Ô∣∣∣ k〉 = tr

(
ρ̂Ô

)
,

where the coefficients ρki = 〈k|ρ̂|i〉 are the elements of the density matrix, ρ̂, with ρii being
the probability to find the system in state |i〉.The density matrix hence satisfies tr (ρ̂) = 1.

2.1.1. Thermodynamic quantities

Consider a gas of N electrons of wave vector k and spin σ. We write their states as |k〉 = |kσ〉. Each
electron has an energy εk (we do not need to specify the dispersion relation here). In the grand canonical
ensemble, its state is given by

ρ̂G = Z−1
G e−β(Ĥ−µN̂), (2.1)

where Ĥ =
∑

k εkn̂k is the hamiltonian, N̂ =
∑

k n̂k is the number operator, β = 1/kBT is the inverse
temperature, and µ is the chemical potential. The normalization condition tr (ρ̂G) = 1 gives the partition
function:

ZG =
∑
nk

e−β
∑

k n̂k(εk−µ) =
∏

k

(
1 + e−β(εk−µ)

)
, (2.2)

where one uses that the Pauli exclusion principle only allows nk = 0, 1. The particle occupation is then:

〈nk〉 = tr (ρ̂Gn̂k) =
1
ZG

∑
nk=0,1

nke−βnk(εk−µ) =
e−β(εk−µ)

1 + e−β(εk−µ) =
1

1 + eβ(εk−µ) = f (εk), (2.3)

which is of course the Fermi-Dirac distribution function.
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2. Interactions in the electron gas

0

1

0 1

υ
(E

)f
(E

)/
c√

µ

E/µ

Figure 2.1.:
Density of states. Plot of υ(E) f (E)
(normalized by c = 2(2m)3/2/(2π~)3)
for T = 0 (dashed line) and T =

10−2µ/kB (solid line).

With this, we can evaluate the thermodynamic quantities. The number of particles and the energy
are obviously1:

N =
〈
N̂
〉

=
∑

k

〈nk〉 and U =
〈
Ĥ

〉
=

∑
k

〈nk〉εk. (2.4)

2.1.2. Density of states

As we are leading with really many particles (thermodynamic limit), it is convenient to transform sums
into integrals: ∑

k,σ
• −→

∫
dEυ(E)•,

where υ(E) = g(E)/V is the density of states per unit volume (of course, g(E) is the density of states).
Assuming free electrons with |k| =

√
2mE/~, and that • is homogeneous and does not depend on spin,

we can simply calculate the number of states, Σ =
∫

dEg(E):

Σ = 2
∫

d3r
∫

d3k
(2π)3 = V

∫
dEυ(E), (2.5)

where the factor 2 accounts for spin, and:

υ(E) = 2
(2m)3/2

4π2~3

√
E. (2.6)

Using this result, the number of particles and energy from Eqs. (2.4) read:

N = V

∫
dEυ(E) f (E) and U = V

∫
dEEυ(E) f (E). (2.7)

The integrand υ(E) f (E) is plotted in Fig. 2.1.
Sometimes it will also be convenient to consider densities: n = N/V and u = U/V. In general,

integrals of this kind are difficult to evaluate, specially at finite temperature. However, one notices that
in metals, the chemical potential is typically two orders of magnitude larger than ambient temperature
(e.g., for Cu: µ/kB=8.16×103 K). Hence we can in most cases invoke a low temperature limit, µ � kBT .

1The same quantities can be obtained by using

N = kBT
∂

∂µ
lnZG and U = −

∂

∂β
lnZG

or, more generally, from derivatives of the grand-potential Φ = −kBT lnZG.

18



2. Interactions in the electron gas

0
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0 µ/kBT
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f
′ (
E
)

E/kBT

f
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)

Figure 2.2.:
Fermi distribution and its derivative
for µ = 100kBT .

2.1.3. Low temperature limit: the Sommerfeld expansion

We are left with calculating integrals of the form:

I =

∫ ∞

0
dE f (E)

d
dE
G(E). (2.8)

Why we introduce the derivative in the integral will become clear in a second. In the cases we are
interested in, the integrand happens to satisfy G(E=0) = 0. We can then integrate by parts:

I = −

∫ ∞

0
dE f ′(E)G(E). (2.9)

The derivative of the Fermi function,

f ′(E) = −
1

kBT
cosh−2

(
E − µ
2kBT

)
, (2.10)

is a peak of width kBT centered at µ, and vanishes everywhere else, see Fig. 2.2. At low temperatures,
µ � kBT , the integral will be strongly dominated by how G(E) behaves close to µ. Expanding G(E)
around µ:

G(E) = G(µ) + G′(µ)(E − µ) +
1
2
G′′(µ)(E − µ)2 + . . . , (2.11)

the integral in Eq. (2.9) becomes:

I = L0G(µ) + L1G
′(µ) + L2G

′′(µ) + . . . , with Ln = −
1
n!

∫ ∞

0
dE(E − µ)n f ′(E). (2.12)

Sticking to the low temperature limit, we can safely extend the range of integrals Ln:
∫ ∞

0 −→
∫ ∞
−∞

.
We can then integrate:

L0 ≈ −

∫ ∞

−∞

dE f ′(E) = 1 (2.13)

L1 ≈ −

∫ ∞

−∞

dE(E − µ) f ′(E) = 0 (2.14)

L2 ≈ −
1
2

∫ ∞

−∞

dE(E − µ)2 f ′(E) =
π2

6
(kBT )2. (2.15)

For the same reason that Eq. (2.14), we find L2n+1 ≈ 0. We are then left with what is known as the
Sommerfeld expansion [2.1]:

I ≈ G(µ) +
π2

6
(kBT )2G′′(µ) + . . . (2.16)

At low temperatures, we obtain I by evaluating G(E) and its even derivatives at µ, where all electronic
excitations occur.
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2. Interactions in the electron gas

2.1.4. Thermodynamic properties

We are ready now to evaluate the integrals of Eqs. (2.7), in particular their temperature dependence.
Let us start with the number of particles (V plays no role, so we consider densities, for simplicity). It is
clear that n does not depend on temperature, i.e., n(T ) = n(0). The chemical potential will then change
to absorb the temperature dependence. To show this, we compare the T = 0 expression

n(0) ≈
∫ µ0

0
dEυ(E), (2.17)

where µ0 = µ(T=0), with the one obtained by performing a Sommerfeld expansion 2:

n(T ) ≈
∫ µ

−∞

dEυ(E) +
(πkBT )2

6
υ′(µ). (2.18)

The remaining integrals in Eq. (2.17) and (2.18) can be calculated by using υ(E) ∝
√

E, cf. Eq. (2.6).
Making n(T ) = n(0), we get the relation between µ(T ) and µ0:

[µ − µ0]µ1/2 +
π2

12
(kBT )2µ−1/2 = 0. (2.19)

Keeping the leading order in temperature, we finally arrive to

µ(T ) ≈ µ0

1 − π2

12

(
kBT
µ0

)2 . (2.20)

For the energy density, we get:

u ≈ u0 +
π2

6
(kBT )2υ(µ0), (2.21)

where u0 = (3/5)nµ0 is the kinetic energy per unit volume at T = 0. With this, we can calculate the
heat capacity.

cV =
∂u
∂T

=
π2

3
υ(µ0)k2

BT, (2.22)

reproducing the linear cV observed in most metals at low temperatures. This is in contrast with the
classical Drude model (assuming Maxwell-Boltzmann statistics), which predicts a temperature inde-
pendent cDrude

V = (3/2)nkB
3.

For the heat capacity, one also needs to take phonons into account, which results
in cV ∼ αT 3 + γT . However, at low temperatures they do not contribute, so one
measures only the electronic part.

The success of the Sommerfeld model was confirmed by the reproduction of the temperature be-
haviour of the magnetic susceptibility, χ. If we write the magnetization as

M =
µB

2

∫
dE[g(E + µBH) − g(E − µBH] f (E), (2.23)

where µB is the Bohr magneton, one arrives for low fields H to M = µ2
BHg(µ0). Therefore,

χ =
∂M
∂H

= µ2
Bg(µ0), (2.24)

2What is G(E) in this case?
3This was the first measured evidence of what important principle of quantum mechanics?
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2. Interactions in the electron gas

which is left as an exercise.
Unfortunately, the model is not able to describe other phenomena such as the Hall or the thermoelec-

tric effects. Nobody’s prefect!

§

Recapping, we can extract two main messages from the Sommerfeld model, one that sounds obvious
but is of fundamental importance, and one that sounds at least surprising:

◦ In metals,

+ carriers are fermions, and
B electron-electron interaction can be neglected.

2.2. The hamiltonian

In the previous section, not only the electron-electron interaction, but also the presence of the atoms is
ignored. We present here all contributions by defining the hamiltonian of the system

Ĥ = Ĥion + Ĥel + Ĥion−el. (2.25)

It is composed of a lattice of positive ions (formed by the nuclei and the bounded electrons) sitting at
positions Ri,

Ĥion = −
~2

2M

∑
i

∇2
Ri

+
1
2

∑
i, j

Z2e2∣∣∣Ri − R j
∣∣∣ , (2.26)

a cloud of electrons,

Ĥel = −
~2

2m

∑
i

∇2
ri

+
1
2

∑
i, j

e2∣∣∣ri − r j
∣∣∣ , (2.27)

and their interaction,

Ĥion−el = −
∑
i, j

Ze2∣∣∣Ri − r j
∣∣∣ . (2.28)

(Spoiler alert): In most part of the course, the particular form of the lattice will play no role. For
the moment, it will be enough to concentrate on the electronic part. We need to write it in second
quantization, see chapter 1.

2.2.1. Second-quantizing the electronic hamiltonian

Let us consider a more general hamiltonian Ĥel = T̂ +Ûext+V̂e−e by additionally including the contribu-
tion of a potential, Ûext. We will work with its second quantization form, which we found in Sec. 1.3.2
in the planewave basis:

T̂ = −
~2

2m

∑
i

∇2
ri
−→
~2k2

2m
ĉ†kσĉkσ (2.29)

Ûext =
∑

i

U(ri) −→
∑
k1k2

∑
σ1σ2

Uk1σ1,k2σ2 ĉ†k1σ1
ĉk2σ2

(2.30)

V̂e−e =
1
2

∑
i, j

e2∣∣∣ri − r j
∣∣∣ −→ 1

2V

∑
σ1σ2

∑
k1k2

∑
q

Vqĉ†k1+q,σ1
ĉ†k2−q,σ2

ĉk2,σ2
ĉk1,σ1

. (2.31)
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Figure 2.3.:
Coulomb interaction between an
electron and a one dimensional ar-
ray of positive charges at positions
xi = ia, with −100 ≤ i ≤ 100.

where the potential can in principle affect both the electron momentum and spin, and the Coulomb
interaction renders (left as an exercise):

Vq =
4πe2

|q|2
. (2.32)

2.3. The jellium model

The Sommerfeld model called the attention on the relevance of quantum many-body physics and the
need of a quantum mechanical description for understanding some properties of macroscopic objects.
Despite its remarkable success, a curious mind cannot be satisfied with simply assuming that electrons
in metals as a gas of non-interacting particles obeying Fermi-Dirac statistics.

The jellium model provides a justification of at least some aspects of the Sommerfeld model. One
gets a more physical picture of the problem, but in essence, it reaches the same conclusions that were
described in the previous section.4 It is built on two main assumptions: (i) the ions of the lattice form
a homogeneous positively-charged background, and (ii) the interaction with the rest of free electrons is
also homogeneous. The first one is easy to justify if one wants to concentrate on the description of the
conduction electrons (one can also become convinced by looking at Fig. 2.3). The second one, let us
just assume it for the moment.

The hamiltonian of the system, written in the form of Eq. (2.25) contains the terms:

Ĥion,jel =
e2

2

∫
d3r′d3r n(r)n(r′)

e−a|r−r′ |

|r − r′|
=

e2

2
N2

V2

∫
d3r′d3r

e−a|r−r′ |

|r − r′|
(2.33)

Ĥion−el,jel = −e2
∑

i

∫
d3r n(r)

e−a|r−ri |

|r − ri|
= −e2 N

V

∑
i

∫
d3r

e−a|r−ri |

|r − ri|
, (2.34)

where we have introduced the Yukawa potential for the screened Coulomb interaction (including the
screening length, a) to avoid divergences. These integrals can be done exactly, so we do not need to
second-quantize them. The electronic term, for q = 0 reads:

Ĥel,jel = T̂el +
2πe2

Va2

∑
σ1σ2

∑
k1k2

ĉ†k1,σ1
ĉ†k2,σ2

ĉk2,σ2
ĉk1,σ1

. (2.35)

One can easily than verify that the contribution of Eqs. (2.33) and (2.34) cancel the one of Eq. (2.35), up
to a thermodynamically negligible value (left as an exercise)5. The only remaining terms are therefore,

4In this section, we will follow the discussion in Ref. [2.3], and sometimes also Ref. [2.4]
5For this, it is useful to compute their contribution to the energy per particle.
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2. Interactions in the electron gas

the kinetic term and the potential generated by the ions (look again to Fig. 2.3):

Ĥjel = T̂ + V̂jel, (2.36)

where V̂jel is constant in a region of volumeV = LxLyLz where the electrons move. Therefore, the ions
simply introduce boundary conditions to the free electron problem (see below).

2.3.1. Constructing the many-body state

The many-body state can then be written in terms of the single-particle wavefunction. From the kinetic
term of the hamiltonian, see Eq. (2.29), we get the energies εkσ = ~2|k|2/2m 6 and the wavefunctions

ψkσ(r) =
1
√
V

eikrχσ, (2.37)

for electrons of wavenumber k and spin σ. The periodic boundary conditions established by the ionic
potential can be written as:

ψ(0, y, z) = ψ(Lx, y, z), ψ(x, 0, z) = ψ(x, Ly, z) and ψ(x, y, 0) = ψ(x, y, Lz),

and analogously for the derivatives:

ψ′(0, y, z) = ψ′(Lx, y, z), ψ′(x, 0, z) = ψ′(x, Ly, z) and ψ′(x, y, 0) = ψ′(x, y, Lz),

which impose that the wavenumber is quantized:

kα = ±
2π
Lα

jα, with jα ∈ N. (2.38)

Once that we have a complete description of the single-particle states, we write the many-body state
by filling the vacuum with N electrons, each of them with a wavenumber ki and a spin σ =↑, ↓. For
this, we need to take into account their fermionic statistics. If we order them from smaller to higher
energy, so εi ≤ ε j, if i < j,7 they will occupy all available states bellow εN/2,8 resulting in the ground
state9:

|Ψ0〉 = ĉ†k1↓
ĉ†k1↑

ĉ†k2↓
ĉ†k2↑

. . . |0〉. (2.39)

It is commonly known as the Fermi sphere. With these, we will compute the expectation values〈
Ô
〉

= 〈Ψ0|Ô|Ψ0〉 (2.40)

of a general operator Ô.
The energy of the last electron sets the Fermi energy, EF(T=0) = εN/2 (the radius of the Fermi

sphere), which will dominate the macroscopic properties of the system. Depending on the problem
at hands, this definition can be rewritten in more useful ways by expressing it as a wavenumber, as a
wavelength or as a velocity:

kF = |kN/2| =
1
~

√
2mEF, λF =

2π
kF

and vF =
~kF

m
, (2.41)

6We assume there is no magnetic field, for simplicity.
7Remember from the rules of second quantization that the order is important for fermions.
8Is this always true?
9If this is the ground state, what are the excited states?
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2. Interactions in the electron gas
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Figure 2.4.:
Spatial dependence of the spin com-
ponents of the two-particle density.
Exchange correlations between elec-
trons with the same spin reduce it for
short distances.

respectively. In particular, by calculating the number of particles, the Fermi wavelength can be related
in a simple way to the electronic density, n, which is something one can estimate easily10:

n =
1
V
〈n̂kσ〉 =

1
V

∑
|k|<kF,σ

nkσ =
2
V

∫
d3r

∫
|k|<kF

d3k
(2π)3 =

k3
F

3π2 , (2.42)

so we get:

kF =
(
3π2
n
)1/3

and EF =
(3π2n)2/3

2m
~2. (2.43)

We can now calculate the total energy of the ground state:

E0 =
〈
Ĥjel

〉
=

∑
kσ

~2|k|2

2m
= 2V

∫
|k|≤kF

d3k
(2π)3

~2|k|2

2m
=

3
5

NEF(T=0), (2.44)

where we have used Eqs. (2.41) and (2.42).

Recovering thermodynamics

Note that at zero temperature, the integral in the number of particles can be rewritten as:

N = 2V
∫
|k|≤kF

d3k
(2π)3 = 8πV

∫ ∞

0

k2dk
(2π)3 Θ(kF − k), (2.45)

and equally for the energy E0. Note that the Heaviside function plays the role of the occupation of
the electronic states. It is then clear that at finite temperatures, this needs to be replaced by the Fermi
distribution:

N = 8πV
∫ ∞

0

k2dk
(2π)3 f (εk). (2.46)

Changing from wavenumber to energy variables, we then obtain the integrals of Eqs. (2.7), from which
we recover all the results in Sec. 2.1.

2.3.2. The exchange hole

The many-body properties manifest clearly in the particle-particle correlations, even in the non-interacting
state. A remarkable example is the spin resolved two-particle density11:

ρ̂(2)
σσ′(r, r

′) =
1
V2

∑
k,k′

∑
q,q′

eiqreiq′r′ ĉ†kσĉ†k′σ′ ĉk′+q′,σ′ ĉk+q,σ. (2.47)

10... and control it experimentally.
11One obtains it by second-quantizing the product ρ̂(r)ρ̂(r′).
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2. Interactions in the electron gas

Its expectation value can be factorized in two terms using Eq. (1.53). The first term is finite only for
q = q′ = 0, the second one for σ = σ′. Transforming the sums in k and k′ into integrals, we arrive at12〈

ρ̂(2)
σσ′(r, r

′)
〉

=

(
n

2

)2 [
1 −G(kF|r − r′|)2δσσ′

]
, (2.48)

as shown in Fig. 2.4, where we have defined

G(x) = 3
sin x − x cos x

x3 . (2.49)

It is constant (and proportional to square of the spin density 〈ρ̂σ〉 = n/2) for electrons with opposite
spin: they are uncorrelated. However, the Pauli exclusion principle avoids two electrons with the same
spin to be close to each other, resulting in a reduced density. This effect is known as the exchange hole.

2.3.3. Orders of magnitude

For every physical problem, it is important to know what are the orders of magnitude of the relevant
quantities. We have seen above that most of them can be related to the electronic density. If we
then consider a metal with one conduction electron per ion (such as Na), and assume that the ions are
separated by 2 Å, we get a density n ∼ 1029 m−3, giving:

kF ∼ 10 nm−1 vF ∼ 4 × 10−3c λF ∼ 1 nm EF ∼ 1–10 eV

We can readily interpret this:
+ as vF � c, we can safely neglect relativistic effects in most cases (no surprise);
+ room temperature (kBTr ∼ 0.03 eV) is low temperature for a metal: since EF � kBTr, only a

small part of the electrons will be affected by thermal fluctuations.
Also, one needs to go to the nanoscale to observe effects of the single-particle interference.

Relevance of the electron-electron interaction

A rough estimation of the Coulomb interaction requires knowing the average distance between elec-
trons. We get this from the density: Assuming that each electron occupies a sphere of radius r0:

r0 =

(
3

4πn

)1/3

=

(
9π
4

)1/3

k−1
F , (2.50)

we obtain the interaction between two electrons as:

Ee−e =
e2

2r0
=

e2

2

(
4π
3

)1/3

n
1/3. (2.51)

We need to compare this with the kinetic energy, that we calculated in Eq. (2.44), in particular, with
the kinetic energy per electron,

Ekin =
3
5

EF(0) =
3
5

(3π2n)2/3

2m
~2. (2.52)

Note that, apart from several constants, both Eqs. (2.51) and (2.52) only depend on density, giving:

Ee−e

Ekin
∝ n−1/3. (2.53)

This implies a quite counterintuitive result:
12Left as an exercise.
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k1, σ1 k2, σ1

k1,σ1 k2,σ2

Figure 2.5.:
Feynman diagrams of the direct and
exchange contributions to the first or-
der expansion of the Coulomb inter-
action of two electrons with initial
states |k1, σ1〉 and |k2, σ2〉. Note that
the exchange term imposes that the
two electrons have the same spin.

+ the effect of Coulomb interaction decreases with increasing density!

Sometimes, the relative contribution of the Coulomb interaction is associated to the dimensionless
distance:

rs =
r0

a0
∝ n−1/3, (2.54)

written in terms of the Bohr radius, a0 = ~2/e2m ≈ 0.5292 Å. The weak interaction regime is then
defined by small rs. For the opposite regime, rs � 1, the interactions are so strong that electrons are
expected to crystalize13, what is known as a Wigner crystal [2.6]. Note that most metals are in the
intermediate regime, 2 < rs < 6, cf. Ref. [2.7]. A phenomenological description of this regime is given
by Landau’s Fermi liquid theory [2.8] which introduces the fundamental notion of quasiparticles14.

2.4. Perturbation theory

In the high density limit, the effect of interactions is hence expected to be small. It is natural then to
perform a perturbative expansion in terms of n−1. We parametrize it with the dimensionless distance rs.
We will also restrict to the T = 0 situation. The 0-th order will of course be given by the non-interacting
description given in the previous section:

E(0) = 〈Ψ0|Ĥjel|Ψ0〉 =
3
5

NEF, (2.55)

as we did in Eq. (2.44). We are ultimately interested in the energy per particle, which can be written as:

E(0)

N
=

3
5

(
9π
4

)2/3 e2

2a0
r−2

s ≈ (2.2 Ry)r−2
s , (2.56)

where we have used Eq. (2.50) and the definition of the Bohr radius. The energy is expressed in Rybergs
(remember, the ionization energy of the Hidrogen atom, 1 Ry = e2/2a0 ≈ 13.6 eV).

2.4.1. First order

We apply the standard perturbation theory (see your favourite book on quantum mechanics):

E(1) =
〈
Ĥe−e

〉
=

1
2V

∑
σ1σ2

∑
k1k2

∑
q,0

4πe2

q2

〈
ĉ†k1+q,σ1

ĉ†k2−q,σ2
ĉk2,σ2

ĉk1,σ1

〉
, (2.57)

13Only very recently this has been measured in one-dimensional systems [2.5]. Why in 1-D and not (yet) in 2-D or 3-D?
14Quasi-electrons, in this case.
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0 qq
2

ϕk

kF
Figure 2.6.:
Interpretation of the integral over d3k
in Eq. (2.62) as the overlap of two
spheres of radium kF separated by q.
The total overlap is twice the shaded
region.

where we have used Eq. (2.31)15. Not all terms of the sums in the previous expression contribute: The
Fermi sphere imposes important restrictions. We know that at zero temperature, all states |k1| < kF are
occupied, and empty otherwise. This means, in particular:

ĉk1,σ1
|Ψ0〉 = 0, if |k1| > kF (2.58)

〈Ψ0|ĉ
†

k1+q,σ1
= 0, if |k1 + q| > kF. (2.59)

Following this argumentation, it is easy to find that there are only two possibilities giving a finite
contribution to the sums in Eq. (2.57):

i) k1 + q = k1 and k2 − q = k2 (direct interaction)

ii) k1 + q = k2, with σ1 = σ2 (exchange interaction),

which are represented pictorially in Fig. 2.5. Note that the direct interaction implies q = 0, so we do
not need to consider it16. From the remaining term:

E(1) =
1

2V

∑
k,σ

∑
q,0

4πe2

q2

〈
ĉ†k+q,σĉ†k,σĉk+q,σĉk,σ

〉
= −

1
2V

∑
k,σ

∑
q,0

4πe2

q2

〈
n̂k,σn̂k+q,σ

〉
. (2.60)

Note the minus sign17. Here we used the number operator n̂k,σ = ĉ†k,σĉk,σ, cf. Eq. (1.19). In this case,
we can replace them by Heaviside step functions: 〈Ψ0|n̂k,σ|Ψ0〉 = Θ(kF − |k|), with the spin degree of
freedom being summed up to two:

E(1) = −
4πe2

V

∑
k

∑
q,0

1
q2 Θ(kF − |k|)Θ(kF − |k + q|) = −

4πe2

V

(
V

8π3

)2

I. (2.61)

In the last step, we have replaced the remaining sums by integrals, giving:

I =

∫
d3q

1
q2

∫
d3kΘ(kF − |k|)Θ(kF − |k + q|). (2.62)

To calculate it, it is useful to make a geometrical interpretation, realizing that the Fermi spheres
are actually spheres, and that for a given q, the integral in k is nothing but the volume of their over-
lap. Furthermore, we notice that this overlap is twice the volume of the section of the sphere over
a horizontal plane at (kx, ky, q/2), as indicated by a shaded region in Fig. 2.6. We can write them in

15Why is the sum restricted to q , 0?
16This will not the case in general, if the periodicity of the lattice is taken into account.
17We could have arrived to this result by using Eq. (1.53). Indeed, a similar calculation was done this way in Sec. 2.3.2.
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Figure 2.7.:
Perturbative correction of the energy
per particle of a degenerate elec-
tron gas, E=

(
E(0)+E(1)

)
/N, accord-

ing to Eq. (2.65), as a function of
the dimensionless electron distance,
rs. The noninteracting case is shown
with a dashed line, for comparison.

spherical18 coordinates (q, θq, ϕq) and (k, θk, ϕk). Let us then fix q, which is restricted by its modulus to
0 ≤ q ≤ 2kF, and chose the zenith direction of the k-coordinates to be parallel to q. Looking at Fig. 2.6,
it is easy to fix the ranges of integration for the shaded region: q/2 ≤ kF cosϕk ≤ kF, q/2 ≤ k cosϕk
and 0 ≤ θk ≤ 2π. Integrating over all possible q, we then have:

I = 2
∫ 2π

0
dθq

∫ 1

−1
d cosϕq

∫ 2kF

0
dqq2 1

q2

∫ 2π

0
dθk

∫ 1

q/2kF

d cosϕk

∫ kF

q/2 cos θk

dkk2, (2.63)

with the factor 2 accounting for the non-shaded region of the overlap. This integral can be easily
performed, leading to the final result:

E(1) = −
e2

4π3Vk4
F. (2.64)

ReplacingV = N/n, we get to:

E(0) + E(0)

N
≈

(
2.2r−2

s − 0.9r−1
s

)
Ry. (2.65)

This result is plotted in Fig. 2.7. Remarkably, it shows a minimum in the energy per particle at r∗s≈4.89:
+ the electron gas becomes stable thanks to the repulsive Coulomb interaction!

We can argue that the distance r∗s is associated to the exchange interaction, i.e. it is a spin effect19. Note
that, contrary to the direct term, the exchange interaction has no classical analogue.

2.4.2. Second order

We can open again our favourite book and find that the second order correction to the energy is given
by:

E(2) =
∑
|ν〉,|Ψ0〉

〈Ψ0|Ĥe−e|ν〉〈ν|Ĥe−e|Ψ0〉

E(0) − Eν
, (2.66)

where |ν〉 are the possible excited states20. Using the same arguments as in the first order, we find
that the term 〈ν|Ĥe−e|Ψ0〉 makes two electrons with states |k1, σ1〉 and |k2, σ2〉 in the Fermi sphere (so
|k1|, |k2| < kF) exchange a momentum ~q, promoting them over the Fermi level, so |k1 +q|, |k2−q| > kF.
The other term, 〈Ψ0|Ĥe−e|ν〉, makes them interact again and recover the initial ground state.

18of course
19Another manifestation of the exchange hole discussed in Sec. 2.3.2.
20How is the ground state excited?
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k1 k2

k1+q k2−q

Figure 2.8.:
Diagrams contributing to the second
order of the perturbative expansion.

This process can again occur in two different ways, a direct and a exchange interaction, which are
represented in Fig. 2.8. As for the first order case, the exchange term imposes σ1 = σ2.

For our purposes here, we do not need to calculate the corresponding integrals. Even more, we will
consider only the direct term, with the intermediate state21:

|ν〉dir = Θ(|k1+q| − kF)Θ(|k2−q| − kF)Θ(kF − |k1|)Θ(kF − |k2|)ĉ
†

k1+q,σ1
ĉ†k2−q,σ2

ĉk2,σ2
ĉk1,σ1

|Ψ0〉. (2.67)

It gives the energy:

E(2)
dir =

1
V2

∑
q

∑
k1,k2

∑
σ1,σ2

(Vq/2)2

E(0) − Eν
Θ(|k1+q| − kF)Θ(|k2−q| − kF)Θ(kF − |k1|)Θ(kF − |k2|). (2.68)

Let us now consider the limit q→ 0 and estimate the leading order contributions. Then,

(Vq)2 ∼ q−4 (2.69)

E(0) − Eν ∼ k2
1 + k2

2 − (k1 + q)2 − (k2 − q)2 ∼ q + O(q2) (2.70)∑
k1

Θ(|k1+q| − kF)Θ(kF − |k1|) ∼ q. (2.71)

Then, when doing the necessary integral in q:

E(2)
dir ∼

∫
dqq2 1

q4

1
q

qq =

∫
dq

1
q

= ln q, (2.72)

i.e., it diverges! Not everything is lost, though. The divergence is only logarithmic. In order to cure it,
one can regularize it by including contributions of higher order terms22.

We get a more physical picture if we notice that using the Yukawa interaction (rather than the bare
Coulomb one), the divergence disappears23. This emphasizes the important role of the long-range
nature of the Coulomb interactions, and suggests that screening will be crucial. This issue will be
discussed in the next chapter.
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3. Mean field approaches. Hartree-Fock
approximation

In the previous chapter, the perturbative treatment of the Coulomb interaction
was introduced. We will now delve into this problem by connecting it to mean
field approaches (very common in condensed matter theory), what is called as
the Hartree-Fock approximation (also useful in atomic and molecular physics).
We will particularize it to the jellium model. Again, issues related to the long-
range character of the Coulomb interaction will show up. These are solved by

taking screening effects into account properly.

3.1. Mean field approximations

Condensed matter systems are complicated for containing many degrees of freedom. Interactions be-
tween the many particles introduce correlations that make the problem difficult to solve but makes its
physics very rich: Very similar systems (or even the same system in different configurations, e.g., at
different temperatures) can show very different behaviours, However, not all of these correlations are
always relevant for all observables. The interest is then to identify what particles and what interactions
play a role in the physical phenomena of interest and be able to obtain a sufficiently general model
that provides a good understanding of the underlying physics and a description of the important effects.
Quite often, this leads to new concepts that would be hidden in a (if possible) exact description of the
whole system.

A way to do this is to consider that the correlations between particles (of the same or of different
types) generated by their interaction can be neglected1. The interaction then occurs between each
particle and an average (a mean field) of all the others.

Following Ref. [3.1], we show this with a simple example consisting on a system with two ensembles
of particles (described by creation operators â†α and b̂†β) that interact2. The microscopic hamiltonian is
Ĥ = ĤA + ĤB + ĤAB, where

ĤA =
∑
α

εA
α â†αâα′ and ĤB =

∑
β

εB
β b̂†βb̂β′ (3.1)

describe the non-interacting free particles, with their interaction being

ĤAB =
∑

αα′,ββ′

Vαβα′β′ â†αb̂†βb̂β′ âα′ . (3.2)

The mean field approximation assumes that each particle interacts with an average of the others. This
can be justified by the deviation operators:

d̂A
αα′ = â†αâα′ −

〈
â†αâα′

〉
and d̂B

ββ′ = b̂†βb̂β′ −
〈
b̂†βb̂β′

〉
(3.3)

1Two observables,A and B, are correlated if 〈AB〉 , 〈A〉〈B〉.
2Can you think of an example where both types of particles are electrons?
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giving small expected values. Then, one approximates d̂A
αα′ d̂

B
ββ′ ≈ 0, such that the interaction term

becomes:
ĤAB ≈

∑
αα′,ββ′

Vαβα′β′
(
â†αâα′

〈
b̂†βb̂β′

〉
+ b̂†βb̂β′

〈
â†αâα′

〉
−

〈
â†αâα′

〉 〈
b̂†βb̂β′

〉)
, (3.4)

in the form of two single-particle hamiltonians. We can then write Ĥ ≈ ĤMF, with

ĤMF =
∑
αα′

ε̃A
αα′ â

†
αâα′ +

∑
ββ′

ε̃B
ββ′ b̂

†

βb̂β′ + E0, (3.5)

where E0 only contains products of averages. ĤMF could be easily solved, were not the coefficients
ε̃A
αα′ and ε̃B

ββ′ depend on the other particle averages:

ε̃A
αα′ = εA

αδαα′ +
∑
ββ′

Vαβα′β′〈b̂
†

βb̂β′〉 (3.6)

ε̃B
ββ′ = εB

βδββ′ +
∑
αα′

Vαβα′β′〈â†αâα′〉, (3.7)

so they cannot be solved separately3. The problem is then reduced to calculating the averages 〈â†αâα′〉
and 〈b̂†βb̂β′〉, which is usually done in a self-consistent manner: one solves the system iteratively by
using the result of the previous step, starting by solving the uncoupled systems. This is then repeated
until the solution converges appropriately.

3.2. Hartree-Fock approximation

Let us apply these ideas to the system of interacting electrons described by the hamiltonian

Ĥ = Ĥ0 + Ĥe−e =
∑
mn

h(0)
mnĉ†mĉn +

1
2

∑
mnlp

he−e
mn,plĉ

†
mĉ†nĉl ĉp, (3.8)

with the coefficients h(0)
mn and he−e

mn,pl obtained from the elements of the single and two-particle operators

ĥ(0) = −
~2

2m
∇2

r + Vel−ion(r) and ĥe−e =
e2

|r − r′|
. (3.9)

according to Eqs. (1.5) and (1.49), respectively. For simplicity, we use a compressed notation where
the indices m, n, l and p include orbital and spin degrees of freedom4. The spin will be made explicit
only when it plays a role. Note however, that σm = σp and σn = σl.

The main approximation consists on assuming that the ground state is not affected by electron-
electron interactions:

|Ψ0〉 =
∏

n

ĉ†n|0〉. (3.10)

With this, we evaluate the energy: 〈
Ĥ

〉
=

〈
Ψ0

∣∣∣Ĥ∣∣∣ Ψ0
〉
. (3.11)

3Note that ε̃A
αα′ and ε̃B

ββ′ are not diagonal.
4Please, do not confuse the index m with the mass of the electron!
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Coulomb
interaction

Pauli exclusion
principle

Figure 3.1.:
Exchange hole: correlations origi-
nated from the Pauli exclusion prin-
ciple keep electrons with paral-
lel spins separated (represented by
the dashed circle). Hence, their
Coulomb interaction will on average
be smaller than that between elec-
trons with antiparallel spins.

We need to evaluate two types of expectation values (see Sec. 1.3.1):〈
ĉ†mĉp

〉
= 〈n̂m〉 δmp (3.12)〈

ĉ†mĉ†nĉl ĉp

〉
=

〈
ĉ†mĉp

〉 〈
ĉ†nĉl

〉
−

〈
ĉ†mĉl

〉 〈
ĉ†nĉp

〉
= 〈n̂m〉 〈n̂n〉 (δmpδnl − δnpδml), (3.13)

where n̂m = ĉ†mĉm is the number operator. The result in Eq. (3.13) can be obtained by a direct application
of Wick’s theorem or from simple commutation relations (left as an exercise, it should take two lines).
The first term in the right hand side corresponds to the direct interaction of two electrons sitting in
states |m〉 and |m〉. The second term, describes the exchange interaction and will be finite provided the
two electrons have the same spin. We then arrive at:

〈Ĥ0〉 =
∑

m

h(0)
mm〈n̂m〉, and 〈Ĥe−e〉 =

1
2

∑
mn

(
Umn − Jmnδσmσn

)
(1 − δmn)〈n̂m〉〈n̂n〉, (3.14)

with the direct (Hartree) and exchange (Fock) contributions given by Umn = he−e
mn,mn and Jmn = he−e

mn,nm,
respectively. From the definition of Jmn it should become clear where it is actually called exchange.
From Eq. (3.14) we learn that contribution to the Coulomb interaction is smaller between electrons
with the same spin (a ferromagnetic contribution). This is due to the Pauli exclusion principle which
avoids electrons with the same spin to be nearby, what is known as the exchange hole5, as represented
in Fig. 3.1.6 The total Hartree-Fock energy is hence:

EHF =
〈
Ĥ0

〉
+

1
2

∑
mn

(
Umn − Jmnδσmσn

)
(1 − δmn)〈n̂m〉〈n̂n〉. (3.15)

We still need to obtain the wavefunctions ψν(r). For this, we take a variational approach by minimiz-
ing EHF under the condition that the wave function is normalized, i.e.,

∫
d3r|ψν(r)|2 = 1. This is done

by introducing Lagrange multipliers (see e.g., Ref. [3.3]):

ẼHF = EHF −
∑
ν

εν

(∫
d3r |ψν(r)|2 − 1

)
. (3.16)

We now minimize the functional ẼHF(ψν) by taking the functional derivative and solving:

δẼHF

δψ∗ν(r)
= 0. (3.17)

5Sounds familiar?
6A detailed discussion of this point is given in Ref. [3.2].
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3. Mean field approaches. Hartree-Fock approximation

It takes a few lines, but there is nothing really complicated in getting to the self-consistent Hartree-Fock
equations (by using the integral definitions of Umn and Jmn given by Eq. (1.49)):

εmψm(r) = ĥ(0)(r)ψm(r) +
∑
n,m

∫
d3r′

e2

|r−r′|

(∣∣∣ψn(r′)
∣∣∣2 ψm(r) − δσmσnψ

∗
n(r′)ψm(r′)ψn(r)

)
. (3.18)

Each equation includes the wavefunctions corresponding to all the (many) occupied states, so a com-
plete solution becomes intractable. However, they can be solved iteratively (self-consistently) as de-
scribed at the end of Sec. 3.1.

+ The dependence of the wavefunction ψm(r) on all other occupied states introduces the notion of
quasiparticles.

3.2.1. Interpretation

We do not want to solve Eqs. (3.18) here. However, they are not useless. If we multiply it by ψ∗m(r) and
integrate, we get to the expression for the energies:

εm = h(0)
mmψm(r) +

∑
n

(
Umn − Jmnδσmσn

)
〈n̂n〉, (3.19)

which relate to the total energy as:

EHF =
∑

m

εm〈n̂m〉 −
1
2

∑
m,n

(
Umn − Jmnδσmσn

)
(1 − δmn)〈n̂m〉〈n̂n〉. (3.20)

Hence, we can argue that the energy εm does not correspond to the energy of a single particle in state
|m〉 but rather includes the interaction with all other particles. In the same way, EHF is not the sum of
the single-particle energies. However, by inspecting Eq. (3.15) we notice that the energy of the highest
occupied orbital, εmN , is:

εmN ≈ EN
HF − EN−1

HF , (3.21)

i.e., it corresponds to the minimal energy needed to add a quasiparticle to the system7,8. This is known
as Koopmans’ theorem [3.4].

3.3. Hartree-Fock for the jellium model

We apply now this approximation to the jellium model introduced in Sec. 2.3. In this case, we use

Ĥe−e =
1

2V

∑
k1k2

∑
σ1σ2

∑
q,0

Vqĉ†k1+q,σ1
ĉ†k2−q,σ2

ĉk2,σ2
ĉk1,σ1

. (3.22)

The first step is to take its expectation value with the noninteracting Fermi sphere using Eq. (3.13):〈
ĉ†k1+q,σ1

ĉ†k2−q,σ2
ĉk2,σ2

ĉk1,σ1

〉
=

〈
n̂k1,σ1

〉 〈
n̂k2,σ2

〉 (
δq,0 − δk1+q,k2δσ1,σ2

)
. (3.23)

Once more, these two terms correspond to the direct and exchange contributions. Again, the direct
term, proportional to δq,0, is excluded from the sum in Eq. (3.22), so we get:〈

Ĥe−e
〉

= −
1

2V

∑
k,σ

∑
q,0

Vq
〈
n̂k,σ

〉 〈
n̂k+q,σ

〉
. (3.24)
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Figure 3.2.:
Hartree-Fock dispersion relation for
the jellium model. The arrow points
the increase of the dimensionless
electron distance from rs = 1 to
rs = 6, plotted with gray lines. In
black are the free-electron (dashed)
and r∗s = 4.89 (solid line) cases.

The Hartree-Fock equations have the form9:

−
~2

2m
∇2

rψk,σ(r) −
∑
k′,k

∫
d3r′ψ∗k′,σ(r′)ψk,σ(r′)

e2

|r − r′|
ψk′,σ(r) = εk,σψk,σ(r). (3.25)

Solving them is easier than expected: It turns out that the plane waves are eigenstates of the previous
equation (you can just check it), with the eigenenergies:

εk,σ =
~2|k|2

2m
−

e2

V

∑
k′,k

∫
d3r′

eik(r−r′)eik′(r′−r)

|r − r′|
. (3.26)

Transforming the sum into an integral and using the Fourier transform of the Coulomb interaction, cf.
Eq. (1.65), we get:

ε(k, σ) =
~2|k|2

2m
− e2

∫ kF

0

d3k
(2π)3

4π
(k − k′)2 . (3.27)

The remaining integral can be performed invoking a book of tables10. In a few lines, we arrive to the
dispersion relation:

ε(k, σ) =
~2|k|2

2m
−

e2kF

π

1 +
k2

F − |k|
2

2|k|kF
ln

∣∣∣∣∣kF + |k|
kF − |k|

∣∣∣∣∣ , (3.28)

which is plotted in Fig. 3.2 for different distances rs.
We gain more insight by rewriting the exchange term as

εx(k) = −
2e2kF

π
F

(
k
kF

)
, with F(y) =

1
2

+
1 − y2

4y
ln

∣∣∣∣∣1 + y
1 − y

∣∣∣∣∣ . (3.29)

Note that εx(k) < 0, if k < kF. In particular, F(y) → 1/2, when y → 0 gives εx(0) = −e2kF/π. As
kF ∝ 1/rs, the exchange hole will be deeper when the electron density increases. At the Fermi level,

7Why is Eq. (3.21) approximate and not an identity?
8Can a similar expression obtained for the energy required to remove one particle? Does the initial state of that particle play

any role?
9Compare them with Eq. (3.18)

10 ∫
dx

1
1 − ax

= −
1
a

ln |1 − ax| and
∫

dxx ln |x + a| =
x2 − a2

2
ln |x + a| −

1
4

(x − a)2
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3. Mean field approaches. Hartree-Fock approximation

y = 1, we have F(1) = 1/2, giving εx(kF) = −e2kF/π.11 However by inspecting the derivative:

dF(y)
dy

∣∣∣∣∣
y=1
≈

1
2

ln
∣∣∣∣∣1 − y

2

∣∣∣∣∣ , (3.30)

we find that it diverges! We understand the consequences of this divergence by noticing that it gives a
vanishing density of states12 at the Fermi energy, which is unphysical13:

υ(εF)→ 0. (3.31)

This would imply for instance that transport coefficients (which depend on the density of states at the
Fermi energy) vanish14.

This pathological behaviour is related to the one in the perturbative expansion in chapter 2, due to the
long-ranged electron-electron interaction. As in that case, it is simple to show that a screened Coulomb
interaction (Yukawa) circumvents this problem. How to treat screening properly is the subject of the
following section.

3.4. Screening

3.4.1. Brief reminder

A charge in a polarizable media attracts opposite charges, inducing a charge distribution around it that
screens it. Classically, the potential generated by an external charge distribution, %ext, and the induced
charge, %ind is given by the (Fourier transformed) Poisson equation15:

q2φ(q) = 4π[%ext(q) + %ind(q)]. (3.32)

Writing q2φext(q) = 4π%ext(q), and introducing the susceptibility χ(q) that relates %ind = χ(q)φ(q), we
arrive at:

φ(q) =

[
1 −

4π
q2 χ(q)

]−1

φext(q). (3.33)

From this equation, we relate the susceptibility and the dielectric constant:

ε(q) = 1 −
4π
q2 χ(q). (3.34)

11Rewriting it as εx(kF) = −2e2/λF suggests that the diameter of the exchange hole is the Fermi wavelength.
12Recovering the expression for the number of states, Eq. (2.5), we get for the density of states:

υ(εk) =
k2

π2

(
dεk

dk

)−1

.

The same result is obtained by defining υ(E) =
∑

k,σ δ(E − εk).
13Another version of the same problem is that the effective mass of electrons at the Fermi energy, defined from

1
m∗

=
1
~2kF

∂ε(k)
∂k

∣∣∣∣∣
k=kF

,

gives m∗ = 0.
14J. Bardeen [Electron exchange in the theory of metals, Phys. Rev. 50, 1098 (1936)] showed that this result leads to a

specific heat proportional to cV ∼ −T/ ln T when T → 0, which deviates from the experimental observations. Is this
result consistent at finite temperature?

15Notation: the density % has units of charge per volume; not to confuse with the density operator ρ̂. For the same reason, we
will below use n for the electron density (per unit volume).
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3. Mean field approaches. Hartree-Fock approximation

The question is now how to calculate χ(q), for which one usually needs to invoke the appropriate
approximations. The most typical are: (i) Thomas-Fermi approximation (semiclassical limit of the
Hartree interaction), and (ii) Lindhard or random-phase approximation (which we will treat below).

Thomas-Fermi semiclassical approximation

This approximation assumes that the electrons move freely in a potential that varies smoothly along
distances much larger than the electron wavelength: ∆r ∼ ~/∆k � λ. The electron energy is then

ε(k) =
~2k2

2m
− eφ(r). (3.35)

The electron density can be approximated by:

n(r) =
1

4π3

∫
d3k f (ε(k) − µ), (3.36)

in terms of the Fermi distribution. The induced charge density is then:

%ind(r) = −e[n(r) − n0(µ)], (3.37)

where n0 is the density without the external charge (obtained by making φ = 0 in Eq. (3.36)). We can
linearize it n(r) ≈ n0(µ) + eφ(r)∂n0/∂µ, so after simplifying and Fourier-transforming, we obtain the
susceptibility

χ(q) = −e2 ∂n0

∂µ
. (3.38)

Defining the Thomas-Fermi wavenumber from k2
TF = 4πe2∂n0/∂µ, the dielectric constant reads16:

εTF = 1 +
k2

TF

q2 , (3.39)

which gives the screened potential17

φ(q) = φext(q)
q2

q2 + k2
TF

. (3.40)

3.4.2. Quantum treatment: linear response to a potential

We want to see how the charge distribution of a gas of (free) electrons changes when it is in the presence
of an external potential, Uext(r, t). In general, the potential can be time dependent, giving a hamiltonian:

Ĥ(t) = Ĥ0 + ĤU(t) =
∑
k,σ

εkσĉ†kσĉkσ +
∑
k,k′

∑
σ

(
1
V

∫
d3re−ik′rUext(r, t)eikr

)
ĉ†k′σĉkσ, (3.41)

where we have considered the planewave basis, and εkσ are the free-electron energies. We assume that
the external potential is periodic in space and time, allowing for a Fourier decomposition, of which we

16We can estimate kTF by approximating ∂n0/∂µ by the density of states at the Fermi energy (exercise).
17In the case that the potential is caused by a charge e, φext(q) = e/q2, we get the Yukawa potential φ(q) = e(q2 + k2

TF)−1.
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3. Mean field approaches. Hartree-Fock approximation

are interested only in the component corresponding to the potential characteristic vector q′ and a single
oscillatory frequency ω (for simplicity). Hence:

Uext(r, t) = Uext(q′, ω)ei(q′r−ωt)eηt + h.c., (3.42)

The small parameter η→ 0+ warranties the adiabatic switching of the potential at t = 0. Therefore:

ĤU(t) =
∑
k,σ

(
Uext(q′, ω)e−iωteηtĉ†kσĉk+q,σ + U∗ext(q

′, ω)eiωteηtĉ†kσĉk−q,σ

)
. (3.43)

The charge distribution is given by the density operator18, which in reciprocal space reads:

ρ̂q =
∑
k,σ

ĉ†kσĉk+q,σ =
∑
k,σ

n̂kqσ, (3.44)

where the operator n̂kqσ generalizes the number operator, cf. Eq. (1.19) (recovering it for q = 0).
The dynamic response is given by the Heisenberg equation of motion applied to the density operator:

i~
d
dt

n̂kqσ = [n̂kqσ, Ĥ(t)] = [n̂kqσ, Ĥ0] + [n̂kqσ, ĤU(t)]. (3.45)

We will need to compute the averages:〈
i~

d
dt

n̂kqσ

〉
=

〈
[n̂kqσ, Ĥ0]

〉︸         ︷︷         ︸
(r1)

+
〈
[n̂kqσ, ĤU(t)]

〉︸             ︷︷             ︸
(r2)

. (3.46)

Let us go step by step and calculate the different terms separately. The algebra simplifies considerably
knowing that

[ĉ†µĉµ′ , ĉ
†
ν ĉν′] = ĉ†µĉν′δµ′ν − ĉ†ν ĉµ′δµν′ . (3.47)

(r1) This term is easy to calculate using Eq. (3.47), yielding:〈
[n̂kqσ, Ĥ0]

〉
= (εk+q,σ − εkσ)

〈
n̂kqσ

〉
. (3.48)

(r2) Again using Eq. (3.47), the second term results in:〈
[n̂kqσ, ĤU(t)]

〉
=Uext(q′, ω)e−iωteηt

(〈
ĉ†kσĉk+q−q′,σ

〉
−

〈
ĉ†k+q′,σĉk+q,σ

〉)
+ U∗ext(q

′, ω)eiωteηt
(〈

ĉ†kσĉk+q+q′,σ

〉
−

〈
ĉ†k−q′,σĉk+q,σ

〉). (3.49)

Note that the terms within brackets in the right-hand side couple the time evolution of
〈
n̂kqσ

〉
with other contributions19 which may in principle also depend on time. Therefore, our problem
results in a system of coupled differential equations. We are interested in the linear response, for
which it is sufficient to assume that the only time dependence in Eq. (3.49) is the one explicitly
introduced by the potential. Henceforth, the other contributions are considered as stationary
coefficients, which we can evaluate using Eq. (3.12). Out of these terms, we will in the end keep
only those with q = q′ when taking the expectation values: e.g.,

〈
ĉ†kσĉk+q−q′,σ

〉
= f (εkσ)δqq′ .

We end with20: 〈
[n̂kqσ, ĤU(t)]

〉
= Uext(q, ω)e−iωteηt

[
f (εkσ) − f (εk+q,σ)

]
. (3.50)

18We second-quantized it in Sec. 1.3.2.
19For example,

〈
n̂k,q+q′ ,σ

〉
.

20What happens with the terms proportional to U∗ext(q′, ω)?
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Gathering all the terms in Eq. (3.46), we get the differential equation:

i~
d
dt

〈
n̂kqσ

〉
= (εk+q,σ − εkσ)

〈
n̂kqσ

〉
+ Uext(q, ω)[ f (εkσ) − f (εk+q,σ)]. (3.51)

As there is only one remaining time dependence, we can use the ansatz:〈
n̂kqσ(t)

〉
=

〈
n̂kqσ

〉
e−iωteηt, (3.52)

which involves that the the electronic density follows the potential Uext
21. Replacing Eq. (3.52) in

Eq. (3.51), we finally obtain the expression for the stationary density:〈
ρ̂q

〉
=

∑
kσ

〈
n̂kqσ

〉
=

∑
kσ

f (εkσ) − f (εk+q,σ)
~ω + εkσ − εk+q,σ + i~η

Uext(q, ω). (3.53)

This finally gives the susceptibility:

χ0(q, ω) =
1
V

∑
kσ

f (εkσ) − f (εk+q,σ)
~ω + εkσ − εk+q,σ + i~η

, (3.54)

which is known as the Lindhard function [3.5]. It is useful to split it into real and imaginary parts,
χ0(q, ω) = χR

0 (q, ω) + iχI
0(q, ω), which we can write as22:

χR
0 (q, ω) =

1
V

∑
kσ

P
[

f (εkσ) − f (εk+q,σ)
~ω + εkσ − εk+q,σ

]
(3.55)

χI
0(q, ω) =

π

V

∑
kσ

[
f (εkσ) − f (εk+q,σ)

]
δ(~ω + εkσ − εk+q,σ), (3.56)

using the Cauchy principal value. They contain different information: while χR
0 (q, ω) describes the

instabilities of the electron gas, the spectral function χI
0(q, ω) has the form of the Fermi golden rule

describing the rate of transitions in response to a time-dependent perturbation. In this case, these are
the electron-hole excitations of the Fermi sea. In this sense, the Dirac-delta in χI

0(q, ω) introduces the
conditions for the elementary electron-hole excitations to be possible (via the conservation of energy)23:

~ω =
~2

2m

(
q2 + 2kq

)
. (3.57)

For the undriven case, ω = 0, excitations are restricted to q ≤ 2kF. This bound can be broken for
ω , 0: A time dependent potential modulates this condition as long as the frequency lays between
|ω−| ≤ ω ≤ ω+, with

ω± =
~

2m
(q2 ± 2kFq). (3.58)

The corresponding region, where χI
0(q) , 0, is shaded in grey in Fig. 3.3.

+ The static response χ0(q, 0) contains (as the linear term in a q expansion) the Thomas-Fermi
screening.

+ Still non-interacting!
21Like a cork in a pond.
22Remember:

lim
η→0+

1
ω + iη

= P
(

1
ω

)
− iπδ(ω).

23Are they possible in 2-D? And in 1-D?
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Figure 3.3.:
Regime of electron-hole excitations
according to the Lindhard spectral
function χI

0(q).

3.4.3. Including the Coulomb interaction. Random-phase approximation

Let us now consider the electron-electron interaction:

Ĥe−e =
1

2V

∑
σ′σ′′

∑
k′k′′

∑
q′,0

Vqĉ†k′+q′,σ′ ĉ
†

k′′−q′,σ′′ ĉk′′σ′′ ĉk′σ′ . (3.59)

In this case, the commutator [n̂kqσ, Ĥe−e] requires a bit more algebra, as it includes terms of the form

[ĉ†kσĉk+q,σ, ĉ
†

k′+q′,σ′ ĉ
†

k′′−q′,σ′′ ĉk′′σ′′ ĉk′σ′], but nothing we cannot do with patience in a couple of paper
sides24. The result is:

[n̂kqσ, Ĥe−e] =
1
V

∑
q′,0

Vq′ ρ̂q′
(
ĉ†kσĉk+q−q′,σ − ĉ†k+q′,σĉk+q,σ

)
. (3.60)

It is now convenient to keep only the terms with q′ = q. This rather drastic but remarkably successful
approximation is known as the random-phase approximation (RPA). It leads to:〈

[n̂kqσ, Ĥe−e]
〉

RPA
=

1
V

Vq
〈
ρ̂q

〉 [
f (εkσ) − f (εk+q,σ)

]
, (3.61)

where the time dependence is implicit in
〈
ρ̂q

〉
. Adding this term to the non-interacting contributions in

Eq. (3.51) gives:

〈
ρ̂q

〉
=

∑
kσ

f (εkσ) − f (εk+q,σ)
~ω + εkσ − εk+q,σ + i~η

[
Uext(q, ω) +

4πe2

q2

1
V

〈
ρ̂q

〉]
. (3.62)

The term into brackets is the effective potential, V(q, ω) = Uext(q, ω) + Vpol(q, ω), which includes the
polarization potential Vpol(q, ω) = 4πe2

〈
ρ̂q

〉
/q2V induced by the external charge distribution. Hence,

in the RPA, the screened susceptibility coincides with that of the non-interacting electrons, χRPA = χ0,
with the effective potential playing the role of the external potential, and the dielectric constant is:

εRPA = 1 −
4πe2

q2 χ0(q, ω). (3.63)

24The most complicated operations are renaming variables in the k′ summation, sometimes.
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Figure 3.4.:
RPA diagrammatic expansion of the
interaction.

3.4.4. Interpretation of the RPA

Introducing the screening susceptibility25, we write the induced charge density (per unit volume) as
n(q, ω) = χscV(q, ω). Hence, the potential is:

V(q, ω) = Uext(q) +
4πe2

q2 χscV(q, ω), (3.64)

which can be rewritten as

V(q, ω) =

[
1 −

4πe2

q2 χsc

]−1

Uext(q). (3.65)

Let us now compare this with what we obtain from the RPA i.e., χsc = χ0, and from considering that
the Coulomb interaction as the external potential, Uext(q) = 4πe2/q2. Then, Eq. (3.64) reads:

V(q, ω) = Uext(q)
[
1 + χ0V(q, ω)

]
. (3.66)

This expression allows for an iterative expansion:

V(q, ω) = Uext(q)
{
1 + χ0Uext(q)

[
1 + χ0V(q, ω)

]}
= Uext(q)

{
1 + χ0Uext(q) +

[
χ0Uext(q)

]2
+ . . .

}
=

Uext(q)
1 − χ0Uext(q)

,
(3.67)

where in the last step we have made the geometric sum. It recovers the result εRPA = 1−χ0Uext(q). Most
interestingly, the series in Eq. (3.67) can be interpreted as a perturbative expansion of the interaction
to all orders, including only the density-density (Hartree) interactions (see Fig. 3.4 for a diagrammatic
representation). It can be argued that these dominate over the (Fock) exchange terms [3.7]. Therefore,
the RPA approximation coincides with the dominant contribution of the perturbative expansion to all
orders in the Coulomb interaction26.

3.4.5. Collective excitations

We have seen how the Lindhard function describes the (electron-hole) excitations of the system. A
different type of excitation emerges around the zeroes of the dielectric function. There, small pertur-
bations give rise to large system responses, since V(q, ω) = U(q, ω)/εRPA(q, ω). Let us concentrate on
the low q regime. We can show (another excercise):

lim
q→0

χ0(q, ω) =
nq2

mω2 , (3.68)

25We follow Ref. [3.6] here.
26Remember the discussion at the end of Sec. 2.4.
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(parametrized by the dimensionless
distance rs) are plotted.

resulting in a dielectric function:

εRPA(0, ω) = 1 −
ω2

p

ω2 , (3.69)

where we have defined the electron plasma frequency:

ωp =

√
n4πe2

m
(3.70)

which describes the collective oscillations of the electron gas.
We can extend the expansion to the leading order in q, getting:

εRPA(q, ω) = 1 −
ω2

p

ω2

[
1 +

3
5

(qvF

ω

)2
]
. (3.71)

The frequency ω that makes εRPA(q, ω) = 0 is plotted in Fig. 3.5. The plasmon mode is damped in the
electron-hole continuum.

3.4.6. Friedel oscillations

In the opposite case of static excitations (for ω = 0), we have 27:

εRPA = 1 +
k2

TF

q2 F
(

q
2kF

)
, (3.72)

with F(y) defined in Eq. (3.29). As we did for the Thomas-Fermi potential, we get:

V(q, 0) =
q2

q2 + k2
TFF

( q
2kF

)Uext(q, 0). (3.73)

The real space interaction is given by the inverse Fourier transform. Using the bare Coulomb interaction
as the external potential:

V(r) =
e2

2π2r

∫
dq

q sin(qr)

q2 + k2
TFF

( q
2kF

) . (3.74)

27It is not complicated to get it from Eq. (3.54) at T = 0 (we did this integral before). The general case for finite temperatures
is derived in Ref. [3.8].
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The integral is not simple to do, so we will be happy to show the numerical solution in Fig. 3.6.
However, it can be shown (see e.g., Ref. [3.8]) that the resulting potential oscillates at long distances
around the Yukawa solution of the (semiclassical) Thomas-Fermi screening [3.9]:

V(r) ∝
cos(2kFr)

r3 , (3.75)

see the inset in Fig. 3.6. The oscillations can be understood from the phase shift suffered by an electron
at the Fermi energy when being scattered by the external potential.
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4. Lattice based descriptions

So far we discussed how the electron-electron interactions are treated in systems
that allow for a description based on delocalized (either plane waves or Bloch)
wave functions. This applies to metals where the conduction electrons come
from extended orbitals. This is of course not always the case. In this chapter,
we will show how the properties of the lattice influence the electronic properties
when orbitals are localized. A prominent example of this is graphene. The

Coulomb interactions are not so easily screened and give rise to the rich physics of strongly correlated
electrons. A glance of the appearance of quantum phase transitions will be given using the Hubbard
model as an illustration.

4.1. Tight binding approach

The description made in the previous chapters, is mostly based on treating electrons a free particles
moving freely (except for the interactions) or in a band that extends over the while system. The structure
of the lattice was either just a modulation (entering in the wave function as Bloch waves) or was directly
neglected (the jellium model, in which case plane waves was an appropriate basis). This is a good
approximation when the valence electrons of the atoms in the lattice correspond to orbitals that extend
over several atom-atom distances. It also helps if they are isotropic, as for s orbitals. This is why it
works particularly well for alkali metals.

However, this is obviously not always the case. In many situations (e.g., transition metals), conduc-
tion electrons occupy d or f orbitals which are strongly localized around the nuclei or oriented along
well defined directions. Then, translational invariance is broken and, rather than plane waves or Bloch
vectors, a description in terms of localized states is useful. This is done by writing the Bloch states as:

ψn(k, r) =
1
√
V0

∑
j

eikR jWn(r − R j), (4.1)

whereV0 is the volume of the unit cell, and the Wannier functions [4.1]

Wn(r − R j) = 〈r |n j 〉 =
√
V0

∫
BZ

d3k
(2π)3 e−ikR jψn(k, r − R j) (4.2)

are centered at the positions of the atoms, and R j are the vectors of the unit cell. It can be useful to
discretize the reciprocal space in which case we have:

Wn(r − R j) =
1
√
N

∑
k

e−ikR jψn(k, r), (4.3)

where N is the number of unit cells. In this case, it is convenient to use the definition

ψn(k, r) =
1
√
N

∑
j

eikR jWn(r − R j) (4.4)
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4. Lattice based descriptions

that normalizes the Wannier functions1:

〈ni |m j 〉 =

∫
d3rW∗

n(r − Ri)Wm(r − R j) = δi jδnm. (4.5)

In this basis, we second-quantize the kinetic term of the Hamiltonian as:

Ĥ0 =
∑

i j

∑
nm

T nm
i j ĉ†niĉm j, (4.6)

with the operators ĉmi annihilating an electron of band m in the site i, and where2

T nm
i j =

〈
ni

∣∣∣Ĥ0
∣∣∣ m j

〉
= T n

i jδn,m. (4.7)

Using this last equality3, we get:
Ĥ0 =

∑
i j

∑
n

T n
i jĉ
†

niĉn j. (4.8)

From this, we readily see that the Wannier functions are not eigenstates of the hamiltonian. The nondi-
agonal elements in Eq. (4.8) describe the system dynamics as a series of transitions where the electrons
tunnel between two sites (or atoms) of the lattice. For this reason it is typically referred to as the
hopping hamiltonian. It is the base for tight-binding models which (based on the knowledge of the
chemical bounds in the lattice) make assumptions on the different contributions of the terms T n

i j to
extract the electronic properties.

4.2. Electrons in graphene

We will illustrate the use of tight-binding models using graphene as an example [4.3]. Thought for
decades to be just a nice theoretical problem impossible to realize experimentally4, the discovery of
graphene [4.4] revealed a huge amount of phenomena which have transcended the field of fundamental
physics to find industrial applications.

Graphene is formed by a monolayer5 two-dimensional honeycomb lattice of carbon atoms, see
Fig. 4.1. The two unit cell atoms, denoted by A and B, form two Bravais sublattices. The atomic
bonds, of the type sp2, are very strong6. Hence, the contribution of all other orbitals can be neglected.
The B atoms are connected to their nearest neightbours by the vectors

δ1 =
a
2

(
1,
√

3
)
, δ2 =

a
2

(
1,−
√

3
)

and δ3 = −a (1, 0) , (4.9)

with the interatomic distance a ≈ 1.42 Å.
With these, we write the tight binding hamiltonian, where we distinguish the diagonal and the off-

diagonal terms:

Ĥ = E0

∑
jσ

(
â†jσâ jσ + b̂†jσb̂ jσ

)
+ τ

∑
jσ

∑
δl

(
â†j+δl,σ

b̂ jσ + b̂†jσâ j+δ,σ

)
, (4.10)

1In most cases in condensed matter, the actual form of the Wannier functions is now completely determined, so there is
some freedom in chosing the conventions, see e.g., Ref. [4.2].

2This is left as an exercise.
3What do the off-diagonal elements mean?
4It was believed that isolated two dimensional crystals could simply not exist because they could not sustain fluctuations.
5The properties change quite dramatically in bilayer graphene.
6Not surprising if you think of the same bonds in diamond.
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A B
δ1

δ2

δ3 Figure 4.1.:
Graphene honeycomb lattice. The
unit cell is formed by two inequiv-
alent atoms (A and B, marked by
black and white circles, respec-
tively). Vectors δi point to the nearest
neightbours of B atoms.

where the operators â jσ and b̂ jσ annihilate electrons in site R j of sublattices A and B, respectively.
Indices j + δl indicate the neightbouring sites R j + δl. In the Bloch state basis:

â jσ =
1
√
N

∑
k

eikR j âkσ and b̂ jσ =
1
√
N

∑
k

eikR j b̂kσ. (4.11)

Let us show explicitly one of the hopping terms in Eq. (4.10). On one hand:∑
j

â†j+δl,σ
b̂ jσ =

1
N

∑
kk′

∑
j

e−ik(R j+δl)â†kσb̂k′σeik′R j =
∑

k
e−ik~δl â†kσb̂kσ. (4.12)

On the other hand,∑
δl

e−ik~δl = eikxa + e−i(kx+
√

3)a/2 + e−i(kx−
√

3)a/2 = eiθx + 2e−iθx cos
 √3

2
θy

 ≡ γ(k), (4.13)

where we have defined θi = kia. This leaves the hamiltonian as:

Ĥ = E0

∑
kσ

(
â†kσâkσ + b̂†kσb̂kσ

)
+ τ

∑
kσ

[
γ(k)â†kσb̂kσ + h.c.

]
, (4.14)

which is easily diagonalizable7, giving the eigenvalues (spin degenerate):

E±(k) = E0 ± τ|γ(k)|. (4.15)

The second term introduces a gap between the two bands, as shown in Fig. 4.2.
We can identify several special points in the Brilloin zone, which are denoted as Γ, M, K and K′ in

Fig. 4.2. At kΓ = 0, we find the maximum and minimum of the conduction and valence bands, given
by E±(kΓ) = E0 ± 3τ. At kM = (2π/3, 0), there is a saddle point which results in van Hove singularities
of the density of states.

Special attention needs to be paid to the K and K′ points, where |γ(kK)| = |γ(kK′)| = 0. There, the
conduction and valence bands touch each other: E±(kK) = E±(kK′) = E0. The gap closes, which allows
(in principle) electron-hole excitations to occur at these points.

7Write it as a 2×2 matrix for each k and each σ.
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Figure 4.2.:
Dispersion relation of monolayer
graphene, for E0 = 0. The special
points of the reciprocal lattice are
highlighted. The right panel shows
cuts along the solid and dashed lines
traced in the left one.

4.2.1. Low energy dispersion

Let us focus on the K and K′ points, located at kn± = 4π
3a

(
n,±1/

√
3
)
. In the following, for concreteness,

we will focus on the case k0± (+ gives a K′, and − a K point). We are interested on the behaviour around
E0, for which we consider small deviations k = k0±+δk and we perform an expansion of the dispersion
relation. In a few lines we arrive at:

γ(k0±+δk) ≈
3ia
2

(δkx ∓ iδky). (4.16)

Defining the Fermi velocity vF = 3τa/2~, we get two different terms:

HK =

(
E0 i~vF(δkx−iδky)

−i~vF(δkx−iδky) E0

)
, (4.17)

and HK′(δkx, δky) = HK(δkx,−δky). With them, we write the effective hamiltonian:

HK =

(
HK 0
0 HK′

)
, (4.18)

The K and K′ terms give rise to the valley degree of freedom (often also called isospin). Diagonalizing
the different blocks, we get that the dispersion relation

E±(K) = E±(K′) = E0 ±
3
2

aτ
∣∣∣δkx + iδky

∣∣∣ (4.19)

turns out to be linear8. Note this also means that the density of states at these points vanishes:

υ(E0+δE) ≈
1

2π~2v2
F

|δE|. (4.20)

Therefore, differently from what we saw in the previous chapter, electron-hole excitations are not pos-
sible at arbitrarily low energies around the Fermi energy9.

The eigenstates read:

ψ±K(k) =
1
√

2

(
e−iφk/2

±eiφk/2

)
, with φk = arctan

(
kx

ky

)
. (4.21)

8For this reason and one that will become clear soon, the dispersion in the K and K’ is said to form Dirac cones, and the K
and K’ are the Dirac points. Two sections of the Dirac cones can indeed be appreciated in the right panel of Fig. 4.2.

9But... what is the Fermi energy in (undoped) graphene?
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U0

U1

τ

τ ′
Figure 4.3.:
Hubbard model in a square lattice.
Dashed and dotted lines represent the
Coulomb interaction between elec-
trons in the same or in different
atomic sites. Hoppings to neighbour-
ing available sites are represented by
arrows.

Note that the wave function gains a minus sign upon a 2π-rotation (a geometrical Berry phase [4.5]
originating from the lattice duplicity10). As the spin, it has a 4π-periodicity, for which reason this
degree of freedom is called pseudospin.

This is not totally surprising because the valley matrices HK and HK′ have the form of a Dirac
hamiltonian for massless fermions11:

ĤDirac = vσ̂p̂, (4.22)

where σ̂ are the Pauli matrices and p̂ is the momentum. The Dirac equation is a relativistic analogue
of the Schrödinger equation which introduces naturally the notion of the electron spin. Remarkably,
relativistic dynamics emerge in graphene for vF ≈ 8.4 × 105 ms−1 � c, and are experimentally rel-
evant [4.7]. It has furthermore allowed for the demonstration of the Klein paradox for the perfect
tunneling of helical particles [4.8], predicted so long ago that it was done in German [4.9] in the con-
text of relativistic quantum mechanics12. In graphene, holes below the Fermi level play the role of
positrons in quantum electrodynamics.

4.3. Strong correlations. The Hubbard model

Interactions in narrow band conductors (due to transitions between localized states, e.g., d orbitals in
transition metals) have several contributions. On one hand, the interaction between electrons in different
sites, i.e., well separated spatially, will likely be screened by electrons in broad bands (delocalized
over the system). On the other hand, electrons in the same site will interact strongly and cannot be
disregarded.

Following this kind of ideas, J. Hubbard proposed an effective model based on mean field approaches
using a Wannier function description [4.11] (see also Refs. [4.12] and [4.13] for similar arguments
applied to magnetic materials). All the electrons in narrow band states are treated with a Hartree-Fock
approximation (pretty much like how it was done in chapter 3). The remaining electrons are assumed to
hop between the narrow band orbitals following the kinetic description of the hamiltonian in Eq. (4.8).

10Remember sites A and B?
11Not so long ago there were no evidence of the existence of any massless Dirac fermion, see e.g., Ref. [4.6]. This is another

manifestation of the fundamental interest of quasiparticles. This agrees with the semiclassical expression for the effective
mass

m∗ = ~2k
(

dE
dk

)−1

.

Note that the usual definition in terms of the second derivative d2E/dk2 gives a diverging effective mass.
12See Ref. [4.10] for more modern discussions.
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Illustration of the metal to Mott in-
sulator transition as the electron-
electron-correlations, U0, overcome
the (kinetic) bandwidth, W.

The fact that electrons are sitting in localized sites introduces the separation between atoms, di j, as
the relevant distance for the electron-electron interactions. This way, assuming that they are screened
over distances dscr � di j, one can neglect the contribution of the terms

〈
i j

∣∣∣Ĥe−e
∣∣∣ i j

〉
when i , j. In

particular: 〈
i j

∣∣∣Ĥe−e
∣∣∣ i j

〉
�

〈
ii
∣∣∣Ĥe−e

∣∣∣ ii〉 ≡ U0, (4.23)

where U0 is the mean-field interaction between electrons in the same site, i. For the simple case where
each site is has all orbitals full except for one level (admitting up to two electrons), the hamiltonian
reads:

ĤHubbard =
∑

i j

∑
σ

Ti jĉ
†

iσĉ jσ + U0

∑
i

n̂iσn̂i,−σ, (4.24)

where n̂iσ = ĉ†iσĉiσ counts the number of electrons in site i with spin σ. Despite its apparent simplicity,
this model includes a high complexity not only in the number of physical phenomena it describes13,
but also in the difficulties in finding proper solutions.

The model hence introduces the dynamical suppression of events that involve the tunneling of an
electron into an occupied site: it requires an additional energy U0.14

Single-site Hubbard model:
For a single (spin degenerate) atomic site, with state |1σ〉:

Ĥ1 =
∑
σ

ε0n̂σ + U0

∑
σ

n̂σn̂−σ.

The matrix elements are
〈
1σ

∣∣∣Ĥ1
∣∣∣ 1σ〉

= ε0, for singly-occupied, and〈
1↑,1↓

∣∣∣Ĥ1
∣∣∣ 1↑,1↓〉 = 2ε0 + U0, for doubly-occupied states. This way, we inter-

pret ε0 as the energy required to add an electron to an empty site, and ε0 + U0
as the energy required to add it when the site already contains one electron.

4.3.1. Metal to insulator transition

Let us consider the simplest case with hopping to nearest-neightbours given by:

T near
i j =

W
2
, (4.25)

13As we will see, metal-insulating transitions, but also models of high-Tc superconductors (cuprates), ultra-cold atomic
systems. It is furthermore used as a benchmark of quantum simulators in different platforms: atomic lattices [4.14],
artificial lattices [4.15], nitrogen vacancies [4.16], or quantum dots [4.17].

14Also known as charging energy.
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and the all other contributions T non−near
i j = 0. Then, the constant W corresponds to the band width. In

this case, we can distinguish two limiting regimes, depending on the relative contribution of kinetic and
correlation terms (see Fig. 4.4):

(i) U � W: electrons are free;
(ii) U � W: electrons are localized.

In the first case, the system tends to behave as a metal15. The second one is more involved. Consider
the particular half-filled case (with one electron per site). Then, the ground state is clearly given by
the system with one electron in each site. Charge fluctuations are strongly suppressed by U,16 and
the system behaves as an insulator. This is a Mott insulator [4.18]. Note this is very different to band
insulators which rely on having completely full bands17, but rather on electron-electron correlations.

4.3.2. Related hamiltonians: Anderson impurity model

Tunneling to a localized orbital was proposed by P. W. Anderson as a model for magnetic impurities in
metals [4.19]: a single site occupied by an electron with spin σ is tunnel-coupled to itinerant electron
in metallic widebands:

ĤAnderson =
∑
σ

(
εσn̂0σ + Un̂0σn̂0,−σ

)
+

∑
kσ

εkσĉ†kσĉkσ +
∑
kσ

(
Vkσd̂†0σĉkσ + h.c.

)
. (4.26)

The first term describes the impurity (similarly to the single-site Hubbard model in the previous sec-
tion), where n̂0σ = d̂†0σd̂0σ

18 is the number operator of electrons with spin σ in the impurity, εσ is
the energy of the electron, and U the charging energy. The second term describes the free electrons
in the metal, and the last one in brackets, the tunneling of an electron between the local site and the
free-electron bands.

The impurity is then described by four states, depending on its occupation: |0〉, |σ〉 (with spin σ =

↑, ↓), and |↑,↓〉. Transitions between them are induced by tunneling and will depend on the occupation
of the impurity: electrons will need an additional energy U to tunnel into an impurity containing an
electron than it would if the impurity was empty.

Consider for example the case where U is large enough such that εσ + U > µ > εσ (with µ being
the Fermi energy of the metal). Then, the doubly occupation is not energetically available, so the im-
purity will be occupied by one electron with spin σ. Single-electron tunneling events will be hence
suppressed by the Coulomb interaction19. However, if the coupling Vkσ is sufficiently strong, higher
order tunneling transitions are possible where the occupation of the impurity changes by virtually occu-
pying either |0〉 or |↑,↓〉. In that case, the spin of the impurity is allowed to fluctuate, e.g. via transitions
|↑〉 → (|0〉) → |↓〉.20 These transitions correlate the spin of the impurity with the cloud of surround-
ing spins, forming a singlet21, an effect known as spin screening. This spin-mediated increase of the
scattering leads to an increase of resistance at low temperatures (known as the Kondo effect [4.20]).

The Anderson hamiltonian is also widely used to describe transport in quantum dot systems: the
impurity role is played by a quantum dot exchanging electrons with one or more electronic reservoirs
across tunnel barriers [4.21]22. Currents are therefore strongly affected by charge and spin correlations,
15Can you think on an exception?
16(at sufficiently low temperatures)
17See your favourite solid state book.
18For clarity, the creation operators in the impurity are denoted differently than those in the wideband: d̂†σ (originally for

being intended to describe d orbitals) vs. ĉ†kσ.
19Another way of saying that energy is not conserved in the process.
20The brackets are to emphasize that the state is only viartually occupied.
21Why a singlet?
22Indeed, they serve as model systems to investigate the Kondo effect [4.22, 4.23].
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A B

τ ∆(a)

(b)

(c)

1 2 3 4 N − 1 N

Figure 4.5.:
(a) N-site wire coupled by a hopping
τ and pairing ∆. (b) Electrons (black
circles) can be decomposed as pairs
of Majorana fermions A and B (grey
circles). The configuration in (b) cor-
responds to (a) for τ = ∆ = 0. (c)
Majorana wire with µ = 0 and τ = ∆:
A and B recombine non-locally.

allowing to measure them down to the single-electron level. We will discuss this problem in chapter ??.

4.4. Majorana fermions in nanowires

A particularly interesting case is a one dimensional (but finite) array of sites with p-wave superconduct-
ing correlations23. This model is known as the Kitaev chain [4.24], depicted in Fig. 4.5(a). Assuming
non-interacting electrons and that each site can host up to one electron, the hamiltonian for an N-site
chain reads:

Ĥ = −µ

N∑
i=1

(
ĉ†i ĉi −

1
2

)
+

N−1∑
i=1

[
−τ

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+ ∆

(
ĉi ĉi+1 + ĉ†i+1ĉ†i

)]
, (4.27)

where µ is the on-site energy, τ is the hopping, and ∆ is the superconducting gap. Note that spin plays
no role. It is convenient to introduce the Majorana operators that separate the real and imaginary parts
of the electron operators:

ĉi =
1
2

(γ̂iA + iγ̂iB) . (4.28)

Majorana fermions are real solutions of the Dirac equation [4.25], which in-
volves that they are their own antiparticles, see e.g., Ref. [4.26]. Necessarily,
this also implies that they have no charge nor mass. Furthermore, stationary
solutions are possible only at zero energy. This involves the algebra:

{γ̂i , γ̂ j} = 2δi j, γ̂i = γ̂†i and γ̂2
i = (γ̂†i )2 = 1.

We can check that the operators γ̂iα verify:

{γ̂iαγ̂i , γ̂ jβγ̂i } = 2δi jδαβ, γ̂iα = (γ̂iα)†, and γ̂2
iα = (γ̂†iα)2 = 1. (4.29)

We can then say that an electron is composed of two Majorana fermions. Note also that one cannot
write a number operator for Majorana fermions: γ̂iαγ̂

†

iα = γ̂†iαγ̂iα = 1.
The system hamiltonian is then transformed into:

Ĥ = −
iµ
2

N∑
i=1

γ̂iAγ̂iB +
i
2

N−1∑
i=1

[
(∆ + τ)γ̂iBγ̂i+1,A + (∆ − τ)γ̂iAγ̂i+1,B

]
. (4.30)

23Differently from the usual s-wave superconductors, p-wave Cooper pairs are spin triplets.
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In this form, the hamiltonian couples different Majorana modes in the same site (first term, proportional
to µ) or in different sites (second term). The case ∆ = τ = 0 recovers the trivial hamiltonian of a system
of uncoupled electrons, each in its own site, as shown in Fig. 4.5(b).

In the case ∆ = τ and µ = 0, the hamiltonian reduces to

Ĥ = iτ
N−1∑
i=1

γ̂iBγ̂i+1,A, (4.31)

i.e., only the terms with coupling between first neightbouring sites survive. The fact that there is no
coupling between Majorana operators in the same site is highly remarkable, because they describe the
same electron!

Looking carefully into Eq. (4.31), you may miss two operators: γ̂1A and γ̂NB, i.e., two Majorana
operators at the two ends of the chain, remain uncoupled, see Fig. 4.5(c). If we recombine the Majorana
operators into non-local fermions:

d̂i =
1
2

(
γ̂iB + iγ̂i+1,A

)
, (4.32)

we get a non-interacting (diagonal) hamiltonian:

Ĥ = 2τ
N−1∑
i=1

(
d̂†i d̂i −

1
2

)
, (4.33)

which describes the superconducting bulk of the wire, with a non-local fermion

f̂ =
1
2

(γ̂1A + iγ̂NB) (4.34)

delocalized at its two ends.
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Part II.

Artificial quantum systems
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In the previous chapters, we have discussed how quantum many body effects appear in condensed
matter systems existing in nature (with more or less help from humans with scotch tapes, in some cases).
However, we are not restricted to that: experimental advances allow to construct and manipulate sys-
tems where the quantum nature of electrons manifest in all its glory (artificial atoms, interferometers,
qubits...), and where new effects and quasiparticles emerge (conductance quantization, resonant tun-
neling, Majorana fermions...). These are prominent as the system dimensionality (not necessarily its
dimensions) is reduced. The best example of this was the discovery of the quantum Hall effect in two
dimensional electron gases24, which we will see below.

24K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based
on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980).
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5. Low dimensional systems: From the real to
the Hilbert space

In the last decades –mainly since the ability to isolate high quality two dimen-
sional electron gases (2DEG) in the 80’s– there has been huge advances in the
design and control of systems where quantum effects can be measured and ma-
nipulated, opening new platforms for the investigation of some of the underly-
ing mechanisms in condensed matter (e.g., Coulomb correlations, spin interac-
tions...) and some prominent quantum mechanical effects (manifestations of the

Pauli exclusion principle, quantum superpositions, electronic interferences...). Most remarkably, new
effects have been discovered in systems with electrons confined in one or more spatial dimensions (such
as the mentioned 2DEGS, quantum wires, quantum dots, atomic junctions, qubits of different types...),
with unexpected quasiparticles showing up: chiral electrons in edge states, anyons (not fermions nor
bosons)... We will see how this has opened new fields of research (quantum and topological transport,
quantum open systems, quantum information...). There are many dots (. . . ) in this paragraph because
the list of new phenomena is endless... and open!

This chapter is organized in three main parts, one for each reduced dimensionality from 2-D to 0-
D configurations. Each of them is formed by two sections: the first one discusses general properties
and experimental implementations (for which we mainly follow Refs. [5.1] and [5.2]), followed by
another section describing some examples of prominent physical phenomena (the quantum Hall effect
in 2DEGs, conductance quantization in quantum point contacts, single-electron transport and qubits in
quantum dots) related to them.

5.1. Two dimensional electron gas

In Sec. 4.2 we already saw a purely two-dimensional system (graphene), where electrons are restricted
to move over a single-atom thick layer. We discuss now how to obtain a 2DEG from thicker pieces of
material. We know from quantum mechanics that energy is quantized when motion along one direction
is confined (remember the particle in a box problem). If we consider a system in which electrons can
move freely along two dimensions (say x and y) but is confined in the third one (due to e.g., a hard wall
potential), the wave function is of the form:

ψnσ(x, y) =
1
√
A

eikx xeikyyφn(z)χσ, (5.1)

where A is the area, χσ is the spinor, and the transverse modes φn(z) depend on the confinement
potential. Denoting the energy of these modes as εn, electrons have a total energy:

εkxkyn =
~2

2m
(k2

x + k2
y ) + εn, (5.2)

where we have neglected spin effects.
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5. Low dimensional systems: From the real to the Hilbert space

2DEG

AlxGa1−xAs

GaAs

GaAs

donors

∼ 20 nm

metal gates

Figure 5.1.:
Semiconductor heterostructure with
a 2DEG formed in the interface of
GaAS and AlGaAs layers. On top of
it, metal gates are deposited that de-
plete the electronic gas below, form-
ing a nanostructure.

The above wavefunction is still three-dimensional, no matter how narrow the z-confinement is, as
soon as electrons can distribute over the different modes φn(z). In order to effectively have a two-
dimensional electron gas, where the n degree of freedom plays no role, electrons must stay in the
ground state n=1. This will be the case if thermal fluctuations are suppressed, that is, when

ε2 − (ε1 + EF) � kBT. (5.3)

Considering a square well potential of width a,1 with energies εn = (nπ~)2/2ma2,2 and for typical
Fermi energies of 10 meV, this will happen even at room temperature (kBTroom ≈ 0.02 eV) provided
that a � 120a0, i.e., if the well is a few nanometer wide3. However, condition (5.3) is easily met at
subkelvin temperatures, where most experiments are performed4.

5.1.1. Semiconductor heterostructures

The field of mesoscopic physics developed rapidly when high mobility 2DEGs where obtained in the in-
terface of layered semiconductors, as the one sketched in Fig. 5.1. In most of the cases, GaAS/AlGaAS
interfaces are used, because they have very similar lattice constant, which helps to reduce imperfec-
tions. The key aspect is that GaAs and AlGaAs have different gaps, so the there is a mismatch of the
bottom of the conduction bands at the interface. This results in charge accumulation on both sides, re-
sulting in the band forming a narrow (of the order of 5 nm) triangular well where the 2DEG is formed,
as discussed above5.

In order to measure the properties of the sandwiched 2DEG, ohmic contacts are formed by high
temperature evaporation of Ge, which diffuses across the GaAs layer. These contacts can then be wired
and attached to probes that allow for transport experiments.

Furthermore, metallic gates can be deposited on top of the sample (dark regions in Fig. 5.1) which
work as a capacitor with the 2DEG underneath. Upon the application of negative voltages, they reduce
the charge density in the 2DEG. Then, electrons below the gates are depleted, allowing for the design
of nanostructures in the gas. This way, narrow constrictions forming quantum point contacts (QPC)
and tunnel barriers can be implemented and combined to form e.g., quantum dot (QD) arrays, as shown
in Fig. 5.2 (we will treat these cases in the next sections).

1Typically, confining potentials, as those found in the configurations discussed in Sec. 5.1.1 will rather be triangular.
2Check your favourite book on quantum mechanics, or even a not so good one.
3This is a very rough estimate: typically confinement potentials are not square but triangular; also, the effective electron

mass in the material is needed.
4For convenience, if one wants to get rid of phonon contributions.
5The corresponding level spacing is of the order of 20 meV.
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QPC QD+QPC

Figure 5.2.:
Formation of nanoestructures in a
2DEG by top gates. Left panel: a
quantum point contact (QPC) con-
nected to two electronic reservoirs
via ohmic contacts. Right: two tun-
nel barriers define a quantum dot
(QD). It is capacitively coupled to a
QPC working as a charge detector.

5.2. The quantum Hall effect

The discovery of the integer quantum Hall effect in 2DEGs [5.3] is the starting point of the field of
mesoscopic physics where quantum effects can be measured and controlled in condensed matter sys-
tems. Initially, the measurement of quantized Hall resistances RH = RK/i, with i ∈ N and the von
Klitzing resistance RK = h/e2, was proposed to serve for metrological standards6, but it soon expanded
to a plethora of phenomena, such as the fractional, the spin and the anomalous quantum Hall effects,
opening the physics of topological insulators, non-abelian states, quantum optics with electrons...

The classical Hall effect:

VH

⊗ B

− − − − − − − − − − −

+ + + + + + + + + + +

In a two dimensional metal, the Hall effect ap-
pears as a manifestation of the Lorentz force

F = −e(E + v × B)

experienced by an electron moving with a speed
v perpendicularly to a magnetic field B = Bzuz.

The stationary solution of the equation of motion (in the Dude model for transport) relates
it with the friction term

F −
1
τ

mv = 0,

where τ is the time between collisions. The current density J = −env (with the carrier den-
sity n) can be related to the electric field in matricial form J = σDE,a with the conductivity

σD =
e2nτ

m(ω2
Bτ

2 + 1)

(
1 −ωBτ

ωBτ 1

)
.

Here, ωB = eB/m is the cyclotron frequency. The resistivity ρD = σ−1
D shows a transverse

resistance ρxy = B/en.b It can be measured as a developed transverse (Hall) voltage, VH, as
shown in the inset figure. Remarkably different from the longitudinal resistances ρxx and
ρyy, it does not depend on τ (henceforth, on the conduction properties of the metal).

aThis is nothing but Ohm’s law.
bNote ρxy is linear in B.

6Indeed, for relating two of the seven defining constants that establish the modern international system of units (redefined
very recently [5.4]), it is a central measurement in metrology.
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5.2.1. Landau levels

Let us start by considering the problem of an electron moving in two dimensions in the presence of a
perpendicular magnetic field B = Buz. Additionally, we assume a potential U(y) which will confine the
motion within the Hall bar. The hamiltonian is:

Ĥ =
1

2m

(
p̂ + eÂ

)2
+ Û(y). (5.4)

Gauge invariance allows to chose the vector potential Â as long as it satisfies ∇ × Â = B̂. In particular,
one chooses the Landau gauge

Â = −ŷBux, (5.5)

which leads to

Ĥ =
1

2m
( p̂x − eŷB)2 +

p̂2
y

2m
+ Û(y). (5.6)

It is x-translational invariant, so we can replace p̂x = ~k. Defining

ωB =
eB
m

and lB =

√
~

eB
, (5.7)

the cyclotron frequency and the magnetic length,7 respectively, we arrive to the hamiltonian of a har-
monic oscillator:

Ĥ =
p̂2

y

2m
+

1
2

mω2
B (ŷ − yk)2 + Û(y), (5.8)

displaced by yk = ~k/eB.
The eigenenergies depend on the particular shape of the potential, which can be complicated. We

can consider two limiting cases. (i) In the case V(y) = 0, the spectrum is quantized:

E(0)
n = ~ωB

(
n +

1
2

)
, (5.9)

where n = 0, 1, 2 . . . labels the Landau levels. They are degenerate in k, which determines the position
around which each electron oscillates. (ii) If the potential is smooth, we can make a Taylor expansion

U(y) ≈ U(y0) +
∂U
∂y

(y − y0) (5.10)

around each position y0. Then, ignoring the constant term, we get an effective electric field −eE = U′.
The hamiltonian in Eq. (5.6) then becomes:

Ĥ =
p̂2

y

2m
+

1
2m

(~k − eŷB)2 − eEŷ. (5.11)

Completing the square, we arrive to

Ĥ =
p̂2

y

2m
+

1
2

mω2
B (ŷ − ykE)2 − eEykE +

mE2

2B2 , (5.12)

7Orders of magnitude: lB ≈ 25 nm for B=1 T.
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Figure 5.3.: (a) Landau level quantization in the presence of a confining potential in the y direction
(grey line). The occupied states below the Fermi energy (dashed line) are highlighted.
(b) Semiclassical interpretation of the edge states in terms of skipping orbits following
the borders of the sample. They lead to transport between two terminals. (c) Electrons
move following equipotential lines, forming closed loops due to disorder in the bulk and
extended (conducting) states in the edges.

with the displacement given by ykE = yk + mE/eB. The eigenenergies are:

Enk = ~ωB

(
n +

1
2

)
− eEykE +

mE2

2B2 . (5.13)

Note that k determines not only the position of the electron but also its energy. The energies follow the
local electric field.

A crucial aspect of the energies in Eq. (5.13) is that the group velocity

vx =
1
~

∂Enk

∂k
= −

E
B

(5.14)

depends on the electric field.
Going back to the smooth potential, we make two observations:
+ the electron energy adapts to the local details of the potential. An example of this is plotted in

Fig. 5.3(a) for V(y) = y12 and assuming strong magnetic fields such that mE2/B2 is the smaller
energy scale in the problem.

+ the group velocity depends on the local properties of the potential:

vx =
1

eB
∂U
∂y

. (5.15)

They imply that for a potential that confines electrons in one direction, as the one plotted in Fig. 5.3(a),
electrons move in opposite directions on opposite edges of the potential: they are chiral! A semiclassi-
cal interpretation of this effect is sketched in Fig. 5.3(b): assuming a Hall bar with a uniform potential
with hard walls, skipping orbits forms in the center of the system which give rise to propagation along
the edges when interrupted by the wall8.

In a real system, the potential is not as smooth as in Fig. 5.3(a). It will rather contain imperfections
(disorder), resulting on an amount of potential hills and dips. The electron chirality will make them
stick to these regions tending to form closed orbits as sketched in Fig. 5.3(c). With a reasonable

8Similarly to how a spinning top moves to the other side of the room when it hits the border of a carpet.
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VH

VL

1

2 3

4

56

B

Figure 5.4.:
Quantum Hall bar coupled to six
terminals. A current injected be-
tween terminals 1 and 4 generates a
quantized transverse voltage differ-
ence VH measured between terminals
3 and 5, but no longitudinal voltage
between 2 and 3. This is due to
electrons flowing chirally along edge
states.

amount of disorder, no orbit will connect the two transverse edges of the sample. The existence of
states connecting longitudinally the two ohmic contacts is enabled by topology. We will come back to
the importance of disorder later.

5.2.2. Transport along edge states

Let us assume all Landau levels with n ≥ 2 are empty i.e., only the first one is (partially) occupied.
Knowing the velocity of electrons in the longitudinal direction, x, we can calculate the electric current:

Ix = e
∫

dk
2π

vx(k). (5.16)

Using dk = l−2
B dy and Eq. (5.15), we arrive to

Ix =
e
h

∆U, (5.17)

which relates the electron flow to a potential difference, ∆U. between the two edges of the system. The
later can be measured by voltmeters, giving a voltage VH = ∆Vy = ∆U/e. The result is a transverse
(Hall) resistance which is quantized9:

RK =
h
e2 ≈ 25812.8 Ω. (5.18)

The measurement scheme is sketched in Fig. 5.4: a current flows between terminals 1 and 4. All other
terminals represent voltage probes. Transverse voltages are measured between terminals 2 and 3 and
terminals 5 and 6. Every combination will give the same result. Remarkably, the longitudinal voltage
VL (measured between terminals 2 and 3, or between 5 and 6, will be zero! This means that electrons
flow without resistance along the conductor.

Note that the previous result does not imply that transport is flowing only at the edges of the sample.
In principle, every state contributes. Think, for instance on a potential that is not totally flat in the
center of a clean sample. If the chemical potential or the magnetic field are tuned such that the next
Landau level starts to be populated. Then the resistance will continually increase between RK and
RK/2, when the second level is full. This does not lead to the quantization of the resistance. In order

9The label K stands for von Klitzing.
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B

ρα

xx

xy

Figure 5.5.:
Experimental detection of the quan-
tum Hall effect (sketch following
Ref. [5.8]). Increasing the magnetic
field, B, the transverse resistance ρxy

stops being linear and shows steps
at inverse multiples of h/e2. In the
plateaus, the longitudinal resistance,
ρxx, vanishes.

to find it, we need to invoke again the presence of a disordered potential. As discussed above, this
leads to a distribution of localized states10 in the center of the sample and extended states close to
the edges [5.6]11. In that case, the localized states are the first to be filled, so transport reaches a
plateau. Only when the extended states are filled the resistance jumps to the new quantized level. In
the transition, the longitudinal resistance becomes finite. These are indeed the properties (sketched in
Fig. 5.5) that lead to the discovery of the quantum Hall effect [5.3].

The presence of disorder is then essential for the detection of universal resistance plateaus RH =

e2/νh. The electronic chirality implies that disorder does not introduce backscattering [5.9]12. The
edge states therefore form perfect conducting channels13. Only when the potential is such that two
(counterpropagating) edge channels are brought close to each other, transitions between them are pos-
sible. Transport then depends on the scattering properties of the constriction [5.11], which can be
controlled with external voltages.

Different from the integer quantum Hall effect, the quantum anomalous [5.12] and quantum spin
Hall [5.13, 5.14] effects do not need a magnetic field, but rather the presence of finite magnetization
or of spin-orbit coupling, respectively. In both cases, a picture of transport based on edge-states is
still commonly used14. However, very recent experiments seem to challenge this interpretation in the
quantum anomalous Hall case [5.15, 5.16].

5.3. One dimensional conductors

If we continue to confine the electron motion along another dimension (y this time), we get:

ψlnσ(x) =
1
√
L

eikx xζl(y)φn(z)χσ, (5.19)

10The occurrence of localization due to disorder was introduced by P. W. Anderson [5.5].
11See also Ref. [5.7] for a popular discussion of the edge state picture.
12Can you understand this invoking the semiclassical picture of Fig. 5.3(b)?
13One can then perform quantum optics experiments with electrons, using the edge states as wave guides [5.10].
14In the quantum spin Hall effect, electrons propagate along helical rather than chiral edge states: electrons with opposite

spin move in opposite directions along the same edge.
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Figure 5.6.:
Conductance quantization in a quan-
tum point contact, according to
the saddle point approximation, see
Eq. (5.28).

with the modes ζl(y) quantized. The energies now read εkxln =
(~kx)2

2m + εln. Following the same argu-
ments as in Sec. 5.1, the conditions to dynamically wash out the dimensions y and z are ε10−ε00−EF �

kBT and ε01−ε00 − EF � kBT .
We can find different systems that satisfy these requirements, among them:
+ Nanowires: typically grown by evaporation of the semiconductor on gold nanoparticles. Their

diameter is about 20 nm, and they can be as long as several micron.
+ Carbon nanotubes: take a graphene ribbon and roll it as a cigarette. Depending on the direction

you roll it, it will be metallic or a semiconductor. The chirality of electrons in graphene manifests
as a spin-orbit effect15. Level spacings are large, of the order of 1 eV, i.e., 12000 K/kB.

+ Molecular junctions: real molecules can be captured in a break-junction [5.17] or at the tip of a
scanning tunneling microscope [5.18]. The electronic transport across it probes the structure of
the molecular orbitals [5.19].

They can be engineered out of semiconductor 2DEGs in various ways [5.20]. For its historical and
conceptual relevance, we will discuss the case of a top-gate defined quantum point contact.

5.4. Quantum point contacts

Consider a 2DEG with electrons moving along a strip along the x direction. The quantization due to the
y confinement, defines the transverse modes l that can propagate along the conductor, similarly to what
happens in a waveguide. Voltages applied to top gates can induce an additional potential that narrows
the strip locally, as shown in Fig. 5.2. For the one-dimensional motion along x, this is as if the energy
εl1(x) forms a potential barrier16.

The particular shape of the potential is in general not important. All electrons with energies well
below the top of the barrier will be reflected. This is not the case close to the top of the barrier, where
the potential can be approximated by a saddle point of the form [5.21]:

V(x, y) ≈ V0 −
1
2

mω2
xx2 +

1
2

mω2
yy2. (5.20)

This is illustrated in the left panel of Fig. 5.6. The barrier can be tuned with the top gate voltages. The
barrier height, V0, controls the number of transverse modes that are allowed to propagate along the
conductor. Decreasing it increases the number of modes, N, that will contribute to the current. For a
single mode, this is given by [5.22]

In = vn∆ρn, (5.21)
15The orbit is defined by the (left- or right-handed) rotation of the electron around the nanotube axis.
16Discrete energies increase with the decreasing of the confining potential range, remember the particle in a box problem.
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where vn is the group velocity:

vn =
1
~

∂ε(k)
∂k

∣∣∣∣∣
µ
, (5.22)

and
∆ρn = e

∂n
∂E

∣∣∣∣∣
µ

eV = e2υFV (5.23)

is the difference of charge carrier density due to a voltage difference V applied to the two sides of the
barrier17. It depends on the density of states, which in one dimension is

υF =
1
π

∂k
∂ε(k)

∣∣∣∣∣
µ

=
1

π~νn
. (5.24)

The current then becomes:

In =
2e2

h
V, (5.25)

totally independent on the details of the material! This defines the quantum of conductance

G0 =
2e2

h
, (5.26)

which sets the conductance G = ∂I/∂V of a fully transmitting mode. Summing to all transmitting
modes, the total current is I ≈ NG0V .

This effect is elegantly described by the Landauer formula, which treats conduction as a scatter-
ing problem18 and relates the conductance to the transmission probability of each mode Tn from one
terminal to the other across the barrier:

G =
e2

h

∑
n

Tn. (5.27)

The missing factor 2 is recovered by summing separately the spin degree of freedom. Note that if N
modes are fully transmitting and all others are fully reflecting, the conductance reads G = 2Ne2/h.
Experimentally, transport quantization was observed as steps in the conductance as a function of the
gate voltage applied to the constriction [5.29, 5.30].

For the potential in Eq. (5.20), the transmission probabilities can be calculated19, giving [5.21]:

Tn =
(
1 + e−2παn

)−1
, with αn =

1
~ωx

[
E − V0 − ~ωy

(
n +

1
2

)]
. (5.28)

The result is plotted in Fig. 5.6, reproducing the experimental measurements. Tunneling enables a finite
transmission below the steps.

Apart from confirming the scattering theory of quantum transport, the detection of conductance
quantization paved the way to the field of semiconductor nanostructures. In this sense, the QPC can be
seen as the minimal constituent of more complex structures: for instance, a QPC acts as the separation
between two regions in the conductor. This way, a two-dimensional stripe can be divided in regions
of different size (from large cavities to small small quantum dots) separated by a series of QPCs that

17Assuming V is small.
18See e.g., Refs. [5.23] and [5.11] for first hand discussions, or Ref. [5.24, 5.25] for recent reviews. Several textbooks also

discuss it, see Refs. [5.1, 5.26, 5.27, 5.28].
19Assuming a WKB approximation.
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T (E)

R(E)
T (E)

µ1 µ2

T1 T2

f1(E) f2(E)

Figure 5.7.:
Two terminal quantum conductor.
Electrons propagate ballistically be-
tween terminals 1 and 2 at electro-
chemical potential µi and tempera-
ture Ti. For a single mode scattering
region, electrons are transmitted with
probability T (E) and reflected with
R(E) = 1 − T (E). Transport appears
in the presence of a nonequilibrium
situation described by the difference
of Fermi distributions f1(E) − f2(E).

can furthermore serve to control the transfer of electrons between them (e.g., in the form of tunneling
barriers). A remarkable example of this is when QPCs are defined in quantum Hall systems. Then they
behave as beam splitters for electrons that propagate along the edge states: they are transmitted with
probability T and reflected with 1 − T . This way, quantum optics experiments can be performed with
electrons [5.10], including different types of interferometers20.

5.4.1. Scattering approach to quantum transport

Equation (5.27) is strictly valid for non-interacting electrons flowing in response to a small voltage
(established by a chemical potential difference between the two reservoirs) and at low temperatures.
For a two terminal conductor, as the one sketched in Fig. 5.7, it can be obtained21 from the Landauer-
Büttiker expression for the charge current into terminal j:

I j = −
e
h

∑
n

∫
dETn(E)[ f j′(E) − f j(E)], (5.29)

where j′ denotes the other terminal and fi(E) = {1 + exp[(E − µi)/kBTi]}−1 introduces the occupation
of the propagating mode. Obviously, charge conservation gives I j′ = −I j. Setting a nonequilibrium
situation, e.g. due to a difference of chemical potential ∆µ = µ j − µ j′ or of temperature ∆T = T j − T j′ ,
will result in general in a finite charge current flowing through the conductor22.

Similarly, one can define the heat currents carried by electrons [5.31]:

J j =
1
h

∑
n

∫
dE(E − µ j)Tn(E)[ f j′(E) − f j(E)]. (5.30)

The interpretation is clear: each electron with energy E dissipates an excess of energy E − µ j when
absorbed by terminal j. Note that, differently from charge currents, heat currents are not conserved:

J j + J j′ = VI j = −P, (5.31)

20How would an electronic Fabry-Perot interferometer be built this way? Note that for the interferometer, one needs to think
in terms of transmission amplitudes, rather than probabilities.

21Remember the Sommerfeld expansion.
22In the case of a temperature difference (thermoelectric effect), the transmission probability needs to depend on energy. Can

you say why?
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as one needs to take power dissipated by the current in the presence of a voltage difference V = −∆µ/e
(Joule heating) into account23. The sign convention here means that P < 0 when electrons flow in
favour of the electrochemical potential difference24.

Linear regime

Note that all the effects of nonequilibrium states appear only in the distribution functions. Assuming
that transport is due to small electrochemical potential (δµ j = µ j−µ � kBT ) or temperature differences
(δT j = T j − T � T ), we can linearize

f j′(E) − f j(E) ≈ −∂E f (E)
[
δµ j′ − δµ j +

E − µ
T

(δT j′ − δT j)
]
. (5.32)

Then, using δV j′ j = (δµ j′ − δµ j)/(−e) and δT j′ j = δT j′ − δT j, we can write the different currents as

I j = GδV j′ j + LδT j′ j (5.33)

J j = MδV j′ j + KδT j′ j, (5.34)

where G and K are the electrical and thermal conductances, respectively, and L and M are the Seebeck
and Peltier thermoelectric coefficients25. The electrical conductance reads:

G =
e2

h

∑
n

∫
dETn(E)[−∂E f (E)]. (5.35)

At low temperatures, we can make a Sommerfeld expansion and recover the Landauer expression in
Eq. (5.27).

In the same way as electrical currents, heat currents are also quantized. If the linear regime, the
thermal conductance K = ∂J/∂δT is bounded by 0 ≤ K ≤ K0 = 2KP, with the quantum of thermal
conductance being26

KP =
π2k2

BT
3h

. (5.36)

That the maximal heat that a single channel can support is KP∆T was first obtained by Pendry for
photons in a waveguide [5.32]. However it turns out to be universal, irrespective of the statistics of the
carriers. It was recenty measured for electrons by controlling the number of channels with QPCs [5.33]
or in atomically-thin break junctions [5.34]27.

23To prove this is straightforward once it is clear that energy currents are conserved [5.25].
24In what cases can P be positive?
25What are their general expressions?
26To proof this, one can again use the Sommerfeld expansion. Note again the factor 2 coming from the spin degeneracy.
27Note it includes the Lorenz number

LN =
π2k2

B

3e2 ≈ 2.44 × 10−8 WΩK−2

from where it is easy to relate the electrical and thermal quanta: K0 = LNG0T . Indeed the Sommerfeld expansion of the
linear response conductances expresses the Wiedemann-Franz law: K/G = LNT for quantum conductors. It is known to
be satisfied for macroscopic systems in terms of their conductivities, but nonlinearities or strong interactions challenge it
in the nanoscale.
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Multiterminal configurations

An extension to multiterminal configurations is possible:

I j = −
e
h

∑
j′,mn

∫
dET jn, j′m(E)[ f j′(E) − f j(E)], (5.37)

where T jn, j′m(E) is the transmission probability for an electron injected from mode m connected to
terminal j′ to be scattered into mode n of terminal j.28 This way for instance, four-probe measurements
can be described: two terminals inject current, while another two are used to probe voltage differences
along the conductor29. A clear example of this is the quantum Hall effect described in section 5.2: In
order to obtain a simple description of the transport properties, it is sufficient to assume that electrons
propagate along edge states without backscattering [5.9].

5.5. Zero dimensions

If motion in the three spatial dimensions is confined, all degrees of freedom are quantized ψlmnσ =

ξlζmφnχσ, and result in discrete energies εlmn, analogously to what we find in atoms. For this reason,
solid-state zero-dimensional systems are sometimes named as artificial atoms. The advantage is that
they can be constructed and their properties can be manipulated externally (e.g., via electromagnetic
potentials), hence controlling the energy level separation or inducing electronic transitions between
some of them. One can also combine several 0-D systems in complex structures and make them interact
(then, they form artificial molecules or lattices).

They can be constructed by spacial confinement in many different ways: by epitaxial growth of
nanoparticles, by introducing inhomogeneities in the formation of nanowires, contacting C60 molecules
(fullerene [5.35]), defining quantum corrals in metallic surface states [5.36], or by depletion of a 2DEGs
with top gates, among many others. There are less obvious ways to find few level systems, for instance
based on circulating currents in superconducting loops with Josephson junctions [5.37]. In each case,
states will be affected by different degrees of freedom (charge, spin, valley, vibrations) and different
interactions may be relevant (for instance, electron-electron or electron-phonon interactions, charge
noise, spin exchange, spin-orbit coupling...).

More complex configurations can also be done where the electronic system is coupled to additional
degrees of freedom, like e.g., photons in a cavity [5.38, 5.39] serving as onchip platforms for quantum
electrodynamics, or coupling to mechanical oscillation modes [5.40], e.g. in a carbon nanotube [5.40],
as interfaces between quantum information and mechanics30.

These properties make them interesting for probing quantum mechanical dynamics, for quantum
information processing, or quantum optics experiments. Also, they are strongly affected by fluctuations
and can be easily taken far from equilibrium, hence soon giving rise to nonlinear phenomena.

5.6. Quantum dots

The most typical artificial atom is a quantum dot defined in a 2DEG, as sketched in the right panel of
Fig. 5.2: by applying voltages to them, the different gates serve to define the quantum dot region and to

28The expressions for the heat currents are obtained by inserting (E − µ j)/(−e) into the integral.
29A voltage probe is modeled by connecting the conductor to a terminal (labelled by p) with a floating chemical potential

such that no current flows out of it. The measured potential is given by the solution, µp, of this boundary condition, Ip = 0.
30And serving for instance as detectors of minute masses.
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modulate the confining potential and hence, the energy levels εn(Vg). The level spacing is typically of
the order of 10−30 µeV. How the quantum dot is coupled to the rest of the 2DEG can also be controlled
by defining tunneling barriers, so its properties can be probed by transport measurements [5.41]. Series
of quantum dots can also be defined forming the analogue of artificial molecules where electrons are
delocalized and coherent superpositions are formed31 [5.42].

Due to the small size of the quantum dots, Coulomb interactions are strong, so adding one electron
to the system costs an energy U (charging energy, of about 1-2 meV). The charge state of the quantum
dot is then quantized and can be tuned to go down to be just zero or one electron. In this case, they can
be described by a single-site Hubbard hamiltonian32:

ĤQD =
∑
σ

εσn̂σ + Un̂
↑
n̂
↓
. (5.38)

The size of the Hubbard-like array can be increased by tunnel-coupling several quantum dots:

Ĥarray =
∑
iσ

εiσn̂iσ + Un̂i↑n̂i↓ −
∑
i, j,σ

(
τi jĉ

†

iσĉ jσ + h.c.
)
, (5.39)

where τi j is the hopping energy between dots i and j. They can be coupled in linear, triangular or
square arrangements and tuned individually, allowing for quantum simulation experiments [5.43].

With the spin of the electron, a qubit can be formed by applying a magnetic field, with the two states
|+〉 = |↑〉 and |−〉 = |↓〉, and energies:

ε± = ε ±
~

2
gµBBz, (5.40)

where g is the gyromagnetic factor (depending on the details of the quantum dot) and µB is the Bohr
magneton. It turns out that the spin coherence is sufficiently long in GaAs quantum dots33 to be able to
perform single and double qubit operations [5.41] by using electromagnetic pulses34. We will discuss
the former case in the next section.

5.6.1. Single-electron transport through a quantum dot

A single-level quantum dot coupled to two terminals, as the one sketched in Fig. 5.2, can be described
by the single-impurity Anderson hamiltonian, see section 4.3.2:

Ĥ =
∑
σ

(
εσn̂σ + Un̂σn̂−σ

)
+

∑
lkσ

εlkσĉ†lkσĉlkσ +
∑
lkσ

(
Vlkiσd̂†σĉlkσ + h.c.

)
. (5.41)

The first term accounts for the (Hubbard-like) quantum dot with one level at the discrete energy εσ,
the Coulomb interaction35 given by U, and n̂σ = d̂†σd̂σ is the number operator of electrons in state |σ〉.
The second one describes the electrons in terminals l = 1, 2. The last term describes tunneling between
the quantum dot and terminal l.36 We will assume spin degenerate states (in the absence of a magnetic
field), such that εσ = ε, for simplicity.

In equilibrium (and at low temperatures37), the number of electrons in the quantum dot, N, is defined
by the chemical potential of the leads: EN − EN−1 < µl < EN+1 − EN . Due to their reduced size,
31Similar to molecular orbitals.
32Remember section 4.3.
33A few miliseconds, even longer in silicon quantum dots.
34This is the minimal requirement to be able to build universal quantum gate operations.
35a.k.a. charging energy.
36Note it has the same structure as the hopping terms in the tight-binding approach in section 4.1.
37Experiments are preformed at T . 100 mK.
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Figure 5.8.:
(b) Quantum dot tunnel-coupled to
two terminals at chemical potential
µl and temperature Tl. Electrons tun-
nel with rates W l±

mn. (b) Linear re-
sponse coefficients as functions of
the level position, ε, for Γ1 = Γ2 = Γ.

the charging energy is usually large (U ∼ 1 meV) compared to temperature, so we can restrict the
description of the system to a single level with energy ε, and consider the four states: |0〉, |σ〉, |↑↓〉.
The energy costs of adding one electron are hence: Eσ − E0 = ε, if initially the system is empty, and
E↑↓ −Eσ = ε+ U, if initially the system has one electron with spin σ. This means that adding a second
electron to the quantum dot requires a higher energy, what defines the Coulomb blockade regime.

Fluctuations of the quantum dot charge will happen due to electron tunneling transitions. Assuming
that the quantum dot is weakly coupled to the leads, the rate at which these transitions occur can be
calculated by time-dependent perturbation theory. We consider for simplicity the case where each
tunneling coupling is constant, Vlkiσ → Al. At lowest order38, these are given by the Fermi golden rule:

W lα
m←n =

2π
~

∣∣∣Al〈m|D̂α|n〉
∣∣∣2 υl(α∆mn) fl(∆mn) = Γlα

mn fl(∆mn), (5.42)

where υl(E) is the density of states in terminal l, and ∆mn = Em − En. In most cases, it can be assumed
to be constant in the relevant energy scales of the problem (what is known as the wide-band limit),
so the rates Γlα

mn of the barriers are energy independent: Γlα
mn = Γl. We have introduced the notation

D̂+ =
∑
σ d̂†σ and D̂− =

∑
σ d̂σ. The index α hence indicates whether the transition corresponds to an

electron tunneling from terminal l into the quantum dot (α = +), or the opposite (α = −). The Fermi
distribution function contains the thermodynamic properties of the reservoirs.

With these, we can write a set of rate equations for the occupation of each state, ρii:39

ρ̇mm =
∑
lα

∑
n

(
W lα

m←nρnn −W lα
n←mρmm

)
. (5.43)

With the occupations, we obtain the particle and heat currents flowing into each reservoir:

Ip
l = −

∑
mnα

αW lα
m←nρnn (5.44)

Jl = −
∑
mnα

α(α∆mn − µl)W lα
m←nρnn. (5.45)

The electric charge current is obtained by simply multiplying the particle flow by the electric charge:

Il = −eIp
l . (5.46)

Note that different sign conventions can be found in the literature depending on whether currents are
positive when injected or absorbed by a terminal, or whether e is positive or negative. Our definition
agrees with the experimental fact that negative voltages increase the electrochemical potential.
38...and assuming that the electronic terminals behave as markovian reservoirs where excitations relax in times much shorter

than those in which the system fluctuations occur...
39Technically, this is given by the diagonal elements of the reduced density matrix of the quantum dot, ρ = trresχ, once all

the reservoir degrees of freedom are traced out of the total (quantum dot + reservoirs) density matrix, χ.
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Example: Strong Coulomb blockade regime

Let us for clarity furthermore restrict to the case ε + U � µl, kBTl, such that we can neglect the
occupation of the state |↑↓〉. Then, the only energy changes in the quantum dot upon a tunneling event
are given by αε. We only need to consider the rates W l+

σ0 = Γl fl(ε) and W l−
0σ = Γl[1 − fl(ε)], obtained

from Eq. (5.42).40 The different transitions are sketched in Fig. 5.8(a). The stationary solution of the
rate equations, ρ̇ = 0, yields

ρ00 = γ−1
∑

l

Γl[1 − fl(ε)], with γ =
∑

l

Γl
[
1 + fl(ε)

]
, (5.47)

and 2ρσσ = 1 − ρ00.41 The charge current is then:

Il = 2eγc
[
fl(ε) − fl′(ε)

]
, (5.48)

where γc = Γ1Γ2γ
−1 is the charge relaxation rate. Since (in this particular case) all transitions in-

volve the same change of energy in the quantum dot (up to a sign), the heat and charge currents are
proportional to each other:

Jl =
ε − µl

−e
Il, (5.49)

a property known as tight energy-matter coupling42.
In the linear regime, where electrochemical or temperature differences are small (compared to the

overall temperature), µi = µ+ δµi and Ti = T + δTi, we can expand the Fermi functions as in Eq. (5.32)
and write the response (Onsager) matrix (writing −eδVll′ = δµl − δµl′ and δTll′ = δTl − δTl′):(

Il

Jl

)
=

(
G L
M K

) (
δVll′

δTll′

)
= 2∂E f (ε)γeq

c

(
−e2 −e(ε−µ)/T

e(ε−µ) (ε−µ)2/T

) (
δVll′

δTll′

)
, (5.50)

where G and K are the electrical and thermal conductances43, and L and M are the thermoelectric
coefficients, related to the Seebeck effect for conversion of heat into power, and to Peltier cooling,
respectively44. The currents strongly depend on the position of the level with respect to the chemical
potential, as plotted in Fig. 5.8(b). This can be easily tuned experimentally by a lever-arm gate voltage
that controls ε = ε0 − eηVg.45 Here, γeq

c = Γ1Γ2/(Γ1+Γ2)[1+ f (ε)] is evaluated at equilibrium.
The conductance shows a peak whose width scales with temperature46 when the level crosses the

Fermi energy47. At that point, the thermal conductance, K, vanishes because electrons at the Fermi
energy carry no heat. The thermoelectric coefficients change sign depending on whether transport is

40How are the rates for a given process (e.g., |0〉 → |σ〉) and its reversed related?
41Due to the trace property of the density matrix.
42In practice, the level broadens due to the coupling to the leads, but this is captured only by the higher order contributions

to the perturbative expansion. The narrow level approximation is accurate provided ~Γl � kBTl.
43Sometimes the thermal conductance is defined under the condition that there is no particle flow. Proof that, in that case we

get K′ = K − ML/G.
44The linear thermoelectric response of a system is usually characterized by its thermopower:

S th = −
δV
δT

∣∣∣∣∣
I=0

=
L
G
,

giving the voltage that develops across the system (in open circuit) due to a temperature difference. Note that, despite its
name, it does not have dimensions of power.

45The system-dependent parameter η describes how the quantum dot potential changes with the gate voltage.
46Remember kBT � ~Γ.
47For this property they work as single-electron transistors.
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dominated by electrons (when ε > µ) or by holes (when ε < µ). This way, both charge and heat currents
can be reversed by properly tuning the thermodynamic forces or the position of the quantum dot level.
Note that the off-diagonal (thermoelectric) coefficients are proportional to each other:

L = −
1
T

M, (5.51)

which expresses the Onsager reciprocity relations in this system [5.44, 5.45]. Charge currents respond
to temperature differences in the same way as heat currents do to electrochemical potential differences.
These relations can be extended to other fluxes and forces [5.46]. However, in general they only hold
in the linear response regime.

5.7. Single qubit operations in a quantum dot

In the previous section, the role of the electron spin was almost irrelevant. This is not always the
case. Indeed, electrons in quantum dots have been proposed as good candidates for spin qubits [5.47].
In order to operate the system as a useful qubit in quantum information processing, one needs to be
able to controllably perform single-qubit rotations. Additionally, being able to swap two-qubit states is
necessary for universal logical operations. Experimentally, the goal is to achieve these operations with
high enough fidelity, see e.g. Ref. [5.48] for a recent review of experimental advances, or [5.49] for a
very recent realization in Si quantum dots.

The qubit (and a bit of quantum information):

|0〉

|1〉 |ψ〉
As usual bits, a qubit can be formed by any sys-
tem with two states, |0〉 and |1〉.a The essential
difference with usual bits is that quantum me-
chanics allows superpositions of the two states:

|ψ〉 = α|0〉 + β|1〉,

where |α|2 + |β|2 = 1. Ignoring the irrelevant
global phase, the state can be described by only

two parameters (e.g., polar and azimuthal angles). For this reason, the state can be repre-
sented as a point in the surface of a sphere (the Bloch sphere) whose poles are |0〉 and |1〉.
Unitary operations acting on |ψ〉 that define the logical gates can then be seen as rotations
on the Bloch sphere.
A different way to write the state of the system is by its density operator (or matrix)

ρ̂ = |ψ〉〈ψ|.

In this case, ρ̂ corresponds to a pure state. It then satisfies tr(ρ̂2) = tr(ρ̂) = 1.b Note
this is not always the case. A density matrix might represent a state of which we have only
probabilistic information: these are called mixed states. They have purity tr(ρ̂2) < tr(ρ̂) = 1
and are therefore buried in the sphere.c

aIt can be a purely two-level system (e.g., the spin of an electron), or be defined with the ground and first
excited states of a system with multiple states.

bCan you proof this?
cWhich are the states on the polar axis?
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Let us see how the single qubit rotations can be done using an electron spin in a quantum dot. For
this, we need a way to couple coherently the two spin states, in this case via time dependent magnetic
fields. Other physical realizations are possible using for instance superconducting circuits or trapped
ions (among others). Even in quantum dot systems, singlet and triple states can be used. For each
configuration, the way the two qubit states are coupled will require different mechanisms.

5.7.1. Coherent dynamics in a closed system

Consider a single-level quantum dot that is occupied by one electron (doubly occupancy is avoided by
strong Coulomb interactions). The spin of the electron defines a two level system that will serve as the
qubit: |+〉 = |↑〉 and |−〉 = |↓〉. The energy of the level is not important, so we will set it to ε = 0, for
simplicity. The splitting of the two levels is tuned with a Zeeman field, Bz = (0, 0, B0). The resulting
hamiltonian ∝ B0Ŝ z is diagonal. In order to be able to perform qubit operations, a time dependent
magnetic field perpendicular to it, B⊥(t) = (Bx(t), By(t), 0), is applied that couple the two spin states, so
the hamiltonian of the system becomes:

Ĥ = gµBB(t)Ŝ, (5.52)

with B(t) = Bz + B⊥(t), and the spin operators are

Ŝ =
~

2

∑
σσ′

〈
σ′ |τ̂|σ

〉
ĉ†σ′ ĉσ, (5.53)

written in terms of the Pauli matrices τi, see Eq. (A.1). The simplest case48 is to consider a circularly
polarized field49, with Bx(t) = B⊥ cos(ωt) and By(t) = B⊥ sin(ωt). We can then express Ĥ(t) in matrix
form:

Ĥ(t) =

(
∆/2 ~Ωe−iωt

~Ωeiωt −∆/2

)
, with |↑〉 =

(
1
0

)
, and |↓〉 =

(
0
1

)
, (5.54)

and with the Zeeman splitting ∆ = ~gµBB0 and the Rabi frequency Ω = gµBB⊥.50 It is helpful to get
rid of the explicit time dependence of the hamiltonian by performing a unitary transformation

Û(t) =

(
e−i~ωt/2 0

0 ei~ωt/2

)
, (5.55)

that expresses the hamiltonian in the rotating frame:

Ĥ′ = Û†(t)
[
Ĥ(t) − i~∂t

]
Û(t) =

(
(∆−~ω)/2 ~Ω

~Ω −(∆−~ω)/2

)
. (5.56)

Note that the time dependence has disappeared51. In this frame, the interpretation is clear: the time-
dependent field provides energy quanta ~ω which enable the spin to flip despite the energy difference
∆. In the case ω = ∆/~ ≡ ω0, the transition is resonant (the process is called electron-spin resonance).

48Theoretically, at least. In an experiment, circularly polarized fields are much harder to realize than linear ones.
49Circularly polarized fields are difficult to implement experimentally, though. Typically, linearly polarized ones are em-

ployed, which can be treated analytically only under appropriate (rotating wave) approximations, see footnote 51 below.
50Why we call frequency to the amplitude of the ac field should become clear later.
51 For linearly polarized fields, counter-rotating terms survive. They can be neglected close to resonance if the field is weak,

Ω < ω0. This is the rotating wave approximation.
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The evolution of the system is given by the Heisenberg equation of motion for the density matrix:

˙̂ρ′ = −
i
~

[Ĥ′, ρ̂′]. (5.57)

Remember we are now in the rotating frame. The density matrix in the lab frame will need to be
transformed back as ρ̂ = Û(t)ρ̂′Û†(t). The matrix elements read:

ρ̇′
↑,↑ = iΩ

(
ρ′
↑,↓ − ρ

′
↓,↑

)
ρ̇′
↓,↑ = −i

[
Ω

(
ρ′
↑,↑ − ρ

′
↓,↓

)
− (ω0 − ω)ρ′

↓,↑

]
.

(5.58)

with ρ̇′
↓,↓

= −ρ̇′
↑,↑

and ρ̇′
↑,↓

= ρ̇′∗
↓,↑

due to the properties of the density matrix52. The oscillating terms
hence couple the population of the two states via the off-diagonal elements (known as coherences),
resulting in a system of coupled differential equations.

Let us now assume the system is initially at the lowest energy level: ρ′
↓,↓

(0) = 1. We can then take
the Laplace transform L{ρ′} and use the property L{ρ̇′} = zρ′ − ρ′(0). The system of equations is then
algebraic and can be solved easily, resulting in

ρ′
↓,↓(z) =

z2 + 2Ω2 + (ω0 − ω)2

z
[
z2 + 4Ω2 + (ω0 − ω)2] and ρ′

↑,↑(z) =
2Ω2

z
[
z2 + 4Ω2 + (ω0 − ω)2] , (5.59)

which we will need to inverse-Laplace-transform, rendering:

ρ
↑,↑(t) =

4Ω2

4Ω2 + (ω0 − ω)2 sin2
( t
2

√
4Ω2 + (ω0 − ω)2

)
, (5.60)

and ρ
↓,↓

(t) = 1 − ρ
↑,↑

(t), as plotted in the left panel of Fig. 5.9. Note that the occupations are the same
in the lab and in the rotating frames.

One typically wants to operate at resonance, ω = ω0, in which case we get:

ρ
↓,↓(t) = cos2(Ωt) and ρ

↑,↑(t) = sin2(Ωt), (5.61)

i.e., the state of the qubit oscillates periodically with a frequency f = 2Ω (see right panel of Fig. 5.9).
The frequency of the oscillations is given by the amplitude of the applied field!

Single spin rotations where demonstrated in quantum dot systems by adding a micromagnet that
generates the Zeeman field, and driving a rf current through a wire situated nearby on top of the metal
gates (and separated by a 100 nm thick dielectric) that generates the perpendicular and time-dpenendent
magnetic field on the electron [5.50].
52Its trace is 1 and it is hermitian.
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5.7.2. The qubit as an open quantum system. Decoherence

In real life, quantum systems are not perfectly isolated, but are physical systems immersed in a larger
environment or bath. The hamiltonian is then decomposed as Ĥ = ĤS + ĤB + ĤS−B, where ĤS
describes the system of interest, ĤB, the bath, and ĤS−B, their coupling. One could in principle write a
Heisenberg equation of the form of Eq. (5.57) for the density matrix of the whole system+environment
problem, ρ̂S +B, but this is not something that one can really due in practice as soon as the environment
has many degrees of freedom53. In the best case, they system-environment coupling is weak and it
can be considered as a perturbation on the system dynamics. However, the effect of the environment
cannot be totally disregarded. For instance, it affects the system conservation laws by means of e.g.,
the exchange of energy or particles. A partial description of the open quantum system is possible if
one ignores what happens in the environment [5.51]. This is done by tracing out (i.e., summing) all
the environmental degrees of freedom in the total density operator. This results in a reduced density
operator of the system ρ̂s = TrBρ̂S +B that only contains the information of the quantum system one
is interested in. The price to pay is that the system evolution stops being unitary i.e., not any more
described by a Heisenberg equation (this is also said to correspond to a non-hermitian system).

In some cases, one can try to get advantage from the action of the environment on the system. For
instance, the system can be a quantum engine that is powered by exploiting some form of energy ex-
changed with the environment as a resource. This is the field of quantum thermodynamics [5.52, 5.53].
On the contrary in some other cases, like for systems of interest in quantum information processing,
these effects need to be minimized because they harm the system coherent properties by introducing
uncontrollable dynamics: the environment causes decoherence.

Master equation

In the case of a system weakly coupled to an environment (represented by e.g., a thermal bath at
temperature T ), the system coherent dynamics is affected by transitions induced by the environment.
Importantly, the absence of information of what happens in the environment upon the occurrence of
these transitions imposes a statistical treatment that perturbs the coherent evolution. Performing a time-
dependent perturbation expansion on the system-bath coupling, these transitions are described by the
rates at which they happen to occur: Wkm for the transition between states |m〉 → |k〉 in the system. At
lowest order in the expansion, these are given by the Fermi golden rule. The equation of motion for the
reduced density matrix of the system takes the form [5.54]

˙̂ρs = L(ρ̂s) = −
i
~

[ĤS , ρ̂s] +D(ρ̂s), (5.62)

whereL(•) is the Liouvillian superoperator acting on the density operator54. The commutator in (5.62)
describes the coherent dynamics in the quantum system, recovering the evolution of the closed system
when the coupling vanishes. Dissipation due to coupling to the environment is contained inD(•), with
elements: 55.

〈m′|D[ρ̂(t)]|m〉 =
∑
k,m

Wmk 〈k |ρ̂(t)| k〉 δm′m −
1
2

∑
k,m′

Wkm′ +
∑
k,m

Wkm

 〈m′ |ρ̂(t)|m
〉
, (5.63)

53Also that is something one does not want to do, if one is only interested in the system properties.
54In the same way as operators act on states. A more intuitive way of seeing this is thinking on operators as matrices and

states as vectors. One can always write the elements of a matrix as a vector, and then the superoperator is a matrix.
55Note that you have already seen an example in section 5.6.1: the rate equations (5.43) (due to electron tunneling) are the

simplest case where only diagonal elements of the density matrix contribute (coherence play no role at the lowest order
in the perturbation expansion).
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Effect of decoherence on the electron
spin rotation. The time-dependent
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in terms of the transition rates Wmn. If the environment is in local equilibrium (described by a chemical
potential µ and a temperature T ), they satisfy a detailed balance property:

Wnm = Wmne(µ−~ωnm)/kBT (5.64)

imposed by the thermodynamics of the bath, where ~ωnm = 〈n|ĤS|n〉 − 〈m|ĤS|m〉.

Decay of Rabi oscillations

Let us apply this to the two-level system treated in Sec. 5.7.1. If the qubit is made by the spin of an
electron in a quantum dot, we find different possible sources of decoherence: e.g., charge fluctuations
from the 2DEG, spin fluctuations due to exchange interactions with the nuclear spins of the lattice, or
vibrations of the material [5.41]. These are large environments that can be represented by reservoirs
of different nature (be them systems of fermions, bosons or spins). This will affect the details of the
transition rates. However, they are in general dominated by thermal fluctuations. We can them assume
a simple description where the spin is immersed in a thermal bath and relaxes with a rate W↓↑ = γ.
Thermally induced excitations occur with a rate W↑↓ = γe−∆/kBT (note the verification of the detailed
balance condition)56. Thus we get the evolution of the density matrix elements57:

ρ̇′
↑,↑ = iΩ

(
ρ′
↑,↓ − ρ

′
↓,↑

)
+ γe−∆/kBTρ′

↓,↓ − γρ
′
↑,↑

ρ̇′
↓,↑ = −iΩ

(
ρ′
↑,↑ − ρ

′
↓,↓

)
+ i

(
ω0 − ω + i

γtot

2

)
ρ′
↓,↑,

(5.65)

with γtot = γ
(
1 + e−∆/kBT

)
. We can follow the same procedure as we did to solve the master equation in

Sec. 5.7.1. The first we note is that the term iγtot/2 in the off-diagonal elements leads to an exponential
damping of the oscillations, as shown in Fig. 5.10.

In order to better understand what happens, let us first consider the undriven case, with Ω = 0. Then,
the diagonal and off-diagonal elements are decoupled. The populations follow a rate equation of the
form of Eq. (5.43). Solving the system of equations58, we find that the coherences acquire a decaying
mode, so:

ρ′
↓,↑(t) = ρ

↓,↑(0)e[i(ω0−ω)−γtot/2]t. (5.66)

56What happens in the limit where the bath is at zero temperature?
57Why do we only need two?
58Remember your ordinary differential equations courses.
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As a consequence, any initial coherence (due to the system being in a coherent superposition59) is lost
at long times60. At the same time, the system populations evolve towards a Boltzmann (or Gibbs)
distribution, with:

ρ↓,↓(t → ∞) =
(
1 + e−∆/kBT

)−1
and ρ↑,↑(t → ∞) = e−∆/kBT

(
1 + e−∆/kBT

)−1
, (5.67)

i.e., the system thermalizes due to the coupling to the bath61. The system is then in a mixed state, where
all information about it is merely probabilistic62.

Back to the case with finite driving, Ω, and close to the resonance condition ω ≈ ω0, the populations
are no longer Boltzmann-distributed: the periodic modulation of the magnetic field is a source of non-
equilibrium to the system63. Also, the coherences are not totally washed out in the long time limit, as
they are fed by the driven oscillations. Indeed, it can be shown that ρ′

↓,↑
(t→∞) ∝ Ω.64 Nevertheless,

the system reaches a mixed steady state where the density matrix of the system cannot be described by
a single wave function, but one can only get a probabilistic description of the population of the different
states. This constitutes a serious problem for quantum information processing and limits the time at
which coherent spin rotations are effective.
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E. Meyhofer, and P. Reddy. Quantized thermal transport in single-atom junctions. Science,
355(6330):1192–1195, 2017.

[5.35] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. C60: Buckminster-
fullerene. Nature, 318:162–163, Nov 1985.

[5.36] M. F. Crommie, C. P. Lutz, and D. M. Eigler. Confinement of Electrons to Quantum Corrals on
a Metal Surface. Science, Oct 1993.

[5.37] J. Clarke and F. K. Wilhelm. Superconducting quantum bits - Nature. Nature, 453:1031–1042,
Jun 2008.

[5.38] A. Cottet, M. C. Dartiailh, M. M. Desjardins, T. Cubaynes, L. C. Contamin, M. Delbecq, J. J.
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A. Other things

Useful constants and units

~ = 6.582 × 10−13 meV s kB = 8.617 × 10−2 meV K−1

e = 1.602 × 10−19 C me = 0.510 × 109 meV/c2

1 K = 8.6175 × 10−2 meV e
~ = 0.243 µA meV−1 a0 = ~2/e2me ≈ 0.5292 Å

Pauli matrices

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
(A.1)

Limits to the Dirac delta

The Dirac delta can be obtained as the limit of some functions,

δ(x) = lim
η→0

fi(x, η), (A.2)

for instance:

f1 =
1
π

η

x2 + η2 , f2 = η

(
1
x

)1−η

, f3 =
1

s
√
πη

e−
x2
4η . (A.3)
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