Lecture 17: Type II Superconductors

October 30, 2003

Outline
1. A Superconducting Vortex

2. Vortex Fields and Currents

3. General Thermodynamic Concepts
First and Second Law
Entropy

Gibbs Free Energy (and co-energy)
4. Equilibrium Phase diagrams

5. Critical Fields
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Fluxoid Quantization and Type II Superconductors
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The Vortex State

B —n CD ny 1s the areal density of vortices, the
V=V number per unit area.

MAGHETIS VORTICES..

TYPE Il SUPERCORDUCTOR

Top view of Bitter decoration
experiment on YBCO
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Quantized Vortices

Fluxoid Quantization along C,

ncbozjaf MOAQJS-dl—l—/ B. ds
C1 S4

But along the hexagonal path C, Bis a
mininum, so that J vanishes along this path.

Therefore, NPo = < B- ds
1

And experiments give n = 1, so each vortex
. . . . has one flux quantum associated with it.

Along path C,, b, = 7{0 /LO)\QJS- dl + /S B- ds
2 2

lim J Po 1,
For small C,, Py = 7!'_%7{ M0>\2JS dl |::> r—0 ST 27 o 2T A2 7 ¢
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Normal Core of theVortex

. P, 1,
The current density 1M Js = m cb diverges near the vortex center,

r—0

Which would mean that the kinetic energy of the superelectrons would also diverge.
So to prevent this, below some core radius & the electrons become normal. This
happens when the increase in kinetic energy is of the order of the gap energy. The
maximum current density is then

h 1
max _ Po :> Max _— _'° — 3
Je 27‘(',u \2 g ¢ Vg m* g 1¢

In the absence of any current flux, the superelectrons have zero net velocity
but have a speed of the fermi velocity, v.. Hence the kinetic energy with
currents 1is

1 1
0O __ 2 2 2 2
gklﬂ = Em*fUF — Em* (’UF’x _I_ 'UF’y + UF,Z)
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Coherence Length

The energy of a superelectron at the core is

1
EL = Zm*
@ Kin 2

The difference in energy, is to first order in the change in velocity,

v+ (vry +008) " + 0B

~ 2, MaxX
0E =~ m” VFy Vg g ~ A
h 1 hvp
With vy = —— "1y this gives &
S m* £ Qb g g 2A
. hvp
The full BCS theory gives the coherence length as &, =
WAO
Therefore the maximum current density, known as the depairing current density, is
J, Do
depair ~ 27_‘_/110)\25
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Temperature Dependence

Both the coherence length and the penetration depth diverge at T

| B ¢(0) | _ A9
7119}}170 B \/1 —(T/Te) %%CA(T) \/1 — (T'/T¢)

But there ratio, the Ginzburg-Landau parameter is independent of

temperature near T )\
K — g
k< 1/V2 Type I superconductor ~ Al, Nb

k>1/ V2 Type II superconductor ~ Nb, Most magnet materials x >> 1

SEINCH UG
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Vortex 1n a Cylinder

London’s Equations hold in the superconductor

QA V x (AJs) = -B

With Ampere’s Law gives

1
V2B(r) — ﬁB(r) =0 for r > ¢

Because B is in the z-direction, this becomes a scalar Helmholtz Equation

U VQBZ - ﬁ BZ — O fOr T Z 5 Ll il

2071

08

04

1 2 3
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Vortex 1n a cylinder

Which as a solution for an azimuthally symmetric field

B(r)

( CoKp <§> for r > &

| Coko G) for r < € 2:{2%(1")_\

B.(r) =«

rfA

5
C, 1s found from flux quantization around the core, h
—1
o [162 &\ | €& (€
com 25 )+ 4 ()
0 277/\2[2/\2 o\x) TafX
Which for > 1
Py
Co=5-3
2T
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Vortex 1n a cylinder k >> 1

(Do r SN Do A,
22 Ko <X> . forr=¢ e P T o2 N
B(I') = CDO € /" .
- ®, (&)L
| 2ma2 10 (A) SRR Tr\
. r — r/A
i 1 2
A
lim Js= CD"Qli(b
CD Jym) E<r<& A 2T A< T
o r . o T
— =K (—)1 for r > e k=],
Js(r) = ¢ 2mpoA3 L\ ¢ =S 2mp m :
0 for r < ¢

T 1
A
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Energy of a single Vortex

The Electromagnetic energy in the superconducting region for a vortex is

1
W = / B? + pods - (AJs)] dv
2o JVs

This gives the energy per unit length of the vortex as

P2 3
= 2ol
VT drpon2 0\

In the high « limit this is

b2 A
im &, =——=1In|~-
A>¢ AT Lo N2 3
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Modified London Equation k >> A/&

Given that one 1s most concerned with the high k limit, one approximates
the core of the vortex & as a delta function which satisfies the fluxoid
quantization condition. This 1s known as the Modified London Equation:

vV x (AJs) + B =V(r)

The vorticity is given by delta function along the direction of the core of the vortex
and the strength of the vortex is @,

For a single vortex along the z-axis: For multiple vortices

V(r) = ®ooo(r) iz V() =) Podo(r—rp)i:
p
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General Thermodynamic Concepts

First Law of Thermodynamics: conservation of energy

dU = dQ + dW — fpdn
\ , N N J
Internal energy Heat in E&M energy stored

work done by the system

Massachusetts Institute of Technology:
6.763 2003 Lecture 17




W: Electromagnetic Energy

Normal region of Volume V n Superconducting region of Volume V¢
1 1
Wi, = / B2 dv W = / B? + pods - (AJs)] dv
Vi 2:““0 2,“0 s

In the absence of applied currents, in Method II, we have found that
AW = /V H - dB dv

Moreover, for the simple geometries H is a constant, proportional to the applied field.
For a H along a cylinder or for a slab, H 1s just the applied field. Therefore,

szH-d/ B dv
V
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Thermodynamic Fields

dW:H-d/ B du
V

’}—_Z — H thermodynamic magnetic field
z_ 1 . .
B=— /[ B thermodynamic flux density
VJv
- 1z = . _ .
M=—B—-"H thermodynamic magnetization density
Mo

Therefore, the thermodynamic energy stored can be written simply as
— —
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Entropy and the Second Law

The entropy S is defined in terms of the heat delivered to a system at a temperature T

dSE@
T

Second Law of Thermodynamics:

For an 1solated system in equilibrium AS = 0

The first law for thermodynamics for a system in equilibrium can be written as

dU =TdS + VH-dB — fudn

Then the internal energy is a function of S, B, and n

U=U(S,B,n)

A

T, H, fn  Conjugate variables
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Concept of Reservoir and Subsystem

. . T7 H7 f n
Because we have more control over the conjugate variables
rewrite the thermodynamics in terms of these controllable variables.

, wWe seek a

Isolated system = Subsystem + Reservoir

T "~ AStOt — ASA —|— ASR

e AN
e N
e RN

7 Subsyter . . .
/ S Y N The change in entropy of the reservoir is

,'/ = \-
;o AQy A \ AQp AQ

! ) \ AS R = =
! | TR TR
j !

| T ASy, — A
-.\ | j Therefore, AStot it A @A

\ Reservoir !

TrRAS, — AU4 + VHp - AB — f,An
N _,/’ AStot = Th

re—e— e —
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Gibbs Free Energy

The change total entropy is then
T'r o

O

AStot =

where the Gibbs Free Energy is defined by

Ga=-TrSA+Us—VHgr B

At equilibrium, the available work is just AG

(the energy that can be freed up to do work) Free Energy of subsystem
and the force is decreases
fo=_9G AG <0
n o 5 ~
nmirH
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Gibbs Free Energy and Co-energy

The Gibbs free energy i1s
G=-TS+U-VH-B

The differential of G 1s o ~ ~
dG = —-TdS — SdT' +dU — VdH-B — VH-dB

and with the use of the first law dU = T'dS + VH - dB — fndn
dG = —SdT — VB -dH — fndny

Therefore, the Gibbs free energy is a function of 1, H,n

At constant temperature and no work, then dG|T,n = —dW the co-energy
oG oW S
h=——= == . Note minus sign!
o |1 o |rH
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Gibbs Free Energy and Equilibruim

In Equilibrium AG =0

Consider the system made up of two phases 1 and 2

¢« ¢ E&

Vo
Phase 1, G =G, Phase 2, G=G, Mixed phase Gtot = Gl % + Go— v

v
Therefore,  Gior = (G1 — Gp) 71 + G2 is minimized when G1 = G2

Two phases in equilibrium with each other have the same Gibbs Free Energy

Massachusetts Institute of Technology:
6.763 2003 Lecture 17




Phase Diagram and Critical Field

AG < 0 So that G 1s always minimized, the system goes to the state of lowest
Gibbs Free Energy. At the phase boundary, Gs = Gn.

&
H
Gs>Gn At zero magnetic field in the
— " Nurmal superconducting phase
aéﬁg ~ ~
™ Gs(H,0) < Gn(H,0)
\
Meissner \\\ for T < TC
\ 1 5
Gs <Gn \ Gs(0,T) — Gn(0,T) = —§uoHc (T) Vs
i - - Y J
[ T
condensation enegy
The Thermodynamic Critical 5
Field H(T) is experimentally Ho(T) ~ Heo [ 1 — <Z> for T < Ts
of the form c N
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Critical Field for Type I

Recall that dG = -V B -dH

In the bulk limit in the superconducting state B = 0 so that dGs =0

Likewise in the normal state 7{ = Happ and B= ,uoﬁ so that

dGn = —VuoH - dH
Hence, we can write d (Gs(H, T) — Gn(H,T)) =V poH - dH
Integration of the field from 0 to H gives
G (H, T)~Gn(F,T) = G5(0,T) = Gn(0,T) + - Vol

and thus 1
Gs(H,T) = Gn(H, T) = Zpo (H? — HZ) V
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Critical Fields for Type 11

¥ The lower critical field H, 1s the phase boundary
where equilibrium between having one vortex and
e no vortex in the superconducting state.
H““HE Narmal
GLH,T) = G°(0,T) + Ws — H- / B dv
Vortex ~, ‘/S
\\>, o H_} \—V—) N\ - J
: ~
N S A GY(0,H) Evlz by Ly,
Meissner HH‘“‘*‘}\\ TR
\‘\.‘\\‘\_.,_— ot Therefore
[ T B EV B q)O 5
He = — > Ko |~
CDO 477/,60)\ 2>
The upper critical field H, occurs when the
flux density is such that the cores overlap: In X\ / £
Py
H.» =
’ 271062
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