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“from sources close to or out of high school years,
perhaps at parties or in sleep,

word has passed from mouth to street

of something willow weird and stalking mad,

and well, so is it true, is every day recalled,

does neither milk nor sparrow fall unmourned,
are all present, a secret chorus to our speech?”

—Jeb9
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Preface

Boldly or brazenly, I have written a book of lectures on the history of astronomy. The lectures
were prepared for the one-semester history of astronomy course (Astronomy 130) at Vanderbilt
University. This course is designated as a Science and the World course. Such courses are intended
“to introduce students to scientific and technical knowledge and to relate that knowledge to the
broader context of the world.” General histories of astronomy such as the fine recent book by John
North and the classic book by Anton Pannekoek are too narrowly focused on astronomy to satisfy
the intention of the course. They are also often too technical for the nonscience students who are in
the majority in my classes.

In order to carry out the course mandate, I have attempted to analyze the historical development
of astronomy both in terms of internal intellectual development and in terms of external factors
affecting astronomy. Not being a trained historian nor an expert in the details of the history of
astronomy itself, I have been forced to rely almost entirely on secondary authors. Sometimes I have
sought the best ones available, but often the pressure of time led me to use those sources that were
easily available. T hope to seek out authoritative sources for all topics in future versions.

Given the course mandate it is not desirable or possible to cover all of the history of astronomy.
I have focused on episodes which I think have the greatest value for understanding the intellectual
development of astronomy from earliest times to the present. Clearly, my choice of topics is
idiosyncratic. I have also allowed myself some digressions where topics caught my interest.

Experience has shown that nonscience students are generally not at ease in the Zion of
mathematical astronomy. 1 have accommodated this unease to a degree. However, some basic
trigonometry and formulae are essential for comprehending the issues. Therefore I have provided
some of this material in Chapter 2 and in other places throughout the lectures; some more advanced
material appears in Appendix A.

I have chosen an astronomical way of citing sources. A reference to a work in the text is usually
made with the first few letters of the author’s (or first author’s) name followed by the page number
if appropriate. The abbreviation for North’s history of astronomy book for example is No. In the
citation scheme, a reference to page 264 of North’s book becomes No264. The citation scheme
allows one to go right from the line of text to the page of the source without the bother of 1bid.’s and
op. cit.’s. The drawback is that digressions on the source material must be abandoned, put into the
text, or footnoted. If a work is only cited one or two times, I cite author, date, and, if appropriate,
page number in text.

It should be noted that many cases I cite a source only as an example reference. Since this is
so common, I have refrained from using ‘e.g.” (ezempli gratia: for example) in most cases. As well
as ‘e.g.,” other common abbreviations that T use are ‘c.” (circa), ‘d.” (died), ‘esp.” (especially), ‘ff.’
(and the following), ‘fl.” (flourished), ‘i.e.” (id est: that is), ‘r.” (reigned), and ‘viz.” (videlicet: that
is to say; namely),

The full reference for any work appears in the references section. The abbreviation for the work
is in parentheses at the end of the full reference. T should mention that North (No624ff) provides a
good bibliographic essay with references to many other sources for the history of astronomy. A more
extensive (alas now slightly dated) selected, annotated bibliography of the history of astronomy from
the invention of the telescope is given by DeVorkin (1982).

This is version 0.0 of the lectures (with typesetting in plain TEX [Knuth 1986]). It is fragmentary
and unpolished. Multiple question marks at the end of a word or statement indicate that I am not
sure of the spelling (77), reference (777), or fact/assertion (777?). It must be understood that almost
all references are to secondary sources and that almost all of these are quoted as example references
for facts, ideas, or analysis, not as original ones (although they may be that too). There could
be inconsistencies, redundancies, unclearness, and mistakes: caveat lector. 1 would appreciate any



suggestions or learning of any errors.
I would like to thank my students and colleagues at Vanderbilt for their encouragement and

aid.
David J. Jeffery

Vanderbilt University
August 27 1996
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1. Introduction: Astronomy, History, and Science

1.1 Astronomy and History

Astronomy comprehends the universe: that is to say, it studies the universe as whole, things
of largest scale, things of smallest scale, and everything in between is touched, and it watches the
sky. Fundamental physics is its serf, its master, its synonym whenever it, astronomy, is the One and
not the Many. At astronomy’s boundaries—and no one marks those with a stone—are all physics,
geology, planetology, biology, exobiology, astrology, philosophy, the human condition, society, and—
rightly? wrongly?—religion. Astronomy is history: the story of our peaceful studies going back to
proverbial time immemorial and the story of the evolution of everything. Both stories proceed. In
brief, whenever you lift up your head you find astronomy, find it is always all around you, and find
you are part of it.

Since Plato (more or less), the supremos of pedagogy have placed astronomy on a pedestal: made
it one of the seven liberal arts “which liberate the soul from its native darkness and ignorance”
(Pel66). The planners of modern liberal education have swept it off that eminence; they have
determined it is only one science among many. But even in this humbled category, astronomy
has a faded glory. Its broad scope and deep anchoring are attested by its popularity: the people
have always favored it. Tt is the first empirical exact science (Noxiii) and is probably coeval with
with mathematics. Indeed, until the end of the 18th century leading theoretical astronomers
and mathematicians were often the same people. As the first empirical science, astronomy has
naturally led—often albeit without any followers. The method of science—hypothesis, verification,
nonverification, new hypothesis on a wider plane—was early on most clearly exampled in astronomy.
And once, in the 16th and 17th centuries, it took the starring role in that transformation, the
Scientific Revolution, which took science from occasional lofty peaks and long lethargies to continual
progress. This same continual scientific progress, feeding and being fed on technology, has circled
the globe, transforming everywhere and then transforming again. At present, we do not foresee an
ending to the transformations; indeed we do not want them to stop, only to direct them—if only we
knew exactly where.

To connect astronomy to the human world we have, among other resources, the history of
astronomy which is the subject of these lectures notes. This history comprises the purely intellectual
give and take of theories, the personal histories of the astronomers, and the interaction of astronomy
and astronomers with society. The first element can be viewed, bloodlessly, as an autonomous
internal development. This has the advantages of conciseness and retrospective plausibility; it is
useful for the fast overview and for the establishing the basis for later astronomical achievements.
However, any real history shows that astronomers did not proceed so simply: there was no path
through the thicket. The astronomers lived in a broad intellectual world that was a congery of
different, not always compatible, ideas: some profound, some the opposite; some are still with us,
some we have done without a good long while. Especially for older times this blooded, broad
intellectual world cannot be overlooked without missing much; and we will not overlook it, not
entirely at least. In more recent times, the 19th and 20th centuries, the broad intellectual world of
scientists has become more standardized and familiar: sceptical, accepting partial answers as good
answers, and based on the bedrock of the modern scientific method. Having seen this intellectual
world view develop in our course, we will have less to say about it when it is in full bloom in the
now.

The other elements, the personal histories of the astronomers and the interaction of astronomy
and astronomers with society is in our purview. In fact, these elements cannot be cleanly separated
from the intellectual element. The astronomer does not abstractly absorb his/her ideas from their
times and work on them without regard for the wind and weather. Each one somehow selects a subset
of current ideas and weights them individually. Then somehow amid distractions—everything that
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is not astronomy—the astronomer does their work and achieves or does not achieve anything. How
the astronomer was educated, earned a living, and was applauded or reviled are relevent to their
achievements. In truth, the truths (speaking as we speak) that they learn are indifferent to the
seeking, but we are not. How, human achievement is achieved is among our studies.

How astronomy interacts with society is a fundamental part of these lecture notes; we will not
do it justice, but we will do what we can. We will mention time keeping. Day and night follow day
and night. The years proceed. Though we little note it now, the Moon waxes and wanes just as
formerly it did. The planets are esoteric, but remain regular too. Digital watches and atomic clocks
notwithstanding, astronomy still marks our days and works.

We will mention also astrology. Deride if you will (and we will deride it), for most of historical
astronomy, astrology was a key practical benefit in the eyes of society. And many astronomers before
1650 or so earnt their living, gladly or not, prognosticating.

Then there is the secret of the universe, life, and everything. The yearning for this secret
gnaws somewhere. At times and often even, the secret has been declared revealed. But a general
acknowledgment has been withheld. Some have always thought that astronomy was one of the most
promising avenues to the secret. Modern astronomers, with the modern scientific orthodoxy of partial
answers, have generally ducked metaphysics. However, when the subject is cosmology (everything
and itself), it cannot be denied that a meeting up somewhere with metaphysics is possible. In fact,
the venture might seem lastly profitless if the meeting is eternally postponed.

The search for extraterrestrial intelligence (SETT) also connects astronomy and society. A band
of astronomers and an element of society think SETI of immense importance. Contact may well
change our way of thinking in ways we cannot now think of. Given that success would be shocking
and failure inconclusive, it is likely that we will see the search continue all our lives. Since our
capacities to communicate to the stars will likely increase in time, SETI will probably loom ever
larger in the future history of astronomy.

The main path that we will follow through the history of astronomy is one that a modern
astronomer would identify as a progressive path. This path will take us through the astronomies
of the prehistory (but only briefly), the ancient Mesopotamians, the ancient Greeks, the Medieval
Islamic civilization, Europe and America from the Renaissance through the 19th century, and the
modern age. Along this path a continual advance in astronomy (as seen in the telescoping view of
history) will be apparent. For a survey course, this is pedagogically a sound. Moreover, modern
astronomy and the path leading to it is generally most interesting to us moderns.

Given the underlying theme of the lecture notes—science and the human world—it would
naturally be valid to study those astronomies that did not directly lead to or contribute much to
modern astronomy: e.g., those of ancient Egypt, China, Japan, India, and pre-Columbian America.
However, we do want to exhaust ourselves and lose a clear vision in an encyclopedia of astronomies.
Therefore, we will move off our main path only occasionally.

1.2 History and Science

The history of astronomy is, of course, part of the history of science and of history as a whole.
If one entirely isolates the history astronomy from rest of history, one is forced to avoid important
interactions and to deal in explanations of astronomical development that must be incomplete.
It is well beyond the scope of these lectures notes to treat the complete set of relations between
astronomy and the rest of the human experience. But, as mentioned in § 1.1, we attempt to go some
distance in that direction, particularly for the pre-modern and early modern period. The relation of
science and society in these times is of importance because we are tremendously interested in how
the transformational powers and intellectual adventures lurking in science came to be revealed and
unleashed.

We need to be acutely aware of the limitations of historical explanation when analyzing events.
One famous historian of science, Otto Neugebauer, has the following to say:

This is a good illustration for the futility of any attempt to reconstruct “reasons” for
the incidents of historical events. Similarly the absence of algebraic notations should not



have prevented the Greek geometers from developing what was called in the 19th century
“synthetic” and “projective” geometry since many of the basic concepts were ready at hand
in the works of Apollonius. Again such a “natural” development did not take place and all
that we may ever hope to establish in historical research is facts and conditions but never
causes (Ne225).

I think a key word in this quotation is “establish.” We cannot establish historical causes as an
empirical exact science can physical causes. But causes surely exist, and I do not think that
Neugebauer can mean that they are in principle unknowable. Another quote from an eminent
historian of science and technology, Lynn White, hits closer to the mark I think:

Historical explanation . . . is seldom a matter of one billiard ball striking another, of ‘causes’
in the narrow sense. It is much more often a process of gradual illumination of the fact to
be explained by gathering around it other facts that, like lamps, seem to throw light on
it. At last the historian arrives at a sense that the central fact on which he is focusing has
become intelligible.

[This is] the sort of explanation, necessarily common among historians dealing with
large phenomena, that can neither be proved nor disproved with any rigor but that must be
accepted or rejected on grounds of general coherence or incoherence (White 1978, p. 217,

333, taken from Cob17).

No gloss is needed.

Much of the historical analysis of the development of science given in these notes is based on the
recent book The Scientific Revolution: A Historiographical Inquiry by H. Floris Cohen (Co). This
book is a analysis of the understanding and explanations for the Scientific Revolution, a term used
for the development of early modern science in the 16th and 17th century in Europe. The term ‘early
modern science’ for the science of the 16th—17th centuries is Cohen’s usage (Col7). The Scientific
Revolution is a unique event. However, the term ‘Scientific Revolution’ is also used for hypothetical
events giving rise to science like modern science that might have occurred in other times and places.
Scientific Revolution is always capitalized in order to distinguish Scientific Revolutions from the
scientific revolutions in the model of scientific development of Thomas S. Kuhn in his famous book
The Structure of the Scientific Revolutions (1962). Kuhn’s small-s, small-r scientific revolutions are
different beasts; they are relevant also to the history of astronomy, but we will not discuss them
explicitly.

Modern science has two defining characteristics: it based on the modern scientific method and
it has turned out to be continuously progressive and cumulative. The modern scientific method
consists, in brief, of a continuous cycle of theory, experiment or detailed observation, leading to
improved, generalized theory. Although we loosely speak of a theory as being true or false, what we
mean 1s adequate or false. An adequate theory accounts for what we observe: modern science claims
no access to absolute truth. Nevertheless, some theories are so well established that we describe
them as true when we are not speaking with absolute precision. Theories such as Newtonian gravity
(within its range of known applicability) are ‘true’ in this sense. Tt is generally believed that science,
however, is on an approach to absolute truth about the natural world; perhaps it 1s a limit that can
never be reached or the idea of continuous approach is a delusion; but the belief that we are on the
approach 1s the faith.

A key aspect of modern science, always present implicitly in it, but strongly emphasized by the
20th century philosopher Karl Popper, is that a scientific theory must be falsifiable. A theory not
falsifiable in practice is suspect; one not falsifiable in principle is clearly not scientific. Unfalsifiable-
in-principle theories may be true, but their elucidation and defence are not in the realm of science.

The continuously progressive and cumulative feature of modern science which started in Europe
and has spread world-wide is a historical fact. It is based on human society as it exists and on the
continuing comprehensibility of reality. Neither bases need persist forever, but at present they
seem securely in place. The progress and accumulation of science have changed the intellectual and
material world over and over again. They will probably continue to do so. Thus science is one of the
overwhelmingly important elements of our lives. It is also very unpredictable. There is an ancient



theory that history is cyclic; this theory is evidently false in the world of modern science.

But the world of modern science did not exist before about the 16th century. Science in earlier
times can probably judged to be cumulative overall, but it was not continuously progressive: it was
sometimes progressive, sometimes static, sometimes in regression, and sometimes non-existent. All
modes could be happening simultaneously in different parts of the world. In the model of scientific
progress of Joseph Ben-David (discussed by Co254ff), these varying modes of science are natural:
modern science is exceptional. Societies in which science is not modern are called traditional societies.
In traditional societies, occasionally progressive science is the best that occurs. The explanation for
the weakness of science in traditional societies requires a great deal of analysis. But two causes
can be plausibly cited: one external and one internal. First, the total support for science was weak
because society in general did not recognize science as a key concern. Second, the scientific method
was not clearly recognized, and so what we think of as the best way to do science was not always
used. We will interpret the particular cases of ancient Greek science (§ 4.12) and Islamic science
(§ 5.7) using the Ben-David model. A general discussion of the Ben-David model is beyond our
scope.

Some terminology that we will use when using the Ben-David model should be introduced here.
We distinguish science in traditional societies as dormant, sporadic, or golden-age. Dormant means
a virtual absence of science for a prolonged period of time. An example of dormantness is science
in the Byzantine empire from circa 600 to a very minor re-awakening in the 14th centuries (Pel51;
No0223). During this period the science of ancient Greece continued to exist in manuscripts copied
and recopied, preserved, summarized, and commented on, but there were hardly any innovations
and no significant individual scientists or natural philosophers of note. Some dormant societies, of
course, were never awake: most pre-literate societies are examples.

Sporadic science means that here and there an individual or a small group of innovators appears.
But they are largely isolated geographically and temporally. However, if we have heard of them at
all, some or their works survive and may have had a historical effect.

Golden-age science is not entirely a neologism, but my usage needs some specification. I use it to
describe scientific development that is continuous for a prolonged period of time, but that ultimately
stagnates. Greek science in the period circa 600-200 BC was golden-age: this is my prime example
(see § 4.12). The period 800-1000 AD has been identified the Golden Age of Islamic science by Sayili
(1960). This may be another golden-age in my sense, but I am not sufficiently informed about the
Islamic science to make a judgment. The term golden-age science may have limited value since one
person’s golden age is another’s vigorous sporadic science.

The terms decline, stagnation, and fading describe the transition from sporadic science to
dormant science or golden-age science to sporadic science. This usage seems general in historiography

(e.g., Co250ff, 384ff, and references therein).



2. Stars Above: The Basics of Astronomy

1

There is no royal road to astronomy." As in any any other study, one has to master basic

terminology, concepts, and problems.

2.1 Angular Measure

The sky has no readily apparent depth. All celestial objects seem to be pasted on a dome, or
rather a sphere that rotates around the Earth daily. This fictitious, but useful, sphere is called the
Celestial sphere. (The capitalization in the term Celestial sphere is necessary to distinguish it from
the historically important celestial spheres introduced by the Greeks.) To this day, measuring
the distances to objects in space is one of the hardest and most controversial of astronomical
measurements: of course, we have the easier objects measured now. Angular measurement of position
on the Celestial sphere, however, is relatively simple. Here we present some of the basics of angular
measurement.

The circle is traditionally divided into 360°, where superscript circle stands for degrees. Degrees
are the basic units of angular measure. Although many symbols are used to represent an angle, the
most common is the Greek theta: 6.

The angle between two objects is their angular separation. It is common to say that the angle
subtends the line or arc between the two objects (Ba1207). From any point on the Earth, the angular
separation between astronomical objects 1s almost always the same to such a high accuracy that the
difference due to different vantage points is negligible. Such a difference is called a parallax.

Crude, but useful, angular measurements can be done with the human hand held at arm’s
length. The angle separation across a finger, or to use more common words, the angle subtended by
a finger is ~ 1° (Ze5). The angles subtended by a fist and a spread hand are ~ 10° and ~ 18°. As
an example, the angle between the pointer stars of the Big Dipper (the stars approximately aligned
with Polaris: see also § 2.2) is about the angle subtended by half a fist at arm’s length: i.e., ~ 5°
(Zeb).

By ancient tradition degrees are not divided into decimal fractions, but into sexagesimal
fractions. One degree is divided into 60 arcminutes and 1 arcminute is divided into 60 arcseconds.
The traditional symbol for arcminute is the prime symbol and for arcseconds the double prime
symbol. To summarize,

1° = 60" = 3600” (2.1)
and

1" = 60" . (2.2)

The smallest angular separation that can be resolved by the naked eye is ~ 1’ (Ze49). However,
systematic naked-eye measurements almost never achieved this accuracy. The last and greatest pre-
telescopic astronomer, Tycho Brahe (1546-1601) (Th4, 469), was achieving better than 1’ accuracy
in later work, but this was unprecedented (No302). Because the telescope was invented shortly after

! The royal road metaphor seems to have originated with Euclid. Proclos of Lycia???? (c. 412-485
[Pe382]) reports the following anecdote:

Ptolemy once asked Euclid whether there was any shorter way to knowledge of geometry
than by study of the Elements, whereupon Euclid answered that there was no royal road
to geometry (quoted from Bolll).

The Ptolemy in the quote is not the astronomer, but Ptolemy 17777, the first Macedonian king of
Egypt and formerly one of Alexander the Great’s generals.
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his death, Brahe’s naked eye work has probably never been bettered at least on a large scale, except
perhaps by the distinctly old-fashioned master observer Johannes Hevelius (1611-1687) (Pa259;
No342).

The angle subtending the line bisecting the disk face of a spherical astronomical object is called
the angular diameter. The only two common spherical astronomical objects for which shape can be
resolved with the naked eye are the Sun and the Moon. The mean angular diameters of the Sun and
Moon are 32’ (Mo0242) and 31'5"” & 31.1' (M093), respectively. The near equality of the Sun and
Moon’s apparent size is just a coincidence: part of the geography of the solar system. But to early
peoples, to whom the Earth was not just a planet, this near equality seemed fraught with divine
significance. The Greeks, for instance, considered the gods of the Sun and Moon to be twins; Apollo
and Artemis.

The division of the circle into 360° degrees is was an ancient convenience. For the users of a
decimal numeral system it is an inconvenience that seems ineradicable. There is, however, another
division into radians. This division is natural: i.e., suggested by the nature of Euclidean geometry
rather than based on human convention. The angle in radians between any two points on a spherical
shell 1s the circular arc length between the points divided by the radius of the arc. If arc length is s
and radius is r, the angle in radians is given by

s
0 =—, 2.3
: (23)

where s and r are measured in the same units. Since the circumference of circle, C, is given by
C =2nr, (2.4)

if follows that the conversions between radians and degrees are given by

1 o
6(°) = ﬂQ(I‘adians) (2.5)
T
and
T
f(radi = 6(°) . 2.
(radians) = --0(°) (2.6)
Although it is not especially useful to know this,
1radian ~ 57.2958° ~s 57°17'45" (2.7)
and
1° &~ 0.0174533 radian . (2.8)

A very crude approximation that I find easy to remember is
m
1" ~ — radian . 2.9
603 ( )

There are several reasons for preferring radians to degrees. First, in using radians if any two
of arc length, distance, and angle in radians are known (with the distance in the same units), then
the third quantity can be determined without requiring conversions. More importantly, in algebraic
work using radian measure avoids the need for inelegant conversion constants to appear in formulae.
Most importantly, calculus formulae involving angles are written naturally and simply using radian
measure.

The final topic of this section is angular velocity, the rate at which an object changes its angular
position with the angle being measured from a fixed point. One common convention is to represent
angular velocity by #. This dot notation goes back to Newton in 1671 although not made public
until much later; he used the dot to indicate a fluxion which we would call a derivative (Bo435;
Ha253). Angular velocity can be measured in degrees, arcminutes, arcseconds, radians, or other
angular units (see, e.g., § 2.2) per unit time.



If an object goes in a circular orbit about a central point with a constant spatial velocity, then
its angular velocity in degrees per unit time is

. 360°
0= 7 (2.10)
where P is the period of the orbit. In general, angular velocity will not be constant and the spatial
motion will not be circular about a point. Nevertheless, the mean angular velocity about any point
by an object whose motion completely surrounds the point will be given by equation (2.10) with §
replaced by fa,. If an object traverses an angle Afl (as measured from some point) in a time At,
then its mean angular velocity during At is given by

_Af

Oy = — . 2.11
7 (2.11)

When At becomes very small Oav approaches the instaneous velocity 0 which is the derivative of 0
with respect to time in the terminology of calculus.

2.2 The Horizon Coordinate System

Several angular coordinate systems are used in astronomy to locate objects on the Celestial
sphere. The two basic ones are the horizon system and celestial (or equatorial) system.

The horizon system 1is a local system: i.e., a system dependent on one location on Earth. The
origin or center of the system is where you are. The direction of gravity (determined by a plumb
line) is the normal (or perpendicular) to the horizon plane. Only if one were on a very flat piece of
ground would the horizon plane be truly tangent to the ground. However, crudely speaking one can
see the sky above the horizon and not below. Directly over head is zenith (from the Arabic semt
ar-aras meaning way over head [Bal418]). Directly opposite to the zenith (and so below the Earth)
is the nadir (from the Arabic nazir meaning corresponding or opposite [Ba806]). The four cardinal
points of the compass are due north, east, south, and west points.

The polar axis lies in the plane defined by the north and south points, and the zenith. The
polar axis is generally titled with respect to the horizon plane. A bit of geometry shows that the
angle of the polar axis from the north south line is equal to the latitude of one’s position. Because
astronomical distance are so huge compared to the radius of the Earth, for the most part one can
think of oneself has being at the center of the Earth position on a horizon plane that is titled from
the pole by the local latitude. In the northern hemisphere, the north pole is above the horizon and
the south pole is below; the reverse situation holds in the southern hemisphere. In the northern
hemisphere, the Polaris (also the Pole Star and « Ursa Majoris???) is can be used to easily identify
the north pole at night. Polaris is fairly bright and is 44’9"” (in epoch 2000 measure) from the
true pole (Ho20). Polaris itself can be easily identified from the two pointer stars of the Big Dipper.
These stars form the bowl edge farthest from the handle. Going along the line marked by the pointer
stars in the direction above the bowl leads to Polaris.

Two angles are needed to locate an object on the Celestial sphere: the azimuth and the altitude.
The great circle from the zenith through the object cuts the horizon in a particular direction. The
angle to this direction measured westward from due south is the azimuth (Mo15). The angle from
the particular direction to the object is the altitude. One has to note that astronomical altitude is
an angle not a height above the ground or sea level.

Now the Earth rotates once per day on its axis. But in the horizon system this means that
the Celestial sphere rotates once per day the polar axis turning westward. The stars, Sun, Moon,
planets, and other celestial objects are carried about by the Celestial sphere. For short periods
of time these objects seem to be fixed in relative positioni although their azimuths and altitudes
change continuously. The stars in fact hold their relative position for times long compared to most
ordinary human time scales. Thus we talk of the fixed stars. The Sun, Moon, and planets, in fact
move noticeably relative to the fixed stars on ordinary human time scales. There basic motion 1is
eastward relative to the fixed stars. The Sun and Moon always move eastward. The planets move



eastward most of the time. When the planets move westard relative to the fixed stars they are in
retrograde motion.

Many celestial bodies rise in the east and set in the west. In the northern hemisphere, those
objects that are sufficiently near the north pole never rise or set: they are always above the horizon.
Such objects are called circumpolar. Objects too near the south pole are never above the horizon.
The situation is reversed in the southern hemisphere.

The great circle or meridian on the Celestial sphere running through the poles is the celestial
meridian (Mo15) or commonly just the meridian (as opposed to any old meridian). As the Celestial
sphere spins westward all celestial objects cross the meridian twice per day: in the jargon they
transit the meridian twice per day. When they transit the part of the meridian that is mostly above
the horizon that is called upper culmination; lower culmination is when they transit the part of the
meridian that 1s mostly below the horizon. Usually upper culmination is meant when the expression
transiting the meridian is used. Only circumpolar objects have both upper and lower culminations
above the horizon. Objects that are too close to the pole below the horizon have both culminations
below the horizon of course. The upper and lower culminations of the Sun have special names: noon
and midnight. The astronomical noon and midnight are only approximated by our conventional
clock noon and midnight.

The spinning of the Celestial sphere means that in the course of a day objects trace out
circle around the pole: the pole is exactly perpendicular to the plane of the circle. The circles
are naturally tilted, not perpendicular or parallel to the horizon, except at the Earth’s equator
and poles, respectively. At upper culmination the object reaches its highest altitude in the day.
Observing the highest altitude is a way to identify upper culmination and and the north-south line.

The horizon coordinate system has limited usefulness because objects are always changing their
locations. A system in which the fixed stars are at fixed positions is needed. This is provided by the
celestial coordinate system. In simple practical astronomy, one often needs to mentally juggle back
and forth between the horizon and celestial systems in order to best understand what one is seeing.

2.3 The Celestial Coordinate System

The celestial coordinate system is analogous to the ordinary geographic longitude and latitude
coordinate system. To construct the celestial coordinate system project from the center of the Earth
the north and south poles, and the equator on the Celestial sphere; these projections become the
north and south celestial poles and the celestial equator. We now set up an angular coordinate
system on the celestial sphere that is reasonably fixed with respect to the fixed stars: it is not
perfectly fixed for reasons we describe below. Naturally this coordinate system rotates every day,
but that overall motion is easily accounted for.

In the celestial system, as in the horizon system, two angles are needed to specify any point
One angle is measured along a meridian from the celestial equator. This angle, which is analogous
to latitude, is called declination and is traditionally represented by the small Greek delta, . There
are north and south declinations. Declination is measured in degrees, arcseconds, and arcminutes.

The angle corresponding to longitude in the celestial system is right ascension abbreviated
to R.A. The zero meridian of right ascension passes through the spring equinox. The spring
equinox which will explain below is a specific point on the celestial equator which is located in
the constellation Pisces. The right ascension angles are measured eastward from the zero meridian
or, in the jargon, eastward from the spring equinox. Right ascension is not measured in the ordinary
angular units, but in special units called hours, minutes, and seconds. The conversions to the
ordinary angular units are:

1 hour = 15° | (2.12)

1
1 minute = i 15", (2.13)

and
!

1
1 second = 1= 15" . (2.14)



The rationale for these peculiar units is simple: the Celestial sphere turns one hour, minute, or second
in angle in the corresponding of time. Thus, any angular distance in right ascension units is the
same as the time it takes the Celestial sphere to turn that distance. This is a useful correspondence.
For example, if the spring equinox transits the meridian in one’s location at time ¢,, then the time
that object X transits the meridian, ¢, is given by

t=t,+R.A.(X), (2.15)

where R.A.(X) is the right ascension of object X.

It can be remarked that if angular and time measure were reduced to a consistent simple decimal
system, much of the confusion of the inconsistent archaic system we now use would go away. But
we seem to be stuck with the archaic system. As one’s parents always say “if it was good enough
for the Sumerians, it’s good enough for us.”

The Sun, Moon, and planets move in the celestial system. These motions are easily understood
in the modern heliocentric picture of the planetary system. The Earth and planets orbit the Sun
with all the orbits nearly in the same plane; the Moon orbits the Earth in almost the same plane.
Thus in the celestial system the Sun, Moon, and planets travel on nearly coincident great circle
paths on the celestial sphere.

As is well known, the polar axis of the Earth is tilted by about 23.5° degrees from the normal
to the plane of the Earth’s orbit around the Sun. Thus, the great circle path of the Sun, called the
ecliptic, is titled by the same amount from the celestial equator. The normal to the plane of the
ecliptic (the plane of the Earth’s orbit) is called the ecliptic axis. The two points where the ecliptic
crosses the celestial equator are the spring and fall equinoxes. The Sun takes one tropical year to
cover the ecliptic, and so passes the passes the spring and fall equinoxes once each in a year. These
passages, of course, mark the beginning of spring and fall. The Sun moves eastward on the ecliptic;
this slow eastward motion is superimposed on the daily westward motion. The Moon and planets
also follow the ecliptic path. The Moon always moves eastward. As mentioned in § 2.2, the planets
move sometimes retrograde: i.e., move westward.

The celestial coordinate system is not ideal. The most important reason for this is the precession
of the equinoxes. We will discuss the precession in detail in § 4.10. Here we will just state that the
axis of the Earth and thus the axis of the celestial system precess about the ecliptic axis: 1.e., they
rotate tracing out a cone with an opening angle of approximately twice 23.5°. The precession rate
is 1.3969712° per Julian century (See Table B2 in Appendix B for a note on the Julian calendar.)
Tt takes about 25800 years for a complete precession. If the rate were exactly constant (which it is
not quite????) the period of precession would be 25770.037 Jyr.

The precession of the north celestial pole and the celestial equator about the north ecliptic 1s
anticlockwise when looking up to the north ecliptic pole. Thus the equinoxes (the points there the
celestial equator cuts the ecliptic) precess westward relative to the fixed stars: hence the expression
the precession of the equinoxes. Both the declination (measured from the celestial equator) and
right ascension (measured from the spring equinox) of the fixed stars must change. The coordinates
for the fixed stars are therefore given for particular epochs, not once for all. Currently, fixed stars
are usually located in epoch year 2000 coordinates. For precise work corrections for current date are
used.

The complication of the slow variation of the coordinates 1s compensated for by the ease of
accounting for the Earth’s daily rotation in the celestial system. Moreover, since the fixed stars are
not truly fixed, there can be no system in which the coordinates of the fixed stars are unchanging.
Thus there i1s no ideal system. It might be remarked that the absolute standard of rest is now
believed to be established by the average motion of objects on the cosmological scale and by the
cosmic background radiation CBR.

There a couple of consequence of the precession of the equinoxes that should be mentioned here.
First, because the equinoxes are shifting slowly westward along the ecliptic relative to the fixed stars
and the Sun travels eastward along the ecliptic, the time periond that it takes the Sun to go from
spring equinox to spring equinox is shorter than the time period it takes for the Sun to return to the
same place relative to the fixed stars. The first time period is the tropical year (365.24219878 days)
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and the second is the sidereal year (365.25636556 days). The tropical year is, of course, the seasonal
year. The sidereal year, besides its physical relevance, has importance for understanding the nature
of the heliacal rising of stars in ancient historical astronomy. We will discuss the heliacal rising
and settings in § 2.8. The second consequence of the precession of the equinoxes is astrological; we
discuss thisin § 2.11.

2.4 Trigonometry

Trigonometry (plane trigonometry to be precise) and spherical trigonometry are essential tools
for the analysis and manipulation of angular measurements. The word trigonometry is Greek
and means triangle measurement (Bal295). Trigonometry is deals with the relations of the sides
and angles of triangles. Plane trigonometry deals with triangles on planar surfaces; spherical
trigonometry with triangles on spherical surfaces.

Consider a right triangle (one with an angle of 90° degrees. The side subtended by the right
angle is the longest side: this side is the hypotenuse. Let the length of this side be h. Let the lengths
of the other sides be z and y. Let # be the angle between the hypotenuse and the side of length z.
This definition of # makes the sides of length z and y the adjacent and opposide respectively. The
ratios of the lengths of the sides are functions of the angle #. The three commonest trigonometric
functions are given by

opposite over hypotenuse = % =sinf | (2.16)
adjacent over hypotenuse = % = cosf | (2.17)

and )
opposite over adjacent = Y tang =27 , (2.18)

z cos

where sin, cos, and tan are the sine, cosine, and tangent functions respectively. Trigonometric
functions are transcendental functions because they cannot be evaluated by any finite number of
algebraic operations (i.e., addition, subtraction, etc.) (Bal286). Consequently, the values of the
trigonometric functions are tabulated or calculated from some algorithm.

A simple example of an astronomical use of trigonometry is the determination of the altitude of
the Sun. The simple measurement of the length of the shadow of a gnomon (a vertical stick) along
with the height of the gnomon allows one to determine the tangent of the altitude; from the tangent
the altitude itself is obtained. The shortest length of the shadow in a day gives the Sun’s maximum
altitude; this occurs when the Sun is transiting the meridian.

A key use of trigonometry is in parallax measurements, a topic we take up in § 2.5.

2.5 Parallax

Parallax is the shift in angle position of some object relative to some distance background
reference point due to the motion of the observer. Parallax is noticed all the time in everyday life. A
person takes a step and nearby objects shift in position relative to distant objects. The more distant
the object the smaller the shift. Very distant objects appear to have no shift for small observer
motions and are effectively at infinity.

Measurement of parallax and the displacement of the observer allows the distance to the object
exhibiting parallax to be determined from trigonometry. Distance measurement from parallax is the
most ancient method of distance measurement in astronomy and it 1s still of fundamental importance.
There are two simple parallax cases that arise in astronomy; we will call these the sine and tangent
cases.

For both cases consider two points: A and B. The we wish to measure the distance, d, from A
to B; we are located close to A. There is also a distant reference object. The reference 1s so distant
that it exhibits no parallax (relative to other distant objects of course) no matter how we move.

Initially, we, the reference, and A and B are all on a line: this is line 1 In the sine case we are a
distance r from A in the direction of B, but short of B; in the tangent case, we are at A. In the sine



11

case, we move by rotating around A, maintaining our distance r from A, until the angle we measure
between A and B is 90°. In the tangent case we move in a straight line a distance r perpendicular
to line 1. In both cases, we, A, and B form a right triangle after having moved: in the sine case
we are at the right angle; in the tangent case A is at the right angle. We call the displacement r
between us and A the baseline of the parallax measurement.

Initially there was no angular displacement between B and the reference. After we have moved
there is an angular displacement § between B and the new line to the reference, line 2. This angular
displacement is the parallax. Line 2 must be parallel to line 1 since the reference exhibits no parallax
itself. Because lines 1 and 2 are parallel, § is also the angle at the B corner of the triangle. Using
the trigonometric functions, we find the distance d between A and B to be given by

(sinf)~1 for the sine case;
d=r (2.19)
(tan@)~1 for the tangent case.

The significance of the terms sine and tangent case are now clear.

In astronomy the parallaxes are usually extremely small, and thus small argument
approximations can be used for the trigonometric functions. Note that the small argument
approximations are only valid for angles measured in radians, unless explicit conversion factors are
included. Using the small argument formulae found in Table B9 in Appendix B for sine, tangent,
and the infinite geomentric series, the expressions for the distance d become

1
(1 + 862) for the sine case;
(2.20)

|3

1
<1 — 592) for the tangent case.

These formulae are valid as long as #* can be considered negligible compared to 1 in whatever
calculation is being done. The terms containing #2 are the called the correction terms. If 62 can
be considered negligible compared to 1, then the correction terms can be dropped and the sine and
tangent case formulae become identical.

In most astronomical parallax measurements # < 1° and often # << 1°. Since 1° =~
0.174532 radians, even the correction terms in equation (2.20) will often be negligible; the correction
terms are in fact usually smaller than the error in the measurement of 8 itself. We will, however,
retain the correction terms just to show explicitly how the formulae should be corrected if necessary.

There are two traditional baselines in astronomy: the equatorial radius of the Earth and the
mean Earth-Sun distance (which is called the astronomical unit with symbol AU). The first arises
from the Earth’s daily rotation and the second from the Earth’s yearly revolution about the Sun.
If a parallax is given for solar system object without a cited baseline, then the equatorial radius is
usually the baseline used. For objects beyond the solar system, the astronomical unit is usually the
baseline used.

When we use the equatorial radius baseline, we use the sine case formulae. This is because
we want the distance from the Earth’s center to the object exhibiting the parallax in general and
because as the object sets on our horizon the angle between the Earth’s center the object is 90°. As
an example, we can imagine measuring the Moon’s parallax. Say we were on the Earth’s equator
and saw the Moon transiting the meridian. We note that it is aligned with a distant star. Later
the Moon sets at which time the angle between the Earth’s center and the Moon is 90°. The angle
between the Moon and the distant star is the parallax from which the distance can be determined
using the sine case formula.

Actually measuring the Moon’s parallax is more complicated than just described. The observer
will not usually be on the equator and the Moon is stationary. These problems, however, can be
overcome. Even the ancient Greeks were able to measure the Moon’s parallax fairly accurately and
hence know the Moon’s distance in units of the Earth’s radius (see Table 4.1 in § 4.7). The Moon’s
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mean parallax from a modern determination is 57'2.60"” which is nearly a degree. For the Moon one
cannot use the small argument formulae and obtain a highly accurate distance.

The Sun’s parallax is 8.794148" = 4.263523 x 10~°. This is quite minute and the small argument
formulae would give a very accurate distance using it. The ancient astronomers were unable to
determine the Sun’s parallax; it was just to minute for their observational techniques (see Table 4.1
in § 4.7). In fact the accurate determination of the solar parallax is one of the long sagas of
astronomical history.

It should be mentioned first that the solar parallax has never??? been accurately determined in
the straightforward way we described above. Instead the distance to the Sun has been determined in
some other manner and then the solar parallax obtained by inverting the sine case of equation (2.19).
Thus the actual solar parallax values have no independent worth: they are just another way of
writing the solar distance. Using a clever geometrical technique Aristarchos of Samos (c. 4th-3rd
centuries BC) found the solar distance to be 360 Earth radii (Pal18-119, 497; Pe47-49) and hence
a solar parallax of 930" (see Table 4.1 in § 4.7): this wildy too large due to Aristarchos’ very poor
observational data. Ptolemy gave a smaller, but still much too large, value of 2’51" for the solar
parallax in the 2nd century AD (To265) and this value was still accepted by Tycho Brahe in the
16th century (Pa283). Kepler using Tycho’s observations showed that the solar parallax must be
less than 1’ (Pa283). About 1630, G. Vendelinus used the method of Aristarchos of Samos with
better observational data and obtained a value for the parallax of 15" (Pa283-284, 521).

2.6777 Cycles

One of the things most evident about astronomical periods is that they are usually practically
incommensurate: 1.e, any two of them will not usually form an exact ratio of small whole numbers.
Physically, there is no reason why the should be commensurate in most cases. Since we can only
measure periods to finite accuracy, large whole number ratios can be formed. However, these are not
exact in principle since we cannot measure the periods exactly. Both large whole number ratios and
cruder small whole number ratios were historically important in synchronizing astronomical clocks
and in preparing ephemerides (tables of astronomical predictions) using cycles. In this context, a
cycle is a specification of two sequences of two different astronomical periods. The number of periods
in each sequence is a whole number: the whole numbers being the numbers from an approximate
ratio. The total times of the two sequences are approximately equal of course. For example, given
periods P,, and P, where

R~ 2.21
Pn ) ( )

P, _m
n
where m and n are whole numbers, the cycle period is approximately either of nP,, and mP,. The

cycle is more accurate for synchronization and prediction, the smaller is the relative difference

nP, — mP,
mpP,

(2.22)

In this § 2.4.1, we will show how the year and day clocks are synchronized without resorting to
a simple cycle. Then in § 2.4.2, we will show how cycles are used synchronize the year and lunar
(i.e., mean lunar month) clocks and in § 2.4.3, the year and planetary synodic period clocks.

2.2922.1 The Gregorian Calendar

The three basic astronomical clocks (which, of course, have incommensurate periods) are the
day clock (measured the Earth’s daily rotation on its axis), the lunar clock (measureed by the Moon’s
orbiting of the Earth), and the year clock (measured by the Earth’s revolution about the Sun in a
tropical year). The mean solar day is now defined to be 1 day in length or 86400s. The lunar month
is the synodic period of the Moon: e.g., the time from new moon to new moon. The tropical year
is the time from spring equinox to spring equinox. The mean lunar month and mean tropical year

are 29.530588 days and 365.24219878 days, respectively (Mo731).
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Nowadays for civil purposes we are only concerned to keep the day and year clock synchronized.
This is done by the Gregorian calendar instituted in 1582 under the patronage of Pope Gregory XIII
(Pa220; No238). In the Gregorian calendar, years have either 365 or 366 days exactly: years of
366 days being called leap years. In its original version, years evenly divisible by 4, but not evenly
divisible by 400 have 366 and all other years have 365 days. Thus 1995 has 365 days, 1996 and 2000
have 366 days, and 1900 has 365 days. The original mean Gregorian year (with symbol OGyr) is
therefore exactly

400 x 365.25 — 3
400

The original Gregorian calendar was actually not so good. In 3319.8 years, the original Gregorian
calendar would be one day behind solar calendar. A modern revision of the Gregorian calendar
stipulates that years whole number divisible by 4000 will also not be leap years (Ab129-130). Thus,
the modern mean Gregorian year (with symbol Gyr) is exactly

4000 x 365.25 —10x 3 —1

4000
With the revision, the modern Gregorian calendar will take 19,520 years to be one day behind the
solar calendar. Thus, the Gregorian calendar has effectively solved the problem of synchronizing
day and year clocks for the well beyond the foreseeable future of humankind. (The ideal calendar

would be an even simpler and better solution, but it has been bypassed by history. See the note to
Table B2 in Appendix B for the ideal calendar.)

= 365.2425 days. (2.23)

= 365.24225 days. (2.24)

2.2922.2 Lunar Cycles

The problem of synchronizing the year and lunar clock has been abandoned by the international
modern society for civil purposes. Certain cultures though remain interested in the problem. A major
example being Islam which adheres to a year of 12 lunar months for religious purposes and needs to
synchronize its calendar with the civil calendar (Gi46-47). In ancient times, however, many societies
believed strongly in keeping the calendars synchronized: i.e., in maintaining a luni-solar calendar.
Their reasons were mainly cultural and traditional. Once accurate solar reckoning is established,
there 1s little practical benefit to most people in keeping track of the Moon.

In earliest time the synchronization of the luni-solar calendar was done haphazardly. Most years
had 12 lunar months. If the seasons started to slip (e.g., the September harvest started falling in
October), then an extra month, now called an intercalary month, was inserted. Religious or civil
authorities determined when intercalation should be. As society became more organized, however,
the need for a predictable intercalation was felt. Various lunar cycles of the mean lunar month
and year came in to use to satisfy this need or perhaps just because they became known. We will
demonstrate here how to create these cycles.

For the purposes of cycle making, we will use the Julian year of 365.25 days. This is a fairly close
approximation to the tropical year and has the advantage of being exact by definition and allowing
easy calculation of future times. Moreover, a synchronization of a lunar and Julian calendars is ideal
if one is using a Julian calendar for dating. We effectively do use a Julian calendar for time intervals
of 100 or 200 years (see § 2.777.1).

To modern accuracy the ratio, R, of the Julian year to the mean lunar month is 12.368531.
Thus on average there are R lunar months per year. One can see that intercalations will have to
take place every third year usually and sometimes every second year sometimes to keep the clocks
synchronized. To determine an n-year cycle (where n is a whole number of years), one multiplies
n by R to determine the mean number of lunar months in n years and rounds the number off to a
whole number m which is the number of lunar months that most closely equals n years. Thus, one
has a cycle of n years and

m = Int(nR+ 0.5) lunar months, (2.25)

where ‘Int’ is the trunction-to-integer function. The accuracy of the cycle is determine by the relative
error

_ Int(nR+0.5) —nR
= e )

E (2.26)
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If E is negative, the lunar clock is running faster than the Julian clock; if E is positive, then the
lunar clock is running slower. The smaller |E| the better the cycle. The practical measure of error
for any cycle is how many days off is it after one cycle period which for definiteness we take to be
exactly n Julian years. Let this quantity be E4q. The expression for Ey is

Eq=YinE (2.27)

where Yy is just the number of days in the Julian year. If the epoch when the epoch when the cycle
was started was a new moon, then after exactly n Julian years the final new Moon of the cycle
occurred a time F; away in days.

As an illustration Table 1.1 shows lunar cycles and their diagnostics calculated using a modern
value for the mean lunar month (29.530588 days) for some of the n values from 1 to 483. As n
was increased from 1, only the cycles that improved in accuracy on (i.e., had smaller E than) all
the proceeding ones were retained. If the mean lunar month were truly constant, we could find
longer cycles that were more accurate still. However, there is in fact a secular increase in the lunar
month of ~ 4 x 1079 days per year (Appendix A, § A1). Unless accounted for this secular increase
will cause a diminishing of returns in accuracy as one increases the cycle periods. I have stopped
the calculation of cycles when the error caused by ignoring the secular increase became significant
compared to the error in the cycle.

Table 2.1. Lunar cycles for the Julian year

n m d FE FEq T

1 12 365.25 -0.02979588 -10.882944 -0.092

2 25 730.50 0.01062930 7.764700 0.258

3 37 1095.75 -0.00284576 -3.118244 -0.962

5 62 1826.25 0.00254426 4.646456 1.076

8 99 2922.00 0.00052300 1.528212 5.235
11 136 4017.75 -0.00039575 -1.590032 -6.918
19 235 6939.75 -0.00000891 -0.061820 -307.344
255 3154 93138.75 0.00000778 0.724552 351.942
274 3389 100078.50 0.00000662 0.662732 413.440
293 3624 107018.25 0.00000562 0.600912 487.592
312 3859 113958.00 0.00000473 0.539092 578.751
331 4094 120897.75 0.00000395 0.477272 693.525
350 4329 127837.50 0.00000325 0.415452 842.456
369 4564 134777.25 0.00000262 0.353632 1043.458
388 4799 141717.00 0.00000206 0.291812 1329.623
407 5034 148656.75 0.00000155 0.229992 1769.627
426 5269 155596.50 0.00000108 0.168172 2533.121
445 5504 162536.25 0.00000065 0.106352 4184.218
464 5739 169476.00 0.00000026 0.044532 10419.474
483 5974 176415.75 -0.00000010 -0.017288 -27938.454

Note.—The number of months and days in a cycle are m and d respectively. Note the day count
d is exactly n Julian years, but the month count is rounded off to the nearest whole month. The E
is the relative error in the cycle:

5o Int(nR+ 0.5) —nR
- nR ’

where R is the number of mean lunar months per Julian year. The E; is the number of days the cycle
is off after one cycle period which we take to be exactly n Julian years. If E4 is negative, then lunar
phenomena come early by |F4| days |E4| days. and if Eg4 is positive, then lunar phenomena come
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early by The number of Julian years until the cycle is desynchronized by one day is 77 (assuming
no secular variation in the lunar period). The cycles were calculated for n from 1 to 1000, but as n
was increased only those cycles that improved on the proceeding ones were retained.

From Table 2.1, it i1s clear that shortest cycle with good accuracy is the 19-year cycle. This
famous cycle is called (by moderns [Ne7]) the Metonic cycle after the Athenian astronomer Meton,
who in 432 BC together with Euctemon discovered it (To12; Pal08; No65; Ne7). The Greeks did not
put the Metonic cycle into immediate use, but did honor Meton with a statue (Ne7). The first known
use of the Metonic cycle was by the Mesopotamians from 381 BC on (Pa52; see also Nel40; No65).
Tt is not known if the Mesopotamians discovered the cycle before or after after Meton (Nel40).

The historical Metonic cycle is not quite what we have shown in Table 2.1. The historical
Metonic cycle is 235 mean lunar months are equivalent to to 6940 days, not 6939.75 days (which
is exactly 19 Julian years). This historical Metonic cycle is less accurate than the Julian-year
Metonic cycle, since with it the lunar clock runs 0.31 days fast after one cycle period of 6940 days.
Our Julian-year Metonic cycle is equivalent to the Kallipic cycle introduced by Kallipos of Cyzicus
(c. 370-300 BC: Pe321), an associate of Aristotle’s (To12), in 330 BC (Tol2; No65). This cycle
equates 4 x 235 = 940 mean lunar months to 4 x 6939.75 = 27759 days which is exactly 76 Jyr
(No65).

Besides their use for intercalation, lunar cycles allow a simple way of creating lunar ephemerides.
To compute the predicted phases of the Moon for a given civil year, one merely writes down the
observed phases of the Moon for a time one cycle period ago. As is evident from Table 2.1, this
method of ephemerides calculation will not be too accurate for any cycle shorter than the Metonic
cycle. To gain an order of magnitude decrease in relative error from the Metonic cycle (the Julian-
year Metonic cycle) one needs to go to a 445-year lunar cycle. Planetary cycles (see § 2.777.3) allow
planetary ephemerides to be calculated analogously.

Ephemerides calculated using lunar or planetary cycles (that use years) not only predict the
synodic behavior (i.e., the behavior relative to the Sun), but also the sidereal behavior (i.e., the
behavior relative to the fixed stars). This is for the following reason: in an integral number of
sidereal years, the Earth returns to the same location relative to the fixed stars. Thus, after one
cycle period of an integral number of Julian years (to continue using Julian years for clarity), the
Earth has approximately returned to the same postion relative to the fixed stars and the celestial
body has returned to approximately the same position relative to the Sun. Therefore the celestial
body has also returned to approximately the same position relative to the fixed stars.

The above reasoning has a mathematical proof. Assume an ideal cycle of period P where

P = ng Pa = negn Poyn - (2.28)

Here Pg is the Earth’s year, and since this is an ideal case we take the tropical and sidereal year to
be exactly the same. The P.yy is the synodic period of a celestial body. For a celestial body (planet
or Moon??7??), the synodic period is given by

PsidPEB

ik 2.29
Psid _PEB ’ ( )

Psyn:‘

where Piq is the sidereal period of the celestial body. Substituting equation (2.29) into equation (28)
and rearranging, we find

P = ng Py = ngyn Psyn = (ng F Nayn) Psid , (2.30)

where the upper and lower cases are for Piq > Pg and Psg < Pg, respectively. It is easy to show
that ng F negyn > 0 always. Thus P is also a cycle of an integral number of sidereal periods of the
celestial body. Therefore, the sidereal behavior of the celestial body repeats after P as claimed.

A special use of the Metonic cycle in the Christian tradition is in the computation of the date
for Easter (Pa217-221; No65-66; NeT). It was early on established that Easter should be on the first
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Sunday after the first full Moon of spring: i.e., the first full Moon after the spring equinox, usually
March 21 in Gregorian Calendar. However, the greatest festival of Christendom could not be left to
short-notice observational determination. A means of calculating the Easter date years in advance
was desired. But the Christian Fathers were not too adept at astronomy, so some simple Easter
reckoning procedure was required. With some complications, the procedure (called the computus)
was essentially to use the Julian Metonic cycle along with a ad hoc correction called the saltus
luna (Pa218). This Easter calculation procedure was due to Dionysius Exiguus in about 520, who
also set the zero of the Christian (now also civil) calendar at the supposed year of Jesus’ birth
(see also Appendix C note). The difference between the Julian year and the tropical year, and the
approximate nature of Metonic cycle itself lead to problems in Easter reckoning. With the Gregorian
calendrical reform of 1582 (Pa220) these problems were cured, but addition of extra complications
in the formula for Easter.

In creating Table 2.1, we used the Julian year as the unit for the year clock. It is of some
interest to repeat the calculation using the tropical year since, like the mean lunar month, it is a
true astronomical clock. Table 2.2 shows the lunar cycles for the tropical year: the table is exactly
like Table 2.1, except for change in year unit and other defining quantities.

Table 2.2. Lunar cycles for the tropical year

n m d FE FEq T

1 12 365.24 -0.02977515 -10.875143 -0.092

2 25 730.48 0.01065088 7.780302 0.257

3 37 1095.73 -0.00282446 -3.094840 -0.969

5 62 1826.21 0.00256567 4.685462 1.067

8 99 2921.94 0.00054437 1.590622 5.029
11 136 4017.66 -0.00037440 -1.504219 -7.313
19 235 6939.60 0.00001245 0.086403 219.899
182 2251 66474.08 -0.00001093 -0.726590 -250.485
201 2486 73413.68 -0.00000872 -0.640187 -313.971
220 2721 80353.28 -0.00000689 -0.553784 -397.267
239 2956 87292.89 -0.00000535 -0.467380 -511.361
258 3191 94232.49 -0.00000404 -0.380977 -677.206
277 3426 101172.09 -0.00000291 -0.294574 -940.341
296 3661 108111.69 -0.00000193 -0.208171 -1421.909
315 3896 115051.29 -0.00000106 -0.121768 -2586.893
334 4131 121990.89 -0.00000029 -0.035365 -9444.494

Note.—The symbols have the same meaning as in Table 2.1, except that n is the tropical year
count, the day count is no longer exact, F is now calculated using R = 12.368267 (i.e., the mean
number of lunar months in a tropical year), Eq4 = YrnFE where Y7 is the length of the tropical year
in days (i.e., 365.24219878: see App. B, Table B2), and T} is now a count in tropical years.

We can see that up to a year count of 19, the same cycles with the same number of years appear
in both Tables 2.1 and 2.2. Thus there is also a Metonic cycle for the tropical year. The tropical
year Metonic cycle is also very accurate, although somewhat less so than the Julian year Metonic
cycle. Above 19, the entries in the two tables are not the same. This longer, more accurate cycles
are more sensitive to the difference in the lengths of the tropical and Julian years.

There is one other year, the Egyptian year, for which it is interesting to create a table of lunar
cycles. The Egyptian year is exactly 365 days long. The calendar based on this year was used by
the ancient Egyptians and later by astronomers down to Copernicus (Ne81; Rol130). A calendar
with a year of invariant length and a whole number of days was found to be extremely useful in
establishing an absolute astronomical chronology. To quote Copernicus:

In computing the heavenly motions, however, I shall use Egyptian years everywhere. Among
the civil [years], they alone are found to be uniform. For the measuring unit had to agree



with what was measured. Harmony to this extent does not occur in the years of the
Romans, Greeks, and Persians. With them an intercalation is made, not in any one way,
but as each of the nations preferred. The Egyptian year, however, presents no ambiguity

with its definite number of 365 days (Ro130).

Table 2.3 shows the lunar cycles for the Egyptian year: the table is exactly like Tables 2.1 and 2.2,
except for change in year unit and other defining quantities.

Table 2.3. Lunar cycles for the Egyptian year

n m d FE Fq T

1 12 365.00 -0.02913135 -10.632944 -0.094

2 25 730.00 0.01132151 8.264700 0.242

3 37 1095.00 -0.00216278 -2.368244 -1.267

8 99 2920.00 0.00120829 3.528212 2.267
11 136 4015.00 0.00028891 1.159968 9.483
14 173 5110.00 -0.00023645 -1.208276 -11.587
25 309 9125.00 -0.00000529 -0.048308 -517.513
75 927 27375.00 -0.00000529 -0.144924 -517.513
311 3844 113515.00 0.00000511 0.580272 535.956
336 4153 122640.00 0.00000434 0.531964 631.622
361 4462 131765.00 0.00000367 0.483656 746.398
386 4771 140890.00 0.00000309 0.435348 886.647
411 5080 150015.00 0.00000258 0.387040 1061.906
436 5389 159140.00 0.00000213 0.338732 1287.153
461 5698 168265.00 0.00000173 0.290424 1587.334
486 6007 177390.00 0.00000136 0.242116 2007.302
511 6316 186515.00 0.00000104 0.193808 2636.630
536 6625 195640.00 0.00000074 0.145500 3683.849
561 6934 204765.00 0.00000047 0.097192 5772.080
586 7243 213890.00 0.00000023 0.048884 11987.562
611 7552 223015.00 0.00000000 0.000576 1060763.902

Note.—The symbols have the same meaning as in Table 2.1, except that n is the Egyptian year
count, the day count is now exactly integral, F is now calculated using R = 12.360065 (i.e., the
mean number of lunar months in an Egyptian year), and E4 = YrnFE where Yg is the length of the
Egyptian year in days (i.e., 365: see App. B, Table B2), and T} is now a count in Egyptian years.

The shortest high accuracy lunar cycle for the Egyptian year is the 25-year cycle. It is in
fact somewhat more accurate than the Julian year Metonic cycle. The 25-year cycle was used by
Hellenistic astronomers since they usually used the Egyptian calendar (Ne95). Even now the 25-year
cycle has the convience of simplicity in casual (if not too important) calculations. For example, 1996
February 18 is a new Moon. Allowing for the 6 leap years, 2021 February 12 is predicted to be a
new Moon. Because of the variation in the lunar month, this prediction may be off by a day or

2.2922.3 Planetary Cycles

Planetary cycles for the year and planetary synodic period clocks are useful for writing planetary
ephemerides as mentioned (see 2.77?7.2). This method for writing ephemerides was used by the
ancient Mesopotamians as earlier as 523 BC (Pa55). In Table 2.4, we present for interest the
simplest planetary cycles using Julian years again.

2.7777 Astrology



18

Astrology is not a monolithic thing. There is the broad distinction between Western and
Eastern astrologies. The former arising in ancient Mesopotamia, and spreading and branching and
cross fertilizing throughout India, the Islamic world, and the West. The latter initially entirely
independent, but showing obvious signs of convergent evolution (No133). Other independent or
semi-independent astrologies exist as well. But to the narrow the scope to the most familiar, we will
just refer to Western astrology as astrology hereafter.

But even so confined, astrology is a broad domain. Modern astrology is the pseudo-scientific
prediction of human affairs from astronomical events using a mishmash of ancient rules and ancient
astronomical observations. It is practiced essentially for fun and profit, but very few take it seriously.
One’s daily horoscope is just a story for the day: an unreality check. Some take it much more
seriously of course. This kind of astrology is not new—its at least as old as Babylon—Dbut it is only
a remnant of once mighty, if always problematic, lore.

In this section, we will just sketch a history of (Western) astrology. A full treatment is beyond
our scope. We will touch on it again and again, however.

The disdain with which modern astrology is viewed by most people and assuredly by all scientists
should not blind us to the fact that before about 1700 in Europe, astrology was serious philosophical
discipline (No260ff, No270).

Astrology was

However, there are plethora of astrological traditions: they evolve, mutate, interbreed, often
just stay the same, and often get made up brand new.

The origin of western astrology is in ancient Mesopotamian divination. The Mesopotamians
(like many others) believed that the gods communicated information through portents, omens, and
signs (which are all synonyms). A great many varieties of divination existed both unprovoked (e.g.,
a dog crosses your path) or provoked (e.g., you examine the viscera of dead animals to answer a
question [extispicy]). The Mesopotamians systematized the techniques of divination in treatises
and made large collections of omens. These works were considered the Mesopotamians and their
neighbors one of the great Mesopotamian intellectual achievements (Op206).

Astronomical and meterological events (which were not always distinguishable) could also be
omens. As early as the old Babylonian kingdom??? (c. 1900-1600 BC) (Op224, ?77?77), the omen
version of astrology was in evidence. Given the special majesty of the heavens it is not surprising
that astronomical omens gained particular royal attention. The Assyrian kings of late Assyrian
period (c. 900-600 BC??77) had an astrological bureau??? to keep them informed (Op225, 227).
These kings were terrible militarists and given the usual chanciness of war seemed particularly in
need of inside information???. From those times on there were often to be astrologers about the
courts of kings. This tradition in Europe continued up to the 17th century. Perhaps the tradition
has not ended yet: there is a persistant story that Nancy Reagan consulted astrologers (No267).

That astronomy (i.e., systematic and systematizing study of astronomical events) gained great
impetus of astrological needs seems clear. One also needs to remember the human tendency
for studies to become ends in themselves: so may it have been for astronomy even among the
Mesopotamian astrologers. By the 8th century BC, a much higher level of astronomy was being
practiced. The high point of Mesopotamian astronomy was achieved after 300 BC (see § 777).

It is possible that horoscopic astrology was initiated in Mesopotamia in the 5th and 4th centuries
BC (Op225), but the point is disputed. Horoscopic astrology, as it has developed, is the prediction
of human affairs (and also human medical conditions) based on the astronomical state at the time
of birth (or even conception). This birth state stamps the character and, in medical astrology, the
body of a person. In extreme form, the person whole life is determined, but few astrologers have
ever held that doctrine. The horoscope, itself, is both a chart showing the position of the celestial
bodies in some or other arcane coordinate system at a particular time and the interpretation of this
chart. The natal horoscope for a person is the key one. Of course, later astronomical events also
influence a person, but these are also interpreted in terms of the birth astronomical state.

Actually, almost all astronomical states are completely determined: something the
Mesopotamian astronomer-astrologers learned quite well. Therefore, almost all the astrological
influences a person will receive are foreordained. However, working out all influences in advance was
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tedious and for the astrologer’s clients expensive. Often a horoscope would be bought for only so
many years in advance. Comets, of course, were unpredictable and so added some uncertainty to
the equation.

In the Hellenistic period Mesopotamian astronomy and astrology entered the Greco-Roman
world. Whether or not horoscopic astrology originated in Mesopotamia or not, it certainly flourished
in the Greco-Roman world. Unlike the older astrology, horoscopic astrology was democratic: it
applied to all, high and low. It became a common coin of the realm. However, then as now there

they meet.

There was a plethora of astrological and astronomical literature of various sorts most of which
has not survived. Some of it was evidently very crude and continued long after better astronomy
and more sophisticated astrology developed (Nol19).

At the highest level was the Tetrabiblos of Ptolemy (c. 100-175 AD: Tol), one of the greatest
astronomers. This book is the masterpiece of astrology, and so recognized by the the most enlightened
of subsequent astrologers. Here astrology is presented as a science shorn of its anthropomorphic???
elements. It has to be emphasized, however, that Ptolemy distinguished clearly between astronomy
and astrology: the former was an exact science; the later was approximate, speculative, but sublime.

Ptolemy was a rare spirit; most professional astrologers, however, would just crank out
horoscopes and interpret them according to the rules. They never needed to look at the stars,
but merely consult tables of dubious accuracy. Nothing much has changed since. The astrological
rules gives the influences of the various astronomical events, but weighting of the influences is an
art. Obviously, a good personal astrologer can use their intimate knowledge of their clients to tailor
their horoscopes to the person. The rules just applied blindly give no statistically valid correlation
between horoscope and person: a resulted repeated endlessly.

Astrology was driven out of the Christianized Roman empire of the 4th and 5th centuries
(No122-124), but revived a bit in the 8th century (Nol122-124). Also in the 8th century astrology
flowered in the Medieval Islamic world. Islamic astrology then flowed into Europe in the 11th and
12th centuries. Astrology became deeply deeply embedded into European culture. Although there
were people who disapproved of it from a Christian perspective, it was generally tolerated.

The practitioners and their conceptions of astrology were various. Medical and meteorological
astrologies were sciences to be used and developed (No262, 269). Personal astrology

In the Middle Ages it returned to the Western world and became quite respectable despite
its basic incompatibility with Christianity. Most Medievel and Renaissance astronomers were
astrologers. Of course, there were many astrologers who could not be called astronomers. Physicians,
for example, used astrology for medical reasons.???77

The last great astronomer to be an astrologer was Johannes Kepler (1571-1630). For most of
his career his job was Imperial mathematician (i.e., astrologer) in the service to the Holy Roman
Emperors. Kepler knew the ordinary rules of astrology were worthless, and told his patrons as much
even when supplying them with the predictions based on those rules. But he held fast to the belief
that there was a connection between microcosm and macrocosm: a hallowed correspondence between
the God-given soul and the divine handiwork above. He cast many horoscopes for himself seeking
his own significant explanation. He hoped for a purified astrology. He was a transitional figure.
A generation after Kepler, astronomers and astrologers had gone their separate ways. Nowadays
astronomers do not cast horoscopes (and mostly do not know how) and astrologers take no interest
in astronomy: it has been a divorce made in heaven.

To finish this section, a brief word on the zodiac. The zodiac can mean three things. First, a
belt about 18° wide centered on the ecliptic. The orbits of all the planets, except Pluto, are confined
to this belt (C169). The second meaning is the twelve traditional constellations that straddle the
ecliptic. (The constellation Ophiuchus also crosses the ecliptic but it is omitted from the zodiac
[Ze10].) The twelve zodiacal constellations are listed in Table 1.1. Most of these constellations are
animal figures: only Libra is clearly inanimate. Hence the word zodiac which is derived from the
Greek zoidiakos, circle of animals (Ba1420). The zodiac constellations were mostly derived from the
ancient Mesopotamians who first came up with the idea of the zodiac. From them the zodiac passed
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to the Greeks and from the Greeks to us.

The third meaning of the zodiac is the twelve signs. These are the signs that turn up in astrology.
The signs are in fact nothing but 30° intervals of the ecliptic that are measured starting from the
spring equinox. Two thousand years ago, the spring equinox was in the constellation Aries: that was
the Age of Aries. The twelve signs were named for the the zodiacal constellations they contained at
that time. Due to the precession of the equinoxes, the spring equinox shifts 1.396° west per century.
Thus it has shifted 27.93° in 2000 years. Currently, the spring equinox is in the constellation Pisces,
but sometime soon (or late) it will enter Aquarius. Since the borders of constellations are variously
defined the timing of the dawning of the Age of Aquarius is moot. Due to the precession a sign now
contains, more or less, the constellation just to the west of the one that gave the sign its name.

A person’s astrological sign is the sign that the Sun is located in at the time of their birth.
Thus a person born in the period March 21-April 19 is an Aries. For most of the March 21-April 19
period, the Sun, however, is in the constellation Pisces (i.e., Pisces is in solar conjunction). The
linkages of the signs with the solar calendar which is almost exactly the civil calendar makes things
easy for modern astrologers. The most basic element of a person’s horoscope can be read off a
calendar without any reference to an astronomical table. Table 1.1 gives the natal period for each
sign.

Table 2.4. The zodiacal constellations and signs

Constellation English name Approximate mean date Natal period for sign
and sign of solar conjunction
of constellation

Aries Ram April 30 March 21-April 19
Taurus Bull May 20 April 20-May 20

Gemini Twins July 5 May 21-June 20

Cancer Crab July 30 June 21-July 22

Leo Lion September 1 July 23-August 22

Virgo Virgin October 11 August 23-September 22
Libra Balance November 9 September 23-October 22
Scorpio Scorpion December 3 October 23-November 21
Sagittarius Archer January 7 November 22-December 21
Capricorn Fish-Goat Februay 8 January 20-Februay 18
Aquarius Water Bearer March 27 Februay 19-March 20

Note.—The approximate mean dates of the solar conjunctions of the constellations are from
Zel0. Since any source is as good as any other for the natal periods for the signs, the ones given are
from “Breszny’s Real Astrology” in the Nashville Scene (Breszny 1996, p. 58-59). Like the planets,
the zodiacal constellations and signs have traditional symbols (Ne228). However, they cannot be

reproduced by TgX.

Needless to say, for most people astrology is just playing at believing. Your daily horoscope
gives you a story for the day.



3. Ancient Mesopotamian Astronomy

Ancient Mesopotamia is where the first significant advances over prehistoric astronomy were
achieved. It 1s in Mesopotamia that we have the first detailed records of astronomical observations.
(T do not count observational records implied prehistoric structures since that would be stretching
the meaning of the term record and because these cannot be dated precisely and are not all that
detailed in fact.) Moreover, the first mathematically predictive theories of astronomy developed in
Mesopotamia relying on the Mesopotamians great achievements in mathematics.

Before delving into the history of astronomy in Mesopotamia, we give an introduction to
Mesopotamian history (through to the year 100 AD). This is profitable just for general interest (since
popular knowledge of ancient Mesopotamia tends to be slight) and for background information to
the astronomical achievement. Indeed, the background information is very relevant. One cannot
have records for astronomy or history before there was writing, and writing most probably began
in Mesopotamia (Po52, 56). The Mesopotamian mathematics provided the tools for predictive
astronomy. And the Mesopotamian propensity to divination provided an incentive for astronomy in
the service of astrology.

3.1 The Land

Mesopotamia is a Greek name meaning land between the rivers??? (Ba763, 948). The term
was used by Greek and Roman writers (Llo12) and is not a translation of a name used by the
ancient Mesopotamians themselves. It is, however, usefully descriptive. The centers of ancient
Mesopotamian civilization lie between or close to the rivers Euphrates and Tigris that have their
sources in the Taurus and Zagros mountains (more or less in modern Turkey and Tran respectively
(Llo12). Euphrates and Tigris are names that appear in the earliest texts and thus date back to
a literal time immemorial (Po173). The Euphrates starts in Turkey, flows through western Syria,
and then south through Iraq to the Persian Gulf. The Tigris, to the east of the Euphrates, does the
same, except that it barely touches Syria. About 150 km from the Persian Gulf, the rivers merge,
or more accurately lose their identity in a coastal land of marshes and lakes (Llo14-15).

The north and east of Mesopotamia are enclosed by the aforementioned Taurus??? and Zagros
mountains (Llo12) These mountains were outside of ancient Mesopotamia (as we think of it), but not
disconnected from it at all. Trade and military incursions from and to the mountains occurred???.
To the north-west the Euphrates extends to within 200 km of the Mediterranean (Po12), giving the
Mesopotamians a connection to that realm of history. To the south and south-west are the Syrian
and Arabian Deserts (Pol2; Llo13). Approaching Mesopotamia from the west, one encounters an
escarpment with a fall of ~ 30m to the plain of the river valley; this escarpment provides the
name Iraq, meaning ‘the cliff” in Arabic (Llo12-13). The deserts were inhabited by nomads as far
back history extends (Po4). However, the deep desert was probably nearly impassible before the
domestication of the camel which does not seem to have been before circa 1000 BC (Po5).

In Mesopotamia four regions might be generally distinguished based on geography and climate.
First, are plains fringe the north and north-east by the foothills of the Taurus and Zagros mountains
(Poll). This fringe has sufficient rainfall for agriculture: i.e., more than ~ 300mm per year
(Pol13). The exact contour line of sufficient rainfall has varied over history and so has the border of
settlements. Tt is in this region that Assyria (the major northern component of Mesopotamia) was
located.

The second region, south of the northern fringe, east of the Euphrates is the Jazirah (‘the
Island’), a an arid limestone plateau, the home of nomads in ancient and modern times (Llo14;
Po4-5). The ruggedness of this area and its elevation make it unsuitable for for irrigation.

The third region, south-east of the Jazirah is the alluvial plain of the Euphrates and Tigris. It
starts about 600 km from the coast (Llo14-15). However, even 500 km from the coast the land is less
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than 20 m above sea level (Po6). The rivers have, of course, created this plane by deposition over
a geological time span. Because of low contrast in the plane the rivers have changed their courses
several times in past few thousand years (Pol5). These are easily undestood. The alluvium from
river of shallow grade tends to be deposited along its course. Gradually banks (levees) built up
about the sides of the river especially from flood deposit. In time the river runs higher than the
surrounding plane Then a large flood can cause it to burst a bank, and take a new course.

The alluvial plane is arid and the unwatered parts are sand or barren desert (Pol5). The
summer daytime temperatures are in the range 43-54 degrees Celsius range and there is no rain for
8 months (Llo17). There are rainstorms in the winter, but they are insufficient to lift the aridity. In
a natural state only along the river edges would there be extensive vegetation despite the natural
fertility of the alluvial soil. However, from prehistoric times irrigation has been practiced.

The original farmers expanded along the river edges, but found they could easily water the
surrounding land by building canals off the rivers (Pol174). Because the rivers actually flow above
the surroundings at least in flood time, all that was needed was to cut through the banks to get
a flow of water. The problem was to control the water. Too much water would drown the land.
Moreover, the rivers are in flood in sometime April through June, but the growing season is over
the winter (LIo17). Therefore a complex network of canals and reservoirs was needed to control and
store the river water. Naturally too, the canals and reservoirs would tend to silt up and need period
redigging or relocation (Llo17). Another problem is salination of the soil. Even fresh water has a
salt concentration and when continually evaporated from a field will leave salt deposit that ruins
the fertility of the soil. Moreover, the ground water also rises through because of irrigation and it is
salty likewise (Llo18). Proper drainage and other techniques can limit the salination problem and
the ancients eventually implement some of these methods (Llo18). Still salination was a recurring
problem and there are today areas white with salt deposition that cannot be farmed.

The activities of centuries of irrigation works have created a complex network of dry canals
(Llo17). These can be seen from the air and give the impression of a land once having been densely
and extensively cultivated. This is somewhat illusionary because only a fraction of these areas were
in use at any one time (Llo17). Silting up of canals, salination, and the changing course of the
rivers caused human settlement to shift. Human disasters could also change the land usage. The
constant warfare of the late 9th and 10th centuries AD (the late Caliphal period of early Islam) with
its constant extortions from the farmers ruined much of the region by causing depopulation and
making investment in agriculture projects worthless. The economic activity retreated at least to a
degree back to nomadic pastorialism (Lal133-136). However, despite the damages to the alluvial plain
caused by nature and human activity, it seems to have remained remarkably productive throughout
ancient times and only gradually suffered lowering productivity over the millennia (Llo17).

The fourth region of Mesopotamia that we distinguish here is the coastal marsh land. The
ancient Akkadian name (see § 3.2 for Akkadian) for this region literally translated is the Sealand
(Op404). Today as in ancient times, people live in the marsh land and have adapted to it (Po6-
7; Kr87ff). The modern marsh dwellers live in reed houses on islands that can often be flooded
and travel about on boats which traditionally at least are just canoes. They rely on fishing, rice
cultivation, and the water buffalo husbandry. Their ancient counterparts must have led a similar
life, but rice cultivation was introduced only about 1000 BC (Kr92) and the history of the water
buffalo in the region i1s complicated. The modern water buffalo were introduced in the early Islamic
period. (PoT7). However, an ancient introduction of water buffalo to Mesopotamia (although not
certainly to the marsh land) in the time of the Akkadian dynasty (see § 3.2) seems to have occured,
probably from the Indus civilization (Po164-165). This introduction known from art works seems
to failed since the animals disappear from art after the Akkadian dynasty.

The modern marsh dwellers probably in fact have no historical connection to the ancient marsh
dwellers (Po7). The marsh has probably been repopulated since the beginning of the Islamic period.
But because of convergent social and economic evolution, the modern and ancient marsh dweller
probably live very similar life styles.

3.2 Qutline of Political and Cultural History
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3.2.1 Early Development

The prehistory of the Mesopotamia and surrounding areas has been intensely studied. Here
we only say that in this region the Neolithic phase of humankind began with the introduction of
agriculture and animal husbandry. The transformation to the Neolithic was probably evolutionary
and dispersed (Llo26) and probably began before 8000 BC (L1028, 30).

The Neolithic transformation came comparatively late to alluvial plain of southern
Mesopotamia; perhaps circa 5000 BC (Po23). However, it is in this region that the first urban
culture developed probably in the 4th millennium BC (Po73). The course of this development is
still far from fully understood, but it seems to have been a local evolution. There is strong evidence
for a cultural continuity from the period of 5000 BC onward.

The city of Eridu (now Tell Abu Shahrain), now ~ 250km from the sea and south of the
Euphrates was ruputed by the inhabitants in the earliest historical time, the Sumerians, to be the
oldest city in the world (Llo15, 39). Archaeologists do not deny the possibility. At the lowest level
of excavation on virgin sand, there is a small temple dated to 4900 BC recognizably the forerunner
of great Mesopotamian temples of later times (L1039, 41-42). The temple is about 3 meters, and
its plan shows features that can be identified as a cult niche at the back (the seat of the god) and a
central offering table (L.1o41-42; Po118-119). This basic layout would persist for the inner sanctums
of Mesopotamian religion. Above this simple structure, in upper layer of excavation, are a series of
temples culminating in what was probably a massive structure on a raised mound of earth (L1039;
Po25).

Eridu’s prehistoric role as a shrine was probably one of the determining causes for a large
settlement to develop there; a settlement with economic and political importance, and complex
specialization of labor (Po73-74). Archaeology and the historical record agree that the major
settlements that were spread over Southern Mesopotamia had strong patriotism based on their
city, its temple, and its protecting deity (Po26). Thus almost other cities probably evolved similarly
about shrines ancient shrines even if they do not go or cannot be traced back as far as at Eridu.
The these other earliest of cities include Ur (the birth-place of the Patriarch Abraham in the Bible
[Kr35]), Uruk (the city of the legendary [Kr114ff], but also historical Gilgamesh [L1092]), Sippar,
Kish, Lagash, Adab, and others.

The people who built these cities were the Sumerians and perhaps the Akkadians????, who
appear to have been present in the early 3rd millennium BC (Po36). The Sumerian language has
no known relatives and the origins of the Sumerians has been debated. Some, such as Kramer
(Kr33), have contended that they arrived in Mesopotamia only in the 4th millennium BC from
perhaps central Asia based on philological interpretation of place names (Po24; L1o62-63)). However,
the continuity of archaeological evidence particularly in regard to religious practices back suggests
strongly that the Sumerian culture developed locally (L1o62-64). A compromise possibility might be
that the Sumerians were invaders, who imposed their language, but who adopted the local culture
(Po24). But in fact invaders who impose their language are in the minority in these

3.2.2 Writing

3.2.4 The Hammurap: Dynasty of Babylon

Kok ook ok ok ok Kok ok ok ok kok kok >k needs heavy revsion.

Hammurapi (Hammurabi) (r. 1792-1750 BC [Op337]) was the 6th king of the 1st dynasty of
Babylon (Op337; Po39) which we will call (as many do) the Hammurapi dynasty (e.g., Ne29) Prior
to the Hammurapi dynasty, Babylon had been a small town whose existence is known of only as
far back as the Ur IIT dynasty (i.e., probably since circa 2100 BC) (Op155, 336). The Hammurapi
dynasty lasted 1894-1595 BC (Op337; Po39). It was founded by Amorite invaders from Syria,
who also established other regimes in the northern Fertile Crescent (L1157). The Amorites had been
nomads (Po42-43); their conquest is part of a recurring pattern in history of invasion of settled areas
by fierce rim-land dwellers, who subsequently acculturate or even assimilate with their subjects. The
Amorites spoke a Semitic language (Op49; Po36), but the Amorites of the Hammurapi dynasty seem
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to have largely adopted Old Babylonian, the language (also Semitic) of their subjects (Op54-55).

In the early years, the Hammurapi dynasty did not rule extensive territory and may not always
have been independent (Op156). Under the father of Hammurapi, Sin-muballit, and Hammurapi,
Babylon grew into an empire ruling Mesopotamia from the Persian Gulf to circa 1000 km inland
(Op156; Po44). Hammurapi’s most famous exploit (in modern eyes at least) was his sake of the city
and palace of Mari (capital of a rival Amorite kingdom) in circa 1757 (Llo157-159; Po49). The sack
left Mari (modern Tell Hariri [Llo157]) an archaeological treasure-trove: a palace preserved as well
as could be expected and an archive of cuneiform records (Po49, 141).

Hammurapi is also famous, of course, for his code of laws preserved on 42 stelae or columns (Po
288). The exact significance of the Code of Hammurapi is much debated: a true set of laws that
the king expected to be obeyed or a literary idealization of the way things ought to be done (Po289;
Op158) Postgate contends that the Code is something of a mixture: some provisions are repeats of
old laws and others are royal reforms (Po289). As king ruling over a recently enlarged kingdom, it
is reasonable and just that Hammurapi should try to establish a new standard code of laws to hold
throughout his domain.

Subsequent to Hammurapi, the Hammurapi dynasty seems to have entered a slow political
decline: the Ist ynasty of Sealand (a dynasty from the marsh lands on the Persian Gulf it seems
[Op404]) took over the old southern Sumerian cities and Kassites from the north-east harassed the
Babylonians (Llo160). In 1595, King Mursilis T of the Hittites swept south into Mesopotamia and
sacked and burnt Babylon, putting an end to the first dynasty (Llo160). The Hittites, however,
quickly withdrew, and a Kassite dynasty established itself in Babylon. The Kassites assimilated
rather completely to the Babylonian culture, and thus ensured its continuance (L1o160; Op158).

The Hammurapi dynasty overall established the fame of Babylon that has never vanished, even
its power ended with the Persian conquest of 539 BC (L10222-223) and it is now an archaeolocial
site only. The period of the Hammurapi dynasty is culturally important since it preserved and
augmented the literary tradition of the old Akkadian and Sumerian periods (Llo157). Tt is in fact
the best documented period of Babylonian history with many records opening windows on political,
social, and economic life (Op154).

It may also have been the high point of literacy in the Near East before the introduction of the
alphabet (P069). The Hammurapi dynasty is also the period from which we have our first window
on the Mesopotamian achievement in higher mathematics; we do not if this mathematic developed
then or earlier, only that it existed then (Ne29-30).

We should note that the dates of the Hammurapi dynasty and all of exact Mesopotamian
chronology before about 1500 BC are uncertain (Op335; Pa34) These dates have been established
by a synchronization with the Venus cycle as observed in the time of King Ammizaduga, 2nd to
last of the Hammurapi dynasty (see § 3.5). But the astronomical calculation is uncertain because of
the repeating nature of astronomical phenomena by an additive multiple of 64 or 56 years (Pa34).
Thus historical research must establish the absolute zero. The chronology given here has been long
favored (Pa34-35; Op337; Po39), but an alternative is also possible. In the alternative chronology,
64 years is added to all dates (No29): e.g., Hammurapi’s reign becomes 1728-1685 BC.

3.3 Cosmogony and Cosmology
3.4 Mathematics
3.5 Omens and the Birth of Astrology

3.6 The Astronomical Achievement of the Late Period

In the late period of Mesopotamia (c. 300 BC-75 AD: the Seleucid-Parthian period) we find
the appearance of a “consistent theory of lunar and planetary motions” (Ne97): i.e., a mathematical
and predictive theory which for brevity we will call the late theory. But we do not know exactly
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when or how or by whom the late theory was developed. The creative phase has been almost deleted
from history. What we have is the evidence of about 300 tablets from the late period: less than 250
ephemerides and about 70 procedure texts (Nel05-106). These tablets show the theory as already
complete (Nel02).

Some plausible surmises can be made about the time frame in which the late theory developed
from the timing of known astronomical innovations. Before 530 BC (just after the start of the
Persian period) there was no regularity in the pattern of years with an intercalation of an extra
lunar month. From 530 BC on, however, the 8-year lunar cycle (8 years and 99 mean lunar months)
(see Chapt. 2, Table 2.1) was in use (Pa51-52). This cycle is not very good: mean lunar predictions
are off by a day after 5 years from a synchronization, and this is less than the cycle time itself (see
§ 3.10777, Table 3.1). After 380 BC, the Metonic (19-year) cycle (19 years and 235 mean lunar
months) (see § 3.1077?, Table 3.1) was in use (Pa52). This may represent a considerable step in
exact astronomical knowledge, since the Metonic cycle is a factor of about 50 more accurate than
the 8-year cycle and, in its Julian year version (which of course the ancient Mesopotamians probably
did not use), is only a day off in mean lunar predictions after 307 years.

The latest astronomical text is dated to 75 AD which is nearly at the end of cuneiform writing
altogether (circa 100 AD: Op352). By the late period, the Mesopotamian civilization had long lost
political independence (due to the Persian conquest in 539 BC 77?7 and later other conquests) and
in the telescoping retrospective view of history can be seen to be near to its end. That the highest
level astronomy was reached in this period demonstrates, if any demonstration is necessary, that
various cultural achievements are not always closely connected.

One of the early signs of improved astronomy is the use of the 19-year Metonic cycle of lunar
intercalation (see App. A, Quiz 2.4 and App. B, Table B3) after 380 BC as determined from the
intercalary years of the Persian and Macedonian kings (Pa52). A more powerful indication is the
existence of ephemerides based on long periodicities.

Synodic phenomena for a planet (e.g., conjunctions, oppositions, and retrograde motions)
depend on the phase of the synodic cycle (the events that occur in the course of synodic period).
However, the synodic cycle is not in fact a exactly repeating cycle. Even if a planet moved in a
circular orbit in the ecliptic plane with uniform speed, the position on the Celestial sphere (i.e.,
relation of the fixed stars to the planet) will be different at the same phase in succeeding synodic
periods. And of course those conditions do not obtain. The exact synodic behavior (length of the
synodic period, and celestial position, speed, and ecliptic longitude as functions of synodic phase)
depends also on the sidereal cycle of the planet. Thus, the planet’s overall behavior will repeat over
a period that is a common multiple of the synodic and periods (hereafter the repeat period): i.e.,
when the planet is located at the position relative to the Sun and fixed stars. Thus we want integer
solutions for the factors m and n in the equation

mPsyn = nPsiq , (3.1)

where Py, and Fsig are the synodic and sidereal periods, respectively.

There can be no exact common multiple. The (mean) synodic and sidereal periods are known
only to finite accuracy and if we use all the digits of modern accuracy available, we would find
impractically long repeat cycles in any case. Thus, no ideal pair of integers can m and n be found.
However, one can use approximate, practically useful repeat periods. Then the ephemerides for a
planet for a given year can be predicted approximately by simply reporting the ephemerides one
repeat period back.

The Mesopotamian astronomers used this method together with clever corrections to account
for the lack of perfect repeat periods (Pab4). Of course, they also had to take account of the
purely chronological difficulties caused by the variable years of luni-solar calendars. As an example,
the Mesopotamians found a repeat period for Jupiter of 81 (tropical) years (Pab4). This period
constitutes 76 Psyn (modern Psy, = 398.9 days: F565) and and 7Psq (modern Psq = 4333 days:
F565). To (text book) modern accuracy, the ideal ratio of n/m = 3989/43330 ~ 0.09206:

this ratio is the number of sidereal periods per synodic period. The Mesopotamian ratio of
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n/m = 7/76 ~ 0.09210 which is not too bad. Obviously, the longer the history (time baseline)
of accurate observations, the more accurately the repeat periods could be determined and the more
accurate the resulting ephemerides.

Another periodicity that the Mesopotamians probably used (as early circa 380 BC) was the
Saros period (Pab8-59, but see the caution of Nel42). The Saros period is the nearly exact repeat
cycle of eclipse phenomena. The word Saros is from the Babylonian word shar meaning universe
(or something similar) or the large number 3600 (Nel41). Tts association with the eclipse cycle is a
philological??? error due to Edmund Halley (of the famous comet) in 1691 (Nel42). The length of
the eclipse cycle is 223 mean lunar months or & 6585.32 days (18 tropical years and 11 days, not
counting fractional days). The remainder of about 1/3 days means that at each new Saros period
the Earth has rotated about 120°. Three Saros periods constitutes a nearly exact replication of
all eclipse phenomena. However, because the Saros period is not an exact periodicity (Pa60), solar
eclipse tracks can effectively wander all over the Earth given enough time (Gi??? and references
therein that badly need to be consulted). The evidence for the Mesopotamian use of the Saros
period is the ‘Saros Canon’, a cuneiform tablet investigated by Strassmaier and Epping (Pa60).

One has to emphasize, that knowledge of the Saros period and the methods described below
were insufficient to predict solar eclipses (Nell19). Lunar eclipses can be seen by all people located
on the night side of the Earth. Thus, lunar eclipse prediction based on simple means is feasible
and the Mesopotamians achieved this. Solar eclipses can only be seen in a geographically restricted
track; totality in a only very narrow track. The Mesopotamians never developed the geometrical
or geographical insights to predict the tracks of solar eclipses. All they could do was to exclude an
eclipse or predict its possibility (Nell9).

The Mesopotamians also had a more sophisticated approach to prediction than the periodicity
method. This was an approximate difference method (Nel10-113) used from 250 BC (Nel15). All

the concept of velocity in a straightforward way: i.e., as the ratio of a distance to a time. However,
the Mesopotamians did calculate the angular distance travelled by celestial bodies in time intervals
(e.g., a lunar month) as a function of position on the Celestial sphere and time. Given the fixed time
interval, these angular distances (distance differences) are effectively velocities. The Mesopotamians,
however, further simplified their differences by effectively making a linear approximation between
their periodically recurring minimum and maximum values. Consequently, the differences as function
of time form a zigzag function when plotted rather than a smooth sinusoidal curve (Pa66). There is

Using tables of differences (and also similar, but simpler approaches Nell4) quite accurate
ephemerides could be calculated in principle. However, because of errors in the differences, errors
in the table predictions could be a few degrees???. The practical purposes the periodicity method
could provide somewhat more accurate ephemerides, but still with maximum errors of a few degrees.
The Greek astronomers did no better. Only with the Rudolphine Tables (1627) of Kepler based on
Tycho Brahe’s observations and his own planetary model, were maximum errors usually reduced to
a degree (e.g., Zeb5). One should note that accuracy of only 5% means that celestial bodies could
be a fist (at arm’s length) off predictions. Probably one could still find the celestial body with this
accuracy provided it was not too faint, but true times of conjunctions, oppositions, occultations,
etc., could be missed by days???? without keeping watch near and in advance of the predicted times.

It is possible that the Mesopotamian had what, anachronistically, we could call a rather
positivistic theory of celestial phenomena aside from theological beliefs. Thus what one sees in
the sky (motions in two dimensions on the Celestial Sphere with their fixed cycles) was the theory
itself. This can certainly be called a valid scientific theory. If you did not see what you saw,
the theory would be falsified. The parameters of the theory needed fitting and the fitting can be
improved by repeated observation. There is a cycle of observation from the real world, adjustment of
the parameters to yield better predictions, renewed observation, and so on. The cycle is effectively
infinite: ever improving predictions heading to a limit of exact prediction. This is essentially the
scientific method applied, except for the search for generalization. They did not try generalize so far
as we know. They could, for example, have tried to bring terrestrial notions of geometry and motion
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into their theory: if successful this would have obtained some unification of earthly and celestial
physics and so have created a theory that we would say was more fundamental.

However, if the Mesopotamians had some non-theological picture beyond just what was seen,
then 1t has not been recorded and it never became the basis for empirical study: i.e., it was
never submitted to the scientific method. Perhaps sometimes they did image the planets in three
dimensional space, but nothing came of it. The theological picture that the gods moved the celestial
bodies and fixed their periodicities was certainly part of their view, but since that picture is not
falsifiable (however true or false it may be), it is not a scientific theory. They did come to believe
that the interference of the Moon caused solar eclipses, but never that that of Earth caused lunar
eclipses?????7. The Earth was a nearly flat, immobile surface at the bottom of sky, not an object
on the sky dome. This cosmological picture could certainly be treated as a scientific theory has
discussed in Ch. 2.777, but it never was.

And who were the late Mesopotamian astronomers? The cuneiforms tablets that we have come
from two archives found in Babylon and Uruk (Nel36): those from Babylon rarely have colophons.
Colophons are the final sections of the tablets containing usually the title (often an incipit) if there
is one, the name of the scribe, the owner of the tablet, the date, and sometimes a serial number
(Op241; N17). The colophon might say “Tablet of A” (Nel36) and give a genealogy of A. There can
be an invocation for divine aid or a curse on the illicit borrower. The Uruk texts indicate that the
writers came from two scribal families both claiming a priest as an ancestor. But we do not know if
the scribes were astronomers or mere copyists???. From Greco-Roman writers (Pliny, Strabo, and
Vettius Valens) the westernized names of three Mesopotamian astronomers are known. One of these,
Kidenas may be the Kidinnu mentioned in some of the colophons.

Although we do not know the exact channels, Mesopotamian astronomical conventions and
data did pass into the Greco-Roman world. This is not surprising since the Mesopotamia was
part of an Hellenistic kingdom from Alexander’s conquest (330 BC??) till the Parthian conquest
(181 BC?777). Even before, Greek travellers (Herodotos???), traders and craftsman (?777), and
mercenaries (Xenophon???) had penetrated the Mesopotamian world. Hipparchos (c. 190-120 BC)
used some Mesopotamian data (Pe49; No93ff). From shortly before Hipparchos, in the Anaphorics
of Hypsicles, we find the first Greek appearance of the Mesopotamian division of the circle into 360°
and sexagesimal arithematic (No93). From him and other sources these data and conventions have
been passed onto posterity along with some constellations, the Zodiac???, and the concept and raw
materials of astrology.

3.7 Postlude: The 24-Hour Day and the Egyptian Year

The achievements of the Egyptians in mathematics and astronomy were minor compared
to those of the Mesopotamians (Ne72, Ne80, Ne91). This does not, however, imply a general
backwardness in sciences. In medicine, both modern commentators (Op296) and Herodotos (see
Op299) put Egypt in ahead of Mesopotamia. For astronomy, however, there are two areas in which
Egyptian influence i1s worth some discussion here: the 24-hour day and the Egyptian year.

Our 24-hour day is an Egyptian relic. Its evolution in Egypt is somewhat complex. By the
time of Seti T (c. 1300 BC) the day was divided into 10 hours (which reflects a basically decimal
number system; N85-86) to which two hours were added for the twilight periods of morning and
evening, respectively (Ne86). The night was also divided into 12 hours from as early as 2100 BC
(Ne88) about the time of transition between the Egyptian Old and Middle Kingdoms (Op348). This
division also had its root in the decimal number system. The path from a decimal number system
to 12 is rather intricate; Neugebauer (Ne81-86) has given a description of this path, but note that
a crucial argument seems to be omitted (Ne85). Thus, the 12 hours for night and day sum to give a
24-hour day. Originally, the lengths of the hours was uneven, but Hellenistic times at least seasonal
hours had come into use (Ne86). Seasonal hours divide both day and night into 12 equal parts???;
the length of the day thus depends on the time of year. Only on equinoxes are all the hours of
day and night of equal length. These equal-length hours or equinoctial hours were originally only
used by Hellenistic astronomers (Ne81). The 24-day with seasonal hours passed into the Greco-
Roman culture in Hellenistic times and was from there passed onto Islamic and European cultures.
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Probably with the introduction of mechanical clocks in the 13th century in Europe (Co??7?, Pe??7),
the equinoctial hours replaced seasonal hours in general use???7. The minutes and seconds of our
time reckoning came from the Mesopotamian number system and were also introduced in Hellenistic
times (Ne81). Thus our time reckoning is a hybrid system.

From early historical times (c. 2800 BC) the Egyptians used a solar-based civil calendar (Pa82-
83; Mo082-83). Their year had exactly 365 days and was divided into 12 months of 30 days each
with the left over 5 days (epagomenes or epagomenal days) being placed at the end of year. The
epagomenal days were festival days and were considered unlucky for work. The Egyptians also used
various lunar calendars for the regulation of some festivals.

The civil calendar was not synchronized with the tropical year: there were no leap years and no
intercalations. Because the Egyptian year is shorter by about a quarter day than the tropical year,
the Egyptian calendar would run ahead of a solar calendar and would eventually cycle through the
whole tropical year. The divergence of the two calendars was sufficiently slow, however, as not to
pose any major problems. A person who lived to be over a hundred would only find a difference of
about 25 days between the seasons and dates of their infancy and old age: e.g., the May blossoms
of youth would bloom in the June of final years. Since the tropical year is 365.24220 days long,
a complete cycle would take 365.24220/0.24220 ~ 1508.0 tropical years. Pannekoek (Pa83) gives
365/0.25 = 1460 tropical years which cannot be the cycle period. What he is really trying to arrive
at is the Sothis period, the time interval between the heliacal risings of Sirius (the Egyptian Sothis)
on the same solar date. For the Sothis period he gives 1456 tropical years taking into account the
proper motion of Sirius. The only conclusion I reach is that the 1460 value is just an illustrative
Sothis period assuming the true tropical year is 365.25 days, there is no precession of the equinoxes,
and Sirius has no proper motion. Thus the true Sothis period of 1456 accounts for these three
factors and is indeed the time interval between the heliacal risings of Sirius on the same solar date.
However, the Sothis period is not the cycle period, except that Pannekoek also says that it is. So
there is some error someplace.

Although the Egyptians did not need to intercalate lunar months, they did have a cycle
analogous to the 19-year Metonic cycle for predicting lunar phenomena. There cycle was a 25-
year cycle (see App. B, Table B3 also) where the years are Egyptian years, not tropical years as
with the Metonic cycle. The number of mean lunar months in 25 Egyptian years is

25 x 365

or almost exactly 309. The time it would take for the mean lunar phase to run one day ahead of
a 25-year cycle prediction is approximately 1/0.0016 ~ 62 cycles or ~ 15000 years. Lunar phase
predictions from the 25-year cycle will, of course, have errors of up to £2 days??? because of
variations in the lunar cycle.



4. Greek Astronomy

4.1 The Setting

The world of the ancient Greeks is the littoral and the body of the Mediterranean Sea (midland
or inland sea) with a few, but important, journeys beyond. The Greek homeland, Greece proper
(Hellas to the Greeks who to themselves were Hellenes), is a complicated peninsula jutting out into
the north side of the eastern Mediterranean and the copious surrounding small islands. There are
limited fertile plains separated by rugged uplands. The land of the Mediterranean is often quite dry
and to those from wetter climates looks somewhat barren. The second and third life bloods of the
Mediterranean world are olive oil and wine: this true today and in Antiquity.

As has long been noted, the separation of Greece into fertile islands and real islands has
promoted disunity and also a florescence of individual community cultures. However, using the
highway of the Mediterranean communication and trade among Greek cities and other cultures was
easy. Even bulk goods could be traded relatively cheaply by sea which was not the case on land
for among other reasons, the horse-strangling nature of the ancient horse-harness (Gies28, 32, 46—
47). Mediterranean sailing is much less demanding than oceanic sailing. Usually ships could set
courses within sight of land??? which was a great advantage when only primitive non-mathematical
navigation was possible. Tides are measurable, but practically unnoticeable. Wharfs could be set
almost at water level and probably taverns too just as in our times.

The collapse of the Bronze-Age Mycenaean Greek culture before 1000 BC caused a migration
of some Greeks to the coast of western Turkey which became their Tonia. The Mycenaean collapse
ended literacy and left the Greeks in what we call their Dark Age. The end of the Dark Age is
loosely sometime around 800 BC by which time there are independent Greek cities all over Ionia.
In addition, from during the Dark Age and for 2 or 3 centuries thereafter???, both the Ionian and
old Greek regions were both active in founding colonies in Italy, Sicily, Southern France, Eastern
Spain, and around the Black Sea. The Italian and Sicilian colonies were particularly extensive and
active politically and culturally until the Roman conquest circa 300-200 BC left them a backwater.
Colonization, naturally, implied conquest of territories from the indigenes. The colonization period
is called??? the Archaic Age; it is generally taken to last down to the time of Marathon in 490 BC.
It is in that age, in the Mediterranean setting that the Greek achievement in science begins in Ionia.

4.2 The Origin of the Presocratics

By definition, the Presocratics are Greek philosophers who flourished before and, illogically,
while and even somewhat after Socrates. They were deeply interested in natural philosophy, unlike
Socrates who relegated natural philosophy to lesser place relative to ethics at least in regard to
his own investigations. For our purposes, natural philosophy can be defined as the study of the
natural world based on reason and observation with a goal of trying explain phenomena in terms
of elementary principles or laws. To elaborate, the reliance on elementary principles means that
phenomena were assumed to occur in cause and effect chains. The causes could be mechanistic
meaning that their effects are incidental or teleological meaning that the cause is ordained to bring
about the effect. Note that mechanistic in this context has no connection to machinery and that
teleological does not imply a cause has in any sense an intelligence or an awareness of the effect. The
Presocratics tended to a mechanistic view of causation. Aristotle is the prime example of teleologist,
but, of course, he is not a Presocratic.

The Presocratics can be discussed only with caution. None of their own writings survive
in completeness; only quotations and commentaries from latter writers have come down to us.
Nevertheless, plausible reconstruction of some of their views are possible (e.g., Fu). They were
not very empirical. In general they performed no experiments and made no quantitative or detailed
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observations. An experiment reported by Empedocles (Pe134) is exceptional. For the most part, they
attempted to understand the universe using only casual observations and reason. Such an approach
may indeed be possible; indeed it may be the a way to reach absolute truth about nature. It 1s,
however, obviously very prone to error and has been far less successful than the scientific method at
yielding adequate theories. However, the achievements of the Presocratics are not negligible. They
are the starting point for both western philosophy and science.

The broad philosophical aspects of the work of the Presocratics is outside our scope. However,
their cosmological speculations are a part of astronomical history and relevant for later astronomy
and science 1n general. A restricted, retrospective view of the Presocratics, is that they were theory
creators for a cycle of the scientific method that stretched over millenia. We will discuss some of the
Presocratics in § 4.3. Here we will try to understand why they rejected anthropomorphic mythical
explanations for natural phenomena and pursued natural philosophy instead. Our argument is given
under six headings.

1) Like most cultures, the Greeks emerge into history with a set of myths accounting for natural
phenomena. And like many cultures their myths were anthropomorphic. The sky god and king of
the gods was Zeus, the thunderer and also father of gods and men. The sea had a controlling god,
Poseidon. The Sun and Moon had gods (Apollo and Artemis or, alternatively, Helios and Selene).
And there were a host of other gods, controlling human destinies, inflicting punishments, ripening
the corn. Hesiodos and Homer and a wealth of community tradition provided the post-Dark Age
Greeks a sufficient mythological account. Why should that or any anthropomorphic mythological
be unsatisfying?

Well, skeptical rejection of anthropomorphic divine action is hardly ruled out by the world as
humans perceive it. The mythical beings who are supposed to control the world are capriciously
human. But the world seems too regular in some respects for the vagaries of merely human nature. In
other respects i1t seems too chaotic for humanlike beneficence or malice. Ordinary human experience
shows that mindless chains of cause and effect must drive most natural happenings: i.e., things
behave according to natural causes. Day to day economy, for example, would be impossible if it
were not so. Why not make the mental leap to saying natural causes are all causes, except those
that spring from obviously animate beings. Once the mental leap is made to this natural philosophy,
then it along with some cleverness can be used to explain at least some natural phenomena. That
not all natural phenomena can be explained can plausibly taken to be a lack of insight on the part
of the explainer rather than a failure of natural philosophy.

That the above argument was apparent to the Presocratics seems almost to be necessarily so.
They probably were not alone. Even from the Mesopotamian civilization there are some accounts of
skepticism about some aspects of anthropomorphic divine action (Op226-227). These accounts end
by the unbelievers being undeceived of their skepticism, but those endings are morals. It is plausible
that a practical if not a theoretical skepticism was not rare in Mesopotamia or in any society with
anthropomorphic mythological religion. It is also unexceptional to say that skepticism in a general
sense is a common human attribute. We can conclude by saying skepticism of anthropomorphic
mythological explanations is a necessary, but not sufficient condition for natural philosophy.

Another, condition at least helpful to natural philosophy was the lack of enforcement of doctrinal
orthodoxy among the Greeks. Honoring the religious customs of the city or other pertinent unit
was more important than adhering to mythology????. Only one Presocratic, Anaxagoras, was
ever prosecuted for impiety (Ful73). And in that case there was also a political motive to the
prosecution????. Instances of persecution of impiety alone must have been at least rare.

We should add here that the Presocratics were not at all necessarily atheists. Some may have
been so. Certainly, Plato thought some at least had atheistic opinions (Ful73ff). However, at least
in some cases, the example par excellence being the Pythagoreans, they were undoubtably seeking
a different and in their minds truer religion than that of tradition (see § 4.4). Another example is
Xenophanes of Colophon who spoke of “One god, greatest in the company of gods and men, like
mortal men neither in his shape nor in his thought,” who “Without toil by the thinking of his mind
he shakes the universe (quotes from Ful62).”

2) There are factors that could have an enhanced the skepticism and freedom from traditional
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religion in the Presocratics: their the economic and social conditions. The first Presocratics were
urban Ionians. At that time, Ionia was the most active maritime colonizing and trading areas of
Greece. Ionians would have had contacts with other Greeks and cultures all over the Mediterranean,
including the Egyptian, Phoenician, and Mesopotamian cultures. Such contacts can only have made
the parochialness of mythical accounts rather apparent. Additionally, the breadth of the Ionians
travels would have shown the errors of any purely local conceptions of the world. The Oceanic
voyages of the Europeans from the 15th century on had the same effect on an even grander scale.

The cosmopolitanism acquired by some Greeks in their socio-economic life is a plausible aid
to skepticism. However, the Phoenicians were in a ‘similar boat,” and did not grow skeptical and
philosophical. More explanation is needed.

3) Conceptional boldness in the Greeks may have been supported by their sense of being a
young and free society. That they must have had this sense at least by comparison to the eastern
and Egyptian cultures is clear. They knew those cultures had much longer histories and that
they had much to learn from them. But they were not self-abasing. Their immense sense of civic
loyalty and liberty, and their heroic past as recounted by Homer, made them seem to themselves
vigorous as compared to the conquest-weary, tyrant-laden centuries of the east and south. Thus,
they could adopt what they like from the east and south and pride themselves on liberty of action
and fearlessness. Such cross-cultural eclecticism could support an eclecticism of thought.

4) The pluralism of the Greek world must also be considered. There was not one capital, one
cultural orthodoxy, one model. The Greeks were unconsciously in an experiment of numerous trials.
With so many trials, the probability was increased that somewhere in the Greek world natural
philosophy (and many other cultural features) would arise.

5) Perhaps the key basis for the development of natural philosophy was the liberty of speech
and emphasis on reasoned argument that developed in the Greek cities states, the poleis???, as
suggested by Furley (Ful67). Although, most states were not democratic, there was usually some
participatory assemblies?? for a wide class of enfranchised citizens (i.e., those who were male, not
enslaved, and usually of some economic standing). The smallness of Greek states (as opposed to
the vast empires) and their lack in general of deadening unmovable political authority meant that
what was said in assembly, in the law courts, in the agora (marketplace, but maybe too much of
a synonym with assembly???) was not perceived as pointless and at least often not as dangerous.
Thus, the arts of persuasion and reasoned debate were honored and held to be significant.

That meaningful dialectic could expand its empire from the political and social worlds to the
natural one is eminently plausible. We now believe that free speech and debate are key ingredients in
the development of modern culture (which is certainly technologically and scientifically the highest
ever and arguably morally the highest at least in our conceptions). That it performed similarly for
the Greeks may be unamazing.

6) To the cultural conditions, one must add the accidents of human genius and the tendency of
investigation to have an autonomous existence once started. These extra ingredients are essential.
Total reduction of intellectual achievement to cultural conditions (such as in orthodox Marxism) is
now generally believed to be an invalid approach and at least as used by some (e.g., some Marxists)
unscientifically unfalsifiable. In fact if one accepts an objective knowable reality and that the form of
investigation leads to some approximation of truth, then a complete reduction of natural philosophy
to cultural conditions is ruled out absolutely.

With the recipe of cultural conditions, accident, and autonomy of intellectual development,
we may have a plausible explanation for the emergence and florescence of natural philosophy.
Nevertheless, we are speculating: we have no clear record of intellectual development of Presocratics
and none at all for the earliest. Moreover, even if we did, we could never know the causes with
the surety of a well known physical result. As discussed in Chapt. 1, that is not within historical
research’s power.

4.3 The Presocratics (except for the Pythagoreans)

The Presocratics were not specialists; they were attempting establish grand systems embracing
all natural phenomena and the entire universe. They were not very empirical and relied on casual



32

observation and rational argument. They did not practice the complete scientific method and cannot
be classified as scientists in the modern sense. The whole scope of their speculations and logical
arguments are beyond our scope. We will only discuss a few Presocratics and their ideas without their
much of their justifications. For us, their ideas are important as starting points, often unrealized or
realized only much later, for empirical investigation. All of our discussion must be with the caution
that the writings of the Presocratics have all been lost, except for fragments. Thus, their ideas
can only be learned or deduced from what later writers said about them or from the fragments.
Misinterpretations and gaps have to accepted.

4.8.1 Thales, Anazimander, and Empedocles

The first name is Thales of Miletos (c. 625-545 BC). Miletos was one of the most active Tonian
maritime cities. He became a semi-legendary figure and only a little of what is attributed to him is
reasonably certain. It seems certain, though, that he said that water was the primal element from
which everything else developed and that the Earth was a disk floating on water (Pel2). However,
the story that Thales predicted a solar eclipse is certainly untrue: there was no theory then or
for centuries that would have permitted this (Nel42). Neugebauer (Nel48) thinks it very unlikely
that Thales discovered the geometrical proofs attributed to him later. The importance of Thales
for history (aside from contributions which may have been lost) is the introduction of the notion of
elements.

Anaximander of Miletos (c. 610-547 BC), a pupil of Thales (Pel3), has a slightly more complete
record. Attributed to him, among other ideas, are the following (taken from Pel4-15). The stars,
Moon, and Sun are really wheels that filled with fire. What we see as the celestial bodies in the sky
are apertures through which light and heat pass. Stoppages of the Moon and Sun apertures cause
eclipses. The wheels are at different distances from the Earth: from highest to lowest (i.e., farthest
to closest) the Sun, Moon, stars, and planets. Whatever the justification for the wheel idea, it is
a beginning point for Greek thinking about the celestial bodies in three-dimensional space. The
wheel idea may, in fact, have borrowed from Persian cosmology (Pel5). Anaximander’s Earth is like
a stone pillar and we reside on one of its end. He speculated that living things were generated in
moisture when this was evaporated by the light of the Sun and some sort of evolution has occurred
leading to humans.??7?

4.3.2 Parmenides of Elea and the Spherical Earth

Parmenides of Elea flourished in the 1st half of 5th century BC (Pe374). His home town Elea
is an ancient city on the coast of Lucania in south-west Ttaly (Ba387). In about 450 BC he visited
Athens (Pe374). He is the earliest Presocratic from whom sufficient fragments of writing survive
that his philosophy and arguments can be understood with some confidence (Fu31). He wrote his
results in a poem (poetry proceeds prose) and some of this poem is quoted in surviving works by
Simplikios of Cilicia (6th century AD) (Fu3l, 50; Pe391-392). Parmenides purely philosophical
points are not our subject, but he is considered to be important and original in these (Fu31). Here
we merely report his conclusions on cosmology which are likewise important and original.

In Mesopotamian and earlier Presocratic thinking the Universe has a fundamental linear
direction along which up and down are measured (Kr99; Fu53). The surface of the Earth is flat and
perpendicular to the fundamental direction; gravity points down the fundamental direction. The
Mesopotamian cosmology has an over-arching sky dome (Kr99) and Anaximander has his rings, but
the fundamental direction is primary. Parmenides is reported to have been the first to have declared
the Earth to be spherical (Fu4l, 56). This is a striking advance to say the least. How did he come
this this conclusion?

Furley believes that the result was arrived at from metaphysical speculation on what the universe
must be like (Fub6). A fragment of Parmenides’ poem evidences this:

But since there is an outermost limit, it is perfected
from all sides, like the mass of a well-rounded ball,
equally balanced from the centre everywhere. For neither greater
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nor smaller must it be in one place or another.

For neither is there Not-Being, which might stop it reaching
its like, nor is there Being such as to be

more than Being here, less there, since all is inviolate.

For equal to itself from all sides, it lies uniformly in its limits.
(quoted from Fub4).

Furley believes that Parmenides is talking about the universe as a whole and stating that the universe
is spherically symmetric and has a central focus (Fub4). This implies a spherically symmetric Earth
if the Earth is taken to be at the center. Since things fall to Earth, why does the Earth not fall:
because it is already in the center. Furley admits Parmenides own words are somewhat obscure
(Fub4). But in Plato’s Phaedo, Socrates reports that an unnamed person has convinced him of
the spherically symmetric universe and a spherical Earth in the center and Socrates’ words are
reminiscent of Parmenides’ (Fub5).

Furley contends that the evidence for spherical Earth and a centrifocal universe emerged later
(Fub6). However, if Parmenides did come upon the spherical Earth from purely metaphysical
speculation, then I contend it was a lucky strike. It seems to me more plausible that observations
at least partially led Parmenides to a spherical Earth and universe, and the philosophical argument
was then partially an a posteriori explanation. First, the heavens do look spherical and to first
approximation celestial bodies revolve around the Earth. Parmenides, who had proposed an absolute
monistic theory of reality (Fu38), might be led then by analogy to contend that the Earth too must
be spherical to be consistent. Tt is also possible (although there is no evidence) that Parmenides
was aware of some or all of the physical proofs of the spherical Earth first mentioned by Aristotle

(Ped5):

1) As one moves north and south the altitudes of the celestial bodies and the stars change
in a manner consistent with a spherical shape for the Earth.

2) The shadow of the Earth on the Moon during a lunar eclipse is round no matter how
exactly the Moon, Earth, and Sun are aligned.

3) At great distances at sea masts can be seen when hulls are beneath the horizon. (This
observation takes sharp eyes and excellent weather conditions).

The thing that makes it especially plausible for me that Parmenides could have known these proofs
is that he evinced considerable insight into astronomical theory. It is reported that he was the first
to claim that the Morning and Evening Star were the same object, Venus (Fu56). (Some, like the
Mesopotamians, may have guessed this earlier, but in there planetary calculations [which come from
after Parmenides] they treat the morning and evening appearances of Venus and Mercury as those of
different objects [Nob4—55]. Odysseus in the Odyssey was unaware of the identicality of the Morning
and Evening Star [Pell]). From his own words we know that Parmenides knew that the Moon shone
by light reflected from the Sun and he may have been the first person in history to record this idea.
The 2nd of Aristotle’s proof for a spherical Earth would not have been possible for someone who
did not know this.

As a final word, the Pythagoreans also have a claim to being first to have proposed a spherical
Earth. Like Parmenides, they give no empirical argument for their proposal (Pel8), but they may
have had one. They seem to have argued for this shape for the Earth and the univserse on the
grounds of its perfection (Pe51)

4.3.3 Empedocles and the Elements

The idea of elements that began with Thales led to the development of several systems of
elements. The one that endured, with some modifications, was that of Sicilian Empedocles of
Agrigentum (c. 484-424 BC [Pe331-332]), who, like Parmenides, wrote in verse: “my tale is not
aimless or unknowing” (from Fu96). His was the system of the four elements: fire, air, water, and
earth (Pel124). All other substances were supposed to be made of these in some combination. These
elements were conserved: i.e., never destroyed or created (Pel24). Their combinations could change



34

and thus account for observed material transformations. It seems that fire, in particular, was not

elements he added love and strife which are ‘forces’, but are sometimes treated almost as if they
were elements also (Fu84); love and strife did not become part of the standard dogma of the four
elements.

The elements were considered to be continuous (i.e., infinitely divisible) and the notion of a
vacuum was excluded by most Presocratics and later by Aristotle (Pel33) and those who followed
him strictly. Aristotle began one of his anti-vacuum arguments with the punning remark that “the
so-called vacuum will be found to be really vacuous” (from Ful90). From somewhat different sets
of arguments, Plato and Aristotle would add a fifth element, the ether (meaning upper air or sky
[Ba412]), out of which the celestial objects were made (Pel126, 128). In Aristotle’s view, this element
was unchanging and eternal, and unmixed with the four elements of sublunar world (Pe128). Until
the 17th century????, the four elements would dominate the interpretation of chemical knowledge.
From our perspective, it is easy to see that the four elements could not have led to much chemical
enlightenment.

4.3.83 The Atomusts

An interesting dissent from the view that there were four elements and no vacuum was the
atomic theory (atomism) of Leucippos (possibly of Abdera, Elea or Miletos [Fullb]) (5th century
BC [Pe365])) and Democritos of Abdera (c. 460-370 [Pe328]). Atomos is an adjective meaning
uncut, indivisible, and unmown (as of grass) (Ful23). Because the lack of surviving whole works
and the fact that Leucippos and Democritos were associates, their independent ideas cannot be
discerned (Pel31). They postulated that all matter was made out of invisibly small atoms that were
eternal and indivisible and of infinitely many kinds (Pel31; Ful23). Combinations of these atoms
made the materials and bodies that we see. There ideas came from the observation that all material
things are perishable, therefore the imperishable must be below the level of perception (Ful24).
To be perishable or breakable there must be void in an material (Ful24). They gave the following
illustration. When one cuts a apple, the blade goes between the atoms, it cannot divide them??7.

Space (the universe or to pan, the all) was infinite and a void, except for the atoms moving and
colliding continuously (Ful36, 140ff). The continuous motion is natural for the atoms in the void
(Ful46). Spontaneous vortices could be set up out of which condensed infinitely many worlds
(kosmoi) (Ful40). The vortices provided a mechanically way of sorting material into different
concentric shells (Ful42). The still center of the vortices and revolving outer regions could provide
a crude description of a geocentric planetary system. Very probably the vortex idea came to
the atomists (and other Presocratics who also employed it: e.g., Empedocles Fu92) from simple
observations of whirlwinds and whirlpools???. Because the vortex-spun worlds are only made of
atoms, they are perishable too. Our world (the visible universe or cosmos) is only one of the worlds.
The Earth was a disk and was probably seen as floating on air (Ful43). The Celestial sphere was
a surrounding spherical membrane separating us from the chaotic regions beyond (Ful43). The
reconciliation between the disk Earth with linear (i.e., uni-directional) gravity and the spherical
shape of the cosmos (our kosmos) is not clear (Ful43). The vortex idea would seem to lead to only
to an axial symmetric kosmoi. The notion of a membrane surrounding the cosmos may have been
drawn from biology, in fact embryology (Ful43).

In later times, Epicuros of Athens (341-271 BC) adopted the atomism with some modifications.
Two of these were that there were only a finite number of kinds of atoms though infinitely many
individuals of each type and that the atoms could combine by means of small hooks (Pe132). Epicuros
was one of the grand philosophic system builders. The atomism formed the natural philosophy part
of his system. He and his school, the Epicureans (mistakenly associated with simple hedonists),
were not empirical chemists. The atomism (with its spontaneous and mechanical elements) was
philosophically acceptable to their relative atheism in which the gods are far off and do not interfere.

Given the closeness of the atomism to modern views (their atoms to our atoms; their vortices to
our galactic and solar system formation), it is interesting to speculate on what would have happened
if the atomism had become the primary ancient doctrine rather than the four element theory and the
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finite cosmos of Aristotle (Ful89; Pe89). Perhaps chemistry would have advanced much more rapidly
given a fortuitously correct starting point. The vortex theory would have been had to have been
modified, of course: a spherical Earth would have been an early necessity and the disappearance
of the Celestial sphere membrane eventually. But the case is that atomism was a minority view
and was strongly criticized by Aristotle, among others, who is also one of the principle sources for
our knowledge of atomism (Ful36). Atomism was not forgotten, however: the idea passed through
the Epicureans (especially the Roman Lucretius [c. 98-55 BC] and his famous philosophical poem
De Rerum Natura [Pel33]) to 16th century scientists (Gassendi, Charleton, Boyle, and Newton) to
Dalton with his empirical chemical atomism, the beginnings of modern atomism (Ful23). Thus,
Greek atomism provided a starting point (certainly non-essential) for the modern atomic theory.
Nevertheless, it is probably true to say that the ingeniousness of Greek atomism was not matched
by its historical importance.

4.3.4 A Presocratic Summary

From the limited point of view of the scientific method, the Presocratics were mostly stuck in the
theory creation stage. Much of their theorizing was not falsifiable given the practice and sometimes
not even falsifiable in principle. However, the arsenal of ideas they provided is remarkable. Certainly
the boldness of their thinking contrasts with the over-rigid adherence to authority that would
characterize natural philosophy in later times from circa 200 BC down till about 1600. Harnessed
to the full scientific method, the Presocratic ideas might have resulted in rapid scientific progress.
However, in the ancient world the full power of the scientific method was never generally realized.
It is also possible that a continuous scientific progress which we have become accustomed to since
circa 1600 was not sustainable in the Greco-Roman civilization (see Sect. 4.12).

4.4 The Cosmology of Pythagoreans: The Philolaic System

The most celebrated of the Presocratics was Pythagoras of Samos (c. 550-500 BC) (Pe385).
He was certainly a real person as near contemporaries refer to him (Fu49) He is supposed to have
left his native, an island in the Aegean, and travelled in the Near East (Pel6ff). Later Pythagoras
is supposed to have settled at Croton in southern Italy and founded a school or a movement. The
movement certainly existed and even held political power at times in Croton and Metapontum
(also in southern Ttaly) in the 5th and 4th centuries BC (Fub0). The movement was ascetic
and believed in a physical and mental regime to overcome the physical body. The Pythagoreans
practiced vegetarianism and believed in reincarnation. They also believed in enlightenment through
mathematics (Pel6). Exactly, what mathematical discoveries they actually made is hard to be
certain of. Their own traditions ascribed many to Pythagoras himself, but this may be a result
of a tendency to expand the reputation of a founder and increase the venerability of a discovery.
The prime example of a discovery claimed for the Pythagoreans is, of course, the Pythagorean
theorem, but that was empirically well known 13 centuries earlier at least in the Old Babylonian
kingdom (Ne36). They may have re-discovered it or, perhaps, provided a geometric proof. There is
also the discovery that a vibrating string’s frequency is inversely proportional to its length. (Note,
I am using anachronistic and non-musical terms here. See Pel7 for a musical discussion of this
discovery.) This discovery has never been forgotten: at least some of nature’s laws are mathematical.
The Pythagoreans were not, however, inspired by this discovery into an experimental search for
mathematical relationships, but into an arbitrary occultism of numbers (Pel8).

In a startingly innovation from the Mesopotamians, the Pythagoreans and later Greeks saw a
need to give depth to space and treat celestial motions as tracing out geometrical shapes in it. The
Pythagoreans also made the Earth spherical possibly because of the mystical notion of the perfection
of the spherical shape (Pe51), but perhaps they were already aware of some of the arguments for
a spherical Earth adduced by Aristotle (Pe45 and see below). From Pythagorean circles comes the
one of the earliest geometrical models of the cosmos with a spherical Earth; it is mostly known
from accounts by Aristotle and Aétios of Antiocheia (c. 100 AD) (Pe52; Fub7-58). It is probably
later than Parmenides (Fub7), but is more detailed. The attached name is Philolaos of Croton or
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Taretum (late 5th century BC).

In the Philolaic system there are 10 concentric celestial spheres, which are not the celestial
bodies (i.e., planets, Sun, etc.), but shells on which these bodies reside. The idea of these celestial
spheres may go back to Anaximenes of Miletos (c. 540 BC) (Pe51), another Tonian Presocratic. (We
use small ‘c’ in celestial spheres to distinguish them from the Celestial sphere of the fixed stars which
is one of their class, of course.)

At the center of the Philolaic system is neither Sun nor Earth, but the Central Fire: applied to
the Central Fire were the epithets ‘the Hearth of the Universe,” ‘the House of Zeus,” ‘the Mother of the
Gods,” ‘the Altar,” ‘the Meeting House” and ‘the Measure of Nature’ (quotes from Fub7). Around the
Central Fire are ten concentric celestial spheres carrying the celestial bodies in a uniform circular
motion (Pe54). The order of the spheres going outward is the Anti-Earth, Earth, Moon, Venus,
Mercury, Mars, Jupiter, Saturn and star (Celestial) spheres. The Earth revolves (on its sphere)
daily around the Central Fire (counterclockwise from a north pole view or ‘eastward’), but always
always has the Greek hemisphere opposite the Central Fire (Pal00): hence this object is never seen.
The Anti-Earth revolves also in a day and is on the opposite side of the Central Fire (Pe52; FubT7):
it too i1s never seen. The introduction of the Central Fire and the Anti-Earth are unnecessary,
except for mystical reasons. Aristotle says that the Anti-Earth was introduced so that the number
of celestial spheres would be 10, a perfect number to the Pythagoreans (Fub8).

The daily eastward revolution of the Earth sphere accounts for the daily westward circling of
the Celestial sphere. In a sense the Earth must be rotating on its axis relative to the fixed stars
(nearly fixed stars: see below) in order to keep the Greek hemisphere pointed away from the Central
Fire. However, one should probably think simply of the Earth as being rigidly attached to the
Earth sphere. The outer celestial spheres carry the celestial bodies eastward on the ecliptic, and
thus account for prograde (i.e., direct) motion of these bodies. The Sun orbits the Central Fire in
a year naturally. The Celestial sphere was given a small imperceptable motion, not to account for
precession which was unknown, but to raise the number of moving spheres to the mystical 10. There
is no explanation for retrograde motions. Unless non-uniform motions are allowed, there seems no
way to account for why Venus and Mercury are never far from the Sun. We know of no attempt to
make the system mathematically predictive.

Eclipses were accounted for by Sun and Earth interposition just we would. In a lunar eclipse
the Anti-Earth and Central Fire would also be on the Sun-Earth-Moon line, unless some small
disalignment of these bodies were allowed. Such a disalignment would spoil the sysmetry of the
system, however.

The Philolaic system was probably never intended as completely serious astronomy (Fub8), but
only as a mystical system: perhaps the designation science fiction world is not totally anachronistic
either. It is nevertheless an influential and interesting system. One main interesting feature about
the Pythagorean model is that there was no compunction about having the Earth move and be off
the center of the cosmos: there is no astronomical point to this motion and no consideration of the
physical implication. The notion of a moving, non-central Earth would be become a very minority
view in Greek astronomy as we will see below.

An influential element of the Philolaic system is the reinforcement of the idea (probably due to
Parmenides: Fub3ff; see also 4.3) a universe with a central focus, even if that central focus was not
the Earth in the Philolaic system. Centrifocal universes would become the accepted norm at least
from Eudoxos on (see § 4.5).

Another influential element, possibly original to the system, is the introduction of the celestial
spheres that carry the celestial bodies along. These celestial spheres, sometimes called crystalline
spheres, would be retained by Aristotle (and be made of his ether: Pel28) and from him would
be passed on as long as Aristotelian cosmology reigned. Eudoxos and Aristotle would make the
spheres strictly geocentric (see §§ 4.5 and 4.6), but the epicycle system-builders would not retain
that restriction. It seemed more realistic to the Greeks and all their followers till the 16th century
to have the celestial bodies carried by physical objects however invisible. Tycho Brahe showed that
there were no solid celestial spheres (still excepting in some minds the Celestial sphere itself) in the
late 16th century because comets passed right through where they were supposed to be (Th257-258,
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262). (He was inspired by the calculations of Michael Mastlin and the ideas of Christoph Rothmann,
to be fair all around [Th257-258].) In some minds, Tycho’s for instance (Th306), the Celestial sphere
itself continued to have some solidity for awhile longer.

The celestial spheres can be considered as an example of physical analogy (or physical intuition)
being led astray. The 19th century ether (not to be confused with its classical namesake) is another
famous example (see § 8.3.1).

The Pythagorean principle of uniform circular motion would also be retained for along time
as an absolute principle: honored by Plato (see § 4.3.5), honored in the breach by Ptolemy (see
§ 4.10), redeemed by Al-Shatir in the geocentric world (see § 4.4.3), redeemed by Copernicus for the
heliocentric universe (Ro4, 10), and lastly retired by Kepler in his Astronomia Nova (Cal34), but
still with honor (Ca270).

An influential and strange feature of the Philolaic system was the harmony of the celestial
spheres: a music generated by the moving of the celestial spheres which we cannot hear being inured
to it since birth (Pe53-54). The idea of the harmony of the spheres would resound down the centuries.
Kepler in a much evolved, sophisticated, and mystical way would encorporate the harmony of the
spheres in his theory of world harmony given in his book Harmonice Mundi (Ca264ff, esp. Ca269-
270).

Lastly, a science fiction feature, reported by Aétios, is that the Moon is supposed to be inhabited
by animals fifteen times more powerful than terrestrial animals (Fu58).

4.5 Plato and Eudoxos

Plato’s (427-347 BC [Pe378]) philosophy has an importance for science in general and astronomy
in particular that must be kept distinct from its value in philosophy itself. Here we are only concerned
with 1ts scientific importance. A principle aspect of Platonism is doctrine of ideas. There is a real
world, not the material world that we see, that consists of eternal ideas which are the real objects
and one of kind and are the real objects of thought (Pe22ff). Material objects are perishable copies
of the ideal objects. We have an inborn understanding of the ideal world and only this allows us
to understand the material world by recollection (Pe24). Mathematical objects are somehow not
the same as ideal objects being multiple, but eternal and perfect. However, deductive geometry
and mathematics (still very new fields in his day: Nel52) were for Plato ‘ideal’ examples of inborn
knowledge of ideal things.

Scientists have at least indirectly been influenced by Plato’s ideal world. Natural science, as we
now understand it, is, among other important things, a search for fundamental natural laws which
are abstract and which objective reality obeys. Using natural laws, science derives the observed
behavior of the world. These laws are something like Plato’s ideal objects. Stating this is not to
credit Plato with the parenthood for natural science; before Plato, the Presocratics were already
searching for the underlying principles of nature. However, Plato’s personal influence in his own
lifetime and his eloquent writings through the course of history have emphasized the idea of the
search for underlying principles.

It should be noted that Platonic ideas in a more direct form have had an influence on certain
scientists in history: Kepler being an example par excellence of a Platonist scientist (Ca44). There
is another point to note: the idea of fundamental natural laws is not a obvious idea to come to.
Societies can exist, such as the Mesopotamia society of course, which see the willfulness of the gods
in everything. And yet another point. It is not obvious that science can reach high levels in the
absence of the idea of fundamental natural laws. It has been argued that the lack of such an idea
was a component in preventing the development of Western-style science in China by Needham (see
Co453-455).

If one turns to Plato’s precise influence on astronomy in particular the situation is ambiguous.
Letting him speak for himself—in voice of Socrates—Plato (in the Republic) had this to say:

Thus we must pursue astronomy in the same way as geometry, dealing with its fundamental
questions. But what is seen in the Heavens must be ignored if we truly want to have
our share in astronomy ... Although celestial phenomena must be regarded as the most
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beautiful and perfect of that which exists in the visible world (since they are formed of
something visible), we must, nevertheless, consider them as far inferior to the true, that is
to the motions ... really existing behind them. This can be seen by reason and thought,
but not perceived with the eyes (quoted from Pe24).

At least two interpretations are possible of this passage (Pe24-25). First, that Plato was advocating
a purely artificial astronomy based on inborn knowledge and reasoning that would not be compared
to or depend on astronomical observations. This interpretation seems to be that of Neugebauer
(Nel52), who thinks Plato had little influence on astronomy and that his advice would have been
its ruination if followed. The second interpretation is that Plato hoped that an axiomatic deductive
astronomy (modeled on geometry) would explain the particulars of observed astronomy.

Maybe a right interpretation of what Plato actual intended advice to astronomers cannot be
found (Pe25). However, the second interpretation, if not applicable to the passage quoted, is
consistent with what Plato is reported to have said by the late writer Simplikios (c. 6th century BC).
This 1s that the celestial phenomena should be saved by reducing their irregular motions to a
superposition of uniform circular motions (Pe28). If one takes uniform circular motion for celestial
bodies as a physical theory to be accepted as long as aids in furthering understanding of reality and
rejected when it fails in that function, then Plato’s reputed challenge is consistent with the scientific
method. But i1t seems clear that uniform circular motions took on the nature of an a priori truth. As
the history of astronomy unfolded, it is clear that uniform circular motions at first aided astronomical
development as a means of reducing complex planetary phenomena to reasonable predictability, but
then became a straightjacket curbing the search for deeper insight. The supposed authoritative
endorsement of uniform circular motions by Plato and others (e.g., Ptolemy who violated it Pe] |
probably did act eventually as a hindrance to the advance of astronomy.

Whether or not Plato issued the challenge to save the phenomena or it arose in some other way,
Greek mathematical astronomers took it up. The first of these was in fact an associate of Plato,
Eudoxos of Cnidos (c. 408-355 BC).

Eudoxos was a mathematician and in 368 BC he amalgamated his school of mathematics with
Plato’s Academy (Pe335). Some of his mathematical results are presented in Euclid’s Fifth and Sixth
Books (Pe335). His own works on astronomy are lost. However, from later writers he is known to
have constructed first a sophisticated geometrical astronomical model using geocentric spheres with
uniform rotations (Pe63-70). The Earth is motionless and at the center. The celestial bodies reside
on some of the spheres and are carried by them in uniform circular motions. The idea of the spheres
of course goes back to the Pythagoreans (see § 4.4; Peb2). Tt is not known if he gave these spheres
a physical reality as Aristotle would do later in his version of Eudoxos model (Pe69; § 4.6).

In the model, there are 3 spheres for Moon and Sun 4 for each of the 5 planets. Another
sphere was used to hold fixed stars (i.e., it was the Celestial sphere itself); thus there are 27 spheres
altogether. For each celestial body, the spheres are nested. The outermost sphere rotates daily
around the Celestial Pole and, of course, provides the daily rotation of all celestial phenomena
for the body as seen from the Earth. Moving inward, each succeeding sphere is attached to the
proceeding sphere by an axis not coincident with the proceeding sphere’s: the rotation about this
axis provides a motion superimposed on all the motions of the outer spheres. Using this mechanism
most of the observed celestial motions could be built up.

For a simplified example, consider the Sun and two spheres (Pe65). The first sphere provides
the daily motion: its angular velocity is the same as that of the Celestial sphere. The second sphere
is attached at the angle of the obliquity, whose modern value is 23.44° (App. B, Table B3). (Note
the obliquity varies a bit over the course of millennia.) Tt rotates once per year relative to the first
sphere. (Note the distinction between sidereal and tropical year was unknown before Hipparchos’
discovery of the precession of the equinoxes.) Combined the motions of the two provide the mean
motion of the Sun. Eudoxos used in fact 3 spheres for the Sun: his third sphere was used to account
for a supposed variation of the Sun from the ecliptic which was not defined as the Sun’s path until
the time of Hipparchos it seems. Actually, some modification of Eudoxos Sun model was needed
since he assumed the Sun’s velocity relative to the Celestial sphere was a constant.

The Sun’s motion is relatively simple. The Sun does not show retrograde motions and, in fact,
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from a geocentric view its orbit around the Earth is nearly circular with a fairly constant velocity.
The eccentricity of the Sun’s orbit (the Earth’s orbit from the heliocentric point of view) is only
0.0167 (Lil4-3). However, the Earth does show some slight variation in angular velocity. This
variation can be simulated by using more superimposed spheres. This is in fact is what a Kallippos
of Cyzicus (c. 370-300 BC) did: he added two more spheres to the Sun model (Pe69, 321). Kallipos
was a pupil of Polemarchos of Cyzicus (c. 340), pupil of Eudoxos (Pe381; No79).

One can see the beauty and the vileness of uniform circular motions. One can simulate planetary
appearances with them, and some of those appearances do represent nearly uniform circular motion.
But as one trys to represent ever more detailed observations, uniform circular motions can become
an adjusted decomposition that do not yield any more information than is fed into them. Moreover,
there will often be no uniquely good way to do the decomposition. To express this in the words a
modern scientist would use: if you are given enough free parameters, any theory will work. The
theory of uniform circular motions allows as many uniform circular motions as one wants: 1.e., as
many free parameters as one wants.

This critique of uniform circular motions is not a denigration of Eudoxos. He made a pioneering
attempt at geometrical model of the planetary system (the universe as he understood it) that would
explain all observables. His mechanism for explaining retrograde motions deserves praise, even
though it was a complete deadend.

Eudoxos’ retrograde motion device was the hippopede (horseshoe-curve) which looks like a
figure-of-eight pasted on a spherical surface. The curve can be constructed from two spheres in
uniform motion of equal speed: one sphere carries the other. Let the carried sphere be sphere 1 and
the carrying sphere be sphere 2 Put a dot representing planet on sphere 1. If the sphere 1 is coaxial
with sphere 2 and rotating oppositely, then the dot, which is moving in a uniform circle relative
to sphere 2, is at rest in the frame of reference of a motionless outside observer. If the sphere 1 1s
tilted off the axis of sphere 2, the dot starts executing a figure-of-eight motion on an at rest spherical
surface coincident with sphere 1. It 1s not easy to see that this should be so, but it can be proven
by the classical methods of geometry (No71-76) or by modern spherical trigonometry. When the
tilt gets to 90°, the hippopede passes through the poles of sphere 2.

If one forgets spheres 1 and 2 now, and just accepts that one has a planet tracing out a
hippopede, one can attach the hippopede to the equator of another sphere: sphere 3. The hippopede
is attached with bows along the equator of sphere 3. Sphere 3 has the Earth at its center and is
rotating eastward with uniform circular motion and sidereal period of the planet. When the motion
on the hippopede is in the same direction as the motion of sphere 3, the planet is in prograde
motion. When the motion on the hippopede is opposite the direction of the motion of sphere 3,
then retrograde motion is possible if the hippopede motion is great enough. Thus retrograde motion
can be achieved. A fourth sphere carries sphere 3 in a uniform motion westward with the a period
of one day. Thus we see how four spheres can account qualitatively for all the observed planetary
motions that Eudoxos was aware of.

Qualitatively, but not quantitatively. As North discusses (No77) discusses Eudoxos’ model does
not have enough freedom to account quantitatively even to low accuracy for the motions of Mercury,
Venus, and Mars. Another objection which disqualifies all variations on the Eudoxian scheme is that
it does not account for the variation in the apparent sizes of the Moon and the Sun. This variation
was discovered by Polemarchos of Cyzicos (c. 340) (Pe69). Autolycos of Pitane (c. 310) pointed out
that this variation implying a varying distance could not be accommodated in a model where all
celestial bodies moved on spheres concentric to the Earth. In concentric sphere models all celestial
bodies are at fixed distance from the Earth always. The planets cannot be resolved into disks with
the naked eye, and so could be assigned apparent sizes. But they do vary significantly in luminosity
which strongly suggests significant distance variation as well.

All though in principle Eudoxos model would have yielded quantitative predictions of reasonable
ancient accuracy (perhaps a 5°?777) for some objects there is no evidence the that all the parameters
(rotation periods and angles) were ever inserted and predictions made. Adding more spheres to
account for the motions left out by Eudoxos would have improved the accuracy at the cost of
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complication. However, mathematical astronomers after the time of Aristotle, at least, lost interest
in Eudoxos’ model. There are two main discrepancies from observations that could not be corrected.

First, in Eudoxos’ model celestial bodies are set at constant (but unknown) distances from the
Earth. Already at about the time of Eudoxos it was known that the Sun and Moon have variable
angular diameter and therefore variable distance (without a crazy hypothesis of varying size). The
varying brightness of the planets (which are not resolved) suggested that they too have a variable
distances. Second, the retrograde motions which were reproduced by Eudoxos’ model did not have
the right shape against the Celestial sphere and were invariant for each planet: real retrograde
motions vary from one synodic period to the next. The epicyclic model which develop in the 3th
century BC at least offered the possibility of getting the varying distances and brightnesses right
and the shapes of the retrograde motions.

One feature of Eudoxos’ model must be emphasized. There is no scale. The celestial bodies
and spheres could be put at any distance from the Earth. One just had to change the physical
velocities of the spheres in proportion to their distances and the appearances stayed the same. The
Greeks argued that the celestial bodies that moved faster across the sky must be closer if the physical
velocities did not very greatly????. This is a good physical argument although not true. However,
it did yield roughly the correct order of the celestial bodies from the Earth: Moon, closest, Mecury,
Venus, the Sun next in some order, and the superior planets in their true order. Real distances, even
relative distances were mostly beyond the Greeks’ observational capabilities. Only for the Moon
were they able to obtain a reliable distance (§ 4.7). For the Sun, their determinations were wildly
inconsistent (§ 4.7). Probably there were no attempts to obtain planetary distances; if there were
they could not have been accurate given ancient observing techniques. The epicyclic theory also
gave no theoretical distances, not even relative ones.

4.6 Aristotle

Aristotle of Stagira (384-322 BC) bulks large in history. He was a pupil and then a critic of Plato,
a teacher to Alexander the Great, and the founder of second great Athenian school, the Lyceum (or
the Peripatetic) in 334 BC. He created a grand synthesis of human knowledge through writings and
propositions on a wide range of topics: philosophy (speaking generally), ethics, logic, epistemology,
physics (not quite as we understand the term today), metaphysics, mathematics, biology, politics,
and literary criticism. In many of these fields his works would be held by many to be definitive, or at
least the essential, for centuries (until at least c. 1600) in the Greco-Roman, Islamic, and European
cultures. That Aristotelianism for most of that time appears to us retrospectively and to some in
the 16th and 17th centuries as a stagnation does not invalidate Aristotle’s achievements. Rather
it demonstrates the persuasiveness and common sense of much that he produced. And it must
be said that to an educated individual living in times when scientific progress was not apparent,
Aristotlianism presented what appeared to be a philosophically sound, complete system that did
not contradict ordinary observations (at least not flagrantly). Hence its long attraction.

Although a pupil of Plato, Aristotle broke from the master giving reality back to the world
that we see and finding in experience of that world the only source of knowledge. However, we
cannot deduce from this that Aristotle practiced the scientific method in an explicit manner. He
made close and systematic observations of nature, particularly in his specialty biology. Although
he must have experimented (at least in the realm of dissection????), he did not emphasize a
need for continuous experimentation, quantitative measurement, and testing of theories under ever
more extreme conditions. These are hallmarks of the modern scientific method. Certainly, the
Aristotelians of Medieval and Renaissance Europe never felt their doctrine enjoined experimentation.

Another deficiency (relative the scientific method) was the lack of mathematization is Aristotle’s
procedure. Lack is not total omission. Aristotle was also a mathematician and was conversant with
mathematical astronomy of his day (i.e., that of Eudoxos, whom he may have known). However,
in the physics of motion he inhabited “the world of more-or-less (Co510)” rather than the “the
Universe of precision (Co510).” There was no mathematical analysis in his physics. His views
were common sense, or rather common experience, systematized. For example, aside from natural
motions, nothing moved without a continuous force and to all motion there was a resistance (Pel05—
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110). This explains common appearances, but we know it has no predictive power. Another example,
heavy bodies fall faster than light bodies. This is commonly, but not always, observed and is caused
mainly by differences in dynamic air resistance that correlate often with the density of the objects.
A brick falls faster than a feather. Any deeper analysis that took into account different densities
and shapes was not undertaken. To Aristotle the observed differences in falling speeds made the
critical qualitative distinction. This example shows Aristotle in a particularly weak case. But his
physics had other weaknesses. Even in Antiquity and the 14th century, there were critiques of his
physics by his followers (Johannes Philoponos [c. first half of 6th century AD], and Jean Buridan
[c. 1290-1360] and Nicole Oresme [c. 1320-1382]).

Aristotle’s cosmology was consistent with common sense which is not necessarily a criticism.
The Earth was a sphere and at rest in the center of spherically-symmetric, finite, eternal cosmos
whose limit was the Celestial sphere. Beyond the Celestial sphere was nothing, not even empty
space. For sphericity he had three valid arguments (which may not have been original to him of
course). As one moves north and south the altitudes of the celestial bodies and the stars change in
a manner consistent with a spherical shape. The shadow of the Earth on the Moon during a lunar
eclipse is round no matter where the Sun is exactly. At great distances at sea masts can be seen
when hulls are beneath the horizon.

For geocentrism his arguments were persuasive if not valid. First, if the Earth were moving
relative to the fixed stars (and necessarily then not at the center of the cosmos), stellar parallax
would be observed unless the stars were immensely remote or moving in fixed relation to us. From
any perspective, the theory of remote stars is a fantastic one; it is just, as we know, a true one
(or rather an adequate one). Aristotle notion of causality was teleological: things happen or exist
for a purpose. A huge nearly empty cosmos seemed a useless absurdity????. The idea that the
stars moved in fixed relation to the Earth could be rejected as ad hoc: i.e., an implausible (absurd!)
fix-up.

The second argument for a resting Earth was that we do not detect that the Earth is in motion.
For Aristotle, as mentioned above, there are natural motions and forced motions. On Earth, the
natural motions are upward for the elements with levity (fire and air) and downward for elements
with gravity (earth and water). Any sideways motion would require a force and would be felt or
noticed 1n its absence: for example, by being swept off our feet as the world turns. These objections
to a moving Earth are eliminated by the concept of inertia, but that would not appear until Galileo
(although not in its modern Newtonian formulation).

The above arguments suffice to show that the Earth is at rest, but not that it is at the center.
Aristotle’s very plausible divorce of sublunary world and the heavens

4.7 Aristarchos of Samos and Heliocentrism

Aristarchos of Samos (c. 4th-3rd century BC, best guess c¢. 310-230 BC: Wa215) is as obscure,
as Aristotle is well known: a dark star in the firmament. He is reported to have been associated with
Museum of Alexandria (Wa201). Ptolemy reports that Hipparchos reports that Aristarchos made
an observation of the summer solstice in 280 BC (To139). This is almost certainly the Aristarchos,
not another Greek of the same name, and so gives the only firm date for Aristarchos’ flourishing.
There 1s one extant treatise, On the Sizes and Distances of the Sun and Moon, by Aristarchos.
Unlike many other ancient works in the Aristarchos story, there is no question of attribution with
this treatise: he is almost certainly proven to be the Sand-Reckoner author who refers to results in
the treatise and assigns them to Aristarchos (Wa209; see below): almost certainly the Aristarchos
and not another Greek of the same name. There are a few other references to Aristarchos from
Antiquity which show him to have a considerable reputation as a mathematician and inventor: e.g.,
a reference from Vitruvius (quoted by Wa214).

On the Sizes is a work in theoretical astronomy. It is formulated in the axiomatic deductive
manner, just what Euclid and Plato would have approved of. The method is geometrically ingenious,
but the results are poor by modern standards: Aristarchos’ input data was not good. Nevertheless,
his estimates for the sizes and distances were better than most others of his day by being larger
(Wa210). Later Greek astronomers got better results, but for the Sun they never achieved good
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accuracy: see Table 4.1 for a comparison of some of Aristarchos’ results with other Greek astronomers
and modern values. Better observational data would have helped Aristarchos in the case of the Moon,
but for Sun because of its great distance (and small parallax) other techniques were needed??7?.

Table 4.1. The mean distances and parallaxes of the Moon and Sun

Source Do OPar(Mo) Dg Opar(®)
E E
(#5") (#5")
Aristarchos of Samos (4th—-3rd century BC) 19 3° 360 9'30"
Hipparchos of Nicaea (c. 190-120 BC) 67% 0°51’ 1245 123"
Poseidonios of Rhodes (c. 135-50 BC) 53 1°05’ 13100 0'16"
Ptolemy (c. 100-175 AD) 59 0°58/ 1206 2/51"
Modern 60.2684 0°57'2.60"” 2345478 8.794148"

Note.—The names and dates are drawn from Wa215, Pe346, Pe381, and Tol, respectively. The
ancient data is adapted from Ped8, except for the Ptolemy’s solar distance and parallax. Ptolemy’s
solar parallax is taken from the Almagest (To265) and it is then used to calculate Ptolemy’s solar
distance. The precise modern values are referenced in Appendix B, Table B3.

Solar system parallaxes measured from the Earth are now always understood to be measured
from a baseline of the Earth’s equatorial radius; this is absolutely to be distinguished from stellar
parallaxes which are measured from the baseline of the Earth-Sun distance (No103). The modern
value for the Earth’s equatorial radius is given by qu = 6378.138km (App. B, Table B3). The
distance d to any body in the solar system is exactly related to the parallax fp,. by

Eq Eq
R@ N REB
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sin fpyr  sin Opgr

(4.1)

Ptolemy’s solar parallax is about 20 times too large, but gained widespread currency. Tycho
Brahe, unfortunately, assumed it, and so contaminated much of his solar analysis which otherwise
used data much more accurate (Th226ff).

The most famous reference to Aristarchos and the herald of his glory is in a treatise called
the Sand-Reckoner reputedly, but not certainly, by Archimedes (Wa204). The reference is just a
digression:

Aristarchus of Samos brought out grapha: consisting of certain hypotheses, wherein it
appears, as a consequence of the assumptions made, that the universe is many times greater
than the ‘universe’ just mentioned. His hypotheses are that the fixed stars and the sun
remain unmoved, that the earth revolves about the sun in the circumference of a circle, the
sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about
the same center as the sun, is so great that the circle in which he supposes the earth to
revolve bears such a proportion to the distance of the fixed stars as the center of a sphere
to its suface (quoted from Gi64).

This passage shows that Aristarchos at least proposed the heliocentric theory for the Earth with
static Sun and stars, and that he understood that the stars had to be immeasurably remote (by
ancient standards) to explain the non-observation of stellar parallax. Since the whole beauty of a
heliocentric model is the order it makes among the planets (with the Earth one of them), it is almost
certain that he made the other planets orbit the Sun too.

Aristarchos’ On the Sizes is geocentric (No85). So we do not learn of his helocentrism from
himself. There are only 5 other brief references to Aristarchos’ heliocentrism in ancient works
(Wa205-206): two by Plutarch (of Chaironea; c. 46-120 AD: Pe380), and the others by Diogenes
Laértes (probably 3rd century AD), Aétios of Antiocheia (c. 100 AD: Pe300), and Sextus Empiricus
(2nd century AD: C0297). The attribution of the works to the specified authors is at least somewhat
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suspect in all these cases (Wa205) just as is the Archimedes attribution. However, even if a work
is wrongly attributed this does not imply, of course, that the citations of Aristarchos are invalid.
The 5 other references, however, give little more information and may be mostly dependent on the
Sand-Reckoner itself or some other common source (Wa205). Plutarch in one reference tells us that
Aristarchos held heliocentrism only as a hypothesis, but that Seleucus of Seleuceia (or Babylon)
(c. 150 BC: Pe391; No86) held it as decided opinion (Wa205). Seleucus is little known, but seems
a significant thinker: he is reputed to have discovered the relation of the Moon to the tides and to
have advocated the infinity of the universe (Pe391; No86). In the other Plutarch reference we find:

Only do not, my good fellow, enter an action against me for impiety in the style of
Cleanthes, who thought it was the duty of the Greeks to indict Aristarchos of Samos on
the charge of impiety for putting in motion the Hearth of the Universe, this being the effect
of his attempt to save the phenomena by supposing the heaven to remain at rest, and the
earth to revolve in an oblique circle, while it rotates, at the same time, about its own axis
(quoted from Hel08).

Cleanthes of Assos (c. 331-232 BC) was a Stoic philosopher and the successor to Zeno, the founder of
Stoicism (Pe323). Diogenes Laértes lists an Against Aristarchos among Cleanthes” works (Wa205-
206).

Ptolemy does not name any heliocentrists, but refers to “certain people” who make the Earth
rotate on its axis and make Earth and heaven have any motion at all (To44). He concedes that
there may be nothing against these ideas in the observed of the celestial appearances, but objects
that physically the idea of a moving Earth is ridiculous (To45). Ptolemy’s physics is essentially
Aristotelian with Stoic leanings (Pe77-78). Aristarchos is probably among these “certain people”:
Seleucus maybe as well. Others might include Hicetas of Syracuse (5th century BC), a Pythagorean
astronomer, who assumed an axial rotation, but in the Philolaic system (Peb4): how this is possible
without getting rid of the Central Fire and Anti-Earth I do not know. Nothing much else is known
of Hicetas (Pe346). Ecphantos of Syracuse (c. 400 BC), also a Pythagorean, possibly a disciple of
Hicetas, did dispose of the Central Fire and Anti-Earth, and put the Earth in the center of the
cosmos with an axial rotation to explain the daily westward motion of the heavens (Peb4, 331).
Heracleides of Pontos (c. 390-310 BC), a disciple of Plato, believed in the axial rotation of the Earth
(Peb4, 342). The notion that Heracleides propounded a geo-heliocentric theory, putting Venus and
Mercury in orbit about the Sun (which is still orbiting the Earth) may be just due to a misreading
of a text (Peb4): if so, it seems to have been an early misreading and thus an effective accidental
innovation (Pall8; Pe54-54).

We are left with Aristarchos and Seleucus as the only true heliocentrists of Antiquity. Since
they are evidenced to be both deep thinkers, one can reasonably suppose that they understood the
essential advantages of heliocentrism: (1) the order of the planets from the Sun can be derived
(Kul74), (2) the relative distances of the planets from the Sun can likewise be derived (KulT74),
(3) the physical distinction between superior and inferior planets disappears (Kul72-173), and
(4) retrograde motions are simply explained (Kul71). These advantages were realized by Copernicus
and were his essential reasons for turning to heliocentrism (Kul71) despite his essentially Aristotelian
views (Pe77-78; Kul47). Tt is possible that Ptolemy perceived these advantages since he concedes
the celestial appearances could be saved perhaps with a moving Earth (To45). Ptolemy could
have constructed epicyclic heliocentric models just as he did geocentric ones. But he had a strong
Aristotelian bent, and had not, perhaps could not, become frustrated with the endless variations on
Ptolemaic systems that the coming centuries were to reveal to be possible. Fourteen centuries later,
Copernicus felt the full force of that frustration and turned to heliocentrism (Ro4, 21). Ptolemy
remains Ptolemy; Copernicus, Copernicus.

But what of Aristachos? What were the graphai in the quotation from the Sand-Reckoner.
Heath (Hel06) translates the word as book, but graphai has more than one meaning: its first
meaning seems be ‘drawings’ (Gi65). Other meanings are ‘outline’, ‘figures’, or ‘writing’ (which
could be in a book) (Wa203). No other evidence for a book exists. Wall suggests (with some reason)
that the Sand-Reckoner author may indeed having been referring to a book: On the Sizes (Wa210).
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The idea is that the Sand-Reckoner author, intentionally vague, attributed Aristarchos’ certain
heliocentrism to the geocentric work to give it a respectable, but undefined, reference. Alternatively,
the Sand-Reckoner author may just have been confused on the correct reference and left it vague
therefore, intentionally or not. In any case, the evidence for a real Aristachan book on heliocentrism
is slight.

Gingerich (Gi65) suggests a minimalist interpretation of Aristarchos’ heliocentric advocacy. The
heliocentric idea was discussed by Aristarchos, perhaps in Alexandria, possibly with Archimedes
(who was a student there) present, and some illustrative drawings (i.e., those graphai) were shown.
And there was no book. The animus of Cleanthes, however, suggests that the heliocentrism was
talked of for a time among philosophers. So maybe there was a book. Sans new evidence coming to
light there is no way to decide. However, there is some point in speculating maximally for a moment.

Let us say that Aristarchos was struck by the advantages of heliocentism. The very fact that
Aristarchos had poor data available to him may have caused him to focus more on the inherent
simplicity of the heliocenctric idea than worry about the complications that would be needed in
either a predictive Ptolemaic or Copernican system. Moreover, even with his poor determinations,
Aristarchos knew that the Sun was at least ~ 2 times the diameter of Earth: maybe he argued
physically that the biggest body in the cosmos should be the central object. Going further, maybe
he wrote a book, even a big book. Maybe he could have applied the Eudoxian concentric spheres to
the Sun to “save the phenomena”: they would have worked better without the need for hippopede
for retrograde motion. If he had done so much, why was it not better known; why did Plutarch
say that Aristarchos held the heliocentric idea only as a hypothesis; why did Ptolemy not say more.
Maybe Aristarchos feared persecution from the Cleanthoi of the world or maybe just ridicule. Maybe
he was just secretive; a Pythagorean, who did not wish to divulge more of the truth to the ignorant
mass. And so this imagined book was seen by few and vanished.

Obviously, I have made a fantasy. But Copernicus held the heliocentric hypothesis in his
thirties at least (Gi68; Kol143, 148), distributed one manuscript giving an outline of his early ideas
(the Commentariolus), worked out his ideas in great detail, and was sitting on them still when he
was in his late sixties. Only the importunities of his disciple Rheticus and his great friend Tiedeman
Giese managed to free De Revolutionibus Orbium Coelestium from Copernicus’ reticence to publish
(Kol160-161, 167). Without such friends, Copernicanism would probably have gone by a different,
later name. Maximal as well as minimal explanations are possible. The minimal may be more
sensible so as not to waste energy and to create imaginary problems (which is the sense of Ockham’s
razor), but the potential richness of actual, if unknown events, should not be forgotten either.

Even without a book, only a bruited about idea, why did so little come of heliocentrism:
it was near to vanishing without a trace. We have already discussed Ptolemy’s rejection. His
Aristotelianism was too strong, and perhaps the full force of heliocentrism did not strike him: it
being an already old and bypassed idea in his day (c. 150 AD). And there were few others. After
Aristarchos, only three great creative theoretical astronomers turned up in Antiquity: Apollonios
(c. 262-190 BC: Pe307), Hipparchos (c. 190-120 BC), and Ptolemy again. None of these became an
Aristachan. Without a brilliant exponent, an idea so far from Aristotle’s philosophical soundness,
so far from the center of the Earth, was perhaps doomed to near oblivion.

A last bit of if-history to close this section. Say Aristarchos had forcefully presented his ideas
in a book, famous or infamous. Would this event alone have substantially rewritten history?
Could heliocentrism have become a powerful ancient heresy? Could it have triumphed sooner?
much sooner? Could a Scientific Revolution have been precipitated in Antiquity by an Aristarchan
revolution just as at least partially one was by the Copernican revolution?

I suspect the answer to the last question is no. My argument (synthesized derivative argument)
for the decline of Greek science is given § 4.12. Changing one theory only to a better one, even
a very significantly better one, even one that demanded a breach in Aristotelian physics, probably
would not have prevented the decline of Greek science. After all, the Greeks had the theory that the
Earth was a small sphere in a large space. They found good proofs for this theory too. But though
marvelously thought-provoking, the spherical Earth in a huge space did not start a relentless quest
for natural laws. It did not even send Greeks and Romans off on exploring expeditions to verify the



45

total sphericity and to discover the whole Earth. As for the breach in Aristotelian physics, one can
imagine a qualitative principle of planetwide, but not small-scale, inertia or adhesion filling the gap.
Copernicus was may have been thinking along such lines of such a principle (Rol6). I can see no
compulsion to Scientific Revolution in heliocentrism.

The answers to the other if-history questions are maybes. There is no reason that the
heliocentrism could not have batted around more than it did. Perhaps, it could have found
acceptance as a calculational device when armored with epicycles and deferents to make it predictive.
After all, dyed-in-the-wool Aristotelians would only accept the Ptolemaic system in the calculational
device guise (Pe69). Then later heliocentricism could have become a dogma itself: one that just
happened to be right. It seems to me, that a minor bit of historical re-engineering could have saved
a millennium or so, at least in the narrow field of mathematical astronomy.

4.8 Apollonios of Perge

Apollonios of Perge (c. 262-190: Pe307) is one of the greatest of ancient mathematicians. He
is said to have studied with the successors of Euclid in Alexandria (Pe307), but that it has been
questioned if he was there long (No89). He developed the theory of conic sections in his treatise
Conica and we owe to him the terms ellipse, parabola, and hyperbola (Pe307). His mathematical
reputation rests solidly on his extant works; his astronomical reputation is great too, but known only
through references. The astrologer Vettius Valens (c. 160 AD) reports seeing tables of the Moon and
Sun by Apollonios, but these may have been by a another Greek of the same name. Ptolemy in the
Almagest (c. 150 AD: Tol) reports on Apollonios development of epicycle and deferent planetary
theories (Tobbbff). Tt seems

4.9 The Flowering of Hellenistic Science
the foreword:

Seeing moreover in you, as | say, an earnest student, a man of considerable eminence in
philosophy, and an admirer [of mathematical inquiry], I thought fit to write out for you
and explain in detail in the same book the peculiarity of a certain method, by which it
will be possible for you to get a start to enable you to investigate some of the problems
in mathematics by means of mechanics . .. for certain things first became clear to me by a
mechanical method although they had to be demonstrated by geometry afterwards because
their investigation by the said method did not furnish an actual demonstration. But it is
of course easier, when we have previously acquired, by the method, some knowledge of the
questions, to supply the proof than it is to find it without any previous knowledge (quoted
from Pe97).

4.10 Hipparchos

Hipparchos of Nicaea (c. 190-120 BC) is generally acknowledged to be the one of the two
greatest astronomers of Greek Antiquity: Ptolemy being the other. Hipparchos was certainly the
greater observer of the two and perhaps the only Greek astronomer to see and act on the need for
accumulation of large quantities of accurate astronomical data.

A source for this data that he utilized was Mesopotamian astronomy; Hipparchos may be
the principle conduit for Mesopotamian data and conventions into Greek astronomy and hence
to posterity. He had eclipse records for 600 years in the past that could only have come from
Mesopotamia (Pe50). He used the Mesopotamian division of the circle into 360° and sexagesimal
arcminutes and arcseconds. (An slightly earlier appearance of the Mesopotamian 360° circle and
sexagesimal arithematic in Greek is in the Anaphorics of Hypsicles [No93]). Tt is a pity that the
sexagesimal system was never or at least almost never used consistently by the Greeks and their
successors (Ne22); Copernicus, however, was more nearly consistent than many others (Ne22).

In theoretical astronomy, however, Hipparchos did not take over the linear algebraic methods
of the Mesopotamians (although he should have known something of them), but built on the work
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of Apollonios (Pe73). He did not attempt planetary theory (as far as it known), but only theories
for the Sun and Moon). He created a Sun model using a simple eccentric circle, and fed in the
observationally determined parameters which Apollonios did not do so far as we know (Pe73). This
model was quite successful for prediction and was adopted by Ptolemy (Pe78). It must be noted
that the Sun is the simplest case. Geometrically, it really can be considered as orbiting the Earth
in an ellipse with eccentricity € = 0.017. To first order in small €, an eccentric circle of radius a and
an ellipse of semi-major axis a are identical (see App. B, Table B7). Thus an eccentric circle model
for the Sun should be excellent.

For Moon, Hipparchos used a deferent circle centered on the Earth and an epicycle with
retrograde rotation (i.e., clockwise as viewed from the north) which is opposite the deferent’s
prograde rotation (counterclockwise as viewed from the north). This model was less successful,
but Hipparchos was probably able to predict the possibilities of solar and lunar eclipses using it.
It must be remarked that the Moon is a more difficult case than the Sun. The lunar orbit is more
eccentric (e = 0.055) and the orbit itself has a retrograde rotation (the regression of the nodes)
with a period of 6796 days (18.61 mean Gregorian years). And there are other subtler effects These
and the regression of the nodes are are due to perturbations by the Sun and other planets: the
Earth-Moon system is only very crudely a two-body system. Not until Laplace (1749-1827) were
Moon’s motions brought under good control (Pa305). (Perfect lunar prediction is in fact ruled out
by the minute Chandler wobble: an erratic orbit of radius ~ 15m (period 13 to 14 months) of the
physical Earth about the rotation axis probably due to major earthquakes [Pa368ff and Sm77ff].)

Hipparchos has a number of great astronomical achievements (Pe49-50). According to Pliny he
observed a new star (stella nova) which may have been a nova (in the modern sense of the word),
supernova, or just a variable star. Possibly this new star is the one recorded by Chinese observers in
134 BC. Hipparchos was supposedly inspired by this observation to create a catalog of fixed stars.
The important fixed stars were well known to be invariable, but a catalog would reveal if other
stars varied or even came and went. This catalog contained ~ 850 stars (Pal29) in a variety of
coordinate systems. This catalog was lost, but it i1s believed to have formed the basis of Ptolemy’s
catalog of 1022 stars (Pe81). Since only a few thousand stars are visible to the naked eye (Pa444),
Hipparchos’ catalog can be considered very complete. (Friedrich Argelander at Bonn created an
atlas [Uranometria Nova] of all naked eye stars [presumably only for a mid-northern latitude???7?])
that included only 3256 objects: stars, variable stars, and nebulae [Pa444].) Hipparchos’ catalog
was not the first in history, however. The 4th century BC Chinese astronomer, Shih-shen is said to
have compiled a catalog of 809 stars in at least 122 constellations (Pa88 and Pa90). Only fragments
have been preserved.

It is conjectured that Hipparchos invented the magnitude scale (a brightness scale) and used
it in his catalog; magnitudes certainly precede Ptolemy’s use of them in the Almagest (To16). The
magnitudes ran from 1st magnitude (brightest stars) to 6th magnitude (faintest observable stars).
Naturally this magnitude scale was qualitative and based on intercomparison. However, it would
have a long history; it was taken up by Ptolemy and passed onto posterity. Actually the eye can
make finer judgments than 1 magnitude and Ptolemy would qualify his magnitudes with the words
‘greater’ and ‘smaller’.

After the invention of the telescope fainter (i.e., higher) magnitudes would be added to the
scale???? (Pa445). In the 19th century, it was noted that the eye responds approximately
logarithmically to physical brightness (i.e., intensity or energy flux). In 1850, N. R. Pogson at
Oxford proposed that the magnitude scale be regularized according to the equation

M =—-25logh+C (4.2)

where M is magnitude, b is brightness, and C is a constant chosen as appropriate (and kept secret if at
all possible) (Pa446). With this equation magnitudes are logarithms of the approximate base 2.512
and 5 magnitudes correspond exactly to a brightess difference of 100. Magnitudes are nowadays
measured in reasonably well-defined wavelength bands: e.g., the B (blue), V (visual: actually
yellow), and R (red) bands. Magnitudes can now, of course, be calculated for any brightness and
so can run from negative to positive infinity. It has to be remarked that it is a perennial irritation
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having a logarithmic measure that runs the wrong way (i.e., brighter is smaller, fainter is larger)
and that has a completely stultifying base.

Hipparchos’ single greatest discovery was of the precession of the equinoxes (Pe49). This slow
periodicity could only be noticed because he had centuries of reasonably accurate Mesopotamian
data. The precession of the equinoxes is better described as a westward (i.e., retrograde or
clockwise) recession of the Earth’s axis and thus the Celestial Pole about the ecliptic pole (i.e, a line
perpendicular to the ecliptic plane). The axis maintains its (mean) obliquity of ~ 23.5°. Traced on
the sky from below, the circuit of the axis is counterclockwise. Hipparchos discovered the precession
by noting that the sidereal year was slightly longer than the time between the vernal equinoxes (i.e.,
the tropical year) (Pe49). The modern values for the sidereal and tropical year are 365.25636 days
and 365.24220 days, respectively. The precession causes the equinoxes to move westward along the
Zodiac: hence the traditional name: precession of the equinoxes. Hipparchos determined only a
lower limit of 36" per year (or 1° per century). This value, however, became accepted as the best
value in Antiquity. A modern precise value is 1.3969712° per Julian century (Table B3). The
Islamic astronomers al-Battani (c. 850-929) and Ibn Yinus (c. 940-1009)) established quite good
values of 54" per year and 51" per year, respectively (Pel62ff). However, another one, Thabit ibn
Qurra (c. 826-901) introduced the idea of a variable precession (called the trepidation) based on
overconfidence in ancient observations. This phantom, the trepidation, which had Copernicus had
accounted (Pal97), was exorcised by Tycho Brahe, who found a constant precession of 51" per year
(Pa215).

The physical cause of the precession was first explained by Newton using his laws of motion
and gravitation. The Earth is actually an oblate sphere (polar radius 6357 km and equatorial radius
6378 km). This asymmetry causes other celestial bodies to exert unbalanced torques on the Earth
which on the average are perpendicular to the angular momentum vector of the Earth’s spin. The
torques try to rotate the Earth perpendicularly to the Earth’s axis: the result is a precession just
like a toy top. The Moon and Sun (with the Moon dominating) are the causes of the torque (Sm75).
There is also a planetary contribution to the precession which is about 1/40 of the total due to the
Moon and Sun and opposes their action. The planetary contribution is due to the motion of the
ecliptic, however, not the motion of the Celestial Pole (Mo72).

The total period of precession is 25780 years (Zell). A consequence of the precession is that
Polaris is only temporarily the pole star. About 3000 BC the pole was near Thuban in Draco and
in 14000 AD, pole will be near Vega. Currently, Polaris is within 1° of the pole and will get closer
to it until 2100 AD and then move away (Se29). (To be precise, the declination of Polaris in year
2000 will be 89°15'51" [Ho20].)

Hipparchos was also interested in determining geographical latitudes and longitudes (which had
come in too use even before 300 BC) by astronomical means (Pe49ff). Latitude is straighforward: a
gnomon and the declination of the Sun suffice. Longitudes are more difficult. Determining them from
the days of travel between two location was very imprecise. In order to make better determinations,
synchronized clocks and transits of the meridian can be used. The time between transits in two
locations translates directly into difference in longitude: e.g., if a transit occurs at place X 2 hours
after occurring at place Y, then X is 30° west of Y. The difficulty in ancient times was in synchronizing
clocks. Celestial phenomena themselves were the usual clocks and they obviously provide only a local
time (i.e., celestial time). Mechanical clocks would only be invented in the Middle Ages, and sand
and water clocks do not transport well. Hipparchos suggested using entrances (or exits) of the Moon
into the Sun’s shadow during a lunar eclipse as synchronization signal. All people on the night side
of the Earth can see a lunar eclipse (unless clouded out) and, of course, they all see the entrance
at the same time. Lunar eclipses, however, are sufficiently rare and their exact time of occurrence
difficult for the ancients to predict. It does not seem that Hipparchos’s idea came into practical use.
(Ptolemy used the fact that lunar eclipses occur at different celestial times as one of his arguments
for the sphericity of the Earth [To40]).

Hipparchos determined distances to the Sun and Moon (see Sect. 4.7, Table 3.1). The Moon
distance 1is fairly accurate, but the Sun distance, although much better than Aristarchos’; is much
too small. Hipparchos’ method for deriving the Moon distance is quite clever (Pal29). Consider the
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Moon halfway entered into a lunar eclipse. Let angles a and 3 be the solar and lunar parallaxes,
respectively: the line tangent to the Sun and Earth and passes through the center of the Moon is
perpendicular to radius of the Earth that subtends the parallaxes. Let angles § and k be the angles
at the Earth’s center subtended by the Sun and Moon, respectively. Geometry shows that

a+p+r=0+k+m (4.3)

or

a+pB=050+k. (4.4)

Now « is the much the smallest angle and can be neglected. Thus the lunar parallax is
Brd+k. (4.5)

From the lunar parallax 8 the distance to the Moon follows from trigonometry.

A final possible contribution. Astrological literature often quotes Hipparchos (Nel87). Given
Hipparchos’ close connection to Mesopotamian sources and the probable origin of Hellenistic
astrology in the 2nd century BC, it is at least plausible that Hipparchos was a contributor to
astrology.

4.11 Ptolemy

Klaudios Ptolemaios (KAatdios TITolepatos), or, modern version, Ptolemy of Alexandria
(c. 100-175 AD: Tol) ranks as the foremost theoretical Greek astronomer. Little is known about
his life. Presumably he worked at the Museum of Alexandria or at least had access to its library.
His astronomical works are addressed to (i.e., dedicated to) an unknown Syrus. One of his teachers
was probably Theon, who is not to be confused with the 4th century Theon of Alexandria. Judging
from Ptolemy’s first name, he was probably a Roman citizen. (Roman citizenship was still a civil
distinction until Emperor Caracalla made all subjects, excepts slaves and the dediticii [whoever they
were], citizens possibly in 214 [Chambers 1966, p. 38].) His second name, and the evidence of his
writings, shows him to have been of Greek (and maybe Macedonian) cultural heritage. In Medieval
Islamic and European times, he was identified with Ptolemaic dynasty and sometimes illustrated
wearing a crown (Pe80; No106). Although worthy of a crown, Ptolemy was not likely scion of that
royal line (except possibly in remote way that everyone has royal ancestry): Ptolemy was a common
name in Greco-Roman Egypt (No106).

Ptolemy wrote a number of works, some of which are lost. The important survivors include the
Optics, the Geography, Planetary Hypotheses, Handy Tables (for astronomical computations), and
the Almagest (Pe76-77). The series seems to make up an encyclopedia of applied mathematics: but
it was also a series of original and outstanding work too. The Almagest is the greatest as its name
implies. It is work on theoretical astronomy. Called by Ptolemy Mathematical Systematic Treatise
(MabnuaTien Tovrées), it probably acquired the Greek nickname greatest treatise (unyiorn
Yovréis) (Tol-2). This mutated into the Arabic Al-majasti, and thence to the Latin Almagestum
and the modern Almagest.

The Almagest is a work in thirteen books (in the classical meaning of the term). Toomer’s
modern translation spans 613 pages (To34-647): a largish modern treatise. It probably took years
in the writing and a lifetime of scholarship. It may have been finished about 150 AD and is probably
almost the earliest of Ptolemy’s surviving works (Tol). In the Almagest, Ptolemy takes up the
astronomical research of Apollonios and Hipparchos apparently just where they left off 4 and 3
centuries earlier. He is our own witness for this since he cites and describes their work (Pe382-
383; Nol06). In fact, without Ptolemy we would know little about their achievements (No89;
Pal25). There seems to have been no great advances in the 3 centuries between Hipparchos and
Ptolemy (Nol19), although astronomical and, especially, astrological work continued in between
them (Nol19ff; Nel87). This stagnation in science is a subject we will return to in § 4.12.

In Book I gives Ptolemy’s philosophical and physical assumptions. These are essentially
Aristotelian with a Stoic influence (Pe78). An absolute Aristotelian, of course, would not deviate
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into epicycles (as Ptolemy does) from Aristotle’s geocentric spheres (Pe69). Also in Book T he gives
some mathematical chapters and a table of chords which serve him in place of modern trigonometric
functions (To57-60). The Ptolemaic chord function is related to the sine function by

ch(f) = 2Rsin (g) (4.6)

where ‘ch’ stands for chord function and R = 60. In Book II, Ptolemy develops spherical
trigonometry (a great original contribution) starting from the Menelaos theorem of plane
trigonometry (Pe78). The astronomer and mathematician Menelaos of Alexandria (c. 100 AD)
seems to be the only near contemporary whose theoretical work Ptolemy relied on.

Books IV-VI give Ptolemy’s solar and lunar theories (Pe78-80). The solar theory is Hipparchos’
unchanged: this a simple simple eccentric circle model. The fact that the Sun orbits the Earth (in
a geocentric view) in an almost unperturbed ellipse with an eccentricity of only 0.0167 makes an
eccentric circle model a good approximation. The eccentric circle and ellipse orbits agree to first
order in small eccentricity € (see App. A2).

The reason for near ellipticity of the Sun’s orbit is the weakness of all multi-body effects.
For a two-body system of spherically symmetric masses interacting only under gravitational force
Newtonian physics (which is very nearly correct in the weak solar system gravitational fields) dictates
perfect elliptical orbits of the two bodies around their common center of mass (Shu463-466). The
motion is in an absolute inertial frame of Newtonian physics which for the solar system is effectively
the frame of the fixed stars. Each body can be regarded as orbiting the other in an ellipse of the
same shape with a different size scale: the relative sizes of these various ellipses are determined by
the relative masses. If one body is overwhelmingly dominant in mass, the elliptical orbits of the
second body relative to the first body and to the fixed stars are virtually identical. The situation just
described basically applies to the Sun-Earth system. The gravitational effects of the other planets
and the Moon are weak perturbations of the Sun-Earth interaction. When perturbations are not
weak, orbits will be distorted from perfect ellipse and will often tend to rotate relative to the fixed
stars: 1.e., the orbit shape will rotate.

Ptolemy’s solar model does not correspond to well to a modern eccentric circular model. His
solar eccentricity was 0.042 (Nel192; Pe74). Such a large discrepancy from the modern value may be
partially due to poor data, but is likely partially because Ptolemy’s model gives the Sun a uniform
spatial motion. The real motion is non-uniform whether an elliptical model or the analog eccentric
circular model is used. The non-uniformity in motion probably got absorbed into Ptolemy’s (and
Hipparchos’) eccentricity parameter???7.

For the lunar model, no simple model can be accurate. For the Sun-Earth system, one can
ignore the Moon as a weak perturbation. But for the Earth-Moon system, the Sun’s perturbative
effect cannot be ignored. The Moon’s orbit (which is nearly elliptical with eccentricity 0.54900489)
rotates westward relative to the fixed stars with a period of 18.61 Jyr (Mo731): thus 19.34°/Jyr.
Trying to deal with the Moon’s eccentricity, the non-uniform motion around its elliptical orbit,
the rotation of its orbit, and still other lesser perturbative effects using a superposition of circular
motions is tough challenge. The Moon’s orbit is also tilted with respect to the ecliptic plane by a
mean??? angle of 5.14°: this causes the Moon to move in ecliptic latitude. Ptolemy’s lunar model
is of the deferent-epicycle kind. However, to account for all the Moon’s anomalies (i.e., differences
from uniform circular motion), he put the made the deferent center off the Earth and made it rotate
on a circle too. The deferent center and the lunar epicycle rotate westward (Nol12; Pe79). The
deferent itself rotates eastward and accounts for the main lunar motion.

The lunar latitude variation was achieved by tilting the deferent orbit plane from the ecliptic
plane by 5° (No112). The orbits of the planets were titled too (with some extra complications for the
inferior planets) to account for their variations in ecliptic longitude. The epicycle orbits were given
different inclinations from the ecliptic than the deferent inclinations. In the later Handy Tables,
Ptolemy made the epicycle planes parallel to the ecliptic plane. North describes the reasoning for
this improvement (No118).

Ptolemy’s lunar model gives a good account of the lunar longitude and latitude motions. But
there 1s a major descrepancy from observations that Ptolemy was surely aware of, but does not



comment on (Nol13). In his lunar model the Moon’s distance varies between 33Rg and 64Rg
(Pe80). The angular diameter of the Moon varies linearly with the lunar distance. Thus Ptolemy’s
model predicts that the Moon’s angular diameter should vary from ~ 0.5° to ~ 1°. Such a variation
would be readily apparent even to casual eye observation. From Ptolemy’s Planetary Hypotheses
we know that he took his models as serious attempts to model the physical world, not merely as
calculating devices (No112-113). Thus he would have had to have judged his lunar model as badly
flawed. He would have known that the Moon’s real motion in space was probably best only remotely
like his model’s motion.

In the case of the Moon, this reality check was available to Ptolemy: we easily resolve the
Moon’s disk and even the ancients could measure the distance to the Moon accurately. Ptolemy
himself gave the Moon’s mean distance as 59 Rg, (see Table 4.1). This compares well with the modern
mean distance of 60.2683qu: the distance varies up and down from this value by 5.5 % for a total
range in variation of 11 %. For the Sun there was a less blatant discrepancy. Ptolemy’s eccentricity
of 0.042 would lead variatian in distance and angular diameter of 8 %. Ancient solar distances were
wildly inaccurate (see Table 4.1), as Ptolemy may well have known, and so solar distances provided
no check on his solar model. But the Sun’s disk is resolved, of course, and the variation in its angular
diameter had been discovered by Polemarchos of Cyzicos (c. 340 BC). The total variation is only
3.3% or

Books VII-VIII give a star catalog with (ecliptic) longitude, latitude, and magnitude.

To summarize it briefly summarize the Almagest: It contains an

The practical ending of creative Greek astronomy with Ptolemy finds its particular explanation
in the explanation for the general decline of Greek science, which is the subject of § 4.12.

4.12 Whatever Happened to Greek Science Anyway?

It is generally agreed among historians that Greek science, after a period of continuous progress,
declined well before the end of the Greco-Roman civilization (Co???). The timing and reasons for
decline are in dispute. However, I give an analysis. Nothing in this analysis is original, except in
that 1t 1s my own synthesis of the ideas of historians of science. The analysis is based mostly on
the analyses of Cohen (Co?77) and the historians he discusses, particularly Joseph Ben-David and
G. E. R. Lloyd.

Greek natural philosophy (which encorporates science in my view) began with first Presocratic,
Thales, circa 600 BC. The next two hundred years were the age of the Presocratics. In this time,
each generation brought forth new thinkers who responded in some innovative manner to the ideas
of their predecessors or contemporaries. The 5th century BC was also the time of Hippocrates of Cos
(2nd half of 5th century BC) and his followers, and their innovations in medicine (Pe348). In the 4th
century BC, there was Plato, Aristotle, Epicuros, Zeno (the founder of Stoicism) and host of other
names. In particular, the 4th century BC saw the rise of axio-deductive geometry (Ne???) This
was an outstanding development in itself and as a model for how science should be done; geometry,
however, is not an empirical science and the axio-deductive procedure is only part of the modern
scientific The 3rd century BC, had the founding of the Museum of Alexandria and a group of great
names, more or less associated with it: Euclid, Aristarchos, Archimedes, Eratosthenes, Apollonios,
and Ktesibios. Up to this point, there seems to have been no generational break and innovation
seemed continuous. But after circa 200 BC, there appears to have been a change.

In the 2nd century BC the only great name is Hipparchos. In the period 100 BC-100 AD,
there may not to be any great names at all: it is a question of definition of course. Poseidonious
the astronomer, Philo and Hero the polytechnologist, and Meneloas??? were at least notable. In
the 2nd century AD, there were two great names Ptolemy and the physician Galen of Pergamon
(Pe337). Both men wrote great books that would become standard sources until circa 1600.
However, they seem to have been rather lonely figures without great (at least great and remembered)
contemporaries. In the case of Ptolemy, the work that he builds on is mainly that of Apollonios
and Hipparchos along with some theorems of Meneloas???7 His teachers were primarily books. The
books were there: anyone could have taken them up in the two centuries since Hipparchos’s death
and made a new contribution, but seemingly no one did.
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After Ptolemy there is not much to add. Pappos of Alexandria (c. 300) made important
mathematical contributions (Pe374). In the 5th century, Johannes Philoponos (c. 500-550) made
some original contributions to physics in the form of a commentary to Aristotle (Pe359). Other noted
names seem to have been mostly important only as commentators: Theon of Alexandria (c. 7777),
Hypatia of Alexandria (c. 77?7, daughter of Theon), both astronomers and mathematicians; Proclos
of Lycia (c. 415-485), a neoplatonic philosopher at the new??? Academy; Simplikios of Cilicia (6th
century). Simplikios was among the last of the neoplatonic philosophers (Pe391). In 529, Emperor
Justinian closed??? the new?? Academy: it was a pagan institution in a state now almost wholely
Christianized; its closure can be seem as a symbolic closing of Greco-Roman Antiquity. Simplikios
and others from the Academy left for Persia. Simplikios’ commentaries on Aristotle were influential
in the Medieval Islamic and western European societies.

In this resume, T put the decline at 200 BC. Others may put a different date: Lloyd (Co0253)
puts it after Ptolemy and Galen. However, I put the decline as starting when I perceive a first
discontinuity between great names. This dating is consistent with the Ben-David model of science
in ‘traditional’ societies.

The Ben-David model (Co254) postulates that discontinuity is natural in traditional societies.
These societies are essentially all societies before the Scientific Revolution which began in circa 1600
in Europe. In traditional societies, there can be a scientific innovator now and then or a string of
such innovators, but inevitably there is a fading of innovation, followed by a period of no innovation
and maybe even loss of knowledge. The reason for the lack of continuous cumulative science is the
weakness of support for science. Not that support is altogether absent (though it may be), but
just that it is insufficient. T will take ‘support’ to mean a broad range of things, both external and
internal to science. In the following I discuss under a number of headings what I see as the support
weaknesses of Greek science. A general discussion of Ben-David model is beyond my scope.

4.12.1 The Pay-off

A key support for modern science is the economic and spiritual support given to modern science
in exchange for its contributions to the economic and physical well-being of society. Science is seen
as a golden-egg-laying goose; a good investment. Obviously, a most visible support for science is
the money that pays numerous scientists and supplies their research needs. But there is also the
spiritual support that scientists feel in doing work that is recognized and honored for its tangible
benefits.

But the pragmatic reasons for supporting science were fairly negligible prior to 1600. By and
large, new technology did not result from the investigations of natural philosophers and scientists.
The Roman engineers who built the roads, aqueducts, the Pantheon (with its concrete dome?7?)
did not so far as we know rely on the results of natural philosophers. Perhaps they could have learnt
something Archimedes about statics, but they may already have known his results empirically. And
it 1s empirically that they worked, not searching for universal laws. The same applies to the sailing
ship builders and the farmers. Land surveyors needed only relatively simple geometry, not the
extensive proofs, theorems, and lemmas of Euclid. Certainly ancient business accounting and all
numerical work would have been improved by using a place value notation with an explicit zero such
as the astronomers (e.g., Ptolemy) used although inconsistently (Nel1,22). Evidently, nonscientific
numerical work was insufficiently arduous to require such an innovation.

The above statements cannot be pressed too dogmatically. The polytechnologists of Alexandria,
Ktesibios (c. 200 BC), Philo (c. Ist century AD) and Hero (c. Ist century AD), and, of course
Archimedes all made practical inventions. However, it 1s not clear how much application their
work found?777. It is plausible that the war engines Archimedes invented and used in the siege of
Syracuse (Flachiere & Chambry 1966, p. 209) found a place in the arsenal of the Roman legions??77?.
Certainly, medicine must is a field where the benefits of the scientific approach were recognized: hence
the widespread respect for work of the Hippocratean tradition and Galen.

Astronomy qua astronomy had no practical applications. And ancient navigators did not need
it. They relied on simple astronomical observations for directions and tried to stay in sight of land
which is fairly easy in the narrow seas of the Mediterranean????. Some astronomy was needed for



astrology (if that can be considered a golden egg), but most astrologers did not need to observe the
stars or understand the deeper waters of mathematical astronomy. All a run-of-the-mill astrologer
needs is a few astronomical tables of modest accuracy and some imagination. The work of Hipparchos
and Ptolemy was more than sufficient for these: no further developments were needed. Nevertheless
for some sublime spirits such as Ptolemy himself with his Tetrabiblos and in later times Tycho Brahe
(?7?7) and Johannes Kepler (?7?7) astrology was an important study. For them at least, improving
astrology was an inspiration for improving astronomy. But their ambitions were superfluous for
common astrologers and clients.

The lack of practical interest in science has several possible reasons. The main one may be
that science was just insufficiently advanced to help technology in many cases. Even after 1600,
technological applications of science only slowly developed (Co???7). Another may be an attitude
of disdain for practical application on the part of natural philosophers. Plutarch attributes such a
disdain to Archimedes and Plato (Flachiére & Chambry 1966, p. 208-209). It is possible that the
attitude is stronger in Plutarch himself than in the people he attributes it too (Pe92). However,
it is true that no writings of Archimedes on his practical inventions has come down to us??7. It
is also true that his works on physics are based on the axio-deductive method with postulates and
derivations with no references to experimental work???. This does suggest a bias against writing
about practical work.

Yet another reason may have been the lack of perception that science could yield practical
benefits. In the 16th century, Francis Bacon and René Descartes (Co???) both proclaimed the
practical utility of science. Their words testify to their insight more than to actual events in their
time (Co???). In his time, Archimedes’ famous words ‘Give me a place to stand, and T shall move
the earth’ (taken from Pe308) did not become a motto and a metaphor.

There was one field of research that did promise practical benefits: alchemy (Pel41ff). The
essential goal of alchemy was the making of gold by what we now would now call chemical processing.
Alchemy arose in Alexandria sometime before 100 AD, perhaps as early as 200 BC. Most of the
earliest writings are attributed, super-implausibly, to mythical or famous historical persons: e.g.,
Hermes, Moses, and Cleopatra. From the Greco-Roman world it spread to the Islamic civilization,
and from there to western Europe where it still found adherents in the 18th century, notably Isaac
Newton. Obviously alchemy failed of its quest. However, along its path many basic chemical
procedures were discovered and many chemical apparatuses were invented. The theories of alchemy
tended to be mystical and Aristotelian, and were connected to astrology. With such a framework,
it is not surprising that theoretical chemistry did not make much headway among the alchemists.

Although the ends of alchemy were eminently practical and it founded an enduring tradition, it
is not easy to see 1t as attracting popular support because it shunned that. Alchemy was a gnosis,
an arcane science for an inner circle of adepts. The language of its texts is coded and opaque
and sometimes defies interpretation. Nevertheless, alchemy’s golden promise probably ensured its
survival when the more lucid and rational parts of natural philosophy were neglected.

4.12.2 Where was Technology?

In the last subsection, it was argued that science was weak because it supplied little to
technology. Here the argument is almost reversed: science was weak because technology was weak. If
one looks at late Medieval times through the Renaissance, there was a striking progress in technology
in western Europe. Here only a few of the most obvious items will be mentioned. Circa 1300 there was
the introduction of the mechanical clock, convex lenses, and spectacles????. About 1450, moveable
type printing and concave lenses (a boon for myopiacs) appeared. Throughout the 15th and 16th
centuries there were improvements in ships, maps, and navigational techniques. It should be noted
that not all these technological innovations originated in Europe

The Renaissance-to-Enlightenment scientists worked against a background of obvious
technological progress. In a vague and general sense, it is plausible that a general sense of innovation
in technology was a spur to do likewise in science. Additionally, the precision of the newer technology
was perhaps a challenge to greater precision in the description of nature: i.e., to go to a mathematical
description of nature. Against these vague notions, some harder evidence can be atested for the
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stimulation of science by technology. The case par excellence is the invention of the telescope. The
telescope was invented in 1608 in the Netherlands: the exact history of the discovery is clouded.
Within a year Galileo and others were uncovering a host of never-seen-before celestial phenomena.

Another facet of a world of technological progress was the fact that innovations could find an
application and reward. This opened to at least some sages the possibility of a dividend from their
studies. Galileo (a prototypical figure) was quick to exploit his improved telescopes (much better
over the earliest crude examples) for worldly gain. Not by sale—that would have been déclasse—but
by strategic gifts to princes.

In contrast, the Greco-Roman world showed a rather leisurely pace of technological progress.
Building and civil engineering improved noticeably. But overall progress must have been sufficiently
slow that a person would not perceive it in their lifetime and a perception of cumulative development
may have been lacking. The introduction of the water wheel in late Antiquity is a rare example of
a notable innovation that provoked some comment??77.

The historian of science Benjamin Farrington??? proposed that the slave labor economy of the
Greco-Roman world militated against the occurrence of a Scientific Revolution. The cheapness of
impressed human labor forestalled the need for labor-saving technology and thus reduced the need
for science to supply that technology. This thesis may not be totally supportable in a direct sense.
But it is at least plausible that technological ingenuity was blunted by the slavery, and that blunting
(as this subsection argues) blunted science. Tt is also possible that the pervasive hypocrisy of the
Greco-Roman elite about slavery (good for others, not for themselves) contributed to the possibly
significant attitude of disdain for practical application of science as unworthy of a philosopher (see

§4.12.1).

4.12.3 Besides the Tangible

Besides the tangible there is the intangible. Science answers questions about the natural world.
Curiosity about the natural world is natural. Ergo science will be supported. The logic is not
flawless. Certainly, curiosity (and even stronger words) are an ultimate drive for science and natural
philosophy: it is almost undebatably that scientists and their patrons are driven by curiosity. But not
all people will feel the urge to go beyond what is already available: the mythology or the established
natural philosophy. Thus, the works of the natural philosophers of Antiquity were recopied again and
again, and many of the most important ones were passed onto posterity through many generations
who did not add to their contents. Thus, mathematics, astronomy, and natural philosophy were part
of the ancient educational curriculum, but people were taught the subjects, not taught to pursue
them. The Eastern Roman Empire (the Byzantine Empire) verifies this: a thousand year history
with scarcely an original natural philosopher to name despite possessing much of the literature of
Greek Antiquity (Pel51). Parenthetically, it needs to be said that Byzantine civilization was far
from sterile overall: in art, literature, theology, theological controversy, politics, military activity,
Byzantium has its achievements (e.g., Vryonis 1966; Hoxie 1966).

Is an explanation needed for science not being all things to all humans? Better to just give
the explanation and avoid yet another indifferent digression. Science does not provide a meaning
for life or say how to live. Those are the provinces of religion or philosophy in the broad sense.
The great philosophers of the 4th century BC—Plato, Aristotle, Epicuros, Zeno the Stoic—had long
and widespread vogues because of their overall philosophical systems that grappled with meaning-
of-life and how-to-live. Natural philosophy was only a component of their systems. For many of
their followers the natural philosophy component needed no amendments. However, it is fair to say
that the consolation of philosophy was not enough for most. The mainstream of humanity finds its
meaning-of-life and how-to-live in schools other than the Academy.

4.12.4 No Printing Then

There was no printing then. Indulging in if-history, one can ask what if the ancient Greeks
had had printing (and paper, of course, to print on) would that have saved science from declining.
Fortunately, comparative history can be done. There are two effectively independent examples of



printing civilizations: Europe after 1450 (Gies241) and China after circa 700 (Tsl).

The effect of moveable type printing in Europe was certainly impressive. The availability and
affordability of books increased dramatically. The scholar, student, ordinary person could keep a
small library for private edification, something scarcely possible before????. The works of the Greco-
Roman and Islamic world (usually in Latin translation) could be given a wide diffusion: thus ancient
and Muslim learning was revealed and revealed not to be final. People could rise rapidly to fame and
influence just through their printed words: e.g., Erasmus and Galileo. All classes of people, even of
very low status could benefit. And all classes of people, in particularly the lay class, were exposed to
a host of competing ideas and innovations. Naturally, censorship became a necessity. But it could
be evaded: a determined author could publish his scurrilous (or otherwise unwelcome) work in one
or other of the multitude of independent jurisdictions. Tt has been claimed (Eisenstein 1979; see
also Co359) and questioned (Co357-367) that printing was essential for the Scientific Revolution.
Certainly, 1t is hard to imagine the course of a Scientific Revolution sans printing, but that does
not to rule out its possibility. A stronger claim is that printing was a sufficient cause for a Scientific
Revolution. Cohen argues for the negative based on the effect of printing in China (Co366, 476).

My remarks and conclusions about Chinese printing are largely derived from those of Tsien (Ts).
In China, block printing (i.e., printing where a page is set in a solid block of wood or metal) was in use
~ 750 years before moveable type printing appeared in Europe. The greatest demand for the earliest
printing sprung largely from the desire by devotees of Buddhism to massively reproduced religious
works (Ts9-10). Tt came into large scale use circa 1000 (Ts369) and it did have profound effect: how
could it not have. Learning was certainly more widely spread; works were saved for posterity; life
was enhanced. But the overall effect seems to have been more stabilizing than mutagenic (Ts382).
Almost all printing after circa 1000 by government, private printers, or businesses was dominated
by works of Confucian scholarship (Ts378). Although government printing was not dominant in
quantity????, given the hierarchical nature of China the government line must have set the pattern.
Radical deviations from the Chinese norm were not introduced. Was a Scientific Revolution a
radical deviation? I would not think so if it came about in the right way: whatever that way may
be. However, no Scientific Revolution occurred. Given Chinese society, printing even on large scale
was evidently not a sufficient cause.

By way of digression, a word should be said on the possible transmission of printing from China
to Europe. It seems likely that block printing (first appearing in Europe in the 14th century???)
was a transmission from China. The techniques of block printing first used in Europe are nearly
identical to those used in China. The agents of transmission could well have been the European
travellers who visited China in the 13th and 14th century: Marco Polo was not alone; Christian
missionaries, in particular, were active in China?777.

The transmission of moveable type printing is less certain. China had moveable type printing
since circa 1000, but did not use it extensively. The nature of Chinese script with thousands???? of
characters made moveable type printing rather unmanageable (Ts8). Since most Chinese printing
was reprinting????, it was more sensible to produce the blocks for books which could be kept and re-
used repeatedly. There is no known chain connecting to Johann Gutenberg to China and on grounds
of technique???? no evident copying on his part of Chinese or other eastern models. However, he
may well have learnt something through travellers and merchants. On the other hand an independent
invention is also plausible. There can be no conclusion without more evidence.

4.12.5 Early Christianity and Science

Christianity became the dominant religion of the Greco-Roman world in the period ~ 300-400.
This is indisputably after the decline of Greek science. Thus Christianity was not cause of the
decline. Still it is worth asking if Christianity had a positive or negative affect on natural philosophy
in late Antiquity. The conclusion that I have come to is that it was more or less neutral.

The Christian leaders and writers (the Christian Fathers of the Church) showed both hostility
and respect for the pagan philosophers. The hostility because the pagan philosophers were not of
their faith and were rivals, and because their writings would lead people astray. The respect for at
least some of their achievements, their virtues, and the truth to be found in their works. A quote
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from St. Augustine (354-430, bishop of Hippo in North Africa) illustrates this:

There 1s no reason why we should not have studied literature just because pagans say
that Mercury is its god, nor need we avoid justice and virtue because they have dedicated
temples to justice and virtue and preferred to worship in stone what should be borne in
one’s heart. Rather, every good and true Christian should understand that truth, wherever
found, comes from his God (quoted from Levine 1966, p. 222-223).

Naturally, the hostility and respect could not be equally balanced overall or in any individual. A
general conclusion about the interaction of early Christianity and Greek philosophy is well out my
range of scholarship.

In regard to natural philosophy, it does not seem to have occupied the Christian Fathers too
much. Their attitude was often that natural philosophy was a vain philosophy and unnecessary for
salvation in any case???? (e.g., St. Ambrose of Milan [c. 3407-397] [Dr212]). Such an attitude could
not be expected to lead to a scientific renaissance, but would not likely oppose interest in many
areas of natural philosophy. One area that become controverted was cosmology.

The Bible makes a number of cosmological statements that treated literally or mystically, even
when they seem most like simple analogies, led to cosmologies radically at odds with Greek cosmology
(No226ff, Dr207ff). For example, from Isaiah XI, 22: “it is He ... that stretcheth out the heavens
as a curtain and spreadeth them out as a tent to dwell in.” This passage led to a doctrine of the
heavens as a tent or, more Biblically, a tabernacle in the writings of the Syrian bishop Severianus
(c. 400) and other Patristic writings (Dre211-212). (Patristic means pertaining to the Christian
Fathers or their writings).

The most egregious Patristic writer is probably Lactantius (c. 240-320), who was a professor
of rhetoric and tutor to Crispus, the son of Constantine. He had considerable classical learning and
wrote with a Ciceronian style (Levine 1966, p. 217). Classical knowledge notwithstanding, in his
Divine Institutions he ridicules and refutes the spherical theory of the Earth and the existence of
the existence of the Antipodes. (Geometrically, antipodes are diametrically opposite points on a
sphere. The Antipodes loosely seems to mean the southern hemisphere of the Earth????. The word
antipodes comes from the Greek antipous: with feet opposite.)

The notion of the Antipodes is, of course, necessary with the spherical theory of the Earth
possibly first introduced by the Pythagoreans. The Greeks had shown that the part of the Earth
they were familiar with was consistent with a sphere and certainly could not be flat. Astronomical
considerations made idea of completely spherical Earth entirely plausible. But, of course, the
Antipodes were a theoretical extrapolation that would not be demonstrated until the time of the
oceanic voyages of the 14th and 15th centuries. It seems that Antipodes were first introduced by the
Pythagoreans as a necessary consequence of their spherical Earth (Dre37; Pel8). The Pythagoreans
supposed that the Antipodes were inhabited. At some point the idea arose that the equatorial zone
of the Earth was impassible due to extreme heat (Dre220) or that the Antipodes were otherwise
unreachable (Dre213). Consequently, the inhabitants of the Antipodes could not be descended from
Adam: a thought which distressed some of the Fathers (No226). Lactantius thought it absurd to
believe that at the Antipodes people and all other things exist hanging upside down (Dre209).

Although ideas similar to those of Lactantius and Severianus were spread and adopted by some
Patristic writers, they were not universally held and they were not carried on with interminably.
The writers and bishops, St. Ambrose of Milan (3407-397), St. Augustine, and Isodore of Seville
(c. 560-635) do not take a firm position and so were probably open to believing in Greek cosmology
(Dre212, 213, 220). Their caution was necessary since deviations or perceived deviations could
have called down fulminations on their heads. The Venerable Bede of Jarrow in England (673-735)
wrote without quibbling about the spherical shape of Earth and the cause of the variation of the
day with latitude and season (N0228). By the time of Gerbert of Aurillac (c. 950-1003), who was
Pope Sylvester I (999-1003) and an introducer of Islamic science into Europe, the flat Earth and
tabernacle heaven theories had lost most credibility with Christian scholars (Pe340; Dre226).

4.12.6 Conclusion



My own view, and it seems unexceptional, is that knowledge of many sorts including especially
science and technology tends to be cumulative in human society as a whole. The special mention of
science and technology is because they are based on the nature of the natural world: e.g., the law
of gravitation is the law of gravitation in any society; the steam engine is the steam engine in any
society. There can be periods of stagnation, even periods of loss of knowledge: the most dramatic of
these being labeled dark ages. But because of the broad geographic spread and multitudinousness
of human cultures, such accidents of history as stagnations or dark ages have been local affairs
and they did not halt the general progress science and technology. Given human nature and the
nature of reality that allows tremendous material and spiritual rewards to be reaped from the
application of the modern scientific method, it seems to me to have been highly probable (but
probably not inevitable) that a Scientific Revolution would occur some place, some time in human
history. Accidents of history determined that the Scientific Revolution (circa 1600) and later the
industrial revolution occurred in Europe where there was a super-favorable set of circumstances. The
capabilities produced in part by these revolution allowed them to be spread world-wide, forestalling
any independent recurrence.

Before Europe circa 1600, there were other occasions when an approach to a Scientific Revolution
occurred. The florescence of Greek science is an often cited example. However, the revolution did
not then ensue perhaps because of the unfavorable circumstances discussed above. Maybe just a
few more geniuses (a Galileo, a Kepler) and a few more technological breakthroughs (the printing
press, the telescope) would have ignited the revolution. But then again maybe not.



5. Islamic Astronomy

5.1 Prelude: Indian Astronomy

By comparison to the Greeks earlier and the Islamic astronomers later, Indian astronomy in
the period c. 300-800 BC cannot be said to have made outstanding progress per se. Nevertheless,
in this period (and not at any other time) Indian astronomy seems to have been the world leader.
Its greatest achievements were mathematical methods (which are also, of course, very important for
things other than astronomy) and in just keeping the practice of astronomy flourishing so that it
could be spread westward again to the Islamic world.

The Indian Brahmagupta’s Siddanta

5.2 Hindu-Arabic Numerals

The origin of Hindu-Arabic numerals is somewhat obscure. There are four elements to these
numerals which certainly originated in diverse times and places: a decimal base, place value notation,
an explicit zero symbol, and decimal fractions. The decimal base certainly originated independently
all over the world: its commonness is just a result of anatomy as Aristotle noted (Bo3). Maybe the
earliest occurrence of a written account of finger wisdom comes from Egyptian Book of the Dead
Ne9. A dead king wishes to cross the river to the underworld. The ferryman queries him: “This
august god (on the other side) will say, ‘Did you bring me a man who cannot number his fingers?’
(Ne9).” The king recites a rhyme numbering his fingers revealing himself to be a powerful magician
and crosses to the land of the dead.

The use of decimal place value notation is found in China as early as the 13th century BC in the
time of the Shang dynasty (Ron5). Chinese decimal fractions appear as early as 330 BC (Ron36).
Zeros, however, were expressed by a vacant space until quite late. A circular zero symbol is found
in print from 1247 AD, but may have been in use at least a century earlier.

The earliest report of Hindu decimal place value notation without a zero is from a Syrian Bishop,
Severus Sebokt in 662 AD (Bo235). The first appearance of the Indian zero is from an inscription of
circa 870 AD (Ron4; Bo235): just a dot or very small circle (Bo261). Decimal fractions do not seem
to have been used (so far as I can tell) at least before Hindu notation got passed onto the Islamic
world. Whether the Hindu decimal place value notation and zero appeared independently in India
is impossible to say. The decimal place value notation may have come from China or south-east
Asia where it is attested to from circa 600 AD.

An alternative suggested by Neugebauer (Nel89) is that the both the Hindu decimal place value
notation and zero may have originated as an adaptation of the sexagesimal place value system (with
an explicit zero) used in texts derived from the Greco-Roman world (Nel89). Tt seems that the
original version Paulisa Siddhanta contained a decimal place value expression in words for 7800 in
number words (Nel89). The Islamic astronomer al-Birtini of Khwarizmi(c. 973-1050 [Pe317])(who
wrote a book on Indian mathematics and culture, India [Bo263]) attributed this work to the Greco-
Roman astrologer Paulus Alexandrinus of the 4th century AD: Paulisa Siddhanta probably dates
from 4th century at the earliest (Nel75; see also No165).

Given that Mesopotamian sexagesimal system with a zero and sexagesimal fractions had been
in existence since at least 300 BC, but without a ‘sexagesimal point’ (absolute size had to read
from context) (Ne20, 27), it is perhaps a bit strange that an equivalent decimal system developed
so slowly. Greco-Roman, Indian, and Islamic astronomers all used the Mesopotamian sexagesimal
system (although not often consistently) (Ne22) and could have developed the decimal system quickly
just by analogy. Maybe for their computations they were content with the sexagesimal system and
for everyday use required nothing more than crude decimal and other systems.

The same book, Brahmagupta’s Siddhanta which introduced astronomy to the Islamic world
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(see 5.2), also gave the TIslamic world Hindu numerals (hereafter Hindu-Arabic numerals) where they
found extensive use (Bo260). However, Islamic mathematicians and astronomers did not use them
consistently (Ne24). The Hindu-Arabic numerals seem to be largely used only in mathematical work.
Astronomical tables used alphabetic numerals. Greek and Coptic alphabetic numerals were used
in Egypt for centuries after the Arabic conquest of 641-643 (La39). The numeral shapes evolved
somewhat both in India and in the Islamic world. The western Arabic Gobar numerals were the
ones that are the ancestors of the European and modern numerals (Bo261). Al-Kashi of Kashan
(d. 1429 [Pe361]), who worked at Uleg Beg’s observatory in Samarkand made significant use of
decimal fractions and regarded himself as their inventor, although he may have learnt of them from
China or elsewhere (Bo268).

The introduction of Hindu-Arabic numerals into Europe was a gradual process. Gerbert of
Aurillac (9507-1003), Pope Sylvester 1T (999-1003), is first Christian author to describe the Hindu-
Arabic numerals, but without the zero (Pe340; Bo276-277). Adelard of Bath (c. 1090-1150) (Pe299)
and John of Seville in the 12th century had further explained the Hindu-Arabic numerals to western
Europeans, but they still did not achieve wide attention (Bo278; Gies225). Later authors who
popularized their use were Alexandre de Villedieu (fl. ¢. 1225), John Sacrobosco or John of Halifax
(c. 1190-1236 [Pe360]), and Leonardo of Pisa, called Fibonacci (for son of Bonacci) (c. 1180-1250).
The Hindu-Arabic numerals only slowly came into common use probably due to conservatism and
because businessmen were afraid they could be fraudulently altered (Gies 226-227). Moreover, the
abacus was widely used and advantages of decimal place value notation are much more apparent in
pen-and-paper calculations. Late in the 14th century, however, they came into general business and
everyday use (Gies226-227).

A few more words can be said to complete the story of numerals and simple arithmetic
operations. Fibonacci book Liber Abaci (Book of the Abacus) appeared in 1202 (Bo280). Despite
its title it was not on the abacus, but rather treated problems, algebra, and strongly advocated
Hindu-Arabic numerals. Fibonacci’s most famous problem is discussed in Appendix A, § A3. The
Fibonacci sign for zero is ‘0’ which in Arabic is zephirum (Bo280). Zephirum and variants give
us ‘zero’, of course, but also ‘cipher’. Fibonacci writes his algebraic equations in words; only in
diagrams does he use symbols for unknowns (Gies226). Binary operation signs appear much later:
minus and plus in the 15th century, equal in the 16th century, and division in the 17th century.

Decimal fractions using the equivalent of decimal point appear in Europe as early as 1492
(Bo307), but decimal point itself did not appear until the 1590s. Two astronomers, Giovanni Antonio
Magini (1555-1617) (a Galileo rival) in 1592 and Christoph Clavius (1537-1612) in 1593 are both
attributed with its introduction (Bo334). Scottish mathematician John Napier (1550-1617) made
the decimal point popular more than 20 years later (Bo333-334).

5.3 The Setting of Islamic Science

Islamic astronomy is a part of Islamic science. The expressions, Islamic astronomy and Islamic
science, are used here to mean astronomy and science in the Islamic world in the period circa 750-
1450: this seems to be the accepted historiographical usage (Co384). Before circa 750, there was
no significant science supported by Muslims in the still only recently born Islamic society. After
circa 1450, Islamic science declined. When science revived in Islamic countries in the 19th and 20th
centuries, it was modern science and thus part of a different history. In this section, we will sketch
setting of Islamic science: viz., the general history that of Medieval Islam.

peninsula. In about 610, he began his open career as the Prophet of Islam, the Way. In 622, he
moved to the nearby city of Medina and became its religious and political chief. Both by word and
sword, he spread Islam and its political hegemony. After his death, his immediate successors, the
caliphs (kalifat Allah??7?, the deputies of God) proceeded likewise in a century of conquest with
Arabian tribes as their armies. The Sasanian??? Persian empire was overthrown, the provinces of
Syria and Egypt were taken from the Byzantine empire, and the conquest to the east extended to

Charles Martel (?7777) defeated the 7777
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5.4 Islamic Astronomy: Circa 760—1200

Al-Khwarizmi of Khwarizm (d. 860 [Pe362]) was Persian mathemetician and astronomer. He
worked 1in Baghdad and may have been involved in the measurement of the Earth’s circumference
ordered by Caliph al-Ma’mun.

5.5 The Maragha School

The Maragha School is a modern name given to a small group of astronomers who either
worked at the Maragha Observatory in north-western Persia (modern north-western Tran???) or
made developments based on work of the astronomers in the first category. In fact there are only
four names currently considered to be significant: Nasir al-Din al-Tusi (1201-1274 [Pe370]) Mu’ayyad
al-Din al-Urdi (d. 1266 [Sa245]) Qutb al-Din al-Shirazi (12361311 [Pe385; Sa245]) and Ibn al-Shatir
(1304-1375 [Pe350; Sa245]) The collective work of these four astronomers is now often considered
to be the brightest achievement of theoretical astronomy in the Medieval Islamic civilization. It
is a scientific tragedy that their work was almost unknown in Europe in before and during the
Copernican revolution and was generally forgotten until the 1950’s (Sa259). The significant exception
to obliviousness in Renaissance Europe, the person who knew at least something significant of their
significant work—indirectly to be sure—was the significant man himself, Copernicus.

How the Maragha school came to be, what its work was, and how it was transmitted are the
topics of the following subsections.

5.5.1 Hulagu Khan

In his lifetime Genghis Khan (1167-1227) conquered an empire beginning with his native
Mongolia that extended over modern Mongolia and the north and west of modern China (Ru237ff).
His grand strategy in essence was reward vassals, be terroristic to those who refused to be vassals
and were insufficiently strong to resist, and expand continually. His army based on his Mongol tribes
grew with every vassal made. Its essence was cavalry, archers and lancers, men hardened on desert
treks and raids, discipline, and unheard of numbers (Ru242). His sons and grandsons continued
his conquests and became rulers of sub-empires. As long as they stayed united and reinforced each
other from their respective territories, they could bring overwhelming force to bear at any point
and continue to expand. Once the descendents lost cohesion (essentially in the time of the great-
grandsons), the Mongol Empire splintered, continuous expansion halted, and eventually collapses
followed.

In 1251, Mongka Khan, a grandson of Genghis Khan, was elected supreme Khan: the fourth
supreme Khan counting from Genghis Khan himself (Ru294ff). He re-animated the policy of
conquest assigning the two main thrusts in China and Middle-East to his brothers Kubilai and
Hulagu, respectively. Kubilai proceeded to conquer that part of China not already in Mongol hands
with great skill and, insofar as a conqueror can be, was humane: he in fact converted to Buddhism.
Hulagu, like Kubilai was more educated than most Mongol princes, and liked to have learned men
in his service. He was interested in philosophy, alchemy, and astrology. Unlike Kubilai, Hulagu was
savage to his enemies in the style of his grandfather.

Northern Persia and Azerbaijan had been annexed to the Mongol Empire by the Mongol general
Chormagan in 1231. In about 1253, the Mongol general Kitbuqa restored and extended Mongol
authority in Persia in preparation for the main effort. This began when Hulagu brought a huge
Mongol army across the Oxus in January 1256. By the end of 1257, he had defeated rulers of the
western of Persia, the Assassins (as called by the Crusaders) and captured their capital Alamut. His
next objective was Baghdad, which invested on January 22 1258.

Baghdad at that time was still the capitol of the Abbasid Caliphs. They had long been shorn
of their great empire, but in 1258 were again masters of their surroundings at least. Despite rival
caliphates that had existed, the Abbasids still had a strong theoretical claim to being the heirs
to the authority of the Prophet. And Baghdad was still wealthy and populous city, a fabulous
and fabled city. On February 10, Hulagu’s army broke into the city, the Caliph was soon put to
death after revealing his secret treasure hoard, within forty days tens of thousands of inhabitants
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were massacred. Because of the dead, there was fear of epidemic and Hulagu retired to Azerbaijan
(modern north-west Iran) where he had a base established near Maragha.

Hulagu extended his war to Syria and early in 1260 both Aleppo and Damascus had fallen: at
Aleppo Hulagu was merciful; Damascus surrendered not counting on mercy. But the unity of the
Khans was breaking. Hulagu’s brother Arigboga was elected supreme Khan in 1259 after Mongka
death without Hulagu or Kubilai’s approval and a civil war was in progress in Hulagu’s rear between
Arigboga and Kubilai. Also Hulagu’s Muslim cousins of the Golden Horde (as they called themselves
[Ru294]), whose territory was on his northern flank, were disapproving of his anti-Muslim actions.
Fearing troubles to the north and east, Hulagu withdrew many of his men soon after conqueroring
Damascus. His general Kitbuga remained in charge in Syria. In September of 1260, Kitbuqa was
defeated and killed at Ain Jalud by the Mameluk army from Egypt. Western Syria was lost to the
Mongols and they never recovered it or moved further to the south-west (Ru313).

Kubilai defeated Arigboga in 1261, and thus restoring some of Hulagu support from the Far
East. But the Muslim Mongols of the Golden Horde and Turkestan were closer and held him in
check. Kubilai gave Hulagu the title Tlkhan (Khan of the west????) and hereditary government of
south-west Asia: the Ilkhanate of Persia. Hulagu died in 1265 and was succeeded by his son Abaga.
Hulagu’s great grandson, Ghazzan acceded to power in 1295 and soon thereafter converted to Islam
changing his title to sultan. The Mongol power in Persia evaporated after 1335.

5.5.2 Maragha

Nasir al-Din al-Tisi, a Persian, was one of the great scholars of Islam steeped in Hellenistic
philosophy and science (No193ff). He had been in the service of the Grand Master of the Assassins,
but after Hulagu’s conquest he enter the personal service of the Khan and was present at the conquest
of Baghdad. Al-Tusi was effectively Hulagu’s chief astrologer (Sa38). He may have been one of the
astrologers who tried to discourage Hulagu’s attack on Baghdad (Ru302).

In 1259, al-Tisi convinced Hulagu to establish an observatory at Maragha with al-Tiisi himself
as first director. Maragha (modern Maragheh) is 80 km south of Tabriz. Tt is roughly equidistant
from the Caucasus Mountains to the north, the Caspian Sea to the East, modern Turkey to the
west, and modern Iraq to the south-west. The Maragha Observatory had a large scientific library, a
librarian, a staff of at least 10, and was equipped with expensive instruments: an armillary, a mural
quadrant, parallactic rules, etc. There was at least one Chinese astronomer, Fao Mun-ji, making the
observatory international as befits an institution of a supra-national empire. Actual observations
at Maragha began in 1262 and the observatory survived some manner until 1316 (Sal77). The
earliest sources give the rational for the observatory as the need to obtain new planetary parameters
to improve astrological prediction. This goal was achieved by the production of the Zij-i Ilkhani
(Ilkhanic Tables) probably created under al-Tiisi’s supervision prior to his death in 1274 (Sal77-178,
No193).

The great achievement of the Maragha astronomers, however, was not in observation but in
theory. Al-Tusi himself wrote on logic, philosophy, theology, and mathematics. He was of the
Aristotelian persuasion. In a popular work, The Treasury of Astronomy ( Tadhkira) he continued the
critique of Ptolemy that had begun with with al-Haytham most noticeably (Sal3).

Al-Tasi’s single most remarkable achievement was the discovery of a theorem known in modern
times as the Tisi couple theorem. The theorem states:

If a first circle rolls without slipping inside the circumference of a second fixed circle with
radius twice as great, then any ‘physical’ point attached to the rolling circle moves along a
straight line (a diameter of the fixed circle) (adapted from No194).

The proof is straightforward. Consider the fixed circle as being centered on the origin: it has radius
27. Consider the rolling circle at time zero as having its center at the point (r,0). We assume that
rolling circle center goes counterclockwise: its rim must go clockwise. The point where the two
circles touch at time zero is (2r,0). Label the ‘physical’ point on the rolling circle point A. The
coordinates of point A as a function of time, ¢, are given by:

[2(t),y(t)] = r[cosO1(t) + cosB2(t),sin by () + sin s (t)] . (5.1)
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The initial condition implies that 6, (¢) = #2(t) = 27n at time zero, where n is any integer. Since
the rolling circle rolls without slipping the y coordinate must be zero at all times: thus

05(t) = —601(2) . (5.2)
Using the facts that cos(z) = cos(—z) and sin(z) = —sin(—z), we obtain
[z(t), y(t)] = 2r [cos B (2),0] . (5.3)

Thus point A moves along the z-axis only and for continuous rolling of the rolling circle will oscillate
between (2r,0) and (—2r,0).

There 1s nothing special about point A. Thus any ‘physical’ point on the rolling circle will
move along a diameter that is determined by the two points—the antipodes by gosh—on the fixed
circle where that physical point will touch the fixed circle during a complete cycle. If the angular
velocity of the rolling circle is a constant, then all the ‘physical’ points on its rim are executing
simple harmonic motion.

The Tisi couple (as the two circles are called) became a handy device for model planetary
model construction in the Ptolemaic vein. One can create cyclic non-uniform linear motions from
superimposed circles with only uniform motions.

A devil’s advocate might give some credit to the Khan.

5.6 Al Andalus: Islamic and Christian Spain

5.7. The Course of Islamic Science

As in the case of Greek science, the decline of Islamic astronomy cannot isolated from the
decline of Islamic science as a whole. However, even more so than in the case of Greek science, the
discussion of the decline must be cautious. A great wealth of Medieval Islamic manuscripts have
never been studied. The record to analyzed is much less complete than it could be.

The course of Islamic astronomy, except in an internalist view, cannot be studied apart from
the history of Islamic science as whole. And the course of Islamic science itself cannot be studied
by an internalist treatment only. That is to say, a treatment that only deals with the intellectual
problems and solutions of science. Such internalist treatments are essential, but cannot explain why
the scientific enterprise started, was sustained for awhile, and then declined. A full explanation of
the course of Islamic science is well beyond our scope and as far as I can tell has not been done by
anyone one yet (e.g., Co387, 409; Sa52). However, I have gleaned and synthesized some analysis
from the literature.

In historiography, the term Islamic science refers to science done in the Islamic society in the
period circa 750-1500 (Co384). After this period science became dormant (in the terminology T use)
until it was re-stimulated by contacts with European science; this later science is, of course, part of
international modern science, and cannot characterized as Islamic science in a historical sense.

The period starts with the great effort of translation to Arabic of Greek, Indian, and Persian
of scientific works principally under the sponsorship of the ‘Abbasid Caliphs in Baghdad (Co386;
NolT74ff, 179; Sa52). For astronomy and mathematics, the most important early translation was of
an India work in Sanskrit. According to tradition, this work was brought by Indian astronomer to
Baghdad in the reign of Caliph al-Mansur (r. 754-775 [La66]) in the 760s (Sa72). Only an abridged
version was made, and only one text based on this work has survived. Thus the Indian original
is uncertain, but it was probably Brahmasphuta Siddhanta of Brahmagupta written in 628 AD
(No170; Bo250). In Arabic, it was called the Zij al-Sindhind. Ptolemy’s Tetrabiblos was translated
from Greek circa 780.

The translation work under the caliphs, particularly by Caliphs Haran al-Rashid (r. 786-809
[La66]) and al-Ma’mun (r. 813-833 [La66]) (Nol179). Caliph al-Ma’'mun founded an academy with
an observatory, the Bayt al-Hikma (House of Wisdom) to promote the translation of scientific and
philosophical work into Arabic principally from Greek (La83; No179). Al-Ma'mun is believed to
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have sought out Greek manuscripts from the the Byzantine empire (No179). Teams of translators
were used and they compared their efforts to earlier translations made from Syriac versions of Greek
texts.

Many important translations were done in Baghdad by a translation school (which replaced
the House of Wisdom) guided by Hunain Ibn Ishaq (d. 873 [Sa248]) (La94). Hunain made a good
translation of the Almagest (Pel54) which was later revised by the astronomer Thabit ibn Qurra
(c. 826-901) (Pel61). Hunain, who was most interested in medicine, devoted much of his career to
translating the Greek physicians, Hippocrates, Galen, and Dioscorides (Sa249; Gi44). As was not
unusual at this early time in Islamic history, neither Hunain nor Thabit were Muslims: Hunain was
a Nestorian Christian and Thabit, remarkably, was a pagan from Harran, a city that was the center
of an astral religion (Gi44).

The translation movement as a whole was quite amazing. Much of the best of Greek science
was now available in the new international language of Arabic. The reasons for this particular
achievement cannot be easily separated from the reasons that the Caliphal court supported a wide
range of activity in the arts and sciences. Lapidus offers the following analysis of reasons for Caliphal
patronage:

Futhermore all the court literatures served to propagate a pre-Islamic concept of the
ruler and the empire. Interest in the secular aspects of Arabic literature, Persian adab,
and Hellenistic philosophies and sciences signified the appropriation of a cultural heritage
which could be used to legitimize Caliphal rule. They provided, in the Arabic case, an
ethnic concept of political leadership; in the Persian case, a continuation of the heritage of
ancient Middle Eastern kings; and in the Hellenistic case, a concept of the structure of the
universe itself, in philosophic and scientific form, as the ultimate justification for imperial
rule. The patronage of these several literatures implied ultimately that the Caliph, though
a Muslim ruler, was legitimized in non-Islamic cultural terms going back to the heritage of
the ancient Middle East (La97).

One could make a somewhat, but not altogether, different statement: the Caliphal court patronized
the arts and sciences because they thought it their duty to enrich the culture of the Arabic empire and
simultaneously to prove their right to rule through their magnificence and achievements equalling
or surpassing those of the past. Yet another and never to be underestimated reason is simply that
the Caliphs and their courts were probably sometimes intensely and personally interested in the arts
and science. The interplay of motivations was probably complex.

For the translation of scientific works, Saliba tentatively offers a particular additional
explanation (Sa52). The Arab-speaking ruling class desired to end the exclusion of their members
from civil service positions requiring particular expertise. Thus the translation of advanced works
was encouraged to redress this exclusion. Saliba believes, however, that the translation of the
scientific works still requires a full explanation.

Naturally, for science and natural philosophy to be pursued there had to be individuals who
wished to do so. The Caliphal courts would probably not have patronized science if they could not
find or if they were not sought out by natural philosophers. Such individuals certainly existed in the
Indian, Persian, and Greek worlds all brought into contact or, indeed partially encorporated, in the
Arabic empire. One can mention in particular the school of Jundishapiir, a Sasanian Persian royal
city (La93-94; Nol79). This school of Greek of philosophy was descendant of pagan Greek schools
some of whose members who fled persecution in the Christianized Byzantine empire. The Nestorian
Christian church of the Middle East, however, supported the philosophers and established them or
their followers eventually in the 6th century in Jundishapur. In the Islamic period the Jundishapur
school, most of whose members were Nestorian Christians, was transferred to Baghdad (La94).

The support of the Nestorian Christian church however helpful seemed insufficient for more than
very sporadic science or dormant science since nothing much is said of the achievements of science in
the immediate pre-Islamic Middel East. The patronage of the Caliphal court seemed necessary for
the resurgence of scientific activity. Moreover, the need for princely patronage (first from Caliphs and
later from other potentates) seems to have been a constant of Islamic science (Co386). Certainly, the
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four greatest centers of astronomical achievement, 9th-10th century Baghdad, 13th century Maragha,
13th century Castile, and 15th century Samarkand were all made possible by great patrons: the
caliphs, Hulagu Khan, King Alfonso, and Uleg Beg.

A possible reason for the decline of Islamic science after circa 1500 is that purely by the chance,
there simply ceased to be even a handful of sultans and princes with scientific interest. And those
that were such as Jai Singh in 18th century India (No201) may have been so unlucky as to discover
no persons of genius to fulfill their ambitions. Given that there were no other institutions in Islamic
society besides the court to pay, provide instruments for, to encourage, to pet and stroke scientists,
science became dormant.

This explanation is certainly in accord with the Ben-David model: science is weak in traditional
societies because support is weak and uncertain. However, one wonders why no other institutions
besides the courts were

The 9th and 10th centuries in the Islamic world have been called the Golden Age of Islamic
science when clusters of creative scientist were acquiring the Greek and Indian heritages and building
on them.

This Greek heritage was enriched by the achievements of Indian mathematics and Hindu-Arabic
numerals. The Islamic scientists such

The period 800-1000 has been called the Golden Age of Islamic science because of the clusters
of eminent scientist who flourished then; the later age would then be called one of sporadic science
(Sayili 1960; see also Co398). This neat division has been disputed (Sa8, 31). Probably the
periodization needs more study. The last great site of Islamic science was probably the observatory
near Samarkand of Uleg Beg (1394-1449) (No200; Pe398; La281). Later observatories were founded
in Istanbul (1574) and in India in the 18th century by Jai Singh (No200-201), but they did not
achieve much.

The essential support of science always seems to have been court patronage (Co386;

As in the case of Greek science, the decline of Islamic astronomy cannot isolated from the decline
of Islamic science as a whole.

The Islamic madrasas were institutionalized schools for higher learning. Unlike the European
universities (which may have been partially modeled on madrasas), madrasas generally did not
teach the awdil sciences, but concentrated on Islamic law and theology (Co386, 398-399; La324).
There were exceptions: in the early Ottoman empire, the lowest-level madrasas included logic,
geometry, and astronomy in their curricula; the higher level madrasas did not however. By the 1540s,
however, awdil sciences were being excluded and the narrow focus on Islamic studies (Quran, hadith
[authoritative reports of early practice], and Shari‘a [Islamic law]) was gaining ground (La327).

The Istanbul observatory attached to the Sulaymaniya madrasa was founded in 1574-1575, but
demolished already in 1580 (No201; La327). This serves as example of the continuing astronomical
tradition, but also of its weakness in the intellectual world of post-Medieval Islam.

In the 18th through 20th centuries there was a revival of interest in Islamic society in science
and technology (e.g., L.a342, 620, 728, 814). The revival, however, was not primarily an indigenous
phenomena, but rather a reaction to the challenge of European society. Reasonably enough, the
Islamic science of the Medieval Ages could be taken as a precedent: an ancient tradition of Islam
that should never have been cut from the vine (e.g., La620).



6. The Copernican Revolution

The Copernican revolution is an expression with various usuages. Here we take it to mean
the transformation in astronomy and cosmology which took place in the period circa 1500-1700.
This transformation replaced the Aristotelian-Ptolemaic universe with the Copernican-Keplerian-
Newtonian universe The former was geocentric, finite, and based on epicycle-deferent models with
the heavenly bodies being carried around by Aristotelian ethereal celestial spheres. The physics of
the of Aristotelian-Ptolemaic universe was Aristotelian and was divided into two distinct realms: the
heavens and the Earth (or more exactly the sublunary sphere). The later made the Earth a planet
and had the planets going the Sun in nearly elliptical orbits. The Copernican-Keplerian-Newtonian
universe was certainly large, possibly infinite, had the stars at immense distances, and made the
Sun a star. The physics of this new universe was Newtonian: the same for the heavens and Earth.

The Copernican revolution is part of a larger transformation: the Scientific Revolution. Its role
in the Scientific Revolution is plausibly the largest and showiest one, but it is not an indispensible
role. Since the Copernican revolution makes most sense in the context of the Scientific Revoltion,
we will discuss the later in general at some length in § 6.1.

6.1 The Scientific Revolution

We discussed the Scientific Revolution briefly in § 1.2. Here we expand on the theme in four
subsections. The first discusses in general the dynamism of European society emerging out of the
medieval period. The second discusses this dynamism with reference to particular innovations up
till the eve of the Scientific Revolution. In the third subsection, we discuss the intellectual effects
of this dynamism in the period of the Scientific Revolution. The fourth subsection takes up the
nature of the Scientific Revolution. It should be emphasized that my discussions are very simplified
and are largely based on the ideas of and cited by Cohen in his book The Scientific Revolution: A
Histortographical Inquiry. The particular synthesis of the elements is my own, however, and there
are many important and interesting elements not mentioned

6.1.1 The Dynamism of Europe

In discussing the background of the Scientific Revolution, we are really discussing its external
causes: 1.e., those causes from outside of the purely scientific realm. Such a discussion is clearly
uncertain ground of historical explanation. One thing is clear, the Scientific Revolution arose out of
a complex of causes.

The factor, the precondition, I believe of overwhelming importance to the initiation of the
Scientific Revolution is dynamism of Europe (here meaning mostly western Europe) developing in
the centuries preceding the Scientific Revolution and continuing through it (and ever after as well).
This dynamism consists in the rapid technological, economic, and scholarly developments in Europe
emerging from the Middle Ages.

One of the obvious things about human history and much of prehistory the cumulative
development of technology. Technological progress was usually so slow as to excite no comment. In
a particular craft, a person might recognize the innovations seen in their lifetime, but an awareness
of general innovation was not so obvious. But retrospectively, we can recognize it occurring. There
were certainly periods of technological decline. The large civil engineering technologies of the Roman
empire disappeared at least in western Europe with the decline and fall of the Western Roman
empire. However, such declines are often local in scope; summing over all societies at any one time,
significant net declines seem to be rare.

The progressive (if unsteady) technological development is not mysterious. Given stable social
conditions (e.g., no devastating barbarian invasions), useful technological skills tend to be maintained
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and useful innovations retained. The transmission of skills, until modern times, was largely by
apprenticeship rather than in special schools or from books.

Circa 1000, European society, just emerging from the Dark Ages was not at the technological
forefront of human societies. Islamic, Indian, and Chinese societies were much in the lead. However,
out of the Dark Ages Europe emerged with robust agricultural technology that could support a large,
complex society (Gies44, 109). The evidence of what in fact happened shows that this early medieval
society was eager to learn and utilize technologies from abroad (Gies82), and then to improve on
them.

It often cited that Europe’s pluralism (e.g., La269) was a great advantage in rapid technological
development. In a heavily bureaucratic society, innovation can be ordered or forbidden top-down.
If such a society turns conservative and scorns outside inventions (as China did [Car32]), then
technological development can slow. Medieval Europe on the other hand exhibited an often cited
pluralism (e.g., La269). It was divided into a number of competing states and within states feudal
divisions worked against centralization. But aside from state, society was divided into potentially
innovative components that could act rather independently: e.g., feudal lords, the Church hierarchy,
the monastic orders, a somewhat free peasantry, and some very important self-governing cities and
town. If a technological innovation was missed in one place, it could be picked up in another, and
then imitation and competition might cause its general adoption.

The European society was also safe for innovation. In any society riven by wars and massive
raids any technological innovation demanding capital expense is unlikely: the warriors will just take
what they can (including people for slaves) and destroy at least some of what they cannot. There
were continual feudal wars, of course, but these do not seem to have impaired technological and
economic development. European feudal wars seem to have been rather limited in scope. Various
princes and kings exchanged territories in a hostile fashion, but they did not generally aim at
annihilating rivals, who were often cousins. The elite arm of their armies were knights and their
commanders were barons. These were not landless warriors, but persons of substance who had a
vested interest in not destabilizing the overall system by fighting for crushing victories and who did
not want overmighty rulers.

Fortunately, Europe suffered no devastating invasions from without after the 9th and 10th
century struggles with the Vikings and Magyars (Co407; Gies42). At the European southern
periphery, European forces stemmed the tide of Muslim conquest in Spain and drove the Muslim
regimes out in the course of the Middle Ages (La379, 383-384). (The latter was human tragedy
as we now understand and arguably also a tragedy for Spanish culture: heralding the doom of its
pluralism, openness, and toleration.) A bad moment for Europe came with the Mongol invasion of
1241 under Batu Khan (another grandson of Genghis Khan and the founder of the Khanate of the
Golden Horde) (Ru251-252, 294). Batu’s forces soundly defeated Polish and Hungarian armies. It
seems that Batu may have wished to stay in Europe, but the death of the Supreme Khan in the
Far East caused him to retreat with his army: he wished to play a forceful role in the succession
decision. It is possible that the Mongols would have wreaked devastation on Europe and perhaps
have established a khanate there that would have changed decisively Europe’s development. On the
other hand perhaps Mongols were overextending themselves; they never came back.

A constrasting case is presented by the Middle East. In the late 9th and early 10th centuries,
there was almost constant warfare and (not unrelatedly) heavy fiscal exploitation by governments
(mostly ephemeral); this led to an economic regression (Lal33-136). The traditional military
organization that developed in the later Caliphate and that was retained for centuries was based on
slave armies (Lal27, 148). Such armies had no special loyalty to society, only to their particular ruler
or to their own self-interest. With such a military organization wars would tend to be more extreme
than in Europe and military requisitioning in war and peace more exploitive. After 1000, there
were two great waves of invasions: the Turks from inner Asia beginning in the 11th century and the
Mongols in the 13th. The Turks, of course, quickly converted to Islam, but their immigration was
at least initially destructive and it continued for centuries (Lal42, 306). The Mongol destructions
we have already remarked on in § 5.5.1. Tt has been suggested by J.J. Saunders (see Co408-409) as
possible that, besides the material destruction hindering all development, the invasions changed the
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temper of Islamic society. The confident outlook on other cultures based on the physical strength
of early Caliphal period was transmuted into a conservative inward-looking view: the continuance
of Islam needed a tight hand on the past, not an imaginative reach for new enterprises of the mind.
Whether this suggestion has some truth or not, Europe was saved from being another possible case
inward-looking conservativism.

Medieval Europe did suffer one major disaster: the Black Death. Beginning in 1348, the
Black Death or plague killed perhaps a third of Europe’s population by 14007777. Some historians
perceive a slowing in technological innovation in the 14th century and suggest the plague as a possible
cause (Car49). Tt is easy to imagine that the uncertainties of life at that time were increased and
that markets and workforces were changing unpredictably; so it is possible that the plague curbed
Europe’s progress. However, the plague did not destroy material wealth and though it affected all
limbs and organs of society it did not excise any of them. Europe’s population afterward was still
large and in fact suffered less population pressure?????. Although personally horrific, the plague
does not seem to have tremedously damaged European society.

On the intellectual front, medieval Europe was also progressing. Circa 1000, the book learning
of Europe was meager compared to antiquity and to Islamic world. However, from the Islamic world
and from Greek manuscripts, the ancient heritage plus some additions of Islamic society and farther
east were obtained and translated to Latin, the international and scholarly language of Europe.
The 12th century saw the beginning of translations from Arabic and Greek (Pel67ff). The Arabic
translations were mostly done in Spain and Sicily, and unfortunately declined after the 12th century.

The most important of these recoveries for the medieval scholars were the works of Aristotle.
To them Aristotle became the prime authority: he was ‘the Philosopher’ (Col58). Tt is interesting
to note that Aristotelianism was a radical innovation in the universities (see below) in the 13th
century: the dogma of his authority developed quickly however (Pe168ff). Some important works of
Archimedes were translated from the Greek in the 13th century by Willem van Moerbeke (c. 1215-
1286 [Pe401]), but they failed to stimulate an interest in Archimedian (i.e., a mathematical) physics
at that time (Co275). Perhaps the most important work of physics from the Islamic world was the
Optics Tbn al-Haytham (c. 965-1039 [Pe349]) translated in the 12th century (Pel63ff, 167). New
numerical techniques and Hindu-Arabic numerals (see § 5.2) also arrived Europe from the Islamic
world. The latter came gradually into general use over the course of the 13th and 14th centuries.

The scholarly component of medieval society was in the Church. The Church provided
the scholars and students in the main for the universities, a European innovation (Car44).
The universities were not primarily aimed at innovation themselves though, but at education.
Fortunately, the undergraduate education was in principle a broad one: the seven liberals arts
constituted out of the trivium (grammar, rhetoric, and logic) and the quadrivium (music, geometry,
arithmetic, and astronomy). Beyond the level of arts faculty were the three professional faculties:
divinity, law, and medicine. The core philosophy of the universities was Aristotelianism from the
13th century onward as we noted above. Despite being not aimed at innovation, some advances in
philosophy and natural philosophy did occur in the universities: e.g., at Oxford (Pel93) and the
University of Paris (Pe196). The university education did provide a springboard for many later
developments and most of the leaders of the Scientific Revolution were university trained although
they rebelled against the Aristotelian orthodoxy.

It i1s probably very important for the Scientific Revolution that the sciences were an
institutionalized part of the university curriculum. This gave the sciences a respectable place
in society, independent of the favor of princes and with the explicit approval of the religious
establishment. The contrasting situation in the Islamic world, we discussed in § 777. Despite
the famous conflicts of religion and science in European history, it is essentially true that western
Christianity has generally approved of science since 1000 at least. Without this approval science
may have found itself marginalized and suspect. Whether such an unhappy state could have ruled
out a Scientific Revolution is impossible to say (see discussion in Co384-417), but it certainly would
have militated against a Scientific Revolution.

6.1.2 Particular Ezpressions of the European Dynamism
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The technological state of Europe circa 1500 was as advanced as the world had ever seen. Only
China long ahead in technology was rival. The technology of the Greco-Roman civilization had been
surpassed in all but a few special cases. In science, the distinction from Greco-Roman times was not
so great.

The technological transformation of Europe since Greco-Roman times was immense and
multifarious (Gies15). For example, the Greco-Romans had never exploited water power and horse
power fully (Gies32ff). Waterwheels were known, but their usage scarce (Gies35). There is only one
possible reference from late Antiquity to using a waterwheel for any other function than grinding
grain (Gies35). But by 1500, the waterwheel powered metallurgy, sawmills, textile production; it
helped to make olive oil, beer, mustard, paper; it ventilated and pumped out mines (Gies265).
In Roman times, the horse harnesses in use tended to strangle horses and horses worked without
horseshoes which are needed to protect hooves especially in moist climates (Gies46; Lynn 1966,
p. 308-309). Horses, can work longer, move faster than oxen; with the padded horse collar and
horseshoe (both arriving in Europe before 1000), horses became the other main power source of
Europe both at the plow and in transport (Gies45-46, 149).

Two other innovations of immense importance were printing, and gunpowder and guns. Movable
type printing probably began in Europe with Johann Gutenberg in Mainz circa 1450 (Gies241fF).
The effects were quickly seen: by 1500, there were ~ 40,000 editions and ~ 15-20 million copies.
In the first 50 years after the invention in 1450, more books were produced in Europe than in
the previous 1000 years (Carb5). Passing into circulation were the works of classical and medieval
scholars, religious tracts, text books of all sorts (e.g., mathematics, engineering), accounts of the
oceanic voyages, literature. The invention of the printing press was expanding the intellectual empire
of every literate person. Intellectual chain reactions were set off impossible to simply describe.

Guns and gunpowder gave a destructive power not seen before. Cannons could knock down
medieval castles and being expensive could in quantity only be afforded by the state in general
(Gies249ff). The small, locally powerful medieval lord could not maintain military independence.
The power of the state was enhanced. The knight with his individual prowess was replaced by mass
armies with muskets and pistols who literally gave much more bang for the buck. The feudal age,
probably already in decline, could not resist. Perhaps the actual waste of war did not increase so
much by 1500 because of guns, but in later centuries with evermore gun development, it certainly
did. And of course, gunpower gave the European conquistadors their most obvious and immediate
tool. The age of Bellifortis (strong war) had begun.

There are other notable innovations. Lenses??? and spectacles first appeared in Italy before
1292 (Gies227). The earliest lenses were only convex and so only a boon for the the farsighted;
concave lenses (good for myopia) came in the 16th??? century. Mechanical clocks were first known
from circa 1280777. However, not until the 17th century were they accurate enough for important
astronomical purposes. Indian-Arabic numerals became well known in Europe after 1200: there
advantages both for business and science over Roman numerals gradually became evident (Gies225-
227). Paper which originated in China, was being imported to Europe by 1000 and manufactured
there by 12007777,

Many of the innovations cited above were not European in origin: they came from China, India,
the Middle East, and elsewhere. The actual history of transmission is often obscure: the spread of
paper from China is one of the most easily traced. Other innovations (e.g., spectacles) clearly
originated in Europe. Of course, independent innovations in the east and Europe also certainly
occurred. It is difficult to decide often between transmission and independent invention given the
patchy history of pre-modern technology.

If technology was far in advance of the Greco-Roman world, science or natural philosophy (i.e.,
an understanding of the world into terms of elementary principles or laws) was not so. However, as
we discussed in § 1.1, much of the best of ancient science had been recovered, and some of Islamic
science had been obtained. It is a pity that the work of the Maragha astronomers and Uleg Beg’s
observatory was not translated.

In the religious sphere a mammoth change occurred right at the start of the Scientific Revolution:
the Protestant Reformation. The roots of this change probably lie in ending of the clerical monopoly
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in learning (which was aided by the growing prosperity and sophistication of the lay class) and
the intellectual endeavors of the humanist movement aided by the printing press. The humanist
movement especially in the printed and best-selling writings of Desiderius Erasmus (1466-1536
[Ba407]), had challenged the medieval Biblical interpretation. The changed perspective on the Bible
led many to conclude that the Church of Rome had no real authority and in fact was greatly in
error. Although many other complex causes can be cited this seems the most essential cause of the
Reformation which started with Martin Luther’s 95 theses in 1517. The cracking of the unity of
western Christendom had fateful consequences, but its effects on the Scientific Revolution are hard
to untangle. Leaders of the Scientific Revolution were found on both sides of the Catholic-Protestant
divide.

This 1s not the place to expand on the artistic achievements of the Middle Ages and the
Renaissance. However, they were great. The Middle Ages provided most notably cathedrals. In the
Renaissance period the creations of Leonardo da Vinci (1452-1519 [Ba1358]), Michelangelo (1475-
1564 [Ba768]), Raphael (1483-1520 [Ba1003]), Albrecht Diirer (1471-1528 [Ba375]) and many others
hardly need to be commented on. Their contemporaries recognized them as great masters and knew
them to be at least on par with the artists of antiquity.

Then there were the oceanic voyages of Columbus (14467-1506 [Ba239]), Vasco da Gama (14697
1524 [Ba498]), and others. These voyages verified the sphericity of the world, brought the continents
into contact, and started trains of developments and disasters (intentional and unintentional). They
dramatically demonstrated that the ancients had not known everything: the Geography of Ptolemy
was wrong (which was hardly surprising) and that the equatorial zone of the Earth was not impassible
due to extreme head. The voyages also promised economic gain which did not fail to materialize.
The oceanic voyages were made possible in the 15th century by the earlier developments in maritime
technology. The full-rigged ship made wind power more tractable than ever before (Gies227ff).
Compasses, charts, and chartmaking improved navigation: you knew where you were going (if it
was not truly the first voyage) and sometimes you even knew where you were (Gies278). Latitude
from the declination of the Sun or stars and time of year was easily determined. But longitude at
sea could not be determined accurately before the invention of chronometers in the 18th century

(Gies279).

6.1.3 The Intellectual Effects of the Furopean Dynamism

The 14th and 15th centuries, besides being a time of change were also a time of perceived
changed. People knew things unheard of in their grandparents days. It was also clear that the
ancients had been surpassed in at least in technology and geography. The European dynamism
of was unquestionably stimulating. Widespread change and improvement was possible; why could
it not be willed, created, made a permanent feature of life? To quote Francis Bacon (1561-1626
[Ba91]), the prophet of progress in science and in technology through science, had this to say:

... by the distant voyages and travels that have become frequent in our times many things
in nature have been laid open and discovered which may let in new life upon philosophy.
And surely it would be disgraceful if while regions of the material globe—that is, of the
Earth, of the sea, and of the stars—have been in our times laid widely open and revealed,
the intellectual globe should remain shut up within the narrow limits of old discoveries
(quoted from Car7T).

Bacon was writing after 1605 (Car76), but views he expresses must have been held by others much
earlier.

The ancient philosophers did not know everything; in fact they were known to have been wrong
on points. The seemingly static philosophy of Aristotelianism need not be the last word. The
Scientific Revolution provided the new word.

6.1.4 The Nature of the Scientific Revolution

The expression, Scientific Revolution, in its modern historiographical usage goes back to the
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1930’s and the historian Alexandre Koyré (Co21). Tts exact meaning and ideas as to how it came
about are the topics of Cohen’s book (Co).

An “average view” is that the Scientific Revolution occurred over the time span circa 1500~
1700. There are an abundance of ideas about exactly what constitutes the Scientific Revolution and
explanations for it. Koyré and others emphasized the intellectual transformation, in Koyré’s words:
“from the world of the ‘more-or-less’ to the universe of precision” (quoted from Co86). In other
words, nature came to seen as being governed by mathematical laws generally and these laws were
discoverable.

Naturally, a mathematical nature was not altogether new. Astronomy had been mathematical
in a crude sense even in prehistory (No3) and had become much more so in the times of the ancient
Mesopotamians and Greeks. The mathematics of the vibrating string had been known since the
Pythagoreans (i.e., the 5th century) (Pel7). Aristotelian physics (c. 4th century BC), although
largely qualitative, did include the theorem of the parallelogram of velocities (Pel06). Archimedes
(2877-212 BC [Pe308]) had mathematized statics (Pe90ff) and hydrostatics (Pe99ff). But despite
these important examples, the nature in general was not perceived as being strictly mathematical.
Aristotelian physics, widely accepted in the Greco-Roman, Islamic, medieval European, and
Renaissance times, was essentially qualitative, especially notably in dynamics (Pel05ff).

The new thrust in the ‘mathematization of nature’ began with the heliocentrism of Copernicus.
The essential boon of heliocentrism in Copernicus’ view, was not that it was provable, for he could
not prove it, but that it implied “the structure of the universe and the true symmetry of its parts”
(Ro4; see also Kul71, 174-175). Copernicus thus propounded symmetry (which is a mathematical
principle among other things) as a guide in natural philosophy. Moreover, his theory was radically
inconsistent with Aristotelian physics: Copernicanism implied that the physics of the heavens and
Earth were one. Kepler and Galileo would go much further pursuing mathematical symmetries
and a unified mathematical physics. Newton would cap the process by providing a mathematical
physics from which heavenly and Earthly dynamics could be derived quantitatively. Thus, qualitative
understanding was replaced by a much more exact quantitative understanding. The tremendous
success of the Copernican revolution in providing a correcter view of nature, was the main cause in
making mathematical understanding the ideal that has been pursued ever since.

The mathematization of nature was not the only essential thrust of the Scientific Revolution.
There was also development of the doctrine of detailed observation and experimentation: the ‘new
empiricism.” There was, of course, an ‘old empiricism.” Ancient mathematical astronomy had been
based on detailed observation. Aristotle had considered experience the foundation of knowledge and
had emphasized careful observation (Pe30-31). In the Islamic world there had been a re-emphasis on
empiricism as evidenced by some improvements in observational astronomy over the ancients (e.g.,
No187, 200). But despite Aristotle’s empiricism, his ancient and medieval followers usually saw no
reason to go beyond casual qualitative observations; for this reason, they could only make limited
progress beyond Aristotle, and, in fact, progress was not a goal for many of them. As for the Islamic
empiricism, its bolt had been shot with the decline of Islamic science (see § 5.7).

The new empiricism is not, of course, unrelated to mathematization. The mathematization
of nature to proceed as it did needed to be guided and checked by a mathematical and precise
observation of nature which whenever possible (and it is generally not possible in astronomy)
was to be extended to new realms by experimentation. Kepler’s theoretical work was based on
the unprecendented accuracy of Tycho Brahe’s astronomical observations (No302). The role of
experimentation in Galileo’s science has been much debated (Col08ff). But it clearly was an essential
element, equal to that of theory as the researches of Drake (e.g., Dr: see esp. Dr408-410) and others
have shown (Col08ff, 132).

The new empiricism was in fact broader in scope than the mathematization of nature since
it could be applied to the sciences not easily amenable to mathematization: the life sciences, and
electrical and magnetical physics (which were not mathematical in the 16th—17th centuries).

The achievements of the early modern scientists were so impressive that their method, essentially
the modern scientific method became the established procedure for science. The atitude that found
science intellectually rewarding also seems to have spread and increased.
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Additionally, the notion that science would lead to a physical mastery of nature became
widespread through the writings of Francis Bacon (1561-1626 [Ba91]), René Descartes (1596-1650
[Ba327]), and others (Col91ff). This idea, although not wholely absent in ancient times, became
much, much more current. This idea of applied science undoubtably increased the support for
science somewhat. But this assertion must be tempered by the fact that science-based technology
only slowly developed; the material rewards of science did not flow like liquid gold in the 16th-17th
centuries, and did not really do so until the 19th (Co195). Some inventions did come from the hands
of scientists, notably scientific instruments (Co195), but by and large technologists were still solving
their own problems in the period of the Scientific Revolution. Only gradually, in the 17th-18th
centuries did individuals appear who provided the link between science and technology (Co194).

The intellectual power and achievements of early modern science bolstered somewhat by the
foreseen, but not much realized, material benefits of science are probably the main reasons for
the strong grip that science acquired in Europe. The mold of science in traditional societies was
broken; science became continuously progressive. It is the transformation to continuously progressive
science and the emergence of the modern scientific method which forms the essence of the Scientific
Revolution. The fact that science and technology (in a complex symbiosis) have transformed the
intellectual and material world again and again since the time of 16th century and give no indication
of halting, makes the Scientific Revolution one of the outstanding events of history.

6.2 Copernicus

Nicolas Copernicus (1473-1543 [Pe324]) was born in Torun (in German Thorn) on the Vistula
River in Poland. He was a child of the Renaissance. His dates make him a contemporary of
Christopher Columbus (14467-1506 [Ba239]), Leonardo da Vinci (1452-1519 [Bal358]), Montezuma
(14777-1520 [Ba789]), Martin Luther (1483-1546 [Ba727]), and Lucrezia Borgia (1480-1519 [Ba139]).

There has always been some controversy about Copernicus’ nationality (Ko132). He was born
and lived most of his life in what is now modern Poland and was then part of the Polish kingdom.
In some periods between those times some of the territories he lived in were parts of Prussia and
Germany. He considered himself a subject of the Polish king (Ko132?7?7), but his native language was
German and he enrolled in the German Nation (a student society) when studying at the University
of Bologna (Ros127). Tt is probably wisest to say he was both Polish and German.

Copernicus’ name is also a bit debatable. In his times, the spellings of names were not
often fixed. In documents his name most often appears in German form as Koppernigk (Ko596).
Copernicus, himself, signed his name variously, but seems to have used the latinized Copernicus
mostly in later life (Ko569). Thus, it is fair for history to adopt Copernicus.

Copernicus’ father, a wealthy merchant, died in 1483 and Copernicus was subsequently
protected and patronized by his uncle Lucas Watzenrode who became bishop of Ermland (Varmia)
in 1494 (Pe324; Kol128-129; Adal07). Copernicus studied at the University of Cracow in the
years 1491-149577?7, but left without taking a degree (Ko130; Ros 127). In the years 1496-1503,
Copernicus was mostly in Ttaly studying at the Universities of Bologna and Padua (Kol31, 137;
Pal89; Adal01). He studied a wide range of subjects including mathematics, astronomy, Greek,
philosophy, medicine, and law (Ko131). Medicine was particularly important for Copernicus and he
was noted as a physician (Ko134, 137), but he took no degree in that subject. His only degree was a
doctorate in canon law granted May 31 1503 by the University of Ferrara where in fact he had never
studied (Ko131; Ros179). He took his examinations and degree there because the examinations were
easier, and the cost of the degree itself and ancillary fees (for celebrations) were less???? (Ko132;
Ros179; Ada9T).

At the University of Bologna, Copernicus studied with one of the leading astronomers of the
day, Domenico Maria Novara (1454-1504) (Ros129). Novara, professor at Bologna from 1483 until
his death, was an original thinker and was bold enough to challenge ancient authority. Unfortunately
for him, one of his most notable discoveries was quite wrong; he thought he had discovered that
the north celestial pole had shifted and the latitude of European positions was further north by
~ 1° than (Ros132-133). In regard to the planetary system, however, Novara remained a traditional
geocentrist (Ros 130).
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In 1497, Copernicus’ uncle appointed Copernicus a canon of the Cathedral of Frauenburg in
Ermland (in Polish, Frombork in Varmia) (Ko131). This appointment (literal nepotism) was for
life and thus gave Copernicus security and a good income (Kol143-144). His duties as a canon were
essentially to help administer the estates of the cathedral; he was also expected to attend morning
and evening services (Kol144). Through most of history, canons have usually been priests???? and
some of a canon’s duties can only be performed by a priest (e.g., celebrating mass). In Frauenburg,
however, a substitute could be employed to carry out the priestly duties. In Copernicus’ time many
of the Frauenburg canons were not priests (Ko144; Adal02), despite some efforts to force ordination
(Adal02).

Copernicus never became a priest it seems (Ros47ff). Copernicus is never referred to as priest
by any of his contemporaries or anyone for 70 years after his death (Ros47). In at least one document
where it might expected that he be referred to as a priest if had been one, he not so referred to
(Rosb0). However, the story that he had been a priest has had a long life. The first ordination
of Copernicus was by Galileo in his Letter to the Grand Duchess Christina in which Galileo makes
several historical errors (Ros193-204). These errors can be attributed (almost entirely anyway) to
the level of historical scholarship of Galileo’s day and Galileo’s willingness to assume that Copernicus
was as Catholic as possible, to help make Copernicanism as acceptably Catholic as possible (Ros204).
Galileo probably made the assumption that Copernicus had been a priest because Copernicus had
been a canon. And seventy years after Copernicus’ death and out of Poland, there were probably
few who could have certainly denied the assertion that Copernicus was priest. Galileo’s erroneous
statements became an infection in the historical literature that has only recently been cleared up
(Ros193-204). Tt is, of course, barely possible that Copernicus was a priest because there is no
contemporary source absolutely asserting he was not.

Copernicus did not reside in Frauenburg immediately upon his canonship. He was mostly
studying in Italy until 1503. In the period 1503-1512, he was with his uncle, the bishop of Ermland,
living in Heilsberg Castle (Lidzbark Castle in Polish [Ada109]), the episcopal residence (Ko137). He
was officially a physician to the bishop, but also acted as a an assistant to the bishop in diplomatic
and other affairs (Kol138; Adall4). In 1512, Bishop Watzenrode died and Copernicus took up
residence in Fraunberg which is located on the Frisches Haff (a large bay on the Baltic Sea) (Ko143).
In the dedication to Pope Paul 1T (r. 1534-1550) of his book De Revolutionibus Orbium Coelestium
(On the Revolutions of the Celestial Spheres), which will be abbreviated as Revolutions, Copernicus
refers to Frauenberg as “this very remote corner of the earth” (Rob). The remark was probably
intended lightly, but it i1s true that Copernicus was physically removed from the great centers of
learning and affairs. Copernicus lived in Frauenburg, performing his duties (mostly administrative)
as a canon for the rest of his life (Ko143).

6.2.1 The Commentariolus

When Copernicus became converted to heliocentrism is unknown. His first work expounding
heliocentrism was known to have existed and been distributed as of May 1 1514 (Ros71). This
work is only a manuscript and does not give Copernicus’ name (Ros71) or have a title (Ros73). An
abbreviation of the title given to it by Tycho Brahe, the Commentariolus (little commentary) has
become its common designation (Ros73).

In the Commentariolus there are 7 postulates which can be paraphrased (following Ros74-75
and Ko148-149) as follows:

1. The universe has no single center.
2. The Earth 1s not at the center of the universe.
3. The center of the universe is close to the Sun.

4. The Sun-Earth distance is negligible compared to the distances to the stars.

5. The apparent daily westward rotation of the Celestial sphere is do to the daily eastward
rotation of the Earth on its axis.
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6. The apparent yearly revolution of the Sun is caused by the Earth’s revolution about the
Sun.

7. The planets also revolve around the Sun and their retrograde motions are caused by the
relative motions of the Earth and the planets.

These postulates are not stated as compactly as they would be by a modern. For example, the
remark about retrograde motions is really a deduction. The postulates, however, give the essence of
Copernicanism.

After the Commentariolus, Copernicus does not seem to have broadcast his ideas in anyway until
1540 (Ko166). Nonetheless seems that based on the Commentariolus and reports of it, Copernicus’
ideas became somewhat broadly, if not well, known. The Copernican idea was explained in lecture
in the Vatican gardens to Pope Clement VII (r. 1523-1534) in 1533 (Ros153; Ko155-156). Clement
reacted favorably, but there is no evidence that Copernicus ever knew of the lecture or Clement’s
reaction. Nicolas Schonberg, the Cardinal of Capua and advisor to Popes Leo X (r. 1513-1522),
Clement VII, and Paul III, having heard reports of Copernicus’ ideas, urged him to publish in 1536
(Ko154-155; RoXVII). Less happy notice was also taken. In 1539, Martin Luther, after mention of
an unnamed astronomer and his theories, is quoted as having said:

But that is how things go nowadays. Anyone who wants to be clever must not let himself
like (sic) what others do. He must produce his own product, as this fool (Narrin the original
German) does, who wishes to turn the whole of astronomy upside down. But T believe in
Holy Scripture, since Joshua ordered the sun, not the earth, to stand still (adapted from
Ros197-198; see also Kul91 and Kol56-157, 572).

In justice to Luther, his statement was apparently an offhand remark, not an authoritative
one. Copernicus was also apparently mocked, presumably for his theories, in carnival farce in the
Prussian city of Elbing in 1531 or so (Ko156).

6.2.2 The Delay and Publication

One wonders why Copernicus did not speedily follow up the the Commentariolus with a
published treatise. Probably one reason is that his ideas were not yet ripe. The Revolutions,
Copernicus’ only published book on astronomy and his theory is a large work filled with detailed
proofs and calculations. It took years to prepare this work and Copernicus, knowing that he was
presenting radical ideas, may not have wished to go public with anything less than the most
solid, definitive presentation he could give. Rosen contends that Copernicus was working on the
Revolutions from no later than 1515 (Ros109), that he worked on it for years (parts being written
before and after about 1524 [Ros114]), and that the final version was probably finished in 1541
(Ros116).

Related to the first reason was probably Copernicus’ rather retiring nature.??? Copernicanism
was a direct challenge to the Aristotelian-Ptolemaic orthodoxy of the time. Copernicus could well
imagine that he would be howled down (as indeed he was after his death) by the orthodox natural
philosophers. Staying out of wrangles may have been a considerable motivation to keep silent until
late in life.

A third reason, that may have been the most important one, was fear of condemnation for
heresy. The Bible contains several passages that imply a moving Sun and resting Earth. The most
famous and clear of these is the Joshua passage (Joshua 10:12-14) that Luther alluded to:

Then spake Joshua to the Lord in the day when the Lord delivered up the Amorites
before the children of Israel, and he said in the sight of Israel, Sun, stand thou still upon
Gibeon; and thou, Moon, in the valley of Ajalon.

And the sun stood still, and the moon stayed, until the people had avenged themselves
upon their enemies. Is not this written in the book of Jasher? So the sun stood still in the
midst of heaven, and hasted not to go down about a whole day.

And there was no day like that before it or after it, that the Lord hearkened unto the
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volce of a man.

This passage states that the Sun moves. Other passages imply a stationary Earth (e.g., Psalm 104
and Job 38). A modern exegete would have no trouble reconciling such passages on the grounds that
all motion, at least kinematically, is relative. However, Copernicus’ contemporaries and Copernicus
himself thought in Aristotelian terms in which motion and rest are qualitatively distinct states; thus
the modern escape was not available.

The reconciliation Scripture and Copernicanism promoted by the later Copernicans, Galileo
and Kepler, is summarized in the remark attributed to Cardinal Baronio by Galileo: “the Holy
Spirit is to teach us how one goes to heaven not how heaven goes” (Fal84; Ca299-300). The point is
that the Bible is not a treatise on astronomy and speaks in the direct language of ordinary life; the
Bible does not err, but it does not fully inform about subjects irrelevant to its purposes. Copernicus
would have almost certainly have agreed; in his preface to the Revolutions, he speaks of those who
will fault him by “badly distorting some passage of Scripture to their purpose” (Ro5).

The argument that the Bible is not speaking absolutely on astronomical points is easy for a
modern Christian to accept. But it was not easy for many of Copernicus’ contemporaries. The Bible
(it seemed) and Aristotle agreed on the stationary Earth and the moving Sun. And Aristotle was
the authority on natural philosophy. Thus the Bible was indeed speaking absolutely as verified by
human reasoning at its best. Moreover, it was the opinion of some that the early Christian Fathers
had agreed on immobility of the Earth and the motion of the Sun; after the Council of Trent,
points of agreement among the Fathers was held to be authoritative by the Catholic Church (Fa231;
Ko454). Moreover again there was common understanding (even apart from Aristotle): the Earth is
at rest just as it seems. Thus, the Bible, Aristotle, Christian tradition, and common understanding
concurred against Copernicanism.

Copernicus was fully aware that his ideas could be viewed as heretical. He had Cardinal
Schonberg’s letter expressing personal approval, but this was far from an official approval of
the Catholic Church. Once Copernicanism was in print, Schonberg and other openminded high
ecclesiastics may or may not have been able to protect it. The nature of Copernicus’ time made
that more difficult than at early times. The Protestant Reformation, started in 1517 with Luther’s
95 theses, had caused a bitter divide in western Christianity with both Catholic and Protestant
sides hurling anathemas at each other. In such an age radical ideas were bound to encounter
bitter enemies. Possibly there would be public preachers on both sides of the Catholic-Protestant
divide who would denounce Copernicanism. There could be an escalation of denunciation. Possibly,
Copernicus would be called to Rome to answer questions from the Inquisition; he might have be
forced to abjure his ideas and have been imprisoned. On the other hand perhaps nothing bad would
have happened; even important points of astronomy do always cause public outcrys. The course of
events was unpredictable. Copernicus probably felt it was better to delay.

In 1539, Georg Joachim Rheticus (1514-1576 [Kol57, 193]) visited Copernicus (Kol58).
Inspired by only what was already public knowledge, Rheticus had converted enthusiastically to
Copernicanism (Ko158). Rheticus and Copernicus’ old friend Tiedemann Giese (1480-1550 [Rosb8]),
the bishop of Kulm (in Polish Chelmno) convinced Copernicus that his ideas should be presented
openly. Rheticus prepared and printed in 1540 a small treatise summarizing the Copernican system,
the Narratio Prima; Copernicus’ was only referred to obliquely as Dr. Nicolas of Torun (Kol61,
166). The Narratio Prima was a trial balloon and a successful one; no lighning struck and there
were requests from scholars for Copernicus to publish his own work (Ko166). Copernicus was at last
ready; he was in his late 60s, and so perhaps he felt that time was running out for him and there
was less to fear.

Copernicus’ book, the Rewvolutions, was printed in Nuremburg (a Lutheran city) by the printer
Johannes Petreius, a specialist in astronomical works (Ko168; RoXV). The work began in 1542
under Rheticus’ direction, but he had to leave in November to take up a post of professor at
Leipzig University (Ko169-170). Andreas Osiander, Protestant theologian favorably disposed to
Copernicanism, took over the supervision of the printing (Ko170).

Still aware that the Revolutions could be attacked on Biblical grounds (as indeed it was to be),
Copernicus attempted to protect it as far as possible. He prepended Cardinal Schonberg letter of
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1536 urging publication (RoXVII; Ko154-155) and he dedicated the book to Pope Paul ITT. Tommaso
Campanella (1568-1639 [Ros204]), a defender of Galileo, would assume, as perhaps Galileo also, that
the dedication indicated that Paul III had approved the book; this assumption was based on Italian
practice of Campanella’s time (Ros204). In fact Paul ITI, did not approve the Revolutions.

In the dedicatory preface Copernicus warns against those ignorant of astronomy who will censure
book on Scriptural grounds. He follows this with the statement that “Astronomy is written for
astronomers” (Rosb). This remark seems arrogantly exclusive. But Copernicus’ point was probably
that the book should be read as astronomy, not as a Biblical exegesis. At the end of the preface
suggests that his work will aid in the reform of the ecclesiastical calendar, a project supported by
Leo X some years earlier.

Osiander on his own initiative added to the protection of the Revolutions by inserting his own
anonymous preface before Schonberg’s letter and Copernicus’ preface (RoXVT). This preface ends
with the paragraph:

Therefore alongside the ancient hypotheses, which are no more probable, let us permit
these new hypotheses also to become known, especially since they are admirable as well
as simple and bring with them a huge treasure of very skillful observations. So far as
hypotheses are concerned, let no one expect anything certain from astronomy, which cannot
furnish 1t, lest he accept as the truth ideas conceived for another purpose, and depart this
study a greater fool than when he entered it. Farewell (quoted from RoXVI; see also
Kob73-574).

This preface reflects Osiander own skeptical view of the reality of astronomical models. In 1540,
Osiander wrote to Copernicus as follows:

For my part I have always felt about hypotheses that they are not articles of faith
but bases of computation, so that even if they are false, it does not matter, provided that
they exactly represent phenomena. ... it would therefore be a good thing if you could say
something on this subject in your preface, for you would thus placate the Aristotelians and
the theologians whose contradictions you fear (quoted from Kol71).

We do not know what Copernicus replied to this letter (Kol71) or if he approved any form of
Osiander preface although he probably saw it in proof pages shortly before his death (Ko173-175).

It probable that Copernicus or any mathematical astronomer would have agreed with Osiander’s
remarks in respect to the details of epicycles and deferents of the astronomical models. Even
to Ptolemy, if not before, it must have been clear that the models of the celestial motions with
epicycles and deferents were not unique: some models were better than others, but no one had
found a uniquely good system. But in regard to the main hypotheses, Ptolemy and Copernicus
would not have shared Osiander’s skeptism. They each believed that their main hypotheses were
true or at least very defensible physically and philosophically (Pe87; Ro4-5). Osiander’s skeptism
was, however, widespread in his day. Strict Aristotelians for example had to adhere to it since they
took Aristotle’s model of the celestial system to be physically correct despite its many significant
disagreements with observation (Pe69-70).

Osiander’s preface was often taken to be from the hand of Copernicus despite the contradiction
between it and the rest of the Revolutions. Some people such as the anti-Copernican Giovanni Maria
Tolosani (14707-1549 [Ros149]) recognized the preface as not by Copernicus (Ros157). Kepler in
1609 would expose Osiander’s authorship (Kol172). The preface or perhaps just the assumption
that Osiander-like skeptism was held by Copernicus did have an effect on those who were not
well acquainted with the Rewvolutions which of course was most people: it was an advanced book
in astronomy, not light reading. For example, Cardinal Robert Bellarmine, who was involved in
Galileo’s controversy with the Catholic Church, wrote in 1615 “it seems to me that your Reverence
and Signor Galileo act prudently when you content yourselves with speaking hypothetically and not
absolutely, as T have always understood that Copernicus spoke” (Ko454). Bellarmine means that he
thought that Copernicus was only introducing calculational hypotheses, not physical ones. It needs
to be said that Bellarmine was not an ignorant man; he was one of the leading theologians of his
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time (Fal20). We can conclude that Osiander’s preface may have had some of the intended effect.
Whether that effect was desirable is hard to say.

6.2.2 De Revolutionibus Orbium Coelestium

We shall only briefly discuss the Revolutions itself. Its fundamental hypothesis is heliocentrism.
What drove Copernicus to this radical, although not entirely new, idea? His own words:

I was impelled to consider a different system of deducing the motions of the universe’s
spheres for no other reason than the realization that astronomers do not agree among
themselves in their investigations. ... For although those who put their faith in
homocentrics (geocentric spheres) showed that some nonuniform motions could be
compounded in this way, nevertheless by this means they were unable to obtain any
incontrovertible result in absolute agreement with the phenomena. On the other hand,
those who devised the eccentrics seem thereby in large measure to have solved the problem
of the apparent motions with appropriate calculations. But meanwhile they introduced
a good many ideas which apparently contradict the first principles of uniform motion.
Nor could they elicit or deduce from the eccentrics the principal consideration, that is,
the structure of the universe and the true symmetry of its parts. On the contrary, their
experience was just like some one taking from various places hands, feet, a head, and other
pieces; since these fragments would not belong to one another at all, a monster rather than
a man would be put together from them (quoted from Ro4).

Two parenthetical
It is an advanced book, aimed at astronomers, not at the general public.

6.3 Tycho Brahe

6.4 Johannes Kepler

Johannes Kepler (1571-1630) was born in Weil der Stadt (then simply Weil), a small Swabian
free imperial city in south-west Germany surrounded by the duchy of Wiirttemberg (Ca29, 32,
358). His family was of the urban craftsmen class though they claimed remote noble ancestry
(Ca30). Kepler’s grandfather Sebald had served as mayor of of Weil der Stadt (Ca29), but his father
Heinrich led a wandering and unprofitable life and abandoned his family finally in 1588 (Ca35-36).
Kepler was brought up in the Lutheran denomination and adhered to that denomination all of his
life. Given the religious persecutions and wars of his times, it is not surprising Kepler’s religion had
a significant effect on his life’s course.

In 1589, Kepler entered the University of Tubingen in Wirtemberg financially supported by
scholarships and began training for a Lutheran clerical career (Ca41-43). He took a master of arts
degree in 1591 and entered the theology faculty to obtain an advanced degree (Ca43; Ko240). Shortly
thereafter the senate of the university supported the renewal of his scholarship with prescient words:

Because the above-mentioned Kepler has such a superior and magnificent mind that
something special may be expected of him, we wish, on our part, to continue to that
Kepler his stipend, as he requests, also because of his special learning and ability (quoted

from Cad4).

The senate and Kepler probably both expected his achievements to be in theology.

Kepler attended the lectures of Michael Mastlin, the professor of mathematics and astronomy.
Publicly Mastlin adhered to the Ptolemaic system because of Copernican theory was proscibed by
his colleagues as contrary to scripture. Privately he taught Copernicanism to a select few among
them Kepler (Cad6). Kepler was enthused and not constrained:

Already in Tubingen when I followed attentively the instruction of the famous Magister
Michael Mastlin, I perceived how clumsy in many respects is the hitherto customary notion
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of the structure of the universe. Hence I was so very delighted by Copernicus, whom my
teacher very often mentioned in his lectures, that I not only repeatedly advocated his
views in the disputations of the candidates, but also made a careful disputation about the
thesis that the first motion (the revolution of the heaven of the fixed stars) results from the
rotation of the earth. I already set to work also to ascribe to the earth on physical, or, if one
prefers, metaphysical, grounds the motion of the sun, as Copernicus does on mathematical
grounds. For this purpose I have by degrees—partly out of Maestlin’s lecture, partly out
of myself—collected all the mathematical advantages which Copernicus has over Ptolemy

(quoted from Cad6-47).

6.4.22?2 Rosenkrantz and Kepler

As an aside (and rightly so), Kepler in 1600 during his first period with Tycho met with Frederick
Rosenkrantz, Tycho’s third cousin (Th427-429; Cal07-108). Since Kepler travelled briefly with
Rosenkrantz, they must have communed at least a little. Like Tycho, Rosenkrantz was of the high
Danish nobility and was learned. Tycho reports that he knew Latin, Italian, French, Spanish, and
German. One supposes he also knew Danish. Ironically, English was not mentioned.

Rosenkrantz’s good fortune had been checked, however. He had gotten a Danish lady-in-waiting,
Rigborg Brockenhuus, pregnant. This seems a small sin measured against the centuries. But as
Hamlet remarks “conception is a blessing; but not as your daughter may conceive:—friend, look to’t”
(Shakespeare 1979, vol 3, p. 351, act II, scene II). The wrath of Reformation Lutheran Denmark
fell upon the lovers. Rigborg was sentenced to house arrest for life. Rosenkrantz was banished and
enjoined to go on a campaign against the Turks. In a medieval manner, he had been effectively
ordered to take the cross and go on a crusade as a penance. It was on the “road to Jerusalem”
that he paid a visit to Tycho in April, 1600. Rosenkrantz died (1600777?7) soon after his visit in
attempting to stop two dueling comrades.

In 1592, in an earlier adventure (misadventure?) Rosenkrantz and another remote cousin Knud
Henriksen Gyldenstierne were part of a Danish legation to England. Somehow they caught the
attention of William Shakespeare—in some mighty pageant of equestrian nobility? or quaffing ale
in the Mermaid Tavern? In any case, Shakespeare cast them in bit parts in Hamlet. In the 20th
century, Tom Stoppard gave them starring roles in Rosenkrantz and Guildernstern are Dead.

Given the tragedy of his life, it is fitting that Rosenkrantz became an immortal. And it is
wonderful to discover the missing link between those geniuses of their age: Shakespeare and Kepler.

6.4.22?2 The End of Kepler

Amidst the collapse of towns, provinces, and countries of old and new generations,
in the fear of barbaric raids, of the violent destruction of hearth and home, I see myself
obliged, a disciple of Mars though not a youthful one, to hire printers without betraying
my fear. With the help of God I shall indeed bring this work to an end, in soldierly fashion,
giving my orders with bold defiance and leaving the worry about my funeral to the morrow
(quoted from Ko420; see also Ca348).

Kepler died about noon November 17 1631 in Regensburg and was buried in the Protestant
cemetery of St. Peter on November 17 (Ca358). The cemetery was demolished within a few years
because of the necessities and events of the the Thirty Years’ War; Kepler’s grave site became lost
(Ca360-361). Some words from one Kepler’s last letters seem a better epitaph than the one he chose
himself (Ca359):

Sagan in Seliseia, in my own printing press, 6 November 1629.

When the storm rages and the state is threatened by shipwreck, we can do nothing
more noble than to lower the anchor of our peaceful studies into the ground of eternity
(quoted from Ko427; see also Ca349).
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6.5 Galileo

6.6 Isaac Newton

Isaac Newton was born in Woolsthorpe, Lincolnshire on Christmas day in 1642 according to
the Julian calendar still being used in England (No366). The date was 1643 January 4 according to
Gregorian calendar then at use throughout Catholic Europe and now universal (Ab49-50) Galileo
had died only 361 days before in his 78th year??? (Ab49-50). He was born posthumous and was
raised in early years by his grandmother; his mother lived with his stepfather to whom Newton was
not close. Newton was schooled in Grantham and matriculated at Trinity College, Cambridge in
1661. We know that he studied the results of Kepler, Galileo, Descartes, and the mathematician
John Wallis (1616-1703: Bo416), and was aware of Kepler’s 3rd law and studied methods for finding
planetary positions (Hal5, 55; No367).

Newton made many of his most brilliant discoveries early on, though many of them were not
published until much later. In Newton’s words on his early work:

All this was in the two plague years 1665 & 1666 for in those days I was in the prime of my
age for invention and minded Mathematics and Philosophy more than at any time since
(quoted from Ha20).

For much of the plague period, the university was closed and Newton had retreated to
Woolsthorpe (Ha31).

In 1669, he succeeded to Isaac Barrow as Lucasian professor of mathematics at Cambridge and
was elected in 1672777 (Hall8) to the Royal Society, whose meetings in London he often attended.
Newton left Cambridge for London permanently in 1696 when he was made Warden of the Mint.
He was elected president of the Royal Society in 1703 (Ha306) and died in 1727.

Newton’s scientific reputation was unparalleled in his own day and he remains one of the most
esteemed scientists of history. In 16651666, he invented elements of calculus, but only revealed a
little of his methods in the Principia (see § 6.1) and fuller accounts were not published until after
1700 (Bo432-433; Ha250, 264-265). Gottfried Wilhelm Leibniz (1646-1716) indepedently invented
calculus and published his discoveries in 1684 (Bo438; Ha251, 258). There was a bitter priority
dispute, but both persons are justly credited. (The basic elements of most of our modern calculus
nomenclature and notation descend from Leibniz [Bo441].) In 1704, Newton published his Opticks
in which he set forth his theory of light and the results to be derived from it (Ha279). This book
was highly regarded by his contemporaries and their immediate followers for its very experimental
character (Ha291-293). Newton’s greatest work was in the physics of motion and gravity. We will
now turn to these topics.

6.6.1 Newton’s Laws of Motion

Newton’s greatest book, first published in 1687, was his Principia Mathematica Philosophiae
Naturalis (Mathematical Principles of Natural Philosophy) (No366), usually just called the Principia
(with the ‘¢’ pronounced ‘ch’). Certainly, the Principiais one of the last great books written in Latin,
the medieval and Renaissance language of international scholarship. In this book, Newton sets forth
his three laws of motion, his law of universal gravitation, and applies these laws to many terrestrial
and celestial phenomena. The Principia is a difficult, advanced mathematical book. The elegant,
short proofs devised in later times were not available to Newton. The proofs he gave were based on
a geometrical calculus of his own invention (Ha213). He already had discovered algebraic calculus
(what we just call calculus) before 1671, but preferred not use it. Newton late in life, however,
claimed to have originally proven his results using (algebraic) calculus and later for publication
devised the geometrical proofs. This claim seems to have been made to buttress his position in the
calculus priority dispute with Leibniz (Ha212-213).

The three laws of motion are:

1. The Inertial Law: A body at rest or in uniform, straight-line motion will stay in its state
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of rest or motion unless acted on by a net outside force.
2. F = mad: The net force F acting on a body of mass m causes an acceleration a.
3. The Reaction Law: For every force, there is an equal and opposite force.

In antique terms, the inertial law defines natural motion. However, there are questions as to
how to define a straight line, time (so that you can tell that motion is uniform), and force. The
straight line question is solvable in Euclidean geometry which Newton assumed to hold in the real
world. The time question, Newton acknowledged to be difficult: was there any truly equable motion
that could be used to define time. He assumed that mechanical clock time and celestial time (which
equalled each other within error) sufficed. The nature of force we discuss now under the heading of
the 2nd law.

The 2nd law, usually referred to simply as F = ma, tells what effect a net force will have.
Tt is a law relating two vector quantities (i.e., quantities that have size and direction), force and
acceleration, and a scalar quantity (i.e., a quantity having only size), mass. The general discussion
of vectors and scalars is beyond our scope, but I assume they are understood—in a general sense.
Straight-line acceleration is easy to understand if one allows that time and distance can be measured.
However, a change in velocity (which is also formally a vector) occurs with changes in direction as
well as in changes in magnitude; changes in direction are also accelerations in Newtonian physics.

Force requires an independent definition: F' = ma does not define force, it tells what a net
force can do. If you measure an acceleration, you know the size and direction of the net force, but
not its cause or how it acts generally. Newton came up with one outstanding example of a force
defintion: is universal gravitation law to be discussed in the § 6.6.2. In modern physics only four
fundamental forces are known: the gravitational, electromagnetic, strong nuclear, and weak nuclear
forces. The two nuclear forces are intrinsically quantum mechanical and cannot be used reasonably
in F = ma. The macroscopic electromagnetic force can, however. So can those nonfundamental
forces derived from the electromagnetic force: e.g., frictional, fluid resistive, spring, pressure, elastic,
and animal body forces. Suitable for prescriptions for most simple nonfundamental forces are known
such as Hooke’s law for the spring force. These prescriptions together with the third law allow one
to calculate forces without observing acceleration. Thus one can calculate the balanced forces acting
on an object at rest or the component forces that make up a net force that causes an acceleration.

Mass, or more exactly inertial mass, is a measure of resistance to acceleration (i.e., a measure
of inertia). If one has a known force, one can apply that force to various bodies and determine their
mass by observing their acceleration. One can also measure (inertial) mass by a measurement of
gravitational mass as we will discuss in § 6.6.2.

One should note that strictly speaking the 1st law is redundant. It can be derived from the 2nd
law; it is the special case of the 2nd law where F=0.

Another special case of the 2nd law is that of uniform circular motion. By our vector definition
of velocity, such motion is accelerated motion and thus requires a net force. Any one who has turned
a corner 1n a car knows that a force is necessary to cause a departure from straight line motion.
Something which is not obvious, but follows from a vector analysis, is that the the acceleration and
therefore the net force required for circular motion must be pointed toward the center of circular
path. Such a center-pointing force is called a centripetal force. The F = ma law in the case of
uniform circular motion can be rewritten as

v?

F=m—, (6.1)

r

where we have dropped the vector notation since the direction of the force is uniquely specified,
r is the radius of the circle, and v is the magnitude of the velocity of the circling mass (i.e., its
speed). We note that the force and velocity are perpendicular to each other. The mass keeps trying
to go a straight line and is forced into a curved path by the the centripetal force. Note also that
equation (6.1) is not a prescription for a force, but tells what the centripetal force must be to cause
uniform circular motion.
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The 3rd law is clear enough, except to remark that the equal and opposite forces are acting on
different bodies; if this were not so all forces would cancel and no acceleration would occur. The 3rd
law implies conservation of momentum: a topic we will not deal with further here.

6.6.2 Unwersal Gravitation

Gravity in the sense that bodies fall to the Earth has been known to humankind as long as we
have have been. Newton did not discover that kind of gravity. What he discovered was quantitative
mathematical law of universal gravitation; this law postulated gravitation as a force generated by
all matter and that gravitation was active throughout the universe. Newton himself alleged that his
interest in gravity began with a fall of an apple while Lincolnshire during the in the plague years:

It was occasion’d by the fall of an apple, as he sat in a contemplative mood. Why should
that apple always descent perpendicularly to the gound, thought he to him self. Why
should it not go sideways or upwards, but contantly to the earths centre? Assuredly, the
reason is, that the earth draws it. There must be a drawing power in matter: ... If matter
thus draws matter, it mustbe in proportion to its quantity. Therefore the apple draws the
earth, as well as the earth draws the apple. [And thus] there is a power, like that we here
call gravity, which extends its self thro’ the universe (quoted from Hab4).

Actually, 1t is now believed Newton was antedating his clear conception of universal gravitation
in the above passage. The clear conception was probably not present until the the mid-1680s after
the Newton’s thinking had been stimulated by his scientific rival Robert Hooke (Ha62, 64). Newton’s
own dating of the discovery of the law of universal gravitation to 1666 was probably an attempt put
his priority vis-a-vis Hooke beyond question or dilution (Ha64, 7777).

The modern mathematical form of the gravitation law is a vector law giving the force between
two point bodies:

ﬁlyg = —GM1M2 7“%7272172 y (62)

where ﬁLQ is the force on body 2 due to body 1, GG is the universal gravitational constant, M; and
M3 are the gravitational masses of the bodies, r; 5 is the distance between the masses, and 71 5 is
a unit vector pointing from body 1 to body 2. The negative sign in the gravitation law shows that
the force is attractive. By symmetry, one can see that the force on body 1 due to body 2 is equal
and opposite to the force on body 2 due to body 1; this is consistent with the third law of motion.
We note that the gravitational force is proportional to the two masses and is an inverse-square law
in the distance separating the masses.

To find the forces between two finite bodies, one does a vector summation over the forces
between all their microscopic parts: in the terminology of calculus, between all differential pieces
of the two bodies. For spherically symmetric bodies that do not overlap, equation (6.1) is, in fact,
the result of such a summation. If this simple result for finite bodies had not existed, then the
gravitation law would have been much more difficult to deduce. Newton in fact worked backward

The gravitational masses that appear in gravitational law are analogous to the electrical charges
that appear in the Coulomb law of electrostatics: they are gravitational charges. There is no reason
in Newtonian physics why gravitational mass and inertial mass (which appears in F' = ma) should
be the same, but empirically they are. Newton??? and later to experimenters to the present day
have attempted to find a distinction and have failed to do so (??; Ad5). Einstein, not believing in a
coincidental sameness of the two kinds of mass, asserted that the sameness implied a fundamental
equivalence between gravitation and inertia (Ad4-5). He called this fundamental equivalence the
equivalence principle and made it a primary axiom from which he derived general relativity (see
§ 8.3).

As an illustration of the sameness of gravitational and inertial mass let us consider the
gravitational acceleration near the surface of the Earth. Let the gravitational mass of the Earth be
M, and the gravitational and inertial masses of a small body be m. and myg, respectively. Dropping
vector notation since we know that the gravitational force and acceleration are both directed to very
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nearly to the center of the Earth, we find from 7' = ma and the gravitation law that

GM e e
Rg mg Mg

where Rg is the Earth’s radius and g is the traditional simple for the combination of factors GM /R .
We see that if m. and mg are not always in a constant proportion to each other, then not all bodies
will accelerate at the same rate under the force of gravity. Ever since Galileo, it had been found that
all bodies do accelerate at the same rate under the force of gravity (neglecting air resistance), and so
gravitational and inertial mass must be proportional. The units of the masses are chosen so that the
proportionality constant is 1. The g quantity is thus the gravitational acceleration at the Earth’s
surface. The mean value of g at sea level is 980.6 cms~!. This quantity varies from about 978 cms~1!
at the equator 983 cms~! at the poles due to the asphericity of th Earth and the centrifugal force
(which is the subject we will not treat).

Newton could only determine the gravitational constant G very crudely given the uncertainties
in his day in measuring g, the mass of the Earth, and the radius of Earth. The modern G value
is 6.67259 + 0.00085 x 1078 in CGS (gram-centimeter-second) units. Note that G is still known
accurately to only 4 digits; this makes it one of the most poorly determined of fundamental constants.
The reason for this is that the gravitational force between laboratory size objects is so minute that
measurement of this force i1s extremely difficult.

Gravitation is in fact the weakest of the four fundamental forces over short ranges. Nuclear forces
dominate the structure of nuclei, but are very short range and have no effect a few fermis (a few times
1073 cm) from their sources, protons and neutrons. The electromagnetic force is longer range and
determines the structure of solid objects from atoms to, at least in part, asteroids. The electrostatic
force component of the electromagnetic force 1s the main one. It is an inverse-square force like
gravity, and the electrostatic force between charged fundamental particles or even charged atoms
is much stronger than the gravitational force between those particles. However, there are positive
and negative charges that have strong tendency neutralize each other over macroscopic distance
scales. Large charge polarizations can build up of course as in thunder clouds: the sudden discharge
is lightening of course. On atomic scales, quantum mechanical effects prevent total neutralization;
thus a proton and an electron ordinarily do not collapse into each other to form a neutral particle.
The atomic range electromagnetic forces left over after near neutralization hold solid objects together
in a linked fashion. One ion, atom, or molecule holds its neighbors which hold their neighbors and
SO on.

Gravity, unlike electromagnetism, has only one kind of charge, mass, and mass is always attracts
other mass. Thus if mass accumulates in large lumps, gravity becomes very strong and only strong
electromagnetic or quantum mechanical pressure can resist gravity on the large scale. Such pressure
forces have no resistance to shear forces (which are those forces that do not try to compress the
material). Thus planets and stars are forced into nearly spherical shapes: gravitation acts as shear
force on any nonspherical perturbation. Liquids and gases in general have no resistance to shear
forces are given a macroscopic structure by gravity and pressure forces in the absence of kinetic
energy and macroscopic electromagnetic forces. (This is not quite true for some cohesional forces
can effect shape. Thus small water on small scales tends to clump into drops.) In nonstatic,
nonelectromagnetic situations, the shapes of liquid and gases are determined by the interaction of
gravity, pressure, and kinetic energy effects.

It happens that stars considered as point bodies behave somewhat like a very dilute gas. Thus,
star systems (including gas and dust components), it is believed, are given their structure by gravity
and kinetic energy. The uncertainty in last statement is because it is possible that some other large
scale force is acting that we have not identified. Assuming that there is no such mystery force, star
clusters, galaxies, and galaxy clusters are all given their structure by gravity and kinetic energy.
Modern cosmology likewise holds that the structure of the universe is determined by gravity and
kinetic energy (see Chapt. 8).

6.6.3 Gravity and Kepler’s Laws
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One of the great triumphs of Newtonian physics was that Kepler’s three laws could be derived.
Here we will only focus on the third law and only only for the special case of uniform circular motion.
Recall that the uniform circular motion form of F' = ma is given by

v2
F=m—, (6.4)

r

where F' is the centripetal force. If we now put a large body of mass M at the center of the circle
and demand that gravity supply the centripetal force, then we have

M 2
GMm _ v (6.5)

2 r

Recalling that the speed of uniform circular motion is given by

2nr

= 6.6
v P ) ( )
where P is the period, one immediately finds that
4r?
2 _ 3 -
Vil (6.7)

Equation (6.7) is just Kepler’s 3rd law for the case of uniform circular motion.

To return to history. Newton had obtained the centripetal force law as early as 1664-1665
(Hab7-59). Now Newton had known of Kepler’s 3rd law since 1661 or 1662 from Thomas Streete’s
Astronomia Carolina (1661): his grasp of its importance seems to have been unusual at that time
(Ha62). In a document of perhaps 1669-1670 (Ha62-63), he had put the centripetal force law and
Kepler’s 3rd law together, reversing the order of the derivation above, to come to an understanding
that the acceleration of the planets to the Sun (approximating the orbits as circular) was proportional
to the inverse-square of their distance from the Sun (Ha62, 406). But Newton does not make
gravitation by the Sun the cause of this acceleration. His physical theory is still that of Descartes:
vortices in the ether are the cause of the circular motion (Ha63).

In the same document document Newton shows that the ratio of the centripetal acceleration
of the Moon to the gravitational acceleration on the Earth is roughly equal to (Rg /dyo)AP7 1942,
where Rg is the Earth’s radius and dy, is the distance to the Moon. Newton would later claim that
he had “pretty nearly” confirmed an inverse-square law for gravitation by this result and that the
result dated back to 1666 (Ha64). This is does not seem to be the case, the document is probably
from later (probably 1669-1670 as mentioned above) and Newton was did not yet have the idea of
universal gravitation (Ha64).

In 1679-1680, Robert Hooke, the Secretary of the Royal Society (Hal57) and a man whom
earlier and later would be on bad terms with Newton, corresponded with Newton concerning motion
and forces (Halb9, 202ff, 207). Hooke asserted his belief that the motion of a body under an
inverse-square law force would be an ellipse and that the Sun’s force exerted on the planets was an
inverse-square law force (Ha204-205). Hooke was no mathematician and could not proof this result;
how he arrived at it is not clear, but probably from a qualitative argument (Ha204). Newton did
not answer Hooke’s crucial letter (Ha204), but he was stimulated to prove mathematically that the
assertion was true immediately after the letter (January 1680) (Ha206). Characteristically, Newton
put the proof aside.

Newton never published any acknowledgement of Hooke’s insight (Ha205). Privately, he
admitted that Hooke had stimulated his proof (Ha206), but he also contended privately that both he
(before 1673) and Christopher Wren (1677) had already perceived that gravity had inverse-square
law (Ha205, 425). Without clear documentation prior to Hooke’s assertion of an inverse-square
law for gravity (at least of the Sun’s gravity), there will always be questions about priority. Given
Newton’s possessiveness of his discoveries, it is possible that he later over-interpreted his own earlier
understanding. Hooke was likewise possessive of his discoveries and speculations, and would claim
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Newton had stolen the idea of the inverse-square law of gravity. Certainly, Newton should have
acknowledged Hooke in print. However, a key pointed emphasized by Newton and admitted by
Hooke was that Hooke, who was no mathematician, was incapable of deriving the consequences of
the inverse-square and Newton, the supreme mathematical physicist of his day, was (Hal58-159,
205, 206).

But why did the capable Newton put aside his first proof of elliptical orbits following from the
inverse-square law. Hall argues that Newton simply rejected the inverse-square law as unphysical;
that Newton still believed that the in Cartesian vortices where bombarding physical particles drove
the planets and that this complex fluid motion could not be reduced to a simple bodiless force
(Ha207). This may well be the true reason for Newton putting no great importance on his proof.
But why did he not publish it just as a mathematical demonstration? Likewise why did he delay
for decades in publishing his version of calculus? I would suggest that Newton’s possessiveness
of his discoveries is one key. As long as a discovery was known to Newton alone, then it was
entirely his own. Newton was slow in realizing that his discoveries could be rediscovered. Thus,
Leibniz independently invented calculus and published his version in 1684 and 1686 while Newton’s
calculus, that had begun to form in 1665 (Ha35) and been written up in a manuscript 1669 (Ha82)
remained almost unknown. It would take a bitter and unfair dispute to establish Newton’s priority
in the years after 1699 (Ha257ff, esp. 262, 268).

A second possible reason for Newton’s slowness to publish was simply his absorption in multiple
fields of research. Solutions adequate for Newton’s own understanding could be left languishing while
Newton restlessly took up another problem. Besides physics and mathematics, Newton was engaged
in experimental chemical and alchemical studies at least through 1669-1695 (Hal79ff), spent many
years studying optics (Ha41ff, 68ff, 97ff), probably pursued world and Biblical chronological problems
from his undergraduate days (Ha340), and in Biblical prophecies from 1675 at least (Ha372ff). In
the later two fields Newton’s achievements are of rather small significance to moderns.

The next issue is what then caused Newton to put aside his reluctance to publish (from whatever
its cause) and multiple projects to work out and publish the Principia. Certainly, in this case
encouragement by friends and a surge of inspiration impelled Newton. Edmond Halley visited
Newton in August 1684 and asked if him what would be the shape of an orbit be under the influence
of an inverse-square force (Ha207). Halley, Wren, and Hooke had been unable to solve this problem.
Newton answered that it was an ellipse as he had known since 1680, but he found that he had lost
the proof. After Halley left Newton went into and storm of creation, encouraged by Halley and the
Royal Society (Ha209), that resulted in the Principia: a complete manuscript in the spring of 1686
(Ha215) and publication in July 1687.

In creating the Principia Newton abandoned Cartesianism; it is not known how or when
(Ha207). He no longer required all motion to be caused by the action of body on body. Action
at a distance, the force of attraction of gravity was allowed as effectively a fundamental physical
fact. In a famous remark in the General Scholium of the Principia, Newton declares that he “feigns
no hypotheses???” (??77). In the modern sense, this is not true: the laws of the Principia are
certainly all hypotheses or theories or axioms. But what Newton meant was that he would not
satisfy Cartesian philosophy by trying to explain gravity in terms of the action of particles on
particles if the explanation added nothing to the predictive power of his necessary axioms.

The quantitative agreement of his results within experimental error with observations was so
good that Newton’s laws swept all before them. He had established a new



8. The Universe of the 20th Century

8.1 The Discovery of the Extragalactic Universe
8.2 The Expanding Universe

8.3 Einstein, General Relativity, and the Einstein Universe

8.3.1 Finstein and Relativity

Albert Einstein (1879-1955) was born in Ulm?77? Germany. For a time he and his family lived
in Munich where there is an Einsteinstrale on which street they presumably lived. When I lived in
Munich (1988-1989) T never went looking for the Einstein mansion, assuming one day that T would
just find myself there; but that day never came. Einstein disliked the regimented, nationalistic ethos
of pre-World War I Germany, its antisemitism, and all authoritarianism. Everyone as a favorite
Einstein quote. Mine, quoting from memory, is approximately:

“When I was young, I despised all authority and I have been punished for it. Society has
made me into an authority myself.

When a teenager???, he left home to live in Switzerland. He took his university degree there and
became a Swiss citizen: he was always very proud to be Swiss????. The Swiss are, of course, a
superior form of life.

Following his graduation he settled in Bern??? and obtained a position as a patent clerk in
the Swiss patent office. Besides settling down to being a family man with wife and children???7,
he also carried on his interest in his free time in physics. Originally, he had been most interested
in experimental physics???, but without opportunities for laboratory work, he perforce became a
theoretician. In 1905, his Anno Mirabilis, he published his famous papers on Browning motion and
the photoelectric, and his first paper on special relativity. He also obtained a his Ph.D. that year
with an unmemorable dissertation??77.

Special relativity was motivated by a need to perfect electromagnetism of James Clerk Maxwell
(1831-1879), summarized in Maxwell’s equations. These equations admit solutions which are free
electromagnetic wave solutions with a phase velocity (derived entirely from electric and magnetic
effects) that within uncertainty is consistent with the speed of light. With this result the idea
quickly arose that light was a form of electromagnetic waves or electromagnetic radiation. Heinrich
Rudolf Hertz (1857-1894) confirmed this idea by producing and detecting long-wave electromagnetic
radiation in the laboratory in 1888. This long-wave electromagnetic radiation is, of course, radio.
But if light and other electromagnetic radiation are wave phenomena, what is the medium in which
the waves oscillate? This otherwise unknown medium was given the name the ether (a revival of
the Greek term for different purpose). The ether was supposed to pervade space and be at rest in
the reference frame of absolute space. Maxwell’s equations are in fact not invariant under Galilean
transformations and it was thought that they could only apply in one special reference frame, the
frame of the ether. This is unlike Newtonian dynamics which apply in all inertial frames. Maxwell
himself thought his equations would need to be modified to account for motion, in particular the
motion of the Earth. The fact that his equations seemed to work to a high degree of accuracy in
the moving frame of the Earth suggested the correction would be small.

In 1879, the year of his death, Maxwell proposed an experiment using interference to measure
varying speed of light due to the Earth’s motion through the ether (Hec7). Albert A. Michelson
(1852-1931) and Edward W. Morley (1838-1923) carried out this experiment (reported in 1887)
and obtained one of the momentous null results in history: the speed of light did not within their
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uncertainty depend on the motion of the Earth. This null result caused a flurry of complicated
theorizing about electrodynamic effects by physicists among whom the most prominent were Hendrik
Antoon Lorentz (1853-1928), 77?? Fitzgerald (?777), and Jules Henri Poincaré (1854-1912). It was
shown first by Voight???7 then by Lorentz that the Maxwell equations were invariant under a special
set of transformations now called the Lorentz transformations. But the physical significance of the
Lorentz transformations was not satisfactorially understood.

Einstein’s papers on special relativity beginning in 1905 cleared the difficulties away. His two
postulates were: (1) the speed of light (in vacuum) is the same for all observers no matter how
they are moving, and (2) the laws of physics are the same in all inertial reference frames. From
these two postulates one obtains the Lorentz transformations under which Maxwell’s equations
are invariant. However, Lorentz transformations must also apply to material kinematics. Thus,
the Galilean transformations and Newton’s law of motion are not valid except in the low velocity
limit (i.e., for velocities much less than the speed of light). From the Lorentz transformations,
strange effects like the twins paradox and the Fitzgerald contraction are obtained. These effects
are only noticeable at high velocities, but they have been well verified. The effects testify to the
interdependence of the three spatial dimensions and the time dimensions: the unified term for space
and time is space-time. But one should note there is an asymmetry: the spatial dimensions and time
are not on a equal footing. At least in one’s own frame, one can move in time alone (but only one
way), but, unless one is a light beam, one cannot move orthogonally to time. Time is the strange
dimension which, at least in the macroscopic world, does not tarry or return.

From special relativity also follows the equation

E =mc? (8.1)

where F is energy, m is mass, and ¢ is the velocity of light. What this means is that energy
and mass are really the same thing: mass-energy. However, there are different forms mass-energy:
electromagnetic radiation, electromagnetic potential energy, gravitational potential energy, kinetic
energy, and rest mass. There is not always a convenient way of transforming one form of mass-energy
into another. Thus, any old gram of matter cannot simply be converted into enough electric energy
to power a 100-watt light bulb for 3 x 10® years, alas. Nature is too stable to allow this: this stability
is understood in terms quantum mechanical conservation laws. Perhaps, it is a good thing that all
the protons of our bodies cannot “evaporate” of a sudden in a smallish bang.

Although, more correct than Newtonian physics, special relativity is less complete. It does not
deal with accelerations???? or forces. Thus, Einstein undertook the task of generalizing his theory:
first for gravitation and accelerations (in which he succeeded with general relativity) and later for
electromagnetic forces (in which he essentially failed with his unified field theories).

8.3.2 General Relativity

Einstein’s theory of gravity and motion under the influence of gravity is general relativity. This
theory was given its classical form in 1915. By that date Einstein had given up his promising career
in the Swiss civil service, had held a professorship in Prague, and was established at the Prussian
Academy of Sciences in Berlin. general relativity states that mass-energy modifies the geometry
of space-time (which in the absence of mass-energy is Euclidean in the three spatial dimensions).
Movement in this space is along geodesics (the generalization of straight lines to general Riemannian
geometries). Thus, the force of gravity explicitly disappears from Einstein’s formulation.

But if mass-energy determines space-time geometry which then determines how mass-energy
moves, then in general there is a “circular” situation which must be self-consistent. Nature has no
trouble: it is always consistent with itself and solves all problems by complete analog computation.
Most physical laws, including general gelativity, are expressed (by us) as differential equations. What
happens in any given situation must be determined (by us) by solving the differential equations
plus boundary conditions. Newton’s F' = ma 1s a differential equation; Maxwell’s equations are
differential equations. The differential equations of general relativity are Einstein’s field equations:

1 87G

Rij — 50ii R — Agij = —— T (8.2)
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(e.g., Col26), where R;; is the tensor, R is the Ricci scalar, g;; is the metric tensor, A is the
cosmological constant, G is gravitational constant (just as in Newton’s gravitational laws), ¢ is the
speed of light, and T;; is the energy-momentum tensor. The tensors in this case can be represented
by 4 x 4 symmetric matrices. Because of the symmetry there are only 10 independent equations
to solve in general—it’s enough. For present purposes it suffices to state that the left-hand side
of equation (8.2) represents space-time geometry and the right-hand side represents mass-energy.
Thus, the two interacting entities are coupled by the equations.

The cosmological constant A does not appear in standard general relativity (i.e., A is set to
zero). It is a free parameter introduced by Einstein for cosmological reasons (see § 8.3.3) and given a
value by fitting. Free parameters in theories are considered undesirable. The standard formulation of
general relativity is considered particularly elegant because the constants (i.e., G and ¢) that appear
in it were determined prior to the advent of general relativity. An absolute distinction between A
and the other constants, however, seems a bit artificial to me. All fundamental constants are after
all parameters of nature which we cannot (yet) derive. The effect of the cosmological constant, at
least in cosmological modelling, is something like a uniform density throughout the universe (Col18).
The sign of this density-like effect is the opposite of the sign of A. For A > 0, there is a uniform
repulsion throughout space: a uniform antigravity-like force. For A < 0, there is a uniform attraction
throughout space: a uniform gravity-like force. The density equivalent of the cosmological constant
is given by

Ac?
ArG

pA = (8.3)
It has to be emphasized that the cosmological constant does not give rise to a force just like the
gravitational (or antigravitational) force of a uniform density ps, but only to a force somewhat like
a pp-density force.

In Table 7.1, we show the mean densities for various astrophysical systems. Because the density
in these systems varies tremedously, mean density is not a very useful quantity, except for the
two universe systems where density variations occur on a distance scale too small to be important
(by the assumption of the cosmological principle: see below). However, because gravity is a long
range inverse-square force, the magnitude of gravitational effects in a system is crudely measured
by the mean density. (This last remark can be made more definite using the Birkhoff theorem?7??
Col23.) If |pa| is much less than a system density, then the cosmological constant cannot have
an important effect on that system. At present, there is no pressing reason invoke a significant
|pa| for any astrophysical system, and thus no need for the cosmological constant. However, it is
impossible to rule out a cosmological constant giving rise to |pa| < 1072° g ecm~3. Thus there could be
a cosmological constant that affects the structure of the whole universe, but not smaller structures.

Table 8.1. The radii, masses, and mean densities for various astrophysical systems

System R M p
(Mo) (gem™?)
Solar system to Pluto 39.7AU 1.001 2.27 x 10712
Solar system to the Oort Cloud ~ 105 AU 1.002 ~ 10722
Spiral galaxies ~ 30kpc 10%2 ~10-%
Galaxy clusters ~ 3 Mpc 3 x 10'* ~ 1028
Universe 3000~h~ Mpc . > 0.4 x 10~2°h?
Q = 1 Friedmann universe 3000h~! Mpc o > 1.879 x 1072%A2

Note.—As usual in physics, p is the symbol for density. The mass of the Solar System includes
the Sun, Jupiter, Saturn, Neptune, Uranus, Earth, and Venus. The Oort Cloud radius is taken
from Ze251. The data for the spiral galaxies and galaxy clusters is derived from Ze444 and Ze450,
respectively. The Q@ = 1 Friedmann Universe is discussed in § 8.4. The radius of the universe and
the Q = 1 Friedmann universe is not a real radius. It is the characteristic radius of the observable
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universe: .
Rops = — = 3000h~" Mpc . (8.4)
Hy
If Hubble Law applied to all distances and the inverse Hubble Constant was the age of universe,
then we could not see beyond Roys because no light from farther away could have reached us in
the universe’s lifetime. Since the conditions of the previous sentence are not exactly true because of
general relativistic and evolutionary effects, Rops 18 only a characteristic radius for the observable
universe.
The lower limit for the density of the universe, density of Q = 1 universe, and why both these
values depend on the reduced Hubble Constant are discussed in § 8.4.

general relativity is not an extensively tested theory. The three old tests are as follows. First,
in the limit of weak gravitational fields (which is almost always obtained in the solar system)
general relativity should yield Newton’s graviational law and his laws of motion under the effects of
graviation. This general relativity does; it was, of course, constructed so by Einstein.

Second, a problem of Newtonian celestial mechanics that arose in the 19th century was that
there was an inexplicable 41 arcsecond per century shift of the perihelion of Mercury’s orbit on top
of the herihelion shift due the perturbation of other planets (Zel36). It was hypothesized that that
an undiscovered planet nearer to the Sun than Mercury was the giving rise to the extra perturbation
(Ad200). This planet, prematurely named Vulcan, has never been discovered though its name has
since passed into legend. In 1915, Einstein using his theory predicted a 43 arcsecond per century shift
due to strong gravitational effects; this prediction agree within uncertainty with the measurement.
As the nearest (discovered!) planet to the Sun, Mercury is the planet in the strongest gravitational
field and thus is most affected by strong gravitational field effects.

The third old test was the bending of light beams near the Sun. Arthur S. Eddington in 1919
confirmed this prediction in 1919 (No518). Due to the difficulty of the measurements, the degree
of quantitative confirmation was in dispute for many years. Currently, there is agreement to within
10 % (Zel36).

Newer tests of general relativity have appeared since 1960. In 1960, Pound and Rebka confirmed
gravitational redshift, another prediction of general relativity (Ad140). Gravitational lensing of
distant quasars and galaxies by foreground galaxies was discovered in the 1970s?777 (Ze471). This
effect, however, is only the light beam bending effect in another context.

The most dramatic new confirmation has come from the binary pulsar PSR 1913416 discovered
in 1975 by R. A. Hulse and J. H. Taylor (Shapiro & Teukolsky 1983, p. 479). The orbit of this system
is decaying. The rate of decay is within small uncertainty what is predicted by general relativity.
In the general relativistic explanation, the decay 1s due to the loss energy by gravitational radiation
from the system. Gravitational radiation has never been detected directly so far, although a large
project (LIGO) is afoot to try to do just that. For their discovery and continuing analysis of the
binary pulsar, Hulse and Taylor were awarded the Nobel Prize in 1992/3/47777.

General relativity has dramatically passed the available tests. Furthermore rival theories of
gravitation (such as the Brans-Dicke scalar-tensor theory of gravitation [Ad380]) either fail to pass
or must be adjusted to give nearly the same results as general relativity. Such theories are more
complicated and less elegant than general relativity, and so can be rejected by Ockham’s razor.
Nevertheless general relativity is substantially less well established than quantum mechanics and
quantum theories of interactions (i.e., forces).

Quantum mechanics has been known since 1925/19267777, and has been the basis of all advances
in molecular, atomic, nuclear, and solid state physics. The three other forces of nature (the
electromagnetic, strong nuclear, and weak nuclear forces) can all be given a quantum formulation.
The weak nuclear and electromagnetic force have even been successfully united in a quantum
electroweak theory. All three other forces have been incorporated in the (quantum) standard model
of particle physics which if naggingly incomplete 1s nevertheless fairly successful.

Given, the tremendous success of quantum theories, most physicists believe that gravity must
have a quantum theory also. In this opinion, general relativity can be at best the macroscopic
limit of a quantum theory of gravity. Just as general relativity subsumed Newtonian gravity, the
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quantum theory of gravity will subsume general relativity. At present, despite massive efforts, there
is no solid quantum theory of gravity. The gravitational force is just too weak between microscopic
particles to allow any direct experimental access to quantum gravitational effects. Of course, the
general view may be wrong: perhaps, gravity is completely different from the other forces and is not
at all quantum mechanical. However, history (which is all we can rely on) suggests that all physics
is closely united; physicists can only (or only want to) follow that path further.

A grander dream beyond quantum gravity, is the unification of the four forces into a single
theory, a unified field theory. Einstein, himself spent his last 30 years trying to construct a theory of
that name, but including gravity and electromagnetism alone. Since he rejected quantum mechanics
as not fundamental and ignored the two nuclear forces, he is almost universely seen has having been
on the completely wrong track. However, his famous quest set the agenda for physics ever since.

The unified field theory itself, one hopes will be subsumed into TOE: the theory of everything.
Such a theory would explain all the forces, all the constants, all the particles, why quantum mechanics
works, and the universe as a whole: microcosm and macrocosm united just as the ancient Stoic
philosophers believed it should be. Visionaries like Hawking sometimes predict that TOE is almost
within sight: in 1980, he suggested TOE by 2000 (Ov359). But there is no way to know if it is
nearby. Moreover, nothing guarantees reality is a monism, not a pluralism.

8.3.83 Relativistic Cosmology

Gravity, though the weakest of the four forces at short ranges (i.e., microscopic ranges) (Ze493)
is the only one, effectively, that can act at long distances because of its long range inverse square
law behavior. This behavior is demonstrated by Newton’s gravitational law (which approximates
general relativity in the weak field limit, of course) for point charges:

- GM{ M, .
Fi o= —721 2i1a (8.5)
1,2

where ﬁlyz is the force on particle 2 caused by particle 1, G = 6.6732 x 1078 in CGS (centimeters,
grams, seconds) units, M7 and M, are the masses of the two particles, rq 2 is the distance between
the particles, and #; 5 is a unit vector pointing from particle 1 to particle 2. The electrical
force is also an inverse square law and is intrinsically very strong. But the two kinds of electric
charge usually neutralize each other in macroscopic behavior and virtually always neutralize each
other on astronomical scales. Any deviation from neutrality immediately gives rise to a strong
attractive or repulsive force which tends to restore neutrality. On atomic scale, quantum effects
prevent neutralization, and so electromagnetic interactions determine material properties. Gravity,
however, has only one kind of “charge”, mass, and only one force direction, attraction. Thus,
large gravitational forces are built up with large mass concentrations, and these forces extend over
astronomical and cosmological distances.

Because of its long range reach, gravity is the force which determines astronomical and
presumably cosmological order. For cosmology, Newton’s theory of gravity is ambiguous. A finite
array of masses spread in otherwise empty infinite space cannot exist in a stable static configuration.
If one attempts to establish such an array, the masses will be drawn into a single clump held up
by electromagnetic or other forces, or collapse into a singularity (if such things can exist). There
are two ways of holding a finite array from collapse, and both are nonstatic. First, give the masses
sufficient kinetic energy to escape their mutual gravitational attraction. The masses then will then
spend eternity expanding away from each other: i.e., will escape to infinity. The second is to set
them in rotation about their center of mass. In this second case, the postulate of absolute space
(i.e., space endowed with some active power) must be invoked because otherwise there is no way to
decide if net rotation is occurring at all.

Newton and his contemporaries do seem to have believed in infinite space??7? with a stable
static configuration of stars. If space is infinite and contains infinitely many stars uniformly
distributed on the large scale, is a stable static configuration possible. Newton thought this might
be so, but was unable to prove it (No376). However, there is another difficutly with stable static
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infinite distributions of stars: the darkness paradox. The first known discussion of this paradox was
made by an anonymous person and was reported by Edmond Halley (1656-1743) in 1721 although
not in entirely correct form (No377). The darkness paradox states that in a infinite stable static
universe with an infinite uniform distribution of stars, in every direction one looks one should see a
star. This means that the universe should be in thermal equilibrium: the sky should be bright as
a star and the Earth should have the same temperature as a star. Since Newton was presding over
the Royal Society meeting where Halley first discussed the darkness paradox, he was probably well
aware of it, but perhaps too old to worry about iti: he was about 79 at the time.

In later times, it was suggested that the darkness paradox could be solved by intervening dust
or gas, or by light decaying faster than 1/r? when it got old (i.e., after travelling over cosmological
distances). However, if energy is conserved (which is only an adequate theory after all), then in both
explanations there must be some place for the lost energy to go. In the first explanation, we now
know the dust would just heat up and re-radiate energy: thermal equilibrium would be established
again. In the second explanation, who knows.

Because of the stability, infinity, and darkness paradox problems, cosmology was in an
unsatisfactory state (in the sense that no one knew quite how to develop it???7) from disposal of
Aristotelean cosmology until the advent of general relativity. Because it 1s a theory of gravity, general
relativity clearly had cosmological implications. Originally, Einstein was not particularly interested
in astronomy and cosmology, but armed with general relativity he sallied forth into the heavens. The
actual universe with its stars, star systems, and nebulae, then and now is to complicated to handle
in detail in cosmology. Einstein and all others???? replace the actual distribution of matter with an
simplified distribution of matter that interacts only through gravity. To make the problem tractable
at all the what has come to be called the cosmological principle is invoked. This principle states
that on large scales the universe is homogeneous and isotropic. Thus the simplified distribution of
matter is usually thought of as a constant density gas filling all space.

In addition to the cosmological principle, Einstein assumed that the universe was static. He
believed that a static universe was most consistent with astronomy as then understood. However,
he could not find a static solution for a universe obeying the cosmological principle with standard
general relativity. It was for this reason that he first invoked the cosmological constant, A and
fine-tuned its value to obtain a static universe. This Einstein universe presented in 1917 is a finite
(i.e., closed), but unbounded, universe.

The spatial geometry of this universe, determined by the matter, is 3-dimensional, but non-
Euclidean. The geometry is the same a that of the surface 4-sphere: i.e., a sphere in a 4-dimensional
space.

To understand this kind of space, consider the 2-dimensional geometry of the surface of an
ordinary sphere. This surface is an unbounded, but finite space. Lines on the spherical surface that
begin parallel will eventually meet. The shortest distance between any two points (which has the
general name of geodesic in geometry) is a segment of a great circle (i.e., circle which divides the
sphere into hemisphers). Over small regions the surface is approximately Euclidean. Thus minute
beings on the surface might think they live on a flat plane (a 2-dimensional Euclidean space) if they
do not travel far. This is, of course, the situation for early peoples on the spherical Earth.

If one takes a sphere pushes it through a plane, then two dimensional beings living on the plane
who are unaware of the third dimension would see a point appear, then a growing circular disk, then
a shrinking circular disk, and finally a point again that vanishes. This behavior can be described
mathematically. The equation of a sphere is

2 +y* + 22 = R? (8.6)

where R is the radius. We can re-arrange this equation to get the equation of circle with a radius
R, parameterized by z:
#*+y* = R, (8.7)

where

R.=VR -2 (8.8)
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Pushing the sphere through the plane is equivalent to varying z from —R to R.

The 3-dimensional surface of 4-sphere surface is similar to the 2-dimensional surface of a sphere.
Lines that start out parallel will eventually meet. The shortest distance between any two points is a
geodesic. If one travels along a geodesic from a point A, one will eventually return to point A. If one
pushes a 4-sphere through a 3-plane (i.e., a 3-dimensional Euclidean space, then the 3-dimensional
beings confined to the 3-plane will see a point become a growing sphere which reaches a maximum
and shrinks away to vanishing again. The continuum of spherical surfaces the 3-dimensional beings
see make up the non-Euclidean 3-dimensional surface of the 4-sphere. To minute beings living on
the surface of a 4-sphere, space seems to be a 3-dimensional and Euclidean.

In the Einstein universe, we are the minute beings who do not perceive the curvature of their
space. One may ask about that fourth spatial dimension. Does the Einstein universe imply that it
exists in a physical sense? No: the fourth dimension can be used for descriptive purposes, but there
is no indication that anything exists beyond the surface of the 4-sphere. In science fiction stories,
one often encounters the idea of hyperspace where faster than light travel is possible. Presumably,
the authors often mean hyperspace to be off the 4-sphere surface where you can take shortcuts. It
is not apparent to me that even if such extra realm existed that we could find access to it or that
travelling in 1t would accelerate our flight plans substantially.

What about the darkness paradox in the Einstein universe? First consider the 2-dimensional
surface of a sphere again. To complete the analogy to relativistic space, light on the spherical
surface must travel along great circles. If one looked all around on the spherical surface, one would
see all the stars twice: once when the line of sight went less than halfway around the surface and,
when looking in the opposite direction, looking more than halfway around the surface. The farthest
object one would see in any direction would be the back one’s own head provided nothing along
the way blocked the view. The number of stars one counts is finite, and one would not see a star
in every direction unless one were on star. But the light beaming in all directions from any star
would diverge only for first quarter of a great circle of flight, then would converge toward the star’s
antipode, diverge again after passing the antipode, and converge again on the star itself. Thus the
incoming light on star from the star itself should equal what it was emitting. If the surface has
many stars uniformly distributed, it seems to me that the sky would be star-bright on average for
any observer. Thus, the darkness paradox remains in spherical surface universe. I am guessing that
the same is true in the Einstein universe: one sees finite stars, but the sky should be star-bright. In
a more general argument, I think a static closed universe without perfect insulating barriers must
be in thermodynamic equilibrium: i.e., be all at the same temperature. Our universe is clearly not
in thermodynamic equilibrium; I think the Einstein universe fails on this ground alone.

There are two other objections to the Einstein universe. First, the use of the cosmological
constant. Neither, Einstein nor many others liked it (Ad431; No520). It was considered unaesthetic
and ad hoc. To be more explicit, if the original standard formulation of general relativity did
not account for all gravitational effects, then the real behavior of gravity might be more complex.
Introducing an adjustable parameter to patch up a particular problem (even if it is a problem of the
universe as whole), may be just sweeping real problems under the rug or, as Einstein found, hiding
real predictions. It was not trusting his original theory and invoking the cosmological constant
that lost Einstein his chance to predict the expanding universe. After the expanding universe was
discovered, Einstein called the cosmological constant the biggest blunder of his 1ife???. (Einstein
probably said this many times, but he certainly said it to George Gamow, the parent of big bang
cosmology [Ga44]). In defense of the cosmological constant it must be said that it is the only simple
modification of general relativity available. It has never gone away, but lurks in the shadows of the
minds of cosmologists. In modern inflationary cosmology (see § 8.7), a time-dependent cosmological
function (which may not be not a constant in space either????) arises as a manifestation of the
scalar potential(s) that drive inflation: i.e., the scalar potential(s) enter the Einstein field equations
like the cosmological constant (Col1347777).

The second objection is that the Einstein universe is unstable as pointed out by Lemaitre in
1931 (Ad431). Any small perturbation of the Einstein universe will start it monotonically expanding
or contracting. A simple example of physically unstable system is a ball placed exactly on top of
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a smooth hill. Placed exactly it is balanced, but the slightest perturbation causes it to accelerate
away. The stable counterexample is a ball at the bottom of smooth depression. Any perturbation
will set the ball oscillating about the bottom. If any dissipative forces are present, the ball will come
to rest in the bottom again.

Besides not describing the actual universe, the three objections (lack of explanation for the lack
of thermodynamic equilibrium, use of the ad hoc cosmological constant, and instability) make the
Einstein universe a rather unsatisfactory theory. It was a useful pioneering effort, but Einstein, as

he himself well knew after 1930 (No526), had really blown it.

8.4 Friedmann Cosmology

8.5 A Big Bang or Steady State Universe
In the
Table 8.2. Fundamental Constants and Planck Quantities

Quantity Symbol Combination Value
of Fundamental Constants

2.99792458 x 1010 cm ¢!

Speed of Light c e
Gravitational Constant G . 6.6732 x 1078 cm3g=ts!
Planck Constant (h-bar) 7 e 1.05457266 x 10~ erg's
Boltzmann Constant ks . 1.380658 x 10~ 16 erg K—1
5
Planck Density P 'h'cG2 5.1565 x 10°3 gem ™3
Planck Energy Ep mpc? 1.9562 x 107° ergs
I
Planck Length Ip —3G 1.6161 x 10733 cm
¢
fe ) _s
Planck Mass mp rel 21766 x 107° g
Planck Number Density  np KEB 2.3691 x 10 cm ™3
E
Planck Temperature Tp k_P 1.4169 x 1032 K
B
I
Planck Time tp —5G 5.3908 x 10~4*s
¢

Note.—The Planck quantities are combinations of fundamental constants. As one goes back in
time toward the singularity of the Friedmann model, the Planck Density is reached at about the

relativity ceases to be an accurate theory and that quantum gravity must become important. Since
no accepted quantum theory of gravity exists, we cannot confidently extrapolate the big bang model
back before a Planck time (i.e., before ~ 10743).

8.6 The Large Scale Structure

8.7 Inflationary Cosmology

Despite the amazing success of big bang cosmology, there is some dissatisfaction with it. This
is summarized in two questions: what happens before the Planck time (i.e., ~ 107%3 [see § 8.5,
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Table 8.2) from the singularity and what sets the initial conditions of the big bang? Since we believe
a fundamental theory of gravity exists (as an acticle of faith), we should be able to extrapolate back
to before the Planck time. The fundamental theory of gravity is probably a quantum theory, but
being open-minded it could be something else. It is hard to see that it could be general relativity
itself because quantum effects must become important at the Planck time??77. Naturally even the
fundamental theory of gravity may exhibit a singularity that marks the beginning of time: i.e., there
is no “what before”. There may also be no “what” setting the initial conditions. If so, the beginning
of time and the establishment the initial conditions of the big bang may be absolute fundamental
facts of nature in their own right. Creation ez nihilo is no less plausible than anything else at least
in some philosophies. However, not being able to recognize a fundamental fact when we see one, we
would like to try to regress further back in time and deeper into physics. inflationary cosmology is
an attempt at such a regression.

8.7.1 The Origins

Inflationary cosmology originated in inflationary theories by A. A. Starobinsky in the former
Soviet Union (Lin51) and Alan Guth in the U.S. in 1979; Guth’s work was made public in 1980
(Ov245-247): Starobinsky and Guth’s work was independent and they were unaware of each other.
Guth coined the term inflation to describe a superfast expansion driven by a reservior of energy that
could be invoked in particle physics (Ov245). In big bang cosmology, the thermonuclear big bang
gives the initial impetus for the expansion which is then only decelerated by gravity for the rest
of the Friedmann evolution. Guth was not originally interested in cosmology: he was a theoretical
particle physicist. But particles with sufficient energies to test some of the predictions of modern
particle physics are well beyond what can be obtained by any foreseeable particle accelerators. Only
in the big bang were particles of such energies assumed to occur in nature. So the big bang became
the experiment for particle physicists.

In his work, Guth (probably among others) found that magnetic monopoles should be as
common as protons in the big bang (Ov237, Li48). A magnetic monopole is a particle with an
isolated north or south magnetic pole. Magnetic monopoles are analogous to particles with positive
or negative electric charge such as protons and antiprotons. However, the predicted mass of magnetic
monopoles is 10! times that of protons (Lin48). Magnetic monopoles have never been verifiably
observed. Thus, a particle-physics cosmology must get rid of the magnetic monopoles. Guth found
that by invoking an inflation epoch he could dilute the density of magnetic monopoles so that
there would only be of order one in the observable universe (Ov245). (Blas Cabrera of Stanford
University reported a magnetic monopole detection in 1982; another one was reported later [Wolfson
& Pasachoff 1990, p. 700]. Since two is consistent with of order one, inflationary cosmology cannot
yet be ruled out on the grounds of over-abundance of magnetic monopoles.) After the inflationary
epoch (which is very brief: see below), the ordinary nucleosynthetic big bang occurs followed by
ordinary Friedmann evolution.

8.7.2 What its Good for

Guth and others saw that the two big questions about the big bang could answered by inflation
(e.g., Ov244-245, 1.i48-49). Inflation came before the big bang and inflation set the initial conditions
of the big bang. Leaving aside the question of “before” until after, what are the problems with the
initial conditions in need of explaining? We will only discuss the two most commonly mentioned
problems: the flatness problem and the horizon problem.

As discussed in § 8.4, the present day value of the density parameter probably is limited by
0.259Q0 52 (Col81, 142). Recall that Qp = 1 gives a Euclidean (i.e., flat) universe. Recall also
that ©(¢) (the time dependent density parameter), if different from 1, must always diverge from 1 in
Friedmann cosmology (except after the time of maximum expansion in a closed universe) (Col43).
Thus if Q(t) < 1, it decreases forever; if Q(¢) > 1, it increases until the time of maximum expansion.
For a Friedmann universe (without the cosmological constant) it can be shown that

Qtp) 1+ (Q —1) x 1075 (8.9)
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where € (tp) is the density parameter Planck time (Col141). Since Qg is so close to 1 now, it £ (¢p)
must have been 1 to within an additive term of ~ 107, This fine-tuning of initial density parameter
makes people wonder? Maybe there is some law of nature that forces Q(t) = 1 at all times. Inflation,
however, offers an alternative explanation.

In inflation it turns out (in a way T do not understand) that Q(¢) of the inflationary epoch
is driven to be nearly 1 to such a high accuracy that even after inflation ends and €(t) begins to
diverge from 1 (as it must in Friedmann evolution) it remains close to 1 till the present day. The
prediction of one inflationary model is that

Qo — 1] < 107% (8.10)

(Col141, 144). Equation (8.10) is, however, an average value; fluctuations on the scale of the
observable universe mean that the observable universe’s Qg could differ from 1 by ~ 1075 (Col145).

The prediction that g should be nearly is very solid. If g differs from 1 by much more than
~ 107%, then inflationary cosmology would be much less attractive than it is. However, particle
physicists are clever and would organize a rescue mission. They would come up with inflationary
theories without having Qg nearly 1. One way is, of course, to have Qg g nearly 1 (Coll55). A
cosmological constant that is the relic of the inflationary epoch would be what builds Qg . up
to nearly 1. Nevertheless, such a rescue would be very ad hoc, and without any new attractions
inflationary cosmology might fade away.

The horizon problem is essentially that the temperature of the CBR is so constant in all
directions that it is hard to believe that the big bang region corresponding to the observable universe
was not causally connected. (Recall from § 8.5 that the mean???? CBR temperature is 2.726+0.005 K
with directional varitions of AT/T ~ 1075 [Col92-93].) By causal connection, I mean that the
observable universe at some point before the recombination epoch had a characteristic size such
that light could travel across it in at most the time from the beginning to the recombination epoch.
Causal connection would have allowed thermodynamic equilibrium (i.e., constant temperature) to
be achieved. The alternative point of view is that thermodynamic equilibrium is just a fundamental
initial condition. But if one does not want to believe in such initial fine-tuning or one does not want
to believe the big bang was a beginning, then causal connection looks necessary. However, in the
ordinary big bang model the different parts of universe from whence the CBR now reaches us were
too far apart to be causally connected. Inflation solves this simply by having the entire observable
universe inflated from a domain (i.e., a patch of space) small enough to be causally connected, and
thus in thermodynamic equilibrium without fine tuning. The inflation of this domain is “faster”
than the speed of light. However, no real velocity is involved, rather just the creation of space???7.

8.3 An Example Inflationary Model: Self-Reproducing Inflation

Inflationary models are many: e.g., old inflation, new inflation, chaotic inflation, stochastic
inflation (sometimes called eternal inflation or is that infernal inflation), and extended inflation
(e.g., Coll51ff). Some of these models have been ruled out (e.g., old inflation [e.g., Li51]), but
others are still tenable. The inflation model recently devised by Andrei Linde and colleagues (Lin)
seems to be representative of the current state of the art in Inflationary cosmology: self-reproducing
inflation. We will discuss this inflation theory as an example.

All inflationary theories make use of scalar fields as sources of energy which is stored in the
scalar fields as a form of potential energy. Scalar fields are not always exotic. Both electricity
and grativation can be described by scalar fields. The voltage of a wall outlet is a measure of
the potential energy stored in the electric potential scalar field. In modern particle physics scalar
fields have been used to devise theories of particle interaction that have been experimentally verified.
However, particle physicists find it easy to invent other scalar fields which may exist, but are currently
unamenable to direct experimental verification.

Linde postulates a small region of primordial space with a characteristic length that is of order
of the Planck Length: i.e., of ~ 10733cm (see § 8.5, Table 8.2). This small region is called a
domain. In this domain there are one or more scalar fields of high potential energy. This high
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energy state is unstable due quantum fluctuations??? (intrinsically random variations in physical
quantities). A quantum fluctuation dislodges the scalar field analogous to a small knock disturbing
a ball at rest on top of a hill. Dislodged the scalar field can only “run downhill” and have its
potential energy changed into other forms: these forms are the creation of space???? space, massive
particles, and radiation. The space creation, called inflation, is much more rapid than expansion in
the big bang models due to nuclear energy release. In a time of ~ 103 s, the domain expands from

having a length scale of order the Planck Length to one of ~ 101", Thus, the domain scale has
become much larger than the characteristic radius of the observable universe ~ 3000 Mpc ~ 1028 cm
(see § 8.3.2, Table 8.1 for the characteristic radius of the observable universe). The original small
domain was in thermodynamic equilibrium (i.e.; at the same temperature) and this is maintained
during the inflation, except for small variation due to quantum fluctuations. The retention of near
thermodynamic equilibrium solves the horizon problem; the small variations account the variations
in the CBR temperature. As discussed in § 8.7.2, inflations flattens the domain, perhaps too much
to be consistent with the observed €y and the age and formation time of the oldest stars. However,
a relic of unexhausted scalar field energy might be tunable to provide a cosmological constant term
which would make Qg . nearly equal to 1. After inflation ends the ordinary big bang occurs and
Friedmann evolution begins.

This inflationary scenario accounts for the observable universe with the only price being the
invention of a scalar field with the right properties. The domain in which the observable universe
is embedded 1s so immense that it is extremely unlikely that we are near enough to a domain wall
to see beyond the domain. What is beyond the domain. T think that if one wishes nothing could
be beyond. The domain is the entire universe and the initial domain was created ez nihilo just as
one can suppose for the ordinary big bang picture. However, Linde sees the domain as embedded in
indefinitely large, indefinitely long existing universe. If one imagines this universe as being infinite
and eternal, then the need to specify all boundary conditions vanishes. Now Linde (Lin) is pretty
vague, it seems to me, about his universe. Do the domains abut each other or are they separated by
uninflated regions where the scalar field has high energy? Do expanding or inflating domains run
into each other in any sense and if so what happens? Perhaps the space created in inflation and
expansion is not to be imagined as expanding balloons pushing on each other; perhaps a nutshell
could hold an inflated domain if not an infinite universe. Can an inflation start in a domain? Would
it be dangerous if one started near us? Linde does not seem to address these issues. He describes
his universe as fractal-like. Now I vaguely understand fractals: the coast of Norway looks the same
on all size scales from Skagerrak to Liv Ullmann. But this description of self-reproducing inflation
does not help me much.

In the other domains physical laws could be different. Not all physical laws or else nothing
could be said about other domains. However, particle physicists think that low energy physical laws
(those applying at less than the Planck Energy????) might be variable depending on how inflation
was 1nitiated. Thus, the masses of the particles and the values of fundamental constants could be
different in other domains?77?. The number of spatial dimensions could be different too: more or
less than 37777, In many domains, it 1s not likely that life such as ours could exist. Linde advises
against crossing any domain boundaries.

8.7.4 Inflation: the Sad End of the Story?

If self-reproducing inflation or something like is correct, we are hopelessly embedded in our
nutshell: i.e., our domain. The assumption of older cosmologies that the universe everywhere 1s like
the one we observe is then invalid. Astronomy cannot alone lead to a TOE since we cannot see
what the universe is really like. Since particle physics got us into this predicament, perhaps it can
get us out. Maybe the next generation of high energy particle accelerators, or the one after that, or
next still, et cetera will establish a more fundamental view. But there is room for doubt: to quote
another inflation expert, Andreas Albrecht:

Does it make any sense to discuss an absolutely fundamental TOE? I have suggested that
even if one could construct such a theory, the observations we make are so superficial that
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the TOE might not constrain these observations in a very substantial way (Albrecht 1995,
p 331).

I take it Albrecht means that the observable universe is “geography,” not “physics.”

It is possible that having wrested??? cosmology from the philosophers in the 17th century,
science will now have to give it back? Such a tragic conclusion is I think premature. Albrecht
again:

The field of cosmology has a grand history of pushing back the boundary between physics
and metaphysics. Decades ago, who would have thought that origin of relative abundances
of the different chemical elements would be considered the subject of physical calculation
rather than metaphysical speculation (Albrecht 1995, p. 331)!

To carry on this train: only in 1888777 was radio discovered: X-rays and radioactive decay in
1895777. And general relativity, the galactic nature of the spiral nebulae, the expansion of the
universe, the cosmic background radiation, and inflation have all appeared in a human lifetime:
Sinatra’s lifetime to be specific. Not yet must we sink ourselves in a domain; the paths of space and
time are open to our inquiring minds.

8.7 Life in the Univserse



Apppendix A: Esoterica

A1l. The Secular Increase in the Mean Lunar Month

The tidal interaction of Earth and Moon cause slow secular increases the Earth’s solar day by
~ 2 x 1075 seconds per year and the lunar distance by ~ 3 centimeters per year (Fr193). The civil
day 1s now defined to be exactly 86400 seconds and the second is determined by atomic clocks. To
keep mean solar days and civil days synchronized extra seconds are added or subracted about once
a year usually at midnight on December 31 or June 30 by the authority of the Bureau International
de I’Heure in Paris (Ab126).

The secular increase in the lunar distances causes a secular increase in the mean lunar month,
currently 29.530588 days (i.e., civil days). The relation between the two can be derived as follows.
Kepler’s third law relating the sidereal period, P, and semi-major axis (mean radius), a, of a body
in orbit is

P a®? . (A1)
From calculus, small changes in P and a (i.e., AP and Aa) are related to first order by
AP 3A
AP 3da (A2)
P 2 a
A synodic period Pyn (e.g., the lunar month) is given by
PP
Pogn = ——2— (A3)
Py —P
where Pg is the Earth’s year. Again using calculus, we find to first order that
Pin (3\ Aa
APgn v —22 [ 2 ) — | A4
Y P (2) a (A4)
where APy, is the small change in the synodic period due to a small change in a.
Using current values for @ and Fsyn, and Aa = 3 cm, we find for the lunar month that
APy, ~4x 1077 days . (A5)

Thus, the current increase in the lunar month is ~ 4 x 10~° days per year.

A2, Ellipse and Eccentric Circle Orbits

Because ellipse and eccentric circle orbits play a large role in the history of astronomy it is
worthwhile to present some of the formulae that are used to describe them.
The equation for an ellipse is given by

(-, e

where a and b being the semi-major and semi-minor axes, respectively. The foci of an ellipse are
located on the z-axis: the distance from a focus to the origin is labeled ¢. Their z coordinates of
the foci are given by

+ec=+Va? - 0%, (AT)

where the lower case is for the left focus and the upper case for the right focus). The eccentricity of
an ellipse is defined by

6:2. (A8)
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The formula for an ellipse in polar coordinates is given by

a (1 —62)

= A
14+ ecosf’ (49)

T+

where the angle is measured from the positive z-axis and the radius measured from the left (lower
case) or right (upper case) focus. The small eccentricity expansion of eqution (A9) is given by

ri:a[liFecosﬁ—e2 (1—c0523)+...] . (A10)
An ellipse satisfies the following formula (which can also be regarded as an ellipse defintion)
r_+ry =2a. (A11)

The angle-averaged mean radius of an ellipse is given by

(re)=avi—¢. (A12)

The perifocus-apofocus mean radius (which is the usual mean radius cited for an ellipse????) is
given by
Ty =a. (A13)

The formula for an ellipse in polar coordinates with origin at the center of the ellipse (i.e., the
intersection point of the semi-major and semi-minor axes) is given by

av1—¢e?

1—¢€2cos26

(A14)

Torigin =

For eccentric circles

C

is the eccentricity, where a is the circle radius and ¢ is the the displacement along the z-axis of the
origin from the circle center. The radius equation from the origin is given by

ry =a|\/1—¢e2(1—cos?8) Fecosl| , Al6
%

where the lower case is for a leftward displacement by ¢ and the upper case for a rightward
displacement by ¢. The small € expansion of equation (A16) is given by

2
ri:a[IZFGCOSQ—%(l—COSQQ)—I—...] . (A1T7)

Note that the ellipse and eccentric small € radius equation expansions are identical to first order in
small e.

A3. The Fibonnaci Sequence

The most famous problem in Fibonnaci’s Liber Abaci poses a problem that I have reformulated
(from Bo281) as follows:

Say you have have immortal rabbits. Each pair of rabbits (of different sex, but the same
age) produce a pair of offspring (of different sex) every month starting from when the
rabbits are two months old. At the start of the year, there is only one pair of rabbits just
born. What is the population of rabbit pairs at the start of each month from the first
month on?
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The solution is the famous Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, ... which is given by the
Fibonacci recursion relation:

In=1I 1+ 1,2 ) (AlS)

where the sequence starts from n = 0, and 7_; is defined to be 0 and Iy to be 1. It is clear what is
happening. At the start of each month you have the old rabbit pairs from the month before plus the
new-born pairs who are equal in number to the number of reproductive pairs (i.e., the total number
of pairs from the month earlier). Even if some mortality were thrown in, the situation is daunting
as the Australians well know.

In general, there seems??? to be no explicit solution for the sequence members: i.e., one cannot
obtain I, for a given n without using the Fibonacci recursion relation. However, an approximate
explicit solution exact in the limit of n going to infinity (i.e., an asymptotic solution) can be obtained.
To be a bit more general—ah, the curse of generality—let us find the asymptotic solution for the
recursion relation

In=F_1Ip_ 1+ F_2l, > ) (Alg)

where we allow the I,, to be real (or even complex) numbers, but F_; and F_5 are real numbers
greater than or equal to zero.
Let us assume the exponential solution given by

where C' and f are parameters to be determined. (The exponential solution can easily be generalized
to a continuous solution by changing the integer index variable n to a continuous variable.) TIf
we substitute u, for I, in equation (A19), cancel the C' parameter (the recursion relation is
homogeneous), and rearrange, we find the quadratic equation

fP—fF1—F_5=0. (A21)
The solutions are
F_1 4 /F% +4F_,
f= 5 . (A22)

For the cases that interest us, we consider only the positive solution (i.e., the “+’-case solution) in
equation (A22). From equation (A21), it follows that

D_, = ? andD_o, = —~ (unitrm?23)

sum to 1 and are both in the range [0, 1].

Equation (A20) with f given by equation (A22) provides a exponential solution to the recursion
relation. The parameter C', however, is free. Thus we have a family of exponential solutions. Given
any one initial value for 7,,, we can fit C' and find a particular exponential solution. There are,
however, two initial values for the recursion relation: 7_; and Iy. Unless these differ by a factor of
f, then there is no exact exponential solution to the recursion relation.

We can, however, obtain an asymptotic solution as advertized. This solution is an exponential
solution. We define

C, = ;—Z . (unitrm?24)

Now substitute C), f* expressions into equation (A19), divide through by f”, and make use of
equation(A23) to obtain

Cn = n—lD—l + Cn_gD_g . (umtrm25)

It follows from the properties of D_; and D_4 that

Cp €[Cro1,Cns] . (unitrm?26)
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It is clear that we can go on defining C,, f* solutions which bound the I,, solution ever more tightly
from above and below. The function

|Crp1 — Chl (A27)

decreases strictly with n and reaches zero at n = co. Thus there is a limiting C's, which gives an
asymptotic solution for I,,. The limiting Cs by

Co = nh_}rrgo f_" .

(A28)

We have shown an asymtotic exists, but unfortunately equation (A28) does not give an explicit
way to evaluate C's, and I know of no other way to obtain Cy,. For given initial conditions I, and
In41, I think one must use the recursion relation and determine an approximate C's, from

I
Co ~ f_z for n>>N . (A29)
However, with this approximate Cs, the asymptotic solution (good to within a factor that is a small
as one wishes to make it) is

I =Co f™ . (A30)
In the case of the Fibonacci sequence, the acceptable value f and the approximate value for
Cw are
1 5
f= +2\/_ ~ 1.6180339887499 (A31)
and
Coo & 0.447213595499957 | (A32)

respectively. In Table A1 we show the Fibonacci number, its asymptotic counterpart, and the ratio
of the asymptotic counterpart to the Fibonacci number for n from 1 to 40. The asymptotic sequence
is very good for say n > 6. Rounded-off to the nearest whole number the asymptotic sequence
becomes exact.

Table A1l. Fibonacci Sequence and Approximate Fibonacci Sequence

Order Number Asymptotic Ratio
Number

1 1 0.72361 0.72360679774998
2 1 1.17082 1.17082039324993
3 2 1.89443 0.94721359549996
4 3 3.06525 1.02174919474995
5 5 4.95967 0.99193495504995
6 8 8.02492 1.00311529493745
7 13 12.98460 0.99881516421149
8 21 21.00952 1.00045330924995
9 34 33.99412 0.99982695967642
10 55 55.00364 1.00006611133177
11 89 88.99775 0.99997475002523
12 144 144.00139 1.00000964496870
13 233 232.99914 0.99999631599888
14 377 377.00053 1.00000140717038
15 610 609.99967 0.99999946250979
16 987 987.00020 1.00000020530314
17 1597 1596.99987 0.99999992158120
18 2584 2584.00008 1.00000002995332



19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
1346269
2178309
3524578
5702887
9227465
14930352
24157817
39088169
63245986
102334155

4180.99995
6765.00003
10945.99998
17711.00001
28656.99999
46368.00000
75025.00000
121393.00000
196418.00000
317811.00000
514229.00000
832040.00000
1346269.00000
2178309.00000
3524578.00000
5702887.00000
9227465.00000
14930352.00000
24157817.00000
39088169.00000
63245986.00000
102334155.00000

0.99999998855885
1.00000000437013
0.99999999833076
1.00000000063759
0.99999999975646
1.00000000009302
0.99999999996447
1.00000000001357
0.99999999999481
1.00000000000198
0.99999999999924
1.00000000000029
0.99999999999989
1.00000000000004
0.99999999999998
1.00000000000001
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

99

Note.—The first column gives the order of the Fibonacci number, the second, the Fibonacci
number itself, the third, the asymptotic Fibonacci number, and the fourth, the ratio of the
asymptotic counterpart to the Fibonacci number.



Appendix B: Constants and Formulae

Table B1. Numerical and physical constants

Quantity Symbol Value Refs.
Base of Natural Logarithms e 2.71828 ...

Inverse of Base e e~ ! 0.36788. ..

Pi T 3.14159265 ...~ 3.1416

Speed of Light c 2.99792458 x 10'%cms™! Lil-1
Gravitational Constant G 6.67259(85) x 1078 cm=3g=1s72 Lil-1

1 megaton (explosive yield of TNT) 4.16 x 10?2 ergs WoA-20

Note.—The quantities in parentheses are the uncertainties in the last digits of the given values.
The speed of light is exact by definition: one meter is defined to be the distance light in vacuum

travels in 1/299792458s.

Table B2. Time

1 (mean solar) day = 24 hr = 1440 min = 86400s exactly

1 sidereal day = 86164.0906s (Cl67)
1 mean lunar sidereal period= 27.321661 days (Lil4-4)
1 mean lunar or synodic month = 29.530588 days (Mo731)
1 (mean) Hijra year (Hgr) = 12 mean lunar months = 354.36705 (derived from Gi46-47)
1 Egyptian year (Eyr) = 365 days exactly (Ne81)

1 ideal year (iyr) = 365.2421875 days exactly

1 (mean) tropical year (tyr) = 365.24219878 days = 1.00448815157 x 10”s ~v 7 x 10"s  (Mo731)
1 (modern) mean Gregorian year (Gyr) = 365.24225 days exactly

1 mean Omaric year (Oyr) = 365.242424 ... days exactly

1 original mean Gregorian year (OGyr) = 365.2425 days exactly

1 mean Julian year (Jyr) = 365.25 days exactly

1 (mean) sidereal year (syr) = 365.25636556 days (Mo731)

Note.—TIn the Julian calendar the year is either 365 days (common year) or 366 days (leap year).
Leap years are years whole number divisible by 4. The original Gregorian calendar is the same as
the Julian calendar, except that century years not whole number divisible by 400 are common years,
not leap years (Ab129-130). The modern Gregorian calendar is the same as the original Gregorian
calendar, except that century years whole number divisible by 4000 are common years also (Ab129-
130).

The Omaric calendar is like the Julian calendar, except that it omits a leap year every 132 years.
The term Omaric calendar is my own. Omar Khayyam, Persian mathematician, astronomer, and
possibly poet, (c. 1050-1123) was one of a committee who devised this calendar in 1074 (Joseph 1991,
p. 309fF; Bo264ff). The ideal calendar (again my own name) is like the Julian calendar, except that it
omits a leap year every 128 years. The ideal calendar obviously offers the best simple synchronization
rule between days and tropical years. It would take 88,650 years for the ideal calendar to run one
day ahead of the solar calendar.

Table B3. The Earth

Symbol: &

100
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Mean radius = 6371.0 km (Lil4-6)
Polar radius = 6357 km (Cl68)
Equatorial radius = qu = 6378.140 km (Lil4-1)
Mass = 5.9742 x 10%7g (Li14-6)
Mean density = 5.515gcm™3 (Lil4-6)
Rotational velocity of the Earth at the equator = 0.46512km (Lil4-6)
Mean lunar equatorial parallax=57'2.60" (derived from Lil4-1,-4)
Obliquity of the ecliptic = 23°26'21.448" = 23.4392911° (L114 1)
General precession of the equinoxes rate = 1.3969712° per Julian century (Lil4-1)
General precession of the equinoxes period = 25770.037 Jyr (derived from Lil4-1)

Note.—The obliquity, the general precession rate, and the general precession period are based
on the epoch 2000 values. The Jyr symbol means Julian years. Naturally, there may be secular
and other variations that make the actual general precession period somewhat different and in fact
variable.

Table B4. The Sun

Symbol: ©®

Radius = 6.9599 x 10'%cm (Lil4-2)
Mass = 1.9891 x 10%g (Li14-2)
Mean density = 1.409gcm™3 (Li14-2)
Luminosity = 3.86 x 1033 ergs~! (Lil4-2)
Sidereal rotation period at 16° = 25.38 days (Cl68)
Mean distance to the Sun = 1 Astronomical Unit = 1 AU = 1.4959787 x 10'3cm (Lil4-6)
Mean solar equatorial parallax=8.794148" (Lil4-1)

Table B5. The Moon

Symbol: Mo

Radius = 1.738 x 103cm = = 0.2725 R (Lil4-4)

1

Mass = 7.3483 x 10%°g = 0.01230002Mg = mM@ (Lil4-4)
Mean density = 3.34gcm™3 (Lil4-4)
Orbital period = 27.321661 days (Lil4-4)
Albedo = 0.14 (Lil4-4)
Mean distance to the Moon = 3.844 x 103 cm = 60.26841‘%3q (Lil4-4)
Mean lunar equatorial parallax=57'2.60" (derived from Lil4-1,-4)

Note.—The Moon’s orbital period and day are the same length on average. Albedo 1s the
fraction of light the Moon’s surface reflects in the

Table B6. The planets 1

Planet ag Piq € Occ Albedo No. of
(AU) (days/Jyr) () () satellites
Mercury (Me) 0.38710 87.97 d 0.2056 7.004 0.106 0
Venus (Ve) 0.72333 224.70 d 0.0068 3.394 0.65 0
Earth (@) 1 365.26 d 0.0167 0 0.367 1
Mars (Ma) 1.52369 686.98 d 0.0933 1.850 0.150 2
[Ceres (Ce)] 2.7671 4.603 y 0.077 10.6
Jupiter (Ju) 5.20283 11.86 y 0.048 1.308 0.52 16
Saturn (Sa) 9.53876 29.46 y 0.056 2.488 0.47 16
Uranus (Ur) 19.19139 84.07 y 0.046 0.774 0.51 18



102

Neptune (Ne) 30.06107 164.82 y 0.010 1.774 0.41 8
Pluto (PI) 39.52940 2486 y 0.248 17.15 0.3 1

Note.—The data in this table are a conflation of the data from Lil4-3 and Ab693. The
quantities ag, Psd, €, and f.. are mean orbital radius from the Sun (semimajor axis), sidereal
period, eccentricity, and inclination of the orbit from the ecliptic, respectively. The symbol Jyr
stands for Julian year. All the planets have traditional symbols, but except for that of Earth (e.g.,
®), they cannot be reproduced with TEX. These symbols are little used, except again for the Earth
symbol. Ceres is the largest asteroid (or minor planet) and the first discovered: we include it here
for comparison.

Table B7. Largest asteroids

Asteroid Discovery ag € Bec Diameter Albedo Class
Year/No. (AU) () (km)

Ceres 1801 1 2.77 0.08 11 940 0.10 C
Pallas 1802 2 2.77 0.23 35 540 0.14 Irr
Vesta 1807 4 2.36 0.09 7 510 0.38 Irr
Hygeia 1849 10 3.14 0.12 4 410 0.07 C
Interamnia 1910 704 3.06 0.15 17 310 0.06 C
Davida 1903 511 3.18 0.17 16 310 0.05 C
Cybele 1861 65 3.43 0.11 4 280 0.06 C
Europa (11) 1858 52 3.10 0.11 7 280 0.06 C
Sylvia 1866 87 3.48 0.09 11 275 0.04 C
Juno 1804 3 2.67 0.25 13 265 0.22 S
Psyche 1852 16 2.92 0.14 3 265 0.10 M
Patientia 1899 451 3.07 0.07 15 260 0.07 C
Euphrosyne 1854 31 3.15 0.23 26 250 0.07 C
Eumonia 1851 15 2.64 0.19 12 240 0.19 S
Bamberga 1892 324 2.69 0.34 11 235 0.06 C
Camilla 1868 107 3.49 0.07 10 230 0.06 C
Herculina 1904 532 2.77 0.17 16 230 0.16 S
Amphitrite 1854 29 2.55 0.07 6 225 0.16 S
Doris 1857 48 3.11 0.06 7 225 0.06 C

Note.—The data in this table are derived from Abe514. The quantities ag, €, and .. are mean
orbital radius from the Sun (semimajor axis), eccentricity, and inclination of the orbit from the
ecliptic, respectively. The discovery number is just the order of discovery. We have appended (IT)
to the name of Europa to distinguish this asteroid from the Galilean satellite of Jupiter of the same
name.

Ceres is the largest asteroid (or minor planet) and the first discovered. Tt was discovered by
Giuseppe Piazzi (1746-1826) in Palermo, Sicily on January 1 1801 and named Ceres for the tutelary
goddess of Sicily (Pa352; No317, 425-426). Ceres is also the goddess of the breakfast bowl. William
Herschel coined the name none-too-appropriate generic name asteroid (No426) for astronomical
bodies of which Ceres was the first. The more appropriate, but longwinded, name minor planet
now has a certain vogue. Asteroids are quite small: Jupiter’s Ganymede (the largest satellite in
the solar system) has diameter of 5262 km, the Moon 3476 km, Pluto (the smallest planet) 2400 km
(Abeb11-512); but Ceres has diameter of only 940 km.

Asteroids were originally named for Greco-Roman goddesses, but these names were soon
exhausted (Abe224ff). Soon other names were employed: e.g., those of pets, daughters, astronomers,
summer student assistants. Currently, there are more than 6000 discovered asteroids (777). Tt is
estimated that there are ~ 10° asteroids with diameters of > 1km.

The asteroids mainly lie in a belt between 2.2 and 3.3 AU: this is well confined between the
orbital radii of Mars (~ 1.52) and Jupiter (~ 5.20). Some are much further out and in. Icarus comes
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to about 2/3 of Mercury’s orbital radius from the Sun (No455). Tt has a very large eccentricity
and also approaches the Earth. There are also about 50 Earth-approaching asteroids ranging up to
20 km in diameter, but most are only 1 or 2 km in diameter. One of these, Hermes, came as close as
about two Moon distances (~ 120Rg) in 1937 (No455); another came to ~ 27Rg in 1991 (Ze510).
It is now very credible that an asteroid (or other body) of a few kilometers in diameter impacted the
Earth 65 million years ago (Ze510-511). There have been proposals to make a systematic search for
Earth-approaching bodies to give us warning of any that threaten turn dinocidal. Even defensive
measures with nuclear weapons have been debated (No456).

There is a simple spectroscopic classification scheme for asteroids (Abe226): C for carbon-rich,
S for stony, and M for metal-rich. The C class are most numerous and have low reflectivity (i.e., low
albedo): the carbon compounds on there surfaces are rather dark. The S asteroids appear to be rich
in silicate minerals and have higher reflectivities. The M asteroids may be mostly metal: Psyche
is the prime example of this class. Some asteroids do not fit well into this scheme (e.g., Pallas and
Vesta): we have labeled them Trr for irregular in the table. Vesta is particularly interesting since it
has a basaltic surface indicating a volcanic past. Volcanism in a small body is remarkable. Eucrite
meteorites that are believed to come from Vesta suggest that there were lava flows 4.4 to 4.5 billion
years ago: viz. from a time just after the solar system formation. Vesta is the brightest of the
main-belt asteroids and is visible to the naked eye.

Table B8. Cycles and periods

Name Years Mean Lunar days 12-month  13-month  Refs.
Months Years Years

8-year cycle 8tyr 98.94613 ~ 99 2921.9376 5 3 Pa51

19-year cycle 19 tyr 234.9971 ~ 235 6939.6018 12 7 Pa51, 108

25-year cycle 25 Eyr 309.0016 ~ 309 9125 . . Ne95

Saros period ~ 18 Gyr 309.0016 ~ 309 6585.322 . e Pab59

Note.—The symbols tyr, Eyr, and Gyr stand for tropical year, Egyptian year, and mean
Gregorian year, respectively. To give them there full names, the 19- and 25-year cycles are called
the 19-year Metonic and 25-year Egyptian cycle. The 8- and 19-year cycles are for the intercalation
of lunar months. The 25-year cycle was not used for intercalation as the Egyptian year is invariant;
it was used merely to predict mean lunar phenomena. The difference between predicted date and
occurrence could be as much as 2 days??7? due to variations in the lunar motion. The Saros period
is an nearly exact repeat period for all lunar and solar eclipses.

Table B9. Trigonometric functions.

opposite over hypotenuse = % =sinf (B1)
adjacent over hypotenuse = % =cosf (B2)
. . Y sin 6
opposite over adjacent = = = tanf = (B3)
x cos @
h? = 2% + o? (B4)

is the Pythagorean theorem.

Note.—The ratios of the sides of a right triangle (a triangle with a right or 90° angle) are given
by the trigonometric functions where the argument is one of the non-right angles. The hypotenuse
is the side opposite the right angle. The argument angle is between the hypotenuse and the adjacent
(side). The opposite (side) is opposite the argument angle. Here the hypotenuse, adjacent, and
opposite have lengths h, z, and y, respectively.
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Table B10. Small z expansions.

The finite geometric series (which is valid for all z)

1— l,m+1

1—=2

Zx”:l—i—r—}—rz—}—...—}—xm (B5)
n=0

The infinite geometric series (which is valid for |z| < 1 only)

1 o0
I_I:anzl—l—x—l—xz—l—... (B6)
n=0

The trigonometric function expansions (which are valid for all 27777?)

> p2n=1 1 1 1
ine=3 (-1)'o——— =z (1-z2+—a' - —af 4. B
s n:l( T x( 6% T 120" “s0a0” T ) (B7)

= zn 1., 1 1 .
= —1)" =1— 2?4+ —z*— —a%4 ... B8
cose ;( o 2¥ T Tt T (B8)

1 2 17

tanm:m<1+§x2+ﬁm4+—315x°+...) (B9)

Note.—The x variable in all these expressions is measured radians. Also any series can be
truncated at any term providing the error in omitting the succeeding terms is deemed sufficiently
small.



Appendix C: Chronology

Date Astronomical, Other
Scientific,
Philosophical
c. —4900 Small temple at Eridu on
nearly virgin soil, the temple
is clearly forerunner of later
Mesopotamian temples
(Llo41-43)
—4713 January 1 at 1200UT is Julian day 0 Midst of Neolithic age
—3200 Earliest pictographic script at Uruk,
first writing in history,
ancestor of Mesopotamian
cuneiform (L1036, 55; Po52)
c. —3000  Construction of Stonehenge I begins (Fr35)
c. —2750 The Flood: the great flood
of Mesopotamian tradition
(L1091-92)
c. —2600 Gilgamesh king of Uruk sometime
in ¢. 2550-2650 BC (L1092)
c. —2075  Construction of Stonehenge III including the
sarsen stone ring and the trilithon horseshoe (Fr35)
c. —600 Thales of Miletos (c. 625-545 BC) active
—584 On May 28, an eclipse of the Sun Battle between Lydians
supposedly predicted by Thales, the and Persians interrupted
prediction story is almost certainly by the eclipse
untrue (Nel42-143; Pa99)
c. —490 Athenians defeat Persians at Marathon
c. —480 Athenians led by Themistocles defeat
Persians commanded by King Xerxes
in the naval battle of Salamas,
effective start of Athenian hegemony
in Aegean area
c. —450 Socrates (4697-399 BC) active
—431 Peloponnesian War begins
between Athens and Sparta
—404 Peloponnesian War ends with Athens
defeat and Sparta becomes dominant
in mainland Greece
—399 Execution of Socrates after judicial condemnation
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c. —387
—336
—323
—322
c. —300
c. —280
—212
c.—200
c. —130
c. —45
—44 Mar 15
—30

c. =30
c. 100
c. 145

Plato (427-347 BC) founds his school,
the Academy, in Athens

Death of Aristotle of Stagira
Euclid active in Alexandria

Foundation of Museum (Museion)
of Alexandria by King Ptolemaios
Soter???? (Pe328)

Apollonios, Archimedes, Aristarchos,
Eratosthenes, Ktesibios active
(c. 3rd century)

Probable death of Archimedes by
a Roman soldier during the capture
of Syracuse

Hipparchos of Nicaea
(c. 190-120 BC) active (Pe346)

Poseidonios of Rhodes
(c. 135-50 BC) active (Pe381)

Julius Caesar imposes the Julian
calendar which was designed by

Sosigenes of Alexandria, an Aristotelean

philosopher

Ptolemy (Claudios Ptolemaios)
born

Ptolemy writes the Almagest (original
title: Mathematical Systematic

Hellenistic period begins, Alexander
the Great accedes to the kingship of
Macedon, begins his career of
conquest (Ba31)

Death of Alexander the Great (Ba31)

Roman General Marcellus
takes Syracuse

Roman dominance in western
Mediterranean, death of
Hannibal (247-1837 BC)

the Carthegenian General

Roman power increases in
eastern Mediterranean

Roman civil wars begin

Julius Caesar assassinated
by a conspiracy on the Ides of March,
fresh outbreak of Roman civil war

Cleopatra and Mark Antony
commit suicide, end of political Hellenistic
period, Octavius Caesar sole Roman ruler

Octavius assumes the name
Augustus, establishes

effective monarchy which is

roughly stable for about two centuries

Last great bout of Roman
conquest under Trajan (98-117)



c. 175
c. 200

c. 300

330

360

415

476

632

700

732

800

875

900

Treatise)

Ptolemy dies

Pappos of Alexandria active,

last great Alexandrian mathematician,
writer of Commentaries on the
Almagest

Theon of Alexandria active 360-370,
writer of commentary on the Almagest
and a revision of Ptolemy’s Handy Tables
(the only extant version)
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Beginning of century of
Roman civil war and near
collapse of the empire

Restoration of Roman
Stability by Diocletian
and Constantine (2887-337)

Constantinople founded by Constantine

on the site of ancient Byzantium,

it becomes capitol of the eastern Roman empire
(called the Byzantine empire by moderns???7)

Death of Hypatia of Alexandria (daughter of Theon),

commentator on Ptolemy

Thabit ibn Qurra of Harran (c. 826-901)
mainly in Baghdad as translator from the
Greek and writer of astronomical works

al-Battant (Albategnius) of Harran

(c. 850-929) active, compiler of a famous
z1j (i.e., collection of astronomical

tables with canons (i.e., instructions)

Tbn Yunus (c. 940-1009) active,
one of the foremost Arabian stronomers,

Romulus Augustulus???, last western Roman
emperor deposed by Odoacer (4347-493)
first barbarian ruler of Italy

Death of Muhammad (5707-632), thereafter Islam
spreads by conquest over the Arabian Peninsula,
Middle East, Persia, North Africa, Spain

Sometime in the course of the next century
printing invented in China (Tsl)

Charles Martel (6907-741), grandfather of
Charlemagne, defeats Muslim invasion
at battle of Tours???

Charlemagne (742-814) crowned emperor

the Holy Roman Empire (Ba203)

which later in Medieval times becomes a
essentially a German empire of little coherence,
sometime in the preceding century Carolingian
minuscule invented from which modern lower-case
letters derive (Gies7T7)

active
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1000

1258

1292

1300

1350

1400

1420

1449

1464

1492

1500777

compiler of Hakemite Tables

Gerbert of Aurillac (c. 950-1003) active
as Pope Sylvester 11, one of the first
intermediaries of Muslim science in Europe

Hulagu Khan, grandson of Genghis Khan

sacks Baghdad, ending the Caliphate and becoming
becoming ruler of the Mideast (Ilkhan

or western khan)

Nasir al-Din al-Tast (1201-1274), Persian
astronomer in the service of Hulagu Khan
and inventor of the Tusi couple used by
Copernicus, becomes director of the

Maragha Observatory (Nol192ff, Pe370ff)

Before this year eyeglasses invented
in Italy, only convex lenses for aiding
farsightness available (Gies227)

Before this year, the mechanical clock had been
invented in Europe (Gies211)

Tbn al-Shatir (1304-1376), Arabian Black Death in Europe, maybe
astronomer, active in a third of Europeans die by 1400
Damascus, anticipated many

of Copernicus’ results

(e.g., discarding the equant)

Tamerlane (Timur Lang?7?77?)
(13367-1405), Mongol conqueror
of most of western and

southern Asia, active

Uleg Beg (c. 1400-1449), grandson of Tamerlane
and governor of Turkestan, founds observatory

in Samarkand from which issued a new collection of
tables and a star catalog

Uleg Beg, who became Mongol emperor in 1447,
assassinated by his son

The European invention of movable type
printing by Johann Gutenberg in Mainz (Gies241)

The fall of Constantinople accelerates Constantinople conquered by Ottoman
the spread of ancient Greek texts and Turks under Muhammad 1T (1430-1483),
learning in western Europe sultan of Turkey (1451-1483), end of

Eastern Roman Empire

Death of Nicolaus Cusanus, philosopher and cardinal,
supporter of the theory of the rotation of the Earth
and the infinity of the universe

Columbus (1446-1506) reaches
the Americas (Ba239)

Concave lenses available for correcting
myopia (Gies227)



1517

1519777

1543

1545

1564

1571

1582

1600

1609

1610
1616

1618

1619

1627

1630
1632
1633

1636777
1642

1643

1687
1721
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Martin Luther (1483-1546) begins
the Protestant Reformation (Ba727)

Ferdinand Magellan’s (14807-1521)
expedition begins its circumnavigation
of the world

Death of Nicolaus Copernicus
(1473-1543) and publication

of De Revolutionibus Orbium

Coelestium (Nuremburg 1543, Basel 1566,
Amsterdam, 1617)

Start of the Council of Trent (1545-1563),
a landmark in the Counter Reformation of the

Roman Catholic Church (Ba276)
Galileo born (Ko358) Shakespeare born (Ball12)

Kepler born on December 27 in Weil-der-Stadt in Swabia
in Germany (Ca29)

Gregorian calendar introduced in Roman Catholic
countries by Pope Gregory XIIT (Pa220; Ab129)

On January 1 Johannes Kepler starts

from Graz to Prague to meet Tycho Brahe (Ca99-100; Ko285)
Giordano Bruno (a Copernican) burnt in Rome

as a heretic, but not for his Copernicanism (Ko451; Pa224)

Kepler’s Astronomia Nova published (Cal41)
containing Kepler’s Ist and 2nd laws (Cal32, 134)

In March, Galileo’s Sidereus Nuncius published (No330)

On March 5, the Roman Catholic Shakespeare dies (Ball12)
Church condems Copernicanism (Ko462-463)

On May 15, Kepler discovers his
On May 23, Thirty Year’s War begins in Prague (Ca251)
3rd law (Ca286)

Kepler’s Harmonice Mundi published (Ca264)
containing Kepler’s 3rd law (Ca286)

Kepler’s Tabulae Rudolphinae (Rudolphine
Tables) published (Ca324)

Kepler dies on November 15 noon in Regensburg (Ca358)
In February, Galileo’s Dialogue is published.
Galileo’s trial and condemnation to house arrest for life (Ko500)

Galileo’s Two New Sciences published (Ko502)
Galileo’s dies (Ko502)

Newton born on January 4 (1642 December 25
on the Julian still in use in England) (Ab49-50)

Newton’s Principia published (Ko516)
Halley introduces (but not discovers) the darkness paradox (No377)
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1727
1729
1781
1789

Newton dies (No366)

Bradley announces the discovery of stellar aberration (No383)
Herschel discovers Uranus (No399-400)

Herschel completes 1.22m (48in) French Revolution begins

telescope (No400)

1801

1815
1838

1839

1840

1845

1846

1859

1905
1912

1914
1915
1916777

1917

1918
1919

1922

1923

On January 1, G. Piazzi in Palermo discovers the first asteroid

Ceres (No425-426)
On June 18 Napoleon defeated at Waterloo (Bal378)

F.W. Bessel at Konigsberg discovers stellar
parallax (No415, 419)

Photography definitely in existence with

invention due to J. N. Niépce and L.J.M. Daguerre,
independently, W.H. Fox Talbot and J. Herschel
(No442; Ba304)

J.W. Draper of New York does first astrophotograhy
by taking daguerrotypes of the Moon (No443)

Lord Rosse in Ireland with his 1.83 m (72in) telescope
discovers that some nebulae have spiral structure (No437)

J.G. Galle at Berlin discovers Neptune using
prediction of U.J.J. Leverrier; J.C. Couch
had made a similar independent prediction in 1843 (No428-429)

In the following decade, R.B. Bunsen and
G.R. Kirchhoff develop spectroscopy, already known,
into a very useful analysis tool (No423-424)

Kirchhoff initiates the use of spectroscopy as
a fundamental tool of astrophysics (No424)

Einstein invents special relativity (No511)

V.M. Slipher at Lowell Observatory in Flagstaff, Arizona
measures the first Doppler shift of a spiral nebula (No522)

World War I begins
Einstein publishes his theory of general relativity (No511)

E.E. Barnard discovers Barnard’s star; the
the star with the largest proper motion (Fr306; 325)

Einstein publishes the first general relativistic
model of the universe (Nob13, 520)

World War I ends

J. Perrin speculates that nuclear Treaty of Versailles concluded (Bal351)
fusion powers stars (No465)

A.A. Friedmann publishes his first great paper on
general relativistic cosmology (Nob24-525)

E. Hubble at Mt. Wilson Observatory proves that spiral nebulae
are extragalactic star systems (i.e., other galaxies) (No509-510)



c. 1926

1929

1930

1932

1939

1943
1945

1948

1957

1961

1963

1965

1967

1969

1978

1979

1990

1992

Quantum mechanics invented by W. Heisenberg,
E. Schrodinger, M. Born, et al.

E. Hubble discovers the expanding universe and

Hubble’s law (Nob23)

C.W. Tombaugh at Lowell Observatory in Flagstaff, Arizona
discovers Pluto (No430-431)

K.G. Jansky initiates radio astronomy
while working for Bell Telephone Laboratory
in Holmdel, New Jersey (No545)

L. Meitner, O. Frisch, O. Hahn, World War IT begins

and F. Strassman

first publish on nuclear fission (Car441),

H. Behte and C.F. von Weizacker independently

announce the carbon which turns out to be the

the main nuclear fusion process in stars (No465, 531) (38 or 39777)

C.K. Seyfert at Mt. Wilson discovers Seyfert galaxies (Nob558)

World War II ends, first use of nuclear
bombs

G. Gamow, R. Alpher, and R. Herman invent big bang
cosmology and in 1949 Alpher and Herman predict

the cosmic background radiation (No559; Ze484),

F. Hoyle, H. Bondi, and T. Gold at work developing
the steady-state universe model (No538)

On October 4, the Soviet Union launched Sputnik,
the first artificial satellite to orbit the Earth,
considered to be the dawn of the space age (No572)

On April 12, Y. Gagarin makes first manned space flight
and orbit of the Earth (No576)

M. Schmidt, L. Greenstein, and T.A. Matthews discover
the first quasar (No555-556)

A. Penzias and R. W. Wilson discover the cosmic

background radiation (No560-561)

S.J. Bell, A. Hewish, et al. discover the first pulsar
(Nob64-565)

On July 21, N.A. Armstrong and E.E. Aldrin of the U.S.
make first manned landing on the Moon (No576)

J. Christy at the Naval Observatory in Flagstaff, Arizona
discovers Pluto’s moon, Charon (Ze242)

A.A. Starobinsky and A. Guth independently invent
inflationary cosmology (Lin51; Ov245-247)

On April 24, the Hubble Space Telescope (HST)

is put in orbit (Zel18)

the COBE satellite discovers fluctuation in the cosmic
background radition (No613-614),

A. Wolszczan and D.A. Frail discover the first pulsar
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planets (Ze394)

1995 M. Mayor and D. Queloz discover the planet around a normal
star (e.g., Naeye 1996)

Note.—For brevity, the BC dates in the date column are shown as negative numbers. If the year
is n, then what is meant is that that year is the nth year counting from zero epoch. Consequently,
n years from the zero epoch are not completed until the end of year n. Also consequently, centuries
do not end until the end of a century year; thus the 21th century began???? at midnight January 1
2001. On the average the period between AD and BC dates is the former plus the later minus 1:
e.g., the average period between 2 AD and 2 BC dates is 2+ 2 —1 = 3.

In these lecture notes we use BC and AD to designate whether the year is before or after the
zero epoch of the conventional calendar. We omit the AD from dates which are clearly AD from
context. The abbreviations BCE (before common era) and CE (common era) are sometimes used
instead of BC and AD, respectively. However, BC and AD have a more general currency and there
seems no point in obscuring the fact that the zero epoch of the calendar comes out of the Christian
tradition: BC meaning before Christ and AD, anno Domini (the year of our Lord). This zero epoch
was introduced by Dionysius Exiguus, an archivist in the Pope’s service, in a report of 520 (viz.
520 AD) (Pa218). The zero epoch was supposed to be fixed by the year of the birth of Jesus, but
Dionysius Exiguus was mistaken. It has not been possible to fix the time of that event. The use
of AD dating only gradually became established. The English monk, the Venerable Bede of Jarrow
(672-735), through his writings, was influential in spreading its use (No228).
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Index

Note.—Items are referenced to sections, not
pages. This convenient for updating the lectures.

Personal names have had to treated
nonuniformly.  Modern persons (i.e., people
from circa 1500 on) have been listed by their
surnames. Pre-modern persons and some
modern persons have been listed by their most
conventional name or abbreviated name. Thus
Aristarchos of Samos (c. 3rd century BC) is
listed under the a’s and Nasir al-Din al-Tasi
(13th century) is listed under the t’s for Tasi.
Modern people who are listed by conventional
names are Galileo (full name Galileo Galilei) and
Tycho Brahe (who is usually just called Tycho).

Genghis Khan (Temujin), 5.4.1

Hulagu Khan (1st Tlkhan of Persia), 5.4.1
al-Shatir (Tbn al-Shatir), 5.4, 5.4.3
al-Shirazi (Qutb al-Din al-Shirazi), 5.4, 5.4.2
al-Tusi (Nasir al-Din al-Tsi), 5.4, 5.4.2
al-Urdi (Mu’ayyad al-Din al-Urdi), 5.4, 5.4.2
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