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Abstract

“It doesn’t matter what we cover. It matters what you discover.”
[Attributed to Viktor Weisskopf, theoretical physicist, 1908 — 2002]
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0 Introductory Remarks

Mechanics is the backbone of theoretical physics. Not because we believe (as physicists did
in the 19™ century) that all phenomena can ultimately be described by mechanical models,



but because the principles of mechanics — the conservation of energy and momentum, the
principle of least action - play a role in all fields of modern physics.
We start the lecture with the exposition of NEwWTON’s laws.

1 NEwTONIan mechanics

1.1 NEwTON’s laws

For a long time, humans were puzzled by the variety of motion they observed: stars seem
to move on circles on the sky, while planets follow much more complex trajectories; stones
fall to the ground in accelerated motion, while horizontal movements come to a standstill
after some time. A clock’s pendulum shows a periodic motion. The fundamental problem of
classical mechanics (maybe of all physics) is to answer the question: “When is the particle
(body) where?” It was the genius of Isaac NEWTON to condense all these observations into
a set of very simple laws of nature and give a very simple universal' answer to that question
- “NEWTON’s laws”:

1. A body remains at rest or in uniform motion unless acted upon by a force.

2. A body acted upon by a force changes its motion in such a manner that the time rate
of change of momentum equals the force, and the direction of the change is along the
straight line in which that force is acting.

3. If two bodies exert forces on each other, these forces are equal in magnitude and op-
posite in direction.

There is also a “fourth law” (NEwTON calls it a “corollary”) which states that two forces that
act on the same point add up to a resulting force according to the parallelogram rule, in other
words, forces are described by vectors. This law is also called the superposition principle.
These laws condensed centuries of experimental observations into theory. We will first
discuss the content of these laws in detail and then consider practical applications.
We describe the position in space of a point particle in terms of vectors. In a given coor-
dinate system?, we can express this vector by three numbers

r = (.Z‘l,xg,xg). (ll)

The “motion” of the particles through space is then given by its instantaneous velocity

v = 1" = (i?l, jfg,[tg) , (12)
where
= o (13)
V; = = —X; . .
dt

'Within classical physics. The theory of Relativity and Quantum Mechanics have refined NEWTON’s laws.
For the moment, we consider only Cartesian or rectangular coordinate systems.



The first law (the principle of inertia; in fact due to GALILEO GALILEI) states that the velocity
of a free particle is constant, i.e. the acceleration

a=v= (.fél,.i'g,ii'g) =0. (14)

vanishes. We will discuss in Sec. 1.2 in which coordinate systems these statements actually
hold.
The first law does not say what a “force” actually is. The precise definition and its effect on
a body was provided by NEwTON in the second law. The momentum is defined as the product
of mass and velocity,
p=muv. (1.5)

Denoting the force by F', we can express the second law as

7dp7d

== E(Tn,'[)) (1.6)

This equation contains essentially all the dynamical information contained in NEwTON’s laws
and allows (at least in principle) for the numerical or analytical calculation of the motion of
any classical system. Note that this is a vector equation, so it corresponds to three indepen-
dent equations for each coordinate direction.

NEwTON was aware of only one exact expression for a force, namely, the gravitational
force (see Sec. 3). He, however, noticed a general relation among forces that he summarized
in his third law. For two isolated bodies, it states that

F,=-F,, (1.7)
or, using Eq. (1.6),
dp: dp>
— = 1.8
TR (18)
We can rearrange that to give
d
- =0 1.9
P +p2) =0, (1.9)
which implies
Pp1 + p2 = constant. (1.10)

This is a special case of the general law of conservation of momentum. This law is in fact not
entirely accurate, due to the finite speed of propagation of (electromagnetic and gravitational)
forces. If the particles move with speeds much less than that of light, and if only central forces
are involved, conservation of momentum (1.9) holds with excellent accuracy.?

3The relativistic correction to this law is discussed in Sec. ??. Electromagnetic fields also carry momentum; if
they are incorporated consistently (as in classical electrodynamics), momentum conservation continues to

hold.



1.2 Inertial frames

The motion of bodies must be measured relative to some reference frame. A reference frame
is called an inertial frame if NEwWTON’s laws are valid in that frame, i.e. if a free body moves
with constant velocity (that may vanish) along a straight line. Given an inertial frame, all
other inertial frame can be obtained by shifting the origin of coordinates, by a fixed* rotation,
or by a frame moving with constant velocity relative to the given inertial frame. This is called
Galilean invariance. Again, these concepts are true to very good approximation if the bodies
move with speeds much less than that of light. At relativistic speeds, Galilean invariance
must be replaced by Lorentz invariance.

As an exercise in vector methods, let’s prove the statements above. We start with the
coordinates in an inertial system r = (21,22, 23) and corresponding equations of motion
F = d(mwv)/dt. Then we shift the coordinate origin by a constant ¢ = (¢, 2, ¢3), i.e. ¥’ =
(x1 — 1,9 — 2,23 — ¢3). The equations of motion become’

2! 2 2
F’:md—r:md—(r—c) :md—'r:F. (1.11)
dt?
We see that if the force vanishes in the inertial frame, it also vanishes in the shifted frame.
Hence, the latter is also an inertial frame. Now it is easy to see why the second frame is
allowed to move with constant velocity — the double time derivative will still yield the same
value for the force: for r = r + vt, with constant v, we have
2,/ 2 2
F’:md—r :md—(r—i—vt) :m%r:F. (1.12)
Finally, let’s consider a rotation about the 3-axis with angle 0, i.e. r = (1 cos 045 sin 0, x5 cos —
x18in 6, x3). Obviously, the 3-component of the force does not change, I} = F5. For the 1-
component of the force in the rotated system we find

d*z) d? d*z d*z
Fl=m dt21 = m@(;vl cos 0+x9sinf) = mcosf dt21 +msin @ dt22 = cos O F;+sin0F, ,
(1.13)
since we assumed the rotation angle to be constant. Similarly, we find F; = cosf0F, —

sin 0 F. We see that the force is also just rotated, and hence vanishes in the second system
if it vanishes in the first.

1.3 Equations of motion for a single body

Assuming for now that the mass of the body does not change with time, NEwTON’s equa-
tion (1.6) can be written as

d dv
F = — pu— _— =
(mv) m—

" mi* . (1.14)

“Rotating reference frames are discussed in Sec. 8.
SFor simplicity, we assume here that the mass is constant, dm/dt = 0.



The force is generally a function of position, velocity, and time, and may be written as
F(r,v,t). If this function is known, we can integrate the second-order differential equa-
tion (1.14). The initial values for  and v = 7 fix the integration constants. Thus, the motion
of the body is completely determined.

In the following, we will consider linear motion of a mass point (along the z axis), and
discuss the three special cases F' = F\(t), F' = F(x), and F' = F(v) (with v = dz/dt) in
turn. If m is constant, the e.o.m. is

d*x

1.3.1 Force as function of time

Integration of Eq. (1.15) with F' = F'(t) gives

/—dt =0v—vy = / t= % (t). (1.16)

Here the time integral of the force function, 7'(t), equals the change in momentum during
time interval ¢ — ¢. Integrating again gives the solution

t
1
r—x9=1v(t —ty) + — /T(t)dt. (1.17)
m
to
1.3.2 Force as function of position

This is the typical case of a force field, F' = F'(x). The integration of the e.o.m. is performed
using the conservation of energy. We multiply Eq. (1.15) by dx/dt on both sides and obtain

dzr dx P dx

marae — @y

plrde _ d )’ (1.19)
dt dt2 ~ dt dt ' '

On the right side we use the definition of work, dIW = F'dz. Moreover, we define the kinetic
energy T,

(1.18)

The left side becomes

m o

T = Eyy = 51} , (1.20)
and the potential energy V' by
dV = —dW = —Fdz, (1.21)
SO
V= —/F(:L’)d:c. (1.22)



(The potential energy is defined only up to a constant.) Eq. (1.18) now becomes
T +V = FE = const.. (1.23)

In the one-dimensional case, this allows for the full solution of the problem. We write
Eq. (1.23) in the form

dt m

(dﬂjy _ 2 [E—-V(x)], (1.24)

and obtain
dt==4,|———dz. (1.25)

r[

so we know ¢ as a function of . Inverting this relation gives the solution x(t).

Integration gives

1.3.3 Force as function of velocity

The e.o.m. is now

dv
— = F(v). 1.27
m = F(u) 127)
Writing this as
dv
dt = 1.28
and integrating gives
[ dv
— = 1.29
t=t+m [ F= 1), (129
Vo
and inverting gives v = f~1(¢). Then
dz 1
— =71 (¢ 1.30
] (1.30)
and
¢
T —xp = /f—l(t)dt. (1.31)
to

Example 1.1: Sliding block on inclined plane (no friction). The angle of the inclined
plane is = 30°, the mass of the block is m = 100g. What is the block’s acceleration?

There are two forces acting on the block (see Fig. 1). The gravitational force F, is pulling
the block downwards and the “normal” force N is preventing the block from entering the plane.



D
R

Figure 1: Sliding block (without and with friction).

The block will stay on the plane and will only move down the plane which we take to be the x
direction. The total force F' acting on the block is constant; Eq. (1.14) gives

F=F,+N =mi. (1.32)

Because there is no “sideways” force, the force vector has essentially two components (directions).
We choose them to be the x and y directions (see Fig. 1). Effectively, Eq. (1.32) comprises two
equations, one for each component:

x direction: Fysinf = ma, (1.33)
y direction: 0= —F,cosf + N =my. (1.34)

The first equality in the second line holds because the normal force does not leads to an ac-
celeration of the block (it does not push the block “off the plane”). It follows that ij = 0, or
y(t) = yo + yot, with yo, Jo two arbitrary constants. As the block does not move up or down
orthogonally to the plane, we need to choose the initial conditions yo = 0, 1o = 0, such that
y(t) = 0 for all times. Using F,, = mg, the first equation gives

F,
i = —2sinf = gsinf. (1.35)
m

The acceleration of the block is constant. Numerically, i = ¢gsin(30°) = 4.9m/s%

We can easily integrate Eq. (1.35) to get x(t) and v(t) since the right side is just a constant.
The solutions can then be solved to give the velocity after the block traveled a distance xy. There
is a neat trick to obtain this last result more directly: we multiply both sides of Eq. (1.35) by 2z
(this is a simple example of an integrating factor), and obtain

2¢% = 2&gsin 6 (1.36)
& i($2) = 2¢sin 9@ (1.37)
dt dt
3 g
& /d(j:Q) = 2gsin9/d:c. (1.38)
0 0



Here, we have assumed the initial conditions x(t = 0) = &(t = 0) = 0, and denoted the final
position and velocity by x(t = to) = xq, ©(t = tg) = vo. We find

vg = 2gsin Oz, (1.39)

or

Vo = \/2¢gsinfxg . (1.40)

Example 1.2: Sliding block on inclined plane (static friction). Now we assume that the
coefficient of static friction between the block and the plane is s = 0.4. At what angle will the

The size of the static frictional force f ; is proportional to the normal force. Its maximum value
is
fmax = :U/SN . (141)

The actual frictional force will have some value fs < fna. that exactly compensates the force
that drives the block downwards, i.e. the block stays at rest. However, for increasing inclination
0, the downward force will at some point exceed [, and the block will start sliding. We call
this the friction angle 0;. It is defined by

Jmax = psIN = piFgcosty . (1.42)
In general, the equation of motion for the x component is
mi = Fysinf — fo = Fysinf — pg Fycos0, (1.43)

or
¥ = g(sinf® — pscosf). (1.44)

When the block is just about to start sliding, we have * = 0, so
sinfy — pscosy =0 = tanl; = p,. (1.45)
Numerically, 6y = arctan(0.4) = 21.8°.

Example 1.3: Sliding block on inclined plane (kinetic friction). After the block begins
to slide, the coefficient of kinetic friction becomes i, = 0.3. Find the acceleration for the angle
0y = 21.8°.
The force of kinetic friction is
fk = /va'N = ,ukFg COS 9f7 (1.46)
and the acceleration of the block is

mi = Fg sin Of — fk = mg(sin 9f — Mk COS Qf) . (1-47)

Hence,

& = g(sinfy — py cosfy) = 0.09¢ . (1.48)

10



Next, we want to discuss a different type of retarding forces f, that occur when a body
moves through a gas or fluid. Experience shows that this type of friction acts in the negative
direction of the velocity and is proportional to a power of v, i.e.

fr=—ku2. (1.49)
v
(Note that we do not include a factor m on the right side.) Empirically, the power is roughly
n = 1 if the speed is not too small, but at the same time much smaller the the speed of sound
(v < 24m/s). For higher velocities, but still below the speed of sound (v < 330m/s), the
power is approximately n = 2.

Example 1.4: Horizontal motion. Find the motion of a particle moving horizontally in a
medium where the retarding force is proportional to the velocity.
Eq. (1.14) gives

dv
r=m— = —kuv. 1.50
mi =m-— v (1.50)
This can be integrated:
d k
W _E (1.51)
v m
or
k
logv = ——t+ ¢y, (1.52)
m

with ¢, an integration constant that can be determined from the initial conditions. For instance,
if we denote the velocity at timet = 0 by vy, we see

logvy = ¢ . (1.53)

Thus, the solution becomes
v = voe Fm (1.54)

To obtain the displacement at time t, we integrate once more:

T = /vdt = vo/dte_kt/m = —%e‘kt/m + . (1.55)

If the particle starts at x = 0 at timet = 0, then ¢ = k/(vom), and

x = %(1 — e_kt/m) . (1.56)

To obtain the velocity as a function of position, we note that

dv dvdt_@l

4 dide  div (1.57)
and so

w_a_ s

de dt mv’ '

11



or

dv  k (1.59)
dc — m’ '
It follows (using the same initial conditions as above) that
k
V=19 — —. (1.60)
m

The velocity decreases linearly with distance.

Example 1.5: Terminal velocity. Find the displacement and velocity of a spherical particle
in free fall in an constant gravitational field, with a retarding force proportional to the velocity.
To be specific, let’s consider a small water droplet in air. STOKES’ law tells us that the retarding
force for a spherical body is
fs =6mnru, (1.61)
where 1) is the dynamic viscosity of the fluid or gas (n, = 1.8 x 107° kg/(ms) for air at temper-
ature 20° C), and r is the radius of the sphere. We assume the droplet starts falling with initial
velocity vy at height h. The equation of motion (positive z direction downwards) is

dv

"t

The mass of the droplet is m = (4/3)wr®p,, with p, = 1000 kg/m? the density of water.
Rearranging, this yields

=mg — 6mn,rv . (1.62)

dv Ma dv
= qg— = —dt 1.63
at 7 (2T2pw>v ~ kv—g ’ (1.63)
with k = 9,/ (2r2p,,). Integration gives
1
% log(kv — g) = —t + ¢, (1.64)
or
kv — g = e ktHe (1.65)
with ¢ = kc. Using the initial condition v(t = 0) = vy = (1/k)e® + g/k yields
v = % + (vg — %)e‘kt. (1.66)

After some time, the velocity approaches the constant value v; = g/k (terminal velocity). In
fact, this result can be directly read off Eq. (1.62). For a droplet of radiusr = 5 x 107° m in the
earth’s gravitational field, we find v; = 3 x 1072 m/s — the droplet practically floats in the air.

Integrating once more and evaluating the integration constant with the initial condition z(t =
0) = 0 gives

g, 1 g _
z:Et+E<vo—E> (1—6 kt). (1.67)

In general, the constant k depends on the viscosity of air and the shape of the falling object.
For a raindrop with diameter r = 1 mm, we find v, = 120 m/s. The terminal velocity of a sky
diver in face-down free fall is about 54 m/s. A peregrin falcon can reach 100 m/s. In these cases,
it would be more appropriate to use a retarding force proportional to the square of the velocity.

12
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Figure 2: Atwood’s machine.

Finally, we discuss two classic examples of particle dynamics.

Example 1.6: Atwoods machine. Atwood’s machine is depicted in Fig. 2. Find the accelera-
tion of the masses and the tension of the string.

We assume that the mass of the string as well as any friction can be neglected. The tension T’
must be the same throughout the string. The equations of motion for each of the masses are

mlil =m1g — TY7 (168)
mgi'g = Mmag — T. (169)

If the string is not elastic, we have &9 = —i1, so we combine Eqgs. 1.68 by eliminating T':
muiy =mig — (Mmag — maiz) = mig — (Mag + maiy). (1.70)

We solve this equation for I :
g(my — my)

I = — = 1.71
! mq + mo ( )
The tension is 5
. mimeg
T:ml(g—:cl) = — (1.72)
mi + Mo

Example 1.7: Charged particle in magnetic field. For instance, consider a cosmic ray par-
ticle entering the earth’s magnetic field B (near the surface of the earth, we can assume By to
be uniform).

We choose our coordinates such that the y axis is parallel to By. Denoting the particle’s charge
by q, its mass by m, its velocity by v, and its acceleration by a, we have

v = ilel -+ 33‘262 -+ igeg s (173)
a = :'tlel + .Ci’geg + .1'15363 s (1.74)
B = BQCQ , (175)

and the Lorentz force is F' = qu X B. The equations of motion are

ma=qu X B, (1.76)

13



or in components

mil = —qB()I'g, (177)

The second of these equations is easily integrated, giving
To(t) = 5t + 23, (1.80)

where 5 and 13 are integration constants that may be determined by the initial conditions. To
integrate the remaining two equations, we define o« = qBy/m, such that

.ifl = —Oéj}g, (181)

o (1.82)
To decouple these equations, we differentiate once more and substitute,

:7'3.1 = —Oéi’g = —Oéijl > (183)

:’I'Z'.g = Oéil = —@2$3 . (184)

These are differential equations of “harmonic oscillator type” for 1 and &5. The solution for i
is

&y = ky cos(at) + ko sin(at) , (1.85)
and hence
z; = Acos(at) + Bsin(at) + i . (1.86)
The solution for x5 is
x3 = A’ cos(at) + B'sin(at) + 2. (1.87)

A A, B, B, x(l), :pg are integration constants. The complete solution is

11 — 29 = Acos(at) + Bsin(at), (1.88)
Ty — 1Y = @5, (1.89)
x3 — x5 = A'cos(at) + B'sin(at). (1.90)

Inserting this into the first of Eq. (1.81) gives
—a?Acos(at) — a?Bsin(at) = o A’sin(at) — o B’ cos(at) . (1.91)

Evaluating this att = 0 andt = 7/(2«) gives A = B’ and B = —A’. This results in

r1 — 2 = Acos(at) + Bsin(at), (1.92)
Ty — 2 = @5t (1.93)
x3 — 29 = — B cos(at) + Asin(at). (1.94)

14



Ifi3(t = 0) = 23 and i1 (t = 0) = 0, Eq. (1.92) yields i3 = aA and B = 0. This gives the
final form of the solution,

i Byt
r) — 1) = (M) cos(q 0 ) , (1.95)
qBy m
Ty — 29 = @5t (1.96)
-0
0 zsm\ . (qBot
—Zg=| —=|Ss . 1.97
B <qB0> 1n< m ) (.97

The particle drifts along the direction of the B field, its trajectory being a circular helix of radius
23m/(qBy). Given a B field in a laboratory, this can be used to measure the charge-to-mass
ratio of elementary particles (e.g. electrons).

1.4 Planar kinematics®

In two-dimensional cartesian coordinates, we have the velocity

v = (vs,vy) = (2,7), (1.98)
with absolute value |v| = /@2 + 2 = v, as well as the acceleration
V= (0y,0,) = (Z,7) . (1.99)

with absolute value [v| = /%2 + §?> = a. Alternatively, we can decompose velocity and
acceleration in terms of the components along (index s) and orthogonal to (index n) the
trajectory of the mass point. We have

Vs =V, vy = Fv, v, =0, v, =0. (1.100)

This becomes more significant if we decompose v in terms of v, and v,,. If we denote by
« the angle between the x direction and the tangent to the trajectory, then the tangential
acceleration is

U = Uz COS ¢ + Uy sin v, (1.101)

and the normal (or centripetal) acceleration is

Uy, = —Uysina + Uy cos . (1.102)
We have J ) J )
cosa:—x:a—?:%, sina:—y:g:&7 (1.103)
ds s v ds s v
and so
dvs 1 1d,, ., L dv>  dv

= 5<Uw”” + v,y (1.104)

@ T U T T
the tangential acceleration is the change in speed, the change in direction is irrelevant. On
the other hand,

— = —(vxvy — vyvx) = —(xy — yx) =V =—, (1.105)

a. v v (2 + y2)3/2
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where 1/p is the curvature of the trajectory. The normal acceleration does not depend on
the change in speed, but only on the speed itself and the change in direction (the form of the
trajectory). If ¥ = 0, the acceleration is orthogonal to the velocity and therefore orthogonal
to the trajectory.

To clarify the concept of the curvature of the trajectory, we consider the velocities v; and
v, of the mass at two neighboring points, with distance As. Let the angle between the two
velocities be Ae. This is also the angle between the two position vectors ; and x5, so

As = pAce. (1.106)

On the other hand, we can write v, = v; + Av, and decompose Av into a tangential com-
ponent Av, and a normal component Av,,. Then

U_]Avs|_vg—v1_&_
TNt At At
_|Av,| vAe - Ae 5 0P

v, (1.107)

1.5 Conservation laws*

Here, we briefly discuss some conservation laws that are implied by NEwToN’s laws. The
proper framework for dealing with conservation laws is the Lagrangian formalism, and we
pick up the topic again in Sec. 5.

The law of conservation of momentum has been discussed above for the case of two par-
ticles. It will be generalized to an arbitrary number of particles in Sec. 7. For a single free
particle, Eq. (1.6) tells us that p = 0, so we have

I The momentum p of a particle is conserved when the total force on it is zero.

A related concept is the angular momentum of a particle, defined as
L=rxp. (1.109)

Note that the actual value of L depends on the location of the origin of the coordinate system.
We define the corresponding torque as

N=rxF. (1.110)

Because F' = p, we have N = rxp. The time derivative of the angular momentum is

d

L:%(rxp):i'xp—i—rxp:rxj):N, (1.111)

since * X p = 7xmv = m(* x 7*) = 0. If no torque acts on the particle (N = 0), then L=0
and L is constant. Hence

II The angular momentum L of a particle subject to no torque is conserved.
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Often, a coordinate system can be chosen such that the torque is zero, resulting in a simple
solution to a given problem.

The work done by a force on a particle on a path from position 1 to position 2 is defined as
(see App. B for the definition of line integrals)

Wiy = /F-dr. (1.112)

If F is the total force acting on the particle, we can write the integrand as

dv dr d m d 1
F.-dr=m— —dt= dt = cv)dt =d| ~mv* ). 1.113
r=may g =g vl = S ) (2””’ ) (1113)
We can then easily solve the integral to get
IEEAY | 2 .2
Wis = §mfu = Em(v2 — ’Ul) =15 —1T]. (1.114)

This is just the change in kinetic energy I’ = —mv

If the work required to move a particle from r1 to r5 does not depend on the path between
the two locations, but only on the original and final positions, we can fix e.g. position ry, and
Wi is then just a function of the final position r,. This function, U, is called the potential
energy of the particle. The work done on the particle is then simply the difference in potential
energies at the two positions:

For instance, if a body of mass m is raised through a height & in a constant gravitational field
with gravitational acceleration g, the amount of work mgh has been done on the body.

The work is independent of the path if the force can be written as the gradient of a scalar
function® (that turns out to be just U):

F = —gradU = -VU, (1.120)

The gradient is defined as follows. Assume we are given a scalar function of several variables (say, three):
o(r) = ¢(x1, 2, x3). For instance, this could be the temperature distribution in a room. Given the value
(temperature) at one point, ¢(r), what is the change in value (temperature) d¢ if we move to an infinitesi-
mally nearby point, ¢(r +dr) = ¢(x1 + dx1, 22 + dxo, 3 + drs)? Using the chain rule, we obtain e.g. in
21 direction

0o(x1, 2, x3)

¢(x1 + dwy, w2, 23) = ¢(1, T2, 23) + dxy, (1.116)

8&31
and hence, adding the contribution in the three directions,
8¢ T1,T2, xS
¢(£E1 + dx1, xo +da;2,x3+dx3) x1,$27$3 +Z —=Cdx; . (1.117)
ox;
The last term can be written as the scalar product of two vectors,
(r+dr) = o(r) + (Vo(r)) - dr, (1.118)
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because then

/F-dr:—/(VU)-dr:—/dU:Ul—UQ, (1.121)

Here, the potential is a function of position and time, U = U(r,t). (Velocity-dependent
potentials arise in electrodynamics and will not be considered here.) It is now easy to see
that the potential energy is only defined up to a constant (both U and U + constant give the
same force via Eq. (1.120)); only differences in potential energy are physically meaningful.
Similarly, since NEwTON’s laws do not change if expressed in terms of a reference frame in
uniform relative motion, no absolut kinetic energy can be ascribed to a body.

The total energy of a particle is defined as the sum of kinetic and potential energies:

E=T+U. (1.122)

We want to show that F is conserved if the potential energy is time independent. The total
time derivative of the energy is

dEdT N du (1123)
dt — dt = dt’ '
To proceed, we recall Eq. (1.113):
L
F.-dr=d M | = drl . (1.124)
It follows T i
r
—=F.—=F.7. 1.125
dt a7 (1:125)
Moreover, U o o
Hence, we find .
%:F-H(VU)#":(FJFVU)%:O, (1.127)
since, by definition, F' = —VU. In summary, we have the law of conservation of total energy:

IIT The total energy E of a particle in a conservative force field is constant in time.

where (dr); = dx; and we have defined the gradient (V¢(r)); = 0¢(x1, 2, x3)/0x;. So the change in the
function ¢ is given by

do(r) = ¢(r +dr) — o(r) = (Vo(r)) - dr. (1.119)
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Figure 3: Cable Car. One end of the cable was attached to a winch that was fixed on a pair of
heavy sand stones buried in the ground, using a metal cage. The other end was attached to a
birch tree to the right (not shown in the photograph).

1.6 Potential energy and form of motion®

If the potential is given, one can gain a qualitative understanding of the motion by plotting
U(x). Because T' > 0, we have E > U(z). Depending on the form of the potential and
the value of E, one can have bounded periodic motions, unbounded motions, and stable or
unstable equilibrium points.

If the particle remains close to the equilibrium point x, it is useful to perform a Taylor
expansion about xj. (We choose our coordinate system such that zy = 0.) This gives

n x? (d*U
o 2!\ da?
Here, U(0) is just a constant that we can set to zero by adjusting the total energy (recall

that only energy differences are physical). At an equilibrium point, the first deriative of U
vanishes,

Ulw) = U(0) + 2 (Cfi—g)

(1.128)

=0

xr=

au
dz
so the first nonzero term is the second derivative. We can neglect all higher terms if = is
“sufficienly small” (you can always include more terms if you want to increase the accuracy).

=0 (equilibrium), (1.129)
=0

In this approximation, we have

2 d2
U(z) = %(d—gﬂ N (1.130)

The equilibrium is unstable for (d*U/dx?)|,—0 < 0 and stable for (d*U/dz?*)|,—o > 0. The
latter case is exactly the potential for a harmonic oscillator, to be discussed in detail in Sec. 2.

Example 1.8: Cable car. Consider the construction of a cable car (a successful example dating
back to the teenage years of the instructor is shown in Fig. 3). What force does the winch holding
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ST 5 2 A

Figure 4: Schematic sketch of the cable car (left panel), and approximation by a system of
pulleys, masses, and strings (right panel).

the cable need to sustain if a person rides the cable car? We approximate the cable car by a
system of pulleys, masses, and strings.

A light string of total length b is attached at the “tree” A. It passes over the pulley at B (the
“pole”), located at a distance 2d from A, and is attached to the mass m, (the “winch”). Another
pulley (the “gondola”) with mass ms (the “passenger”) attached passes over the string between
A and B, pulling the string down. We want to calculate the distance x1 when the system is in
equilibrium. (We consider the pulleys to be massless. Since we also neglect friction, this quite a
bad approximation to the actual cable car.)

We will use the “energy method” to solve the problem. In equilibrium, the kinetic energy is
zero, and we can determine the equilibrium position from the condition (1.129). We choose the
potential energy such that U = 0 along the line AB; then

U= —migzr; —mag(zs +c). (1.131)

(The distance c is constant.) Pythagoras tells us that

Ty = /(b —x1)%/4 — d? (1.132)

(see Fig. 4, right panel), so

U = —mygz, — magy/ (b — 11)2/4 — d? — maygc. (1.133)

The derivative of U w.r.t. x; at the equilibrium value (x1)o = xo must vanish:

dr1 |4 —ay 44/ (b — )2 /4 — d?
We solve this condition for x:
4m1 \/(b — %0)2/4 —d? = m2<b — .1’0) (1135)
= (b—x0)%(4m? — m2) = 16m3d> (1.136)
4
= zo=b— md (1.137)
4m? — m?3
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We see that for a valid solution, we need 4my > my. If my becomes larger, it will pull m; up to
the pulley, because for the solution to be stable, the second derivative of the potential

d*U (1) _ —mag Mmag (b — 1) (1.138)
et a2 A 16— )i
must be positive at x; = g
d*U(x 4m?2 — m2)3/?
T1=x0

2 Oscillations”®

We will first consider the one-dimensional problem. As discussed in Sec. 1.3.2, any small
motion about a stable equilibrium point can be described by a quadratic potential. To obtain
the corresponding force, we could just take the gradient of Eq. (1.130). Alternatively, we can
expand the force F'(x) about the equilibrium point (chosen to be x, = 0) into a Taylor series:

N ? (d*F
oo 20\ d2?
Here, F'(0) must vanish (otherwise o = 0 would not be an equilibrium point). For small
displacements, we can drop the quadratic and higher terms. We obtain

(2.1)

F(z) = F(0) + 2 (%)

z=0

F(x) = —kx, (2.2)

where we defined k£ = —(dF/dx)|,—o (for a stable equilibrium point, the force must be
directed towards the equilibrium position). Eq. (2.2) is called HookE’s law.

2.1 Simple harmonic oscillator

Substituting HookE’s law into NEWTON’s equation of motion yields

—kx =mz. (2.3)
"The gory details are
o 16m3d>
d“U(z1) _ —Mmag n M29 tmZ—m3
dx? o 4m?2d? AmZdz 3
1 xr1=T0 4 21 > — d2 16 m3 o d2
4my—m3 4m? —m2
mog-TaL o mad g Amid?
o —mog + 29 4m%—m% o 2g4m%—mg + 29 4m%—7n§
o m2d?2 753 753 755 (1.139)
4 2 m3d 4 m3d 4 m3d
4mi—m3 AmI—m32 AmI—m32 Am3—m2
247n?—mg
maogd® —5—% 2 2 213/2
e magd _ (4mf —m3)%
- - 2
4 m3d2 3 Am3d3 1 3 4m2d
4mi—m32 2 4m?—m32
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One usually defines

k
Wy = —, (2.4)
m
such that Eq. (2.3) becomes
i+wir=0. (2.5)

This is the equation of motion for the (one-dimensional) simple harmonic oscillator. The gen-
eral solution to Eq. (2.5) is
z(t) = A sin(wot — 6),, (2.6)

with the amplitude A and phase § as free parameters (determined by the initial conditions to
the differential equation).

The amplitude A is related to the total energy of the oscillator in a simple way as we will
now show. Using Eq. (2.6), we see that the kinetic energy is

Lo 1 o0 o Loy
T = gmd” = émwOA cos” (wot — 0) = 5/{;14 cos” (wot — 0) . (2.7)

We can calculate the potential energy by integrating the work done on the particle over a
distance x. For the force (2.2) we have

dW = —Fdx = kx dx . (2.8)
This gives the potential energy
Lo Lo
U= Qkx = 5]@4 sin“(wot — ), (2.9)

where we inserted the solution (2.6). Adding Egs. (2.7) and (2.10), we obtain the total energy

1 1
E=T+U= 51@42 = 5mngQ. (2.10)

The total energy is proportional to the square of the amplitude and independent of the time.
We define the period 7 of the motion as the time interval between complete repetitions
of the particle’s motion. This happens when the argument of the sine function in Eq. (2.6)

increases by 27, i.e. wgTy = 27, or
Im
To = 27 T (2.11)

We see that wy is the angular frequency of the motion, related to the frequency vy by

Wy = 27Ty = 1/%, (2.12)

1 1 /m (2.13)
Vg=— = —4/—. )
0 ™ 27\ k

The period of the simple harmonic oscillator is independent of the amplitude.
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2.2 Harmonic oscillation in two dimensions*

Now we consider motion in two dimensions. For simplicity, we assume that the restoring
force is isotropic, i.e. proportional to the distance of the particle from a force center located

at the origin:

F=—Fkr.

In coordinates, we find

F, = —kr cost = —kx,
F, = —krsinf = —ky.

The equations of motion are
i+wiz=0,
j+woy =0,
where w? = k/m, with solutions

x(t) = Acos(wot — @),
y(t) = B cos(wot — ).

(2.14)

(2.15)
(2.16)

(2.17)
(2.18)

(2.19)
(2.20)

The particle moves in simple harmonic oscillation in each of the two directions, with the same
frequency but possibly different amplitudes and phases. To obtain the path of the particles,

we combine the two equations (2.31) by eliminating the time ¢. We start with

y(t) = Bcos|wot — a+ (a — B)]
= Bcos(wpt — a) cos(a — B) — Bsin(wpt — a) sin(a — ().

Defining 6 = o — [3, this can be written as

B / x?
yzzxcosé—B 1—Esm(5,

Ay — Brcosd = —BVA? — 22sind .

Squaring this equation gives

or

A?y* — 2ABxycosd + B*x? cos® § = B*(A? — 2?)sin§ .
This can be simplified to

A?y? — 2ABxycosé + B*r? = B*A?sin®6.

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

This is the parametric equation for an ellipse. Let’s now assume for simplicity A = B = 1.

Then, for § = +/2 this is the equation of a circle,

y2+$2:17
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while for d =0
(y—x)2:0 = r=y, (2.27)

and for 6 = &7
(y+2)*=0 = x=—y. (2.28)

In a more general force field, the two frequencies need not be the same, and the trajectories
of the solutions,

z(t) = Acos(w,t — ), (2.29)
y(t) = Bcos(wyt — ), (2.30)

are described by Lissajous curves. They are closed if w, /w, is a rational fraction.

2.3 Phase diagrams”

The motion of a simple harmonic oscillator is completely determined if the initial conditions
x(to) and @(ty) are given, i.e. we can calculate x(¢) and @(t) for arbitrary times. The space
with coordinates z, 1 is called phase space.® For a general oscillator with n degrees of freedom,
this is a 2n-dimensional space. As time passes, the point (z, ) will trace out a path in phase
space. Different initial conditions correspond to different paths. No two (non-identical) paths
in phase space can ever cross: If we regard the crossing point as initial condition, this would
mean that there are two different solutions to the equations of motion with the same initial
conditions. This is impossible, since the solutions to the second-order differential equation
are unique.

The phase space can be defined for general dynamical systems, not only harmonic oscilla-
tors. The last statement remains true in the general case.

For the simple harmonic oscillator, we have

x(t) = Asin(wot — @), (2.31)
%(t) = Awp cos(wot — @) . (2.32)
It follows
2 .2
I | (2.33)
A2 A2 ' '

This is a family of ellipses. Using F = kA?/2 and wi = k/m, we can rewrite this equation

as 9 9
T T

2Bk 2Em

The size of the ellipse corresponds to the total energy of the oscillator.

(2.34)

8Frequently, the momentum is used as a variable instead of 3.
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2.4 Damped oscillations

Next, we study oscillation in the presence of a retarding (or damping) force. We will treat only
the one-dimensional case and assume that the damping force is proportional to the velocity.
The equations of motion are then

mi + bt + kx =0, (2.35)
with b > 0. It will be convenient to write this in the form
i+ 283 +wir =0, (2.36)

with the damping parameter 3 = b/(2m), and wi = k/m as before. The general solution for

wy # B is”
w(t) =e ™ [z‘h eXp(\/ 3% — w3t> + Ay exp(—\/ﬁ2 - wgt)] . (2.38)

We discuss the three cases

wg > (% : Underdamping, (2.39)
wi = B* : Critical damping , (2.40)
wi < % : Overdamping (2.41)

in turn.

Underdamped motion

For underdamped motion, w3 > (3%, the arguments of the exponentials in the solution (2.38)
are imaginary. We define w? = w? — /3%, such that

a(t) = e P [A1 ™" + Age ] (2.42)

This can also be written as
z(t) = Ae P cos(wit — §). (2.43)

We see that the maximum amplitude decreases exponentially with time. The quantity w; is
not strictly speaking and angular frequency, as the motion is not strictly periodic. Note that
w1 < wy, and the total energy of the oscillator is not conserved (the system is not closed, part
of the energy is continuously dissipated as heat). See Fig. 5.

°To derive this form, insert the ansatz x(t) = exp(rt) into Eq. (2.36). This yields the equation
2 4+ 28r + w% =0, (2.37)

with solutions 71 » = —f8 + /% — w3.
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Figure 6: Pendulum in oil. The bob is moving with decreasing 6.

Critically damped motion

If 3% > w?, the system does not show oscillatory motion. Critical damping occurs just at the
transition between the two cases, 3% = wg. The solution is then

z(t) = (A+ Bt)e ?", (2.44)

as can be directly verified by substituting into Eq. (2.36). The critically damped oscillator will
approach the equilibrium position faster than the under- or overdamped oscillator.

Overdamped motion

The case 32 > w? is called overdamped motion. The solution in this case is

a(t) = e P [A1e” + Aye '], (2.45)

with wy = /32 — wi.

Example 2.1: Pendulum in oil. Consider a pendulum of length { and a spherical bob of mass
m at its end, moving in oil such that 6 is decreasing (see Fig. 6). The oil retards the bob’s motion

26



according to STOKES’ law (1.61),
fs=6mnru.

The bob is initially pulled back such that 6(t = 0) = «, and G(t = 0) = 0. Assuming
n = m+/g/l/(3mr), find the angular displacement 0 and velocity 0 as a function of time.

The equation of motion is

mll = —mgsin 0 — 2m~/q/(¢0) . (2.46)

For small angles sin 0 ~ 0, and we get
é+2\/g/€9+%9:0. (2.47)

In our previous notation, 5 = wy = +/g/{; the motion is critically damped and the solution for
0(t) is given by Eq. (2.44). The constants A and B can be determined from the initial conditions.
We have 0(t = 0) = A = «, and

0(t) = Be ™ — B(A+ Bt)e Pt (2.48)

and so 0(t = 0) = B — BA = 0, hence B = fBa. Putting pieces together, we find

0(t) = a1+ \/g/tt)e V" (2.49)
0(t) = —%te*\/m. (2.50)

2.5 Driving forces

Here, we discuss only the simplest case of a driven oscillator in which the driving force itself
exhibits simple harmonic oscillation. We will restrict ourselves to the one-dimensional case.
The total force is then

F = —kx — bz + Fycos(wt) , (2.51)

where we also included a linear damping force. The equations of motion are then
&+ 283 + wir = Acos(wt), (2.52)

where A = Fy/m, and w is the angular frequency of the driving force. This is an inhomoge-
neous linear differential equation. Its general solution is given by the general solution of the
homogeneous system (i.e. with A = 0), plus a so-called particular solution. The solution of
the homogeneous equation is given by Eq. (2.38). To find the particular solution, we make
the ansatz

z,(t) = D cos(wt — 9). (2.53)

Substituting into Eq. (2.52), we obtain

—Dw? cos(wt — 0) — 2BDwsin(wt — §) + Dwi cos(wt — §) = Acos(wt), (2.54)
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or, using trigonometric identities,

{A—DJ[(wi — w?) cos § + 2w sin §]} cos(wt)

2.55
—D|[(w? — w?)sind — 2wp cos §] sin(wt) = 0. (255)
The coeficient of sin(wt) must vanish, so
2
tan § = 2#52 , (2.56)
or
: 2wp
sing = S =R )
o (2.57)
cosd = 2 .
V(W — w?)? + 4w
The coefficient of cos(wt) must also vanish, so
D= A = A (2.58)
(Wi —w?)cosd +2wBsing V(W2 — w?)? + 4232 ' '
Hence, the particular solution is
A
zp(t) = T cos(wt — 0), (2.59)
2 _
with )
0 = arctan i . (2.60)
Wi — w?

For nonzero 3, there is a delay between the driving force and the motion of the oscillator.
The general solution is
x(t) = x(t) + x,(1), (2.61)

where the transient x,(t) is given by Eq. (2.38). This part of the solution decays exponentially;
in other words, z(t > 1/3) = x,(t) (steady-state solution).

The amplitude of the forced oscillation is largest for the resonance frequency wg; setting
the derivative dD/dw to zero gives

wr = \/wi —202. (2.62)

2.6 Superposition principle and Fourier series”

The one-dimensional oscillations the we discussed above all had equations of motion of the
general form

(5—; + a% + b) z(t) = F(t). (2.63)
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The quantity in parentheses is called a linear differential operator L, i.e. we can write
Lx(t) = F(t). (2.64)
L satisfies the superposition principle:
L(z1(t) + x2(t)) = La:(t) + Lao(t) . (2.65)

Hence, given two solutions x;(¢) and z5(t) for two different force functions F} (t) and F5(t),
respectively,

La:(t) = Fi(t) , Las(t) = F>(1), (2.66)
we can form the linear combination (with constant o, ) and obtain
L(ana:1(t) + aowa(t)) = arFi(t) + aaFa(t) (2.67)
or, more generally,
N N
L ( > @nxn(t)> = anFu(t). (2.68)
n=1 n=1

This is again of the form (2.64), with

2(t) =D anza(t), F(t) =Y anFu(t). (2.69)

If each of the individual F},(t) is of the form cos(w,t), we know that the solution is given by
Eq. (2.59). Therefore, if

N
F,(t) = Z i, cos(wpt) , (2.70)
n=1
the steady-state solution is
1 o
z(t) = — - cos(wpt — 6,,) , (2.71)
" m;wwg—wg)u%g@ ( )
with )
0, = arctan( 2wn52> ) (2.72)
Wy — Wy

A similar solution can be written down if the force is of the form
N
F.(t) = Z ay, sin(wpt) . (2.73)
n=1

Now any periodic function can be written as a (finite or infinite) Fourier series: If F'(t +7) =
F(t) with period 7 = 27 /w, we have

F.(t) = %ao + Z (ay, cos(nwt) + by, sin(nwt)) , (2.74)

n=1
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where

T /w
0, =2 / dt' F(t') cos(net’) — / dt' F(t') cos(nwt') (2.75)
0 7Tﬂr/w
T ™/w
b, — 2 /dt’F(t') sin(nwt’) = @ / dt' F(t') sin(nwt’) . (2.76)
! 0 W—W/w
Example 2.2: Sawtooth function. The sawtooth function
t  wA
F(t):A;:%t’ —T/2<t<T/2, (2.77)

isodd, i.e. F'(—t) = —F(t), hence all coefficients a,, vanish. The coefficients b,, are given by

—7/2
w?A .
b, = o7 / t' sin(nwt")dt’
—7/2 ) (278)
—m/2
_ w?A ' cos(nwt’) N sin(nwt’) A (—1)m+!
o2 nw n2w? onrw ’
—7/2
or
Al 1 . 1 .
F(t) = — | sin(wt) — 5 sin(2wt) + 3 sin(3wt) F ... . (2.79)
T

3 Gravitation

3.1 NEwTON’s law of gravitation

NEwTON’s law of universal gravitation states that each massive particle attracts each other
massive particle in the universe with a force that varies directly as the product of the two masses
and inversely as the square of the distance between them. It is easier to write this as a mathe-
matical formula:

7. (3.1)

The unit vector # = r/r, with r = \/|r_2 , points from the position of mass M (at the origin)
to mass m (at position ). Moreover, G = 6.67430(15) x 107! Nm?/s? [1] is NEWTON’s
gravitational constant.

Eq. (3.1) is valid for point particles. However, using NEwWTON’s “fourth law”, we can obtain
the gravitational force for extended objects by summing the forces on all individual con-
stituents. For a body with a continuous distribution of matter with mass density p, the force
on a “test mass” m at position r becomes an integral:

F(r) = —Gm/ %(r —7r)d’r" . (3.2)
v
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The integration is over the volume of the gravitating body, with infinitesimal volume element

d®r’ at position7’, and |r —7'| is the distance between the volume element and the test mass. If

instead of a test mass we consider a second extended body, a second integration is necessary.
The gravitational field g generated by a mass distribution is given by

g(r) = F% = _G/—|r,0£?";)/|3 (r —r")d%'. (3.3)

This is a force per unit mass. Near the surfaces of the earth, g = |g| is just the usual gravita-
tional acceleration, g = 9.81 m/s®. For a point mass M, we have

g= —G%f. (3.4)
T

3.2 Gravitational potential

The gravitational field can be written as the gradient of a scalar gravitational potential ®,"°
g(r)=-Vo(r). (3.5)
For a point mass M at the origin, the gravitational potential is given by

M
—G—,

r

O(r) = (3.6)

up to a constant that is conventionally fixed such that ® — 0 as r — oo. For a continuous
mass distribution, we have

(r) = —G/ %dz)’r’. (3.7)
v

To get some insight on the physical significance of the gravitational potential, let’s calcu-
late the work per unit mass that is required to displace a body in the gravitational field by a
small distance dr. The work done on the body is

i)
dW:—g-dr:VQD-drzzg—dxi:d(I), (3.8)
- Z;

the difference in potential at the two points. If we normalize the potential as above, ®(r) is
the work per unit mass that is required to bring a mass from “infinity” to the point r. The
potential energy U of the mass m in the gravitational field is

U=mo, (3.9)
and the gravitational force is then given by
F=-VU. (3.10)

Time for an important example.
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Figure 7: Gravitational potential of a spherical shell.

Example 3.1: Gravitational potential of a spherical shell. We consider a homogeneous
spherical shell, centered around the origin, with outer radius a and inner radius b and calculate
the potential at a point P which is a distance R from the center of the shell (Fig. 7). Using

spherical coordinates, we have

®(R) = —G/—ug(i z_,|d3r' = —27rpG/r’2dr’/
b 0

where we used the rotational symmetry about the axis RP, andr = R — r’. We have
rP=r’=(R—-7) =R +1?—-2"Rcosf.

For fixed R and ', we may regard r as a function of 0 and take the derivative,

2rdr = 2r' Rsin 0d0 ,

or

sin 6d6 B dr
r 'R’

Using this, the potential becomes

a T max

2mpG

R

O(R) = / rdr’ / dr .

b T min

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The values of T pin = 1(0 = 0) and e = 7(6 = ) depend on the location of the point P. For

P outside the shell, we find

a R+r' a

®(R) = —2W]§G /r’dr’ / dr = —47T]§G /T’er =—

b R—1r' b

OThe reason is that the rotation of the gravitational field vanishes, V x g = 0.
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Since the mass of the shell is

M = MTP( 5%, (3.17)

the potential is just
GM
P(R) = —5 (3.18)
The potential outside the shell (or, forb = 0, outside the sphere) is the same as if the whole mass
were concentrated at the origin.

If P is located inside the shell, we have

a r+R a
2
®(R) = — W}QG r'dr’ / dr = —47?,0G/7”dr = —27mpG(a® — b?). (3.19)
b "R b

In this case, the potential is constant, and the gravitational force inside the shell vanishes.

The solution for the case that P is located within the shell is a sum of the results obtained
above, where we replace the upper limit of integration by R in the solution for R outside the
shell, and the lower limit of integration by R for R inside the shell:

A pG

.. , , 2 B R
®(R) = 3R (R°—b°) — 2mpG(a” — R*) = —4wpG 5 3R 6 ) (3.20)

3.3 PoissoN’s equation®

It is sometimes useful to carry over some formalism that should be familiar from electro-
statics. Consider an arbitrary surface S with a point mass M inside. We want to find the
gravitational flux of the mass M through the surface S:

D) = /n-gda, (3.21)
S

where n is the unit vector normal to the infinitesimal surface da, and g is the gravitational
field generated by the mass m. Substituting Eq. (3.4), we find for the scalar product

0
n-g= —GMCOS2 , (3.22)
r
where 0 is the angle between n and g, and the flux becomes
0
By = —GM / = da. (3.23)
T
S
The integral over S gives'!
D) = /n -gda = —47GM . (3.24)

S

"The proof can be taken from electrostatics. Here is a sketch: Let’s first assume a spherical surface with radius
r, centered around the point mass. In this case the normal vector n just points in the direction of g. The
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For several point masses, we can just sum over the contributions, while for a continuous
distribution with mass density p, we have

@M:/n-gda:—éhrG/pdv. (3.25)
S v

Next, we apply Gauss’s theorem which states

/n-gda: /V-gdv. (3.26)
1%

S

Comparing Eq. (3.25) and Eq. (3.26), and noting that the volume enclosing the mass distribu-
tion is completely arbitrary, we conclude that

V.-g=—-4nGp. (3.27)
Finally, inserting Eq. (3.5), we obtain
V2.0 =4nGp. (3.28)

This is PoissoN’s equation. The homogenous equation V?-® = ( is called LAPLACE’s equation.

3.4 Ocean tides

Here, we want to give a simple model of the tides — the movement of water on the earth’s
surface due to the gravitational potential of the moon and the sun. We consider the earth as
spherical and neglect, for now, its own rotation. Also, we first consider only the gravitation
due to the moon. Finally, we assume that the whole earth is covered uniformly by water.

First, we establish a fixed coordinate system in space, to avoid complications due to non-
inertial reference frames (to be discussed in Sec. 8). See Fig. 8. Consider a small volume
element of water, with mass m, on the earth’s surface. The main gravitational force on the
piece of water is due to the earth’s gravitation. Tidal forces occur because of the moon’s
nonuniform gravitational potential, since the earth is an extended object. The force on the
mass element m in the primed coordinate system is

MEm’f. _ GMMm -~

--/
mi, = ~G=5 R, (3.29)
while the force of the moon on the center of mass of the earth is
, MgMyy -
gravitational field has the same value —G'M /r? on the whole surface. Multiplying by the surface area 4772,
we obtain ®,; = —4wGM. For a general surface, we can just enclose the point mass with a small sphere

and radially project a general surface element dA onto a corresponding element da on the sphere. If the
element dA has a distance R from the point mass, it is larger than da by a factor (R/r)?, and by a factor
1/ cos @ if it is tilted by an angle 6 with regards to the radial lines. The exactly compensates the factor
(r/R)? cos 6 that the flux through dA is smaller, thus showing that the total flux is the same.
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Figure 8: Inertial coordinate system for describing the ocean tides caused by the moon’s gravity.

The acceleration of the mass point, as measured from the center of the earth, is then given

by

o Mg, R D
F=7 —i,= _GTfr_GMM(ﬁ_E) . (3.31)
The tidal force is . .
R D

Using that R? = D? + 27D cos § + r? and hence

R? = (D? + 2rDcosf + r*)** = D*(1 + 2r/D cos 0 + 12/ D?)3/?

3.33
= D?*+3D%* cosO+ ..., (3.33)
we find
R D R D  D+r D
R2 D2 R3 D3 D34+3D2rcosf D3
= s (1 35COSQ> R
:%(f'—?)cosef)).

For instance, the tidal force on the earth’s surfaces closest to and farthest from the moon
is Iy, = F2GmMyr/D? (here, cos @ = F1, while 7 and D point in the same or opposite
directions, respectively). At the “poles” (i.e. cos § = 0) we have F;, , = £+GmMyr/D?. More
generally, writing the unit vectors as D = (0, 1,0) and # = (sin @ sin ¢, cos 6, sin 6 cos ¢), we
have

F .= % sin @sin ¢, (3.35)
2r
Ft,y = _ﬁ cos 6 s (336)
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FIGURE 2. Field of perturbation forces.

Figure 9: Schematic sketch of tidal forces (from V. V. Beletskii, “Motion of an artificial satellite
about its center of mass’, Moscow 1966).

F,,= é sin f cos ¢ . (3.37)

A cross section of this force field is sketched in Fig. 9. Of course, the Earth turns within
this force field, while the moon revolves around the earth, such that a fixed point on earth
experiences approximately two high tides per day. (Note also that the torques created by the
tidal force tend to align a non-spherical object along the earth-moon axis. This goes a long
way to explain why the moon always show the same side towards the earth.)

4 Variational calculus

In this section we discuss the mathematical formalism required for Lagrangian and Hamil-
tonian mechanics.

4.1 EULER’s equation

We want to find a function y(z) that extremizes (i.e., minimizes or maximizes) the functional
2
Tl = [ Hu(o).v/@), 2} do. @
1

See Fig. 10. Here, y/(z) = dy/dx. For the moment, we regard the integration boundaries
as fixed. A function y(z) minimizes (maximizes) J if any neighboring function increases
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Figure 10: Variation dy(x) of a path y(x)

(decreases) the value of J. We can parameterize the neighboring fuctions by writing y =
y(cv, x), where « is some parameter such that y(0, z) = y(z); i.e., we write

yla, ) = y(z) + an(x), (4.2)

where 7(z) is an arbitrary smooth function that vanishes at 21 and 2. We can then regard
J as a function of the parameter a:

2
I@) = [ Holaa).f(@,a).a} do. 43)
x1
The condition that J be stationary is that ./ be independent of « to first order, or
dJ
—_— =0 4.4
W = (.9

for arbitrary 7(x). (This is only a necessary, not a sufficient condition.)

Example 4.1: Sinusoidal variation of a straight line. Consider the function f = (dy/dx)?,

and y(x) = x. We take n(x) = sin(x) as the variation, and aim to find the stationary value of
J between the point 0 and 2.

We have
y(a,z) =+ asin(z) , (4.5)
and y
% =14 acos(z). (4.6)
It follows that
fHy, v, 2} = (¥)* = 1 + 2acos(z) + a® cos?(z) , (4.7)
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and®
2

J(a) = / (1 + 2acos(z) + a? cos®(z)) dv = 2m 4+ 0+ o’n . (4.8)
0

J is minimized by the straight line.

We now perform the differentiation in Eq. (4.4) explicitly:

i d [, [loroy  oroy
da_da/f(y’y’x)dx_/<8y8a+8y’8a d. (49)

1

Using Eq. (4.2) we have

(4.10)

i [ (of of an(x)
ﬁ_/<a_yn($)+a_g/ pe )dx. (4.11)

1

and we get

Next, we integrate the second term by parts:

2

ofon) , of " T o (of
/8_3/’ B dx—a—y/n(:v) _/%<a—y/>n(:v)dx (4.12)

X1 1 1

The boundary term vanishes since we assumed 7(x;) = n(x2) = 0, and we obtain finally

i flor o (of
T / lay pe (&y’)] n(x)dx. (4.13)
Because 7)(x) is an arbitrary function, in order to satisfy the condition (4.4) we need
of 0 [ of
- L) = 4.14
oy Oz (83/ ) 0, (4.14)

where now o = 0, i.e. y and ¢y are the original, unperturbed functions of z. Eq. (9.62) is
known as EULER’s equation.

Example 4.2: Brachistochrone. Consider a particle moving in a constant force field starting
at rest from some point (z1,y;) to some other point (r2,ys), With xo # 1 and yo # ;. See
Fig. 11, left panel. Which path allows the point to travel in the least possible time?

2d[sin(x) cos(z) + x]/dx = 2 cos®(z)
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Figure 11: The solution to the brachistochrone problem (left panel) is a cycloid (right panel).

Let’s choose the coordinate system such that the initial position of the particle is at the origin,
and the force is directed downwards along the x direction. We define the potential energy U to
be zero at the origin. Then the total energy isT + U = 0, or %va = mgx. It follows that
v = \/2gx. The time required for the transit is

(x2,y2)

12» T2
d \/d 21 dy? 1 1+ y2
- / 5 / v + Y v Y g (4.15)
g xr

Hence, in our notation

1+ y/2
[y o) =\ ——=[{.2), (4.16)
and Euler’s equation is just
0 of
—— =0 4.17
ax ay, ? ( )
or
fant = — (4.18)
—= = constant = —— .. .
oy’ V2a
We have 5 . o
of _1 [ v i (4.19)
oy 2\ 1+y? =z
or . .
Y
—_— = . 4.20
z(1+9y?) 2a (4.20)
Solving for dy and integrating gives
B / xdx (4.21)
Y V2ax — 22 '

Now we change integration variables: x = a(1 — cos#), dr = asinfdf, and find (using the
initial conditions)

y = /a(l —cos6)df = a(f — sinb). (4.22)
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These are the equations for the cycloid (see Fig. 11, right panel):
r=a(l—cosh), (4.23)
y = a(f —sinf). (4.24)

If f does not explicitly depend on x, we can find a somewhat simpler version of EULER’s
equation. We have

df _opdy  ofdy of _ 0f, .0f  Of

- 4.25
dr  Oydr ' Oy dz ' Ox ya +y8y+ax (4.25)
Now we substitute the relation
Of yOf  ,dOf
=y == _— 4.26
d:v( 0y) yay’+yd:v8y” (4.26)
into Eq. (4.25) and obtain
,0f df—of [ dof of
=L — L 2L 4.27
( oy’ ) dr Oz Ty de oy Oy )’ (4.27)
where the two terms in the parentheses cancel due to EULER’s equation (9.62). Therefore, we
have
of d ,Of
- = — — . 4.28
Oxr dx (f oy’ ) 0 (4.28)

If f does not explicitly depend on =z, this gives

f— ylg—?f/ = constant . (4.29)

Functions with several dependent variables

So far, we have considered the variational problem for a functional of a single function y(x).
Frequently, one encounters the case that several such functions y;(z) are present, i.e.

f=Hu(@),n(@),v2(2), 45(2), .0} = Huile), yi(@); 2}, (4.30)
where i = 1,...,n. We can derive the corresponding EULER equations in analogy to before
by defining

yi(a, ) = yi(z) + an(x). (4.31)

Then, following the same steps as above, we obtain

/ [ ou " Or <8f )] ni(z)dx . (4.32)

Because the individual variations 7;(x) are all independent, the condition that d‘] vanish at
a = 0 requires that each terms in the square brackets vanish separately:
of 0 [ 0f :
- =0, i=1,...,n. 4.33
dy; Oz <8y§) ' ! (433)
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4.2 EULER’s equations with constraints

Often, the variables y;(x) are not all independent, i.e. they satisfy the equations of constraint

glyi; v} =0. (4.34)

Let’s consider the case with two variables, y; and y,. We write the variations again in the
form y;(x, ) = y;(x) + an;(x), for i = 1, 2. The variation of J is then

a7 [[(of _dof\dw  (of d0f)du
da _/ [(83/1 da:@yi) do * <8y2 dx Oyl | da da. (4.35)

1

Because of the constraint (that must apply also to the varied functions)

g{y, 22} =0, (4.36)

the variations dy; /do = 1, and dys/do = 12 are no longer independent, and the two ex-
pressions in parentheses do not vanish separately. Differentiating Eq. (4.36) gives

dy _ Ogdu | Dy dy_ Dy O

= 92 =0 4.37
doo Oyy da  Oyy dae Oy ot Oys 12 ’ (4.37)

or
dg dg
Oy, = o : 438
oy m(@) 0ys 72(7) (4.38)
Thus, the variation of .J becomes
d; [[(or aof of dof
doc / <3y1 dz 0y )m(x) + ( T ()| da (4.39)

1

_[[(or _aor\ (or  dor)oson
_/_<8y1 dxay’1> (83/2 dI@yé)@g/(‘?yQ]m(x)dx' (4.40)

x1

From this we read off that

or _aor\(oe)" _ (o5 _aor\(oe)" wan
Oy drdy; J\ oy )]  \Oy2 dxdyy J\Oya) '

Since both sides of this equation are a function of , we can write this as

of _dof 9,
Oy dx Oyy oy 7

(4.42)
of Ao 0

- = + Alx
s dray, My,
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Figure 12: Disc rolling on an inclined plane without slipping.

We now have three relations (Eq. (4.36) and Eq. (4.42)) for the three unknown functions y(x),
z(x), and \(x). The function A(z) is known as a Lagrange undetermined multiplier.

For the general case of several variables and constraints, we have the following set of
equations:

of d of - dg;
- N(z)=2 =0 4.43
on oy * 225y, =0 4
gi{yi;x} =0. (4.44)
Ifi=1,...,nandj =1,...,m, these are n+m equations for n+m unknowns. Sometimes,

the equations of constraint can be given in differential or integral form. The conditions (4.44)
are equivalent to the differential equations

> 99, dy; = 0. (4.45)
i 0y

Frequently, it is more useful to represent the constraints in differential form, as we will see
later.

Example 4.3: Rolling disc on inclined plane. The relation between the coordinates is
y= R0, (4.46)

where R is the radius of the disc. The equation of constraint is thus

9(y,0) =y —RO=0, (4.47)
and we have 5 5
g g
— =1 — =—-R. 4.48
dy 00 (4.48)
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4.3 The 6 notation

Frequently, another (somewhat less explicit) notation is used in variational calculus. Denot-
ing the variation of the functional .J by ¢.J, the condition of stationarity becomes just 6./ = 0.
The derivation of EULER’s equation looks then somewhat smoother:

0] = 75f(y,y’;x) dx (4.49)
- / :g_;f(;y + %@’] dx (4.50)
i g_f:; g_;j%gy] " (51
— / _% — %g—ﬂ Sy dz . (4.52)

T -

Since the variation dy is arbitrary, EULER’s equation follows as before.

5 Lagrangian and Hamiltonian mechanics

NEwTON’s laws are, in principle, sufficient to solve any problem in mechanics. However, in
practice it can become very difficult to obtain the solutions, if non-rectangular coordinates
or complicated constraints are involved. Lagrangian and Hamiltonian mechanics allows us
to efficiently deal with such problems.

5.1 HAMILTON’s principle

HaMILTON’s principle states: Of all the possible paths along which a dynamical system may
move from one point to another within a specified time interval (consistent with any constraints),
the actual path followed is that which minimizes the time integral of the difference between the
kinetic and potential energies. Using the variational calculus, we can formulate this principle

as follows: t

6/(T—U)dt=0. (5.1)

In general, the value of the integral need not be minimal, but only extremal (minimal or
maximal).

For instance, for a single particle in a conservative force field, and using rectangual coor-
dinates, we have

T=T(), U=U(x). (5.2)
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We define the Lagrange function or Lagrangian as

and the condition (5.1) becomes
[2)
t1
We can immediately write down the EULER equations by identifying
r—t, (5.5)
yi(z) = zi(t) (5.6)
y;(l’) — xz<t> ) (5-7)
Hyi(@), yi(w); o} = L, ;) (5.8)
This gives the LAGRANGE equations of motion
oL d oL
- — =0, i=123. 5.9
6:1:1» dt 8:1:‘1 ’ ’ T ( )
As an example we consider the simple harmonic oscillator. We have
|
L:T—U:§mx —§kx ) (5.10)
oL
— =k 5.11
aI xz ) ( )
oL ' (5.12)
— =mz .
oz ’
d OL . (5.13)
—— =mI .
dt 0z ’
and the LAGRANGE equation is
mi + kx =0, (5.14)

as before.
Next, we consider the mathematical pendulum. Starting with a rectangular coordinate
system (with the origin located at the support of the pendulum), we have

1 1

U =mgy, (5.16)
1 1
L=T-U= §mx% + imxg —mgy . (5.17)
Lgt’s transform to polar coordinates, x = ¢sinf, y = —¢cosf. We find z = 26 cos 0,y =
00 sin 0, and so
M oop20 . 2 2 m 240
L= 56 0 (sm 0 + cos 0) + mglcost = 56 0° + mgl cosf . (5.18)
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The LAGRANGE equation for the variable 6 is

g—g = —mglsind, (5.19)
oL _ me30 (5.20)
00
— : 21
dt 0% meo; (5.21)
é—l—gsinQ:O. (5.22)

14

The method works even if the coordinates are not rectangular.

5.2 Generalized coordinates

Consider a mechanical system consisting of n point particles. We need n position vectors,
i.e. 3n numbers, to describe the the positions of all particles at a given time. These can
always be taken as the 3n Cartesian coordinates. However, these coordinates might not all
be independent (i.e. if the particles form a rigid body, or if they are constrained to move
on given trajectories). If there are m constraints, then only s = 3n — m coordinates are
independent, and we say that the system has 3n — m degrees of freedom. More generally,
these coordinates need not be rectangular or curvilinear. Any s independent coordinates are
allowed, as long as they uniquely specify the position of the system. They are called (proper)
generalized coordinates, denoted by ¢; = q1, qo, . . . ¢s. (‘Proper” in this context means that the
coordinates are not restricted by constraints.) Associated with them are their time derivatives
or generalized velocities, ¢; = ¢1, o, . . . .

For a system of n particles with Cartesian coordinates z,;, a = 1,...,n,t = 1,2, 3, the
relations are

Lqi = xa,i(q_ja t) ) (523)
jja,i = xa,i(Qja QJv t) . (524)

Note that these relations may depend on time. The expressions for z,; may depend on both
q¢; and ¢;, while the expressions for z, ; cannot depend on the generalized velocities ¢;.

Example 5.1: Particle on sphere. Find the generalized coordinates for a particle on the sur-
face of a hemisphere.
Call the radius R and choose the origin at the center of the sphere. The constraint in Cartesian
coordinates is
i ri+ o - RP=0, 2>0. (5.25)

As generalized coordinates we can choose the cosines between the position vector of the particle
and the coordinate axes:

I ) xT3
_ = = 2 5.26
q1 = R’ q2 R’ q3 R ( )

These are not all independent:

GHeE+GE=1 & @=\/1-¢—-a, (5.27)
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so we may choose q; and q, as our generalized coordinates.

The space of s = 3n — m independent coordinates is called configuration space. The time
history of a physical system can be represented by a path in the corresponding configuration
space. This “motion” is automatically consistent with any constraints.

5.3 LAGRANGE’s equations in generalized coordinates

We can now slightly reformulate HAMILTON’s principle as follows:

Of all the possible paths along which a dynamical system may move from one point to another
in configuration space within a specified time interval, the actual path followed is that which
minimizes the time integral of the Lagrangian function for the system.

The advantage of formulating the equations of motion in terms of a minimum principle
is that the minimization condition is independent of the choice of integration variables, i.e.,
coordinate transformations. We can therefore express the Lagrangian in equivalent ways,

L =T(i;) —Ulzy) = T(i;(g5,4,t)) — Ulz;(g5,t)) - (5.28)

We will then generally take the Lagrangian as a function of the generalized (independent)
coordinates,

L:L<q7Q7t) EL(q177QS7QI77QS7t) (529)
HaMILTON’s principle becomes
to
) / Lq,4,t) = 0. (5.30)
t1
We can now again translate the results of the previous section,
Tt (5.31)
i) — qi(t) (5.32)
yi(x) = di(t) (5.33)
f{yz(l’),y;(l’),l‘} %L(qj’qjvt% (5'34)
and find the LAGRANGE equations
oL d 0L
— ———=0 ) =1,...,s. 5.35

These equations are valid if all forces (apart from forces of constraint) can be derived from
a potential”®, and if the m = 3n — s equations of constraint are given in the form

frlg, ) =0, k=1,...,m. (5.36)

Such constraints are called holonomic. If the constraints do not explicitly depend on time,
they are called scleronomic, otherwise rheonomic.

3This is the case, e.g., for conservative forces.
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Example 5.2: Particle in a cone. A particle of mass m is constrained to move on the inside
surface of a smooth cone of half angle .. The particle is subject to a constant gravitational force.
Determine a set of generalized coordinates and the corresponding constraints. Find LAGRANGE’s
equations.

We choose cylindrical coordinates, with the apex of the cone located at the origin. The con-
straint keeping the mass on the surface is

z =rcota, (5.37)

so the system has two degrees of freedom and we need two proper generalized coordinates. We
eliminate z. Then

v =72+ T’2g2.52 +32 = 7'“2(1 + cot? a) + TQ(ﬁQ =r?cesc? o+ r2gz.52 , (5.38)

while the potential energy can be taken as

U =mgz = mgrcota. (5.39)
The Lagrangian is
L= % (¢2 csc? r2¢2) — mgr cot ac. (5.40)
L does not explicitly depend on ¢, so 0L /0¢ = 0, and the LAGRANGE equation for ¢ implies
d oL
— = =0, (5.41)
dt 9¢
such that oL
—— = mr*¢p = constant. (5.42)
99
This is the angular momentum about the z-axis. The LAGRANGE equation for r is
oL doL
— — ———=0 5.43
or  dt or ’ (5.43)
or .
i —r¢sin®a + gsinacosa = 0. (5.44)

Example 5.3: Pendulum with rotating support. The point of support of a pendulum of
length b and mass m moves on a circle of radius a rotating with constant angular velocity w
(Fig. 13). Find the equations of motion.

Choose the center of the circle as the origin. The Cartesian coordinates of the mass are then

x = acos(wt) + bsinb ,

5.45
y = asin(wt) — bcosh . (5:45)
where 0 is the angle between the string and the vertical. The velocities are
i = —aw sin(wt) + bl cos b,
(wt) (5.46)

) = aw cos(wt) + bl sin .
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Figure 13: Pendulum with rotating support.

Clearly, the single generalized coordinate is 0. The Lagrangian is

L=T- U—Q(x—f—y) mgqy

m , _ (5.47)
=3 [a*w® + b*0” + 2awbf sin(f — wt)| — mg(asin(wt) — beosf) .
To find the equations of motion, we calculate
d oL 9
ey = mb*0 + mbaw(f — w) cos(f — wt) (5.48)
oL : :
50 mbawl cos(0 — wt) — mgbsinf | (5.49)
and find
.. 2
0 = a% cos(f — wt) — % sinf . (5.50)

5.4 LAGRANGE’s equations with undetermined multipliers

Holonomic constraints, of the form (5.36), can always be solved to give a set of independent
generalized coordinates. Any set of constraints that involve the velocities are nonholonomic
unless the equations can be integrated to give holonomic constraints. This is the case for
constraints of the form

Z af’“ q; + %dt =0, (5.51)
because this can be written as of
J2

— =0. 5.52

I (5.52)
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If the constraints are given in differential form, we can alternatively incorporate them into
LAGRANGE’s equations using the method of undetermined multipliers. For constraints of the
form™

Zaf’“ - k=1,....m, (5.53)
0q;
the LAGRANGE equations are (see Eq. (4.43))
OL d 0L O
oL 4oL M E — ¢ 5.54
dq;  dt 0g; k()aj ’ (539

While the advantage of the Lagrangian formalism is that one does not need to specify the
forces of constraint, in certain circumstances these forces might be of interest. The method
of the undetermined multipliers allows to calculate these forces. It can be shown that the
generalized forces of constraint are

Z Ak gﬁ (5.55)

Example 5.4: Rolling disc. Find the equations of motion, the forces of constraint, and the
angular acceleration of a disc rolling down an inclined plane.
The kinetic energy is

1 1_. 1 1 .

with M and R the mass and radius of the disc, respectively, and I = $MR? its moment of
inertia about the central axis (see Sec. 9). The potential energy can be taken as

U=Mg(l —y)sina, (5.57)

with { the length of the inclined plane and « its angle of inclination. The Lagrangian is

1 1 :
L:T—U:§Mf+ZMW¢—A@M—wmm, (5.58)

while the equation of constraint is
fly,0) =y—RO=0. (5.59)

We could use this equation to eliminate eithery or 0. Instead, let’s use the Lagrangian multiplier,
in which case the LAGRANGE equations are

L L
8__18_+)\8f 0, (5.60)

%—Eg—f—/\%zo. (5.61)

“This is equivalent to the form Eq. (5.51), since in the variation of L we hold the time fixed at the endpoints.
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Using the Langrangian above, this gives
Mgsina— My+A=0, (5.62)
1 .
—EMR@—RAzo. (5.63)

Differentiating the equation of constraint gives

é:

Yy
2 5.64
R ) ( )
and inserting this into Eq. (5.63) we find
Lo .
A= -5 Mj. (5.65)
Using this in Eq. (5.62) gives the equation of motion
905
j =95 (5.66)
3
and, hence, the constraint Mos
N = _gsma (5.67)
3
Moreover, we then find
. 2gsina
0= . 5.68
3R (5.68)

The rolling of the disc reduces the acceleration by a factor 2/3 compared to sliding without
friction. The magnitude of force of friction prevent the disc from sliding and forcing it to roll is
just A\ = —(Mg/3)sin a.

The generalized forces of constraint are

af M gsin
=A== ——" 5.69
Q=2 e, (5:69
of MgRsin «
= Az = —RA= """ 5.70
Q=225 =R | (5.70

Of course, we could have used the relation § = 1/ R to eliminate § from the Lagrangian, to
obtain

3
L= ZMyf — Mgl —y)sina, (5.71)

which immediately leads to Eq. (5.66) via LAGRANGE’s equation. However, this does not give us
the forces of constraint.
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5.5 The method of similarity

We start with proving a theorem. The kinetic energy of a system of n particles of mass m,
is given in rectangular coordinates as

n 3
- % DY mail,. (5.72)

a=1 i=1

Next, we express the system in terms of generalized coordinates and velocities, i.e., we write

aja,i:ajai(Qj)t)a jzlv"'737 (573)
04 04

Tos = E " . 5.74

’ (9q] ot (5.74)

J

The kinetic energy becomes

. A A\ 2
T — Z mg |:Z 8!Eaz affqazq]qk 19 Z ag:qa; agz,z qu X Z (8;?) ] . (5.75)

ijk iJ

If the relations between the coordinates do not explicitly depend on time, this has the form
T =" adix. (5.76)

the kinetic energy is quadratic in the generalized velocities.

Example 5.5: KEPLER’s third law. The gravitational potential has spatial dependence 1/r.
What is the relation between the size of the planetary orbits and the times of revolution around
the sun?

The gravitational potential energy scales as

Ular) = aU(r) : (5.77)

If a planet moves along a curvey, then the rescaled curve oy is also an allowed planetary motion.
If we now also rescale time by t — (t, we have & — («/), and the kinetic energy scales as
T — (a/B)?T. The Lagrangian will be invariant up to an irrelevant global factor ifa®/3? = 1,
i.e. if the squares of the revolution times are proportional to the cubes of the sizes of the planetary
orbits. This is KEPLER’s third law.

Now we will prove a useful theorem. Taking the derivative w.r.t. ¢; then gives

oT
% = andn + > ajd;, (5.78)

k J

and multiplying by ¢, and summing over [ gives

. oT . . .
> “aq ~ D s + D anditr =2 ) ajd;dn = 2T (5.79)
! ! Ik 5 jk
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This is a special case of EULER’s theorem: For a homogeneous function f(y;) of degree n, we

have® of
Zyka— =nf. (5.82)
A Yk

5.6 Conservation laws and symmetry
5.6.1 Conservation of energy

Assume that the motion of a system is invariant under time translations, i.e. the Lagrangian

does not explicitly depend on time:
oL

ot

(Note how this is phrased: This does not mean that the system is static, but that, given fixed
initial conditions at some time ¢, the subsequent motion is the same regardless of the value
of t.) In this case, the total time derivative of L becomes

—0. (5.83)

dL 0L . oL

— =) —G+y — 5.84
dt ; 8qjq] ; anqJ ( )

Using the LAGRANGE equations gives
d OL d oL
— = — (g 5.85
F = gy g~ ;dt(q]aq.j), (559
7 d oL
— i——L|=0. 5.86
7 (Z Ui, ) (5.86)
The quantity in the parentheses is constant in time; it is conventionally denoted by H:

Gi— — L = H = constant. (5.87)
j
aqj

Let us now assume that 0U/0¢; = 0. Then

oL _&(T —-U) aT

B S (5.88)
9q; 9q; 9q;
5This is actually easy to prove. If f(Ayx) = A" f(yx), then
9
o k) =nA" " f (i) (5.80)
but also 5 o O0\) of
_ o Ye) _ o
af()\yk) = zk: dur O\ zk: e (5.81)

Eq. (5.82) follows from setting A = 1.



In this case, Eq. (5.87) becomes
oT
; d;

Using Eq. (5.79), this becomes finally
2I' —T+U =T+U = H=F = constant. (5.90)

The function H, defined in Eq. (5.87), will be discussed in detail in Sec. 5.7. The relation
E = H is valid if (a) the kinetic energy is homogeneous of degree 2 in the generalized
velocities, and if (b) the potential is independent of the generalized velocities.

5.6.2 Conservation of linear momentum

Now assume that the motion of a system is not affected by a spatial translation. We consider
an infinitesimal translation of the each position vector (i.e. the whole system), r, — r, + 0r.
Writing 6r = ), dz;e;, the shift of the Lagrangian L = L(z4;, T4,) is

5L = Z 8%15% =0 (5.91)

(we assume that the displacement is time independent, i.e. 0%,; = 0). Because the three dz;
are independent, it follows that

oL
=0. 5.92
%o .
Usinge LAGRANGE'’s equations, this is equivalent to
d oL
— =0 5.93
dt &~ din; (5:93)

SO

oL B oT-U ) )
Otay 2. Oy Do ( 2 xiﬂ')
@ J (5.94)
= Z MeTq; = Z Da,j = constant .

It follows that the total momentum ) p, of the system is conserved. (If the system is in-
variant only under translation along a particular direction, then only the momentum in that
direction is conserved.)
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5.6.3 Conservation of angular momentum

Now assume that the motion of a system is not affected by a (fixed) rotation. We will again
consider an infinitesimal rotation, denoted by 6. Then all position vectors change according

tor, — r, + 0r,, where now
or, =00 xr,.

Now, also the velocity vectors will change, according to
or, =00 x 7,.

The corresponding change in the Lagrangian must vanish:

oL = Zax“(hamtzaxméaba,i =0.

Using Eq. (5.94) and the LAGRANGE equations, we can write this as

(SL = Zpa,iéxa,i + Zpa,iéjja,i = 07

a,t a,i

or

Z (pa ' (slra +pa ' (S'f.a) =0

a

Using Egs. (5.95) and (5.96), this becomes

Z [pa ’ (50 X ra) +Pa - (50 X 'i'a)}

a

L _ o 4 _
:;50- [0 X Pa + T4 X Pa) —59'£§:(Taxpa)—0-

Because 06 is arbitrary, we have

and hence

Z(Ta X Po) = ZL“ = constant .

a

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

The total angular momentum of the system of particles is conserved. Again, if the system is
rotationally invariant only about one axis, then the angular momentum about this symmetry

axis is conserved.

These seven constants (or first integrals) are the only ones that are additive. They are
intimately related to the homogeneity of time and the homogeneity and isotropy of space.
The discovery of the connection between symmetry and conservation laws goes back to

AMALIE EMMY NOETHER (1882 - 1935). See Fig. 14.
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Figure 14: Commemorative plaque for Amalie Emmy Noether on her birth house in Erlangen,
Germany. (The instructor happened to be born in the same town.)

5.7 Canonical equations - Hamiltonian dynamics

In Lagrangian mechanics, the generalized velocities are the time derivatives of the gener-
alized coordinates and thus not strictly independent. In Hamiltonian dynamics, one uses
generalized momenta instead of the generalized velocities. The generalized momenta are on
equal footing to the generalized coordinates. This allows for more general coordinate trans-
formations, the so-called canonical transformations. This is the strength of the Hamiltonian
formulation.

In analogy to Eq. (5.94) one defines the generalized momentum by

p=g (5.103)
The equation (5.87) defining the Hamiltonian can then be written as

H=> pjg—L. (5.104)
i

The Lagrangian is (as always) considered as a function of the generalized coordinates and
velocities, and possibly time: L = (g;,q;,t). We can solve Eq. (5.103) for the generalized
velocities, ¢; = ¢;(qx, pk,t). The Hamiltonian is always considered to be a function of the
generalized coordinates and momenta (and possibly time): H = H(q;, p;, t).

With these conventions, the total differential of the Hamiltonian is

oH oH OH
H = R —dt. 1
d E ( 50, dg; + o, dp]> + BT dt (5.105)

J
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On the other hand, using Eq. (5.104) we can write

oL oL oL
dH = 1;dp; dg; — —dq; — =——dq; | — —dt. 5.106
Xj: (qg p; + pidd; 90, ™ 94, %) BT (5.106)
The second and forth terms in the parentheses cancel, and we find
: : oL
dH =" (qjdpj - pjdqj> -5t (5.107)

J

Comparing Egs. (5.105) and (5.111) give HAMILTON’s equations of motion

il (5.108)
;= 2 (5.109)
as well as
oH B oL (5.110)
o ot '

These 2s first-order differential equations are equivalent to the s second-order LAGRANGE
equations.

Moreover, using Egs. (5.108) and (5.109) in the total time derivative of the Hamiltonian
gives

dH 0H . o0H . oOH .. .. oH oH
E_;(é_%qur@pj)+W_;(_ijj+ijj)+§_W' (5.111)

The Hamiltonian is constant in time if it does not explicitly depend on time.

Example 5.6: Particle in cylinder. A particle of mass m is subject to a force F = —kr and
is constrained to move on the surface of a cylinder defined by 2> + y* = R>.
The potential corresponding to the force is given by

U= %W = %k(yf +y°+2%) = %k(RQ + 2%). (5.112)

The squared velocity is . .
v* = R? + R*0* + 2%, (5.113)

Because R = 0, the kinetic energy is
T = %(RW + 27, (5.114)
and we find the Lagrangian

L=T-U-= %(R292+22) —%k(R2+22). (5.115)
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The generalized momenta corresponding to 6 and z are

Py — % MR, (5.116)
oL .
D: = 5 = mz. (5.117)

The Hamiltonian is equal to the total energy (why?), and we find

2 2
Py + 2z

H=T —
d 2mR2  2m

1
+ §k;z2. (5.118)

(We have dropped the irrelevant constant kR?/2.) HAMILTON’s equations are

Do = —%—IZ =0, (5.119)
p: = —88—];[ = —kz, (5.120)
6= g_g - %, (5.121)
5= g]i - %. (5.122)

It follows from Eq. (5.119) that py is conserved, and using Eq. (5.121)
po = mR%0 = constant. (5.123)
This is the angular momentum about the z axis. Egs. (5.120) and (5.122) give
mz+kz=0. (5.124)
This is the equation for a simple harmonic oscillator.

The generalized coordinates ¢; and momenta p; are called canonically conjugated variables.
We have seen that if the Hamiltonian does not depend on one of the coordinates, the corre-
sponding momentum is conserved. Such a coordinate is called cyclic. It follows from

oL  OH

= =__ 5.125
oqy, oqy ( )

Dk
that a cyclic coordinate will also be absent in the Lagrangian, and LAGRANGE’s equations
then imply that a cyclic coordinate leads to a conserved momentum. However, in Lagrangian
mechanics, the corresponding generalized velocity is still present, while in Hamiltonina me-
chanics we can completely eliminate the corresponding two equations, thus reducing the
number of first-order equations to 2s — 2. We can determine the value for the conserved
momentum from the initial conditions, say p, = «. The equation of motion for the cyclic
coordinate gy, is

OH

-2 = W (5.126)
OPk | =

qr
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with solution

qk = /dtwk- (5.127)

From the example above it would seem that there is no advantage of HAMILTON’s over
LAGRANGE’s method, since we resubstituted the equations to obtain a second-order equation.
However, Hamiltonian mechanics admits a larger class of coordinate transformation (the
canonical transformations). It turns out to be always possible to find a coordinate system
where all coordinates are cyclic (HAMILTON-JACOBI method).

5.8 Derivation of HAMILTON’s equations from a variational principle

HAaMILTON’s equation of motion can be derived from a minimum principle. Using Eq. (5.104),

we can write Eq. (5.30) as
to
t1

5/ (ijq'j—H>dt:0. (5.128)
J

Performing the variation, we find

to
OH OH
p:8G; + G:0p; — —08q; — —p; |dt =0. 5.129
t/; < J J J J aqj ] 8]7] ¥l ( )

We regard the ¢; and p; as independent. Integrating by parts gives

to
. OH ) OH

and HAMILTON’s equations follow.

5.9 LiouVvILLE’s theorem™

The 2s-dimensional space consisting of the ¢; and p; is called phase space. The motion of a
system corresponds to a unique path in phase space. No two paths can ever intersect, due to
the uniqueness of the solutions to the equations of motion for given initial conditions.
Frequently (e.g., in statistical mechanics) one considers the density p of points in phase
space. We will prove that a given volume in phase space is invariant under the phase flow
(motion according to the equations of motion).
The number N of “particles” within a phase-space volume dv is given by

N = p(q,p) dv = p(q,p) dq:dqs . . . dqsdp,dp, . . . dps . (5.131)
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Now consider a volume element dq;dp;,.'°

through the “left” side per unit time is

The number of particles entering (or leaving)

dN,

— =p(... .. d 5.132

The number of particles leaving (or entering) through the “right” side per unit time is

dN, ) .
dp . Ogy
= —d o —dag. )d
(,0 + o0 Ik + ) (Qk + 20 Qk) Dk (5.133)
) ap o
= pgrdpr + | 5—qr + —P dqrdpg + .
oqy, oqy,

Hence, the total change in particles (per unit time) in g, direction is

dN,, _dN, dN; _ (dp .
dt At dt

ol
— 134
o0 Gk + Bar P) dqrdpy, . (5.134)

In a similar way, we find the total change in particles (per unit time) in p;, direction as

dN,, dN, dNs.  (9p
dt . at PP

Opy.
— 4+ —p |dgid 5.135
Ok ak>Qkpk ( )

The net change of particles per unit time in the volume is of course the rate of change per
unit time of the density in the fixed volume element dqxdpy, or

dp dp . O dp Opy
d d — — —p |dgrd 5.136
o Qakdpr = (8 Qk+aq P+ap pk’+ap ) qrdpy, , ( )

or, dividing by dgidpy and summing over all k,

dp (3,0 ., Oqp dp . Opx )
= = Gt —p+ Dt =P 5.137
ot Ek: 90 ™ " 0qe” " ope™ T apy (5137
Now ' '
Odp  Opx _ O°H  OPH (5.138)
Oqr ~ Opr  O0qOpr  Oprdgk '
where we used HAMILTON’s equations, so we have
dp dp . . Op . dp
0=— — — — = —. 5.139
BT > (aqk% + 8pkpk> 7 (5.139)
k

This result is known as LioUviILLE’s theorem.

181.e., with corners (g, k), (qx + dqk, Px), (qk, Pr + dpk), (qx + dqk, pr. + dpx). This is a volume element
“fixed in phase space”, not a moving element of the phase space “fluid”.
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6 Central-force motion

In this section, we study systems of two particles affected only by forces directed along the
line connecting the two particles (“central forces”).

6.1 Reduced mass

We need six coordinates 1, 75 to fully specify the state of a two-particle system. For central
forces, three out of the six coordinates are uninteresting. The potential energy will only
depend on r = |ry — 1|, and the Lagrangian for the system is

mq . mo .
L= il + i = Ur). (6.1)

As a preparation, let us figure out how the total momentum of the two particles changes
if we go to a different inertial system moving with relative velocity V. The relation between
the velocities isv; = v, +V, 7 = 1, 2. Here, the prime denotes the moving system. Therefore,

we have the relation

The total momenta in the two systems are P = > . mv;, P’ = . mv}, and we find the
relation between the momenta in the two systems

P=P+V> m. (6.3)

Therefore, we can find a system in which the total momentum vanishes, e.g. P’ = 0. The
corresponding relative velocity is

P miv1 + Mmoo
V_ _ v, 2V (6.4)
>oimy my + me
We can write this as the derivative of
miri + mer
R = ST et (6.5)

mi + Mo

This is the center of mass (CM) of the system.

Instead of r; and r,, we can describe our system by the location of the CM, R, and the
relative distance of the particles, r = ro — r1. Now we choose the origin of our coordinate
system to be at the center of mass; i.e., we have R = 0 or

miry +more = 0. (66)

Combining this with r = r, — ry gives

mo
r, = ——+ r,
my + Mg
my (6.7)
ro——mr
mi1 + mo

60



The Lagrangian becomes

L= gw? —U(r), (6.8)
where e
1M2
b= — (6.9)
mi + mo

is the reduced mass. We see that for central forces, the two-body problem can be reduced to
the motion of a single “particle” of mass p. If desired, the individual motions of the particles
can always be obtained using Eq. (6.7).

6.2 Conservation theorems

The central force field is spherically symmetric, hence the angular momentum is conserved:
L =1r X p = constant . (6.10)

It follows that the motion of the system is restricted to the plane orthogonal to L. The problem
is effectively two-dimensional, and it is convenient to choose polar coordinates:

L= g(f2 +7%0%) = U(r). (6.11)

We see that the coordinate ¢ is cyclic, so the corresponding conjugate momentum is con-
served:

: _8_[/_0_1(9_[/ (6.12)
Pe =0, =" T dtog’ '
or oL
Py = = = pur’p = [ = constant . (6.13)
9

The constant [ is called a first integral of the motion; it has allowed us to integrate one of
the e.o.m. immediately. It has a simple geometric interpretation. The area swept out by the
radius vector in a time interval dt is

1

dA = §r2dg0, (6.14)
and so
% = 17"2 oL constant (6.15)
at 2 YT o T ' '

The radius vector sweeps out equal areas in equal times. This result depends only on the
central nature of the force, and not on the 1/r? behavior. This result was first obtained by
JonanNEs KEPLER from observations of planetary motions.

We had eliminated the uniform motion of the CM by our choice of coordinates, so conser-
vation of linear momentum does not add any new information to the solution of the problem.
Energy conservation, however, gives a further non-trivial restriction on the motion:

1 102

(7% +1%¢*) + U(r) = 5¢* + =— + U(r) = constant . (6.16)

F =
2 2 pr?

=
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6.3 Equations of motion, orbits, and effective potential

We have seen in Sec. 1.3.2 how to use the conservation of energy to solve the general one-
dimensional mechanical problem. For the present case, Eq. (??) gives

dr 2 2
N TP o

This equation can be integrated to give r(t).
If we are interested in the trajectory, we need the functional relation between r and .
Using

substituting ¢ = [/(ur?) and Eq. (6.17), and integrating, we find

T2

/dr\/ ) : (6.19)

2,uEU

2/““2

The case U(r) oc 72 is the harmonic oscillator (see Sec. 2.2). The case U(r) o 1/r will be
treated in Sec. 6.4.
The radial velocity of the motion is given by Eq. (6.17). The vanishing of the left side, 7,
corresponds to a turning point of the motion; the condition is
l2

E-U(r)— 37 =0 (6.20)

If one chooses the angle ¢ to be zero at a turning point, Eq. (6.19) shows that the motion is
symmetric about the turning point: we only have to choose the plus or minus sign accord-
ing to whether r increases or decreases. (Note that, according to Eq. (6.13), ¢ increases or
decreases monotonically.)

The existence and type of turning points depends on the form of the potential. If this
equation has two solutions, 7y, and 7,.x, the motion happens in that annular region. It may
happen that 7 = 0 for all times, corresponding to circular motion. There may be only a single
condition, 7 > 7, in which case the particles comes from and escapes to infinity.

The motion might be periodic, in which case the orbits are closed; otherwise, the orbits are
open. Eq. (6.19) allows us to calculate the change in the polar angle when the particle moves
from 7, to ryax and back. Because of the symmetry of the motion about the turning point,
that angle is given by

Tmax

2
Ap=2 [ dr U

o \/2M<E UL

The path is closed if Ay is a rational fraction of 27. This is the case for U(r) o r", with
n=—lorn=2.

(6.21)
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Eq. (6.16) shows that we can regard the radial part of the motion as an one-dimensional
motion with the effective potential energy

l2

Ver(r) = U(r) + 22 (6.22)
such that Eq. (6.17) becomes
dr 2
— =4/ —(E -V, . 6.23
Y 2B Valr) (629

We see that we can ontain the turning points by finding the roots of the equation £ —Vg(r) =
0.

6.4 Planetary motion: KEPLER’s problem

Writing the the potential for a central force with 1/7? dependence in the general form
Ur)=——, (6.24)

the trajectory for a particle moving in that force field is given by

/ dr’ Ur” . (6.25)

Tmin \/ E + VR 2/'”1/2>

To solve the integral, we change the integration variable to v = [/r’. This gives (du =
—Idr' /7"*; 1 will be sloppy with the variable names)

du du
— = — — . (6.26)
V2B + 2 — VI 9B — (u— kp1)?

Now we introduce v = u — ku/l, so we get

/ (6.27)
\/ Bu® 4 ouE — 112
and finally w = v/\/k2u2 /12 + 2 E, so"

= arccos(w) + constant, 6.28
o v () (629)
"We have cos(arccos(z)) = , so using the chain rule 1 = — sin(arccos(z)) arccos(z)’, and using sin? =

1 — cos?, we obtain arccos(z) = —1/v/1 — 22.
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or

v u — kn L ku
cos p = = L = U— . (6.29)
VEHRJR +2uE K222 +2uE  \/K2u2/12 + 2uE
This can be simplified to give the final answer
B
cos p = “—2 . (6.30)
2F1
1+ e
Now we define
12 2FE1?
= —, =4/1+ , 6.31
=g ¢ = (6.31)
and we can write the solution as
p_ 1+ ecosp. (6.32)
r

This is the equation for a conic section. We have chosen the constant such that ¢ = 0 corre-
sponds to the minimal value of . The parameter e is called the eccentricity of the orbit. In
Cartesian coordinates, the equation is

(1 —eHa? + 2epr +y* = p°. (6.33)

For x = () we obtain y = £p. The minimum and maximum values of = for y = 0 are

plet1 —=
Lmin,max = H = { pl (634)

T+e
The case e = 0 is a circle of radius p, as can also be seen from Eq. (6.33). For the special case
e = 1, T, diverges. Eq. (6.33) shows that this is a parabola, z = (p* — y?)/(2p). The case
0 < e < 1 corresponds to an ellipse (see Fig. 15), with length of the semimajor axis

Tmax — Lmin p k

_ _ S 6.35
¢ 2 1—¢ 2B (6.35)

(Note that £/ < 0 for the elliptic orbit.) z,.x is also called the pericenter (or perihelion for
the solar system), x,,;, is called the apocenter (or aphelion for the solar system). The distance
between the focal points of the ellipse and the center of the ellipse is

p P pe
S _ - = ae. 6.36
a7 12 T1te 1-e2 (6.36)
The length of the semiminor axis is obtained by setting © = —ae in Eq. (6.33) and solving

for y:

[
5>+ 2ep ¢ o= —. (6.37)

2,2
_ 2 9y P°€ pe  p
b= p_(l_e) 2 9 = - b
(1—e?) l1—e V1—e? /20| E|
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Tmin a ae Tmax x

_/

Figure 15: Ellipse.

Going back to polar coordinates, we can now write the minimum and maximum distance of
the orbit from the focal point as rp;, = a(l — €) and ry., = a(1 + e).

The discussion of the hyperbola is left as an exercise for the students. In summary, the
different eccentricities correspond to:

e>1 E>0 Hyperbola,
e=1 E=0 Parabola,
0<e<1l Viun<FE <0 Ellipse,
e=0 E=Vin Circle.

Here, Vi, is the minimum of the effective potential (6.22); for U(r) = k/r we have r =
I2/(pk) and thus
kp
R
So much for the geometry of the orbit. To obtain the period for the elliptic motion, we use
the expression for the areal velocity, Eq. (6.15), in the form

Vmin - (638)

2
dt = T'udA, (6.39)

or

2
T = 7’“‘A, (6.40)

with A = abr the area of the ellipse. Thus, we have

 2p k l L

—_—— 7 =7k . 6.41
[ 2|E|\2uE 2|E|? (6.41)
Alternatively, we can write this as
412 472
22— H a2pn? = 28 MaS, (6.42)

[2 k
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where we used p = b?/a = 1?/(kp).
For the case of NEWTON’s law,

, (6.43)

we read off k = Gm M. With the definition of the reduced mass, we can rewrite Eq. (6.42) as

4A1%a? Am%a?
2 = ~ fi M . 6.44
T Gon ) = Gl or m< (6.44)

The above discussion can be summarized in KepLER’s laws:

1. The planets move around the sun in elliptical orbits, with the sun in one of the focal
points.

2. The radius vector pointing from the sun to the planet sweeps out equal areas in equal
times.

3. The squares of the planets periods are proportional to the cubes of the planets semi-
major axes.

6.5 Time dependence of planetary motion™

Finally, we want to discuss the time dependence of the motion of the planets around the sun.
Our starting point is Eq. (6.17), which we can write as (recall that £/ < 0 for closed orbits)

L / dr [ /
- 2 2 E 12
\/_ (E-U)- £ \/ ¥+ |E| ~ ulE

/ua/ /ua/
V- 7“2+2a7"—b2 \/&262 r—a2

where we used U = —k/r, a = k/(2|E]), b J,a=p/(1—¢e?),b=p/V1—¢e
We substitute r = a(1—ecos§) (the parameter f is called the eccentric anomaly for historical
reasons) and find

t:\/'u?ag/(1—ecos£)d£:\/%&(ﬁ—esinﬁ)—i—r*, (6.46)

where 7* is the time of perihelion passage. Setting the clock such that 7* = 0, the parameter-
ization of the trajectory is

(6.45)

r=a(l —ecosf), t= %az(f—esmg)- (6.47)

From this result, we can also obtain the Cartesian coordinates x = r cos ¢, y = rsin ¢, of
the trajectory in dependence on . Using Eq (6.32), we can write

ex=p—r=a(l —e*)—a(l —ecosé) =ae(cosé —e), (6.48)
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and y = V1?2 — 22, s0
x=a(cos§ —e), y=aVv1l—e?sin{ =bsing. (6.49)

The magnitude of the radial velocity is given (after some algebra) by Eq. (6.17):

‘ 2|E] e , k. (6.50)
Up =7 =4 — Sinp = 4/ —esiny, .
Boy1—e? 1p

while the magnitude of the transversal velocity is given by

dgpﬁ

— . 6.51
dr dt ( )

Ve=TQ =T

Using Eq. (6.19) (and even more algebra) we find

k
v =] —(L+ecosyp). (6.52)
wp

k
v:\/vf—i—vf:1/—\/14-62—1—2600590. (6.53)
©p

It is maximal at perihelion (p = 0) and minimal at aphelion (¢ = 7).

The total velocity is

6.6 The Laplace-Runge-Lenz vector”

We show that the vector

l:vxL—g (6.54)
is constant in time:
%l —ox L - li—v + kr(:g' . (6.55)
We insert L = pr X v and obtain
%l =y (©-v) — (B -7) — kT” + k’"(:;' . (6.56)
Inserting the e.o.m. uv = —kr/r® shows that this expression vanishes.

The lenght of I is most easily evaluated at perihelion, where v = v, = \/k/up(1 + €) and
r =r, = p/(1+e). Moreover, by definition |L| = v/kpy, so |l| = \/v?|L|? + k2 — 2v|L|k =
VEE (L +e)? + k2 — 2k2(1 +e) = ke.
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6.7 Perihelion shifts*

The elliptic orbits for a single planet in a Kepler potential U(r) = —k/r are closed and the
locations of the perihelions are fixed. The influence of other planets, the oblateness of the
sun, and the effects of General Relativity can be taken into account by small corrections 6U
of the Kepler potential; these corrections result in a constant shift of the perihelion. We will
calculate this shift approximately for

k
U(r) = - + U, (6.57)
with (a) 6U = 3/r?, and (b) 6U = ~v/r3. We have
e 2l d T 2
Ap = / dr = —2a dr\/Q,u(E —U(r) — 5 2) . (6.58)
2 T
e 7ﬂv@M(E-Uoj—2LQ> o s

We expand the integrand:

a7 K 2
Ap = —QE / dr\/Z,u(E—i- - —o0U — 2,[”2)

T'min

T'max 9 2
R e P
QIJ/(E + ; - 2M7"2>

Tmin

Tmax

—at (et ) Ty

T

T'min

The first term gives 27 for the unperturbed Kepler orbit, so the second term induces the shift

a7 T U
5g0—2a/dr\/2,u(E+——2 2) a S
S an) )
Tmax (660)
d wolU
=2— dr .
dl k 12
P W4E+;—ﬁﬁ)
Now we use l
dp(r) =dr (6.61)
7’2\/2,u<E —U(r) — 21%)
and obtain i
d 210
5¢(r)2a/r l; Udgo. (6.62)

0
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For case (a) we obtain

d [ up 2
=2— [ lgp = — :
R (6.69
0
and for case (b) (recall > = pkpu)
/ufyd dy wyl+ecosg0
dl 0l P
(6.64)
_ 98 d Ty 2£ 7Tk,u27 B _67Tk,u27
d\ 1 p) “d 3 B "o
Using p = a(1 — €?), the shifts for cases (a) and (b) are
2m 67y
5o = — o= ——— 6.65
7 a(l —e2)k’ 7 a?(1 —e?)%k (6.65)

7 Systems of particles

We will first generalize some of the concepts introduced in Sec. 6.1 to the case of n particles.
We will then discuss collisions of two particles.

7.1 Linear momentum and center of mass

We repeat and generalize the analysis of Sec. 6.1. Consider a system on n particles. The
relation of momenta in two different inertial systems, related by the relative velocity V/, is

Z MUy = Z mqvl, +V Z Mg , (7.1)

where now @ = 1,...,n. The total momenta in the two systems are P = ) m,v,, P’ =
> . Mav,, and again we find the relation between the momenta in the two systems

P=P+V) m,. (7.2)

Therefore, we can find a system in which the total momentum vanishes, e.g. P’ = 0. The
corresponding relative velocity is

V= =R, (7.3)

where

R— 20 MaTa (7.4)
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is the location of the center of mass (CM) of the system. If there are no external forces acting
on the system, the CM is either at rest (CM system) or moves with constant velocity. For a
continuous mass distribution, the CM is given by

R = %/rdm, (7.5)

with M the total mass of the system (M = [ dm).

Example 7.1: CM of a hemisphere. Find the CM of a hemisphere with constant density.
Let a be the radius of the sphere, p = M/(2wa®/3), R = (0,0, Z) by a suitable choice of the

coordinate system. Then

1 a
Z:M/zdm, (7.6)
0
and we choose dm = pdV = pr(a® — 2*)dz, so
1 13
7 = i /dzpﬁ(za2 —2%) = 72\3 = ga. (7.7)
0

In some situations it may be useful to separate a subsystem, which is then acted upon by
external forces. The force f, on particle a that is part of the subsystem can be split into a sum
of contributions f,, arising from all other particles b in the subsystem, and a net resultant
external force F',:

fa:Zfab"i_Fa‘ (7.8)
b#a
NEwTON’s second law for particle a is
d
“p, = . 7.9
P = L fwt (7.9

Summing over all particles a in the subsystem (and assuming constant masses), we find
d
P = ;gfm;m, (7.10)

where P = ) p, is the total momentum of the subsystem. If we use the CM system and
assume for the moment that all external forces vanish, F', = 0, we know the the right side
of the equation must vanish, and thus

S fa=0. (7.11)

a b#a

(This result follows also directly from NEwTON’s third law.) Therefore, in the presence of
external forces, the total momentum changes according to

d
—P = F_ . 12
o Z . (7.12)
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Using the definition of the CM, we can write this also as
MR=F, (7.13)

where M = )" _m, is the total mass of the subsystem, and F' = ) _F, is the total external
force. The center of mass of a (sub)system moves as if it were a single particle of mass M, acted
on by the total external force F'. (Note that, in the presence of external forces, the CM system
is no longer an inertial system.)

7.2 Angular momentum

Let us calculate how the angular momentum of a system of particles transforms under a
change of the coordinate system. Writing

=R+7, (7.14)

we obtain
L=> (raxps) =) (ra X mas) (7.15)
=> ma[(r, + R) x (¥, + R)]. (7.16)

a

Because in the CM system ) - m,r), = 0 and ) m,r, = 0, we have

L=) my(r,x#, +RxR)=> r,xp,+RxP. (7.17)

The total angular momentum does not depend of the choice of the origin of the coordinate
system only if the whole system is at rest. In general, the total angular momentum about
an origin is the sum of the angular momentum of the center of mass about that origin and the
angular momentum of the system about the position of the center of mass.

If all internal forces between particles are central (along the line connecting the two par-
ticles), then no interal torque arises and the only change in total angular momentum is due
to the external torque present. To see this, we write the time derivative of the angular mo-
mentum of particle a

Lo=7,Xp,. (7.18)

Expressing the change in momentum in terms of internal and external forces, this gives
o =Ta X (ZfabJrF) (7.19)
b#a

Summing over a gives the total angular momentum,

L=) L,= ZraxF + > TaX fab- (7.20)

a;b#a
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The last term can be written

Zraxfab:Z[raxfab_Frbxfba} :Z[(ra_rb)xfab}a (721)

a;b#a a<b a<b

where we used NEwTON’s third law in the last step. If the forces are central, this expression
vanishes, and we have

L= r,xF,=) N,=N, (7.22)

where N, is the external torque on particle a, and N is the total external torque. If the
resultant external torque about a given axis vanishes, then the total angular momentum about
that axis is conserved.

7.3 Energy

How does the total energy transform if we change into another inertial system that moves
with relative velocity V'? As before, we write v, = v/, + V, so

1 2 1 / 2
E—Egma'va—i-[]—ﬁ;ma(va—l—‘/) +U

(7.23)
M_ , , ma'vf
=5V +V-;mava+; S+ U,
or
/ / M 2
E=E+V-P+ V2 (7.24)

If the “primed” system is the CM system, then P’ = 0, and E’ = Ej, the internal energy. The
total energy of the system is equal to the sum of kinetic energy of a particle of mass M moving
with the velocity of the CM and the internal energy of the individual particles moving relative
to the CM.

We can calculate the work done on the system as it evolves in time as

2
Wip=>_ / F“ . dr, (7.25)
a 7

where F'*' is the total force (internal and external) acting on particle a. As we did before, we
can write

dp dv, dr dv mg d m
FfUldr, = 22 dr, = my— —2dt = my—— -v,dt = —— (v2)dt = —2d(v?), (7.26
a " Wa =gy W= Ma g =g 40 = Ma=gym*¥ > gt Ya) y d(va) , (7.26)
and so
2
W12:Z/F;Ot°dTa:T2—T1. (727)
@
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On the other hand, explicitly splitting the forces into internal and external as above, we can
write the work as

2 2
Wia = Z /ont dr, = Z/ (Fa + Zfab> -dr, . (7.28)
a7 L |

b#a

As before, f, is the force originating from particle b and acting on particle a. We will assume
that this force does only on the relative distance between the particles and acts along the line
connecting the two particles, i.e., we have (using NEwTON’s third law) f., = —fra = farT abs
with fo = fre and 7o, = (ry, — 1r,)/|rs — 74| the unit vector from r, to r,. Then we can
derive this force from a potential. Consider, first, the force between a and b only, U,, =
Uaw(|ry — 74|). Then we have

8Uab(]rb — ’l"a|> _8Uab(”"b — ‘l"a|> 8|rb — ’I“a’ _ _8Uab(r)

ab = = - Tab = fan(T)Fq )
fa or, Olry — 74| or, or b= far(r)fas
(7.29)
where in the second-to-last step we denoted r = |r, — r,|, and used
olry —r, O/ (1ry —14)? Ty, — T, R
[ VA P - (7.30)
ara ara (Tb - 'l"a>2
We see that we can derive this force from a potential of the form
Ta
Ua(ra) = / fa(r)dr . (7.31)
Ty

The total internal potential is then just Ui = ), <p Uap. If also the external forces can be
derived from a potential, F, = —0U,/Jr,, then the total potential energy is U = U, +
> o<t Ua- Then

2

2 2
W12:Z/F20t'dra:_/zai <Ua+ZUab)dra:_/dU:Ul_U2- (732)
¢ 1 1 ¢

a a<b 1

It follows that
T2-T1 :Ul —UQ, (733)

or
Ty + Ui =Ty + Us. (7.34)

The total energy of the system is conserved.

Example 7.2: Exploding satellite. A satellite of mass M explodes while in flight into three
fragments. One mass (m; = M /2) travels in the original direction of the satellite, mass my =
M /6 travels in the opposite direction, and mass ms = M /3 comes to rest. The energy F released
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in the explosion is equal to five times the satellites kinetic energy at explosion. What are the
velocities?

Let the velocity of the satellite be v. The three fragments have the following masses and
veocities:

M
my = 7, VvV = kl'v; (735)
M
meo = F , Vg = —]{ZQ’U; (736)
M
ms = ? , U3z = 0. (737)
Conservation of momentum and energy give
M M
Muv = 71{71’0 — Fkg?), (738)
M 1M 1M
E+4+ —v? = -—v? 4+ =—%. 7.39
7V T332V T3 (7.39)
We have ky = 3k; — 6, and so
M M Mv? Mv?
5( —v? | + = = k¥ + ——(3k, —6)? 7.40
(F02) + ot = 2kt Sy (ok — 07, 740
orki(ky — 3) = 0. We must have k; > 0, so
vy =3v, vy=-3v, wv3=0. (7.41)

7.4 Decay of particles

Frequently, conservation of momentum and energy allows to draw important conclusions
about the properties of various mechanical processes, independently of the precise nature of
the underlying interactions. Prime examples are decays and collisions of particles.

We start with discussing the decay of a particle into two particles. We will use two different
inertial frames to describe the process: the “center-of-mass” (CM) frame and the “laboratory”
(LAB) frame. We will generally denote quantities in the CM frame with primes and in the
LAB frame without primes.

The discussion is simplest in the CM frame, where the decaying particle is at rest. Mo-
mentum conservation implies that the momenta of the two outgoing particles add to zero:
p| = —ph. We denote the absolute value by p’ = |p|| = |[p}|. We can determine p’ using
energy conservation. Denote the masses of the two final particles by m4, mo, their internal
energies by Fy;, Ey;, and the internal energy of the decaying particle by E;. Energy conser-
vation gives

/2 /2 /2

mov
2 :E“Jrz]:n +E2“L2]jn
1 2

myv?

E; = FEy; + + Eg; + (7.42)
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Let

be the energy released in the decay. It will be converted into the kinetic energy of the final-
state particles:
2 1 1 /2
AE=D (4 )= (7.44)
2 \mp  me 21

with the reduced mass ;1 = myms/(my + my). Their speeds are given by v} = p'/my,
vy = p'/ma.

We now describe the process in the LAB frame, in which the decaying particle is moving
with velocity V. We consider particle 1 and denote its velocity in the CM frame by v} and in
the LAB frame by v;. We have v; = v + V. It follows

v =i+ V?— 20,V cost, (7.45)

where v| = [v}|, v; = |[v1|, V = |V]|, and 0 is the angle between the v; and V' (in the LAB
frame). This relation allows to calculate the velocity v, in the LAB frame (if 6 is known). It
can be illustrated in a diagram as shown in Fig. 16. Because v; = v + V, we can obtain v,

Figure 16: Disintegration of a particle into two particles. Left panel: vi > V; right panel:
vy < V.

by drawing a circle of radius v} around the tip of V. The velocity v; will point from point A
to any point on the circle (or, rather, the sphere whose intersection with the drawing plane
is shown). We distinguish two cases: vj > V and v] < V. In the first case, any angle ¢
is allowed. In the second case, the particle can be emitted in the forward direction with an
angle 6 that does not exceed

!
v
For the relation between the emission angles # and ¢’ in the LAB and CM frames, we read

off

Sin O = (7.46)

v sin 0’

tanf = ——— .
o vicosf +V

(7.47)
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We can solve this expression for cos §':

sinff  viv1 — cos? ¢

tanf = = 7.48
cosf  vicos® +V ' (7.48)
or
sin? 0(v) cos ' + V)? = v2(1 — cos® ') cos® 0, (7.49)
or
2 n/ V <2 / V2 .9 2
cos™ 0" + 2— sin” 0 cos ) + —5 sin"f —cos”0 =0, (7.50)
U1 U1
$0

V V2
cosf = ——sin®f + cosfy |1 — — sin® 4. (7.51)
U1 Uy

As can be seen from Fig. 16, the relation between 6 and ¢’ is unique for v; > V, and we have
to choose the positive sign such that ' = 0 for § = 0. For v]; < V, however, the relation is
not unique; for given 6, there are two possible endpoints for v; on the circle (points B and
C'in Fig. 16, right panel), corresponding to two different values for 6'.

7.5 Elastic collision of two particles

An elastic collision involves no change in the internal energies of the scattering particles.
Accordingly, the internal energy may be neglected when applying the law of conservation
of energy.

The scattering process is most easily described in the CM frame. We denote the initial and
final velocities of the two particles in the CM frame by ), u}, and v}, v}, respectively, and
the corresponding velocities in the LAB frame by u;, us and vy, v,. The relation of the initial
velocities in the CM and LAB frames is

mou miu

)y = ————— (7.52)

/
Ul - )
mi + Mo

my + Mo 7
where u = u; — u (see Eq. (6.7)).
Momentum conservation implies that the momenta of the two particles remain equal and
opposite after the collision, while energy conservation implies that their magnitudes also do
not change.'® The result of the collision is simply a rotation of the velocity vectors. If we

8This can be seen as follows: The condition of energy conservation can be written as

mi(uy)® | m3(uh)®  mi(v))® | m3(vh)?
- + : (7.53)
2m; 2ma 2my 2mg

In the CM frame we have mju) = mouf and miv] = mgv}, so

m3 (u})? <1 + 1) =mj(v})? <1 + 1) : (7.54)

my ma my ma

or u} = v}, and hence also u}, = v}.

76



denote by n a unit vector in the direction of v (velocity of particle 1 after the collision), the
final velocities are given by
m m
v = —2 _um, v, = 1 um, (7.55)
my + mso my + mgy
with u = |u|. To obtain the final velocities in the LAB frame, we have to add the velocity V'
of the center of mass:

. mo M1t + Molls . mq MU, + Mols
vl——un—i——, Vo = — un + .
m1+m2 m1+m2 m1+m2 m1+m2

(7.56)

No further information can be obtained from energy and momentum conservation. The di-
rection of n depends on the relative position of the particles before the collision, as well as
on the nature of the interaction.

We can again interpret these results geometrically; this will allow us to obtain some useful
relations. To this end, we use momenta rather than velocities. We denote the initial momenta
in the LAB frame by ¢, g> and the final momenta by p;, p». Momenta in the CM frame will be
denoted by an additional prime. Multiplying the relations (7.56) by m; and ma, respectively,
gives

p1 = pun + L(Ql +q2), p2=—pun+ 2 (g1 +q5). (7.57)
my + Mo my + Mo
(As usual, i = mymgy/(my + my) is the reduced mass.) The relation between the momenta

q; and p; is shown in Fig. 17. There, we have the following relations:

C

Figure 17: Elastic collision of two particles.
OC =pun, AO=——"—(q+¢:), OB=—"—(q+¢>), (7.58)
my + mo my + Mo

(and therefore 1@ = @1 + ¢2). The final momenta p,, p, are then given by the vectors /@

and C@ , according to Eq. (7.57). Given ¢; and g5, the points A and B are fixed; the point C,
on the other hand, can lie anywhere on the circle.
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We will now study the case that particle 2 is initially at rest. In this case, the length

OB = me q1 = pu equals the radius of the circle; i.e., the point B is located on the circle.
1+m2

The vector E represents ¢;, the momentum before the collision. The point A is located
inside the circle for m; < my and outside the circle for m; > ms,. See Fig. 18. The angles of

Figure 18: Elastic collision of two particles, with particle 2 initially at rest. Left panel: m; < meo;
right panel: my > ma.

deflection w.r.t. ¢; are denoted by 6y, 6,; the angle x, giving the direction of n, is the angle
of deflection of the first particle in the CM system. From Fig. 18 we read off that
Mo Sin Y 0 m™—X

= r = 7.59
my + Mg COS X 2 2 ( )

tan @, =

(note that AO = myq/(my + mg) and OC = OB = mayq;/(my + my)). Using (m; +
ma)?p1|? = (mimoun+m3u)? and (m1+ms)?|p2|? = (mymoun—mimoeu)? = 2m2m3u®(1—
cos x) (from Eq. (7.57) with ¢; = 0, so 4 = u;), we obtain the absolute values of the final
velocities as

m? 4+ m32 + 2myms cos 2mu
:\/ ! 2 1= Xu, ng—lsinz. (7.60)

U1
my + Mo

The angle between the velocities after the collision is given by the sum 6, + 60,. Fig. 18
shows that 0; + 05 > 7/2 for my; < mg, and 6, + 05 < 7/2 for my > mo.

The case that both particle move along a straight line after the collision (in the LAB frame)
corresponds to x = 7 (central collision). In this case, C' is located either to the left of A
(Fig. 18, left panel; p; and p, point in opposite directions), or to the right of A (Fig. 18, right
panel; p; and p; point in the same direction). The final velocities are then

my — Mo 2m1
— )

v = Uu. (7.61)

= s 1)2:—
mi + Mo mi + Mo
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The absolute value of v, is maximal in this case. It follows that the maximal energy that can
be transferred to the particle initially at rest is

2
Mot 4dmim
2Y2 max _ 17762 2E1,in, (7.62)
2 (mq + ma)

E 2,out,max —

where F ;, = myu? /2 is the energy of the initially moving particle.

Example 7.3: Scattering of dark matter on atomic nuclei. Let’s assume we have a dark
matter particle of mass m, = 100m, (where m, = 1.67 x 10727 kg = 938 MeV is the proton
mass), scattering off an atomic xenon nucleus (mass roughly m 4 = 130 m,,). The escape velocity
of our galaxy is about 500 km/s, or in units of speed of light 500 km/s/(299792 km/s) ~ 0.002.
This is the maximal speed of dark matter in the galactic halo — dark matter moves with nonrel-
ativistic speeds.

Let’s calculate the maximum transferred energy in the lab frame, scattering on a nucleus at
rest. We have |q1| = 0.002m, = 0.2 GeV, |q2| = 0. The maximal energy transferred to the

nucleus is then
dmam,,

— = E . 7.63
(ma+m,)2 % (7.63)

EA,out,max =
Using E\.in = |q11?/(2m,,), this gives E 4 oumax ~ 2 keV. That is the energy of a typical X-ray
photon.

For m; < my, the velocity of the first particle after the collision can have any direction.
For m; < my, the maximal scattering angle is given by
. ocC mo
SN0 pax = — = —. 7.64
PCTA0 T my (769
The collision is particularly simple if the masses of the participating particles are equal. In
this case, both points A and B are located on the circle (see Fig. 19). We have

X T—=X
0, == = 7.65
1 2 ) 2 9 ) ( )
and so
U1 = UCOS g , Uy = usin% . (7.66)

Note that 0; + 65 = 7/2. For a central collision (x = 7), we have v; = 0 and vy = u; i.e. the
first (moving) particle stops and the second particle (initially at rest) moves with the velocity
of the first particle.

7.6 Scattering cross sections

So far, all information obtained about the elastic collision of two particles was kinematic -
no information on the value of the scattering angle y was available. This information is
provided by the dynamics of the collision, i.e. by specifying the forces between the colliding
particles. Here, we will only consider the case of central forces. As usual, we will consider the
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Figure 19: Elastic collision of two particles with equal masses.

equivalent problem of the motion of a single particle (with reduced mass 1 = mymso/(my +
ms2)) in a fixed force field (as we did in Sec. 6).

We have seen in Sec. 6 that the trajectory of particle in a central force field is symmetric
about the line that connects the force center with the point of closest approach (see Fig. 20).
Therefore, the two asymptotes subtend the same angle, ¢, with that line. The scattering

x

/N4 T

o)

Figure 20: Scattering of a particle in a central force field.

angle is then given by x = |1 — 2¢y|. Using Eq. (6.19), we calculate the angle ¢, as

[e.9]

l/r?
o= [ dr (7.67)
0 / V2u[E-U@)] -5

Tmin
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(recall that r,;, is a root of the radical in the denominator in Eq. (7.69)).

It will turn out to be useful instead of the constants E and [ to use the velocity “at infinity”
Vs, and the impact parameter b. The impact parameter b is the distance to the force center at
which the particle would pass if the force were absent. With the usual convention that the
potential energy vanishes at infinity, the relations between these parameters are

2
E= ’“)TOO | = pbuy, (7.68)
and we have .
b 2
by = / dr /T . (7.69)
1 — 22U
T'min 2 /“)go

Using this result, we can calculate the scattering angle .

In practice, one usually considers the scattering of a beam of equal particles that move
towards the scattering center with the same velocity v... Different particles in the beam will
have different impact parameters and will therefore be scattered with different angles y. We
denote by dR the scattering rate — the number of particles dN that will be scattered by an
angle between y and y + dx within a unit time intervall 7', i.e. dR = dN/T (we used the
fact that the scattering is symmetric under rotations about the beam axis). The quantity dR
is inconvenient as it depends not only on the interaction, but also on the experimental setup
(namely, the density of particles in the beam). Therefore, one defines the (differential) cross
section

do = =" (7.70)

where the flux ® is the number of particles that passes per unit time interval 7' through
the cross section of the beam. do has units of an area and is completely determined by the
interaction (force).

If the relation between yx and b is unique, then only those particles with impact parameter
in an intervall between b(x) and b(x) + db(x) will be deflected by an angle between y and
X +dx. The number of these particles (per unit time interval) is equal to the product of ® and
the area of the annular region between the circles with radius b and b + db: dR = 27bdb ®,
and the cross section becomes

do = 2nbdb. (7.71)

To obtain the dependence of the cross section on the scattering angle, we write this as

do = Zﬁb(X)’M‘dX. (7.72)

dx

Frequently, one relates the differential scross section to the solid angle element df? instead
of the planar angle element dx. The solid angle between two cones with opening angles x
and x + dy is d§2 = 27 sin xdy, so

do =

-t ‘dQ . (7.73)



If one is interested in the actual scattering of one particle on another, one can use the
relations (7.59) to obtain the cross section in terms of the scattering angles in the LAB frame.

Example 7.4: Scattering of hard spheres. We consider the scattering of two hard spheres
with radii R, and Rs, and masses my and mo, respectively. We start with the scattering in

Figure 21: Scattering of hard spheres.

the CM system. In this case, we have to consider the scattering of a sphere of reduced mass

= myms/(my + ms) on a (fixed) sphere (see Fig. 21).
The impact parameter is given by

b= (R + Ry)cosa.

(7.74)

To obtain b(x), we observe that 2m = 7 /2+ 33 + x + . We know already that § = (7 —x)/2,

soaw=3m/2—30—x=x/2 so0
b(x) = (B + Rz)COS§7

and
_t R X
2 9 X

db(x) =
Inserting into Eq. (7.72) gives
do = 7(Ry + Ry)? cos g sin gdx = g

Expressing this result in terms of the solid angle element (see Eq. (7.73)) gives

1
do = Z(R1 + Ry)2dS.
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(7.75)

(7.76)

(7.77)
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The total cross section is obtained by integrating this expression over the whole sphere. We haved
[dQ= fow 27 sin xydy = 4m, so the total cross section is

=n(Ry + Ry)?, (7.79)

as expected.

To obtain the differential cross section in the LAB frame where on of the spheres is initially at
rest, we need to use the relations (7.59) to relate the scattering angles 0, and 0, to the scattering
angle x in the CM frame. The differential cross section is

sin yd
do = (R, + Ry)? ;( X (7.80)
Solving .
tanfy = —2SMX (7.81)
my + Mg COS X
for cos x gives
2
cosy = M i 01+ cosfiy[1— E; sin’ 6, . (7.82)

(see Sec. 7.4). For mg > m, the solution is unique and we need to choose the positive sign. Using
sin ydy = —d cos x and

—Tcos 20,
dcosX:sin91d91<—2—00881 1——sm 0, + >
/1 1 sm 20,

(7.83)
2 COS 20,4
= —sin #,db, (2— cos By + - ) ,
ma \J1— % sin® 0,
2
we find
: 1+ 2 2 COS 20,

do =m(Ry + Rg)Qw (2m cos b + ) ) (7.84)

2
ma ,/1—m—§sm201
2

For my > mgy we need to take the difference between the two solutions (as one of the LAB
scattering angles increases and the other decreases with x ) and find

1+ 2 2 cos 20,

— .
_ Mg
1/1 m728111 81

do = 7T(R1 + R2)2 sin 01d91 (785)

7.7 The RUTHERFORD cross section™

One of the most important applications of the general expressions for the cross section is the
scattering of charged particles is a CouLoms field, i.e. U(r) = k/r. We insert the potential
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into Eq. (7.69) and obtain

o0 b/ 9
r
Po = / dr - — (7.86)
T'min o T_Z o T/“)go
Here,
k k2
Tmin = ey e +b2. (7.87)

Integration gives (u = 1/r, du = —dr/r?)

[ — + R —
max b2 w2y bt p2vd,

0
1 1
gbg:—b/du :—/du . (789)
. \/1—u262—%u \/1—<u—|— k )2 2

where Upay = 1/7min. Shifting the integration variable y = u + b%% gives

HV5o
1
bo=— [ dy——— (7.89)
v N BT AT TV

where Ymax = Umax + W%' Next, we rescale w = y/1/1/b? + k2/(b*p2v’.). This gives

Woo

1 e
Oy = — / dw1 i arccos(w) o (7.90)
1
where Wy, = ymax/\/l/b2 + k2/(b*p?vd) = 1 and wee = k//vi p?b? + k2. Therefore
_k_
ubv2
(Pp = arccos —‘”kQ . (7.91)
\/ L+ b2 u2vd,
This implies
k2
b* = —— tan® ¢y (7.92)
pPvd
and with xy = |1 — 2¢y|
/{52
b* = —— cot? X (7.93)
JTds 2
Differientiating gives
db k 1 (7.94)
dy — 2mv2 sin £ '
Inserting into Eq. (7.73) and using sin x = 2sin(x/2) cos(x/2)
k? 1
do dQ (7.95)

4p2vl sin &
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8 Motion in a noninertial reference frame

In certain circumstances, it is convenient to use non-inertial coordinate frames to describe
the motion of a system. Examples are motion on the earth (taking into account the earths
own motion within, e.g., the solar system) and the motion of rigid bodies.

8.1 Angular velocity

Accelerated coordinate systems are typically associated with extended, rigid bodies. It is
therefore useful to distinguish between translations and rotations. (For instance, at a given
time, the translational movement could be associated with the CM, and the remaining motion
can be described as a rotation about an axis through the CM (why?).) How do we describe this
motion? Let us focus on the rotational motion. We denote the position vector of a moving
particle by r and its instantaneous velocity by v. Denote the angle between the position
vector and the axis of rotation by « (see Fig. 22). If within the time interval d¢ the polar angle

b

R ,AD
J

¢

Figure 22: Particle rotating about an axis.

changes by an amount df, the instantaneous speed of the particle is v = |v| = Rdf/dt =
|r|w sin o, where w = 0. Because v is orthogonal to both r and the axis of rotation, we can
write

V=wXTr. (8.1)

This defines the angular velocity w.
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If we denote the velocity of the translational motion by V' and include that motion for our
particle, we have, more generally,

v=V+wxr. (8.2)

What happens if we choose another origin O of our coordinate system at distance a from O?
We denote the translational velocity in this system by V' and the angular velocity by w. The
relation between the two position vectors is 7 = 7 + a, and we obtain

v=V4wxatwxF=V+dxF. (8.3)

We see that ~
V=V+wxa, w=w. (8.4)

The angular velocity does not depend on the choice of origin of the coordinate system.

8.2 Accelerating coordinate systems

First, we consider a coordinate system that moves w.r.t. an inertial frame with a time-
dependent translational velocity V'(¢), i.e. there is no rotation of the coordinates axes; the
fixed and moving coordinate axes stay parallel (or at fixed angles) to each other, see Fig. 23
(left panel). We consider the motion of a single particle in either coordinate system. The
velocity in the inertial frame, v, and the velocity in the accelerated frame, v’, are related by

vo=v"+V(t). (8.5)

How does the Lagrangian change if we change from the inertial to the accelerated frame?
The Lagrangian in the inertial frame can be chosen as

2
Lo = mT”O —U. (8.6)
Inserting the relation (8.5), we find
2
L' = m;) +mv' -V JF%V2 -U. (8.7)

To simplify this expression, we point out that adding to the Lagrangian the total time deriva-
tive of an arbitrary function of time and coordinates does not change the equations of mo-
tion.!” Since V?(¢) is an arbitrary function of time, it can be written as the time derivative of

This can be seen as follows: Let us write

L'(q,4,t) = L(g,4,t) + %f(% t). (8.8)

Then

to to to

s = / dt L (q,4.1) = / AL, 1)+ [ A5 g0 = S+ flalta), )~ flath).n) . 69

t1 ty t1

Since ¢(t1) and ¢(t2) are held fixed in the variation of the action, the equations of motions resulting from
S and S’ are the same.
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another arbitrary function and thus can be dropped from the Lagrangian. Similarly, we can
write

d d d

W=Vt =—(V.r')—r". =V 8.10
Y i —aVr) gV (8.10)
and drop the total derivative. The resulting Lagrangian is
2
L = m;’ —mr' -V -U, (8.11)
and the resulting equations of motion are
dv’ ou .
—=——-mV. 8.12
"t o~ " (8.12)
Writing V' = R, we can interpret the last term as an additional force f, = —mR that appears

in the accelerated frame. We write the final version of the equations of motion, expressed in
the accelerating coordinate system, as

. oU ..
Xoz | le A
X, 7R
) -
VAN ¢
Xy
N !
R O/ X2
!
p 3 p 3
O X o O X!
/
XOI )<| >(|

Figure 23: Fixed, accelerating, and rotating coordinate systems.

Now, we consider a (possibly time-dependent) rotation of the coordinate system, see Fig. 23.
We neglect the translational acceleration for the moment and further assume that the origins
of the two coordinate systems coincide (i.e. R = 0, and hence r’ = r, see Fig. 23, right panel).
The relation between velocities in the non-rotating and rotating coordinate systems is given
by?°

(’f.)ﬁxed - (’l") rotating twxr. (814)

OThere is somewhat of a notational dilemma here. As the origins of the two coordinate systems coincide,
the position of the particle is described by the same position vector. However, this vector has different
coordinate representations in the two different systems. We try to indicate this explicitly whereever it is
not clear from context.
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Generally, the relation between the time rate of change in the non-rotating and rotating
frames of any vector q is given by

)™ ()
a“9q _(“ twxq. (8.15)
( dt fixed dt rotating

We could proceed by inserting Eq. (8.14) into the Lagrangian (8.11), and then derive the
equations of motion (see App. D). However, in this case it is actually easier to consider NEw-
TON’s equations of motion directly. NEWTON’s equation in the inertial frame is simply given
by

m(#), ., =F. (8.16)

Here, F = —VU corresponds to the actual “physical”forces. Using the general relation (8.15)
to take the time derivative of the relation (8.14) gives the relation between the accelerations
in the fixed and rotating frames:

Dea=(5) (F) =(5) [(F) +wxr
fixed = dt fixed dt fixed dt fixed dt rotating

+w x ()

(8.17)

Xr+wx [(F) +wxr.

- (’l") rotating rotating + (w)rotating rotating

NEWTON’s equation (8.16) becomes (all time derivatives are evaluated in the rotating system,
so I drop the corresponding subscripts)

mi=F —mw xr—mw x (wXr)—2mw X 7. (8.18)

The last two terms on the right side are called the centrifugal force and the CorioLis force,
respectively.?!

Until now, we assumed that the origins of the two coordinate systems coincide. We obtain
the general case by simply adding the translational motion of the CM, according to Eq. (8.13),
and get

M) g = F —m(R) =i x 7 —mw x (@ xr) = 2mw x (F) (8.19)

rotating rotating

Note that the time derivatives in R are still evaluated in the fixed frame, as indicated by the
explicit notation.

8.3 Motion relative to the earth

We here assume the earth to be spherical and isotropic. We neglect any motion of the earth
related to the motion of the solar system as a whole, or any small disturbances (precession
of the earth’s axis etc.). We locate the “fixed” (non-rotating) coordinate system at the center

?1Gaspard-Gustave de Coriolis (1792 - 1843) discovered this effect during his study of water wheels. Only at
the end of the nineteenth century it became known under his name.
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of the earth, with the z axis pointing towards the North pole. The force on any particle of
mass m near the surface of the earth in this fixed system is then

F=mgy+f, (8.20)
where M
go= G e (5.21)

is the earth’s gravitational field (M, its mass and R, its radius), while f denotes any other
forces acting on the particle. ey is an unit vector in the radial direction.

The earth’s period of rotation w.r.t. the stellar background is 7. = 23" 56™4° = 86164 s
(sidereal day), so |w| = 27/7. = 7.29 x 107°/s. The force F' acting on the particle, as
expressed in a rotating and accelerating system that is attached to the earth’s surface is given
by Eq. (8.19). To express (R)ﬁxed in terms of time derivatives in the moving frame, note that
R is here the vector pointing from the center of the earth towards the position of the rotating
frame on the earth’s surface, and its only motion is a constant rotation (as measured in the
fixed frame) with the same angular velocity w, i.e. (R)rotating = 0 and hence (R)gxeda = w x R.
Using Eq. (8.15), we find

(R) L mwx (w x R), (8.22)

and the equations of motion become
mi = f +mgo — mw X [w x (r+R)| — 2mw x 7, (8.23)

where all time derivatives are evaluated in the rotating frame. The second and third terms
on the right side are the effective gravitational force on the earth’s surface; we define the
effective gravitational acceleration as

g=go—wx [wx (r+R)]. (8.24)
Near the surface of the earth we can neglect r < R, so
g=go—wx (wxR). (8.25)

This is a correction of order Rw?/g = 0.35%. Away from the poles and the equator, the
gravitational acceleration is not strictly directed toward the center of the earth. In total, we
now have

F = f+mg—2mw x 1. (8.26)

For instance, a body moving on the Northern hemisphere is deflected by the CorioLis force
towards its right, and towards the left on the Southern hemisphere.

Example 8.1: SUREF. A careless physicist drops a stone into the mine shaft at Sanford Un-
derground Research Facility (SURF; 1478 m depth). How far is the stone deflected from vertical
fall?
We need to solve the equation
F=g—2wXx17r. (8.27)
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We choose the z axis of the rotating frame in direction —g, and the x and y axes South and
East, respectively. SURF is located at Lead, SD (44°21'3" Northern latitude), so the polar angle
isf = 0.77 = 7/4. We have

Wy = —wcosh,
wy =0,

w, =wsinf .
The equation of motion in z direction is
Z=—g— 2(w,§ —wyd) = —g + 2yw cos . (8.28)

We can clearly neglect the second term, and obtain z(t) = —gt*/2 if the stone starts falling
from rest. The time for falling a distance —h is thent = \/2h/g.

The remaining equations of motion are
&= —2(wyz —w,y) =2gwsinb . (8.29)

and?®

= —2(w.& — wy2) = —2Zwcosf — 2¢wsin 6 . (8.32)

The gravitational acceleration acts in direction of z, so we will neglect & and y. This leaves
i = —2Zwcosf = —2(—gt)wcos b, (8.33)

soy = 2gw cos O(t3/6), or
_ wecost [8h3

3 g

=14cm. (8.34)

Example 8.2: FoucauLT’s pendulum. We use coordinate systems similar to those in the
previous example. The origin of the rotating system is located at the equilibrium point of the
pendulum. The equations of motion are

. T .

22Note that we can write the equations of motion in the following form:

T 0 2w sin 0 0 T
ij = | —2wsind 0 —2wcosf Y (8.30)
Z+g 0 2w cos b 0 z

with an antisymmetric coefficient matrix. This implies energy conservation: if we take the scalar product
of Eq. (8.30) with the vector m(i, g, £), the right side vanishes due to the antisymmetry and we obtain

d d
mai + myij + m + mgs = %@ (3 + 97 + %) + — (mg2) = 0, (8.31)

or T'+ V = constant. The reason is that the CorioLis force acts in a direction orthogonal to the velocity
and, thus, no work is done on the particle.
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whereT is the tension in the string of length (.? We consider only small angles, such that motion
in the z direction can be neglected and the pendulum bob moves only in the x-y plane. We then
haveT' ~ T, = mg, and

Z )
T,=-T-, T,=-T=. 8.36
é Yy g ( )
Reutilizing our results from above, we then find the equations of motion
= —%:1: + 2gwsiné, (8.37)
i = —%y — 2wsiné. (8.38)

We can solve this coupled system of differential equations by adding i times the second equation
to the first:

4 i+ %(3: +iy) = 2wsin Oy — id) = —2iwsin (i + i7) , (8.39)

Writing s = x + 1y, this is
§4 2w, +a’s =0, (8.40)

where we defined o = g/(. This is the equation for a damped harmonic oscillator, with solution
(see Eq. (2.38), with 3 — iw,, w? — o?)

s(t) = e st {A exp (z w? + a2t> + B exp(—i w2 + Ozzt)} . (8.41)

Since (for reasonable length of the pendulum) o >> w?, we can approximate this as
s(t) = e" =" [Ae" + Be™"]. (8.42)
We denote the (hypothetical) solution for w, = 0 by
s'(t) = 2'(t) + iy (t) = Ae" + Be ", (8.43)
or s(t) = e ™=ts'(t). This gives

x4 iy = [ cos(w,t) — isin(w,t)] (2’ + iy')
= 2’ cos(w,t) + ¢ sin(w,t) + i(—z'sin(w,t) + 3 cos(w.t)),

() = ("5 2225) CA)

We see that the plane of oscillation of the pendulum rotates with angular frequencyw, = wsin 6.

(8.44)

or, finally,

2In some sense, FoucaurLT’s pendulum is analogous to the falling particle of the previous problem, only that
the “leading” motion in —z direction is prohibited by the mass being fixed to a string. Alternatively to the
method followed here, we could implement the constraint 22 4 2 + 22 = ¢2 using LAGRANGE multipliers.
Solving for z = ¢1/1 — 22 /¢2 — y2 /(2 then allows for a more systematic expansion in small parameters.
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9 Dynamics of rigid bodies

9.1 The inertia tensor

We want to find an expression for the kinetic energy of a rigid body that takes into account
both the translational and rotational motion. If the rigid body consists of n discrete massive
particles, its kinetic energy is given by**

n 2
mqv,,
=% = (9.1)
a=1

We now use the relation (8.2) to express the v, in terms of a coordinate system that is fixed
w.r.t. the rigid body (i.e., which might have translational and rotational motion w.r.t. to the
fixed coordinate system of Eq. (9.1)) and find

T = Z (V+wxr,)’ Zm“VQJera (wx T, +Z (wxry)?. (92)

The first time on the right side is just MV?/2, where M = Y__m, is the total mass of the
rigid body. We can write the second term on the right side as

Zma (wx 7T, :Zmara-(wa):MR-(wa), (9.3)

where R is the position of the CM. Hence, this term vanishes if we choose the origin of the
moving system in the CM. To rewrite the last term in Eq. (9.2), we use the identity

(AxB)-(Ax B) = A’B>— (A-B)*, (9.4)
and find
> St wxr) =Y T W~ (w-ra)’]
a=1 a=1

SRS () - (Fom) ()
o 7 i J

— y k
S ]

Defining the inertia tensor

(9.5)

n
]ij = Z mg |:5U Z ZEi}k — ma,ixa,j:| s (96)
a=1 k

2TFor a “continuous” body, the sum has to be replaced by an integral.
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we can write the total kinetic energy as

T_—MV2 }:@%% (9.7)

Note that the inertia tensor is symmetric and, hence, has six independent components. For
a continuous mass distribution, it is given by

L; = V/,o(r) [5@‘ ; - xixj] : (9.8)

Example 9.1: Dumbbell. Consider a dumbbell, with two (point-like) weights of equal mass
m = 1 kg separated by a massless stick of length 1 m.
We locate the weights on the z axis, symmetric about the origin, and find (in units of kg m?):

I =1(1/2)* + (1&):%_5% (9.9)
I = 1[(1/2)* = (1/2)*] + 1[(-1/2)* — (-1/2))] =0, (9.10)
]122113:]23:0. (911)

Example 9.2: Cube. Consider a homogeneous cube of density p and side length b. Locate the
origin at the CM, and the coordinate axes through the centers of the sides of the cube.
Because of an obvious symmetry, we need only calculate I,y and I,5. We find

b/2 b/2 b/2 b/2

b3
IH:p/d:c/dy/dz(y2+22):pb/dy(by —|—12>
“bj2 —bj2 —b)2 _b/2 (9.12)
btooobt 1 1
= pb — ) = =pb® = “MV?
-7 (12'%12> 6" "6

and
b/2 b/2 b/2

Ilgz—p/dm/dy/dzxyzo. (9.13)

—b/2  —b/2  —b/2

We can write the result in matrix form,

60 0
I=10 8 0], (9.14)
0 0 i

with § = M2,
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9.2 STEINER’s theorem

The result (9.7) is only valid if the origin of the moving coordinate system is located at the
CM. However, in some occasions it is simpler to calculate the inertia tensor in a different
coordinate system. How does the inertia tensor transform under a shift of coordinates?

Assume we are given (or have calculated) the inertia tensor in a general (non-CM) co-
ordinate system. We denote the position vector by capital letters, R,, with components
Xa1,Xa2, Xq3. The inertia tensor is then

‘]ij - Z Mg |:6l] Z X(ik - Xa,iXa,j] . (915)
a=1 k

We denote the coordinates of the CM system with small letters, as before. Assume that the
CM is located at a, such that R = r 4 a. Then

Jij = Z Mg [513 Z(.ka + Clk)2 — (xa,i + ai)(xw- + CLj):|
a=1

k
n
= S 2 o
- Mq | Oij ma,kz La,ila,j
a=1 k

" (9.16)
+ Z Ma [5,-j Z(2xa,kak +a2) — (aiTa; + ajTa; + aiaj)]
a=1 k
=I;+ Z My, [&j Z a; — aiaj} + Z myg [25@‘ Z Lokl — ilq; — ajxw-] .
a=1 k a=1 k

However, the last terms on the right side vanish in the CM system. Using > ', m, = M
and Y, ai = a*, we find our final result

[ij = Jz’j — M(dijCLQ — a,-aj) . (917)

Example 9.3: Cube, again. Consider again a homogeneous cube of density p and side length
b, but now locate the origin at one edge of the cube, and the coordinate axes along the sides of
the cube.

Because of an obvious symmetry, we need only calculate Jy, and J15. We find

3
dZ(Y?+ 7%) = pb/dY (bY2 + b—)

S~
Il
BS
—
Q.
<
—
Q.
~
—

3
0 0 0 0 (9.18)
btoob 2 2
=pb| =+ = | = =pb° = ZMb*
P (3 * 3) 377 =3
and
b b b
2 b 1
Jig = —p/dX/dY/dZXY: —pb/dX;X— —p = _ZMb2 (9.19)
0 0 0 0
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We can write the result in matrix form,

2 _1 _1

3 4 4

_ 1 2 1
J=|-15 23 -ig|, (9.20)

_1 _1 2

4 4 3

with B = Mb>.
To obtain the inertia tensor in the CM frame, we needa = (b/2,b/2,b/2), a* = 3b*/4, and
calculate

3 1 2 1 1
Iiy=Jqg—M(>—=)b*==Mb — —Mb> = =-Mb 9.21
i RV ©21)

1 2 1 2 1 2

The kinetic energy of a rigid body can be expressed solely in terms of the inertia tensor
even if the origin is not located at the center of origin, as long as the origin of the system
fixed to the rigid body is not moving as seen from the inertial system (e.g. the origins of the
two system may be chosen to coincide at all times).

In this case, if we keep the convention that r, denotes the position vector as measured
from the CM, and denote the position of the CM again by a, we should set V' = 0 and replace
r, — 7, + a in Eq. (9.2). This gives

T:Z%(w><ra+(.u><a)2
o=l (9.23)

:é%(wxra)QjLima(wxa).(wxra)+2%(wxa)2.

a=1 a=1
As before, the second term in the last line vanishes®, and we have for the total kinetic energy
" m " m 1 M
2 2 2
T:Zf(wxra) +27a(w><a) :§ZIijwiwj+7(wxa) : (9.24)
a=1 a=1 iJ

In fact, this must be the same as just using the inertia tensor in the non-CM frame J;; instead
of I;; in Eq. (9.7), as we can easily verify, using STEINER’s theorem:

1
T = 5 Z Jl-jwiwj
]

1 M
— 5 Z Iijwiwj + ? Z ((SijCLQ — aiaj)wiwj
iJ iJ

(9.25)
= %Z Lijwiw; + % [w?a® — (w-a)?]
ij

1 M
= 5 le-jwiwj —+ 7(&) X (1)2 .
ij

Use (Ax B)- (Ax C) = A*(B-C) — (A-C)(A- B).
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Example 9.4: “Fixed” double pendulum. Consider a planar pendulum of length { with mass
my fixed at its end and mass ms at half length.
We take the x5 direction of the coordinate system fixed to the rigid body along the (positive)
angular velocity w, i.e.,
w=we;="0e;, (9.26)

and the x, direction along the pendulum. The inertia then tensor has components

2
Jij = Z myg |:(5Z] Z ZL'ik — Tq,ilayj| - (927)
a=1 k

We have x,9 = X3 = 0,211 = b, 21 = b/2, s0

b2
J22 = J33 = m1b2 + TTLQZ s (9.28)

with all other components zero. According to the discussion above, this gives the kinetic energy

1., 9 v?

The Lagrangian for the system is then

1. b? 1
L= 592 <m1b2 + mgz) + mygbcos 6 + §mggb cosf, (9.30)
and the equations of motion are

0b> (m1 + %) = —gbsin@(ml + %) . (9.31)

The frequency for small oscillations is given by

y_gmit R

== 9.32
“o b my + % ( )

9.3 Principal axes of inertia*

By a suitable orientation of the rotating coordinate system (see Fig. 31 for an elementary
example), the inertia tensor can be brought in a form where only the diagonal elements are
non-zero.

Consider the rotational part of the kinetic energy,

1
ﬂot = 5 Z Il-jwiwj . (933)
L

Obviously, T}, does not change if we just choose a different orientation of our coordinate
system. In such a rotated system, the components of the angular momentum w’ will be
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Figure 24: Rotation of coordinate system. The components of the vector r (in red) can be
obtained by orthogonal projection in the primed and unprimed coordinate systems. Their
relations are given by trigonometric identities. For instance, projecting the components of
along the 2’, 3/ axes onto the x, y axes givesx = x’ cos 0 —y' sin 0 andy = 2’ sin 0+ y/ cos 0.

linear combinations of the components of the angular momentum w in the original frame.
For instance, w] = Ryjw; + Riows + Ry3ws, or, more generally,

3
(JJg = Z Rijwj . (934)
j=1
In matrix notation we write this as
w =Rw. (9.35)

Of course, the length (the absolute value) of the angular momentum should not change under
such a rotation:

! T
w=w'w= () w =wR"Rw, (9:36)
so we must have
R'R=1. (9.37)
Here, the superscript 1" denotes the transpose of the matrix.
The condition that 7}, be invariant under a rotation of the coordinate system is then

1

1
Lot = §wTI w= (W) Iy = §wTRTI’Rw, (9.38)

N | —

so we must have

I=R'T'R, (9.39)

97



or, using the orthogonality relation (9.37),
I' =RIR" =RIR'. (9.40)

This is the transformation law for the inertia tensor.
We now want to find a coordinate system, or equivalently, a rotation matrix R, such that
I' = D is a diagonal matrix:

I 0 0
D=|0 1, 0]. (9.41)
0 0 I

Multiplying Eq. (9.40) on the right by R and using Eq. (9.37), we get
RI = DR, (9.42)

or

RI-DR=0. (9.43)

We can interpret this equation as a set of three linear systems of equations, one for each row
of the matrix R. Denoting the rows by v;, the three systems are

one system of equations for each of the v;. Solving the systems will allow us to determine
the three rows v;, and hence the matrix R. The systems will have a non-trivial solution if
and only if the determinant of the coefficient matrix vanishes:

det(I — A1) =0. (9.45)

The three roots of this cubic equation in A\ are the three principal moments of inertia I;, and
solving the corresponding systems (9.44) gives the explicit form of the transformation matrix.
Since we start with a Cartesian (rectangular) coordinate and perform a pure rotation, we see
that the three principal axes of inertia are orthogonal to each other.

We did not prove that Eq. (9.45) always has three real solutions. This is a general result of
linear algebra. In practice, this is only relevant for a completely asymmetric rigid body. If a
rigid body has (at least) one axis of symmetry, we can always choose the x5 direction along
this symmetry axis, and it is straighforward to see that the inertia tensor then takes the form
I, = I,,and [;; = O fori # j.

9.4 Angular momentum

The angular momentum of a rigid body is defined as

L= (roxpa). (9.46)
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Recall that L depends on the choice of origin of the coordinate system; a frequent choice is
the CM system. With this choice, the velocity of the rigid body arises from pure rotation,
and we can write

L= Zma(ra X V,) = Zma(ra X (wXxr,)). (9.47)

Now we use the identity
Ax(BxA)=A’B—A(A-B) (9.48)

to write

L= Zma [riw —1y(ry- w)] ) (9.49)

This result can also be expressed in terms of the inertia tensor, as follows:

L; = Z me |:Wi Z fi,k — Lay Z 1’a7jOJj:| = Z Wj Z meg |:5z] Z x?z,k — xa,ixa,j:| , (9_5())
a k J 7 a k

or

J

In matrix notation,

L=1Iw. (9.52)

In general, the angular velocity and the angular momentum need not point in the same
direction (if the inertia tensor is not proportional to the unit matrix). They only point in the
same direction if the body rotates about one of its principle axes of inertia.

Finally, we derive an alternative expression for the rotational energy. We multiply Eq. (9.51)
by w;/2 and sum over i; this gives

1 1
LY L= I s, - T o3
i J
In matrix notation, 1 1
Ty = —wTIw — _wTL . (9.54)
2 2

9.5 EULER angles

In the discussion of the motion of rigid bodies, we will not be interested in the motion of the
system as a whole (one exception will be the top with a fixed point). In this case it is most
useful to locate the origin of both the fixed and the rotating coordinate system into the CM.
The relation between the two systems is then a pure rotation. A useful way to parameterize
this rotation is using the EULER angles (Fig. 25). We denote the coordinate of the fixed system
by X, Y, Z, and the coordinates of the rotating system by x4, x2, x3. The moving x x5 plane
intersects the fixed XY plane along the line ON, called the line of nodes. The line of nodes
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Figure 25: EULER angles.

is orthogonal to both the 3 and Z axes. We choose its direction such that it corresponds to
the vector product e x e,,. To determine the position of the other axes, we choose the angle
 between the Z axis and the x3 axis, the angle ¢ between the X axis and the line of nodes,
and the angle ¢ between the line of nodes and the z; axis. The angle 6 runs from 0 until 7,
while ¢ and v vary between 0 and 2.

We want to express the angular velocity of the rigid body, w, w.r.t. to the rotating axes 1,
X9, x3. The projections of the angular velocities 0, ¢, 9 are

0, =6Ocostp, By=—0Osiny, 60;=0; (9.55)
b1 = dsinfsing, ¢y = psinfcosty, ¢35 = dcosh; (9.56)
=0, =0, ty=1. (9.57)
Therefore, we find for the components of w:
wy = ¢sinfsiniy + 0 cosp (9.58)
wy = Psinhcosy) — Osiny (9.59)
wsy = dcosh + 1. (9.60)

9.6 EULER’s equations for a rigid body

We have at our disposal (at least) two different methods for obtaining the equations of motion
for the rigid body: NEwTON’s laws, and LAGRANGE’s method. Direct application of NEWTON’s
laws leads to a set of equations called EULER’s equations that we will derive here. We will
discuss the Lagrangian method in the context of the heavy top in Sec. 9.8.
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Starting with our well-known relation (8.15), we can express the time rate of change of
the angular momentum, as given in the fixed system, in terms of the angular velocity of the
rotating system. If there is no torque applied to the rigid body, the angular momentum is
conserved:

dL
— twxL=0, (9.61)

where the time derivative is taken in the rotating system. We now express the angular mo-
mentum in terms of the inertia tensor and the angular velocity, using Eq. (9.51). To simplify
the expressions, we choose the axes of the rotating coordinate system along the principal
axes of inertia, such that L, = [;w;, and find

dw
[1—1 +w2w3([3 - [2) = 0,
dt
dw
IQd_; + wywi (I — I3) =0, (9.62)
d,
[3% +U.)1LL)2(IQ - [1) =0.

Here, the subscripts denote the components along the rotating 1, x5, x3 axes. The equa-
tions (9.62) are called EULER’s equations for the rigid body. If there is an external torque
acting on the body, its components would appear on the right side, instead of the zeros.

9.7 Force-free motion of a symmetric top

As an example,® we consider the motion of a free symmetric top. Symmetric here means
that two of the moments of inertia coincide: Iy = [, # I3. Inserting this into EULER’s
equations (9.62) gives

Ilwl + w2w3(13 — [2) = O,
Loy + wawi (I — I3) =0, (9.65)
Isws =10.

2In fact, the motion of the force-free top can be determined from the conservation of angular momentum
alone, without the use of EULER’s equations. Because the top is symmetric about the x3 axis, we can choose
the 2 direction orthogonal to the plane spanned by the angular momentum L and the current direction of
x3, such that Lo = 0 and therefore also wy = 0. It follows that L, w and the x3 direction all lie in the same
plane. The rotation of the top about its symmetry axis is given by the projection of w onto the x5 axis:

Lz Lcos#
_Lis _ _ 9.63
7, T (9.63)

w3

To find the angular velocity of the precession (2p,, we need to decompose w into a component along the
direction of x3, which does not contribute to the precession, and a component along the direction of L,
which will give the desired velocity of precession. We have wy = Qp, sinf = L, /I; = L/I; sin6, and so

L
Qpr = — . 9.64
=7 (9.64)
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The last of these equations tells us that w3 is constant. Setting [; = I, the first two equations

become

: I3 — 1 : I3 — I
W1 = — [1 w3 |Wa, Wy = [1 W3 Wy .

The terms in parentheses are equal and constant, and we define

Is -1
I

Q= w3 .

Then

d}l = —QWQ, (,;)2 = le .

We can solve the system by adding 7 times the second equation to the first:

(,2}1 -+ l(,dg = z'Q(wl + ’iWQ) R

or, defining = w; + wo,
n =i,

with solution 7 = Ae™¥, or

wy = Acos(2), wy = Asin(Q).

(9.66)

(9.67)

(9.68)

(9.69)

(9.70)

(9.71)

It follows that the projection of the angular momentum onto the ;x5 plane (orthogonal to
the symmetry axis of the top), has constant length, w? + w3 = A2 Since also w3 (and hence
the length |w| = \/A? + w?) is constant, the angular velocity w rotates or precesses about the
symmetry axis 3 with constant angular velocity (2. The cone traced out by w is called the

body cone (see Fig. (26)).

Figure 26: Space and body cones for the force-free top.
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For force-free motion, the total energy (in the CM system) is equal to the rotational kinetic

energy and is conserved:
1
Trot = Ew - L = constant. (9.72)
The angular momentum L is conserved, so the projection of w onto L must be constant as w
evolves in time. That means that w precesses about L.
We can show that w, L, and the figure axis x3 always lie in a plane, by showing that

L. (w X e3) vanishes:

L- (UJ X 63) = ZLZ({U X Cg)i = Lch}Q — ngl = ]1&)1&22 — Igw1w2 =0 (973)

since Iy = I,. If we choose (as is conventional) the Z axis of the fixed system in direction
of L, then w traces out a cone about the Z axis, called the space cone, and the figure axis
precesses about the Z axis accordingly. During this motion, the body and space cones just
“roll on each other”.

For the earth, w3 ~ w, and we have I3 2 I}, so the rate of precession 2 = (I3/]; — 1)ws
is small. Numerically, (I3/1; — 1) ~ 1/300. Because 27 /w is one day, we obtain a period of
precession 27 /€) of about 300 days or 10 months. The observed precession has a period of
about 14 months, which is interpreted as a deviation of the earth from being a homogeneous
rigid body (the earth has an elasticity comparable to that of steel).

To interpret the motion in the rotating frame, we express the angular velocity in terms of
the EULER angles. We choose the Z axis of the fixed coordinate system in direction of the
conserved angular momentum L. The components of L are related to the angular velocity
via Eq. (9.51), so we have

Ll = Ilwl = IlA COS(Qt) s
L2 = IlCUQ = ]1A sm(Qt) s (974)

L3 = [3(.4]3 .
Projecting L onto the moving axes, we find

Ly = Lsin@sin

Lo = Lsinfcos, (9.75)
Ly = Lcost,
where L = |L| = \/I?A? + [3w3. Comparing the expressions for L3 we see that wy =

Ls/I3 = (L cos@)/15, which implies that 6 is constant. Let us use the symmetry about the z3
axis and choose the x5 direction orthogonal to the plane containing the angular momentum
L and the symmetry axis of the top, i.e., let us choose 1) = 7/2. Then

Ly=1Lsin6, Ly=0, Ls=Lcosh, (9.76)
and we see that this corresponds to t = 0. The angular velocity in the rotating frame becomes

w1 =dsind, wy=0, wy=dcdcosh+1. (9.77)
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Using L; = I w;, we find the angular velocity of precession

. L
Qpr == —, (9.78)
I
and the angular velocity of the rotation of the top about its axis (as viewed in the moving
frame)

@b:wg—d)cosQ:(i—i)L cosf. (9.79)

9.8 Motion of a symmetric top with one point fixed

We will solve this problem using the Lagrangian method. It is useful to locate the origin of
both the fixed and the rotating coordinate systems at the fixed point of the top, such that
there is no translational motion of the system. As we will see, the motion is composed of the
three periodic motions rotation, precession, and nutation.

As before, we assume [; = [ # I3. Since the origin of the coordinate system is not located
at the CM, we use STEINER’s theorem (9.17) (with a; = a, = 0, az = [, where [ is the distance
from the CM to the lowest point of the top) to obtain the kinetic energy

1 1
T = 5(_71 + M) (w? + wd) + 5 303 . (9.80)

where M is the mass of the top. Denoting ] = I; + MI?, expressing the angular velocities
in terms of EULER angles,

w2 +wk=¢?sin?0+ 0%, W= (dcosh+1)?, (9.81)
and subtracting the potential energy, we obtain the Lagrangian
1 . . 1 . .
L= 5]{((152 sin? @ + 0%) + §Ig(¢ cos +1))? — Mgl cosf . (9.82)

We see that the angles ¢ and v are cyclic, so we immediately find the two first integrals

L ) i )
Do = g_d) = I¢sin® 0 + I3(¢pcosf + ) cosh = Ly, (9.83)
oL . :
Py = 90 I3(pcosO + 1) = wsls = Ls. (9.84)
We can solve this to find
. Ly — Lycosf
. — 9.85
¢ I} sin® 6 8
N Ly — Lycosf
_bs gtz Lscost 9.86
V=, Tt T (0.86)
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Furthermore, the total energy
E = 5]{@52 sin® 0 + 0%) + 5.73(@5005«9 +)? + Mgl cos 0

is conserved. Using the relations above, we can write this as

(Lz — L3 cosf)? P
—=60*+ —= 4+ Mgl cosf.
T R AT A

F—
The combination E' = FE — L%/(213) is equally conserved. We can write
I .
E = 5102 + Ue(0)

with the effective potential

(Lz — L3 cosf)?
21 sin” §

Ue(0) = + Mgl cos®.

Eq. (9.89) yields

Together with Egs. (9.85) and (9.86) this solves the problem (in principle).
Instead, we discuss the motion qualitatively. We introduce the notation

Ly Ly _, 28 _  2Mgl _

cost = u, =a, =0, =, =0.

I I I I

We have @t = —fsin 6, or 4® = 6?sin? 6 = 62(1 — u?). Then Eq. (9.89) becomes

(a — bu)?

—
o + 1 — 2

+ fu,
or, multiplying by 1 — u?,

= (a — Bu)(1 —u?) — (@ —bu)? = f(u).

(9.87)

(9.88)

(9.89)

(9.90)

(9.91)

(9.92)

(9.93)

(9.94)

Formally, f is a polynomial of degree 3 in u, with f(+00) = +ooand f(+1) = —(aFb)? < 0.
Of course, any actual motion of the top corresponds to values for a, b, a, § such that f(u) > 0
for some range —1 < u; < u < uy < 1. It follows that f(u) has two real roots for u; <
u < uo. The inclination € of the axis changes periodically between two values ¢; and 65; this

periodic motion is called nutation.
The angular velocity ¢ can be expressed as

. a— bu
= 1—u?’
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If the root of this equation, v’ = b/a, lies outside the interval [uy, us], then (a—bu) /(1 —u?) >
0or (a—bu)/(1—u?) < 0 for all allowed values of u, and ¢ varies monotonically. The axis of
the top traces out a sinusoidal curve (Fig 27, left panel). If v’ lies inside the interval [u, us),
then ¢ is in opposite directions for § = 6, and 6 = 0, and the axis traces out a looping
curve (Fig 27, middle panel). If v’ = us, then the axis traces out a curve with cusps (Fig 27,
right panel). The last (exceptional) case is the one usually encountered when releasing a
top at inclination 6, without initial velocity ¢. The top first falls, and then rises again. The

Figure 27: Path of the top’s axis on the unit sphere.

azimuthal motion of the top is called precession. Together with the rotation of the top about
its own axis, nutation and precession determine the complete motion of the top.

9.8.1 Motion without nutation

We will show that for specific initial conditions, motion with constant 6, # 0 is possible
(the “trivial” case 6 = 0 is discussed in the next subsection). The condition for the motion
without nutation follows from Eq. (9.94):

0= (a— Bu)(1 —u?) — (a — bu)?, (9.96)
(v — Bu) = % = (a —bu)o, (9.97)

where we used Eq. (9.95) in the second step. In addition, we need to require that the zero is
of multiplicity two or, equivalently, a local maximum of f(u). This gives the condition

0=—B(1—u*) —2(a — pu)u + 2b(a — bu), (9.98)
" B _bla—bu) _(a—pu)
a—bu a — fu)u
i T R (9:99
Using Eq. (9.97) and Eq. (9.95), this gives a quadratic equation for ¢,
15} Iy 9
5= bop — cos by, (9.100)
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where 0, is the constant polar angle of the motion. Reinserting the constants b and /3, and
using Eq. (9.60), this becomes

Mgg = ]3@/)0& + (13 - ]i)ng COSHO. (9101)

For the special case § = 7/2, this collapses to a linear equation, and we have

95— B . Mgt

20 Iy
If 0 # 7/2, the solution of Eq. (9.101) still determines the values of ¢ for which the motion
without nutation is possible. The two solutions of Eq. (9.101) are

(9.102)

, I + \/ I202 — 4Mgl(I} — Is) cos by
- . 9.103
91,2 2(1] — I3) cos Oy ( )

They are real as long as '

223 > 4Mgl(I; — I3) cos b . (9.104)
There is just one solution in the case of equality, and two solutions otherwise. Note that for
0o > m/2 and I} > I3, as well as for )y < /2 and I] < I, this condition is satisfied for any
value of v, while for the other cases, we must have

.2
Yo > ]—\/MQE(I{ — I3) cos by . (9.105)
3

Finally, we note that for very large 1/'1, the two (fast and slow) solutions of Eq. (9.103) read

I3 4, s Mot
(I} — I3) cos by’ 2 L

S (9.106)

9.8.2 The sleeping top

We now consider the special solution in which the axis of the top is always vertical, i.e.,
6 = 0, and the angular velocity is constant. In this case, L; = L3 = I3ws. Under what
condition will this motion be stable?

We expand the effective potential for small angles,

(Lz — Lycosf)?

Ues(0) = Mglcos =C + A6* + ..., 9.107

(9) 21 sin’ @ + Mytcos + + ( )
with 22 afol
w g

A=233 L 9.108

81! 2 ( )

The equilibrium position § = 0 is stable if A > 0, and not stable otherwise. The condition
for stability is therefore
o AMglly
w3 I
3

The top wakes up when friction reduces the angular velocity to below this limit.

(9.109)
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9.9 Stability of rigid-body rotations

Finally, we want to discuss some aspects of the free motion of a rigid body with a general in-
ertia tensor. This problem can be solved in general using EULER’s equations, but the solution
is “difficult”. However, we can obtain some qualitative information about the motion from
the conservation laws.

For definiteness, we assume /3 > I > [;. Energy and momentum conservation imply

Lw? + Lw; + 3w =2F, (9.110)
Fwl + Dws + Ewi = L2, (9.111)
We can also write this as
L Ly L}
— 4+ —= 4+ —==2F 9.112
LTt : ( )
LI+ L3+ Li=17. (9.113)

These two equations define an ellipsoid with semimajor axes

V2EIL, +2EIL,, +/2EI;, (9.114)

and a sphere with radius L in the “three-dimensional angular momentum vector space”. The
“motion” of L is restricted to lie on the intersection of the ellipsoid and the sphere. See Fig. 28.
Starting from L? = 2FE1; and increasing L, the allowed curves are closed curves around the
Ly poles, then ellipses crossing the L, poles, then closed curves around the L3 poles. For
L? > 2F1, or L? < 2E13, the angular momentum vector performs a periodic motion. Note
that the closed curves around the L; and L3 poles stay close to these poles: this motion is
“stable”. However, the curves through the L, poles, on the other hand, are unstable.

9.10 Theory of Billiard”

Here, we give a brief introduction to the theory of billiard. We first consider a horizontal hit
in the symmetry plane. First, we calculate at what height the cue needs to hit the billiard
ball such that pure rolling motion follows. Let’s call the transferred linear momentum p.
The transferred angular momentum w.r.t. the center of mass is then ph, with h the distance
above the CM. The linear momentum of the billiard ball after the hit is Mv = p. The angular
momentum is Ipherew = ph, with Ipere = 2M R? /5 the moment of inertial of a sphere. The
corresponding velocity of the touching point is © = Rw and is in opposite direction if 4 > 0.
It follows, for u = v,

2 )
= Mv=—MR*— 9.115
or o R
1=—-—— 9.116
5 h M) ( )
o)
2
h = 5R' (9.117)
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Figure 28: Ellipsoid of inertia.

This corresponds to a height 7R /5 above the table.

Next, for a general height of the contact point, how long does it take until pure rolling
motion occurs? Denote by v the CM velocity and by u the radial velocity of the lowest point
of the billiard ball (counted in the opposite direction as v). The velocity of the contact point
relative to the table is u — v and is opposite in direction to v for h > 2R/5. Let p be the
friction coefficient (independent of velocity). For high hits (b > 2R/5), the friction opposes
the motion of the center of mass; for low hits (h < 2R/5), the friction accelerates the motion
of the center of mass. Therefore, we have

dv

— =+ug. 9.118

g = THY (9.118)
The rotation of the ball is also reduced by the friction; the friction force f exerts a torque

such that I peredw /dt = RuM g, or, with Rw = u (and taking the signs into account),

du 5

g 9.119
il ( )

Again, the upper sign is for h > 2R /5, the lower sign for h < 2R /5. The speed of the (center
of mass of the) billiard ball right after the hit is vy = p/M, and hence v(t) = vy & pgt. The
speed of the lowest point of the ball right after the hit is ug = 5ph/2RM = 5hv,/2R, and
u(t) = up F 5ugt/2. Pure rolling occurs when u(7) = v(7), or

oh > 7 2R —5h

S5 V0 F SHgT = Vo £ ugT = FoHgT =

SR 5 5 TR o, (9.120)
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Figure 29: Motion of billiard balls with friction.

SO

o5h — 2R
Tk 20
TR pg
After that time, the motion is pure rolling. The difference in the center-of-mass velocity is
given by Eq. (9.118) as Av = +ugr, so the final velocity is

(9.121)

SR+h
v0+Av:? I

o, (9.122)

proportional to the height above the table. See Fig. 29.

Next, we would like to discuss what happens if the first billiard ball hits a second billiard
ball at rest in an elastic, central collision. The first ball will transfer its linear momentum (and
hence its instantaneous velocity), as well as its translational kinetic energy to the second ball.
Since the contact point between the two balls is at height 12 above the table, the first ball
will not transfer angular momentum. The second ball will move according to the discussion
above, for i = 0, so it will reach a final velocity

5
V2 final = ;U(To) (9.123)
(unless, of course, it hits a third ball first). Here, v(7y) is the speed of the first ball when it
hits the second ball. Depending on whether u is positive or negative at the time of collision,
the first ball will follow or recoil from the second ball after the collision.

Nachlaufer (“follow shot”). Assume the motion of the first ball is such that, at the time of
collision 7, the velocity of the balls lowest point is positive (i.e. opposite the direction of v).
Note that this might occur either during pure rolling motion, during the accelerating phase
with a hit 4 > 0, or after some time during the decelerating phase after a hit with 2 < 0.
After the collision, the first ball will be momentarily at rest and then accelerate. Its u(t) will
decrease, according to Eq. (9.119). Pure rolling will occur at time 7, given by

5
u(mo) = 9T = pgmi (9.124)
or 9
= 2uln) (9.125)
7 pg
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with u(7) given explicitly by

(70) = gy — 2 (9.126)
u(7p) = QRUO 2#970 .
for 7y < 7 (i.e. before pure rolling occurs), and
SR+h
U(To) = U(T) = ? R Vo (9127)
for 7y > 7. It follows that
2
V1 final = U(T1) = pgm = ?U(TO) . (9.128)

Rickzieher (“draw shot”). Assume the ball is hit very low and hits another billiard ball at
a time 7y < 7, such that u(7) < 0 is still negative. Again, the first ball transfers its linear
momentum, i.e. its velocity v(7) to the second ball. The second ball will move as discussed
above. The first ball will accelerate from rest, but now in the opposite (backward) direction.
Its u(t) will increase, according to Eq. (9.119), until it becomes positive and equal to the
center-of-mass velocity. Pure rolling will occur at time 7, given now by

5!
u(o) + SHgT = —pgT (9.129)
or 5
== [u(7o)] , (9.130)
7 pg
with u(79) given explicitly by
(10) oh + > (9.131)
U\Ty) = —=, — 70 - .
0 oRr"o 2#9 0
It follows that
2 5h 5
V1 final = ;U(To) = ol T ZHgTo (9.132)

(now in the opposite direction).

Parabolic motion of the billiard ball. Now assume the hit is not horizontally, but instead
with an angle between the cue and the horizontal plane. The ball will be hit on its upper
hemisphere. Choose the = direction along the horizontal component, and the z direction
along the vertical. Then the components of p are (p,,0,p.), and the transmitted angular
momentum w.r.t. to the CM (origin of the coordinate system) has components

L, =yp., L, = 2zp, — xp., L,=—yp,. (9.133)
where (x,y, z) is the point where the cue hits the ball. This will induce the following com-

ponents of angular momentum

5 L,
“oMR T

W L (9.134)
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(w, is irrelevant for the motion). The corresponding components of the CM velocity v and
the velocity of the contact point u are

Vg = pMI , v, =0, (9.135)
and
Uy = —Rw,, uy = Rw, . (9.136)

The sliding motion of the contact point with the table has components
Up — Uy = PCOS QX vy — Uy = psina. (9.137)

This induces a frictional force R of magnitude ;M g whose direction subtends an angle 7+«
with the z axis, i.e.

R, = —pgM cosa, Ry, = —pgMsina. (9.138)

For ¢t > 0 it modifies the motion according to

Mi, = R, , Mo, = R, (9.139)
Ispherew:): == RRy 5 [spherewy = —RRx . (9140)
It follows
Uy = J1g COS (v, Uy = pgsina, (9.141)
and . .
Uy = —Rw, = SHgcosa, U, = Rw, = SHg sina . (9.142)
Therefore,
. . d . .
Up — Uy = a(pcos a) = peosa + pasina = FHgcosa, (9.143)
: . d, . . . T
Uy — Uy = a(psma) = psina — pdcosa = pugsina. (9.144)

From these equation we find

7
a=0, p= SHg (9.145)
(recall that in our coordinates, the initial CM velocity is negative). The frictional force is
constant in both direction and magnitude, so the billiard ball will follow a parabolic trajectory

until purely rolling motion occurs. This will happen after time 7, determined by

7
0= p(7) = po + SH9T (9.146)

or 7 = —2pg/Tug (again, recall that py < 0).
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10 Small oscillations

10.1 Two coupled harmonic oscillators

We start with an example: two (one-dimensional) harmonic oscillators with masses m; =
my = m are connected with a spring of spring constant k2, and connected to two walls
by two springs of spring constant x. We denote the displacements of 1m, and ms from their
equilibrium positions by x; and x4, respectively. The kinetic energy of the system is

T=3 T2 +42), (10.1)
and the potential energy?®’
U= %[/@(:ﬁ + 23) + Kia(z1 — 22)7] . (10.3)
Lagrange’s method then gives the two equations of motion
mI1 + (K + K12)r1 — Koy = 0, (10.4)
mis + (K + Ki2)Ty — K127 = 0. (10.5)

The ansatz z;(t) = A; cos(wt + §) leads to the system of equations

<I€ —+ K12 — mw2)A1 — IilgAQ == 0,

10.6
—lilgAl + (fﬂ? + K12 — mw2)A2 =0. ( )

Non-trivial solutions for A;, A exist only if the determinant of the coefficient matrix van-

ishes: )
K+ K12 — mw —ki2 _
det ( o P mwg) =0. (10.7)
This gives the condition
(K + K1 —mw?)? — K3, = 0. (10.8)
It follows that
K+ K12 — mw? =tk (10.9)
with solutions
K+ 2K
wy = 4 / =/ M . (10.10)
Inserting w; into Eq. (10.6) gives A; = = (1, while inserting w- gives A; = — A, = Cb.

We can write the two solutions as

(r2i) = () cremtar = (53;22) < (1) oot 0. o

#7The corresponding forces are (as we will see)

F1 = —RIT1 — 512(1'1 — .’L’g) s F2 = —RI9 — /€12($2 — xl) . (102)
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and the general solution is given by

(28) - G) Cy cos(wit — 1) + (_11) Cs cos(wat — 05) . (10.12)

It depends on four integration constants, C'y, Cy, 91, 02 that need to be determined from the
initial conditions.

For instance, if 21(0) = 22(0) and 4,(0) = 42(0), we find only the oscillation with fre-
quency wy, while for z;(0) = —x2(0) and #,(0) = —i5(0), only the oscillation with fre-
quency wy is generated.

A slightly more interesting case is x1(0) = A, 25(0) = #1(0) = 42(0) = 0. The conditions
lead to

A = Cy cos(dy) + Oy cos(ds) (10.13)
0 = C4cos(dy) — Cy cos(dz) (10.14)
0 = Chw; sin(d7) + Cows sin(ds) , (10.15)
0 = Chw; sin(d;) — Cows sin(dy) . (10.16)

It follows, in particular, A = 2C cos(d;) = 2C5 cos(dz), and C sin(d;) = Cysin(de) = 0.
On the other hand, we can use trigonometric identities to write

21(t) = Cy [ cos(wit) cos(dr) + sin(wit) sin(d1)] + Co[ cos(wat) cos(da) + sin(wat) sin(dy)]

(10.17)
2(t) = Cy [ cos(wit) cos(dr) + sin(wit) sin(dy)] — Ca[ cos(wat) cos(da) + sin(wat) sin(dy)]
(10.18)
which become
A
x1(t) = By [ cos(wit) + cos(wat)] (10.19)
A
xo(t) = 5 [ cos(wit) — cos(wat)] . (10.20)
Using again trigonometric identities, we can write this as*®
Wy — W1 wo + Wy
x1(t) = Acos( 5 t) cos( 5 t) : (10.21)
o(t) = Asin (WQ 5 e t) sin (w2 ; 1 t) . (10.22)

If K12 < K, the difference wy — w; is small. This is the phenomenon of beats.

We have cos(“2E1t) = cos(2t) cos(-t) + sin(2¢) sin(%t), as well as cos(%t)2 = (1 + cos(wt))/2,

and sin(%t)2 = (1 — cos(wt))/2.
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10.2 General theory of small oscillations

Let us now consider a general system of N coupled oscillators. As in the one-dimensional
case, such a system arises naturally as an approximation to any conservative system near an
equilibrium point.

We assume that any existing constraints are time independent; as we have seen in Sec. 5.5,
the kinetic energy is then of the form

ij

Near equilibrium, all ¢;, and ¢, will be small. We can therefore Taylor-expand the coefficients
about the equilibrium positions ¢, and keep only the leading (constant) pieces; we will
denote them by m;; = 2a;;(qox). The kinetic energy is then

1 iy

Similarly, we will expand the potential energy about the equilibrium position g, = 0:

1 0?U
4 + 5 ; 8qi8qj

oUu
0g;

Ulqr) = U(qor) + Z

qiqj + ... (10.25)
=0 qr=0

The first derivatives vanish in an equilibrium position, and we can drop the constant term,
such that the potential energy near the equilibrium becomes, to first approximation,

1
U= B Z Uijqig; (10.26)
ij

where we defined

0*U
Uj=) (10.27)
ij 94i94j | g =qoy
The Lagrangian
1 o1
L= 3 Z midid; — 5 Z Uijqiq; (10.28)
ij ij
then yields the equations of motion
> [mids + Uijas) =0, i=1,....N. (10.29)

J

We could now proceed in analogy to above. The ansatz q;(t) = Ay cos(wt + &) would
yield a homogeneous system of N linear equations that we would need to solve. The condi-
tion for a non-trivial solution leads to an equation that allows, in principle, to solve for the
possible eigenfrequencies.
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It is, however, simpler to first perform a coordinate transformation in order to bring the
equations of motion in diagonal form. They will then correspond to N decoupled equations
for N simple harmonic oscillators, for which we already know the solutions.

From our example above, we know that the general solution for the coordinate g; is given
by a linear combination of the solutions

¢;r(t) = Ajy cos(w,t — 6,) . (10.30)

Inserting this into the equations of motion Eq. (10.29) gives
Z UijAjr = OJE Z mi]’A]‘T . (1031)
J J
Choosing a different solution ¢;,(t) gives similarly

Z UijAjs = w; Z mi;Ajs - (10.32)
i j

(For now, we assume that all eigenfrequencies are different.) We multiply the first equation
by Ajs, the second by A;,., sum over the index i, and take the difference of the two equations.
Since m;; = mj; and U;; = Uj;, we obtain

0= (wf — wz) Z miinrAjs . (1033)

ij

It follows that
> miAipAj =0 for r#s. (10.34)
ij
For r = s we consider the kinetic energy of the rth oscillation
1 o Ly .
5 Z My Qirqjr = §w’“ sSin (wr -+ 57”) Z miinrAjT >0, (1035)
ij J

and so
> miAi Ay > 0. (10.36)
ij
By possibly rescaling the coordinates, we can always achieve
Z miin7.Ajr =1. (1037)
ij

Together, Egs. (10.34) and (10.37) just say that

Z mz’inrAjs = 67‘8 ) (1038)
]
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or, defining the matrix M with matrix elements m,;,

ATMA=1. (10.39)
Writing )
w2 0 0 0
0% = 0wz 00 (10.40)
o 0 . 0]’ '
0 0 0 W}

the equations of motion Eq. (10.31) can then be written as

UA = MAQ?. (10.41)
Multiplying on the left by AT and using Eq. (10.39) gives®

ATUA=Q*. (10.42)

We can introduce normal coordinates (); via

Using these coordinates yields the equations of motion in decoupled form: the Lagrangian is

L(Qw Qz) = %Z Z [miinrAstrQs - UiinrAstrQs} = %Z [Q? —waﬂ ) (10-44)

] r

and the equations )
Q*+wQ,=0, r=1,...,N, (10.45)

follow.

Example 10.1: Two coupled oscillators, revisited. Let us re-examine the example in Sec. 10.1.

We have the kinetic energy
1, . m 0 a1
T2 : 10.46
5 (Ch Q2) (0 m) (q2> ) ( )

?Mathematically, the w? are the eigenvalues of the “potential energy matrix” U with respect to the “kinetic
energy matrix” M, i.e. the quadratic form defined by U is diagonalized by a basis that is orthogonal with
respect to the inner product defined by the kinetic energy 7. In more detail, if we write the kinetic energy
as T = 1 (g, Mq) and the potential energy as U = 1(q,Uq), where (-, -) denotes the usual scalar product,
then general theorems of linear algebra tell us that we can first find a coordinate transformation ¢ = AQ,
with A € GL(NV) such that ATMA = 1 (since M is positive definite). Then 7' = %(Q7Q) and U =
%(Q,ATU AQ). Since ATUA is symmetric, it can be diagonalized with an orthogonal transformation
S € O(N) that leaves T invariant; i.e. STATUAS = D is diagonal, and STS = 1.

Now the characteristic equation for the diagonalization of ATUA is det(ATUA — A1) = 0, which in
view of the above can be written as det(ATUA — AMATMA) = det[AT(U — AM)A] = 0. Using the
multiplication theorem for determinants, this is equivalent to det(U — AM) = 0 - the same condition we
found above, but without the necessity to insert the ansatz for solving the equations of motion.
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and the potential energy

1 K+ K2  —Ki2 Q1
U=- . 10.47
2 (@ @) ( —Ki2 K+ ki) \@ ( )
According to the general theory, there will be two independent solutions (see Eq. (10.30))
gi(t) =Y Aij cos(wjt — 6;) . (10.48)
J

Inserting this into the equation of motion leads to the system of equations (10.31):

£t iz —wim e A} _ g (10.49)
—K1a K+ k1g —w?m ) \ Ay, ' '

This system will have non-trivial solutions if the determinant of the coefficient matrix vanishes,

2
K+ Kig —w™m —K12 2 2
0= =(k+Kizg—wm)” — kK 10.50
— K19 K+ K1y — wim ( 12 ) 12 ( )
with solutions w? = k/m, w3 = (K + 2k12)/m. These two solutions give two systems of equa-

tions, one for w?

K12  —KRi12 Ay
=0 10.51
<—Ii12 K12 ) (AQI) 7 ( )

with solution A;; = (a, a), and one for w}

—hki2 —Ki2 Ar
= 10.52
<—/€12 —512) (A22> ’ ( )

with solution Ajy = (b, —b). The coefficient matrix therefore looks like

a b
A= (a _b) . (10.53)
We choose values for a and b such that Eq. (10.38) is satisfied. The conditions here read
mATA =1, (10.54)
or
2ma’® =1, 2mb® = 0. (10.55)
It follows that we can choose the coefficients as a = b = 1/+/2m. One can easily check that
L 1 0 D S 1 0
1 0 m 1 1 0 1)/ :
vem V2m vaom Voem
and
1 1 _ D S 1 0
V2m o V/2m K+ K12 K12 V2m  V2m _ - (F (10.57)
S S S I A S 0 k420 ] :
T NeT K12 K+ K12 Tom Jom m K 12
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Hence, we have the two decoupled equations of motion

- K - K+ 2K
Qi+ —Q:1 =0, Qs+ ——20Q,=0, (10.58)
m m

where q; = (Q1 + Q2)/V2m, o = (Q1 — Q2)/v/2m (see Eq. (10.43)). This is the same result

that we obtained previously.

Example 10.2: Coupled pendulum with two different masses. Let’s calculate a less triv-
ial example with two pendula (length (, bob masses m and 2m) that are coupled with a spring
with spring constant k. As dynamical parameters we will take the two angles measured as
deviations from the vertical.

The kinetic energy is here

. L. . m€2 0 ql
T=3 (i o) ( 0 2m€2> (Cb) . (10.59)

The potential energy can be chosen asU = mgl(1—cos 6 +1—cos 02)+ 3 £(¢sin 6 — € sin 65)?,
which for small angles (cos ~ 1 — 6%/2, sin 0 ~ 0) gives

1 mgl + k(> —kl? ¢
U=3 (0 @) ( a2 gt n?) \agy) (10.60)
Again there will be two independent solutions,
gi(t) = Ayjcos(wit —6;) (10.61)
J
whose coefficients satisfy the system of equations
mg/l + Kk — w?m —K A\
( —K myg/l+ Kk — 2w2m) (Agj =0 (1062)
The condition for the existence of non-trivial solutions is
(a+B—wH(a+ B —2w%) —a*=0, (10.63)
where we defined « = k/m and 3 = (/g.
2wt — 3w (a+ B) + (a+B)? —a? =0, (10.64)
with solutions 3 .
Wiy = Z(a +p6) + Z\/(a + )%+ 8a?. (10.65)

To simplify the following calculation, let’s take « = 3 = 1, such that

3+3
wi, = 2\/—. (10.66)

Solving the corresponding two linear systems of equations gives the coefficient matrix

A:(—l—ﬁ —Hﬁ)'

| | (10.67)

A straightforward calculation shows that this diagonalizes both the kinetic and potential energy
matrices.
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10.3 Continuous systems — the wave equation

Consider a linear arrangement of oscillators that are coupled to their neighbors. If we in-
crease the number of these oscillators per unit length, and decrease their masses such that
the mass per unit length remains constant, we obtain the limiting case of a vibrating string.

10.3.1 Three coupled oscillators

We consider three equal masses m that are connected to each other and to two walls via
four equal springs with spring constant k. Let ¢y be the distance between the masses in
equilibrium.

We first consider longitudinal motion only. Denoting by ¢; the displacement of mass ¢
from the equilibrium position, the Lagrangian is

3
M~ ., K
L=7 D@ - S+ (@ —a)’ + (65— 0) +4) (10.68)
=1

We can write this in a somewhat more symmetric way by including the displacements of the
two walls (which are, of course, identically zero), calling them ¢y = 0 and g4 = 0. Then the
Lagrangian becomes

_m o0 Kk )
L= 9 Z‘L‘ ) Z(q@ —Gi-1)", (10.69)

and we find the equations of motion
mg; +k(2¢; — qj-1—q¢i+1) =0, j=1,2,3, (10.70)

and qo(t) = q4(t) = 0 for all ¢.

The case of vertical oscillations is only slightly more complicated if we restrict ourselves
to planar oscillations. If in the equilibrium position for the masses the springs are also in
equilibrium, there will be no restoring force due to small vertical displacements; therefore,
we will assume that the springs (in equilibrium as well as for small vertical displacements) all
exert the same tension F’ on all the masses. (If there is no tension in the springs in equlibrium,
the vertical oscillations are not harmonic.) Then, denoting by «; the angle that the jth spring
subtends with the horizontal, the restoring force due to spring j is F'sin a; = F'ar; for small
displacements. The angles are given by (¢; — ¢j_1)/{o = tan a;; = o, so the Lagrangian is

4 4

B N S N P
L= 9 ZQZ 280 Z(% szl) ) (10.71)

i=1 i=1

where the ¢; now denote the vertical displacements, and ¢o(t) = g4(t) = 0 for all ¢. The La-
grangian (and, hence, the equations of motion) are the same as before upon the replacement
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To solve the equations of motion, we make the ansatz ¢;(t) = a; cos(wt — §) and obtain
the following system of equations:

(2k — mw?)ay — kay =0,
—kay + (2k — mw*)ay — kaz =0, (10.72)
—kag + (2k — mw*)az = 0.

It has non-trivial solutions if the determinant of the matrix

2k — mw? —k 0
D = —k 2k — mw? —k (10.73)
0 —k 2k — mw?

vanishes; this gives the condition
(2k — mw?)® — 2k*(2k — mw?) =0, (10.74)

with solutions w? = (2 — V2)k/m, w? = 2k/m, w2 = (2 + v/2)k/m. The corresponding
amplitudes can be found by solving the system of equations for each w?. For w3:

—Aa2 = 0, —a1 — az = 0, —a2 = 0, (1075)
so a; = —as and ay = 0; for the other two cases,
:I:\/§a1 — Q9 = O, —ay + \/5@2 — asg = O7 —as + \/5&3 == 0, (1076)

s0 a; = as = +ay/+/2. The general solution is then

1 1
Q1(t) V2 1 V2
¢@(t) | =crcos(wit —1) | 1 | +cacos(wat —d2) | 0 | 4 c3cos(wst —d3) | —1
qs(t) NG -1 NG
(10.77)

Note that the coefficients a; follow a sine function: For the first normal mode, we have
a; = sin(jm/4); for the second normal mode, we have a; = sin(2j7/4); and for the third
normal mode, we have a; = sin(3j7/4).

10.3.2 n coupled oscillators

Now we generalize the example to the case of n oscillators with equal masses, fixed between
two walls. With the boundary conditions

q(t) =0, Gni1(t) =0 (10.78)

for all ¢, the equations of motion are just of the same form as before:

mq]—l—k(Qq] —(gj—1 _Qj-i-l) :0, j = 1,...,’/’L. (1079)
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Inspired by our example, we choose the following ansatz for the solution:
¢;(t) = C'sin(ay) cos(wt — 6) . (10.80)
We can determine « using the boundary conditions Eq. (10.78):
0=sin(a(n+1)) = an+1)=rm, (10.81)

forany r = 1,2,...,s0 @ = rw/(n + 1). Inserting this into the equations of motion gives

the equations for the eigen frequencies
1 1
— mw Sin Al + Qk Sin T — ksin _T(‘] )7T _ kSiH T(] + )ﬂ-
n+1 n-+1 n+1 n+1

:{—mw+2kl1—cos( _TW)H sin( T ) =0.
n+1 n+1

(10.82)
This gives
2k — 4k
w? = =|1—cos m — a2 (T , (10.83)
m n+1 m 2(n+1)
so the frequencies of the normal modes are
T
s =2wpsin( ——— ), r=1,...,n, 10.84
w wp Sin (2(n+1)) r n ( )

with wy = y/k/m. (For n = 3 this reproduces our earlier results: w? = 4k/msin®(7/8) =
2k /m(1—cos(m/4)) = (2—V2)k/m, w3 = 4k/msin®(n/4) = 2k/m,w? = 4k/msin*(37/8) =
2k/m(1 — cos(37/4)) = (2 + v/2)k/m.) The amplitudes are given by

. rjT :
GerSIH(n+1)7 jr=1....n. (10.85)

The general solution of the equation of motion is, therefore,

- ) rjm
q; = ZCTSHI(” 1
r=1

The 2n constants . and ¢, are determined by the initial conditions.

) cos(w,t + 9;) . (10.86)

10.3.3 Transition to the continuum

In the continuum limit, ¢, — 0, m — 0, n — oo, such that the length ¢ = (n + 1)¢; of the
oscillating chain, the mass density p = m/{,, and the restoring force k/; remain constant.
The equation of motion in the continuum limit is obtained from Eq. (10.79) in the form

m . V(g1 —a4 @ —
—(; = — — . 10.87
k2=, ( l % (10.87)
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We write © = jl, and ¢;(t) = ¢(x,t). Then the limit of the right side is
1 (Q(l‘ + 0o t) —q(z,t)  qlz,t) —q(z — b, 75))

EO% eo 60 Eo 10.88
()| daen)| ) _ Pt 1089
 lo—0 £ or |, or |,y o oa2

The factor m/k¢3 = 1/v? remains constant in this limit. We obtain the wave equation

1 P%q(x,t) _ 9q(x,1)
vz o2 0x?

(10.89)

10.4 Solutions of the wave equation

We will only consider “standing-wave” (or stationary) solutions of the wave equation. (The
general solution can be expressed as a superposition of the stationary solutions.)

10.4.1 The oscillating string

We seek a solution of the form ¢(x,t) = g(x)h(t). Inserting this into the wave equa-
tion (10.89) gives
I?h(t
ox) (D)
v?2  Ot? Ox?
Denoting time derivatives by dots and derivatives with respect to = by primes, we can write
this as

(10.90)

1h ¢
— - == 10.91
2h g (10.91)
Since the left side depends only on ¢ and the right side only on z, both sides must be equal
to some constant —k2. It follows that h and g satisfy the equations

h = —k*%h, J' = —kg, (10.92)

with solutions
h(t) = hy cos(kvt) 4+ hy sin(kvt) , (10.93)
g(x) = g1 cos(kx) + gasin(kz) . (10.94)

If both ends of the string (length /) are fixed, then the boundary conditions are

g(0) =g(¢) =0. (10.95)
This gives
g =0, k:%zkr, (10.96)
forr =1,2,.... The allowed frequencies are then
wr = kv = % . (10.97)
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Thus, the partial solutions are standing waves
qr(x,t) = sin(k,x) [hlm cos(wyt) + ha, sin(wrt)} , (10.98)

while the general solution is given by the superposition
g(a,t) = sin(kx) b, cos(w,t) + ha, sin(w,t)] . (10.99)

We can use the orthogonality relations of the trigonometric functions to express the initial
conditions as a Fourier series. Eq. (10.99) tells us that at ¢ = 0

q(z,0) = Z hy - sin(k,x) , (10.100)
q(z,0) = Zwthﬂ« sin(k,x) . (10.101)

Multiplying Eq. (10.100) by sin(ksx) and integrating over x, we obtain

i
2
hy, = 7 /q(a:,O) sin(k,x)dzx . (10.102)
0
Here, we used
i
14
/da: sin(%) sin(%) = §5rs. (10.103)
0
Similarly, we find
¢
2
ho, = / /cj(w,O) sin(k,x)dx . (10.104)
Wy

0

Example 10.3: Guitar string. The initial condition for a guitar string that is plucked in the
center of the string is

q(z,0) = {zj‘i’” 2 ii i é (10.105)
and §(z,0) = 0. We find hy,, = 0 for all r, and
/2 ¢
hy, = 46_;4 /xsin(er)dx + 46_? /(Z — z) sin(k,z)dz . (10.106)
0 ¢/2
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Figure 30: Plot of the sum of the first ten Fourier modes of the guitar string, at different subse-
quent times.

We have
02 /2

1 SE |
/:Esin(krrx)d:v =3 cos(k.z)| + T /Cos(er)cm
0 T
0

0 " (10.107)
¢ 1 o2 1
T cos(rm/2) + W2 sin(k,.x) T cos(rm/2) + 72 sin(rm/2),
as well as
i ¢
1 ¢
/(f — z) sin(k,z)dx = —k—(é —z)cos(k.x)| — o / cos(k,x)dx
i ' EARY? (10.108)
1 ‘ 0 1
= cos(rm/2) — W2 sin(k,x) » = o cos(rm/2) + 72 sin(rm/2),
and so S A
. (7T
hi, = o sm(;) . (10.109)
Note that only the coefficients with odd r are non-zero. The complete solution is
SBA 1 . srmy\ . (rm U
q(z,t) = — ; = sm(;) sm<7x> cos<7t> : (10.110)
10.4.2 The oscillating membrane
The wave equation for transversal vibrations of a two-dimensional membrane is
1 82 2 2
1%y t)  Falz.yt)  Oqley.t) (10.111)

v? ot? 0x? oy?

Let us consider a rectangular membrane that is fixed at the boundaries, i.e. the boundary
conditions are
q(0,y,t) = q(a,y,t) = q(z,0,t) = q(x,b,t) =0, (10.112)
for all t. We could again try to find a solution of the form ¢(z,y,t) = g(x, y)h(t). However,
for a rectangular membrane we can immediately write down the solution that satisfies the
boundary conditions. The partial solutions are

¢rs(x,y,t) = sin(k, »x) sin(ky sy) (h1,rs cOS(wyst) + o s sin(wyst)) , (10.113)
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with

rT rT
kypr = —, kyp=—. 10.114
5 a Y, b ( )
Inserting Eq. (10.115) into the wave equation (10.111), we find the frequencies
2 2
e s
The general solution is
q(z,y,t) = Z sin(ky @) sin(ky sy) (h1 rs cOs(wyst) + ha s sin(wyst)) . (10.116)
r,s=1

Again, the Fourier coefficients can be calculated using the orthogonality of the trigonometric
functions:

a b

4
hyvs = —b//q z,y,0)sin(k, ,x) sin(k, sy)drdy , (10.117)

a

0
a b
ho s = . //q z,y,0) sin(k, ,x) sin(ky, sy)drdy . (10.118)
0

As opposed to the vibrating string, here there exist characteristic frequencies that are
irrational multiples of the lowest frequency w1, so the general vibration is not periodic in
time. Consider, for instance, a quadratic membrane (¢ = b). Here, wy; = V2 /a, wis =
7V5 /a.

For a vibrating membrane it frequently happens that some of the characteristic fequencies
coincide. We have w,,s, = w,,s, for

2 2 2
T, 51 _ 7"2
;—i—b—Q———Fb—Q, (10.119)
or
2 2 2

2_ 2 p2-
s{—s5 b

(10.120)

Degenerate frequencies can only occur if the ratio a?/b? is rational.

The partial solutions (10.115) have nodal lines that are always at rest. These nodal lines are
parallel to the edges, 2 = 0,a/r,2a/r,...,aandy = 0,b/s,2b/s, ..., b. If the corresponding
frequency is degenerate, there are even more nodal lines. For instance, consider the modes
¢12 and go1 of a quadratic membrane, with frequency w2 = wo; = w. If hy 12 = Ahy 21 and
h2712 = )\h2721, we have

2 2
q(z,y,t) = {)\ sin(%) Sin(%y) + sin(%x) sin(%yﬂ (h1,21 cos(wt) + ho o1 sin(wt)) .

(10.121)
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Figure 31: Rotation of a two-dimensional coordinate system.

Setting the angle bracket to zero gives the condition

Acos(ﬂ—y> + Cos(ﬂ—x> =0. (10.122)

a a

The solutions are diagonal lines for A = £1, or otherwise transcendental curves that pass
through the center of the membrane.

A Two-dimensional rotations

The relations between the coordinates of a point P in two coordinates systems that are related
via a rotation by the angle ¢ about the origin can be read off Fig. 31. We have SQ) = z cos#,
QP = ysinf, aswell as QT = ycosf, RT = x sin 6, and so
¥ =wxcosh+ysinb, (A1)
Yy =1ycosf —xsinb. (A.2)

B Line integrals

Line integrals are defined as follows. First, consider the integral of a scalar function f =
f(r) = f(x1,x2,23) along a curve I" from r; to ry (Fig. 32, left panel). By the line integral
we mean the limit of the sum over the product of small segments of the curve, As;, and the
corresponding function values, f; = f(s;):

/ fds= hm)%Z fiAs; . (B.1)
T 7

max(As;

For a vector field A(r), we integrate the component of A along the infinitesimal line element
represented by the displacement vector ds, i.e. A-ds, along the curve. If we decompose A
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Figure 32: Integral of a scalar function (left panel) and a vector field (right panel) along a curve.

and ds into their components, we can write this as
3
r r k=1

C Cylinder coordinates
Relation to Cartesian coordinates:
Ty =7rcos¢, xTo=rsing, x3==2,

or, vice versa,

L2
r =\ x4 a3, qbzarctan(—), z=1x3.
L1

We write an infinitesimal line element as
ds =dre, +rdopes +dze,,

and so _
s=re +roe,+zie,,

and .
112:7*2+r2¢2+z’2

D Rotating frame using Lagrangian mechanics

Inserting Eq. (8.14) into the Lagrangian (8.11) gives

mu?

L:——|—mv-(wxr)+%(wxr)2—mr-é—U.

2
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To obtain the equations of motion, we calculate

oL . U
W—m(vxw)—%m((wxr)xw)—mR—E,
%:mv—km(wxr),
i%—mi)—km(cbxr)—l—m(wxv)
dt v '

Here we used that (w X r) « (w X r) =7-((w X ) Xw), so

d
dr

The Lagrangian equations are then
. . ou ..
mo = —mwXT—mwX (wXr) —2mwx'v—a——mR,
r

in agreement with Eq. (8.18).
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—(wx71)? = ((wxr)Xw) —|—r~d%((w X 1r)xXw) = 2((w X 7)Xw) .

(D.2)
(D.3)

(D.4)

(D.5)

(D.6)
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