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Lecture 1

Preliminaries

1.1 Introductory remarks

• This is the course where we study several subjects from classical mechanics
and electrodynamics which I consider as essential to accelerator physics.
This is not an accelerator physics course.

Of course, the choice of these subjects is somewhat subjective.

• I assume knowledge of basics of classical mechanics, electrodynamics, and
the special theory of relativity.

• The course is designed to be self-contained. We will go over every impor-
tant derivation in detail. You should be able to follow these derivations
in the class.

• 1.2 Maxwell’s equations

Classical electrodynamics in vacuum is governed by the Maxwell equations.
In the SI system of units, the equations are

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B
∂t

∇×H = j +
∂D

∂t
(1.1)

where ρ is the charge density, j is the current density, with D = ε0E, H =
B/µ0. B is called the magnetic induction, and H is called the magnetic field.
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In the Gaussian system of units Maxwell’s equations are

∇ ·E = 4πρ

∇ ·B = 0

∇×E = −1

c

∂B

∂t

∇×B =
4π

c
j +

1

c

∂E

∂t
. (1.2)

The equations are linear: the sum of two solutions, E1, B1 and E2, B2, is also
a solution corresponding to the sum of densities ρ1 + ρ2, j1 + j2.

For a point charge moving along a trajectory r = r0(t),

ρ(r, t) = qδ(r − r0(t)) , j(r, t) = qv(t)δ(r − r0(t)) , (1.3)

with v(t) = dr0(t)/dt.

Proper boundary conditions should be specified in each particular case. On
a surface of a good conducting metal the boundary condition requires that the
tangential component of the electric field is equal to zero, Et|S = 0.

1.3 SI versus Gaussian system of units

We will use the SI system of units throughout this course.

To convert an equation written in SI variables to the corresponding equation
in Gaussian variables, replace according to the following table (from [1]):

Table 1.1: Conversion table

Quantity SI Gaussian

Velocity of light (µ0ε0)−1/2 c

Electric field, potential E, φ E√
4πε0

, φ√
4πε0

Charge density, current q, ρ, j q
√

4πε0, ρ
√

4πε0, j
√

4πε0
Magnetic induction B B

√
µ0

4π

We will use the quantity Z0 that is often called the vacuum impedance

Z0 =

√
µ0

ε0
≈ 377 Ohm . (1.4)

In CGS units Z0 = 4π/c.

See a more detailed discussion about conversion in the Appendix of Jackson’s
book.



9

1.4 Wave equations

In free space with no charges and currents field components satisfy the wave
equation

1

c2
∂2f

∂t2
− ∂2f

∂x2
− ∂2f

∂y2
− ∂2f

∂z2
= 0 . (1.5)

A particular solution of this equation is a sinusoidal wave characterized by
frequency ω and wave number k and propagating in the direction of unit vector
n:

f = A sin(ωt− kn · r) , (1.6)

where A is a constant and ω = ck.

1.5 Vector and scalar potentials

It is often convenient to express the fields in terms of the vector potential A and
the scalar potential φ:

E = −∇φ− ∂A

∂t
B = ∇×A (1.7)

Substituting these equations into Maxwell’s equations, we find that the second
and the third equations are satisfied identically. We only need to take care of
the first and the fourth equations.

1.6 Relativistic equations of motion in electro-
magnetic field

For a point charge q moving with velocity v we have

dp

dt
= qE + qv ×B . (1.8)

On the right-hand side of this equation we have the Lorentz force.

A beam of charged particles can often be considered as a charge fluid char-
acterized by the charge density ρ(r, t) the current density j(r, t). The Lorentz
force acting on a unit volume of such a fluid is

f = ρE + j ×B . (1.9)
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1.7 Energy balance and the Poynting theorem

The electromagnetic field has an energy and momentum associated with it. The
energy density of the field (energy per unit volume) is

u =
1

2
(E ·D +H ·B) =

ε0
2

(E2 + c2B2) . (1.10)

The Poynting vector

S = E ×H (1.11)

gives the energy flow (energy per unit area per unit time) in the electromagnetic
field.

n

V

A

Figure 1.1: Charges moving inside volume V .

Consider charges that move inside a volume V enclosed by a surface A, see
Fig. 1.1. The Poynting theorem states

∂

∂t

∫
V

udV = −
∫
V

j ·EdV −
∫
A

n · SdA , (1.12)

where n is the unit vector normal to the surface and directed outward. The left
hand side of this equation is the rate of change of the electromagnetic energy
due to the interaction with moving charges. The first term on the right hand
side is the work done by the electric field on the moving charges. The second
term describes the electromagnetic energy flow from the volume through the
enclosing surface.

1.8 Photons

The quantum view on the radiation is that the electromagnetic field is repre-
sented by photons. Each photon carries the energy ~ω and the momentum ~k,
where the vector k is the wavenumber which points to the direction of propa-
gation of the radiation, ~ = 1.05 · 10−34 J· sec is the Planck constant divided by
2π, and k = ω/c.
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1.9 Recommended references

Books [1–4] include most of the subjects covered in this course. Ref. [4] is
available online at:

http://mitpress.mit.edu/SICM/
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Lecture 2

Linear and Nonlinear
Oscillators

A simple model of a linear oscillator lies in the foundation of many physical
phenomena in accelerator dynamics. A typical trajectory of a particle in an
accelerator can be represented as an oscillation around a so called reference
orbit.

We will start with recalling the main properties of the linear oscillator. We
will then consider what a small nonlinearity adds to these properties.

2.1 Linear Oscillator

A differential equation for a linear oscillator without damping has a form

d2x

dt2
+ ω2

0x = 0 , (2.1)

where x(t) is the oscillating quantity, t is time and ω0 is the oscillator frequency.
For a mass on a spring shown in Fig. 2.1, ω2

0 = k/m, where k is the spring
constant. General solution of Eq. (2.1) is characterized by the amplitude A and

x
k

Figure 2.1: A mass attached to a spring.

the phase φ

x(t) = A cos(ω0t+ φ) . (2.2)

13
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Damping due to a friction force which is proportional to the velocity intro-
duces a term with the first derivative into the differential equation

d2x

dt2
+ γ

dx

dt
+ ω2

0x = 0 , (2.3)

where γ is the damping constant (it has the dimension of frequency). When
damping is not too strong1, a general solution to this equation is

x(t) = Ae−γ1t cos(ω1t+ φ) , (2.4)

with

ω1 = ω0

√
1− γ2

4ω2
0

,

γ1 =
1

2
γ . (2.5)

If γ � ω0, the frequency ω1 is close to ω0, ω1 ≈ ω0. Damping effect is often
quantified by a so called qualtity factor Q defined as Q = ω0/2γ; weak damping
is characterized Q� 1.

As an example, consider particle’s oscillations in the Low Energy Ring in
PEP-II at SLAC. In the transverse direction, the particle executes the beta-
tron oscillations with the frequency about 40 times larger than the revolu-
tion frequency of 136 kHz. This makes ωβ ∼ 2π × 5.4 MHz. The damping
time γ−1

1 due to the synchrotron radiation is about 60 ms, which means that
γ = 2/(60ms) ≈ 30 Hz. We see that the ratio γ/ωβ ∼ 10−6 is extremely small
for these oscillations, and the damping can be neglected in first approximation.

If the oscillator is driven by an external force f(t) then we have

d2x

dt2
+ γ

dx

dt
+ ω2

0x = f(t) , (2.6)

(f(t) is properly normalized here). From the ODE theory we know how to write
a general solution to the above equation. We will write down here the result for
the case γ = 0:

x(t) = x0 cosω0t+
ẋ0

ω0
sinω0t+

1

ω0

∫ t

0

sinω0(t− t′)f(t′)dt′ , (2.7)

where x0 and ẋ0 are initial, at t = 0, coordinate and velocity of the oscillator.

Problem 2.1. Prove that Eq. (2.7) gives a solution to Eq. (2.6) with γ = 0.
Verify that the initial conditions are satisfied. Generalize the solution Eq. (2.7)
for the case when γ 6= 0.

Problem 2.2 . The function f(t) is shown in Fig. 2.2: it is equal to zero
for t < −∆t, and is constant for t > ∆t with a smooth transition in between.
Describe the behavior of the linear oscillator driven by this force in the limits
∆t� ω−1

0 and ∆t� ω−1
0 .

Problem 2.3. Prove that Eq. (2.1) conserves the quantity x2(t)+ ẋ(t)2/ω2
0 .

1Eqs. (2.4) and (2.5) are valid for γ < 2ω0. In the opposite limit x(t) exponentially decays
in time.
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f(t)

Dt-Dt t

Figure 2.2: Function f(t).

2.2 Resonance

Let’s assume that an oscillator is driven by a sinusoidal force, f(t) = f0 cosωt.
A convenient way to study this problem is to use complex number. Instead of
considering a real function x(t) we will consider a complex function ξ(t) such
that x(t) = Re ξ(t). The equation for ξ is

d2ξ

dt2
+ γ

dξ

dt
+ ω2

0ξ = f0e
−iωt . (2.8)

Let us seek a solution in the form ξ(t) = ξ0e
−iωt where ξ0 is a complex num-

ber, ξ0 = |ξ0|eiφ. This means that the real variable x is x(t) = Re ξ(t) =
Re (|ξ0|e−iωt+iφ) = |ξ0| cos(ωt− φ). We have

(−ω2 − iωγ + ω2
0)ξ0 = f0 , (2.9)

and

ξ0 =
f0

ω2
0 − ω2 − iωγ

. (2.10)

For the amplitude squared of the oscillations we find

|ξ0|2 =
f2

0

(ω2
0 − ω2)2 + ω2γ2

. (2.11)

The plot of the amplitude versus frequency ω is shown in Fig 2.3 for several
values of the parameter γ. When the damping factor γ is small we have an
effect of resonance: the amplitude of the oscillations increases when the driving
frequency approaches the resonant frequency ω0. The width ∆ωres of the res-
onance is defined as a characteristic width of the resonant curve. It is easy to
show that an estimate for ∆ωres is: ∆ωres ∼ γ. It makes sense to talk about
the resonance only when γ � ω0.

Problem 2.4. Assume γ = 0. Show that if ω � ω0 then one can neglect
the term ω2

0ξ in the equation. In other words, the oscillator responds to the
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Figure 2.3: Resonant curves for γ = 0.5, 0.2, 0.1, 0.

driving force as a free particle. This fact explains why the dielectric response of
many media to x-rays can be computed neglecting the binding of electrons to
nuclei.

2.3 Random kicks

What happens if an oscillator is kicked at random times? Let us assume that
the external force is given by the following expression,

f(t) =
∑
i

aiδ(t− ti) , (2.12)

where ti are random moments of time, and the kick amplitudes ai take random
values. To deal with this problem we will use Eq. (2.7) (assuming for simplicity
that γ = 0). We then have

x(t) =
1

ω0

∫ t

0

sinω0(t− t′)f(t′)dt′

=
∑
i

ai
ω0

sinω0(t− ti) , (2.13)

where we also assumed that at time t = 0 the oscillator was at rest. The result
is a random function whose particular values are determined by the specific
sequence of ai and ti. We would like to find some statistical characteristics of
this random motion. An important quantity is the sum x(t)2 + ẋ2(t)/ω2

0—for
free oscillations it is equal to the square of the amplitude. So we want to find
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the statistical average of this quantity:

〈x(t)2 +
ẋ2(t)

ω2
0

〉 =

=〈ω−2
0

∑
i,j

aiaj(sinω0(t− ti) sinω0(t− tj) + cosω0(t− ti) cosω0(t− tj))〉

= 〈ω−2
0

∑
i,j

aiaj cosω0(ti − tj)〉 . (2.14)

Because ti and tj are not correlated if i 6= j, the phase of the cosine function is
random, and the terms with i 6= j vanish after averaging. Only the terms with
i = j survive the averaging. The result is

〈x(t)2 +
ẋ2(t)

ω2
0

〉 =
〈a2〉
ω2

0

t

∆t
, (2.15)

where ∆t is an average time between the kicks. We see that the square of
the amplitude grows linearly with time. This is a characteristic of a diffusion
process.

2.4 Parametric resonance

Let us consider what happens if we vary parameters of our linear oscillator
periodically with time. Since we have only one parameter, this means that
ω0(t) is a periodic function,

d2x

dt2
+ ω2

0(t)x = 0 . (2.16)

Moreover, let us assume that

ω2
0(t) = Ω2(1− h cos νt) (2.17)

(the resulting equation is called the Mathieu equation). Naively, one might
think that if h is small, the solution will be close to that of a linear oscillator
with constant parameters. This is not always the case, as numerical solutions
show. It turns out that even if h is small, oscillations become unstable if the
ratio of the frequencies Ω/ν is close to n/2, where n is an integer. In other
words, for ν ≈ 2Ω, Ω, Ω/2, Ω/3 . . . the oscillator is unstable.

The exact pattern of stable and unstable regions in the plane Ω, h is rather
complicated. It is shown in Fig. 2.4. Note that those regions become exponen-
tially narrow if h . 1 and ν/Ω is small. For a small ν we have an oscillator
whose parameters are varied adiabatically slow.

Again, consider as an example parameters of the high energy ring of the
PEP-II accelerator at SLAC. As was pointed out earlier, the betatron frequency
of transverse oscillations in the machine is 135 kHz. This frequency however
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Figure 2.4: Unstable regions for Eq. (2.16) are bounded by red curves from
above and blue curves from below.

depends on the particle energy, and the RF cavities in the ring modulate the
energy causing its oscillations around an equilibrium value with the so called
synchrotron frequency of about 7 kHz. In principle, such a modulation might
lead to a parametric instability of the betatron oscillations, however, due to
the small ratio of the frequencies, 7/135 ≈ 0.05, the system is in the adiabatic
regime, and in the first approximation, the effect is extremely small (and in
reality is suppressed by small damping of oscillations).

2.5 Adiabatic variation of parameters

We will now consider an example of a slow variation of the parameters of the
oscillator. Let us assume that the frequency ω0 varies in time from a value ω1

to ω2 over a time interval τ . A slow variation means that

ω−2
0

∣∣∣∣dω0

dt

∣∣∣∣� 1 , (2.18)

which also means that the relative change of the frequency ω0 over time ω−1
0 is

small. This is the adiabatic regime.

How does the amplitude of the oscillations varies in time? Let us seek
solution of Eq. (2.16) in the following (complex) form

ξ(t) = A(t) exp

(
−i
∫ t

0

ω0(t′)dt′ + φ0

)
, (2.19)

where A(t) is the slowly varying amplitude of the oscillations and φ is the initial
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phase. Substituting this formula into Eq. (2.16) yields

d2A

dt2
− 2iω0

dA

dt
− idω0

dt
A = 0 . (2.20)

We expect that the amplitude A is a slow function of time, and neglect d2A/dt2

in this equation, which gives

2ω0
dA

dt
+
dω0

dt
A = 0 . (2.21)

This equation can also be written as

d

dt
ln(A2ω0) = 0 , (2.22)

from which it follows that in the adiabatic regime A(t)2ω0(t) = const. We found
an adiabatic invariant for our oscillator.

Fig. 2.5 shows the result of numerical integration of Eq. (2.16) in an adiabatic
regime.
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Figure 2.5: The left plot shows the function ω0(t). The red curve on the right
plot shows the quantity x(t)2+ẋ2(t)/ω2

0 (which is close to the amplitude squared
A2) and the blue curve shows the product of this quantity with ω0(t). We see
that the product is approximately conserved, and hence is an adiabatic invariant.

2.6 Nonlinear oscillator

The linear oscillator is usually obtained as a first approximation in the expansion
near the equilibrium position of a stable system. Higher order terms would lead
to nonlinear terms in the equation

d2x

dt2
= −ω2

0x+ αx2 + βx3 + . . . , (2.23)
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where the coefficients α, β, are small. What is the effect of these terms? The
most important consequence of nonlinear terms is that they introduce a depen-
dance of frequency of oscillations on amplitude.

Instead of studying Eq. (2.23) we will analyze first the pendulum equation

θ̈ + ω2
0 sin θ = 0 , (2.24)

where ω2
0 = g/l, l being the length of the pendulum. Note that for small

amplitudes, θ � 1, we have

sin θ ≈ θ − 1

6
θ3 , (2.25)

and we recover Eq. (2.23) with α = 0 and β = ω2
0/6. The linear approximation

for the pendulum equation is obtained if we neglect the cubic term in this
expansion.

Of course, the pendulum can be solved exactly if we use the energy conser-
vation. Multiplying Eq. (2.24) by θ̇ gives

1

2

d

dt
θ̇2 − ω2

0

d

dt
cos θ = 0 , (2.26)

from which it follows that the quantity

E =
1

2ω2
0

θ̇2 − cos θ = const (2.27)

is conserved. We call E the energy of the system; each orbit is characterized by
its own energy. For a given energy E we have

θ̇ = ±ω0

√
2(E + cos θ) . (2.28)

This equation allows us to graph the phase portrait of the system where we plot
trajectories on the plane (θ, θ̇/ω0), see Fig. 2.6. There are stable points, unstable
points and the separatrix on this plot. Oscillations correspond to values of E
such that −1 < E < 1 with rotation occuring at E > 1. The separatrix has
E = 1.

Problem 2.5. Draw the phase portrait of a linear oscillator with and with-
out damping.

Let us find now how the period of the pendulum T (and hence the frequency
ω = 2π/T ) depends on the amplitude. We can integrate Eq. (2.28)

ω0

∫ t2

t1

dt =

∫ θ2

θ1

dθ√
2(E + cos θ)

. (2.29)

For a given energy E, inside the separatrix, the pendulum swings between −θ0

and θ0, where θ0 is defined by the relation cos θ0 = −E, hence

ω0(t2 − t1) =
1√
2

∫ θ2

θ1

dθ√
(cos θ − cos θ0)

. (2.30)
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Figure 2.6: Phase space for the pendulum with the red curve showing the sep-
aratrix.

To find a half a period of the oscillations we need to integrate from −θ0 to θ0:

1

2
Tω0 =

1√
2

∫ θ0

−θ0

dθ√
(cos θ − cos θ0)

. (2.31)

The result can be expressed in terms of the elliptic function K of the first kind

T

T0
=

2

π
K

(
sin2

(
θ0

2

))
, (2.32)

where T0 = 2π/ω0 is the period in the linear approximation. The plot of this
function is shown in Fig. 2.7.
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Figure 2.7: Period T as a function of the amplitude angle θ0 in the range
0 < θ0 < π.

For small values of the argument, the Taylor expansion of the elliptic function
is: (2/π)K(x) ≈ 1 + x/4. This means that for small amplitudes the frequency



22

of oscillations is given by

ω ≈ ω0

(
1− θ2

0

16

)
, (2.33)

it decreases with the amplitude.

Problem 2.6. Derive Eq. (2.33) directly from Eq. (2.31).
Near the separatrix, the period of oscillations becomes very large. The

separatrix corresponds to θ0 = π, and we can use the approximation (2/π)K(1−
x) ≈ −(lnx)/π valid for x� 1, to find an approximate formula for T near the
separatrix. We obtain

T

T0
≈ 1

π
ln

1

1− E
. (2.34)

As we see, the period diverges logarithmically as E approaches its value at the
separatrix.

Problem 2.7. Fig. 2.8 shows a numerically computed function θ̇(t) for a
pendulum with ω0 = 1. Try to figure out what is the energy E for this trajectory
and explain qualitatively the shape of the curve.
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Θ 

Figure 2.8: Dependence of θ̇ versus time for a pendulum trajectory.

In the general case of Eq. (2.23) the approximate solution will be

x(t) = A(t) cos[ω(A)t+ φ] , (2.35)

where the frequency ω now becomes a function of the amplitude

ω(A) ≈ ω0 + aA2 . (2.36)

In this equation we have to assume that the correction to the frequency is small,
ω0 � aA2. One can show that [5]

a = − 3β

8ω0
− 5α2

12ω3
0

. (2.37)

Problem 2.8. Verify that Eq. (2.37) gives the result (2.33) for the pendu-
lum.
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2.7 Nonlinear resonance

We saw in Section 2.2 that for a linear oscillator a resonant frequency can drive
the amplitude to very large values, if the damping is small. The situation
changes for a nonlinear oscillator. In this case, when the amplitude grows, the
frequency of the oscillator changes and the oscillator detunes itself from the
resonance.

Let us first make a rough estimate of the maximum amplitude of a nonlinear
resonance. Take Eq. (2.11), set γ = 0 (no damping), replace ω0 by ω0 + aA2

and then set ω = ω0 (the frequency of the driving force is equal to that of the
linear oscillator). Using the smallness of aA2 we find

A2 ≈ f2
0

(2aω0A2)2
. (2.38)

This should be considered as an equation for A, from which we find

A ≈
(

f0

2aω0

)1/3

. (2.39)

We see that due to nonlinearity, even at exact resonance, the amplitude of the
oscillations is finite: it is proportional to a−1/3.
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Lecture 3

Lagrangian and
Hamiltonian equations of
motion

The most general description of motion for a physical system is provided in
terms of the Lagrange and the Hamilton functions. In this lecture we introduce
the Lagrange equations of motion and discuss the transition from the Lagrange
to the Hamilton equations. We write down the Lagrangian and Hamiltonian for
a charged particle and introduce the Poisson brackets.

3.1 Lagrangian

How does one write equations of motion for a complicated mechanical system,
like the spherical pendulum shown in Fig. 3.1? The Lagrangian formalism
allows for easy formulation of such equations.

The first step in Lagrangian formulation consists of choosing generalized
coordinates of the system, q1, q2, . . . , qn, which uniquely define the state of the
system. The number n is the number of degrees of freedom of our system. Each
mechanical system possesses a Lagrangian function (or Lagrangian in short),
which depends on the coordinates q1, q2, . . . , qn, velocities q̇1, q̇2,. . . , q̇n (with
q̇i = dqi/dt), and time t: L(qi, q̇i, t) [for brevity, we will write L(qi, q̇i, t) instead
of L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t)].

The Lagrangian has the following property: the integral

S =

∫ t2

t1

L(qi, q̇i, t)dt (3.1)

(which is called the action) reaches an extremum along the true trajectory of
the system when varied with fixed end points, see Fig. 3.2. This property can
be used directly to find trajectories of a system by numerically minimizing the

25
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Figure 3.1: A spherical pendulum.

qi

t

qi
(1)

qi
(2)

t t1 2

Figure 3.2: The Lagrangian reaches an extremum along the physical trajectory
of the system.

action S. It is however not very practical, in part because the varied trajectory
is specified by its initial, q(t1), and final, q(t2), positions. In applications we
would prefer to specify a trajectory by its initial position and velocity instead.

For mechanical systems, the Lagrangian is equal to the difference between
the kinetic energy and the potential energy of the system. For example, for the
pendulum with the equation of motion given by Eq. (2.24), with the angle θ
chosen as a generalized coordinate q, the Lagrangian is

L(θ, θ̇) =
m

2
l2θ̇2 + gml cos θ . (3.2)

As was mentioned above, knowing the Lagrangian is enough to be able to find
trajectories of the pendulum by direct minimization of the action.

The most convenient approach to the problem of obtaining equations of
motion for a given Lagrangian is based on the variational calculus. By direct
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minimization of the action integral, requiring

δ

∫ t2

t1

L(qi, q̇i, t)dt = 0 , (3.3)

one can get equations of motion in the following form:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 , i = 1, . . . , n . (3.4)

These are ordinary differential equations which are much easier to solve than
trying to directly minimize S.

Let us prove (3.4). Assume that qi(t) is a true orbit and q(t1) and q(t2)
are fixed. Let δqi(t) be a deviation from this orbit; it has a property δqi(t1) =
δqi(t2) = 0. Compute the variation of the action:

δ

∫ t2

t1

L(qi, q̇i, t)dt =

=

∫ t2

t1

L(qi + δqi, q̇i + δ̇qi, t)dt−
∫ t2

t1

L(qi, q̇i, t)dt

=

∫ t2

t1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt

=

∫ t2

t1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt, (3.5)

where summation over repeated index i is assumed. Since qi(t) is a true orbit,
the action reaches an extremum on it, and the variation of the action should
be of second order, ∝ δq2

i . This means that the linear variation that we found
above vanishes for arbitrary δqi, hence Eq. (3.4) must be satisfied.

Problem 3.1. For a linear oscillator, the Lagrangian is

L =
m

2
ẋ2 − mω2

2
x2 .

Find equations of motion.
The Lagrangian for a given system is not unique. There exist many La-

grangians for the same physical system that lead to identical equations of mo-
tion.

There are several advantages of using Lagrangian as a basic point for for-
mulation of equations of motion: a) easy to choose convenient generalized coor-
dinates, b) it is closely connected to the variational principles, and c) it relates
symmetries of the Lagrandian to conservation laws for the system. One disad-
vantage is that the Lagrangian approach sometimes obscures the nature of the
forces acting on the system.

A simple example of the relation between the symmetry of the Lagrangian
and the conservation laws is given by the case when L does not depend on qi.
As follows from Eqs. (3.4), in this case the quantity ∂L/∂q̇i is conserved.
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Problem 3.2. Consider a pendulum of length l and mass m, supported
by a pivot that is driven in the vertical direction by a given function of time
ys(t). Obtain the Lagrangian and derive equations of motion for the pendulum
(Ref. [4], page 49).

Problem 3.3. Analyze particle’s motion in a rotating frame using the
Lagrangian approach (Ref. [2], pages 74-76).

3.2 Lagrangian of a relativistic particle in an
electromagnetic field

This is the Lagrangian of a relativistic charged particle moving in electromag-
netic field represented by the vector potential A and the scalar potential φ:

L(r,v, t) = −mc2
√

1− v2/c2 + ev ·A(r, t)− eφ(r, t) (3.6)

= −γmc2 + ev ·A(r, t)− eφ(r, t),

where γ = (1 − β2)−1/2 and β = v/c. In Cartesian coordinate system, r =
(x, y, z), and the Lagrangian is given as a function L(x, y, z, ẋ, ẏ, ż, t), where, of
course, ẋ = vx, ẏ = vy, ż = vz.

Problem 3.4. Derive equations of motion (1.8) from the Lagrangian (3.6).
As an example of using the Lagrangian formalism, let us study particle’s

motion in a uniform magnetic field using the above Lagrangian.
The field is directed along the z-axis:

B = (0, 0, B0) . (3.7)

It is easy to check that the vector potential can be chosen as

A = (−B0y, 0, 0) , (3.8)

so that B = ∇×A. This gives for the Lagrangian

L = −mc2
√

1− v2/c2 − eB0vxy . (3.9)

Let’s first consider the direction of motion along the field. For the z-direction
we have

d

dt

∂L

∂vz
= 0 =⇒ v̇z = 0 =⇒ vz = const . (3.10)

We will now prove that motion in the constant magnetic field conserves the
particle energy, γ = const. Since vz = const, we need to prove that v2

x + v2
y =

const. For the equation of motion in the x direction ∂L/∂x−d/dt(∂L/∂vx) = 0
we use the following formulae: ∂L/∂x = 0 and ∂L/∂vx = mc2γvx/c

2 − eB0y
which give

∂L

∂x
− d

dt

∂L

∂vx
= −mdγvx

dt
+ eB0vy = 0 . (3.11)
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The Lagrange equation in the y-direction gives

∂L

∂y
− d

dt

∂L

∂vy
= −mdγvy

dt
− eB0vx = 0 . (3.12)

Multiplying (3.11) by vx and multiplying (3.12) by vy and adding them gives

vy
dγvy
dt

+ vx
dγvx
dt

= 0 , (3.13)

from which it follows that γ̇ = 0 (Why?). With γ̇ = 0 the equation (3.11) reads

v̇x = ωHvy , (3.14)

where the cyclotron frequency ωH is

ωH =
eB0

γm
. (3.15)

Eq. (3.12) reads

v̇y = −ωHvx . (3.16)

Combining Eqs. (3.14) and (3.16) yields v̈x + ωH
2vx = 0 , with the solution

vx = v0 cos(ωHt+φ0) . From Eq. (3.14) we then obtain vy = −v0 sin(ωHt+φ0) .
Integrating velocities, we find coordinates:

x =
v0

ωH
sin(ωHt+ φ0) + x0 , y =

v0

ωH
cos(ωHt+ φ0) + y0 . (3.17)

This is a circular orbit with the radius (Larmor radius)

R =
v0

ωH
=

p

eB0
. (3.18)

Problem 3.5. Write the same Lagrangian in the cylindrical coordinate
system with z directed along the magnetic field. Derive the equations of motion.

Problem 3.6. Do the same for the coordinate system (x′, s, z) shown in
Fig. 3.3.

Problem 3.7. The same magnetic field (3.7) can be represented by a differ-
ent vector potential A = 1

2 (−B0y,B0x, 0). Show that the equations of motion
are the same as for the vector potential (3.8).

3.3 From Lagrangian to Hamiltonian

Another way to describe a system motion is to use the Hamiltonian approach.
It has some advantages over the Lagrangian one.

A transition from the Lagrangian to the Hamiltonian is made in three steps.
First, we define the generalized momenta pi:

pi(qk, q̇k, t) =
∂L(qk, q̇k, t)

∂q̇i
, i = 1, . . . , n . (3.19)
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Figure 3.3: The coordinate system x′, s, z. The circle radius is equal to the
Larmor radius R. The coordinate x′ is defined as a difference between the polar
radius r and the circle radius R.

Second, from the n equations pi = pi(qk, q̇k, t), i = 1, . . . , n we express all the
variables q̇i in terms of q1, q2, . . . , qn, p1, p2,. . . , pn and t

q̇i = q̇i(pk, qk, t) , i = 1, . . . , n . (3.20)

Third, we construct a Hamiltonian function H as

H =

n∑
i=1

piq̇i − L(qk, q̇k, t) , (3.21)

and express all q̇i on the right hand side through qi, pi and t using Eqs.
(3.20) so that we get the Hamiltonian as a function of variables qi, pi and
t: H(q1, q2, . . . , qn, p1, p2, . . . , pn, t).

We claim that, with the Hamiltonian, the equations of motion of our system
become:

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
. (3.22)

The variables pi and qi are called the canonically conjugate variables. Let us
prove (3.22):

−
(
∂H

∂qi

)
p

= − ∂

∂qi

(
n∑
k=1

pkq̇k − L

)
=

n∑
k=1

(
−pk

∂q̇k
∂qi

+
∂L

∂q̇k

∂q̇k
∂qi

)
+
∂L

∂qi

=
∂L

∂qi
=

d

dt

∂L

∂q̇i
=
dpi
dt

(3.23)

(
∂H

∂pi

)
q

=
∂

∂pi

(∑
k

pkq̇k − L

)
= q̇i +

∑
k

(
pk
∂q̇k
∂pi
− ∂L
∂q̇k

∂q̇k
∂pi

)
= q̇i (3.24)
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3.4 Hamiltonian of a charged particle in an elec-
tromagnetic field

We start from the Lagrangian (3.6)

L(r,v, t) = −mc2
√

1− v2/c2 + ev ·A(r, t)− eφ(r, t) .

First, we need to find the canonical conjugate momentum which we denote by
π combining into vector notation three cartesian coordinates (πx, πy, πz):

π =
∂L

∂v

= −mc2
∂
√

1− v2/c2

∂v
+ eA

= m
v√

1− v2/c2
+ eA

= mγv + eA . (3.25)

Note that the conjugate momentum π differs from the kinetic particle’s mo-
mentum mγv. Before proceeding, note also that as follows from the previous
equation, γβ = (π − eA)/mc, and hence

γ2β2 =
(π − eA)2

m2c2
. (3.26)

Now let us derive the Hamiltonian

H = v · π − L

= v · π +mc2
√

1− v2/c2 − ev ·A+ eφ

= mγv2 +
mc2

γ
+ eφ

= mγc2
(
β2 +

1

γ2

)
+ eφ

= mγc2 + eφ . (3.27)

Remarkably, the Hamiltonian is the sum of the particle’s energy mγc2 and
the potential energy associated with the electrostatic potential φ. The vector
potential A does not show up in this expression. This, however, is misleading—
the vector potential is hidden in Eq. (3.27). To see that, remember, the we need
to express H in terms of the conjugate coordinates r and momenta π. Using
Eq. (3.26) we obtain:

γ2 = 1 + γ2β2 = 1 +
(π − eA)2

m2c2
, (3.28)

which gives for the Hamiltonian

H(r,π, t) =
√

(mc2)2 + c2(π − eA(r, t))2 + eφ(r, t), (3.29)
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where now we explicitly indicated all the variables involved in the Hamiltonian.
Problem 3.8. Find conjugate momenta in cylindrical coordinates of a

charged particle moving in electromagnetic field.

3.5 Poisson brackets

Let f(qi, pi, t) be a function of coordinate, momenta and time. Assume that
coordinates and momenta evolve according to the Hamilton equations, and qi(t)
and pi(t) represent a trajectory. Then f becomes a function of time t only:
f(qi(t), pi(t), t). What is the derivative of this function with respect to time?
We have

df

dt
=
∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
. (3.30)

Substituting Eqs. (3.22) into those equations gives

df

dt
=
∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
=
∂f

∂t
+ {H, f} , (3.31)

where we introduced the Poisson brackets

{H, f} =
∑
i

(
∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi

)
. (3.32)

Poisson brackets have many remarkable properties. We will use the following
two in the next lectures. For two functions f(qi, pi, t) and g(qi, pi, t)

{g, f} = −{f, g} , (3.33)

and also

{f, f} = 0 . (3.34)

If df/dt = 0, then it is an integral of motion. Note that if f(qi, pi) does
not depend on time, it is an integral of motion if on only if {H, f} = 0, as
follows from (3.31). A Hamiltonian that does not depend explicitly on time is
an integral of motion, as follows from the identity {H,H} = 0.

It is easy to verify that following identities hold

{qi, qk} = {pi, pk} = 0 , {pi, qk} = δik . (3.35)

Problem 3.9. The angular momentum M of a particle is defined as M =
r × p. Find the Poisson brackets {Mi, xk}, {Mi, pk} and {Mi,Mk}, where the
indices i and k take the values x, y and z.

Problem 3.10. Simplify L and H in the nonrelativistic limit v � c.



Lecture 4

Canonical transformations

We saw that within the Lagrangian approach we can choose the generalized coor-
dinates as we please. We can start with a set of coordinates qi and then introduce
generalized momenta pi according to Eqs. (3.19) and form a Hamiltonian (3.21).
Or, we can chose another set of generalized coordinates Qi = Qi(qk, t), express
the Lagrangian as a function of Qi, go through Eqs. (3.19) and (3.21), and ob-
tain a different set of momenta Pi and a different Hamiltonian H ′(Qi, Pi, t).
Although mathematically different, these two representations are physically
equivalent—they describe the same dynamics of our physical system. Under-
standing the freedom that we have in the choice of the conjugate variables for
a Hamiltonian is important: a judicious choice of the variables would allow us
to simplify the description of the system dynamics.

A more general approach to the problem of using various variables in Hamil-
tonian formulation of equations of motion is the following. Let us assume that
we have canonical variables qi, pi and the corresponding Hamiltonian H(qi, pi, t)
and then make a transformation to new variables

Qi = Qi(qk, pk, t) , Pi = Pi(qk, pk, t) . i = 1 . . . n. (4.1)

Can we find a new Hamiltonian H ′(Qi, Pi, t) such that the system motion in new
variables is also Hamiltonian? What are the requirements on the transformation
(4.1) for such a Hamiltonian to exist?

These questions lead us to the notion of the canonical transformation.

4.1 Canonical transformations

We first consider a time independent Hamiltonian H, and later generalize the
result for the case when H is a function of time. Let us assume that we have
canonical variables qi, pi and the Hamiltonian H(qi, pi). Instead of qi, pi we
would like to use a new set of independent variables Qi, Pi that are related to
the old one, see Fig. 4.1,

Qi = Qi(qk, pk) , Pi = Pi(qk, pk) , i = 1 . . . n. (4.2)

33
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Figure 4.1: Transformation to new variables: a point in the old phase space
maps to a point in the new space, and an old orbit is transformed to a new one.

We assume that there exists an inverse transformation from Qi, Pi to qi, pi and
write it as follows

qi = qi(Qk, Pk) , pi = pi(Qk, Pk) , i = 1 . . . n. (4.3)

It is obtained by considering Eqs. (4.2) as 2n equations for the old variables and
solving them for qi, pi.

Substituting (4.3) in H we can express our Hamiltonian in terms of the new
variables:

H ′(Qk, Pk) = H(qi(Qk, Pk), pi(Qk, Pk)), (4.4)

where we denote the new function by H ′. Let us assume that we solved the
Hamiltonian equations (3.22) and found a trajectory qi(t), pi(t). This trajectory
gives us, through the transformation (4.2), an orbit in new variables as well:

Qi(t) = Qi(qi(t), pi(t)) , Pi(t) = Pi(qi(t), pi(t)) . (4.5)

We would like the trajectory defined by the functions Qi(t) and Pi(t) to be a
Hamiltonian orbit, that is to say that we would like it to satisfy the equations

dPi
dt

= −∂H
′(Qk(t), Pk(t))

∂Qi
,

dQi
dt

=
∂H ′(Qk(t), Pk(t))

∂Pi
. (4.6)

If those conditions are satisfied for every Hamiltonian H, then the variable
transformation (4.2) gives us a canonical transformation.

Here are two trivial examples of canonical transformations:

Qi = pi , Pi = −qi . (4.7)

Qi = −pi , Pi = qi . (4.8)

Problem 4.1. Later we will also use in one case a transformation that is not
canonical. Show that the transformation Pi = λpi, Qi = qi, H

′ = λH, where λ
is a constant parameter, preserves the Hamiltonian structure of equations.
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4.2 Poisson brackets and canonical transforma-
tions

We will now show how to find out if a given transformation (4.2) is canonical.
The proof is based on the invariance of the Poisson brackets with respect to
canonical transformations.

Let us assume that we have two arbitrary functions of canonical variables,
f(qi, pi) and g(qi, pi), and calculate there Poisson brackets:

{f, g}q,p =
∑
i

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
≡ J(q, p) , (4.9)

where, on the left hand side, we now indicate the variables with respect to which
the Poisson brackets are calculated. Using the inverse transformation (4.3) we
can express our functions in terms of the new variables Qi and Pi; the resulting
new functions are denotes as f ′ and g′: f ′(Qi, Pi) and g′(Qi, Pi). Let us also
calculate the Poisson brackets of the new functions with respect to the new
variables:

{f ′, g′}Q,P =
∑
i

(
∂f ′

∂Pi

∂g′

∂Qi
− ∂f ′

∂Qi

∂g′

∂Pi

)
≡ J1(Q,P ) . (4.10)

It turns out that if qi, pi → Qi, Pi is a canonical transformation, then expressing
in J1(Q,P ) the new variables through the old ones gives J(q, p):

J1(Qi(qk, pk), Pi(qk, pk)) = J(qk, pk) . (4.11)

To prove this statement let us consider g(qi, pi) as a Hamiltonian of a ficti-
tious system. Then according to (3.31)

{f, g}q,p = −df
dt

; (4.12)

it is a time derivative taken along the orbit qi(t), pi(t), which is computed
with the Hamiltonian g(qi, pi), see Fig. 4.1. When we formally change to
new variables Qi and Pi in f , the same function f(t) is now given by f(t) =
f ′(Qi(t), Pi(t)), where (Qi(t), Pi(t)) is the orbit in the new phase space. If the
transformation is canonical, the orbit (Qi(t), Pi(t)) satisfies Hamiltonian equa-
tion of motions with the new “Hamitonian” g′(Qi, Pi). Hence

{f ′, g′}Q,P = −df
dt
, (4.13)

and using (4.12) we conclude that

{f, g}q,p = {f ′, g′}Q,P , (4.14)

which proves Eq. (4.11) for arbitrary functions f and g.
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Let us know choose two arbitrary indices i and k and set f = Qi(ql, pl) and
g = Qk(ql, pl). Eq. (4.11) then gives

{Qi, Qk}q,p = {Qi, Qk}Q,P = 0 , (4.15)

where we used Eqs. (3.35). Similarly, choosing f = Pi(ql, pl) and g = Pk(ql, pl)
gives

{Pi, Pk}q,p = {Pi, Pk}Q,P = 0 , (4.16)

and choosing f = Pk(ql, pl) and g = Qi(ql, pl) gives

{Pk, Qi}q,p = {Pk, Qi}Q,P = δik . (4.17)

To summarize, we proved that if Eqs. (4.2) represent a canonical transfor-
mation, for any pair of indexes i and k we should have

{Qi, Qk}q,p = {Pi, Pk}q,p = 0, {Pk, Qi}q,p = δik , (4.18)

that is they are necessary conditions for a transformation to be canonical. It
turns out (but we do not prove it here), that they also are a sufficient condition
for a transformation to be canonical. That is if Eqs. (4.18) are satisfied for all
pairs i and k, the transformation will be canonical.

Problem 4.2. Using the Poisson brackets prove that the transformations
Eqs. (4.7) and (4.8) are canonical.

4.3 Generating functions

Poisson brackets helped us to figure out if a given transformation is canonical.
They do not, however, provide a method to generate canonical transformations.
The technique which allows one to create a transformation that is guaranteed
to be canonical is based on the technique of the so called generating functions.

We will give a complete formulation of the method of generation functions in
the next section. In this section, we consider a special case of a time independent
generating function of first type, F1. Such a generating function depends on 2n
variables: n old coordinates qi and n new coordinates Qi:

F1(qi, Qi) . (4.19)

Having chosen an arbitrary (smooth) function F1, one can generate a transfor-
mation of variables (4.1) using the following equations:

pk =
∂F1(qi, Qi)

∂qk
, Pk = −∂F1(qi, Qi)

∂Qk
, k = 1 . . . n . (4.20)

Indeed, one can consider n relations pk = ∂F1(qi, Qi)/∂qk, k = 1 . . . n as equa-
tions for n variables Qi, and solving them find n functions Qi(qk, pk), i = 1 . . . n.
Substituting these functions in the right hand side of Pk = −∂F1(qi, Qi)/∂Qk
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gives n functions Pk(qi, pi), k = 1 . . . n, in terms of the old variables. It turns
out that obtained in such a way transformation of variables is canonical.

We will not give here a full proof of this statement, which can be found
in textbooks on classical mechanics. Instead, we will prove here only that
Eqs. (4.20) define a canonical transformation in the case of one degree of free-
dom. In this case, we have two conjugate variables, q and p, and a canonical
transformation (4.2) is determined by the two equations

Q = Q(q, p) , P = P (q, p) . (4.21)

The generating function F1(q,Q) is a function of two variables, and from (4.20)
we have

p =
∂F1(q,Q)

∂q
, P = −∂F1(q,Q)

∂Q
. (4.22)

What we need to do is to verify that from (4.22) follow (4.18). Since in one
dimension i = k = 1 in (4.18), and identically {Q,Q} = {P, P} = 0, we only
need to prove that

{P,Q}q,p =
∂P

∂p

∂Q

∂q
− ∂P

∂q

∂Q

∂p
= 1 . (4.23)

From the second of Eqs. (4.22) we have

∂P

∂q
= − ∂

2F1

∂Q∂q
− ∂2F1

∂Q2

∂Q

∂q
,

∂P

∂p
= −∂

2F1

∂Q2

∂Q

∂p
. (4.24)

Substituting these equation into Eq. (4.23) we obtain

∂P

∂p

∂Q

∂q
− ∂P

∂q

∂Q

∂p
=

∂2F1

∂Q∂q

∂Q

∂p
. (4.25)

The derivative ∂Q/∂p can be found when we differentiate the first of equations
(4.22) with respect to p:

1 =
∂2F1

∂q∂Q

∂Q

∂p
, (4.26)

from which we find

∂Q

∂p
=

(
∂2F1

∂q∂Q

)−1

. (4.27)

Substituting this into Eq. (4.25) gives

{P,Q}q,p = 1 . (4.28)

The functions (4.19) are not the only type of functions that generate canon-
ical transformations. Below we will list other types that can be used for this
purpose. Before that, however, we need to generalize our result for the time
dependent transformations and time dependent Hamiltonians.
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4.4 Time depending transformations and four
types of generating functions

Canonical transformations can be time dependent,

Qi = Qi(qk, pk, t) , Pi = Pi(qk, pk, t) . i = 1 . . . n. (4.29)

They can be applied to time dependent Hamiltonians as well. The Poisson
brackets are still applicable in this case, and Eqs. (4.18) are necessary and
sufficient conditions for a transformation to be canonical (the variable t can be
considered as a parameter in calculation of the Poisson brackets). However, a
simple rule (4.4) for obtaining a new Hamiltonian is not valid in the general
case of time depending transformations—it should be modified as shown below.

In Section (4.3) we introduced the generating function F1(qi, Qi). This is
only one of four possible types of the generating functions. All generating func-
tions depend on a set of n old coordinates and a set of n new ones. These
sets come in the following combinations: (qi, Qi), (qi, Pi), (pi, Qi), and (pi, Pi).
Correspondingly, we have 4 types of the generating function. The rules how to
make a canonical transformation for each type of the generating function, and
the associated transformation of the Hamiltonian, are shown below.

The first type of the generating functions is F1(qi, Qi, t):

pi =
∂F1

∂qi
, Pi = −∂F1

∂Qi
,

H ′ = H +
∂F1

∂t
. (4.30)

The second type is F2(qi, Pi, t):

pi =
∂F2

∂qi
, Qi =

∂F2

∂Pi
,

H ′ = H +
∂F2

∂t
. (4.31)

The third type is F3(pi, Qi, t):

qi = −∂F3

∂pi
, Pi = −∂F3

∂Qi
,

H ′ = H +
∂F3

∂t
. (4.32)

The fourth type is F4(pi, Pi, t):

qi = −∂F4

∂pi
, Qi =

∂F4

∂Pi
,

H ′ = H +
∂F4

∂t
. (4.33)
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Problem 4.3. Find generating functions for the transformations (4.7) and
(4.8).
Problem 4.4. Find generating functions for the contact transformation

Qi = Qi(q1, q2, . . . , qn) . (4.34)

4.5 Examples of canonical transformations

We first consider a simple example of the identity transformation

Qi = qi , Pi = pi . (4.35)

The generating function of the second type for this transformation is

F2 =

n∑
i=1

qiPi . (4.36)

Problem 4.5. Find the generating function of the third type for the trans-
formation (4.35). This problem illustrates the fact that the choice of the type
of the generating function is not unique.

We now show how canonical transformations can be applied to the harmonic
oscillator. The Hamiltonian for an oscillator with a unit mass is

H =
p2

2
+
ω2x2

2
. (4.37)

It gives the following equations of motion: ṗ = −∂H/∂x = ω2x, ẋ = ∂H/∂p = p
with the solution

x = a cos(ωt+ φ0) , p = −a sin(ωt+ φ0) . (4.38)

We would like to introduce a set of new variables, J (new momentum) and
φ (new coordinate), such that the transformation from new to old coordinates
would be

x = a(J) cosφ , p = −a(J)ω sinφ . (4.39)

The advantage of the new variables is clear: the new momentum J is a constant
of motion (because a = const), and the new coordinate evolves in a simple way,
φ = ωt+ φ0.

We will try to construct the canonical transformation (4.39) using a gener-
ating function F1(x, φ) of the first type. For this we need to express p in terms
of the old (x) and new (φ) coordinates eliminating a(J) from (4.39),

p = −ωx tanφ . (4.40)



40

Now integrating the equation (∂F1/∂x)φ = p = −ωx tanφ, we find

F1(x, φ) =

∫
pdx = −ωx

2

2
tanφ . (4.41)

We then have

J = −∂F1

∂φ

=
ωx2

2

1

cos2 φ

=
ωx2

2
(1 + tan2 φ)

=
ωx2

2

(
1 +

p2

ω2x2

)
=

1

2ω

(
ω2x2 + p2

)
. (4.42)

This equation expresses the new momentum in terms of the old variables. The
new coordinate can be found from Eq. (4.40)

φ = − arctan
p

ωx
. (4.43)

Problem 4.6. From Eqs. (4.42) and (4.43) express x and p through J and
φ. Verify that the result agrees with Eqs. (4.39).

The new Hamiltonian is a function of the new momentum only

H = ωJ , (4.44)

and gives the following equations of motion in new variables:

J̇ = −∂H
∂φ

= 0 , φ̇ =
∂H

∂J
= ω . (4.45)

The oscillator dynamics looks very simple in new coordinates:

J = const , φ = ωt+ φ0 . (4.46)

The (J, φ) pair is called the action-angle coordinates for this particular case.
They are very useful for building a perturbation theory in a system which in
the zeroth approximation reduces to a linear oscillator.



Lecture 5

Liouville’s theorem.
Action-angle variables.

We take a geometrical look at the Hamilton equations of motion, talk about
action-angle variables and the CPT symmetries in classical mechanics.

5.1 Hamiltonian flow in phase space. Symplec-
tic maps

We will now take another look at the Hamiltonian motion focusing on its ge-
ometrical aspect. Let us assume that for a Hamiltonian H(qi, pi, t), for every
set of initial condition p0

i , q
0
i from some domain, we can solve the equations of

motion starting from an initial time t0 and find the values pi, qi at time t. This
gives us a map

pi = pi(p
0
i , q

0
i , t0, t) , qi = qi(p

0
i , q

0
i , t0, t) . (5.1)

Considering now the time t as a parameter and varying it will move each point
(qi, pi) along a trajectory in the 2n dimensional phase space. A collection of
such trajectories starting from some set of initial conditions (q0

i , p
0
i ) constitutes

a Hamiltonian flow, see Fig. 5.1.
In accelerator context one can associate, for example, each trajectory (5.1)

with a different particle in a beam. Assume that one has a beam diagnostic
at one location of the ring, which measures coordinates of particles when the
beam passes by at time t0. On the next turn, at time t = t0 + T , where T is
the revolution period in the ring, it measures coordinates again. The relation
between the new and the old coordinates will be given by the functions (5.1).

A remarkable feature of the relations (5.1) is that, for a given t0 and t,
they constitute a canonical transformation from p0

i , q
0
i to pi, qi, which is also

called a symplectic transfer map. We are not going to prove the canonical
properties of this map in the general case of n degrees of freedom, however we
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Figure 5.1: Hamiltonian flow in phase space.

will demonstrate it for the case of one degree of freedom dropping the index i,
pi → p, qi → q.

The proof is based on calculation of the time derivatives of the Poisson
brackets {pq}q0,p0 , {pp}q0,p0 and {qq}q0,p0 and demonstration that they equal to
zero. Since at the initial time t = t0 the transformation from p0, q0 to p, q is the
identity transformation (p = p0, q = q0), it is clearly canonical. Conservation of
the Poisson brackets in time then means that it remains canonical for all values
of t.

In what follows, we will focus on calculation of the time derivative of {pq}q0,p0 ;
the others brackets can be analyzed in a similar way. We have

d

dt
{pq}q0,p0 =

d

dt

(
∂p

∂p0

∂q

∂q0
− ∂p

∂q0

∂q

∂p0

)
(5.2)

=
∂q

∂q0

∂

∂p0

dp

dt
+

∂p

∂p0

∂

∂q0

dq

dt
− ∂q

∂p0

∂

∂q0

dp

dt
− ∂p

∂q0

∂

∂p0

dq

dt

= − ∂q

∂q0

∂

∂p0

∂H

∂q
+

∂p

∂p0

∂

∂q0

∂H

∂p
+

∂q

∂p0

∂

∂q0

∂H

∂q
− ∂p

∂q0

∂

∂p0

∂H

∂p
.

Using the chain rules for calculation of the partial derivatives

∂

∂p0
=

∂p

∂p0

∂

∂p
− ∂q

∂p0

∂

∂q
,

∂

∂q0
=

∂p

∂q0

∂

∂p
− ∂q

∂q0

∂

∂q
(5.3)

it is easy to show that all the terms on the right hand side of (5.2) cancel and
d{pq}q0,p0/dt = 0.

Somewhat different language of symplectic maps is often used in connection
with canonical transformation (5.1) or (4.2). A symplectic map is defined with
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the help of the matrix J2n:

J2n =


J2 0 0 0
0 J2 0 0

0 0
. . . 0

0 0 0 J2

 , (5.4)

where

J2 =

(
0 −1
1 0

)
. (5.5)

Let us consider the transformation (4.2) and change the notation introducing
w2k−1 = qk, w2k = pk, W2k−1 = Qk, W2k = Pk, k = 1, 2, . . . n. For examples,
for n = 2 we have w1 = q1, w2 = p1, w3 = q2, w4 = p2, and the same set of
relations with small letters replaced by the capital ones. A transformation from
old to new variables is then given by 2n functions

Wi = Wi(wk), i, k = 1, 2, . . . 2n . (5.6)

It turns out that the requirement that all possible Poisson brackets satisfy
Eqs. (4.15), (4.16) and (4.17) (which, as we know is equivalent to the require-
ment for the transformation to be canonical) can be written as

MJ2nM
T = J2n , (5.7)

where M is the Jacobian matrix of the transformation (with the elements Mi,j =
∂Wi/∂wj) and the superscript T denotes transposition of a matrix.

Problem 5.1. Derive (5.7) for n = 2.

5.2 Action-angle variables in 1D

In this section we introduce the action-angle variables for a system with one
degree of freedom.

Let us now consider a one-dimensional system with the Hamiltonian

H =
p2

2
+ U(x) , (5.8)

where U(x) is a function sketched in Fig. 5.2a, and we assume a unit mass
of the particle. The phase trajectories are shown in Fig. 5.2b; each trajectory
is characterized by the energy E and the revolution frequency ω which is a
function of energy, ω(E). This frequency dependence can easily be calculated
using p =

√
2(E − U(x)) and observing that half a period of the revolution

around the orbit with an energy E is given by

1

2
T = πω−1 =

∫ x2

x1

dx′

p(x′)
=

∫ x2

x1

dx′√
2(E − U(x′))

, (5.9)
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Figure 5.2: The potential energy U (a) and the phase portrait of the system(b).

where x1 and x2 are the turning points (see Fig. 5.2b).
Let us transform to new variables, choosing the new momentum to be equal

to the energy E; the corresponding canonical conjugate coordinate is denoted
by w. We will use the generating function F2(x,E). Using p =

√
2(E − U(x))

and integrating the equation p = ∂F2/∂x, we obtain

F2(x,E) =

∫ x

dx′
√

2(E − U(x′)) . (5.10)

Since this is a time independent transformation, the new Hamiltonian H ′ is
equal to the old one expressed in terms of the new variables:

H ′(w,E) = H = E , (5.11)

with the equations of motion for the new variables

ẇ =
∂H ′

∂E
= 1 , Ė = −∂H

′

∂w
= 0 . (5.12)

We see that the evolution of the variable w is

w = t+ t0 , (5.13)

which means that the variable conjugate to energy is time.
This choice of our new variables is not very convenient because in one rev-

olution the variable w changes by 2π/ω(E)—the quantity that depends on the
trajectory. A better choice would be to choose a new coordinate, φ, in such a
way that in one revolution it changes by 2π—the same quantity for each tra-
jectory. This coordinate is called the angle, and the corresponding generalized
momentum, I, is called the action.

To find I and φ for the nonlinear oscillator we assume that the action is a
function of energy, or, conversely, E = E(I). This function will be determined
below. The generating function F ′2(x, I) which accomplishes the transformation
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(x, p) → (φ, I) is the same function F2, in which we now assume that E is the
function of I

F ′2(x, I) = F2(x,E(I)) . (5.14)

With this arrangement, the new Hamiltonian is

H ′(φ, I) = E(I) , (5.15)

and the equation for φ reads

φ̇ =
∂H ′

∂I
=
dE

dI
. (5.16)

We require now that φ̇ be equal to ω (which can now be considered as a function
of I), so that

φ = ω(I)t+ φ0 , (5.17)

and one revolution corresponds to the change of variable φ by 2π. This require-
ment is satisfied if we chose the dependence E(I) in such a way that

dE

dI
= ω(E) , (5.18)

or, integrating

I(E) =

∫ E

Emin

dE′

ω(E′)
. (5.19)

Problem 5.2. Find the action-angle variables for the system with the
following potential

U(x) =

{
∞, x < 0
Fx, x > 0

(5.20)

The above transformation to action-angle variables can be implemented in a
numerical code, see [6]. One such example is shown in Fig. 5.3 for the potential
function U(x) = x2 + 0.2x3.

5.3 Liouville’s theorem

A general Hamiltonian flow in the phase space conserves several integrals of
motion. The most important one is the volume occupied by an ensemble of
particles. Conservation of the phase space volume is called the Liouville theorem.

The phase space volume is expressed as a 2n-dimensional integral

V1 =

∫
M1

dq1dq2 . . . dqndp1dp2 . . . dpn , (5.21)
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Figure 5.3: Numerical solution of the action-angle variables for U(x) = x2 −
0.2x3 (top left panel). The top right panel shows the dependance of action I
versus energy E; the bottom left panel shows the ω(I) function, and the bottom
right panel shows the lines of constant action I and the constant angle φ.

where the integration goes over a 2n-dimensional manifold M1 in the phase
space. A canonical transformation (4.2) maps the manifold onto a different one
M2, and the new volume phase space is

V2 =

∫
M2

dQ1dQ2 . . . dQndP1dP2 . . . dPn . (5.22)

The ratio of elementary volumes, as is known from the mathematical analysis
is equal to the determinant of the Jacobian of the transformation M∣∣∣∣dQ1dQ2 . . . dQndP1dP2 . . . dPn

dq1dq2 . . . dqndp1dp2 . . . dpn

∣∣∣∣ = |detM | . (5.23)

Using Eq. (5.7) it is easy to prove that |detM | = 1.
Problem 5.3. Prove that |detM | = 1.



Lecture 6

Coordinate system and
Hamiltonian in an
accelerator

In this Lecture, we derive the Hamiltonian for a particle moving in an acceler-
ator. The derivation uses several simplifying assumptions.

First, we assume that there is no electrostatic fields, φ = 0, and the magnetic
field is static. The magnetic field directs particle’s motion in such a way that
the particle moves in a closed orbit. This reference orbit is established for a
particle with the nominal momentum p0 (= mγ0v0). Our goal is to describe
particles’ motion in the vicinity of this reference orbit, with energies (momenta)
that can slightly deviate from the nominal one. We will also assume that the
reference orbit is a plane curve.

More general consideration of the issues related to the derivation of the
Hamiltonian of a charged particle in accelerator can be found in Refs. [7, 8].

6.1 Coordinate system

The reference orbit is shown in Fig. 6.1. It is given by the vector r0(s), where
s is the arclength measured along the orbit in the direction of motion. We will
define three unit vectors. The first vector ŝ is the tangential vector to the orbit,
ŝ = dr0/ds. The second vector, x̂, is perpendicular to ŝ and lies in the plane
of the orbit. The third vector ŷ is perpendicular to the plane of the orbit,
ŷ = ŝ× x̂. The three vectors x̂, ŷ, and ŝ constitute a right-hand oriented base
for the local coordinate system. The coordinate x is measured along x̂, and the
coordinate y is measured along ŷ.

Note that simultaneously flipping the directions of both vectors x and y
is allowable, because it transforms a right-hand oriented coordinate system to
another right-hand oriented one.

47



48

Figure 6.1: A plane reference orbit and a Cartesian coordinate system X, Y
and Z. For this orbit, ρ is positive. The orbit is not necessarily a circle.

If the direction of the motion is reversed (e.g., by changing the direction of
the magnetic field or the sign of charge of the particles), then vector ŝ changes
direction. To keep the local coordinate system right-handed, the direction of
vector x̂ is usually reversed too.

From the differential geometry (the so called Frenet-Serret formulas) we have
the following relations between the derivatives of vectors r0, ŝ, x̂, and ŷ:

dr0

ds
= ŝ ,

dŝ

ds
= − x̂

ρ(s)
,

dx̂

ds
=

ŝ

ρ(s)
,

dŷ

ds
= 0 . (6.1)

Problem 6.1. Check that Eqs. (6.1) hold for a circular orbit.
Problem 6.2. Fig 6.2 shows the electron trajectory in a four-dipole chi-

cane (typically used for bunch compressions). Indicate the direction of axis x

Figure 6.2: Electron trajectory in a chicane. Assume that the y axis is directed
out of the page.

assuming that the y axis is directed out of the page toward you. Determine the
sign of the orbit radius ρ and the magnetic field direction of each of four dipoles
along the orbits. What happens with this sign if the particle is moving in the
direction opposite to the one shown in the figure?
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Since we assumed that the orbit is plane, the magnetic field can only have
y (vertical field) and/or s (solenoidal field) components. The bending radius ρ
is given by the following equation (see (3.18))

ρ(s) =
p0

eBy(s)
. (6.2)

Problem 6.3. Verify that from the definition of ρ in Eqs. (6.1) it follows
that the sign in Eq. (6.2) is correct for arbitrary sign of the charge e and the
direction of motion in the reference orbit.

Most of the particles in the beam deviate from the reference orbit, although
they move close to it. This is illustrated by Fig. 6.3. Each point of the orbit

Figure 6.3: A circular reference orbit and a particle’s orbit (shown in red).

can be represented in the local coordinate system, as is illustrated by Fig. 6.4.
In this system a radius vector r is represented by coordinates s, x, and y such

Figure 6.4: A local coordinate system.

that

r = r0(s) + xx̂(s) + yŷ . (6.3)

Below we will need to carry out various differential operations in curvilin-
ear coordinates. Here are useful formulae for the gradient of a scalar function
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φ(x, y, s), and for the curl and divergence of a vector function A = (Ax(x, y, s),
Ay(x, y, s), As(x, y, s)):

∇φ = x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ŝ

1

1 + x/ρ

∂φ

∂s
, (6.4)

(∇×A)x = − 1

1 + x/ρ

∂Ay
∂s

+
∂As
∂y

, (6.5)

(∇×A)s = −∂Ax
∂y

+
∂Ay
∂x

, (6.6)

(∇×A)y = − 1

1 + x/ρ

∂As(1 + x/ρ)

∂x
+

1

1 + x/ρ

∂Ax
∂s

, (6.7)

∇ ·A =
1

1 + x/ρ

∂Ax(1 + x/ρ)

∂x
+
∂Ay
∂y

+
1

1 + x/ρ

∂As
∂s

. (6.8)

Problem 6.4. Verify that Eqs. (6.1), (6.4)-(6.8) hold for a circular orbit.

6.2 Hamiltonian in curvilinear coordinate sys-
tem

The Hamiltonian for a charged particle is given by Eq. (3.29)

H =
√

(mc2)2 + c2(π − eA)2 . (6.9)

This Hamiltonian was derived for a Cartesian coordinate system. We now want
to define a Hamiltonian in the coordinate system related to the reference or-
bit. We will use generating functions to transform the Hamiltonian to the new
coordinates.

As a first step, we choose local coordinates s, x, and y as coordinate vari-
ables of our new Hamiltonian. To carry out a transformation from the original
Cartesian coordinates X, Y and Z (see Fig. 6.1) to the new ones, we will use a
generating function of the third type:

F3(π, x, y, s) = −π · (r0(s) + xx̂(s) + yŷ) . (6.10)

In this equation π is the old momentum and x, y and s are the new coordinates.



51

We denote by Π the new canonical momentum; it is given by Eqs. (4.32)

Πx = −∂F3

∂x
= π · x̂ = πx ,

Πy = −∂F3

∂y
= π · ŷ = πy ,

Πs = −∂F3

∂s
= π ·

(
dr0
ds

+ x
dx̂

ds

)
= π ·

(
ŝ+

x

ρ
ŝ

)
= πs

(
1 +

x

ρ

)
. (6.11)

Note that

(π − eA)2 = (πx − eAx)2 + (πy − eAy)2 + (πs − eAs)2

= (Πx − eAx)2 + (Πy − eAy)2 +

(
Πs

1 + x/ρ
− eAs

)2

, (6.12)

and our Hamiltonian becomes

H = c

[
m2c2 + (Πx − eAx)2 + (Πy − eAy)2 +

(
Πs

1 + x/ρ
− eAs

)2
]1/2

. (6.13)

We have used the notation Ax = A · x̂, Ay = A · ŷ, and As = A · ŝ. [Some
authors use a different notation defining As = (1 + x/ρ)A · ŝ.]

Eq. (6.13) is our new Hamiltonian as a function of new coordinates x, y, s
and new conjugate momenta Πx, Πy and Πs.

6.3 Using s as a time variable

As was assumed at the beginning of this lecture, our Hamiltonian does not
depend on time t and hence is a constant of motion. It describes particle’s
motion with three degrees of freedom. It turns out that using the constancy of
H one can lower the number of degrees of freedom from 3 to 2, which, to some
degree, simplifies the description of the motion. To do this, we need to change
the independent variable from time t to s.

Let us assume that we solved equations of motion and found all the variables
as functions of time, x(t), y(t), s(t), etc. Then the dependence, say, x(s) is
obtained in the following way. Solving equation s = s(t) we find the inverse
function t(s) and substitute it into the argument of x: x(t) → x(t(s)). The
latter is now a function of s: x(s) = x(t(s)). We can do the same trick with
coordinate y and components of the momentum vector Π, and define y(s) and
Π(s).
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It turns out that the dependence of x, y, Πx, and Πy versus s, can be found
directly from a Hamiltonian with 2 degrees of freedoms. We first formulate how
to calculate this new Hamiltonian, and then prove that using the formulated
approach we indeed obtain the new equations of motion for the two pairs of the
canonically conjugate variables.

Let us write down the following equation:

h = H(x,Πx, y,Πy, s,Πs) , (6.14)

(where H is given by (6.13)) and solve it for Πs

Πs = Πs(x,Πx, y,Πy, h, s) . (6.15)

Here h is the value of the Hamiltonian H. Because our Hamiltonian does not
depend on time, the value of H is constant along each orbit—according to
Eq. (3.27), for φ = 0, the value of the Hamiltonian is equal to γmc2. Let us
introduce now a new Hamiltonian K

K(x,Πx, y,Πy, h, s) = −Πs(x,Πx, y,Πy, h, s) , (6.16)

in which x, Πx, y, Πy are considered as canonical conjugate variables, s is
an independent “time” variable, and h is a (constant) parameter. As we see,
the Hamiltonian K has two pairs of conjugate variables, and hence describes
motion of a system which has two degrees of freedom. However, this Hamiltonian
depends on its time-like variable s and hence is not a conserved quantity any
more (in contra st to the original Hamiltonian H).

Let us now show that dependence x(s), Πx(s), y(s), and Πy(s) are governed
by the Hamiltonian (6.16). We have to remember that, e.g., x(s) is obtained
from x(t) and s(t) by eliminating the variable t, and x(t) with s(t) are governed
by the original Hamiltonian H. We have for dx/ds

dx

ds
=
dx/dt

ds/dt
=
∂H/∂Πx

∂H/∂Πs
. (6.17)

On the other hand, the derivative ∂K/∂Πx can be calculated as a derivative of
an implicit function

∂K

∂Πx
= −

(
∂Πs

∂Πx

)
H

=
∂H/∂Πx

∂H/∂Πs
, (6.18)

and we see that

dx

ds
=

∂K

∂Πx
. (6.19)

The same approach works for Πx,

dΠx

ds
=
dΠx/dt

ds/dt
=
−∂H/∂x
∂H/∂Πs

=

(
∂Πs

∂x

)
H

= −∂K
∂x

. (6.20)
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Similarly one can show that equations for y and Πy can be obtained with the
Hamiltonian K. The price for lowering the number of degrees of freedom is that
we now have a “time dependent” Hamiltonian (K is a function of s).

Although time is eliminated from our equations, the time dependence versus
s can be easily found, if needed. For this we need to find the function s(t). Since
ds/dt = ∂H/∂Πs, the inverse function t(s) satisfies the following equation

dt

ds
=
∂Πs

∂H
= −∂K

∂h
. (6.21)

Integrating this equation, we can find t(s), invert it, and find s(t).
Problem 6.5. Find the Hamiltonian K for the following model Hamiltonian

H:

H(x,Πx, s,Πs) =
Π2
x

2
+ ω(s)2x

2

2
+ vΠs , (6.22)

where v is a constant. Prove that both Hamiltonians describe the same dynam-
ics.

6.4 Small amplitude approximation

The Hamiltonian K given by Eq. (6.16) can easily be found from Eq. (6.13):

K = −
(

1 +
x

ρ

)[
1

c2
h2 − (Πx − eAx)2 − (Πy − eAy)2 −m2c2

]1/2

− eAs
(

1 +
x

ρ

)
. (6.23)

As we will see in the next lectures, in many cases of interest, a single com-
ponent As is sufficient to describe the magnetic field in an accelerator, so we
can set Ax = Ay = 0 in Eq. (6.23). In this case, Πx and Πy are equal to the
kinetic momenta, Πx = px = mγvx and Πy = py = mγvy (see Eqs. (6.11) and
(3.25)) and we can use px and py instead of Πx and Πy:

K = −
(

1 +
x

ρ

)(
1

c2
h2 − p2

x − p2
y −m2c2

)1/2

− eAs
(

1 +
x

ρ

)
. (6.24)

We will consider these momenta as small quantities (compared with the total
momentum of the particle), because particles usually move at a small angle to
the nominal orbit. [Remember that for our choice of coordinates, a particle
moving along the nominal orbit have vx = vy = 0. This is the main advantage
of the coordinate system associated with the reference orbit.] Expanding the
Hamiltonian in px and py we get:

K ≈ −p
(

1 +
x

ρ

)(
1− p2

x

2p2
−

p2
y

2p2

)
− eAs

(
1 +

x

ρ

)
, (6.25)
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where p(h) =
√
h2/c2 −m2c2 is the total kinetic momentum of the particle

(which together with the energy is a conserved quantity in a constant magnetic
field).

Instead of using dimensional momenta px and py it is convenient to introduce
dimensionless variables Px = px/p0 and Py = py/p0, where p0 is the nominal
momentum in the ring. Transformation from x, px, y, py to x, Px, y, Py is not
canonical, but a simple consideration shows that it can be achieved by simply
dividing the Hamiltonian by p0 (see the problem on page 34). Denoting the new
Hamiltonian by H we have

H(x, Px, y, Py) =
K

p0
(6.26)

= − p

p0

(
1 +

x

ρ

)(
1− 1

2
P 2
x

(
p0

p

)2

− 1

2
P 2
y

(
p0

p

)2
)
− e

p0
As

(
1 +

x

ρ

)
.

As mentioned at the beginning of the Lecture, we are interested here in the
case when the energy and the total momentum of the particle can only slightly
deviate from the nominal one, that is

p

p0
= 1 + η, (6.27)

with η � 1. With this in mind, we obtain

H(x, Px, y, Py) (6.28)

= −(1 + η)

(
1 +

x

ρ

)(
1− 1

2
P 2
x −

1

2
P 2
y

)
− e

p0
As

(
1 +

x

ρ

)
,

where we replaced (p0/p)
2 by unity in small quadratic terms proportional to P 2

x

and P 2
y .

Finally, we note that our momenta Px, Py are approximately equal to the
orbit slopes x′ ≡ dx/ds and y′ ≡ dy/ds, respectively. Indeed

x′ ≡ dx

ds
=
vx
vs

=
px
ps
≈ Px , (6.29)

with a similar expression for y′. Some authors actually use x′ and y′ as canonical
momenta conjugate to x and y instead of Px, Py—in this case one has to be
careful to avoid confusion between a canonical variable (say Px) with the rate
of change of its conjugate (that is dx/ds).

6.5 Time dependent Hamiltonian

While we emphasized above that in the case of time independent Hamilto-
nian the transition from t to s as an independent variable eliminates one de-
gree of freedom, the requirement of being time independent is actually not
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needed. Indeed, our derivation in Section 6.3 can be easily modified to in-
clude the case of time dependent Hamiltonians. In Eq. (6.14) we will have
H(x,Πx, y,Πy, s,Πs, t), and correspondingly the new Hamiltonian K will also
be a function of time

K(x,Πx, y,Πy, t, h, s) = −Πs(x,Πx, y,Πy, t, h, s), (6.30)

where the time t is now understood as a third coordinate (in addition to x and
y) and the energy h is the third momentum. The Hamiltonian equation (6.21)
should be complemented by

dh

ds
=
∂K

∂t
. (6.31)

Note that Eqs (6.21) and (6.31) have “inverted” signs if t is treated as a coor-
dinate and h as it conjugate momentum. This, however, can be easily fixed, if
one accepts −h as the momentum conjugate to t.

Problem 6.6.Make canonical transformation (t,−h) → (zt, p) using the

generating function F2(p, t) = −ct
√
p2 +m2c2. Explain meaning of new vari-

ables.
An important effect that is governed by a time-dependent Hamiltonian is

particle acceleration by RF electromagnetic field in the ring. In a simple model
that assumes a short cavity with voltage V , an additional term that needs to
be added to (6.23) to take the acceleration into account is [7]

− eV

p0ωRF
δ(s− s0) cos(ωRFt+ φ), (6.32)

where s0 is the coordinate of the cavity location in the ring (and the cavity
is assumed to be infinitely short), ωRF is the RF frequency and φ is the RF
phase. It is easy to see from (6.31) that a passage through the point s0 at time
t changes the kinetic energy h of the particle by eV cos(ωRFt+ φ).
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Lecture 7

Equations of motion in
accelerator

A typical accelerator uses a sequence of various types of magnets separated by
sections of free space (so called drifts). To specify the Hamiltonian (6.28) we
need to know vector potential As for these magnets.

7.1 Vector potential for different types of mag-
nets

There are several types of magnets that are used in accelerators and each of
them is characterized by a specific dependence of As versus x and y. In this
section we will list a few magnet types and write down expressions for the vector
potentials. In those expressions, we will use the fact that we are only interested
in fields near the reference orbit, |x|, |y| � |ρ|. We will be neglecting higher
order terms such as (x/ρ)2 and (y/ρ)2.

We first consider dipole magnets that are used to bend the orbit. The dipole
magnetic field is:

B = ŷB(s) . (7.1)

The function B(s) is such that it is not zero only inside the magnet and vanishes
outside of it. This field can be represented by the following vector potential:

As = −B(s)x

(
1− x

2ρ

)
. (7.2)

57
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Indeed, using Eq. (6.7) we obtain

By = − 1

1 + x/ρ

∂As(1 + x/ρ)

∂x

≈ B(s)

(
1− x

ρ

)
∂

∂x
x

(
1− x

2ρ

)(
1 +

x

ρ

)
≈ B(s)

(
1− x

ρ

)
∂

∂x

(
x+

x2

2ρ

)
≈ B(s) +O

(
x2

ρ2

)
. (7.3)

This is an approximation in which we only keep terms to the first order in |x/ρ|.
The picture of windings of a dipole magnet is shown in Figs. 7.1 and 7.2.

y

x

z

Figure 7.1: Edge of the LHC dipole
magnet.

Figure 7.2: Magnetic field in the
dipole.

The second type is a quadrupole magnet. It is used to focus off-orbit particles
close to the reference orbit. It has the following magnetic field:

B = G(s)(ŷx+ x̂y) . (7.4)

The picture of a quadrupole magnet is shown in Fig. 7.3, and the magnetic field
lines are shown in Fig. 7.4. As we will see below from the equations of motion,
the quadrupole magnetic field focuses particles around the equilibrium orbit.
The corresponding vector potential is

As =
G

2

(
y2 − x2

)
. (7.5)

A skew quadrupole is a normal quadrupole rotated by 45 degrees:

B = Gs(s)(−ŷy + x̂x) , (7.6)
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Figure 7.3: A quadrupole magnet. Figure 7.4: Quadrupole magnet
filed lines.

with

As = Gsxy . (7.7)

Finally, we will also consider a sextupole magnet. Sextupoles are used to
correct some properties of betatron oscillations of particles around the reference
orbit. This element has a nonlinear dependence of the magnetic field with
transverse coordinates:

B = S(s)

[
1

2
ŷ(x2 − y2) + x̂xy

]
, (7.8)

with

As = S

(
1

2
xy2 − 1

6
x3

)
. (7.9)

The field lines of a sextupole are shown in Fig. 7.5.

Problem 7.1. The magnetic field Bs(s) of a solenoid cannot be described
with a single longitudinal component As of the vector potential. Show that
this magnetic field can be represented with the vector potential that has two
transverse components:

Ax = −Bsy/2 , Ay = Bsx/2 . (7.10)

.
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Figure 7.5: Sextupole field lines.

7.2 Taylor expansion of the Hamiltonian

Let us write down the Hamiltonian (6.28) assuming that we have dipoles and
quadrupoles in the ring:

H ≈ −(1 + η)

(
1 +

x

ρ

)(
1− 1

2
P 2
x −

1

2
P 2
y

)
− e

p0
As

(
1 +

x

ρ

)
= −(1 + η)

(
1 +

x

ρ

)(
1− 1

2
P 2
x −

1

2
P 2
y

)
− e

p0

[
−B(s)x

(
1− x

2ρ

)
+
G(s)

2

(
y2 − x2

)](
1 +

x

ρ

)
≈ −1− η − ηx

ρ
+

1

2
P 2
x +

1

2
P 2
y +

x2

2ρ2
− e

p0

G(s)

2

(
y2 − x2

)
, (7.11)

where we made use of ρ = p0/eB and neglected terms of the third and higher
orders (assuming that η, as well as all four canonical variables, x, Px, y and
Py are of the first order). We can drop the constant first term (unity) on the
last line of (7.11). Our main interest in the following lectures will the case of
on-momentum particles, that is η = 0. In this case the Hamiltonian is the sum
of two terms corresponding to the vertical and horizontal degrees of freedom:

H = Hx +Hy , (7.12)

with

Hx =
1

2
P 2
x +

x2

2ρ2
+

e

p0

G(s)

2
x2 , (7.13)
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and

Hy =
1

2
P 2
y −

e

p0

G(s)

2
y2 . (7.14)

The fact that Hamiltonian (7.12) is split into a sum of two Hamiltonians each of
which involves only variables for one degree of freedom means that the horizontal
and vertical motions are decoupled. We see that quadrupoles focus or defocus
the beam in the transverse direction: focusing in x (G > 0) results in defocusing
in y, and vice versa. In the next sections we will show that notwithstanding this
defocusing effect, a sequence of quadrupoles with alternating polarities confine
the beam in the transverse directions near the reference orbit. A particle near
the equilibrium orbit executes betatron oscillations.

Notice also focusing in the horizontal direction inside dipole magnets (a so
called weak focusing).

In what follows, to study general properties of the transverse motion in both
transverse planes, we will use a generic Hamiltonian

H0 =
1

2
P 2
x +

K(s)

2
x2 , (7.15)

where K = ρ−2 + eG/p0 for the horizontal, and K = −eG/p0 for the vertical
plane.

Problem 7.2. Using (6.21) and the Hamiltonian (7.11) show that

dt

ds
=

1

v

(
1 +

x

ρ

)
. (7.16)

Explain the meaning of this relation. If follows from it that, for a relativistic
particle, ds/dt can be larger than c. Does this constitute violation of the special
theory of relativity which forbids motion of bodies faster than the speed of
light?

Problem 7.3. Find terms in the Hamiltonian H responsible for the skew
quadrupole (the magnetic field given by Eq. (7.6)).

Problem 7.4. Using the vector potential Eq. (7.10) for the solenoid and
starting from the Hamiltonian (6.23) find the contribution to H of the magnetic
field of the solenoid. [Hint: assume that Bs is small and use the Taylor expansion
in the Hamiltonian (6.23) keeping linear terms and second order terms in Bs.]

7.3 Hill’s equation, betatron function and beta-
tron phase

From the Hamiltonian (7.15) we find the following equation of motion in a
transverse plane:

x′′(s) +K(s)x(s) = 0 . (7.17)
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In an accelerator ring K(s) is a periodic function of s with a period that we
denote by L (which may be equal to a fraction of the ring circumference),
and Eq. (7.17) is called Hill’s equation. It describes the so called betatron
oscillations of a particle in the ring. Note that the same equation (2.16) describes
the parametric resonance, with the only difference that we now have s as an
independent variable instead of t. We now know that this equation can have
both stable and unstable solutions. Of course, for storage and acceleration of
beams in an accelerator, one has to design it in a way that avoids unstable
solutions of Eq. (7.17).

To understand general properties of the betatron motion in a ring, we seek
a solution to Eq. (7.17) in the following form

x(s) = Aw(s) cosψ(s) , (7.18)

where A is an arbitrary constant, and ψ is called the betatron phase. Note
that w(s) is not uniquely defined: we can always multiply it by an arbitrary
factor of w0 and redefine the amplitude A→ A/w0, so that x(s) is not changed.
It turns out that if a particle’s motion is stable, we can require that w(s) be a
periodic function of s with the period L. In addition, the function ψ is such that
ψ(s+ L) = ψ(s) + ψ0, where ψ0 is a constant (or, equivalently, function dψ/ds
is a periodic function of s with the same period L). These two properties of
functions w and ψ are guaranteed by the Floquet theory of differential equations
with periodic coefficients.

Introducing two unknown functions w(s) and ψ(s) instead of one function
x(s) gives us freedom to impose a constraint of our choice on functions w and
ψ later in the derivation. We have

x′

A
= w′ cosψ − wψ′ sinψ ,

x′′

A
= w′′ cosψ − 2w′ψ′ sinψ − wψ′′ sinψ − wψ′2 cosψ . (7.19)

Eq. (7.17) now becomes

w′′ cosψ − 2w′ψ′ sinψ − wψ′′ sinψ − wψ′2 cosψ +K(s)w cosψ

= [w′′ cos−wψ′2 +K(s)w] cosψ − [2w′ψ′ + wψ′′] sinψ = 0 . (7.20)

We now use the freedom mentioned above and set to zero both the term in front
of cosψ and the term in front of sinψ. This gives us two equations:

w′′ − wψ′2 +K(s)w = 0

−2w′ψ′ − wψ′′ = 0 . (7.21)

The last equation can be written as

1

w
(ψ′w2)′ = 0 . (7.22)



63

Let us introduce the β function as β(s) = w(s)2, then

ψ′ =
a

β(s)
, (7.23)

where a is an arbitrary constant of integration. We can always assume that
a > 0; if this is not the case, we redefine the angle ψ by ψ → −ψ, which changes
the sign in (7.23) and makes a > 0. The first equation in (7.21) now becomes

w′′ − a2

w3
+K(s)w = 0 . (7.24)

As was pointed out at the beginning of this section, the function w can be
multiplied by a constant factor. We can now use this freedom and replace
w →

√
aw in (7.24) which eliminates a from the equation, a → 1. This is the

usual choice in accelerator physics textbooks. In terms of the β function the
resulting equation becomes

1

2
ββ′′ − 1

4
β′2 +Kβ2 = 1 . (7.25)

It is a nonlinear differential equation of the second order. As we pointed out
above, in a circular accelerator one has to find a periodic solution to this equa-
tion. For a beam line with an entrance and an exit, one solves this equation
with initial values for the beta function and its first derivative at the entrance.

Note that, as follows from (7.23), the derivative ψ′ is a periodic function of
s, with the period equal to that of β(s), in agreement with the comment after
Eq. (7.18).

Problem 7.5. Derive Eq. (7.25) from Eq. (7.24).
There are several mathematical methods, as well as special computer codes

that find β(s) (as well as other parameters of interest) for a ring with given
magnets (that is given K(s)) [9]. In this lecture, we limit our consideration
to a simple illustration which solves Eq. (7.24) using an iterative approach.
In Fig. 7.6 we show the beta function for the High Energy Ring of PEP-II at
SLAC.

Problem 7.6. Find solution of Eq. (7.25) in free space where K = 0.
Problem 7.7. Calculate a jump of the derivative of the beta function

through a thin quadrupole. Such a quadrupole is defined byK(s) = f−1δ(s−s0),
where f is called the focal length of a thin quadrupole.

Problem 7.8. A FODO lattice is a sequence of thin quadrupoles with
alternating polarities:

KFODO(s) =

∞∑
n=−∞

K0δ(s− nl)−K0δ

(
s−

[
n+

1

2

]
l

)
, (7.26)

where l is the period of the lattice. Solve Eq. (7.25) for the FODO lattice and
find β(s). For a given value of l find the maximum value of K0 for which the
motion is stable.
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Figure 7.6: The beta function βy in the HER of PEP-II.

Problem 7.9. Consider two rings with circumferences C1 and C2. Assume
that C1 = λC2 and K2(s) = λ2K1(λs), and prove that β2 = λ−1β1(λs).

The betatron phase advance of the ring can be found by integrating Eq. (7.23),

∆ψ =

∫ C

0

ds

β(s)
. (7.27)

The quantity ∆ψ/2π is called the tune ν (in European literature it is usually
denoted by Q)

ν =
1

2π

∫ C

0

ds

β(s)
; (7.28)

it is a fundamental characteristic of the beam dynamics in the ring.
Having found the beta function in the system, the general solution of the

equation of motion (7.17) can written as

x(s) = A
√
β(s) cos(ψ(s) + ψ0), (7.29)

where ψ0 is an initial betatron phase.



Lecture 8

Action-angle variables for
circular machines

8.1 Action-angle variables and the Floquet trans-
formation

We start with the Hamiltonian (7.15)

H =
1

2
P 2
x +

1

2
K(s)x2 . (8.1)

In Section 7.3 we found a solution to this equation in the form (7.18) which we
now write as

x(s) = A
√
β(s) cosψ(s) . (8.2)

Differentiating this equation with respect to s we find

x′(s) = Px = A
β′

2
√
β(s)

cosψ(s)−
√
β(s)ψ′ sinψ(s)

=
A√
β

cosψ(s)

(
β′

2
− tanψ(s)

)
=
x

β

(
β′

2
− tanψ(s)

)
. (8.3)

An example of x and x′ as functions of s, for a particular choice of K(s), is shown
in Fig. 8.1. One can see that both functions show a complicated pattern when s
changes. In many applications one would like to have a simpler representation
of particle motion governed by Hamiltonian (8.1). We will now show how this
can be achieved using a canonical transformation to new variables.

Let us transform to the action-angle variables φ (coordinate) and J (mo-
mentum), using a generating function of the first kind, (4.30). In our current
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Figure 8.1: Plots of x and x′ versus s.

notation x is the old coordinate and Px is the old momentum. Analogous to the
canonical transformation for the linear oscillator we will require that

x(s) = A(J)
√
β(s) cosφ

Px(s) =
x

β(s)

(
β′

2
− tanφ

)
. (8.4)

The generating function is

F1(x, φ, s) =

∫
Pxdx =

x2

2β

(
β′

2
− tanφ

)
, (8.5)

[compare with Eq. (4.41)] where for Px we used Eq. (8.4). With this generating
function we find the action

J = −∂F1

∂φ
=
x2

2β
sec2 φ, . (8.6)

Using sec2 φ = 1 + tan2 φ , and the expression for tanφ from the last equation
in (8.4),

− tanφ =
βPx
x

+ α (8.7)

where

α = −β
′

2
, (8.8)

we obtain J in terms of x and Px:

J =
1

2β

[
x2 + (βPx + αx)2

]
. (8.9)

Problem 8.1. Using Eqs. (8.7) and (8.9) show by direct calculation of
Poisson brackets that the transformation x, Px → φ, J is canonical.
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Equations (8.7) and (8.9) give us the transformation from the old conjugate
variables x and Px to the new ones φ and J . The inverse transformation (φ, J)→
(x, Px) can also be found. From the first of Eqs. (8.6) we have

x =
√

2βJ cosφ . (8.10)

Substituting this relation to the second of Eqs. (8.4) we obtain the equation for
Px in terms of J and ψ

Px = −

√
2J

β
(sinφ+ α cosφ) . (8.11)

To find the new Hamiltonian which we denote by Ĥ we need to take into account
that the generating function depends on the time-like variable s:

Ĥ = H+
∂F1

∂s

=
1

2
P 2
x +

1

2
K(s)x2 +

∂

∂s

x2

2β

(
β′

2
− tanφ

)
=

1

2
P 2
x +

1

2
K(s)x2 +

x2

4

β′′β − β′2

β2
+
x2β′

2β2
tanφ . (8.12)

We now use (7.25) to eliminate β′′ from this equation and Eq. (8.7) to eliminate
φ:

Ĥ =

=
1

2
P 2
x +

1

2
K(s)x2 − x2

4

1
2β
′2 + 2Kβ2 − 2

β2
− x2β′

2β2

(
βPx
x

+ α

)
=

1

2
P 2
x +

1

2β2
x2 +

α2

2β2
x2 +

α

β
Pxx

=
1

2β2
x2 +

1

2

(
Px +

α

β
x

)2

=
J

β
. (8.13)

Since the new Hamiltonian is independent of φ the equation for J is

J ′ =
∂Ĥ
∂φ

= 0 , (8.14)

which means that J is an integral of motion. The quantity 2J is called the
Courant-Snyder invariant. The Hamiltonian equation for φ gives

φ′ =
∂Ĥ
∂J

=
1

β(s)
. (8.15)
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Comparing this equation with Eq. (7.23) we see that the new variable φ is
actually the old betatron phase, φ = ψ + φ0. Particles in the beam will have
various initial phases φ0.

What we have achieved with this transformation is shown in Fig. 8.2—we
“straightened out” the behavior of the new momentum variable.

s

J

s

φ

Figure 8.2: Plots of J and φ versus s: J(s) is a horizontal straight line, and
φ(s) is slightly wiggling at an angle to the horizontal axis.

We can go further and “straighten out” the φ variable as well. This is
achieved with one more canonical transformation, from φ and J to φ1 and J1.
The new generating function is of the second type, F2(φ, J1, s),

F2(φ, J1, s) = J1

(
2πνs

C
−
∫ s

0

ds′

β(s′)

)
+ φJ1 , (8.16)

where C is the circumference of the ring, and the tune is given by Eq. (7.28).
This function gives for the new angle

φ1 =
∂F2

∂J1
= φ+

2πνs

C
−
∫ s

0

ds′

β(s′)
= φ+

2πνs

C
− ψ(s) , (8.17)

and the action is not changed

J =
∂F2

∂φ
= J1 . (8.18)

The new Hamiltonian is

Ĥ1 = Ĥ+
∂F2

∂s
=

2πν

C
J1 = const . (8.19)

Now the evolution of the new coordinate φ1 is governed by the equation

φ′1 =
∂Ĥ1

∂J1
=

2πν

C
, (8.20)

which means that φ1 is a linear function of s. This is illustrated by Fig. 8.3.
In nonlinear theory it is more convenient to work with the angle θ = 2πs/C

as an independent variable, instead of s. The Hamiltonian that incorporates
this change is (C/2π)Ĥ1(ψ1, J1, θ). This Hamiltonian is periodic with period
2π (unless the ring has higher periodicity).
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Figure 8.3: Plots of J1 and φ1 versus s: both J1(s) and φ1(s) are straight lines.

8.2 Phase space motion at a given location

Let us assume that we plot the phase space x, Px at some location s at the ring
and follow particle’s motion as it passes through this location. It is convenient
to normalize the coordinate x by the beta function at this location β(s). A
set of consecutive points xn/β, Px,n, n = 1, 2 . . ., in the phase space will form
particle’s trajectory, see Fig. 8.4. Because we have an integral of motion J , all
these points are located on the curve J = const. From the expression (8.9) for
J it follows that this curve is an ellipse whose size and orientation depend on
the values J , β, and α. Particles with different values of J have similar ellipses

Figure 8.4: Phase space ellipse and a particle’s positions at consecutive turns
(solid curve). Dashed lines show ellipsed for particles with smaller values of J .
Instead of Px we use equal to it x′ to mark the vertical axis.

enclosed inside each other, see Fig. 8.4.
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Problem 8.2. Find the major and minor half axes, and the tilt of this
ellipse.

It is easy to see that the ellipse becomes a circle if α = 0. In this case, the
trajectory is very simple: each consecutive point of the circle is rotated by the
betatron phase advance ∆ψ in the clockwise direction (7.27).

Set of ellipses at another location in the ring will have a different shapes
which are defined by the local values of β and α, see Fig. 8.5. Imagine how

Figure 8.5: Phase space ellipses at a different locations in the ring.

these ellipses are rotating and changing their shape when one travels along the
ring circumference.

Problem 8.3. Prove that the transformation x, Px → x̄, P̄x with

x̄ =
1√
β
x, P̄x =

1√
β

(βPx + αx) (8.21)

is canonical. Prove that phase space orbits plotted in variables x̄, P̄x are circles.



Lecture 9

Field errors and nonlinear
resonances

The magnetic field in any real machine is different from the ideal design. It is
important to understand what is the effect of small magnetic errors on particles’
motion in an accelerator. In this lecture we consider the effect of dipole and
quadrupole field errors, and then illustrate the effect of sextupoles in the ring.

9.1 Closed orbit distortion

We first consider what happens if a dipole magnetic field is not exactly equal
to the design one. We will see that such errors lead to changes in the reference
orbit in the accelerator.

Let us assume that the guiding vertical magnetic field in a circular accelerator
deviates from the design value by ∆B(s). The corresponding vector potential,
in which we keep only the first order term [see Eq. (7.2)] is As = −∆B(s)x.
This vector potential should be added to the Hamiltonian (7.11); it modifies the
motion in the horizontal plane only. We can write Hx as

H =
1

2
P 2
x +

1

2
K(s)x2 +

e∆B(s)

p0
x (9.1)

(we drop the subscript x in what follows).
The most direct way to deal with this problem is to write the differential

equation for x

x′′ +K(s)x = −e∆B(s)

p0
. (9.2)

A periodic solution, x0(s), to this equation gives the closed orbit distortion. It
satisfies Eq. (9.2),

x′′0 +K(s)x0 = −e∆B(s)

p0
, (9.3)
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with the periodicity condition x0(s+ C) = x0(s) where C is the circumference
of the ring. A general solution to Eq. (9.2) is

x(s) = x0(s) + ξ(s) , (9.4)

where ξ(s) satisfies

ξ′′ +K(s)ξ = 0 . (9.5)

The function ξ(s) describes betatron oscillations around the perturbed orbit.
This is illustrated by Fig. 9.1.

Figure 9.1: An ideal and distorted orbits, and a betatron oscillation.

Let us calculate the orbit distortion x0(s). We first consider the case of a
field perturbation localized at one point: ∆B(s) = ∆B0(s′)δ(s− s′). Since the
right hand side of Eq. (9.3) is equal to zero everywhere except for the point
s = s′, we seek solution in the form of Eq. (8.2) with an initial phase ψ0

x0(s) = A
√
β(s) cos(ψ(s)− ψ0) . (9.6)

Our first requirement is that x0(s) should be continuous at s = s′. This is
achieved if we choose ψ0 = ψ(s′) + πν and assume that ψ(s) varies from ψ(s′)
to ψ(s′) + 2πν when we go around the orbit. Indeed, when ψ(s) = ψ(s′), the
argument of the cos function is equal to −πν, and x0(s′) = A

√
β(s′) cos(−πν).

After a turn around the ring, the argument of the cos function becomes equal
to πν, and since cos is an even function, x0(s′ + C) = x0(s′). The second
requirement is obtained by integrating through the δ-function in Eq. (9.3)—it
gives us a jump of the derivative of x0 at s′

x′0(s′)− x′0(s′ + C) = −e∆B(s′)

p0
. (9.7)

From this equation we find

A = −
√
β(s′)

2 sin(πν)

e∆B(s′)

p0
. (9.8)
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For an arbitrary function B(s) we need to add contributions from all loca-
tions, which means integration over the circumference of the ring:

x0(s) =
−e

2p0 sin(πν)

∫ s+C

s

ds′∆B(s′)
√
β(s)β(s′) cos(ψ(s)− ψ(s′)− πν) .

(9.9)

We see that, as follows from Eq. (9.9), the integer values for the tune ν are not
acceptable because they would result in unstable closed orbit.

How can we incorporate the closed orbit distortion into the Hamiltonian
formalism? The answer to this question is given in the following problem:

Problem 9.1. The action-angle variables defined by (8.9)-(8.11) has to be
modified in case of field errors. Starting from the Hamiltonian (9.1) transform
to the action-angle variables using the following generating function

F1(x, φ, s) =
[x− x0(s)]2

2β

(
β′

2
− tanφ

)
+ xx′0(s) . (9.10)

Show that in this case

J(x, Px, s) =
1

2β

[
(x− x0)2 + (β[Px − x′0] + α[x− x0])

2
]
, (9.11)

and obtain the Hamiltonian (8.13).
Problem 9.2. What is the effect on the beam orbit of the error magnetic

field ∆Bx(s) in the horizontal plane?
A crude estimate of the magnitude of the closed orbit distortion from Eq.

(9.9) is

x0 ∼
∆B

B

Cβ

ρ
∼ β∆B

B
. (9.12)

We see from this equation that the effect of magnetic field errors is less in
machines with small beta functions, that is with stronger focusing.

9.2 Effect of energy deviation

If particle’s energy is not exactly equal to the nominal one, its equilibrium
orbit in the horizontal plane changes. Using results of the previous section it
is easy to find the new orbit corresponding the the energy deviation η. From
the Hamiltonian (7.11) we see that the extra term due to non vanishing η that
involves the coordinate x is −ηx/ρ. Hence instead of (9.1) one gets

H =
1

2
P 2
x +

1

2
K(s)x2 − η

ρ
x, (9.13)

which is formally obtained from (9.1) by replacement

∆B → −ηp0

eρ
x. (9.14)
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Using (9.9) we immediately find that the new orbit is given by

x0(s) = D(s)η, (9.15)

with the function D is

D(s) =

√
β(s)

2 sin(πν)

∫ s+C

s

ds′
√
β(s′)

ρ(s′)
cos(ψ(s)− ψ(s′)− πν) . (9.16)

This function is called the dispersion function of the ring.
Using the expression (9.11) and (9.15) one immediately concludes that the

action variable for a particle with energy deviation η is

J(x, Px, η, s) =
1

2β

[
(x− ηD(s))2 + (β[Px − ηD′(s)] + α[x− ηD(s)])

2
]
.

(9.17)

9.3 Quadrupole errors

Let us now assume that we have a quadrupole error

H =
1

2
P 2
x +

1

2
K(s)x2 +

1

2
ε∆K(s)x2 , (9.18)

where we introduced a formal smallness parameter ε. What kind of effect does
this error have on the motion? Since we know that the focusing function K(s)
determines the betatron oscillations in the system, clearly, changing the focusing
would result in the perturbation of the beta function, and, hence, the tune of
the ring.

To find these changes using the Hamiltonian, we first transform to the action-
angle variables J and φ. This transformation casts the first two terms of the
Hamiltonian into J/β:

1

2
P 2
x +

1

2
K(s)x2 → J

β(s)
. (9.19)

In the last term of Eq. (9.18) we express x in terms of J and φ using Eq. (8.10)

H =
J

β(s)
+ ε∆K(s)Jβ(s) cos2 φ

= J

(
1

β(s)
+

1

2
ε∆K(s)β(s)

)
+

1

2
ε∆K(s)Jβ(s) cos 2φ . (9.20)

We will denote the last term in this equation by εV (φ, J, s).

V (φ, J, s) =
1

2
∆K(s)Jβ(s) cos 2φ . (9.21)

There is a general method that attempts to solve this kind of problems by
eliminating the perturbation V in the Hamiltonian in the lowest order. The
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method is based on a perturbation theory and uses a canonical transformation
to new variables (φ, J)→ (ξ, I) with the generating function

F2(φ, I, s) = φI + εG(φ, I, s) . (9.22)

We have

ξ = φ+ εGI ,

J = I + εGφ , (9.23)

where subscripts denote differentiation with respect to the corresponding vari-
able. The new Hamiltonian is

H ≈ I
(

1

β
+

1

2
ε∆Kβ

)
+ εV (φ, I, s) +

1

β
εGφ + εGs +O(ε)2 , (9.24)

where we substituted I for J in the argument of V introducing an error of the
second order. We will kill the perturbation in the new Hamiltonian in the first
order by choosing G in such a way that the following equation is satisfied:

V (φ, I, s) +
1

β
Gφ +Gs = 0 . (9.25)

One needs to find a solution to this equation that is periodic over s with the
period equal to the ring circumference C.

Problem 9.3. Solve Eq. (9.25) for the function G. Hint: seek solution in
the form G(φ, I, s) = Re(Ĝ(I, s)e2iφ).

The solution is given by the following equation

G = − I

4 sin 2πν

∫ s+C

s

ds′∆K(s′)β(s′) sin 2(φ− ψ(s) + ψ(s′)− πν) , (9.26)

and with this choice of the G the new Hamiltonian becomes

H = I

(
1

β
+

1

2
ε∆Kβ

)
, (9.27)

where we neglected higher order terms.
Problem 9.4. Verify by direct calculation that G given by Eq. (9.26) sat-

isfies Eq. (9.25).
We see that the new action I is an integral of motion, and the relation

between the old action and the new one is

J = I − εI

2 sin 2πν

∫ s+C

s

ds′∆K(s′)β(s′) cos 2(φ− ψ(s) + ψ(s′)− πν) . (9.28)

A more useful is expression which gives the new action I in terms of the old
one. It can easily be obtained from the expression above, if we replace I to J
in the second term on the right hand side and move it to the left

I = J +
εJ

2 sin 2πν

∫ s+C

s

ds′∆K(s′)β(s′) cos 2(φ− ψ(s) + ψ(s′)− πν) . (9.29)
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Again, this introduces an error of the second order, which we neglect.
From Eq. (9.26) we see that at half-integer values of ν the perturbation

leads to unstable behavior of the system.
Changing the strength of the focusing in the lattice by ε∆K results in a

change of the beta function. Let us denote the new beta function by β1 =
β+ ε∆β. The simplest way to compute ∆β is to use the relation (7.23) between
the s-derivative of the betatron phase and the beta function. Note that the new
phase ξ is related to the unperturbed phase φ by Eq. (9.23), hence

1

β + ε∆β
=
∂ξ

∂s
=
∂φ

∂s
+ ε

∂GI
∂s

=
1

β
+ ε

∂GI
∂s

. (9.30)

Expanding this formula to the first order in ε we find

∆β = −β2 ∂GI
∂s

. (9.31)

Using Eq. (9.26) we obtain for the new beta function

β1 = β − β

2 sin 2πν

∫ s+C

s

ds′∆K(s′)β(s′) cos 2(−ψ(s) + ψ(s′)− πν) . (9.32)

The last term in this expression is the correction to the original beta function;
it is often called the beta beating term.

An important conclusion that follows from the above equation is that one
should avoid half-integer values of the tune—they are unstable with respect to
errors in the focusing strength of the lattice.

Having found the correction to the beta function, we can find the correction
to the tune, using Eq. (7.28).

Problem 9.5. Show that the tune change is given by the following equation

∆ν =
1

4π

∫ C

0

ds∆K(s)β(s) . (9.33)

Problem 9.6. Calculate the beta beat and the tune change for a localized
perturbation of the lattice: ∆k = ∆K0δ(s− s0).

9.4 The third-order resonance

We will now study the effect of sextupoles on betatron oscillations. The sex-
tupole vector potential is given by Eq. (7.9). Our goal is to study 1D ef-
fects so we neglect the first term in this equation (assuming y = 0) and use
As = −S(s)x3/6. We need to add the term −eAs/p0 to the Hamiltonian (7.11)

H =
1

2
P 2
x +

1

2
K(s)x2 +

1

6
S(s)x3 , (9.34)
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where S = eS/p0. In what follows we will assume that the last term on the
right hand side is small compared with the first two terms and treat it as a
perturbation. We then transform to action-angle variables J1 and ψ1 from
Section 8.1. This transforms the first two terms of the Hamiltonian as follows:

1

2
P 2
x +

1

2
K(s)x2 → 2πν

C
J1 . (9.35)

In the last term, we first transform to (J, φ) using (8.10) and then transform
from (J, φ) to (J1, φ1) using Eqs. (8.17) and (8.18):

H =
2πν

C
J1 +

√
2

3
J

3/2
1 S(s)β(s)3/2 cos3(φ1 −

2πνs

C
+ ψ(s)) . (9.36)

The next step is to transform to the independent variable θ = 2πs/C and drop
the subscript 1:

H = νJ +

√
2

3

C

2π
J3/2S(θ)β(θ)3/2 cos3(φ− νθ + ψ(θ))

= νJ + V (φ, J, θ) , (9.37)

where the perturbation V is

V (φ, J, θ) =
C

12π
√

2
J3/2S(θ)β(θ)3/2

× (cos 3(φ− νθ + ψ(θ)) + 3 cos(φ− νθ + ψ(θ))) . (9.38)

The equations of motion for the action-angle variables are

∂J

∂θ
= −∂H

∂φ
= −∂V

∂φ
,

∂φ

∂θ
=
∂H
∂J

= ν +
∂V

∂J
. (9.39)

Let us now analyze the relative role of the two terms on the right hand side
of (9.38). Note that if we neglect the perurbation V in the Hamiltonian (9.37)
then we have φ = νθ + φ0. In this case the combination φ− νθ + ψ(θ) changes
by 2πν on each turn (because νθ+ψ(θ) does not change over a complete turn).
If the fractional part of ν is close to one-third, ν ≈ n ± 1/3, cos 3(φ − νθ +
ψ(θ)) will remain approximately constant after each turn, and its effect will be
accumulating over many periods leading to large excursions of the orbit. On
the contrary, cos(φ− νθ+ψ(θ)) will have a phase jumping by ≈ ±2π/3 on each
turn, and its effect will wash out due to continuous change of sign of the cos
function on subsequent turns. This term would be resonant for the tune close to
an integer, but as we know, choosing such a value of the tune would be unwise,
see Section 9.1. Assuming for the rest of this section that ν ≈ n ± 1/3 we will
drop the last term in (9.38),

V (φ, J, θ) =
C

12π
√

2
J3/2S(θ)β(θ)3/2 cos 3(φ− νθ + ψ(θ)). (9.40)
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To simplify our analysis further let us consider a ring with one short sex-
tupole magnet with length much shorter then the ring circumference C. In this
case S(θ) can be approximated by a periodic delta function

S(θ) = S0δ̃(θ), (9.41)

where δ̃(θ) =
∑∞
n=−∞ δ(θ + 2πn) due to the periodicity of motion in the ring.

We will assume S0 > 0. The term V can now be written as

V (φ, J, θ) =
C

12π
√

2
J3/2S0β(θ)3/2δ̃(θ) cos 3(φ− νθ + ψ(θ))

=
1

3
RJ3/2δ̃(θ) cos 3(φ− νθ + ψ(θ)), (9.42)

where R = CS0β
3/2
0 /(4π

√
2), with β0 = β(0).

Equations of motion (9.39) can now be written as

∂J

∂θ
= RJ3/2δ̃(θ) sin 3(φ− νθ + ψ(θ)),

∂φ

∂θ
= ν +

1

2
RJ1/2δ̃(θ) cos 3(φ− νθ + ψ(θ)). (9.43)

Let us consider how J and φ evolve over one turn in the ring, when θ changes
from 0 to 2π, starting from θ = −0, that is right before the delta function kick.
Without loss of generality we can assume that ψ(0) = 0. We will first integrate
these equations through the delta-function kick, that is going from θ = −0 to
θ = +0 assuming that initial values are J1 and φ1. For this integration the
equations are simplified

∂J

∂θ
= RJ3/2δ(θ) sin(3φ),

∂φ

∂θ
=

1

2
RJ1/2δ(θ) cos(3φ), (9.44)

where we set θ = 0 everwhere, except in the argument of the delta function,
and neglected ν in the second equation (9.43). Let us now introduce a new
independent variable ξ instead of θ

ξ(θ) =

∫ θ

−∞
δ(θ′)dθ′, (9.45)

and transform from J to J = R2J . The variable ξ changes from 0 to 1 when θ
traverses the delta-function. Eqs. (9.44) can now be written as

∂J
∂ξ

= J 3/2 sin(3φ)

∂φ

∂ξ
=

1

2
J 1/2 cos(3φ), (9.46)
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and should be integrated from ξ = 0 to ξ = 1 with the initial boundary condi-
tions J1 = R2J1 and φ1.

The integration is helped by the following observation: Eqs. (9.46) are Hamil-
ton equations of motion with the following Hamiltonian

Ĥ(φ,J ) =
1

3
J 3/2 cos(3φ). (9.47)

Since the Hamiltonian does not depend on the independent variable ξ it is
conserved, and its trajectories can be easily found from the equation Ĥ(φ,J ) =
const. They are shown in Fig 9.2.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

Φ/Π

J

Figure 9.2: The phase space φ−J of the Hamiltonian (9.47). Note periodicity
along the φ axis with the period π/6.

Let us assume that we solved Eqs. (9.46) and found the map from initial J1

and φ1 to final J̃ and φ̃: J̃ = f(φ1,J1) and φ̃ = g(φ1,J1). This map would
move our system over the delta-function kick. To get a one-turn map we then
need to integrate the equations of motion from θ = +0 to θ = 2π − 0 (that is
stopping in front of the delta-function). On this interval J remains constant,
and φ increases by 2πν. If we denote the values of J and φ at θ = 2π− 0 as J2

and φ2, we obtain

J2 = f(φ1, J1), φ2 = g(φ1,J1) + 2πν. (9.48)

It is now clear that every next revolution over the ring repeats the transforma-
tion (9.48), that is the values Jn, φn on n-th revolution are expressed through
the values from the previous one

Jn = f(φn−1,Jn−1), φn = g(φn−1,Jn−1) + 2πν. (9.49)
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To illustrate the dynamics, we numerically integrated Eqs. (9.46) and im-
plemented the map as a computer program. The results of the simulations are
shown in Figs 9.3 for fractional part [ν] of ν close to 1/3. The horizontal axis

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

xR/ Β0

x'
R

Β
0

Figure 9.3: Phase orbits for the case [ν] − 1/3 = 0.1. Particle starting from
outside of the traingular-shaped area quickly leave the system.

of the phase space portrait in Fig. 9.3 is normalized dimensionless coordinate
xR/
√
β0, and the vertical one is normalized angle PxR

√
β0. It is assumed that

α = 0 at the location where the phase plot is drawn. The relations between the
normalized physical coordinates and the action-angle variables J and φ follow
from (8.10) and (8.11)

xR/
√
β0 =

√
2J cosφ, PxR

√
β0 = −

√
2J sinφ. (9.50)

We see that the orbits with large amplitudes of betatron oscillations get a tri-
angular shape. The largest orbit shown in Fig. 9.3 is close to a separtrix—
everything outside it quickly leaves the system.

An example of experimentally measured third-order resonance orbits at the
IUCF cooler ring is shown in Fig. (9.4).
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Figure 9.4: Third-order resonance orbits in phase-space coordinates (left) and
in action-angle variables (right) (from article [10]).



82



Lecture 10

Resonance overlapping and
dynamic aperture

In the previous lecture we studied the effect on nonlinear terms in the Hamil-
tonian on particle’s motion and, for the case of a sextupole, found a resonant
structure in the phase space of third order. In practice it is often happen that
a system possesses many resonances of various strengs. Those resonances can
interact with each other and lead to stochastic motion. In we consider a simple
model, a so called standard map, which illustrates qualitative features of what
can occur in a system with many resonances.

10.1 Standard model and resonance overlapping

To arrive at the standard map we start from the following Hamiltonian

H =
1

2
I2 +Kδ̃(t) cos θ , (10.1)

where K is a parameter, δ̃(t) =
∑∞
n=−∞ δ(t+ n) is the periodic δ function that

describes unit kicks repeating with the unit period [note that definition of δ̃(t) in
this Section differ from the one given in Section 9.4]. Here I can be considered
as an action, and θ as an angle variables. Both I and θ are dimensionless. The
equations of motion for I and θ are

İ = −∂H
∂θ

= Kδ̃(t) sin θ , θ̇ =
∂H

∂I
= I . (10.2)

If In and θn are the values at t = n − 0 (before the delta-function kick), then
integrating the first of Eqs. (10.2) from t = n − 0 to t = n + 0 (through the
delta-function kick) gives In+1 = In + K sin θn, which is conserved over the
interval from t = n+ 0 to t = (n+ 1)−0 (where there are no kicks). Integrating
the second equation in (10.2) from t = n+0 to t = (n+1)−0 and remembering
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that the action here is already equal to In+1 gives θn+1 = θn + In+1. Hence we
arrive at the following transformation action-angle variables which links their
values at time t = n to the values at time t = n+ 1:

In+1 = In +K sin θn

θn+1 = θn + In+1 . (10.3)

This transformation is called the standard map1.
Problem 10.1. Prove that the standard map defines a canonical transfor-

mation (In, θn)→ (In+1, θn+1).
Problem 10.2. Prove the following property of the standard map: for two

trajectories starting from the same initial value θ0 but with different values I
(1)
0

and I
(2)
0 , such that I

(2)
0 − I

(1)
0 = 2πm, where m is an integer, the difference

I
(2)
n − I(1)

n remains equal to 2πm for all values of n.

The periodic delta-function in (10.1) can be expanded into the Fourier series

δ̃(t) = 1 + 2

∞∑
n=1

cos (2πnt) . (10.4)

Substituting this representation into the Hamiltonian Eq. (10.1) we can rewrite
the latter in the following form

H =
1

2
I2 +K

∞∑
n=−∞

cos(θ − 2πnt) , (10.5)

(we used 2 cos(θ) cos(2πnt) = cos(θ−2πnt)+cos(θ+2πnt))). From this Hamil-
tonian we see that the system is a pendulum (the term n = 0 in the sum) driven
by periodic perturbations with frequencies equal to 2πn (terms with n 6= 0).

Selecting only one term in this sum (as we did in the previous lecture) would
give us

H =
1

2
I2 +K cos(θ − 2πnt) . (10.6)

We can make a canonical transformation I, θ → J, φ with

J = I − 2πn , φ = θ − 2πnt . (10.7)

The new Hamiltonian for these variables is

H′ =
1

2
J2 +K cosφ+ const . (10.8)

Problem 10.3. Prove that Eqs. (10.7) define a canonical transforma-
tion, find the corresponding generating function F2 and obtain the Hamiltonian
(10.8).

1One can also find in the literature a definition of the standard map which differs from
Eqs. (10.3) by numerical factors.



85

One can see that Eq. (10.8) is the pendulum Hamiltonian with the phase
space shown in Fig. (2.6). The width of the separatrix is equal J = ±2

√
K. In

variable I, this phase space is shifted by 2πn units upward.
Trying to understand what is the overall structure of the phase space of the

original Hamiltonian, we can naively superimpose phase portraits for Hamilto-
nians (10.8) with various values of n. This would give us a picture qualitatively

Figure 10.1: Superposition of phase portraits for various resonances of the stan-
dard map. The width of each resonance is equal to 4

√
K.

shown in Fig. 10.1. Of course, superimposing phase spaces is not a legitimate
way of analysis (which is especially clear in the case when the separatrices of
neighboring resonances overlap, see below).

Computer simulations show that, indeed, as long as the distance between the
islands is much larger than the width of the separatrix, to a good approximation,
resonances with different values of n can be considered separately. When the
value of K increases the resonances begin to overlap and the dynamics becomes
complicated. Formally, overlapping occurs for K > π2/4, however one should
not emphasize this exact value of K. Indeed, as simulations show, when K
increases, there is a gradual transition from a regular motion to a fully stochas-
tic regime. The transition from small to large K is illustrated by Fig. 10.2.
Qualitatively, the transition occurs at

K ∼ 1 . (10.9)

What happens in the regime of developed stochasticity, when K � 1. All
the regular orbits are destroyed and a particle is moving randomly over the
phase space. Can we describe this motion? The answer is yes, although the
description is statistical. What happens in this limit, is that after each kick the
particle loses its memory about the previous phase, and the consecutive kicks
can be considered as uncorrelated. The motion along the action axis I becomes
diffusive. We can easily estimate the diffusion coefficient corresponding to this
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Figure 10.2: The result of computer simulations for the standard map. Shown
is the phase space for four different values of the parameter K, K = 0.1, 0.3, 1, 3
from left to right and from top to bottom. The last two pictures show an increase
and then a complete domination of the stochastic component of the motion.

motion, noting that from Eq. (10.3) the change of the action ∆In = K sin θn.
Taking square of ∆In and averaging over the random phase θn gives

〈∆I2〉 =
1

2
K2 . (10.10)

If we plot the dependence I2 versus the number of iterations N , we expect from
Eq. (10.10)

I2 ≈ 1

2
K2N . (10.11)

A more detailed theory lying beyond the scope of this lecture, shows that Eq.
(10.11) gives only the leading term for the diffusion process—there are notable
corrections in this equation if K is not very large, [11]. In Fig. 10.3 we confirm
Eq. (10.11) by direct numerical simulation2.

10.2 Dynamic aperture in accelerators

A modern circular accelerator has many magnets that play various roles in
confining the beam in the ring. Nonlinear components of the magnetic field

2The aforementioned corrections vanish for the value K = 8.41 chosen for the simulations
shown in Fig. 10.3.
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Figure 10.3: The dependence of I2 versus number of iteration for K = 8.41.
The straight line is the theoretical expectation given by Eq. (10.11).

of those magnets, as well as errors in manufacturing and installation of the

Figure 10.4: Dynamic aperture for the SPEAR3 light source at SLAC (from
Ref. [12]). Different curves correspond to 6 seeds of machine errors. The solid
lines are for the nominal energy beam and the dashed ones are for the 3% energy
deviation.

magnets lead to appearing of resonances in the machine. As we saw in the
previous sections, the location of resonances in the phase space depends on the
tune. In a typical situation, the nonlinear fields make the phase space at some
distance from the reference orbit more prone to stochastic motion, and result
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in the situation when only particles in a region near the reference orbit are
properly confined. This region is called the dynamic aperture of the machine. It
is computed with the help of accelerator codes by launching particles at various
locations away from the reference orbit and tracking their motion. An example
of calculation of the dynamic aperture for the light source SPEAR3 at SLAC is
shown in Fig. 10.4.



Lecture 11

The kinetic equation

In the preceding lectures we focused our attention on a single particle motion.
In this lecture, we will introduce formalism for treating an ensemble of particles
circulating in an accelerator ring.

11.1 The distribution function in phase space
and kinetic equation

We start from considering a simple case of one degree of freedom with the canon-
ically conjugate variables q and p. A large ensemble of particles (think about a
particle beam) with each particle having various values of q and p constitutes a
“cloud” in the phase space, see Fig. 11.1. With time progressing, each particle

q

p

Figure 11.1: Phase space of an ensemble of particles with position of each par-
ticle indicated by a red point.

is moving along its own orbit, and the corresponded point is travelling along a
trajectory in the phase space. The “cloud” gradiually changes shape. The mo-
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tion is governed by external fields, as well as interaction between the particles.
In this lecture, however, we neglect the interaction effects, and assume that the
motion is due to external electromagnetic field only.

Let us consider an infinitesimally small region in the phase space dq×dp and
let the number of particles of the beam at time t in this phase space element be
given by dN . Mathematically infinitesimal phase element should be physically
large enough to include many particles, dN � 1. We define the distribution
function of the beam f(q, p, t) such that

dN(t) = f(q, p, t)dp dq . (11.1)

We can say that the distribution function gives the density of particles in the
phase space.

As was emphasized above, particles travel from one place in the phase space
to another, and the distribution function evolves with time. Our goal is to
derive a kinetic equation that governs this evolution. In this derivation, we will
assume that particles’ motion is Hamiltonian.

Consider an infinitesimally small region of phase space shown in Fig. 11.2.
The number of particles in this region at time t is given by (11.1). At time t+dt

q

p

q+dq

p+dp

q

p

Figure 11.2: To the definition of the distribution function f .

this number will change because of the flow of particles through the boundaries.
Due to the flow in the q-direction the number of particles that flow in through
the left boundary is

f(q, p, t)× dp q̇(q, p, t)× dt (11.2)

and the number of particles that flow out through the right boundary is

f(q + dq, p, t)× dp q̇(q + dq, p, t)× dt . (11.3)

Similarly, the number of particles which flow in through the lower horizontal
boundary is

f(q, p, t)× dq ṗ(q, p, t)× dt (11.4)
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and the number of particles that flow out through the upper horizontal boundary
is

f(q, p+ dp, t)× dq ṗ(q, p+ dp, t)× dt . (11.5)

The number of particles in the volume dq × dp is now changed

dN(t+ dt)− dN(t)

= [f(q, p, t+ dt)− f(q, p, t)]dp dq

= f(q + dq, p, t)dp q̇(q + dq, p, t)dt− f(q, p, t)dp q̇(q, p, t)dt

+ f(q, p, t)dq ṗ(q, p, t)dt− f(q, p+ dp, t)dq ṗ(q, p+ dp, t)dt . (11.6)

Dividing this equation by dp dq dt and expanding in Taylor’s series (keeping only
linear terms in dp, dq, dt) gives the following equation

∂f

∂t
+

∂

∂q
q̇(q, p, t)f +

∂

∂p
ṗ(q, p, t)f = 0 . (11.7)

What we derived is the continuity equation for the function f .
We will now show that due to the Hamiltonian nature of the flow in the phase

space a medium represented by the distribution function f in incompressible.
This follows from Liouville’s theorem (see Section 5.3). Indeed, according to this
theorem the volume of a space phase element does not change in Hamiltonian
motion. Since the value of f is the number of particles in this volume, and this
number is conserved, f within a moving elementary volume is also conserved.
The density at a given point of the phase space q, p however changes because
liquid elements located at this point at a given time leave and replaced by new
elements that arrive at a later time.

Mathematically, the fact of incompressibility is reflected in the following
transformation of the continuity equation (11.7). Let us take into account the
Hamiltonian equations for q̇ and ṗ:

∂

∂q
q̇(q, p, t) =

∂

∂q

∂H

∂p
=

∂

∂p

∂H

∂q
= − ∂

∂p
ṗ(q, p, t) , (11.8)

which allows us to rewrite Eq. (11.7) as follows

−∂f
∂t

+
∂H

∂q

∂f

∂p
− ∂H

∂p

∂f

∂q
= 0 . (11.9)

In accelerator physics this equation is often called the Vlasov equation. It is a
partial differential equation which is not easy to solve. It is however extremely
useful for studying many effects in accelerators because it gives a detailed de-
scription of a beam consisting of many particles.

Note, that using the formalism of Poisson brackets, we can also write the
Vlasov equation as

∂f

∂t
= {f,H} . (11.10)
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In case of n degrees of freedom, with the canonical variables qi and pi, n =
1, 2, . . . , n, the distribution function f is defined as a density in 2n-dimensional
phase space and depends on all these variables, f(q1, . . . , p1, . . . , t). The Vlasov
equation takes the form

∂f

∂t
=

n∑
i=1

(
∂H

∂qi

∂f

∂pi
− ∂H

∂pi

∂f

∂qi

)
. (11.11)

Sometimes it is more convenient to normalize f by N , then the integral of
f over the phase space is equal to one.

11.2 Integration of the Vlasov equation along
trajectories

We have stated above that the distribution function is constant within a moving
infinitesimal element of the phase space “cloud”. We will now prove mathemat-
ically this property of the Hamiltonian motion and derive from it a powerful
method of solving the Vlasov equation.

Let us consider a trajectory in the phase space as shown in Fig. 11.3, and
calculate the difference of f at two close points on this trajectory. We have

q

p

q,p,t,

q+dq,p+dp,t+dt

t

Figure 11.3: A trajectory in phase space.

df = f(q + dq, p+ dp, t+ dt)− f(q, p, t)

=
∂f

∂t
dt+

∂f

∂q
dq +

∂f

∂p
dp . (11.12)

Remember that the two points are on the same trajectory, hence, dq = q̇dt =
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∂H/∂p dt and dp = ṗdt = −∂H/∂q dt. We find

df =
∂f

∂t
dt− ∂H

∂q

∂f

∂p
dt+

∂H

∂p

∂f

∂q
dt = 0, (11.13)

or

df

dt
= 0. (11.14)

On the last step we invoked Eq. (11.9). We proved that the function f is
constant along the trajectories.

The above statement opens up a way to find solutions of the Vlasov equation
if the phase space orbits are known. Let q(q0, p0, t) and p(q0, p0, t) be solutions
of the Hamiltonian equations of motion with initial values q0 and p0 at t = 0,
and F (q0, p0) be the initial distribution function at t = 0. Then the solution of
the Vlasov equation is given by the following equations

f(q, p, t) = F (q0(q, p, t), p0(q, p, t)) , (11.15)

where the functions q0(q, p, t) and p0(q, p, t) are obtained as inverse functions
from equations

q = q(q0, p0, t) , p = p(q0, p0, t) . (11.16)

11.3 Steady state solutions of the kinetic equa-
tion

One of the powerful methods of solving the Vlasov equation is based on a ju-
dicious choice of canonical variables. To demonstrate this method we will find
a steady state (time independent) solution of the Vlasov equation for a beam
in a linear lattice in a ring. Remember that in a ring the arclength s plays the
role of the time.

For a stationary beam the distribution function does not depend on s: f =
f(q, p). We can find such a steady state distribution function using the following
observation.

Let us use canonical variables J and φ introduced in Lecture 8.1 and consider
f as a function of these variables, f(φ, J). Then the Vlasov equation is

∂f

∂s
+
∂Ĥ
∂J

∂f

∂φ
− ∂Ĥ
∂φ

∂f

∂J
=
∂f

∂s
+
∂Ĥ
∂J

∂f

∂φ
= 0, (11.17)

where we used that Ĥ does not depend on φ. In steady state ∂f/∂s = 0, and
hence we should have

∂Ĥ
∂J

∂f

∂φ
= 0, (11.18)
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which means ∂f/∂φ = 0, or f depends only on J only. We come to conclusion
that any function f that depends only on J is a steady state solution of the
Vlasov equation.

The particular dependence f(J) is determined by various other processes in
the ring. In many cases, a negative exponential dependence f versus J is a good
approximation

f = const e−J/ε0 = const exp

(
− 1

2βε0

[
x2 + (βPx + αx)2

])
. (11.19)

The quantity ε0 is called the beam emittance. It is an important characteristic
of the beam quality.

Problem 11.1. Write the Vlasov equation for a beam distribution f(x, Px, s)
in terms of variables x and Px.

Problem 11.2. Give a direct proof that the function (11.19) satisfies the
Vlasov equation.

11.4 Phase mixing and decoherence

Consider an ensemble of linear oscillators with the frequency ω, whose motion
is described by the Hamiltonian

H(x, p) =
p2

2
+ ω2x

2

2
. (11.20)

The distribution function f(x, p, t) for these oscillators satisfy the Vlasov equa-
tion

∂f

∂t
− ω2x

∂f

∂p
+ p

∂f

∂x
= 0 . (11.21)

We can easily solve this equation using the method described at the end of
Section 11.2. The trajectory of an oscillator with the initial coordinate x0 and
momentum p0 is

x = x0 cosωt+
p0

ω
sinωt

p = −ωx0 sinωt+ p0 cosωt . (11.22)

Inverting these equations, we find

x0 = x cosωt− p

ω
sinωt

p0 = ωx sinωt+ p cosωt . (11.23)

If F (x, p) is the initial distribution function at t = 0, then, according to Eq. (11.15)
we have

f(x, p, t) = F
(
x cosωt− p

ω
sinωt, ωx sinωt+ p cosωt

)
. (11.24)
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This solution describes rotation of the initial distribution function in the phase
space. An initially offset distribution function results in collective oscillations
of the ensemble.

A more interesting situation occurs if there is a frequency spread in the
ensemble. Let us assume that each oscillator is characterized by some parameter
δ (that does not change with time), and ω is a function of δ, ω(δ). We then
have to add δ to the list of the arguments of f and F , and Eq. (11.24) becomes

f(x, p, t, δ) = F

(
x cosω(δ)t− p

ω(δ)
sinω(δ)t, ω(δ)x sinω(δ)t+ p cosω(δ)t, δ

)
.

(11.25)

To find the distribution of oscillators over x and p only one has to integrate f
over δ

f̂(x, p, t) =

∫ ∞
−∞

dδf(x, p, t, δ) . (11.26)

The behavior of the integrated function f̂ is different from the case of constant
ω at large times, even if the spread in frequencies ∆ω is small. For t & 1/∆ω the
oscillators smear out over the phase. This effect is called the phase mixing and
it results in decoherence of collective oscillations of the ensemble of oscillators.

Problem 11.3. Action and angle variables are more convenient for the
study of the phase mixing. Use these variables and find the limit of the distri-
bution function integrated over δ in the limit t→∞.
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Lecture 12

Radiation damping effects

In this lecture we will show how the radiation damping in electron and positron
rings can be added to the Hamiltonian and Vlasov formalism.

12.1 Radiation damping in equations of motion

A light relativistic particle (like electron or positron) copiously emits synchrotron
radiation when moving in a circular orbit in an accelerator. The energy of the
radiation is taken from the kinetic energy of the particle. As we will see in
the second part of this course, radiation is emitted almost exclusively in the
direction of particle’s momentum. The radiation reaction force, hence, acts in
the opposite direction, and, similar to a friction force, tends to slow down the
motion of the particle. Our goal is to derive equations of motion that take this
friction force into account.

We assume relativistic particles, γ � 1. Let P be the averaged power
of radiation (the energy emitted per unit time) at a given location in the ring.
Since for a relativistic particle we have approximately p = h/c, the quantity P/c
is equal to the decrease of the momentum of a particle per unit time. Since, as
mentioned above, the force is acting in the direction opposite to the momentum,
we can write the change in the momentum components per infinitesimally small
time dt as

dpx = −px
p

P
c
dt = −vx

v

P
c
dt ≈ −P

c2
vxdt = −P

c2
dx = −P

c2
dx

ds
ds,

dpy = −py
p

P
c
dt ≈ −P

c2
dy

ds
ds,

dh = −Pdt = −P dt
ds
ds. (12.1)

These additional changes of the momenta and energy has to be added to the
dynamics governed by the Hamiltonian (6.24). Since Eqs. (12.1) change only
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the canonical momenta, the equations for the coordinates remain Hamiltonian

dx

ds
=
∂K

∂px
,

dy

ds
=
∂K

∂py
,

dt

ds
= −∂K

∂h
. (12.2)

The corrected equations for the momenta are

dpx
ds

= −∂K
∂x
− P
c2
∂K

∂px
,

dpy
ds

= −∂K
∂y
− P
c2
∂K

∂py
,

dh

ds
=
∂K

∂t
+ P ∂K

∂h
, (12.3)

where we used (12.1) and eliminated the derivatives dt/ds, dy/ds and dt/ds
with the help of (12.2). We emphasize here that Eqs. (12.2) and (12.3) are
not Hamiltonian any more, but it is convenient to keep writing them using
previously introduces canonical variables and the Hamiltonian function K.

The expression for the radiation power (in SI units) is derived later in the
course (20.32)

P(h, x, y, s) =
2

3

e2r0h
2

m3c3
B(x, y, s)2, (12.4)

where r0 is the classical radius for the particle, and we indicated explicitly that
in general case P depends on coordinates and particle’s energy. Below we will
also use the radiation power at the nominal orbit x = y = 0 for the particle
with the nominal energy h0

P0(s) =
2

3

e2r0h
2
0

m3c3
B(0, 0, s)2 =

2

3

r0γ
4mc3

ρ(s)2
. (12.5)

Averaging this power over the ring and dividing it by the nominal energy p0c
defines the characteristic damping time in the ring τs,

1

τs
=
〈P0(s)〉
p0c

=
1

γmc2
1

cT

∮
dsP0(s) =

2

3

r0γ
3

T

∮
ds

ρ(s)2
, (12.6)

where T is the revolution period and the angular brackets denote averaging over
the ring circumference.

In a typical accelerator ring the damping time is much longer than the rev-
olution period T and the period of betatron oscillations. This observation will
be used, in the next section, when we calculate the effect of the synchrotron
radiation on betatron oscillations.

12.2 Synchrotron damping of betatron oscilla-
tions

In this section we will consider the effect of synchrotron damping of betatron
oscillations using machinery developed in Section 12.1.
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At a first step we need to adapt Eqs. (12.2) and (12.3) for the variables of
the linearized Hamiltonian (7.11) used in our studies of the betatron oscilla-
tions. Recall that H was obtained from K by division by p0 with simultaneous
transition from px, py to Px = px/p0, Py = py/p0 and from h to h/p0. As a
result two first pairs of Eqs. (12.2) and (12.3) become

dx

ds
=

∂H
∂Px

,
dPx
ds

= −∂H
∂x
− P
p0c2

∂H
∂Px

,

dy

ds
=

∂H
∂Py

,
dPy
ds

= −∂H
∂y
− P
p0c2

∂H
∂Py

. (12.7)

Because we are now interested in relativistic motion, we can identify h/p0

with pc/p0 = c(1 + η) (see (6.27)), which means that in the third equation
in (12.3) we can use cη:

dcη

ds
=
∂H
∂t

+
P
cp0

∂H
∂η

= − P
cp0

(
1 +

x

ρ

)
, (12.8)

where in the last equation we assumed ∂H/∂t = 0 and used (7.11). One im-
mediately sees from this equation that η monotonously decreases with time due
to the continuous energy loss to radiation. Without compensation of the losses
all initial energy will be lost within the time of the order of τs. In reality the
particle energy is replenished by RF cavities in the ring, with the corresponding
term in the Hamiltonian given by (6.32). However, to avoid complications asso-
ciated with treatment of a time-dependent Hamiltonian we will adopt a simpler
model of the energy source. We will assume that it is continuously distributed
in the ring and is equal, with the opposite sign, to P0(s) defined by (12.5):

dcη

ds
= − P

cp0

(
1 +

x

ρ

)
+
P0

cp0
. (12.9)

Moreover, since we assume that η is small we can expand the difference P −P0

keeping only linear terms in η

P − P0 ≈ cp0η
∂P
∂h

∣∣
h=h0

= 2ηP0, (12.10)

where we took into account the quadratic dependence of P versus h, see (12.4).
As a result, we obtain

dη

ds
= − P0

p0c2

(
2η +

x

ρ

)
, (12.11)

where we neglected second order terms ∝ xη. The first term on the right hand
side describes damping of energy deviations due to the synchrotron radiation,
and the second one is a driving term due to the deviation in the x plane from
the nominal orbit. In contrast to (12.8) this equation exhibits an equilibrium
solution with x = η = 0.
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As it turns out, our results obtained with the model of continuous energy
source (12.9) are actually valid for the real machines with localized RF cavities
in the ring.

Let us assume that a particle has an initial energy deviation η0 at some initial
position. How does its energy deviation evolve with time? We know that an
off-energy particle is moving along the orbit (9.15): x(s) = ηD(s). Substituting
this into (12.11) we obtain

dη

ds
= −η P0

p0c2

(
2 +

1

ρ
D(s)

)
. (12.12)

As was observed at the end of the previous section, synchrotron damping lasts
for many revolution periods. It makes sense then to average (12.12) over the
circumference of the ring. Recalling that P0 ∝ ρ−2 and using (12.6) it is easy
to obtain

〈dη
ds
〉 = − η

cτs
(2 +D), (12.13)

with

D =

(∫
ds

ρ2

)−1 ∫
ds

ρ3
D(s). (12.14)

In many practical situations the parameter D is small and can be neglected. We
then have the energy perturbation, on average, exponentially decaying with the
time constant equal to half of τs.

Consider now damping of vertical betatron oscillations in a ring due to the
synchrotron radiation. We know that without damping, when the system is
Hamiltonian, the action Jy given by (8.9) is conserved. Due to the synchrotron
radiation it will be slowly (over many revolution periods) decreasing with time.
To find its damping time, we need to calculate the derivative dJy/ds using
equations (12.7) and average it over the ring (as we did above for dη/ds). The
calculation is simplified if we note that dJy/ds = 0 when P = 0, and the
damping term in (12.7) involves Py only. Hence

dJy
ds

=
∂Jy
∂Py

×
(
− P0

p0c2
∂H
∂Py

)
= − P0

p0c2
(βPy + αy)Py (12.15)

(to simplify notation we drop the index y in β and α). We then use (8.10) and
(8.11) to obtain

dJy
ds

= − P0

p0c2

[
2Jy (sinφ+ α cosφ)

2 − 2αJy cosφ (sinφ+ α cosφ)
]

= − 2P0

p0c2
Jy
[
(sinφ)2 + α sinφ cosφ

]
. (12.16)

Averaging over the ring circumference is equivalent to averaging over the phase
φ. We find

〈dJy
ds
〉 = −〈P0〉

p0c2
Jy = − 1

cτs
Jy. (12.17)
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Calculations of damping of betatron oscillations in the horizontal plane are
more complicated. This complication comes from the fact that they are coupled
to the energy through the term −ηx/ρ in the Hamiltonian (7.11) and, in addi-
tion, the evolution of η is coupled to x through the term x/ρ in (12.8). While
the averaged value of η in the course of betatron oscillations is zero, the x/ρ
term in (12.8) induces small oscillations of η that has to be taken into account.
The easiest way to do that is to calculate the averaged rate of change of the
action (9.17) at η = 0 rather than (8.9). As above, calculation of dJx/ds is
simplified if one takes into account that it is zero when P = 0, and the damping
comes through the variables Px and η. We then have

dJx
ds

=
∂Jx
∂Px

×
(
− P0

p0c2
∂H
∂Px

)
+
∂Jx
∂η

dη

ds
(12.18)

= − P0

p0c2
[βPx − βηD′ + αx− αηD]Px

− P0

p0c2

(
2η +

x

ρ

)
1

β
[−D(x− ηD)− (βPx − βηD′ + αx− αηD)(βD′ + αD)] .

As explained above we set η = 0 on the right hand side which gives

dJx
ds

= − P0

p0c2
[βPx + αx]Px

− P0

p0c2
x

ρ

1

β
[−Dx− (βPx + αx)(βD′ + αD)] , (12.19)

and express x and Px through Jx and φ using (8.10) and (8.11)

dJx
ds

= − 2P0

p0c2
Jx
[
(sinφ)2 + α sinφ cosφ

]
− 2P0

p0c2
Jx

cosφ

ρ
[−D cosφ+ (βD′ + αD) sinφ] . (12.20)

Averaging over angle φ leaves only two terms on the right hand side

dJx
ds

= − P0

p0c2
Jx

(
1− D

ρ

)
, (12.21)

and then averaging over circumference of the ring gives

〈dJx
ds
〉 = − 1

cτs
Jx (1−D) . (12.22)

12.3 Vlasov equation and Robinson’s theorem

In Lecture 11 we introduced the kinetic equation for description of the ensemble
of beam particles. While our initial formulation of the continuity equation (11.7)
was general and valid for arbitrary equations of motion, the subsequent assump-
tion of the Hamiltonian motion has lead to the Vlasov equation (11.11) and
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even more elegant Eq. (11.14). Our goal now is to include the effect of the syn-
chrotron damping, as described by Eqs. (12.7) and (12.8), into the formalism of
the Vlasov equation.

The distribution function f now depends on 7 variables: f(x, Px, y, Py, t, cτ, s).
With an evident generalization of equation (11.7) for 3 degrees of freedom, the
kinetic equation is

∂f

∂s
+

∂

∂x

(
dx

ds
f

)
+

∂

∂Px

(
dPx
ds

f

)
+

∂

∂y

(
dy

ds
f

)
+

∂

∂Py

(
dPy
ds

f

)
+
∂

∂t

(
dt

ds
f

)
+

∂

∂η

(
dη

ds
f

)
= 0 . (12.23)

Let us calculate df/ds:

df

ds
=
∂f

∂s
+
dx

ds

∂f

∂x
+
dPx
ds

∂f

∂Px
+
dy

ds

∂f

∂y
+
dPy
ds

∂f

∂Py
+
dt

ds

∂f

∂t
+
dη

ds

∂f

∂η
= 0 .

(12.24)

Substituting (12.23) into (12.24) we obtain

df

ds
= −f

(
∂

∂x

dx

ds
+

∂

∂Px

dPx
ds

+
∂

∂y

dy

ds
+

∂

∂Py

dPy
ds

+
∂

∂t

dt

ds
+

∂

∂η

dη

ds

)
. (12.25)

The Hamiltonian part of the equations of motion (12.7) does not contribute to
the right hand side of (12.25). Using (12.7) and (12.11) we find

df

ds
= −f

(
∂

∂Px

dPx
ds

+
∂

∂Py

dPy
ds

+
∂

∂η

dη

ds

)
= −4f

P
p0c2

. (12.26)

According to this equation the distribution function f in a phase point moving
with a particle exponentially grows with time. This happens because, due to the
synchrotron radiation, the phase space volume occupied by a given ensemble of
particles decreases with time. Since f is the particle density in the phase space,
it grows inversely proportionally to the phase volume. This effect is associated
with the name of K. Robinson who pointed it out in [13].

There is also a competing mechanism that limits indefinite decrease of the
space volume due to the synchrotron radiation—a so called quantum diffusion.
We will briefly discuss it in Lecture 20.



Lecture 13

Primer in Special Relativity

We will review relativistic transformations for time-space coordinates, frequency,
and electromagnetic field.

13.1 Lorentz transformation and matrices

Consider two coordinate systems, K and K ′. The system K ′ is moving with

Figure 13.1: Laboratory frame K and a moving frame K ′.

velocity v in the z direction relative to the system K (see Fig. 13.1). The coor-
dinates of an event in both systems are related by the Lorentz transformation

x = x′ ,

y = y′ ,

z = γ(z′ + βct′) ,

t = γ(t′ + βz′/c) , (13.1)
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where β = v/c, and γ = 1/
√

1− β2.
The vector (ct, r) = (ct, x, y, z) is called a 4-vector, and the above transfor-

mation is valid for any 4-vector quantity.
We will often deal with ultrarelativistic particles, which means that γ � 1.

In this limit, a useful approximation is

β =

√
1− 1

γ2
≈ 1− 1

2γ2
. (13.2)

The Lorentz transformation (13.1) can also be written in the matrix notation
x
y
z
t

 =


1 0 0 0
0 1 0 0
0 0 γ cβγ

0 0 βγ
c γ




x′

y′

z′

t′

 = L


x′

y′

z′

t′

 . (13.3)

The advantage of using matrices is that they can be easily multiplied by a
computer. Here is an example: we want to generate a matrix which corresponds
to a moving coordinate system along the x axis, see Fig. 13.2. Let us rotate K ′

Figure 13.2: The frame K ′ is moving along x.

system by 90 degrees around the y axis, in such a way the new x axis is directed
along the old z. The rotated frame is denoted by K ′′ (see Fig. 13.3) and the
coordinate transformation from K ′ to K ′′ is given by x′′ = −z′, z′′ = x′, or in
matrix notation

Mrot =


0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (13.4)

The new frame K ′′′ is moving along the z′′ and has its axes oriented relative
to K ′′ the same way as shown in Fig. 13.1. Hence the Lorentz transformation
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x‘

x‘’ x‘’’

x

y‘ y‘’ y‘’‘ y

z‘

z‘‘ z‘‘’

z

M L M
-1

rotrot

V V

Figure 13.3: Sequence of frames.

is given by L, Eq. (13.3). Finally, we transform from K ′′′ to the lab frame K
using the matrix M−1

rot . The sequence of these transformations is given by the
product

(Mrot)
−1 · L ·Mrot =


γ 0 0 γβc
0 1 0 0
0 0 1 0

γβ/c 0 0 γ

 . (13.5)

This result, of course, can be easily obtained directly from the original trans-
formation by exchanging x� z.

Problem 13.1. Derive the Lorentz transformation when velocity v is at
45◦ to the z axis, v = v(0, 1/

√
2, 1/
√

2).
Problem 13.2. Using the matrix formalism, show that the inverse Lorentz

transformation is given by the following equations:

x′ = x ,

y′ = y ,

z′ = γ(z − βct) ,
t′ = γ(t− βz/c) , (13.6)

Explain the meaning of the minus sign in front of β.

13.2 Lorentz contraction and time dilation

Two events occurring in the moving frame at the same point and separated by
the time interval ∆t′ will be measured by the lab observers as separated by ∆t,

∆t = γ∆t′ . (13.7)

This is the effect of relativistic time dilation.
An object of length l′ aligned in the moving frame with the z′ axis will have

the length l in the lab frame:

l =
l′

γ
. (13.8)
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This is the effect of relativistic contraction. The length in the direction trans-
verse to the motion is not changed.

Problem 13.3. Muon at rest has the mean life time of 2.2 µs. To what
energy one needs to accelerate the muon in order to get the life time (in the lab
frame) of 1 ms. The muon mass is equal to 105 MeV.

Problem 13.4. A bunch of 1010 electrons with energy 15 GeV has a length
of 100 micron and a radius of 30 micron (in the lab frame). What is the electron
density (in units of particles per cubic centimeter) in the beam frame?

13.3 Doppler effect

Consider a wave propagating in a moving frame K ′. It has the time-space
dependence:

∝ cos(ω′t′ − k′r′) , (13.9)

where ω′ is the frequency and k′ is the wavenumber of the wave in the moving
frame. What kind of time-space dependence an observer in the frame K would
see? We need to make the Lorentz transformation of coordinates and time using
Eq. (13.6)

cos(ω′t′ − k′r′) = cos(ω′γ(t− βz/c)− kx′x− ky ′y − kz ′γ(z − βct))
= cos(γ(ω′ + kz

′βc)t− kx′x− ky ′y − γ(kz
′ + ω′β/c)z) .

(13.10)

We see that in the K frame this process is also a wave

∝ cos(ωt− kr) , (13.11)

with the frequency and wavenumber

kx = kx
′ ,

ky = ky
′ ,

kz = γ(kz
′ + βω′/c) ,

ω = γ(ω′ + βckz
′) . (13.12)

The object (ω, ck) is a 4-vector.
The above transformation is valid for any type of waves (electromagnetic,

acoustic, plasma waves, etc.) Now let us apply it to electromagnetic waves in
vacuum. For those waves we know that

ω = ck . (13.13)

Problem 13.5. Using equations (13.12) prove that from ω′ = ck′ follows
ω = ck.
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Assume that an electromagnetic wave propagates at angle θ′ in the frame
K ′

cos θ′ =
k′z
k′
, (13.14)

and has a frequency ω′ in that frame. What is the angle θ and the frequency
ω of this wave in the lab frame? We can always choose the coordinate system
such that k = (0, ky, kz), then

tan θ =
ky
kz

=
k′y

γ(kz
′ + βω′/c)

=
sin θ′

γ(cos θ′ + β)
. (13.15)

In the limit γ � 1 almost all angles θ′ (except for those very close to π) are
transformed to angles θ ∼ 1/γ. This explains why radiation of an ultrarelativis-
tic beams goes mostly in the forward direction, within an angle of the order of
1/γ.

Problem 13.6. Prove that

cos θ′ =
cos θ − β

1− β cos θ
, sin θ′ =

sin θ

γ(1− β cos θ)
. (13.16)

For the frequency, a convenient formula relates ω with ω′ and θ (not θ′). To
derive it, we use first the inverse Lorentz transformation

ω′ = γ(ω − βckz) = γ(ω − βck cos θ) , (13.17)

which gives

ω =
ω′

γ(1− β cos θ)
. (13.18)

Using β ≈ 1− 1/2γ2 and cos θ = 1− θ2/2, we obtain

ω =
2γω′

1 + γ2θ2
. (13.19)

The radiation in the forward direction (θ = 0) gets a large factor 2γ in the
frequency transformation.

Problem 13.7. A laser light of frequency ω copropagates with a relativistic
beam with γ � 1. Find the laser frequency in the beam frame.

13.4 Lorentz transformation of fields

The electromagnetic field is transformed from K ′ to K according to following
equations

Ez = E′z , E⊥ = γ
(
E′⊥ − v ×B

′) ,
Bz = B′z , B⊥ = γ

(
B′⊥ +

1

c2
v ×E′

)
, (13.20)
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where E′⊥ and B′⊥ are the components of the electric and magnetic fields per-
pendicular to the velocity v: E′⊥ = (Ex, Ey), B′⊥ = (Bx, By).

The electromagnetic potentials (φ/c,A) are transformed exactly as the 4-
vector (ct, r):

Ax = A′x ,

Ay = A′y ,

Az = γ
(
A′z +

v

c2
φ′
)
,

φ = γ(φ′ + vA′z) , (13.21)

Problem 13.8. Consider Lorentz transformation of fields in a plane elec-
tromagnetic wave propagating along axis z. The electric field is directed along x
and the magnetic field is directed along y with Ex = cBy. Derive transformation
formula for the absolute value of the Poynting vector of the wave.

13.5 Lorentz transformation and photons

It is often convenient, even in classical electrodynamics, consider electromag-
netic radiation as a collection of photons. How do we transform photon proper-
ties from K ′ to K? The answer is simple: the wavevector k and the frequency
of each photon ω is transformed as described above. The number of photons is
a relativistic invariant—it is the same in all frames.

Problem 13.9. An electromagnetic wave with the frequency ω and the
amplitude electric field E0 occupies the volume with dimensions Lx × Ly × Lz.
It propagates along the z axis with the fields with Ex = cBy. Using results of
the previous problem find the electromagnetic energy W of the wave in the lab
frame and the energy W ′ in a frame K ′ moving with velocity v relative to the
lab frame. Show that W/ω = W ′/ω′, where ω′ is the frequency of the wave in
K ′.



Lecture 14

Selected electrostatic and
magnetostatic problems

In this lecture, we present solutions of several electrostatic and magnetostatic
problems which can be encountered when a bunch or charged particles propa-
gates in the conducting vacuum chamber of an accelerator.

14.1 Electric field of a 3D Gaussian distribution

A bunch of charged particles in accelerator physics is often represented as having
a Gaussian distribution function in all three directions so that the charge density
ρ is

ρ(x, y, z) =
Q

(2π)3/2σxσyσz
e−x

2/2σ2
x−y

2/2σ2
y−z

2/2σ2
z , (14.1)

where σx, σy, and σz are the rms bunch lengths in the corresponding directions.
What is the electric field of such bunch in the beam frame (that is the frame
where the bunch is at rest)? This is a purely electrostatic problem, whose
solution we give in this section.

First, we note that due to the Lorentz transformation the bunch length in
the beam frame is γ times longer than in the lab frame, σz,beam = γσz,lab. We
assume that this factor is already taken into account and σz in (14.1) is the
bunch length in the beam frame.

The electrostatic potential φ satisfies the Poisson equation

∇2φ = − ρ

ε0
, (14.2)

whose solution can be written as

φ(x, y, z) =
1

4πε0

∫
ρ(x′, y′, z′)dx′dy′dz′

[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2
. (14.3)
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It is not an easy problem to carry out a three-dimensional integration in this
equation. A trick that simplifies it and reduces to a one-dimensional integral is
to use the following identity

1

R
=

√
2

π

∫ ∞
0

e−λ
2R2/2dλ . (14.4)

Assuming that R = [(x − x′)2 + (y − y′)2 + (z − z′)2]1/2 and replacing 1/R in
Eq. (14.3) with (14.4) we first arrive at a four-dimensional integral

φ =
1

4πε0

√
2

π

∫ ∞
0

dλ

∫
e−λ

2[(x−x′)2+(y−y′)2+(z−z′)2]/2ρ(x′, y′, z′)dx′dy′dz′ .

(14.5)

With the Gaussian distribution (14.1) the integration over x′, y′ and z′ can now
be easily carried out, e.g.,∫ ∞

−∞
e−

1
2λ

2(x−x′)
2

e
− x′2

2σ2x dx′ =

√
2π√

λ2 + σ−2
x

e
− x2λ2

2(λ2σ2x+1) , (14.6)

which gives for the potential

φ(x, y, z) =
1

4πε0

√
2

π

Q

σxσyσz

∫ ∞
0

dλ
e
− x2λ2

2(λ2σ2x+1) e
− y2λ2

2(λ2σ2y+1) e
− z2λ2

2(λ2σ2z+1)√
λ2 + σ−2

x

√
λ2 + σ−2

y

√
λ2 + σ−2

z

.

(14.7)

This integral is much easier to evaluate numerically, and it is often used in
numerical simulations of the field of a charged bunch. There are various useful
limiting cases of this expression, such as σx = σy (axisymmetric beam) or
σx, σy � σz (a long, thin beam) that can be analyzed.

Problem 14.1. Show that at large distances from the center Eq. (14.7)
reduces to

φ =
Q

4πε0
√
x2 + y2 + z2

. (14.8)

Having found the potential in the beam frame, it is now easy to transform it
to the laboratory frame using the Lorentz transformation. First we have to recall
that σz in (14.7) is the bunch length in the beam frame equal to γσz,lab. Second,
from (13.21) we see that the potential in the lab frame is γ times larger than
in the beam frame (note that A′z = 0 in (14.7)). Third, we need to transform
the coordinates x, y, z in (14.7) to the lab frame. According to (13.6) x and y
coordinates are not transformed however z should be replaced by γ(zlab−vtlab).
The resulting expression is (we drop all “lab” subscripts in what follows)

φ =
1

4πε0

√
2

π

Q

σxσyσz

∫ ∞
0

dλ√
λ2 + σ−2

x

√
λ2 + σ−2

y

√
λ2 + γ−2σ−2

z

× e−
x2λ2

2(λ2σ2x+1) e
− y2λ2

2(λ2σ2y+1) e
− (z−vt)2λ2

2(λ2σ2z+γ
−2) . (14.9)
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According to (13.21), in addition to the electrostatic potential, in the lab frame
there is also a vector potential Az responsible for the magnetic field of the
moving bunch. It is equal to Az = γvφ/c with φ given by (14.9).

14.2 Electric field of a continuous beam in a pipe

A continuous beam propagating inside a metallic pipe generates electric and
magnetic fields. In many applications it is important to know these fields as
a function of the beam position inside the pipe. We assume that the beam
propagates parallel to the axis of a cylindrical pipe of a given cross section. The
electrostatic potential φ is a function of the transverse coordinates x and y.

To a good approximation, the transverse beam dimensions, σx and σy, are
often much smaller than the transverse size of the pipe. We can neglect these
dimensions and consider the beam as infinitely thin charged wire located at
position x = x0 and y = y0. Then the problem of finding the electrostatic
potential reduces to the solution of

∇2φ(x, y) = − Q̃
ε0
δ(x− x0)δ(y − y0) , (14.10)

where Q̃ is the charge per unit length of the beam. This equation is to be solved
with the boundary condition φ = 0 at the surface of the pipe.

In the simplest case of a beam located at the center of a round pipe of radius
a (x0 = y0 = 0), the solution is easily found in cylindrical coordinates

φ = − Q̃

2πε0
ln
( r
a

)
, (14.11)

with the field Er = Q̃/2πε0r.
What if the beam is not at the center of a round pipe? There is also an

analytical solution in this case. A compact form of this solution is given as a
real part of the complex function

φ = − Q̃

2πε0
Re ln

a(z − z0)

a2 − zz0
, (14.12)

where z = x+ iy and z0 = x0 + iy0. The equipotential lines computed with this
expression are shown in Fig. 14.1.

If the beam is propagating in a pipe with a rectangular cross section 0 ≤
x ≤ a, 0 ≤ y ≤ b, the potential is given by the following expressions

φ0 =
2Q̃

πε0

∞∑
k=1

1

k sinh kπb
a

sinh
kπ(b− y0)

a
sinh

kπy

a
sin

kπx0

a
sin

kπx

a
, for y < y0

φ0 =
2Q̃

πε0

∞∑
k=1

1

k sinh kπb
a

sinh
kπ(b− y)

a
sinh

kπy0

a
sin

kπx0

a
sin

kπx

a
, for y > y0 .

(14.13)
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Figure 14.1: Contour plot of the po-
tential of a thin charged wire in a
round pipe.

Figure 14.2: Contour plot of the po-
tential of a thin charged wire in a
rectangular pipe.

The equipotential lines computed with this expression are shown in Fig. 14.2.

The approximation of an infinitely thin beam is useful for evaluation of the
potential outside of the beam. It is however cannot be used directly to calculate
the potential between the center of the beam and the wall. Indeed, let us
consider the case of an axisymmetric Gaussian beam with the charge density
given by

ρ(r) =
Q̃

2πσ2
e−r

2/2σ2

, (14.14)

with σ � a. We assume that the beam is located at the center of a round pipe.
In the infinitely thin beam approximation, the potential is given by Eq. (14.11).
This expression is valid for r � σ; for r = 0 it gives an infinite value. To find
the potential for a Gaussian beam we need to solve

1

r

d

dr
r
dφ

dr
= − Q̃

2πσ2ε0
e−r

2/2σ2

. (14.15)

The solution of this equation that has a finite electric field on the axis and
satisfies the boundary condition at the wall is

φ =
Q̃

2πε0

∫ a

r

dr′

r′

(
e−r

′2/2σ2

− 1
)
. (14.16)

In the limit r � σ we recover Eq. (14.11). The potential difference between the
center of the beam and the wall is

φ(r = 0) =
Q̃

2πε0

∫ a

0

dr′

r′

(
e−r

′2/2σ2

− 1
)
. (14.17)
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14.3 Magnetic field of a beam in a conducting
pipe

Expressions (14.13) of the previous Section give us also a solution of another
problem—the problem of finding magnetic field of a thin bunch inside a con-
ducting vacuum chamber. Again we neglect the transverse dimensions of the
bunch and assume that it is located at position x = x0 and y = y0 inside a
vacuum chamber of a given cross section. The beam carries current I which we
assume constant in time. The magnetic field vector of this current has only x
and y components, H = x̂Hx(x, y) + ŷHy(x, y), that depend on x and y, and
satisfies the Maxwell equation

∇×H = Iẑδ(x− x0)δ(y − y0). (14.18)

For a good metal and fast processes, the magnetic field does not penetrate inside
the metal and the boundary condition on the surface of the metal is that the
normal to the surface component of the magnetic field vanishes, Hn|surface = 0,
see Section 16.3. With this boundary condition, we will now show how to
convert (14.18) to (14.10).

Let us introduce function ψ(x, y) such that

H = ∇× (ẑψ). (14.19)

Note that the equation ∇ ·H = 0 is automatically satisfied when H is given
by (14.19). Substituting this relation into (14.18) and taking the z component
of the resulting equation yields

∇2ψ = −Iδ(x− x0)δ(y − y0). (14.20)

The normal component of the magnetic field on the surface of the metal is
equal to the tangential derivative of ψ (that is along the contour of the surface),
and hence vanishing Hn means a constant value of ψ on the surface. Since
adding a constant value to ψ does not change the magnetic field, without loss
of generality, this constant value can be set to zero. We see that with the
correspondence ψ → φ and I → Q̃/ε0 our magnetic problem reduces to the
electrostatic one of the previous Section. In particular, the solution (14.13)
can be used to find the magnetic field of a bunch inside a rectangular vacuum
chamber. In the magnetic problem, the lines of constant values of φ in Fig. 14.2
represent magnetic field lines inside the vacuum chamber.

14.4 Electric field of a charged metallic ellipsoid

Consider a metallic body that has a shape of an ellipsoid, which is given by the
following equation

x2

a2
+
y2

b2
+
z2

z2
= 1 , (14.21)
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where a, b and c are the half axes of the ellipsoid in the corresponding directions.
The body is charged with the total charge equal to Q. This charge will be
distributed on the surface of the ellipsoid in such a way that the electrostatic
potential φ is constant on the surface.

It turns out that the electric field outside of the ellipsoid, in free space,
can be found relatively easy. We give here the solution of this problem without
derivation. Let us assume that a ≥ b ≥ c > 0. We introduce a function λ(x, y, z)
that is defined as a positive solution of the following equation

x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1 . (14.22)

Then the potential φ outside of the ellipsoid is given by the following integral

φ(x, y, z) =
Q

8πε0

∫ ∞
λ(x,y,z)

ds

R(s)
, (14.23)

where R(s) is

R(s) =
√

(a2 + s)(b2 + s)(c2 + s). (14.24)

In case of an elongated axisymmetric ellipsoid (b = c) the integration can be
done in elementary functions with the result

φ(x, y, z) =
Q

4πε0

1√
a2 − b2

ln

√
b2 + λ√

a2 + λ−
√
a2 − b2

. (14.25)
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Figure 14.3: Left panel: field lines of an ellipsoid with a = 4 and b = 0.5 in the
plane z = 0. Right panel: plot of the strength of the electric field on the surface
of the ellipsoid as a function of coordinate x (in arbitrary units). One can see
that the field is intensified near the ends of the ellipsoid.

Problem 14.2. Prove by direct calculation that the potential given by (14.19)
satisfies the Laplace equation.

14.5 Electric field near metallic edges and pro-
trusions

The electric field has a tendency to concentrate near sharp metallic edges and
thin conducting protrusions. This is an important factor that needs to be taken
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into account in the design of high-voltage devices. We illustrate this effect in
several solvable problems of electrostatic theory.

In the first problem we model a protrusion from a flat metallic surface as a
half of an ellipsoid. Specifically, we assume that the half space z < 0 is occupied
by metal, and the region z > 0 is free space except for the interior of the
ellipsoid (14.22), which is also metallic, see Fig. 14.4. Far from the protrusion,
at z → ∞, there is a uniform electric field Ez = E0 applied to the system.
The problem is to find the electric field in the vicinity of the protrusion. This
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0.0

0.5
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Figure 14.4: Ellipsoidal protrusion. Figure 14.5: Contour plot of the
potential around protruding ellip-
soidal shape.

problem is closely related the one in the previous Section. It is not surprising
then that the solution is given by integrals that involve the same function R(s)
(14.24)

φ(x, y, z) = −E0z

[
1−

∫ ∞
λ(x,y,z)

ds

(s+ c2)R(s)

(∫ ∞
0

ds

(s+ c2)R(s)

)−1
]
.

(14.26)

Contour plot of the field lines for an elongated protruding ellipsoid with param-
eters a = b = 0.5 and c = 2 is shown in Fig. 14.5.

Amplification of the field near sharp angles is most clearly visible in special
2D solutions of the Laplace equation. Consider the following problem: find
electrostatic potential near an angle in metallic surface, as shown in Fig. 14.6.
The geometry is translationally invariant along the z axis, perpendicular to
the plane of the picture. It is convenient to introduce a cylindrical coordinate
system with r =

√
x2 + y2 and angle θ counted from the x axis. The potential

φ(r, θ) in cylindrical coordinates satisfies the equation ∇2φ = 0 in the region
0 ≤ θ ≤ α (see Fig. 14.6) with the boundary condition φ = 0 at θ = 0 and
θ = α. We have

1

r

∂

∂r
r
∂φ

∂r
+

1

r2

∂2φ

∂θ2
= 0 . (14.27)
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Figure 14.6: Coordinate system near sharp angle.

It is easy to see that this equation is satisfied by the following solution φ =
rn sin(nθ) for arbitrary n. To satisfy the boundary condition, we require sin(nα) =
0 which gives n = π/α. Hence

φ = Arπ/α sin

(
πθ

α

)
, (14.28)

where A is a constant. The electric field has a singularity if n < 1; it follows
from the above expression that the field is singular when α > π. In the limit
α→ 2π, which corresponds to the edge of a metallic plane, the potential scales
as φ ∝

√
r, and the field has a singularity E ∝ 1/

√
r.

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

x

y

-4 -2 0 2 4
-3

-2

-1

0

1

2

3

x

y

Figure 14.7: Field lines near the edge with α = π/4 (left figure) and α = 7π/4
(right figure).

It is interesting to note that the electric field near a sharp tip of a charged
thin conical needle increases approximately as 1/r, where r is the distance to
the tip of the needle [14].



Lecture 15

Self field of a relativistic
beam

In this lecture, we will study the electromagnetic field of a bunch of charged
particles moving in free space with relativistic velocity along a straight line.

15.1 Relativistic field of a particle moving with
constant velocity

Consider a point charge q moving with a constant velocity v along the z axis.
We are interested in the case of a relativistic velocity, v ≈ c, or γ � 1. In the
particle’s reference frame it has a static Coulomb field,

E′ =
1

4πε0

qr′

r′3
, (15.1)

where the prime indicates the quantities in the reference frame where the particle
is at rest.

To find the electric and magnetic fields in the lab frame we will use the
Lorentz transformation (13.1) for coordinates and time, and the transformation
for the fields (13.20). We have Ex = γE′x, Ey = γE′y, and Ez = E′z. We
also need to transform the vector r′ into the lab frame using Eqs. (13.6). For
the length of this vector we have r′ =

√
x2 + y2 + γ2(z − vt)2. The Cartesian

coordinates of E are

Ex =
1

4πε0

qγx

(x2 + y2 + γ2(z − vt)2)3/2

Ey =
1

4πε0

qγy

(x2 + y2 + γ2(z − vt)2)3/2

Ez =
1

4πε0

qγ(z − vt)
(x2 + y2 + γ2(z − vt)2)3/2

. (15.2)
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These three equations can be combined into a vectorial one

E =
1

4πε0

qr

γ2R3
. (15.3)

Here vector r is drawn from the current position of the particle to the observa-
tion point, r = (x, y, z − vt), and R is given by

R =
√

(z − vt)2 + (x2 + y2)/γ2 . (15.4)

Finally, as follows from Eqs. (13.20), a moving charges carries magnetic field

B =
1

c2
v ×E . (15.5)

The above fields can be also obtained by transforming the potentials. Indeed,
in the particle’s frame we have

φ′ =
1

4πε0

q

r′
, A′ = 0 . (15.6)

Using the Lorentz transformation (13.21) we find

φ = γφ′ , A =
1

c
βφ . (15.7)

Expressing r′ in terms of the coordinates in the lab frame, r′ = γR, gives

φ =
1

4πε0

q

R
, A =

Z0

4π
β
q

R
. (15.8)

Problem 15.1. Verify by direct calculation that Eqs. (1.7) applied to the
potentials (15.8) give the fields (15.3) and (15.5).

The field of a relativistic point charge is illustrated by Fig. 15.1. Within a
narrow cone with the angular width ∼ 1/γ the field is large, E ∼ qγ/r2. On
the axis the field is weak, E ∼ 1/r2γ2. The absolute value of the magnetic field
is almost equal to that of the electric field.

Problem 15.2. Make a plot of the dependence E versus θ, where θ is the
angle between r and the (x, y) plane. Assume γ � 1.

In some problems we can neglect the small angular width of the electromag-
netic field of a relativistic particle and consider it as an infinitely thin “pancake”,
E ∝ δ(z − ct). This approximation formally corresponds to the limit v → c.
Because the field is directed along the vector drawn from the current position
of the charge, more precisely, we can write E = Aρδ(z− ct) where ρ = x̂x+ ŷy
and A is a constant which is determined by the requirements that the areas
under the curves Ex(z) and Ey(z) agree with the ones given by Eq. (15.3) in
the limit γ →∞.

Problem 15.3. Using Eq. (15.3) show that in the limit γ →∞ the following
relations hold∫ ∞

−∞
Exdz =

1

4πε0

2qx

ρ2
,

∫ ∞
−∞

Eydz =
1

4πε0

2qy

ρ2
. (15.9)
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Figure 15.1: Electric and magnetic fields of a relativistic particle is mainly
localized around the transverse plane.

Using the result of the problem above we obtain

E =
1

4πε0

2qρ

ρ2
δ(z − ct) , B =

1

c
ẑ ×E . (15.10)

15.2 Interaction of Moving Charges in Free Space

Let us now consider a source particle of charge q moving with velocity v, and a
test particle of unit charge moving behind the leading one on a parallel path at
a distance l with an offset x, as shown in Fig. 15.2. We want to find the force
which the source particle exerts on the test one. The longitudinal force is

1 v

v2
E

z

x
x

l

Figure 15.2: A leading particle 1 and a trailing particle 2 traveling in free space
with parallel velocities v. Shown also is the coordinate system x, z.

Fl = Ez = − 1

4πε0

ql

γ2(l2 + x2/γ2)3/2
, (15.11)

and the transverse force is

Ft = Ex − vBy =
1

4πε0

qx

γ4(l2 + x2/γ2)3/2
. (15.12)
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In accelerator physics, the force F is often called the space charge force.
The longitudinal force decreases with the growth of γ as γ−2 (for l & x/γ).

For the transverse force, if l � x/γ, Ft ∼ γ−4, and for l = 0, Ft ∼ γ−1. Hence,
in the limit γ → ∞, the electromagnetic interaction in free space between two
particles on parallel paths vanishes.

15.3 Field of a long-thin relativistic bunch of
particles

Let us consider a relativistic bunch of length σz much larger than the bunch
radius σz � σ⊥. The bunch is moving in the longitudinal direction along the z
axis with a relativistic factor γ � 1. What is the electric field of this bunch?

Let us first calculate the radial electric field outside of the bunch at distance
ρ from the z axis. Assuming that ρ � σ⊥ we can neglect the transverse size
of the beam and represent it as a collection of point charges. Each such charge
generates the electric field given by Eq. (15.3). From this equation we find that
the radial component dE⊥ created by an infinitesimally small charge dq′ located
at coordinate z′ is

dE⊥(z, z′, ρ) =
1

4πε0

ρdq′

γ2((z − z′)2 + ρ2/γ2)3/2
, (15.13)

where z and ρ =
√
x2 + y2 refer to the observation point. To find the field of

the bunch we assume that the bunch 1D distribution function is given by λ(z)
(
∫
λ(z)dz = 1), so that the charge dq′ within dz′ is equal to Qλ(z′)dz′, with Q

the total charge of the bunch. For the field, we need to add contributions of all
elementary charges in the bunch:

E⊥(z, ρ) =

∫
dE⊥(z, z′, ρ)

=
Qρ

4πε0γ2

∫ ∞
−∞

λ(z′)dz′

((z − z′)2 + ρ2/γ2)3/2
. (15.14)

The function ((z − z′)2 + ρ2/γ2)−3/2 in this integral has a sharp peak of width
∆z ∼ ρ/γ at z = z′. At distances ρ� σzγ from the bunch the width of the peak
is smaller than the width of the distribution function σz, and we can replace it
by the delta function:

1

((z − z′)2 + ρ2/γ2)3/2
→ 2γ2

ρ2
δ(z − z′) . (15.15)

The factor in front of the delta function on the right hand side follows from the
requirements that the area under the functions on the left hand side and on
the right hand side, considered as functions of z, should be equal, and from the
mathematical identity ∫ ∞

−∞

dz′

((z − z′)2 + a2)3/2
=

2

a2
.
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The approximation (15.15) is equivalent to using Eqs. (15.10) instead of (15.3).
The result is

E⊥(z, ρ) =
1

4πε0

2Qλ(z)

ρ
. (15.16)

We see that the factor γ does not enter this formula—this agrees with our
expectation because Eqs. (15.10) are valid in the limit γ →∞.

In the opposite limit, ρ � σzγ, we can replace λ(z) in Eq. (15.14) by the
delta function δ(z), which gives the field of a point charge

E⊥(z, ρ) =
1

4πε0

Qργ

(z2γ2 + ρ2)3/2
. (15.17)

In the intermediate region, ρ ∼ σzγ, the result is shown in Fig. 15.3 for a
Gaussian distribution function λ(z) = (1/

√
2πσz)e

−z2/2σ2
z .
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Figure 15.3: Transverse electric field of a relativistic bunch with Gaussian dis-
tribution for various values of the parameter ρ/σzγ. This parameter takes the
values of 0.1, 0.5, 1 and 3 with larger values corresponding to broader curves.
The field is normalized by (4πε0)−1Q/ρσz.

What is the longitudinal electric field inside the bunch? If we neglect the
transverse size of the beam and assume the same infinitely-thin-beam approx-
imation we used above, we can try to integrate the longitudinal field of a unit
point charge

dE‖(z, z′) =
dq′

4πε0γ2

z − z′

|z − z′|3
, (15.18)

as we did above for the transverse field:

E‖(z) =

∫
dE‖(z, z′) =

Q

4πε0γ2

∫
dz′λ(z′)

z − z′

|z − z′|3
, (15.19)
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Figure 15.4: Electric field lines of a thin relativistic bunch with γ = 10. The
red line at the bottom shows the longitudinal Gaussian charge distribution in
the bunch.

but the integral diverges at z′ → z. This divergence indicates that one has to
take into account the finite transverse size of the beam.

Let us calculate the longitudinal electric field in the model where the beam
radius is a, and the charge is uniformly distributed over the cross section of
the beam up to the radius a. We can slice the beam into infinitesimal disks of

a z

z'

z

Figure 15.5: Left panel: a beam of cylindrical cross section a; right panel: a
slice of the beam located at z′.

thickness dz′. If the slice has a unit charge and is located at coordinate z′, the
longitudinal electric field on the axis z at point z is

E‖(z, z′) = − 1

4πε0

2

a2
(z − z′)

(
1√

a2/γ2 + (z − z′)2
− 1

|z − z′|

)
. (15.20)

Problem 15.4. Derive Eq. (15.20) for E‖ and analyze it considering limits
|z − z′| � a/γ and |z − z′| � a/γ. Hint: represent a thin charged disk as a
collection of infinitesimally small rings.
The longitudinal electric field on the axis of the bunch is obtained by integration
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of contributions from the slices

E‖(z) = −
∫ ∞
−∞

dz′Qλ(z′)E‖(z, z′) (15.21)

= − Q

4πε0

2

a2

∫ ∞
−∞

dz′λ(z′)(z − z′)

(
1√

a2/γ2 + (z − z′)2
− 1

|z − z′|

)
.

The above integral cannot be calculated analytically. If we assume that the
longitudinal distribution of charge is Gaussian, λ(z) = (1/

√
2πσz)e

−z2/2σ2
z , then

the integral can be computed numerically. The result is shown in Fig. 15.6. One
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Figure 15.6: Longitudinal electric field of a relativistic bunch with Gaussian
distribution function for various values of the parameter a/γσz. This parameter
takes the values of 0.1, 0.01,and 0.001 with smaller values corresponding to
higher fields. The field is normalized by (4πε0)−12Q/γ2σ2

z .

can show that in the limit a/γσz � 1 a crude estimate for E‖ is:

E‖ ∼
1

4πε0

Q

σ2
zγ

2
log

σzγ

a
. (15.22)

Formally, this expression diverges in the limit of infinitely thin beam (a → 0),
but in reality the effect of the longitudinal electric field for relativistic beams is
often small because of the factor γ−2 (a so called space charge effect).

Problem 15.5. Derive an expression for the field E‖(z) on the beam axis
for a Gaussian bunch using the result of Section 14.1 in Lecture 14. Assume
σx = σy.

Problem 15.6. A bunch of electrons in a future linear collider will have a
charge of about 1 nC, bunch length σz ≈ 200 µm, and will be accelerated in the
linac from 5 GeV to 250 GeV. Estimate the energy spread in the beam induced
by the the space charge, assuming the bunch radius of 50 µm.
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Lecture 16

Effect of environment on
electromagnetic field of a
beam

Interaction between particles of a beam moving in a vacuum chamber in the
ultrarelativistic limit can occur if 1) the pipe is not uniform along the beam path
(which is usually due to presence of RF cavities, flanges, bellows, beam position
monitors, slots, etc., in the vacuum chamber), or 2) the wall of the chamber is
not perfectly conducting. In this lecture we first consider a relativistic beam
moving in a perfectly conducting beam pipe. We then discuss the interaction
of the beam with walls of finite conductivity and how a protrusion in a form
of an iris affects the beam. We will see that in both cases the interaction with
the wall leads to generation of the longitudinal electric field inside the vacuum
chamber and results in energy loss. This field is the source of collective effects
in the beam dynamics.

16.1 Beam Moving in a Perfectly Conducting
Pipe

If a relativistic beam is moving parallel to the axis in a perfectly conducting
cylindrical pipe of arbitrary cross section, it induces image charges on the surface
of the wall that shield the metal from the electromagnetic field of the particles.
The image travels with the same velocity1 v (see Fig. 16.1). Since both the
particles and the image charges move on parallel paths, in the limit v = c,
according to the results of the previous sections, they do not interact with each
other, no matter how close to the wall the particles are.

1Of course, it does not mean that electrons inside the metal move with velocity v. The
actual velocity of these electrons is small compared to the speed of light.
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image charges

Figure 16.1: A bunch of relativistic particles traveling inside a perfectly con-
ducting pipe of arbitrary cross section. Shown are the image charges on the wall
generated by the bunch. In this picture it is assumed that σzγ is much larger
than the distance from the beam to the walls, and the divergence of the field
lines due to finite value of γ is negligible.

To analyze this problem mathematically, one has to use a boundary condi-
tion for the fields on the surface of a perfectly conducting metal. This boundary
condition consists in the requirement that the tangential component of the elec-
tric field on the surface of the metal is equal to zero:

Et = 0 . (16.1)

It follows from the fact that a nonzero tangential electric field, penetrating into
the metal with infinite conductivity, would drive an infinitely large current in
the metal, and hence is not allowed. Below, in Section 16.4, we will show how
from this boundary condition it follows that, in the limit v = c, the longitudinal
electric field vanishes everywhere inside the pipe.

Note that from the boundary condition (16.1) if follows that the time de-
pendent normal component of the magnetic field Bn also vanishes. To prove
this we consider a small piece of the metal surface which can locally be approx-
imated by a flat piece. We then introduce a Cartesian coordinate system with
the origin on the surface of the metal, with the axes x and y located in the plane
of the surface and the axis z normal to the surface. According to Eq. (16.1) in
the vicinity of the origin Ex(x, y, z = 0) = Ey(x, y, z = 0). If follows then from
Maxwell’s equation that

∂Bz
∂t

∣∣∣∣
z=0

=
∂Ex
∂y
− ∂Ey

∂x

∣∣∣∣
z=0

= 0 . (16.2)

Hence, if there is no static magnetic field in the system, Bz = 0, or using the
more general notation Bn for the component perpendicular to the metal surface,

Bn = 0 . (16.3)
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16.2 Beam field inside a perfectly conducting
cylindrical pipe

Let us assume that a relativistic beam travels inside of a cylindrical pipe with
perfectly conducting walls in the direction parallel to the pipe axis z (but not
necessarily on the axis). We also assume that the transverse size of the beam is
negligibly small. How to find the beam electric and magnetic field in the pipe?

A simple way to solve this problem is to consider it in the beam frame. In this
frame the beam is at rest and the pipe flies with the velocity v in the direction
opposite to the beam motion. Note that the boundary condition (16.1) is the
same in both moving and the lab frames. What is also important is that the
bunch length in the beam frame is γ times larger than in the laboratory frame.
If the product σzγ (σz is the bunch length in the lab frame) is much larger than
the transverse size of the pipe, the bunch in the beam frame is much longer than
the pipe cross section (which is the same in both the lab and the beam frames).
At a given location inside the bunch, we can then neglect variation of the bunch
charge with z and consider the beam charge density constant in z-direction.
This reduces our problem to the electrostatic one considered in Lecture 14.2.
Having solved this problem, one can make the inverse Lorentz transformation
of the fields and find them in the lab frame.

16.3 Skin effect and the Leontovich boundary
condition

We will now turn to the effect of finite conductivity of the walls. We first need
to discuss an approximation that allows a simplified treatment of the electro-
magnetic properties of a good conductor, and study a so called skin effect. A
detailed derivation of the skin effect can be found in textbooks, see, e.g., [1],
section 5.18. We, reproduce a short version of this derivation here.

The skin effect deals with the penetration of the electromagnetic field inside a
conducting medium characterized by conductivity σ and magnetic permeability
µ. The equations that describe the electromagnetic field inside the metal are
Maxwell’s equation in which we neglect the displacement current ∂D/∂t:

∇×H = j , ∇ ·B = 0 , ∇×E +
∂B

∂t
= 0 , j = σE . (16.4)

Combining the first, third and last equations we obtain an equation for the
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magnetic field B

∂B

∂t
= −∇×E

= −σ−1∇× j
= −σ−1∇×∇×H
= σ−1(∇2H −∇(∇ ·H))

= σ−1µ−1∇2B , (16.5)

where we used the relation ∇·H = µ−1∇·B = 0, (assuming that µ is constant).
We found a diffusion equation for the magnetic field B.

Let us now assume that a metal occupies a semi-infinite volume z > 0 with
the vacuum at z < 0, as shown in Fig. 16.2, and assume that at the metal
surface the x-component of magnetic field is given by Hx = H0e

−iωt. Due to

z=0

x Hx

z

Figure 16.2: To derivation of the boundary condition on the surface of conduc-
tor.

the continuity of the tangential components of H, Hx is the same on both sides
of the metal boundary, that is at z = +0 and z = −0. We seek solution inside
the metal in the form Hx = h(z)e−iωt. Equation (16.5) then reduces to

d2h

dz2
+ iµσωh = 0 , (16.6)

with the solution h = H0e
ikz and

k =
√
iµσω = (1 + i)

√
µσω

2
. (16.7)

Note that we have chosen the root with a positive imaginary part, which gives
a solution that vanishes as z →∞. The quantity δ,

δ =

√
2

µσω
, (16.8)
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is called the skin depth; it characterizes how deeply the electromagnetic field
penetrates the metal. In many cases the magnetic properties of the metal can
be neglected, then µ = µ0, and the above equation can be written as

δ =

√
2c

Z0σω
. (16.9)

Problem 16.1. Calculate the skin depth in copper (σ = 5.8 ·107 1/Ohm·m)
and stainless steel (σ = 1.4 · 106 1/Ohm·m) at the frequency of 5 GHz.

The electric field inside the metal has only y component; it can be found
from the first and the last of Eqs. (16.5)

Ey =
jy
σ

=
1

σ

dHx

dz
=
ik

σ
Hx =

i− 1

σδ
Hx . (16.10)

The mechanism that prevents penetration of the magnetic field deep inside
the metal is generation of tangential electric field, that drives the current in the
skin layer and shields the magnetic field.

The relation (16.10) can be rewritten in vectorial notation:

Et = ζH × n , (16.11)

where n is the unit vector normal to the surface and directed toward the metal,
and

ζ(ω) =
1− i
σδ(ω)

. (16.12)

We emphasize that Eq. (16.11) is valid for Fourier transformed components of
the field, that is indicated in the frequency dependence of the parameter ζ. In
the limit σ →∞ we have ζ → 0 and we recover the boundary condition (16.1)
of zero tangential electric field on the surface of a perfect conductor.

Problem 16.2. Given the tangential component B0e
−iωt of the magnetic

field on the surface, find the averaged over time energy absorbed in the metal
per unit time per unit area. Hint: compute the averaged over time z-component
of the Poynting vector on the surface. Answer: ωδB2

0/4µ0.
We derived the boundary condition (16.11) for a flat surface. It however can

be used for a curved metal surface as well if the size of the metal body L is much
larger than δ (more precisely, the surface curvature should be much larger than
the skin depth). Another requirement is that the thickness of the metal wall
is much larger than the skin depth. Eq. (16.11) is often called the Leontovich
boundary condition.

Problem 16.3. Find how the Leontovich boundary conditions transforms
into a frame moving with relativistic velocity v parallel to the metal surface in
the direction perpendicular to the magnetic field (beam frame).

16.4 Round pipe with resistive walls

Consider now a round pipe of radius b, with finite wall conductivity σ. A point
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b

q z

Figure 16.3: Point charge moving an a round pipe of radius b.

charge moves along the z axis of the pipe with the speed of light, see Fig. 16.3.
Because of the symmetry of the problem, the only non-zero component of the
electromagnetic field on the axis is Ez. Our goal now is to find the field Ez as
a function of z and t.

If the conductivity of the pipe is large enough, we can use a perturbation
theory to find the effect of the wall resistivity. In the first approximation, we
consider the pipe as a perfectly conducting one. In this case the electromagnetic
field of the charge is the same as in free space and is given by Eqs. (15.10). For
what follows, we will need only the magnetic field Bθ,

Bθ =
1

4πε0

2q

cρ
δ(z − ct). (16.13)

Using the mathematical identity

δ(z − ct) =
1

2πc

∫ ∞
−∞

dωe−iω(t−z/c), (16.14)

we Fourier transform Bθ,

Bθ(ρ, z, t) =

∫ ∞
−∞

dωB̂θ(ρ)e−iωt+iωz/c, (16.15)

where

B̂θ(ρ) =
1

4πε0c2
q

πρ
=
µ0

4π

q

πρ
. (16.16)

In the limit when the skin depth δ corresponding to the frequency ω is
much smaller than the pipe radius, δ � b (and also much smaller than the
thickness of the pipe walls), we can use the Leontovich boundary condition
(16.11). Combining Eqs. (16.11), (16.12) and (16.16), we find

Êz|ρ=b = −ζ B̂θ(b)
µ0

= −(1− i)
√
Z0ω

2cσ

q

4π2b
. (16.17)
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Equation (16.17) gives us the longitudinal electric field on the wall, but we
need the field on the axis of the pipe. To find the radial dependence of Ezω,
we use the wave equation (1.5). In the cylindrical coordinate system the wave
equation for Ez is

1

c2
∂2Ez(ρ, z, t)

∂2t
−∆Ez(ρ, z, t) =

1

c2
∂2Ez(ρ, z, t)

∂2t
− ∂2Ez(ρ, z, t)

∂2z
− 1

ρ

∂

∂ρ
ρ
∂Ez(ρ, z, t)

∂ρ
= 0 . (16.18)

Substituting the Fourier component Êz(ρ)e−iω(t−z/c) into this equation, we find

1

ρ

∂

∂ρ
ρ
∂Êz
∂ρ

= 0 . (16.19)

This equation has a general solution Êz(ρ) = A + B ln ρ, where A and B are
arbitrary constants. Since we do not expect Ez to have a singularity on the
axis, B = 0. Hence the electric field does not depend on ρ, Êz(ρ) = const, and

Êz|ρ=0 = Êz|ρ=b , (16.20)

implying that Êz|ρ=0 is given by the same Eq. (16.17). Note that we have
shown here that in the ultrarelativistic case the longitudinal electric field inside
the pipe is constant throughout the pipe cross section.

To find Ez(z, t) we make the inverse Fourier transformation,

Ez(z, t) =

∫ ∞
−∞

dωÊze
−iω(t−z/c) , (16.21)

which gives

Ez(z, t) = (i− 1)

√
Z0

2cσ

q

4π2b

∫ ∞
−∞

dω
√
ωe−iω(t−z/c) . (16.22)

The last integral can be taken analytically in the complex plane, with the result∫ ∞
−∞

dω
√
ωe−iωξ = −

√
π(i+ 1)√

2ξ3/2
(16.23)

for ξ > 0. This gives

Ez(z, t) = −(i− 1)

√
Z0

2cσ

q

4π2b

√
π(i+ 1)√

2(t− z/c)3/2
=

qc

4π3/2b

√
Z0

σs3
, (16.24)

with s = ct − z being the distance from the moving charge with positive s
corresponding to the points behind the current position of the charge. For the
points where s < 0, located in front of the charge, Ez = 0 in agreement with
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the causality principle. The positive sign of Ez indicates that a trailing charge
(if it has the same sign as q) will be accelerated in the wake.

In our derivation we assumed that the magnetic field on the wall is the same
as in the case of perfect conductivity. However, the magnetic field is generated
not only by the beam current, but also by the displacement current

jdisp
z = ε0

∂Ez
∂t

, (16.25)

that vanishes in the limit of the perfect conductivity. To be able to neglect the
corrections to Hθ due to jdisp

z , we must require the total displacement current
to be much less then the beam current. In the Fourier representation, the time
derivative ∂/∂t reduces to multiplication by −iω, and the requirement is

ε0πb
2ω|Êz| � |Î| . (16.26)

The Fourier component of the current is calculated by making Fourier transform
of the equation I = qcδ(z − ct) and gives |Î| = q/2π. Using Eq. (16.17) now
gives

ω

c
�
(
Z0σ

b2

)1/3

. (16.27)

In the space-time domain, the inverse wavenumber c/ω corresponds to the dis-
tance s, hence the condition (16.27) means that our result (16.24) is valid only
for distances s larger than a critical value s0, s� s0. The parameter s0 can be
evaluated as an inverse of the right hand side of (16.27)

s0 =

(
2b2

Z0σ

)1/3

. (16.28)

Values of s0 for a pipe of radius b = 1 cm made of copper (σ = 5.8 · 107

1/Ohm·m), aluminum (σ = 3.7 ·107 1/Ohm·m) and stainless steel (σ = 1.4 ·106

1/Ohm·m) are shown in table below.

Copper Aluminum Stainless steel

s0 (µm) 21 24 72

Table 16.1: Parameter s0 for some materials.

The behavior of Ez for very small values of s, s < s0, can be found in the lit-
erature, [15]. In Fig. 16.4 we show how Ez depends on s at distances comparable
with s0. Note that the singularity in Eq. (16.24) now saturates at small s, the
electric field changes sign and becomes negative at s = 0. This field decelerates
the leading charge, as expected from the energy balance consideration.
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Figure 16.4: Longitudinal electric field as a function of distance s from the
particle. The field is normalized by q/4πε0b

2, and the distance is normalized by
s0. The value of the normalized field at the origin is equal to 4.

16.5 Point charge and Gaussian bunch passing
through an iris

Let us consider a relativistic point charge moving in a pipe that has a diaphragm
with a round hole of radius a. We assume that a is much smaller than the pipe
radius R and to simplify the problem take the limit R→∞. The problem then
reduces to passage of the charge through a round hole in a perfectly conducting
infinitely thin metal plate, as shown in Fig. 16.5. The iris cuts off a part of the
electromagnetic field, r > a, that hits the metal. The duration of the field pulse
on the edge of the iris is of the order of ∆t ∼ a/cγ (see Fig. 16.5b).

First, we calculate the energy U of the electromagnetic field that is “clipped
away” by the iris. The field of the ultrarelativistic charge is given by Eq. (15.3)
and (15.5),

Eρ = cBθ =
1

4πε0

γqρ

(ρ2 + γ2z2)3/2
, (16.29)

where we use the cylindrical coordinates ρ and z and assume that the charge
is located at the origin of the coordinate system. The energy density w of the
electromagnetic field is

w =
ε0
2

(E2
ρ + cB2

θ ) . (16.30)

Integrating w over the region ρ > a and over z yields

U =

∫ ∞
a

2π ρ dρ

∫ ∞
−∞

dz w =
3

64ε0

q2γ

a
. (16.31)
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Figure 16.5: An ultrarelativistic particle passes through a hole in a metal screen.

We expect that the radiated energy will be of the order of U , and the spectrum
of radiation will involve the frequencies up to λ ∼ a/γ (λ = 1/k).
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Figure 16.6: Plot of the function F (x).

It turns out that this problem allows for an analytical solution in the limit
of high frequency [16], when the wavelength of the radiation is much shorter
than the hole radius, k � a−1. In this limit the radiated energy spectrum is

dW
dω

=
1

2π2ε0

q2

c
F

(
ak

γ

)
, (16.32)

where

F (x) = x2
[
K0 (x)K2 (x)−K1 (x)

2
]
, (16.33)
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and Kn is the modified Bessel function of the second kind. The function F is
plotted in Fig. 16.6; it has a logarithmic singularity at x = 0. From this plot
we see that, indeed, the typical wavelength in the radiation spectrum is of the
order of λ ∼ a/γ. The total radiated energy is obtained by integrating dW/dω
over the frequency: ∫ ∞

0

dW
dω

dω =
3

32ε0

q2γ

a
. (16.34)

Comparing this equation with (16.31), we see that the radiated energy is equal
to twice the clipped energy. This can be explained by the following observation.
The clipped electromagnetic field is reflected back by the screen. The physical
mechanism responsible for this backward radiation is the current induced by
the beam in the screen. However, due to the symmetry of the reometry with
respect to positive and negative directions of z directions, exactly the same field
will also be radiated in the forward direction. Hence the total radiated energy
is two times larger that that containing in the clipped field.

Let us now turn our attention to a Gaussian bunch passing through the iris.
In this case we will take into account the pipe radius R. We assume that the
bunch length satisfies the condition σz > R/γ and use Eq. (15.16) for the beam
transverse field. The electromagnetic energy localized between the radii a and
R is:

U =
ε0
2

∫ ∞
−∞

dz

∫ R

a

2πρdρ(E2 + c2B2) = ε0

∫ ∞
−∞

dz

∫ R

a

2πρdρE2
⊥ . (16.35)

Using Eq. (15.16) with the Gaussian distribution, we obtain

U =
1

16π2ε0

∫ ∞
−∞

dz
1

2πσ2
z

e−z
2/σ2

z

∫ R

a

2πdρ
4Q2

ρ

=
1

16π2ε0

4Q2
√
π

σz
ln

(
R

a

)
. (16.36)

The ratio of this energy to the kinetic energy of the beam Nγmc2 (N is the
number of particles in the beam) is

U

Nγmc2
=

1

16π2ε0

4Nq2
√
π

γmc2σz
ln

(
R

a

)
=

1√
π

Nr0

γσz
ln

(
R

a

)
, (16.37)

where q is the particle’s charge (Q = Nq) and r0 = q2/4πε0mc
2 is the classical

radius. For electrons r0 = 2.82 · 10−13 cm and for protons r0 = 1.53 · 10−16 cm.
In contrast to a diaphragm, a smooth enough transition does not “scrape

off” the electromagnetic field. When a beam passes through a smooth transition
in a pipe its field is adiabatically adjusted to the shape of the local cross-section.
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It does not cause the energy loss but usually results in energy exchange between
different parts of the beam (the head and the tail).

Even if the transition is not smooth, the radiation is suppressed for very
long bunches, such that the characteristic frequency ω involved in the variation
of the beam field, ω ∼ c/σz, is smaller than cut off frequency of the pipe.



Lecture 17

Plane electromagnetic
waves and Gaussian beams

In this lecture we will study electromagnetic field propagating in space free of
charges and currents.

17.1 Plane electromagnetic waves

A plane electromagnetic wave can propagate in free space (without charges
and currents)—it is a field where all components depend only on the variable
ξ = z − ct,

E(r, t) = F (ξ) , B(r, t) = G(ξ) . (17.1)

From the equation ∇ ·E = 0 if follows that ∂Fz/∂ξ = 0, and hence Fz = 0 (a
nonzero Fz would mean a constant longitudinal electric field which has nothing
to do with the wave). Similarly, Gz = 0 because of ∇ ·B = 0. We see that a
plane wave is transverse.

Let us now apply Maxwell’s equation ∂B/∂t = −∇×E to the fields (17.1).
We have

F ′x = cG′y , F ′y = −cG′x , (17.2)

from which we conclude that Fx = cGy and Fy = −cGx (again, we neglect
possible constants of integration). In vector notation, these relations can be
written as F = −cn×G or

E = −cn×B , (17.3)

where n is a unit vector in the direction of propagation (in our case along the
z axis). Multiplying vectorially Eq. (17.3) by n, we also obtain

B =
1

c
n×E . (17.4)

137
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If we use potentials φ and A to describe a plane wave, they would also
depend on ξ only: φ = φ(ξ), A = A(ξ). We will now derive a useful formula
that allows us to find the fields in a plane wave using only the vector potential.
We have

B = ∇×A
= −x̂A′y + ŷA′x

= n×A′

= −1

c
n× ∂A

∂t
. (17.5)

After the magnetic field is found, we can find the electric field using Eq. (17.3).
Often a plane wave has a sinusoidal time dependence with some frequency

ω. In this case it is convenient to use the complex notation:

E = Re(E0e
−iωt+ikr+iφ0) , B = Re(B0e

−iωt+ikr+iφ0) , (17.6)

where E0 and B0 are the amplitudes of the wave, and k = nω/c is the wave
number. The wave propagates in the direction of k; the amplitude of the electric
and magnetic fields are E0 = cB0. In general, E0 andB0 can be complex vectors

orthogonal to k, e.g., E0 = E
(r)
0 + iE

(i)
0 with E

(r)
0 and E

(i)
0 real. Purely real or

purely imaginary E0 correspond to a linear polarization of the wave; a complex
vector E0 describes an elliptical polarization.

The Poynting vector gives the energy flow in the wave

S = E ×H =

√
ε0
µ0
E2

0n cos2(ωt+ kr + φ0) , (17.7)

(in this formula E0 is assumed real). The energy flows in the direction of
propagation k. Averaged over time energy flow, S̄, is

S̄ =
1

2

√
ε0
µ0
E2

0n =
1

2Z0
E2

0n =
c2

2Z0
B2

0n . (17.8)

In reality we never deal with exact plane waves. Such a wave would occupy
the whole space. The usefulness of the notion of the plane wave is that in many
cases the electromagnetic field looks like a plane wave locally in some limited
region. One of the important examples, which we will study in details later, is
radiation field at large distances from moving charges, see Fig. 17.1.

In some cases the approximation of the plane wave is enough, in others one
wants to understand deviations from the local plane wave approximation.

Another important aspect of sinusoidal plane waves is that an arbitrary solu-
tion of Maxwell’s equations in free space (without charges) can be represented
as a superposition of plane waves with various amplitudes and directions of
propagation.

Problem 17.1. At time t = 0 the electromagnetic field in free space is given
by functions E0(r) and B0(r) (note that ∇ ·E0 = ∇ ·B0 = 0). Find the field
at time t. [Hint: represent E(r, t) and B(r, t) as integrals over plane waves.]
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Figure 17.1: Approximation of local plane wave far from a radiated system of
charges.

Problem 17.2. A plane electromagnetic wave propagates at some angle
in a frame moving with velocity βc along the z axis. The magnitude of the
Poynting vector at some location in the wave is equal to S′. Show that in the
laboratory frame the magnitude of the Poynting at this location is given by the
following equation

S =
S′

γ2(1− β cos θ)2
, (17.9)

where θ is the angle between the direction of propagation in the lab frame and
the z axis.

Problem 17.3. Prove that the function u(r, t) = f(r − ct)/r where r is
the distance to the origin of the coordinate system, satisfies the scalar wave
equation ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 − (1/c2)∂2u/∂t2 = 0, if r > 0.

17.2 Gaussian beams

In this section we consider another important example of electromagnetic field
in vacuum which is a little more complicated than a plane wave. The importance
of this example is that it is typically used for representation of laser beams. It
also introduces such an important concept as the Rayleigh length, which we will
later use in application to radiation processes.

We consider a paraxial approximation for the electromagnetic field. This
means that the field is composed of plane waves propagating almost (but not
exactly) in the same direction.

We will use the wave equation (1.5) for the x component of the electric field
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(a linear polarization of the laser light)

∂2Ex
∂x2

+
∂2Ex
∂y2

+
∂2Ex
∂z2

− 1

c2
∂2Ex
∂t2

= 0 , (17.10)

and assume

Ex(x, y, z, t) = u(x, y, z)e−iωt+ikz , (17.11)

where u is a slow function of its arguments. More specifically, we require∣∣∣∣ 1u ∂u∂z
∣∣∣∣� k . (17.12)

We will see from the result, that u also slowly varies in the transverse direc-
tions. Putting Eq. (17.11) into Eq. (17.10) and neglecting the second derivative
∂2u/∂z2 in comparison with k∂u/∂z gives

∂2u

∂x2
+
∂2u

∂y2
+ 2ik

∂u

∂z
= 0 . (17.13)

We will look for an axisymmetric solution to this equation that depends only
on ρ =

√
x2 + y2, that is u = u(ρ, z). We then have

1

ρ

∂

∂ρ
ρ
∂u

∂ρ
+ 2ik

∂u

∂z
= 0 . (17.14)

Moreover, we will assume the following dependence of u on ρ and z:

u = A(z)eQ(z)ρ2 , (17.15)

where A(z) and Q(z) are yet unknown function. We will see that Q has a
negative real part so that we will have an exponentially decaying field in radial
direction.

Substituting (17.15) into Eq. (17.14) yields

4Q2ρ2u+ 4Qu+ 2ik

(
A′

A
+Q′ρ2

)
= 0 , (17.16)

where the prime denotes derivative with respect to z. Equating terms that do
not contain ρ and terms with ρ2, we obtain

2Q2 + ikQ′ = 0 ,

2Q+ ik
A′

A
= 0 . (17.17)

We solve the first equation with the result

Q(z) = − 1/w2
0

1 + 2iz/kw2
0

, (17.18)
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where w0 is a constant of integration which has dimension of length. We then
integrate the second of Eqs. (17.17) to get

A(z) =
E0

1 + 2iz/kw2
0

, (17.19)

where E0 is another constant of integration which gives the amplitude of the
field.

We now introduce important geometrical parameters: the Rayleigh length
ZR and the angle θ:

ZR =
kw2

0

2
, θ =

w0

ZR
=

2

kw0
. (17.20)

They can also be written as

Figure 17.2: Envelope of a Gaussian beam.

ZR = 2
λ

θ2
, w0 = 2

λ

θ
, (17.21)

where λ = k−1 = c/ω. At z = 0 the radial dependence of u is ∝ e−ρ
2/w2

0 ,
hence the quantity w0 gives the transverse size of the focal spot here. And if we
rewrite A = E0/(1 + iz/ZR), we see that ZR is the characteristic length of the
focal region along the z axis.

We can now obtain a condition for the validity of the paraxial approximation.
Evaluating ∂2u/∂z2 ∼ u/Z2

R and k∂u/∂z ∼ ku/ZR we see that in order to
neglect the second derivative we need to require ZR � λ. From this condition
it follows that λ � w0 � ZR and θ � 1. The former implies that the size of
the focal spot w0 is much larger than the reduced wavelength, and the latter
means that we use a small angle approximation. Locally, on scale of order of λ,
a Gaussian beam can be considered as a plane wave, but on larger scales (w0

transversely and ZR longitudinally) we see that the field varies.
The magnetic field in a Gaussian beam can be found, in the lowest order, by

using Eq. (17.4), where, in our case, n is directed along z, and hence, we have
the y component of the magnetic field

By =
1

c
Ex . (17.22)
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Problem 17.4. Calculate the longitudinal electric field Ez in the laser beam
using equation ∇ ·E = 0.

Problem 17.5. Show that the energy flux in the laser beam (the Poynting
vector integrated over the cross section of the beam) is equal to

π

4Z0
E2

0w
2
0 . (17.23)

Problem 17.6. A laser pulse has an energy of 1 J and duration 100 fs. It
is focused into a spot of radius 10 µm. Find the magnitude of the electric field
in the focus.

Problem 17.7. Expand the laser field over plane waves.
Let us now look at the field at large distance from the focus, z � ZR. At

this distance we can approximate

Q(z) ≈ ik

2z
− k2w2

0

4z2
, A(z) ≈ − iE0kw

2
0

2z
. (17.24)

We see that the amplitude of the field decays in inverse proportionality to the
distance z, and there is a radial profile e−k

2w2
0ρ

2/4z2 given by the absolute value
of the exponential factor. There is also a correction to the phase factor, so that
the total phase is

φ = kz +
kρ2

2z
. (17.25)

Note, that if we introduce the distance R from the focal point, R =
√
z2 + ρ2

(see Fig. 17.3), then, at large z, R ≈ z + ρ2/2z, and we see that the phase is
approximately equal to kR. This is a characteristic of a spherical wave, and
we conclude that at large distance a Gaussian beam is seen as a spherical wave
propagating from the center of the focus.

z

R
Ρ

Figure 17.3: To the definition of R and ρ.



Lecture 18

Radiation and retarded
potentials

In this lecture, based on simple intuitive arguments we derive the Liénard-
Wiechert potentials that solve the problem of the electromagnetic field of a
point charge moving in free space.

18.1 Radiation field

Let us assume that a point charge was at rest until t = 0, and then it is abruptly
accelerated and moves with a constant velocity v at t > 0, see Fig. 18.1a. How

t

v a

t

v b

t
1

Figure 18.1: The velocity versus time of an abruptly accelerated charge.

do electric field lines look like before and after the acceleration? Those pictures
are shown in Fig. 18.2. Before the acceleration we have the electrostatic field of
a charge at rest. After the acceleration, at time t, the field outside of the circle
of radius ct “does not know” that the charge has been moved. It is still the
same static field as it was at t < 0. Inside the sphere of radius ct, the field is
restructured in such a way that it is now equal to the field of a moving charge
described by Eqs. (15.3). In a thin spherical layer around the radius ct there
will be a transition region from one field to the other. At large distances from
the charge, the field in this layer becomes the radiation field.
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Figure 18.2: Field lines before (a) and after (b) acceleration.

If the charge was moved twice, as shown in Fig. 18.1b, then the field lines at
time t > t1 would look like shown in Fig. 18.2—there will be two spheres, with
the radiation layers between them.

Figure 18.3: Field lines after two short acceleration phases (a) and continuous
radiation of spheres (b). The blue dots on figure (b) show the centers of the
circles.

One can now easily imagine that a constantly accelerating charge will be ra-
diating the spheres at each moment of time, and those spheres will be expanding
increasing their radii with the speed of light.

For a quantitative description of the radiation process, we first need to figure
out how to relate a point on such sphere to the time and position of the charge
when this particular sphere was radiated. This time is called the retarded time
and the position of the particle is the retarded position. If a particle’s orbit is
given by the vector-function r0(t), and we make an observation at time t at



145

point r in space, then the retarded time tret is determined from the equation

c(t− tret) = |r − r0(tret)| (18.1)

and the retarded position is r0(tret). Note that both tret and r0(tret), for a
given orbit of the particle (determined by the function r0(t)), are functions of
variables t and r.

18.2 Retarded time and position for a particle
moving with constant velocity

We talked about radiation of spherical electromagnetic shells when a particle is
being accelerated. If acceleration becomes smaller and smaller, we approach the
limit of a particle moving with a constant velocity or standing still. We should
be able to think about such a particle as sending electromagnetic spheres all
the time. Let us see how this picture agrees with the calculated in Section 15.1
electromagnetic field of a moving charge.

ttret v
×

R

x

z

Figure 18.4: Point charge moving with constant velocity along the z-axis.

Assume again that a point charge is moving with a constant velocity v along
the z axis, see Fig. 18.4. First we need to find tret. Using

r0 = (0, 0, vt) (18.2)

we square Eq. (18.1)

c2t′2 = (z − v(t− t′))2 + x2 + y2 , (18.3)

where t′ = t−tret. This is a quadratic equation for t′ which can easily be solved.
It has two solutions, one of them is an advanced solution with t′ < 0, the other
one is our retarded solution with t′ > 0. The advanced solution is discarded
because it does not satisfy the causality.

Problem 18.1. Find solutions of Eq. (18.3) and analyze them.
We will not try to analyze the solution of Eq. (18.3). Instead, we will rewrite

the equations for potentials (15.8) for a moving charge in a different form.
Let us first show that the quantity R in Eq. (15.4) is equal to

R = R(1− β · n) = R− β ·R , (18.4)
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where R = r − r0(tret) and n = R/R. Taking square of (18.4) we have

R2 = (R− β ·R)2 , (18.5)

or, using coordinates,

(z − vt)2 +
x2 + y2

γ2
= (ct′ − β(z − v(t− t′)))2 , (18.6)

where we used R = ct′ and Rz = z − v(t − t′). Substituting x2 + y2 = c2t′2 −
(z − v(t− t′))2 from Eq. (18.3) we get

(z − vt)2 +
c2t′2 − (z − v(t− t′))2

γ2
= (ct′ − β(z − v(t− t′)))2 . (18.7)

It is easy to check that the above equation is an identity. Hence, we proved Eq.
(18.4).

The potentials (15.8) for a particle moving with a constant velocity can now
be written as

φ =
1

4πε0

q

R(1− β · n)
, A =

Z0

4π
β

q

R(1− β · n)
. (18.8)

Remember that R involves the retarded position of the particle. We can also
formally consider β as taken at the retarded time, because it does not depend
on time at all.

It turns out that in this new form the equations are valid for arbitrary motion
of a point charge, even when the charge is being accelerated.

18.3 Liénard-Wiechert potentials

In the previous Section we “accidentally” derived the Liénard-Wiechert poten-
tials which describe electromagnetic field of an arbitrary moving particle. Those
equations are:

φ(r, t) =
1

4πε0

q

R(1− βret · n)
,

A(r, t) =
Z0

4π

qβret

R(1− βret · n)
. (18.9)

Here the particle’s velocity β should be taken at the retarded time, βret =
β(tret), and we remind that R = r−r0(tret) is a vector drawn from the retarded
position of the particle to the observation point, and n is a unit vector in the
direction of R.

Remember that tret = tret(r, t). Later we will need the partial derivative
∂tret/∂t. This derivative can be calculated if we square both sides of Eq. (18.1)
and take the derivative with respect to time:

∂

∂t
c2(t− tret)

2 =
∂

∂t
(r − r0(tret))

2 (18.10)
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which gives

− 2c2(t− tret)

(
∂tret

∂t
− 1

)
= −2(r − r0(tret))

∂r0

∂t

= −2(r − r0(tret))
∂r0

∂tret

∂tret

∂t
. (18.11)

From this equation we find

∂tret

∂t
=

1

1− βret · n
. (18.12)

This is exactly the factor that we see in the Liénard-Wiechert potentials.
Problem 18.2. Find ∂R/∂t and ∇R. Show that

∇tret = − n

c(1− n · βret)
. (18.13)

The operator ∇ here is understood as x̂∂/∂x+ ŷ∂/∂y + ẑ∂/∂z.
Using equations for the fields (1.7) one can obtain formulas that express

the electric and magnetic fields of an arbitrary moving point charge (see. Eq.
(14.13) and (14.14) in [1]):

E =
q

4πε0

n− βret

γ2R2(1− βret · n)3
+

q

4πε0c

n× {(n− βret)× β̇ret}
R(1− βret · n)3

,

B = n×E , (18.14)

where β̇ret is the acceleration (normalized by the speed of light) taken at the
retarded time.

Problem 18.3. A point charge is at rest for t < 0. It is then uniformly
accelerated during time interval ∆t with acceleration a, and moves with a con-
stant velocity v = a∆t at t > ∆t. Using the retarded potentials find the
electromagnetic field in space at t > ∆t. Assume v � c.

18.4 Retarded potentials for an ensemble of par-
ticles

The Liénard-Wiechert potentials given by Eqs. (18.9) are convenient for calcu-
lation of fields of a moving point charge. What if we are given a continuous time
dependent current and charge distribution ρ(r, t) and j(r, t)? Can we integrate
the Liénard-Wiechert potentials over the space to obtain the result for such a
case?

Naively, one can think that to obtain the potential for a continuous distri-
bution one has to replace the charge q by an infinitesimal charge ρ(r′, t)d3r′ in



148

the elementary volume d3r′ and integrate over the space,

1

4πε0

∫
ρ(r′, tret)d

3r′

|r − r′|(1− βret · n)
, (18.15)

where n = (r − r′)/|r − r′|. This however, would be wrong. Indeed, if we
want, using Eq. (18.15), to recover the original Liénard-Wiechert potentials for
a point charge we need to do the integral with ρ(r, t) = qδ(r − r0(t)). Let us
for simplicity assume that the particle moves along the z axis with offsets x0

and y0, then

δ(r − r0(tret)) = δ(x− x0)δ(y − y0)δ(z − z0(tret)) , (18.16)

and β = (0, 0, βz). Calculating the integral (18.15) we have to remember that
tret is a function of z, so that∫

ρ(r′, tret)d
3r′

|r − r′|(1− βret · n)
= q

∫
δ(x′ − x0)δ(y′ − y0)δ(z′ − z0(tret))

|r − r′|(1− βret,znz)
dx′dy′dz′

= q

∫
δ(z′ − z0(tret))

|r − r′|(1− βret,znz)

∣∣∣∣
x′=x0,y′=y0

dz′

=
q

|r − r0(tret)|(1− βret,znz)|1− vret,z∂tret/∂z′|

=
q

R(1− βret,znz)2
, (18.17)

where we used the relation ∂tret/∂z
′ = nz which is easy to check by differen-

tiating c(t − tret) = |r − r′| with respect to z′. We see that we have an extra
factor (1 − βret · n) in comparison to Eq. (18.9). To correct for this factor we
have to start from the integrals that do not have this factor in the denominator

φ(r, t) =
1

4πε0

∫
ρ(r′, tret)

|r − r′|
d3r′ ,

A(r′, t) =
Z0

4πc

∫
j(r′, tret)

|r − r′|
d3r′ . (18.18)

These integrals are called the retarded potentials. They give the radiation field
in free space of a system of charges represented by continuous distribution of
charge density ρ and the current density j.

That these are correct expression, can be verified by using the following
problem.

Problem 18.4. Verify that the Liénard-Wiechert potentials can now be
derived from the retarded potentials assuming ρ(r, t) = qδ(r − r0(t)) and
j(r, t) = qv(t)δ(r − r0(t)) with v = dr0/dt.



Lecture 19

Scattering of
electromagnetic waves

In this Lecture we consider scattering of an electromagnetic wave on a free
charged particle—so called Thomson scattering. The scattering involves a ra-
diation reaction force, which keeps the energy balance in the process, while the
momentum balance is controlled by the light pressure effect. We also briefly dis-
cuss the inverse Compton scattering on a point charge moving with a relativistic
velocity.

19.1 Thomson scattering

Let us assume that an electron initially at rest is illuminated by a plane electro-
magnetic wave. This electron will start to oscillate in the wave and to radiate
electromagnetic field. We want to calculate this radiation.

Figure 19.1: Plane electromagnetic wave is incident on a charge at rest. Due to
oscillations of the charge in the incident wake, secondary waves will be radiated.
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First, we need to calculate the electron motion in the incident wave. We
will assume that this wave is weak, so that the electron velocity in the wave is
nonrelativistic. The field in the wave is given by Eq. (17.6). The equation of
motion for the electron is

m
dv

dt
= qE0e

−iωt+ikr , (19.1)

(we assumed the phase φ0 = 0). The magnetic force in this equation is dropped
because it is much smaller than the electric force when v � c. We use a complex
notation here with the real part having the physical meaning. Assuming that
the electron is located near the origin of the coordinate system, r ≈ 0, we will
drop the term ikr on the right-hand side of (19.1) (see explanation below)

m
dv

dt
= qE0e

−iωt . (19.2)

Integration over time gives

v =
iq

mω
E0e

−iωt , (19.3)

and

r = − q

mω2
E0e

−iωt . (19.4)

The condition v � c implies that

a ≡ qE0

mωc
� 1 , (19.5)

where we defined the parameter a which characterizes the strength of the elec-
tromagnetic field. This is a very important condition, which we will meet again
in a later lecture. Note that this condition also means that the amplitude of the
oscillations is much smaller than the reduced wave length, kr � 1, or

r � λ , (19.6)

where λ = c/ω = λ/2π, with λ being the wavelength of the incident wave.
It is because of the smallness of the parameter kr we neglected the term ikr
in (19.1).

Problem 19.1. Prove that the ratio qE0/mωc is a Lorentz invariant—it
does not change under the Lorentz transformation (in other words, it is the same
in any coordinate system moving relative to the laboratory reference frame).

Having calculated the electron motion, we can now find the radiation result-
ing from this motion. We need to calculate the vector potential Eq. (18.9). We
will make several simplifying assumptions. First, we neglect the βretn term in
the denominator because β � 1. Second, because we are considering radiation
at a large distance, much larger than the amplitude of the oscillations, we have
approximately R = r. Finally, we neglect the term r0(tret) in Eq. (18.1):

tret = t− r

c
. (19.7)
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The result is

A(r, t) =
Z0

4π

qβ(tret)

r

=
Z0

4π

qv(t− r
c )

cr

=
Z0

4π

iq2

mωcr
E0e

−iωt+ikr . (19.8)

We are dealing here with a spherical electromagnetic wave, whose amplitude
decays with distance as 1/r.

Recall now what we talked about the local plane wave approximation at a
large distance from the source in Section 17.1. This is a situation where we
can apply this approximation and use Eqs. (17.5) and (17.3) to calculate the
radiation fields. Eq. (17.5) gives

B = −1

c
n× ∂A

∂t

=
Z0

4π

q2

mc2r
n×E0e

−iωt+ikr . (19.9)

We see that radiation occurs at the frequency of the incident wave. The energy
flow in the radiation field is:

S̄ =
1

2Z0
|E|2 =

c2

2Z0
|B|2

=
Z0

32π2

q4

m2c2r2
|n×E0|2

=
Z0

32π2

q4E2
0

m2c2r2
sin2 θ , (19.10)

with the intensity of radiation

dI
dΩ

= S̄r2 =
Z0

32π2

q4E2
0

m2c2
sin2 ψ . (19.11)

Here the angle ψ is measured relative to the direction of the electric field in the
wave. The angular distribution is ∝ sin2 ψ.

Integrating this power over the solid angle gives the total energy radiated
per unit time

I =

∫
dI
dΩ

dΩ

=
Z0

32π2

q4E2
0

m2c2

∫ π

0

sin2 ψ · 2π sinψ dψ

=
Z0

32π2

(
8π

3

)
q4E2

0

m2c2
. (19.12)
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x

Figure 19.2: The angular distribution of the Thomson scattering. The electric
field is directed along the x axis.

What is the number of photons emitted per unit time?

Ṅp =
I
~ω

=
Z0

12π

q4E2
0

m2c2
1

~ω

=
1

12πε0

q2E2
0

m2c2ω2
ω
q2

~c

=
1

3
a2ωα , (19.13)

where a is defined by Eq. (19.5) and α is the fine structure constant

α =
1

4πε0

q2

~c
≈ 1

137
. (19.14)

If we divide the radiated power by the average energy flow in the wave, we
obtain a quantity that has dimension of length squared. This quantity can be
interpreted as a scattering cross section, and is called the Thomson cross section

σT =
I

E2
0/2Z0

=

(
1

4πε0

)2
8πq4

3m2c4
=

8π

3
r2
0 , (19.15)

where r0 is the classical radius

r0 =
1

4πε0

q2

mc2
. (19.16)

For electrons r0 = 2.8 · 10−13 cm.
In a later lecture we will need the intensity of the radiation written in the

spherical coordinate system, in which the wave propagates in the z direction and
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Figure 19.3: A spherical coordinate system. The wave propagates along the z
axis, and the electric field in the wave is directed along the x axis.

the electric field is directed along x. We introduce the polar angle θ measured
relative to the z axis and the azimuthal angle φ measured in the x − y plane,
see Fig. 19.3. In this coordinate system

n = (sin θ cosφ, sin θ sinφ, cos θ) , (19.17)

and with E0 = (E0, 0, 0) we find

|n×E0|2 = E2
0(1− sin2 θ cos2 φ) . (19.18)

Eq. (19.11) takes the form

dI
dΩ

=
Z0

32π2

q4E2
0

m2c2
(1− sin2 θ cos2 φ) . (19.19)

Problem 19.2. Prove Eq. (19.18).
Problem 19.3. Consider scattering of an electromagnetic wave on a charge

q that is attached to an immobile point through a spring, and can oscillate with
the frequency ω0. Find the scattering cross section as a function of frequency
of the incident wave ω.

19.2 Radiation reaction force

Because the charge is losing energy on radiation, it should feel a force that,
on average, works against the velocity, as a friction force. Indeed, such a force
exists, and is called the radiation reaction force. Let us calculate this force frr
using the energy balance equation

−〈frr · v〉 = I , (19.20)
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where the angular brackets indicate averaging over time. We take the expression
for the velocity Eq. (19.3) in real form

v =
q

mω
E0 sinωt , (19.21)

and assume that frr is in the direction of the velocity and is in phase with it

frr = −Av . (19.22)

We then have

〈frr · v〉 = −1

2
A

(
qE0

mω

)2

. (19.23)

Equating this expression to I given by Eq. (19.12), we find

A = −Z0

6π

q2ω2

c2
, (19.24)

and the force is

frr = −Z0

6π

q2ω2

c2
v =

1

6πε0

q2

c3
v̈ =

2

3

r0m

c
v̈ . (19.25)

The last expression, as it turns out, is more general than our derivation assumes—
it is valid for arbitrary nonrelativistic motion of a point charge.

As we emphasized above, the radiation reaction force is responsible for the
energy balance in the radiation process. There are some subtle issues in the full
derivation of this force, which we do not touch here (the details can be found in
Refs. [1, 17]). The force is however real, and absolutely vital for understanding
the effect of the radiation on particle’s dynamics. In Lecture 24 we will consider
this force in case of synchrotron radiation of a relativistic particle.

19.3 Light pressure

Let us take a quantum look at the Thomson scattering. The photons of the
incident wave within the Thomson cross section are scattered off in different
directions. The incident photons carry momentum in the direction of k, that is
the direction of the wave propagation. Because the scattered photons are equally
distributed between the forward and backward directions and, on average, their
total momentum is zero. Hence the recoil momentum is transferred to the
scatterer, which means that there is a force exerted on the charge in the direction
of the wave propagation. Let us calculate this force.

The calculation is very easy to do using the quantum language. The power
I given by Eq. (19.12) is the energy of photons scattered per unit time. The
ratio of the energy to momentum for each photon is c, and dividing I by c we
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get the momentum scattered per unit time. This momentum is the force flp in
the longitudinal direction

flp =
I
c

= σT
E2

0

2cZ0
. (19.26)

Let us now give a classical derivation of this force. First, we need to modify
the equation of motion (19.2) by adding on the right-hand side the radiation
reaction force

m
dv

dt
= qE0e

−iωt +
2

3

r0m

c

d2v

dt2
. (19.27)

With this modification, the solution Eq. (19.3) should also be corrected

v =
iq

mω
E0e

−iωt + v1 , (19.28)

where the last term on the right-hand side is a correction. We expect that the
correction is small and neglect d2v1/dt

2 in Eq. (19.27), which gives

m
dv1

dt
= −2

3

iqr0ω

c
E0e

−iωt . (19.29)

The solution of this equation is

v1 =
2

3

qr0

mc
E0e

−iωt . (19.30)

The final step is to calculate the average over time magnetic force qv1×B which
arises from the cross product of the velocity v1 and the magnetic field in the
wave B = (k/ck) × E0e

−iωt. To average the force, we have to take the real
parts of v1 and B, with the result

q〈Rev1 × ReB〉 =
1

3

q2r0

mc2k
E0 × k ×E0 =

1

3

q2r0E
2
0

mc2
k

k
. (19.31)

We see that this force is along the direction of the wave propagation. It is easy
to check that it is exactly equal to the expression given by Eq. (19.26).

Problem 19.4. In the derivation above we neglected the term qv×B where
v is given by the real part of Eq. (19.3). Show that 〈v ×B〉 = 0.

Problem 19.5. Estimate the pressure of the solar light on the surface of
the Earth. The solar radiation power is about 1 kW/m2.

19.4 Inverse Compton scattering

Let us now assume that the scattering electron is moving with a relativistic
velocity v (γ � 1) in the z direction and denote the incident wave frequency
by ω0. We make the Lorentz transformation from the lab frame to the beam
frame. First we need to calculate the frequency ω′ of the incident wave in the
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Figure 19.4: Inverse Compton scattering off a moving charge.

beam frame using the Lorentz transformation. We will use Eq. (13.18) in which
θ = π

ω′ = 2γω0 . (19.32)

This is the frequency of the scattered radiation in the beam frame. To transform
it to the lab frame we will assume small angles θ and use Eq. (13.19) again

ω =
4γ2ω0

1 + γ2θ2
. (19.33)

We see that there is a spectrum of frequencies with the maximum frequency
equal to 4γ2ω0. Roughly, the frequencies of this order propagate within a small
angle

θ ∼ 1

γ
. (19.34)

We know that in the beam frame the photons are radiated more or less
in all directions. The angles in the lab frame θ are related to the angles in
the lab frame with Eq. (13.15). This equation tells us that almost all photons
propagate within the angle 1/γ in the direction of the beam motion. The number
of photons will be the same as in the beam frame, but their energy in the lab
frame is much larger in case γ � 1.

Problem 19.6. R. Ruth and Z. Huang proposed to use Thomson scattering
in a compact electron ring as a source of intense X-ray radiation (PRL, 80, 976,
(1998)). The electron energy in the ring is 8 MeV, the number of electron in the
bunch is 1.1 ·1010, the laser energy is 20 mJ, the laser pulse length is 1 mm, and
the laser is focused to the spot size 25 micron. Estimate the number of photons
from a single collision of the laser pulse with the electron beam.



Lecture 20

Synchrotron radiation

We will consider a relativistic point charge (γ � 1) moving in a circular orbit
of radius ρ. Our goal is to calculate the synchrotron radiation of this charge.
Using the Liénard-Wiechert potentials we first find the fields at a large distance
from the charge in the plane of the orbit. We then discuss properties of the
synchrotron radiation using a more general result for the angular dependence
of the spectral intensity of the radiation.

20.1 Synchrotron radiation pulses in the plane
of the orbit

The layout for our calculation is shown in Fig. 20.1. An observer is located
at point O in the plane of the orbit in the far zone. The observer will see a
periodic sequence of pulses of electromagnetic radiation with the period equal
to the revolution period of the particle around the ring. Each pulse is emitted
from the region x ≈ z ≈ 0.

x
z

ρ
ω τ

r

R O

n

r

Figure 20.1: A schematic showing the particle’s orbit and the observation
point. The y axis is directed out of the page.

157



158

Radiation is the electromagnetic field at a large distance from the particle,
and in Eq. (18.9) we can replace R in the denominator by r—the distance
from the observation point to the origin of the coordinate system (where the
observation line touches the circle):

A(r, t) =
Z0q

4πr

β(tret)

1− β(tret) · n
. (20.1)

We will also use the fact that in the far zone the radiation field can locally be
represented by a plane wave, and according to Eq. (17.5) the magnetic field can
be found from the vector potential:

B = −1

c
ẑ × ∂A

∂t
, (20.2)

where we replaced n by the unit vector in the z direction.

Let us denote the retarded time by τ , so that R(τ) = c(t−τ). We will choose
the zero time in such a way that at t = 0 the particle is located at the origin of
our coordinate system, then the position of the particle at time τ is characterized
by the angle ωrτ , as shown in Fig. 20.1, with ωr = βc/ρ the angular revolution
frequency of the particle. We approximately have R ≈ r − ρ sinωrτ , or

r − ρ sinωrτ = c(t− τ) . (20.3)

In what follows we will use the dimensionless variable ξ, ξ = τc/ρ ≈ ωrτ . We
have

ct− r = ρ[ξ − sin(βξ)] . (20.4)

We also have

βx = −β sin(ωrτ) = −β sin(βξ) ,

βz = β cos(ωrτ) = β cos(βξ) . (20.5)

As follows from Eq. (20.1) the x component of A is

Ax =
Z0q

4πr

βx
1− βz

= −Z0q

4πr

β sin(βξ)

1− β cos(βξ)
. (20.6)

Because the vector potential A has only x and z components, it follows from
Eq. (20.2) that B is directed along y with

cBy = −∂Ax
∂t

= −∂Ax/∂ξ
∂t/∂ξ

. (20.7)

The function t(ξ) is given by Eq. (20.4) andAx(ξ) is determined by Eqs. (20.6)
and (20.5). We now assume that only a small fraction of the particle’s trajectory
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contributes to the shape of the electromagnetic pulse, ξ � 1. We then expand
the trigonometric functions

sin(βξ) ≈ βξ − 1

6
ξ3,

ξ − sin(βξ) ≈ ξ(1− β) +
1

6
ξ3 ≈ 1

2γ2
ξ +

1

6
ξ3

cos(βξ) ≈ 1− 1

2
ξ2

1− β cos(βξ) ≈ 1− β +
1

2
ξ2 ≈ 1

2γ2
+

1

2
ξ2 . (20.8)

Substituting these expressions into Eqs. (20.4) and (20.6) gives

Ax = −Z0q

4πr

2ξ

γ−2 + ξ2
, t =

r

c
+
ρ

c

(
1

2γ2
ξ +

1

6
ξ3

)
, (20.9)

with the magnetic field

By =
Z0q

πrρ

γ−2 − ξ2

(ξ2 + γ−2)3
. (20.10)

Let us introduce the dimensionless time variable t̂ = (γ3c/ρ)(t − r/c) and
the dimensionless magnetic field B̂ = (πrρ/Z0qγ

4)By. It is easy to see that the

dependence B̂(t̂) is given by the following implicit relations

B̂ =
1− ζ2

(ζ2 + 1)3
, t̂ =

1

2
ζ +

1

6
ζ3 , (20.11)

where ζ = ξγ. The plot of the function B̂(t̂) is shown in Fig. 20.2. We see from
this plot that the characteristic width of the pulse ∆t̂ ∼ 1, which means that
the duration of the pulse in physical units

∆t ∼ ρ

cγ3
. (20.12)

The spectrum of frequencies presented in the radiation is ∆ω ∼ cγ3/ρ. In the
next section we will study this spectrum in more detail.

Problem 20.1. Find asymptotic dependence By(t) for |t− r/c| � ρ/cγ3.
Problem 20.2. Prove that the area under the curve By(t) is equal to zero

(that is
∫ t=∞
t=−∞By(t)dt = 0).

20.2 Fourier transformation of the radiation field
and the radiated power

We will now calculate the energy radiated in unit solid angle dΩ in the x-z
plane. This energy is given by the product of the Poynting vector S with the
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Figure 20.2: The radiation pulse of the electromagnetic field in dimensionless
variables.

distance squared integrated over time:

r2

∫ ∞
−∞

dtS(t) =
c2r2

Z0

∫ ∞
−∞

dtBy(t)2 . (20.13)

In the last equation we used the relation E = cB and the fact that in a plane
wave the electric and magnetic fields are perpendicular to each other.

We come to the notion of the spectrum of radiation if we take the Fourier
transform of the field and represent the radiated energy as an integral over the
frequencies ω. From Fourier analysis we know (a so called Parseval’s theorem)∫ ∞

−∞
dtBy(t)2 =

1

2π

∫ ∞
−∞

dω|B̃y(ω)|2

=
1

π

∫ ∞
0

dω|B̃y(ω)|2 , (20.14)

where

B̃y(ω) =

∫ ∞
−∞

dtBy(t)eiωt . (20.15)

We introduce the energy radiated per unit frequency interval per unit solid angle
as

d2W
dωdΩ

=
r2c2

πZ0
|B̃y(ω)|2 , (20.16)

so that the total energy radiated per unit solid angle can be represented as

dW
dΩ

=

∫ ∞
0

dω
d2W
dωdΩ

. (20.17)
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To calculate B̃y(ω) it is convenient to start from Eq. (20.7) that in Fourier
representation becomes

cB̃y(ω) = iωÃx(ω) . (20.18)

We can use Eqs. (20.9) to find the Fourier component of Ax

Ãx(ω) =

∫ ∞
−∞

Ax(t)eiωtdt

=

∫ ∞
−∞

Ax(ξ)eiωt(ξ)
dt

dξ
dξ

= −Z0q

4πr

ρ

c
eiωr/c

∫ ∞
−∞

ξei(ωρ/2c)(γ
−2ξ+ξ3/3)dξ . (20.19)

Introducing the new variable ζ = ξγ and the critical frequency

ωc =
3cγ3

2ρ
, (20.20)

we find

Ãx(ω) = −iZ0q

4πr

ρ

cγ2
eiωr/cF

(
3ω

4ωc

)
, (20.21)

where

F (x) = Im

∫ ∞
−∞

ζeix(ζ+ζ
3/3)dζ =

2√
3
K2/3

(
2x

3

)
, (20.22)

with K2/3 the MacDonald function. Note that the real part of the integral in
Eq. (20.22) is equal to zero because of the symmetry of the integrand.

This gives the spectrum of the radiation

d2W
dωdΩ

=
q2Z0

12π3

(ρω
c

)2
(

1

γ2

)2

K2
2/3

(
ω

2ωc

)
. (20.23)

20.3 Synchrotron radiation for ψ 6= 0.

In a more general case of radiation at an angle ψ 6= 0 (see Fig. 20.3 for the
layout) the calculation is more involved and we will not try to reproduce it here.
However, for the reference purposes, we will summarize some of the results of
this general case.

A more general formula valid for ψ 6= 0 is

d2W
dωdΩ

=
q2Z0

12π3

(ρω
c

)2
(

1

γ2
+ ψ2

)2 [
K2

2/3(ζ) +
ψ2

1/γ2 + ψ2
K2

1/3(ζ)

]
, (20.24)



162

Figure 20.3: The particle’s orbit and the coordinate system.

where

ζ =
ωρ

3c

(
1

γ2
+ ψ2

)3/2

. (20.25)

This result was obtained by J. Schwinger in 1949. Setting ψ = 0 we recover
Eq. (20.23).

The two terms in the square brackets correspond to different polarizations
of the radiation. The first one is the so called σ-mode, it has polarization with
nonzero Ex and By. The second one has the polarization with the electric field
Ey and the magnetic field Bx; it is called the π mode. The angular distribution
of intensity for these two modes in shown in Fig. 20.4.
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Figure 20.4: Intensity of π and σ modes.

Problem 20.3. Simplify Eq. (20.24) in the limit ψ � 1/γ. Make a plot of
the quantity ω−2/3d2W/(dωdΩ) versus the quantity ωρψ3/c. Infer from these
equations that the angular spread of the radiation at frequency ω � ωc is of
order of (c/ωρ)1/3.
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20.4 Integral characteristic of synchrotron radi-
ation

From Eq. (20.24) we see that the radiation is localized at small angles ψ (un-
less we go to the frequencies of the order of the revolution frequency c/ρ). To
find total radiated spectral energy dW/dω over one revolution, we have to inte-
grate (20.24) over the solid angle Ω. As illustrated in Fig. 20.5 this integration,

Θ

Figure 20.5: Synchrotron radiation “fan” from a circular orbit shown as a small
circle at the center. Radiation travels tangentially to the orbit and is detected
on a remote surface shown in blue.

in addition to integration over the angle ψ should include integration over the
angle θ,

dW
dω

=

∫
dΩ

d2W
dωdΩ

=

∫ 2π

0

dθ

∫ ∞
−∞

dψ
d2W
dωdΩ

= 2π

∫ ∞
−∞

dψ
d2W
dωdΩ

, (20.26)

where the integration over ψ is extended from minus to plus infinity because
the function (20.24) is localized in the region of small values of ψ. The result is

dW
dω

=
2πρ

c
· q

2γZ0c

9πρ
S

(
ω

ωc

)
, (20.27)

where

S(x) =
27x2

16π2

∫ ∞
−∞

dτ
(
1 + τ2

)2
×
[
K2

2/3

(x
2

(1 + τ2)3/2
)

+
τ2

1 + τ2
K2

1/3

(x
2

(1 + τ2)3/2
)]

. (20.28)

This function is shown in Fig. 20.6. The function S is normalized to one:∫∞
0
dxS(x) = 1 . One can show that the function S can also be written as

S(x) =
9
√

3

8π
x

∫ ∞
x

K5/3(y)dy . (20.29)
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Figure 20.6: S function.

For small and large values of the argument we have the asymptotic expressions

S =
27

8π

√
3

21/3
Γ

(
5

3

)
x1/3 , x� 1 (20.30a)

S =
9

8

√
3

2π

√
xe−x , x� 1 . (20.30b)

Integrating dW/dω over all frequencies, we will find the total energy W
radiated in one revolution

Wr =

∫ ∞
0

dω
dW
dω

=
2πρ

c
· q

2γZ0c

9πρ
ωc . (20.31)

The radiation power (energy radiation per unit time) by a single electron is

P =
Wr

2πρ/c
=
Z0cq

2γ

9πρ
ωc =

Z0c
2q2γ4

6πρ2
=

2r0mc
2γ4c

3ρ2
. (20.32)

If we divide Eq. (20.24) by ~ω we find the number of photons per unit interval
of frequencies in the unit solid angle

d2Nph
dωdΩ

=
q2Z0

12π3~ω

(ρω
c

)2
(

1

γ2
+ ψ2

)2 [
K2

2/3(ξ) +
ψ2

1/γ2 + ψ2
K2

1/3(ξ)

]
=

3

4π2

αγ2

ω

(
ω

ωc

)2

F (ξ, γψ) , (20.33)

with

F (ξ, x) =
(
1 + x2

)2 [
K2

2/3(ξ) +
x2

1 + x2
K2

1/3(ξ)

]
. (20.34)
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What we calculated above is the number of photons radiated by a single
electron during passage through the point x = 0, y = 0 on the orbit. If the
current in the accelerator is Ic, then the number of photons per unit time will
be equal to the above quantity multiplied by the number of electron passing per
unit time, Ic/q. Hence the photon flux is

d2Ṅph
dωdΩ

=
3

4π2

Ic
q

αγ2

ω

(
ω

ωc

)2

F (ξ, γψ) . (20.35)

20.5 Quantum fluctuations and energy spread of
the beam

Radiation takes away the energy from particles. If this energy is not replen-
ished, the particles would slow down. To keep the particles’ energy constant in
electron and positron machines, one uses RF cavities that accelerate the beam
and compensate for the energy loss due to radiation.

Problem 20.4. Calculate RF power needed to compensate the synchrotron
radiation in the High Energy Ring of PEP-II.

The process of energy loss due to synchrotron radiation is perfectly well
described by classical electrodynamics. There is, however, one important for
accelerator physics effect, which is purely quantum. This effect determines the
energy spread in electron and positron beams in circular machines. If is called
the quantum fluctuations in synchrotron radiation.

We already discussed that radiation, in quantum language, is emission of
photons. Eq. (20.33) gives the spectrum of emitted photons. More precisely,
Nph is the averaged number of photons. The actual number of photons would
fluctuate from one electron to the other.

Let us now calculate fluctuations of the energy loss ∆E due to synchrotron
radiation. There are two sources of fluctuations. One is that even if electron
would radiate the same number of photons each time it passes through the
magnet, those would be photons of different frequency ω (because there is a
spectrum of radiation), and the total energy of all photon would fluctuate. In
addition, the number of photons fluctuates as well.

First, we take into account the fluctuation of the number of photons. The
only piece of information that we need from the quantum theory is the notion
that radiated photons are randomly distributed in time with the Poisson distri-
bution. More precisely, if we know the average number of emitted photons n̄,
then the probability that in a particular process there will be radiated n photons
is

p(n) =
n̄ne−n̄

n!
. (20.36)

Let’s say that an electron passes through a dipole magnet and radiates n
photons. For the sake of simplicity we will assume that all photons have the
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Figure 20.7: Poisson distributions for n̄ = 0.1, 1, 10.

same frequency ω. Then the energy loss is

∆E = n~ω . (20.37)

The number n is a random number here, it will vary somewhat from one electron
to another. Fluctuations are characterized by the variance

〈∆E − 〈∆E〉〉2

= 〈∆E2〉 − 〈∆E〉2 = ~2ω2(n2 − n̄2) , (20.38)

where the angular brackets here denote averaging over the number of photons,
and 〈n〉 = n̄, 〈n2〉 = n2. It is easy to calculate the variance for the Poisson
process,

n2 − n̄2 = n̄ . (20.39)

Using this relation, we see that Eq. (20.38) reduces to

〈∆E2〉 − 〈∆E〉2 = n̄~2ω2 . (20.40)

The average number of photons in this formula, n̄ can be found from classical
calculations.

Now, we take into account that we have a continuous spectrum of radiation.
In this case, we can talk about n̄ω which multiplied by dω gives the average
number of photons in the frequency interval dω. The generalization of Eq.
(20.40) is

〈∆E2〉 − 〈∆E〉2 =

∫
dωn̄ω~2ω2 . (20.41)

Note that the quantity n̄ω~ω is equal to the energy radiated into the spectral
interval dω, and hence is equal to the quantity dW/dω.
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We can now give a crude estimate of the energy spread induced in the beam
in a circular accelerator due to quantum fluctuations. It is determined by the
fluctuations of the number of photons emitted by the particle during the time
needed to lose all its energy, nf = E/~ωc, where ωc ∼ γ3c/ρ is the critical
frequency. This number fluctuates, so that ∆nf ∼

√
nf . Accordingly the energy

spread of particle in the bunch is

∆E ∼ ~ωc∆nf ∼
√
E~ωc ∼ γ

√
λc
ρ
, (20.42)

where λc = ~/mc is the Compton length.
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Lecture 21

Undulator radiation

Undulator and wigglers are widely used in modern accelerator-based light sources.
We derive the properties of the undulator radiation using the solution of the
Thomson scattering problem from Lecture 19.

21.1 Undulators and wigglers

An plane undulator is shown in Fig. 21.1. The magnetic field in the undulator

north pole

south pole

λ
u

Figure 21.1: Magnetic field in a plane undulator.

is given by

By(z) = B0 cos kuz , (21.1)

with the undulator period λu = 2π/ku. The undulator is characterized by the
amplitude magnetic field B0, the period λu and the number of periods Nu.

First, we need to find the beam orbit inside the undulator. We assume that
a relativistic beam propagates along the z axis with velocity v. The equation of
motion in the horizontal plane is

mγ
d2x

dt2
= −qvB0 cos kuz

≈ −qcB0 cos kuct , (21.2)

169
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where we used the approximation z ≈ vt ≈ ct. The solution is

x =
qB0

mγk2
uc

cos kuct =
qB0

mγk2
uc

cos kuz . (21.3)

This is a sinusoidal orbit with the maximum deflection angle

dx

dz

∣∣∣∣
max

=
qB0

mγkuc
. (21.4)

Comparing this angle with γ−1 we introduce an important undulator parameter
K

K =
qB0

kumc
= 0.934λu[cm]B0[Tesla] , (21.5)

where we used the value of the electron mass for m. An undulator usually means
K . 1, and a device with large K is called a wiggler.

Since we found above the orbit in an undulator, we could calculate the ra-
diation using the retarded potential formalism, as we did for the synchrotron
radiation. We, however, will use a different approach, and calculate the spec-
trum of the radiation by applying the Lorentz transformation to the solution of
the Thomson scattering problem considered in Lecture 19.

21.2 Undulator radiation for K � 1

Let us consider a long undulator with K � 1 and a large number of periods, and
neglect the effects associated with the entrance to and exit from the undulator.
When a particle is moving inside the undulator, we transform to the moving
frame of reference and use prime to denote quantities in this frame.

First, we need to find what is the electromagnetic field of the “flying” un-
dulator in the particle frame where the undulator is moving in the negative
direction of the z axis with velocity v = (0, 0,−v). We have

z = γ(z′ − βct′) ≈ γ(z′ − ct′) . (21.6)

Using the Lorentz transformation for the field, and assuming γ � 1, we find

E′x = γvB0 cos kuz ≈ γcB0 cos kuγ(z′ − ct′) ,
B′y = γB0 cos kuz ≈ γB0 cos kuγ(z′ − ct′) . (21.7)

This is the field of a plane electromagnetic wave moving in the negative z direc-
tion with the frequency ω′ = γkuc and the field γ times larger than the lab field
of the undulator. Under the influence of this field the electron starts to radiate,
and this is the problem of Thomson scattering that we studied in Lecture 19.
Note that the quantity a in Eq. (19.5), where E0 = γcB0 and ω → ω′ = γkuc is
exactly equal to the undulator parameter (21.5). To be able to use our solution
from Lecture 19 that we obtained in the limit a� 1, we have required K � 1.
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The intensity of the radiation is given by Eq. (19.19), which we rewrite here
using the new notation

dP ′

dΩ′
=

Z0

32π2

q4γ2B2
0

m2
(1− sin2 θ′ cos2 φ) . (21.8)

We now need to translate the quantities dP ′, dΩ′, ψ′, as well ω′ into the lab
frame. Eq. (13.16) gives

sin θ′ =
sin θ

γ(1− β cos θ)
≈ 2θγ

1 + γ2θ2
, (21.9)

where we assumed that θ � 1 and expanded cos θ ≈ 1− θ2/2, and used 1−β ≈
1/2γ2. Eq. (13.19) gives

ω ≈ 2γω′

1 + γ2θ2
=

2γ2kuc

1 + γ2θ2
. (21.10)

The maximum frequency goes in the forward direction, θ = 0, and is equal to

ω0 = 2γω′ = 2γ2kuc . (21.11)

The differential of the solid angle is transformed like the following

dΩ′ = sin(θ′)dθ′dφ

= |d cos(θ′)|dφ . (21.12)

Using Eq. (13.16) we find

dΩ′ =
1− β2

(1− β cos θ)2
|d cos(θ)|dφ ≈ 4γ2

(1 + γ2θ2)2
dΩ . (21.13)

Finally, we need to transform the differential dP ′ which is the radiated energy
of the electromagnetic field per unit time dP ′ = dE′/dt′. We know how to
transform time, dt′ = dt/γ. To transform energy we consider radiation as a
collection of photons. In quantum language the energy of a photon is ~ω, and
the number of photons is the same in any reference frame. Hence the energy is
transformed as the frequency, dE′ = Nph~ω′ = dE(ω′/ω). We now have

dP
dΩ

=
dE

dΩdt

=
dE′

dΩ′dt′
ω

ω′
1

γ

4γ2

(1 + γ2θ2)2

=
dP ′

dΩ′
8γ2

(1 + γ2θ2)3

=
Z0

32π2

q4γ2B2
0

m2

[
1− 4θ2γ2

(1 + γ2θ2)2
cos2 φ

]
8γ2

(1 + γ2θ2)3

=
Z0

4π2

q4γ4B2
0

m2

(1 + γ2θ2)2 − 4θ2γ2 cos2 φ

(1 + γ2θ2)5
. (21.14)
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Remember that to each angle θ corresponds a particular energy given by Eq.
(21.10). We can take this into account formally introducing the spectral power
of radiation dP/dΩdω

dP
dΩdω

=
dP
dΩ

δ

(
ω − 2γ2kuc

1 + γ2θ2

)
, (21.15)

where the delta functions indicates an infinitely narrow spectrum at each angle.
Integration of dP/dΩdω over frequencies gives us the angular distribution of the
power dP/dΩ. Of course, the delta function spectrum here is due to the fact that
we neglect the finite time of flight through the undulator (actually, considering
the undulator infinitely long). Taking into account the finite length, as we will
see in the next section, introduces a non-zero width of the spectrum.

To find the energy radiated per unit time we integrate this equation over Ω
(we use sin θ ≈ θ)

P0 =

∫
dP
dΩ

dΩ ≈
∫ ∞

0

θdθ

∫ 2π

0

dφ
dP
dΩ

=
Z0

12π

q4γ2B2
0

m2
, (21.16)

where we used
∫∞

0
(1 + x2)(1 + x)−5dx = 1

3 . If we replace in this expression
the square of the amplitude of the magnetic field B2

0 by the averaged over
length 〈B2〉, B2

0 → 2〈B2〉 and compare it with the intensity of the synchrotron
radiation (20.32) (remembering that ρ = γmc/qB), we find that they are equal.
Hence the radiated power from the undulator, per unit time, is equal to the
radiated power from a bending magnet with the same averaged square of the
magnetic field.

Problem 21.1. Integrate Eq. (21.14) over φ and find dI/dθ. Using the
relation (21.10) between the frequency and the angle show that the intensity of
the radiation per unit frequency is

dP
dω

=
3P0

ω0

ω

ω0

(
2

(
ω

ω0

)2

− 2

(
ω

ω0

)
+ 1

)
, (21.17)

for ω < ω0 and zero for ω > ω0. The plot of this function is shown in Fig. 21.2.

21.3 Effects of finite length of the undulator

Taking now into account the finite length of the undulator, we will assume that
the number of periods in the undulator Nu is large, Nu � 1. As was pointed out
in the previous section, the finite number of periods in the undulator results in a
non-zero width of the spectrum of the radiation. The shape of the spectrum can
be rather easily established if one looks at the time dependence of the electric
field in the radiation pulse. An example of such pulse is shown in Fig. 21.3.
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Figure 21.2: The spectrum of the undulator radiation given by Eq. (21.17).
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Figure 21.3: Electric field versus time (in arbitrary units) for an undulator
radiation with Nu = 10, K = 0.1 and γ = 10.

One can see that the pulse in this case is a piece of a sinusoidal function with
the number of oscillations equal to the number of periods in the undulator. As
is well known, the spectrum of a truncated sinusoidal pulse is given by the sinc
function which has a width in relative frequency of the order of 1/Nu. It is
not surprising that the delta function in (21.15) is now replaced the the square
(because the power is proportional to the electric field squared) of the sinc
function:

dP
dΩdω

=
dP
dΩ

sin(πNu∆ω/ω1(θ))2

π2Nu∆ω2/ω1(θ)
, (21.18)

where ∆ω = ω − ω1(θ) and we introduced the notation

ω1(θ) =
2γ2kuc

1 + γ2θ2
. (21.19)

The total energy radiation from the length of the undulator is obtained by
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multiplying the power by the time of flight, equal, for a relativistic particle, to
Lu/c where Lu = 2πNu/ku is the length of the undulator.

21.4 Wiggler radiation for K & 1

In principle, undulator radiation for large K can be derived using the same
approach as for K � 1 case—the Lorentz transformation from the particle’s
frame. However, calculations become much more involved in the limit K & 1.
We limit our discussion here by some simple observations of several characteristic
feature of the radiation in this case.

First, we need to calculate the averaged velocity v̄z of the particle along the
z-axis when K is not small. This is the velocity of reference frame in which
the particle, on average, remains at rest. The x velocity can be found from Eq.
(21.3)

vx =
dx

dt
= −Kc

γ
sin(kuct) , (21.20)

which gives

vz =
√
v2 − v2

x ≈ v
(

1− v2
x

2c2

)
= v

(
1− K2

2γ2
sin2(kuct)

)
. (21.21)

Averaging over time, we obtain

v̄z = v

(
1− K2

4γ2

)
. (21.22)

When we make the Lorentz transformation we now need to use this velocity.
Assuming K � γ, we see that it is still close to the speed of light, but the
gamma factor corresponding to this velocity might be very different from the
original γ:

γz =
1√

1− v̄2
z/c

2
≈
[
1− v2

c2

(
1− K2

2γ2

)]−1/2

≈
(

1− v2

c2
+
K2

2γ2

)−1/2

=

(
1

γ2
+
K2

2γ2

)−1/2

=
γ√

1 +K2/2
. (21.23)

In the frequency dependence in this case given by (21.10) we need to replace γ
by γz with the result

ω =
2γ2
zkuc

1 + γ2
zθ

2
=

2γ2kuc

1 +K2/2 + γ2θ2
. (21.24)

In particular, for θ = 0, that is on the axis,

ω0 =
2kucγ

2

1 +K2/2
. (21.25)
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Figure 21.4: Electric field versus time (in arbitrary units) for an undulator
radiation with K = 1 (left panel) and K = 4 (right panel). The undulator has
10 periods, the relativistic factor is γ = 10.
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Figure 21.5: Undulator spectrum for K = 4 on the axis (in the limit Nu � 1).
The frequency ω0 is given by Eq. (21.25).

This, however, is not the maximal frequency of the radiation as it used to be
in the case K � 1. The reason for that is illustrated by Fig. 21.4. One can
see that increasing the value of K makes each spike of the electric field narrow
which leads to rich content of high harmonics in the radiation spectrum. Indeed,
Fig. 21.5 shows the undulator spectrum on the axis in the case K = 4.

More details on the undulator (and synchrotron) radiation can be found in
Ref. [18].
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Lecture 22

Transition and diffraction
radiation

Transition radiation occurs when a moving charged particle crosses a boundary
of two media with different electrodynamic properties. In its simplest form,
most often used in the experiment, transition radiation is generated by sending
a beam through a metallic foil. In this lecture we derive the spectrum and
angular distribution of the transition radiation for the normal incidence of the
particle. We also discuss radiation generated by the beam when passing through
a hole in a metal foil—a so called diffraction radiation.

22.1 Transition radiation

We will calculate the transition radiation for the case when a point charge
hits a plane metal surface moving with a constant velocity v in the direction
perpendicular to the surface as shown in Fig. 22.1a. We choose the coordinate

v
R

θ

v

-v

q

-q

q 1

2
z

Figure 22.1: A charge moving perpendicular to the metal surface and the image
charge.
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system with the origin located at the entrance to the metal in such a way that
the particle is moving along the z axis in positive direction. The metal occupies
the region z > 0 and the plane z = 0 coincides with the surface of the metal.

Assuming perfect conductivity of the metal, in order to find the electro-
magnetic field in the system, we need to solve Maxwell’s equations with the
boundary condition of zero tangential electric field on the surface of the metal.
However, for this particular problem, one can avoid solving Maxwell’s equation
by invoking the method of image charges. The method is based on replacement
of the metal with an image charge of an opposite sign, moving with the velocity
v in the opposite direction, as shown in Fig. 22.1b. In what follows we will mark
the original charge q by index 1, and the image charge −q by index 2. It is easy
to verify that in this case the boundary conditions Ex = Ey = 0 in the plane
z = 0 are satisfied automatically. The charges move until they collide at point
O at time t = 0, where they annihilate. At time t > 0 there are no charges in
the system.

While we assume that the metal occupies the half-space z > 0, we would
obtain the same result in the case of a metal slab, h > z > 0, where h is the
thickness of the slab. This follows from the fact that the boundary condition for
the electric field remains the same no matter how thick the slab is (of course,
assuming perfect conductivity of the metal).

The trajectories of particles 1 and 2 for t < 0 are given by r1(t) = (0, 0, vt)
and r2(t) = (0, 0,−vt) respectively. We also need to define the retarded times

for both particles, t
(1)
ret and t

(2)
ret . They satisfy equations c(t−t(1)

ret) = |R−r1(t
(1)
ret)|

and c(t − t(2)
ret) = |R − r2(t

(2)
ret)| correspondingly (see (18.1)), again for t

(1)
ret < 0

and t
(2)
ret < 0. Note that the moment t

(1)
ret = t

(2)
ret = 0 corresponds to t = R/c; we

will use this observation below.

As always, to calculate the radiation, we need to find the vector potential

A at the observation point. It is easy to do this in our case: for t
(1)
ret < 0 and

t
(2)
ret < 0 this is the potential corresponding to two charges, and for t

(1)
ret > 0 and

t
(2)
ret > 0, when there are no charges in the system, A = 0. As noted above
tret = 0 corresponds to t = R/c, hence, for t < R/c we can use Eq. (18.8)

A =
Z0

4π

(
β

q

R1(t
(1)
ret)(1− β · n1)

+ (−β)
(−q)

R2(t
(2)
ret)(1 + β · n2)

)
h

(
R

c
− t
)
,

(22.1)

where h is the step function, and

R1(t) =
√

(z − vt)2 + x2 + y2 ,

R2(t) =
√

(z + vt)2 + x2 + y2 . (22.2)

Since we observe radiation at large distance from the metal, we can neglect the
difference between n1 and n2 and assume that they both are equal to the unit
vector n directed from the origin of the coordinate system to the observation
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point. The magnetic field of the radiation is given by

B = −1

c
n× ∂A

∂t
, (22.3)

(see Eq. (19.9)). When we differentiate Eq. (22.1) with respect to time, we
only need to differentiate the function h—differentiating R1 and R2 would give
a field that decays faster than 1/R (this would actually be the static fields of
the moving charges). The result is

B =
Z0

4π

q

c
δ

(
R

c
− t
)(

1

R1(0)(1 + β cos θ)
+

1

R2(0)(1− β cos θ)

)
n× β,

(22.4)

where the angle θ is defined in Fig. 22.1. Because of the the delta function
factor, the values of R1 and R2 in this equation are taken at the retarded time
tret = 0:

R1(0) = R2(0) =
√
z2 + x2 + y2 = R , (22.5)

which gives

B =
Z0

4π

2q

Rc
δ

(
R

c
− t
)

n× β
1− β2 cos2 θ

. (22.6)

We see that the radiation field is an infinitely thin spherical shell propagating
from the point of entrance to the metal. Since the Fourier transform of the delta
function is a constant, we conclude that the spectrum of the radiation does not
depend on frequency.

Problem 22.1. Draw a picture of field lines at time t > 0.
The spectrum of radiation is given by Eq. (20.16) with

B̃(ω) =

∫ ∞
−∞

dtB(t)eiωt =
Z0

4π

2qeiωR/c

Rc

n× β
1− β2 cos2 θ

. (22.7)

For the angular distribution of the spectral power we have

d2W
dωdΩ

=
c2R2

πZ0
|B̃(ω)|2 =

Z0q
2

4π3

β2 sin2 θ

(1− β2 cos2 θ)2
. (22.8)

It follows from this equation that for a relativistic particle the dominant part
of the radiation goes in the backward direction. Using β2 = 1 − γ−2 and
approximating sin θ ≈ θ and cos2 θ ≈ 1− θ2 we find

d2W
dωdΩ

≈ Z0q
2

4π3

θ2

(γ−2 + θ2)2
. (22.9)

Plot of this function is shown in Fig. 22.2—the maximum intensity of the radi-
ation is emitted at angle θ = 1/γ, while the intensity is zero at θ = 0.
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Figure 22.2: Angular distribution of transition radiation for a relativistic parti-
cle.

One can integrate Eq. (22.8) over all angles to find the spectrum of the
transition radiation

dW
dω

= 2π

∫ π

π/2

sin θdθ
d2P
dωdΩ

=
Z0q

2

4π2

[(
1

β
+ β

)
arctanh(β)− 1

]
. (22.10)

We see that the spectrum of the radiation does not depend on the frequency.
Formally, integrating over ω from zero to infinity, we will find that the total
radiated energy diverges. In reality, the energy is finite because at very high
frequencies metals lose their capability of being perfect conductors, and the
transition radiation subsides.

Problem 22.2. The usual setup in the experiment for the optical transition
radiation (OTR) diagnostic is shown in Fig. 22.3: the beam passes through a
metal foil tilted at the angle 45 degrees relative to the beam orbit. Show that in
this case the radiation propagates predominantly in the direction perpendicular
to the orbit. How to solve this problem using the method of image charges?

As indicated in the problem above transition radiation is often used in ac-
celerators for observation of the transverse size and position of the beam when
it is intercepted by a metal foil.

22.2 Diffraction radiation

Interception of the beam with a foil either destroys it or deteriorates the beam
properties. Sometimes one would like to generate radiation without strongly
perturbing the beam. This can be achieved if the beam passes through a hole
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q
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Figure 22.3: Transition radiation with foil tilted at 45 degrees.

in a metal foil as shown in Fig. 16.5—a so called diffraction radiation. The
radiation properties depend on the size and the shape of the hole. The complete
electromagnetic solution of the radiation problem in this case requires methods
which are beyond the scope of this course. Below we will present some results
of such a solution and show connection of the diffraction radiation with the
transition one.
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Figure 22.4: Angular distribution of the diffraction radiation for various values
of the parameter aω/cγ (indicated by numbers near the curves). The dashed
line shows the limit a→ 0, corresponding to the case of the transition radiation.

It can be shown (see, e.g., [19]) that in the limit γ � 1 and θ � 1 the angular
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spectral distribution of the diffraction radiation is given by the following formula

d2W
dωdΩ

≈ Z0q
2

4π3

θ2

(γ−2 + θ2)2
F

(
ωaθ

c
,
ωa

cγ

)
, (22.11)

where

F (x, y) =

(
yJ2(x)K1(y)− y2

x
J1(x)K2(y)

)2

, (22.12)

with J1,2 the Bessel functions and K1,2 the modified Bessel functions.
Note first that in the limit a → 0 the function F → 1 and we recover the

result of the transition radiation (22.9). The hole has a small effect on the
transition radiation at a given frequency ω if it is small, a� cγ/ω. In Fig. 22.4
we plot the spectral intensity of the radiation as a function of the angle θ for
several values of the parameter aω/cγ.



Lecture 23

Formation length of
radiation and coherent
effects

It takes some volume of free space for a particle to generate radiation. In this
lecture we estimate the longitudinal and transverse size of this volume for the
synchrotron radiation. We then analyze the radiation of a bunch of particles.

23.1 Longitudinal formation length

It takes some time and space for a moving charge to generate radiation. Let’s
take a closer look at the derivation in Section 20.1 and try to figure out what
fraction of the length of the orbit is involved into the formation of the syn-
chrotron pulse.

In Eq. (20.10) the variable ξ = cτ/ρ is related to the retarded time τ . We
saw that the characteristic width of the electromagnetic pulse in ξ variable is
∆ξ ∼ γ−1, which corresponds to the time duration τ ∼ ρ/cγ. Hence the length
of the orbit necessary for formation of the radiation pulse, which we call the
formation length, lf is

lf ∼ cτ ∼
ρ

γ
. (23.1)

How does this formation length agree with the duration of the radiation
pulse of the order of ρ/cγ3? Since the charge is moving with the velocity v ≈
c(1 − 1/2γ2), the relative velocity between the charge and the electromagnetic
field is ∆v ∼ c/γ2, and during the formation time τ the field propagates away
from the charge at the distance ∆vτ ∼ ρ/cγ3, which is the duration of the pulse.

The practical importance of the formation length is that one has to have
the length of the bending magnet several times longer than lf in order to gen-
erate the full spectrum of the synchrotron radiation. Radiation from a magnet
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that is shorter than lf has very different properties than what we calculated in
Lecture 20.

Some of the properties of radiation from a short magnet can be easily ex-
plained using the time profile of the radiation pulse. Let us assume that the
angular extension of the circular part of the orbit is limited by ϕmin < ϕ < ϕmax,
and outside of the arc the particle is moving along straight lines (tangential to
the end points of the arc) with constant velocity. Since there is no acceleration
on the straight parts of the orbit, the radiation pulse shown in Fig. 20.2 will
be truncated: the value of the radiation field B̂ becomes zero for ωτ < ϕmin

and ϕmax < ωτ , while it remains the same for the points on the arc where
ϕmin < ωτ < ϕmax. Remembering the relation ζ = γωτ , we conclude that the
radiation pulse for a short magnet is given by the same Eqs. (20.11), where ζ
now is constrained by ϕmin/γ < ζ < ϕmax/γ. An example of the pulse shape for
ϕmin/γ = −0.5 and ϕmax/γ = 0.7 is shown in Fig. 23.1. The discontinuities of
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Figure 23.1: The radiation pulse of the electromagnetic field for a short magnet
with ϕmin/γ = −0.5 and ϕmax/γ = 0.7.

the field at the front and the tail of the pulse generate so called edge radiation1

and lead to increased intensity at small frequencies.
More subtle, but practically important, question is what formation length

in needed for radiation of the frequency ω � ωc? In order to answer it we need
to analyze Eq. (20.19) and to find out what is the integration length ∆ξ that
contributes to the integral for given ω. We first note that for ω � ωc one can
neglect the term with γ−2 in the exponent, and the integral becomes∫ ∞

−∞
ξei(ωρ/2c)(ξ

3/3)dξ , (23.2)

from which it follows that ∆ξ ∼ (c/ωρ)1/3. When ξ is much larger than this

quantity, the function eiωρξ
3/6c begins to rapidly oscillate, and the contribution

to the integral from this region is small. The corresponding formation length is

lf (ω) ∼ ρ∆ξ ∼ ρ2/3λ1/3 , (23.3)

1In reality, the abrupt changes of the field will be somewhat smeared out due to finite
extension of the edge magnetic field at the entrance to and the exit from the magnet.
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where λ = c/ω. For the critical frequency ω = ωc this formula gives us the
previous expression (23.1).

If we use the result of the Problem on page 162 that the angular spread of
the synchrotron oscillations at frequency ω � ωc is of order ∆ψ ∼ (λ/ρ)1/3, we
then can write the formation length as

lf ∼
λ

∆ψ2
. (23.4)

Problem 23.1. Find the vector potential for the radiation from a magnet of
length L� ρ/γ. Hint: introduce the bending angle θ and consider the passage
through the magnet as an instantaneous change in the direction of motion of
the particle (see the transition radiation derivation).

In quantum language, the formation length gives time for a virtual photon
carried by the electromagnetic field of a particle to free from the charge and
become a real photon.

23.2 Transverse coherence length

In addition to the requirement of having a necessary length of the path, the
charge also needs some space in the direction perpendicular to the orbit to
form radiation. We can estimate the extension of this space if we note that the
angular spread ∆ψ of radiation involves a transverse wave vector component
k⊥ ∼ k∆ψ. The field with k⊥ cannot be squeezed into space smaller than k−1

⊥ ,
hence the minimal transverse size needed for formation of the radiation is

l⊥ ∼
λ

∆ψ
∼ ρ1/3λ2/3 . (23.5)

We will call this transverse size the transverse coherence length.
An interesting connection of l⊥ to properties of Gaussian beams can be

made if we recall the results of Section 17.2. Note that far from the focus the
electromagnetic field of a Gaussian beam falls off inversely with the distance and
can locally be considered as a plane wave. If a Gaussian beam has the angular
spread θ, then the minimal transverse size of the beam w0 (at the focal point) is
of the order of λ/θ. We now make an analogy between the radiation in the far
zone and a Gaussian laser beam with the focal point of the laser beam being an
analog of the point on the charge’s trajectory where the radiation comes from.
From this analogy, using Eq. (17.21) for the transverse size of the laser beam at
the focal point, we conclude that l⊥ is equivalent to the waist size w0.

Note also that in our analogy the formation region lf corresponds to the
Rayleigh length ZR.

The practical importance of the transverse coherence is that the radiation
can be suppressed by metal walls, if they are put close to the beam. More
specifically, if the beam propagates through a dipole magnet in a metal pipe of
radius a, then the radiation with wavelength λ &

√
a3/ρ is suppressed. This
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is called a shielding effect and it is important for suppression of undesirable
coherent radiation of short bunches.

To give a quantitative illustration of the shielding effect, in Fig. 23.2 we
plot the suppression factor for synchrotron radiation when a particle is moving
(on a circular orbit) between two parallel perfectly conducting plates in the
plane equally removed from each plate. The distance between the plates is
2h. Detailed calculations of the shielded synchrotron radiation can be found in
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Figure 23.2: Suppression factor for the intensity of the synchrotron radiation
for the case of parallel conducting plates as a function of frequency.

Ref. [20].

The result shown in Fig. 23.2 is valid in the limit of small frequencies, when
the free space radiation is given by Eq. ((20.30a)). Note that the horizontal axis
in the plot is ωh3/2ρ−1/2/c ∼ (h/l⊥)3/2, and one can see that the suppression
factor approaches zero when h becomes much smaller than l⊥.

23.3 Coherent radiation

We now consider radiation of a bunch of particles. First, we neglect the trans-
verse size of the bunch and take into account the longitudinal distribution. So
we assume a filament bunch with the longitudinal distribution given by the
function λ(s). This function gives the probability for a particle to be located at
s; it is normalized so that

∫
λ(s)ds = 1.

ik

Figure 23.3: Two particles in a bunch emit separate pulses of electromagnetic
radiation.
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Let each particle in a bunch radiate an electromagnetic pulse as shown in
Fig. (23.3). The magnetic field of the pulse at the observation point is B(t)
(for synchrotron radiation the function B(t) is calculated in Section 20.1). The
Fourier transform of this field is

B̃(ω) =

∫ ∞
−∞

dtB(t)eiωt . (23.6)

The field radiated by the bunch is sum of pulses

B(t) =

N∑
i=1

B(t− ti) , (23.7)

where ti = si/c with si the position of the particle i in the bunch, and N is the
total number of particles in the bunch. The Fourier image of this field is

B̃(ω) =

∫
dtBeiωt =

N∑
i=1

∫
dtB(t− ti)eiωt =

N∑
i=1

B̃(ω)eiωti . (23.8)

The spectral intensity of the radiation is proportional to |B̃(ω)|2 (see Eq. (20.16))

|B̃(ω)|2 =

∣∣∣∣∣
N∑
i=1

B̃(ω)eiωti

∣∣∣∣∣
2

= |B̃(ω)|2
N +

∑
i 6=k

eiω(ti−tk)


= N |B̃(ω)|2 + 2|B̃(ω)|2

∑
i<k

cos

(
ω
si − sk
c

)
. (23.9)

The first term in the last equation is the incoherent radiation—it is proportional
to the number of particles in the beam. The second one is the coherent radiation
term. The number of terms in the last sum is N(N − 1)/2 ≈ N2/2. Instead of
doing summation we can average cos(ω(si− sk)/c) assuming that si and sk are
distributed with the probability given by λ(s):

2
∑
i<k

cos

(
ω
si − sk
c

)
≈ N2

∫
ds′ds′′λ(s′)λ(s′′) cos

(
ω
s′ − s′′

c

)
= N2F (ω) , (23.10)

where the form factor F (ω) is

F (ω) =

∫
ds′ds′′λ(s′)λ(s′′) cos

(
ω
s′ − s′′

c

)
, (23.11)

and

dW
dω

∣∣∣∣
bunch

=
dW
dω

(N +N2F (ω)) . (23.12)
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Eq. (23.11) can also be written as

F (ω) =

∣∣∣∣∫ ∞
−∞

dsλ(s)eiωs/c
∣∣∣∣2 , (23.13)

which is easily established by writing the square of the absolute value as a
product if the integral

∫∞
−∞ dsλ(s)eiωs/c with its complex conjugate. Eq. (23.13)

shows that the form factor is equal the square of the absolute value of the Fourier
transform of the longitudinal distribution function of the beam.

For the Gaussian distribution function

λ(s) =
1√

2πσz
e−s

2/2σ2
z , (23.14)

we have

F (ω) = e−(ωσz/c)
2

. (23.15)

We see that for the reduced wavelengths longer than the bunch length, λ & σz,
the power scales as the number of particles squared. This radiation by a factor
of N is larger than the incoherent radiation. For a bunch with N ∼ 1010

this makes a huge difference! However, this radiation can only occur at long
wavelengths, and those are in many cases shielded by the walls.

23.4 Effect of the transverse size of the beam

We considered the above radiation in the longitudinal direction. We now take
into account the radiation at an angle and consider a 3D distribution of the
beam. The 3D distribution function is λ(r) normalizes so that

∫
d3rλ(r) = 1.

From Fig. 23.4 it is seen that the delay between pulses radiated by the central

i

k

ψ

Figure 23.4: Radiation of particles in a bunch.

particle and a particle located at position r in the bunch is equal to ∆t =
(ri − rk) · n/c. The field (23.9) can now be written as

|B̃(ω,n)|2 = N |B̃(ω,n)|2 + 2|B̃(ω,n)|2
∑
i<k

cos

(
ω
n · (ri − rk)

c

)
, (23.16)



189

which gives for the form factor

F (ω,n) =

∫
d3r′d3r′′λ(r′)λ(r′′) cos

(
ω
n · (r′ − r′′)

c

)
. (23.17)

Similar to transition from (23.11) to (23.13) one can show that (23.17) can be
written as

F (ω,n) =

∣∣∣∣∫ d3rλ(r)eiωn·r/c
∣∣∣∣2 , (23.18)

that is the square of the absolute value of the three dimensional Fourier trans-
form of the distribution function.

We can now calculate the form factor due to the transverse size of the beam.
We will find that the coherent radiation is suppressed if

σr > λ/ψ , (23.19)

that is if the transverse size of the beam is larger than the transverse coherence
size.

Problem 23.2. Calculate the integral Eq. (23.17) for a “pancake” distribution

λ(r) = δ(z)
1

2πσ2
r

e−(x2+y2)/2σ2
r . (23.20)

The vector n is directed at angle ψ to the z axis.



190



Lecture 24

Synchrotron radiation
reaction force

We compute the synchrotron radiation reaction force of a relativistic particle
and show, by explicit calculations for a Gaussian bunch, that the work of this
force is equal to the energy radiated per unit time.

24.1 Radiation reaction force for a relativistic
charge

When a bunch of charged particle emits radiation, the energy of the electromag-
netic field is taken from its kinetic energy. The energy balance in the process
is maintained through a force that acts in the direction opposite to the velocity
of the bunch. This force is called the radiation reaction force. We talked about
this force in Lecture 19 for a nonrelativistic motion. In this lecture we address
this issue for the synchrotron radiation of a relativistic charge.

To simplify calculations, we will systematically neglect terms of the order
of 1/γ in our derivation. This means that we consider the limit γ → ∞ and
β = 1. An additional advantage of this approach is that we automatically
neglect the longitudinal Coulomb field of the bunch, that is proportional to γ−2

(see Section 15.1).

Consider a thin bunch with the distribution function λ(s) moving in a cir-
cular orbit, where s is the arclength. We first calculate the force with which a
radiated point charge acts on a test one located distance s away. We assume
s� ρ and use the Liénard-Wiechert potentials (18.9)

φ =
1

4πε0

q

R(1− βret · n)
, A =

Z0

4π

qβret

R(1− βret · n)
, (24.1)
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and the expression for the fields (1.7)

E = −∇φ− ∂A

∂t
. (24.2)

We introduce the angle ψ = s/ρ as shown in Fig. 24.1 where the arc length s

Figure 24.1: CSR wake geometry for positive (a) and negative (b) values of ψ.
The red dots show particle’s position at the observation time t; the green dots
show the observation points; the blue dots show the position of the particle at
the retarded time. For both cases shown in the figure, α is positive, and ψ is
positive on the left figure, and negative on the right.

is measured from the current position of the charge in the forward. We also
introduce the distance sr from the current position of the charge to its retarded
position, and the angle α = sr/ρ as shown in Fig. 24.1. The arc length sr is
measured from the current position of the charge in the backward directions.

With this convention, the positive and negative values of ψ correspond to
positions in front of and behind the source particle, respectively; for the angle
α, however, the positive values mark positions behind, and the negative values
ahead of the charge. We will also use the variable S as an arc length measured
from some fixed position on the circle; assuming that the charge moves according
to S = ct, we have s = S − ct.

We are interested in the longitudinal field Es = −∂φ/∂S − ∂As/∂t where
As = A · τ . Note that due to the rotational symmetry of the problem the
functions φ and As depend on the difference S − ct only (remember that we
assume v = c), and hence

Es = −∂(φ− cAs)
∂s

. (24.3)

First we need to solve the equation for the retarded time. The time needed
for a particle to move from the radiation point to its current position is equal
to sr/c = ρα/c. It is also equal to the time R/c that the electromagnetic field
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takes to propagate along the chord connecting these two points, with

R = 2ρ

∣∣∣∣sin(α+ ψ

2

)∣∣∣∣ . (24.4)

We have

ρα = R = 2ρ

∣∣∣∣sin(α+ ψ

2

)∣∣∣∣ . (24.5)

It turns out that α+ ψ > 0 for ψ > 0 (that is in the case when the observation
point is in front of the charge) and, in this case, we can drop the absolute value
sign in the above equations. We then expand the right hand side into the Taylor
series using the smallness of ψ and α and keeping terms up to the third order,

α = α+ ψ − 1

24
(α+ ψ)

3
. (24.6)

We will see in a moment that α� ψ, so we can approximate α+ ψ ≈ α in the
second term on the left which gives

α = (24ψ)
1/3

. (24.7)

Indeed, we now see that for ψ � 1 we have α � ψ and α + ψ > 0, as we
assumed.

In the case ψ < 0 (the observation point is behind the charge), as we will
see from the result, α+ ψ < 0. Eq. (24.5) takes the form

α = −2 sin

(
α+ ψ

2

)
, (24.8)

and using the Taylor expansion we need only to keep the first order terms

α ≈ − (α+ ψ) , (24.9)

which gives

α = −ψ
2
. (24.10)

We now proceed to the calculation of the field Es for ψ > 0 and calculate
the quantity 1−βret ·n. As is seen from Fig. 24.1, the angle between βret and
n is equal to (α+ ψ)/2, which gives

1− βret · n = 1− cos

(
α+ ψ

2

)
≈ α2

8
. (24.11)

We also have

1− βret · τ = 1− cos(α+ ψ) ≈ α2

2
. (24.12)
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Finally, for the difference of the potentials we have

φ− cAs =
q

4πε0

1− βret · τ
R(1− βret · n)

≈ q

4πε0

4

R
≈ q

4πε0

4

ρα

≈ q

4πε0

4

ρ(24ψ)1/3
=

q

4πε0

2

ρ2/3(3s)1/3
, (24.13)

with the electric field given by the derivative of this expression.
Problem 24.1. Find the difference φ − cAs behind the particle (ψ < 0)

and show that Es ≈ 0 in that region. [A more accurate calculation shows that
actually 4πε0Es ≈ q/8ρ2 in that region.]

Using Eq. (24.3) we now find the electric in front of the moving charge

Es =
q

4πε0

2

34/3

1

ρ2/3s4/3
. (24.14)

The longitudinal electric field behind the charge in our approximation is equal
to zero.

One often uses a so called CSR wake field :

wCSR = −1

q
Es = − 1

4πε0

2

34/3

1

ρ2/3s4/3
. (24.15)

It follows from our result that the electric field has a strong singularity,
∝ s−4/3, in front of the particle. This is the consequence of our assumption
β = 1. Taking into account the effect of finite γ would show us that our
approximation breaks down at the distance s ∼ ρ/γ3, and the growth of Es
saturates at small distances (see a detailed analysis in [20]). Fig. 24.2 shows
the plot of Es(0) in the vicinity (in front of) the particle. Notice, that the
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Figure 24.2: The radiation reaction field near the charge; the distance is mea-
sured in units of 3γ3/2ρ, and the field is measured in units of qγ4/4περ2.
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field changes sign, reaching a negative value at the location of the charge. This
negative value is responsible for taking kinetic energy from the particle and
translating it into the energy of the radiation.

Problem 24.2. Find the value of Es(s) using the known intensity of the
radiation given by Eq. (20.32). Does it agree with the value shown in Fig. 24.2?
If not, explain the discrepancy.

24.2 Radiation reaction field in a bunch of par-
ticles

It is important, however, that even using the singular expression (24.13) we can
calculate the electric field inside a bunch with a given distribution of particles
λ(s). The longitudinal electric field of the bunch Es(s) is given by the following
integral

Es(s) = N

∫ ∞
−∞

Es(s− s′)λ(s′) ds′

= −N
∫ s

−∞

∂(φ− cAs)
∂s

∣∣∣∣
s−s′

λ(s′) ds′ = N

∫ s

−∞

∂(φ− cAs)
∂s′

∣∣∣∣
s−s′

λ(s′) ds′

= −N
∫ s

−∞
(φ− cAs)|s−s′

∂λ(s′)

∂s′
ds′

= − Nq

4πε0

2

ρ2/331/3

∫ s

−∞

1

(s− s′)1/3

∂λ(s′)

∂s′
ds′ , (24.16)

where N is the number of particles in the bunch. Let us assume a Gaussian
distribution, λ(s) = (2π)−1/2σ−1e−s

2/2σ2

. The last integral can be computed
numerically with the result shown in Fig. 24.3.

As we pointed out at the beginning of the lecture, the longitudinal field
keeps the energy balance between the kinetic energy of the particle and the
radiation. Let us demonstrate by direct calculation for a Gaussian bunch that
this is indeed the case. First we calculate the energy that the beam loses in one
turn around the ring

−Nqc2πρ

c

∫ ∞
−∞

dsEs(s)λ(s)

=
N2q2ρ1/3

31/3ε0

∫ ∞
−∞

λ(s)ds

∫ s

−∞

1

(s− s′)1/3

∂λ(s′)

∂s′
ds′ . (24.17)

We then have to compare this expression with the power of coherent synchrotron
radiation. The latter is calculated using the second term in (23.12) in which the
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Figure 24.3: CSR field of a Gaussian bunch. The distance is measured in units

of σz, and the field is measured in units of Q/σ
4/3
z ρ2/3, where Q is the total

charge of the bunch.

intensity dW/dω is taken at low frequencies given by Eqs. (20.27) and (20.30a)

N2

∫ ∞
−∞

dωF (ω)
dW
dω

=
2

9
q2γZ0N

2

∫ ∞
−∞

dωF (ω)S

(
ω

ωc

)
= N2q2γZ0

3

4πωc1/3

√
3

21/3
Γ

(
5

3

)∫ ∞
−∞

dωe−ω
2σ2
z/c

2

ω1/3 .

(24.18)

In order to prove that Eq. (24.17) is equal to (24.18) we need to show that

3
√

3Γ

(
5

3

)∫ ∞
−∞

dωe−ω
2

ω1/3 = −2

∫ ∞
−∞

e−s
2/2ds

∫ s

−∞

s′e−s
′2/2

(s− s′)1/3
ds′ . (24.19)

The easiest way to do this is to compare their numerical values. And, indeed,
calculations give that they are both equal to 3.17594966.



Lecture 25

Waveguides and RF cavities

A good conductor has a propensity to guide and trap electromagnetic field in a
confined region. In this lecture we will consider an example of a radio frequency
(RF) waveguides and cavities, and discuss some of their properties from the
point of view of acceleration of charged particles.

25.1 TM modes in cylindrical waveguides

Let us consider a cylindrical waveguide of radius a made from a perfect con-
ductor. Such a waveguide has a number of electromagnetic modes that can
propagate in it. We will focus first our attention here on so called TM modes
that have a nonzero longitudinal component of the electric field Ez, with Bz = 0.
To find the distribution of the electric field in the waveguide for a mode that
has frequency ω, we will assume that in cylindrical coordinates r, φ, z,

Ez(r, φ, z, t) = E(r)e−iωt−imφ+iκz, (25.1)

use Eq. (1.5) for Ez

1

r

d

dr
r
dE
dr
− m2

r2
E +

(
ω2

c2
− κ2

)
E = 0 . (25.2)

The solution of this equation is given by

E = E0Jm (k⊥r) , (25.3)

where Jm is the Bessel function of m-th order and k⊥ = c−1
√
ω2 − c2κ2. The

boundary condition Ez = 0 at r = a requires that k⊥r be equal to a zero of Jm.
For each function Jm there is an infinite sequence of such zeros, which we denote
by jm,n with n = 1, 2, . . .. Hence k⊥ = jm,n/a and recalling the definition of k⊥
we find that

κm,n = ±

(
ω2

c2
−
j2
m,n

a2

)1/2

. (25.4)
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We see from this equation that in order for a mode with indicesm and n to have a
real value of κ, its frequency should be larger than the cut-off frequency cjm,n/a.
Then the plus sign defines the modes propagating in the positive direction, and
the minus sign corresponds to the modes in the opposite direction. If ω <
cjm,n/a, then we deal with evanescent modes that exponentially decay along the
z-axis (and, correspondingly exponentially grow in the opposite direction). Such
modes play important role in formation of localized fields around an obstacle
inside a waveguides.

Given Ez(r, φ, z, t) as defined by (25.1) we can find all other components
of the electric and magnetic fields using Maxwell’s equations. They will all
have the same dependence e−iωt−imφ+iκz versus time, angle and z. The radial
distribution of the four unknown components Eφ, Er, Bφ and Br (remember
that Bz = 0) are found from the four algebraic equations, which are r and φ
components of the two vectorial equations ∇×E = iωB and c2∇×B = −iωE.
Here is the result

Er = E0
iκm,na
jm,n

J ′m

(
jm,n

r

a

)
e−iωt−imφ+iκm,nz (25.5)

Eφ = −E0
mκm,na2

rj2
m,n

Jm

(
jm,n

r

a

)
e−iωt−imφ+iκm,nz (25.6)

Br = E0
mωa2

c2rj2
m,n

Jm

(
jm,n

r

a

)
e−iωt−imφ+iκm,nz (25.7)

Bφ = E0
iωa

c2jm,n
J ′m

(
jm,n

r

a

)
e−iωt−imφ+iκm,nz, (25.8)

where J ′m is the derivative of the Bessel function of order m and we dropped
the indices m,n on the left sides. These modes are designated TMmn or Emn.
Note that in addition to vanishing Ez on the wall, which we have satisfied by
choosing k⊥ = jm,n/a, we should also require Eφ = 0 on the surface of the wall
(because it is tangential there). This however is automatically satisfied because
the radial dependence of Eφ in (25.6) is the same as Ez in (25.3).

Of course the physical meaning has the real parts of Eqs. (25.5). Since the
longitudinal wavenumbers (25.4) do not depend on m, the modes with positive
and negative values of m (assuming m > 0) are degenerate—they have the same
values of κm,n. A sum and difference of m and −m modes, which convert eimφ

and e−imφ into cosmφ and sinmφ, are often used as another choice for the set
of fundamental eigenmodes in circular waveguide.

Problem 25.1. Calculate TM modes in a rectangular waveguide with cross
section a× b.

25.2 TE modes in cylindrical waveguides

TE modes have nonzero longitudinal magnetic field Bz with Ez = 0. There
derivation follows closely that of TM modes. However, a simple observation of
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special symmetry of Maxwell’s equations allows one to obtain the fields in TE
modes without any calculation.

Indeed, assuming the time dependence ∝ e−iωt for all fields, Maxwell’s equa-
tions in free space are

∇×E = iωB, c2∇×B = −iωE, ∇ ·E = 0, ∇ ·B = 0. (25.9)

Note that a transformation

(E,B)→ (cB,−E/c) (25.10)

converts (25.9) into itself. This means that having found a solution of Maxwell’s
equation one can be obtain another solution by means of a simple transforma-
tion (25.10). The only problem with this approach is that one has to make sure
that the boundary conditions are also satisfied. Remember that in the deriva-
tion of TM modes we satisfied the boundary condition by choosing k⊥ = jm,n/a.
Since we now need to satisfy a different boundary condition, we will change the
notation and replace jm,n in (25.5)-(25.8) by yet unknown j′m,n. Applying the
transformation (25.10) to (25.3) and (25.5)-(25.8) we obtain (we also replace E0

with cB0)

Bz = B0Jm

(
j′m,n

r

a

)
e−iωt−imφ+iκm,nz (25.11)

Br = B0
iκm,na
jm,n

J ′m

(
j′m,n

r

a

)
e−iωt−imφ+iκm,nz

Bφ = −B0
mκm,na2

rj2
m,n

Jm

(
j′m,n

r

a

)
e−iωt−imφ+iκm,nz

Er = −B0
mωa2

rj2
m,n

Jm

(
j′m,n

r

a

)
e−iωt−imφ+iκm,nz

Eφ = −B0
iωa

jm,n
J ′m

(
j′m,n

r

a

)
e−iωt−imφ+iκm,nz.

These modes are designated TEmn or Hmn. The only tangential component of
the electric field on the wall is Eφ and in order for it to be equal to zero at r = a
we require

J ′m
(
j′m,n

)
= 0, (25.12)

which means that j′m,n are the roots of the derivative J ′m of the Bessel function.
Problem 25.2. Follow up on the problem 25.1 and derive TE modes in

a rectangular waveguide by applying transformation (25.10) to TM modes and
satisfying the boundary conditions on the wall.

25.3 RF modes in cylindrical resonator

Cylindrical resonator is a cylindrical pipe with the ends closed by metallic walls.
Various modes of electromagnetic field that can exist in such a resonator are
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characterized by their frequency. The resonator modes can be easily obtained
from the waveguide modes derived above.

In comparison with waveguides, a resonator requires one more boundary
condition—vanishing tangential electric field on the end walls. Let’s assume
that the resonator left wall is located at z = 0, and the right wall is located at
z = L. Start with TM modes. To satisfy the boundary condition Er = Eφ = 0
at z = 0 we choose two TM modes with the same frequency and the same m and
n indices but opposite values of κm,n (that is two identical waves propagating
in the opposite directions) add them and divide the result by 2. Using

1

2
(eiκm,nz + e−iκm,nz) = cos(κm,nz), (25.13)

1

2
(κm,neiκm,nz − κm,ne−iκm,nz) = iκm,n sin(κm,nz),

it is easy to see that both Er and Eφ = 0 acquire the factor sin(κm,nz) and
hence satisfy the boundary condition at z = 0. In order to satisfy the boundary
condition at the opposite wall, at z = L, we require κm,nL = lπ, where l =
1, 2, . . . is an integer number. The result is

Ez = E0Jm

(
jm,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ (25.14)

Er = −E0
lπa

Ljm,n
J ′m

(
jm,n

r

a

)
sin

(
lπz

L

)
e−iωt−imφ

Eφ = −E0
imlπa2

Lrj2
m,n

Jm

(
jm,n

r

a

)
sin

(
lπz

L

)
e−iωt−imφ

Br = E0
mωa2

c2rj2
m,n

Jm

(
jm,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ

Bφ = E0
iωa

c2jm,n
J ′m

(
jm,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ.

Eq. (25.4) should now be interpreted differently: we replace κm,n by lπ/L,
square it, and find the frequency ω of the mode

ω2

c2
= ±

[(
lπ

L

)2

+
j2
m,n

a2

]1/2

. (25.15)

The modes given by (25.14) and (25.15) are called TMmnl modes.

A similar procedure can be done with the TE modes, but instead of adding,
we need to subtract the mode with negative κm,n from the mode with the
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positive κm,n and divide the result by 2i. The result is

Bz = B0Jm

(
j′m,n

r

a

)
sin

(
lπz

L

)
e−iωt−imφ (25.16)

Br = B0
lπa

Ljm,n
J ′m

(
j′m,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ

Bφ = B0
imlπa2

Lrj2
m,n

Jm

(
j′m,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ

Er = −B0
mωa2

rj2
m,n

Jm

(
j′m,n

r

a

)
sin

(
lπz

L

)
e−iωt−imφ

Eφ = −B0
iωa

jm,n
J ′m

(
j′m,n

r

a

)
sin

(
lπz

L

)
e−iωt−imφ.

The frequency is defined by

ω2

c2
= ±

[(
lπ

L

)2

+

(
j′m,n
a

)2
]1/2

. (25.17)

The modes given by (25.16) and (25.17) are called TEmnl modes.
An important quantity associated with the mode is the energy W of the

electromagnetic field. This energy is given by the integral over the volume of
the cavity of (ε0/2)(E2

z +c2B2
θ ), where one has to take the real parts of the fields

before squaring them.
For illustration, let us calculate the energy of TM010 mode. The calculation

can be simplified if one notices that although Ez and Bθ depend on time, the
energy W does not. Because there is a phase shift of π/2 between these fields,
one can find a moment when Bθ = 0, and then

W =
ε0
2

∫
dV |Ez|2 =

ε0
2

∫
dV E2

=
ε0
2
πE2

0a
2LJ2

1 (j1) , (25.18)

where we used the property
∫ 1

0
J2

0 (bx)xdx = 1
2J

2
1 (b).

Problem 25.3. Consider a point charge passing through a cylindrical cav-
ity where the fundamental mode is excited with amplitude E0. Calculate the
maximum energy gain for the charge.

Taking into account the finite conductivity of the wall, one finds that an
initially excited mode decays with time because its energy is absorbed in the
walls. This damping is manifested in appearing of the imaginary part γ in
the mode frequency, ω = ω′ − iγ, where ω′ and γ are real and positive. The
imaginary part of the frequency can be calculated with the help of the Leontovich
boundary condition.

A related quantity is the quality factor Q of the cavity equal to

Q =
ω′

2γ
. (25.19)
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We will give here without derivation the quality factor for the fundamental mode
of the cylindrical cavity

Q =
aL

δ(a+ L)
, (25.20)

where δ is the skin depth at the frequency of the cavity. More generally, a crude
estimation of the quality factor is Q ∼ l/δ, where l is a characteristic size of the
cavity (assuming that all dimensions of the cavity are of the same order).

Typical copper cavities used in accelerators have Q ∼ 104; superconducting
cavities may have Q ∼ 109.

25.4 Electromagnetic field pressure

It turns out that the electromagnetic field in a cavity exerts a force on the
metallic surface of the walls. In the most general formulation this force can be
derived from the so called Maxwell stress tensor, see [1], Chapter 6.7. In this
lecture we will give a simplified treatment of this force.

If electric field lines are terminated on a metal plate as shown in Fig. 25.1,
there are image charges on the surface of the metal with the surface density

z

E

z

B

Figure 25.1: Electric field lines are ter-
minated on the metallic surface.

Figure 25.2: Magnetic field lines
near the metallic surface.

equal to ε0En, where the subscript n indicates that the field is normal to the
surface of the metal. To calculate the force, we need to consider in more detail
the distribution of the electric field inside the metal. Let us assume that z = 0
corresponds to the surface of the metal, and the metal occupies the region z > 0.
The charge density inside the metal is given by the function ρ(z), and the electric
field is Ez(z). The equation for Ez is

dEz
dz

=
ρ(z)

ε0
. (25.21)

The force per unit area is given by the integral

f (E)
z =

∫ ∞
0

dzρEz . (25.22)
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If we multiply Eq. (25.21) by Ez and integrate it over z, we find

f (E)
z = ε0

∫ ∞
0

dzEz
dEz
dz

= −ε0
2
E2
n , (25.23)

where we took into account that deeply inside the metal Ez(∞) = 0, and on the
surface Ez(0) = En. The minus sign in this equation means that the electric
field has a “negative pressure”—it pulls the surface toward the free space.

In a similar fashion, a tangential magnetic field also exerts a force on the
surface. To compute it, we assume that the magnetic field By(z) is directed
along y, and varies along z due to the current jx(z) flowing in the x direction,
see Fig. 25.2. The Maxwell equation

dHy

dz
= −jx (25.24)

with the expression for the force per unit area

f (M)
z =

∫ ∞
0

dzjxBy (25.25)

gives

f (M)
z = −

∫ ∞
0

dzBy
dHy

dz
=

1

2µ0
B2
t , (25.26)

where we took into account that By(∞) = 0, and on the surface By(0) = Bn.

We see that f
(M)
z is positive—it acts as a real pressure applied to the surface.

Problem 25.1. Estimate the electromagnetic pressure in a cavity with
E = 20 MV/m.

The effect of the electromagnetic pressure is usually small, however it causes
a so called Lorentz detuning in modern superconducting cavities which should
be compensated by a special control system (see [21], p.580).

25.5 Slater’s formula

The electromagnetic forces derived in the previous section allow us to solve the
following problem: what happens to the frequency of a cavity, if its shape is
slightly distorted as shown in Fig. 25.3?

To calculate the frequency shift for such a cavity, we first compute the work
against the electromagnetic field needed to change the cavity shape. We assume
that the distortion of the cavity occurs slowly in comparison with the frequency
of the mode. This work, with a proper sign, is equal to the energy change
δW of the mode. Since the distortion is small, we can take the unperturbed
distribution of the electric and magnetic fields on the surface, compute the sum

of the electric and magnetic pressures f
(E)
z + f

(M)
z and average over the period
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h

Figure 25.3: An initial (solid curve) and distorted (dashed curve) cavity shapes.

of oscillations. This averaging introduces a factor or 1
2 . We then multiply it by

the offset h, and integrate over the area of the dent

δW =
1

2

∫ (
1

2µ0
|Bt|2 −

ε0
2
|En|2

)
dSh , (25.27)

where we assume that h is positive in the case when the volume of the cavity
decreases, and it is negative in the opposite case. The quantities Bt and En
are understood as the amplitude values of the field on the surface. The positive
(negative) value of this expression means that the electromagnetic energy in the
mode increases (decreases).

To relate the mode frequency change to the energy change, we invoke a
quantum argument. The number of quanta of the electromagnetic field in the
cavity does not change if the process of cavity reshaping occurs adiabatically
slow. This number is proportional to the ratio of the electromagnetic energy to
the frequency, hence we have W/ω = const, from which it follows that

δω

ω
=
δW

W
. (25.28)

This gives us

δω

ω
=

ε0
4W

∫
∆V

dV
(
c2|Bt|2 − |En|2

)
, (25.29)

where the integration in the numerator goes over the volume of the dent, and
the integration in the denominator goes over the volume of the cavity. This is
often called Slater’s formula.

Note that the applicability condition of this formula requires that the pertur-
bation of the cavity shape be not only small but also smooth enough—otherwise
the field variation near possible edges of the dent is large, and one cannot use
the unperturbed fields in Eq. (25.27).
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Problem 25.2. The radius of a cylindrical cavity is changed by a small
quantity δa, and the length is changed by δL. Consider this as a deformation
of the cavity shape and find the frequency change of the fundamental mode in
the cavity using Slater’s formula. Verify that the result agrees with Eq. (25.15).

25.6 Excitation of a cavity mode by a beam

In accelerators, cavity resonators are excited by an external RF source. In addi-
tion to this, a beam of particles passing through the resonator also contributes
to the excitation of the mode. In this section we will calculate the amplitude of
the mode that is excited by a relativistic charge passing through a cavity res-
onator using a method proposed by P. Wilson in Ref. [22]. We assume that the
charge moves with the speed close to the speed of light and use approximation
v = c.

The derivation is based on principles of superposition and conservation of
energy. Assume that a point charge q enters an empty cavity which does not
have field in it at time τ = 0, and is moving along the z axis. We represent the
real longitudinal component of the electric field of the mode under consideration
as

Ez(z) = E0e(z) , (25.30)

where E0 is the amplitude and e(z) gives the distribution along the z axis at
a given time. Note that the function e(z), being a solution of an eigenfunction
problem, is defined within an arbitrary numerical normalization factor. Cor-
respondingly, E0 is also defined with the same uncertainty. As we will see,
however, at the end our result does not depend on the particular choice of the
normalization factor.

The total electromagnetic energy W of the mode is proportional to E2
0 and

we write it as

W = AE2
0 , (25.31)

where A is a factor that depends on the geometry of the cavity and the distri-
bution of the field in the mode.

The particle arrives at location z = cτ at time τ , and at this time the
amplitude of the mode is E0. When the particle moves from z to z + dz due
to the interaction with the field of the mode it changes its amplitude by an
infinitesimal value dE0. We can find dE0 using the energy conservation. The
energy change of the mode is equal to the work of the electric field of the mode
on the charge taken with the minus sign:

dW = −qEzdz = −qE0e(z)dz . (25.32)

On the other hand we have dW = 2AE0dE0. This gives

dE0 = − q

2A
e(z)dz . (25.33)
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The added (at time τ) component to the field dE0 will oscillate with the
frequency of the mode ω, and at time t will evolve to dE0 exp[−iω(t − τ)] =
dE0 exp[−iω(t − z/c)]. In this formula we implicitly assumed that the excited
field starts oscillations with a zero phase. To obtain the complete amplitude at
the end of the process we need to sum all the infinitesimal contributions with
proper phases:

E0 = − q

2A
e−iωt

∫ L

0

eiωz/ce(z)dz = −qV
2A

e−iωt , (25.34)

where

V =

∫ L

0

eiωz/ce(z)dz , (25.35)

and L is the cavity length.
As was mentioned above, the definition of E0 depends on the normalization

of the function e(z), which is reflected in Eq. (25.34). The energy deposited
by the beam to the cavity, however, is uniquely defined. This energy, per unit
charge, is called the loss factor. Since our final amplitude is complex, we need
to use the relation W = A|E0|2, which gives for the loss factor k

kloss =
1

q2
A|E0|2 =

|V 2|
4A

=
|V 2|
4W0

, (25.36)

where in the last formula W0 = A has a meaning of the energy in the mode
with unit amplitude, E0 = 1. Changing normalization of the function e(z) by a
factor of N would add a factor N2 to both V 2 and W , and, as it follows from
Eq. (25.36), does not change the value of kloss.

Problem 25.3. Find the loss factor for the fundamental mode of the cylin-
drical cavity.



Lecture 26

Laser acceleration in
vacuum. Inverse FEL
acceleration

A focused laser beam can easily produce an extremely high electric field at the
focal point. For example, for 1 J, 100 fs laser beam focused into a spot size of
10 micron, has a maximum electric field about 40 GV/cm. We would like to
use this field for particle acceleration.

26.1 The Lawson-Woodward theorem

The first obstacle that we encounter on this way is that the field is mostly trans-
verse to the direction of propagation. There is, however, a smaller longitudinal
component of the field Ez ∼ θEx, see Section 17.2. Second, we may send a
particle through a focal point at an angle as shown in Fig. 26.1. It turns out
however, that no matter how we organize the interaction of the laser beam with
the particles, in linear approximation, there is no net acceleration in free space.
This is often called the Lawson-Woodward theorem.

We will now explain what the linear approximation is. This is an approxi-
mation in which we calculate the energy gain W of a particle passing through
an external field E(r, t) assuming that it moves with a constant velocity v,

W = q

∫ ∞
−∞

v ·E(r0 + vt, t)dt . (26.1)

In this approximation we neglect the influence of the accelerating field on the
velocity and the orbit of the particle. This approximation is motivated by
the desire to accelerate relativistic particles, and such particles move in free
space with almost constant velocity (close to the velocity of light). Due to the

207
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Figure 26.1: Particle’s trajectory is tilted relative to the direction of the laser
beam.

relativistically increased inertia of such particles, it is difficult to change their
velocity and deflect them from a straight trajectory.

Let us now prove that in free space, without material boundaries, and in the
absence of static fields, the above integral is equal to zero. The proof is based
on the fact that any electromagnetic field in vacuum can be represented as a
superposition of plane electromagnetic waves that propagate with the speed of
light:

E(r, t) =

∫
d3kẼ(k)eik·r−iωt , (26.2)

with ω = ck. We have

W = qv ·
∫ ∞
−∞

dt

∫
d3kẼ(k)eik·(r0+vt)−iωt

= 2π

∫
d3k qv · Ẽ(k)eik·r0δ(ω − k · v) . (26.3)

The argument in the delta function in the last integral is never equal to zero,
because

ω − k · v = ck − vk cosα = ck(1− β cosα) > 0 , (26.4)

and hence the integral vanishes (α is the angle between k and v).
Problem 26.1. Prove that W = 0 even if v = c.
The physical reason for vanishing W is that the waves propagate with the

speed of light, and the particle always moves slower. As a result, it will be
slipping with respect to the phase of the wave, and the acceleration phase will
be alternating with the deceleration, with the average total effect equal to zero.

There are several ways to try to resolve this problem. First, one can limit
interaction between the particle and the waves in space putting material bound-
aries. We consider a model of such acceleration in the next section. The problem
here is that the laser beam would hit material surfaces and the damage threshold
would limit the attainable laser field. Second, one can work in the regime where
the effect of the electric field on the particle orbit is relatively large and changes
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its velocity and trajectory. This means that one has to drop the assumption of
constant velocity and the straight orbit in Eq. (26.3). This method is limited to
relatively small energies. Finally, one can have an external magnetic field that
bends the orbit. An example of such acceleration is a so called the inverse FEL
acceleration which we consider in the last section of this Lecture.

26.2 Laser acceleration in space with material
boundaries

We will now calculate the energy gain of a charged particle passing through a
focussed laser field reflected back by a flat mirror as shown in Fig. 26.2. The

Figure 26.2: The laser beam is reflected by a metal surface; the particle passes
through a hole in the metal.

mirror is located at z = 0 and has a small hole for the passage of the particle.
We assume that the hole does not perturb much the laser field except for a
small vicinity near the hole. In the calculations, we neglect interaction with the
reflected part of the field, which turns out to be small (see the problem at the
end of this section).

We assume that the particle moves along a straight line parallel to the z axis
with velocity v and an offset x0. The z coordinate of the particle at time t is
equal to z0 + vt. The energy gain is given by the following equation

∆W = q

∫ 0

−∞
dtvEz(x0, 0, z0 + vt, t) = q

∫ 0

−∞
dzEz(x0, 0, z, (z − z0)/v) .

(26.5)

The longitudinal component of the electric field in the laser focus was calculated
in a problem of Section 17.2, and is given by

Ez(x, y, z, t) = − 1

ik

∂Ex
∂x

= −2x

ik
A(z)Q(z)eQ(z)ρ2e−iωt+ikz , (26.6)

where A and Q are given by Eqs. (17.18) and (17.19). Of course we need to
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take the real part of the field to calculate ∆W . We then have

∆W = −Re

(
2x0q

ik
eikz0β

−1

∫ 0

−∞
dzA(z)Q(z)eQ(z)x2

0e−ikz(β
−1−1)

)
= Re

(
2E0x0q

ikw2
0

eikz0β
−1

∫ 0

−∞

dz

(1 + 2iz/kw2
0)2

e−x
2
0/w

2
0(1+2iz/kw2

0)e−ikz(β
−1−1)

)
.

(26.7)

Let us use an integration variable ξ = 2z/kw2
0 = z/ZR:

∆W = −Re

(
iE0x0qe

ikz0β
−1

∫ 0

−∞

dξ

(1 + iξ)2
e−x

2
0/w

2
0(1+iξ)e−iξk

2w2
0(β−1−1)/2

)
.

(26.8)

We first note that if the upper limit in this integral is set to infinity, then the
integral is equal to zero. This can be proved analytically for β ≤ 1. Of course,
this result also follows from the Lawson-Woodward theorem.

Problem 26.2. Prove the statement in the previous paragraph for β = 1.
To simplify calculations, let us now consider an ultrarelativistic particle and

set β = 1. Then the integration in (26.8) is easy to do, and the result is

∆W = −Re

(
iE0x0qe

ikz0

∫ 0

−∞

dξ

(1 + iξ)2
e−x

2
0/w

2
0(1+iξ)

)
=
E0qw

2
0

x0
(1− e−x

2
0/w

2
0 ) cos(kz0) . (26.9)

The factor cos(kz0) in this equation indicates that the sign of the energy gain
depends on the position of the charge relative to the phase of the laser field; for
bunches of particles longer that the wavelength of the laser radiation such an
interaction modulates the energy of the beam with the period equal to the laser
wavelength.

Problem 26.3. Calculate the contribution to ∆W of the reflected part of
the laser field.

Problem 26.4. Assume that you are given a laser with a given energy EL,
frequency ω and duration τ of the laser pulse. Optimize parameters of a laser
acceleration experiment to achieve the maximum energy gain for relativistic
particles. Express the energy gain in terms of EL, ω and τ .

Many more details of laser acceleration can be found in Ref. [23].

26.3 Inverse FEL acceleration

One can accelerate the beam if its orbit is not a straight line. In this section
we consider acceleration when a point charge is moving in an undulator with
K � 1 and is irradiated by a laser beam copropagating with the beam. This
kind of acceleration is called the inverse FEL acceleration.
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ku

k

Figure 26.3: Particle’s trajectory in an undulator and a the laser pulse coprop-
agating with the particle.

We will represent the laser field by a plane electromagnetic wave with electric
field Ex propagating in the z direction,

Ex(z, t) = E0 cos(ωt− ωz/c) , (26.10)

and calculate the energy gain as

W = q

∫
dtE · v = q

∫
dtExvx . (26.11)

We know the velocity in a small-K undulator (see Eq. (21.3))

vx =
cK

γ
sin(kuz) . (26.12)

Using the approximation z ≈ z0 + c(1− 1/2γ2)t gives

W = q

∫
dtE · v

= q

∫
dt
cK

γ
sin(ku(z0 + ct))E0 cos

(
ωt− kct

(
1− 1

2γ2

)
− kz0

)
≈ cqKE0

2γ

∫
dt sin

(
kuct− ωt+ ωt

(
1− 1

2γ2

)
+ (k + ku)z0

)
≈ cqKE0

2γ

∫
dt sin

((
kuc− ω

1

2γ2

)
t+ (k + ku)z0

)
. (26.13)

In this equation we discarded the term with the sum of the arguments in the
sine function because it adds only an oscillating small contribution to the result.
The most effective acceleration occurs if

ω = 2γ2kuc , (26.14)

which means that the laser frequency is equal to the frequency of the undulator
radiation. In this case

W =
qKE0Lu

2γ
sin ((k + ku)z0) . (26.15)
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Depending on the position of the particle z0 relative to the phase of the laser
the energy gain can have both positive and negative signs. This will result in
the energy modulation of the beam.

As a final note, we mention that the plane wave approximation is valid if the
Raleigh length for the laser beam is much larger than the undulator length. This
is not the most efficient way to interact the laser beam with electrons. A better
approach to the problem is based on exploring a link between the interference
of the undulator radiation with the field of the laser beam [24].

Problem 26.5. Take the the following parameters of the IFEL experiment
from Ref. [25]: beam energy 30 MeV, laser pulse length 2 ps, laser energy 0.5
mJ, laser focused spot size 110 µm, undulator period 1.8 cm, number of periods
3, K = 0.6, and estimate the amplitude of the energy modulation of the beam.
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