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Introduction

These notes were written during the Fall, 2004, and Winter, 2005, terms. They are indeed lecture
notes — I literally lecture from these notes. They combine material from Hand and Finch (mostly),
Thornton, and Goldstein, but cover the material in a different order than any one of these texts
and deviate from them widely in some places and less so in others.

The reader will no doubt ask the question I asked myself many times while writing these notes:
why bother? There are a large number of mechanics textbooks available all covering this very
standard material, complete with worked examples and end-of-chapter problems. I can only defend
myself by saying that all teachers understand their material in a slightly different way and it is
very difficult to teach from someone else’s point of view — it’s like walking in shoes that are two
sizes wrong. It is inevitable that every teacher will want to present some of the material in a way
that differs from the available texts. These notes simply put my particular presentation down on
the page for your reference.

These notes are not a substitute for a proper textbook; I have not provided nearly as many
examples or illustrations, and have provided no exercises. They are a supplement. I suggest you
skim them in parallel while reading one of the recommended texts for the course, focusing your
attention on places where these notes deviate from the texts.
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Chapter 1

Elementary Mechanics

This chapter reviews material that was covered in your first-year mechanics course — Newtonian
mechanics, elementary gravitation, and dynamics of systems of particles. None of this material
should be surprising or new. Special emphasis is placed on those aspects that we will return to
later in the course. If you feel less than fully comfortable with this material, please take the time
to review it now, before we hit the interesting new stuff!

The material in this section is largely from Thornton Chapters 2, 5, and 9. Small parts of it
are covered in Hand and Finch Chapter 4, but they use the language of Lagrangian mechanics that
you have not yet learned. Other references are provided in the notes.



CHAPTER 1. ELEMENTARY MECHANICS

1.1 Newtonian Mechanics

References:

e Thornton and Marion, Classical Dynamics of Particles and Systems, Sections 2.4, 2.5, and
2.6

e Goldstein, Classical Mechanics, Sections 1.1 and 1.2
e Symon, Mechanics, Sections 1.7, 2.1-2.6, 3.1-3.9, and 3.11-3.12
e any first-year physics text

Unlike some texts, we’re going to be very pragmatic and ignore niceties regarding the equivalence
principle, the logical structure of Newton’s laws, etc. I will take it as given that we all have an
intuitive understanding of velocity, mass, force, inertial reference frames, etc. Later in the course
we will reexamine some of these concepts. But, for now, let’s get on with it!

1.1.1 The equation of motion for a single particle

We study the implications of the relation between force and rate of change of momentum provided
by Newton’s second law.

Definitions

Position of a particle as a function of time: 7(t)

Velocity of a particle as a function of time: ¥(t) = % 7(t). We refer to the magnitude of

the velocity, v = |7|, as the speed.

Acceleration of a particle as a function of time: @(t) = & ¥(t) = % 7(t).
Momentum of a particle: p(t) = m(t) v(t)
Newton’s second law
In inertial frames, it holds that
~ d
F(t)=—plt 1.1
(1) = < 5lt) (11)
If the mass is not time-dependent, we have
- d da
F(t) = m— U(t) = mos 7(t) (1.2)

We use the “dot” shorthand, defining F= % 7 and 7 = % 7, which gives

F =p=mi=mr (1.3)

Newton’s second law provides the equation of motion, which is simply the equation that
needs to be solved find the position of the particle as a function of time.

Conservation of Linear Momentum:

Suppose the force on a particle is F and that there is a vector & such that the force has no
component along §; that is
F-5=0 (1.4)
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Newton’s second law is F' = p, so we therefore have

PF=0=pF=a (1.5)

where « is a constant. That is, there is conservation of the component of linear momentum
along the direction § in which there is no force.

Solving simple Newtonian mechanics problems

Try to systematically perform the following steps when solving problems:

Sketch the problem, drawing all the forces as vectors.

Define a coordinate system in which the motion will be convenient; in particular, try
to make any constraints work out simply.

Find the net force along each coordinate axis by breaking down the forces into their
components and write down Newton’s second law component by component.

Apply the constraints, which will produce relationships among the different equations
(or will show that the motion along certain coordinates is trivial).

Solve the equations to find the acceleration along each coordinate in terms of the
known forces.

Depending on what result is desired, one either can use the acceleration equations
directly or one can integrate them to find the velocity and position as a function of
time, modulo initial conditions.

If so desired, apply initial conditions to obtain the full solution.

Example 1.1

(Thornton Example 2.1) A block slides without friction down a fixed, inclined plane. The
angle of the incline is # = 30° from horizontal. What is the acceleration of the block?

Sketch:

I*:g = mg is the gravitational force on the block and Fy is the normal force, which is
exerted by the plane on the block to keep it in place on top of the plane.

Coordinate system: x pointing down along the surface of the incline, y perpendicular
to the surface of the incline. The constraint of the block sliding on the plane forces
there to be no motion along ¥y, hence the choice of coordinate system.
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e Forces along each axis:

mi = F,sin6

my = Fy— Fycos0

e Apply constraints: there is no motion along the y axis, so 4§ = 0, which gives Fy =
F, cos . The constraint actually turns out to be unnecessary for solving for the motion
of the block, but in more complicated cases the constraint will be important.

e Solve the remaining equations: Here, we simply have the x equation, which gives:

F,
¥ = —Zsinf=gsinb
m

where I, = myg is the gravitational force

e Find velocity and position as a function of time: This is just trivial integration:

d t
ﬁ:i::gsin9:>i'(t) = :t‘(t:0)+/ dt' g sin@
0
= 2o+ gtsinf
d

t
%x::t(t:())—i—gtsine:x(t) = iL‘o—l—/ dt' [io + gt' sinf)]
0

1
= 330+:'E0t+§gt2 sin

where we have taken xg and zg to be the initial position and velocity, the constants of
integration. Of course, the solution for y is y(¢) = 0, where we have made use of the
initial conditions y(t = 0) = 0 and y(t = 0) = 0.

Example 1.2

(Thornton Example 2.3) Same as Example 1.1, but now assume the block is moving (i.e.,
its initial velocity is nonzero) and that it is subject to sliding friction. Determine the
acceleration of the block for the angle § = 30° assuming the frictional force obeys Fy =
i Fr where pp = 0.3 is the coefficient of kinetic friction.

e Sketch:

{/Fq =

We now have an additional frictional force Fy which points along the —x direction
because the block of course wants to slide to +x. Its value is fixed to be Fy = uy F.

4
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Coordinate system: same as before.

Forces along each axis:

mi = Fysinf — Fy
Fn — Fycosf

my

We have the additional frictional force acting along —z.

Apply constraints: there is no motion along the y axis, so §j = 0, which gives Fy =
Fycosf. Since Fy = uy, Fy, the equation resulting from the constraint can be used
directly to simplify the other equation.

e Solve the remaining equations: Here, we simply have the x equation,
F, F,
¥ = —ZLsinh— pup —2 cosb
m m

= gl[sin 0 — py cosb)]
That is all that was asked for. For 8 = 30°, the numerical result is

& = ¢(sin30° —0.3c0s30°) =0.24¢

Example 1.3

(Thornton Example 2.2) Same as Example 1.1, but now allow for static friction to hold the
block in place, with coefficient of static friction us = 0.4. At what angle does it become
possible for the block to slide?

e Sketch: Same as before, except the distinction is that the frictional force Fy does not
have a fixed value, but we know its maximum value is s Fiy.

e Coordinate system: same as before.

e Forces along each axis:

mi = Fysinf — Fy
my = Fy—Fjcos0

e Apply constraints: there is no motion along the y axis, so 4 = 0, which gives Fy =
F,cos . We will use the result of the application of the constraint below.

e Solve the remaining equations: Here, we simply have the x equation,

F, F
I = —gsin0——f
m m

e Since we are solving a static problem, we don’t need to go to the effort of integrating
to find z(¢); in fact, since the coefficient of sliding friction is usually lower than the
coefficient of static friction, the above equations become incorrect as the block begins
to move. Instead, we want to figure out at what angle # = 6" the block begins to slide.
Since Fy has maximum value ps Fy = psm g cosf, it holds that

F, F
T > —gsinﬁ—us—N
m m
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1.€.,
& > g[sinf — ps cosb)

It becomes impossible for the block to stay motionless when the right side becomes
positive. The transition angle 6’ is of course when the right side vanishes, when

0 = sin@ — p,s cosd’
or
tanf = g
which gives 6/ = 21.8°.

Atwood’s machine problems

Another class of problems Newtonian mechanics problems you have no doubt seen before
are Atwood’s machine problems, where an Atwood’s machine is simply a smooth, massless
pulley (with zero diameter) with two masses suspended from a (weightless) rope at each
end and acted on by gravity. These problems again require only Newton’s second equation.

Example 1.4

(Thornton Example 2.9) Determine the acceleration of the two masses of a simple Atwood’s
machine, with one fixed pulley and two masses m1 and msy.

e Sketch:

Fo

i

e Coordinate system: There is only vertical motion, so use the z coordinates of the two
masses z1 and zs.
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e Forces along each axis: Just the z-axis, but now for two particles:

mizy = —mag+T

mazy = —mag+T
where T' is the tension in the rope. We have assumed the rope perfectly transmits
force from one end to the other.

e Constraints: The rope length | cannot change, so z; + zo = —[ is constant, 2; = —29
and 2:1 = —22.

e Solve: Just solve the first equation for T" and insert in the second equation, making
use of 21 = —Z9:

T = mi(Zi+g)
. my, .
—z1 = —g-+ 7(2’1 —i—g)
ma

which we can then solve for Z; and T

. .. mi1 — 1Mmo
—Fo =% = —-——XZ=
mi + meo

2m1m2

T = ———
m1 + ma

It is instructive to consider two limiting cases. First, take m; = mo = m. We have in
this case

=% = 0

T = myg

As you would expect, there is no motion of either mass and the tension in the rope
is the weight of either mass — the rope must exert this force to keep either mass from
falling. Second, consider mj > ms. We then have

—Z=%Z = —g
T

2mog

Here, the heavier mass accelerates downward at the gravitational acceleration and
the other mass accelerates upward with the same acceleration. The rope has to have
sufficient tension to both counteract gravity acting on the second mass as well as to
accelerate it upward at g.

Example 1.5

(Thornton Example 2.9) Repeat, with the pulley suspended from an elevator that is ac-
celerating with acceleration a. As usual, ignore the mass and diameter of the pulley when
considering the forces in and motion of the rope.

7
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e Sketch:

e
'I o\l coordinateg

A

Obviously, we have the gravitational forces on each object. The pulley also has 27
acting downward on it (due to the force exerted by the rope on the pulley) and R
acting upward (the force pulling upward on the pulley through the rope connected
to the elevator). Similarly, the elevator has tension forces R acting downward and
E upward. We include the forces on the pulley and elevator since, a priori, it’s not
obvious that they should be ignored. We will see that it is not necessary to solve for
the forces on the pulley and elevator to find the accelerations of the masses, but we
will be able to find these forces.

e Coordinate system: Remember that Newton’s second law only holds in inertial refer-
ence frames. Therefore, we should reference the positions of the masses to the fixed
frame rather than to the elevator. Again, denote the z coordinates of the two masses
by z1 and z3. Let the z coordinates of the pulley and elevator be z, and z..

e Forces along each axis: Just the z-axis

miz1 = —mig+T
meza = —mag+ T
mpz, = R—2T —mpg
Meze = E — R—meg

where T is the tension in the rope holding the two masses, R is the tension in the rope
holding the pulley, and E is the force being exerted on the elevator to make it ascend
or descend. Note especially the way we only consider the forces acting directly on an
object; trying to unnecessarily account for forces is a common error. For example,
even though gravity acts on m; and mo and some of that force is transmitted to and
acts on the pulley, we do not directly include such forces; they are implicitly included
by their effect on T'. Similarly for the forces on the elevator.
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e Constraints: Again, the rope length cannot change, but the constraint is more com-
plicated because the pulley can move: 21 + 22 = 22, — [. The fixed rope between the
pulley and the elevator forces z, = Z. = a, so 21 + 22 = 2a

e Solve: Just solve the first equation for 7" and insert in the second equation, making
use of the new constraint Z; = —Z9 + 2a:

T = mi(Z +9)

20—% = —g+—(3+9)
ma
which we can then solve for %1 and T
. mi — mso 2mo
21 = = g+
mi + ma my1 + mg
. mi1 — my 2m1
zZ2 = g+ a
m1 + mgo mi1 + mo
2mq my
T = —~(g+a
m1 + mg (g )

We can write the accelerations relative to the elevator (i.e., in the non-inertial, accel-
erating frame) by simply calculating 2] = 21 — 2, and 2 = 25 — 2):

.y mo —Mmy

2= ————(@g+ta
1 mg—l-ml(g )
.y mi — my

29 = ——/—(g+a
2 m1+m2(9 )

We see that, in the reference frame of the elevator, the accelerations are equal and
opposite, as they must be since the two masses are coupled by the rope. Note that we
never needed to solve the third and fourth equations, though we may now do so:

R = mp(2},+g)+2T
4m1m2
mi1 + mo
4m1m2
= mp+ —— +a
[ P ml—i—mJ (g )
E = me(i.+g9)+R

= myla+g)+ (9 +a)

4m1m2
= me + mp +

} (9+a)

mi + ms

That these expressions are correct can be seen by considering limiting cases. First,
consider the case m; = my = m; we find

Z1 = a

Za = a

T = m(g9+a)

R = [my+2m](g+a)

E = [me+mp+2m](g+a)

That is, the two masses stay at rest relative to each other and accelerate upward with
the elevator; there is no motion of the rope connecting the two (relative to the pulley)

9
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because the two masses balance each other. The tensions in the rope holding the
pulley and the elevator cable are determined by the total mass suspended on each.
Next, consider the case mq > ms. We have

Z = —g

Zo = g+2a

T =0

R = my(g+a)

E = [me+my) (g+a)

my falls under the force of gravity. ms is pulled upward, but there is a component of
the acceleration in addition to just g because the rope must unwind over the pulley
fast enough to deal with the accelerating motion of the pulley. R and E no longer
contain terms for m; and mo because the rope holding them just unwinds, exerting no
force on the pulley.

The mass combination that appears in the solutions, mims/(m; + ms), is the typical
form one finds for transforming continuously between these two cases m; = meo and
mi > ma (or vice versa), as you will learn when we look at central force motion later.

Retarding Forces
(See Thornton 2.4 for more detail, but these notes cover the important material)

A next level of complexity is introduced by considering forces that are not static but rather
depend on the velocity of the moving object. This is interesting not just for the physics but
because it introduces a higher level of mathematical complexity. Such a force can frequently
be written as a power law in the velocity:

—
—

F.=F.(v) = —kv"% (1.6)

k is a constant that depends on the details of the problem. Note that the force is always
directed opposite to the velocity of the object.

For the simplest power law retarding forces, the equation of motion can be solved analyt-
ically. For more complicated dependence on velocity, it may be necessary to generate the
solution numerically. We will come back to the latter point.

Example 1.6

(Thornton Example 2.4). Find the velocity and position as a function of time for a particle
initially having velocity vg along the 4z axis and experiencing a linear retarding force
F.(v) = —kw.

e Sketch:

s hieny

10
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e Coordinate system: only one dimension, so trivial. Have the initial velocity &g be
along the +z direction.

e Forces along each axis: Just the z-axis.

mi=—-kzx

e Constraints: none

e Solve: The differential equation for x is

This is different than we have seen before since the right side is not fixed, but depends
on the left side. We can solve by separating the variables and integrating:

k
= —Zat
m

That is, the velocity decreases exponentially, going to 0 as t — co. The position is
easily obtained from the velocity:

ix = Zxpe€ —Et
dt = Toexp m
t k
z(t) = x0+ gito/ dt’ exp (— t’)
0 m

ot) = o+ % {1 ~ exp <—:Lt>}

The object asymptotically moves a distance m 2 /k.

Example 1.7

(Thornton Example 2.5). Repeat Example 1.6, but now for a particle undergoing vertical
motion in the presence of gravity.

11
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Sketch:

L - _—
L (it V poents
do v waeaek

Coordinate system: only one dimension, so trivial. Have the initial velocity 2y be along
the 4z direction.

Forces along each axis: Just the z-axis.

mi=—-mg—=~kz

Constraints: none

Solve: The differential equation for z is

d k. )

—% = —g——2

dt g m
Now we have both constant and velocity-dependent terms on the right side. Again,
we solve by separating variables and integrating:

dz
g+ £z

2(t) d t
[t - o

= —dt

5
m g+ (t)dj _ _/t o
k gtez U 0
k k k
log <g+ z':(t)) — log <g+ Zo) = —t
m m m
k k k
1+ —:2(t) = <1 + ) exp (— t)
mg mg m
Sy — Mg, (mg . _k
Z(t) = k: +< k —|—z0)exp< mt>

We see the phenomenon of terminal velocity: as t — oo, the second term vanishes and
we see £(t) — —mg/k. One would have found this asymptotic speed by also solving
the equation of motion for the speed at which the acceleration vanishes. The position
as a function of time is again found easily by integrating, which yields

2 s k
z(t) = zo—n;gt—l—(wzzg—i—mkzo) [l—exp<—mt)]

12
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The third term deals with the portion of the motion during which the velocity is chang-
ing, and the second term deals with the terminal velocity portion of the trajectory.

Retarding Forces and Numerical Solutions

Obviously, for more complex retarding forces, it may not be possible to solve the equation
of motion analytically. However, a natural numerical solution presents itself. The equation
of motion is usually of the form

This can be written in discrete form
Az = [Fs+ F(2)] At

where we have discretized time into intervals of length At. If we denote the times as
t, = nAt and the velocity at time t,, by &, then we have

ETng1 = Tn+ [Fs+ F(i,)] At

The above procedure can be done with as small a step size as desired to obtain as precise a
solution as one desires. It can obviously also be extended to two-dimensional motion. For
more details, see Thornton Examples 2.7 and 2.8.

1.1.2 Angular Motion

We derive analogues of linear momentum, force, and Newton’s second law for angular motion.

Definitions

Angular velocity of a particle as a function of time with respect to a particular origin:
v(t) = d(t) x 7(t) (1.7)

This is an implicit definition that is justified by considering a differential displacement:

e e
S;: aw d :U'}’ / ,%{
sve colmess
=
X
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CHAPTER 1. ELEMENTARY MECHANICS

This can be written mathematically as
57 = 60 X 7

where 60 points along the axis of the motion and x indicates a vector cross-product. The
cross-product gives the correct direction for the displacement §7 (perpendicular to the axis
and 7) and the correct amplitude (|07] = R06 = rdfsin ). If we then divide by the time
0t required to make this displacement, we have

o7 w&dzéﬁ .

— = —=XT V=0 XT

ot ot
Angular momentum of a particle (relative to a particular origin):

L(t) = #(t) x p(t) (1.8)

The cross-product implies that L is a vector perpendicular to the plane formed by 7 and
P, with its direction set by the right-hand rule. L is defined as a cross-product between 7
and p'so that a particle constrained to move in a circle with constant speed v (though with
changing ¥) by a central force (one pointing along —7) has constant angular momentum.
The sign is set by the right-hand rule.

We can rewrite in terms of & by using the implicit definition o f &:

7)

L = ©x X
&~ (7 &)

= ml(

&1

m

3

where we have used a vector identity to expand the triple cross-product (see Section A.3).
For the simple case where 7 and ¥ are perpendicular (and hence & is perpendicular to both
of them), this simplifies to

ie., L points along .

Torque exerted by a force F (relative to a particular origin): N(t) = 7(t) x F(t). We shall
see below that this is the natural definition given the way angular momentum was defined
above.

Note: Angular velocity, angular momentum, and torque depend on the choice of origin!

Newton’s second law, angular momentum, and torque

From the definitions of angular momentum L and torque N , it is trivial to see that Newton’s
second law implies a relation between them:

9LLw = L <)

= m#(t) x F(t) + 7(t) x F(t)
= N()
where we have used the definition of momentum and Newton’s second law in going from

the second line to the third line, and where the first term in the next-to-last line vanishes
because the cross-product of any vector with itself is zero.

14



1.1. NEWTONIAN MECHANICS

Conservation of Angular Momentum

Just as we proved that linear momentum is conserved in directions along which there is no
force, one can prove that angular momentum is conserved in directions along which there
is no torque. The proof is identical, so we do not repeat it here.

Choice of origin

There is a caveat: angular momentum and torque depend on the choice of origin. That is,
in two frames 1 and 2 whose origins differ by a constant vector o such that 75 (t) = 7 (t) + 0,
we have

Ly(t) = Fy(t) x p(t) = 71 (t) x ) + & x pt) = Ly (t) + & x ji(t)
No(t) = 75(t) x F(t) = 7 (t) x F(t) 46 x F(t) = Ni(t) + 6 x F(t)
where we have used the fact that 7 and F are the same in the two frames (7 because it
involves a time derivative; F via its relation to P by Newton’s second law). Thus, while
Newton’s second law and conservation of angular momentum certainly hold regardless of
choice of origin, angular momentum may be constant in one frame but not in another
because a torque that vanishes in one frame may not vanish in another! In contrast, if
linear momentum is conserved in one frame it is conserved in any displaced frame. Thus,
angular momentum and torque are imperfect analogues to linear momentum and force. Let’s
consider this in more detail.

We first solve the linear equations of motion for a particle moving in a circle at fixed speed
as shown in the previous figure. Choose the origin of the system to be at the center of the
circle and the motion to be in the zy plane. Clearly, in this frame, the particle’s position
and velocity as a function of time are

71(t) = R(Z coswt+ ¢ sinwt)

7(t) = wR(—Z sinwt+ g sinwt)

where we obtained the velocity by simple differentiation. We do not subscript ¢’ because it is
independent of the choice of origin. The mass is fixed so the momentum is just p(t) = m 9(t).
The force is, by Newton’s second law,

dp

dt

= —mw?R (& coswt + § sinwt)
= —muw?R# (1)

,02

= —m E fl(t)

F(t) =

where 71 (t) is a unit vector pointing along 73 (t). Clearly, the force is back along the line
to center of the circle, has magnitude F = mv?/R = mw? R, and is perpendicular to the
velocity. The velocity, momentum, and force are independent of the choice of origin.

Let’s determine the angular momentum and torque. First consider the same coordinate
system with position vector 7(t). Since F points back along 7, it holds that the torque
N = 71 X F vanishes. The angular momentum vector is El =7 X p=mvRZ. Since v is
fixed, Ly is fixed, as one would expect in the absence of torque.

15
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Next, consider a frame whose origin is displaced from the center of the particle orbit along
the z axis, as suggested by the earlier figure. Let 7% denote the position vector in this frame.
In this frame, the torque Ng is nonzero because 7 and F are not colinear. We can write
out the torque explicitly:

Nalt) = alt) x F(t)
= ro[sina(Zcoswt + gsinwt) + Zcosa] X F (—& coswt — §sinwt)
= roF [—sina(Z X gcoswtsinwt + § X & sinwt cos wt)
—cosa(Z X Zcoswt + 2 X ysinwt)]
= ryFcosa (Zsinwt — §coswt)
where, between the second and third line, terms of the form & x & and ¢ x § were dropped
because they vanish.

Let’s calculate the angular momentum in this system:

Lo(t) = ma(t) x plt)
= ro[sina(zcoswt + Ysinwt) 4+ Z cos a] X mv (—Z sinwt + § coswt)
= roymo [sina(Z x gjcos? wt — § x @&sin? wt) + cosa(—2 X Fsinwt + £ x g cos wt)]

= Zmurgsina + murycosa (gsinwt — & coswt)

So, in this frame, we have a time-varying component of Lo in the plane of the orbit. This
time derivative of Ly is due to the nonzero torque N, present in this frame, as one can
demonstrate directly by differentiating Ly (t) and using F = mv?/R = mv?/(rs cos ) and
v = Rw = row cosa. The torque is always perpendicular to the varying component of the
angular momentum, so the torque causes the varying component of the angular momentum
to precess in a circle.

One can of course consider even more complicated cases wherein the origin displacement
includes a component in the plane of the motion. Clearly, the algebra gets more complicated
but none of the physics changes.

1.1.3 Emnergy and Work

We present the concepts of kinetic and potential energy and work and derive the implications of
Newton’s second law on the relations between them.

Work and Kinetic Energy

We define the work done on a particle by a force F(t) in moving it from 7 = 7(t1) to
772 = F(tz) to be
to .
Wi = / F-dr (1.9)
t1

The integral is a line integral; the idea is to integrate up the projection of the force along
the instantaneous direction of motion. We can write the expression more explicitly to make
this clear:

2 dr
Wi = / F(t) - —dt
t (t)-

1

_ / OROr
t

1
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1.1. NEWTONIAN MECHANICS

The value of this definition is seen by using Newton’s second law to replace F:

2dp
= — . —dt 1.1
Wia /t & m (1.10)

1
1 D2
= (i -
om J; (7 p)
P
2m  2m
= TQ—Tl

where we have defined the kinetic energy T = p?/2m = mv?/2. Thus, the work the force
does on the particle tells us how much the particle’s kinetic energy changes. This is kind of
deep: it is only through Newton’s second law that we are able to related something external
to the particle — the force acting on it — to a property of the particle — its kinetic energy.

Note here that, to demonstrate the connection between work and kinetic energy, we have
had to specialize to consider the total force on the particle; Newton’s second law applies
only to the total force. For example, consider an elevator descending at constant velocity.
Two forces act on the elevator: a gravitational force pointing downward and tension force
in the elevator cable pointing upward. If the elevator is to descend at constant velocity, the
net force vanishes. Thus, no work is done on the elevator, as is evinced by the fact that
its speed (and therefore its kinetic energy) are the same at the start and end of its motion.
One could of course calculate the work done by the gravitational force on the elevator and
get a nonzero result. This work would be canceled exactly by the negative work done by
the cable on the elevator.

Potential Energy, Conservation of Energy, and Conservative Forces
Consider forces that depend only on position 7 (no explicit dependence on ¢, ¥/). Counterex-
ample: retarding forces.

Furthermore, consider forces for which Wis is path-independent, i.e., depends only on 7 and
7. Another way of saying this is that the work done around a closed path vanishes: pick any
two points 1 and 2, calculate the work done in going from 1 to 2 and from 2 to 1. The latter
will be the negative of the former if the work done is path-independent. By Stokes’ Theorem
(see Appendix A), we then see that path-independence of work is equivalent to requiring
that Vx F =0 everywhere. (Do there exist position-dependent forces for which this is not
true? Hard to think of any physically realized ones, but one can certainly construct force
functions with nonzero curl.)

Then it is possible to define the potential energy as a function of position:

UG = U(0) —/Orﬁ(ra) -, (1.11)

The potential energy is so named because it indicates the amount of kinetic energy the
particle would gain in going from 7 back to the origin; the potential energy says how much
work the force F' would do on the particle.

The offset or origin of the potential energy is physically irrelevant since we can only measure
changes in kinetic energy and hence differences in potential energy. That is,

—

1

o
U — U(F) = _/ F(f) - dif = —Wip = Ty — T
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If we define the total energy F as the sum of potential and kinetic energies (modulo the
aforementioned arbitrary offset U(0)) and rewrite, we obtain conservation of energy:

Ey = U(FQ) + 15 = U(Fl) +T1 = E; (1.12)

i.e., the total energy E is conserved. Forces for which conservation of energy holds —
i.e., those forces for which the work done in going from 7 to 7 is path-independent — are
accordingly called conservative forces.

For conservative forces, we may differentiate Equation 1.11 with respect to time to obtain
an alternate relation between force and potential energy:

d o dr
el - _F.Z2
dtU dt
oU dx 00U dy 0U dy _—
hied i > _F.§

ordt oy dt oy dt
VU - = F-@

where V is the gradient operator you are familiar with. Now, since the initial velocity is
arbitrary, the above must hold for any velocity ¢/, and the more general statement is

—VU=F (1.13)

That is, a conservative force is the negative of the gradient of the potential energy function
that one can derive from it. Recall the physical meaning of the gradient: given a function
U(7), the gradient of U at a given point 7 is a vector perpendicular to the surface passing
through # on which U is constant. Such surfaces are called equipotential surfaces. The
force is normal to such equipotential surfaces, indicating that particles want to move away
from equipotential surfaces in the direction of decreasing U.

Example 1.8

Calculate the work done by gravity on a particle shot upward with velocity ¥ = vg 2 in the
time 0 to t;. Demonstrate that the work equals the change in kinetic energy. Also calculate
the change in potential energy, demonstrate that the change in potential energy equals the
negative of the work done, and demonstrate conservation of energy.

e First, calculate the motion of the particle. This is straightforward, the result is
() = Z(vo—gt)
N . 1
7(t) = Z(zi+wvot— §gt2)

The time at which the particle reaches its maximum high is ¢, = vp/g and the maxi-
mum height is z,, = z; + v3/2g.

e Calculate the work done:

Wit;) — / TR - ar
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We explicitly split the integral into two pieces to show how to deal with change of sign
of the direction the particle moves. Now, 7= Zx+gy+2z,s0drf =2dr+ydy+2dz.
This is to be left as-is — do not mess with the sign of dz. Rather, realize that the limits
of integration for the second part of the path go from z,, to z; because the limits
follow along the path of the particle.. This provides the sign flip needed on the second
term to give the result we expect. Alternatively, one could have flipped the sign on dz
and the limits simultaneously, integrating over (—dz) from zy to z,,; but that doesn’t
make much sense. So, the general rule is — your limits of integration should follow the
chronological path of the particle, and your line element di” should be left untouched.
We could also calculate the work using the other form:

Wi(ty) = /Oﬁ(t)-ﬁ(t)dt
= /Of(—mg)(vo—gt)dt

1
= —mg(wt;— 591

L9
= —mg(—z+2z +voty— §gtf)
= mg(z —z5)

e Check that the work is equal to the change in kinetic energy:

1
Ty —-T; = fm(vj%—v%)

m [(vo — gt)? — vg]

m (thff —2vogty)

3 N =N~ N

1
9(—Uotf+§9t?)
1
= mg(zi—zi—votf—i-igtf)

= mg(z — 25)
e Check that the change in potential energy is the negative of the work:

U(zf) —U(z) = mgzr—mgz
= —mg(z — zy)
—Wi(ty)

e And check that energy is conserved:

1
Ei=U(z)+T, = mgzi+§mv8

1
Ey=U(zp)+ Ty = mng+§m[v(tf)]2
1 1
= mg(zi—i-votf—fgtfz)—l——m(vg—i-—%ogtf—i-g%?c

2 2

1 2
= Mgz + -muv

2
- F
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Nonconservative Forces, Mechanical vs. Thermal Energy

Of course, there are many forces that are not conservative. We consider the example of a
particle falling under the force of gravity and air resistance, and launched downward with
the terminal velocity. The particle’s velocity remains fixed for the entire fall. Let’s examine
the concepts of work, kinetic energy, potential energy, and conservation of energy for this
case.

e Work: The net force on the particle vanishes because the air resistance exactly cancels
gravity. The particle’s speed remains fixed. Thus, no work is done on the particle.

e Kinetic Energy: Since the particle’s speed remains fixed, its kinetic energy is also
fixed, consistent with the fact that no work is done.

e Potential Energy: Clearly, the particle’s potential energy decreases as it falls.

e Conservation of Energy: So, where does the potential energy go? Here we must
make the distinction between mechanical energy and thermal energy. We demon-
strated earlier that the sum of the kinetic and potential energy is conserved when a
particle is acted upon by conservative forces. The kinetic and potential energy are the
total mechanical energy of the particle. For extended objects consisting of many
particles, there is also thermal energy, which is essentially the random kinetic en-
ergy of the particles making up the extended object; the velocities of these submotions
cancel, so they correspond to no net motion of the object. Of course, we have not con-
sidered thermal energy because we have only been talking about motion of pointlike
particles under the influence of idealized forces. Even in the presence of nonconserva-
tive forces, the sum of the mechanical and thermal energy is conserved. The potential
energy lost by the falling particle in our example is converted to thermal energy of the
falling particle and the surrounding air.

We will be able to rigorously prove the conservation of total energy later when we consider
the dynamics of systems of particles.

Calculating Motion from the Potential Energy

For particles acting under conservative forces, we have seen that mechanical energy is con-
served. We can use this fact to deduce the dynamics purely from the potential energy
function.

e Solving for the motion using the potential energy
Conservation of energy tells us that there is a constant E such that

1
E:T+U:§m02+U($)

Rearranging, we have

dx 2
E:v:j: E[E—U(m)]

Formally, we can integrate to find

t—toz/x + dz’
w0 /2 [E—U(z)]
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1.1. NEWTONIAN MECHANICS

Given U (z) it is possible to find x(¢). In some cases, it is possible to do this analytically,
in others numerical integration may be required. But the fundamental point is that
U(z) determines the motion of the particle.

Is the motion bounded?

T > 0 always holds. But ¥ may go through zero and change sign. If this happens for
both signs of ¥, then the motion is bounded.

Consider the abstract potential energy curve shown in the following figure (Thornton
Figure 2.14):
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U goes to zero when T vanishes. 1" can vanish if there are points x such that U(x) >
E. Thus, if the particle begins at a point xg such that there are points x, and xy,
Tq < x0 < Tp, such that U(z,) > E and U(xp) > E, then T vanishes at those
points and the velocity vanishes. In order to make the velocity change sign, there
must be a force continuing to accelerate the particle at these endpoints. The force
is F = —-VU = —2dU /dz in this one-dimensional example; i.e., if U has a nonzero
derivative with the appropriate sign at x, and =z, then the particle turns around
and the motion is bounded. A particle with energy F; as indicated in the figure has
bounded motion.

There can be multiple regions in which a particle of a given energy can be bounded.
In the figure, a particle with energy E5 could be bounded between z, and zj or x. and
x¢. Which one depends on the initial conditions. The particle cannot go between the
two bounded regions.

The motion is of course unbounded if F is so large that x, and x; do not exist. The
motion can be bounded on only one side and unbounded on the other. For example,
a particle with energy Fs3 as indicated in the figure is bounded on the left at z, but
unbounded on the right. A particle with energy E,4 is unbounded on both sides.
Equilibria

A point with VU =0 is an equilibrium point because the force vanishes there. Of
course, the particle must have zero velocity when it reaches such a point to avoid going

past it into a region where the force is nonzero. There are three types of equilibrium
points.

A stable equilibrium point is an equilibrium point at which d?U/dz? is positive.
The potential energy surface is concave up, so any motion away from the equilibrium
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point pushes the particle back toward the equilibrium. In more than one dimension,
this corresponds to (5- V)2U being positive for all constant vectors 5 regardless of
direction.

An unstable equilibrium point is an equilibrium point at which d?U/dx? is negative.
The potential energy surface is concave down, so any motion away from the equilibrium
point pushes the particle away from the equilibrium. In more than one dimension, this
corresponds to (§ -6)2U being negative for all constant vectors § regardless of direction.

A saddle point is an equilibrium point at which d?U/dz? vanishes. Higher-order
derivatives must be examined to determine stability. The point may be stable in one
direction but not another. In more than one dimension, a saddle point can occur if
there are some directions § with (5 V)2U < 0 and others with (5- V)2U > 0. For
smooth U, this means that there is some direction § with (5 V)2U = 0.

Example 1.9

Consider the system of pulleys and masses shown in the following figure. The rope is of
fixed length b, is fixed at point A, and runs over a pulley at point B a distance 2d away.
The mass my is attached to the end of the rope below point B, while the mass mo is held
onto the rope by a pulley between A and B. Assume the pulleys are massless and have zero
size. Find the potential energy function of the following system and the number and type
of equilibrium positions.

Let the vertical coordinates of the two masses be z; and z3, with the z-axis origin on the
line AB and +z being upward. The potential energy is, obviously

U=migzi+mag (22 —c)

The relation between z; and z9 is

b 2
—z = { +Zl] 2
2

So the simplified potential energy is

b+ =
2

2
U = migz —msag { ] —d?—maygc
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Differentiate with respect to z; and set the result to O:

dU 1 b+21
| =M g ———— = 0
Llo [b+z1] — 2
2
S| [b+a]? 2 2
16 m? [ 5 ] —d*| = mj(b+x)
(4m%fm§) (b+2)* = 16mid?
4myd
4m7 —m3

where we have chosen the sign of the square root to respect the string length constraint.
There is an equilibrium if m; > my/2 (so that the square root is neither zero nor imaginary)
and if b and d are such that the resulting value of z; < 0: m; is not allowed to go above
point B.

Is the equilibrium stable? The second derivative is

d?U _ mayg (b+ 21)? mo g 1
2 - 13/2 1/2
le 16 [m}2_d2 4 |:|:b+21:|2_d2:|
2 2
_ Mmag d2
- r 13/2
] -
PU|_ mag 1
d2? |, 4d [ am3 _1}3/2
[4mE-m3
_ mag 4m?2 —m3 3/2
- 4d m%
_ (ami-md)*y
4m% d

Since we have already imposed the condition m; > msg/2 to give an equilibrium, it holds

that d*U/ dz%‘o > 0 and the equilibrium is stable if it exists.

From a force point of view, we see that what is happening is that ms sinks low enough so
that the projection of the rope tension along the z axis is enough to cancel the gravitational
force on mo. As mo sinks lower, the projection of the tension grows, but the maximum
force that can be exerted on my is 27. Since T is supplied by m;, the maximum value of
the upward force on mg is 2T = 2m; g; hence the condition that mjy > ma/2.
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1.2 Gravitation

References:
e Thornton and Marion, Classical Dynamics of Particles and Systems, Chapter 5
e Symon, Mechanics, Chapter 6.
e any first-year physics text

We define gravitational force and potential, prove Newton’s Iron Sphere theorem and demonstrate
the gravitational potential satisfies Poisson’s equation.

1.2.1 Gravitational Force

Force between two point masses

Given two particles with positions 7 and 75 and masses m; and meo, the gravitational force
exerted by particle 1 on particle 2 is
2o o mimsa
Fo(7,7) = =G —5— 721
21

where 71 = 75 — 71 is the vector from m; to ma, 191 = |F21| and 791 = 71 /r91. The force
is indicated in the following figure.

%

7

¥

Force exerted on a point mass by an extended mass distribution

Since the gravitational force is linear in the two masses, we can calculate the gravitational
force exerted on a point mass by an extended mass distribution p(7):

= ) .
F21 = —G meo d37“1 0(2 ) T21
Vi 1

where the integral is a volume integral over the extended mass distribution.
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&
5y
= m
=i Mz -
.
e

Note that the relative position vector 751 depends on 7 and thus varies.

Force exerted on an extended mass distribution by and extended mass

We can further generalize, allowing mo to instead be an extended mass distribution. The
two distributions are denoted by p1(7) and pa(7).

I Jgr\

K A
/ e\\/ F;?, (\ L<°)5rl

!

The force between the two mass distributions is now
- T T
F21 = -G / / d37"2 d3T1 701( 1)2,02( 2) ’f‘Ql
Vo JW1 721
Again, note that 75 varies with 7} and 7. The order of integration does not matter.
Gravitational vector field

Since the gravitational force is proportional to the mass being acted upon, we can define a
gravitational vector field by determining the force that would act on a point mass mao:

== ﬁ21
’r‘ == —
g( 2) mo
= -G d3r1 L(gl) fgl
Vi L3

The gravitational field is of course independent of ma. Note that ¢ has units of force/mass
= acceleration.
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1.2.2 Gravitational Potential

The gravitational force is conservative, gravitational potential energy

During our discussion of conservative forces, we argued that, for a force F for which the work
done in going from 7 to 75 is independent of path, it holds that one can define a potential
energy U(7) and that F = —VU. We can casily demonstrate that the gravitational force
between two point masses is conservative. For simplicity, place one mass at the origin. The
work done on the particle in moving from 7; to 7y is

Tro
W :/ F(7) - dF

Tfodr
= —Gmlmg/ —
T
1

1 1
= Gm1 mo ( — >
T3 ’I”f

where the line integral has been simplified to an integral along radius because any azimuthal
motion is perpendicular to F' and therefore contributes nothing to the integral. We can
therefore define the gravitational potential energy of the two-mass system

= mim
U(T21)=*G ! 2

21

where we have chosen the arbitrary zero-point of the potential energy so that U(7%;) vanishes
as 791 — 00.

Because U is linear in the two masses, we can of course determine the potential energy of
a system of two extended masses:

U=-G / / Bry dry p1(71) p2(72)
Vo JV

21

The gravitational potential

Clearly, ms is just a constant in the above discussion, so we can abstract out the gravita-
tional potential

If m, is extended, we have

\11(772) = -G /V d37"1 plr(;l)
1

It is obvious that, just in the way that the gravitational vector field §(7) is the force per unit
mass exerted by the mass distribution giving rise to the field, the gravitational potential
scalar field U(7) gives the work per unit mass needed to move a test mass from one position
to another.
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One of the primary advantages of using the gravitational potential is to greatly simplify
calculations. The potential is a scalar quantity and thus can be integrated simply over
a mass distribution. The gravtiational field or force is of course a vector quantity, so
calculating it for extended mass distributions can become quite complex. Calculation of
the potential followed by taking the gradient g = —VU is usually the quickest way to solve
gravitational problems, both analytically and numerically.

Newton’s iron sphere theorem

Newton’s iron sphere theorem says that the gravitational potential of a spherically symmetric
mass distribution at a point outside the distribution at radius R from the center of the
distribution is is the same as the potential of a point mass equal to the total mass enclosed
by the radius R, and that the gravitational field at a radius R depends only on mass enclosed
by the radius R. We prove it here.

Assume we have a mass distribution p(7) = p(r) that is spherically symmetric about the
origin. Let r; and 7, denote the inner and outer limits of the mass distribution; we allow
r; = 0 and r, — oco. We calculate the potential at a point P that is at radius R from the
origin. Since the distribution is spherically symmetric, we know the potential depends only
on the radius R and not on the azimuthal and polar angles. Without loss of generality, we
choose P to be at R 2. The potential is

U(P=R2) = G/Vd%%

Obviously, we should do the integral in spherical coordinates as indicated in the sketch
below.
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Spherical coordinates are defined in Appendix A.2. Writing out the integral gives

U(P=R3) =

TG

G/Or2dr

= 27n@ r2dr/ sin 6 d6
ri 0

T 27
/ sin 0 df / dé pr)
0 0 VR2+1r2—2Rrcosb

p(r)
VR2+ 12 —2Rrcosh
2Rr sinfdb

= —— rp(r)dr
R J, o) /\/R2+r2—2Rr0089

27TG
"R

271G

R

Let’s consider the solution by case:

e R > 1, In this case, |R — 7|

V(R)

T

' rp(r)dr[(R+71)—

Ti

rp [\/R2+r2 2R7’0030HZ

[ —r]]

= R — r and we have

= 5 M(TO)

where M (r,) is the mass enclosed at the radius r,; i.e., the total mass of the distribu-
tion. This is the first part of the iron sphere theorem.

e R < r;: Then we have |[R —r| =r — R and

\IJ =

_G/“’élﬂ'r p(r

G/ dmrp(r

The potential is independent of R and is just the potential at the center of the mass
distribution (which is easy to calculate thanks to the symmetry of the problem).

e r; < R <1, The integral is broken into two pieces and we have

U(R) =

- _Yun

R

7’04
—/ d7r? p(r dr—G/ er

G/ Arrp(r)dr

Note how the potential is naturally continuous, as it ought to be since it is a line integral.
The complicated form of the potential in the intermediate region is due to the requirement

of continuity.

It is interesting to also calculate the gravitational field in the three regions using g(R) =

—dU/dR:

e R>r,

g(R) = -

dv G

ﬁ :_ﬁM(T0>R
R

where R is the unit vector pointing out from the R origin.
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o R<ry:
dv
§JR)=— — =0
G(R) aR |,
o, < R<ry:
dv G . G dM - 41 R?p(R) -
G R) = — — = — MRR—-——=—R+G R
(%) dR |, R? (%) R d + R
G

Here we see the second component of the theorem, that the gravitational field at a radius
R is determined only by the mass inside that radius. The potential is affected by the mass
outside the radius because the potential is the line integral of the field and thus cares about
what happens on a path in from R = oo.

Example 1.10

Calculate the gravitational potential and field for a mass distribution that is uniform with
density p between radii r; and 7, and zero elsewhere.

We simply have to calculate the integrals given in the above discussion. Split by the three
regions:

e R > r,: As explained above, the potential is just that due to the total mass, which is
M(ro) = 3 mp(r3 —r}), which gives
drpG

U(R) = —— 5= (ro—77)

e R < r;: And, finally, the internal solution:
U(R)=—-2nwGp (r? — r?)

e r; < R <r, Here, we calculate the two term solution:

U(R) = _473F}C;p (R3 —rf’) — 27rG,0(7“3 - RQ)

The gravitational field is easily calculated from the earlier formulae:

o R>ry
ﬁ AmpG 3 3y 7
g(R):_ 3 R2 (TO_Ti)R
e R <ry:
gR) = 0
o 1 < R<ry
5 ATGp 3 3\ A
g(R) = - 3R2 (R _TI)R
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The solution is sketched below.

=

Poisson’s Equation

A final application of the gravitational potential and field is to prove Poisson’s Equation
and Laplace’s Equation.

Suppose we have a mass distribution p(7) that sources a gravitational potential ¥(7) and
gravitational field g(7). Consider a surface S enclosing a volume V'; p need not be fully
contained by S. Let us calculate the flux of the field through the surface S by doing an
area integral over the surface of the projection of ¢ along the surface normal vector 7:

© = [ a5
S
— —/d27‘2 ﬁ(f’g)-/d?’Tlegrl)fgl
S

21

= —G/dgm p(ﬂ)/d%z 771(742)2.7021
s

21

The integrand of the second integral is the solid angle subtended by the area element d?ry
as seen from 7 (the r9; in the denominator cancels a similar factor in the numerator to turn
area into solid angle). There is a sign defined by whether the surface normal has a positive
or negative projection along 791; i.e., whether the surface normal at 75 points away from
or toward 7. If 7 is inside the surface S, then the integral is just 47 because the surface
normal always points away and 47 is the solid angle subtended by an enclosing surface. If 7
is outside the surface .S, then the integrated solid angle subtended vanishes because positive
contributions from the part of the surface with n pointing away from 7 are canceled by
negative contributions from sections with 7 pointing toward 7. Therefore, we have

o = —47rG/ d3ry p(7)
v
= —47TGMV
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where My is the mass enclosed by the surface S in the volume V. Gauss’s divergence
theorem (see Appendix A.4) tells us that

o= [ a5 = [ a9 -g)
S Vv
i.e., that
/ &Prv - (@) = —47rG/ d3r p(7)
14 v
The surface S (and enclosed volume V') we chose were arbitrary, so it holds that

V-§(7) = —4xGp(P)
VAU(R) = 47Gp(F)

The latter relation is Poisson’s Equation, which relates the derivatives of the potential
to the mass density. Notice that it is a local relation; it was not necessarily obvious that
such a relation would hold given the way the potential is defined as a line integral. When
p(7) = 0, the relation is called Laplace’s Equation. There are analogous relations in
electromagnetism, relating the electric potential to the electric charge density.

Summary of Relationships among Gravititational Quantities

Gravitational Gravitational
Force <—= vector gradient  Potential Energy
— . .
F line integral ==> U
divide divide
by mass by mass
multiply {L multiply @
by mass by mass
Gravitational Gravitational
Field <— vector gradient Potential
r line integral ==> ]
divergence Laplacian
- VE
v \ /
density
P
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1.3 Dynamics of Systems of Particles

References:

e Thornton and Marion, Classical Dynamics of Particles and Systems, Chapter 9

e Goldstein, Classical Mechanics, Section 1.2

e Symon, Mechanics, Chapter 4

e any first-year physics text

We introduce Newton’s third law, define center of mass, and explore the concepts of momentum,
angular momentum, and energy for systems of particles. Collisions of two-particle systems are

considered.

1.3.1 Newtonian Mechanical Concepts for Systems of Particles

Newton’s third law

We have so far considered motion of a single particle, which required Newton’s second law.
In considering systems of particles, we now require Newton’s third law. There are two
forms:

weak form

The forces exerted by two particles a and b on each other are equal in magnitude and
opposite in direction. That is, if fy, is the force exerted on particle a by particle b,
then

fao = —foa (1.14)

strong form

In addition to the above, the force between the two particles a and b is a function
of only the difference in the two particles’ positions and is directed along the vector
between them:

‘ﬁlb = fab(rab) 72ab (115)

where 7o = Tap/|Tap| and 7yp = 7 — 7. That is, the force is a scalar function of the
magnitude of the position difference and is directed along #,;. The mathematical form
may seem like a stronger statement than the verbal form. But such a dependence
implies the force must be directed along 7,,. The remaining dependence on 7, must
therefore be a scalar, and the only nonzero scalar that can be formed from 7y is 74,
so the scalar function f,; must only be a function of 7.

Both forms are assumptions that must be checked observationally for different forces. For
example, the Lorentz force on a charged particle, F= quU X B, satisfies the weak form but
not the strong form. Forces that satisfy the strong form are called central forces; examples
are gravitational and electrostatic forces.
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1.3. DYNAMICS OF SYSTEMS OF PARTICLES

Total Linear Momentum, Newton’s Second Law, Center of Mass, Conservation of
Linear Momentum

Now, let’s consider the forces acting on a system of particles with masses m,, positions 77,
and momenta p,. Newton’s second law for each particle is

dp » .
a _ :
dt a T b#za f b

where the (¢) superscript indicates external forces — forces exerted by something outside the
system of particles — and the second term contains all the forces exerted on particle a by
other particles of the system. Sum this over all particles to find

%Zma%Fa = Zﬁée)_{_ Z ﬁb
a a a,b, b#a

First, note that the second term vanishes due to the weak form of Newton’s second law:
every pairwise sum fu + foq = 0. Second, the total momentum of the system is

" d
P = D, = iy 1.16
So we find that

d = _ _
ZPp=N Fl = F) 1.1
o Z : (1.17)

That is, the system can be treated as a point mass with momentum P acted upon by the
total external force F(¢), and Newton’s second law is obeyed for the equivalent point mass.
Taking the analogy further, if the total mass of the system is

M = Zma
a
and we define the center of mass as

. 1 .
R = Mza:mara (1.18)

and we assume the m, are fixed in time, then Equation 1.17 becomes

a2 -
45 B
ol F

The analogy to a point mass continues to hold if we treat the center of mass as the position
coordinate of the equivalent point mass.

If the total external force F(¢) vanishes along a direction §, then the total linear momentum
along that direction, P. §, is constant. That is, the total linear momentum of a system
of particles subject to no external force is conserved. It was not a priori obvious that this
would occur; it is a result of the linearity of Newton’s second law (linear dependence on
position, mass, and force) and of the weak form of Newton’s third law.
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For a solid object, as opposed to a system of point particles, the natural extensions to the
definitions are

M = /d37“,0(77) (1.19)
/dBrp(r)F (1.20)

oo}
Il

Notice that the integrand for R contains the vector 7, so the integral must be done component-
by-component.

Example 1.11

(Thornton Example 9.1) Find the center of mass of a hemisphere of constant density p, and
radius a.

Z
Vid-7)

YN

/ N\ dz

[ 7\

The mass is obviously

2
M=Z>rd
3 p
Choose a coordinate system wherein the azimuthal symmetry axis is aligned with the z
axis. Consider a thin disk parallel to the xy plane at height z and having thickness dz.
By symmetry, the center of mass of the disk must be at zZ. The radius of the thin disk is
Vva? — z2. Therefore, the mass contribution of the disk is

dm = 7T(a2—22) pdz

Since each disk only contributes a component along z to the overall integral, clearly the
center of mass must be along z. So we have

M
= L adzﬂ(az—zQ) pz
M Jo
s o 22| 24
_= _— a — _——
M 2|, 4|,
_ T 4
— oam’
3
= —a
8



1.3. DYNAMICS OF SYSTEMS OF PARTICLES

Rocket Motion

The rocket problem is a classic application of conservation of momentum. First consider
a rocket in the absence of gravity. It exhausts mass at a rate rm = dm/dt where m < 0.
The exhaust gas is expelled at speed u (as measured in the rocket frame). We can find the
motion of the rocket by requiring conservation of momentum:

p(t) = p(t+dt)
mv = (m+mdt)(v+ dv)+ (—mdt)(v—u)
On the right side, the first term is the rocket momentum after losing mass dm = rmdt < 0
and gaining speed dv. The second term is the momentum of the expelled gas. The mass
of the expelled gas is —r dt because m < 0. The gas is expelled at speed u in the rocket
frame, which is speed v — u in fixed frame. We expand out the right side, dropping second
order differentials like dt dv:
mv = muv+mudt+mdv—rmudl+rmudt
mdv = —rmudt

There are three unknowns in the above: m, v, and t. We can eliminate ¢ by expanding
mdt = (dm/dt) dt = dm, which gives

dv_ _dm
u o m
v—vy = —ullogm —logmy]
mo
vo= wﬁ—ulog(—)
m

The final speed depends on the exhaust speed and the ratio of initial to final mass. Clearly,
the less mass left over, the larger the final speed. Note that 1 does not enter; it does not
matter how quickly you expel the mass. This is sensible, as the thing that sets the final
momentum is the total momentum of the gas that has been expelled. The rate at which it
was expelled is irrelevant.

The above differential equation could also have been written
dv dm dm

Ta T Yar dt

The right side is referred to as the thrust and has units of force. The left side looks more

like mass x acceleration. The thrust is the effective force on the rocket due to expulsion of
gas at rate m with speed wu.

=Uu

Since the final speed of the rocket depends only logarithmically on mg/m, gaining final
speed by simply trying to increase this ratio is a losing battle. A better way to do it is to
use a multistage rocket. Let

mg = initial mass
mg = mass of first stage payload
mp = mass of first stage fuel container (empty)
mi = mg+my
v1 = final speed of first stage
m. = mass of second stage payload
mg = mass of second stage fuel container (empty)
ma = Mme+mg
v9 = final speed of second stage
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Then the speeds are all related by

v, = v0+ulog<20>
1

vo = v+ ulog <ma>
m2
= vy+tu [log <m0> + log (ml)]
mq mo

= v+ ulog <:Z?Z;L:>

Since m, < my, the advantage is not gained directly by jettisoning the empty fuel container
and engine my. Rather the advantage is gained because now ms can be much smaller than
it would have been possible to make m, compensating for the lost factor mg,/m;.

Now, let’s repeat the problem in the presence of simple uniform gravitational field g. In the
presence of an external force —m g, our equation of motion for the system is

dp
N (€A
dt e
p(t+dt) —p(t) = —mgdt
mdv+rmudt = —mgdt
dv = —[mu+g}dt
m
dv = —[E—Fg}dm
m  m

where we have eliminated ¢ in favor of m again. We integrate to find (remembering 1 < 0):

m md !/
Vo= vo—i—‘(,}/ dm' —u Trf
|m‘ mo mo m
= Uo—i(mo—m)—i—ulog(@)
|7 m

= vy—gt+ulog (%)

where in the last step we made use of the fact that the mass loss is constant so mo—m = | t|.
So, the solution is pretty straightforward — same as the one in the absence of gravity, but
there is an additional deceleration term due to gravity.

Angular Momentum, Conservation of Angular Momentum, External and Internal
Torques

We consider the angular momentum of a system of particles. Let the position of particle a
be

7, = R+3, (1.21)

where R is the position of the center of mass and §, is the position relative to the center
of mass. Since R may experience acceleration, S, can be in a noninertial reference system.
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1.3. DYNAMICS OF SYSTEMS OF PARTICLES

We have to be careful which coordinates Newton’s second law is applied to. The angular
momentum of particle ¢ in the inertial system is

La = Fa X ﬁa
Let us of course write out the total angular momentum:

I=SF. = Y ixp
a

a

= Y i xmai,
Y () < (4 £)
_ ima[(mﬁp(mga)+(§ax§)+(§ax§a)}
Consider the middle two te:ms:

Zma[<ﬁx§a)+(§axﬁ>} = Rx Zm“‘?‘l Zma§a

Since 3, is referenced to the center of mass, by definition the quantity ), m, 5, vanishes.

+ x R

Zmas?a = Zma<Fa—ﬁ>:Mﬁ—M§:0
a a
So our expression for L simplifies to
oo S [(Fx i)+ (x )]
a
— Rx MRS S xmad
a

L = RxP+Y §.xmg5, (1.22)
a

Thus, the total angular momentum is the sum of the angular momentum of the center of
mass and the angular momentum of the system relative to its center of mass. Remember
that the center of mass system is not necessarily inertial, so ma§a, which looks like a linear
momentum, may not behave reasonably. It is best to not call it a linear momentum.

The next obvious question is — what does Newton’s second law tell us about L? We know
A AT
a a
— ZFa X Fée) +Zfab

a b#a
= ZFaXﬁée)"i' Z [Faxﬁb"i_Fbel;a
a a,b,b<a
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where in going from the second to the third line we have regrouped the terms in the sum
over particle pairs. The first term is obviously due to external torques while the second term
corresponds to internal torques. The weak form of Newton’s third law gives ﬁ,a =— ﬁb, SO
we can rewrite

L = Y fuxFEO+ Y (fa—1) x fu
a a,b,b<a
= Zfaxﬁée)—l— Z Fabxf;b
a a,b,b<a

Now, if we use the strong form of Newton’s third law, the second term vanishes because
fap is directed along 7,;,. So we have a version of Newton’s second law:

[ - S A

= Z N = N© (1.23)

So, when the forces are central (and the strong form of Newton’s third law holds), we have
that the change in the total angular momentum of the system is determined by the total
external torque and that the internal torque vanishes. When the external torque vanishes,
the angular momentum is conserved.

Important Note: Note that the angular momentum and forces are defined in the original
inertial reference frame, not the center of mass frame. This is because the angular
momentum of the center of mass would vanish in the center-of-mass frame (B = 0 in
center-of-mass frame).

Kinetic Energy

Let us now consider the concepts of work and energy for a system of particles. Consider
the work done a system in moving from configuration 1 with coordinate positions 7, 1 to
configuration 2 with coordinate positions 7, 2. The work done is

2
Wiy = Z/ F, - d7,
a 1
_ Z p¢21,2 B pg,l
2mg  2myg

a
2
pa2 Pa1
= — — =Ty - T
2 o 2am, =N

where the kinetic energy has been defined in the obvious fashion. Let’s write this out in
terms of the center of mass coordinates, and assuming the mass of the particles do not
change:

Pa = ma?a:ma(é"i‘ga)
D, = m2R2+m3$2+2m2é-§'a
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So then

P2
2myg

a
= Y BN Sma Y ma,
a a a

1 . 1 . 5o d o
= 2MR2+XCL:2maSZ—|—R-dtZa:masa

The next-to-last step assumes the m, are fixed in time. The last term in the last line
vanishes because the 5, are defined relative to the center of mass. So we have

1. 1
T = §MR2+Z§ma5§ (1.24)
a
P? 1
- m‘f‘ 2ma3a (125)

The total kinetic energy is the sum of the kinetic energy of motion of the center of mass of
the entire body and the “internal” kinetic energy of the body. Note that we can write the
first term in terms of the center of mass momentum, but we do not write the second term
in terms of momenta relative to the center of mass because the center of mass reference
frame may not be inertial. Momentum relative to the center of mass can be a useless (and
misleading) quantity.

Potential Energy and Conservation of Energy

Returning to the work equation given above, let’s split into terms for the external and
internal forces and assume they are both conservative:

2 —
Z /1 fab'dfa

a,b,b#a

2
Wiy = Z/ F®) - i, +
a 1

Note that the gradient is with respect to 7. U, and Uy, need not be related in any way.
The first term is easy to integrate, giving

2
-y /1 VolUa - diy = > [UalFat) — Ua(a2)]

The second term is more difficult because it is not obviously a perfect differential. We can
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reorganize the sum and simplify by grouping terms for a given particle pair:

2 2
S [ = % [ [faedn o+ fuein

a,b, b#a a,b,b<a

2
= > /lf;b-[df’a — d7)
2

a,b,b<a

= Z [ﬁab(rabJ) - Uab(rabg)

a,b,b<a

where in the second step we have made form of the weak form of Newton’s third law and
in the last line we have used the strong form to rewrite the line integral as the pairwise
potential energy Uqp. Tt is not obvious at this point that this new pairwise potential energy
we have just defined as the line integral of the central force over the difference coordinate
Tqp 1s the same thing as our original single-particle definition of potential energy. But we
can see the equivalency by working from the original definition:

Uab(Ta,2:T0,2) = Uab(Ta,1,761) = Uab(Ta,2:70,2) — Uab(Ta,2,Tp,1)
+Uab(Ta,2,T01) — Uab(Ta,1,751)

b2 _, Ta,2 _,

= - fba(Fby Fa,Q) . dfb - fab('F‘aa 7?‘b,l) : dFa

—

Tb,1 'Fa,l

Fb,2 N Fa,Q =
= [ Jav(Ta2,7p) - diy — [ fab(Ta; Th1) - da
Tb,1

Ta,1

Ta,2—Th,2 Ta,2—Tb,1
= - / fab(rab) Tab * drab - / fab(rab) Tab - drab
2

a,2—Th,1 Ta,1—Th,1

Hab,l

= Uab(rab,2) - Uab(rab,l)

In going from the second line to the third line, we make use of the weak form of Newton’s
third law. In going from the third line to the fourth line, we make use of the strong form
ﬁ;b(f’a, ) = fan(|Tap|) Tap and also change variables to 7. Going from the fourth line to
the fifth line simply makes use of the fact that the lower limit of integration on the first
term and the upper limit of integration on the second term are equal, and also we use
Tap = Ty — 7. The final step makes use of the fact that the integral only depend on 7.
The point made by this derivation is that the pairwise the expression for the potential
energy U (Tab2) — U (Tap,1) is indeed the same as the expression one would expect from the
single-particle definition of potential energy as long as the strong form of Newton’s third

Fab,Q
= - / fab(rab) Tab * drab
7

law holds.
So, the total work done is
Wiz = 3 [Va(Fan) = UalFa2) + Y [Tas(rant) = Oaplrnz)]  (1.26)
a a,b,b<a
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and so we have
Ty —-T1 = U; —U;
Ey=T+Uy; = Th+U=F

i.e., we have total energy conservation. We have assumed only that all the forces are
conservative and that the internal forces are conservative and central.

We separate the potential energy into two terms:

U = 3 Ud(ia) (1.28)
vho= ﬁab(rab):% > Uaw(ra) (1.29)

a,b,b<a a,b, b#a

In general, U® need not be constant in time. We define a rigid body as one for which
the distances rq, are constant; displacements di,;, during motion are always perpendicular
to 7. Since we have earlier assumed the strong form of the third law — i.e., central forces
— then this immediately implies ﬁ;b - dry, = 0 for all displacements d7,;,. Hence, no work is
done by the internal forces and therefore U remains constant. Since constant offsets in
potential energy have no effect on motion, the internal potential for such systems can be
ignored: all motion is due only to external forces.

Example 1.12

A projectile of mass M explodes in flight into three pieces. The first mass m; = M/2
continues to travel in the same direction as the original projectile. The second mass mo =
M /6 travels in the opposite direction and ms = M /3 comes to rest. The energy E converted
from chemical energy of the explosive to final state mechanical energy is five times the initial
kinetic energy of the projectile. What are the velocities of the three pieces?

We begin by writing the final velocities in terms of the initial one:

U1 kv
vo = —kot
vg = 0
Conservation of linear momentum gives us
MU = myt+meth+msvs
oo M M
ko = 3k —6
Conservation of energy gives
6%MU2 = %mlv%—i— %mgvg—f—%mgvg
6 = %k% + é k3

Inserting the result for ko into the conservation of energy equation gives
36 = 3kI+ (3K —6)?
36 = 3k¥4+9k% — 36k +36
0 = kI -3k
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Clearly, the solution is k1 = 3, k2 = 3, so

v = 37
vy = —3U
v3 = 0

Example 1.13

A rope of uniform linear density A and mass m is wrapped one complete turn around a
hollow cylinder of mass M and radius R. The cylinder rotates freely about its axis the
rope unwraps. The rope ends are at z = 0 (one fixed, one loose) when point P is at § = 0.
The system is slightly displaced from equilibrium (so motion will occur). Find the angular
velocity as a function of the rotation angle 8 of the cylinder.

+Z

We are trading the potential energy of the rope for the kinetic energy of the rope and
cylinder. Let o be a parameter that describes the position along the rope, 0 < a < 271 R
where 27 R is the length of the rope. a = 0 at the end that is fixed to the cylinder. The z
position of the rope as a function of the angle § and the parameter « is

{ Rsin 2 — (0+ %)] 0+ % <27

#(6; ) -RO+(27R—0a) O+ %>27m

Some explanation of the above form is necessary. The angle 6 gives the angle of the start
of the rope. The angle a/R is the angle between the start of the rope and the position «.
Therefore, 6 + 7 gives the angle of the the position « relative to the ¢ origin, for the part
of the rope that is on the cylinder.

e The cutoff point between the two forms is where the rope begins to unwind off the
cylinder. This occurs for a such that the angle of the position « is 27. As explained
above, the angle of the position « is § + %, so the cutoff is at 6 + 7 = 27,

e Before the cutoff point, the z coordinate of position « is just the z coordinate of a point
on a circle of radius R and at angle 6 + %, with an appropriate change of coordinate
to a counterclockwise angle. The counterclockwise angle is 2m — (6 + %). Hence, the
z coordinate is Rsin [2m — (0 + £)].

e After the cutoff point, the rope just hangs straight down. The position of the end
of the rope is the amount of the rope that has unwound. The amount of rope that
has unwound is R because 6 is the angle of the start of the rope on the cylinder.
Therefore, the z coordinate of the end of the rope is —R6. A position « along the
rope is at a distance 27 R — « from the end of the rope (recall, 27 R is the length of
the rope). So the z coordinate of the position avis —R6 + (27 R — «).

42



1.3. DYNAMICS OF SYSTEMS OF PARTICLES

We do not need to calculate the potential energy completely explicitly. We know that when
the rope is fully wound, the potential energy vanishes because there is as much rope at +z
as at —z. So we only need to correct for the part that unwinds and hangs vertically. The
potential energy is thus

B 2R RO . ,8
Uue) = /QﬂRRada/\g[—RG—i—@ﬂR—a)]—/o dﬁ)\gRsm<27r—R>

In each term, the integrand is the product of the z position, the mass density, and the
acceleration g, which gives the potential energy of the differential element of length da.
The first term is for the hanging rope. The second term is the potential energy that would
be present if the rope remained wound around the cylinder between angles 0 and 6 (0 and
RO in rope length). We use a different variable 3 to distinguish from «. Thus, instead of
calculating the full potential energy of the rope, we calculate the part that is due to the
unwound portion of the rope.

We can simplify the first term by changing variables to u = —R 6 + (27 R — «); the limits
of integration change to 0 and —R 6. Continuing onward:

RO

0

= Ag {—; (RO)? — R? cos(2m — 0) + R? cos(27r)}

—R6O
ue) = )\g{—/o duu—RQCOS(Zw—%)

2
= —AgR2{02+cos9— 1}

The kinetic energy is the sum of the kinetic energies of the rotating cylinder, the rotating
rope, and the falling rope:
1 N2 1 N2 1 N 2
K@) = ;M (Re) +5AR(2T ) (Re) +5 AR (Re)
where, for the last term, we could simply take the rope velocity to be the velocity of the
cylinder where the rope leaves the cylinder. Simplifying:
1 N2 1 N 2
K@) = ;M (Re) +5m (Re)
Initially, the total potential energy vanishes (because as much of the rope is at +z as at —z)

and the kinetic energy vanishes (because the angular velocity vanishes). So conservation of
energy gives

0 = U®) +K(©)
2

1 2
)\gR2{92—|—0080—1 §(M—}—m)(R9)

——
I

i 2
62 = ]\jigm {92—1—0050—1}
92 = %{GQ_FQCOSH—Q}
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Example 1.14

(Thornton Example 9.2) A chain of uniform linear mass density A, length b, and mass
M = b\ hangs from two points A and B, adjacent to each other. The end B is released.
Find the tension in the chain at point A after the end B has fallen a distance z by (a)
assuming free fall and (b) using energy conservation. You should treat the chain as follows:
the portion above the bend point on the side toward end A is stationary. The portion
above the bend point on the side toward end B falls all with the same velocity. The time-
dependence is in the length and velocity of the falling portion. Neglect the bend region —
assume the bend is perfect and instantaneous.

-

A B A

—_— ]
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&

&

- A  E mm m m

==
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For both solutions, first note that the length of the portion of the chain that is fixed and
the length that is falling is

b—=z
2

lfi:ved
b+ z
2

lta = b—lfizea =

That the above formulae are correct can be seen as follows. First, b + |z| = b — z is the
total length from A to the initial position of B including the gap z. (Remember, z < 0.)
So (b — z)/2 is half that length, which gives the length from A to the bend point, which is
the portion of the chain that is fixed.

Also, in order to find the tension, we will need to use the equation of motion for the center
of mass of the chain:

P = —Mg+T

The momentum of the chain is

P = Ajayi=A (bgz> 5
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where Z is the speed of the falling end (and therefore of the entire falling section). So we
have

T = Mg+P

. b+Z . 1.2

(a) Assume free fall. Since we assume that the falling part of the chain is in free fall, it

holds that
Lo
= ——gt
z 2g
z = —gt=+/—-2gz
2= g

which gives

-l (5

= Mg+%(—b—3z)

Mg 3z
= —|——+1
2 (-5 )

When the chain is just released, z = 0 and 7' = M g/2. When the fall is finished and
z = —b, we have T'= 2 M g. The results for the tension are somewhat nonsensical; as
we will see, this is due to the assumption of free fall being incorrect.

(b) Now we solve by energy methods. Finding the kinetic energy as a function of position
gives us Z, we can then differentiate to find Z and insert into the above equation for
the tension. We find the kinetic energy by requiring conservation of energy.

The potential energy of the chain at any given z coordinate is found by integrating
the potential energy of small mass elements dm over the chain. Let 6 be a parameter
that runs from 0 to b, starting at A, that indicates where the mass element is along
the chain; 6 is independent of how far end B has fallen. Let Z(6) be the z coordinate
of the element . We know that

z — —0 0 < lfia:ed
Z(G) B { (9 - lfi;ted) - lf’i:ced 0 > lfimed

The contribution of an element df at 6 to the mass and potential energy are

dm = X\db
dU = dmgZz(0)
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so we then have

b
U(z) = / dOXgZz(0)
0
[ lfz'aced b
= )y —/ d09+/ df (6 = 21 fizea)
i 0 lfi:ced
[ lfi:]ced b2 - lj%izced
g 5 2 lfmed (b lfz:ced)
- b2
= Ag l?‘ixed_2lfix€db+2:|
r ¥ bz oz 9 i
= (G5 T) @]
[ b2 bz 2
=AMttty ]

The kinetic energy is given by the mass of the part of the chain that is falling and the

speed at which it falls:

Now, we use conservation of energy,

= Myau 2

BN

A+ z) 22

noting that K = 0 when z = 0:

U) = K+U(z)
v? 1 9 ¥oobz 22
—)\gz = Z)\(b+2)z +>\g[—4+2+4}
—g[2bz+z2] = (b+2)2?
2 2bz + 22
= btz
Differentiating yields
915 — _ —26—1—2z_2bz+z2 5
N g_ b+ z (b+2)?
L _2_26z+z2 B
- Y (b+ 2)?
o~ gfy12bet s
S A N (F S




1.3. DYNAMICS OF SYSTEMS OF PARTICLES
Now, insert into our previous equation for the tension in terms of z, Z, and % to find

b+ 2z 12bz+ 22 1 2bz + 22
T = M A I o iy [ (R e
9+A[< 2 >(g>[ 2(b+z)2]+2( 9512 ]

1 2 2 2
— Mg-g 1(b+2)* 12bz+42" 12bz+z
2 b4z 4 b+z 2 b4z
1 Ag 2 2

b(b+2) 1 Ag

A9 4b+z[b+6bz+3z]
1 Ag 2 2
1y, 2V 20234
My 1 2 2
= 2~ _[2b*—2bz—
4 b(b+z)[ 2= 377]

The two results for the tension are not the same! In the free-fall solution, the tension
increases linearly as the chain falls, simply reflecting the fact that the amount of mass under
tension increases linearly with the how far the end B has fallen. In the energy solution, the
tension becomes infinite as z — —b. Experimentally, it has been determined that the latter
solution is closer to reality (Calkin and March, Am. J. Phys, 57: 154 (1989)), though of
course the tension does not become infinite (just really large, 25 times the chain weight).

The solutions differ because the free-fall solution makes an assumption about the motion
of the chain while the energy method does not need to. This is seen by the fact that the
relation between Z, Z and Z is more complicated in the energy solution. Experimentally, it
is seen that the latter relation is closer to reality and that the chain falls faster than free-fall
because some tension is communicated through the bend and exerts an additional downward
force on the falling part of the chain. In the energy solution, we see this additional force as
the second term in Z, which always makes |Z| larger (because z < 0).

1.3.2 The Virial Theorem

Here we prove the Virial Theorem, which relates the time-averaged kinetic energy for a bounded
system to a quantity called the virial, which is just a time-averaged dot product of the force
and position of the various particles in the system. In its basic form, the virial theorem does
not have a clear intuitive interpretation, though it is certainly useful. When one considers the
specific case of conservative forces that depend on particle radius, the virial becomes simply related
to the potential energy of the system. Thus, we obtain a time-averaged relation between kinetic
and potential energy. This is an incredibly powerful statement because it doesn’t require specific
knowledge of the particle orbits.

Generic Version

Consider an ensemble of particles, whose positions 77, and momenta p, are bounded, meaning
that there are upper limits on both. This means that the particles are both confined to
a particular region of space and also that they never approach a force center that might
impart to them infinite momentum. Define the quantity

S=) P Ta
a
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Calculate the time-averaged rate of change of S:

sy L[S,
dt /| 1)y dt

The integrand is a total derivative, so the integral is done trivially:

as\ S (1) —S(0)
dat / T

Since we assumed 7, and p, are bounded, it also holds that S is bounded. Thus, by letting
T — 00 — i.e., by taking the average over an arbitrarily long time — we can make <‘fl—f> — 0.

Let us explicitly calculate <%> and use the fact that it vanishes:

0= (%) - <z [ﬁa-mﬁa.faD _ <zp> N <zp>

a

The two terms can be time-averaged separately because time averaging is a linear operation.
The first term is just 27, twice the kinetic energy.! The second term may be rewritten
using the force on particle a, F,, using Newton’s second law. We may thus write the above
as

(T) = —% <Z Fy- Fa> (1.30)

The quantity on the right side is known as the virial. The key result is that the time-
averaged kinetic energy is related to a time-average of a quantity involving the forces and
positions. The virial theorem is similar to the work-energy theorem, which relates the work
done by a force on particle to the particle’s kinetic energy and which is also derived using
Newtons’ second law, but the virial theorem pertains to time-averaged, summed quantities
rather than to individual particle instantaneous quantities. What good does this do for us?
The key is the time-averaging and summing over particles, which lets the virial theorem be
used in unexpected ways.

Example 1.15: Ideal Gas Law

We can, for example, use the virial theorem to prove the ideal gas law! Consider a gas
of temperature O confined to a box of volume V. The temperature is defined in terms of
the average (over particles) kinetic energy of the gas particles, so we can relate the total
time-averaged kinetic energy of the gas to the temperature:

3
(TY==-Nk©O
2
where N is the number of gas particles. To calculate the virial, we need to evlauate the
time average of Fy - 7. The gas particles move freely except when they hit a wall, when an
instantaneous force is exerted to reflect them from the wall. Let us write the sum for virial,

!Note: there is no ambiguity here about how to calculate T. P, and 7, are not generalized coordinates, they are
the Cartesian vectors describing the particles (think back to elementary mechanics). It always holds that pu = mq 7%
and that T = %ma 7"3, hence P, - 7o = 27T.
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Yo F, - Ty, as an integral over the walls of the box. The average contribution to the force
exerted on an area element dA of the wall by the gas at any instant in time is

dF = A PdA

where 7 is the outward normal at the wall. By Newton’s third law, the force exerted on the
gas by the wall is the same modulo a sign. The sum for the virial is then just an integral

over the walls:
1 - 1 P
—2<Ea Fa'ra>:2/spn'7'dx4

where S indicates the closed surface defining the box walls. We may do the surface integral
using Gauss’ theorem:

/ﬁ-FdA:/ﬁ-dezsv
S 1%

Thus, we obtain

3
— NkO=PV

which is the ideal gas law. Note especially how we did the derivation using only information
about the time-averaged force: we didn’t need to know any details about the interaction of
the particles with the walls except the average force per unit area, P, due to that interaction.

Conservative Power Law Potentials

If we now consider the specific case of particles being acted upon by a conservative force
field that is derived from a potential energy that is a power law in particle radius from the
center of force, we can evaluate the virial more explicitly. That is, we assume

F, = =V, V(7))

where V(7) is the potential energy and where V, is the gradient with respect to particle
a’s position vector, 7,. Note that we are assuming that all the particles move in a single
potential energy that is a function of the particle position.> This assumption allows us to
write the virial as

_% <za: ﬁa ' Fa> == % <za: Fa : 6av(f'a)>

Now, assume V(7,) = k7. Then, VoV (7,) = nkr? ' #, and the virial becomes

<Za:ﬁa.77a> = % <za:rankrg_1> = g <za:k7"g>
= 2<%:V(Ta)> = §<U>

2Strictly speaking, pairwise central forces do not satisfy this form. But, for an ensemble of many particles, it is a
very good approximation to say that each particle moves in a potential generated by the whole ensemble that looks
like a potential fixed to the center of mass of the ensemble, which we take to be at rest. The ensemble potential is
quite close to independent of the position of any single particle.

1
2
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where U = ) V(r,) is the total potential energy of the system. Thus, the virial theorem
reduces to

n
(1) =5 {U) (1.31)
That is, we obtain a very simple relation between the time-averaged kinetic and potential

energies of the system.
Example 1.16: The Virial Theorem in Astrophysics

The virial theorem is used widely in astrophysics because of the dominance of gravity
and because it relates directly observable quantities — kinetic energy and temperature — to
unobservable quantities — potential energy and mass. We assume gravitational forces, so

n = —1. If we divide the virial theorem by the number of particles, we have
1 11
T = = —
v (T =5 KU)]

(The sign in n has been canceled by the use of the absolute value sign.) That is, the kinetic
energy per particle is half the potential energy per particle. We can use this in different
ways to measure total masses of systems:

o If we are looking at a gas cloud, we can measure the gas temperature © by its free-free
photon emission.® That gives us (T). The potential energy can be rewritten in terms
of the cloud mass M, the typical gas particle mass p, and the cloud-averaged particle
radius. We denote this latter averaged radius as, somewhat uninformatively, the virial
radius, R,. The virial theorem then tells us

3 1 11 1 1\ 1 1
o= ML

v

Note that the averaging is done on 1/r, not on r. A typical application would be to
use the virial theorem to measure the cloud mass. One has to assume that the cloud
is spherically symmetric and optically transparent to its own free-free emission; one
can then infer from the observed photon radial distribution the shape (but not the
normalization!) of the cloud’s density profile. From the shape of unnormalized profile,
one can calculate the virial radius. The gas is almost always mostly ionized hydrogen,
so p is known. That leaves the cloud mass as the only unknown. Thus, one can infer
from only the photon emission and the virial theorem the cloud mass without any
absolute knowledge of normalization of the photon emission in terms of the density.
That’s rather remarkable!

e If we are looking at a galaxy, we can measure the line-of-sight velocity of a subset
of stars by redshift of known spectral lines. The same technique works for galaxies
orbiting in a galaxy clusters. Assuming isotropy of the object, the line-of-sight velocity

3Free-free emission is just the process of electrons scattering via the Coulomb force off ions in a plasma, a gas
that is hot enough that the bulk of the atoms are ionized. Since the electrons are accelerated in these scattering
events, they emit light in the form of a photon. The typical photon energy depends on the plasma temperature; for
the very hot plasma in galaxy clusters, which is at millions of degrees K, the photons are keV-energy X-rays. In our
own galaxy, the emission is usually in the radio, with wavelength of 1 cm and longer.
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and the velocity transverse to the line of sight will be equal on average (up to a v/2).
Assuming all the orbiting objects in the larger object are of roughly equal mass, the
kinetic energy per particle is simply related to the rms of the measured line-of-sight
velocity:

1 1 3
AT <T> = 7mv?2)d,rms -5 va

92 9 ld,rms

where we relate the full 3-dimensional rms velocity to the measured one-dimension rms
velocity assuming isotropy. We can do the same kind of thing as we did for the gas
cloud, except now m will drop out:

3 1 11 1 1 1
GM
BU%d,rms:Ri

Since the test particles whose velocities we measure are discrete objects, we can just
make a plot of their number density as a function of radius and from that calculate
the virial radius. We can thus determine M only from our observations of the test
particle positions and line-of-sight velocities!

1.3.3 Collisions of Particles

One useful application of the concepts we have described above for systems of particles is in the
study of collisions of particles. For an isolated system of particles with no external forces acting on
it, the total linear momentum is conserved. If the masses of the particles are fixed, the velocity of
the center of mass is constant. The reference frame that moves with the center of mass is therefore
inertial, and so we can use Newtonian mechanics in this reference frame. Frequently, working in
this frame is much easier than in other frames because the algebra is reduced (no need to carry
around an extra velocity) and symmetries are more easily apparent.

Transforming between Lab and Center-of-Mass Reference Frames

Start with some notation:

mi,me = masses of particles
initial and final velocities of particle ¢ in lab system

JEN
U, Vg
o

u;,U; = initial and final velocities of particle 7 in cm system

Ty, T), = total kinetic energy in lab and cm systems

T;,T; = Kkinetic energy of particle ¢ in lab and cm systems
V = velocity of cm system with respect to lab system
v; = deflection angle of particle ¢ in lab system

(angle between initial velocity of particle 1
and the final velocity of particle 1,
COS(wi) = '171 . 'l_[l)
# = deflection angle in cm system
(same for both particles by definition of cm system)

Qualitatively, scattering of two particles in the lab and center-of-mass systems looks as
follows (we choose mg to be initially at rest in the lab system to provide the most extreme
difference between lab and cm systems):
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lab frame cm frame
m . m m . L, m
1 i, 2 T i, 2
0 =el— ® 0 =l e @
- ﬁg =0 -
Vv V=20

Because the total momentum vanishes in the cm system, the two particles must exit the
collision with collinear velocity vectors. Thus, the final state is parameterized by only one
angle #. When transformed back to the lab system, there are now two angles ¥ and 9
reflecting the degree of freedom of the value of the total velocity V. Note that the vector
1% fully describes the components of ¥; and ¥ that are not along the line between the two
particles since 7; = V + ¥} and we know the ¥} are collinear.

Let’s consider the problem quantitatively. The center of mass satisfies

miri +mety = MR

mity+motly = MYV

In the case @s = 0, which we can always obtain by working in the rest frame of my, we have

- my Uy
174 o
my + ma
This is the velocity at which the center of mass moves toward ms. Since the center-of-mass
is stationary in the center-of-mass frame, we have @, = —V. We also have
ma Uy

=i -V=——-
mi + mo

Elastic Collisions: Kinematics

We now specialize to elastic collisions, wherein the internal kinetic and potential energies
of the colliding bodies are unchanged. We also assume there are no external potential
energies, so that the only energies are the “external” kinetic energies of the problem, Because
we assume the internal energies are unchanged, conservation of energy implies conservation
of mechanical energy. Because we assume no external potentials, conservation of mechanical
energy implies conservation of “external” kinetic energy. For our above two-particle collision
problem, conservation of linear momentum and energy in the center-of mass frame yield:

—/ =/ —/ —/
0=mi U] +matly = MU +ma¥
1 1
2 2 2 12
—miuy +-mau = —mivy" + <-mav
2 L 2 2 L 2
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Solving the first equation for @@, and o, and inserting into the second equation gives:
1 m? 1 m?
- [ml + 1] uf = - [ml + 1] v
2 mo m

So, v{ = u} and therefore v}, = wu). The kinetic energy of each particle is individually
conserved in the ¢cm frame! In the cm frame, we have

v, = (% cosh+ 7 sinh) = e Z cosf + 1y sinf
1 1( Y ) my mz( Yy )
v = —ub (& cosf+ 9 sinh) = S Z cosO + 1 sinf
2 2( Yy ) my m2( Y )

We transform back to the lab frame by adding V:

o — .| mou m1 Uy . Mmour .

=01+ V = cosf + +y sin 6
mi + mso mi + mso mi + mso

N — o miuj miu . Mmiux .

h =0+ V = &|- cosf + -4 sin 0
mi + ms m1 + mgo m1 + ms

We can find the angles 11 and s:

tan 1) sin 0
any, =
% + cos 6
sin @
tangy = 1 —cosf

For all cases, tanty > 0 so 0 < 99 < 7/2. Particle 2 always forward scatters in the lab
frame, as one would expect since it starts at rest. The behavior of particle 1 depends on
whether m; > mo, m1 = mg, or m; < meo. Let’s consider the cases separately:

e m1 = mo: The solution is quite simple in this case:

tany = ﬂ = tang
1+ cosf 2
tan Yy = ﬂ = cotg
1—cosf 2
For this particular case, ¥1 + 2 = 5. The two particles emerge in the lab frame at

right angles.

e m1 < mg: in this case, the denominator of tan can be both positive and negative,
while the numerator is always positive (by convention). Thus, there can be both
forward and backward scattering of particle 1.

e m; > mo: In this case, the denominator of tan; can only be positive, so for any
cm scattering angle 0 < 6 < m, we have 0 < ¢ < 7/2. There can be only forward
scattering of particle 1.

We can interpret the above in terms of the relative size of the cm speed V' and the scattered
speed of the first particle in the cm, v]. The ratio mi/mge = V/v]. Since 0, = V + ¢, the
size of the ratio V/v] relative to 1 determines whether or not #; can be negative.

We can derive another fact about the scattering by considering the solution geometrically.
Since ¥ = V + ¥}, the three vectors form a triangle. The possible shapes of the triangle
depend on the value of V/v] relative to 1:
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my < mp mjp > np

When V/vi = mj/mg < 1, there is only one solution for @} for a given value of ;. For
V/v} > 1, we see that a single value of ¥ can be derived from two different values of 6. It
is not necessarily obvious from the formula for tan); that this would be true.

If m; < mg, then tan; ~ tan @ or 91 ~ 6; the lab and cm frames approximately coincide.
For my > ms, we have tany; < 1 for all 6§, so mo is always scattered almost along the
incoming particle velocity vector regardless of the size of the incoming particle speed.

Let’s calculate the maximum value of ;. Consider the three cases separately:

e m; = mg: Recall that ¢; = 0/2 for this case, so clearly V1 mae = 7/2.
e my < myo: Backward scattering in the lab frame is allowed in this case, S0 91 maz = 7.

e m7 > mo: This is the most difficult case because backward scattering in the cm frame
will still be forward scattering in the lab frame. We can figure it out in two ways:

— Geometrically: there is a simpler geometric derivation: There are two center-of-
mass-frame scattering angles 6 that result in the same lab frame angle ;. These
occur at the two intersection points with the circle of radius v of a line that makes
angle ¢ with V. As 11 increases, these two intersection points move together
until they become identical. At this point, the vector ¢ is tangent to the circle.
A tangent to a circle is normal to the radius vector to that point, which is 7}. So,
we have a right triangle with sides v} (subtending ;) and v; and hypotenuse V.
So, clearly,

/
) mo

: 1
S 77b1,max =35 =

Vv ma

mjp; > np
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— By calculus: we saw before that 1¢; stays in the first quadrant for m; > mg, so
maximizing 1; corresponds to maximizing tant;. Let’s take the derivative and

set to zero:
d tan cosf . sin2 0
— tany; =
do ML 4 cosf 2
ma (m + cos 0)
ma2
% cos + cos? 0 + sin? 6
- my
my T cos 0
my
B 1+ o cosf
M cos @
m2
Requiring the above to vanish implies cos@ = —mg/m;. We then have
.2
9 sin® ¢
tan wl,mar - 2
my
<m2 + cos 9)
_m3
_ m3
- (m _ M)2
mo mi
mim3 —mj
2 2\2
(mf —m3)
2
mi —mj

Now we use some trigonometric identities to find sin ¥1 maa:

1
s 2
sin“ i S B
e 1+ C0t2 wl,max
1
- 2 2
mi—m
L4 Mo
m3
mi
. ma
S wl,max =
mq

The interpretation of this relation is: the larger the mismatch in masses, the more
forward-concentrated the scattering is.
Elastic Collisions: Energy

Recall earlier that we determined that the kinetic energy of each particle is conserved
individually in the cm frame, which is convenient. What happens to the kinetic energies in
the lab frame?
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First, we know that the initial kinetic energy in the lab and cm frames for iy = 0 are

1
Tg = §m1 u%
1
T, = 3 [m uf? + ma uf]
1 m% 2 m% 2
= = uy +m U
2 (m1 +mg)2 2 (my+mg)? !
_ 1 m1 1Mo )
- 2mq 4+ mo
_ m2__ T,
mi + ma

Note that this implies 7)) < Tp. The final cm energies are

T =

T, =

T +T5, =

Obviously, we will want to find the final lab frame energies in terms of the initial lab frame
energy. We can write

1 2
Ty 5mM1vy U]
2
1

T 1 2
Ty smiuy U

The law of cosines applied to the figure above relating v, ¥}, and 1% gives

v = v+ V220 Vcosyy
which then implies
Ty vi o v V2 nV
— = 5 =—5— —5 +2—5 cos
To u% u% u% u% ¥
2 2
m m vV
= (2 ) —(1 ) —1—2—12 cos Y1
mi1 + mso mi + ms uy
— \%4
_ Memm +2U12 cos Y1
mi + meo uy
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We can rewrite the third term easily. Recall that 7, = 0] + V. Since V has no y component,

it therefore holds that vy sin; = v} sinf. So we get

Ti me — My v}V sin@

— = + - cos Y1
T mi + ma u? siny

mo — My ™o mi sin 0

m1 + ms m1 + mg m1 + me tan s
m
mo — my mo my e Tcost
= 42 sinf —2————
mi + mo mi + me my1 + mse sin 6

= m27m1+2 1 e 2<ml+cose>
mi + meo (m1+m2) mo

2 2 2
ms—m5+2m mim
= 2 1 5 Ly 1772 20080
(mq 4+ me) (mq 4+ mg)

2
= 1- m1m22+2 e 20059
(m1 +ma) (m1 4 mo)
T1 2m1m2
—_ = 1 - —— 1—C059
Ty (m1+m2)2( )

We can write T1 /T in terms of the lab-frame angle also. To do this, we need to express
cos @ in terms of 1. Recall from earlier that

sin @

tan = —-—
1 % + cos

For notational convenience, let 7 = my/msy. Let’s manipulate the above:

.2
sin” 0
tan®¢yy = ————
an” Y1 (r + cos 9)?
(r+cosf)*tan®¢y; = 1— cos*f
cos? @ (tan? ¢y 4+ 1) + 27 tan® 4y cos@ + r?tanyy —1 = 0
cos? 0 cos ™2 Y1+ 27 tan? 1 cos B + r? tan? Y1—1 = 0
cos? 0 + 2r sin? 11 cosf + r? sin? P — cos® Y1 = 0
Apply the quadratic formula to find
1
cosf = 3 [—2 rsin? ¢ + \/4 r2 sintpy — 4 (r?sin® ¢y — cos? ¢y)

= —rsin?¢; £4/72 sin* ¢y — r2sin® ¢y + 1 — sin® ¢y
= —rsin®y; £ \/(r2 sin? ¢ — 1)(sin® ¢y — 1)
= —rsin®¢; £coshry/1 — r2 sin® Yy

1—cosf = 1+r [sin21/11icosw“/r_z—siHle]

57




CHAPTER 1. ELEMENTARY MECHANICS

Inserting this into our expression for 77 /7 in terms of 6, we find

T 2mqmo mj 2

— = ]1]-—= 1—1—— sin =+ cos ——sm

Th (m1 4+ m2)? mg o Vi m} v
m% + m% 2 m% 2

= — [sm 1 £ cos Yy m— — sin? 1/)1]
m?

(m1+mg)? (M1 +mg)? 1

2 2 2 m2
_ omy+m3 2m7 2 ms .o
— (my +mo)? + (m1 4+ ma2)? Sin” g F cos ¢ % s

_ mitm3
— (my +my)?
2m3 1mi 1 1/mi
(ml—i—mg)?[ 577171_5811 w +2 mf%—SID ﬂ)l
m2 . 1 1
Icoswulm—g—anwl—i—iCOSQ¢1—§COSQ¢1
1
_ m%—km%
(m1+m2)2
2
2m? 1m3 1,., 5 1 mi
+—5 |—=—5 — = (SIn -+ cos + = —5 — sln COs
(m14+mg)? | 2m? 2( v1 vn) 2 m? 1 F cos ¢
2
11 m?

m% 2
— = —— = |cos¥ £/ —= —sin“ Y
To (m1 + m2)2 ¥ m% ¥

Notes on signs:

e We can see that the quantity under the square root sign is nonnegative and so always
defined. Recall earlier we proved that for m; > msy, the maximum value of sin; is
ma/my. So the quantity under the square root is nonnegative for this case. When
mg > m1, there will also be no problem because the maximum value of sin; is 1

e We need to specify whether to use one or both of the possible solutions indicated by
the £ sign. In the case m; < mg, we know based on our geometric arguments that
there can only be one solution. To understand which one to pick, let’s determine the
size of the square root quantity:

ma
m2
:>—§—sin21p > 1—sin®¢; = cos® Yy
my
= | —5 —sin?¢ > |cosi

Now, we expect the incoming particle to lose more and more energy as scattering
goes from forward to backward in the lab frame. Because mi < mso, we know that
backscattering is possible in the lab frame, and so 17 may take on values that yield

58



1.3. DYNAMICS OF SYSTEMS OF PARTICLES

cosy < 0. These two considerations lead us to choose the + sign: for ¢; = 0, both
terms are positive and take on their maximum values (when cos; = 1 and sin; = 0).
For backscattering, we have cosy; < 0 and so the two terms have opposite sign, making
Ty smallest for backscattering.
If my > meo, then we know there are two solutions from our geometric arguments
and so we should take both the £ solutions; there is no choice to make here. But,
of course, it is interesting to relate these two solutions to the center-of-mass picture.
As one can see from the earlier diagram, the outgoing vector 7 is longest (and hence
T) is largest) when the scattering is forward in the center-of-mass frame. Thus, the
+ solution corresponds to forward scattering in the center-of-mass frame and the —
solution to backward scattering in that frame.
If my = mg, then the square-root quantity becomes |cos);|. Taking the — solution
would give T7 = 0 for all i1, which is clearly nonsense. So we should take the +
solution, giving

T 4m?

To — (mi+ma)? cos” ¢y = cos” 1)

when my; = mas.

We can derive the kinetic energy of the recoiling particle in the lab frame in terms of the
cm and lab frame angles also:

P 1 Ty
o Ty
2
= 1- 1—Lm22(1—0059)
(m1 + ma)
2
= Lﬂ%(l—cos@)
(m1+m2)

To convert to the lab frame angle, we make use of the relation derived earlier:

sin 6
t = -
an; 1—cos@
.2
sin® 6
tan®epy = ——————
an” g2 (1 — cosh)?
o 1- cos® 0
(1 —cosf)?
_ 1+cost
~ 1—cosb
tan ey [1 — cosf] = 14 cosf
tan®ep —1 = cosf [1 + tan? wg]
tan?1)y —1 = cosfcos 21y
cos = sin?i)y — cos® iy
1—cos = 2cos® 1y
so then we find
TQ 4m1 mao 2
- = ————=—cos
TO (ml + m2)2 ¢2
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Notes:

e In the special case m; = mg, we have T} /Ty = cos? 1 and Ty /Ty = cos? 1Py = sin? ¢y
because 11 + 19 = 7/2 for this case.

e The center-of-mass scattering angle 6 and the ratio of input to output kinetic energies
are very simply related.

Example 1.17

A particle of mass m; elastically scatters from a particle of mass my at rest. At what lab-
frame angle should one place a detector to detect m; if it loses one-third of its momentum?
Over what range m;j/msq is this possible? Calculate the scattering angle for mj/mo = 1.

Our condition on the final state speed is

mivy = Smiu

3

The energy ratio between output and input kinetic energy is

1 2

T 5 My vy

T 1 2

To 5 M1 uj
Ui
ui

4

9

We equate this to our formula for the lab-frame scattering angle

4 2m1m2
- = 11— ———"—-(1—cosf
9 (m1+m2)2( )
2
| —cosd — o (mi+ma)”
18 mimo
2
cos) = —37(m1+m2) =Yy
18 myimeo

We want the lab angle, though, so let’s use the relation between cm and lab angle:

sin @
%—i—cos@
V1—y?

o

tany =

Because tan ¢ must be real, we require 1—4? > 0. Since y < 1 by definition, this corresponds
to requiring 1 +y > 0, or

5 2
L4 |2 B (matme)”
18 mimo

—522+ 262 —5

(=bz+1)(z—5)
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1.3. DYNAMICS OF SYSTEMS OF PARTICLES

The two roots are x = 1/5 and « = 5 and the inequality is satisfied in the range 1/5 < = < 5;
1.€.,

m1

< <5

Q| =

m2

That is, we can find the solution tant) given above when the mass ratio is in this range.
For mq1 = mo, we find

1
Y= 7

tanty = 11__(;/19/9)2:\/80/64: 5/4
Y A~ 48.2°

Inelastic Collisions

We conclude with a very brief discussion of inelastic collisions. These are collisions in
which linear momentum is conserved but mechanical energy is not because some of the
energy goes into internal motions of the colliding objects. Recall that conservation of total
linear momentum for a system required only that internal forces obey the weak form of the
third law, whereas conservation of mechanical energy required the strong form and that
the internal kinetic and potential energies be fixed. We must therefore adjust our law of
conservation of energy to be

Q+T1+1Ty, = Tll—i-TQ/

where @) represents the amount of energy that will be liberated (Q < 0) or absorbed (Q > 0).
A classic inelastic collision is the following one: A ball of putty is thrown at another ball
of putty and they stick together, continuing on as one body. Clearly, energy was put into
internal motion (heat, etc.) by the collision; the mechanical energy is not conserved.

One useful concept to consider when looking at inelastic collisions is that of impulse

— t2 —
P:/ Fdt
t1

The reason impulse is useful is that, though we usually do not know the details of f(t), we
can determine the total impulse, which gives the total momentum change. Or, vice versa,
we can find the force from the total impulse.

Example 1.18

A rope of linear density A is dropped onto a table. Let part of the rope already have come
to rest on the table. As the free end falls a distance z, find the force exerted on the table.

During a time dt, a portion of the rope v dt comes to rest, where v = |Z]| is the fall speed.
The momentum of the rope changes by an amount

dp = (Avdt)v = Av?dt

This is equal but opposite to the change of momentum of the table. The force on the table
due to this impulse is therefore
dp

Fimpulse = df

: =2 =2Xzg
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CHAPTER 1. ELEMENTARY MECHANICS

where the last step is made by making use of the kinematics of a freely falling object. If
the table remains stationary as the rope falls on it, the table must be exerting an equal but
opposite force back on the rope. The table thus exerts a total force on the rope

F:Empulse+Fg:3)\gZ

The first part of the force brings the portion of the rope z to rest, while the second term
keeps it from falling through the table under the influence of gravity.
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Chapter 2

Lagrangian and Hamiltonian
Dynamics

This chapter presents Lagrangian and Hamiltonian dynamics, an advanced formalism for studying
various problems in mechanics. Lagrangian techniques can provide a much cleaner way of solving
some physical systems than Newtonian mechanics, in particular the inclusion of constraints on the
motion. Lagrangian techniques allow postulation of Hamilton’s Principle of Least Action, which
can be considered an alternative to Newton’s second law as the basis of mechanics. Symmetry under
transformations is investigated and seen to lead to useful conserved quantities. The Hamiltonian
formalism is introduced, which is useful for proving various important formal theorems in mechanics
and, historically, was the starting point for quantum mechanics.
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CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

2.1 The Lagrangian Approach to Mechanics

The fundamental idea of the Lagrangian approach to mechanics is to reformulate the equations
of motion in terms of the dynamical variables that describe the degrees of freedom, and thereby
to incorporate constraint forces into the definition of the degrees of freedom rather than explicitly
including them as forces in Newton’s second law.

We discuss the basics of Lagrangian mechanics — degrees of freedom, constraints, generalized
coordinates, virtual work, generalized forces, the Lagrangian and Hamiltonian functions, and var-
ious methods to derive equations of motion using these concepts. This section follows Hand and
Finch Chapter 1, though in somewhat different order.

Be careful to realize that the Lagrangian approach is not independent of Newton’s second law;
the derivation of d’Alembert’s principle, the critical step in developing Lagrangian mechanics, relies
directly on Newton’s second law. We will come to a new formulation of mechanics in the following
section.

Throughout this section, we will work two examples alongside the theory. The first consists of
a point particle sliding on an elliptical wire in the presence of gravity. The Cartesian coordinates

of the particle satisfy
2 2
R
(atn) * (i)

We will at various points consider a and b to be time dependent or constant. The origin of the
coordinate system is the stationary center of the ellipse. The second consists of an Atwood’s
machine, as in Example 1.4, except we now allow the rope length to be a function of time, [ = [(¢).

o

]
..\

! a l’“la/- T

Examples to be worked alongside theory.
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2.1. THE LAGRANGIAN APPROACH TO MECHANICS

2.1.1 Degrees of Freedom, Constraints, and Generalized Coordinates

Degrees of Freedom

Obviously, a system of M point particles that are unconstrained in any way has 3 M degrees
of freedom.

There is freedom, of course, in how we specify the degrees of freedom; e.g.:

e choice of origin
e coordinate system: cartesian, cylindrical, spherical, etc.

e center-of-mass vs. individual particles: {7} or {R, 5, = 7 — R}

But, the number of degrees of freedom is always the same; e.g., in the center-of-mass system,
the constraint )", 5, = 0 applies, ensuring that {7} and {R, 5} have same number of
degrees of freedom.

The motion of such a system is completely specified by knowing the dependence of the
available degrees of freedom on time.

Example 2.1:

In the elliptical wire example, there are a priori 3 degrees of freedom, the 3 spatial
coordinates of the point particle. The constraints reduce this to one degree of
freedom, as no motion in y is allowed and the motions in z and x are related. The
loss of the y degree of freedom is easily accounted for in our Cartesian coordinate
system; effectively, a 2D Cartesian sytem in x and z will suffice. But the relation
between x and z is a constraint that cannot be trivially accomodated by dropping
another Cartesian coordinate.

Example 2.2:
In the Atwood’s machine example, there are a priori 2 degrees of freedom, the z
coordinates of the two blocks. (We ignore the x and y degrees of freedom because
the problem is inherently 1-dimensional.) The inextensible rope connecting the two
masses reduces this to one degree of freedom because, when one mass moves by a
certain amount, the other one must move by the opposite amount.

Constraints

Constraints may reduce the number of degrees of freedom; e.g., particle moving on a table,
rigid body, etc.

Holonomic constraints are those that can be expressed in the form
f(r1,7,...,t) = 0

For example, restricting a point particle to move on the surface of a table is the holonomic
constraint z — zp = 0 where zy is a constant. A rigid body satisfies the holonomic set of
constraints

7=l —ci; = 0
where ¢;; is a set of constants satisfying c¢;; = ¢;j; > 0 for all particle pairs 4, j. For the
curious: it is remarkably hard to find the etymology of holonomic (or holonomy) on the
web. I found the following (thanks to John Conway of Princeton):
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I believe it was first used by Poinsot in his analysis of the motion of a rigid
body. In this theory, a system is called “holonomic” if, in a certain sense, one can
recover global information from local information, so the meaning “entire-law” is
quite appropriate. The rolling of a ball on a table is non-holonomic, because one
rolling along different paths to the same point can put it into different orientations.

However, it is perhaps a bit too simplistic to say that “holonomy” means
“entire-law”. The “nom” root has many intertwined meanings in Greek, and
perhaps more often refers to “counting”. It comes from the same Indo-European
root as our word “number.”

Nonholonomic constraints are, obviously, constraints that are not holonomic. Hand and
Finch Chapter 1 Appendix A has a nice discussion. We present the highlights here. There
are three kinds of nonholonomic constraints:

1. Nonintegrable or history-dependent constraints. These are constraints that are not
fully defined until the full solution of the equations of motion is known. Equivalently,
they are certain types of constraints involving velocities.

The classic case of this type is a vertical disk rolling on a horizontal plane. If x and
y define the position of the point of contact between the disk and the plane, ¢ defines
the angle of rotation of the disk about its axis, and 6 defines the angle between the
rotation axis of the disk and the z-axis, then one can find the constraints

i = —r¢cosb
y = —r¢sind
The differential version of these constraints is

dr = —rdgp cosf
dy = —-rd¢sinf

These differential equations are not integrable; one cannot generate from the relations
two equations fi(x,6,¢) = 0 and fa(y,0,¢) = 0. The reason is that, if one assumes
the functions f; and fy exist, the above differential equations imply that their second
derivatives would have to satisfy

% f 0% f
00 0¢ 0¢ 00

which is a very unpleasant mathematical condition. Explicitly, suppose fi existed.
Then we would be able to write

4

fl (:Ev 05 ¢) =0
Let us obtain the differential version of the constraint by differentiating:
oh o h oh
—dr+ ——di+ =—d¢ =
oz T pg T g 0 =0

This differential constraint should match the original differential constraint dx =
—rd¢ cos@. Identifying the coefficients of the differentials yields

oh 9, on
Oz 90 oo

=17 COos ¢
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Taking the mixed second partial derivatives gives

0 f1 _0 P sin ¢
9600 aoe | Om

which, clearly, do not match.

Such constraints are also called nonintegrable because one cannot integrate the dif-
ferential equation to find a constraint on the coordinates. Nonintegrability is at the
root of the etymology indicated in the quotation above: a differential relation such
as the one above is a local one; if the differential relation is integrable, you can ob-
tain the constraint at all points in space, i.e., you can find the “entire law”. Clearly,
nonintegrability is also related to the fact that the constraint is velocity-dependent: a
velocity-dependent constraint is a local constraint, and it may not always be possible
to determine a global constraint from it.

2. inequality constraints; e.g., particles required to stay inside a box, particle sitting on
a sphere but allowed to roll off

3. problems involving frictional forces

Holonomic constraints may be divided into rheonomic (“running law”) and scleronomic
(“rigid law”) depending on whether time appears explicitly in the constraints:

rheonomic:  f({%},t) =0
scleronomic:  f({rx}) =0

At a technical level, the difference is whether ‘?9—{ = 0 or not; the presence of this partial
derivative affects some of the relations we will derive later.

Example 2.1:
For the elliptical wire example, the constraint equation is the one we specified ini-

tially:
(ai) = () -

If a and/or b do indeed have time dependence, then the constraint is rheonomic.
Otherwise, it is scleronomic.

Example 2.2:
For the Atwood’s machine, the constraint equation is

21+22+l(t):0

where [(t) is the length of the rope (we assume the pulley has zero radius). The
signs on 21 and z9 are due to the choice of direction for positive z in the example.
The constraint is again rheonomic if [ is indeed time dependent, scleronomic if not.

Generalized Coordinates

In general, if one has j independent constraint equations for a system of M particles with
3 M degrees of freedom, then the true number of degrees of freedom is 3 M — j. There
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is dynamical behavior of the system in only these remaining degrees of freedom. One
immediately asks the question — since there are fewer degrees of freedom than position
coordinates, is there any way to eliminate those unnecessary degrees of freedom and thereby
simplify analysis of the mechanical system? In our example, why keep both z and z if one
of them would suffice? This question leads us to the idea of generalized coordinates, which
are a set of 3 M — j coordinates that have already taken into account the constraints and
are independent, thereby reducing the complexity of the system.

For holonomic constraints, the constraint equations ensure that it will always be possible
to define a new set of 3 M — j generalized coordinates {¢x} that fully specify the motion
of the system subject to the constraints and that are independent of each other. The
independence arises because the number of degrees of freedom must be conserved. The
constraint equations yield (possibly implicit) functions

’F:i - 73(91:(]27~--7‘I3M—j7t) (21)

that transform between the generalized coordinates and the original coordinates. It may
not always be possible to write these functions analytically. Some of these coordinates may
be the same as the original coordinates, some may not; it simply depends on the structure
of the constraints. We will refer to the original coordinates as position coordinates to
distinguish them from the reduced set of independent generalized coordinates.

Generalized coordinates are more than just a notational convenience. By incorporating the
constraints into the definition of the generalized coordinates, we obtain two important sim-
plifications: 1) the constraint forces are eliminated from the problem; and 2) the generalized
coordinates are fully independent of each other. We shall see these simplifications put into
effect when we discuss virtual work and generalized forces.

Just as the velocity corresponding to a coordinate 7 is FJ = %Fj, it is possible to define
a generalized velocity ¢, = %qk. Note that in all cases, velocities are defined as total
time derivatives of the particular coordinate. Remember that if you have a function
g =9({qx},t), then the total time derivative % g is evaluated by the chain rule:

99 dg. | 99

(2.2)
- Oq,, dt ot

L olla)n) =

It is very important to realize that, until a specific solution to the equation of motion is
found, a generalized coordinate and its corresponding generalized velocity are independent
variables. This can be seen by simply remembering that two initial conditions — g (t = 0)
and ¢x(t = 0) are required to specify a solution of Newton’s second law because it is a
second-order differential equation. Higher-order derivatives are not independent variables
because Newton’s second law relates the higher-order derivatives to {q;} and {g;}. The
independence of {q;} and {g;} is a reflection of the structure of Newton’s second
law, not just a mathematical theorem.

Unless otherwise indicated, from here on we will assume all constraints are
holonomic.

Example 2.1:
For the elliptical wire, the constraint equation

(ai) = () -
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can be used to define different generalized coordinate schemes. Two obvious ones are
x and z; i.e., let x be the generalized coordinate and drop the z degree of freedom,
or vice versa. Another obvious one would be the azimuthal angle «,

The formal definitions 7;({qx},t) are then
x = a(t) cosa z =b(t) sina

Here, we see the possibility of explicit time dependence in the relationship between
the positions x and z and the generalized coordinate «.

Example 2.2:

For the Atwood’s machine, either z; or zo could suffice as the generalized coordinate.
Let’s pick z1, calling it Z to distinguish the generalized coordinate, giving

21:Z Z2:—l(t)—Z
This case is pretty trivial.

“Dot Cancellation”

For holonomic constraints, there is a very important statement that we will make much use
of later:
o7; o7

= g 2.3

Conceptually, what this says is The differential relationship between a given degree of free-
dom and a generalized coordinate is the same as the differential relationship between the
corresponding velocities. This statement relies on having holonomic constraints. Heuristi-
cally, one can understand the rule as simply arising from the fact that holonomic constraints
use only the positions and time to define the generalized coordinates; as a result, any rela-
tionships between positional velocities and generalized velocities must be determined only
by relationships between positions and generalized coordinates. The above relationship is
then the simplest possible one.

We derive the result rigorously by starting with the total time derivative e
5 dgg . or;
k Oq,, dt ot

L d o
= %rl({Qk}at)

The last term does not exist if the constraints are scleronomic, but that is not really im-
portant here. Now, take the partial derivative with respect to ¢;; this selects out the term
in the sum with k = [, and drops the ¢ term:

oF; oF; oF;

- = o Okl =
dq, - dq, dq,

and so the dot cancellation relation is proven.

69



CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

Dot cancellation does not necessarily hold if the constraints are nonholonomic. Suppose
7 = 7;({qx},{dx },t). Then our partial derivative would be

L d o . _ or; . 0 . or;
s gl a0 = X |G o] +

Newton’s second law relates §i to gr and . By definition, if there is a velocity-dependent
nonholonomic constraint, then there is a velocity-dependent force. Thus, g will certainly
depend directly on ¢ and the second term in the sum will yield additional terms when one
does the next step, taking the partial derivative with respect to ¢,. The first and last terms
might also yield additional unwanted terms: if 7; depends on ¢, then there may still be
gr-dependent terms left in %’?, which will survive when the partial derivative with respect
to ¢y is taken. Either way, the dot cancellation result would be invalidated.

Example 2.1:

For the elliptical wire, we have given the relations between the positions x, z and
the generalized coordinate «

z =a(t) cosa z="0(t) sinc
We find the relations between the velocities by differentiating with respect to time:
T=acosa—asina & s=Dbsina+bcosa i

Note that we do have terms of the form 97;/dt, the terms with @ and b. Taking the
partial derivatives, we find

or o 0z b
3 = @ sin « 30 = cos o
o o 0% .
3G = @ sin « 3 = cos o

where the ¢ and b terms have disappeared because & does not appear in them. We
see the dot cancellation works.

Example 2.2:

The Atwood’s machine example is as follows; it is somewhat nontrivial if [ is a
function of time. Differentiating the relations between z1, 23, and Z gives

W=2  bh=—l—Z

So then
821 . 82’2 -
oz~ ' a7zt
%y 92
o0z oz

Note that dot cancellation works even if [ is time dependent.
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2.1.2 Virtual Displacement, Virtual Work, and Generalized Forces

Virtual Displacement

We define a virtual displacement {§7;} as an infinitesimal displacement of the system
coordinates {7;} that satisfies the following criteria (stated somewhat differently than in
Hand and Finch, but no different in meaning):

1. The displacement satisfies the constraint equations, but may make use of any remaining
unconstrained degrees of freedom.

2. The time is held fixed during the displacement.
3. The generalized velocities {qx} are held fixed during the displacement.

A virtual displacement can be represented in terms of position coordinates or generalized
coordinates. The advantage of generalized coordinates, of course, is that they automat-
ically respect the constraints. An arbitrary set of displacements {dgx} can qualify as a
virtual displacement if conditions (2) and (3) are additionally applied, but an arbitrary
set of displacements {07;} may or may not qualify as a virtual displacement depending on
whether the displacements obey the constraints. All three conditions will become clearer
in the examples. Explicitly, the relation between infinitesimal displacements of generalized
coordinates and virtual displacements of the position coordinates is

or;
o7, = E L Squ (2.4)
k Oy

This expression has content: there are fewer {g;} than {r;}, so the fact that 47; can be
expressed only in terms of the {gx} reflects the fact that the virtual displacement respects
the constraints. One can put in any values of the {dgx} and obtain a virtual displacement,
but not every possible set of {67;} can be written in the above way.

Example 2.1:

For the elliptical wire, it is easy to see what kinds of displacements satisfy the first
two requirements. Changes in z and z are related by the constraint equation; we
obtain the relation by applying the displacements to the constraint equation. We
do this by writing the constraint equation with and without the displacements and
differencing the two:

5\ 2
with displacements: (x + :C) +
2 2
. . x z
without displacements: > + <b )> =1

s (585 () () (i) =

a@P " BOP
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All terms of second order in dz or §z are dropped because the displacements are
infinitesimal." The result is that dz and 6z cannot be arbitrary with respect to each
other and are related by where the particle is in x and z and the current values of
a and b; this clearly satisfies the first requirement. We have satisfied the second
requirement, keeping time fixed, by treating a and b as constant: there has been no
ot applied, which would have added derivatives of a and b to the expressions. If a
and b were truly constant, then the second requirement would be irrelevant. The
third requirement is not really relevant here because the generalized velocities do
not enter the constraints in this holonomic case; but they will enter, for example,
the kinetic energy, so it must be kept in mind.

The relation between the virtual displacements in the positions and in the general-
ized coordinate is easy to calculate:

r=acosae = O0r=—asinada

z=bsinaa = Jdz=0>bcosa da

ox a
= ——tana«

5z b

We see that there is a one-to-one correspondence between all infinitesimal displace-
ments da of the generalized coordinate and wvirtual displacements of the positional
coordinates (dx,dz), as stated above. The displacements of the positional coordi-
nates that cannot be generated from da by the above expressions are those that do
not satisfy the constraints and are disallowed.

Example 2.2:

For our Atwood’s machine example, the constraint equation
21+ 2+ 1(t) =0
is easily converted to differential form, giving
0z1 +020 =0

Again, remember that we do not let time vary, so I(t) contributes nothing to the
differential. This equation is what we would have arrived at if we had started with
an infinitesimal displacement 67 of the generalized coordinate Z (holding time fixed
according to condition (2)):

(521 =67 522 =07 = (521 + 522 =0
Fixing time prevents appearance of derivatives of [(t). Again, we also see the one-

to-one correspondence between infinitesimal displacements of the generalized coor-
dinate and virtual displacements of the position coordinates.

!This is one of the first applications of Taylor expansions in this course. This kind of thing will be done regularly,
so get used to the technique!
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2.1. THE LAGRANGIAN APPROACH TO MECHANICS

Virtual Work

Using the virtual displacement, we may define virtual work as the work that would be
done on the system by the forces acting on the system as the system undergoes the virtual
displacement {J7; }:

W= ) Fy o7
tj

where f;j is the jth force acting on the coordinate of the ith particle 7.2

Example 2.1:

In our elliptical wire example, Fi1 would be the gravitational force acting on the
point mass and Fi5 would be the force exerted by the wire to keep the point mass
on the wire (i = 1 only because there is only one object involved). The virtual work
is
1
oW =3 B+ Fa - o7,
i=1

Example 2.2:

In our Atwood’s machine example, the two masses feel gravitational forces ﬁn =
—m1 gz and ﬁgl = —meo g 2. The tension in the rope is the force that enforces the
constraint that the length of rope between the two blocks is fixed, Fis = T2 and
Foo=T2 T may be a function of time if [ varies with time, but it is certainly the
same at the two ends of the rope at any instant.

At this point, we specialize to constraints that do no net work when a virtual
displacement is applied. This assumption is critical. Making this assumption implies
that only the non-constraint forces need be included in the sum over j because the terms
due to constraints yield no contribution.

The assumption deserves some detailed discussion. It is not clear whether it is possible
to state general rules about which kinds of constraints satisfy the assumption. In fact,
Schaum’s Outline on Lagrangian Dynamics (D. A. Wells) says “While the truth of this
statement is easily demonstrated with simple examples, a general proof is usually not at-
tempted. It may be regarded as a postulate.” Goldstein simply states that “We now restrict
ourselves to systems for which the net virtual work of the forces of constraint is zero” and
makes no statement about the general applicability of the assumption. Note that Hand and
Finch completely gloss over this subtlety; they simply state “Recall that since constraint
forces always act to maintain the constraint, they point in a direction perpendicular to the
movement of the parts of the system. This means that the constraint forces do not con-
tribute anything to the virtual work.” The first sentence is patently false, as our Atwood’s
machine example shows!

Let us try to at least get an intuitive idea of how different kinds of constraints satisfy the
assumption. There are clearly three kinds:

2We deviate from Hand and Finch’s notation here by adding the j index; for our examples, it is useful to use the
j index to distinguish the different forces acting on a given particle. Hand and Finch’s F; is simply Zj Fij; it gives
the total force acting on particle 3.
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CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

1.

“normal forces”: If F’ij - 07; vanishes for a single particle ¢ and a single constraint
7, then, the constraint force must act on only one particle and must act normal to
the motion. Our elliptical wire constraint is of this form. The constraint defining
rigid-body motion, |7, — 7| = ¢4 for all particles a, b in the body, is similar in form:
an allowed virtual displacement keeps the length of the vector separation of the two
particles fixed but allows its orientation to change, while the force that maintains
the constraint is the central force between the two, which acts along the separation
vector and thus perpendicular to the virtual displacement. It is not quite the same
as the single-particle version, but it still can be considered a normal force because the
constraint force and virtual displacement are perpendicular.

“single-constraint satisfaction”: Not all constraints are “normal forces”; see our At-
wood’s machine example below, where the constraint force acts along the virtual dis-
placement so that F’ij 673 # 0 but ), F’ij - 07; does vanish due to summation over 7.
In this case, once one sums over the particles that are affected by a particular con-
straint, then the sum vanishes. For this type of constraint, each constraint j satisfies
the assumption ), F‘ij - 01; = 0 independently. Of course, normal forces are a special
subset of this class, but it is instructive to consider them separately.

“interlocking constraint satisfaction”: I admittedly cannot think of an example, but
one can imagine in a general sense that some set of interlocking constraints, where
multiple coordinates appear in multiple constraints, might require the summation over
both ¢ and j for the assumption to hold.

Because of the possibility that there exist situations of the third type, we use the most
generic assumption we need to proceed with our derivation, which is the third one. We
write that down as

PL
ij

where the (9 superscript restricts the sum to constraint forces but the sum is over all
constraint forces and all particles. Mathematically, the assumption lets us drop the part of
the virtual work sum containing constraint forces, leaving

oW = Fy o7

]

where the (") superscript indicates that the sum is only over non-constraint forces.

Example 2.1:

In our elliptical wire example, the force exerted by the wire, ﬁlz, acts to keep the
point mass ¢ on the wire; 