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Introduction

These notes were written during the Fall, 2004, and Winter, 2005, terms. They are indeed lecture
notes – I literally lecture from these notes. They combine material from Hand and Finch (mostly),
Thornton, and Goldstein, but cover the material in a different order than any one of these texts
and deviate from them widely in some places and less so in others.

The reader will no doubt ask the question I asked myself many times while writing these notes:
why bother? There are a large number of mechanics textbooks available all covering this very
standard material, complete with worked examples and end-of-chapter problems. I can only defend
myself by saying that all teachers understand their material in a slightly different way and it is
very difficult to teach from someone else’s point of view – it’s like walking in shoes that are two
sizes wrong. It is inevitable that every teacher will want to present some of the material in a way
that differs from the available texts. These notes simply put my particular presentation down on
the page for your reference.

These notes are not a substitute for a proper textbook; I have not provided nearly as many
examples or illustrations, and have provided no exercises. They are a supplement. I suggest you
skim them in parallel while reading one of the recommended texts for the course, focusing your
attention on places where these notes deviate from the texts.

ii



Contents

1 Elementary Mechanics 1
1.1 Newtonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The equation of motion for a single particle . . . . . . . . . . . . . . . . . . . 2
1.1.2 Angular Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Energy and Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 Gravitational Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.2 Gravitational Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Dynamics of Systems of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.1 Newtonian Mechanical Concepts for Systems of Particles . . . . . . . . . . . 32
1.3.2 The Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3.3 Collisions of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Lagrangian and Hamiltonian Dynamics 63
2.1 The Lagrangian Approach to Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.1.1 Degrees of Freedom, Constraints, and Generalized Coordinates . . . . . . . . 65
2.1.2 Virtual Displacement, Virtual Work, and Generalized Forces . . . . . . . . . 71
2.1.3 d’Alembert’s Principle and the Generalized Equation of Motion . . . . . . . . 76
2.1.4 The Lagrangian and the Euler-Lagrange Equations . . . . . . . . . . . . . . . 81
2.1.5 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.1.6 Cyclic Coordinates and Canonical Momenta . . . . . . . . . . . . . . . . . . . 85
2.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.1.8 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.1.9 Special Nonconservative Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.1.10 Symmetry Transformations, Conserved Quantities, Cyclic Coordinates and

Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.2 Variational Calculus and Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.2.1 The Variational Calculus and the Euler Equation . . . . . . . . . . . . . . . . 103
2.2.2 The Principle of Least Action and the Euler-Lagrange Equation . . . . . . . 108
2.2.3 Imposing Constraints in Variational Dynamics . . . . . . . . . . . . . . . . . 109
2.2.4 Incorporating Nonholonomic Constraints in Variational Dynamics . . . . . . 119

2.3 Hamiltonian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.3.1 Legendre Transformations and Hamilton’s Equations of Motion . . . . . . . . 123
2.3.2 Phase Space and Liouville’s Theorem . . . . . . . . . . . . . . . . . . . . . . 130

2.4 Topics in Theoretical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.4.1 Canonical Transformations and Generating Functions . . . . . . . . . . . . . 138
2.4.2 Symplectic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

iii



CONTENTS

2.4.3 Poisson Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.4.4 Action-Angle Variables and Adiabatic Invariance . . . . . . . . . . . . . . . . 152
2.4.5 The Hamilton-Jacobi Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3 Oscillations 173
3.1 The Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.1.1 Equilibria and Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1.2 Solving the Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . 176
3.1.3 The Damped Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . 177
3.1.4 The Driven Simple and Damped Harmonic Oscillator . . . . . . . . . . . . . 181
3.1.5 Behavior when Driven Near Resonance . . . . . . . . . . . . . . . . . . . . . . 186

3.2 Coupled Simple Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.2.1 The Coupled Pendulum Example . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.2.2 General Method of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
3.2.3 Examples and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.2.4 Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

3.3 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.3.1 The Loaded String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.3.2 The Continuous String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.3.3 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
3.3.4 Phase Velocity, Group Velocity, and Wave Packets . . . . . . . . . . . . . . . 229

4 Central Force Motion and Scattering 233
4.1 The Generic Central Force Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

4.1.1 The Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.1.2 Formal Implications of the Equations of Motion . . . . . . . . . . . . . . . . . 240

4.2 The Special Case of Gravity – The Kepler Problem . . . . . . . . . . . . . . . . . . . 243
4.2.1 The Shape of Solutions of the Kepler Problem . . . . . . . . . . . . . . . . . 243
4.2.2 Time Dependence of the Kepler Problem Solutions . . . . . . . . . . . . . . . 248

4.3 Scattering Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4.3.1 Setting up the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4.3.2 The Generic Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
4.3.3 1

r Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5 Rotating Systems 257
5.1 The Mathematical Description of Rotations . . . . . . . . . . . . . . . . . . . . . . . 258

5.1.1 Infinitesimal Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.1.2 Finite Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
5.1.3 Interpretation of Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
5.1.4 Scalars, Vectors, and Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
5.1.5 Comments on Lie Algebras and Lie Groups . . . . . . . . . . . . . . . . . . . 267

5.2 Dynamics in Rotating Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . 269
5.2.1 Newton’s Second Law in Rotating Coordinate Systems . . . . . . . . . . . . . 269
5.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.2.3 Lagrangian and Hamiltonian Dynamics in Rotating Coordinate Systems . . . 280

5.3 Rotational Dynamics of Rigid Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
5.3.1 Basic Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
5.3.2 Torque-Free Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

iv



CONTENTS

5.3.3 Motion under the Influence of External Torques . . . . . . . . . . . . . . . . . 313

6 Special Relativity 323
6.1 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

6.1.1 The Postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
6.1.2 Transformation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
6.1.3 Mathematical Description of Lorentz Transformations . . . . . . . . . . . . . 333
6.1.4 Physical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
6.1.5 Lagrangian and Hamiltonian Dynamics in Relativity . . . . . . . . . . . . . . 346

A Mathematical Appendix 347
A.1 Notational Conventions for Mathematical Symbols . . . . . . . . . . . . . . . . . . . 347
A.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
A.3 Vector and Tensor Definitions and Algebraic Identities . . . . . . . . . . . . . . . . . 349
A.4 Vector Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
A.5 Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
A.6 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
A.7 Legendre Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

B Summary of Physical Results 359
B.1 Elementary Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
B.2 Lagrangian and Hamiltonian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 363
B.3 Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
B.4 Central Forces and Dynamics of Scattering . . . . . . . . . . . . . . . . . . . . . . . 379
B.5 Rotating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
B.6 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

v



Chapter 1

Elementary Mechanics

This chapter reviews material that was covered in your first-year mechanics course – Newtonian
mechanics, elementary gravitation, and dynamics of systems of particles. None of this material
should be surprising or new. Special emphasis is placed on those aspects that we will return to
later in the course. If you feel less than fully comfortable with this material, please take the time
to review it now, before we hit the interesting new stuff!

The material in this section is largely from Thornton Chapters 2, 5, and 9. Small parts of it
are covered in Hand and Finch Chapter 4, but they use the language of Lagrangian mechanics that
you have not yet learned. Other references are provided in the notes.
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CHAPTER 1. ELEMENTARY MECHANICS

1.1 Newtonian Mechanics

References:

• Thornton and Marion, Classical Dynamics of Particles and Systems, Sections 2.4, 2.5, and
2.6

• Goldstein, Classical Mechanics, Sections 1.1 and 1.2

• Symon, Mechanics, Sections 1.7, 2.1-2.6, 3.1-3.9, and 3.11-3.12

• any first-year physics text

Unlike some texts, we’re going to be very pragmatic and ignore niceties regarding the equivalence
principle, the logical structure of Newton’s laws, etc. I will take it as given that we all have an
intuitive understanding of velocity, mass, force, inertial reference frames, etc. Later in the course
we will reexamine some of these concepts. But, for now, let’s get on with it!

1.1.1 The equation of motion for a single particle

We study the implications of the relation between force and rate of change of momentum provided
by Newton’s second law.

Definitions

Position of a particle as a function of time: ~r(t)

Velocity of a particle as a function of time: ~v(t) = d
dt ~r(t). We refer to the magnitude of

the velocity, v = |~v|, as the speed.

Acceleration of a particle as a function of time: ~a(t) = d
dt ~v(t) = d2

dt2
~r(t).

Momentum of a particle: ~p(t) = m(t)~v(t)

Newton’s second law

In inertial frames, it holds that
~F (t) =

d

dt
~p(t) (1.1)

If the mass is not time-dependent, we have

~F (t) = m
d

dt
~v(t) = m

d2

dt2
~r(t) (1.2)

We use the “dot” shorthand, defining ~̇r = d
dt ~r and ~̈r = d2

dt2
~r, which gives

~F = ~̇p = m~̇v = m~̈r (1.3)

Newton’s second law provides the equation of motion, which is simply the equation that
needs to be solved find the position of the particle as a function of time.

Conservation of Linear Momentum:

Suppose the force on a particle is ~F and that there is a vector ~s such that the force has no
component along ~s; that is

~F · ~s = 0 (1.4)

2



1.1. NEWTONIAN MECHANICS

Newton’s second law is ~F = ~̇p, so we therefore have

~̇p · ~s = 0 =⇒ ~p · ~s = α (1.5)

where α is a constant. That is, there is conservation of the component of linear momentum
along the direction ~s in which there is no force.

Solving simple Newtonian mechanics problems

Try to systematically perform the following steps when solving problems:

• Sketch the problem, drawing all the forces as vectors.

• Define a coordinate system in which the motion will be convenient; in particular, try
to make any constraints work out simply.

• Find the net force along each coordinate axis by breaking down the forces into their
components and write down Newton’s second law component by component.

• Apply the constraints, which will produce relationships among the different equations
(or will show that the motion along certain coordinates is trivial).

• Solve the equations to find the acceleration along each coordinate in terms of the
known forces.

• Depending on what result is desired, one either can use the acceleration equations
directly or one can integrate them to find the velocity and position as a function of
time, modulo initial conditions.

• If so desired, apply initial conditions to obtain the full solution.

Example 1.1

(Thornton Example 2.1) A block slides without friction down a fixed, inclined plane. The
angle of the incline is θ = 30◦ from horizontal. What is the acceleration of the block?

• Sketch:

~Fg = m~g is the gravitational force on the block and ~FN is the normal force, which is
exerted by the plane on the block to keep it in place on top of the plane.

• Coordinate system: x pointing down along the surface of the incline, y perpendicular
to the surface of the incline. The constraint of the block sliding on the plane forces
there to be no motion along y, hence the choice of coordinate system.

3



CHAPTER 1. ELEMENTARY MECHANICS

• Forces along each axis:

mẍ = Fg sin θ
m ÿ = FN − Fg cos θ

• Apply constraints: there is no motion along the y axis, so ÿ = 0, which gives FN =
Fg cos θ. The constraint actually turns out to be unnecessary for solving for the motion
of the block, but in more complicated cases the constraint will be important.

• Solve the remaining equations: Here, we simply have the x equation, which gives:

ẍ =
Fg
m

sin θ = g sin θ

where Fg = mg is the gravitational force

• Find velocity and position as a function of time: This is just trivial integration:

d

dt
ẋ = g sin θ =⇒ ẋ(t) = ẋ(t = 0) +

∫ t

0
dt′ g sin θ

= ẋ0 + g t sin θ
d

dt
x = ẋ(t = 0) + g t sin θ =⇒ x(t) = x0 +

∫ t

0
dt′
[
ẋ0 + g t′ sin θ

]
= x0 + ẋ0 t+

1
2
g t2 sin θ

where we have taken x0 and ẋ0 to be the initial position and velocity, the constants of
integration. Of course, the solution for y is y(t) = 0, where we have made use of the
initial conditions y(t = 0) = 0 and ẏ(t = 0) = 0.

Example 1.2

(Thornton Example 2.3) Same as Example 1.1, but now assume the block is moving (i.e.,
its initial velocity is nonzero) and that it is subject to sliding friction. Determine the
acceleration of the block for the angle θ = 30◦ assuming the frictional force obeys Ff =
µk FN where µk = 0.3 is the coefficient of kinetic friction.

• Sketch:

We now have an additional frictional force Ff which points along the −x direction
because the block of course wants to slide to +x. Its value is fixed to be Ff = µk FN .

4



1.1. NEWTONIAN MECHANICS

• Coordinate system: same as before.

• Forces along each axis:

mẍ = Fg sin θ − Ff
mÿ = FN − Fg cos θ

We have the additional frictional force acting along −x.
• Apply constraints: there is no motion along the y axis, so ÿ = 0, which gives FN =
Fg cos θ. Since Ff = µk FN , the equation resulting from the constraint can be used
directly to simplify the other equation.

• Solve the remaining equations: Here, we simply have the x equation,

ẍ =
Fg
m

sin θ − µk
Fg
m

cos θ

= g [sin θ − µk cos θ]

That is all that was asked for. For θ = 30◦, the numerical result is

ẍ = g (sin 30◦ − 0.3 cos 30◦) = 0.24 g

Example 1.3

(Thornton Example 2.2) Same as Example 1.1, but now allow for static friction to hold the
block in place, with coefficient of static friction µs = 0.4. At what angle does it become
possible for the block to slide?

• Sketch: Same as before, except the distinction is that the frictional force Ff does not
have a fixed value, but we know its maximum value is µs FN .

• Coordinate system: same as before.

• Forces along each axis:

mẍ = Fg sin θ − Ff
mÿ = FN − Fg cos θ

• Apply constraints: there is no motion along the y axis, so ÿ = 0, which gives FN =
Fg cos θ. We will use the result of the application of the constraint below.

• Solve the remaining equations: Here, we simply have the x equation,

ẍ =
Fg
m

sin θ −
Ff
m

• Since we are solving a static problem, we don’t need to go to the effort of integrating
to find x(t); in fact, since the coefficient of sliding friction is usually lower than the
coefficient of static friction, the above equations become incorrect as the block begins
to move. Instead, we want to figure out at what angle θ = θ′ the block begins to slide.
Since Ff has maximum value µs FN = µsmg cos θ, it holds that

ẍ ≥ Fg
m

sin θ − µs
FN
m

5



CHAPTER 1. ELEMENTARY MECHANICS

i.e.,

ẍ ≥ g [sin θ − µs cos θ]

It becomes impossible for the block to stay motionless when the right side becomes
positive. The transition angle θ′ is of course when the right side vanishes, when

0 = sin θ′ − µs cos θ′

or

tan θ′ = µs

which gives θ′ = 21.8◦.

Atwood’s machine problems

Another class of problems Newtonian mechanics problems you have no doubt seen before
are Atwood’s machine problems, where an Atwood’s machine is simply a smooth, massless
pulley (with zero diameter) with two masses suspended from a (weightless) rope at each
end and acted on by gravity. These problems again require only Newton’s second equation.

Example 1.4

(Thornton Example 2.9) Determine the acceleration of the two masses of a simple Atwood’s
machine, with one fixed pulley and two masses m1 and m2.

• Sketch:

• Coordinate system: There is only vertical motion, so use the z coordinates of the two
masses z1 and z2.

6



1.1. NEWTONIAN MECHANICS

• Forces along each axis: Just the z-axis, but now for two particles:

m1z̈1 = −m1g + T

m2z̈2 = −m2g + T

where T is the tension in the rope. We have assumed the rope perfectly transmits
force from one end to the other.

• Constraints: The rope length l cannot change, so z1 + z2 = −l is constant, ż1 = −ż2
and z̈1 = −z̈2.

• Solve: Just solve the first equation for T and insert in the second equation, making
use of z̈1 = −z̈2:

T = m1(z̈1 + g)

−z̈1 = −g +
m1

m2
(z̈1 + g)

which we can then solve for z̈1 and T :

−z̈2 = z̈1 = −m1 −m2

m1 +m2
g

T =
2m1m2

m1 +m2
g

It is instructive to consider two limiting cases. First, take m1 = m2 = m. We have in
this case

−z̈2 = z̈1 = 0
T = mg

As you would expect, there is no motion of either mass and the tension in the rope
is the weight of either mass – the rope must exert this force to keep either mass from
falling. Second, consider m1 � m2. We then have

−z̈2 = z̈1 = −g
T = 2m2 g

Here, the heavier mass accelerates downward at the gravitational acceleration and
the other mass accelerates upward with the same acceleration. The rope has to have
sufficient tension to both counteract gravity acting on the second mass as well as to
accelerate it upward at g.

Example 1.5

(Thornton Example 2.9) Repeat, with the pulley suspended from an elevator that is ac-
celerating with acceleration a. As usual, ignore the mass and diameter of the pulley when
considering the forces in and motion of the rope.
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CHAPTER 1. ELEMENTARY MECHANICS

• Sketch:

Obviously, we have the gravitational forces on each object. The pulley also has 2T
acting downward on it (due to the force exerted by the rope on the pulley) and R
acting upward (the force pulling upward on the pulley through the rope connected
to the elevator). Similarly, the elevator has tension forces R acting downward and
E upward. We include the forces on the pulley and elevator since, a priori, it’s not
obvious that they should be ignored. We will see that it is not necessary to solve for
the forces on the pulley and elevator to find the accelerations of the masses, but we
will be able to find these forces.

• Coordinate system: Remember that Newton’s second law only holds in inertial refer-
ence frames. Therefore, we should reference the positions of the masses to the fixed
frame rather than to the elevator. Again, denote the z coordinates of the two masses
by z1 and z2. Let the z coordinates of the pulley and elevator be zp and ze.

• Forces along each axis: Just the z-axis

m1z̈1 = −m1g + T

m2z̈2 = −m2g + T

mpz̈p = R− 2T −mpg

mez̈e = E −R−meg

where T is the tension in the rope holding the two masses, R is the tension in the rope
holding the pulley, and E is the force being exerted on the elevator to make it ascend
or descend. Note especially the way we only consider the forces acting directly on an
object; trying to unnecessarily account for forces is a common error. For example,
even though gravity acts on m1 and m2 and some of that force is transmitted to and
acts on the pulley, we do not directly include such forces; they are implicitly included
by their effect on T . Similarly for the forces on the elevator.

8



1.1. NEWTONIAN MECHANICS

• Constraints: Again, the rope length cannot change, but the constraint is more com-
plicated because the pulley can move: z1 + z2 = 2 zp − l. The fixed rope between the
pulley and the elevator forces z̈p = z̈e = a, so z̈1 + z̈2 = 2 a

• Solve: Just solve the first equation for T and insert in the second equation, making
use of the new constraint z̈1 = −z̈2 + 2a:

T = m1(z̈1 + g)

2a− z̈1 = −g +
m1

m2
(z̈1 + g)

which we can then solve for z̈1 and T :

z̈1 = −m1 −m2

m1 +m2
g +

2m2

m1 +m2
a

z̈2 =
m1 −m2

m1 +m2
g +

2m1

m1 +m2
a

T =
2m1m2

m1 +m2
(g + a)

We can write the accelerations relative to the elevator (i.e., in the non-inertial, accel-
erating frame) by simply calculating z̈′1 = z̈1 − z̈p and z̈′2 = z̈2 − z̈p:

z̈′1 =
m2 −m1

m2 +m1
(g + a)

z̈′2 =
m1 −m2

m1 +m2
(g + a)

We see that, in the reference frame of the elevator, the accelerations are equal and
opposite, as they must be since the two masses are coupled by the rope. Note that we
never needed to solve the third and fourth equations, though we may now do so:

R = mp(z̈p + g) + 2T

= mp(a+ g) +
4m1m2

m1 +m2
(g + a)

=
[
mp +

4m1m2

m1 +m2

]
(g + a)

E = me(z̈e + g) +R

=
[
me +mp +

4m1m2

m1 +m2

]
(g + a)

That these expressions are correct can be seen by considering limiting cases. First,
consider the case m1 = m2 = m; we find

z̈1 = a

z̈2 = a

T = m (g + a)
R = [mp + 2m] (g + a)
E = [me +mp + 2m] (g + a)

That is, the two masses stay at rest relative to each other and accelerate upward with
the elevator; there is no motion of the rope connecting the two (relative to the pulley)

9



CHAPTER 1. ELEMENTARY MECHANICS

because the two masses balance each other. The tensions in the rope holding the
pulley and the elevator cable are determined by the total mass suspended on each.
Next, consider the case m1 � m2. We have

z̈1 = −g
z̈2 = g + 2 a
T = 0
R = mp (g + a)
E = [me +mp] (g + a)

m1 falls under the force of gravity. m2 is pulled upward, but there is a component of
the acceleration in addition to just g because the rope must unwind over the pulley
fast enough to deal with the accelerating motion of the pulley. R and E no longer
contain terms for m1 and m2 because the rope holding them just unwinds, exerting no
force on the pulley.
The mass combination that appears in the solutions, m1m2/(m1 +m2), is the typical
form one finds for transforming continuously between these two cases m1 = m2 and
m1 � m2 (or vice versa), as you will learn when we look at central force motion later.

Retarding Forces

(See Thornton 2.4 for more detail, but these notes cover the important material)

A next level of complexity is introduced by considering forces that are not static but rather
depend on the velocity of the moving object. This is interesting not just for the physics but
because it introduces a higher level of mathematical complexity. Such a force can frequently
be written as a power law in the velocity:

~Fr = ~Fr(v) = −k vn~v
v

(1.6)

k is a constant that depends on the details of the problem. Note that the force is always
directed opposite to the velocity of the object.

For the simplest power law retarding forces, the equation of motion can be solved analyt-
ically. For more complicated dependence on velocity, it may be necessary to generate the
solution numerically. We will come back to the latter point.

Example 1.6

(Thornton Example 2.4). Find the velocity and position as a function of time for a particle
initially having velocity v0 along the +x axis and experiencing a linear retarding force
Fr(v) = −k v.

• Sketch:

10



1.1. NEWTONIAN MECHANICS

• Coordinate system: only one dimension, so trivial. Have the initial velocity ẋ0 be
along the +x direction.

• Forces along each axis: Just the x-axis.

mẍ = −k ẋ

• Constraints: none

• Solve: The differential equation for x is

d

dt
ẋ = − k

m
ẋ(t)

This is different than we have seen before since the right side is not fixed, but depends
on the left side. We can solve by separating the variables and integrating:

dẋ

ẋ
= − k

m
dt∫ ẋ(t)

ẋ0

dy

y
= − k

m

∫ t

0
dt′

log ẋ(t)− log ẋ0 = − k
m
t

ẋ(t) = ẋ0 exp
(
− k
m
t

)

That is, the velocity decreases exponentially, going to 0 as t → ∞. The position is
easily obtained from the velocity:

d

dt
x = ẋ0 exp

(
− k
m
t

)
x(t) = x0 + ẋ0

∫ t

0
dt′ exp

(
− k
m
t′
)

x(t) = x0 +
mẋ0

k

[
1− exp

(
− k
m
t

)]

The object asymptotically moves a distance mẋ0/k.

Example 1.7

(Thornton Example 2.5). Repeat Example 1.6, but now for a particle undergoing vertical
motion in the presence of gravity.

11



CHAPTER 1. ELEMENTARY MECHANICS

• Sketch:

• Coordinate system: only one dimension, so trivial. Have the initial velocity ż0 be along
the +z direction.

• Forces along each axis: Just the z-axis.

m z̈ = −mg − k ż

• Constraints: none

• Solve: The differential equation for z is

d

dt
ż = −g − k

m
ż(t)

Now we have both constant and velocity-dependent terms on the right side. Again,
we solve by separating variables and integrating:

dż

g + k
m ż

= −dt∫ ż(t)

ż0

dy

g + k
m y

= −
∫ t

0
dt′

m

k

∫ g+ k
m
ż(t)

g+ k
m
ż0

du

u
= −

∫ t

0
dt′

log
(
g +

k

m
ż(t)

)
− log

(
g +

k

m
ż0

)
= − k

m
t

1 +
k

mg
ż(t) =

(
1 +

k

mg

)
exp

(
− k
m
t

)
ż(t) = −mg

k
+
(mg

k
+ ż0

)
exp

(
− k
m
t

)
We see the phenomenon of terminal velocity: as t→∞, the second term vanishes and
we see ż(t) → −mg/k. One would have found this asymptotic speed by also solving
the equation of motion for the speed at which the acceleration vanishes. The position
as a function of time is again found easily by integrating, which yields

z(t) = z0 −
mg

k
t+
(
m2 g

k2
+
m ż0
k

)[
1− exp

(
− k
m
t

)]
12



1.1. NEWTONIAN MECHANICS

The third term deals with the portion of the motion during which the velocity is chang-
ing, and the second term deals with the terminal velocity portion of the trajectory.

Retarding Forces and Numerical Solutions

Obviously, for more complex retarding forces, it may not be possible to solve the equation
of motion analytically. However, a natural numerical solution presents itself. The equation
of motion is usually of the form

d

dt
ẋ = Fs + F (ẋ)

This can be written in discrete form

∆ẋ = [Fs + F (ẋ)]∆t

where we have discretized time into intervals of length ∆t. If we denote the times as
tn = n∆t and the velocity at time tn by ẋn, then we have

ẋn+1 = ẋn + [Fs + F (ẋn)]∆t

The above procedure can be done with as small a step size as desired to obtain as precise a
solution as one desires. It can obviously also be extended to two-dimensional motion. For
more details, see Thornton Examples 2.7 and 2.8.

1.1.2 Angular Motion

We derive analogues of linear momentum, force, and Newton’s second law for angular motion.

Definitions

Angular velocity of a particle as a function of time with respect to a particular origin:

~v(t) = ~ω(t)× ~r(t) (1.7)

This is an implicit definition that is justified by considering a differential displacement:

13



CHAPTER 1. ELEMENTARY MECHANICS

This can be written mathematically as

δ~r = δ~θ × ~r

where δ~θ points along the axis of the motion and × indicates a vector cross-product. The
cross-product gives the correct direction for the displacement δ~r (perpendicular to the axis
and ~r) and the correct amplitude (|δ~r| = Rδθ = r δθ sinα). If we then divide by the time
δt required to make this displacement, we have

δ~r

δt
=
δ~θ

δt
× ~r =⇒ ~v = ~ω × ~r

Angular momentum of a particle (relative to a particular origin):

~L(t) = ~r(t)× ~p(t) (1.8)

The cross-product implies that ~L is a vector perpendicular to the plane formed by ~r and
~p, with its direction set by the right-hand rule. ~L is defined as a cross-product between ~r
and ~p so that a particle constrained to move in a circle with constant speed v (though with
changing ~v) by a central force (one pointing along −~r) has constant angular momentum.
The sign is set by the right-hand rule.

We can rewrite in terms of ~ω by using the implicit definition o f ~ω:

~L = ~r × (m~ω × ~r)
= m [(~r · ~r)~ω − (~r · ~ω)~r]

where we have used a vector identity to expand the triple cross-product (see Section A.3).
For the simple case where ~r and ~v are perpendicular (and hence ~ω is perpendicular to both
of them), this simplifies to

~L = mr2~ω

i.e., ~L points along ~ω.

Torque exerted by a force ~F (relative to a particular origin): ~N(t) = ~r(t)× ~F (t). We shall
see below that this is the natural definition given the way angular momentum was defined
above.

Note: Angular velocity, angular momentum, and torque depend on the choice of origin!

Newton’s second law, angular momentum, and torque

From the definitions of angular momentum ~L and torque ~N , it is trivial to see that Newton’s
second law implies a relation between them:

d

dt
~L(t) =

d

dt
[~r(t)× ~p(t)]

= ~̇r(t)× ~p(t) + ~r(t)× ~̇p(t)
= m~̇r(t)× ~̇r(t) + ~r(t)× ~F (t)
= ~N(t)

where we have used the definition of momentum and Newton’s second law in going from
the second line to the third line, and where the first term in the next-to-last line vanishes
because the cross-product of any vector with itself is zero.

14



1.1. NEWTONIAN MECHANICS

Conservation of Angular Momentum

Just as we proved that linear momentum is conserved in directions along which there is no
force, one can prove that angular momentum is conserved in directions along which there
is no torque. The proof is identical, so we do not repeat it here.

Choice of origin

There is a caveat: angular momentum and torque depend on the choice of origin. That is,
in two frames 1 and 2 whose origins differ by a constant vector ~o such that ~r2(t) = ~r1(t)+~o,
we have

~L2(t) = ~r2(t)× ~p(t) = ~r1(t)× ~p(t) + ~o× ~p(t) = ~L1(t) + ~o× ~p(t)
~N2(t) = ~r2(t)× ~F (t) = ~r1(t)× ~F (t) + ~o× ~F (t) = ~N1(t) + ~o× ~F (t)

where we have used the fact that ~p and ~F are the same in the two frames (~p because it
involves a time derivative; ~F via its relation to ~p by Newton’s second law). Thus, while
Newton’s second law and conservation of angular momentum certainly hold regardless of
choice of origin, angular momentum may be constant in one frame but not in another
because a torque that vanishes in one frame may not vanish in another! In contrast, if
linear momentum is conserved in one frame it is conserved in any displaced frame. Thus,
angular momentum and torque are imperfect analogues to linear momentum and force. Let’s
consider this in more detail.

We first solve the linear equations of motion for a particle moving in a circle at fixed speed
as shown in the previous figure. Choose the origin of the system to be at the center of the
circle and the motion to be in the xy plane. Clearly, in this frame, the particle’s position
and velocity as a function of time are

~r1(t) = R (x̂ cosωt+ ŷ sinωt)
~v(t) = ωR (−x̂ sinωt+ ŷ sinωt)

where we obtained the velocity by simple differentiation. We do not subscript ~v because it is
independent of the choice of origin. The mass is fixed so the momentum is just ~p(t) = m~v(t).
The force is, by Newton’s second law,

~F (t) =
d~p

dt
= −mω2R (x̂ cosωt+ ŷ sinωt)
= −mω2R r̂1(t)

= −m v2

R
r̂1(t)

where r̂1(t) is a unit vector pointing along ~r1(t). Clearly, the force is back along the line
to center of the circle, has magnitude F = mv2/R = mω2R, and is perpendicular to the
velocity. The velocity, momentum, and force are independent of the choice of origin.

Let’s determine the angular momentum and torque. First consider the same coordinate
system with position vector ~r1(t). Since ~F points back along ~r1, it holds that the torque
~N = ~r1 × ~F vanishes. The angular momentum vector is ~L1 = ~r1 × ~p = mvR ẑ. Since v is
fixed, ~L1 is fixed, as one would expect in the absence of torque.
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Next, consider a frame whose origin is displaced from the center of the particle orbit along
the z axis, as suggested by the earlier figure. Let ~r2 denote the position vector in this frame.
In this frame, the torque ~N2 is nonzero because ~r2 and ~F are not colinear. We can write
out the torque explicitly:

~N2(t) = ~r2(t)× ~F (t)
= r2 [sinα(x̂ cosωt+ ŷ sinωt) + ẑ cosα]× F (−x̂ cosωt− ŷ sinωt)
= r2F [− sinα(x̂× ŷ cosωt sinωt+ ŷ × x̂ sinωt cosωt)
− cosα(ẑ × x̂ cosωt+ ẑ × ŷ sinωt)]

= r2 F cosα (x̂ sinωt− ŷ cosωt)

where, between the second and third line, terms of the form x̂× x̂ and ŷ × ŷ were dropped
because they vanish.

Let’s calculate the angular momentum in this system:

~L2(t) = ~r2(t)× ~p(t)
= r2 [sinα(x̂ cosωt+ ŷ sinωt) + ẑ cosα]×mv (−x̂ sinωt+ ŷ cosωt)
= r2mv

[
sinα(x̂× ŷ cos2 ωt− ŷ × x̂ sin2 ωt) + cosα(−ẑ × x̂ sinωt+ ẑ × ŷ cosωt)

]
= ẑ mv r2 sinα+mv r2 cosα (ŷ sinωt− x̂ cosωt)

So, in this frame, we have a time-varying component of ~L2 in the plane of the orbit. This
time derivative of ~L2 is due to the nonzero torque ~N2 present in this frame, as one can
demonstrate directly by differentiating ~L2(t) and using F = mv2/R = mv2/(r2 cosα) and
v = Rω = r2 ω cosα. The torque is always perpendicular to the varying component of the
angular momentum, so the torque causes the varying component of the angular momentum
to precess in a circle.

One can of course consider even more complicated cases wherein the origin displacement
includes a component in the plane of the motion. Clearly, the algebra gets more complicated
but none of the physics changes.

1.1.3 Energy and Work

We present the concepts of kinetic and potential energy and work and derive the implications of
Newton’s second law on the relations between them.

Work and Kinetic Energy

We define the work done on a particle by a force ~F (t) in moving it from ~r1 = ~r(t1) to
~r2 = ~r(t2) to be

W12 =
∫ t2

t1

~F · d~r (1.9)

The integral is a line integral; the idea is to integrate up the projection of the force along
the instantaneous direction of motion. We can write the expression more explicitly to make
this clear:

W12 =
∫ t2

t1

~F (t) · d~r
dt
dt

=
∫ t2

t1

~F (t) · ~v(t) dt
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The value of this definition is seen by using Newton’s second law to replace ~F :

W12 =
∫ t2

t1

d~p

dt
· ~p
m
dt (1.10)

=
1

2m

∫ ~p2

~p1

d(~p · ~p)

=
p2
2

2m
− p2

1

2m
≡ T2 − T1

where we have defined the kinetic energy T = p2/2m = mv2/2. Thus, the work the force
does on the particle tells us how much the particle’s kinetic energy changes. This is kind of
deep: it is only through Newton’s second law that we are able to related something external
to the particle – the force acting on it – to a property of the particle – its kinetic energy.

Note here that, to demonstrate the connection between work and kinetic energy, we have
had to specialize to consider the total force on the particle; Newton’s second law applies
only to the total force. For example, consider an elevator descending at constant velocity.
Two forces act on the elevator: a gravitational force pointing downward and tension force
in the elevator cable pointing upward. If the elevator is to descend at constant velocity, the
net force vanishes. Thus, no work is done on the elevator, as is evinced by the fact that
its speed (and therefore its kinetic energy) are the same at the start and end of its motion.
One could of course calculate the work done by the gravitational force on the elevator and
get a nonzero result. This work would be canceled exactly by the negative work done by
the cable on the elevator.

Potential Energy, Conservation of Energy, and Conservative Forces

Consider forces that depend only on position ~r (no explicit dependence on t, ~v). Counterex-
ample: retarding forces.

Furthermore, consider forces for which W12 is path-independent, i.e., depends only on ~r1 and
~r2. Another way of saying this is that the work done around a closed path vanishes: pick any
two points 1 and 2, calculate the work done in going from 1 to 2 and from 2 to 1. The latter
will be the negative of the former if the work done is path-independent. By Stokes’ Theorem
(see Appendix A), we then see that path-independence of work is equivalent to requiring
that ~∇× ~F = 0 everywhere. (Do there exist position-dependent forces for which this is not
true? Hard to think of any physically realized ones, but one can certainly construct force
functions with nonzero curl.)

Then it is possible to define the potential energy as a function of position:

U(~r) = U(0)−
∫ ~r

0

~F (~r1) · d~r1 (1.11)

The potential energy is so named because it indicates the amount of kinetic energy the
particle would gain in going from ~r back to the origin; the potential energy says how much
work the force ~F would do on the particle.

The offset or origin of the potential energy is physically irrelevant since we can only measure
changes in kinetic energy and hence differences in potential energy. That is,

U(~r2)− U(~r1) = −
∫ ~r2

~r1

~F (~r) · d~r = −W12 = T1 − T2
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If we define the total energy E as the sum of potential and kinetic energies (modulo the
aforementioned arbitrary offset U(0)) and rewrite, we obtain conservation of energy:

E2 = U(~r2) + T2 = U(~r1) + T1 = E1 (1.12)

i.e., the total energy E is conserved. Forces for which conservation of energy holds –
i.e., those forces for which the work done in going from ~r1 to ~r2 is path-independent – are
accordingly called conservative forces.

For conservative forces, we may differentiate Equation 1.11 with respect to time to obtain
an alternate relation between force and potential energy:

d

dt
U = −~F · d~r

dt
∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
+
∂U

∂y

dy

dt
= −~F · ~v

−~∇U · ~v = ~F · ~v

where ~∇ is the gradient operator you are familiar with. Now, since the initial velocity is
arbitrary, the above must hold for any velocity ~v, and the more general statement is

−~∇U = ~F (1.13)

That is, a conservative force is the negative of the gradient of the potential energy function
that one can derive from it. Recall the physical meaning of the gradient: given a function
U(~r), the gradient of U at a given point ~r is a vector perpendicular to the surface passing
through ~r on which U is constant. Such surfaces are called equipotential surfaces. The
force is normal to such equipotential surfaces, indicating that particles want to move away
from equipotential surfaces in the direction of decreasing U .

Example 1.8

Calculate the work done by gravity on a particle shot upward with velocity ~v = v0 ẑ in the
time 0 to tf . Demonstrate that the work equals the change in kinetic energy. Also calculate
the change in potential energy, demonstrate that the change in potential energy equals the
negative of the work done, and demonstrate conservation of energy.

• First, calculate the motion of the particle. This is straightforward, the result is

~v(t) = ẑ (v0 − g t)

~r(t) = ẑ (zi + v0 t−
1
2
g t2)

The time at which the particle reaches its maximum high is tm = v0/g and the maxi-
mum height is zm = zi + v2

0/2g.

• Calculate the work done:

W (tf ) =
∫ zf ẑ

ziẑ

~F (t) · d~r

=
∫ zm

zi

(−mg) dz +
∫ zf

zm

(−mg) dz

= mg [−(zm − zi)− (zf − zm)]
= mg (zi − zf )
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We explicitly split the integral into two pieces to show how to deal with change of sign
of the direction the particle moves. Now, ~r = x̂ x+ ŷ y+ ẑ z, so d~r = x̂ dx+ ŷ dy+ ẑ dz.
This is to be left as-is – do not mess with the sign of dz. Rather, realize that the limits
of integration for the second part of the path go from zm to zf because the limits
follow along the path of the particle.. This provides the sign flip needed on the second
term to give the result we expect. Alternatively, one could have flipped the sign on dz
and the limits simultaneously, integrating over (−dz) from zf to zm; but that doesn’t
make much sense. So, the general rule is – your limits of integration should follow the
chronological path of the particle, and your line element d~r should be left untouched.
We could also calculate the work using the other form:

W (tf ) =
∫ t

0

~F (t) · ~v(t) dt

=
∫ tf

0
(−mg) (v0 − g t) dt

= −mg (v0 tf −
1
2
g t2f )

= −mg (−zi + zi + v0 tf −
1
2
g t2f )

= mg (zi − zf )

• Check that the work is equal to the change in kinetic energy:

Tf − Ti =
1
2
m (v2

f − v2
0)

=
1
2
m
[
(v0 − g tf )2 − v2

0

]
=

1
2
m (g2t2f − 2 v0 g tf )

= mg (−v0 tf +
1
2
g t2f )

= mg (zi − zi − v0 tf +
1
2
g t2f )

= mg (zi − zf )

• Check that the change in potential energy is the negative of the work:

U(zf )− U(zi) = mg zf −mg zi

= −mg (zi − zf )
= −W (tf )

• And check that energy is conserved:

Ei = U(zi) + Ti = mg zi +
1
2
mv2

0

Ef = U(zf ) + Tf = mg zf +
1
2
m [v(tf )]2

= mg (zi + v0 tf −
1
2
g t2f ) +

1
2
m (v2

0 +−2v0 g tf + g2 t2f

= mg zi +
1
2
mv2

0

= Ei
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Nonconservative Forces, Mechanical vs. Thermal Energy

Of course, there are many forces that are not conservative. We consider the example of a
particle falling under the force of gravity and air resistance, and launched downward with
the terminal velocity. The particle’s velocity remains fixed for the entire fall. Let’s examine
the concepts of work, kinetic energy, potential energy, and conservation of energy for this
case.

• Work: The net force on the particle vanishes because the air resistance exactly cancels
gravity. The particle’s speed remains fixed. Thus, no work is done on the particle.

• Kinetic Energy: Since the particle’s speed remains fixed, its kinetic energy is also
fixed, consistent with the fact that no work is done.

• Potential Energy: Clearly, the particle’s potential energy decreases as it falls.

• Conservation of Energy: So, where does the potential energy go? Here we must
make the distinction between mechanical energy and thermal energy. We demon-
strated earlier that the sum of the kinetic and potential energy is conserved when a
particle is acted upon by conservative forces. The kinetic and potential energy are the
total mechanical energy of the particle. For extended objects consisting of many
particles, there is also thermal energy, which is essentially the random kinetic en-
ergy of the particles making up the extended object; the velocities of these submotions
cancel, so they correspond to no net motion of the object. Of course, we have not con-
sidered thermal energy because we have only been talking about motion of pointlike
particles under the influence of idealized forces. Even in the presence of nonconserva-
tive forces, the sum of the mechanical and thermal energy is conserved. The potential
energy lost by the falling particle in our example is converted to thermal energy of the
falling particle and the surrounding air.

We will be able to rigorously prove the conservation of total energy later when we consider
the dynamics of systems of particles.

Calculating Motion from the Potential Energy

For particles acting under conservative forces, we have seen that mechanical energy is con-
served. We can use this fact to deduce the dynamics purely from the potential energy
function.

• Solving for the motion using the potential energy
Conservation of energy tells us that there is a constant E such that

E = T + U =
1
2
mv2 + U(x)

Rearranging, we have

dx

dt
= v = ±

√
2
m

[E − U(x)]

Formally, we can integrate to find

t− t0 =
∫ x

x0

± dx′√
2
m [E − U(x)]
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Given U(x) it is possible to find x(t). In some cases, it is possible to do this analytically,
in others numerical integration may be required. But the fundamental point is that
U(x) determines the motion of the particle.

• Is the motion bounded?
T ≥ 0 always holds. But ~v may go through zero and change sign. If this happens for
both signs of ~v, then the motion is bounded.
Consider the abstract potential energy curve shown in the following figure (Thornton
Figure 2.14):

c© 2003 Stephen T. Thornton and Jerry B. Marion,
Classical Dynamics of Particles and Systems

~v goes to zero when T vanishes. T can vanish if there are points x such that U(x) ≥
E. Thus, if the particle begins at a point x0 such that there are points xa and xb,
xa < x0 < xb, such that U(xa) ≥ E and U(xb) ≥ E, then T vanishes at those
points and the velocity vanishes. In order to make the velocity change sign, there
must be a force continuing to accelerate the particle at these endpoints. The force
is ~F = −~∇U = −x̂ dU/dx in this one-dimensional example; i.e., if U has a nonzero
derivative with the appropriate sign at xa and xb, then the particle turns around
and the motion is bounded. A particle with energy E1 as indicated in the figure has
bounded motion.
There can be multiple regions in which a particle of a given energy can be bounded.
In the figure, a particle with energy E2 could be bounded between xa and xb or xe and
xf . Which one depends on the initial conditions. The particle cannot go between the
two bounded regions.
The motion is of course unbounded if E is so large that xa and xb do not exist. The
motion can be bounded on only one side and unbounded on the other. For example,
a particle with energy E3 as indicated in the figure is bounded on the left at xg but
unbounded on the right. A particle with energy E4 is unbounded on both sides.

• Equilibria
A point with ~∇U = 0 is an equilibrium point because the force vanishes there. Of
course, the particle must have zero velocity when it reaches such a point to avoid going
past it into a region where the force is nonzero. There are three types of equilibrium
points.
A stable equilibrium point is an equilibrium point at which d2U/dx2 is positive.
The potential energy surface is concave up, so any motion away from the equilibrium
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point pushes the particle back toward the equilibrium. In more than one dimension,
this corresponds to (~s · ~∇)2U being positive for all constant vectors ~s regardless of
direction.
An unstable equilibrium point is an equilibrium point at which d2U/dx2 is negative.
The potential energy surface is concave down, so any motion away from the equilibrium
point pushes the particle away from the equilibrium. In more than one dimension, this
corresponds to (~s·~∇)2U being negative for all constant vectors ~s regardless of direction.
A saddle point is an equilibrium point at which d2U/dx2 vanishes. Higher-order
derivatives must be examined to determine stability. The point may be stable in one
direction but not another. In more than one dimension, a saddle point can occur if
there are some directions ~s with (~s · ~∇)2U < 0 and others with (~s · ~∇)2U > 0. For
smooth U , this means that there is some direction ~s with (~s · ~∇)2U = 0.

Example 1.9

Consider the system of pulleys and masses shown in the following figure. The rope is of
fixed length b, is fixed at point A, and runs over a pulley at point B a distance 2d away.
The mass m1 is attached to the end of the rope below point B, while the mass m2 is held
onto the rope by a pulley between A and B. Assume the pulleys are massless and have zero
size. Find the potential energy function of the following system and the number and type
of equilibrium positions.

Let the vertical coordinates of the two masses be z1 and z2, with the z-axis origin on the
line AB and +z being upward. The potential energy is, obviously

U = m1 g z1 +m2 g (z2 − c)

The relation between z1 and z2 is

−z2 =

√[
b+ z1

2

]2

− d2

So the simplified potential energy is

U = m1 g z1 −m2 g

√[
b+ z1

2

]2

− d2 −m2 g c

22



1.1. NEWTONIAN MECHANICS

Differentiate with respect to z1 and set the result to 0:

dU

dz1

∣∣∣∣
0

= m1 g −m2 g
1
4

b+ z1√[
b+z1

2

]2
− d2

= 0

16m2
1

[[
b+ z1

2

]2

− d2

]
= m2

2 (b+ z1)
2

(
4m2

1 −m2
2

)
(b+ z1)2 = 16m2

1 d
2

−z1 = b− 4m1 d√
4m2

1 −m2
2

where we have chosen the sign of the square root to respect the string length constraint.
There is an equilibrium if m1 > m2/2 (so that the square root is neither zero nor imaginary)
and if b and d are such that the resulting value of z1 < 0: m1 is not allowed to go above
point B.

Is the equilibrium stable? The second derivative is

d2U

dz2
1

=
m2 g

16
(b+ z1)2[[

b+z1
2

]2
− d2

]3/2
− m2 g

4
1[[

b+z1
2

]2
− d2

]1/2

=
m2 g

4
d2[[

b+z1
2

]2
− d2

]3/2

d2U

dz2
1

∣∣∣∣
0

=
m2 g

4 d
1[

4m2
1

4m2
1−m2

2
− 1
]3/2

=
m2 g

4 d

[
4m2

1 −m2
2

m2
2

]3/2

=

(
4m2

1 −m2
2

)3/2
4m2

2

g

d

Since we have already imposed the condition m1 > m2/2 to give an equilibrium, it holds
that d2U/dz2

1

∣∣
0
> 0 and the equilibrium is stable if it exists.

From a force point of view, we see that what is happening is that m2 sinks low enough so
that the projection of the rope tension along the z axis is enough to cancel the gravitational
force on m2. As m2 sinks lower, the projection of the tension grows, but the maximum
force that can be exerted on m2 is 2T . Since T is supplied by m1, the maximum value of
the upward force on m2 is 2T = 2m1 g; hence the condition that m1 > m2/2.
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1.2 Gravitation

References:

• Thornton and Marion, Classical Dynamics of Particles and Systems, Chapter 5

• Symon, Mechanics, Chapter 6.

• any first-year physics text

We define gravitational force and potential, prove Newton’s Iron Sphere theorem and demonstrate
the gravitational potential satisfies Poisson’s equation.

1.2.1 Gravitational Force

Force between two point masses

Given two particles with positions ~r1 and ~r2 and masses m1 and m2, the gravitational force
exerted by particle 1 on particle 2 is

~F21(~r1, ~r2) = −G m1m2

r221
r̂21

where ~r21 = ~r2 − ~r1 is the vector from m1 to m2, r21 = |~r21| and r̂21 = ~r21/r21. The force
is indicated in the following figure.

Force exerted on a point mass by an extended mass distribution

Since the gravitational force is linear in the two masses, we can calculate the gravitational
force exerted on a point mass by an extended mass distribution ρ(~r):

~F21 = −Gm2

∫
V1

d3r1
ρ(~r1)
r221

r̂21

where the integral is a volume integral over the extended mass distribution.
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Note that the relative position vector ~r21 depends on ~r1 and thus varies.

Force exerted on an extended mass distribution by and extended mass

We can further generalize, allowing m2 to instead be an extended mass distribution. The
two distributions are denoted by ρ1(~r) and ρ2(~r).

The force between the two mass distributions is now

~F21 = −G
∫
V2

∫
V1

d3r2 d
3r1

ρ1(~r1) ρ2(~r2)
r221

r̂21

Again, note that ~r21 varies with ~r1 and ~r2. The order of integration does not matter.

Gravitational vector field

Since the gravitational force is proportional to the mass being acted upon, we can define a
gravitational vector field by determining the force that would act on a point mass m2:

~g(~r2) =
~F21

m2

= −G
∫
V1

d3r1
ρ(~r1)
r221

r̂21

The gravitational field is of course independent of m2. Note that ~g has units of force/mass
= acceleration.
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1.2.2 Gravitational Potential

The gravitational force is conservative, gravitational potential energy

During our discussion of conservative forces, we argued that, for a force ~F for which the work
done in going from ~r1 to ~r2 is independent of path, it holds that one can define a potential
energy U(~r) and that ~F = −~∇U . We can easily demonstrate that the gravitational force
between two point masses is conservative. For simplicity, place one mass at the origin. The
work done on the particle in moving from ~ri to ~rf is

W =
∫ ~rf

~ri

~F (~r) · d~r

= −Gm1m2

∫ rf

ri

dr

r2

= Gm1m2

(
1
ri
− 1
rf

)
where the line integral has been simplified to an integral along radius because any azimuthal
motion is perpendicular to ~F and therefore contributes nothing to the integral. We can
therefore define the gravitational potential energy of the two-mass system

U(~r21) = −G m1m2

r21

where we have chosen the arbitrary zero-point of the potential energy so that U(~r21) vanishes
as ~r21 →∞.

Because U is linear in the two masses, we can of course determine the potential energy of
a system of two extended masses:

U = −G
∫
V2

∫
V1

d3r2 d
3r1

ρ1(~r1) ρ2(~r2)
r21

The gravitational potential

Clearly, m2 is just a constant in the above discussion, so we can abstract out the gravita-
tional potential

Ψ(~r2) =
U(~r21)
m2

= −G m1

~r21

If m1 is extended, we have

Ψ(~r2) = −G
∫
V1

d3r1
ρ1(~r1)
r21

It is obvious that, just in the way that the gravitational vector field ~g(~r) is the force per unit
mass exerted by the mass distribution giving rise to the field, the gravitational potential
scalar field Ψ(~r) gives the work per unit mass needed to move a test mass from one position
to another.
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One of the primary advantages of using the gravitational potential is to greatly simplify
calculations. The potential is a scalar quantity and thus can be integrated simply over
a mass distribution. The gravtiational field or force is of course a vector quantity, so
calculating it for extended mass distributions can become quite complex. Calculation of
the potential followed by taking the gradient ~g = −~∇Ψ is usually the quickest way to solve
gravitational problems, both analytically and numerically.

Newton’s iron sphere theorem

Newton’s iron sphere theorem says that the gravitational potential of a spherically symmetric
mass distribution at a point outside the distribution at radius R from the center of the
distribution is is the same as the potential of a point mass equal to the total mass enclosed
by the radius R, and that the gravitational field at a radius R depends only on mass enclosed
by the radius R. We prove it here.

Assume we have a mass distribution ρ(~r) = ρ(r) that is spherically symmetric about the
origin. Let ri and ro denote the inner and outer limits of the mass distribution; we allow
ri = 0 and ro → ∞. We calculate the potential at a point P that is at radius R from the
origin. Since the distribution is spherically symmetric, we know the potential depends only
on the radius R and not on the azimuthal and polar angles. Without loss of generality, we
choose P to be at R ẑ. The potential is

Ψ(P = R ẑ) = −G
∫
V
d3r

ρ(r)
|R ẑ − ~r|

Obviously, we should do the integral in spherical coordinates as indicated in the sketch
below.
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Spherical coordinates are defined in Appendix A.2. Writing out the integral gives

Ψ(P = R ẑ) = −G
∫ ro

ri

r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
dφ

ρ(r)√
R2 + r2 − 2Rr cosθ

= −2πG
∫ ro

ri

r2 dr

∫ π

0
sin θ dθ

ρ(r)√
R2 + r2 − 2Rr cosθ

= −πG
R

∫ ro

ri

r ρ(r) dr
∫ π

0

2Rr sin θ dθ√
R2 + r2 − 2Rr cosθ

= −2πG
R

∫ ro

ri

r ρ(r) dr
[√

R2 + r2 − 2Rr cosθ
]∣∣∣π

0

= −2πG
R

∫ ro

ri

r ρ(r) dr [(R+ r)− |R− r|]

Let’s consider the solution by case:

• R > ro: In this case, |R− r| = R− r and we have

Ψ(R) = −4πG
R

∫ ro

ri

r2 ρ(r) dr

= −G
R

∫ ro

ri

4π ρ(r) r2 dr

= −G
R
M(ro)

where M(ro) is the mass enclosed at the radius ro; i.e., the total mass of the distribu-
tion. This is the first part of the iron sphere theorem.

• R < ri: Then we have |R− r| = r −R and

Ψ(R) = −G
∫ ro

ri

4π r2 ρ(r)
r

dr = −G
∫ ro

ri

4π r ρ(r) dr

The potential is independent of R and is just the potential at the center of the mass
distribution (which is easy to calculate thanks to the symmetry of the problem).

• ri < R < ro: The integral is broken into two pieces and we have

Ψ(R) = −G
R

∫ R

ri

4π r2 ρ(r) dr −G
∫ ro

R

4π r2 ρ(r)
r

dr

= −G
R
M(R)−G

∫ ro

R
4π r ρ(r) dr

Note how the potential is naturally continuous, as it ought to be since it is a line integral.
The complicated form of the potential in the intermediate region is due to the requirement
of continuity.

It is interesting to also calculate the gravitational field in the three regions using ~g(R) =
−dΨ/dR:

• R > ro:

~g(R) = − dΨ
dR

∣∣∣∣
R

= − G

R2
M(ro) R̂

where R̂ is the unit vector pointing out from the R origin.
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• R < ri:

~g(R) = − dΨ
dR

∣∣∣∣
R

= 0

• ri < R < ro:

~g(R) = − dΨ
dR

∣∣∣∣
R

= − G

R2
M(R) R̂− G

R

dM

dR
R̂+G

4π R2 ρ(R)
R

R̂

= − G

R2
M(R) R̂

Here we see the second component of the theorem, that the gravitational field at a radius
R is determined only by the mass inside that radius. The potential is affected by the mass
outside the radius because the potential is the line integral of the field and thus cares about
what happens on a path in from R =∞.

Example 1.10

Calculate the gravitational potential and field for a mass distribution that is uniform with
density ρ between radii ri and ro and zero elsewhere.

We simply have to calculate the integrals given in the above discussion. Split by the three
regions:

• R > ro: As explained above, the potential is just that due to the total mass, which is
M(ro) = 4

3 π ρ (r3o − r3i ), which gives

Ψ(R) = −4π ρG
3R

(
r3o − r3i

)
• R < ri: And, finally, the internal solution:

Ψ(R) = −2πGρ
(
r2o − r2i

)
• ri < R < ro: Here, we calculate the two term solution:

Ψ(R) = −4πGρ
3R

(
R3 − r3i

)
− 2πGρ

(
r2o −R2

)
The gravitational field is easily calculated from the earlier formulae:

• R > ro:

~g(R) = −4π ρG
3R2

(
r3o − r3i

)
R̂

• R < ri:

~g(R) = 0

• ri < R < ro:

~g(R) = −4πGρ
3R2

(
R3 − r3i

)
R̂
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The solution is sketched below.

Poisson’s Equation

A final application of the gravitational potential and field is to prove Poisson’s Equation
and Laplace’s Equation.

Suppose we have a mass distribution ρ(~r) that sources a gravitational potential Ψ(~r) and
gravitational field ~g(~r). Consider a surface S enclosing a volume V ; ρ need not be fully
contained by S. Let us calculate the flux of the field through the surface S by doing an
area integral over the surface of the projection of ~g along the surface normal vector n̂:

Φ =
∫
S
d2r n̂(~r) · ~g(~r)

= −
∫
S
d2r2 n̂(~r2) ·

∫
d3r1

Gρ(~r1)
r221

r̂21

= −G
∫
d3r1 ρ(~r1)

∫
S
d2r2

n̂(~r2) · r̂21
r221

The integrand of the second integral is the solid angle subtended by the area element d2r2
as seen from ~r1 (the r21 in the denominator cancels a similar factor in the numerator to turn
area into solid angle). There is a sign defined by whether the surface normal has a positive
or negative projection along r̂21; i.e., whether the surface normal at ~r2 points away from
or toward ~r1. If ~r1 is inside the surface S, then the integral is just 4π because the surface
normal always points away and 4π is the solid angle subtended by an enclosing surface. If ~r1
is outside the surface S, then the integrated solid angle subtended vanishes because positive
contributions from the part of the surface with n̂ pointing away from ~r1 are canceled by
negative contributions from sections with n̂ pointing toward ~r1. Therefore, we have

Φ = −4πG
∫
V
d3r1 ρ(~r1)

= −4πGMV
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where MV is the mass enclosed by the surface S in the volume V . Gauss’s divergence
theorem (see Appendix A.4) tells us that

Φ =
∫
S
d2r n̂(~r) · ~g(~r) =

∫
V
d3r ~∇ · ~g(~r)

i.e., that ∫
V
d3r ~∇ · ~g(~r) = −4πG

∫
V
d3r ρ(~r)

The surface S (and enclosed volume V ) we chose were arbitrary, so it holds that

~∇ · ~g(~r) = −4πGρ(~r)
∇2Ψ(~r) = 4πGρ(~r)

The latter relation is Poisson’s Equation, which relates the derivatives of the potential
to the mass density. Notice that it is a local relation; it was not necessarily obvious that
such a relation would hold given the way the potential is defined as a line integral. When
ρ(~r) = 0, the relation is called Laplace’s Equation. There are analogous relations in
electromagnetism, relating the electric potential to the electric charge density.

Summary of Relationships among Gravititational Quantities
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1.3 Dynamics of Systems of Particles

References:

• Thornton and Marion, Classical Dynamics of Particles and Systems, Chapter 9

• Goldstein, Classical Mechanics, Section 1.2

• Symon, Mechanics, Chapter 4

• any first-year physics text

We introduce Newton’s third law, define center of mass, and explore the concepts of momentum,
angular momentum, and energy for systems of particles. Collisions of two-particle systems are
considered.

1.3.1 Newtonian Mechanical Concepts for Systems of Particles

Newton’s third law

We have so far considered motion of a single particle, which required Newton’s second law.
In considering systems of particles, we now require Newton’s third law. There are two
forms:

weak form
The forces exerted by two particles a and b on each other are equal in magnitude and
opposite in direction. That is, if ~fab is the force exerted on particle a by particle b,
then

~fab = −~fba (1.14)

strong form
In addition to the above, the force between the two particles a and b is a function
of only the difference in the two particles’ positions and is directed along the vector
between them:

~fab = fab(rab) r̂ab (1.15)

where r̂ab = ~rab/|~rab| and ~rab = ~ra − ~rb. That is, the force is a scalar function of the
magnitude of the position difference and is directed along r̂ab. The mathematical form
may seem like a stronger statement than the verbal form. But such a dependence
implies the force must be directed along r̂ab. The remaining dependence on ~rab must
therefore be a scalar, and the only nonzero scalar that can be formed from ~rab is rab,
so the scalar function fab must only be a function of rab.

Both forms are assumptions that must be checked observationally for different forces. For
example, the Lorentz force on a charged particle, ~F = q~v × ~B, satisfies the weak form but
not the strong form. Forces that satisfy the strong form are called central forces; examples
are gravitational and electrostatic forces.

32



1.3. DYNAMICS OF SYSTEMS OF PARTICLES

Total Linear Momentum, Newton’s Second Law, Center of Mass, Conservation of
Linear Momentum

Now, let’s consider the forces acting on a system of particles with masses ma, positions ~ra,
and momenta ~pa. Newton’s second law for each particle is

d~pa
dt

= ~F (e)
a +

∑
b6=a

~fab

where the (e) superscript indicates external forces – forces exerted by something outside the
system of particles – and the second term contains all the forces exerted on particle a by
other particles of the system. Sum this over all particles to find

d

dt

∑
a

ma
d

dt
~ra =

∑
a

~F (e)
a +

∑
a,b, b6=a

~fab

First, note that the second term vanishes due to the weak form of Newton’s second law:
every pairwise sum ~fab + ~fba = 0. Second, the total momentum of the system is

~P =
∑
a

~pa =
∑
a

ma
d

dt
~ra (1.16)

So we find that

d

dt
~P =

∑
a

~F (e)
a ≡ ~F (e) (1.17)

That is, the system can be treated as a point mass with momentum ~P acted upon by the
total external force ~F (e), and Newton’s second law is obeyed for the equivalent point mass.
Taking the analogy further, if the total mass of the system is

M =
∑
a

ma

and we define the center of mass as

~R ≡ 1
M

∑
a

ma~ra (1.18)

and we assume the ma are fixed in time, then Equation 1.17 becomes

M
d2

dt2
~R = ~F (e)

The analogy to a point mass continues to hold if we treat the center of mass as the position
coordinate of the equivalent point mass.

If the total external force ~F (e) vanishes along a direction ~s, then the total linear momentum
along that direction, ~P · ~s, is constant. That is, the total linear momentum of a system
of particles subject to no external force is conserved. It was not a priori obvious that this
would occur; it is a result of the linearity of Newton’s second law (linear dependence on
position, mass, and force) and of the weak form of Newton’s third law.
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For a solid object, as opposed to a system of point particles, the natural extensions to the
definitions are

M =
∫
d3r ρ(~r) (1.19)

~R =
∫
d3r ρ(r)~r (1.20)

Notice that the integrand for ~R contains the vector ~r, so the integral must be done component-
by-component.

Example 1.11

(Thornton Example 9.1) Find the center of mass of a hemisphere of constant density ρ, and
radius a.

The mass is obviously

M =
2
3
π a3 ρ

Choose a coordinate system wherein the azimuthal symmetry axis is aligned with the z
axis. Consider a thin disk parallel to the xy plane at height z and having thickness dz.
By symmetry, the center of mass of the disk must be at zẑ. The radius of the thin disk is√
a2 − z2. Therefore, the mass contribution of the disk is

dm = π
(
a2 − z2

)
ρ dz

Since each disk only contributes a component along z to the overall integral, clearly the
center of mass must be along z. So we have

Z =
1
M

∫
z dm

=
1
M

∫ a

0
dz π

(
a2 − z2

)
ρ z

=
π ρ

M

[
a2 z

2

2

∣∣∣∣a
0

− z4

4

∣∣∣∣a
0

]
=

π

4M
ρa4

=
3
8
a

34



1.3. DYNAMICS OF SYSTEMS OF PARTICLES

Rocket Motion

The rocket problem is a classic application of conservation of momentum. First consider
a rocket in the absence of gravity. It exhausts mass at a rate ṁ = dm/dt where ṁ < 0.
The exhaust gas is expelled at speed u (as measured in the rocket frame). We can find the
motion of the rocket by requiring conservation of momentum:

p(t) = p(t+ dt)
mv = (m+ ṁ dt)(v + dv) + (−ṁ dt)(v − u)

On the right side, the first term is the rocket momentum after losing mass dm = ṁ dt < 0
and gaining speed dv. The second term is the momentum of the expelled gas. The mass
of the expelled gas is −ṁ dt because ṁ < 0. The gas is expelled at speed u in the rocket
frame, which is speed v − u in fixed frame. We expand out the right side, dropping second
order differentials like dt dv:

mv = mv + ṁ v dt+mdv − ṁ v dt+ ṁ u dt

mdv = −ṁ u dt

There are three unknowns in the above: m, v, and t. We can eliminate t by expanding
ṁ dt = (dm/dt) dt = dm, which gives

dv

u
= −dm

m
v − v0 = −u [logm− logm0]

v = v0 + u log
(m0

m

)
The final speed depends on the exhaust speed and the ratio of initial to final mass. Clearly,
the less mass left over, the larger the final speed. Note that ṁ does not enter; it does not
matter how quickly you expel the mass. This is sensible, as the thing that sets the final
momentum is the total momentum of the gas that has been expelled. The rate at which it
was expelled is irrelevant.

The above differential equation could also have been written

m
dv

dt
= −u dm

dt
= u

∣∣∣∣dmdt
∣∣∣∣

The right side is referred to as the thrust and has units of force. The left side looks more
like mass × acceleration. The thrust is the effective force on the rocket due to expulsion of
gas at rate ṁ with speed u.

Since the final speed of the rocket depends only logarithmically on m0/m, gaining final
speed by simply trying to increase this ratio is a losing battle. A better way to do it is to
use a multistage rocket. Let

m0 = initial mass
ma = mass of first stage payload
mb = mass of first stage fuel container (empty)
m1 = ma +mb

v1 = final speed of first stage
mc = mass of second stage payload
md = mass of second stage fuel container (empty)
m2 = mc +md

v2 = final speed of second stage
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Then the speeds are all related by

v1 = v0 + u log
(
m0

m1

)
v2 = v1 + u log

(
ma

m2

)
= v0 + u

[
log
(
m0

m1

)
+ log

(
m1

m2

)]
= v0 + u log

(
m0ma

m1m2

)
Since ma < m1, the advantage is not gained directly by jettisoning the empty fuel container
and engine mb. Rather the advantage is gained because now m2 can be much smaller than
it would have been possible to make m1, compensating for the lost factor ma/m1.

Now, let’s repeat the problem in the presence of simple uniform gravitational field g. In the
presence of an external force −mg, our equation of motion for the system is

dp

dt
= F (e) = −mg

p(t+ dt)− p(t) = −mg dt

mdv + ṁ u dt = −mg dt

dv = −
[
ṁ

m
u+ g

]
dt

dv = −
[ u
m

+
g

ṁ

]
dm

where we have eliminated t in favor of m again. We integrate to find (remembering ṁ < 0):

v = v0 +
g

|ṁ|

∫ m

m0

dm′ − u
∫ m

m0

dm′

m′

= v0 −
g

|ṁ|
(m0 −m) + u log

(m0

m

)
= v0 − g t+ u log

(m0

m

)
where in the last step we made use of the fact that the mass loss is constant som0−m = |ṁ t|.
So, the solution is pretty straightforward – same as the one in the absence of gravity, but
there is an additional deceleration term due to gravity.

Angular Momentum, Conservation of Angular Momentum, External and Internal
Torques

We consider the angular momentum of a system of particles. Let the position of particle a
be

~ra = ~R+ ~sa (1.21)

where ~R is the position of the center of mass and ~sa is the position relative to the center
of mass. Since ~R may experience acceleration, ~sa can be in a noninertial reference system.
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We have to be careful which coordinates Newton’s second law is applied to. The angular
momentum of particle a in the inertial system is

~La = ~ra × ~pa

Let us of course write out the total angular momentum:

~L =
∑
a

~La =
∑
a

~ra × ~pa

=
∑
a

~ra ×ma ~̇ra

=
∑
a

(
~R+ ~sa

)
×ma

(
~̇R+ ~̇sa

)
=

∑
a

ma

[(
~R× ~̇R

)
+
(
~R× ~̇sa

)
+
(
~sa × ~̇R

)
+
(
~sa × ~̇sa

)]
Consider the middle two terms:

∑
a

ma

[(
~R× ~̇sa

)
+
(
~sa × ~̇R

)]
= ~R×

[∑
a

ma ~̇sa

]
+

[∑
a

ma ~sa

]
× ~̇R

Since ~sa is referenced to the center of mass, by definition the quantity
∑

ama ~sa vanishes.∑
a

ma ~sa =
∑
a

ma

(
~ra − ~R

)
= M ~R−M ~R = 0

So our expression for ~L simplifies to

~L =
∑
a

ma

[(
~R× ~̇R

)
+
(
~sa × ~̇as

)]
= ~R×M ~̇R+

∑
a

~sa ×ma ~̇sa

~L = ~R× ~P +
∑
a

~sa ×ma ~̇sa (1.22)

Thus, the total angular momentum is the sum of the angular momentum of the center of
mass and the angular momentum of the system relative to its center of mass. Remember
that the center of mass system is not necessarily inertial, so ma~̇sa, which looks like a linear
momentum, may not behave reasonably. It is best to not call it a linear momentum.

The next obvious question is – what does Newton’s second law tell us about ~̇L? We know

~̇L =
∑
a

~̇La =
∑
a

~ra × ~̇pa

=
∑
a

~ra ×

~F (e)
a +

∑
b6=a

~fab


=

∑
a

~ra × ~F (e)
a +

∑
a,b, b<a

[
~ra × ~fab + ~rb × ~fba

]
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where in going from the second to the third line we have regrouped the terms in the sum
over particle pairs. The first term is obviously due to external torques while the second term
corresponds to internal torques. The weak form of Newton’s third law gives ~fba = −~fab, so
we can rewrite

~̇L =
∑
a

~ra × ~F (e)
a +

∑
a,b, b<a

(~ra − ~rb)× ~fab

=
∑
a

~ra × ~F (e)
a +

∑
a,b, b<a

~rab × ~fab

Now, if we use the strong form of Newton’s third law, the second term vanishes because
~fab is directed along ~rab. So we have a version of Newton’s second law:

~̇L =
∑
a

~ra × ~F (e)
a

=
∑
a

~N (e)
a ≡ ~N (e) (1.23)

So, when the forces are central (and the strong form of Newton’s third law holds), we have
that the change in the total angular momentum of the system is determined by the total
external torque and that the internal torque vanishes. When the external torque vanishes,
the angular momentum is conserved.

Important Note: Note that the angular momentum and forces are defined in the original
inertial reference frame, not the center of mass frame. This is because the angular
momentum of the center of mass would vanish in the center-of-mass frame (~R = 0 in
center-of-mass frame).

Kinetic Energy

Let us now consider the concepts of work and energy for a system of particles. Consider
the work done a system in moving from configuration 1 with coordinate positions ~ra,1 to
configuration 2 with coordinate positions ~ra,2. The work done is

W12 =
∑
a

∫ 2

1

~Fa · d~ra

=
∑
a

(
p2
a,2

2ma
−

p2
a,1

2ma

)

=
∑
a

p2
a,2

2ma
−
∑
a

p2
a,1

2ma
≡ T2 − T1

where the kinetic energy has been defined in the obvious fashion. Let’s write this out in
terms of the center of mass coordinates, and assuming the mass of the particles do not
change:

~pa = ma ~̇ra = ma

(
~̇R+ ~̇sa

)
p2
a = m2

a Ṙ
2 +m2

a ṡ
2
a + 2m2

a
~̇R · ~̇sa

38
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So then

T =
∑
a

p2
a

2ma

=
∑
a

1
2
ma Ṙ

2 +
∑
a

1
2
ma ṡ

2
a + ~̇R ·

∑
a

ma ~̇sa

=
1
2
M Ṙ2 +

∑
a

1
2
ma ṡ

2
a + ~̇R · d

dt

∑
a

ma ~sa

The next-to-last step assumes the ma are fixed in time. The last term in the last line
vanishes because the ~sa are defined relative to the center of mass. So we have

T =
1
2
M Ṙ2 +

∑
a

1
2
ma ṡ

2
a (1.24)

=
P 2

2M
+
∑
a

1
2
ma ṡ

2
a (1.25)

The total kinetic energy is the sum of the kinetic energy of motion of the center of mass of
the entire body and the “internal” kinetic energy of the body. Note that we can write the
first term in terms of the center of mass momentum, but we do not write the second term
in terms of momenta relative to the center of mass because the center of mass reference
frame may not be inertial. Momentum relative to the center of mass can be a useless (and
misleading) quantity.

Potential Energy and Conservation of Energy

Returning to the work equation given above, let’s split into terms for the external and
internal forces and assume they are both conservative:

W12 =
∑
a

∫ 2

1

~F (e)
a · d~ra +

∑
a,b, b6=a

∫ 2

1

~fab · d~ra

= −
∑
a

∫ 2

1

~∇aUa · d~ra +
∑

a,b, b6=a

∫ 2

1

~fab · d~ra

Note that the gradient is with respect to ~ra. Ua and Ũab need not be related in any way.
The first term is easy to integrate, giving

−
∑
a

∫ 2

1

~∇aUa · d~ra =
∑
a

[Ua(~ra,1)− Ua(~ra,2)]

The second term is more difficult because it is not obviously a perfect differential. We can
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reorganize the sum and simplify by grouping terms for a given particle pair:∑
a,b, b6=a

∫ 2

1

~fab · d~ra =
∑

a,b, b<a

∫ 2

1

[
~fab · d~ra + ~fba · d~rb

]
=

∑
a,b, b<a

∫ 2

1

~fab · [d~ra − d~rb]

=
∑

a,b, b<a

∫ 2

1

~fab · d~rab

=
∑

a,b, b<a

[
Ũab(rab,1)− Ũab(rab,2)

]
where in the second step we have made form of the weak form of Newton’s third law and
in the last line we have used the strong form to rewrite the line integral as the pairwise
potential energy Ũab. It is not obvious at this point that this new pairwise potential energy
we have just defined as the line integral of the central force over the difference coordinate
~rab is the same thing as our original single-particle definition of potential energy. But we
can see the equivalency by working from the original definition:

Ũab(~ra,2, ~rb,2)− Ũab(~ra,1, ~rb,1) = Ũab(~ra,2, ~rb,2)− Ũab(~ra,2, ~rb,1)
+Ũab(~ra,2, ~rb,1)− Ũab(~ra,1, ~rb,1)

= −
∫ ~rb,2

~rb,1

~fba(~rb, ~ra,2) · d~rb −
∫ ~ra,2

~ra,1

~fab(~ra, ~rb,1) · d~ra

=
∫ ~rb,2

~rb,1

~fab(~ra,2, ~rb) · d~rb −
∫ ~ra,2

~ra,1

~fab(~ra, ~rb,1) · d~ra

= −
∫ ~ra,2−~rb,2

~ra,2−~rb,1

fab(rab) r̂ab · d~rab −
∫ ~ra,2−~rb,1

~ra,1−~rb,1

fab(rab) r̂ab · d~rab

= −
∫ ~rab,2

~rab,1

fab(rab) r̂ab · d~rab

= Ũab(rab,2)− Ũab(rab,1)

In going from the second line to the third line, we make use of the weak form of Newton’s
third law. In going from the third line to the fourth line, we make use of the strong form
~fab(~ra, ~rb) = fab(|~rab|) r̂ab and also change variables to ~rab. Going from the fourth line to
the fifth line simply makes use of the fact that the lower limit of integration on the first
term and the upper limit of integration on the second term are equal, and also we use
~rab = ~ra − ~rb. The final step makes use of the fact that the integral only depend on ~rab.
The point made by this derivation is that the pairwise the expression for the potential
energy Ũ(~rab,2)− Ũ(~rab,1) is indeed the same as the expression one would expect from the
single-particle definition of potential energy as long as the strong form of Newton’s third
law holds.

So, the total work done is

W12 =
∑
a

[Ua(~ra,1)− Ua(~ra,2)] +
∑

a,b, b<a

[
Ũab(rab,1)− Ũab(rab,2)

]
(1.26)

≡ U1 − U2 (1.27)
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and so we have

T2 − T1 = U1 − U2

E2 = T2 + U2 = T1 + U1 = E1

i.e., we have total energy conservation. We have assumed only that all the forces are
conservative and that the internal forces are conservative and central.

We separate the potential energy into two terms:

U (e) =
∑
a

Ua(~ra) (1.28)

U (i) =
∑

a,b, b<a

Ũab(rab) =
1
2

∑
a,b, b6=a

Ũab(rab) (1.29)

In general, U (i) need not be constant in time. We define a rigid body as one for which
the distances rab are constant; displacements d~rab during motion are always perpendicular
to ~rab. Since we have earlier assumed the strong form of the third law – i.e., central forces
– then this immediately implies ~fab · d~rab = 0 for all displacements d~rab. Hence, no work is
done by the internal forces and therefore U (i) remains constant. Since constant offsets in
potential energy have no effect on motion, the internal potential for such systems can be
ignored: all motion is due only to external forces.

Example 1.12

A projectile of mass M explodes in flight into three pieces. The first mass m1 = M/2
continues to travel in the same direction as the original projectile. The second mass m2 =
M/6 travels in the opposite direction and m3 = M/3 comes to rest. The energy E converted
from chemical energy of the explosive to final state mechanical energy is five times the initial
kinetic energy of the projectile. What are the velocities of the three pieces?

We begin by writing the final velocities in terms of the initial one:

~v1 = k1 ~v

~v2 = −k2 ~v

~v3 = 0

Conservation of linear momentum gives us

M ~v = m1 ~v1 +m2 ~v2 +m3 ~v3

M =
M

2
k1 −

M

6
k2

k2 = 3 k1 − 6

Conservation of energy gives

6
1
2
M v2 =

1
2
m1 v

2
1 +

1
2
m2 v

2
2 +

1
2
m3 v

2
3

6 =
1
2
k2

1 +
1
6
k2

2

Inserting the result for k2 into the conservation of energy equation gives

36 = 3 k2
1 + (3 k1 − 6)2

36 = 3 k2
1 + 9 k2

1 − 36 k1 + 36
0 = k2

1 − 3 k1
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Clearly, the solution is k1 = 3, k2 = 3, so

~v1 = 3~v
~v2 = −3~v
~v3 = 0

Example 1.13

A rope of uniform linear density λ and mass m is wrapped one complete turn around a
hollow cylinder of mass M and radius R. The cylinder rotates freely about its axis the
rope unwraps. The rope ends are at z = 0 (one fixed, one loose) when point P is at θ = 0.
The system is slightly displaced from equilibrium (so motion will occur). Find the angular
velocity as a function of the rotation angle θ of the cylinder.

We are trading the potential energy of the rope for the kinetic energy of the rope and
cylinder. Let α be a parameter that describes the position along the rope, 0 ≤ α ≤ 2π R
where 2π R is the length of the rope. α = 0 at the end that is fixed to the cylinder. The z
position of the rope as a function of the angle θ and the parameter α is

z(θ, α) =
{
R sin

[
2π −

(
θ + α

R

)]
θ + α

R < 2π
−Rθ + (2π R− α) θ + α

R ≥ 2π

Some explanation of the above form is necessary. The angle θ gives the angle of the start
of the rope. The angle α/R is the angle between the start of the rope and the position α.
Therefore, θ + α

R gives the angle of the the position α relative to the θ origin, for the part
of the rope that is on the cylinder.

• The cutoff point between the two forms is where the rope begins to unwind off the
cylinder. This occurs for α such that the angle of the position α is 2π. As explained
above, the angle of the position α is θ + α

R , so the cutoff is at θ + α
R = 2π.

• Before the cutoff point, the z coordinate of position α is just the z coordinate of a point
on a circle of radius R and at angle θ + α

R , with an appropriate change of coordinate
to a counterclockwise angle. The counterclockwise angle is 2π − (θ + α

R). Hence, the
z coordinate is R sin

[
2π − (θ + α

R)
]
.

• After the cutoff point, the rope just hangs straight down. The position of the end
of the rope is the amount of the rope that has unwound. The amount of rope that
has unwound is Rθ because θ is the angle of the start of the rope on the cylinder.
Therefore, the z coordinate of the end of the rope is −Rθ. A position α along the
rope is at a distance 2π R − α from the end of the rope (recall, 2π R is the length of
the rope). So the z coordinate of the position α is −Rθ + (2π R− α).
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We do not need to calculate the potential energy completely explicitly. We know that when
the rope is fully wound, the potential energy vanishes because there is as much rope at +z
as at −z. So we only need to correct for the part that unwinds and hangs vertically. The
potential energy is thus

U(θ) =
∫ 2πR

2πR−Rθ
dαλ g [−Rθ + (2π R− α)]−

∫ Rθ

0
dβ λ g R sin

(
2π − β

R

)
In each term, the integrand is the product of the z position, the mass density, and the
acceleration g, which gives the potential energy of the differential element of length dα.
The first term is for the hanging rope. The second term is the potential energy that would
be present if the rope remained wound around the cylinder between angles 0 and θ (0 and
Rθ in rope length). We use a different variable β to distinguish from α. Thus, instead of
calculating the full potential energy of the rope, we calculate the part that is due to the
unwound portion of the rope.

We can simplify the first term by changing variables to u = −Rθ + (2π R − α); the limits
of integration change to 0 and −Rθ. Continuing onward:

U(θ) = λ g

{
−
∫ −Rθ

0
du u− R2 cos(2π − β

R
)
∣∣∣∣Rθ
0

}

= λ g

{
−1

2
(Rθ)2 −R2 cos(2π − θ) +R2 cos(2π)

}
= −λ g R2

{
θ2

2
+ cos θ − 1

}
The kinetic energy is the sum of the kinetic energies of the rotating cylinder, the rotating
rope, and the falling rope:

K(θ) =
1
2
M
(
R θ̇
)2

+
1
2
λR (2π − θ)

(
R θ̇
)2

+
1
2
λR θ

(
Rθ̇
)2

where, for the last term, we could simply take the rope velocity to be the velocity of the
cylinder where the rope leaves the cylinder. Simplifying:

K(θ) =
1
2
M
(
R θ̇
)2

+
1
2
m
(
R θ̇
)2

Initially, the total potential energy vanishes (because as much of the rope is at +z as at −z)
and the kinetic energy vanishes (because the angular velocity vanishes). So conservation of
energy gives

0 = U(θ) +K(θ)

λ g R2

{
θ2

2
+ cos θ − 1

}
=

1
2

(M +m)
(
R θ̇
)2

θ̇2 =
2λ g
M +m

{
θ2

2
+ cos θ − 1

}
θ̇2 =

mg

2π R (M +m)
{
θ2 + 2 cos θ − 2

}

43



CHAPTER 1. ELEMENTARY MECHANICS

Example 1.14

(Thornton Example 9.2) A chain of uniform linear mass density λ, length b, and mass
M = b λ hangs from two points A and B, adjacent to each other. The end B is released.
Find the tension in the chain at point A after the end B has fallen a distance z by (a)
assuming free fall and (b) using energy conservation. You should treat the chain as follows:
the portion above the bend point on the side toward end A is stationary. The portion
above the bend point on the side toward end B falls all with the same velocity. The time-
dependence is in the length and velocity of the falling portion. Neglect the bend region –
assume the bend is perfect and instantaneous.

For both solutions, first note that the length of the portion of the chain that is fixed and
the length that is falling is

lfixed =
b− z

2

lfall = b− lfixed =
b+ z

2

That the above formulae are correct can be seen as follows. First, b + |z| = b − z is the
total length from A to the initial position of B including the gap z. (Remember, z < 0.)
So (b− z)/2 is half that length, which gives the length from A to the bend point, which is
the portion of the chain that is fixed.

Also, in order to find the tension, we will need to use the equation of motion for the center
of mass of the chain:

Ṗ = −M g + T

The momentum of the chain is

P = λ lfall ż = λ

(
b+ z

2

)
ż
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where ż is the speed of the falling end (and therefore of the entire falling section). So we
have

T = M g + Ṗ

= M g + λ

[(
b+ z

2

)
z̈ +

1
2
ż2

]

(a) Assume free fall. Since we assume that the falling part of the chain is in free fall, it
holds that

z = −1
2
g t2

ż = −g t =
√
−2 g z

z̈ = −g

which gives

T = M g + λ

[
−
(
b+ z

2

)
− z
]
g

= M g +
λ g

2
(−b− 3 z)

=
M g

2

(
−3 z
b

+ 1
)

When the chain is just released, z = 0 and T = M g/2. When the fall is finished and
z = −b, we have T = 2M g. The results for the tension are somewhat nonsensical; as
we will see, this is due to the assumption of free fall being incorrect.

(b) Now we solve by energy methods. Finding the kinetic energy as a function of position
gives us ż, we can then differentiate to find z̈ and insert into the above equation for
the tension. We find the kinetic energy by requiring conservation of energy.

The potential energy of the chain at any given z coordinate is found by integrating
the potential energy of small mass elements dm over the chain. Let θ be a parameter
that runs from 0 to b, starting at A, that indicates where the mass element is along
the chain; θ is independent of how far end B has fallen. Let z̃(θ) be the z coordinate
of the element θ. We know that

z̃(θ) =
{
−θ θ < lfixed
(θ − lfixed)− lfixed θ > lfixed

The contribution of an element dθ at θ to the mass and potential energy are

dm = λ dθ

dU = dmg z̃(θ)
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so we then have

U(z) =
∫ b

0
dθ λ g z̃(θ)

= λ g

[
−
∫ lfixed

0
dθ θ +

∫ b

lfixed

dθ (θ − 2 lfixed)

]

= λ g

[
−
lfixed

2
+
b2 − l2fixed

2
− 2 lfixed (b− lfixed)

]

= λ g

[
l2fixed − 2 lfixed b+

b2

2

]
= λ g

[(
b2

4
− b z

2
+
z2

4

)
−
(
b2 − b z

)
+
b2

2

]
= λ g

[
−b

2

4
+
b z

2
+
z2

4

]

The kinetic energy is given by the mass of the part of the chain that is falling and the
speed at which it falls:

K =
1
2
λ lfall ż

2

=
1
4
λ (b+ z) ż2

Now, we use conservation of energy, noting that K = 0 when z = 0:

U(0) = K + U(z)

−λ g b
2

4
=

1
4
λ (b+ z) ż2 + λ g

[
−b

2

4
+
b z

2
+
z2

4

]
−g
[
2 b z + z2

]
= (b+ z) ż2

ż2 = −g 2 b z + z2

b+ z

Differentiating yields

2 ż z̈ = −g
[
2 b+ 2 z
b+ z

− 2 b z + z2

(b+ z)2

]
ż

= −g
[
2− 2 b z + z2

(b+ z)2

]
ż

z̈ = −g
[
1− 1

2
2 b z + z2

(b+ z)2

]
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Now, insert into our previous equation for the tension in terms of z, ż, and z̈ to find

T = M g + λ

[(
b+ z

2

)
(−g)

[
1− 1

2
2 b z + z2

(b+ z)2

]
+

1
2
(−g) 2 b z + z2

b+ z

]
= M g − λ g

[
1
2

(b+ z)2

b+ z
− 1

4
2 b z + z2

b+ z
+

1
2

2 b z + z2

b+ z

]
= M g − 1

4
λ g

b+ z

[
2 (b+ z)2 − (2 b z + z2)

]
= λ g

b (b+ z)
b+ z

− 1
4
λ g

b+ z

[
2 b2 + 6 b z + 3 z2

]
=

1
4
λ g

b+ z

[
2 b2 − 2 b z − 3 z2

]
=

M g

4
1

b(b+ z)
[
2 b2 − 2 b z − 3 z2

]
The two results for the tension are not the same! In the free-fall solution, the tension
increases linearly as the chain falls, simply reflecting the fact that the amount of mass under
tension increases linearly with the how far the end B has fallen. In the energy solution, the
tension becomes infinite as z → −b. Experimentally, it has been determined that the latter
solution is closer to reality (Calkin and March, Am. J. Phys, 57: 154 (1989)), though of
course the tension does not become infinite (just really large, 25 times the chain weight).

The solutions differ because the free-fall solution makes an assumption about the motion
of the chain while the energy method does not need to. This is seen by the fact that the
relation between ż, ż and z̈ is more complicated in the energy solution. Experimentally, it
is seen that the latter relation is closer to reality and that the chain falls faster than free-fall
because some tension is communicated through the bend and exerts an additional downward
force on the falling part of the chain. In the energy solution, we see this additional force as
the second term in z̈, which always makes |z̈| larger (because z < 0).

1.3.2 The Virial Theorem

Here we prove the Virial Theorem, which relates the time-averaged kinetic energy for a bounded
system to a quantity called the virial, which is just a time-averaged dot product of the force
and position of the various particles in the system. In its basic form, the virial theorem does
not have a clear intuitive interpretation, though it is certainly useful. When one considers the
specific case of conservative forces that depend on particle radius, the virial becomes simply related
to the potential energy of the system. Thus, we obtain a time-averaged relation between kinetic
and potential energy. This is an incredibly powerful statement because it doesn’t require specific
knowledge of the particle orbits.

Generic Version

Consider an ensemble of particles, whose positions ~ra and momenta ~pa are bounded, meaning
that there are upper limits on both. This means that the particles are both confined to
a particular region of space and also that they never approach a force center that might
impart to them infinite momentum. Define the quantity

S =
∑
a

~pa · ~ra
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Calculate the time-averaged rate of change of S:〈
dS

dt

〉
=

1
τ

∫ τ

0

dS

dt
dt

The integrand is a total derivative, so the integral is done trivially:〈
dS

dt

〉
=
S(τ)− S(0)

τ

Since we assumed ~ra and ~pa are bounded, it also holds that S is bounded. Thus, by letting
τ →∞ – i.e., by taking the average over an arbitrarily long time – we can make

〈
dS
dt

〉
→ 0.

Let us explicitly calculate
〈
dS
dt

〉
and use the fact that it vanishes:

0 =
〈
dS

dt

〉
=

〈∑
a

[
~pa · ~̇ra + ~̇pa · ~ra

]〉
=

〈∑
a

~pa · ~̇ra

〉
+

〈∑
a

~̇pa · ~ra

〉

The two terms can be time-averaged separately because time averaging is a linear operation.
The first term is just 2T , twice the kinetic energy.1 The second term may be rewritten
using the force on particle a, ~Fa, using Newton’s second law. We may thus write the above
as

〈T 〉 = −1
2

〈∑
a

~Fa · ~ra

〉
(1.30)

The quantity on the right side is known as the virial. The key result is that the time-
averaged kinetic energy is related to a time-average of a quantity involving the forces and
positions. The virial theorem is similar to the work-energy theorem, which relates the work
done by a force on particle to the particle’s kinetic energy and which is also derived using
Newtons’ second law, but the virial theorem pertains to time-averaged, summed quantities
rather than to individual particle instantaneous quantities. What good does this do for us?
The key is the time-averaging and summing over particles, which lets the virial theorem be
used in unexpected ways.

Example 1.15: Ideal Gas Law

We can, for example, use the virial theorem to prove the ideal gas law! Consider a gas
of temperature Θ confined to a box of volume V . The temperature is defined in terms of
the average (over particles) kinetic energy of the gas particles, so we can relate the total
time-averaged kinetic energy of the gas to the temperature:

〈T 〉 =
3
2
N kΘ

where N is the number of gas particles. To calculate the virial, we need to evlauate the
time average of ~Fa · ~ra. The gas particles move freely except when they hit a wall, when an
instantaneous force is exerted to reflect them from the wall. Let us write the sum for virial,

1Note: there is no ambiguity here about how to calculate T . ~pa and ~ra are not generalized coordinates, they are
the Cartesian vectors describing the particles (think back to elementary mechanics). It always holds that ~pa = ma ~̇ra

and that T = 1
2

ma ~̇r2
a, hence ~pa · ~̇ra = 2 T .
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∑
a
~Fa · ~ra, as an integral over the walls of the box. The average contribution to the force

exerted on an area element dA of the wall by the gas at any instant in time is

d~F = n̂ P dA

where n̂ is the outward normal at the wall. By Newton’s third law, the force exerted on the
gas by the wall is the same modulo a sign. The sum for the virial is then just an integral
over the walls:

−1
2

〈∑
a

~Fa · ~ra

〉
=

1
2

∫
S
P n̂ · ~r dA

where S indicates the closed surface defining the box walls. We may do the surface integral
using Gauss’ theorem: ∫

S
n̂ · ~r dA =

∫
V

~∇ · ~r dV = 3V

Thus, we obtain

〈T 〉 =
3
2
P V

=⇒ N kΘ = P V

which is the ideal gas law. Note especially how we did the derivation using only information
about the time-averaged force: we didn’t need to know any details about the interaction of
the particles with the walls except the average force per unit area, P , due to that interaction.

Conservative Power Law Potentials

If we now consider the specific case of particles being acted upon by a conservative force
field that is derived from a potential energy that is a power law in particle radius from the
center of force, we can evaluate the virial more explicitly. That is, we assume

~Fa = −~∇aV (~ra)

where V (~r) is the potential energy and where ~∇a is the gradient with respect to particle
a’s position vector, ~ra. Note that we are assuming that all the particles move in a single
potential energy that is a function of the particle position.2 This assumption allows us to
write the virial as

−1
2

〈∑
a

~Fa · ~ra

〉
=

1
2

〈∑
a

~ra · ~∇aV (~ra)

〉

Now, assume V (~ra) = k rna . Then, ~∇aV (~ra) = nk rn−1
a r̂a and the virial becomes

−1
2

〈∑
a

~Fa · ~ra

〉
=

1
2

〈∑
a

ra nk r
n−1
a

〉
=
n

2

〈∑
a

k rna

〉

=
n

2

〈∑
a

V (ra)

〉
=
n

2
〈U〉

2Strictly speaking, pairwise central forces do not satisfy this form. But, for an ensemble of many particles, it is a
very good approximation to say that each particle moves in a potential generated by the whole ensemble that looks
like a potential fixed to the center of mass of the ensemble, which we take to be at rest. The ensemble potential is
quite close to independent of the position of any single particle.
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where U =
∑

a V (ra) is the total potential energy of the system. Thus, the virial theorem
reduces to

〈T 〉 =
n

2
〈U〉 (1.31)

That is, we obtain a very simple relation between the time-averaged kinetic and potential
energies of the system.

Example 1.16: The Virial Theorem in Astrophysics

The virial theorem is used widely in astrophysics because of the dominance of gravity
and because it relates directly observable quantities – kinetic energy and temperature – to
unobservable quantities – potential energy and mass. We assume gravitational forces, so
n = −1. If we divide the virial theorem by the number of particles, we have

1
N
〈T 〉 =

1
2

1
N
|〈U〉|

(The sign in n has been canceled by the use of the absolute value sign.) That is, the kinetic
energy per particle is half the potential energy per particle. We can use this in different
ways to measure total masses of systems:

• If we are looking at a gas cloud, we can measure the gas temperature Θ by its free-free
photon emission.3 That gives us 〈T 〉. The potential energy can be rewritten in terms
of the cloud mass M , the typical gas particle mass µ, and the cloud-averaged particle
radius. We denote this latter averaged radius as, somewhat uninformatively, the virial
radius, Rv. The virial theorem then tells us

3
2
kΘ =

1
N
〈T 〉 =

1
N

1
2
|〈U〉| = 1

2
GM µ

〈
1
r

〉
≡ 1

2
GM µ

1
Rv

3 kΘ =
GM µ

Rv

Note that the averaging is done on 1/r, not on r. A typical application would be to
use the virial theorem to measure the cloud mass. One has to assume that the cloud
is spherically symmetric and optically transparent to its own free-free emission; one
can then infer from the observed photon radial distribution the shape (but not the
normalization!) of the cloud’s density profile. From the shape of unnormalized profile,
one can calculate the virial radius. The gas is almost always mostly ionized hydrogen,
so µ is known. That leaves the cloud mass as the only unknown. Thus, one can infer
from only the photon emission and the virial theorem the cloud mass without any
absolute knowledge of normalization of the photon emission in terms of the density.
That’s rather remarkable!

• If we are looking at a galaxy, we can measure the line-of-sight velocity of a subset
of stars by redshift of known spectral lines. The same technique works for galaxies
orbiting in a galaxy clusters. Assuming isotropy of the object, the line-of-sight velocity

3Free-free emission is just the process of electrons scattering via the Coulomb force off ions in a plasma, a gas
that is hot enough that the bulk of the atoms are ionized. Since the electrons are accelerated in these scattering
events, they emit light in the form of a photon. The typical photon energy depends on the plasma temperature; for
the very hot plasma in galaxy clusters, which is at millions of degrees K, the photons are keV-energy X-rays. In our
own galaxy, the emission is usually in the radio, with wavelength of 1 cm and longer.
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and the velocity transverse to the line of sight will be equal on average (up to a
√

2).
Assuming all the orbiting objects in the larger object are of roughly equal mass, the
kinetic energy per particle is simply related to the rms of the measured line-of-sight
velocity:

1
N
〈T 〉 =

1
2
mv2

3d,rms =
3
2
mv2

1d,rms

where we relate the full 3-dimensional rms velocity to the measured one-dimension rms
velocity assuming isotropy. We can do the same kind of thing as we did for the gas
cloud, except now m will drop out:

3
2
mv2

1d,rms =
1
N
〈T 〉 =

1
N

1
2
|〈U〉| = 1

2
GM m 〈1r〉 ≡ 1

2
GM m

1
Rv

3 v2
1d,rms =

GM

Rv

Since the test particles whose velocities we measure are discrete objects, we can just
make a plot of their number density as a function of radius and from that calculate
the virial radius. We can thus determine M only from our observations of the test
particle positions and line-of-sight velocities!

1.3.3 Collisions of Particles

One useful application of the concepts we have described above for systems of particles is in the
study of collisions of particles. For an isolated system of particles with no external forces acting on
it, the total linear momentum is conserved. If the masses of the particles are fixed, the velocity of
the center of mass is constant. The reference frame that moves with the center of mass is therefore
inertial, and so we can use Newtonian mechanics in this reference frame. Frequently, working in
this frame is much easier than in other frames because the algebra is reduced (no need to carry
around an extra velocity) and symmetries are more easily apparent.

Transforming between Lab and Center-of-Mass Reference Frames

Start with some notation:

m1,m2 = masses of particles
~ui, ~vi = initial and final velocities of particle i in lab system
~u′i, ~v

′
i = initial and final velocities of particle i in cm system

T0, T
′
0 = total kinetic energy in lab and cm systems

Ti, T
′
i = kinetic energy of particle i in lab and cm systems
~V = velocity of cm system with respect to lab system
ψi = deflection angle of particle i in lab system

(angle between initial velocity of particle 1
and the final velocity of particle i,
cos(ψi) = ~vi · ~u1)

θ = deflection angle in cm system
(same for both particles by definition of cm system)

Qualitatively, scattering of two particles in the lab and center-of-mass systems looks as
follows (we choose m2 to be initially at rest in the lab system to provide the most extreme
difference between lab and cm systems):
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Because the total momentum vanishes in the cm system, the two particles must exit the
collision with collinear velocity vectors. Thus, the final state is parameterized by only one
angle θ. When transformed back to the lab system, there are now two angles ψ1 and ψ2

reflecting the degree of freedom of the value of the total velocity ~V . Note that the vector
~V fully describes the components of ~v1 and ~v2 that are not along the line between the two
particles since ~vi = ~V + ~v′i and we know the ~v′i are collinear.

Let’s consider the problem quantitatively. The center of mass satisfies

m1 ~r1 +m2 ~r2 = M ~R

m1 ~u1 +m2 ~u2 = M ~V

In the case ~u2 = 0, which we can always obtain by working in the rest frame of m2, we have

~V =
m1 ~u1

m1 +m2

This is the velocity at which the center of mass moves toward m2. Since the center-of-mass
is stationary in the center-of-mass frame, we have ~u′2 = −~V . We also have

~u′1 = ~u1 − ~V =
m2 ~u1

m1 +m2

Elastic Collisions: Kinematics

We now specialize to elastic collisions, wherein the internal kinetic and potential energies
of the colliding bodies are unchanged. We also assume there are no external potential
energies, so that the only energies are the “external” kinetic energies of the problem, Because
we assume the internal energies are unchanged, conservation of energy implies conservation
of mechanical energy. Because we assume no external potentials, conservation of mechanical
energy implies conservation of “external” kinetic energy. For our above two-particle collision
problem, conservation of linear momentum and energy in the center-of mass frame yield:

0 = m1 ~u
′
1 +m2 ~u

′
2 = m1 ~v

′
1 +m2 ~v

′
2

1
2
m1 u

′2
1 +

1
2
m2 u

′2
2 =

1
2
m1 v

′2
1 +

1
2
m2 v

′2
2
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Solving the first equation for ~u′2 and ~v′2 and inserting into the second equation gives:

1
2

[
m1 +

m2
1

m2

]
u′21 =

1
2

[
m1 +

m2
1

m2

]
v′21

So, v′1 = u′1 and therefore v′2 = u′2. The kinetic energy of each particle is individually
conserved in the cm frame! In the cm frame, we have

~v′1 = u′1 (x̂ cos θ + ŷ sin θ) =
m2 u1

m1 +m2
(x̂ cos θ + ŷ sin θ)

~v′2 = −u′2 (x̂ cos θ + ŷ sin θ) = − m1 u1

m1 +m2
(x̂ cos θ + ŷ sin θ)

We transform back to the lab frame by adding ~V :

~v1 = ~v′1 + ~V = x̂

[
m2 u1

m1 +m2
cos θ +

m1 u1

m1 +m2

]
+ ŷ

m2 u1

m1 +m2
sin θ

~v2 = ~v′2 + ~V = x̂

[
− m1 u1

m1 +m2
cos θ +

m1 u1

m1 +m2

]
− ŷ m1 u1

m1 +m2
sin θ

We can find the angles ψ1 and ψ2:

tanψ1 =
sin θ

m1
m2

+ cos θ

tanψ2 =
sin θ

1− cos θ

For all cases, tanψ2 ≥ 0 so 0 ≤ ψ2 ≤ π/2. Particle 2 always forward scatters in the lab
frame, as one would expect since it starts at rest. The behavior of particle 1 depends on
whether m1 > m2, m1 = m2, or m1 < m2. Let’s consider the cases separately:

• m1 = m2: The solution is quite simple in this case:

tanψ1 =
sin θ

1 + cos θ
= tan

θ

2

tanψ2 =
sin θ

1− cos θ
= cot

θ

2

For this particular case, ψ1 + ψ2 = π
2 . The two particles emerge in the lab frame at

right angles.
• m1 < m2: in this case, the denominator of tanψ1 can be both positive and negative,

while the numerator is always positive (by convention). Thus, there can be both
forward and backward scattering of particle 1.

• m1 > m2: In this case, the denominator of tanψ1 can only be positive, so for any
cm scattering angle 0 ≤ θ ≤ π, we have 0 ≤ ψ ≤ π/2. There can be only forward
scattering of particle 1.

We can interpret the above in terms of the relative size of the cm speed V and the scattered
speed of the first particle in the cm, v′1. The ratio m1/m2 = V/v′1. Since ~v1 = ~V + ~v′1, the
size of the ratio V/v′1 relative to 1 determines whether or not ~v1 can be negative.

We can derive another fact about the scattering by considering the solution geometrically.
Since ~v1 = ~V + ~v′1, the three vectors form a triangle. The possible shapes of the triangle
depend on the value of V/v′1 relative to 1:
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When V/v′1 = m1/m2 < 1, there is only one solution for ~v1 for a given value of ψ1. For
V/v′1 > 1, we see that a single value of ψ1 can be derived from two different values of θ. It
is not necessarily obvious from the formula for tanψ1 that this would be true.

If m1 � m2, then tanψ1 ≈ tan θ or ψ1 ≈ θ; the lab and cm frames approximately coincide.
For m1 � m2, we have tanψ1 � 1 for all θ, so m2 is always scattered almost along the
incoming particle velocity vector regardless of the size of the incoming particle speed.

Let’s calculate the maximum value of ψ1. Consider the three cases separately:

• m1 = m2: Recall that ψ1 = θ/2 for this case, so clearly ψ1,max = π/2.
• m1 < m2: Backward scattering in the lab frame is allowed in this case, so ψ1,max = π.
• m1 > m2: This is the most difficult case because backward scattering in the cm frame

will still be forward scattering in the lab frame. We can figure it out in two ways:
– Geometrically: there is a simpler geometric derivation: There are two center-of-

mass-frame scattering angles θ that result in the same lab frame angle ψ1. These
occur at the two intersection points with the circle of radius v′1 of a line that makes
angle ψ1 with ~V . As ψ1 increases, these two intersection points move together
until they become identical. At this point, the vector ~v1 is tangent to the circle.
A tangent to a circle is normal to the radius vector to that point, which is ~v′1. So,
we have a right triangle with sides v′1 (subtending ψ1) and v1 and hypotenuse V .
So, clearly,

sinψ1,max =
v′1
V

=
m2

m1
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– By calculus: we saw before that ψ1 stays in the first quadrant for m1 > m2, so
maximizing ψ1 corresponds to maximizing tanψ1. Let’s take the derivative and
set to zero:

d

dθ
tanψ1 =

cos θ
m1
m2

+ cos θ
+

sin2 θ(
m1
m2

+ cos θ
)2

=
m1
m2

cos θ + cos2 θ + sin2 θ
m1
m2

+ cos θ

=
1 + m1

m2
cos θ

m1
m2

cos θ

Requiring the above to vanish implies cos θ = −m2/m1. We then have

tan2 ψ1,max =
sin2 θ(

m1
m2

+ cos θ
)2

=
1− m2

2

m2
1

(m1
m2
− m2

m1
)2

=
m2

1m
2
2 −m4

2

(m2
1 −m2

2)2

=
m2

2

m2
1 −m2

2

Now we use some trigonometric identities to find sinψ1,max:

sin2 ψ1,max =
1

1 + cot2 ψ1,max

=
1

1 + m2
1−m2

2

m2
2

=
m2

2

m2
1

sinψ1,max =
m2

m1

The interpretation of this relation is: the larger the mismatch in masses, the more
forward-concentrated the scattering is.

Elastic Collisions: Energy

Recall earlier that we determined that the kinetic energy of each particle is conserved
individually in the cm frame, which is convenient. What happens to the kinetic energies in
the lab frame?
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First, we know that the initial kinetic energy in the lab and cm frames for ~u2 = 0 are

T0 =
1
2
m1 u

2
1

T ′0 =
1
2
[
m1 u

′2
1 +m2 u

′2
2

]
=

1
2

[
m1

m2
2

(m1 +m2)2
u2

1 +m2
m2

1

(m1 +m2)2
u2

1

]
=

1
2
m1m2

m1 +m2
u2

1

=
m2

m1 +m2
T0

Note that this implies T ′0 < T0. The final cm energies are

T ′1 =
1
2
m1 v

′2
1 =

1
2
m1 u

′2
1

=
1
2
m1

(
m2

m1 +m2

)2

u2
1

=
(

m2

m1 +m2

)2

T0

T ′2 =
1
2
m2 v

′2
2 =

1
2
m2 u

′2
2

=
1
2
m2

(
m1

m1 +m2

)2

u2
1

=
m1m2

(m1 +m2)2
T0

T ′1 + T ′2 =
m2

2 +m1m2

(m1 +m2)2
T0

=
m2

m1 +m2
T0 = T ′0

Obviously, we will want to find the final lab frame energies in terms of the initial lab frame
energy. We can write

T1

T0
=

1
2 m1 v

2
1

1
2 m1 u2

1

=
v2
1

u2
1

The law of cosines applied to the figure above relating ~v1, ~v′1, and ~V gives

v′21 = v2
1 + V 2 − 2 v1 V cosψ1

which then implies

T1

T0
=

v2
1

u2
1

=
v′21
u2

1

− V 2

u2
1

+ 2
v1 V

u2
1

cosψ1

=
(

m2

m1 +m2

)2

−
(

m1

m1 +m2

)2

+ 2
v1 V

u2
1

cosψ1

=
m2 −m1

m1 +m2
+ 2

v1 V

u2
1

cosψ1

56



1.3. DYNAMICS OF SYSTEMS OF PARTICLES

We can rewrite the third term easily. Recall that ~v1 = ~v′1 + ~V . Since ~V has no y component,
it therefore holds that v1 sinψ1 = v′1 sin θ. So we get

T1

T0
=

m2 −m1

m1 +m2
+ 2

v′1 V

u2
1

sin θ
sinψ1

cosψ1

=
m2 −m1

m1 +m2
+ 2

m2

m1 +m2

m1

m1 +m2

sin θ
tanψ1

=
m2 −m1

m1 +m2
+ 2

m2

m1 +m2

m1

m1 +m2
sin θ

m1
m2

+ cos θ
sin θ

=
m2 −m1

m1 +m2
+ 2

m1m2

(m1 +m2)2

(
m1

m2
+ cos θ

)
=

m2
2 −m2

1 + 2m2
1

(m1 +m2)2
+ 2

m1m2

(m1 +m2)2
cos θ

= 1− 2m1m2

(m1 +m2)2
+ 2

m1m2

(m1 +m2)2
cos θ

T1

T0
= 1− 2m1m2

(m1 +m2)2
(1− cos θ)

We can write T1/T0 in terms of the lab-frame angle also. To do this, we need to express
cos θ in terms of ψ1. Recall from earlier that

tanψ1 =
sin θ

m1
m2

+ cos θ

For notational convenience, let r = m1/m2. Let’s manipulate the above:

tan2 ψ1 =
sin2 θ

(r + cos θ)2

(r + cos θ)2 tan2 ψ1 = 1− cos2 θ
cos2 θ (tan2 ψ1 + 1) + 2 r tan2 ψ1 cos θ + r2 tan2 ψ1 − 1 = 0

cos2 θ cos−2 ψ1 + 2 r tan2 ψ1 cos θ + r2 tan2 ψ1 − 1 = 0
cos2 θ + 2 r sin2 ψ1 cos θ + r2 sin2 ψ1 − cos2 ψ1 = 0

Apply the quadratic formula to find

cos θ =
1
2

[
−2 r sin2 ψ1 ±

√
4 r2 sin4 ψ1 − 4

(
r2 sin2 ψ1 − cos2 ψ1

)]
= −r sin2 ψ1 ±

√
r2 sin4 ψ1 − r2 sin2 ψ1 + 1− sin2 ψ1

= −r sin2 ψ1 ±
√

(r2 sin2 ψ1 − 1)(sin2 ψ1 − 1)

= −r sin2 ψ1 ± cosψ1

√
1− r2 sin2 ψ1

1− cos θ = 1 + r

[
sin2 ψ1 ± cosψ1

√
r−2 − sin2 ψ1

]
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Inserting this into our expression for T1/T0 in terms of θ, we find

T1

T0
= 1− 2m1m2

(m1 +m2)2

{
1 +

m1

m2

[
sin2 ψ1 ± cosψ1

√
m2

2

m2
1

− sin2 ψ1

]}

=
m2

1 +m2
2

(m1 +m2)2
− 2m2

1

(m1 +m2)2

[
sin2 ψ1 ± cosψ1

√
m2

2

m2
1

− sin2 ψ1

]

=
m2

1 +m2
2

(m1 +m2)2
+

2m2
1

(m1 +m2)2

[
− sin2 ψ1 ∓ cosψ1

√
m2

2

m2
1

− sin2 ψ1

]

=
m2

1 +m2
2

(m1 +m2)2

+
2m2

1

(m1 +m2)2

[
−1

2
m2

2

m2
1

− 1
2

sin2 ψ1 +
1
2

(
m2

2

m2
1

− sin2 ψ1

)
∓ cosψ1

√
m2

2

m2
1

− sin2 ψ1 +
1
2

cos2 ψ1 −
1
2

cos2 ψ1

]

=
m2

1 +m2
2

(m1 +m2)2

+
2m2

1

(m1 +m2)2

−1
2
m2

2

m2
1

− 1
2
(
sin2 ψ1 + cos2 ψ1

)
+

1
2

(√
m2

2

m2
1

− sin2 ψ1 ∓ cosψ1

)2


T1

T0
=

m2
1

(m1 +m2)2

[
cosψ1 ±

√
m2

2

m2
1

− sin2 ψ1

]2

Notes on signs:

• We can see that the quantity under the square root sign is nonnegative and so always
defined. Recall earlier we proved that for m1 > m2, the maximum value of sinψ1 is
m2/m1. So the quantity under the square root is nonnegative for this case. When
m2 ≥ m1, there will also be no problem because the maximum value of sinψ1 is 1.

• We need to specify whether to use one or both of the possible solutions indicated by
the ± sign. In the case m1 < m2, we know based on our geometric arguments that
there can only be one solution. To understand which one to pick, let’s determine the
size of the square root quantity:

m2

m1
> 1

=⇒ m2
2

m2
1

− sin2 ψ > 1− sin2 ψ1 = cos2 ψ1

=⇒

√
m2

2

m2
1

− sin2 ψ > | cosψ1|

Now, we expect the incoming particle to lose more and more energy as scattering
goes from forward to backward in the lab frame. Because m1 < m2, we know that
backscattering is possible in the lab frame, and so ψ1 may take on values that yield
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cosψ1 < 0. These two considerations lead us to choose the + sign: for ψ1 = 0, both
terms are positive and take on their maximum values (when cosψ1 = 1 and sinψ1 = 0).
For backscattering, we have cosψ1 < 0 and so the two terms have opposite sign, making
T1 smallest for backscattering.
If m1 > m2, then we know there are two solutions from our geometric arguments
and so we should take both the ± solutions; there is no choice to make here. But,
of course, it is interesting to relate these two solutions to the center-of-mass picture.
As one can see from the earlier diagram, the outgoing vector ~v1 is longest (and hence
T1 is largest) when the scattering is forward in the center-of-mass frame. Thus, the
+ solution corresponds to forward scattering in the center-of-mass frame and the −
solution to backward scattering in that frame.
If m1 = m2, then the square-root quantity becomes | cosψ1|. Taking the − solution
would give T1 = 0 for all ψ1, which is clearly nonsense. So we should take the +
solution, giving

T1

T0
=

4m2
1

(m1 +m2)2
cos2 ψ1 = cos2 ψ1

when m1 = m2.

We can derive the kinetic energy of the recoiling particle in the lab frame in terms of the
cm and lab frame angles also:

T2

T0
= 1− T1

T0

= 1−
[
1− 2m1m2

(m1 +m2)2
(1− cos θ)

]
=

2m1m2

(m1 +m2)2
(1− cos θ)

To convert to the lab frame angle, we make use of the relation derived earlier:

tanψ2 =
sin θ

1− cos θ

tan2 ψ2 =
sin2 θ

(1− cos θ)2

=
1− cos2 θ

(1− cos θ)2

=
1 + cos θ
1− cos θ

tan2 ψ2 [1− cos θ] = 1 + cos θ
tan2 ψ2 − 1 = cos θ

[
1 + tan2 ψ2

]
tan2 ψ2 − 1 = cos θ cos−2 ψ2

cos θ = sin2 ψ2 − cos2 ψ2

1− cos θ = 2 cos2 ψ2

so then we find

T2

T0
=

4m1m2

(m1 +m2)2
cos2 ψ2
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Notes:

• In the special case m1 = m2, we have T1/T0 = cos2 ψ1 and T2/T0 = cos2 ψ2 = sin2 ψ1

because ψ1 + ψ2 = π/2 for this case.

• The center-of-mass scattering angle θ and the ratio of input to output kinetic energies
are very simply related.

Example 1.17

A particle of mass m1 elastically scatters from a particle of mass m2 at rest. At what lab-
frame angle should one place a detector to detect m1 if it loses one-third of its momentum?
Over what range m1/m2 is this possible? Calculate the scattering angle for m1/m2 = 1.

Our condition on the final state speed is

m1 v1 =
2
3
m1 u1

The energy ratio between output and input kinetic energy is

T1

T0
=

1
2 m1 v

2
1

1
2 m1 u2

1

=
v2
1

u2
1

=
4
9

We equate this to our formula for the lab-frame scattering angle

4
9

= 1− 2m1m2

(m1 +m2)2
(1− cos θ)

1− cos θ = − 5
18

(m1 +m2)2

m1m2

cos θ = 1− 5
18

(m1 +m2)2

m1m2
≡ y

We want the lab angle, though, so let’s use the relation between cm and lab angle:

tanψ =
sin θ

m1
m2

+ cos θ

=

√
1− y2

m1
m2

+ y

Because tanψ must be real, we require 1−y2 ≥ 0. Since y ≤ 1 by definition, this corresponds
to requiring 1 + y ≥ 0, or

1 +
[
1− 5

18
(m1 +m2)2

m1m2

]
≥ 0

−5x2 + 26x− 5 ≥ 0
(−5x+ 1)(x− 5) ≥ 0
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The two roots are x = 1/5 and x = 5 and the inequality is satisfied in the range 1/5 < x < 5;
i.e.,

1
5
≤ m1

m2
≤ 5

That is, we can find the solution tanψ given above when the mass ratio is in this range.
For m1 = m2, we find

y = −1
9

tanψ =

√
1− (−1/9)2

1− 1/9
=
√

80/64 =
√

5/4

ψ ≈ 48.2◦

Inelastic Collisions

We conclude with a very brief discussion of inelastic collisions. These are collisions in
which linear momentum is conserved but mechanical energy is not because some of the
energy goes into internal motions of the colliding objects. Recall that conservation of total
linear momentum for a system required only that internal forces obey the weak form of the
third law, whereas conservation of mechanical energy required the strong form and that
the internal kinetic and potential energies be fixed. We must therefore adjust our law of
conservation of energy to be

Q+ T1 + T2 = T ′1 + T ′2

where Q represents the amount of energy that will be liberated (Q < 0) or absorbed (Q > 0).
A classic inelastic collision is the following one: A ball of putty is thrown at another ball
of putty and they stick together, continuing on as one body. Clearly, energy was put into
internal motion (heat, etc.) by the collision; the mechanical energy is not conserved.

One useful concept to consider when looking at inelastic collisions is that of impulse

~P =
∫ t2

t1

~Fdt

The reason impulse is useful is that, though we usually do not know the details of ~f(t), we
can determine the total impulse, which gives the total momentum change. Or, vice versa,
we can find the force from the total impulse.

Example 1.18

A rope of linear density λ is dropped onto a table. Let part of the rope already have come
to rest on the table. As the free end falls a distance z, find the force exerted on the table.

During a time dt, a portion of the rope v dt comes to rest, where v = |ż| is the fall speed.
The momentum of the rope changes by an amount

dp = (λ v dt) v = λ v2 dt

This is equal but opposite to the change of momentum of the table. The force on the table
due to this impulse is therefore

Fimpulse =
dp

dt
= λ v2 = 2λ z g
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where the last step is made by making use of the kinematics of a freely falling object. If
the table remains stationary as the rope falls on it, the table must be exerting an equal but
opposite force back on the rope. The table thus exerts a total force on the rope

F = Fimpulse + Fg = 3λ g z

The first part of the force brings the portion of the rope z to rest, while the second term
keeps it from falling through the table under the influence of gravity.
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Chapter 2

Lagrangian and Hamiltonian
Dynamics

This chapter presents Lagrangian and Hamiltonian dynamics, an advanced formalism for studying
various problems in mechanics. Lagrangian techniques can provide a much cleaner way of solving
some physical systems than Newtonian mechanics, in particular the inclusion of constraints on the
motion. Lagrangian techniques allow postulation of Hamilton’s Principle of Least Action, which
can be considered an alternative to Newton’s second law as the basis of mechanics. Symmetry under
transformations is investigated and seen to lead to useful conserved quantities. The Hamiltonian
formalism is introduced, which is useful for proving various important formal theorems in mechanics
and, historically, was the starting point for quantum mechanics.
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2.1 The Lagrangian Approach to Mechanics

The fundamental idea of the Lagrangian approach to mechanics is to reformulate the equations
of motion in terms of the dynamical variables that describe the degrees of freedom, and thereby
to incorporate constraint forces into the definition of the degrees of freedom rather than explicitly
including them as forces in Newton’s second law.

We discuss the basics of Lagrangian mechanics – degrees of freedom, constraints, generalized
coordinates, virtual work, generalized forces, the Lagrangian and Hamiltonian functions, and var-
ious methods to derive equations of motion using these concepts. This section follows Hand and
Finch Chapter 1, though in somewhat different order.

Be careful to realize that the Lagrangian approach is not independent of Newton’s second law;
the derivation of d’Alembert’s principle, the critical step in developing Lagrangian mechanics, relies
directly on Newton’s second law. We will come to a new formulation of mechanics in the following
section.

Throughout this section, we will work two examples alongside the theory. The first consists of
a point particle sliding on an elliptical wire in the presence of gravity. The Cartesian coordinates
of the particle satisfy (

x

a(t)

)2

+
(

z

b(t)

)2

= 1

We will at various points consider a and b to be time dependent or constant. The origin of the
coordinate system is the stationary center of the ellipse. The second consists of an Atwood’s
machine, as in Example 1.4, except we now allow the rope length to be a function of time, l = l(t).

Examples to be worked alongside theory.
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2.1.1 Degrees of Freedom, Constraints, and Generalized Coordinates

Degrees of Freedom

Obviously, a system of M point particles that are unconstrained in any way has 3M degrees
of freedom.

There is freedom, of course, in how we specify the degrees of freedom; e.g.:

• choice of origin

• coordinate system: cartesian, cylindrical, spherical, etc.

• center-of-mass vs. individual particles: {~rk} or {~R,~sk = ~rk − ~R}

But, the number of degrees of freedom is always the same; e.g., in the center-of-mass system,
the constraint

∑
k ~sk = 0 applies, ensuring that {~rk} and {~R,~sk} have same number of

degrees of freedom.

The motion of such a system is completely specified by knowing the dependence of the
available degrees of freedom on time.

Example 2.1:
In the elliptical wire example, there are a priori 3 degrees of freedom, the 3 spatial
coordinates of the point particle. The constraints reduce this to one degree of
freedom, as no motion in y is allowed and the motions in z and x are related. The
loss of the y degree of freedom is easily accounted for in our Cartesian coordinate
system; effectively, a 2D Cartesian sytem in x and z will suffice. But the relation
between x and z is a constraint that cannot be trivially accomodated by dropping
another Cartesian coordinate.

Example 2.2:
In the Atwood’s machine example, there are a priori 2 degrees of freedom, the z
coordinates of the two blocks. (We ignore the x and y degrees of freedom because
the problem is inherently 1-dimensional.) The inextensible rope connecting the two
masses reduces this to one degree of freedom because, when one mass moves by a
certain amount, the other one must move by the opposite amount.

Constraints

Constraints may reduce the number of degrees of freedom; e.g., particle moving on a table,
rigid body, etc.

Holonomic constraints are those that can be expressed in the form

f(~r1, ~r2, . . . , t) = 0

For example, restricting a point particle to move on the surface of a table is the holonomic
constraint z − z0 = 0 where z0 is a constant. A rigid body satisfies the holonomic set of
constraints

|~ri − ~rj | − cij = 0

where cij is a set of constants satisfying cij = cji > 0 for all particle pairs i, j. For the
curious: it is remarkably hard to find the etymology of holonomic (or holonomy) on the
web. I found the following (thanks to John Conway of Princeton):
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I believe it was first used by Poinsot in his analysis of the motion of a rigid
body. In this theory, a system is called “holonomic” if, in a certain sense, one can
recover global information from local information, so the meaning “entire-law” is
quite appropriate. The rolling of a ball on a table is non-holonomic, because one
rolling along different paths to the same point can put it into different orientations.

However, it is perhaps a bit too simplistic to say that “holonomy” means
“entire-law”. The “nom” root has many intertwined meanings in Greek, and
perhaps more often refers to “counting”. It comes from the same Indo-European
root as our word “number.”

Nonholonomic constraints are, obviously, constraints that are not holonomic. Hand and
Finch Chapter 1 Appendix A has a nice discussion. We present the highlights here. There
are three kinds of nonholonomic constraints:

1. Nonintegrable or history-dependent constraints. These are constraints that are not
fully defined until the full solution of the equations of motion is known. Equivalently,
they are certain types of constraints involving velocities.
The classic case of this type is a vertical disk rolling on a horizontal plane. If x and
y define the position of the point of contact between the disk and the plane, φ defines
the angle of rotation of the disk about its axis, and θ defines the angle between the
rotation axis of the disk and the x-axis, then one can find the constraints

ẋ = −r φ̇ cos θ
ẏ = −r φ̇ sin θ

The differential version of these constraints is

dx = −r dφ cos θ
dy = −r dφ sin θ

These differential equations are not integrable; one cannot generate from the relations
two equations f1(x, θ, φ) = 0 and f2(y, θ, φ) = 0. The reason is that, if one assumes
the functions f1 and f2 exist, the above differential equations imply that their second
derivatives would have to satisfy

∂2f

∂θ ∂φ
6= ∂2f

∂φ ∂θ

which is a very unpleasant mathematical condition. Explicitly, suppose f1 existed.
Then we would be able to write

f1(x, θ, φ) = 0

Let us obtain the differential version of the constraint by differentiating:

∂f1

∂x
dx+

∂f1

∂θ
dθ +

∂f1

∂φ
dφ = 0

This differential constraint should match the original differential constraint dx =
−r dφ cos θ. Identifying the coefficients of the differentials yields

∂f1

∂x
= 1

∂f1

∂θ
= 0

∂f1

∂φ
= r cosφ
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Taking the mixed second partial derivatives gives

∂2f1

∂φ ∂θ
= 0

∂2f1

∂θ ∂φ
= −r sinφ

which, clearly, do not match.
Such constraints are also called nonintegrable because one cannot integrate the dif-
ferential equation to find a constraint on the coordinates. Nonintegrability is at the
root of the etymology indicated in the quotation above: a differential relation such
as the one above is a local one; if the differential relation is integrable, you can ob-
tain the constraint at all points in space, i.e., you can find the “entire law”. Clearly,
nonintegrability is also related to the fact that the constraint is velocity-dependent: a
velocity-dependent constraint is a local constraint, and it may not always be possible
to determine a global constraint from it.

2. inequality constraints; e.g., particles required to stay inside a box, particle sitting on
a sphere but allowed to roll off

3. problems involving frictional forces

Holonomic constraints may be divided into rheonomic (“running law”) and scleronomic
(“rigid law”) depending on whether time appears explicitly in the constraints:

rheonomic: f({~rk}, t) = 0
scleronomic: f({~rk}) = 0

At a technical level, the difference is whether ∂f
∂t = 0 or not; the presence of this partial

derivative affects some of the relations we will derive later.

Example 2.1:
For the elliptical wire example, the constraint equation is the one we specified ini-
tially: (

x

a(t)

)2

+
(

z

b(t)

)2

= 1

If a and/or b do indeed have time dependence, then the constraint is rheonomic.
Otherwise, it is scleronomic.

Example 2.2:
For the Atwood’s machine, the constraint equation is

z1 + z2 + l(t) = 0

where l(t) is the length of the rope (we assume the pulley has zero radius). The
signs on z1 and z2 are due to the choice of direction for positive z in the example.
The constraint is again rheonomic if l is indeed time dependent, scleronomic if not.

Generalized Coordinates

In general, if one has j independent constraint equations for a system of M particles with
3M degrees of freedom, then the true number of degrees of freedom is 3M − j. There
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is dynamical behavior of the system in only these remaining degrees of freedom. One
immediately asks the question – since there are fewer degrees of freedom than position
coordinates, is there any way to eliminate those unnecessary degrees of freedom and thereby
simplify analysis of the mechanical system? In our example, why keep both x and z if one
of them would suffice? This question leads us to the idea of generalized coordinates, which
are a set of 3M − j coordinates that have already taken into account the constraints and
are independent, thereby reducing the complexity of the system.

For holonomic constraints, the constraint equations ensure that it will always be possible
to define a new set of 3M − j generalized coordinates {qk} that fully specify the motion
of the system subject to the constraints and that are independent of each other. The
independence arises because the number of degrees of freedom must be conserved. The
constraint equations yield (possibly implicit) functions

~ri = ~ri(q1, q2, ..., q3M−j , t) (2.1)

that transform between the generalized coordinates and the original coordinates. It may
not always be possible to write these functions analytically. Some of these coordinates may
be the same as the original coordinates, some may not; it simply depends on the structure
of the constraints. We will refer to the original coordinates as position coordinates to
distinguish them from the reduced set of independent generalized coordinates.

Generalized coordinates are more than just a notational convenience. By incorporating the
constraints into the definition of the generalized coordinates, we obtain two important sim-
plifications: 1) the constraint forces are eliminated from the problem; and 2) the generalized
coordinates are fully independent of each other. We shall see these simplifications put into
effect when we discuss virtual work and generalized forces.

Just as the velocity corresponding to a coordinate ~rj is ~̇rj = d
dt~rj , it is possible to define

a generalized velocity q̇k = d
dtqk. Note that in all cases, velocities are defined as total

time derivatives of the particular coordinate. Remember that if you have a function
g = g({qk}, t), then the total time derivative d

dt g is evaluated by the chain rule:

d

dt
g({qk}, t) =

∑
k

∂g

∂qk

dqk
dt

+
∂g

∂t
(2.2)

It is very important to realize that, until a specific solution to the equation of motion is
found, a generalized coordinate and its corresponding generalized velocity are independent
variables. This can be seen by simply remembering that two initial conditions – qk(t = 0)
and q̇k(t = 0) are required to specify a solution of Newton’s second law because it is a
second-order differential equation. Higher-order derivatives are not independent variables
because Newton’s second law relates the higher-order derivatives to {qk} and {q̇k}. The
independence of {qk} and {q̇k} is a reflection of the structure of Newton’s second
law, not just a mathematical theorem.

Unless otherwise indicated, from here on we will assume all constraints are
holonomic.

Example 2.1:
For the elliptical wire, the constraint equation(

x

a(t)

)2

+
(

z

b(t)

)2

= 1
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can be used to define different generalized coordinate schemes. Two obvious ones are
x and z; i.e., let x be the generalized coordinate and drop the z degree of freedom,
or vice versa. Another obvious one would be the azimuthal angle α,

α = tan−1

[
z

b(t)
a(t)
x

]
The formal definitions ~ri({qk}, t) are then

x = a(t) cosα z = b(t) sinα

Here, we see the possibility of explicit time dependence in the relationship between
the positions x and z and the generalized coordinate α.

Example 2.2:
For the Atwood’s machine, either z1 or z2 could suffice as the generalized coordinate.
Let’s pick z1, calling it Z to distinguish the generalized coordinate, giving

z1 = Z z2 = −l(t)− Z

This case is pretty trivial.

“Dot Cancellation”

For holonomic constraints, there is a very important statement that we will make much use
of later:

∂~ri
∂qk

=
∂~̇ri
∂q̇k

(2.3)

Conceptually, what this says is The differential relationship between a given degree of free-
dom and a generalized coordinate is the same as the differential relationship between the
corresponding velocities. This statement relies on having holonomic constraints. Heuristi-
cally, one can understand the rule as simply arising from the fact that holonomic constraints
use only the positions and time to define the generalized coordinates; as a result, any rela-
tionships between positional velocities and generalized velocities must be determined only
by relationships between positions and generalized coordinates. The above relationship is
then the simplest possible one.

We derive the result rigorously by starting with the total time derivative ~̇ri:

~̇ri =
d

dt
~ri({qk}, t) =

∑
k

∂~ri
∂qk

dqk
dt

+
∂~ri
∂t

The last term does not exist if the constraints are scleronomic, but that is not really im-
portant here. Now, take the partial derivative with respect to q̇l; this selects out the term
in the sum with k = l, and drops the t term:

∂~̇ri
∂q̇l

=
∑
k

∂~ri
∂qk

δkl =
∂~ri
∂ql

and so the dot cancellation relation is proven.
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Dot cancellation does not necessarily hold if the constraints are nonholonomic. Suppose
~ri = ~ri({qk}, {q̇k}, t). Then our partial derivative would be

~̇ri =
d

dt
~ri({qk}, {q̇k}, t) =

∑
k

[
∂~ri
∂qk

q̇k +
∂~ri
∂q̇k

q̈k

]
+
∂~ri
∂t

Newton’s second law relates q̈k to qk and q̇k. By definition, if there is a velocity-dependent
nonholonomic constraint, then there is a velocity-dependent force. Thus, q̈k will certainly
depend directly on q̇k and the second term in the sum will yield additional terms when one
does the next step, taking the partial derivative with respect to q̇k. The first and last terms
might also yield additional unwanted terms: if ~ri depends on q̇k, then there may still be
q̇k-dependent terms left in ∂~ri

∂t , which will survive when the partial derivative with respect
to q̇k is taken. Either way, the dot cancellation result would be invalidated.

Example 2.1:

For the elliptical wire, we have given the relations between the positions x, z and
the generalized coordinate α

x = a(t) cosα z = b(t) sinα

We find the relations between the velocities by differentiating with respect to time:

ẋ = ȧ cosα− a sinα α̇ ż = ḃ sinα+ b cosα α̇

Note that we do have terms of the form ∂~ri/∂t, the terms with ȧ and ḃ. Taking the
partial derivatives, we find

∂x

∂α
= −a sinα

∂z

∂α
= b cosα

∂ẋ

∂α̇
= −a sinα

∂ż

∂α̇
= b cosα

where the ȧ and ḃ terms have disappeared because α̇ does not appear in them. We
see the dot cancellation works.

Example 2.2:

The Atwood’s machine example is as follows; it is somewhat nontrivial if l is a
function of time. Differentiating the relations between z1, z2, and Z gives

ż1 = Ż ż2 = −l̇ − Ż

So then

∂z1
∂Z

= 1
∂z2
∂Z

= −1

∂ż1

∂Ż
= 1

∂ż2

∂Ż
= −1

Note that dot cancellation works even if l is time dependent.
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2.1.2 Virtual Displacement, Virtual Work, and Generalized Forces

Virtual Displacement

We define a virtual displacement {δ~ri} as an infinitesimal displacement of the system
coordinates {~ri} that satisfies the following criteria (stated somewhat differently than in
Hand and Finch, but no different in meaning):

1. The displacement satisfies the constraint equations, but may make use of any remaining
unconstrained degrees of freedom.

2. The time is held fixed during the displacement.

3. The generalized velocities {q̇k} are held fixed during the displacement.

A virtual displacement can be represented in terms of position coordinates or generalized
coordinates. The advantage of generalized coordinates, of course, is that they automat-
ically respect the constraints. An arbitrary set of displacements {δqk} can qualify as a
virtual displacement if conditions (2) and (3) are additionally applied, but an arbitrary
set of displacements {δ~ri} may or may not qualify as a virtual displacement depending on
whether the displacements obey the constraints. All three conditions will become clearer
in the examples. Explicitly, the relation between infinitesimal displacements of generalized
coordinates and virtual displacements of the position coordinates is

δ~ri =
∑
k

∂~ri
∂qk

δqk (2.4)

This expression has content: there are fewer {qk} than {~ri}, so the fact that δ~ri can be
expressed only in terms of the {qk} reflects the fact that the virtual displacement respects
the constraints. One can put in any values of the {δqk} and obtain a virtual displacement,
but not every possible set of {δ~ri} can be written in the above way.

Example 2.1:
For the elliptical wire, it is easy to see what kinds of displacements satisfy the first
two requirements. Changes in x and z are related by the constraint equation; we
obtain the relation by applying the displacements to the constraint equation. We
do this by writing the constraint equation with and without the displacements and
differencing the two:

with displacements:
(
x+ δx

a(t)

)2

+
(
z + δz

b(t)

)2

= 1

without displacements:
(

x

a(t)

)2

+
(

z

b(t)

)2

= 1

difference:
(
x+ δx

a(t)

)2

−
(

x

a(t)

)2

+
(
z + δz

b(t)

)2

−
(

z

b(t)

)2

= 0

x δx

[a(t)]2
+

z δz

[b(t)]2
= 0

⇒ δx

δz
= −a(t)

b(t)
z

x
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All terms of second order in δx or δz are dropped because the displacements are
infinitesimal.1 The result is that δx and δz cannot be arbitrary with respect to each
other and are related by where the particle is in x and z and the current values of
a and b; this clearly satisfies the first requirement. We have satisfied the second
requirement, keeping time fixed, by treating a and b as constant: there has been no
δt applied, which would have added derivatives of a and b to the expressions. If a
and b were truly constant, then the second requirement would be irrelevant. The
third requirement is not really relevant here because the generalized velocities do
not enter the constraints in this holonomic case; but they will enter, for example,
the kinetic energy, so it must be kept in mind.
The relation between the virtual displacements in the positions and in the general-
ized coordinate is easy to calculate:

x = a cosα ⇒ δx = −a sinα δα

z = b sinα ⇒ δz = b cosα δα

=⇒ δx

δz
= −a

b
tanα

We see that there is a one-to-one correspondence between all infinitesimal displace-
ments δα of the generalized coordinate and virtual displacements of the positional
coordinates (δx, δz), as stated above. The displacements of the positional coordi-
nates that cannot be generated from δα by the above expressions are those that do
not satisfy the constraints and are disallowed.

Example 2.2:

For our Atwood’s machine example, the constraint equation

z1 + z2 + l(t) = 0

is easily converted to differential form, giving

δz1 + δz2 = 0

Again, remember that we do not let time vary, so l(t) contributes nothing to the
differential. This equation is what we would have arrived at if we had started with
an infinitesimal displacement δZ of the generalized coordinate Z (holding time fixed
according to condition (2)):

δz1 = δZ δz2 = −δZ ⇒ δz1 + δz2 = 0

Fixing time prevents appearance of derivatives of l(t). Again, we also see the one-
to-one correspondence between infinitesimal displacements of the generalized coor-
dinate and virtual displacements of the position coordinates.

1This is one of the first applications of Taylor expansions in this course. This kind of thing will be done regularly,
so get used to the technique!
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Virtual Work

Using the virtual displacement, we may define virtual work as the work that would be
done on the system by the forces acting on the system as the system undergoes the virtual
displacement {δ~ri}:

δW ≡
∑
ij

~Fij · δ~ri

where ~Fij is the jth force acting on the coordinate of the ith particle ~ri.2

Example 2.1:

In our elliptical wire example, ~F11 would be the gravitational force acting on the
point mass and ~F12 would be the force exerted by the wire to keep the point mass
on the wire (i = 1 only because there is only one object involved). The virtual work
is

δW =
1∑
i=1

[
~Fi1 + ~Fi2

]
· δ~ri

Example 2.2:

In our Atwood’s machine example, the two masses feel gravitational forces ~F11 =
−m1 g ẑ and ~F21 = −m2 g ẑ. The tension in the rope is the force that enforces the
constraint that the length of rope between the two blocks is fixed, ~F12 = T ẑ and
~F22 = T ẑ. T may be a function of time if l varies with time, but it is certainly the
same at the two ends of the rope at any instant.

At this point, we specialize to constraints that do no net work when a virtual
displacement is applied. This assumption is critical. Making this assumption implies
that only the non-constraint forces need be included in the sum over j because the terms
due to constraints yield no contribution.

The assumption deserves some detailed discussion. It is not clear whether it is possible
to state general rules about which kinds of constraints satisfy the assumption. In fact,
Schaum’s Outline on Lagrangian Dynamics (D. A. Wells) says “While the truth of this
statement is easily demonstrated with simple examples, a general proof is usually not at-
tempted. It may be regarded as a postulate.” Goldstein simply states that “We now restrict
ourselves to systems for which the net virtual work of the forces of constraint is zero” and
makes no statement about the general applicability of the assumption. Note that Hand and
Finch completely gloss over this subtlety; they simply state “Recall that since constraint
forces always act to maintain the constraint, they point in a direction perpendicular to the
movement of the parts of the system. This means that the constraint forces do not con-
tribute anything to the virtual work.” The first sentence is patently false, as our Atwood’s
machine example shows!

Let us try to at least get an intuitive idea of how different kinds of constraints satisfy the
assumption. There are clearly three kinds:

2We deviate from Hand and Finch’s notation here by adding the j index; for our examples, it is useful to use the
j index to distinguish the different forces acting on a given particle. Hand and Finch’s ~Fi is simply

P
j

~Fij ; it gives
the total force acting on particle i.
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1. “normal forces”: If ~Fij · δ~ri vanishes for a single particle i and a single constraint
j, then, the constraint force must act on only one particle and must act normal to
the motion. Our elliptical wire constraint is of this form. The constraint defining
rigid-body motion, |~ra − ~rb| = cab for all particles a, b in the body, is similar in form:
an allowed virtual displacement keeps the length of the vector separation of the two
particles fixed but allows its orientation to change, while the force that maintains
the constraint is the central force between the two, which acts along the separation
vector and thus perpendicular to the virtual displacement. It is not quite the same
as the single-particle version, but it still can be considered a normal force because the
constraint force and virtual displacement are perpendicular.

2. “single-constraint satisfaction”: Not all constraints are “normal forces”; see our At-
wood’s machine example below, where the constraint force acts along the virtual dis-
placement so that ~Fij · δ~ri 6= 0 but

∑
i
~Fij · δ~ri does vanish due to summation over i.

In this case, once one sums over the particles that are affected by a particular con-
straint, then the sum vanishes. For this type of constraint, each constraint j satisfies
the assumption

∑
i
~Fij · δ~ri = 0 independently. Of course, normal forces are a special

subset of this class, but it is instructive to consider them separately.

3. “interlocking constraint satisfaction”: I admittedly cannot think of an example, but
one can imagine in a general sense that some set of interlocking constraints, where
multiple coordinates appear in multiple constraints, might require the summation over
both i and j for the assumption to hold.

Because of the possibility that there exist situations of the third type, we use the most
generic assumption we need to proceed with our derivation, which is the third one. We
write that down as ∑

ij

~F
(c)
ij · δ~ri = 0

where the (c) superscript restricts the sum to constraint forces but the sum is over all
constraint forces and all particles. Mathematically, the assumption lets us drop the part of
the virtual work sum containing constraint forces, leaving

δW =
∑
ij

~F
(nc)
ij · δ~ri

where the (nc) superscript indicates that the sum is only over non-constraint forces.

Example 2.1:
In our elliptical wire example, the force exerted by the wire, ~F12, acts to keep the
point mass i on the wire; the force is therefore always normal to the wire. The virtual
displacement δ~r1 must always be tangential to the wire to satisfy the constraint. So,∑1

i=1
~Fi2 · δ~ri = 0. The only non-constraint force is gravity, ~F11, so we are left with

δW =
1∑
j=1

1∑
i=1

~F
(nc)
ij · δ~ri =

1∑
i=1

~Fi1 · δ~ri = ~F11 · δ~r1 = −mg δz

δW will in general not vanish; it gives rise to the dynamics of the problem.
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Example 2.2:
In the Atwood’s machine example, the constraint forces ~F21 and ~F22 act along the
rope. The virtual displacements are also along the rope. Clearly, ~F21 · δ~r1 = F21 δz1
and ~F22 · δ~r2 = F22 δz2 do not vanish. But the sum does:

2∑
i=1

~Fi2 · δ~ri = F21δz1 + F22δz2 = T (δz1 + δz2) = 0

Notice that, in this case, all the terms pertaining to the particular constraint force
have to be summed in order for the result to hold. The virtual work and non-
constraint force sum is then

δW =
2∑
i=1

1∑
j=1

~F
(nc)
ij · δ~ri =

2∑
i=1

~Fi1 · δ~ri = −g (m1 δz1 +m2 δz2)

Note that, unless m1 = m2, δW will in general not vanish, again giving rise to the
dynamics of the problem.

Generalized Force

Our discussion of generalized coordinates essentially was an effort to make use of the con-
straints to eliminate the degrees of freedom in our system that have no dynamics. Similarly,
the constraint forces, once they have been taken account of by transforming to the gener-
alized coordinates, would seem to be irrelevant. We will show how they can be eliminated
in favor of generalized forces that contain only the non-constraint forces.

To define generalized forces, we combine Equation 2.4, the relation between virtual displace-
ments of position coordinates and generalized coordinates, with Equation 2.5, the relation
between virtual work and non-constraint forces:

δW =
∑
ij

~F
(nc)
ij · δ~ri

=
∑
ij

~F
(nc)
ij ·

[∑
k

∂~ri
∂qk

δqk

]

=
∑
k

∑
ij

~F
(nc)
ij · ∂~ri

∂qk

 δqk
≡

∑
k

Fk δqk

where

Fk ≡
∑
ij

~F
(nc)
ij · ∂~ri

∂qk
=
δW

δqk
(2.5)

is the generalized force along the kth generalized coordinate. The last form, Fk =
δW/δqk, says that the force is simple the ratio of the work done to the displacement when
a virtual displacement of only the kth generalized coordinate is performed; it is of course
possible to displace only the kth generalized coordinate because the generalized coordinates
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are mutually independent. It is important to remember that the generalized force is found
by summing only over the non-constraint forces: the constraint forces have already been
taken into account in defining generalized coordinates.

The above definition is very sensible. In Section 1.1.3, we defined work to be the line integral
of force. Infinitesimally, a force ~F causing a displacement δ~r does work δW = ~F · δ~r. The
generalized force is the exact analogue: if work δW is done when the ensemble of forces act
to produce a generalized coordinate displacement δqk, then the generalized force Fk doing
that work is Fk = δW/δqk. But the generalized force is a simplification because it is only
composed of the non-constraint forces.

Example 2.1:

In the elliptical wire example, the generalized force for the α coordinate (k = 1) is

Fα = ~F11 ·
∂~r1
∂α

= −mg ẑ ·
(
x̂
∂x

∂α
+ ẑ

∂z

∂α

)
= −mg ẑ · (−x̂ a sinα+ ẑ b cosα)

= −mg b cosα

The constraint force, which acts in both the x and z directions and is α-dependent,
does not appear in the generalized force.

Example 2.2:

In the Atwood’s machine example, the generalized force for the Z coordinate (k = 1
again) is

FZ = ~F11 ·
∂~r1
∂Z

+ ~F21 ·
∂~r2
∂Z

= −m1 g
∂z1
∂Z
−m2 g

∂z2
∂Z

= (m2 −m1) g

Again, the constraint force (the rope tension) is eliminated. Because Z is just z1
in this case, the generalized force in Z is just the net force on m1 acting in the z1
direction.

2.1.3 d’Alembert’s Principle and the Generalized Equation of Motion

The reader is at this point no doubt still wondering, so what? This section gets to the what.

d’Alembert’s Principle

Our definition of virtual work was

δW =
∑
ij

~Fij · δ~ri

where the sum includes all (constraint and non-constraint) forces. Assuming our position
coordinates are in an inertial frame (but not necessarily our generalized coordinates), New-
ton’s second law tells us

∑
j
~Fij = ~pi: the sum of all the forces acting on a particle give the

rate of change of its momentum. We may then rewrite δW :

δW =
∑
i

∑
j

~Fij · δ~ri =
∑
i

~̇pi · δ~ri
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But, we found earlier that we could write the virtual work as a sum over only non-constraint
forces,

δW =
∑
ij

~F
(nc)
ij · δ~ri

Thus, we may derive the relation

∑
i

∑
j

~F
(nc)
ij − ~̇pi

 · δ~ri = 0 (2.6)

The above equation is referred to as d’Alembert’s principle. Its content is that the rate of
change of momentum is determined only by the non-constraint forces. In this form, it
is not much use, but the conclusion that the rate of change of momentum is determined only
by non-constraint forces is an important physical statement. Note that the multiplication by
the virtual displacement must be included in order for the statement to hold; the statement
~F

(nc)
i − ~̇pi = 0 is not in general true; just consider our elliptical wire and Atwood’s machine

examples.

We may use d’Alembert’s principle to relate generalized forces to the rate of change of the
momenta: ∑

k

Fk δqk = δW =
∑
k

~̇pi · δ~ri =
∑
i,k

~̇pi ·
∂~ri
∂qk

δqk

Now, unlike the {δ~ri}, the {δqk} are mutually independent. Therefore, we may conclude
that equality holds for each term of the sum separately (unlike for Equation 2.6), providing
a different version of d’Alembert’s principle:∑

ij

~F
(nc)
ij · ∂~ri

∂qk
= Fk =

∑
i

~̇pi ·
∂~ri
∂qk

(2.7)

This is now a very important statement: the generalized force for the kth generalized coor-
dinate, which can be calculated from the non-constraint forces only, is related to a particular
weighted sum of momentum time derivatives (the weights being the partial derivatives of the
position coordinates with respect to the generalized coordinates). Effectively, we have an
analogue of Newton’s second law, but including only the non-constraint forces.
This can be a major simplification in cases where the constraint forces are complicated or
simply not known.

d’Alembert’s principle is not yet useful in the current form because the left side contains
generalized forces depending on the generalized coordinates but the right side has derivatives
of the momenta associated with the position coordinates. We need time derivatives with
respect to the generalized coordinates on the right side so all the dynamics can be calculated
in the generalized coordinates.

Generalized Equation of Motion

Here we perform the manipulation needed to make d’Alembert’s principle useful. We know
from Newtonian mechanics that work is related to kinetic energy, so it is natural to expect
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the virtual work due to a differential displacement {δ~ri} to be related to some sort of small
change in kinetic energy. We first begin with a formal definition of kinetic energy:

T ≡
∑
i

1
2
mi ~̇ri · ~̇ri = T ({qk}, {q̇k}, t) (2.8)

T should be obtained by first writing T in terms of position velocities {~̇ri} and then using
the definition of the position coordinates in terms of generalized coordinates to rewrite T
as a function of the generalized coordinates and velocities. T may depend on all the gen-
eralized coordinates and velocities and on time because the {~ri} depend on the generalized
coordinates and time and a time derivative is being taken, which may introduce dependence
on the generalized velocities (via the chain rule, as seen earlier). The partial derivatives of
T are

∂T

∂qk
=

∑
i

mi ~̇ri ·
∂~̇ri
∂qk

=
∑
i

~pi ·
∂~̇ri
∂qk

∂T

∂q̇k
=

∑
i

mi ~̇ri ·
∂~̇ri
∂q̇k

=
∑
i

~pi ·
∂~ri
∂qk

where in the last step we have made use of dot cancellation because the constraints are
assumed to be holonomic.

Now, we have ~pi floating around but we need ~̇pi. The natural thing is then to take a time
derivative. We do this to ∂T/∂q̇k (instead of ∂T/∂qk) because we want to avoid second-
order time derivatives if we are to obtain something algebraically similar to the right side
of d’Alembert’s principle. We find

d

dt

(
∂T

∂q̇k

)
=

∑
i

~̇pi ·
∂~ri
∂qk

+
∑
i

~pi ·
d

dt

∂~ri
∂qk

Referring back to the second form of d’Alembert’s principle (Equation 2.7), we see that the
first term in the expression is the generalized force Fk for the kth coordinate. Continuing
onward, we need to evaluate the second term. We have

d

dt

∂~ri
∂qk

=
∑
l

[
∂2~ri
∂ql∂qk

q̇l +
∂2~ri
∂q̇l∂qk

q̈l

]
+

∂2~ri
∂t∂qk

When we exchange the order of the derivatives in the second term, we see that the second
term vanishes because our holonomic constraint assumption – that the generalized velocities
do not enter the constraints, and thus do not enter the relation between position and
generalized coordinates – implies ∂~ri/∂q̇k = 0. In the last term, we can trivially exchange
the order of the partial derivatives. We can bring ∂/∂qk outside the sum in the first term
because ∂q̇l/∂qk = 0. Thus, we have

d

dt

∂~ri
∂qk

=
∂

∂qk

{∑
l

[
∂~ri
∂ql

q̇l

]
+
∂~ri
∂t

}
=
∂~̇ri
∂qk

where the last step simply used the chain rule for evaluation of ~̇ri = d~ri/dt. Essentially, we
have demonstrated that the total time derivative d/dt and the partial derivative ∂/∂qk com-
mute when acting on ~ri for holonomic constraints, which is a nontrivial statement because

78



2.1. THE LAGRANGIAN APPROACH TO MECHANICS

qk is time-dependent. We emphasize that it was the assumption of holonomic constraints
that let us discard the second term above. Had that term remained, the dependence on q̈l
would have made it impossible to bring ∂/∂qk outside the sum because q̈l in general may
depend on ql (via Newton’s second law). So we now have

d

dt

(
∂T

∂q̇k

)
=

∑
i

~̇pi ·
∂~ri
∂qk

+
∑
i

~pi ·
∂~̇ri
∂qk

=
∑
i

~̇pi ·
∂~ri
∂qk

+
∂T

∂qk

or ∑
i

~̇pi ·
∂~ri
∂qk

=
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
(2.9)

Recalling d’Alembert’s principle (Equation 2.7), we may rewrite the above:

∑
i

~F
(nc)
i · ∂~ri

∂qk
= Fk =

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
(2.10)

This is the generalized equation of motion. The left side is completely determined by
the non-constraint forces and the constraint equations. The right side is just derivatives
of the kinetic energy with respect to the generalized coordinates and velocities. Thus, we
obtain a differential equation for the motion in the generalized coordinates.

We note that no information has been lost; rather than explicitly solving for the effect of the
constraint forces on the motion, we incorporate the constraint forces in the definition of the
generalized coordinates, then we solve for the motion in the generalized coordinates. Once
we have done the math, we can invert the constraints to give the motion in the original
coordinates.

Example 2.1:

For the elliptical wire example, the kinetic energy in terms of position coordinate
velocities is

T =
m

2
(
ẋ2 + ż2

)
We have previously obtained formulae for ẋ and ż in terms of α̇:

ẋ = ȧ cosα− a sinα α̇ ż = ḃ sinα+ b cosα α̇

Let us specialize to the case ȧ = 0 and ḃ = 0 to avoid creating an unilluminating
algebraic nightmare; so

ẋ = −a sinα α̇ ż = b cosα α̇

We use these to rewrite the kinetic energy in terms of α̇:

T =
m

2
[
a2α̇2 sin2 α+ b2α̇2 cos2 α

]
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This is an important example of how to convert T from a function of the position
velocities to a function of the generalized coordinates and velocities. Now take the
prescribed derivatives:

d

dt

(
∂T

∂α̇

)
− ∂T

∂α
=

d

dt

[
mα̇

(
a2 sin2 α+ b2 cos2 α

)]
− 2mα̇2

(
a2 − b2

)
sinα cosα

= mα̈
(
a2 sin2 α+ b2 cos2 α

)
In taking the total derivative in the first term, we obtain two terms: the one dis-
played in the last line above, and one that exactly cancels the last term in the first
line.3 We have the generalized force Fα from before, Fα = −mg b cosα, so the
generalized equation of motion is

Fα =
d

dt

(
∂T

∂α̇

)
− ∂T

∂α

−mg b cosα = mα̈
(
a2 sin2 α+ b2 cos2 α

)
α̈ = − g b cosα

a2 sin2 α+ b2 cos2 α

Specializing to a = b = r (circular wire), this simplifies to

α̈ = − g cosα
r

One can schematically see what equations of motion one would have obtained if
generalized coordinates had not been used. There would be two equations, one for
x and one for z. Both would have a component of the constraint force and the z
equation would have a gravity term. The constraint equation on x and z would be
used to eliminate x, giving two equations for z̈ and the unknown constraint force.
The constraint force could be eliminated using one of the equations, resulting in
one, rather complicated, equation of motion in z. Clearly, the above equation of
motion in α is much simpler!

Example 2.2:

For the Atwood’s machine example, things are significantly simpler. The kinetic
energy is

T =
1
2
(
m1 ż

2
1 +m2 ż

2
2

)
Rewriting using the generalized coordinate Z gives

T =
1
2

(m1 +m2) Ż2

3This is our first encounter with an equation that has both total time derivatives and partial derivatives with
respected to qk and q̇k. One must realize that the total time derivative acts on all variables that have any time
dependence. This is why two terms came out of the total time derivative term; one term arising from the total time
derivative acting on α̇, which gives α̈, and another arising from the total time derivative acting on sin2 α and cos2 α,
which gave the additional term that canceled the ∂T/∂α term.
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The kinetic energy derivatives term is

d

dt

(
∂T

∂Ż

)
− ∂T

∂Z
= (m1 +m2) Z̈

Using FZ = (m2 −m1) g from earlier, the generalized equation of motion is

FZ =
d

dt

(
∂T

∂Ż

)
− ∂T

∂Z

(m2 −m1) g = (m1 +m2) Z̈

Z̈ = −m1 −m2

m1 +m2
g

which is the same equation of motion obtained for z1 in Example 1.4 in Section 1.1.
But, using the formalism of constraints and generalized coordinates, we have no
mention of the rope tension in the equations of motion.

2.1.4 The Lagrangian and the Euler-Lagrange Equations

For conservative non-constraint forces, we can obtain a slightly more compact form of the general-
ized equation of motion, known as the Euler-Lagrange equations.

Generalized Conservative Forces

Now let us specialize to non-constraint forces that are conservative; i.e.,

~F
(nc)
i = −~∇iU({~rj})

where ~∇i indicates the gradient with respect to ~ri. Whether the constraint forces are
conservative is irrelevant; we will only explicitly need the potential for the non-constraint
forces. U is assumed to be a function only of the coordinate positions; there is no explicit
dependence on time or on velocities, ∂U/∂t = 0 and ∂U/∂~̇ri = 0.4 Let us use this expression
in writing out the generalized force:

Fk =
∑
i

~F
(nc)
i · ∂~ri

∂qk
= −

∑
i

~∇iU({~rj}) ·
∂~ri
∂qk

= − ∂

∂qk
U({ql}, t)

In the last step we make use of the holonomic constraints to rewrite U as a function of the
{ql} and possibly t and realize that the previous line is just the partial derivative of U with
respect to qk.5

Thus, rather than determining the equation of motion by calculating the generalized force
from the non-constraint forces and the coordinate transformation relations, we can rewrite
the potential energy as a function of the generalized coordinates and calculate the general-
ized force by gradients thereof.

Example 2.1:
4It is possible to consider time-dependent potential energy functions in the following, but we hold off on that

discussion until Section 2.1.9.
5Some care must be taken with the time dependence. U is not initially a function of t. But the constraints may

be rheonomic, so some dependence of U on t may appear when the coordinate transformation is done, and ∂U/∂t
may be nonzero. This should not be taken to imply that somehow the potential has become nonconservative – the
time-dependence arises purely through the rheonomic constraint. If there is any such confusing circumstance, one
should always transform U back to position coordinates to check for time-dependence. And note that U may remain
time-independent in some rheonomic constraint cases; see Example 2.5.
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For the elliptical wire example, the potential energy function is due to gravity,

U(z) = mg z

Rewriting in terms of α gives

U(α; t) = mg b(t) sin α

The generalized force is then

Fα = −∂U(α; t)
∂α

= −mg b(t) cosα

as obtained before. Note that we may allow b to be a function of time without
ruining the conservative nature of the potential energy – U becomes a function of t
through the definition of the generalized coordinate but, obviously, if it was initially
a conservative potential, a transformation of coordinates cannot change that.

Example 2.2:
For the Atwood’s machine, the potential energy function is

U(z1, z2) = g (m1 z1 +m2 z2)

Rewriting in terms of Z gives

U(Z; t) = g [(m1 −m2)Z −m2 l(t)]

The generalized force is

FZ = −∂U(Z; t)
∂Z

= g (m2 −m1)

as found earlier. Again, l is allowed to be a function of time without ruining the
conservative nature of the potential energy.

The Euler-Lagrange Equations

An even simpler method exists. We may rewrite the generalized equation of motion using
the above relation between generalized force and gradient of the potential energy as

−∂U
∂qk

=
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

Define the Lagrangian

L ≡ T − U (2.11)

Since we have assumed holonomic constraints, we have that ∂U/∂q̇k = 0. This lets us
replace d/dt (∂T/∂q̇k) with d/dt (∂L/∂q̇k), giving

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 (2.12)
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This is the Euler-Lagrange equation. There is one for each generalized coordinate qk.
While we still end up taking partial derivatives of U , we no longer need to intepret these
as generalized forces; we work directly from the Lagrangian to generate an equation of
motion.6

Example 2.1:
For the elliptical wire, again taking a and b to be constant, the Lagrangian is

L = T − U =
m

2
[
a2α̇2 sin2 α+ b2α̇2 cos2 α

]
−mg b sinα

We have already calculated all the relevant partial derivatives to obtain the Euler-
Lagrange equations, we simply restate them here:

d

dt

(
∂L

∂α̇

)
=

d

dt

(
∂T

∂α̇

)
=

d

dt

[
mα̇

(
a2 sin2 α+ b2 cos2 α

)]
= mα̈

(
a2 sin2 α+ b2 cos2 α

)
+ 2mα̇2

(
a2 − b2

)
sinα cosα

∂L

∂α
=
∂T

∂α
− ∂U

∂α
= 2mα̇2

(
a2 − b2

)
sinα cosα−mg b cosα

The Euler-Lagrange equation then is

d

dt

(
∂L

∂α̇

)
− ∂L

∂α
= 0

mα̈
(
a2 sin2 α+ b2 cos2 α

)
+mg b cosα = 0

which is equivalent to the generalized equation of motion found before using the
generalized force and derivatives of the kinetic energy.

Example 2.2:
For the Atwood’s machine, again taking l to be constant, the Lagrangian is

L = T − U =
1
2

(m1 +m2) Ż2 + g [(m2 −m1) Z +m2 l]

Note that the m2 l g term is constant and could be dropped without affecting the
ensuing Euler-Lagrange equations. It is a constant offset to the potential energy,
which we know cannot affect the dynamics. Again, all the necessary derivatives
have already been calculated:

d

dt

(
∂L

∂Ż

)
=

d

dt

(
∂T

∂Ż

)
= (m1 +m2) Z̈

∂L

∂Z
= −∂U

∂Z
= g (m2 −m1)

The Euler-Lagrange equation then is

d

dt

(
∂L

∂Ż

)
− ∂L

∂Z
= 0

(m1 +m2) Z̈ − g (m2 −m1) = 0

which is equivalent again to the generalized equation of motion found earlier.
6Note that explicit time-dependence in U would not have ruined the derivation – we only needed ∂U/∂q̇k = 0 to

move U inside the d/dt (∂/∂q̇k) operator. We will return to this in Section 2.1.9.
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CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

2.1.5 The Hamiltonian

We seek a conserved quantity, one whose total time derivative vanishes. We can construct
one from the Lagrangian; it is called the Hamiltonian and has the form

H ≡
∑
k

q̇k
∂L

∂q̇k
− L (2.13)

The total time derivative of the Hamiltonian is
d

dt
H =

∑
k

q̈k
∂L

∂q̇k
+
∑
k

q̇k
d

dt

(
∂L

∂q̇k

)
− d

dt
L

We can use the Euler-Lagrange equation to rewrite the middle term, which gives

d

dt
H =

∑
k

q̈k
∂L

∂q̇k
+
∑
k

q̇k
∂L

∂qk
− d

dt
L

The first two terms are most of the total derivative of L; one is left only with

d

dt
H = −∂L

∂t

Thus, if time does not explicitly appear in the Lagrangian, the Hamiltonian is completely
conserved. If the constraints are scleronomic (the potential is implicitly assumed to be
conservative because we are able to calculate a Lagrangian), then time will not appear
explicitly and H will definitely be conserved. It can be shown that H is the total energy
of the system, H = T + U . For rheonomic constraints, H may still be conserved, but may
not be the energy. We will investigate these conservation laws in more detail later.

Example 2.1:
For the elliptical wire, H is (using ∂L/∂q̇k obtained earlier):

H = α̇
∂L

∂α̇
− L = mα̇2

(
a2 sin2 α+ b2 cos2 α

)
− T + U

= 2T − T + U = T + U

=
m

2
α̇2
(
a2 sin2 α+ b2 cos2 α

)
+mg b sinα

Rather than doing the algebra in all its explicit gore, we have made use of the fact
that the α̇ (∂L/∂α̇) term is in fact just 2T . This simplification occurs in cases
where the constraints are scleronomic because T becomes a simple quadratic form
in the generalized velocities. This can be shown explicitly (Hand and Finch Problem
1.9). In this case, we also note that, since ∂L/∂t = 0 for a and b fixed, it holds that
dH/dt = 0: H is conserved. Note that proving this by explicitly taking the derivative
of H would be rather painful and require use of the Euler-Lagrange equations (to
replace the inevitable α̈ terms that would arise).

Example 2.2:
For the Atwood’s machine example, we have a similar situation: the constraints are
scleronomic (when l is constant), so

H = T + U =
1
2

(m1 +m2) Ż2 − g [(m2 −m1) Z +m2 l]

and H is conserved. Note again that the m2 l g term is constant and could be
dropped.
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2.1.6 Cyclic Coordinates and Canonical Momenta

If the Lagrangian contains q̇k but not qk, we can easily see from the Euler-Lagrange equation
that the behavior of that coordinate is trivial:

d

dt

(
∂L

∂q̇k

)
= 0

which implies

pk ≡ ∂L

∂q̇k

is constant or conserved and is termed the canonical momentum conjugate to qk or the
canonically conjugate momentum. The coordinate qk is termed ignorable or cyclic.
Once the value of pk is specified by initial conditions, it does not change. In simple cases,
the canonical momentum is simply a constant times the corresponding generalized velocity,
indicating that the velocity in that coordinate is fixed and the coordinate evolves linearly in
time. In more complicated cases, the dynamics are not so trivial, but one does still obtain
very useful relations between coordinates and/or velocities that are not generally true. For
example, for a particle moving in two dimensions under the influence of a central force like
gravity, there is no dependence of L on the azimuthal angle φ, so the angular momentum
pφ = mρ2 φ̇ is constant. This tells us the useful fact φ̇ ∝ ρ−2 – as the particle moves inward
toward the origin, its angular velocity must increase in a specific way. In general, then,
a cyclic coordinate results in a conserved momentum that simplifies the dynamics in the
cyclic coordinate.

The above definition of canonical momentum holds even when the qk coordinate is not
cyclic; we will see its use in the future.

Example 2.1:
For the elliptical wire, the canonical momentum is

pα =
∂L

∂α̇
= mα̇

(
a2 sin2 α+ b2 cos2 α

)
The astute reader will notice that, when a = b = r giving a circular wire, pα
is the angular momentum about the axis of the circle. α is not cyclic, so the
Euler-Lagrange equation for it is not trivial and this momentum is not conserved.
If gravity were eliminated, and a = b = r, then α would become cyclic because
sin2 α+ cos2 α = 1. Angular momentum, and hence angular velocity, would remain
fixed at its initial value: the bead would simply circumnavigate the wire at constant
speed. But if a 6= b, then we are left with α dependence in T even if U = 0 and so
the Lagrangian is not cyclic in α.

Example 2.2:
For the Atwood’s machine, the canonical momentum is

pZ =
∂L

∂Ż
= (m1 +m2) Ż

In this case, if U = 0 and l is constant, Z does indeed become cyclic and pZ is
conserved. If the blocks are initially at rest, they stay at rest, and if they are
initially moving with some speed Ż, that speed is preserved.
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2.1.7 Summary

This section has followed some long logical paths, so we quickly summarize the logic here.

degrees of freedom + holonomic constraints
↓

generalized coordinates with dot cancellation

generalized coordinates + virtual work + Newton’s second law
↓

d’Alembert’s principle

d’Alembert’s principle + generalized force
↓

generalized equation of motion

generalized equation of motion + conservative force
↓

Lagrangian, Euler-Lagrange equations

Lagrangian + scleronomic constraints
↓

conservation of Hamiltonian

Lagrangian + cyclic coordinates
↓

conserved conjugate momenta

2.1.8 More examples

In addition to the examples we did alongside the derivation, let us do a few more to further illustrate
our results.

Example 2.3

Sliding block on sliding inclined plane. See Hand and Finch Sections 1.1 and 1.2 for details;
we reproduce some of the more interesting parts here. See Figure 1.1 of Hand and Finch
for a sketch.

Let b and p subscripts denote the block and the inclined plane. The constraints are that the
block cannot move perpendicular to the plane and that the plane cannot move perpendicular
to the flat surface it sits on. Therefore, the natural generalized coordinates are X, the
horizontal position of the vertical edge of the plane, and d, the distance the block has slid
down the plane. (Let h be the height of the plane and α be the angle). Note that d is
defined relative to a noninertial reference frame! The constraints can be rewritten as the
following transformation equations:

~rp(t) = x̂X

~rb(t) = ~rp(t) + ŷ h+ d [x̂ cosα− ŷ sinα]
= x̂ (d cosα+X) + ŷ (h− d sinα)
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Note that, though d is a noninertial coordinate, the constraints are still scleronomic because
time does not appear explicitly in the transformation relations; rheonomic and noninertial
sometimes go hand-in-hand, but not always. The assorted partial derivatives are

∂~rp
∂X

= x̂

∂~rp
∂d

= 0

∂~rb
∂X

= x̂

∂~rb
∂d

= x̂ cosα− ŷ sinα

The non-constraint forces are

~F (nc)
p = −M g ŷ

~F
(nc)
b = −mg ŷ

This last step was very important – we did not have to put in any normal forces, etc., or
take any projections. We just blindly put in the non-constraint forces – gravity only in this
case – and then we will use the generalized equation of motion to do all the work. The
generalized forces are

FX = ~F (nc)
p · ∂~rp

∂X
+ ~F

(nc)
b · ∂~rb

∂X
= 0

Fd = ~F (nc)
p · ∂~rp

∂d
+ ~F

(nc)
b · ∂~rb

∂d
= mg sinα

Now, we calculate the kinetic energy and the relevant derivatives:

T =
1
2
M Ẋ2 +

1
2
m

{
d

dt
[x̂ (X + d cosα) + ŷ d sinα]2

}
=

1
2

(M +m) Ẋ2 +
1
2
m
(
ḋ2 + 2 ḋ Ẋ cosα

)
∂T

∂X
=
∂T

∂d
= 0

d

dt

(
∂T

∂Ẋ

)
=

d

dt

(
[m+M ] Ẋ +mḋ cosα

)
= [m+M ] Ẍ +md̈ cosα

d

dt

(
∂T

∂ḋ

)
= m

[
d̈+ Ẍ cosα

]
The generalized equations of motion are then

X : 0 = [m+M ] Ẍ +md̈ cosα

d : mg sinα = m
[
d̈+ Ẍ cosα

]
We can solve the X equation for Ẍ:

Ẍ = − m

M +m
d̈ cosα
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and insert into the d equation:

mg sinα = md̈

[
1− m

M +m
cos2 α

]
d̈ = g

(
M +m

m

)
sinα

M
m + sin2 α

which gives us a constant acceleration in d and thus lets us find the full motion for d. We
can plug in to find

Ẍ = −g sinα cosα
M
m + sin2 α

Finally, we write out the accelerations in the original coordinates using the transformation
relations:

r̈p = x̂ Ẍ

= −x̂ g sinα cosα
M
m + sin2 α

r̈b = x̂
(
d̈ cosα+ Ẍ

)
− ŷ d̈ sinα

= x̂ g
M

m

sinα cosα
M
m + sin2 α

− ŷ g
(
M +m

m

)
sin2 α

M
m + sin2 α

= x̂ g
sinα cosα

1 + m
M sin2 α

− ŷ g
(
M +m

M

)
sin2 α

1 + m
M sin2 α

=
g

1 + m
M sin2 α

[
x̂ sinα cosα− ŷ

(
M +m

M

)
sin2 α

]
Clearly, the great advantage in doing this problem using the generalized equation of motion
is that we could completely ignore the constraint forces and we could use the non-inertial
coordinate d as if it were inertial, except insofar as we had to calculate the kinetic energy
in the noninertial coordinate system.

We can do the problem even more easily using the Lagrangian formalism. The kinetic
energy was given above; the potential energy is

U = mg (h− d sinα)

so

L = T − U

=
1
2

(M +m) Ẋ2 +
1
2
m
(
ḋ2 + 2 ḋ Ẋ cosα

)
−mg (h− d sinα)

The partial derivatives are

∂U

∂Ẋ
=
∂U

∂ḋ
= 0

∂U

∂X
= 0

∂U

∂d
= −mg sinα
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We may then write down Euler’s equations (making use of the above derivatives of U and
the derivatives of T calculated earlier):

X : [m+M ] Ẍ +md̈ cosα = 0

d : m
[
d̈+ Ẍ cosα

]
−mg sinα = 0

which are the same equations we found earlier. The main advantages in using the Lagrangian
technique when the non-constraint forces are conservative are

• it is usually easier to write down a potential energy than forces and one does not have
to calculate

∑
i
~F

(nc)
i · ∂~ri∂qk

• one directly calculates the partial derivatives with respect to the qk

We may calculate the Hamiltonian

H ≡
∑
k

q̇k
∂L

∂q̇k
− L

= Ẋ
{

[m+M ] Ẋ +mḋ cosα
}

+ ḋ
{
m
[
ḋ+ Ẋ cosα

]}
−
{

1
2

(M +m) Ẋ2 +
1
2
m
(
ḋ2 + 2 ḋ Ẋ cosα

)
−mg (h− d sinα)

}
=

1
2

(M +m) Ẋ2 +
1
2
m
(
ḋ2 + 2 ḋ Ẋ cosα

)
+mg (h− d sinα)

= T + U

which is the total energy of the system. We can see that energy is conserved by recognizing
that dH

dt = −∂L
∂t vanishes because there is no explicit dependence of the Lagrangian on time.

The canonically conjugate momenta are:

pX =
∂L

∂Ẋ
= [m+M ] Ẋ +mḋ cosα

pd =
∂L

∂ḋ
= m

[
ḋ+ Ẋ cosα

]
Note that it is ḋ that multiplies cosα in pX and Ẋ that multiples cosα in pd.

Example 2.4

Hand and Finch, Section 1.9

Remarkably enough, the Euler-Lagrange equation works to some extent in non-inertial
frames. The kinetic and potential energies must first be defined in an inertial frame. But
then transformation to an accelerating frame can simply be treated as a rheonomic con-
straint. This is one of those cases where the potential energy is time-independent when
written in the position coordinates, but obtains time-dependence when transformed to gen-
eralized coordinates because of the rheonomic constraints. For example, consider throwing
a ball upward in an upwardly accelerating elevator. The transformation equation is simply

z = q + v0 t+
1
2
a t2
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CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

where we have assumed the elevator starts at t = 0 with velocity v0 and accelerates with
acceleration a. In the inertial frame, the ball has Lagrangian

L =
1
2
m ż2 −mg z

Rewriting in terms of the generalized coordinate q, we have

L =
1
2
m [q̇ + v0 + a t]2 −mg

[
q + v0 t+

1
2
a t2
]

=
1
2
m q̇2 +m q̇ [v0 + a t] +

1
2
m [v0 + a t]2 −mg q −mg

[
v0 t+

1
2
a t2
]

The partial derivatives are

∂L

∂q̇
= m [q̇ + v0 + a t]

∂L

∂q
= −mg

So the Euler-Lagrange equation is

m [q̈ + a] +mg = 0
q̈ = −(g + a)
q̇ = u0 − (g + a) t

q = u0 t−
1
2
(g + a) t2

If we then transform back to the inertial frame as a check, we find

z = (u0 + v0) t−
1
2
g t2

which is as you would expect: if the ball is thrown upward with speed u0 relative to
the elevator, its initial velocity in the inertial frame is u0 + v0 and the ball decelerates
under gravity as normal. In the noninertial frame, though, the ball decelerates faster, with
deceleration g + a, because of the acceleration of the elevator.

It is interesting to look at the Hamiltonian because, due to the rheonomic constraints, it is
neither the total energy nor is it conserved:

H = q̇
∂L

∂q̇
− L = m q̇ [q̇ + v0 + a t]− L

=
1
2
m q̇2 − 1

2
m [v0 + a t]2 +mg q +mg

[
v0 t+

1
2
a t2
]

Clearly, H is time-dependent, and it has no apparent simple relationship to the energy as
calculated in the inertial frame, T + U .

Example 2.5

Consider a heavy bead sliding on a stiff rotating wire held at a fixed angle, with the bead
experiencing the force of gravity and any constraint forces; see Hand and Finch Figure 1.2
for a sketch. Let’s apply our formalism to the problem.
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The constraint is that the bead must remain on the wire, and that the wire rotates with
angular velocity ω. The natural generalized coordinate is q, the distance that the bead is
from the origin along the wire. Let α be the polar angle between the axis of rotation and
the wire; it is fixed by assumption. We consider the case shown in Hand and Finch, where
the wire is angled upward so that the bead does not fall off.

The coordinate transformation relations are

~r(t) = x̂ q sinα cosωt+ ŷ q sinα sinωt+ ẑ q cosα

Note that t appears explicitly. Though we have not written the constraint equations ex-
plicitly, the presence of t in the transformation from position coordinates to generalized
coordinates implies that the constraint is rheonomic. Let’s first go the generalized equation
of motion route, so we need to find the partial derivatives of the transformation relation:

∂~r

∂q
= x̂ sinα cosωt+ ŷ sinα sinωt+ ẑ cosα

The non-constraint force is

~F (nc) = −mg ẑ

So the generalized force is

Fq = ~F (nc) · ∂~r
∂q

= −mg cosα

To calculate the kinetic energy, we will need the velocity:

~̇r =
∂~r

∂q
q̇ +

∂~r

∂t

= x̂ q̇ sinα cosωt+ ŷ q̇ sinα sinωt+ ẑ q̇ cosα
−x̂ q sinαω sinωt+ ŷ q sinαω cosωt

The kinetic energy is

T =
1
2
m~̇r · ~̇r

=
1
2
m
(
q̇2 + q2 ω2 sin2 α

)
where a large amount of algebra has been suppressed. The partial derivatives of T are

∂T

∂q
= mq ω2 sin2 α

∂T

∂q̇
= m q̇

The generalized equation of motion therefore is

Fq =
d

dt

(
∂T

∂q̇

)
− ∂T

∂q

−mg cosα =
d

dt
(mq̇)−mq ω2 sin2 α

q̈ − q ω2 sin2 α = −g cos α
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We can also employ Lagrangian techniques. The potential energy and the Lagrangian are

U = mg z = mg q cosα

L = T − U =
1
2
m
(
q̇2 + q2 ω2 sin2 α

)
−mg q cosα

Note that, even though the constraints are rheonomic, U remains time-independent. This
is a special case – while there was time dependence in the transformation relations, there
was no time dependence in the relation between z and q, and it is only z that appears in
the potential energy. The partial derivatives of U are

∂U

∂q
= mg cosα

∂U

∂q̇
= 0

Therefore, the Euler-Lagrange equation is

d

dt

∂

∂q̇
(T − U)− ∂

∂q
(T − U) = 0

m q̈ −mq ω2 sin2 α+mg cosα = 0
q̈ − ω2 q sin2 α = −g cosα

as seen before.

The canonical momentum is

pq =
∂L

∂q̇
= mq̇

The Hamiltonian is

H = q̇
∂L

∂q̇
− L

= m q̇2 − L

=
1
2
m q̇2 − 1

2
mq2 ω2 sin2 α+mg q cosα

Note that this Hamiltonian is not the total energy of the system. H is conserved because
∂L/∂t vanishes. But, because of the negative sign on the second term, H is not the total
energy. This occurs because the constraint was rheonomic.

Example 2.6

Another good example would be the ladder sliding against the wall problem that is used as
an example in Hand and Finch Chapter 1. Try working it out yourself as we have worked
out the examples above.

2.1.9 Special Nonconservative Cases

So far we have only considered the Lagrangian when there is a potential energy function that
can be derived from conservative forces. There are some special nonconservative cases in which
the Lagrangian formalism can continue to be used with some modifications. The discussions of
velocity-dependent potentials and general nonconservative forces are based on Goldstein Section
1.5.
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Time-Dependent Potentials

In defining the Lagrangian, we specialized to cases in which the potential energy was time-
independent in position coordinates. However, one can imagine cases in which U has explicit
time dependence but is instantaneously conservative – for example, the gravitational poten-
tial of a binary star system in which the stars orbit about the center of mass with constant
angular velocity. At distances comparable to the stars’ separation, the potential energy
function will be strongly time dependent.7 How can such cases be treated?

To first order, there is no change in the derivation or Euler-Lagrange equations. U can
obviously be defined in a sensible fashion; the potential energy is path-independent if one
holds time fixed as the line integral of the force is calculated. The generalized force can
still be written as Fk = −∂U({ql}; t)/∂qk. And the rewriting of the generalized equation of
motion as the Euler-Lagrange equations continues to go through because ∂U/∂q̇k continues
to vanish; this is what was required to move U inside the d/dt(∂/∂q̇k) operator. So, the
Euler-Lagrange equations continue to hold. The Hamiltonian may be defined, and instan-
taneously corresponds to the energy of the system if the constraints are scleronomic, but
now it will not be conserved because ∂L/∂t 6= 0.

More generally, if U is not at least instantaneously conservative, it does not seem likely that
the Euler-Lagrange equations will hold. (It is not clear that the concept of U is even sensible
in such cases.) Remember that the generalized equation of motion, using the generalized
force, is the more fundamental relation. If it is not possible to define a potential energy
function U such that Fk = −∂U({ql}; t)/∂qk, then it is simply not possible to convert the
generalized equation of motion to the Euler-Lagrange equations.

Velocity-Dependent Potentials

Suppose we have generalized force that can be written in terms of a velocity-dependent
potential energy U({qk}, {q̇k}) in the following manner:

Fj = −∂U
∂qj

+
d

dt

(
∂U

∂q̇j

)
(2.14)

If this is possible, then the Euler-Lagrange equation still holds for L = T −U defined in this
way because of the total time derivative term. U may be called a “generalized potential”
or “velocity-dependent potential”. It is not a potential energy in the conventional sense
because it depends on more than just the particle position; it cannot be calculated from
a line integral of the generalized force. But it does permit the use of a Lagrangian, which
allows us to generalize many of the concepts we developed above. We may obtain a canonical
momentum and a Hamiltonian from the Lagrangian, and we are assured that all of the
properties we have studied continue to hold because we know the Lagrangian satisfies the
Euler-Lagrange equation.

Why are velocity-dependent potentials of interest? There is one extremely important force
that can be derived from a velocity-dependent potential, the Lorentz force of a magnetic field
acting on a moving charged particle. A charged particle moving in electric and magnetic
fields feels a force

~F = q
(
~E + ~v × ~B

)
7Note that we must consider the nonrelativistic limit so that we may assume the gravitational potential at all

positions in space tracks the current positions of the stars; there is no retardation due to the finite propagation speed
of gravity.
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where q is the particle charge, ~v is the particle velocity, ~E is the electric field

~E(~x) = −~∇φ(~x)− ∂ ~A(~x)
∂t

and ~B is the magnetic field

~B(~x) = ~∇× ~A(~x)

with φ(~x) being the electrostatic potential and ~A(~x) the vector potential. The above force
can be derived via the above formula from the generalized potential

U(~x,~v) = q
[
φ(~x)− ~A(~x) · ~v

]
It is easy to see that this is the correct potential function by applying Equation 2.14:

~F = −~∇U +
d

dt
~∇v U

= −q ~∇φ+ q ~∇
(
~A · ~v

)
− q d

dt

[
~∇v
(
~A · ~v

)]
where ~∇v is the gradient with respect to the components of velocity rather than the com-
ponents of position (just a notational shorthand). In the last term, ~∇v

(
~A · ~v

)
= ~A because

~A does not depend on ~v and ~∇v acting on ~v picks out the components of ~v. Next, we use
the vector identity

~a× (~∇×~b) = ~∇ (~a ·~b)− (~a · ~∇)~b

with ~a = ~v and ~b = ~A. The use of this identity relies on the fact that ~∇ does not act on ~v
here.8 With this identity, we can rewrite the above as

~F = −q ~∇φ+ q
[
~v ×

(
~∇× ~A

)
+
(
~v · ~∇

)
~A
]
− q d

dt
~A

= −q ~∇φ+ q
[
~v × ~B

]
− q ∂

~A

∂t

= q
[
~E + ~v × ~B

]
where we have used

d ~A

dt
=
∂A

∂t
+
(
~v · ~∇

)
~A

(which can be proven using the chain rule).

8More specifically: the identity holds in the above form only when ~a is not acted on by ~∇: we have moved ~a from
the left side of ~∇ (LHS of equation) to its right side (first term on RHS). More generally, one has to be a bit more
careful. It is not possible to clearly write the general result using just vector notation, but it can be written using
index notation: h

~a× (~∇×~b)
i

i
=

X
j

aj∇ibj −
X

j

aj∇jbi

The key point is that in the first term, ~a is in a dot product with ~b, but ~∇ must be allowed to act on ~b first, and not
as ~∇ ·~b.
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With the above potential function, the Lagrangian is now

L =
1
2
mv2 − q

[
φ(~x)− ~A(~x) · ~v

]
The canonical momentum is

~p = ~∇vL = m~v + q ~∇v
(
~A · ~v

)
= m~v + q ~A

The Hamiltonian is:

H = ~p · ~v − L

= mv2 + q ~A · ~v − 1
2
mv2 + q φ− q ~A · ~v

=
1
2
mv2 + q φ

=
1

2m

(
~p− q ~A

)2
+ q φ

The lack of any magnetic terms in the third line should not be too surprising – after all,
since the magnetic field exerts a force perpendicular to velocity, it can do no work on a
particle and thus does not contribute to its energy. But ~A becomes important dynamically
when we consider the form in the last line because, in Hamiltonian mechanics (which we
will discuss later), ~p and ~x are the physically significant variables; ~A appears when we write
H in terms of ~p and ~x instead of in terms of ~v and ~x. Quantum mechanics begins with the
Hamiltonian formulation, so those of you who have taken quantum mechanics will no doubt
recognize the form of the Hamiltonian in the last line.

Nonconservative Forces in General

While it is not in general possible to include other nonconservative forces in the Lagrangian,
we can see how to write the Euler-Lagrange equations with nonconservative forces by re-
turning to the generalized equation of motion. Recall Equation 2.10:

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= Fk

We obtained the Euler-Lagrange equation by writing Fk as the gradient of a potential and
moving it to the left side. If we have nonconservative forces, we can leave them on the right
side, moving only conservative forces to the left side and including them in the Lagrangian.
More generally, any force than can be included in the Lagrangian via some sort of potential
moves to the left side. Thus, we can write a generalized Euler-Lagrange equation:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Fno−Lk (2.15)

where Fno−L encompasses all forces that cannot be included in the Lagrangian.
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2.1.10 Symmetry Transformations, Conserved Quantities, Cyclic Coordinates
and Noether’s Theorem

We discuss the relation between symmetry transformations of the Lagrangian, cyclic coordinates,
and conserved quantities; the relationship is encoded in Noether’s Theorem. Noether’s Theorem
brings to the fore the importance of these cyclic coordinates and canonical momenta.

This material is covered in Hand and Finch Sections 5.1 and 5.2.

Coordinate Transformations

Suppose we have a Lagrangian for a system, L(q, q̇, t). Let us define a new set of coordinates
q′(t). (Let q and q′ be abbreviations for multi-dimensional, multi-particle sets of generalized
coordinates {qk} and {q′k}.) This is just a relabeling of the configuration of the system.
For example, a point P in 3-dimensional space may be known as (x, y, z) in the original
system and (x′, y′, z′) in the new system. Without a doubt, we will have a new Lagrangian,
L′(q′, q̇′, t), with the two Lagrangians related by

L′(q′, q̇′, t) = L(q(q′, q̇′, t), q̇(q′, q̇′, t), t) (2.16)

There will likely be different equations of motion after relabeling. Though, because what
we have done is only a relabeling, the actual physical solutions must be equivalent. That
is, if one obtains physical solutions q(t) and q′(t) from the two different Lagrangians, the
original relabeling procedure must show them to be equivalent physical paths.

Some further explanation of the transformation is in order. We wrote it as simply a rela-
beling. But it could have equally well been a movement of the system. These two interpre-
tations are as follows:

• passive transformation: we have simply defined a new coordinate system, a relabeling
of the points in space.

• active transformation: by changing coordinate systems, we have actally moved the
system of particles and potentials relative the original coordinate system so that the
system now has new coordinates q′ in the original system. Note that everything must
move; for example, if one has a nonuniform gravitational field, and one moves the
particles but not the field, the dynamics will of course change!

To some extent, it doesn’t matter which interpretation you like; the physical result will be
the same.

To clarify these abstractions, consider the following examples:

1. Mirror transformation:

x′ = −x
y′ = y

z′ = z

Our transformation could be interpreted in two ways:

• passive: the particle is not being moved; rather, we are defining a new coordinate
system (x′, y′, z′) that is a reflection of the original one and relabeling all points
in space according to the transformation.
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• active: the particle is actually reflected in x through the origin by the transfor-
mation.

2. Rotation transformation about the z axis:

x′ = x cos θ − y sin θ
y′ = x sin θ + y cos θ
z′ = z

or, equivalently,

x = x′ cos θ + y′ sin θ
y = −x′ sin θ + y′ cos θ
z = z′

Again, there are two interpretations:

• passive: the particle is not being moved; rather, we are defining a new coordinate
system (x′, y′, z′) that is rotated from the old one and relabeling all points in space
according to the transformation.
• active: the particle is actually rotated about the origin by an angle θ by the

transformation.

3. Translation:

x′ = x− a
y′ = y

z′ = z

(a > 0 for specificity). The two interpretations of the transformation are:

• passive: we are simply defining a new coordinate system whose origin is a distance
a to the +x direction of the old origin.
• active: the particle is actually moved a distance a to −x of where it was originally.

Continuous Transformations

Let us now specialize to transformations that can be written as a function of a continuous
parameter s (or set of parameters), such that q′(t) = Q(s, t) with Q(0, t) = q(t). The
rotation and translation transformations above are examples of continuous transformations,
with the parameters being the rotation angle θ or the translation distance a, respectively.

Symmetry Transformations

Now, let’s consider transformations for which the Lagrangian satisfies a more sophisticated
requirement:

L′(q′, q̇′, t) = L(q′, q̇′, t) (2.17)

This statement has content that the original transformation relation Equation 2.16 did not
have. Here, we are requiring that, in spite of relabeling of the coordinates, the original
Lagrangian still holds. We say the Lagrangian is invariant under the transformation
if the above holds, that the system is symmetric under the transformation or that the
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transformation is a symmetry transformation of the system. We will see this invariance
has physical content.

To clarify these abstractions, consider the following examples and counterexamples. For
all, we consider a particle moving under the influence of gravitational field centered at the
origin. The Lagrangian is

L(x, y, z) =
1
2
m
(
ẋ2 + ẏ2 + ż2

)
− U

(√
x2 + y2 + z2

)
1. Example: Consider the reflection transformation. The new Lagrangian is

L′(x′, y′, z′) = L
(
x(x′, y′, z′), y(x′, y′, z′), z(x′, y′, z′)

)
=

1
2
m
((
−ẋ′

)2 + ẏ′2 + ż′2
)
− U

(√
(−x′)2 + y′2 + z′2

)
= L(x′, y′, z′)

The Lagrangian is clearly invariant under the transformation.

2. Example: Consider the rotation transformation about the z axis. We easily see

L′(x′, y′, z′) = L
(
x(x′, y′, z′), y(x′, y′, z′), z(x′, y′, z′)

)
=

1
2
m
[(
ẋ′ cos θ + ẏ′ sin θ

)2 +
(
−ẋ′ sin θ + ẏ′ cos θ

)2 + ż′2
]

−U
(√

(x′ cos θ + y′ sin θ)2 + (−x′ sin θ + y′ cos θ)2 + z′2
)

=
1
2
m
(
ẋ′2 + ẏ′2 + ż′2

)
− U

(√
x′2 + y′2 + z′2

)
= L(x′, y′, z′)

The Lagrangian is invariant under the transformation.

3. Counterexample: Consider the simple translation transformation. The new Lagrangian
is

L′(x′, y′, z′) = L
(
x(x′, y′, z′), y(x′, y′, z′), z(x′, y′, z′)

)
=

1
2
m
(
ẋ′2 + ẏ′2 + ż′2

)
− U

(√
(x′ + a)2 + y′2 + z′2

)
6= L(x′, y′, z′)

The Lagrangian is clearly not invariant under the transformation. This is an especially
interesting case because it highlights the difference between a symmetry transformation
and a garden-variety coordinate transformation. When we perform the coordinate
transformation, we of course get a perfectly valid Lagrangian and, were we to solve
for the dynamics using that Lagrangian, we would obtain the same physical path
(accounting for the coordinate transformation) as with the original Lagrangian. But
the Lagrangians are different. For a symmetry transformation, not only is the resulting
physical path the same, but the Lagrangians themselves are the same.

Note how the above invariance or lack of invariance is independent of the interpretation of
the transformation (passive or active).
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Another way to express symmetry transformations

We have so far asked about L′(q′, q̇′, t) and whether it satisfies L′(q′, q̇′, t) = L(q′, q̇′, t).
We can ask a differently phrased but equivalent question: does it hold that L(q′, q̇′, t) =
L(q, q̇, t)? Note that, in each of the above examples, this latter statement was the one we
really tested. In every case, we have L′(q′, q̇′, t) = L(q(q′, q̇′, t), q̇(q′, q̇′, t), t) (because that is
what you get simply from coordinate relabeling), but the thing we had to then prove was
L(q(q′, q̇′, t), q̇(q′, q̇′, t), t) = L(q′, q̇′, t), and it was the latter step that did not always work.
We will therefore say that a Lagrangian is invariant under the transformation q → q′ if

L(q(q′, q̇′, t), q̇(q′, q̇′, t), t) = L(q′, q̇′, t) (2.18)

and therefore

L(q′(q, q̇, t), q̇′(q, q̇, t), t) = L(q, q̇, t) (2.19)

This may seem like a backwards way of looking at it – write the old Lagrangian using the
new coordinates and ask if it looks like the old Lagrangian in the old coordinates – but we
have proved above that it is a mathematically equivalent statement, and we will see this
version is more convenient to work with. To be explicit, let’s redo our examples using this
form:

1. Example: Reflection:

L(x′, y′, z′) =
1
2
m
(
ẋ′2 + ẏ′2 + ż′2

)
− U

(√
x′2 + y′2 + z′2

)
=

1
2
m
(
(−ẋ)2 + ẏ2 + ż2

)
− U

(√
(−x)2 + y2 + z2

)
= L(x, y, z)

2. Example: Rotation:

L(x′, y′, z′) =
1
2
m
(
ẋ′2 + ẏ′2 + ż′2

)
− U

(√
x′2 + y′2 + z′2

)
=

1
2
m
[
(ẋ cos θ − ẏ sin θ)2 + (ẋ sin θ + ẏ cos θ)2 + ż2

]
−U

(√
(x cos θ − y sin θ)2 + (x sin θ + y cos θ)2 + z2

)
=

1
2
m
(
ẋ2 + ẏ2 + ż2

)
− U

(√
x2 + y2 + z2

)
= L(x, y, z)

3. Counterexample: Translation:

L(x′, y′, z′) =
1
2
m
(
ẋ′2 + ẏ′2 + ż′2

)
− U

(√
x′2 + y′2 + z′2

)
=

1
2
m
(
ẋ2 + ẏ2 + ż2

)
− U

(√
(x− a)2 + y2 + z2

)
6= L(x, y, z)

The math is the same, though reversed, but the interpretation is somewhat different.
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Noether’s Theorem and Conserved Quantities

Suppose that we do indeed have a Lagrangian L(q, q̇, t) that is invariant under the continuous
transformation Q(s, t). Does this knowledge get us anything?

Begin by noting that, if Q(s, t) is a symmetry transformation of L, then the transformed
Lagrangian does not depend on s:

d

ds
L(Q(s, t), Q̇(s, t), t) =

d

ds
L(q(t), q̇(t), t) = 0

Note that we have used the second manner of writing the invariance under transformation,
Equation 2.19. The statement may not seem entirely obvious. Certainly, L(Q(s, t), Q̇(s, t), t)
depends on s! Yes, there is explicit dependence on s, but the second form of the invariance
under transformation requirement implies that this form that has explicit dependence on s
can be rewritten in a form that has no dependence on s, which then allows us to claim the
above. As a check, consider the rotation and translation transformations given earlier, with
s = θ and s = a, where L(x′, y′, z′) = L(x, y, z) always held: L(x, y, z) does not depend on
s, so clearly then L(x′, y′, z′) cannot depend on s.

Let’s derive the implications of the above. Applying the chain rule to obtain dL
ds gives

∂L

∂Q

dQ

ds
+
∂L

∂Q̇

dQ̇

ds
= 0

If we apply the Euler-Lagrange equation ∂L
∂Q −

d
dt
∂L
∂Q̇

= 0 to replace ∂L
∂Q , we find

d

dt

(
∂L

∂Q̇

)
dQ

ds
+
∂L

∂Q̇

dQ̇

ds
= 0

d

dt

(
∂L

∂Q̇

dQ

ds

)
= 0

where in the last step we made use of the fact that t and s are completely independent of
each other so the order of their derivatives can be exchanged. Recall that p = ∂L

∂Q̇
, so we

have

I(q, q̇) ≡ p
dQ

ds

∣∣∣∣
s=0

is constant. We have evaluated p = ∂L
∂Q̇

and dQ
ds at s = 0 because the above relation holds

for all s and so we may choose s = 0 for convenience. I is written as a function of q and q̇
because the right side is evaluated at s = 0. More generally, we have

Ij({qk}, {q̇k}, t) ≡
N∑
k=1

pk
dQk
dsj

∣∣∣∣
{sj=0}

(2.20)

is constant for any set of symmetry transformations Qk({sj}) indexed by j.

The above equation is Noether’s Theorem: If the Lagrangian possesses a set of P con-
tinuous symmetry transformations parameterized by P parameters {sj}, then there are P
conserved quantities associated with the transformations given by the above form.

Let’s consider some examples.
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1. Translation transformation on a translation-invariant Lagrangian. Consider the La-
grangian

L =
1
2
m
(
ẋ2 + ẏ2 + ż2

)
−mg z

and the transformation

~r′ = ~r + ~a

where ~a is a constant. Let’s apply our second method for checking for invariance:

L(x′, y′, z′) =
1
2
m
(
ẋ′2 + ẏ′2 + ż′2

)
−mg z′

=
1
2
m
(
ẋ2 + ẏ2 + ż2

)
−mg z −mg az

where az is the z component of ~a. The Lagrangian is clearly only invariant if az = 0,
i.e., if the translation is transverse to the gradient of the potential term. So the
symmetry transformation is

x′(ax, ay) = x+ ax

y′(ax, ay) = y + ay

Since the transformation has two parameters ax and ay, there are two conserved quan-
tities, which we can find using Equation 2.20:

ax : Ix = px
dx′

dax

∣∣∣∣
ax=0

+ py
dy′

dax

∣∣∣∣
ax=0

= px = mẋ

ay : Iy = px
dx′

day

∣∣∣∣
ay=0

+ py
dy′

day

∣∣∣∣
ay=0

= py = mẏ

which are the conventional mechanical momenta along the x and y directions. Notice
how the conserved quantities go with the parameters ax and ay, which in this case
map to x and y but may not always!

2. Rotational transformation on a spherically symmetric (rotationally invariant) Lagrangian.
We consider the same Lagrangian we considered earlier:

L =
1
2
m
(
ẋ2 + ẏ2 + ż2

)
− U

(√
x2 + y2 + z2

)
We have already demonstrated that this Lagrangian is invariant under the transfor-
mation

x′(θ) = x cos θ − y sin θ
y′(θ) = x sin θ + y cos θ
z′(θ) = z

There is one parameter, θ, so there is one conserved quantity

I = px
dx′

dθ

∣∣∣∣
θ=0

+ py
dy′

dθ

∣∣∣∣
θ=0

= px (−x sin 0− y cos 0) + py (x cos 0− y sin 0)
= x py − y px = lz
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which you know as the angular momentum about the z axis. Rotations about the x
and y axes would have yielded conserved quantities lx = y pz−z py and ly = z px−x pz.

Noether’s Theorem and Cyclic Coordinates

We conclude by returning to cyclic coordinates, which were first mentioned in Section 2.1.
Recall that a cyclic coordinate is one that does not appear explicitly in the Lagrangian
(though its time derivative may, and indeed must for the coordinate to be nontrivial).
We have seen in Section 2.1 that the canonical momentum pc corresponding to a cyclic
coordinate qc is conserved because the Euler-Lagrange equation for that coordinate becomes

ṗc =
d

dt

∂L

∂q̇c
=
∂L

∂qc
= 0

We can see that our discussion of symmetry transformations is consistent with this. Consider
a translation in the coordinate qc, q′c = qc + a. Clearly, the Lagrangian is invariant under
the transformation because qc does not appear explicitly in L. The conserved quantity is

Ic = pc
dq′c
da

∣∣∣∣
a=0

= pc

Thus, the conservation of canonical momentum for a cyclic coordinate is just a special case
of Noether’s theorem. Of course, this had to be true because we used the Euler-Lagrange
equations to derive Noether’s theorem.

Philosophical Epilogue

It is difficult to overstate the importance of symmetry transformations and Noether’s theo-
rem to the development of classical mechanics, classical field theory, quantum field theory,
and much of the physics of the twentieth century. New theories, especially in quantum field
theory, are frequently based on assumptions about what symmetry transformations nature
should obey. Requirements of invariance under global symmetry transformations of the kind
described here are frequently a starting point for new Lagrangians and provide conserved
quantities (“charges”). For example, electric charge conservation can be demonstrated to
be a consequence of the invariance of the quantum mechanics of a particle in an electro-
static field under phase transformations ψ′ = eiφψ. Elevation of such global symmetries to
local symmetries – that the Lagrangian must be invariant under symmetry transformations
for which the transformation parameter s is an arbitrary function of position – require the
existence of the gauge fields of particle physics (photons, W and Z bosons, gluons) and can
be used to “derive” general relativity.
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2.2 Variational Calculus and Dynamics

We present variational calculus and the variational approach to dynamics, which proceeds from the
Principle of Least Action. The section will develop the variational calculus and derive the Euler-
Lagrange equation from a variational principle rather than from Newton’s second law. Holonomic
constraints will be included via the technique of Lagrange multipliers, which is an alternative to
defining a set of unconstrained generalized coordinates that have eliminated any constrained degrees
of freedom. Some nonholonomic constraints may be dealt with via variational dynamics.

While it may seem that both this section and the previous one were new formulations of me-
chanics, one must realize that the Lagrangian mechanics introduced in the previous chapter derived
directly from Newton’s second law. The use of constraints, generalized variables, the Lagrangian,
and the derivation of the Euler-Lagrange equation should be consider “technology,” not new physics.
This section, on the other hand, provides a new principle on which to base mechanics, an alternative
to Newton’s second law.

Another difference between the last section and this one is that, in the last section, we continued
the Newtonian mechanical tendency to derive the equations of motion from a “differential principle”
– i.e., the equations of motion only care about what is happening locally. As Goldstein says, the
Principle of Least Action is different in that it is an “integral principle,” determining the equations
of motion from a requirement on the entire motion of the system between a pair of start and end
times.

The naming and history are no doubt becoming very confusing. The line of reasoning presented
in the previous section was due to Lagrange and so is known as Lagrangian mechanics. But Lagrange
was also responsible for the application of variational calculus to mechanics, and so the material
derived in this section is also sometimes referred to as Lagrangian dynamics. But, in fact, the
Principle of Least Action was formulated by Hamilton, not Lagrange. The confusion will continue
when we embark on Hamiltonian dynamics in the next section. We will refer to the use of the
calculus of variations in mechanics as variational dynamics or variational mechanics to distinguish
from the Lagrangian mechanics studied in the previous section.

We following Hand and Finch Chapter 2, though with some pedagogical differences in how
certain results are derived. Refer also Thornton Chapters 6 and 7.

2.2.1 The Variational Calculus and the Euler Equation

We begin by studying the variational calculus as a purely mathematical tool. A better name is
perhaps “functional calculus” because we will be considering the concept of differentiation with
respect to functions rather than numbers or sets of numbers. We will derive the Euler equation,
an important result of variational calculus that we will apply to mechanics.

Functionals and Variations

• function = rule that maps an input set of numbers to an output set of numbers

• functional = rule that maps a function or set of functions to an output set of numbers.
Non-generic example:

I[y] ≡
∫ x1

x0

dxF

(
y,
dy

dx
, x

)
(2.21)

where x is the variable of integration, y is a function of x, and F is a simple function
that accepts three arguments. For example, F = y2 + ( dydx)3 + x4. The functional
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I[y] is only one, specific example of a functional. Not every functional is based on an
integration. Furthermore, the choice of the arguments of the function F – y, dy

dx , and
x – is special.

• “Variation” in the function y: the functional equivalent of the differential in a variable
dy; small changes in the function y at every point x, holding the endpoint values y(x0)
and y(x1) fixed, and denoted by δy. There will also be a variation in dy

dx , denoted
by δ dydx , though it is entirely specified by the variation δy because δ dydx = d

dxδy. (This
statement does not contradict the argument in our discussion of Lagrangian mechanics
that a generalized coordinate and its associated generalized velocity – here represented
more abstractly by y and dy

dx – are independent.9) To visualize the variation δy, think
of flexible, stretchable string held fixed at its endpoints.

• “Variation” in the functional I: The change in I due to the variations δy and δ dydx is
found in the way familiar from elementary calculus:

δI ≡ I[y + δy]− I[y]

=
∫ x1

x0

dxF

(
y + δy,

dy

dx
+ δ

dy

dx
, x

)
−
∫ x1

x0

dxF

(
y,
dy

dx
, x

)
(2.22)

δI is the “variation”. We can further evaluate it using the chain rule:

F

(
y + δy,

dy

dx
+ δ

dy

dx
, x

)
− F

(
y,
dy

dx
, x

)
=

∂F

∂y
δy +

∂F

∂ dydx
δ
dy

dx
+O(δ2)

where O(δ2) denotes the higher-order terms being ignored in this linear expansion. So
we have

δI =
∫ x1

x0

dx

[
∂F

∂y
δy +

∂F

∂ dydx
δ
dy

dx

]

=
∫ x1

x0

dx

[
∂F

∂y
δy +

∂F

∂ dydx

d

dx
δy

]

=
∫ x1

x0

dx

[
∂F

∂y
δy − d

dx

(
∂F

∂ dydx

)
δy

]
+

[
∂F

∂ dydx
δy

]∣∣∣∣∣
x1

x0

=
∫ x1

x0

dx

[
∂F

∂y
− d

dx

(
∂F

∂ dydx

)]
δy

where in the next-to-last step we integrated by parts. The “surface term” vanished
due to the boundary conditions on δy.

9It is true that, for a given “candidate” path y(x), the function dy
dx

is completely specified. However, we do not
know at this stage – i.e., before writing and solving Euler’s equation – which candidate path y(x) is the correct one.
There are a whole family of candidate paths that pass through a given y value at a given x, but whose first and
higher-order derivatives all differ, and we allow any of them to be candidate paths. One might still worry that, if
y and dy

dx
at a given x are known, that the entire path y(x) is specified. That is simply not true because one has

infinite freedom in the higher order derivatives of y(x) at this stage. Another way of stating it is that, if y and dy
dx

at
a given x are known, is it not possible to predict y for nearby x values? No, because the Taylor expansion connecting
y at two values of x is an infinite power series with an infinite number of derivatives to be specified. Thus, until a
physical path y(x) is found via Euler’s equation, y and dy

dx
are independent variables; but, for a particular candidate

path, they are not.
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Extremum Condition and the Euler Equation

A next obvious question to consider in carrying along the analogy from elementary calculus
to variational calculus is: can we find a path y∗(x) such that δI at the path y∗(x) vanishes
for all choices of δy? This is the analogy to asking, in elementary calculus, whether there
exists a point where the derivative vanishes. We can certainly set δI as given above to zero.
This is not particularly illuminating until one realizes that the condition that δI vanish
for all δy implies that the quantity inside the brackets must vanish because δy is arbitrary.
Recall that δy is a function of x and has arbitrary value at each point x, so δy cannot be
pulled outside the integral; the bracketed quantity must indeed vanish for δI to vanish.
Thus, we are left with Euler’s equation:

∂F

∂y
− d

dx

(
∂F

∂ dydx

)
= 0 (2.23)

The reader will no doubt consider the structure of the above equation familiar.

Let’s consider some examples of how one might use the above result.

Example 2.5

A classic example of functional minimization is to minimize the length of a path between
two points in a plane. Let us find the path that minimizes the distance from the point
(x0, y0) to the point (x1, y1), where the path is specified by a function y(x) that indicates
how to get from the start point to the end point.

The functional we will calculate is

I ≡
∫ x1

x0

dx

√
1 +

(
dy

dx

)2

That this is the appropriate formula can be seen by considering a small element of the path
dx in going from x to x+dx. There will be a corresponding vertical travel dy. The two dis-
tances form a right triangle whose hypotenuse

√
dx2 + dy2 is the distance actually traveled

in going from (x, y(x)) to (x+ dx, y(x+ dx)). Playing fast and loose with differentials, we
see the contribution to the length is just as indicated above. It is of course more rigorously
justified by Taylor expanding (x + dx, y(x + dx)) in terms of (x, y). In any case, we have

F (y, dydx , x) =

√
1 +

(
dy
dx

)2
, so Euler’s equation is

0− d

dx

[1 +
(
dy

dx

)2
]− 1

2 dy

dx

 = 0

=⇒ dy

dx
= m

y = mx+ b

where m and b are constants. So, clearly, the shortest path is a straight line. The constants
are specified by requiring that the path start and end on the desired endpoints, giving

dy

dx
=

y1 − y0

x1 − x0

y =
y1 − y0

x1 − x0
x+

(
y0 −

y1 − y0

x1 − x0
x0

)
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Example 2.6

The brachistochrone problem, the problem that led to the foundation of the variational
calculus. Find the curve joining two points (x0, y0) and (x1, y1) that describes the path
that a particle beginning from rest follows when it falls under the influence of gravity
between the two points in the least time.

The quantity we want to minimize is the time taken. The time is the path length divided
by the velocity. One might think that the natural independent variable is time. But, we
don’t know the end time; that is in fact the quantity we are trying to determine! So clearly
t can’t be the independent variable. The other obvious choice is x. Clearly, the quantity
we want to minimize is

T =
∫ x1

x0

dt =
∫ x1

x0

ds

v
=
∫ x1

x0

dx

√
1 +

(
dy
dx

)2

v

The problem now is: what to do with v? It involves derivatives with respect to time, not
x. Here, we make use of the initial condition: at t = 0, v = 0. Let us also set x0, y0 = 0
without loss of generality in order to simplify the algebra. Therefore, conservation of energy
implies

1
2
mv2 = mg y(x)

So we may rewrite

T =
∫ x1

x0

dx

√
1 +

(
dy
dx

)2

√
−2 g y(x)

The integrand is clearly now a function that can be treated by the variational technique we
have developed; the function F is

F

(
y,
dy

dx
, x

)
=

√√√√1 +
(
dy
dx

)2

−2 g y(x)

Euler’s equation is

− F

2 y
− d

dx

 F

1 +
(
dy
dx

)2

dy

dx

 = 0

− F

2 y
− dF

dx

1

1 +
(
dy
dx

)2

dy

dx
+

F[
1 +

(
dy
dx

)2
]2 2

(
dy

dx

)2 d2y

dx2
− F

1 +
(
dy
dx

)2

d2y

dx2
= 0

− F

2 y
− dF

dx

1

1 +
(
dy
dx

)2

dy

dx
− F

1−
(
dy
dx

)2

[
1 +

(
dy
dx

)2
]2

d2y

dx2
= 0
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Now,

dF

dx
=

∂F

∂y

dy

dx
+
∂F

∂ dydx

d2y

dx2

= − F

2 y
dy

dx
+

F

1 +
(
dy
dx

)2

dy

dx

d2y

dx2

So we then have for our Euler equation

− F

2 y

1− 1

1 +
(
dy
dx

)2

(
dy

dx

)2

− F[
1 +

(
dy
dx

)2
]2

[(
dy

dx

)2

+

(
1−

(
dy

dx

)2
)]

d2y

dx2
= 0

− F

2 y
1

1 +
(
dy
dx

)2 −
F[

1 +
(
dy
dx

)2
]2

d2y

dx2
= 0

F never vanishes, so it can be eliminated. If we multiply across by some factors, we find

1 +
(
dy

dx

)2

+ 2 y
d2y

dx2
= 0

This differential equation can be solved by making some substitutions. First, define u =√
y dy
dx . Then we may rewrite the above equation as

1 + 2
√
y
du

dx
= 0

2
du

dx
= − 1

√
y

= −1
u

dy

dx

− d

dx
u2 = −2u

du

dx
=

dy

dx

which is now a perfect differential. Integrating, we find (where we choose the form of the
constant of integration for later convenience)

−u2 = y + 2 a

y

(
dy

dx

)2

= −(y + 2 a)

dy

dx
= ±

√
−(y + 2 a)

y

y dy√
−y (y + 2 a)

= dx

This kind of differential is not that unusual and can be solved by trigonometric substitution.
Let y = −a (1− cos θ). Then we have dy = −a sin θ dθ and

a (1− cos θ) a sin θ dθ

[a2 (1− cos θ) (1 + cos θ)]1/2
= ±dx

a (1− cos θ) a sin θ dθ

[a2 (1− cos2 θ)]1/2
= ±dx

a (1− cos θ) dθ = ±dx
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which is easily integrated. Our solution is therefore

x = ±a (θ − sin θ)
y = −a (1− cos θ)

which is the final parametric solution for the curve that minimizes the travel time. The
± sign is chosen based on whether x1 > 0 or x1 < 0. The results describe a cycloid, the
curve that is traced out by a single point on the edge of a rolling disk. The constant a is
determined by the position of the endpoint. The relation between θ and time can be found
implicitly by using the relation between velocity and potential energy that we began with.

Cycloid solution to brachistochrone problem, for x1 > 0 and a = 1.

Multiple Dependent Variables

What if we have multiple dependent variables yk on which our function F depends? The
obvious example is a function F that depends on the three-dimensional spatial position of
a particle. What does requiring δI = 0 yield?

If we return to the derivation of the variation δI, we easily see that y could have been
generalized to be an array of dependent variables yk. We would have ended up with the
relation

δI =
∫ x1

x0

dx
∑
k

[
∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)]
δyk

Now, if the yk are all independent (i.e., there are no constraint equations connecting them),
then the variations δyk are independent, in which case the quantity in square brackets must
vanish separately for each k. That is, we have an Euler equation for each k,

∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)
= 0 (2.24)

2.2.2 The Principle of Least Action and the Euler-Lagrange Equation

To make use of the above mathematics, we need an integral quantity that will give rise to
the Euler-Lagrange equations that we derived in the Section 2.1 via d’Alembert’s principle.
The form of the Euler equation suggests that if we take F = L, we will recover the Euler-
Lagrange equations. Thus, we define the action,

S =
∫ t1

t0

dtL (q(t), q̇(t), t) (2.25)
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and we require that the physical path satisfy the Principle of Least Action, that

δS = 0 (2.26)

for the physical path. This is also known as Hamilton’s Principle because he was the
first one to suggest it as a general physical principle. Plugging in for F = L in the Euler
equation gives us the Euler-Lagrange equation,

∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0

Thus, we see that we are able the derive equations of motion from the Principle of Least
Action. Nowhere have we made use of Newton’s second law; we have only used the Principle
of Least Action and the variational calculus. Thus, the Principle of Least Action can be
taken to be an alternate basis for mechanics. We have so far considered only the case
of physical situations where a Lagrangian can be defined (i.e., we require the forces to be
conservative) and wherein there are no constraints among the degrees of freedom (i.e., there
are no constraints at all, or the constraints are holonomic and have already been used to
competely eliminate uninteresting degrees of freedom).

Since the Euler-Lagrange equations were already derived in the previous section, the ex-
amples we presented then still hold. For physical situations obeying the above conditions
– that all non-constraint forces are conservative and that any constrained degrees of free-
dom have been eliminated – we get the same Euler-Lagrange equations that we would have
found by applying the constraint discussion of the previous section. So, no new examples
are necessary.

2.2.3 Imposing Constraints in Variational Dynamics

As mentioned above, the derivation of the Euler-Lagrange equations from the Principle of Least Ac-
tion assumed that there were no constraints among the different degrees of freedom. In this section,
we show how to use Lagrange multipliers to incorporate constraints and how the multipliers are
related to the constraint forces in the system.

Lagrange Multipliers for Standard Calculus Minimization Problems

NOTE: READ THIS SECTION! This material is not in any of the standard texts. It’s
not important for understanding how to use Lagrange multipliers, but it provides a more
satisfactory derivation than I have been able to find.

Let {yk} denote the full set of degrees of freedom of a system; we write it as ~y to indicate a
generic M -dimensional vector where M is the number of degrees of freedom of the system
before constraints are applied. Let {dyk}, or d~y, be a set of displacements of the various
degrees of freedom. Let there be j constraint equations of the form Gp(~y) − Cp = 0,
p = 1, . . . , j. Each constraint equation specifies a (M -1)-dimensional surface in ~y space.
Alternately, we may write

0 = dGp =
∑
k

∂Gp
∂yk

dyk = ~∇Gp · d~y

The above relation says that any differential displacement d~y that satisfies the constraints
must be perpendicular to the gradient of Gp. The gradient of Gp thus defines the normal
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vector to the constraint surface. The subspace containing the allowed displacements is
called a tangent subspace; for M = 3, the reason of the naming is clear: the condition
~∇Gp · d~y = 0 specifies a plane tangent to the constraint surface at the point ~y. With j
constraints, we have j constraint surfaces; a solution ~yc that satisfies the constraints must
lie on the intersection of all these surface. Allowed displacements d~y from the point ~yc must
be perpendicular to all the {~∇Gp} at the point ~yc.

Now, let’s consider the minimization criterion on a function H(~y), dH = 0. In the vector
notation, a point ~ym provides an extremum value of H subject to the constraints if

0 = dH =
∑
k

∂H

∂yk
({ymk }) dyk = ~∇H(~ym) · d~y

for all d~y that satisfy

0 = ~∇Gp(~ym) · d~y

for all p. Note the requirement on the d~y: we only need to consider d~y that satisfy all the
constraints. The condition is satisfied if

~∇H(~ym) =
∑
p

λp(~ym)~∇Gp(~ym) (2.27)

We can see that this expression is sufficient to minimize H while respecting the constraint
condition by simply calculating ~∇H(~ym) · d~y:

~∇H(~ym) · d~y =

[∑
p

λp(~ym)~∇Gp(~ym)

]
· d~y =

∑
p

λp(~ym)
[
~∇Gp(~ym) · d~y

]
= 0

where the last equality holds because we are only consideringq d~y that satisfy the con-
straints, which mathematically is the statement ~∇Gp(~ym) · d~y = 0 for all p as explained
earlier.

How do we see that the expression is necessary, that it is the minimal possible expression
for ~∇H(~ym)? That is straightforward to see geometrically. Geometrically, the constraints
require that the allowed d~y lie in the intersection of the j tangent subspaces created by
the constraints. In order to have dH = 0 subject to the constraints, the gradient of H
must point “out of” this intersection of subspaces – it can have no component “along” the
intersection of tangent subspaces. To stay out of this intersection, ~∇H(~ym) must have a
nonzero projection along at least one ~∇Gp(~ym). We can use proof by contradiction to see
this. Suppose ~∇H(~ym) has zero projection along every ~∇Gp(~ym). Then ~∇H(~ym) would
be perpendicular to all ~∇Gp(~ym), which would imply that ~∇H(~ym) lies in all the tangent
subspaces, which implies that it lies in the intersection of the tangent subspaces. That
is exactly what we do not want. So it must be false to assume that ~∇H(~ym) has zero
projection along every ~∇Gp(~ym). If that is false, then the expression we have written
down is the minimal one that allows ~∇H(~ym) to have nonzero projection along at least one
~∇Gp(~ym). Not all the λp need be nonzero, only one has to be nonzero.10

10We shall see later that a given λp vanishes when the corresponding constraint force vanishes. That happens if no
force is needed to enforce the constraint. For example, if a particle is restricted to live on the plane x = 0, is subject
to gravity in the z direction, and is given initial condition x = 0, then it will continue to satisfy x = 0 for all time
with no constraint force applied.
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The undetermined {λp} can be found because we now have M minimization equations (the
M components of Equation 2.27) and j constraint equations (the j equations {Gp(~y)−Cp =
0}), enough information to find the M components of ~ym and the j parameters {λp}.

Let us summarize. In the absence of constraints, a location {ymk } that is a local extremum
of a function H({yk}) of a set of M variables {yk} is the location such that each partial
derivative at that location vanishes; i.e., ∂H

∂yk
({ymk }) = 0 for all k. With constraints, a loca-

tion that is a local extremum of H is instead a point where ∂H
∂yk

({ymk }) =
∑

p λp
∂Gp

∂yk
({ymk })

and {Gp({ymk })− Cp = 0}. We have enough equations to find {ymk } and {λp}.

It is not yet clear why the {λp} are called Lagrange multipliers. Here we explain why. Let
us define a new function

H ′({yk}) = H({yk})−
∑
p

λp [Gp({yk})− Cp]

Because of the constraints, H ′ = H. But let us seek to minimize H ′ without applying any
constraints. The reader may wonder why we want to do this; but, certainly, we are free
to define any function we like and minimize it with or without constraints as we like. The
question is whether such a procedure is relevant to our initial problem. An extremum of
H ′ is found when dH ′ = 0:

0 = dH ′ =
∑
k

∂H

∂yk
dyk −

∑
p

λp
∂Gp
∂yk

dyk −
∑
p

[Gp({yk})− Cp] dλp

We have so far not applied the constraints. Let us continue to ignore the constraints and
simply assume that all the {dyk} and the {dλp} are independent. Then we end up with
M + j equations:

∂H

∂yk
−
∑
p

λp
∂Gp
∂yk

= 0

Gp({yk})− Cp = 0

That is, we recover the minimization condition we found above by direct means, and we
recover the constraint equations that we did not apply. To summarize: When we desire
to minimize the function H({yk}) in the presence of constraints {Gp({yk}) − Cp = 0}, we
can obtain the solution by instead minimizing H ′ = H−

∑
p λp [Gp({yk})− Cp] without any

constraints among the {yk} and treating the {λp} as additional independent variables. The
whole process is sort of magical, but it is entirely rigorous because we have proved that
minimization of H ′ with respect to the {yk} and {λp} without constraints yields the same
equations as minimizing H with respect to the {yk} with the constraints applied. If the
same equations hold, then the solution must also be the same.

Example 2.7

Let H(x, y) = x2 +y2. Find the minimum of H subject to the constraint G(x, y) = y−2x =
1.

With such a simple problem, the way you are used to doing it is to solve G(x, y) for y as a
function of x, substitute into H(x, y) to make it a function of x only, minimize with respect
to x, and finally use the constraint equation to find y at the minimum in x.
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To do the problem with Lagrange multipliers, we define

H ′(x, y) = H(x, y) + λ [G(x, y)− C]
= x2 + y2 + λ [y − 2x− 1]

Our three equations (2 degrees of freedom plus 1 constraint) are

0 =
∂H ′

∂x
= 2x− 2λ

0 =
∂H ′

∂y
= 2 y + λ

0 =
∂H ′

∂λ
= y − 2x− 1

The solution is x = −2
5 , y = 1

5 , λ = −2
5 .

Lagrange Multipliers in Variational Problems

With the basics of Lagrange multipliers in hand, let’s consider the purely mathematical
problem of deriving Euler’s equation in the presence of constraints between the degrees of
freedom. We consider only holonomic constraints at this point.

Our constraint equations are, as before, of the form

Gp({yk}, x)− Cp(x) = 0

(Holonomic constraints in mechanics are allowed to be time-dependent, which is why the
{Cp} are allowed to have x arguments here.) Now, suppose we consider a variation in {yk},
{δyk}. The {δyk} are functions of the independent variable x; the quantities {δyk(x)} for
fixed x are just like the differentials {dyk} we discussed earlier for the calculus minimization
problem. Applying the variation {δyk(x)} to the constraint yields the j equations∑

k

∂Gp(x)
∂yk

δyk(x) = 0 at each x independently

So, just as before, the constraints restrict the variations to follow the tangent subspaces
of surfaces in {yk} space. The complication here is that, if there is x-dependence in the
constraints, these surfaces change with x. But that is only a technical complication; at each
value of x, the picture we have from before of constraint surfaces continues to hold.

Now consider the variational extremization problem. We want to find the solution {ymk } such
that for small variations {δyk} away from this solution, the variation δI in the functional

I[{yk}] =
∫ x1

x0

dxF

(
{yk},

{
dyk
dx

}
, x

)
vanishes. As we saw before, the requirement and the variation are

0 = δI =
∫ x1

x0

dx

M∑
k=1

[
∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)]
δyk

where the sum is over all the degrees of freedom. In the absence of constraints, we used
the fact that the {δyk} were all independent of each other and arbitrary to infer that the
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bracketed quantity for each term in the sum must vanish separately at any value of the
independent variable x; this gave independent Euler equations for each yk that held at
all values of x. With constraints, the {δyk} no longer are independent and so we cannot
infer that each term in the sum vanishes. But, because the constraints are still holonomic,
we can infer that the {δyk} at different values of x are independent (modulo smoothness
limitations). Another way to look at this is that, because the constraints are holonomic, the
derivatives {dyk

dx } do not enter the constraints, and so the constraints enforce no relationship
between the {yk} at different values of x. The constraints are “instantaneous” relations,
not differential equations. Thus, it holds that the entire sum must vanish at any given value
of x:

0 =
M∑
k=1

[
∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)]
δyk (2.28)

Note that the {δyk} are retained because the constraints imply the {δyk} are not all in-
dependent. Now that we have an “instantaneous” condition, we can apply the same logic
as for the calculus problem. For any given x and {yk}, the differential versions of the con-
straints restrict the {δyk} to a subspace at {yk} that satisfies

∑
k
∂ Gp

∂yk
δyk = 0 for all p. The

above condition Equation 2.28 says that the “vector”

δF

δyk
≡ ∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)
must be “perpendicular” to this subspace. (The quantity δF

δyk
is called the variational

derivative.) Thus, just as before, the variational derivative must be a linear combination
of the gradients of the constraints:

∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)
=
δF

δyk
=
∑
p

λp(x)
∂Gp
∂yk

The {λp(x)} are of course the Lagrange multipliers for this problem. They are functions
of x because, while the above relation has been derived to hold at each x separately, it is
possible for the {Gp} to vary with x and thus for the {λp} to vary. Think of it as a set
of M equations, similar to Equation 2.27, for each value of x. Thus, the equations that
determine the system are

∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)
−
∑
p

λp(x)
∂Gp
∂yk

= 0 (2.29)

Gp({yk}, x)− Cp(x) = 0

Now, just as before we realized we could derive the analogous set of relations for the calculus
minimization problem by redefining the function to be minimized by adding the constraints
with Lagrange multipliers as coefficients and treating the {yk} and {λp} as a larger set of
unconstrained, independent variables, we can do a similar thing here. Define

I ′[{yk}] = I[{yk}]−
∫ x1

x0

dx
∑
p

λp(x) [Gp({yk}, x)− Cp(x)]

=
∫ x1

x0

dx

{
F

(
{yk},

{
dyk
dx

}
, x

)
−
∑
p

λp(x) [Gp({yk}, x)− Cp(x)]

}

113



CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

As before, I ′[{yk}] = I[{yk}] by construction. Now, let us allow independent variations
{δyk} and {δλp} and require the resulting variation δI ′ to vanish without application of
any constraints (which we are free to do, though as before the relevance is not yet clear).
Doing so only requires us to apply the Euler equations, which yields

∂F

∂yk
− d

dx

(
∂F

∂ dyk
dx

)
−
∑
p

λp(x)
∂Gp
∂yk

= 0

Gp({yk}, x)− Cp = 0

The first set of equations comes from the {δyk} terms, the second from the {δλp} terms. We
thus recover the equations we obtained directly. Together, theM+j equations are enough to
determine the j multipliers {λp(x)} and the motion {yk(x)} in the original M coordinates.
To state it in a manner similar to how we did in the simple calculus case, When we desire
to minimize the functional I[{yk}] in the presence of constraints {Gp({yk}, x)−Cp(x) = 0},
we can obtain the solution by instead minimizing I ′ = I −

∫ x1

x0
dx
∑

p λp [Gp({yk})− Cp(x)]
without any constraints among the {yk} and treating the {λp(x)} as additional independent
degrees of freedom.

Lagrange Multipliers in Physical Situations

The application of the preceding material to variational dynamics is straightforward; about
all we need to do is replace F by L and x by t. We rewrite the Euler-Lagrange equations with
Lagrange multipliers simply for completeness. We have the M Euler-Lagrange equations

∂L

∂qk
− d

dt

(
∂L

∂ dqkdt

)
+
∑
l

λl
∂Gl
∂qk

= 0 (2.30)

and j holonomic constraint equations

Gl({qk}, t) = Cl

(The sign on the {λl} is arbitrary, we have changed it so that the {λl} will have the right
sign to correspond to constraint forces, as we will later see.)

Example 2.7

Treat the simple pendulum using Lagrange multipliers. That is, rather than selecting the
single degree of freedom θ, retain the two nonindependent Cartesian coordinates x and y
and apply a constraint between them using Lagrange multipliers.

In terms of the x and y coordinates of the pendulum bob, the Lagrangian is

L =
1
2
m
(
ẋ2 + ẏ2

)
−mg y

The x and y origin is the pendulum pivot point, x points to the right and y points upward.
The constraint equation is

G(x, y) =
√
x2 + y2 = l

where l is the length of the pendulum. The resulting Euler-Lagrange equations are

−mẍ+ λ
x

l
= 0

−mg −mÿ + λ
y

l
= 0
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where we have not only used the constraint to calculate ∂G
∂x and ∂G

∂y but we have also

subsituted l =
√
x2 + y2 where possible. We have three equations for the three unknown

functions x(t), y(t), and λ(t). To understand the meaning of λ, let’s solve the problem using
vector mechanics and Newton’s second law in cartesian coordinates. The forces acting on
the mass are gravity and the tension in the rope, T . Newton’s second law indicates

mẍ = −T sin θ = −T x

l

m ÿ = T cos θ −mg = −T y

l
−mg

(Note that y < 0, and I think Hand and Finch have a sign error on the cos term in
Equation 2.38). Clearly, the multiplier takes on the role of the tension, λ = −T , which acts
as a constraint force in this problem. The sign difference between the two occurs because
~T points in the opposite direction as the position coordinate.

Lagrange Multipliers and Constraint Forces

The above example points to a more general principle that Lagrange multipliers and con-
straint forces are intimately related.

Let us return to the concept of virtual work and d’Alembert’s principle, Equation 2.6:

∑
i

∑
j

~F
(nc)
ij − ~̇pi

 · δ~ri = 0

On the left side, we earlier had the sum running over all the forces, but we eliminated
constraint forces from the sum by assuming that any given constraint force results in zero
virtual work from a virtual displacement. We can of course add any subset back in, as long
as it is a subset of terms that yield zero virtual work. Let us do so, and also move the ~̇pi
term to the other side:

∑
i

~̇pi · δ~ri =
∑
i

∑
j

~F
(nc)
ij

 · δ~ri +∑
m

[∑
n

~F (c)
mn

]
· δ~rm

The use of m and n indices for the constraint force term is only intended to highlight the
fact that we may only look at constraint forces on some subset of particles (the m index)
and we may only look at a subset of the constraint forces acting on a given particle (the n
index). Though, one must be careful to always include all necessary terms pertaining to a
given constraint (e.g., in the Atwood’s machine problem, there are terms for both masses
expressing the rope length constraint). Now, let’s rewrite the δ~ri using the chain rule in
terms of displacements in generalized coordinates {δqk}, and also apply the relation between
~̇pi and derivatives of the kinetic energy, Equation 2.9:

∑
k

[
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

]
δqk =

∑
k

[∑
i

~̇pi ·
∂~ri
∂qk

]
δqk =

∑
k

Fkδqk +
∑
k

Nkδqk

where we have defined

Fk ≡
∑
ij

~F
(nc)
ij · ∂~ri

∂qk
Nk ≡

∑
ij

~F
(c)
ij ·

∂~ri
∂qk
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The definition of Fk is the same as our original definition of generalized force, Equation 2.5.
The definition of Nk is simply the analogous definition for constraint forces. In order to
use a Lagrangian, Fk must be derivable from a potential, Fk = − ∂U

∂qk
. Using this fact, and

moving the Fk terms to the left side, lets us rewrite in terms of the Lagrangian:∑
k

[
d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

]
δqk =

∑
k

Nkδqk

In the case that the generalized coordinates have been defined so that all constraints have
been taken into account, the right side vanishes under our standard assumption that con-
straint forces do no net work for virtual displacements (i.e., displacements that respect the
constraints). Also, when the generalized coordinates account for all the constraints, the δqk
are all independent, so the vanishing of the right side implies that the term for each k on
the left side vanishes, which gives us the usual Euler-Lagrange equations.

However, if the generalized coordinates have been defined in a way that they do not incorpo-
rate all constraints, then two steps in the above derivation fail: we are not assured the right
side vanishes, and we are not assured that the δqk are all independent. The right side need
not vanish because some displacements in this “too large” set of generalized coordinates
will violate the constraints and thus allow the constraint forces to do work. The δqk are
not assured to be independent because there are leftover constraints between generalized
coordinates.

Fortunately, the Lagrange multiplier procedure allows us to proceed. We know that the
terms on the left side are related to the Lagrange multipliers by the Euler-Lagrange equa-
tions in the presence of multipliers:

d

dt

(
∂L

∂q̇l

)
− ∂L

∂qk
=
∑
p

λp
∂Gp
∂qk

Substituting this into the left side, we obtain∑
k,p

λp
∂Gp
∂qk

δqk =
∑
k

Nk δqk

When Lagrange multipliers are used, the δqk are taken to be independent because the
constraints are not enforced at the start but instead fall out of the Euler-Lagrange equations
for the {λp} (which do not appear here). So, the two sides must be equal term-by-term,
giving

Nk =
∑
p

λp
∂Gp
∂qk

(2.31)

So we see that it is in general true that the Lagrange multipliers give the constraint forces.
Using this fact, we can rewrite the Euler-Lagrange equations with the Lagrange multipliers
in a more physical form:

d

dt

(
∂L

∂q̇l

)
− ∂L

∂qk
= Nk (2.32)

That is, when some constraints are not applied at the start and the resulting constraint
forces left in the problem, they appear on the right side of the Euler-Lagrange equation
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(which normally vanishes). This is very reminiscent of Equation 2.15, where we wrote down
how to include non-conservative forces in the Euler-Lagrange equation based on going back
to the generalized equation of motion, Equation 2.10, as we have done here.

We make a final note that the equation for Nk implicitly implies that it does not matter
how the constraints are written down. For example, with the pendulum we had:

G(x, y)− C =
√
x2 − y2 − l = 0

λ = −T

Nx = λ
∂G

∂x
= −T x

l

Ny = λ
∂G

∂y
= −T y

l

But we could have written the constraint differently, resulting in

G(x, y)− C = x2 − y2 − l2 = 0

λ = −1
2
T
l

Nx = λ
∂G

∂x
=
(
−1

2
T
l

)
(2x) = −T x

l

Ny = λ
∂G

∂y
=
(
−1

2
T
l

)
(2 y) = −T y

l

We find that λ depends on how the constraint is written, but the constraint force in the
generalized coordinate does not (as one would expect!).

Example 2.8

Let’s return to the simple pendulum example and calculate the constraint forces.

Sticking with the original x and y coordinates, with the constraint G(x, y)−C =
√
x2 + y2−

l = 0, we found that the Lagrange multiplier was λ = −T . The generalized constraint forces
are therefore

Nx = −T x
l

= −T sin θ

Ny = −T y
l

= T cos θ

as one would expect.

Example 2.9

Consider a hoop of mass M and radius R rolling down an inclined plane (inclination angle
α), with the requirement that the axis of rotation always be perpendicular to the slope of
the plane – i.e., the hoop is not free to pivot about its point of contact with the plane. Find
the equations of motion, the constraint forces, and the angular acceleration.

Define the coordinate system such that x points down the inclined plane and θ describes
the rotation of the hoop. The kinetic energy consists of two pieces, one translational and
one rotational:

T =
1
2
Mẋ2 +

1
2
MR2 θ̇2
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The potential energy is

U = −M g x sinα

The constraint equation is

x−Rθ = 0

Let’s first solve the problem by eliminating the unnecessary degrees of freedom using the
constraint. Let’s eliminate θ, so then

L = M ẋ2 +M g x sinα

The Euler-Lagrange equation is

M g sinα− d

dt
(2M ẋ) = 0

ẍ =
1
2
g sinα

The angular acceleration is found by using the constraint equation

θ̈ =
ẍ

R
=

1
2
g sinα
R

Now, let’s repeat using Lagrange multipliers. The only reason we do this is so we can find
the constraint forces. Our three equations are

∂L

∂x
− d

dt

∂L

∂ẋ
+ λ

∂G

∂x
= 0

∂L

∂θ
− d

dt

∂L

∂θ̇
+ λ

∂G

∂θ
= 0

G(x, θ) = 0

Written out explicitly, they are

M g sinα− d

dt
M ẋ+ λ = 0

− d

dt
M R2 θ̇ −Rλ = 0

x−Rθ = 0

Rearranging gives

ẍ =
λ

M
+ g sinα θ̈ = − λ

M R
θ =

x

R

Solving, we find

ẍ =
1
2
g sinα θ̈ =

1
2
g sinα
R

λ = −1
2
M g sinα

The constraint forces are

Nx = λ
∂G

∂x
= −1

2
M g sinα

Nθ = λ
∂G

∂θ
=

1
2
M Rg sinα

The x constraint force acts to counter the gravitational acceleration along x, while the θ
constraint force exerts the torque needed to make the hoop roll rather than slide.
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2.2.4 Incorporating Nonholonomic Constraints in Variational Dynamics

So far we have required constraints be holonomic to make use of them either via substitution and
removal of variables or to apply the Lagrange multiplier formalism. In this section, we show how
some nonholonomic constraints can be incorporated.

Inequality Constraints

We give an example of how to deal with one type of inequality constraint. We make no
claim this is a generic method, but it is instructive.

Consider a pointlike particle sitting on top of a hemisphere of radius R. Let the coordinate
system origin be at the center of the hemisphere. The particle thus satisfies r ≥ R. Suppose
the particle is placed at rest at the top of the hemisphere and given an infinitesimal nudge
to get it sliding down the hemisphere. We want to determine the dynamics of the particle,
specifically the polar angle at which it leaves the hemisphere. The polar angle is taken to
be zero at the top of the hemisphere.

We will solve the problem by treating the constraint as an exact equality constraint, r = R,
and then finding at what angle the constraint force enforcing the constraint – as given by
the corresponding Lagrange multiplier – goes to zero. It will become clear that this is the
point at which the particle leaves the hemisphere.

The Lagrangian and constraint equation are

L =
1
2
m ṙ2 +

1
2
mr2 θ̇2 −mg r cos θ r −R = 0

The resulting Euler-Lagrange equations with Lagrange multipliers are:

r : mr θ̇2 −mg cos θ −m r̈ + λ = 0

θ : mg r sin θ − d

dt

(
mr2 θ̇

)
= 0

λ : r −R = 0

We use the λ equation to substitute for r (also using ṙ = 0) to obtain

r : λ = mg cos θ −mR θ̇2

θ : mR2θ̈ = mg r sin θ

We cannot solve the system analytically. But it is clear that λ tells us the force that the
hemisphere must exert to counter gravity acting on the particle, after subtracting off the
apparent centrifugal force due to the particle’s circular motion. λ is positive when the
particle is on the hemisphere, but it will go to zero and become negative when the particle
leaves the hemisphere. (The equations obviously become invalid as soon as λ goes negative
because the constraint is no longer valid.) So we simply need to find the θ at which λ = 0.
So we want θ̇ as a function of θ. We can obtain that by conservation of energy:

mgR = mgR cos θ +
1
2
mR2θ̇2

θ̇2 = 2
g

R
(1− cos θ)
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We could also obtain the same result by a clever integration of the θ equation of motion:

θ̈ =
dθ̇

dt
=
dθ̇

dθ

dθ

dt
= θ̇

dθ̇

dθ

θ̈ dθ = θ̇ dθ̇

We can replace θ̈ on the LHS using the θ equation of motion and then integrate both sides:

g

R

∫ θ

0
sin θ′dθ′ =

1
2

(
θ̇′
)2
∣∣∣∣θ̇
0

g

R
(1− cos θ) =

1
2
θ̇2

With θ̇ written in terms of θ, we can reduce the r equation and obtain λ as a function of θ:

λ = mg cos θ −mR
[
2
g

R
(1− cos θ)

]
= mg (3 cos θ − 2)

So λ = 0 when cos θ = 2/3. One can obtain the complete dynamics by calculating θ̇ at
this angle and then using this position and velocity as the initial condition for continued
motion with no constraint and subject to gravity. That would, for example, let one figure
out exactly where the particle hits the ground.

Nonintegrable Constraints

Here we have to step back further into variational dynamics. If it is possible to write the
constraint as a differential relation between coordinates, then it is possible to incorporate
the constraint in the variation of the action because the variation of the action contains
factors δyk for the variation of the coordinates. The constraint(s) can be incorporated via
direct substitution or via Lagrange multipliers.

The problem we will consider is a disk rolling down an inclined plane without slipping, with
the disk’s motion allowed to have a component transverse to the slope. (If the disk may
only roll straight down the slope, the constraint is holonomic – we just did this case in the
previous example).

Let the x axis point transverse to the slope and the y axis down the slope. Let φ denote the
rotation angle of the disk of radius R about its rotation axis, θ denote the angle between
the disk’s rotation axis and the y axis. Let α be the slope of the plane.

The Lagrangian for the problem is

L =
1
2
MR2

[
3
2
φ̇2 +

1
4
θ̇2

]
−mg y sinα

This is the Lagrangian one obtains immediately if one calculates the rotational kinetic
energy using the point of contact with the slope as the instantaneous axis of rotation.11

11One could have also calculated in terms of translation of and rotation about the center of mass and then used
the velocity constraints below to rewrite the center-of-mass translation in terms of rotation, which would yield the
same L. One might wonder why one should eliminate ẋ and ẏ immediately using the velocity constraint rather than
allowing the Lagrange multiplier procedure to deal with them. One could leave them untouched, it will just result in
more equations to deal with later that will reduce to the ones we will eventually find. Feel free to check it yourself.
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The constraint equation is based on the non-slip condition:

ẋ = R φ̇ sin θ
ẏ = R φ̇ cos θ

Rφ̇ gives the speed of the edge of the disk, and the sin and cos break this motion down
into components along the x and y axes. Let’s first examine why the constraints are
nonholonomic and nonintegrable. The differential versions of the constraints are

dx = Rdφ sin θ
dy = Rdφ cos θ

Suppose there were a constraint of the form f(x, y, φ, θ, t) = 0. The differential would satisfy
df = 0, i.e.,

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂φ
dφ+

∂f

∂θ
dθ +

∂f

∂t
dt = 0

The differential versions of the constraints imply

∂f

∂x
= 1

∂f

∂φ
= R sin θ

∂f

∂y
= 0

∂f

∂θ
= 0

But then we have

∂2f

∂θ ∂φ
= R cos θ

∂2f

∂φ ∂θ
= 0

That is, the partial derivatives of f do not commute. This is not possible for a smooth
function, so we must conclude that f does not exist.

Though the constraints are nonintegrable, we may still make use of the differential versions
given above by incorporating them when calculating the variation of the action. When we in-
corporated a constraint G(x, y)−C = 0 by adding to the Lagrangian a term λ [G(x, y)− C],
it resulted in the addition of a term to the variation of the action involving λ

∑
k
∂G
∂yk

δyk.
So let’s just directly incorporate a similar term directly in the variation of the action:

δS =
∫ t1

t0

dt

{[(
∂L

∂y

)
δy +

(
− d

dt

∂L

∂φ̇

)
δφ+

(
− d

dt

∂L

∂θ̇

)
δθ

]
+ λ (δy −Rδφ cos θ)

}
where we have dropped the terms that we know will vanish:

∂L

∂x
= 0

∂L

∂ẋ
= 0

∂L

∂ẏ
= 0

∂L

∂φ
= 0

∂L

∂θ
= 0

and we have therefore included only a Lagrange multiplier for the second constraint because
x and ẋ do not appear in the Lagrangian. Clearly, the equations of motion will be

∂L

∂y
+ λ = 0

− d

dt

∂L

∂φ̇
− λR cos θ = 0

− d

dt

∂L

∂θ̇
= 0

121



CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

Alternatively, we could have instead done a direct substitution of the differential constraint
to eliminate y from the variation of the action:

δS =
∫ t1

t0

dt

{(
∂L

∂y

)
Rδφ cos θ +

(
− d

dt

∂L

∂φ̇

)
δφ+

(
− d

dt

∂L

∂θ̇

)
δθ

}
which would have yielded the equations of motion

∂L

∂y
R cos θ − d

dt

∂L

∂φ̇
= 0

− d

dt

∂L

∂θ̇
= 0

Either set of equations appears to be somewhat problematic in that there are three co-
ordinates left – y, φ, and θ – and possibly the multiplier λ, and one too few equations.
However, the only dependence on y in L will be in the potential energy U = −mg y sinα,
so ∂L

∂y = mg sinα and thus y is in practice eliminated from the equations. Had it not
been possible to eliminate y from the equations of motion, we clearly would have had an
underdetermined system and another constraint would have been necessary.
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2.3 Hamiltonian Dynamics

Noether’s Theorem brought to the fore the importance of the canonical momentum (introduced in
Section 2.1). Treating coordinates and canonical momenta as variables of equal importance, rather
than giving preference to coordinates, leads us to Legendre transformations and the Hamiltonian
formulation of dynamics. This material is covered by Hand and Finch, Chapter 5.

I will generally follow a formal tack, presenting examples once the general theoretical result is
available. Hand and Finch tend to go with examples first, so some may find their approach more
intuitive.

2.3.1 Legendre Transformations and Hamilton’s Equations of Motion

We begin with a mathematical interlude on Legendre transformations, which will provide us with a
means to generate the Hamiltonian function from the Lagrangian. We derive Hamilton’s equations
of motion and discuss the importance of moving from the (q, q̇) phase space to the (q, p) phase
space. Note that the following assumes no constraints – if there existed constraints,
they must be removed via defining a new set of unconstrained generalized coordinates
using the constraint equations.

Legendre Transformations

The Legendre transformation is a generic technique for generating a new pair of indepen-
dent variables (x, z) from an initial pair (x, y). The transformation is completely invertible
– in fact, applying it twice returns the initial variable pair (x, y). It will become clear that
learning about the general Legendre transform is not necessary for deriving the Hamiltonian
function. However, it is also no doubt clear that transformations with special properties
are of physical importance. Legendre transformations will become of more general use in
the next section when we discuss advanced Hamiltonian mechanics.

Consider a function A(x, y) of two variables x and y. Define a new independent variable z
and the function B(x, y, z) by

B(x, y, z) ≡ y z −A(x, y) (2.33)

If we have small changes dx, dy, and dz in x, y, and z, then B changes by

dB = y dz + z dy − ∂A

∂x

∣∣∣∣
y

dx− ∂A

∂y

∣∣∣∣
x

dy

= − ∂A

∂x

∣∣∣∣
y

dx+
(
z − ∂A

∂y

∣∣∣∣
x

)
dy + y dz

where we explicitly state which variables are held fixed when each partial derivative is taken.
We can make B a function of x and z only (i.e., eliminate any explicit dependence on y)
by making the coeffiicient of dy vanish, which is accomplished by defining

z ≡ ∂A

∂y

∣∣∣∣
x

(2.34)

The other partial derivatives of B are

∂B

∂x

∣∣∣∣
z

= − ∂A

∂x

∣∣∣∣
y

∂B

∂z

∣∣∣∣
x

= y (2.35)
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B is computed explicitly by inverting Equation 2.34 to find y(x, z) and then plugging in
B(x, z) = B(x, y(x, z), z). This puts a condition on A that ∂A

∂y must be an invertible function
of y.

The variable x is called the passive variable and y the active variable because of their
different roles in the transform.

So, what’s so great about this particular method for finding a new variable z and a new
function B(x, z)?

• The process is completely invertible and is in fact its own inverse. If you repeat the
Legendre transform on B(x, z), the new variable you find is just y as indicated above
by the fact that y = ∂B

∂z

∣∣
x
. The invertibility ensures that no information is lost in the

transformation; the self-invertibility is just nice.

• There is a very nice geometric interpretation. Fix the x variable for a second. The
new variable z is the slope of the tangent to A(x, y) when considered as a function of
y only. Since the tangent line must have value A(x, y) at ordinate value y, the tangent
line equation is yz + b = A(x, y) where b is the intersection of the tangent line with
the vertical axis. But, by our Legendre transformation, b = −B(x, z). That is, the
Legendre transform is a mapping, for each x, from ordinate values y to tangent slope
values z, and from the function A(x, y) to the vertical-axis intercept of the line tangent
to A(x, y) in the y direction, which is B(x, z).

The Hamiltonian and Hamilton’s Equations of Motion

Now, let us apply the Legendre transformation to the Lagrangian L(q, q̇, t) with q̇ as the
active variable and q and t as passive variables. As a preliminary, let us state the conditions
for the following derivation:

• We must be able to write a Lagrangian; i.e., there must be a potential energy function.
To date we have considered only conservative (position-dependent) potentials, possibly
with explicit time dependence (i.e., conservative at any instant in time). Though it is
possible to write a Lagrangian with a velocity-dependent potential, such cases will not
be considered here. Systems with dissipation (friction) also cannot be described by a
Lagrangian.

• All coordinates must be unconstrained; the Legendre transformation does not carry
through if there are constrained coordinates. If constraints do exist, it is necessary to
use them to rewrite the Lagrangian in terms of unconstrained, independent generalized
coordinates.

Following our Legendre transformation formalism, the new active variable will be p = ∂L
∂q̇

and the new function will be

H(q, p, t) ≡ q̇ p− L(q, q̇, t)

The new function is called the Hamiltonian and is now a function of q and p (and t)
instead of q and q̇ (and t).

We may derive equations of motion for q and p in terms of the Hamiltonian rather than
for q in terms of the Lagrangian by making use of the Euler-Lagrange equations and the

124



2.3. HAMILTONIAN DYNAMICS

properties of the Legendre transformation. Our starting point is the four equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

p =
∂L

∂q̇

∂H

∂q
= −∂L

∂q
q̇ =

∂H

∂p

The first equation is just the Euler-Lagrange equation in q and q̇. The second equation is
the definition of the canonical momentum, which is also the definition of the z variable in
the Legendre transformation. The third equation is the relation between partial derivatives
of the initial function A(x, y) and the new function B(x, z) with respect to the passive x
variable in the Legendre transformation. The final equation arises from figuring out what
∂B
∂z is in the Legendre transformation or, equivalently, realizing that repeating the Legendre
transformation returns the original active variable y. Inserting the second equation in the
first and using the third equation, and simply copying the fourth equation, we obtain

ṗ = −∂H
∂q

q̇ = −∂H
∂p

which are Hamilton’s equations of motion.

We can also arrive at Hamilton’s equations via a variational principle. If we simply rewrite
the variation of the Lagrangian δL in terms of H, we find

δL = q̇ δp+ p δq̇ − δH

= q̇ δp− ṗ δq +
d

dt
(p δq)− ∂H

∂q

∣∣∣∣
p

δq − ∂H

∂p

∣∣∣∣
q

δp

=

(
q̇ − ∂H

∂p

∣∣∣∣
q

)
δp−

(
ṗ+

∂H

∂q

∣∣∣∣
p

)
δq +

d

dt
(p δq)

As usual, the last term contributes nothing because it is a total differential and δq(t0) =
δq(t1) = 0. We can invoke the Legendre transformation to explain why the first term
vanishes, and this gives us the q̇ Hamilton’s equation. That leaves us with the δq term;
since δq is arbitrary, its coefficient must vanish identically in order for the action to be
minimized, which gives us the ṗ Hamilton’s equation. In this version of the derivation, we
invoked the properties of the Legendre transformation (which is pure mathematics) but we
did not use the Euler-Lagrange equations. Basically, instead of keeping δL in terms of q and
q̇ and deriving the Euler-Lagrange equation, we wrote it in terms of q and p and obtained
Hamilton’s equations.

A final approach would be to postulate a new variational principle, which is that q and p
should be considered independent, with arbitrary independent variations δq and δp, subject
only to the requirement that δq vanish at the endpoints. To minimize the action, then, the
coefficients of δq and δp would have to vanish separately, yielding the ṗ and q̇ Hamilton’s
equations, respectively. It is self-consistent to forsake the information from the Legendre
transformation relation for q̇: if this information were kept, it would create a relation
between d

dt δq and δp, which would violate the assumption of independent variations of q
and p.
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Independence of q and p and the Hamiltonian Point of View

The last approach above is the true Hamiltonion point of view, in which p is on equal footing
to q and the two are treated as independent variables. Some further explanation of why it
is justified to assume they are indepedent is warranted, and we can use our discussion of
Lagrange multipliers as an analogy.

Recall how, with Lagrange multipliers, we found we could obtain the same equations of
motion in two ways:

• Assume the j constraints from the start, using them to define new unconstrained
generalized coordinates with M − j degrees of freedom.

• Forget the j constraints at the start, and instead write a new Lagrangian with addi-
tional constraint terms λj [Gj({qk}, t)− Cp] and treat the original M coordinates and
the j new {λp} coordinates as unconstrained. The equations of motion obtained are a
set of M Euler-Lagrange equations and j constraint equations that we proved (recall
the geometric argument about the gradient of the constraint functions) are mathe-
matically equivalent to the M − j Euler-Lagrange equations found by applying the
constraints at the start. The constraint equations, rather than being explicitly applied
from the start, “fall out” of the formalism via the assumption that the λp should be
treated as dynamical coordinates.

The second formulation was not a priori valid – it was valid because we proved that it
resulted in a mathematically equivalent set of equations.

Following that example, we make a similar argument for Lagrangian vs. Hamiltonian me-
chanics. The two mathematically equivalent points of view are

• Lagrangian: assume δq and δq̇ are related by a time derivative d
dtδq = δq̇ and de-

rive an equation of motion (the Euler-Lagrange equation). Since the equation is a
second-order differential equation, it requires two initial conditions (q(0) and q̇(0)).
The Euler-Lagrange equation can be rewritten via a Legendre transformation as the
two sets of first-order Hamiltonian equations. The extra equation q̇ = ∂H

∂p

∣∣∣
q

is not

dynamical, but is rather part of the Legendre transformation – it is analogous to the
constraint equations in the Lagrange multiplier formalism. The equation for ṗ is the
one containing the physics of the Euler-Lagrange equations. The two first-order equa-
tions require two initial conditions, so there has been no change of the amount of
information.

• Hamiltonian: define a new coordinate p = ∂L
∂q̇

∣∣∣
q

and forget the relation between δp

and δq at the start, just as we forgot the constraints between coordinates at the start
of the Lagrange multiplier formalism. We can then treat q and p as independent
variables. As noted above, this assumption would lead us to the same Hamilton’s
equations, which are identical to the ones we arrive at even if we do not assume this
independence. Not only do we arrive at Hamilton’s equations, but the first equation,
q̇ = ∂H

∂p

∣∣∣
q
, which was initially entirely mathematical based on the definition of p

via the Legendre transformation, “falls out” of the formalism by treating q and p as
independent variables; the first equation is now in some sense “dynamical” just as the
constraint equations became dynamical in the Lagrange multiplier formalism.
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The change in point of view may seem strange, but, just as with Lagrange multipliers, we
will see later that the new point of view has advantages.

Hamilton’s Equations for Multiple Dimensions

It is straightforward to generalize the Legendre transformation to multiple new variables,
which yields the Hamiltonian

H =
∑
k

pk q̇k − L (2.36)

H = H({qk}, {pk}, t) (2.37)

The formalism of the previous section follows through for each k separately (recall, we
assumed the {qk} were unconstrained generalized coordinates). Let us also calculate the
relation between the time derivatives. Just as with the {qk}, time is a passive variable in
the Legendre transformation, so we are guaranteed

∂H

∂t

∣∣∣∣
{qk},{pk}

= − ∂L

∂t

∣∣∣∣
{qk},{q̇k}

The total time derivative of H is

dH

dt
=

∑
k

∂H

∂qk
q̇k +

∑
k

∂H

∂pk
ṗk +

∂H

∂t

=
∑
k

∂H

∂qk

∂H

∂pk
−
∑
k

∂H

∂pk

∂H

∂qk
− ∂L

∂t
= −∂L

∂t

where the second line arises via application of Hamilton’s equations. Thus, our generic
Hamilton’s equations become

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk

dH

dt
=
∂H

∂t
= −∂L

∂t
(2.38)

Recall that we had proven the last equation in Section 2.1 using the Euler-Lagrange equa-
tions. A couple of useful facts, which we also saw before in Section 2.1:

• If there is no explicit time dependence in the Lagrangian (and therefore in the Hamil-
tonian), then H is conserved (as indicated by the above).

• If the kinetic energy is quadratic in the generalized velocity and there is a conservative
potential energy U , then the Hamiltonian is the total energy, H = T +U , because the∑

k pk q̇k = 2T . (See Problem 1.9 in Hand and Finch.)

Examples

Hamilton’s equations in practice offer little or no advantage over the Euler-Lagrange equa-
tions – instead of M second-order equations with 2M initial conditions, we have 2M coupled
first-order equations with 2M initial conditions. The power of the Hamiltonian formulation
will become apparent when we use it to prove important theorems of classical mechanics.
But, regardless, let us do some examples to elucidate the usage of Hamilton’s equations.
The critical point to remember is that H is a function of {qk} and {pk}; while you
must go through an intermediate step where H is written in terms of {qk}, {q̇k}
and {pk}, you must eliminate the {q̇k} before applying Hamilton’s equations of
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motion. We refer the reader to Hand and Finch for two more examples, a particle sliding
on a parabolic wire and a spherical pendulum.

Example 2.10

Simple harmonic oscillator. You know

L =
1
2
mẋ2 − 1

2
k x2

p =
∂L

∂ẋ
= mẋ

The Hamiltonian is therefore

H = ẋ p− L

=
1
m
p2 − 1

2m
p2 +

1
2
k x2

=
1

2m
p2 +

1
2
k x2

The equations of motion are

ẋ =
∂H

∂p
=

p

m
ṗ = −∂H

∂x
= −k x

We recover ẋ and we obtain Hooke’s law, which is just Newton’s second law for a spring.
We can differentiate the first equation and substitute into the second to obtain

mẍ+ k x = 0

which is the Euler-Lagrange equation we would have obtained from the Lagrangian formal-
ism.

Example 2.11

Double pendulum. Consider the double pendulum shown in the following figure, with two
masses m and the two pendulum rods both having length b:
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The two generalized coordinates are θ1 and θ2. The Lagrangian is most easily found by first
noting

~r1 = x̂ b sin θ1 − ŷ b cos θ1
~r2 = ~r1 + x̂ b sin θ2 − ŷ b cos θ2

The above form makes it easier to evaluate the Lagrangian:

L =
1
2
m
(
~̇r1 · ~̇r1 + ~̇r2 · ~̇r2

)
−mg (~r1 + ~r2) · ŷ

=
1
2
m
(
b2 θ̇2

1 + b2 θ̇2
1 + b2 θ̇2

2 + 2 b2 [cos θ1 cos θ2 + sin θ1 sin θ2] θ̇1 θ̇2
)

+mg (b cos θ1 + b cos θ1 + b cos θ2)

=
1
2
mb2

(
2θ̇2

1 + θ̇2
2 + 2 θ̇1 θ̇2 cos (θ1 − θ2)

)
+mg b (2 cos θ1 + cos θ2)

The canonical momenta are

p1 =
∂L

∂θ̇1
= mb2

(
2 θ̇1 + θ̇2 cos (θ1 − θ2)

)
p2 =

∂L

∂θ̇2
= mb2

(
θ̇2 + θ̇1 cos (θ1 − θ2)

)
Notice the strange form of the momenta due to the coupling of the motions in the two
angles. Rewriting the generalized velocities in terms of the momenta gives

θ̇1 =
1

2mb2
p1 − p2 cos (θ1 − θ2)
1− 1

2 cos2 (θ1 − θ2)

θ̇2 =
1

mb2
p2 − 1

2 p1 cos (θ1 − θ2)
1− 1

2 cos2 (θ1 − θ2)

We can rewrite the Lagrangian in a convenient form

L =
1
2

(
p1 θ̇1 + p2θ̇2

)
+mg b (2 cos θ1 + cos θ2)

The Hamiltonian is then

H = p1 θ̇1 + p2 θ̇2 − L

=
1
2

(
p1 θ̇1 + p2θ̇2

)
−mg b (2 cos θ1 + cos θ2)

=
1

4mb2
p2
1 + 2 p2

2 − 2 p1 p2 cos (θ1 − θ2)
1− 1

2 cos2 (θ1 − θ2)
−mg b (2 cos θ1 + cos θ2)

We have already derived the first set of Hamilton’s equations of motion, so let’s derive the
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second pair:

ṗ1 = −∂H
∂θ1

=
1

2mb2
p1 p2 sin (θ1 − θ2)

1− 1
2 cos2 (θ1 − θ2)

− 1
4mb2

p2
1 + 2 p2

2 − 2 p1 p2 cos (θ1 − θ2)(
1− 1

2 cos2 (θ1 − θ2)
)2 cos (θ1 − θ2) sin (θ1 − θ2)

+2mg b sin θ1

ṗ2 = −∂H
∂θ1

= − 1
2mb2

p1 p2 sin (θ1 − θ2)
1− 1

2 cos2 (θ1 − θ2)

+
1

4mb2
p2
1 + 2 p2

2 − 2 p1 p2 cos (θ1 − θ2)(
1− 1

2 cos2 (θ1 − θ2)
)2 cos (θ1 − θ2) sin (θ1 − θ2)

+mg b sin θ1

This is clearly a case where not only do we gain nothing from the Hamiltonian point of
view, but in fact, it is more complicated! Had we just used the Euler-Lagrange equations,
we would have found

−2mg b sin θ1 −
d

dt

(
2mb2θ̇1 +mb2 θ̇2 cos (θ1 − θ2)

)
= 0

−mg b sin θ2 −
d

dt

(
mb2θ̇1 +mb2 θ̇1 cos (θ1 − θ2)

)
= 0

which reduce to

2 g sin θ1 + 2 b θ̈1 + b θ̈2 cos (θ1 − θ2)− b θ̇1
(
θ̇1 − θ̇2

)
sin (θ1 − θ2) = 0

g sin θ2 + b θ̈2 + b θ̈1 cos (θ1 − θ2)− b θ̇2
(
θ̇1 − θ̇2

)
sin (θ1 − θ2) = 0

which, while no more analytically solvable than the Hamiltonian version, are certainly much
simpler.

2.3.2 Phase Space and Liouville’s Theorem

We present the concept of phase space and derive Liouville’s theorem on the conservation of phase
space density. Analogies to fluid mechanics and classical wave mechanics and quantum mechanics
are drawn.

Phase Space

Phase space is simply the 2M -dimensional space with axes {qk} and {pk}. Phase space
becomes particularly useful in the Hamiltonian formulation of dynamics because the {qk}
and the {pk} are now the degrees of freedom and Hamilton’s equations relate time derivatives
of the coordinates to partial derivatives in phase space of the Hamiltonian.

Geometrically, you can think of the Hamiltonian as a set of surfaces in phase space, on each
of which the Hamiltonian function is constant. You can also think of a single particle as
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moving through this space. If the Hamiltonian is conserved – i.e., if there is no explicit
time dependence in the Hamiltonian – then these surfaces remain fixed in phase space. A
particle moves along these surfaces. In fact, Hamilton’s equation tells us the direction of
motion in phase space. If we think of phase space as having unit vectors q̂ and p̂ in the q
and p directions, then we have

~∇qpH = q̂
∂H

∂q
+ p̂

∂H

∂p
q̂ q̇ + p̂ ṗ = q̂

∂H

∂p
− p̂ ∂H

∂q

=⇒ ~∇qpH · (q̂ q̇ + p̂ ṗ) = 0

The vector q̂ q̇ + p̂ ṗ is the direction in which the particle’s position in phase space evolves.
So we see that the direction of evolution is normal to the phase-space gradient out of the
surface of constant H. In this case, we are thinking about a 2-dimensional phase space,
so the evolution direction is uniquely determined (up to a sign) by requiring that it be
perpendicular to ~∇qpH, as it has to be for H to be conserved.

The classic example is the 1-D simple harmonic oscillator. The value of H, denoted by
E, specifies an ellipse in the 2-D phase space with semimajor axes xm =

√
2E/k and

pm =
√

2Em. The vector ~∇qpH is the outward normal to the ellipse at any given point.
Thus, the velocity vector is the tangent to the ellipse at the point, indicating that the
position in phase space simply evolves along the ellipse.

In more than one spatial dimension, one obtains the generalization of the above equations:

~∇qpH =
∑
k

[
q̂k
∂H

∂qk
+ p̂k

∂H

∂pk

] ∑
k

[q̂k q̇k + p̂k ṗk] =
∑
k

[
q̂k
∂H

∂pk
− p̂k

∂H

∂qk

]
=⇒ ~∇qpH ·

∑
k

[q̂k q̇k + p̂k ṗk] = 0

This statement is simpler than it looks. Notice how the different dimensions (the index k)
decouple: the gradient has some projection into a given qk − pk plane, as does the velocity
vector, and those projections are individually orthogonal. So the geometric interpretation
is analogous to that we had for a single spatial dimension, where the velocity vector is
proportional to the tangent to surfaces of constant H in each 2-D phase-space projection.

If the Hamiltonian is like a SHO in all dimensions (coupled or uncoupled), then the motion
is simply ellipses in each 2-D phase space projection. For two spatial dimensions, this can
be visualized as the two axes of a 2-torus. Some path is followed on the torus that is a
combination of circulatory motion in the two dimensions separately.

Systems of particles can be considered to be a “gas” or “fluid” moving in phase space. The
way the fluid evolves through phase space over time is described by Hamilton’s equations.

Liouville’s Theorem

One of the most interesting things about Hamiltonian dynamics and phase space is Liou-
ville’s theorem, which basically says that not only can a system of particles be treated like a
fluid in phase space, but it also holds that the fluid has incompressible flow.12 This has in-
teresting consequences, and can even be considered a precursor of the uncertainty principle
in quantum mechanics. We derive Liouville’s theorem in this section.

12This is not the same as saying the fluid is incompressible; we shall discuss this point in detail in the next section.
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Let’s consider a system of particles with so many particles that they can be viewed as
defining a density field in phase space. The defining relation is that, the number of particles
with phase space coordinates in some differential volume dMq dMp at a point ({qk}, {pk})
is given by

dN = ρ({qk}, {pk}, t) dMq dMp

where there is in general time dependence as the particles move through phase space over
time under the influence of Hamilton’s equations. Correspondingly, the total number of
particles is just the integral over phase space

N =
∫
dMq dMp ρ({qk}, {pk}, t)

Conservation of particles requires the time derivative of the integral to vanish.

Now, we want to determine the evolution of the phase space density ρ({qk}, {pk}, t), which
we will write as ρ(~q, ~p, t), as we flow along with the particles. That is, we don’t want to sit
at some fixed point in phase space and see how the phase-space density at the point varies
with time; instead, we want to follow the particles along their trajectories in phase space
and see how the density around the trajectory changes with time.

Since our definition of ρ is actually via a volume,

ρ(~q, ~p, t) =
dN

dMq dMp

and we want to follow a fixed set of particles as they move through phase space, the
numerator is held constant. We calculate the change in density by calculating the change
in the volume dMq dMp that they occupy. To do this, consider 2M +1 particles that follow
trajectories in phase space given by

• (~q0(t), ~p0(t))

• (~q2k−1(t), ~p2k−1(t)) = (~q0(t), ~p0(t)) + q̂k dqk(t)

• (~q2k(t), ~p2k(t)) = (~q0(t), ~p0(t)) + p̂k dpk(t)

where k = 1 . . .M . The 2M particles are separated from the reference particle at (~q0(t), ~p0(t))
by time-varying vectors q̂k dqk(t) and p̂k dpk(t). They are at the various corners of a small
volume element dMq dMp. If we calculate how their separation evolves in time, we will have
calculated how the volume element evolves in time (under the assumption that the time dt
is short enough that the particles follow simple straight paths). That evolution is

dqk(t+ dt)− dqk(t) = [q2k−1,k(t+ dt)− q0,k(t+ dt)]− [q2k−1,k(t)− q0,k(t)]
= [q2k−1,k(t+ dt)− q2k−1,k(t)]− [q0,k(t+ dt)− q0,k(t)]

=
dqk
dt

∣∣∣∣
~q2k−1,~p2k−1

dt− dqk
dt

∣∣∣∣
~q0,~p0

dt

=
dqk
dt

∣∣∣∣
~q0+q̂k dqk,~p0

dt− dqk
dt

∣∣∣∣
~q0,~p0

dt

=
∂q̇k
∂qk

dqk dt
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and similarly

dpk(t+ dt)− dpk(t) =
∂ṗk
∂pk

dpk dt

where we drop the explicit indication of where the derivatives are evaluated because at
this point the difference between evaluating at any of the corners of the volume element
dMqdMp is a second-order differential. Rewriting these in multiplicative fashion so we can
apply them to the volume element and using Hamilton’s equations gives

dqk(t+ dt) =
(

1 +
∂q̇k
∂qk

dt

)
dqk(t) =

(
1 +

∂2H

∂qk ∂pk
dt

)
dqk(t)

dpk(t+ dt) =
(

1 +
∂ṗk
∂pk

dt

)
dpk(t) =

(
1− ∂2H

∂pk ∂qk
dt

)
dpk(t)

So, now we can calculate the evolution of ρ:

ρ(~q(t+ dt), ~p(t+ dt), t+ dt)− ρ(~q(t), ~p(t), t)

=
dN

dMq(t+ dt) dMp(t+ dt)
− dN

dMq(t) dMp(t)

=
dN

dMq(t) dMp(t)

 1∏
k

(
1 + ∂2H

∂qk ∂pk
dt
)(

1− ∂2H
∂pk ∂qk

dt
) − 1


=

dN

dMq(t) dMp(t)

∑
k

(
− ∂2H

∂qk ∂pk
+

∂2H

∂pk ∂qk

)
dt

= 0

where in the next-to-last step we have Taylor expanded the denominator, discarding any
products of the second-order partial derivatives, and in the last step we have made use of
the fact that partial derivatives of the Hamiltonian commute. If we divide both sides by dt,
we have on the left side the total time derivative of ρ.

Thus, we have Liouville’s Theorem for the evolution of the phase space density,

dρ

dt
({qk}, {pk}, t) = 0 (2.39)

The phase space density is constant along the particle trajectories.

The Fluid Interpretation of Liouville’s Theorem

To see clearly the fluid interpretation of Liouville’s theorem, we must expand out the differ-
ential above or the total derivative using the chain rule: If we write out the total derivative
using the chain rule, we have

ρ(~q(t+ dt), ~p(t+ dt), t+ dt)− ρ(~q(t), ~p(t), t) =
∂ρ

∂t
dt+

∑
k

[
∂ρ

∂qk
q̇k dt+

∂ρ

∂pk
ṗk dt

]
or

dρ

dt
=
∂ρ

∂t
+
∑
k

[
∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk

]
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The second term can be rewritten to give

dρ

dt
=
∂ρ

∂t
+
[
~̇q · ~∇q + ~̇p · ~∇p

]
ρ =

∂ρ

∂t
+ ~̇ξ · ~∇ξρ

where in the first step we have simply rewritten the sums over k as dot products (note the
q and p subscripts on ~∇, which specify which variables the gradient is taken with respect
to), and in the second step we have defined a new composite coordinate ~ξ, with

ξk =
{
q(k+1)/2 k = odd
pk/2 k = even

This is known as symplectic notation; we will return to this term later. Four points can be
made about this form:

• The derivative expression given is completely analogous to the one we would find in
fluid mechanics, where ~̇ξ would be replaced by the fluid velocity ~v and the gradient
~∇ξ would be replaced by the simple spatial gradient ~∇r. The derivative operator ∂

∂t +
~v · ~∇r is generically called the “convective”, “advective”, “Lagrangian”, “substantial”,
“substantive”, “material”, or “Stokes” derivative due to its use in fluid mechanics to
calculate differentials “moving along” with the fluid.
• Liouville’s theorem can be rewritten in a slightly different way using the convective

form. Let’s separate the two pieces of the convective derivative:

0 =
dρ

dt
=⇒ 0 =

∂ρ

∂t
+ ~̇ξ · ~∇ξ ρ =⇒ ∂ρ

∂t
= −~̇ξ · ~∇ξ ρ

The last form says that if, instead of moving along with the phase space flow, you sit at
one point in phase space and watch the phase space density at that point change with
time, then the rate at which it changes, ∂ρ∂t , is given by the negative of the gradient of
the phase space density along the flow direction multiplied by the flow speed.

• Liouville’s theorem is not a trivial result of conservation of particle number. Conser-
vation of particle number simply states

∂

∂t

∫
V
ρ dVqp +

∫
S
dAqp n̂ · ρ ~̇ξ = 0

i.e., the rate of change of the number of particles in a volume V in phase space is just
related to the net flow into the volume through its surface S. Gauss’s theorem lets us
rewrite the above as

∂

∂t

∫
V
ρ dVqp +

∫
V
dVqp ~∇ξ ·

(
ρ ~̇ξ
)

= 0

Since the volume is not changing in time (we consider a volume V fixed in phase space,
not one moving with the flow), we may move the time derivative inside the integral:∫

V
dVqp

[
∂ρ

∂t
+ ~∇ξ ·

(
ρ ~̇ξ
)]

= 0

Finally, because the volume V is arbitrary, the integrand must vanish at any point in
phase space:

∂ρ

∂t
+ ~∇ξ ·

(
ρ ~̇ξ
)

= 0
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The above equation is the continuity equation and simply states conservation of
particle number. We need to know nothing about Hamiltonian dynamics to derive
it To get from the continuity equation to Liouville’s theorem, let’s expand out the
divergence term:

0 =
∂ρ

∂t
+ ~∇ξ ·

(
ρ ~̇ξ
)

=
∂ρ

∂t
+ ~̇ξ · ~∇ξρ+ ρ

(
~∇ξ · ~̇ξ

)
We need for the third term to vanish to obtain Liouville’s theorem. It turns out that
it vanishes because of Hamilton’s equations:

~∇ξ · ~̇ξ =
∑
k

[
∂q̇k
∂qk

+
∂ṗk
∂pk

]
=
∑
k

[
∂2H

∂qk ∂pk
− ∂2H

∂pk ∂qk

]
= 0

Thus, we are left with

0 =
∂ρ

∂t
+ ~̇ξ · ~∇ξρ

i.e., Liouville’s theorem. Liouville’s theorem is thus a consequence of both conservation
of particle number and Hamilton’s equations. We implicitly assumed conservation of
particle number in our derivation: we followed particular particles along, assuming
that they could not vanish. And we had to use Hamilton’s equations in our original
derivation of Liouville’s theorem. So we have obtained an alternate derivation of
Liouville’s theorem, though one that rests on the same physics. The derivation is
actually really the same in that one can make a term-by-term correspondence between
the two; the language we use here is just more sophisticated and results in a more
compact derivation.

• Combining the above two points, we can see that there is a very nice analogy between
phase space flow and incompressibility in fluid mechanics. There are two kinds of
incompressibility in fluid mechanics, and it is the latter one that corresponds to phase
space flow:

– incompressible fluid: An incompressible fluid has an unchangeable density: ρ =
constant. Therefore, ~∇rρ = 0, ∂ρ

∂t = 0, and dρ
dt = 0. We can use the continuity

equation to also infer that ~∇r · ~v = 0:

0 =
∂ρ

∂t
+ ~∇r · (ρ~v) =

∂ρ

∂t
+ ~v · ~∇rρ+ ρ ~∇r · ~v

Incompressibility of the fluid implies that the first two terms vanish, so (assuming
we don’t have a trivial fluid with ρ = 0)

~∇r · ~v = 0

We thus see than an incompressible fluid is very uninteresting. The phase space
density is not an incompressible fluid.

– incompressible flow: The definition of a fluid with incompressible flow is

~∇r · ~v = 0

We derived above that the phase space flow obeys the analogous equation thanks
to Hamilton’s equations. Thus, there is a perfect correspondence between the
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phase space fluid and a fluid with incompressible flow. Just as we derived Liou-
ville’s theorem from the continuity equation with the additional condition based
on Hamilton’s equations that ~∇ξ · ~̇ξ = 0, we could derive the analogy of Liouville’s
theorem for incompressible flows:

0 =
dρ

dt
=
∂ρ

∂t
+ ~v · ~∇rρ

We note than an incompressible fluid always has incompressible flow (because we
showed above ~∇r · ~v = 0 for an incompressible fluid), but of course a fluid with
incompressible flow need not be an incompressible fluid.

Liouville’s Pseudo-Theorem

What happens when a system does not obey Hamilton’s equations? How does the phase
space density evolve? Returning to the derivation, had we not used Hamilton’s equations,
we would have found

ρ(~q(t+ dt), ~p(t+ dt), t+ dt)− ρ(~q(t), ~p(t), t)

=
dN

dMq(t) dMp(t)

 1∏
k

(
1 + ∂ q̇k

∂qk
dt
)(

1 + ∂ṗk
∂pk

dt
) − 1


= − dN

dMq(t) dMp(t)

∑
k

(
∂q̇k
∂qk

+
∂ṗk
∂pk

)
dt

= −ρ(~q(t), ~p(t), t)
∑
k

(
∂q̇k
∂qk

+
∂ṗk
∂pk

)
dt

which can be rewritten

dρ

dt
+ ρ

∑
k

(
∂q̇k
∂qk

+
∂ṗk
∂pk

)
= 0

which is solved by

ρ(~q(t), ~p(t)) = ρ(~q(0), ~p(0)) exp

(
−
∫ t

0
dt′
∑
k

[
∂q̇k
∂qk

+
∂ṗk
∂pk

])
That is, the phase space density either shrinks or expands depending on the sign of the
“deviation from Hamiltonianness”.

Liouville’s Theorem and Future Topics

We rewrite the total derivative of the phase space density in a form that we will come back
to later:

dρ

dt
=

∂ρ

∂t
+
∑
k

[
∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk

]
=

∂ρ

∂t
+
∑
k

[
∂ρ

∂qk

∂H

∂pk
− ∂ρ

∂pk

∂H

∂qk

]
Again, in the second line we have made use of Hamilton’s equations to calculate the time
derivatives of the coordinates and momenta. The quantity in brackets in the second term is
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the Poisson bracket of ρ and H. For those of you who have taken quantum mechanics, the
above expression is similar to the expression for the total time derivative of an observable;
observables that commute with the Hamiltonian and have no explicit time dependence are
conserved. We will explore the parallels between Poisson brackets and quantum mechanical
commutators more in the next section.

Finally, we point out the interesting fact that Liouville’s theorem foreshadows the uncer-
tainty principle of quantum mechanics. Liouville’s theorem allows you to trade volume
between the q dimension and the p dimension. This is analogous to the quantum mechani-
cal uncertainty relation ∆p∆x = ~. If you squeeze the volume of a system in position space
(say, by focusing a beam of charged particles so it has a small transverse spatial extent),
then you pay a price in increase dispersion in momentum space (the transverse momenta
become spread over a large range of values). This is not the uncertainty principle per se
because each particle’s position and momentum are perfectly determined. But the ensemble
acts something like a quantum mechanical wave function. The reason this occurs is because
Liouville’s theorem makes the ensemble act in some ways like a classical wave, and classical
waves suffer diffraction when their phase space in some dimension is restricted. The uncer-
tainty principle in quantum mechanics is the same phenomenon, which arises because we
treat particles as wavefunctions rather than ideal points in quantum mechanics.
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2.4 Topics in Theoretical Mechanics

In this last section on formal analytical mechanics, we discuss canonical transformations, Poisson
Brackets, action-angle variables, and the Hamilton-Jacobi equation. These are primarily theoretical
developments that are interesting primarily as a prelude to the development of quantum mechanics.
Those continuing to work in dynamical systems will find practical use for this material.

This material derives from Hand and Finch Chapter 6 and Goldstein Chapter 9, but many of
the derivations differ have significant additional detail and the order is different. Thornton covers
none of this material.

2.4.1 Canonical Transformations and Generating Functions

Canonical transformations are transformations of the coordinates and momenta (q, p) that
preserve Hamilton’s equations (though with a different Hamiltonian). They can be generated by
generating functions, which are classifiable into four types.

Types of Transformations

The transformations we have worked with to date, transformations that affect only the
coordinates, are of the form

Q = Q(q(t), t)

These are called point transformations. It can be shown that under a point transforma-
tion, a system that obeys the Euler-Lagrange equations in the original coordinates continues
to obey them in the new coordinates (though with a new Lagrangian).

More generally, we can consider contact transformations, which are of the form

Q = Q(q(t), p(t), t) P = P (q(t), p(t), t)

An arbitrary contact transformation may not preserve Hamilton’s equations. We denote
those contact transformations that do preserve Hamilton’s equations as canonical trans-
formations.

Generating Functions

We can derive an algorithm for generating canonical transformations. The algorithm con-
sists, essentially, of constructing the transformation so that Hamilton’s equations automat-
ically hold true for the new Hamiltonian as a function of the transformed coordinates and
momenta.

In terms of the Hamiltonian, the action integral in the original coordinates is

Sqp =
∫ t1

t0

dt [p q̇ −H(q, p, t)]

where qp indicates that the integrand is a function of q and p. We consider independent
variations δq and δp and require the action be minimized with respect to these variations:

0 = δSqp =
∫ t1

t0

dt

[
p δq̇ + q̇ δp− ∂H

∂q
δq − ∂H

∂p
δp

]
=
∫ t1

t0

dt

[(
−ṗ− ∂H

∂q

)
δq +

(
q̇ − ∂H

∂p

)
δp

]
+ [p δq]|t1t0
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where we have used δq̇ = d
dt δq and done the usual integration-by-parts trick. Normally, we

assume the variations δq and δp are independent and arbitrary except for the requirement
that δq(t0) = 0 and δq(t1) = 0; these requirements give us Hamilton’s equations.

To guarantee that the Hamiltonian H̃(Q,P ) in our new coordinates (Q,P ) also satisfies
Hamilton’s equations, we require that the action for this new Hamiltonian is minimized when
Hamilton’s equations in the new coordinates hold. We first must calculate the variation of
the action in the new coordinates:

δSQP =
∫ t1

t0

dt

[(
−Ṗ − ∂H̃

∂Q

)
δq +

(
Q̇− ∂H̃

∂P

)
δP

]
+ [P δQ]|t1t0

We want to show that the integral term vanishes for arbitrary variations δQ and δP so
that we recover Hamilton’s equations in the new Hamiltonian. We shall make the enlight-
ened guess that a sufficient condition for that term to vanish is that the Lagrangians (not
the Hamiltonians) in the two coordinate systems differ by a total derivative of a function
F (q,Q, t) and that P = ∂F

∂Q . We shall prove later that this condition is necessary and that F
fully determines (and is fully determined by) the transformation. Supposing this condition
to be true, it implies

P Q̇− H̃(Q,P, t) = p q̇ −H(q, p, t)− d

dt
F (q,Q, t)

(we have chosen the sign for the total derivative with foreknowledge of what will be conve-
nient later.) Integrating over time thus gives

SQP = Sqp − F |t1t0
Now, calculate the variation of the action for variations δq and δp such that δq = 0 at the
endpoints. There will be corresponding variations δQ and δP , but we don’t know how the
condition δq = 0 at the endpoints translates to δQ and δP at the endpoints. So we have∫ t1

t0

dt

[(
−Ṗ − ∂H̃

∂Q

)
δq +

(
Q̇− ∂H̃

∂P

)
δP

]
+ [P δQ]|t1t0

=
∫ t1

t0

dt

[(
−ṗ− ∂H

∂q

)
δq +

(
q̇ − ∂H

∂p

)
δp

]
+ [p δq]|t1t0 −

∂F

∂q
δq

∣∣∣∣t1
t0

− ∂F

∂Q
δQ

∣∣∣∣t1
t0

= − ∂F

∂Q
δQ

∣∣∣∣t1
t0

where in the last line we have made use of δq = 0 at the endpoints and δSqp = 0. The
partial derivatives of F arise from propagating the variations δq and δQ through F using
the chain rule. We want the two surface terms to be equal. Since δQ is arbitrary and will
in general not vanish at the endpoints, these terms are equal if and only if P = −∂F

∂Q . If
that is true – which we assumed it would be – then we have the desired condition that the
integral in the first line vanishes alone, which implies Hamilton’s equations for H̃(Q,P, t)
hold.

Furthermore, now knowing that Hamilton’s equations hold for H̃(Q,P, t), we may apply
the inverse contact transformation – q(Q,P, t) and p(Q,P, t). Following through the above
logic results in the condition p = ∂F

∂q (a sign flip appears because now d
dt F appears with

the opposite sign).
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To summarize, we have demonstrated that a sufficient condition that a contact transfor-
mation (q, p) ↔ (Q,P ) be a canonical transformation is that there is a function F (q,Q, t)
such that

p =
∂F

∂q
P = −∂F

∂Q
(2.40)

L̃(Q, Q̇, t) = L(q, q̇, t)− d

dt
F (q,Q, t)

We have glossed over one point, though. What does the last line actually mean? If
we have a transformation (q, p) ↔ (Q,P ), then should we not obtain L̃(Q, Q̇, t) by sim-
ply writing L(q, q̇, t) in terms of Q and Q̇ using the transformation; i.e., L̃(Q, Q̇, t) =
L(q(Q, Q̇, t), q̇(Q, Q̇, t), t) (where we have rewritten the transformation as (q, q̇) ↔ (Q, Q̇)
because we want q̇ and Q̇ for the Lagrangian)? Yes and no. While it is true that this would
be the natural way to obtain L̃, we are free to add a total time derivative of a function of the
coordinates to any Lagrangian without affecting the action. So we choose to use the above
equation with the additional d

dt F term as the definition of the transformed Lagrangian.
In addition to providing clarification, this definition has the advantage of reducing the set
of assumptions for a transformation to be canonical. Now all we need is that the trans-
formation (q, p) ↔ (Q,P ) be derivable from a function F via the aforementioned partial
differential equations, and then we define the transformed Lagrangian to include − d

dt F .

F is called a generating function. The two partial differential equations for p and P
give two equations in four variables, q, p, Q, and P , which can be solved to find the
transformation Q(q, p, t) and P (q, p, t) (or vice versa) if the mixed second partial derivatives
∂2F
∂q ∂Q and ∂2F

∂Q∂q are nonzero everywhere.13

Moreover, we can now demonstrate that the existence of a generating function as decribed
above is a necessary condition for a transformation to be canonical; i.e., every canonical
transformation is derivable from a generating function. Suppose one has a canonical trans-
formation. One can rewrite the transformation equations in the form p = p(q,Q, t) and
P = P (q,Q, t) simply by solving the transformation equations for p and P .14 These func-
tions we then take to be the partial derivatives of the prospective generating function F ;
i.e., assume p(q,Q, t) = ∂F

∂q and P (q,Q, t) = ∂F
∂Q . This is a pair of coupled partial differential

equations for F . Does a solution F always exist? Yes, and we can see this as follows.

Let us first consider only time-independent canonical transformations. Consider a closed
path in phase space (q(t), p(t)) (not necessarily a physically allowed path). For some small
displacement along that path, we may calculate p dq =

∫
dp dq. Viewed geometrically, the

path is a curve p(q) in the qp plane and p dq is the area under that curve. If we now integrate
p dq over the entire closed path,

∮
p dq, we obtain the area in qp space enclosed by the path.

We will show later that the Jacobian determinant of any canonical transformation is unity.
13This condition ensures the transformation (q, p) ↔ (Q, P ) is invertible. One can understand this condition by

realizing that it requires ∂P
∂q

6= 0 and ∂p
∂Q

6= 0. (If one vanishes, then the other must due to commutativity of the partial
derivatives; lack of commutativity would imply F is a truly pathological function.) If both these derivatives vanish,
then P is a function of Q only and p is a function of q only, P = P (Q) and p = p(q). There is then no connection
between (q, p) and (Q, P ) – there is no canonical transformation. (For example, consider F (q, Q) = q2 + Q2.)

14This statement is not always true! Consider, for example, any kind of point transformation. Such transformations
only provide a relation between q and Q. To obtain the relation between p and P , one must explicitly rewrite L in
terms of Q and then obtain the new canonical momenta P from partial derivatives of L. In such cases, one must
pursue an alternate version of this proof using a generating function that relies on different arguments. These are
the other types of generating functions discussed in the following section.
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So, if one maps a closed path in (q, p) to a closed path in (Q,P ) and calculates the areas∮
p dq and

∮
P dQ, they are equal. Thus,

∮
(p dq − P dQ) = 0 for any closed path. If we

consider two points 0 and 1 on that path, at (q0, p0) and (q1, p1) in the qp phase space and
(Q0, P0) and (Q1, P1) in the QP phase space, the vanishing of the closed path integral is
equivalent to the statement that

∫ 1
0 (p dq − P dQ) is independent of the path from 0 to 1.

The integral must then only depend on the endpoints, so
∫ 1
0 (p dq − P dQ) = F (q1, Q1) −

F (q0, Q0), which implies that the integrand is a perfect differential, p dq−P dQ = dF . Thus,
we see that there is indeed always a function F (q,Q) that satisfies the partial differential
equations.

For time-dependent transformations, one must break down the transformation into two
transformations. This first is the transformation (Q(q, p, t = 0), P (q, p, t = 0)). That is, we
just use the form of the transformation at t = 0; this is now a time-independent transforma-
tion, so we know a generating function can be found. Second, we will show later that time
evolution over an infinitesimal time dt can be viewed as a canonical transformation with
generating function F2(q, P ) = q P + dtH(q, P ) (we shall discuss later generating functions
with arguments other than q and Q) where H is the Hamiltonian in the original coordi-
nates. Time evolution over a finite time is built up from infinitesimal transformations, so
a finite time evolution is also a canonical transformation for which there exists a generat-
ing function. Note that finite time evolution to a specific time t is not a time-dependent
transformation in the usual sense because we fix the time we want to evolve to.

Finally, because we have defined a Lagrangian that differs from what one would get by simple
substitution using the contact transformation, we must find the corresponding Hamiltonian.
We do this by returning to the relations we obtained between the integrands of the action
integrals (the Lagrangians):

P Q̇− H̃(Q,P, t) = p q̇ −H(q, p, t) +
dF

dt

H̃(Q,P, t) = H(q, p, t)− ∂F

∂q
q̇ − ∂ F

∂Q
Q̇+

dF

dt

H̃(Q,P, t) = H(q(Q,P, t), p(Q,P, t), t) +
∂

∂t
F (q(Q,P, t), Q, t) (2.41)

where we have used p = ∂F
∂q and P = −∂F

∂Q and the chain rule for dF
dt and, in the last line,

we explicitly write q and p as functions of Q, P , and t to indicate that all q’s and p’s should
be removed to obtain the new H̃(Q,P, t). Note that the final term is a partial derivative.

Example 2.12

F = q Q. Then P = −∂F
∂Q = −q and p = ∂F

∂q = Q; that is, we simply exchange coordinate
and momentum (with signs). Obviously, this will result in H̃(Q,P ) = H(−P,Q).

Example 2.13

Simple harmonic oscillator. The Hamiltonian for a simple harmonic oscillator is

H =
1
2
(
p2 + ω2 q2

)
(in this, q has been defined to be q =

√
mx, which implies p =

√
mẋ and gives the above

Hamiltonian with ω2 = k
m .) Choose the generating function to be (with foresight!)

F (q,Q) =
1
2
ω q2 cot 2πQ
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This gives

p =
∂F

∂q
= ω q cot 2πQ

P = −∂F
∂Q

= π ω q2 csc2 2πQ

We need to write (q, p) in terms of (Q,P ) to explicitly do the transformation. If we invert
the P equation, we get

q =

√
P

π ω
sin 2πQ

p =

√
ω P

π
cos 2πQ

Notice the extremely symmetric form of the equations. If we make the above substitutions
into the Hamiltonian, we find

H̃(P,Q) =
ω

2π
P

Let’s now determine the equations of motions for P and Q. We have

Q̇ =
∂H̃

∂P
=

ω

2π
Ṗ = −∂H̃

∂Q
= 0

Q is a cyclic coordinate. We can trivially integrate to find

Q =
ω t

2π
P = P0 = const

We have explicitly found Q and P as functions of time, so we may rewrite q and p in terms
of these solutions:

q =

√
P0

π ω
sin ω t

p =

√
ω P0

π
cos ω t

The reader will recognize that we have transformed from simple position and momentum
to phase (Q) and energy (P ) of the oscillatory motion. The energy depends only on the
oscillator amplitude. This kind of transformation is going to have obvious use when dealing
with mechanical or electromagnetic waves.

One comment on the “obviousness” of the transformation. One clearly would not have
pulled this transformation out of thin air. However, some physical insight might have led
us there. We know by other means that the total energy of an oscillator is constant and
independent of phase. Clearly, this energy is related to the maximum amplitude of the
oscillator and/or its maximum momentum. Realizing this, one would be encouraged to
look for a transformation that made the phase a cyclic coordinate. Finding the above
transformation, though, would obviously take some playing around.
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Other Forms of the Generating Function

We made a particular choice to make F a function of q and Q. Given the symmetry
between coordinates and canonical momenta, it is likely that we could equally well write
F as a function of (q, P ), (p, P ) or (p,Q). Sometimes it will be convenient to do so. The
obvious technique by which to change to these different pairs of variables is via Legendre
transformation. However, do not assume that, because we are transforming the generating
function to depend on a different pair of independent variables, the new pair are conjugate
to each other (i.e., satisfy Hamilton’s equations)! These different generating functions
are simply different ways to generate the same canonical transformation (q, p)→
(Q,P ); the conjugate pairs remain the same regardless of how the transformation
is generated! This point is not made sufficiently strongly in Hand and Finch, so watch
out!

For reference, we summarize here the four kinds of generating functions and the transfor-
mation equations that are derived from them.

F1 : F1(q,Q) P = −∂F1

∂Q
p =

∂F1

∂q

F2 : F2(q, P ) p =
∂F2

∂q
Q =

∂F2

∂P

F3 : F3(p,Q) P = −∂F3

∂Q
q = −∂F3

∂p

F4 : F4(p, P ) q = −∂F4

∂p
Q =

∂F4

∂P

(2.42)

We make the very important point that not every canonical transformation can be derived
from generating functions of all four types. In some cases, the Legendre transformation
from one type to another will yield zero. This relates to the footnote in the previous section
regarding the validity of the assumption that one can write a canonical transformation in
the form p = p(q,Q, t) and P = P (q,Q, t). Point transformations violate this assumption
because they do not mix q and p. There would be no information about p and P in a
F1-type generating function, making it impossible to generate the transformation from such
a generating function. Such a transformation can be derived from only F2 and F3 type
generating functions.

For canonical transformations that do not suffer from such pathologies, let us derive the
relations between the different types of generating functions:

• F3: we want to change variables from (q,Q) to (p,Q). The Legendre transformation
is obviously (notice that we introduce the q p term with sign opposite to the standard
Legendre transformation, which will introduce additional signs elsewhere):

F3(p,Q, t) = F1(q,Q, t)− q p

The partial derivative relations arising from the transformation are

∂F3

∂Q
=
∂F1

∂Q
= −P ∂F3

∂p
= −q p =

∂F1

∂q

where the third relation comes from the assumption that ∂F3
∂q = 0, the standard con-

dition we apply to derive the Legendre transformation (i.e., to get rid of q). Note
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that the Legendre transformation (albeit with the nonstandard sign) returns to us the
relation p = ∂F1

∂q that we had earlier derived. Rewriting the above relations in the
more standard form (like Equation 2.40),

P = −∂F3

∂Q
q = −∂F3

∂p
p =

∂F1

∂q
(2.43)

We now see that the sign choice in the Legendre transformation was necessary to avoid
changing the form of the relation for P . We have picked up an additional relation that
was the defining relation in tranforming from F1 to F3.
Example 2.13 continued
Let’s rewrite our canonical transformation for the harmonic oscillator in the F3 form.
We don’t necessarily need to find F3, but let’s calculate it explicitly so we can see how it
differs from F1. We follow through the usual Legendre transformation technique. First,
we need to find the new variable in terms of the old variable using the condition p = ∂F1

∂q
that partially defined the transformation (we have already done this calculation for
other reasons in the earlier part of this example, but we follow it through so the logical
structure is clear):

p =
∂F1

∂q
= ω q cot 2πQ

Next, we invert that relation to find q(p,Q):

q =
p

ω
tan 2πQ

Now, we can calculate F3 directly using the Legendre transformation and substituting
in our formula q(p,Q).

F3(p,Q) =
1
2
ω q2 cot 2πQ− q p

=
1
2
ω
( p
ω

tan 2πQ
)2

cot 2πQ− p
( p
ω

tan 2πQ
)

= − p2

2ω
tan 2πQ

Note that, an alternative technique for finding F3 once we have q(p,Q) is to make
use of q = −∂F3

∂p . This relation was derived directly above from the forward trans-
formation. One could alternatively have derived q = −∂F3

∂p from the reverse Legendre
transformation because the defining relation to eliminate q is exactly this derivative
relation. So, we have

q =
p

ω
tan 2πQ = −∂F3

∂q

F3(p,Q) = − p2

2ω
tan 2πQ

Finally, using our third partial derivative relation, we have

P = −∂F3

∂Q

=
p2

2ω
(
1 + tan2 2πQ

)
2π

=
π p2

ω
sec2 2πQ
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Summarizing, the transformation generated by F3 is

q(p,Q) =
p

ω
tan 2πQ

P (p,Q) =
π p2

ω
sec2 2πQ

We can check that this transformation is algebraically the same as our original F1

transformation by: 1) inverting the first line, which gives p(q,Q) = ω q cot 2πQ, which
was what we had from F1; and 2) substituting p(q,Q) in to P (p,Q), we get P =
π ω q2 csc2 2πQ, which is also what we had from F1.

• F4: Here, we transform the generating function from (p,Q) to (p, P ). The Legendre
transformation is (choice of sign to be explained below)

F4(p, P, t) = F3(p,Q, t) +QP (2.44)

The relations between partial derivatives are

∂F4

∂p
=
∂F3

∂p
= −q ∂F4

∂P
= Q

∂F3

∂Q
= −P

where again the last term arises because of the condition that F4 not depend on Q.
The last term also makes it clear that we had to choose the sign on the QP term as
we did in order to have self-consistency with the F3 equations. Rewriting in standard
form (like Equation 2.40) gives

q = −∂F4

∂p
Q =

∂F4

∂P
P = −∂F3

∂Q
(2.45)

Example 2.13 continued
Let’s rewrite the harmonic oscillator canonical transformation using the F4 form. Using
the partial derivative equation relating the old and new independent variable,

P = −∂F3

∂Q
=
π p2

ω
sec2 2πQ

we invert to obtain

Q =
1

2π
sec−1

√
ω P

π p2

We can directly substitute to find F4 (using 1 + tan2 θ = sec2 θ):

F4(p, P ) = F3(p,Q) +QP

= − p2

2ω
tan 2πQ+QP

= − p2

2ω
tan sec−1

√
ω P

π p2
+

P

2π
sec−1

√
ω P

π p2

= − p2

2ω

√
ω P

π p2
− 1 +

P

2π
sec−1

√
ω P

π p2
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which is just a mess! Integration of Q = ∂F4
∂P would have yielded the same mess.

Clearly, this is not a particularly convenient choice for a generating function. We
will not bother to grind through the algebra needed to prove that the transformation
generated by the above function is equivalent to the one we have seen before.

• F2: The final transformation of the generating function gives F2(q, P ), though we start
from F1:

F2(q, P, t) = F1(q,Q, t) +QP (2.46)

The relations between partial derivatives are

∂F2

∂q
=
∂F1

∂q
= p

∂F2

∂P
= Q

∂F1

∂Q
= −P

where again the last term arises because of the condition that F2 not depend on Q.
Again, consistency of the last term with the original version of the transformation
(F1) forced the choice of sign for the QP term. Rewriting in standard form (like
Equation 2.40) gives

p =
∂F2

∂q
Q =

∂F2

∂P
P = −∂F1

∂Q
(2.47)

Example 2.13 continued
Let’s rewrite the harmonic oscillator canonical transformation using the F1 form. Using
the partial derivative equation relating the old and new independent variable,

P = −∂F1

∂Q
= π ω q2 csc2 2πQ

we invert to obtain

Q =
1

2π
csc−1

√
P

ω π q2

We can see this is going to devolve into a mess similar to what we had for F4, but let’s
plow ahead and do the direct substitution to find F2 (using 1 + cot2 θ = csc2 θ):

F2(q, P ) = F1(q,Q) +QP

= −ω q
2

2
cot 2πQ+QP

= −ω q
2

2
cot csc−1

√
P

ω π q2
+

P

2π
csc−1

√
P

ω π q2

= −ω q
2

2

√
P

ω π q2
− 1 +

P

2π
csc−1

√
P

ω π q2

which is as expected, a mess! Integration of Q = ∂F2
∂P would have yielded the same

mess. Again, we have an inconvenient generating function, but nevertheless it will be
consistent with the canonical transformation.
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Theoretically Interesting Generating Functions

Here we consider a couple of generic generating functions that are of particular interest
from the theoretical point of view.

• Point transformation generating function: If we have a point transformation,
which can generically be written {Ql} = {fl({qk}}, (M functions of M variables) then
we can use a generating function of the F2 form (recall our earlier note that it is
impossible to derive a point transformation from a F1-type generating function):

F2({qk}, {Pl}) =
∑
n

fn({qk})Pn

Using Equations 2.47, we find

pl =
∂F2

∂ql
=
∑
n

Pn
∂fn
∂ql

Ql =
∂F2

∂Pl
= fl({qk})

The relation P = −∂F1
∂Q is not used because it was only needed to define a F2-type

transform in terms of a F1-type transform; here, we start with the F2-type transform.
We see that we reproduce the desire point transformation, and thus we see that any
point transformation is a canonical transformation. We also see how to find the new
canonical momenta without having to go through the Lagrangian.

• Infinitesimal Canonical Transformation: Let F2 = q P + εG(q, P ). Then we have
from Equations 2.47 again

p =
∂F2

∂q
= P + ε

∂G

∂q
Q =

∂F2

∂P
= q + ε

∂G

∂P

Rewriting to find P in terms of (q, p), we have

Q = q + ε
∂G

∂P
P = p− ε ∂G

∂q

If we take ε = dt→ 0 and G(q, P ) = H(q, P ) ≈ H(q, p), we see that the second terms
in the two equations are the increments in q and p expected for evolution over a time
dt based on Hamilton’s equations. This generating function generates time evolution,
which is a canonical transformation. Note that this same infinitesimal technique can
be used to generate a variety of other transformations, such as translation, rotation,
etc.

2.4.2 Symplectic Notation

We define symplectic notation and restate some of our earlier results in that form. We make
this transition in order to make use of the more geometric point of view for the remainder of our
discussion of theoretical mechanics. This material is covered in the appendix to Chapter 6 of Hand
and Finch.

Definition of Symplectic Notation

As we did with regard to Liouville’s theorem, we are free to define the vector ~ξ with
(k = 1, . . . , 2M)

ξk =
{
q(k+1)/2 k = even
pk/2 k = odd

(2.48)
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The partial derivatives involved in Hamilton’s equation ∂
∂qk

and ∂
∂pk

simply become the

gradient with respect to ξ, ~∇ξ. We define the matrix Γ by

Γij = (j − i) δ|i−j|,1 for i odd and j even (2.49)

For example, a 4-dimensional phase space has

Γ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


With Γ, Hamilton’s equations are written

d~ξ

dt
= Γ~∇ξH (2.50)

Derivatives and the Jacobian in Symplectic Notation

A contact transformation generates a new set of phase space coordinates ~Ξ. The Jacobian
of transformation is J

Jij =
∂Ξi
∂ξj

(2.51)

An example for 2 phase-space dimensions is

J =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
J gives the transformation of differential line and volume elements:

d~Ξ = J d~ξ (2.52)∏
k

dΞk =
∏
k

(∑
l

Jkl dξl

)
= [det J]

∏
l

dξl (2.53)

To understand how the Jacobian transforms gradients, consider differential displacements
d~ξ and d~Ξ that yield the same change in H:

(~∇ξH)Td~ξ = dH = (~∇ΞH)Td~Ξ

(~∇ξH)Td~ξ = (~∇ΞH)TJ d~ξ

(~∇ξH)T = (~∇ΞH)TJ
~∇ξH = JT ~∇ΞH

That is, gradients are equivalent if appropriately transformed with J.

Canonical Transformation and Symplectic Jacobians

We can obtain a condition on the Jacobian for canonical transformations. If ~Ξ is a canonical
transformation of ~ξ, then Hamilton’s equations hold for ~ξ and ~Ξ:

d~ξ

dt
= Γ ~∇ξH

d~Ξ
dt

= Γ ~∇ΞH
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Restricting to transformations with no explicit time dependence, ~Ξ = ~Ξ(~ξ), we may rewrite
the left equation:

d~ξ

dt
= Γ ~∇ξH

J−1d~Ξ
dt

= ΓJT ~∇ΞH

d~Ξ
dt

= JΓJT ~∇ΞH

Thus, in order for Hamilton’s equations to be satisfied in the Ξ coordinates, we require

JΓJT = Γ (2.54)

A matrix that satisfies the above condition is called symplectic. Symplectic derives from
the Greek for “intertwined;” clearly, the intertwining of the q and p coordinates by Hamil-
ton’s equations motivates the use of the term. Note that the above condition is equivalent
to the condition det J = 1, the Jacobian determinant is unity. Hence, the phase space
volume element is preserved under canonical transformations. Note also that JT 6= J−1 in
general; in fact, if you assume that such an equality did hold, you would restrict yourself to
a very specific canonical transformation.

2.4.3 Poisson Brackets

We define Poisson brackets and explore their useful characteristics.

Definition

The Poisson Bracket of two functions of F and G of the coordinates and canonical
momenta q and p is defined to be

[F,G]~q,~p =
∑
k

[
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

]
(2.55)

In symplectic notation, the Poisson bracket is written

[F,G]~ξ =
[
~∇ξF

]T
Γ~∇ξG (2.56)

The Γ matrix provides the necessary negative signs.

Important Properties and Applications

• Invariance under canonical transformations
The most useful property of Poisson brackets is that their value is invariant under
canonical transformations. This is trivial to see in symplectic notation:

[F,G]~ξ =
[
~∇ξF (~ξ)

]T
Γ
[
~∇ξG(~ξ)

]
=

[
JT ~∇ΞF̃ (~Ξ)

]T
Γ
[
JT ~∇ΞG̃(~Ξ)

]
=

[
~∇ΞF̃ (~Ξ)

]T
JΓJT

[
~∇ΞG̃(~Ξ)

]
=

[
~∇ΞF̃ (~Ξ)

]T
Γ
[
~∇ΞG̃(~Ξ)

]
= [F̃, G̃]~Ξ
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where F̃ and G̃ refer to F and G after the transformation, and where the penultimate
line required that J be symplectic; i.e., that the transformation characterized by J be
canonical.

• Provide test for whether a transformation is canonical
Poisson brackets can be used to test whether a transformation is canonical. Clearly,
[Qk, Pl] ~Q, ~P = δkl. Therefore, by the above theorem, if the transformation is canonical,
it must hold that

[Qk(~q, ~p), Pl(~q, ~p)]~q,~p = δkl (2.57)

It turns that the above is not just a necessary but it is also a sufficient condition for
a transformation to be canonical. This statement is identical to the condition that J
be symplectic.

• Provide time evolution of functions of coordinates
Proof not available in Hand and Finch
Another useful property of the Poisson bracket is that the Poisson bracket of any
function with the Hamiltonian gives the time derivative of that function. We saw this
for the phase space density in connection with Liouville’s theorem, but can see easily
that it holds generally. Let F (~ξ) be an arbitrary function of the symplectic coordinate
~ξ. Then

dF

dt
=

∂F

∂t
+
[
~∇ξF

]T d~ξ
dt

=
∂F

∂t
+
[
~∇ξF

]T
Γ ~∇ξH

=
∂F

∂t
+ [F,H]~ξ

where we employed the chain rule in the first line, Hamilton’s equations in symplectic
notation in the second line, and the definition of the Poisson bracket in the last line.
A corollary of the above result is that any function F whose Poisson bracket with
the Hamiltonian vanishes – i.e., [F,H]~ξ = 0 – is conserved unless it has explicit time
dependence. Moreover, one can demonstrate the Hamiltonian version of Noether’s
Theorem: if a quantity I is conserved due to invariance of the Lagrangian under a
particular point transformation, then [I,H] = 0 and the quantity is also conserved in
Hamiltonian dynamics. This will be a homework problem.

• Alternate form of Liouville’s theorem
Liouville’s theorem can be written down in Poisson bracket form. We take for the
function F (~ξ) the phase space density written as a function of symplectic coordinates,
ρ(~ξ). It holds that

dρ

dt
=
∂ρ

∂t
+ [ρ,H]~ξ

Liouville’s theorem told us that dρ/dt = 0. Thus, we may write Liouville’s theorem as

∂ρ

∂t
+ [ρ,H]~ξ = 0
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There is no additional content here, it is simply an alternate way of writing Liouville’s
theorem. If one works back from the Poisson bracket to symplectic notation, one
recovers the form of Liouville’s theorem obtained when it was proved,

dρ

dt
=
∂ρ

∂t
+ ~̇ξ · ~∇ξρ

• Geometrical Interpretation: The reader will no doubt see that the Poisson bracket
looks a bit like a vector cross product. In fact, for a single physical dimension, for
which the phase space is two-dimensional, the Poisson bracket [F,G] looks exactly like
the cross product of ~∇ξF and ~∇ξG:

[F,G]~q,~p =
∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
=
(
~∇ξF

)
q

(
~∇ξG

)
p
−
(
~∇ξF

)
p

(
~∇ξG

)
q

Of course, in a 2D phase space, there is no third dimension that the cross product can
point into, so the analogy is imperfect. But, clearly, the value of the Poisson bracket
is the same as the projection of the cross-product of two vectors along the direction of
their cross product. In more than one spatial dimension, the Poisson bracket is just
the sum over these “cross-product” components over all k.
It is instructive to talk about our various applications of Poisson brackets in terms of
the geometrical picture.

– The vectors ~∇ξF and ~∇ξG point normal to surfaces of constant F and G. Re-
call that cross products take on their maximum values when the two vectors are
perpendicular. We see the same behavior here. For example, when F = qk and
G = pk, the surfaces of constant F and G are just lines of fixed qk and pk. The
Poisson bracket of qk and pk is 1, reflecting the fact that the two surface nor-
mals are perfectly perpendicular. In a 2D phase space, the Poisson bracket [F,G]
is |~∇ξF ||~∇ξG| sin θFG where θFG is the angle in the qp plane between ~∇ξF and
~∇ξG. For more than one spatial dimension, the Poisson bracket is simply the sum
over k of such terms for each k.

– Invariance of Poisson brackets under canonical transformation therefore implies
that such transformations preserve the angle between the gradient vectors and
thus between the surfaces they define. This is something like conformal mapping,
which also preserves angles.

– The way in which Poisson brackets can be used to test whether a transformation
is canonical is a special case of the above property. But it is a very important
special case, because it implies that the surfaces in qp phase space corresponding
to surfaces of constant value of the transformed coordinates Q and P must always
intersect at right angles. This gives a geometric interpretation of the condition for
a transformation to be canonical.

– Time evolution: Given a function F , we thus see that time evolution occurs only
to the extent that surfaces of constant F are normal to surfaces of constant H.
This holds in particular for F = qk or F = pk. If surfaces of constant F and
constant H coincide, we of course expect no time evolution of F .

Clearly, the above properties foreshadow many properties of commutators in quantum me-
chanics. [Q,P ] = 1 will become [q, p] = i~. The time evolution of observables in quantum
mechanics is determined by an equation identical to the one above describing the time
derivative of classical quantities.
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2.4.4 Action-Angle Variables and Adiabatic Invariance

Action-angle variables are used to simplify the description of systems whose motion is periodic,
writing it in terms of coordinates in which the motion is periodic (angle variables) and conjugate
momenta that are constant (action variables). Our derivation will deviate from Hand and Finch by
not basing it on the Hamilton-Jacobi formalism. We will provide the Hamilton-Jacobi derivation
of action-angle variables later. We have supplemented the derivation with some motivation from
Goldstein. There are some nice figures in Hand and Finch Section 6.5 illustrating the phase space for
the simple pendulum that will be useful to look at when considering the geometrical interpretation
of the action variable (as well as to understand periodicity).

The derivation of action-angle variables is admittedly opaque. For this reason, we provide a
pre-summary of the results. Reading this first will motivate the reader to understand the derivation
that follows it and give some clue as to where it is headed, and also serves as a short summary of
the useful results. The pre-summary also serves as a cookbook so that those who have not studied
the previous material on canonical transformations and generating functions can still appreciate
and know how to make use of action-angle variables and adiabatic invariance. Though such readers
will not find it useful to wade through the derivation that follows, parts of the examples may be
instructive and should be studied.

Note: Goldstein’s angle variable is defined with period 1 instead of 2π, and his action variable
differs by a canceling factor of 2π. No physics is affected, but detailed results may differ by factors
of 2π.

Types of Periodic Motion for 1-Dimensional Systems

If we have a 1-dimensional system whose energy is conserved, H(q, p) = α1, then we can
eliminate time as an independent variable and instead write p = p(q, α1). This describes an
orbit in the 2-dimensional phase space of the system. Two types of orbits serve to classify
the two kinds of periodic motion:

• libration: The orbit is a closed path in phase space, which implies that the motion is
periodic in both p and q. This occurs if the initial position lies between zeros of the
kinetic energy (or equivalently, if the motion is in a bounded potential). The simple
harmonic oscillator is an example of such a system.

• rotation: Here, the requirement is only that p be a periodic function of q, but the
orbit need not be closed. This implies that the system’s configuration is invariant under
translations in the q variable by the period q0. The classic example of this motion is
rigid-body rotation. q in general can increase without bound, and the periodicity refers
to the periodicity of p in q only.

A useful example of a system that can execute both kinds of motion is a simple pendulum. If
E < mg l, then the pendulum’s motion is oscillatory, i.e., of the libration type. If E > mg l,
then the pendulum can rotate 360 degrees around its pivot point and it executes rotation
motion.

A Motivating Example

Given a system of one of the above types, we will follow along what we did in the simple
harmonic oscillator case and use a F1-type generating function W̃ (q, ψ) to try to transform
to a set of canonical variables (ψ, I) such that I is constant and ψ cycles through 2π during
every period of the motion. Recall that the F1-type generating function for the simple
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harmonic oscillator was

F (q,Q) =
1
2
ω q2 cot 2πQ

with the resulting relationships between canonical variables

q =

√
P

π ω
sin 2πQ

p =
∂F

∂q
= ω q cot 2πQ =

√
ω P

π
cos 2πQ

P = −∂F
∂Q

= π ω q2 csc2 2πQ =
2π
ω
E

Q =
ω t

2π

where E is the constant conserved energy. A relationship that was not seen earlier is (
∮

refers to an integral over one period on (q, p))

P =
∮
dq p

which can be seen by simply substituting in the above relations:∮
dq p =

∮
d

(√
P

π ω
sin 2πQ

)√
ω P

π
cos 2πQ = 2P

∮
dQ cos2 2πQ

=
P

π

∫ T

0
ω dt cos2 ω t =

P

π

∫ 2π

0
dθ cos2θ

= P

Note that we were able to treat P as constant because we knew from the previous analysis
it would be. In this example, our desired variables (ψ, I) would be

ψ = 2πQ = ω t I =
P

2π
=
E

ω

(We insert the 2π for ψ to get the desired period, but, to ensure (ψ, I) are canonical
variables, we must factor out a corresponding 2π from P to get I.)

Pre-Summary and Cookbook

In the following section, we shall generalize the above example. The basic result we will
obtain is that, for any 1-dimensional periodic system, we may always define conjugate action
and angle variables analogous to P and Q above and that they always obey the following:

• The action variable I is constant and has the value

I =
∮
p(E, q) dq (2.58)

where one obtains p(E, q) by inverting H(p, q) to obtain p(H, q) and then using the
fact that energy is conserved for a periodic system, so that H is a constant with value
E set by the initial conditions, E = H(p(t = 0), q(t = 0)). The integral is thus explicit
for any initial condition (though whether it is analytically integrable depends on the
specific problem).
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• The angle variable evolves linearly in time at rate ω:

ψ = ω t+ ψ0 with ω ≡ ∂H(I)
∂I

(2.59)

where H(I) is just the Hamiltonian rewritten in terms of I instead of in terms of p
and q. ψ0 is set by initial conditions.

The full proof will demonstrate that it is always possible to define I and ψ for any periodic
system and that they always satisfy the above.

We will also demonstrate that I is an adiabatic invariant, which means that, if some nor-
mally constant parameter in H is changed sufficiently slowly, then I is constant to first
order in the change in the parameter. An example of a “normally constant” parameter is
the natural frequency ω in a SHO, or the mass m and spring constant k that combine to
give ω. By “sufficiently slowly,” we mean that, if the changing parameter is α, the rate
of change of α must satisfy α̇ T/α � 1 where T is the period of the system. That is, the
fractional change in α in one period is small compared to 1. By ”constant to first order,”
we mean that İ ∝ α̇2.

Adiabatic invariance of I is how these concepts prove useful because they provide one
quantity, I, that is constant even when parameters in the problem and the total energy are
changing. The classic example is a pendulum with a slowly lengthening bob length l(t). If
the parameter changes sufficiently slowly, we do not need to solve the full problem with the
rheonomic constraint that gives us l(t) to find out how the energy, oscillation amplitude,
or maximum speed of the pendulum change with time; we simply use the fact that I is
constant to relate the rate of change of E to the rate of change of the bob length l, and
then we can obtain the rate of change of the amplitude A or the maximum speed v from
the rate of change of E.

The geometric interpretation of all of the above in phase space is also interesting. I, by
definition, is the area enclosed in phase space by the phase space orbit and ψ is the angular
position of the system on that orbit in the pq plane. Adiabatic invariance has a clever
geometric interpretation – even as a parameter in the problem changes, causing the orbit
shape to change (e.g., the maximum q and p will change), the area of the orbit is preserved
as it changes shape.

The Full Derivation

For a general periodic system, we would like a generating function W̃ (q, ψ) that generates
a canonical transformation leading to variables (ψ, I) that behave as above – I constant
and ψ cycling through 2π for each period of the system. Any such valid F1-type generating
function will yield the relations

p =
∂W̃

∂q
I = −∂W̃

∂ψ

We therefore take these relationships as a requirement on the as-yet undetermined W̃ . It
implies that the differential of W̃ is

dW̃ = p dq − I dψ
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Now, we want I to be a constant and the system to be periodic in ψ with period 2π. We
will assume both conditions hold and see if we run into any contradictions. We can find a
formula for I by integrating the above. The first step is∮

dW̃ =
∮
p dq −

∮
I dψ

where
∮

denotes integration over one period. The assumed constancy of I lets us pull it
out of the integral. We know that the system is periodic in q, and we assume it is periodic
in ψ. Therefore, W̃ (q, ψ) is also periodic. So

W̃ (T )− W̃ (0) =
∮
p dq − I

∮
dψ

0 =
∮
p dq − 2π I

I =
1

2π

∮
p dq

where T is the period in time. The reduction of
∮
dψ is a result of the assumed periodicity

in ψ with period 2π. So far, no contradictions – we have obtained a formula for I which
indeed yields a constant; the expression is constant because, for any periodic system, the
integral of any function of the periodic variables over a period is independent of time. With
I now seen to be constant, we can write an expression for W̃ by integrating its differential:

W̃ (q, ψ) =
∫
p(q, I) dq − I ψ

We have written explicit arguments for p now. Because the motion is periodic, p is deter-
mined entirely by q and one constant of integration. We have already shown that I is a
constant derived from the orbit, so it can be used as the constant of integration.

Note that we have not checked whether W̃ as defined is a valid generating function. It must
satisfy the mixed second-derivative condition

∂2W̃ (q, ψ)
∂ψ ∂q

=
∂2W̃ (q, ψ)
∂q ∂ψ

⇐⇒ ∂p

∂ψ
= −∂I

∂q

We will in fact not check this for W̃ ; we will check it for the generating function W̃2 that
we obtain below from W̃ by Legendre transformation. If W̃2 is a valid generating function,
then so must W̃ be because the two are related by a Legendre transformation.

We wish to find an explicit formula for ψ next. The natural thing is to go from our F1-
type generating function W̃ (q, ψ) to a F2-type generating function W̃2(q, I) via Legendre
transformation since I has been seen to be constant and we have an expression for it; since
ψ will be dependent in the F2 scheme, an expression for it will become available.

W̃2(q, I) = W̃ (q, ψ) + ψ I

=
∫
p(q, I) dq

Let’s first check that W̃2 satisfies the mixed second derivative rule:

∂2W̃2(q, I)
∂I ∂q

=
∂

∂I

∂

∂q

∫
p(q, I) dq =

∂

∂I
p(q, I)

∂2W̃2(q, I)
∂q ∂I

=
∂

∂q

∂

∂I

∫
p(q, I) dq =

∂

∂q

∫
dq

∂

∂I
p(q, I) =

∂

∂I
p(q, I)

155



CHAPTER 2. LAGRANGIAN AND HAMILTONIAN DYNAMICS

Indeed it does. We were allowed to move ∂/∂I inside the integral because q and I are
independent when dealing with the W̃2 generating function: q and I are the independent
variables, p and ψ are the dependent variables. Then, as noted above, since W̃2 is a valid
generating function, so is W̃ .

Now, we could use the standard Legendre transformation rules to obtain an explicit formula
for ψ:

ψ =
∂W̃2(q, I)

∂I
=

∂

∂I

∫
p(q, I) dq =

∫
dq
∂p(q, I)
∂I

We shall show below that, after the canonical transformation, H has no ψ dependence and
thus is a function of I alone, H = H(I). This would allow us to obtain p(q, I) via H: H =
H(p, q) also, so we should be able find p = p(q,H) and therefore p = p(q,H(I)) = p(q, I).
We could then do the integral and take ∂

∂I , or alternatively take ∂
∂I and do the integral, to

obtain ψ. But it may not always be possible to do the integral analytically. It turns out
there is an easier way to obtain ψ(t) using the fact that (ψ, I) are canonical variables by
construction. Hamilton’s equations in the new variables are

ψ̇ =
∂H(ψ, I)

∂I
İ = −∂H(ψ, I)

∂ψ

I is constant by construction. Therefore, İ = 0 and thus ∂H
∂ψ = 0. Therefore, the canonically

transformed H has no ψ dependence, H = H(I) only. Consequently, ψ̇ = ∂H
∂I can depend

only on I. Moreover, because I is constant in time, we know ∂H
∂I is constant in time. Putting

this all together gives

ψ̇ =
∂H(I)
∂I

≡ ω = constant

Therefore,

ψ = ω t+ ψ0

We thus obtain an explicit formula for ψ that is valid independent of the details of the
problem. The Legendre transformation formula for ψ would yield this, but one would have
to perform the integral explicitly using the particular p(q, I) function.

We belabor one point, the functional dependences of ω. We explicitly noted above that
ω = ω(I): ω is not constant as a function of I. But ω is constant in time because I is
constant in time. The constancy of ω in time provides the simple evolution of the angle
variable ψ. Now, in some cases, ω may indeed be independent of I – for example, in the
SHO, ω =

√
k/m depends only on the parameters of the problem, not on I, which comes

from the initial conditions. But, more generally, ω may be a function of I; one example is
the non-small-angle pendulum – the period of the motion (which we shall see below is given
by ω) is dependent on the initial conditions.

So, we end up with I = 1
2π

∮
p dq as the constant canonical momentum and ψ = ω t + ψ0

as the linearly evolving conjugate coordinate. I is called the action variable (because it
always has units of action, momentum × position) and ψ the angle variable (because action
has the same units as angular momentum, so the conjugate variable has angular units).
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We can confirm that ψ does indeed change by 2π over one period, as we assumed to start
with:

∆ψ =
∮
∂ψ

∂q
dq =

∮
∂2W̃2

∂q ∂I
dq =

∂

∂I

∮
∂W̃2

∂q
dq =

∂

∂I

∮
p dq = 2π

because I = 1
2π

∮
p dq. If T is the temporal period of the motion, we are thus guaranteed

ω T = ∆ψ = 2π

T =
2π
ω

= 2π
(
∂H(I)
∂I

)−1

That is, to determine the period of the motion, we only need to know ∂H(I)
∂I ; we don’t need

to fully solve the equations of motion.

A final interesting feature is that the line integral
∮
p dq can be rewritten as an area integral.

Recall that p = p(q, I), so that
∮
p dq is really just the area between the line p = 0 and

the curve p = p(q, I). If the orbit is closed, then one gets contributions from the p > 0
region during one half of the period and the p < 0 region during the other half, while q goes
from one extreme of its motion to the other and back. So one gets the area enclosed by the
contour p = p(q, I). If the orbit is not closed, one only gets the area on one side of the line
p = 0. So, for closed orbits,

I =
1

2π

∫ ∫
dp dq (2.60)

Example 2.14: Action-angle variables for the simple harmonic oscillator.

We have already done this above using the generating function that was used earlier, but we
can find the action-angle variables without that function also. The Hamiltonian is (again,
absorbing the mass into the coordinate)

H =
1
2
(
p2 + ω2 q2

)
≡ E

and has constant value E. Therefore, we may find p = p(q, E):

p =
√

2E − ω2 q2

The action variable is thus

I =
1

2π

∮
p dq =

∮
dq
√

2E − ω2 q2

=
2E
2π ω

∫ 2π

0
d sin θ

√
1− sin2 θ

=
2E
2π ω

∫ 2π

0
cos2 θ dθ

=
2E
2π ω

∫ 2π

0

1
2

(1 + cos 2 θ) dθ

=
E

ω
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where the integral has been done using the substitution q =
√

2E
ω sin θ. The oscillation

period is

T = 2π
(
∂H(I)
∂I

)−1

=
2π
ω

as expected.

It is amusing to note that the action-angle variable formalism can be used to derive the
generating function for the canonical transformation of the simple harmonic oscillator from
position and momentum to energy and phase, which was the generating function that would
have been very difficult to guess a priori. Details are provided in Hand and Finch Section
6.5. In general, this is how one can derive generating functions systematically rather than
guessing them.

Additional Examples: The pendulum example is worked out in Hand and Finch Section
6.5.

Multiple-Dimensional Action-Angle Variables

Suffice it to say that one can generalize action-angle variables to multiple coordinate di-
mensions if there is some coordinate system in which the periodic motion is separable into
periodic motion in each dimension. Looking forward to our discussion of the Hamilton-
Jacobi equation, this is equivalent to the statement that the Hamilton-Jacobi equation is
separable in some coordinate system. We will then be able to write Hamilton’s Character-
istic Function as a sum of terms, W (~q, ~α) =

∑
kWk(qk, ~α), each of which generates its own

canonical transformation. Separability implies that the period of the motion in the different
coordinates may be different.

Adiabatic Invariance

Another useful property of action variables is that they are adiabatically invariant –
they remain fixed for sufficiently small time variations in the Hamiltonian, even if the total
energy changes more quickly.

To prove this, consider a Hamiltonian that is dependent on time only through some pa-
rameter α (e.g., the spring constant of the spring in the simple harmonic oscillator), with
α varying slowly. We require the variation be slow enough so that, in a single period of
the motion, ∆E/E � 1. The generating function necessarily also becomes a function of
α and thus of time. The canonical transformation from (q, p) to (ψ, I) therefore changes
the Hamiltonian as follows (remember, this refers back to our introduction to the use of
generating functions):

H̃(ψ, I, α) = H(p(I, ψ, α), q(I, ψ, α), α) +
∂W̃ (q, I, α)

∂t

= H(p(I, ψ, α), q(I, ψ, α), α) +
∂W̃ (q, I, α)

∂α
α̇

where the second term has been rewritten using ∂
∂α because the explicit time dependence

in the entire problem is only through α(t). Let us calculate İ from Hamilton’s equations in
the new Hamiltonian:

İ = −∂H̃
∂ψ

= −∂H
∂ψ
− ∂2W̃

∂ ψ ∂ α
α̇
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The first term vanishes because the Hamiltonian is cyclic in ψ. This does not mean that
the Hamiltonian before the canonical transformation is time-independent; rather, it simply
means that the Hamiltonian, when expressed in terms of (ψ, I) still has no direct dependence
on ψ. As an example, consider the harmonic oscillator, which is rewritten as H = ω I in
terms of action-angle variables. The lack of ψ dependence does not change if we allow ω to
vary slowly with time, though of course H is now time-dependent. We average İ over one
period:

−
〈
İ
〉

=
1

2π

∫ 2π

0
dψ α̇

∂2 W̃

∂ ψ ∂ α

We neglect higher order variations in α beyond α̇, so α̇ can be pulled out of the integral
and the integral done trivially:

−
〈
İ
〉

=
α̇

2π

[
∂W̃ (q, ψ + 2π, α(T ))

∂α
− ∂W̃ (q, ψ, α(0))

∂α

]

Recall that W̃ is periodic in ψ because the motion is periodic in ψ. So we have

−
〈
İ
〉

=
α̇

2π

[
∂W̃ (q, ψ, π, α(T ))

∂α
− ∂W̃ (q, ψ, α(0))

∂α

]

= T
α̇2

2π
∂2W̃

∂α2
≈ 0

That is, because
〈
İ
〉
∝ α̇2, it varies much more slowly in time than the Hamiltonian (which

depends linearly on α̇ via the generating function). To first order α̇, we can take I to be
constant. This is of great benefit, in that it gives us one conserved quantity even when the
Hamiltonian is (slowly) time-varying.

Example 2.15: Harmonic oscillator with varying ω (e.g., varying spring constant or varying
mass). If ω is fixed, we have

E = ω I

Adiabatic invariance implies I is constant to first order even as ω and E vary. Thus, though
the energy of the system is changing, it is changing in a very well-defined way, proportional
to ω with the constant of proportionality being I. Recall that the solution to the problem
is (Example 2.13 and 2.14, also rewritten in terms of action-angle variables at the start of
this section)

q =

√
2 I
ω

sin ψ

p =
√

2 I ω cos ψ

We thus see that the effect on the motion of varying ω is simply to vary the shape of the
phase space ellipse but to otherwise leave the motion unchanged. In particular, the phase
of the oscillator is not disturbed because the phase is contained in the sin and cos terms
that are independent of ω. The lack of first-order time-dependence can to some extent
be seen by considering the area enclosed by the above orbit. The orbit is an ellipse with
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semimajor axes
√

2 I
ω and

√
2 I ω, so the area is 2π I as one would expect. I is to first

order independent of the variation of ω, so the area of the orbit stays fixed. The ellipse
changes shape – if ω is increased, the maximum amplitude of the motion decreases and the
maximum momentum increases – but its area is preserved. This is analogous to Liouville’s
theorem.

Other Examples: see Hand and Finch Section 6.5 for the pendulum example.

2.4.5 The Hamilton-Jacobi Equation

The Hamilton-Jacobi equation makes use of a special canonical transformation to convert the
standard Hamiltonian problem of 2M first-order ordinary differential equations in 2M variables
into a single first-order partial differential equation with M + 1 partial derivatives with respect to
the {qk} and time.

The Goal

We propose to do a slightly crazy thing – we want a canonical transformation from some
arbitrary set of generalized coordinates (~q, ~p) to some new set ( ~Q, ~P ) such that all the ~Q
and ~P are constant. One way to guarantee this is to require that H̃( ~Q, ~P ) = 0. Recalling
our equation for the transformation of the Hamiltonian under a canonical transformation,
Equation 2.41, we are requiring there be a generating function F such that

0 = H̃( ~Q, ~P ) = H(~q, ~p) +
∂F

∂t

This is essentially a differential equation for F . Is it possible to find such a function F?

The Formal Solution – the Hamilton-Jacobi Equation

Since the new momenta will be constant, it is sensible to make F a function of the type F2,
F = S(~q, ~P ). The ~p thus satisfy pk = ∂S

∂qk
. Our condition on the generating function is thus

the partial differential equation, also known as the Hamilton-Jacobi Equation,

H

(
~q,
∂S(~q, ~P )

∂~q
, t

)
+
∂S(~q, ~P )

∂t
= 0 (2.61)

S is known as Hamilton’s Principal Function. Since the ~P are constants, this is a partial
differential equation in M + 1 independent variables ~q and t for the function S. We are in
this case choosing not to consider the partial derivatives ∂S

∂~q = ~p to be independent of ~q.15

Since we have M + 1 independent variables, there are M + 1 constants of integration. One
of these is the constant offset of S, which is physically irrelevant because physical quantities
depend only on partial derivatives of S. Since a solution S of this equation will generate a
transformation that makes the M components of ~P constant, and since S is a function of
the ~P , the ~P can be taken to be the M constants.16

Independent of the above equation, we know that there must be M additional constants
to specify the full motion. These are the ~Q. The existence of these extra constants is not

15As we have discussed many times before, it is our choice whether to impose this “constraint” at the beginning or
the end of solving the problem; if we did not impose this constraint at the beginning, we would have to carry along
the M constraint equations ~p = ∂S

∂~q
and apply them at the end.

16One could choose an arbitrary information-preserving combination of the ~P to instead be the constants, but
clearly the choice we have made is the simplest one.
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implied by the Hamilton-Jacobi equation, since it only needs M + 1 constants to find a
full solution S. The additional M constants exist because of Hamilton’s equations, which
require 2M initial conditions for a full solution.

Since the ~P and ~Q are constants, it is conventional to refer to them with the symbols
~α = ~P and ~β = ~Q. The full solution (~q(t), ~p(t)) to the problem is found by making use of
the generating function S and the initial conditions ~q(0) and ~p(0). Recall the generating
function partial derivative relations are

~p =
∂S(~q, ~α, t)

∂~q
(2.62)

~β =
∂S(~q, ~α, t)

∂~α
(2.63)

The constants ~α and ~β are found by applying the above equations at t = 0:

~p(t = 0) =
∂S(~q, ~α, t)

∂~q

∣∣∣∣
t=0,~q(t=0),~α

(2.64)

~β =
∂S(~q, ~α, t)

∂~α

∣∣∣∣
t=0,~q(t=0),~α

(2.65)

The latter two equations let us determine the ~α and ~β from ~q(t = 0) and ~p(t = 0), and then
the former two equations give us (implicitly, at least) ~q(t) and ~p(t).

We can more directly determine what S is by evaluating its total time derivative:

dS

dt
=

∂S

∂t
+
∑
k

∂S

∂qk
q̇k

= −H +
∑
k

pk q̇k

= L

where we arrived at the second line by using one of the generating function partial derivative
relations pk = ∂S

∂qk
and the Hamilton-Jacobi equation. We thus see that the generating

function S is just the indefinite integral of the Lagrangian:

S =
∫
dtL

This is an interesting result – that the action integral is the generator of the canonical
transformation that corresponds to time evolution. It comes back as a defining principle
in field theory, quantum mechanics, and quantum field theory, and, to some extent, in the
Feynman path integral formulation of quantum mechanics. It is not of particular practical
use, though, since to calculate the indefinite integral we must already know the solution
~q(t), ~p(t).

When H is Conserved – Hamilton’s Characteristic Function and the Abbreviated
Action

Let us consider the common case of H being conserved. This certainly occurs if H has no
explicit time dependence, though that is not a necessary condition. Since H is a constant,
we know that S can be written in the form

S(~q, ~α, t) = W (~q, ~α)− E t (2.66)
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where E = H is the time-independent value of H. That the above rewriting is possible
is seen by simply calculating ∂S

∂t ; the Hamilton-Jacobi equation is satisfied because H is
constant. The definition implies that partial derivatives of S and W with respect to ~q
are identical, so the Hamilton-Jacobi equation can be rewritten in the form (known as the
restricted Hamilton-Jacobi equation)

H

(
~q,
∂W (~q, ~P )

∂~q

)
= E (2.67)

The function W is known as Hamilton’s Characteristic Function. W can be rewritten
in a more physical manner:

W = S + E t =
∫
dt (L+H)

=
∫
dt
∑
k

pk q̇k =
∫
d~q · ~p (2.68)

which is known as the abbreviated action.

W is more valuable than as just another interesting theoretical quantity. The restricted
Hamilton-Jacobi equations looks like a canonical transformation of the Hamiltonian by
a F2 generating function because we have an equation where something (E) equals the
Hamiltonian. The reason it must be a F2 function is because the momenta are replaced by
∂W
∂~q in the original Hamiltonian.

It should first be realized that the canonical momenta ~P generated by W may not be the
same as the ~α generated by S; after all, W is a different function from S. But, clearly,
W is very close to S, differing only by the term E t. One possible choice of the new
momenta ~P is to say P1 = E and leave the remainder unchanged. That is, suppose we had
solved for S and found the M constant momenta ~α. We have in the relation between S
and W another constant E. Since there are only M constants to be specified to define S
(neglecting the offset term), E must be some combination of those M constants. That is,
of the M + 1 constants E and ~α, only M are independent. The solution S chooses the ~α
as the independent ones and E as the derived one. But we are free to instead make E an
independent one and rewrite α1 in terms of E and the remainder of ~α. This is not the only
choice we could have made, but obviously it is a simple one.

Let us explore whether W does indeed qualify as a generating function and what transfor-
mation it generates. Does the above choice of the relation between the momenta ~α from
the Hamilton-Jacobi equation and the moment ~P of the restricted Hamilton-Jacobi equa-
tion work – does it generate a canonical transformation that makes H̃ simply equal to the
canonical momentum E? We can see that the only difference between the transformations
generated by S and by W is in P1 and Q1. The remaining Pj are left unchanged by defini-
tion. The corresponding Qj are seen to be the same by calculating what they would be if
W is indeed a generating function:

Qj =
∂W

∂Pj
=

∂

∂Pj
(S + E t) =

∂S

∂Pj
+ t

∂E

∂Pj
= βj j 6= 1

where βj = ∂S
∂Pj

is the Qj from our original S transformation and the ∂E
∂Pj

term vanishes for
j 6= 1 because E is P1. Since the Qj and Pj are expressly unchanged for j > 1, and neither
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appears in H̃ = E (the Hamiltonian after the canonical transformation to ( ~Q, ~P ) generated
by W ), Hamilton’s equations are trivially satisfied and the transformation generated by W
is canonical in the j > 1 coordinates.

What about j = 1? The generating function would give us for Q1:

Q1 =
∂W

∂P1

=
∂S

∂P1

+ t =
∂S

∂α1

∂α1

∂P1

+ t = β1
∂α1

∂P1

+ t ≡ β′1 + t

The statement ∂S
∂P1

= ∂S
∂α1

∂α1
∂P1

is not obvious. The reason it holds is because we know that
P1 can written in terms of α1 and the other momenta αj , and vice versa, and that, when
all other momenta are held constant, variations in α1 and P1 are therefore directly related.
Essentially, the derivatives all become one-dimensional and standard chain rule arguments
then apply. Does this form for Q1 show that the transformation is canonical? This form
gives Q̇1 = 1. Hamilton’s equations in the new coordinates would give Q̇1 = ∂H̃

∂P1
= 1, so

yes on the first of Hamilton’s equations. The other Hamilton’s equation, Ṗ1 = − ∂H̃
∂Q1

, is
trivially satisfied because both sides vanish: the left side because H is conserved, and the
right side becauseQ1 does not appear in H̃. So, then, we have shown that the transformation
generated by W is indeed canonical.

To summarize: we have found that, whenH is conserved and has value E, ifW (q, E, α2, . . . , αM )
satisfies the equation

H

(
~q,
∂W (~q,E, α2, . . . , αM )

∂~q
, t

)
= E

then W generates a canonical transformation that transforms H into H̃ = E, with the
transformation of the coordinates having the generic functional form

pk =
∂W (~q,E, α2, . . . , αM )

∂qk
(2.69)

Qk =
∂W (~q,E, α2, . . . , αM )

∂αk
= βk k > 1 (2.70)

Q1 =
∂W (~q,E, α2, . . . , αM )

∂E
+ t = β′1 + t (2.71)

that incorporates initial conditions via the equations

pk(t = 0) =
∂W (~q,E, α2, . . . , αM )

∂qk

∣∣∣∣
q(t=0),E,α2,...,αM

(2.72)

βk =
∂W (~q,E, α2, . . . , αM )

∂αk

∣∣∣∣
q(t=0),E,α2,...,αM

(2.73)

β′1 =
∂W (~q,E, α2, . . . , αM )

∂E

∣∣∣∣
q(t=0),E,α2,...,αM

(2.74)

The distinction between k = 1 and k > 1 is due to the choice of P1 as the energy. Note
that, in all the equations, the time dependence is nonexistent or very simple. For the more
general transformation and generating function S, while the Qk were all constant, S could
have had explicit time dependence, so there might have been an explicit time dependence
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in the relation between ~q, ~α, and ~β. Now, we are guaranteed that there can be such explicit
time dependence in only the Q1 equation. And, since the Q1 equation is so simple, we
can use it to eliminate t completely as an independent variable. We can pick a coordinate
(call it q1 for specificity) as the independent variable and parameterize the evolution of
the remaining qk and all the pk in terms of it. The resulting relations are called orbit
equations because they describe the shapes of the particle paths in phase space.

Note that we could have made a more complicated choice of how to relate E to the canonical
momenta. Instead of picking a transformation that makes H̃ = P1 a simple function of only
the first canonical momentum, we could have chosen H̃ = H̃(~P ) a more complicated (but
still time-independent) function of all the momenta. This is a choice, based on what is
convenient for the problem. If we had chosen this route, some or all of the equations for Qk
would have had a linear time dependence in them. The system remains fairly simple. This
kind of situation is presented in the example on the anisotropic simple harmonic oscillator
below.

There is a very nice table in Section 10.3 of Goldstein comparing and contrasting the S and
W transformations.

Separability

The abstract discussion above has made no attempt to demonstrate in what cases the
equations are actually explicity solvable. One sufficient, but not necessary, condition for
solubility is that the Hamilton-Jacobi equation be separable; that is, if Hamilton’s Prin-
cipal Function can be written as a sum of M terms, each depending on only one of the
original coordinates and time,

S(~q, ~α, t) =
∑
k

Sk(qk, ~α, t) (2.75)

then we can explicitly show how to convert the partial differential equation to M ordinary
differential equations using separation of variables. If S can be written in the above
fashion, we are guaranteed that H can also be written this way because H is, theoretically
at least, derived from S through L. The Hamilton-Jacobi equation then becomes∑

k

[
Hk

(
qk,

∂Sk
∂qk

, ~α, t

)
+
∂Sk(qk, ~α, t)

∂t

]
= 0

Since each term in the sum depends on a different coordinate (and the same constants ~α),
each term must separately vanish, yielding a set of M uncoupled equations

Hk

(
qk,

∂Sk
∂qk

, ~α, t

)
+
∂Sk(qk, ~α, t)

∂t
= 0 (2.76)

If the Hk are individually conserved (e.g., none have any explicit time dependence), then
we can further deduce

Sk(qk, ~α, t) = Wk(qk, ~α)− αk t

and therefore

Hk

(
qk,

∂W

∂qk
, ~α

)
= αk (2.77)
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where we have obviously chosen to take the M constants αk to be the values of the indi-
vidually conserved Hk rather than taking α1 =

∑
kHk and leaving the remaining αk to be

some linear combination of the Hk. By this choice, the total energy is E =
∑

k αk.

Separability of H in the above fashion is guaranteed if the Hamiltonian meets the Staeckel
Conditions:

1. The Hamiltonian is conserved (as we already discussed above).

2. The Lagrangian is no more than a quadratic function of the generalized velocities, so
the Hamiltonian has the form

H =
1
2

(~p− ~a)T T−1 (~p− ~a) + V (~q)

where the ak are functions only of the conjugate coordinate, ak = ak(qk) only, T is
a symmetric, invertible matrix, and V (~q) is a potential energy function that depends
only on the coordinates.

3. The potential energy can be written in the form

V (~q) =
∑
k

V (qk)
T kk

4. And the final, inscrutable condition: If we define a matrix φ by∑
l

δkl φ
−1
kl

=
1
T kk

with

∂Wk

∂qk
− ak =

∑
lm

2 δkl φlm γm

where ~γ is an unspecified constant vector. The diagonal elements of φ and φ−1 may
depend only on the associated coordinate.

We will not attempt to prove these conditions; they are proven in Appendix D of the second
edition of Goldstein.

Examples

Example 2.16: Simple harmonic oscillator

The simple harmonic oscillator Hamiltonian is (using the same form as used in Example
2.13):

H =
1
2
(
p2 + ω2 q2

)
≡ E

where we have explicitly written the conserved value of H as E. The Hamilton-Jacobi
equation for this Hamiltonian is

1
2

[(
∂S

∂q

)2

+ ω2 q2

]
+
∂S

∂t
= 0
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where we have made the substitution p = ∂S
∂q in keeping with the assumption that S is a F2

generating function. Since H is conserved, we may proceed to the Hamilton’s Characteristic
Function, writing ∂S

∂t = α a constant:

1
2

[(
∂W

∂q

)2

+ ω2 q2

]
= α

Obviously, α = E since the left side of the equation is the Hamiltonian. The above equation
is directly integrable since it is now a differential equation in q only:

∂W

∂q
=
√

2E − ω2 q2

W =
√

2E
∫
dq

√
1− ω2 q2

2E

S = −E t+
√

2E
∫
dq

√
1− ω2 q2

2E

We neglect to perform the integration (which is entirely doable via trigonometric substitu-
tion, resulting in a cos function) because we only need the partial derivatives of S. We have
already evaluated the one constant canonical momentum, so let us obtain the corresponding
constant β for the linearly evolving coordinate using Equation 2.71:

t+ β =
∂W

∂α
=
∂W

∂E

=

√
1

2E

∫
dq√

1− ω2 q2

2E

=
1
ω

arcsin
ω q√
2E

which is easily inverted to give

q =
√

2E
ω

sin (ω t+ φ)

where φ = ω β is just a rewriting of the constant. We can now obtain p from Equation 2.70:

p =
∂W

∂q
=
√

2E

√
1− ω2 q2

2E

=
√

2E cos (ω t+ φ)

Finally, we need to connect the constants E and φ (α and β in the formal derivation) with
the initial conditions. We could go back to Equations 2.65 and 2.65, but it is easier to
simply make use of the solutions directly. From the Hamiltonian, we see

E =
1
2
(
p2
0 + ω2 q20

)
and from the solutions for q(t) and p(t) we see

tanφ = ω
q0
p0
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Hamilton’s Principal Function in fact generates the same canonical transformation as we
saw in Example 2.13, converting from position and momentum to energy and phase. The
energy is conserved and the phase evolves linearly with time. If we want, we can recover
Hamilton’s Principal Function explicitly by substituting the solution into our integral form
for S and integrating:

S = −E t+
√

2E
∫
dq

√
1− ω2 q2

2E

= −E t+
√

2E
∫ [

d

(√
2E
ω

sin (ω t+ φ)

)]√
1− sin2 (ω t+ φ)

= −E t+ 2E
∫
dt cos2 (ω t+ φ)

= 2E
∫
dt

[
cos2 (ω t+ φ)− 1

2

]
where notice that we not only had to substitute for q but for dq also. If we calculate the
Lagrangian directly, we have

L =
1
2
(
p2 − ω2 q2

)
= E

(
cos2 (ω t+ φ)− sin2 (ω t+ φ)

)
= 2E

[
cos2 (ω t+ φ)− 1

2

]
and we see that S =

∫
dtL explicitly.

Example 2.17: Two-dimensional anisotropic harmonic oscillator

An anisotropic two-dimensional harmonic oscillator has different spring constants (and
therefore different characteristic frequencies) in the two dimensions. It thus does not triv-
ially separate into cylindrical coordinates. The Hamiltonian is

H =
1
2
(
p2
x + p2

y + ω2
x x

2 + ω2
y y

2
)
≡ E

The Hamiltonian is clearly separable in Cartesian coordinates, so we are led to a Hamilton’s
Principal Function of the form

S(x, y, αx, αy, t) = Wx(x, αx) +Wy(y, αy)− (αx + αy) t

where E = αx + αy. Here we have chosen to do the problem symmetrically in the two
momenta rather than pick one to be the energy. Since the system is separable, we may go
directly to Equation 2.77:

1
2

[(
∂Wx

∂x

)2

+ ω2
x x

2

]
= αx

1
2

[(
∂Wy

∂y

)2

+ ω2
y y

2

]
= αy
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Each equation is just a 1-dimensional oscillator equation, so the solution is

x =
√

2αx
ωx

sin (ωx t+ φx)

px =
√

2αx cos (ωx t+ φx)

y =

√
2αy
ωy

sin (ωy t+ φy)

py =
√

2αy cos (ωy t+ φy)

Example 2.18: Isotropic two-dimensional harmonic oscillator

Here, ωx = ωy so we write the Hamiltonian in polar coordinates (r, θ):

H =
1
2

(
p2
r +

p2
θ

r2
+ ω2 r2

)
≡ E

where pθ = r2 θ̇ is the canonical momentum conjugate to θ. The problem is not trivially
separable because the second term depends on both r and pθ, mixing the two coordinates.
However, because the Hamiltonian is cyclic in θ, we are assured that pθ = αθ is constant.
This is the condition we need to be able to separate variables: Hamilton’s Principal Function
must be writeable as a sum of terms Sk(qk, ~α, t), which we can indeed do:

S(r, θ, E, αθ) = Wr(r, E, αθ) +Wθ(θ, E, αθ)− E t

where here we do not try to have symmetric constants because there is no symmetry between
r and θ. The reduced Hamilton-Jacobi equation is

1
2

[(
∂Wr

∂r

)2

+
α2
θ

r2
+ ω2 r2

]
= E

There is no equation for θ because there are no terms in H that depend on θ. We can
trivially obtain Wθ by making use of

∂Wθ

∂θ
= pθ = αθ

Wθ = αθ θ

At this point, we are essentially done with the formal part, and we need only to solve
the above differential equation for r mathematically. But that equation is not trivially
integrable, so we pursue a different path (with some foreknowledge of the solution!). The
solution is no doubt going to involve simple harmonic motion in the two dimensions, so we
try

x =
√

2α
ω

sin (ω t+ φ)

px =
√

2α cos (ω t+ φ)

y =
√

2α
ω

sinω t

py =
√

2α cosω t
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where we include a phase factor for x only because there can be only one undetermined
constant of integration for this first-order differential equation. The resulting polar and
angular coordinate and momenta solutions are

r =
√

2E
ω

√
sin2 (ω t+ φ) + sin2 ω t

pr = ṙ

θ = arctan
[

sinω t
sin (ω t+ φ)

]
pθ = r2 θ̇ = αθ

For completeness, let us calculate pθ explicitly from θ to see what form it has.

pθ = r2 θ̇

=
2E
ω2

[
sin2 (ω t+ φ) + sin2 ω t

] d
dt

arctan
[

sinω t
sin (ω t+ φ)

]
=

2E
ω2

[
sin2 (ω t+ φ) + sin2 ω t

]{
1 +

sin2 ω t

sin2 (ω t+ φ)

}−1
d

dt

[
sinω t

sin (ω t+ φ)

]
=

2E
ω2

sin2 (ω t+ φ) + sin2 ω t

1 + sin2 ω t
sin2(ω t+φ)

{
ω cosω t

sin (ω t+ φ)
− sinω t

sin2 (ω t+ φ)
ω cos (ω t+ φ)

}
=

2E
ω

[cosω t sin (ω t+ φ)− sinω t cos (ω t+ φ)]

=
2E
ω

sinφ

which is very nice. If we consider φ = 0, so the two oscillators are perfectly in phase, then
the motion is along a straight line through the origin:

r =
2
√
E

ω
|sinω t|

pr =
√

2E cosω t

θ = arctan 1 =
π

4
pθ = 0

If we consider φ = π
2 , the two oscillators are π/2 out of phase and the motion is circular:

r =
√

2E
ω

√
cos2 ω t+ sin2 ω t =

√
2E
ω

pr = 0
θ = ω t

pθ =
2E
ω

= r2 ω

as one would expect for perfect circular motion.

Additional Examples: See Hand and Finch Section 6.5 – there are a couple of gravita-
tional examples.
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Deriving Action-Angle Variables via the Hamilton-Jacobi Formalism

Earlier, we introduced the concept of action-angle variables for 1-dimensional systems with
a conserved Hamiltonian by using F1-type and F2-type generating functions to transform
to coordinates (ψ, I) such that I is constant and ψ evolves linearly with time. This is
obviously quite analogous to the Hamilton-Jacobi formalism, so it is interesting to repeat
the derivation using those results.

We have a 1-dimensional system for which the Hamiltonian is conserved. We can then cer-
tainly use the Hamilton-Jacobi formalism, specializing to the conserved Hamiltonian case.
That formalism gives us the new generating function, Hamilton’s Characteristic Function
(see Equation 2.68)

W =
∫
p dq

and tells us that the transformation generated by W makes the Hamiltonian identically
equal to the constant momentum variable α1 and yields a linearly evolving coordinate
Q1 = t+β1 where β1 is set by initial conditions. Now, since I is not identically equal to E,
this exact equation for Q1 does not hold for ψ. But we can find ψ. First, the explicit form
of ψ is given by the generating function, which yields the relation

ψ =
∂W

∂I
=

∂

∂I

∫
p dq

Where does I come in? Remember that we wrote earlier p = p(q, α1). We now have two
constants I and α1 when we know there is only one independent constant, so we can choose
I as that constant and rewrite α1 in terms of I. So

ψ =
∂

∂I

∫
p(q, I) dq

The time evolution of ψ is found by Hamilton’s equations

ψ̇ =
∂H(I)
∂I

≡ ω

which is just some constant determined by the particular functional form of H(I).

Hamilton-Jacobi Theory, Wave Mechanics, and Quantum Mechanics

Think about S as a surface in configuration space (the M -dimensional space of the system
coordinates ~q). The Hamilton-Jacobi equation finds a function S such that the momenta
are pk = ∂S

∂qk
, which can be written ~p = ~∇qS. The gradient of a function gives a vector

field normal to surfaces over which the function value is constant. So the momentum vector
is normal to surfaces of constant S. The momentum vector is also tangent to the particle
trajectory in configuration space. So the particle trajectories are always normal to the
surfaces of constant S. For conserved Hamiltonians, where we write S = W − E t, the
shapes of the surfaces are given by Hamilton’s Characteristic Function W and they move
linearly in time due to the −E t term.

In optics, a classical electromagnetic propagates in a similar fashion. There are surfaces
of constant phase φ. These are like the surfaces of constant S. The wave propagates
by following the normal to the surfaces of constant phase just as the mechanical system
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follows the trajectories perpendicular to the surfaces of constant S. Geometrical optics
rays are analogous to the particle trajectories, as these rays are always perpendicular to
surfaces of constant phase. The geometrical optics wavevector ~k is the obvious analogy to
the momentum ~p.

Thus, in the way that a classical wave’s phase advances linearly in time – the surfaces of
constant phase propagate linearly outward according to the wave’s phase velocity – similarly
the surfaces of constant S propagate forward at a speed determined by the total energy E.
The action integral S appears to have the characteristics of a wave phase function φ.

In the pre-quantum era, this analogy was little more than a mathematical curiosity, perhaps
providing some practical benefit by allowing the flow of solutions between mechanics and
optics. The power of the analogy becomes clear only when we consider how it relates to
quantum mechanics.

In quantum mechanics, a particle is described not by a simple trajectory ~q(t), but rather
by a wave function ψ(~x, t) that can have nonzero value at all points in space and time. If
we let ρ(~x, t) = |ψ(~x, t)|2, then ρ describes the probability of finding the particle at position
~x at time t. The classical trajectory is given by ~q(t) =

∫
d3x~x |ψ(~x, t)|2; i.e., it is the first

moment of the wave function. In one dimension, the wave function satisfies Schrodinger’s
equation,

− ~2

2m
∂2ψ

∂x2
+ V (x)ψ = i ~

∂ψ

∂t

where V (x) is the classical potential in which the particle moves. The wave function clearly
must have the form ψ(x, t) =

√
ρ(x, t) ei φ(x,t). Given the analogy between S and a classical

wave’s phase φ above, let us in fact assume φ = S/~. As ~ → 0, the phase of the wave
oscillates faster and faster, which we might expect would hide the wave characteristics
(waves are most “wave-like” in the long-wavelength limit) as is necessary in this limit. If
we rewrite ψ(x, t) =

√
ρ(x, t) e

i
~ S(x,t), Schrodinger’s equation becomes

− ~2

2m

{
∂2√ρ
∂x2

+
2 i
~
∂
√
ρ

∂x

∂S

∂x
− 1

~2

√
ρ

(
∂S

∂x

)2

+
i

~
√
ρ
∂2S

∂x2

}
e

i
~ S + V (x)

√
ρ e

i
~ S

= i ~
{
∂
√
ρ

∂t
+
i

~
√
ρ
∂S

∂t

}
e

i
~ S

The equation contains terms up to second order in ~; neglect all terms containing ~ or ~2.
This leaves (canceling the common

√
ρ e

i
~ S)

1
2m

(
∂S

∂x

)2

+ V (x) +
∂S

∂t
= 0

We thus recover the Hamilton-Jacobi equation for a particle propagating in a potential
V (x).
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Chapter 3

Oscillations

Oscillations are a physical phenomenon seen in a wide variety of physical systems. They are
especially important in that they describe the motion of a system when perturbed slightly from
an equilibrium. We work through the basic formalism of simple linear oscillations, both natural
and driven, consider coupled oscillating systems and show how to decompose them in terms of
normal coordinates, and apply the theory to oscillations of continuous systems to introduce wave
phenomena.
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3.1 The Simple Harmonic Oscillator

The linear simple harmonic oscillator (SHO) is the foundation of the theory of oscillations. We
discuss equilibria in physical systems and how small oscillations about equilibria can in most cases
be described by the SHO equation. We investigate the effect of damping and driving forces on the
SHO, using the opportunity to introduce Green’s functions.

We follow Hand and Finch Chapter 3 for the most part, though we make small changes here
and there. Most intermediate mechanics texts will have a similar discussion of the basics, though
most will not discuss Green’s functions.

3.1.1 Equilibria and Oscillations

Types of Equilibria

Recall in Section 1.1.3 that the equilibrium points of a conservative system (one with a
potential energy function) can be found by requiring ~∇U = 0, and that the stability of the
equilibria is determined by the sign of the second derivatives. In one dimension, the types
of equilibria are

• stable equilibrium: d2U/dx2 > 0

• unstable equilibrium: d2U/dx2 < 0

• saddle point: d2U/dx2 = 0

With rheonomic systems, the stability of an equilibrium point may change in time.

Equilibria from the Lagrangian Point of View

Consider a Taylor expansion around an equilibrium point (q0, q̇0) of an arbitrary 1-dimension
Lagrangian to second order in the generalized coordinates and velocities:

L ≈ A+B q + C q̇ +D q2 + E q q̇ + F q̇2

We neglect A since it is a constant offset and does not affect the dynamics. The constants
are given by assorted partial derivatives:

B =
∂L

∂q

∣∣∣∣
(q0,q̇0)

C =
∂L

∂q̇

∣∣∣∣
(q0,q̇0)

D =
1
2
∂2L

∂q2

∣∣∣∣
(q0,q̇0)

E =
∂2L

∂ q̇ ∂ q

∣∣∣∣
(q0,q̇0)

F =
1
2
∂2L

∂q̇2

∣∣∣∣
(q0,q̇0)

B = 0 in order for (q0, q̇0) to be an equilibrium position. The Euler-Lagrange equation for
the system is

d

dt
(C + E q + 2F q̇) = 2D q + E q̇

q̈ − D

F
q = 0

We would have found the same equation of motion had we started with

L ≈ D q2 + F q̇2
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This is just the simple harmonic oscillator Lagrangian with characteristic frequency

ω2 ≡ −D
F

Now, let’s rescale the time units to get rid of the coefficients: define β =
√∣∣F

D

∣∣ and define
a new time coordinate τ by t = β τ . The equation of motion and Lagrangian becomes

q̈ ± q = 0 L =
1
2
(
q̇2 ∓ q2

)
(3.1)

where the sign is the opposite of the sign of D
F . For reasonable Lagrangians, F is the

coefficient of the kinetic energy term and thus F > 0 holds.

Restricting to conservative, scleronomic systems, we are assured that the sign of D is set by
the sign of the second derivative of the potential energy, so stability is, as we found before,
determined by the shape of the potential energy function:

stable: q̈ + q = 0 D < 0 ∂2U
∂q2

> 0
unstable: q̈ − q = 0 D > 0 ∂2U

∂q2
< 0

Thus, we see that working from the Lagrangian perspective yields, as we would expect,
the same conditions for stable and unstable equilibria as we found from the Newtonian
perspective. More importantly, we see the central reason for studying the SHO in detail:
the Taylor expansion of (almost) any scleronomic, conservative, one-dimensional system
about a stable equilibrium looks like a simple harmonic oscillator. We will not show it here,
but this conclusion extends to multi-dimensional systems, too.

The Hamiltonian

Finally, we note that the above Taylor expansion also lets us write an approximate Hamil-
tonian for the system. Starting from the original L, we have

p ≈ ∂L

∂q̇
= C + E q + 2F q̇

H = p q̇ − L
≈ C q̇ + E q q̇ + 2F q̇2 −A−B q − C q̇ −D q2 − E q q̇ − F q̇2

= F q̇2 −D q2

or, after rescaling

H =
1
2
(
q̇2 ± q2

)
(3.2)

where the sign again determines the stability, + is stable, − is unstable. Since we earlier
demonstrated that the C and E terms do not affect the dynamics, we are free to drop them
and redefine the momentum simply as

p = 2F q̇
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3.1.2 Solving the Simple Harmonic Oscillator

Characteristics of the Equation of Motion

The equation of motion for the stable simple harmonic oscillator has been written

q̈ + q = 0

This is a linear, second-order differential equation with constant coefficients. It is:

• homogeneous: (the right side vanishes), so solutions can be scaled by a constant and
still satisfy the equation.

• linear: Because the equation is linear in q and its time derivatives, a linear combination
a q1(t) + b q2(t) of two solutions is also a solution.

Conventional Solution

You are no doubt well aware that the general solution of this equation of motion is a sinusoid,
which can be written in two forms:

a(t) = A sin(t+ φ) = A′ cos t+B′ sin t

where the two sets of coefficients are related to each other and the initial conditions by

A sinφ = A′ = q(0) A cosφ = B′ = q̇(0)

The period of oscillation is T = 2π, the frequency is ν = 1/2π, and the angular frequency
is ω = 1. For arbitrary ω 6= 1, these become ν = ω/2π and T = 2π/ω.

Complex Solution

Given the sinusoidal nature of the solution, we could equally well have written it as the real
part of a complex function:

qc(t) = Ac eit = Ac e
iφ eit = Ac [cos(t+ φ) + i sin(t+ φ)] (3.3)

where Ac = Ac e
iφ (and thus Ac = |Ac|). The initial conditions are

q(0) = R[qc(0)] = Ac cosφ = R[Ac]
q̇(0) = R[q̇c(0)] = −Ac sinφ = −I[Ac]

or, equivalently,

Ac = q(0)− i q̇(0)

where R[ ] and I[ ] take the real and imaginary part of a complex number. When a physical
solution is needed, we simply take R[q(t)].

We note that a shift of the time origin by t0 is now just a simple phase factor,

Ac = [q(t0)− i q̇(t0)] e−it0

Note the sign in the phase factor.
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3.1.3 The Damped Simple Harmonic Oscillator

Most simple harmonic oscillators in the real world are damped – mechanical oscillators, electrical
oscillators, etc. Thus, the damped simple harmonic oscillator is the next important system to study.

Introducing Damping

We assume that a damping force linear in velocity is applied to the harmonic oscillator.
For a mechanical oscillator, this could be a frictional force. For an electrical oscillator, this
could be a resistive element. Regardless, the frictional force is assumed to be of the form

Fdamp = − q̇
Q

The dimensionless constant Q is called the quality factor and is ubiquitous in the descrip-
tion of oscillatory systems with damping.

It is nontrivial to introduce frictional forces via the Lagrangian formalism. Since we have
already written an equation of motion, it is straightforward to include the damping term
via Newtonian mechanics. The equation of motion of the damped simple harmonic
oscillator is

q̈ +
q̇

Q
+ q = 0 (3.4)

This is obviously not the most generic frictional force that one can think of. It is, however,
the kind that is encountered in most damped electrical circuits and thus is of great practical
interest.

It is instructive to go back to a dimensional version of the equation to understand the
physical meaning of Q. The equation of a motion of a mechanical oscillator subject to a
linear damping force is

mẍ+ b ẋ+ k x = 0

ẍ+
b

m
ẋ+

k

m
x = 0

If time is rescaled by β =
√

m
k = ω−1 (i.e., t = β τ), then Q−1 = b/m

ω = b√
km

. Q decreases
as the damping constant increases, and Q increases as the spring constant or mass increase
relative to the damping constant (both of which will tend to make the damping constant
less important, either because there is a larger force for a given displacement or because the
moving mass has more inertia).

The equation of motion of a series LRC oscillator circuit (where q represents the charge on
the capacitor and q̇ is the current flowing in the circuit) is1

L q̈ + q̇ R+
q

C
= 0

q̈ +
q̇

L/R
+

1
LC

q = 0

q̈ +
q̇

τdamp
+ ω2 q = 0

1The choice of τdamp = L/R instead of τdamp = R C is determined by the correspondence b ↔ R, m ↔ L.
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When we rescale time by using t = β τ with β =
√
LC = ω−1, we obtain

q̈ +
q̇

ω τdamp
+ q = 0

giving Q = ω τdamp = 2π τdamp/T where T = 2π/ω is the oscillation period. That is, the
quality factor can be thought of as the ratio of the damping timescale to the oscillation
timescale; if the damping timescale is many oscillation timescales, then the resonator has
high Q.

A note on units: for reference, we rewrite the various equations with all the ωs in place so
the units are clear.

Frestore = −k x

Fdamp = −b ẋ =
mω

Q
ẋ =

√
km

Q
ẋ

ẍ+
ω

Q
ẋ+ ω2 x = 0

Correspondence with Other Textbooks

Unfortunately, different textbooks define Q in different ways. We list here the three possible
conventions so the reader may understand the correspondence between the results derived
here and those in other textbooks. The three choices essentially consist of whether Q
is defined relative to the natural frequency, the damped characteristic frequency, or the
amplitude resonant frequency. Explicitly, the three choices are (using the example of a
mechanical resonator with frictional damping force with coefficient b):

• Relative to natural frequency:

Q =
ω

b/m
where ω =

√
k

m
= natural frequency

This can also be written

Q = ω τdamp

This is the convention used in these notes.
• Relative the damped oscillation frequency:

Q =
ω′

b/m
where ω′ =

√
k

m
− 1

4

(
b

m

)2

= ω

√
1− 1

4

(
b/m

ω

)2

which can be written

Q = ω′ τdamp

• Relative to the amplitude resonant frequency (defined later in Section 3.1.5):

Q =
ωr
b/m

where ωr =

√
k

m
− 1

2

(
b

m

)2

= ω

√
1− 1

2

(
b/m

ω

)2

which can be written

Q = ωrτdamp

This is the convention used in Thornton.
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It seems obvious that the first equation is most sensible because it discusses the ratio of
damping and natural timescales; the other definitions refer to the ratio of the damping
to the damped characteristic or the resonant frequency timescales, both of which already
incorporate a damping correction; they are thus “moving targets.” Moreover, the first
definition results in Q giving in very simple form the amplitude and energy decay times.
And, of course, in the limit of high Q, the three definitions become identical.

Damped Solutions

Returning to the formal problem: we can try to solve via an exponential solution of the
kind tried in the undamped case, q = eiαt. One ends up with the equation(

−α2 + i
α

Q
+ 1
)
eiαt = 0

which is solved by the algebraic relation

α =
i

2Q
±
√

1− 1
4Q2

The solution will be

q(t) = exp
(
− t

2Q

)
exp

(
±i t

√
1− 1

4Q2

)
There is always a decay term. Depending on the sign of the discriminant, the second term
may be oscillatory or decaying or it may simply give 1. We examine these cases separately:

• Underdamped: Q > 1
2 . In this case, the discriminant is positive and we obtain

oscillatory motion from the second term. The complex solution is given by

qc(t) = Ac exp
(
− t

τd

)
exp

(
±i ω′ t

)
τd ≡ 2Q ω′ ≡

√
1− 1

4Q2
(3.5)

The oscillation frequency is shifted. The decay time is simply related to the quality
factor. The physical version of the solution is found by taking the real part,

q(t) = Ac exp
(
− t

τd

)
cos
(
ω′ t+ φ

)
Ac = |Ac| eiφ

Note that the shift in the frequency will be negligible for Q� 1
2 . The shift is quadrat-

ically suppressed; for large Q, Taylor expansion of the radical gives

ω′ ≈ 1− 1
8Q2

• Overdamped: Q < 1
2 . In this case, the discriminant becomes negative and the

second term also is decaying. There are actually two possible decay times due to the
sign freedom for the radical. The general solution is

q(t) = A exp
(
− t

τd,+

)
+B exp

(
− t

τd,−

)
τ−1
d,∓ =

1
2Q
±
√

1
4Q2

− 1 (3.6)
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The inversion of the sign in subscripting the solution is so that the + subscript goes
with the larger time constant. We refer to the decay constants as times (unlike Hand
and Finch) because it’s more intuitive. We have two possible decay times, one “fast”
and one “slow”. In the extreme limit of Q � 1

2 , the two solutions are extremely
different:

τd,+ ≈
1
Q

τd,− ≈ Q

• Critically damped: Q = 1
2 . The discriminant vanishes and the two solutions become

degenerate. The degenerate time constant is τd = 2Q = 1 (i.e., the damping time
becomes T/2π where T is the undamped oscillation period). However, we must have
another solution because the differential equation is second-order. We can motivate a
second solution by considering the limit Q→ 1

2 . The two decay time constants are

τ−1
d,∓ = 1±

√
ε

where |ε| � 1 is the small but nonzero radical. Consider two superpositions of the two
solutions

q1(t) = exp
(
− t

τd,+

)
+ exp

(
− t

τd,−

)
= exp (−t)

[
exp

(
t
√
ε
)

+ exp
(
−t
√
ε
)]

≈ 2 exp (−t)

q2(t) = exp
(
− t

τd,+

)
− exp

(
− t

τd,−

)
= exp (−t)

[
exp

(
t
√
ε
)
− exp

(
−t
√
ε
)]

≈ exp (−t)
[
1 + t

√
ε− 1 + t

√
ε
]

= 2 t
√
ε exp (−t)

The first superposition is just the solution we already had. The second superposition
gives us a valid second solution. One can confirm that it is a valid solution for Q = 1

2 :(
d2

dt2
+ 2

d

dt
+ 1
)
t exp (−t) = (−2 + t+ 2 (1− t) + t) exp (−t) = 0

So, we have that in the case Q = 1
2 , the generic solution is

q(t) = A exp (−t) +B t exp (−t)

For illustrations of the solutions, see Hand and Finch Figure 3.3. Note the distinct nature
of the two solutions in all cases.

When it is desired to return to unscaled time for the above solutions, all occurrences of t
should be replaced by ω t and all occurrences of ω′ should be replaced by ω′/ω.

Energy Decay

The physical interpretation of Q is best seen in the underdamped case. There is a clear
decay of the oscillation amplitude with time constant τd = 2Q. Since the energy in the
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oscillator is proportional to the square of the amplitude, the energy decays exponentially
with time constant Q; the energy satisfies the differential equation

dE

dt
= −E

Q

Recall that time has been rescaled so the angular frequency of oscillation is 1 and the period
is 2π. The energy decay time is therefore Q

2π periods of the oscillator (assuming Q� 1
2 so

we may ignore the frequency shift).

In the critically damped case, the energy decays twice as quickly as in the underdamped
case. This is not a discontinous change, as the discussion in the previous paragraph assumed
Q� 1

2 . As Q→ 1
2 , the frequency shift becomes significant and provides a smooth transition

from the weakly underdamped case to the critically damped case.

In the overdamped case, the interpretation is less clear. The energy is not a well-defined
quantity because the energy decays away in a time small compared to the original oscillation
period.

3.1.4 The Driven Simple and Damped Harmonic Oscillator

General Considerations

So far we have considered an oscillator in isolation: initial conditions are imposed and then
the system evolves, perhaps with damping. Frequently in reality we happen upon driven
oscillators, oscillators that are exposed to a continuous driving force – e.g., a driven LRC
circuit. The oscillator’s evolution is modified by the existence of the additional driving
force.

Generically, the mathematical problem we now wish to consider is

q̈ +
q̇

Q
+ q = F (t) (3.7)

The equation remains linear but is now inhomogeneous due to the presence of the driving
term on the right side. The presence of the driving term changes the character of the generic
solution. It now has the form

q(t) = qp(t) + qh(t)

where qp(t) satisfies the driven differential equation and qh(t) is any solution to the ho-
mogeneous equation. These two terms are also referred to as the particular and free
solutions for obvious reasons. We will see that, for the harmonic oscillator, these two terms
take the form of the steady-state and transient response of the system to the external
driving force. The free constants of the free solution must be set by some sort of boundary
conditions.

The generic method for generating the particular solution is to find the Green’s function
for the equation, which is the particular solution when the driving force is a δ-function
(impulse-like). The particular solution for arbitrary driving forces can be constructed using
the Green’s function. We will find the harmonic oscillator Green’s function below.
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Step Function Response

Prior to developing the harmonic oscillator Green’s function, let’s solve a simple case by
guessing the solution so that we may build up some intuition. Consider an underdamped
SHO drive by the step function driving force:

F (t) = F0 θ(t) =


0 t < 0
1
2 F0 t = 0
F0 t > 0

where θ(t) is the step function or Heaviside function: The value θ(0) = 1
2 is somewhat

arbitrary since it occurs for an infinitesimally small time.

At t� 0, we expect that the constant F is exactly balanced by the restoring force at q = F0

(the weird units – a position q and force F0 being equal – arise because the differential
equation is dimensionless due to rescaling by β). Since F is independent of time for t > 0,
this constant solution must the steady-state response. So, our particular solution is

qp(t > 0) = F0

Our arbitrary underdamped free solution is of the form

qh(t) = exp
(
− t

2Q

)[
A cosω′ t+B sinω′ t

]
q̇h(t) = − 1

2Q
qh(t) + exp

(
− t

2Q

)[
−ω′A sinω′ t+ ω′B cosω′ t

]
where Q and ω′ are as defined in the last section. We assume that the oscillator was initially
at rest, so q(0−) = q̇(0−) = 0. The position obviously cannot change discontinuously, so
q(0+) = 0 also. To change the velocity discontinously would require a δ-function force
(infinitely large for an infinitesimally short time), so the velocity is also continous, q̇(0+) = 0.
Thus, our solution satisfies

0 = q(0+) = qp(0+) + qh(0+) = F0 +A

0 = q̇(0+) = q̇p(0+) + q̇h(0+) = 0− A

2Q
+ ω′B

The above two equations determine the constants A and B, so our solution is

q(t) = F0

{
1− exp

(
− t

2Q

)[
cosω′ t+

1
2Qω′

sinω′ t
]}

Hand and Finch Figure 3.5 illustrates this solution – the oscillator is driven to oscillate
about the new equilibrium position q = F0, with the oscillation damping out after being
excited by the initial kick by the force. In the limit Q → ∞, the oscillations do not damp
but continue forever.

Delta-Function Response, or Green’s Functions

The above solution was easy to find, but that was partially because the driving force was so
simple and so determining the form of the particular solution was trivial. It may not always
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be so easy. However, there is a generic technique. Any driving force can be decomposed
into a series of delta functions 2:

F (t) =
∫ ∞

−∞
dt′ F (t′) δ(t′ − t) (3.8)

Because the equation is linear, if we can find a solution for the special driving force δ(t′− t),
then we can build up the full solution by linear combination. That is, if G(t, t′) satisfies the
differential equation for a SHO driven by a delta-function impulse

G̈+
Ġ

Q
+G = δ(t− t′)

where the dots indicate derivatives with respect to t, and t′ should be regarded as a param-
eter of the driving function, then the full solution can be calculated by

q(t) =
∫ ∞

−∞
dt′ F (t′)G(t, t′) (3.9)

The function G(t, t′) is known as the Green’s function for the differential equation under
consideration. Note that G has units of inverse time because the delta function does; this
provides the right units for q when the rescaling by β is undone.

Intuitively, one should think of the Green’s function G(t, t′) as giving the motion at a time
t if there was in impulsive force of unit amplitude at time t′. Since the differential equation
is linear, we obviously can find the response to two separate impulses a and b at times ta
and tb by calculating q(t) = aG(t, ta) + bG(t, tb). For a force consisting of impulses Fi at
times ti, i.e., F (t) =

∑
i Fiδ(t− ti), the solution will be q(t) =

∑
i FiG(t, ti). The extension

to a continous force is trivial, giving Equations 3.8 and 3.9 above.

A note on units: in the above differential equation, everything is unitless because the time
coordinate has been implicitly rescaled by β = ω−1; all the dots refer to d/dτ = d/d(ω t)
and the argument of the delta function should be τ , not t. If we eliminate τ in favor of t,
we get

ω−2 G̈+
Ġ

ω Q
+G = δ

(
ω [t− t′]

)
=

1
ω
δ(t− t′)

where the δ function now has units of inverse time because its argument has units of time.
Note that G remains unitless even when units are reinserted. The change comes in how G
is applied. Recall that our forced unitless differential equation is

q̈ +
q̇

Q
+ q = F (t)

Reinserting the time units and multiplying by mass gives

m q̈ +
mω

Q
q̇ +mω2 q = mω2 F (t)

2The defining property of the delta function is
R

I
dt δ(t− a) f(t) = f(a) where f(t) is an arbitrary function and I

is an interval in t containing a. The integral vanishes if I does not contain a. δ(t− a) looks like an impulse at t = a
of infinite height and infinitesimally small width. It has units of the inverse of its argument t so it cancels the dt in
integrals. Here, since t is unitless, the delta-function is unitless; but, usually, t will be time so δ will have units of
inverse time.
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Our force F (t) has the same units as q, length in this case. Multiplication of our F (t) by
mω2 gives units of force. If F ′(t) is the dimensionful force, then we may rewrite Equation 3.9
as

q(t) =
1

mω2

∫ ∞

−∞
dτ ′ F ′(τ ′)G(τ, τ ′)

where the variable of integration is τ because our differential equation for G was in τ .
Replacing τ = ω t, we obtain

q(t) =
1
mω

∫ ∞

−∞
dt′ F ′(t′)G(t, t′)

Now the units make sense: the integration gives force multiplied by time, which is mass
times speed, then division by mass and frequency gives length.

The explicit method for finding the Green’s function is to make use of the homogeneous
solution and the properties of the δ-function. Away from t = t′, the Green’s function
satisfies the homogeneous differential equation. Causality requires G(t, t′) = 0 for t < t′,
which is a perfectly good solution of the differential equation. Continuity of position then
implies G(t′, t′) = 0 too (i.e., the position cannot change instantaneously, even with and
infinite delta-function force). For t > t′, we can just take G to be the generic solution
to the homogeneous equation. The coefficients A and B are obtained by integrating the
differential equation for G (Equation 3.9) over a small interval around t = t′ and making
careful use of the delta function’s properties; essentially, this integration provides initial
conditions for G that determine A and B:∫ t′+ε

t′−ε
dt

[
G̈(t, t′) +

Ġ(t, t′)
Q

+G(t, t′)

]
=
∫ t′+ε

t′−ε
dt δ(t− t′)[

Ġ(t′ + ε, t′)− Ġ(t′ − ε, t′)
]

+
1
Q

[
G(t′ + ε, t′)−G(t′ − ε, t′)

]
+ 2 εG(t′, t′) = 1

where we have explicitly done the integrations. Now, use the facts Ġ(t′ − ε, t′) = 0 and
G(t′ − ε, t′) = 0 (which result from causality), giving

Ġ(t′ + ε, t′) +
1
Q
G(t′ + ε, t′) + 2 εG(t′, t′) = 1

Now, Taylor-expand the second term to obtain

Ġ(t′ + ε, t′) +
1
Q

[
G(t′, t′) + ε Ġ(t′+, t′)

]
+ 2 εG(t′, t′) = 1

where Ġ(t′+, t′) is the derivative of G as t → 0 from the positive side. This positive-
side/negative-side distinction is necessary for Ġ because it may change discontinuously at
t = t′ (because the acceleration will be infinite due to the delta-function applied force.)
Next, use the fact explained above that G(t′, t′) = 0 due to causality and continuity of
position, yielding:

Ġ(t′ + ε, t′) +
ε

Q
Ġ(t′+, t′) = 1
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Finally, use the fact that Ġ, while it may change discontinuously at t = t′, must remain
finite at all times – even the infinite acceleration provided by the delta-function impulse will
integrate to only a step change in velocity. Thus, the second term goes to zero as ε goes to
zero, giving

Ġ(t′+, t′) = 1

Thus, our initial conditions for G are G(t′, t′) = 0 and Ġ(t′+, t′) = 1. The + superscript
simply means that the initial condition for the t > t′ solution will be that its initial velocity
is 1, while for t < t′ it holds that Ġ = 0. The solution will have a velocity discontinuity at
t = t′. With these and the known form of the solution of the homogeneous equation, we
may determine the Green’s function completely. Let’s consider the cases separately:

• Underdamped: The generic underdamped solution is

qh(t) = exp
(
− t

2Q

)[
A cosω′ t+B sinω′ t

]
q̇h(t) = − 1

2Q
qh(t) + exp

(
− t

2Q

)[
−ω′A sinω′ t+ ω′B cosω′ t

]
We will replace t by t − t′ to set the time origin at t′. The initial conditions then
require A = 0 and ω′B = 1. Thus we have

G(t− t′) =
1
ω′

exp
(
− t− t

′

2Q

)
sin
[
ω′ (t− t′)

]
θ(t− t′) (3.10)

Note the use of the Heaviside function to impose causality. The generic solution for
an arbitrary forcing function is therefore

q(t) =
∫ ∞

−∞
dt′ F (t′)G(t− t′) =

∫ t

−∞
dt′F (t′)

1
ω′

exp
(
− t− t

′

2Q

)
sin
[
ω′ (t− t′)

]
• Overdamped: The generic overdamped solution is

qh(t) = A exp
(
− t

τd,+

)
+B exp

(
− t

τd,−

)
q̇h(t) = − A

τd,+
exp

(
− t

τd,+

)
− B

τd,−
exp

(
− t

τd,−

)
The conditions on G(t, t′) are the same, which require

A+B = 0

− A

τd,+
− B

τd,−
= 1

The Green’s function thus becomes

G(t− t′) =
τd,+ τd,−
τd,+ − τd,−

[
exp

(
− t− t

′

τd,+

)
− exp

(
− t− t

′

τd,−

)]
θ(t− t′) (3.11)

The generic solution for an arbitrary forcing function is

q(t) =
∫ t

−∞
dt′F (t′)

τd,+ τd,−
τd,+ − τd,−

[
exp

(
− t− t

′

τd,+

)
− exp

(
− t− t

′

τd,−

)]
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• Critically damped: The generic critically damped solution is

q(t) = A exp (−t) +B t exp (−t)

Applying the boundary conditions is very simple, giving A = 0 and B = 1. So we find
the Green’s function is

G(t− t′) = (t− t′) exp
(
−(t− t′)

)
θ(t− t′) (3.12)

and the generic solution is

q(t) =
∫ t

−∞
dt′F (t′) (t− t′) exp

(
−(t− t′)

)
Recall that ω′ and t are unitless in the above; if one wants to rewrite with units, all
occurrences of t should be replaced by ω t and all occurrences of ω′ should be replaced by
ω′/ω, where ω is the undamped natural frequency. Note that the latter also rescales the
damping time constants τd,± to ω τd,±. In all cases, G remains unitless with these rescalings.

The technique we used to find the Green’s function is generically applicable. Green’s func-
tions are ubiquitous in physics, providing the fundamental means by which to deal with the
linear response of physical systems to stimuli. Learn how to use them!

3.1.5 Behavior when Driven Near Resonance

An important special topic that can be considered using the formalism of Green’s functions is the
response of an oscillator when driven at a frequency near its characteristic frequency. Such systems
are also ubiquitous. Ever heard of the Tacoma Narrows Bridge disaster? You can find movies of it
on the web.

Calculation of the Response Function

It would be straightword to calculate the temporal response of an oscillator to a sinusoidal
driving force F (t) = F0 sinωdt where ωd is the drive frequency, not necessarily the same as
the oscillator characteristic frequency ω0. If the force turns on at t = 0, we would obtain a
transient and steady-state term via the Green’s function formalism

q(t) = qp(t) + qh(t) =
∫ t

0
dt′ sinω t′G(t− t′)

For this discussion, we are not particularly interested in the transient term since it dies
away after a few decay time constants. Linearity of the equation of motion guarantees that
the steady-state solution can only contain sinuisoids of the same frequency as the driving
force. Mathematically, this arises because we must obtain something on the left side of
the equation of motion (the q terms) to match the sinusoidal driving force; with a linear
differential equation, there is no way to generate a frequency ω from frequencies other than
ω. Given this, we may simply assume that we are looking for a solution proportional to
eiωdt. The equation of motion becomes

Ac
(
−ω2

d +
i ωd
Q

+ 1
)
eiωdt = F0 e

iωdt
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where Ac is a to-be-determined complex coefficient. Solving for Ac gives

Ac =
F0

1− ω2
d + i ωd

Q

This coefficient Ac contains all the information we need – the amplitude and the phase of
the response relative to the driving function as a function of the driving frequency ωd. Note
that the response is entirely linear in the driving force F0.

Amplitude Response and Stored Energy

Let’s first calculate the amplitude response. The square of the amplitude response gives the
stored energy. It is

E =
1
2
|qp(t)|2 =

1
2

∣∣Ac eiωdt
∣∣2 =

1
2

∣∣∣∣∣ F0

1− ω2
d + i ωd

Q

∣∣∣∣∣
2

=
F 2

0

2
1

(1− ω2
d)

2 + ω2
d

Q2

where the phase terms eiωdteiφ have unity amplitude and thus no longer appear.3 We can
inquire as to whether there is a peak in the response and find its position by requiring
dE
dωd

= 0. (The algebra can be done more easily by requiring dE−1

dωd
= 0.) One obtains the

condition

2
(
1− ω2

r

)
(−2ωr) +

2ωr
Q2

= 0

ωr =
√

1− 1
2Q2

ωr = 0 (3.13)

ωr is known as the resonant frequency because the oscillator responds maximally at
frequency ωr. For comparison, we list side-by-side the three characteristic frequencies we
have discussed so far (putting them back in dimensionful units):

undamped characteristic : ω0 =

√
k

m

damped characteristic : ω′ = ω0

√
1− 1

4Q2
< ω0

damped resonant : ωr = ω0

√
1− 1

2Q2
< ω′ < ω0

There is a hierarchy of frequencies.

Note also that the nontrivial solution “disappears” for Q ≤ 1√
2
, which is interesting: a

slightly underdamped oscillator may not have a resonance, and certainly critically damped
and overdamped oscillators have no resonant behavior. Curves of E(ωd) for different Q are
shown here:

3The reader may be concerned about the use of complex numbers; if we had done this with sines and cosines,
would we not end up with cos2(ωdt + φ)? Yes, but we only care about the peak displacement, when cos = 1.
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It is interesting to also calculate where the resonance in the kinetic energy occurs. This
may be distinct from the amplitude resonance because the system is not conservative. The
velocity is the time derivative of the position, so it acquires an extra factor of ωd. The
time-averaged kinetic energy is thus

T =
1
2
|q̇p(t)|2 =

1
2

∣∣i ωdAc eiωdt
∣∣2 =

1
2

∣∣∣∣∣ i ωd F0

1− ω2
d + i ωd

Q

∣∣∣∣∣
2

=
F 2

0

2
ω2
d

(1− ω2
d)

2 + ω2
d

Q2

After a little bit of algebra, one finds that the resonant frequency for the kinetic energy is
just the original characteristic frequency, ωT = 1. This is actually not suprising. Because
the power being absorbed by the oscillator is the product F q̇, the largest power absorption
occurs when the two factors are fully in phase. If one looks at the phase of the response (see
the next section), one finds that the phase of the velocity equals the phase of the driving
force when ωd = ωT = 1.

Let us specialize to the case where Q is large and thus ωd ≈ ωr ≈ 1 and the distinc-
tion between the three characteristic frequencies is lost. In this limit, we can make some
approximations to simplify the stored energy expression:

1− ω2
d = (1− ωd)(1 + ωd) ≈ 2(1− ωd)

ω2
d

Q2
≈ 1

Q2

We then obtain

E ≈ F 2
0

8
1

(ωd − 1)2 + 1
4Q2

(3.14)
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This function is known as the Lorentzian and is found associated with all kinds of resonant
phenomena. A useful parameter is the full-width at half maximum, the separation
between the two points where the energy drops to half of its maximum value. It is found
by requiring

E

(
ωd = 1± ∆ω

2

)
=

1
2
E (ωd = 1)

F 2
0

8
1

(∆ω
2 )2 + 1

4Q2

=
F 2

0

16
1
1

4Q2

∆ω =
1
Q

(3.15)

Note that we have taken ωr = 1 here. Clearly, though, the idea is that Q characterizes the
width of the resonance very simply. Also of interest is the value of the stored energy on
resonance:

E ≈ F 2
0

8
4Q2 =

1
2
F 2

0 Q
2 (3.16)

Notice how the stored energy becomes infinite as Q→∞: if there is no damping, then the
resonator cannot release the energy it receives from the drive force.

A note on units: The above calculation was done in terms of unitless frequency and time.
Rescaling the frequencies is easy – just multiply all frequencies by the natural frequency
ω0. The energy is a bit more difficult. We calculated energy from q2/2, so we need to
multiply by k = mω2 to get something with units of energy. F0 has units of length in
our differential equation; recall that, in connection with Green’s functions, we converted to
fully dimensional force by multiplication by mω2. So, the fully dimensional version of the
energy relation (using primes to indicate dimensional versions of quantities) is

E′ = mω2E ≈ 1
2
mω2

(
F ′

0

mω2

)2

Q2 =
F
′2
0 Q

2

2mω2

Phase Response

The other interesting aspect of the response function is the phase. This we find simply by
calculating the angle in the complex plane of Ac since by definition the drive signal has zero
phase. Going back to our formula for Ac and manipulating:

Ac =
F0

1− ω2
d + i ωd

Q

= F0

(1− ω2
d)−

i ωd
Q(

1− ω2
d

)2 + ω2
d

Q2

Now that the denominator is real, we can see the real and imaginary parts and obtain the
phase trivially:

tanφ = −
ωd
Q

1− ω2
d

(3.17)
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Let’s consider the behavior of this function. As ωd → 0, the right side vanishes and so
φ → 0. As we increase ωd, the quantity on the right side goes negative, implying that
the phase angle heads into the fourth quadrant of the complex plane. At resonance, the
denominator vanishes, giving −∞ for the right side. This corresponds to φ = −π

2 . As ωd
increases beyond the resonance frequency, both the denominator and the numerator will
be negative, indicating that φ moves into the third quadrant. Finally, as ωd → ∞, the
quantity on the right side approaches 0, indicating the phase angle is rotating through the
third quadrant until it reaches −π. The amplitude of Ac is also changing through this entire
process, starting at 0 at ωd = 0, going to its maximum value at ωd = 1, then returning back
to zero as ωd → ∞. There are excellent plots in Hand and Finch Section 3.9 illustrating
the phase path.

The sign of the phase indicates that the oscillator’s phase lags that of the driving force. At
very low drive frequency, the phase lag is small because the oscillator can “keep up” with
the drive frequency. As the drive speeds up, the phase lag increases. The oscillator lags
the drive by exactly one-quarter of a period on resonance, putting the drive in phase with
the velocity and maximizing the stored kinetic energy. As ωd →∞, the oscillator becomes
completely out of phase with the drive.
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3.2 Coupled Simple Harmonic Oscillators

Coupled simple harmonic oscillators are physically important and seen everywhere in nature. The
electromagnetic field at any point in space can be considered a simple harmonic oscillator, but
Maxwell’s Equations couple the oscillator at one point to the oscillators everywhere else in space.
Coupled oscillations are critical in particle physics, seen in neutrino oscillations and in the particle-
antiparticle mixing see in the K0 − K0 and B0 − B0 systems. They also serve to introduce the
concept of eigenvalue/eigenvector systems, which we will use again when discussing rigid-body
rotation. This section follows Hand and Finch Chapter 9, though does things in a different order
and proves some things that may not be proven in Hand and Finch.

3.2.1 The Coupled Pendulum Example

Consider two pendula of the same mass and length whose shafts are attached to each other by a
massless spring whose rest length is equal to the separation of the two pendula:

c© 1998 Louis N. Hand and Janet D. Finch,
Analytical Mechanics

Let’s set up and solve the equations of motion for this system in the limit of small displacements.

Equations of Motion

The kinetic energy of the two pendula is as usual

T =
1
2
ml2

(
θ̇2
1 + θ̇2

2

)
The gravitational potential energy is the usual form:

Vg =
mg l

2
(
θ2
1 + θ2

2

)
The potential energy due to the spring coupling the two is

Vs =
k

2

(
l

2

)2

(θ1 − θ2)2

where l/2 comes in because that is the point where the spring is attached to the shafts.
The assumption that the rest length of the spring equals the horizontal separation of the
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two pendula makes the potential energy a simple function of θ1 and θ2; it could be more
complicated, but the basic physics will stay the same. The Lagrangian therefore is

L =
1
2
ml2

(
θ̇2
1 + θ̇2

2

)
− mg l

2
(
θ2
1 + θ2

2

)
− k

2

(
l

2

)2

(θ2 − θ1)2

The Euler-Lagrange equations give us

θ̈1 +
g

l
θ1 +

k

4m
(θ1 − θ2) = 0

θ̈2 +
g

l
θ2 +

k

4m
(θ2 − θ1) = 0

As usual, we define the characteristic frequency ω2
0 = g

l . We also define a parameter
η = k/4m

g/l that characterizes the relative size of the spring term and the gravity term. The
simplified equations are

θ̈1 + ω2
0 θ1 + ω2

0 η (θ1 − θ2) = 0
θ̈2 + ω2

0 θ2 + ω2
0 η (θ2 − θ1) = 0

Normal Modes and Normal Coordinates

The equations are simplified by taking two linear combinations by adding and subtracting:

d2

dt2
(θ1 + θ2) + ω2

0 (θ1 + θ2) = 0

d2

dt2
(θ1 − θ2) + ω2

0 (1 + 2 η) (θ1 − θ2) = 0

If we write these in terms of the linear combinations θ± = θ1 ± θ2 and define ω2
+ = ω2

0 and
ω2
− = ω2

0 (1 + 2 η), we have two decoupled SHO eqauations:

θ̈2
+ + ω2

+ θ
2
+ = 0

θ̈2
− + ω2

− θ
2
− = 0

We can make the dynamics in the ω− mode go away by taking the initial condition θ1(0) =
θ2(0). This will give θ− = 0 for all time, which implies θ1 = θ2 for all time. The two
pendula oscillate together, so this is called the symmetric mode. Similarly, we can have
trivial behavior in the ω+ mode by starting with θ1(0) = −θ2(0). This gives θ1 = −θ2 for
all time, so the pendula oscillate completely opposite to each other; this is of course called
the antisymmetric mode. The coordinates θ+ and θ− are called normal coordinates
and the two modes are called normal modes. Clearly, the transformation of the system
to the normal has yielded two uncoupled oscillators whose individual dynamics are simple.

If a mixed mode is excited at the start by beginning with a mixed initial condition, then
both modes will be excited. There is no coupling between the modes, so they should evolve
independently of each other, with the energy in each mode remaining constant.

Solution by Linear Algebra Methods

When the number of coordinates becomes larger than 2, solving the problem directly by
algebraic methods becomes difficult. Let us consider a more generic method of solving the
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equations of motion by linear algebra. We can write our original equations of motion in
matrix form

d2

dt2

(
θ1
θ2

)
+ ω2

0

(
1 + η −η
−η 1 + η

)(
θ1
θ2

)
=
(

0
0

)
We assume there exists a solution to the motion in which both coordinates oscillate at the
same frequency eiωt, where we will determine ω if it exists. Each individual solution for ω
will be called a mode. There may be degenerate modes – modes with the same ω – but
that is a minor problem that can be dealt with.

Our solution is of the form (
θ1(t)
θ2(t)

)
=
(

Θ1

Θ2

)
eiωt

Define

λ2 ≡ ω2

ω2
0

so that our equation becomes(
−λ+ 1 + η −η
−η −λ+ 1 + η

)(
Θ1

Θ2

)
=
(

0
0

)
This is just a linear algebra equation whose solution we want to find. You presumably
know from your math classes that the solution vanishes unless the determinant of the
matrix vanishes. The free parameter here is λ, so we want to see if there exist solutions λ
for which the determinant vanishes. That is, solve for λ the equation∣∣∣∣( −λ+ 1 + η −η

−η −λ+ 1 + η

)∣∣∣∣ = 0

where | | is the determinant. This becomes a simple algebraic equation:

(−λ+ 1 + η)2 + η2 = 0

which is easily solved to find

λ1 = 1 λ2 = 1 + 2 η
ω1 = ω0 ω2 = ω0

√
1 + 2 η

We’ve found the normal mode frequencies, but now we need to find the normal mode
amplitudes. Since the determinant of the above matrix vanishes, the two linear equations
are not independent and can be used to solved for the ratio Θ1/Θ2:

Θ1

Θ2
=

1 + η − λ
η

which gives

Θ(1),1

Θ(1),2
= 1 symmetric mode

Θ(1),1

Θ(1),2
= −1 antisymmetric mode
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We can only specify the ratio of amplitudes because the initial conditions set the overall
normalization.

More generally, if there are more than two coupled coordinates, we simply have a larger
matrix equation to solve with more normal modes to find. If there exist two modes with the
same frequency, one will find that the system does not specify fully the coordinate ratios;
there is freedom due to this degeneracy.

Eigenvalue-Eigenvector Interpretation

Now, of course, what we have just done is solve an eigenvalue-eigenvector problem. If we
write the equation in full matrix form, with

~θ =
(
θ1
θ2

)
~0 =

(
0
0

)
A =

(
1 + η −η
−η 1 + η

)
I =

(
1 0
0 1

)
Then our original coupled equation of motion can be written

d2

dt2
~θ + A ~θ = ~0

We assume a solution of the form ~θ(t) = ~Θ eiωt and we obtain the equation

(−λ I + A) ~Θ eiωt = 0

which is solved by requiring

|−λ I + A| = 0

which is the eigenvalue problem. For a symmetric matrix A, we are guaranteed that there
is rotation matrix R that diagonalizes A; i.e., there exists a matrix R such that

RTAR = λ

where λ is a diagonal matrix whose elements are the squares of the normal mode frequencies
of the system (normalized to ω2

0). For our two dimensional case, we will have

λ =
(
λ1 0
0 λ2

)
For each eigenvalue λi, there is an eigenvector ~Θi such that

(−λi I−A) ~Θi = 0
A ~Θi = λi ~Θi

194



3.2. COUPLED SIMPLE HARMONIC OSCILLATORS

or, returning to our original equation of motion,

d2

dt2
α ~Θi e

iωit + Aα ~Θi e
iωit = 0

where α is the amplitude of the motion in the ith mode, to be determined by initial con-
ditions. We will consider the problem more formally in the next section, proving that such
systems always can be written in terms of eigenvalues and eigenvectors and finding explicit
forms for the rotation matrix R and the eigenvectors ~Θi.

3.2.2 General Method of Solution

Definitions

Let’s begin by making some generic symbolic definitions. We are going to assume that all
oscillations are small; regardless of the form of the potential, we will assume that we will
expand it around some equilibrium point. That is, if ~φ is our position coordinate, with M
components, then

V (~φ) ≈ V (~φ0) +
∑
i,j

1
2

∂2V

∂φi ∂φj

∣∣∣∣
~φ0

(φi − φ0,i) (φj − φ0,j)

where V (~φ0) is the value of the potential at the equilibrium position ~φ0. Since ~φ0 is an equi-
librium position, it holds that ∂V

∂~φ
vanishes at ~φ0, so that term is dropped. For convenience,

we will shift the origin to ~φ0 and drop the constant term so that V simplifies to

V (~φ) =
∑
i,j

1
2

∂2V

∂φi ∂φj

∣∣∣∣
0

φi φj

≡
∑
i,j

vij φi φj

= ~φTv ~φ

where we have defined a matrix v to be the second partial derivatives of V and have written
the expression in matrix notation. We note that our condition for stable equilibrium can
now be written

~φTv ~φ > 0

for any displacement vector ~φ. If v meets this condition, it is called positive definite. v
is also symmetric for any reasonable potential V whose mixed partial derivatives commute.

We may similarly expand the kinetic energy, except in this case we will expand about ~̇φ = 0
because, obviously, the system cannot reside near a stable equilibrium if it has a net velocity.
We define a similar matrix t and rewrite the kinetic energy T :

tij =
1
2

∂2T

∂ φ̇i ∂ φ̇j

∣∣∣∣∣
φ̇i=0,φ̇j=0

T =
∑
i,j

tij φ̇i φ̇j

= ~̇φT t ~̇φ
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Since the kinetic energy is always positive, we know that the matrix t is positive definite.
It may have vanishing components if there are nuisance coordinates for which there is
no kinetic energy, but these can obviously be dropped because there is no momentum or
dynamics in such a coordinate. t certainly can have no negative components. t will also be
symmetric for the same “no-pathologies” reason as v.

With these definitions, the Lagrangian is rewritten

L = ~̇φT t ~̇φ− ~φTv ~φ

We may find the equations of motion in the usual fashion. First, the partial derivatives are:

∂L

∂φ̇k
=

∑
i,j

tij
∂

∂φ̇k

[
φ̇i φ̇j

]
=
∑
i,j

tij

[
φ̇i δkj + δij φ̇j

]
= 2

∑
j

tkj φ̇j

∂L

∂φk
= −

∑
i,j

vij
∂

∂φk
[φi φj ] = −

∑
i,j

vij [φi δkj + δij φj ] = −2
∑
j

vkj φj

The Euler-Lagrange equations are therefore

d

dt

2
∑
j

tij φ̇j

+ 2
∑
j

vkj φj = 0

∑
j

tij φ̈j +
∑
j

vkj φj = 0

which can be rewritten in matrix form

t ~̈φ+ v ~φ = 0

Finding the Normal Mode Frequencies

Now that we have a general way to write the equation of motion, let’s look for a general
way to solve it. Let’s assume there is a solution of the form

~φ(t) = ~Φ eiω t

where ~Φ is a constant vector that provides the relative displacements of the original coordi-
nates for the solution with characteristic frequency ω. The ω are called the normal modes
or normal mode frequencies. The vector ~Φ is generically referred to as a normal mode
vector. We will demonstrate later that ~Φ is real.

Substitution of the above form into the equation of motion Equation 3.18 yields[
−ω2 t + v

]
~Φ = 0

Note that this is not a trivial eigenvalue-eigenvector problem because the matrix t need not
be the identity matrix. In our simple example earlier, it was indeed the identity matrix, but
that was a special case. Continuing onward, in order for the equation to have a nontrivial
solution, the determinant of the matrix must as usual vanish:∣∣−ω2 t + v

∣∣ = 0

This equation is a polynomial of order M in ω2. We obviously want to know how many
solutions there are and whether they yield real oscillation frequencies. We can prove a
number of properties about the solutions before continuing onward:
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• The solutions for ω2 are always real. We can see this using complex conjugation
and recognizing that v and t are always real and symmetric. First, multiply our
equation

[
−ω2 t + v

]
~Φ = 0 on the left by ~Φ∗T (where ~Φ is some arbitrary solution to

the equation) and also consider its complex conjugate, making explicit use of the fact
that v and t are real:

~Φ∗Tv ~Φ = ω2 ~Φ∗T t ~Φ ~ΦTv ~Φ∗ = ω∗2 ~ΦT t ~Φ∗

Notice that we have allowed ω2 to be complex. Now, difference the two equations to
find

0 =
(
ω2 − ω∗2

)
~Φ∗T t ~Φ

We noted earlier that t is positive definite, but remember that this fact was only stated
for real ~Φ. We can see that it holds for complex ~Φ also:

~Φ∗T t ~Φ = ~ΦR
r t ~Φr + i ~ΦT

r t ~Φi − i ~ΦT
i t ~Φr + ~ΦT

i t ~Φi

The cross-terms vanish because t is symmetric:

i ~ΦT
r t ~Φi = i

∑
j,k

Φr,j tjk Φi,k = i
∑
j,k

Φi,k tkj Φi,j = i ~ΦT
i t ~Φr

So we have

~Φ∗T t ~Φ = ~ΦT
r t ~Φr + ~ΦT

i t ~Φi

Now, since all the multiplying vectors are real, positive definiteness of t implies that
~Φ∗T t ~Φ is positive. Therefore, the only solution to the above equation is ω2 = ω∗2 and
thus ω2 is real.

• The solutions for ω2 are not only real but are positive. To see this, we require
positive definiteness of v and t. We multiply our equation of motion on the left by
~ΦT :

−ω2 ~ΦT t ~Φ + ~ΦTv ~Φ = 0

ω2 =
~ΦTv ~Φ
~ΦT t ~Φ

> 0

Since both v and t are positive definite, the quantity on the right is positive definite.
Recall that v positive definite was a result of assuming our expansion point is a stable
equilibrium.

With the above results safely in hand, we can assume that the M solutions for ω2 will
indeed yield oscillating modes.

Finding the Normal Mode Vectors

Caveat: The following technique only works for nondegenerate modes. If we have two
modes i and j with the same mode frequencies ω2

i and ω2
j , then we must use special tech-

niques to find the mode vectors for those two modes. The following technique works for
any nondegenerate modes, even if there are degenerate modes in the problem.
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To find the normal mode vectors, we return to our original equation of motion, this time
using the normal mode frequencies we proved above exist. The solution for normal mode
frequency i is

~φi(t) = ~Φi e
iωi t

We are not making any assumptions yet about whether ~Φi is real or complex. Inserting this
in our equation of motion, we have[

−ω2
i t + v

]
~Φi = 0

The unknowns are the M components of ~Φi. Since the equation is homogeneous – the right
side is zero – the overall normalization of the mode vector is indeterminate and we should
expect to obtain only M −1 independent equations from the above matrix equation. These
M − 1 equations will set the relative values of the components of ~Φi. We may now also see
that the ~Φi are real since they are the solution to a system of homogeneous linear equations
with real coefficients. (This proof is simpler than the proof that the ω2 are real because the
equations determining the components of ~Φi are linear, while ω2 is determined by a Mth
order polynomial in ω2.)

We will solve the above equation using the cofactors of the matrix −ω2 t + v. Recall
that cofactors arise in the calculation of the determinant of a matrix: the determinant of a
matrix can be calculated by taking the sum over the product of any row or column and its
cofactors, with sign flips between adjacent elements:

|a| =
∑
j

aij (−1)i+j C(aij)

or

|a| =
∑
i

aij (−1)i+j C(aij)

where C(aij) is the cofactor of the element aij and is given by calculating the determinant
of the matrix one obtains by eliminating row i and column j from the matrix. Note the
alternating −1. As an example, the cofactors of the elements of the top row of the matrix

a =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


are

C(a11) =
∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ C(a12) =
∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ C(a13) =
∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
The quantity |a| can be viewed as the dot product of two vectors:

~ri = (ai1, ai2, . . . , aiM )
~Cri =

(
(−1)i+1C(ai1), (−1)i+2C(ai2), . . . , (−1)i+MC(aiM )

)
or the transpose version

~ci = (a1i, a2i, . . . , aMi)
~Cci =

(
(−1)1+iC(a1i), (−1)2+iC(a2i), . . . , (−1)M+iC(aMi)

)
198



3.2. COUPLED SIMPLE HARMONIC OSCILLATORS

Now that you are reminded of what a cofactor is, and we have introduced how the determi-
nant can be written as a dot product of row or column vectors and their respective cofactor
vectors, let us note a useful property of these dot products. For the specific a we are con-
sidering here, a = ω2

i t + v, we know that |a| = 0: this was necessary to have nontrivial
normal mode vectors. In terms of the row/column vectors and their cofactor vectors, this
statement implies that ~rTi ~C

r
i = 0 or ~cTi ~C

c
i = 0; that is, any row or column of the matrix a

and its cofactor vector are orthogonal. We shall use this orthogonality below.

Next, suppose we have a and we want to find ~f that solves a~f = 0. This corresponds to
the set of linear equations ∑

j

aij fj = 0

for all rows i. Based on our work above, we can see that any of the row cofactor vectors ~Cri
can be the vector ~f that would satisfy the ith equation of this set of equations.4 We can
see in fact that any of these cofactor vectors satisfies the full set of equations by realizing
that

∑
aij

(
~Crk

)
j

for k 6= i also must vanish: this quantity is the determinant of the matrix

obtained by replacing row k of a with row i and calculating the determinant using the new
row k (which is now identical to row i); since the determinant of a matrix with two equal
rows vanishes, it holds that

∑
aij

(
~Crk

)
j

vanishes even when k 6= i.5 One might be worried

that we now have too many solutions: one could use the cofactor vector ~Cri for any row i,
so we in principle have M different solutions when we should only have one! We need not
worry – they must all be the same solution up to a normalization factor since the matrix
equation can only have one unique solution (up to normalization). One finds in practice
that the different cofactor vectors are always just multiples of one another.

So, to sum up: the mode vector ~Φi for mode i is found by solving the set of linear
equations [

−ω2
i t + v

]
~Φi = 0

4To be explicit, we are simply saying that
P

j aij (~Cr
i )j for any i. This is true because it is simply the statement

~rT
i

~CR
i = 0, which we demonstrated was true in the previous paragraph.

5If this statement is not obvious, consider a system of linear equations viewed as a matrix equation. We are free
to replace rows by linear combinations thereof (as long as we don’t use the same linear combination twice). So, if we
have two identical rows, we can replace them by their sum and difference. The difference row will be all zeros. The
determinant of a matrix with one row identically zero is obviously zero (use that row for the cofactor expansion). For
our 3× 3 example above, if |a| vanishes, then we already know that

a11 (−1)0 C(a11) + a12 (−1)1 C(a12) + a13 (−1)2 C(a13) = 0

so, if we consider, for example, the product of the second row with the cofactor vector, we have

a21 (−1)0 C(a11) + a22 (−1)1 C(a12) + a23 (−1)2 C(a13)

= a21 (−1)0
˛̨̨̨

a22 a23

a32 a33

˛̨̨̨
+ a22 (−1)1

˛̨̨̨
a21 a23

a31 a33

˛̨̨̨
+ a23 (−1)2

˛̨̨̨
a21 a22

a31 a32

˛̨̨̨

=

˛̨̨̨
˛̨ a21 a21 a23

a21 a22 a23

a31 a32 a33

˛̨̨̨
˛̨

= 0
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The solution ~Φi is given by the cofactor vector of any row of −ω2
i t + v.

Orthonormality

It is straightforward to demonstrate that the mode vectors satisfy the convenient orthonor-
mality condition

~ΦT
i t ~Φj = δij

We can prove this by techniques similar to those we used to prove the realness and positive
definiteness of ω2 and the realness of ~Φi. First, we have

0 = ~ΦT
j v ~Φi − ~ΦT

i v ~Φj

= ω2
i
~ΦT
j t ~Φi − ω2

j
~ΦT
i t ~Φj

=
(
ω2
i − ω2

j

)
~ΦT
i t ~Φj

where we have used multiple times that ~ΦT
i a~Φj = ~ΦT

j a~Φi when a is symmetric. So, as long
as ω2

i 6= ω2
j , i.e., as long as we have two nondegenerate modes, we are guaranteed of the

orthogonality condition

~ΦT
i t ~Φj = 0 for i 6= j

Note that this is not a “simple” orthogonality condition; it requires use of t as the metric
matrix. To prove the final part of our relation, we need to calculate ~ΦT

i t ~Φi. But, as
discussed, above, the normalization of the mode vectors is arbitrary because they solve a
set of homogeneous linear equations. Therefore, we are free to pick the normalization, so we
pick it to give the convenient relation ~ΦT

i t ~Φi = 1, thus proving our orthonormality result.

Applying the Initial Conditions

The above orthonormality condition can be used to apply the initial conditions when we
seek the solution to a particular initial value problem. By dimensionality arguments, our
M normal modes with their M orthonormal mode vectors span the space of possible con-
figurations of the M -dimensional system: an arbitrary state of the system at time t can be
written as

~φr(t) = R
[
~φ(t)

]
= R

[
M∑
i=1

Ai ~Φi e
iωit

]
where the Ai are in general complex so that we may allow for relative phases between the
different normal mode components. The velocity of the system can in general be written as

~̇φr(t) = R
[
~̇φ(t)

]
= R

[
M∑
i=1

i ωiAi ~Φi e
iωit

]
To apply the initial conditions, consider the above equations at t = 0:

~φr(t = 0) = R

[
M∑
i=1

Ai ~Φi

]
=

M∑
i=1

R [Ai] ~Φi

~̇φr(t = 0) = R

[
M∑
i=1

i ωiAi ~Φi

]
=

M∑
i=1

I [ωiAi] ~Φi
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We can use our orthonormality conditions to invert the above to find the Ai:

R [Ai] = ~ΦT
i t ~φr(t = 0)

I [Ai] =
1
ωi
~ΦT
i t ~̇φr(t = 0)

Preservation of Degrees of Freedom

We make note of an important point: the number of degrees of freedom in the problem is
not changed by rewriting the system in terms of normal modes. As we have said above,
when we have M position coordinates to begin with, we end up with t and v being M ×M
matrices and the eigenvalue equation being a Mth-order polynomial in ω2. We therefore
expect M normal mode frequencies and vectors. When we rewrite a solution ~φ(t) in terms
of the normal modes using the above expansion, we have M coefficients {An}. The {An}
are the new “coordinates” after transforming to normal modes. The freedom in initial
conditions – the 2M values ~φ(t = 0) and ~̇φ(t = 0) – are replaced by the 2M degrees of
freedom in the real and imaginary parts of the {An}.

The Congruence Transformation, Diagonalization, and the Diagonalized Lagrangian
and Hamiltonian

Our orthonormality condition can be reexpressed in the form

ΦT tΦ = I

where Φ defines the matrix whose columns are the normal mode vectors,

Φji =
[
~Φi

]
j

The transformation of t obtained by application of Φ in the above manner is called a
congruence transformation.6

More interesting is the application of Φ to v. Recall that, by the equation of motion and
orthonormality of the {~Φi},

~ΦT
i

(
v ~Φj

)
= ~ΦT

i ω
2
j t ~Φj = ω2

j δij

Thus, using Φ, we may write this in matrix form

ΦTvΦ = Ω2

where Ω is a matrix with

Ωij = ωi δij

That is, the congruence transform diagonalizes v also.

6Some will recognize the transformation as something akin to the transformation one might apply to diagonalize
a symmetric matrix in an eigenvalue-eigenvector problem. Φ is not a rotation matrix in the strict sense because
its columns are not orthogonal to each other; the orthornormality condition requires inclusion of the metric t. If Φ
were indeed an orthogonal matrix (i.e., having columns that are simply orthogonal), which would happen if t were
a multiple of the identity matrix, then this would be called a similarity transformation.
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We can prove a useful cyclicity property of the congruence transformation:

ΦT tΦ = ΦΦT t = tΦΦT = I

Note: this property only holds because of special properties of these matrices,
it is not generically true. First, we note that the determinants of each of these matrices
are nonzero; they must be, as |AB| = |A||B|, so if the product is equal the I, none of the
matrices may have a vanishing determinant. Let’s write our starting relation in the form(

ΦT t
)
Φ = I

That is, ΦT t is the left inverse of Φ. For finite square matrices, if a left inverse exists, then
that left inverse is the right inverse also because there is a unique formula for generating
the inverse of a square matrix.7 Therefore, we may also conclude

Φ
(
ΦT t

)
= I

which is the second version. Finally, we obtain the third version by simply transposing the
above:

tΦΦT = I

Note that we used the fact that t is symmetric and that both t and Φ had nonzero deter-
minant. Why the above relation is useful can be seen by rewriting the kinetic and potential
energy terms:

T = ~̇φT t ~̇φ

= ~̇φT tΦΦT tΦΦT t ~̇φ

=
[
ΦT t ~̇φ

]T
I
[
ΦT t ~̇φ

]
= ~̇ψT I ~̇ψ

where the last step used tΦ = ΦT t, which is easy to prove if you write it out by components,
and we have defined

~ψ(t) = ΦT t ~φ(t)

which is a straightforward generalization of our formula for applying the initial conditions
to obtain the normal mode expansion coefficients. The inverse transformation:

~φ(t) = Φ ~ψ(t)

which is shown by simply making use of the fact we proved above, that Φ is the inverse of
ΦT t.

Similarly,

V = ~φTv ~φ

= ~φT tΦΦTvΦΦT t ~φ

=
[
ΦT t ~φ

]T
Ω2
[
ΦT t ~φ

]
= ~ψTΩ2 ~ψ

7The formula is
ˆ
A−1

˜
ij

= (−1)i+jC(Aij)/|A|.
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and the Lagrangian and Hamiltonian become

L = ~̇ψT I ~̇ψ − ~ψTΩ2 ~ψ

H = ~̇ψT I ~̇ψ + ~ψTΩ2 ~ψ

Note that, because I and Ω2 are diagonal, the dynamics in the different normal coordinates
– i.e., the different elements of ~ψ – are totally independent. The equations of motion one
obtains are very simple:

~̈ψ + Ω2 ~ψ = 0

or, if written row-by-row,

ψ̈i + ω2
i ψi = 0

Solving the equation of motion for each element is trivial, giving the time evolution

ψi(t) = ψi(t = 0) eiωit

or, in matrix form

~ψ(t) = eiΩt ~ψ(t = 0)

where eiΩt can be calculate via power series expansion of the exponential. (Note that it had
to be placed on the left because it is a matrix.) The initial conditions are applied via the
relations found earlier, rewritten with new ψ symbols and the Φ matrix:

R
[
~ψ(t = 0)

]
= ΦT t ~φr(t = 0)

I
[
~ψ(t = 0)

]
= Ω−1 ΦT t ~̇φr(t = 0)

and we may obtain the values of the original coordinates at any time t by the inverse of the
congruence transformation

~φr(t) = R
[
~φ(t)

]
= R

[
Φ ~ψ(t)

]
So, overall, the congruence transformation by the mode vector matrix diagonalizes both
t and v, makes t the identity matrix, and provides a new set of coordinates in which the
Lagrangian and Hamiltonian are quite simple and motion in the different normal coordinates
are completely independent. This is clearly a grand simplification of the problem.
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3.2.3 Examples and Applications

The Double Pendulum

c© 1998 Louis N. Hand and Janet D. Finch,
Analytical Mechanics

We’ve seen the double pendulum before in our discussion of Hamilton’s equations. We set it
up somewhat differently in this case, as per the diagram. We will assume initial conditions
φ1(t = 0) = 0, φ2(t = 0) = α0, φ̇1(t = 0) = 0, φ̇2(t = 0) = 0. The kinetic and potential
energies are

T =
1
2
m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2

)
V = mg (y1 + y2)

Let’s rewrite in convenient coordinates:

x1 = l sinφ1 y1 = −l cosφ1

x2 = x1 + l sin (φ1 + φ2) y2 = y1 − l cos (φ1 + φ2)

which provides for the kinetic and potential energies

T =
1
2
ml2

(
2 φ̇2

1 + 2 φ̇1

(
φ̇1 + φ̇2

)
cosφ2 +

(
φ̇1 + φ̇2

)2
)

V = −mg l (2 cosφ1 + cos (φ1 + φ2))

The small angle approximation gives us

T ≈ ml2
(
φ̇2

1 + φ̇1

(
φ̇1 + φ̇2

)
+

1
2

(
φ̇1 + φ̇2

)2
)

V ≈ mg l

(
φ2

1 +
1
2

(φ1 + φ2)
2

)
where constant offset terms have been dropped. Clearly, our configuration vector is

~φ(t) =
(
φ1(t)
φ2(t)

)
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The kinetic energy and potential energy matrices are8

t =
ml2

2

(
5 2
2 1

)
v =

mg l

2

(
3 1
1 1

)
Finding the normal mode frequencies is simply a matter of solving the determinant equation∣∣−ω2t + v

∣∣ = 0. Clearly, everything will scale with g
l since that is ω2 in the simple single

pendulum case, so let’s define λ = ω2/(g/l). We thus have

mg l

2

∣∣∣∣ 3− 5λ 1− 2λ
1− 2λ 1− λ

∣∣∣∣ = 0

mg l

2
(
λ2 − 4λ+ 2

)
= 0

The normal mode frequencies are therefore

ω2
1 =

(
2−
√

2
) g
l

ω2
2 =

(
2 +
√

2
) g
l

We have a low-frequency mode and a high-frequency mode. Let’s find the mode amplitude
ratios. For such a simple system, we can do it directly by solving the equation[

−ω2
i t− v

]
~Φi = 0

mg l

2

(
3− 5λi 1− 2λi
1− 2λi 1− λi

)
~Φi = 0

which gives two equations

(3− 5λi) Φi,1 + (1− 2λi) Φi,2 = 0
(1− 2λi) Φi,1 + (1− λi) Φi,2 = 0

We are guaranteed by our previous derivations that the above two equations are redundant
when one of the λi is plugged in. So we choose to use the second, simpler equation. Recall
also that the normalization is not specified, so we choose a convenient way of writing the
normal mode vector and leave the normalization as an undetermined coefficient, giving

~Φi = α

(
− 1−λi

1−2λi

1

)
which give for the two cases

~Φ1 = α1

(
1 +
√

2
1

)
~Φ2 = α2

(
1−
√

2
1

)
It’s worth a try at working out the algebra that yielded the above to remind yourself how
to rationalize fractions that have a radical in the denominator. It may also be amusing to
see that the two different equations yield the same result. Let’s also do it using the cofactor
method to see we get the same result (we use the top row of the −ω2

i t− v matrix):

~Φi = α′
(

1− λi
− (1− 2λi)

)
= α

(
− 1−λi

1−2λi

1

)
8Remember that the diagonal terms are relative to 1/2 the second-order partial derivatives while the off-diagonal

terms are not! A seemingly inconsequential fact, but the polynomial you end up with can be much worse if the
matrices you started with are incorrect.
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which will yield the same result. If we decide to use the orthonormalization convention, we
require

1 = ~ΦT
i t ~Φi

= α2
(
− 1−λi

1−2λi
1
) ml2

2

(
5 2
2 1

)(
− 1−λi

1−2λi

1

)
which you can obviously expand out and solve. The result is

~Φ1 =
(
ml2

(
10 + 7

√
2
))−1/2

(
1 +
√

2
1

)
~Φ2 =

(
ml2

(
10− 7

√
2
))−1/2

(
1−
√

2
1

)
Note how the low-frequency mode’s mode vector has a large ratio of the displacement of
the top pendulum to the bottom pendulum – the bottom pendulum mostly follows the
top pendulum, exceeding its swing by a small amount (because φ2 is not perfectly locked
to φ1). The high-frequency mode has φ1 and φ2 having opposite signs – they oscillate
antisymmetrically – and has a large amplitude for φ2, it swings more than twice as much
as φ1. This is illustrated here:

c© 1998 Louis N. Hand and Janet D. Finch,
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Check orthonormality of the mode vectors:

~Φi t ~Φj =
ml2

2
1

ml2√(
10± 7

√
2
) (

10± 7
√

2
) ( 1±

√
2 1

)( 5 2
2 1

)(
1±
√

2
1

)

=

(
5
(
1±
√

2
)

+ 2 2
(
1±
√

2
)

+ 1
)( 1±

√
2

1

)
2
√(

10± 7
√

2
) (

10± 7
√

2
)

=
5
(
1±
√

2
) (

1±
√

2
)

+ 2
(
1±
√

2
)

+ 2
(
1±
√

2
)

+ 1

2
√(

10± 7
√

2
) (

10± 7
√

2
)

Now, specialize to one case or the other. First, for i = j the signs are the same:

~Φi t ~Φi =
5 + 10± 10

√
2 + 2± 2

√
2 + 2± 2

√
2 + 1

2
(
10± 7

√
2
) = 1

206



3.2. COUPLED SIMPLE HARMONIC OSCILLATORS

and for i 6= j:

~Φi t ~Φj =
5(1− 2) + 2± 2

√
2 + 2∓ 2

√
2 + 1

2
√

(100− 98)
= 0

Let’s apply the initial conditions. We will need ΦT t, so let’s calculate it:

ΦT =

(
~Φ1

~Φ2

)
=

1√
ml2

 1+
√

2√
10+7

√
2

1√
10+7

√
2

1−
√

2√
10−7

√
2

1√
10−7

√
2


which gives

ΦT t =

√
ml2

2

 1+
√

2√
10+7

√
2

1√
10+7

√
2

1−
√

2√
10−7

√
2

1√
10−7

√
2

( 5 2
2 1

)

=

√
ml2

2

 7+5
√

2√
10+7

√
2

3+2
√

2√
10+7

√
2

7−5
√

2√
10−7

√
2

3−2
√

2√
10−7

√
2


The mode coefficients are given by

R
[
~ψ(t = 0)

]
= ΦT t ~φr(t = 0)

=

√
ml2

2

 7+5
√

2√
10+7

√
2

3+2
√

2√
10+7

√
2

7−5
√

2√
10−7

√
2

3−2
√

2√
10−7

√
2

( 0
α0

)

=

√
ml2

2

 3+2
√

2√
10+7

√
2

3−2
√

2√
10−7

√
2

α0

I
[
~ψ(t = 0)

]
= Ω−1ΦT t ~̇φr(t = 0)

=

√
ml2

2

√
g

l

(
2−
√

2 0
0 2 +

√
2

) 7+5
√

2√
10+7

√
2

3+2
√

2√
10+7

√
2

7−5
√

2√
10−7

√
2

3−2
√

2√
10−7

√
2

( 0
0

)

=
(

0
0

)
So, finally writing out the completely explicit solution:

~ψ(t) = eiΩt ~ψ(t = 0)

= exp
[
i

√
g

l

(
2−
√

2 0
0 2 +

√
2

)
t

]
α0

√
ml2

2

 3+2
√

2√
10+7

√
2

3−2
√

2√
10−7

√
2


= α0

√
ml2

2

 3+2
√

2√
10+7

√
2
ei
√

g
l
(2−

√
2)t

3−2
√

2√
10−7

√
2
ei
√

g
l
(2+

√
2)t


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We may then recover ~φr(t):

~φr(t) = R
[
~φ(t)

]
= R

[
Φ ~ψ(t)

]
= R

 1√
ml2

 1+
√

2√
10+7

√
2

1−
√

2√
10−7

√
2

1√
10+7

√
2

1√
10−7

√
2

α0

√
ml2

2

 3+2
√

2√
10+7

√
2
ei
√

g
l
(2−

√
2)t

3−2
√

2√
10−7

√
2
ei
√

g
l
(2+

√
2)t


=

α0

2
R
{

3+2
√

2
10+7

√
2

(
1+

√
2

1

)
ei
√

g
l
(2−

√
2)t + 3−2

√
2

10−7
√

2

(
1−

√
2

1

)
ei
√

g
l
(2+

√
2)t

}
=

α0

2
√

2

{
(
√

2−1)
(

1+
√

2

1

)
cos[t
√

g
l
(2−

√
2)] + (

√
2+1)

(
1−

√
2

1

)
cos[t
√

g
l
(2+

√
2)]
}

As far as I can tell, Equation 9.60 of Hand and Finch is just utterly wrong – it looks like
they just made some algebraic errors and/or typos in going from 9.59 to 9.60 – and so does
not match the above.

The Symmetric Linear Triatomic Molecule

The symmetric linear triatomic molecule can be modelled simply as three masses connected
by two springs, as illustrated here:

c© 1998 Louis N. Hand and Janet D. Finch,
Analytical Mechanics

The molecule is assumed to be symmetric about the center atom and with equilibrium
distance l between the outer atoms and the center atom.

In addition to providing an example of normal mode decomposition, this example serves to
illustrate a case where one of the modes has zero frequency; i.e., is simply a translation.
This kind of mode violates our assumptions to some extent (we assumed that there was an
equilibrium point in the coordinates), indicating we started out in the wrong coordinate
system.

The kinetic and potential energies are

T =
m

2
(
ẋ2

1 + r ẋ2
2 + ẋ2

3

)
V =

k

2

[
(x2 − x1 − l)2 + (x3 − x2 − l)2

]
where r = M

m . Let us redefine the coordinates as

y1 ≡ x1 + l y2 ≡ x2 y3 ≡ x3 − l
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Then the kinetic and potential energies are

T =
m

2
(
ẏ2
1 + r ẏ2

2 + ẏ2
3

)
V =

k

2

[
(y1 − y2)

2 + (y3 − y2)
2
]

where we have chosen to flip the sign inside the square to make the expressions symmetric.
Now, the reader will immediately realize that we can get rid of one degree of freedom by
transforming to center-of-mass coordinates. The transformation is as follows:

z1 ≡ x1 −X + l z2 ≡ x2 −X z3 ≡ x3 −X − l X =
mx1 +M x2 +mx3

M + 2m

We have four coordinates variables now, but of course we only have three degrees of freedom,
so let’s get rid of one by using the constraint that, in the z coordinate system, the center
of mass is at the origin:

m (z1 − l) +M z2 +m (z3 + l) = 0
mz1 +M z2 +mz3 = 0

which changes the second equation to

−m
M

(z1 + z3) = x2 −X

Now, we must rewrite the x coordinates in terms of the X, z1, and z2 coordinates so we
can rewrite the Lagrangian. We find

x1 = X + z1 − l x2 = X − m

M
(z1 + z3) x3 = X + z3 + l

We don’t need to work through the rewrite of the kinetic energy directly; referring back to
Equation 1.24, we can simply write

T =
M + 2m

2
Ẋ2 +

m

2
(
ż2
1 + ż2

3

)
+
M

2
ż2
2

=
M + 2m

2
Ẋ2 +

m

2
(
ż2
1 + ż2

3

)
+

m2

2M
(ż1 + ż3)

2

The potential energy can be rewritten (s = m
M )

V =
k

2

[(
M +m

M
z1 +

m

M
z3

)2

+
(
M +m

M
z3 +

m

M
z1

)2
]

=
k

2

{[
(1 + s)2 + s2

]
z2
1 +

[
(1 + s)2 + s2

]
z2
3 + 4 (1 + s) s z1 z3

}
So, clearly, there is no dynamics in the X coordinate and the z1 and z3 coordinates are
clearly coupled. Let us carry through both analyses and see how they compare. First,
calculate the t and v matrices:

t =
m

2

 1 0 0
0 r 0
0 0 1

 v =
k

2

 1 −1 0
−1 2 −1

0 −1 1


t =

m

2

(
1 + s s
s 1 + s

)
v =

k

2

(
(1 + s)2 + s2 2 (1 + s) s
2 (1 + s) s (1 + s)2 + s2

)
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Define ω2
0 ≡ k

m and λ ≡ ω2

ω2
0
. The determinant equation then becomes

∣∣∣∣∣∣
1− λ −1 0
−1 2− r λ −1
0 −1 1− λ

∣∣∣∣∣∣ = 0

∣∣∣∣ (1 + s)2 + s2 − λ (1 + s) 2 (1 + s) s− λ s
2 (1 + s) s− λ s (1 + s)2 + s2 − λ (1 + s)

∣∣∣∣ = 0

which give the equations

λ
(
r λ2 − 2 (r + 1)λ+ (r + 2)

)
= 0[

(1 + s)2 + s2 − λ (1 + s)
]2
− [2 (1 + s) s− λ s]2 = 0

One can easily show that the roots of the first equation are

λ0 = 0 λ1 = 1 λ2 = 1 +
2
r

It is also easy to see that the roots of the second equation are (remember, a2 = b2 → a = ±b,
which is how one gets two solutions):

λ1 = 1 λ2 = 1 + 2 s

Since s = 1
r , the two nonzero solutions are the same. The λ0 solution in the first version is

our indication that we had more coordinates than dynamical degrees of freedom. Another
way to look at it is that the first mode is simple translational motion, no oscillation, though
it is not obvious that one should draw that conclusion since our entire formalism using
the t and v matrices assumed we were expanding about an equilibrium point with no net
velocity. Writing in physical units, we obtain

ω1 =

√
k

m
ω2 =

√
k

m

√
1 + 2

m

M

Let’s calculate the normal mode vectors using the cofactors:

~Φi =



∣∣∣∣ 2− r λi −1
−1 1− λi

∣∣∣∣
−
∣∣∣∣ −1 −1

0 1− λi

∣∣∣∣∣∣∣∣ −1 2− r λi
0 −1

∣∣∣∣

 =

 (2− r λi) (1− λi)− 1
1− λi

1



~Φ ′
i =

(
(1 + s)2 + s2 − λ (1 + s)

λ s− 2 (1 + s) s

)

where we have designated the second version of ~Φi with a ′ because, even though the
frequencies are the same, the mode vectors will be different because we started out with
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two different coordinates systems. For the specific modes, we have

~Φ0 =

 1
1
1


~Φ1 =

 −1
0
1


~Φ2 =

 1
−2mM

1


The zeroth mode is clearly simple translation – all three atoms move with the same ampli-
tude and phase. In the first mode, the two outer atoms move exactly opposite to each other
and the center atom does not move at all. In the second mode, the two outer atoms move
together and the center atom moves opposite them. The ratios of the motions depend on
the relative masses. If we instead write using the ′ system, we have

~Φ ′
1 =

(
1
−1

)
~Φ ′

2 =
(

1
1

)
Since the two coordinates in the ′ system are the motions of the outer atoms relative to the
center of mass, it is sensible that the first mode is simple antisymmetric motion in these
two coordinates. The second mode is not simple translation, though. The two outer atoms
move together – as seen in the original coordinate system – but, because the center of mass
must stay stationary in the center-of-mass frame, the center atom must obviously move
opposite to the outer atoms. The amplitude can be found by going back to our relation
for z2 in terms of z1 and z3 (which comes from requiring the center of mass be fixed in the
center-of-mass system):

z2 = −m
M

(z1 + z3) = −2
m

M

which is as we found in the original coordinate system.

More examples: See Thornton, Chapter 12.

3.2.4 Degeneracy

Our discussions so far have assumed that the roots ω2 to the discriminant equation are all unique.
Our proof of orthogonality of different normal mode vectors required this. But there are some cases
when two modes have the same normal mode frequency. Such modes are termed degenerate. It
is still possible to find normal mode vectors; the degeneracy simply implies there is freedom in the
choice.

General Considerations

What happens to the usual procedure when degeneracies arise? The fundamental problem
that arises is that Equation 3.18 will no longer provide M − 1 independent equations,
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but M − n − 1 independent equations where n is the number of degenerate normal mode
frequencies. The way to see this is to suppose that this was not true, that the normal mode
vectors for the degenerate frequencies are fully determined. Let these be the first n modes,
so the normal mode vectors are labeled ~Φi, i = 1, . . . , n. Because these mode vectors all
correspond to the same normal mode frequencies – i.e., v ~Φi = ω2

i t ~Φi for i = 1 . . . , n, then
any linear combination of them also satisfies this equality. If that is true, then there must be
n undetermined degrees of freedom in the original equations determining ~Φi. Hence there
will only be M − n− 1 independent equations for ~Φi.

In this case, you are free to specify the undetermined degrees of freedom. Certainly, you
can use this freedom to force your choices to be orthonormal. Even with this constraint,
you still have a fair amount of freedom. In picking the ith normal mode vector, you have
n− i+ 1 degrees of freedom, one of which is the normalization. Thus, only the nth normal
mode vector is completely determined up to length.

Example: Masses Coupled by Springs on a Circle

To illustrate degeneracy, consider the example of three identical masses constrained to
move on a circle and coupled along the arc of the circle by three identical springs, as
illustrated below. (We could have done this with the masses unconstrained, but the problem
becomes two-dimensional and the algebra becomes more difficult without providing further
illumination.).

c© 1998 Louis N. Hand and Janet D. Finch,
Analytical Mechanics

The kinetic and potential energies are

T =
m

2

(
θ̇2
1 + θ̇2

2 + θ̇2
3

)
V =

k

2
R2

[(
θ2 − θ1 −

2π
3

)2

+
(
θ3 − θ2 −

2π
3

)2

+
(
θ1 − θ3 −

2π
3

)2
]

Again, define new coordinates that express the offsets from the equilibrium positions,

δ1 = θ1 δ2 = θ2 −
2π
3

δ3 = θ3 +
2π
3
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which allows us to rewrite the kinetic and potential energies as

T =
m

2

(
δ̇21 + δ̇22 + δ̇23

)
V =

k

2
R2
[
(δ2 − δ1)2 + (δ3 − δ2)2 + (δ1 − δ3)2

]
The kinetic and potential energy matrices become

t =
m

2

 1 0 0
0 1 0
0 0 1

 v =
k R2

2

 2 −1 −1
−1 2 −1
−1 −1 2


The determinant equation is ∣∣∣∣∣∣

2− λ −1 −1
−1 2− λ −1
−1 −1 2− λ

∣∣∣∣∣∣ = 0

with λ = ω2

k R2/m
. The solutions are

λ0 = 0 λ1,2 = 3

The zeroth mode is just rotation of the entire system without oscillation (again, it could
have been eliminated by appropriate coordinate choice). The first and second modes are
degenerate. If we try to find the normal mode vectors via the usual cofactor vectors, we
find

~Φi = α

 λ2
i − 4λi + 3

3− λi
3− λi


We get all three elements equal for λ = 0 and we get all three elements vanishing for λ = 3.
Correctly normalized, the λ = 0 mode vector is

~Φ0 =

√
2

3m

 1
1
1


So now we are free to choose the two degenerate mode vectors as we like. One obvious
choice based on our solution for the very similar triatomic linear molecule is

~Φ1 =
1√
m

 0
1
−1


The above normal mode vector satisfies the normalization condition ~ΦT

1 t ~Φ1 = 1 Now, if
we want a vector ~Φ2 that is orthogonal to ~Φ2, ~Φ1 and properly normalized, we have the
following equations:

~Φ2 = a

 1
β
γ

 ~ΦT
0 t ~Φ2 = 0 ~ΦT

1 t ~Φ2 = 0 ~ΦT
2 t ~Φ2 = 1
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Writing these out explicitly give

1 + β + γ = 0 β − γ = 0 a2 m

2
(
1 + β2 + γ2

)
= 1

which yields

~Φ2 =
1√
3m

 2
−1
−1


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3.3 Waves

This section introduces one-dimensional waves, beginning by calculating the normal modes of a
loaded string. We then take the limit of a continous string, which introduces the general wave
equation. Solutions are discussed, energy transport, phase velocity vs. group velocity, etc. The
initial material on the loaded string is found in Hand and Finch Section 9.7, but the rest of the
section follows Thornton Chapter 13. You will only be responsible for material presented here.

3.3.1 The Loaded String

The normal modes of a system consisting of M equally spaced point masses connected by a massless
string is presented.

The Problem

Consider a set of M point masses of mass m spaced at intervals d and connected by a
massless string with tension τ , with the two ends of the string fixed. Assume the all
displacements {yp} of the masses are perpendicular to the string and small.

c© 1998 Louis N. Hand and Janet D. Finch,
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The distance between two adjacent masses is

l =
√
d2 + (yp+1 − yp)2 ≈ d

(
1 +

1
2

(yp+1 − yp)2

d2

)
so the change in the distance from the equilibrium separation d is

∆l = l − d ≈ 1
2 d

(yp+1 − yp)2

The potential energy stored in the link between masses p and p + 1 is the product of the
force and the displacement:

Vp = F ∆ l =
τ

2 d
(yp+1 − yp)2

The total potential energy is the sum over the Vp; note that, by considering the potential
energy as stored in the link, we have counted a link when we have counted its left member.
We have to be careful not to double count. We have

V =
τ

2 d
(
y2
1 + y2

M

)
+
M−1∑
p=1

τ

2 d
(yp+1 − yp)2

We include explicit terms for the leftmost and rightmost links because one end of each link
is fixed and so must be treated specially. The kinetic energy is obviously

T =
M∑
p=1

m

2
ẏ2
p
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The Solution

The kinetic and potential energy matrices are therefore

t =
m

2


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

 v =
τ

2 d


2 −1 0 · · ·
−1 2 −1 · · ·

0 −1 2 · · ·
...

...
...

. . .


The matrix −ω2t + v is

−ω2t + v =


−ω2m

2 + τ
d − τ

2 d 0 · · ·
− τ

2 d −ω2m
2 + τ

d − τ
2 d · · ·

0 − τ
2 d −ω2m

2 + τ
d · · ·

...
...

...
. . .


Taking the determinant of this matrix explicitly is not a reasonable thing to do if M is
large. We seek a general solution anyways, and taking the determinant directly is bound to
be M -specific. The way to find a solution is to make use of the band-diagonal nature of the
matrix and use this to return to the linear algebra equation from which the determinant
conditions is derived – Equation 3.18 – which tells us[

−ω2t + v
]
~Φ = 0

If we consider a particular row of the equation, we find

− ω2m

2
Φp +

τ

d
Φp −

τ

2 d
(Φp+1 + Φp−1) = 0 (3.18)

Note that this is just Newton’s second law for the mass p up to a factor of 2.9 Earlier, at
Equation 3.18 we had demonstrated that the ~Φ are completely real. However, this does not
prevent us, for the sake of convenience, of assuming a complex solution and taking the real
part at the end. We will in fact assume that ~Φ is of the form

Φp = R
[
eipγ−iδ

]
where we have dropped any normalizing coefficient for now. The phase δ is necessary to
avoid assuming that the real part of the solution is cos k γ since we have no justification for
such an assumption. That this form is correct is, as usual, not obvious from the start but

9The left-most term is the acceleration of the mass p (the ω2 factor arises from the two time derivatives). The
other three terms can be rewritten

1

2
τ

»
1

d
(Φp − Φp+1) +

1

d
(Φp − Φp−1)

–
(3.19)

The quantities 1
d

(Φp − Φp±1) give the tangent of the angle between the rope and the horizontal at mass p, which is
approximately the sine of that angle for small vertical displacements; this gives the component of the tension along
the y axis, which is the restoring force pulling the mass p back to the equilibrium position. When new kinds of
systems are encountered, such as with additional objects attached to the rope, come back to this force equation to
understand how to add them in.
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must be confirmed. It is of course motivated by the physical expectation of a sinusuoidal
wave motion of the masses on the string. Inserting the solution in Equation 3.18, we find[

−ω2m

2
+
τ

d
− τ

2 d
(
eiγ + e−iγ

)]
eipγ−iδ = 0

We obtain the equation

ω2 =
4 τ
md

sin2 γ

2
This does not yet provide normal mode frequencies because γ is undetermined. Let us apply
the boundary conditions that the amplitude must vanish at p = 0 and p = M + 1.10 Note
that these are boundary conditions, not initial conditions; initial conditions should
not have any effect on the mode structure, just how a particular solution evolves with time.
Boundary conditions, on the other hand, are physical constraints that affect all possible
solutions. The boundary conditions imply for the solution that

R
[
ei(0)γ−iδ

]
= 0 R

[
ei(M+1)γ−iδ

]
= 0

cos δ = 0 cos [(M + 1) γ − δ] = 0

δ =
π

2
which we can combined to find

sin [(M + 1) γ] = 0 =⇒ γ =
nπ

M + 1

The n is an undetermined integer. We will see below that, though n could of course take
on any integer value, only the values n = 1, . . . ,M yield physically unique solutions. Using
the above, we find

ωn = 2
√

τ

md
sin
(

1
2

nπ

M + 1

)
Φn,p = αR

[
eipγ−iδ

]
= α cos

(
n pπ

M + 1
− π

2

)
= α sin

(
n pπ

M + 1

)
where Φn,p is the solution corresponding to ωn at the pth point along the string. α is a
yet-to-be-determined normalization.

Now, since sin is periodic, we can restrict the range of n to only those that will give unique
physical solutions. The values n < 0 and n ≥ 2(M + 1) are redundant. The values
n = M +2, . . . , 2M +1 are also redundant because they yield, up to an overall −1 sign the
same function of p as the values n = M − 1,M − 2, . . . , 1. The −1 should be absorbed into
the initial conditions. And, finally n = M+1 gives the same dependence on p as n = 0, both
of which give trivial solutions yn,p = 0 for all p. So there are really only M independent
dynamical normal modes, n = 1, . . . ,M . This is as we would expect because there are only
M displacements to measure. The modes for a M = 3 system are shown below, including
not just the unique modes n = 1, 2, 3 but also the redundant modes n = 4, . . . , 8.

10Strictly speaking, Φ0 and ΦM+1 are not defined; think of them instead as limd→0 Φ1 and limd→0 ΦM
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Normalization of the Modes

Let’s fix the normalization α. We are going to do something nonstandard but physically
reasonable. The kinetic energy matrix t is just a multiple of the identity matrix. Therefore,
there seems to be no reason to carry around the m

2 in the normalization. So, instead of
requiring ~ΦT

n t ~Φn = 1, we simply require ~ΦT
n
~Φn = 1. This requires

α2
M∑
p=1

sin2

(
n pπ

M + 1

)
= 1

for any n. A trigonometric identity is available,11

M∑
p=1

sin2

(
n pπ

M + 1

)
=
M + 1

2

11One might think this is easy to prove. It turns out not to be.
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which implies α2 = 2
M+1 . So, our full normal mode solutions are

ωn = 2
√

τ

md

∣∣∣∣sin(1
2

nπ

M + 1

)∣∣∣∣ (3.20)

Φn,p =

√
2

M + 1
sin
(
n pπ

M + 1

)
(3.21)

Applying Initial Conditions

We may use the standard formalism to apply the initial conditions. We will write the normal
mode vectors Φn,p with vector notation ~Φn; these are M -component vectors representing
the displacement at the M positions on the string. This now mimics our normal mode
notation. As in that case, the generic solution is

~yr(t) = R [~y(t)] = R

[
M∑
n=1

An ~Φn e
iωnt

]

The r subscript indicates “real part”, it is not an index. We again allow the An to be complex
so that the different normal modes may be excited with different phases. Obtaining the
mode coefficients from the initial conditions:

R [An] = ~ΦT
n ~yr(t = 0)

I [An] =
1
ωn

~ΦT
n ~̇yr(t = 0)

where we have replaced ~ΦT
n t with ~ΦT

n because of our normalization convention that replaces
t with I. Writing the above out explicitly using the p index gives

R [An] =

√
2

M + 1

M∑
p=1

sin
(
n pπ

M + 1

)
yr,p(t = 0) (3.22)

I [An] =
1
ωn

√
2

M + 1

M∑
p=1

sin
(
n pπ

M + 1

)
ẏr,p(t = 0)

Remember that the r subscript on y stands for “real”, it is not an index.

3.3.2 The Continuous String

We take the continuous limit of the loaded string case.

The Continous String Limit

Let us consider the loaded string solution in the limit of d → 0, M → ∞. Begin with
Equations 3.21 and rewrite using L = d (M + 1) as the length of the string, Λ = m

d as the
string linear mass density, and x = p d as the coordinate along the string:

ωn =
2
d

√
τ

Λ

∣∣∣∣sin(1
2
nπ d

L

)∣∣∣∣→ nπ

L

√
τ

Λ

Φn,p =

√
2 d
L

sin
(
n pπ d

L

)
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The normalization convention is nonsensical as it is because the coefficient vanishes in the
limit d→ 0. But let’s reconsider how we arrived at the convention:

1 =
M∑
p=1

Φ2
n,p

=
M∑
p=1

2 d
L

sin2

(
n pπ

M + 1

)

Since d is the step size in x, we can take d to be the differential dx, which then converts
the sum to an integral as d→ 0:

1 =
∫ L

0
dx

2
L

sin2
(nπ x

L

)
With the new normalization condition, the normalization factor becomes the sensible

√
2
L .

So our full solution is

ωn =
nπ

L

√
τ

Λ
Φn(x) =

√
2
L

sin
(nπ x

L

)
(3.23)

where x now takes on the role of the index p. The “vector” nature of Φn corresponded to
the index p, so we no longer write Φn as a vector. Initial conditions are applied via relations
analogous to those found for the discrete case above. The general solution has expansion

yr(x, t) = R

[ ∞∑
n=1

An Φn(x) eiωnt

]

where the limit of the sum is now∞ because M →∞. The analogous relations for obtaining
the expansion coefficients are (using the conversion

∑M
p=1 d =

∫ L
0 dx):

R [An] =

√
2
L

∫ L

0
dx sin

(nπ x
L

)
yr(x, t = 0) (3.24)

I [An] =
1
ωn

√
2
L

∫ L

0
dx sin

(nπ x
L

)
ẏr(x, t = 0)

Remember that the r subscript on y stands for “real”, it is not an index. Note how the
position index p has been completely replaced by the continuous variable x, and the vector
dot products are replaced by the integral over x of a product.

Correspondence to Normal Mode Formalism

Though we have solved the problem using other techniques, it is useful to show how our
solutions correspond to the normal mode formalism. Recall our normal mode formalism,
where we transformed to normal mode coordinates ~ψ(t) = ΦT t ~φ(t) with Φ being the
matrix of normal mode vectors ~Φn, ~φ(t) being the vector of position coordinates, and ~ψ(t)
being the vector of coefficients of the normal modes. For the continous string case, we have
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the correspondence

p ←→ x

φp(t) ←→ y(x, t)

t ←→ Λ
2

Φpn = Φn,p ←→
√

2
Λ

Φn(x) =

√
2
Λ

√
2
L

sin
(nπ x

L

)
ψn(t = 0) ←→

√
Λ
2
An

ψn(t) ←→
√

Λ
2
R
[
An e

iωnt
]

ψ̇n(t) ←→
√

Λ
2
R
[
i ωnAn e

iωnt
]

Recall that Λ is the linear mass density, the limit of m/d. The
√

Λ
2 factors arise because

we chose to unit-normalize the normal-mode vectors rather than normalize them using the
t matrix. Recall that, for a finite number of position coordinates p = 1 . . .M , ~ψ(t) was
the transformation of ~φ(t) from position coordinates to normal modes; ψn(t) describes the
time evolution of the coefficient of the nth normal mode, while φp(t) describes the time
evolution of the pth position coordinate. Here we of course go from the discrete index p to
the continuous index x to label the y position coordinates.

It is interesting to count up degrees of freedom. We have a continuous variable x to label
the degrees of freedom in the y direction. This is an uncountably infinite number of degrees
of freedom; for the non-mathematicians, this simply means that the number of degrees of
freedom is of the same order as the number of real numbers, rational and irrational. On the
other hand, the number of independent normal modes is countably infinite because they are
labeled by the integer n; that is, the number of modes is of the same order as the number
of integers, which, while infinite, is less infinite than the number of rational and irrational
numbers. But, we expect our normal mode formalism to preserve the number of degrees of
freedom. What has happened? Boundary conditions. They add more information to the
problem, restricting the freedom in the normal modes. If we had an infinitely long string
with no boundary conditions imposed, n could take on noninteger rational and irrational
values, matching the number of degrees of freedom in the position coordinates.

The Diagonalized Hamiltonian

From our generic discussion of normal modes, the Hamiltonian can be rewritten in terms
of normal modes as

H = ~̇ψ T I ~̇ψ + ~ψ TΩ2 ~ψ

221



CHAPTER 3. OSCILLATIONS

So, with the above correspondences, the Hamiltonian becomes

H =
∞∑
n=1

Λ
2
{
R
[
i ωnAn e

iωnt
]}2 +

∞∑
n=1

Λ
2
ω2
n

{
R
[
An e

iωnt
]}2

=
Λ
2

∞∑
n=1

ω2
n

{
(R[An])

2 + (I[An])2
}{

cos2(ωnt) + sin2(ωnt)
}

=
Λ
2

∞∑
n=1

ω2
n |An|2

Recall that the An have units of length
3
2 , ωn has units of inverse time, and Λ has units of

mass per unit length, so the resulting quantity does indeed have units of energy.

3.3.3 The Wave Equation

We derive the wave equation for the loaded string case and then consider it more generally. We
study solutions of the equation.

Deriving the Wave Equation

If we consider our solution Equation 3.23, we quickly see that there is a relationship between
the time dependence and the spatial dependence. Two derivatives of a sine or a cosine return
the original function, which lead us to consider

∂2

∂x2
yn(x, t) = −

(nπ
L

)2
yn(x, t)

∂2

∂t2
yn(x, t) = −

(nπ
L

)2 τ

Λ
yn(x, t)

We thus obtain the wave equation:

∂2

∂t2
yn(x, t) =

τ

Λ
∂2

∂x2
yn(x, t)

Since we have proven that the wave equation holds for every normal mode with the same
coefficient τ

Λ , it holds for any linear combination thereof and thus for any continuous string
solution. But let’s derive it directly also.

First, let’s work from the equation of motion. We have Equation 3.18, but let’s take it a
step backward before the assumption of harmonic (eiωt) time dependence is made. We have

m

2
d2

dt2
yp(t) +

τ

d
yp(t)−

τ

2 d
(yp+1(t) + yp−1(t)) = 0

m

2
d2

dt2
yp(t) +

τ

2 d
[yp(t)− yp−1(t)] +

τ

2 d
[yp(t)− yp+1(t)] = 0

Recall that these equations are essentially just Newton’s second law applied to the mass p,
as was discussed in a footnote in Section 3.3.1. Now, the finite difference yp(t) − yp−1(t)
becomes d ∂

∂x y(x+ d
2 , t) in the limit d→ 0. So we have

m

2
∂2

∂t2
y(x, t) +

τ

2

[
∂

∂x
y

(
x− d

2
, t

)
− ∂

∂x
y

(
x+

d

2
, t

)]
= 0
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The difference of two partial derivatives evaluated at points separated by d is a second
partial derivative (have to insert a sign)

m

2
∂2

∂t2
y(x, t)− τ

2
d
∂2

∂x2
y (x, t) = 0

Now, Λ = m
d is the string linear mass density, so we have

∂2

∂t2
y(x, t)− τ

Λ
∂2

∂x2
y (x, t) = 0 (3.25)

So we find the wave equation can be derived directly from the equation of motion without
assuming harmonic time dependence.

Functional Form of Solutions

The key to seeing the general form of solutions to the wave equation is to recognize that τ
Λ

has dimensions of a squared velocity. Thus, with v =
√

τ
Λ , we obtain

∂2

∂t2
y(x, t)− v2 ∂

2

∂x2
y (x, t) = 0

We thus see that the functional dependence of a solution y(x, t) on x and t must be the
same up to a factor v. It is therefore natural to consider the solutions to be functions of
the variables

ξ ≡ x+ v t

η ≡ x− v t

Note that we are not constraining y in any fashion, since the linear combinations ξ + η
and 1

v (ξ − η) return x and t. Using the chain, rule, we may write the partial derivatives in
terms of ξ and η:

∂y

∂x
=
∂y

∂ξ

∂ξ

∂x
+
∂y

∂η

∂η

∂x
=
∂y

∂ξ
+
∂y

∂η

The second derivative is therefore

∂2y

∂x2
=

∂

∂ξ

(
∂y

∂ξ
+
∂y

∂η

)
∂ξ

∂x
+

∂

∂η

(
∂y

∂ξ
+
∂y

∂η

)
∂η

∂x

=
∂2y

∂ξ2
+
∂2y

∂η2
+ 2

∂2y

∂ξ ∂η

Similarly, we may show

1
v

∂y

∂t
=

∂y

∂ξ
− ∂y

∂η

1
v2

∂2y

∂t2
=

∂2y

∂ξ2
+
∂2y

∂η2
− 2

∂2y

∂ξ ∂η

If the wave equation is to hold, the mixed second partial derivative must vanish. Thus,
y(x, t) must be of the form

y(x, t) = f(ξ) + g(η) = f(x+ v t) + g(x− v t)

223



CHAPTER 3. OSCILLATIONS

That is, the wave equation puts a constraint on the functional form of y that requires it to
be a sum of separate functions of ξ and η. This is a nontrivial constraint. It tells us that we
have “propagating” solutions: to maintain fixed ξ or η, the solution must advance in x at
± v t. The solution f(x+ v t) propagates to the left and the solution g(x− v t) propagates
to the right.

Separation of Variables for the Wave Equation

Let us consider a generic solution by separation of variables. We assume the solution is
of the form

y(x, t) = φ(t)ψ(x)

Plugging into the wave equation, we find

1
φ

d2

dt2
φ(t) =

v2

ψ

d2

dx2
ψ(x)

where we have divided by y(x, t) = φψ under the assumption that the solution is not
identically zero. (Appropriate limits may be taken if the solutions vanish at particular
values of x and/or t.) Since the two sides are dependent on different variables – the variables
have been separated – they both must equal a constant, which we will call −ω2 so that
the definition of ω will come out consistent with our previous solution. That is, we now
have two equations:

d2

dt2
φ(t) + ω2φ(t) = 0

d2

dx2
ψ(x) + k2ψ(x) = 0 (3.26)

where k2 = ω2

v2
. We know the solutions to these equations are of the form

ψ(x) = Aeikx +B e−ikx φ(t) = C eiωt +De−iωt

where all four coefficients may be complex (but must have certain relations among them to
obtain real solutions in the end). No boundary conditions have been applied, so ω and all
four constants for each value of ω remain free. The generic solution is therefore

y(x, t) =
∑
r

[
ar++ e

i(krx+ωrt) + ar+− e
i(krx−ωrt) + ar−+ e

−i(krx−ωrt) + ar−− e
−i(krx+ωrt)

]
The coefficients are complex and have 8 degrees of freedom for each r. To ensure real
solutions in the end, we require that I[y(x, t)] vanish at all times. Since each mode has
different time dependence, each mode’s imaginary part must vanish separately. So we have
the condition

0 = I
[
ar++ e

i(krx+ωrt) + ar+− e
i(krx−ωrt) + ar−+ e

−i(krx−ωrt) + ar−− e
−i(krx+ωrt)

]
= R [ar++ − ar−−] sin(k1x+ ωrt) +R [ar+− − ar−+] sin(k1x− ωrt)

+ I [ar++ + ar−−] cos(k1x+ ωrt) + I [ar+− + ar−+] cos(k1x− ωrt)

The different spatial and temporal dependences of the four terms imply that each coefficient
must vanish separately. This implies

ar−− = a∗r++ ar−+ = a∗r+−
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i.e., the two modes with the same propagation direction have complex conjugate coefficients.
The coeffcients remain complex, but the solution is now simplified to

y(x, t) =
∑
r

[
ar< e

i(krx+ωrt) + ar> e
i(krx−ωrt) + a∗r> e

−i(krx−ωrt) + a∗r< e
−i(krx+ωrt)

]
= 2R

{∑
r

[
ar< e

i(krx+ωrt) + ar> e
i(krx−ωrt)

]}

where we have relabeled the coefficients with > and < to indicate right- and left-going waves.
The second step is mathematically rigorous, not just justified by saying that our function
must be real in the end. (It reflects the fact that there is no physical difference between
ω < 0 and ω > 0, while there is such a difference for k.) There now remain four degrees of
freedom. Boundary conditions will reduce the number of degrees of freedom further.

k is the wavenumber and clearly k = 2π
λ where λ is the spatial wavelength (distinct from

Λ, the mass density). The modes can be rewritten to make clear the relative roles of the
wavenumber and velocity:

ei(krx±ωrt) = eikr(x±v t)

Note that, unless the velocity has explicit dependence on ω, the propagation velocity v is the
same for all frequencies. kr is the quantity that determines how the spatial and temporal
dependence varies between modes.

Solutions for Particular Boundary Conditions

Further detailing of solutions requires application of boundary conditions.12 We consider
some examples.

• Standing Waves: This is the type of solution we originally found. Our boundary
condition is to require that the solution vanishes identically at x = 0 and x = L for all
time. As usual, the condition separates by modes, giving

0 = R
{
[ar< + a∗r>] eiωrt

}
0 = R

{[
ar< e

ikrL + a∗r> e
−ikrL

]
eiωrt

}
Writing the above out gives

0 = R{ar< + a∗r>} cosωrt− I {ar< + a∗r>} sinωrt

0 = R
{
ar< e

ikrL + a∗r> e
−ikrL

}
cosωrt− I

{
ar< e

ikrL + a∗r> e
−ikrL

}
sinωrt

Since these conditions must hold for all time, the coefficients of the cos and the sin
terms vanish separately, which imply

ar< = −a∗r> ar> e
ikrL = −a∗r< e−ikrL

12As a matter of cultural interest, we note that quantization of energies and momenta in quantum mechanics is
identical to the way quantization of wave frequencies and wavevectors will arise in the following examples. Quantiza-
tion in quantum mechanics is entirely the result of a) treating particles as complex waves and b) imposing boundary
conditions on those waves.
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Given the left relation, the right relation can hold only if I[eikrL] vanishes, which
implies krL = r π with r an integer. Thus our solution is of the form

krL = r π =⇒ ωr = kr v =
r π

L
v =

r π

L

√
τ

Λ
(3.27)

y(x, t) = R

{∑
r

[
ar e

i(krx+ωrt) − a∗r ei(krx−ωrt)
]}

where we write ar for ar< now that there is only one coefficient to worry about.
(We have also dropped the 2 in front of the expression for y(x, t); it is just an overall
normalization that can be absorbed into the ar.) We recover the quantization condition
on the mode frequencies that we found earlier. This leaves two degrees of freedomR[ar]
and I[ar] to be determined by initial conditions. We may rewrite to obtain a form
more similar to what we obtained earlier:

y(x, t) = 2
∑
r

[
R(ar) cos (krx+ ωrt)− I(ar) sin (krx+ ωrt)

−R(ar) cos (krx− ωrt)− I(ar) sin (krx− ωrt)
]

=
∑
r

[4R(ar) sin(krx) sin(ωrt)− 4 I(ar) sin(krx) cos(ωrt)]

=
∑
r

sin(krx) [γr cos(ωrt) + δr sin(ωrt)]

where γr and δr are both real and are determined by the initial conditions. This may
look a bit different from our earlier result for the normal modes of a continuous string
with the same boundary conditions, but we can see that they are the same. Recall
from Equations 3.23 and 3.24 our solution was

y(x, t) = R

[ ∞∑
n=1

An Φn(x) eiωnt

]
Φn(x) =

√
2
L

sin
(nπ x

L

)
ωn =

nπ

L

√
τ

Λ

Rewriting, we have

y(x, t) =
∞∑
n=1

{
R(An)

√
2
L

sin
(nπ x

L

)
cosωn t− I(An)

√
2
L

sin
(nπ x

L

)
sinωn t

}

clearly providing a direct correspondence between the two cases.

• Traveling Wave Incident on Interface: Two strings of differing densities Λ1 and Λ2

are joined at x = 0. A continuous wave train of frequency ω is incident on the interface.
What is the solution and what are the ratios of the amplitudes of the reflected and
transmitted waves to the incident wave amplitude? What are the transmitted and
reflected power fractions?
We write the solution in the two regions as

yx<0(x, t) = R
{
a> e

i(k1x−ω1t) + a< e
i(k1x+ω1t)

}
yx>0(x, t) = R

{
b> e

i(k2x−ω2t)
}
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We have made only one assumption so far, which is that, because the incoming wave is
rightward propagating, we need only include rightward-propagating modes in the trans-
mitted wave; obviously, it would violate causality to generate a leftward-propagating
wave on the right side of the interface if the incoming wave is incident from the left
side. The phase and amplitude of the incoming wave are set by initial conditions we
have not yet specified, so we will not try to determine a>. Thus, we have four degrees
of freedom to determine now, and two more to be set by initial conditions.
The time dependence of the second term in the x < 0 solution appears to have no
match on the right side, but one must remember that we will take the real part. To
remove this apparent contradiction, we may rewrite the above as

yx<0(x, t) = R
{
a> e

i(k1x−ω1t) + a∗< e
−i(k1x+ω1t)

}
yx>0(x, t) = R

{
b> e

i(k2x−ω2t)
}

which is valid because the real part of a complex number and of its complex conjugate
are the same.
The boundary condition we need to apply in this case is to require continuity of the
wave function and its first spatial derivative at the interface. The first spatial derivative
must be continuous in order to have a finite value of the second spatial derivative at the
interface; an infinite value would imply by the wave equation that ∂2y

∂t2
is also infinite

at the interface, which requires infinite force. So we have

R
{
(a> + a∗<) e−i ω1t

}
= R

{
b> e

−iω2t
}

R
{
i k1 (a> − a∗<) e−iω1t

}
= R

{
i k2 b> e

−iω2t
}

If we do not want a trivial solution, we must have ω1 = ω2 in order for the conditions
to be satisfied at all time. Using this fact, and writing out the above explicitly gives

R{a> + a∗<} cosω1t+ I {a> + a∗<} sinω1t = R{b>} cosω1t+ I {b>} sinω1t

−I {a> − a∗<} k1 cosω1t+R{a> − a∗<} k1 sinω1t = −I {b>} k2 cosω1t+R{b>} k2 sinω1t

The coefficients of the cos and sin terms must be separately equal for the equations to
be satisfied at all times. So we have

a> + a∗< = b> k1 (a> − a∗<) = k2 b>

The solutions for a< and b> are therefore

a∗<
a>

=
k1 − k2

k1 + k2

b>
a>

=
2 k1

k1 + k2

Up to π, the phases of a< and b> are the same as the phase of a>. We will in general
let a> be real because an overall phase factor has no physical consequences; if we do
this, then a< and b> are also real. The sign of a< relative to a> depends on the relative
sizes of the wavevectors, which is set by the different velocities because the frequencies
are identical (recall, k = ω

v ). a< has the same sign as a> when k1 > k2, which occurs
when v1 < v2 or, more fundamentally, Λ1 > Λ2 (assuming continuous tension to ensure
finite acceleration of the interface). The sign of b> is always positive.
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The reader will note that we have not obtained any kind of quantization of ω or k – no
conditions have been placed on ω. This is simply because our boundary conditions are
not restrictive enough. ω may now take on any real number value, implying that the
number of possible modes is now uncountably infinite. The number of modes in this
case is indeed equal to the number of position coordinates x at which the string may
oscillate. This is in contrast to the countably infinite number of modes we obtained in
the standing wave problem because of the more constraining boundary conditions.
To determine the transmitted and reflected power fractions, we first recall from earlier
that the energy of a system that has been decomposed into normal modes may be
written as follows

E =
Λ
2

∑
n

ω2
n |An|2

We have two modifications in this case: 1) n may take on any real number value, and
the sum over n should really become an integral, because no quantization condition
has arisen for ω; and 2), our standing wave normalization convention does not work
because L = ∞, so we will likely have to normalize on some fixed standard length
(e.g., 1 m), and, similarly, E will be infinite, so we should restrict ourselves to consider
the energy density E , the energy per unit length. Suffice it to say that the expression
for energy density will look like

E ∝ Λ
2

∫ ∞

0
dnω2(n) |A(n)|2

We have rewritten n as a continuous variable and ω and A as continuous functions
of n to reflect the lack of quantization. Since the as-yet-undetermined constant of
proportionality will cancel in calculating power ratios, we will not discuss it yet. The
power passing any given point is, on purely dimensional grounds, the product of energy
density and wave velocity. This definition of course also makes sense physically: if E is
the energy density (energy per unit length) then a length l of the wave contains energy
E l and it takes l/v seconds for that length to pass through any given point. Thus, the
power is E l/(l/v) = E v. So, considering a single mode, the power in that mode is

P (n) = E(n) v ∝ Λ
2
ω2(n) |A(n)|2 v

ω is the same between the two rope sections and so will cancel for any given mode, but
v =

√
τ/Λ and A(n) will differ for modes on different sides of the interface. Therefore,

the reflected energy fraction is

R =
Λ1 |a<|2 v1
Λ1 |a>|2 v1

=
(
k1 − k2

k1 + k2

)2

We obtain the transmitted energy fraction by using the expression for P (n):

T =
Λ2 |b>|2 v2
Λ1 |a>|2 v1

=
Λ2

Λ1

4 k2
1

(k1 + k2)
2

√
Λ1

Λ2
=
k2

k1

4 k2
1

(k1 + k2)
2

=
4 k1 k2

(k1 + k2)
2
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It is critical to remember the factor Λ v when comparing modes on the two
sides of the interface. We can check that energy is conserved by calculating 1−R:

1−R =
4 k1 k2

(k1 + k2)
2 =

k2

k1

|b>|2

|a>|2
= T

as expected (calculating T = 1−R is a perfectly valid alternative to using the power
expression). Physically, the results are as we expect: all the energy is transmitted
when the wavevectors k1 and k2 are matched, which occurs when the velocities and
hence the mass densities in the two sections of the string are matched.

3.3.4 Phase Velocity, Group Velocity, and Wave Packets

We consider the difference between phase velocity and group velocity for dispersive media and
introduce wave packets.

Phase Velocity

As we have already hinted at, the velocity parameter v is the speed at which the wave
propagates. We may demonstrate this explicitly by considering a point of fixed phase φ for
a particular mode propagating in a specific direction:

y(x, t) = Aei(kx−ωt) φ = kx− ωt

If we require the phase to be constant as x and t vary, we find

0 = dφ = p dx− ω dt =⇒ V =
dx

dt
=
ω

k
= v

So the velocity parameter is indeed the speed at which the wave propagates. For the loaded
and continous strings, we have

loaded : V =
ω

k
=

2
√

τ d
m

∣∣sin (k d2 )∣∣
k d
2

continuous : V =
ω

k
= v =

√
τ

Λ

(We have made the obvious correspondence k = nπ
(M+1) d .) For the loaded string, the velocity

depends on the frequency, while for the continuous string it does not. The loaded string is
termed a dispersive medium for reasons we will see later. In the loaded string, dispersion
arises because the properties of the mode depend on the ratio of the wavelength to the
spacing of the masses. As this spacing goes to zero in the continous string limit, the
dependence vanishes.

Group Velocity and Wave Packets

If we are in a dispersive medium and the phase velocity is a function of frequency, at
what speed does the wave truly propagate? There is a fundamental difficulty in asking
this question because we have so far only considered waves that are infinite in spatial and
temporal extent. Isolating the energy of the wave to a localized position and time is not
possible. To do so, we must consider wave packet solutions.
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Our general solution for a rightgoing wave on a continous string is

y(x, t) =
∞∑
r=1

[
ar>e

i(krx−ωrt) + a∗r>e
−i(krx−ωrt)

]
= R

[ ∞∑
r=1

αr>e
i(ωrt−krx)

]

where we have defined αr> = 2 a∗r> for r > 0. Now, if we let L→∞, we may take the sum
on discrete modes over to an integral:

y(x, t) = R
[∫ ∞

0
dk α>(k) ei(ω(k)t−kx)

]
where dk α>(kr) = αr>. dk can be taken to be the mode spacing in k units, π

L , which goes
to zero as L → ∞. We can allow for left-going waves by allowing the integral to extend
from k = −∞ to k = 0; we ought to drop the > subscript, giving

y(x, t) = R
[∫ ∞

−∞
dk α(k) ei(ω(k)t−kx)

]
We have written ω as a function of k because k is now effectively the mode index. α(k)
is known as the spectral distribution or the Fourier transform of the wave solution
y(x, t). Now, let us consider a wave with spectral distribution that drops to zero outside
some interval (k0 −∆k, k0 + ∆k). That is, consider

y(x, t) = R
[∫ k0+∆k

k0−∆k
dk α(k) ei(ω(k)t−kx)

]
The above definition should be considered “schematic”; a spectral distribution α(k) that
does not vanish identically outside some interval but does drop off quickly will have similar
characteristics to what we will derive below.

Since we are working in a small interval around k0, we may Taylor expand ω(k):

ω(k) ≈ ω(k0) +
dω

dk

∣∣∣∣
k=k0

(k − k0) ≡ ω0 + ω′0(k − k0)

The argument of the exponential becomes

ω(k)t− kx ≈ (ω0t− k0x) + ω′0(k − k0)t− (k − k0)x
= (ω0t− k0x) + (k − k0)(ω′0t− x)

The wave solution becomes

y(x, t) = R
{
ei(ω0t−k0x)

∫ k0+∆k

k0−∆k
dk α(k) ei(k−k0)(ω′0t−x)

}
= R

{
ei(ω0t−k0x)

∫ ∆k

−∆k
dk̃ α(k0 + k̃) ei(k̃ω

′
0t−k̃x)

}
where we have brought the term independent of k outside the integral, changed variables
from the absolute k to the offset from k0, and brought the term independent of k outside
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the integral. The exponential out front is quickly oscillating while the exponential in the
integral is slowly oscillating in comparison because |k̃| < ∆k � k0. The exponential term
in front thus has no effect on the the localization of the wave function; it advances in phase
with time, but the amplitude is independent of position. It is the integral term that provides
the spatial dependence of the amplitude. The spatial dependence is the wave packet. At
what speed does this wave packet propagate? We get coherent propagation of the amplitude
function if the phases of all the spectral components stay lined up; i.e., when k̃ ω′0 t− k̃ x is
fixed. Taking the differential:

ω′0 dt− dx = 0 =⇒ dx

dt
= ω′0 =

dω

dk

∣∣∣∣
k=k0

Thus, the amplitude function propagates with speed vg = dω
dk

∣∣
k=k0

, which is termed the
group velocity. With the group velocity, we may rewrite the wave solution as

y(x, t) = R
{
ei(ω0t−k0x)

∫ ∆k

−∆k
dk̃ α(k0 + k̃) eik̃(vgt−x)

}
(3.28)

It is instructive to write vg as a derivative of v with respect to ω to show how the dispersion
of the medium comes in:

v−1
g =

dk

dω

∣∣∣∣
k=k0

=
d

dω

(ω
v

)∣∣∣∣
0

=
1
v

∣∣∣∣
0

− ω

v2

dv

dω

∣∣∣∣
0

or

vg =
v0

1− ω0
v0

dv
dω

∣∣∣
0

where 0 subscripts indicate evaluation at k = k0, ω = ω(k0), v = v(ω0). Thus, we find
the group velocity is related to the variation of the phase velocity with frequency. For
nondispersive media, the derivative term in the denominator vanishes and vg = v0 = v as
one expects. Because the group velocity describes the speed of motion of the amplitude
function, the group velocity is the speed at which energy, momentum, and information
propagate.

Examples of dispersion in reality abound. You will see in your electromagnetism course how
the dispersion of a medium is related to the real part of the dielectric constant. The dielectric
constant is determined by the polarizability of the medium. When the incoming light wave
photon energy approaches that of quantum mechanical transitions (atomic, molecular, etc.),
the polarizability of the medium changes quickly due to the possibility of resonant absorption
and emission. Thus, one gets extreme dispersion in the vicinity of such frequencies. The
dispersion of the ionosphere as the frequency approaches the plasma frequency explains why
AM radio can be accessible at very large distances – the dispersion of the ionosphere also
causes refractive bending (Snell’s law) that results in reflection of the waves back to earth.
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Chapter 4

Central Force Motion and Scattering

The problem of the motion of two bodies interacting via a central force is an important application of
Lagrangian dynamics and the conservation theorems we have learned about. Central forces describe
a large variety of classical systems, ranging from gravitationally interacting celestial bodies to
electrostatic and nuclear interactions of fundamental particles. The central force problem provides
one of the few exactly solvable problems in mechanics. And central forces underly most scattering
phenomena, again ranging from gravitational to electrostatics to nuclear.

This chapter is rather short, covering the material in Chapter 4 of Hand and Finch with some
additional material from other sources (Thornton, Goldstein).
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CHAPTER 4. CENTRAL FORCE MOTION AND SCATTERING

4.1 The Generic Central Force Problem

We first discuss the central force problem in general terms, considering arbitrary radially dependent
potential energy functions.

4.1.1 The Equation of Motion

Review of Central Forces

In our discussion of Newton’s third law in Section 1.3, we defined a central force as one
that satisfies the strong form of Newton’s third law. That is, given two particles a and b,
the force exerted by particle a on b is equal and opposite to that exerted by particle b on
particle a, and, moreover, the force depends only on the separation of the two particles and
points along the vector between the two particles. Mathematically, this means

~fab = −~fba ~fab = fab(rab) r̂ab

~rab = ~ra − ~rb rab = |~rab| r̂ab =
~rab
rab

Properties of an Isolated Two-Body Central-Force System

Let us now consider an isolated two-body system interacting via a conservative central force.
There are no other forces acting on the bodies.

In Section 1.3, we explored the concepts of force, momentum, and energy for systems for
particles. We may abstract from that discussion the following facts about our isolated
two-body system:

• Since no external forces act on the system, Newton’s second law for systems of particles
(Equation 1.17) tells us that the total linear momentum is conserved:

0 =
d

dt
~P =

d

dt

(
ma~̇ra +mb~̇rb

)
Since ~P is constant, the velocity of the center-of-mass ~R = ~P/M is fixed and thus the
center-of-mass system is inertial. We may therefore assume, without loss of generality,
that ~ra and ~rb are coordinates in the center of mass system, where ~P vanishes and the
center of mass is at the origin:

0 = ~R = ma~ra +mb~rb

0 = ~P = ma~̇ra +mb~̇rb

This eliminates three of the six degrees of freedom in the problem. The difference
coordinate ~rab is now

~rab = ~ra − ~rb = ~ra

(
1 +

ma

mb

)
= −~rb

(
1 +

mb

ma

)
Defining the reduced mass

µ ≡ mamb

ma +mb
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gives us

~ra =
µ

ma
~rab

~rb = − µ

mb
~rab

We shall see that the dynamics of the two-particle system will be reduced to that of
a single particle with mass µ moving in the potential U(rab). We may consider two
simple limits immediately:

– In the limit mb � ma, we have µ→ ma, ~rb → 0, and ~rab → ~ra. That is, the center
of mass is fixed on the heavier mass and the motion is entirely of the smaller mass.

– In the limit ma = mb = m, we have µ = m
2 , ~ra = ~rab

2 and ~rb = −~rab
2 . In this case,

the motion of the two particles is completely symmetric about the center of mass.

• Since there are no external forces, there are no external torques either. There are
no internal torques because the forces are central (~rab × ~fab = 0 because ~fab points
along ~rab). Therefore, according to Equation 1.23, the total angular momentum of the
system is conserved. Since the system’s center-of-mass has been taken to be at rest
at the origin, the angular momentum consists only of the internal angular momentum
due to motion of the two particles about the center of mass. This angular momentum
is

~L = ma ~ra × ~̇ra +mb ~rb × ~̇rb

Let’s rewrite this in terms of ~rab:

~L = µ~rab × ~̇ra − µ~rab × ~̇rb = ~rab × µ~̇rab = ~rab × ~pab

The two-body system begins to look like a single particle of mass µ and coordinate
~rab.

• The kinetic and potential energies of the system are

T =
1
2
ma ~̇r

2
a +

1
2
mb ~̇r

2
b =

1
2
µ2 ~̇r 2

ab

(
1
ma

+
1
mb

)
=

1
2
µ ~̇r 2

ab

U = U(rab)

The Lagrangian is

L =
1
2
µ ~̇r 2

ab − U(rab)

The Lagrangian is identical to that of a single particle system with mass µ and coor-
dinate ~rab.

• Since ~L is conserved, we know the motion is restricted to the plane defined by ~rab and
~pab. Let this plane define a spherical polar coordinate system (rab, θab, φab), where φab
is the azimuthal angle of the plane and θab is the polar angle of the position vector ~rab
relative to the z-axis in the plane. Rewriting L in this system gives

L =
1
2
µ
(
ṙ2ab + r2ab θ̇

2
ab + r2ab sin2 θab φ̇

2
ab

)
− U(rab)
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We may choose φab = 0 without loss of generality. The angular momentum vector
points out of this plane (in the y direction) and the motion remains in this plane at all
time by conservation of angular momentum. However, though we know φab = 0 and
φ̇ab = 0 will therefore hold, these facts arise from the dynamics and so we should not
substitute these values into the Lagrangian. They will come out of the Euler-Lagrange
equations.

Dynamics of an Isolated Two-Body Central-Force System

Now, let’s explore the dynamics using the Lagrangian. Conservation of ~L already leads
us to expect that one of the Euler-Lagrange equations will be trivial. Explicitly, we have
(dropping the ab subscripts now):

µ r̈ = −dU
dr

+ µ r θ̇2 + µ r sin2 θ φ̇2

d

dt

[
µ r2θ̇

]
= µ r2 sin θ cos θ φ̇2

d

dt

[
µ r2 sin2 θ φ̇

]
= 0

We make the general point that, when writing the Euler-Lagrange equations for a multi-
dimensional system, it is a good idea to start with the time derivatives on the left side
unexpanded until the rest has been simplified because they are just the time derivatives
of the canonical momenta and some of them may end up being conserved if the right side
of the corresponding equation vanishes, either explicitly or by appropriate choice of initial
conditions. We see in the above case that the φ equation of motion tells us lφ = constant,
which would have become very unobvious if the derivative had been expanded into its three
terms.

For initial conditions, we take ~r and ~p to be in the plane φ = 0.1 That ~p is in the plane
φ = 0 also implies φ̇ = 0 initially. With these initial conditions, the φ equation of motion
implies that φ = 0 for all time.2 Thus, lφ = µ r2 sin2 θ φ̇ = 0 for all time. The θ equation
then tells us we have lθ = µ r2 θ̇ = constant. The angular momentum vector has length
|~L| = lθ and points perpendicular to the plane φ = 0 in which the motion occurs: ~L is along
the y axis. The r equation of motion simplifies to

µ r̈ = −dU
dr

+
l2θ
µ r3

(4.1)

The equation of motion is now that of a single particle in one dimension with the effective
potential function

Ueff (r) = U(r) +
l2θ

2µ r2

We acquire a new “centrifugal potential” that arises due to conservation of angular momen-
tum. It is a repulsive potential, reflecting the fact that, with lθ constant, the kinetic energy

1As stated above, since ~r and ~p define a plane, we are free to orient the coordinate system to make that plane the
φ = 0 plane.

2One can see this explicitly be expanding out the derivative on the left side of the φ equation and noting that the
terms without φ̈ have φ̇ and thus vanish at t = 0. So φ̈ vanishes at t = 0, which implies that φ̇ does not deviate from
its initial vanishing value.
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must increase as r−2 if r decreases – more energy is needed to go to small radii. We may
use the effective potential to write an effective one-dimensional Lagrangian:

L1D =
1
2
µ ṙ2 −

l2θ
2µ r2

− U(r)

Note that the 1D Lagrangian is not obtained simply by rewriting the 3D Lagrangian using
φ = 0, φ̇ = 0 and µ r2θ̇ = lθ; one would have gotten the wrong sign for the centrifugal term.
This difficulty occurs because the Lagrangian formalism assumes independent variations of
the different coordinates. Instead, we must simply start with the effective potential.

The effective total energy is

E =
1
2
µ ṙ2 +

l2θ
2µ r2

+ U(r)

which is conserved because the effective potential is conservative. This effective total energy
turns out to be equal to the true total energy because the θ kinetic energy is included via
the lθ term.

Qualitative Dynamics

It is instructive to consider the shape of the effective potential energy function and its
implications for the motion of the system. The effective potential consists of two terms.
The first is the true central force potential. The second is a “centrifugal” term: it is a
repulsive potential arising from angular momentum conservation, which requires the kinetic
energy to increase as r is reduced3. The relative sizes of the two terms determine if and
where the effective potential is attractive and repulsive. The shape of the effective potential
and the total energy of the system determine whether the orbits are unbounded, bounded,
or bounded and circular, and whether bounded orbits are periodic (closed). To be clear:
bounded and unbounded refers to whether there is an upper limit on r or not; open and
closed refer to whether the orbit repeats itself after some period. All unbounded orbits are
open, but not all bounded orbits are closed.

The effective potential is:

Ueff (r) = U(r) +
l2θ

2µ r2

Consider different cases for the shape of U(r). Some of these are illustrated in the Figure 4.1.

• Repulsive Potentials: If U(r) has no attractive regions (no regions with positive
slope), then both terms are repulsive at all r and all orbits are unbounded and open.
This occurs, for example, for the Coulomb force between particles of like charge.

• Small r Behavior: The small r behavior of the effective potential determines whether
r is bounded below or whether there are “small r” bounded orbits with r bounded
above.

– If U(r) is attractive and either converges to a finite value at r = 0 or approaches
negative infinity as a power law shallower than r−2 near the origin, then the
centrifugal term dominates near the origin and r is always bounded below. This

3Because the angular kinetic energy is
l2θ

2µ r2
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Figure 4.1: Effective potential for various true potentials. The potentials are U(r) = rn or U(r) =
log r with unity coefficient except for the r−2 case. For all cases except r−2, the behavior is
qualitatively independent of the factor l2θ

2µ , so it has been set to 1. For the r−2 potential we show

the three cases l2θ
2µ = 0.5, 1, 1.5 (green, black, red). The locus of r values filled by example bound

orbits are indicated by dotted lines, by example orbits bounded below but unbounded above by
dashed lines, and by completely unbounded example orbits by dash-dot lines, respectively (color-
coded for the r−2 potential).

is illustrated for r−1, r, and r2 (with l2θ
2µ = 1) in Figure 4.1. Physically, the

centrifugal barrier wins against the attractive potential near the origin. Only in
the case lθ = 0 (no initial θ velocity) can r reach zero (because the centrifugal
term vanishes). Whether the orbit as a whole is bounded depends completely on
the large-r behavior of the potential and possibly the total energy.

– Conversely, if U(r) is attractive and approaches negative infinity faster than r−2

near the origin, then the potential is attractive near the origin and repulsive further
out. This is illustrated by the r−3 plot in Figure 4.1. For some initial conditions,
bound orbits for r inside the maximum of the effective potential are obtained;
when this occurs, the potential energy term has won over the centrifugal term.
Such orbits are illustrated by the dotted lines in the the r−3 plot. These orbits are
obtained only if the total energy E is less than the maximum value of the effective
potential Emax and if the initial conditions place r inside the location of that
maximum r0. The maximum value of the radius for such orbits rmax will satisfy
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rmax < r0. The kinetic energy will go formally to infinity as the radius passes
through zero, but this occurs instantaneously. When the total energy E < Emax
but initial conditions place r > r0, then the orbit is bounded below (at some radius
rmin > r0) and not above. Such an orbit is indicated by the dashed line in the
r−3 plot. If E > Emax, then the orbit is neither bounded above nor below. Such
an orbit is indicated by the dash-dot line in the r−3 plot.

– If U(r) goes as r−2 at small radii, then the behavior is sensitive to the relative size
of the coefficient in U(r) and l2θ

2µ . The plot above shows the three possible cases:

the cases l2θ
2µ less than, equal to, and greater than the coefficient of the power law

give attractive, vanishing, and repulsive effective potentials as r → 0. The orbits
will be bounded below in the repulsive case only (dashed line). The orbits can be
bounded above in the attractive case only, and one obtains a bounded orbit only
for initial conditions with E < 0 (dotted line). For the attractive or vanishing
potential, orbits with E ≥ 0 are completely unbounded (dash-dot line).

• Large r Behavior: The large r behavior of the effective potential determines whether
r is bounded above at large r, which is a necessary condition for bounded orbits.4

Whether the orbit is closed is another question – see below.

– If U(r) is attractive but a steeper power law than r−2 at large r, then the cen-
trifugal term dominates at large r and the overall potential is repulsive there. If
the system’s initial position is in this repulsive region, then r is bounded below
and unbounded above; the system as a whole is unbounded, the orbits are open.
This is illustrated by the dashed line in the r−3 power law case. In such cases, the
centrifugal term is always too large for the potential to overcome it. If E > Emax,
then the centrifugal barrier can be overcome and the orbit is bounded neither
above nor below (dash-dot line).

– The r−2 power law case is again sensitive to the relative value of the coeffficient
in U(r) and l2θ

2µ , with the effective potential being repulsive when the centrifugal
term coefficient is larger. In the repulsive case, r is bounded below, unbounded
above, and the orbits are open (dashed line). In the vanishing or negative effective
potential case, r is unbounded below and above for E ≥ 0 and the orbits are open
(dash-dot lines).

– For power laws between r−2 and r0, the potential energy term always dominates
at large r and the centrifugal barrier becomes negligible. But the potential energy
approaches zero from below as r → ∞, so r is bounded above and bound orbits
are obtained only if E < 0; r is unbounded above (but always bounded below)
and open orbits are found otherwise.

– For U(r) ∝ log r and positive exponent power laws, the potential energy not only
wins at large r but goes to ∞; hence r is always bounded above and all orbits are
bounded.

• Circular orbits are obtained when there is a point in the effective potential where
the gradient (effective force) vanishes. For potentials steeper than r−2, there is one

4As we discussed above, for sufficiently strongly attractive potentials (steeper than r−2 at the origin), orbits can
be bounded above at small r. Since such potentials remain steeper than r−2 for all r, there are no orbits bounded
at large r for such potentials. Boundedness at large r is only a consideration for attractive potentials whose large r
behavior is shallower than r−2.
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unstable circular orbit. For potentials shallower than r−2 and for log or positive power
law potentials, there is one stable circular orbit.

• Of course, if the true potential is a more complicated function of r than simple power
law or log functions, there may be additional bound orbits and circular orbits.

• Whether an orbit is periodic (= closed = the orbit repeats on itself after some time)
is a nontrivial problem. Clearly, all bound orbits show periodic motion in r as a
function of time. But periodicity in space – periodicity of r(θ) – is a more complicated
problem. All circular orbits are periodic in space because r is constant. More generally,
periodicity of r(θ) requires that the time periods for radial motion and angular motion
be commensurate – their ratio must be a rational fraction. It is not obvious what
the relation is between the form of the potential and whether this condition is satisfied.
Bertrand’s theorem tells us that bound orbits are closed only if the potential in the
vicinity of the bound orbits follows r−1 or r2. Details on Bertrand’s theorem can be
found in Goldstein, Section 3.6.

When orbits are bounded, the two turning points are called the apsides or apsidal dis-
tances. When orbits are not closed, the apsides precess in (r, θ) space. The angle between
two consecutive apsides is called the apsidal angle. Precession of the apsides occurs when-
ever the conditions of Bertrand’s theorem are not satisfied, including small perturbations
of Bertrand’s theorem potentials by non-Bertrand’s theorem terms.

4.1.2 Formal Implications of the Equations of Motion

Kepler’s Second Law

The equation of motion for the θ coordinate gives us angular momentum conservation. One
implication of angular momentum conservation is Kepler’s second law, which states that
“Equal areas are swept out in equal times.” In a small time interval dt, the vector ~r sweeps
out an area

dA =
1
2
r (r dθ) =

1
2
r2θ̇ dt =

1
2
lθ
µ
dt (4.2)

The first form of the expression calculates the area of the infinitesimal triangle of height r
and base r dθ. Finally, since lθ is constant, we have that dA/dt is constant and Kepler’s
second law is proven.

Note that Kepler’s second law holds for any central force, not just gravity. It is a result of
angular momentum conservation.

The Formal Solution to the Equations of Motion

We have obtained two equations of motion

µ r̈ = − d

dr
Ueff (r, lθ)

d

dt

[
µ r2θ̇

]
= 0

Let’s attempt to integrate these two equations. Integrating the r equation must obviously
yield an equation for ṙ. But we already know what that equation will be, by energy
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conservation:

ṙ = ±
[

2
µ

(E − U(r))−
l2θ

µ2 r2

]1/2

Integration of the θ equation gives

µ r2θ̇ = lθ

We can obviously integrate each of these equations again, at least formally:

t = ±
∫ r

r(0)
dr′
[

2
µ

(E − U(r))−
l2θ

µ2 r′2

]−1/2

(4.3)

θ − θ(0) =
lθ
µ

∫ t

0

dt′

[r(t′)]2
(4.4)

Depending on the form of U(r), it may in some cases be possible to perform the first integral
explicitly, which may then allow the second integral to be done.

We can eliminate t to obtain a relation between θ and r; just return to the differential
version of the first equation and substitute for dt in the second to obtain

θ(r)− θ(0) = ±lθ
∫ r

r(0)

dr′

[r(t)]2

[
2µ (E − U(r))−

l2θ
r′2

]−1/2

(4.5)

The above function is in general not analytically integrable. For U(r) ∝ rn, the integral
becomes a standard elliptic integral for some values of n. For n = 2, -1, and -2, the integral
yields sinusoidal functions.

A Differential Relation between r and θ

While we have formally eliminated t and obtained an integral relation between θ and r, the
fact that the integral is not in general analytic limits its usefulness. It may be more useful
to have a differential, rather than integral, relation between r and θ. We need to eliminate
d
dt from our original differential equations. The θ equations tells us

dt =
µ r2

lθ
dθ

d

dt
=

lθ
µ r2

d

dθ

Our equation of motion for r can thus be rewritten:

µ
lθ
µ r2

d

dθ

[
lθ
µ r2

dr

dθ

]
−

l2θ
µ r3

= F (r)

d

dθ

[
1
r2
dr

dθ

]
− 1
r

=
µ r2

l2θ
F (r)

− d

dθ

[
d

dθ

1
r

]
− 1
r

=
µ r2

l2θ
F (r)

d2

dθ2

(
1
r

)
+

1
r

= −µ r
2

l2θ
F (r) (4.6)
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We now have a differential equation with θ as the independent variable and r as the de-
pendent variable. This equation may be useful for obtaining the shapes of the orbits, and
would have obvious applications for numerical calculation of the orbits. This equation is
frequently written via a change of variables to u = 1

r in the form

d2u

dθ2
+ u = − µ

l2θ u
2
F

(
1
u

)
The constant of the motion, the energy, can be rewritten in terms of u and θ alone (i.e.,
eliminate explicit time derivatives):

E =
1
2
µ ṙ2 +

l2θ
2µ r2

+ U(r)

=
l2θ
2µ

(
1
r2
dr

dθ

)2

+
l2θ

2µ r2
+ U(r)

E =
l2θ
2µ

[(
du

dθ

)2

+ u2

]
+ U

(
1
u

)
(4.7)
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4.2 The Special Case of Gravity – The Kepler Problem

We now specialize to gravity, which allows us to fix the form of the central-force potential energy
function. We solve the equation of motion and study the various solutions. We use essentially the
same techniques as Hand and Finch Section 4.5, 4.6, and 4.7 to obtain the solutions, though in a
different order. All the notation is consistent, with the equivalency k = GµM and the replacement
of φ in Hand and Finch by θ here.

4.2.1 The Shape of Solutions of the Kepler Problem

The General Solution

In our generic study of central forces, we obtained the differential relation Equation 4.6

d2

dθ2

(
1
r

)
+

1
r

= −µ r
2

l2θ
F (r)

For the gravitational force, we have F (r) = −G ma mb
r2

, so the above reduces to

d2

dθ2

(
1
r

)
+

1
r

=
Gµ2 (ma +mb)

l2θ

Rewriting using u = 1
r , we have

d2u

dθ2
+ u =

Gµ2M

l2θ

where M = ma +mb = mamb/µ. This is now a simple harmonic oscillator equation with
a constant driving force. We know from our study of oscillations that the solution is the
sum of the generic solution to the homogeneous equation and a particular solution to the
inhomogeneous equation:

u(θ) = A cos(θ − θ0) +
Gµ2M

l2θ

We can relate the coefficient A in the solution to the constants of the motion, the energy
and angular momentum, by using Equation 4.7:

E =
l2θ
2µ

[(
du

dθ

)2

+ u2

]
+ U

(
1
u

)

=
l2θ
2µ

[
A2 sin2(θ − θ0) +A2 cos2(θ − θ0) + 2A cos(θ − θ0)

Gµ2M

l2θ
+
(
Gµ2M

l2θ

)2
]

−GµM
(
A cos(θ − θ0) +

Gµ2M

l2θ

)
=

l2θ A
2

2µ
+AGµM cos(θ − θ0) +

G2µ3M2

2 l2θ
−GµM A cos(θ − θ0)−

G2µ3M2

l2θ

=
l2θ A

2

2µ
− G2µ3M2

2 l2θ

=
l2θ
2µ

[
A2 −

(
Gµ2M

l2θ

)2
]
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Let us rewrite the orbit in terms of r instead of u, and also drop the offset phase θ0 (it is
not important for what follows):

p

r
= 1 + ε cos θ with p =

l2θ
Gµ2M

ε = pA

=⇒ p = r + ε r cos θ (4.8)

We take ε to be nonnegative – a sign flip in ε can be removed by a coordinate system
rotation.5 We will see below the significance of p – it is the radius at which the effective
potential is minimized, and it defines the energy scale of the solutions. If we rewrite in
cartesian coordinates, with x = r cos θ and y = r sin θ, we have

p =
√
x2 + y2 + ε x

(p− ε x)2 = x2 + y2(
1− ε2

)
x2 + 2 ε p x+ y2 − p2 = 0

In terms of p and ε, the total energy is

E =
l2θ
2µ

[
ε2

p2
− 1
p2

]
(4.9)

=
G2 µ3M2

2 l2θ

(
ε2 − 1

)
=

GµM

2 p
(
ε2 − 1

)
(4.10)

Let’s rewrite in a more obvious form: complete the square on x to obtain(
1− ε2

)(
x+

ε p

1− ε2

)
+ y2 =

p2

1− ε2

(x− xc)2

a2
± y2

b2
= 1 (4.11)

which is the equation for a conic section with

xc = − ε p

1− ε2
a =

p

1− ε2
b =

p√
± (1− ε2)

f = xc ± ε a = 0 and 2xc (4.12)

where f denotes the x coordinates of the foci of the conic section. Recall that the center of
mass of the system is at the origin, so one of the foci coincides with the center of mass. The
± sign is picked depending on the sign of 1− ε2 to ensure that b is real. The turning points
of the motion are given by the maximum and minimum values of r. Our polar form for
the orbit, Equation 4.8, provides the easiest means to obtain these: they are at cos θ = ±1.
They are therefore

r1 =
p

1 + ε
r2 =

p

1− ε
x1 =

p

1 + ε
x2 = − p

1− ε
y1 = 0 y2 = 0

5Because − cos(θ) = cos(π − θ) = cos(θ − π), a sign flip in ε is equivalent to rotating the coordinate system by π
in the θ direction.
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where x1,2 = r1,2 cos θ, so x picks up a sign, and y1,2 = r1,2 sin θ, so y vanishes in both
cases. The energy is now

E =
GµM

2 p
(
ε2 − 1

)
= −GµM

2 a
(4.13)

The sign and magnitude of the energy thus scales inversely as the semimajor axis a.

So, what we have is the equation of a conic section, being a circle, ellipse, or hyperbola
depending on the sign of 1− ε2. Recall that we started out with the center of mass at the
origin. The “center” of the conic section (xc, 0) is therefore displaced from the center of
mass unless ε = 0 (circular solution), but the center of mass coincides with one of the foci
of the conic section. The energy takes on the sign of 1− ε2. From our qualitative discussion
of central force orbits, we know that E = 0 is the dividing line between bound and unbound
orbits. The implication then is that bound orbits with E < 0 have positive a and ε2 < 1,
while unbound orbits with E > 0 have negative a and ε2 > 1. The dividing case is E = 0,
a = ∞, ε = 1. The conic section formula is formally undefined there, but if we go back to
before we completed the square, we see that ε2 = 1 causes the x2 term to vanish leaving us
with the equation of a parabola (x a quadratic function of y).

Detailed Study of the Different Solutions

Let’s study these various solutions in some detail. First, let’s obtain a dimensionless pa-
rameterization of the solutions. The shape of the effective potential is set by lθ and µ. The
effective potential is minimized when the effective force vanishes. Using Equation 4.1, we
obtain

GµM

r2
=

l2θ
µ r3

=⇒ r =
l2θ

Gµ2M
= p

The value of the effective potential at this point, which gives the minimum physically allowed
value of the total energy, is

Emin = Ueff (r = p) =
l2θ

2µ p2
− GµM

p
= −

l2θ
2µ p2

= −1
2
GµM

p
≡ −Escale

where we have defined a scale energy that is the absolute value of the minimum energy.
Referring back to our equation for E in terms of ε and p, Equation 4.10, we see that

E = Escale
(
ε2 − 1

)
(4.14)

With Emin and Escale in hand, let’s consider the various cases. Examples are illustrated in
Figure 4.2.

• E/Escale < −1: not physically allowed

• E/Escale = −1: Equation 4.14 tells us that E = −Escale corresponds to ε2 = 0. Since
the eccentricity vanishes, the solution from Equation 4.8 is p = r for all θ; i.e., the orbit
is a circle. This is as one would expect from the effective potential – there is no radial
force if the solution is at the minimum of the effective potential. The conic section
solution is elliptical (because ε2 < 1) and the semimajor axes are equal a = b = p as
one would expect for a circle.
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• −1 < E/Escale < 0: Because the energy remains negative, Equation 4.14 implies that
0 < ε2 < 1 and the conic section solution is an ellipse. As the energy increases, the
eccentricity of the ellipse increases. Remember that the center of mass coincides with
one of the foci of the ellipse. The center of the ellipse xc and the second focus 2xc
move off to −∞ as ε→ 1.

• E/Escale = 0: For this solution, Equation 4.14 tells us ε2 = 1. Our derivation of the
conic section form fails here because the coefficient of the x2 term vanishes, but we
can return to the Cartesian form of the solution to find

2 p x+ y2 − p2 = 0

x =
p

2
− y2

2 p

This is a parabola whose vertex is at p
2 , whose focus is at the origin, and whose directrix

is at p. Recall that the directrix is the line perpendicular to the axis of the parabola
such that the parabola consists of the set of points equidistant from the focus and
the directrix. The system is just barely not bound, with the radial kinetic energy and
velocity approaching zero as r →∞ because the total energy vanishes and the effective
potential energy approaches zero as r →∞.

• E/Escale > 0: For this solution, Equation 4.14 gives ε2 > 1. The conic section is a
hyperbola. A hyperbola has two branches. Because the polar form of the solution,
Equation 4.8, implies a one-to-one relationship between r and θ, only one branch of the
hyperbola can be a valid solution. Intuitively, based on continuously transforming the
eccentricity, we expect this to be the left branch. We can see this explicitly as follows.
The left and right branches are distinguished by the fact that the former has regions
with x < 0, while the latter does not. In order to have negative values of x, θ must
be allowed to go outside the range (−π/2,+π/2). A restriction on θ is placed by the
requirement that r be positive, which translates to the requirement cos θ ≥ −1

ε . Since
ε2 > 1 (and ε is taken to always be positive), this defines a maximum value of |θ| that is
between π/2 and π. Hence, x is allowed to be negative, and so the left branch solution
is the appropriate one. For the hyperbolic solution, there is only one turning point,
which is the x1 turning point thanks to our choice of the left branch. Let’s consider
the evolution of the solution with ε. One focus of the hyperbola always remains at
the origin. The “center” of the hyperbola, xc, starts out at +∞ and moves in toward
the origin as ε gets larger, with xc → 0 in the limit ε → ∞. Thus, the hyperbola
continuously transforms from a parabolic-like orbit to a straight vertical line, with
the turning point x1 moving closer to the origin as ε increases. These solutions are
definitely not bound. They in fact have excess kinetic energy so that, as r → ∞, the
radial kinetic energy (and hence radial velocity) remains nonzero.

A Note on Repulsive Potentials

While we have so far considered only attractive potentials, it is straightforward to translate
the above solution to the case of repulsive potentials. We will see that, for a given energy
E, we obtain the same hyperbola as for the attractive potential, but we must choose the
right branch, not the left branch. Hand and Finch obtain the repulsive potential solutions
by working the derivation through again with the necessary minus sign. But we can obtain
the solution more easily.
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Figure 4.2: Example Keplerian orbits. The left and right figures have identical orbits; only the
axis range is different. All these orbits have l2θ

2µ = 1 and p = 1, so they have the same angular
momentum (same centrifugal barrier) but different total energies. The scale factor for the energy
l2θ

2µ p is therefore also 1, so Escale = 1 and the various orbits have energy E = ε2 − 1. The legend
is, in order of increasing eccentricity: ε = 0 (red), ε = 0.25 (green), ε = 0.5 (blue), ε = 1 (cyan),
ε = 2 (magenta), ε = 4 (yellow). The center of each orbit (xc) is shown by the diamond of the
same color, and the second focus by the squares. The first focus of all orbits is at the origin. The
second branch of the hyperbolic orbits is not shown.

The repulsive potential solution can be obtained from the attractive potential solution by
simply taking GµM < 0 and making use of the physical fact that only E > 0 is allowed
for a repulsive potential. Let’s step through the derivation with these changes. First, the
solution for u becomes

u(θ) = A cos θ − |Gµ
2M |
l2θ

Since u ≥ 0 is required, the solution must have A > 0 and is only valid for some range of
θ. Keeping our original definition of p (which now implies p < 0), our polar form of the
solution is

p

r
= 1 + ε cos θ

Since p < 0 and A > 0, we have ε = pA < 0 also. Since p < 0, the solution is valid only
when the right side is less than zero. (Originally, our requirement was the right side be
greater than zero because both p and r were positive.) The region of validity is given by
cos θ ≥ −1

ε = 1
|ε| . For there to be any region of validity, we must have |ε| > 1, which implies

only hyperbolic solutions will be allowed. Furthermore, the region of validity has cos θ > 0,
so we must use the right branch of the hyperbolic solution we find.

The conversion from polar to cartesian coordinates goes as before, as does the completion
of the square. So the hyperbolic solution is still valid, as are the formulae for xc, a, b, and
f . xc has the same sign as in the attractive hyperbolic case (since the sign flips in ε and p
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cancel each other), a and b change sign (a > 0, b < 0 for all repulsive solutions). Because
xc does not change sign, the foci are in the same place as the attractive hyperbolic case.
The sign flips in a and b do not affect the shape of the hyperbola since only a2 and b2 enter
in the conic section formula. Thus, we have the exact same hyperbola as in the attractive
case, except that the restriction on θ implies we must now take the right branch, not the
left branch. This also means that the turning point is now x2, not x1.

The energy expressions, Equation 4.10 and 4.13, hold without change. The starting point
for the energy equation, Equation 4.9, is insensitive to the sign of ε and p. Equation 4.10
does not change meaning because the sign flips in GµM and p cancel each other, so |ε| > 1
still gives E > 0 for all repulsive potential solutions. Equation 4.13 also keeps its same sign
because both GµM and a change sign.

Intuitively, the change from the left branch to the right branch reflects the fact that an
attractive potential turns the trajectory inward toward the center of force while a repulsive
potential turns it outward.

Summary of Quantities

The various quantities involved in Keplerian orbits are summarized in Table 4.1.

4.2.2 Time Dependence of the Kepler Problem Solutions

So far we have only found the orbit solutions as functions r(θ). This of course describes much of
the dynamics of the problem. But one does indeed frequently want the orbit as a function of time,
so we obtain that result here.

Period of Elliptical Orbits

We can quickly obtain the period of elliptical orbits by using Kepler’s second law, Equa-
tion 4.2. Kepler’s second law tells us

dA

dt
=

1
2
lθ
µ

The area of the ellipse is A = π a b, so the period is the time required to sweep out the area
of the ellipse,

τ =
A
dA
dt

=
π a b
1
2
lθ
µ

Let’s write this in terms of the parameters of the orbit p and ε to obtain Kepler’s third law:

τ = 2π µ
p2

(1− ε2)3/2
1

µ
√
GM p

= 2π

√
a3

GM

The period depends only on a. Of course, a encodes information about the total energy E
and the angular momentum lθ. The implication of Kepler’s third law for the solar system
is that all orbits should lie on a single τ2 ∝ a3 curve because M , dominated by the sun, is
almost the same for all planets.
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quantity symbol formula(e) sign significance

angular lθ µ r2θ̇ ≥ 0 centrifugal potential
momentum = 0 gives trivial orbit (brings in effect of θ motion)

scale Escale
1
2
GµM
p > 0 scale energy

energy = |Emin| for attractive pot.

scale p
l2θ

Gµ2M
> 0 for attr. pot. sets scale of orbit

radius < 0 for repul. pot.

eccentricity ε
√

1 + E
Escale

≥ 0 attr. pot. sets shape of conic section,

−
√

1 + E
Escale

< −1 repul. pot. related to ratio of
energy to scale energy

orbit xc − ε p
1−ε2 = 0 circular

center = −ε a < 0 elliptical
> 0 hyperbolic

semimajor a p
1−ε2 > 0 circ./ellip. distance from xc to vertices

axis < 0 hyperbolic attr. along major axis
> 0 hyperbolic repul.

semiminor b p√
±(1−ε2)

> 0 attr. pot. distance from xc to vertices

axis < 0 repul. pot. along minor axis (circ./ellip.)
helps set asymptotic slope of
trajectory (hyperbol.)

turning x1
p

1+ε > 0 turning points of motion
points x2 − p

1−ε < 0 circ./ellip. relative to CM = focus 1
> 0 hyperbolic apsides for circ./ellip. orbits

For hyperbolic orbits, x1 is the turning point for attractive potentials,
x2 the turning point for repulsive potentials.

Table 4.1: Parameters for Keplerian orbits.
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Full Time Dependence of Elliptical Orbits

Begin by defining a circle whose origin is the center of the elliptical orbit and whose radius
is the semimajor axis length a. This circle circumscribes the elliptical orbit. The azimuthal
angle describing points on the circle (measured around the center of the ellipse, not the
origin) is denoted by ε and is called the eccentric anomaly. This is by way of comparison
to the standard azimuthal angle θ at the origin, which is called the true anomaly. The
circle is described by the curve

(x− xc)2

a2
+
y2

a2
= 1

Consider two points, one on the ellipse and one on the circle, that have the same x coordi-
nate. See Figure 4.13 of Hand and Finch for a visual explanation. The values of the true
anomaly and the eccentric anomaly for the two points can be related by the fact that they
have the same x coordinate:

r(θ) cos θ = x = xc + a cos ε = −a ε+ a cos ε

where we have made use of the facts that distance from a focus to xc is aε and that one focus
coincides with the origin. We can reduce this, making use of the polar form Equation 4.8
and the definition of a in terms of p and ε, Equation 4.12:

r cos θ = −a (ε− cos ε)
1
ε

(p− r) = −a (ε− cos ε)

r = p+ aε2 − a ε cos ε
r = a (1− ε cos ε) (4.15)

Now, let’s return to our integral form relating t to r, Equation 4.3, and change variables
from r to ε:

t =
∫ r

r(0)
dr′
[

2
µ

(E − U(r))−
l2θ

µ2 r′2

]−1/2

=
∫ r

r(0)
dr′
[

2
µ

(
−GµM

2 a
+
GµM

r′

)
− pGM

r′2

]−1/2

=
√

2GM
∫ r

r(0)
r′ dr′

[
− r

′2

2 a
+ r′ − 1

2
p

]−1/2

=
√

2GM
∫ ε

0

a (1− ε cos ε′) a ε sin ε′dε′[
−1

2 a (1− ε cos ε′)2 + a (1− ε cos ε′)− 1
2 a (1− ε2)

]1/2
=
√

2GM
∫ ε

0

a (1− ε cos ε′) a ε sin ε′dε′[
a
2 ε

2 sin2 ε′
]1/2

=
√
GM a3

∫ ε

0
(1− ε cos ε′) dε′

t(ε) =
√
GM a3 (ε− ε sin ε) (4.16)

This is Kepler’s equation, a transcendental equation for ε(t). From ε(t), we can obtain
r(ε(t)) from Equation 4.15 and θ(ε(t)) from the polar form Equation 4.8. It’s still not a
closed-form solution, but better than the original integral equation.

250



4.2. THE SPECIAL CASE OF GRAVITY – THE KEPLER PROBLEM

For completeness, we note that the x and y coordinates can be written in terms of a and ε
as

x = a (cos ε− ε) y = a
√

1− ε2 sin ε

The x equation is found from the original mapping between θ and ε, and y from x2+y2 = r2.

For realistic use of the above, one needs to know a, ε, and M . M is a parameter that is
assumed to be known by other means (e.g., in the solar system, M is dominated by the
sun, which can be determined from orbits of other objects). It’s hard to directly know a
and ε unless one has traced out a fair part of the orbit. But one can get them indirectly by
measuring r at two times t1 and t2; Equations 4.15 and 4.16 can be used to convert from
r(t1) and r(t2) to a, ε, and ε(t1) and ε(t2).

Full Time Dependence of Hyperbolic Orbits

Here, instead of mapping from ellipse to a circle with a cos ε and a sin ε, we map from
a hyperbola using hyperbolic trigonometric functions a cosh ε and a sinh ε. There is no
obvious geometric interpretation of ε anymore, as it must satisfy ε = 0 for the point of
closest approach and ε → ∞ as r → ∞. It is just a parameter. Our starting relation
becomes

r(θ) cos θ = xc ∓ |a| cosh ε = |a ε| ∓ |a| cosh ε = −a ε+ a cosh ε

where the top sign is for an attractive potential. Remember that a and ε flip sign (a goes
from negative to positive, ε from positive to negative) when the potential changes from
attractive to repulsive. Following all the signs through, the important relations become

r = |a| (|ε| cosh ε∓ 1) = −a (ε cosh ε− 1)

t(ε) =
√
GM a3 (|ε| sinh ε∓ ε) =

√
GM aa (−ε sinh ε+ ε)

x = |a ε| ∓ |a| cosh ε = −a (ε− cosh ε)

y = |a|
√
ε2 − 1 sinh ε = |b| sinh ε

where the upper signs are for an attractive orbit and the lower signs for a repulsive one.
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4.3 Scattering Cross Sections

Earlier, we studied the kinematics of elastic scattering of point particles (Section 1.3.3). In that
section, we did not make any reference to the forces involved in scattering, we only considered what
conclusions could be drawn from conservation laws. Thus, we were left with parameterized results,
without any knowledge of how a given outcome (final state momentum vector or scattering angle)
depended on the initial conditions.

Now that we have studied central force motion, obtaining qualitative results for arbitrary po-
tentials and specific results for 1

r potentials, we have information about the dynamics of collisional
interactions. We can use this to develop the concept of scattering cross section, which intimately
uses the kinematics of collisions and the orbit information from central force motion.

The archetypal scattering problem we will consider is one involving a particle incident on a
force center that scatters the incident particle via a conservative central force with potential U(r).
We have demonstrated that a two-particle system interacting via a conservative central force is
equivalent to such a system when considered in its center-of-mass frame.

4.3.1 Setting up the Problem

Initial Conditions

As noted, we consider a particle incident on a force center subject to a scattering potential.
It is assumed that the particle is asymptotically free, having enough energy to be in an
unbound orbit. In order to have unbound orbits, the potential energy must go to zero at
large r. The energy of the system is therefore

E =
1
2
µ v2

∞

where v∞ is the asymptotic particle speed as r → ∞. We will use v∞ to parameterize the
initial energy of the system.

v∞ only specifies an energy. We must also specify the geometry. The only free parameter
left is lθ, which we can see specifies the geometry as follows. Since the system is unbound,
the trajectory must become straight lines at large radii, reflecting the incoming and outgoing
velocity vectors. For example, for a 1

r potential, we know the ingoing and outgoing velocity
vectors define the asymptotes of the hyperbolic orbit. We can calculate the distance between
the scattering center and these straight lines where they come closest to the scattering
center. This distance is defined to be the impact parameter, usually associated with the
symbol b. This is displayed in Figure 4.3. The green line is the impact parameter. The
impact parameter is related to lθ. We know lθ = ~r × µ ~̇r. At r = ∞, we know ~̇r points in
along the asymptote and ~r points to the origin, so the angle between ~r and ~̇r, which we call
γ, is subtended by the impact parameter b. ~r is shown approximately in Figure 4.3 by the
blue line. So,

lθ = r µ v∞ sin γ = µ v∞ b

lθ specifies the geometry through b, which fixes the position of the asymptote (~v∞) relative
to the scattering center.

Scattering Angle

In Figure 4.3, the scattering angle, θ∗, is the angle between the incoming and outgoing
velocity vectors. θ∗ is determined by E and lθ, or equivalently v∞ and b, and the form of
the potential function.
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Figure 4.3: Scattering impact parameter illustration

4.3.2 The Generic Cross Section

Incident Beam

Now that we have made our definitions, let us bring in the concept of differential cross
section. Suppose we have a beam of incoming particles, all with same velocity ~v∞. Let the
flux of particles F be the number of particles passing through a unit area in a unit time. If
the beam has particle number density n, then the flux is

F = nv∞

Assume that the beam has a circular cross section and the axis of the beam points directly
at the scattering center. The incoming particles will thus have a range of impact parameter
values, ranging from b = 0 (along the beam axis) to b = bmax (at the outer edge of the
beam). The beam radius is bmax and its cross-sectional area is A = π b2max.

Differential Cross Section

The incident particles in the beam will be scattered into a range of angles depending on their
input impact parameters (and the beam velocity). We define the differential scattering
cross section, dσdΩ(θ∗, φ∗), via the probability of an incident particle being scattered into the
solid angle dΩ in the direction (θ∗, φ∗) where θ∗ is the polar angle measured from the beam
axis and φ∗ is the azimuthal angle around the beam axis. If dN(θ∗, φ∗) is the number of
particles per unit time scattered into the solid angle dΩ at (θ∗, φ∗), we define the differential
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cross section via the relation
1
A

dσ

dΩ
(θ∗, φ∗) dΩ =

dN(θ∗, φ∗)
F A

Let us explain the above. On the right side of first line, the denominator is the number
of particles per unit time incident on the target from a beam of flux F and cross-sectional
area A. Since the numerator is the number of particles per unit time that scatter into dΩ
at (θ∗, φ∗), the right side is thus the fraction of particles that scatter into dΩ at (θ∗, φ∗); it
is a probability. We include additional factors so that dσ

dΩ is defined only by the scattering
force, not by parameters of the experiment. We have a 1/F on the right side but none on
the left side because including the 1/F makes the ratio dN/F independent of F : if F goes
up, dN goes up proportionally. However, we include a 1/A on the left side to cancel the
1/A on the right side because dN(θ∗, φ∗) may not scale with A: if one adds cross-sectional
area at a radius from which particles do not scatter into the particular solid angle dΩ at
(θ∗, φ∗), dN(θ∗, φ∗) will not increase when A increases. Hence the different treatment of F
and A. Solving for the differential cross section gives

dσ

dΩ
(θ∗, φ∗) =

1
F

dN(θ∗, φ∗)
dΩ

The beam area A has dropped out. dσ
dΩ has units of area per steradian; hence the name cross

section. If we assume central force scattering, the problem is azimuthally symmetric about
the beam axis and we may integrate over φ∗ so that dΩ = 2π sin θ∗dθ∗. Furthermore, we
know for central force scattering that there is a one-to-one correspondence between b and
θ∗ for a given v∞. Therefore, the particles scattering into the interval dθ∗ in polar angle
come from some range db in impact parameter. Azimuthal symmetry of the problem lets
us integrate over azimuthal angle in the beam also. We may relate db and dθ∗ by requiring
conservation of particle number:

F 2π b db = −F dσ

dΩ
2π sin θ∗dθ∗

A negative sign has been inserted under the assumption that the potential decreases in
strength monotonically with radius: if you increase the impact parameter a little bit, the
scattering angle should decrease, so a positive db implies a negative dθ∗. Rewriting, we have

dσ

dΩ
=

b

sin θ∗

∣∣∣∣ dbdθ∗
∣∣∣∣

That is, if we know the function b(θ∗, v∞), then we can determine the distribution of particles
in scattering angle given a uniform incoming beam.

Total Cross Section

Once one has calculated dσ
dΩ , it is formally a straightforward thing to calculate the total

cross section:

σ =
∫
dΩ

dσ

dΩ
= 2π

∫ π

0
dθ∗ sin θ∗

dσ

dΩ
= 2π

∫ ∞

0
db b

As one would expect, the total cross section is related to the probability that an incoming
particle will be scattered to any angle. It can be viewed as a total “effective area” of the
scattering center; the number of particles in the incoming beam that will be scattered is
the same as if every particle within the central σ of the beam were scattered and all others
left untouched.
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4.3. SCATTERING CROSS SECTIONS

Calculating b(θ∗)

For a generic central potential, we can obtain a formula relating b and θ∗ by returning to
the integral relations that define the orbit. Recall Equation 4.5:

θ(r)− θ(0) = ±lθ
∫ r

r(0)

dr′

[r]2

[
2µ (E − U(r))−

l2θ
r′2

]−1/2

θ is not θ∗, but it is related to it. Referring back to our scattering picture above, the
scattering angle θ∗ is the complement of the angle between the incoming and outgoing
asymptotes. The angle between the asymptotes is related to the orbit angle as r →∞. For
repulsive scattering, the angle between the asymptotes is just |θout−θin|, where these are the
asymptotic orbit angles for the incoming and outgoing particles. For attractive scattering,
since θ is measured from the +x-axis, the angle between the asymptotes is 2π−|θout− θin|.
So the scattering angle is

θ∗ = ∓ (π − |θout − θin|)

where − goes with the attractive potential. Next, |θout − θin| is twice the angle between
θout or θin and θ = 0. θ = 0 is obtained when r = rmin, the turning point. So, we have

θ∗ = ∓

(
π − 2

∣∣∣∣∣lθ
∫ ∞

rmin

dr′

[r′(t)]2

[
2µ (E − U(r))−

l2θ
r′2

]−1/2
∣∣∣∣∣
)

= ∓

(
π − 2

∣∣∣∣∣
∫ ∞

rmin

b dr′

r′2

[
1− U(r)

E
− b2

r′2

]−1/2
∣∣∣∣∣
)

We have used E instead of v∞ to indicate the initial energy. Formally, now, we have θ∗(b),
which we know is formally invertible because there is one-to-one relationship between b and
θ∗. Thus, we can obtain the differential cross section for any scattering potential.

4.3.3 1
r

Potentials

For the 1
r potential, we can find the differential cross section explicitly because we have explicit

relationships between θ and r.

Finding b(θ∗)

We demonstrated earlier that the azimuthal angle θ of the orbit relative to the center of
mass is limited to be cos θ > −1

ε ; this gives us θout and θin:

θout,in = ± arccos
(
−1
ε

)
where θout = −θin and the choice of sign for θin depends on initial conditions. So we have

|θout − θin| = 2
∣∣∣∣arccos

(
−1
ε

)∣∣∣∣
= 2 arccos

(
∓ 1
|ε|

)
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where the − is for an attractive potential. So we have

θ∗ = ∓
[
π − 2 arccos

(
∓ 1
|ε|

)]
= π − 2 arccos

1
|ε|

1
|ε|

= sin
θ∗
2

where the two different potentials have yielded the same result. With some work, we can
write b in terms of ε. Start with Equation 4.9:

E =
l2θ

2µ p2

(
ε2 − 1

)
µ p

lθ
=

√
µ

2E

√
ε2 − 1

lθ
GµM

=
√

µ

2E

√
ε2 − 1

µ v∞ b =
GµM√

2E/µ

√
ε2 − 1

b =
GµM

2E

√
ε2 − 1

So, we may now find b(θ∗):

b =
GµM

2E

√
csc2

θ∗
2
− 1 =

GµM

2E
cot

θ∗
2

where we take the positive square root because 0 < θ∗
2 < π

2 .

Calculating the Differential Cross Section

We will need db
dθ∗

to calculate the differential cross section, so, taking the derivative:∣∣∣∣ dbdθ∗
∣∣∣∣ = 1

2
GµM

2E
csc2 θ∗

2
=
b

2
csc

θ∗
2

sec
θ∗
2

Finally, using our formula for the differential cross section:

dσ

dΩ
=

b

sin θ∗

∣∣∣∣ dbdθ∗
∣∣∣∣ = b2

4
csc2 θ∗

2
sec2 θ∗

2
=
(
GµM

4E

)2 1
sin4 θ∗

2

Note that the result is independent of whether the scattering is attractive or repulsive. This
result is the well known Rutherford scattering formula, first observed in the scattering of α
particles (4He nuclei) from gold nuclei in a foil. The observation that the scattering obeyed
the simple expectation of a 1

r potential was an important piece of evidence that the atom
consists of a charged nucleus surrounded mostly by empty space, as opposed to a “plum
pudding” type model with electrons and protons intermixed uniformly in the atom.

The Total Cross Section

If one tries to calculate the total cross section from the Rutherford formula, one will end
up with an infinite result. This is because, for a 1

r potential, the probability of scattering
does not decrease sufficiently quickly with increasing b – the effective area of the scattering
center is infinite. If the potential is made to converge more quickly (e.g., by multiplying be
an exponential decay), then a finite total cross section is obtained.
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Chapter 5

Rotating Systems

We have not yet seriously studied dynamics of rotating systems. The subject breaks down into two
topics: dynamics in rotating (and hence non-inertial) coordinate systems, and dynamics of rotating
bodies in inertial coordinate systems. We must develop the theory of rotations first, which provides
a language to use for discussing these two topics.
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5.1 The Mathematical Description of Rotations

We develop the theory of rotations, progressing from infinitesimal rotations to finite rotations, in
particular considering the group-theoretic aspects. Some of this material is found in Hand and
Finch Chapters 7 and 8, but much is not.

We want to understand how rotation of the coordinate system affects the position vector ~r.
Such rotations will be of interest to us in two physical situations:

• Apparent motion in a rotating coordinate system of a point that is fixed relative to an inertial
coordinate system.

• Rotation of a rigid body about some axis. Recall that a rigid body is a body for which the
relative distance between any pair of points is fixed. Such a body may still rotate about any
axis. A point P in the body follows rotational motion about the axis of motion relative to
the non-rotating system.

We will consider the physical systems in the sections following this one. This section focuses on
the mathematical language and general properties of rotational transformations.

5.1.1 Infinitesimal Rotations

Vector Cross-Product Version

Consider the following figure:

~r points in an arbitrary direction in the non-rotating frame. The vector ~r is rotated by an
angle δθ about the z axis. We are allowed to take the rotation axis to coincide with the z
axis because ~r is arbitrary. If we define a vector δ~θ that points along the axis of rotation
(the z axis) and has magnitude δθ, then the change δ~r in ~r is related to δ~θ by

δ~r = δ~θ × ~r

where × indicates a vector cross-product, and the rotated vector in the non-rotating system
is

~r ′ = ~r + δ~r
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The cross-product gives the correct direction for the displacement δ~r (perpendicular to the
axis and ~r) and the correct amplitude (|δ~r| = Rδθ = r δθ sinα). If we then divide by the
time δt required to make this displacement, we have

δ~r

δt
=
δ~θ

δt
× ~r =⇒ ~̇r = ~ω × ~r

where ω is the angular frequency of rotation about the axis and ~ω points along the axis of
rotation also.

Matrix Version

A more generic and therefore more useful way to look at a rotation is as a matrix operation
on vectors. The infinitesimal rotation can be viewed as a matrix operation:

~r ′ = ~r + δθ ẑ × ~r =

 x− y δθ
y + x δθ

z

 ≡ R
δ~θ
~r

with

R
δ~θ

=

 1 −δθ 0
δθ 1 0
0 0 1

 = 1 + δθMz Mz =

 0 −1 0
1 0 0
0 0 0


where we have defined the infinitesimal rotation matrix R

δ~θ
and the matrix Mz. More

generally, one can show that an infinitesimal rotation about an arbitrary axis can be written
in matrix form using

R
δ~θ

= 1 +
(
δ~θ · x̂Mx + δ~θ · ŷMy + δ~θ · ẑMz

)
≡ 1 + δ~θ · ~M

with

Mx =

 0 0 0
0 0 −1
0 1 0

 My =

 0 0 1
0 0 0
−1 0 0

 Mz =

 0 −1 0
1 0 0
0 0 0


~M is called the infinitesimal rotation generator because, obviously, it can be used to
generate any infinitesimal rotation matrix R

δ~θ
when combined with the rotation vector δ~θ.

A simple way to write the generators is

(Mi)jk = −εijk

where εijk is the completely antisymmetric Levi-Civita symbol (see Appendix A). It is useful
to know that the above matrices satisfy the following relations:

M2
x = −

 0 0 0
0 1 0
0 0 1

 M2
y = −

 1 0 0
0 0 0
0 0 1

 M2
z = −

 1 0 0
0 1 0
0 0 0


and

MiMj −MjMi ≡ [Mi,Mj ] = εijk Mk
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Combining Infinitesimal Rotations

It is straightforward to see how to combine two infinitesimal rotations, even if they are not
about the same axis. Clearly, our formula δ~r = δ~θ×~r holds regardless of the orientation of
δ~θ. So we obtain the result of two successive infinitesimal rotations δ~θ1 and δ~θ2 by

~r ′2 = ~r ′1 + δ~θ2 × ~r ′1
= ~r + δ~θ1 × ~r + δ~θ2 × (~r + δ~θ1 × ~r)

= ~r +
(
δ~θ1 + δ~θ2

)
× ~r

where in the last line we have dropped terms quadratic in the infinitesimal rotation angles.
Thus, we see that the effect of two infinitesimal rotations δ~θ1 and δ~θ2 is found simply by
obtaining the result of a rotation by the sum rotation vector δ~θ1 +δ~θ2. Obviously, if δ~θ1 and
δ~θ2 are aligned, then the angles sum simply. But if the two rotation axes are not aligned,
addition of the angle vectors describes the correct way to combine the rotations. In terms
of matrices, we have

~r ′2 =
(
1 + δ~θ2 · ~M

)
~r ′1

=
(
1 + δ~θ2 · ~M

)(
1 + δ~θ1 · ~M

)
~r

=
(
1 +

[
δ~θ1 + δ~θ2

]
· ~M

)
~r

The implication of the addition rule for rotations is that angular velocities add in simple
fashion also:

~ωtot = ~ω1 + ~ω2

NOTE: The simple addition rules for infinitesimal rotations and angular velocities do not
in general hold for finite rotations, discussed in the next section.

5.1.2 Finite Rotations

There are two different ways of determining the appropriate form for finite rotations – integration
of infinitesimal transformations and direct evaluation via direction cosines.

Integration of Infinitesimal Transformations

First, consider a finite rotation about a single axis, ~θ. That rotation can be built up as a
product of infinitesimal rotations:

R~θ
= lim

N→∞

(
1 +

1
N
~θ · ~M

)N

where δ~θ = 1
N
~θ, which is infinitesimal in the limit N →∞. This can be rewritten (expand

out the infinite product, or just realize that the above is one of the definitions of the
exponential function):

R~θ
=

∞∑
n=0

1
n!

(
~θ · ~M

)n
= exp

(
~θ · ~M

)
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The second equality is not much use since an exponential with a matrix argument only has
meaning as a power series expansion. If we now specialize to a rotation about the z axis,
we get ~θ · ~M = θMz. Using the relation above for M2

z, we can rewrite the sum as

R =

 0 0 0
0 0 0
0 0 1

+
∞∑
n=0

θ2n (−1)n

(2n)!

 1 0 0
0 1 0
0 0 0

+
θ2n+1 (−1)n

(2n+ 1)!

 1 0 0
0 1 0
0 0 0

Mz


=

 0 0 0
0 0 0
0 0 1

+ (cos θ + sin θMz)

 1 0 0
0 1 0
0 0 0


=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Of course, similar forms hold if the rotation is aligned with the x or y axis. For more general
rotations, the parameterization in terms of the components of ~θ is not particularly clear;
we will develop a simpler parameterization, Euler angles, later.

Direction Cosines

Consider our rotation of the vector ~r to be a rotation of a frame F in which ~r is fixed
relative to a nonrotating frame F ′. In Hand and Finch, these are termed the “body” and
“space” coordinate systems, respectively. The original vector has components (x, y, z) in
the nonrotating frame. The transformation ~r ′ = R~r gives the components of the vector in
the nonrotating F ′ frame after the rotation; denote these components by (x′, y′, z′). In the
F frame, the vector retains its original components (x, y, z) after rotation because the F
frame rotates with the vector. Thus, the rotation matrix R provides a linear relationship
between the components (x, y, z) and (x′, y′, z′). There are 9 obvious coefficients of this
relationship, the 9 components of R. One way to parameterize these 9 components is to
consider how they relate to the angles between the F ′ coordinate axes x̂ ′, ŷ ′, and ẑ ′ and
the F coordinate axes x̂, ŷ, and ẑ. It turns out that, in fact, R is the matrix of these dot
products:

R =

 x̂ ′ · x̂ x̂ ′ · ŷ x̂ ′ · ẑ
ŷ ′ · x̂ ŷ ′ · ŷ ŷ ′ · ẑ
ẑ ′ · x̂ ẑ ′ · ŷ ẑ ′ · ẑ


That this form works can be seen by applying it to the unit vectors of the F frame; we get
back the unit vectors of the F frame written in terms of the unit vectors of the F ′ frame.
Since rotation is a linear operation,

R
(
α~a+ β~b

)
= αR~a+ βR~b

the same matrix is valid for rotating an arbitrary vector ~r. In the case of a simple rotation
about the z axis, the above direction cosine form is obviously consistent with the matrix
operator form given above. The two forms must be consistent in general since the linearity
of the relationship between ~r and ~r ′ allows there to be only one such rotation matrix.
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Orthogonality of Finite Rotation Matrices

Coordinate rotation matrices are very much like the rotation matrices we obtained for
transforming between generalized and normal coordinates in the coupled oscillation problem
(Section 3.2). In particular, rotation matrices must be orthogonal matrices (RT = R−1)
because they must be norm-preserving. It is intuitively obvious that rotation of a vector
about an axis must preserve its length, but it can be seen to be explicitly true by considering
an infinitesimal rotation:∣∣~r ′∣∣2 = (~r + δ~r) · (~r + δ~r) = |~r|2 + 2 δ~r · ~r + |δ~r|2 = |~r|2

where the second term vanishes because δ~r is normal to ~r and the third term has been
dropped because it is of second order in δ~r. If infinitesimal rotations preserve length, then
so do finite rotations. If we require this condition to be true, we obtain

~r T~r = ~r ′T~r ′ = (R~r)T (R~r) = ~r T RT R~r =⇒ RTR = 1 =⇒ RT = R−1

(We have used the T notation for displaying dot products of vectors.) Hence, we obtain the
orthogonality condition.

Orthogonality implies that the columns of R, treated as vectors, are in fact orthonormalized:

δij =
(
RTR

)
ij

=
∑
k

RkiRkj

(We refer to the components of R by Rab, dropping the boldface notation because each
component is just a number.) There are 6 conditions implied by the above, leaving only
3 independent components of R. As we will see later, these 3 degrees of freedom can be
parameterized in terms of the Euler angles.

One can easily see that the “transposed” relation also holds. Norm preservation also implies

~r ′T~r ′ = ~r T~r =
(
RT~r ′

)T (
RT~r ′

)
= ~r ′TRRT~r ′ =⇒ RRT = 1

That is, RT is the “right inverse” of R also.1 Written out in components, we thus have

δij =
(
RRT

)
ij

=
∑
k

RikRjk

The rows of R also are othonormal.

5.1.3 Interpretation of Rotations

We at this point should comment on the two different possible physical interpretations of the
rotation matrices R. We made a similar distinction when considering coordinate transformations
in Section 2.1.10.

Active transformations

In an active transformation, we think of the transformation as actively rotating the particle
whose position is given by the vector ~r(t) relative to the coordinate axes. The rotations of
the form ~ω× ~r that we began with are really of that form. The coordinate system that the
rotation is relative to is inertial, the coordinate system in which the rotating vector is fixed
is noninertial.

1We could have used the fact that, for square matrices, left inverses and right inverses are always the same. But
it’s nice to see it directly.
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Passive transformation

We think of a passive transformation as simply a relabeling of points in space according to
a new coordinate system. In this picture, the coordinate system in which the particle is at
rest is inertial and the rotating system is not.

Why there can be confusion

The difficulty arises because the transformations relating the two systems are mathemat-
ically identical in the two cases, but the physical interpretation is very different. We use
the mathematical equivalence to relate one type of transformation to another to allow us
to write down the rules. But, the definition of which system is inertial differs between the
cases, so we must be very careful.

5.1.4 Scalars, Vectors, and Tensors

We have so far discussed rotations only in terms of their effect on vectors, objects that we have
an intuitive feel for. But the link between rotations and vectors is much deeper, leading us to the
generic concept of tensors.

Vectors and Vector Coordinate Representations

As hinted at in the discussion of the interpretation of rotations, there are multiple concepts
described by the same mathematics. As indicated above, we tend to think of a rotation
as actively rotating a vector from one position in physical space to another. The rotating
coordinate system is noninertial and thus physics is modified there.

But, regardless of which coordinate system is inertial, we are frequently required to trans-
form vectors from one coordinate system to another. This is the passive sense of a rotation
transformation. The vector is not undergoing any dynamics, it is simply being looked at
in a different frame. The vector, as a physics entity, does not change by looking at it in
a different coordinate system. But its coordinate representation – the set of numbers
that give the components of the vector along the coordinate axes – does change. Rotation
matrices thus not only provide the means to dynamically rotate a vector about some axis,
but they also provide a method to obtain the coordinate representation in one frame from
that in another frame.

It is important to recognize the difference between a vector and its coordinate representation:
a vector is a physical entity, independent of any coordinate system, while its coordinate
representations let us “write down” the vector in a particular coordinate system. To make
this clear, we will use the standard vector notation ~r to denote the “coordinate-independent”
vector and underlined notation ~r and ~r ′ to denote its coordinate representations in the F
and F ′ coordinate systems.

Formal Definitions of Scalars, Vectors, and Tensors

We have so far relied on some sort of unstated, intuitive definition of what a vector is.
We may, on the other hand, make use of the properties of the coordinate representations
of vectors to define what is meant by the term “vector.” A vector ~v is defined to be an
object with coordinate representations in different frames that are related by our orthogonal
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rotation matrices:

~v ′ = R~v(
~v ′
)
i

=
∑
j

(R)ij (~v)j

where in the second line we have written out the relation between coordinate representations
in the two frames component-by-component. One might worry that the above definition of
a vector is circular because rotation matrices are to some extent defined in terms of vectors.
This worry can be eliminated by taking the direction cosine definition of rotation matrices
– that definition rests only on the idea of coordinate systems and direction cosines.

We will use as a convenient shorthand the following:

v′i = Rij vj

Let us explain the shorthand carefully. First, repeated indices are defined to imply summa-
tion (the Einstein summation convention), so

∑
symbols are not given explicitly. Second,

as noted earlier, the quantity Rij refers to the ij component of the matrix R. Finally, the
quantity vj is the jth component of the coordinate representation ~v, vj = (~v)j . Similarly,
v′i = (~v ′)i. That is, the vector object is referred to with an arrow as ~a while the coordi-
nate representations are underlined with an arrow, ~a and ~a ′, and the components of the
representations are referred to using subscripts but no underlines or arrows, ai and a ′i .

2

We have an intuitive definition of a scalar as an object whose coordinate representation is
independent of frame. Explicitly, the transformation property of a scalar s with coordinate
representations s and s′ is

s ′ = s

for any pair of frames. Since the representation of s is independent of frame, there is no
distinction between s, s, and s′.

We can see, for example, that the norm of the position vector is a scalar by relating its
values in two different frames:

~r ′ ·~r ′ = r′i r
′
i = Rij rj Rik rk = δjk rj rk = rj rj = ~r ·~r

where we have used ~r = RT ~r ′ and the orthonormality property Rij Rik = δjk. In general,
the dot product ~a ·~b of two vectors is a scalar by the same argument.

The generalization of scalars and vectors is tensors, or, more specifically, rank n tensors.
A rank n tensor T is an object that has coordinate representation T with Nn components
Ti1···in (where N is the dimensionality of the physical space, N = 3 for what we have so far
considered) with transformation properties

T ′
i1···in = Ri1j1 · · ·RinjnTj1···jn

A vector is a rank 1 tensor and a scalar is a rank 0 tensor. A rank 2 tensor has coordinate
representations that look like square N × N matrices; what distinguishes a rank 2 tensor

2We note that there is no need for underlines for the coordinate representation ai because a subscript without an
arrow implies consideration of a coordinate representation.
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from a simple matrix is the relation between the coordinate representations in different
frames. It is important to remember the distinction!

An alternate, but equivalent, definition of a rank n tensor is an object whose product
with n vectors is a scalar for any n vectors. That is, if we claim T is a rank n tensor
with representation Ti1···in in a particular frame, then, for n arbitrary vectors {~ai} with
components {ai,ji} in that frame, if we calculate in each frame the quantity

s = Ti1···in a1,i1 · · · an,in
it is required that s be the same in every frame regardless of the choice of the {~ai}. We can
see the equivalence of the two definitions by equating the component representations of s
calculated in different frames:

s′ = s

T ′i1···in a
′
1,i1 · · · a

′
n,in = Tp1···pn a1,p1 · · · an,pn

T ′i1···in Ri1j1 a1,j1 · · ·Rinjn an,jn = Tp1···pn a1,p1 · · · an,pn

Since the above must hold for all possible choices of the {~ai}, we may conclude

T ′i1···in Ri1j1 · · ·Rinjn = Tj1···jn

Rk1j1 · · ·Rknjn T
′
i1···in Ri1j1 · · ·Rinjn = Rk1j1 · · ·Rknjn Tj1···jn

T ′i1···in δk1i1 · · · δknin = Rk1j1 · · ·Rknjn Tj1···jn

T ′k1···kn
= Rk1j1 · · ·Rknjn Tj1···jn

where we have used the “transposed” orthonormality condition Rkj Rij = δki. Thus, we
recover our other definition of a rank n tensor.

Rank 2 tensors are special because their coordinate representations T look like simple N×N
matrices. In particular, the transformation of a rank 2 tensor has a simple matrix form:

T ′ij = Rik Rjl Tkl = Rik TklRlj

T ′ = R T RT = R T R−1

where T and T ′ are N×N matrices. The last expression is the similarity transformation
of the N ×N matrix T by the orthogonal matrix R.

Examples of Tensors

• One obvious rank 2 tensor is the outer product of two vectors:

Tij = ai bj or T = ~a~bT

Since each vector transforms as a rank 1 tensor, it is obvious that the above product
transforms as a rank 2 tensor.

• More generally, if we take a rank m tensor with coordinate representation components
Ui1···im and a rank n tensor with coordinate representation components Vj1···jn and
contract over – i.e., match up indices and sum, the generalization of a dot product –
any p pairs of indices, then the resulting set of quantities is a rank m+ n− 2p tensor.
Proving it is clearly a tedious exercise in index arithmetic relying on the rotation
matrix orthogonality relation RkiRkj = δij and its transpose relation Rik Rjk = δij .
Taking p = 0 as a special case gives us the simple outer product of the two tensors,
which gives the previous example when both tensors are rank 1.
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• The identity matrix is a rank 2 tensor and, in fact, it is isotropic, meaning that its
coordinate representation is the same in all frames. Let’s just try transforming it to
see this:

1 ′ij = Rik Rjl 1kl = Rik Rjl δkl = Rik Rjk = δij

(We used the “transposed” orthonormality condition Rik Rjk = δij .) So, we see that
the identity matrix has representation δij in any frame and that the representations in
different frames are related by the appropriate transformation relations.

• We can demonstrate that the εijk Levi-Civita symbol is an isotropic rank 3 tensor.
Let’s explicitly calculate the effect of the transformation rule on it:

ε′ijk = RilRjmRkn εlmn

We may evaluate the above by recognizing that the “transposed” orthonormality con-
dition on R implies that the rows of R look like N mutually orthonormal vectors in
N -dimensional space. (Here we use the term vector more loosely – we have no need
to prove that these rows behave like vectors in rotated frames, we only need the fact
that their component representations in a given frame looks like that of N orthonor-
mal vectors.) Denote these “vectors” by ~R r

i , where
(
~R r
i

)
j

= Rij . (The r superscript

indicates we are treating the rows, rather than the columns, of R as vectors.) With
this notation, the above product looks like ~R r

i ·
(
~R r
j × ~R r

k

)
. In N = 3 dimensions, the

expression will only be nonvanishing when the triplet ijk is a cyclic or anticyclic combi-
nation; and the expression will have magnitude 1 and take the sign of the permutation
(cyclic or anticyclic). These are exactly the properties of εijk, so we have

ε′ijk = εijk

So the Levi-Civita symbol is an isotropic rank 3 tensor for N = 3 (and for arbitrary
N , though we will not prove it here). Note that this implies some properties of ~M:

1. When treated as a single rank 3 tensorM with coordinate representation compo-
nents Mijk =

(
~Mi

)
jk

= −εijk, M is clearly an isotropic rank 3 tensor. For this

particularly interesting case, we will take the symbol ~M to stand for the rank 3
tensor M. Since ~M is isotropic, there is no distinction between ~M and ~M.

2. Given a vector ~a, the quantity ~a · ~M has in frames F and F ′ coordinate represen-

tations ~a · ~M = ~a · ~M and
(
~a · ~M

)′
= ~a ′ · ~M ′

= ~a ′ · ~M, where the last step in each

case is possible because ~M is isotropic. Thus, only the coordinate representation
of the vector ~a need be changed to write ~a · ~M in different frames.

• With the above, we may show that the operator ~a× is a rank 2 tensor. We are referring
to the operator, not just the vector ~a. The operation ~a×~b is written as(

~a×~b
)
i
= εijk aj bk = (εijk aj) bk =

(
~a · ~M

)
ik
bk

which shows that ~a× looks like the operation of a matrix on a vector. Since we know
~a is a vector and ~M is a rank 3 tensor, the contraction over one index must yield a
rank 2 tensor as discussed above. But, since we did not explicitly prove the general
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relation, let’s prove this specific case explicitly using the transformation properties of
~a and ~M: (

~a · ~M
)′
ij

= −a′kε′kij = −Rkl alRkmRinRjp εmnp

= −δlm alRinRjp εmnp
= −RinRjp am εmnp
= RinRjp

(
~a · ~M

)
np

So, indeed, ~a · ~M, and thus ~a×, transforms like a rank 2 tensor. This last fact will be
useful in the next section on dynamics in rotating systems.

5.1.5 Comments on Lie Algebras and Lie Groups

We make some qualitative comments on Lie algebras and groups. Such concepts are not incredibly
useful here, but serve to allow analogies to be made between the physical rotations we have talked
about here and transformations in more complex systems. We progress through some definitions
of mathematical objects that lead up to Lie algebras and Lie groups.

Groups

A group is defined to be a set of elements with a binary operation rule that specifies
how combinations of pairs of elements yield other members of the group. The set must be
closed under the operation – binary combinations of members of the set may only yield
other members of the set – to be called a group. In addition, the binary operation must be
associative, a (b c) = (a b) c, there must be an identity element 1 such that a 1 = a, and each
element must have an inverse such that a−1 a = a a−1 = 1. Note that the group operation
need not be commutative.

Fields

A field is a group that has two kinds of operations, addition and multiplication. It is
a group under each of the operations separately, and in addition satisfies distributivity:
a (b+ c) = a b+ a c.

Group Algebras

A group algebra is a combination of a field F (with addition + and multiplication ·) and
a group G (with multiplication ∗), consisting of all finite linear combinations of elements of
G with coefficients from F , a g + b h, where a and b belong to F and g and h belong to G.
The group operations on F and G continue to work:

a g + b g = (a+ b) g

a ·
∑
i

ai gi =
∑
i

(a · ai) gi(∑
i

ai gi

)
∗

∑
j

bj hj

 =
∑
i,j

(ai · bj) (gi ∗ hj)
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Lie Algebras

A Lie algebra is a group algebra with the additional conditions that the group elements
{τi} belonging to G satisfy the commutation relations

[τi, τj ] ≡ τi τj − τj τi = ckijτk

The {ckij} are called the structure constants of the Lie algebra. They satisfy ckij = −ckji.
(Actually, the real definition of a Lie algebra is slightly more generic, allowing for definition
of a commutator without G being part of a group algebra.) A Lie algebra may have a finite
or infinite number of group members, though in general we will only consider finite ones.
The matrices Mx, My, and Mz defined earlied form a Lie algebra with the real numbers
as the field F .

Lie Groups

A Lie group is the exponential of the Lie algebra, consisting of all possible elements

am = exp

(∑
k

θkmτk

)

where the θkm are members of the field F and the τk are members of the group G. The
exponential is defined in terms of its infinite power series expansion, which is well-defined
for a group. Note that the members of the Lie group are not members of the Lie algebra
because, by dint of the power series expansion, they are infinite linear combinations of
members of the Lie algebra. The Lie group is entirely separate from the Lie algebra. The
Lie group is, as its name indicates, a group. Moreover, thanks to the method of definition,
the group is differentiable with respect to the members of the field.

Representations

Our rotation matrices are a particular representation of the rotation group in three di-
mensions, O(3), which is a Lie group. The M matrices are a representation of the Lie
algebra that generate the Lie group. The word representation is used because the matrices
are not really necessary; it is only the group and field rules that are fundamental. The
representation in terms of matrices provides one way that those rules can be realized, but
not the only way.

Significance

These definitions serve only to illustrate that there is a fundamental structure underlying
rotation matrices, that they form a Lie group can be generated from a small set of el-
ements forming a Lie algebra. Lie algebras and groups are found everywhere in physics
because they are the means by which continuous transformations are performed. As we
saw in Section 2.1.10, continuous coordinate transformations under which a Lagrangian is
invariant are of great significance because they give rise to conserved canonical momenta.
The continuous parameters of such symmetry transformations are the field members θkm, so
the conserved momenta are given by the group members τk. When rotations are symmetry
transformations, we thus naturally see that angular momentum ~l = ~pT ~M~r is conserved.
We will see another Lie group, the Lorentz group, in connection with special relativity.
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5.2 Dynamics in Rotating Coordinate Systems

We use the formalism developed in the last section to describe dynamics in rotating, and hence
non-inertial, coordinate systems. We follow Hand and Finch Chapter 7 conceptually, but employ
the more formal mathematics developed in the previous section.

As a general point, all rotating coordinate systems are non-inertial since Newton’s first and
second laws are not trivially obeyed in them (as we shall see). Therefore, we neglect to reinforce
the word “rotating” with the word “non-inertial” in the text. We will also in general only consider
two coordinate systems – one that is inertial and one that is rotating relative to the inertial system
but otherwise fixed. That is, we will not consider a rotating system that is also moving relative
to an inertial system. One can consider such systems, but we must first develop the basics of
describing rotating systems. Given these restrictions, we will simply refer to reference frames as
“rotating” and “non-rotating”, with the implication that the non-rotating system is inertial and
the rotating system is rotating but not otherwise moving with respect to the inertial system. We
will also use the term “body” for the rotating system and “space” for the non-rotating system,
which make sense when referring to rotation of a rigid body.

We will figure out how to do the physics in the noninertial frame by transforming to an iner-
tial frame, doing the physics in the inertial frame we understand, and transforming back to the
noninertial frame.

The notation in Hand and Finch (and in most other texts) on this subject is extremely confusing.
We are very explicit about coordinate systems here to be clear.

5.2.1 Newton’s Second Law in Rotating Coordinate Systems

We obtain a version of Newton’s second law in rotating coordinate systems, deriving fictitious forces
that must be included when solving for the dynamics in a rotating system.

Notation

We will use the notation introduced in Section 5.1.4 to distinguish vectors and tensors and
their coordinate representations. Briefly, that notation is

object notation
vector without reference to a coordinate system ~r

coordinate representation of a vector ~r
components of coordinate representation of a vector ri

scalar without reference to a coordinate system s
coordinate representation of a scalar s

tensor T
coordinate representation of a tensor T

components of coordinate representation of a tensor Ti1...in
rotation matrix R

components of rotation matrix Rij

Since our rotating and non-rotating coordinate systems will usually be denoted by F and
F ′, the vector ~r will have its coordinate representations in these systems written as ~r and
~r ′ and the components of these representations written as ri and r′i.

For ~ω and ~̇ω, the angular velocity and acceleration of the rotating system relative to the non-
rotating system, it may be unclear what is meant by a representation in the rotating frame
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because, strictly speaking, ~ω and ~̇ω would vanish if measured in the rotating frame. However,
~ω and ~̇ω are well-defined vectors in the fixed frame with coordinate representations there,
so we can obtain their coordinate representations in the rotating frame using a rotation
coordinate transformation. Explicitly, ~ω and ~̇ω refer to the vectors in a coordinate-system-
independent sense, ~ω ′ and ~̇ω ′ refer to their representations in the non-rotating system
(where they are measured), with components ω ′

i and ω̇ ′
i , while ~ω and ~̇ω, with components

ωi and ω̇i, refer not to measurements of these vectors in the rotating system, but rather to
the quantities obtained by applying the appropriate coordinate system transformation to the
fixed-frame representations ~ω ′ and ~̇ω ′. The symbols ~ω and ~̇ω are thus rather nonphysical
and nonintuitive. To avoid confusion, we will never use the symbols ~ω and ~̇ω but rather
leave explicit the necessary transformation operators.

Position and Velocity in Rotating and Non-Rotating Frames

We consider a rotating frame F and a non-rotating frame F ′. We first need to transform
the coordinates and velocities from F to F ′ so we can do the physics in F ′. Suppose some
particle describes a path with coordinate representation ~r(t) relative to the rotating (body)
frame. That path has coordinate representation as ~r ′(t) in the non-rotating (space) frame.
At any given time, the coordinate representations in the two frames are related by R(t), a
rotation matrix with possible time dependence of the rotation angle. Thus, we have

~r ′(t) = R(t)~r(t)

Note the sense of R(t): it converts from the rotating system to the non-rotating system, not
the other way! Now, let us take a time derivative so we can determine the relation between
the velocities in the two frames:

d

dt
~r ′(t) =

(
d

dt
R(t)

)
~r(t) + R(t)

d

dt
~r(t)

= Ṙ(t)~r(t) + R(t)
d

dt
~r(t)

The velocity relative to the non-rotating system has two components – one due to rotation
of the rotating system, the other due to motion relative to the rotating system. But, what
is meant by R(t) d

dt ~r(t) and why is it not just d
dt ~r

′(t)?3

This confusion is similar to the issue noted above with regard to ~ω and ~̇ω. R d
dt ~r is simply

the set of numbers obtained by applying the coordinate transformation to the elements of
d
dt ~r. An example may clarify this. Consider a particle moving in a radial line on a rotating
table, at constant speed relative to the table. Its d

dt ~r(t) vector is constant in the rotating
frame, d

dt ~r(t) = c x̂, and its position vector ~r(t) is evolving linearly, ~r(t) = c t x̂. Then its
velocity in the non-rotating frame will have two pieces. The first is Ṙ(t)~r(t) piece, which
corresponds to instantaneous circular motion in the non-rotating frame due to the rotation
of the rotating frame and is easily seen to be c t ω φ̂ ′ where φ̂ ′ is the unit vector for the
polar coordinate in the plane of motion in the non-rotating frame. The second piece is the
R d

dt ~r(t) piece due to motion relative to the rotating frame. If at t = 0, x̂ coincides with
the x̂ ′ axis of the non-rotating frame, then R d

dt ~r(t) is c ρ̂ ′ where ρ̂ ′ is the radial unit vector
in the non-rotating system. That is, the contribution of R d

dt ~r(t) is c ρ̂ ′ while the total
velocity relative to the non-rotating frame is d

dt ~r
′(t) = c ρ̂ ′ + c t ω φ̂ ′.

3We have carefully avoided using ~v and ~v ′ symbols here for reasons that will become apparent.
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Thus, in the strict sense of the definition of a vector as a set of quantities that obey a specific
set of transformation rules, the set of numbers d

dt ~r(t) and the set of numbers d
dt ~r

′(t) are not
different coordinate representations of the same vector, but really they are representations
of different vectors! They are different vectors because the time derivatives are referenced
to different coordinate systems. When discussing rotating systems, time derivatives must in
general be specified relative to a particular frame. Hand and Finch and other texts use the
notation |body and |space to make the distinction. We will write write ~vbody for the coordinate
representation of d

dt ~r in the rotating frame and ~v ′space for the coordinate representation of
d
dt ~r

′ in the non-rotating frame.

It would be consistent for ~vbody and ~v ′body = R~vbody to refer to the two coordinate represen-
tations of the vector given by measuring the velocity of the particle relative to the rotating
frame, and for ~v ′space and ~vspace = RT~v ′space to refer to the coordinate representations of the
vector given by measuring the velocity of the particle relative to the non-rotating frame.
Hand and Finch actively make use of symbols analogous to ~v ′body and ~vspace (their equiv-
alents are v|′body and v|space). We feel this is confusing because the concepts implied by
these symbols are nonphysical and nonintuitive: one cannot measure the components of the
coordinate representation ~v ′body because the vector ~vbody is fundamentally a rotating-frame
quantity. One obtains ~v ′body only through a mathematical transformation of the measured
components ~vbody. And similarly for the relation between ~v ′space and ~vspace. We will keep
the rotation matrices explicit and never use ~v ′body and ~vspace.

Given the above, we rewrite our original equation as

~v ′space(t) = Ṙ(t) [R(t)]T ~r ′(t) + R(t)~vbody(t) (5.1)

Finally, we note that the use of the |body and |space symbols in conjunction with derivatives
is somewhat subtle. For example, we do not write ~v ′space = d

dt ~r
′∣∣
space

. ~r ′ is the non-

rotating frame coordinate representation of ~r, so writing d
dt ~r

′∣∣
body

would make no sense at

all. The derivative d
dt ~r

′ must be a derivative with respect to the non-rotating frame. On
the other hand, if we use the coordinate-free notation d

dt ~r, then we must indeed specify
|body or |space because no coordinate representation is implied. So, we will see the |body and
|space designators in some places and not in others.

Rewriting Using Instantaneous Angular Velocity

If ~vbody vanishes and the motion is simple rotational, we expect ~v ′space(t) = ~ω ′ ×~r ′(t). We
shall see that we can rewrite the above using this form for more generic circumstances.
There are two ways to see this:

• Indirect method (à la Hand and Finch)
First, we show that the matrix Ṙ(t) [R(t)]T is antisymmetric. R is orthogonal, so
RRT = I. If we take the time derivative, we find

ṘRT + RṘ
T

= 0

ṘRT = −
(
ṘRT

)T
The last line indicates the matrix ṘRT is antisymmetric.
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Next, antisymmetric matrices only have three independent components (the diago-
nal vanishes and the lower-off-diagonal elements are related to the upper off-diagonal
elements), so can in fact be rewritten in terms of a vector:

Aij =
∑
k

εijk ak

(εijk is the completely antisymmetric Levi-Civita symbol, see Appendix A.) If we now
rewrite the action of A on a vector ~b, we obtain[

A~b
]
i
=
∑
j

Aij bj =
∑
j,k

εijkak bj =
[
~b× ~a

]
i
= −

[
~a×~b

]
i

That is, the action of Ṙ(t) [R(t)]T is identical to that of vector cross product. We know
that when ~vbody vanishes, the full expression, Equation 5.2, must reduce to ~ω ′ × ~r ′,
so we make the identification of Ṙ(t) [R(t)]T with the instantaneous angular velocity
cross-product operator, ~ω ′(t)×.

• Direct method (using generators)
Let’s just calculate Ṙ based on the matrix form. We have to be a bit careful to avoid
formalistic hitches. For example, if we just blindly start calculating from the matrix
exponential form, we obtain:

Ṙ =
d

dt

 ∞∑
n=0

(
~θ(t) · ~M

)n
n!


=

∞∑
n=0

1
n!

n−1∑
k=0

(
~θ(t) · ~M

)k [ d
dt

(
~θ(t) · ~M

)](
~θ(t) · ~M

)n−k−1

=
∞∑
n=0

1
n!

n−1∑
k=0

(
~θ(t) · ~M

)k (
~ω(t) · ~M

)(
~θ(t) · ~M

)n−k−1

Obviously, what we would like to do is commute ~ω(t) · ~M with the other factors so
that we would get in the end Ṙ = ~ω · ~MR. The calculation needed is:(

~θ · ~M
)(

~ω · ~M
)

=
∑
i,j

θi ωj MiMj =
∑
i,j

θi ωj (Mj Mi + εijk Mk)

=
(
~ω · ~M

)(
~θ · ~M

)
+ ~M×

(
~θ × ~ω

)
While the last term is sure to vanish in simple cases (e.g., simple circular motion of a
single particle), it is not clear that it vanishes in all cases. To obtain Ṙ, we can instead
use the definition of a derivative and the form for an infinitesimal rotation:

Ṙ(t) = lim
dt→0

1
dt

[R(t+ dt)−R(t)]

= lim
dt→0

1
dt

[(
I + ~ω(t) dt · ~M

)
− I
]
R(t)

= lim
dt→0

~ω(t) · ~MR(t) = ~ω(t) · ~MR(t)
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(Incidentally, by comparison to our previous commutation attempt, this result demon-
strates that ~θ × ~ω does in general vanish.) We have not been careful yet about what
frame’s coordinate representation for ~ω is used above. Based on our expectation that
the result should reduce to ~ω ′ ×~r ′(t) when ~vbody = 0, the appropriate representation
for ~ω is ~ω ′, the non-rotating-frame representation. With that specification and the
above mathematical result, we see trivially that

ṘRT = ~ω ′ · ~MRRT = ~ω ′ · ~M

Finally, we make use of the form for ~M given earlier, (Mi)jk = −εijk:(
~ω ′ · ~M

)
ij

=
∑
k

ω ′
k (Mk)ij = −

∑
k

ω ′
k εkij =

∑
k

εikj ω
′
k

So, finally, we have(
ṘRT~r ′

)
i

=
(
~ω ′ · ~M~r ′

)
i
=
∑
j

(
~ω ′ · ~M

)
ij
r′j =

∑
jk

εikj ω
′
k r

′
j =

(
~ω ′ ×~r ′

)
i

Either way you derive it, we have the end result

~v ′space(t) = ~ω ′(t)×~r ′(t) + R(t)~vbody(t) (5.2)

If there is ever ambiguity about how to calculate ~ω ′(t), then one simply has to obtain R(t)
and calculate Ṙ(t) [R(t)]T .

Acceleration and Fictitious Forces

Let’s obtain the acceleration from the above equation. We take the time derivative in the
non-rotating frame:4

d

dt
~v ′space(t) = ~̇ω ′(t)×~r ′(t) + ~ω ′(t)× d

dt
~r ′(t) + Ṙ(t)~vbody(t) + R(t)

d

dt
~vbody(t)

= ~̇ω ′(t)×~r ′(t) + ~ω ′(t)×
[
~ω ′(t)×~r ′(t) + R(t)~vbody(t)

]
+ Ṙ(t) [R(t)]T R(t)~vbody(t) + R(t)~abody(t)

= ~ω ′(t)×
[
~ω ′(t)×~r ′(t)

]
+ 2 ~ω ′(t)×R(t)~vbody(t) + ~̇ω ′(t)×~r ′(t)

+ R(t)~abody(t)

~abody = d
dt ~vbody(t) is the coordinate representation in the rotating frame of the acceleration

relative to the rotating frame. The left side of above equation gives the true force because
it is calculated in the non-rotating frame. The term ~abody(t) gives the apparent force in the
rotating frame. Thus, we can obtain a relation between the rotating-frame apparent force
~Fapp with coordinate representation ~F app = m~abody and the non-rotating frame true force
~Ftrue with coordinate representation ~F ′

true = m d
dt ~v

′
space:

~F app = (5.3)

RT (t)
[
~F ′
true −m~ω ′(t)×

[
~ω ′(t)×~r ′(t)

]
− 2m~ω ′(t)×R(t)~vbody(t)−m~̇ω ′(t)×~r ′(t)

]
4Note that, as discussed earlier, we do not need to specify |body or |space for the derivatives in the following because

the derivatives are acting on coordinate representations, not coordinate-free vectors. We shall see later where we will
need to make these specifications.
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~Fapp and ~Ftrue are different vectors, not just different coordinate representations of the
same force vector. Unlike with velocities and accelerations, the rotating-frame representa-
tion ~F true of the non-rotating frame true force vector ~Ftrue makes physical sense since no
derivatives are involved. We shall see, in fact, that our results below will be most useful
when the coordinate representation of ~Ftrue is most easily specified in the rotating frame.
On the other hand, it is difficult to find a reason to use ~F ′

app even though it is as physically
reasonable as ~F true.

The above form is still not that useful because it relates the apparent force in the rotating
frame to quantities ~r ′(t) and R(t)~vbody(t) in the non-rotating frame. But, we can obtain a
version that makes use of only rotating frame quantities. Let’s rewrite the above, replacing
the ~ω ′× operator with the quantity from which it was derived, ṘRT . The various terms
are (drop the explicit time dependence for convenience):

RT ~ω ′ ×
[
~ω ′ ×~r ′

]
= RT

(
ṘRT

)(
ṘRT

)
~r ′ =

(
RT Ṙ

)(
RT Ṙ

)
RT~r ′

=
(
RT ṘRTR

)(
RT ṘRTR

)
~r

=
(
RT ~ω ′ · ~MR

)(
RT ~ω ′ · ~MR

)
~r

RT ~ω ′ ×R~vbody = RT
(
ṘRT

)
R~vbody

=
(
RT ~ω ′ · ~MR

)
~vbody

RT ~̇ω ′ ×~r ′ = RT

[
d

dt

(
ṘRT

)]
~r ′ = RT

[
d

dt
~ω ′ · ~M

]
R~r

=
(
RT ~̇ω ′ · ~MR

)
~r

Further simplification of the above requires us to understand what RT ~ω ′ · ~MR is. For
those not wanting to rely on the formal definition of tensors, the result can be obtained
by intuitive means.5 The more formal demonstration makes use of two facts shown in
Section 5.1.4: a) ~M is an isotropic rank 3 tensor, and b) for ~ω a vector, the contraction
~ω · ~M is therefore a rank 2 tensor. Thus, if R converts coordinate representations in the
frame F to representations in the frame F ′, then the two representations of ~ω · ~M are related
by

~ω ′ · ~M = R
([

RT ~ω ′] · ~M)
RT ⇐⇒ RT

(
~ω ′ · ~M

)
R =

[
RT ~ω ′] · ~M

5 Since ~ω · ~M looks like a matrix, the quantity ~aT
“
~ω · ~M

”
~b looks like a number. We in general would like simple

numbers to be independent of frame rotation. We know that the coordinate representations of ~a are related by

~a ′ = R~a and similarly for ~b. Requiring invariance of ~aT
“
~ω · ~M

”
~b implies

~a ′T
“
~ω · ~M

”′
~b ′ = ~a T

“
~ω · ~M

”
~b

~a ′T
“
~ω ′ · ~M

”
~b ′ =

“
RT~a ′

”T “h
RT ~ω ′

i
· ~M

” “
RT~b ′

”
= ~a ′T R

“h
RT ~ω ′

i
· ~M

”
RT~b ′

which can only hold for arbitrary ~a and ~b if
“
~ω · ~M

”′
= R

“
~ω · ~M

”
RT , or equivalently

“
~ω ′ · ~M

”
=

R
“ˆ

RT ~ω ′
˜
· ~M

”
RT . As in the text, we use RT ~ω ′ instead of ~ω because the latter is nonphysical.
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We do not use the symbol ~ω for RT ~ω ′ but rather leave the rotation matrices explicit
for reasons discussed before: the rotating-frame coordinate representation ~ω of the non-
rotating frame angular velocity ~ω with non-rotating frame representation ~ω ′ is a nonphysical
quantity; ~ω cannot be measured directly, while ~ω ′ can. The same argument holds for ~̇ω, so

RT
(
~̇ω ′ · ~M

)
R =

[
RT ~̇ω ′

]
· ~M

With the above transformation rules and our previous results, we find

RT ~ω ′ ×
[
~ω ′ ×~r ′

]
=
([

RT ~ω ′] · ~M)([
RT ~ω ′] · ~M)

~r =
[
RT ~ω ′]× ([RT ~ω ′]×~r)

RT ~ω ′ ×R~vbody =
([

RT ~ω ′] · ~M)
~vbody =

[
RT ~ω ′]× ~vbody

RT ~̇ω ′ ×~r ′ =
[
RT ~̇ω ′

]
· ~M~r =

[
RT ~̇ω ′

]
×~r

Finally, then, our result is

~F app = ~F true (5.4)

− m
[
RT ~ω ′] (t)× ([RT ~ω ′] (t)×~r(t))− 2m

[
RT ~ω ′] (t)× ~vbody(t)

− m
[
RT ~̇ω ′

]
(t)×~r(t)

Now, on the right side, we have all the additional terms written in terms of coordinates and
velocities in the rotating frame, as we wanted. For the angular velocity and acceleration,
we must first obtain their coordinate representations in the non-rotating frame and then
calculate their representations in the rotating frame by applying RT . For the true force,
we may either calculate its non-rotating frame representation and transform to the rotating
frame or we may calculate its rotating frame representation directly depending on which is
more convenient.

The additional terms are called “fictitious forces” because they add like forces to the true
force term. They are named as follows:

• Centrifugal force: The first term, m~ω× (~ω×~r), is the well-known centrifugal force,
pushing objects outward even when there is no apparent force acting, independent of
the speed of the object in the rotating frame. The centrifugal force is essentially an
implication of Newton’s first law – a particle wants to continue on a straight line in an
inertial frame, so it moves outward in a rotating frame under the influence of no force.

• Coriolis force: The second term, 2m~ω × ~vbody(t), is the Coriolis force, which is an
apparent force exerted on objects due to their velocity. The coriolis force again is an
expression of Newton’s first law, including the effect of motion in the noninertial frame
– moving objects do not follow straight-line paths in a rotating system, so a force must
be invoked to explain that.
• Euler force: This term is not widely discussed. It is an additional correction due

to angular acceleration of the rotating frame. The easiest way to get an intuitive feel
for it is to consider a particle sitting fixed to a frictionless turntable whose rotation
is accelerating. If the turntable were moving at fixed angular velocity, there would
need to be a force applied to cancel the fictitious centrifugal force. These forces are
both radial in the rotating frame. If the turnable is accelerating, there needs to be an
additional force in the tangential (φ̂) direction to keep the particle from slipping as
the turntable is accelerated; this force would counteract the Euler force.
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Correspondence to Textbooks

The following is somewhat redundant with our discussion of the distinction between the
rotating and non-rotating system forms of particle velocity earlier. It is an important and
subtle distinction, so it is worth reiterating.

Many texts are somewhat sloppy or misleading in their notation on this topic. For example,
Hand and Finch give the general formula (Equation 7.31)

d~e

dt

∣∣∣∣
space

= ~ω × ~e+
d~e

dt

∣∣∣∣
body

where space indicates the time derivative should apply to motion relative to the non-rotating
frame and body indicates the time derivative should apply to motion relative to the rotating
frame. They neglect to say anything about the frame in which the coordinate representations
of the vectors should be evaluated. Recall from our earlier discussion of ~vbody and ~vspace
that, to write down a coordinate representation of the time derivative of a vector, one has
to specify two things: a) relative to which frame the derivative is calculated, which in many
texts is specified by |body or |space;6 and b) in which frame the coordinate representation is
calculated, which is usually specified using primed or unprimed coordinates matching the
frame. For example, to calculate the velocity of a particle, one first has to say whether
one wants to know the velocity relative to the rotating frame or the non-rotating frame.
These are two different vectors. Then one has to specify which representation one wants
for the vector, the rotating frame or non-rotating frame representation. Confusion arises
because the quantities ~v ′body (= R~vbody, written in Hand and Finch as v|′body) and ~vspace (=
RT~v ′space, written in Hand and Finch as v|space) are physically unmeasurable and therefore
nonintuitive.

So, one can make sense of the equation by remembering that |body and |space refer to different
vectors, while primes or lack of primes refer to coordinate representations. Also, ~ω is always
referenced to the space frame because it vanishes in the body frame, which is why no |body
or |space modifier is needed. Primes or lack thereof do apply to ~ω, though, to obtain the
appropriate coordinate representation (which must match that chosen for the vector whose
time derivatives are being considered).

This discussion hopefully explains two statements in Hand and Finch. First, after Equa-
tion 7.31,

Vectors ~e and ~ω can be expressed in either the body or space coordinates when
doing the calculation.

It would be more precise to say

One can do the calculation using either the body or space-frame coordinate
representations of the vectors ~e and ~ω. On the left side, we consider the change
in ~e relative to the space frame and on the right side the change in ~e relative
to the body frame. ~ω is always measured relative to the space frame, though
we must write it in the coordinate representation that matches the one chosen
for ~e.

6Note that these modifiers are necessary because Hand and Finch’s equation contains derivatives of coordinate-free
vectors, not of coordinate representations.
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Second, Equations 7.32 and 7.34 of Hand and Finch are coordinate-free versions of our
Equation 5.4:

~Fapp = ~Ftrue −m~ω(t)× [~ω(t)× ~r(t)]− 2m~ω(t)× ~vrel(t)−m~̇ω(t)× ~r(t) (5.5)

Hand and Finch leave unstated that all vectors must be evaluated using representations
in the same frame, either in the non-rotating or rotating frame. Our Equation 5.4 is
this equation with all terms evaluated in the rotating frame representation (and which
necessitates RT factors in front of ~ω ′ and ~̇ω ′). We could obtain a version with all terms
evaluated in the non-rotating frame representation by applying R to both sides.

Thornton writes a confusing equation (Equation 10.12) similar to the aforementioned Equa-
tion 7.31 of Hand and Finch:(

d

dt
~Q

)
fixed

=
(
d

dt
~Q

)
rotating

+ ~ω × ~Q

Again, it is not emphasized that: a) the derivatives appearing on the left and right side are
really different vectors because the derivatives are taken with reference to different frames
(though the |fixed and |rotating notation implies this); and b) one must choose a coordinate
system in which to evaluate the representations. Thornton makes the even more confusing
statement

We note, for example, that the angular acceleration ~̇ω is the same in both the
fixed and rotating systems:(

d

dt
~ω

)
fixed

=
(
d

dt
~ω

)
rotating

+ ~ω × ~ω

because ~ω×~ω vanishes and ~̇ω designates the common value in the two systems.

What does it mean to calculate ~̇ω in the rotating system? That’s obviously nonsense;
what is meant is that ~̇ω is measured relative to the fixed system, but one can calculate the
representation of the vector in the rotating system and that representation is identical to
its representation in the fixed system.

Goldstein does a better job of explaining the distinctions, but is still somewhat indirect
about it. The text around Equations 4.82 and 4.86 is

The time rate of change of the vector ~G as seen by two observers is then . . . :(
d

dt
~G

)
space

=
(
d

dt
~G

)
body

+ ~ω × ~G

. . . Here the subscripts space and body indicate the time derivatives observed
in the space and body (rotating) system of axes, respectively. The resultant
vector equation can then of course be resolved along any desired set of axes,
fixed or moving. But again note that the time rate of change is only relative
to the specified coordinate system, components may be taken along another
set of coordinate axes only after the differentiation has been carried out.
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The phrase “observed in” is used where we have used “relative to” or “referenced to” and
the phrase “resolved along along any desired set of axes” where we have used “coordinate
representation.”

Clearly, the formulae that are frequently quoted are correct, but one must know how to
interpret the notation. Our notation here, while more cumbersome, is hopefully clearer.
We never write nonphysical quantities like d

dt
~Q
∣∣∣
space

or d
dt
~Q′
∣∣∣
body

but rather we always

leave the rotation matrices explicit, writing RT d
dt
~Q′
∣∣∣
space

and R d
dt
~Q
∣∣∣
body

.

5.2.2 Applications

Deflection of a Plumb Line and a Falling Particle

Section 7.8 of Hand and Finch does two standard examples: calculation of the deflection
of a plumb line from the true gravity vector due to centrifugal force, and the deviation of
the path of a falling particle from both the true gravity vector (due to both centrifugal
and Coriolis forces) and from the plumb line (due to the Coriolis force that does not affect
the plumb line). The deflected plumb line gives the direction of the effective gravitational
acceleration vector ~geff . Experimentally, if one performs the falling particle experiment,
but uses a plumb line as the reference, the plumb line will have already been affected by
centrifugal force and thus the falling particle will appear to experience only the Coriolis
force deflection.

Foucault’s Pendulum

A classic example of dynamics in rotating frames is Foucault’s pendulum. Foucault’s pen-
dulum is a spherical pendulum (pendulum free to move in θ and φ, not just θ) whose plane
of oscillation precesses relative to the rotating frame. We do this example. Hand and Finch
use Lagrangian techniques, so we do it by a complementary Newtonian method.

Assume the pendulum is mounted at latitude λ. Our rotating coordinate system is one
fixed to the rotating earth at the location of the pendulum, with x pointing east, y pointing
north, and z normal to the surface (pointing outward along a radial line from the center of
the earth). The polar coordinate for the pendulum will have value zero when the pendulum
points along the radial line and the azimuthal coordinate will be measured from east through
north. We will make the small angle approximation and also assume ω is much smaller than
the pendulum natural frequency. The pendulum position is therefore

~r(t) = x̂ x+ ŷ y + ẑ l (1− cos θ)
≈ x̂ x+ ŷ y

The angular velocity vector in the rotating system is RT ~ω ′ = ω (ŷ cosλ+ ẑ sinλ); one
could obtain this by calculating ~ω ′ in a non-rotating frame and then applying RT , but it’s
pretty easy to just write down the result. See Figure 7.10 of Hand and Finch if the form is
not obvious.

The only true forces acting on the system are gravity and the rope tension. These forces have
a complicated representation in the non-rotating frame, but have the simple representation
in the rotating frame ~F true = −mg ẑ − T r̂ where r̂ is the unit vector for the bob position.
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There will be fictitious centrifugal and Coriolis forces acting:

~F cen = −m
[
RT ~ω ′]× ([RT ~ω ′]×~r)

= −m
[
RT ~ω ′]× [ω (ŷ cosλ+ ẑ sinλ)× (x̂ x+ ŷ y)]

= −mω2 (ŷ cosλ+ ẑ sinλ)× [−x ẑ cosλ+ x ŷ sinλ− y x̂ sinλ]
= −mω2

[
−x x̂+ y ẑ cosλ sinλ− y ŷ sin2 λ

]
~F cor = −2m

[
RT ~ω ′]× d

dt
~r(t)

= −2m [ω (ŷ cosλ+ ẑ sinλ)]× [(ẋ x̂+ ẏ ŷ)]
≈ 2mω (ẋẑ cosλ− ẋ ŷ sinλ+ ẏ x̂ sinλ)

The centrifugal term produces small changes to the restoring force. The Coriolis term
produces forces transverse to the first-order motion (the x̂ and ŷ terms) and a small change
in the tension in the pendulum. The centrifugal term is of order ω2 d where d is the typical
displacement in the xy plane. The Coriolis term is of order ω dω0 where ω0 � ω is the
natural frequency of the pendulum. So we can drop the centrifigual term entirely. We will
also drop the ẑ Coriolis term because it causes no precession. So, the forces we will consider
are:

~F app = −mg ẑ − T r̂ + 2mω sinλ (ẏ x̂− ẋ ŷ)

= −mg ẑ + T
(
−x
l
x̂− y

l
ŷ + ẑ

)
+ 2mω sinλ (ẏ x̂− ẋ ŷ)

So we obtain three equations of motion:

mẍ = −T x

l
+ 2mẏ ω sinλ

m ÿ = −T y

l
− 2mẋω sinλ

m z̈ = −mg + T

We can of course use the last equation to eliminate T , so we end up with two differential
equations

ẍ− 2 ẏ ω sinλ+
g

l
x = 0

ÿ + 2 ẋ ω sinλ+
g

l
y = 0

Combine the two first equations via q = x+ i y to obtain

q̈ + 2 i q̇ ω sinλ+
g

l
q = 0

The equation is a damped simple harmonic oscillator with Q = (2 i ω sinλ)−1. Imaginary
Q actually implies oscillation, with solution

q(t) = A exp
(
− t

2Q

)
exp(±i ωc t)

= A exp(−i ω sinλ) exp(±i ωc t)

with

ωc =
√
g

l

√
1 + ω2 sin2 λ
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Since we assumed ω is small compared to the natural frequency of oscillation, we can
approximate ωc =

√
g
l , the natural frequency of the pendulum. ω sinλ is the angular

frequency for amplitude to be traded between the x and y components, so it is the precession
angular frequency. The precession period is

T =
2π

ω sinλ
A bit of intuitive explanation: the pendulum’s angular momentum relative to a non-rotating
frame is actually fixed because there are no torques aside from gravity acting on it. An
apparent torque appears because the angular momentum appears to change in the rotating
frame. It is a fictitious torque, and the precession is fictitious; it is simply a kinematic result
of the rotating reference frame.

5.2.3 Lagrangian and Hamiltonian Dynamics in Rotating Coordinate Systems

It may be surprising that we can do Lagrangian and Hamiltonian dynamics in rotating coordinate
systems. It should not be, as rotating coordinates are just an example of generalized coordinates.
The trick, as always, is to write down the energy functions in an inertial system where they
are well understood and then use the transformation from the inertial coordinates to generalized
coordinates to rewrite the energies in terms of coordinates in the rotating coordinate system. We
do the Foucault’s pendulum example. This material is discussed in Hand and Finch Section 5.8
and in the Foucault’s pendulum example in Section 7.10.

Obtaining and Using the Lagrangian

The kinetic energy in the non-rotating frame is obviously

T =
1
2
m |~v ′space|2

As we know, ~v ′space consists of an ~ω × ~r term to account for the motion of the rotating
system and a ~vbody term to account for motion relative to the rotating system. Recall from
the Newtonian discussion of Foucault’s pendulum:[

RT ~ω ′]×~r = ω [−y x̂ sinλ+ x ŷ sinλ− x ẑ cosλ]

(this form is specific to the problem at hand, where we have motion only in x and y in the
rotating frame – in general,

[
RT ~ω ′]×~r may have more terms). We also have

~vbody = ẋ x̂+ ẏ ŷ

Thus we have

T =
1
2
m
(∣∣~vbody∣∣2 + 2~vbody ·

[
RT ~ω ′]×~r +

∣∣[RT ~ω ′]×~r∣∣2)
=

1
2
m
((
ẋ2 + ẏ2

)
+ 2ω sinλ (−y ẋ+ x ẏ) + ω2 sin2 λ

(
x2 + y2

)
+ ω2 cos2 λx2

)
≈ 1

2
m
((
ẋ2 + ẏ2

)
+ 2ω sinλ (−y ẋ+ x ẏ)

)
where we have dropped the ω2 terms because ω2 � ω2

0 = g
l and we will have a ω2

0

(
x2 + y2

)
contribution from the potential energy. The potential energy is easy (mg l (1− cos θ) ≈
1
2 mg l θ2):

U =
1
2
mg l

x2 + y2

l2
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So the Lagrangian is

L ≈ 1
2
m
(
ẋ2 + ẏ2

)
+mω sinλ (−y ẋ+ x ẏ)− 1

2
mg l

x2 + y2

l2

The canonical momenta are

px = mẋ− y ω sinλ py = mẏ + xω sinλ

The Euler-Lagrange equations are

d

dt
(mẋ− y ω sinλ) = ẏ ω sinλ−mg

x

l
=⇒ ẍ+

g

l
x = 2 ẏ ω sinλ

d

dt
(mẏ + xω sinλ) = −ẋ ω sinλ−mg

y

l
=⇒ ÿ +

g

l
y = −2 ẋ ω sinλ

which are the same coupled equations we found via Newtonian methods.

The Hamiltonian and Hamilton’s Equations

With the canonical momenta, we may calculate the Hamiltonian

H = px ẋ+ py ẏ − L

≈
p2
x + p2

y

2m
− ω sinλ (x py − y px) +

1
2
mg l

x2 + y2

l2

Hamilton’s equations will be

ẋ =
∂H

∂px
=
px
m

+ y ω sinλ ṗx = −∂H
∂x

= py ω sinλ−mg
x

l

ẏ =
∂H

∂py
=
py
m
− xω sinλ ṗy = −∂H

∂y
= −px ω sinλ−mg

y

l

Note that

H = Hω=0 − lz ω sinλ

Generalization

We made one approximation in the above – that the ω2 term in the kinetic energy could
be ignored – and we used a potential energy specific to the particular problem. Obviously,
we could have done the analysis for any potential energy function – the canonical momenta
would be unchanged. We could have also left the ω2 terms in. Since they contain only
x and y, they would actually look like potential energy terms, contributing an “effective
potential energy,” much like the centrifugal potential term in the central-force problem.
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5.3 Rotational Dynamics of Rigid Bodies

5.3.1 Basic Formalism

First, we discuss the concepts of energy and angular momentum for a rotating rigid body and use
these to determine the basic equations of rotational motion.

Review of Physical Quantities for a System of Particles

In Section 1.3, we also derived expressions for the linear (Equations 1.16 and 1.18) and
angular momentum (Equations 1.22 and 1.23) and kinetic (Equations 1.24 and 1.25) and
potential energies (Equations 1.28 and 1.29) of a system of particles. Our definitions and
results were:

total mass M =
∑
a

ma

center of mass ~R =
1
M

∑
a

ma~ra

total linear momentum ~P =
∑
a

ma ~̇ra = M ~̇R

Newton’s second law,
translational motion

d~P

dt
=
∑
a

~F (e)
a = ~F (e)

center-of-mass coordinates ~sa = ~ra − ~R

total angular momentum ~L = ~R× ~P +
∑
a

~sa × ~qa = ~R×M ~̇R+
∑
a

~sa ×ma ~̇sa

Newton’s second law,
rotational motion

~̇L =
∑
a

~ra × ~F (e)
a

total kinetic energy T =
1
2
M Ṙ2 +

∑
a

1
2
ma ṡ

2
a =

Ṗ 2

2M
+
∑
a

1
2
ma ṡ

2
a

total external
potential energy

U (e) =
∑
a

Ua(~ra)

total internal
potential energy

U (i) =
∑

a,b, b<a

Ũab(~rab)

where ~F
(e)
a is the external force acting on the ath particle, ~F (e) is the total external force,

Ua(~ra) is the potential energy of the ath particle due to external conservative forces and
Uab(~rab) is the internal potential energy due to a strong-form central force between the ath
and bth particles. Nonconservative external forces and non-central forces between particles
of the system are not considered here.

Kinematics of a Rigid Body

Recall in Section 1.3 that we defined a rigid body to be a collection of particles with
positions {~ra} such that the distance between particles rab = |~ra − ~rb| are constant, though
their orientations may change. Assuming a rigid body permits us to conclude that the
center-of-mass frame coordinates satisfy

~̇sa = ~ω × ~sa
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with a common ~ω for all a. This can be seen as follows.

• If rab are all fixed, then the sab are also all fixed. This implies that ~̇sa · ~sa = 0. This is
to some extent intuitively obvious – in a rigid body, all motion is only rotational. But
it can be proven explicitly as follows. The center of mass is fixed, so we have

ma~sa +
∑
b6=a

mb ~sb = 0

ma~sa = −
∑
b6=a

mb ~sbma +
∑
b6=a

mb

~sa =
∑
b6=a

mb (~sa − ~sb)

~sa = M−1
∑
b6=a

mb ~sab

Therefore, dotting the above equation into its time derivative, we have

~̇sa · ~sa = M−2
∑

b6=a c 6=a
mbmc ~̇sab · ~sac

= M−2
∑

b,c6=a,c≤b
mbmc

(
~̇sab · ~sac + ~̇sac · ~sab

)
= M−2

∑
b,c6=a,c≤b

mbmc
d

dt
(~sab · ~sac)

For c = b, the quantity in parentheses is s2ab, which we know to be constant by our
assumption of a rigid body. We can prove that the same term vanishes for b 6= c also.
Consider the triplet of particles a, b, and c with b, c 6= a and c < b. These three
particles form a triangle such that ~sbc = ~sac − ~sab, so

s2bc = s2ac + s2ab − 2~sac · ~sab

All three vector magnitudes must be constant because we have assumed a rigid body.
Therefore, the last term is constant. But that term is exactly the quantity whose time
derivative is being taken. Hence, the right side of the above equation vanishes and
~̇sa · ~sa = 0.

• Because ~̇sa · ~sa = 0, there must be a vector ~ω such that ~̇sa = ~ω × ~sa, with ~ω the same
for all a. This can be seen by considering pairs of particles a, b. Suppose that each
particle had its own ~ω, denoted by ~ωa and ~ωb. Then we have

0 = ~̇sab · ~sab = (~ωa × ~sa − ~ωb × ~sb) · (~sa − ~sb) = − (~ωa × ~sa) · ~sb − (~ωb × ~sb) · ~sa
= −ωa,j εijk sa,k sb,i − ωb,j εijk sb,k sa,i = (ωa,j − ωb,j) εijksa,i sb,k
= − (~ωa − ~ωb) · (~sa × ~sb)

Since ~sa×~sb is arbitrary, ~ωa = ~ωb must hold. Since it holds for any pairs, associativity
ensures there is a single ~ω for all a.

This is obviously a vast simplification of the dynamics – relative to the center of mass, the
only dynamics is rotational motion about some angular velocity axis ~ω.
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Energy and Angular Momentum of a Rigid Body

With the above simplification that the motion of a rigid body relative to its center of mass
is purely rotational, we may obtain specific forms for the energies and angular momentum
(neglecting the terms due to translational motion of the center of mass):

• Kinetic Energy
We have ~̇sa = ~ω × ~sa, so the kinetic energy of rotation is

Trot =
∑
a

1
2
ma (~ω × ~sa)2 =

∑
a

1
2
ma

(
ω2 s2a − (~ω · ~sa)2

)
where we have used a vector identity from Appendix A.3, which is equivalent to
εijk εilm = δjl δkm − δjm δkl.

• Potential Energy
Since we are dealing with a rigid body with ~rab fixed, the internal potential energy
U (i) is a constant and can be ignored. The external potential energy does not simplify
any further until the form of the single-particle external potential energy is specified.

• Angular Momentum
Again, using ~̇sa = ~ω × ~sa allows simplification:

~L =
∑
a

~sa ×ma ~̇sa =
∑
a

ma ~sa × (~ω × ~sa) =
∑
a

ma

(
s2a ~ω − (~ω · ~sa)~sa

)
Moment of Inertia Tensor

The above relations can be unified if we define the rank 2 moment of inertia tensor I
with coordinate representation

Iij =
∑
a

ma

(
s2aδij − sa,i sa,j

)
(5.6)

I =
∑
a

ma

(
~sa · ~sa 1− ~sa ~sTa

)
where 1 is the rank 2 identity tensor. I is a rank 2 tensor because 1 is an isotropic rank 2
tensor and ~sa is a vector. The coordinate representation of I in any given frame is simply
given by writing the above formula using the coordinate representation of ~sa, given by ~sa
or sa,i following our standard notation (see Section 5.1.4).

Using the above definition, the rotational kinetic energy and angular momentum can be
written as

Trot =
1
2
~ω TI ~ω =

1
2
ωi Iij ωj (5.7)

~L = I ~ω ⇐⇒ Li = Iij ωj (5.8)

Clearly, these definitions ensure that Trot is a scalar and ~L is a vector under rotational
transformations, as one would expect.

We note that the moment of inertia tensor for a continuous rigid body can be written as
the continuous limit of the above expression:

Iij =
∫
d3rρ(~s)

(
s2δij − si sj

)
284



5.3. ROTATIONAL DYNAMICS OF RIGID BODIES

For example

Ixx =
∫
dx dy dxρ(~r)

(
y2 + z2

)
Ixy =

∫
dx dy dxρ(~r)x y

Principal Axes

The physical interpretation of I is most easily seen by obtaining the principal axes of the
system. The coordinate representation of I is a symmetric matrix in any frame, so it may
be diagonalized. Let us denote by F ′ the frame in which we initially calculate the coordinate
representation of I, denoted by I ′. Let us use F and I to refer to the frame in which I
is automatically diagonal and its coordinate representation in that frame. The rotation
matrix that diagonalizes I ′ is the matrix that rotates from F to F ′. Let the eigenvalues
be I1, I2, and I3 (the principal moments and let the eigenvectors be denoted by ~e1, ~e2,
and ~e3 (the principal axes).7 Let ~e ′i and e′i,j refer to the coordinate representations and
components thereof of the eigenvectors in the F ′ frame. Then the rotation matrix R that
transforms from F to F ′ is

(R)ij = Rij = e′j,i

That is, R has as its columns the coordinate representations of the eigenvectors in the F ′

frame. To be absolutely clear, the coordinate representations in the two frames will be:

• Arbitrary non-principal-axis frame F ′:

I ′ij =

 I ′11 I ′12 I ′13
I ′21 I ′22 I ′23
I ′31 I ′32 I ′33

 = Rik Rjl Ikl =
(
R IRT

)
ij

e′i,j = Rji = Rjkδki = Rjkei,k = (R~ei)j

• Principal-axis frame F :

Iij =

 I1 0 0
0 I2 0
0 0 I3

 = RTik R
T
jl I

′
kl = RkiRlj I

′
kl =

(
RT I ′R

)
ij

ei,j = δji = RkjRki = Rkje
′
i,k =

(
RT~ei

)
j

Note: our convention for the direction of the rotation is the opposite of that in Hand
and Finch: here, R rotates from the principal axis frame to the initial frame, while for
Hand and Finch R rotates from the original frame to the principal axis frame. We do this
for consistency with our discussion of rotating and nonrotating frames in Section 5.2 – in
general, the principal axis frame F will be rotating and noninertial while there will be some
inertial nonrotating reference frame F ′ in which the representation I ′ is not diagonal.

Physical Significance of the Moment of Inertia Tensor

What is the moment of inertia tensor? Formally, it is a matrix that tells us how the
angular velocity converts to kinetic energy, or, more importantly, the relation between

7The eigenvalues are positive and the eigenvectors real because the kinetic energy is nonnegative. The arguments
to prove these facts are analogous to those made in Section 3.2 regarding normal modes.
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angular velocity and angular momentum. Angular velocity and angular momentum may
not necessarily point in the same direction if I has off-diagonal elements. They will only
align if ~ω points along a principal axis of the body.

But let’s try to understand I at a more physical level. The inertia tensor is an analogy to
mass for linear momentum. Recall that mass is essentially the conversion factor between
linear velocity and linear momentum. Velocity is an entirely “kinematic” quantity, having
nothing to do with the particular body under study. Momentum is a “dynamical” quantity
in that it fully determines what happens in a particular physical situation. Mass is the
intrinsic property of an object that converts from the kinematic velocity to the dynamical
momentum.

In linear dynamics, we need only one number for the mass because of the isotropy of the
physical situation consisting of empty space and a point particle: the conversion between
velocity and momentum does not depend on the direction of the velocity because there is
nothing yet that breaks spherical symmetry.

The moment of inertia tensor is the angular analogue of mass – given the kinematic quantity
angular velocity, it converts to the dynamical quantity angular momentum. However, a
generic rigid body breaks the isotropy of space because it is in general not spherically
symmetric. Thus, depending on which axis of the body is given angular velocity, the
conversion to angular momentum is different. This is not surprising. For example, given a
long rod of length L and radius R, with R � L, if you give it angular speed ω about its
long axis, it will have much less angular momentum or kinetic energy than if you give it
the same angular speed about an axis perpendicular to its long axis. The rod breaks the
spherical symmetry of space.

So it is now not surprising that we need something more complicated than a single scalar to
represent angular inertia. If we think about it, we see that more information is needed than
can be stored in a vector, too. If a rigid body has some arbitrary orientation relative to some
frame F ′, then specifying the angular inertia of the body in F ′ requires six numbers: we
require three numbers to specify the orientation of the body’s principal axes (two numbers
specify the direction of the 3-axis, one additional number specifies the az angle of the 1-axis
about the 3-axis. The 2-axis’s direction is then forced by requiring orthogonality to the 1-
and 3-axes and a right-handed coordinate system) and we require three additional numbers
to specify the inertia about those three axes (the three principal moments). Six numbers are
needed, requiring something at least as complex as a second-rank tensor. We see from the
way the inertia tensor was defined that it is indeed the minimally complex object that can
provide the necessary six degrees of freedom, a second-rank tensor. When symmetries are
present in the rigid body, the number of degrees of freedom decreases. In particular, if the
body is spherical (or has the same inertia tensor as a sphere), then the spherical symmetry
of space is restored. This is reflected in the fact that the three principal moments of a
sphere are identical and therefore you can pick any three mutually orthogonal directions as
the principal axes of a sphere. Only one number is truly needed to describe the inertia of
the sphere, which is the common principal moment.

The inertia tensor can be better understood by considering the linear analogy – suppose
the magnitude of the linear momentum arising from making a mass move at a certain speed
depended on the direction in which the mass was moving. In general, we would again need
six numbers to fully describe this “mass tensor” – the orientation of the principal axes
(axes that yield linear momentum aligned with linear velocity) and the conversion factors
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from speed to momentum for these three principal axes. This in fact happens for electrons
and holes in some crystals because the crystal breaks the spherical symmetry of space.
The “effective mass” may be large for motion in one direction and much less for another
direction.

Examples

It is useful to calculate the inertia tensor of some example systems.

• A pendulum of length l with two bobs, one of mass m1 at the end of the rigid support
and one of mass m2 halfway down. Let the system be at rest so the masses lie along
the z axis. Assume the rod and bobs have zero physical extent.
The x and y coordinates of both masses vanish. The z coordinates are l and l

2 . Thus,
the moment of inertia tensor in this frame is

Iij =

 m1 l
2 + 1

4 m2 l
2 0 0

0 m1 l
2 + 1

4 m2 l
2 0

0 0 0


This coordinate system is the principal axis system. Angular velocities about the x and
y axes will result in angular momentum – these are normal pendulum motion. Angular
velocity about the z axis yields no angular momentum because the rod simply rotates
about its axes, leaving the bobs fixed in space.

• A sphere of radius a.
Let’s calculate first the I33 component. It is

I33 = ρ

∫
r2 dr sin θdθ dφ

(
x2 + y2

)
= ρ

∫ a

0
r2 dr

∫ π

0
sin θdθ

∫ 2π

0
dφ r2 sin2 θ

= 2π ρ
∫ a

0
r4 dr

∫ π

0

(
1− cos2 θ

)
sin θdθ

= 2π ρ
a5

5

(
2− 2

3

)
=

8π
15

ρ a5 =
2
5
M a2

By symmetry, I11 and I22 are the same. The off-diagonal elements vanish because the
integrand is odd in any coordinate and the object is symmetric in any coordinate. So

Iij =
2
5
M a2δij

Because I is proportional to the identity tensor, the coordinate representation of I is
the same in any frame.

• A circular hoop of radius a.
Let the hoop’s rotational symmetry axis be the z axis. I33 will then obviously be M a2.
The calculation for the other two axes is a bit trickier; let’s do I11:

I11 =
M

2πa

∫ 2π

0
a dφ

(
y2 + z2

)
=
M

2π

∫ 2π

0
dφa2 sin2 φ =

M a2

2π
1
2

∫ 2π

0
(1− cos 2φ)

=
1
2
M a2

287



CHAPTER 5. ROTATING SYSTEMS

I22 will be the same by symmetry. The off-diagonal components vanish as for the
sphere, because the object is symmetric in each coordinate axis. Thus

Iij =

 1
2 M a2 0 0

0 1
2 M a2 0

0 0 M a2


• A symmetric top is an object for which two of the principal moments are equal,
I1 = I2 6= I3 for example. A prolate ellipsoid is a symmetric top with I3 < I1 = I2,
indicating it is thinner about the 3 axis than about the other two, like a football. An
oblate ellipsoid is the converse, with I3 > I1 = I2 and is fatter about the 3 axis
than the other two, like a squashed sphere. Symmetric tops need not be ellipsoidal,
but their behavior is always the same as one of these ellipsoids because the principal
moments are the same. Finally, a rotator has one vanishing moment of inertia and
thereby only rotates in a plane. This is typical of molecules.

Displaced Axis Theorem

The displaced axis theorem provides us with a method to calculate the moment of inertia
tensor relative to an origin that is not the center of mass. Why would we want to do this
when we already have a description of the kinematics that nicely separates the motion of
the center of mass and rigid body motion about the center of mass? In some cases, if the
center of mass is moving noninertially, it is easier to obtain equations of motion for rotation
about the displaced axis than about the center of mass. For example, a cylinder, sphere, or
hoop rolling on an inclined plane. The center of mass accelerates, so we will have trouble
applying Newton’s laws in the accelerating frame. Another case is when a system consists
of multiple rigidly connected objects, each of which has an easy-to-calculate moment of
inertia tensor about its own center of mass, which we can then convert to a moment of
inertia about the center of mass of the ensemble system.

The theorem states that, if the moment of inertia tensor about the center of mass has
coordinate representation I ′ in some particular choice of frame F ′, then, in a frame F ′′

that is translated by a constant vector ~a from F ′, with coordinate representation a′i in F ′,
the moment of inertia tensor has coordinate representation

I ′′ij = I ′ij +M
(
a′ 2δij − a′i a′j

)
The theorem can be seen to be true by realizing that motion about the new origin consists
of the original rotational motion plus translational motion of a pointlike object of mass M
at position −~a ′ relative to the F ′′ origin. It is trivial to calculate the moment of inertia of
a point mass; it is the added term. Adding this new term linearly to the original term is
justified by the fact that the angular momentum breaks down linearly into translational and
rotational pieces, and that the original coordinate representation I ′ provides the rotational
piece and the new term provides the translational piece.

A dumbbell example is provided in Hand and Finch Section 8.2. An example of the first
type, rolling motion, is provided by considering a rolling sphere. Let the x and y axes be in
the plane in which the sphere is rolling. The instantaneous axis of rotation is the point of
contact of the sphere with the plane, perpendicular to the direction of motion of the sphere.
The axis is thus displaced by −a ẑ from the sphere’s center of mass. The moment of inertia
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tensor is therefore

I ′′ij = I ′ij +M
(
a2δij − a2δi3 δj3

)
=

 7
5 M a2 0 0

0 7
5 M a2 0

0 0 2
5 M a2


Since the x and y axes are the axes about which the rolling motion can occur, the x and y
principal moments increase. Rotation about the z axis is unchanged since it is the direction
perpendicular to the plane in which rolling motion occurs.

Euler Angles

As we have explained before, the orthonormality conditions on rotation matrices imply that
three parameters determine uniquely a rotation matrix. One standard parameterization in
use is Euler angles.

The Euler angles are three angles that describe how to obtain the rotated coordinate
system from the original one. They are illustrated in the Figure 5.1. Briefly, the three
angles consist of a rotation φ about the z axis, a rotation θ about the new x-axis, and a
rotation ψ about the new z axis.

As usual, we have two coordinate systems, body (F ) and space (F ′). We will obtain F from
F ′ by the above three rotations. By our usual convention, the matrix R describing the full
rotation will convert coordinate representations from the body system to the space system

~r ′ = R~r

Our three steps are explicitly:

1. φ
Define a system F1 that is rotated by an angle φ about ẑ ′ from F ′. The rotation
matrix that converts vectors from F1 to F ′ is

R1(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


~r ′ = R1(φ)~r1

where ~r1 is the coordinate representation of ~r in F1. As a check, a point that is along
the x1 axis (coordinate representation ~r1 = (a, 0, 0)) will by the above relations have
coordinate representation ~r ′ = (a cosφ, a sinφ, 0), as expected. Note that the sign of
φ is perhaps opposite of what one might expect: a rotation of F1 by −φ about ẑ = ẑ1
gives F ′. This unfortunate nonintuitive sign arises because our convention says that
R rotates from the rotating frame to the rotating frame, but φ is conventially defined
in the opposite direction.

2. θ
Define a system F2 that is rotated by an angle θ about x̂1 relative to F1. Note that
x̂1 is, by our notation, the unit vector along the x axis of the F1 system. The rotation
matrix for this rotation alone is

R2(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


~r1 = R2(θ)~r2
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RT
1 (φ) RT

2 (θ) RT
3 (ψ)

c© 1998 Louis N. Hand and Janet D. Finch,
Analytical Mechanics

Figure 5.1: Hand and Finch Figure 8.9, definition of the Euler angles, shown sequentially.

The form can be checked by considering a point along the y2 axis with F2 coordinate
representation ~r2 = (0, a, 0). By the above rotation matrix, its coordinate representa-
tion in the F1 frame is ~r1 = (0, a cos θ, a sin θ) as one would expect. We have the same
nonintuitive sign as for R1.

3. ψ
Define a system F that is rotated by an angle ψ about ẑ2, where ẑ2 is the z axis of the
F2 system. The rotation matrix for this rotation has a similar form to R1:

R3(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1


~r2 = R3(ψ)~r

The check is the same as the check of R1. We have the same nonintuitive sign as for
R1.

The overall rotation matrix for going from F to F ′ is just the product of the above three
matrices, in the appropriate order:

R(φ, θ, ψ) = R1(φ)R2(θ)R3(ψ)

=

 cψ cφ − cθ sφ sψ −sψ cφ − cθ sφ cψ sθ sφ
cψ sφ + cθ cφ sψ −sφ sψ + cθ cφ cψ −sθ cφ

sθ sψ sθ cψ cθ

 (5.9)

~r ′ = R(φ, θ, ψ)~r

where cψ = cosψ, sψ = sinψ, etc. is a convenient shorthand. Do not throw up your hands
in frustration at this matrix – it actually has a very sensible form when you look at it. First,
the z components are related by a simple θ rotation because there is only one rotation that
does not hold the z axis fixed. Second, the xz and yz terms are relatively simple because
they arise from only two of the rotations. The remaining terms are more complicated, but
do follow a pattern. The Euler angles are summarized in Figure 5.2.
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c© 1998 Louis N. Hand and Janet D. Finch,
Analytical Mechanics

Figure 5.2: Hand and Finch Figure 8.10, definition of the Euler angles, shown together.

Relation of Euler Form to Single-Axis Rotation

A nice interpretation of R is found by realizing that, in spite of its complicated form, its
physical meaning is that of a rotation about a single axis; that is, R(φ, θ, ψ) is related by a
similarity transformation to a simple rotation about the z-axis:

R(φ, θ, ψ) = C

 cos Φ − sinΦ 0
sinΦ cos Φ 0

0 0 1

CT

We to some extent expect this result – we proved earlier that, for a rigid body, all motion
about the center of mass consists of rotation about a common angular velocity vector ~ω – but
this result is more generic, being true for arbitrary rotation matrices in N = 3 dimensions.
A somewhat vague proof is given in Hand and Finch; we attempt to give a more rigorous
one here. It requires a bit of math, though. Working step-by-step:

1. Orthogonal matrices have unit determinant
The defining relation of orthogonal matrices is

RRT = 1

Taking the determinant of both sides and using the facts |AB| = |A||B| and |AT | =
|A|, we obtain

|R| = |RT | = ±1
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Now, all rotation matrices must have only the + sign. This can be seen quickly as fol-
lows. From our discussion of infinitesimal rotations in terms of the generator matrices
~M, one can see explicitly that an infinitesimal rotation about any single coordinate axis
has positive determinant (to linear order in the angle δθ – the corrections are O(δθ)2),
and thus determinant +1. Since infinitesimal rotations commute, one can construct
an infinitesimal rotation about any direction from the product of three such rotations;
such an infinitesimal rotation must therefore also have determinant +1. It holds that
any finite rotation can be built up as an infinite product of infinitesimal rotations, and
also that the determinant of a product is the product of the determinants. Since each
infinitesimal rotation has determinant +1 to linear order, the product must also have
determinant +1 to linear order. Hence, any rotation matrix must have determinant
+1.

2. Orthogonal matrices satisfy |A− 1| = 0
Next, consider the mathematical identity for orthogonal matrices

(R− 1)RT = 1−RT

Taking the determinant of both sides and using the aforementioned properties of de-
terminants, we obtain

|R− 1| = |1−RT |

Now, it holds that the determinant of any matrix is the same as that of its transpose
(because one can calculate the determinant by taking minors over a row or a column),
so we also have

|1−RT | = |1−R|

Therefore,

|R− 1| = |1−R|

That is, the determinant of R− 1 is equal to the determinant of its negative. But, for
an arbitrary matrix A, it holds

| −A| = (−1)N |A|

where N is the dimensionality of the space, N = 3. Thus, |R − 1| is equal to the
negative of itself, which is only possible if it vanishes. Thus, we know

|R− 1| = 0

3. Orthgonal matrices in N = 3 dimensions have exactly one eigenvector with
eigenvalue = 1
Finally, let us look for eigenvalues and eigenvectors of R. As you well know, if ~a is an
eigenvector of R with eigenvalue λ, then

R~a = λ~a⇐⇒ (R− λ1)~a = 0

Nontrivial solutions ~a are found only if there exist solutions λ to the secular equation

|R− λ1| = 0
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Our proof that |R − 1| = 0 shows that there is at least one solution, λ = 1. Since R
and the eigenvalue are real, the eigenvector must be real also. Thus, we are assured
that there is some vector ~a such that R~a = ~a.
More generally, in N = 3, since the determinant of R has to be 1 and the determinant
is the product of all the eigenvalues, one infers that any remaining eigenvalues come
in complex conjugate pairs. Therefore, unless R = 1, there is exactly one eigenvalue
+1 and one corresponding eigenvector.

4. Interpretation of result: orthogonal matrices in N = 3 dimensions always
look like a rotation about an axis
The statement that there is an eigenvector with unit eigenvalue is equivalent to the
statement that R is a rotation about ~a because R leaves any vector that is a multiple
of ~a unchanged. The uniqueness of the eigenvector implies that the rotation axis is
unique.
Note how the proof depended on the fact that the number of dimensions N is odd.
Also, the proof that there is a unique axis of rotation relied on N = 3. As a check,
we note that there is no eigenvector for rotations in N = 2 space – all vectors in the
2-dimensional plane change under any rotation.

5. Rewriting the Euler-angle matrix in terms of the single-rotation matrix
The statement that a rotation matrix always looks like a single rotation about an axis
is interesting, but not yet computationally useful. The statement does not result in a
much simplified rotation matrix unless ~a is already aligned with one of the axes of the
coordinate system in which we have specified R. The generic simplification is that R
is always only a similarity transform away from a single-rotation matrix.
We are assured that there is at least one rotation matrix C that rotates to F ′ from a
system in which ~a is the z axis; it is the matrix C that solves the linear set of equations

C

 1
0
0

 = ~a

Note that C is not completely specified since the above provides only two independent
equations for the three free parameters of an orthogonal matrix. (The third equation
is related to the other two through the orthonormality condition on C.) Regardless,
there exists at least one C.
Our Euler-angle rotation matrix provides the relationship

~r ′ = R(φ, θ, ψ)~r

We usually think of this equation as relating the coordinate representations in two
different frames of a single vector. But we have discussed many times how this is
equivalent to saying that R actually rotates a vector so that its coordinate represen-
tation in a single frame changes from ~r to ~r ′. Viewed that way, ~r and ~r ′ are different
vectors in the same frame rather than the same vector in different frames.8 Using this
alternative viewpoint, we may then rewrite ~r ′ and ~r using C:

C~r ′~a = R(φ, θ ψ)C~r~a
8Note that we will momentarily subvert our notation here; normally, ~r and ~r ′ denote representations of the same

vector ~r in different frames F and F ′. Here, they denote representations in the same frame of different vectors ~r and
~r ′.
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where the ~a subscript indicates the coordinate representation of the vector in the frame
in which the rotation axis ~a is the z axis. Applying CT on the left, we have

~r ′~a = CTR(φ, θ ψ)C~r~a

But we know by the definition of the ~a frame that the representations ~r~a and ~r ′~a in
this frame are related by the simple rotation form

~r ′~a = R~a~r~a

R~a =

 cos Φ − sinΦ 0
sinΦ cos Φ 0

0 0 1


Therefore, we have

R(φ, θ, ψ) = CR~aCT

Now that we have the relation between R(φ, θ, ψ) and a single rotation through an angle
Φ, we want to know how the angles themselves are related. This is found by making use of
the fact that the trace of a product of matrices is cyclic9, which allows us to see

Tr[R~a] = Tr[CR(φ, θ, ψ)CT ] = Tr[CTCR(φ, θ, ψ)] = Tr[R(φ, θ, ψ)]

which is, explicitly

1 + 2 cos Φ = (1 + cos θ) cos (φ+ ψ) + cos θ

cos
(

Φ
2

)
= cos

(
φ+ ψ

2

)
cos
(
θ

2

)
Thus, we are able to obtain the actual rotation angle from the Euler angles.

Euler Angles and Angular Velocity

How are the rate of change of Euler angles related to angular velocity? We will of course
need to know this to make much use of Euler angles.

Recall our earlier result (Section 5.2) that, if R is the rotation matrix that transforms from
the body frame F to the space frame F ′, then the angular velocity cross product operator
~ω× = ~ω · ~M has coordinate representations in the two frames(

~ω · ~M
)′

=
(
~ω ′ · ~M

)
= ṘRT(

~ω · ~M
)

= RT
(
~ω · ~M

)′
R = RT

(
ṘRT

)
R = RT Ṙ

In general,
(
~a · ~M

)
jk

= −ai εijk, so one can recover ωi or ω ′
i from the above by just

reading off components or using ai = −1
2 εijk

(
~a · ~M

)
jk

or, equivalently, ~a = 1
2
~M
(
~a · ~M

)
.10

Obviously, the calculation is somewhat painful. The result is

~ω ′ =

 θ̇ cφ + ψ̇ sφ sθ
θ̇ sφ − ψ̇ cφ sθ
φ̇+ ψ̇ cθ

 RT ~ω ′ =

 θ̇ cψ + φ̇ sψ sθ
−θ̇ sψ + φ̇ cψ sθ

ψ̇ + φ̇ cθ

 (5.10)

9 This is easy to see: the trace of a matrix A is Tr[A] = Aii, so the trace of a product of three matrices ABC is
Tr[ABC] = Aij Bjk Cki, which clearly can be rewritten as Cki Aij Bjk = Tr[CAB] or Bjk Cki Aij = Tr[BCA].

10This is seen by recognizing εijk εljk = 2 δil and therefore − 1
2

εijk

“
~a · ~M

”
jk

= 1
2

εijk εljk al = δil al = ai.
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(Note that we, as before, write RT ~ω ′ rather than the misleading symbol ~ω; see below for
further discussion.) That the above makes sense can be seen by looking at a diagram
showing the axes about which φ, θ, and ψ are defined and projecting these axes onto the
F ′ or F axes. The projections are reasonably obvious. Such a diagram, taken from Hand
and Finch, is provided in Figure 5.2.

As noted above, one will often see ~ω written instead of RT ~ω ′. As explained in Section 5.2,
we avoid use of the symbol ~ω because it suggests an angular velocity measured in the
rotating system, which should vanish. Using the notation RT ~ω ′ emphasizes that the object
under discussion is the rotating-frame representation of the angular velocity measured in
the nonrotating frame, whose representation in the nonrotating frame is ~ω ′.

Integrability and Euler Angles

Is it possible to obtain from ~ω(t) the full time evolution of the system? That is, is ~ω(t) an
integrable function that can give us φ(t), θ(t), and ψ(t)? The answer is no, and we can see
this by assuming it is possible and obtaining a contradiction.

Suppose ~ω ′ were integrable. Then it would be the total time derivative of some function
~Λ ′(φ, θ, ψ). Generically, we would then be able to write using the chain rule

~ω ′ =
d

dt
~Λ ′ =

∂~Λ ′

∂φ
φ̇+

∂~Λ ′

∂θ
θ̇ +

∂~Λ ′

∂ψ
ψ̇

This expression must equal our previous expression for ~ω ′, so, matching up coefficients of
the independent time derivatives in each angle, we obtain

∂~Λ ′

∂φ
=

 0
0
1

 ∂~Λ ′

∂θ
=

 cosφ
sinφ

0

 ∂~Λ ′

∂ψ
=

 sinφ sin θ
− cosφ sin θ

cos θ


Now, if we require that mixed partial derivatives commute in the second partial derivatives,
we will obtain contradictions. For example,

∂ Λ′x
∂ ψ ∂ φ

= 0
∂ Λ′x
∂ φ ∂ ψ

= cosφ sin θ

So, ~ω ′ (and hence ~ω) is not integrable.

This lack of integrability arises, in some sense, because of the noncommutativity of 3-
dimensional rotations. We can see this by counterexample. As above, suppose ~ω is integrable
and is the total time derivative of a function ~Λ. ~Λ is a vector representing the orientation of
the rigid body (as a function of time). Now, we know angular velocities add as vectors (we
proved this in Section 5.1), and we know integration is a linear operation, so orientation
vectors ~Λ must add linearly as vectors. Such addition is a commutative operation, indicating
that two rotations obtained by integrating two angular velocity vectors would commute. But
we know this is not true: rotations about different axes do not commute.

Another, related way of looking at it is that the orientation of a rigid body is, by dint of it
being given by the moment of inertia tensor, a rank 2 tensor, not a vector. Any rigid body
has three principal axes. To specify how the rigid body is oriented in a given frame, we must
specify the orientation of not one, but two, of these three body axes. More information than
is available in a vector is required.
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Rotational Kinetic Energy for a Symmetric Top in Terms of Euler Angles

For a symmetric top in its principal axis (body) frame, we have that the moment of inertia
tensor is diagonal and the first two principal components are equal, giving for the kinetic
energy

T =
1
2
I1
(
ω2

1 + ω2
2

)
+

1
2
I3 ω

2
3

(We succumb to convention and use ωi for the component
[
RT ~ω ′]

i
for the sake of legibility.)

The body frame angular velocity was given in the previous section. Because we get to add
ω2

1 and ω2
2, the expression greatly simplifies (though use of cos2 +sin2 = 1 identities), giving

T =
1
2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2
(5.11)

Since T is a scalar, the above form is valid for the kinetic energy in any frame whose origin
is the center of mass. If the center of mass is displaced from the origin, an additional
translational term needs to be added.

One explanatory note: One tends to get confused about how one can specify a kinetic energy
of rotation in the body frame since the body does not rotate in the body frame. This is the
recurring nonintuitive fact that, when we specify ~ω in the body frame representation, we
are simply transforming the ~ω representation in the inertial frame F ′ to the body frame F .
We are not measuring the angular velocity with respect to F ; that would of course vanish.
Similarly, just because we calculate T from body-frame representations I and RT ~ω ′ doesn’t
mean that T is a kinetic energy due to motion relative to the body frame. In fact, since
the coordinate-free vector ~ω is the angular velocity of the rigid body relative to the inertial
frame F ′, T must be the kinetic energy as measured in that inertial frame. This makes sense,
as T is a quantity that is inherently only measurable in the space frame. We are free to
calculate it in the body frame representation because we know to transform its constituent
tensors to the body frame representation.

5.3.2 Torque-Free Motion

Now that we have the formalism in hand to calculate the energy and angular momentum of a rigid
body in a rotating frame, we may apply it to a number of standard problems. We begin with
torque-free motion so that we may better understand the relationship between angular velocity
and angular momentum.

The Euler angles are not necessary for torque-free motion because the angular momentum vector
is constant in the space frame. That is, in symmetric top problems, there are three vectors we need
to consider: the angular momentum vector, the angular velocity vector, and the symmetry axis of
the top. If all three are free to move, then the Euler angles provide a convenient parameterization.
But if one is fixed, then one of the Euler angles can be fixed to be zero, in which case the Euler
angle matrix will simplify greatly. So there’s no point in starting with the complicated full matrix.
We will find the Euler angle matrix useful in the problem of a symmetric top subject to a torque.

We will continue to use RT ~ω ′ instead of ~ω, but we will use use ωi for the component
[
RT ~ω ′]

i
for

the sake of legibility. We run into the same issue with other angular velocity vectors (spin angular
velocity ~Ω, precession angular velocity ~ωP ) and the angular momentum ~L, and we deal with them
notationally in the same way.
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Generic Torque-Free Motion: Euler’s Equations

Our goal in this section is to obtain enough information to give the time evolution of the
orientation of the rigid body in the space frame. We shall do this by first obtaining the
time evolution of the body-frame representation of the angular velocity vector, RT ~ω ′(t),
and then obtaining the rigid body orientation in the space frame from it.

Our starting point for discussing torque-free motion is the requirement that the total angular
momentum be conserved in the nonrotating frame F ′ (the nonrotating frame because it is
the inertial one):

d

dt
~L ′ = 0

We may obtain the rotating frame version d
dt

[
RT ~L ′

]
using our general results, Equa-

tions 5.1 and 5.2.

d

dt
~L ′ = ~ω ′ × ~L ′ + R

d

dt

[
RT ~L ′

]
Recall that d

dt
~L ′ refers to a time derivative with respect to the space frame because ~L ′ is

the representation in the space frame, and similarly d
dt

[
RT ~L ′

]
refers to a time derivative

with respect to the body frame because RT ~L ′ is the representation in the body frame.11

As we did in Section 5.2, we may apply RT from the left, which we know has the generic
effect of converting F ′ quantities to F quantities.12 This gives

0 =
[
RT ~ω ′]× [RT ~L ′

]
+
d

dt

[
RT ~L ′

]
d

dt

[
RT ~L ′

]
= −

[
RT ~ω ′]× [RT ~L ′

]
(5.12)

where we have made use of conservation of angular momentum in the nonrotating frame.
One obvious interpretation of the above is that there is a fictitious torque in the body frame
that is analogous to the Coriolis force. to better understand the nature of this torque, let
us first reduce RT ~L ′:

RT ~L ′ = RT
[
I ′~ω ′] = RTI ′RRT ~ω ′ = IRT ~ω ′

where we have transformed the space-frame representation I ′ to the body-frame represen-
tation I in the usual way. The body frame is the principal axis frame, so I is diagonal,
giving

RT ~L ′ =

 I1 ω1

I2 ω2

I3 ω3


11Recalling some general points made in Section 5.2: If we want to transform d

dt
~L ′ to the body frame, we would

write RT d
dt

~L ′, and similarly R d
dt

h
RT ~L ′

i
transforms d

dt

h
RT ~L ′

i
to the space frame. We never put |space and |body

labels on derivatives of coordinate representations because the derivative of a coordinate representation can only be
the derivative with respect to that particular frame.

12Quickly: RT
h
~ω ′ × ~L ′

i
= RT

“
~ω ′ · ~M

”
~L ′ = RT R

“ˆ
RT ~ω ′

˜
· ~M

”
RT ~L ′ =

ˆ
RT ~ω ′

˜
×

h
RT ~L ′

i
.
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where we write ωi for the components of the coordinate representation RT ~ω ′ for the sake
of brevity. Therefore,

I1
d

dt
ω1 = ω3 L2 − ω2 L3 = ω2 ω3 (I2 − I3) (5.13)

I2
d

dt
ω2 = ω1 L3 − ω3 L1 = ω1 ω3 (I3 − I1)

I3
d

dt
ω3 = ω2 L1 − ω1 L2 = ω1 ω2 (I1 − I2)

These are known as Euler’s equations. They tell us how the components of the body-
frame representation RT ~ω ′ evolve due to the fictitious torque present in the body frame.
As one expects, the fictitious torque is determined completely by the angular velocity of
the rotating (body) frame and the principal moments of the rigid body.

We may draw two generic conclusions from the torque-free Euler’s equations:

• The angular velocity component along a given axis is constant if the other two principal
moments are equal. This is equivalent to the object having rotational symmetry about
the given axis, such as a symmetric top.

• Using Equation 5.13, we may also see that the overall angular velocity is constant in
both the space and body frames if it is aligned with any principal axis. If, for example,
ω1 and ω2 vanish at t = 0, then all the time derivatives vanish at t = 0, and so the
angular velocity components maintain their initial values with ω1 = ω2 = 0 and ω3

nonzero and constant. The body-frame angular velocity is thus constant and aligned
with a principal axis. If the angular velocity is along a principal axis in the body
frame, then the body frame is in fact rotating about that principal axis and so the
representations ~ω ′ and RT ~ω ′ are equal. Since we have just seen that the latter is
constant, then so is the former.13

With the full time evolution of RT ~ω ′ in hand, we can now obtain the orientation of the
body as a function of time. First, it holds that

RT ~L ′ = IRT ~ω ′

If we apply R to the above, we obtain

R
(
IRT ~ω ′) = ~L ′

Now, recall that Euler’s equations have given us RT ~ω ′, that I is known because it is the
body-frame representation and is thus given by the principal moments, that ~L ′ is a constant
set by the initial conditions, and also that rotation matrices only have three degrees of
freedom. Thus, we have a set of three linear equations for the three degrees of freedom of R
at any instant of time t. We can thus obtain R(t), which completely defines the orientation
of the body relative to the space frame as a function of time. Because a rigid body is fully

13One might have the following worry. The principal axes are in general rotating in the space frame. So what
does it mean for the angular velocity, which we specify in the space frame, to be aligned with a principal axis? The
resolution of this quandary is simply that, if the angular velocity is aligned with a principal axis, then the body frame
rotates about that axis relative to the space frame, and thus that principal axis is in fact fixed in the space frame,
too. The components of ~ω ′ and RT ~ω ′ along that axis are identical and the other components vanish, so ~ω, ~L, and
that principal axis are collinear in all frames.
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specified by its three principal moments and the orientation of its principal axes, it holds
that R(t), along with the principal moments, fully determines the rigid body in the space
frame at any time.

Torque-Free Motion of a Symmetric Top – Intuitive Explanation

In the following, we will calculate the motion of a torque-free symmetric top whose angular
momentum and spin vectors are misaligned. Before we dive into details, let’s think about
what the solution should look like.

The setup is as follows. A symmetric top has I1 = I2 6= I3. The initial conditions include
rotation with angular speed Ω about the 3 axis of the top, with the value of Ω to be
determined by the other initial conditions. These other conditions we will specify are the
magnitude of the angular momentum vector L and the total kinetic energy T .

Though we will use L and T to specify the initial conditions, we can see that specifying L
and T is equivalent to specifying the inital total angular speed and the tilt angle between
the initial angular velocity vector ~ω0 and the top’s 3-axis. A priori, one might worry that
one has to specify the full orientation of the top (3 numbers) and the initial angular velocity
(3 numbers). But we can see that the number of true degrees of freedom is much fewer.
Since there is no external torque, the initial absolute orientation of the body and ~ω0 relative
to the lab inertial frame is irrelevant; only the relative orientation of the two will matter.
So that eliminates the three degrees of freedom associated with the body orientation. Next,
because we assume a symmetric top, it does not matter what the azimuthal angle of ~ω0 is
in the body frame; only the length ω0 and the polar angle γ0 between the 3-axis and ~ω0 are
of consequence. For specificity, we will assume ~ω0 is in the plane formed by the body 2 and
3 axes at t = 0. Using the fact that I is diagonal in the body frame, we may write ~L and
T in terms of ω0 and γ0:

~ω0 = ω0

 0
sin γ0

cos γ0

 I =

 I1 0 0
0 I1 0
0 0 I3


~L = I ~ω0 = ω0

 0
I1 sin γ0

I3 cos γ0

 T =
1
2
~ωT0 I ~ω0 =

1
2
ω2

0

(
I1 sin2 γ0 + I3 cos2 γ0

)
We thus see that specifying ω0 and γ0 is equivalent to specifying L and T .

We note that the above expressions suggest characteristic values of the angular momentum
and kinetic energy:

L∗ = I3 ω0 T∗ =
1
2
I3 ω

2
0 =

1
2
L2
∗
I3

The initial angular momentum and kinetic energy can be written in terms of these charac-
teristic values:

L = L∗

√
1 +

(
I2
1

I2
3

− 1
)

sin2 γ0 T = T∗

(
1 +

(
I1
I3
− 1
)

sin2 γ0

)
That is, L and T scale with the characteristic values L∗ and T∗ that are set only by I3
and ω0, and then they vary away from these characteristic values due to I1 and γ0. In
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particular, L∗ and T∗ are maximum values if I1 < I3 (oblate) and are minimum values if
I1 > I3 (prolate). Once we have obtained the full solution, we will revisit this point and
make plots of the various parameters.

We can see from the above that T deviates from L2

2 I3
= 1

2 I3 ω
2
0 when γ0 6= 0; that is, when

there is an angle between the 3-axis and the angular velocity. Another way of saying this is
that ~ω0, ~L, and T are trivially related only when ~ω0 points along a body axis. That body
axis must be the 3-axis because we have assumed there is some angular velocity along the
3-axis in the initial conditions. If ~ω0 is misaligned with the body axis, then the relationship
between ~ω0, ~L, and T admits the freedom parameterized by the angle γ0.

Since the spin angular velocity can only point along the 3-axis, misalignment of ~ω0 and
the 3-axis implies an additional component of angular velocity nonaligned with the spin.
We will denote this additional term by ~ωP , foreshadowing its physical significance as the
precession frequency of the top.

In what direction does the extra angular velocity component ~ωP point, and how does it
affect the dynamics? Since there is no torque and the kinetic energy is constant, we expect
that, whatever happens, all angular velocities will stay constant in length, but possibly may
change direction over time. (One could invoke complex cancellations to keep the net angular
momentum and kinetic energy constant, but that’s really baroque.) If ~ωP had a component
~ωP,⊥ perpendicular to ~L, then the top’s 3 axis would precess both around ~L (due to the

~ωP,|| piece) as well as around an axis perpendicular to ~L. Because T = 1
2

(
~ΩT ~L+ ~ωTP

~L
)
,

a change in the direction of ~Ω that is not simple precession about ~L makes the first term
time-dependent. The second term only obtains a contribution ~ωP,||, so one would need ~ωP,||
to have a time-dependent length. Thus, we would have a picture in which the top’s 3 axis
is both precessing about ~L and an axis perpendicular to ~L, with the speed of precession
about ~L varying in time. One again would require complicated cancellations to keep ~L
and T constant while all these other quantities are varying. The simpler alternative is to
claim that ~ωP,⊥ must vanish. This allows ~ΩT ~L to be constant, which then permits ~ωP,||
to be constant. We get simple precession of the 3 axis about ~L while the top is spinning
about the 3 axis with angular speed Ω. It requires some more careful work to prove that
this indeed is the solution (i.e., to exclude the baroque possibilities), but it is important to
build up the intuition to lead you to the likely physical behavior.

Torque-Free Motion of a Symmetric Top in the Body Frame

Before finding the space-frame solution, let’s also explicitly solve the problem using Euler’s
equations to calculate the motion in the body frame. Our mental picture is of a symmetric
top, spinning about its 3 axis, with an angular momentum vector that is misaligned with the
spin axis because the kinetic energy and angular momentum are mismatched. A symmetric
top has I1 = I2, so the three Euler equations take on a very simple form:

d

dt
ω1 = ω2 ω3

(
1− I3

I1

)
d

dt
ω2 = ω1 ω3

(
I3
I1
− 1
)

d

dt
ω3 = 0

300
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From these coupled first order equations, we may obtain two uncoupled second order equa-
tions:

d2

dt2
ω1 + Ω2

P ω1 = 0
d2

dt2
ω2 + Ω2

P ω2 = 0 ΩP = ω3

(
I3
I1
− 1
)

The solutions are as usual sinusoidal, but one must be careful to ensure the initial conditions
are applied in such a way as to satisfy the coupled first order equations, giving

ω1 = A sin (ΩP t+ φ) ω2 = A cos (ΩP t+ φ)

The complementary variations in ω1 and ω2 indicate that the xy components of RT ~ω ′ rotate
about the z axis at angular velocity ΩP .

Let’s look at the body-frame representation of the angular momentum vector:

[
RT ~L ′

]
= I

[
RT ~ω ′] =

 I1A sin (ΩP t+ φ)
I1A cos (ΩP t+ φ)

I3 ω3


Now, because our equation of motion is d

[
RT ~L ′

]
/dt = −

[
RT ~ω ′] × [RT ~L ′

]
, RT ~L ′ only

changes direction, not magnitude. So L =
∣∣∣RT ~L ′

∣∣∣ =
∣∣∣~L ′
∣∣∣ is set by initial conditions.14

Thus, the space-frame angular momentum magnitude provides one of the initial conditions
for the solution to our differential equations. Writing the magnitude, we have

L2 = I2
1 A

2 + I2
3 ω

2
3

The other initial condition is the total kinetic energy, which is a scalar and is given by

T =
1
2
[
RT ~ω ′]T I [RT ~ω ′] =

1
2
(
I1A

2 + I3 ω
2
3

)
Rewriting the above two relations, we have

|A| =

√
L2 − 2 I3 T
I1 (I1 − I3)

=

√
I3

I1 − I3

(
L2

I1 I3
− 2T

I1

)

ω3 =

√
L2 − 2 I1 T
I3 (I3 − I1)

=

√
I1

I3 − I1

(
L2

I1 I3
− 2T

I3

)

ΩP = ω3

(
I3
I1
− 1
)

=
I3 − I1
|I3 − I1|

√
I3 − I1
I1

(
L2

I1 I3
− 2T

I3

)
(The prefactor for ΩP ensures the correct sign.) So, with the initial conditions L and T
determining the above three quantities, we have a full solution. (The phase is somewhat
arbitrary, depending on how we choose to relate the F and F ′ axes at t = 0; a reasonable
choice would be φ = 0.) Clearly, RT ~ω ′ and RT ~L ′ precess about the 3 axis of the top with
angular speed ΩP . The diameters of the circles they trace out are A and I1A, respectively.
Their constant projections onto the 3 axis are ω3 and I3 ω3, respectively. We denote the

14Remember, rotations don’t change the length of a vector
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angles between the angular velocity and the 3 axis and between the angular momentum
and the 3 axis by γ and θ, respectively, so we have

tan γ =
A

ω3
tan θ =

I1A

I3 ω3

The fact that ~ω is not fixed to the 3 axis implies that the instantaneous axis of rotation of
the body frame is in fact continually changing, precessing with the same speed ΩP . This
is an important point: the body frame is related to the space frame by rotation about ~ω,
not about the 3 axis! Note that ΩP is not the angular speed of the body frame relative to
the space frame; ΩP is only the speed with which the axis that defines that relationship
is changing relative to the body frame axes (not the space frame!). We shall see that the
angular speed of this instantaneous axis of rotation precesses at a different speed ωP 6= ΩP

and ωP 6= ω relative to the space frame axes. The total relative angular speed of the two
frames is given by ω 6= ΩP .

Torque-Free Motion of a Symmetric Top in the Space Frame

While obtaining the above solution was easy, it is not at all clear what this motion looks like
from the space frame. In particular, we would like to know, from the space-frame point of
view, what is the angular velocity ~ωP at which the 3 axis of the top precesses about ~L and
what is the “spin” ~Ω of the top about its 3 axis. One might think that the spin of the top
is just ω3, the component of the angular velocity along the 3 axis. That is incorrect. The
precession corresponds to an angular velocity ~ωP along ~L. Because the 3 axis and ~L are not
(in general) perpendicular, ~ωP has a projection along the 3 axis. So ω3 has contributions
from both ~Ω and ~ωP . We shall see, in fact, that ΩP is the magnitude of the spin angular
velocity.

Our tool to separate precession and spin will be to define a rotating frame F that does
not spin with the top as the body frame does, but which only incorporates the precessional
motion ~ωP . The top’s 3 axis is fixed in this frame, but its 1 and 2 axes are not. This F frame
is therefore not the body frame. However, because the top is symmetric, the representation
I is the same as the body-frame representation, I = diag(I1, I1, I3), so we gain the major
advantage of the body frame, diagonalization of the inertia tensor.

As our earlier short sketch indicated, we will obtain the solution by making use of conser-
vation of angular momentum and kinetic energy. We will start from scratch in defining the
frames and angular velocities for the sake of clarity.

• Definition of nonrotating F ′ frame

Since the space-frame angular momentum vector is constant due to the lack of torques,
let it define the nonrotating F ′ system, with the angular momentum vector along ẑ ′.
Let the y′z′ plane of the F ′ frame be the plane in which the top’s 3 axis resides at
t = 0. Let the angle between the top’s 3 axis and ẑ ′ be θ at t = 0. These are absolutely
general initial conditions. The definition of θ is the same as we used in the body frame,
and it is valid here because the 3-axis of F and of the true body frame are coincident.

• Definition of rotating F frame and its angular velocity ~ωP

Define the F frame to be such that its z axis is always aligned with the top’s 3 axis
and the y z plane coincides with the y′z′ plane at t = 0. Specifically, at t = 0, the two
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frames are related by

x̂ ′ = x̂

ŷ ′ = ŷ cos θ + ẑ sin θ
ẑ ′ = −ŷ sin θ + ẑ cos θ

where θ is the appropriate angle because it is the angle between the angular momentum
(ẑ ′) and 3 axis (ẑ). As we explained above, the representation I of the inertia tensor
will be diagonal in such a frame because the top is symmetric. Let the angular velocity
of rotation of F with respect to F ′ be denoted by ~ωP , with representations RT ~ω ′

P and
~ω ′
P in the rotating and nonrotating frames, respectively. By definition, ~ωP describes

the angular velocity of the top’s 3 axis, which we shall see is simply precession.

• Definition of the spin angular velocity ~Ω and its contribution to the total
angular velocity ~ω

By definition of the frame F , the top spins in the frame F around its 3 axis, so there
is additional angular velocity along that axis. Let us show that this angular velocity
does indeed add to ~ωP in the obvious way to give the total angular velocity ~ω. This
may seem an obvious point, but let’s be careful about it. Let us consider the motion
in the space frame of a point that is fixed to the body. First, to go from the body
frame to F , we have

d

dt
~r = ~Ω×~r + R(body→F )

d

dt
~rbody = ~Ω×~r

The notation ~rbody indicates the body-frame representation of the position vector of
the point ~r; previously, we would have just used the notation ~r, but now our F frame
is not the body frame and so we must distinguish ~r and ~rbody. The rotation matrix
R(body→F ) denotes the rotation matrix to get from the body frame to F ; it corresponds
to the ~Ω angular velocity. ~Ω is the representation of the ~Ω angular velocity in the F
frame. And the last term vanishes because we consider a point fixed to the body. Next,
to go from F to F ′, we have a similar expression

d

dt
~r ′ = ~ω ′

P ×~r ′ + R
d

dt
~r = ~ω ′

P ×~r ′ + R
[
~Ω×~r

]
As we saw in Section 5.2, it holds that R

[
~Ω×~r

]
= ~Ω ′ ×~r ′.15 So we have

~ω = ~ωP + ~Ω
d

dt
~r ′ = ~ω ′ ×~r ′

So, we see that, if we define ~Ω in the intuitive way – as the angular velocity of the
body frame relative to the precessing frame F – then it indeed adds linearly with ~ωP
and together the two yield the total angular velocity. Explicitly, we have

~ω ′ = ΩR ẑ + ~ω ′
P[

RT ~ω ′] = Ω ẑ +
[
RT ~ω ′

P

]
15Quickly: R

h
~Ω×~r

i
= R

“
~Ω · ~M

”
~r = RRT

“
~Ω ′ · ~M

”
R~r = ~Ω ′ ×~r ′. We would have referred to ~Ω by RT ~Ω ′ in

Section 5.2 because of the issue of writing the angular velocity of a rotating frame in that frame. Here, since F is

not the body frame, it makes sense to write ~Ω. Note also that our proof of the fact ~Ω · ~M = RT
“
~Ω ′ · ~M

”
R is valid

for any vector ~Ω.
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where the top’s 3 axis R ẑ is a function of time via R when viewed from the space
frame.

• RT ~L ′ makes a fixed angle θ with the spin axis and F precesses about F ′

with fixed polar angle θ

RT ~L ′ is the representation of ~L in the precessing frame F . Its dynamics in F tell us
the dynamics of the top’s 3 axis in the space frame. First, we know

∣∣∣RT ~L ′
∣∣∣ is constant

because RT ~L ′ is related to ~L ′ by a rotation, rotations leave the length of vectors
unchanged, and ~L ′ is constant. To determine the time dependence of the direction of
RT ~L ′, let’s calculate the angular momentum in the F frame from RT ~ω ′:

RT ~L ′ = I
[
RT ~ω ′] = I1 (ωP,1 x̂+ ωP,2 ŷ) + I3 (ωP,3 + Ω) ẑ

(Remember that I = diag(I1, I1, I3) in F because the top is symmetric and its 3 axis is
fixed in F . Also, we write ωP,i for the components of RT ~ω ′

P .) Now consider the kinetic
energy. Recall that the kinetic energy is a scalar under rotational transformations, so
we may calculate it using F frame quantities:

T =
1
2
[
RT ~ω ′]T I [RT ~ω ′] =

1
2
I1
(
ω2
P,1 + ω2

P,2

)
+

1
2
I3 [ωP,3 + Ω]2

=

∣∣∣RT ~L ′
∣∣∣2

2

(
sin2 θ

I1
+

cos2 θ
I3

)

where we have made use of our definition of θ as the angle between ~L and the top’s 3
axis. θ may, a priori, change with time. But, since

∣∣∣RT ~L ′
∣∣∣ is constant, the only way

to maintain constant T when I1 6= I3 is to fix θ. Hence, the angle between RT ~L ′ and
the top’s 3 axis is fixed. In the F frame, this implies the angular momentum vector
sits on a cone of constant half-angle θ centered on the top’s 3 axis. Viewed in the F ′

frame, the top’s 3 axis is on a cone of constant half-angle θ centered on the angular
momentum vector. Since the angular momentum vector defines the F ′ system and the
top’s 3 axis defines the F system, the angle between F ′ and F is the constant θ.

• The angular velocity of F relative to F ′ is ~ω ′
P = ωP ẑ

′

Remember that ~ωP = ~ω − ~Ω describes, by definition, the rotation of F relative to F ′.
We showed above that the rotation of F relative to F ′ due to ~ω ′

P maintains the angle
θ between ẑ ′ and ẑ (i.e., between the angular momentum and the top’s 3 axis). If,
~ω ′
P had any x̂ ′ or ŷ ′ component, there would be rotation of F around x′ or y′, which

would change θ. So, it is only allowed to have ~ω ′
P = ωP ẑ

′.

• The transformation between F and F ′ is now fully specified

Knowing the direction of ~ω ′
P now fixes the coordinate transformation relating F and

F ′. Because the polar angle θ between ẑ ′ and ẑ is fixed, and because at t = 0 we
had ẑ ′ in the yz plane (by definition), we may conclude that F rotates such that ẑ ′

(and therefore ~L) is always in the yz plane (and makes an angle θ with ẑ). Thus, the
decomposition

ẑ ′ = −ŷ sin θ + ẑ cos θ
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holds for all time. This lets us further specify the decompositions of RT ~L ′, RT ~ω ′
P ,

and RT ~ω ′. We also write down ~Ω for completeness:

RT ~L ′ = −ŷ I1 ωP sin θ + ẑ I3 (ωP cos θ + Ω)
= −ŷ L sin θ + ẑ L cos θ

RT ~ω ′
P = −ŷ ωP sin θ + ẑ ωP cos θ

RT ~ω ′ = −ŷ ωP sin θ ŷ + ẑ (ωP cos θ + Ω)
~Ω = Ω ẑ

where the value and time dependence of the magnitude ωP has not yet been determined.
(We know rotations preserve lengths so using ωP for the length of any representation
of ~ωP is ok.) We have not written equations giving x′ and y′ in terms of x, y, and z
because we don’t need them, but clearly they could be given.
• Value of ωP = |RT ~ω ′

P |
To determine the value of ωP , we just need to use the above equation for RT ~L ′:

L (−ŷ sin θ + ẑ cos θ) = −ŷ I1 ωP sin θ + ẑ I3 (ωP cos θ + Ω)

=⇒ ωP =
L

I1
=

1
cos θ

(
L

I3
cos θ − Ω

)
Since L is constant, we conclude ωP is constant. Note that we had to go to the F
frame to relate RT ~L ′ and RT ~ω ′

P because the inertia tensor is diagonal there.
• The full solution

The above two equations can be used to find ωP and θ once L and Ω are specified. Or,
if combined with the kinetic energy equation

T =
L2

2

(
sin2 θ

I1
+

cos2 θ
I3

)
ωP , θ, and Ω can be determined from L and T . A small bit of algebra yields

ωP =
L

I1
sin2 θ

I1
+

cos2 θ
I3

=
2T
L2

Ω = L

(
1
I3
− 1
I1

)
cos θ

Thus, we have a complete solution, in terms of the initial conditions L and T , for the
precession angular velocity ωP , the polar angle θ, and the spin angular velocity Ω. The
vectors ~L and ~ωP are constant and lie along the ẑ ′ axis of the fixed frame. The top’s
3 (spin) axis makes an angle θ with ẑ ′ and precesses about ẑ ′ with angular speed ωP .
The spin angular velocity vector ~Ω lies along the top’s 3 axis, and the total angular
velocity vector ~ω lies in the plane formed by ~L and the top’s 3 axis and also precesses
about ~L at speed ωP .
For completeness, we note that the angle between ~ω and the top’s 3 axis (ẑ) is given
by

tan γ =
ωP,2

ωP,3 + Ω
=

ωP sin θ
ωP cos θ + I1 ωP

(
I−1
3 − I−1

1

)
cos θ

=
I3
I1

tan θ
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The angle between ~ω and the angular momentum vector (ẑ ′) is given by θ − γ.
Inspired by the body-frame solution, we can write all the parameters explicitly in terms
of L and T :

ωP =
L

I1

cos θ =
I3
L

√
I1

I3 − I1

(
L2

I1 I3
− 2T

I3

)

sin θ =
I1
L

√
I3

I1 − I3

(
L2

I1 I3
− 2T

I1

)

tan θ =

√
I1
I3

∣∣∣∣ L2

I1 I3
− 2T

I1

∣∣∣∣ ∣∣∣∣ L2

I1 I3
− 2T

I3

∣∣∣∣−1

tan γ =

√
I3
I1

∣∣∣∣ L2

I1 I3
− 2T

I1

∣∣∣∣ ∣∣∣∣ L2

I1 I3
− 2T

I3

∣∣∣∣−1

Ω = − I3 − I1
|I3 − I1|

√
I3 − I1
I1

(
L2

I1 I3
− 2T

I3

)
(once again, the prefactor provides the correct sign for ω).

• Relation to body-frame solution
We can use the above explicit formulae to see the relation between the space-frame
and body-frame solution parameters:

I3 ω3 = I1 ωP cos θ = L cos θ A = −ωP sin θ Ω = −ΩP

Note that I1A = −I1 ωP sin θ = L sin θ, so θ gives the angle between the body z axis
and the angular momentum in the body frame also. We can check γ too:

|A|
ω3

=
ωP sin θ

I−1
3 I1 ωP cos θ

=
I3
I1

tan θ = tan γ

So, the angular velocity vector makes the same angle with the top’s 3 axis as in the
space-frame solution.
We may also explain these relations more intuitively:

– The relation between I3 ω3 and L is found simply by projecting ~L along the top’s
3 axis in F and noting that, because the top’s 3 axis is fixed in both F and its
body frame, that is indeed the component of ~L along the top’s 3 axis in the body
frame representation, which is I3 ω3.

– The relation between A and ωP can be seen as follows. A describes the component
of the total angular velocity ~ω in the top’s 1-2 body plane. This body plane
coincides with the F system’s xy plane, and so the the magnitude of the component
of ~ω perpendicular to the top’s 3 axis, which is −ωP sin θ, must equal A.

– The same argument provides the relation between Ω and ΩP : Ω describes how the
top’s 1-2 plane rotates relative to F , a frame in which ~ω is fixed, while ΩP tells
how ~ω rotates in the top’s body frame (in which its 1-2 plane is fixed).
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(Hand and Finch 8.7)
c© 1998 Louis N. Hand and Janet D. Finch,

Analytical Mechanics

Figure 5.3: Left: oblate (I3 > I1) case. Right: prolate (I1 > I3) case.

One might still be confused by the following: In the space frame, where ~L is constant,
the top’s 3 axis precesses with angular speed ωP , while in the top’s body frame, where
its 3 axis is constant, ~L precesses with angular speed ΩP = −Ω. Shouldn’t the two
precession angular velocities just be the negatives of each other? No, because in the
former instance, the spin of the body frame doesn’t really enter: ωP describes the
precession of the frame F in which the top’s 3 axis is fixed but its 1-2 plane is moving.
Especially in cases where Ω� ωP , the two angular velocities will be very different.

Interpretation of Symmetric Top Motion

The reader is no doubt very confused at this point about what is actually happening! Let’s
first consider the physical interpretation of the space-frame motion, and then relate the
body-frame motion to it. Here F ′ implies space frame, F implies the frame rotating with
the precessing spin axis but not with the spin, and “body” is the frame that also spins with
the spin of the top. ~L ′ is always along the +ẑ ′ direction and has constant length.

Refer to Figure 5.3 for the following discussion.

• Prolate (I3 < I1) case
This is the case you probably have a picture of in your mind. This consists of a top
that is spinning around its longest axis The top has the smallest transverse extent
perpendicular to this axis, so this is the axis with the smallest moment of inertia.

– Space Frame
In this case, Ω > 0 and the top is spinning counterclockwise about its 3 axis.
ωP > 0, so the precession is also counterclockwise about the ẑ ′ axis. ~ω ′

P is constant
in length and points along the ẑ ′ axis. We have demonstrated that ~Ω and ~ω ′ both
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lie in a plane that precesses about ~L ′ ( = ẑ ′) with angular speed ωP . The total
angular velocity ~ω ′ thus sits on a cone of half-angle θ− γ and the spin axis ~Ω sits
on a cone of half-angle θ and both precess about the angular momentum vector
with the same angular speed ωP . The spin of the top about its 3 axis is included
in ~ω ′.

– Body Frame
We have demonstrated in the comparison of solutions that the same angles θ and
γ arise in the F frame and describe the same angles as in the F ′ frame – between
spin and angular momentum and between spin and angular velocity, respectively.
Rather than the spin axis precessing with angular velocity ωP , though, we have the
angular momentum and angular velocity precessing with angular speed ΩP = −Ω.
In order to make a circuit about the top’s 3 axis at angular speed Ω, RT ~L ′ must
also make a circuit around RT ~ω ′ at angular speed Ω. How do we reconcile this
with the fact that ~ω ′ precesses with angular speed ωP about ~L ′? The difference
occurs because the precession period is referenced to the coordinate system, so a
vector may precess at one speed in one coordinate system and another speed in
another system. Ω is the precession speed in the body-frame system while ωP is
the precession speed in the space frame and F frame. We will demonstrate how
the two precession speeds are related using the rolling cone picture below.

– Rolling Cones
The vector ~ω now precesses on two cones, depending on which frame you consider:
∗ In frame F ′, at angular speed ωP on a cone of half-angle θ − γ about ~L.
∗ In frame F , at angular speed Ω on a cone of half-angle γ about ~Ω.

These two pictures can be combined into one picture of the two cones rolling
while remaining tangent at their line of contact, which is the ~ω vector. We can
see this by calculating the relation between the speeds at which ~ω would have to
move on each cone for the cones to roll without slipping. On the θ − γ cone, the
angular velocity vector ~ω traces out a circle of radius ω sin (θ − γ). Since ~ω moves
at angular velocity ωP , its “linear speed” on the cone is ω ωP sin (θ − γ). By a
similar argument, ω moves with linear speed ωΩ sin γ on the cone about ~Ω. These
two speeds must be the same for the two cones to roll without slipping. We can
see that they are, starting from the relation between Ω and ωP :

Ω = L

(
1
I3
− 1
I1

)
cos θ =

L

I1

(
I1
I3
− 1
)

= ωP

(
tan θ
tan γ

− 1
)

cos θ = ωp
sin (θ − γ)

sin γ

• Oblate (I3 > I1) case
Obviously, this is the opposite of the prolate case. Oblate objects look more like
squashed spheres.

– Space Frame
Because I3 > I1, two main changes arise. First, γ > θ now. This means that the
~ω vector is now on the opposite side of the angular momentum vector as the spin
axis (remember, all three always lie in one plane). The precession frequency is still
positive so the precession is counterclockwise. The other main difference is that Ω
changes sign – the top now spins clockwise. Probably a better way to think of the
whole thing is that, if initial conditions make the oblate top spin counterclockwise,
then everything else gets reversed – the spin axis precession becomes clockwise,
etc. Other than these sign changes, everything else remains the same.
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– Body Frame
Again, the angles are compatible between the body and space frame solutions,
so the cone on which the angular velocity vector precesses is now larger than the
one on which the angular momentum vector precesses. But, as before, they must
be tangent to each other at ~ω. Since the precession of ~ω around ~L has the same
sign as in the prolate case, the rolling cone implies that the body frame cone now
rolls in the opposite direction as the angular velocity vector precesses about the
angular momentum.

Plots

Here we make some summary plots indicating how the various quantites in the solution
depend on the initial conditions and the ratio I1/I3. We take the point of view that it is
most useful to make plots as a function of the initial parameters ω0 and γ0 rather than as a
function of L and T because the former pair are things the experimenter has direct control
over, while L and T are only derived quantities. γ0 is the the γ in our full solution, so we
write γ for it here.

Here we first summarize the relations we use to make the plots:

L∗ = I3 ω0 L = L∗

√
1 +

(
I2
1

I2
3

− 1
)

sin2 γ

T∗ =
1
2
I3 ω

2
0 =

1
2
L2
∗
I3

T = T∗

(
1 +

(
I1
I3
− 1
)

sin2 γ

)
ωp =

L

I1
Ω = ωp

(
I1
I3
− 1
)

cos θ = ω0

(
1− I3

I1

)
cos γ

tan θ
tan γ

=
I1
I3

We parameterize in terms of γ rather than θ because γ is the quantity more easily related
to the initial conditions.

In the plots, we set I3 = 1 and ω0 = 1 so L∗ = 1 and T∗ = 1/2. All frequencies will scale
with ω0, all angular momenta scale with L∗, and all kinetic energies scale with T∗.

We may note a few things about the plots:

• The precession frequency becomes very small and the spin frequency dominates for
small γ and I1 > I3 (prolate). For oblate cases, the precession frequency and the spin
frequency are almost the same except for very large γ. Since Ω < 0 for I1 < I3, this
means that spin and precession almost cancel each other to recover ω0 = 1.

• In all cases, as γ → π/2, the spin frequency vanishes and the precession frequency goes
to 1. This occurs because ~L is along the ẑ ′ axis, so angular velocity perpendicular to
ẑ ′ is suppressed.

• As noted above, the characteristic values L∗ and T∗ become minimum values of angular
momentum and kinetic energy for oblate (I1 < I3) and maximum values for prolate
cases (I1 > I3). Both become large for prolate cases as γ → π/2 because all the angular
velocity into the larger I1 moment, which thus yields large L and T . The opposite
occurs for I1 < I3. Remember, L∗ and T∗ are essentially the angular momentum and
kinetic energy when all the angular velocity is along the 3 axis.
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• The ratio θ/γ behaves as discussed in the text, being > 1 for prolate cases and < 1 for
oblate cases.

You may find other insights.
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Figure 5.4: ωp and Ω vs. γ for various values of I1/I3. Ω and |Ω|/ωP vanish for I1/I3 = 1. The
sign of Ω is positive for I1/I3 > 1 and negative for I1/I3 < 1.
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Figure 5.5: L/L∗, T/T∗, and θ vs. γ for various values of I1/I3. Notice how L∗ and T∗ are
maximum values for I1/I3 < 1 and minimum values for I1/I3 > 1. Note also how the ratio θ/γ < 1
for I1/I3 < 1 and vice versa, as discussed in the text.
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5.3.3 Motion under the Influence of External Torques

Now, let us consider motion under the influence of external torques. We will focus on the example
of the heavy symmetric top. It now becomes useful to use Euler angles because we may not assume
~L is constant, and thus there are more non-constant degrees of freedom. Unfortunately, we will not
have time to consider any further applications, but you can refer to Hand and Finch and Goldstein,
which have discussions of the precession of the earth’s spin axis due to torques from the Sun and
Moon and Larmor precession of the orbits of charged particles in a magnetic field.

We consider the motion of a symmetric top held fixed at some point along its symmetry axis
and subject to gravity. Let gravity act along the −ẑ ′ space frame axis. Refer to the following
figure:

(Hand and Finch 8.14)
c© 1998 Louis N. Hand and Janet D. Finch,

Analytical Mechanics

Euler’s Equations with Torque

It is straightforward to rederive Euler’s equations including external torques – we simply
set d

dt
~L ′ = ~τ ′, where ~τ ′ is the space-frame representation of the sum of all external torques

acting on the body. (We shall see in practice that specifying RT~τ ′, the body frame repre-
sentation, is in general easier because the torque direction tends to change with the top’s
motion, but we will deal with that naturally later.) So we begin with

~τ ′ = ~ω ′ × ~L ′ + R
d

dt

[
RT ~L ′

]
Moving the ~ω × ~L term to the left and applying RT as before, we find

d

dt

[
RT ~L ′

]
= −

[
RT ~ω ′]× [RT ~L ′

]
+ RT~τ ′

That is, the total apparent torque in the body frame is the sum of the fictitious Coriolis-like
term present in the absence of external torque and the external torque transformed into the
body frame.
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We must first write down the torque. This is a bit tricky because the torque is rotating in
both the space and the body frames. First, to be clear about the frames: our nonrotating
and rotating frames F ′ and F will both have their origins at the bottom of the top, which
we assume is held fixed. The F ′ system is inertial. The F system is fixed to the top body
and so precesses, tilts, and spins with it.

For the torque, certainly we know ~τ = ~r × ~F regardless of frame. The center of mass is
a distance l from the origin of both coordinate systems. It holds that ~r = l ẑ because the
3-axis of the top coincides with the z axis of the F system. We also know ~F ′ = −M g ẑ ′

because gravity points downward in the space frame. The unit vectors we use are in different
frames, though, so we need to convert one representation. We could use the explicit form
of the rotation matrix in terms of Euler angles, Equation 5.9, to directly convert ~F ′ to
the body frame or ~r to the space frame. But we can use a small trick based on already
having done that to the angular velocity vector. Suppose we have an angular velocity
vector ~ω with ~ω ′ = a ẑ ′. Then, based on Equation 5.10, we know φ̇ = a and ψ̇ = 0 and
θ̇ = 0. Using the expression for RT ~ω ′ also given in Equation 5.10, we therefore know
RT ~ω ′ = a sin θ (x̂ sinψ + ŷ cosψ) + ẑ a cos θ. Dropping out the arbitrary a factor, we
thus see that ẑ ′ = sin θ (x̂ sinψ + ŷ cosψ) + ẑ a cos θ. We use this to trivially do the cross
product, obtaining RT~τ ′ = M g l sin θ (x̂ cosψ − ŷ sinψ). With the torque in hand, we may
write down Euler’s equations with torque:

I1
d

dt
ω1 = ω2 ω3 (I1 − I3) +M g l sin θ cosψ

I1
d

dt
ω2 = ω1 ω3 (I3 − I1)−M g l sin θ sinψ

I3
d

dt
ω3 = 0

We see that I3 ω3 is constant. But the behavior in the other two axes is complicated by the
presence of the torque term so that ω1 and ω2 cannot be easily obtained. In particular, note
that the form for ~ω in terms of Euler angles is nontrivial (Equation 5.10), so the presence
of functions of θ and ψ on the right side is a very significant complication.

Another difficulty with Euler’s equations is that they hide a second conserved momentum,
pφ. We see pψ = I3ω3 is trivially conserved because the top is symmetric, but we shall see
pφ is a strange linear combination of the angular momenta along the three Cartesian body
axes. Once we have determined pψ and pφ from the Lagrangian in terms of Euler angles,
we will rewrite them in terms of the body-frame angular velocity components to illustrate
how hard it would be to obtain conservation of pφ from Euler’s equations.

We note that we could have circumvented part of the complication above by working in an
intermediate frame FP as we did for the torque-free top problem, one that precesses and
tilts with the top but does not spin. In this case, we can set ψ = 0, so the torque is simply
RT~τ ′ = x̂M g l sin θ, yet I is still diagonal in this frame so Euler’s equations are relatively
simple. There is an added complication, though, in working in this intermediate frame. It is
only separated from the inertial frame by the precession angular velocity ~ωP , yet we want to
write down the rate of change of the total angular momentum ~L = I ~ω, where ~ω = ~ωP + ~Ω
with ~Ω being the spin angular velocity. So, Euler’s equations become

d

dt
~L ′ = ~ω ′

P × ~L ′ + RFP→F ′
d

dt

[
RT
FP→F ′

~L ′
]
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where RFP→F ′ is the rotation matrix to go from FP to F ′ as distinguished from the matrix
needed to go from the body frame F to F ′. So, we consider the time derivatives of the total
angular momentum vector, but the relative angular velocity of the two frames is only ~ωP ,
not ~ω. Rearranging terms and applying RT

FP→F ′ to obtain the FP frame representation:

d

dt

[
RT
FP→F ′

~L ′
]

= −
[
RT
FP→F ′ ~ω

′
P

]
×
[
RT
FP→F ′

~L ′
]

+ RT
FP→F ′ ~τ

′

and, then, using RT
FP→F ′

~L ′ = IP
[
RT ~ω ′], we find

IP d
dt

[
RT
FP→F ′ ~ω

′] = −
[
RT
FP→F ′ ~ω

′
P

]
× IP

[
RT
FP→F ′ ~ω

′]+ RT
FP→F ′ ~τ

′

Finally, we write the above in component form, writing ωPi for
[
RT
FP→F ′ ~ω

′
]
i
and similarly

for ~ωP :

I1
d

dt
ωP1 = I1 ω

P
P,3 ω

P
2 − I3 ωPP,2 ωP3 +M g l sin θ

I1
d

dt
ωP2 = I3 ω

P
P,1 ω

P
3 − I1 ωPP,3 ωP1

I3
d

dt
ωP3 = I1

(
ωPP,2 ω

P
1 − ωPP,1 ωP2

)
The torque is more easily written, but the rest of it becomes very complex because the
symmetry of the ~ω × ~L expression is broken. And the components ωPi are no simpler than
the ωi, though the ωPP,i are simpler because ψ̇ = 0 for that angular velocity. Overall, still
quite a mess.

Calculating the Lagrangian

For our analysis here of the symmetric top problem with torque, we will not be considering
motion about the center of mass, but relative to some pivot point along the 3 (symmetry)
axis of the top. That is, we fix one point of the top in the space frame and determine how
the top moves about that point. One immediately has to ask the question – if the fixed
point is not the center of mass, don’t we end up having to worry about translational motion
and displaced axes? Doesn’t it get very complicated? We can deal with the complications
by carefully making use of the different frames at the appropriate points in the analysis.
Working step-by-step:

1. Begin in the body frame, whose origin is the center of mass and whose axes are aligned
with the principal axes of the top. The inertia tensor in this frame is I = diag(I1,I1,I3).

2. Define the frame Fd to be the body frame displaced along the 3 axis so its origin is at
the pivot point. Let the distance from the new origin to the center of mass be l. The
new moment of inertia tensor is

Id = I +M
(
l2 1−~l ~lT

)
=

 I1 0 0
0 I1 0
0 0 I3

+M

 l2 0 0
0 l2 0
0 0 0

 ≡
 I1d 0 0

0 I1d 0
0 0 I3


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where I1d = I1 +M l2. We see that displacing along the 3 axis keeps the inertia tensor
diagonal and the top symmetric, both of which are critical. Now, we may write the
kinetic energy, using Equation 5.11:

T =
1
2
I1d

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2

Note that, in many texts, the fact that it is I1d that appears, rather than I1, usually
is barely noted or ignored completely. Symbolically, there is nothing wrong with the
usual derivations as long as one is careful to interpret I1 as I1d. It would matter if one
wanted to do numerical work.

3. Calculate the torque relative to the pivot point in the fixed frame F ′. We must do this
in the fixed frame because it is inertial. Assume the top is oriented with Euler angles
φ, θ, and ψ. The gravitational force acts along −ẑ ′. Therefore, the magnitude of the
torque is τ = M g l sin θ. The torque arises from gravity, so it is conservative. We may
therefore calculate a potential energy. The “line element” is d~θ, which is always along
~τ , so we have

U(θ)− U(θ = 0) = −
∫ θ

0
~τ · d~θ ′ = −

∫ θ

0
dθ ′Mg l sin θ = M g l (cos θ − 1)

4. Since T is a scalar, and F ′ and Fd are related only by rotation, T has the same form
in the F frame. We already have U in the F ′ frame. So we have

L = T − U =
1
2
I1d

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2
−M g l cos θ

where we have dropped the constant term in U .

Conserved Quantities

The Lagrangian is obviously cyclic in ψ and φ because the torque is both only in the θ
direction and only dependent on θ, so the corresponding canonical momenta are conserved.
They are

pψ =
∂L

∂ψ̇
= I3

(
ψ̇ + φ̇ cos θ

)
pφ =

∂L

∂φ̇
= I1d φ̇ sin2 θ + I3

(
ψ̇ + φ̇ cos θ

)
cos θ

= φ̇
(
I1d sin2 θ + I3 cos2 θ

)
+ I3 ψ̇ cos θ = I1d φ̇ sin2 θ + pψ cos θ

With the canonical momenta in hand, it is useful to compare the results of the Lagrangian
technique to our previous solution for the torque-free case. In the absence of torque, we
obtain the equation of motion in θ:

I1d θ̈ = I1d φ̇
2 sin θ cos θ − I3

(
ψ̇ + φ̇ cos θ

)
φ̇ sin θ

(pθ = I1dθ̈ is easy to see). Requiring stability in θ (as we indeed had for the torque-free
top) would yield

I1d φ̇ cos θ = pψ
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Inserting this relation in the expression for pφ gives

pφ = I1d φ̇

We can therefore make the following correspondences:

φ̇ ⇐⇒ ωP

pφ = I1d φ̇ ⇐⇒ L = |~L ′|
pψ ⇐⇒ I3 ω3 = L cos θ
ψ̇ ⇐⇒ Ω

(Don’t confuse the angular momentum L with the Lagrangian L!) The correspondences
between φ̇ and ωP and ψ̇ and Ω are not surprising, but the relation between L and the
canonical momenta is interesting. In the torque-free case, pφ is the total angular momentum
and pψ is the projection of the total angular momentum along the body 3 axis. Since both
pψ and pφ are conserved and L = pφ when there is no torque, we find that cos θ is constant,
confirming the earlier assumption of stability in θ and also matching our original solution.
Note that the simple relationship L = pφ only holds when we can assume θ is constant.
Thus, when torque is applied, θ may change even though pφ and pψ are conserved. Note also
that pφ and pψ are constant only when the torque is a function of θ only. A counterexample
would be a frictional torque acting at the pivot point or via air resistance.

We may also now write the correspondence between pψ and pφ and the Cartesian components
of angular momentum. We make use of the expressions for angular velocity in the body
frame in terms of Euler angles, Equation 5.10. We obtain

pψ = I3 ω3 = L3

pφ = (I1ω1 sinψ + I1 ω2 cosψ) sin θ + I3 ω3 cos θ
= (L1 sinψ + L2 cosψ) sin θ + L3 cos θ

So, indeed, pφ is a complicated combination of angular momenta along the different Carte-
sian axes.

When we do consider torques below, total angular momentum is both not conserved and also
has a contribution from pθ that is not present in the torque-free case. But the conservation
of pφ and pψ will remain useful.

Effective Potential and 1D Equation of Motion

With the gravitational torque, the equation of motion of θ is

I1d θ̈ = I1d φ̇
2 sin θ cos θ − I3

(
ψ̇ + φ̇ cos θ

)
φ̇ sin θ +Mg l sin θ

= − ∂

∂θ

(
1

2 I1d

(pφ − pψ cos θ)2

sin2 θ

)
+Mg l sin θ

Some of the kinetic terms have generated a “centrifugal” potential. We may sum the
centrifugal and true potentials to obtain an effective potential

Veff (θ) =
1

2 I1d

(pφ − pψ cos θ)2

sin2 θ
+M g l cos θ
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(It takes some algebra to see that the effective potential version is equivalent to the original
equation of motion.) We may use the effective potential to write an effective one-dimensional
Lagrangian that would yield the above equation of motion:

L1D =
I1d
2
θ̇2 +

1
2 I3

p2
ψ − Veff (θ)

=
I1d
2
θ̇2 +

1
2 I3

p2
ψ −

1
2 I1d

(pφ − pψ cos θ)2

sin2 θ
−M g l cos θ

(One could have more directly obtained L1D and Veff via the Routhian procedure – see
Hand and Finch Problems 5-3 and 8-19.) One important point to make is that this is not
just the original Lagrangian with pφ and pψ substituted in – there is a sign flip in the kinetic
terms that give rise to the effective potential. Recall that we ran into a similar issue when
defining the effective potential in the case of central forces. You can never just substitute
back into the Lagrangian because it violates the formalism wherein different coordinates
are assumed to vary independently. We are basically using the full Lagrangian to “inspire”
a one-dimensional Lagrangian that yields the correct one-dimensional equation of motion.
We may rewrite the total energy using the effective potential energy, giving(

E − 1
2 I3

p2
ψ

)
=
I1d
2
θ̇2 +

1
2 I1d

(pφ − pψ cos θ)2

sin2 θ
+M g l cos θ

(The total energy does not suffer the sign flip confusion.) We thus have a one-dimensional
differential equation in θ and the constants of the motion E, pφ, and pψ.

Solving for the Motion

Rather than using the rather difficult to integrate and analyze equation for θ̈, we will make
use of the energy equation to gain some insight into the form of solutions. It is standard to
rewrite it as follows:

E′ = E − 1
2 I3

p2
ψ u = cos θ ⇒ u̇ = − sin θ θ̇ a =

pψ
I1d

b =
pφ
I1d

E′ (1− u2
)

=
1
2
I1 u̇

2 +
1
2
I1 (b− a u)2 +M g l u

(
1− u2

)
We may further rewrite:

α ≡ 2E′

I1d
β ≡ 2M g l

I1d

u̇2 =
(
1− u2

)
(α− β u)− (b− a u)2 ≡ f(u)

The function f(u) is a cubic polynomial. We can convert the above into an integral relation
between t and u:

t =
∫ u(1)

u(0)

du√
f(u)

but, because f(u) is cubic, we have an elliptic integral that cannot be done analytically.

General Characteristics of the Motion

We may obtain some qualitative information about the motion without dealing with the
elliptic integral. Since u̇2 must be positive, valid values of u are in the regions where f(u) is
positive, and turning points of the motion occur where f(u) = 0. The following facts hold:
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• Generically, for any third-order polynomial, there are either three real, distinct roots,
three real roots with two of them equal, or one real and two complex conjugate roots.

• f(u)→ +∞ as u→ +∞ and f(u)→ −∞ as u→ −∞, so the polynomial generically
has one of the two shapes shown in the figure below, where the curve may also have
the second shape but translated vertically so the one root is on the left side. There is
always at least one real root because of the limiting behaviors.

• At u = ±1 (the physical limits of the motion because −1 ≤ cos θ ≤ 1), we have
f(u) = − (b∓ a)2 < 0. Therefore, the curve must always be negative at these two
points. Thus, the third possible form, with the local minimum of the function above
zero, is not allowed.
• We may see that the second possible form is not allowed either. Clearly, we are able to

start the top at some value of u and u̇. Therefore, for physically allowed values of the
constants, there must be a region between u = −1 and u = +1 with f(u) ≥ 0. Thus,
either the central “bump” in the polynomial or the final rising region must overlap the
interval [−1, 1] in u. The latter is not allowed because it would not satisfy f(u) < 0 at
u = ±1. So only the central “bump” type of polynomial is allowed. Moreover, because
of the condition f(u) < 0 at u = ±1, we also have the condition that the bump must
be entirely contained in the interval [−1, 1]; the curve must go negative again before
u = ±1.
• Thus, to sum up, we have two turning points at the two roots cos θ1 = u1 and cos θ2 =
u2, and the motion is isolated to this range of angles. This bounded motion between
the two turning points is called nutation.

(Hand and Finch 8.15)
c© 1998 Louis N. Hand and Janet D. Finch,

Analytical Mechanics

The precessional motion is specified by φ̇, which is given by (from the equation for pφ):

φ̇ =
1
I1d

pφ − pψ cos θ
sin2 θ

The denominator is always positive, but the numerator may carry either sign and may in
fact carry both during different parts of the motion. There are three different regimes:

• φ̇ > 0 or φ̇ < 0 for all θ. There is always precession in one direction. The φ̇ > 0 case
is illustrated in (A) below.

• φ̇ = 0 at one of the turning points in θ. This value must be at the upper (smaller θ)
turning point if φ̇ > 0 and at the lower (larger θ) turning point if φ̇ < 0. The first case
is illustrated in (C) below.
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• φ̇ = 0 for some value not equal to the turning points. Then there is a range of θ with
φ̇ > 0 and a range with φ̇ < 0, like (B) below.

(Hand and Finch 8.16)
c© 1998 Louis N. Hand and Janet D. Finch,

Analytical Mechanics

Pure Precession Solutions

In addition to the above nutation behavior, we can obtain solutions that correspond to
pure precession if we just find the value of θ for which the effective potential is minimized
(or, equivalently, for which f(u) has a double real root). We saw earlier that the effective
potential is

Veff (θ) =
1

2 I1d

(pφ − pψ cos θ)2

sin2 θ
+M g l cos θ

Taking the derivative with respect to θ gives

∂Veff
∂θ

∣∣∣∣
θ0

=
(pφ − pψ cos θ0)

2

I1d

− cos θ0
sin3 θ0

+
(pφ − pψ cos θ0) pψ sin θ0

I1d sin2 θ0
−Mg l sin θ0 = 0

cos θ0 (pφ − pψ cos θ0)
2 − (pφ − pψ cos θ0) pψ sin2 θ0 +Mg l I1d sin4 θ0 = 0

The above equation is a quadratic in (pφ − pψ cos θ0), which can be solved to find

pφ − pψ cos θ0 =
pψ sin2 θ0
2 cos θ0

(
1±

√
1− 4Mg l I1d cos θ0

p2
ψ

)

This does not yield an analytic formula for θ0, but we can certainly investigate under what
conditions a solution exists and what happens in those cases.

First, if θ0 < π/2, the quantity under the radical can be negative, so we require it be positive
to obtain a reasonable solution. That gives the condition

p2
ψ ≥ 4Mg l I1d cos θ0 ⇐⇒ ω3 ≥

2
I3

√
Mg l I1d cos θ0

That is, the top must be spinning faster than a particular threshold value in order for there
to be a steady precession solution. When there is such a solution, we can use our expression
for φ̇,

φ̇ =
1
I1d

pφ − pψ cos θ0
sin2 θ0
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to see that the existence of two solutions for pφ − pψ cos θ0 implies there are two possible
precession velocities, a fast and a slow one, depending on the sign chosen. When pψ greatly
exceeds the precession threshold and the second term under the radical is small, we can
Taylor expand to find

φ̇fast =
pψ

I1d cos θ0
φ̇slow =

M g l

pψ

If π/2 < θ0 < π, then the quantity under the radical is always positive and there is no
minimum value of ω3. In fact, the quantity under the radical is larger than 1, so the fast
precession occurs in the same direction as before but the slow precession speed becomes
negative. This is confirmed in the above formulae for large pψ by recognizing, if ψ̇ > 0 and
φ̇ > 0, then pψ < 0 and cos θ0 < 0 if π/2 < θ0 < π.

A final interesting case is that of the “sleeping top”, for which θ = 0 for all time. Since
sin2 θ would result in an infinite effective potential, this case only occurs when pφ = pψ,
which, if we refer back to the expressions for these conserved momenta, can only occur if
φ̇ = 0 and θ = 0. This case thus becomes possible because the effective potential reduces
to the true potential and the true potential has an unstable equilibrium at θ = 0. In terms
of f(u), this occurs when two of the roots are equal and coincide with u = 1.
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Chapter 6

Special Relativity

We present the special theory of relativity, derive the transformation rules for various physical
quantities, display the analogy between these transformations and rotational transformations, and
explore dynamics in relativistic situations.
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6.1 Special Relativity

We follow Hand and Finch for much of this section, though we do insert some additional material
relating transformations between inertial frames to rotational transformations.

6.1.1 The Postulates

The two basic postulates of special relativity are

1. Physics is the same in all inertial frames.

2. The speed of light is the same in all inertial frames.

The first postulate is just the principle of Galilean relativity that we stated at the start of the
course. At that point, we defined an inertial frame to be a frame in which Newton’s second law
holds. The implication of Galilean relativity is that there is no absolute frame of reference; every
inertial reference frame is as good as every other one.

It is the second postulate that was Einstein’s brilliant leap and that leads to all the nonintuitive
implications of special relativity. To some extent, the second postulate is a corollary of the first once
one realizes that electromagnetic waves do not travel in a medium. If the laws of electromagnetism,
which give rise to the speed of light, are to be the same in all frames, then the speed of light must
of necessity be the same in all frames. But it took the Michelson-Morley experiment to kill the
concept of the ether, a medium in which light propagates.

6.1.2 Transformation Laws

The basic content of special relativity is in the transformation laws it implies for physical quantities.
From these transformation laws we may derive all the strange implications of special relativity – time
dilation, length contraction, etc. We will begin with transformation rules for spatial coordinates –
the Lorentz transformation – and from there develop transformation rules for velocities, momentum,
energy, etc.

Developing the Lorentz Tranformation Rules for Space-Time Coordinates

Consider two inertial reference frames F and F ′. Let them have coordinate axes (x, y, z, t)
and (x′, y′, z′, t′). We include t as a coordinate and allow it to be different in the F ′ frame
because it will be necessary to avoid a contradiction with the second postulate. All times
are scaled by the speed of light (i.e., t is actually c t) for reasons that will become apparent.
With this scaling, light travels with speed 1. Let the two systems’ axes and origins coincide
at t = t′ = 0. Let the F ′ frame be moving at speed β (in c = 1 units) along the +x axis
with respect to F , which means that the position of the F ′ origin obeys x = β t in the F
frame. This information is summarized in our space-time diagram in the F system, a
plot of t vs. x with the origin of the F ′ system represented by the solid line of slope β−1 and
the path of a light ray emitted from the origin shown by the dashed line of slope 1. Points
in the space-time diagram are referred to as events because they are not just points in
space, but in time also. Obviously, one can generalize space-time to more than one spatial
dimension, it just becomes hard to visualize.
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(Hand and Finch 12.1)
c© 1998 Louis N. Hand and Janet D. Finch,

Analytical Mechanics

Let us consider the path of a light ray in the two frames, requiring that the second postulate
hold. Suppose the light ray is emitted from the F ′ origin at time t′e = −L′ in the +x
direction, it hits a mirror at x′r = L′ at t′r = 0 and is reflected, returning to the F ′ origin
at t′a = L′. The light ray has y′ = z′ = 0 for all time. In a space-time diagram of the F ′

frame, the reflection event (x′r, t
′
r) is obtained by the intersection of light rays propagating

forward in time from the emission event (x′e, t
′
e) = (0,−L′) and backward in time from the

absorption event (x′a, t
′
a) = (0, L′). The intersection is at (x′r, t

′
r) = (L′, 0).

Left: F ′ system. Right: F system.
(Hand and Finch 12.2,

note the correction of the emission and absorption times.)
c© 1998 Louis N. Hand and Janet D. Finch,

Analytical Mechanics

Let’s examine the path in the F system, assuming we do not yet know the transformation law
for coordinates between reference frames. The light ray travels only along the x direction,
so it satifies y = z = 0 for all time also. Let (xe, te), (xr, tr) and (xa, ta) indicate the
coordinates of the three events in the F frame. The emission and absorption events must
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occur on the solid line representing the position of the F ′ origin, which means their space
and time coordinates are related by the slope β−1. The line of this slope through the origin
thus gives the space-time location of the t′ axis in F . Time reversal invariance says that
these events’ symmetric occurence in F ′ implies they occur at symmetric times in F . So
the two events must be at (−ta β,−ta) and (ta β, ta). Let’s calculate where light rays from
these two events would intersect, which will give us the position of the reflection event in
F (and also the space-time location of the x′ axis in F ). In the following, r and s begin
as undetermined parameters indicating how much time passes in the F frame between the
emission or absorption event and the reflection event, respectively:

(−ta β,−ta) + r (1, 1) = (ta β, ta) + s (1,−1)
r − s = 2β ta r + s = 2 ta
r = (1 + β) ta s = (1− β) ta

(xr, tr) = (−ta β,−ta) + r (1, 1) = (ta, β ta)

The last line implies that the reflection event (xr, tr) sweeps out the line through the origin
with slope β. Its position on that line depends on the value of ta, the time of the absorption
event – that is to say, on L′ and β. Since the reflection event (x′r, t

′
r) is always at t′ = 0, the

line thus tells us where the x′ axis sits in the F space-time diagram. So, in sum, we have
that the t′ axis is a line of slope β−1 and the x′ axis is a line of slope β, both going through
the F origin. The angle between the lines is α, where

tan
α

2
=

1− β
1 + β

We may construct the general form for the transformation of coordinates from F ′ to F by
using the above information along with expected properties of the transformation:

1. Linearity: We have seen that events on the x′ axis lie on a line of slope β and events
on the t′ axis lie on a line of slope β−1 in F . If we assume the transformation is linear in
the space-time coordinates then the transformation for an arbitrary space time event
with F ′ frame coordinates (x′, t′) to the F frame can be written

(x, t) = γ(β) (1, β) x′ + γ̃(β) (β, 1) t′

2. Equivalence of the two frames: Since one of our postulates is that physics is the
same in any reference frame, the transformation for going from F to F ′ must have the
same form as the transformation from F ′ to F , modulo the change in sign of β, so we
also have

(x′, t′) = γ(−β) (1,−β) x+ γ̃(−β) (−β, 1) t

3. Symmetry of the two frames: By symmetry, the slope of the x and t axes in the
F ′ space-time diagram must be the same as the slope of the x′ and t′ axes in the F
space-time diagram, so γ(β) = γ(−β) and γ̃(β) = γ̃(−β) is required. So we have

x′ = γ x− γ̃ β t t′ = −γ β x+ γ̃ t

x = γ x′ + γ̃ β t′ t = γ β x′ + γ̃ t′
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4. The transformation be invertible by the reverse transformation: We require
that if we transform from F ′ to F and then from F to F ′, the overall transformation
should return the original (x′, t′). We apply this by using the first pair of formulae for
x and t in the second pair of formulae and requiring that we recover x′ and t′:

γ2 − γ̃ γ = 0 γ2 − γ̃ γ β2 = 1

which is solved by

γ̃ = γ =
1√

1− β2

With these conditions, the transformation law is

x′ = γ (x− β t) t′ = −γ (β x− t) (6.1)
x = γ

(
x′ + β t′

)
t = γ

(
βx′ + t′

)
This is known as the Lorentz transformation for historical reasons.

Implications of the Lorentz Transformation

We can derive a number of the most shocking implications of relativity from the simple
Lorentz transformation laws:

• Time dilation
Consider two events occuring at a fixed point in space in the frame F ′; for example,
two ticks of a clock. They are separated by the vector (x′, t′) = (0, τ). What is the
separation of the two events in the frame F , relative to which F ′ is moving at speed
β? The Lorentz transformation tells us

x = γ β τ t = γ τ

The time between the events in the F frame is larger than in F ′. Hence, the term “time
dilation” – time “slows down” in the moving frame, the two events have a smaller
time separation in their rest frame than in any other frame. One is not obtaining
something for nothing, though, because the spatial separation of the two events has
become nonzero. That is, we are no longer measuring just the time separation of two
events that occur at the same point in space; we are measuring a separation with both
time and space components.

• Length contraction
The length L′ of an object at rest in F ′ can be viewed as two events with separation
(∆x′,∆t′) = (L′, 0), representing the left and right ends of the object at some common
time t′. The time separation between these two events will become nonzero in the F
frame because of their nonzero spatial separation, so these two events are not valid
as a length measurement in F . Explicitly, the ends of the object are at space-time
coordinates

(x′1, t
′
1) = (0, τ) (x′2, t

′
2) = (L′, τ)

Without lack of generality, we let the two events corresponding to the F ′ length mea-
surement be

(x′1, t
′
1) = (0, 0) (x′2, t

′
2) = (L′, 0)
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The Lorentz transformation of the trajectories is

in general: (x1, t1) = (γ β τ, γ τ) (x2, t2) = (γ L′ + γ β τ, γ β L′ + γ τ)
with τ = 0: (x1, t1) = (0, 0) (x2, t2) = (γ L′, γ β L′)

=⇒ (∆x,∆t) = (γ L′, γ β L′)

confirming the expectation that the length measurement events in F ′ do not give a
length measurement in F . To make a length measurement in F , we must pick points on
the two trajectories that are separated by ∆t = 0, which the above expression implies
is not possible if t′1 = t′2. Let us allow t′1 6= t′2 and apply the requirement ∆t = 0, using
the Lorentz transformation to write this condition in terms of F ′ coordinates:

0 = ∆t = t2 − t1 = γ
[
β
(
x′2 − x′1

)
+
(
t′2 − t′1

)]
Without lack of generality, we again assume event 1 occurs when the two origins
intersect, so x′1 = x1 = t′1 = t1 = 0. t2 = 0 also in order to obtain a length measurement
in F . The assumption about the origins implies that x′2 = L′ for all time because the
object is at rest in F ′. So the above reduces to

t′2 = −βx′2 = −β L′

The length as measured in F is simply the Lorentz transformation of event 2:

x2 = γ
(
x′2 + β t′2

)
= γ

(
x′2 − β2x′2

)
= γ−1x′2 = γ−1L′

We see a decrease in the apparent length. The F -frame length measurement has
space-time coordinates

(x1, t1) = (0, 0) (x′1, t
′
1) = (0, 0)

(x2, t2) = (γ−1L′, 0) (x′2, t
′
2) = (L′,−β L′)

We see that in order to be simultaneous in the F frame, the two events must occur with
negative time separation −β L′ in the rest frame of the object. The object is moving
to the right with the F ′ frame, so the right end of the object is not at x′ = L′ yet
in the F frame when the measurement event occurs in F , hence the apparent length
contraction.

• Relativity of Simultaneity
The length contraction example shows that two events that are temporally simulta-
neous but spatially separated in one frame may not be temporally simultaneous in
another – i.e., t′ = 0 does not imply t = 0 unless x′ = 0 also. Generically, then,
simultaneity of physically separated events is no longer well defined.

• Transformations of Areas
The matrix of partial derivatives of our transformation is

J(β) =
(

γ −β γ
−β γ γ

)
So, space-time areas are preserved:

dx′ dt′ = |J| dx dt = dx dt
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because γ2 − β2γ2 = 1. This is a necessity, as there must be symmetry between the
two directions for the Lorentz transformation, which would not hold if the Jacobian
determinant were not unity.

Invariant Interval

From the Lorentz transformation, one can easily obtain the identity

t2 − x2 = (t′)2 − (x′)2 ≡ s2

The quantity s2 is the invariant interval associated with the space-time vector (x, t) and
(x′, t′). It can be thought of like the magnitude of a vector in space, which is invariant
under spatial rotations. The invariant interval is invariant under Lorentz transformations,
also known as boosts. In the geometrical interpretation given below, the invariant interval
is a consequence of the identity cosh2 η − sinh2 η = 1.

Geometrical Interpretation of Lorentz Transformation

We may develop a geometrical interpretation of how the Lorentz transformation gives the
shape of one set of space-time axes in another frame. Define the rapidity or boost angle
or boost parameter η by tanh η = β (any η is possible because β = tanh η → ±1 as
η → ±∞. Then we have

β = tanh η γ = cosh η β γ = sinh η
x = x′ cosh η + t′ sinh η t = x′ sinh η + t′ cosh η

So, the Lorentz transformation looks something like a coordinate rotation, except by an
imaginary angle i η. More importantly, though, we see the contours of constant x′ or t′

form hyperbolic curves in the x t plane. That is, the event (x′, 0) in the F ′ frame appears
on the hyperbola x′ (cosh η, sinh η), with η increasing as β increases. Similarly, the event
(0, t′) appears on the hyperbola t′ (sinh η, cosh η). This is illustrated in the following figure:
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Left: position of (x′, t′) = (1, 0), (0, 1), (−1, 0), (0,−1) in F for η = 10−1, 10−3/4, 10−1/2,
10−1/4, 1, 101/4 (moving sequentially outward). This shows how a particular event is seen in
another frame as the relative speed β is increased. Right: F ′ space-time axes in F for same
values of η (larger η =⇒ increasingly oblique). This plot shows how the F ′ space-time axes
appear “squeezed together” when seen in the F frame. Both plots are for positive β and η.
Negative β and η would occupy the other two quadrants.

NOTE: Even though we have made the above geometrical intepretation, one has to be a
bit careful about overinterpreting it. The difficulty is that the quantity left constant by
a Lorentz transformation, the invariant interval, does not correspond to a curve of fixed
distance from the origin on the above plots. Rather, it corresponds to the hyperbolic curves
that the fiducial points follow as β is changed. Another way of seeing this is that the entire
first and third quadrants of the F ′ frame occupy the area between the two corresponding
slanted space-time axes displayed in the right plot. Therefore, spatial distances and areas
are not preserved by the mapping. Invariant interval is preserved.

Light Cones, Causality, and Simultaneity

The geometrical interpretation and invariant interval let us prove that the relativity of
simultaneity can never produce causality problems. First, let us define the light cone as
the region in space-time that can be reached from a given event; refer to Figure 6.1. The
light cone of the event at the origin of a space-time diagram consists of all events with
|t| > |x|. For t < 0, the events in the light cone are those that can have causal influence on
the event at the origin; this is the past light cone of the event at the origin. For t > 0,
the future light cone, the events in the light cone are those that the event at the origin
can have causal influence on. Since we know that, under Lorentz transformations, an event
slides along a hyperbolic curve in space-time as the speed β is varied, we are assured that
events that are in the future light cone of the event at the origin in one reference frame are
also in that event’s future light cone in any other reference frame. Similarly for past light
cones.

What about simultaneous events? Two events are simultaneous in a particular frame F ′ if
they occur at the same value of t′, the time in the frame F ′. Let one event be at the origin
(0, 0) and the other event at (x′, 0), so the space-time vector separating them is (x′, 0). This
event is outside the light cone of the origin, so, in this frame, the two events are out of
causal contact. When we transform to a different frame F , but one whose origin coincides
with that of F ′ at t = t′ = 0, the space-time vector between the two events will slide on the
hyperbolic curve (cosh η, sinh η). The event at (x′, 0) in F ′ may move to t < 0 or t > 0 in
other frames, raising causality questions. The causality worries are put to rest by the fact
that the hyperbola is entirely outside the light cone of the first event, so the second event
is always outside of causal contact with the first event.

Whether two events are causally connected is determined by the sign of the invariant interval
of the space-time vector separating them. If s2 > 0, then |t| > |x| and the two events
connected by the vector are in causal contact. The vector is called time-like. Our argument
about hyperbolic curves ensures that the sign of the time component of the vector does not
change, preserving causal relationships. If s2 < 0, then |t| < |x| and the two events are
never in causal contact, regardless of frame. The vector is called space-like. The sign of
the time component of the vector may depend on the reference frame. If s2 = 0, the vector
is called null or light-like since only light (or, as we shall see, any other massless particle)
can travel on such a path in space-time.
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c© 1998 Louis N. Hand and Janet D. Finch,
Analytical Mechanics

Figure 6.1: Illustration of light cones. (Hand and Finch 12.10)

Perpendicular Coordinates

What happens to the coordinates perpendicular to the boost direction, y and z or y′ and
z′? It turns out they are unaffected. An argument using clocks is presented in Hand and
Finch to justify this. Here, we use an argument similar to the one that we used to deduce
the Lorentz transformation for x and t.

Consider again two frames F and F ′, with F ′ moving at speed β in the +x direction relative
to F , and assume the origins of the two frames coincide at t = t′ = 0. In this case, we will
emit a light ray from the origin in the +y direction and reflect it back to the origin. The
emission, reflection, and absorption events are given by:

(x′e, y
′
e, t

′
e) = (0, 0,−L′)

(x′r, y
′
r, t

′
r) = (0, L′, 0)

(x′a, y
′
a, t

′
a) = (0, 0, L′)

Let’s now repeat our argument regarding the coordinates of the three events in F , with the
complication that our space-time now has three dimensions, though the motion is only in
two of them. Walking through the argument:

1. The position of the origin of F ′ in F is described by the same line as in our original
argument, except it is now a line in the x t plane in three dimensions. Its coordinates
in F are (xo, yo, t) = (β t, 0, t) as a function of t. We know the origin’s y coordinate
does not change because there is no motion in that direction; whatever nonintuitive
there may be about relativity, relative motion of two points in a given frame is always
well-defined.
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2. As before, the emission and absorption events both occur at the position of the origin
of the F ′ system in F , and they must occur symmetrically about the time origin. So
we have

(xe, ye, te) = −ta(β, 0, 1)
(xa, ya, ta) = ta(β, 0, 1)

Symmetry about the origin relates the time coordinates and the known velocity vector
of F ′ in F relates the x and y coordinates.

3. Though the reflection event occurs at y′ 6= 0 and y 6= 0, the emission and absorption
events occur at the origin and thus are unaffected by the existence of the y dimension.
They must thus obey the Lorentz transformation rule, which implies

(xe, ye, te) = −γ L′ (β, 0, 1)
(xa, ya, ta) = γ L′ (β, 0, 1)

4. Let us now calculate the position of the intersection of light rays sent out from the
emission and absorption events, again using the fact that we know the speed of light
is 1:

−γ L′(β, 0, 1) + r(
√

1− δ2, δ, 1) = γ L′(β, 0, 1) + s(−
√

1− δ2, δ,−1)
r + s = 2 γ L′

(r + s)
√

1− δ2 = 2β γ L′

(r − s) δ = 0

The space-time displacement of a light ray in one unit of time is (
√

1− δ2, δ, 1), where
δ allows for freedom in the direction (in the xy plane). δ carries the same sign as yr.
We may assume the velocity vector has the same components on the two sides, with
just a sign flip in the y component because the light path must be symmetric about
t = t′ = 0 because the motion is along x, not y. The signs on the left-side velocity
term are obtained by simple arguments: 1) if ye = 0 and yr > 0, then the y velocity
must be positive between the two events; and 2) in the limit β � 1, we must recover
the nonrelativistic limit, and in that limit we know that if the light ray always has
x′ = 0 and the x′ origin is moving in the +x direction, then x ≥ 0 is required for the
position of the light ray. The signs on the right-side are obtained by similar arguments:
1) if yr > 0 and ya = 0, then the y velocity must be negative between the two events;
and 2) again, the x velocity must be nonnegative to obtain the nonrelativistic limit.
Simplifying, we obtain

r = s = γ L′√
1− δ2 = β

δ =
√

1− β2 = γ−1

The reflection event thus satisfies

(xr, yr, tr) = −γ L′ (β, 0, 1) + γ L′(β, γ−1, 1) = (0, L′, 0)

We thus see that the transverse coordinate is unchanged by the Lorentz transformation.
This would hold for z also.
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6.1.3 Mathematical Description of Lorentz Transformations

We proceed with special relativity by generalizing the transformation rules for the space-time coor-
dinates to other physical quantities. The natural way to proceed is by analogy to spatial rotations.
We have obtained rules for the transformation of the space-time coordinate and have discovered the
invariant interval. These are analogous to the transformation rules for spatial coordinates under
rotation and the invariance of the length of the position vector under rotations. We may thus
proceed by generalizing the concepts of scalars, vectors, and tensors and use their transformation
properties to obtain transformation properties for various physical quantities.

There are other ways to proceed. The treatment found in Hand and Finch uses physical exam-
ples to discover the transformation rules for various physical quantities, essentially working from
the specific to the general. We instead will guess the general from one specific case, and then
see how the general transformation rules are consistent with the typical specific examples. We
follow this route for two reasons: 1) it is an alternative to the usual treatment; and 2) a large
part of current research consists of developing theories based on desirable properties under certain
transformations, so it is useful to learn to think in this way.

A bit of terminology: as we have discussed before, a quantity is invariant under a transforma-
tion if its value in different reference frames is the same. The invariant interval associated with a
space-time event is such a quantity. More frequently, we have a physical entity – the space-time
vector describing an event, for example – whose coordinate representations in different frames are
related by a special set of rules set by the transformation between the frames. Such a physical
entity is said to be covariant under the transformation. It is not invariant, but there are rules
that it does obey.

Notation

We will from this point begin to use the following notation for frames: frames and variables
with a tilde refer to the “reference” or “fixed” system and frames and variables with no
tildes or other accents refer to the “moving” system. The “moving” system will move with
velocity ~β relative to the fixed system. In relativity, any two inertial systems are equally
good, so this distinction is purely notational; it only serves to make clear the sign of the
velocity. Note that Hand and Finch use primed coordinates to refer to the moving frame
and unprimed for the fixed frame, which is different both from their notation for rotating
systems and from our notation. We use tildes rather than primes because a primed, raised-
index symbol like x ′µ can be hard to distinguish from the unprimed version xµ.

We will also use four-vector notation to distinguish space-time vectors from spatial vec-
tors, and use a notation analogous to what we developed for rotations to distinguish the
coordinate-free, coordinate representation, and coordinate representation component ver-
sions of space-time vectors. The coordinate-free space-time position vector is denoted by
⇒
x. The coordinate representation in a particular frame F is ⇒

x with components xµ and in
a frame F̃ is ⇒̃

x with components x̃µ. For the coordinate representations, µ = 0, 1, 2, 3 is the
index giving the four components of the space-time vector; 0 is the time component, 1, 2, 3
are the spatial components.

Four-Vectors and the Lorentz Transformation Matrix

We first begin by defining the space-time analogy of a vector. A Lorentz-covariant vector
is a physical entity whose coordinate representations in different frames are related by the
Lorentz transformation. So far we have only discussed Lorentz transformations along the
x-axis; but, obviously, we may generalize the transformation rules. Let us first write the
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transformation matrix for a x-direction Lorentz transformation, converting the space-time
event vector ⇒

x from its coordinate representation ⇒
x with components xµ in a frame F to its

representation ⇒̃
x with components x̃µ in a frame F̃ relative to which F is moving at velocity

~β:

⇒
x =


t
x
y
z

 ⇒̃
x =


t̃
x̃
ỹ
z̃

 x̃µ = Λµν x
ν Λµν =


γ γ β 0 0

γ β γ 0 0
0 0 1 0
0 0 0 1


The meaning of “up” and “down” indices will be defined below. For now, space-time
vectors may have only “up” indices and Lorentz transformation matrices have their first
index “up” and their second index “down.” The form of the Lorentz transformation matrix
for an arbitrary velocity direction ~β is

Λµν =


γ γ βx γ βy γ βz

γ βx 1 + (γ − 1)β
2
x
β2 (γ − 1)βx βy

β2 (γ − 1)βx βz

β2

γ βy (γ − 1)βx βy

β2 1 + (γ − 1)β
2
y

β2 (γ − 1)βy βz

β2

γ βz (γ − 1)βx βz

β2 (γ − 1)βy βz

β2 1 + (γ − 1)β
2
z
β2


which can be rewritten in a more memorable form as

Λ0
0 = γ Λ0

i = Λi0 = γ βi Λij = δij + (γ − 1)
βi βj
β2

i, j = 1, 2, 3

Metric Functions, the Metric Tensor, and Invariant Intervals

The standard dot-product clearly does not return the invariant interval, so we need to define
a generalization of the vector dot product for Lorentz-covariant vectors. The standard dot-
product is a special case of a class of functions that are generically called metric functions;
their defining characteristics are that:

1. They map two vectors ~u and ~v to a single number; g(~u,~v) = a where a is just a real
number.

2. The real number returned is independent of the reference frame in which the repre-
sentations of ~u and ~v are specified. This is to some extent obvious – ~u and ~v refer to
abstract vectors, not to particular coordinate representations.

3. They are symmetric under exchange of the two vectors: g(~u,~v) = g(~v, ~u).

4. They are linear in both vectors: g(~u, a~v + b ~w) = a g(~u,~v) + b g(~u, ~w).

Note that we have so far made no mention of coordinate systems, reference frames, or
transformation properties between frames. Metric functions are so far defined simply to act
on coordinate-free vectors. The term “metric” is used because such functions define the
norm of a vector via |~u|2 = g(~u, ~u).

We shall prove here, though, that, when considering specific reference frames and coordinate
systems, any metric function g can be written as a real, symmetric N × N matrix that
transforms like a rank 2 tensor.
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Since a metric function is a symmetric linear function, its action in a particular reference
frame and coordinate system is determined entirely by its action on the unit vectors of that
reference frame/coordinate system.1 That is, we may define a symmetric N ×N matrix

g
ij

= g (F ~ei,F ~ej)

where F ~ei is the ith unit vector of the frame F with coordinate representation in frame F
denoted by F ~ei. The components of the coordinate representation F ~e are F e

j
i = δij .2 If we

have an arbitrary vector ~a whose coordinate representation components in F are given by
ai (we use “raised” indices because we have made the disinction between raised and lowered
indices for four-vectors), then we have that ~a can be written as the linear combination

~a = aiF ~ei

Note that the unit vectors are written as vectors, not using their component representations.
This decomposition is valid in any frame, but of course the coordinate representation of F ~ei
will change with frame. Given the above, it then holds that we can calculate the metric
function of two arbitrary vectors ~a and ~b using the coordinate representations in F and the
matrix g

ij
:

g(~a,~b) = g
(
aiF ~ei, b

j
F ~ej

)
= aibjg (F ~ei,F ~ej) = aibjg

ij

Now, there is nothing special about the frame F in which we first wrote down g
ij

=

g(F ~ei,F ~ej). It seems sensible to expect that, for any other frame F̃ , the coordinate rep-
resentation of g in that frame should be given by the same kind of formula using the unit
vectors of F̃ . That is, we expect

g̃
ij

= g
( eF ~ei, eF ~ej)

where eF ~ei is the ith unit vector of the frame F̃ . The question we have to ask is whether
this representation in F̃ is compatible with the defining properties of metric functions.
Properties 1, 3, and 4 are obviously verified because g̃

ij
is, by its definition in terms of

the function g and the unit vectors of the frame F̃ , a real, symmetric N × N matrix and
properties 1, 3, and 4 hold for any real, symmetric N × N matrix. Property 2 is the one
that is trickier to check. Let ãi and b̃j be the coordinate representation components of the
same vectors ~a and ~b in the frame F̃ . The action of g̃

ij
on ãi and b̃j is

g̃
ij
ãib̃j = ãib̃jg

( eF ~ei, eF ~ej) = g
(
ãiF ~eib

j
F ~ej

)
= g(~a,~b)

So, our expression for g̃
ij

is compatible with property 2 – the value of the action of g̃
ij

on

the component representations ãi and b̃j is the same as the action of g
ij

on the component
representations ai and bj .

1We distinguish reference frames and coordinate systems here: one can describe a single reference frame with
multiple coordinate systems, and of course different reference frames require different coordinate systems (that nev-
ertheless may be coincident at a particular instant in time). For brevity, we will use the term “frame” as shorthand
for reference frame/coordinate system.

2Note on notation: in a different frame eF , the unit vectors F ~ei of the frame F will have different coordinate
representations F

e~e whose components F ẽj
i will in general not be so simple. The unit vectors of that other frame eF

are denoted by eF ~ei with coordinate representations eF e~e in eF whose components are eF ẽj
i = δij . Note the importance

of the positioning of the tilde symbols!
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Now that we have a means to calculate the components of the coordinate representations g
ij

in any particular frame given the original metric function g( , ), we can test whether g is rank
2 tensor. We have in fact already proven this, indirectly: since g

ij
aibj = g̃

ij
ãib̃j , we see that

the contraction of the coordinate representations of g with the coordinate representations
of two arbitrary vectors ~a and ~b is a single number whose value is frame independent. That
was exactly our definition of a second-rank tensor in Section 5.1.

Our discussion so far has been generic – any metric function g that satisfies the above
four properties is always a rank 2 tensor under the transformations that act on the vectors
that g acts on. If we specifically consider Lorentz transformations between different inertial
reference frames, then the most reasonable metric tensor to consider is the one that returns
the invariant interval. In any frame, its coordinate representation is g = diag(1,−1,−1,−1).
We are assured that this representation is correct in all frames because of the way we
have defined invariant interval and our earlier proof that it is invariant under Lorentz
transformations. We will from here on refer to the g defined in this way as the metric tensor
and will not distinguish between g and its coordinate representation g; we will in general
just write gµν .

Covariant and Contravariant Vectors and Indices

In general, for any metric tensor, we may now define “down” indices to be obtained by
contraction of the metric tensor with a vector:

aµ = gµν a
ν

so then

|aµ|2 = gµν a
µ aν = aµ a

µ

“up” indices are called covariant indices and “down” indices are called contravariant
indices. We’ll explain these names below. Now that we have a mechanism to “raise”
indices, we need one to lower them. Obviously, we would like the operations of raising and
lowering to be inverses of each other, so it is natural to define

gµν =
(
g−1
)
µν
⇐⇒ gµν gνσ = gµν g

νσ = δµσ = δ σ
µ

where both versions of δ are the identity tensor. That is, gµν is just the matrix inverse of
gµν . The above statements are definitions; they need not be justified any further. Note
that the above implies that

g ν
µ = δ ν

µ gµν = δµν

That is, the metric tensor with one up and one down index is always the identity tensor.
Given the above definition, it is consistent to define the operation of raising a lowered
index as contraction with gµν :

gµν aν = gµν gνσ a
σ = aµ

Finally, the name covariant comes from the fact that the original vectors are covariant
under Lorentz transformations – they follow a certain set of rules for transforming under
Lorentz transformations. The name contravariant indicates that contravariant vectors
may transform under Lorentz transformations in a different way than covariant vectors.
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Contravariant vectors are also known as 1-forms. We will not make use of that nomencla-
ture, but those familiar with differential geometry will recognize it.

We now explain the choice of index location on Lorentz transformation matrices: we want
to contract Λ with a covariant vector and obtain another covariant vector, so Λ must be
defined with one up and one down index. This holds not just for Lorentz transformations,
but any kind of coordinate transformation that acts on covariant vector representations.

For our specific case of the special relativity metric tensor, gµν = diag(1,−1,−1,−1), we
see that gµν = diag(1,−1,−1,−1) is the same. Also, with g in hand, we can see how
contravariant vectors transform. The coordinates representation of a contravariant vector
differs only from that of its corresponding covariant vector by a sign flip in all all the spatial
coordinates. How this affects Lorentz transformation properties is seen as follows:

x̃µ = gµν x̃
ν = gµν Λνσ x

σ = gµν Λνσ g
σλ xλ = Λ λ

µ xλ

with Λ λ
µ = gµν g

σλ Λνσ

(we have extended the raising/lower effect of g from vectors to the Λ matrices). If one works
out component-by-component the last line, one sees that Λ λ

µ is simply Λµλ with the sign of
the velocity ~β reversed. Thus, contravariant vectors do indeed transform in a different way
from covariant vectors for Lorentz transformations.

As a counterexample, consider rotations in three spatial dimensions. The metric tensor
is the identity matrix (as is its inverse), so there is no distinction between covariant and
contravariant vectors.

Finally, one can obviously define more general second-rank and higher-rank tensors under
Lorentz transformations. For such objects, depending on how they are defined, some indices
may transform like covariant vectors, others like contravariant vectors. These are therefore
called covariant indices and contravariant indices. Just as we saw that rotation matri-
ces in three spatial dimensions are second-rank tensors, we see that Lorentz transformation
matrices are second-rank tensors under Lorentz transformations with one covariant and one
contravariant index.

Lorentz Transformations, Rotations, and Group Structure

Let’s return briefly to rotations in three dimensions. We decided that all rotations must
preserve vector norms. We proved that all norm-preserving transformations are orthonor-
mal. If we consider the larger set of norm-preserving transformation, we must also include
reflections and products of reflections and rotations. The group of all orthonormal trans-
formations in three dimensions, including both reflections and rotations, is known as O(3);
the O is for “orthonormal”. The subgroup consisting only of rotations is known as SO(3).
The S is for “special,” referring to the fact that these transformations have determinant
+1, while elements of the O(3) group may have determinant +1 or −1.

Taking rotations as inspiration, we may ask two questions: 1) how do we generically write
the requirement that a transformation preserve the invariant interval; and 2) is there a
larger set of transformations beyond Lorentz boosts that preserve the invariant interval.
Question 1) first. Algebraically, we consider transformations Λµν with x̃µ = Λµν xν and
require

gµν x̃
µ x̃ν = gµν x

µ xν
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The definition of invariant interval requires g to have the same coordinate representation in
all frames, so there is no ambiguity there. Rewriting, we have

gµν Λµλ x
λ Λνσ x

σ = gµν x
µ xν

Since xµ is arbitrary, we thus require

Λµν Λσλgµσ = gνλ =⇒ Λµν Λ α
µ = δ α

ν

(For Lorentz boosts, we had earlier seen that Λ ν
µ is Λµν with the sign of the velocity reversed,

so the two matrices are inverses. We see that same property here.) We define the set of all
transformations that satisfy the above to be the homogeneous Lorentz group.3

This set of transformations turns out to be more general than just the boosts. Clearly,
spatial rotations and reflections belong to the group because they preserve the invariant
interval (by preserving the three-dimensional norm). It may include time and/or spatial
inversions also. If you restrict to transformations satisfying Λ0

0 ≥ 1 and det(Λ) = |Λ| = 1,
then one obtains the proper homogeneous Lorentz group.4 This is the subset of the
homogeneous Lorentz group that preserves time and space orientation (hence the name
“proper”) (and also preserves the sign of the volume element). Clearly, Lorentz boosts
and pure spatial rotations are included therein. In fact, one can show that any member of
this group can be decomposed purely in terms of boosts and spatial rotations (we won’t
show that here). Another interesting fact is that, when one combines two boosts along
different directions, the product can in general be decomposed in terms of a single boost
and a spatial rotation (nor will we show that here). Hence, boosts themselves do not form a
closed subgroup. Boosts along one direction form a closed subgroup, but any set of boosts
along more than one dimension must include rotations to form a closed group.5

The Lorentz Group as a Lie Group

Just as we were able to define generators for spatial rotations and obtain finite rotations as
exponentials of the product of the generators and a rotation axis, we may similarly define
generators for Lorentz transformations. The obvious set (based on the simple decomposition
of the time-time and space-time components of the Lorentz transformation matrix) is

Kx =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 Ky =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 Kz =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


Boosts may be written in terms of these generators in the form

Infinitesimal : Λ(δ~β) = 1 + δ~β · ~K

Finite : Λ(~β) = exp
(
~η · ~K

)
~η = β̂

(
tanh−1 β

)
3One can show that the set of transformations satisfying the given conditions is indeed a group by simply showing

that the product of two elements satisfies the same condition – the set is closed under the matrix multiplication
operation. Associativity is ensured by the associativity of matrix multiplication. Existence of an identity is obvious
and the existence of inverses is obvious from the second half of the condition given.

4One can show |Λ0
0| ≥ 1 always holds. Λ0

0 ≥ 1 transformations are called orthochronous and Λ0
0 ≤ −1

transformations are called non-orthochronous.
5We note that, if instead of requiring invariance of xµ xµ, one instead requires only that the invariant intervals for

differences of coordinates – e.g., (aµ − bµ) (aµ − bµ) – be preserved, then one may include spatial translations also.
This group is called the inhomogeneous Lorentz group or Poincaré group. Obviously, it is simply a larger
group of transformations under which we expect physics to be covariant.
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One can calculate commutation relations among the boost generators and between the boost
generators and rotation generators:

[Mi,Mj ] = εijk Mk

[Ki,Kj ] = −εijk Mk

[Mi,Kj ] = εijk Kk

As already mentioned above, we see the intimate relationship between boosts and rotations.
An arbitrary combination of boosts and rotations can be written as

Infinitesimal : Λ(δ~β, δ~θ) = 1 + δ~β · ~K + δ~θ · ~M

Finite : Λ(~β, ~θ) = exp
(
~η · ~K + ~θ · ~M

)
The Lie algebra and group defined by the above commutation relations and exponentials is
known as SO(3, 1) (with the S indicating proper transformations only). We state without
further discussion that the above relationship between boosts and rotations is a hint of the
intimate relationship between Lorentz covariance and spin in quantum field theory. You will
also see an application of this intermingling when you study Thomas precession in E&M.

6.1.4 Physical Implications

In this section, we extend to special relativity many of the quantities we are familiar with from
classical mechanics – velocity, energy, momentum, angular momentum, and the Lagrangian and
Hamiltonian functions.

Addition of Velocities

Let’s get back to physics. We can determine the law for addition of velocities in special
relativity by combining two boosts. That is, suppose frame F1 is moving with speed β1 x̂
with respect to frame F and frame F is moving at speed β2 x̂ with respect to F̃ . We can
obtain the speed of F1 in F̃ by asking at what speed the origin of F1 moves in F . The
origin of the F1 frame has coordinate representation xµ = (τ, 0, 0, 0) for all time in F1. We
need to obtain the product of the two individual boost matrices to transform the F1 origin’s
position four-vector to the frame F̃ :

Λ(β12) = Λ(β2) Λ(β1) =


γ2 γ2 β2 0 0

γ2 β2 γ2 0 0
0 0 1 0
0 0 0 1




γ1 γ1 β1 0 0
γ1 β1 γ1 0 0

0 0 1 0
0 0 0 1



=


γ2 γ1 (1 + β2 β1) γ2 γ1 (β2 + β1) 0 0
γ2 γ1 (β2 + β1) γ2 γ1 (1 + β2 β1) 0 0

0 0 1 0
0 0 0 1


To obtain the coordinate representation of F1’s origin in frame F̃ , we apply the above
product boost matrix to it, which yields x̃µ = γ2 γ1 (1 + β1 β2, β1 + β2, 0, 0) τ . The speed
of the origin is thus

β12 =
x̃1

x̃0
=

β1 + β2

1 + β1 β2
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One can obtain this through simpler, though less general, means by simply realizing that
the Lorentz transformation rules apply equally well to differential displacements in space
and time. That is, if a particle has velocity ux in the F frame, then our vector in the F
frame is (dt, dx) = (1, ux) dt. Let’s transform this to frame F̃ as defined above. We Lorentz
transform the differential displacements:

dx̃ = γ (dx+ β dt) = γ (ux + β) dt
dt̃ = γ (β ux + 1) dt

So then we have

ũx =
dx̃

dt̃
=

ux + β

1 + ux β

as we found using the boost matrices. Either way one derives it, the formula has a reasonable
form – it is limited above by 1 and it reduces to the Galilean limit if β � 1. Note that, if
we work in terms of rapidity, the parallel velocity addition rule implies that rapidities add
simply:

β1 = tanh η1 β2 = tanh η2 β12 =
β1 + β2

1 + β1 β2
=

tanh η1 + tanh η2

1 + tanh η1 tanh η2
= tanh η1 + η2

Note that all our different formulae for the addition of parallel velocities imply that such
boosts commute. This only holds for parallel boosts.

Now, let’s consider the case of the first velocity being in an arbitrary direction. We’ll keep
the second velocity along the x axis for simplicity without loss of generality.

• Boost matrix method. Our first boost matrix must now be in an arbitrary direction.
Rather than calculate the full matrix, let’s realize that, above, we only applied the
matrix to the four-vector (τ, 0, 0, 0). Application of a boost matrix to this four-vector
returns the product of the first column of the boost matrix and τ ; that first column is
just γ1(1, ~β1). So then we only need apply the second boost matrix to this four-vector.
That is:

x̃µ = Λ(β2x̂) Λ(~β1)


τ
0
0
0

 =


γ2 γ2 β2 0 0

γ2 β2 γ2 0 0
0 0 1 0
0 0 0 1




1
β1,x

β1,y

β1,z

 γ1 τ

=


γ2 (1 + β2 β1,x)
γ2 (β2 + β1,x)

β1,y

β1,z

 γ1 τ

So we obtain

β12,x =
β2 + β1,x

1 + β2 β1,x

β12,y =
1
γ2

β1,y

1 + β2 β1,x

β12,z = =
1
γ2

β1,z

1 + β2 β1,x
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• Simple method. If a particle has velocity ~u in the F frame, then the vector in the F
frame we will work with is (dt, dx, dy, dz) = (1, ux, uy, uz) dt. The Lorentz transforma-
tion gives

dt̃ = γ (β ux + 1) dt
dx̃ = γ (ux + β) dt
dỹ = uy dt

dz̃ = uz dt

Thus, we have

ũx =
dx̃

dt̃
=

β + ux
1 + β ux

ũy =
dỹ

dt̃
=

1
γ

uy
1 + β ux

ũz =
dỹ

dt̃
=

1
γ

uz
1 + β ux

as expected.

Essentially, the perpendicular velocities have no effect on the addition of the velocities along
the direction of motion, while the perpendicular velocities are affected by both the velocities
along the direction of motion and by time dilation. In the limit ux → 0, the transformation
of perpendicular velocities becomes only a correction for time dilation. Time runs more
slowly in F , so the particle with speed u⊥ in F moves apparently more quickly than it does
in F̃ . For the transverse velocity case, we again have the limitation that the transformed
velocity can be no larger than the speed of light.

Four-Velocity

It is natural to ask whether it is possible to create a space-time vector for the velocity
– an entity that transforms like the space-time position four-vector. This would provide
a “unified” treatment of velocity and position. The trick, of course, is to find a set of
four numbers that are covariant – that transform in the appropriate way under Lorentz
transformations.

First, we must define the proper time. Consider a frame that is moving with the particle
whose velocity we want to specify. In that frame, the particle’s space-time position is always
xµ = (τ, 0, 0, 0) because the particle is at the origin. τ specifies the time in the frame moving
with the particle. Now, τ2 is the invariant interval of the particle’s position; this will be
the same in all reference frames that share the same origin at their time origin. So, one
reasonable definition of a four-velocity is (coordinate-free definition)

⇒
u =

d
⇒
x

dτ

or, if we want the representation in a given frame

uµ =
d xµ

dτ

where xµ is the position of the particle in the frame in which one wants to know the four-
velocity (at some time t in that frame) and τ is the invariant interval associated with the
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particle’s position at that same time t. The notation is somewhat confusing because τ
seems like a rest-frame quantity, so how can it be specified in a different frame? It is a
rest-frame quantity but it is also an invariant quantity. Perhaps a more obvious, though
more cumbersome, definition would be

uµ =
d xµ

d
√
|xµ|2

where |xµ|2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 is the invariant interval associated with the
position of the particle. The definition of four-velocity clearly transforms like the space-
time position Lorentz vector because it is, essentially, the ratio of the space-time position
Lorentz vector to a Lorentz scalar.

So, we have a good formal definition. What does it look like in terms of quantities we
have easy access to – three-velocities? Consider a particle moving at velocity ~βp (possibly
a function of time) in some frame F . (We use the subscript p to distinguish the particle
velocity from that of the frame F relative to another frame F̃ .) The particle’s trajectory is
xµ(t) in this frame. We have the obvious differential relations

dxµ = (1, βpx, βpy, βpz) dt
dτ = γ−1

p dt

where the second relation is simply time dilation. These relations are instantaneously true
even if the particle is accelerating. Thus, the four-velocity in F is

uµ =
dxµ

dτ
=

(1, βpx, βpy, βpz) dt
γ−1
p dt

= γp (1, βpx, βpy, βpz) = γp

(
1, ~βp

)
Obviously, then the general expression is

uµ = γp

(
1, ~βp

)
where γp =

(
1− |~βp|2

)−1/2
is the γ factor associated with the particle velocity ~βp. Thus,

given a particle trajectory, we can easily calculate the four-velocity in any frame.

Is the above definition consistent with the velocity addition rules found earlier? Yes, it is.
The four-velocity calculated above is essentially the first step of our derivation of velocity
addition: it is the transformation of the four-vector (1,~0) from the rest frame of the particle
F1 to the frame F in which its velocity is measured to be ~βp. That Lorentz transformation
matrix’s first column is γp(1, ~βp), which, acting on (1,~0), returns the four-vector γp(1, ~βp),
which matches our definition of four-velocity. The second step would be to transform to the
final frame F̃ in which F moves at velocity ~β. That would just be the Lorentz transformation
of the result of the first step. But we would do the exact same thing in transforming our
four-velocity form to the frame F̃ . So the definitions are consistent.

The Energy-Momentum Four-Vector

One can demonstrate using many different kinds of thought experiments that the classical
definitions of momentum of kinetic energy can no longer hold true in special relativity.
Perhaps this simplest way to see this is simple to realize that, if T = |~p|2/2m continues to
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hold, and ~p = m~u, then velocities exceeding the speed of light can be obtained by simply
giving a particle enough kinetic energy. We need a generalization of energy and momentum.

The definition of four-velocity leads us to suggest the following generalization of momentum:

coordinate-free: ⇒
p = m

⇒
u = m

d
⇒
x

dτ

coordinate-representation: pµ = muµ = γpm
(
1, ~βp

)
We assume that the mass of a particle is a Lorentz scalar in order for the above expression
to be a four-vector. The space terms of our definition are a clear extension of our classical
definition of linear momentum to special relativity. But what about the time term? As you
certainly know, it is the total particle energy, including the rest mass m. We may motivate
that statement by returning to our original relation between kinetic energy and work done
by a force. That is,

T2 − T1 =
∫ 2

1

~F · d~r =
∫ 2

1

d~p

dt
· d~r

=
∫ 2

1

~βp dt ·
d

dt

(
γ m ~βp

)
= m

∫ βp

0
β′ d(γβ′)

ibp
= γ mβ2

p −m
∫ βp

0

β′ dβ′√
1− (β′)2

= γpmβ2
p −m

(√
1− β2

p − 1
)

= (γp − 1)m
βp→0−→ 1

2
mβ2

p

where in the last step we have taken the classical limit to recover our usual low-energy
kinetic energy as a check. So, if (γp − 1)m gives the kinetic energy, then we have little
choice but to consider p0 = γpm = T + m to be some kind of total energy, including the
energy of the mass of the particle. Thus, our relation for the norm of pµ gives

E2 − |~p|2 = m2 ~p = γpm ~βp

Note that ~p reduces to but, is not exactly, the classical momentum.

Note that our definition of the energy-momentum four-vector requires experimental ver-
ification where our definition of four-velocity did not. Here, we are implying a modified
relationship between physically measurable quantities. Of course, the relation has been
verified thoroughly by experiment over the last 100 years.

Kinematics of Scattering

Scattering of relativistic particles is such a ubiquitous application of conservation of four-
momentum that it is worth going through the important parts. Recall that, in our original
description of elastic collisions of particles (Section 1.3.3), we made use of the separate
conservation of energy and momentum to find three equations relating post-collision to
pre-collision quantities. We also transformed to the frame moving with the center of mass.

In our relativistic case, we must modify this somewhat. First, the equivalent of the center-
of-mass system is the center-of-momentum system, where the total spatial component of the
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four-momentum vanishes. This reduces to center-of-mass in the nonrelativistic limit. Sec-
ond, to go into the center-of-momenutm system, we must perform a Lorentz transformation
(or relativistic velocity addition) not a simple linear velocity addition.

We don’t have time to go through the entire exercise; some of it will be assigned as a home-
work. One of the more interesting aspects is the phenomenon of boosting or beaming.
In the nonrelativistic limit, for particles of equal mass, the outgoing particle trajectories
in the lab frame always made a right angle. In relativistic scattering, this angle becomes
smaller as γ increases. Even for nonidentical particles, the lab frame angle between outgoing
trajectories will tend to be squeezed as γ increases.

The Four-Wavevector for Light and the Relativistic Doppler Shift

Light has no rest mass, so our definition of four-momentum does not immediately apply to
light. However, we can think about what are the analogous quantities. One quickly sees
that we might try to define a four-wavevector,

kµ = (ω,~k)

where ω = 2π ν and |~k| = 2π/λ. The invariant length of kµ is

kµ k
µ = (2π)2

(
ν2 − 1

λ2

)
= 0

Since light has no rest mass, this seems like a useful analogy to four-momentum for massive
particles.

One way we can test the above definition is to derive the prediction for the Doppler effect
and test it against other methods of deriving. Suppose we have two frames F and F̃ , both
moving on the same axis as the direction of the light wave, with frame F moving with
velocity ~β relative to F̃ in the same direction as the light’s wavevector ~k. Let the origins of
the two frames coincide at t = t̃ = 0.

Suppose an observer at the origin of the frame F̃ makes a measurement of the period
of the light wave by measuring the time interval between two crests of the wave passing
his location; call this time T̃ . Suppose the same observer also measures the separation
between two crests at no time separation, giving the wavelength λ̃. These are time and
length measurements, so we can do the analysis by the same kind of technique as we used
to discuss time dilation and length contraction. Note that basic electromagnetism tells us
ν̃ = λ̃−1, so T̃ = λ̃.

So, suppose an observer at the origin of the F frame makes the same kind of measurements.
Let’s determine where those events are in the F̃ frame. For the period measurement, we
can assume that the first event occurs at the space-time origin of both frames (since those
origins coincide at the time origin of both frames). The second event occurs when the next
crest of the light wave has caught up with the moving observer. This happens when the
trajectories of the crest and the observer intersect. At t = t̃ = 0, the second crest is at
position −λ̃, and the crest moves at speed 1, so it covers a distance t̃ in the time t̃. The
origin of the F frame coincides with the origin of the F̃ frame at t = t̃ = 0 and has moved
a distance β t̃ in the F̃ frame in the time t̃. Requiring that the second crest coincide with
the F origin at t̃ gives

−λ̃+ t̃ = β t̃ =⇒ t̃ =
λ̃

1− β
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These two events are separated in space in F̃ by the distance the moving observer travels in
that time, β t̃. So our space-time interval in F̃ is

(
1

1−β ,
β

1−β

)
λ̃. The moving observer sees

this as the interval (T, 0) where T is the apparent period measured by the moving observer.
The Lorentz transformation gives us

T = −γ
(
−β β

1− β
+

1
1− β

)
λ̃ =

√
1 + β

1− β
λ̃ 0 = γ

(
β

1− β
− β 1

1− β

)
λ̃

The spatial separation vanishes as expected and we obtain the relation

ν

ν̃
=

√
1− β
1 + β

where F and F̃ are both moving in the same direction as the wave and β is the velocity
of F relative to F̃ . This result is as we expect, because, if the F observer is moving faster
than F̃ in the same direction as the wave, F will tend to “catch” up with the crests and see
them as separated by a longer time than F̃ will. F will see a lower frequency, as indicated
by the above.

Note that we could have applied similar logic to a wavelength measurement by the F
observer and would have obtained the same relationship between quantities in the F and
F̃ frames.

Now, let’s try the calculation by applying the Lorentz transformation to the four-wavevector.
We have

k = γ
(
k̃ − β ω̃

)
ω = −γ

(
β k̃ − ω̃

)
Now, use k = 2π

λ = 2π ν = ω and k̃ = ω̃ to obtain

ω = γ (ω̃ − β ω̃) =⇒ ν

ν̃
=

√
1− β
1 + β

We obtain the same result as by the argument that did not rely on the definition of the
four-wavevector, so the four-wavevector definition is validated.
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6.1.5 Lagrangian and Hamiltonian Dynamics in Relativity

It is interesting to ask whether it is possible to define Lagrangian and Hamiltonian functions in
special relativity. The first requirement we must make is that there is no potential energy function;
such a function would pick a particular frame of reference to be special, so it would be impossible to
establish any kind of Lorentz-covariant formulation of the Lagrangian. So we will consider only free
particles. In E&M, you will consider the Lagrangian for a particle moving in an electromagnetic
field, which can be written in a Lorentz-covariant way due to the inherent Lorentz covariance of
the electromagnetic field.

The Action as a Lorentz Scalar and the Lorentz-Covariant Lagrangian

The action is an obvious candidate for promotion to a Lorentz scalar. For a free particle,
there are only two Lorentz scalars available to work with, the particle mass and its proper
time (time in its rest frame). The action for a free particle must be

S = λ

∫ B

A
mdτ = λ

∫ tB

tA

m

γp
dt

We have begun by using the proper time and then we have rewritten for an arbitrary frame
using time dilation. We can figure out the appropriate constant by requiring that we obtain
the correct nonrelativistic limit for L, L→ 1

2 mv2. We have

L = λm
√

1− β2
p ≈ λm− λm

1
2
β2
p

If we take λ = −1, we obtain the correct limit. So our Lorentz covariant Lagrangian is

L = −m
γp

Note that L is not Lorentz invariant; rather, it is the action that is Lorentz invariant!

Relativistic Canonical Momentum and the Hamiltonian

Performing the usual Euler-Lagrange procedure obtains the conserved canonical momenta

~p =
m ~βp√
1− β2

p

= γpm ~βp

It is reassuring that the canonical momentum thus obtained is the space components of the
four-momentum we defined using only the principles of Lorentz covariance and recovery of
the nonrelativistic limit. The Hamiltonian is obtained in the obvious way

H = ~p · ~βp − L =
m√

1− β2
p

= mγp

Similarly, we recover the time component of the four-momentum. Because there is no
time dependence, H = E is conserved in any given reference frame. It of course is a
component of the four-momentum when one considers transformations between frames.
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Appendix A

Mathematical Appendix

This appendix is a reference for various mathematical definitions, relations, and theorems.

A.1 Notational Conventions for Mathematical Symbols

Typefaces:

Category Typeface Example
scalar lower case, normal weight, italic s

vector lower case, normal weight, italic, with arrow ~a

vector coordinate lower case, boldface, with arrow ~a
representation

vector coordinate lower case, roman, subscript ai
representation component

unit vector normal weight, italic, with hat â

tensor upper case, math calligrahic A
tensor coordinate upper case, boldface A
representation or

matrix
tensor coordinate upper case, roman, with subscripts Ai1···in

representation component

We will violate the above convention is some special cases where using the standard notation is
more important; e.g., total angular momentum will be referred to as ~L, position and momentum
of center of mass as ~R and ~P .
The following special symbols are defined:

δij Kronecker delta
= 1 when i = j
= 0 otherwise

εijk Levi-Civita density or tensor
= 1 when i, j, k are an even permutation of 1, 2, 3
= −1 when odd permutation
= 0 otherwise (two or more of i, j, k are equal)

When written as matrices, we will write the Kronecker delta as the identity matrix, 1, and the
Levi-Civita symbol as ~ε (the underline implies two of the indices, the vector implies the third).
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Einstein summation convention: When any two indices are repeated, they are summed over;
e.g., ai bi ≡

∑
i ai bi

A.2 Coordinate Systems

The rectangular coordinate system (with unit vectors x̂, ŷ, and ẑ) is assumed to be obvious and
taken as our starting point. These unit vectors are independent of position, so they serve as a
natural basis in which to define the unit vectors of curvilinear systems.

Cylindrical

The three coordinates are

ρ =
√
x2 + y2 φ = tan−1

(y
x

)
z = z (A.1)

The inverse relations are

x = ρ cosφ y = ρ sinφ z = z (A.2)

The area elements are

ρ dρ dφ dρ dz ρ dφ dz (A.3)

The volume element is

ρ dρ dφ dz (A.4)

The line element is

ds2 = dρ2 + ρ2 dφ2 + dz2 (A.5)

The unit vectors are

ρ̂ = x̂ cosφ+ ŷ sinφ φ̂ = −x̂ sinφ+ ŷ cosφ ẑ = ẑ (A.6)

Spherical

The three coordinates are

r =
√
x2 + y2 + y2φ = tan−1

(y
x

)
θ = cos−1

(z
r

)
(A.7)

The inverse relations are

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ (A.8)

The area elements are

r sin θ dr dφ r dr dθ r2 sin θ dθ dφ (A.9)

The volume element is

r2 sin θ dr dθ dφ (A.10)
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The line element is

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 (A.11)

The unit vectors are

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (A.12)

φ̂ = −x̂ sinφ+ ŷ cosφ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

A.3 Vector and Tensor Definitions and Algebraic Identities

Definitions

Dot and Cross Products

~a ·~b = a b cos(~a,~b) = δij ai bj = AiBj (A.13)

~a×~b = n̂ AB sin(~a,~b) = εijk ~eiAj Bk (A.14)

where (~a,~b) is the angle from ~a to ~b and n̂ is the unit vector normal to the plane defined by ~a, ~b,
and the right-hand rule, and the secondary expression using vector components hold in rectangular
coordinates.

Matrix Representation of Cross Products

Define the three matrices

(Mi)jk = −εijk (A.15)

or

Mx =

 0 0 0
0 0 −1
0 1 0

 My =

 0 0 1
0 0 0
−1 0 0

 Mz =

 0 −1 0
1 0 0
0 0 0

 (A.16)

Then any cross product operation can be rewritten using these matrices:

~a×~b = (~a · x̂Mx + ~a · ŷMy + ~a · ẑMz)~b =
(
~a · ~M

)
~b (A.17)

The above matrices satisfy the following relations

M2
x = −

 0 0 0
0 1 0
0 0 1

 M2
y = −

 1 0 0
0 0 0
0 0 1

 M2
z = −

 1 0 0
0 1 0
0 0 0

 (A.18)

and

MiMj −MjMi ≡ [Mi,Mj ] = εijk Mk (A.19)
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Algebraic Identities

Most of the following identities rely on a few facts about products of εijk symbols:

εijk εilm = δjl δkm − δjm δkl (A.20)
εijk δij = 0 (A.21)
εijk εljk = 2 δil (A.22)
εijk εijk = 6 (A.23)

Using the above, one can easily prove

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b) ≡ ~a~b~c (A.24)
~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c (A.25)

(~a×~b) · (~c× ~d) = ~a ·
[
~b× (~c× ~d)

]
(A.26)

= ~a ·
[
(~b · ~d)~c− (~b · ~c) ~d

]
(A.27)

= (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c) (A.28)

(~a×~b)× (~c× ~d) =
[
(~a×~b) · ~d

]
~c−

[
(~a×~b) · ~c

]
~d (A.29)

=
(
~a~b ~d

)
~c−

(
~a~b~c

)
~d (A.30)

=
(
~a~c ~d

)
~b−

(
~b~c ~d

)
~a (A.31)

Note that, if any of the vectors are the gradient vector ~∇, care must be taken in how the above
expressions are written out to ensure ~∇ acts on the appropriate vectors. Any two quantities that
commute in the above should be commuted as necessary to get reasonable behavior of ~∇. But in
some cases, even that may not be sufficient and you will have to keep track of which vector should
be acted on by ~∇. A good example is the second line when ~b = ~∇. In the simple case of ~a being
constant, one simply needs to move the ~b in the first term:

~a×
(
~∇× ~c

)
= ~∇ (~a · ~c)−

(
~a · ~∇

)
~c

But if ~a depends on position and does not give zero when acted on by ~∇, then the above must be
read with care. One has to somehow remember that ~∇ should not be allowed to act on ~a since it
does not act on ~a in the original expression. Since the above expression does not correctly convey
that meaning, it is better to abandon the vector notation. The completely unambiguous way to
write it, using index notation, is[

~a× (~∇× ~c)
]
i
=
∑
j

aj∇icj −
∑
j

aj∇jci

The key point is that in the first term, ~a is in a dot product with ~c, but ~∇ must be allowed to act
on ~c first, and not as ~∇ · ~c.

Rotations

Infinitesimal Rotations

Infinitesimal rotation of a vector ~r by an infinitesimal angle δθ around the axis δ~θ/|δ~θ| is given by

~r ′ = ~r + δ~θ × ~r
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This lets us define angular velocity implicitly via

d~r

dt
= ~ω × ~r

A matrix operator version of this is given by

~r ′ = R
δ~θ
~r

R
δ~θ

= 1 +
(
δ~θ · x̂Mx + δ~θ · ŷMy + δ~θ · ẑMz

)
≡ 1 + δ~θ · ~M

(Mi)jk = −εijk

Infinitesimal rotations add linearly and commutatively like vectors.

Finite Rotations

Finite rotations may be obtained from infinitesimal rotations, giving

R~θ
=

∞∑
n=0

1
n!

(
~θ · ~M

)n
≡ exp

(
~θ · ~M

)
For θ along, for example, the z axis, this form reduces to

R =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Finite rotations do not commute unless about the same axis.

Algebraic Properties of Finite Rotations

Rotation matrices must preserve the norms and dot products of vectors since they only rotate
coordinate axes. Therefore, they satisfy a number of equivalent algebraic relations, collectively
known as orthonormality:

δij =
∑
k

RkiRkj =
∑
k

RikRjk

1 = RRT = RT R

RT = R−1

Interpretation of Rotations

• Active transformation

In an active transformation, we think of the transformation as actively rotating the particle
whose position is given by the vector ~r(t) relative to the coordinate axes. The rotations of
the form ~ω × ~r that we began with are really of that form. The coordinate system that the
rotation is relative to is inertial, the coordinate system in which the rotating vector is fixed
is noninertial. This point of view is most appropriate for studying motion of a rigid body as
viewed from the “space”, or inertial, frame.
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• Passive transformation

We think of a passive transformation as simply a relabeling of points in space according to
a new coordinate system. In this picture, the coordinate system in which the particle is at
rest, F , is inertial, while the F ′ system coordinate axes rotate and so F ′ is not an inertial
system. When discussing dynamics of particles as viewed from a rotating system, this will be
the appropriate point of view to take.

• Why there can be confusion

The difficulty arises because the transformation relating the two systems is mathematically
identical, but the physical interpretation is very different. We use the mathematical equiv-
alence to relate one type of transformation to another to allow us to write down the rules.
But, the definition of which system is inertial differs between the cases, so we must be very
careful. In our discussion of rotating physical systems, it is usually quite clear that the coor-
dinate fixed to the rotating object is noninertial, in which case the active viewpoint is the
appropriate one.

Representation of Rotations by Euler Angles

Any rotation matrix can be represented in terms of a product of three rotations by the Euler angles
φ, θ, and ψ. If R is the matrix that rotates from F to F ′, then we have

R(φ, θ, ψ) = R1(φ)R2(θ)R3(ψ) (A.32)

=

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

(A.33)

=

 cψ cφ − cθ sφ sψ −sψ cφ − cθ sφ cψ sθ sφ
cψ sφ + cθ cφ sψ −sφ sψ + cθ cφ cψ −sθ cφ

sθ sψ sθ cψ cθ

 (A.34)

~r ′ = R(φ, θ, ψ)~r (A.35)

where cψ = cosψ, sψ = sinψ, etc. is a convenient shorthand. R3(ψ) is a rotation by angle ψ
about the z axis of the F system. R2(θ) is a rotation by an angle θ about the x axis of the F1

system that is obtained from the F system by R1(ψ). R3(φ) is a rotation about the z axis of the
F2 system that is obtained from the F1 system by R2(θ). The Euler angles are convenient because
ψ naturally parameterizes the spin of a symmetric top about its symmetry axis, θ gives the polar
tip angle of the spin axis from the precession axis, and φ is the precession angle. One can show
that any rotation is a rotation about a particular vector (by using the orthonormality of rotation
matrices). The rotation angle about that vector, Φ, can be related to the Euler angles by

cos
(

Φ
2

)
= cos

(
φ+ ψ

2

)
cos
(
θ

2

)
(A.36)

In terms of Euler angles, the angular velocity vector has representations in the space (inertial)
frame F ′ and the body (rotating, fixed to the rigid body) frame F :

w ′ =

 θ̇ cφ + ψ̇ sφ sθ
θ̇ sφ − ψ̇ cφ sθ
φ̇+ ψ̇ cθ

 w =

 θ̇ cψ + φ̇ sψ sθ
−θ̇ sψ + φ̇ cψ sθ

ψ̇ + φ̇ cθ


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Tensors

A rank n tensor T is an object that has coordinate representations T each consisting of Nn

components Ti1···in (where N is the dimensionality of the physical space, N = 3 for what we
consider in this course) with transformation properties

T ′
i1···in = Ri1j1 · · ·RinjnTj1···jn

under rotations of the coordinate system by the rotation matrix R (which rotates from the unprimed
to the primed frame, ~r ′ = R~r). A vector is a rank 1 tensor, a scalar is a rank 0 tensor. An equivalent
definition is to require that for n arbitrary vectors {~ai} with coordinate representation {ai,ji}, the
quantity

s = Ti1···in a1,i1 · · · an,in

is a scalar (invariant under choice of rotational orientation of coordinate axes). An isotropic tensor
is one whose coordinate representation is the same in all coordinate systems. 1 is an isotropic rank
2 tensor. ~M =M, with components (Mi)jk = −εijk, is an isotropic rank 3 tensor.
The coordinate transformation of rank 2 tensors can be represented as simple matrix multiplication.

T ′ij = Rik Rjl Tkl = Rik TklR
T
lj

T ′ = R T RT = R T R−1

A particularly interesting second-rank tensor is the contraction of any vector with ~M. The action
of this entity is the same as that of a vector cross product:(

~a · ~M
)
~b = ~a×~b

Because it is a second-rank tensor, and because ~M is isotropic, the transformation properties of
~a · ~M are simply

~a ′ · ~M = R
(
~a · ~M

)
RT (A.37)

This implies that rotation of a cross product is equivalent to the cross product of the rotations of
the individual vectors:

R
(
~a×~b

)
= R

(
~a · ~M

)
~b = R

(
~a · ~M

)
RT R~b =

(
~a ′ · ~M

)
~b ′ = ~a ′ ×~b ′

Extension to Relativistic Systems

Lorentz transformations (boosts) are generated by

Kx =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 Ky =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 Kz =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


Boosts may be written in terms of these generators in the form

Infinitesimal : Λ(δ~β) = 1 + δ~β · ~K

Finite : Λ(~β) = exp
(
~η · ~K

)
~η = β̂

(
tanh−1 β

)
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The set of all spatial rotations, reflections, and Lorentz transformations form the homogeneous
Lorentz group. The subgroup containing transformations with Λ0

0 ≥ 1 and det(Λ) = 1 is called
the proper homogenous Lorentz group. Boosts alone do not form a closed subgroup unless one
restricts to boosts along one direction only. Boosts along a single direction always form a closed
group. The transformations in the proper homogeneous Lorentz group can be generated using the
rotation generators Mx, My, and Mz and the boost generators. One can calculate commutation
relations among the boost generators and between the boost generators and rotation generators:

[Mi,Mj ] = εijk Mk

[Ki,Kj ] = −εijk Mk

[Mi,Kj ] = εijk Kk

An arbitrary combination of boosts and rotations can be written as

Infinitesimal : Λ(δ~β, δ~θ) = 1 + δ~β · ~K + δ~θ · ~M

Finite : Λ(~β, ~θ) = exp
(
~η · ~K + ~θ · ~M

)

A.4 Vector Calculus

Differentiation

Given a function g of multiple coordinate variables {qk} and time t, the total time derivative of
g is

d

dt
g({qk}, t) =

∂g

∂t
+
∑
k

∂g

∂qk
(A.38)

Vector Differential Operators in Different Coordinate Systems

Rectangular Coordinates

~∇U = ~ei
∂U

∂xi
(A.39)

~∇ · ~a =
∂Ai
∂xi

(A.40)

∇2U = ~∇ · ~∇U =
∂2U

∂x2
i

(A.41)

~∇× ~a = εijk ~ei
∂Ak
∂xj

(A.42)
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Cylindrical Coordinates

~∇U = ρ̂
∂U

∂ρ
+
φ̂

ρ

∂U

∂φ
+ ẑ

∂U

∂z
(A.43)

~∇ · ~a =
1
ρ

∂

∂ρ
(ρ aρ) +

1
ρ

∂aφ
∂φ

+
∂az
∂z

(A.44)

∇2U = ~∇ · ~∇U =
1
ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+

1
ρ2

∂2U

∂φ2
+
∂2U

∂z2
(A.45)

~∇× ~a =
[
1
ρ

∂az
∂φ
−
∂aφ
∂z

]
ρ̂+

[
∂ar
∂z
− ∂az

∂r

]
φ̂+

1
ρ

[
∂

∂ρ
(ρ aφ)−

∂ar
∂φ

]
ẑ (A.46)

Spherical Coordinates

~∇U = r̂
∂U

∂r
+
θ̂

r

∂U

∂θ
+

φ̂

r sin θ
∂U

∂φ
(A.47)

~∇ · ~a =
1
r2

∂

∂r

(
r2ar

)
+

1
r sin θ

∂

∂θ
(sin θ aθ) +

1
r sin θ

∂aφ
∂φ

(A.48)

∇2U = ~∇ · ~∇U =
1
r2

∂

∂r

(
r2
∂U

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1
r2 sin2 θ

∂2U

∂φ2
(A.49)

~∇× ~a =
1

r sin θ

[
∂

∂θ
(sin θ aφ)−

∂aθ
∂φ

]
r̂ (A.50)

+
1
r

[
1

sin θ
∂ar
∂φ
− ∂

∂r
(r aφ)

]
θ̂ +

1
r

[
∂

∂r
(r aθ)−

∂ar
∂θ

]
φ̂ (A.51)

Relations between Differential and Integral Forms

~a = −~∇U ⇐⇒ U(~r2)− U(~r1) = −
∫ ~r2

~r1

~a(~r) · d~r (A.52)

Vector Theorems

Gauss’ Theorem

Let S be a closed surface with outward pointing normal n̂(~r) enclosing a volume V . Let ~f(~r) be a
vector field. Gauss’ divergence theorem is∫

S
d2r n̂(~r) · ~f(~r) =

∫
V
d3r ~∇ · ~f(~r) (A.53)

Stokes’ Theorem

Let C be a closed loop with line element d~r. Let S be any surface bounded by C, with surface
normal n̂(~r), with sign defined with respect to d~r by the right-hand rule. Let ~f(~r) be vector field.
Stokes’ Thorem is ∫

C
d~r · ~f(~r) =

∫
S
d2r n̂(~r) · ~∇× ~f(~r) (A.54)

355



APPENDIX A. MATHEMATICAL APPENDIX

A.5 Taylor Expansion

The Taylor expansion is one of the most useful techniques in physics to find limiting behaviors or
dynamics for small deviations from an equilibrium point. Generically, the Taylor expansion of a
function of one variable is

f(x0 + δx) = f(x0) +
∞∑
n=1

1
n

dnf

dxn

∣∣∣∣
x=x0

(δx)n (A.55)

= f(x0) +
df

dx

∣∣∣∣
x=x0

δx+
1
2
d2f

dx2

∣∣∣∣
x=x0

(δx)2 + · · · (A.56)

For multiple dimensions, one has

f(~x0 + δ~x) = f(~x0) +
∞∑
n=1

1
n

(
δ~x · ~∇

)n
f

∣∣∣∣
~x=~x0

(δx)n (A.57)

= f(~x0) +
(
δ~x · ~∇

)
f
∣∣∣
~x=~x0

+
1
2

(
δ~x · ~∇

)2
∣∣∣∣
~x=~x0

+ · · · (A.58)

When expanding a potential function about an equilibrium point ~x0, the first-order term will vanish,
leaving a function that is quadratic in the displacement from the equilibrium – a simple harmonic
oscillator. A frequently used Taylor expansion is

1
1± x

= 1∓ x− x2 + · · ·

Another frequent use is to expand denominators of the form |~R− ~r|n for the case |~r| � |~R|:

1∣∣∣~R− ~r∣∣∣n =
1(

R2 + r2 − 2 ~R · ~r
)n/2 =

1
R

1(
1− 2

(
R̂ · r̂

)
r
R + r2

R2

)n/2
=

1
R

1

1 + n
2

[
−2
(
R̂ · r̂

)
r
R + r2

R2

]
+ 1

2
n
2
n−2

2

[
−2
(
R̂ · r̂

)
r
R + r2

R2

]2
+ · · ·

=
1
R

1

1 + n
2

[
−2
(
R̂ · r̂

)
r
R + r2

R2

]
+ n(n−2)

8

[
4
(
R̂ · r̂

)2
r2

R2

]
+ · · ·

=
1
R

1

1− n
(
R̂ · r̂

)
r
R + n

2
r2

R2

[
1 + (n− 2)

(
R̂ · r̂

)2
]

+ · · ·

=
1
R

{
1 + n

r

R

(
R̂ · r̂

)
− n

2
r2

R2

[
1 + (n− 2)

(
R̂ · r̂

)2
]
− n2

(
R̂ · r̂

)2 r2

R2
+ · · ·

}
=

1
R

{
1 + n

r

R

(
R̂ · r̂

)
+
n

2
r2

R2

[
−1− [(n− 2)− 2]

(
R̂ · r̂

)2
]

+ · · ·
}

=
1
R

{
1 + n

r

R

(
R̂ · r̂

)
+
n

2
r2

R2

[
−1− (n− 4)

(
R̂ · r̂

)2
]

+ · · ·
}

Note that we could have obtained the above somewhat more quickly by just directly Taylor ex-

panding the function
∣∣∣1− ~R·~r

R2

∣∣∣−n rather than first expanding
∣∣∣1− ~R·~r

R2

∣∣∣n in the denominator and
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then using our (1± x)−1 expansion. But the above is instructive in terms of showing how to keep
terms to a self-consistent order of approximation – notice how we had to carry each expansion to
the second term because there were pieces in both the first and second terms that were of second
order in r

R .
For the specific case usually under consideration, n = 1, we find

1∣∣∣~R− ~r∣∣∣ =
1
R

{
1 +

r

R

(
R̂ · r̂

)
+

1
2
r2

R2

[
3
(
R̂ · r̂

)2
− 1
]

+ · · ·
}

This is known as the multipole expansion – the first term is the dipole, the second term the
quadrupole, etc. You will see this explicitly in electromagnetism.

A.6 Calculus of Variations

Given a functional I of a the function y of the form

I[y] ≡
∫ x1

x0

dxF

(
y,
dy

dx
, x

)
(A.59)

Its variation δI for a variation δy is

δI =
∫ x1

x0

dx

[
∂F

∂y
δy +

∂F

∂ dydx
δ
dy

dx

]
(A.60)

=
∫ x1

x0

dx

[
∂F

∂y
− d

dx

(
∂F

∂ dydx

)]
δy (A.61)

The extremum condition δI = 0 for arbitrary δy away from the extremizing y(x) generates the
Euler equation for the function y(x):

∂F

∂y
− d

dx

(
∂F

∂ dydx

)
= 0 (A.62)

A.7 Legendre Transformations

The Legendre transformation is a generic, fully invertible technique for generating a new pair
of independent variables (x, z) from an initial pair (x, y). A Legendre transformation applied twice
is the identity transformation. It is defined as follows.
Consider a function A(x, y) of two variables x and y with the quantity

z ≡ ∂A

∂y

∣∣∣∣
x

(A.63)

being an invertible function of y. Then the function B(x, z) defined by

B(x, z) ≡ y z −A(x, y) (A.64)

has partial derivatives

∂B

∂x

∣∣∣∣
z

= − ∂A

∂x

∣∣∣∣
y

∂B

∂z

∣∣∣∣
x

= y (A.65)
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B is computed explicitly by inverting the definition of z to find y(x, z) and then substituting for y
in the definition of B. B is then indeed a function of only x and z. The variable x is called the
passive variable and y the active variable because of their different roles in the transform.
Geometric interpretation: Fix the x variable momentarily. The new variable z is the slope
of the tangent to A(x, y) when considered as a function of y only. Since the tangent line must
have value A(x, y) at ordinate value y, the tangent line equation is yz + b = A(x, y) where b is
the intersection of the tangent line with the vertical axis. But, by our Legendre transformation,
b = −B(x, z). That is, the Legendre transform is a mapping, for each x, from ordinate values y
to tangent slope values z, and from the function A(x, y) to the vertical-axis intercept of the line
tangent to A(x, y) in the y direction, which is B(x, z).
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Appendix B

Summary of Physical Results

This appendix contains relations that have been assumed or proven and that arise from physical
considerations.

B.1 Elementary Mechanics

Newtonian Mechanics

Newton’s Second Law

In an inertial reference frame, the rate of change of the momentum of a particle is determined by
the total force on the particle:

d~p

dt
= ~F (B.1)

Newton’s Third Law

weak form
The forces exerted by two particles a and b on each other are equal in magnitude and opposite in
direction. That is, if ~fab is the force exerted on particle a by particle b, then

~fab = −~fba (B.2)

strong form
In addition to the above, the force between the two particles a and b is a function of only the
difference in the two particles’ positions and is directed along the vector between them:

~fab = fab(rab) r̂ab (B.3)

where r̂ab = ~rab/|~rab| and ~rab = ~ra − ~rb. That is, the force is a scalar function of the magnitude of
the position difference and is directed along r̂ab. The mathematical form may seem like a stronger
statement than the verbal form. But such a dependence implies the force must be directed along
r̂ab. The remaining dependence on ~rab must therefore be a scalar, and the only nonzero scalar that
can be formed from ~rab is rab, so the scalar function fab must only be a function of rab.
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Gravitation

The relative position vector is

~r21 = ~r2 − ~r1 (B.4)

The length is denoted by r21 and the unit vector is r̂21 = ~r21/r21
The generic form for the gravitational force on mass distribution 2 exerted by mass distribution 1
is

~F21 = −G
∫
V2

∫
V1

d3r2 d
3r1

ρ1(~r1) ρ2(~r2)
r221

r̂21 (B.5)

Point masses for 1 or 2 are special cases of the above with ρ(~r) = M δ(~r − ~rM ) where ~rM is the
location of the mass.
The gravitational field of a mass distribution at position ~r2 is

~g(~r2) = −G
∫
V1

d3r1
ρ(~r1)
r221

r̂21

The generic form for the gravitational potential energy of two mass distributions is

U = −G
∫
V2

∫
V1

d3r2 d
3r1

ρ1(~r1) ρ2(~r2)
r21

(B.6)

The gravitational potential of a mass distribution at position ~r2 is

Ψ(~r2) = −G
∫
V1

d3r1
ρ1(~r1)
r21

(B.7)

Newton’s iron sphere theorem says that the gravitational potential of a spherically symmetric mass
distribution at a point outside the distribution at radius R from the center of the distribution is is
the same as the potential of a point mass equal to the total mass enclosed by the radius R, and that
the gravitational field at a radius R depends only on mass enclosed by the radius R. Explicitly,
the potential of the mass distribution (with density function ρ(r) and inner and outer radii ri and
ro) is

Ψ(R) =



−G
∫ ro

ri

4π r ρ(r) dr R < ri

− G

R
M(R)−G

∫ ro

R
4π r ρ(r) dr ri < R < ro

− G

R
M(ro) R > ro

(B.8)

where M(R) is the mass contained by radius R,

M(R) =
∫ R

ri

4π r2 ρ(r) dr (B.9)

The gravitational field is

~g(R) =


0 R < ri

− G

R2
M(R) R̂ ri < R < ro

− G

R2
M(ro) R̂ R > ro

(B.10)
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Poisson’s equation for gravity is

−~∇ · ~g = ∇2Ψ = 4πGρ(~r) (B.11)

It holds because gravity is a 1/r2 force.

Dynamics of Systems of Particles

Newtonian Mechanical Concepts for Systems of Particles

A system of particles has constant masses {ma} and variable positions {~ra}. The total mass,
center-of-mass coordinate, and momentum of the system are

M =
∑
a

ma
~R =

1
M

∑
a

ma~ra ~P =
∑
a

ma ~̇ra = M ~̇R (B.12)

=
∫
d3r ρ(~r) =

1
M

∫
d3r ρ(~r)~r =

∫
d3r ρ(~r) ~̇r (B.13)

where M =
∑

ama is the total mass. Newton’s third law assures us that the center-of-mass
coordinate satisfies a version of Newton’s second law:

M ~̈R = ~̇P = ~F (e) =
∑
a

~F (e)
a (B.14)

where ~F (e) is the sum of all external forces acting on the system and ~F
(e)
a is the total external force

acting on particle a. The total angular momentum of the system is

~L = ~R× ~P +
∑
a

~sa ×ma ~̇sa (B.15)

where ~sa = ~ra− ~R is the coordinate relative to the center of mass. Newton’s second law for angular
coordinates is

~̇L = ~N (e) =
∑
a

~N (e)
a (B.16)

where ~N (e) is the total external torque on the system and ~N
(e)
a is the external torque on particle

a. The total kinetic energy is

T =
1
2
M Ṙ2 +

∑
a

1
2
ma ṡ

2
a (B.17)

The total potential energy is the sum of two terms, one due to external potentials and one due to
internal potentials:

U (e) =
∑
a

Ua(~ra) U (i) =
1
2

∑
a,b,b6=a

U
(i)
ab (~rab) (B.18)

For a rigid body, the distances rab are constant. Combined with the third law, this implies that
U (i) is therefore also fixed.
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Rocket motion is one application of dynamics of systems of particles. Given a rocket that exhausts
mass at a rate ṁ < 0 at speed u as measured in the rocket frame, then the equation we start with
is conservation of momentum,

mv = p(t) = p(t+ dt) = (m+ ṁ dt) (v + dv) + (−ṁ dt) (v − u) (B.19)

which reduces to the differential equation

mdv = −ṁ u dt = −u dm ⇐⇒ m
dv

dt
= u |ṁ| (B.20)

The second equation is an effective Newton’s second law.

Elastic Collisions: Kinematics of Scattering

Given particles of mass m1 and m2, with m1 arriving with velocity ~u1 and m2 at rest, one can
calculate various features of the collision result. The velocity of the center of mass, and the velocities
of the particles in the center-of-mass frame, are

~V =
m1

m1 +m2
~u1 ~u′1 = ~u1 − ~V =

m2

m1 +m2
~u1 ~u′2 = −~V (B.21)

Because the center-of-mass is stationary in the center-of-mass frame, the outgoing angle between
the two particles is always π and the individual speeds and kinetic energies are preserved,

v′1 = u′1 v′1 = u′1 (B.22)

The cm-frame final velocity vectors are

~v′1 =
m2 u1

m1 +m2
(x̂ cos θ + ŷ sin θ) ~v′2 = − m1 u1

m1 +m2
(x̂ cos θ + ŷ sin θ) (B.23)

The lab frame final velocities are

~v1 = x̂

[
m2 u1

m1 +m2
cos θ +

m1 u1

m1 +m2

]
+ ŷ

m2 u1

m1 +m2
sin θ

~v2 = x̂

[
− m1 u1

m1 +m2
cos θ +

m1 u1

m1 +m2

]
− ŷ m1 u1

m1 +m2
sin θ

The angles ψ1 and ψ2 between ~v′1 and the x-axis and ~v′2 and the x-axis are

tanψ1 =
sin θ

m1
m2

+ cos θ
tanψ2 =

sin θ
1− cos θ

(B.24)

Basic rules about outgoing velocities based on ψ1 and ψ2 formulae and the vector diagrams for ~v1:
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• m1 = m2: The two particles emerge in the lab frame at right angles.

• m1 < m2: Particle 1 may forward or backward scatter, there is a one-to-one relationship
between outgoing cm-frame angle θ and outgoing particle 1 angle ψ1.

• m1 > m2: Particle 1 may only forward scatter, there are two solutions in the forward direction
because there is a two-to-one relationship between cm-frame angle θ and outgoing particle 1
angle ψ1

The maximum scattering angle is given by

sinψ1,max =
m2

m1
(B.25)

The kinetic energies are:

lab frame initial total KE T0 =
1
2
m1 u

2
1 (B.26)

cm frame initial total KE
T ′0
T0

=
m2

m1 +m2
< 1 (B.27)

cm frame initial/final KE 1
T ′1
T0

=
(

m2

m1 +m2

)2

(B.28)

cm frame initial/final KE 2
T ′2
T0

=
m1m2

(m1 +m2)
2 (B.29)

lab frame final KE 1
T1

T0
= 1− 2m1m2

(m1 +m2)
2 (1− cos θ) (B.30)

=
m2

1

(m1 +m2)
2

[
cosψ1 ±

√
m2

2

m2
1

− sin2 ψ1

]
(B.31)

lab frame final KE 2
T2

T0
=

2m1m2

(m1 +m2)
2 (1− cos θ) (B.32)

=
4m1m2

(m1 +m2)
2 cos2 ψ2 (B.33)

In the expression for T1, one should use only the positive sign when when m1 < m2 and both signs
otherwise (see the diagram).

Inelastic Scattering

The only general rule is that, in addition to mechanical kinetic energy, there is thermal kinetic
energy Q that may be liberated (Q < 0) or absorbed (Q > 0) and that conservation of energy is

Q+ T1 + T2 = T ′1 + T ′2 (B.34)

B.2 Lagrangian and Hamiltonian Dynamics

Lagrangian Mechanics

Holonomic Constraints

Holonomic constraints are constraints that can be written in the form

f(~r1, ~r2, . . . , ~rM , t) = 0 (B.35)
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i.e., there is some sort of condition on the coordinates and possibly time. The condition may not
involve the coordinate velocities. Holonomic constraints are also termed integrable because a
differential version of the constraint can be integrated to yield the full constraint. The constraint
is rheonomic if time appears explicitly, scleronomic if not.

Generalized Coordinates

Given a set of holonomic constraints, one can use the constraints to implicitly define a set of
independent generalized coordinates. The transformation relations between the generalized
coordinates and the original physical coordinates are of the form

~ri = ~rj(q1, q2, . . . , q3M−j , t) (B.36)

where we assume there are j constraint equations. It is assumed that all the constraints are used
so that the generalized coordinates truly form an independent set.

Independence of qk and q̇k and Nothing Else

Because Newton’s second law is a second-order differential equation, it establishes a relationship
between ~̈r and the force. In general, the force can depend on ~r and ~̇r. Thus, Newton’s second
law establishes a relationship between the second (and higher-order) derivatives of ~r and ~r and ~̇r.
Thus, at most ~r and ~̇r are independent. Because Newton’s second law is a differential equation, it
holds that two initial conditions are required to specify the motion, ~r(t = 0) and ~̇r(t = 0). Since
there is complete freedom in these two quantities, ~r and ~̇r can be treated as independent.

Dot Cancellation

For holonomic constraints, it holds that

∂~ri
∂qk

=
∂~̇ri
∂q̇k

(B.37)

This was proven in Equation 2.3.

Generalized Force

The generalized force along the generalized coordinate qk is defined to be

Fk =
∑
i

~F
(nc)
i · ∂~ri

∂qk
(B.38)

where ~F
(nc)
i is the sum of all non-constraint forces acting on particle i.

Virtual Displacement and Work

A virtual displacement is a set of coordinate displacements {δ~ri} that obey the following condi-
tions:

1. The displacement satisfies the constraint equations.

2. Time is held fixed during the displacement.
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3. The generalized velocities {q̇k} are held fixed during the displacement.

Any displacement of a truly independent set of generalized coordinates {qk} satisfies (1) automat-
ically.
Virtual work is the work done during a virtual displacement. It is defined as

δW =
∑
ij

~Fij · δ~ri (B.39)

Because the displacement is virtual, we make the assumption that the contribution of constraint
forces to the virtual work vanishes, leaving

δW =
∑
ij

~F
(nc)
ij · δ~ri (B.40)

where (nc) refers to non-constraint forces only.

d’Alembert’s Principle

d’Alembert’s principle is ∑
i

[
~F

(nc)
i − ~̇pi

]
· δ~ri = 0 (B.41)

where δ~ri is a virtual displacement that is differential and satisfies the constraints. d’Alembert’s
principle may be rewritten in terms of generalized coordinates and forces:

Fk =
∑
i

~̇pi ·
∂~ri
∂qk

(B.42)

Generalized Equation of Motion

d’Alembert’s principle can be used to prove the generalized equation of motion:

Fk =
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
(B.43)

where T = T ({qk}, {q̇k}, t) is the kinetic energy written as a function of the generalized coordinates.

Euler-Lagrange Equation

When the non-constraint forces are conservative, they can be written as gradients of a time-
independent potential, ~Fi = −~∇iU({~rj}). From this we can prove that the generalized forces
can also be written as gradients:

Fk = − ∂

∂qk
U({ql}, t) (B.44)

If we then define the Lagrangian as

L = T − U (B.45)
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then we can prove the Euler-Lagrange equation

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 (B.46)

In some cases, it is possible to write nonconservative forces using a potential function. If the
nonconservative force can be written in terms of a function U({qk}, {q̇k}) in the following manner:

Fj = −∂U
∂qj

+
d

dt

(
∂U

∂q̇j

)
(B.47)

then it one may include this function U as a potential energy in the Lagrangian and apply the
Euler-Lagrange equation.
If one has nonconservative forces that cannot be written in the above form, one can still write down
a generalized Euler-Lagrange equation

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Fno−Lk (B.48)

where Fno−L encompasses all forces that cannot be included in the Lagrangian.

Symmetry Transformations and Noether’s Theorem

Given a coordinate transformation

q′ = q′(q, q̇, t) (B.49)
q̇′ = q̇′(q, q̇, t) (B.50)

Then the Lagrangian in the new coordinate system is found by inverting the transformation and
writing

L′(q′, q̇′, t) = L(q(q′, q̇′, t), q̇(q′, q̇′, t), t) (B.51)

The coordinate transformation is a symmetry transformation of the Lagrangian if

L′(q′, q̇′, t) = L(q′, q̇′, t) (B.52)

Noether’s theorem tells us that if a Lagrangian has a set of continuous symmetry transformations
{Qk({sj})}, with {Qk(sj = 0)} = {qk} being the untransformed coordinates, then there is a set of
conserved quantities:

Ij({qk}, {q̇k}, t) ≡
N∑
k=1

pk
dQk
dsj

∣∣∣∣
{sj=0}

(B.53)

where {pk} are the canonical momenta conjugate to {qk},

pk =
∂L

∂q̇k
(B.54)

When a coordinate does not appear in the Lagrangian, it is called cyclic and the Euler-Lagrange
equations imply the conjugate canonical momentum is conserved. This is a particular case of
Noether’s theorem with the transformation being translation in the cyclic coordinate.
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Variational Calculus and Dynamics

Principle of Least Action

The Euler-Lagrange equations can be generated via the calculus of variations, requiring that the
action functional S[q] of the coordinate path q(t)

S[q] =
∫ t1

t0

dtL (q(t), q̇(t), t) (B.55)

satisfy δS = 0 for the true physical path q(t).

Incorporating Constraints via Lagrange Multipliers

If it is not convenient to include constraints via appropriate definition of generalized coordinates,
constraint functions may be included via Lagrange multipliers. Given a set of constraints
{Gp({yk}, x)− Cp = 0}, one may incorporate them by introducing additional dynamical variables
{λp} called Lagrange multipliers and obtain the following modification of the Euler-Lagrange equa-
tions:

∂L

∂yk
− d

dx

(
∂L

∂ dyk
dx

)
+
∑
p

λp(x)
∂Gp
∂yk

= 0 (B.56)

Gp({yk}, x)− Cp = 0 (B.57)

The Lagrange multipliers provide the generalized constraint forces:

Nk =
∑
p

λp(t)
∂Gp
∂qk

(B.58)

Incorporating Nonholonomic Constraints via the Principle of Least Action

If a nonholonomic constraint may be written as a differential relation among coordinates, then it
may be included by applying it during minimization of the action functional: such constraints pro-
vide relations among the variations in the coordinates δq and velocities δq̇. Requiring extremization
of the action results in generalized Euler-Lagrange equations incorporating the constraints.

Hamiltonian Dynamics

The Hamiltonian and Hamilton’s Equations

The Hamiltonian function is derived from the Lagrangian function via the Legendre transfor-
mation

H =
∑
k

pk q̇k − L (B.59)

H = H({qk}, {pk}, t) (B.60)

Hamilton’s Equations of Motion are

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk

dH

dt
=
∂H

∂t
= −∂L

∂t
(B.61)
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Liouville’s Theorem

From Hamilton’s equations of motion, we can derive Liouville’s Theorem. If ρ({qk}, {pk}, t) is
the density of an ensemble of systems in phase space, defined by

N =
∫
dMq dMp ρ({qk}, {pk}, t) (B.62)

then ρ satisfies

dρ

dt
({qk}, {pk}, t) = 0 (B.63)

This can be rewritten using the symplectic vector ~ξ as

dρ

dt
=
∂ρ

∂t
+ ~̇ξ · ~∇ξρ (B.64)

Theoretical Mechanics

Canonical Transformations

A contact transformation is a transformation of the form

Q = Q(q(t), p(t), t) P = P (q(t), p(t), t) (B.65)

A canonical transformation (~q, ~p) → ( ~Q, ~P ) is one that preserves Hamilton’s equations. A
transformation is canonical if the determinant of the Jacobian of the transformation is 1, which is
equivalent to requiring that the Poisson brackets of the new variables satisfy

[Qk(~q, ~p), Pl(~q, ~p)]~q,~p = δkl (B.66)

There are four types of generating functions that can generate canonical transformations, though
canonical transformations need not come from a generating function to be canonical. In general,
a generating function is a function of two of the four variables involved (q, p, Q, and P ), and the
other two variables are obtained via partial derivatives of the generating function. The partial
derivative relations are used to find the transformation Q = Q(q, p) and P = P (q, p). The four
forms and their partial derivative relations are

F1 : F1(q,Q) P = −∂F1

∂Q
p =

∂F1

∂q

F2 : F2(q, P ) p =
∂F2

∂q
Q =

∂F2

∂P

F3 : F3(p,Q) P = −∂F3

∂Q
q = −∂F3

∂p

F4 : F4(p, P ) q = −∂F4

∂p
Q =

∂F4

∂P

(B.67)

A necessary and sufficient condition for a generating function to be valid is ∂2F
∂q ∂Q 6= 0, which ensures

invertibility of the canonical (Legendre) transformation of the Hamiltonian. The transformation
rule for the Hamiltonian under a canonical transformation is

H̃(Q,P, t) = H(q(Q,P, t), p(Q,P, t), t) +
∂

∂t
F1(q(Q,P, t), Q, t) (B.68)

where F1 is the generating function that generates the transformation. If one uses a different type
of generating function, the result still holds, one simply has different arguments for the generating
function.
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Symplectic Notation

Symplectic notation is a simple way to combine the position and momentum coordinates in the
Hamiltonian formalism and write things in a unified fashion. The symplectic coordinate is defined
to be ~ξ with (k = 1, . . . , 2M)

ξk =
{
q(k+1)/2 k = even
pk/2 k = odd

(B.69)

We define the matrix Γ by

Γij = (j − i) δ|i−j|,1 for i odd and j even (B.70)

With Γ, Hamilton’s equations are written

d~ξ

dt
= Γ~∇ξH (B.71)

where ~∇ξ is simple the vector of partial derivatives with respect to the components of ~ξ.
A contact transformation generates a new set of phase space coordinates ~Ξ. The Jacobian of
transformation is J

Jij =
∂Ξi
∂ξj

(B.72)

J gives the transformation of differential line and volume elements:

d~Ξ = J d~ξ (B.73)∏
k

dΞk =
∏
k

(∑
l

Jkl dξl

)
= [det J]

∏
l

dξl (B.74)

The Jacobian transforms gradients:
~∇ξH = JT ~∇ΞH (B.75)

A contact transformation is canonical if its Jacobian is symplectic; i.e., satisfies

JΓJT = Γ (B.76)

This is equivalent to the requirement det J = 1.

Poisson Brackets

The Poisson Bracket of two functions of F and G of the coordinates and canonical momenta q
and p is defined to be

[F,G]~q,~p =
∑
k

[
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

]
(B.77)

In symplectic notation, the Poisson bracket is written

[F,G]~ξ =
[
~∇ξF

]T
Γ~∇ξG (B.78)

Poisson brackets are invariant under canonical transformations. As noted earlier, the Poisson
bracket can be used to test whether a contact transformation is canonical (old-coordinate Poisson
bracket of new coordinates must be 1). Poisson brackets also provide the time evolution of functions
of the coordinates:

dF

dt
=

∂F

∂t
+ [F,H]~ξ (B.79)
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Action-Angle Variables and Adiabatic Invariance

Given a 1-dimensional system whose Hamiltonian is conserved and that undergoes periodic motion,
it is possible to define via canonical transformation action-angle variables (ψ, I). The action
variable is given by

I =
1
2π

∮
p(q, E) dq (B.80)

In practice, to get the function p(q, E) in order to do the integral, one obtains from H(p, q) the
function p(q,H) and then uses the fact that energy is conserved for periodic systems to replace H
by its constant value E. I will depend on E.
The canonical transformation, combined with the fact that H is conserved, allows the Hamiltonian
to be rewritten in terms of I. ψ evolves linearly with time according to

ψ(t) = ω t+ ψ0 with ω ≡ ∂H(I)
∂I

(B.81)

ω is constant in time but may depend on I. ω gives the period of the motion,

T =
2π
ω

(B.82)

ψ advances by 2π when the motion goes through one period. Adiabatic invariance says that if
the Hamiltonian has slow time dependence via a parameter α, then the action variable I is to first
order independent of changes in H that are slow compared to the period of the periodic motion.
This property can be used determine features of the evolution of such systems.

The Hamilton-Jacobi Equation

The Hamilton-Jacobi equation is a partial differential equation for Hamilton’s Principal
Function S(~q, ~P ):

H

(
~q,
∂S(~q, ~α)
∂~q

, t

)
+
∂S(~q, ~α)

∂t
= 0 (B.83)

~α are the constant values for the momenta ~P resulting from the canonical transformation generated
by S. Once the function S is found by solving the equation, the solutions to Hamilton’s equations
of motions are provided by

~p =
∂S(~q, ~α, t)

∂~q
(B.84)

~β =
∂S(~q, ~α, t)

∂~α
(B.85)

The constants ~α and ~β are found by applying the above equations at t = 0:

~p(t = 0) =
∂S(~q, ~α, t)

∂~q

∣∣∣∣
t=0,~q(t=0),~α

(B.86)

~β =
∂S(~q, ~α, t)

∂~α

∣∣∣∣
t=0,~q(t=0),~α

(B.87)
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When the Hamiltonian is time-independent, we may write an alternate version in terms of Hamil-
ton’s Characteristic Function W (~q, ~P ):

H

(
~q,
∂W (~q, ~P )

∂~q

)
= E (B.88)

where E is the conserved value of H. W is related to S and E by

W = S + E t =
∫
dt (L+H)

=
∫
dt
∑
k

pk q̇k =
∫
d~q · ~p (B.89)

Once the differential equation for W has been solved, we may obtain the solution to Hamilton’s
equation of motion via

pk =
∂W (~q,E, α2, . . . , αM )

∂qk
(B.90)

Qk =
∂W (~q,E, α2, . . . , αM )

∂αk
= βk k > 1 (B.91)

Q1 =
∂W (~q,E, α2, . . . , αM )

∂E
+ t = β′1 + t (B.92)

and incorporate initial conditions via the equations

pk(t = 0) =
∂W (~q,E, α2, . . . , αM )

∂qk

∣∣∣∣
q(t=0),E,α2,...,αM

(B.93)

βk =
∂W (~q,E, α2, . . . , αM )

∂αk

∣∣∣∣
q(t=0),E,α2,...,αM

(B.94)

β′1 =
∂W (~q,E, α2, . . . , αM )

∂E

∣∣∣∣
q(t=0),E,α2,...,αM

(B.95)

B.3 Oscillations

Simple Harmonic Oscillator

Setting up and Solving the SHO

Given an arbitrary Lagrangian with an equilibrium point q0, q̇0, the equation of motion around the
equilibrium point is given by

q̈ − D

F
q = 0 (B.96)

with

D =
1
2
∂2L

∂q2

∣∣∣∣
(q0,q̇0)

(B.97)

F =
1
2
∂2L

∂q̇2

∣∣∣∣
(q0,q̇0)

(B.98)
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The system’s stability and oscillation frequency are given by

ω2 ≡ −D
F

(B.99)

If ω2 is positive then the system undergoes stable oscillation. If we rescale the time coordinate

using β = ω−1 =
√∣∣F

D

∣∣ and τ by t = β τ = ω−1τ (invert by replacing all occurrences of t by ω t

and all occurrences of modified frequencies ω′ by ω′/ω), the equation of motion becomes

q̈ ± q = 0 (B.100)

and the Lagrangian and Hamiltonian are

L =
1
2
(
q̇2 ∓ q2

)
(B.101)

H =
1
2
(
q̇2 ± q2

)
(B.102)

The solutions to the equation of motion are of the form

a(t) = A sin(t+ φ) = A′ cos t+B′ sin t (B.103)

where the two sets of coefficients are related to each other and the initial conditions by

A sinφ = A′ = q(0) A cosφ = B′ = q̇(0) (B.104)

In complex notation, we have

qc(t) = Ac eit = Ac e
iφ eit (B.105)

where Ac = Ac e
iφ (and thus Ac = |Ac|). The initial conditions are

q(0) = R[qc(0)] = Ac cosφ = R[Ac] (B.106)
q̇(0) = R[q̇c(0)] = −Ac sinφ = −I[Ac] (B.107)

or, equivalently,

Ac = q(0)− i q̇(0) (B.108)

The Undriven, Damped SHO

The equation of motion for the damped SHO is

q̈ +
q̇

Q
+ q = 0 (B.109)

where the damping force is

Fdamp = − q̇
Q

(B.110)

Q can also be shown to be the product of the natural frequency and the damping time

Q = ω τdamp (B.111)
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where τdamp is the exponential decay time arising from the damping term. The version of the above
with physical units reinserted is

Frestore = −k x

Fdamp = −b ẋ =
mω

Q
ẋ =

√
km

Q
ẋ

ẍ+
ω

Q
ẋ+ ω2 x = 0

Q = ω τdamp =
ω

b/m

Depending on the size of Q, there are three types of solutions:

• Underdamped: Q > 1
2 . In this case, the discriminant is positive and we obtain oscillatory

motion from the second term. The complex solution is given by

qc(t) = Ac exp
(
− t

τd

)
exp

(
±i ω′ t

)
τd ≡ 2Q ω′ ≡

√
1− 1

4Q2
(B.112)

• Overdamped: Q < 1
2 . In this case, the discriminant becomes negative and the second term

also is decaying. There are actually two possible decay times due to the sign freedom for the
radical. The general solution is

q(t) = A exp
(
− t

τd,+

)
+B exp

(
− t

τd,−

)
τ−1
d,∓ =

1
2Q
±
√

1
4Q2

− 1 (B.113)

The inversion of the sign in subscripting the solution is so that the + subscript goes with
the larger time constant. We refer to the decay constants as times (unlike Hand and Finch)
because it’s more intuitive.

• Critically damped: Q = 1
2 . The discriminant vanishes and the two solutions become

degenerate. The degenerate time constant is τd = 2Q = 1 (i.e., the damping time becomes
equal to half the undamped oscillation period). The generic solution is

q(t) = A exp (−t) +B t exp (−t) (B.114)

The energy satisfies the differential equation

dE

dt
= −E

Q
(B.115)

Since the time has been rescaled so the angular frequency of oscillation is 1 and the period is 2π.
The energy decay time is therefore Q

2π periods of the oscillator (assuming Q� 1
2 so we may ignore

the frequency shift).

The Driven, Damped SHO – Transient Response and Green’s Function

The full solutions are provided by Green’s functions: If G(t, t′) satisfies the differential equation

G̈+
Ġ

Q
+G = δ(t− t′) (B.116)
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where the dots indicate derivatives with respect to t and t′ should be regarded as a parameter of
the driving function, then the full solution can be calculated by

q(t) =
∫ ∞

−∞
dt′ F (t′)G(t, t′) (B.117)

The Green’s functions for the three cases are:

• Underdamped:

G(t− t′) =
1
ω′

exp
(
− t− t

′

2Q

)
sin
[
ω′ (t− t′)

]
θ(t− t′) (B.118)

Note the use of the Heaviside function to impose causality. The generic solution for an
arbitrary forcing function is therefore

q(t) =
∫ ∞

−∞
dt′ F (t′)G(t− t′) =

∫ t

−∞
dt′F (t′)

1
ω′

exp
(
− t− t

′

2Q

)
sin
[
ω′ (t− t′)

]
(B.119)

• Overdamped:

G(t− t′) =
τd,+ τd,−
τd,+ − τd,−

[
exp

(
− t− t

′

τd,+

)
− exp

(
− t− t

′

τd,−

)]
θ(t− t′) (B.120)

The generic solution for an arbitrary forcing function is

q(t) =
∫ t

−∞
dt′F (t′)

τd,+ τd,−
τd,+ − τd,−

[
exp

(
− t− t

′

τd,+

)
− exp

(
− t− t

′

τd,−

)]
(B.121)

• Critically damped:

G(t− t′) = (t− t′) exp
(
−(t− t′)

)
θ(t− t′) (B.122)

and the generic solution is

q(t) =
∫ t

−∞
dt′F (t′) (t− t′) exp

(
−(t− t′)

)
(B.123)

The Driven, Damped SHO – Steady-State Response and Resonance Phenomena

If the driving function is sinusoidal and steady state, then any transient response dies out and the
system responds at the drive frequency. The complex amplitude response is

Ac =
F0

1− ω2
d + i ωd

Q

(B.124)

where F0 is the drive amplitude. The square of the amplitude response gives the stored potential
energy. It is

E =
F 2

0

2
1

(1− ω2
d)

2 + ω2
d

Q2

(B.125)
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The stored energy is maximized at the resonant frequency, ωr, which is related to the charac-
teristic and damped characteristic frequencies by

undamped characteristic : ω0 =

√
k

m
(B.126)

damped characteristic : ω′ = ω0

√
1− 1

4Q2
< ω0 (B.127)

damped resonant : ωr = ω0

√
1− 1

2Q2
< ω′ < ω0 (B.128)

The stored kinetic energy is

T =
F 2

0

2
ω2
d

(1− ω2
d)

2 + ω2
d

Q2

(B.129)

The maximum in the stored kinetic energy occurs at the undamped characteristic frequency because
the velocity and driving force are in phase, providing the maximum power P = F v.
For high Q systems, the stored potential energy response can be simplified:

E ≈ F 2
0

8
1

(ωd − 1)2 + 1
4Q2

(B.130)

In this limit, the potential and kinetic energy resonances occur at the same frequency. The full-
width at half-maximum of the resonance curve is

∆ω =
1
Q

(B.131)

The stored energy on resonance is

E ≈ F 2
0

8
4Q2 =

1
2
F 2

0 Q
2 (B.132)

The phase response is given by

tanφ = −
ωd
Q

1− ω2
d

(B.133)

For high Q, the phase response traces out a circle in the complex plane of radius Q
2 and whose

origin is at −i Q2 .

Coupled Oscillations

Given an arbitrary multidimensional system with coordinates ~φ = (φ1, φ2, . . . , φM ) with a stable
equilibrium point, we can expand the kinetic and potential energies about the equilibrium point
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and rewrite in matrix form:

tij =
1
2

∂2T

∂ φ̇i ∂ φ̇j

∣∣∣∣∣
φ̇i=0,φ̇j=0

(B.134)

T =
∑
i,j

tij φ̇i φ̇j = ˙~Tφt ~̇φ (B.135)

vij =
1
2

∂2V

∂ φi ∂ φj

∣∣∣∣
φi=0,φj=0

(B.136)

V =
∑
i,j

vij φi φj = ~φTv ~φ (B.137)

where we shift the origin so the equilibrium point is at the origin. The equation of motion becomes

t ~̈φ+ v ~φ = 0 (B.138)

Assuming harmonic solutions of the form

~φ(t) = ~Φ eiω t (B.139)

we can find the normal mode frequencies {ωi} by requiring the solutions be nontrivial:∣∣−ω2 t + v
∣∣ = 0 (B.140)

Once the normal mode frequencies have been found, the normal mode vectors ~Φi are the cofactors
of any row of the matrix −ω2

i t + v. The normal mode vectors obey the orthonormalization
relation

~ΦT
i t ~Φj = δij (B.141)

which should be use to determine the normalization of each normal mode vector. When degen-
erate normal modes are obtained, normal mode vectors for the degenerate modes may be chosen
somewhat arbitrarily but ensuring that they satisfy the orthonormalization condition. The generic
solution has the form

~φr(t) = R
[
~φ(t)

]
= R

[
M∑
i=1

Ai ~Φi e
iωit

]
(B.142)

with the mode coefficients given by

R [Ai] = ~ΦT
i t ~φr(t = 0) (B.143)

I [Ai] =
1
ωi
~ΦT
i t ~̇φr(t = 0) (B.144)

The Hamiltonian can be rewritten in diagonalized form via a congruence transformation. Define
the matrix

Φji =
[
~Φi

]
j

(B.145)

Then the following hold:

ΦT tΦ = ΦΦT t = tΦΦT = I (B.146)
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and

ΦTvΦ = Ω2 (B.147)

where Ω is a matrix with

Ωij = ωi δij (B.148)

The the Lagrangian and Hamiltonian can be rewritten

L = ~̇ψT I ~̇ψ − ~ψTΩ2 ~ψ (B.149)

H = ~̇ψT I ~̇ψ + ~ψTΩ2 ~ψ (B.150)

where

~ψ(t) = ΦT t ~φ(t) (B.151)

and conversely:

~φ(t) = Φ ~ψ(t) (B.152)

The new coordinates ~ψ(t) satisfy the equation of motion

~̈ψ + Ω2 ~ψ = 0 (B.153)

The time evolution is

~ψ(t) = eiΩt ~ψ(t = 0) (B.154)

The initial conditions are applied via

R
[
~ψ(t = 0)

]
= ΦT t ~φr(t = 0) (B.155)

I
[
~ψ(t = 0)

]
= Ω−1 ΦT t ~̇φr(t = 0) (B.156)

and the original coordinates are recovered via

~φr(t) = R
[
~φ(t)

]
= R

[
Φ ~ψ(t)

]
(B.157)

Waves

Loaded String

We began with the loaded string, with M masses of mass m separated by spacing d and held
together by a massless string with tension τ . The normal modes giving the motion of the pth mass
in the nth mode are

ωn = 2
√

τ

md

∣∣∣∣sin(1
2

nπ

M + 1

)∣∣∣∣ (B.158)

yn,p(t) =

√
2

M + 1
sin
(
n pπ

M + 1

)
cos (ωnt) (B.159)

≡ Φn,p cos (ωnt) (B.160)
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The generic solution is

~yr(t) = R [~y(t)] = R

[
M∑
n=1

An ~Φn e
iωnt

]
(B.161)

with initial conditions applied via

R [An] =

√
2

M + 1

M∑
p=1

sin
(
n pπ

M + 1

)
yr,p(t = 0) (B.162)

I [An] =
1
ωn

√
2

M + 1

M∑
p=1

sin
(
n pπ

M + 1

)
ẏr,p(t = 0) (B.163)

Continuous String

The continuous string was taken as the d → 0,M → ∞ limit of the loaded string, having linear
mass density Λ and length L = (M + 1) d. The normal modes are

ωn =
nπ

L

√
τ

Λ
(B.164)

yn(x, t) =

√
2
L

sin
(nπ x

L

)
cos (ωnt) (B.165)

≡ Φn(x) cos (ωnt) (B.166)

The generic solution is

yr(x, t) = R

[ ∞∑
n=1

An Φn(x) eiωnt

]
(B.167)

Initial conditions are applied via

R [An] =

√
2
L

∫ L

0
dx sin

(nπ x
L

)
yr(x, t = 0) (B.168)

I [An] =
1
ωn

√
2
L

∫ L

0
dx sin

(nπ x
L

)
ẏr(x, t = 0)

The correspondence to normal mode notation is

p ←→ x

φp(t) ←→ y(x, t)

t ←→ Λ
2

Φpn = Φn,p ←→
√

2
Λ

Φn(x) =

√
2
Λ

√
2
L

sin
(nπ x

L

)
ψn(t = 0) ←→

√
Λ
2
An

ψn(t) ←→
√

Λ
2
R
[
An e

iωnt
]

ψ̇n(t) ←→
√

Λ
2
R
[
i ωnAn e

iωnt
]
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The diagonalized Hamiltonian can be written in the form

H =
Λ
2

∞∑
n=1

ω2
n |An|2 (B.169)

which makes clear the contribution of each mode to the total energy.

Wave Equation and Wave Solutions

We derived on general grounds for the continuous string the wave equations

∂2

∂t2
y(x, t)− τ

Λ
∂2

∂x2
y (x, t) = 0 (B.170)

A generic solution, including all frequencies ωr allowed by the boundary conditions, has the form

y(x, t) =
∑
r

[
ar< e

i(krx+ωrt) + ar> e
i(krx−ωrt) + a∗r> e

−i(krx−ωrt) + a∗r< e
−i(krx+ωrt)

]
= 2R

{∑
r

[
ar< e

i(krx+ωrt) + ar> e
i(krx−ωrt)

]}

where the propagation speed is v2 = τ
Λ and the wavevector is k = ω

v . The wavelength of the wave is
λ = 2π

k . To further reduce the freedom in the solution, boundary conditions and initial conditions
must be applied. The velocity v is the phase velocity, the speed at which a point of constant
wave phase moves. If the phase velocity in the medium is dependent on the frequency ω, then the
phase velocity is not the speed at which a wave packet with finite spatial extent propagates. Rather
a wave packet propagates at speed

vg =
dω

dk

∣∣∣∣
k=k0

=
v0

1− ω0
v0

dv
dω

∣∣∣
0

(B.171)

where vg is called the group velocity. A wave packet has the form

y(x, t) =
∫ ∞

−∞
dk α(k) ei(ω(k)t−kx) (B.172)

= ei(ω0t−k0x)
∫ ∆k

−∆k
dk̃ α(k0 + k̃) eik̃(vgt−x) + c.c. (B.173)

where α(k) is nonzero for only a finite range of k, k0−∆k to k0+∆k. We have written ω as a function
of k because k is now effectively the mode index. α(k) is known as the spectral distribution of
the wave solution y(x, t). Initial conditions can be applied in the standard manner.

B.4 Central Forces and Dynamics of Scattering

Generic Central Forces

The problem of two particles interacting via a strong-form third law central force can be reduced
to translational motion of the center-of-mass system combined with one particle in a central force.
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If the two particles have masses ma and mb and position ~ra and ~rb, then the relative coordinate
and reduced mass are

~rab = ~ra − ~rb µ ≡ mamb

ma +mb
(B.174)

The original coordinates can be rewritten as

~ra =
µ

ma
~rab ~rb = − µ

mb
~rab (B.175)

The Lagrangian can be rewritten in the following ways:

L =
1
2
µ ~̇r 2

ab − U(rab) =
1
2
µ
(
ṙ2ab + r2ab θ̇

2
ab + r2ab sin2 θab φ̇

2
ab

)
− U(rab) (B.176)

We obtain equations of motion (after eliminating the constant φ coordinate)

µ r̈ = −dU
dr

+
l2θ
µ r3

µ r2θ̇ = lθ = constant

We define the effective potential

Ueff (r) = U(r) +
l2θ

2µ r2
(B.177)

The Lagrangian and energy can be rewritten in a one-dimensional form

L1D =
1
2
µ ṙ2 −

l2θ
2µ r2

− U(r) =
1
2
µ ṙ2 − Ueff (r) (B.178)

E =
1
2
µ ṙ2 +

l2θ
2µ r2

+ U(r) =
1
2
µ ṙ2 + Ueff (r) (B.179)

where l2θ
2µ r2

is the repulsive “centrifugal potential.” Note that L1D is not just L with lθ substituted
in – there is a sign flip in the centrifugal term needed to generate the correct equation of motion (see
the original text for details). The qualitative behavior of the system can be obtained by examining
the shape of the effective potential – where it is repulsive, attractive, where its slope vanishes, etc.
The constancy of lθ gives us Kepler’s second law

dA

dt
=

1
2
lθ
µ

= constant (B.180)

The generic quadrature solution to the central force problem is given by

t = ±
∫ r

r(0)
dr′
[

2
µ

(E − U(r))−
l2θ

µ2 r′2

]−1/2

(B.181)

θ − θ(0) =
lθ
µ

∫ t

0

dt′

[r(t′)]2
(B.182)

Elimination of t from the original differential relations also lets us obtain the quadrature solution
for θ in terms of r:

θ(r)− θ(0) = ±lθ
∫ r

r(0)

dr′

[r(t)]2

[
2µ (E − U(r))−

l2θ
r′2

]−1/2

(B.183)
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We may obtain a generic differential equation relating r and θ

d2

dθ2

(
1
r

)
+

1
r

= −µ r
2

l2θ
F (r) (B.184)

Defining u = 1
r , this may be rewritten

d2u

dθ2
+ u = − µ

l2θ u
2
F

(
1
u

)
(B.185)

The total energy of the system is constant and can be written as:

E =
l2θ
2µ

(
1
r2
dr

dθ

)
+

l2θ
2µ r2

+ U(r) =
l2θ
2µ

[(
du

dθ

)2

+ u2

]
+ U

(
1
u

)
(B.186)

The Kepler Problem

When we specialize to U(r) ∝ 1
r , we may obtain more specific results. The differential equation

relating r and θ or u and θ is

d2

dθ2

(
1
r

)
+

1
r

=
Gµ2M

l2θ

d2u

dθ2
+ u =

Gµ2M

l2θ
(B.187)

The generic solution may be written

u(θ) = A cos(θ − θ0) +
Gµ2M

l2θ
p = r + ε r cos θ p =

l2θ
Gµ2M

ε = pA (B.188)

We specify two initial conditions (neglecting θ0): lθ and the total energy E. The constants A and
ε are related to the total energy by

E =
l2θ
2µ

[
A2 −

(
Gµ2M

l2θ

)2
]

=
GµM

2 p
(
ε2 − 1

)
≡ Escale

(
ε2 − 1

)
(B.189)

The energy may also be written as

E = −GµM
2 a

(B.190)

The assorted orbital parameters are summarized in Table B.1:
Kepler’s third law, which tells us the period of elliptical orbits, is obtained from Kepler’s second
law and the area of an elliptical orbit, giving

τ = 2π

√
a3

GM
(B.191)

The full time dependence of elliptical orbits can be obtained through use of the eccentric anomaly,
ε, which is defined implicitly in terms of the true anomaly, θ. One begins with

r(θ) cos θ = x = xc + a cos ε (B.192)
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quantity symbol formula(e) sign significance

angular lθ µ r2θ̇ ≥ 0 centrifugal potential
momentum = 0 gives trivial orbit (brings in effect of θ motion)

scale Escale
1
2
GµM
p > 0 scale energy

energy = |Emin| for attractive pot.

scale p
l2θ

Gµ2M
> 0 for attr. pot. sets scale of orbit

radius < 0 for repul. pot.

eccentricity ε
√

1 + E
Escale

≥ 0 attr. pot. sets shape of conic section,

−
√

1 + E
Escale

< −1 repul. pot. related to ratio of
energy to scale energy

orbit xc − ε p
1−ε2 = 0 circular

center = −ε a < 0 elliptical
> 0 hyperbolic

semimajor a p
1−ε2 > 0 circ./ellip. distance from xc to vertices

axis < 0 hyperbolic attr. along major axis
> 0 hyperbolic repul.

semiminor b p√
±(1−ε2)

> 0 attr. pot. distance from xc to vertices

axis < 0 repul. pot. along minor axis (circ./ellip.)
helps set asymptotic slope of
trajectory (hyperbol.)

turning x1
p

1+ε > 0 turning points of motion
points x2 − p

1−ε < 0 circ./ellip. relative to CM = focus 1
> 0 hyperbolic apsides for circ./ellip. orbits

For hyperbolic orbits, x1 is the turning point for attractive potentials,
x2 the turning point for repulsive potentials.

Table B.1: Parameters of Kepler orbits
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and one obtains

r(ε) = a (1− ε cos ε) t(ε) =
√
GM a3 (ε− ε sin ε) (B.193)

x(ε) = a (cos ε− ε) y(ε) = a
√

1− ε2 sin ε (B.194)

An analogous parameterization can be done for parabolic orbits, though the geometrical interpre-
tation of the eccentric anomaly is no longer valid. Begin with

r(θ) cos θ = xc ∓ a cosh ε (B.195)

and one obtains

r(ε) = a (ε cosh ε∓ 1) t(ε) =
√
GM a3 (ε sinh ε∓ ε) (B.196)

x(ε) = a (ε∓ cosh ε) y(ε) = a
√
ε2 − 1 sinh ε = b sinh ε (B.197)

where the upper signs are for an attractive orbit and the lower signs for a repulsive one.

Dynamics of Scattering

For central-force scattering problems, we generically consider unbound central-force orbits. Rather
than parameterizing in terms of energy E and angular momentum lθ, we use the velocity at in-
finity v∞ and the impact parameter b (distance of closest approach to scattering center). These
parameters are related by

E =
1
2
µ v2

∞ lθ = µ v∞ b (B.198)

We usually phrase scattering in terms of an incoming beam of particles of number flux

F = nv∞ (B.199)

The differential scattering cross section gives us the area of the beam that will be scattered into a
solid angle dΩ:

dσ

dΩ
=

1
F

dN

dΩ
(B.200)

The differential cross section can be found if the relationship between the input impact parameter
and the scattering angle θ∗ (the angle between the incoming and outgoing particle trajectories) is
known:

dσ

dΩ
=

b

sin θ∗

∣∣∣∣ dbdθ∗
∣∣∣∣ (B.201)

The total scattering cross section, which gives us the effective area of the scattering center, is

σ =
∫
dΩ

dσ

dΩ
= 2π

∫ π

0
dθ∗ sin θ∗

dσ

dΩ
= 2π

∫ ∞

0
db b (B.202)

The scattering angle is calculated from the potential function via

θ∗ = ∓

(
π − 2

∣∣∣∣∣
∫ ∞

rmin

b dr′

r′2

[
1− U(r)

E
− b2

r′2

]−1/2
∣∣∣∣∣
)

(B.203)
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For a potential U(r) = ±k/r, the relationship between impact parameter and scattering angle and
the differential cross section are given by

|b| = k

2E

∣∣∣∣cot
θ∗
2

∣∣∣∣ dσ

dΩ
=
(
k

4E

)2 1
sin4 θ∗

2

(B.204)

The relative sign between b and θ∗ is chosen based on whether the potential is attractive or repulsive
(E > 0 always for unbound orbits).

B.5 Rotating Systems

Dynamics in Rotating Coordinate Systems

Transforming Between Inertial and Rotating Systems

If F is the rotating coordinate system and F ′ is the fixed, inertial system, then coordinate repre-
sentations of the position vector in the two are related by

~r ′(t) = R(t)~r(t) (B.205)

and the non-rotating frame coordinate representation of the velocity measured in the non-rotating
frame is related to the rotating frame coordinate representation of the velocity measured in the
rotating frame by

~v ′space(t) = Ṙ(t) [R(t)]T ~r ′(t) + R(t)~vbody(t) (B.206)

=
(
~ω ′(t) · ~M

)
~r ′(t) + R(t)~vbody(t) (B.207)

= ~ω ′(t)×~r ′(t) + R(t)~vbody(t) (B.208)

Remember that RT~v ′space(t) 6= ~vbody: ~vspace and ~vbody are different vectors.

Acceleration and Total Apparent Force in Rotating Frame

Taking a derivative of the above equation for ~v ′space(t), we obtain

d

dt
~v ′space(t) = ~ω ′(t)×

[
~ω ′(t)×~r ′(t)

]
+ 2 ~ω ′(t)×R(t)~vbody(t) + ~̇ω ′(t)×~r ′(t) (B.209)

+ R(t)~abody(t)

We can rearrange the equation and make use of multiple applications of the generic fact

RT
(
~a ′ ×~b ′

)
= ~a×~b (B.210)

we obtain Newton’s second law in the rotating frame:

~F app = ~F true (B.211)

− m
[
RT ~ω ′(t)

]
(t)×

([
RT ~ω ′(t)

]
×~r(t)

)
− 2m

[
RT ~ω ′(t)

]
× ~vbody(t)

− m
[
RT ~̇ω ′(t)

]
×~r(t)

where ~F app is the rotating frame coordinate representation of the apparent force and ~F true is the
rotating frame representation of the true force, ~F true = RT ~F ′

true. The equation tells us to add to
the true force (written in rotating frame coordinate representation) a number of fictitious forces
(centrifugal, Coriolis, and Euler, respectively) to obtain the apparent force in the rotating frame.
The apparent force ~Fapp then satisfies ~F app = m~abody in the rotating frame.
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Lagrangian and Hamiltonian Dynamics in Rotating Frames

The only general result to keep in mind here is to write the Lagrangian first in the inertial frame,
write the inertial frame coordinates and velocities in terms of rotating frame coordinates and
velocities, and finally substitute. The Hamiltonian should be obtained from the Lagrangian in the
rotating frame, not from the inertial frame Hamiltonian, to ensure that canonical momenta are
defined properly. The rotating frame Hamiltonian will not in general equal the total energy.

Dynamics of Rigid Bodies

Basic Kinematics and Moment of Inertia Tensor

If ~sa denotes the coordinates of a particle belonging to a rigid body relative to the body’s center of
mass, then it is true that all motion of such a particle relative to the center of mass is rotational;
i.e., it holds that

~̇sa = ~ω × ~sa (B.212)

with a common angular velocity vector ~ω for all particles a.
The kinetic energy and angular momentum of the rigid body may be written

Trot =
∑
a

1
2
ma

(
ω2 s2a − (~ω · ~sa)2

)
(B.213)

~L =
∑
a

ma

(
s2a ~ω − (~ω · ~sa)~sa

)
(B.214)

which motivate the definition of the moment of inertia tensor I with coordinate representation

Iij =
∑
a

ma

(
s2aδij − sa,i sa,j

)
(B.215)

and coordinate-free form

I =
∑
a

ma

(
~sa · ~sa 1− ~sa ~sTa

)
(B.216)

which allow us to write

Trot =
1
2
~ω TI ~ω =

1
2
ωi Iij ωj (B.217)

~L = I ~ω ⇐⇒ Li = Iij ωj (B.218)

For continuous systems, the moment of inertial tensor has representation

Iij =
∫
d3rρ(~s)

(
s2δij − si sj

)
(B.219)

Since I is a symmetric matrix, there exists a rotation matrix that diagonalizes it. The unit vectors
in the frame in which it is diagonalized are called the principal axes and the eigenvalues (diagonal
components of I in the diagonal frame) are called the principal components. The principal axes
are the natural rotation axes of the body; in particular, angular velocity and angular momentum
are aligned if rotation is purely about one principal axis. The frame in which the inertia tensor is
diagonalized is usually referred to as the body frame.
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The displaced axis theorem lets us calculate the moment of inertia tensor of a rigid body about one
axis if we know the moment of inertia tensor about some other axis. If the new axis is displaced
by the vector ~a from the original axis, then the new moment of inertial tensor has coordinate
representation

Idisplacedij = Iij +M
(
a2δij − ai aj

)
(B.220)

Note that the sign of ~a is not important.

Euler’s Equations

Since the body frame is the frame in which the inertia tensor is diagonalized, it can be a convenient
frame in which to calculate the equations of motion. From our generic results about relating deriva-
tives of vectors in rotating and non-rotating frames, the rate of change of the angular momentum
relative to the space frame is related to the rate of change of the angular momentum relative to
the body frame by

d

dt
~L ′
∣∣∣∣
space

= ~ω ′ × ~L ′ + R
d

dt
~L

∣∣∣∣
body

(B.221)

Remember, d
dt
~L ′
∣∣∣
space

and d
dt
~L
∣∣∣
body

are representations in different frames of the different vectors

d
dt
~L
∣∣∣
space

and d
dt
~L
∣∣∣
body

. The symbols ~ω ′ and ~L ′ are non-rotating frame representations of the

vectors ~ω and ~L, which are always measured relative to the non-rotating frame (and hence no space

or body modifier is needed). We may rewrite the above as

d

dt
~L

∣∣∣∣
body

= RT
(
− ~ω ′ × ~L ′ + ~τ ′

)
= −

[
RT ~ω ′]× [RT ~L ′

]
+ RT~τ ′ (B.222)

where ~τ ′ is the coordinate representation in the non-rotating frame of the torque and RT~τ ′ is its
representation in the rotating frame. Making use of the confusing but less cumbersome notation
ωi =

[
RT ~ω ′]

i
to denote the rotating frame coordinate representation components of the angular

velocity (and similarly for ~L and ~τ), using the fact ~L = RT ~L ′ = RTI ′~ω ′ = RTI ′RRT ~ω ′ = I ~ω,
and also realizing that I is diagonal because it is the body frame representation, we may simplify
to find

I1
d

dt
ω1 = ω2 ω3 (I2 − I3) + τ1 (B.223)

I2
d

dt
ω2 = ω1 ω3 (I3 − I1) + τ2 (B.224)

I3
d

dt
ωe = ω1 ω2 (I1 − I2) + τ3 (B.225)

Once one has integrated the above equations to determine ωi(t) in the body frame representation,
one can obtain the representation in the space frame using ωi(t) =

[
RT ~ω ′(t)

]
i
.

Kinetic Energy of a Symmetric Top

The kinetic energy of a symmetric top has a particularly clean form when written in terms of Euler
angles:

T =
1
2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2
(B.226)
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Dynamics of Torque-Free Symmetric Tops

For torque-free symmetric tops, we have I1 = I2, which thereby ensures that ω3 is constant. We
obtained the solution

ω3 = ω3 = constant ΩP = ω3

(
I3
I1
− 1
)

(B.227)

ω1 = A sin (ΩP t+ φ) ω2 = A cos (ΩP t+ φ) (B.228)

with

|A| =

√
I3

I1 − I3

(
L2

I1 I3
− 2T

I1

)
(B.229)

ω3 =

√
I1

I3 − I1

(
L2

I1 I3
− 2T

I3

)
(B.230)

Ωp =
I3 − I1
|I3 − I1|

√
I3 − I1
I1

(
L2

I1 I3
− 2T

I3

)
(B.231)

More insight was obtained by solving the problem in the space frame, which gave us the solution:

~L ′ = constant = L ẑ ′ T = constant (B.232)
~ω ′(t) = ωP ẑ

′ + Ω ẑ = ωP ẑ
′ + Ω (ẑ ′ cos θ − x̂ ′ sin θ sin ωP t + ŷ ′ sin θ cos ωP t ) (B.233)

with

ωP =
L

I1
(B.234)

cos θ =
I3
L

√
I1

I3 − I1

(
L2

I1 I3
− 2T

I3

)
(B.235)

(B.236)

tan γ =
I3
I1

tan θ (B.237)

Ω = L

(
1
I3
− 1
I1

)
cos θ (B.238)

where θ is the angle between the spin axis and the angular momentum vector, γ is the angle between
the spin axis and the angular velocity vector, and θ−γ is the angle between the angular momentum
and angular velocity vectors. The body and space frame solutions are related by

A = −ωP sin θ I3 ω3 = I1 ωP cos θ = L cos θ Ω = −Ωp
|A|
ω3

= tan γ (B.239)

Finally, if we used Euler angles and the Lagrangian point of view, we would have obtained the
results

φ̇ ⇐⇒ ωP (B.240)
constant = pφ = I1 φ̇ ⇐⇒ L = |~L ′| (B.241)

constant = pψ ⇐⇒ I3 ω3 = L cos θ (B.242)
ψ̇ ⇐⇒ Ω (B.243)
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Dynamics of Symmetric Tops with Torque

When torque is included, Euler angles and a Lagrangian approach are easiest. In general, the
torque yields a potential energy function in the Euler angle θ, U(θ). In that case, the Lagrangian
is

L = T − U =
1
2
I1d

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2
− U(θ) (B.244)

There are two conserved canonical momenta

pψ = I3

(
ψ̇ + φ̇ cos θ

)
(B.245)

pφ = I1d φ̇ sin2 θ + pψ cos θ (B.246)

The equation of motion for θ is

I1d θ̈ = I1d φ̇
2 sin θ cos θ − I3

(
ψ̇ + φ̇ cos θ

)
φ̇ sin θ − ∂U(θ)

∂θ
(B.247)

These may be used to rewrite the problem as one-dimensional using an effective potential energy
function:

Veff =
1

2 I1d

(pφ − pψ cos θ)2

sin2 θ
+ U(θ) (B.248)

The equation of motion with Veff is

I1 θ̈ = − ∂

∂θ

(
1

2 I1d

(pφ − pψ cos θ)2

sin2 θ
+ U(θ)

)
(B.249)

The one-dimensional Lagrangian that would generate this equation of motion is

L1D =
I1d
2
θ̇2 +

1
2 I3

p2
ψ − Veff (θ) (B.250)

Note that L1D is not the original L with pφ and pψ substituted back in; there is a sign flip on
the kinetic terms that generate the effective potential. This kind of thing was encountered in
defining the effective potential in the central force problem, too (see the text for details). With
that correction, one can obtain a one-dimensional equation of motion in θ. Once the dynamics in
θ have been obtained, the dynamics in φ and ψ can be found by using θ(t) and the conservation of
pφ and pψ. The total energy is

E =
I1d
2
θ̇2 +

1
2 I3

p2
ψ + Veff (θ) (B.251)

which is the same as what one would obtain if one just substituted for pφ and pψ in the original
expression for the energy – the total energy does not suffer the sign flip confusion. This equation is
a nonlinear differential equation in θ̇ that can be studied qualitatively to understand the possible
types of solutions.
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B.6 Special Relativity

The fundamental postulates of special relativity are

1. Physics is the same in all inertial frames.

2. The speed of light is the same in all inertial frames.

These postulates can be used to derive the rules for the Lorentz transformation of space-time
coordinates. If frame F moves at speed β = v/c along the +x direction relative to frame F̃ , and
their space and time origins coincide at t = t̃ = 0, then the coordinates of a space-time event in
one frame are related to those in the other frame by

x̃ = γ (x+ β t) t̃ = γ (β x+ t) ỹ = y z̃ = z (B.252)
x = γ

(
x̃− β t̃

)
t = −γ

(
βx̃− t̃

)
y = ỹ z = z̃ (B.253)

The space-time coordinate xµ = (t, ~x) is the archetype of a four-vector or Lorentz covariant
vector, which is any set of four numbers that obey the Lorentz transformation. The Lorentz trans-
formation can be used to derive time dilation, length contraction, and the relativity of simultaneity.
The invariant interval is

s2 = t2 − (x2 + y2 + z2) (B.254)

and is independent of Lorentz frame. A similar invariant length can be formed for any four-vector.
The invariant interval defines whether a space-time interval is time-like (s2 > 0), space-like
(s2 < 0), or light-like (s2 = 0). Only events with time-like or light-like separations can causally
affect one another. This causal property is invariant under Lorentz transformations.
The rapidity η (also known as the boost angle or boost parameter is defined by

β = tanh η γ = cosh η β γ = sinh η (B.255)

The Lorentz transformation may thus be written

x̃ = x cosh η + t sinh η t̃ = x sinh η + t cosh η (B.256)
x = x̃ cosh η − t̃ sinh η t = −x̃ sinh η + t̃ cosh η (B.257)

The velocity addition formula tells us how to transform a velocity measured in frame F ′ to the
frame F ; essentially, it performs summing of relativistic velocities:

ũ|| =
β + u||

1 + β u||
ũ⊥ =

1
γ

u⊥
1 + β u||

(B.258)

where u|| and u⊥ are the components of the velocity measured in the F frame along and perpen-
dicular to the velocity ~β of the F frame relative to F̃ and ũ|| and ũ⊥ are the components in F̃ . The
γ symbol here is γ =

(
1− β2

)−1 as usual. Alternately, we can use the Lorentz transformation law
on the four-velocity, which is defined to be

uµ =
d xµ

dτ
=

d xµ

d
√
|xµ|2

= γp

(
1, ~βp

)
(B.259)
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Here, ~βp is the three-velocity of the particle (not the frame) in the frame in which we want the
representation of uµ and γp =

(
1− β2

p

)−1 again. The definition of the four-velocity leads to the
four-momentum or the energy-momentum four-vector,

pµ = muµ = γpm
(
1, ~βp

)
(B.260)

which is also Lorentz covariant because m is a Lorentz scalar. For light, the analogous quantity is
the four-wavevector

kµ = (ω,~k) (B.261)

The four-momentum of light is pµ = ~ kµ. The Lorentz transformation of the four-wavevector can
be used to derive the formulae for the relativistic Doppler shift:

ν ′

ν
=

√
1− β
1 + β

λ′

λ
=

√
1 + β

1− β
(B.262)

where ν ′ is measured in the frame F ′ which moves at speed β relative to F . ν is measured in F .
And similarly for λ′ and λ. The action and Lagrangian for a free particle is

S = −
∫ B

A
mdτ = −

∫ B

A

m

γp
dt (B.263)

The action is explicitly Lorentz invariant. The Lagrangian depends on the frame and is not Lorentz
invariant. Standard conservative potentials cannot be added to the action because they are mani-
festly not Lorentz covariant. The canonical momentum and the Hamiltonian derived from L are

~p = γpm ~βp H = γpm (B.264)

Neither one of these alone is Lorentz invariant or covariant, but of course together they make the
Lorentz covariant energy-momentum four-vector.
Lorentz transformations can be written in vector/matrix form (for ~β along the +x axis)

xµ =


t
x
y
z

 x̃µ =


t̃
x̃
ỹ
z̃

 x̃µ = Λµν xν Λµν =


γ γ β 0 0

γ β γ 0 0
0 0 1 0
0 0 0 1


where xµ and x̃µ are the representations of the four-vector xµ in the frames F and F̃ . Such a vector
is said to transform Lorentz-covariantly; it is a Lorentz-covariant vector. For an arbitrary
direction, the Lorentz transformation matrix is

Λ0
0 = γ Λ0

i = Λi0 = γ βi Λij = δij + (γ − 1)
βi βj
β2

i, j = 1, 2, 3

or, in its fully glory,

Λµν =


γ γ βx γ βy γ βz

γ βx 1 + (γ − 1)β
2
x
β2 (γ − 1)βx βy

β2 (γ − 1)βx βz

β2

γ βy (γ − 1)βx βy

β2 1 + (γ − 1)β
2
y

β2 (γ − 1)βy βz

β2

γ βz (γ − 1)βx βz

β2 (γ − 1)βy βz

β2 1 + (γ − 1)β
2
z
β2


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One can demonstrate addition of velocities, and the Lorentz covariance of four-velocity, four-
momentum, and four-wavevector using boost matrices. The metric tensor calculates the invariant
interval associated with a four-vector (Einstein summation convention):

|xµ|2 = gµνx
µxν = (x0)2 − (x1)2 − (x2)2 − (x3)2 (B.265)

The metric tensor gµν has representation diag(1,−1,−1,−1) in all Lorentz frames. The metric
tensor can be used to raise and lower indices. It holds that

gµν = diag(1,−1,−1,−1) gµν = g ν
µ = diag(1, 1, 1, 1) (B.266)

The Lorentz-contravariant four-vector xµ transforms as follows

x̃µ = Λ ν
µ xν Λ ν

µ = gµλ g
νσΛλσ (B.267)
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