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INTRODUCTION 

 

 The application of the principles of mechanics to bulk matter is conventionally divided into 

the mechanics of fluids and the mechanics of solids.  The entire subject is often called continuum 

mechanics, particularly when we adopt the useful model of matter as being continuously 

divisible, making no reference to its discrete structure at microscopic length scales well below 

those of the application or phenomenon of interest.  Solid mechanics is concerned with the 

stressing, deformation and failure of solid materials and structures.  What, then, is a solid?  Any 

material, fluid or solid, can support normal forces. These are forces directed perpendicular, or 

normal, to a material plane across which they act.  The force per unit of area of that plane is 

called the normal stress.  Water at the base of a pond, air in an automobile tire, the stones of a 

Roman arch, rocks at base of a mountain, the skin of a pressurized airplane cabin, a stretched 

rubber band and the bones of a runner all support force in that way (some only when the force is 

compressive).  We call a material solid rather than fluid if it can also support a substantial 

shearing force over the time scale of some natural process or technological application of 

interest.  Shearing forces are directed parallel, rather than perpendicular, to the material surface 

on which they act; the force per unit of area is called shear stress.  For example, consider a 
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vertical metal rod that is fixed to a support at its upper end and has a weight attached at its lower 

end.  If we consider a horizontal surface through the material of the rod, it will be evident that 

the rod supports normal stress.  But it also supports shear stress, and that becomes evident when 

we consider the forces carried across a plane through the rod that is neither horizontal nor 

vertical.  Thus, while water and air provide no long term support of shear stress, normally 

granite, steel, and rubber do so, and are called solids.  Materials with tightly bound atoms or 

molecules, like the crystals formed below melting temperature by most substances or simple 

compounds, or the amorphous structures formed in glass and many polymer substances at 

sufficiently low temperature, are usually considered solids. 

 

 The distinction between solids and fluids is not precise and in many cases will depend on the 

time scale.  Consider the hot rocks of the Earth’s mantle.  When a large earthquake occurs, an 

associated deformation disturbance called a seismic wave propagates through the adjacent rock 

and the whole earth is set into vibrations which, following a sufficiently large earthquake, may 

remain detectable with precise instruments for several weeks.  We would then describe the rocks 

of the mantle as solid.  So would we on the time scale of, say, tens to thousands of years, over 

which stresses rebuild enough in the source region to cause one or a few repetitions of the 

earthquake.  But on a significantly longer time scale, say of order of a million years, the hot 

rocks of the mantle are unable to support shearing stresses and flow as a fluid.  Also, many 

children will be familiar with a substance called silly putty, a polymerized silicone gel.  If a ball 

of it is left to sit on a table at room temperature, it flows and flattens on a time scale of a few 

minutes to an hour.  But if picked up and tossed as a ball against a wall, so that large forces act 

only over the short time of the impact, it bounces back and retains its shape like a highly elastic 

solid.  

 

 In the simple but very common case when such a material is loaded at sufficiently low 

temperature and/or short time scale, and with sufficiently limited stress magnitude, its 

deformation is fully recovered upon unloading.  We then say that the material is elastic.  But 

substances can also deform permanently, so that not all deformation is recovered.  For example, 

if you bend a metal coat hanger substantially and then release the loading, it springs back only 

partially towards its initial shape, but does not fully recover and remains bent.  We say that the 

metal of the coat hanger has been permanently deformed and in this case, for which the 

permanent deformation is not so much a consequence of long time loading at sufficiently high 

temperature, but more a consequence of subjecting the material to large stresses (above the yield 

stress), we describe the permanent deformation as plastic deformation, and call the material 
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elastic-plastic.  Permanent deformation of a sort that depends mainly on time of exposure to a 

stress, and that tends to increase significantly with time of exposure, is called viscous or creep 

deformation and materials which exhibit that, as well as tendencies for elastic response, are 

called viscoelastic solids (or sometimes visco-plastic solids when we focus more on the 

permanent strain than on the tendency for partial recovery of strain upon unloading). 

 

 Who uses solid mechanics?  All those who seek to understand natural phenomena involving 

the stressing, deformation, flow and fracture of solids, and all those who would have knowledge 

of such phenomena to improve our living conditions and accomplish human objectives, have use 

for solid mechanics.  The latter activities are, of course, the domain of engineering and many 

important modern sub fields of solid mechanics have been actively developed by engineering 

scientists concerned, for example, with mechanical, structural, materials, civil or aerospace 

engineering.  Natural phenomena involving solid mechanics are studied in geology, seismology 

and tectonophysics, in materials science and the physics of condensed matter, and in parts of 

biology and physiology.  Further, because solid mechanics poses challenging mathematical and 

computational problems, it (as well as fluid mechanics) has long been an important topic for 

applied mathematicians concerned, for example, with partial differential equations and with 

numerical techniques for digital computer formulations of physical problems. 

 

 Here is a sampling of some of the issues addressed using solid mechanics concepts:  How do 

flows develop in the earth’s mantle and cause continents to move and ocean floors to slowly 

subduct beneath them?  How do mountains form?  What processes take place along a fault 

during an earthquake, and how do the resulting disturbances propagate through the earth as 

seismic waves, and shake, and perhaps collapse, buildings and bridges?  How do landslides 

occur?  How does a structure on a clay soil settle with time, and what is the maximum bearing 

pressure which the footing of a building can exert on a soil or rock foundation without rupturing 

it?  What materials do we choose, and how do we proportion and shape them and control their 

loading, to make safe, reliable, durable and economical structures, whether airframes, bridges, 

ships, buildings, chairs, artificial heart valves, or computer chips, and to make machinery such as 

jet engines, pumps, bicycles, and the like?  How do vehicles (cars, planes, ships) respond by 

vibration to the irregularity of surfaces or media along which they move, and how are vibrations 

controlled for comfort, noise reduction and safety against fatigue failure?  How rapidly does a 

crack grow in a cyclically loaded structure, whether a bridge, engine, or airplane wing or 

fuselage, and when will it propagate catastrophically?  How do we control the deformability of 

structures during impact so as to design crash worthiness into vehicles?  How do we form the 
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materials and products of our technological civilization, e.g., by extruding metals or polymers 

through dies, rolling material into sheets, punching out complex shapes, etc.?  By what 

microscopic processes do plastic and creep strains occur in polycrystals?  How can we fashion 

different materials together, like in fiber reinforced composites, to achieve combinations of 

stiffness and strength needed in applications?  What is the combination of material properties and 

overall response needed in downhill skis or in a tennis racket?  How does the human skull 

respond to impact in an accident?  How do heart muscles control the pumping of blood in the 

human body, and what goes wrong when an aneurysm develops? 

 

 

HISTORICAL SKETCH 

 

 Solid mechanics developed in the outpouring of mathematical and physical studies following 

the great achievement of Isaac Newton (1642-1727) in stating the laws of motion, although it has 

earlier roots.  The need to understand and control the fracture of solids seems to have been a first 

motivation.  Leonardo da Vinci (1452-1519) sketched in his notebooks a possible test of the 

tensile strength of a wire.  The Italian experimental scientist Galileo Galilei (1564-1642), who 

died in the year of Newton’s birth, had investigated the breaking loads of rods in tension and 

concluded that the load was independent of length and proportional to the cross section area, this 

being a first step towards a concept of stress.  He also investigated how the breaking of heavy 

stone columns, laid horizontally in storage as beams, depended on the number and condition of 

their supports. 

 

 Concepts of stress, strain and elasticity.  The English scientist Robert Hooke discovered in 

1660, but published only in 1678, the observation that for many materials that displacement 

under a load was proportional to force, thus establishing the notion of (linear) elasticity but not 

yet in a way that was expressible in terms of stress and strain.  E. Mariotte in France published 

similar discoveries in 1680 and, also, reached an understanding of how beams like those studied 

by Galileo resisted transverse loadings or, more precisely, resist the torques caused by those 

transverse loadings, by developing extensional and compressional deformations, respectively, in 

material fibers along their upper and lower portions.  It was for Swiss mathematician and 

mechanician James Bernoulli (1654-1705) to observe, in the final paper of his life, in 1705, that 

the proper way of describing deformation was to give force per unit area, or stress, as a function 

of the elongation per unit length, or strain, of a material fiber under tension.  Swiss 

mathematician and mechanician Leonhard Euler (1707-1783), who was taught mathematics by 
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James’ brother John Bernoulli (1667-1748), proposed, among many contributions, a linear 

relation between stress  and strain  in 1727, of form  = E  where the coefficient E is now 

generally called Young’s modulus after English naturalist Thomas Young who developed a 

related idea in 1807. 

 

 The notion that there is an internal tension acting across surfaces in a deformed solid was 

expressed by German mathematician and physicist Gottfried Wilhelm Leibniz in 1684 and James 

Bernoulli in 1691.  Also, Bernoulli and Euler (see below) introduced the idea that at a given 

section along the length of a beam there were internal tensions amounting to a net force and a net 

torque.  Euler introduced the idea of compressive normal stress as the pressure in a fluid in 1752.  

The French engineer and physicist Charles-Augustine Coulomb (1736-1806) was apparently the 

first to relate the theory of a beam as a bent elastic line to stress and strain in an actual beam, in a 

way never quite achieved by Bernoulli and, although possibly recognized, never published by 

Euler.  He developed the famous expression  = M y / I for the stress due to the pure bending of 

a homogeneous linear elastic beam; here M is the torque, or bending moment, y is the distance of 

a point from an axis that passes through the section centroid, parallel to the torque axis, and I is 

the integral of y2 over the section area.  The French mathematician Parent introduced the concept 

of shear stress in 1713, but Coulomb was the one who extensively developed the idea in 

connection with beams and with the stressing and failure of soil in 1773, and studies of frictional 

slip in 1779.  It was the great French mathematician Augustin Louis Cauchy (1789-1857), 

originally educated as an engineer, who in 1822 formalized the stress concept in the context of a 

general three-dimensional theory, showed its properties as consisting of a 3 by 3 symmetric array 

of numbers that transform as a tensor, derived the equations of motion for a continuum in terms 

of the components of stress, and gave the specific development of the theory of linear elastic 

response for isotropic solids.  As part of this work, Cauchy also introduced the equations which 

express the six components of strain, three extensional and three shear, in terms of derivatives of 

displacements for the case when all those derivatives are much smaller than unity; similar 

expressions had been given earlier by Euler in expressing rates of straining in terms of the 

derivatives of the velocity field in a fluid. 

 

 Beams, columns, plates, shells.  The 1700’s and early 1800’s were a productive period in 

which the mechanics of simple elastic structural elements were developed well before the 

beginnings in the 1820’s of the general three-dimensional theory.  The development of beam 

theory by Euler, who generally modeled beams as elastic lines which resist bending, and by 

several members of the Bernoulli family and by Coulomb, remains among the most immediately 
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useful aspects of solid mechanics, in part for its simplicity and in part because of the 

pervasiveness of beams and columns in structural technology.  James Bernoulli proposed in his 

final paper of 1705 that the curvature of a beam was proportional to bending moment.  Euler in 

1744 and John’s son, Daniel Bernoulli (1700-1782) in 1751 used the theory to address the 

transverse vibrations of beams, and Euler gave in 1757 his famous analysis of the buckling of an 

initially straight beam subjected to a compressive loading; the beam is then commonly called a 

column.  Following a suggestion of Daniel Bernoulli in 1742, Euler in 1744 introduced the strain 

energy per unit length for a beam, proportional to the square of its curvature, and regarded the 

total strain energy as the quantity analogous to the potential energy of a discrete mechanical 

system.  By adopting procedures that were becoming familiar in analytical mechanics, and 

following from the principle of virtual work as introduced by John Bernoulli for discrete systems 

such as pin-connected rigid bodies in 1717, Euler rendered the energy stationary and in this way 

developed the calculus of variations as an approach to the equations of equilibrium and motion 

of elastic structures.   

 

 That same variational approach played a major role in the development by French 

mathematicians in the early 1800’s of a theory of small transverse displacements and vibrations 

of elastic plates.  This theory was developed in preliminary form by Sophie Germain and partly 

improved upon by Simeon Denis Poisson in the early 1810’s; they considered a flat plate as an 

elastic plane which resists curvature.  Navier gave a definitive development of the correct energy 

expression and governing differential equation a few years later.  An uncertainty of some 

duration in the theory arose from the fact that the final partial differential equation for the 

transverse displacement is such that it is impossible to prescribe, simultaneously, along an 

unsupported edge of the plate, both the twisting moment per unit length of middle surface and 

the transverse shear force per unit length.  This was finally resolved in 1850 by German physicist 

Gustav Robert Kirchhoff in an application of virtual work and variational calculus procedures, in 

the framework of simplifying kinematic assumptions that fibers initially perpendicular to the 

plate middle surface remain so after deformation of that surface.  As first steps in the theory of 

thin shells, in the 1770’s Euler addressed the deformation of an initially curved beam, as an 

elastic line, and provided a simplified analysis of vibration of an elastic bell as an array of 

annular beams.  John’s grandson, through a son and mathematician also named John, James 

Bernoulli “the younger” (1759-1789) further developed this model in the last year of his life as a 

two dimensional network of elastic lines, but could not develop an acceptable treatment.  Shell 

theory was not to attract attention for a century after Euler’s work, as the outcome of many 

researches following the first consideration of shells from a three-dimensional elastic viewpoint 
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by H. Aron in 1873.  Acceptable thin-shell theories for general situations, appropriate for cases 

of small deformation, were developed by English mathematician, mechanician and geophysicist 

A. E. H. Love in 1888 and mathematician and physicist Horace Lamb in 1890 (there is no 

uniquely correct theory as the Dutch applied mechanician and engineer W. T. Koiter and Russian 

mechanician V. V. Novozhilov were to clarify in the 1950’s; the difference between predictions 

of acceptable theories is small when the ratio of shell thickness to a typical length scale is small).  

Shell theory remained of immense interest well beyond the mid-1900’s in part because so many 

problems lay beyond the linear theory (rather small transverse displacements often dramatically 

alter the way that a shell supports load by a combination of bending and membrane action), and 

in part because of the interest in such light-weight structural forms for aeronautical technology. 

 

 Elasticity, general theory.  Linear elasticity as a general three-dimensional theory was in 

hand in the early 1820’s based on Cauchy’s work.  Simultaneously, Navier had developed an 

elasticity theory based on a simple corpuscular, or particle, model of matter in which particles 

interacted with their neighbors by a central-force attractions between particle pairs.  As was 

gradually realized following works by Navier, Cauchy and Poisson in the 1820’s and 1830’s, the 

particle model is too simple and makes predictions concerning relations among elastic moduli 

which are not met by experiment.  In the isotropic case it predicts that there is only one elastic 

constant and that the Poisson ratio has the universal value of 1/4.  Most subsequent development 

of the subject was in terms of the continuum theory.  Controversies concerning the maximum 

possible number of independent elastic moduli in the most general anisotropic solid were settled 

by English mathematician George Green in 1837, through pointing out that the existence of an 

elastic strain energy required that of the 36 elastic constants, relating the six stress components to 

the six strains, at most 21 could be independent.  Scottish physicist Lord Kelvin (William 

Thomson) put this consideration on sounder ground in 1855 as part of his development of 

macroscopic thermodynamics, in much the form as it is known today, showing that a strain 

energy function must exist for reversible isothermal or adiabatic (isentropic) response, and 

working out such results as the (very modest) temperature changes associated with isentropic 

elastic deformation.   

 

 The middle and late 1800’s were a period in which many basic elastic solutions were derived 

and applied to technology and to the explanation of natural phenomena.  French mathematician 

Barre de Saint-Venant derived in the 1850’s solutions for the torsion of non-circular cylinders, 

which explained the necessity of warping displacement of the cross section in the direction 

parallel to the axis of twisting, and for flexure of beams due to transverse loadings; the latter 
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allowed understanding of approximations inherent in the simple beam theory of Bernoulli, Euler 

and Coulomb.  The German physicist Heinrich Rudolph Hertz developed solutions for the 

deformation of elastic solids as they are brought into contact, and applied these to model details 

of impact collisions.  Solutions for stress and displacement due to concentrated forces acting at 

an interior point of a full space were derived by Kelvin, and on the surface of a half space by 

mathematicians J. V. Bousinesq (French) and V. Cerruti (Italian).  The Prussian mathematician 

L. Pochhammer analyzed the vibrations of an elastic cylinder and Lamb and the Prussian 

physicist P. Jaerisch derived the equations of general vibration of an elastic sphere in the 1880’s, 

an effort that was continued by many seismologists in the 1900’s to describe the vibrations of the 

Earth.  Kelvin derived in 1863 the basic form of the solution of the static elasticity equations for 

a spherical solid, and these were applied in following years to such problems as deformation of 

the Earth due to rotation and to tidal forcing, and to effects of elastic deformability on the 

motions of the Earth’s rotation axis. 

 

 The classical development of elasticity never fully confronted the problem of finite elastic 

straining, in which material fibers change their lengths by other than very small amounts.  

Possibly this was because the common materials of construction would remain elastic only for 

very small strains before exhibiting either plastic straining or brittle failure.  However, natural 

polymeric materials show elasticity over a far wider range (usually also with enough time or rate 

effects that they would more accurately be characterized as viscoelastic), and the widespread use 

of natural rubber and like materials motivated the development of finite elasticity.  While many 

roots of the subject were laid in the classical theory, especially in the work of Green, G. Piola 

and Kirchhoff in the mid-1800’s, the development of a viable theory with forms of stress-strain 

relations for specific rubbery elastic materials, and an understanding of the physical effects of the 

nonlinearity in simple problems like torsion and bending, is mainly the achievement of British-

American engineer and applied mathematician Ronald S. Rivlin in the 1940’s and 1950’s. 

 

 Waves.  Poisson, Cauchy and George G. Stokes showed that the equations of the theory 

predicted the existence of two types of elastic deformation waves which could propagate through 

isotropic elastic solids.  These are called body waves.  In the faster type, called longitudinal, or 

dilational, or irrotational waves, the particle motion is in the same direction as that of wave 

propagation; in the slower, called transverse, or shear, or rotational waves, it is perpendicular to 

the propagation direction.  No analog of the shear wave exists for propagation through a fluid 

medium, and that fact led seismologists in the early 1900’s to understand that the Earth has a 

liquid core (at the center of which there is a solid inner core).   



9 

 

 Lord Rayleigh (John Strutt) showed in 1887 that there is a wave type that could propagate 

along surfaces, such that the motion associated with the wave decayed exponentially with 

distance into the material from the surface.  This type of surface wave, now called a Rayleigh 

wave, propagates typically at slightly more than 90% of the shear wave speed, and involves an 

elliptical path of particle motion that lies in planes parallel to that defined by the normal to the 

surface and the propagation direction.  Another type of surface wave, with motion transverse to 

the propagation direction and parallel to the surface, was found by Love for solids in which a 

surface layer of material sits atop an elastically stiffer bulk solid; this defines the situation for the 

Earth’s crust.  The shaking in an earthquake is communicated first to distant places by body 

waves, but these spread out in three-dimensions and must diminish in their displacement 

amplitude as r –1, where r is distance from the source, to conserve the energy propagated by the 

wave field.  The surface waves spread out in only two dimensions and must, for the same reason, 

diminish only as fast as r –1/2.  Thus shaking in surface waves is normally the more sensed, and 

potentially damaging, effect at moderate to large distances from a crustal earthquake.  Indeed, 

well before the theory of waves in solids was in hand, Thomas Young had suggested in his 1807 

Lectures on Natural Philosophy that the shaking of an earthquake “is probably propagated 

through the earth in the same manner as noise is conveyed through air”.  (It had been suggested 

by American mathematician and astronomer Jonathan Winthrop, following his experience of the 

“Boston” earthquake of 1755, that the ground shaking was due to a disturbance propagated like 

sound through the air.) 

 

 With the development of ultrasonic transducers operated on piezoelectric principles, the 

measurement of the reflection and scattering of elastic waves has developed into an effective 

engineering technique for the non-destructive evaluation of materials for detection of potentially 

dangerous defects such as cracks.  Also, very strong impacts, whether from meteorite collision, 

weaponry, or blasting and the like in technological endeavors, induce waves in which material 

response can be well outside the range of linear elasticity, involving any or all of finite elastic 

strain, plastic or viscoplastic response, and phase transformation.  These are called shock waves; 

they can propagate much beyond the speed of linear elastic waves and are accompanied with 

significant heating. 

 

 Stress concentrations and fracture.  In 1898 G. Kirsch derived the solution for the stress 

distribution around a circular hole in a much larger plate under remotely uniform tensile stress.  

The same solution can be adapted to the tunnel-like cylindrical cavity of circular section in a 
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bulk solid.  His solution showed a significant concentration of stress at the boundary, by a factor 

of three when the remote stress was uniaxial tension.  Then in 1907 the Russian mathematician 

G. Kolosov, and independently in 1914 the British engineer Charles Inglis, derived the analogous 

solution for stresses around an elliptical hole.  Their solution showed that the concentration of 

stress could become far greater as the radius of curvature at an end of the hole becomes small 

compared to the overall length of the hole.  These results provided the insight to sensitize 

engineers to the possibility of dangerous stress concentrations at, for example, sharp re-entrant 

corners, notches, cut-outs, keyways, screw threads, and the like in structures for which the 

nominal stresses were at otherwise safe levels.  Such stress concentration sites are places from 

which a crack can nucleate. 

 

 The elliptical hole of Kolosov and Inglis defines a crack in the limit when one semi-axis goes 

to zero, and the Inglis solution was adopted in that way by British aeronautical engineer A. A. 

Griffith in 1921 to describe a crack in a brittle solid.  In that work Griffith made his famous 

proposition that spontaneous crack growth would occur when the energy released from the 

elastic field just balanced the work required to separate surfaces in the solid.  Following a 

hesitant beginning, in which Griffith’s work was initially regarded as important only for very 

brittle solids such as glass, there developed, largely under the impetus of American engineer and 

physicist George R. Irwin, a major body of work on the mechanics of crack growth and fracture, 

including fracture by fatigue and stress corrosion cracking, starting in the late 1940’s and 

continuing into the 1990’s.  This was driven initially by the cracking of American fleet of 

Liberty ships during the Second World War, by the failures of the British Comet airplane, and by 

a host of reliability and safety issues arising in aerospace and nuclear reactor technology.  The 

new complexion of the subject extended beyond the Griffith energy theory and, in its simplest 

and most widely employed version in engineering practice, used Irwin’s stress intensity factor as 

the basis for predicting crack growth response under service loadings in terms of laboratory data 

that is correlated in terms of that factor.  That stress intensity factor is the coefficient of a 

characteristic singularity in the linear elastic solution for the stress field near a crack tip, and is 

recognized as providing a proper characterization of crack tip stressing in many cases, even 

though the linear elastic solution must be wrong in detail near the crack tip due to non-elastic 

material response, large strain, and discreteness of material microstructure. 

 

 Dislocations.  The Italian elastician and mathematician V. Volterra introduced in 1905 the 

theory of the elastostatic stress and displacement fields created by dislocating solids.  This 

involves making a cut in a solid, displacing its surfaces relative to one another by some fixed 
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amount, and joining the sides of the cut back together, filling in with material as necessary.  The 

initial status of this work was simply as an interesting way of generating elastic fields but, in the 

early 1930’s, Geoffrey Ingram Taylor, Egon Orowan and Michael Polanyi realized that just such 

a process could be going on in ductile crystals and could provide an explanation of the low 

plastic shear strength of typical ductile solids, much like Griffith’s cracks explained low fracture 

strength under tension.  In this case the displacement on the dislocated surface corresponds to 

one atomic lattice spacing in the crystal.  It quickly became clear that this concept provided the 

correct microscopic description of metal plasticity and, starting with Taylor in the 1930’s and 

continuing into the 1990’s, the use of solid mechanics to explore dislocation interactions and the 

microscopic basis of plastic flow in crystalline materials has been a major topic, with many 

distinguished contributors. 

 

 The mathematical techniques advanced by Volterra are now in common use by Earth 

scientists in explaining ground displacement and deformation induced by tectonic faulting.  Also, 

the first elastodynamic solutions for the rapid motion of a crystal dislocations by South African 

materials scientist F. R. N. Nabarro, in the early 1950’s, were quickly adapted by seismologists 

to explain the radiation from propagating slip distributions on faults.  Japanese seismologist H. 

Nakano had already shown in 1923 how to represent the distant waves radiated by an earthquake 

as the elastodynamic response to a pair of force dipoles amounting to zero net torque.  (All of his 

manuscripts were destroyed in the fire in Tokyo associated with the great Kwanto earthquake in 

that same year, but some of his manuscripts had been sent to Western colleagues and the work 

survived.) 

 

 Continuum plasticity theory.  The macroscopic theory of plastic flow has a history nearly as 

old as that of elasticity.  While in the microscopic theory of materials, the word “plasticity” is 

usually interpreted as denoting deformation by dislocation processes, in macroscopic continuum 

mechanics it is taken to denote any type of permanent deformation of materials, especially those 

of a type for which time or rate of deformation effects are not the most dominant feature of the 

phenomenon (the terms viscoplasticity or creep or viscoelasticity are usually used in such cases).  

Coulomb’s work of 1773 on the frictional yielding of soils under shear and normal stress has 

been mentioned; yielding denotes the occurrence of large shear deformations without significant 

increase in applied stress.  This work found applications to explaining the pressure of soils 

against retaining walls and footings in work of the French mathematician and engineer J. V. 

Poncelot in 1840 and Scottish engineer and physicist W. J. M. Rankine in 1853.  The inelastic 

deformation of soils and rocks often takes place in situations for which the deforming mass is 
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infiltrated by groundwater, and Austrian-American civil engineer Karl Terzaghi in the 1920’s 

developed the concept of effective stress, whereby the stresses which enter a criterion of yielding 

or failure are not the total stresses applied to the saturated soil or rock mass, but rather the 

effective stresses, which are the difference between the total stresses and those of a purely 

hydrostatic stress state with pressure equal to that in the pore fluid.  Terzaghi also introduced the 

concept of consolidation, in which the compression of a fluid-saturated soil can take place only 

as the fluid slowly flows through the pore space under pressure gradients, according to the law of 

Darcy; this effect accounts for the time-dependent settlement of constructions over clay soils. 

 

 Apart from the earlier observation of plastic flow at large stresses in the tensile testing of 

bars, the continuum plasticity of metallic materials begins with Henri Edouard Tresca in 1864.  

His experiments on the compression and indentation of metals led him to propose that this type 

of plasticity, in contrast to that in soils, was essentially independent of the average normal stress 

in the material and dependent only on shear stresses, a feature later rationalized by the 

dislocation mechanism.  Tresca proposed a yield criterion for macroscopically isotropic metal 

polycrystals based on the maximum shear stress in the material, and that was used by Saint-

Venant to solve a first elastic-plastic problem, that of the partly plastic cylinder in torsion, and 

also to solve for the stresses in a completely plastic tube under pressure.  German applied 

mechanician Ludwig Prandtl developed the rudiments of the theory of plane plastic flow in 1920 

and 1921, with an analysis of indentation of a ductile solid by a flat-ended rigid indenter, and the 

resulting theory of plastic slip lines was completed by H. Hencky in 1923 and Hilda Geiringer in 

1930.  Additional developments include the methods of plastic limit analysis, which allowed 

engineers to directly calculate upper and lower bounds to the plastic collapse loads of structures 

or to forces required in metal forming.  Those methods developed gradually over the early 

1900’s on a largely intuitive basis, first for simple beam structures and later for plates, and were 

put on a rigorous basis within the rapidly developing mathematical theory of plasticity around 

1950 by Daniel C. Drucker and William Prager in the United States and Rodney Hill in England. 

 

 German applied mathematician Richard von Mises proposed in 1913 that a mathematically 

simpler theory of plasticity than that based on the Tresca yield criterion could be based on the 

second tensor invariant of the deviatoric stresses (that is, of the total stresses minus those of a 

hydrostatic state with pressure equal to the average normal stress over all planes).  An equivalent 

yield condition had been proposed independently by Polish engineer M.-T. Huber.  The Mises 

theory incorporates a proposal by M. Levy in 1871 that components of the plastic strain 

increment tensor are in proportion to one another just as are the components of deviatoric stress.  
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This criterion was found to generally provide slightly better agreement with experiment than did 

that of Tresca, and most work on the application of plasticity theory uses this form.  Following a 

suggestion of Prandtl, E. Reuss completed the theory in 1930 by adding an elastic component of 

strain increments, related to stress increments in the same way as for linear elastic response.  

This formulation was soon generalized to include strain hardening, whereby the value of the 

second invariant for continued yielding increases with ongoing plastic deformation, and was 

extended to high-temperature creep response in metals or other hot solids by assuming that the 

second invariant of the plastic (now generally called “creep”) strain rate is a function of that 

same invariant of the deviatoric stress, typically a power law type with Arrhenius temperature 

dependence.  This formulation of plastic and viscoplastic or creep response has been applied to 

all manner of problems in materials and structural technology and in flow of geological masses.  

Representative problems addressed include the large growth to coalescence of microscopic voids 

in the ductile fracture of metals, the theory of the indentation hardness test, the extrusion of metal 

rods and rolling of metal sheets, the auto-frettage of gun tubes, design against collapse of ductile 

steel structures, estimation the thickness of the Greenland ice sheet, and modeling the geologic 

evolution of the Tibetan plateau.  Other types of elastic-plastic theories intended for analysis of 

ductile single crystals originate from the work of G. I. Taylor and Hill, and bases the criterion for 

yielding on E. Schmid’s concept from the 1920’s of a critical resolved shear stress along a 

crystal slip plane, in the direction of an allowed slip on that plane; this sort of yield condition has 

approximate support from the dislocation theory of plasticity. 

 

 Viscoelasticity.  The German physicist Wilhelm Weber noticed in 1835 that a load applied to 

a silk thread produced not only an immediate extension but also a continuing elongation of the 

thread with time.  This type of viscoelastic response is especially notable in polymeric solids but 

is present to some extent in all types of solids and often does not have a clear separation from 

what could be called viscoplastic or creep response.  In general, if all the strain is ultimately 

recovered when a load is removed from a body, the response is termed viscoelastic, but the term 

is also used in cases for which sustained loading leads to strains which are not fully recovered.  

The Austrian physicist Ludwig Boltzmann developed in 1874 the theory of linear viscoelastic 

stress-strain relations.  In their most general form these involve the notion that a step loading 

(suddenly imposed stress, subsequently maintained constant) causes an immediate strain 

followed by a time-dependent strain which, for different materials, may either have a finite long 

time limit or may increase indefinitely with time.  Within the assumption of linearity, the strain 

at time t in response to a general time dependent stress history (t) can then be written as the 

sum (or integral) of terms that involve the step-loading strain response at time t-t' due to a step 
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loading dt' d (t')/dt' at time t'.  The theory of viscoelasticity is important for consideration of the 

attenuation of stress waves and the damping of vibrations.   

 

 A new class of problems arose with the mechanics of very long molecule polymers, without 

significant cross-linking, existing either in solution or as a melt.  These are fluids in the sense 

that they cannot long support shear stress but have, at the same time, remarkable properties like 

those of finitely deformed elastic solids.  A famous demonstration is to pour one of these fluids 

slowly from a bottle and to suddenly cut the flowing stream with scissors; if the cut is not too far 

below the place of exit from the bottle, the stream of falling fluid immediately contracts 

elastically and returns to the bottle.  The molecules are elongated during flow but tend to return 

to their thermodynamically preferred coiled configuration when forces are removed.  The theory 

of such materials came under intense development in the 1950’s after British applied 

mathematician James Gardner Oldroyd showed in 1950 how viscoelastic stress-strain relations of 

a memory type could be generalized to a flowing fluid.  This involves subtle issues on assuring 

that the constitutive relation, or rheological relation, between the stress history and the 

deformation history at a material “point” is properly invariant to a superposed history of rigid 

rotation , which should not affect the local physics determining that relation (the resulting 

Coriolis and centrifugal effects are quite negligible at the scale of molecular interactions).  

Important contributions on this issue were made by S. Zaremba and G. Jaumann in the first 

decade of the 1900’s; they showed how to make tensorial definitions of stress rate that were 

invariant to superposed spin and thus were suitable for use in constitutive relations.  But it was 

only during the 1950’s that these concepts found their way into the theory of constitutive 

relations for general viscoelastic materials and, independently and a few years later, properly 

invariant stress rates were adopted in continuum formulations of elastic-plastic response. 

 

 Computational mechanics.  The digital computer revolutionized the practice of many areas 

of engineering and science, and solid mechanics was among the first fields to benefit from its 

impact.  Many computational techniques have been used in that field, but the one which emerged 

by the end of the 1970’s as, by far, the most widely adopted is the finite element method.  This 

method was outlined by the mathematician Richard Courant in 1943 and was developed 

independently, and put to practical use on computers, in the mid-1950’s by aeronautical 

structures engineers M. J. Turner, R. W. Clough, H. C. Martin and L. J. Topp in the United 

States and by J. H. Argyris and S. Kelsey in Britain.  Their work grew out of earlier attempts at 

systematic structural analysis for complex frameworks of beam elements.  The method was soon 

recast in a variational framework and related to earlier efforts at approximate solution of 
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problems described by variational principles, by substituting trial functions of unknown 

amplitude into the variational functional which is then rendered stationary as an algebraic 

function of the amplitude coefficients.  In the most common version of the finite element 

method, the domain to be analyzed is divided into cells, or elements, and the displacement field 

within each element is interpolated in terms of displacements at a few points around the element 

boundary, and sometimes within it, called nodes.  The interpolation is done so that the 

displacement field is continuous across element boundaries for any choice of the nodal 

displacements.  The strain at every point can thus be expressed in terms of nodal displacements, 

and it is then required that the stresses associated with these strains, through the stress-strain 

relations of the material, satisfy the principle of virtual work for arbitrary variation of the nodal 

displacements.  This generates as many simultaneous equations as there are degrees of freedom 

in the finite element model, and numerical techniques for solving such systems of equations are 

programmed for computer solution.   

 

 The finite element method and other computational techniques (finite differences, spectral 

expansions, boundary integral equations) have made a major change in the practice of, and 

education for, engineering in the various areas that draw on solid mechanics.  Previously, many 

educators saw little point in teaching engineers much of the subject beyond the techniques of 

elementary beam theory developed in the 1700’s by Bernoulli, Euler and Coulomb.  More 

advanced analyses involved sufficiently difficult mathematics as to be beyond the reach of the 

typical practitioner, and were regarded as the domain of advanced specialists who would, 

themselves, find all but the simpler cases intractable.  The availability of software incorporating 

the finite element method, and other procedures of computational mechanics and design analysis, 

has placed the advanced concepts of solid mechanics into the hands of a far broader community 

of engineers.  At the same time, it has created a necessity for them and other users to have a 

much deeper education in the subject, so that the computational tools are used properly and at 

full effectiveness. 

 

 

BASIC PRINCIPLES 

 

 In addressing any problem in continuum or solid mechanics, we need to bring together the 

following considerations:  (1)  The Newtonian equations of motion, in the more general form 

recognized in the subsequent century by Euler, expressing conservation of linear and angular 

momentum for finite bodies (rather than just for point particles), and the related concept of stress 



16 

as formalized by Cauchy;  (2)  Consideration of the geometry of deformation and thus expression 

of strains in terms of gradients in the displacement field; and  (3)  Use of relations between stress 

and strain that are characteristic of the material in question, and of the stress level, temperature 

and time scale of the problem considered.   

 

 These three considerations suffice for most problems in solid and structural mechanics for 

simple materials.  They must be supplemented for solids undergoing diffusion processes in 

which one material constituent moves relative to another (as of interest sometimes for a fluid-

infiltrated soils or petroleum reservoir rocks), and in cases for which the induction of a 

temperature field by deformation processes and the related heat transfer cannot be neglected.  

The latter cases require that we supplement the above three considerations with the following:  

(4)  Equations for conservation of mass of diffusing constituents;  (5)  The first law of 

thermodynamics, which introduces the concept of heat flux and relates changes in energy to 

work and heat supply, and  (6)  Relations which express the diffusive fluxes and heat flow in 

terms of spatial gradients of appropriate chemical potentials and of temperature.  Also, in many 

important technological devices, electric and magnetic fields affect the stressing, deformation 

and motion of matter.  Examples are provided by piezoelectric crystals and other ceramics for 

electric or magnetic actuators, and the coils and supporting structures of powerful 

electromagnets.  In these cases, we must add the following:  (7)  Scottish physicist James Clerk 

Maxwell’s set of equations which interrelate electric and magnetic fields to polarization and 

magnetization of material media, and to the density and motion of electric charge; and  (8)  

Augmented relations between stress and strain which now, for example, express all of stress, 

polarization and magnetization in terms of strain, electric field and magnetic intensity, and of 

temperature.  Also, the second law of thermodynamics, combined with the principles mentioned 

above, serves to constrain physically allowed relations between stress, strain and temperature in 

(3).  Such considerations were first brought to bear in a purely mechanical context by Green in 

1837, as based on the existence of a strain energy which generalized, for a continuum, the 

potential energy of the discrete dynamical systems of analytical mechanics; they were later 

rooted in the development of macroscopic thermodynamics by Kelvin.  The second law also 

constrains the other types of relations described in (6) and (8) above.  Such relations are 

commonly referred to as constitutive relations.   

 

 In general, the stress-strain relations are to be determined by experiment.  A variety of 

mechanical testing machines and geometrical configurations of material specimens have been 

devised to measure them.  These allow, in different cases, simple tensile, compressive, or shear 



17 

stressing, and sometimes combined stressing with several different components of stress, and the 

determination of material response over a range of temperature, strain rate and loading history.  

The testing of round bars under tensile stress, with precise measurement of their extension to 

obtain the strain, is common for metals and for technological ceramics and polymers.  For rocks 

and soils, which generally carry load in compression, the most common test involves a round 

cylinder that is compressed along its axis, often while being subjected to confining pressure on 

its curved face.  Often, a measurement interpreted by solid mechanics theory is used to determine 

some of the properties entering stress-strain relations.  For example, measuring the speed of 

deformation waves or the natural frequencies of vibration of structures can be used to extract the 

elastic moduli of materials of known mass density, and measurement of indentation hardness of a 

metal can be used to estimate its plastic shear strength.   

 

 In some favorable cases, stress strain relations can be calculated approximately by applying 

appropriate principles of mechanics at the microscale of the material considered.  In a composite 

material, the microscale could be regarded as the scale of the separate materials making up the 

reinforcing fibers and matrix.  When their individual stress-strain relations are known from 

experiment, continuum mechanics principles applied at the scale of the individual constituents 

can be used to predict the overall stress-strain relations for the composite.  In the case of a 

polycrystalline metal undergoing elastic or plastic deformation, the overall stress-strain relations 

are sometimes estimated by applying continuum mechanics principles to the heterogeneous 

aggregate of joined crystals, assuming that we know the stress-strain relations of the single 

crystals constituting the individual grains.  For rubbery polymer materials, made up of long chain 

molecules which would randomly configure themselves into coil-like shapes, some aspects of the 

elastic stress-strain response can be obtained by applying principles of statistical 

thermodynamics to the partial uncoiling of the array of molecules by imposed strain.  In the case 

of a single crystallite of an element like silicon or aluminum, or simple compound like silicon 

carbide, the relevant microscale is that of the atomic spacing in the crystals, and principles 

governing atomic force laws at that scale can be used to estimate elastic constants.  For example, 

quantum mechanical principles, implemented on digital computers in the framework of density 

functional theory, in which one solves for the density distribution of electrons amidst an array of 

fixed atomic nuclei, are the basis for such calculations.  For consideration of plastic flow 

processes in metals and in sufficiently hot ceramics, the relevant microscale involves the network 

of dislocation lines that move within crystals.  These lines shift atom positions relative to one 

another by one atomic spacing as they move along slip planes.  Important features of elastic-

plastic and viscoplastic stress-strain relations can be understood by modeling the stress 
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dependence of dislocation generation and motion, and the resulting dislocation entanglement and 

immobilization processes which account for strain hardening.  For rubbery polymeric solids 

showing viscoelastic response, like gradual relaxation of stress with time after a strain is imposed 

and subsequently held constant, the microscale processes involve the gradual sliding of long 

molecules relative to the network of like molecules with which they have entangled.  In such 

cases prediction of viscoelastic stress-strain relations involves, very roughly, the modeling of 

slow pulling of molecules along and out of the “tubes” formed by the other molecules with 

which they are entangled. 

 

 To examine the mathematical structure of the theory, considerations (1) to (3) above are now 

further developed.  For this purpose, we adopt a continuum model of matter, making no detailed 

reference to its discrete structure at molecular, or possibly other larger microscopic, scales that 

are far below those of the intended application. 

 

Linear and Angular Momentum Principles:  Stress, and Equations of Motion 

 

 Let x denote the position vector of a point in space as measured relative to the origin of a 
Newtonian reference frame; x has the components (x1, x2, x3) relative to a Cartesian set of axes, 

fixed in the reference frame, which we denote as the 1, 2 and 3 axes, Figure 1.  (This form of 

notation proves more convenient for the subject than a convention which may be more familiar 

to many readers, in which positions are denoted as (x, y, z) and the reference axes as the X, Y 

and Z axes.)  Suppose that a material occupies the part of space considered and let v = v(x, t) be 

the velocity vector of the material point which occupies position x at time t; that same material 

point will be at position x + v dt an infinitesimal time interval dt later.  Let  = (x, t) be the 

mass density of the material.  Here v and  are macroscopic variables.  What we idealize in the 

continuum model as a material point, moving as a smooth function of time, will correspond on 

molecular (or larger but still “microscopic”) length scales to a region with strong fluctuations of 

density and velocity.  In terms of phenomena at such scales,  corresponds to an average of mass 

per unit of volume, and  v to an average of linear momentum per unit volume, as taken over 

spatial and temporal scales that are large compared to those of the microscale processes but still 

small compared to those of the intended application or phenomenon under study.  Thus v of the 

continuum theory is a mass-weighted average velocity, from the microscopic viewpoint.  (There 

do not generally exist tractable formulations of macroscopic mechanics when such a separation 

of scales does not apply.  This is an important area of research since many important phenomena 

involving the fracture of solids and fine scale inelastic deformation processes do not have a clear 
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separation of length scales.  Large scale digital computer simulations of systems of discrete 

particles allow some of the simpler of such cases to be addressed; these include atomistic 

modeling of fracture and plastic flow processes in small regions of crystals, and flows of 

granular solids with highly idealized particle interactions.) 

 

 

Figure 1.  Coordinate system; position (x) and velocity (v) vectors; body force f dV acting 

on element  dV of volume, and surface force T dS acting on element dS of surface. 

 

 We observe that an infinitesimal element of material occupying volume dV at x moves and 

distorts in such a way that  dV, which corresponds to the (conserved) mass of the element, 

remains constant.  The linear momentum of the element is  v dV and its angular momentum 

relative to the coordinate origin is given as the vector, or cross, product  x (  v dV).  Thus the 

linear momentum P, and angular momentum H relative to the coordinate origin, of the matter 

instantaneously occupying any volume V of space are then given by summing up the linear and 

angular momentum vectors of each element of material.  Such summation over infinitesimal 

elements is represented mathematically by the integrals 

 

 P = v dV
V

,    H = x v dV
V

 

 

We limit attention to situations in which relativistic effects can be ignored.   

 

 Let F denote the total force and M the total torque or moment (relative to the coordinate 

origin) acting instantaneously on the material occupying any arbitrary volume V.  The basic laws 
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of Newtonian mechanics are the linear and angular momentum principles that  

 

 F = dP/dt  ,       M = dH/dt  ,  

 

where time derivatives of P and H are calculated following the motion of the matter which 

occupies V at time t.  Newton’s focus was on matter in situations for which the particle point of 

view is valid, so that only F = dP/dt is required.  It was Euler who recognized the need for the 

two vectorial laws of motion for general finite bodies; he explicitly stated the pair of laws F = 

dP/dt and M = dH/dt in 1776, then for a rigid body, but had implicitly recognized them as early 

as 1752.  When either F or M vanish, these equations of motion correspond to conservation of 

linear or angular momentum.  An important, very common, and non-trivial class of problems in 

solid mechanics involves determining the deformed and stressed configuration of solids or 

structures that are in static equilibrium; in that case the relevant basic equations are F = 0 and M 

= 0.  The understanding of such conditions for equilibrium, at least in a rudimentary form, long 

predates Newton.  Indeed, Archimedes of Syracuse (3rd Century BC), the great Greek 

mathematician and arguably the first theoretically and experimentally minded physical scientist, 

understood these equations at least in a nonvectorial form appropriate for systems of parallel 

forces.  That is shown by his treatment of the hydrostatic equilibrium of a partially submerged 

body and his establishment of the principle of the lever (torques about the fulcrum sum to zero) 

and the concept of center of gravity.  Archimedes’ approach to natural philosophy is now the 

standard model of science but was overshadowed for about 2000 years by Aristotle’s (4th 

Century BC) style of ex-cathedra, if sometimes insightful, speculation.  The Dutch 

mathematician and engineer, Simon Stevin recognized the vectorial nature of the equations F = 0 

and M = 0 for static equilibrium, developing the parallelogram law of vectorial force addition in 

1586 and correctly analyzing the principle of the lever for systems of nonparallel forces. 

 

 Stress vector and equations of motion in integral form.  We now assume that F and M 

derive from two type of forces, namely body forces f, like gravitational attractions, defined such 

that force f dV acts on volume element dV (see Figure 1), and surface forces which represent the 

mechanical effect of matter immediately adjoining that along the surface, S, of the volume V that 

we consider.  Cauchy formalized in 1822 a basic assumption of continuum mechanics that such 

surface forces could be represented as a vector distribution T force , defined so that T force  dS is 

an element of force acting over the area dS of the surface, Figure 1.  (Shortly, we will want to 

define a stress vector T, of which this T force  will be a part; it is typically the dominant part for 

solid materials.)  Thus, for any arbitrarily chosen region, like in Figure 1, we assume that total 
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force and torque acting can be written, respectively, as 

 

 F = T force dS
S

+ f dV
V

 ,   and   M = x T force dS
S

+ x f dV
V

 . 

 

These should now be equated, respectively, to the rates of change of linear and angular 

momentum, dP/dt and dH/dt.  

 

 To calculate dP/dt, note that the integrand for P contains the product dV  times v.  Since the 

mass element dV  is invariant in the motion, it has zero time derivative, and we need only 

calculate the derivative of its velocity v, which is acceleration a.  However, the correct 

expression for dP/dt contains the term which has just been motivated plus a second term: 

 

 dP / dt = a dV
V

+ Tmom. fluxdS
S

 . 

 

That second term arises because there is a microscopic motion, in general, relative to the mass-

averaged macroscopic motion, and that relative motion causes some momentum flux Tmom. flux  

per unit area, across the surfaces S.  In the continuum model, the surface S moves through space 

such that the velocity of the surface in a direction normal to itself is n v , where n is the unit 

outer normal to S at the point considered and v is the velocity at that point.  Since v is a mass-

weighted average of fluctuating velocities on a molecular (or larger microscopic) scale, this 

assures that there is no mass transferred across S, but not that there is no momentum transferred; 

Tmom. flux  accounts for that latter transfer.  In a similar way, the rate of change of angular 

momentum can be calculated and we obtain the expression 

 

 dH / dt = x a dV
V

+ x Tmom. fluxdS
S

 . 

 

The acceleration a = a(x,t) = dv/dt is calculated such that the time derivative of v is taken 

following the motion of a material point.  Thus a(x,t)dt corresponds to the difference between 

v(x + v dt, t + dt) and v(x, t).  Also, in deriving the expression for dH/dt, v = dx/dt has been used, 

with the derivative again following the motion, and it has been noted that v v = 0. 

 

 We now define the stress, or traction, vector T by 

 

 T = T force Tmom. flux  . 
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In gases and, at least for viscous shearing effects, in liquids the microscale momentum transports 

Tmom. flux , resulting from fast moving molecules randomly moving into regions of slower 

motion and vice-versa, are the main contribution to T.  In solids they generally are a small 

contribution, especially at low temperatures compared to that for melting.  It will generally be 

the case that microscopic mass elements moving at a velocity different from v, and hence 

contributing to Tmom. flux , will undergo collisional interactions with other mass elements within 

a short distance of the surface element considered, reducing their speed, on average, to v.  This 

delivers impulsive forces –Tmom. flux  per unit area in the near vicinity of the surface so, 

including their effect, it is legitimate to refer to the total stress vector T as a force per unit area, 

as is often done in the literature of the subject. 

 

 Then ,using the definition of T, when we equate the expressions for F and M above to those 

for dP/dt and dH/dt, we obtain the equations of motion, in integral form, for a continuum,  

 

TdS
S

+ f dV
V

= a dV
V

,   x TdS
S

+ x f dV
V

= x a dV
V

 

 

We now assume these to hold good for every conceivable choice of region V.  

 
 Stress components.  Nine quantities ij (i, j  = 1, 2, 3) called stress components may be 

defined at each point of the medium; these will vary with position and time, ij = ij(x, t), and 

have the following interpretation.  Suppose that we consider an element of surface dS through a 

point x with dS oriented so that its outer normal (pointing away from the region V, bounded by 
S) points in the positive xi direction, where i is any of 1, 2 or 3.  Then i1, i2 and i3 at x are 

defined as the Cartesian components of the stress vector T (call it T(i)) acting on this dS.  Figure 

2 shows the components of such stress vectors for faces in each of the three coordinate 
directions.  To use a vector notation with e1, e2 and e3 denoting unit vectors along the coordinate 

axes (Figure 1),  

 
 T(i)  =  i1 e1 + i2 e2 + i3 e3 . 

 
Thus the stress ij  at x is the stress in the j direction associated with an i-oriented face through 

point x; the physical dimension of the ij is [Force]/[Length]2.  The components 11, 22 and 

33 are stresses directed perpendicular, or normal, to the faces on which they act and are normal 

stresses; the ij with i  j are directed parallel to the plane on which they act and are shear 
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stresses. 

 

 
 

Figure 2.  Stress components; first index denotes plane, second denotes direction. 

 

 By hypothesis, the linear momentum principle applies for any volume V.  If we first apply it 

to a small region including a general position x, and consider the limit of the resulting equation 

as both the volume V and bounding surface area S of the region approach zero, so that the region 

shrinks onto point x.  We can observe that the volume integrals, when divided by area S, 

approach zero in that limit.  Thus, for such choices of region, the linear momentum principle 

requires that we 

set to zero the limit of (1 / S) TdS
S

 as S approaches zero.  Consider a thin sliver of material at x, 

(Figure 3) with thin direction along the x1 axis, let that thickness approach zero, and then let the 

diameter of the region approach zero so that it shrinks onto x.  We thus derive that T(–1) + T(1) = 

0, which is a special case of the action-reaction principle.  (It, like other variants of the action-

reaction principle, can be regarded as a derivable consequence of the hypothesis that the linear 

momentum principle applies for every choice of region, including two subregions which act 

upon one another and exert the forces referred to as the action and reaction.)  The result tells us 

that, for any direction i,   

 
 T(-i)  =  – T(i)  = – i1 e1 – i2 e2 – i3 e3 

 
and hence that – i1, – i2 and – i3 are the Cartesian components of the stress vector acting on a 

surface element dS through x whose outer normal points in the negative i direction.   
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Figure 3.  Linear momentum principle leads to action-reaction, T (–1) + T (1) = 0. 

 

 Next we consider a small tetrahedron (Figure 4) at x with inclined face having outward unit 

normal vector n, and other three faces oriented perpendicular to the three coordinate axes.  Let S 

denote the area of the inclined face and S(1), S(2) and S(3) the areas of the faces with outer 
normals respectively in the negative 1, 2 and 3 directions; we note from geometry that S(i)/S = ni 

(this also leads to the correct result when the normal to face S(i) points in the positive i direction, 
in which case ni < 0).  Letting the size of the tetrahedron approach zero, so that it shrinks onto x, 

the linear momentum principle requires that  T + n1 T(–1) + n2 T(–2) + n3 T(–3)  =  0.  Thus, 

using the expression above for the T(–i) we derive the result that the stress vector T on a surface 
element through x with outward normal n can be expressed as a linear function of the ij at x.  

The relation is such that the j component of the stress vector T is  

 

 Tj e j T = n1 1 j + n2 2 j + n3 3 j = ni ij
i=1

3

  ( j = 1, 2,  3)  

 

 Summation convention.  It turns out that almost always, when we have a sum over an index 

like i in the last equation, the index on which we sum is repeated precisely twice but other 

indices (j there) appear only once.  Also, in equations with multiple summations, as will be found 

subsequently, the various indices on which we sum are each repeated twice.  Thus, many authors 

prefer to drop the summation signs and adopt the summation convention that one always 

understands a repeated index to denote a sum.  In that convention, the last equation would be 
written as Tj = ni ij .  Similarly, the earlier equation defining stress components would be 

written as T(i) = ije j .  Occasionally we encounter an equation with a repeated index that it not 

intended to be summed, or perhaps that index appears more than two times.  In such (rare) cases, 

we simly say that the summation convention is suspended. 
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Figure 4.  Cauchy tetrahedron with inclined face having an arbitrary orientation n;  

constructed about some material point, and to be shrunk onto that point in the limit to 
be taken.  Linear momentum principle relates T for such an inclined face to the ij.  

 
 Tensors; stress transformations.  This relation for T (or Tj) also tells us that the ij have the 

mathematical property of being the components of a second rank tensor.  To show that, suppose 

that a different set of Cartesian reference axes 1 , 2  and 3  have been chosen.  Let x1 ,  x2 ,  x3  

denote the components of the position vector of point x and let  k l   (k,  l  = 1,  2,  3)  denote the 

9 stress components relative to that coordinate system.  Choose n in the above equation to 

coincide with the direction of the unit vector  e k  along the k  axis.  Then, by the definition of 

stress components we can write 

 

 T = T(  k )
=   k1  e 1 +   k 2  e 2 +   k 3  e 3 , 

 

whereas from the result derived just above, we can also write 

 

 T =

j=1

3
Tje j =

j=1

3
(
i=1

3
ni ij)e j  

 

Using the first form for T, we can form the scalar product   e l T =  e l T(  k )
=   kl , which must 

also hold when we use the second form.  Noting also that since n =  e k , ni =  e k ei , we thus 

obtain 

 

   kl = ki lj ij   (where pq =  e p eq  for p, q = 1,2,3)
j=1

3

i=1

3
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which is the defining equation of a second rank tensor.  Here pq  gives the cosine of the angle 

between the  p  and q axes, and defines a component of the orthogonal transformation matrix 
[ ], satisfying [ ]T[ ] = [ ][ ]T =[I].  (The first index of a quantity like pq  denotes row 

number and the second the column number in the corresponding matrix; superscript T denotes 

transpose, i.e., interchange rows and columns; [I] denotes the unit matrix, a 3 by 3 matrix with 
unity for every diagonal element and zero elements elsewhere; and if [A] = [B][C], then Aij = 

Bi1C1j + Bi2C2j + Bi3C3j for 3 by 3 matrices like here.).  The coordinates themselves are related 

by  

 

  x k =

i=1

3

kixi , 

 

and the same relation which applies to components of vectors such as v, a, and f introduced 

above, which may be called first rank tensors. 

 

 Note that with the summation convention, some of the above transformations would be 
written as   kl = ki lj ij  (this involves two repeated indices, i and j, and hence implies a 

summation over both), and  x k = kixi .  Also, the properties of [ ] are expressed by 

 

 ik
T

kj ki kj = ik kj
T

ik jk = ij ,  

 
where ij  is called the Kronecker delta, and describes the components of the unit matrix [I].  

Hence ij  is unity when i and j coincide, and is zero otherwise.  Also, we may note that, for 

example, ijv j = vi , where we sum on the repeated j.  As a little practice in this notation, let us 

multiply both sides of  x k = kixi  by kl , so that k, now repeated, becomes an index over which 

there is summation too.  We thus get kl  x k  = kl kixi  = lixi  = xl , and hence have inverted the 
coordinate transformation.  Similarly, let us multiply both sides of   kl = ki lj ij  by kr ls .  

Now k and l are repeated and hence we are summing over them, as well as over i and j on the 
right side of the equation, in getting kr ls   kl  = kr ki ls lj ij  = ri sj ij  = rs , thus 

inverting the second-rank tensor transformation. 

 

 Equations of motion, local form.  Now let us apply the linear momentum principle to an 

arbitrary finite body.  The divergence theorem of multivariable calculus shows that integrals over 
the area of a closed surface S, with integrand nif(x), may be rewritten as integrals over the 
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volume V enclosed by S, with integrand f(x)/ xi, when f(x) is a differentiable function.  Thus, 

using the expression for Tj above, we may see that  

 

 Tj dSS
= (n1 1 j + n2S 2 j + n3 3 j )dS =

1 j

x1
+

2 j

x2
+

3 j

x3

 

 
 

 

 
 V
dV  

 
at least when the ij are continuous and differentiable, which is the typical case.  If we now 

insert this expression for the surface integral in the linear momentum principle, that principle 

reduces to an equality in terms of volume integrals.  It must hold no matter how we choose the 

volume and this can be so only if the same equation holds in terms of the integrands and thus, if 

the linear momentum principle is to apply for every conceivable choice of region V, we must 

satisfy the three equations 

 

 
1 j

x1
+

2 j

x2
+

3 j

x3
+ fj

ij

xii=1

3
+ fj = aj    ( j = 1,  2,  3)  

 

These are the equations of motion, in local form, for a continuum.  In the summation convention, 
they would be written as ij / xi + f j  = aj , or more concisely as ij ,i + f j  = aj  when we 

use also the comma notation for partial derivatives, in which F / xi  is written as F,i .    

 

 Consequence of angular momentum: stress symmetry.  Once the above consequences of the 

linear momentum principle are accepted, the only further result which can be derived from 

requiring that the angular momentum principle apply for every conceivable choice of region V is 

that  

 
 ij = ji    (i,  j =1,  2, 3) .   

 

Thus the stress tensor is symmetric.  To see the origin of this, let us use the summation 

convention for conciseness and note that the angular momentum principle can be written 

equivalently as 

 

 (xiTj x jTi )dSS
+ (xi fj x j fi )dV =

V
(xiaj x jai )dVV

 . 

 
Now, using Tj = nk kj , then the divergence theorem, and then kj / xk + fj  = aj , the first 

term can be rearranged to  
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 (xiTj x jTi )dSS
= (xink kj x jnk ki)dSS

=
xk
(xi kj x j ki)dVV

 

= [( ij ji) + (xi
kj

xk
x j

ki

xk
)]dV =

V
[( ij ji) (xi f j x j fi ) + (xiaj xjai )]dVV

. 

 

When we substitute that into the above form of the angular momentum principle, we are left with 

 

 ( ij ji)dV =
V

0  

 
and, since that must hold for every choice of region V, ij = ji .  

 

  
 

Figure 5.  Forces acting in the 1 direction on a cube of side length L centered on some point x  

of interest; we will let L 0 , and thus need the forces accurately only to order L3 ; stresses 

around the cube faces are developed in a Taylor series expansion about their values at x. 

 

 Alternative derivation, local equations of motion.  For another way of thinking about the 

origin of the local equations of motion, consider a small cube of material of side length L 

centered on some arbitrarily chosen point x.  Shortly, we will let L  0, which turns out to mean 

that we will only need to know forces acting on the cube accurately to terms of order L3.  

Consider all forces in the 1 direction acting on the cube; some are shown in Figure 5.  The total 

body force is f1L
3 .  We write the stress components around the surface of the cube by doing a 

Taylor series expansion about point x at the cube center.  In the limit L  0, the same stress 11 

acts on the face of the cube oriented in the +1 direction as on the face oriented in the –1 
direction, so that the main forces 11L2 due to the stress 11 on those faces balance each other.  

However, to get the net force from 11 correct to order L3, we must recognize that the average 

stress will be 11 +(L / 2) 11 / x1 + ...   on the cube face oriented in the +1 direction, and 
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11 (L / 2) 11 / x1 + ...   on that in the –1 direction.  Here "+ ...  " stands for terms from the 

Taylor expansion which are of higher order in L than those explicitly shown, and which make no 

contribution in the limit L  0.  Recognizing that these average stresses on the ± 1 faces act 

over an area L2 , the net force (stress times area) due to variations of stress 11 is therefore 

L3 11 / x1 + ...  .  (For simplicity, we identify stress as force per unit area in this discussion, 

although the stresses also contain the momentum flux contributions discussed above.)  Similarly, 

an average stress 21 + (L / 2) 21 / x2  +...  will act on the cube face oriented in the +2 

direction, and
 
21 (L / 2) 21 / x2 + ...

  
on that in the –2 direction, contributing a net force 

L3 21 / x2 + ... , and stresses of type 31  (not illustrated in Figure 5) contribute net force 

L3 31 / x3 + ...  .   

 

 When we sum all these forces and set them equal to the mass of the cube, L3, times its 

acceleration a1 in the 1 direction, there results 

 

 ( 11

x1
+

21

x2
+

31

x3
)L3 + ... + f1L

3
= L3a1  , 

 

where now +... represents terms of order L4 and higher.  Thus, when we divide by L3 and let L 

 0, we obtain 

 

 11

x1
+

21

x2
+

31

x3
+ f1 = a1  

 

which reproduces the first (corresponding to j = 1) of the three local equations of motion 

obtained above.  The other equations for j = 2 and 3 may be derived similarly. 

 

 As a simple route to understanding the symmetry of the stress tensor, refer to Figure 2 and let 

us similarly consider the element shown there as a cube of side lengths L centered on some point 

x of interest.  The stress component 12  generates force + 12L
2+...  on the face oriented in the 

+1 direction, and – 12L
2+... on that in the –1 direction, of which the leading terms constitutes a 

force couple separated by distance L, and hence their effect is to generate a torque 12L
3+...  

about an axis in the 3 direction passing through the mass center of the element.  The stress 

component 21  on the cube faces oriented in the ± 2  directions generates torque – 21L
3+... 

about the axis in the 3 direction, so that the net torque is ( 12 21)L
3+... .  That net torque 

should be equated to the 3-component of the rate of change of angular momentum of the element 

about its mass center.  However, that angular momentum and its rate of change are of higher 
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order than L3 , and therefore this leading term in the torque, of apparent order L3 , must actually 

vanish.  Thus we must have 12 = 21 .  By extending the same argument to torques about other 
directions, we conclude that ij = ji  in general.      

 

 Principal stresses.  Symmetry of the stress tensor, together with the tensor transformation 

property, has the important consequence that, at each point x, there exist three mutually 

perpendicular directions along which there are no shear stresses.  These directions are called the 

principal directions and the corresponding normal stresses are called the principal stresses.  If 
we order the principal stresses algebraically as I, II, III (Figure 6), then the normal stress on 

any face (given as  n = n T ) satisfies 

 
 I  n  III . 

 

 

Figure 6.  Principal stresses. 

 

 In fact, the principal stresses  and principal directions n are the solutions of the eigenvalue 

(or characteristic value) problem 

 

 ij nj
j=1

3

ni = 0    ( i = 1, 2, 3)  

 
which follows from asking the equivalent questions:  For what directions is n stationary relative 

to infinitesimal variations of the direction n?  For what directions is the stress vector T aligned 

with n?  The determinant of the coefficients of the components of n must vanish, so that 
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 det
11 12 13

21 22 23

31 32 33

 

 

 

 

 

 

 

 

 

 

=
3

+ I1
2

+ I2 + I3 = 0  

 

where 

 

 I1 = ii ,   
i=1

3

I2 =
1

2
I1

2
+

1

2 ij ji
j=1

3

i=1

3

 ,    I3 = det[ ] . 

 
Here [ ] denotes the 3 by 3 matrix whose elements are ij.  Since the principal stresses are 
determined by I1, I2, I3 and can have no dependence on how we chose the coordinate system 

with respect to which we refer the components of stress, I1, I2 and I3 must be independent of that 

choice and are therefore called stress invariants.  One may readily verify that they have the same 
values when evaluated in terms of   ij  above as in terms of ij  by using the tensor 

transformation law and properties noted for the orthogonal transformation matrix [ ]. 

 

 Stress transformation in a plane, Mohr circle.  Stress transformation in a plane is often of 

interest.  Referring to Figure 7, suppose that the in-plane stress components acting in the x1,x2  

plane are given, as in the upper left of the figure.  We wish to find the in-plane stress components 
acting across a surface which is tilted about the x3 axis at angle , measured positive anti-

clockwise relative to the x1 axis as shown.  That surface has unit normal n and we let s be an 

orthogonal unit vector along the surface in the x1,x2  plane, also as shown.  The normal stress to 

be determined is called n  and the shear stress ns ; see the upper center diagram in Figure 7.  

Letting T be the stress vector on the inclined plane, we obtain the stress components as 

n = n T  and ns = s T .  Thus, recalling the previous expression for T, 

 

n = n [
j=1

3
(
i=1

3
ni ij)e j ] =

j=1

3

i=1

3
ninj ij  , and ns = s [

j=1

3
(
i=1

3
ni ij)e j ] =

j=1

3

i=1

3
nisj ij  . 

 

Since n = ( sin ,  cos , 0)  and s = (cos , sin , 0) , these reduce (recalling that 12 = 21) to 

 

n = 11sin
2 2 12 sin cos + 22 cos

2
=

11 + 22

2
+

22 11

2
cos2 12 sin2  , 

ns = 11sin cos + 12(cos
2 sin2 ) + 22 sin cos =

22 11

2
sin 2 + 12 cos2  . 
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A little analysis shows that the latter expressions are the parametric equations (with parameter ) 
of a circle in a Mohr plane whose axes are n  and ns ; the circle is called the Mohr circle.  It 

has center at ( 11 + 22) / 2  along the n  axis, has radius ( 22 11)
2 / 4 + 12

2 , and rotation 

of the inclined interface anti-clockwise by  in the physical ( x1,x2) plane corresponds to anti-

clockwise rotation by 2  in the Mohr plane. 

 

 
 

Figure 7.  Mohr circle representation of stress transformation in a plane.  A general  

stress state is shown at the upper left. The circle is used to determine the normal  
stress n  and shear stress ns , upper center, acting on a plane inclined at angle . 

 

 The quickest way to construct the Mohr circle is usually to identify two points which lie on 
it, such uniquely locating the circle given that its center lies on the n  axis.  Thus, we first 

observe that ( n ,  ns)  = ( 22, 21)  must be the point on the circle corresponding to = 0 , and 

then that ( n ,  ns)  = ( 11,  12)  must be another point on it, corresponding to = / 2 .  

Both of those points are labeled in Figure 7.  Once the circle is drawn, the stress state for a 

general orientation at angle   is given by rotating in the same sense around the circle, by angle 
2  , from the point ( 22, 21)  on it corresponding to = 0 .  As seen in the figure, an angle 2  

may be defined as that marked, and then =  is the face orientation for which the maximum 
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in-plane normal stress max  acts.  That orientation is shown in the upper right of the figure, 

where max  and the least in-plane normal stress min  are the extremity points of the Mohr circle 

along the n  axis.  Finally, by an elementary geometric relation, the angle +  between the 

general orientation considered and that of the maximum in-plane normal stress can be identified 

as marked.           

 

 Further remarks.  Occasionally there is need for, or use of, continuum theories in which 

distributed surface couples (torques without net force) are assumed to act over each element dS 

of surface, thus defining a couple stress vector, and also there may be appeal to the notion of 

body couples in addition to body forces acting on elements dV of volume.  We do not consider 

such cases here but, in such theories, the stress tensor is not symmetric and its anti-symmetric 

part balances the body couple as well as the gradient of a third rank couple stress tensor which 

may then be defined.  Such notions appear to have originated with W. Voigt in 1887; the formal 

theory was developed by the Italian elasticians and mathematicians, the brothers E. and F. 

Cosserat, in 1909, and was revived and greatly extended by Mindlin in the 1960’s.   

 

 While the angular momentum principle must be accepted as an independent law of physics, 

supplementing the linear momentum principle, there are situations for which the angular 

principle can be derived by combining the linear principle with some special hypothesis 

concerning interactions of material elements with one another.  For example, a view of matter as 

particles which exert equal and opposite forces pairwise on one another, directed along the line 

joining a particle pair, leads to the angular momentum principle as a derived consequence.  

(However, that particle model is known to be too simple a model for atoms in a crystal; it leads 
to a “Cauchy relation” between elastic constants, for which the elastic moduli Cijkl to be 

introduced later are unaffected by interchange of any two indices and, for an isotropic material, 

to a Poisson ratio of 1/4.  Such relations were widely discussed following the studies of that 

particle model by Navier, Cauchy, and Poisson in the 1820’s and 1830’s, but they are not 

generally observed to hold experimentally.)  For elastic solids, the simple assumption that the 

strain energy of deformed material is unaffected by a superposed rigid rotation is enough to 
derive ij = ji, and hence to derive the angular principle as a consequence of the linear 

principle. 

 

 This exposition has sought consequences of the basic laws of mechanics in the most 

generally useful context for three dimensional solids.  Very often, both in nature and technology, 

there is interest in structural elements in forms that might be identified as strings, wires, rods, 
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bars, beams, or columns, or as membranes, plates, or shells.  These are usually idealized as, 

respectively, one- or two-dimensional continua.  One possible approach is to develop the 

consequences of the linear and angular momentum principles entirely within that idealization, 

working in terms of net axial and shear forces, and bending and twisting torques, at each point 

along a one-dimensional continuum, or in terms of forces and torques per unit length of surface 

in a two-dimensional continuum.  In fact such notions for the bending of beams as modeled as 

one-dimensional elastic lines predate Cauchy’s formalization of the stress principle and, as has 

been noted, were introduced by James Bernoulli and Euler in the flowering of mechanics in the 

1700’s following Newton’s work.  Formulations for such structures can also be based directly on 

the three dimensional theory, as generally simplified by making approximate assumptions 

concerning the variation of certain stress or strain components along the thin direction(s), 

typically these being assumptions which become exact in long wavelength limits.  Such 

approaches to beams began also long before Cauchy and Navier, with Coulomb’s 1776 analysis 

of stresses induced by the bending of a beam of finite cross section.    

 

Geometry of Deformation: Strain, Strain-Displacement Relations, Compatibility 

 

 The shape of a solid or structure changes with time during a deformation process.  To 

characterize deformation, we adopt a certain reference configuration which we agree to call 

undeformed.  Often, that reference configuration is chosen as an unstressed state, but such is 

neither necessary nor always convenient.  Measuring time from zero at a moment when the body 

exists in that reference configuration, we may then use the upper case X to denote the position 

vectors of material points when t = 0.  At some other time t, a material point which was at X will 

have moved to some spatial position x.  We thus describe the deformation as the mapping x = 

x(X, t), with x(X, 0) = X.  The displacement vector u = x(X, t) – X and, also, v = x(X, t)/ t and 

a = 2x(X, t)/ t2. 

 

 It is simplest to write equations for strain in a form which, while approximate in general, is 

suitable for the case when any infinitesimal line element dX of the reference configuration 

undergoes extremely small rotations and fractional change in length, in deforming to the 

corresponding line element dx.  These conditions are met when ui / X j <<1 .  The solids with 

which we deal are very often sufficiently rigid, at least under the loadings typically applied to 

them, that these conditions are realized in practice.  Linearized expressions for strain in terms of 

[ u/ X], appropriate to this situation, are called small strain or infinitesimal strain.  Expressions 

for strain will also be given that are valid for rotations and fractional length changes of arbitrary 
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magnitude; such expressions are called finite strain. 

 

 Two simple types of strain are extensional strain and shear strain.  Consider a rectangular 

parallelpiped, a brick-like block of material with mutually perpendicular planar faces, and let the 

edges of the block be parallel to the 1, 2 and 3 axes.  If we deform the block homogeneously, so 

that each planar face moves perpendicular to itself and such that the faces remain orthogonal 

(i.e., the parallelpiped is deformed into another rectangular parallelpiped), then we say that the 

block has undergone extensional strain relative to each of the 1, 2 and 3 axes, but no shear strain 
relative to these axes.  Denote the edge lengths of the undeformed parallelpiped as X1, X2 and 

X3, and those of the deformed parallelpiped as x1, x2 and x3; see Figure 8, where the 

dashed-line figure represents the reference configuration and solid-line the deformed 
configuration.  Then the quantities 1 = x1/ X1, 2 = x2/ X2, and 3 = x3/ X3  are called 

stretch ratios.  There are various ways that extensional strain can be defined in terms of them.  
Note that the change in displacement in, say, the x1 direction between points at one end of the 

block and those at the other is u1 = ( 1 – 1) X1.  For example, if E11 denotes the extensional 

strain along the x1 direction, then the most commonly understood definition of strain is 

 
 E11 = (change in length)/(initial length) =  ( x1 – X1)/ X1 = u1/ X1 = 1 – 1 . 

 

 

 

Figure 8.  Extensional strain; element in reference configuration shown with dashed  
lines; 1 is the stretch ratio for a fiber initially oriented in the 1 direction. 

 
 A variety of other measures of extensional strain can be defined by E11 = g( 1) where the 

function g( ) satisfies g(1) = 0 and g´(1) = 1, so as to agree with the above definition when 1 is 

very near 1.  Two such in common use are the strain E11
M  based on the change of metric tensor, 

and the logarithmic strain E11
L : 

 

 E11
M

= ( 1
2 1) / 2,    E11

L
= ln( 1) . 
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We say that the parallelpiped considered has undergone homogeneous strain if the strain of each 
smaller parallelpiped that can be drawn within it has the same set of stretch ratios 1, 2, 3.  

Thus, for the homogeneous extensional strain considered x1 = 1X1 + C1, x2 = 2X2 + C2, x3 = 

3X3 + C3, where C1, C2 and C3 are constants. 

 

 To define a simple shear strain, consider the same rectangular parallelpiped but now deform 
it so that every point on a plane of type X2 = constant moves only in the x1 direction, and by an 

amount that increases linearly with X2.  Thus the deformation x1 =  X2 + X1, x2 = X2, x3 = X3 

defines a homogeneous simple shear strain of amount , and is illustrated in Figure 9.  Note that 

this strain causes no change of volume. 

 

 

Figure 9.  Simple shear strain; element in reference configuration shown with dashed lines. 

 

 For small strain we can identify the shear strain  as the change in angle between two initially 

perpendicular lines.  That is, choose a point and draw, in the undeformed configuration, two 
small line elements from it, one in the direction of increasing X1 and the other of increasing X2.  

The angle between the line elements as measured in radians is initially /2 but, when <<1 , 

reduces to /2 – . (For finite simple shear strain as above,  would be replaced by arctan  in this 

interpretation.) 

 

 Small strain tensor.  To define the small strains, or infinitesimal strains, appropriate for 

situations with ui / X j <<1  for all i and j, and for which we use the symbols ij, we can 

proceed as follows:  Two infinitesimal line segments, one initially in the 1 direction and the other 

in the 2 direction, are shown in Figure 10 as dashed lines in the reference configuration and as 
solid lines in the deformed configuration.  Displacements are labeled so as to recognize that if ui 
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denotes a displacement of the point initially at (X1, X2, X3) then the corresponding displacement 

should, for example, be denoted as ui + dX2 ui/ X2 for the point which is initially an 

infinitesimal distance away at (X1, X2 + dX2, X3).  If the material fibers shown in the 1 and 2 

directions did not rotate, then the strains defined from their fractional changes in length would be 
exactly 11 = u1/ X1 and 22 = u2/ X2.  These expressions remain correct, to the first order 

accuracy in components of [ u/ X] sought at present, in the general case when the fibers do 
rotate.  The angle reduction between two fibers initially in the directions of increasing X1 and X2 

is u2/ X1 + u1/ X2 to first order accuracy in [ u/ X], and this defines a shear strain which we 

can call 12.  For the shear strain denoted 12, however, we use half of 12.  Thus, considering all 

extensional and shear strains associated with infinitesimal fibers in the 1, 2 and 3 direction at a 

point of the material, the set of strains is given by 

 

 ij =
1

2

uj
Xi

+
ui
X j

 

 

 

 

 

       (i , j = 1,  2,  3) . 

 
Note that this definition implies that ij = ji . 

 

 

 
Figure 10.  Deformation of line elements dX1 and dX2; origin of line elements has displaced 

by u1 and u2, and extremities of the elements have displaced by slightly different  
amounts, due to the displacement gradients ui / X j  (presumed small for 

purposes of this diagram, which is used to introduce infinitesimal strain ij). 
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 Strain tensor transformation.  The mode of definition of the ij  above confers on them the 

property of being a second rank tensor.  That is, if we chose Cartesian reference axes 1´, 2´, 3´ 
instead, and formed   kl , then   kl  is related to the ij  by the same equations which relate the 

stresses   kl  to the ij .  That is 

 

   kl =

i=1

3

j=1

3

ki lj ij  ,     

 
which is the defining property of a second-rank tensor, where   kl = (1 / 2)(  u k /  x l +  u l /  x k ) .  

In proving that the   kl  do indeed transform according to such equation, the occasion will be 

taken to get a little more familiarity with the summation convention, adopted in the rest of this 
paragraph.  Consider  u k /  x l  and use the chain rule to write 

 
  u k /  x l = (  u k / xj )( x j /  x l ) .   

 
Since u and x are vectors, we know that   u k = kiui  and  x l = lmxm , where the latter has the 
inversion x j = nj  x n  so that x j /  x l = lj .  Thus the above expression becomes 

 
  u k /  x l = (  u k / xj )( x j /  x l ) = ( ki ui / x j )( lj) = ki lj ui / xj  

 
which shows, incidentally, that  the  u k /  x l  form a second-rank tensor.  Now, the repeated i 

and j are just summation (or "dummy") indices in the above expression, and we could replace 
them with any other indices, say, p and q, to write equivalently  u k /  x l = kp lq up / xq .  We 

can use this to form the other term,  u l /  x k , needed in the strain expression, as 

 
  u l /  x k = lp kq up / xq = lj ki uj / xi = ki lj uj / xi  

 

where, for the second equality, summation indices p and q have been traded, respectively, for j 

and i.  Thus, adding together the two last transformation expressions 

 
 (1 / 2)(  u k /  x l +  u l /  x k ) = lj ki[(1 / 2)( ui / x j + uj / xi )] 

 
which is the same as   kl = lj ki ij . 

 
 Principal strains.  We have thus proven that ij  is a second-rank tensor.  It is also 
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symmetric, ij = ji .  Paralleling the case for the stress tensor ij , these mathematical features 

require that there exist principal strain directions.  That is, at every point of the strained 

continuum it is possible to identify three mutually perpendicular directions along which there is 

purely extensional strain, with no shear strain between these special directions.  The directions 
are the principal directions and we denote the corresponding strains, ordered algebraically, as I, 

II, and III; these include the least and greatest extensional strains experienced by fibers through 

the material point considered.  While developed here within small (infinitesimal) strain analysis, 

the result on the existence of mutually perpendicular principal directions, relative to which there 

is extensional strain but no shear strain, applies at finite strain too.  In general, for a fiber with 

orientation along the direction of the unit vector no  in the reference configuration, the 
exensional strain, according to the small strain measure ij  now considered, is 

 

 =

i=1

3

j=1

3
ni
onj
o
ij  

 
Invariants of the strain tensor ij  may be defined in a way paralleling those for the stress tensor. 

 

 

Figure 11.  Mohr circle for strain transformation in a plane. 

 

 Mohr circle for strain transformation in a plane.  Since the same transformation equations 
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apply as for stress, there must be a Mohr circle for strain transformation in a plane.  This is 

illustrated in Figure 11.  An infinitesimal element in the form of a cube of side dL is shown in 
the undeformed reference configuration.  One of its faces is perpendicular to e3  but the others 

have been rotated by  anticlockwise about that vector, so that the orthogonal unit vectors s and 
n shown, rather than e1  and e2 , are perpendicular to the other cube faces.  Extensional strain n  

parallel to n and shear strain ns , defined as an angle reduction between the s and n directions, 

are marked on the deformed sketch of the element.  We recall that the tensor component of shear 
strain is ns /2, so that the Mohr circle will apply in terms of axes labelled n  and ns /2.  The 

simplest route to construction of the circle is to recognize that we know the Mohr coordinate 
locations ( n ,  ns / 2)  along the circle, in terms of the given ij , when  = 0 and when  = /2.  

The extremities of the Mohr circle mark the maximum and minimum in-plane strains, obtained 

respectively in the n and s directions when those are oriented such that = , where 2  is 

defined in Figure 11.    

 

 Strain compatibility.  An important fact to note is that the strains cannot vary in an arbitrary 

manner from point to point in the body.  That is because the six strain components are all 

derivable from three displacement components.  Restrictions on strain resulting from such 

considerations are called compatibility relations; the body would not fit together after 

deformation unless they were satisfied.  Consider, for example, a state of plane strain in the 1, 2 
plane (so that 33 = 23 = 31 = 0).  The three non-zero strains, 11 = u1/ X1 , 12 = (1/2) 

( u2/ X1 + u1/ X2) and 22 = u2/ X2, are in this case derivable from the two displacements u1 

and u2.  So those strains cannot vary arbitrarily from point to point but must satisfy some single 

equation of constraint.  In this case (plane strain) that  equation of constraint , or compatibility 

equation, is 

 

 2
11 / X2

2
+

2
22 / X1

2
= 2 2

12 / X1 X2  

 

as may be verified by directly inserting the relations for strains in terms of displacements. 

 

 In the general 3D case, the strain compatibility equations are the set 

 

 2
ij / Xk Xl +

2
kl / Xi Xj =

2
ik / Xj Xl +

2
jl / Xi Xk  . 

 

These comprise 81 equations, but most are identities (all cases when 3 or more of i, j,k,l  are 

identical) or replications of one another.  In the end we have 6 equations.  Three of them, 
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resulting when i = j , k = l , but i k , have the same form of that written for plane strain above 

(which corresponds to i = j =1  and k = l = 2 ).  The other three, resulting when i = j  but i k , 

i l  and k l  have the form (e.g., corresponding to i = j =1 , k = 2 , l = 3) 

 

 2
11 / X2 X3 = ( 12 / X3 23 / X1 + 31 / X2) / X1  . 

 

These 6 equations are not completely independent of one another, in that we have, 

fundamentally, need for only three constraints (six strains derivable from three displacements).  

 

 Small strain analysis.  When the smallness of stretch and rotation of line elements allows use 
of the infinitesimal strain tensor, a derivative / Xi will be very nearly identical to / xi.  

Frequently, but not always, it will then be acceptable to ignore the distinction between the 

deformed and undeformed configurations in writing the governing equations of solid mechanics.  

For example, the differential equations of motion in terms of stress are rigorously correct only 

with derivatives relative to the deformed configuration but, in the circumstances considered, the 

equations of motion can be written relative to the undeformed configuration.  This is what is 

done in the most widely used variant of solid mechanics, in the form of the theory of linear 

elasticity.  The procedure can go badly wrong in some important cases, like for columns under 

compressive loadings so that buckling occurs, or for elastic-plastic materials when the slope of 

the stress versus strain relation is of the same order as existing stresses; these cases are best 

approached through finite deformation theory.   

 

 Finite deformation and strain tensors.  The theory of finite deformations, with extension 

and rotations of line elements being unrestricted as to size, contains the small strain formulation 

as a limiting case.  Consider an infinitesimal fiber through the point considered which is, 

initially, given as the vector dX.  If that fiber deforms at the time considered to the vector dx 
then, defining Fij = xi (X, t) / X j , we can write 

 

 dxi = Fij dX j
j=1

3
 

 
The 3 by 3 matrix [F], with components Fij, is called the deformation gradient; the Fij transform 

as the components of a second rank tensor when we change from one set of Cartesian reference 

axes to another.  Two special types of [F] are of interest, and the most general [F] can be 

composed of the two of them.  The first type is a rigid rotation, [F] = [R] where [R] has the same 



42 

properties as an orthogonal transformation matrix [ ].  When [F] = [R], each dx has the same 

length as the corresponding dX, and the angle between two line elements d  X  and d   X  is the 

same as between d  x  and d   x .  The other special type of [F] is [F] = [U] where the components 
Uij of [U] are symmetric, Uij = Uji , and det[U] > 0; [U] corresponds to a pure deformation.  It is 

possible to show that when [F] = [U], there exist three special, mutually orthogonal directions, 

called principal directions, with the property that if dX lies along one of these directions, then so 

does dx.  Thus fibers in these three special directions do not rotate during the deformation; and 

there is no shearing deformation between them.  Further these fibers include the fibers with the 
least and greatest stretch ratios, denoted I and III, respectively, among all fibers through the 

point considered. 

 

 It may be shown that a general deformation gradient [F] may be represented as a pure 

deformation followed by a rigid rotation; this result is called the polar decomposition theorem, 

and takes the form, in matrix notation [F] = [R][U].  Thus, for an arbitrary deformation, there 

exist three mutually orthogonal principal stretch directions at each point of the material; call 
these directions in the reference configuration N(I), N(II), N(III) and let the stretch ratios be I, 

II, III.  Fibers in these three principal directions undergo extensional strain but have no 

shearing between them.  The three fibers in the deformed configuration remain orthogonal but 

are rotated by the operation [R] relative to their orientation in the reference configuration. 

 

 Recall that an extensional strain may be defined by E = g( ) where g( ) is any function 

satisfying g(1) = 0 and g´(1) = 1, with examples for g( ) given above.  We may then define a 
finite strain Eij based on any particular function g( ) by 

 

 Eij = g( I)Ni
(I)Nj

(I)
+ g( II )Ni

(II)N j
(II)

+ g( III )Ni
(III )Nj

(III) , 

 
and any Eij  so defined may readily be shown to transform according to the law defining a 

second-rank tensor. 

 

 Usually, it is rather difficult to actually solve for the ’s and N’s associated with any general 

[F] (= [ x/ X]), so it is not easy to use this strain definition.  However, for the special choice 

identified as gM( ) = ( 2 – 1)/2 above, it may be shown that 

 

 Eij
M

=
1

2
FkiFkj ij

k=1

3 
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Remembering that xi = Xi + ui , so that Fij = xi / Xj = ij + ui / X j , we may show that  

 

 Eij
M

=
1

2

ui
Xj

+
uj
Xi

+
uk
Xi

uk
Xjk=1

3 

 

 

 

 

  

 
which, like the finite strain generated by any other g( ), reduces to ij when uk / Xl <<1  so 

that we need retain only the linear terms. 

 

 To illustrate the summation convention and comma notation, the last two expressions for Eij
M  

could instead be written as Eij
M  = (1 / 2)(FkiFkj ij)  = (1 / 2)(ui , j +uj ,i +uk ,i uk , j ) , but where 

here we must explain that G,i  corresponds to G / Xi , not to G / xi . 

 

 It is sometimes convenient to think in terms of lines in the material, parallels to the 1, 2 and 3 
axes, being carried along, or convected, with the deformation, so that the labels X1, X2, X3 

correspond to the labeling of a system of curvilinear coordinates, convected with the 

deformation.  This viewpoint was introduced by Hencky in 1925.  When the square of the length 

of an infinitesimal line element is written as a quadratic form in the corresponding increments of 

curvilinear reference coordinates, the coefficients in the quadratic form are called the metric 

tensor gij .  Thus, observing that the Eij
M  appear in the equation 

 

 dx dx = ij + 2Eij
M( )

j=1

3

i=1

3
dXidXj , 

 

we can identify gij  with ij + 2Eij
M , so that 2Eij

M  is the change in metric tensor of the convected 

coordinates in going from the reference to deformed configuration.  The strain Eij
M  is also 

known as the Green strain or the Lagrangian strain. 

 

Some Comments on Work and Energy 

 

 Virtual work.  Consider a solid in its deformed configuration at some time t and let u = 

u(x) be some virtual, or imagined, infinitesimal displacement field.  Using the various equations 

derived from the linear and angular momentum principles above we may derive the Principle of 

Virtual Work, namely that 
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 T udS +
S

(f a) udV
V

= ij ij dV
j=1

3

i=1

3

V
 

 

where 

 

 ij =
1

2

( ui )

x j
+
( uj )

xi

 

 

 

 

 

  

 

is the infinitesimal strain, as measured from the deformed configuration of the solid at time t, 

associated with the virtual displacement field. 

 
 If we assume that ij = ji and that the Principle of Virtual Work holds for all possible 

continuous fields u of virtual displacement and compatible strains [ ], then it may be shown 

that all of the equations derived from the linear momentum principle are implied.  The form of 

the principle here is an extension of what John Bernoulli introduced in 1717 for systems such as 

interconnected rigid bodies with frictionless joints, but reduces to his form when we consider 

only virtual displacements which are consistent with rigidity, so that the stress working terms of 
type ij ij  vanish.  The virtual work principle is usually taken as the preferred formulation in 

developing the finite-element method of computational solid mechanics analysis discussed 

earlier. 

 

 If we let u be the actual displacement field throughout the solid over some infinitesimal 
time increment t at t.  Then, writing u/ t = v and Dij = (1/ 2)( vi / x j + vj / xi )  (Dij  is called 

the deformation rate tensor), there follows the work-energy relation 

 

 T v dS +
S

f vdV
V

=
d

dt

1

2
v v dV

V
+ ij

j=1

3

i=1

3

V
Dij dV . 

 

This shows that the rate of work of volume and surface forces equals the rate of change of kinetic 
energy when the solid moves as a rigid body (i.e., when each Dij = 0), but not when the solid 

deforms. 

 

 First law of thermodynamics.  The first law of thermodynamics has a similar form, 
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 (T v qn) dSS
+ (f v + r) dV

V
=
d

dt
(e +

1

2
v v)dV

V
 

 
where e is the internal energy per unit mass, qn dS is the rate at which heat flows out through 

area dS the surface of the region considered, and r dV is the rate of heat supply by radiation to 

the volume dV.  It then follows that 

 

 qndSS
+ (r + ijDij

j=1

3

i=1

3
)dV

V
=  de / dt  dV

V
 

 

where de/dt is a derivative following the motion.  From this equation we can show (consider a 

tetrahedron, size approaching zero) that the heat outflow at a place on the surface with normal n 
has the form qn = n q , where we call q the heat flux vector.  Also, by requiring the expression 

to hold for an arbitrary region, one concludes that 

 

 qi / xi
i=1

3
+ r + ijDij

j=1

3

i=1

3
= de / dt  

 

which is the local form of the first law of thermodynamics.  This justifies an interpretation of the 
summation involving ijDij  as the rate of stress working per unit volume. 

 

Stress-Strain Relations 

 

 Linear elastic isotropic solid.  The simplest case is that of the linear elastic solid, considered 

in circumstances for which ui / X j <<1  and distinctions between the deformed and 

undeformed configurations are neglected in writing equations of motion or of equilibrium.  

Consider first the case of isotropic materials, whose mechanical response is independent of the 
direction of stressing.  If a material point sustains a stress state 11 = , with all other ij = 0, it 

is subjected to uniaxial tensile stress.  This can be realized in a homogeneous bar loaded by an 
axial force.  We then will expect extensional strain 11 to develop in the direction of the stress, 

but that there will be no shearing relative to the 1, 2, 3 axes, and that negative extensional strains 

will develop in directions transverse to the tension.  Hence we may write the strain in response to 
uniaxial tension 11 =  as 

 
 11 = /E ,   22 = 33 = – 11 =  – /E ,   12 = 23 = 31 = 0 
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Two new parameters have been introduced here, E and .  The first, E is called Young’s modulus 

and it has dimensions of [Force]/[Length]2 and is measured in units such as Pa ( = Pascal = 1 

N/m2), or dyne/cm2, or psi (pounds per square inch).  The second, , is dimensionless and is 
called the Poisson ratio.  More generally, if stresses of type 11, 22 and 33 are applied, no 

shear strains are produced and we can write the extensional strains as the sum of responses to 

each stress individually (because the material is linear): 

 
 11 = 11/E –  ( 22 + 33)/E ,   22 = 22/E –  ( 33 + 11)/E , 

 33 = 33/E –  ( 11 + 22)/E . 

 
 If the isotropic solid is subjected only to shear stress, 12 = 21 = , with all other ij = 0, 

then the response is shearing strain of the same type, 

 
  12 = /2G ,   23 = 31 = 11 = 22 = 33 = 0 . 

 
Notice that because 2 12 = 12, this is equivalent to 12 = /G.  The constant G introduced is 

called the shear modulus.  Frequently, the symbol μ is used instead for it.  If shear stresses of all 

types are applied the shear strains are  

 
 12 = 12/2G, 23 = 23/2G, 31 = 31/2G 

 

but none of the shear stresses cause extensional strains. 

 

 Relation of G to E and .   It is now clear that the strain response to a completely general 

stress state is given by this last set of equations and those for normal stress application above.  

However, the shear modulus G is not independent of E and , but is related to them by  

 

 G = E / [2(1+ )] .   

 

This can be seen from the following arguments, presented in two ways because both are 
instructive.  First consider the solid under stress 12 = 21 = , producing strain 12 = 21 = /2G.  

Now suppose we look at the same loading relative to a new set of axes 1´,2´,3´ produced by 

rotating the original set by /4 (45 °) about the 3 axis so that 3 and 3´ coincide but 1´ is rotated 

away from 1, halfway towards 2, and 2´ away from 2, halfway towards negative 1.  By the laws 
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of transformation discussed earlier, we calculate that our assumed stress and strain state is 

equivalent to  

 

 

   11 = , 22 = – , all other kl = 0

11 = /2G, 22 = – /2G, all other kl = 0 
 

Since the material is isotropic, the response to normal stresses described above must also apply 

relative to the 1´, 2´, 3´ axes, and thus it is necessary that  

 

   11 = 11 /E – 22 /E , and hence that /2G = /E + /E 
 

from which we see that G = E/[2 (1+ )]. 

 

 For the second mode of derivation, suppose that we had chosen axes 1´, 2´, 3´ to coincide 
with the principal directions of stress at the point considered, so that the stresses   kl  contain no 

shear components.  The principal axes of strain will align with those of stress when the material 
is isotropic, so that the strains   kl  likewise contain no shear component.  Thus stress-strain 

relations will involve only  and .  For example,  

 

   11 = 11 /E – ( 22 + 33 )/E = (1 + ) 11 /E – ( 11 + 22 + 33 )/E 
 

Noting the last rearrangement, we see that the proper relation between all components of stress 

and strain along principal axes, for which shears vanish, is 

 

    kl = (1 + ) kl /E – kl ( 11 + 22 + 33 )/E 
 
where   kl  is the analog, on the 1´, 2´, 3´ axis system, to the ij  on the 1, 2, 3 system; both are 

defined as 1 when their indices agree and 0 otherwise.  Using a property of the orthogonal 

transformation matrix [ ], it may be observed that 

 

   kl =

i=1

3

ki li =

j=1

3

i=1

3

ki lj ij , 

 
so that the   kl  relate to the ij  by the same transformation rule of a second rank tensor which 

relates the   kl  to the ij  and the   kl  to the ij .  If we apply the inverse of that transformation to 

both sides of the above stress-strain relations on the 1´, 2´, 3´ system, and remember that the sum 



48 

of normal stresses is invariant to choice of axes, we conclude that for every choice of coordinate 

axes the stress-strain relations are 

 
 ij  =  (1 + ) ij /E –  ij ( 11 + 22 + 33)/E . 

 
This confirms that 12 = (1 + ) 12/E and hence also demonstrates that G = E/[2(1 + )].  Along 

the way, we have seen the working of an important concept:  The laws of physics can be 

formulated as relations between tensors (not necessarily second order tensors, as they are in this 

case) and have the same form in all coordinate systems. 

 

 Other constants.  The linear elastic stress-strain relations can be inverted to read 

 
 ij  =  ij ( 11 + 22 + 33) + 2μ ij 

 

where here we have used μ rather than G as the notation for the shear modulus, following 

convention, and where  = 2 μ/(1 – 2 ).  The elastic constants  and μ are sometimes called the 

Lamé constants.  Since  is typically in the range 1/4 to 1/3 for hard polycrystalline solids,  falls 

often in the range between μ and 2μ.  (Navier’s particle model with central forces leads to  = μ 

for an isotropic solid.) 

 

 Another elastic modulus often cited is the bulk modulus K, defined for a linear solid under 
pressure p ( 11 = 22 = 33 = –p) such that the fractional decrease in volume is p/K.  If we 

consider a small cube of side length L in the reference state, observe that shearing strain does not 
change volume, and that the length along, say, the 1 direction changes to (1 + 11)L, we see that 

the fractional change of volume is  

 
 (1 + 11)(1 + 22)(1 + 33) – 1  =  11 + 22 + 33 , 

 
neglecting quadratic and cubic order terms in the ij compared to linear, as appropriate when 

using linear elasticity.  Thus K = E/[3(1 – 2 )] =  + 2μ/3. 

 

 Thermal strains.  Temperature change can also cause strain.  In an isotropic material the 

thermally induced extensional strains are equal in all directions, and there are no shear strains.  In 

the simplest cases, we can treat these thermal strains as being linear in the temperature change,  
– 0 (where 0 is the temperature of the reference state) writing  
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ij
thermal = ij ( – 0)

 
 

for the strain produced by temperature change in the absence of stress.  Here  is called the 

coefficient of thermal expansion.  We now regard the strain expressed above, in terms of stress, 

as the mechanical part of the strain,  ij
mech , with ij = ij

mech
+ ij

thermal .  Thus, in cases of 

temperature change, we replace ij  in the stress-strain relations above with ij ij
thermal , with 

the thermal part given as a function of temperature.  Typically, when temperature changes are 

modest, we can neglect the small dependence of E and  on temperature. 

 

 Anisotropy.  Anisotropic solids are also common in nature and technology.  Examples are:  

single crystals; polycrystals in which the grains are not completely random in their 

crystallographic orientation but have a “texture”, typically due to some plastic or creep flow 

process which has left a preferred grain orientation; fibrous biological materials like wood or 

bone; and composite materials which, on a microscale, have the structure of reinforcing fibers in 

a matrix, with fibers oriented in a single direction or in multiple directions (e.g., to ensure 

strength along more than a single direction), or may have the structure of a lamination of thin 

layers of separate materials.  In the most general case the application of any of the six 

components of stress induces all six components of strain, and there is no shortage of elastic 

constants.  There would seem to be 6  6 = 36 in the most general case but, as will be seen, a 

consequence of the laws of thermodynamics is that the maximum number of independent elastic 

constants is 21 (compared to 2 for isotropic solids).  In many cases of practical interest, symmetry 

considerations reduce the number to far below 21.  Crystals of cubic symmetry, like rocksalt 

(NaCl), or face-centered-cubic metals such as aluminum, copper, or gold, or body-centered-cubic 

metals like iron at low enough temperature or tungsten, or non-metals such as diamond, 

germanium or silicon, have only 3 independent elastic constants.  Also solids with a special 

direction, and with identical properties along any direction perpendicular to that direction, are 

called transversely isotropic, and have 5 independent elastic constants.  Examples are provided 

by fiber-reinforced composite materials, with fibers that are randomly emplaced but aligned in a 

single direction in an isotropic, or transversely isotropic, matrix, and by single crystals of 

hexagonal-close-packing such as zinc. 

 

 General linear elastic stress strain relations have the form 
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ij =
k = 1

3

l = 1

3
Cijkl kl

 
 
where, because the kl are symmetric, we can write Cijkl = Cijlk, and because the ij are 

symmetric, Cijkl = Cjikl.  Hence the 3  3  3  3 = 81 components of Cijkl reduce to the 6  6 

= 36 mentioned, which thermodynamics further reduces.  In cases of temperature change, we 

replace ij  with ij ij
thermal  where ij

thermal
= ij( o)  and ij is the set of thermal strain 

coefficients, with ij = ji. 

 

 An alternative matrix notation is sometimes employed, especially in the literature on single 

crystals.  That approach introduces 6-element columns of stress and strain { } and { }, defined 

so that the columns, when transposed (super-script T) or laid out as rows, are 

 
 { }T = ( 11, 22, 33, 12, 23, 31) 

 { }T = ( 11, 22, 33, 2 12, 2 23, 2 31). 

 

These forms assure that the scalar { }T{d } is an increment of stress working per unit volume.  

The stress-strain relations are then written { } = [c]{ } where [c] is the 6 by 6 matrix of elastic 
moduli.  Thus, c13 = C1133, c15 = C1123, c44 = C1212, c42 = C1222, etc.  The thermodynamic 

requirement as explained below is that [c] be a symmetric matrix. 

 
 For isotropic elastic materials the independent constants may be chosen as any two of c11 (= 

 + 2μ), c12 (= ), and c44 (= μ).  In solids of cubic symmetry they are chosen and tabulated in 

many materials data sources as c11, c12 and c44.  For solids that are transversely isotropic about 

the 1 axis, the independent constants are c11, c12, c22, c23, c44 and, for example, others are given 

by c55 = c22 – c23, c21 = c12, etc.  Sometimes elastic compliances, corresponding to elements of 

[c]-1, the matrix inverse of [c], appearing as { } = [c]-1{ } are given.   

 

 Thermodynamic considerations; second law.  Thermodynamic principles constrain stress-

strain relations for elastic materials as follows.  The most primitive notion of elasticity is that 

stress is a function of strain and of temperature .  (For rigorous theory applicable to arbitrarily 

large rotations and to however large stretches the solid can sustain while still remaining elastic, 
we modify this to say that the six stresses ij are functions of the nine deformation gradients Fij, 

and of temperature.)  We need only consider states of spatially homogeneous deformation and 

temperature, since we have tacitly assumed that the local relation between stress, strain and 
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temperature is the same as for such homogeneous states.  In thermodynamic terminology, a state 

of purely elastic material response corresponds to an equilibrium state, and a process during 

which there is purely elastic response corresponds to a sequence of equilibrium states and hence 

to a reversible process.  Then, the second law of thermodynamics assures us that the heat 

absorbed per unit mass can be written  ds where  is thermodynamic (absolute) temperature and 

s is the entropy per unit mass.  Hence, writing the work per unit volume of reference 

configuration in a manner appropriate to cases when infinitesimal strain can be used, and letting 

o be the density in that configuration, we have from the first law of thermodynamics that 

 

 

   

o ds +
k = 1

3

l = 1

3

ij d ij = ode
 

 

This relation shows that if we express internal energy e as a function of entropy s and strains [ ], 
and if we write e so as to depend identically on ij and ji, then 

 
 ij = o e([ ], s)/ ij 

 

Alternatively, we may introduce the Helmholtz free energy ƒ per unit mass, ƒ = e – s = ƒ([ ], ), 

and show that  

 
 ij = o ƒ([ ], )/ ij 

 

 The later form corresponds to the variables with which the stress-strain relations were written 
above.  Sometimes oƒ is called the strain energy for states of isothermal (constant ) elastic 

deformation; oe has the same interpretation for isentropic (s = constant) elastic deformation, 

achieved when the time sale is too short to allow heat transfer to or from a deforming element.  

Since the mixed partial derivatives must be independent of order, a consequence of the last 

equation is that 

 
 ij([ ], )/ kl = kl ([ ], )/ ij, 

 
which requires that Cijkl = Cklij, or equivalently that the matrix [c] be symmetric, [c] = [c]T, 

reducing the maximum possible number of independent elastic constraints from 36 to 21.  At 
constant temperature o, the strain energy W([ ]) = ƒ([ ], o) = (1/2) { }T[c]{ }.  
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 Isothermal versus isentropic response.  The Cijkl  = 0
2ƒ([ ], )/ ij kl are elastic moduli 

for isothermal response.  Let  C ijkl  = 0
2e([ ], s)/ ij kl  be the corresponding moduli for 

isentropic response.  Reasoning from the first and second laws as embodied in eq. (xx), it follows 

that  

 

 

   
C ijkl = Cijkl + ( o / o c ) ij kl , where pq=

r = 1

3

s = 1

3
C pqrs rs ;

  
 
here c = o s([ ], ) / , evaluated at  = o  and [ ] = [0] , and gives the specific heat at 

constant strain in the reference configuration.  In the case of the elastically isotropic material, it 

is most convenient to give results in terms of G and K, the isothermal shear and bulk moduli.  

We find that the isentropic moduli are 

 

 G = G,   K = K  (1 + 9  K 
2
 /  c ) . 

 

The shear modulus is unchanged and the fractional change in bulk modulus, given by the second 

term in the parenthesis, is very small, typically of the order of 1% or less even for metals and 

ceramics of relatively high , of order 10-5/degree Kelvin.  The fractional change in absolute 

temperature during an isentropic deformation is found to involve the same small parameter: 

 

   [( – o)/ o]s = const = – (9 o K 2 / o c ) [( 11 + 22 + 33) / 3 o] 
 

Values of  for most solid elements and inorganic compounds are in the range 10–6 to 4  10–5 / 
degree Kelvin, and room temperature is around 300 Kelvin, so 3 o is typically in the range 10-3 

to 4   10-2.  Thus, even if the fractional change in volume is of the order of 1%, which is quite 

large for a metal or ceramic deforming in its elastic range, the fractional change in absolute 

temperature is only of order 1%. 

 

 For those reasons, it is usually appropriate to neglect the alteration of the temperature field 

due to elastic deformation, and hence to use purely mechanical formulations of elasticity in 

which distinctions between isentropic and isothermal response are neglected.  Temperature 

changes, inducing thermal strains, are then considered only as specified quantities, perhaps 

calculated from considerations of heat transfer, but in a manner that is de coupled from the 

elastic deformation of the solid.  The same approach will not always be adequate when 

significant non-elastic deformation occurs (a metal wire that is flexed back and forth in the 
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plastic range gets noticeably warm), or in the presence of strong shock waves, or when we wish 

to consider what it is that ultimately damps free vibrations of a solid under conditions for which 

there is negligible inelastic deformation, or resistance from surrounding fluids, or frictional slip 

at support points.  The latter point refers to thermoelastic dissipation due to small fluctuating 

heat conduction currents that act to level-out small temperature fluctuations due to tendencies 

towards locally isentropic response in a vibrating solid.  In order to deal with coupled thermal 

and mechanical phenomena, we must add to our set of governing equations the local form of the 

first law of thermodynamics, as on page xx above, expressing the heat flux within it by  

qi =
j=1

3
kij / x j  where the conductivities [k]  

must, according to the second law of thermodynamics, form a positive definite matrix.   

 

 Finite elastic deformations.  When we deal with elastic response under arbitrary deformation 

gradients, because rotations, if not strains, are large or, in a material such as rubber, because the 

strains are large too, it is necessary to dispense with the infinitesimal strain theory.  Instead, the 

first and second laws of thermodynamics, combined as on page 36, have the form 

 

 o ds + det[F]
i=1

3

j=1

3

k=1

3
Fij
1

jkdFki = ode . 

 

Here the Fij
1  are components of [F]–1, which is the matrix inverse of [F].  Also, det[F] – 1 is the 

fractional change in volume, from the reference to the deformed configuration, so that mass 
conservation requires that   = o / det[F].  It may be noted that the form written for the stress 

working here incorporates no assumption that ij = ji, and hence may be considered an equation 

that is conceptually independent of the angular momentum principle. 

 

 For elastic response in this context, the free energy ƒ = e – s is a function of [F] and , ƒ = 

ƒ([F], ), and there results 

 

 ij =
k=1

3
Fik f ([F], ) / Fjk  

 

for the general form of elastic stress-deformation gradient relations.  If we have deformed a 

parcel of material by [F] and then give it some additional rigid rotation, we would insist that the 

free energy be unchanged in that rotation.  In terms of the polar decomposition [F] = [R][U], this 



54 

is equivalent to saying that ƒ is independent of the rotation part [R] or [F].  Thus ƒ depends only 
on the pure deformation [U], which is equivalent to saying that ƒ depends on the Fij only as they 

appear in components of [F]T[F] (=[U][U]).  This is equivalent to saying that ƒ is a function of 

the finite strain measure [EM] based on change of metric or, for that matter, on any member of 

the family of material strain tensor discussed.  Let us, then assume that ƒ is a function of [EM] 

and , ƒ = ƒ ([EM], ).  In that case we may show that 

 

 ij = ( / o)
k=1

3

l=1

3
FikFjlSkl([E

M ], )  , 

 
where Skl (= Slk) is sometimes called the second Piola-Kirchhoff stress, and is given by  

 

 Skl = o f ([EM ], ) / Ekl
M  , 

 

it being assumed that ƒ has been written so as to have identical dependence on  Ekl
M

 and  Elk
M

.  

This shows that ij = ji, so that the assumption on invariance of the free energy to rigid rotation 

makes the angular momentum principle redundant in this case.   

 

 Inelastic response.  The above mode of expressing [ ] in terms of [S] is valid for solids 

showing viscoelastic or plastic response as well, except that [S] is then to be regarded not only as 

a function of the present [EM] and , but to depend on the prior history of both.  Assuming that 

such materials show elastic response to sudden stress changes, or to small unloading from a 

plastically deforming state, we may still express [S] as a derivative of f, as above, but the 

derivative is understood as being with respect to an elastic variation of strain and is to be taken at 

fixed  and with fixed prior inelastic deformation and temperature history.  Such dependence on 

history is sometimes represented as a dependence of f on internal state variables whose laws of 

evolution are part of the inelastic constitutive description.  There are also simpler models of 

plastic or viscoelastic response and the most commonly employed forms for isotropic solids are 

presented next. 

 

 Plasticity and creep.  To a good approximation, plastic deformation of crystalline solids 

causes no change in volume, and hydrostatic changes in stress, amounting to equal change of all 

normal stresses, have no effect on plastic flow, at least for changes that are of the same order or 

magnitude as the strength of the solid in shear.  Thus plastic response can be formulated in terms 
of deviatoric stress , defined by ij = ij – ij ( 11 + 22 + 33)/3 .  This stress has a zero first 
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invariant and thus, in isotropic materials, plastic flow must be controlled by its second and third 

invariants.  Following von Mises, in a procedure which is found to agree moderately well with 

experiment, the plastic flow relation is formulated in terms of the second invariant of deviatoric 

stress.  That invariant is commonly rewritten as  , called the equivalent tensile 

stress, where 

 

   
2

= (3 / 2)
i=1

3

j=1

3

ij ji .   

 

The definition is arranged so that for a state of uniaxial tension,   equals the tensile stress, and 

the stress-strain relation for general stress states is formulated in terms of data from the tensile 

test.  In particular, a plastic strain  
p  in a uniaxial tension test is defined from  

p
=   / E , 

where here   is interpreted as the strain in the tensile test according to the logarithmic definition, 

 = ln , and the elastic modulus E is assumed to remain unchanged with deformation; also, in 

the situations considered  / E  << 1.   

 

 Thus in the rate-independent plasticity version of the theory, tensile data (or compressive, 

with appropriate sign reversals) from a monotonic load test is assumed to define a function 

 
p(  ) .  In the viscoplastic or high-temperature creep versions of the theory, tensile data is 

interpreted to define d  
p / dt  as a function of   in the simplest case representing, for example, 

secondary creep, and as a function of   and  
p  in theories intended to represent transient creep 

effects or rate-sensitive response at lower temperatures.   

 

 Rigid-plastic model.  Consider first the rigid-plastic material model in which elastic 

deformability is ignored altogether, as sometimes appropriate for problems of large plastic flow 

as in metal forming or long term creep in the Earth’s mantle, or for analysis of plastic collapse 

loads on structures.  Then the rate of deformation [D] can be equated to what we will shortly 

consider to be its plastic part [Dp].  Following Levy, in an idea that would be said, since the 

formalization of the mathematical theory of plasticity starting in the early 1950’s, to embody an 

associated flow rule with normality of [Dp] to surfaces of form   = constant in a stress hyper-

space, one assumes that [Dp] is distributed among its components just as is [ ], so that 

 

 Dij
p

= (3 ij / 2  )d  
p / dt             (i,j = 1,2,3). 

 

The numerical factors secure agreement between D11
p  and d  

p / dt  for uniaxial tension in the 1 
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direction.  Also, the equation implies that  

 

 D11
p
+D22

p
+D33

p
= 0 ,  

 

which implies incompressibility of plastic flow, and that  

 

 (d  
p / dt)2 = (2 / 3)

i=1

3

j=1

3
Dij
pDji

p  ,  

 

which must be integrated over previous history to get  
p  as required for viscoplastic models in 

which d  
p / dt  is a function of   and  

p .   

 

 Since   is defined as a function of [ ], this formulation expresses [Dp] as a function of [ ],, 

and possibly of the previous [ ], history, in its viscoplastic version.  It expresses [Dp] as an 

explicit function of [ ], and d[ ],/dt in its rate-independent plasticity version, since then one has   

d  
p / dt = [d  

p(  ) / d  ]d  / dt .  In the rate-independent version, we define [Dp] as zero 

whenever   is less than the highest value that it has attained in the previous history, or when the 

current value of   is the highest value but d  /dt < 0.  (In the elastic-plastic context, this means 

that “unloading” involves only elastic response.)  In the case of the ideally-plastic solid, which is 

idealized to be able to flow without increase of stress when   equals the yield strength level, we 

regard d  
p / dt  as an undetermined but necessarily non-negative parameter, which can be 

determined (sometimes not uniquely) only through the complete solution of a solid mechanics 

boundary value problem.  

 

 Elastic-plastic model, co-rotational stress rate.  The elastic-plastic material model is then 

formulated by writing 

 

 Dij = Dij
e
+Dij

p  

 

where [D p] is given in terms of stress and possibly stress rate just as explained above, and where 

the elastic deformation rates [D e] are related to stresses by the usual linear elastic expression, 

 

 Dij
e

=
1 +

E
˙  ij

*

E ij( ˙  11
*

+ ˙  22
*

+ ˙  33
* )                (i,j = 1,2,3). 
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Here the stress rates are expressed as the Jaumann co-rotational rates 

 

 ˙  ij
*

= ˙  ij +

k=1

3
( ik kj ik kj)  ; 

 

where ˙  ij  = d ij/dt is a derivative following the motion of a material point, and the spin ij is 

defined by 

 
 ij = (1 / 2)( vi / x j vj / xi )  . 

 

The co-rotational stress rates ˙  ij
*  are those calculated by an observer who spins with the average 

angular velocity of a material element.  The elastic part of the stress strain relation should be 

consistent with the existence of a free energy f as discussed above.  This is not strictly satisfied 

by the form just given, but the differences between it and one which is consistent in that way 

involves additional terms which are of order  / E  times the ˙  ij
* .  These are quite negligible in 

typical cases in which the theory is used, since  / E  is usually an extremely small fraction of 

unity, say, 10–4 to 10–2.  A small-strain version of the theory is in common use for purposes of 

elastic-plastic stress analysis.  In that one replaces [D] with [ (X, t)] / t , where [ ] is the small 

strain tensor,  / x with  / X in all equations, and [ ˙  *]  with [ (X, t)] / t .  The last two steps 

cannot always be justified even in cases of very small strain if, for example, in the case of a rate-

independent material, d  / d  
p  is not large compared to  , or, just as is a concern for buckling 

problems in purely elastic solids, if rates of rotation of material fibers are much larger than rates 

of stretching. 

 

 Linear viscoelasticity.  Here the focus is on situations for which the small strain tensor may 

be used.  This excludes viscoelastic liquids, for which a treatment more in the spirit of that above 

for large plastic flow is necessary.  Consider a bar under uniaxial stress  and let  be its strain.  

In the creep test the stress  is applied and subsequently maintained constant.  The strain is then 

denoted  =  C(t) where C(t) is called the creep compliance and corresponds to 1/E for a 
purely elastic solid;  C(0+) = 1/Eu  and, if the limit exists,  C( ) = 1/Er , where Eu and Er (< Eu ) 

are, respectively, the unrelaxed and relaxed elastic moduli.  Also, dC(t)/dt > 0 for all finite t.  

The complementary test, in which a strain  is applied and subsequently maintained constant, is 

called the relaxation test, and the resulting stress can be written as  =  R(t).  Here R(t) is the 
relaxation function;  R(0+) = Eu  and  R( ) = Er ; also, dR(t)/dt < 0 for all finite t.  The 

Boltzmann superposition then represents response in a general loading history, starting at t = 0, 
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by 

either of the equivalent forms 

 

 (t) =
0

t
C(t s) d (s) / ds ds   or   (t) =

0

t
R(t s)  d (s) / ds ds  

 
Such convolutions will subsequently be denoted as   = C*   and   = R*   

 

 The C(t) and R(t) are often approximated by solutions of the first order differential equation 

introduced by Jeffreys in 1929 and defining a standard linear solid, 

 
 Td / dt + = TEud / dt + Er  

 
where, in different circumstances, either T or T Eu / Er is called a relaxation time.  The Maxwell 

model, first introduced in the hope of describing viscoelastic phenomena in gases, is given by 
setting Er = 0 and writing Eu = E, so that C(t) = (1 + t / T) / E and R(t) = E exp(–t / T).  It is a 

special case of the elastic-plastic law of secondary creep type, discussed above, in which 

d  
p / dt =  / TE , and has the mechanical analog of a spring and viscous dashpot element in 

series.  The Kelvin model is obtained by letting Eu  and T  0 in such a way that T Eu / Er 

remains bounded.  It has the analog of a spring and dashpot in parallel, and allows no long-term 

permanent deformation.  A weakness is that it precludes instantaneous elastic response, but it can 

nevertheless be useful in modeling the damping of vibrations. 

 

 For the tensorial generalization in an isotropic material, it is simplest to consider the separate 

response to pure shear stress and to pure hydrostatic stress, introducing creep compliance 

functions S(t) and B(t) that correspond, respectively, to  1/G  and  1/K .  Thus if shear strain   = 

 S(t)  is the response to a step loading by shear stress   , and if  – p B(t)  is the fractional change 

in volume in response to a step loading by hydrostatic pressure  p , then the general stress-strain 
relations may be written as   ij  =  (1/2) S* ij + (1/9) ij B*( 11+ 22+ 33)   where  ij  is the 

deviatoric stress.  In many cases the time dependence of  B(t)  is negligible compared to that of  
S(t)  and one can just replace  B*( 11+ 22+ 33)  by  ( 11+ 22+ 33)/K . 

 

 

SOME PROBLEMS INVOLVING ELASTIC RESPONSE 

 

 Equations of linear elasticity, mechanical theory.  The final equations of the purely 
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mechanical theory of linear elasticity (i.e., when we neglect coupling with the temperature field) 

and assume either isothermal or adiabatic response, with elastic moduli  identified appropriately, 

are obtained as follows.  We use the stress strain relations, given in the general case as on page 

xx write the strains in terms of displacement gradients as on page xx, and insert the final 

expressions for stress into the equations of motion given on page xx, replacing / x with / X in 

those equations, to obtain 

 

 
Xii=1

3

Cijkl
uk
Xll=1

3

k=1

3 

 

  

 

 

  + fj =

2u j

t2
  ( j = 1, 2, 3) . 

 
Throughout this section we now use xi and Xi interchangeably.  In the case of an isotropic and 

homogeneous solid, the equations of motion reduce to the Navier equations 

 

 ( + μ)
X j

uk
Xkk=1

3 

 
  

 

 
  + μ

2uj

Xk
2

k=1

3

+ fj =

2uj

t2
  ( j = 1, 2, 3), 

 

which can be restated in the concise vector notation 

 

 ( + μ) ( u) + μ
2u + f = 2u / t2 , 

 

where  = ei Xii=1

3
 and 2  is the Laplacian operator defined by .  Such equations hold in 

the region V occupied by the solid; on the surface S one prescribes each component of u, or each 

component of T (expressed in terms of [ u/ X]), or sometimes mixtures of components or 

relations between them.  For example, along a freely slipping planar interface with a rigid solid, 

the normal component of u and the two tangential components of T would be prescribed, all as 

zero.   

 

 Body wave solutions.  By looking for body wave solutions in the form 

 

 u(X, t) = p f (n X ct) ,  

 

where unit vector n is the propagation direction, p is the polarization, or direction of particle 

motion, and c is the wave speed, one may show for the isotropic material that solutions exist for 

arbitrary functions f(..) if either 
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 c = cd ( + 2μ) /   and   p = n  ,    or    c = cs μ /   and   p n = 0 . 

 

The first case, with particle displacements in the propagation direction, describes longitudinal or 

dilatational waves and the latter case, which corresponds to two linearly independent 

displacement directions, both transverse to the propagation direction, describes transverse or 

shear waves.  For any given propagation direction n in a general anisotropic material, the wave 

speeds (squared) are the eigenvalues, and the polarizations the eigenvectors, solving 

 

 ni Cijklnl
l=1

3

i=1

3 

 
 

 

 
 

k=1

3
 pk = c2 pj   ( j = 1, 2, 3)  

 

Here the positive definiteness of the strain energy suffices to assure that there are three real 

positive solutions for c2 with associated polarizations p that are mutually orthogonal ( or can be 

chosen to be such when two c2 values coincide like in the isotropic case).  Further, as any such 

body wave propagates, the stress vector T it creates, on a surface with normal in the propagation 

direction, and the particle velocity v of the wave field satisfy  T = –  c v .  Thus, for example, if 

a uniform pressure p is suddenly applied to a certain area of a planar boundary of an isotropic 
elastic solid, points within that area will suddenly acquire the velocity p/ cd, and will maintain 

that velocity until dilational waves arrive from the edges of the pressurized area or from other 

boundaries after reflection of the outgoing wave. 

 

 Linear elastic beam.  The case of a beam treated as a linear elastic one-dimensional line may 

also be considered.  Let the line lie along the 1 axis, Figure 12, have properties that are uniform 

along its length, and have sufficient symmetry that bending it by applying a torque about the 3 

direction causes the line to deform into an arc lying in the 1,2 plane.  Make an imaginary cut 

through the line and let the forces and torque acting at that section on the part lying in the 
direction of decreasing X1 be denoted as a shear force V in the positive 2 direction, an axial force 

P in the positive 1 direction, and a torque M, commonly called a bending moment, about the 

positive 3 direction.  The linear and angular momentum principles then require that the actions at 
that section on the part of the line lying in the direction of increasing X1 are of equal magnitude 

but opposite sign.  Now let the line be loaded by transverse force F per unit length, directed in 

the 2 direction, and make assumptions on the smallness of deformation consistent with those of 

linear elasticity.  Let A be the mass per unit length (so that A could be interpreted as the cross 

section area of a homogeneous beam of density ) and let u the transverse displacement in the 2 
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direction.   

 
 Then, writing X for X1, the linear and angular momentum principles require that 

 

 V/ X + F  =  A 2u/ t2 ,    M/ X + V  =  0 
 

where rotatory inertia has been neglected in the second equation, as is appropriate for long-

wavelength disturbances compared to cross section dimensions.  The curvature  of the elastic 

line can be approximated by =
2u / X 2  for the small deformation situation considered, and 

the equivalent of the stress-strain relation is to assume that  is a function of M at each point 

along the line.  The function can be derived by the analysis of stress and strain in pure bending 

and is  M = 

EI  with I = (X2A
)2dA  for uniform elastic properties over all the cross section, and with the 1 

axis passing through the section centroid.  Hence the equation relating transverse load and 

displacement of a linear elastic beam is 

 

 – 2 (EI  2u/ X2 ) / X2  +  F   =   A 2u/ t2 
 

and this is to be solved subject to two boundary conditions at each end of the elastic line.  

Examples are u = u/ X = 0 at a completely restrained (“built in”) end, u = M = 0 at an end that 

is restrained against displacement but not rotation, and V = M = 0 at a completely unrestrained 

(free) end.  The beam will be reconsidered later in an analysis of response with initial stress 

present. 

 
Figure 12.  Transverse motion of an initially straight beam, shown at left as a one- 

dimensional elastic line, and at right as a three-dimensional solid of finite section. 

 

 The preceding derivation was presented in the spirit of the model of a beam as the elastic line 
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of Euler.  We may obtain the same equations of motion by the following five steps:   

 (1)  Integrate the three-dimensional equations of motion over a section, writing 
V =

A 12dA . 

 (2)  Integrate X2 times those equations over a section, writing M =
A
X2 11dA . 

 (3) Assume that planes initially perpendicular to fibers lying along the 1 axis remain 
perpendicular during deformation, so that  11 = o(X, t) – X2 (X, t)  where X  X1, o(X, t) is 

the strain of the fiber along the 1 axis and  (X, t) = 2u/ X2  where u(X, t) is u2 for the fiber 

initially along the 1 axis. 
 (4) Assume that the stress 11 relates to strain as if each point was under uniaxial tension, so 

that  11 = E 11. 

 (5) Neglect terms of order h2/L2 compared to unity, where h is a typical cross section 

dimension and L is a scale length for variations along the 1 direction.   

 
 In step (1) the average of u2 over area A enters but may be interpreted as the displacement u 

of step (3) to the order retained in (5).  The kinematic assumption (3) together with (5), if 

implemented under conditions that there are no loadings to generate a net axial force P, requires 
that  o(X, t) = 0  and that  (X, t) = M(X, t)/EI when the 1 axis has been chosen to pass through 

the centroid of the cross section.  Hence  11 = –X2 M(X, t) / I = –X2 E 2u(X, t)/ X2  according 

to these approximations. The expression for 11 is exact for static equilibrium under pure 

bending, since assumptions (3) and (4) are exact and (5) is irrelevant then.  That is, of course, 

what motivates the use of assumptions (3) and (4) in a situation which does not correspond to 

pure bending.  The beam is discussed again in the final subsection on elasticity, when we 

consider the effects of significant initial stresses on vibrations and buckling. 

 

 Finite-element stiffness procedure.  To illustrate the finite-element procedure (which is in 

no sense restricted to our present context of linear elasticity, or to the displacement-based 

formulation about to be outlined) let us rewrite the Principle of Virtual Work making use of the 

6-member columns { } and { } to describe stress and strain, and introducing 3-member columns 

{u}, {f} and {T} to describe the vectors u, f and T of displacement, body force and surface 

traction.  Then the principle requires that  

 

 
S

{u}T{T} dS  +   
V

{u}T{f} dV   =    
V

 {u}T 2{u}/ t2 dV  +    
V

{ }
T

{ } dV
 

 

for every compatible set of variations {u} and { }.  The approximation now consists of 
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dividing the domain into cells, called elements, with {u} within each interpolated from the 

values of {u} at nodes.  The set of such nodal values of displacements defines the column {Q}, 

which has 3n members if n is the number of nodes, and the interpolation is done so that {u} is 

continuous across element boundaries for any set of {Q} whatsoever.  There are many ways of 

accomplishing this.  The simplest is to divide the domain into tetrahedra (a tetrahedron is a solid 

with four triangular faces, for example, like in Figure 4) with nodes located at vertices, and to 

interpolate {u} as a linear function of the three spatial coordinates within each such element.  

Then {u} within is uniquely determined by the values of {u} at the four nodes of each element 

(these are a subset of the members of the column {Q}).  The value of {u} along any face is 

readily seen to be determined uniquely by the three nodes at the vertices of that face this 

interpolation assures that {u} is continuous from one to the other element which meet at that 

face.  In practice, far more elaborate elements and interpolation procedures are often used.  The 

interpolation approximates the displacement field in the form {u(X, t)} = [N(X)]{Q(t)} where 

[N] is the 3 by 3n matrix describing the interpolation over elements, and from the strain-

displacement relations there will be an associated representation of the strain in the form { (X, 

t)} = [B(X)]{Q(t)} where [B] is a 6 by 3n matrix, although within any given element all entries 

of [N] and [B] will be zero except those associated with the nodes bordering that element. 

 

 We now insist that the Principal of Virtual Work hold for all variations {u} = [N(X)] {Q} 

and { } = [B(X)] {Q} that can be generated by arbitrary variations of {Q}, and thus obtain the 

3n discretized equations of motion 

 

 {F}= [M]
d2

dt2
{Q}+

V
[B]T{ }dV  ,    where 

 

 {F(t)} =
S

[N]T{T}dV +
V

[N]T{ f}dV  and  [M] =
V

[N]T [N]dV .   

 

By expressing { } in terms of { } ( = [B]{Q} ) through a stress-strain relation, this becomes a 

differential equation in {Q}.  Thus, in the present case of linear elasticity with  { } = [D]{ } = 

[D][B]{Q}, we obtain  

 

 {F}= [M]
d2

dt2
{Q}+ [K]{Q} , 

 

where [K] =
V
[B]T [D][B]dV  is called the stiffness matrix.  Also, {F} is called the  
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force column and [M] the (consistent) mass matrix.  In the general problem not all of the 

members of {F} are known because, for example, some may be associated with forces at 

restrained portions of the boundary.  But in such cases the corresponding members of {Q} will 

be known, as zero at those nodes corresponding to a restrained boundary.  Thus one solves, on 

the computer, the subset of these equations that involves the known F’s on the left and unknown 

Q’s on the right, and then back-substitutes the solution to extract the unknown F’s.  Typically, in 

implementations, it is acceptable replace [M] by a diagonal matrix, which corresponds to 

lumping mass at the nodes.  

 

 Some elementary two-dimensional solutions.  A sense of the sort of problems addressed by 

elasticity theory can be seen from the sample which now follows of some simple two-

dimensional problems. 

 

 Plane strain and plane stress.  Plane strain describes the situation in which all 

displacements occur parallel to a given plane and are a function of position in that plane.  For 
example, u1 = u1(X1, X2), u2 = u2(X1, X2), u3 = 0.  Thus 33 = 0, which requires that 

33 = ( 11 + 22 ), and the other non-zero stresses are 11, 12 and 22.  States of plane strain 

are exact solutions of the elasticity equations.  Plane stress, by contrast, is an approximate theory 

for thin plates of, in the simplest case, uniform thickness that are loaded in their plane (say, the 

1,2 plane) in such a way that the middle surface does not bend.  The equations of plane stress 
incorporate the assumption that  33 = 0 in writing stress-strain relations.  The condition 33 = 0 is 

exact at the unloaded faces of the plate but is, in general, only satisfied approximately within the 
interior of the plate (nevertheless, 33 is very small compared to in-plane stresses when the scale 

length over which stress varies within the plate is large compared to plate thickness).  The 

equilibrium equations in the plane, which now refer to averages of stress over the thickness, are 

the same as for plane strain, and the governing equations for the two cases can be considered 

together.  It is often convenient for static problems to express the governing differential 

equations in terms of stresses.  In that case one uses the equations of motion with a = 0, which 

are then the equilibrium equations, together with the compatibility equation which assures that 
the in-plane strains 11, 12 and 22 are derivable from the two displacement components u1 and 

u2.  When there are negligible body forces ( f1 = f2 = 0 ) the governing equations are therefore 

 

 11/ X1 + 12/ X2  =  0  ,    12/ X1 + 22/ X2  =  0  , 

 

       and   2
22 / X1

2
+

2
11 / X2

2
= 2 2

12 / X1 X2 . 
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 By using the stress-strain relations the last of these can be expressed in terms of the stresses.  

After some help from the equilibrium equations to simplify, one finds that  

 

 2( 11 + 22) = 0   

 

for both cases when we assume an isotropic linear elastic material.  Here 2  = 
2 / X1

2
+

2 / X2
2 .  Thus the governing equations when expressed in terms of the stresses 11, 

12 and 22 are the same for both plane stress and plane strain, and hence when the boundary 

conditions on a problem are expressed entirely in terms of stress, the same in-plane stress 
distribution will result in both cases.  The problems differ in that  33 = 0 for plane strain, which 

leads to 33 = ( 11 + 22 ), whereas 33 = 0 for plane stress, which leads to the thickness-

direction strain 33 = ( 11 + 22 )/E.   

 
 It is often convenient to introduce the Airy stress function, U = U(X1, X2) which exactly 

satisfies the above equations of plane stress or plane strain equilibrium, in absence of body 

forces, by representing stresses as   

 

 11 =
2U / X2

2 ,   12 =
2U / X1 X2   and   22 =

2U / X1
2 . 

 

Then, if we insist on satisfying strain compatibility and express the strains in terms of stresses by 

the linear isotropic relations, so that 2( 11 + 22) = 0  as above, the governing equation which 

determines U is 2( 2U ) = 0 , which is called the biharmonic equation.  The next sections 

present a few solutions.   

 

 Equations in polar coordinates.  In developing such solutions, the use of polar coordinates 
r,  in the X1,X2  plane will be helpful, with X1 = r cos  and X2 = r sin .  Stress components 

rr , r = r ,  relative to the polar coordinate system are shown in Figure 13.  These may 

be expressed in term of the Cartesian stress components at the same point by an application of 

the stress transformation equations developed earlier, and in particular by application of the 

Mohr circle transformation of Figure 7.  They are given by  

 
 rr + = 11 + 22  ,   and   rr + 2i r = exp(2i )( 22 11 + 2i 12)  . 

 

Here i = 1 , the unit imaginary number.  Also, the equations of equilibrium in polar 
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coordinates for plane stress or plane strain states are 

 

 rr

r
+

rr

r
+
1

r
r

+ fr = 0  ,  and   r

r
+
2 r

r
+
1

r
+ f = 0  , 

 
and in the absence of body force ( fr = f = 0) all solutions may likewise be expressed in terms 

of an Airy stress function U by    

 

 rr =
1

r

U

r
+

1

r2

2U
2  ,   r =

r
(
1

r

U
) ,   and   =

2U

r2 . 

 

Further, for the linear isotropic elastic case, 2( 2U ) = 0  as above, where in this coordinate 

system 

 

 2
=

2

r2
+
1

r r
+
1

r2

2

2  . 

 

 
 

Figure 13.  Stress components in polar coordinates. 

 

 Holes and stress concentrations.  Consider a circular hole of radius a in a plate whose 

dimensions are much larger than a and can, for present purposes be taken as infinite (Figure 14).  

The plate is under remotely uniform stress  in the 2 direction and the boundary of the hole is 

free of loading.  The same conditions, interpreted as a plane strain problem, describe a circular 
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tunnel in a large solid.  Thus we wish to solve 2( 2U ) = 0  subject to the requirements that the 

stresses associated with U satisfy 22  , 11  0 and 12  0 as r , and that rr = 

r  = 0  on r = a.  To make the solution to this type of problem unique, we must also specify the 

value of the integral of u/ s with respect to arc length s around the hole, which is zero in the 

present case for which we require a single-valued displacement field, but which would be non-

zero if the hole was to represent the core of a dislocation.   

 

 
 

Figure 14.  Circular hole on a large plate (or circular tunnel  

in a solid) under remote tensile stress . 

 

 The proper stress state as r  is given by writing U = X1
2 / 2  = r2(1 + cos2 ) / 4   

and, while this does not meet the conditions on the boundary of the hole, it does encourage one 

to seek solutions to 2( 2U ) = 0 , which is a partial differential equation, in the form U = g(r) + 

h(r)cos2 .  The functions g(r) and h(r) must satisfy ordinary differential equations, which are 

easier to solve.  After solving for the most general forms of g(r) and h(r) which, for example, for 

h is h(r) = A r 4 + B r 2 + C + D r –2  where A, B, C and D are constants, and choosing all 

constants to meet the given conditions on stress at r = a and as r , and to give single-valued 
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displacements, one solves for U and from it finds the stresses: 

 

 

rr = ( / 2)[(1 a2 / r2) (1 4a2 / r2 +3a4 / r4)cos2 ]

r = ( / 2)(1 + 2a2 / r2 3a4 / r4)sin 2

= ( / 2)[(1 + a2 / r2 ) + (1 + 3a4 / r4)cos2 ]

    . 

 

 Thus, setting r = a, = (1 + 2cos2 )  is the stress created around the boundary of the 

hole.  This amounts at  = 0 and , that is, at boundary points intersected by the X1 axis, to a 

concentration of stress  = 22 = 3 .  At  = /2 and – /2, points intersected by the X2 axis, 

there is an oppositely signed stress  = 11 = – .  Thus, when we consider a circular hole in 

a brittle material which can support very little tensile stress, we expect failure to begin at  = 0 or 

 under remote tensile loading, but at  = /2 or – /2, and at three times the load level, under 

remote compressive loading. 

 

 
Figure 15.  Elliptical tunnel hole, and limit as a flat crack. 

 

 As another problem showing an important aspect of stress concentration, consider the 

Kolosov-Inglis problem of an elliptical hole (Figure 15, at left) in large plate under remotely 

uniform stress  in the 2 direction as above.  This also describes the tunnel cavity of elliptical 

cross section under plane strain.  Let a denote the semi-axis of the ellipse along the 1 direction 

and b denote that along the 2 direction; the equation of the ellipse is X1
2 / a2 + X2

2 / b2 =1 .  It is 
then found that the concentration of stress at points of the hole boundary intersected by the X1 

axis is 22 =  (1 + 2b/a) , which can be rewritten as 22 = (1+ 2 a / tip ) .  In the latter 

form, tip= b2/a is the radius of curvature of the hole boundary, at the tip of the hole at X1 =± a.  

This illustrates a result of general validity for notches with relatively small root radii compared 

to length:  The elevation of stress over the value ( ) in absence of the notch is, very 

approximately, given by  2 a / tip   in all cases, where a is the half length of an internal 

notch like the elliptical hole just discussed, and is the length of a notch that has been cut in from 
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the free surface of a solid.  Thus good engineering design is always sensitive to the stress 

concentrating effect of holes and, especially, notches or other cut-outs of small root radius, 

avoiding them where possible.  This is a lesson reinforced by the bitter experience of many 

structural failures beginning at unrecognized locations of stress concentration.  In the particular 

case of the elliptical hole, the stress induced along the hole boundary where it is intersected by 
the X2 axis is 11 = – , independent of the b/a ratio. 

 

 Inclusions.  Points around the boundary of the elliptical hole just discussed are found to 

displace according to the equations 

 

 u1 = ( /  E )X1 ,   and   u2 = (1 + 2a / b)( /  E )X2  

 

where X1 and X2 are coordinates of points on the boundary, and satisfy X1
2 / a2 + X2

2 / b2 =1 . 

Also,  E = E  for the plane stress model but  E = E / (1 2)  for plane strain.  These results 

show that if we had considered not a solid with an elliptical hole but rather a solid with a uniform 

elliptical inclusion of another material, in this case a material with vanishing small elastic 

modulus compared to that of the surrounding solid (so that the situation in the surrounding solid 

is indistinguishable from that for the case of a hole), then that inclusion would undergo uniform 

strain, the strains ij
incl  within it being given by rewriting the above equations as u1 = 11

inclX1  and 

u2 = 22
inclX2  and noting that 12

incl
= 0 .  A little reflection on this result will convince one that if 

an inclusion of arbitrary but uniform and isotropic material properties (the stress-strain relation 

for the inclusion material need not even be linear) were placed in the hole, then the inclusion 

would undergo a uniform stress and strain that could be calculated from its material properties 

and the information given so far here.   

 

 This discussion generalizes to an important three-dimensional result discovered by J. D. 

Eshelby and which is this:  Let a uniform, possibly anisotropic, linear elastic solid of infinite 

extent be loaded by a remotely uniform stress tensor and let it contain an ellipsoidal inclusion of 

a material of uniform but different mechanical properties.  The inclusion material can even be 

such that, in its stress-free state, it takes an ellipsoidal shape which differs finitely from the 

stress-free shape of the ellipsoidal hole into which it is to be inserted.  Eshelby’s result is that, 

regardless of all these factors, the inclusion undergoes a spatially uniform stress and strain state.  

To develop that result, Eshelby first solved the transformation problem of a misfitting linear 

elastic inclusion of identical properties as those of the surrounding material.  That involves 

taking an ellipsoidal region of a uniform solid and, at least conceptually, transforming its stress-
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free state by a homogeneous infinitesimal strain, without changing its elastic properties.  A 

uniform stress field within the transformed zone then suffices to deform it back to its original 

shape, and that stress field can be maintained in-situ, without disturbance of the region outside 

the ellipsoid, by application of a suitable layer of surface force.  Since the actual transformation 

problem to be solved has no agent to supply that layer of force, the strains everywhere can be 

calculated as those due to removing such a layer (i.e., applying a force layer of opposite sign) 

within an elastically uniform full space.  One calculates then that the stress and strain state 

induced within the inclusion is uniform, and the rest of what is needed for arbitrary inclusions 

can be developed from there. 

 

 Crack as limit of elliptical hole.  Consider again the two-dimensional problem of the 

elliptical hole under remotely uniform tension, and let the semi-axis b go to zero (Figure 15, at 
right) so as to define a flat Griffith crack lying along the X1 axis on – a < X1 < + a.  In this case 

the stress concentration at the hole becomes unbounded so that it can fairly be objected that the 

discussion lies outside the proper realm of linear elasticity.  However, as will be seen, it proves 

quite useful to continue with the linear elastic model and to learn about its stress singularities.  

Letting  u2 = u2
+ u2  denote the crack opening gap (superscripts + and – denote the upper and 

lower crack surfaces) we see that 

 

 u2 = (4 /  E ) a2 X1
2 ,   – a < X1 < + a . 

 
Also, the tensile stress transmitted across the X1 axis outside the crack (i.e., on X2 = 0) is  

  

 22 = X1 / X1
2 a2  ,  –  < X1 < – a  and  + a < X1 < +  . 

 
Thus, very near the crack tip, say, at X1 = a, the displacement of the crack walls varies in 

proportion to  a X1 , whereas the stress a small distance ahead of the crack varies as  

1 / X1 a .  These are, in fact, universal features of all linear elastic solutions to crack 

problems, whether two- or three-dimensional and whether in isotropic or anisotropic materials, 

when the crack is idealized as a mathematical cut across which no loading is transferred. 

 

 Crack tip fields.  To understand the origin of this universality consider the stress state near a 

crack edge in a three-dimensional solid, where now the origin of coordinates is placed at a point 

of interest along the crack tip, with the 2 axis normal to the local plane of the crack, the 3 axis 
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tangent to the crack tip, and the 1 axis pointing in the direction of crack growth.  For simplicity, 

assume that the material is isotropic and that the symmetry of the geometry and loading is such 
as to induce a tensile opening u2 but no relative shear displacements u1 or u3 of the crack 

walls.  One easily sees that unless the point chosen along the crack front happens to coincide 

with the intersection of the crack with a boundary of the solid, or to a kink along the front, all 
terms involving  / X3 in the governing set of equations must become negligible compared to 

those involving  / X1 and  / X2 as the crack tip singularity is approached.  So also must terms 

involving  / t in the case of a non-propagating crack.  Hence the singular field for a non-

propagating crack satisfies the same equations as apply for the singular field at the tip of a crack 

under static plane-strain conditions, a situation which is readily analyzed.   

 

 Some generalizations are as follows:  For the propagating crack, the singularity is likewise 

the same as for the plane strain case.  The operator  / t in the governing equations can then be 
replaced by – Vcr  / X1 for purposes of establishing the form of the singular field; here Vcr is 

the instantaneous speed of crack propagation.  For general loadings that also, or perhaps only, 
induce relative shear displacement discontinuities u1 and u3 along the crack surfaces, and for 

arbitrary elastic anisotropy, the same discussion holds good except that then the singular field is 

given by some combination of two-dimensional plane strain and anti-plane strain equations (i.e., 
all three displacements are functions of just X1 and X2).  Cracks with shear displacement 

discontinuities are of interest as models for earthquake faulting, although then it is generally 

thought necessary to consider the crack walls as being subjected to surface forces of frictional 

type, possibly dependent on the normal stress, instantaneous slip rate, and slip history. 

 

 
 

Figure 16.  Coordinates for analysis of crack tip singular field.            

 

 Thus, returning to the case of the non-propagating, tensile loaded, crack tip, we consider the 

plane strain formulation and choose polar coordinates such that  = 0 is the direction of 

prospective growth, and that   = ±  denotes the crack walls (Figure 16).  The problem then is to 

find the form of an Airy function U generating stresses consistent with the symmetry of the 
problem and such that r  =  = 0 on the crack walls.  By following M. L. Williams in 
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assuming that U has the form r  + 2 f( ), one finds that 2( 2U ) = 0  will be satisfied in a way 

consistent with the symmetry of the problem if  f( ) = A cos  + B cos(  + 2)   where A, B and 

 are constants.  This form of the Airy function produces stresses proportional to r  , so the 

values of  of interest in describing a singular solution are  < 0.   

 

 The stresses which enter the boundary conditions are then calculated as 

 

 =
2U / r2= (  + 2) (  + 1) r  [A cos  + B cos(  + 2) ], and 

 

 r = (r 1 U / ) / r= (  + 1) r  [  A sin  + (  + 2) B sin(  + 2) ]. 

 

Setting both to zero at  = ±   then requires  

 

 (A + B) cos    =   [  A + (  + 2) B] sin    =   0 ,  

 

which has solutions 

 

  = ..., 7/2, 5/2, 3/2,       1/2,      1/2, 3/2, 5/2, ...  with  B = – A /(  + 2), 

 

         and      = ...,  3,  2,  1,       0,      1,  2,  3, ...  with  B = – A. 

 

When it is realized that one must reject any  values which are so negative as to lead to 

unbounded total strain energy of some finite region, one concludes that only values  > –1 are 

admissible.  There is one and only one value of  in the range –1 <  < 0 which is admissible and 

allows a singular field meeting the crack surface boundary conditions.  It is  = –1/2 and, for it, 

B must be related in a specific way to A.  Thus the singular field at the crack tip has one free 
parameter (A, which we now redefine as 1/ 2  times a parameter designated KI).  The singular 

distribution of stress at a tensile crack tip is then found to be: 
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Also, 33 = ( rr + ) .  The same singular field applies within the simple plane stress model for 

a crack in a plate when we set 33 = 0.   

 



73 

 The quantity KI is called the Mode I stress intensity factor.  It will be proportional to the 

loading in a given problem and will depend on crack geometry, and gives the stress acting across 
the plane  = 0 ahead of the crack, very near its tip, according to  = 22 = KI / 2 r .  There 

are analogous singular stress fields for cracks loaded so as to sustain in-plane (Mode II) relative 
shear displacements u1, and anti-plane (Mode III) relative shear displacements u3, of their 

surfaces near the tip, and stress intensity factors KII and KIII characterize the strength of the 

singularity for those modes. 

 

 All the other allowed values of  given above correspond to zero stress at r = 0, except for 
the  = 0 value; it corresponds to a uniform stress state of type 11 = T (a constant) acting 

parallel to the crack.  It is found that positive values of T promote the growth of a tensile loaded 

crack out of its initial plane, i. e., promote an instability of the planar crack path.     

 

 The displacement field associated with the singular stress state for the Mode I crack is   

 

u1 =
KI
2μ

r

2
( cos )cos

2
 
 

 
 
,   u2 =

KI
2μ

r

2
( cos )sin

2
 
 

 
 
 

 

where   = 3  4   for plane strain, and the expression is valid also for plane stress if we set 

  = (3  )/(1 + ) .  Thus the displacement across the crack face, very near the tip, in the plane 

strain case is  u2 = [4(1 )KI / μ]) r / 2 .  

 

 In the case of the tunnel crack of length 2a in a solid under remote tension , 

KI = a .  This may be obtained either by comparing the complete expression for u2 given 

above for the tunnel crack to the small r result, or by comparing the complete expression for 22 

above to the analogous small r result, 22 = KI / 2 r .   For an edge crack penetrating by depth a 

into a half-space under the same remote tension, KI is 1.12 times that value, and for a circular 

crack of radius a in a large solid it is 2/  times that value.  Many problems have been solved, and 

computational mechanics techniques developed for the solution of more, such that expressions of 
KI are readily available in the technical literature on fracture mechanics for many cases of 

interest. 

 

 The above representation of the field near the crack tip can be valid only at values of r that 

are large compared to the size of some inner cut-off zone, that being the zone where any of 

inelastic deformation, large geometry changes, or microscale discreteness of material invalidate 
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the homogeneous linear elastic continuum model.  Nevertheless, there are many cases for which 

the cut-off zone size is very much smaller than overall overall sizes like crack length or specimen 

size and, since the continuum stress field is dominated by the 1 / r  terms in that small size 

range, in such cases we can assert that KI characterizes the intensity of loading sensed at the 

crack tip.  This is so even though the linear elastic solution, and in many cases, perhaps any 

continuum solution, is wrong in detail immediately at the crack tip.  Thus, for all such cases, a 

viable procedure, defining what is sometimes called linear elastic fracture mechanics, consists of 

the following:  We measure crack growth data in the laboratory, whether under monotonically 

increasing load, sustained load in the presence of an active chemical environment that causes 

stress corrosion cracking, or fluctuating load as for fatigue crack growth, and correlate the 
measured cracking response as a function of KI.  Then, to make a prediction of crack growth in a 

structure of the same material, one uses the data correlated in terms of KI, together with a linear 

elastic stress analysis determining the expression for KI in terms of the loading on, and crack 

geometry in, the structure, as a means of predicting response in service.  There is also a 

substantial body of work on crack growth in plastic or creeping solids which attempts to extract, 

from continuum solutions for such materials, parameters in terms of which growth can be 

correlated.  There is, of course, an important component of research in materials science directed 

to understanding the mechanics of fracture processes at scales extending to those of microscale 

separation processes, whether by cleavage, or plastic or diffusional cavitation. 

 

 Griffith introduced the idea of an energy flow to a fracture.  Based on the linear elastic 

(quasi)static crack tip field, the energy  G  which is lost per unit area of new crack surface is 

given as G = KI
2 /  E ; G A is the difference between the work done by applied forces and the 

change in strain energy, in an increment of crack growth over the infinitesimal area A.  For 

ideally brittle solids with no sources of dissipation by plastic or creep deformation, and with 
negligible “lattice trapping”, the crack growth condition should be G = 2 s, as proposed by 

Griffith, where s is the surface free energy and hence 2 s is the work of reversibly separating 

atomic bonds over a unit area in the solid.  However, most solids, even rather brittle ones, show 
energy adsorption in fracture that is greatly in excess of 2 s, and hence the fracture energy of a 

solid, which is the value of G for crack growth, is regarded as an empirical parameter to be 
measured directly in a cracking test or inferred from the relation of G to the critical KI from such 

a test. 

 

 Torsion.  Consider a cylindrical bar, not necessarily of circular cross section, with its axis 
along the 3 direction, and which supports torsional loading by a torque M3 about that axis.  A 
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simplified formulation was devised by Saint-Venant in 1852 which involves the same stress and 

strain distribution at each section along the length of the bar; the resulting solution may not be 

accurate near the ends of the bar where loadings are applied.  Each cross section is assumed to 

displace in its own plane by a rotation which increases with distance along the bar and which 
creates no strain of fibers lying in a cross section plane; that is, 11 = 12 = 22 = 0.  The rotation 

is  X3 where  is the angle of twist per unit length and the displacements in such planes are u1 = 

– X3X2, u2 = X3X1.  The earliest attempts to solve the problem made, at this point, the 

assumption that u3 = 0 but, for other than a bar of circular section, that assumption cannot solve 

the problem; the strains associated with such a u field lead to stresses which do not make T = 0 
on the lateral surfaces of the bar.  However, u3 = 0 is correct for the case of a bar with section in 

the form of a circle or circular annulus.  The resulting non-zero stresses, 31 = –μ X2 and 32 = 

μ X1, satisfy the equilibrium equations and make T = 0 on the bar surface, provided that the 

coordinate origin is at the bar center.  Thus if A denotes the cross section area of a bar with 

section in form of a circle or concentric circular annulus, the torque which must be applied to 

generate the angle of twist  per unit length is calculated by 

 

 
M3 = A

(X1 32 X2 31)dA = μ
A

(X1
2 + X2

2 )dA

           = μ
A
r2(2 r )dr = ( / 2)(ro

4 ri
4 )

 

 
where ri and ro are the inner and outer radii of a circular annulus, and ri = 0 for a full circular 

section of radius ro.  The stress distribution is more readily described in this case in terms of 

polar coordinates r and  in the section; then the shear stress distribution is given by 3r = 0 and 

3  = M3 r / J where J =( / 2)(ro
4 ri

4) . 

 
 For other than circular section shapes a non-zero warping displacement u3 = u3(X1, X2) must 

also develop.  Then the shear stresses are given by 

 
 31 = μ( u3 / X1 X2 ) ,   and   32 = μ( u3 / X2 + X1)  . 

 

These will satisfy the equations of equilibrium if u3 satisfies 2u3 = 0 , and will produce zero 

tractions, T3 = 0, on the lateral surface if n1 u3/ X1 + n2 u3/ X2 = (n1X2 – n2X1)  at points 

along the boundary of the section, where (n1, n2) are the components of the outward unit normal 

to the surface.   

 

 It is generally somewhat easier to instead solve torsion problems by formulating the set of 
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governing differential equations in terms of the two shear stresses rather than in terms of the 

displacement.  In that case we have to solve the following equations: 

 

 31/ X1 + 32/ X2  =  0  ,     31/ X2 + μ   =  32/ X1 – μ  , 

 

where the first is the only equation of equilibrium not trivially satisfied by the assumed state of 

shear stress and the second is a compatibility condition written in terms of stress, and can be 
obtained by observing that ( u3 / X2) / X1  must equal ( u3 / X1) / X2 .  These equations 

are to be solved subject to the boundary condition T3 = n1 31 + n2 32 = 0.  Solutions are easiest 

to develop if we introduce a stress function (X1, X2) which automatically satisfies the 

equilibrium (first) equation above.  This is done by relating  to the stresses by 31 = μ  /X2 

and 32 = – μ  /X1 .  The compatibility (second) equation above then requires that 2
= 2  

within the section, and the boundary condition may be shown to be equivalent to requiring that  

/ s = 0  on the outer surface of the bar (s = arc length around the bounding curve of a cross 

section), so that  = constant on the outer surface.  That constant is irrelevant to determining the 

stress state and, to simplify a later expression, we take   = 0  on the outer surface.   

 

 If the bar is multiply connected, that is, if it has one or more internal holes in the section, then 

 must be assigned a constant value on the boundary of each such hole (it is then convenient to 

also define  within each such hole, making it equal to that constant).  The constant associated 
with each hole is not known a priori but, rather, follows from requiring that the integral of  dX1 

u3/ X1 + dX2 u3/ X2  around the boundary of each such hole is zero.  When expressed in 

terms of the stresses, and hence , this requires that the integral of 

n1 / X1 + n2 / X2with respect to arc length around the boundary of every such hole be 
equal to twice the cross section area of the hole; here (n1, n2) are components of the unit normal 

to the wall of the hole, pointing away from the material and into the hole.  This requirement 

provides a supplemental set of conditions that lets one determine the constants.   

 

 The torque necessary to create the angle of twist  per unit length is then given by  

 
 M3 = 2μ A

dA   

 

where the integral extends over the entire area within the outer boundary of the section, the area 

of material and that of any holes too. 

 



77 

 Membrane analogy for torsion.  Consider first a bar of solid cross section.  Let the lateral 
boundary of the bar be represented by the bounding contour  in the X1,X2 plane of the cross 

section A.  Then we wish to solve 2
= 2  in A subject to boundary condition  = 0 on .   

This is exactly the equation which solves the following problem:  A thin soap film membrane is 
laid over a hole A, with bounding contour  , in a plate lying in the in the X1,X2 plane.  Then the 

under side of the membrane is lightly pressurized by p relative to the upper side to create an 

upward displacement w.  The equation governing w is To
2w = p  in A subject to boundary 

condition w = 0 on .  This is the same equation as for the torsion problem, and if we make the 
identification = 2Tow / p , then the solution of the membrane problem (which is easy to 

visualize, and can be produced without calculations in the laboratory) provides a solution to the 

torsion problem.  Indeed, the slope – w / n  of the membrane at its boundary, in the direction 
perpendicular the supporting curve , gives the shear stress 3s  (where the s direction is along  

) at the boundary of the bar; precisely, 3s / μ  = –(2To / p) w / n .  The component 3n  is 

zero there, which is a boundary condition already imposed in developing the formulation.  Also, 
the volume displaced by the membrane gives the torsional stiffness factor 

A
dA .  

 
 The same membrane analogy applies for torsion of a bar with one or more holes along the X3 

axis.  This is a much harder case to produce in the laboratory, but not much harder to visualize, 

and so is useful.  Now we imagine that wherever there is a hole in the section, the corresponding 

part of the membrane is removed and replaced with a thin rigid plate, of equally negligible 

weight, to which the membrane is attached.  The entire arrangement, membrane and one or more 

rigid plate inserts within it, is pressurized as previously, but now the inserts are constrained so 

that they can only displace without tilting, which means that w is uniform within each such 

insert.  We then have the governing equations that To
2w = p  within the region of membrane, 

that  w = 0 on the external boundary , and that the integral of To(n1 w / X1 + n2 w / X2 )  with 

respect to arc length around the boundary of every such insert be equal to p times the area of the 

insert (for equilibrium of each insert, where the convention for n1,n2  is as above).  Under the 

interpretation = 2Tow / p , these are the same governing equations as for the torsion problem 

and, for example, the torsional stiffness factor 
A

dA  is then given in terms of the volume 

displaced by the membrane and the inserts within it. 

 

 Equations of finite deformation.  The solutions thus far discussed are in the framework of 

linear elasticity.  Now we turn briefly to finite deformation and the associated topic of small 

deformations from an equilibrium state of significant initial stress.  Piola identified the stresses 

which precisely satisfy the equations of motion when these are written in terms of coordinates of 
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the reference configuration.  These stresses are modified from the ij because they also include 

the effect of changing from / x to / X in the equations of motion, and are 

 

  Nij =
q=1

3
Siq Fjq   

 

which define the components of what may be called the nominal, or first Piola-Kirchhoff, stress.  

Here it is to be recalled that [S] is the second Piola-Kirchhoff stress, introduced earlier, and [F] 
denotes [ x/ X].  The Nij are not symmetric, in general, are given by   

 
 Nij = o ƒ([F], )/ Fji   

 

for an elastic solid, have the property that  

 

 
i=1

3
ni

oNij = T j   

 

gives the j component of the nominal surface stress vector T  as reckoned per unit area of surface 

of the reference configuration at a place where its normal is no, and satisfy 

 

 
i=1

3 Nij

Xi
+ f j = o

2 xj (X,t)

t2
          ( j = 1,2,3 ) 

 

where f = f det[F] are body forces as reckoned per unit volume of the reference configuration.  
The latter provides the system of differential equations for the x j (X, t)  since the Nij are 

expressed by the above considerations in terms of the components of Fkl = xk(X, t)/ Xl. 

 

 There is often interest in solids which undergo extremely small strain but, possibly, quite 

large rotations.  An example is provided by a rod which is straight in its unstressed state but 

which is sufficiently long that it can be bent elastically into a circular hoop.  This will involve 

maximum extensional and compressional strains of approximately D/L, where D is the 

diameter and L the length, so by making L sufficiently large compared to D it will always be 

possible to accomplish this elastically, with arbitrarily small strains, even though the rotation is 

as large as 2  (= 360°).  In such cases it is appropriate to write [S] in terms of [EM] by the same 

linear elastic stress-strain relations as written earlier and giving [ ] in terms of [ ].  In the case of 
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a beam modeled as an elastic line, this is equivalent to maintaining the linear elastic relation 

between moment and curvature but writing the equations of motion, and the expression for 

curvature in terms of displacements, in a manner that is correct for arbitrary displacement 

gradients. 

 

 Small deformation from an initially stressed state.  Sometimes we wish to deal with solids 

which are already under stress in what we choose as the reference configuration, from which we 

measure strain.  Call those stresses kl
o  which are, then, also the values of Skl and Nkl in the 

reference configuration, and suppose that those stresses are in equilibrium with the body force 

distribution f o , based on unit volume of the reference state. Let us now deal with very small 

departures from that stressed reference configuration such that ui / X j <<1 . In that case we 

can equate the Ekl
M  with the infinitesimal strain tensor kl, and hence write 

 

 Sij = ij
o
+

k=1

3

l=1

3
Cijkl kl  

 
where Cijkl  has all the symmetries in its indices as elastic constants discussed earlier.  In this 

case the expression for the Nij, truncated at linear order in the (very small) displacement 

gradients is 

 

 Nij = ij
o
+

l=1

3
(
k=1

3
Cijkl kl + il

o uj
Xl
) . 

 

 The term involving il
o  times a displacement gradient would usually be negligible in typical 

cases for which the stresses are extremely small fractions of moduli.  An exception occurs, 

however, when the parts of displacement gradients corresponding to rotation can be very much 

larger than those corresponding to strain.  This is exactly what happens at the onset of buckling 

in a slender strut under compression, and hence provides an example for which the conventional 

simplifications of linear elasticity cannot be used even in a case for which stresses are extremely 

small compared to elastic moduli.  Also, for calculations involving large self-gravitating bodies 

such as the Earth, the initial stresses at depth can be quite non-negligible compared to moduli.  

Those stresses cannot be known precisely, but it is regarded as a good approximation to assume 

that they amount to a purely hydrostatic pressure (large shear stresses should relax over 

geological time), which is then uniquely determined by the radial distribution of density.   

 



80 

 The linearized equations of motion for small departures from an initially stressed equilibrium 

state are obtained by substituting for  above in the equations of motion, remembering that the 

[ o] equilibrate the body force f o: 

 

 
i=1

3

Xi
[
l=1

3
(
k=1

3
Cijkl

uk

Xl
+ il

o uj

Xl
)] + f j fj

o
= o

2uj (X,t)

t2
      (j = 1,2,3) . 

 

For a solid in which the body forces are gravitational, which is the usual case, the two body 

forces f  and f o  will be identical if there is no change in the intensity of gravitational attraction 

per unit mass associated with the disturbance leading to the displacement field u.  Generally, any 

such changes in the gravity field could be neglected for phenomena at the human scale, like for 

the buckling of a compressed column or plate.  However, for large scale phenomena in the Earth, 

such as for calculation of its elastic distortion due to rotation, or of its response to tidal loading, 

or for the calculation of its lower frequency (hence greater length scale) vibration modes, the 

alteration of the gravity field is an important contributor to the resistance to deformation, of the 

same order of magnitude of that due to elastic stiffness, and in all such cases we must regard 

f fo  as a linear functional of the distribution of displacement u throughout the Earth, 

calculated according to the usual equations of Newtonian gravitation.  

 

 Initially stressed beam.  Consider the beam discussed earlier, and suppose that it is under an 

initial uniform tensile stress 11 = o; that is, the axial force P = oA.  If o is negative and of 

significant magnitude, one generally refers to the beam as a column; if it is large and positive, 

the beam might respond more like a taut string.  Proceeding to model the beam by integrating the 

equations of motion over a section, following the same five steps outlined earlier, we now 

recognize that the initial stress o contributes a term to the equations of small transverse motion 

so that these now become 

 

 V/ X + 
o

 2u/ X2 +  F  =  A 2u/ t2 ,    M/ X + V  =  0 , 

 

where here V is defined by V = N21dAA
 and we recognize that N12 – N21 = o 2u2/ X2 . 

Again one obtains M = EI 2u/ X2, so that the equation of motion with initial stress is 

 

 – 2 (EI  2u/ X2 ) / X2  +  
o

 2u/ X2  +  F   =   A 2u/ t2. 
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 Free vibrations.  As a particular case of some interest, suppose that the beam is of length L, 

is of uniform properties, and is hinge-supported at its ends at X = 0 and X = L so that u = M = 0 

there.  Then free transverse motions of the beam, solving the above equation with F = 0, are 

described by any linear combination of the real part of solutions of the form 

 
 u(X,t) = Cn exp(i nt)sin(n X / L)  

 
where n is any positive integer, Cn is an arbitrary complex constant, and where  

 

   n
2 = (n / L)4 E I [1 + ( o/ )( L2 / n2 2 )] 

 

This expression is arranged so that the bracket shows the correction, from unity, of what would 

be the expression giving the frequencies of free vibration for a beam when there is no o.   

 

 The correction from unity can be quite significant, even though o/E is always much smaller 

than unity (for interesting cases, a few times 10–6 to, say, 10–3 would be a representative range; 

few materials in bulk form would remain elastic or resist fracture at higher o/E, although good 

piano wire could reach about 10–2).  That is because o/E is multiplied by a term which can 

become enormous for a beam which is long compared to its thickness.  For a square section of 

side length h, that term (at its largest, when n = 1) is AL2 / 2I 1.2L2 / h2 , which can combine 

with a small o/E to produce a correction term within the brackets which is quite non-negligible 

compared to unity.  When o > 0 and L is large enough to make the bracketed expression much 

larger than unity, the EI term cancels out and the beam simply responds like a stretched string 

(here string denotes an object which is unable to support a bending moment), although at large 

enough vibration mode number n, the string-like effects become negligible and beam like 

response takes over.  At sufficiently high n that L/n is reduced to the same order as h, the simple 

beam theory becomes inaccurate and should be replaced by three-dimensional elasticity or, at 

least, an improved beam theory which takes account rotary inertia and shear deformability.  

(While the option of using three-dimensional elasticity for such a problem posed an 

insurmountable obstacle over most of the history of the subject, by 1990 the availability of 

computing power and easily used software reduced it to a routine problem which could be 

studied by an undergraduate engineer or physicist using the finite element method or some other 

computational mechanics technique.) 

 

 Buckling.  An important case of that of compressive loading, o < 0, which can lead to 
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buckling.  Indeed, we see that if  oA < – 2EI/L2, then the n
2  for at least for n = 1 is negative, 

which means that the corresponding n  is of the form  ± ib, where b is a positive real number, so 

that the exp(i nt)  term has a time dependence of type which no longer involves oscillation but, 

rather, exponential growth, exp(bt).  The critical compressive force, 2EI/L2, which causes this 

type of behavior is called the Euler buckling load.  Different numerical factors are obtained for 

different end conditions than the pinned ends assumed here.  We may see that the acceleration 

associated with the n = 1 mode becomes small in the vicinity of the critical load, and vanishes at 

that load.  Thus solutions are possible, at the buckling load, for which the column takes a 

deformed shape without acceleration; for that reason, an approach to buckling problems which is 

equivalent for what, in dynamical terminology, are called conservative systems is to seek the first 

load at which an alternate equilibrium solution u = u(X), other than u = 0, may exist.   

 

 Instability by divergence, that is, with growth of displacement in the form exp(bt), is 

representative of conservative systems.  Columns under non-conservative loadings, for example, 

by a follower force which has the property that its line of action rotates so as to always be 

tangent to the beam center line at its place of application, can exhibit a flutter instability in which 

the dynamic response is proportional to the real or imaginary part of a term like exp(iat) exp(bt), 

that is, an oscillation with exponentially growing amplitude.  Such instabilities also arise in the 

coupling between fluid flow and elastic structural response, as in the subfield called 

aeroelasticity, and the prototype is the flutter of an airplane wing.  That is a torsional oscillation 

of the wing, of growing amplitude, which is driven by the coupling between rotation of the wing 

and the development of aerodynamic forces related to the angle of attack; the coupling feeds 

more energy into the structure with each cycle.  Of course, instability models based on linearized 

theories, and predicting exponential growth in time, really tell us no more than that the system is 

deforming out of the range for which our mathematical model applies.  Proper nonlinear theories, 

that take account of the finiteness of rotation and, sometimes, the large and possibly non-elastic 

strain of material fibers are necessary to really understand the phenomena.  An important 

subclass of such nonlinear analyses for conservative systems involves the static post-buckling 

response of a perfect structure, such as a perfectly straight column or perfectly spherical shell.  

That post-buckling analysis allows one to determine if increasing force is required for very large 

displacement to develop during the buckle, or whether the buckling is of a more highly unstable 

type for which the load must diminish with buckling amplitude in order to still satisfy the 

equilibrium equations.  The latter type of behavior describes a structure which may show strong 

sensitivity of the maximum load that it can support to very small imperfections of material or 

geometry, as do many shell structures. 
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Appendix:  Comments on notation used here, versus that often used in elementary texts and 

other sources 

 
 Coordinate axes:  Denoted  1, 2, 3   or   x1, x2, x3   here,  versus   x, y, z   

 

 Stress:  = [ ] =

11  12  13

21  22  23

31  32  33

 

 

 
 
 

 

 

 
 
 

  here,  versus  

x   xy   xz

yx  y   yz

zx    zy  z 

 

 

 

 

 

 

 

 

 

 

 

 
 Displacement:  u  = {u} = [u1, u2, u3]T  here,  versus  [u, v, w]T    

 

 Strain:  = [ ] =

11  12  13

21  22  23

31  32  33

 

 

 
 
 

 

 

 
 
 

=

   11      12 / 2   13 / 2

21 / 2      22      23 / 2

31 / 2    32 / 2     33 

 

 

 
 
 

 

 

 
 
 

  here,   

                                                                    versus  

    x      xy / 2   xz / 2

yx / 2      y       yz / 2

zx / 2    zy / 2      z 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note on relation to other works by the author 

 

The Introduction and Historical Sketch here closely follow parts of the article Mechanics of 

Solids published by the author as a section of the article on Mechanics in the 1993 printing of the 

15th edition of Encyclopaedia Britannica (volume 23, pages 734 - 747 and 773).  Some 

subsequent portions are expanded versions of that Encyclopaedia Britannica text.  Also, parts 

have been presented in a slightly modified form, sometimes at a more advanced level, as Chapter 

3, Foundations of Solid Mechanics, of the book  Mechanics and Materials:  Fundamentals and 

Linkages (eds. M. A. Meyers, R. W. Armstrong, and H. Kirchner), Wiley, 1999. 
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