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PREFACE

This textbook is a revised, expanded and translaggsgion of the author’s lecture

notes (originally in Greek) for his sophomore-lelélysics course at the Hellenic Na-
val Academy (HNA). It consists of two parts. Partsfan introduction to the physics

of conducting solids (Chapters 1-3) while Part Baisintroduction to the theory of

electromagnetic fields and waves (Chap. 4-10). Batbjects are prerequisites for the
junior- and senior-level courses in electronicklstA.

Besides covering specific educational requir@siea unified presentation of the
above two subjects serves a certain pedagogicpbper it helps the student realize
that classical and quantum physics are not nedlysseals but may supplement each
other, depending on the physical situation. Indedtkreas the study of conducting
crystalline solids at the microscopic level nedasss the use of quantum concepts
such as quantum states, energy bands, the Pallsmxc principle, the Fermi-Dirac
distribution, etc., for the study of electromagogthenomena at a more or less macro-
scopic level the classical Maxwell theory suffic&n the other hand, the student
learns from the outset that this latter theory camxplain things such as the stability
or the emission spectra of atoms and molecules.

The basic goal of the first two chapters oftPPais an introduction to crystalline
solids and an understanding of the mechanism bghwihiey conduct electricity, with
special emphasis on the differences between matalssemiconductors. In the last
chapter of Part A (Chap. 3) the conducting solmssaudied from the point of view of
quantum statistical physics. In particular, thartstion of energy to the charge car-
riers in metals and semiconductors is examined thedimportant concept of the
Fermi energy is introduced.

The beginning chapter of Part B (Chap. 4)astesspeak, a mathematical interlude
in which certain concepts and theorems on vectbidi to be used subsequently, are
summarized. Chapters 5-8 are then devoted to tity sif static (time-independent)
electric and magnetic fields, while in Chap. 9 flid Maxwell theory of time-
dependent electromagnetic fields is presentedllfima Chap. 10 it is shown that the
Maxwell equations lead, in a rather straightforwardnner, to the prediction of the
wave behavior of the electromagnetic field; thepagation of electromagnetic waves
in both conducting and non-conducting media is @rad) and the concept of elec-
tromagnetic radiation is introduced. Several im@atrtheoretical issues are separately
discussed in the Problems at the end of each ahdpist problems are accompanied
by detailed solutions, while in other cases guidimgs for solution are given.

| am indebted to my colleague and friend, Dris#dis N. Magoulas, for many
fruitful discussions on Electromagnetism (desite fact that, being an electrical en-
gineer, he often disagrees with me on issues dafiteogy!). | also thank the Hel-
lenic Naval Academy for publishing the original,é8k version of the textbook.

Costas J. Papachristou
Piraeus, July 2019
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CHAPTER 1

ATOMS, MOLECULES, AND CRYSTALS

1.1 States of Matter

Most physical substances can exist in each ofttteestates of matter solid, liquid,
or gas — depending on external factors such asetietyse and pressure. Let us exam-
ine the physical processes involved in each case.

The natural state of a substance is the realt‘contest” between two effects act-
ing in opposition to each othem)(an attractive (or cohesivé force, of electromag-
netic origin, between the atoms (or molecules,oos) of the substance, which force
tends to bring the atoms close to one another;ishitone most effectively if the at-
oms form some sort of regular arrangement, ascitystal lattice (b) thermal energy,
which causes eandommotion of the atoms; this motion becomes morensgeas the
temperature increases.

Let us consider a substance that is initiallyhiesolid state. In this state the attrac-
tive interatomic forces predominate, tending to@rihe atoms together into a regular
arrangement calledrystal[1]. Thermal energy cannot compete with the strimmges
that hold the atoms at fixed positions relativeot@ another within the crystal struc-
ture; the only thing it can achieve is to set tt@res intovibration about these fixed
positions.

As the temperature increases, the amplitudaboétion of the atoms increases ac-
cordingly, until the moment when the attractivecks between the atoms are no
longer sufficient to hold the atoms at fixed pasis in the crystal. At this temperature
(melting poin} the crystal structure breaks up and the sokdts becoming diquid.’

At this stage there is equilibrium, so to speakwkeen electromagnetic and thermal
effects.

With the further increase of temperature, atothermal motion begins to gain the
upper hand in the contest. When the temperatuahesahéedoiling point the atoms
have enough energy to finally “escape” from theiligand form agas The attractive
interatomic forces are now very small (in the casanideal gas they are considered
negligible). Note that the melting and boiling psif a substance are closely related
to the strength of the electromagnetic bonds betwlee atoms of that substance.

1.2 Amorphous and Crystalline Solids

We mentioned earlier that the crystalline structwieich is characterized by a regular
arrangement of atoms, provides maximum stabilittheosolid state of a substance. In
Nature, however, we also see materials bak like solids (e.g., they are rigid and
have fixed shape) without, however, possessingcaumahcrystalline structure. Such

! Diamond is a notable exception. Theoretically nislting point is at 500&; it is never reached in
practice, however, since diamond transforms toljtamt about 3408 ! (See [1], p. 406.)
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solids are calledmorphoug1] and are in many respects similar to liquideafTis,
their atoms are arranged at random, not exhibitiegregular arrangement of a crys-
talline solid. We may thus consider an amorpholisl 3 a liquid with an extremely
high viscosity. A material belonging to this categess ordinary glass (don't be de-
ceived by the everyday use of expressions contithie word“crystal” , e.g., “crys-
tal bow!™).

Let us now get back to real crystals. What ant® for their greatest stability? Let
us consider a much simpler system, that of a penduStable equilibrium of the
pendulum bob is achieved when the bob is at reftealowest point of its path (i.e.,
when the string is vertical). At this position, thevitational potential energy of the
bob is minimum. By analogy, the internal potengakrgy of certain solids is mini-
mized when their atoms form a regular crystallitecgure. This arrangement pro-
vides maximum stability to these solids. On theeothand, some other solids are
amorphous due to the fact that, because of inaleadseosity in the liquid state, their
atoms or molecules are not able to move relativert® another in order to form a
crystal as the temperature is decreased. We atedmat the transition of a crystalline
solid to the liquid state takes plaakruptly when the temperature reaches the melting
point. On the contrary, the transition from amonphasolid to liquid takes place
gradually, so that no definite melting point can be spedifiethis case.

Crystalline solids such asetalsexhibit significantelectrical conductivity This is
due to the fact that they possés=® (or mobilg charges (electrons) that can move in
an oriented way under the action of an electrid fiat the other extreme, some solids
do not have such free charges and therefore belkaveelectricalinsulators
Finally, there exist certain “double agents”, g@miconductorswhich carry charac-
teristics from both the above categories and whictder normal conditions, have
conductivity that is smaller than that of metals.

Another interesting property of solfdis thermal conductivity Heat transfer in
these substances takes place by means of two pescd® vibrations of the crystal
lattice (in all solids) andbj motion of free electrons (in metals). The excdllher-
mal conductivity of metals owes itself to the cdmition of both these mechanisms.

Solids can be classified according to the tyfeonding of atoms (or molecules, or
ions) in the crystal lattice. The most importaqey of solids are the following:

1.Covalent solidsTheir atoms are bound together by covalent bo8dsh solids
are the crystals of diamond, silicon and germaniDme to their stable electronic
structure, these solids exhibit certain common attaristics. For example, they are
hard and difficult to deform. Also, they are poanductors of heatand electricity
since they do not possess a significant quantifyeaf charges that would transfer en-
ergy and electric charge through the crystal.

2. lonic solids: They are built as a regular array of positive aedative ions. A
characteristic example is the crystal of sodiunoite (NaCl), consisting of Naand
CI” ions. Because of the absence of free electroasetbolids are poor conductors of

2By “solid” we will henceforth always meamystallinesolid.
% Again, diamond is a notable exception given thathermal conductivity exceeds that of metals at
room temperature [1]. This conductivity is, of ceerexclusively due to lattice vibrations.
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heat and electricity. Also, they are hard and the&ye a high melting point due to the
strong electrostatic forces between the ions.

3. Hydrogen-bond solidsThey are characterized by the presence of polde-mo
cules (see Sec. 8.2) containing one or more hydrag@ns. Ice is an example of such
a solid.

4.Molecular solids:They consist of non-polar molecules (see Sec. 82)exam-
ple is CQ in its solid state.

5. Metals: They consist of atoms with small ionization enesgihaving a small
number of electrons in their outermost shells. €hasctrons are easily set free from
the atoms to which they belong by using part ofdhergy released during the forma-
tion of the crystal. The crystal lattice, therefoo®nsists ofpositive ionsthrough
which a multitude of electrons move more or leselfy. These mobile electrons,
which were originally the outer oralenceelectrons of the atoms of the metal, are
calledfree electronsTo these electrons the metals owe their eletttmaductivity as
well as a significant part of their thermal conadvity (another part is due to vibra-
tions of the ions that form the lattice). Free &lats also provide the coherence nec-
essary for the stability of the crystal structwgiace the repulsive forces between posi-
tive ions would otherwise decompose the crystathdly be said that the free electrons
are the “glue” that holds the ions together wittia crystal lattice [1].

Before we continue our study of crystallineid®lit would be useful to familiarize
ourselves with some basic notions from Quantum iekyand to examine the struc-
ture of simpler quantum systems such as atoms atetuies.

1.3 Rutherford’s Atomic Model

The first modern atomic model was proposed by Ridhe in 1911. Let us consider
the simplest case, that of the hydrogen atom. Afingrto Rutherford’s model, the
single electron in the atom is moving on a circuesit around the nucleus (proton)
with constant speed (Fig. 1.1). The centripetal force necessary fas thniform cir-
cular motion is provided by the attractive Coulofalce between the proton and the
electron. We calin the mass of the electron agdhe absolutevalue of the electronic

charge, equal td.6x 10'°C. Therefore, the proton has charggwhile the charge of
the electron is-q.

Fig. 1.1. Rutherford’s picture of the hydrogen atom
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The total force on the electron is

MV __ @ v=(ij (1.1)

r Adrey? Azg mr

wherer is the radius of the circular orbit. The kinetic ggyeof the electron is

2

E, PV
2 8re,r

while the electron’s potential energy in the Coutbofield of the proton is

2

E -4
P Arg,r

where we have arbitrarily assigned a zero valuéhéopotential energy at an infinite
distance from the nucleus< «). The total mechanical energy of the electron is

2

q
E:E”Ep:_syzgor

(1.2)

Notice thatE—0 asr—o. The negative sign on the right-hand side of (ls2)ue to
our choice of the zero level &, at infinity and has no special physical significan
Indeed, what is physically significant in AtomicyRIts is the energgifferencedE

between two states of motiompt the energy itself. The quantitylE is well defined,
independent of the choice of zero level for theeptal energy.

The angular velocity of the electron is a function of the total eneffgyndeed, by
combining the expression (1.1) fewith the relationv=wr, we find that

1/3
r= _a
Ay mw®

That is, the radius is proportional taw >, Hence, according to (1.2 is propotr-
tional to ?, or, w is proportional tdEf'>.

Although mechanically sound, this “planetarybael of the hydrogen atom pre-
sents some serious problems if one takes into atdbe laws of classical electro-
magnetism. Indeed, as we will learn in ChapterelM@ryacceleratingelectric charge
emits energy in the form of electromagnetic radmatilf the charge performs periodic
motion of angular frequenay=2xf (wheref is the frequency of this motion) the emit-
ted radiation will also be of angular frequengy In our example, the angular fre-
quency of the radiation emitted by the electror @l equal to the angular velocity
of the electron’s uniform circular motion (note tha=27z/T=2xf, whereT is the pe-
riod of this motion). But, if the electron emitseggy, its total energ¥ must con-
stantly decrease, with a parallel decrease of aéldeusr of the orbit, according to
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(1.2). If this is to happen, the electron will spimto the nucleus and the atom will
collapse (as has been estimated, the time foptbisess to take place would be of the
order of only10°®s!). Fortunately this doesn’t happen in reality,csirthe atoms are
stable.

Another problem of the model is the followings the energye changes continu-
ously, the frequency of the emitted radiation must also change in d@inaaus fash-
ion since, as we have shovinjs a continuous function @. Thus theemission spec-
trum of hydrogen must span a continuous range of fregjas. In reality, however,
hydrogen (and, in fact, all atoms) exhibitBree spectrumconsisting of a discrete set
of frequencies characteristic of the emitting afom.

The Rutherford model was thus a bold first steptomic theory but suffered from
serious theoretical problems. The main reasont$diailure was that it treated a parti-
cle of the microcosm — the electron — as an orglictassical particle obeying New-
ton’s laws; the model thus ignored the quantum neatdi the electron. Did this mean
that Rutherford’s model had to be completely abaedo or was there still a possibil-
ity of “curing” its problems? In 1913, a young phoyst working temporarily at
Rutherford’s lab decided to explore that possipilit

1.4 Bohr’'s Model for the Hydrogen Atom

To overcome the theoretical difficulties inherent Rutherford’s model, Bohr pro-
posed the followinguantum conditionor the hydrogen atom:

1. The electron may only move on specific daclorbits around the nucleus, of
radii ry, r, r3, ..., and with corresponding energies E, Es, ... When moving on
these orbits, the electron dasstemit electromagnetic radiation.

2. When the electron falls from an orbit of JyeE to another orbit of lesser en-
ergyE’, the atom emits radiation in the formapgingle photorof frequency

f=C"T 5 (1.3)

whereh is Planck’s constant, equal 6063x 10°*J - s.

3. The allowed orbits and associated energiesletermined by the condition that
the angular momentum of the electron may assumefemte set of discrete values
given by the relation

mvr= nL , n=123;-- (1.4)
2r

The property of the energy and the angular nmume to take on specific values
only, instead of the arbitrary values allowed bgssical mechanics, is callgdanti-
zationof energy and angular momentum, respectively.

* The name “line spectrum” is related to the faet #ach frequency appears as a line in a specpresco
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We will now calculate the allowable orbitg and corresponding energiés,
(n=1,2,3,...). From (1.4) we have thatnh/2zmr. By comparing this expression for
with that in (1.1), we find that

r = n“=a,n" (n=12,3;--) (1.5)

In particular, the radius of the smallest allowatubit is r;=a, (Bohr orbif). Substi-
tuting (1.5) into (1.2), we find the allowable (ouized) values of the energy of the
electron:

g md 1__«x (n=1,2,3;--) (1.6)

We notice thaE,—0 for n—wo, thus forr—oo. At this limit the electron dissociates
itself from the atom and subsequently moves aa farticle. (Find the allowable
valuesF, of the Coulomb force exerted on the electron amlvsthatF,—0 when
n—®.) The energy differenc&, — E =| E |=« is calledionization energyf the hy-

drogen atom and represents the minimum energy seges order to detach the
electron from the atom and set it free. Note thateofreed the electron may assume
any energy! That is, the quantization of energy doasconcern freely moving elec-
trons but only those constrained to move withireinite quantum system such as an
atom, a molecule, a crystal, etc. It is therefm@irect to assume that the energy is
alwaysquantized!

E
(eV)
0 n=oo
E, n=4
E, n=3
E, n=2
E, n=1

Fig. 1.2. Energy-level diagram for the hydrogemato
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A very useful quantum concept is that oferergy-level diagranfFig. 1.2). We
draw a vertical axis, positively oriented upwardg ave agree that its points will rep-
resent energy values expresseelactronvoltseV (1eV=1.6x 107*°J). For any given
valueE of the energy, we draw a horizontal lirenérgy leve) that intersects the ver-
tical axis at the point corresponding to that epehg particular, the allowable energy
levels for the electron in the hydrogen atom amemir according to Eq. (1.6). With
regard to its energy the electron may thus ocaupy oneof these energy levels; it
will never be found, however, at an energy staf isin betweemeighboring allow-
able levels!

The lowest energy levé&; corresponds to thground stateof the hydrogen atom,
while the higher level&,, Es, ..., represengxcited statesf the atom. We notice that
the energy levels get denser as we move up thg\ea&rs [we can explain this by
evaluating the differenceE,=E,.;—E, from (1.6) and by noticing thatE, decreases
as n increases]. Am—x, the energyE tends to vary in @ontinuousmanner up to
the limit E=0 (free electron) and quantization of energy gréyualisappears.

In addition to interpreting the stability ofetinydrogen atom, the Bohr model is able
to explain thdine spectrumof emission or absorption of the atom, i.e., thet that
the atom selectively emits and absorbs specifiguieacies of electromagnetic radia-
tion. As we have seen, the electron is allowed decdbe discrete circular orbits
around the nucleus, of radli, r, r3,..., and with corresponding energkes E;, Es, ...
Let us now assume that the electron makes a ti@m$&iom an orbitr, directlyto an-
other orbitr,, wherea= b. Two possibilities exist:d) If a>b, then, according to (1.6),
E->Ey. The electroralls to a lower-energy orbit and, in the process, tbeneemitsa
singlephoton. D) If a<b, thenE,<E,. The electrorabsorbsa photon and isxcitedto
a higher-energy orbit. In any case, the frequert¢lhie@emitted or absorbed photon is

f_|Ea—Eb|_g_1__1‘
- “hig @

- H (1.7)

The wavelength of the emitted or absorbed radias@iven by the relation

f «

T (1.8)

1
A ¢ hc

11‘

wherec is the speed of light in empty (or, almost emsfyace. The line spectrum of
the hydrogen atom is related to the fact that b@hd/. may assume discrete, rather
than arbitrarily continuous, values. This, in tuiia consequence of quantization of
energy and angular momentum of the electron.

1.5 Multielectron Atoms

Although successful for hydrogen, the Bohr modeinca fully explain the structure
of atoms having two or more electrons. The studgumh atoms necessitates the use
of Quantum Mechanics, a mathematically complex mhelm this theory, classical
notions such as the position or the orbit of actedbm are devoid of physical meaning
given that, in view of theincertainty principleit is impossible to determine the cor-
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responding physical quantities with arbitrary psesm during an experiment. Other
physical quantities, such as the energy and thelangpmomentum of an electron, may
only assume specific, discrete values; that isy #requantized These values are de-
termined with the aid of parameters caliggantum numbersThe set of quantum
numbers that can be determined in an experimebt#rgation of an electron repre-
sents gguantum statef this electron. In a sense, the state of thetrele is the maxi-
mum information we can obtain about it within tiraits of the uncertainty principle.

As mentioned above, a quantum state is chaizeteby specific (i.e., quantized)
values of physical quantities such as energy agdlanmomentum. Mathematically,
the state of an electron is expressed in the fdraveave functiorthat satisfies a cer-
tain differential equation, called thechrodinger equatioi2,3]. This function de-
pends on a set of parameters, which are preciselgaantum numbers we mentioned
previously. The number and the possible valuehefquantum numbers vary in ac-
cordance with the particular physical system toclhhe electron belongs.

The state of an electron in a multielectrormate determined by a set of four quan-
tum numberdqn, |, m, ms), which can take on the following values [2,3]:

n=1,2,3,..
| =0,1,2,..,11) (for a givenn)
m=0,+1,+2,..,%I (for a givenl)
1
=+ —
m 2

The quantum numbdrdetermines the magnitude of the angular momenituof the
electron, while the quantum numbmey determines the direction of the angular mo-
mentum (or, to be more exact, the projectionLofonto thez-axis). The quantum
numberms determines the direction of the electigpin (“spin up” or “spin down”).
Finally, the pair(n, | ) determines the energy of the electron. Analytically

ILEJ @+, L,=mnh ( h}

S = mjz:i%, E= Hn) 21

According to thé?auli exclusion principle

no two electrons in a quantum system (e.g., an atomolecule, a crystal,
etc.) may be in the same quantum state, i.e., imare ghe same set of quan-
tum numbers.

Thus, for example, if two electrons in an atom hthe same values of | andm,
then necessarily they will have differan§ (+ ¥2 and — %2). Because of this principle,
it is not possible for the entire set of electransn atom to occupy the lowest allow-
able energy level, given that this level does reoteha sufficient number of quantum
states to accommodate all electrdns.

® Exceptions to this rule are hydrogen {jand helium (He).
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The gquantum states having the same value(btit different combinations of m
and ms) constitute ashell Forn=1,2,3,4,..., the shells are denotedkgy, M, N,...,
respectively. The states of thth shell having the same valueldbut different com-
binations ofm andms) constitute thesubshelln, ). Forl=0,1,2,3,..., the subshells are
nameds, p, d, f,..., respectively. For a given value mfthere aren different values
of |; namely,|= 0,1,2,...,0—1). Therefore, theth shell is divided intm subshells.

The subshelln(|) is also indicated by the value mfollowed by the symbol corre-
sponding to the value of Thus, for example, the subshel| I()=(2,1) is written P.
The number of electrons in a subshell is indicétga@ superscript next to the symbol
of the subshell. For exampley*andicates that there are 6 electrons in theubshell.

Shells(n) Subshellgn, I')

n=1 I=0 = 1s

n=2 1=0,1 — 25 2p

n=3 I=0,1,2 = 3s 3p,
n=4 1=0,1,2,3 = 4s, 4p, 4d, 4

Theelectronic capacityf an atomic subshell is the maximum number oftebas
this subshell can accommodate without violating Rtaili exclusion principle. The
capacities of the various subshells are determasefbllows: Since all electrons in a
subshell occupy states with the sanfand, of course, the samg these states must
have different combinations ofi andms. We want to find the maximum number of
distinct pairs ih, ms) corresponding to a giveln For any value of, the quantum
numberm can assume [21) different values, namely, 81,+ 2,....£ |. Each of these
values may be combined with two valuesrgi{(+ %2 and — %2) We thus have a total of
2(2+ 1) different pairstfy, ms) for any givenl. In accordance with the Pauli exclusion
principle, thereforethe subshel(n,|) may accommodate at mdy@l+ 1) electrons.
Analytically:

s = |0 = 2 electrons
p = |=1 = 6 electrons
d = |2 = 10 electrons
f = =3 = 14 electrons

Now, theK shell f=1) has only the 4 subshell, thus may accommodate 2 elec-
trons, while theL shell f=2) has the 2 and 2p subshells, thus may accommodate
2+6=8 electrons. Th& shell f=3) has the § 3p and 2l subshells, thus may ac-
commodate 2+6+10=18 electrons, etc. As a rule, kiewé¢he last (or outermost)
shell of an atom may not be occupied by more thele@&rons

Given an atom with atomic numbgrits Z electrons are distributed to the various
subshells in an ordered manned, starting witlarid continuing with & 2p, 3s, 3p,
etc, until the entire stock of electrons has bedraested. Thelectronic configura-



10 CHAPTER 1

tion of an atom (with certain small deviations, sucheg., in transition metals) is
described by means of the following general sch@hesuperscript next to the sym-
bol of a subshell indicates the number of electrorthat subshell):

s12s22p©3s23p°©3d1°4s24p° ...

In most cases, the last (outermost) subshell idithed up to its maximum capacity.
Let us see some examples:

Sodium (Na, 11);  sf 2s?2p°®3s?

Silicon (Si, 14): &% 252 2p°®3s% 3p?
Germanium (Ge, 32): st 2s?2p®3s23p°3d1°4s% 4p?
Nickel (Ni, 28): §%2s22p®3s%3p°©3d84s?

Notice that, in nickel, thesdsubshell, which belongs to the last shell, is cleteol
before the @ subshell has itself a chance to be completed. M\gneral rule would
be violated if we transferred the twe dlectrons to thedsubshell?

As we mentioned earlier, the energy of an edecin an atom depends on the pair
of quantum numbers(l). This means that electrons occupying states thighsame
values ofn and | have the same energy. We conclude ¢hattrons belonging to the
same subshell have the same enérggch subshell is therefore characterized by an
energy value common to all its electrons. We sayahch subshell corresponds to an
electronic energy levelnd that the electrons of the subsbeltupythe corresponding
energy level. An atomienergy-level diagrans represented as in Fig. 1.3.

E
(eV) 4p
3d

4s

3p
3s

2p
2s

1s

Fig. 1.3. Energy-level diagram for a multielectatom.

® An exception is hydrogen, where the energy o$iitgle electron depends only an(E,= —« /n?),
thus is a property related stiellsrather than to subshells.
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We note that this ordering of energy levelsas absolute and may present small
deviations for certain atoms (e.g., theldvel may be above thed3evel). Note also
that the distances between successive energy lavela characteristic property of
each atom; these distances, therefore, vary fraaratom to another.

The above analysis is, of course, oversimplifiBecause of the complexity of the
electromagnetic interactions within multielectrdoras, it is not absolutely correct to
speak of energies of particular electrons but itlddoe more appropriate to refer to
the (quantized) energyf the atom as a whal@hus, in place of electronic energy lev-
els we should drawtomicenergy levels. The approximate model we have destr
assumes that every electron in an atom can move oroless independently of the
remaining electrons within the electromagneticdfitiese electrons and the nucleus
create [2,3]. We may thus define an average erferggach electron and express the
energy of the atom as the sum of all individuatetmic energies. The terms “atomic
levels” and “molecular levels” will henceforth baderstood to refer telectronicen-
ergy levels of atoms and molecules, respectively.

1.6 Molecules

Atoms often have the tendency to join togetheotsfmoleculesThis is not done in
an arbitrary manner but obeys certain logic: theuerg quantum system must be
more stablecompared to the system of individual atoms thates previously. This
means that the merging is energetically favorablehe sense that the potential en-
ergy of the new system (molecule)simallerthan that of the initial system of isolated
atoms. Thus, an amount of energy must be spenter ®o separate again the atoms
of a molecule.

How exactly should we define a molecule? Wehnthink of it as a group of two
or more atoms held together by electromagneticeor®8ut, from the moment two
atoms interact, they cease to constitute autonomadsvidual entities since each
atom is influenced by the presence of the othegpaiicular, the motions and energies
of the electrons in these atoms are altered. Alfieformation of the molecule, does it
still make sense to say that an electron belongsth@r atom4 or atomB? An en-
tirely opposite view is to simply regard the mollecas a group of two or more nuclei
surrounded by electrons in a manner that makewhioée structure stable.

Although one might perhaps find the latter vieatisfactory, a compromise be-
tween the two views is possible by observing tHiewong: When two atoms join to
form a molecule, the electrons of their inner shéhich shells are completely filled
in accordance with the exclusion principle) are affected significantly, since the
interactions they are subject to originate maimbynt the individual ions to which
these inner electrons belong. Those #rataffected are the electrons of thatermost
unfilled shells, i.e., th@alence electronswvhich are subject to the influence of both
ions, so that it is no longer possible to absojutidtermine to which atom each of
these electrons belongs. To those outermost etecth® molecule owes the chemical
bond that holds the two atoms together.

Let us now assume thitsimilar atoms merge to form &hatomic moleculée.g.,
the diatomic molecules Hand Q for N=2, the triatomic molecule {for N=3, etc.).
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This molecule is a novel quantum system havingwetre that is different from that
of the initial atoms. In particulathe molecule possesses at least N times as many
electronic energy levels as those possessed bpdhedual atoms This is logical in
view of the fact that the molecular energy levelssimaccommodat¥' times as many
electrons in comparison to the atomic levels. Nasvye saw in the previous section,
the electronic energy levels of an atom corresgontie subshellss] 2s, 2p, 3s, 3p,
etc. WhenN similar atoms coalesce to form Alkatomic moleculegach atomic en-
ergy level gives rise to N or more molecular lev&lige say that, in the process of
formation of the molecule, each atomic energy leydits into N or more molecular
levels (in an energy-level diagram these levelsdwosely spaced). The qualitative
diagram of Fig. 1.4 concerns tdmtomicmolecule N=2).

Atom Molecule

(eVv) . }
2s }
2 }

Fig. 1.4. Energy-level diagrams for an atom (leftd the corresponding diatomic molecule
(right).

1.7 Energy Bands of Crystalline Solids

As mentioned earlier, the stability of several @alubstances is due to their crystalline
structure. Acrystalis a regular array of atoms (or molecules, or)dmnslt by canoni-
cal repetition of a fundamental structural unithnee dimensions. The reason for the
formation of crystals is basically the same as thiatmolecules: the result is energeti-
cally favorable. That is, the potential energy loé trystal is lower than that of the
system of the constituent atoms, had they beeatesbfrom each other.

In crystals, like in molecules, the electronghe atoms can be distinguished into
inner-shell electrons and outermost, valence electrons. The inner electrons are
closer to the corresponding atomic nuclei, intengctvith them relatively strongly
and not being influenced appreciably by the neiginigoatoms (or ions) in the crystal.
Thus, to a large extent, these electrons retairptbperties they would have in iso-
lated atoms (e.g., their energies are almost three snd their quantum states are de-
scribed by the same guantum numbers). On the biosd, the outermost electrons
are influenced much by the neighboring atoms and their properties (in particular,
their energies) differ considerably from those e tcorresponding isolated atoms.
One could say that, in a sense, these latter electrelong to the whole crystal, not to
individual atoms. The valence electrons are resptn$or the bonding between the
atoms, as well as for most physical propertiehefdrystal (such as its electrical and
its thermal conductivity).
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Let us consider a crystal composeddfimilar atoms (or molecules, or ions). You
can imagine it as a gigantic “molecule” containatpuge number of atoms arranged
regularly in space. According to our discussiorSec. 1.6, as the crystal is formed,
each atomic energy level splits imMb(or more) closely spaced levels. The positions
of these levels and the spacing between them anargy diagram depend on the dis-
tance between the atoms in the crystal, as showigiri.5.

atomic energy leve

O interionic distanct

Fig. 1.5. Splitting of an atomic englgvel intoN crystalline levels.

The horizontal axis in the diagram of Fig. fepresents the distance between two
neighboring atoms in the crystal, while the veltmais represents the energy of any
of the N crystalline levels. The diagram can be interpretedollows: Imagine that,
initially, the N atoms are largely separated, so that they dontextaict with each other
(isolated atoms). We consider a specific electreniergy level, common to all atoms.
As the atoms get closer in order to form a crystalcture, they begin to interact.
From that moment on we are not dealing with a Eetadated atoms but rather with a
novel quantum system, the crystal. In particulae, talence electrons of the atoms are
no longer associated with specific atoms but ctrtstia unified system of electrons
belonging to the whole crystal. At the same tine, ¢onsidered atomic energy level
splits into at leasN crystalline levels, which determine the possikdéues of the en-
ergy of the electrons. Each of these levels coordp to a value of the energy that is
not fixed but varies with the distance betweeni@ims. We can thus drai curves,
one for each level. Notice that, for a given irdarc distances, the energies of the
allowable crystalline levels range frafto B in the diagram of Fig. 1.5. The energy
distanceAB varies with the distance between the atoms.

Now, the numbeN of atoms in crystals is very large, close tG*18toms/cnt.
Thus theN energy levels are so close to each other thatifhpossible to distinguish
one from another. We say that these levels formmirmuousenergy bandThewidth
of a band (the energy distan&8 in the diagram of Fig. 1.5) varies with the dist@an
between the atoms. Figure 1.6 shows the energy d@nelsponding to a given atomic
energy level, for a given distaneebetween the atoms (or ions) in the crystal.
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atomic energy leve

energy bani

O interionic distanci

Fig. 1.6. Formatof an energy band in a crystal.

Generally speaking, one may say that each atemergy level gives rise to a cor-
responding crystalline energy band, as Fig. 1.7vshdhis simple picture, however,
is not absolutely correct with regard to the uppands, occupied by the outermost
(valence) electrons of the atoms.

atomic crystalline
levels bands

Fig. 1.7. Atomic energy levels (left) and ttwresponding crystalline bands (right).

We observe thahe width of the bands increases as we move frernothest to the
highest bandthe lowest band does not differ much from an madi energy level).
This can be explained as follows: Higher bandsespond to higher atomic energy
levels which, in turn, correspond to outer atomibshells. On the other hand, lower
bands correspond to lower atomic energy levelsgéném inner atomic subshells. This
means that the higher bands are occupied by ther-shell electrons of the atoms,
while the lower bands are occupied by the innetlgtectrons. As we have already
mentioned, the inner electrons are mostly affebiethe corresponding nuclei and are
hardly aware of the presence of the neighboringhat¢or ions) in the crystal. Thus
their energies do not differ significantly from #®oin the isolated atoms, with the ef-
fect that the energy bands these electrons oconpytdiffer much in width from the
corresponding atomic energy levels. On the othedhtne outer electrons (in particu-
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lar, the valence electrons) interact more stromgtiz the neighboring atoms and their
energies are modified considerably, with the eftbett the atomic energy levels to
which these electrons belong are widened into gnieagds during the formation of
the crystal, the widening increasing as we movéheenergy axis.

It should be noted th#ie width of each band is independent of the ditleeocrys-
tal, that is, of the total number of atoms in thgstal lattice Indeed, this width de-
pends only on theoncentration(density) of the atoms, i.e., the number of atqes
unit volume This suggests that an atom in the crystal isi@rfted only by its closest
neighbors, while it is practically unaffected bymaalistant atoms in the lattice.

We recall that each atomic energy level (whdohresponds to an atomic subshell)
can accommodate a specific number of electrongdarby the Pauli exclusion prin-
ciple. Similarly, each crystalline energy band emscommodate a definite number of
electrons, depending on the number of availablentyma states in the band. As we
know, the exclusion principle does not allow twoneore electrons of the system to
occupy the same state. This means that differeatrehs in the crystal cannot pos-
sess exactly the same set of quantum numbers. foheréhe number of electrons in
an energy band cannot exceed the number of quastiates in the band, each state
corresponding to a given set of allowable quantumivers.

The filling of energy bands with electrons @olis the same logic as the filling of
atomic energy levels (or, correspondingly, of atosubshells). Thus, the lowest band
is filled first, then the band immediately aboveeitc., until the full stock of electrons
is exhausted. In a non-excited state of the cry$tate is an uppermost band that con-
tains electrons. This energy band is occupied byviilence electrons of the atoms
and every allowable band above it is empty. Twcsitnigties exist:

@ If the uppermost-occupied bandnist completely filledit is called theconduc-
tion band(Fig. 1.8).

conduction ban
(partly filled)

Fig. 1.8. Conduction baisdaa uppermost-occupied band.

() If the uppermost-occupied bandfidl, it is called thevalence bandand the
emptyband just above it is then called tt@nduction bandFig. 1.9). The energy re-
gion between the valence and the conduction banthics no allowable quantum
states and constitutes tfeebidden band The energy widtlies of the forbidden band
is called theenergy gap
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conduction band (empt

1 E; |} forbidden banc

_ valence band (full

Fig. 1.9. Valence, conduction, andifdden bands; the energy gajkis.

Note that in casd) the conduction band is atiowableenergy region for the elec-
trons, despite the fact that this band is empthénfundamental (non-excited) state of
the crystal. Indeed, if given sufficient energymsoelectrons of the valence band may
be excited into the conduction band. On the coptraw electron may be excited to
the forbidden bandgiven that this energy region does not contalowalble elec-
tronic energy levels and quantum states. The engaig\Es represents the least en-
ergy required to excite an electron from the vagelband to the conduction band. We
will explain the physical significance of this pess in the next chapter.

1.8 Band Formation in Tetravalent Crystals

To understand the properties of insulators and s@mductors, it is useful to examine
the band formation itetravalent crystalsi.e., crystals composed of similar tetrava-
lent atoms. Being covalent structures (cf. Seqg. th@se crystals are not expected, un-
der normal conditions, to exhibit substantial eieat and thermal conductivities
since they do not possess a significant numbeeefdlectrons.

The last (outermost) shell of an atom of aatedtent element is of the form
ns’np? (=2,3,4,...)

/oA

filled unfilled
subshell subshell

Thus, forn=2,3,4, respectively, we have the following configurations:

Carbon (C, 6): s42s2 2p*?

Silicon (Si, 14): s12s22p®3s%3p?

Germanium (Ge, 32): st2s22p®3s%3p°©3d*%4s? 4p?
The uppermost-occupied atomic energy lewgd)(is not full since the corresponding
subshell has only 2 electrons out of its total cépaf 6 electrons. One would expect

that, by analogy, the uppermost-occupied cryswliégmergy band be also unfilled,
since that band results from the widening of alpaxtcupied energy level. Things are
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not quite that simple, however! The fact that thesestals are not good electrical
conductors indicates that their uppermost-occupatls areompletelyfilled; that is,
each of these bands isralence bandwe will explain this in more detail in the next
chapter). How does this happen?

Let us imagine thatl atoms of a tetravalent element (whire10?%), which atoms
are initially infinitely separated from each othleegin to come closer in order to form
a crystal [1,4]. Once the atoms are close enoughtécact with each other, the atomic
energy levelsr(s) and (p) begin to widen into energy bands. The bamsg) (s full
while the bandr(p) is partly filled. As the atoms get closer, théseds are widened
so much that they overlap, forming a single bandalfy, when the atoms reach the
appropriate interionic distance for the formatidntlwe crystal, the aforementioned
single band splits again, this time into twew bands with different capacities from
the initial (1s) and @ p) bands. All valence electrons of the atoms indhestal (4
electrons per atom) are accommodated in the loaed,bwhich is now aompletely
filled valence band, while the uppemptyband is a conduction band.
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QUESTIONS

1. Show that the energy distance between successergyefevels of the hydrogen
atom decreases as we move up the energy-levebdiagr

2. Evaluate the frequency and the wavelength of tdeatian emitted by a hydrogen
atom during a transition of its electron from thibion to the orbit 1), wheren>1.

3. (a) Show that the radius 35 (whereag is the Bohr radius) corresponds to an al-
lowable orbit for the electron in a hydrogen at@ngd evaluate the angular momen-
tum and the energy of the electron in that orbit.At what distance from the nucleus

does the electron have an angular momentum eq@alt&

4. Find the possible frequencies of radiation emitbydan excited hydrogen atom
when the electron, initially moving on the third iBoorbit, finally — albeit not neces-
sarily directly — returns to the fundamental fioshit.

5. A hydrogen atom is excited by absorbing a photbtinen returns in two steps to its
fundamental state, emitting two photons of wavelesg; and 1, . Find the wave-
length/ of the photon that was absorbed by the atom.

6. A moving electron hits a hydrogen atom and exdtté&®m the fundamental to the
third energy level. The atom then returns in twepstto its initial state, emitting two
photons. §) Find the minimum speed of the electron that I &tom. lf) Find the
frequencies of the two photons.

7. lonization of a hydrogen atom can be produced Iths@m with a moving electron
or by absorption of a photora)(What must be the minimum speed of the electron?
(b) What must be the maximum wavelength of the pHdton

8. A photon hits a hydrogen atom and causes ionizdbotine latter. The liberated
electron then falls onto another hydrogen atomeaites it from the fundamental to
the immediately higher energy level. Find the mimimfrequency of the photon that
hit the first hydrogen atom.

9. As we know, the lowest energy level of a manytetecatom is the dlevel (i.e.,
the energy level corresponding to theslibshell). Why then doesn't the totality of
electrons in the atom occupy this particular level?

10. Draw a comparative energy-level diagram (not nerédgsan exact one!) for the
electrons of the oxyge®] atom and those of the ozor@;) molecule.

11. Why do crystals have energy bands instead of erlevgys like atoms and mole-
cules? Why are higher-energy bands wider than lamergy bands?

12. A band in a crystal has its full quota of electronkile another band of the same
crystal is partly filled. Which band is wider? Eapi.
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13. Consider two diamond crystals, a small one andyaobe. Compare the widths of
corresponding energy bands of the two crystals.

14.In what ways do the free electrons affect the Btal@ind the physical properties
of metals?

15. Give examples that demonstrate that the correspoedeetween the energy lev-
els in each of a set of identical atoms, and trexggnbands of a crystal composed
from these atoms, is not perfect.
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ELECTRICAL CONDUCTIVITY OF SOLIDS

2.1 Introduction

Electrical conductivity is one of the most impottamnoperties of solids. On the basis
of it we distinguish among three types of solidsnductors(or metald, insulators
andsemiconductorsThe last ones have intermediate conductivity canegb to insula-
tors and conductors. In contrast to metals, whaseluctivity decreasesvith tem-
perature, the conductivity of semiconductimmsreasesvith temperature.

As we will see below, the electrical condudtivof a crystalline solid is intimately
related to the formation of the energy bands ofshiél, or, more specifically, those
bands occupied by the valence electrons of thesatortie crystal. As a rule,

a band completely filled with electrons (not hayitlgat is, unoccupied quan-
tum states) does not contribute to conductivitycamtrast to a band that is
partly filled.

Thus, metals are characterized by the presencarty pccupied bands, while in in-
sulators all occupied bands are completely fillktrelatively low temperatures, the
electrical behavior of pure semiconductors is samitb that of insulators, since at
these temperatures all bands of a semiconductdulr&he electrical conductivity of

a semiconductor can be increased significantly, dvan either by raising the tem-
perature or by doping the material with suitabl@umity atoms.

2.2 Conductors and Insulators

Metals (or conductor$ are characterized bypartly occupieduppermost energy band;
i.e., their highest occupied band isanduction bandFig. 2.1).

E

conduction ban
of a metal

Fig. 2Qonduction band of a metal.

In essence, the conduction band is the totafipyossible energy values assumed by
the valence electrons of the atoms in the crystadther words, it is the allowable en-
ergy region for the valence electrons. These @asthave been freed from the atoms
to which they belonged, those atoms thus lefiastive ions(The ionization process
utilizes part of the energy liberated during therfation of the crystal; no additional
external energy is therefore needed for this papokhe detached valence electrons
move more or less freely in between the positives iof the crystal lattice without be-

20
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ing affected appreciably by the ions; for this mrathey are calletree electronsTo
these electrons the metal owes its electrical caindty as well as a significant part
of its thermal conductivity (another part is duethe vibrations of the ions that com-
pose the lattice). Even more importantly, the preseof the free electrons guarantees
the stability of the lattice (without them, the végpve forces between the positive ions
would make the crystal disintegrate!) [1].

The electrical conductivity of a metal can lesctibed as follows: In the presence
of an electric field in the interior of the mettie free electrons gain energy and begin
to accelerate. Part of this energy is lost, of seudue to collisions of the electrons
with the ions. Finally, however, the electrons amga constant average velocity in a
direction opposite to the electric field. This oied motion of the electrons consti-
tutes arelectric current

From a somewhat different viewpoint, the eleatrconductivity of a metal is due
to the fact that, under the influence of an eledteld, the electrons of the uppermost-
occupied energy levels in the conduction band bleta jump to highevacantlevels
in this band without violating the Pauli exclusipnnciple (Sec. 1.5). The energy in-
crease of the electrons is related to their acagber by the electric field and is mac-
roscopically perceived as an electric current. &othat, if the energy band of the va-
lence electrons were fully occupied, an excitatbnhese electrons to higher energy
levels within the band would be impossible sindesath levels would already be oc-
cupied and any extra electrons onto them wouldatéathe Pauli principle.

The above analysis also explains why metal®pagueto visible light. This hap-
pens because the free electrons may absorb phiotdins visible region of the spec-
trum of electromagnetic radiation and be exciteane of the many vacant higher-
energy levels within the conduction band.

As examples of conductors, let us examine #ses of sodium and magnesium:
Sodium (Na, 11): s42s22p°® 3st
Magnesium (Mg, 12): s*Ps? 2p®3s2(3p?)

Sodium is a conductor since, in the process offdhmation of the crystal, the half-
filled atomic energy level Sis broadened into a correspondingly partiallyetilicon-
duction band. In magnesium, on the other handetlseanoverlappingof the bands
that result from the broadening of thea@omic level (which is completely filled) and
the P level (which is empty), the result being a padtgupied conduction barid.

At the other extremeénsulatorsare substances devoid of appreciable conductivity.
A typical example is diamond, the crystalline stane of which is built with carbon
atoms (C) tied to each other by covalent bondgedtgstrength. Since carbon is a tet-
ravalent element, the diamond crystal posses$alyyaccupied valence barehd an
empty conduction ban@ee Sec. 1.8), as seen in Fig. 2.2.

Y In fact, a band overlapping of this sort occurslinmetals, even if the uppermost-occupied atomic
energy level is not full.
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conduction band (empty

1 E; ~6eV forbidden banc

_ valence band (full

Fig. 2Band structure of an insulator.

The valence band exactly accommodates thatyotdilvalence electrons of the at-
oms in the crystal (4 electrons per atom). €hergy gafEg represents the minimum
energy needed in order for an electron of the waeband to be excited to the
conduction band. Physically, Es is the least energy required for “breaking” a
covalent bond in the crystal and releasing a valeziectron. The liberated electron
will now belong to the energy region of the conduttand. We stress that under no
circumstances may an electron be excited to theidden band, since that energy
region contains no allowable energy levels andesponding quantum states.

Given that all states in the valence band aceipied, it would be impossible to ac-
celerate a valence electron by means of an eldaitt so as to generate an electric
current. Indeed, an acceleration of the electronlevoesult in an increase of its en-
ergy, thus an excitation of the electron to a higkreergy level within the valence
band. This, however, would violate the Pauli exidasprinciple since all levels in
this band are already occupied. The only allowa&lgtation of the valence electron
Is to the empty conduction band, a process thatipalfy corresponds to the breaking
of a covalent bond with a simultaneous liberatibam electron. This demands an en-
ergyE > Eg, whereEg is of the order of @V for diamond. Energy of this magnitude
cannot be supplied by an electric field of typistlength. For this reason, diamond
has minimal (practically zero) electrical conduitsivi.e., it is an insulator.

Because of the large value of its energygapdiamond cannot absorb photons in
the visible region of the spectrum, which photoaséhenergies 153 eV< Eg (the
absorption of such a photon would excite an electrfothe valence band into the for-
bidden band!). This explains t@nsparencyof the diamond crystal. (The deep blue
color of some diamonds is due to the presence inbatoms within the crystal struc-
ture.)

2.3 Semiconductors

Compared to metals and insulatosgmiconductorhiave intermediate conductivity.
Typical examples arsilicon (Si) andgermanium(Ge). Like diamond, they are cova-
lent solids composed of tetravalent atoms. Thusthair fundamental (i.e., non-
excited) state they possess a fully occupied val&and (Fig. 2.3). But, in contrast to
diamond, the energy gd&f in semiconductors is relatively small, of the ardeleV.

2 Note carefully that we are talking here about avenof the electron on the energy diagram, not in
space!
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Silicon (Si, 14): sf 252 2p°® 3s% 3p? Ec=1.21eV)
Germanium (Ge, 32): s12s22p®3s%3p°3d%°4s?4p? (Ec=0.78eV)

E A

conduction band (empty

e

1EG ~leV forbidden banc

valence band (full

Fig. 2.3. Bandusture of a semiconductor.

The valence band contains the valence elec{#®mer atom) of the atoms in the
crystal. At very low temperatures (close to absolzgro,7 ~ 0 K) this band is fully
occupied, which physically means that all valenlseteons participate in covalent
bonds and there are no free electrons in the ¢rftbia conduction band is empty).
Thus, at those temperatures semiconductors betamsulators. At higher tempera-
tures, however (e.g., at room temperatdire,300K) the electrons in the uppermost
energy levels in the valence band receive suffidiieermal energy to jump over the
relatively small energy gaps and be excited to the conduction band.

Physically, the energy g& represents the least energy needed for the biggakin
a covalent bond and the liberation of a valenceteda. Under the influence of an
electric field the freed electrons then move inoaented way, like the free electrons
in metals, having energies in the region of thedcation band.

With regard to their optical properties, semoctors ar@paquedue to the fact
that their energy gap is smaller than the energiighe photons in the visible region
of the spectrumBg < 1.5-3 eV). Electrons in the highest levels of the valenaad
can thus absorb photons in that spectral regiorbanekcited to the conduction band;
in other words, they are able to “escape” from ¢bealent bonds to which they be-
long and become free electrons. This results innarease of conductivity of the
semiconductor, an effect callptiotoconductivity

Every liberated valence electron leaves belaimthcomplete(*broken”) covalent
bond, which constitutestalein the crystal of the semiconductor. Equivalengyery
electron of the valence band that is excited toateduction band leaves a vacant
guantum state in the valence band, also calledla(Fig. 2.3). The hole behaves like
a positivelycharged particle since it is created by #isenceof an electron from a
previously electrically neutral atom. Moreover,\as will see below, a transport of
the hole is possible within the crystal, the hblest contributing to the conductivity of
the semiconductor. In Fig. 2.4 we see a simpliftash-dimensional representation of
the crystal lattice of a semiconductor (only theadence electrons of each atom are
shown). Each atom forms 4 covalent bonds with it4est neighbors.
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Fig. 2.4. Simplified, two-dimensional picturetbk crystal lattice of a semiconductor.

Let us review some important physical concepgarding semiconductors:

Valence bandit is the energy region formed by the totalityesfergy levels occu-
pied by theboundvalence electrons of the atoms in the crystal €lbetrons that par-
ticipate in covalent bonds).

Conduction bandlt is the energy region allowable for tfree electrons (those that
have broken the covalent bonds to which they ba&ldhg

Energy gap(Eg): It is the least energy required for the brealkihg covalent bond
and the liberation of a valence electron.

Hole: It is an incomplete (broken) covalent bond in thgstal, corresponding to a
vacant quantum state in the valence band.

Let us now examine the way in which a hole gbates to the conductivity of the
semiconductor. When an incomplete bond exists mtesiocation of the crystal lat-
tice, it is relatively easy for a valence electodra neighboring atom, under the action
of an electric field, to abandon its own bond aader that hole. (Given that the elec-
tron remains in the valence band, no energy amBgiis now needed.) This electron
leaves behind a new hole (an incomplete bond}y thus as if the initial hole were
transferred to a new location, movingpositeto the direction of motion of the va-
lence electron which left its bond to cover theiahihole. The new hole may, in turn,
be covered by a valence electron of another nemidp@tom, this process resulting
in a further transport of the initial hole in aettion opposite to that of the valence
electrons, and so forth. Given that the hole isgsence thabsenceof a (negatively
charged) electron, we can regard it as equivalere gositively charged particle of
charge equal in magnitude to the charge of thdrelecin conclusion:

¢ Holes can be regarded as “real”, positively chargadicles whose direction
of motion isoppositeto that of the valence electrons when the latteder the
action of an electric field, leave the covalent é®io which they belong in or-
der to cover neighboring incomplete bonds.

e The conductivity of a semiconductor is due to thaion of both thdree elec-
trons and the holes.

e The free electrons have energies in the regiomefconduction band, while
the holes belong to the energy region of the vadrand.
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It often happens that feee electron covers an incomplete bond. This procéss o
recombination of an electron-hole patorresponds to the transition of an electron
from the conduction band to the valence band, tieguin the occupation of a vacant
state (a hole) in the valence band by that electféwe total number of both (free)
electrons and holes thus reduces by one unit.

2.4 Ohm’s Law for Metals’®

As we have already mentioned, the valence electwbiise atoms of a metal are eas-
ily detached from the atoms to which they belong {bing part of the energy liber-
ated during the formation of the crystal), beconfieg electronsvith energies in the
region of the conduction band. Their characterratas “free” indicates that these
electrons are not subject to forces of any appboéistrength as they move within the
crystal lattice, provided of course that they dé came too close to the ions of the
lattice. The motion of the electrons is only dibea by their occasional collisions
with the ions, which results in deceleration orrade of direction of motion of the
electrons.

When there is no applied electric field in theerior of the metdl(E = 0), the mo-
tion of the free electrons is random and in alediilons so that, macroscopically, no
electric current exists within the metal. The ditua changes, however, if there is an
electric field E = 0 inside the metal. The field then exerts forceshenfree electrons,
compelling them to accelerate. The speed of thereles would increase indefinitely
(which fact would certainly infuriate Einstein!) dollisions with ions did not occur.
Due to these collisions, the electrons lose pattheir kinetic energy (which is ab-
sorbed by the crystal lattice producing Joule Ingatif the metal) until the electrons
finally attain a constant average veloaity(drift velocity).

Since electrons are negatively charged, thiesction of motion isoppositeto E .
As we will see in Chapter 6, however, the motioraafegative charge in some direc-
tion is equivalent to the motion ofpesitivecharge of equal magnitude, in thppo-
site direction. (For example, the two charges prodheesame magnetic field and are
subject to the same force by an external magnielit. ¥ We may thugonventionally
assume that the mobile charges@wsitive equal to+q, and their direction of motion
is theoppositeof the actual direction of motion of the electroRlence, convention-
ally, the drift velocityo of the charges will be assumed to havestimedirection as

the electric fieldE . According to theoretical calculations [1-5] armhsistently with

experimental observations, for relatively smallues of E the drift velocity is pro-
portional to the field strength:

o=uE (2.1)
The coefficient is called theamobility of the electron in the considered metal. (As we

will see in Sec. 2.6, the coefficientis temperature-dependent.) This oriented motion
of the electrons constitutes alectric current

% See also Appendix C.
* When there is no risk of confusion, we will use 8ymbolE for either the energy or the electric field
strength.
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We now consider an elementary section of a gctimg material, in the shape of a
thin wire of infinitesimal lengthdl and cross-sectional ar€&(Fig. 2.5). The volume
of the wire isdv=Sdl The wire is carrying a curreht

dv

a—
—

Fig. 2.5. Metal wire of infiesimal lengthdl, carrying a currerit

We calldN the number of free electrons passing through tbesesectiorsin time
dt and finally occupying the volumev of the wire. The (conventionally positive)
charge that passes through the cross-setioime dt and occupies the voluntk is
thus equal t@Q=qdN, whereq is the absolute value of the charge of the elacWée
observe that an electron travels a distagicalong the wire within timelt. Thus the
drift speed of the electronsis dl/dt. Finally, the current on the wire is dQ/dt.

Thecurrent densityat the cross-sectiddis

| 1dQ qgdN gdNdl _ dNd

“SsT s dt sdt sdidt ¥ dv .

2.2)

The quantity

dN

n=— 2.3

v (2.3)
is the electronic density(or free-electron concentrationof the considered metal; it
represents the concentration of free electrons lpeuraf electrons per unit volume) in
the materiaf. Also, by (2.1),dl/dt = v= uE, wherev andE are the magnitudes of the
corresponding vectors. Thus (2.2) is written as

J=qgno=qnukE (2.4)
The product
25)

is called theconductivityof the metal. Equation (2.4) is finally written:
J=0cE (2.6)

or, in vector form,

® In reality, only part of the free electrons coiities to electrical conduction; see Appendix C.
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J=0cE (2.7)

where J is a vector of magnitud® oriented in accordance with thenventionaldi-
rection of the current (this will be further explad in Chapter 6). Equation (2.7) ex-
presses thgeneral form of Ohm’s lawit is an empirical relation for metals, valid
when the electric fieldE is not too strong.

The general relation (2.7) was proven for dmitesimal section of a metal and, in
this sense, is independent of the shape or thendiores of the metal. We now con-
sider the special case of a metal wire of finitegté | and constant cross-sectién
carrying a constant curreiit(Fig. 2.6). We calV the voltage (potential difference)
between the two ends of the wire.

>0 )

—_— I

Vv

Fig. 2.6. Metal wire of finite length carrying a currentand subject to a voltagé

The current densityl=I /S is constant along the wire since bdtandS are con-
stant. From Ohm’s law (2.6) it then follows thae thlectric fieldE is also constant
along the wire; that is, the electric field insitée wire isuniform As will be shown in
Chapter 6, the magnitude of the field is givenhis tase bye=V/I . Thus, by using
(2.6) we have:

I:JSZO'ES:G\i S:—V
I | /oS

We define thaesistivityp of the metal and theesistance Pof the wire by the rela-
tions

1 I pl
==, R=—=2 2.8
r o oS S (2.8)

We thus obtain thepecial form of Ohm’s law

\%

We remark that the resistivityis a property of the conducting material, regeasslle
of its shape or its dimensions, whereas the registd is a property of the specific
wire and depends on its geometrical characterishicée also that the special form
(2.9) of Ohm’s law is valid for a wire @onstantcross-sectional area (explain this).
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2.5 Ohm’s Law for Semiconductors

As we know, the mobile charges in a semicondua®tize free electrons of the con-
duction band and the holes in the valence bandcal'@ andp the concentrations of
electron§ and holes, respectively, where bgncentrationwe generally mean the
number of similar things (electrons, holes, atoats,) per unit volume. In pure or
intrinsic semiconductor (that is, a semiconductor crystaheut any impurity atoms)
the number of electrons must be equal to the nurabéples, given that each hole
appears after the liberation of a valence electrom the covalent bond to which it
belongs. Thus, for an intrinsic semiconductor weehihat

n=p=n (2.10)

The common valuey of the two concentrations in a pure semiconduigtoralled
intrinsic concentrationAs we will see later on, Eq. (2.10) is generalbf valid for a
semiconductor having impurities.

When an electric fielE exists inside a semiconductor, the motion of beltt-
trons and holes is oriented according to this faid two parallel current densitids
and jp appear in the crystal. Both density vectors atiéndirection ofE . To under-

stand this, let us consider the motion of an ebecand a hole inside an electric field
E, such as that existing in the interior of a patgilate capacitor (Fig. 2.7).

E E
= =
-9 |- +|  +d - -
s —> > 'Jn
Oo— O— - j
+ +q — + +q — P
actual directior conventional directio

Fig. 2.7. Current densities of electrons and haegial and conventional directions of motion
of charges.

In reality, the positively charged hole movasthe direction ofE while the elec-
tron, being negatively charged, moves in the divecopposite to the field. Conven-
tionally, however, the motion of the electron mayibterpreted as the motion of a

positivecharge in th@ppositedirection, i.e., in the direction dt . We conclude that
the currents generated by the motions of electamasholes are both in the direction
of E.

The currents], and J, separately obey Ohm's law:

J=cE, J=0E (2.11)

® By “electrons” we will henceforth mean tfree electrons of the conduction band.
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where the corresponding conductivities are

o, =qnu, . o,=0pu, (2.12)
Then andp represent the concentrations of electrons andshodspectively, whil@y,
andy, are themobilities of electrons and holes in the considered semiaztinduoyq

we denote the absolute value of the charge of lgwren. As found experimentally,
up is somewhat smaller than (can you explain this physically?). The total emtris

j:jn+jp=(an+ap)E

or

J=0cE (2.13)

where

o=0,+0,=0Nu,+ qpy, (2.14)

is thetotal conductivityof the material. For pure semiconductor,
o, =qn (e, + #,) (2.15)

where we have taken (2.10) into account. Equatf@ris3) and (2.14) express Ohm’s
law for a semiconductor.

We note that, in general, the conductivitig a measure of the conducting ability of
a material that obeys Ohm’s law. Indeed, the laigey the greater is the current for a
given value of the electric field. It is now cleahy, under normal conditions, a metal
is much more conductive than a pure semicondubfocomparing the conductivities
(2.5) and (2.15) we see thatewa>> 0; . This is due to the fact that the electronic den-
sity n of the metal is much larger than the intrinsic aamtrationn; of the semicon-
ductor i>>n;) since the metal has many more mobile chargee @lectrons) at its
disposal, compared to the number of electrons aelshn the semiconductor. The
disadvantage of the semiconductor is, of course ptiesence of the forbidden band;
in other words, the need for covalent bonds to oé&dn before any mobile charges
may appear in the crystal.

2.6 Temperature Dependence of Conductivity

A fundamental difference between metals and serdiectiors has to do with the way
the conductivity of each substance is affected Hey change of temperature. It has
been observed that a raise of temperature prodarcéscrease of resistance (thus a
decreaseof conductivity) in metals. On the other hand, iacrease of temperature
causes aincreaseof conductivity in semiconductors. To understanese effects we
must examine the way in which the various factggearing in the expressions for
the conductivity are affected by temperature irhezase.
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A. Metals

The conductivity of a metal is given by Eq5(2o=qnu. The chargej of the elec-
tron is, of course, independent of temperaturemktals, the electronic density
(number of free electrons per unit volume) is fixealependent of temperature, given
that the number of free electrons in the crystgué to the total number of valence
electrons of the atoms in the lattice, all of whatlbms have been ionized) is deter-
mined from the outset and is therefore not affebietemperature changes. However,
the mobilityu of the electronslecreasesvith temperature, for the following reason:
An increase of temperature causes an increaseeaddrtiplitude of vibration of the
lons composing the lattice, hence results in aneased probability of collisions of
free electrons with ions. This makes it more diffidor the electrons to move in be-
tween the ions, with the result that the averadecity of the electrons is decreased
for a given value of an applied electric field. Shaccording to (2.1), the electron
mobility x decreases with temperature. We conclude that

e by increasing the temperature the conductivity ofetal is decreased.
B. Intrinsic semiconductors

The conductivity of a pure semiconductor isegivoy EQ. (2.15)5=qn; (unt up). An
increase in temperature causes an increase ofthbar of electron-hole pairs in the
crystal, since more and more covalent bonds areebrand more and more electrons
of the valence band are excited to the conductardpleaving holes behind. This re-
sults in an increasef the intrinsic concentration,. The mobilitiesu, andyu, are re-
duced somewhat with the increase of temperaturenbienough to match the in-
crease ofn; . We conclude that

e by increasing the temperature the conductivity oseamiconductor is in-
creased.

At sufficiently high temperatures the conduityivof a semiconductor becomes
comparable to that of a metal. Of course, at orglitemperatures metals are incom-
parably more conductive than semiconducfdFfée latter substances, however, have
the advantage of possesstmg kinds of mobile charges, namely, electrons andsol
This makes semiconductors extremely useful in elaats technology.

A note on superconductors

The phenomenon aluperconductivitys interesting from both the theoretical and
the practical point of view. The difference betwegnordinary metal and a supercon-
ducting one becomes apparent by comparing the sueresenting the change of
resistivity with absolute temperature (Fig. 2.8).

’ For a good conductom ~ 107? electrong¢n®. For an intrinsic semiconductor at room tempegatur
(300K), n; ~10"°-10" electrongint.
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O ~300K T O T, T

ordinary meta superconducting met

Fig. 2.8. Change of resistivity with geenature in metals and superconductors.

As mentioned above, the electrical resistarice metal is due to vibrations of the
ions composing the crystal lattice. As the tempeeal’ decreases, the amplitude of
vibration becomes smaller and so does the redispvof the material. As found ex-
perimentally, at ordinary temperaturd3-300K) the resistivity is proportional to the
absolute temperature. If this were to be the casalf 7, the resistance of the metal
should vanish fof—0. In reality, however, this does not occur. Thesomn is that, in
addition to the vibrations of the ions there areeotfactors contributing to the resis-
tance of the metal, such as, e.g., imperfectionsnpurities in the crystal lattice. At
very low temperatures these factors are predomioest ionic vibrations, the latter
tending to die out a¥§ approaches absolute zero. The resistivity thudstém a finite
value pp as7—0.

Things are different withsuperconductors the resistivity of whichvanishes
abruptlywhen the temperature drops belowariéical temperature I characteristic for
the given material (at temperatures abdya superconductor behaves as an ordinary
metal). For most natural superconductors (e.g.cumgror lead) the critical tempera-
ture is a few degrees above absolute zero, whidiyhanakes these substances useful
in applications. Compounds have been discoveredewer, exhibiting superconduct-
ing properties at much higher temperatures (exogetl80K). These discoveries have
opened new possibilities in superconductor techgyldpplications include (but are
not limited to) the construction of superconductinggnets for creating very strong
magnetic fields, the manufacturing of magnetomettersmeasuring extremely weak
magnetic fields (these are useful devices in médesearch), the storage of electrical
energy without losses by using superconductingsrietg.

2.7 Semiconductors Doped with Impurities

The conductivity of a semiconductor is increasephificantly by the addition of suit-
ableimpurities A doping with impurities spoils the balance ohcentrationsr{=p)
between electrons and holes that exists in thangitr (pure) semiconductor. We thus
distinguish two types of semiconductors with impas; namelyn-typesemiconduc-
tors if n>p, andp-typesemiconductors ip>n. In n-type doping the electrons are the
majority carriersand the holes are timeinority carriers while the converse is true for

p-type doping.
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A. Semiconductors with n-type doping

Imagine that, in a crystal of pure germaniune)@r silicon (Si) we replace a few
tetravalent atoms with atoms ofpantavalentlement such as phosphorus1®), or
arsenic (As33). The pentavalent element is caltkmhor since its atoms offer an extra
valence electron compared to the atoms of thensitrisemiconductor, thus contribut-
ing to the conductivity of the crystal. The 4 oeth valence electrons of the donor
atom form 4 covalent bonds with 4 neighboring at@esor Si, while the % electron
Is unpaired and is easily freed from the donor atibra related ionization energy be-
ing of the order 00.01eV. Thus, with the addition of a donor we succeethaneas-
ing the number of free electrons in the crystal.

The doped semiconductor is a novel quantunesysthose energy-band diagram
is expected to differ in some respects from thahefintrinsic semiconductor. Where
in the diagram will the 8 valence electron of the donor atom be accommodzeed
fore it is detached from the atom to which it belon@ttainly not in the valence
band, since this band is already filled at low terapures. Nor can the electron be in
the conduction band, given that it has not yet beeed from the donor atom. The
only remaining possibility is that thid"&alence electron of the donor is onewen-
ergy levelEp that appears inside the forbidden band, just belearconduction band.
A very small amount of energy (about 0 is needed in order for the electron to
be excited to the conduction band, as seen iInZF8Ey represents the top level of
the valence band, while: is the bottom level of the conduction band).

conduction ban
EC
E, } ~0.01eV

\ 4

Fig. 2.9. Band sture of am-type semiconductor.

The addition of donor impurities in an intriessemiconductor results not only in
the increase of the number of free electrons incireduction band but also in the
decrease of the number of holesthe valence band. This happens because the free
electron surplus leads to an increased rate ofmbowtion of electrons with holes.

B. Semiconductors with p-type doping

In a crystal of pure Ge or Si we replace a fetwavalent atoms with atoms of a
trivalent element such as borom,(5), gallium (Ga,231) or indium (In,49). The
trivalent element is calledcceptorsince its atoms, having one less valence electrons
compared to the atoms of the intrinsic semiconduaty accept the offer of one
electron from the atoms of the semiconductor. Témeptor atom forms 3 covalent
bonds with 4 neighboring atoms Ge or Si, tffebénd being incomplete. This bond
can be completed by a valence electron of somebpedom Ge or Si, the electron
leaving behind a new hole in the crystal (the rezpienergy for this process is of the
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hind a new hole in the crystal (the required endagythis process is of the order of
0.01eV). Thus, by adding acceptor impurities we managmdcease the number of
holes in the crystal.

The acceptor introduces a newacantenergy levelE, inside the forbidden band,
just above the valence band. By receiving a srmadiumnt of energy (about 0.@1) an
electron of the valence band can easily be exttadtlis vacant level, leaving a hole
behind (Fig. 2.10).

conduction ban

Ec

Es 3 | ~0.01eV
“ R
valence ban

Fig. 2.10. Band sture of ap-type semiconductor.

The addition of acceptor impurities in an insic semiconductor not only increases
the number of holes in the valence band but ééswweases the number of electrams
the conduction band due to an increased rate ofmbmation of electron-hole pairs.
It is impressive that even a small amount of dogsay, one donor or acceptor atom
for every 16 atoms of intrinsic semiconductor) can increasecthreductivity signifi-
cantly (by about 10 times) at normal temperatures.

2.8 Mass-Action Law

In the previous section we mentioned that the amdiof impurities to an intrinsic
semiconductor causes an increase of concentrafiamne type of charge carriers
(electrons or holes) with a simultaneous decreastha@ concentration of the other
type of carriers. (In an intrinsic semiconductag tiwvo concentrations assume a com-
mon value, equal to the intrinsic concentratmpn This process does not take place in
an arbitrary manner but obeys a certain physieal ¢alled thanass-action lavl,2].

We calln andp the concentrations of electrons and holes, resedgtin a semi-
conductor of any type. When the semiconductor ipure form (that is, before its
doping with impurities) the two concentrations argial:n=p=n; . After the doping,
however, we have thatzp (except in a special case to be seen in Sec.l2€9jould
be stressed that the values of the concentratigmsindn; are measured in conditions
of thermal equilibrium that is, at a givergonstant temperature. The mass-action law
can be stated as follows:

Under thermal equilibrium, the product np of conitations of electrons and
holes in a given semiconductor is constant, inddpet of the kind or the
amount of impurity doping in the semiconductor.



34 CHAPTER 2

This can be expressed mathematically as follows:

KP)doped semiconductor  (NP)intrinsic semiconductor = NP=NiN; =

np=n’ (2.16)

We note that the intrinsic concentrationdepends on the temperature, increasing
with it (see Sec. 2.6). Therefore, Eq. (2.16) isdvéor a given,constant temperature

By means of the mass-action law we can easgiyaen why the doping of a pure

semiconductor increases the conductivity of theemngt The conductivity of a semi-
conductor (whether doped or not) is given by theegal expression (2.14):

o =qnu, + qpu,

Since the difference betwe@n andy, is relatively small, we can make the approxi-
mation

My =y =
Then,
o=qu(n+ p (2.17)

We notice that the conductivity depends on the efinoncentrations of electrons and
holes. By using (2.16), we have:

(n+p?=(n- p*+4np=(n P’+4 1 =
(n+ p)? = (n- P2+ constant

Thus (2.17) yields

qu,u\/(n— p)* + const. (2.18)

where the constant quantity inside the squareisoetual to 4 and depends on the
temperature. From (2.18) we deduce that the conaliyct assumes einimumvalue
when n—p=0 < n=p, which, in turn, occurs when the semiconductonignsic.
Thus, by the slightest doping we will havep= 0 < n=p, therefore the value of
will increase (provided that the temperature isstant). An increase of the amount of
doping increases the differenge-g, hence also the value efaccording to (2.18).

In practice, the amount of doping in a semieanor is minimal, of the order of
0.0001%. This sounds strange, given that an increasedndopould result in a
greater conductivity. Let us not forget, howevhattthe usefulness of semiconductors
doesn’t lie so much on the degree of their conditgtbut rather on thenannerthese
substances conduct electricity, by meansvad kinds of charge carriers. A much
heavier doping would increase the majority carrigignificantly but, at the same
time, it would make the minority carriers almostappear!
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Application: We will evaluate the concentrationsrafnority carriers inn-type and
p-type semiconductors, given the intrinsic concernat; and the concentratiomd,
andNx of donor and acceptor atoms, respectively. (Thgtrature is assumed given
and constant.)

@ n-type semiconductoiVe assume that almost all donor atoms are ionibed,
is, they have contributed theil’&alence electron, which is now a free electrorhwit
energies in the region of the conduction band. l@&nather hand, almost all electrons
in that band are due to the donor, given that tagnty of free electrons that preex-
isted in the pure semiconductor have already beeonmbined with holes in the va-
lence band. It is thus reasonable to make the appation n~ N,. By using the
mass-action law (2.16) we can now find the conediatn of holes, which constitute
the minority carriers:

p=—— (2.19)

(b) p-type semiconductorAlmost all holes in the valence band are due ® th
acceptor hence,p~ N,. By using Eq. (2.16) we find the concentratioretsctrons,

which are the minority carriers in this case:

n=—_ (2.20)

2.9 Semiconductors with Mixed Impurities

In a doped semiconductor it is possible for domapurities to coexist with acceptor
impurities. This composite semiconductor will betgbe n or typep, depending on
whether the majority carriers are electrons or $ialespectively. We calp the con-
centration of (pentavalent) donor atoms &iadhe concentration of (trivalent) accep-
tor atoms. We distinguish the following cases:

@ If Npo=Na, thenn=p=n;, wheren; is the intrinsic concentration in the pure semi-
conductor. Thus, the extra electrons from the daxactly annihilate the extra holes
from the acceptor and the semiconductor behaveshintrinsic one.

() If Np>Na, then n>p and the semiconductor is tfpen. The majority carriers
are the electrons. If there were no acceptor atantise crystal, the electron concen-
tration would be almost equal to the concentratibdonor atoms (cf. Application at
the end of Sec. 2.8). The acceptor atoms, howeligrinate part of the electrons. As-
suming thatNp>>N , we can make the approximation= N, — N,. By the mass-

action law (2.16) we find the concentration of IsoMhich are the minority carriers:
p=—"— (2.21)

© If Na>Np, then p>n and the semiconductor is tyfpep. The concentration of
holes (majority carriers) i~ N, — N, (by assuming thallx>>Np), while the elec-
tron concentration is found with the aid of (2.16):
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n2

n=—-»=— 2.22
N - N, (2.22)

2.10 Diffusion Currents in Semiconductors

The origin ofdiffusion currentss different from that of currents obeying Ohmésvl
Diffusion currents constitute statisticalphenomenon and are not related to the exis-
tence of an electric field. They are due teamuniform distributiorof charge carriers
(electrons or holes) in the crystal so that theceatrationsn and p vary from one
point to another

n=ny,2, p=pKxVy,2

This inhomogeneity results in a transport of etmtsror holes from regions of greater
concentration to regions of lesser concentratioorder for the distribution of carriers
to finally become uniform. This oriented motion diarges constitutes a diffusion
current.

The diffusion-current densitief;p and J_ for holes and electrons, respectively, are
given byFick’s law:

J,=-qDb,Vp , J,=+qDVn (2.23)

n n

whereq is the absolute value of the charge of the elactand wheréd, andD, are
thediffusion constantfor holes and electrons, respectively. We notetti@direction

of jn is oppositeto the direction of motion of the electrons (foe fpositively charged
holes, jp Is in their direction of motion). In the case ofigiform distribution of car-
riers, the concentrations and n are constant so that,= 0 andJ, = 0.

If the n and p vary in only one direction (say, in thedirection), thenn= n(x),
p=p(x), and the diffusion currents (2.23) take on tlgelaraic form

dp dn
J =—gb. —F&©, J = D— 2.24
p q pdx n +q ndX ( )

The choice of signs in Egs. (2.23) and (2.24sihbe consistent with the following
physical requirement:

The direction of motion of the carriers is from i@gs of higher concentration
to regions of lower concentration.

Let us thus check the correctness of our signsa¥game, for simplicity, thai= n(x)
and p=p(x).
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Fig. 2.11. Electron and hole concentrationsvatpoints an infinitesimal distandx apart.

We consider a distribution of electrons ancebalong the-axis (Fig. 2.11). Leh
andp be the corresponding concentrations at the latcatiat some given moment. At
that same moment the concentrations at a nearlyidocx+dx aren+dn and p+dp,
where thedn and dp represent the changes of concentration as one srfova x to
x+dx. Without loss of generality, we assume tthat0 anddp>0, so thah+dn>n and
p+dp>p. This means that both concentrations increaskerpbsitive direction of the
x-axis. Therefore both the electrons and the holes move in thenegativedirection
of that axis, i.e., from the location of higher centration to the location of lower
concentration. We must now demonstrate that thessig Eq. (2.24) conform to this
requirement.

In the case of the holes we have that

(2.24)
%>O = Jp<0
dx

Thus, according to (2.24), the curreﬁ]}; is in the negative direction of theaxis.

Since holes are positively charged, their directbmotion coincides with that oip;

that is, the holes move in the negative directidms is in agreement with the predic-
tion made above.

For the electrons we have that

(2.24)
@>O = J,>0
dx

Thus, according to (2.24), the curre.ﬁt is in the positive direction of theaxis. But,

as will be explained in Chapter 6, the directionmadtion of the (negatively charged)
electrons is opposite to that of the current, wmakans that the electrons move in the
negative direction. Again, this agrees with thedprieon made previously.
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QUESTIONS

1. Give a description of the energy bands of metalsylators and semiconductors.
On the basis of the energy-band diagram, explaretéctrical conductivity of each of
these types of solid.

2. Explain why diamond is transparent while sodium gedmanium are opaque.
(Energies of photons in the visible spectrum:-B.&V.)

3. Consider three different crystals. Crysdahbsorbs all electromagnetic radiation up
to and including optical frequencies; crysBahbsorbs radiation whose photons have
energies of at least 563/ crystalC absorbs radiation with energies of at leasted/8
Make a qualitative diagram of the upper energy bdod each crystal and describe
the electrical and the optical properties of thegstals. (Energies of photons in the
visible spectrum: 1.53 eV.)

4. Consider two crystals. Crystalabsorbs all electromagnetic radiation up to and in-
cluding optical frequencies, while crysBlabsorbs radiation whose photons have en-
ergies of at least 0.8V. The crystals are brought from a low-temperategan to a
high-temperature region. What effect will this 8T have on the conductivity of
each crystal?

5. Describe thehysicalsignificance of each of the following concepts:
a. Conduction band of a metal.
b. Valence and conduction bands of a semiconductor.
c. Energy gap in a semiconductor.
d. Hole in a semiconductor.

6. By using the general form of Ohm’s law, derive thmiliar form, 1=V/R, of this
law for a metal wire of constant cross-section.

7. On the basis of Ohm’s law, explain why a metahisch more conductive than an
intrinsic semiconductor at normal temperatures.

8. Describe the effect of temperature changes ordhductivity of metals and semi-
conductors. How do superconductors differ from mady metals in this respect?

9. Describe the physical mechanism by whichnaype or a p-type doping contrib-
utes to the conductivity of a semiconductor. What the minority carriers in each
case?

10. On the basis of the mass-action law, explain whydping a pure semiconductor
with impurities the conductivity of the substansencreased.

11. Consider a sample of unit volume of a crystal wfepgermanium (Ge). The num-
ber of mobile electrons in the sample is equad.t&Vhile keeping the temperature
constant, we repladd atoms of Ge with phosphorus atoni®s5) and another 19
atoms of Ge with boron atomB,(5). What will be the number of electrons after the
doping process is completed?
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12. As argued in Sec. 2.2, diamond is transparentdiscenergy gafggs exceeds the
energy of photons of visible light, making it imgdse for such photons to be ab-
sorbed by the crystal. Instead of being absolutelygsparent, however, some dia-
monds have a deep blue color due to the presenoeron atomsKg,5) in the crystal.
In what way do the boron impurities alter the egdrgnd diagram of pure diamond?
Make a qualitative diagram for the blue diamon#irg into account thaE; ~6eV
and that the photons of the “red” region of theiagitspectrum have energies of the

order of 1.7eV. (Assume approximately that light consists of ad"rand a “blue”
component.)

13.In what respect are diffusion currents differeoircurrents obeying Ohm’s law?
How are the signs in the expressions (2.24) fdusiibn currents justified?
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DISTRIBUTION OF ENERGY

3.1 Some Basic Concepts from Statistical Physics

By systemwe mean a set of identical particles such asrelest atoms, molecules, or
even holes in a semiconductor. The manner in wthehvarious systems exchange
energy with their surroundings constitutes the nmsibject ofThermodynamicsin
Thermodynamics one is not particularly interestethe microscopic properties of the
particles that compose the system. Macroscopicigddysoncepts such as heat or en-
tropy are defined as experimentally measurable tifienwithout immediate connec-
tion with the internal structure of the system.

The macroscopic behavior of a system, howael@esdepend on the microscopic
properties of the constituent particles. For exanfiie system of free electrons in a
metal behaves differently from the system of mdieswf an ideal gas. It is thus nec-
essary to connect the macroscopic behavior of &rmeyto its microscopic structure.
This is essentially the subject $fatistical Physics

Many properties of a system (such as, e.gteitgperature) are only defined if the
system is in a state dfiermal equilibrium This means that there is no exchange of
heat between the system and its environment, dsag@lo heat exchanges among the
various parts of the system. (We recall that heat form of energgxchangehat, in
contrast to work, cannot be expressed macroschpi@slforce< displacement.) In a
state of thermal equilibrium the system is charaze by a definite, constant abso-
lute temperaturd’. In general, a system that does not interact ghexchanges no
energy) with its surroundings is said toibelated

We now consider an isolated system consistirglarge number of identical parti-
cles. We assume that the energy of each particeastized and may take on certain
valuesEs, E», E3, ..., characteristic for this system. We say that eaatticle may
occupyone of the available energy levélg E», E3, ..., of the system. We also assume
that the system occupiesit volume Hence, all physical quantities concerning this
system will be specifieger unit volumeAt some instant the particles are distributed
to the various energy levels so timaparticles (per unit volume) occupy the letl
(which means that each of thesearticles has enerdy), as seen in Fig. 3.1.

E
E4 L J n4:1
E3 ® ® n3=2
E, n,=0
E1 ® ° ® n1:3

Fig. 3.1. Identical particles occupying avaiéabnergy levels of an isolated system.

40
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The total number of particles in the systemgaal to

n:Zq (3.1)

while the total energy of the system is
U=>nE (3.2)

The ordered setn{, n, nz ..) = (n) constitutes apartition and defines a
microstateof the system, compatible with the macroscopitestietermined by the
numbern of particles, the total enerdy, etc. By the expression (3.2) we implicitly
assume that the particles do not interact (oreagt| do not interact too strongly) with
one another, so that we may define an average \esegarately for each particle.
This is approximately true for the molecules ofaldgases, as well as for the free
electrons in metals.

Since the system is isolated, thendU are constant. However, Eqs. (3.1) and (3.2)
do not determine the partitiom; uniquely, given that different partitions)), (n;"),
(ni"”’), etc, may correspond to the same values ahdU. Now, for givenn andU
there is amost probablepartition (microstate). When the system is in thigte of
maximum probability, we say that it is gtatistical equilibrium(in Thermodynamics
the termthermal equilibriumis used). When an isolated system reaches adftate-
tistical equilibrium, it tends to remain in thattd — unless, of course, it is disturbed
by some external action. Furthermore, as mentigmediously, in a state of equilib-
rium the system has a well-defined, constant teatpeg7. As a rule, we will always
assume that the systems we consider are in statisjuilibrium.

Assume now that the particles in the systenehenergies that vamgontinuously
from E; to E; (E; < E<Ey) instead of taking on discrete valuesE,, Es,... This is the
case for the free electrons in a metal — theirgrasrvarying continuously within the
limits of the conduction band — as well as for thelecules of an ideal gas that occu-
pies a large volume. In this case there is anitefinumber of energy levels varying
between the limit valueg; andE, . The distribution of the particles of the system
among these levels is now described with the aid fainctionn(E), to be called the
occupation densitydefined as follows:

The product (E)dE represents the number of particles, per unit volume
whose energies have values between E and E+dE

One may say that the occupation dens(fy) expresses thdistribution of energyn

the system. More accurately, for a given valuef the energy, the corresponding
value n(E) describes the “tendency” of the particles in slygstem to occupy energy
levels in the vicinity ofE: a largem(E) means a larger number of particles in the en-
ergy region betweeB andE+dE.

It is not hard to see that the total numbef particles in the system, per unit vol-
ume, is equal to

! We assume that the valugsof the energy are characteristic of the speéificl of system and dnot
depend on the volume of the system.



42 CHAPTER 3

n:jEEZ n(E) dE (3.3)

In the case of metals, represents the number of free electrons per whitnve; that
is, theelectronic density2.3) of the metal.

In analogy to the situation with atomic eleogpthe quantum state of a particle in
the system is described with the aid of a set ahtjum numbers, characteristic of the
particular kind of system. In general, to everyuedt of the energy (that is, to every
energy level) there correspond many different quanstates. Some of them will be
occupied by particles while others will be vacdnta manner similar to the definition
of the occupation densit{E), we now define thdensity of stated(E) as follows:

The product KE)dE represents the number of states, per unit volumtheof
system, whose energies have values between E aitfl E+

Like the occupation density, the density of stagesnly defined if the energies of the
particles vary in a continuous manner. It is albwious that we cannot expect to find
any particles in an energy region where there arallowable quantum states. There-
fore, n(E)=0 whenN(E)=0. The converse inot true, given that there may exist al-
lowable energy regions where all states are vaghistis, e.g., the case with the up-
per part of the conduction band of a metal).

3.2 Maxwell-Boltzmann Distribution Law for an Ideal Gas

An important problem in Statistical Physics is thistribution of energy in ardeal
monatomic gasSince the gas molecules consist of a single atbeir energy is
purely translational kinetic(there is no intermolecular potential energy, rothere
the rotational or the vibrational kinetic energpital of a composite molecule). The
molecular energy levels are thus given by theimeld= Y2my?, wheremis the mass
of a molecule and whenrg are the possible values of the velocity of the enoles.
For given physical conditions, each leglis occupied by all molecules having a
common speed .

The gas is a quantum system confined withidithged space of its container. Ac-
cording to Quantum Mechanics, the energy of theemdés is quantized and there-
fore thev; andE; take on discrete values, as suggested by thefube andexi. But,
when the volumé/ occupied by the gas is large, we can approximassume that
the molecular kinetic energ= ¥ mV is not quantized but varies incantinuous
fashion. The energy distribution in the systemrdfae, involves the concepts of oc-
cupation density and density of states, definedha previous section. As can be
shown [1,2], the density of states is given byekpressioh

N(E) =i—’§ (2m)*? B2 (3.4)

2 Since the energl is purely kinetic, we have th&> 0; thus the presence Bfinside a square root is
acceptable.
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Regarding the occupation densiE), we recall that it is defined by demanding
that the produch(E)dE represents the number of molecules, per unit velumaving
energies betweels andE+dE. As is found [1,2], when the gas is in statistiequilib-
rium,

2zn
n E —__ e El/Z e—E/kT 35
(B) (PKT)P2 (3.9)

wheren is the concentration of the molecules (number ofecules per unit volume)
andT is the absolute temperature. Note tthetre is no limit to the number of mole-
cules that can occupy a given quantum stateother words, the molecules of the
ideal gas do not obey the Pauli exclusion principle

Theaveragekinetic) energyof the molecules at temperatures given by [1,2]
U)=S kT (3.6)

The constank appearing in Egs. (3.5) and (3.6) is called Boétzmann constardnd
is equal to

k=8.62x 10°eV /K= 1.3& 1G°J K (3.7)

If N is the total number of molecules in the gas, ti@l energy of the system is equal
to N<U>. Thus, ifV is the volume occupied by the gas, tb&l energy per unit vol-

umeof the system is
U=—(U)= n<U>:g nkT (3.8)

Notice that, according to (3.6),

the absolute temperature T of an ideal gas is asmenof the average kinetic
energy of the molecules in a state of statisticalilédorium.

In particular,the kinetic energy of the molecules vanishes ablates zero(T=0). As
we will see later on, an analogous statememtoisvalid for the free electrons in a
metal, despite the superficial similarities of thger system with the molecules of an
ideal gas.

3.3 Quantum Statistics

We would now like to examine quantum systems thatnaore microscopic, such as
the free electrons in a metal. The Maxwell-Boltzmameory, which made successful
predictions in the case of ideal gases, provestle$s suitable for the study of elec-
tronic systems. Let us explain why.
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The Maxwell-Boltzmann theory is essentiallglassicaltheory. Although we re-
garded the gas molecules as quantum particlesef@mple, we assumed that they
occupy quantum states), in essence we treated deaestassical particles since we ig-
nored one of the most important principles of quantheory; namely, thencer-
tainty principle [Don’'t be deceived by the presence of the quartanstant in Eq.
(3.4); the basic result (3.5) for the occupationgiy may be derived by entirely clas-
sical methods, without recourse to Quantum Meclsahiguch an omission of quan-
tum principles is not allowable in the case of glats, given their exceedingly micro-
scopic nature in comparison to gas molecules. idarent of such profoundly quan-
tum problems is the subject Quantum Statistics

In Quantum Statisticgjentical particles thatnteract with one another are consid-
eredindistinguishable By “identical particles” we mean patrticles thaayrreplace
one another without any observable effects in tlaeroscopic state of the system.
(For example, the free electrons in a metal arstida particles since it doesn’t mat-
ter which individual electrons occupy an energy level; ityamattershow manyelec-
trons occupy that level.) In Classical Mechanickere the notion of the trajectory of
a particle is physically meaningful, it is possildedistinguish identical particles that
interact by simply following the path of each pa#iin the course of an experiment.
We say that classical particles afistinguishable This is the view adopted by the
Maxwell-Boltzmann theory for the molecules of idgakes.

Things are not that simple, however, for systedextremely microscopic particles
such as, e.g., the electrons in a metal, giventhi@atincertainty principle does not al-
low a precise knowledge of the trajectories of spgtely quantum particles (in quan-
tum theory the notion of the trajectory is mean@sg). Therefore, whemlentical
quantum particles interact with one another, iimpossible to distinguish one from
another during an experiment. We say that intargdtientical particles anadistin-
guishable (Identical particles that doot interact are considered distinguishable.)

Thus, Quantum Statistics is the enhancemetiteotorresponding classical theory
by taking into account the implications of the umaty principle. According to the
guantum theory, there are two kinds of fundamepdalicles in Nature, which follow
separate statistical laws of distribution of enengyen they are grouped to form sys-
tems of identical and indistinguishable particles:

e The particles that obey the Pauli exclusion prilecigre calledermionsand
they follow theFermi-Dirac distribution law

e The particles that doot obey the Pauli exclusion principle are caltesons
and they follow thdose-Einstein distribution law

As has been observed,

particles having half-integer spin&.g., electronsare fermionswhile parti-
cles with integral spinée.g., photonsare bosons.

Accordingly,
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two or more identical fermions may notcupy the same quantum state in a
systemwhereasan arbitrary number of identical bosons magcupy the same
quantum state.

Given that even the molecules of ideal gasesgaantum systems consisting of
various kinds of fermions (electrons, protons, rang, not to mention quarks!), we
may wonder whether the Maxwell-Boltzmann distribatlaw has any use after all.
Well, what keeps the classical theory in the gasnt@e fact thatior systems in which
the uncertainty principle can be ignoreldoth Fermi-Dirac and Bose-Einstein statis-
tics reduce to Maxwell-Boltzmann statistics. Suckemi-classical system is an ideal
gas of low density (i.e., having a small concermarabf molecules) at a high tempera-
ture. In this case, quantum effects are not sicguifi and the use of classical statistical
methods leads to correct physical predictions.

3.4 Fermi-Dirac Distribution Law

Fermi-Dirac statistics applies to systems of idmitiand indistinguishable particles
that obey the Pauli exclusion principle; that s systems ofermions The free elec-
trons in a metal are an important example of suspstem. Although the energies of
the electrons are quantized, we may approximatggrd these energies as varying
continuously within the limits of the conductionnol This approximation is valid
when the volume of space within which the motionhaf electrons takes place is rela-
tively large (a similar condition is valid for tmeolecules of an ideal gas).

As we know, the mobile electrons in a metal @raracterized asee because of
their ability to move in between the positive iomghout being subject to forces of
appreciable strength (except, of course, when ligtrens accidentally collide with
the ions). In general, a free particle has congtategntial energy that may arbitrarily
be assigned zero value. The enefggf a free electron is thysurely kineti¢ which
means thaE > 0. We will therefore assume that the energy ofea flectron in the
metal may take on all values from O up t©.{The upper limit is, of course, purely
theoretical since the energy of an electron initierior of a metal may not exceed
the work functionof that metal, equal to the minimum energy requif@ the “es-
cape” of the electron from the crystal.)

Let N(E) be thedensity of states the conduction band of the metal. We recalt tha
this function is defined so that the proddE)dE is equal to the number of quantum
states (per unit volume) with energies betweemdE+dE (equivalently, equal to the
number of states belonging to all energy levelsvbehE andE+dE in the conduc-
tion band). As can be shown [1-5] the functid() is given by the expression

4
N(E) :F(Zm)\?)/z Elle]/ El/2 (3.9)

wherem s the mass of the electron. By comparing (3.9h\{8.4) we observe that the
density of states for the electrons in a metalvisd that for the molecules of an ideal
gas. This is due to the two possible orientationthe electron spin, that is, the two
possible values of the quantum numirg = +%2). This consideration does not appear



46 CHAPTER 3

in the Maxwell-Boltzmann distribution since the sdacal theory does not take into
account purely quantum concepts such as that afpimeof a particle.

To find the distribution of energy for the frekectrons in a metal, we must deter-
mine theoccupation density (k). As we know, this function is defined so that the
productn(E)dE represents the number of free electrons (pervahitme of the metal)
with energies betweels andE+dE (equivalently, the number of electrons occupying
the energy levels betweéhandE+dE in the conduction band). It is not hard to see
that, because of the Pauli exclusion principle,rthmber of electrons in this elemen-
tary energy interval cannot exceed the number aifl@ve quantum states in that in-
terval:

n(E)
n(E)dE< N( B dE = Osﬁsl

We observe that the quotien{E)/N(E) satisfies the necessary conditions in order to
represent probability. We thus define prebability functionf(E) by

f(E)=% & nB=f(BNB (3.10)

The functionf (E) represents th&action of states of energy E that are occupigd b
electronsor, equivalently, th@ccupation probabilityor any state of enerdy.

The analytical expression fo(E) is given by thé-ermi-Dirac distribution function

1

f(E) = 1+ eEE/KT

(3.11)

whereT is the absolute temperatukeis the Boltzmann constant (3.7), dagis a pa-
rameter called th&ermi energy(or Fermi leve] on an energy-level diagram) for the
considered metal. We note that, although the ptedisnussion concerns free elec-
trons in metals, the expression (3.11) is genevalliyg for all systems of fermions

By combining (3.10), (3.11) and (3.9) we canvnarite an expression for the oc-

cupation densityn(E), which quantity determines the distribution ofesgy for the
free electrons in the metal:

n(E)= H(EIN(B = e eyr (3.12)

The physical significance of the Fermi enelfgycan be deduced from (3.11) after
making the following mathematical observations:

: (E-E)/kT] _ [ o, E>E
. FoT—0,  lim e }—{ o E<g

. ForT>0, e55)/< =1 when E=Ef
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Therefore,

fof=0 = f(E) ={ Y (3.13)

while

fof>0 = f(EF):% (3.14)

These are physically interpreted as follows:

1. ForT=0, all states with energids<Ef (i.e., all states up to the Fermi level)
areoccupiedby electrons, whilall states withE>Er areempty

2. ForT>0, half the states with enerdy=Er are occupied. That is, the occupa-
tion probability of any state on thermi levelis equal to 50%.

We notice that the functidnE) is discontinuous foE=Er whenT=0. Hence, the
occupation probability on the Fermi level is indeteate forT=0. Figure 3.2 shows
the graph off (F) for T= 0 andT > 0. A diagram of this form applies, in general, to
any system of fermions (not just to free electrionmetals).

f(E)
,~T=0
1.0
05\ —T>0
E
EF

Fig. 3.2. Diagrammatic representation of the Fdbmac distribution function foT=0 and
T>0.

3.5 Fermi Energy of a Metal

As we saw in the previous section, the Fermi ené&kgplaces an upper limit to the
energies of the free electrons in a metal=f. Since the energy of a free electron is
purely kinetic, we can write:

EF = (Ekinetic) max fOI’ T:O (3.15)
That is,

the Fermi energy of a metal represents the maxikingtic energy of the free
electrons at absolute ze(@= 0).

Therefore, af=0, all quantum states in the conduction band ranpfyjiom the lowest
energy leveE=0 up to the Fermi levét=Er are occupied by the free electrons, while
all states abov&r are empty. The diagram in Fig. 3.3 shows the coiolu band of
the metal fofT=0.
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vacant level:

I
EF
E=0 _ } ™~ fully occupied levels

Fig. 3.3. @woetion band of a metal f@r=0.

We notice a fundamental difference of the Fdbmac theory for electrons from
the classical theory for ideal gases. Accordinght latter theory, all gas molecules
must have zero (kinetic) energy at absolute zeroth@ other hand, &t=0 the free
electrons in a metal have (kinetic) energies ram@iom zero up to the Fermi energy.
This occurs because the electrons, being fermmbesy the Pauli exclusion principle
which does not allow all of them to occupy the Istvenergy leveE=0, given that
this level does not possess a sufficient numbeuahtum states to accommodate all
electrons. At temperaturé6>0, however, by receiving thermal energy, some free
electrons acquire (kinetic) energies greater thanThese electrons then occupy en-
ergy levels above the Fermi level within the corsucband. As we saw in Sec. 3.4,
on the Fermi level itselfalf the available quantum states are occupied fb.

We now describe a method for evaluating themkF@&nergyEr of the system of
mobile electrons in a metal. Latbe the electronic density of the metal (number of
free electrons per unit volume) and IKE) be the occupation density of the Fermi-
Dirac distribution. These two quantities are redabg Eq. (3.3):

n:jEEzn(E)dE:j:d 5 dE (3.16)

where here we have pHi{=0 andE,=+« (cf. Sec. 3.4). Using the expression (3.12)
for n(E), we have:

oo 7E1/2
n:jOWdE (3.17)

If we could calculate the integral in (3.17) anaigtly, the only thing to do would be
to solve the result foEr and thus express the Fermi energy as a functionaoidT.
Since, however, handling the above integral isamoeasy task, we will restrict our-
selves to something much easier; namely, we witllleateEr for the special case
whereT=0. From (3.10), (3.9) and (3.13) we have thathettemperature,

0, E>E
n(E)= f(E) N(B = (3.18)
yEY?, 0<E<E

Substituting (3.18) into (3.16), we find:
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rhj?madEJ:dBdE{?yédeO:z

nzgyﬁyz (3.19)
so that
3[’] 2/3
EFz(——j (3.20)
2y

We observe that the Fermi energy of the meét&kFa depends only on the concen-
tration n of free electrons and is independent of the dimoessof the crystal (i.e., of
the total number of ions). As can be proven (s¢edJdc. 9-3) the value &r that we
have found does not change much at higher tempesgatlihus, although derived for
T=0, relation (3.20) will be assumed vafar all T. Typical values oEr for metals
range from abouBeV to 12eV.

3.6 Fermi-Dirac Distribution for an Intrinsic Semiconductor

In an intrinsic semiconductor the electronic systnmterest consists of the valence
electrons of the atoms; specifically, the electrthra participate in covalent bonds as
well as those that are free. In terms of energy afiorementioned two groups of elec-
trons belong to the valence band and the condubtmal, respectively. The distribu-
tion of energy to the electrons is determined lgydbcupation density(E), which is
related to the density of statdéE) and the probability functiof(E) by

n(E) = f (E)N(E) (3.21)

As we know, the product(E)dE represents the number of electrons, per unit velum
of the material, with energies betweeandE+dE.

The form of the functioN(E), analogous to the expression (3.9) for metals, de
pends on the energy region within which this fumetis defined (see Fig. 3.4) [3-5].

ECIIIIIII

E

e,

E,

Fig. 3.4. Energy baoéisn intrinsic semiconductor.
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a. In theconduction band

N(E)=y(E- E)", E>E (3.22)
b. In thevalence band

N(E)=y(E - B", E<E (3.23)

c. In theforbidden bandof a pure semiconductor there are no allowable tyman
states; therefore,

N E(=) 0,E <E<E (3.24)
The probability function for the electrons isen by the Fermi-Dirac formula:

1

f(E)= 1+ 55

(3.25)

Y/ KT

whereE admits values in the above-mentioned three enegpns. We would now
like to find the probability functiof,(E) for theholesin the valence band of a semi-
conductor. We think as follows: A quantum statemtenergy levekE in the valence
band is either occupied by an electron or “occupi®da hole. Iff (E) andf,(E) are
the corresponding occupation probabilities, then

f(E)+fHh(E)=1 < f(E)=1-1(F) (3.26)
Substituting the expression (3.25) fidiE), we find that
e(E—EF)/kT

fp(E) = 1+ (B E)KT

(3.27)

Physically, the functiorf,(E) represents the fraction of states of eneéfdiat arenot
occupied by electrons, or, equivalently, the prdiigof non-occupation of a state of

energyE.
3.7 Fermi Energy in Semiconductors

The Fermi energy of amtrinsic semiconductor is given by Eqg. (3.28), below, where
the meaning of the symbols is shown in Fig. 3.5].3-

E

Fig. 3.5. Position of the Fermi level
in an intrinsic semiconductor.
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E. =EV;2EC (3.28)
We write:
EFzEv+('Ezv+EG)=EV+% (3.29)

This means that

the Fermi level of an intrinsic semiconductor isdted at the center of the
forbidden band.

FurthermoreFEr is independent of temperatyras well as independent of the dimen-
sions of the crystal (that is, of the number ohataon the lattice).

How should we interpret the presenceEpfinside the forbidden band of a pure
semiconductor? Must we conclude that thsyafter all, some allowable energy level
inside an energy region we used to consider inaddesto the electrons? No! Gener-
ally speaking, the Fermi ener@y is only a parameter of the Fermi-Dirac distribatio
law anddoes not necessarily represent an allowable enérggl for the electrons
That is, the Fermi level may or may not contaimwalible quantum states. In metals,
Er is an allowable energy level since it is locateside the conduction band. This is
not the case for intrinsic semiconductors, wheeeRarmi level is located inside the
forbidden band.

We note that the presence of the Fermi |&ehside the forbidden band is abso-
lutely consistent with the general physical intetption of the Fermi energy given in
Sec. 3.4. Let us explain why:

(@ ForT>0 we know that(EF)=1/2. That is, half the states of the Fermi level ar
occupied by electrons. In our case, however, thel E&- is located inside the forbid-
den band; hence it may not possess allowable questiates. Thus on the Fermi level
we have the following situation:

% 0 states—= O electrons

which is reasonable, given that no energy levetllmthe forbidden band of antrin-
sic semiconductor may contain electrons.

(b) For T=0, all allowable energy levels belovitr are completely filled while all
allowable levels aboveEr are empty. But, allowable levels immediately belamd
aboveEr exist in the valence and the conduction band,ewsgely. Hence, all levels
in the valence band are fully occupied by the atowailence electrons, while no en-
ergy level within the conduction band contains etets. Physically this means that,
for T=0, all covalent bonds are intact and there arge®électrons in the crystal.

The fact that the levélr is at the center of the forbidden band reflect®lawvious
symmetry between electrons and holes in an intrisemiconductor. This symmetry
Is expressed by the relation



52 CHAPTER 3

n=p=n  (pure semiconductor) (3.30)

In a sense, the Fermi level “keeps equal distanitesi the energy bands occupied by
free electrons and holes, the two charge carriersgbequally important in an intrin-
sic semiconductor.

You may guess now how the Fermi level of a mamiconductor will be affected
if we dope the crystal with impurities. The dopingl spoil the electron-hole balance
expressed by Eq. (3.30). In anype semiconductor the majority carriers are tlee-el
trons in the conduction band, while ip#ype semiconductor the majority carriers are
the holes in the valence band. The Fermi level thigin shifttoward the band occu-
pied by the majority carriergh each case. Thus, in adype semiconductor the Fermi
level moves closer to the conduction band, whila pitype semiconductor it moves
closer to the valence band, as shown in Fig. 3.6.

E
EC - EC -
Ep——— -
S E
E, F
~ ~
n-type p-type

Fig. 3.6. Position of the Fermi leirekemiconductors of typesandp.

In contrast to an intrinsic semiconductor, veheg is independent of temperature
(the Fermi level always lies at the center of tbidden band), in doped semicon-
ductorsEr changes with temperature. Specifically, TaBicreaseskr movestoward
the center of the forbidden band@lhis happens because, by the increase of tempera-
ture more and more covalent bonds are “broken’han drystal, which results in an
increase of concentration of intrinsic carrierstfbelectrons and holes) relative to the
carriers contributed by the impurity atoms. Theaanirations of electrons and holes
thus progressively become equal and the semicomdtestds to return to its intrinsic
state, with a simultaneous shift of the Fermi lemmbard the middle of the energy
gap. Conversely, a$—0, the Fermi leveEr passesabovethe donor leveEp for
n-type doping, obelowthe acceptor levet, for p-type doping.

The value oEr also depends on the concentration of impurity atokading more
donor (acceptor) atoms in arype (p-type) semiconductor results in a further shift of
the Fermi level toward the conduction (valence)dbdn cases of extremely high dop-
ing, i.e., forNp>10" donor atomgcnt or Na>10™ acceptor atom&nt, the Fermi
level may even move into the conduction band owv#ience band, respectively!
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Note: Fermi energy o p-n junction

Thep-n junction[3,5] is in essence a semiconductor crystal ode ef which is
doped with acceptor atoms while the other sideojged with donor atoms, this mak-
ing the structure look like p-type semiconductor in contact with afype semicon-
ductor.

If the two sides of the semiconductor are adereid as separate crystals, their
Fermi levels will be different (in thp-type crystal the leveEr will be closer to the
valence band, while in thetype crystalEr will be closer to the conduction band). If,
now, the two crystals are brought to contact ireott form a single, unified struc-
ture, this new quantum system will possess a swajiee of the Fermi energy. Thus a
single Fermi leveEr, common to thg andn sides of the crystal, will appear in the
energy-band diagram, as shown in Fig. 3.7.

p - region - n- region
S
(@)
(O]
-
conduction ban c
o
T conduction ban
Eq . '
l Fermi level E¢ T
EG
valence ban : l
valence bani

Fig. 3Fermi level in g-n junction.
Thep-n junction is of central importance in Electroni& fs it constitutes a fun-
damental structural element of electronic devicehsas the semiconductor diode and
the transistor.
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QUESTIONS

1. By using the expression (3.5) for the occupatiensity, verify Eqg. (3.3) for the
case of an ideal gadint: Set E;= 0, E;= 0, and use the integral formula

J‘: EY2aE/KT 4E % (7[( k_|_)3)1/2

2. What is the fundamental difference between thesagtabMaxwell-Boltzmann the-
ory and Quantum Statistics? In your opinion, whickory is the most general of the
two?

3. Imagine a bizarre world in which the electrons wiblé bosons while the photons
would be fermions. 8 What would be your grade in a Chemistry class?
(b) What would be the cost of a laser pointétthf: (a) Bosons do not obey the Pauli
exclusion principle. All atomic electrons would tafre tend to occupy the lowest
energy level, that is, the very first subshell. \Whauld then be the structure of an
atom? Would there be any chemical reactiomyA(laser beam is a huge system of
identical photons, i.e., photons in (almost) the same quardtate. Would such a
beam exist if the photons obeyed the Pauli exaupiciple?]

4. Can the occupation density exceed the densityatéstin a system of fermions?
How about a system of bosons?

5. What is the physical significance of the Fermi-Didistribution function? What is
the physical significance of the Fermi energy? ®8gg method for deriving the
probability function for holes in a semiconductdrfhat is the physical significance of
that function?

6. Derive an expression for the Fermi enekEgyof a metal. What is the physical sig-
nificance ofEr in this case? How does the situation differ in panson to the classi-
cal theory of ideal gases?

7. Justify physically the presence of the Fermi lewmside the forbidden band of a
pure semiconductor. (Examine the cabe® andT >0 separately.)

8. Consider am-doped semiconductor crystal. Describe the moditicabf the Fermi
level of the system ifd) we add more donor atom4) (ve add acceptor atoms) (ve
increase the temperature.

9. Consider am-doped semiconductor crystal. We recall that theodamroduces a
new energy levekp in the forbidden band, very close to the conducband. At ab-
solute temperaturg—0, the levelEp is occupied by the"5valence electron of the
donor atom (at very low temperatures the donor atare not ionized). Show that, in
the limit T—0, the Fermi leveEr of the system passaboveEp . [Hint: Remember
the physical significance @ for T=0.]

10. The Fermi energy of a metal is known, equaEto The mobility of the electrons
in this metal isu. Show that the resistivity of the metal is equal t
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p — 3 EF—3/2
2qyu

whereq is the absolute value of the charge of the eledraly is the constant defined
in EqQ. (3.9). Hint: Find the conductivityy=1/p of the metal (cf. Sec. 2.4).]

11. Consider two metalM; andM, . For the electron mobilities and the Fermi ener-
gies of these metals we are given that 4u, and Er,= 4 Er;. The resistivity oM,
is p, = 1.5 x10® Q.m. Find the resistivity; of M1. [Answer:p;= 3x10% Q.m]

12.The electronic density of a metal is known, eqaal.tThe external conditions are
such that, according to the classical theory, trezage kinetic energy of the air mole-
cules is very close to zero. Determine thaximumkinetic energy of the free elec-
trons in the metal according to the quantum theory.

13. Consider a crystal of an intrinsic semiconductortie energy-band diagram the
Fermi level lies 0.4V above the valence band. Determine the maximum leagth
of radiation absorbed by the crystal. Givem= 6.63 x10 >*J.s; ¢ =3 x10° m/s;
1eV=1.6x10"J. [Answer: lna= 15.54x 10" m]
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ELEMENTS OF FIELD THEORY

4.1 Vector Fields and Vector Operators

We consider the standard Euclidean sg&twith Cartesian coordinates, {/, z). We
call (q,, 0, G,) the unit vectorsin the directions of the corresponding axes (&id).

z

Fig. 4.1. A vecin 3-dimensional space.
A vector A in this space is written as
A=AL+AU+ Au=(A A A (4.1)

whereA,, A, A; are therectangular componentsf A. Themagnitudeof A is de-
fined as the non-negative quantity

|Al= (A2 + A+ AP (4.2)

Let B=(B,, B,, B) be a second vector, and tebe the angle betweeA and B

where, by convention, 86 <z. Thescalar (“dot”) product and thevector (“cross”)
productof A and B are defined, respectively, by the equations

A-B= AB+ AB+ AB=| Al Bcog (4.3)

and

! The usual notatior(r, I,IZ) should better be avoided in Electromagnetism sinegy cause confu-

sion (the symboai appears in complex quantities, whke denotes a wave vector).

56
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AxB=(AB- AB)U+(AB- AB y+( AB- AB Y
a, 0o, (4.)
=A A A
B, B B

X Yy z
with
| AxB|=|A||B |sird (4.8)

Notice thatA- B= B- A, while Ax B=— Bx A.

Given a vectorA, theunit vector( in the direction ofA can be expressed as fol-
lows:

Ay e
By using (4.2), it can be shown thaik |- 1.

Exercise{a) Show thaf A|=v A- A and Ax A=0. (b) Show that
A A A
A(BxO=B(CxA=C(AB=|B B (4.6)

cC, C, C

X y z

(c) Show that two nonzero vectofs and B are mutuallyperpendicularif and only if
A-B=0; they areparallel to each other if and only iAx B=0. (d) Show thatAx B
is perpendicular to botd andB. (€) Show thatl, x a,=0,.

A scalar fieldin R® is a mappingd: R>—R. Scalar fields are represented by func-
tions @ (1) = @(x, Yy, z), where

r=x0,+yl4+2zu=(xy2 (4.7)
is theposition vectomf a point inR®, relative to the origin of coordinates of our spac

A vector fieldin R® is a mappingA: R*—R®. Vector fields are represented by func-
tions of the form

AN =A% Y, 9= A(X Yy I+ A XyEu A.XY)7

(4.8)
=(A.ALA)
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Now, let®(x, y, 2) be a scalar field. When they, z change byix, A4y, 4z, respec-
tively, the value of the functio® changes by

AD = @ (X+AX, y+A4Y, 2+42) — D(X, Y, 2) = (T + A7) —D(T) (4.9)
wherer =(X,y,z) and AT = (4x,4y,4z). On the other hand, tlkfferential of @ is

do = 22 4x+ 22 4y 92 g (4.10)
oX oy 0z

where dx= 4x, dy= 4y, dz= Az In generald®=4® (unless® is a linear function).
For very small changesx, dy, dz, however, we can make the approximatidn= A®.

Consider th@ector operator

o0 2+02402-(2 2 2 (4.11)
ox Yoy ‘0z \ox o0y oz

Given a scalar functio®(x, y, 2), we define the vector field

gradd):ﬁgp:adjtwra@uﬁ@@ = 6<D’6cb,acb
0 ox' oy oz

X oy oz j (4.12)

Now, we notice that (4.10) may be written in scgieoduct form:

dq):(aqb oD oD

) ] 'dX,d,d
oX oy azj( % 43

SettingdT = (dx dy, d2 and taking (4.12) into account, we have:

d® = (Vo)-d7 (4.13)

This is a three-dimensional generalization of @maifiar relationdf (x)= f "(x) dx.
We callg the angle between the vectdr® anddf, and we set
dr=|dr |G=(dI)U

where dl =|d¥ | and wherel is the unit vector in the direction aff. Equation
(4.13) is then written:

do = (dl) 0-Vo =|Va| dicoss (4.14)

By (4.14) we can define thrate of change of in the direction ofii :
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—=G-§QD=W@‘ cosf (4.15)

We notice that the rate of change is maximum whe, i.e., when the displacement
d¥ is in the direction oV @ . Therefore,

the vector gradd determines the direction in which the rate of clenf the
function® is maximum.
On the other hand, the rate of change@ofanishes whef=z/2, i.e., whendT is
normalto V@ . This leads us to the following geometrical staam
The vector gradp is normal to the surface(x,y,z)= C (where C is a con-
stant), at each point of this surface.
Indeed, letdr be an infinitesimal vector tangent to this surfatesome point of the
surface. In the direction ofit, &(x,y,)=const. = d@ =(V®)-d7 =0, so that

V@ 1 dF. This condition is valid for evergt tangent to the surfacg(x,y,2=const.
Thus, the vectoV @ is normal to this surface at each point of théamer.

Given a vector fieldA(F) = (AL A, A), we define thescalar field div A and the
vectorfield rot A by the relations [1,2]

- - - O 0 0
divA=V. A= AX+ A’+ A

(4.16)

ox oy 0z

- - - (0 0A 0 0 0 0
rot A=Vx A= oA A U+ 9”9”4 + oA _OA U (4.17)
oy 0z 0z O0X ox 0Y

Equation (4.17) is written, symbolically, in therft?

a4, G
otA-vx A=l 9 2 (4.18)

oX 0y 01Z

Ac A A

As can be proven, the following vector ideestare valid:

rot(grad®@)=VxV® =0 (4.19)

2 One must be careful when developing the determisiace, e.g.,d/0 XA, =Ay(0/0X)! As a rule,
the differential operator is placed the leftof the function to be differentiated.
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div(rot A =V-(Vx A =0 (4.20)

Also,

0°d 0 0@
+

div(grad®)=V .-V = + = V@ 4.21
(9 ) o o o7 (4.21)
where we have introduced thaplace operator
- - 9 09 o7
VP=V.V=—"st——+— 4.22
ox>  oy* o7 (4.22)

4.2 Integral Theorems

Some regions of space possedsoandary whereas others do not. For example, a
spherical region ifR® is bounded by a spherical surface, while a circdisk on the
plane is bounded by its circular border. In gendra boundary of an-dimensional
region =1,2,3) is anrf—1)-dimensional region. In the case of a one-dinmraire-
gion such as a segment of a curmeX), the 0-dimensional boundary consists of the
two end points of the segment.

But, what is the boundary of a spherical sw@afac of a circle? The answer is that
these boundaries simply do not exist! According tbeorem in Topologyhe bound-
ary of a region is a region without a boundary

There is a fundamental theorem in Differen@G&lometry, called (generabtokes’
theorem which in general terms states the following:

The integral of the “derivative” of a field, over eegion 2 possessing a
boundaryoQ, equals the integral of the field itself over timundaryoQ of Q.

The term“derivative” may refer to an ordinary derivative likiédx, to agrad, to a
div, or to arot. Symbolically,

"derivative' of the field= J' fielc (4.23)
0 o0

Let us see some examples:

1. The boundary of a line segmeaib)(is the set of end poin{s, b}. Let f(x) be a
function defined ingb). Relation (4.23) is written, in this case, as

j:f'(x)dx=j:% dx=[ f(3]°= f(H- €2 (4.24)

which is the familiaNewton-Leibniz formulaf integral calculus.
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2. LetC be a curve irR®, connecting pointa andb (Fig. 4.2). We consider an in-

finitesimal displacement] = (dx dy, dJ on C, oriented in the assumed direction of
traversing the curve (say, froato b).

Fig. 4.2. Infinitesimalkgiacement on a curve in space.

If A(F)=A(X Y, 2 is a vector field inR, the value of thdine integral ij-a

will depend, in general, on the choice of the patjoining a andb. Moreover, for a
closedpathC (where the points andb coincide) the closed line integrzg‘flC A-di

will be generally different from zero. Consider ntve special case where the fiedd
is thegrad of some scalar functio®(x,y,?: A=V @ . We then have:

[F@)di=] do=ab)-o(3 (4.25)
¢_(V@)-di=0 (4.26)

where we have taken (4.13) into accoudt here plays the role ofif, since both

represent an infinitesimal displacement in spad&).notice that the value of the line
integral in (4.25) depends only on the end pomtndb of the pathC and isinde-
pendenbf the curveC itself.

3. Consider a volumé enclosed by a surfa&(Fig. 4.3). Thisclosedsurface con-
stitutes the boundary &. We letdv be a volume element in the interior®fand we

let da be an area element 8f At each point oS we draw a vectoda of magnitude
da, normal toS at the considered point. By convention, this veatpresenting aur-
face elements directecdoutward i.e., toward thexteriorof S

da

S

Fig. 4.3. A volumeV/ bounded by a closed surfage
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Let now A(F) be a vector field defined everywhere\inand onS According to
Gauss’ theorenfl-3],

[, (V-Adv=¢_A da (4.27)

A surface integral of the fornﬁsﬂ-ﬁ (where, in general, the surfaSemay be open

or closed) is called thigux of the vector fieldA throughS

4. Consider anpensurfaceS bounded by alosedcurveC (Fig. 4.4). We arbitrar-
ily assign a positive direction of traversifigand we consider an elemedit of C ori-

ented in the positive direction. We also considsudace elementa of S, normal to
S We can choose, if we wish, the opposite directanda, provided that we simul-
taneously reverse the direction df, i.e., the positive direction of traversirg

(SinceS is an open surface, it is meaningless to say daats pointing either “in-
ward” or “outward”.) Therelative direction ofdl and da is determined by theght-
hand rule if we rotate the fingers of our right hand in fesitive direction of travers-
ing the curveC (which direction is consistent with that df ), our extended thumb

points in the direction ofla.

da
<

C

Fig. 4.4. An open surfacgbounded by a closed cur@

Now, if A(T) is a vector field defined everywhere 8@and onC, then, according to
the special form oStokes’ theorerfl-3],

[(VxA)-da=¢_Ad (4.28)

4.3 Irrotational and Solenoidal Vector Fields

A vector field A(F) is said to bérrotational if

VxA=0 (4.29)
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Then, under appropriate topological conditfhrteere exists a scalar functiah(F)
such that

—

A=V® (4.30)

[Notice that, thenVx A=V xV@® =0, in view of (4.19).] Furthermore, the value of
a line integral of an irrotational field, along aree connecting two points andb,
depends only on the limit pointsandb of the curve (not on the curve itself), while
anyclosedline integral of the field vanishes. Indeed:

I:Aazj:(?@)azj:d@=qb(b)—qb(a),

which is independent of the pa#ih»b. Moreover, by (4.29) and by Stokes’ theorem
(4.28), we have:

$A-di=0
A vector field B(F) is said to besolenoidalif
V-B=0 (4.31)

A vector functionA(F) then exists such that

B=VxA (4.32)

[Notice that, thenV-B=V-(V x A) =0, in view of (4.20).] Furthermore, the value of
a surface integral (thiux) of a solenoidal field, on an open surf&bounded by a
closed curveC, depends only on the bord@rof S (not on the surfac8 itself), while
any closedsurface integral of the field vanishes. Indeedubing (4.32) and Stokes’
theorem (4.28), we have:

jss-dazjs(wp).da:cﬁcAd (4.33)

Hence,

J'S B-a—ézj'sz B- dz for anyS, andS; having a common border C  (4.34)

Moreover, ifSis aclosedsurface enclosing a volumé relation (4.31) and Gauss’
theorem (4.27) yield

B-da=[ (V-B dv=0 (4.35)
$B-da=],

% The spatial domain in which the componentstfare differentiable functions must kamply con-
nected[1,2,4].
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Geometrical meaning

e An irrotational vector field cannot have closeddidines: its field lines must
be open.

Fig. 4.5. A lotpetical closed field lin€.

Indeed, let us assume that the irrotationdd fi&r) possesses a closed field li@e
(Fig. 4.5). At each point of the field line, thelfi A istangentto the line. Ifdi is an
infinitesimal segment of the field line, we can sifer thatdl is tangent to the line,
thus collinear withA . Therefore we will have:

<JSCA-E=<JSC|A||E||> C

which is impossible, given that, for any irrotat@bhield, QSA-E =0.

e The field lines of a solenoidal field cannot haveeginning or an end in any
finite region of space; either they are closed eyt begin at infinity and end
at infinity.

Indeed, assume that a number of field linea eblenoidal fieldB begin at some
point of space. Consider a closed surf&sirrounding this point. Then, tHikeix of

the field throughS, proportional, by convention, to the number ofditénes of B
crossingsS (see, e.g., [3,5]) is

@SB-E'#O

which is impossible since it contradicts (4.35).

Physical meaning

e Atime-independent irrotational force field is cengative
(this will be explained in the next section).

e A solenoidal field cannot have isolated sourcesego
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Indeed, the integraﬁsé-&\ is a measure of the total strength of sourcesfieic

B in the interior of a closed surfa@(the field lines of B begin or end at these
sources); see [3,5]. For a solenoidal field, howetre above integral vanishes on any
closed surfac& Hence no field sources may exist insiland, indeed, anywhere in
space.

4.4 Conservative Force Fields
A static (time-independent) force fieldF (F) is conservativeif the produced work
W In moving a test particle from a poidtto another poinB in the field is inde-

pendent of the path joining these points. Equivilethe work done on the particle
along anyclosedpathC is zero:

W, = jf F.dl independent of pathe <j5c F.di=0 (4.36)

Let S be an open surface bounded by the closed cdniy Stokes’ theorem and
by (4.36) we have:

gSfE:js(ﬁxﬁ)-aa:o

This relation must be valid faveryopen surface bounded By Thus we must have:

VxE =0 (4.37)

We conclude that

a conservative force field is necessarily irrotatb

From (4.36) it also follows that [2] there @gisome scalar function such tHatr)
is thegrad of that function. We write:

F=-VU (4.38)

The functionU (1) =U (X, Y, 2) represents thpotential energyof the test particle at
the pointr =(x,y,z) of the field. [The negative sign in (4.38) is pyra matter of
convention and has no special physical significgnce

The workWjg is written:
WAszf F:-le—jf(vU)-Hl:—jfdu -

W, =U T,(~U To(=U ,-U, (4.39)
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Now, according to thevork-energy theorem
Wye=T,—-T, (4.40)

whereT is the kinetic energy of the test particle. By ¢amng (4.39) and (4.40), it is
not hard to show thét

T,+U,=T;+U; (4.412)

The sum T+U ) represents thtotal mechanical energgf the test particle. Equation
(4.41) then expresses thenciple of conservation of mechanical energy

In a conservative force field the total mechanienkrgy of a test particle is
constant during the motion of the particle in thed.
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“ Notice that, if we didn’t put a negative sign #.38), this sign would inevitably appear in (4.41),
compelling us to define the total mechanical enaxgwdifferencerather than as a sum.
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QUESTIONS

1. Show that thegrad is a linear operatorV (f + g) =Vf +Vg, for any functions
f(xy,2) andg(x,y,2). Also show thatv Kf ¥ kVf, wherek is a constant.

2. Show that theyrad satisfies the_eibniz rule V (f g)=gVf+ fVg, for any func-

tions f (x,y,2) and g(x,y,2). We say that thgrad operator is a@erivationon the set of
all differentiable functions if>.

3. Prove the vector identities (4.19) and (4.20).

4. Give the physical and the geometrical significaotthe concepts of an irrotational
and a solenoidal vector field.

5. (@) Show that a conservative force field is necelsarbtational. p) Can a time-
dependent force field=(F,t) be conservative, even if it happens to be irroteti?
(Hint: Is work along a given curve a uniquely definedmiitpin this case? See [4].)
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STATIC ELECTRIC FIELDS

5.1 Coulomb’s Law and Electric Field

Consider two electric chargeg, g, a distance apart (Fig. 5.1). Lef be the unit
vector in the direction frorg; to go. We call F,, the electric force exertemy ¢ on .
According toCoulomb’s law this force is given in S.I. units by the expresbi

F,= F (5.1)

where ¢=8.85<10"* C ?/N.nf. The force is attractive if the charges have ojtpos
signs (102<0), while it is repulsive for charges of the sargnq0:0.>0). We note
that, in particular, the charge of an electror-ig, wherege=1.6x10""°C.

Fig. 5..wd charges a distanceapart.

We say that an electric field exists in a regod space if angtationarytest charge
Qo in this region is subject to a force that, in gahevaries from point to point in the

region. LetF be the force omy at some given point. We define thkectric fieldat
that point as the force per unit charge,

e-F (5.2)
do

In S.I. units the magnitude of the electric fietdeixpressed iN/C, as follows from
the above definition.

The field E that exerts the forcE€ on the test chargg is produced by some sys-
tem of charges that does not containAccording to Coulomb’s law, the force gn

is proportional tajo. Thus the quotientf/qO is eventually independent gf. That is,
the vectorE defined in (5.2) expresses a propatyhe electric field itseléind is in-

dependent of the test charge used to determinkeldelt is also obvious that the di-
rection of the electric field is that of the forae apositivecharge.

! See Appendix A.

68
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Example:Electric field produced by a point charge

We consider aositivetest charge, at a pointP a distance from g (Fig. 5.2). We
call ¥ the unit vector in the direction fromto qo. We draw the casas>0 andg<0
separately.

>0 — o B q<0 — E q,
@ oeoees ——> [ Rk B
r P r P

Fig. 5.2. Electric fields produced by a positivel &ty a negative chargg the test charge, is
positive.

According to (5.1), the Coulomb force exertedgpby q is

2

o1 %9;
drg, 1

Therefore the electric field at poiAtis E= F/q, =

E- 3¢ (5.3)
dre, 1

An electric field of the form (5.3) is calledG@oulomb field

More generally, we consider a set of point ghaq, 0, ..., as well as a test charge
Qo at pointP (Fig. 5.3). We cally, ry, ..., the distances ajfp from the corresponding
charges.

ql r1
0\ .
q I;\z I’2 ) - qO
2 @ ---miimmmmmmee- .
ry P
fy
0.

Fig. 5.3. A set of point chargesrérg electric forces on a test chamge

The total force onp is

= = 1 quI"_ g'\
_Z‘Fi_iz47rgo r2 "= 47zgo,zi2r'

Hence the electric field at poiRtis E= F/q, =
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1 Z% f= Z (5.4)

47rgo ¢

where E, is the Coulomb field (5.3) due tp. We note that thprinciple of superpo-
sitionis valid, according to which

the electric field due to a set of charges equadésvtector sum of the fields due
to each charge separately.

An electric field is said to betatic if the field vectorE is time-independerat all
points (this vector may change, however, from omatgo another). Thus, for a static

field, dE/6t=0 < E = E(¥). In particular, the static electric field produdegla set
of point chargest restwith respect to an inertial observer is cakéekctrostatic

On the other hand, an electric field is saitheéaniformiif, at any time, the field is
spatially constanti.e., has the same vector value everywhere.
5.2 Gauss’ Law

An immediate consequence of Coulomb’s law is Galass. Mathematically, it cor-
responds to the first of the Maxwell equations (&Cr9.

Consider a volum¥ bounded by a closed surfaBdFig. 5.4). An element & is
represented by a vectata normal toS directedoutward and having magnitude
|85|=da, whereda denotes an elementary area (see Sec. 4.2).

Fig. 5.4. A closed surf&lying inside an electric field.

The surfacé lies inside an electric fieldE(r). This field is produced by a system
of charges located both in the interior and in eleerior of S We callQ;, the total
charge enclosed by. Ve also define thlux of E through Sas the surface integral

@SSE-E& According toGauss’ law this flux depends only on theternal chargeQi, .
Specifically,

Qin

&o

gﬁsé.aa: (5.5)
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It should be noted carefully that, although(5rb) only the total charge in the inte-

rior of S appears, the vectdE represents the electric field duealh charges, both
insideand outside ofS The external charges, however, do not contrilbaitdne flux
through the closed surfa&This can be explained as follows:

First, we define arlectric field lineas a curve at every point of which the electric
field vector is @angentvector. The flux of the electric field throughis, by conven-
tion, proportional to the “number” of field lineagsing througls Furthermore, the
field lines of the Coulomb field of a point charggher begin or end at the charge,
depending on whether the charge is positive or thegarespectively. Now, for a
charge in theexterior of S, every field line of its own Coulomb field crossbe sur-
facetwice, once entering and once going out. Hence, whatever flux goesomes
out and, as a result, the total flux crossing fbeexd surface is zero. That is, an exter-
nal charge does not contribute to the total fliotighS. On the contrary, every field
line of a charge in thimterior of S crosses the surface ordpce and thus it contrib-
utes a non-zero flux through

We mentioned earlier that Gauss’ law is an imliate consequence of Coulomb’s
law (see, e.g., [1,3]). We now demonstrate the ews®y i.e., that Gauss’ law yields
Coulomb’s law. To this end, we consider a pointrgha placed at the center of an
imaginary spherical surfacgof radiusr (Fig. 5.5). Without loss of generality, we as-
sume that the charggis positive.

E

Fig. 5.5. A positive charget the center of a spherical surf&e

LetP be any point of the spherical surface. By symmétry electric fieldE atP,

produced byg, will be normal toS, thus parallel to the surface elemetat. Further-
more, the magnitudé=|E | of the electric field will be constant over thafaceS.
By applying (5.5) withQi,= q, we have:

S G __q
8—0_<ﬁSE da=¢ | E|[dal-|Ef_da- E(4 )= E=

Are,r?

If  is a unit vector normal t8 at P, directed toward the exterior 8f(in other words,
having the direction ofiﬁ), we write:

2 Of course, ainfinite number of field lines begin or end at a given geaf By “number” of lines we
actually refer to théensityof these lines, which is conventionally proportbtoq. (See, e.g., [1,2].)
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which is precisely relation (5.3) for the Coulomeld. Finally, if o is a test charge
placed afP, the force exerted oy by the fieldE is

1 9,9,
"L
drg, 1

F=qE=

This is, of course, Coulomb’s law.

It is evident from the above simple examplet Bauss’ law in the integral form
(5.5) can be very useful in problems withigh degree of symmetrin such cases we
may choose the closed surfégeo that the electric field has a constant vl S
which allows us to take the quantiyout of the integral in (5.5). Unfortunately, how-
ever, problems with symmetry are an exception rati@n a rule in Electricity! For
this reason we will try to convert Eq. (5.5) into equivalent equation where the elec-
tric field to be determined will appear in termsiwfderivative rather than its inte-
gral. We seek, that is,dfferentialequation equivalent to Gauss’ law.

An electric field is produced by a system oarges which at a given time are lo-
cated at certain positions relative to an inemiaserver. Charges are usually visual-
ized as isolated pointlike quantities, as is evidemm the form of Egs. (5.1), (5.3)
and (5.4). In physical reality, however, we morgeenfencountecontinuous distribu-
tions of chargeather than distributions of discrete point chargehis leads us to the
concept of density of charge, defined as follows:

Letdv be an elementary volume at some pdiraf space with coordinates,y,z)
relative to our frame of reference. We addjthe elementary charge contained within
dv. Thecharge densitgt pointP is®

p(F)=p(x.Y, z):j—j (5.6)

whereT is the position vector aP. For variableP, the density(1) is a scalar func-
tion. Note that, in the case ofpaint chargeat P, the value of this function isfinite
at that point sincelv=0 while dg=0 there. We will thereforeot use the concept of
charge density for point charg&$he total charge within a finite volunieis

Q, =[da=], p(7) dv (5.7)

We now return to Gauss’ law (5.5). By Gausségnal theorem (4.27), the left-
hand side of Eq. (5.5) is written

% This is thevolumecharge density. For charge distributed over aaserfasurfacecharge density may
also be defined [1,3].
* This would require the use of an “exotic” functjdine Dirac “delta function” [1,4-6].
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gSSE-dazjv(v- B dv
By using the integral representation (5.7)@y, Eq. (5.5) then takes the form
S 1
jv (V-E)dv= jvg—op dv

For this to be true for aarbitrary volumeV, the integrands on the two sides of the
above equation must be equal:

V.E=£ (5.8)

Relation (5.8) expressé&xauss’ law in differential formit relates theliv of the
electric field at some point of space with the geadensity at that point.

Gauss’ law (5.8) is of general validity, botr &tatic and for time-dependent elec-
tric fields E(F,t). Thus the charge density is generally assumedetoftthe form
p(F,t). We now show that

in a region of space where a static electric fiekists, the distribution of
charge is static (time-independent).

Indeed, from (5.8) we have that

op o = = _ OE
—=&—(V-E)=¢,V-—
ot °at( )=¢ ot

where we have used the fact that the partial digves of a continuous function com-
mute with one another. Now, in the case of a sthtifield we havedE/ot=0, so
that dp/ot=0. That is, the charge distribution, representegd, bgust be static.

The converse isot true, however. Indeed, in a region of space wititaéic distri-
bution of charge (or even with no charge at ak) dtectric field can still change with
time if there is a time-dependent distribution bargeoutsidethe region.

5.3 Electrostatic Potential

As we have seen, Gauss’ law (5.8) is a consequaEnCeulomb’s law (5.1); it relates
the div of the electric field with the distribution of dlgg in some region of space.
From Coulomb’s law also follows a relation for g of theelectrostaticfield.

— b —
Proposition:In an electrostatic fieldE(r) the line integralj' E-dl is independent
a

of the path connecting the poirgsandb. Equivalently, for every closed pathwithin
the field,
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E.di=0 (5.9)
P

It follows thatthe electrostatic field is irrotational:

VxE=0 (5.10)

Proof: We recall that an electrostatic field is a stgtime-independent) electric
field produced by a system of charges thatareestwith respect to an inertial ob-
server, Let us examine first the simple case of the etstéatic field produced by a
single point chargg. Consider a curve within this field, extendingrfra to b, as
well as a point of this curve having position vedtorelative toq (Fig. 5.6).

Fig. 5.6. A curvabinside the electric field produced by a point cjear.

The Coulomb field of] at the considered point is

E--1 95 gmr (5.11)
Arg, 1
. . 7T
wherer = |'|. But, r:H:—, so that
rpr
e_E, (5.12)

Let nowdi be an infinitesimal, positively oriented (i.e.ofin a to b) section of the
curve. The elemendi represents an infinitesimal change of the positieotor F
along the curvedi = dT . Hence,

Si_E E(r)

di=E-df=——= T7-dT
r

E.
But,
1 1 1 1
F-dr==d(r-f)==d(|f F)==d (?)==(2dr ) =
5 (r-r) 2(II) 2( ) 2( )

® In Chapter 9 we will learn that an electric fi¢ilen a static one) can be “generated” by othensjea
specifically, by a time-dependent magnetic field.
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r-dr=rdr (5.13)
Thus,

E.gi=E0 g o E(r) dr
r

and

j:é.azj:E(r)dr:iJ‘bﬂ_i(l_ij (5.14)

Arey Jar?  Ameg \r, T,

regardless of the curve joiniregandb. In the case of alosedcurve, the pointa and

b coincide and the right-hand side of (5.14) varsshiéhus (5.9) is indeed valid for
the Coulomb field of a point charge. Now, if we baseveral charges, Qp,..., at rest
with respect to the observer, the total electridfithey produce is the vector sum of
the fields due to each charge separately, as extjby the principle of superposition:

E=E,+E,+. Therefore,
cﬁﬁ-azcﬁ EI-HHSE E,-dl+--=0+0+---=0

We conclude that relation (5.9) is valid for angattic field produced by a static dis-
tribution of charge; that is, for amyectrostaticfield.

We now consider an open surfggenside an electrostatic field, bounded by a
closed curveC. By combining (5.9) with Stokes’ theorem (4.28g have:

jgﬁxéyaaz¢céiﬂ:o

If the surface integral on the left is to vanishdoy open surfac& bounded byC, the

integrandV x E itself must vanish; i.e., Eq. (5.10) must be $aiis This means that
the electrostatic field is irrotational.

CommentAs we have said, Gauss’ law (5.8) is a mathemagigaression of Cou-
lomb’s law. On the other hand, relation (5.10) teado not as much with Coulomb’s
law itself as with the fact that the Coulomb fo(Bel) is acentral force, i.e., is of the

form F = F(r)f . This reflects in the form (5.11) of the Coulonidld.

Since the electrostatic fielf(t) is irrotational, it can be expressed asdhead of a
scalar field (cf. Sec. 4.3). We write:

E=-VV (5.15)

(the negative sign is a matter of convention arglri@special physical significance).
The functionV(r)=V (X Y, 2 is called theelectric potential We note that, for a

given field E(F), the potentiaV is not uniquely defined since the functionér) and
V'(r)=V(T)+C (whereC is a constant quantity) yield the same vector tionc

E(F) when substituted into (5.15).



76 CHAPTER 5

For an elementary displacemeTht: dr, we have:
E-di=—(VV)-dl=—dV < dv=-E d (5.16)

Thus, along a curve frora to b, Ibﬁ-az—jbdv =

[CE-di=v,-V, (5.17)

Notice that the line integral (5.17) is independehthe path connecting andb, as
required. The quantityvg —Vy) represents thpotential differencéalso calledsoltage
in electric-circuit theory) between the poirisand b. In S.I. units, electric potential
is measured ivolts (V).

Example:Potential of the Coulomb field

The Coulomb field produced by a point chagge given by (5.11), while its line
integral froma to b is given by (5.14). Combining the latter relatiith (5.17), we
have:

jbﬁ.a:i(ﬂ_ﬂjzva_vb
a dre, \ 1, 1

a

Therefore the electric potential at a point infile&d is of the form

vin=—9.¢
drg, 1

wherer is the distance of that point frognand whereC is an arbitrary constant quan-
tity. By arbitrarily assuming tha¥=0 at infinity (i.e.,V — 0 for r — «) we have that
C=0 and that, therefore,

1 q
V(r)= — 5.18
(1) Arg, 1 ( )

We notice that the Coulomb potential assumes ataohsalue over a spherical sur-
face of radius, centered a.

If now we have a system of stationary cha@esyp,..., the potential of their elec-
trostatic field will be the sum of the potentialsedto each charge separately [this fol-
lows from the superposition principle for the etexcfield, in combination with Eq.
(5.15)]. Thus, ifr; is the distance of a poiftfrom the chargej , the electric poten-
tial atP will be

ve_1t Z% (5.19)
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As we already know, thelectric field linesare curves whose orientation coincides
with the direction of the electric fiel at every point of space. Thus, at every point

P the vectorE is tangent to thaniquefield line passing through. Since the electro-
static field is irrotational, its field linesannotbe closed (Sec. 4.3). These lines begin
at positive charges and/or terminate at negatiaeges.

An equipotential surfacés a surface over which the electric potentassumes a
constant value. In other words, it is the locuspoints with coordinatesxfy,z) at
which V(x,y,2)=C, for a given constar@. We now show that

an equipotential surface intersects normally thextic field lines.

Indeed: Given thaE =-VV and that the fielcE is tangent to the electric field lines

everywhere, these lines will be directed paraleMV at all points in the field. On
the other hand, thgrad of VV is normal to the surfadéx,y,2)=C, at every point of this
surface (Sec. 4.1). It follows that the field linrekemselves are normal to the equipo-
tential surface.

In the special case of the Coulomb field ofompchargeq, the equipotential sur-

faces are spherical surfaces centeregl according to (5.18). The electric field lines
extend radially frong and thus are normal to the equipotential surfaces.

5.4 Poisson and Laplace Equations

As we saw in previous sections, the electrostagid fE(F) obeys two fundamental
differential equations:

<

E=£ (5.20)
&g

VxE=0 (5.21)

Gauss’ law (5.20) is an immediate consequence afddab’s law, while (5.21) states
that the electrostatic field is irrotational (amauther things, this means that this field
cannot have closed field lines).

None of the above equations can by itself deitez the fieldE . Indeed, according
to a theorem byHelmholtz[1,3] a complete determination of a static vedield re-
quires simultaneous knowledge lmfth the div and therot of the field, together with

suitableboundary conditiongfor example, the value dE must approach zero as we
get further away from the charges that createitie)f
Equation (5.21) yields a partial solution te giroblem:
JV(F): E=-VV (5.22)

whereV is the electric potential. To determivave substitute (5.22) into (5.20):
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V. (-W)=-vv=£ -

&o

vy = £ (5.23)
&o

where V? is the Laplace operator [see Eq. (4.22)]. EquatoR3) is called th@ois-
son equationin a region with no electric charges (althowghsidethis region there
are charges, those that create the electric fieldhénfirst place!) we have(r) =0 at

all points, so that (5.23) reduces to ttaplace equation

OV OV OV _
ox> oy* 07

VA = (5.24)

Generally speaking, for a given charge distrdyu o(r) and for given boundary

conditions forV, the differential equation (5.23) uniquely deteres the potential
V(7). The electric field is then thegrad of the potential, according to (5.22).

5.5 Electrostatic Potential Energy

In Sec. 4.4 we defined the concept afomservative force fieldF (F) and we showed

that a field of this kind is necessarityotational: V xF =0. A scalar functiorlJ (F)
then exists such that the force on a test pardictae pointr = (X, y, z) of the field is

expressed as the grad of U at that point:F =-VU . The functionU is called the
potential energyf the particle.

We now show that

the electrostatic field is conservative.

Indeed, leqy be a test charge inside an electrostatic fi&{d) . The force exerted on
by the field is

F(F)=qE(F)=q(-VV)=-V(qV) =-V U(T)

whereV (T) is the electrostatic potential and where (5.1%) l@en used. We observe
that apotential energyf g can be defined by

|[U(r)=qV(7) | (5.25)

This is precisely the condition in order that tield be conservative. It follows that
thetotal mechanical energfT+U) of the test charge is constant in time. Moreover,
the field produces no work ol when the charge describeslasedpath. Equiva-
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lently, the work done oq when it moves from poi to pointB in the field is inde-
pendent of the specific curve joining these poiassfollows from (4.39) and (5.25):

Whg = UA—UB:qVA—qVB=qVAB (526)
where Vag=Va—V3 is the potential difference between the two points.

Comment:Note that the potentiaV is a property of theslectrostatic field itself,
while the potential energy is a property of the chargpwithin this field.

A I, B
o o
a, d.

Fig. 5.7. Twawtually interacting charges.

Consider now two point charges and g, , a distance, apart (Fig. 5.7). The
charges are located at pointsand B, respectively. The potential energyafin the
Coulomb field produced by is

19
U12 = qlVZ( A) = ql( _2]

Arg, I,

while the potential energy @f in the Coulomb field of; is

Arg, 1,

19
U21 = qzvl( B) = Q{ _l]

We observe that;,= U,1=U, where

10,0,

U=
Arg, I,

(5.27)

The quantityJ represents thegotential energy of the system of chargesiff More
generally, the potential energy of a system of @bsq);, qp,..., iS given by the expres-
sion

u-_1t y99 (5.28)

4rey 15 i

Physically, this quantity represents the work neagsin order to compose a system
of mutually interacting charges in some limitedioegof space, by bringing each (ini-
tially isolated) charge from infinity. (We arbitigrassume that) =0 when rjj= «.)

By using (5.25) we can define the S.I. unipofential as follows:
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Yolt = 1Joule/ Coulomb (or, 1V =1J/C, for short)
We notice that

1V = 1N_-m = 1—|\I = 1X (unit of electric field strengdh
C C m

5.6 Metallic Conductor in Electrostatic Equilibrium

As we learned in Chapter 2, the electrical congiigtiof a metal owes itself to the
free electron®f the metal. These are valence electrons of ttvasof the metal that
have been detached from the atoms to which theyngehnd move freely inside the
crystal lattice. The metallic conductor is @hectrostatic equilibriumif there is no
macroscopianotion of charge in its interior and on its sugdwith the exception of
irregular thermal motions of the electrons).

A conductor in electrostatic equilibrium exh#bthe following characteristics (see
Fig. 5.8):

1. The electric field in the interior of the contlucis zero, while just outside the
conductor the field is normal to the surface of¢baductor.

2. The charge density in the interior of the condués zero. Thus, nonzero net
charge may only exist on the surface of the cormtuct

3. The surface of the conductor is an equipotestigilace. Furthermore, the po-
tential in the interior of the conductor is constémas the same value every-
where) and equal to the potential on the surface.

Fig. 5.8. Electrostatic properties on thdaeSand in the interior of a conductor.

Proof: (1) If there were a nonzero electric field in theerior of the conductor it
would set the free charges in motion; thus no stdtdectrostatic equilibrium would
exist inside the conductor. On the other handyefelectric field just outside the con-
ductor were not normal to the surface of the cotwuthe field would have a com-
ponent tangent to the surface, which would setation the free electrons on the sur-
face. (2) In the interior of the metaE = 0. Then, according to Gauss’ law (5.8), it
must bep=0 everywhere inside the conductor. (3) Since thetietefteld just outside
the metal is normal to the surfaBef the metal, this surface intersects normally the
electric field lines, thus is an equipotential sgd (see Sec. 5.3) having a constant
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potentialVs. We consider a poinh on the surface and a poihtin the interior of the
conductor, as well as an arbitrary path joiningsthpoints and totally located inside
the conductor. The potential difference betweeand b is found by using (5.17) and

by taking into account tha = 0 in the interior of the metal:
V,-V,=[TEd=0 = V=V,=\,

sinceV,=Vs at any pointa on the surface. Hendg=Vs, at any pointb in the inte-
rior of the conductor.

We now consider a conductor carrying a surtdwageQ . LetV be the (constant)
electric potential throughout the space occupiedhgyconductorwhere we agree
that V=0 when the conductor carries no net chaf@=0). As can be shown [1,3] the
ratio Q/V is a constant quantity, independent of the ch&@gm the conductor. This
ratio is called theapacitanceof the conductor

_Q
C=> (5.29)

The S.1. unit of capacitance is therad (F). Obviously, F=1C-V ™,

A more complex system is that which consistsaaf conductors carrying opposite
chargestQ and—-Q. If V; andV; are the corresponding electric potentials of these
conductors, we can show (see Prob. 4) YhaV/, . Thus the potential differenct/=
V1V, is positive. This system is calledapacitorand its capacitance is defined by

c-—Q _Q (5.30)
V-V, AV

Application: As can be shown [1,3] the electric field in théenor of a parallel-
plate capacitor is uniform, is normal to the platesl is directed from the positive to
the negative plate. Show that the magnitude offibid is

_4av
O

E (5.31)

wherel is the perpendicular distance between the platésvuere4V is the potential

difference between them. The above relation is igdigevalid for any uniform elec-
trostatic field [Hint: Apply Eqg. (5.17) along an electric field line exting from the

positive to the negative plate. Make the most caorerd choice of a field line by tak-
ing into account that the plates are equipotestidiaces.]
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QUESTIONS

1. Suggest a physical process by which one may cfeate static but non-uniform
electric field; p) a uniform but non-static electric field.

2.In Gauss’ law in integral form (5.5) the electrield on a closed surfac®is asso-
ciated with the total charge in the interior ®fWill the field onS be affected if we
remove all charges in tlexterior of this surface?

3. (&) Show that the electric field in a region of spadeere a non-static distribution
of chargep(r,t) existscannotbe static. If) In a region of space the distribution of

charge is static. Does the electric field in tlegfion have to be static?

4. Justify the principle of superposition for the attee potential: “At any point of
space, the electric potential due to a system afgds equals the algebraic sum of
potentials due to each charge separately”.

5. The electric field is a physical quantity havinguaiquely defined value that is
measurable at every point of space. Is the samewtitln regard to the electric poten-
tial? Thus, can the potential be regarded as amlwksphysical quantity? How about
potentialdifferenc&

6. Starting with Coulomb’s law, derive an expresdimnthe potential of the Coulomb
field produced by a point charge

7. What is an equipotential surface? Show that esech surface intersects normally
the electric field lines. Determine the equipotainsurfaces of the Coulomb field pro-
duced by a point charge

8. (a) Show that the electrostatic field is conservatine derive an expression for the
potential energy of a chargginside this field. If) Find the potential energy of a hy-
drogen atom when the electron is a distanitem the nucleus (proton).

9. Consider a closed surfaBeThe electric field in the interor &is zero, while or
itself the field acquires non-zero values and reated normal t& at all points of this
surface. Show thag) Sis an equipotential surfaceg)(the interior ofSis a space of
constant potential, equal to that &n(c) the total charge in the interor 8is zero.

10. By means of a simple example show that Couloméws flollows directly from
Gauss’ law.
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PROBLEMS

1. Consider a closed surfagénside a uniform electrostatic fiell . (@) Show that the
total electric flux througl&is zero. ) Show that the total electric charge in the inte-
rior of Sis zero.

Solution: LetV be the volume enclosed ByBy Gauss’ law, the total flux through
Sis proportional to the total char@®, enclosed bys. Using Gauss’ integral theorem

and taking into account thé& is a constant vector, we have:

Qin_ i P V. E i ivE =
g_o_gsse.da_jv(v- B) dv=0 (sincedivE=0)

2. Is it possible for an electrostatic field of therh E = F(x, v, 2 Y to exist? What
do you conclude regarding the potentfadf such a field?

Solution: An electrostatic field must be irrotational:

_038_ _a_FaZ
0z oy

o Q)|Q) F)

uESIISIES
o 2los

Now, for a vector to vanish, each component ofustibe zero:

F_F_ o= F=F(x), sothatE=F(x){
oy o0z
Then, given thaE =-VV,
ov. oV. 0oV.

—Uu+—u+—Uu=-F
oX oy 0z (94,

Equating corresponding coefficients on the two sidee have:

v av _ oV dv
=— =0 = V=V(X, —(—=-F(X
PV A Vil (9, .= F(Y

3. Prove the following statements with regard to Ecteostatic field: &) the electric
field lines are oriented in the direction miximumdecreaseof the electric potential;
(b) apositivecharge that is initially at rest tends to moveha direction odecreas-
ing potential, while a negative charge moves in thposfie way; €) any charge
(positive or negative) tends to move in the di@ttin which its potential energy is
decreasing

Solution: (a) The orientation of the field lines is determiregerywhere by the di-
rection of the electric fieldE , which is tangent to these lines. Now, for an eetary
displacemendt within the electric field, the corresponding charmg the potential is

dv= VY - Jt=-E. dt
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In particular, for a displacemeiwtr along a field line, in the direction of orientatio

of the line, the elementit has the direction oE and the scalar produdf- dt at-
tains its maximum value. The chand¥ of the potential thus admits aipsolutely
maximum negativevalue. That is, the&lecreaseof the potential is greatest along a
field line, in the direction of orientation of tlegter.

(b) The force on the charge B =qE. If g>0, the force is in the direction d,
thus in the direction of maximum decreas&/oT his will therefore be the direction of
motion of a positive charge that is initially ast€a negative charge will move in the
opposite direction, i.e., that of increasiviy

(© For an elementary displacemeht within the electric field, the change of po-
tential energy of a charggis

dU =(VU)-df=-F-dF

If qis initially at rest, the displacemedf will be in the direction of the forcEé and

the scalar producE -d¥ will attain a maximum value. Thus the chanigéof the po-
tential energy ofj will admit anabsolutelymaximumnegativevalue. The charggq
will therefore move in the direction of maximuecreaseof its potential energyge-
gardless of the sign of g

4. Two charged conductorsandB carry net chargesQ and—Q, respectively. Show
that the electric potential of is greater than that &k

Solution: We recall that the electric potential assumesrestamt value at all points
occupied by a conductor (whether on its surfacenats interior). LetVa and Vg be
the potentials of the two conductors. Along antaaby path connecting with B,

B -~ —
Va-Vp=[ E-dl 1)

where E is the electric field along this path. Withoutdasf generality (given that the
value of the integral is independent of the chatgath) we may assume that we
move from4 to B along an electric field line. Such a line is alwayiented from the
positively charged conductat to the negatively charged conducByrin accordance
with the orientation of the fiel&E (can you justify this?). Along the chosen path the
vectorsE anddi are in the same direction, so tHatdi > 0. The integral in (1) thus

assumes a positive value and, therefdfg:-Vg >0 = Va> V3.

5. In the interior of a conductor there is a cavhgttcontains no charges (Fig. 5.9).
The conductor is assumed to be in electrostatidiequm. (a) Show that the electric
field within the cavity is zerobj Show that the total charge on the surface ottwe

ity is zero. €) We now place a chard@ inside the cavity. Find the total charge in-
duced on the wall of the cavity, as well as thaltoharge on the surface of the con-
ductor.

Solution: (a) Since the cavity contains no charges, there @andelectric field
lines beginning or endinmside the cavity. Also, since the conductor is in electr
static equilibrium, the charge density in its iftens zero everywhere, which means
that there are no nonzero charges there as welk fere are no field lines beginning
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or endinginsidethe conductor either. Any field line must therefdregin and end on
the wall of the cavity, directed from a positiveatmegative charge.

Fig. 5.9. A contlucwith a cavity in its interior.

We consider a closed pathsuch that a section of it lies inside the cavityg &oin-
cides with an electric field line. The electriclfieE inside the cavity is thus tangen-

tial at every point of that section 6f Taking into account thaE =0 in the interior
of the conductor, we have:

CﬁcE._i:J-cavityE.a]+.[conductorE.H|:J- | Ellall > C

cavity

which cannot be correct, given thétl?-azo for any electrostatic field. The as-

sumption we made, that there is a nonzero elefittlid inside the cavity, was there-
fore wrong. That is, we must ha¥e= 0 inside the cavity.

(b) We consider a closed surfagénside the conductor, surrounding the cavity. At
every point ofS we have thatE = 0. Let Q be the total charge on the surface of the
cavity. The surfac& encloses no other charges, given that the chamgsitg both in
the interior of the conductor and in the interidrtloe cavity is zero. By Gauss’ law

and by taking into account th&,=Q and thatE =0 onS, we have:

@SE-&\:O:Q = Q=0 on the surface of the cavity

Note that the above results are valid even if tleaists a nonzero electric field in the
exterior of the conductor. That is, the cavityaectrically isolatedrom the outside
world, being “protected”, so to speak, by the cartdusurrounding it.

(©) We consider again a closed surf&eside the conductor, surrounding the cav-

ity. At every point ofSwe have thatE =0, as before. LeQ, be the total induced
charge on the wall of the cavity. The total chaegelosed bys is Qin.=Q+Quyai . By

Gauss’ law and by taking into account tita& 0 onS, we have:

Cﬁsé'a—é=0=% = Qin=Q+Quwai=0 = Quar= —-Q
0
Now, the conductor is electrically neutral and ésrno net electric charge in its inte-
rior. So, since the wall of the cavity carries arge—Q, there must necessarily be a
charge+Q on thesurfaceof the conductor. This surface charge makes itMnto us

that there is a charde inside the cavity!
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6. A solid metal sphere of radilscarries a total positive char@euniformly distrib-
uted over its surface (Fig. 5.10). Determine tlexteic potential both inside and out-
side the sphere. (Assume tNat0 at an infinite distance from the sphere.)

Fig. 5.10. A metal sphere of radRscarrying a total positive charggon its surface.

Solution: By the spherical symmetry of the problem the eleéield E outside the

sphere is radial and directed outward (si@e®), while its magnitude |=E is con-
stant over any spherical surface concentric wighgphere. Hence the external field is
of the form

E=E(nf, r>R (1)

wherer is the distance from the center of the sphereceSthe solid sphere is con-

ducting, it will be E =0 in its interior, i.e., for<R. To find the electric field in the
exterior of the spheraXR) we apply Gauss’ law on a spherical surf&oef radius
r>R, concentric with the sphere. The total chargeased bySis Qin=Q :

§.E-da=0-2 where E-da=[E )T [(d3 = &) da =

& &y
Q _ _ _
8_0_<JSSE(r)da_ E(n¢ da= Hn(4rr) =
E(r) = 1 22 r>R (2)
Arg, 1

From (1) and (2) we see that the electric fieldhe exterior of the sphere is the
same as the Coulomb field of a hypothetical poivargeQ placed at the center of the
sphere! As can be shown, relation (2) is validriR also, thus yielding the electric
field on the surface of the sphere (note thatigld fsnoncontinuousatr=R).

We now seek the electric potentigl). In general, for a displacement from posi-
tion a to positionb within the electric field, we have:
b~
[ E-di=v,-V,,

a

which is independent of the path joining the ench{zoa and b. Now,
E-dr=E(nfdr=2U) rar=EOD rgr g (r)ar
r

where use has been made of Eq. (5.13). Hence,
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va—vsz: (1) dr 3)

whereE(r) is given by relation (2) far> R, while E(r)=0 for r<R. For the potential in
the exterior of the sphere, we choose paitd be on a spherical surface of radia®
where the potential i¥(r) (equipotential surface), while poibtis assumed to be at
infinity (r=o0) whereV,,.=0:

v =[" _Q rdr_ Q.1
V(n-v, = E(r)dr—4ﬂgo [ = e (0-2) =

V(r)= 1 g r>R
dre, 1

Notice again that the potential in the exteriothe sphere is the same as the Coulomb
potential due to a point chargeplaced at the center of the sphere. For the patent
in the interior of the sphere, we choose pairtb be on a spherical surface of radius
r<R where the potential i¥(r); we take poinb on the surface of the sphere where
V(R)=Q/4rsoR; and, we use (3) by taking into account tEét)=0 for r<R:

VeV RO[CEr(d= 0»

V(r):V(R):47§R , I<R

We notice that the space occupied by the spherspgce of constant potential.

Exercise: Show that, if in place of the solid sphere we laadniformly charged
spherical shellour results would be exactly the same! (To eueltiae electric field
in the empty space bounded by the shell, use dgauss’ law, observing that there
are no electric charges in this region.)

7. A spherical capacitorconsists of an inner conducting sphere of radiaad charge
+Q, surrounded by a concentric conducting spherivall ®f radiusb and charge-Q
(Fig. 5.11). &) Evaluate the capacitance of the systédspShow that the electric field
in the exterior of the capacitor>p) is zero and determine the electric potential both
inside @<r<b) and outsiderg b) the capacitor (by we denote the distance from the
center of the spheres).

Solution: (a) Due to the spherical symmetry of the problem,dleetric field in the
interior of the capacitorakr<b) is of the form

E=E(nTf (1)

That is, the field is radial and directed from thaer to the outer sphere, while its

magnitude [ |=E has a constant value over any spherical surfaceentric with the
two conducting spheres.
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Fig. 5.11. A sphericapacitor carrying a charge).

We apply Gauss’ law for a spherical surf&ef radiusr, noting that the total
charge enclosed l&is Qn=+Q :

Sﬁsé.a‘é:%: 89:958[5( )N [(d3 T=¢ By da= EY da= ENaz =

EM=-—1-2  a<r<b )
Arg, 1

The surfaces of the two spheres are equipotenfiadind the potential difference
V=V, -V, between the spheres, we consider an arbitrary fpath the inner to the
outer sphere:

V=Va—\4)=I:E-d“r=I:HOdr 3)

where we have used the relati@h d7 = E(r)dr (see Prob. 6). Substituting (2) into
(3), we have:

ar2

Q Ibdr Q (1_}_ Q (b-3a

V = =
4re,

drs, a b 4re, ab

The capacitance is the@ = 8 =4re, ab

(b) In the exterior of the capacitarp) the electric field will again be of the form
(1). We apply Gauss’ law for a spherical surf&& radiusr>b, noting that the total
charge enclosed l&is now Q.= Q+ (-Q)=0:

<j> E.da=n -0 = EN(4rP)=0= E(r)=0
S &

0

Thus E =0 for r>b. Let nowV(r) be the potential on a spherical equipotentiaiesar
of radiusr>b. For an arbitrary path connecting this surfaceéhi outer conducting
sphere, we have:
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V(r)—VszrbE-dT:O = V(r)=\, = const

By arbitrarily assuming that,=0, we have tha¥/(r)=0 for r>b. In the interior of the
capacitor 4<r<b) the electric field is given by (1) and (2). Inditase we have (re-
membering thaV,=0):

VO V= [Ear=[TEmar- 2T =

Are,

V(r):&(l—}j , asr<b

Are, \r b



CHAPTER 6

ELECTRIC CURRENT

6.1 Current Density

The termelectric currentrefers to therientedmotion of electric charge. The orienta-
tion of the charge can be accomplished by applgimglectric field or it may be the
result of an uneven distribution of charge in daaegf spacediffusion current see
Sec. 2.10). We note that the irregular thermal omobtf, say, the free electrons in a
metal, which takes place even without the preseh@m electric field, doesot con-
stitute electric current since this motion is ramdand non-oriented.

Consider the totality of natural phenomena eissed withmotion (not justpres-
encg of electric charge. In each case there are twtofa to be considered; namely,
the sign and thedirection of motionof the charge. As a simple example, let us con-
sider a positive charggmoving