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Abstract

These notes are intended as an addition to the lectures given in class. They are NOT designed

to replace the actual lectures. Some of the notes will contain less information then in the actual

lecture, and some will have extra info. Not all formulas which will be needed for exams are

contained in these notes. Also, these notes will NOT contain any up to date organizational or

administrative information (changes in schedule, assignments, etc.) but only physics. If you notice

any typos - let me know at vitaly@njit.edu. I will keep all notes in a single file - each time you can

print out only the added part. A few other things:

Graphics: Some of the graphics is deliberately unfinished, so that we have what to do in class.

Preview topics: can be skipped upon the 1st reading, but will be useful in the future.

Advanced topics: these will not be represented on the exams. Read them only if you are really

interested in the material.
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Dr. Vitaly A. Shneidman, Phys 121, 1st Lecture

I. INTRODUCTION

A. Vectors

A vector is characterized by the following three properties:

• has a magnitude

• has direction (Equivalently, has several components in a selected system of coordi-

nates).

• obeys certain addition rules (”rule of parallelogram”). (Equivalently, components of

a vector are transformed according to certain rules if the system of coordinates is

rotated).

This is in contrast to a scalar, which has only magnitude and which is not changed when a

system of coordinates is rotated.

How do we know which physical quantity is a vector, which is a scalar and which is

neither? From experiment (of course). Examples of scalars are mass, kinetic energy and

(the forthcoming) charge. Examples of vectors are the displacement, velocity and force.

Tail-to-Head addition rule.
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1. Single vector

Consider a vector ~a with components ax and ay (let’s talk 2D for a while). There is an

associated scalar, namely the magnitude (or length) given by the Pythagorean theorem

a ≡ |~a| =
√

a2x + a2y (1)

Note that for a different system of coordinates with axes x′, y′ the components ax′ and ay′

can be very different, but the length in eq. (1) , obviously, will not change, which just means

that it is a scalar.

Another operation allowed on a single vector is multiplication by a scalar. Note that the

physical dimension (”units”) of the resulting vector can be different from the original, as in

~F = m~a.

2. Two vectors: addition

-2 -1.5 -1 -0.5 0.5 1

0.5

1

1.5

2

2.5

3

~A

~B

~C

FIG. 1: Adding two vectors: ~C = ~A+ ~B. Note the use of rule of parallelogram (equivalently, tail-to-

head addition rule). Alternatively, vectors can be added by components: ~A = (−2, 1), ~B = (1, 2)

and ~C = (−2 + 1, 1 + 2) = (−1, 3).
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For two vectors, ~a and ~b one can define their sum ~c = ~a +~b with components

cx = ax + bx , cy = ay + by (2)

The magnitude of ~c then follows from eq. (1). Note that physical dimensions of ~a and ~b

must be identical.

Preview. Addition of vectors plays a key role in E&M in that it enters the so-called ”super-

position principle”.
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3. Two vectors: scalar (dot) product

If ~a and ~b make an angle φ with each other, their scalar (dot) product is defined as

~a ·~b = ab cos (φ)

or in components

~a ·~b = axbx + ayby (3)

Example. See Fig. 1.

~A = (−2, 1), ~B = (1, 2) ⇒ ~A · ~B = (−2)1 + 1 · 2 = 0

(thus angle is 90o).

Example Find angle between 2 vectors ~B and ~C in Fig. 1.

General: cos θ =
~a ·~b
ab

(4)

In Fig. 1:

~B = (1, 2), ~C = (−1, 3) ⇒ B =
√
12 + 22 =

√
5 , C =

√

(−1)2 + 32 =
√
10

cos θ =
(−1) · 1 + 3 · 2√

5
√
10

=
1√
2
, θ = 45o

A different system of coordinates can be used to evaluate ~a ·~b, with different individual

components but with the same result. For two orthogonal vectors ~a · ~b = 0 in any

system of coordinates. The main application of the scalar product is the concept of

work ∆W = ~F · ∆~r, with ∆~r being the displacement. Force which is perpendicular to

displacement does not work!

Preview. We will learn that magnetic force on a moving particle is always perpendicular

to velocity. Thus, this force makes no work, and the kinetic energy of such a particle is

conserved.

Example: Prove the Pythagorean theorem c2 = a2 + b2.
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4. Two vectors: vector product

At this point we must proceed to the 3D space. Important here is the correct system of

coordinates, as in Fig. 2. You can rotate the system of coordinates any way you like, but

you cannot reflect it in a mirror (which would switch right and left hands). If ~a and ~b make

x

y

z

x

y x

y

z

FIG. 2: The correct, ”right-hand” systems of coordinates. Checkpoint - curl fingers of the RIGHT

hand from x (red) to y (green), then the thumb should point into the z direction (blue). (Note that

axes labeling of the figures is outside of the boxes, not necessarily near the corresponding axes;

also, for the figure on the right the origin of coordinates is at the far end of the box, if it is hard

to see in your printout).

an angle φ ≤ 180o with each other, their vector (cross) product ~c = ~a×~b has a magnitude

c = ab sin(φ)

The direction is defined as perpendicular to both ~a and ~b using the following rule: curl the

fingers of the right hand from ~a to ~b in the shortest direction (i.e., the angle must be smaller

than 180o). Then the thumb points in the ~c direction. Check with Fig. 3.

Changing the order changes the sign, ~b × ~a = −~a ×~b. In particular, ~a × ~a = ~0. More

generally, the cross product is zero for any two parallel vectors.

Ring Diagram:
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FIG. 3: Example of a cross product ~c (blue) = ~a (red) × ~b (green). (If you have no colors, ~c is

vertical in the example, ~a is along the front edge to lower right, ~b is diagonal).

i
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i

x j
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=k
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
xk
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

k

x i

= j


i

xk

=- j


, etc.

Suppose now a system of coordinates is introduced with unit vectors î, ĵ and k̂ pointing

in the x, y and z directions, respectively. First of all, if î, ĵ, k̂ are written ”in a ring”, the

cross product of any two of them equals in clockwise direction the third one, i.e.

î× ĵ = k̂ , ĵ × k̂ = î , k̂ × î = ĵ

etc.

Example. Fig. 1:

~A = −2̂i+ ĵ , ~B = î+ 2ĵ
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~A× ~B = (−2̂i+ ĵ)× (̂i+ 2ĵ) = (−2) · 2̂i× ĵ + ĵ × î =

= −4k̂ − k̂ = −5k̂

(Note: in Fig. 1 k̂ goes out of the page; the cross product ~A × ~B goes into the page, as

indicated by ”-”.)

More generally, the cross product is expressed as a 3-by-3 determinant

~a×~b =

∣

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂

ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

∣

∣

∣

= î

∣

∣

∣

∣

∣

∣

ay az

by bz

∣

∣

∣

∣

∣

∣

− ĵ

∣

∣

∣

∣

∣

∣

ax az

bx bz

∣

∣

∣

∣

∣

∣

+ k̂

∣

∣

∣

∣

∣

∣

ax ay

bx by

∣

∣

∣

∣

∣

∣

(5)

The two-by-two determinants can be easily expanded. In practice, there will be many zeroes,

so calculations are not too hard.

Preview. Vector product is most relevant to magnetism; it determines, e.g. the magnetic

force on a particle in a field, ~F = q~v × ~B with q being the charge, ~v the velocity, and ~B the

intensity of magnetic field at the location of the particle.

Example. See Fig. 1.

~A× ~B = k̂((−2)2− 1 · 1) = −5k̂
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B. Advanced: Fields

So far we were dealing with scalars or vectors attributed to a single particle (or a single point, if

you prefer). Consider now a much more general situation when a scalar or a vector is attributed to

every point in space. This brings us to a concept of a field, scalar or vector, respectively. Field can

also depend on time. A good example of a scalar field is the temperature (or pressure) map which

you see in the weather forecast. Similarly, the velocities of the air flow (usually superimposed on

the same map) give a vector field.

H

L

-2 -1 0 1 2

-2

-1

0

1

2

H

L

-2 -1 0 1 2

-2

-1

0

1

2

H

L

-2 -1 0 1 2

-2

-1

0

1

2

Examples of scalar and vector fields: weather maps. Top - pressure field (scalar); lines connect

points with identical pressure. Lower: wind velocity fields; left - regular flow from high to lower

pressure, right - turbulent flow (note regions with non-zero circulation, ”tornadoes”). The left

maps are similar to those for potential V and electrostatic field ~E of an electric dipole. The

type of the map on the right is encountered in time dependent fields, such as those which lead to

electromagnetic radiation.
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1. Representation of a field; field lines

How to represent a field in a picture? For a scalar field the best way is to draw lines of

a constant level, e.g. lines with constant temperature every 10oC (another good example is a

topographic map which indicates levels of constant height. Try to sketch maps of a hill top, of a

crest and of a ”saddle”).

For a vector field graphical representation can be harder. The easiest approach would be to select

a large number of points in space and to draw vectors from each of them (see, e.g., the example

of gravitational field later in these notes). You might not always enjoy the picture, however, since

it will look too ”discrete”, while one feels that field should be continuous. A much better way is

to draw the ”field lines” - see Fig. 4. They give information about both magnitude and direction

of the vector field. Many non-trivial mathematical theorems about the field are easily justified

in terms of such pictures. Field lines also provide an enormous boost for physical intuition since

rather abstract vector constructions are replaced by simple, easy to understand pictures.

FIG. 4: Example of vector field lines. At each point the direction of vector field is tangent to the

line. The magnitude of the vector field at a given point is proportional to the density of lines.

2. Properties of field lines and related definitions

The condition that the magnitude of the vector field at a given point is proportional to the

density of lines, generally speaking, would require that some lines should be added or removed at

various places in the picture. Remarkably, however, for the fields we are going to consider this

happens only at some special points, and otherwise field lines run continuously. Points from which

lines start are often called ”sources”, and points where they vanish are ”sinks”.
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Preview. For electrostatic field ~E sources and sinks for field lines are positive and negative charges,

respectively. Only there the lines can start or interrupt. (See the gravitational example below,

which is similar to a negative charge; a positive charge will have lines going out). There are

no magnetic charges in Nature, and thus magnetic field lines never start or end, but either loop

(around currents) or come and go to infinity.

Example. Gravitational field at any point ~r outside of a planet is defined as the ratio of a force

~F on a probe to the mass of that probe, m. Show that this equals the gravitational acceleration

~g (~r). Sketch the vector field lines for the field ~g - see Fig. 5.

FIG. 5: Gravitational field around a planet. Left - representation by vectors, right - representation

by field lines. Since the density of lines determines the magnitude of field, the latter decays inversely

proportional to square of the distance from the center. The structure of this field is very similar

to the electrostatic field outside a negatively charged sphere.

Gravitational field is detected by a probe, but we need a quantitative feature which is indepen-

dent of the actual probe m:

~Fg = −G
Mm

r3
~r ,

~Fg

m
= −G

M

r3
~r = ~g

Here ~r is from the center of the planet to the observation point (do not need the probe anymore).

Similarly, can construct a scalar function, the gravitational potential.

Vg ≡ Ug/m = −G
Mm

r
/m = −GM/r

Note

|Vg| =
1

2
v2esc , and |Vg| ≪ c2
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Dr. Vitaly A. Shneidman, Phys 121, 2nd Lecture

II. ELECTRIC CHARGE

A. Notations and units

Notations: q, Q or (special) e for the charge of an electron.

Units: C (coulombs). Very large! (Historically, C was introduced as A · s, with A being

the ampere, for current. Today it is more common to treat C as another fundamental unit,

which together with kg (kilogram), m (meter) and s (second) determines the SI system of

units. The ampere A is then derived as C/s).

Charge of an electron

e ≃ −1.6 · 10−19 C

In fact, this charge is quite appreciable and can be directly measured in the lab.

B. Superposition of charges

If several charges, positive or negative q1, q2, ... etc., are placed on a small particle, at

large distances that particle will act as a single charge with

Qtot = q1 + q2 + . . . (6)

C. Quantization of charge

The smallest charge is the charge of an electron, i.e. for any observable charge Q one

should have

Q/e = 0 , ±1 , ±2 , . . .

D. Charge conservation

In a closed system

Qtot = const (7)
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This is a fundamental Law of Nature, which is valid even if the number of elementary

particles is not conserved (as in nuclear reactions)!

Examples. Decay of a neutron into a proton and an electron (+ some kind of neutrino which

has no charge and is of little interest here):

n0 → p+ + e− + ν0

Example Annihilation of the electron e− and a positron e+:

e− + e+ = 2γ0
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E. The Coulomb’s Law

If two charges q1, q2 are separated by a distance r, the force between them is

F = k
q1q2
r2

, k ≃ 9 · 109N ·m2/C2 (8)

with positive sign referring to repulsion and negative to attraction. The force acts along

the line connecting the two charges - see Fig. 6.

(some books write the product of absolute values of charges, to emphasize that F is the magnitude

of force, which is always positive. However, the form given by eq. (8) is correct, and has more

information as long as you know what it means).

FIG. 6: The Coulomb interaction between charges. Figures are drawn to scale, with radii of

charges being proportional to their magnitudes, and forces being proportional to predictions of the

Coulomb Law. Positive and negative charges are indicated by red and blue, respectively. Note

the following: (a) same charges repel each other, while opposite charges are attracted. (b) Forces

acting on each of the two interacting charge are the same in magnitude, even if charges are different

(otherwise the 3rd Law of Newton would be violated). (c) Forces become extremely large if the

two charges are very close to each other, even if both charges are small

If one really wants to be pedantic (e.g., when dealing with a computer which has a poor

sense of humor), the Coulomb’s law can be formulated in a vector form: If ~r12 is the vector

which points from charge 1 to charge 2 (with r = |~r12|, as before), then the vector of force

~F21 which acts on charge 2 (and is due to interaction with charge 1) is given by

~F21 = k
q1q2
r3

~r12 (9)
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Example: check the above equation for a pair of charges from Fig. 6) [in fact, those

pictures were generated by a computer using eq. (9)].

The vector version of Coulombs Law is more convenient in large formal calculations with

many charges.

F. Superposition of forces

Consider a charge, let’s call it q0 which interacts with many other charges in the system,

q1, q2, ..., etc. Then the total force which acts on q0 is the vector superposition of individual

forces, i.e.

~F0, net = ~F01 + ~F02 + . . . =
n

∑

i=1

k
qiq0
r3i0

~ri0 (10)

This is illustrated in Fig. 7 where the charge of interest, q0 is the one in lower right.

FIG. 7: The principle of superposition. The total force (black arrow in the picture) acting on a

given charge equals the vector sum of all three individual forces which act on this charge due to

its pairwise interaction with every other charge present in the system.
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Example: Q = 2µC, a = 1mm. Find the force on the charge at the origin.

F0,Net

q0=-Q

F02

q2=-Q

F01 q1=Q

0.2 0.4 0.6 0.8 1.0
x, mm

-0.5

0.5

1.0

y, mm

F0 =
√

F 2
01 + F 2

02 =
√
2 · F01

F01 = k
Q2

a2
≈ 9 · 109

(

2 · 10−6
)2

/(10−3)2 = 3.6 · 104N , F0 =
√
2× 3.6 · 104 = . . .

Continuous qi: sum over ”all other charges” qi is replaced by a corresponding integral

(volume, surface or linear integral depending on the actual charge distribution).

∑

→
∫

dV , or

∫

dA , or

∫

dl

qi → ρdV , or σdA , or λdl

Here ρ, σ and λ are the volume charge density, surface charge density and linear charge

density, respectively, with units

[ρ] = C/m3 , [σ] = C/m2 , [λ] = C/m
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G. Reaction of a charge to electrostatic and other forces

Recall that the 2nd Law of Newton

~F = m~a , or ~F = d~p/dt (11)

is valid for any force, whatever its origin. So, if m is the charge q0 and ~F0, net is the total

electrostatic force acting on that charge, as in eq. (10), then the 2nd Law allows one to find

the acceleration ~a, as for any other particle. If other, non-electrostatic forces also act on the

charge, they should be just added to give the total force, and the 2nd Law will allow to find

acceleration.

Advanced: although we are talking about electrostatics, particles are permitted to move, albeit

not too fast. If they do move fast, with speeds comparable to the speed of light, the 2nd Law

in the above version need correction, and Coulomb’s also needs to be modified to account

for retardation. (Equivalently, magnetic fields due to particle motion must be included). In

addition, rapidly accelerating charges will emit electromagnetic waves, which are not part of

the story (yet).
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Example: Estimate the speed of an electron in a hydrogen atom with radius about 0.53 ·
10−10 m.

FIG. 8:

Solution: the centripetal acceleration a = v2/r is due to coulomb interaction between the

electron and the proton. Thus,

F = k
e2

r2
≃ 9 · 109 (1.6 · 10−19)

2

(0.53 · 10−10)2
≈ 8.2 10−8N

From 2nd Law find the acceleration of the electron:

ae = F/me ≈ 8.2 10−8/(9.1 · 10−31) = . . .

with me being the mass of electron.

To find speed v use F = meac

m
v2

r
= k

e2

r2

(the heavy proton practically does not move). Or,

v =
√

ke2/(me · r) =

√

9 · 109 (1.6 · 10−19)2

9.1 · 10−31 × 0.53 · 10−10
. . .

(Check that it does not exceed speed of light!).

Acceleration of the proton:

ap = F/mp = a
me

mp

with mp ∼ 1.67 · 10−27 kg. Note: F - same (3rd Law !).
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What other forces can act on a charge? The answer depends whether we consider an

elementary charge or just a charged ”macroscopic” particle (which can be tiny on a human

scale, like a fine dust particle).

If the charge is elementary, there is only one other long range force which can act on it.

This is the force of gravity, Fg = m~g with ~g being the gravitational acceleration. (Nuclear

”forces” which can act on protons are of very short range, about 10−14 m, not of human

scale at all. They are also not ”forces” in the strict meaning of word, since they do not lead

to anything like the 2nd Law).

The gravitational interaction between 2 elementary charges is negligibly small (estimate!),

but if a charge interacts with a huge body, like a planet, the electrostatic and gravitational

forces can be comparable, as in the Millican experiment.

Discussion. Relation between the Coulomb’s Law and the Newton’s Law of gravitation

FG = −G
m1m2

r2

with G ≃ 6.7 · 10−11N m2/kg2.

Compare to Coulomb’s law:

r−2 - same!

m1,2 - analogous to q1,2

BUT:

”-” in the formula AND m1,2 > 0

Compare forces between two electrons:

FG = −G
m2

e

r2
, Fe = k

e2

r2

FG

Fe
∼ Gm2

e

ke2

FG

Fe
∼ 10−10−60

1010−38
∼ 10−42

For a non-elementary charge one can introduce other forces, similarly to what is commonly

done in regular mechanics. For example, for two suspended light charged pit balls one can

discuss the tension force ~T as the third force which equilibrates the gravitational ~Fg and the
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electric Fe forces (i.e., ~Fe+ ~Fg+ ~T = 0 if the system is in equilibrium - see example below. In

principle, tension is not a fundamental force but is also of electromagnetic origin, but this is

only in principle. In reality, one cannot predict the value of T from considering interactions

of elementary charges in the thread, and T must be deduced from measurements.

Advanced: There is a fundamental difficulty in E&M, What is the size of an electron? If it is

finite, there are enormous forces trying to break it apart (see Coulomb’s Law). Which forces prevent

it from breaking? (we do not know, and at the moment it seems impossible to introduce such forces

consistently, so that they satisfy relativity, conservation of energy and momentum, etc.). The other

option is that electron is an infinitesimal point, but then one encounters INFINITY(!) when the

center of the electron is approached. The latter is very hard to deal with, both mathematically and

conceptionally, but seems to remain the only option which is currently available.
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Example: In a Lab demo two light balls with m = 1 milli-gram each are suspended on

two massless threads with L = 1m. When charged with equal negative charges Q the balls

separated by r = 2 cm . Find Q and the number of extra electrons on each ball.

T


Fe

m g

θθ

L L

x

y

~T +m~g + ~Fe = 0

Let sin θ = r/2L ≈ tan θ:

T sin θ − Fe = 0

T cos θ −mg = 0

Thus,

Fe = mg tan θ = k
Q2

r2

Q ≈ −
(

mgr3

2kL

)1/2

∼
(

0.5 · 8 · 10−6+1−6−10
)1/2

Advanced. Insufficiency of classical mechanics to get the size of an atom

Have [k] = N ·m2/C2, [e] = C, [m] = kg. Let us try to construct length:

[m] = [kg ·m3/s2C2]α[C]β[kg]γ

No solution! What to do? Need a new fundamental constant (Bohr). It is ~ ∼ 10−34J · s (Plank’s

constant).

Extra credit (optional): estimate the size of an atom by adding ~ to previous dimensions.
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Example. A dust particle with m1 = 4 µg and q1 = 7µC is 3 cm away from another

particle with m2 = 8µg and q2 = 5µC. Find acceleration for each.

F = k
q1q2
r2

= 9 ∗ 1097 ∗ 10
−6 ∗ 5 ∗ 10−6

(3 ∗ 10−2)2
= 350N

a1 =
F

m1
=

350

4 ∗ 10−9
= 8.75 ∗ 1010m

s2
, a2 =

F

m2
= 0.5a1

In all examples below Q = 5.0µC, q = 2.0µC, distances (if given) are in mm; red is

positive , blue is negative. You need to find the resultant force on the black (positive)

charge q.

-Q Qq
-1.5 -1.0 -0.5 0.5 1.0 1.5

x, mm

-1.5

-1.0

-0.5

0.5

1.0

1.5

y, mm

In the above r1 (from red) = r2 (from blue) = 1.0mm. Forces on q add up:

F = k
Qq

r21
+ k

Qq

r22
= 2k

Qq

r21
≃ 2 ∗ 9 ∗ 1095.0 ∗ 10

−6 ∗ 2.0 ∗ 10−6

(1.0 ∗ 10−3)2
= 1.8 ∗ 105N

Q -2Q q
-2 -1 1 2

x, mm

-1.0

-0.5

0.5

1.0

y, mm

In the above r1 (from red) = 3.0mm, r2 (from blue) ≃ 1.2mm. Forces subtract and resul-

tant is towards left:

F = k
2Qq

r22
−k

Qq

r21
= kQq

(

2

r22
− 1

r21

)

≃ 9∗109∗5.0∗10−6∗2.0∗10−6

(

2

(1.2 ∗ 10−3)2
− 1

(3.0 ∗ 10−3)2

)

=

= 1.15 ∗ 105N
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Let L = 3.0 cm. Find x so that F = 0 (figure no to scale!).
Q -2Q

x L

q

In the above r1 (from red) = x and r2 (from blue) = L+ x. Forces subtract:

k
Qq

x2
= k

2Qq

(L+ x)2
, or

1

x2
=

2

(L+ x)2
and x =

L+ x√
2

√
2x = L+x, x(

√
2−1) = L and x =

L√
2− 1

≃ 3.0 cm√
2− 1

= 7.2 cm (to the left of the smaller charge)

Directions only

L L

d

Q

q

-Q

-Q

2Q
-1.0 -0.5 0.5 1.0

x

0.5

1.0

1.5

2��

y

F = k
2Qq

r21
− k

Qq

r21
= k

Qq

r21
≃ 4.5 ∗ 104N
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Example. Integration. A charge Q = 2 nC is uniformly distributed along a plastic half

ring with R = 3 cm. Find the force which acts on a charge q = 0.5 nC at the center.
dQ

dθ

Solution. From symmetry only Fx 6= 0.

dFx = kq ∗
(

Q ∗ Rdθ

πR

)

∗ 1

R2
cos θ

Fx =

∫ π/2

−π/2

dθ ∗ kqQ 1

πR2
cos θ =

1

πR2
kqQ ∗ sin θ|π/2

−π/2 =
2

πR2
kqQ

24



Dr. Vitaly A. Shneidman, Phys 121, 3rd Lecture

III. ELECTRIC FIELD

A. Field due to a point charge

1. Definition and units

Consider the Coulomb’s law, eq. (9), but now we treat the charges unequally. The 1st

charge is the primary charge, just q, the second charge is a probe , a small charge with a

value q0. The law can now be written as

~F0 = k
q · q0
r3

~r

with F0 being the force which acts on the probe and ~r pointing from the primary charge

towards the location of the probe.

Now consider the following ratio

~F0/q0 = k
q

r3
~r

The most remarkable fact about this expression is that it does not depend on the probe!

Thus, the ratio is a characteristic of the charge q only, but not of q0. It deserves a name -

the electric field at point ~r and a standard notation ~E (~r). The units however, are derived

from the known ones:
[

~E
]

= N/C (and later we learn that this is the same as V/m, volts

per meter). Explicitly, one has for a field due to a point charge q

~E = k
q

r3
~r (12)

or, without vectors

E = k
q

r2
(13)

with positive sign indicating that field goes away from the charge and negative sign indicating

a field going towards the charge, if it happens to be negative. r is just the distance from

charge q to the observation point, and we do not need the probe at this point anymore(!)
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2. Vector Fields and Field Lines

The vector ~E (~r) is defined for any point in space around q. Instead of showing the

vectors, however, it is much more convenient to depict the field lines (see the Introduction).

Such lines have the property that their tangent coincides with the direction of a vector at

a given point. Since ~E always points away from the positive charge (towards a negative

charge), for a single charge the field lines will be just straight lines, as in Fig. 9. Note that

positive and negative charges serve, respectively, as ”sources” and ”sinks” for the field lines.

FIG. 9: Vector fields (upper row) and electric field lines (lower row) due to single point charges.

Note that the field becomes infinitely strong when a charge is approached.
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B. Field due to several charges

1. Definition and force on a charge in a field

Similarly to the field of a single charge, in a general case one can introduce field ~E (~r) as

a ratio of the force which acts on a small probe placed at ~r to the magnitude of the probe.

(After that, the probe does not matter).

In practice, this definition is often reversed. Field ~E is assumed to be known at a given

point, and one is asked to find the force on a charge q which is placed there (the charge may

or may not be called ”probe” in this case). From the definition one has

~F = q ~E (14)

Note that if the charge is negative (blue), the force is opposite to the field. If the blue

object has mass m and is to be balanced against force of gravity:

qE = mg

Example. In an oil drop experiment a small droplet with mass m = 1.5µg (micro-gram)

has 100 extra electrons. Find the direction and magnitude of the electric field which would

balance the droplet against gravity. (Ans. E = 7.7 V/m, down. Solution in class).
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Example. A massless string with a light charged pith ball at the end is placed in a uniform

horizontal electric field E. Find the angle which the string makes with the vertical. The

mass of the pith ball is m and the charge is q. (Solution in class).

~T +m~g + ~Fe = 0

−T sinα + Fe = 0

T cosα−mg = 0

Thus,

mg tanα = Fe = qE

2. Superposition of fields

Since the force obeys the superposition principle, the latter is also valid for the fields. The

total field ~E at a given point is determined by a vector sum of contributions of individual

charges

~E = ~E1 + ~E2 + . . . (15)

The fields ~E1, ~E2, etc. are determined by eq. (12) with ~r replaced by a vector pointing from

a corresponding charge to the observation point.
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Example Field due to a dipole. We will consider the observation point equally distanced

from both charges, as in fig. 10. The distance between charges is d and the distance from

each charge to the observation point is L. Both charges are identical in magnitude and equal

±q, respectively.

Let the two charges have respective coordinates ~r1 = (−d/2, 0) and ~r2 = (d/2, 0); the

observation point is then located at ~r0 = (0, h), with h =
√

L2 − d2/4. Let ~E1 be the field

L L

d
r o
-
r 1

r
o


-
r
2



r2
-r1



FIG. 10: Evaluation of a field due to a dipole. Left - from similar triangles. Right - from vectors.

As a reminder, a tiny probe is shown at the observation point, equally distanced from both charges.

In reality, there is nothing present at that point, just field.

from positive (red) charge and ~E2 field from the negative (blue) charge. The black horizontal

field is their resultant ~Edip = ~E1 + ~E2 . From similar triangles

Edip/E1 = d/L ⇒ Edip = E1
d

L

From E1 = kq/L2: Edip =
kqd

L3
(16)

Advanced. Alternatively, we can use vectors and the superposition principle:

~Edip = ~E1 + ~E2 = kq
~r0 − ~r1
L3

− kq
~r0 − ~r2
L3

=
kq

L3
{~r0 − ~r1 − ~r0 + ~r2} =

kq

L3
{~r2 − ~r1}
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which is a vector pointing to the right (from positive to negative, parallel to the dipole) with

the same magnitude.

-1.0 -0.5 0.5 1.0
x

-1.5

-1.0

-0.5

y

0.5 1.0 1.5
x

-1.0

-0.5

0.5

1.0

y

FIG. 11: Picture of the dipole can be rotated.

Example. (a) Find the field from a dipole if the observation point and the charges form

an equilateral triangle with side a = 3.0 mm with the positive charge q = 1.0 nC on the

right, as in Fig 10. (b) The same, if the observation point is under the dipole with the same

distances from charges.

Solution.(a) Direction from left to right - see Fig. 10. Magnitude: d = L = a and

Edip = kqd/L3 = kq/a2 = 9 ∗ 109 ∗ 1.0 ∗ 10−9 1

(3.0 ∗ 10−3)2
= 1.0 ∗ 106N/C

(b) Magnitude - same, direction - same (always parallel to the axis of the dipole, from

positive to negative charges.)
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Another example. Same arrangement, but both charges are positive - Fig. 12.

L L

h

FIG. 12: Example of evaluation of a field due to two identical positive charges.

Now

~E = ~E1 + ~E2 = kq
~r0 − ~r1
L3

+ kq
~r0 − ~r2
L3

=
kq

L3
{~r0 − ~r1 + ~r0 − ~r2}

or

~E =
kq

L3
{2~r0 − ~r2 − ~r1} =

kq

L3
(0, 2h) =

2kqh

L3
(0, 1)

which is a vector pointing up.

In principle, the superposition principle allows one to reconstruct field due to any known

charge distribution. If charges are distributed continuously, one just needs to break the

distributed charge into small individual domains, and threat each of the as a point charge.

This leads to an integral instead of a sum in eq. (15), but otherwise it is the same idea. We

will later see how it works on examples.
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C. Electrostatic Field Lines (EFL)

In a general case the structure of field lines is more complex than for a single charge; in

particular they are not straight lines anymore. Nevertheless, some general properties can be

established:

• tangent to the EFL determines the direction of the electric field ~E

• density of EFL determines the magnitude of E

• EFL originate on positive charges

• EFL terminate on negative charges

• EFL can come and go to infinity

• EFL CANNOT start or end in empty space

• EFL CANNOT loop

• as a rule, EFL CANNOT cross

Looping is not allowed since it would contradict conservation of energy. At the point of

crossing of two lines it would be impossible to determine the direction of the field. (A

special case is the point of zero field; such points however, are extremely rare since all three

components of ~E must go to zero at the same time).

1. Field lines due to a dipole

Generally, plotting field lines for several charges is not easy. Two things help. First,

directly near charges fields are so strong that other charges do not matter. It is a good

start. Second, in many problems there is some special symmetry which helps to understand

the structure of field.

Field due to a dipole - Fig. 13: Note that there are no points with zero field.

Field due to two identical charges - Fig. 14: There is one point where the field is zero.

For nonsymmetric arrangements, plotting of a field is a work for a (good) computer. For

example, in Fig. 15 there are field of two non-equal charges:
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FIG. 13: Electric field lines due to a dipole.

-
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-
1
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1 0 1 2

FIG. 14: Electric field lines due to 2 positive charges.

D. Continuos charge distribution

General:

1D : q → λ dx , [λ] = C/m

2D : q → σ dA , [σ] = C/m2

3D : q → ρ dV , [ρ] = C/m3
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-1
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FIG. 15: Electric field lines due to two non-equal charges with the positive charge on the left being

3 times larger. The smaller charge is negative (left figure) and positive (right)

Example. Field from a uniformly charged line at a point (red) equally distanced from

the ends

Contribution of the selected (blue) fragment

~r = (−x, y) , d ~E = k
λ dx

r3
~r = k

λ dx
(

√

x2 + y2
)3 (−x, y)

Then,

Ex =

∫

dEx = 0 (from symmetry), Ey =

∫

dEy

If the line is infinite

Ey = kλy

∫

∞

−∞

dx
(

√

x2 + y2
)3

Introducing dimensionless integration variable w = x/y

Ey =
kλ

y

∫

∞

−∞

dw
(√

w2 + 1
)3 =

2kλ

y
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Example. Field from a uniformly charged line at a point (red) with distance D from the

end, along the rod

Introduce X = L/2 + D-distance of the red point from the center. Contribution of the

selected (blue) fragment

dE = kλdx/(X − x)2

E =

∫ L/2

−L/2

dx kλ/(X − x)2 = kλ
1

X − x

∣

∣

∣

∣

L/2

−L/2

= kλ

(

1

D
− 1

D + L

)

=
kλL

D(D + L)
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Dr. Vitaly A. Shneidman, Phys 121, 4th Lecture

IV. GAUSS THEOREM

A. Quantification of the number of lines

The electric field lines give a good qualitative picture of the field, So far, however, we

did not specify the exact number of lines to draw, so that the field intensity intensity was

only proportional to their density. As long as the number lines is our choice, let us try to

determine the number of lines, Φ, in such a manner that the density of lines will be exactly

equal to the intensity of field. We will do that first for a single charge where we know the

field

E =
1

4πǫ0

q

r2
(17)

where ǫ0 is just another coefficient, related to k ≃ 9 · 109 N ·m2/C2 which we used before

by k = 1/ (4πǫ0).

Now let us surround a single charge by a sphere with radius r, as in Fig. 16. The area of

the sphere is 4πr2, and if the charge is at the center of the sphere, the density of lines is

Φ

4πr2

Comparing this to eq. (17), one determines the number of lines as

Φ = q/ǫ0 (18)

B. Deformations of the Gaussian surface

The sphere in Fig. 16 is often called a Gaussian surface. Note that once the number of

lines which emerge from a charge, Φ, is selected the number of lines which cross the surface

does not depend either on its shape or on its size, as long as the charge remains inside - see

Fig. 17.

We are almost ready to prove the Gauss theorem, although some formalities are still

required.
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FIG. 16: A charge is surrounded by a sphere with radius r. If Φ is the number of lines which emerge

from the charge, their density will be given by Φ/
(

4πr2
)

. The number of lines is considered positive

if they go out of the surface (picture on left); if the lines go into the surface (picture on right) their

contribution is negative. For a properly selected Φ, as in eq. (18), the density of lines will exactly

equal to the magnitude of electric field at any distance from the charge.

FIG. 17: Deformations of the Gauss surface. Note that the total number of lines which cross the

surface (with account for sign) does not change as long as the charge remains inside.
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The outside charge does not contribute to the flux.
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C. Definition of the flux

The more controlled definition of the ”number of lines which cross a given surface” is via

the electric flux.

Vector of the surface area (left) and the flux Φ = ~E · ~A. Density of field lines is proportional

(”equal”) to | ~E|.
Consider a small surface element with area ∆A and let us characterize it by a vector ∆ ~A

which points in the direction of the normal to the surface. The number of lines which cross

this surface, ∆Φ, is determined from the condition that
∣

∣

∣

~E
∣

∣

∣
coincides with the density of

lines. Thus, one obtains

∆Φ = ~E ·∆ ~A (19)

This is called the flux through the surface element. Note that this flux is a scalar.

Similarly, flux can be introduced for any surface, not only small. That surface can be

partitioned in small elements, ∆ ~Ai each characterized by its own ∆Φi (positive or negative),

and individual contributions should be just added together. In the limit, this leads to an

integral ~E · d ~A over the surface. The most interesting case is when the surface is closed, so

that

Φ =

∮

~E · d ~A (20)
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This serves as a formal definition of the flux. Check that it indeed coincides with the number

of lines in a simple configuration of Fig. 16.

Since the field ~E obeys the superposition principle, so does the flux. I.e., fluxes due

to several charges just add up (as scalars!). This conclusion is the main reason for the

detour from the more narrative, field line description. (It is not easy to justify from the

start the superposition principle in terms of the field lines since adding an extra charge will

dramatically modify the structure of the field - see the previous lecture).

D. Gauss theorem

Since we have the principle of superposition, and since an individual charge produces a

flux given by eq. (18), one has

Φ = qenc/ǫ0 (21)

where qenc is the net charge enclosed inside the surface. The shape of the surface does not

matter, and so does not matter any outside charge.

E. Advanced: Gauss Theorem (GT) and Coulomb’s law

Equation (17) from which we started when deriving the GT is a direct consequence of

the Coulomb’s law. So is the GT itself. Conversely, it could be possible to postulate the

GT as a fundamental law, and then derive eq. (17) from it. The only thing which should be

added here are considerations of symmetry (which are important in almost every practical

application of the GT - see below).

Consider again Fig. 16, but imagine now that you do not know the magnitude of the

electric field. You do know, however, that the field is radial (from symmetry!), and the flux

Φ through the Gaussian surface centered at the charge is given by

Φ = 4πr2E
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The field E is yet unknown, but it follows from the GT, eq. (21) with qenc being the single

charge q:

E =
q

4πǫ0r2

This is exactly eq. (17).

F. Applications of the GT

There are two major applications of the GT. The first is finding the field for some sym-

metric, usually continuous distribution of charges. The second type is finding the charge

once something is known about the field, as in the case of the conductor.

In the first group of applications the key point is selection of a ”good’ Gaussian surface,

which is consistent with symmetry. Then, the flux Φ can be evaluated, and field E found

from the GT. Let’s see how it works.
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1. Charged spherical shell

Consider a shell with radius R charged with a charge Q uniformly distributed over its

surface. From symmetry, field lines are radial. For an arbitrary radius of the Gaussian

surface r the flux is given by

Φ =

∮

E · dA = E

∮

dA = E · 4πr2

although the field E is yet unknown, and we find it from the GT. The result strongly depends

on whether we are inside or outside the real shell. One has:

The Gauss surface (dashed) with radius r outside the shell (left) and inside the shell (right).

Outside, r > R: qenc = Q; inside, r < R: qenc = 0. Thus

GT (outside): Φ =
Q

ǫ0
⇒ E(r > R) =

Q

4πǫ0r2
= k

Q

r2
as if charge Q was the center

GT (inside): Φ = 0 ⇒ E(r < R) = 0 everywhere inside, not only at the center

Example. A charged spherical shell with R = 3 m creates a field of E = 2000 N/C at a

distance d = 0.5 m away from the surface. The field is directed towards the sphere. Find

its charge Q and the surface charge density σ.

Solution. Since field is towards, charge is negative. From

E =
kQ

(R + d)2
, |Q| = E ∗ (R + d)2

k
=

2000 ∗ 3.52
9 ∗ 109 = 2.7µC

and σ = 24 nC/m2.
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Example. A spherical shell with R = 5m has a net charge of Q = 1µC uniformly

distributed over the surface. What is the magnitude of the electric field at (a) a distance

r = 1m from the center of the sphere and (b) a distance d = 1m from the surface of the

sphere?

(a): r < R ⇒ E(r) = 0

(b): r = R + d > R ⇒ E(r) = k
Q

(R + d)2
= 9 · 109 1 · 10

−6

(5 + 1)2
= 2.5 · 102 N

C

2. Advanced: Uniformly charged sphere

Let ρ be the charge density inside a sphere with radius R. The above relation Φ = 4πr2E

is still valid. For qenc in the GT one has:

Outside, r > R: qenc = Q, with Q = 4/3 ·πR3ρ being the total charge, and E = Q/ (4πǫ0r
2),

exactly like before. Inside, r < R: qenc = 4/3 · πr3ρ, and the GT gives

4πr2E = qenc/ǫ0 , E(r) =
ρ

3ǫ0
r

At the surface the field is given by E0 = ρR/3ǫ0 and this result can be approached from

the outside as well (show this!). The structure of field is shown in Fig. 18. This problem

1 2 3 4
r/R

0.2

0.4

0.6

0.8

1
field

FIG. 18: The field of a uniformly charged sphere. The field is given in scaled units, E/E0 with E0

being the field at the surface (see text).

is also of interest in gravitational context, representing, e.g. the gravitational acceleration

both inside and outside Earth.

Other types of symmetry will be discussed in class. Here is the summary only:
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3. Uniformly charged infinite line

Units: [λ] = C/m

Symmetry: cylindrical

Gaussian surface: cylinder coaxial with the line, with radius r and arbitrary length L.

Flux (only side surface contributes) Φ = 2πrLE , charge inside qenc = λL

From GT: 2πrLE = λL/ǫ0 , E =
λ

2πǫ0r
(22)

Example. At a distance r1 = 1 cm from a charged line the electric field equals E1 = 200

N/C. a) Find λ. b) Find E2 at a distance r2 = 2 cm from the line.

λ = E1 × 2πǫ0r1 = 200× 2π × 8.85 ∗ 10−12 × 1.0 ∗ 10−2 = ...

E2 = E1
r1
r2

= E1/2

Example. A very thin straight wire is L = 8 m long. It is uniformly charged with some

charge Q. The field at a distance d = 3 cm from the wire points towards it and equals to

E = 10, 000 N/C. Find Q.

Q is negative. From

E =
λ

2πǫ0d
, λ = E ∗ 2πǫ0d

Q = Lλ = −2|E|πǫ0d ∗ L = −2 ∗ 10, 000π ∗ 8.85 ∗ 10−12 ∗ 3 ∗ 10−2 ∗ 8 = −133 nC

Example (harder). A thin-walled conducting cylinder with R = 3.0 cm is uniformly

charged with σ = 7.0 nC/m2. Find E1 at r = 1 cm and E2 at r = 4 cm.

Can start from scratch. Use cylindrical Gauss surface with radius r and length L, as before.
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The flux is Φ = 2πrLE while the enclosed charge for r > R is Qenc = σ∗2πRL and Qenc = 0

for r < R. From GT

2πrLE = σ ∗ 2πRL/ǫ0 , ⇒ E =
σ

ǫ0

R

r
, r > R

E = 0, r < R

r = 4.0 cm: E =
7.0 ∗ 10−9

8.85 ∗ 10−12

3

4
= . . .
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4. Uniformly charged non-conducting plane

Units: [σ] = C/m2

Symmetry: planar -see Fig. 19

FIG. 19: Electric field due to an infinite positively charged plane. Left: the selected Gauss surface

(rectangular box with dimensions L × h × 2x with the part of infinite plane (purple) with area

A = hL which fits inside the box. Right: side view. Since field lines are parallel to each other,

their density remains constant and the magnitude of the field is independent of the distance x from

the plane and is given by eq. (23). For a negatively charged plane the picture would be similar,

with lines going into the plane.

Gaussian surface: rectangular box with one face (with area A = hL) parallel to the plane.

The charged plane cuts the box in the middle.

Flux and enclosed charge:

Φ = 2AE , qenc = Aσ ⇒ (Gauss)) 2AE = Aσ/ǫ0

E =
σ

2ǫ0
(23)

and x does not matter!
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Example. Two non-conducting parallel plated with area A = 100 cm2 each are separated

by a small distance d = 3.0mm distance are charged, respectively by Q = +2.0µC. Using

the principle of superposition find the field in various regions- see Fig. 20.

Q Q-Q -Q

FIG. 20: Structure of electric field between two parallel plates (right) starting from the principle

of superposition (left). Note: (a) the individual red and blue fields are uniform (do not depend

on the distance from plates) and are given by E = σ/(2ǫ0) each. (b) there is no net field outside

where red and blue cancel each other ; (c) between the plates, field has a magnitude 2 × σ/(2ǫ0)

with σ = Q/A, so that E = Q/Aǫ0 = 2.0 ∗ 10−6/
(

100 ∗ 10−4 ∗ 8.85 ∗ 10−12
)

= . . ..

Example. A small particle with mass m = 2.0 mili-gram and charge q = 1.0 nC is palced

above a large horizontal non-conducting sheet which is uniformly charged with density σ.

Which σ will keep the particle in equilibrium?

qE = mg, with E =
σ

2ǫ0
⇒ σ =

mg

q
2ǫ0 =

2.0 ∗ 10−6 ∗ 9.8
1.0 ∗ 10−9

∗ 2 ∗ 8.85 ∗ 10−12 = . . .

Example. A very large non-conducting disk with R = 2 m is uniformly charged with some

Q. Find Q if near the center, 2 mm away from the disk, E = 3000 N/C, directed towards

the disk.

From direction, Q < 0. As long as 2 mm is much smaller than 2 m, can treat disk as an

infinite plane to find σ (otherwise the exact value of 2 mm does not matter!).

σ = E ∗ 2ǫ0 = −3000 ∗ 2 ∗ 8.85 ∗ 10−12 = ...

Q = σ ∗ πR2 = −0.67µC
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Example. ForQ = 2µC, σ = 1µC/m2 and m = 10−4 kg find the angle with vertical.

E


T


Fe

m g

L

x

y

x: − T sin θ + Fe = 0 , y: T cos θ = mg ⇒

mg tan θ = Fe = QE = Q
σ

2ǫ0
= 2 · 10−6 10−6

2 · 8.85 · 10−12
= . . .

tan θ = Fe/(10
−4 · 9.8) = . . .
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G. A metal conductor

Impossibility of electric field inside metal (left) - otherwisde current, and impossibility of a

charge inside (right) - would violate Gauss theorem.

A charged conductor (with a cavity). Left: all extra charge Q goes to the outside surface;

inside no charge/no field. Right: far away outside acts as a point charge Q regardless of

actual shape.

Charge q inside a cavity in a conductor which also carries an extra charge Q. Charge on

inner surface is allways −q to ensure zero field inside the metal (from Gauss). Charge on

the outer surface follows from conservation of charge.
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1. Field near the surface of a conductor

+

+

+

+

+

+

+

+

+

+

+

E =
σ

ϵ0
E = 0

Field is now ’one-sided’ (compare with fig. 19 for an insulator). For a conductor, Gauss

theorem gives

E =
σ

ǫ0
(near conducting surface) (24)
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Example. A square has a a side of 1 cm. The field E = 105N/C makes an angle 20o with

the normal. Find ∆Φ.

∆Φ = ∆ ~A · ~E = ∆AE cos θ = (0.01)2 105 cos 20o = . . . N ·m2/C

Example. In the figure below there are 3 charges q1 = 1nC (smaller red), q2 = −2 nC (light

blue) and q3 = 3nC (bigger red). Find the flux through a) the football shaped Gaussian

surface and b) through the rectangular box.

Example. A metal spherical shell has an inner radius of R1 = 0.5 cm and an outer radius

R2 = 1 cm. The sphere is originally charged with Q = 4nC and an extra charge q = 1 nC

is placed at the center of the cavity. Plot E(r).
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E=k(q+Q)/r2

E=0

E=kq/r2

0.5 1.0 1.5 ���
r, cm

2

4

6

8

10

12

E, arb.u.

Example (harder). A large planar sheet of non-conducting material (dielectric) is placed

in the vertical y − z plane and has thickness of 1 cm in the x-direction. The material is

charged with a uniform charge density ρ = 0.3 nC/m3. Plot E(x).

-1.0 -0�� 0�� 1.0
x� cm

-1.0

-0��

0��

1.0

y� cm

Example. A thin straight wire has a linear charge with λ = 1µC/m. The wire is

surrounded by a coaxial metal cylinder with R1 = 2 cm and R2 = 3 cm. Find E in N/C at

r = 0.5 cm, 2.1 cm, 4 cm. The same, if the cylinder is also charged with λ1 = 3µC/m.
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V. ELECTROSTATIC POTENTIAL (EP)

A. Definitions, units, etc.

The EP at a given point in the electric field (which is created by all other charges in the

Universe) is defined as the potential energy of a unit positive charge if it were placed at that

point. In other words, if you place a small probe q0 at a given point ~r, and that probe has

a potential energy U (~r), the potential V (~r) is defined as

V (~r) = U (~r) /q0 (25)

The actual value of q0, or even its sign, do not matter - we shall see it later.

Units: V (volts); V = J/C

Major application: In practice, often the EP can be calculated (or measured) first. Then,

potential energy of a given charge q which is placed at a given point in the field (created by

other charges) is given by

U (~r) = qV (~r) (26)

If a charge is being moved from one point (A) to another point (B), the work done by the

field on that charge is given by

WAB = UA − UB = −∆U = q (VA − VB) = −q∆V (27)

Conventions. The direct physical meaning is given to the difference of potentials. Adding

a constant to V will not matter. By convention, potential at infinity is selected as zero (if

not stated otherwise). If there are grounded conductors in the problem, zero potential is

associated with them.

Example. A positively charged particle with charge q and mass m is placed at a point

with potential V1. Find the speed of the particle when it reaches a point with V2 < V1 .

Solution: from energy conservation

1

2
mv2 + qV2 = 0 + qV1 ,

1

2
mv2 = q(V1 − V2) > 0

v =
√

2(q/m) · (V1 − V2)
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Outlook. We will do the following. First, I will remind you for which type of forces it

makes sense to talk about the potential energy, and how it is related to work. Next, I will

show that the Coulomb’s force is of such type. Next, we will calculate the potential energy

of one point charge in the field of another point charge, and use the original definition to

find the EP. Then, we will examine the connection between the EP and the field ~E, and

consider the EP in and around conductors.
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B. Work and energy in electrostatic field

1. Conservative forces

A B

FIG. 21: Path-independence of the work done by a force. For any force the work is given by eq.

(28), but for special ”conservative” forces, the work does not depend on the actual path which

connects points A and B. For such forces one can talk about potential energy, U (~r) and use eq.

(29) to determine the work on a path. The electrostatic force is of that kind.

For any force ~F the work along a selected path can be obtained as

WAB =

∫ B

A

~F · d~s (28)

For some fundamental forces, however, the actual path does not matter - see Fig. 21. Then,

one can introduce potential energy, and not care about the path:

WAB = UA − UB (29)

The gravitational force was of such kind, so is the Coulomb’s force (we show that below).

Such forces are known as ”conservative”, to emphasize that the full mechanical energy

(potential plus kinetic) is conserved.

With the convention that potential energy is taken as zero at infinity, one has

UA =

∫

∞

A

~F · d~s (30)

This gives us a prescription how to calculate U if the force is known.
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C. Interaction of two charges

From eq. (30) one has

U (rA) =

∫

∞

rA

~F · d~s =
∫

∞

rA

F (r)dr =

∫

∞

rA

kq1q2
r2

dr = kq1q2

∫

∞

rA

1

r2
dr =

= kq1q2

(

−1

r

)
∣

∣

∣

∣

∞

rA

= kq1q2
1

rA

Thus, with r = rA, the distance between charges, the interaction energy is given by

U(r) = k
q1q2
r

(31)

This can be positive (repulsion) or negative (attraction). (The latter means that field per-

forms negative work when the charge is dragged to infinity).

For more than two charges, q1, q2, q3, etc. multiple pairwise interactions must be consid-

ered (with rik being the distance between charges i and k), and the total energy is just the

sum

U(r) = k
q1q2
r12

+ k
q1q3
r13

+ k
q2q3
r23

+ . . . (32)

D. Potential due to a point charge

We start with eq. (31) but treat one charge as the ”primary” charge q, and the other as

the probe q0. Then

U = k
qq0
r

by definition, V is U/q0, thus

V (r) =
kq

r
(33)

This is a potential of electric field due to a point charge at a distance r from that charge.

If there are several charges, potentials just add up (as scalars!, which is much easier)

V (r) =
kq1
r1

+
kq2
r2

+
kq3
r3

+ . . . (34)

Here r1, r2, etc. are the distances from each charge to the observation point.
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Example. 3 identical charges Q1 = Q2 = Q3 = Q

are placed at the vertexes of a right triangle with

side a. A 4th charge Q4 = q is placed at the center

of hypotenuse. Find the potential at the point ”o”

in the figure. Solution:

Vo = kQ1/r1o + kQ2/r2o + kQ3/r3o + kQ4/r4o =

= kQ(1/a + 1/a
√
2 + 1/a) + kq/(a

√
2/2)

For a continuous charge distribution the generalization is straightforward. The distribu-

tion is broken in tiny fragments with charges dq = ρ (~r) dv with ρ being the charge density

and dv the elementary volume. Each fragment is then treated as a point charge, and the

sum becomes an integral

V = k

∫

ρdv

r
(35)

The integration is carried out over the entire volume where the charge is distributed, and

r is the distance from the integration point to the observation point (where the potential

is measured). Note that the observation point can be both outside or inside the charge

distribution. (In the latter case the distance r can go to zero when the integration and

observation points coincide, but the integral still converges - this is an advantage of living

in a 3-dimensional space).

Example. Find the potential of a charge Q = 1nC uniformly distributed over the volume

of a cube with side a = 1 cm at a distance d = 100m from center. Solution. Exact

integration VERY hard, but note d ≫ a thus

V ≈ kQ/d ≃ 9 · 109 · (1 · 10−9)/100 = . . .
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Example. A charged insulating rod with (possibly non-uniform) linear density λ. Find V

at a distance D from the end of the rod (red dot). Use L = 1m, D = 9 cm for calculations.

Explore the cases λ = const = 1µC/m and λ = αx with α = 1µC/m2

dV

D L0

dx
x

dV = k
λ dx

r
, r = x+D ⇒ V = k

∫ L

0

λ(x) dx

x+D

1) λ = const

V = kλ

∫ L

0

dx

x+D
= kλ ln(x+D)|L0 = kλ(ln(L+D)− lnD) = kλ ln

L+D

D

Note: cannot take the limit L → ∞ (unlike the case of the field E).

2) λ = αx

V = kα

∫ L

0

x dx

x+D
= kα

∫ L

0

(x+D)−D

x+D
dx = kα

∫ L

0

(

1−D
1

x+D

)

dx = kα

(

L−D ln
L+D

D

)
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Example. A charged rod with (possibly non-uniform) linear density λ. Find V at a

distance H from the end of the rod (red dot) in the perpendicular direction. Use L = 1m,

H = 9 cm for calculations. Explore the cases λ = const = 1µC/m and λ = αx with

α = 1µC/m2

dV

H

L0

r

dx
x

dV = k
λ dx

r
, r2 = x2 +H2 ⇒ V = k

∫ L

0

λ(x) dx√
x2 +H2

1) λ = const

V = kλ

∫ L

0

dx√
x2 +H2

= kλ ln(x+
√
x2 +H2)

∣

∣

∣

L

0
= kλ(ln(L+

√
L2 +H2)− lnH)

Note: cannot take the limit L → ∞ (unlike the case of the field E).

2) λ = αx

V = kα

∫ L

0

x dx√
x2 +H2

= kα

∫ L

0

d(x2)/2√
x2 +H2

= kα
1

2

∫ L2

0

dz√
z +H2

=

=
1

2
kα · 2

√
x2 +H2

∣

∣

∣

∣

L

0

= kα(
√
L2 +H2 −H)
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E. Relation to electric field

1. Potential from field

Consider

VA =
W

q
=

1

q

∫

∞

A

~F · d~s = 1

q

∫

∞

A

q ~E · d~s

Thus,

VA =

∫

∞

A

~E · d~s (36)

Or, for arbitrary initial and final points, A and B

VB − VA = −
∫ B

A

~E · d~s (37)

Note the minus sign! - the potential always decreases in the direction of the field. (Analogy

with water runing downhill).

Simplest example: If field is constant,

VB − VA = −~E ·∆~r

∆~r being the vector from A to B. Along the constant field

VB − VA = −Ed (38)

In the direction perpendicular to field, potential is not changing. This determines equipoten-

tial surfaces, which are flat planes in the above example. For a point charge the equipotential

surfaces are spheres, as follows from eq. (33). More generally, the equipotential surfaces can

be of complex shape, but they are always perpendicular to field lines - see Fig. 22.
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FIG. 22: Field lines (blue) and equipotential surfaces (red) for a single charge, a dipole, two equal

charges of the same sign, and two unequal charges of the same sign. For clarity of the figure,

equipotential surfaces are not shown in the immediate vicinity of the charges (where they become

very close to each other); also direction of the field lines is not indicated since it depends on the

actual signs of the charges. Note that at the intersection points the equipotential surfaces and the

field lines are orthogonal to each other.

2. Field from potential

In the simplest example of a constant field,

E = −∆V

∆s

∆s being the distance between the equipotential surfaces. In a more general case, this

relation also can be used, only approximately for small ∆s; it does, however, become exact

in the limit ∆s → 0, so that

E = −∂V

∂s

The derivative is taken in the direction of the fastest change in V .

To get individual components of ~E consider eq. (36) with d~s = dx~i + dy~j + dz~k. Now

consider only a displacement in the x-direction (so that dy = 0 and dz = 0), and take a
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derivative to get rid of the integral. One has

Ex = −∂V

∂x
(39)

and similarly for other components.

Example. For V (x, y) = x2 + x− 3xy2 − y5 + 7 find ~E. Solution

Ex = −dV/dx = −2x− 1 + 3y2 , Ey = −dV/dy = 6xy + 5y4

Question (Advanced). It looks that the scalar quantity V contains as much information

as the vector ~E. However, ~E is characterized by 3 numbers, while V by just one?? The

reason is that the 3 components of ~E are not independent, but obey special relations (which

actually allow us to introduce V ), so that everything is consistent.
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F. Conductors

= 0 = const
A

B

IMPOSSIBLE!

Left: since field inside a conductor is always zero (otherwise current!), the potential is

constant.

Right: The field inside an empty cavity must be zero - otherwise VA 6= VB, which is

impossible.

Example. A conducting sphere has a charge Q = 1µC and radius R = 2m. (a) Find the

field E and the potential V at a distance d = 1m from the surface. (b) Find the potential

VR of the sphere.

=

V=VR

R

d

(a) from Gauss, outside the sphere E(r) = k
Q

r2
= k

Q

(R + d)2
= 9 · 109 1 · 10

−6

(2 + 1)2
= 103

N

C

Since field is the same as from a point charge and V (∞) = 0 (also outside)

V (r) = k
Q

r
= k

Q

R + d
= 9 · 1091 · 10

−6

2 + 1
= 3 · 103 volt

(b) since potential is continuous

VR = V (r) @ r = R ⇒ VR = k
Q

R
= 9 · 1091 · 10

−6

2
= 4.5 · 103 volt

(and this is potential of the entire sphere, not only surface).
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VI. PROPERTIES OF A CONDUCTOR IN ELECTROSTATICS

Field:

• inside: electric field is zero (otherwise - current!)

• outside: field lines approach the surface at 90o (otherwise - surface current).

Charge:

• inside: no free charge (follows from ~E = 0 and the GT)

• surface: there can be surface charge (see below) .

• Extra charge: when paced on conductor always goes to external surface.

• external electric field: additional charges, positive and negative, will appear on the

surfaces. The amount and distributions of such charges will be to ensure ~E = 0 inside

the conductor and, at the same time to satisfy the conservation of charge.

Potential:

• inside: constant

• surface: constant (same as inside)

• continuous (unlike E which can be discontinuous when crossing the surface)

• (by convention) zero at infinity or at a grounded conductor

Example (harder): charge q at the center of an uncharged conducting spherical shell with a and

b the external and external radii, respectively.

Field:

• 0 < r < a : E = kq/r2 (unmodified, from symmetry); if the sphere was initially charged

with Q, this result would not change

• a < r < b : E = 0 (as inside any conductor)

• r > b : E = kq/r2 (unmodified, from GT and symmetry); if the sphere was initially charged

with Q, this result would change to E = k(q +Q)/r2
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Charge:

• inner surface: −q (to ensure E = 0 inside)

• outer surface: +q (from charge conservation); if the sphere was initially charged with Q, this

result would change to q +Q.

If the charge q would be not in the center, properties which rely on symmetry would be lost.

However, the results which rely only on the GT and charge conservation will hold.

Potential (uncharged sphere):

• Outside: field outside is unmodified by the shell, thus the same potential, kq/r with r > b

• outer surface: same, with r = b (potential is continuous!)

• inside the body of the metal shell: same constant kq/b

• inside the cavity: same field as from a free charge, thus the potential can differ only by a

constant,

V (r) =
kq

r
+ const , r < a

const from the condition

V (a) =
kq

a
+ const =

kq

b
⇒ const = kq

(

1

b
− 1

a

)

< 0
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(Advanced). When a conductor is brought into electric field, it strongly affects both the

field lines and the equipotential surfaces - see Fig. 23

-2 -1 1 2

-2

-1.5

-1

-0.5

0.5

1

1.5

2

-1 0 1 2

-2

-1

0

1

2

FIG. 23: The structure of equipotential surfaces (red) and electric field lines (blue) around a

conducting sphere. Left: The sphere is uncharged and placed in a uniform electric field. Right:

the sphere is grounded and is placed near a point charge. Note that field lines terminate on the

surface of a conductor, approaching it at a right angle. The entire conductor has the same potential.
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VII. CAPACITANCE

A. Definitions, units, etc.

1. Definition

Consider an isolated conductor. Let us place on it some charge Q. The conductor will

acquire some voltage V . By definition, the capacitance

C = Q/V (40)

In most cases it does not depend on Q or V , but is determined solely by the geometry of

the conductor.

Units [C] = C/V = F (farads)

Capacitors. We will see that the capacitance of a single conductor is usually very small. A

simple capacitor is a combination of two conductors, one charged with a charge +Q and the

other −Q. The same definition for C is used, only now V is understood as the absolute value

of the difference of potentials between the conductors. For a clever arrangement, capacitance

of a combination can be billion times larger than capacitances of individual conductors.
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B. An isolated sphere

Consider a conducting sphere with radius R. To find C we place on it a charge Q and find

V .

Outside of the sphere the field is the same as from a point charge Q placed at the center

of the sphere

E(r) =
kQ

r2
, r > R

(we had this result before from the Gauss theorem). If the field is the same, so will be the

potential

V (r) =
kQ

r
, r ≥ R

The surface, and thus the entire sphere will have a potential

VR =
kQ

R

One thus has

CR = Q/V = R/k

which is more common to write as

CR = 4πǫ0R (41)

Since ǫ0 is very small so is the typical capacitance.

Example. Find the capacitance of a conducting sphere of the size of Earth, R ≃ 6400 km.

C ≃ 6.4 · 106/(9 · 109) ≈ 0.7mF

In practice small C means that an attempt to store larger charge will be accompanied by a

dangerously high voltage V = Q/C.
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C. A spherical capacitor

Let us surround the inner sphere (radius R1) by a larger thin spherical shell with radius R2.

The charge Q is placed on the inner sphere, and the charge −Q on the outer one. The field

is now given by

E = kQ/r2 , R1 < r < R2 and E = 0 , r > R2

Since between the spheres the field is the same as from a single, the potential is almost as

before

V (r) = kQ/r + const

. The const, however, does not matter as long as one need the difference

∆V = VR1
− VR2

= kQ

(

1

R1
− 1

R2

)

= kQ
R2 −R1

R1R2

From here one gets

C = Q/∆V =
1

k

R1R2

R2 −R1

which is usually written as

Csph = 4πǫ0
R1R2

R2 − R1
(42)

Note that for R2 close to R1 the capacitance Csph can be very LARGE compared to the one

of a single sphere of the same size.
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D. Parallel-plate capacitor

Q Q-Q -Q

FIG. 24: Structure of electric field inside of a parallel-plate capacitor (right) starting from the

principle of superposition (left, edge effects are neglected). Note the following: (a) there is no field

outside the capacitor; (b) charges on the plates are always the same in magnitude and opposite in

signs (and +Q is ”the charge of a capacitor”); (c) field is directed from positive plate to negative,

which has a lower potential; the field has a magnitude given by eq. (43) if the space between plates

is empty and is always related to potential difference by eq. (44).

The field of a single large charged plane is given by

σ

2ǫ0

(we had this from the Gauss theorem; σ = Q/A is the charge density of the plate with area

A). For two plates charged with opposite signs, the field between the planes will double, so

that

E =
σ

ǫ0
=

Q

Aǫ0
(43)

Here A is the area of each plate. The field E is uniform, thus

|∆V | = E · d (44)

(d being the distance between the plates). For C one has

C = Q/ |∆V | = Aǫ0
d

(45)

This also can be derived from the formula for a spherical capacitor for R2 ≈ R1 = R (and

with 4πR2 being the area A) and with a small difference R2 − R1 = d.
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E. Capacitor with a dielectric

κ=2 (diel.)κ=1 (air)

Q Q-Q -Q

Physics of a dielectric is hard and will be discussed separately. At the moment, we just

use the formal property that if field E is created by some fixed charges ±Q, placing of a

dielectric plate perpendicularly to the field, as in the figure, will reduce that field inside the

plate in accordance with

E → E/κ

κ > 1 is known as the dielectric constant, and is listed in Tables for most of the common

insulating materials. Consider now the entire space between the plates of a parallel-plate

capacitor filled with a dielectric. The charge Q is fixed. The formula for the voltage differ-

ence, ∆V = −Ed, remains the same, but the field is κ times smaller, and so is ∆V . The

capacitance, C = Q/∆V will be increased

C =
Aκǫ0
d

(46)

Example Given C = 1 pF , A = 50 cm2, κ = 2 find d in mm. Solution:

C =
Aǫ0κ

d
⇒ d =

Aǫ0κ

C
=

50 · 10−4 × 8.85 · 10−12 × 2

1 · 10−12
= . . .× 1000mm
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F. Capacitor and a battery

Schematics is shown in Fig. 25. Note that as long as the capacitor is connected to the

FIG. 25: Schematic representation of a capacitor and a battery. The short fat terminal is negative.

The capacitor acquires the same voltage V as between the terminals of the battery. The charge

taken by the capacitor is Q = CV . If disconnected from the battery, the capacitor will keep this

charge.

battery it has the same voltage V , regardless of other things (e.g. if we move the plates

apart or if a we insert a dielectric). If C is changed, extra charge will be supplied (or taken

away) by the battery in order to keep the same V . Once disconnected, the capacitor will

keep the charge. Voltage can change if C is changed.

G. Energy

Let q the the current value of the charge (which is smaller than Q). Bringing an extra

charge dq from the negative plate to the positive plate requires work dW with

dW = V (q)dq =
1

C
q · dq , ⇒ W =

1

C

∫ Q

0

q · dq = 1

C

Q2

2

The total work is the energy UC stored in the capacitor, i.e.

UC =
Q2

2C
=

1

2
V 2C (47)

Example. Given A = 50 cm2, κ = 2, d = 0.3mm, Q = 1nC. Find U . Solution:

C =
Aǫ0κ

d
=

50 · 10−4 × 8.85 · 10−12 × 2

0.3 · 10−3
= . . . , U =

Q2

2C
= . . .
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Question. A capacitor is connected to a battery. What happens to the energy when a

dielectric plate is inserted? Where does the energy come from?

Question. A capacitor is charged and disconnected from a battery. What happens to the

energy when a dielectric plate is inserted?

H. Connections of several capacitors

FIG. 26: Parallel (left) and series (right) connections. If each pair of the capacitors will be replaced

by a single equivalent capacitance, as in Fig. 25, with the values of Ceq given by eq. (48) or eq.

(49), the battery will ”not know” about the change. In particular, the total charge taken from the

battery will be Q = CeqV , the energy stored will be (1/2)V 2Ceq, etc.

1. Parallel

See Fig. 26 (left).

Same: Voltage

Add up: charges

Q = q1 + q2 + . . . = C1V + C2V + . . . = V (C1 + C2 + . . .)

Thus,

Ceq = C1 + C2 + . . . (48)

2. Series

Fig. 26 (right).
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Same - charge.

Add up - voltages.

V = V1 + V2 + . . . =
q

C1
+

q

C2
+ . . . = q

(

1

C1
+

1

C2
+ . . .

)

Or,
1

Ceq
=

1

C1
+

1

C2
+ . . . (49)

In many cases, more complex circuits can be analyzed using the so-called reduction

method. Examples will be given in class.

Example. All C’s equal 1µF . Find Ceq

Solution. Let C1 - upper; C2 and C3 - middle.

C23 =
C2C3

C2 + C3
=

C

2
, Ceq = C23 + C1 =

3

2
µF

Example. All C’s equal 1µF . Find Ceq

Solution. Let C1 - upper; C2 and C3 - middle and lower right.

C12 = C1 + C2 = 2C , Ceq =
C12C3

C12 + C3
=

2 · 1
3

µF
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Example. All C’s equal 1µF and Vab = 1 V . Find Ceq , all voltages and charges

Solution.

C12 =
C1C2

C1 + C2
= 0.5µF , C123 = C12 + C3 = 1.5µF

Ceq =
C123C4

C123 + C4
= 1.5/2.5 = 0.6µF ,Q = V Ceq

q4 = Q since in series with ”battery”;V4 = q4/C4

On the 1-2-3 combination

q123 = Q since in series with ”battery”;V123 = q123/C123

(equivalently, V123 = Vab − V4)

V3 = V123 , q3 = V3C3

q1 = q2 = V123C12 , V2 =
q1
C1

, V2 =
q2
V2

Example. A charge Q is placed on a combination of 2 capacitors connected in parallel.

Find Q1 and Q2
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I. Physics of the dielectrics

E


FIG. 27: Electric properties of a dielectric. The left figure shows a torque which acts on a single

dipole molecule when placed in electric field. When an external field is applied to a dielectric (right

figure), molecules tend to orient themselves along the field. The orientation is not perfect due

to thermal collisions and other interactions of molecules with each other. Any macroscopic inner

volume (as the sphere shown in the picture) will still contain, on average, zero charge. Nevertheless,

the left-hand side of the dielectric gets a negative, and the right-hand side a positive surface charges.

Those create additional field (not shown in the picture) which points left, effectively reducing the

external field inside the dielectric.

Even if the original dielectric consists of non-polar molecules, they will acquire a dipole moment

once placed in electric field, leading to a similar picture.
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VIII. CURRENT

A. Definitions and units

Current:

i =
dq

dt
≃ ∆q

∆t
(50)

Units: [i] = A = C/s (amperes)

Density of current:

J = i/A (51)

Units: [J ] = A/m2

J - vector, i -scalar; i1 = i2 and if A1 > A2 then J1 < J2

Major dependence (”Ohm’s rule”):

i = V/R (52)

R-resistance; [R] = Ω = V/A (ohms)

78



B. Resistance of a wire

R = ρ
L

A
(53)

ρ-resistivity (selected values will be given in class).

ρ(T ) ≃ ρ0 [1 + α (T − T0)]

α > 0 for metals

Example. A wire has a resistance R. It is then stretched (without losing mass) so that

the new length L1 = 3L. Find the new resistance R1 .

Solution. Since volume AL = const = A1L1, it is convenient to re-write eq.(53) as

R = ρ
L2

AL
and R1 = ρ

L2
1

A1L1
⇒ R1 = R

(

L1

L

)2

= 9R

C. Relation to field

From eqs. (53) and (52) one has

i =
V

R
=

EL

ρL/A
=

EA

ρ
, J =

1

ρ
E

1/ρ = σ - conductivity
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D. Power

Units: [P ] = J/s = W (watts)

1. Single resistor

work: ∆W = V ∗∆q , power: P =
∆W

∆t
= V ∗ ∆q

∆t

P = iV =
V 2

R
= i2R (54)

2. Simple connections

In parallel:

P = P1 + P2

If R1 > R2,

P1 =
V 2

R1

< P2 =
V 2

R2

In series:

P = P1 + P2

If R1 > R2,

P1 = i2R1 > P2 = i2R2

Example. How many meters of wire (d = 2mm, ρ = 10−6 ohm − m) is needed to

construct a 100 volt, 3.1 kW heater?

P = V 2/R ⇒ R = V 2/P = . . .

R = ρL/A ⇒ L = RA/ρ =
V 2

P

πd2/4

ρ
=

1002

3100

π10−6

10−6
= . . .

E. Series and parallel connections

See Fig. 28.

Parallel:
1

Re
=

1

R1
+

1

R2
+ . . . (55)
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Series:

Re = R1 +R2 + . . . (56)

R
 1

R
 2

R
 1

R
 2

FIG. 28: The parallel (left) and the series (right) connections. See eqs. (55) and (56), respectively.

A large number (N) of identical resistors R.

series: Req = NR

parallel: Req = R/N
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Example. Compare powers released on R1 , R2 , R3 if R1 = R2 = R3 = R.

Assume the leads from points a and b go directly to the terminals of a battery V . Then

I1 =
V

R1
, I2 = I3 =

V

R2 +R3
= I1/2

P1 = I21R1 , P2 = I22R2 = P1/4 , . . .

F. Ampmeter and voltmeter

A

V

R1

R

-

+

ampmeter - in series with resistor, RA ≈ 0 (”ideal ampmeter”, R1 +RA ≈ R1)

voltmeter - in parallel with resistor, RV ≈ ∞ (”ideal voltmeter”, RRV / (R +RV ) ≈ R)
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1. Branching of current in parallel connections

Consider a resistor R1 in parallel with resistor R2, with currents I1 and I2 and I = I1+I2

the total current. Since voltage is the same

IReq = I1R1 = I2R2 or
I1
I2

=
R2

R1

If R1 ≈ 0 (”wire”), I2 ≈ 0 and I1 ≈ I (”path of smallest resistance”)

Example. R = R1 = 1Ω and R2 = 2 , R3 = 3 , R4 = 4 , R5 = 5Ω. If I1 = 1A. What is

the reading of the voltmeter?

A

V

R1

R2

R3

R4

R5

-

+

I2 = I1
R1

R2
=

1

2
A , I3 = I1

R1

R3
=

1

3
A , I4 = I1

R1

R4
=

1

4
A , I5 = I1

R1

R5
=

1

5
A

I = I1 + I2 + . . .+ I5 =
137

60
A , V = IR = 1 · 137

60
≃ 2.28 V
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G. Microscopic picture of conductivity

Let n be the density of electrons (or, other charge carriers), vd - their drift velocity. Then,

density of current

J = envd (57)

If n is very large (as in metals), vd is rather small, a few mm/s.

Example. For n ∼ 1029m−3 and J ∼ 106A/m2 estimate vd . Solution.

J = |e|nvd ⇒ vd = J/(|e|n) ∼ 106

10−19 × 1029
∼ 10−4 m

s

H. Dielectric

I. Liquids (electrolytes)
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IX. CIRCUITS

A. The reduction method

See the example in Fig. 29, with R14 = R1 +R4 and R23 = R2R3/ (R2 +R3).

R
 1

R
 4

R
 2

R
 3

R
 14

R
 23

FIG. 29: Example of the reduction method
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Not all circuits can be solved by the reduction method - see Fig. 30.

R
 1

R
 2

R
 3

R
 4

R
 5

FIG. 30: Irreducible circuit

B. The real battery

See Fig. 31

E r

R  

A B

FIG. 31: The real battery. R is the external load. The voltage on the terminals A and B is smaller

than E - see text.

Voltage on the terminals

VAB = iR =
E

r +R
R = E R

R + r
< E

Note that VAB = E only for R → ∞, i.e for an open circuit.
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C. The potential method

See Fig. 32. One has

VB = VA − I1R1 + E1 + I2R2 − E2

R
 1

I
 1

E
 1 R

 2

I
 2 E

A B

FIG. 32: The potential method

For a closed loop, VB = VA and the total potential drop is zero. This is the loop rule.

Example. Real battery revisited.
E r

R  

A B

The real battery. R is the external load, r is the internal resistance. Find the voltage

between the terminals A and B.

start from A: E − Ir − IR = 0 ⇒ I =
E

R + r
, VAB = VR = IR = E R

R + r

equivalently: VB = VA + E − Ir = VA + E R

R + r
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Start from (a), CCW:

−4I − 4− 7I + 12− 2I − 3I = 0 , I =
8

16
=

1

2
A

P12 =
1

2
· 12 = 6W , P4 = −1

2
· 4 = −2W

Example. Isolated loop.

CCW current and loop with R1, R and E: + E − I1R1 − IR = 0
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D. Multiloop circuits and the Kirchoff’s equations

See Fig. 33.

E
 1

E
 2 R

 2

R
 3

I
 1

I
 2

I
 3

FIG. 33: Example of a two-loop circuit

Red loop:

E1 − I2R2 − E2 = 0

Blue loop:

E1 − I3R3 = 0

(Note, always try to select a loop with a single resistor, even if with many batteries).

Junction rule:

I1 = I2 + I3
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Assume currents i1 , i2 , i, all up.

Loop 1 (start from c):

−iR + i1r1 − E1 = 0

Loop 2:

+E2 − i2r2 + i1r1 − E1 = 0

Junction a:

i1 + i2 + i = 0

left loop, CCW

−I3R3 + E1 − I1(r1 +R1) = 0

right loop, CCW

+I2R2 + E2 + I2r2 + I3R3 = 0

Junction a:

I1 + I2 = I3
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E. RC circuits

Loop equation. Treat capacitor as a ”battery” with ”+” on left; assume counterclockwise

current, loop - CCW, from b:

−V − iR = 0 with V =
q

C
and i =

dq

dt

differential equation:
dq

dt
+

q

RC
= 0 , look for q(t) = Q0e

λt (58)

dq

dt
= λQ0e

λt = λq(t) ⇒ λq(t) +
q(t)

RC
= 0 ⇒ λ = − 1

RC

q(t) = Q0e
−t/τ , with τ = RC (59)

Current: i(t) =
dq

dt
= − Q0

RC
e−t/τ ; voltage: V (t) =

q(t)

C
= V0e

−t/τ , V0 =
Q0

C
(60)
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1 2 3 4 reduced time

0.2

0.4

0.6

0.8

1

reduced charge, voltage, current

FIG. 34: Discharging a capacitor. Reduced time is t/τ , with τ = RC. Reduced charge, voltage,

current are q/Q0, V/V0 or i/i0, respectively, with V0 = Q0/C and i0 = −V0/R.

Treat capacitor as another ”battery” with ”+” on left. Loop:

E − V − iR = 0 with V =
q

C
, i =

dq

dt
⇒

differential equation:
dq

dt
+

q

RC
=

E
R

new variable: q̃(t) = q(t)− EC with q̃(0) = −EC
dq̃

dt
+

q̃

RC
= 0 ⇒ q̃(t) = q̃(0)e−t/τ = −ECe−t/τ and q(t) = EC + q̃(t) or

q(t) = EC
(

1− e−t/τ
)

, same τ = RC (61)

VC(t) =
q

C
= E

(

1− e−t/τ
)

, i(t) =
dq

dt
= imaxe

−t/τ , imax =
E
R

(62)

1 2 3 4
reduced time

0.2

0.4

0.6

0.8

1

1.2

reduced charge, voltage on C
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Charging a capacitor. Reduced time is t/τ ; reduced charge and voltage are q/EC and V/E ,
respectively. Current follows a decay exponential, as in Fig. 34.

Applications (e.g. ”timer”) will be discussed in class.

Examples RC - time-dependent

For an RC charging circuit, how many time constants elapse for the capacitor to charge up

to 95% of its final value?

Q = Qmax

(

1− e−t/τ
)

, Q = 0.95Qmax

e−t/τ = 1− 0.95 = 0.05 ,
t

τ
= − ln 0.05 ≈ 3

A C = 0.1µF capacitor is connected is series with an R = 400 kΩ resistor, and this

combination is connected across an ideal V = 12 volt battery. What is the current in the

circuit when the capacitor has reached 40% of its maximum charge?

Qmax = V C , Q(t) = Qmax

(

1− e−t/τ
)

, Q = 0.4Qmax

e−t/τ = 1− 0.4 = 0.6 , i(t) =
dQ

dt
=

Qmax

τ
e−t/τ =

V

R
× 0.6 = . . .
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Resistors-Capacitors:

Example. Find all currents at t = 0+ and at t → ∞. Find QC(∞).

t = 0 : R13 =
1 · 3
1 + 3

, R24 =
2 · 4
2 + 4

, Re = R13 +R24 , I =
E

Re

V13 = IR13 , I1 = V13/R1 , I3 = V13/R3 , . . .

t → ∞ : Re =
(1 + 2)(3 + 4)

(1 + 2) + (3 + 4)
, I1 = I2 =

E

1 + 2
, I3 = I4 =

E

3 + 4

VA = 0 + I1 · 1 , VB = 0 + I3 · 3 ⇒ VAB = I1 · 1− I3 · 3 , Q = CVAB

Example. Find all currents at t = 0+ and at t → ∞. Find QC(∞). (in class)

Identical C:

Parallel: Ceq = nC. Series: Ceq = C/n
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Identical R:

Parallel: Req = R/n. Series: Req = Rn

Advanced. Transmission lines.

Consider an infinite chain

Idea: remove one repeating link and nothing changes! (”Hilbert Hotel”):

The resistance between the terminals is the same Rx. Thus get an equation

Rx = R +
rRx

r +Rx

with one positive root

Rx =
1

2
R +

√

R(r +R/4)

Approximate solutions. One can just truncate the chain after some finite number of links,

n. E.g., if only 1 link (2 resistors)

R(1)
x = R + r

If 2 links (4 resistors)

R(2) = R +
r(R + r)

r + (R + r)
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Convergence is usually very fast (related to ”continued fractions”).

Notes on magnetism will be in a separate file - ”notes121M.pdf”
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