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Hadron models and related New Energy issues 

 
 
 
The present book covers a wide-range of issues from alternative hadron models to their 
likely implications in New Energy research, including alternative interpretation of low-
energy reaction (coldfusion) phenomena. 
 
The authors explored some new approaches to describe novel phenomena in particle 
physics. M Pitkanen introduces his nuclear string hypothesis derived from his 
Topological Geometrodynamics theory, while E. Goldfain discusses a number of 
nonlinear dynamics methods, including bifurcation, pattern formation (complex Ginzburg-
Landau equation) to describe elementary particle masses. Fu Yuhua discusses a 
plausible method for prediction of phenomena related to New Energy development. 
 
F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss 
Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses theoretical 
link between Torsion fields and Hadronic Mechanic. 
 
A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital 
Discrete and Combinatorial methods and their likely implications in New Energy 
research.   
 
Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, 
and M. Pereira discusses his new Hypergeometrical description of Standard Model of 
elementary particles. 
 
The present volume will be suitable for researchers interested in New Energy issues, in 
particular their link with alternative hadron models and interpretation. 
 
While some of these discussions may be found a bit too theoretical, our view is that once 
these phenomena can be put into rigorous theoretical framework, thereafter more 'open-
minded' physicists may be more ready to consider these New Energy methods more 
seriously. Our basic proposition in the present book is that considering these new 
theoretical insights, one can expect there are new methods to generate New Energy 
technologies which are clearly within reach of human knowledge in the coming years. 
 
 
November 8th, 2007 
FS & VC 
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Preface

The work of the epistemologist T. Kuhn pointed out that science is a so-
cial construction, which integrates into the whole social fabric, interacting
and integrating with it in the construction of a whole world view. Thus, it
is part of a cultural system such as is the economy, politics, the arts, the le-
gal systems, religions, etc. The validation of this system we know as science
runs from the effectiveness of producing sustainability of its own existence:
Cultural systems are autopoietic, they are self-producing. From time to
time, this validation is called into question. Experiences may surprise some
of the producers of this system; also, examination of the purported true
world view can be pursued theoretically, and inconsistencies may appear
which will lead to new theories. This will lead in some instances to the
realization of new experiments which will be the framework for the vali-
dation or invalidation of this ideas. Whatever may be the contents of this
cognitive system which we know as science (in fact it only exists as an
ideal, we only know of the existence of the sciences, with no integration of
them), one of the first clues to its validation stands in the fact that these
self-producing systems, by consistence, should be able to persist in time:
Humankind which produce these cognitive systems, should exist to produce
them and be produced by them. This is starting to be perceived as barely
possible. Cataclysmic climate changes are taking a serious toll of lifes and
the validity of our world view is brought into question. The destruction of
the world in which we live appears to be the cause of these changes.

In one side we have constructed cognitive systems which function in
the only way they can, through languages, and in the other hand we are
not far from our ancestors burning perishable material which has not been
processed with any deep linguistic process, with the notable exception of the
use of fission processes with their possible environmental impact that has
not been solved yet. Some of the ideas being proposed is the use of biofuels,
which itself is not sustainable with due integration of Humankind, and then
by the validation criteria of a cultural system to be a life supporting view,
it should be strategically discarded. Other ideas go back to the Tomahawk
project of fusion, which started decades ago, and has produced no results
till today.

None of these approaches take in account that the present frontier of
knowledge of the science of physics is space and time. Of course, any physics
student has heard about zero-point energies and the apparent existence of
processes which do not conform to the present cognitive system. Govern-
mental and private laboratories around the globe are carrying research in
these processes.

This book is a small step in examining space and time structures, and
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the claims that they may appear to be the source for the new self-producing
energies we might be searching for. The theories we shall be presenting have
evolved in the last two or three decades. Some of them have reached already
the stage of industrial implementations. Others are original and in their
initial stages of development.

Returning to our introductory words, no cognitive system stands as an
eternal source of life and we intend by these contributions to invite others to
examine the world in their own views and to participate in the construction
of the ideas presented in this volume.

D.R.

v
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Foreword 
 
 

"Any sufficiently advanced technology is indistinguishable from magic," says 
Arthur Clarke. While his idiom may be true for most of advanced technologies 
surrounding our modern society, the notion of 'new energy' as described herein 
may have been around in the air for years, with scattering results, from just 
another obscure promise to really impressive results. 
 
Yet in this book some authors have been invited to write on particular aspects of 
New Energy issues, especially those which may be related to (alternative) 
hadron models. In the light of the fact that most of 'New Energy' assessment 
belongs to two categories: either eulogizing the new method(s), or denouncing-
style by 'conventional mainstream’ physicists, in this book the authors offer some 
new theoretical insights, which may be found useful in order to understand these 
phenomena related to New Energy methods. 
 
In the first chapter, M. Pitkanen discusses how coldfusion experiments 
(http://www.lenr-canr.org ) can be explained using 'nuclear string hypothesis' 
based on his TGD theory (#1). Interestingly, a recent report explains that there 
are chemical reactions which remain rapid down to temperatures as low as a few 
kelvin.1 In other chapter, he also discusses some critical issues of Free Energy 
technologies found in the literature (#2), in particular from the viewpoint of his 
Topological Geometrodynamics model (TGD). It seems to be the first attempt of 
its kind to put these technologies under rigorous framework. He also discusses a 
number of open problems in theoretical physics, in particular from the viewpoint 
of TGD theory (#5). 
 
Fu Yuhua describes a plausible method to predict some phenomena which may 
affect New Energy development (#3).  
 
Thereafter, E. Goldfain discusses a number of open problems in the present 
Standard Model of elementary particles, in particular from the viewpoint of 
nonlinear dynamics theory (bifurcation, pattern formation, complex Ginzburg-
Landau etc.), which may open a new path to find ‘untapped energy’ hidden in the 
formation of elementary particles (#6, #7, #8). It seems more interesting to note 
that Goldfain’s methods reveal hidden link between micro-systems and large 
scale systems. Although some physicists prefer to call this ‘plausible’ link as 
‘scale invariant principle’ or ‘scale relativistic principle’, one can remember that 
the same principle has been known in the past century as ‘Mach principle’ (i.e. 
the seemingly hidden connection between our Earth and galaxy rotation, 
especially in Newtonian rotating bucket experiment).2  Alternatively, one can 
describe this ‘hidden link’ between micro-systems and macrosystems as ‘scale-
entanglement’, as an equivalent term to ‘quantum entanglement’. 
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In subsequent chapter, Perinova, Luks, and Pintr also describe how modified 
Schrödinger equation can describe planetary orbit distances around the Sun 
(#18), which seems to suggest that the same equation that was normally used to 
describe quantum phenomena at microscale can also be used to describe orbits 
at astrophysics scale. All of these aforementioned new methods may seem to 
reflect a Japanese koan:3 
 
      A thousand 
      kaleidoscopic world 
 
                  inside 
             a light snow 
 
             the inside 
          is also 
 
                  a light snow 
 
     (Ryokan) 
 
 
F. Smarandache offers his new term 'unmatter' which may be useful in describing 
some unexplained phenomena, in particular with regards to Brightsen’s closed-
packed cluster model of nuclei (#9, #10, #11). This model which seems quite 
similar to the close-packed spheron model by Linus Pauling in 60s, may offer a 
new thinking on nuclei structure.  
 
A. Yefremov, F. Smarandache, and V Christianto discuss a new insight that 
Yang-Mills field can be viewed as pure geometrical aspect of quaternion space 
geometry, and its link to Klein-Gordon equation, in particular using biquaternion 
differential operator (#12, #13). They extend further to describe biquaternion 
Schrödinger equation (#14). Some unsolved problems in the elementary particle 
physics are also discussed (#4). 
 
In the meantime, Diego Rapoport extends his geometro-stochastic theory of 
quantum mechanics and gravitation to the strong interactions, by including in his 
framework the theory of Hadronic Mechanics (#17). In this setting, it is derived as 
a group-theoretical modification of torsion, and the isotopic Santilli-Schrödinger 
equation is treated as torsion geometry with an associated diffusion process. 
Alike to Quantum Mechanics in which the Schrödinger wave function produces 
torsion, in Hadronic Mechanics the wave function of the composite also produces 
a torsion field. This sets in a general framework, ad-hoc models of fusion treated 
as diffusions in the already standard approach to the problem. As well, the 
association of torsion with kinetic theory and rotations is elaborated. The isotopic 
theory of the strong interactions due to Santilli has developed to include an 
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extension of Quantum Chemistry known as Hadronic Chemistry, which has lead 
to the development, already in an industrial level, of plasmas and of clean fuels.  
 
A. Phillips discusses some new ideas with respect to nanotechnologies, which 
may be found useful in the context of new energy technologies (#19). Thereafter, 
V. Boju and A. Boju discuss a new concept called Digital, Discrete and 
Combinatorial Methods and their implications to New Energy research (#20).    
 
M. Pereira describes how most experimental data can be explained using his 
hypergeometrical theory of Standard Model, despite his theory is a quite different 
from the standard theory of elementary particles (#21). The theory indicates the 
possibility of a paradigm shift from Nuclear Chemistry to Nonlinear Hadronics 
methods similar to the ones used in nonlinear optics using four dimensional 
phase-matching. For a recent conference on hyperbolic space, see 4.  
 
Of course, some of these discussions may be found a bit too theoretical, but our 
view is that once these phenomena can be put into rigorous theoretical 
framework, thereafter more 'open-minded' physicists may be more ready to 
consider these New Energy methods more seriously. Our basic propositions in 
the present book is that considering these new theoretical insights, one can 
expect that there are new methods to generate New Energy technologies which 
are clearly within reach of human knowledge in the coming years. 
 
We would like to extend our gratitude to D. Rabounski and L. Borissova for their 
kind permission to publish the articles from Progress in Physics Journal. And 
special thanks to all contributors for their creative efforts and permission to 
include their works in this volume; and also to Profs. R.M. Kiehn, Ezzat G. 
Bakhoum, and C. Castro for their kind willingness to proof-read and review this 
book. Also special thanks to numerous colleagues all over the world, who have 
shared ideas with us over these years.    
 
October 29th, 2007 
FS & VC 
_____________ 
1 See H. Sabbah et al., “Understanding reactivity at very low temperatures: The reactions of 
oxygen atoms with alkenes,” Science magazine, vol. 317, July 6th, 2007, p.102. 
http://www.sciencemag.com.  
2 Another variation of this theme is known in ancient belief, saying that the galaxy center (called 
‘Hunab Ku’, cf. Scott Hyman, 2005, http://www.achtphasen.net/index.php/2007/01/17/p153 ) is 
the center of creation and also affects the well-being of people in Earth. Interestingly, there is also 
a recent debate over the question whether the galaxy center affects climatic changes 
(www.physicalgeography.net/fundamentals/7y.html). For a recent reference of ‘scale 
entanglement’ term, see for instance: ‘Multi-Scale Entanglement Renormalization Ansatz,’ 
http://front.math.ucdavis.edu/0710.3829 
3 Quoted from an email to Sarfatti Physics Seminar, May 18, 2007, at 7:06 PM. 
4 Science magazine, “Geometry and imagination: In hyperbolic space, size matters,” vol. 317, 
July 6th, 2007, p.38. http://www.sciencemag.com.  
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Prologue: Socio-Economic impacts of New Energy 
technologies 
 
 
 
 
 
As we all know, Energy is all as controversial as always, in particular if one uses 
this word in conjunction with 'new' or 'alternative' word, the resulting controversy 
become more adverse. Part of this controversy may come from the fact that most 
of 'alternative energy' technologies are not 'scalable' enough, i.e. they cannot 
compete with conventional ones in terms of massive implementation, for instance 
to replace energy use for mass-rapid transportation system.  
 
Other controversy may take place because sometimes these new energy 
technologies have been implemented just for the hype purposes. For example, a 
‘solar-cell based reading-lamp’ may be not as useful as what its designer 
expects, because by the time there is enough 'solar energy' (at daylight) more 
people would prefer to read books or magazines without lamp at all. There are 
similar examples that the 'new energy' term has been used in conjunction with 
'New Age' philosophy or wherever 'back to nature' jargon can be exploited solely 
for the hype purposes, instead of improving energy use efficiency at large-scale. 
 
Nevertheless, if we call these 'new' unexplored alternative energy technologies 
as 'New Energy', it is by no means to indicate that we are promoting a 'free 
energy' market. First of all, research on untapped energy technologies is likely to 
require a substantial amount of initial support, which may be quite similar or 
comparable to the amount needed to survey wells in conventional oil exploration. 
Therefore to discuss 'New Energy' issues is not the same as saying that these 
alternatives are ‘costless’ either to government, scientists or to the people, in 
particular at the initial phase of its development.  
 
For comparison purpose, one may use the ‘open source’ movement as analogue 
story. Despite the open-source movement (mostly was inspired by R. Stallman’s 
GNU/GPL license) indicates that there is ‘no (or less) license fee’ required to 
purchase a particular computer software, there are remaining modification, 
scalability and other issues required to be considered before this ‘open source’ 
technology could be implemented in industrial scale. Continuing this analogue 
story, one may use the IT hardware(s) to indicate ‘scale’ of energy generating 
technologies, see Table 1. 
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Table 1. Comparison between IT hardware scale and Energy generation scale 
IT hardware ‘scale’ Energy generation 

‘scale’ 
Implication to New 
Energy methods 

PDA/mobile device Mobile energy cells - Fuel-cell based PDA, 
better reusable battery etc. 

Standalone PC Individual energy generator - Wind-power home energy, 
solar-cell vehicle  

LAN Village-based energy 
generator 

- Microhydro generator 

Grid/MAN National/city-wide energy - Alteration or Combination 
of the above 

Note: LAN= local area network; MAN=metropolitan area network 
 
 
It shall be clear therefore that perhaps there are not much choices available yet 
for Grid/National-wide energy supply system, therefore in the near future the 
existing method is likely to continue (unless someone can achieve a 
breakthrough in hotfusion/ITER6 or using laser fusion method, see 
www.focusfusion.org). But, perhaps there are more choices and market for other 
energy applications (mobile energy cells, home-based energy, or village-based 
energy system). Most of the ‘New Energy’ methods discussed in this book may 
be more suitable for these (small-scale) applications (for instance, see paper by 
A.H. Phillips).  
 
Furthermore, the production and distribution technologies given a 'New Energy' 
method is ready for full-scale implementation may be quite considerable,5 let 
alone its socio-economic ramifications, such as costs required to change the 
present energy-generating technologies to the new-energy ones. For instance, 
while LNG (liquid natural gas) engine for vehicles (cars) has been already known 
since more than a decade ago, it is not so easy to implement the alternative 
LNG-based engine to replace the all-pervasive gasoline/diesel-driven engines.7 
Perhaps the only exceptional story in this regard is Brazil, which is able to alter 
their (transportation) energy mode from gasoline to renewable energy sources 
within a few decades. 
 
But by then the question as to how to replicate this story to other (developing) 
countries may require not only 'ready-to-implement' New Energy technologies, 
but may also involve socio-economic aspects of the particular country. And also 
what are the critical success factors behind this exceptional story may require 
another intensive study. 
 
These interesting issues, however, are beyond the scope of this book, which 
limits itself in particular to theoretical considerations of some hadron models and 
their plausible links to New Energy issues. In this regards, allow us to quote here 
a remark by Arthur Clarke: “It is now beyond serious dispute that anomalous 
amount of energy are being produced from hydrogen by some unknown 
reaction.” 8 
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Another limitation of this book is, of course, that we only discuss alternative 
energy issues from the viewpoints of physicists. Other viewpoints of renewable 
energy sources, for instance from biochemistry and biotechnology viewpoints 
which may prefer synthetic biology processes or using isoprenoids,9 are outside 
the reach of this book. But perhaps this omitting is for a good reason, because 
some of these technologies will require special enzyme(s) as catalyst which is 
available only at considerable price, therefore these alternatives may not be an 
appropriate choice for developing countries.   
 
As concluding note, the authors hope that the present book may inspire further 
study on how some of these New Energy ideas/technologies discussed herein 
can be implemented in more practical way in the near future. 
 
 
 
 
October 29th, 2007 
FS & VC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

____________________ 
 

5 An alternative method for distributing energy is using wireless technology, but thus far it 
remains in research stage, with ~40% efficiency. See A. Kurs et al., “Wireless power transfer via 
strongly coupled magnetic resonance,” Science magazine, vol. 317, July 6th, 2007, p.83. 
www.sciencemag.com 
6 It is known that the Hot Fusion method faces complicated problems caused by magnetohydro-
dynamics (MHD) instability of plasma confinement.  
7 Considering the fact that technology choices are part of ‘social construct’ – at least in the sense 
of Habermas’ viewpoint -, some researchers argue that the gasoline-engine is a good example of 
‘technological locked-in’ problem (while others may prefer ‘technology inertia’ word). 
8 Clarke, A.C., “2001: The coming age of hydrogen power,” Infinite Energy 4(22) (1998) p.15.  
9 The Economist, “Ethanol, schmethanol,” Sept. 29th, 2007, p.80. 
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Abstract

Nuclear string hypothesis is one of the most dramatic almost-predictions
of TGD. The hypothesis in its original form assumes that nucleons in-
side nucleus form closed nuclear strings with neighboring nuclei of the
string connected by exotic meson bonds consisting of color magnetic
flux tube with quark and anti-quark at its ends. The lengths of flux
tubes correspond to the p-adic length scale of electron and therefore
the mass scale of the exotic mesons is around 1 MeV in accordance
with the general scale of nuclear binding energies. The long lengths
of em flux tubes increase the distance between nucleons and reduce
Coulomb repulsion. A fractally scaled up variant of ordinary QCD
with respect to p-adic length scale would be in question and the usual
wisdom about ordinary pions and other mesons as the origin of nuclear
force would be simply wrong in TGD framework as the large mass scale
of ordinary pion indeed suggests.

1. A > 4 nuclei as nuclear strings consisting of A ≤ 4 nuclei

In this article a more refined version of nuclear string hypothesis is
developed.

a) It is assumed 4He nuclei and A < 4 nuclei and possibly also
nucleons appear as basic building blocks of nuclear strings. A ≤ 4
nuclei in turn can be regarded as strings of nucleons. Large number of
stable lightest isotopes of form A = 4n supports the hypothesis that the
number of 4He nuclei is maximal. Even the weak decay characteristics
might be reduced to those for A < 4 nuclei using this hypothesis.

b) One can understand the behavior of nuclear binding energies
surprisingly well from the assumptions that total strong binding energy
associated with A ≤ 4 building blocks is additive for nuclear strings.

c) In TGD framework tetra-neutron is interpreted as a variant of
alpha particle obtained by replacing two meson-like stringy bonds con-
necting neighboring nucleons of the nuclear string with their negatively
charged variants. For heavier nuclei tetra-neutron is needed as an ad-
ditional building brick.

2. Bose-Einstein condensation of color bonds as a mechanism of
nuclear binding

The attempt to understand the variation of the nuclear binding
energy and its maximum for Fe leads to a quantitative model of nuclei
lighter than Fe as color bound Bose-Einstein condensates of pion like
colored states associated with color flux tubes connecting 4He nuclei.
The color contribution to the total binding energy is proportional to
n2, where n is the number of color bonds. Fermi statistics explains
the reduction of EB for the nuclei heavier than Fe. Detailed estimate
favors harmonic oscillator model over free nucleon model with oscillator
strength having interpretation in terms of string tension.
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Fractal scaling argument allows to understand 4He and lighter nu-
clei as strings of nucleons with nucleons bound together by color bonds.
Three fractally scaled variants of QCD corresponding A > 4 , A = 4,
and A < 4 nuclei are involved. The binding energies of also A ≤ 4 are
predicted surprisingly accurately by applying simple p-adic scaling to
the model of binding energies of heavier nuclei.

3. Giant dipole resonance as de-coherence of Bose-Einstein con-
densate of color bonds

Giant resonances and so called pygmy resonances are interpreted
in terms of de-coherence of the Bose-Einstein condensates associated
with A ≤ 4 nuclei and with the nuclear string formed from A ≤ 4
nuclei. The splitting of the Bose-Einstein condensate to pieces costs
a precisely defined energy. For 4He de-coherence the model predicts
singlet line at 12.74 MeV and triplet at ∼ 27 MeV spanning 4 MeV
wide range.

The de-coherence at the level of nuclear string predicts 1 MeV wide
bands 1.4 MeV above the basic lines. Bands decompose to lines with
precisely predicted energies. Also these contribute to the width. The
predictions are in rather good agreement with experimental values.
The so called pygmy resonance appearing in neutron rich nuclei can
be understood as a de-coherence for A = 3 nuclei. A doublet at ∼ 8
MeV and MeV spacing is predicted. The prediction for the position is
correct.

1 Introduction

Nuclear string hypothesis [F8] is one of the most dramatic almost-predictions
of TGD [TGDquant]. The hypothesis in its original form assumes that
nucleons inside nucleus organize to closed nuclear strings with neighboring
nuclei of the string connected by exotic meson bonds consisting of color
magnetic flux tube with quark and anti-quark at its ends. The lengths of
flux tubes correspond to the p-adic length scale of electron and therefore
the mass scale of the exotic mesons is around 1 MeV in accordance with the
general scale of nuclear binding energies. The long lengths of em flux tubes
increase the distance between nucleons and reduce Coulomb repulsion. A
fractally scaled up variant of ordinary QCD with respect to p-adic length
scale would be in question and the usual wisdom about ordinary pions and
other mesons as the origin of nuclear force would be simply wrong in TGD
framework as the large mass scale of ordinary pion indeed suggests. The
presence of exotic light mesons in nuclei has been proposed also by Illert [4]
based on evidence for charge fractionization effects in nuclear decays.
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1.1 A > 4 nuclei as nuclear strings consisting of A ≤ 4 nuclei

In the sequel a more refined version of nuclear string hypothesis is developed.
a) The first refinement of the hypothesis is that 4He nuclei and A < 4

nuclei and possibly also nucleons appear as basic building blocks of nuclear
strings instead of nucleons which in turn can be regarded as strings of nucle-
ons. Large number of stable lightest isotopes of form A = 4n supports the
hypothesis that the number of 4He nuclei is maximal. One can hope that
even also weak decay characteristics could be reduced to those for A < 4
nuclei using this hypothesis.

b) One can understand the behavior of nuclear binding energies surpris-
ingly well from the assumptions that total strong binding energy associated
with A ≤ 4 building blocks is additive for nuclear strings and that the ad-
dition of neutrons tends to reduce Coulombic energy per string length by
increasing the length of the nuclear string implying increase binding energy
and stabilization of the nucleus. This picture does not explain the variation
of binding energy per nucleon and its maximum appearing for 56Fe.

c) In TGD framework tetra-neutron [2, 3] is interpreted as a variant of
alpha particle obtained by replacing two meson-like stringy bonds connect-
ing neighboring nucleons of the nuclear string with their negatively charged
variants [F8]. For heavier nuclei tetra-neutron is needed as an additional
building brick and the local maxima of binding energy EB per nucleon
as function of neutron number are consistent with the presence of tetra-
neutrons. The additivity of magic numbers 2, 8, 20, 28, 50, 82, 126 predicted
by nuclear string hypothesis is also consistent with experimental facts and
new magic numbers are predicted [5, 6].

1.2 Bose-Einstein condensation of color bonds as a mecha-
nism of nuclear binding

The attempt to understand the variation of the nuclear binding energy and
its maximum for Fe leads to a quantitative model of nuclei lighter than
Fe as color bound Bose-Einstein condensates of 4He nuclei or rather, of
pion like colored states associated with color flux tubes connecting 4He
nuclei. The crucial element of the model is that color contribution to the
binding energy is proportional to n2 where n is the number of color bonds.
Fermi statistics explains the reduction of EB for the nuclei heavier than Fe.
Detailed estimate favors harmonic oscillator model over free nucleon model
with oscillator strength having interpretation in terms of string tension.

Fractal scaling argument allows to understand 4He and lighter nuclei as
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strings formed from nucleons with nucleons bound together by color bonds.
Three fractally scaled variants of QCD corresponding A > 4 nuclei, A = 4
nuclei and A < 4 nuclei are thus involved. The binding energies of also
lighter nuclei are predicted surprisingly accurately by applying simple p-
adic scaling to the parameters of model for the electromagnetic and color
binding energies in heavier nuclei.

1.3 Giant dipole resonance as de-coherence of Bose-Einstein
condensate of color bonds

Giant (dipole) resonances [18, 19, 21], and so called pygmy resonances [22,
23] interpreted in terms of de-coherence of the Bose-Einstein condensates
associated with A ≤ 4 nuclei and with the nuclear string formed from A ≤ 4
nuclei provide a unique test for the model. The key observation is that the
splitting of the Bose-Einstein condensate to pieces costs a precisely defined
energy due to the n2 dependence of the total binding energy. For 4He de-
coherence the model predicts singlet line at 12.74 MeV and triplet (25.48,
27.30,29.12) MeV at ∼ 27 MeV spanning 4 MeV wide range which is of the
same order as the width of the giant dipole resonance for nuclei with full
shells.

The de-coherence at the level of nuclear string predicts 1 MeV wide bands
1.4 MeV above the basic lines. Bands decompose to lines with precisely
predicted energies. Also these contribute to the width. The predictions are
in a surprisingly good agreement with experimental values. The so called
pygmy resonance appearing in neutron rich nuclei can be understood as a
de-coherence for A = 3 nuclei. A doublet (7.520,8.4600) MeV at ∼ 8 MeV
is predicted. At least the prediction for the position is correct.

2 Some variants of the nuclear string hypothesis

The basic assumptions of the nuclear string model could be made stronger
in several testable ways. One can make several alternative hypothesis.

2.1 Could linking of nuclear strings give rise to heavier stable
nuclei?

Nuclear strings (Z1, N1) and (Z2, N2) could link to form larger nuclei (Z1 +
Z2, N1 + N2). If one can neglect the interactions between linked nuclei, the
properties of the resulting nuclei should be determined by those of com-
posites. Linking should however be the confining interaction forbidding the
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decay of the stable composite. The objection against this option is that it is
difficult to characterize the constraint that strings are not allowed to touch
and there is no good reason forbidding the touching.

The basic prediction would be that if the nuclei (Z1, N1) and (Z2, N2)
which are stable, very long-lived, or possess exceptionally large binding en-
ergy then also the nucleus (Z1 +Z2, N1 +N2) has this property. If the linked
nuclear strings are essentially free then the expectation is that the half-life
of a composite of unstable nuclei is that of the shorter lived nucleus. This
kind of regularity would have been probably observed long time ago.

2.2 Nuclear strings as connected sums of shorter nuclear
strings?

Nuclear strings can form connected sum of the shorter nuclear strings. Con-
nected sum means that one deletes very short portions of nuclear string A
and B and connects the resulting ends of string A and B together. In other
words: A is inserted inside B or vice versa or A and B are cut to open
strings and connected and closed again. This outcome would result when A
and B touch each other at some point. If touching occurs at several points
more complex fusion of nuclei to a larger nucleus to a composite occurs with
piece of A followed by a piece of B followed... For this option there is a
non-trivial interaction between strings and the properties of nuclei need not
be simply additive but one might still hope that stable nuclei fuse to form
stable nuclei. In particular, the prediction for the half-life based on binding
by linking does not hold true anymore.

Classical picture would suggest that the two strings cannot rotate with
respect to each other unless they correspond to rather simple symmetric
configurations: this applies also to linked strings. If so then the relative an-
gular momentum L of nuclear strings vanishes and total angular momentum
J of the resulting nucleus satisfies |J1 − J2| ≤ J ≤ J1 + J2.

2.3 Is knotting of nuclear strings possible?

One can consider also the knotting of nuclear strings as a mechanism giving
rise to exotic excitations of nuclear. Knots decompose to prime knots so that
kind of prime nuclei identified in terms of prime knots might appear. Frac-
tal thinking suggests an analogy with the poorly understood phenomenon of
protein folding. It is known that proteins always end up to a unique highly
folded configuration and one might think that also nuclear ground states cor-
respond to unique configurations to which quantum system (also proteins
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would be such if dark matter is present) ends up via quantum tunnelling un-
like classical system which would stick into some valley representing a state
of higher energy. The spin glass degeneracy suggests an fractal landscape
of ground state configurations characterized by knotting and possibly also
linking.

3 Could nuclear strings be connected sums of al-
pha strings and lighter nuclear strings?

The attempt to kill the composite string model leads to a stronger formu-
lation in which nuclear string consists of alpha particles plus a minimum
number of lighter nuclei. To test the basic predictions of the model I have
used the rather old tables of [8] for binding energies of stable and long-lived
isotopes and more modern tables [7] for basic data about isotopes known
recently.

3.1 Does the notion of elementary nucleus make sense?

The simplest formulation of the model assumes some minimal set of stable
”elementary nuclei” from which more complex stable nuclei can be con-
structed.

a) If heavier nuclei are formed by linking then alpha particle 4He =
(Z, N) = (2, 2) suggests itself as the lightest stable composite allowing in-
terpretation as a closed string. For connected sum option even single nucleon
n or p can appear as a composite. This option turns out to be the more
plausible one.

b) In the model based on linking 6Li = (3, 3) and 7Li = (3, 4) would
also act as ”elementary nuclei” as well as 9Be = (4, 5) and 10Be = (4, 6).
For the model based on connected sum these nuclei might be regarded as
composites 6Li = (3, 3) = (2, 2) + (1, 1), 7Li = (3, 4) = (2, 2) + (1, 2),
9Be = (4, 5) = 2× (2, 2) + (0, 1) and 10Be = (4, 6) = (2, 2) + 2× (1, 2). The
study of binding energies supports the connected sum option.

b) 10B has total nuclear spin J = 3 and 10B = (5, 5) = (3, 3) + (2, 2) =6

Li +4 He makes sense if the composites can be in relative L = 2 state
(6Li has J = 1 and 4He has J = 0). 11B has J = 3/2 so that 11B =
(5, 6) = (3, 4) + (2, 2) =7 Li +4 He makes sense because 7Li has J = 3/2.
For the model based on disjoint linking also 10B would be also regarded
as ”elementary nucleus”. This asymmetry disfavors the model based on
linking.
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3.2 Stable nuclei need not fuse to form stable nuclei

The question is whether the simplest model predicts stable nuclei which do
not exist. In particular, are the linked 4He composites stable? The simplest
case corresponds to 8B = (4, 4) =4 He +4 He which is not stable against
alpha decay. Thus stable nuclei need not fuse to form stable nuclei. On the
other hand, the very instability against alpha decay suggests that 4B can
be indeed regarded as composite of two alpha particles. A good explanation
for the instability against alpha decay is the exceptionally large binding
energy E = 7.07 MeV per nucleon of alpha particle. The fact that the
binding energy per nucleon for 8Be is also exceptionally large and equal to
7.06 MeV < EB(4He) supports the interpretation as a composite of alpha
particles.

For heavier nuclei binding energy per nucleon increases and has maxi-
mum 8.78 MeV for Fe. This encourages to consider the possibility that alpha
particle acts as a fundamental composite of nuclear strings with minimum
number of lighter isotopes guaranteing correct neutron number. Indeed, the
decomposition to a maximum number of alpha particles allows a qualitative
understanding of binding energies assuming that additional contribution not
larger than 1.8 MeV per nucleon is present.

The nuclei 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36A, and 40Ca are lightest
stable isotopes of form (Z,Z) = n ×4 He, n = 3, ..., 10, for which EB is
larger than for 4He. For the first four nuclei EB has a local maximum
as function of N . For the remaining the maximum of EB is obtained for
(Z, Z + 1). 44Ti = (22, 22) does not exist as a long-lived isotope whereas
45Ti does. The addition of neutron could increase EB by increasing the
length of nuclear string and thus reducing the Coulomb interaction energy
per nucleon. This mechanism would provide an explanation also for neutron
halos [1].

Also the fact that stable nuclei in general have N ≥ Z supports the
view that N = Z state corresponds to string consisting of alpha particles
and that N > Z states are obtained by adding something between. N < Z
states would necessarily contain at least one stable nucleus lighter than 4He
with smaller binding energy. 3He is the only possible candidate as the only
stable nucleus with N < Z. (EB(2H) = 1.11 MeV and EB(3He) = 2.57
MeV). Individual nucleons are also possible in principle but not favored.
This together with increase of Coulomb interaction energy per nucleon due
to the greater density of em charge per string length would explain their
smaller binding energy and instability.
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3.3 Formula for binding energy per nucleon as a test for the
model

The study of 8B inspires the hypothesis that the total binding energy for
the nucleus (Z1 +Z2, N1 +N2) is in the first approximation the sum of total
binding energies of composites so that one would have for the binding energy
per nucleon the prediction

EB =
A1

A1 + A2
× EB1 +

A2

A1 + A2
× EB2

in the case of 2-nucleus composite. The generalization to N-nucleus com-
posite would be

EB =
∑

k

Ak∑
r Ar

×EBk
.

This prediction would apply also to the unstable composites. The increase of
binding energy with the increase of nuclear weight indeed suggests a decom-
position of nuclear string to a sequence alpha strings plus some minimum
number of shorter strings.

The first objection is that for both Li, B, and Be which all having
two stable isotopes, the lighter stable isotope has a slightly smaller binding
energy contrary to the expectation based on additivity of the total bind-
ing energy. This can be however understood in terms of the reduction of
Coulomb energy per string length resulting in the addition of neutron (pro-
tons have larger average distance along nuclear string along mediating the
electric flux) . The reduction of Coulomb energy per unit length of nuclear
string could also partially explain why one has EB > EB(4He) for heavier
nuclei.

The composition 6Li = (3, 3) = (2, 2) + (1, 1) predicts EB ' 5.0 MeV
not too far from 5.3 MeV. The decomposition 7Li = (3, 4) = (2, 2) + (1, 2)
predicts EB = 5.2 MeV to be compared with 5.6 MeV so that the agreement
is satisfactory. The decomposition 8Be = (4, 4) = 2× 4He predicts EB =
7.07 MeV to be compared with the experimental value 7.06 MeV. 9Be and
10Be have EB = 6.46 MeV and EB = 6.50 MeV. The fact that binding
energy slightly increases in addition of neutron can be understood since the
addition of neutrons to 8Be reduces the Coulomb interaction energy per unit
length. Also neutron spin pairing reduces EB. The additive formula for EB

is satisfied with an accuracy better than 1 MeV also for 10B and 11B.
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3.4 Decay characteristics and binding energies as signatures
of the decomposition of nuclear string

One might hope of reducing the weak decay characteristics to those of short-
est unstable nuclear strings appearing in the decomposition. Alternatively,
one could deduce the decomposition from the weak decay characteristics
and binding energy using the previous formulas. The picture of nucleus as a
string of alpha particles plus minimum number of lighter nuclei 3He having
EB = 2.57 MeV, 3H unstable against beta decay with half-life of 12.26 years
and having EB = 2.83 MeV, and 2H having EB = 1.1 MeV gives hopes of
modelling weak decays in terms of decays for these light composites.

a) β− decay could be seen as a signature for the presence of 3H string
and alpha decay as a signature for the presence of 4He string.

b) β+ decay might be interpreted as a signature for the presence of 3He
string which decays to 3H (the mass of 3H is only .018 MeV higher than
that of 3He). For instance, 8B = (5, 3) = (3, 2) + (2, 1)= 5Li +3 He suffers
β+ decay to 8Be = (4, 4) which in turn decays by alpha emission which
suggests the re-arrangement to (3, 2) + (1, 2) → (2, 2) + (2, 2) maximizing
binding energy.

c) Also individual nucleons can appear in the decomposition and give
rise to β− and possible also β+ decays.

3.5 Are magic numbers additive?

The magic numbers 2, 8, 20, 28, 50, 82, 126 [5] for protons and neutrons are
usually regarded as a support for the harmonic oscillator model. There are
also other possible explanations for magic nuclei and there are deviations
from the naive predictions. One can also consider several different criteria
for what it is to be magic. Binding energy is the most natural criterion but
need not always mean stability. For instance 8B = (4, 4) =4 He +4 He has
high binding energy but is unstable against alpha decay.

Nuclear string model suggests that the fusion of magic nuclear strings
by connected sum yields new kind of highly stable nuclei so that also (Z1 +
Z2, N1 +N2) is a magic nucleus if (Zi, Ni) is such. One has N = 28 = 20+8,
50 = 28 + 20 + 2, and N = 82 = 50 + 28 + 2× 2. Also other magic numbers
are predicted. There is evidence for them [6].

a) 16O = (8, 8) and 40Ca = (20, 20) corresponds to doubly magic nuclei
and 60Ni = (28, 32) = (20, 20) + (8, 8) +4 n has a local maximum of binding
energy as function of neutron number. This is not true for 56Ni so that the
idea of magic nucleus in neutron sector is not supported by this case. The
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explanation would be in terms of the reduction of EB due to the reduction
of Coulomb energy per string length as neutrons are added.

b) Also 80Kr = (36, 44) = (36, 36) +4 n = (20, 20) + (8, 8) + (8, 8) +4 n
corresponds to a local maximum of binding energy per nucleon as also does
84Kr =80 Kr+4n containing two tetra-neutrons. Note however that 88Zr =
(40, 48) is not a stable isotope although it can be regarded as a composite
of doubly magic nucleus and of two tetra-neutrons.

3.6 Stable nuclei as composites of lighter nuclei and necessity
of tetra-neutron?

The obvious test is to look whether stable nuclei can be constructed as com-
posites of lighter ones. In particular, one can check whether tetra-neutron 4n
interpreted as a variant of alpha particle obtained by replacing two meson-
like stringy bonds connecting neighboring nucleons of the nuclear string
with their negatively charged variants is necessary for the understanding of
heavier nuclei.

a) 48Ca = (20, 28) with half-life > 2 × 1016 years has neutron excess of
8 units and the only reasonable interpretation seems to be as a composite
of the lightest stable Ca isotope Ca(20, 20), which is doubly magic nucleus
and two tetra-neutrons: 48Ca = (20, 28) =40 Ca + 2×4 n.

b) The next problematic nucleus is 49Ti.
i) 49Ti = (22, 27) having neutron excess of 5 one cannot be expressed

as a composite of lighter nuclei unless one assumes non-vanishing and large
relative angular momentum for the composites. For 50Ti = (22, 28) no
decomposition can be found. The presence of tetra-neutron would reduce
the situation to 49Ti = (22, 27) =45 Ti +4 n. Note that 45Ti is the lightest
Ti isotope with relatively long half-life of 3.10 hours so that the addition of
tetra-neutron would stabilize the system since Coulomb energy per length
of string would be reduced.

ii) 48Ti could not involve tetra-neutron by this criterion. It indeed allows
decomposition to standard nuclei is also possible as 48Ti = (22, 26) =41

K +7 Li.
iii) The heaviest stable Ti isotope would have the decomposition 50Ti =46

Ti +4 n, where 46Ti is the lightest stable Ti isotope.
c) The heavier stable nuclei 50+kV = (23, 27 + k), k = 0, 1, 52+kCr =

(24, 28+k), k = 0, 1, 2, 55Mn = (25, 30) and 56+kFe = (26, 30+k), k = 0, 1, 2
would have similar interpretation. The stable isotopes 50Cr = (24, 26) and
54Fe = (26, 28) would not contain tetra-neutron. Also for heavier nuclei
both kinds of stable states appear and tetra-neutron would explain this.
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d) 112Sn = (50, 62) = (50, 50)+3×4 n, 116Sn, 120Sn, and 124Sn are local
maxima of EB as a function of neutron number and the interpretation in
terms of tetra-neutrons looks rather natural. Note that Z = 50 is a magic
number.

Nuclear string model looks surprisingly promising and it would be in-
teresting to compare systematically the predictions for EB with its actual
values and look whether the beta decays could be understood in terms of
those of composites lighter than 4He.

3.7 What are the building blocks of nuclear strings?

One can also consider several options for the more detailed structure of
nuclear strings. The original model assumed that proton and neutron are
basic building blocks but this model is too simple.

3.7.1 Option Ia)

A more detailed work in attempt to understand binding energies led to the
idea that there is fractal structure involved. At the highest level the building
blocks of nuclear strings are A ≤ 4 nuclei. These nuclei in turn would be
constructed as short nuclear strings of ordinary nucleons.

The basic objection against the model is the experimental absence of
stable n−n bound state analogous to deuteron favored by lacking Coulomb
repulsion and attractive electromagnetic spin-spin interaction in spin 1 state.
Same applies to tri-neutron states and possibly also tetra-neutron state.
There has been however speculation about the existence of di-neutron and
poly-neutron states [10, 11].

The standard explanation is that strong force couples to strong isospin
and that the repulsive strong force in nn and pp states makes bound states
of this kind impossible. This force, if really present, should correspond to
shorter length scale than the isospin independent forces in the model under
consideration. In space-time description these forces would correspond to
forces mediated between nucleons along the space-time sheet of the nucleus
whereas exotic color forces would be mediated along the color magnetic flux
tubes having much longer length scale. Even for this option one cannot
exclude exotic di-neutron obtained from deuteron by allowing color bond to
carry negative em charge. Since em charges 0, 1,−1 are possible for color
bonds, a nucleus with mass number A > 2 extends to a multiplet containing
3A exotic charge states.
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3.7.2 Option Ib)

One might ask whether it is possible to get rid of isospin dependent strong
forces and exotic charge states in the proposed framework. One can indeed
consider also other explanations for the absence of genuine poly-neutrons.

a) The formation of negatively charged bonds with neutrons replaced by
protons would minimize both nuclear mass and Coulomb energy although
binding energy per nucleon would be reduced and the increase of neutron
number in heavy nuclei would be only apparent.

b) The strongest hypothesis is that mass minimization forces protons
and negatively charged color bonds to serve as the basic building bricks
of all nuclei. If this were the case, deuteron would be a di-proton having
negatively charged color bond. The total binding energy would be only
2.222− 1.293 = .9290 MeV. Di-neutron would be impossible for this option
since only one color bond can be present in this state.

The small mass difference m(3He) −m(3H) = .018 MeV would have a
natural interpretation as Coulomb interaction energy. Tri-neutron would be
allowed. Alpha particle would consist of four protons and two negatively
charged color bonds and the actual binding energy per nucleon would be by
(mn−mp)/2 smaller than believed. Tetra-neutron would also consist of four
protons and the binding energy per nucleon would be smaller by mn −mp

than what obtains in the standard model of nucleus. Beta decays would be
basically beta decays of exotic quarks associated with color bonds.

Note that the mere assumption that the di-neutrons appearing inside
nuclei have protons as building bricks means a rather large apparent bind-
ing energy this might explain why di-neutrons have not been detected. An
interesting question is whether also higher n-deuteron states than 4He con-
sisting of strings of deuteron nuclei and other A ≤ 3 nuclei could exist and
play some role in the nuclear physics of Z 6= N nuclei.

If protons are the basic building bricks, the binding energy per nucleon
is replaced in the calculations with its actual value

EB → EB − N

A
∆m , ∆m = mn −mp = 1.2930 MeV . (1)

This replacement does not affect at all the parameters of the of Z = 2n
nuclei identified as 4He strings.

One can of course consider also the option that nuclei containing ordinary
neutrons are possible but that are unstable against beta decay to nuclei
containing only protons and negatively charged bonds. This would suggest
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that di-neutron exists but is not appreciably produced in nuclear reactions
and has not been therefore detected.

3.7.3 Options IIa) and IIb)

It is not clear whether the fermions at the ends of color bonds are exotic
quarks or leptons. Lepto-pion (or electro-pion) hypothesis [F7] was inspired
by the anomalous e+e− production in heavy ion collisions near Coulomb wall
and states that electro-pions which are bound states of colored excitations
of electrons with ground state mass 1.062 MeV are responsible for the effect.
The model predicts that also other charged leptons have color excitations
and give rise to exotic counterpart of QCD.

Also µ and τ should possess colored excitations. About fifteen years
after this prediction was made, direct experimental evidence for these states
finally emerges [24, 25]. The mass of the new particle, which is either scalar
or pseudoscalar, is 214.4 MeV whereas muon mass is 105.6 MeV. The mass is
about 1.5 per cent higher than two times muon mass. The most natural TGD
inspired interpretation is as a pion like bound state of colored excitations of
muon completely analogous to lepto-pion (or rather, electro-pion) [F7].

One cannot exclude the possibility that the fermion and anti-fermion at
the ends of color flux tubes connecting nucleons are actually colored leptons
although the working hypothesis is that they are exotic quark and anti-
quark. One can of course also turn around the argument: could it be that
lepto-pions are ”leptonuclei”, that is bound states of ordinary leptons bound
by color flux tubes for a QCD in length scale considerably shorter than the
p-adic length scale of lepton.

Scaling argument applied to ordinary pion mass suggests that the masses
of exotic quarks at the ends of color bonds are considerably below MeV scale.
One can however consider the possibility that colored electrons with mass
of ordinary electron are in question in which case color bonds identifiable as
colored variants of electro-pions could be assumed to contribute in the first
guess the mass m(π) = 1.062 MeV per each nucleon for A > 2 nuclei. This
implies the general replacement

EB → EB + m(πL)− N

A
∆m for A > 2 ,

EB → EB +
m(πL)

2
− N

A
∆m for A = 2 . (2)

This option will be referred to as option IIb). One can also consider the

15



option IIa) in which nucleons are ordinary but lepto-pion mass m(πL) =
1.062 MeV gives the mass associated with color bond.

These options are equivalent for N = Z = 2n nuclei with A > 4 but for
A ≤ 4 nuclei assumed to form nucleon string they options differ.

4 Light nuclei as color bound Bose-Einstein con-
densates of 4He nuclei

The attempt to understand the variation of nuclear binding energy and its
maximum for Fe leads to a model of nuclei lighter than Fe as color bound
Bose-Einstein condensates of 4He nuclei or meson-like structures associated
with them. Fractal scaling argument allows to understand 4He itself as
analogous state formed from nucleons.

4.1 How to explain the maximum of EB for iron?

The simplest model predicts that the binding energy per nucleon equals to
EB(4He) for all Z = N = 2n nuclei. The actual binding energy grows slowly,
has a maximum at 52Fe, and then begins to decrease but remains above
EB(4He). The following values give representative examples for Z = N
nuclei.

nucleus 4He 8Be 40Ca 52Fe

EB/MeV 7.0720 7.0603 8.5504 8.6104

For nuclei heavier than Fe there are no long-lived Z = N = 2n isotopes and
the natural reason would be alpha decay to 52Fe. If tetra-neutron is what
TGD suggests it to be one can guess that tetra-neutron mass is very nearly
equal to the mass of the alpha particle. This would allow to regard states
N = Z + 4n as states as analogous to unstable states N1 = Z1 = Z + 2n
consisting of alpha particles. This gives estimate for EB for unstable N = Z
states. For 256Fm = (100, 156) one has EB = 7.433 MeV which is still above
EB(4He) = 7.0720 MeV. The challenge is to understand the variation of the
binding energy per nucleon and its maximum for Fe.

4.2 Scaled up QCD with Bose-Einstein condensate of 4He
nuclei explains the growth of EB

The first thing to come in mind is that repulsive Coulomb contribution
would cause the variation of the binding energy. Since alpha particles are
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building blocks for Z = N nuclei, 8Be provides a test for this idea. If the
difference between binding energies per nucleon for 8Be and 4He were due to
Coulomb repulsion alone, one would have Ec = EB(4He)−EB(8Be) = .0117
MeV, which is of order αem/L(127). This would conform with the idea that
flux tubes mediating em interaction have length of order electron Compton
length. Long flux tubes would provide the mechanism minimizing Coulomb
energy. A more realistic interpretation consistent with this mechanism would
be that Coulombic and color interaction energies compensate each other:
this can of course occur to some degree but it seems safe to assume that
Coulomb contribution is small.

The basic question is how one could understand the behavior of EB if
its variation corresponds to that for color binding energy per nucleon. The
natural scale of energy is MeV and this conforms with the fact that the
range of variation for color binding energy associated with L(127) QCD
is about 1.5 MeV. By a naive scaling the value of M127 pion mass is by
a factor 2(127−107)/2 = 10−3 times smaller than that of ordinary pion and
thus .14 MeV. The scaling of QCD Λ is a more reliable estimate for the
binding energy scale and gives a slightly larger value but of the same order
of magnitude. The total variation of EB is large in the natural energy scale
of M127 QCD and suggests strong non-linear effects.

In the absence of other contributions em and color contributions to EB

cancel for 8Be. If color and Coulomb contributions on total binding energy
depend roughly linearly on the number of 4He nuclei, the cancellation to EB

should occur in a good approximation also for them. This does not happen
which means that color contribution to EB is in lowest approximation linear
in n meaning n2-dependence of the total color binding energy. This non-
linear behavior suggests strongly the presence of Bose-Einstein condensate of
4He nuclei or structures associated with them. The most natural candidates
are the meson like colored strings connecting 4He nuclei together.

The additivity of n color magnetic (and/or electric) fluxes would imply
that classical field energy is n2-fold. This does not yet imply same for
binding energy unless the value of αs is negative which it can be below
confinement length scale. An alternative interpretation could be in terms of
color magnetic interaction energy. The number of quarks and anti-quarks
would be proportional to n as would be also the color magnetic flux so that
n2- proportionality would result also in this manner.

If the addition of single alpha particle corresponds to an addition of a
constant color contribution Es to EB (the color binding energy per nucleon,
not the total binding energy!) one has EB(52Fe) = EB(4He) + 13Es giving
Es = .1834 MeV, which conforms with the order of magnitude estimate
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given by M127 QCD.
The task is to find whether this picture could explain the behavior of

EB. The simplest formula for EB(Z = N = 2n) would be given by

EB(n) = −n(n− 1)
L(A)n

ks + nEs . (3)

Here the first term corresponds to the Coulomb interaction energy of n 4He
nuclei proportional to n(n − 1) and inversely proportional to the length
L(A) of nuclear string. Second term is color binding energy per nucleon
proportional to n.

The simplest assumption is that each 4He corresponds always to same
length of nuclear string so that one has L ∝ A and one can write

EB(n) = EB(4He)− n(n− 1)
n2

Ec + nEs . (4)

The value of EB(8Be) ' EB(4He) (n = 2) gives for the unit of Coulomb
energy

Ec = 4Es + 2[EB(4He)−EB(8Be)] ' 4Es . (5)

The general formula for the binding energy reads as

EB(n) = EB(4He)− 2
n(n− 1)

n2
[EB(4He)−EB(8Be)]

+ [−4
n(n− 1)

n2
+ n]Es . (6)

The condition that EB(52Fe) (n = 13) comes out correctly gives

Es =
13
121

(EB(52Fe)− EB(4He)) +
13× 24

121
[EB(4He)−EB(8Be)] .(7)

This gives Es ' .1955 MeV which conforms with M127 QCD estimate. For
the Ec one obtains Ec = 1.6104 MeV and for Coulomb energy of 4He nuclei
in 8Be one obtains E = Ec/2 = .8052 MeV. The order of magnitude is
consistent with the mass difference of proton and neutron. The scale sug-
gests that electromagnetic flux tubes are shorter than color flux tubes and
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correspond to the secondary p-adic length scale L(2, 61) = L(127)/25/2 as-
sociated with Mersenne prime M61. The scaling factor for the energy scale
would be 25/2 ' 5.657.

The calculations have been carried out without assuming which are ac-
tual composites of 4He nuclei (neutrons and protons plus neutral color bonds
or protons and neutral and negatively charged color bonds) and assuming
the masses of color bonds are negligible. As a matter fact, the mass of color
bond does not affect the estimates if one uses only nuclei heavier than 4He
to estimate the parameters. The estimates above however involve 4He so
that small change on the parameters is induced.

4.3 Why EB decreases for heavier nuclei?

The prediction that EB increases as (A/4)2 for Z = N nuclei is unrealistic
since EB decreases slowly for A ≥ 52 nuclei. Fermi statistics provides a con-
vincing explanation assuming that fermions move in an effective harmonic
oscillator potential due to the string tension whereas free nucleon model
predicts too large size for the nucleus. The splitting of the Bose-Einstein
condensate to pieces is second explanation that one can imagine but fails at
the level of details.

4.3.1 Fermi statistics as a reason for the reduction of the binding
energy

The failure of the model is at least partially due to the neglect of the Fermi
statistics. For the lighter nuclei description as many boson state with few
fermions is expected to work. As the length of nuclear string grows in
fixed nuclear volume, the probability of self intersection increases and Fermi
statistics forces the wave function for stringy configurations to wiggle which
reduces binding energy.

a) For the estimation purposes consider A = 256 nucleus 256Mv having
Z = 101 and EB = 7.4241 MeV. Assume that this unstable nucleus is
nearly equivalent with a nucleus consisting of n = 64 4He nuclei (Z = N).
Assuming single color condensate this would give the color contribution

Etot
s = (Z/2)2 × Es = 642 ×Es

with color contribution to EB equal to (Z/2)Es ' 12.51 MeV.
b) Suppose that color binding energy is cancelled by the energy of nu-

cleon identified as kinetic energy in the case of free nucleon model and as
harmonic oscillator energy in the case of harmonic oscillator model.
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c) The number of states with a given principal quantum number n for
both free nucleons in a spherical box and harmonic oscillator model is by
spherical symmetry 2n2 and the number of protons/neutrons for a full shell
nuclei behaves as N1 ' 2n3

max/3. The estimate for the average energy per
nucleon is given in the two cases as

〈E〉H = 2−4/3 ×N1/3E0 , E0 = ω0 ,

〈E〉F =
2
5
(
3
2
)5/3N2/3E0 , E0 =

π2

2mpL2
. (8)

Harmonic oscillator energy 〈E〉H increases as N1/3 and 〈E〉F as N2/3. Nei-
ther of these cannot win the contribution of the color binding energy in-
creasing as N .

c) Equating this energy with the total color binding energy gives an
estimate for E0 as

E0 = (2/3)1/3 × Z−4/3 × (Z/2)2 × Es ,

E0 =
5
4
(
2
3
)5/3 × Z−5/3 × (Z/2)2 × Es ,

Es = .1955 MeV . (9)

The first case corresponds to harmonic oscillator model and second to free
nucleon model.

d) For the harmonic oscillator model one obtains the estimate E0 =
h̄ω0 ' 2.73 MeV . The general estimate for the energy scale in the harmonic
oscillator model given by ω0 ' 41 ·A−1/3 MeV [17] giving ω0 = 6.5 MeV for
A = 256 (this estimate implies that harmonic oscillator energy per nucleon
is approximately constant and would suggest that string tension tends to
reduce as the length of string increases). Harmonic oscillator potential would
have roughly twice too strong strength but the order of magnitude is correct.
Color contribution to the binding energy might relate the reduction of the
oscillator strength in TGD framework.

e) Free nucleon model gives the estimate E0 = .0626 MeV. For the size
of a A = 256 nucleus one obtains L ' 3.8L(113) ' 76 fm. This is by one
order of magnitude larger that the size predicted by the standard formula
r = r0A

1/3, r0 = 1.25 fm and 8 fm for A = 256.
Harmonic oscillator picture is clearly favored and string tension explains

the origin of the harmonic oscillator potential. Harmonic oscillator picture
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is expected to emerge at the limit of heavy nuclei for which nuclear string
more or less fills the nuclear volume whereas for light nuclei the descrip-
tion in terms of bosonic 4He nuclei should make sense. For heavy nuclei
Fermi statistics at nuclear level would begin to be visible and excite vibra-
tional modes of the nuclear string mapped to the excited states of harmonic
oscillator in the shell model description.

4.3.2 Could upper limit for the size of 4He Bose-Einstein conden-
sate explain the maximum of binding energy per nucleon?

One can imagine also an alternative explanation for why EB to decrease
after A = 52. One might that A = 52 represents the largest 4He Bose-
Einstein condensate and that for heavier nuclei Bose-Einstein condensate
de-coheres into two parts. Bose-Einstein condensate of n = 13 4He nuclei
would the best that one can achieve.

This could explain the reduction of the binding energy and also the
emergence of tetra-neutrons as well as the instability of Z = N nuclei heavier
than 52Fe. A number theoretical interpretation related to the p-adic length
scale hypothesis suggests also itself: as the size of the tangled nuclear string
becomes larger than the next p-adic length scale, Bose-Einstein condensate
might lose its coherence and split into two.

If one assumes that 4He Bose-Einstein condensate has an upper size
corresponding to n = 13, the prediction is that after A = 52 second Bose-
Einstein condensate begins to form. EB is obtained as the average

EB(Z, N) =
52
A

EB(52Fe) +
A− 52

A
EB(A−52X(Z, N)) .

The derivative

dEB/dA = (52/A)[−EB(52Fe)+EB(A−52X)]+
A− 52

A
dEB(A−52X(Z,N))/dA

is first negative but its sign must change since the nuclei consisting of two
copies of 52Fe) condensates have same EB as 52Fe). This is an un-physical
result. This does not exclude the splitting of Bose-Einstein condensate but
the dominant contribution to the reduction of EB must be due to Fermi
statistics.

5 What QCD binds nucleons to A ≤ 4 nuclei?

The obvious question is whether scaled variant(s) of color force could bind
nucleons to form A ≤ 4 nuclei which in turn bind to form heavier nuclei.
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Since the binding energy scale for 3He is much smaller than for 4He one
might consider the possibility that the p-adic length scale for QCD associ-
ated with 4He is different from that for A < 4 nuclei.

5.1 The QCD associated with nuclei lighter than 4He

It would be nice if one could understand the binding energies of also A ≤ 4
nuclei in terms of a scaled variant of QCD applied at the level of nucleons.
Here one has several options to test.

5.1.1 Various options to consider

Assume that neutral color bonds have negligible fermion masses at their
ends: this is expected if the exotic quarks appear at the ends of color bonds
and by the naive scaling of pion mass. One can also consider the possibility
that the p-adic temperature for the quarks satisfies T = 1/n ≤ 1/2 so that
quarks would be massless in excellent approximation. T = 1/n < 1 holds
true for gauge bosons and one might argue that color bonds as bosonic
particles indeed have T < 1.

Option Ia): Building bricks are ordinary nucleons.
Opion IIa): Building blocks are protons and neutral and negatively

charged color bonds. This means the replacement EB → EB−∆m for A > 2
nuclei and EB → EB−∆m/2 for A = 2 with ∆m = nn−mp = 1.2930 MeV.

Options Ib and IIb are obtained by assuming that the masses of fermions
at the ends of color bonds are non-negligible. Electro-pion mass m(πL) =
1.062 MeV is a good candidate for the mass of the color bond. Option Ia
allow 3 per cent accuracy for the predicted binding energies. Option IIb
works satisfactorily but the errors are below 22 per cent only.

5.1.2 Option Ia): Ordinary nucleons and massless color bonds

It turns out that for the option Ia) the correct candidate for A < 4 QCD
is the secondary p-adic length scale L(2, 59) associated with prime p ' 2k,
k = 59 with keff = 2× 59 = 118. The proper scaling of the electromagnetic
p-adic length scale corresponds to a scaling factor 23 meaning that one has
keff = 122 → keff − 6 = 116 = 4× 29 corresponding to L(4, 29).

1. Direct p-adic scaling of the parameters

Es would be scaled up p-adically by a factor 2(127−118)/2 = 29/2. Ec

would be scaled up by a factor 2(122−116)/2 = 23. There is also a scaling of

22



Ec by a factor 1/4 due to the reduction of charge unit and scaling of both
Ec and Es by a factor 1/4 since the basic units are now nucleons. This gives

Ês = 25/2Es = 1.1056 MeV , Êc = 2−1Ec = .8056 MeV . (10)

The value of electromagnetic energy unit is quite reasonable.
The basic formula for the binding energy reads now

EB = −(n(p)(n(p)− 1))
A2

Êc + nÊs , (11)

where n(p) is the number of protons n = A holds true for A > 2. For
deuteron one has n = 1 since deuteron has only single color bond. This
delicacy is a crucial prediction and the model fails to work without it.

This gives

EB(2H) = Ês , EB(3H) = 3Ês , EB(3He) = −2
9
Êc + 3Ês .

(12)

The predictions are given by the third row of the table below. The predicted
values given are too large by about 15 per cent in the worst case.

The reduction of the value of αs in the p-adic scaling would improve
the situation. The requirement that EB(3H) comes out correctly predicts a
reduction factor .8520 for αs. The predictions are given in the fourth row of
the table below. Errors are below 15 per cent.

nucleus 2H 3H 3He

EB(exp)/MeV 1.111 2.826 2.572
EB(pred1)/MeV 1.106 3.317 3.138
EB(pred2)/MeV .942 2.826 2.647

The discrepancy is 15 per cent for 2H. By a small scaling of Ec the fit for
3He can be made perfect. Agreement is rather good but requires that con-
ventional strong force transmitted along nuclear space-time sheet is present
and makes nn and pp states unstable. Isospin dependent strong interaction
energy would be only .17 MeV in isospin singlet state which suggests that a
large cancellation between scalar and vector contributions occurs. pnn and
ppn could be regarded as Dn and Dp states with no strong force between
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D and nucleon. The contribution of isospin dependent strong force to EB

is scaled down by a factor 2/3 in A = 3 states from that for deuteron and
is almost negligible. This option seems to allow an almost perfect fit of the
binding energies. Note that one cannot exclude exotic nn-state obtained
from deuteron by giving color bond negative em charge.

5.1.3 Other options

Consider next other options.

1. Option IIb

For option IIb) the basic building bricks are protons and m(π) = 1.062
is assumed. The basic objection against this option is that for protons
as constituents real binding energies satisfy EB(3He) < EB(3H) whereas
Coulombic repulsion would suggest EB(3He) > EB(3H) unless magnetic
spin-spin interaction effects affect the situation. One can however look how
good a fit one can obtain in this manner.

As found, the predictions of direct scaling are too large for EB(3H)
and EB(3He) (slight reduction of αs cures the situation). Since the actual
binding energy increases by m(πL)−(2/3)(mn−mp) for 3H and by m(πL)−
(1/3)(mn−mp) for 3He, it is clear that the assumption that lepto-pion mass
is of order 1 MeV improves the fit. The results are given by the table below.

nucleus 2H 3H 3He

EB(exp)/MeV 1.111 2.826 2.572
EB(pred)/MeV .875 3.117 2.507

Here EB(pred) corresponds to the effective value of binding energy assum-
ing that nuclei effectively consist of ordinary protons and neutrons. The
discrepancies are below 22 percent.

What is troublesome that neither the scaling of αs nor modification of
Ec improves the situation for 2H and 3H. Moreover, magnetic spin-spin
interaction energy for deuteron is expected to reduce EB(pred) further in
triplet state. Thus option IIb) does not look promising.

2. Option Ib)

For option Ib) with m(π) = 1.062 MeV and ordinary nucleons the actual
binding EB(act) energy increases by m(π) for A = 3 nuclei and by m(π)/2
for deuteron. Direct scaling gives a reasonably good fit for the p-adic length
scale L(9, 13) with keff = 117 meaning

√
2 scaling of Es. For deuteron
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the predicted EB is too low by 30 per cent. One might argue that isospin
dependent strong force between nucleons becomes important in this p-adic
length scale and reduces deuteron binding energy by 30 per cent. This option
is not un-necessary complex as compared to the option Ia).

nucleus 2H 3H 3He

EB(act)/MeV 1.642 3.880 3.634
EB(pred)/MeV 1.3322 3.997 3.743

For option IIa) with m(π) = 0 and protons as building blocks the fit gets
worse for A = 3 nuclei.

5.2 The QCD associated with 4He

4He must somehow differ from A ≤ 3 nucleons. If one takes the argument
based on isospin dependence strong force seriously, the reasonable looking
conclusion would be that 4He is at the space-time sheet of nucleons a bound
state of two deuterons which induce no isospin dependent strong nuclear
force. One could regard the system also as a closed string of four nucleons
such that neighboring p and n form strong iso-spin singlets. The previous
treatment applies as such.

For 4He option Ia) with a direct scaling would predict EB(4He) < 4 ×
Ês = 3.720 MeV which is by a factor of order 2 too small. The natural
explanation would be that for 4He both color and em field body correspond
to the p-adic length scale L(4, 29) (keff = 116) so that Es would increase
by a factor of 2 to 1.860 MeV. Somewhat surprisingly, A ≤ 3 nuclei would
have ”color field bodies” by a factor 2 larger than 4He.

a) For option Ia) this would predict EB(4He) = 7.32867 MeV to be
compared with the real value 7.0720 MeV. A reduction of αs by 3.5 per cent
would explain the discrepancy. That αs decreases in the transition sequence
keff = 127 → 118 → 116 which is consistent with the general vision about
evolution of color coupling strength.

b) If one assumes option Ib) with m(π) = 1.062 MeV the actual binding
energy increases to 8.13 MeV. The strong binding energy of deuteron units
would give an additional .15 MeV binding energy per nucleon so that one
would have EB(4He) = 7.47 MeV so that 10 per cent accuracy is achieved.
Obviously this option does not work so well as Ia).

c) If one assumes option IIb), the actual binding energy would increase
by .415 MeV to 7.4827 MeV which would make fit somewhat poorer. A
small reduction of Ec could allow to achieve a perfect fit.
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5.3 What about tetra-neutron?

One can estimate the value of EB(4n) from binding energies of nuclei (Z, N)
and (Z,N + 4) (A = Z + N) as

EB(4n) =
A + 4

4
[EB(A + 4)− A

A + 4
EB(A)] .

In the table below there are some estimate for EB(4n).

(Z, N) (26,26)(52Fe) (50,70)(120Sn) (82,124) (206Pb)
EB(4n)/MeV 6.280 7.3916 5.8031

The prediction of the above model would be E(4n) = 4Ês = 3.760
MeV for Ês = .940 MeV associated with A < 4 nuclei and keff = 118 =
2 × 59 associated with A < 4 nuclei. For keff = 116 associated with 4He
Es(4n) = Es(4He) = 1.82 MeV the prediction would be 7.28 MeV. 14
percent reduction of αs would give the estimated value for of Es for 52Fe.

If tetra-neutron is ppnn bound state with two negatively charged color
bonds, this estimate is not quite correct since the actual binding energy
per nucleon is EB(4He) − (mn − mp)/2. This implies a small correction
EB(A+4) → EB(A+4)−2(mn−mp)/(A+4). The correction is negligible.

One can make also a direct estimate of 4n binding energy assuming tetra-
neutron to be ppnn bound state. If the masses of charged color bonds do
not differ appreciably from those of neutral bonds (as the p-adic scaling of
π + −π0 mass difference of about 4.9 MeV strongly suggests) then model
Ia) with Es = EB(3H)/3 implies that the actual binding energy EB(4n) =
4Es = EB(3H)/3 (see the table below). The apparent binding energy is
EB,app = EB(4n) + (mn −mp)/2. Binding energy differs dramatically from
what one can imagine in more conventional models of strong interactions in
which even the existence of tetra-neutron is highly questionable.

keff 2× 59 4× 29
EB(act)(4n)/MeV 3.7680
EB,app(4n)/MeV 4.4135 8.1825

The higher binding energy per nucleon for tetra-neutron might directly relate
to the neutron richness of heavy nuclei in accordance with the vision that
Coulomb energy is what disfavors proton rich nuclei.

According to [9], tetra-neutron might have been observed in the decay
8He →4 He+4n and the accepted value for the mass of 8He isotope gives the
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upper bound of E(4n) < 3.1 MeV, which is one half of the the estimate. One
can of course consider the possibility that free tetra-neutron corresponds to
L(2, 59) and nuclear tetra-neutron corresponds to the length scale L(4, 29)
of 4He. Also light quarks appear as several p-adically scaled up variants in
the TGD based model for low-lying hadrons and there is also evidence that
neutrinos appear in several scales.

5.4 What could be the general mass formula?

In the proposed model nucleus consists of A ≤ 4 nuclei. Concerning the
details of the model there are several questions to be answered. Do A ≤ 3
nuclei and A = 4 nuclei 4He and tetra-neutron form separate nuclear strings
carrying their own color magnetic fields as the different p-adic length scale
for the corresponding ”color magnetic bodies” would suggest? Or do they
combine by a connected sum operation to single closed string? Is there single
Bose-Einstein condensate or several ones.

Certainly the Bose-Einstein condensates associated with nucleons form-
ing A < 4 nuclei are separate from those for A = 4 nuclei. The behavior of
EB in turn can be understood if 4He nuclei and tetra-neutrons form sepa-
rate Bose-Einstein condensates. For Z > N nuclei poly-protons constructed
as exotic charge states of stable A ≤ 4 nuclei could give rise to the proton
excess.

Before continuing it is appropriate to list the apparent binding energies
for poly-neutrons and poly-protons.

poly-neutron n 2n 3n 4n

EB,app/MeV 0 EB(2H) + ∆
2 EB(3H) + 2∆

3 EB(4He) + ∆
2

poly-proton p 2p 3p 4p

EB,app/MeV 0 EB(2H)− ∆
2 EB(3He)− ∆

3 EB(4He)− ∆
2

For heavier nuclei EB,app(4n) is smaller than EB(4He) + (mp −mn)/2.
The first guess for the general formula for the binding energy for nu-

cleus (Z, N) is obtained by assuming that for maximum number of 4He
nuclei and tetra-neutrons/tetra-protons identified as 4H nuclei with 2 neg-
atively/positively charged color bonds are present.

1. N ≥ Z nuclei

Even-Z nuclei with N ≥ Z can be expressed as (Z = 2n,N = 2(n+ k)+
m), m = 0, 1, 2 or 3. For Z ≤ 26 (only single Bose-Einstein condensate)
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this gives for the apparent binding energy per nucleon (assuming that all
neutrons are indeed neutrons) the formula

EB(2n, 2(n + k) + m) =
n

A
EB(4He) +

k

A
EB,app(4n) +

1
A

EB,app(mn)

+
n2 + k2

n + k
Es − Z(Z − 1)

A2
Ec . (13)

The situation for the odd-Z nuclei (Z,N) = (2n + 1, 2(n + k) + m) can
be reduced to that for even-Z nuclei if one can assume that the (2n + 1)th

proton combines with 2 neutrons to form 3He nucleus so that one has still
2(k−1)+m neutrons combining to A ≤ 4 poly-neutrons in above described
manner.

2. Z ≥ N nuclei

For the nuclei having Z > N the formation of a maximal number of 4He
nuclei leaves k excess protons. For long-lived nuclei k ≤ 2 is satisfied. One
could think of decomposing the excess protons to exotic variants of A ≤ 4
nuclei by assuming that some charged bonds carry positive charge with an
obvious generalization of the above formula.

The only differences with respect to a nucleus with neutron excess would
be that the apparent binding energy is smaller than the actual one and
positive charge would give rise to Coulomb interaction energy reducing the
binding energy (but only very slightly). The change of the binding energy
in the subtraction of single neutron from Z = N = 2n nucleus is predicted
to be approximately ∆EB = −EB(4He)/A. In the case of 32S this predicts
∆EB = .2209 MeV. The real value is .2110 MeV. The fact that the general
order of magnitude for the change of the binding energy as Z or N changes
by one unit supports the proposed picture.

5.5 Nuclear strings and cold fusion

To summarize, option Ia) assuming that strong isospin dependent force acts
on the nuclear space-time sheet and binds pn pairs to singlets such that the
strong binding energy is very nearly zero in singlet state by the cancellation
of scalar and vector contributions, is the most promising one. It predicts
the existence of exotic di-,tri-, and tetra-neutron like particles and even
negatively charged exotics obtained from 2H,3 H,3 He, and 4He by adding
negatively charged color bond. For instance, 3H extends to a multiplet with
em charges 1, 0,−1,−2. Of course, heavy nuclei with proton neutron excess
could actually be such nuclei.
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The exotic states are stable under beta decay for m(π) < me. The
simplest neutral exotic nucleus corresponds to exotic deuteron with single
negatively charged color bond. Using this as target it would be possible
to achieve cold fusion since Coulomb wall would be absent. The empirical
evidence for cold fusion thus supports the prediction of exotic charged states.

5.5.1 Signatures of cold fusion

In the following the consideration is restricted to cold fusion in which two
deuterium nuclei react strongly since this is the basic reaction type studied.

In hot fusion there are three reaction types:
1) D + D →4 He + γ (23.8MeV )
2) D + D →3 He + n
3) D + D →3 H + p.

The rate for the process 1) predicted by standard nuclear physics is more
than 10−3 times lower than for the processes 2) and 3) [12]. The reason is
that the emission of the gamma ray involves the relatively weak electromag-
netic interaction whereas the latter two processes are strong.

The most obvious objection against cold fusion is that the Coulomb wall
between the nuclei makes the mentioned processes extremely improbable at
room temperature. Of course, this alone implies that one should not apply
the rules of hot fusion to cold fusion. Cold fusion indeed differs from hot
fusion in several other aspects.

a) No gamma rays are seen.
b) The flux of energetic neutrons is much lower than expected on basis

of the heat production rate an by interpolating hot fusion physics to the
recent case.

These signatures can also be (and have been!) used to claim that no real
fusion process occurs. It has however become clear that the isotopes of He-
lium and also some tritium accumulate to the Pd target during the reaction
and already now prototype reactors for which the output energy exceeds
input energy have been built and commercial applications are under devel-
opment, see for instance [13]. Therefore the situation has turned around.
The rules of standard physics do not apply so that some new nuclear physics
must be involved and it has become an exciting intellectual challenge to un-
derstand what is happening. A representative example of this attitude and
an enjoyable analysis of the counter arguments against fold fusion is pro-
vided by the article ’Energy transfer in cold fusion and sono-luminescence’
of Julian Schwinger [14]. This article should be contrasted with the ultra-
skeptical article ’ESP and Cold Fusion: parallels in pseudoscience’ of V. J.
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Stenger [15].
Cold fusion has also other features, which serve as valuable constraints

for the model building.
a) Cold fusion is not a bulk phenomenon. It seems that fusion occurs

most effectively in nano-particles of Pd and the development of the required
nano-technology has made possible to produce fusion energy in controlled
manner. Concerning applications this is a good news since there is no fear
that the process could run out of control.

b) The ratio x of D atoms to Pd atoms in Pd particle must lie the critical
range [.85, .90] for the production of 4He to occur [16]. This explains the
poor repeatability of the earlier experiments and also the fact that fusion
occurred sporadically.

c) Also the transmutations of Pd nuclei are observed [?].
Below a list of questions that any theory of cold fusion should be able

to answer.
a) Why cold fusion is not a bulk phenomenon?
b) Why cold fusion of the light nuclei seems to occur only above the

critical value x ' .85 of D concentration?
c) How fusing nuclei are able to effectively circumvent the Coulomb wall?
d) How the energy is transferred from nuclear degrees of freedom to much

longer condensed matter degrees of freedom?
e) Why gamma rays are not produced, why the flux of high energy

neutrons is so low and why the production of 4He dominates (also some
tritium is produced)?

f) How nuclear transmutations are possible?

5.5.2 Could exotic deuterium make cold fusion possible?

One model of cold fusion has been already discussed in [F8] and the recent
model is very similar to that. The basic idea is that only the neutrons
of incoming and target nuclei can interact strongly, that is their space-
time sheets can fuse. One might hope that neutral deuterium having single
negatively charged color bond could allow to realize this mechanism.

a) Suppose that part of the deuterium in Pd catalyst corresponds to
exotic deuterium with neutral nuclei so that cold fusion would occur between
neutral exotic D nuclei in the target and charged incoming D nuclei and
Coulomb wall in the nuclear scale would be absent.

b) The exotic variant of the ordinary D + D reaction yields final states
in which 4He, 3He and 3H are replaced with their exotic counterparts with
charge lowered by one unit. In particular, exotic 3H is neutral and there is
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no Coulomb wall hindering its fusion with Pd nuclei so that nuclear trans-
mutations can occur.

Why the neutron and gamma fluxes are low might be understood if for
some reason only exotic 3H is produced, that is the production of charged
final state nuclei is suppressed. The explanation relies on Coulomb wall at
the nucleon level.

a) Initial state contains one charged and one neutral color bond and final
state A = 3 or A = 4 color bonds. Additional neutral color bonds must be
created in the reaction (one for the production A = 3 final states and two
for A = 4 final state). The process involves the creation of neural fermion
pairs. The emission of one exotic gluon per bond decaying to a neutral pair
is necessary to achieve this. This requires that nucleon space-time sheets
fuse together. Exotic D certainly belongs to the final state nucleus since
charged color bond is not expected to be split in the process.

b) The process necessarily involves a temporary fusion of nucleon space-
time sheets. One can understand the selection rules if only neutron space-
time sheets can fuse appreciably so that only 3H would be produced. Here
Coulomb wall at nucleon level should enter into the game.

c) Protonic space-time sheets have the same positive sign of charge al-
ways so that there is a Coulomb wall between them. This explains why the
reactions producing exotic 4He do not occur appreciably. If the quark/antiquark
at the neutron end of the color bond of ordinary D has positive charge, there
is Coulomb attraction between proton and corresponding negatively charged
quark. Thus energy minimization implies that the neutron space-time sheet
of ordinary D has positive net charge and Coulomb repulsion prevents it
from fusing with the proton space-time sheet of target D. The desired se-
lection rules would thus be due to Coulomb wall at the nucleon level.

5.5.3 About the phase transition transforming ordinary deuterium
to exotic deuterium

The exotic deuterium at the surface of Pd target seems to form patches (for
a detailed summary see [F8]). This suggests that a condensed matter phase
transition involving also nuclei is involved. A possible mechanism giving
rise to this kind of phase would be a local phase transition in the Pd target
involving both D and Pd. In [F8] it was suggested that deuterium nuclei
transform in this phase transition to ”ordinary” di-neutrons connected by
a charged color bond to Pd nuclei. In the recent case di-neutron could be
replaced by neutral D.

The phase transition transforming neutral color bond to a negatively
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charged one would certainly involve the emission of W+ boson, which must
be exotic in the sense that its Compton length is of order atomic size so that
it could be treated as a massless particle and the rate for the process would
be of the same order of magnitude as for electro-magnetic processes. One
can imagine two options.

a) Exotic W+ boson emission generates a positively charged color bond
between Pd nucleus and exotic deuteron as in the previous model.

b) The exchange of exotic W+ bosons between ordinary D nuclei and Pd
induces the transformation Z → Z+1 inducing an alchemic phase transition
Pd → Ag. The most abundant Pd isotopes with A = 105 and 106 would
transform to a state of same mass but chemically equivalent with the two
lightest long-lived Ag isotopes. 106Ag is unstable against β+ decay to Pd
and 105Ag transforms to Pd via electron capture. For 106Ag (105Ag) the rest
energy is 4 MeV (2.2 MeV) higher than for 106Pd (105Pd), which suggests
that the resulting silver cannot be genuine.

This phase transition need not be favored energetically since the energy
loaded into electrolyte could induce it. The energies should (and could in
the recent scenario) correspond to energies typical for condensed matter
physics. The densities of Ag and Pd are 10.49 gcm−3 and 12.023 gcm−3

so that the phase transition would expand the volume by a factor 1.0465.
The porous character of Pd would allow this. The needed critical packing
fraction for Pd would guarantee one D nucleus per one Pd nucleus with a
sufficient accuracy.

5.5.4 Exotic weak bosons seem to be necessary

The proposed phase transition cannot proceed via the exchange of the ordi-
nary W bosons. Rather, W bosons having Compton length of order atomic
size are needed. These W bosons could correspond to a scaled up variant of
ordinary W bosons having smaller mass, perhaps even of the order of elec-
tron mass. They could be also dark in the sense that Planck constant for
them would have the value h̄ = nh̄0 implying scaling up of their Compton
size by n. For n ∼ 248 the Compton length of ordinary W boson would be
of the order of atomic size so that for interactions below this length scale
weak bosons would be effectively massless. p-Adically scaled up copy of
weak physics with a large value of Planck constant could be in question.
For instance, W bosons could correspond to the nuclear p-adic length scale
L(k = 113) and n = 211.
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5.6 Strong force as a scaled and dark electro-weak force?

The fiddling with the nuclear string model has led to following conclusions.
a) Strong isospin dependent nuclear force, which does not reduce to color

force, is necessary in order to eliminate polyneutron and polyproton states.
This force contributes practically nothing to the energies of bound states.
This can be understood as being due to the cancellation of isospin scalar and
vector parts of this force for them. Only strong isospin singlets and their
composites with isospin doublet (n,p) are allowed for A ≤ 4 nuclei serving as
building bricks of the nuclear strings. Only effective polyneutron states are
allowed and they are strong isospin singlets or doublets containing charged
color bonds.

b) The force could act in the length scalar of nuclear space-time sheets:
k = 113 nuclear p-adic length scale is a good candidate for this length scale.
One must be however cautious: the contribution to the energy of nuclei is
so small that length scale could be much longer and perhaps same as in case
of exotic color bonds. Color bonds connecting nuclei correspond to much
longer p-adic length scale and appear in three p-adically scaled up variants
corresponding to A < 4 nuclei, A = 4 nuclei and A > 4 nuclei.

c) The prediction of exotic deuterons with vanishing nuclear em charge
leads to a simplification of the earlier model of cold fusion explaining its
basic selection rules elegantly but requires a scaled variant of electro-weak
force in the length scale of atom.

What is then this mysterious strong force? And how abundant these
copies of color and electro-weak force actually are? Is there some unifying
principle telling which of them are realized?

From foregoing plus TGD inspired model for quantum biology involving
also dark and scaled variants of electro-weak and color forces it is becoming
more and more obvious that the scaled up variants of both QCD and electro-
weak physics appear in various space-time sheets of TGD Universe. This
raises the following questions.

a) Could the isospin dependent strong force between nucleons be nothing
but a p-adically scaled up (with respect to length scale) version of the electro-
weak interactions in the p-adic length scale defined by Mersenne prime M89

with new length scale assigned with gluons and characterized by Mersenne
prime M107? Strong force would be electro-weak force but in the length scale
of hadron! Or possibly in length scale of nucleus (keff = 107 + 6 = 113) if
a dark variant of strong force with h = nh0 = 23h0 is in question.

b) Why shouldn’t there be a scaled up variant of electro-weak force also
in the p-adic length scale of the nuclear color flux tubes?
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c) Could it be that all Mersenne primes and also other preferred p-adic
primes correspond to entire standard model physics including also gravita-
tion? Could be be kind of natural selection which selects the p-adic survivors
as proposed long time ago?

Positive answers to the last questions would clean the air and have quite
a strong unifying power in the rather speculative and very-many-sheeted
TGD Universe.

a) The prediction for new QCD type physics at M89 would get additional
support. Perhaps also LHC provides it within the next half decade.

b) Electro-weak physics for Mersenne prime M127 assigned to electron
and exotic quarks and color excited leptons would be predicted. This would
predict the exotic quarks appearing in nuclear string model and conform
with the 15 year old leptohadron hypothesis [F7]. M127 dark weak physics
would also make possible the phase transition transforming ordinary deu-
terium in Pd target to exotic deuterium with vanishing nuclear charge.

The most obvious objection against this unifying vision is that hadrons
decay only according to the electro-weak physics corresponding to M89. If
they would decay according to M107 weak physics, the decay rates would
be much much faster since the mass scale of electro-weak bosons would be
reduced by a factor 2−9 (this would give increase of decay rates by a factor
236 from the propagator of weak boson). This is however not a problem if
strong force is a dark with say n = 8 giving corresponding to nuclear length
scale. This crazy conjecture might work if one accepts the dark Bohr rules!

6 Giant dipole resonance as a dynamical signature
for the existence of Bose-Einstein condensates?

The basic characteristic of the Bose-Einstein condensate model is the non-
linearity of the color contribution to the binding energy. The implication
is that the the de-coherence of the Bose-Einstein condensate of the nuclear
string consisting of 4He nuclei costs energy. This de-coherence need not
involve a splitting of nuclear strings although also this is possible. Similar de-
coherence can occur for 4He A < 4 nuclei. It turns out that these three de-
coherence mechanisms explain quite nicely the basic aspects of giant dipole
resonance (GDR) and its variants both qualitatively and quantitatively and
that precise predictions for the fine structure of GDR emerge.
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6.1 De-coherence at the level of 4He nuclear string

The de-coherence of a nucleus having n 4He nuclei to a nucleus containing
two Bose-Einstein condensates having n− k and k > 2 4He nuclei requires
energy given by

∆E = (n2 − (n− k)2 − k2)Es = 2k(n− k)Es , k > 2 ,

∆E = (n2 − (n− 2)2 − 1)Es = (4n− 5)Es , k = 2 ,

Es ' .1955 MeV . (14)

Bose-Einstein condensate could also split into several pieces with some of
them consisting of single 4He nucleus in which case there is no contribution
to the color binding energy. A more general formula for the resonance energy
reads as

∆E = (n2 −
∑

i

k2(ni))Es ,
∑

i

ni = n ,

k(ni) =





ni for ni > 2 ,
1 for ni = 2 ,
0 for ni = 1 .

(15)

The table below lists the resonance energies for four manners of 16O nucleus
(n = 4) to lose its coherence.

final state 3+1 2+2 2+1+1 1+1+1+1
∆E/MeV 1.3685 2.7370 2.9325 3.1280

Rather small energies are involved. More generally, the minimum and max-
imum resonance energy would vary as ∆Emin = (2n − 1)Es and ∆Emax =
n2Es (total de-coherence). For n = nmax = 13 one would have ∆Emin =
2.3640 MeV and ∆Emax = 33.099 MeV.

Clearly, the loss of coherence at this level is a low energy collective phe-
nomenon but certainly testable. For nuclei with A > 60 one can imagine
also double resonance when both coherent Bose-Einstein condensates possi-
bly present split into pieces. For A ≥ 120 also triple resonance is possible.

6.2 De-coherence inside 4He nuclei

One can consider also the loss of coherence occurring at the level 4He nuclei.
In this case one has Es = 1.820 MeV. In this case de-coherence would
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mean the decomposition of Bose-Einstein condensate to n = 4 → ∑
ni = n

with ∆E = n2 −∑
ni

k1(ni) = 16 −∑
ni

k2(ni). The table below gives the
resonance energies for the four options n → ∑

i ni for the loss of coherence.

final state 3+1 2+2 2+1+1 1+1+1+1
∆E/MeV 12.74 25.48 27.30 29.12

These energies span the range at which the cross section for 16O(γ, xn)
reaction has giant dipole resonances [18]. Quite generally, GDR is a broad
bump with substructure beginning around 10 MeV and ranging to 30 MeV.
The average position of the bump as a function of atomic number can be
parameterized by the following formula

E(A)/MeV = 31.2A−1/3 + 20.6A−1/6 (16)

given in [19]. The energy varies from 36.6 MeV for A = 4 (the fit is probably
not good for very low values of A) to 13.75 MeV for A = 206. The width
of GDR ranges from 4-5 MeV for closed shell nuclei up to 8 MeV for nuclei
between closed shells.

The observation raises the question whether the de-coherence of Bose-
Einstein condensates associated with 4He and nuclear string could relate to
GDR and its variants. If so, GR proper would be a collective phenomenon
both at the level of single 4He nucleus (main contribution to the resonance
energy) and entire nucleus (width of the resonance). The killer prediction is
that even 4He should exhibit giant dipole resonance and its variants: GDR
in 4He has been reported [20].

This hypothesis seems to survive the basic qualitative and quantitative
tests.

a) The basic prediction of the model peak at 12.74 MeV and at triplet
of closely located peaks at (25.48, 27.30, 29.12) MeV spanning a range of
about 4 MeV, which is slightly smaller than the width of GDR. According
to [21] there are two peaks identified as iso-scalar GMR at 13.7 ± .3 MeV
and iso-vector GMR at 26 ± 3 MeV. The 6 MeV uncertainty related to
the position of iso-vector peak suggests that it corresponds to the triplet
(25.48, 27.30, 29.12) MeV whereas singlet would correspond to the iso-scalar
peak. According to the interpretation represented in [21] iso-scalar resp. iso-
vector peak would correspond to oscillations of proton and neutron densities
in same resp. opposite phase. This interpretation can make sense in TGD
framework only inside single 4He nucleus and would apply to the transverse
oscillations of 4He string rather than radial oscillations of entire nucleus.
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b) The presence of triplet structure seems to explain most of the width of
iso-vector GR. The combination of GDR internal to 4He with GDR for the
entire nucleus (for which resonance energies vary from ∆Emin = (2n− 1)Es

to ∆Emax = n2Es (n = A/4)) predicts that also latter contributes to the
width of GDR and give it additional fine structure. The order of magnitude
for ∆Emin is in the range [1.3685,2.3640] MeV which is consistent with the
with of GDR and predicts a band of width 1 MeV located 1.4 MeV above
the basic peak.

c) The de-coherence of A < 4 nuclei could increase the width of the
peaks for nuclei with partially filled shells: maximum and minimum values
of resonance energy are 9Es(4He)/2 = 8.19 MeV and 4Es(4He) = 7.28 MeV
for 3He and 3H which conforms with the upper bound 8 MeV for the width.

d) It is also possible that n 4He nuclei simultaneously lose their coher-
ence. If multiplet de-coherence occurs coherently it gives rise to harmonics
of GDR. For de-coherent decoherence so that the emitted photons should
correspond to those associated with single 4He GDR combined with nuclear
GDR. If absorption occurs for n ≤ 13 nuclei simultaneously, one obtains a
convoluted spectrum for resonant absorption energy

∆E = [16n−
n∑

j=1

∑

ij

k2(nij )]Es . (17)

The maximum value of ∆E given by ∆Emax = n× 29.12 MeV. For n = 13
this would give ∆Emax = 378.56 MeV for the upper bound for the range of
excitation energies for GDR. For heavy nuclei [19] GDR occurs in the range
30-130 MeV of excitation energies so that the order of magnitude is correct.
Lower bound in turn corresponds to a total loss of coherence for single 4He
nucleus.

e) That the width of GDR increases with the excitation energy [19] is
consistent with the excitation of higher GDR resonances associated with the
entire nuclear string. n ≤ nmax for GDR at the level of the entire nucleus
means saturation of the GDR peak with excitation energy which has been
indeed observed [18].

One can look whether the model might work even at the level of de-
tails. Figure 3 of [18] compares total photoneutron reaction cross sections
for 16O(γ, xn) in the range 16-26 MeV from some experiments so that the
possible structure at 12.74 MeV is not visible in it. It is obvious that the
resonance structure is more complex than predicted by the simplest model.
It seems however possible to explain this.
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Figure 1: The comparison of photoneutron cross sections 16O(γ, xn) ob-
tained in one BR-experiment (Moscow State University) and two QMA ex-
periments carried out at Saclay (France) Livermoore (USA). Figure is taken
from [18] where also references to experiments can be found.

a) The main part of the resonance is a high bump above 22 MeV spanning
an interval of about 4 MeV just as the triplet at (25.48,27.30,29.12) MeV
does. This suggest a shift of the predicted 3-peak structure in the range
25-30 MeV range downwards by about 3 MeV. This happens if the photo
excitation inducing the de-coherence involves a dropping from a state with
excitation energy of 3 MeV to the ground state. The peak structure has
peaks roughly at the shifted energies but there is also an additional structure
which might be understood in terms of the bands of width 1 MeV located
1.4 MeV above the basic line.

b) There are three smaller bumps below the main bump which also span
a range of 4 MeV which suggests that also they correspond to a shifted
variant of the basic three-peak structure. This can be understood if the
photo excitation inducing de-coherence leads from an excited state with
excitation energy 8.3 MeV to ground state shifting the resonance triplet
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(25.48, 27.30, 29.12) MeV to resonance triplet at (17.2, 19.00, 20.82) MeV.
On basis of these arguments it seems that the proposed mechanism might

explain GR and its variants. The basic prediction would be the presence
of singlet and triplet resonance peaks corresponding to the four manners to
lose the coherence. Second signature is the precise prediction for the fine
structure of resonance peaks.

6.3 De-coherence inside A = 3 nuclei and pygmy resonances

For neutron rich nuclei the loss of coherence is expected to occur inside
4He, tetra-neutron, 3He and possibly also 3n which might be stable in
the nuclear environment. The de-coherence of tetra-neutron gives in the
first approximation the same resonance energy spectrum as that for 4He
since EB(4n) ∼ EB(4He) roughly consistent with the previous estimates for
EB(4n) implies Es(4n) ∼ Es(4He).

The de-coherence inside A = 3 nuclei might explain the so called pygmy
resonance appearing in neutron rich nuclei, which according to [22] is wide
bump around E ∼ 8 MeV. For A = 3 nuclei only two de-coherence transi-
tions are possible: 3 → 2 + 1 and 3 → 1 + 1 + 1 and Es = EB(3H) = .940
MeV the corresponding energies are 8Es = 7.520 MeV and 9 ∗ Es = 8.4600
MeV. Mean energy is indeed ∼ 8 MeV and the separation of peaks about
1 MeV. The de-coherence at level of 4He string might add to this 1 MeV
wide bands about 1.4 MeV above the basic lines.

The figure of [23] illustrating photo-absorption cross section in 44Ca and
48Ca shows three peaks at 6.8, 7.3, 7.8 and 8 MeV in 44Ca. The additional
two peaks might be assigned with the excitation of initial or final states.
This suggests also the presence of also A = 3 nuclear strings in 44Ca besides
H4 and 4n strings. Perhaps neutron halo wave function contains 3n + n
component besides 4n. For 48Ca these peaks are much weaker suggesting
the dominance of 2×4n component.
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Abstract

In this article a general vision about new energy technologies pro-
vided by the new ontology forced by TGD is discussed, some evidence
for the new ontology is considered, and models explaining some ”free
energy” anomalies are represented.

There are close connections to the basic mechanisms of energy
metabolism in living matter in TGD Universe and one cannot avoid
even reference to TGD inspired quantum theory of consciousness. The
point is that so called time mirror mechanism defines a mechanism of
remote metabolism as sucking of energy from remote energy storage,
a mechanism of memory as communications with geometric past, and
mechanism of intentional action initiating neural activity in geometric
past. At the level of technology time mirror mechanism would define
a mechanism of energy transfer, communication, and remote quantum
control.

1 Introduction

In this article the T(opological) G(eometro)D(ynamics) [TGD] based vision
about new energy technologies is discussed. There are close connections
to the basic mechanisms of energy metabolism in living matter in TGD
Universe and one cannot avoid reference to TGD inspired quantum theory
of consciousness [TGDconsc].

1.1 Basic new elements of TGD ontology

The ontology of TGD Universe involves several new elements. The as-
sumption that space-times are 4-surfaces in 8-dimensional imbedding space
M4 × CP2 leads to the notion of many-sheeted space-time meaning that
each physical system can be said to correspond to space-time sheet, its own
sub-universe in the geometric sense, and glued to a larger space-time sheet
and containing subsystems as smaller space-time sheets glued to it. p-Adic
length scale hypothesis quantifies this notion.

Many-sheeted space-time leads to the notion of field body [F10, N1,
J7] distinguishing between TGD and Maxwell’s electrodynamics. One can
assign to each physical system a field body (or magnetic body) and in the
case of living matter it acts as intentional agent using biological body as a
sensory receptor and motor instrument. This profoundly changes the view
about what we ourselves are.

Zero energy ontology [C2] states that any physical system has a van-
ishing net energy so that everything is creatable from vacuum. Zero energy
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states decompose into positive and negative energy parts and positive energy
ontology results in certain limit in a good approximation. The possibility
of negative energy signals is one important implication and a considerable
modification of thermodynamics is forced by the fact that different signs of
energy correspond to different arrows of geometric time.

Negative energy signals propagating to the geometric past inspire a new
vision about communications and energy technology. The implications are
especially important for the understanding of living matter where both time
directions manifest themselves. In neuroscience a radically new view about
memory based on the notion of 4-D brain emerges.

The hierarchy of Planck constants [A9] implies a generalization of the
notions of imbedding space and space-time and macroscopic quantum co-
herence in all length and time scales at high enough levels of dark matter
hierarchy assigned to the hierarchy of Planck constants. The consequences
of this hypothesis are powerful: entire cosmos should be in a well-defined
sense a living system with dark matter representing higher level conscious
entities.

The original motivation for the p-adic physics [E1] were the highly suc-
cessful calculations of elementary particle masses based on p-adic thermo-
dynamics and conformal invariance [F3]. The model explained not only the
ratio of proton and Planck masses but also masses of particles with an ex-
cellent accuracy. The only sensible interpretation of p-adic physics seems
to be as physics of cognition and intentionality meaning that cognition is
present even at elementary particle level.

The necessity to fuse p-adic physics corresponding to different primes p
forces a generalization of the notion of number by gluing different number
fields together along common rationals and algebraics. This leads to a fur-
ther generalization of the notions of imbedding space and space-time. The
basic idea is that p-adic space-time sheets are representations for intentions
and cognitions and their transformation to real ones in quantum jumps cor-
responds to the transformation of intention to action. Zero energy ontology
is absolutely essential for this interpretation to make sense. p-Adic space-
time sheets have literally infinite size in the real sense which means that
cognition and intentionality are cosmic phenomena whereas cognitive rep-
resentations defined by discrete intersections of real and p-adic space-time
sheets obeying same algebraic equations have finite size.

5

48

vic
Rectangle



1.2 Could living systems teach us something about energy
technology?

One of the basic problems in energy technology is the necessity to carry fuel.
This defines the most serious restriction to space travel.

Biological systems have resolved this problem by using sunlight as an
energy source. The basic idea is very simple: solar radiation induces a disso-
ciation of molecules to atoms which then re-associate and liberate metabolic
energy. The hydrocarbons serving as fuel are recycled and there is a division
of labor: animals cells burn the hydrocarbons to carbon dioxide and plants
regenerate the hydrocarbons in photosynthesis.

Most or our energy technologies lack this kind of recycling. For instance,
fuel in cars is burned to carbon dioxide and various wastes. If recycling were
possible and if the density of potential energy sources in space were high
enough, the amount of fuel would not depend on the distance travelled. This
observation suggests self-organizing and perhaps in some primitive sense
living technology and thus a connection with a fundamental problem of
understanding how life has evolved. TGD provides a quantum model of
both ordinary and pre-biotic life [N4, J7] and one can hope that this might
help to develop a vision about ”living” energy technology.

The recycling need not resolve completely the problems related to the
fuel. The optimal solution would be ”No fuel at all” with fuel serving only
as an energy reserve. The system should be able to suck the energy from
a system able to provide it. This is possible in TGD Universe [K6, J7].
Zero energy ontology implies that systems can get energy by sending neg-
ative energy signals to a system serving as an energy storage. Population
inverted laser like system is the simplest system that one can imagine. Neg-
ative energy signals have interpretation as phase conjugate laser light. By
the analog of stimulated emission negative energy quanta can also induce a
cascade in population inverted laser like system so that system could send
positive energy signal to the receiver. ”Quantum credit card” is indeed the
basic metabolic mechanism in TGD inspired quantum biology making pos-
sible instantaneous metabolic energy gain. The mechanism is also extremely
flexible, which is a definite evolutionary advantage ”in jungle”.

The quantization of metabolic currencies is essential in living matter
and this engineering principle is realized in TGD Universe at the fundamen-
tal level [J7]. The energies liberated in the dropping of particles to larger
space-time sheets correspond to the increments of zero point kinetic energy
(forgetting the interaction energy with matter) and by p-adic length scale
hypothesis they are quantized. The basic metabolic energy currency of liv-
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ing matter, which is about .5 eV, corresponds to the dropping of proton
from space-time sheet having atomic size scale.

One can also worry about how to transfer the positive quanta of radiation
energy over large distances since also other systems than receiver could do it.
Also negative energy signals intended to be amplified to much larger positive
energy signals in population reverted laser might be absorbed during their
travel. Here the quantization of Planck constant might come in rescue. For
instance, if photons with energies equal to those of visible or UV photons
or even of gamma rays, are transformed to dark photons with much longer
wavelength, one can hope that only systems able to transform this radiation
into ordinary photons can absorb it. It might well be that water, which is
the basic element of living matter, is exceptional in the sense that it can
induce the transformation to dark photons and back. The transformation of
large Planck constant photons to ordinary ones makes also possible control
of shorter length and time scales by much longer ones.

1.3 Various anomalies as support for the new view

There are surprisingly many well established anomalies supporting the new
ontology and these anomalies have been strong guiding line in attempts to
construct a general theoretical framework.

a) There is a considerable support for many-sheeted space-time quan-
tified by p-adic length scale hypothesis. Quite recently I learned about an
anomalous radiation from interstellar dust having no generally accepted in-
terpretation in terms of molecular transitions. The interpretation in terms
of metabolic energy quanta liberated in dropping of electrons or protons
to larger space-time sheets makes sense. A characteristic fractal spectrum
involving period doubling is predicted.

b) The Bohr quantization of radii of planetary orbits [40, D7, D8] and
quantal effects of ELF em fields on vertebrate brain [M3] helped consider-
ably to develop the ideas about the hierarchy of Planck constants. Later a
lot of further anomalies have emerged supporting the quantization of Planck
constant. For instance, in gravitational sector Allais effect [52, D4] and ac-
celerating cosmic expansion [D6] support the view about quantum coherence
and quantum transitions in astrophysical and even cosmic scales [D7, D8].
Inflationary cosmology is replaced by quantum critical cosmology in TGD
framework [D6].

c) Living matter is one gigantic bundle of anomalies of recent day physics
and the notion of field body combined with p-adic length scale hypothesis
allows to develop detailed models for how magnetic body controls biological
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body and receives sensory input from it [J7]. In particular, a successful
model for EEG results [M3] and involves hierarchy of Planck constants in
an essential manner. One can say that field body applies remote mental
interactions to biological body and the so called paranormal phenomena
[H9, H10] differ in no essential manner from those encountered in bio-control.
The notion of field body leads also to a concrete model for pre-biotic life
[N4] based on the notion of plasmoid involving magnetic body controlling
plasma phase [N1, J7].

d) The so called ”free energy” phenomena have as bad reputation as
cold fusion and homeopathy among most physics professionals: ironically
all these disputed anomalies seem to find a natural place in TGD based
world order [G2, F9, K5], which suggest that theoreticians should take ex-
perimentalists much more seriously. Typically ”free energy people” make
claims about over-unity production of energy but more or less as a rule the
results fail not been reproducible.

TGD indeed allows temporary over-unity effects [G2]: the basic mech-
anism is dropping of particles on larger space-time sheets liberating zero
point kinetic energy appearing as basic metabolic mechanism in TGD in-
spired theory of living systems. This mechanism does not allow a perpetuum
mobile: the particles must be kicked back to smaller space-time sheets and in
ordinary living matter solar radiation takes care of this. Rotating magnetic
systems [61] define one especially interesting and complex case discussed
thoroughly in [G3].

Since consciousness (memory and intentional action in particular), biol-
ogy, and new views about energy, communication, and control are tightly
related in TGD framework, I will discuss all these topics as a single coher-
ent whole in the following in the hope of demonstrating the unifying power
of this conceptualization. Almost one half of article is devoted to models
for ”free energy” phenomena [G2] developed much before the recent overall
view summarized above had emerged. I know quite well that the reality of
these phenomena is debatable and the poor quality of data makes models
speculative. I however feel that these models might serve as good theoretical
exercises.

2 Basic ontology of TGD

TGD [TGD] leads to an ontology which is new in many respects. The notion
of space-time generalizes in several manners. One ends up to the so called
zero energy ontology, which means that negative energies are possible and
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all possible universes are creatable from vacuum. Planck constant, which in
the standard quantum theory is a genuine constant, has a discrete spectrum
of values and the values can be arbitrarily large [A9, J7]. This means that
Universe is a macroscopic quantum system in all scales.

Dark matter could be identified as ordinary matter for which Planck
constant differs from its ordinary value so that the interactions with ordinary
matter differ in their character from ordinary interactions. Note that TGD
predicts also new forms of matter completely dark with respect to electro-
weak interactions [F4, D8].

Dark matter with a large Planck constant is in a key role in the TGD
based model of living matter [9]. Because the new ontology is so central from
the point of view of TGD inspired theory of consciousness and living matter
[TGDconsc], I will represent the basic ideas of TGD using applications to
quantum biology to concretize their implications.

2.1 T(opological) G(eometro)D(ynamics) very briefly

TGD is a unified theory of fundamental interactions which has developed
during 28 years [TGD, 1] and at the same time expanded to a theory of
consciousness providing a model of quantum biology. The key ideas of TGD
are following.

1. TGD can be seen as a generalization of either hadronic string model
or super-string model (M-theory). The 1-dimensional (1-D) strings moving
in 10- or 11-dimensional space are replaced with 3-D surfaces moving in 8-
D space. This means that the 2-D orbits of strings are replaced with 4-D
surfaces identified as our 4-D space-time but in a widely generalized sense.
A further assumption is that these 3-surfaces are ”light-like”. This assump-
tion bringing in mind esoteric teachings has a purely geometric meaning,
and makes it possible to generalize and extend the conformal symmetries
responsible for the miraculous mathematical properties of super-string mod-
els. These symmetries are in a central role in the formulation of quantum
TGD.

2. Another manner to end up with TGD is via a search for a modification
of general relativity solving the so called energy problem of general relativity.
In general relativity the notions of energy and momentum are not well-
defined since the translational symmetries responsible for their existence are
lost as space-time becomes curved. If one assumes that 4-dimensional space-
time is a 4-D surface in a higher-D space obtained by replacing the points
of the empty space-time of special relativity (Minkowski space) with certain
internal space- call it S- having a very small size, the basic symmetries of
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Minkowski space become those of higher-D space and energy and momentum
continue to be well-defined and one obtains a description of gravitation in
terms of space-time curvature.

3. The surprise was that this leads to a unified theory for all known in-
teractions - electromagnetic, weak, strong, and gravitational - if one chooses
the space S suitably. The proper choice is S = CP2 = SU(3)/U(2), the
complex projective space of 2 complex dimensions.

2.2 Many-sheeted space-time and the notion of field body

Many-sheeted space-time is one of the basic implications of TGD.
1. Both 3-space and 4-D space-time consists of sheets forming a hier-

archical structure ordered with respect to the size of the sheet. Each sheet
can identified as a subsystem, which can correspond to any object of our
nearby environment, astrophysical object, cell level system, atom, etc... My
own body defines my own private space-time sheet. Quite generally, the
topology of space-time codes for various physical structures.

2. Every system is accompanied by various kinds of fields such as elec-
tromagnetic and gravitational fields. These fields cannot be assigned to any
particular subsystem in standard physics. In TGD the situation is differ-
ent: one can assign to each system a ”field body” consisting of field quanta.
For instance, magnetic body consists of quanta of magnetic flux (tubes,
sheets,..) realized as space-time sheets much larger than the system. One
can also speak about field bodies which mediate interactions and connect
different systems (”relative field bodies”).

3. In TGD inspired theory of consciousness field body is the ”inten-
tional agent” which receives sensory information from the biological body
and utilizes it as a motor instrument. The finding of Libet [17] that our
sensory data has age which is a fraction of second could be understood in
terms of time lapse resulting from the communication of sensory data to the
magnetic body using EEG. From Uncertainty Principle one can conclude
that in the case of EEG the size scale of magnetic body is of order of size
of Earth. As a matter fact, magnetic body is predicted to have onion-like
fractal structure and communications to various layers of the onion would
take place using fractal variants of EEG. The existence of fractally scaled
variants of some parts of EEG (alpha band and its harmonics in particular)
is a testable prediction of the model.

4. What is also new and highly non-trivial is that field body and biologi-
cal body are essentially four-dimensional structures. The brain and body of
geometric past still exist as conscious entities having mental images which
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we experience as memories. Biological death means only the arrival of a
particular wave of consciousness to the time-like boundary of a 4-D body.
Consciousness at the level of 4-D body does not cease: our past lives.

5. Many-sheeted space-time leads also to a generalization of the notion
of subsystem which in TGD inspired theory of consciousness corresponds to
a subself experienced by self (system) as a mental image. What is new is
the paradoxical sounding prediction that even in the case that two systems
are unentangled, subsystems can entangle. Entanglement of subselves can
be interpreted as giving rise to sharing and fusion of mental images giving
rise to a kind of stereo consciousness (stereovision would be one example
of this). Consciousness would not be completely private and there would
exist a pool of shared and fused mental images making for instance possi-
ble to assign universal meaning to the symbols of language. This new view
about entanglement was originally motivated by the observation that two
space-time sheets condensed at larger space-time sheets can be connected by
bonds while the larger space-time sheets can remain unconnected (see Fig-
ure 3). By quantum classical correspondence the bonding of the space-time
sheets serves as a space-time correlate for entanglement. Much later (only
a couple years ago) the generalization of quantum measurement theory by
introducing the notion of finite measurement resolution allowed to mathe-
maticize this concept [A8, A9]. Entanglement is always defined with respect
to a resolution characterizing the system and the entanglement of subsys-
tems in not visible in the resolution characterizing the system. The notions
of quantum groups and non-commutative geometry emerge naturally in the
description of finite measurement resolution [C3].

2.3 The hierarchy of Planck constants and of dark matter

The hierarchy of Planck constants is a relatively new element of TGD. The
idea emerged as I constructed a model of topological quantum computation
[E9] and after learning about the work of Nottale [40] I realized that the
notion is more or less forced by quantum classical correspondence implying
that space-time sheets define regions of macroscopic quantum coherence and
by the fact that they can have arbitrarily large size.

2.3.1 Physical motivations for introducing the hierarchy of Planck
constants

There are several reasons to consider the possibility that Planck constant h̄
is actually not a constant but can have a set of quantized values which can
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be arbitrarily large.
1. One observation is the quantization of the radii of planetary orbits

(also those of exo-planets) in the same manner as in the case of hydrogen
atom [40]: now however the value of Planck constant is gigantic: h/h0 =
GMm/v0, where M and m are the masses of Sun and planet, G is Newton’s
constant and v0 is a dimensionless constant (in units c = 1), whose favored
value is v0 = 2−11. Also other values are possible. In TGD based model
[D7, D8] the gravitational Planck constant is assigned with the ”relative field
bodies” connecting Sun and planet and mediating gravitational interaction
between them. The interpretation is that gravitational Planck constant
is associated with dark matter, which is macroscopic quantum phase in
astrophysical scales. Visible matter condensed around dark matter would
reflect the quantal properties of dark matter.

2. Second motivation comes from the observed effects of ELF radiation
on vertebrate brain [16], which can be both physiological and affect behav-
ior. These effects appear at harmonics of cyclotron frequencies of biologically
important ions (in particular Ca++ ion) in a magnetic field of B = .2 Gauss
(the nominal value of Earth’s magnetic field is .5 Gauss) and are very quan-
tal. These frequencies are in EEG range (harmonics of 15 Hz for Calcium
ion). Standard quantum mechanics does not allow quantal effects since the
energy of EEG photons is extremely low and much below the thermal energy
at body temperature. If the value of h̄ is large enough, the effects of ELF
photons are not masked by thermal noise, and the effect can be understood
[M3].

3. If EEG consists of photons with large Planck constant, one can un-
derstand the correlation of EEG with the state of brain and contents of
consciousness [M3]. In particular, temperature ceases to be a restriction for
life: for sufficiently large Planck constant even the interiors of planets and
Sun could serve as seats of life of some kind. This kills a central counter ar-
gument against the claim of a Romanian group of physicists that since the
plasmoids created in electric circuits possess some basic features assigned
usually to life, they indeed represent primitive life forms [45].

4. The mathematization for the notion of Planck constant hierarchy [A9]
involves a further generalization of the space-time concept discussed in the
Appendix. The basic prediction is that Planck constant corresponds to a
discrete subgroup of rotation group acting as the symmetries of the field
body of the dark matter system. A hierarchy of favored values of Planck
constant and symmetry groups emerges from simple number theoretic argu-
ments. For instance, h = nh0, n = 5, 6, correspond to the favored values of
Planck constant. In this case the symmetry group would correspond to the
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symmetries of 5- and 6-cycles appearing in polycyclic aromatic hydrocarbons
[34, 35] known to be important for life. Examples are the cycles appearing in
DNA, in some aminoacids, in most hallucinogens except alcohol, and PAHs
in the interstellar space [34, 35] believed to result via photosynthesis and
believed to be predecessors of aminoacids and other bio-molecules.

5. The basic prediction is that large values of Planck constant corre-
spond to discrete symmetries: typically discrete group of symmetries acting
as rotations around a fixed symmetry axes. These symmetries acted as sym-
metries of dark field body. In the original view about generalized imbedding
space (Appendix) these symmetries would be almost continuous symme-
tries for larger values of Planck constant. The breaking of these symmetries
at the level of visible matter condensed around dark matter could lead to
much smaller subgroups of these symmetry groups and structures analogous
to those appearing in molecular physics could be the outcome. The further
generalization of imbedding space (Appendix) allows also discrete symme-
try groups Zn for dark matter with small value of n and also genuinely
three-dimensional symmetry groups (tedrahedral, octahedral, icosahedral,
and octahedral). There is evidence for this kind of symmetries. For in-
stance, there is a strange hexagonal structure appearing at the North pole
of Saturn [41]. Planetary rings is second example and some of them even
contain helical structures analogous to DNA double strand [42].

6. Large Planck constant photons at radio frequencies could interact
strongly with living matter and it would become possible to communicate
with living matter over very long distances. This mechanism would involve
a de-coherence of large Planck constant photons to ordinary ones with same
energy or a bundle of ordinary photons with much smaller energy. This
brings in mind the recent discovery that the irradiation of salt water by
radio waves at harmonics of frequency 13.4 Ghz makes it ”burn” that is
emit burning gases [53]. A possible explanation is that radio wave photons
are transformed in water to photons of same frequency but much larger
Planck constant and in de-coherence to ordinary photons with same energy
become microwave photons which excite rotational excitations of NaCl (in
equilibrium with Na+ and Cl− ions) and in this manner heat it just like
microwave oven does [F10]. The required value of Planck constant would
be by a factor 210 = 1024 larger than normal Planck constant. This value
is one of the number theoretically simple values defined as ratios of inte-
gers defining polygons constructible using only ruler and compass [A9]. For
water molecules the needed value of Planck constant is obtained from the
microwave oven frequency 2.45 GHz and would be with .1 per cent accuracy
equal to h/h0 = n = 187 = 11× 17: n does not belong to the set of number
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theoretically simple values of n but one cannot of course exclude it.

2.3.2 The notion of field body and dark matter

The conclusion would be that each physical system is accompanied by a field
body with a fractal, onion-like, structure formed by field bodies. This leads
to the following vision about the nature of living matter.

1. Each layer of the onion is characterized by the value of Planck constant
telling its position in the hierarchy of dark matter.

2. At the surface of the onion the value of Planck constant is largest and
in some sense defines the ”IQ” of the system. At the level of molecules one
expects rather low values of Planck constants. For instance, the magnetic
body assignable to the ordinary EEG as has of order Earth size and the life-
time of human (say 70 years) would correspond to a layer with size of order
light-life (70 light years). Even higher layers might be present: transpersonal
states of consciousness would indeed naturally correspond to these layers.

Field body receives information from the biological body and quantum
controls it.

1. In the case of ordinary living matter field body would naturally re-
ceive information from cell membranes, which are full of receptors monitor-
ing the state of environment. This leads to the idea that cell membranes
are Josephson junctions and that Josephson currents code this information
and communicate it to some layer in the onion formed by magnetic bod-
ies. Dark matter hierarchy suggests even the existence of fractally scaled
up counterparts of cell membrane and the TGD based model of EEG relies
on this assumption. What is encouraging that the model predicts correctly
the decomposition of EEG into bands, in particular alpha band, explains
why high arousal correspond to chaotic looking activity in beta band, and
predicts also correctly the positions of narrow sub-bands in beta and theta
bands [19] . The strange findings challenging pump-channel paradigm [22]
(ionic currents seem to be quantal and same even for artificial membranes;
currents continue to flow in absence of metabolism) support superconduc-
tivity hypothesis and suggest that ordinary Ohmic currents are only for the
purposes of measuring the concentrations of various ions in cellular environ-
ment and that metabolic energy goes to the communications to the magnetic
body using generalized EEG.

2. Magnetic body controls biological body through the genome. This
inspires the hypothesis that magnetic flux sheets go through DNA strands
and genes form what could be regarded as text lines at the page of book
defined by the flux sheet. The quantization of magnetic flux with unit
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proportional to Planck constant implies that for large values of h̄ the flux
sheets are very wide and can go through a large number of genomes. One
ends up with the notion of super genome meaning that coherent collective
gene expression becomes possible in the scale of organ and organism. Hyper
genome would in turn fuse the super-genomes to a larger structure making
possible coherent collective gene expression at the level of species and pop-
ulation [M3, L1]. This would bring to the theory of evolution completely
new ”synergetic aspect” and evolution would be much more than fight for
survival.

3. The interaction between field body and biological body is essentially
remote mental interaction so that paranormal phenomena would differ from
normal biological basic interactions only in that field body uses external
biological body to remote viewing or psychokinesis.

4. There are good reasons to assume that field bodies have developed
magnetic immune systems to prevent the use of their private biological bod-
ies by alien field bodies. Hypnosis would be example of this kind of posses-
sion by a foreign field body. This immune system can be compared to fire
wall in computer world (assuming that we have created computers as our
own images).

a) The height of the fire wall depends on individual. For very sensitive
persons it is very low and these people are very sensitive to suggestions,
hypnosis, spiritual experiences, and even encounters of ETs. Very high fire
wall makes it impossible to receive even useful information and the fire wall
of skeptic might be too high.

b) In the case of computers viruses and cookies are very simple programs
making possible for an external computer to partially ”possess” the com-
puter via web. Their role is to serve as kind of mediums or couriers. In the
case of field body viruses and cookies would correspond to very simple life
forms to which immune system does not bite: plasmoids are natural candi-
dates in this respect. This would suggest that anomalous light phenomena
(”UFOs”) are actually plasmoids (unidentified moving processes rather than
objects).

Plasmoids could quantum entangle the brains of the sensitive person to
some conscious entity at some higher level of hierarchy and the person would
fall in a trance like state able to share mental images of this entity. Patterns
of magnetic pulses can be used to generate alternative states of consciousness
[20] and the patterned motion of the magnetic body of plasmoids (kind of
dance like motor expression!) consisting of flux tubes and sheets with respect
to the observer could generate this kind of pulse patterns.

It has been observed that some moving light balls indeed involve mag-
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netic pulses with maximal field strength of about .3 Gauss and typical
strength which is 10 times weaker [49]. The prediction is that the dura-
tions of pulses should be inversely proportional to the velocity of motion of
the light balls. Also the motion of a magnetometer with respect to living
system might course similar pulses.

2.4 Zero energy ontology

In standard physics the sign of energy is positive. This leads to philosophical
problems. The problematic question is what are the values of the conserved
quantities of the universe (energy, em charge, quark and lepton number). An
additional difficulty is caused by the fact that they are very naturally infinite
in positive energy ontology. These questions cannot be answered with the
framework of standard physics. On the other hand, TGD inspired cosmology
led to a different interpretational problem: the density of non-conserved
gravitational mass was non-vanishing as in standard cosmologies but the
density of inertial energy vanishes [D6]. The construction of quantum TGD
[C2, A1, A2] finally led to so called zero energy ontology which resolves this
problem and also the problems due to the positive energy ontology.

1. All quantum states possess vanishing net values of conserved quantum
numbers such as an energy. Or stating it otherwise: every physical state is
creatable by intentional action from vacuum.

2. Zero energy states decompose into positive and negative energy states
such that negative energy state is in the geometric future. If the temporal
distance between positive and negative energy states is long as compared to
the time scale of perception, the usual positive energy ontology works well.
In the opposite case the zero energy state can be interpreted as a quantum
fluctuation having no importance for the world as we perceive it.

2.4.1 Zero energy ontology and unification of the notions of S-
matrix and density matrix

Zero energy ontology states that physical states have vanishing net conserved
quantum numbers and states decompose into positive and negative energy
state and that the latter one can be said to be located in the geometric future
with of the positive energy state at the time-like boundary of the space-time
sheet representing the system. It is possible to speak about energy of the
system if one identifies it as the average positive energy for the positive
energy part of the system.
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The matrix (”M-matrix”) representing time-like entanglement coeffi-
cients between positive and negative energy states unifies the notions of
S-matrix and density matrix since it can be regarded as a complex square
root of density matrix expressible as a product of real squared of density
matrix and unitary S-matrix. The system can be also in thermal equilib-
rium so that thermodynamics becomes a genuine part of quantum theory
and thermodynamical ensembles cease to be practical fictions of the theo-
rist. In this case M-matrix represents a superposition of zero energy states
for which positive energy state has thermal density matrix.

a) If the positive energy parts of zero energy states appearing in the su-
perposition have only single value of energy, the notion of remote metabolism
is certainly well-defined. Even in the case that the system is thermalized
remote metabolism makes sense since average energy can be increased by re-
mote metabolism. One can even imagine a statistical variant of the process
in which the temperature increases.

b) The critical question is whether crossing symmetry prevails in the
sense that the positive energy signal propagating to the geometric future is
equivalent to a negative energy signal propagating to geometric past. The
eigen modes of the modified Dirac operator appearing in the first principle
formulation of quantum TGD are characterized by the eigenvalues λ, which
are complex. |λ|2 has interpretation as a conformal weight mathematically
analogous to a vacuum expectation value of Higgs field [B4, C3]. There are
reasons to believe that the eigenvalues relate closely to the zeros of Riemann
zeta and/or its generalizations [C3]. If the eigenvalue and its complex conju-
gate correspond to a state and its phase conjugate, crossing symmetry fails
and would mean also breaking of time reversal symmetry.

2.4.2 Time mirror mechanism

Zero energy ontology gives justification for the time mirror mechanism which
is the fundamental mechanism of TGD inspired model of quantum biology.
To avoid confusion one must distinguish between two times: geometric and
subjective time. The latter corresponds to a sequence of quantum jumps
giving rise to the conscious sensation of flow of time [10, K1, H5]. Geometric
time corresponds to the time of physicist identified as the fourth space-time
coordinate. These times are only loosely related and their identification
is only approximate and makes sense only in some states of consciousness.
Indeed, subjective time is irreversible and no subjective future exists whereas
geometric time is reversible and both future and past exist.

1. Symbolic (declarative memories) can be understood as communica-
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tions of some onion layer of magnetic body with the brain of the geometric
past [H6]. A signal consisting of negative energy phase photons (identi-
fiable as phase conjugate photons in nonlinear optics) with larger Planck
constant represents a question to the brain of the geometric past which re-
sponds automatically by sending a positive energy signal to the magnetic
body in the geometric future. Episodal memories which correspond to lit-
eral re-experiences result by time-like quantum entanglement for subsystems
representing the mental images.

2. Time mirror mechanism makes possible to realize intentions by send-
ing negative energy signals to the brain of the geometric past and inducing
neural activity leading to a motor response in the brain of geometric future
[H1, J7]. This kind of mechanism allows more or less instantaneous reac-
tion and provides an evolutionary advantage in ”jungle”. The mechanism
explains Libet’s findings[18] that neural activity is initiated in brain already
before the conscious decision. In the usual ontology the interpretation would
be that free will is only apparent. In the recent context ”before” refers to the
geometric rather than subjective time, so that free will is possible and as-
signed to the quantum jump identified as a moment of consciousness. Dark
matter hierarchy implies infinite hierarchy of moments of consciousness with
moments of consciousness giving rise to the analog of dark matter hierarchy
at the level of conscious entities.

3. The system can receive positive energy as a recoil energy by sending
negative energy to ta system of geometric past able to receive it. A system
analogous to a population inverted laser having more particles in a state of
higher energy, is ideal provider of energy. The resulting quantum credit card
makes it possible to react very rapidly in situations encountered in ”jungle”.
I have christened this mechanism remote metabolism and magnetic body
could use it to suck metabolic energy from brain or body to its own purposes
by sending phase conjugate dark (generalized) EEG photons to the biological
body. In the case of declarative memories the excited state of the laser like
system would naturally correspond to bit 1 and ground state to bit 0 [H6].
Metabolic energy would be needed to restore the mental image since the
process of memory recall would tend to reduce the population of excited
states. Note that remote metabolism would be tailor made for say space
travel since there would be no need to carry the fuel: if ”UFOs” exist they
might apply this kind of energy technology.

4. Many-sheeted space-time provides a concrete realization of the laser
like systems as many-sheeted lasers. The ”dropping” of particles from
smaller to larger space-time sheets liberates zero point kinetic energy [J7].
If the interaction energy with the matter at the space-time sheet can be
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neglected, p-adic length scale hypothesis makes precise predictions about
the maximal liberated energies. The standard metabolic energy currency
of about .5 eV of living matter corresponds to the dropping of proton from
a space-time sheet of atomic size. Actually a fractal hierarchy of universal
metabolic currencies is predicted and should be present already during the
pre-biotic evolution so that the chemical storage of energy is not necessary
for a primitive metabolism [N4].

The transitions corresponding to the dropping of particles should be
visible in astrophysics and there are indeed exist three kinds of narrow bands
of radiation in both visible and infrared range without identification in terms
of known molecular transitions (see discussion below). The energies of the
photons in question are consistent with p-adic length scale hypothesis and
allow an interpretation in terms of proposed transitions assuming that there
is some binding energy with the matter at the smaller space-time sheet [37].

2.4.3 More detailed view about time mirror mechanism in zero
energy ontology

The notion of negative energy signals and time mirror mechanism emerged
before zero energy ontology. Since the mechanisms of remote metabolism, of
memory, and of intentional action rely on time mirror mechanism, one should
check that this mechanism is indeed consistent with zero energy ontology.
Zero energy ontology could also yield new insights to these mechanisms.

1. Is zero energy ontology consistent with time mirror mechanism?

Energy conservation and geometric arrow of time poses strong conditions
on the mechanism. If positive energy part of state sends negative energy
signal, then negative energy part of state must send a compensating positive
energy signal. Furthermore, positive (negative) energy signals propagate
towards geometric future (past).

a) If only single space-time sheet is involved, either negative energy signal
S−: X4

− → Y 4
− or positive energy signal S+: X4

+ → Y 4
− is possible. The

energy of both states is reduced in magnitude. For instance, this process
tends to reduce destroy long term memories represented as bit sequences
with bit represented by population inverted laser system.

b) Second possibility is that X4 are Y 4 are disjoint and X4 is in the
geometric future of Y 4.

The first possibility is S+: X4
+ → Y 4

− and negative energy signal S−:
X4
− → Y 4

−: the energy of both X4 and Y 4 is reduced in this case.
Second possibility is S−: X4

+ → Y 4
+ and S+: Y 4

− → X4
−. X4 would
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suck energy from Y 4 in the geometric past. This option could correspond
to both remote metabolism, memory recall, and intentional action. The
presence of topological light ray connecting two systems would be also a
correlate for time-like quantum entanglement making possible sharing and
fusion of mental images and creating a sensation about flow of time just
like it creates sensation of depth in stereo vision by fusion of right and left
visual fields. Depending on the sign of the energy of the signal one would
have memory or precognition. Precognition would require use of metabolic
energy and this might be one reason for why it is rather rare.

c) Suppose next that the zero energy space-time sheet, call it X4, is
inside larger space-time sheet, call it Y 4: X4 ⊂ Y 4. In this case one can
have S−: X4

+ → Y 4
+ accompanied by S+: X4

− → Y 4
−. X4 ⊂ Y 4 would suck

energy from a larger system Y 4. It is of course possible to replace signals
with signals of opposite energy in opposite time direction.

A possible interpretation is as a metabolic charging of smaller space-time
sheets by sucking energy from longer scales or by active pumping of energy
to shorter scales. The transformation of long wavelength photons with large
Planck constant to short wavelength photons with smaller Planck constant
is an analogous process and might realize metabolic charging in biology. For
instance, Sun-Earth system could correspond to Y 4 and biosphere to X4.

To sum up, zero energy ontology completes the picture in the sense that
it also provides a process making possible metabolic charging.

2. Thermodynamical considerations

It is not at all obvious whether the proposed picture is consistent with
the standard thermodynamics. The transfer of energy from long to shorter
length scales making possible to gain metabolic energy and realize the mech-
anism of long term memory indeed seems a genuinely new element. This
process resembles dissipation in the sense that energy is transferred from
long to short length scales. In an approach to thermal equilibrium temper-
ature gradients are however reduced whereas remote metabolism favors the
active generation of ”hot spots”.

These considerations relate closely to the notions of entropy and syn-
tropy by Italian mathematician Luigi Fantappie [24] assigned with the two
arrows of time. I learned from the work of Fantappie in SSE conference held
in Röros from Antonella Vannini [25] and Ulisse Di Corpo [26].The discov-
ery of Fantappie was that in living systems entropic processes seem to be
accompanied by syntropic processes which seem to be finalistic. He assigned
these processes to the advanced solutions of wave equations.

It would seem that entropy and syntropy do not relate directly to the
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notion of remote metabolism.
a) Syntropy growth would indeed be the mirror image of entropy growth

associated with negative energy mirror image of positive energy dynamics.
This dynamics could be seen as sequences of downwards scalings leading
from long time scale to short time scale. This sequence would define time
sequences proceeding in opposite directions of time for positive and negative
energy parts of states. Thus entropy growth would be accompanied by
syntropy growth.

b) Syntropy growth could be also seen as a consequence of generalized
second law applying with respect to subjective time and growth of syntropy
would be growth of entropy but manifesting itself at space-time level in
reversed direction of geometric time. For instance, the spontaneous assembly
of bio-molecules from their parts could be seen as a decay process in the
reverse direction of geometric time controlled by phase conjugate control
signals.

c) Remote metabolism as generation of ”hot spots” does not seem to
reduce to these notions and might represent a genuine breaking of standard
thermodynamical view about the world.

One must also distinguish the notions of entropy and syntropy from
the notion of number theoretic entanglement negentropy N assignable with
quantum entanglement with algebraic entanglement probabilities [H2].

a) N is defined as the maximum of the p-adic entanglement negentropy
N(p) as a function of the p-adic prime p and thus assigns to an entangled
system a unique prime pmax. N(p) is obtained by replacing in the definition
of the Shannon entropy the argument of logarithm with its p-adic norm. N
is in general positive and thus defines a genuine measure of information.

b) The non-negative negentropy defined in this manner characterizes en-
tanglement as a carrier of information rather than the state of either of
systems and has nothing to do with the ordinary (non-positive) entropy
characterizing the lack of knowledge about the state of either subsystem.
Negentropy Maximization Principle [H2] favors the increase of the number
theoretic negentropy and thus formation of entanglement quantum systems
and generation of quantum coherence. Depending on the character of en-
tanglement negentropic entanglement might be interpreted as a correlate for
some conscious experience with positive content: say experience of under-
standing (time-like entanglement implying causal structure), of love (space-
like entanglement), etc...

It is not obvious to me whether the remote metabolism as a manner to
build hot spots and diversity could be reduced to NMP or whether it should
be regarded as something completely independent.
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2.5 p-Adic physics as physics of cognition and intentionality

p-Adic number fields are completions of rationals to a continuum as are also
ordinary real numbers. In the case of real numbers one adds to the rationals
algebraic numbers and transcendentals like e and π. In the case of p-adic
numbers one adds numbers, which are infinite as real numbers. To every
prime p=2,3,5,7,... one can assign a p-adic number field and an infinite
number of algebraic extensions analogous to complex numbers.

1. One can assign also to p-adic numbers a physics (what this physics
is far from obvious). The basic motivation for p-adics in the case of TGD
was that p-adic thermodynamics makes possible to understand elementary
particle masses and reduces the fundamental mystery number defined by the
ratio of Planck mass to proton mass to number theory [F1, F2, F3, F4, F5].
It took a long time to get convinced that p-adic physics can be interpreted
as the physics of cognition and intentionality and that p-adic physics can be
seen as a simulation of real physics.

2. The challenge is to ”glue” real physics and various p-adic physics to
single coherent whole. To achieve this it is necessary to generalize the notion
of number by ”gluing” together real numbers and various p-adic number
fields by along common rationals (and possibly also common algebraics)
[E1]. Also the notions of space, manifold, and space-time generalize. It
becomes possible to speak about p-adic space-time sheets as correlates for
intentions and cognitions [H8]: this would be the geometric counterpart for
the ”mind stuff” of Descartes. Note however that space-time and quantum
states are zombies: consciousness is in the quantum jump.

3. Rather remarkably, every p-adic space-time sheet has literally infinite
size in the sense of the real topology. This means that cognition and in-
tentionality are cosmic phenomena and cannot be localized to brain or even
field body. The intersections of field bodies and p-adic space-time sheets
consist of discrete sets of points and provide material representations for
cognitions and intentions. The larger the size of field body (the larger the
value of Planck constant), the larger the number of points in this intersec-
tion, and the better the cognitive representations and the more precise the
intentional grasp on the material world. Thus the evolution of cognition
involves growth of the largest Planck constant associated with the system
characterizing also the time scale of long term memories and planned action.

4. The theory is testable. The p-adic topology should reflect itself as
an effective p-adic topology of real space-time sheets serving as correlates
for matter and p-adic continuity means p-adic fractality with characteristic
long range correlations combined with local chaos in the real topology. The

22

65

vic
Rectangle



success of p-adic mass calculations supports this view and suggests that
cognition and intentionality are present already in elementary particle scales.
Also the successes of the applications to biology and even cosmology support
the theory.

5. The essential ingredient of the theory is p-adic length scale hypothesis:
primes which are near powers of two are physically preferred. In particular,
prime powers of two and Mersenne primes Mn = 2n − 1 and their complex
analogs (Gaussian Mersennes) are especially favored. For instance, most im-
portant elementary particles correspond to Mersenne primes and a number
theoretical miracle occurs in biologically important length scale range: in
the length scale range between cell membrane thickness (10 nm) and size of
cell nucleus (2.5 µm) there are as many as 4 Gaussian Mersennes [J7]!

3 Many-sheeted space-time, universal metabolic
quanta, and plasmoids as primitive life forms

In this section evidence for many-sheeted space-time represented together
with development of more concrete ideas about plasmoids as primitive life
forms. Recall that might form the basis of new energy technology able to
recycle the fuel.

3.1 Evidence for many-sheeted space-time

The dropping of particle to a larger space-time sheet liberates energy which
is the difference of the energies of the particle at two space-time sheets. If
the interaction energy of the particle with the matter at space-time sheet can
be neglected the energy is just the difference of zero point kinetic energies.
This energy depends on the details of the geometry of the space-time sheet.
Assuming p-adic length scale hypothesis the general formula for the zero
point kinetic energy can be written as

E(k) = x× E0(k) , E0(k) =
3
2

π2

mL2(k)
.

Here x is a numerical factor taking into account the geometry of the space-
time sheet and equals to x = 1 for cubic geometry.

The liberated zero point kinetic energy in the case that the particle drops
to a space-time sheet labelled by kf = k + ∆k with same value of x is

∆E(k,∆k) = x× E0(k)× (1− 2−∆k) .
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The transitions are seen as discrete lines for some resolution ∆k ≤ ∆kmax.
At the limit k → ∞ transitions give rise to a quasicontinuous band. The
photon energy for k → ∞ transition is same as the energy from k − 1 → k
transition, which brings in additional option to the model building.

For a proton dropping from the atomic space-time sheet k = 137 to very
large space-time sheet (∆k →∞) one has ∆E(k) = E(k) ∼ x× .5 eV. Since
the ratio of electron and proton masses is mp/me ' .94× 211, the dropping
of electron from space-time sheet ke = kp + 11 liberates zero point kinetic
energy which is by is by a factor .9196 smaller. For kp = 137 one would
have ke = 148. This energy corresponds to the metabolic energy currency
of living systems and the idea is that the differences of zero point kinetic
energies define universal metabolic energy currencies present already in the
metabolism of pre-biotic systems. In the following fit electron’s zero point
kinetic energy will be taken to be E0(148) = .5 eV so that for proton the
zero point kinetic energy would be E0(137) = .544 eV.

The hypothesis predicts the existence of anomalous lines in the spectrum
of infrared photons. Also fractally scaled up and scaled down variants of
these lines obtained by scaling by powers of 2 are predicted. The wavelength
corresponding to .5 eV photon would be λ = 2.48 µm. These lines should
be detectable both in laboratory and astrophysical systems and might even
serve as a signature for a primitive metabolism. One can also consider
dropping of Cooper pairs in which case zero point kinetic energy is scaled
down by a factor of 1/2.

Interestingly, the spectrum of diffuse interstellar medium exhibits three
poorly understood structures [31]: Unidentified Infrared Bands (UIBs), Dif-
fuse Interstellar Bands (DIBs) [32], and Extended Red Emission (ERE) [33]
allowing an interpretation in terms of dropping of protons or electrons (or
their Cooper pairs) to larger space-time sheets. The model also suggests the
interpretation of bio-photons in terms of generalizes EREs.

3.1.1 Unidentified Infrared Bands

Unidentified infrared bands (UIBs) contain strong bands at λ = 3.3, 6.2, 11.3
microns [31]. The best fit for the values of k and ∆k assuming dropping of
either electron or proton are given by the following table. The last row of the
table gives the ratio of predicted photon energy to the energy characterizing
the band and assuming x = 1 and E0(148, e) = .5 eV. Discrepancies are
below 8 per cent. Also the dropping of protonic Cooper pair from k = 137
space-time sheet could reproduce the line ∆E = .2 eV. The fit is quite satis-
factory although there is of course the uncertainty related to the geometric
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parameter x.

λ/µm E/.5eV k ∆k ∆E(k, ∆k)/E p/e

330 .7515 137 ∼ ∞ 1.002 e
620 .4000 138 3 1.067 e
1130 .2195 139 3 0.878 e
1130 .2195 139+11=150 3 1.076 p

Table 1. Table gives the best fit for UIBs assuming that they result
from dropping of proton or electron to a larger space-time sheet and one has
E0(148, e) = .5 eV. The fourth column the table gives the ratio of predicted
photon energy to the energy characterizing the band and assuming x = 1.
e/p tells whether electron or proton is in question.

According to [31], UIBs are detected along a large number of interstellar
sight-lines covering a wide range of excitation conditions. Recent laboratory
IR spectra of neutral and positively charged poly-cyclic aromatic hydrocar-
bons (PAHs) has been successfully used by Allamandola [35] to model the
observed UIBs. It is believed that PAHs are produced in reactions involv-
ing photosynthesis and are regarded as predecessors of biotic life [34]. This
would conform with the presence of metabolic energy quanta.

DNA sugar bone, some aminoacids, and various hallucinogens involve
5- and 6-cycles and the proposal is that these cycles involve free electron
pairs, which possess Planck constant h̄ = nh̄0, n = 5, 6. These free electron
pairs would explain the anomalous conductivity of DNA and would be an
essential characteristic of living matter. The emergence of n = 5, 6 levels
could be seen as the first step in the pre-biotic evolution.

3.1.2 Diffuse Interstellar Bands

There are diffuse interstellar bands (DIBs) at wavelengths 578.0 and 579.7
nanometers and also at 628.4, 661.4 and 443.0 nm. The 443.0 nm DIB is par-
ticularly broad at about 1.2 nm across - typical intrinsic stellar absorption
features are 0.1 nm [31]. The following table proposes a possible identifica-
tion of these lines in terms of differences of zero point kinetic energies. Also
now the best fit has errors below 7 per cent.

25

68

vic
Rectangle



λ/nm E/.5eV k ∆k ∆E(k, ∆k)/E p/e

628.4 3.947 135 = 33 × 5 ∼ ∞ 0.987 e
661.4 3.750 135 + 11 = 2× 73 3 0.985 p
443.0 5.598 134 = 2× 67 2 0.933 e
578.0 4.291 135 + 11 = 2× 73 ∼ ∞ 0.986 p
579.7 4.278 135 + 11 = 2× 73 ∼ ∞ 0.984 p

Table 2. Table gives the best fit for DIBs assuming that they result from
dropping of proton or electron to a larger space-time sheet. Notations are
same as in the previous table.

The peak wavelengths in chlorophyll and photosynthesis are around 650
nm and 450 nm and would correspond to second and third row of the table.

3.1.3 The Extended Red Emission

The Extended Red Emission (ERE) [31, 33] is a broad unstructured emission
band with width about 80 nm and located between 540 and 900 nm. The
large variety of peak wavelength of the band is its characteristic feature. In
majority of cases the peak is observed in the range 650-750 nm but also the
range 610-750 nm appears. ERE has been observed in a wide variety of dusty
astronomical environments. The necessary conditions for its appearance is
illumination by UV photons with energies E ≥ 7.25 eV from source with
T ≥ 104 K. The position of the peak depends on the distance from the
source [33].

According to [31] the current interpretation attributes ERE to a lumi-
nescence originating from some dust component of the ISM, powered by
UV/visible photons. Various carbonaceous compounds seem to provide a
good fit to the observational constraints. However, the real nature of ERE
is still unknown since most candidates seem to be unable to simultaneously
match the spectral distribution of ERE and the required photon conversion
efficiency.

a) Consider first the band 650-750 nm appearing in the majority of
cases. The most natural interpretation is that the lower end of the band
corresponds to the zero point kinetic energy of electron at k = 135 + 11 =
146 = 2 × 73 space-time sheet. This would mean that the lines would
accumulate near 650 nm and obey the period doubling formula

λ(k)− λ(∞)
λ(∞)

=
2−k

1− 2−k
.

By the estimate of Table 2 the lower end should correspond to λ = 628.4
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nm with a correction factor x < 1 reducing the zero point kinetic energy.
The reduction would be smaller than 4 per cent. ∆k = 3 transition would
correspond to 744 nm quite near to the upper end of the band. For ∆k = 2
transition one has λ = 867 nm not to far from the upper end 900 nm.
∆k = 1 corresponds to 1.3 µm.

b) For proton with k = 135 = 146 the energy band would shift by the
factor 211me/mp ' 1.0874 giving the range (598,690) nm.

c) The variation for the position of the peak can be understood if the
charged particles at the smaller space-time sheet can have excess energy
liberated in the dropping to the larger space-time sheet. This excess energy
would determine the position of the lower end of the band in the range
(540, 650) nm.

d) One should also understand the role of UV photons with energy larger
than 7.25 eV. For proton the energy would be 8.76 eV. For proton the energy
would be 8.76 eV. UV photon with energy E ≥ 8 eV could kick electrons
from large space-time sheets to k = 144 = 146 − 4 space-time sheet where
they have zero point kinetic energy of 8 eV plus possible additional energy
(for proton the energy would be 8.76 eV). One possibility is that these
electrons drop first to k = 145 by the emission of ∼ 4 eV UV photon and
then to k = 144 by the emission ∼ 2 eV photon corresponding to 650 nm
line. The further dropping to larger space-time sheets would produce besides
this line also the lines with longer wavelengths in the band.

The energy of UV photons brings in mind the bond energy 7.36 eV of
N2 molecule and the possibility of metabolic mechanism using UV light
as metabolic energy and based on the dissociation of N2 followed by re-
association liberating metabolic energy kicking protons or electrons to a
smaller space-time sheet. For the k → k + 3 transition of electron the
energy would be 7 eV which suggests that this transition defines important
metabolic energy quantum for living interstellar dust using dissociation and
its reversal as basic metabolic mechanism.

3.2 Laboratory evidence for plasmoids as life forms

Accepting the notion of magnetic body one is naturally led to the idea about
plasmoids as primitive life forms quantum controlled by the dark matter at
the magnetic body of the plasma ball. Magnetic body itself would con-
tain Bose-Einstein condensates of ions and electrons and could be seen as a
quantum plasmoid. Plasmoids would be very simple systems able to recycled
metabolism and therefore highly interesting from the point of new energy
technologies. Magnetic body of the plasmoid could also be responsible for
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a continual feed of charge keeping plasma ball charged (DNA strands are
negatively charged in bio-matter).

3.2.1 From dust to dust

The article From Plasma crystals and helical structures towards inorganic
living matter of Tsytovich et al in August issue of New Journal of Physics
provides new empirical support for plasmoids as living life forms. The results
of article suggest that interstellar dust could behave like living matter in
some respects: it could even have variant of genetic code. This is a really
shattering finding and with single blow destroys the standard dogma about
life as something purely chemical. It should also give also some headaches
for those influental colleagues who have decided that it is necessary to accept
the anthropic principle. Here is little popularization of the result.

SCIENTISTS have discovered that inorganic material can take on the
characteristics of living organisms in space, a development that could trans-
form views of alien life.

An international panel from the Russian Academy of Sciences, the Max
Planck institute in Germany and the University of Sydney found that galac-
tic dust could form spontaneously into helixes and double helixes and that
the inorganic creations had memory and the power to reproduce themselves.

A similar rethinking of prospective alien life is being undertaken by the
National Research Council, an advisory body to the US government. It says
Nasa should start a search for what it describes as weird life” - organisms
that lack DNA or other molecules found in life on Earth.

The new research, to be published this week in the New Journal of Physics,
found nonorganic dust, when held in the form of plasma in zero gravity,
formed the helical structures found in DNA. The particles are held together
by electromagnetic forces that the scientists say could contain a code com-
parable to the genetic information held in organic matter. It appeared that
this code could be transferred to the next generation.

Professor Greg Morfill, of the Max Planck institute of extra-terrestrial
physics, said: Going by our current narrow definitions of what life is, it
qualifies.

The question now is to see if it can evolve to become intelligent. Its a
little bit like science fiction at the moment. The potential level of complexity
we are looking at is of an amoeba or a plant.

I do not believe that the systems we are talking about are life as we know
it. We need to define the criteria for what we think of as life much more
clearly.”
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It may be that science is starting to study territory already explored by
science fiction. The television series The X-Files, for example, has featured
life in the form of a silicon-based parasitic spore.

The Max Planck experiments were conducted in zero gravity conditions
in Germany and on the International Space Station 200 miles above earth.

The findings have provoked speculation that the helix could be a common
structure that underpins all life, organic and nonorganic.

To sum up the essentials, plasma phase is involved and the dust life is
able to construct analogs of DNA double helices and this has been achieved
also in laboratory. ”From dust to dust” seems to have a very deep side
meaning!

Here is a more quantitative summary of the results reported in [46].
a) The scale of the dust balls seems to be few micrometers. It is essential

that the system is open in the sense that there is both metabolic energy feed
and continual feed of plasma to negatively charged dust particles to preserve
their charges. Authors speak about effective ”gravitational” instability as
a mechanism leading to the formation of the helices and identify effective
gravitational coupling (the formula contains a trivial typo) as a function of
charge and mass of the particle plus dimensionless parameter characterizing
the modification of Debye model implied by the fact that dust particles are
not electrically closed systems. Authors give a long list of life-like properties
possessed by the helical structures.

b) Helical structures are generated spontaneously and possess negative
charges. The repulsion of the helical structures transforms to attraction at
some critical distance interval due to the fact that the large electrostatic
self energy depends on the distance between helices and this makes possible
double helices (authors speak about over-screening in the formal model).
Similar mechanism might work also in the case of ordinary DNA double
helices whose stability is poorly understood since also in this case the large
negative charge could be preserved by continual feed of charge.

c) The twist angle of the helix makes bifurcations as a function of radius
of helix and the values of twist angle could define the letters of genetic code.
Also a mechanism for how the twist angle is communicated to neighboring
helix is proposed. Also dust vortices are observed and might be those which
one can occasionally observe during hot summer days.

d) Authors do not mention magnetic fields but my guess is that the
helical structures reflect directly the geometry of the helical magnetic flux
tubes, and that dark electron pairs with large Planck constant at these
tubes might be the quantal aspect of the system. These currents might
relate closely to the plasma current, which charges the dust particles. Also
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DNA, which is insulator, is known to be able to act as conductor, and here
the free electron pairs associated with aromatic rings having h̄ = n× hbar0,
n = 5 or 6, could make conduction possible since their Compton size would
be n-fold.

3.2.2 Elephant trunks in astrophysics

TGD Universe is fractal and this means that the visible structures are formed
around magnetic flux quanta containing dark matter with large hbar appear
in all length scales and have geometric patterns reflecting the exact discrete
symmetries of dark matter acting as rotational symmetries of the field body
and at the level of visible matter giving rise to broken symmetries typical for
molecular structures. The helical structures found from the rings of some
planets could be one example of fractal life.

For some time ago I learned about ”elephant trunks” found by Hubble
(I am grateful for Miika Väisälä telling about the trunks and for giving ref-
erences to the papers about the finding). They appear in very wide range
of length scales: at least from 1000 au to 1 pc. They are found in close con-
nection with molecular clouds and HII regions excite by one or more young
hot stars (a ”metabolic connection” with the above mentioned unidentified
bands and lines and PAHs present only if there is also UV source present
does not look like a bad guess). In general the trunks are

Another important finding supporting TGD view about Universe which
might be seen as a fractally scaled variant of above helices. pointing like
fingers to the hot stars. Here is abstract of the paper by P. Carlquist, G. F.
Gahm, and H. Kristen [36].

Using the 2.6 m Nordic Optical Telescope we have observed a large num-
ber of elephant trunks in several regions. Here, we present a small selection
of this material consisting of a few large, well-developed trunks, and some
smaller ones. We find that: (i) the well-developed trunks are made up of
dark filaments and knots which show evidence of twisted structures, (ii) the
trunks are connected with essentially two filamentary legs running in V-
shape, and (iii) all trunks have the maximum extinction in their heads. We
advance a theory of twisted elephant trunks which is based on the presence of
magnetic flux ropes in molecular clouds where hot OB stars are formed. If
the rope contains a local condensation it may adopt a V-shape as the region
around the hot stars expands. If, in addition, the magnetic field in the rope
is sufficiently twisted, the rope may form a double helix at the apex of the
V. The double helix is identified with the twisted elephant trunks. In order
to illustrate the mechanisms behind the double helix we have constructed a
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mechanical analogy model of the magnetic flux rope in which the rope has
been replaced by a bundle of elastic strings loaded by a weight. Experiments
with the model clearly show that part of the bundle will transform into a
double helix when the twist of the bundle is sufficiently large. We have also
worked out a simple theoretical model of a mass-loaded magnetic flux rope.
Numerical calculations show that a double helix will indeed form when the
twist of the rope exceeds a certain critical limit. Numerical model calcu-
lations are applied to both the analogy model experiments and one of the
well-developed elephant trunks. On the basis of our model we also suggest a
new interpretation of the so called EGGs.

The double helix mechanism is quite general, and should be active also
in other suitable environments. One such environment may be the shell of
supernova remnants. Another example is the expanding bubble outlined by
the North Celestial Pole Loop.

For fractally thinking physicist consisting mostly of dark matter with
large Planck constant this does not leave many options: life and even intel-
ligent life is everywhere and in all length scales. This provides also a new
view about Fermi paradox: see the article [50], which summarizes also the
essentials of TGD, TGD based ontology, and TGD based quantum biology.

3.3 Universal metabolic quanta

The basic prediction following from the p-adic length scales hypothesis is
that universal metabolic energy quanta come as octaves of p-adic energy
scale. The natural expectation is that the evolution of life has proceeded
from high to low energy quanta and that also the high energy quanta might
be seen even at the level of organic life.

3.3.1 Could UV photons have some metabolic role?

The correlation between UV photons and ERE brings in mind the vision
that high temperature plasmoids are primitive life-forms possibly having
universal metabolic energy quanta in UV range. One can imagine that the
development of chemical energy storage mechanisms has made it possible to
use visible light from Sun as a source of metabolic energy and get rid of UV
quanta having disastrous biological effects. Ozone layer shields out most of
UV light and also air absorbs the UV light below wavelength 200 nm, which
justifies the term vacuum UV (VUV) for this range.
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∆k 1 2 ≥ 3 ∞
∆E(144,∆k)/eV 4 6 ≥ 7 8

λ/nm 310(UVB) 207(UVB) ≤ 177 (VUV) 155 (VUV)

Table 3. The lines corresponding to the dropping of electron from k =
144 space time sheet defining a candidate for UV light inducing generation
of ERE in the interstellar dust.

From Table 3 one finds that ∆k > 2 electronic transitions cascading
to 8 eV (155 nm) by period doubling) belong to vacuum UV (VUV) ab-
sorbed by air. The lines 310 nm and 207 nm corresponding to ∆k = 1 and
∆k = 2 could however define frequency windows since these lines need not
correspond to any atomic or molecular electronic transitions.

In the solar photosphere the temperature is about 5800 K, roughly half
of the minimum temperature 104 K needed to generate the UV radiation
inducing ERE in interstellar dust. Solar corona however has temperature of
about 106 K, which corresponds to a thermal energy of order 100 eV and the
UV radiation from corona at above mentioned discrete frequencies resulting
in dropping of electrons could serve as a metabolic energy source for pre-
biotics in the interstellar space. This raises obvious questions. Should the
stellar sources inducing ERE possess also corona? Could 4 eV and 6 eV
UV photons from the solar corona serve as a source of metabolic energy for
some primitive organisms like blue algae?

3.3.2 A simple model for the metabolism of plasmoids

Extended Red Emissions (EREs) are associated with the interstellar dust
in presence of UV light with energies above 7.25 eV and source with tem-
perature not below 104 K (maximum of wave length distribution of black
body radiation corresponds to the energy 4.97 eV at this temperature). This
suggests that plasmoids using UV photons as metabolic energy are involved.

a) Since the bond energies of molecules vary in few eV range and their
formation typically liberates photons in UV range, the natural hypothesis
is that the metabolic cycle is based on the formation of some molecule lib-
erating UV photon kicking electron/proton to a smaller space-time sheet.
UV photons from energy source would in turn induce dissociation of the
molecule and thus drive the process. The process as a whole would involve
several p-adic length scales and several metabolic currencies.

b) This situation is of course encountered also in the ordinary biology but
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with highly developed sharing of labor. Biosphere would burn hydrocarbons
in animal cells with carbon dioxide as the eventual outcome. Carbon dioxide
would in turn be used by plants to regenerate the hydrocarbons. Note that
in the recent day technology the loop is open: hydrocarbons are burned but
there is no process regenerating them: perhaps photons with large Planck
constant might some day used to regenerate the fuel and give rise to ”living”
and perhaps tidier technology.

c) It is believed that complex organic molecules like amino-acids can
form in the interstellar dust and the spontaneous formation of aminoacids
is known to be possible in the interstellar ice under UV radiation. Hence
at least N2 and perhaps also CO can be expected to be present. The table
below gives dissociation energies of some simple molecules.

Molecule H2 O2 N2 CO NO
ED/eV 4.48 5.08 7.37 11.11 5.2

i) N2 has bond energy 7.37 eV is slightly above the UV threshold 7.26 eV
for ERE, which strongly suggests that N2 is one of the molecules involved
with the metabolism of interstellar plasmoids.

ii) If ice is present then carbon monoxide CO would be an excellent
candidate for a metabolic molecule since its bond energy is as high as 11.11
eV. The exceptionally large bond energy would naturally relate to the fact
that carbon and oxygen are the key molecules of life.

3.3.3 Anomalous light phenomena as plasmoids

TGD suggests that anomalous light phenomena (ALPs, or light balls, or
UFOs depending on one’s tastes and assumptions) are identifiable as plas-
moids behaving as primitive life forms. In the conference held in Röros
Björn Gitle-Hauge told about the determination of the spectrum of visible
light emitted by some light balls observed in Hessdalen [48] (”Hessdalen
phenomenon” is the term used).

a) The spectrum is a band in the interval 500-600 nm whereas the typical
ERE [33] is concentrated in the interval 650-750 nm. The peak is in the
interval 540-900 nm, the width of the band is also now 100 nm, and there
are no sharp peaks. Therefore the interpretation as ERE can be considered.

b) Because Hessdalen is an old mining district, authors propose that
the light ball could consist of burning dust containing some metals. Author
proposes that the burning of Titanium and Scandium (encountered only in
Scandinavia) might provide the energy for the light ball. Sc reacts vigorously
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with acids and air (burning in oxygen gives Sc2O3 as end product). Ti
burns in oxygen and is the only element that burns in nitrogen. Ti is used
in fireworks since it produces spectacular fires.

Author notices that the emission lines of N+, Al++, resp. Sc+ at 528.02
nm, 528.2 nm, resp. 528.576 nm might contribute to the band. This might
be the case but the explanation of the band solely in terms of molecular
transitions is not favored by its smoothness.

c) The bond energies of TiO and TiN are 6.9 eV and 5.23 eV so that
the radiation resulting in their formation is in UV range and could provide
part of the metabolic energy. I do not know about bond energy of Scandium
oxide.

d) TiO2 is known to catalyze photolysis in the presence of UV light
[29, 28], which in turn is basic step in photosynthesis [27], the basic step of
which in TGD Universe would be the kicking of electrons/protons to smaller
space-time sheets. Therefore the UV photons liberated in the formation of
molecules containing Ti could catalyze photosynthesis like process.

3.4 Life as a symbiosis of plasmoids and biological life

If evolution has discovered something it usually keeps it so that plasmoids
and UV metabolism should be still there. This suggests that plasmoids are
still in ionosphere. What could this mean? There also also other questions
and I am grateful for Sampo Vesterinen for some of them. The key questions
are perhaps the following ones. Do plasmoids and biological life forms live
in symbiosis in some sense? If this is the case, what plasmoids can give to
us and what we can give to plasmoids?

1. Magnetic bodies as quantum plasmoids and plasmoids in magneto-
sphere

One must make clear what one means with plasmoid. One can consider a
plasma made of ordinary visible matter and also large h̄ quantum plasma at
magnetic bodies in a form of Bose-Einstein condensates of charged particles.
The symbiosis of plasmoids and biomatter could correspond to the symbiosis
of magnetic body and biological body.

One can imagine also the possibility that visible matter plasmoids and
bio-matter are in symbiosis via the mediation of magnetic bodies. Note that
DNA strands are negatively charged so that there is a resemblance with a
plasma like state. One aspect of symbiosis would be that magnetic body
would feed charged particles to DNA.

2. Some basic facts about magnetosphere
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Magnetosphere would be a natural environment for plasmoid popula-
tion. If one restricts plasmoids to to visible matter, then ionosphere, plasma
sphere and plasma sheet are the most interesting objects of interest.

a) The temperature in the highest F layer of the ionosphere (extending
from 150 km to 1500 km depending on source) is about 1200-1300 K: the pho-
ton energy is about .6-.65 eV at the maximum wavelength of thermal distri-
bution. Hence F layer plasmoids might receive metabolic energy in the form
of .5 eV metabolic energy quanta via thermal photons. Self-organization
occurs in transition layers and especially interesting is the transition region
85-300 km from mesosphere to ionosphere at which temperature increases
300 K to about 1200 K.

b) Inner magnetosphere is a toruslike structure whose extension varies
between 4RE (day side) and 8RE (night side) and shielded from solar wind.
In the inner magnetosphere the typical density is about 1 ion per cubic cen-
timeter. Inner magnetosphere is bounded by a transition layer of thickness
of ∼ R (magneto-pause). In this region the density of the ions drops rapidly.

Inner magnetosphere contains plasma sphere whose radius varies in the
range 2RE − 4RE at day side and 2RE − 6RE at night side. Plasma has a
ionospheric origin. The density of the cold plasma consisting mainly of pro-
tons sphere varies in the range 10− 103 ions/cm3, whereas the temperature
is ∼ 5 × 103 K, which corresponds to metabolic energy quantum of .5 eV.
Note however that the energy of photon at maximum of thermal distribution
is about 2.5 eV which suggests 2 eV metabolic quantum.

The cold, dense plasma of plasma sphere is frozen around magnetic flux
lines which co-rotate with Earth. In TGD framework this means that flux
tubes co-rotate and thus change shape. In the equitorial plane the density
of the plasma sphere drops sharply down to ∼ 1 ion/cm3 at r = 4R. This
transition region is known as a plasma pause. During magnetic storms the
outer radius decreases since the pressure of the solar wind compresses the
plasma sphere. The day-night variation of the shape of the plasma sphere
is rather small. Within this region the magnetic field has in a reasonable
approximation dipole shape with radiation belts forming an exception.

The surface temperature of Sun is 6×103 K. This temperature is roughly
half of the minimum temperature 104 K needed for EREs from interstellar
dust [33]. This corresponds to photon energy of 3 eV at the maximum of
thermal distribution and cannot induce dissociation of N2 and other simple
diatomic molecules. There is also solar corona but its temperature is about
106 K (102 eV) so that the flux of thermal photons at UV energies is very
low.

Taking seriously the finding that T ≥ 104K for source is necessary for
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EREs, one might ask whether the plasmoids at the day side are able to
receive enough metabolic energy from UV radiation of Sun. If course, there
is is no need to assume that dissociation of N2 molecules is key element
in metabolic mechanism. The temperatures in both F layer and plasma
sphere allow kicking of protons and electrons to smaller space-time sheets
and this might save the situation. Hence metabolism is not a problem for
the plasmoids except perhaps during night-time when the plasma cools down
somewhat.

c) The plasma sheet [30, N1] at the night side of Earth dark is the most
prominent feature of the outer magnetosphere. It has a thickness about
Earth radius RE and extends beyond Moon’s orbit (with radius 103RE).
The average densities of charged particles are very low and same order of
magnitude as in plasma sphere: about .4-2 per cm3 for both protons and
electrons and correlates with solar wind density.

The temperature is very high: the thermal energy of electrons is in keV
range and ionic temperatures are even higher. The high temperature is due
to the leakage of matter from solar wind. Note that up to the distance
d ∼ 102RE equator region of outer magnetosphere at the night side of Earth
experiences a continual solar eclipse so that this region does not receive
radiation energy from Sun: the high temperature of plasma sheet solves this
metabolic problem.

The presence of keV photons would destroy molecules at plasma sheet
and induce a high degree of ionization so that plasmoid life must be based
on ions and electrons. The energy needed to kick an electron to an atomic
space-time sheet is about keV from me/mp ∼ 2−11: hence the dropping
of electrons from atomic space-time sheets would be the natural metabolic
mechanism for plasmoid life at plasma sheet.

One of the original motivations for the plasmoid hypothesis was the
strange finding that plasma sheet at the equator at the dark side of Earth
is highly self-organized structure and the velocity distributions of electrons
present patterns like ”flowers”, ”eyes”, ”butterflies” [N1].

3. What plasmoids could give to us and what we could give to plasmoids?

An attractive general motivation for the symbiosis would be that mag-
netic bodies would give us ability to think and we would give them ability
to sense.

a) The model of cognitive representations relies on the intersections of
magnetic bodies with corresponding p-adic space-time sheets possessing lit-
erally infinite size in the real sense. The larger the magnetic body, the better
the representations. Magnetic bodies could thus provide us with cognitive
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representations and an interesting question is whether and how this relates
to the strange self-organization patterns at plasma sheet.

b) We could provide for magnetic bodies sensory input and serve as their
motor instruments. These magnetic bodies might be also associated with
plasma sheet and the plasmoids of ionosphere and plasma sphere and could
also use plasmoids of visible matter as a sensory receptors and perhaps even
primitive motor instruments.

One can imagine also more concrete motivations for the symbiosis.
a) Plasmoids in the day-side ionosphere could shield biosphere from UV

light by ”eating” the incoming UV light. Magnetic bodies could also feed
negative electronic charge from the plasmoids of magnetosphere to DNA
double strands.

b) Plasmoids are not in a need of metabolic energy unless it happens
that the temperature in F layer cools too much during night time from
T ∼ 0.12 eV. One might imagine that plasmoids suck metabolic energy from
the biosphere during sleep (say brains which remain active): this would be
a possible explanation for why we sleep. One can even imagine that during
sleep magnetospheric collective levels of consciousness take command and
life forms in the biosphere entangle to form kind of stereo consciousness
providing a collective view what is to be human, member of species, or a
part of biosphere.

4. About the interpretation of bio-photons?

Also the wave lengths of bio-photons are in the range of visible photons.
Their spectrum is claimed to be featureless, which would suggest that iden-
tification in terms of photons resulting in dropping of electrons and protons
to larger space-time sheets might not make sense. The variation of the ge-
ometric shape of space-time sheets, the possibility of surplus energy, and
the clustering of the transition lines around the lower end of wave length
spectrum might however give rise to effectively featureless spectrum.

Suppose that bio-photons correspond to superposition of ERE bands
and thus reflect the presence of UV energy feed. Unless biological body is
not able to generate the needed UV photons, they must arrive from Sun.
Bio-photons or their dark counterparts with much longer wavelengths could
indeed live at the flux quanta of the magnetic bodies and observed visible
bio-photons could represent some kind of leakage.

5. Gariaev’s experiments

Gariaev’s experiments [23] involved the irradiation of DNA using visible
laser light with photon energy 1.9595 eV. The irradiation induced emission
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of radio waves with same polarization with frequencies above kHz. Ra-
dio waves induced growth of potatoes. A possible interpretation is that 2
eV photons kicked electrons to a smaller space-time sheet and thus gave
metabolic energy to DNA. The radio waves possibly resulting in the drop-
ping of electrons back to the larger space-time sheets could have consisted
of dark photons with same or smaller energy and could have been used
as a metabolic energy by the potatoes. That the dropping can occur to
several space-time sheets would explain why several radio wave frequencies
were observed. The prediction would be sum of period doubling spectra
discussed earlier since sequences of droppings are possible. The radio-wave
signal would result from the de-coherence of dark radio-wave photons to a
bundle of ordinary radio-wave photons.

6. Earth’s interior as a living system?

For years ago I developed in detail the working hypothesis that entire
magnetosphere is a living system. Even Earth’s interior (and also solar sur-
face) could contain plasmoid life [N4, N1]. The temperature below the man-
tle of Earth does not differ too much from the surface temperature of Sun
and metabolic energy could come from the radioactive decays from the inte-
rior of Earth. There would be UV shielding by Earth: UV light has energies
above 3.1 eV whereas the temperature at the mantle-core boundary is 4300
K which corresponds to energy 2.2 eV energy at the maximum of thermal
distribution. Metabolic energy quantum of 2 eV would be highly sugges-
tive and might be directly used to kick protons and electrons to smaller
space-time sheet.

The metabolism would not probably involve energy quantum of .5 eV.
Magnetic flux tubes could also mediate metabolic energy from the biosphere
and possibly also ionosphere and the plasmoid life in question could be at an
evolutionary level not tolerating UV light and involve molecules in essential
manner.

4 New hydrogen technologies and new physics

The anomalies related to energy technologies involving the burning of hy-
drogen to oxygen are known for decades. In fact, the anomaly related to
the thermal dissociation of hydrogen was discovered by the Nobel chemist
Irving Langmuir for century ago. For some reason these anomalies are not
payed any attention in standard chemistry.
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4.1 Anomalies related to the dissociation of water and hy-
drogen molecules

The burning of hydrogen to water liberates energy. Because the process
does not seem to produce chemical pollution, hydrogen provides one of the
most promising energy sources. The basic problem is that the storage and
transport of hydrogen is very expensive. A possible solution to the problem
is to produce the hydrogen by the dissociation of water at the location where
the energy is used. If this goal is achieved, an outcome is an energy source
able to compete with other energy sources most of which will be depleted
in any case.

The theoretical problem related to various methods producing hydrogen
by dissociation of water is in the nutshell that the dissociation of water
requires less energy than one might think knowing the bond energies of O-H
bonds [57, 58]. Concerning the basic goal this is of course not a problem.
Also the energy needed to dissociate hydrogen thermally is smaller than
the binding energy of the hydrogen molecule. This was observed already
by Nobel chemist Langmuir for century ago [56]. For some reason this
observation has not received the recognition it would have deserved. Energy
flows to the system in both situations and one should understand the origin
of this energy.

The zero point kinetic energy of vacuum (ZPE) [59] has been proposed
as a solution the problem. Unfortunately, ZPE theories are not very well de-
fined and far form practically applicable. My intention in the following is to
find whether the new physics predicted by TGD might allow to understand
the origin of the above mentioned anomalies.

A good guideline is the observation that very many free energy systems
involve sharp pulse sequences. Often bi-filar coils invented by Tesla [54] are
involved. The liberation of the zero point kinetic energy when particles drop
to a larger space-time sheet is a universal liberation of mechanism of energy
justifying the notion of free energy. The time mirror mechanism makes
possible the control of this process. Either the system needing the energy
or controlling the liberation of energy generates negative energy topological
light rays accompanied by negative energy photons (generated by a light like
vacuum 4-current possibly associated with the topological light ray). Scalar
wave pulses could in turn make possible higher level control by inducing
the generation of negative energy topological light rays and photons as time
reversed version of brehmstrahlung when charged particles are accelerated
in the strong electric field of the scalar wave pulse without dissipation.

These ingredients lead to a concrete model for how the origin of the
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energy liberated in the dissociation of water and to a proposal how this
method could be made more effective. If the proposed explanation is correct,
the dissociation of water molecules could be induced also by the irradiation of
water by phase conjugate laser light, whose frequencies could be fine tuned to
correspond to the needed frequencies. This could mean considerable energy
savings.

In the following the model explaining the anomalies related to the disso-
ciation of water and hydrogen is discussed. Also a TGD based justification
for the notion of hydrino-atom introduced by Randell Mills [60] is proposed.

4.2 The anomalies associated with the dissociation of water
molecules

In the sequel the general ideas about time mirror mechanism and many-
sheeted lasers is applied to the anomalies observed in the dissociation of
water.

4.2.1 Constraints on the model of anomalies found in the elec-
trolysis and plasma electrolysis of water

The general theory leaves a lot of freedom for the building of a detailed
model. There are however several facts, which provide constraints on the
imagination.

a) In plasma electrolysis a pulse electronic current is an essential part
of the process. The natural guess is that the dropping of electrons to larger
space-time sheets could excite O-H bonds or O and H atoms to higher energy
states. This could happen during the dissociation of the water molecule or
already before it. Prof. Kanarev has proposed that the O-H bonds of water
molecule are indeed excited before the process. Kanarev has also suggested
a separate mechanism in which two electrons join to the water molecule
during the dissociation. This mechanism is not needed if the sole role of the
electronic current is excitation of the O-H bonds.

b) In very many free energy phenomena a pulsed voltage/current seem
to induce the generation of negative energy topological light rays (photons).
They in turn would serve as a control signal inducing the generation of
positive energy topological light rays (photons) as population inverted many-
sheeted laser returns to the ground state. The mechanism generating the
phase transition is the same as in the induced emission. This would support
the model of Prof. Kanarev: the positive energy photons (analogous to
laser beam) would excite the O-H bonds or O and H atoms of the water
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molecules. Electrons have both thermal and ordered kinetic energy. This
means that the energy liberated in the dropping process varies and that the
liberated energy can be larger than the zero point kinetic energy. An energy
continuum results and makes it possible to excite O and H atoms having
a sharply defined transition energies. One can also imagine that so called
seesaw mechanism is at work. Negative energy topological light rays would
be created in a transition which is the reversal for that producing positive
energy topological light rays. Fine tuning would be automatic now. This
mechanism might be a central part of bio-control.

c) If the amplification of negative energy signal is based on the mech-
anism of induced emission, the particles involved must be bosons. Only
the Cooper pairs of electrons come into consideration now. In the case of
fermions one might think that the dropping of fermions from a given space-
time sheet creates free vacancies and makes possible the dropping of fermions
to this space-time sheet from smaller space-time sheets. This could induce
kind of a chain reaction proceeding from long to short p-adic length scales.

d) The second option is that water molecule emits negative energy pho-
tons when it dissociates so that the oxygen and hydrogen atoms of O-H
bonds are excited to a higher energy state. This option does not allow to
understand the role of the pulse current serving as external controller of the
process.

4.2.2 Zero point kinetic energies

If the kinetic energy of the dropping electrons can be neglected, the spectrum
for the energy quanta liberated in the dropping process is universal since zero
point kinetic energies are fixed by p-adic length scale hypothesis apart from
a numerical factor near unity characterizing the shape of the space-time
sheet. The formula for the zero point kinetic energy in the non-relativistic
case reads as

E0(k) = n× π2

2mL(k)2
,

L(k) = 2(k−151)/2 × L(151) , L(151) ' 10 nm . (1)

Here m denotes the mass of the particle and n is a numerical constant near
one.

Atomic space-time sheet k = 137 corresponds in the case of proton to
an energy of about .4 eV, which is the basic energy currency of metabolism.
This inspires the idea that the basic function of the ADP-ATP system is to
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drive protons from larger space-time sheets to the atomic space-time sheets
by utilizing the chemically stored energy. From this space-time sheet they
drop back to the larger space-time sheets liberating the zero point kinetic
energy Ep(137) ' .4 eV . An entire hierarchy of metabolic currencies is
actually predicted [K6, K1].

Also electrons and their Cooper pairs can drop to larger space-time sheets
and in this case the liberated zero point kinetic energy is larger by a factor
mp/me ' 211. The zero point kinetic energy at k = 137 space-time sheet
∼ .4− .5 eV is a convenient unit, in terms of which one can express the zero
point kinetic energies of proton, electron, electronic and protonic Cooper
pair.

Ep(k) = 2137−k × .5 eV ,

E2p(k) = 2137−k−1 × .5 eV ,

Ee(k) = 2148−k × .5 eV ,

E2e(k) = 2147−k × .5 eV . (2)

Here the nominal value of .5 eV for Ep(137) is used.

4.2.3 Consistency conditions

A natural consistency condition is that the thermal de Broglie wave length
λdB = π/

√
2MT , where M denotes the mass of the heaviest particle at

particular space-time sheet, is of the same order of magnitude as the p-adic
length scale characterizing the size scale for the space-time sheet from which
the particle drops.

λdB =
π√

2MT
∼ L(k) . (3)

On the other hand, super conductivity requires that thermal energy is
smaller than the zero point kinetic energy defining the basic energy unit.
This gives the condition

λdB > L(k) . (4)

Here one must however require that there is no allowed p-adic length scale
between λdB and L(k). What ”allowed” means is quite not obvious. The
first extreme corresponds to the situation in which all values of the integer
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k are possible so that p-adic length scales come in half octaves and that all
n-ary p-adic length scales are possible. The second extreme corresponds to
the situation in which k is prime. At least secondary p-adic length scales
(k is two times prime) are allowed, and the model of EEG suggests that
all values of k are possible but that those values which correspond to high-
est cognitive level are the most important ones (every prime factor k−i in
the decomposition of k to a product of primes defines a ki-bit cognitive
code[M4]).

4.2.4 Experimental data

The experimental values for the reduction of the binding energy of water
allow to estimate the integer k characterizing the space-time sheets from
which electrons or their Cooper pairs drop.

a) In the ordinary electrolysis the energy needed to dissociate O-H bond
has been found to be only 1/3 of the binding energy Ew ∼ 10 eV of the
water molecule. The reduction of the binding energy is ∆Ew ' 6.66 eV.

b) In the plasma electrolysis of Prof. Kanarev the energy needed to
dissociate water molecule is only ∼ .5 eV and the effective reduction of the
binding energy is as high as ∆EB ∼ 9.5 eV.

A rough approximation for the energy needed would be 8 eV in both
cases. This energy is 24 = 16 higher than the zero point kinetic energy of
proton at k = 137 space-time sheet. In plasma electrolysis the temperature
is in the interval .5×104- 104 C and around 103 C in the ordinary electrolysis.

4.2.5 The four options

One can distinguish between four different models depending on what the
reaction mechanism is and whether the energy is donated by electron or
electronic Cooper pair.

a) The energy is donated to O-H bond. The ratio r is predicted to be
r = 3.33 and r = 4.75 corresponding to ordinary and plasma electrolysis.
The rough estimate is r = 4.

b) The energy is donated to the entire water molecule. In this case the
ratio of the donated energy to the zero point kinetic energy is r = 6.66 in
the usual electrolysis and r = 9.5 in plasma electrolysis. The rough estimate
is r = 8.

Furthermore, one can distinguish between two cases according to whether
the energy is donated by i) electronic Cooper pairs or ii) electrons. The
first option is supported by quantum coherence implying that reaction rate
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would be proportional to the square of the number of the dropped electronic
Cooper pairs. Also the mechanism of the induced emission works for Cooper
pairs unlike in the electronic case. It is however better to keep mind open
for both options at this stage.

4.2.6 Analysis and conclusions

The following represents the analysis of the four options.
a) Energy is used to excite only single O-H bond.

i) For electronic Cooper pairs the condition r = 4 gives k = 142 = 2 × 71
corresponding to the secondary p-adic length scale L(2, 71) = .56 nm. The
estimate for the thermal de-Broglie wave length in plasma electrolysis is
.7 − 1 nm. In the ordinary electrolysis de-Broglie wavelength is roughly 2
times longer. In both cases the thermal de Broglie wavelength is longer than
the p-adic length scale so that the necessary condition for super-conductivity
is satisfied.
ii) In the electronic case the condition r = 4 gives for the p-adic length scale
the estimate k = 143 = 11 × 13 ' .8 nm. This length scale corresponds
to the prime p ' 213 and would represent a very low information content
unlike k = 142, which corresponds to rather large prime p ' 271. The ratio
λdB/L(k) is same as in the first case.

b) The energy is used to excite the entire water molecule.
i) In the case of electronic Cooper pairs the condition r = 8 gives k = 141 =
3× 47 corresponding to the tertiary p-adic length scale L(3, 47) ' .4 nm.
ii) In the case of electrons one has k = 142 = 2× 71.
In both cases the ratio λdB/L(k) grows by a factor

√
2 from the value in the

preceding case so that the resulting model is poorer.
As a summary one can state the following.
a) The ratio of the thermal de-Broglie wave length to the p-adic length

scale is same for both electron and Cooper pair options since the p-adic
length scales are L(k) for electron and L(k − 1) for the Cooper pair and
differ by a factor of

√
2 from each other.

b) For all options de Broglie wavelength in the case of ordinary electrol-
ysis is at least by a factor of two too large and this forces to question the de
Broglie wave length criterion. Of course, one can think that the production
of positive energy photons generates temporary hot spots so that de Broglie
conditions holds true after all.

c) The dropping of two electronic Cooper pairs per water molecule from
k = 2× 71 space-time sheet is the most promising option, since in this case
the mechanism of induced emission is possible and a satisfactory consistency
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with de Broglie criterion is achieved. The secondary p-adic length scale is
also very natural.

4.3 The anomaly related to the thermal dissociation of molec-
ular hydrogen

Already the Nobel-chemist Langmuir found, that thermal dissociation in a
temperature range extending up to the temperature of T = 2200 K, led to a
much higher dissociation rate than one might expect on basis of thermody-
namical considerations. The binding energy of the hydrogen molecule is 4.52
eV. If one requires that the ratio of the dissociated molecules to that of non-
dissociated molecules is given as by the Boltzmann exponent exp(−Eb/kT ),
a discrepancy of order 108 results. If one assumes that the effective binding
energy is ' .44 eV, a correct result is obtained.

This suggests that also now the dissociating hydrogen molecule receives
energy from some source and that the energy is ∼ 4 eV. Dissociation mecha-
nism could be based either on the self-excitation of the hydrogen molecule by
the emission of negative energy photons. Also some other system could emit
negative energy photons and induce a cascade of positive energy photons.
One has two options.

a) The dropping of an electronic Cooper pair from k = 142 = 2 × 71
space-time sheet is involved as in the case of the optimal mechanism for the
dissociation of water.

b) The dropping of an electron from k = 143 space-time sheet is an
alternative option.

4.4 Hydrino atoms, anyons, and fractional quantization in
many-sheeted space-time

The so called hydrino atom concept of Randell Mills [60] represents one of the
notions related to free energy research not taken seriously by the community
of university physicists. What is claimed that hydrogen atom can exists
as scaled down variants for which binding energies are much higher than
usually due to the large Coulombic energy. The claim is that the quantum
number n having integer values n = 0, 1, 2, 3.. and characterizing partially
the energy levels of the hydrogen atom can have also inverse integer values
n = 1/2, 1/3, ..... The claim of Mills is that the laboratory BlackLight Inc.
led by him can produce a plasma state in which transitions to these exotic
bound states can occur and liberate as a by-product usable energy.
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The National Aeronautic and Space Administration has dispatched me-
chanical engineering professor Anthony Marchese from Rowan University to
BlackLight’s labs in Cranbury, NJ, to investigate whether energy plasmas-
hot, charged gases- produced by Mills might be harnessed for a new genera-
tion of rockets. Marchese reported back to his sponsor, the NASA Institute
for Advanced Concepts, that indeed the plasma was so far unexplainably en-
ergetic. An article about the findings of Mills and collaborators have been
accepted for publication in Journal of Applied Physics so that there are rea-
sons to take seriously the experimental findings of Mills and collaborators
even if one does not take seriously the theoretical explanations.

The question to be addressed in the following is whether the many-
sheeted space-time concept could allow to understand the claimed n →
1/n generalization of the Bohr’s quantization rules claimed by Mills or a
generalization of this rule consistent with the experimental findings of Mills.
In the following I discuss three arguments allowing to understand the scaled
up energy spectra claimed by Mills. These arguments are not independent
and do not exclude each other.

4.4.1 p-Adic quantization and fractional spectrum

p-Adic integers n =
∑

nkp
k, k ≥ 0, can have infinite values as real integers.

If one requires that p-adic integer has a pinary expansion which is periodic,
only p-adic integers, which correspond to rationals are possible: n → q =
r/s, where s is not divisible by p. The expansion of 1/s in powers of p indeed
gives rise to an infinite (in real sense) p-adic integer.

One might argue that all rational values of the principal quantum num-
ber n of hydrogen atom are actually possible, which would mean that the
spectrum is effectively continuous as in classical physics. What quantum
physics would bring in would be the selection of integers from other rational
numbers so that effectively one would have integer spectrum under the usual
experimental conditions.

4.4.2 Fractional valued quantum numbers and controlled transi-
tion to chaos

Bohr’s quantization rules apply to completely integrable systems for which
complete separation of variables occurs so that one effectively has a set of
one-dimensional systems performing motion on circle or line. One can quan-
tize the motion separately in each dynamical degree of freedom characterized
by a cyclic coordinate qi and the corresponding canonical momentum pi. If
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qi is a circle coordinate, one can use the basic quantization rule∮
pidqi = nih̄ ,

Here the integral is over a full cycle of the periodic motion. If qi corresponds
to a motion on line, no quantization rule is applied.

Primes are known to appear, when one attempts to quantize chaotic
systems and effectively p-adic physics might be closely related to the ap-
proach to the chaos implied by the classical non-determinism of the Kähler
action. This suggests that fractional quantization might emerge in a system
for which the interactions with the environment destroy the simple periodic
motion, which is the prerequisite for the application of Bohr’s quantization
rules.

So, an interesting question is what occurs when the motion is slightly
perturbed. Do orbits become non-closed or do they close after N cycles
so that the transition to the chaos corresponds to the sequence N = 1 →
2 → 3 → .... Period doubling leading to chaos represents just this kind of
series of perturbations with N = 2k, k = 1, 2, ... In TGD universe, where
orbits could correspond to space-time sheets themselves, this kind of ordered
transition to chaos could be realized in contrast to what one might expect
in standard physics.

The natural guess would be that one must replace the quantization con-
dition with ∮

pidqi =
ni

N
h̄ ,

where the integration is over the previous cycle, which has become 1/N :th
cycle. In the case of hydrogen atom this would give rise to a fractional
angular momenta m and fractional principal quantum number n, and the
spectrum would contain the spectrum claimed by Mills.

One could argue that all rational numbers, for which the denominator
is not divisible by the prime p characterizing the atomic space-time sheet,
represent possible values of the principal quantum number n. The most
natural estimate for p is p ' 2137 (that fine structure constant is in a good
approximation α = 1/137 might express cosmic sense of humor). The re-
quirement that the rest energy of the electron stays positive, gives the con-
dition N < 1/α ' 137. Quantum physics favors finite integers because of
their finite pinary expansion and in the usual experimental situation only in-
teger spectrum would be possible. As the system grows more complex, also
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the values 1/n and m/n of the principal quantum number would become
possible.

4.4.3 Fractional quantization and controlled transition to chaos
at space-time level

In TGD all quantum level concepts should have space-time correlates. In
particular, Bohr’s quantization rules have exact counterparts TGD and are
implied by the absolute minimization of Kähler action. Also the proposed
transition to chaos by the generation of orbits which close only after N cycles
should have a natural space-time correlate.

I have already earlier proposed that the orbits of electrons in atoms
could be more than a fictive concept and have concrete 3-surfaces as their
representatives. One might say that electrons would move along quantum
tracks. This is consistent with the general vision that space-time surface pro-
vides symbolic representation for all quantum physics concepts. This means
that the electronic space-time sheet having size of order electron Compton
length would be topologically condensed at representing the classical orbit
of electron. In TGD universe all quantum phenomena should have classical
space-time correlates and also the quantum resolution of the well known
infrared catastrophe (electron slows down by emitting brehmstrahlung and
falls into the nucleus) should have a space-time correlate. Closing the elec-
tron inside a closed tubular structure representing its path would clearly
prevent the infrared catastrophe.

In the first approximation the ordinary orbit of electron would be re-
placed by a torus like tube along the classical orbit within which the elec-
tron wave function is concentrated. For N > 1 the torus would run around
N times before closing. The transformation of closed orbital 3-space sheets
to orbital 3-space sheets closing after N cycles occurs very naturally at the
level of space-time sheets. The closure must occur for some value of N since
otherwise the resulting orbital 3-surface would be extremely irregular, have
infinite volume, and could carry infinite classical field energy. It is natural
to expect that the transition occurs by the sequence N = 1 → 2 → 3... or
some sub-sequence of it. One can image that in high temperature plasma
the interactions with the external world might indeed replace the simple
periodic Bohr orbitals with orbitals which would close only after N cycles.

1. Fractional Bohr quantization

In fractional Bohr quantization the angular momentum component would
be quantized in units of h̄/N rather than h̄.
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∮
pφdφ =

m

N
h̄ ,

This phenomenon could also provide the space-time correlate for anyons
having fractional angular momentum and giving rise to fractional quantum
Hall effect. The quantization condition for the radial variable would be also
replaced by a more general quantization condition∮

prdr =
n

N
h̄.

This would give as a special case the quantization rule proposed by Mills.
Quite generally, the spectrum of hydrogen atom would be scaled up by N2,
N = 2, 3, 4, .. or some subsequence of this sequence.

2. Constraints on the orbital 3-surface

The picture based on formal Bohr rules is too simplistic and might be
even wrong. In particular, one can ask is the value of N same for both radial
and angular degrees of freedom. A more detailed consideration indeed shows
that naive fractional Bohr quantization need not be correct approach.

A more concrete space-time picture results, when one takes into account
the requirement that the Coulomb force experienced by electron corresponds
to intuitive expectations.

a) The electric gauge flux must flow to the orbital surface somehow,
either through wormhole contacts or through join along bonds connecting
the orbital surface to the boundaries of holes in atomic space-time sheet.
The latter option looks more natural. If only part of the flux flows to the
orbital surface, also orbital surface suffers Coulomb force. The failure for
the imbeddability of the electric field is expected to cause the generation of
holes in the 3-space.

b) The average Coulombic force at various sheets of the multiple-sheeted
orbital surface must be same.

By applying these constraints one ends up to two simple prototype re-
alizations for the multiply-sheeted orbital surface, which could be called
neo-classical and non-classical. Also the hybrid of these options is possible.

3. The neo-classical option allows fractional quantization of magnetic
quantum number m.

For neo-classical option the 1/N-periods of the orbit corresponds to
slightly different radii. The Compton length of electron, about 10−12 meters
determines the thickness of the orbital sheet. Since the natural scale of the
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atomic resolution is Bohr radius a0 ' 10−10 meters, it is possible to have
roughly N = 100 without too strong effects on the force experienced by
electron. N = 137 would follow from the requirement that the rest mass of
electron stays positive and is natural because p ' 2k, k = 137 defines the
p-adic length scale of the atomic space-time sheet.

The electric gauge flux would flow to the orbital 3-surface and back from
it. This option is nearest to the one suggested by classical physics intuition
and one can indeed imagine that the perturbations caused by the interaction
with environment have this kind of effect.

Bohr quantization argument would suggest fractional quantization of
both m and n. One can however argue that the radial and angular degrees of
freedom separate in a good approximation at the level of Schrödinger equa-
tion, and that one obtains fractional quantization for the magnetic quantum
number m but not for the principal quantum number n. Thus this option
would not produce the desired N2-scaling of the energy spectrum but would
allow to understand anyon physics at space-time level.

4. The non-classical option allows fractional quantization of the radial
quantum number n.

The multiply-sheeted orbit could be also analogous to a Riemann sur-
face associated with a multiple valued complex function z1/N . That is the
various sheets are at the top of each other: this option does not have any
classical mechanics counterpart so that the attribute ”non-classical” is well-
motivated. This requires that there are N−1 folds in the radial direction so
that the structure is like a carpet folded back for some length, then continu-
ing in the initial direction, folded back ... There is no obvious upper bound
for the value of N .

In those parts of the multiple fold rug, where the electric field is oriented
inwards, electron suffers a repulsive force and cannot form stable states at
these sheets. Situation is clearly same as in catastrophe theory, where these
parts of the cusp catastrophe represent maxima of potential as a function
of the external parameters. How the interaction with the environment folds
the rug might be understood in terms of catastrophe theory.

If the orbital 3-surface is rotationally symmetric, Schrödinger equation
allows a complete decoupling between radial and rotational degrees of free-
dom. In this case one would have fractional quantization for the principal
quantum number n only but not for the magnetic quantum number m. The
cautious conclusion is that the experimental arrangement of Mills indeed
demonstrates a new physics effect which does not have any classical me-
chanics counterpart.
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One can combine radial and angular fractional quantizations in various
manners.

a) Radially Nr-fold orbital surface closes after Nφ rotations. In this case
these degrees of freedom separate completely.

b) A given radial fold is glued after each rotation to a different radial fold.
In the general case the fractional quantizations of the radial and angular
degrees of freedom can still correspond to different integers Nr and Nφ < Nr

such that Nφ > 1 divides Nr. If one has Nr = p, p prime, only Nφ = Nr = p
is possible.

4.5 An explanation of findings of Mills in terms of quantized
Planck constant

The recent view about quantization of Planck constants allows to understand
the findings of Mills elegantly.

4.5.1 Quantization of Planck constants and the generalization of
the notion of imbedding space

The recent geometric interpretation for the quantization of Planck constants
is based on Jones inclusions of hyper-finite factors of type II1 [A9].

a) Different values of Planck constant correspond to imbedding space
metrics involving scalings of M4 resp. CP2 parts of the metric deduced
from the requirement that distances scale as h̄(M4) resp. h̄(M4). De-
noting the Planck constants by h̄(M4) = nah̄0 and h̄(CP2) = nbh̄0, one
has that covariant metric of M4 is proportional to n2

b and covariant met-
ric of CP2 to n2

a. In Kähler action only the effective Planck constant
h̄eff/h̄0 = h̄(M4)/h̄(CP2) appears and by quantum classical correspondence
same is true for Schödinger equation. Elementary particle mass spectrum
is also invariant. Same applies to gravitational constant. The alternative
assumption that M4 Planck constant is proportional to nb would imply
invariance of Schrödinger equation but would not allow to explain Bohr
quantization of planetary orbits and would to certain degree trivialize the
theory (to be honest I believed to this option for some time and it produced
a lot of confusion).

b) M4 and CP2 Planck constants do not fully characterize a given sec-
tor M4

± × CP2. Rather, the scaling factors of Planck constant given by the
integer n characterizing the quantum phase q = exp(iπ/n) corresponds to
the order of the maximal cyclic subgroup for the group G ⊂ SU(2) char-
acterizing the Jones inclusion N ⊂ M of hyper-finite factors realized as
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subalgebras of the Clifford algebra of the ”world of the classical worlds”.
This means that subfactor N gives rise to G-invariant configuration space
spinors having interpretation as G-invariant fermionic states.

c) Gb ⊂ SU(2) ⊂ SU(3) defines a covering of M4
+ by CP2 points and

Ga ⊂ SU(2) ⊂ SL(2, C) covering of CP2 by M4
+ points with fixed points

defining orbifold singularities. Different sectors are glued together along
CP2 if Gb is same for them and along M4

+ if Ga is same for them. The
degrees of freedom lost by G-invariance in fermionic degrees of freedom are
gained back since the discrete degrees of freedom provided by covering allow
many-particle states formed from single particle states realized in G group
algebra. Among other things these many-particle states make possible the
notion of N-atom.

d) Phases with different values of scalings of M4 and CP2 Planck con-
stants behave like dark matter with respect to each other in the sense that
they do not have direct interactions except at criticality corresponding to a
leakage between different sectors of imbedding space glued together along
M4 or CP2 factors. In large h̄(M4) phases various quantum time and length
scales are scaled up which means macroscopic and macro-temporal quan-
tum coherence. In particular, quantum energies associated with classical
frequencies are scaled up by a factor na/nb which is of special relevance
for cyclotron energies and phonon energies (superconductivity). For large
h̄(CP2) the value of h̄eff is small: this leads to interesting physics: in par-
ticular the binding energy scale of hydrogen atom increases by the factor
nb/n2

a.

4.5.2 Explanation for the findings of Mills

Also the small values of h̄eff ) = na/nb are interesting since in this case
hydrogen atom binding energy scale increases by factor (nb/na)2 as Planck
constant decreases (this conforms with the interpretation about approach
to chaos in systems like plasmas). The assumption nb/na = k = 2, 3, ...
predicts exactly the binding energies reported of Mills. Also the fact that
for nb/na > 137 the binding energy becomes larger than electron rest mass
remaining invariant in the phase transition implies trivially the upper bound
k ≤ 137.

More generally, this picture leads to the notion of N-atom. The space-
time sheets can be regarded as N(Gb)-fold coverings of M4 by CP2 points
related by subgroup Gb ⊂ SU(2) ⊂ SU(3) (color group) and this meas that
one can put one hydrogen atom to each sheet of the covering (analogous to
multi-sheeted Riemann surface. The signature for N-atom would be scaled
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up binding energy spectrum whereas vibrational energies would be scaled
downwards.

Another kind of N-atom results for na/nb > 1. This N-atom would be like
N-molecule having discrete spatial symmetry characterized by Ga ⊂ SO(3):
for large values of na the symmetry would consist of planar rotations and
reflections with number-theoretically preferred values of na corresponding
to Fermat polygons constructible using only ruler and compass. The only
genuinely 3-D symmetry groups would correspond to tedrahedral and icosa-
hedral symmetries which are encountered in the structure of water. Icosahe-
dral and dual dodecahedral structures are very abundant in living matter.

In this case energies E = hf associated with classical frequencies are
scaled up by factor na/nb > 1 so that the vibrational modes need not be
masked by the thermal noise. Note that also the quantum energies asso-
ciated with cyclotron and plasma frequency are scaled up. For na/nb = n
integer, one can ask whether the vibrational dark photons emitted by dark
atoms could decay to n ordinary photons having ordinary vibrational en-
ergy. The signature would be the appearance of a compound such as water
in places where it is not thermally stable.

4.6 Free energy from atomic hydrogen

The anomalies reported by free energy researchers such as over unity energy
production in devices involving repeated formation and dissociation of H2

molecules based on the original discovery of Nobelist Irwing Langmuir [56]
(see for instance [55]) suggest that part of H atoms might end up to dark
matter phase liberating energy.

An especially interesting device tested and described in detail by Naudin
[55] is MAHG (Möller’s Atomic Hydrogen Generator). The system behaves
as an over-unity device producing energy from atomic hydrogen by a re-
peated dissociation and recombination of hydrogen atoms. MAHG tube
contains a vacuum tube filled with hydrogen at 0.1 atm and cooled by wa-
ter. The main part of the MAHG is a tungsten filament (0.25 mm diameter)
placed in the center. Dissociation requires a heating of the tungsten filament
to a temperature of about 2000 K.

A possible explanation of over-unity effect is inspired by the model of
water as a partially dark matter in which one fourth of hydrogen atoms are
in a dark phase forming linear super-nuclei with the distance between pro-
tons connected by color bonds being few Angstroms [F10]. The over-unity
energy production could be due to a gradual transformation of hydrogen to
dark hydrogen in the same state as in water. This transformation would
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compete with recombination and be responsible for the over unity energy
production even if the liberated energy is smaller than in recombination
since the resulting dark hydrogen would not dissociate anymore. The pro-
cess could not continue indefinitely since the amount of ordinary hydrogen
would be gradually reduced.

Also the dropping of some hydrogen atoms to larger space-time sheets
accompanied by liberation of zero point kinetic energy of order .5 eV could
be involved and have similar implications since the heating (thermal energy
is about .2 eV) is not quite enough to kick all dropped protons back to the
atomic space-time sheets.

5 Appendix: A generalization of the notion of
imbedding space inspired by hierarchy of Planck
constants

The hypothesis that Planck constant is quantized having in principle all pos-
sible rational values but with some preferred values implying algebraically
simple quantum phases has been one of the main ideas of TGD during last
years. The mathematical realization of this idea leads to a profound gen-
eralization of the notion of imbedding space obtained by gluing together
infinite number of copies of imbedding space along common 4-dimensional
intersection. The hope was that this generalization could explain charge
fractionization but this does not seem to be the case. This problem led to
a further generalization of the imbedding space and this is what I want to
discussed below.

5.1 The original view about generalized imbedding space

The original generalization of imbedding space was basically following. Take
imbedding space H = M4×CP2. Choose submanifold M2×S2, where S2 is
homologically non-trivial geodesic sub-manifold of CP2. The motivation is
that for a given choice of Cartan algebra of Poincare algebra (translations in
time direction and spin quantization axis plus rotations in plane orthogonal
to this plane plus color hypercharge and isospin) this sub-manifold remains
invariant under the transformations leaving the quantization axes invariant.

Form spaces M̂4 = M4\M2 and ĈP 2 = CP2\S2 and their Cartesian
product. Both spaces have a hole of co-dimension 2 so that the first homo-
topy group is Z. From these spaces one can construct an infinite hierarchy
of factor spaces M̂4/Ga and ĈP 2/Gb, where Ga is a discrete group of SU(2)
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leaving quantization axis invariant. In case of Minkowski factor this means
that the group in question acts essentially as a combination reflection and
to rotations around quantization axes of angular momentum. The general-
ized imbedding space is obtained by gluing all these spaces together along
M2 × S2.

The hypothesis is that Planck constant is given by the ratio h̄/hbar0 =
(n/nb), where ni is the order of maximal cyclic subgroups of Gi. The hypoth-
esis states also that the covariant metric of the Minkowski factor is scaled
by the factor (na/nb)2. One must take care of this in the gluing procedure.
One can assign to the field bodies describing both self interactions and in-
teractions between physical systems definite sector of generalized imbedding
space characterized partially by the Planck constant. The phase transitions
changing Planck constant correspond to tunnelling between different sectors
of the imbedding space.

5.2 Fractionization of quantum numbers is not possible if
only factor spaces are allowed

The original idea was that the proposed modification of the imbedding space
could explain naturally phenomena like quantum Hall effect involving frac-
tionization of quantum numbers like spin and charge. This does not however
seem to be the case. Ga × Gb implies just the opposite if these quantum
numbers are assigned with the symmetries of the imbedding space. For in-
stance, quantization unit for orbital angular momentum becomes na where
Zna is the maximal cyclic subgroup of Ga.

One can however imagine of obtaining fractionization at the level of
imbedding space for space-time sheets, which are analogous to multi-sheeted
Riemann surfaces (say Riemann surfaces associated with z1/n since the ro-
tation by 2π understood as a homotopy of M4 lifted to the space-time sheet
is a non-closed curve. Continuity requirement indeed allows fractionization
of the orbital quantum numbers and color in this kind of situation.

5.3 Both covering spaces and factor spaces are possible

The observation above stimulates the question whether it might be possible
in some sense to replace H or its factors by their multiple coverings.

a) This is certainly not possible for M4, CP2, or H since their funda-
mental groups are trivial. On the other hand, the fixing of quantization axes
implies a selection of the sub-space H4 = M2×S2 ⊂M4×CP2, where S2 is
a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2 have funda-
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mental group Z since the codimension of the excluded sub-manifold is equal
to two and homotopically the situation is like that for a punctured plane.
The exclusion of these sub-manifolds defined by the choice of quantization
axes could naturally give rise to the desired situation.

The observation above stimulates the question whether it might be pos-
sible in some sense to replace H or its factors by their multiple coverings.

a) This is certainly not possible for M4, CP2, or H since their funda-
mental groups are trivial. On the other hand, the fixing of quantization axes
implies a selection of the sub-space H4 = M2×S2 ⊂M4×CP2, where S2 is
a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2 have funda-
mental group Z since the codimension of the excluded sub-manifold is equal
to two and homotopically the situation is like that for a punctured plane.
The exclusion of these sub-manifolds defined by the choice of quantization
axes could naturally give rise to the desired situation.

b) There are two geodesic spheres in CP2. Which one should choose or
are both possible?

i) For the homologically non-trivial one corresponding to cosmic strings,
the isometry group is SU(2) ⊂ SU(3). The homologically trivial one S2

corresponds to vacuum extremals and has isometry group SO(3) ⊂ SU(3).
The natural question is which one should choose. At quantum criticality
the value of Planck constant is undetermined. The vacuum extremal would
be a natural choice from the point of view of quantum criticality since in
this case the value of Planck constant does not matter at all and one would
obtain a direct connection with the vacuum degeneracy.

ii) The choice of the homologically non-trivial geodesic sphere as a quan-
tum critical sub-manifold would conform with the previous guess that M :
N = 4 corresponds to cosmic strings. It is however questionable whether
the ill-definedness of the Planck constant is consistent with the non-vacuum
extremal property of cosmic strings unless one assumes that for partonic
3-surfaces X3 ⊂ M2 × S2 the effective degrees of freedom reduce to mere
topological ones.

b) The covering spaces in question would correspond to the Cartesian
products M̂4

na × ˆCP2nb
of the covering spaces of M̂4 and ˆCP2 by Zna and

Znb
with fundamental group is Zna×Znb

. One can also consider extension by
replacing M2 and S2 with its orbit under Ga (say tedrahedral, octahedral,
or icosahedral group). The resulting space will be denoted by M̂4×̂Ga resp.

ˆCP2×̂Gb.
c) One expects the discrete subgroups of SU(2) emerge naturally in

this framework if one allows the action of these groups on the singular
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sub-manifolds M2 or S2. This would replace the singular manifold with
a set of its rotated copies in the case that the subgroups have genuinely 3-
dimensional action (the subgroups which corresponds to exceptional groups
in the ADE correspondence). For instance, in the case of M2 the quantiza-
tion axes for angular momentum would be replaced by the set of quantization
axes going through the vertices of tedrahedron, octahedron, or icosahedron.
This would bring non-commutative homotopy groups into the picture in a
natural manner.

d) Also the orbifolds M̂4/Ga× ˆCP2/Gb can be allowed as also the spaces
M̂4/Ga × ( ˆCP2×̂Gb) and (M̂4×̂Ga) × ˆCP2/Gb. Hence the previous frame-
work would generalize considerably by the allowance of both coset spaces
and covering spaces.

There are several non-trivial questions related to the details of the gluing
procedure and phase transition as motion of partonic 2-surface from one
sector of the imbedding space to another one.

a) How the gluing of copies of imbedding space at M2 × CP2 takes
place? It would seem that the covariant metric of M4 factor proportional to
h̄2 must be discontinuous at the singular manifold since only in this manner
the idea about different scaling factor of M4 metric can make sense. This is
consistent with the identical vanishing of Chern-Simons action in M2 × S2.

b) One might worry whether the phase transition changing Planck con-
stant means an instantaneous change of the size of partonic 2-surface in M4

degrees of freedom. This is not the case. Light-likeness in M2 × S2 makes
sense only for surfaces X1×D2 ⊂M2×S2, where X1 is light-like geodesic.
The requirement that the partonic 2-surface X2 moving from one sector of
H to another one is light-like at M2×S2 irrespective of the value of Planck
constant requires that X2 has single point of M2 as M2 projection. Hence
no sudden change of the size X2 occurs.

c) A natural question is whether the phase transition changing the value
of Planck constant can occur purely classically or whether it is analogous
to quantum tunnelling. Classical non-vacuum extremals of Chern-Simons
action have two-dimensional CP2 projection to homologically non-trivial
geodesic sphere S2

I . The deformation of the entire S2
I to homologically triv-

ial geodesic sphere S2
II is not possible so that only combinations of partonic

2-surfaces with vanishing total homology charge (Kähler magnetic charge)
can in principle move from sector to another one, and this process involves
fusion of these 2-surfaces such that CP2 projection becomes single homolog-
ically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2

can be deformed to that of S2
II using 2-dimensional homotopy flattening the
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piece of S2 to curve. If this homotopy cannot be chosen to be light-like,
the phase transitions changing Planck constant take place only via quantum
tunnelling. Obviously the notions of light-like homotopies (cobordisms) and
classical light-like homotopies (cobordisms) are very relevant for the under-
standing of phase transitions changing Planck constant.

5.4 Do factor spaces and coverings correspond to the two
kinds of Jones inclusions?

What could be the interpretation of these two kinds of spaces?
a) Jones inclusions appear in two varieties corresponding to M : N < 4

and M : N = 4 and one can assign a hierarchy of subgroups of SU(2)
with both of them. In particular, their maximal Abelian subgroups Zn label
these inclusions. The interpretation of Zn as invariance group is natural for
M : N < 4 and it naturally corresponds to the coset spaces. ForM : N = 4
the interpretation of Zn has remained open. Obviously the interpretation of
Zn as the homology group defining covering would be natural.

b) M : N = 4 should correspond to the allowance of cosmic strings
and other analogous objects. Does the introduction of the covering spaces
bring in cosmic strings in some controlled manner? Formally the subgroup
of SU(2) defining the inclusion is SU(2) would mean that states are SU(2)
singlets which is something non-physical. For covering spaces one would
however obtain the degrees of freedom associated with the discrete fiber
and the degrees of freedom in question would not disappear completely and
would be characterized by the discrete subgroup of SU(2).

For anyons the non-trivial homotopy of plane brings in non-trivial con-
nection with a flat curvature and the non-trivial dynamics of topological
QFTs. Also now one might expect similar non-trivial contribution to ap-
pear in the spinor connection of M̂2×̂Ga and ĈP 2×̂Gb. In conformal field
theory models non-trivial monodromy would correspond to the presence of
punctures in plane.

c) For factor spaces the unit for quantum numbers like orbital angular
momentum is multiplied by na resp. nb and for coverings it is divided by this
number. These two kind of spaces are in a well defined sense obtained by
multiplying and dividing the factors of Ĥ by Ga resp. Gb and multiplication
and division are expected to relate to Jones inclusions with M : N < 4 and
M : N = 4, which both are labelled by a subset of discrete subgroups of
SU(2).

d) How do the Planck constants associated with factors and coverings
relate? One might argue that Planck constant defines a homomorphism
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respecting the multiplication and division (when possible) by Gi. If so, then
Planck constant in units of h̄0 would be equal to na/nb for Ĥ/Ga × Gb

option and nb/na for Ĥ ˆtimes(Ga × Gb) with obvious formulas for hybrid
cases. This option would put M4 and CP2 in a very symmetric role and
allow much more flexibility in the identification of symmetries associated
with large Planck constant phases.
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Prediction and Calculation for New Energy Development 
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Abstract: This paper discusses some important questions for new energy development, 
such as the prediction and calculation of sea surface temperature, ocean wave, offshore 
platform price, typhoon track, fire status, vibration due to earthquake, energy price, stock 
market’s trend and so on with the fractal methods (including the four ones of constant 
dimension fractal, variable dimension fractal, complex number dimension fractal and 
fractal series) and the improved rescaled range analysis (R/S analysis). 
Key words: New energy, development, prediction, fractal method, rescaled range analysis 
(R/S analysis) 

 
1   Introduction 

The various kind of energy development, especially the new energy development, will 
face many factors of uncertainty. If we can make the correct prediction and calculation to 
these factors in advance, then a great profit would be made. 

For example, regarding the sea water thermoelectric generation, to predict the sea 
surface temperature is required; Moreover, in order to develop the rich new energy 
contained in the seabed, the offshore platform should be constructed, it needs to carry on 
the prediction and calculation to the platform price; For the wind power generation, it needs 
to predict the gale way, in order to temporarily build more generators at the suitable place. 
Regarding ocean waves electricity generation, it needs precisely to calculate the 
movement of ocean waves.  

Let’s suppose in the near future the natural disaster energy may be used, then we need 
to make the prediction and calculation to the fire, vibration due to earthquake and so on. 

Finally, for the new energy companies coming into the market, they certainly want to 
know the new energy price as well as the stock market's trend.  

This paper applies the fractal methods and the improved rescaled range analysis (R/S 
analysis) to process these questions. 

 
2   Constant and variable dimension fractal prediction methods in common use 
and their application 

Recently, fractal method has been successful used in many fields; it is used for opening 
out the deeply hidden organized structure in the complex phenomenon. The quantity for 
reflecting the character of organized structure is called the fractal dimension, expressed 
with the value of D . In the fractal methods for general application at present, the fractal 
dimension D  is a constant, for example the values of fractal dimension D  for different 
coastlines may be taken as 1.02, 1.25 and so on. The fractal model[ 1 ] reads 

        Dr
CN =                                                                     (1) 

where: r  is the characteristic scale, such as time, length, coordinates and so on; N  is 
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the object number or quantity related with the value of r , such as output, price, 
temperature, the value to be predicted and so on; C  is a constant to be determined, D  
is the fractal dimension.  

In the general application of fractal method at present, D  is the constant, this kind of 
fractal may be called constant dimension fractal. It is a straight line in the double 

logarithmic coordinates. According to arbitrary two data points ),( ii rN and ),( jj rN  on 

this straight line, the fractal parameters of this straight line, i.e., the fractal dimension ijD  

and the constant ijC , can be determined; in fact, substituting the coordinates of the two 

data points into Eq.(1), they can be solved 

     
)/ln(
)/ln(

ij

ji
ij rr

NN
D =                                                               (2) 

     ijD
iiij rNC =                                                                     (3) 

For the straight line functional relation in the double logarithmic coordinates, it is able 
to process the prediction and calculation with the constant dimension fractal directly. 

But for the non-straight line functional relation in the double logarithmic coordinates, it 
is unable to process the prediction and calculation with the constant dimension fractal. 
Many questions are belonging to this situation. In order to overcome this difficulty, we 
introduced the concept of variable dimension fractal in references [2] ~ [4], namely the 
fractal dimension D  is the function of characteristic scale r . 

)(rFD =                                            (4) 

Now we discuss how to carry on the prediction and calculation with this fractal model.  
For the sake of convenience, let r  denote the serial number of time, for example, it will 

stipulate some year for the first year, then we have 11 =r , for the second year, 22 =r , and 

so on. Let N  denote the given value and the value to be predicted, for example, taking 

1N  as the value of the first year, 2N  as the value of the second year, and so on.  

Now supposing that n  data points are given, i.e., the values for the first year to the 
n th year are known, thereupon the question becomes how to predict the values for the 
( 1+n )th year, ( 2+n )th year and so on.  

As a result of the n th data point, namely the values of nN  and nr  for the n th year 

are given )( nrn = , and the value of 1+nr  for ( 1+n )th year is also known )1( 1 +=+ nrn , if 

the fractal dimension 1, +nnD  of the constant dimension fractal decided by the n th data 

point and ( 1+n )th data point is known, then the value for the ( 1+n )th year can be solved 
from Eq.(2) 
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1

1
+

+
+ = nnD

n

n
nn r

rNN                                               (5) 

To this analogizes, the values for the ( 2+n )th year and the like can be solved. 

As for how to decide the fractal dimension 1, +nnD , it needs the information given by 

12D  (decided by the given first data point and second data point), nnDD ,123 −L  (decided 

by other given data points). But in general case, it is very difficult to discover the changing 
rule for these values of fractal dimension. 

In this case, we cannot directly apply the above method. We have to carry on the 
transformation of accumulated sum for the given values firstly, then the above method can 
be used to forecast the values of accumulated sum for the ( 1+n )th year, ( 2+n )th year 
and so on. Finally the values to be predicted are solved by the values of accumulated sum.  

The advantage for using accumulated sum is that a sequence with increasing and 
decreasing can be changed into a monotone increasing sequence.  

This method may be introduced as follows.  

The first step, plotting the original data points )~1)(,( nirN ii =  in the 

double-logarithmic coordinates, in the ordinary circumstances they cannot fairly good 

agree with a constant dimension fractal model, thereupon iN )2,1( ni L=  may be 

arranged to a fundamental sequence, namely it can be written as 

      },,{}{ 321 LNNNNi =   )2,1( ni L=        

Other sequences may be constructed according to the fundamental sequence. For 

example, for )1(S , i.e., the sequence of first order accumulated sum, 1
)1(

1 NS = , 

21
)1(

2 NNS += , 321
)1(

3 NNNS ++= , and so on; according to analogize, the sequence 

of second order accumulated sum, the sequence of third order accumulated sum, and 
the like can be constructed, namely it can be written as 

       },,,{}{ 321211
)1( LNNNNNNSi +++=  )2,1( ni L=              (6) 

      },,{}{ )1(
3

)1(
2

)1(
1

)1(
2

)1(
1

)1(
1

)2( LSSSSSSSi +++=  )2,1( ni L=                   (7) 

      },,{}{ )2(
3

)2(
2

)2(
1

)2(
2

)2(
1

)2(
1

)3( LSSSSSSSi +++=  )2,1( ni L=       

      },,{}{ )3(
3

)3(
2

)3(
1

)3(
2

)3(
1

)3(
1

)4( LSSSSSSSi +++=  )2,1( ni L=       

It needs to point out that )2(
iS  denote second order accumulated sum, instead of the 

second power of iS . )3(
iS  and the like should be comprehended similarly.  
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The second step, establishing the fractal models for various order accumulated sum. 
Taking the second order accumulated sum as an example. Plotting the data points 

)~1)(,( )2( nirS ii =  in the doublelogarithmic coordinates, linking these points one by one it 

may result in the sectioned constant dimension fractal model. For example, according to 
n  data points, the sectioned constant dimension fractal model composed from 1−n  
straight lines (for different straight line, its fractal dimension is also different, this also is the 
simplest variable dimension fractal model), the fractal parameters 

)1,1~1(,)2( +=−= ijniDij  and )2(
ijC for each straight line, can be calculated according 

to Eqs.(2) and (3) (in which the value of iN  is replaced by )2(
iS ). Which means 

)/ln(/)/ln( )2()2()2(
ijjiij rrSSD =                                                (8) 

    
)2()2()2( ijD

iiij rSC =                                                              (9) 

The third step, choosing the best transformation and determining its corresponding 
fractal parameters.  

Separately drawing various order accumulated sum’s data points in the double 
logarithmic coordinates, then choosing the best transformation (its values of fractal 
dimension are even increased or even decreased) and determining its corresponding 
fractal parameters. 

Because in the ordinary circumstances, the second order accumulated sum is the best, 
we shall only discuss the case of second order accumulated sum.  

After choosing the fractal model, the suitable method should be used for deciding the 

fractal dimension )2(
1, +nnD  firstly, then uses the reconstructive Eq.(5) to carry on the forecast 

for  accumulated sum. Because the values of fractal dimension are even increased or 
even decreased, using the following linear interpolation formula can solve the fractal 

dimension )2(
1, +nnD   

  )2(
1,2

)2(
,1

)2(
1, 2 −−−+ −= nnnnnn DDD                                                   (10) 

For the second order accumulated sum, Eq.(5) expressed by 

  
)2(

1,)(
1

)2()2(
1

+

+
+ = nnD

n

n
nn r

rSS                                                         (11) 

For the reason that )1()1(
1 ~ nSS ˜ )2()2(

1 ~ nSS  are already calculated, then the 

forecasting first order accumulated sum can be obtained from the forecasted second 
order accumulated sum, which means 

)2()2(
1

)1(
1 nnn SSS −= ++                                                                         (12) 

Then the forecasting value can be obtained from the forecasted first order 
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accumulated sum, which means 

   )1()1(
11 nnn SSN −= ++                                                                          (13) 

According to analogize similarly, 2+nN  , 3+nN  and so on can be obtained. 

It should be noted that, for some special questions, we need to carry on some 
necessary adjustments to the above-mentioned general fractal methods. For example, 
some transformation processing should be made to the given data in advance.  

Now we present some prediction and calculation examples.  
 
Example 1, until 08 o'clock, July 20, 1980, the tracks of No. 8007 typhoon (JOE) are 

given in table 1 (the time interval is 6 hours), try to predict its future tracks. This example is 
taken from the reference [ 5 ]. 

Table1. the given tracks of No. 8007 typhoon 
No.    time(M D H)   north latitude  east longitude  
1       7  16  14      10.0        147.0          
2              20      11.0        146.0          
3          17  02      12.0        145.0          
4              08      12.7        143.8          
5              14      12.3        143.2          
6              20      12.5        142.0          
7          18  02      13.1        140.2          
8              08      13.5        138.9          
9              14      14.0        137.5          
10             20      14.2        136.2          
11         19  02      14.3        134.7          
12             08      14.7        133.1          
13             14      15.0        131.7          
14             20      15.2        130.1          
15         20  02      15.7        128.1          
16             08      16.1        126.7          
 

With the above-mentioned fractal prediction method, the future latitudes and 
longitudes may be obtained respectively.  

All the prediction results of this paper, the real vales and the prediction results in 
reference [ 6 ] are shown in Table 2 and table 3.  

Table2. prediction result for the latitudes of No. 8007 typhoon 
No.    time (M D H)       real value   this paper     reference [6] 
17      7  20  14         16.3        16.4          
18             20         16.4        16.7          17.0 
19         21  02         17.1        17.1          
20             08         17.4        17.4          18.2 
21             14         18.1        17.8 
22             20         18.7        18.1          19.2 
23         22  02         19.1        18.5 
24             08         19.5        18.8          20.0 
25             14         20.1        19.2 
26             20         20.2        19.5 
27         23  02         20.4        19.9 
28             08         20.9        20.3 
29             14         20.9        20.6 
30             20         20.5        21.0 
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Table3. prediction result for the longitudes of No. 8007 typhoon 

No.    time (M D H)       real value   this paper     reference [6] 
 
17      7  20  14         125.3       125.3          
18             20         123.8       123.8         123.6 
19         21  02         122.1       122.4          
20             08         120.8       121.0         120.9 
21             14         119.0       119.6 
22             20         117.2       118.2         118.4 
23         22  02         115.3       116.8 
24             08         113.6       115.5         116.0 
25             14         112.2       114.1 
26             20         110.3       112.8 
27         23  02         108.4       111.4 
28             08         106.7       110.1 
29             14         105.3       108.9 
30             20         103.0       107.5 
 

From the results of Table 2 and Table 3 we can see that, although the result of 
longitudes is not so good, but generally speaking the prediction results of this paper are 
satisfying.  

 
Example 2, predict the platform price of Gulf of Mexico. This example is taken from 

the reference [ 7 ]. 
Because the platform price of Gulf of Mexico cannot be predicted with the fractal 

method directly, therefore we must to carry on the following transformation to water depth 
r  and platform price N  firstly. 

  barr' +=  
  BAN'N +=  
From this transformation, the platform price prediction formula can be obtained as in the 

following form: 

  'BB
)rb(

CN *D

*

−−
−

=  

As water depth r =400ft, we may obtain the corresponding platform price N =16.7884 
x 106 US dollars, to compare with the actual value 16.5 x 106 US dollars, the error is only 
1.7%.  

 
Example 3, predict the monthly average sea surface temperature. This example is 

taken from the reference [ 8 ].  
Based on sectional variable dimension fractals, we present concept of weighted 

fractals, i.e., for the data points in an interval, their r  coordinates multiply by different 
weighted coefficients, and making these data points locate at a straight-line in the double 
logarithmic coordinates. By using weighted fractals, the monthly average sea surface 
temperature (MASST) data on the point 30ºN, 125ºE of Northwest Pacific Ocean are 
analyzed. According to the MASST from January to August in a certain year, the MASST 
from September to December of that year has been predicted by using eight-point-method. 
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According to the MASST of August merely in a certain year, the MASST from September to 
December of that year has been predicted by using one-point-method.  

The MASST prediction results are as follows. 
 

Table4. MASST prediction results by using eight-point-method (8PM) and one-point-method(1PM) 

Year    Notes      September   October    November  December 

1958    8PM      28.21      25.51      22.67      20.17 

        1PM      28.24      25.55      22.72      20.22 

        Real value  27.7       25.5       21.2       20 

1959    8PM      28.20      25.56      22.75      20.28 

        1PM      28.19      25.54      22.73      20.26 

        Real value  27.6       24.7       22.9       20 

1960    8PM      27.95      25.36      22.60      20.16 

        1PM      28.05      25.51      22.78      20.36 

        Real value  28         26        21.8        20 

1961    8PM      28.70      26.14      23.37      20.91 

        1PM      28.34      25.57      22.69      20.16 

        Real value  28.4       26.2       22.8       22 

1962    8PM      28.30      26.00      23.46      21.17 

        1PM      27.90      25.48      22.83      20.47 

        Real value  28         25        21         20 

1963    8PM      29.36      27.86      25.78      23.80 

        1PM      27.86      25.47      22.85      20.50 

        Real value  27.5       24.5       21         18 

1964    8PM      28.04      25.83      23.32      21.05 

        1PM      27.80      25.46      22.86      20.54 

        Real value  28         24.5       22        19 

 

In addition, according to the phenomenon of fractal interrelation and the fractal 
coefficients of this point’s MASST and the monthly average air temperature of August of 
some points, the monthly average air temperature of these points from September to 
December has been also predicted 

 
Example 4, predict the stock index with variable dimension fractal.  
From November 1, 2000 to February 7, 2001, the program "Daily Finance and 

Economics" of Beijing wired television station conducted the competition of stock index 
prediction. Before 13 o'clock of every business day, the participants were requested to 
deliver their predictions for the closing index of the same day to the television station with 
the telephone, 2 winners of the first prize (one for Shanghai market, another for Shenzhen 
market), 8 winners of the second prize and 10 winners of the third prize were awarded 
every day. We obtained the news on November 17 and began to participate. Until the 
competition end on February 7, 2001, we won the first prize two times (one for Shanghai 
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market, another for Shenzhen market), the second prize two times and the third prize 
seven times.  

The prediction results of the stock index of Shanghai market are as follows. 
 

Table 5. prediction results of the stock index of Shanghai market.1A0001 
No.   Date               Prediction  Real value   Error     Award  
1     Nov. 16, 2000       2087.87     2095.98    -8.11 
2     Nov. 17, 2000       2104.99     2093.23    11.76 
3     Nov. 20, 2000       2103.48     2101.38     2.10     third prize 
4     Nov. 21, 2000       2115.14     2097.98    17.16 
5     Nov. 22, 2000       2109.29     2113.30    -4.01 
6     Nov. 23, 2000       2125.61     2119.43     6.18 
7     Nov. 24, 2000       2131.43     2053.37    78.06 
8     Nov. 27, 2000       2048.50     2049.67    -1.17     third prize 
9     Nov. 28, 2000       2071.23     2079.39    -8.16 
10    Nov. 29, 2000       2082.63     2067.49    15.14 
11    Nov. 30, 2000       2063.54     2070.61    -7.07 
12    Dec. 1, 2000        2082.96     2081.84     1.12 
13    Dec. 4, 2000        2092.32     2092.13     0.19     second prize 
14    Dec. 5, 2000        2099.49     2091.66     7.83 
15    Dec. 6, 2000        2095.93     2075.62    20.31 
16    Dec. 7, 2000        2065.51     2075.04    -9.53 
17    Dec. 8, 2000        2085.09     2073.16    11.93 
18    Dec. 11, 2000       2044.21     2046.07    -1.86     third prize 
19    Dec. 12, 2000       2047.74     2059.05   -11.31 
20    Dec. 13, 2000       2057.62     2056.12     1.50 
21    Dec. 14, 2000       2055.93     2051.07     4.86 
22    Dec. 15, 2000       2041.31     2039.36     1.95 
23    Dec. 18, 2000       2026.44     2044.54   -18.10 
24    Dec. 19, 2000       2052.43     2049.03     3.40 
25    Dec. 20, 2000       2058.43     2071.26   -12.83 
26    Dec. 21, 2000       2084.98     2076.89     8.09 
27    Dec. 22, 2000       2079.10     2069.77     9.33 
28    Dec. 25, 2000       2071.63     2068.17     3.46 
29    Dec. 26, 2000       2075.03     2076.26    -1.23 
30    Dec. 27, 2000       2070.66     2058.24    12.42 
31    Dec. 28, 2000       2057.65     2053.70     3.95 
32    Dec. 29, 2000       2070.41     2073.47    -3.06 
33    Jan. 2, 2001        2095.00     2103.46     -8.46 
34    Jan. 3, 2001        2121.09     2123.89     -2.80 
35    Jan. 4, 2001        2123.90     2117.40      6.50 
36    Jan. 5, 2001        2125.34     2125.30      0.04    first prize 
37    Jan. 8, 2001        2108.06     2102.06      6.00 
38    Jan. 9, 2001        2098.75     2101.13     -2.38 
39    Jan. 10, 2001       2120.91     2125.61     -4.70 
40    Jan. 11, 2001       2132.74     2119.14     13.60 
41    Jan. 12, 2001       2106.41     2104.74      1.67 
42    Jan. 15, 2001       2054.82     2032.44     22.38 
43    Jan. 16, 2001       2003.01     2006.88     -3.87 
44    Jan. 17, 2001       2035.48     2034.58      0.90 
45    Jan. 18, 2001       2043.70     2043.10      0.60    third prize 
46    Jan. 19, 2001       2063.47     2065.60     -2.13 
47    Feb. 5, 2001        2036.62     2008.03     28.59 
48    Feb. 6, 2001        1960.85     1995.31    -34.46 
49    Feb. 7, 2001        1979.34     1979.93     -0.59    second prize 
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In the above continual 49 days’ actual predictions, there are 2 days that the error less 
than 0.5, 5 days the error less than 1.0, 12 days the error less than 2.0, 24 days the error 
less than 5.0, 35 days the error less than 10.0, and 14 days the error greater than 10.0. 

Obviously, this method also may be used to predict the stock price. 
 
2   Two kind of special variable dimension fractal prediction method 

Firstly we introduce two kind of special variable dimension fractals: fractal in fractal and 
high order function in fractal. 

The form of fractal in fractal may be summarized as follows.  
Suppose the original fractal model in Eq. (1) may be called the first order fractal, in 

which if the fractal dimension also is taken as the fractal form: D= C ' /rD ', then the fractal in 
fractal or the second order fractal will be formed. The higher order fractals may be deduced 
by analogy. In order to facilitate the idea, we mark the different order fractals with the 
following forms. 

first order fractal N
C
r D( )1

1
1

=                                        

where D1 =constant. 

second order fractal N ( )2 =
C
r D

1
1

                                     

where D1 =
C
r D

2
2

; D2 =constant 

…… 

the n th order fractal N n( ) =
C
r D

1
1

                                       

where D1 =
C
r D

2
2

; D
C
r D2

3
3

= ; … D
C
rn

n
Dn( )− =1 ; Dn =constant 

Similarly the high order function (function in function) may be defined. For example the 
original sine function (first order sine) is: N=sin (kr+b), if k= sin (k ' r+b '), then the sine 
function in sine function or the second order sine function is formed. The higher order sine 
function may be deduced by analogy.  

In order to facilitate the idea, and consider the more widespread cases, we mark the 
different order cosine function with the following forms. 

first order cosine function cos cos( )( )1 1 1 1 1r A B C D r= + +                

where D1 =constant 

second order cosine function cos( )2 r = A B C D r1 1 1 1+ +cos( )                 

where D1 = A B C D r2 2 2 2+ +cos( ) ; D2 =constant 

… 

the n th order cosine function cos( )n r = A B C D r1 1 1 1+ +cos( )                  
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where D1 = A B C D r2 2 2 2+ +cos( ) ; D A B C D r2 3 3 3 3= + +cos( ) ; … 

      D A B C D rn n n n n− = + +1 cos( ) ; Dn =constant 

Similarly other high order trigonometric functions (trigonometric function in 
trigonometric function), high order logarithmic function (logarithmic function in logarithmic 
function), high order inverse trigonometric function (inverse trigonometric function in 
inverse trigonometric function), high order hyperbolic function (hyperbolic function in 
hyperbolic function) and so on may be defined.  

As the value of D in fractal model equals high order function, then the high order 
function in fractal is formed. 

As determining the concrete forms of fractal in fractal or high order function in fractal, 
namely solving all the constants to be determined, the method of weighted residuals, such 
as the least squares method, may be used. 

Suppose the number of the constants to be determined is equal to n, then we choose n 
given data points, their values of N are Ni i=1~n, after the curve fitting, the corresponding 
values given by the model of fractal in fractal or high order function in fractal equal Ni’, then 
all the constants to be determined can be solved by using the following expression: 

  S = ∑(Ni - Ni’)2=min                                    
As determining its minimum value, the steepest descent method or other optimization 

method may be used. 
Now we discuss the application of fractal in fractal. 
As solving the practical problem, generally we establish the fractal in fractal model 

with the least squares method according to the given data firstly, and then the prediction 
results may be reached with the extrapolation method by using the established model. 

Example 5, the world oil annual average prices from 1989 to 1993 are as follows (unit: 
US dollar/barrel) : 17.80, 22.87, 19.33, 19.03, 16.82, try to use the second order fractal 
method to establish the model of the world oil annual average prices from 1989 to 1993, 
and predict (extrapolate) the prices of 1994 and 1995 according to this model. 

The real prices, the calculated prices from 1989 to 1993 and the predicted prices of 
1994 and 1995 with the second order fractal are shown in Table 6. 
 

Table 6, the world oil annual average prices 
Year         r          real price    calculated price       error/% 
1989        1          17.80            16.73            -6.00 
1990        2          22.87            22.71            -0.69 
1991        3          19.33            18.94            -2.00 
1992        4          19.03            17.76            -6.67 
1993        5          16.82            17.29             2.79 
1994        6          15.89            17.07             7.36 
1995        7          17.17            16.95            -1.30 

 
Because of space limitation, we cannot discuss the application of higher-order function 

in fractal. 
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3   Complex number dimension fractal prediction method 
As the value of D is equal to a real number, the fractal may be called the real constant 

dimension fractal, in fact it is the one-dimensional model, because it only has one variable 
r. It is a straight line in the double logarithmic coordinates. But as the number of variable is 
greater than 1, then the model cannot be the real constant dimension fractal. In order to 
overcome this difficulty, we proposed the complex number dimension fractal and the 
multi-dimension fractal. 

Suppose in Eq.(1) we define 

      D f x x= 1 1 2( , … xn )                                        

      r f x x= 2 1 2( , … xn )                                         

      C f x x= 3 1 2( , … xn )                                        

      N f x x= 4 1 2( , … xn )                                        

Then we have the fractal model in n-dimensional space. 
Now we discuss the complex number dimension fractal. 
In Eq.(1) the values of D and r are taken as follows 

      ibaD +=                                                 
      iyxr +=                                                 
   Suppose 
      r w E iFD = = +                                            
   As well-known, w  is the multiple-valued function. Because the original fractal model is 
the single-valued function, we also request the complex number dimension fractal is the 
single-valued function in this paper, namely we will take the main value of logarithm, and it 
gives  

      ( ) ln( ) ln ln( )a ib x iy w E iF+ + = = +     

therefore 

      ( )(ln arg ) ln arga ib r i r w i w+ + = +  

    it gives 

      θ = = +arg arg lnw a r b r  

      w a r b r= −exp( ln arg )  

    Then we have 

      E w= cosθ                                               

      F w= sinθ                                               

    suppose 

      C C iCx y= +                                               
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      N N iNx y= +                                              

    because 

      N
C iC
E iF
x y=
+
+

 

    It gives 

      N
C E C F

E Fx
x y=

+

+2 2                                            

      N
C E C F

E Fy
y x=

−

+2 2                                             

Thus, the related formulas for complex number dimension fractal are given. From the 
above inferential reasoning we can see that, in multi-dimensional space, so long as the 
logarithm operation is defined, the fractal model may be established. 

There are 2 constants to be determined in the real fractal model: C and D. While in the 
complex number dimension fractal, there are 4 constants to be determined: Cx, Cy, a and b. 
For the real fractal model, as the number of the given data point is greater than 2, generally 
the least squares method should be used to determine C and D. For the complex number 
dimension fractal model, as the number of the given data values is greater than 4, 
generally the least squares method also should be used to determine Cx, Cy, a and b. 

Suppose N xx  and N yy  denote the real part and imaginary part of the given data 

point, N x  and N y  denote the real part and imaginary part of the corresponding 

calculated value according to the complex number dimension fractal model, then Cx, Cy, a 
and b can be determined by using the following least squares method 

      [ ]Π = − + − =∑ ( ) ( ) minN N N Nx xx y yy
2 2                      

In some cases, the given data points and the corresponding calculated values only 
have the real part (but all the other quantities C, D and r have real part and imaginary part), 
thus Cx, Cy, a and b can be determined by using the following simplified formula 

      Π = − =∑ ( ) minN Nx xx
2                                     

Example 6, in the reference [ 9 ], a simplified method for the 5th order Stokes wave was 

presented. In which the key quantity Nxx  (in original text it was the non-unit parameter d/L) 

is the function of parameter x (in original text it was K2) and y (in original text it was K1). The 

6 given values of Nxx  are shown in Table 7. Try to use the complex number dimension 

fractal model to fit these 6 data points, and to extrapolate the key quantities corresponding 
to other values of x and y. 
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For the original method to solve the key quantity, it needs to solve a complicated 
equation. But after fitting these 6 data points with a complex number dimension fractal 
model, we may use the simple computational method to extrapolate the key quantities 
nearby these 6 data points. 
 

Table 7, key quantity Nxx  
x=                   0.08          0.10          0.12 

y=0.24               0.12030       0.13792       0.15475 
0.28               0.11922       0.13681       0.15354 

 
Take the parameter for the complex form iyxr +=  (for example, x= 0.08, y= 0.24 

written as 0.08+i0.24), according to the 6 given data points and the corresponding 
calculated values, with the steepest descent method, the optimized solution for the 
complex number dimension fractal model is as follows 

  D = -0.2946999 + i0.0515208 
  C = 0.5824216 + i0.8425285 

Substitute the above values into the complex number dimension fractal formula, the 
fitting values can be calculated. The results are shown in Table 8. 

 
Table 8, fitting value of N x  and the error 

x          y          N x               error/% 
0.08      0.24        0.1203381            0.032 
0.08      0.28        0.1215420            1.95 
0.10      0.24        0.1373734           -0.40 
0.10      0.28        0.1370334            0.16 
0.12      0.24        0.1539712           -0.50 
0.12      0.28        0.1522378           -0.85 

 
    The extrapolated results are shown in Table 9. 

 
Table 9, the extrapolated results 

x          y          Nx               Nxx           error/% 
0.08      0.20        0.1205872         0.12120         -0.51 
0.10      0.20        0.1395045         0.13886         -0.46 
0.12      0.20        0.1577343         0.15577          1.26 

 
From the fitting and extrapolated results we can see that, all the errors are less than 

2%.  
 

4   Fractal series prediction method 
In order to expand the application scope of fractal method, in the reference [ 10 ], the 

following form of fractal series was presented 

      N = ∑
C
r

i
Di

= 
C
r D

1
1

+
C
r D

2
2

+ ……                                 

However, in this paper we only discuss the special and simple form, namely the 
expanded Taylor’s series in which the index is changed from the integer into the 
non-integer to be determined.  

The fractal series as the formula of prediction (or extrapolation), may be obtained 
through two ways. The first one is the fitting method similar to obtain the complex number 
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dimension fractal model; the second one is to obtain the fractal series through finding the 
solution of differential equation with the least squares method. This paper only discusses 
the second way. 
 

Example 7, for interval 0≤t≤20, try to solve the following linear damped oscillation 
question due to earthquake, and obtain the fractal extrapolation formula.  

X "(t) + X (t) = -2εX (t)          (ε=0.1)  
The initial condition reads: X (0) =0, X' (0) =1  
In the reference [11], we can find the following approximate analytical solution 

      X (t,ε) = sin t -εt sin t + 0.5ε2t2 sin t - 0.5ε2t cos t + 0.5ε2 sin t                              
In this paper we choose the following fractal series of ε(the indexes of ε are Y, Z, W, 

W, instead of 1, 2, 2, 2), which contains three other constants to be determined (A1, A2 
and A3) and already satisfies the initial condition, as the approximate analytical solution 
      X(t) = sin t - A1εy t sin t + A2εz t2 sin t - A3εw t cos t + A3εw sin t  

By using the least squares method, we have the following variational principle for 
solving the differential equation 

      Π = ∫
20

0
F2 dt  = min              

where˜ F = X”(t) + X(t) + 2εX(t)    ˜ ε=0.1˜       
Taking the initial values as follows: Y=1, Z=2, W=2, A1 =1, A2 = A3 =0.5, with the 

steepest descent method, the optimized solution is as follows 

Y = 1.048389,  Z = 2.223077,   W = 2.324839, 

      A1 = 0.9212227,  A2 = 0.3277449,    A3 = 0.1413171 

The results are shown in Table 10. 
 

Table 10, results of X(t) 
t      Accurate solution     This paper        Reference [11] 

0          0                0                 0 
2          0.7516          0.7677            0.7543 
4         -0.5009         -0.5298           -0.5053 
6         -0.1700         -0.1650           -0.1922 
8          0.4491          0.4627            0.5252 
10        -0.1853         -0.1971           -0.2328 
12        -0.1775         -0.1646           -0.3323 
14         0.2425          0.2278            0.5699 
16        -0.0427         -0.0428           -0.1206 
18        -0.1341         -0.1226           -0.6790 
20         0.1180          0.1195            0.8767 

 
    From Table 10 we may see that, the fractal series solution agrees with the precise 
solution at the whole interval, while the existing solution only agrees with the precise 
solution at the interval of t<10. 

Now we take the fractal series as the extrapolated (predicted) formula. 
From the fractal series formula the extrapolated (predicted) result for t=20.5 is as follows: 

X (20.5) =0.1360, while the accurate solution is 0.1293, the error of extrapolation formula is 
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5.2% only; for t=21, X (21) =0.1205, while the accurate solution is 0.1095, the error is 
10.1%.  

Therefore, if the required error is less than or equal to 10.1%, the above fractal 
extrapolation formula may be used at the interval [ 20, 21 ]. 
 
5   Improved rescaled range (R/S) prediction method 

The energies released by natural disaster, such as fire, earthquake and so on, are huge. 
If these energies can effectively use, even if a small part, the humanity also will obtain the 
rich energy. For the prediction to the situation of natural disaster, the improved rescaled 
range (R/S) analysis presented in the reference [12] is extremely effective.  

H. E. Hurst is a renowned hydrology scientist. He proposed the R/S analysis or the 
rescaled range analysis method in the reference [13]. In which the most important work 
was the calculation of the Hurst exponent H.  

We adopted two new data grouping methods to calculate the Hurst exponent H. 
The first data grouping method: The number of the data in an interval is increased 

progressively. For example we may make the first interval to contain the data of 
1950~1955 (there are 6 years’ data altogether), the second interval contains the data of 
1950~1956 (there are 7 years’ data altogether), the rest may be deduced by analogy, the 
last interval contains the data of 1950~2000 (there are 51 years’ data altogether). It should 
be noted that, the Hurst exponent calculated by the data of the first interval is taken as the 
Hurst exponent of the year 1955, the rest may be deduced by analogy, and the Hurst 
exponent calculated by the data of the last interval is taken as the Hurst exponent of the 
year 2000. 

The second data grouping method: The number of the data in an interval is fixed. For 
example we may make the first interval to contain the data of 1950~1955, the second 
interval contains the data of 1951~1956, the rest may be deduced by analogy, the last 
interval contains the data of 1995~2000, namely each interval contains 6 years’ data 
altogether. Similar to the first method, the Hurst exponent calculated by the data of any 
interval is taken as the Hurst exponent of the last year of this interval. 

Now we present the application example of the first method.  
Example 8, according to the fire numbers of China from 1950 to 1999, to predict the 

fire number of year 2000. 
Firstly calculate the Hurst exponent H from 1955 to 1999. Then according to these 

Hurst exponents to calculate the Hurst exponent of year 2000 (H2000) with the fractal 
method, it gives 

  H2000 =0.7750 
According to this calculated H2000, the fire number of year 2000 may be predicted with 

the shooting method. Finally it gives that as the fire number of year 2000 is equal to 199960, 
H2000 =0.7750. While the real value is 189185, the predicted error is 5.7% only. 

In order to effectively carry on the analysis and prediction to the statistical data, in the 
reference [12] we also introduced the concept of high order Hurst exponent. For all the 
calculated Hurst exponents, taking these values of H as the ordinary given statistical data, 
thereupon we may again carry on the R/S analysis to these data, thus obtain a group of 
new Hurst exponents, name it H1, this the Hurst exponent of Hurst exponent. The rest 
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may be deduced by analogy, and may give the higher order Hurst exponents H2, H3 and 
so on. With the help of the Hurst exponent and high order Hurst exponent, we may judge 
that whether or not the next year’s fire number will be increased sharply.  
 
6   Conclusions 

This paper discusses the prediction and calculation methods established by fractal 
model N=C/rD (in which the fractal dimension D may be the real number, variable and 
complex number), fractal series as well as the improved rescaled range (R/S) analysis, and 
their applications for new energy development. In order to obtain a better effect, 
sometimes it needs to perform the processing to data point in advance (such as translation, 
accumulated sum and so on); Moreover, sometimes run the necessary adjustment to the 
fractal dimension D. The examples presented in this paper indicate that, these prediction 
and calculation methods will possibly have the good application prospect in new energy 
development. 
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     Unlike what some physicists and graduate students used to think, that physics 
science has come to the point that the only improvement needed is merely like add-
ing more decimals in the masses of elementary particles or gravitational constant, 
there is a number of unsolved problems in this field that may require that the whole 
theory shall be re-assessed. In the present article we discuss thirty of those unsolved 
problems and their likely implications. In the first section we will discuss some well-
known problems in cosmology and particle physics, and then other unsolved prob-
lems will be discussed in next section.  

 

Unsolved problems related to cosmology  

In the present article we discuss some unsolved problems in the physics 
of elementary particle and mathematical physics, and their likely implica-
tions. In the first section we will discuss some well-known problems in cos-
mology and particle physics, and then other unsolved problems will be dis-
cussed in next section. Some of these problems were inspired by and ex-
panded from Ginzburg’s paper [2]. 

 
(1) The problem of the three origins. According to Marcelo Gleiser 

(Darthmouth College) there are three unsolved questions which are 
likely to play significant role in 21st-century science: the origin of 
the universe, the origin of life, and the origin of mind.           

 
(2) The problem of symmetry and antimatter observation. This could 

be one of the biggest puzzle in cosmology: If it’s true according to 
theoretical physics (Dirac equation etc.)  that there should be equal 
amounts of matter and antimatter in the universe, then why our ob-
servation only display vast amounts of matter and very little anti-
matter?  

 
(3) The problem of dark matter in cosmology model. Do we need to in-

troduce dark matter to describe galaxy rotation curves? Or do we 
need a revised method in our cosmology model? Is it possible to 
develop a new theory of galaxy rotation which agrees with observa-
tions but without invoking dark matter? For example of such a new 
theory without dark matter, see Moffat & Brownstein [3][4]. 

 
(4) Cosmological constant problem. This problem represents one of the 

major unresolved issues in contemporary physics. It is presumed 
that a presently unknown symmetry operates in such a way to en-
able a vanishingly small constant while remaining consistent with 
all accepted field theoretic principles. [15]  

 
(5) Antimatter hydrogen observation. Is it possible to find isolated an-

timatter hydrogen (antihydrogen) in astrophysics (stellar or galax-
ies) observation?  Is there antihydrogen star in our  galaxy? 
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      Now we are going to discuss other seemingly interesting problems in the 
physics of elementary particles, in particular those questions which may be 
related to the New Energy science.  
 

Unsolved problems related to the physics of elementary particles  

We discuss first unsolved problems in the Standard Model of elementary 
particles. Despite the fact that Standard Model apparently comply with most 
experimental data up to this day, the majority of particle physicists feel that 
SM is not a complete framework. E. Goldfain has listed some of the most 
cited reasons for this belief [5], as follows: 

 
(6) The neutrino mass problem. Some recent discovery indicates that 

neutrino oscillates which implies that neutrino has mass, while QM 
theories since Pauli predict that neutrino should have no mass [6]. 
Furthermore it is not yet clear that neutrino (oscillation) phenomena 
correspond to Dirac or Majorana neutrino. [7] 

 
(7) SM does not include the contribution of gravity and gravitational 

corrections to both quantum field theory and renormalization group 
(RG) equations. 

 
(8) Fine-tuning problem. SM does not fix the large number of parame-

ters that enter the theory (in particular the spectra of masses, gauge 
couplings, and fermion mixing angles). Some physicists have also 
expressed their objections that in the QCD scheme the number of 
quarks have increased to more than 30 particles, therefore they as-
sert that QCD-quark model cease to be a useful model for elemen-
tary particles. 

 
(9) Gauge hierarchy problem. SM has a gauge hierarchy problem, 

which requires fine tuning. Another known fine-tuning problem in 
SM is ‘strong CP problem’ [19, p. 18] 

 
(10) SM postulates that the origin of electroweak symmetry breaking is 

the Higgs mechanism. Unfortunately Higgs particle has never been 
found; therefore recently some physicists feel they ought to intro-
duce more speculative theories in order to save their Higgs mecha-
nism.[8]  

 
(11) SM does not clarify the origin of its SU(3)xSU(2)xU(1) gauge 

group and why quarks and lepton occur as representations of this 
group. 

 
(12) Chirality problem. SM does not explain why (only) the electroweak 

interactions are chiral (parity-violating). [19, p. 16]. 
 

(13) Charge quantization problem. SM does not explain another funda-
mental fact in nature, i.e. why all particles have charges which are 
multiples of e/3. [19, p.16] 

 
Other than the known problems with SM as described above, there are 

other quite fundamental problems related to the physics of elementary parti-
cles and mathematical physics in general, for instance [1]: 
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(14) Quark confinement problem. Is there dynamical explanation of 
quark confinement problem? This problem corresponds to the fact 
that quarks cannot be isolated. See also homepage by Clay Institute 
on this problem. 

 
(15) What is the dynamical mechanism behind Koide’s mixing matrix of 

the lepton mass formula? [9] 
 

(16) Does neutrino mass correspond to the Koide mixing matrix? [10] 
 

(17) Does Dirac’s new electron theory in 1951 reconcile the quantum 
mechanical view with the classical electrodynamics view of the 
electron? [11] 

 
(18) Is it possible to explain anomalous ultraviolet hydrogen spectrum?  

 
(19) Is there quaternion-type symmetry to describe neutrino masses? 

 
(20) Neutrino oscillation problem. Is it possible to describe neutrino os-

cillation dynamics with Bogoliubov-deGennes theory, in lieu of us-
ing standard Schrödinger-type wave equation? [6] 

 
(21) Solar neutrino problem – i.e. the seeming deficit of observed solar 

neutrinos. [17] The Sun through fusion, send us neutrinos, and the 
Earth through fission, antineutrinos. But observation in Super-
Kamiokande etc. discovers that the observed solar neutrinos are not 
as expected. In SuperKamiokande Lab, it is found that the number 
of electron neutrinos which is observed is 0.46 that which is ex-
pected [20]. One proposed explanation for the lack of electron neu-
trinos is that they may have oscillated to muon neutrinos.  

 
(22) Neutrino geology problem. Is it possible to observe terrestrial neu-

trino? The flux of terrestrial neutrino is a direct reflection of the 
rate of radioactive decays in the Earth and so of the associated en-
ergy production, which is presumably the main source of Earth’s 
heat [17]. 

 
(23) Origin of electroweak symmetry breaking. Is it possible to explain 

the origin of electroweak symmetry breaking without the Higgs 
mechanism or Higgs particles? For an example of such alternative 
theory to derive boson masses of electroweak interaction without 
introducing Higgs particles, see E. Goldfain [16]. 

 
(24) Quarks and QHE problem. Is it possible to write quaternionic for-

mulation of quantum Hall effect? [18] Is it possible to describe 
charge quantization problem of quarks (see problem no. [13] and 
[14]) from the viewpoint of FQHE? If yes, then how? 

 
(25) Orthopositronium problem. What is the dynamics behind ortho-

positronium observation? [12] 
 

(26) Is it possible to conceive New Energy generation method from or-
thopositronium-based reaction? If yes, then how? 

 
(27) Muonium problem. Muonium is atom consisting of muon and elec-

tron, discovered by a team led by Vernon Hughes in 1960. What is 
the dynamics behind muonium observation? [13]  
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(28) Is it possible to conceive New Energy generation method from 

muonium-based reaction? If yes, then how? 
 

(29) Antihydrogen problem. Is it possible to conceive New Energy gen-
eration method from antihydrogen-based reaction? If yes, then 
how? [14] 

 
(30) Unmatter problem. Would unmatter be more useful to conceiving 

New Energy than antimatter? If yes, then how? [21] 
 
It is our hope that perhaps some of these questions may be found interest-
ing to motivate further study of elementary particles. 
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Abstract
Various unsolved conceptual problems and anomalies challenging

the basic assumptions of recent day theoretical physics are discussed
and their solutions in the framework provided by Topological Ge-
ometrodynamics (TGD) are proposed.

1 Introduction

Roughly 23 years after the first super-string revolution theoretical particle
physics has entered into a state of deep stagnation. The basic prediction
of M-theory is that one cannot predict aneything. Neither particles masses
nor fundamental symmetries nor even the dimension of space-time. Instead,
one must take all physics we know as completely accidental aspects of a
particular vacuum we happen to live. There is no empirical evidence for
different gauge groups and different space-time dimensions in the known
part of cosmos and even atomic spectra seem to be same everywhere but
this little empirical detail does not seem to bother M-theorists.

The reasons for the frustrating and unforeseen situation are manifold.
Sociological factors are certainly important: after the super string revolution
super string models became the only game in the town and the communica-
tion of competing theories became gradually more and more difficult. The
outcome is the endlessly repeated claim that there are no known competitors
for neither existing cosmological scenarios nor for string theory and we must
be happy with what we have. Nothing could be farther from truth. There
exist highly developed competing theories but the arrogance of academic
hegemony prevents very effectively their communication.

Second strange claim is that the basic problem of standard model is that
it works too well so that one must just patiently wait what LHC will give to
us. Also this belief reflects deep ignorance: even restricting the attention to
the narrow realm of elementary particle physics one finds a rich spectrum
of conceptual difficulties and anomalies.

To my opinion the situation reflects deeper problems related to the break-
down of the naive reductionistic belief that the progress in physics is march-
ing down to shorter and shorter scales and that Planck scale is under reach
now. More generally, ”philosophy” has been synonym for bad physical think-
ing since the establishment of quantum theory with the consequence that
theoretical physics has reduced to a blind computation without deeper un-
derstanding of the underlying theory.

In the following I shall summarize my view about general problems with
emphasis also to what might be ridiculed as ”philosophical” problems and
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represent a list of anomalies the understanding of which I believe to be
very relevant for progress in physics. I do not bother to pretend that I
happened to discover these problems and anomalies just yesterday because
I have used all 28 years of my professional life to develop solution of these
problems in the conceptual framework provided by what I call Topological
Geometrodymamics (TGD), and I see nothing crackpottish in representing
TGD as one possible approach to these problems.

2 The problems related to energy

It it is could to start with conceptual problems related to the notion of
energy since they relate very intimately to many other problems in TGD
framework.

2.1 Energy problem of General Relativity

One might think that the notion of energy has been understood for long time
ago: energy and various conserved quantities are Noether charges related to
various symmetries. This nice picture however fails in the case of General
Relativity since the Poincare symmetries of empty Minkowski space allowing
to identify basic conserved quantities are lost since matter makes space-time
curved. One can speak only about energy and momentum densities but not
about conserved (or even non-conserved) quantities.

TGD [A1, A2] emerged as a possible solution to the problem. If space-
times are representable as 4-surfaces of 8-D imbedding space H = M4×CP2

then Poincare symmetries can lifted to those of M4 factor of H. Even more,
the symmetries of the standard model can be understood as symmetries of
CP2 factor. Color symmetry corresponds to isometries of CP2 and color
becomes orbital angular momentum like quantum number rather than spin
like quantum number; electro-weak symmetries correspond to the holonomy
group of spinor connection of CP2 and are automatically broken symme-
tries; the two chiralities of imbedding space spinors correspond to conserved
baryon and lepton numbers so that proton instability plaguing GUTs and
string models is not a problem of TGD.

A geometrization of various gauge fields emerges in terms of induced
gauge fields and the problem of understanding the CP2 explains the origin
of standard model symmetries. Later work has demonstrated that M4×CP2

has deep number theoretical meaning related to the classical number fields.
The extension of conformal invariance of string models in turn fixes space-
time dimension to D = 4 and forces Minkowski space factor of H to be
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just four-dimensional Minkowski space M4. Thus quite an impressive list of
problems encountered by unifier is solved by a solution to single fundamental
problem.

2.2 The relationship of gravitational and inertial masses

Equivalence Principle stating that inertial and gravitational four-momenta
are identical is the basic tenet of General Relativity. The fact that gravita-
tional mass is not conserved in cosmology suggests the breaking of Equiva-
lence Principle in long time scales in TGD Universe.

This is indeed true. One can identify expressions for gravitational mo-
menta and for gravitational counterparts of all quantum numbers as Noether
currents but they are not conserved anymore. Equivalence Principle holds
true at elementary particle level but there also violations of it are predicted:
in particular very general class of cosmic string type extremals of field equa-
tions with vanishing inertial quantum numbers but with a huge density of
gravitational mass exist. Gravitational mass can be also negative which
would bring in antigravity type effects indeed crucial in the TGD based
model for large voids and of cosmic expansion.

2.3 Some problems of cosmology

Cosmology is plagued by many other problems besides those already men-
tioned.

a) Why the mass density is very nearly critical rather than the huge
density expressible in terms of Planck mass which is the only purely gravi-
tational mass scale.

b) Inflationary cosmologies explained the absence of horizons in the very
early cosmology and thus isotropy of microwave background and predicted
correctly the flatness of 3-space. Unfortunately inflationary cosmologies are
highly non-unique and require new Higgs type fields with very un-natural
potentials.

c) Second law of thermodynamics predicts that early universe should
have low entropy whereas very early cosmology suggests maximum entropy.
Matter antimatter asymmetry and the origin of magnetic fields encountered
everywhere in cosmos are further mysteries of the standard cosmology.

The first thing to do in order to test a new theory is to do cosmology
[D6]. The surprise was that the imbeddings of Robertson-Walker metrics had
very nice features following just from the imbeddability with no reference to
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dynamics. For instance, global imbeddings have always sub-critical density
of gravitational mass density.

Critical and over-critical cosmologies turned out to be determined apart
from a parameter determining their duration and predict accelerating cos-
mic expansion since pressure is negative for these solutions. Therefore ac-
celerating cosmic expansion is an unavoidable prediction and dark energy
is replaced with dark matter in TGD Universe. The remaining challenge is
to understand detailed mechanisms. Critical cosmologies have no horizons
and the 3-space is flat for them so that the basic prediction of inflation-
ary cosmologies results. The scale invariant spectrum of fluctuations of
the microwave background temperature is replaced with quantum critical
fluctuations also independent of scale. This a beautiful example of the uni-
versality of the dynamics of TGD implied by its quantum criticality fixing
the value of Kähler coupling strength, the only coupling parameter of theory
and analogous to critical temperature.

Many-sheeted space-time means quite a dramatic generalization of the
space-time concept. For instance, 4-D objects that I call cosmic strings
[D5] having 2-D M4 projection and gigantic density of magnetic energy are
fundamental solutions of field equations and assumed to dominate primordial
cosmology and give rise to the ordinary matter as radiation. This indeed
means low entropy during the primordial period.

The deformations of cosmic string having finite thickness in M4 gives
rise to a fractal hierarchy of magnetic fields in cosmological scales so that
the origin of magnetic fields is understood.

The hypothesis that cosmic string like objects contain the antimatter and
their exteriors the matter provides the simplest solution to matter antimat-
ter asymmetry. The small Kähler electric fields necessary resulting in the
deformation of the vacuum surrounding cosmic strings to non-vacuum yield
the perturbation producing a small CP breaking implying that the densities
of matter and antimatter are not quite the same and after annihilation only
matter remains in the exterior of strings.

3 Anomalies challenging reductionism

3.1 The problem of dark matter

The problem of dark matter is certainly the problem number one in the
recent day cosmology and particle physics and challenges also the reduc-
tionistic picture. Modifications of General Relativity and all kinds of exotic
particles have been proposed as a solution. Accelerated expansion com-
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plicates the situation even more. The explanation of accelerated expansion
based on cosmological constant requires also the identification of dark energy
(quintessence in models assuming exotic matter with negative pressure).

A possible solution of the problem comes from totally different direction.
There is evidence for Bohr quantization in astrophysical systems [16] with
a gigantic Planck constant. If genuine quantal effects are in question this
means that Universe is macroscopic quantum system in astrophysical scales
and reductionistic vision fails completely.

Already classical TGD predicts the existence of macroscopic quantum
phases in all length scales if one accepts quantum classical correspondence
stating that space-time sheets serve as space-time correlates of quantum co-
herence regions. This led to the idea that Planck constant has a spectrum
of quantized values forcing a further generalization of the notion of imbed-
ding space with a tentative interpretation of dark matter as macroscopic
quantum phases with value of Planck constant different from the standard
one [D7, D8]. Visible matter would condense around dark matter and make
quantal structures visible. Zero energy ontology is absolutely essential for
this vision.

Macroscopic quantum coherence is realized in cosmological length scales
and quite a detailed quantum view about the evolution of astrophysical sys-
tems emerges. A key prediction is that stationary states do not co-expand
with cosmos in the classical continuous manner but by quantum jumps in
which the value of Planck constant increases so that the quantum size of
the system increases too. Accelerated periods of cosmic expansion governed
by critical cosmologies serve as correlates for quantum critical phases cor-
respond to these periods. The choice of quantization axes on cosmological
length scale should be visible in the cosmic microwave spectrum and might
be identifiable as ”axis of evil” [25].

3.2 Biology as the mother of all anomalies

Forgetting for a while dogmas and trusting on intuition almost anyone would
say that living matter represents a prototype of an obviously quantal system.
Skeptics however argue that bio-systems are in practice completely classical
and deterministic albeit nonlinear, complex, and initial value sensitive.

There are several laboratory effects challenging this view. Quantal ef-
fects of ELF em fields on vertebrate brain is a well-established anomaly
dating back to seventies [17]. Large Planck constant for ELF photons would
allow their energies to be above thermal threshold and thus explains their
non-trivial effects: the obvious application is model of EEG [M3]. The nat-

7

137

vic
Rectangle



ural hypothesis is that dark matter makes living matter living by quantum
controlling visible matter condensed around it. Also the notion of field body
implied by the topological field quantization forced by the new view about
space-time is essential: magnetic body contains Bose Einstein condensates
of biologically important ions.

The large parity breaking effects manifesting themselves as chiral selec-
tion of molecules are a further anomaly difficult to understand in standard
model predicting extremely small violations of parity invariance. The pres-
ence of scaled up variants of weak interactions would explain chiral selection
elegantly and this fits also nicely with the fact that Compton lengths of
neutrinos are of order cell size.

3.3 Nuclear physics anomalies

There are also nuclear physics anomalies challenging the naive reductionistic
picture. Cold fusion has made a return [23] and there is now quite clear
experimental support for cold fusion in deuterium-deuterium systems. Also
selection rules are identified but they differ from those of standard nuclear
physics. A second strange finding is the dependence of nuclear decay rates on
electronic environment which challenges the dogma that atomic and nuclear
physics are complete separated realms [22].

These findings can be understood in TGD framework on basis of p-adic
length scale hierarchy and dark matter hierarchy [F8, F9]. Classical TGD
predicts that long range electro-weak and color gauge fields exist in all length
scales and quantum classical correspondence leaves no other conclusion than
the existence of scale up copies of electro-weak physics and hadron physics.
The strong prediction is that TGD Universe is a fractal populated by zoomed
up variants of various physics. The application of this picture to high Tc

super-conductivity involves exotic very light quarks and zoomed up electrons
in nanometer length scale [J1].

4 Some problems of particle physics

4.1 How to understand the ratio of proton and Planck masses?

The ratio of proton mass to Planck mass determines the mystery number
of recent day particle physics. In TGD framework the solution of the prob-
lem emerged by a rather accidental looking observation that square roots of
Mersenne primes Mn = 2n − 1, n = 89, 107, 127 gave the ratios of interme-
diate boson, hadron, and electron mass scales to CP2 mass which is roughly
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10−4 smaller than Planck mass and fixed for instance by the tension of cos-
mic strings assuming that their gravitational fields explain galactic rotation
curves [26].

This led to the idea that p-adic thermodynamics assuming super-conformal
invariance and assumption of p-adic length scale hypothesis stating that
primes near powers of 2 are physically preferred (the survivors in the evo-
lution at elementary particle level) might be powerful enough to predict
elementary particle mass spectrum. This turned out to be the case [F2, F3].

The necessity to fuse various p-adic physics and real physics to a larger
whole led to a generalization of number concept by fusing reals and vari-
ous p-adic number fields to a larger structure along common rationals and
algebraics. The notion of space-time sheet generalizes also and the interpre-
tation of p-adic space-time sheets is as space-time correlates for cognitions
and intentions, the mind stuff of Descartes [E1].

p-Adic thermodynamics also suggests a solution to the problem of un-
detected Higgs [F5]. The theory predicts that in the case of gauge bosons
Higgs gives dominating contribution to gauge boson mass but in case of
fermions Higgs contribution most naturally vanishes and thermodynamic
contributions determines the mass. Thus the couplings of fermions to Higgs
can be very small and therefore the rate for Higgs production via fermion
vertices can be much lower than in standard model.

4.2 Problems of QCD

When QCD [24] emerged after the failure of the hadronic string model and
transcendence to a theory of everything, people decided that QCD gives all
of hadron physics. There is however no guarantee that non-perturbative
QCD - even if it exists - really describes low energy hadron physics. For
instance, quark masses contribute only about 75 per cent to baryon mass
and quark contribution to the proton spin is more or less identical to zero.
Strong CP breaking is a further fundamental problem of QCD and solved
by hand by introducing pseudoscalar particle christened as axion and tai-
lored to have couplings cancelling strong CP breaking and requiring ex-
tension of standard model gauge group [27]. The third problem relates to
C(abibbo)K(obayashi)M(askawa) mixing [28]: is there some deeper mecha-
nism behind it?

TGD provides answers to this questions. Hadronic string model like
structure emerges naturally from TGD: classical quarks can be said to topo-
logically condense on 3-D string like objects. At quantum level one intro-
duces so called super-canonical quanta carrying only color and spin and
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dominating the masses of baryons and heavier mesons [F4]. The resulting
mass predictions have errors of order per cent. It is however essential that
the p-adic mass scale of quark depends on hadron (note that the scale is
exponentially sensitive to integer k defining it so that curve fitting is not
possible). Also the mass scales of neutrinos are found to depend on their
energy (or ”environment”) [29]. The large variations of effective mass of
electrons in condensed matter might also have explanation in terms of the
dynamical p-adic length scale of electron.

TGD predicts vanishing strong CP breaking (recall that color is not spin
like quantum number in TGD). CKM mixing in turn reduces to a topological
description of family replication phenomenon: fermion families correspond
to different handle numbers for partonic 2-surfaces and one can understand
why only three lowest genera are light. CKM mixing is induced by the
topological mixing of different topologies of partonic 2-surface.

Instead of axion TGD predicts entire hierarchy of copies of QCD type
physics and corresponding pions which might be experimentally confused
with axion. In particular, also leptons should possess color excitations and
thus lepto-pions could exist [F7]. There is considerable experimental support
for pseudo scalars with mass slightly above 2me [20]. Recently also evidence
for pseudoscalar with mass slightly above 2mµ emerged [21]. TGD based
model of nuclear physics in turn relies on color bonds connecting nucleons
having quarks with mass scale of order 1 MeV at their ends [F9].

5 Some more philosophical problems

5.1 How to make observer a part of physical system?

The objectivity postulate has led to a weird idea that the notion observer
should be eliminated completely from physics. The standard quantum mea-
surement theory achieves this strange goal only partially: observer is an
outsider not effected by physics but affects the microscopic systems by in-
ducing state function reduction.

One could however adopt a more ambitious attitude and ask how to
bring observer to quantum physics. This means nothing but building a
quantum theory of consciousness. The natural starting point is the basic
paradox of quantum measurement theory: if state function corresponds to
something occurring at the level of space-time level or Hilbert space it means
a breakdown of determinism of Schrödinger equation and this is definitely
not acceptable.
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If one allows non-determinism associated with the state function reduc-
tion, one must be able to do it without losing the deterministic fundamental
equations. In TGD framework this can be done [10, H1]: quantum jump
occurs outside space-time and Hilbert space between entire ”time evolutions
of Schrödinger equation”. At classical level entire 4-D space-time is replaced
with a new one. This changes dramatically the view about time since both
geometric past and future are recreated in quantum jump identified as a
moment of consciousness in TGD inspired theory of consciousness.

Note that if Universe were fully deterministic (or if the failure of deter-
minism can be neglected in macro scales) the question about the initial state
of Universe is encountered and cannot be answered within framework of ex-
isting physics. Now this problem disappears. This particular big bang asso-
ciated with our particular sub-cosmology defines only the time-like boundary
of one particular classical space-time sheet, not the first moment of conscious
existence. Furthermore, one cannot speak about the first quantum jump,
literally infinite number of quantum jumps has already taken place.

5.2 What are the values of conserved quantities?

Even if one accepts the proposed ontology one still encounters the problem
of predicting the values of conserved quantities like energy, fermion numbers,
electric charge and one cannot do this in the framework of existing physics.

The solution to this problem comes from a solution to a longstanding
problem of TGD. The problematic feature of the imbeddings of RW cos-
mologies was that they were vacuum extremals with respect to conserved
inertial energy. The eventual interpretation was in terms of zero energy
ontology [C2].

All physical states are creatable from vacuum meaning that they have
vanishing total conserved charges and consist of positive and negative energy
parts. At space-time level positive and negative energy parts corresponds
to the past and future boundaries of space-time sheets defining the basic
building bricks of many-sheeted space-time surface. In particle physics ex-
periments positive and negative energy states correspond to initial and final
states of particle reaction.

Positive energy ontology can be understood as a limiting case when the
time scale of perception is short with respect to the temporal span of the
space-time sheet associated with the zero energy state. Energy and other
conserved quantum numbers depend on the scale of resolution. The impli-
cations of this view are profound for technologies related to energy, commu-
nication, and control since negative energy signals propagating to geometric

11

141

vic
Rectangle



past become possible [G2]. Also thermodynamics must be modified.

5.3 How subjective and geometric time relate?

The relationship between experienced (subjective) time and geometric time
is one of the fundamental problems of physics. These times are definitely
quite different (tim has arrow/no arrow, future does not exist yet/both
future and past exist). The identification of subjective time as a sequence of
quantum jumps resolves this problem if one can assign to a given moment
of subjective time a value of geometric time [H1]. This time corresponds
naturally to a time parameter assignable to a space-time sheet representing
zero energy system assignable to observer’s conscious experience [H7].

5.4 Problems related to the basic conceptual framework of
quantum physics

5.4.1 The relationship between quantum and classical physics

The relationship between quantum and classical is on rather shaky grounds
in standard quantum theory and relies on stationary phase approximation
for functional integral which itself is mathematically ill-defined. It is however
clear that classical theory is an absolutely essential element of the interpre-
tation of quantum theory and in TGD framework this is the case.

The basic definition of the geometry of the world of classical worlds
(light-like 3-surfaces in H) assigns to any 3-surface 4-D space-time sheet
defining what might be called classical physics. The ill-defined path integral
is replaced with functional integral which exists mathematically and is free
of infinities thanks to the enormous symmetries of the geometry of world of
classical worlds and non-local dependence on 3-surface. The emerging view
is that light-like partonic surfaces (3-D generalization of random light-like
curves) correspond to quantum physics and space-time interior characterizes
the classical physics providing a representations of it (not 1-1 however).
That light-like 3-surface can be seen as random light-like orbit of parton
is consistent with zero energy ontology in which physical state has a dual
interpretation as a transition.

5.4.2 Is it possible to unify quantum theory and thermodynam-
ics?

To even start building theories one must believe on something. That unitary
S-matrix and correlation functions code for all that is interesting in quantum
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physical system represent the basic beliefs of quantum theorist. To achieve
something practical one needs also statistical physics and density matrix but
statistical ensembles are regarded as a practical fiction of the theoretician.
TGD forces to challenge also these beliefs.

The first point is that in zero energy ontology S-matrix, or rather, its
generalization, which might be called M-matrix- does not characterize uni-
tary time evolution as in standard physics approach having roots in non-
relativistic Hamiltonian mechanics. M-matrix characterizes zero energy
state rather than state evolution by giving the coefficients of time-like entan-
glement between positive and negative energy parts of the state interpreted
in the experimental situation as initial and final states of a particle reaction.

A unification of S- and density matrices results as M-matrix defined as a
product of the positive square root of density matrix and unitary S-matrix.
It is still an open problem whether S-matrix is universal or whether it de-
pends on some general properties of the system characterizing its ”phase”.
In any case, the gigantic symmetries of quantum TGD, its quantum critical-
ity, and finiteness requirement should fix S to a high degree. This approach
also unifies thermodynamics with quantum theory: thermal density matrix
represents a zero energy state for which the energy of positive energy part
of state has thermal distribution. Also the problematic coherent states of
Cooper pairs appearing in super-conductivity and having ill define fermion
number, charge and mass generalize to completely well-defined zero energy
states and their is no breaking of conservation laws.

5.4.3 How to introduce measurement resolution to quantum mea-
surement theory?

Standard quantum measurement theory does not involve the notion of finite
measurement resolution at the level of the basic mathematical formalism.
The work with von Neumann algebra known as hyper-finite factors of type
II1 (HFFs) emerging naturally besides factors of type I of wave mechanics
describing systems with finite number of degrees of freedom led to a modi-
fication of quantum measurement theory allowing to describe measurement
resolution in terms of so called inclusions N ⊂M of HFFs [C8, C9, C3].

The idea is simple: the included subalgebra describes measurement res-
olution, which means that complex rays of Hilbert space are replaced by
subspaces generated by the action of N algebra, N rays. Complex numbers
are thus replaced with non-commutative algebra N and quantum groups
and non-commutative variants of Hilbert space usually thought to relate to
Planck scale physics emerge naturally.
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5.5 The ultimate question: How to get rid of theory-reality
dualism?

Sooner or later theoretician encounters the really frustrating question ”What
about mathematics: does it define a separate reality besides material real-
ity?”.

This kind of theory-reality dualism is avoided in TGD framework. Quan-
tum states as mathematical objects - ”theory” - is only what exists in ob-
jective sense and quantum jumps between them give rise to conscious expe-
riences defining the mathematician. There is no need to postulate material
reality behind these mathematical structures.

This of course poses very strong self consistency conditions: the math-
ematical structure of the physical theory must be such that all internally
consistent mathematical structures are representable physically. In particu-
lar, the universe must be analogous to a universal computer able to emulate
any sensible physics, say that predicted by a gauge theory defined by a given
gauge group (if indeed mathematically self-consistent). The dualities of M-
theory (and of TGD [E2]) might be seen as manifestations of this emulation
ability. Furthermore, the hierarchy of Planck constants suggests that any
ADE type gauge group can appear as a gauge symmetry of an ”engineered”
physical system in TGD [C9].

The mathematical structure of TGD even in its recent form gives some
hopes of achieving the universality. Consider only the generalization of num-
ber concept by fusing real and p-adic numbers [E1] and the generalization
of the imbedding space to accommodate the hierarchy of Planck constants
[C9].

The notion of infinite prime [E3] in turn leads to what might be called
number-theoretic Brahman=Atman identity, algebraic holography, or a real-
ization of Leibnizian monadism. A given real number has an infinite number
of number theoretical anatomies realized as units in real sense so that sin-
gle space-time point can in principle represent quantum states of the entire
Universe and points of the world of classical worlds as its number theoretic
anatomies. Self-reference loop thus closes: the 8-dimensional imbedding
space with points replaced with monads becomes the fundamental struc-
ture. The evolution of the number theoretic anatomies of space-time points
becomes part of the evolution by quantum jumps.
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6 Conclusions

The arguments above should make clear that physics as described by stan-
dard model is far from complete and there are good reasons to suspect that
reductionistic dogma is the reason for the recent stagnation. Perhaps the
time is soon ripe for replacing Universe as a dead deterministic clockwork
with a Universe which is fractal creatable from vacuum by intentional action
and replaced by a new one in each moment of consciousness.
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Abstract: 

Quantum field theories lead in general to a large number of coupled nonlinear equations. Solving field 

equations in analytic form or through lattice-based computations is a difficult task that has been only 

partially successful. We argue that the theory of nonlinear dynamical systems offers valuable insights and a 

fresh approach to this challenge. It is suggested that universal transition to chaos in nonlinear dissipative 

systems offers novel answers to some of the open questions surrounding the standard model for particle 

physics.  

 

Overview and motivation - Quantum Field Theory (QFT) is a mature conceptual 

framework whose predictive power has been consistently proven in both high-energy 

physics and condensed matter phenomena [1-3]. From a historical perspective, QFT 

represents a successful synthesis of quantum mechanics and special relativity and 

consists of several models. Among these, gauge theories play a leading role. The standard 

model (SM) is a subset of QFT whose gauge group structure includes the electroweak 

and strong interactions of all known elementary particles. SM is a robust theoretical 

framework, however, it contains some 20 adjustable parameters whose physical origin is 

presently unknown and whose numerical values are exclusively fixed by experiments. 
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Non-abelian gauge theories are essentially nonlinear field models. Quantizing this class 

of models is a nontrivial effort and raises a series of theoretical challenges [4-6]. For 

example, no complete quantum version of classical gravity exists. Quantum 

chromodynamics (QCD) is considered a reliable field theory at short distances but 

because its coupling constant becomes large in the infrared sector, standard perturbative 

techniques do not apply.  At present, there is no universal prescription for deriving and 

handling closed-form solutions of QCD field equations. This is in manifest contrast with 

quantum electrodynamics (QED) and the electroweak theory, where perturbative methods 

are applicable and analytic results possible. In general, dealing with closed-form 

solutions of field theories is seldom a practical alternative. For example, Heisenberg’s 

nonperturbative quantization procedure [7, 8] or Schwinger-Dyson formalism [9] lead to 

an infinite set of coupled differential equations which connect all orders of Green’s 

functions. This system does not have analytic and uniquely determined solutions. In these 

instances, one seeks plausible assumptions that simplify the equations or employs 

suitable numerical techniques for approximation. 

In its traditional form, one frequently cited shortcoming of QFT is its inherent limitation 

in dealing with the effect of highly unstable fluctuations or with a dynamics regime that 

is driven far away from equilibrium [10, 11, 23]. In general, pattern formation is possible 

in out-of-equilibrium physical systems that are open and nonlinear [12, 14, 16]. Within a 

closed system patterns may only survive as a transient and die out as a result of the 

relaxation towards equilibrium. It is for this reason that traditional QFT, with few notable 

exceptions, is largely unable to properly detect and characterize pattern formation. Recent 

years have shown that pattern formation is relevant to a wealth of applications ranging 
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from reaction-diffusion processes, nonlinear optics, nanostructures and fluid mechanics 

to hot plasma, traffic models, epidemic spreading, transport in heterogeneous media and 

neural networks. [12, 13, 26]  

Understanding non-equilibrium phenomena and pattern formation is still in its infancy. 

Progress in this field has benefited from tools that have been recently developed for 

nonlinear dynamics, bifurcation and stability theory [12, 15-17, 27, 28, 32]. Our goal here 

is to explore the far from equilibrium sector of field theory using some of these newly 

developed methods. The underlying motivation is that nonlinear dynamics brings novel 

insights and a practical alternative for the analysis of field equations. 

The paper is organized as follows: working at a classical level, we start from a non-

equilibrium “toy” model containing an abelian gauge field coupled to a massless scalar 

field. The concept of universality and the emergence of CGLE are discussed in the next 

section. Mass generation through period-doubling bifurcations of CGLE and the link 

between CGLE and the generalized exclusion statistics (GES) follow from these 

premises. Summary and concluding remarks are detailed in the last section.  

Our contribution needs to be exclusively regarded as a preliminary research on the topic. 

It is neither fully rigorous nor comprehensive. We wish to convey a new qualitative view 

rather than an in-depth analysis of phenomena. Independent studies are required to 

confirm, expand or refute these tentative findings. 

A “toy” model in non-equilibrium field theory - As mentioned earlier, nonlinear field 

theories amount to a large set of coupled differential equations that are difficult to solve 

or manage through numerical approximations. The universal nature of nonlinear 

dynamics near the threshold of the primary instability [see e. g. 13] suggests a shortcut 
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route. One can start from a plausible “toy” model and generalize results to more realistic 

theories. One example of such a “toy” model of classical field theory describes an abelian 

gauge field ( , )a x tµ  in interaction with a massless scalar field ( , )x tϕ . The lagrangian 

density reads [18] 

                                                     
21

4
F F Dµν
µν µϕ= − +L                                                (1) 

Here, , 0,1,2,3µ ν =  denote the space-time index, 1 2 3( , , )x x x x=  the spatial coordinate, 

F µν  the gauge field tensor, e  the coupling constant and  

                                                          D ieaµ µ µ= ∂ +                                                         (2)  

the operator of covariant differentiation. Field equations derived from (1) are given by 

( ) 0D Dµ
µϕ =  

(3)          
2 22F e aν

µν µϕ∂ =    

Developing (3) yields 

2( )ie a a a e a aµ µ µ µ
µ µ µ µϕ ϕ ϕ ϕ ϕ= − ∂ + ∂ − ∂ −�  

(4)  
2 22a a e aν

µ µ ν µϕ= ∂ ∂ −�      

where 
2 2

2t
∂= −∇
∂

�  is the d’Alembert operator. To further streamline the derivation and 

highlight the basic argument, we proceed by assuming that the gauge field satisfies  

                                                      0iaµ∂ =  for 1, 2,3i =                                                   (5)                              

If 0a  denotes the temporal component of the gauge field, the system (4) can be brought to 

the generic form of a coupled system of partial differential equations 

0ϕ η∂ =   
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0 0( , , , , ,...)f aη η ϕ ξ η∂ = ∇  
(6) 

0 0a ξ∂ =  

0 0( , , , , ...)g aξ η ϕ ξ η∂ = ∇  

in which (...)f  and (...)g  are time-evolution functions and 0 t
∂∂ = ∂ . (6) may be 

presented in vector form as 

                                                        0 ( , ,...)U∂ = ∇u u u                                                      (7) 
 

where 0( , , , )aη ϕ ξ=u . We next posit that transition to non-equilibrium in (7) is 

controlled by a small external parameter 1ε �  . This parameter is continuously 

adjustable and measures the departure from equilibrium ( 0cε = ). Accordingly, (7) 

becomes 

                                                      0 ( , ,..., )U ε∂ = ∇u u u                                                     (8)   

The physical content of ε  depends on the context of the problem at hand. In open 

systems ε  encodes the combined effect of environmental and internal fluctuations [19]. 

Critical behavior in continuous dimension identifies ε  with the Wilson-Fisher parameter 

of the regularization program ( 4 )dε = −  [20, 21]. In models involving fractional 

dynamics, ε  characterizes the range of non-local interactions in space or the extent of 

temporal memory [22, 24, 25, 32]. 

Universality and CGLE - Non-equilibrium processes such as (8) display remarkable 

universality. Regardless of the specific application, macroscopic patterns that develop 

near the threshold of a dynamic instability are robust and largely insensitive to 

microscopic fluctuations [12, 13, 26].  

155

vic
Rectangle



 6

Since one is familiar with the language of harmonic oscillations, we are interested in the 

simplest bifurcation in the dynamics of ( , )x tu  that creates oscillatory behavior. This is 

known as a Hopf bifurcation and represents the simplest transition that leads from a focus 

point to a periodic behavior. As the bifurcation point is approached, the focus point 

becomes unstable and gives rise to a harmonic limit cycle. CGLE is a universal model 

that holds for all pattern forming systems undergoing a Hopf bifurcation [12, 13]. The 

theory of the reduction to CGLE from generic systems of autonomous nonlinear 

equations such as (8) has been developed by several authors. The derivation of CGLE for 

a 1+1 dimensional system starts from the ansatz 

                                  %
0 1( , ) ( , ) exp[ ( ] . .c cx t A x t i k x t c c= + −Ω +u u u%                                  (9) 

where %,x t%  represent slow variables and ,c ck Ω  are critical values in wave-number and 

frequency spaces. Replacing in (8), dropping the tildes and expanding in power series of 

the small parameter % cε ε ε= −  leads to CGLE in its standard form 

                                      
22

1 3(1 ) (1 )t A A ic A ic A A∂ = + + ∇ − −                                        (10) 

Here,  

                                              ( , ) ( , ) exp[ ( , )]A x t x t i x tρ= − Φ                                           (11)                              

is a complex-valued amplitude defining the slow modulation in space and time of the 

underlying periodic pattern. The real parameters 1 2,c c  denote the linear and nonlinear 

dispersion parameters, respectively. The limit 1 3, 0c c → corresponds to the real 

Ginzburg-Landau equation, whereas 1 1
1 3, 0c c− − →  recovers the nonlinear Schrődinger 

equation. 
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Higgs-free generations of particle masses - Among the simplest coherent structures 

generated by CGLE are plane-wave solutions having the form [12, 13] 

0( , ) exp[ ( )] .A x t A i qx mt c c= − + +  
(12) 

2
0 1A q= −  

The frequency m  satisfies the dispersion equation 

                                                      2 2
1 3(1 )qm c q c q= − −                                                 (13) 

and [ 1,1]q∈ −  represents the phase gradient of the complex amplitude (12) 

                                                               q = −∇ Φ                                                          (14) 

Linear stability analysis of (12) reveals that plane waves having a wave-number larger 

than the so-called Eckhaus threshold 

                                                   1 3
2
3 1 3

1
2(1 ) 1E

c cq
c c c
−

=
+ + −

                                              (15) 

are unstable with respect to the long-wavelength modulation. In particular, a vanishing 

Eckhaus threshold leads to the Benjamin-Feir-Newell (BFN) instability criterion (A1) 

                                                                 1 3 1c c =                                                             (16) 

The dispersion equation (13) has two complementary limits: 1q = ±  ( 0 0A = ) and 0q =  

( 0 1A = ± ). Arguments presented in Appendix A suggest a natural identification of these 

two modes with fermion and electroweak gauge boson fields, respectively. (14) implies 

that fermions have a non-vanishing and uniform phase gradient 0∇Φ ≠ , whereas gauge 

bosons have a uniform phase and a vanishing phase gradient 0∇Φ = . Although we have 

started from a massless model, from (13) and (16) it follows that both these modes 
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acquire non-vanishing masses. In non-dimensional form and near the BFN instability, the 

two sets of masses are 

1m c± =  
(17a) 

0 3m c= −  

such that 

                                                                 1
0m m −

± =                                                     (17b) 

It is known that plane-wave solutions consist of both positive and negative frequencies. 

Because mass is positive definite, in what follows we are limiting the discussion to the 

case 1 0c >  and 3 0c < . 

The Feigenbaum-Sharkovskii-Magnitskii (FSM) paradigm - The FSM paradigm of 

universal transition to chaos in nonlinear dissipative systems is briefly detailed in 

Appendix B. Extensive numerical data [27, 28] show that both parameters of linear and 

nonlinear dispersion 1 3,c c  of (17a) are distributed in a geometric progression, that is 

1, 1, 1

n

nc c K δ
−

∞= +   
(18) 

3, 3, 2

n

nc c K σ
−

∞= +  

where δ , σ  are scaling constants and 1, 2,3....n =  represents the number of cycles 

accumulated through bifurcations. Since 1 2, ,K K 1,c ∞  and 3,c ∞  are independent of n , they 

can be both absorbed into a redefinition of masses. We have, accordingly: 

, 1,
1

1 ( )n nm m c
K

∗
± ∞= −  

(19) 

0, 3,
2

1 ( )n nM m c
K ∞= −  
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The ratios of two arbitrary masses in the bifurcation sequence take the form: 

pn

n p

m
m

δ
∗

∗
+

=  

(20) 
pn

n p

M
M

σ
+

=  

in which 2kp =  , 1, 2,3....k =  Based on (17) it can be concluded that, near the BFN 

instability, the two scaling constants are linked to each other. 

Analysis of the Renormalization Group flow for the real Ginzburg-Landau equation leads 

to the following relationship between δ  and σ  [24]: 

                                                 
12 21

2

11 ( ) 1 ( )M
M

σ
δ

− = − ≈                                                (21)   

where 1 2,W ZM M M M= =  are vector boson masses. Tab. 2 shows a side-by-side 

comparison between predictions inferred from (20) and experiment, where 3.9δ =  

represents the numerical value of the scaling constant that best fits laboratory data [30]. 

Actual values of particle masses, computed at the reference scale given by the mass of the 

top quark [31], are listed in Tab. 1. Note that the choice of the mass scale is completely 

arbitrary since (20) involves ratios of consecutive masses. 

Parameter Value Units 

um  2.12 MeV 

dm  4.22 MeV 

sm  80.90 MeV 

cm  630 MeV 

bm  2847 MeV 
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tm  170,800 MeV 

WM  80.46 GeV 

ZM  91.19 GeV 

                                            
Tab. 1: Actual values of elementary particle masses  

 
 

 

Tab. 2: Actual versus predicted mass scaling ratios for 3.9δ =  

CGLE and generalized exclusion statistics - Dispersion relation (13) indicates that 

plane-wave solutions of CGLE interpolate between gauge boson states ( 0)q =  and 

 
Parameter ratio

 
Behavior 

 
Actual 

 
Predicted 

u

c

m
m  

 

4
δ

−
 33.365 10−× 34.323 10−×  

c

t

m
m  4

δ
−

 33.689 10−× 34.323 10−×  

d

s

m
m  2

δ
−

 0.052  0.066 

s

b

m
m  2

δ
−

 0.028  0.066 

em
mµ

 4
δ

−
 34.745 10−× 34.323 10−×  

m
m

µ

τ
 2

δ
−

 0.061  0.066 

W

Z

M
M  11

2(1 )δ
−

− 0.8823 0.8623 
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fermion states ( 1)q = ± . From (13) and (14) it follows that the spin associated with an 

arbitrary mixed state is given by1  

                                                          
2( )1

2
σ ∇Φ
= −                                                        (24) 

From this standpoint, CGLE is remarkably similar to the framework describing quantum 

fractional statistics in condensed matter physics. In what follows we briefly discuss this 

analogy. The generalized exclusion statistics (GES) is motivated by the properties of 

quasi-particles occurring in the fractional quantum Hall effect [33, 34]. Consider a 

thermodynamic ensemble of N identical particles. Let d  represent the dimension of the 

one-particle Hilbert space obtained by fixing the coordinates of the remaining 1N −  

particles. The statistics of a particle is defined by the so-called Haldane’s parameter g , 

                                       ( ) ( ) ( )d N d N N d Ng
N N

∂ + ∆ −
= − ≈ −

∂ ∆
                                       (25) 

Because any given state can be populated by any number of bosons, ( ) ( )d N N d N+ ∆ =  

and hence 0g = . By contrast, the Pauli exclusion principle restricts fermions to 1g = . 

Quasi-particles with mixed statistics are characterized by an intermediate value of g  and 

are said to satisfy a generalized exclusion principle. In this case, it can be shown that 

thermodynamic quantities such energy, heat capacity or entropy can be expressed in 

factorized form. In particular, the energy of the quasi-particle ensemble is given by 

                                                 ( ) (1) (1 ) (0)E g gE g E= + −                                             (26)                               

An example of this type of objects is offered by anyons, quasi-particles that exist in two-

dimensions and carry fractional charges. When two particles of a system of bosons are 

                                                
1 Strictly speaking, spin is a concept that is valid only in a quantum or semi-quantum context. Since our 
analysis is carried out at the classical level, (24) is meant to simply denote a numerical attribute of plane 
waves dependent on the wave-number q . 
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exchanged, the phase of the system remains unchanged, whereas for a system of fermions 

it changes by exactly π . Exchanging two anyons results in a phase factor that falls 

between zero and π . Anyons play a key role in the fractional quantum Hall effect and 

high-temperature superconductivity [33, 34]. 

A short comparison between plane-wave solutions of CGLE and GES is included in the 

following table:  

CGLE GES 

q
x

∂ Φ
= −

∂
 

dg
N
∂

= −
∂

 

2 2
1 3 (1 )qm c q c q= − − (1) (1 ) (0)gE gE g E= + −

                                            
Tab. 3: Comparison between CGLE and GES 

Summary and conclusions - This brief report has been motivated by recent advances in 

nonlinear dynamics and complexity theory. Exploiting the universal theory of transition 

to chaos in nonlinear dissipative systems, we have found that: 

a) particles acquire mass as plane wave solutions of CGLE, without reference to the 

hypothetical Higgs scalar or to a particular symmetry breaking mechanism. 

b) starting from a basic model of abelian gauge bosons in interaction with scalar fields, 

CGLE leads to a natural separation of heavy non-relativistic modes ( 0q = ) from light 

relativistic modes of maximal group velocity ( 1)q = ± . The most straightforward 

interpretation of this result is that the first group of modes corresponds to electroweak 

gauge bosons and the second group to fermions.  

c) a direct connection may be set up between GES in condensed matter physics and the 

dispersion relation (13) corresponding to 1q ≠ . Although different in methodology and 
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content, both GES and CGLE point out that fractional quantum statistics and non-

equilibrium field theory enable a dynamic unification of gauge bosons and fermions as 

particles with arbitrary spin. This is in contrast with super-symmetry and related models 

[see e.g., 35] which are based on extended symmetry groups and pay virtually no 

attention to nonlinear dynamics of underlying fields. 

Future research may be focused on a deeper understanding of pattern formation and its 

ramifications in the realm of SM and beyond. Of key interest is the emergence of novel 

states in the TeV range of particle physics. This probing energy will become accessible in 

the near future at the Large Hadron Collider and other accelerator sites [36]. 

Appendix A - The two dispersion parameters of CGLE are subject to the following 

dynamic constraints [12, 13, 26]:  

a) the Benjamin-Feir-Newell (BFN) criterion states that stability becomes borderline for 

                                                               1 3 1c c =                                                              (A1)  

b) using (13), the group velocity of the plane wave solutions is given by  

                                                          1 3v 2 ( )g q c c= +                                                     (A2) 

Compliance with relativity bounds (A2) to a constant that represents the normalized value 

of light speed in vacuo. It is clear that 0q =  represents a slow mode (massive gauge 

boson), while 1q = ±  describes the fastest mode (relativistic fermions). Masses associated 

with these modes are supplied by (17).  From the BFN criterion it follows that the 

borderline value of the normalization constant ,maxv
2

gQ �  can be determined from 

 
2

1

4
2

2
Q Q

c Q
± −

= ⇒ ≥  

(A3) 
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3
1

1c
c

=  

(A1) and (A2) imply that, close to the border of BFN instability, gauge boson and 

fermion masses scale as dual entities.  This finding is consistent with the behavior of the 

last entry in Tab. 2. 

Appendix B - Consider the following boundary value problem for CGLE in 1+1 space-

time dimensions [27- 29]: 

22
1 3(1 ) (1 )t xA A ic A ic A A∂ = + + ∂ − −  

(B1) 
(0, ) ( , ) 0x xA t A L t∂ = ∂ = , 0( ,0) ( )A x A x= , 0 x L≤ ≤ , 0 t≤ ≤ ∞  

This model can be reduced to a three-dimensional system of nonlinear ordinary 

differential equations with the help of the Galerkin few-modes approximation: 

                               1 2( , ) ( ) exp[ ( )] ( ) exp[ ( )]cos ( )A x t t i t t i t x
L
πξ θ η θ≈ +                    (B2)                     

in which 

1 1 3( , , , , , )t f c c Lξ ξ η θ∂ =  

                                                   2 1 3( , , , , , )t f c c Lη ξ η θ∂ =                                               (B3)   

3 1 2( , , , , , )t f c c Lθ ξ η θ∂ =  

with 2 1( ) ( ) ( )t t tθ θ θ−� . It can be shown that the transition to chaos in (B3) occurs 

through a sequential cascade of bifurcations in three separate stages. This cascade starts 

with the Feigenbaum scenario of period-doubling bifurcations of stable cycles, followed 

by the Sharkovskii subharmonic cascade and ending with the Magnitskii cascade of 

stable homoclinic cycles. 
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Abstract

The cosmological constant problem continues to represent a major
challenge for theoretical physics and cosmology. The main difficulty
arises from the large numerical discrepancy between observational
limits of the cosmological constant and quantum predictions based on
gravitational effects of the vacuum energy. In this work we argue that
the experimental value of this constant may be recovered from the
dynamics of neutrino oscillations.

1. Introduction

The cosmological constant problem (c.c.p) represents one of the major
unresolved issues of contemporary physics [12]. A numerical discrepancy
of about 120 orders of magnitude exists between the theoretical and
observational values of this constant [2]. It is presumed that a presently
unknown symmetry operates in such a way as to enforce a vanishingly
small constant while remaining consistent with all accepted field-
theoretic principles. Several competing models attempting to resolve the
c.c.p coexist (for a review of some of the relevant literature on the subject
see [7-9] and references listed in [9]).
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ERVIN GOLDFAIN2

In this paper we argue that the observational value of the
cosmological constant emerges from the physics of neutrino oscillations.
Although the idea is not new (see e.g., [1] and references therein), our
treatment is built on a much simpler foundation. Unlike the approach
taken by previous authors, the model discussed here is exclusively built
on the relativistic dynamics of massive fermions, as expressed by the
standard Pontercovo formula [4]. The paper is organized as follows:
Section 2 highlights the quantum field viewpoint on the cosmological
vacuum and its difficulties. The derivation of the cosmological constant
from the dynamics of neutrino oscillations is discussed in Section 3.
Concluding remarks are outlined in Section 4. Two appendix sections are
included to make the paper self-contained. The first one is devoted to a
brief review of c.c.p and the second one to a short introduction to the
physics of neutrino oscillations and mixing.

2. Neutrino Oscillations as Vacuum Fluctuations on a Cosmic

Scale

The quantum origin of the c.c.p arises because the zero-point vacuum
energy diverges quadratically in the presence of gravitation. Standard
Quantum Field Theory in Minkowski space-time discards the zero-point
vacuum energy through the use of a normal time-ordering procedure [6].
Because vacuum energy gravitates and couples to all other field energies
present at the quantum level, cancellation of the zero-point term is no
longer possible when gravitation produces measurable effects.

We believe that the large discrepancy between theory and
observations in c.c.p is rooted in the fundamental incompatibility of
Quantum Field Theory and General Relativity with regard to the very

interpretation of the concept of vacuum. The vacuum of General

Relativity (v-GR) represents a state devoid of matter and energy on the

macroscopic scale, whereas the vacuum of Quantum Field Theory (v-QFT)
is associated with the lowest-lying state and the zero-point energy of all
fields present at the quantum level. Thereby, in order to avoid the pitfalls
of a full-blown quantum interpretation of the cosmological constant
problem, we start from a different perspective and posit that neutrino

oscillations represent experimental evidence for fluctuations of v-GR.
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DYNAMICS OF NEUTRINO OSCILLATIONS … 3

This argument is supported by the fact that, according to our current
knowledge, neutrinos are the lightest and the most stable lepton states
and that they are ultra-weakly coupled to ordinary matter.

3. Neutrino Oscillations and the Cosmological Constant

We start from the system of coupled first-order equations describing
the evolution of neutrino mass eigenstates in matter [4]

( ) ( )

( ) ( ) .

4

4

2

1

2

1
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





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
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
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iE
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&

&

&

&
(1)

Here, ( )tm
2,1ν  denote the neutrino mass eigenstates of energy E, ( )t2∆

( ) ( )tt 2
1

2
2 µ−µ≡  represents the time-dependent mass-squared difference in

matter and ( )tmθ  is the effective mixing angle in matter. The following

relations hold

( ) ( ) ( )ttt 2
1

2
2

2 µ−µ≡∆

( ) ( ) ( ) ( )22
12

22
12

2
2

2
12

2,1 2sin2cos
2
1

2
θ∆+−θ∆++

+
=µ α mAmVVE

mm
t e m

( )
( )tAm

m
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−θ∆

θ∆
=θ
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2
12

2
12

( )
,

2

2sin
2

2
12 A

t

m
m

&&

∆

θ∆
=θ (2)

where ( )t2,1µ  stands for the effective neutrino mass in matter, =∆ 2
12m

2
2

2
1 mm −  is the mass-squared difference in vacuum (see (B8)), ( )tVe  and

( )tVα  are the effective interaction potentials for electron neutrino eν  and

the flavor eigenstate ,αν  respectively. ( )tA  is given by

( ) ( ) ( )[ ].2 tVtVEtA e α−≡ (3)

Two opposite cases are of interest for analysis. When

( ) ( )
( )

A
t

m
t

E
t

m
&&

2

2
12

2

2sin
4 ∆

θ∆
=θ∆

 (4)
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ERVIN GOLDFAIN4

the mass eigenstates ( )tm
2,1ν  mix in small amounts to produce the flavor

eigenstates and this transition is referred to as adiabatic. Many neutrino
oscillations take place in the adiabatic regime with few mixing events.
Conversely, when (4) is not satisfied, the transition is said to be non-
adiabatic. To simplify the ensuing derivation and without a significant
loss of generality, we limit the analysis to propagation in low-density
matter and expand both the mass-splitting ( )t∆  and time-rate of the

effective mixing angle ( )tmθ&  as follows

( ) ( )tPmt +∆=∆ 12

( ) ( )tQtm +ε=θ& (5)

in which .1ε  The planar system of evolution equations (1) decouples

into a time-independent and a time-dependent part
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Local stability analysis of (6) indicates that the trivial equilibrium

021 =ν=ν mm  represents an elliptic point since

.0

4

4
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The stability analysis is representative for the dynamics of the
conservative system (6) near equilibrium because [9]

.0
16

4

4det 2
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(8)

It is thus reasonable to assume that the time-dependent contribution
corresponding to neutrino propagation in low-density matter may be
neglected up to a first-order approximation. The time-independent term
of (6) may be shown to be formally identical to the equation of a linear
harmonic oscillator [3], that is,
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DYNAMICS OF NEUTRINO OSCILLATIONS … 5

.0
16

1
2

2

2
12

1 =ν











ε+

∆
+ν mm

E

m
&& (9)

Stated differently, if E sets the natural energy scale of neutrino
physics in low-density matter, flavor transitions governed by (6) may be

interpreted as harmonic oscillations of the mass eigenstate ( )tm
1ν  with

proper frequency and Compton wavelength

41212 m∆=ω

( ) .4 1
12

−∆=λ mC (10)

Assuming that there is roughly one quasi-particle of mass 12m∆  per

the unit volume defined by the Compton wavelength cubed ( ),3
cλ  we

derive the following expectation value for the cosmological vacuum
density

.
256
1

4
~ 4

123
12 m

m

c

∆=
λ

∆
ρν (11)

Current testing data indicate that the solar neutrino mass splitting
falls in the range [10]

.105.9 252
,12 eVm sol

−×<∆ (12)

Using (11) and (12) we estimate

.10525.3 411eVsol −
ν ×<ρ (13)

This value agrees well with the recent observational bound of the

cosmological constant according to which [9, 13]

.106.18 411eVG −
Λ ×≤πΛ=ρ (14)

4. Concluding Remarks

The starting point of this brief report was setting a primary
distinction between the vacuum of General Relativity (v-GR) and the
zero-point energy concept of QFT (v-QFT). Neutrino oscillations were
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ERVIN GOLDFAIN6

interpreted as direct evidence for fluctuations of (v-GR). Following this
route, we were led to a numerical prediction that agrees well with current
observational data. Analysis of neutrino oscillations in low-density matter
has been carried out in the framework of Pontercovo’s model and without
any reference to gravitational effects generated by the zero-point energy.

5. Appendix A: The Cosmological Constant Problem

In the original formulation of general relativity, the differential

equation relating the metric tensor ( )xgµν  and the matter distribution is

given by

.8
2
1

µνµνµν π=− GTRgR (A1)

Here, ( )xRµν  and ( )xR  denote the Ricci tensor and its scalar trace, G

is Newton’s gravitational constant and µνT  the stress-energy tensor that

translates the relevant properties of the matter in the universe. To

ensure that the field equation (A1) describes a static universe model,

Einstein’s later proposal was to change it to

.8
2
1

µνµνµνµν π=Λ−− GTgRgR (A2)

Here, Λ is called the cosmological constant and is measured in units

of energy squared. Moving the cosmological term to the right-hand side of

(A2) indicates that µνΛg  acts like an ideal fluid with effective mass

density and pressure [11].

Gπ
Λ=ρΛ 8

.ΛΛ ρ−=p (A3)

From the viewpoint of general relativity, there is no preferred choice

for the energy scale determined by Λ. As stated in Section 2, the situation

is radically different in quantum field theory where the cosmological
constant is interpreted as energy density of the vacuum. This
identification enables one to compute the magnitude of various
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DYNAMICS OF NEUTRINO OSCILLATIONS … 7

contributions to the cosmological constant, including potential energies
from scalar fields as well as zero-point fluctuations from degrees of
freedom associated with each quantum field theory [2].

6. Appendix B: Brief Overview on the Physics of Neutrino

Oscillations

Neutrino species are identified as flavor eigenstates αν  that are, in

general, linear combinations of the mass eigenstates iν

,
1
∑
=

∗
αα ν=ν

n

i
iiU (B1)

where n is the number of flavors and ∗
αiU  is an element of the mixing

matrix [4]. In what follows, we use the standard plane wave

approximation for time-dependent mass eigenstates

( ) ( ) ( )0exp iii tiEt ν−=ν (B2)

and assume that neutrinos are relativistic

i

i
ii E

m
pE

2

2
+≈ (B3)

with

.Eppi ≈≈ (B4)

Consider for simplicity the two-neutrino case in vacuum, i.e., in the

absence of matter or radiation. It can be shown that the transition

probability between a pair of flavors α, β takes the form

( ) xP a
22 sin2sin12 θ−δ−δ= βαβαβ (B5)

in which θ denotes the mixing angle. The mixing matrix corresponding to

this case is given by

.
cossin

sincos









θθ−

θθ
=U (B6)
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Here, x is the normalized distance between the source (the production

point of )αν  and the detector (the detection point of )βν

.
4

2
12
E

Lm
x

∆
= (B7)

L represents the actual distance separating the source from the
detector and

2
2

2
1

2
12 mmm −=∆ (B8)

is the difference in mass-squares between mass eigenstates, otherwise
referred to as “mass-splitting”. The transition probability (B5) has an
oscillatory behavior characterized by the oscillation length

.4
2
12

0
12

m

EL
∆

π= (B9)
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Abstract

Fractional dynamics is an attractive framework for understanding the complex phenomena that are likely to emerge
beyond the energy range of the Standard Model for particle physics (SM). Using fractional dynamics and complex-scalar
field theory as a baseline, our work explores how physics on the high-energy scale may help solve some of the open ques-
tions surrounding SM. Predictions are shown to be consistent with experimental results.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

As of 2006, predictions derived from the Standard Model of elementary particles (SM) – a body of knowl-
edge discovered in the early 1970s – agrees with all the experiments that have been conducted to date. Nev-
ertheless, the majority of particle theorists feel that SM is not a complete framework, but rather an ‘‘effective
field theory’’ that needs to be extended by new physics at some higher energy scale reaching in the TeV region.
The most cited reasons for this belief are: (a) the recent discovery of neutrino oscillations and masses; (b) SM
does not include the contribution of gravity and gravitational corrections to both quantum field theory and
renormalization group (RG) equations; (c) SM does not fix the large number of free parameters that enter
the theory (in particular the spectra of masses, gauge couplings and fermion mixing angles); (d) SM has a
gauge hierarchy problem, which requires fine-tuning; (e) SM postulates that the origin of electroweak symme-
try breaking is the Higgs mechanism, whose confirmation is sought in future accelerator experiments. The
number and physical attributes of the Higgs boson are neither explained by SM nor fixed from first principles,
(f) SM does not clarify the origin of its underlying SU(3) · SU(2) · U(1) gauge group and why quarks and
leptons occur in certain representations of this group, (g) SM does not explain why the weak interactions
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are chiral, that is, why only fermions with one handedness experience the force transmitted by the triplet of
massive vector bosons W+, W�, Z0.

Despite years of research on multiple fronts, there is currently no compelling and universally accepted res-
olution to the above-mentioned challenges. A large body of proposed extensions of SM exists, each of them
attempting to resolve some unsatisfactory aspects of the theory while introducing new unknowns. Expanding
on a series of recent contributions centered on RG, non-linear dynamics, chaos and fractal geometry [3,4,6–
10,12–14,17–19], our work explores how the physics on the TeV regime may shed light onto some of the open
questions surrounding SM.

The paper is organized as follows: Section 2 surveys the motivation for fractional dynamics in the far ultra-
violet region of field theory. The principle of local scale invariance is briefly introduced in Section 4. Fractional
dynamics of a ‘‘toy’’ model based on complex scalar fields is analyzed in Section 5. Sections 6–8 discuss how
critical behavior in continuous dimension acts as source of massive field theories and makes connection to SM
data. Concluding remarks are presented in the last section. We emphasize from the outset the introductory
nature of our work. As such, its content is not aimed to be either entirely rigorous or formally complete. Inde-
pendent research efforts are required to confirm, develop or disprove these preliminary results.

2. Fractional dynamics and the far ultraviolet region of field theory

It is generally believed that quantum field theory breaks down near the so-called Cohen–Kaplan threshold
of �100 TeV as a result of exposure to large vacuum fluctuations and strong-gravitational effects. No conve-
nient redefinition of observables is capable of turning off the dynamic contribution of these effects. For
instance, it is known that the zero-point vacuum energy diverges quadratically in the presence of gravitation.
Quantum field theory in Euclidean space-time discards the zero-point vacuum energy through the use of a nor-
mal time ordering procedure [5,20]. Because vacuum energy is gravitating and couples to all other field ener-
gies present at the quantum level, cancellation of the zero-point term is no longer possible when gravitational
effects are significant. Likewise, this strong coupling regime of the far ultraviolet region suggests that even
asymptotically free theories such as QCD reverse their properties in response to arbitrarily large non-pertur-
bative effects. In fact, complex dynamics of quark-gluon plasma is expected to arise near the so-called transi-
tion temperature [16].

The non-linearity of the underlying field theory combined with the far-from-equilibrium dynamics induced
by highly unstable vacuum fluctuations are prone to lead to self-organized criticality [6]. Because dynamical
instabilities can develop on long time-scales, the macroscopic description of phenomena in terms of conven-
tional differential operators breaks down. This is, in essence, the main argument for using fractal operators in
the far TeV region of field theory and for the passage from ordinary to fractional dynamics [14,18,19,21]. Since
application of fractals in contemporary physics has become far ranging, the interest in fractional dynamics has
grown at a steady pace in the last decade. There is now a broad range of applications of fractional dynamics in
research areas where fractal attributes of underlying processes and the onset of long-range correlations
demand the use of fractional calculus. These areas include, but are not limited to, wave propagation in com-
plex and porous media, models of systems with chaotic and pseudo-chaotic dynamics, random walks with
memory, colored noise and pattern formation, anomalous transport and Levy flights, studies of scaling phe-
nomena and critical behavior, plasma physics, turbulence, quantum field theory, far-from-equilibrium statis-
tical models, complex dynamics of data networks and so on (for a brief review of current applications, see [21–
26]).

3. Conventions and assumptions

(a) Einstein summation convention is applied throughout.
(b) The Poincare index is denoted by l = 0,1,2,3.
(c) We study a basic ‘‘toy’’ model containing a single pair of massive complex-scalar fields u(x), u*(x).
(d) The analysis is carried out exclusively at the classical level. Suppression of quantum attributes and tran-

sition to classical behavior is the result of decoherence induced by steady exposure to large random fluc-
tuations [27,28].
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(e) Following [22–26] we use in our work the left Caputo fractional derivative defined as
Plea
mun
DauðxÞ ¼: 1

Cðn� aÞ

Z x

0

uðnÞðsÞ
ðx� sÞaþ1�n ds ð1Þ

where n � 1 < a < n and u(n)(s) G dnu(s)/dsn. We note that, in addition to using (1), many studies based
on fractional calculus often start from alternative operators such as Riemann–Liouville and Grunwald–
Letnikov derivatives and integrals (see [30–33] for details).
(f) Space–time variables and fields are suitably normalized as dimensionless observables.
(g) Assuming that the field dynamics has low-level fractionality, we use the so-called e-expansion to perform

the transition from first order to Caputo derivatives of order a G 1 � e according to the prescription [22]
D1�euðxÞ ¼ ouðxÞ þ eD1uðxÞ

D1uðxÞ ¼: ouð0Þ ln jxj þ couðxÞ þ
Z x

0

o2uðsÞ ln jx� sjds
ð2Þ
4. Local scale invariance at the onset of fractional dynamics

The novel symmetry principle that underlies the onset of fractional dynamics in the TeV region is the local

scale invariance of the theory [17]. There is a two-fold rationale for the onset of this symmetry, namely,

(a) Field dynamics is scale-invariant. This is equivalent to stating that, in dimensional regularization scheme,
the outcome of the regularization procedure does not depend on the particular choice of e = 4 � d [20].

(b) By analogy with the definition of the Lipschitz–Hölder exponent and to ensure compliance with relativ-
ity [14,17], we take the continuous dimension parameter e to denote a locally defined function of space-
time coordinates, e(x). In addition, we assume that e(x) may be expressed either as a contravariant ei(x) or
a covariant ei(x) four-vector. This motivates us to formally extend (2) to
D1�elðxÞuðxÞ ¼ o
luðxÞ þ elðxÞDl

1uðxÞ

Dl
1uðxÞ ¼

:
oluð0Þ ln jxj þ coluðxÞ þ

Z x

0

ðo2ÞluðsÞ ln jx� sjds

D1�elðxÞuðxÞ ¼ oluðxÞ þ elðxÞD1;luðxÞ

D1;luðxÞ ¼: oluð0Þ ln jxj þ coluðxÞ þ
Z x

0

ðo2ÞluðsÞ ln jx� sjds

ð3Þ
5. Fractional dynamics of the complex-scalar field

The goal of this section is to show that the principle of local scale invariance and the introduction of frac-
tional dynamics lead to a mechanism of gauge boson-fermion unification that is fundamentally distinct from
the mechanism advocated by supersymmetry.

The Lagrangian density of our model is
L ¼: oluðxÞolu�ðxÞ � m2u�ðxÞuðxÞ ð4Þ

where m the mass of the field and x is a shorthand notation for (xl) or (xl). Using the framework of Caputo
derivatives and e-expansion [22], one obtains
L ¼: D1�eðxÞ
l uðxÞDl;1�eðxÞu�ðxÞ � m2u�ðxÞuðxÞ ð5Þ
where the locally defined infinitesimal dimension e(x) satisfies the condition e(x) Æx� 1. Our aim is to show
that, in contrast with conventional field theory embodied in (4), use of Caputo derivatives guarantees invari-
ance under local gauge transformations without the explicit need for gauge fields and covariant operators. To
this end, let us perform the local phase change
se cite this article in press as: Goldfain E, Fractional dynamics and the Standard Model for particle physics, Com-
Nonlinear Sci Numer Simul (2007), doi:10.1016/j.cnsns.2006.12.007                      178

vic
Rectangle

vic
Rectangle



4 E. Goldfain / Communications in Nonlinear Science and Numerical Simulation xxx (2007) xxx–xxx

ARTICLE IN PRESS

Plea
mun
uðxÞ ! eiaðxÞuðxÞ
u�ðxÞ ! e�iaðxÞu�ðxÞ

ð6Þ
Up to a first-order approximation, Caputo derivatives transform as [22]
D1�eðxÞ
l uðxÞ ! D1�eðxÞ

l ½eiaðxÞuðxÞ� ¼ ol½eiaðxÞuðxÞ� þ eðxÞD1
1;l½eiaðxÞuðxÞ�

D1�eðxÞ;lu�ðxÞ ! D1�eðxÞ;l½e�iaðxÞu�ðxÞ� ¼ o
l½e�iaðxÞu�ðxÞ� þ eðxÞD1;l

1 ½e�iaðxÞu�ðxÞ�
ð7Þ
where
D1
1;lðxÞ ¼

:
ln jxjol½eiað0Þuð0Þ� þ

Z x

0

o2
l½eiaðkÞuðkÞ� ln jx� kjdkþ col½eiaðxÞuðxÞ�

D1;l
1 ðxÞ ¼

:
ln jxjol½e�iað0Þu�ð0Þ� þ

Z x

0

o2;l½e�iaðkÞu�ðkÞ� ln jx� kjdkþ col½e�iaðxÞu�ðxÞ�
ð8Þ
in which c stands for the Euler constant and
ol½eiaðxÞuðxÞ� ¼ eiaðxÞ½ol þ iolaðxÞ�uðxÞ ð9Þ
Local gauge invariance of (5) is preserved if Caputo derivatives transform covariantly, that is
D1�eðxÞ
l ½eiaðxÞuðxÞ� ¼ eiaðxÞD1�eðxÞ

l uðxÞ
Dl;1�eðxÞ½e�iaðxÞu�ðxÞ� ¼ e�iaðxÞDl;1�eðxÞu�ðxÞ

ð10Þ
On account of (7) and (10), we arrive at the following set of conditions:
ieiaðxÞuðxÞolaðxÞ ¼ eðxÞfD1
1l½eiaðxÞuðxÞ� � eiaðxÞD1

1luðxÞg
ð�iÞe�iaðxÞu�ðxÞolaðxÞ ¼ eðxÞfD1;l

1 ½e�iaðxÞu�ðxÞ� � e�iaðxÞD1;l
1 u�ðxÞg

ð11Þ
The direct consequence of (11) is that gauge fields are no longer required in a field theory built on fractional
dynamics. The compensating role of the vector bosons is played by the continuous dimension parameter e(x).
This conclusion is consistent with previous studies [14,17,19] and points to a novel unification mechanism of
gauge boson and fermion fields, including classical gravitation. This mechanism is fundamentally different
from the unification scheme postulated by supersymmetry and related quantum field models [20].
6. Emergence of massive field theories

It is known that, allowing elementary particles to have non-zero masses in quantum field theory violates
local gauge and weak isospin symmetries imposed on the standard model lagrangian. The mechanism of
so-called spontaneous symmetry breaking (SSB) posits that the vacuum itself acquires a non-zero charge dis-
tribution that leaves the Lagrangian invariant and generates both fermion and vector boson masses [5,20]. In
SM, massive fermions exist in both left-handed and right-handed states. The only Dirac field operators that
yield a non-vanishing mass are bilinear products of fields having the form
m�ww ¼ mð�wRwL þ �wLwRÞ ð12Þ
However, such mass terms mix right and left-handed spinors and are forbidden from the Lagrangian on ac-
count of violation of the weak isospin symmetry [5,20]. Stated differently, since wL represents a SU(2) doublet
and wR a SU(2) singlet, the product of the two is not a singlet, as it ought to be in order to preserve the weak
isospin symmetry. An immediate question that arises from the previous section is whether or not SSB still ex-
ists in a field theory based on fractional dynamics. Stated differently, can mass terms be introduced in the
Lagrangian without violating local and weak isospin symmetries? To answer this question, we note that the
first-order Caputo operator may be defined either from the ‘‘left’’ or from the ‘‘right’’ and, in general, the effect
produced by D1�e(x) is not identical with the effect produced by D1+e(x). It follows that the proper description
se cite this article in press as: Goldfain E, Fractional dynamics and the Standard Model for particle physics, Com-
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of fractional differentiation requires a doublet of Caputo operators
D1�eLðxÞ

D1þeRðxÞ

� �
and a doublet of scalars

eLðxÞ
eRðxÞ

� �
with eL,R(x) Æx� 1. Therefore, mass terms that correspond to Dirac bilinears assume the form:
Plea
mun
w! D�eLw or w! DeRw for singlets

ðw1 w2 Þ !
D�eL

DþeR

� �
ðw1 w2 Þ and

w1

w2

� �
! D�eL DþeRð Þ

w1

w2

� �
for doublets

ð13Þ
It can be seen that these mass terms automatically preserve the weak isospin symmetry in a similar manner in
which the Higgs scalar doublet works in the electroweak model [5,20,29].

7. Critical behavior in continuous dimension

The previous sections have shown that the concept of dimension takes on a key role in the far ultraviolet
region of field theory. Here we elaborate on this conjecture by making connection to the philosophy of the
renormalization group and critical behavior in continuous dimension [1,2]. To streamline the derivation,
we refer in what follows to the original Lagrangian (4). Let us start by adding a potential term to (4), that is
L¼: oluðxÞolu�ðxÞ � m2u�ðxÞuðxÞ þ k2½u�ðxÞuðxÞ�2 ð14Þ
Here g = k2 represents the self-interaction strength of the field. According to the renormalization group, the
so-called beta-function defines how g ‘‘flows’’ with the sliding energy scale l, that is
bðgÞ ¼: dðgÞ
dt

ð15Þ
where
t ¼: ln
l
l0

� �
ð16Þ
for an arbitrary reference scale l0. In the basin of attraction of a critical point tc the field correlation length
scales as
n � jt � tcjm ð17Þ
Here, critical exponent m is given by [1,2]
m�1 ¼ � ob
oðgÞ

����
g¼g�

ð18Þ
and g* stands for a fixed point of the beta-function, b(g*) = 0.
One can exploit the interchangeable roles played by the sliding scale t and the dimension parameter d(x) as

follows. Assume that dc represents the critical dimension for which g flows into the fixed point g*. The mass of
the complex-scalar field is known to be inversely proportional to the divergent correlation length and vanishes
identically at the fixed point [1,2]
m½g�ðdcÞ; dc� ¼ 0 ð19Þ
In the basin of attraction of g* the field develops mass according to the power law
m½g�ðdcÞ; dðxÞ � dc� � jdðxÞ � dcjmðdcÞ ¼ jeðxÞjmðdcÞ ð20Þ
where
m�1ðdcÞ ¼ �
ob

oðgÞ

����
g�ðdcÞ

ð21Þ
We are led to conclude that, as the fixed point is asymptotically approached and the continuous space-time
dimensionality collapses to d(x)! dc = 1,2,3,4, the complex-scalar field becomes massless, in agreement with
se cite this article in press as: Goldfain E, Fractional dynamics and the Standard Model for particle physics, Com-
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conventional quantum field theory. Numerical analysis yields m(dc) = 0.5 for dc = 1,2,3,4 which is found to
match well the value reported in the literature [1,2].

An important observation is now in order. Following the universal properties of the RG flow near the onset
of chaos in low-dimensional maps, the dimensional control parameter e(x) = jdc � d(x)j is expected to asymp-
totically approach the critical value e1 = 0 according to the geometric progression [15]:
Plea
mun
enðxÞ � e1 � anðxÞ � d�n ð22Þ
in which n	 1 is the index defining the number of iteration steps, d stands for a scaling constant that is rep-
resentative for the class of dynamical maps under consideration and an(x) is a coefficient which becomes
asymptotically independent of n and x, that is, a1 = a. Substituting (22) in (20) produces to the mass scaling
series
mn½g�ðdcÞ; dc � dnðxÞ� � ½and
�n�1=2 ð23Þ
We may go a step further and state that, given the generic link between the coupling flow and the correspond-
ing flows of masses and fields in RG [5,20,29], similar scaling pattern develops for gn and the underlying fields
of the theory, gn. We thus expect to obtain, for n	 1
gn � g�ðdcÞ � d�kðdcÞn

gn � g�ðdcÞ � d�fðdcÞn
ð24Þ
where k(dc) and f(dc) represent two additional critical exponents dependent on dc.
8. Universal scaling of fermion masses

Period-doubling bifurcations are defined by n = 2m, with m > 1 [15]. Replacing in (23) yields the following
mass series:
mmðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2mðxÞ

p
� d�2m�1

ð25Þ
where d = 4.669. . . represents the Feigenbaum constant for the onset of chaos in quadratic maps. The ratio of
two arbitrary masses is therefore
mlðxÞ
mmðxÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2lðxÞ
a2mðxÞ

s
� d
�2l�1

d�2m�1 ð26Þ
where lim al
am
¼ 1 as l, m!1. Thus, for two sufficiently distant consecutive terms in the mass series, the depen-

dence of an(x) on the space-time variable may be suppressed and we obtain
ml

mlþ1

�
ffiffiffiffiffiffiffiffiffi
a2l

a2lþ1

r
� d2l�1

¼ ffiffiffiffiffiffiffiffiffiffiffiffi
a2l;2lþ1

p � d2l�1

ð27Þ
It is important to emphasize that (27) provides only a first-order approximation considering that (a) (27) is less
accurate if the iteration index is not large enough, that is, if l � O(1), (b) there is a fair amount of uncertainty
involved in determining the quark mass spectrum [11]. Numerical results derived from (27) are displayed in
Table 1. This table contains a side-by-side comparison of estimated versus actual mass ratios for charged lep-
tons and quarks and a similar comparison of gauge coupling ratios. All masses and couplings are evaluated at
the energy scale given by the top quark mass. Quark masses are averaged using the most recent reports issued
by the Particle Data Group [11]. Specifically, mu = 2.12 MeV; md = 4.22 MeV; ms = 80.9 MeV;
mc = 630 MeV; mb = 2847 MeV; mt = 170,800 MeV.

The scaling sequence of charged leptons and quarks may be graphically summarized with the help of the
following diagrams:
se cite this article in press as: Goldfain E, Fractional dynamics and the Standard Model for particle physics, Com-
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Table 1
Fermion masses and coupling ratios

Scaling ratio 2l�1 Experimental value Estimated value

mu/mc 4 3.365 · 10�3 2.104 · 10�3

mc/mt 4 3.689 · 10�3 2.104 · 10�3

md/ms 2 0.052 0.046
ms/mb 2 0.028 0.046
me/ml 4 4.745 · 10�3 2.104 · 10�3

ml/ms 2 0.061 0.046
(aEM/aW)2 2 0.045 0.046
(aEM/as)

2 4 2.368 · 10�3 2.104 · 10�3
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Based on the above scheme, one may infer that neutrinos masses are arranged according to the possible
pattern:
It is also instructive to note that quarks and charged leptons follow a different period doubling path. To this
end, let us organize the charged lepton and quark masses in a collection of triplets, that is
ml¼: ½me ml ms �; mq¼:
mu md

mc ms

mt mb

2
64

3
75 ð28Þ
It can be seen that the mass scaling for adjacent quarks stays constant within either one of the triplets (u,c, t)
or (d, s,b), whereas the mass scaling for charged leptons varies as a geometric series in d2 within the triplet
(e,l,s). This finding points out toward a symmetry breaking mechanism that segregates lepton and quark
phases in the process of cooling from the far ultraviolet region of field theory to the low-energy region of SM.

9. Concluding remarks

We have argued that fractional dynamics represents an analytic framework suitable for the description of
physical phenomena that are likely to arise in the TeV realm of particle physics. Unlike conventional quantum
field theory, fractional dynamics describes far-from-equilibrium statistical processes that give rise to manifest
scale invariance, non-local correlations and extensive symmetry breaking. Using fractional dynamics and the
benchmark example of complex-scalar field theory, we have explored the potential spectrum of phenomena
that may to emerge beyond the energy range of SM. Based on this framework, we have shown that, near
the asymptotic boundary of field theory, (a) gauge bosons and fermions become unified through a fundamen-
se cite this article in press as: Goldfain E, Fractional dynamics and the Standard Model for particle physics, Com-
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tally different mechanism than the one advocated by supersymmetry; (b) SSB and the emergence of massive
field theories occur as a result of critical behavior in continuous dimension; (c) particles develop a family struc-
ture that is tied to the universal transition to chaos in unimodal maps. First-order predictions were found to
match reasonably well current experimental data. However, as pointed out in Section 1, our goal is not to for-
mulate a comprehensive solution to the host of open challenges surrounding SM. Concurrent research efforts
are needed to confirm or falsify these preliminary findings. In particular, the long-awaited operation of the
Large Hadron Collider and similar high-energy accelerator sites should soon produce experimental evidence
that backs or disproves our model.
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Abstract. 
Besides matter and antimatter there must exist an intermediate form of matter, called 
unmatter (as a new form of matter) in accordance with the neutrosophy theory that 
between an entity <A> and its opposite <AntiA> there exist intermediate entities 
<NeutA>. 
Unmatter is neither matter nor antimatter, but something in between.  An atom of 
unmatter is formed either by (1): electrons, protons, and antineutrons, or by (2): 
antielectrons, antiprotons, and neutrons. 
In a physics lab it will be possible to test the production of unmatter.  
The existence of unmatter in the universe has a similar chance to that of the antimatter, 
and its production also difficult for present technologies.   
 
1.  Introduction. 
This article is an improved version of an old manuscript [5]. 
According to the neutrosophy theory in philosophy [see 4], between an entity <A> and its 
opposite <AntiA> there exist intermediate entities <NeutA> which are neither <A> nor 
<AntiA>.   
Thus, between “matter” and “antimatter” there must exist something which is neither 
matter nor antimatter, let’s call it UNMATTER. 
In neutrosophy, <NonA> is what is not <A>, i.e. <NonA> = <AntiA>χ<NeutA>.  Then, 
in physics, NONMATTER is what is not matter, i.e. nonmatter means antimatter together 
with unmatter. 
 
2.  Classification. 
A) Matter is made out of electrons, protons, and neutrons. 
Each matter atom has electrons, protons, and neutrons, except the atom of ordinary 
hydrogen which has no neutron. 
The number of electrons is equal to the number of protons, and thus the matter atom is 
neutral.   
 
B) Oppositely, the antimatter is made out of antielectrons, antiprotons, and antineutrons. 
Each antimatter atom has antielectrons (positrons), antiprotons, and antineutrons, except 
the antiatom of ordinary hydrogen which has no antineutron. 
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The number of antielectrons is equal to the number of antiprotons, and thus the antimatter 
atom is neutral.   
 
C) Unmatter means neither matter nor antimatter, but in between, an entity which has 
common parts from both of them. 
Etymologically “un-matter” comes from [ME < OE, akin to Gr. an-, a-, Latin in-, and to 
the negative elements in no, not, nor] and [ME matière < OFr < Latin materia] matter 
[see 6], signifying no/without/off the matter. 
There are two types of unmatter atoms, that we call unatoms:  

u1)  the first type is derived from matter; and a such unmatter atom is formed by 
electrons, protons, and antineutrons; 
u2)  the second type is derived from antimatter, and a such unmatter atom is formed 
by antielectrons, antiprotons, and neutrons. 

One unmatter type is oppositely charged with respect to the other, so when they meet 
they annihilate. 
The unmatter nucleus, called unnucleus, is formed either by protons and antineutrons in 
the first type, or by antiprotons and neutrons in the second type. 
 
The charge of unmatter should be neutral, as that of matter or antimatter. 
The charge of un-isotopes will also be neutral, as that of isotopes and anti-isotopes. 
But, if we are interested in a negative or positive charge of un-matter, we can consider an 
un-ion.  For example an anion is negative, then its corresponding unmatter of type 1 will 
also be negative.  While taking a cation, which is positive, its corresponding unmatter of 
type 1 will also be positive. 
 
Sure, it might be the question of how much stable the unmatter is, as J. Murphy pointed 
out in a private e-mail.  But Dirac also theoretically supposed the existence of antimatter 
in 1928which resulted from Dirac’s mathematical equation, and finally the antimatter was 
discovered/produced in large accelerators in 1996 when it was created the first atom of 
antihydrogen which lasted for 37 nanoseconds only. 
 
There does not exist an unmatter atom of ordinary hydrogen, neither an unnucleus of 
ordinary hydrogen since the ordinary hydrogen has no neutron.  Yet, two isotopes of the 
hydrogen, deuterium (2H) which has one neutron, and artificially made tritium (3H) which 
has two neutrons have corresponding unmatter atoms of both types, un-deuterium and un-
tritium respectively.  The isotopes of an element X differ in the number of neutrons, thus 
their nuclear mass is different, but their nuclear charges are the same. 
 
For all other matter atom X, there is corresponding an antimatter atom and two unmatter 
atoms 
The unmatter atoms are also neutral for the same reason that either the number of 
electrons is equal to the number of protons in the first type, or the number of antielectrons 
is equal to the number of antiprotons in the second type. 
If antimatter exists then a higher probability would be for the unmatter to exist, and 
reciprocally. 

185



Unmatter atoms of the same type stick together form an unmatter molecule (we call it 
unmolecule), and so on.  Similarly one has two types of unmatter molecules. 
 
The isotopes of an atom or element X have the same atomic number (same number of 
protons in the nucleus) but different atomic masses because the different number of 
neutrons.  
Therefore, similarly the un-isotopes of type 1 of X will be formed by electrons, protons, 
and antineutrons, while the un-isotopes of type 2 of X will be formed by antielectrons, 
antiprotons, and neutrons. 
 
An ion is an atom (or group of atoms) X which has last one or more electrons [and as a 
consequence carries a negative charge, called anion], or has gained one or more electrons 
[and as a consequence carries a positive charge, called cation]. 
Similarly to isotopes, the un-ion of type 1 (also called un-anion 1 or un-cation 1 if 
resulted from a negatively or respectively positive charge ion) of X will be formed by 
electrons, protons, and antineutrons, while the un-ion of type 2 of X (also called un-
anion 2 or un-cation 2 if resulted from a negatively or respectively positive charge ion) 
will be formed by antielectrons, antiprotons, and neutrons. 
The ion and the un-ion of type 1 have the same charges, while the ion and un-ion of type 
2 have opposite chatges. 
 
D) Nonmatter means what is not matter, therefore nonmatter actually comprises 
antimatter and unmatter.  Similarly one defines a nonnucleus.  
 
3.  Unmatter propulsion.  
We think (as a prediction or supposition) it could be possible at using unmatter as fuel for 
space rockets or for weapons platforms because, in a similar way as antimatter is 
presupposed to do [see 2-3], its mass converted into energy will be fuel for propulsion. 
It seems to be a little easier to build unmatter than antimatter because we need say 
antielectrons and antiprotons only (no need for antineutrons), but the resulting energy 
might be less than in matter-antimatter collision. 
 
We can collide unmatter 1 with unmatter 2, or unmatter 1 with antimatter, or unmatter 2 
with matter. 
When two, three, or four of them (unmatter 1, unmatter 2, matter, antimatter) collide 
together, they annihilate and turn into energy which can materialize at high energy into 
new particles and antiparticles. 
 
4.  Existence of unmatter. 
The existence of unmatter in the universe has a similar chance to that of the antimatter, 
and its production also difficult for present technologies.  At CERN it will be possible to 
test the production of unmatter. 
If antimatter exists then a higher probability would be for the unmatter to exist, and 
reciprocally. 
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The 1998 Alpha Magnetic Spectrometer (AMS) flown on the International Space Station 
orbiting the Earth would be able to detect, besides cosmic antimatter, unmatter if any. 
  
5.  Experiments. 
Besides colliding electrons, or protons, would be interesting in colliding neutrons. 
Also, colliding a neutron with an antineutron in accelerators.  
 
We think it might be easier to produce in an experiment an unmatter atom of deuterium 
(we can call it un-deuterium of type 1). The deuterium, which is an isotope of the 
ordinary hydrogen, has an electron, a proton, and a neutron.  The idea would be to 
convert/transform in a deuterium atom the neutron into an antineutron, then study the 
properties of the resulting un-deuterium 1. 
Or, similarly for un-deuterium 2, to convert/transform in a deuterium atom the electron 
into an antielectron, and the proton into an antiproton (we can call it un-deuterium of type 
2).  
 
Or maybe choose another chemical element for which any of the previous 
conversions/transformations might be possible. 
 
6.  Neutrons and antineutrons. 
Hadrons consist of baryons and mesons and interact via strong force. 
Protons, neutrons, and many other hadrons are composed from quarks, which are a class 
of fermions that possess a fractional electric charge.  For each type of quark there exists a 
corresponding antiquark.  Quarks are characterized by properties such as flavor (up, 
down, charm, strange, top, or bottom) and color (red, blue, or green). 
A neutron is made up of quarks, while an antineutron is made up of antiquarks. 
A neutron [see 1] has one Up quark (with the charge of +2/3 Α1.606 Α10-19 C) and two 
Down quarks (each with the charge of -1/3 Α1.606 Α10-19 C), while an antineutron has 
one anti Up quark (with the charge of -2/3 Α1.606 Α10-19 C) and two anti Down quarks 
(each with the charge of +1/3 Α1.606 Α10-19 C). 
An antineutron has also a neutral charge, through it is opposite to a neutron, and they 
annihilate each other when meeting.   
Both, the neutron and the antineutron, are neither attracted to nor repelling from charges 
particles. 
 
7.  Characteristics of unmatter. 
Unmatter should look identical to antimatter and matter, also the gravitation should 
similarly act on all three of them.  Unmatter may have, analogously to antimatter, utility 
in medicine and may be stored in vacuum in traps which have the required configuration 
of electric and magnetic fields for several months. 
 
8.  Open Questions: 
8.a)  Can a matter atom and an unmatter atom of first type stick together to form a 
molecule? 
8.b)  Can an antimatter atom and an unmatter atom of second type stick together to form 
a molecule? 
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8.c)  There might be not only a You and an anti-You, but some versions of an un-You in 
between You and anti-You.  There might exist un-planets, un-stars, un-galaxies? 
There might be, besides our universe, an anti-universe, and more un-universes? 
8.d)  Could this unmatter explain why we see such an imbalance between matter and 
antimatter in our corner of the universe? (Jeff Farinacci) 
8.e)  If matter is thought to create gravity, is there any way that antimatter or unmatter 
can create antigravity or ungravity? (Mike Shafer from Cornell University) 
I assume that since the magnetic field or the gravitons generate gravitation for the matter, 
then for antimatter and unmatter the corresponding magnetic fields or gravitons would 
look different since the charges of subatomic particles are different... 
I wonder how would the universal law of attraction be for antimmater and unmatter? 
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Abstract. As shown, experiments registered unmatter: a new kind of matter whose atoms 
include both nucleons and anti-nucleons, while their life span was very short, no more 
than 10-20 sec.  Stable states of unmatter can be built on quarks and anti-quarks: applying 
the unmatter principle here it is obtained a quantum chromodynamics formula that gives 
many combinations of unmatter built on quarks and anti-quarks. 
 
In the last time, before the apparition of my articles defining “matter, antimatter, and 
unmatter” [1, 2], and Dr. S. Chubb’s pertinent comment [3] on unmatter, new 
development has been made to the unmatter topic in the sense that experiments verifying 
unmatter have been found.. 
 
1. Definition of Unmatter. 
In short, unmatter is formed by matter and antimatter that bind together [1, 2]. 
The building blocks (most elementary particles known today) are 6 quarks and 6 leptons; 
their 12 antiparticles also exist.   
Then unmatter will be formed by at least a building block and at least an antibuilding 
block which can bind together. 
 
2. Exotic Atom. 
If in an atom we substitute one or more particles by other particles of the same charge 
(constituents) we obtain an exotic atom whose particles are held together due to the 
electric charge.  For example, we can substitute in an ordinary atom one or more 
electrons by other negative particles (say π-, anti-Rho meson, D-, Ds

-, muon, tau, Ω-, ∆-, 
etc., generally clusters of quarks and antiquarks whose total charge is negative), or the 
positively charged nucleus replaced by other positive particle (say clusters of quarks and 
antiquarks whose total charge is positive, etc.). 
 
3. Unmatter Atom. 
It is possible to define the unmatter in a more general way, using the exotic atom. 
The classical unmatter atoms were formed by particles like (a) electrons, protons, and 
antineutrons, or (b) antielectrons, antiprotons, and neutrons. 
In a more general definition, an unmatter atom is a system of particles as above, or such 
that one or more particles are replaces by other particles of the same charge. 
Other categories would be (c) a matter atom with where one or more (but not all) of the 
electrons and/or protons are replaced by antimatter particles of the same corresponding 
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charges, and (d) an antimatter atom such that one or more (but not all) of the antielectrons 
and/or antiprotons are replaced by matter particles of the same corresponding charges.   
 
In a more composed system we can substitute a particle by an unmatter particle and form 
an unmatter atom. 
 
Of course, not all of these combinations are stable, semi-stable, or quasi-stable, especially 
when their time to bind together might be longer than their lifespan. 
 
4. Examples of Unmatter. 
During 1970-1975 numerous pure experimental verifications were obtained proving that 
“atom-like” systems built on nucleons (protons and neutrons) and anti-nucleons (anti-
protons and anti-neutrons) are real. Such “atoms”, where nucleon and anti-nucleon are 
moving at the opposite sides of the same orbit around the common centre of mass, are 
very unstable, their life span is no more than 10-20 sec. Then nucleon and anti-nucleon 
annihilate into gamma-quanta and more light particles (pions) which can not be 
connected with one another, see [6,7,8]. The experiments were done in mainly 
Brookhaven National Laboratory (USA) and, partially, CERN (Switzerland), where  
“proton---anti-proton” and “anti-proton --- neutron” atoms were observed, called them 

pp  and np  respectively, see fig 1 and fig 2. 

 
Fig. 1: Spectra of proton impulses in the reaction pn)p( dp +→+ . The upper arc --- 
annihilation of np  into even number of pions, the lower arc --- its annihilation into odd 
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number of pions. The observed maximum points out that there is a connected system np . 
Abscissa axis represents the proton impulse in GeV/sec (and the connection energy of the 
system np ). Ordinate axis --- the number of events. Cited from \cite{fsm6}. 
 

 
Fig. 2: Probability σ of interaction between p , p  and deutrons d  (cited from [7]). The 
presence of maximum stands out the existence of the resonance state of “nucleon --- anti-
nucleon”. 
 
After the experiments were done, the life span of such “atoms” was calculated in 
theoretical way in Chapiro’s works [9,10,11]. His main idea was that nuclear forces, 
acting between nucleon and anti-nucleon, can keep them far way from each other, 
hindering their annihilation. For instance, a proton and anti-proton are located at the 
opposite sides in the same orbit and they are moved around the orbit centre. If the 
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diameter of their orbit is much more than the diameter of “annihilation area”, they can be 
kept out of annihilation (see fig. 3). But because the orbit, according to Quantum 
Mechanics, is an actual cloud spreading far around the average radius, at any radius 
between the proton and the anti-proton there is a probability that they can meet one 
another at the annihilation distance. Therefore nucleon---anti-nucleon system annihilates 
in any case, this system is unstable by definition having life span no more than 10-20 sec. 

 
Fig. 3: Annihilation area and the probability arc in “nucleon --- anti-nucleon” system 
(cited from [11]). 
 
Unfortunately, the researchers limited the research to the consideration of pp  and np  
nuclei only. The reason was that they, in the absence of a theory, considered pp  and 

np “atoms” as only a rare exception, which gives no classes of matter. 
 
Despite Benn Tannenbaum’s and Randall J. Scalise’s rejections of unmatter and Scalise’s 
personal attack on me in a true Ancient Inquisitionist style under MadSci moderator John 
Link’s tolerance, the unmatter does exists, for example some messons and antimessons, 
through for a trifling of a second lifetime, so the pions are unmatter [which have the 
composition u^d and ud^ , where by u^ we mean anti-up quark, d = down quark, and 
analogously u = up quark and d^ = anti-down quark, while by ^ means anti], the kaon K+ 
(us^), K- (u^s), Phi (ss^), D+ (cd^), D0(cu^), Ds

+ (cs^), J/Psi (cc^), B- (bu^), B0 (db^), Bs
0 

(sb^), Upsilon (bb^) [where c = charm quark, s = strange quark, b = bottom quark], etc. 
are unmatter too. 
 
Also, the pentaquark Theta-plus (Θ+), of charge +1, uudds^ (i.e. two quarks up, two 
quarks down, and one anti-strange quark), at a mass of 1.54 geV and a narrow width of 
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22 MeV, is unmatter, observed in 2003 at the Jefferson Lab in Newport News, Virginia, 
in the experiments that involved multi-GeV photons impacting a deuterium target. 
Similar pentaquark evidence was obtained by Takashi Nakano of Osaka University in 
2002, by researchers at the ELSA accelerator in Bonn in 1997-1998, and by researchers 
at ITEP in Moscow in 1986. 
Besides Theta-plus, evidence has been found in one experiment [4] for other pentaquarks, 
Ξ5

- -(ddssu^) and Ξ5
+(uussd^). 

D. S. Carman [5] has reviewed the positive and null evidence for these pentaquarks and 
their existence is still under investigation. 
 
In order for the paper to be self-contained let’s recall that the pionium is formed by a π+ 
and π- mesons, the positronium is formed by an antielectron (positron) and an electron in 
a semi-stable arrangement, the protonium is formed by a proton and an antiproton also 
semi-stable, the antiprotonic helium is formed by an antiproton and electron together 
with the helium nucleus (semi-stable), and muonium is formed by a positive muon and an 
electron. 
Also, the mesonic atom is an ordinary atom with one or more of its electrons replaced by 
negative mesons. 
The strange matter is a ultra-dense matter formed by a big number of strange quarks 
bounded together with an electron atmosphere (this strange matter is hypothetical). 
 
From the exotic atom, the pionium, positronium, protonium, antiprotonic helium, and 
muonium are unmatter.  
The mesonic atom is unmatter if the electron(s) are replaced by negatively-charged 
antimessons. 
Also we can define a mesonic antiatom as an ordinary antiatomic nucleous with one or 
more of its antielectrons replaced by positively-charged mesons.  Hence, this mesonic 
antiatom is unmatter if the antielectron(s) are replaced by positively-charged messons. 
The strange matter can be unmatter if these exists at least an antiquark together with so 
many quarks in the nucleous. Also, we can define the strange antimatter as formed by a 
large number of antiquarks bound together with an antielectron around them.  Similarly, 
the strange antimatter can be unmatter if there exists at least one quark together with so 
many antiquarks in its nucleous. 
 
The bosons and antibosons help in the decay of unmatter.  There are 13+1 (Higgs boson) 
known bosons and 14 antibosons in present. 
 
5. Quantum Chromodynamics Formula. 
In order to save the colorless combinations prevailed in the Theory of Quantum 
Chromodynamics (QCD) of quarks and antiquarks in their combinations when binding, 
we devise the following formula: 

                                 Q - A 0 "M3                                                                           (1) 
where M3 means multiple of three,  
i.e. "M3 ={3·k | k0Z} = {…, -12, -9, -6, -3, 0, 3, 6, 9, 12, …}, 
and Q = number of quarks, A = number of antiquarks. 
But (1) is equivalent to: 
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                                 Q ≡ A (mod 3)                                                                        (2) 
(Q is congruent to A modulo 3). 
 
To justify this formula we mention that 3 quarks form a colorless combination, and any 
multiple of three (M3) combination of quarks too, i.e. 6, 9, 12, etc. quarks.  In a similar 
way, 3 antiquarks form a colorless combination, and any multiple of three (M3) 
combination of antiquarks too, i.e. 6, 9, 12, etc. antiquarks. Hence, when we have hybrid 
combinations of quarks and antiquarks, a quark and an antiquark will annihilate their 
colors and, therefore, what’s left should be a multiple of three number of quarks (in the 
case when the number of quarks is bigger, and the difference in the formula is positive), 
or a multiple of three number of antiquarks (in the case when the number of antiquarks is 
bigger, and the difference in the formula is negative). 
 
6. Quark-Antiquark Combinations. 
Let’s note by q = quark 0 {Up, Down, Top, Bottom, Strange, Charm},  
and by a = antiquark 0 {Up^, Down^, Top^, Bottom^, Strange^, Charm^}. 
Hence, for combinations of n quarks and antiquarks, n ≥ 2, prevailing the colorless, we 
have the following possibilities: 
- if n = 2, we have: qa (biquark – for example the mesons and antimessons); 
- if n = 3, we have qqq, aaa (triquark – for example the baryons and antibaryons); 
- if n = 4, we have qqaa (tetraquark); 
- if n = 5, we have qqqqa, aaaaq (pentaquark); 
- if n = 6, we have qqqaaa, qqqqqq, aaaaaa (hexaquark); 
- if n = 7, we have qqqqqaa, qqaaaaa (septiquark); 
- if n = 8, we have qqqqaaaa, qqqqqqaa, qqaaaaaa (octoquark); 
- if n = 9, we have qqqqqqqqq, qqqqqqaaa, qqqaaaaaa, aaaaaaaaa (nonaquark); 
- if n = 10, we have qqqqqaaaaa, qqqqqqqqaa, qqaaaaaaaa (decaquark); 
etc. 
 
7. Unmatter Combinations. 
From the above general case we extract the unmatter combinations: 
- For combinations of 2 we have: qa (unmatter biquark), [mesons and antimesons]; the 
number of all possible unmatter combinations will be 6·6 = 36, but not all of them will 
bind together. 
It is possible to combine an entity with its mirror opposite and still bound them, such as: 
uu^, dd^, ss^, cc^, bb^ which form mesons.  
It is possible to combine, unmatter + unmatter = unmatter, as in ud^ + us^ = uud^s^ (of 
course if they bind together). 
- For combinations of 3 (unmatter triquark) we can not form unmatter since the colorless 
can not hold. 
- For combinations of 4 we have: qqaa (unmatter tetraquark); 
the number of all possible unmatter combinations will be 62·62 = 1,296, but not all of 
them will bind together. 
- For combinations of 5 we have: qqqqa, or aaaaq (unmatter pentaquarks); 
the number of all possible unmatter combinations will be 64·6+64·6 = 15,552, but not all 
of them will bind together. 
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- For combinations of 6 we have: qqqaaa (unmatter hexaquarks); 
the number of all possible unmatter combinations will be 63·63 = 46,656, but not all of 
them will bind together. 
- For combinations of 7 we have: qqqqqaa, qqaaaaa (unmatter septiquarks); 
the number of all possible unmatter combinations will be 65·62 + 62·65 =559,872, but not 
all of them will bind together. 
- For combinations of 8 we have: qqqqaaaa, qqqqqqqa, qaaaaaaa (unmatter octoquarks); 
the number of all possible unmatter combinations will be 64·64 + 67·61 + 61·67 = 
5,038,848, but not all of them will bind together. 
- For combinations of 9 we have: qqqqqqaaa, qqqaaaaaa (unmatter nonaquarks); 
the number of all possible unmatter combinations will be 66·63 + 63·66 = 2·69  = 
20,155,392, but not all of them will bind together. 
- For combinations of 10 we have: qqqqqqqqaa, qqqqqaaaaa, qqaaaaaaaa (unmatter 
decaquarks); 
the number of all possible unmatter combinations will be 3·610 = 181,398,528, but not all 
of them will bind together. 
Etc. 
 
I wonder if it is possible to make infinitely many combinations of quarks / antiquarks and 
leptons / antileptons... 
Unmatter can combine with matter and/or antimatter and the result may be any of these 
three. 
Some unmatter could be in the strong force, hence part of hadrons. 
 
8. Unmatter Charge. 
The charge of unmatter may be positive as in the pentaquark Theta-plus, 0 (as in 
positronium), or negative as in anti-Rho meson (u^d) [M. Jordan]. 
 
9. Containment. 
I think for the containment of antimatter and unmatter it would be possible to use 
electromagnetic fields (a container whose walls are electromagnetic fields).  But its 
duration is unknown.  
 
10. Further Research. 
Let’s start from neutrosophy [18], which is a generalization of dialectics, i.e. not only the 
opposites are combined but also the neutralities. Why? Because when an idea is launched, 
a category of people will accept it, others will reject it, and a third one will ignore it 
(don't care). But the dynamics between these three categories changes, so somebody 
accepting it might later reject or ignore it, or an ignorant will accept it or reject it, and so 
on.  Similarly the dynamicity of <A>, <antiA>, <neutA>, where <neutA> means neither 
<A> nor <antiA>, but in between (neutral). 
Neutrosophy considers a kind not of di-alectics but tri-alectics (based on three 
components: <A>, <antiA>, <neutA>).  Hence unmatter is a kind of neutrality (not 
referring to the charge) between matter and antimatter, i.e. neither one, nor the other. 
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Upon the model of unmatter we may look at ungravity, unforce, unenergy, etc. 
Ungravity would be a mixture between gravity and antigravity (for example attracting 
and rejecting simultaneously or alternatively; or a magnet which changes the + and - 
poles frequently). 
Unforce. We may consider positive force (in the direction we want), and negative force 
(repulsive, opposed to the previous). There could be a combination of both positive and 
negative forces in the same time, or alternating positive and negative, etc. 
Unenergy would similarly be a combination between positive and negative energies (as 
the alternating current (a.c.), which periodically reverses its direction in a circuit and 
whose frequency, f, is independent of the circuit’s constants). Would it be possible to 
construct an alternating-energy generator?  
To conclusion: 
According to the Universal Dialectic the unity is manifested in duality and the duality in 
unity. 
“Thus, Unmatter (unity) is experienced as duality (matter vs antimatter).    
Ungravity (unity) as duality (gravity vs antigravity).   
Unenergy (unity) as duality (positive energy vs negative energy). 
and thus also... 
between duality of being (existence) vs nothingness (antiexistence) must be 
"unexistence" (or pure unity).” (R. Davic) 
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Abstract 

Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss how 
stable and unstable unmatter entities (the conjugations of matter and antimatter) may be formed 
as clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon clusters are 
present as a parton (sensu Feynman) superposition within the spatial confinement of the proton 
(1H1), the neutron, and the deuteron (1H2). If model predictions can be confirmed both 
mathematically and experimentally, a new physics is suggested. A proposed experiment is 
connected to othopositronium annihilation anomalies, which, being related to one of known 
unmatter entity, orthopositronium (built on electron and positron), opens a way to expand the 
Standard Model. 
 
1. Introduction 
 
According to Smarandache [1,2,3], following neutrosophy theory in philosophy and set theory in 
mathematics, the union of matter <A> and its antimatter opposite <AntiA> can form a neutral 
entity <NeutA> that is neither <A> nor <AntiA>.  The <NeutA> entity was termed "unmatter" by 
Smarandache [1] in order to highlight its intermediate physical constitution between matter and 
antimatter.  Unmatter is formed when matter and antimatter baryons intermingle, regardless of the 
amount of time before the conjugation undergoes decay.  Already Bohr long ago predicted the 
possibility of unmatter with his principle of complementarity, which holds that nature can be 
understood in terms of concepts that come in complementary pairs of opposites that are 
inextricably connected by a Heisenberg-like uncertainty principle.  However, not all physical 
union of <A> with <AntiA> must form unmatter.  For instance, the charge quantum number for 
the electron (e-) and its antimatter opposite positron (e+) make impossible the formation of a 
charge neutral state--the quantum situation must be either (e-) or (e+).  
 
Although the terminology "unmatter" is unconventional, unstable entities that contain a neutral 
union of matter and antimatter are well known experimentally for many years (e.g, pions, 
pentaquarks, positronium, etc.). Smarandache [3] presents numerous additional examples of 
unmatter that conform to formalism of quark quantum chromodynamics, already known since the 
1970's. The basis that unmatter does exists comes from the 1970s experiments done at 
Brookhaven and CERN [4-8], where unstable unmatter-like entities were found. Recently, a 
bound and quasi-stable unmatter baryonium has been documented experimentally as a weak 
resonance between a proton and antiproton using a Skyrme-type model potential [????].  Further 
evidence that neutral entities derive from union of opposites comes from the spin induced 
magnetic moment of atoms, which can exist in a quantum state of both spin up and spin down at 
the same time, a quantum condition that follows the superposition principal of physics [????].  In 
quantum physics, virtual and physical states that are mutually exclusive while simultaneously 
entangled, can form a unity of opposites <NeutA> via the principle of superposition. 
 
Our motivation for this communication is to the question: would the superposition principal hold 
when mass symmetrical and asymmetrical matter and antimatter nucleon wavefunctions become 
entangled, thus allowing for possible formation of macroscopic "unmatter" nucleon entities, 
either stable or unstable ?  Here we introduce how the novel Nucleon Cluster Model of the late R. 

198



A. Brightsen [9-15] does predict formation of unmatter as the product of such a superposition 
between matter and antimatter nucleon clusters.  The model suggests a radical hypothesis that 
antimatter nucleon clusters are present as a hidden parton type variable (sensu Feynman) 
superposed within the spatial confinement of the proton (1H1), the neutron, and the deuteron (1H2).  
Because the mathematics involving interactions between matter and antimatter nucleon clusters is 
not developed, much theoretical work will be needed to test model predictions.  If model 
predictions can be experimentally confirmed, a new physics is suggested. 
  
 
2. The Brightsen Nucleon Cluster Model to unmatter entities inside nuclei 
 
Of fundamental importance to the study of nuclear physics is the attempt to explain the 
macroscopic structural phenomena of the atomic nucleus. Classically, nuclear structure 
mathematically derives from two opposing views: (1) that the proton [P] and neutron [N] are 
independent (unbound) interacting fermions within nuclear shells, or (2) that nucleons interact 
collectively in the form of a liquid-drop.  Compromise models attempt to cluster nucleons into 
interacting [NP] boson pairs (e.g., Interacting Boson Model-IBM), or, as in the case of the 
Interacting Boson-Fermion Model (IBFM), link boson clusters [NP] with un-paired and 
independent nucleons [P] and [N] acting as fermions. 
 
However, an alternative view, at least since the 1937 Resonating Group Method of Wheeler, and 
the 1965 Close-Packed Spheron Model of Pauling, holds that the macroscopic structure of atomic 
nuclei is best described as being composed of a small number of interacting boson-fermion 
nucleon “clusters” (e.g., helium-3 [PNP], triton [NPN], deuteron [NP]), as opposed to 
independent [N] and [P] nucleons acting as fermions, either independently or collectively.  
Mathematically, such clusters represent a spatially localized mass-charge-spin subsystem 
composed of strongly correlated nucleons, for which realistic two- and three body wave functions 
can be written.  In this view, quark-gluon dynamics are confined within the formalism of 6-quark 
bags [NP] and 9-quark bags ([PNP] and [NPN]), as opposed to valance quarks forming free 
nucleons. The experimental evidence in support of nucleons interacting as boson-fermion clusters 
is now extensive and well reviewed. 
 
One novel nucleon cluster model is that of R. A. Brightsen, which was derived from the 
identification of mass-charge symmetry systems of isotopes along the Z-N Serge plot.  According 
to Brightsen, all beta-stable matter and antimatter isotopes are formed by potential combinations 
of  two- and three nucleon clusters; e.g., ([NP], [PNP], [NPN], [NN], [PP], [NNN], [PPP], and/or 
their mirror antimatter clusters [N^P^], [P^N^P^], [N^P^N^], [N^N^], [P^P^], [P^P^P^], 
[N^N^N^], where the symbol ^ here is used to denote antimatter.  A unique prediction of the 
Brightsen model is that a stable union must result between interaction of mass asymmetrical 
matter (positive mass) and antimatter (negative mass) nucleon clusters to form protons and 
neutrons, for example the interaction between matter [PNP] + antimatter [N^P^].  Why union and 
not annihilation of mass asymmetrical matter and antimatter entities? As explained by Brightsen, 
independent (unbound) neutron and protons do not exist in nuclear shells, and the nature of the 
mathematical series of cluster interactions (3 [NP] clusters = 1[NPN] cluster + 1 [PNP] cluster), 
makes it impossible for matter and antimatter clusters of identical mass to coexist in stable 
isotopes.  Thus, annihilation cannot take place between mass asymmetrical two- and three matter 
and antimatter nucleon clusters, only strong bonding (attraction).   
 
Here is the Table that tells it all--how unmatter may be formed from nucleon clusters according to 
the Brightsen model. 
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Revised Table 1.  This table is modified to improve the first version, which 
appeared in the Table 1 of Smarandache and Rabounski (2006, Vol 1, 
Progress in Physics).   
 
Unmatter entities (stable, quasi-stable, unstable) created from union of matter 
and antimatter nucleon clusters as predicted by the gravity-antigravity 
formalism of the Brightsen Nucleon Cluster Model. Blank cells represent 
interactions that result in annihilation of mirror identical two- and three- 
body clusters.  Top nucleons within cells show superposed state comprised of 
three valance quarks; bottom structures show superposed state of hidden 
unmatter in the form of nucleon clusters.  Unstable pions, tetraquarks, and 
hexaquark unmatter are predicted from union of mass symmetrical clusters 
that are not mirror opposites. The symbol ^ = antimatter, N = neutron, P = 
proton, q = quark.  Both the proton and neutron, and their antimatter mirrors, 
are represented by six unique unmatter nucleon cluster probability states; 
(communication with R. D. Davic).  
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3. A proposed experimental test 
 
As known, Standard Model of Quantum Electrodynamics explains all known phenomena with 
high precision, aside for anomalies in orthopositronium annihilation, discovered in 1987. 
 
The Brightsen model, like many other models (see References), is outside the Standard Model. 
They all pretend to expand the Standard Model in one or another way. Therefore today, in order 
to judge the alternative models as true or false, we should compare their predictions to 
orthopositronium annihilation anomalies, the solely unexplained by the Standard Model. Of those 
models the Brightsen model has a chance to be tested in such way, because it includes unmatter 
entities (the conjugations of particles and anti-particles) inside an atomic nucleus that could 
produce effect in the forming of orthopositronium by β+-decay positrons and its annihilation 
decay. 
 
In brief, the anomalies in orthopositronium annihilation are as follows. 
 
Positronium is an atom-like orbital system that includes an electron and its anti-particle, positron, 
coupled by electrostatic forces. There are two kinds of positronium: parapositronium SPs, in 
which the spins of electron and positron are oppositely directed and the summary spin is zero, and 
orthopositronium TPs, in which the spins are co-directed and the summary spin is one. Because a 
particle-antiparticle (unmatter) system is unstable, life span of positronium is rather small. In 
vacuum, parapositronium decays in τ ~ 1.25x10-10s, while orthopositronium is τ ~ 1.4x10-7 s after 
the birth. In a medium the life span is even shorter because positronium tends to annihilate with 
electrons of the media. 
 
In laboratory environment positronium can be obtained by placing a source of free positrons into 
a matter, for instance, one-atom gas. The source of positrons is β+-decay, self-triggered decays of 
protons in neutron-deficient atoms1 
 

p → n + e+ + νe . 
 
Some of free positrons released from β+-decay source into gas quite soon annihilate with free 
electrons and electrons in the container's walls. Other positrons capture electrons from gas atoms 
thus producing orthopositronium and parapositronium (in 3:1 statistical ratio). Time spectrum of 
positrons (number of positrons vs. life span) is the basic characteristic of their annihilation in 
matter. 
 
In inert gases the time spectrum of annihilation of free positrons generally reminds of exponential 
curve with a plateau in its central part, known as ``shoulder'' [27, 28]. In 1965 Osmon published 
[27] pictures of observed time spectra of annihilation of positrons in inert gases (He, Ne, Ar, Kr, 
Xe). In his experiments he used 22NaCl as a source of β+-decay positrons. Analyzing the results of 
the experiments, Levin noted that the spectrum in neon was peculiar compared to those in other 
one-atom gases: in neon points in the curve were so widely scattered, that presence of a 
``shoulder'' was unsure. Repeated measurements of temporal spectra of annihilation of positrons 
in He, Ne, and Ar, later accomplished by Levin [29, 30], have proven existence of anomaly in 
neon. Specific feature of the experiments done by Osmon, Levin and some other researchers in 

                                                 
1 It is also known as positron β+-decay. During β--decay in nucleus neutron decays n → p + e- + 
~νe . 
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the UK, Canada, and Japan is that the source of positrons was 22Na, while the moment of birth of 
positron was registered according to γn-quantum of decay of excited 22*Ne 
 

22*Ne → 22Ne +  γn , 
 
from one of products of β+-decay of 22Na. 
 
In his experiments [31, 32] Levin discovered that the peculiarity of annihilation spectrum in neon 
(abnormally wide scattered points) is linked to presence in natural neon of substantial quantity of 
its isotope 22Ne (around 9%). Levin called this effect isotope anomaly. Temporal spectra were 
measured in neon environments of two isotopic compositions: (1) natural neon (90.88% of 20Ne, 
0.26% of 21Ne, and 8.86% of 22Ne); (2) neon with reduced content of 22Ne (94.83% of 20Ne, 
0.22% of 21Ne, and 4.91% of 22Ne). Comparison of temporal spectra of positron decay revealed: 
in natural neon (the 1st composition) the shoulder is fuzzy, while in neon poor with 22Ne (the 2nd 
composition) the shoulder is always clearly pronounced. In the part of spectrum, to which TPs-
decay mostly contributes, the ratio between intensity of decay in poor neon and that in natural 
neon (with much isotope 22Ne) is 1.85±0.1 [32]. 
 
Another anomaly is substantially higher measured rate of annihilation of orthopositronium (the 
value reciprocal to its life span) compared to that predicted by QED. 
 
Measurement of orthopositronium annihilation rate is among the main tests aimed to 
experimental verification of QED laws of conservation. In 1987 thanks to new precision 
technology a group of researchers based in the University of Michigan (Ann Arbor) made a 
breakthrough in this area. The obtained results showed substantial gap between experiment and 
theory. The anomaly that the Michigan group revealed was that measured rates of annihilation at 
λT(exp) = 7.0514±0.0014 μs-1 and λT(exp) = 7.0482±0.0016 μs-1 (with unseen-before precision of 
0.02% and 0.023% using vacuum and gas methods [33--36]) were much higher compared to 
λT(theor) = 7.00383±0.00005 μs-1 as predicted by QED [37--40]. The effect was later called λT-
anomaly [41]. 
 
Theorists foresaw possible annihilation rate anomaly not long before the first experiments were 
accomplished in Michigan. In 1986 Holdom [42] suggested that ``mixed type'' particles may exist, 
which being in the state of oscillation stay for some time in our world and for some time in the 
mirror Universe, possessing negative masses and energies. In the same year Glashow [43] gave 
further development to the idea and showed that in case of 3-photon annihilation TPs will ``mix 
up'' with its mirror twin thus producing two effects: (1) higher annihilation rate due to additional 
mode of decay TPs → nothing, because products of decay passed into the mirror Universe can not 
be detected; (2) the ratio between orthopositronium and parapositronium numbers will decrease 
from TPs : SPs = 3:1 to 1.5:1. But at that time (in 1986) Glashow concluded that no interaction is 
possible between our-world and mirror-world particles. 
 
On the other hand, by the early 1990's these theoretic studies encouraged many researchers 
worldwide for experimental search of various ``exotic'' (i.e. not explained in QED) modes of TPs-
decay, which could lit some light on abnormally high rate of decay. These were, to name just a 
few, search for TPs → nothing mode [44], check of possible contribution from 2-photon mode 
[45--47] or from other exotic modes [48--50]. As a result it has been shown that no exotic modes 
can contribute to the anomaly, while contribution of TPs → nothing mode is limited to 5.8x10-4 of 
the regular decay. 
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The absence of theoretical explanation of λT-anomaly encouraged Adkins et al. [51] to suggest 
experiments made in Japan [52] in 1995 as an alternative to the basic Michigan experiments. No 
doubt, high statistical accuracy of the Japanese measurements puts them on the same level with 
the basic experiments [33--36]. But all Michigan measurements possessed the property of a ``full 
experiment'', which in this particular case means no external influence could affect wave function 
of positronium. Such influence is inevitable due to electrodynamic nature of positronium and can 
be avoided only using special technique. In Japanese measurements [52] this was not taken into 
account and thus they do not possess property of ``full experiment''. Latest experiments of the 
Michigans [53], so-called “Resolution of Orthopositronium-Lifetime Pussle”, as well do not 
possess property of ``full Experiment’’, because the qualitative another statement included 
external influence of electromagnetic field there [54, 55]. 
 
As early as in 1993 Karshenboim [56] showed that QED had actually run out of any of its 
theoretical capabilities to explain orthopositronium anomaly. 
 
Electric interactions and weak interactions were joined into a common electroweak interaction in 
the 1960’s by commonly Salam, Glashow, Weinberg, etc. Today’s physicists attempt to join 
electroweak interaction and strong interaction (unfinished yet). They follow an intuitive idea that 
forces, connecting electrons and a nucleus, and forces, connecting nucleons inside a nucleus, are 
particular cases of a common interaction. That is the basis of our claim. If that is true, our claim is 
that orthopositronium atoms born in neon of different isotope contents (22Ne, 21Ne, 20Ne) should 
be different from each other. There should be an effect of ``inner’’ structure of neon nuclei if built 
by the Brightsen scheme, because the different proton-neutron contents built by different 
compositions of nucleon pairs. As soon as a free positron drags an electron from a neon atom, the 
potential of electro-weak interactions have changed in the atom. Accordingly, there in the nucleus 
itself should be re-distribution of strong interactions, than could be once as the re-building of the 
Brightsen pairs of nucleons there. So, lost electron of 22Ne should have a different ``inner’’ 
structure than that of 21Ne or 20Ne. Then the life span of orthopositronium built on such electrons 
should be as well different. 
 
Of course, we can only qualitatively predict that difference, because we have no exact picture of 
what really happens inside a ``structurized’’ nucleus. Yet only principal predictions are possible 
there. However even in such case we vote for continuation of ``isotope anomaly’’ experiments 
with orthopositronium in neon of different isotope contents. If further experiments will be 
positive, it could be considered as one more auxiliary proof that the Brightsen model is true. 
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Analysis of covariant derivatives of vectors in quaternion (Q-) spaces performed us-
ing Q-unit spinor-splitting technique and use of SL(2C)-invariance of quaternion mul-
tiplication reveals close connexion of Q-geometry objects and Yang-Mills (YM) field
principle characteristics. In particular, it is shown that Q-connexion (with quaternion
non-metricity) and related curvature of 4 dimensional (4D) space-times with 3D Q-
space sections are formally equivalent to respectively YM-field potential and strength,
traditionally emerging from the minimal action assumption. Plausible links between
YM field equation and Klein-Gordon equation, in particular via its known isomorphism
with Duffin-Kemmer equation, are also discussed.

1 Introduction

Traditionally YM field is treated as a gauge, “auxiliary”, field involved to compensate local transformations of a ‘main’ (e.g.
spinor) field to keep invariance of respective action functional. Anyway there are a number of works where YM-field features
are found related to some geometric properties of space-times of different types, mainly in connexion with contemporary
gravity theories.

Thus in paper [1] violation of SO(3; 1)-covariance in gauge gravitation theory caused by distinguishing time direction
from normal space-like hyper-surfaces is regarded as spontaneous symmetry violation analogous to introduction of mass
in YM theory. Paper [2] shows a generic approach to formulation of a physical field evolution based on description of
differential manifold and its mapping onto “model” spaces defined by characteristic groups; the group choice leads to gravity
or YM theory equations. Furthermore it can be shown [2b] that it is possible to describe altogether gravitation in a space with
torsion, and electroweak interactions on 4D real spacetime C2, so we have in usual spacetime with torsion a unified theory
(modulo the non treatment of the strong forces).

Somewhat different approach is suggested in paper [3] where gauge potentials and tensions are related respectively to
connexion and curvature of principle bundle, whose base and gauge group choice allows arriving either to YM or to gravitation
theory. Paper [4] dealing with gravity in Riemann-Cartan space and Lagrangian quadratic in connexion and curvature shows
possibility to interpret connexion as a mediator of YM interaction.

In paper [5] a unified theory of gravity and electroweak forces is built with Lagrangian as a scalar curvature of space-time
with torsion; if trace and axial part of the torsion vanish the Lagrangian is shown to separate into Gilbert and YM parts.
Regardless of somehow artificial character of used models, these observations nonetheless hint that there may exist a deep
link between supposedly really physical object, YM field and pure math constructions. A surprising analogy between main
characteristics of YM field and mathematical objects is found hidden within geometry induced by quaternion (Q-) numbers.

In this regard, the role played by Yang-Mills field cannot be overemphasized, in particular from the viewpoint of the
Standard Model of elementary particles. While there are a number of attempts for describing the Standard Model of hadrons
and leptons from the viewpoint of classical electromagnetic Maxwell equations [6, 7], nonetheless this question remains an
open problem. An alternative route toward achieving this goal is by using quaternion number, as described in the present
paper. In fact, in Ref. [7] a somewhat similar approach with ours has been described, i.e. the generalized Cauchy-Riemann
equations contain 2-spinor and C-gauge structures, and their integrability conditions take the form of Maxwell and Yang-Mills
equations.

It is long ago noticed that Q-math (algebra, calculus and related geometry) naturally comprise many features attributed
to physical systems and laws. It is known that quaternions describe three “imaginary” Q-units as unit vectors directing axes
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of a Cartesian system of coordinates (it was initially developed to represent subsequent telescope motions in astronomical
observation). Maxwell used the fact to write his equations in the most convenient Q-form. Decades later Fueter discovered
a formidable coincidence: a pure math Cauchy-Riemann type condition endowing functions of Q-variable with analytical
properties turned out to be identical in shape to vacuum equations of electrodynamics [9].

Later on other surprising Q-math — physics coincidences were found. Among them: “automatic” appearance of Pauli
magnetic field-spin term with Bohr magneton as a coefficient when Hamiltonian for charged quantum mechanical particle
was built with the help of Q-based metric [10]; possibility to endow “imaginary” vector Q-units with properties of not only
stationary but movable triad of Cartan type and use it for a very simple description of Newtonian mechanics in rotating frame
of reference [11]; discovery of inherited in Q-math variant of relativity theory permitting to describe motion of non-inertial
frames [12]. Preliminary study shows that YM field components are also formally present in Q-math.

In Section 2 notion of Q-space is given in necessary detail. Section 3 discussed neat analogy between Q-geometric objects
and YM field potential and strength. In Section 4 YM field and Klein-Gordon correspondence is discussed. Concluding
remarks can be found in Section 5.

Part of our motivation for writing this paper was to explicate the hidden electromagnetic field origin of YM fields. It is
known that the Standard Model of elementary particles lack systematic description for the mechanism of quark charges. (Let
alone the question of whether quarks do exist or they are mere algebraic tools, as Heisenberg once puts forth: If quarks exist,
then we have redefined the word “exist”.) On the other side, as described above, Maxwell described his theory in quaternionic
language, therefore it seems natural to ask whether it is possible to find neat link between quaternion language and YM-fields,
and by doing so provide one step toward describing mechanism behind quark charges.

Further experimental observation is of course recommended in order to verify or refute our propositions as described
herein.

2 Quaternion spaces

Detailed description of Q-space is given in [13]; shortly but with necessary strictness its notion can be presented as following.
Let UN be a manifold, a geometric object consisting of points M 2 UN each reciprocally and uniquely corresponding

to a set of N numbers-coordinates fyAg : M $ fyAg, (A= 1; 2 : : : N). Also let the sets of coordinates be transformed so
that the map becomes a homeomorphism of a class Ck. It is known that UN may be endowed with a proper tangent manifold
TN described by sets of orthogonal unite vectors e(A) generating in TN families of coordinate lines M!fX(A)g, indices
in brackets being numbers of frames’ vectors. Differentials of coordinates in UN and TN are tied as dX(A) = g(A)

B dyB ,
with Lamé coefficients g(A)

B , functions of yA, so that X(A) are generally non-holonomic. Irrespectively of properties of UN
each its point may be attached to the origin of a frame, in particular presented by “imaginary” Q-units qk, this attachment
accompanied by a rule tying values of coordinates of this point with the triad orientation M $ fyA;��g. All triads fqkg so
defined on UN form a sort of “tangent” manifold T (U;q), (really tangent only for the base U3). Due to presence of frame
vectors qk(y) existence of metric and at least proper (quaternionic) connexion !jkn=�!jnk, @jqk=!jknqn, is implied,
hence one can tell of T (U;q) as of a Q-tangent space on the base UN . Coordinates xk defined along triad vectors qk in
T (U;q) are tied with non-holonomic coordinates X(A) in proper tangent space TN by the transformation dxk�hk(A)dX(A)

with hk(A) being locally depending matrices (and generally not square) of relative e(A) $ qk rotation. Consider a special case
of unificationU�T (U;q) with 3-dimensional base spaceU = U3. Moreover, let quaternion specificity of T3 reflects property
of the base itself, i.e. metric structure of U3 inevitably requires involvement of Q-triads to initiate Cartesian coordinates in
its tangent space. Such 3-dimensional space generating sets of tangent quaternionic frames in each its point is named here
“quaternion space” (or simply Q-space). Main distinguishing feature of a Q-space is non-symmetric form of its metric tensor�
gkn � qkqn =� �kn + + "knjqj being in fact multiplication rule of “imaginary” Q-units. It is easy to understand that all
tangent spaces constructed on arbitrary bases as designed above are Q-spaces themselves. In most general case a Q-space can
be treated as a space of affine connexion 
jkn = �jkn+Qjkn+ +Sjkn +!jnk +�jkn comprising respectively Riemann con-
nexion �jkn, Cartan contorsionQjkn, segmentary curvature (or ordinary non-metricity) Sjkn, Q-connexion !jnk, and Q-non-
metricity �jkn; curvature tensor is given by standard expression Rknij = @i
j kn� @j
i kn + 
i km
j mn� �
j nm
imk.
Presence or vanishing of different parts of connexion or curvature results in multiple variants of Q-spaces classification [13].
Further on only Q-spaces with pure quaternionic characteristics (Q-connexion and Q-non-metricity) will be considered.

�Latin indices are 3D, Greek indices are 4D; �kn; "knj are Kronecker and Levi-Civita symbols; summation convention is valid.
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3 Yang-Mills field from Q-space geometry

Usually Yang-Mills field AB� is introduced as a gauge field in procedure of localized transformations of certain field, e.g.
spinor field [14, 15]

 a ! U(y�) a : (1)

If in the Lagrangian of the field partial derivative of  a is changed to “covariant” one

@� ! D� � @� � gA� ; (2)

A� � iAC �TC ; (3)

where g is a real constant (parameter of the model), TC are traceless matrices (Lie-group generators) commuting as

[TB ; TC ] = ifBCDTD (4)

with structure constants fBCD , then
D�U � (@� � gA�)U = 0 ; (5)

and the Lagrangian keeps invariant under the transformations (1). The theory becomes “self consistent” if the gauge field
terms are added to Lagrangian

LYM � F��F�� ; (6)

F�� � FC �� TC : (7)

The gauge field intensity F��B expressed through potentials AB� and structure constants as

FC �� = @�AC � � @�AC � + fCDE AD�AE � : (8)

Vacuum equations of the gauge field
@� F�� +

�
A�; F��

�
= 0 (9)

are result of variation procedure of action built from Lagrangian (6).
Group Lie, e.g. SU(2) generators in particular can be represented by “imaginary” quaternion units given by e.g. traceless

2� 2-matrices in special representation (Pauli-type) iTB ! q~k = �i�k (�k are Pauli matrices),
Then the structure constants are Levi-Civita tensor components fBCD ! "knm, and expressions for potential and inten-

sity (strength) of the gauge field are written as:

A� = g
1
2
A~k � q~k ; (10)

Fk�� = @�Ak � � @�Ak� + "kmnAm�An� : (11)

It is worthnoting that this conventional method of introduction of a Yang-Mills field type essentially exploits heuristic base
of theoretical physics, first of all the postulate of minimal action and formalism of Lagrangian functions construction. But
since description of the field optionally uses quaternion units one can assume that some of the above relations are appropriate
for Q-spaces theory and may have geometric analogues. To verify this assumption we will use an example of 4D space-time
model with 3D spatial quaternion section.

Begin with the problem of 4D space-time with 3D spatial section in the form of Q-space containing only one geometric
object: proper quaternion connexion. Q-covariant derivative of the basic (frame) vectors qm identically vanish in this space:

~D�qk � (�mk @� + !�mk)qm = 0 : (12)

This equation is in fact equivalent to definition of the proper connexion !�mk. If a transformation of Q-units is given by
spinor group (leaving quaternion multiplication rule invariant)

qk = U(y) q~kU
�1(y) (13)

(q~k are constants here) then Eq. (12) yields

@�U q~kU
�1 + U q~k @�U

�1 = !�knU q~nU�1: (14)
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But one can easily verify that each “imaginary” Q-unit q~k can be always represented in the form of tensor product of its
eigen-functions (EF)  (~k), '(~k) (no summation convention for indices in brackets):

q~k (~k) = �i (~k); '(~k)q~k = �i'(~k) (15)

having spinor structure (here only EF with positive parity (with sign +) are shown)

q~k = i(2 (~k)'(~k) � 1); (16)

this means that left-hand-side (lhs) of Eq. (14) can be equivalently rewritten in the form

1
2

(@�U q~kU
�1 + U q~k @�U

�1) =

= (@�U  (~k))'(~k)U
�1 + U  (~k) ('(~k)@�U

�1)
(17)

which strongly resembles use of Eq. (1) for transformations of spinor functions.
Here we for the first time underline a remarkable fact: form-invariance of multiplication rule of Q-units under their spinor

transformations gives expressions similar to those conventionally used to initiate introduction of gauge fields of Yang-Mills
type.

Now in order to determine mathematical analogues of these “physical fields”, we will analyze in more details Eq. (14).
Its multiplication (from the right) by combination U q~k with contraction by index ~k leads to the expression

�3 @�U + U q~k @�U
�1Uq~k = !�knU q~nq~k : (18)

This matrix equation can be simplified with the help of the always possible development of transformation matrices

U � a + bk q~k ; U�1 = a � bk q~k ; (19)

UU�1 = a2 + bk bk = 1 ; (20)

where a, bk are real scalar and 3D-vector functions, q~k are Q-units in special (Pauli-type) representation. Using Eqs. (19),
the second term in lhs of Eq. (18) after some algebra is reduced to remarkably simple expression

U q~k @�U
�1Uq~k =

= (a+ bnq~n)q~k(@�a� @�bmq ~m) (a+ blq~l)q~k =

= @�(a+ bnq~n) = �@�U
(21)

so that altogether lhs of Eq. (18) comprises �4 @�U while right-hand-side (rhs) is

!�knU q~nq~k = �"knm!�knU q ~m ; (22)

then Eq. (18) yields

@�U � 1
4
"knm!�knU q ~m = 0 : (23)

If now one makes the following notations
Ak � � 1

2
"knm!�kn ; (24)

A� � 1
2
Anq~n ; (25)

then notation (25) exactly coincides with the definition (10) (provided g= 1), and Eq. (23) turns out equivalent to Eq. (5)

U
 
D� � U(

 
@� � A�) = 0 : (26)

Expression for “covariant derivative” of inverse matrix follows from the identity:

@�U U�1 = �U@�U�1: (27)
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Using Eq. (23) one easily computes

�@�U�1 � 1
4
"knm!�kn q ~mU�1 = 0 (28)

or
D�U�1 � (@� + A�)U�1 = 0 : (29)

Direction of action of the derivative operator is not essential here, since the substitution U�1 ! U U ! U�1 is always
possible, and then Eq. (29) exactly coincides with Eq. (5).

Now let us summarize first results. We have a remarkable fact: form-invariance of Q-multiplication has as a corollary
“covariant constancy” of matrices of spinor transformations of vector Q-units; moreover one notes that proper Q-connexion
(contracted in skew indices by Levi-Civita tensor) plays the role of “gauge potential” of some Yang-Mills-type field. By the
way the Q-connexion is easily expressed from Eq. (24)

!�kn = "mknAm� : (30)

Using Eq. (25) one finds expression for the gauge field intensity (11) (contracted by Levi-Civita tensor for convenience)
through Q-connexion

"kmnFk�� =

= "kmn(@�Ak � � @�Ak�) + "kmn"mljAl �Aj � =

= @�!�mn � @�!�mn + Am�An� � Am�An� :
(31)

If identically vanishing sum
��mnAj �Aj � + �mnAj�Aj� = 0 (32)

is added to rhs of (31) then all quadratic terms in the right hand side can be given in the form

Am�An� � Am�An� � �mnAj �Aj � + �mnAj�Aj� =

= (�mp�qn � �mn�qp)(Ap�Aq � � Ap�Aq �) =

= "kmq"kpn(Ap�Aq � � Ap�Aq �) =

= �!�kn !� km + !� knA�km :

Substitution of the last expression into Eq. (31) accompanied with new notation

Rmn�� � "kmnFk�� (33)

leads to well-known formula:
Rmn�� = @�!�mn � @�!�mn +

+!�nk !� km � !� nk !�km : (34)

This is nothing else but curvature tensor of Q-space built out of proper Q-connexion components (in their turn being func-
tions of 4D coordinates). By other words, Yang-Mills field strength is mathematically (geometrically) identical to quaternion
space curvature tensor. But in the considered case of Q-space comprising only proper Q-connexion, all components of the
curvature tensor are identically zero. So Yang-Mills field in this case has potential but no intensity.

The picture absolutely changes for the case of quaternion space with Q-connexion containing a proper part !� kn and also
Q-non-metricity �� kn


� kn(y�) = !� kn + �� kn (35)

so that Q-covariant derivative of a unite Q-vector with connexion (35) does not vanish, its result is namely the Q-non-metricity

D̂�qk � (�mk@� + 
�mk)qm = ��mk qk : (36)

For this case “covariant derivatives” of transformation spinor matrices may be defined analogously to previous case
definitions (26) and (29)

U
 ̂
D� � Û(

 
@� � Â�); D̂�U�1 � (@� + Â�)U : (37)
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But here the “gauge field” is built from Q-connexion (35)

Âk � � 1
2
"knm
�kn; Â� � 1

2
Ânq~n : (38)

It is not difficult to verify whether the definitions (37) are consistent with non-metricity condition (36). Action of the
“covariant derivatives” (37) onto a spinor-transformed unite Q-vector

D̂�qk ! (D̂�U)q~k @�U
�1 + U q~k (D̂�U�1) =

=
�
U
 
D� � 1

4
"jnm
�nmUq~j q~k

�
U�1 +

+ U q~k

�
D�U�1 +

1
4
"jnm
�nmq~jU

�1
�

together with Eqs. (26) and (29) demand:

U
 
D� = D�U�1 = 0 (39)

leads to the expected results

D̂�qk ! 1
2
"jnm��nmU"jklq~l U

�1 =

= ��klU q~l U
�1 = ��kl ql

i.e. “gauge covariant” derivative of any Q-unit results in Q-non-metricity in full accordance with Eq. (36).
Now find curvature tensor components in this Q-space; it is more convenient to calculate them using differential forms.

Given Q-connexion 1-form

 kn = 
� kndy� (40)

from the second equation of structure

1
2
R̂kn�� dy� ^ dy� = d
kn + 
km ^ 
mn (41)

one gets the curvature tensor component

R̂kn�� = @�
� kn � @�
�kn +

+ 
�km
�mn � 
�nm
�mk
(42)

quite analogously to Eq. (34). Skew-symmetry in 3D indices allows representing the curvature part of 3D Q-section as 3D
axial vector

F̂m�� � 1
2
"knmR̂kn�� (43)

and using Eq. (38) one readily rewrites definition (43) in the form

F̂m�� = @�Âm� � @�Âm� + "knmÂk�Ân� (44)

which exactly coincides with conventional definition (11). QED.

4 Klein-Gordon representation of Yang-Mills field

In the meantime, it is perhaps more interesting to note here that such a neat linkage between Yang-Mills field and quaternion
numbers is already known, in particular using Klein-Gordon representation [16]. In turn, this neat correspondence between
Yang-Mills field and Klein-Gordon representation can be expected, because both can be described in terms of SU(2) theory
[17]. In this regards, quaternion decomposition of SU(2) Yang-Mills field has been discussed in [17], albeit it implies a
different metric from what is described herein:

ds2 = d�2
1 + sin2�1 d�2

1 + d�2
2 + sin2�2 d�2

2 : (45)

However, the O(3) non-linear sigma model appearing in the decomposition [17] looks quite similar (or related) to the
Quaternion relativity theory (as described in the Introduction, there could be neat link between Q-relativity and SO(3; 1)).
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Furthermore, sometime ago it has been shown that four-dimensional coordinates may be combined into a quaternion,
and this could be useful in describing supersymmetric extension of Yang-Mills field [18]. This plausible neat link between
Klein-Gordon equation, Duffin-Kemmer equation and Yang-Mills field via quaternion number may be found useful, because
both Duffin-Kemmer equation and Yang-Mills field play some kind of significant role in description of standard model of
particles [16].

In this regards, it has been argued recently that one can derive standard model using Klein-Gordon equation, in particular
using Yukawa method, without having to introduce a Higgs mass [19, 20]. Considering a notorious fact that Higgs particle
has not been observed despite more than three decades of extensive experiments, it seems to suggest that an alternative route
to standard model of particles using (quaternion) Klein-Gordon deserves further consideration.

In this section we will discuss a number of approaches by different authors to describe the (quaternion) extension of Klein-
Gordon equation and its implications. First we will review quaternion quantum mechanics of Adler. And then we discuss
how Klein-Gordon equation leads to hypothetical imaginary mass. Thereafter we discuss an alternative route for quaternionic
modification of Klein-Gordon equation, and implications to meson physics.

4.1 Quaternion Quantum Mechanics

Adler’s method of quaternionizing Quantum Mechanics grew out of his interest in the Harari-Shupe’s rishon model for
composite quarks and leptons [21]. In a preceding paper [22] he describes that in quaternionic quantum mechanics (QQM),
the Dirac transition amplitudes are quaternion valued, i.e. they have the form

q = r0 + r1i+ r2j + r3k (46)

where r0, r1, r2, r3 are real numbers, and i, j, k are quaternion imaginary units obeying

i2 = j2 = k2 = �1; ij = �ji = k;

jk = �kj = i; ki = �ik = j :
(47)

Using this QQM method, he described composite fermion states identified with the quaternion real components [23].

4.2 Hypothetical imaginary mass problem in Klein-Gordon equation

It is argued that dynamical origin of Higgs mass implies that the mass of W must always be pure imaginary [19, 20]. Therefore
one may conclude that a real description for (composite) quarks and leptons shall avoid this problem, i.e. by not including
the problematic Higgs mass.

Nonetheless, in this section we can reveal that perhaps the problem of imaginary mass in Klein-Gordon equation is not
completely avoidable. First we will describe an elemen-
tary derivation of Klein-Gordon from electromagnetic wave equation, and then by using Bakhoum’s assertion of total energy
we derive alternative expression of Klein-Gordon implying the imaginary mass.

We can start with 1D-classical wave equation as derived from Maxwell equations [24, p.4]:

@2E
@x2 � 1

c2
@2E
@t2

= 0 : (48)

This equation has plane wave solutions:
E(x; t) = E0ei(kx�!t) (49)

which yields the relativistic total energy:
"2 = p2c2 +m2c4: (50)

Therefore we can rewrite (48) for non-zero mass particles as follows [24]:�
@2

@x2 � 1
c2
@2

@t2
� m2c2

~2

�
	e

i
~ (px�Et) = 0 : (51)

Rearranging this equation (51) we get the Klein-Gordon equation for a free particle in 3-dimensional condition:�
r� m2c2

~2

�
	 =

1
c2
@2	
@t2

: (52)
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It seems worthnoting here that it is more proper to use total energy definition according to Noether’s theorem in lieu of
standard definition of relativistic total energy. According to Noether’s theorem [25], the total energy of the system corre-
sponding to the time translation invariance is given by:

E = mc2 +
cw
2

Z 1
0

�

2 4�r2 dr

�
= k�c2 (53)

where k is dimensionless function. It could be shown, that for low-energy state the total energy could be far less than
E = mc2. Interestingly Bakhoum [25] has also argued in favor of using E = mv2 for expression of total energy, which
expression could be traced back to Leibniz. Therefore it seems possible to argue that expressionE = mv2 is more generalized
than the standard expression of special relativity, in particular because the total energy now depends on actual velocity [25].

From this new expression, it is possible to rederive Klein-Gordon equation. We start with Bakhoum’s assertion that it is
more appropriate to use E = mv2, instead of more convenient form E = mc2. This assertion would imply [25]:

H2 = p2c2 �m2
0c

2v2: (54)

A bit remark concerning Bakhoum’s expression, it does not mean to imply or to interpret E = mv2as an assertion that it
implies zero energy for a rest mass. Actually the prob-
lem comes from “mixed” interpretation of what we mean with “velocity”. In original Einstein’s paper (1905) it is defined
as “kinetic velocity”, which can be measured when standard “steel rod” has velocity approximates the speed of light. But
in quantum mechanics, we are accustomed to make use it deliberately to express “photon speed” = c. Therefore, in special
relativity 1905 paper, it should be better to interpret it as “speed of free electron”, which approximates c. For hydrogen
atom with 1 electron, the electron occupies the first excitation (quantum number n = 1), which implies that their speed also
approximate c, which then it is quite safe to assume E � mc2. But for atoms with large number of electrons occupying large
quantum numbers, as Bakhoum showed that electron speed could be far less than c, therefore it will be more exact to use
E = mv2, where here v should be defined as “average electron speed” [25].

In the first approximation of relativistic wave equation, we could derive Klein-Gordon-type relativistic equation from
equation (54), as follows. By introducing a new parameter:

� = i
v
c
; (55)

then we can use equation (55) in the known procedure to derive Klein-Gordon equation:

E2 = p2c2 + �2m2
0c

4; (56)

where E = mv2. By using known substitution:

E = i~
@
@t
; p =

~

i
r ; (57)

and dividing by (~c)2, we get Klein-Gordon-type relativistic equation [25]:

�c�2 @	
@t

+r2	 = k
02
0 	 ; (58)

where

k
0
0 =

�m0c
~

: (59)

Therefore we can conclude that imaginary mass term appears in the definition of coefficient k
0
0 of this new Klein-Gordon

equation.

4.3 Modified Klein-Gordon equation and meson observation

As described before, quaternionic Klein-Gordon equation has neat link with Yang-Mills field. Therefore it seems worth to
discuss here how to quaternionize Klein-Gordon equation. It can be shown that the resulting modified Klein-Gordon equation
also exhibits imaginary mass term.
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Equation (52) is normally rewritten in simpler form (by asserting c = 1):�
r� @2

@t2

�
	 =

m2

~2 : (60)

Interestingly, one can write the Nabla-operator above in quaternionic form, as follows:

A. Define quaternion-Nabla-operator as analog to quaternion number definition above (46), as follows [25]:

rq = �i @
@t

+ e1
@
@x

+ e2
@
@y

+ e3
@
@z

; (61)

where e1, e2, e3 are quaternion imaginary units. Note that equation (61) has included partial time-differentiation.

B. Its quaternion conjugate is defined as follows:

�rq = �i @
@t
� e1

@
@x
� e2

@
@y
� e3

@
@z

: (62)

C. Quaternion multiplication rule yields:

rq �rq = � @2

@t2
+

@2

@2x
+

@2

@2y
+

@2

@2z
: (63)

D. Then equation (63) permits us to rewrite equation (60) in quaternionic form as follows:

rq �rq	 =
m2

~2 : (64)

Alternatively, one used to assign standard value c= 1 and also ~= 1, therefore equation (60) may be written as:�
@2

@t2
�r2 +m2

�
'(x; t) = 0 ; (65)

where the first two terms are often written in the form of square Nabla operator. One simplest version of this equation [26]:

�
�
@S0

@t

�2
+m2 = 0 (66)

yields the known solution [26]:
S0 = �mt+ constant : (67)

The equation (66) yields wave equation which describes a particle at rest with positive energy (lower sign) or with negative
energy (upper sign). Radial solution of equation (66) yields Yukawa potential which predicts meson as observables.

It is interesting to note here, however, that numerical 1-D solution of equation (65), (66) and (67) each yields slightly
different result, as follows. (All numerical computation was performed using Mathematica [28].)

• For equation (65) we get:

(�D[#,x,x]+mˆ2+D[#,t,t])&[y[x,t]]==

m2 + y(0;2)[x; t]� y(2;0)[x; t] = 0

DSolve[%,y[x,t],{x,t}]��
y[x; t]! m2x2

2
+ C[1][t� x] + C[2][t+ x]

��
• For equation (66) we get:
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( mˆ2�D[#,t,t])&[y[x,t]]==

m2 + y(0;2)[x; t] = 0

DSolve[%,y[x,t],{x,t}]��
y[x; t]! m2t2

2
+ C[1][x] + tC[2][x]

��
One may note that this numerical solution is in quadratic form m2t2

2 + constant, therefore it is rather different from
equation (67) in [26].

In the context of possible supersymetrization of Klein-Gordon equation (and also PT-symmetric extension of Klein-
Gordon equation [27, 29]), one can make use biquaternion number instead of quaternion number in order to generalize
further the differential operator in equation (61):

E. Define a new “diamond operator” to extend quaternion-Nabla-operator to its biquaternion counterpart, according to the
study [25]:

} = rq+irq =
�
�i @
@t

+e1
@
@x

+e2
@
@y

+e3
@
@z

�
+

+ i
�
�i @
@T

+e1
@
@X

+e2
@
@Y

+e3
@
@Z

�
;

(68)

where e1, e2, e3 are quaternion imaginary units. Its conjugate can be defined in the same way as before.
To generalize Klein-Gordon equation, one can generalize its differential operator to become:��

@2

@t2
�r2

�
+i
�
@2

@t2
�r2

��
'(x; t)=�m2'(x; t); (69)

or by using our definition in (68), one can rewrite equation (69) in compact form:�}�}+m2�'(x; t) = 0; (70)

and in lieu of equation (66), now we get: "�
@S0

@t

�2
+ i
�
@S0

@t

�2#
= m2: (71)

Numerical solutions for these equations were obtained in similar way with the previous equations:

• For equation (70) we get:

(�D[#,x,x]+D[#,t,t]�I*D[#,x,x]+I*D[#,t,t]+mˆ2)
&[y[x,t]]==

m2 + (1 + i) y(0;2)[x; t]� (1 + i) y(2;0)[x; t] = 0

DSolve[%,y[x,t],{x,t}��
y[x; t]!

�
1
4
� i

4

�
m2x2 +C[1][t� x]+C[2][t+ x]

��
• For equation (71) we get:

(�mˆ2+D[#,t,t]+I*D[#,t,t])&[y[x,t]]==

m2 + (1 + i) y(0;2)[x; t] = 0

DSolve[%,y[x,t],{x,t}]��
y[x; t]!

�
1
4
� i

4

�
m2x2 + C[1][x] + tC[2][x]

��
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Therefore, we may conclude that introducing biquaternion differential operator (in terms of “diamond operator”) yield
quite different solutions compared to known standard solution of Klein-Gordon equation [26]:

y(x; t) =
�

1
4
� i

4

�
m2t2 + constant : (72)

In other word: we can infer hat t =� 1
m

q
y=
� 1

4 � i
4

�
, therefore it is likely that there is imaginary part of time dimension,

which supports a basic hypothesis of the aforementioned BQ-metric in Q-relativity.
Since the potential corresponding to this biquaternionic KGE is neither Coulomb, Yukawa, nor Hulthen potential, then

one can expect to observe a new type of matter, which may be called “supersymmetric-meson”. If this new type of particles
can be observed in near future, then it can be regarded as early verification of the new hypothesis of PT-symmetric QM and
CT-symmetric QM as considered in some recent reports [27, 29]. In our opinion, its presence may be expected in particular
in the process of breaking of Coulomb barrier in low energy schemes.

Nonetheless, further observation is recommended in order to support or refute this proposition.

5 Concluding remarks

If 4D space-time has for its 3D spatial section a Q-space with Q-connexion 
� kn containing Q-non-metricity �� kn, then the
Q-connexion, geometric object, is algebraically identical to Yang-Mills potential

Âk� � 1
2
"knm
�kn ;

while respective curvature tensor R̂kn�� , also a geometric object, is algebraically identical to Yang-Mills “physical field”
strength F̂m�� � 1

2
"knmR̂kn�� :

Thus Yang-Mills gauge field Lagrangian

LYM � F̂��k F̂k��=
1
4
"kmn"kjl R̂��mnR̂jl��=

1
2
R̂��mnR̂mn��

can be geometrically interpreted as a Lagrangian of “non-linear” or “quadratic” gravitational theory, since it contains quadratic
invariant of curvature Riemann-type tensor contracted by all indices. Hence Yang-Mills theory can be re-
garded as a theory of pure geometric objects: Q-connexion and Q-curvature with Lagrangian quadratic in curvature (as:
Einstein’s theory of gravitation is a theory of geometrical objects: Christoffel symbols and Riemann tensor, but with linear
Lagrangian made of scalar curvature).

Presence of Q-non-metricity is essential. If Q-non-metricity vanishes, the Yang-Mills potential may still exist, then it
includes only proper Q-connexion (in particular, components of Q-connexion physically manifest themselves as “forces of
inertia” acting onto non-inertially moving observer); but in this case all Yang-Mills intensity components, being in fact
components of curvature tensor, identically are equal to zero.

The above analysis of Yang-Mills field from Quaternion Space geometry may be found useful in particular if we consider
its plausible neat link with Klein-Gordon equation and Duffin-Kemmer equation. We discuss in particular a biquaternionic-
modification of Klein-Gordon equation. Since the potential corresponding to this biquaternionic KGE is neither Coulomb,
Yukawa, nor Hulthen potential, then one can expect to observe a new type of matter. Further observation is recommended in
order to support or refute this proposition.
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     In the preceding article we argue that biquaternionic extension of Klein-Gordon 
equation has solution containing imaginary part, which differs appreciably from 
known solution of KGE. In the present article we present numerical /computer solu-
tion of radial biquaternionic KGE (radialBQKGE); which differs appreciably from 
conventional Yukawa potential. Further observation is of course recommended in 
order to refute or verify this proposition.   

 

Introduction  

In the preceding article [1] we argue that biquaternionic extension of 
Klein-Gordon equation has solution containing imaginary part, which differs 
appreciably from known solution of KGE. In the present article we pre-
sented here for the first time a numerical /computer solution of radial biqua-
ternionic KGE (radialBQKGE); which differs appreciably from conventional 
Yukawa potential.  

This biquaternionic effect may be useful in particular to explore new ef-
fects in the context of low-energy reaction (LENR) [3]. Nonetheless, further 
observation is of course recommended in order to refute or verify this propo-
sition.        

Radial biquaternionic KGE (radial BQKGE)  

In our preceding paper [1], we argue that it is possible to write biquater-
nionic extension of Klein-Gordon equation as follows: 
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Or this equation can be rewritten as: 
    ( ) 0),(2 =+◊◊ txm ϕ ,                                                              (2) 
Provided we use this definition: 
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Where e1, e2, e3 are quaternion imaginary units obeying (with ordinary 
quaternion symbols: e1=i, e2=j , e3 =k): 

     1222 −=== kji , kjiij =−= ,  
    ikjjk =−= , jikki =−= .                                               (4) 

And quaternion Nabla operator is defined as [1]: 
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Note that equation (3) and (5) included partial time-differentiation. 
In the meantime, the standard Klein-Gordon equation reads [6][7]: 
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Now we can introduce polar coordinates by using the transformation: 
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Therefore, by substituting (7) into (6), the radial Klein-Gordon equation 
reads –by neglecting partial-time differentiation -- as follows [4][6]: 
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and for 0=l , then we get [4]: 
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      The same method can be applied to equation (2) for radial biquaternionic 
KGE (BQKGE), which for the 1-dimensional situation, one gets instead of 
(8): 
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In the next section we will discuss numerical /computer solution of equation 
(10) and compare it with standard solution of equation (9) using Maxima 
software package [5]. It can be shown that equation (10) yields potential 
which differs appreciably from standard Yukawa potential. For clarity, all 
solutions were computed in 1-D only. 

Numerical solution of radial biquaternionic Klein-Gordon equation  

Numerical solution of the standard radial Klein-Gordon equation (9) is 
given by : 

 
(%i1) diff(y,t,2)-'diff(y,r,2)+m^2*y; 

(%o1) y
xd

dym 2

2
2 . −  

 (%i2) ode2 (%o1, y , r); 
(%o2) )exp(.%%)exp(.%% 21 mrkmrky −+=                    (11) 
 
In the meantime, numerical solution of equation (10) for radial biquater-

nionic KGE (BQKGE), is given by: 
 
 
(%i3) diff(y,t,2)- (%i+1)*'diff(y,r,2)+m^2*y; 

(%o3) ( ) y
rd

diym 2

2
2 1. +−  

 (%i4) ode2 (%o3, y , r); 
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Therefore, we conclude that numerical solution of radial biquaternionic 

extension of Klein-Gordon equation yields different result compared to the 
solution of standard Klein-Gordon equation; and it differs appreciably from 
the well-known Yukawa potential [6][6a]: 

 mre
r

gru −−=
2

)(                                                                            (13) 

Meanwhile, Comay puts forth argument that the Yukawa lagrangian den-
sity has theoretical inconsistency within itself [6].  

Interestingly one can find argument that biquaternion Klein-Gordon equa-
tion is nothing more than quadratic form of (modified) Dirac equation [1a], 
therefore BQKGE described herein [i.e. equation (12)] can be considered as 
a plausible solution to the problem described in [6]. For other numerical 
solutions to KGE, see for instance [7].  

Nonetheless, we recommend further observation [8] in order to refute or 
verify this proposition of new type of potential derived from biquaternion 
Klein-Gordon equation. 
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     In the preceding article we argue that biquaternionic extension of Klein-Gordon 
equation has solution containing imaginary part, which differs appreciably from 
known solution of KGE. In the present article we discuss some possible interpreta-
tion of this imaginary part of the solution of biquaternionic KGE (BQKGE); thereaf-
ter we offer a new derivation of biquaternion Schrödinger equation using this 
method. Further observation is of course recommended in order to refute or verify 
this proposition.   

 

Introduction  

There were some attempts in literature to generalise Schrödinger equation 
using quaternion and biquaternion numbers. Because quaternion number use 
in Quantum Mechanics has often been described [1][2][8][11], we only men-
tion in this paper the use of biquaternion number. Sapogin [13] was the first 
to introduce biquaternion to extend Schrödinger equation, while Kravchenko 
[11] use biquaternion number to describe neat link between Schrödinger 
equation and Riccati equation.   

In the present article we discuss a new derivation of biquaternion 
Schrödinger equation using a method used in the preceding paper. Because 
the previous method has been used for Klein-Gordon equation [1], now it 
seems natural to extend it to Schrödinger equation. This biquaternion effect 
may be useful in particular to explore new effects in the context of low-
energy reaction (LENR) [13]. Nonetheless, further observation is of course 
recommended in order to refute or verify this proposition.        

Some interpretations of preceding result of biquaternionic KGE  

In our preceding paper [1], we argue that it is possible to write biquater-
nionic extension of Klein-Gordon equation as follows: 
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Or this equation can be rewritten as: 
    ( ) 0),(2 =+◊◊ txm ϕ ,                                                              (2) 
Provided we use this definition: 
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Where e1, e2, e3 are quaternion imaginary units obeying (with ordinary 
quaternion symbols: e1=i, e2=j , e3 =k): 
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     1222 −=== kji , kjiij =−= ,  
    ikjjk =−= , jikki =−= .                                               (4) 

And quaternion Nabla operator is defined as [5]: 
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Note that equation (3) and (5) included partial time-differentiation. 
It is worth nothing here that equation (2) yields solution containing 

imaginary part, which differs appreciably from known solution of KGE: 

       tconstmitxy tan
44

1),( 22 +⎟
⎠
⎞

⎜
⎝
⎛ −=                                       (6) 

Some possible alternative interpretations of this imaginary part of the so-
lution of biquaternionic KGE (BQKGE) are: 

 
(a) The imaginary part implies that there is exponential term of the 

wave solution, which is quite similar to the Ginzburg-Landau ex-
tension of London phenomenology [3]:            

                )()()( rierr ϕψψ = ,                                                              (7) 
          because equation (6) can be rewritten (approximately) as: 

                22

4
),( tmetxy

i

=                                                         (8) 

(b) The aforementioned exponential term of the solution (8) can be in-
terpreted as signature of vortices solution. Interestingly Navier-
Stokes equation which implies vorticity equation can also be rewrit-
ten in terms of Yukawa equation [8].  

(c) The imaginary part implies that there is spiral wave, which suggests 
spiralling motion of meson or other particles. Interestingly it has 
been argued that one can explain electron phenomena by assuming 
spiralling electrons [5]. Alternatively this spiralling wave may al-
ready be known in the form of Bierkeland flow. For meson obser-
vation, this could be interpreted as another form of meson, which 
may be called ‘supersymmetric-meson’ [1]. 

(d) The imaginary part of solution of BQKGE also implies that it con-
sists of standard solution of KGE [1], and its alteration because of 
imaginary differential operator. That would mean the resulting 
wave is composed of two complementary waves.  

(e) Considering some recent proposals suggesting that neutrino can 
have imaginary mass [6], the aforementioned imaginary part of so-
lution of BQKGE can also imply that the (supersymmetric-) meson 
may be composed of neutrino(s). This new proposition may require 
new thinking both on the nature of neutrino and also supersymmet-
ric-meson. [7] 

 
      While some of these propositions remain to be seen, in deriving the pre-
ceding BQKGE we follow Dirac’s phrase that ‘One can generalize his phys-
ics by generalizing his mathematics.’ More specifically, we focus on using a 
‘theorem’ from this principle, i.e.:  ‘One can generalize his mathematics by 
generalizing his (differential) operator.’  

Extended biquaternion Schrödinger equation  

One can expect to use the same method described above to generalize the 
standard Schrödinger equation [10]: 
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      EuuxVu
m

=+Δ− )](
2

[
2h

,                                                           (9) 

Or in simplified form [10, p.11]: 
      ,0)( =+Δ− kk fw   k=0,1,2,3                                                       (10) 
In order to generalize equation (9) to biquaternion version (BQSE), we 

use first quaternion Nabla operator (5), and by noticing that ∇∇≡Δ , we 
get: 
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Note that we shall introduce the second term in order to ‘neutralize’ the 
partial time-differentiation of qq∇∇ operator.  

To get biquaternion form of equation (11) we can use our definition in 
equation (3) rather than (5), so we get: 
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This is an alternative version of biquaternionic Schrödinger equation, 
compared to Sapogin’s [13] or Kravchenko’s [11] method. We also note 
here that the route to quaternionize Schrödinger equation here is rather dif-
ferent from what is described by Horwitz [9, p.6]: 

    EeH 1
~ ψψ = ,                                                                                   (13) 

or 
   EqeqqqH )(~

1
1−=ψψ ,                                                                    (14) 

Where the quaternion number q, can be expressed as [9, p.6][11]: 
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i
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Nonetheless, further observation is of course recommended in order to re-
fute or verify this proposition (12).          
 

Numerical solution of biquaternion Schrödinger equation  

It can be shown that numerical solution (using Maxima [14]) of biquater-
nionic extension of Schrödinger equation yields different result compared to 
the standard Schrödinger equation, as follows. For clarity, all solutions were 
computed in 1-D only. 

For standard Schrödinger equation [10], one can rewrite equation (9) as 
follows: 

(a) For ExV >)( : 

0.
2

2

=+Δ− uau
m
h

,                                                                           (16) 

(b) For ExV <)( : 

0.
2

2

=−Δ− uau
m
h

,                                                                           (17) 

 
Numerical solution of equation (16) and (17) is given by (assuming 

1=h and 2/1=m  for convenience): 
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(%i44) -'diff (y, x, 2) + a*y; 

(%o44) y
xd

dya 2

2

. −  

(a) For ExV >)( : 
(%i46) ode2 (%o44, y , x); 
(%o46) )exp(.)exp(. 21 axkaxky −+=                           (18) 
 
(b) For ExV <)( : 
(%i45) ode2 (%o44, y , x); 
(%o45) ).cosh(.).sinh(. 21 xakxaky +=                         (19) 
 
In the meantime, numerical solution of equation (12), is given by (by as-

suming 1=h and 2/1=m  for convenience): 
 
(a) For ExV >)( : 
(%i38) (%i+1)*'diff (y, x, 2) + a*y; 

(%o38) ( ) yay
xd

di .1 2

2

++  

 (%i39) ode2 (%o38, y , x); 

(%o39) ).
1

cos(.).
1

sin(. 21 x
i

akx
i
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+

+
+

=                  (20) 

(b) For ExV <)( : 
(%i40) (%i+1)*'diff (y, x, 2) - a*y; 

(%o40) ( ) yay
xd

di .1 2

2

−+  

(%i41) ode2 (%o40, y , x); 

(%o41) ).
1

cos(.).
1

sin(. 21 x
i

akx
i

aky
+

−+
+

−=           (20a) 

 
Therefore, we conclude that numerical solution of biquaternionic exten-

sion of Schrödinger equation yields different result compared to the solution 
of standard Schrödinger equation. Nonetheless, we recommend further ob-
servation in order to refute or verify this proposition/numerical solution of 
biquaternion version of spatial-differential operator of Schrödinger equation.           

As side remark, it is interesting to note here that if we introduce imagi-
nary number in equation (16) and equation (17), the numerical solutions will 
be quite different compared to solution of equation (16) and (17), as follows: 

0
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=+Δ− auu
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,                                                                            (21) 

Where ExV >)( , or 

0
2

2

=−Δ− auu
m

ih
,                                                                            (22) 

Where ExV <)( . 
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Numerical solution of equation (21) and (22) is given by (by assuming 
1=h and 2/1=m  for convenience): 

 
(a) For ExV >)( : 
(%i47) -%i*'diff (y, x, 2) + a*y; 

(%o47) y
xd

diya 2

2

. −   

(%i48) ode2 (%o47, y , x); 
(%o48) ).cos(.).sin(. 21 xiakxiaky +=                           (23) 
 
(b) For ExV <)( : 
(%i50) -%i*'diff (y, x, 2) - a*y; 

(%o50) y
xd

diya 2

2

. −−  

(%i51) ode2 (%o50, y , x); 
(%o51) ).cos(.).sin(. 21 xiakxiaky −+−=                      (24) 
 

It shall be clear therefore that using different sign for differential operator 
yields quite different results.  
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     In the present article we argue that it is possible to write down Schrödinger repre-
sentation of Navier-Stokes equation via Riccati equation. The proposed approach, 
while differs appreciably from other method such as what is proposed by RM. Kiehn, 
has an advantage, i.e. it enables us extend further to quaternionic and biquaternionic 
version of Navier-Stokes equation, for instance via Kravchenko’s and Gibbon’s 
route. Further observation is of course recommended in order to refute or verify this 
proposition.   

 

Introduction  

In recent years there were some attempts in literature to find out 
Schrödinger-like representation of Navier-Stokes equation using various 
approaches, for instance by R.M. Kiehn [1][2]. Deriving exact mapping be-
tween Schrödinger equation and Navier-Stokes equation has clear advan-
tage, because Schrodinger equation has known solutions, while exact solu-
tion of Navier-Stokes equation completely remains an open problem in 
mathematical-physics. Considering wide applications of Navier-Stokes 
equation, including for climatic modelling and prediction (albeit in simpli-
fied form called ‘geostrophic flow’ [9]), one can expect that simpler expres-
sion of Navier-Stokes equation will be found useful. 

In this article we presented an alternative route to derive Schrödinger rep-
resentation of Navier-Stokes equation via Riccati equation. The proposed 
approach, while differs appreciably from other method such as what is pro-
posed by R.M. Kiehn [1], has an advantage, i.e. it enables us to extend fur-
ther to quaternionic and biquaternionic version of Navier-Stokes equation, in 
particular via Kravchenko’s [3] and Gibbon’s route [4][5]. An alternative 
method to describe quaternionic representation in fluid dynamics has been 
presented by Sprössig [6].  

Nonetheless, further observation is of course recommended in order to re-
fute or verify this proposition. 

From Navier-Stokes equation to Schrödinger equation via Riccati  

Recently, Argentini [8] argues that it is possible to write down ODE form 
of 2D steady Navier-Stokes equations, and it will lead to second order equa-
tion of Riccati type.  

Let ρ the density, μ the dynamic viscosity, and f the body force per unit 
volume of fluid. Then the Navier-Stokes equation for the steady flow is [8]: 

       ( ) vfpvv Δ++−∇=∇ ... μρρ                                                    (1) 
After some necessary steps, he arrives to an ODE version of 2D Navier-

Stokes equations along a streamline [8, p. 5] as follows: 

        1111 .. uvqfuu &
&

& +−=
ρ

  ,                                                               (2)            
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where 
ρ
μ

=v is the kinematic viscosity. He [8, p.5] also finds a general 

exact solution  of equation (2) in Riccati form, which can be rewritten as 
follows: 
              0. 2

11 =+− βα uu& ,                                                                     (3) 
where: 
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Interestingly, Kravvhenko [3, p.2] has argued that there is neat link be-
tween Schrödinger equation and Riccati equation via simple substitution. 
Consider a 1-dimensional static Schrödinger equation: 

          0. =+ uvu&&                                                                                   (6) 
and the associated Riccati equation: 
              vyy −=+ 2&                                                                                 (7) 
    Then it is clear that equation (6) is related to (7) by the inverted substitu-
tion [3]: 

               
u
uy
&

=                                                                                            (8) 

Therefore, one can expect to use the same method (8) to write down the 
Schrödinger representation of Navier-Stokes equation. First, we rewrite 
equation (3) in similar form of equation (7): 

           0. 2
11 =+− βα yy&                                                                     (9) 

By using substitution (8), then we get the Schrödinger equation for this 
Riccati equation (9): 

            0. =− uu αβ&&                                                                            (10) 
where variable α and β are the same with (4) and (5). This Schrödinger rep-
resentation of Navier-Stokes equation is remarkably simple and it also has 
advantage that now it is possible to generalize it further to quaternionic 
(ODE) Navier-Stokes equation via quaternionic Schrödinger equation, for 
instance using the method described by Gibbon et al. [4][5].       

An extension to biquaternionic Navier-Stokes equation via biquaternion 
differential operator  

In our preceding paper [10][12], we use this definition for biquaternion 
differential operator: 
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Where e1, e2, e3 are quaternion imaginary units obeying (with ordinary 
quaternion symbols: e1=i, e2=j , e3 =k): 

     1222 −=== kji , kjiij =−= ,  
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    ikjjk =−= , jikki =−= .                                            (12) 
And quaternion Nabla operator is defined as [13]: 
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Note that equation (11) and (13) include partial time-differentiation. 
Now it is possible to use the same method described above [10][12] to 

generalize the Schrödinger representation of Navier-Stokes (10) to the bi-
quaternionic Schrödinger equation, as follows.  

In order to generalize equation (10) to quaternion version of Navier-
Stokes equations (QNSE), we use first quaternion Nabla operator (13), and 
by noticing that ∇∇≡Δ , we get: 
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qq αβ .                                                     (14) 

We note that the multiplying factor (ab) in (14) plays similar role just like 
(V(x)-E) factor in the standard Schrödinger equation [12]:  
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Note that we shall introduce the second term in order to ‘neutralize’ the 
partial time-differentiation of qq∇∇ operator.  

To get biquaternion form of equation (14) we can use our definition in 
equation (11) rather than (13), so we get [12]: 
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This is an alternative version of biquaternionic Schrödinger representa-
tion of Navier-Stokes equations. Numerical solution of the new Navier-
Stokes-Schrödinger equation (16) can be performed in the same way with 
[12] using Maxima software package [7], therefore it will not be discussed 
here. 

We also note here that the route to quaternionize Schrödinger equation 
here is rather different from what is described by Gibbon et al. [4][5], where 
the Schrödinger-equivalent to Euler fluid equation is described as [5, p4]: 
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and its quaternion representation is [5, p9]: 
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with Riccati relation is given by: 
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Nonetheless, further observation is of course recommended in order to re-
fute or verify this proposition (16).          
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     In the present article we argue that it is possible to write a modern version of 
Schrödinger’s uncertainty theorem using standard notation of uncertainty algebra. It 
can be expected that a modern language will bring clarity to what are implications of 
uncertainty theorem, which forms a cornerstone of quantum theory.  Further observa-
tion is of course recommended in order to refute or verify this proposition.   

 

Introduction  

In the present article we argue that it is possible to write a modern version 
of Schrödinger’s uncertainty theorem [1] using standard notations of uncer-
tainty algebra [2]. It can be expected that a modern language will bring clar-
ity to implications of uncertainty theorem, which forms a cornerstone of 
quantum theory. 

The reason for discussing Schrödinger’s uncertainty theorem is because it 
is more comprehensive and adaptable to the modern language of uncertainty 
algebra, compared to Heisenberg’s uncertainty theorem. Other reason is that 
this Schrödinger’s uncertainty theorem opens new possibility to detect quan-
tum phenomena below the limits set out in Heisenberg’s uncertainty. Inter-
estingly, there are recent papers suggesting that one can observe below this 
limit (see W. Zurek’s paper in Nature, 2002-2003, for instance).  

And considering other papers suggesting that Schrödinger equation can 
be derived from exact uncertainty theorem [3][4], then given this 
Schrödinger uncertainty relation, one can expect to generalize it further.  

Nonetheless, further observation is of course recommended in order to re-
fute or verify this proposition.        

Schrodinger’s uncertainty theorem and modern uncertainty notations  

In his almost unknown paper [1, p.5], Schrödinger wrote that “the Heisen-
berg limit is not really too low, but for some special Ψ–functions achieves 
even higher value.” And he offers a more generalized formulation of 
Heisenberg’s uncertainty relation which agrees with more standard defini-
tion of mathematical-statistics. 

His arguments start with writing down the average error or the mean un-
certainty of the value, which belongs to the operator A, as follows [1, p.3]: 

     2)( AAA −=Δ                                                                             (1) 
Interestingly, equation (1) is nothing more than the square root of statisti-

cal variance of A [2]: 
     [ ] 2)(var AAA −=                                                                           (2) 
Therefore it is possible to write equation (2) in terms of expectation val-

ues of modern uncertainty relations (just like what Schrödinger expected to 
achieve) as follows [2, p.70]: 
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     [ ] [ ][ ]ZAEVarZAVarEAEAEA +=−= ]][[][][var 22 ,      (3) 
where E[A|Z=z] is the conditional expectation of A given Z=z: [2,p.70) 

      [ ] dazafazZAE ZA ),(.∫
∞

∞−
==                                                (3a) 

Although Schrodinger gave a slightly different definition (expectation 
without conditional): 

      ∫ Ψ∗Ψ= dxAA                                                                            (4) 

This result (3), despite its simplicity, is very important and useful in vari-
ous applications [2, p.71]. Therefore it can be expected to bring 
Schrödinger’s uncertainty relation into the context of conditional expecta-
tion, just like what J. Bell proposed sometime ago with his ‘Bell’s inequality 
theorem’.[5] 

Using the same method [2, p.71]. we can also write the covariance as: 
][][][],[ YEXEXYEYXCov −=                                                (5) 

Nonetheless, we recommend further observation in order to refute or ver-
ify this proposition of new interpretation of Schrodinger’s uncertainty rela-
tion from modern uncertainty notations.  
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Summary: We review the relation between space-time geometries with tor-
sion fields (the so-called Riemann-Cartan-Weyl (RCW) geometries) and their
associated Brownian motions. In this setting, the metric conjugate of the trace-
torsion one-form is the drift vector field of the Brownian motions. Thus, in
the present approach space-time fluctuations as Brownian motions are -in dis-
tinction with Nelson’s Stochastic Mechanics- space-time structures. Thus, space
and time have a fractal structure. We discuss the relations with Nottale’s theory
of Scale Relativity, which stems from Nelson’s approach. We characterize the
Schroedinger equation in terms of the RCW geometries and Brownian motions.
In this work, the Schroedinger field is a torsion generating field. The potential
functions on Schroedinger equations can be alternatively linear or nonlinear on
the wave function, leading to nonlinear and linear creation-annihilation of par-
ticles by diffusion systems. We give a brief presentation of the isotopic lift of
Quantum Mechanics known as Hadronic Mechanics due to Santilli. We start
by giving the isotopic lift (i.e. a non-unitary transformation not identically re-
ducible to the identity) of gauge theories, to show that torsion appears at the
basis of gauge theories, and also in the isotopic lift of gauge theories. Using this
non-unitary transformations we present the isotopic lift of all the mathematical
apparatus and physical aspects of Quantum Mechanics, to present Hadronic
Mechanics. This theory lifts a number of fundamental inconsistencies in the
conventional approaches to Special and General Relativity, Quantum Mechan-
ics, particle physics, cosmology, superconductivity, biology, etc. We present
the relations between Hadronic Mechanics with RCW geometries and Brownian
motions in the case of the iso-Schroedinger equation for the strong interactions.
This is achieved by either using the diffusion representation for the Schroedinger
equation and its isotopic lift, which for the case of trivial noise tensor yields the
iso-Heisenberg representation. We derive the iso-Schroedinger equation from
this isotopic lift of diffusions representation. We give a Brownian motion model
of fusion in Hadronic Mechanics, and extend it to the many body problem.
We discuss the possible relation between torsion fields and several anomalous
phenomenae. Finally we discuss possible evidence for this theory in the fine
structure time periodicity of histograms of arbitrary processes found by Shnoll
and collaborators, which show a spacetime anisotropy attributed to space-time
fluctuations and a fractal structure of these histograms.

1E-mail address: diego.rapoport@gmail.com
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1 INTRODUCTION

A central problem of contemporary physics is the distinct world views provided
by Quantum Mechanics and the theory of Relativity, and more generally of grav-
itation. In a series of articles [1-4], we have presented an unification between
space-time structures, Brownian motions, further extended to fluid-dynamics
and Quantum Mechanics (QM, for short in the following). The unification of
space-time geometry and classical statistical theory has been possible due to
a complementarity of the objects characterizing the Brownian motion, i.e. the
noise tensor which produces a metric, and the drift vector field which describes
the average velocity of the Brownian, in jointly describing both the space-time
geometry and the stochastic processes. These space-time structures can be de-
fined starting from flat Euclidean or Minkowski space-time, and they have in
addition to a metric a torsion tensor which is formed from the metric conjugate
of the drift vector field. The key to this unification lies in that the laplacian
operator defined by this geometrical structure is the differential generator of
the Brownian motions; stochastic analysis which deals with the transformation
rules of classical observables on diffusion paths ensures that this unification
stands in an equal status for both the geometrical and stochastic structures
[70]. Thus , in this equivalence, one can choose the Brownian motions as the
original structures determining a space-time structure, or conversely, the space-
time structures produce a Brownian motion process. Space-time geometries
with torsion have lead to an extension of the theory of gravitation which was
first explored in joint work by Einstein with Cartan [5], so that the foundations
for the gravitational field, for the special case in which the torsion reduces to
its trace, can be found in these Brownian motions. Furthermore, in [2] we have
shown that the relativistic quantum potential coincides , up to a conformal
factor, with the metric scalar curvature. In this setting we are lead to con-
ceive that there is no actual propagation of disturbances but instead an holistic
modification of the whole space-time structure due to an initial perturbation
which provides for the Brownian process modification of the original configu-
ration. Furthermore, the present theory which has a kinetic Brownian motion
generation of the geometries, is related to Le Sage’s proposal of a Universe filled
with all pervading tiny particles moving in all directions as a pushing (in con-
trast with Newton’s pulling force) source for the gravitational field [52]. Le
Sage’s perspective was found to be compatible cosmological observation by H.
Arp [53]. This analysis stems from the assumption of a non-constant mass in
GR which goes back to Hoyle and Narlikar, which in another perspective de-
veloped by Wu and Lin generates rotational forces [54]. These rotational forces
can be ascribed to the drift trace-torsion vector field of the Brownian processes
through the Hodge duality transformation [3], or still to the vorticity generated

237



by this vector field. In our present theory, motions in space and time are fractal,
they generate the gravitational field of general relativity, and furthermore they
generate rotational fields, in contrast with the pulling force of Newton’s theory
and the pushing force of Le Sage, or in the realm of the neutron, the Coulomb
force. Furthermore, in our construction the drift has built-in terms given by the
conjugate of electromagnetic-like potential 1-forms, whose associated intensity
two-form generate vorticity, i.e. angular momentum. So the present geometries
are very different from the metric geometries of General Relativity (GR in the
following) and are not in conflict with present cosmological observations.

The space-time geometrical structures of this theory can be introduced by
the Einstein λ transformations on the tetrad fields [2,5], from which the usual
Weyl scale transformations on the metric can be derived, but contrarily to Weyl
geometries, these structures have torsion and they are integrable in contrast with
Weyl’s theory [48]. We have called these connections as RCW structures (short
for Riemann-Cartan-Weyl); see [1-4] and references therein. We have shown
that this approach leads to non-relativistic QM both in configuration space [3]
and in the projective Hilbert state-space through the stochastic Schroedinger
equation [39] (in the latter case, it was shown that this geometry is related to a
theory of the reduction of the wave function through decoherence) , and further
to Maxwell’s equation and its equivalence with the Dirac-Hestenes equation of
relativistic QM [2,21]. The fact that non-relativistic QM can be linked to tor-
sion fields was unveiled recently [3]. In fact, torsion fields have been considered
to be as providing deviations of GR outside the reach of present precision mea-
surements [22]. It turns out, as discussed in relation with viscous fluids obeying
the Navier-Stokes equations as a universal example of torsion fields [1,4], that
quantum wave-functions verifying linear or non-linear Schroedinger equations
are another universal, or if wished, mundane examples of torsion fields. In this
article we shall show that this extends to the strong interactions. The quantum
random ensembles which generate the geometries, or which dually can be seen
as generated by them, in the case of the Schroedinger equation can be asso-
ciated with harmonic oscillators with disordered random phase and amplitude
first proposed by Planck, which have the same energy spectrum as the one de-
rived originally by Schroedinger [34,73]. The probabilities of these ensembles
are classical since they are associated with classical Brownian motions in the
configuration and projective Hilbert-state manifolds, in sharp contrast with the
Copenhagen interpretation of QM which is constructed in terms of single system
description, and they are related to the scalar amplitude of the spinor field in
the case of the Dirac field, and in terms of the modulus of the complex wave
function in the non-relativistic case [2,3,21]. We would like to recall at this stage
that Khrennikov has proved that Kolmogorov’s axiomatics of classical probabil-
ity theory, in a contextual approach which means an a-priori consideration of a
complex of physical conditions, permits the reconstruction of quantum theory
[64]. Thus, Khrennikov ’s theory places the validity of Quantum Theory in en-
sembles, in distinction with the Copenhagen interpretation, and is known as the
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Vaxho interpretation of QM. In the present approach we obtain both a geomet-
rical characterization of the quantum domain through random ensembles per-
forming Brownian motions which generate the space and time geometries, and
additionally a characterization of QM for single systems through the topologi-
cal Bohr-Sommerfeld invariants associated with the trace-torsion by introducing
the concept of Pfaffian system developed by Kiehn in his geometro-topological
theory of processes [20], specifically applied to the trace-torsion one-form [81].
Most remarkably, in our setting another relevant example of these space-time
geometries is provided by viscous fluids obeying the invariant Navier-Stokes
equations of fluid-dynamics, or alternatively the kinematical dynamo equation
for the passive transport of magnetic fields on fluids [1,4] . We would like to
point out that cosmological observations have registered turbulent large-scale
structures which are described in terms of the Navier-Stokes equations [82] so
that this model is in principle compatible with that observations.

We must stress the difference between this approach and GR. In the latter,
the space-time structure is derived in the sense that it is defined without going
through a self-referential characterization, but obtained from the metric. When
we introduce torsion, and especially in the case of the trivial metric with null
associated curvature tensor, we are introducing a self-referential characterization
of the geometry since the definition of the manifold by the torsion, is through
the concept of locus of a point (be that temporal or spatial). Indeed, space
and time can only be distinguished if we can distinguish inhomogenities, and
this is the intent of torsion, to measure the dislocation (in space and time) in
the manifold [69]. Thus all these theories stem from a geometrical operation
which has a logical background related to the concept of distinction (and more
fundamentally, the concept of identity, which is prior to that of distinction) and
its implementation through the operation of comparison by parallel transport
with the affine connection with non-vanishing torsion; this can be further related
with multivalued logics and the appearence of time waves related to paradoxes,
which in a cognitive systems approach yield the Schroedinger representation
[81]. In comparison, in GR there is also an operation of distinction carried out
by the parallel transport of pair of vector fields with the Levi-Civita metric
connection yielding a trivial difference, i.e. the torsion is null and infinitesimal
parallelograms trivially close, so that it does not lead to the appearence of
inhomogenities as resulting from this primitive operation of distinction; these
are realized through the curvature derived from the metric.

We shall start this article by introducing non-relativistic QM in terms of dif-
fusion processes in space-time following our work in [3]; the stochastic Schroedin-
ger equation case shall not be dealt with; see [3,39]. Thus in this approach ap-
pears that the Schroedinger field can be associated with the field which produces
the torsion field. Thus we have recovered a modified characterization that can
be traced back to London’s treatment of the Weyl geometries which although
related with a local change of the metrics, have null torsion [48]. There have
been numerous attempts to relate non-relativistic QM to diffusion equations;
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the most notable of them is Stochastic Mechanics , due to Nelson [8]. Already
Schroedinger proposed in 1930-32 that his equation should be related to the
theory of Brownian motions (most probably as a late reaction to his previous
acceptance of the single system probabilistic Copenhagen interpretation), and
further proposed a scheme he was not able to achieve, the so-called interpolation
problem which requires to describe the Brownian motion and the wave functions
in terms of interpolating the initial and final densities in a given time-interval
[9]. More recently Nagasawa presented a solution to this interpolation problem
and further elucidated that the Schroedinger equation is in fact a Boltzmann
equation [13], and thus the generation of the space and time structures produced
by the Brownian motions has a statistical origin. We have discussed in [3] that
the solution of the interpolation problem leads to consider time to be more than
a classical parameter (merely a clock), but an active operational variable, as re-
cent experiments have shown [46] which have elicited theoretical studies in [72];
other experiments that suggest an active role of time are further discussed in [3]
and in the final section in this article. Neither Nagasawa nor Nelson presented
these Brownian motions as space-time structures, but rather as matter fields
on the vacuum. While Nelson introduced artificially a forward and backward
stochastic derivatives to be able to reproduce the Schroedinger equation as a
formally time-symmetric equation, Nagasawa was able to solve the interpola-
tion problem in terms of the forward diffusion process and its adjoint backward
process, from which without resort to the ad-hoc constructions due to Nelson,
he was able to prove in [13] that this was related to the Kolmogorov charac-
terization of time-irreversibility of diffusion processes in terms of the non-exact
terms of the drift,that we further related to the trace-torsion [3]. A similar ap-
proach to quantization in terms of an initial fractal structure of space-time and
the introduction of Nelson’s forward and backward stochastic derivatives, was
developed by Nottale in his Scale Theory of Relativity [10] [26]. Remarkably,
Nottale’s approach has promoted the Schroedinger equation to be valid for large
scale structures, and predicted the existence of exo-solar planets which were ob-
servationally verified to exist [12]. This may further support the idea that the
RCW structures introduced in the vacuum by scale transformations, are valid
independently of the scale in which the associated Brownian motions and equa-
tions of quantum mechanics are posited. Furthermore, Kiehn has proved that
the Schroedinger equation in spatial 2D can be exactly transformed into the
Navier-Stokes equation for a compressible fluid, if we further take the kinemati-
cal viscosity ν to be h̄

m with m the mass of the electron [11]. We have argued in
[3] that the Navier-Stokes equations share with the Schroedinger equation, that
both have a RCW geometry at their basis: While in the Navier-Stokes equa-
tions the trace-torsion is −1

2ν u with u the time-dependent velocity one-form of
the viscous fluid, in the Schroedinger equation, the trace-torsion one-form incor-
porates the logarithmic differential of the wave function -just like in Nottale’s
theory [10]- and further incorporates electromagnetic potential terms in the
trace-torsion one-form. This correspondence between trace-torsion one-forms is
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what lies at the base of Kiehn’s correspondance, with an important addendum:
While in the approach of the Schroedinger equation the probability density is
related to the Schroedinger scale factor (in incorporating the complex phase)
and the Born formula turns out to be a formula and not an hypothesis, under
the transformation to the Navier-Stokes equations it turns out that the prob-
ability density of non-relativistic quantum mechanics, is the enstrophy density
of the fluid, i.e. the square of the vorticity, which thus plays a geometrical role
that substitutes the probability density. Thus, in this approach, while there
exist virtual paths sustaining the random behaviour of particles (as is the case
also of the Navier-Stokes equations) and interference such as in the two-slit
experiments can be interpreted as a superposition of Brownian paths [13], the
probability density has a purely geometrical fluid-dynamical meaning. This is
of great relevance with regards to the fundamental role that the vorticity, i.e.
the fluid’s particles angular-momentum has as an organizing structure of the
geometry of space and time. In spite that the torsion tensor in this theory is
naturally restricted to its trace and thus generates a differential one-form, in
the non-propagating torsion theories it is interpreted that the vanishing of the
completely skew-symmetric torsion implies the absence of spin and angular mo-
mentum densities [22], it is precisely the role of the vorticity to introduce angular
momentum into the present theory. We would like to mention the important
developments in a beautiful theory of space-time with a Cantorian structure
being elaborated in numerous articles by M. El Naschie [67] and a theory of
fractals and stochastic processes of QM which has been elaborated by G. Ord
[66].

Secondly, in this article we shall extend the treatment of QM and its relations
to torsion fields and Brownian motions, to the Lie-isotopic extension of QM due
to Santilli, presently known as Hadronic Mechanics (HM in the following). Be-
fore actually introducing HM, we would like to discuss the fundamentals of the
relation between HM and the present developments in terms of torsion fields,
since torsion bears a close relation with the geometry of Lie symmetry groups.
Indeed, if we consider as configuration space a Lie group, there is a canonical
connection whose torsion tensor coefficients are non other than the coefficients
of the Lie-algebra under the Lie bracket operation [49]. Thus a Lie algebra is
characterized by the torsion tensor for the canonical connection. Now let us con-
sider a system that can be described in terms of a Lie group symmetry which
is a continuous deformation of the original one. For example, instead of the
rotational symmetry we have, say, an ellipsoidal one due to the deformation of
the original system (this is the case of a system whose symmetry in the vacuum
is no longer valid since it has been embedded in an inhomogeneous anisotropic
medium). Then the Lie bracket of the deformed infinitesimal symmetry is a
continuous deformation of the original torsion and characterizes completely the
symmetry. This is the basic mathematical implicit idea that leads to the present
perspective, and allows to present a geometrical structure (the torsion of the in-
finitesimal symmetry) which is deformed by the isotopic modification (we shall
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explain below the meaning of the term ”isotopic”) of Lie group theory due to
Santilli, the so-called Lie-Santilli-isotopic theory which started by producing the
isotopic lift of the groups of elementary particle physics and special relativity
[15-20,65], and encompasses in the physical domain, extensions of classical me-
chanics (introducing the deformed symmetries) and their associated quantum
systems through the isotopic lift of the Schroedinger and Heisenberg represen-
tation which incorporates the modifications of the symmetries.

There is a canonical way of producing these isotopic lift, namely through a
non-unitary transform acting on all the elements of the standard theory. Here
the notion of isotopic lift consists in carrying through the action of non-unitary
transformations -the previously referred deformations- on all the mathematical
structures with preservation of the basic axioms. Starting by redefining the no-
tion of unit -which stands as the fundamental operation of the theory- achieved
by a non-unitary arbitrary operation, then the construction of HM follows by
carrying the generalized unit to define the isotopic number fields, functions,
configuration and state-space manifolds, differential and integral calculi, met-
rics, tensors, the Hilbert state-spaces, to resume, all the relevant mathematical
structures of quantum mechanics are isotopically lifted through the generalized
unit while preserving the whole axiomatic structure of both the mathematical
and physical aspects of the theory. Probably the resistence to adopt such a
general scheme, is that one tends to confuse the universal character of the con-
cept of unit, which is fixed, and its representation in a certain scale and with
a certain object (s) which can be taken arbitrary, as we do in daily life. We
must remark at this stage that the introduction of this generalized unit, in con-
trast with the basic unit of mathematics and physics, establishes a vinculation
between these new units and physical processes which is unknown to math-
ematics, with the exception of the arithmetic of forms which follows from the
principle of distinction previously alluded, and the multivalued logics associated
to it and self-reference [81]. It is important to remark that the development of
HM took more than thirty years to reach the understanding that the isotopic
lift could not be restricted to the symmetries, classical and quantum mechan-
ics, but required the lift of number theory, differential and integral calculi, and
to the Hilbert space structure as well. For an account of these developments
and a complete list of references, the reader is urged to consult [16] in which
Santilli gives a complete description of the Lie-isotopic, Lie-admissible, geno-
topic and hyperstructural theories which extend the present theory; it is most
remarkable that these theories as well as HM and the isotopic lift of relativity,
admit dual theories in which antimatter can be treated classically and antigrav-
ity can be presented in their terms; see [77]). These theories have succeeded
in solving several fundamental questions of particle physics, nuclear physics,
quantum chemistry cosmology, superconductivity and biology, where the usual
approaches have shown unsurmountable inconsistencies [15-20,56,68,74,75,76].

The purpose of the introduction of the generalized units is to be able to
construct a theory in the situations in which QM is no longer applicable, and
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to recover it in a scale in which the generalized unit recovers the historical unit
of mathematics and physics and the associated domains in which GR and QM
are applicable. A fundamental example of this new paradigm, is the case of the
neutron with its hyperdense structure where interactions are no longer derivable
from a potential field; in this situation, the medium is deformable, particles are
extended, and non-local non-hamiltonian interactions are the characteristics of
the system. Thus, in HM the neutron is considered to be a compressed state of
a proton and an electron, revitalizing Rutherford’s conception in further elab-
orations by Animalu and Santilli [56]. This state is produced under the above
stated situations and through spin-up-spin-down magnetic couplings [15,56],
which plays a crucial role in the Rutherford-Santilli model of the neutron. These
spin-spin couplings appear in the definition of the generalized isotopic unit. In
this regard, HM has in common with the usual approach to torsion, the rele-
vance of spinor angular momentum densities [22]. Possible relations between
torsion as spin or angular momentum densities can be ventured in relation with
anomalous spin interactions of the proton, and magnetic resonances as well [43].
Remarkably it has been shown in [56] that completely skew-symmetric torsion
can produce a spin flip of high energy fermionic matter at very high densities,
and that in this situation helicity can be identified with spin. An intrinsic macro-
scopic angular momentum would be the evidence of this phenomena. This may
be of relevance when taking in consideration the time periodicity of the fine
structure of histograms and its relation to macroscopic angular momentum,
found by Shnoll and associates [80].

Therefore a geometrical characterization will be possible by introducing the
non-linear non-local generalized unit which incorporates the new characteristics
of the system under the strong overlapping of the components of the neutron
so there is now a deformation of their original symmetry. To close our discus-
sion which started by mentioning the special role of the canonical geometry of
a Lie-group and the role of the torsion tensor as the structure coefficients of
the Lie-algebra, the modification is produced precisely in these coefficients by
multiplying them by the isotopic generalized unit. Thus, at the level of the
canonical geometry there exists a modification of the torsion tensor. This will
carry out to the whole theory as already explained . However it is pertinent
to remark that in the development of HM there is no mention on the relation
of the generalized unit in terms of the modification of the torsion as being the
fundamental operation in terms of which his theories are constructed. Thus, the
present approach, proposes an original perspective of HM. It is very important
to stress that HM carries to an isotopic modification of Quantum Chemistry,
known as Hadronic Chemistry, which allows the computation of the solutions
of the iso-Schroedinger equation for molecules in very short times and accuracy
in comparison with the results achieved by application of quantum chemistry,
while solving its inconsistencies, fundamentally the impossibility of giving a the-
ory for chemical bonds [15,68,84] . This has allowed to produce industrially fluid
plasmas with remarkable characteristics, as a first class of clean fuels [15]; fur-
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thermore, the theory has proposed the possibility of stimulating nuclear decays
as a technological application to deal with nuclear waste in shorter times that
those produced by spontaneous decay.

In Santilli’s conception with regards to the isotopic lifts of the usual struc-
tures of differential geometry, the starting point is that the Minkowski and
Euclidean metrics with their associated rotational symmetries are inapplicable
for situations of non-point-like particles moving within the inhomogeneous and
anisotropic vacuum (this includes the atomic structure as well as the electro-
magnetic, weak and strong interactions); this is the case of the so-called interior
problem; see [14-19]. Thus, in such a medium, the velocity of light depends on
the underlying structure of the medium, and no longer coincides with the veloc-
ity of light in the vacuum. Consequently, the Lorentz and Poincaré symmetries
are no longer applicable in this case, and thus an isotopic lift is constructed
to yield a unified approach to the isotopic lifts of GR and Special Relativity;
this lead to an axiomatically consistent theory of Relativistic Quantum Mechan-
ics, preserving the fundamental axioms, and resulted in the completion of QM
[16]. The reader may note the similarity of this conception with the one we
have presented in terms of torsion as producing the basic anisotropies and inho-
mogenities of the vacuum. The symmetries and geometries of the isotropic and
homogeneous vacuum cannot represent matter nor spinor fields by themselves.
In the more general case in which the metric is no longer trivial, the usual
metric is valid as a representation for the so-called exterior problem in which
the astrophysical bodies can be effectively approximated as massive points be-
cause their shape does not affect their gravitational trajectories when moving
in empty space. In the case of the interior problem, such as the case of ul-
tradense stars in which spin couplings are relevant ( a similar approach as the
one conceived originally for the introduction of a generalization of general rel-
ativity by introducing a spin density tensor associated with the torsion tensor
[22]), these couplings are no longer related to a reversible Hamiltonian dynam-
ics. This conception goes back to classical mechanics, in which forces such as
friction cannot be described by a Hamiltonian to which they are added as inde-
pendent forces. These additional terms were incorporated to the foundations of
classical mechanics by its founding fathers, and from the physics point of view,
was part of the original motivation by Santilli, to attempt a unified formulation
of classical and QM through the deformation of the conventional structures and
theories [78]. This original approach was posteriorly proved to be inconsistent,
due to the need of incorporating into the theory two aspects that had been not
perceived originally as imprescindible: Namely, the isotopic lift of the number
system and of the Hilbert space defined over these extended fields to be able
to achieve a consistent theory of observables, and furthermore, to be able to
achieve a consistent isoquantization, the need of extending the notions of dif-
ferential calculus, fundamentally the differential operator; this was achieved in
1996-1997 ; see [16]. The original attempts by this author to develop the rela-
tions between RCW geometries, Brownian motions and the strong interactions
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were also inconsistent due to the lack of an extension in the full sense previously
mentioned [29].

Returning to the discussion of the roles of torsion and the extensions of clas-
sical mechanics to account for dissipative forces, we would like to observe that a
similar situation is contemplated in classical mechanics from the point of view
of considering torsion fields, since friction is a manifestation of anholonomic
degrees of freedom which cannot be described by the symmetries and geometry
of the frictionless system. Then the equations of classical motion (i.e. differen-
tiable trajectories, as related to a Hamiltonian or Lagrangian approach) have
to include additional terms to represent the anholonomic degrees of freedom as
exterior forces acting on the system, or alternatively, as internal deformations
of the symmetries.

Now to understand the need of carrying the extensions produced by the
isotopic lifts, it is founded in the fact that the isotopic lift of Relativity due
to Santilli (see [18]) is applicable for the electromagnetic and weak interactions
but not applicable for the case of hadrons. These have a charge radius of 1
fm (10−13cm) which is the radius of the strong interactions. Unlike the elec-
tromagnetic and weak interactions a necessary condition to activate the strong
interaction is that hadrons enter into a condition of mutual interpenetration. In
view of the developments below, we would like to stress that the modification
of the symmetries of particles under conditions of possible fusion, is the first
step for the usual developments of fusion theories which have been represented
in terms of diffusion processes that overcome the Coulomb repulsive potential
which impedes the fusion [37]; Brownian motions and other stochastic processes
also appear in a phenomenological approach to the many body problem in par-
ticle and nuclear physics, but with no hint as to the possibility of an underlying
space-time structure [83]. The basic idea goes back to the foundational works
of Smoluchowski (independently of A. Einstein’s work in the subject) in Brow-
nian motion [38]. In the case of fusion theories, we have a gas of neutrons
(which have an internal structure) and electrons, or an hadron gas; in these
cases the fused particles are considered to be alike a compressible fluid with an
unstable neck in its fused drops which have to be stabilized to achieve effective
fusion; we can see here the figure of deformed symmetries. Thus, the situation
for the application of Brownian motion to fusion is a natural extension to the
subatomic scale of the original theory. We finally notice that the models for
fusion in terms of diffusion do not require QM nor quantum chromodynamics
[37]. In contrast, HM stems from symmetry group transformations that describe
the contact fusion processes that deform the neutron structure, and lead to the
isotopic Schroedinger equation which in this article, together with the isotopic
Heisenberg representation, will be applied to establish a link between the RCW
geometries, fusion processes and diffusions. The reason for the use of the iso-
Heisenberg representation, is that in Santilli’s theory, the isotopic lift of the
symmetries in carried out in terms of the iso-Heisenberg representation, where
its connection with classical mechanics under the quantization rules including
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the isotopic lift is transparent. In this article we shall present a quantization
method for both QM and HM in terms of diffusion processes, and in terms of
a diffusion-Heisenberg and isodiffusion-isoHeisenberg representations which we
shall present below.

2 TORSION AND THE NON-CLOSURE OF
PARALLELOGRAMS

We want to introduce torsion in terms of the self-referential definition
of the manifold structure in terms of the concept of difference or distinction
derived from the operation of comparison. We shall assume that there are two
observers on a manifold (of dimension n), say observer 1 and observer 2, which
may not be moving inertially. To compare measurements and to establish thus
a sense of objectivity (identity of their results), they need to compare their
measurements which take place in the tangent space at different points of the
n-dimensional manifold M in which they are placed, so they have to establish
the difference between their reference frames, i.e. the difference between the
set of orthogonal (or pseudo-orthogonal) vectors at their locations, the so-called
n-beins . Let ei(P0) = eαi (P0)∂α, i = 1, . . . , n be the basis for observer 1 at
point P0, and similarly ei(P1) = eαi (P1)∂α the reference frame for observer 2 at
P1; let us denote the reference frame at the tangent space to the point P1 when
parallely transported (without changing its length and angle) from P0 to P1 by
ei(P0 → P1) along a curve joining P0 to P1 with an affine connection, whose
covariant derivative operator we denote as ∇ [44]. Then, ∇e1 is the difference
between ei(P0 → P1) and ei(P1). This gap defect originates either to the
deformation of ei(P0) along its path to P1, which cannot be transformed away
by a change of coordinates, or by a change of coordinates from P0 to P1, which
is not intrinsic and thus can be transformed away, or finally, by a combination
of both. Let us move observer’s one frame over two different paths. Parallel
displacing an incremental vector dxbeb from the point P0 along the basis vector
ea over an infinitesimal distance dxa to the point P1 = P0 +dxa gives the vector

ebdx
b(P0 → P1) = dxbeb(P0) + Γcbadx

b ∧ dxbec. (1)

Similarly, the parallel transport of the incremental vector dxaea from the point
P0 to P2 along the frame eb over an infinitesimal distance dxb to the point
P2 = P0 + dxb gives the vector ea(P1 → P2) = dxaea(P1) + Γcabdx

a ∧ dxbec.
The gap defect between ea(P0 → P1) and the value of dxbeb(P1) is

dxb∇eb(P1) = dxb(
∂eb
∂xa

) ∧ dxa − Γcbadx
a ∧ dxbec, (2)

and the gap defect between the vector eb(P1 → P2) and ebdxb(P2) is

dxaDea(P2) = dxa(
∂ea
∂xb

) ∧ dxa − Γcabdx
a ∧ dxbec. (3)
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Therefore, the total gap defect between the two vectors is the comparison already
alluded to)

dxb∇eb(P1)−dxaDea(P2) = (
∂eb
∂xa

− ∂ea
∂xb

)dxa∧dxb+[Γcab−Γcba]dx
a∧dxbec, (4)

where we recognize in the first term the Lie-bracket

[ea, eb] = (
∂eb
∂xa

− ∂ea
∂xb

)dxa ∧ dxb, (5)

which we can write still as
[ea, eb] = Ccabec, (6)

where Ccab are the coefficients of the anholonomity tensor, and then finally we
can write the difference in eq.(4) as

dxbeb(P1)− dxa∇ea(P2) = (Ccab + [Γcab − Γcba])dx
a ∧ dxbec. (7)

If we further introduce the vector-valued torsion two form

T =
1
2
T cabdx

a ∧ dxbec := ∇eb(ea)−∇ea(eb)− [ea, eb]cec (8)

we find that the components T cab are given by the so-called torsion tensor

T cab = Ccab + [Γcab − Γcba] (9)

Thus, we have two possibilities for the non-closure of infinitesimal paralblelo-
grams. Either by anholonomity, or due to the non-symmetricity of the Christof-
fel coefficients. These are radically different. The latter can in some instances
be set to be equal to zero, while the other term cannot. Say we have a coor-
dinate transformation continuously differentiable (x1, . . . , xn) → (y1, . . . , yn) so
we have that an holonomous transformation, i.e. we have that each dyi is exact
of the form

dyi =
∂yi

∂xj
dxj . (10)

Then, if we take an holonomous basis ej = ( ∂y
i

∂xj ) ∂
∂yi

, then the anholonomity
vanishes, [ei, ej ] = 0 identically on M , and we are left for the expression for the
torsion tensor

T cab = Γcab − Γcba. (11)

Anholonomity is very important. It is related to the existence of a time den-
sity, and is related to the Sagnac effect, to the Thomas precession, etc. [41]).
Nowadays, relativistic rotation has become an issue of great interest, and the
interest lays in rotating anholomous frames, in distinction with non-rotating
holonomous frames. The torsion tensor evidences how the manifold is folded
or dislocated, and the latter situation can be produced by tearing the manifold
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of by the addition of matter or fields to it. These are the well known Volterra
operations of condensed matter physics (initially, in metalurgy [42]), and was
the first engineering example of the fundamental role of torsion. The second ex-
ample was elaborated in the pioneering work by Gabriel Kron in the geometrical
representation of electric networks, and lead to the concept of negative resis-
tance [27]. Contemporarily, negative resistance has become an important issue,
after the discovery of its existence in some materials, with an accompanying
apparent phenomenon of superconductivity [30]

3 RIEMANN-CARTAN-WEYL GEOMETRIES

In this section we follow [1,2]. In this articleM denotes a smooth connected
compact orientable n-dimensional manifold (without boundary). While in our
initial works, we took for M to be space-time, there is no intrinsic reason for
this limitation, in fact if can be an arbitrary configuration manifold and still
a phase-space associated to a dynamical system. The paradigmatical example
of the latter, is the projective space associated to a finite-dimensional Hilbert-
space of a quantum mechanical system [3,39]. We shall further provide M with
a linear connection as already described in the previous section, by a covariant
derivative operator∇ which we assume to be compatible with a given metric g on
M , i.e. ∇g = 0. Here, the metric can be the Minkowski degenerate metric, or an
arbitrary positive-definite (i.e. Riemannian) metric. Given a coordinate chart
(xα) (α = 1, . . . , n) of M , a system of functions on M (the Christoffel symbols
of ∇) are defined by ∇ ∂

∂xβ

∂
∂xγ = Γ(x)αβγ

∂
∂xα . The Christoffel coefficients of ∇

can be decomposed as:

Γαβγ =
{
α

βγ

}
+

1
2
Kα
βγ . (12)

The first term in (12) stands for the metric Christoffel coefficients of the Levi-
Civita connection∇g associated to g, i.e.

{
α
βγ

}
= 1

2 ( ∂
∂xβ gνγ+ ∂

∂xγ gβν− ∂
∂xν gβγ)gαν ,

and

Kα
βγ = Tαβγ + Sαβγ + Sαγβ , (13)

is the cotorsion tensor, with Sαβγ = gανgβκT
κ
νγ , and from eqs. (4) and (9)

it follows that Tαβγ = (Γαβγ − Γαγβ) the skew-symmetric torsion tensor. We are
interested in (one-half) the Laplacian operator associated to ∇, i.e. the operator
acting on smooth functions on M defined as

H(∇) := 1/2∇2 = 1/2gαβ∇α∇β . (14)

A straightforward computation shows that H(∇) only depends in the trace of
the torsion tensor and g, since it is

H(∇) = 1/24g + Q̂ ≡ H(g,Q), (15)
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with Q := Qβdx
β = T ννβdx

β the trace-torsion one-form and where Q̂ is the
vector field associated to Q via g: Q̂(f) = g(Q, df), for any smooth function
f defined on M . Finally, 4g is the Laplace-Beltrami operator of g: 4gf =
divg gradf , f ∈ C∞(M), with divg the Riemannian divergence. Thus for any
smooth function, we have 4gf = 1/[det(g)]

1
2 gαβ ∂

∂xβ ([det(g)]
1
2 ∂
∂xα f). Further-

more, the second term in (15), Q̂, coincides with the Lie-derivative with respect
to the vectorfield Q̂: LQ̂ = iQ̂d + diQ̂, where iQ̂ is the interior product with
respect to Q̂: for arbitrary vectorfields X1, . . . , Xk−1 and φ a k-form defined on
M , we have (iQ̂φ)(X1, . . . , Xk−1) = φ(Q̂,X1, . . . , Xk−1). Then, for f a scalar
field, iQ̂f = 0 and

LQ̂f = (iQ̂d+ diQ̂)f = iQ̂df = g(Q, df) = Q̂(f). (16)

Thus, our laplacian operator admits being written as

H(g,Q) =
1
2
4g + LQ̂. (17)

Therefore, assuming that g is non-degenerate, we have defined a one-to-one
mapping

∇ ; H(g,Q) = 1/24k + LQ̂

between the space of g-compatible linear connections ∇ with Christoffel coeffi-
cients of the form

Γαβγ =
{
α

βγ

}
+

2
(n− 1)

{
δαβ Qγ − gβγ Q

α
}
, n 6= 1 (18)

and the space of elliptic second order differential operators on functions.

4 RIEMANN-CARTAN-WEYL DIFFUSIONS

In this section we shall recall the correspondence between RCW connec-
tions defined by (18) and diffusion processes of scalar fields having H(g,Q) as
its diffrential generator. For this, we shall see this correspondence in the case
of scalars. Thus, naturally we have called these processes as RCW diffusion
processes.. For the extensions to describe the diffusion processes of differential
forms, see [1], [4].

For the sake of generality, in the following we shall further assume that
Q = Q(τ, x) is a time-dependent 1-form. In this setting τ is the universal time
variable due to Stuckelberg [7]. The stochastic flow associated to the diffusion
generated by H(g,Q) has for sample paths the continuous curves τ 7→ x(τ) ∈M
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satisfying the Itô invariant non-degenerate s.d.e. (stochastic differential equa-
tion)

dx(τ) = σ(x(τ))dW (τ) + Q̂(τ, x(τ))dτ. (19)

In this expression, σ : M × Rm → TM is such that σ(x) : Rm → TM is linear
for any x ∈ M , the noise tensor, so that we write σ(x) = (σαi (x)) (1 ≤ α ≤ n,
1 ≤ i ≤ m) which satisfies

σαi σ
β
i = gαβ , (20)

where g = (gαβ) is the expression for the metric in covariant form, and {W (τ), τ ≥
0} is a standard Wiener process on Rm with zero mean with respect to the stan-
dard centered Gaussian function, and covariance given by diag(τ, . . . , τ); finally,
dW (τ) = W (τ + dτ)−W (τ) is an increment. Now , it is important to remark
that m can be arbitrary, i.e. we can take noise tensors defined on different
spaces, and obtain the space diffusion process. In regards to the equivalence
between the stochastic and the geometric picture, this enhances the fact that
there is a freedom in the stochastic picture, which if chosen as the originator
of the equivalence, points out to a more fundamental basis of the stochastic
description. This is satisfactory, since it is impossible to identify all the sources
for noise, and in particular those coming from the vacuum, which we take as
the source for the randomness. Note that in taking the drift and the diffusion
tensor as the original objects to build the geometry, the latter is derived from
objects which are associated to collective phenomena. Note that if we start with
eq. (19), we can reconstruct the associated RCW connection by using eq.(20)
and the fact that the trace-torsion is the g-conjugate of the drift, i.e., in simple
words, by lowering indexes of Q̂ to obtain Q. We shall not go into the details
of these constructions, which relies heavily on Stochastic Analysis on smooth
manifolds [55,70], but yet we shall apply them to give a derivation of the noise
term of the diffusion processes corresponding to the iso-Schroedinger equation.

5 THE HODGE DECOMPOSITION OF THE
TRACE-TORSION FIELD

To obtain the most general form of the RCW laplacian in the non-degenerate
case, we only need to know the most general decomposition of 1-forms. In this
section, the metric g is positive-definite. We consider the Hilbert space given by
the completion of the pre-Hilbert space of square-integrable smooth differential
forms of degree k (0 ≤ k ≤ n) on M , with respect to the Riemannian volume
volg, which we denote as L2(sec(Λk(T ∗M)). We shall focus on the decompo-
sition of 1-forms, so let ω ∈ L2(sec(T ∗M)); then we have the Hilbert space
decomposition

ω = df +Acoex +Aharm, (21)
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where f is a smooth real valued function on M , Acoex is a smooth coexact 1-
form, i.e. there exists a smooth 2-form, β such that δβ2 = Acoex

2, so that Acoex

is coclosed, i.e.

δAcoex = δ(δβ2) = 0, (22)

and Aharm is a closed and coclosed smooth 1-form, then

δAharm = 0, dAharm = 0, (23)

or equivalently, Aharm is harmonic, i.e.

41Aharm ≡ trace(∇g)2Aharm −Rαβ (g)(Aharm)αγα = 0, (24)

with Rαβ (g) = Rµβµα(g) the Ricci metric curvature tensor. Eq. (24) is the source-
less Maxwell-de Rham equation. An extremely important fact is that this is a
Hilbert space decomposition, so that it has unique terms, which are furthermore
orthogonal in Hilbert space, i.e.

((df,Acoex)) = 0, ((df,Aharm)) = 0, ((Acoex, Aharm)) = 0, (25)

so that the decomposition of 1-forms (as we said before, this is also valid for
k-forms, with the difference that f is a k− 1-form, β2 is really a k+1-form and
Aharm is a k-form) has unique terms, and a fortiori, this is also valid for the
Cartan-Weyl 1-form. We have proved that Acoex and Aharm are further linked
with Maxwell’s equations, both for Riemannian and Lorentzian metrics. For
the stationary state which we shall describe in the next section, they lead to
the equivalence of the Maxwell equation and the relativistic quantum mechan-
ics equation of Dirac-Hestenes in a Clifford bundle setting [2,21] whenever the
coclosed (Hertz potential) term and the (Aharonov-Bohm) harmonic term are
both dependent on all the 4D variables while they are infinitesimal rotations
defined on the spin-plane.

5.1 The Decomposition Of The Cartan-Weyl Form And
The Stationary State

We wish to elaborate further on the decomposition of Q in the particular
state in which the diffusion process generated by H(g,Q), in the case M has a
Riemannian metric g, and has a τ -invariant state corresponding to the asymp-
totic stationary state. Thus, we shall concentrate on the diffusion processes of
scalar fields generated by

H(g,Q) =
1
2
(4+ LQ̂),with Q = dlnψ2 +Acoex +Aharm. (26)

2Here δ denotes the codifferential operator, the adjoint of d, introduced above; see [1,2,
44].
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This is the invariant form of the (forward) Fokker-Planck operator of this the-
ory (and furthermore of the Schroedinger operator when introducing the phase
function to the exact term of Q). Through this identification, we note that ψ
is the scale field in the Einstein λ transformations from which in the vacuum,
the RCW geometry can be obtained ; see [2]. We are interested now in the
volg-adjoint operator defined in L2(sec(Λn(T ∗M))), which we can think as an
operator on densities, φ. Thus,

H(g,Q)†φ =
1
2
(4gφ− divg(φgrad ln φ)− divg(φÂ)). (27)

The operator described by eq. (27) is the backward Fokker-Planck operator.
The transition density p∇(τ, x, y) is determined by the fundamental solution
(i.e. p∇(τ, x,−) → δx(−) as τ → 0+) of the equation on the first variable

∂u

∂τ
= H(g,Q)(x)u(τ, x,−). (28)

Then , the diffusion process {x(τ) : τ ≥ 0}, gives rise to the Markovian semi-
group {Pτ = exp(τH(g,Q)) : τ ≥ 0} defined as

(Pτf)(x) =
∫
p∇(τ, x, y)f(y)volg(y). (29)

It has a unique τ -independant-invariant state described by a probability den-
sity ρ independant of τ determined as the fundamental weak solution (in the
sense of the theory of generalized functions) of the τ -independent Fokker-Planck
equation:

H(g,Q)†ρ ≡ 1
2
(−δdρ+ δ(ρQ)) = 0. (30)

Let us determine the corresponding form of Q, say Qstat = dlnψ2 + Astat. We
choose a smooth real function U defined on M such that

H(g,Qstat)†(e−U ) = 0, (31)

so that

−de−U + e−UQ = δ(−δΠ +Aharm), (32)

for a 2-form Π and harmonic 1-form Aharm; thus, if we set the invariant density
to be given by ρ = e−Uvolg, then

Qstat = dlnψ2 +
A

ψ2
, with A = −δΠ2 +Aharm. (33)

Now we project A
ψ2 into the Hilbert-subspaces of coexact and harmonic 1-forms,

to complete thus the decomposition of Qstat obtaining thus Hertz and Aharonov-
Bohm potential 1-forms for the stationary state respectively. Yet these poten-
tials have now a built-in dependence on the invariant distribution, and although
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they give rise to Maxwell’s theory, the interpretation is now different. 3 In-
deed, we have an inhomogeneous random media, and these potentials depend
on the τ -invariant distribution of the media. We can use further the Hodge-
decomposition of Qstat to manifest the quantum potential as built-in. Indeed,
if we multiply it by ψ and apply ∂, then we get that dlnψ, and the coexact and
harmonic terms of Qstat decouple in the resultant field equation which turns out
to be

4gψ = [g−1(dlnψ, dlnψ)− δdlnψ]ψ, (34)

with nonlinear potential V := g−1(dlnψ, dlnψ) − δdlnψ, which has the form
of (twice) a relativistic quantum potential extending Bohm’s potential in non-
relativistic Quantum Mechanics [35]. We have seen in [2], that from scale-
invariance it follows that the quantum potential coincides up to a conformal
factor with the metric scalar curvature. Thus in this setting it turns out that the
random motions with noise tensor satisfying eq. (20) and drift vector field given
by gradlnψ, the Riemannian gradient of the logarithm of the wave function,
generate the gravitational field. We can see in this identity the relation with
the ideas due to Le Sage already presented in the Introduction. Since the
trace-torsion includes the Maxwell fields, we have unified space-time geometries
with Brownian motions and the theory of electromagnetism. While the metric
must be positive-definite to be able to apply the Hodge decomposition, and in
particular we can take the flat Euclidean metric for a start, it is known from
Hehl’s work that the metric can be deduced from the constitutive relations in
the theory of electromagnetism, so it can be taken as derived from the mere
existence of electromagnetic fields and the constitutive relations [31]. We have
showed in [3] that the theory of electromagnetism in euclidean space is related
to establishing that the universal time parameter, τ , is the basic time variable
instead of the linear time of the observer, t, and that this transformation is
related to a dissipative process. Furthermore, the role of torsion as an active
field can be described in these terms [3].

6 RCW GEOMETRIES, BROWNIAN MOTIONS
AND THE SCHROEDINGER EQUATION

We have seen in [3] that we can represent the space-time quantum geome-
tries for the relativistic diffusion associated with the invariant distribution, so

3A word of caution. In principle, −δΠ/ρ and Aharm/ρmay not be the coexact and harmonic
components of A/ρ respectively. If this would be the case, then we obtain that dlnψ is g−1-
orthogonal to both −δΠ and Aharm; furthermore dlnψ ∧ Aharm = 0, so furthermore they are
co-linear. This can only be for null Aharm or constant ρ, so that the normalization of the
electromagnetic potentials is by a trivial constant. In the first case the invariant state has the
sole function of determining the exact term of Q to be (up to a constant) dlnψ.
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that Q = 1
2dlnρ, with ρ = ψ2 and H(g,Q) has a self-adjoint extension for which

we can construct the quantum geometry on state-space and still the stochastic
extension of the Schroedinger equation defined by this operator on taking the
analytical continuation on the time variable for the evolution parameter. In this
section which follows the solution of the Schroedinger problem of interpolation
by Nagasawa [13] interpreted in terms of the RCW geometries and the Hodge
decomposition of the trace-torsion, we shall present the equivalence between
RCW geometries, their Brownian motions and the Schroedinger equation [3].
We shall show in the next section that this extends to HM.

Thus, we shall now present the construction of non-relativistic quantum
mechanics for the case that includes the full Hodge decomposition of the trace-
torsion, so that Q = Q(t, x) = dlnft(x) + A(t, x) where f(t, x) = ft(x) is a
function defined on the configuration manifold given by [a, b]×M (where M is
provided with a metric, g), to be determined below, and A(t, x) is the sum of
the harmonic and co-closed terms of the Hodge decomposition of Q, which we
shall write as A(t, x) = At(x) as a time-dependent form on M . The scheme to
determine f will be to manifest the time-reversal invariance of the Schroedinger
representation in terms of a forward in time diffusion process and its time-
reversed representation for the original equations for creation and annihilation
diffusion processes produced by the electromagnetic potential term of the trace-
torsion of a RCW connection whose explicit form we shall determine in the
sequel. From now onwards, both the exterior differential and the divergence
operator will act on the M manifold variables only, which we shall write, say, as
dft(x) to signal that the exterior differential acts only on the x variables of M .
We should remark that in this context, the time-variable t of non-relativistic
theory and the evolution parameter τ , are identical [32]. Let

L =
∂

∂t
+

1
2
(4g +A(t, x).∇) =

∂

∂t
+H(g,At) (35)

with
δÂt = −divgAt = 0. (36)

Here, as above, Ât denotes the conjugate vector field to the one-form At. In this
setting, we start with a background trace-torsion restricted to an electromag-
netic potential. We think of this electromagnetic potential and the associated
Brownian motion having its metric conjugate as its drift, as the background
geometry of the vacuum, which we shall subsequently relate to a creation and
annihilation of particles and the equation of creation and annihilation is given
by the following equation.

Let p(s, x; t, y) be the weak fundamental solution of

Lφ+ cφ = 0. (37)

The interpretation of this equation as one of creation (whenever c > 0) and an-
nihilation (c < 0) of particles is warranted by the Feynman-Kac representation
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for the solution of this equation [13]. Then φ = φ(t, x) satisfies the equation

φ(s, x) =
∫
M

p(s, x; t, y)φ(t, y)dy, (38)

where for the sake of simplicity, we shall write in the sequel dy = volg(y) =√
det(g)dy1 ∧ . . . ∧ dy3. Note that we can start for data with a given function

φ(a, x), and with the knowledge of p(s, x; a, y) we define φ(t, x) =
∫
M
p(t, x; a, y)dy.

Next we define

q(s, x; t, y) =
1

φ(s, x)
p(s, x; t, y)φ(t, y), (39)

which is a transition probability density, i.e.∫
M

q(s, x; t, y)dy = 1, (40)

while ∫
M

p(s, x; t, y)dy 6= 1. (41)

Having chosen the function φ(t, x) in terms of which we have defined the prob-
ability density q(s, x; t, y) we shall further assume that we can choose a second
bounded non-negative measurable function φ̃(a, x) on M such that∫

M

φ(a, x)φ̃(a, x)dx = 1, (42)

We further extend it to [a, b]×M by defining

φ̆(t, y) =
∫
φ̃(a, x)p(a, x; t, y)dx,∀(t, y) ∈ [a, b]×M, (43)

where p(s, x; t, y) is the fundamental solution of eq. (37).
Let {Xt ∈ M,Q} be the time-inhomogeneous diffusion process in M with

the transition probability density q(s, x; t, y) and a prescribed initial distribution
density

µ(a, x) = φ̆(t = a, x)φ(t = a, x) ≡ φ̆a(x)φa(x). (44)

The finite-dimensional distribution of the process {Xt ∈ M, t ∈ [a, b]} with
probability measure on the space of paths which we denote as Q ; for a = t0 <
t1 < . . . < tn = b, it is given by

EQ [f(Xa, Xt1 , . . . , Xtn−1, Xb)] =
∫
M

dx0µ(a, x0)q(a, x0; t1, x1)dx1 . . .

q(t1, x1; t2, x2)dx2 . . . q(tn−1, xn−1, b, xn)dxn
f(x0, x1, . . . , xn−1, xn) := [µaq >> (45)
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which is the Kolmogorov forward in time (and thus time-irreversible) represen-
tation for the diffusion process with initial distribution µa(x0) = µ(a, x0), which
using eq. (37) can still be rewritten as∫

M

dx0µa(x0)
1

φa(x0)
p(a, x0; t1, x1)φt1(x1)dx1

1
φt1(x1)

dx1p(t1, x1; t2, x2)

φt2(x2)dx2 . . .
1

φ(tn−1, xn−1)
p(tn−1, xn−1; b, xn)φb(xn)dxnf(x0, . . . , xn) (46)

which in account of µa(x0) = φ̆a(x0)φa(x0) and eq. (39) can be written in the
time-reversible form∫

M

φ̆a(x0)dx0p(a, x0; t1, x1)dx1p(t1, x1; t2, x2)dx2 . . . p(tn−1, xn−1; b, xn)

φb(xn)dxnf(x0, . . . , xn) (47)

which we write as
= [φ̆ap >><< pφb]. (48)

This is the formally time-symmetric Schroedinger representation with the tran-
sition (but not probability) density p. Here, the formal time symmetry is seen
in the fact that this equation can be read in any direction, preserving the physi-
cal sense of transition. This representation, in distinction with the Kolmogorov
representation, does not have the Markov property.

We define the adjoint transition probability density q̃(s, x; t, y) with the φ̃-
transformation

q̆(s, x; t, y) = φ̆(s, x)p(s, x; t, y)
1

φ̆(t, y)
(49)

which satisfies the Chapmann-Kolmogorov equation and the time-reversed nor-
malization ∫

M

dxq̆(s, x; t, y) = 1. (50)

We get

EQ̃ [f(Xa, Xt1 , . . . , Xb)] =
∫
M

f(x0, . . . , xn)q̆(a, x0; t1, x1)dx1q̆(t1, x1; t2, x2)dx2

. . . q̆(tn−1, xn−1; b, xn)φ̆(b, xn)φ(b, xn)dxn, (51)

which has a form non-invariant in time, i.e. reading from right to left, as

<< q̆φ̆bφb] =<< q̆µ̆b], (52)
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which is the time-reversed representation for the final distribution µb(x) =
φ̆b(x)φb(x). Now, starting from this last expression and rewriting it in a similar
form that is in the forward process but now with φ̆ instead of φ, we get∫

M

dx0φ̆a(x0)p(a, x0; t1, x1)
1

φ̆t1(x1))
dx1φ̆(t1, x1)p(t1, x1; t2, x2)

1

φ̆t2(x2)
dx2

. . . dxn−1φ̆(tn−1, xn−1)p(tn−1, xn−1; b, xn)
1

φ̆(b, xn)
φ̆b(xn)φ(b, xn)dxnf(x0, . . . , xn) (53)

which coincides with the time-reversible Schroedinger representation [φ̆ap >><<
pφb].

We therefore have three equivalent representations for the diffusion process:
The forward in time Kolmogorov representation, the backward Kolmogorov rep-
resentation, which are both naturally irreversible in time, and the time-reversible
Schroedinger representation, so that we can write succintly,

[µaq >>= [φ̆ap >><< pφb] =<< q̆µb],with µa = φaφ̆a, µb = φbφ̆b. (54)

In addition of this formal identity,we have to establish the relations between
the equations that have led to them. We first note, that in the Schroedinger
representation, which is formally time-reversible, we have an interpolation of
states between the initial data φ̆a(x) and the final data, φb(x). The information
for this interpolation is given by a filtration of interpolation Fra ∪ Fsb , which
is given in terms of the filtration for the forward Kolmogorov representation
F = F ta, t ∈ [a, b] which is used for prediction starting with the initial density
φaφ̆a = µa and the filtration Fbt for retrodiction for the time-reversed process
with initial distribution µb.

We observe that q and q̆ are in time-dependent duality with respect to the
measure

µt(x)dx = φ̆t(x)φt(x)dx, (55)

since if we define the time-homogeneous semigroups

Qt−sf(s, x) =
∫
q(s, x; t, y)f(t, y)dy, s < t (56)

gQ̆t−s(t, y) =
∫
dxg(s, x)q̆(s, x; t, y), s < t, (57)

then
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∫
dxµs(x)g(s, x)Qt−sf(s, x) =

∫
dxg(s, x)φs(x)φ̆s(x)

1
φs(x)

p(s, x; t, y)φt(y)f(t, y)dy

=
∫
dxg(s, x)φ̆s(x)p(s, x; t, y)

1

φ̆t(y)
f(t, x)φ̆t(y)φt(y)dy

=
∫
dxg(s, x)q̆(s, x; t, y)f(t, y)φ̆t(y)φ

=
∫
dxg(s, x)Q̆t−s(t, y)f(t, y)µt(y)dy, (58)

and thus we can write in a more succint expression in terms of weighted densities
the expression:

< g,Qt−sf >µs
=< gQ̆t−s, f >µt

, s < t. (59)

We shall now extend the state-space of the diffusion process to [a, b]×M , to
be able to transform the time-inhomogeneous processes into time-homogeneous
processes, while the stochastic dynamics still takes place exclusively in M . This
will allow us to define the duality of the processes to be with respect to µt(x)dtdx
and to determine the form of the exact term of the trace-torsion, and ultimately,
to establish the relation between the diffusion processes and Schroedinger equa-
tions, both for potential linear and non-linear in the wave-functions. If we define
time-homogeneous semigroups of the processes on {(t,Xt) ∈ [a, b]×M} by

Prf(s, x) =
{
Qs,s+rf(s, x) , s ≥ 0
0 , otherwise (60)

and

P̆rg(t, y) =
{
gQt−r,t(t, y) , r ≥ 0
0 , otherwise (61)

then

< g, Prf >µtdtdx =
∫ b−r

r

ds < g,Qs,s+rf > µs

=
∫ a+r

b

< g,Qt−r,tf > µt−r(x)dx

=
∫ b

a+r

dt < gP̆t−r, f >µtdx=< P̆rg, f >µtdtdx, (62)

which is the duality of {(t,Xt)} with respect to the µtdtdx density. We remark
here that we have an augmented density by integrating with respect to time t.
Consequently, if in our spacetime case we define for at(x), ăt(x) time-dependent
one-forms on M (to be determined later)

Bα : =
∂α

∂t
+H(g,At + at)αt, (63)
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B0µ : = −∂µ
∂t

+H(g,At + at)†µt, (64)

and its adjoint operators

B̆β = −∂β
∂t
−H(g,−At + ăt)†βt, (65)

(B̆)0µt =
∂µt
∂t

−H(g,−At + ăt)†µt, (66)

where by H(g,−At + ăt)† we mean the volg-adjoint of this operator defined in
eq.(27); i.e. H(g,−At + ăt)†µt = 1

24gµt − divg(µt(−At + ăt)). Now∫ b

a

dt

∫
1Dt [(Bαt)βt] − αt(B̆βt)]µt(x)dx =

∫ b

a

dt

∫
1Dtαtβt(B

0µt)dx

−
∫ b

a

∫
1Dt

αtg([at + ăt]− dlnµt, dβt)µtdx, (67)

for arbitrary α, β smooth compact supported functions defined on [a, b] ×M
which we have denoted as time-dependent functions αt, βt, where 1Dt denotes
the characteristic function of the set Dt(x) := {(t, x) : µt(x) = φt(x)φ̆t(x) > 0}.
Therefore, the duality of space-time processes

< Bα, β >µt(x)dtdx=< α, B̆β >µt(x)dtdx, (68)

is equivalent to

at(x) + ăt(x) = d ln µt(x) ≡ d ln (φt(x)φ̆t(x)), (69)
B0µt(x) = 0. (70)

The latter equation being the Fokker-Planck equation for the diffusion with
trace-torsion given by a + A, then the Fokker-Planck equation for the adjoint
(time-reversed) process is valid, i.e.

(B̆)0µt(x) = 0. (71)

Substracting eqs. (70) and (71) we get the final form of the duality condition

∂µ

∂t
+ divg[(At +

at − ăt
2

)µt)] = 0, for µt(x) = φ̆t(x)φt(x). (72)

Therefore, we can establish that the duality conditions of the diffusion equation
in the Kolmogorov representation and its time reversed diffusion lead to the
following conditions on the additional elements of the drift vector fields:

at(x) + ăt(x) = d ln µt(x) ≡ d ln (φt(x)φ̆t(x)), (73)
∂µ

∂t
+ divg[(At +

at − ăt
2

)µt] = 0. (74)

259



If we assume that at−ăt is an exact one-form, i.e., there exists a time-dependent
differentiable function S(t, x) = St(x) defined on [a, b]×M such that for t ∈ [a, b],

at − ăt = d ln
φt(x)

φ̆t(x)
= 2dSt (75)

which together with
at + ăt = d ln µt, (76)

implies that on D(t, x) we have

at = d ln φt, (77)

ăt = d ln φ̆t (78)

Introduce now Rt(x) = R(t, x) = 1
2 lnφtφ̆t and St(x) = S(t, x) = 1

2 lnφt

φ̆t
, so that

at(x) = d(Rt(x) + St(x)), (79)
ăt(x) = d(Rt(x)− St(x)), (80)

and the eq. (74) takes the form

∂R

∂t
+

1
2
4gSt + g(dSt, dRt) + g(At, dRt) = 0, (81)

where we have taken in account that divgAt = 0.
Remarks. Note that the time-dependent function S on the 3-space man-

ifold, is defined by eq. (75) up to addition of an arbitrary function of t, and
when further below we shall take this function as defining the complex phase of
the quantum Schroedinger wave, this will introduce the quantum-phase indeter-
mination of the quantum evolution, just as we discussed already in the setting
of geometry of the quantum state-space. In the other hand, this introduces as
well the subject of the multivaluedness of the wave function, which by the way,
leads to the Bohr-Sommerfeld quantization rules of QM established well before
it was developed as an operator theory. It is noteworthy to remark that these
quantization rules, later encountered in superfluidity and superconductivity, or
still in the physics of defects of condensed matter physics, are of topological
character. It has been proved by Kiehn that the Schroedinger wave equation
contains the Navier-Stokes equations for a viscous compressible fluid in 2D, and
that the probability density transforms into the enstrophy (i.e. the squared
vorticity) of the viscous fluid obeying the Navier-Stokes equations [20]. Thus,
one might expect that Navier-Stokes equations could also have multivalued so-
lutions, namely in the 2D case of the already established relation, the vorticity
reduces to a time-dependent function.

Therefore, together with the three different time-homogeneous representa-
tions {(t,Xt), t ∈ [a, b], Xt ∈ M} of a time-inhomogeneous diffusion process
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{Xt,Q) on M we have three equivalent dynamical descriptions. One descrip-
tion, with creation and killing described by the scalar field c(t, x) and the dif-
fusion equation describing it is given by a creation-destruction potential in the
trace-torsion background given by an electromagnetic potential

∂p

∂t
+H(g,At)(x)p+ c(t, x)p = 0; (82)

the second description has an additional trace-torsion a(t, x) , a 1-form on R×M

∂q

∂t
+H(g,A+ at)q = 0. (83)

while the third description is the adjoint time-reversed of the first representation
given by φ̃ satisfying the diffusion equation on the background of the reversed
electromagnetic potential −A in the vacuum, i.e.

−∂φ̆
∂t

+H(g,−At)φ̆+ cφ̆ = 0. (84)

The second representation for the full trace-torsion diffusion forward in time
Kolmogorov representation, we need to adopt the description in terms of the
fundamental solution q of

∂q

∂t
+H(g,At + at)q = 0, (85)

for which one must start with the initial distribution µa(x) = φ̆a(x)φa(x). This
is a time t-irreversible representation in the real world, where q describes the
real transition and µa gives the initial distribution. If in addition one traces the
diffusion backwards with reversed time t, with t ∈ [a, b] running backwards, one
needs for this the final distribution µb(x) = φ̆b(x)φb(x) and the time t reversed
probability density q̆(s, x; t, y) which is the fundamental solution of the equation

−∂q̆
∂t

+H(g,−At + ăt)q̂ = 0, (86)

with additional trace-torsion one-form on R×M given by ã, where

ăt + at = dlnµt(x), with µt = φtφ̆t. (87)

where the diffusion process in the time-irreversible forward Kolmogorov repre-
sentation is given by the Ito s.d.e

dXi
t = σij(Xt)dW

j
t + (A+ a)i(t,Xt)dt, (88)

and the backward representation for the diffusion process is given by

dXi
t = σij(Xt)dW

j
t + (−A+ ă)i(t,Xt)dt, (89)
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where a, ă are given by the eqs. (79) and (80), and (σσ†)αβ = gαβ ; see eq. (20).
We follow Schroedinger in pointing that φ and φ̆ separately satisfy the

creation and killing equations, while in quantum mechanics ψ and ψ̄ are the
complex-valued counterparts of φ and φ̆, respectively, they are not arbitrary
but

φφ̆ = ψψ̄. (90)

Thus, in the following , this Born formula, once the equations for ψ are deter-
mined, will be a consequence of the constructions, and not an hypothesis on the
random basis of non-relativistic mechanics.

Therefore, the equations of motion given by the Ito s.d.e.

dXi
t = (Â+ gradφ)i(t,Xt)dt+ σij(Xt)dW

j
t , (91)

which are equivalent to

∂u

∂t
+H(g,At + at)u = 0 (92)

with at = dlnφt = d(Rt + St), determines the motion of the ensemble of non-
relativistic particles. Note that this equivalence requires only the Laplacian for
the RCW connection with the forward trace-torsion full one-form

Q(t, x) = At(x) + dlnφt(x) = At(x) + d(Rt(x) + St(x)). (93)

In distinction with Stochastic Mechanics due to Nelson, and contemporary
ellaborations of this applied to astrophysics as the theory of Scale Relativity due
to Nottale [10][12], we only need the form of the trace-torsion for the forward
Kolmogorov representation, and this turns to be equivalent to the Schroedinger
representation which interpolates in time-symmetric form between this forward
process and its time dual with trace-torsion one-form given by −At + ăt(x) =
−At(x) + dlnφ̆t(x) = −At(x) + d(Rt(x)− St(x)).

Finally, let us how this is related to the Schroedinger equation. Consider
now the Schroedinger equations for the complex-valued wave function ψ and its
complex conjugate ψ̄, i.e. introducing i =

√
−1, we write them in the form

i
∂ψ

∂t
+H(g, iAt)ψ − V ψ = 0 (94)

−i∂ψ̄
∂t

+H(g,−iAt)ψ̄ − V ψ̄ = 0, (95)

which are identical to the usual forms. So, we have the imaginary factor appear-
ing in the time t but also in the electromagnetic term of the RCW connection
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with trace-torsion given now by iA, which we confront with the diffusion equa-
tions generated by the RCW connection with trace-torsion A, i.e. the system

∂φ

∂t
+H(g,At)φ+ cφ = 0, (96)

−∂φ̆
∂t

+H(g,−At)φ̆+ cφ̆ = 0, (97)

and the diffusion equations determined by both the RCW connections with
trace-torsion A+ a and −A+ ă, i.e.

∂q

∂t
+H(g,At + at)q = 0, (98)

−∂q̆
∂t

+H(g,−At + ăt)q̆ = 0, (99)

which are equivalent to the single equation

∂q

∂t
+H(g,At + dlnφt)q = 0. (100)

If we introduce a complex structure on the two-dimensional real-space with
coordinates (R,S), i.e. we consider

ψ = eR+iS , ψ = eR−iS , (101)

viz a viz φ = eR+S , φ̆ = eR−S , with ψψ̄ = φφ̆, then for a wave-function differ-
entiable in t and twice-differentiable in the space variables, then, ψ satisfies the
Schroedinger equation if and only if (R,S) satisfy the difference between the
Fokker-Planck equations , i.e.

∂R

∂t
+ g(dSt +At, dRt) +

1
2
4gSt = 0, (102)

and

V = −∂S
∂t

+H(g, dRt)Rt −
1
2
g(dSt −At, dSt). (103)

which follows from substituting ψ in the Schroedinger equation and further
dividing by ψ and taking the real part and imaginary parts, to obtain the
former and latter equations, respectively.

Conversely, if we take the coordinate space given by (φ, φ̆), both non-negative
functions, and consider the domainD = D(s, x) = {(s, x) : 0 < φ̆(s, x)φ(s, x)} ⊂
[a, b]×M and define R = 1

2 lnφφ̆, S = 1
2 lnφ

φ̆
, with R,S having the same differen-

tiabilty properties that previously ψ, then φ = eR+S satisfies in D the equation

∂φ

∂t
+H(g,At)φ+ cφ = 0, (104)
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if and only if

−c = [−∂S
∂t

+H(g, dRt)Rt −
1
2
g(dSt, dSt)− g(At, dSt)]

+ [
∂R

∂t
+H(g, dRt)St + g(At, dRt)] + [2

∂S

∂t
+ g(dSt + 2At, dSt)].(105)

while φ̆ = eR−S satisfies in D the equation

−∂φ̆
∂t

+H(g,−At)φ̆+ cφ̆ = 0, (106)

if and only if

−c = [−∂S
∂t

+H(g, dRt)Rt −
1
2
g(dSt, dSt)− g(At, dSt)]

− [
∂R

∂t
+H(g, dRt)St + g(At, dRt)] + [2

∂S

∂t
+ g(dSt + 2At, dSt)].(107)

Notice that φ, φ̆ can be both negative or positive. So if we define ψ = eR+iS , it
then defines in weak form the Schroedinger equation in D with

V = −c− 2
∂S

∂t
− g(dSt, dSt)− 2g(At, dSt). (108)

We note that from eq. (108) follows that we can choose S in a way such
that either c is independent of S and thus V is a potential which is non-linear
in the sense that it depends on the phase of the wave function ψ and thus the
Schroedinger equation with this choice becomes non-linear dependent of ψ, or
conversely, we can make the alternative choice of c depending non-linearly on S,
and thus the creation-annihilation of particles in the diffusion equation is non-
linear, and consequently the Schroedinger equation has a potential V which does
not depend on ψ. In the case that V is such that the spectrum of H(g,A+ a)
is discrete, we know already we can represent the Schroedinger equation in
state-space and further study the related stochastic Schroedinger equation as
described above. Finally, we have presented a construction in which by using two
scalar diffusing processes φ, φ̆ we have been able to subsume them into a single
forward in time process with additional trace-torsion given by at = dlnφtφ̆t.

With respect to the issue of nonlinearity of the Schroedinger equation, one
could argue that the former case means that the superposition principle of QM
is broken, but then one observes that precisely due to the fact that the wave
function depends on the phase, the superposition principle is invalid from the
fact that we are dealing with complex-valued wave functions, and when deal-
ing with the Schroedinger or Heisenberg evolutions in state-space, the complex
factor has been quotiented [3].

In particular, nonlinear Schroedinger equations will appear in the Lie-isotopic
extensions of the linear Schroedinger equation of QM, due to Santilli [14-19]. As
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explained in the Introduction, all the mathematical and conventional physical
theories (Special and General Relativity, QM, RQM, etc.) can be isotopically
lifted by applying a non-unitary transformation that produces a generalized
unit. In the case of QM this construction yields a linear theory in the isotopi-
cally lifted mathematical structures (this property is called isolinearity [16]), but
when translated to the original structures, the Schroedinger equation becomes
non-linear. Conversely, we shall see that a non-linear Schroedinger equation can
be turned into the iso-linear iso-Schroedinger equation by taking the non-linear
terms of the potential into the isotopic generalized unit. Hence it follows that it
is possible, in principle, to present HM as a theory of diffusion processes. This
will be the subject of our next sections below.

Returning to the issue of the nonlinearity of the potential function V in
Quantum Mechanics, the usual form is the known logarithmic expression V =
−b(ln|ψ|2)ψ introduced by Bialnicky-Birula and Mycielski [23]. Its importance
in such diverse fields as quantum optics, superconductivity, atomic and molec-
ular physics cannot be disregarded. Soliton solutions of nonlinear Schroedinger
equations may have a role central to molecular biology, in which the DNA
structure may be associated with a superconductive state. With regards as the
relation between geometries, Brownian motions and the linear and Schroedinger
equations, there is an alternative line of research which stems from two prin-
ciples, which are interwoven. The first one is that all physical fields have to
be construed in terms of scale fields starting from the fields appearing in the
Einstein lambda transformations,of which, the Schroedinger wave function is an
elementary example as shown here [2,23], and when further associated to the
idea of a fractal spacetime, this has lead to Nottale’s theory of Scale Relativ-
ity [10,26]. Nottale’s theory starts from this fractal structure to construct a
covariant derivative operator in terms of the forward and backward stochastic
derivatives introduced by Nelson in his theory of stochastic mechanics [8]. Work-
ing with these stochastic derivatives, the basic operator of Nottale’s theory, can
be written in terms of our RCW laplacian operators of the form ∂

∂τ +H0(iDg,V)
where D is diffusion constant (equal to h̄

2m in nonrelativistic quantum mechan-
ics), and V is a complex differentiable velocity field, our complex drift appearing
after introducing the imaginary unit i =

√
−1 ; see [10]. In the present concep-

tion, this fundamental operator in terms of which Nottale constructs his theory,
does not require for its introduction to assume that space-time has a fractal
structure a priori, from which stochastic derivatives backward and forward to
express the time asymmetry construct the dynamics of fields. We rather assume
that at a fundamental scale which is generally associated with the Planck scale,
we can represent space-time as a continuous media in which what really matters
are the defects in it, and thus torsion has a fundamental role since it defines
these dislocations. The fractal structure of spacetime arises from the associa-
tion between the RCW laplacian operators which as coincides with Nottale’s
covariant derivative operator, and the Brownian motions which alternatively,
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can be seen as constructing the space-time geometry. So there is no place as
to the discussion of what goes first, at least in the conception in the present
work. Remarkably, the flow of these Brownian motions under general analyti-
cal conditions, define for every trial Wiener path, an active diffeomorphism of
space-time. But this primeval role of the Brownian motions and fractal struc-
tures, stems from our making the choice -arbitrary, inasmuch as the other choice
is arbitrary- as the fundamental structure instead of choosing the assumption
of having a RCW covariant derivative with a trace-torsion field defined on a
continuous model of space-time. In some sense the possibility of choosing as
primeval the Brownian motions for starting the construction of the theoretical
framework, is interesting in regards that they can be constructed as continous
limits of discrete jumps, as every basic book in probability presents [46], and
thus instead of positing a continuous space-time, we can think from the very
beginning in a discrete spacetime, and construct a theory of physics in these
terms 4. In this case, instead of working with the field of the real number or
its complex or biquaternion extensions, one can take a p-adic field, such as the
one defined by the Mersenne prime number 2127 − 1 which is approximately
equal to the square of the ratio between the Planck mass and the proton mass
[28]. In fact, a theory of physics in terms of discrete structures associated to
the Mersenne prime numbers hierarchy, has been constructed in a program de-
veloped by P. Noyes, T. Bastin, P. Kilmister and others; see [47]. A remarkable
unified theory of physics, biology and consciousness, in terms of p-adic field
theory, has been elaborated by M.Pitkanen [51].

We would like to comment that Castro, Mahecha and Rodriguez [25], fol-
lowing the Nottale constructions have derived the nonlinear Schroedinger equa-
tion and associated it to a Brownian motion with a complex diffusion constant.
Futhermore, working with Weyl connections (which are to be distinguished from
the present work’s RCW connections) in that they are not integrable and they
have zero torsion (they can be introduced in terms of the reduced set of Einstein
lambda transformations when one does not posit the tetrad or cotetrad fields as
fundamental and the invariance of the Riemann-Cartan connection), they have
derived the relativistic quantum potential in terms of the difference between
the Weyl curvature of this connection and the Riemannian curvature, while in
the present theory, we have associated above the relativistic quantum potential
with the Riemannian curvature, which is more closely related with the idea of
Brownian motion in spacetime (without additional internal degrees of freedom
as the Weyl connections introduce) as being the generator of gravitation and all
fundamental fields.

4Prof. Shan Gao,has initiated a program of construction of quantum mechanics as random
discontinuous motions in discrete spacetime, in his recent work Quantum Motion, Unveiling
the Mysterious Quantum World, Arima Publ., Suffolk ( U.K.), 2006.
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7 Isotopic Geometries and Isotopic Gauge The-
ories

We shall present next the essential elements of HM to relate them to torsion
fields and the Brownian motions that we have presented already.

7.1 Lie-Isotopic Gauge Theory

In this section, we want to place in evidence the role the kinematical role
that torsion has in the gauge theories for an isotopic Lie group. For a start in the
introduction to the mathematical aspects of HM, in this section we shall explicit
the fundamental kinematical role that torsion has in Lie-isotopic gauge theories,
by starting at the level of the Lie algebras and their Lie-isotopic liftings.

Let G be a Lie group, g its Lie algebra and ξ its enveloping algebra.Thus,
ξ has an associative product, which for reasons we shall denote its product
as A × B. We shall now onwards explicit the usual product and composition
through the sign × to distinguish with the isotopic product we shall introduce
next. Given an invertible and hermitean operator T , we shall introduce in ξ a
generalized isotopic product A×̂B = A× T ×B with an isotopic unit Î = T−1

such that A×̂Î = Î×̂A = A. Consequently, the usual definitions of hermitean
conjugate, A†, and inverse, A−1 , of an operator A must be replaced by the
following isotopic generalizations: The T -hermitean conjugate, A†̂,

A†̂ = T † ×A† × Î , (109)

and the T -inverse, Â−1,
Â−1 = Î ×A−1 × Î . (110)

Furthermore, the T -isotope, ê(A), of the exponential operator eA, of an operator
A, is defined as

êA = Î × eT×A = eA×T × Î . (111)

Suppose we have a field theory invariant under the action of the compact
gauge group G,

Ψ′ = U ×Ψ (112)

with
U = I × e−i×θ

k×Xk = e−i×θ
k×Xk × I, (113)

and θk is a set of real functions and Xk are generators of the algebra g satisfying

[Xi, Xj ] = Xi ×Xj −Xj ×Xi = i× ckij ×Xk, (114)

with the numbers ckij being the structure constants, i.e. the coefficients of the
torsion tensor of the canonical connection of the manifold given by G [49]. The
infinitesimal form of the transformation is

δΨ = −i× εk ×Xk ×Ψ, (115)
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where the εk are the infinitesimal parameters corresponding to θk. We remark
that the representation matrices of the transformations are unitary: U† × U =
I, [U†, U ] = 0, and the invariant of the theory is Ψ† ×Ψ = Ψ′† ×Ψ′.

The Santilli-Lie-isotopic lift of G, Ĝ, is represented by the transformation
given by

Ψ′ = Û×̂Ψ, (116)

where
Û = Î × e−i×θ

k×̂Xk = e−i×θ
k×̂Xk × Î , (117)

with θk a set of real functions and Xk are generators of the algebra g are as
before. We compute the isotopic hermitean conjugate of Û ,

Û †̂ = T † × (T−1)† × eiθ
k×̂Xk × T−1 = ei×θ

k×̂Xk × Î , (118)

and its isotopic inverse

Û−1 = T−1 × T × ei×θ
k×̂Xk × T−1 = ei×θ

k×̂Xk × Î , (119)

which proves that Û is a T -unitary operator:

Û †̂ = Û−1̂. (120)

We observe that if T is a positive-definite (alternatively, negative-definite), then
Ĝ is locally isomorphic to G. Furthermore, the isotopic condition of hermiticity
coincides with the usual one when defining an isotopic Hilbert space by the
isotopic inner product

(A,̂B) = (A, T ×B)× Î ∈ Ĉ, (121)

where Ĉ is the Santilli iso-field of complex numbers , i.e. Ĉ = C × Î; we shall
return to define this isofield in the next section. The infinitesimal form of the
Lie-isotopic transformation follows from eqs. (116, 117) is given by

Î ≈ −i× εk×̂Xk, (122)

and
δΨ = −i×Xk×̂εk ×Ψ. (123)

The construction of a gauge theory for Ĝ, i.e. a Lie-Santilli-isotopic theory for
G [33], starts with T defining the isotopic unit, being locally dependent. In fact
T can depend on the base manifold M as well as the tangent manifold and its
higher orders. Since Û is a T -unitary operator, from eq. (120) we have

Û †̂×̂Û = I, (124)

so that we can construct the following invariant

Ψ×̂Ψ† = Ψ′×̂Ψ′† = Ψ×̂Û×̂Û †̂×̂Ψ†. (125)
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Finally, to preserve invariance under local isotopic transformations, i.e. Û =
Û(x), so that θ = θ(x) and/or T = T (x), we introduce -as in ordinary gauge
theory for the group G- the isotopic covariant derivative

D̂µ = (∂u − i× e×Akµ×̂Xk)× Î , (126)

and we define the transformation rule for it as

D̂′
µ = Û×̂D̂µ×̂Û−1̂, (127)

or still,
D̂′
µ×̂Û×̂Ψ = Û×̂D̂µ×̂Ψ. (128)

Factorising D̂ = D̂µ × Î and Û = U∗ × Î, where

D̂µ = ∂µ − ieAkµ×̂Xk, (129)

and
U∗ = e−i×θ

k×̂Xk , (130)

we obtain from eq. (126)

A′kµ ×̂Xk = U∗ ×Akµ×̂Xk × U∗−1 − i

e
× (∂µU∗)× U∗−1. (131)

and we recognize in this expression the isotopic lifting of the gauge transforma-
tion fo the connection one-form A = AkµXkdx

k. If we develop U∗ as

U∗ ≈ I − i× εk×̂Xk, (132)

and
U∗−1 ≈ I + i× εk×̂Xk, (133)

then to first order in ε, we have

δAkµ × T ×Xk = −1
ε
× ∂µ(εk×̂Xk) + i× [Akµ×̂Xµ, ε

m×̂Xm], (134)

which still is equal to

−1
e
× (∂µεk × T )×Xk + i×Akµ × εm × T × [Xk ,̂Xm], (135)

where we have introduced the isotopic commutator

[Xk ,̂Xm] = Xk × T ×Xm −Xm × T ×Xk, (136)

where we note that we can read from this eqs. (135, 136) the modification of the
structure constants of of g, i.e. the coefficients of the torsion tensor of the canon-
ical connection on the group-manifold G, to local dependent structure constants
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depending on T , the Lie-isotopic unit defining the gauge theory of Ĝ. This is
the essential geometrical kinematical character of a Lie-isotopic gauge theory,
the appearance of the modification of the torsion tensor by the modification of
the infinitesimal symmetries through the generalized units. On further gauging,
appears a torsion field of the form of the logarithmic differential of the isotopic
unit. Thus, we can apply this to the construction of a gauge theory for Ĝ con-
structed on an arbitrary space-time manifold, which can be provided with an
Euclidean or Minkowski metrics, or still, in a more general Santilli-Lie-isotopic
setting in which the metric is iso-Euclidean or iso-Minkowski, i.e. the isotopic
lifts of the Euclidean and Minkowski metric respectively; more of this below.
But in this sense, the Lie-Santilli-isotopic theory was constructed to account
for the deformation of the usual group structures. This feature was overlooked
in the original works of Santilli, and in subsequent developments by other re-
searchers, but first treated in [29] with the then current lack of understanding
of the need of introducing the lift of the whole mathematical structures in the
theory, which was achieved in 1997; see [16] for a complete list of references and
a history of these developments.

Finally, the isotopic Yang-Mills field strength curvature F̂µν are defined as
follows:

F̂µν×̂Ψ =
i

e
× [D̂µ, D̂ν ]×̂Ψ =

i

e
× (D̂µ×̂D̂ν − D̂ν×̂D̂µ)×̂Ψ. (137)

It can be checked straightforwardly that it transforms covariantly under the
isotopic gauge transformation, since from and we get

F̂ ′kµν = Û×̂F̂µν×̂Û−1. (138)

Introducing eq. (127) into eq. (137), we get the expression

F̂ iµν×̂Xi = (∂µAkν − ∂νA
k
µ)×̂Xk +Akα × (δαβ × ∂µT − δαµ × ∂νT )×Xk

− i× eAkµ ×Amν × T × [Xk ,̂Xm]. (139)

We shall now make an important assumption on T , namely that it lies in
the center of g, so that T commutes with any element of g, i.e. [T,Xk] = 0 for
any Xk. This is satisfied by isotopic units such as the one defined in eq. (163)
below. Then, from eqs. (127, 136, 139) we get

D̂µ×̂Ψ = (∂µ − i× e×Akµ × T ×Xk)×Ψ, (140)

δAiµ =
−1
e
× T−1 × ∂µ(εi × T ) + cijk × εj × T ×Akµ, (141)

F̂ iµν = ∇µAiν −∇νAiµ + e× T × cijk ×Ajµ ×Akν , (142)

where
∇µAiν = ∂µA

i
ν −Aiα × Γαµν , (143)
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and
Γαµν =

1
2
× (δαµ × ∂νT − δαν × ∂µT )× T−1. (144)

Therefore,

F̂ iµν = ∂µA
i
ν − ∂νA

i
µ +Aiα × Tανµ + e× T × cijk ×Ajµ ×Akν , (145)

where we have written the skew-symmetric tensor

Tαµν = (δαµ∂νT − δαν ∂µT )× T−1. (146)

If in particular, we take
T = ψ(x)× I, (147)

and then
Î = ψ(x)−1 × I, (148)

we then obtain, under natural normalisation, a torsion tensor with trace given by
dlnψ. Notice that in contrast with the gauge theory for G, from eqs. (146−148)
we can conclude that the gauge theory for the isotopic group Ĝ has infinitesimal
transformations of the form ε′ = εi × T and an effective coupling which is no
longer constant, given by e′ = e× T .

Up to here, we have presented a construction which is independent of the
metric g defined on M . In the first term in eq. (143) we can write instead of
the usual derivative for A, on introducing a metric g, the covariant derivative
with respect to a Levi-Civita connection defined by g, and thus the covariant
derivative ∇ is a RCW connection defined by a metric g and trace-torsion dlnψ.
This is nothing else than the equations introduced by Hojman et al for an abelian
Lie-group in modifying the principle of minimal coupling to include torsion,
further introduced to the present case of a non-abelian group by Mukku and
Sayed [50]. In the former case the last r.h.s. element vanishes completely, and
we are left with the same expression obtained for Maxwell’s equations when we
extend the minimal coupling principle to account for the torsion of the manifold.
Furthermore, an identical expression was obtained when we presented above the
relation between the Hodge decomposition of the trace-torsion and its relation
to an invariant state. In distinction with another class of isotopic units we
shall present below (see eq. (163)), the choice in eq. (148) does not have the
non-linear and non-local characteristics we shall present below for the usual
generalized isotopic units of HM.

8 Santilli-Lie isotopic Hilbert space

In this section we shall present briefly the core of HM [16] (for a complete
list of references, the reader is urged to consult this work, as well as to the
history of the developments until the theory reached the present form.
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There is in Santilli’s theory a canonical way of introducing the Lie-isotopic
unit, with respect to which the complete theory is based upon. The prescription
is to introduce an arbitrary non-unitary operator U and to substitute the unit
I by the isotopic unit

Î = U × I × U† 6= I. (149)

The usual Hilbert space of quantum mechanics, is denoted by H = {|Φ >
, |Ψ >:< Φ|Ψ >∈ C(c,+,×), < Ψ,Ψ >= 1}, where C(c,+,×) denotes the field
of complex numbers with the usual addition and multiplication. The evolution
equation in the Lie-Santilli theory of an observable is given by the equation

i
dA

dt
= [A,̂H] = A× T ×H −H × T ×A, (150)

so that
A(t) = ei×H×T×t ×A(0)× e−i×t×T×H . (151)

The problem with this quantum evolution is that it is non-unitary over the
Hilbert space H over the field C(c,+,×). We have the following fundamental
result, known as the López Lemma.

Theorem 1. All possible non-unitary deformations of quantum mechanics
computed on a conventional Hilbert space H over the field C(c,+,×) have the
following aspects:

i Lack of invariance of the unit, and consequently the lack of applicabil-
ity to measurements. ii Lack of preservation of the Hermiticity in time,
and consequently the lack of unambiguous observables. iii Lack of invari-
ant eigenfunctions and their transforms, and consequently the lack of invariant
numerical predictions.

Proof. The unit of quantum mechanics, I, of the enveloping algebra ξ verifies
I × A = A× I = A, ∀A ∈ ξ. If we take a non-unitary transformation I 7→ Î =
U × I × U† 6= I, then

i
dI

dt
= [I,̂H] = I × T ×H −H × T × I 6= 0. (152)

Under a non-unitary transformation, the associative modular action of the
Schrodinger representation H × |ψ >, for H an hermitean operator for t = 0
becomes

U ×H × |Ψ >= U ×H × U† × (U × U†)−1U |Ψ >= Ĥ × T−1 × U |Ψ > (153)

where the operator Ĥ := U × H × U†, and Ψ̂ = U × |Ψ >. We note that by
definition T̂ = (U×U†)−1 = T̂ †. The initial condition of hermiticity of H on H,
i.e. < Ψ| × (H × |Ψ >) = (< Ψ| ×H†)× |Ψ >, when applied to a Hilbert space
with states of the form |Ψ̂ >= U × |Ψ >, requires the action of the transformed
operator U × H × |Ψ >= Ĥ × T−1 × |Ψ̂ > yet with the conventional inner
product, then

< Ψ̂| × (Ĥ × T̂ × |Ψ̂ >) =< Ψ̂| × T̂ × Ĥ† × |Ψ̂ >, (154)
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i.e.
Ĥ† = T̂−1 × Ĥ × T̂ 6= Ĥ, (155)

so that hermiticity is not preserved under non-unitary transformations formu-
lated on the conventional Hilbert space H over the field C(c,+,×), due to the
fact that [T̂ , Ĥ] 6= H.

The general situation of non-unitary deformations computed on general
Hilbert spaces will be addressed below. As a corollary of the Theorem 1, on
(H, C(c,+,×)) non-unitary quantum deformations do not give invariant prob-
abilities, nor posses unique invariant physical laws. While in QM unitary time
evolution implies causality, in its non-unitary deformations there is a violation
of causality.

So let us proceed to present the solution to this problem provided by Santilli,
the construction of a non-unitary image of quantum mechanics. As we said
already, the first element is given by the introduction of the generalized unit

Î = U × I × U† = Î† 6= I, (156)

so that
T̂ = (U × I × U†)−1 = T̂ †. (157)

The product in the generalized enveloping algebra ξ̂ is given by elements of
the form U × A × B × U† = Â × T̂ × B̂ := Â×̂B̂ for Â = U × A × U† and
B = U × B × B†. For a Hilbert space (H, <>,C(c,+,×)) we introduce the
Lie-Santilli isotopic Hilbert space Ĥ of elements of the form |ψ̂ >= U × |ψ >

and < φ̂| =< φ| × U†, with inner product given by transforming the original H
inner product by the non-unitary transformation

< Φ,Ψ >→< Φ| × U† × U†−1 × U−1 × U |Ψ >=< Φ̂| × T̂ × |Ψ >≡< Φ̂|×̂|Ψ̂ > .
(158)

The generalized enveloping algebra ξ̂ is still associative

(Â×̂B̂)×̂Ĉ = Â×̂(B̂×̂Ĉ), (159)

with identity given by Î, since Î×̂Â = Â×̂Î = Â We know already that the
modified Lie algebra is given by [Â,̂B̂] = Â × T × B̂ − B̂ × T × Â, which is
isomorphic to the original one if Î is positive definite.

Now let us see how the problem of hermiticity in the non-unitary frame is
obtained. We have,

< Ψ| × T̂ × (H × T̂ × |Ψ >) = (< Ψ̂| × T̂ ×H†)× |Ψ̂ >, (160)

which yields
Ĥ† = T̂−1 × T̂ ×H† × T̂ × T−1. (161)

Thus, starting with an hermitean operator H at t = 0, then Ĥ = U × H ×
U† remains hermitean under non-unitary transformations. But we note that
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the hermiticity is not computed in (H;< | >,C(c,+,×)) but on (Ĥ, < |×̂| >
, Ĉ(ĉ, +̂, ×̂)), where Ĉ(, ĉ,+, ×̂) is the Santilli-Lie isotopic lift of C(c,+,×) with
elements of the form ĉ = c × Î, where Î not necessarily belongs to C, the
summation is defined by ĉ1 + ĉ2 = (c1 + c2) × Î and the product is ĉ1×̂ĉ2 =
ĉ1 × T̂ × ĉ2 = (c1 × c2) × Î. Then Î = T̂−1 is the left and right multiplicative
unit in Ĉ(ĉ,+, ×̂). We further have that 0̂ = 0 satisfies ĉ+ 0̂ = ĉ. Furthermore,
ĉ2 = ĉ×̂ĉ = ĉ× T̂ × ĉ, ĉ 1̂

2 = c
1
2 × Î 1

2 . The quotient is defined by â/×̂b̂ = (ab × Î),
and |ĉ| = |c|× Î and finally for an arbitrary Q, ĉ×̂Q = c× Î×T×Q = c×I×Q =
c×Q.

The modular action Ĥ×̂|Ψ̂ >= Ĥ × T̂ × |ψ̂ > with < ψ̂|×̂|ψ >=< ψ̂| × T ×
|ψ̂ > has for generalized unit Î = T̂−1, because it is the only object such that
Î×̂|ψ̂ >= |ψ̂ >. Consequently, referral to C(c,+,×) with unit I is inconsistent,
and then Ĥ must be referred to Ĉ with basic unit Î. Now the iso-Hilbert
invariant iso-inner product is defined by

< Φ̂|Ψ̂ >Î=< Φ̂|×̂|Ψ̂ > ×Î =< Φ̂| × T̂ × |Ψ̂ > ×T̂−1 ∈ Ĉ. (162)

It is important to remark that the transformation H × p|ψ >7→Ĥ×̂|ψ̂ > satis-
fies linearity on isospace over isofields. The recovery of linearity in isospace is
achieved by the embedding of the nonlinear terms in the isounit. Furthermore,
any nonlinear theory with a Hamiltonian operator H(p, x, ψ, . . .) can always be
rewritten by factorizing the nonlinear terms, which can then be assumed as the
isotopic element of the theory. Indeed, if we have

H(p, x, ψ, . . .)× |ψ̂ >= H0(x, p)× T̂ (x, p, ψ, . . .)× |ψ̂ >:= Ĥ0(, p)×̂|ψ̂ >,

with T̂ := H−1
0 ×H. Here, H0 is the maximal (Hermitean) operator representing

the total energy. Thus, superposition in isospace can be achieved, which allows
a consistent treatment of composite systems under nonlinear interactions.

It is about time to present a general class of generalized units that appear
in HM for the characterization of the strong interactions. Namely,

Î = diag(n2
1, n

2
2, n

2
3, n

2
4)× exp(tN(

ψ↑

ψ̂↓
+
∂ψ↓

∂ψ̂↓
+ . . .)×

∫
d3xψ†↑(x)ψ↓(x), (163)

where the quantities n2
1, n

2
2, n

2
3 represent the extended, non-spherical deformable

shapes of the hadron, n2
4 its density, the quantities ψ↑

ψ̂↓
+ ∂ψ↓

∂ψ̂↓
+ . . . represent a

typical non-linearity, and the integral in the exponent, represents a typical non-
linearity due to the interpenetration and overlapping of the charge distributions.
Notably a coupling of spin-up and spin-down particles is present in the gener-
alized unit. Whenever the hadrons are perfectly spherical and rigid, then we
can take the density n2

4 = 1 and the parameters of deformations can also be set
equal to 1; if furthermore, their distances is such as to be nor interpenetration,
then the integrand is zero and the exponential term is equal to 1 and thus, in
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this situation, Î = I, and we are in the domain of applicability of QM, where
the unit is given in terms of the torsion structure constants of the Lie alge-
bra, and dynamically, from the gradient logarithm of the wave function. The
present choice of the isotopic unit has lead to the first ever model of a Cooper
model with explicit attractive force between the pair of identical electrons, with
excellent agreement with experimental data [68].

8.1 Santilli-Lie Isotopies of the Differential Calculus and
Metric Structures, and the Iso-Schroedinger Equation

To present the isotopic Schroedinger equation, we have to introduce the
Santilli-Lie-isotopic differential calculus [15,16] and the isotopic lift of mani-
folds, the so-called isomanifolds, due to Tsagas and Sourlas [19]. We start by
considering the manifold M to be a vector space with local coordinates, which
for simplicity we shall from now consider them to be a contravariant5 system
x = (xi), i = 1, . . . , n, unit given by I = diag(1, . . . , 1) and metric g defined on
the tangent manifold with coordinates v = (vi), so that v2 = vi × gij × vj ∈ R.
We shall lift this structure to a vector space M̂ provided with isocoordinates x̂,
isometric Ĝ and defined on the isonumber field F̂ , where F can be the real or
complex numbers; we denote this isospace by M̂(x̂, Ĝ, F̂ ). Let us describe the
construction of this isospace M̂ [16,19]:

The isocoordinates are introduced by the transformation

x 7→ U × x× U† = x× Î := x̂. (164)

To introduce the isometric Ĝ we start by considering the transformation

g 7→ U × g × U† = Î × g := ĝ. (165)

Yet we notice that the matrix elements ĝij = (Î×g)ij belong to the number field
F , not to F̂ , so the correct definition of the isometric is Ĝ = ĝ× Î. Thus we have
a transformed M(x, g, F ) into the isospace M̂(x̂, Ĝ, F̂ ). Thus the projection on
M̂(x̂, ĝ, F ) of the isometric in M̂(x̂, Ĝ, F̂ ) is defined by a contravariant tensor,
ĝ = (ĝij) with components

ĝij = (Î × g)ij . (166)

We must remark that in distinction of the usual scale transformation on the
metrics in the Einstein λ and the Weyl transformations, the scale factor is not
Î × Î but Î. If we start with g being the Euclidean or Minkowski metrics, we
obtain the iso-Euclidean and iso-Minkowski metric, the latter being the basis
for the formulation of the isotopic lift of Special Relativity, in addition of the
isotopic lift of the Lorentz group [15-19]; in the case we start with a general

5The definitions for a covariant set of coordinates and the corresponding isodifferential
calculus differs from the covariant case, and since we shall be using only contravariant objects,
we shall not present them in this article.
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metric as in GR, we obtain the isotopic lift of GR [15,19]. We shall now proceed
to identify the isotopic lift of the noise tensor σ which verifies eq. (20), i.e.
σ × σ† = g. The non-unitary transform of σ is given by

σ 7→ U × σ × U† = σ × Î := σ̂. (167)

Then,
σ̂×̂σ̂ = σ × Î × T̂ × (σ × Î)† = (σ × σ†)× Î = g × Î = ĝ. (168)

Thus the isotopic lift of noise tensor defined on M̂(x̂, Ĝ, R̂) is given by σ̂ = σ× Î
which on projection to M(x, g,R) (we stress here that we are taking a tensor
with real components) we retrieve σ.

We know introduce the Santilli isodifferential introduced in 1996 (see [16,17])
for contravariant coordinates which are given by

d̂x̂ = T̂ × dx̂ = T̂ × d(x× Î), (169)

so that when Î does not depend on x we have that d̂x̂ = dx. We now follow
Kadeisvili [19] in introducing the isofunctions f̂(x̂) defined on M̂ with values
on F̂ . We take an F -valued function, f , defined on M , and we produce the
non-unitary transformation

f(x) 7→ U × f(x)× U† = f(x)× Î = f(x̂× T̂ )× Î ∈ F̂ , (170)

so that the definition of an isofunction f̂(x̂) is given by

f̂(x̂) = f(T̂ × x̂)× Î . (171)

The isoderivative of isofunctions on contravariant coordinates are given by

∂̂f̂(x̂) = Î × ∂f(x̂)
∂x̂

, (172)

so that

d̂f̂(x̂) = ∂̂f̂(x̂)×̂d̂x̂ = Î × ∂f(x̂)
∂x̂

×̂dx̂ = Î × ∂f(x̂)
∂x̂

× T̂ × d(x× Î). (173)

It follows from the definitions that

∂̂

∂̂x̂k
= Îik ×

∂

∂xi
. (174)

We now introduce (for the first time, to our best knowledge) the isotopic
gradient operator of the isometric Ĝ (the Ĝ-gradient, for short), ̂gradĜ applied
to the isotopic lift f̂(x̂) of a function f(x) is defined by

̂gradĜf̂(x̂)(v̂) = Ĝ(d̂f̂(x̂)̂,v̂), (175)
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for any vector field v̂ ∈ Tx̂(M̂), x̂ ∈ M̂ ; we have denoted the inner product with
,̂ to stress that the inner product is taken with respect to the product in F̂ . It
follows from the definition Ĝ = ĝ×̂Î and eq. (175) that the operator ̂gradĜf̂(x̂)
is the vector field on the tangent manifold to M̂(x̂, Ĝ, F̂ ) defined by

Ĝαβ(x̂)×̂ ∂̂f̂(x̂)

∂̂x̂α
×̂ ∂̂

∂̂x̂β
= ĝαβ(x̂)×̂ ∂̂f̂(x̂)

∂̂x̂α
×̂ ∂̂

∂̂x̂i
× Î . (176)

Therefore, the projection on M̂(x̂, ĝ, F ) of the Ĝ-gradient vector field of f̂(x̂) is
the vector field with components

ĝαβ(x̂)×̂ ∂̂f̂(x̂)

∂̂x̂α
= ĝαβ(x̂)×̂ ∂̂f̂(x̂)

∂̂x̂α
. (177)

This will be of importance for the determination of the drift vector field of the
diffusion linked with the Santilli- iso-Schroedinger equation. We finally define
the isolaplacian as

4̂ĝ = ĝαβ(x̂)×̂ ∂̂

∂x̂α
×̂ ∂̂

∂x̂β
. (178)

This definition differs from the original one in [19], but is the one that will allow
us to associate diffusions to the Santilli-iso-Schroedinger equation.

9 Diffusions and the Heisenberg Representation

Up to now we have set our theory in terms of the Schroedinger representa-
tion, since the original setting for this theory has to do with scale transforma-
tions as introduced by Einstein in his last work [6] which was recognized already
by London that the wave function was related to the Weyl scale transformation
[48], and these scale fields have turned to be in the non-relativistic case, noth-
ing else than the wave function of Schroedinger equation, both in the linear and
the non-linear cases. Historically the operator theory of QM was introduced
before the Schroedinger equation, who later proved the equivalence of the two.
The ensuing dispute and rejection by Heisenberg of Schroedinger’s equation is a
dramatic chapter of the history of QM [36]. It turns out to be the case that we
can connect the Brownian motion approach to QM and the operator formalism
due to Heisenberg and Jordan. We must remark at this stage that the isotopic
and Lie-admissible extensions of the operator formalism of QM by Santilli, was
the starting point and building approach to the constructions of several theo-
ries. Some of these approaches, initiated by Santilli early in 1967, had to be
abandoned later for reasons of inconsistency as elaborated in [16] in which the
theory reaches final maturity.

Let us define the position operator as usual and the momentum operator by

qk = xk, pDk = σ × ∂

∂xk
, (179)
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which we call the diffusion quantization rule (the subscript D denotes diffusion)
since we have a representation different to the usual quantization rule

pk = −i× ∂

∂xk
, (180)

with σ = (σαa ) the diffusion tensor verifying eq. (20), i.e. (σ× σ†)αβ = gαβ and
substitute into the Hamiltonian function)

H(p, q) =
1
2

d∑
k=1

(pk −Ak)2 + v(q) (181)

this yields the formal generator of a diffusion semigroup in C2(Rd) or L2(Rd).
This yields the formal generator of a diffusion semigroup in C2(Rd) or L2(Rd).
Thus, an operator algebra on C2(Rn) or L2(Rn) together with the postulate of
the commutation relation (instead of the usual commutator relation of quantum
mechanics [p, q] = iĥI)

[p, q] = pq − qp = −σI (182)

this yields the diffusion equation

∂φ

∂t
+

1
2

d∑
k=1

(σ
∂

∂xα
− σAα)2φ+ vφ = 0, (183)

which coincides with the diffusion equation (100) provided that divA = 0 and
c = v +A2.

Thus, in this approach, the operator formalism and the quantization postu-
lates, allow to deduce the diffusion equation. If we start from either the diffusion
process or the RCW geometry, without any quantization conditions we already
have the equations of motion of the quantum system which are non other than
the original diffusion equations, or equivalently, the Schroedinger equations. We
stress the fact that these arguments are valid for both cases relative to the choice
of the potential function V , i.e. if it depends nonlinearly on the wave function ψ,
or acts linearly by multiplication on it. Further below, we shall use this mod-
ification of the Heisenberg representation of QM by the previous Heisenberg
type representation for diffusion processes, to give an account of the diffusion
processes that are associated with HM. This treatment differs from our original
(inconsistent with respect to HM) treatment of the relation between RCW ge-
ometries and diffusions presented in [29] in that it incorporates the isotopic lift
of all structures.

Let us frame now isoquantization in terms of diffusion processes. Define
isomomentum, p̂D, by

p̂Dk = σ̂×̂ ∂̂

∂̂x̂k
, with σ̂ = σ × Î , (184)
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so that the kinetic term of the iso-Hamiltonian is

p̂D×̂p̂†D = σ̂×̂σ̂†×̂ ∂̂

∂̂x̂
×̂ ∂̂

∂̂x̂

= ĝ×̂ ∂̂

∂̂x̂
×̂ ∂̂

∂̂x̂
= 4̂ĝ (185)

We finally check the consistency of the construction by checking that it can be
achieved via the non-unitary transformation

pDj 7→ U × pDj × U† = U × σ × ∂

∂xj
× U†

= σ × Î × T × Î × ∂

∂xj
= σ̂×̂ ∂̂

∂̂x̂j
= p̂Dj . (186)

Note that we have achieve this isoquantization in terms of the following trans-
formations: First we transformed

p = −i× ∂

∂x
→ pD := σ × ∂

∂x
, (187)

to further produce its isotopic lift

p̂D = σ̂×̂ ∂̂

∂̂x̂
. (188)

When the original diffusion tensor σ is the identity I from which follows from
eq. (20) that the original metric g is Euclidean, we reach compatibility of the
diffusion quantization with the Santilli-iso-Heisenberg representation given by
taking the non-unitary transformation on the canonical commutation relations

[q̂i ,̂p̂j ] = î×̂δ̂ij = i× δij × Î , (189)

together with

[r̂i ,̂r̂j ] = [p̂î,p̂j ] = 0, (190)

with the Santilli-iso-quantization rule [16,17]

p̂j = −ı̂×̂ ∂̂

∂̂x̂j
. (191)

Thus, from the quantization by the diffusion representation we retrieve the
Santilli-iso-Heisenberg representation, with the difference that the diffusion noise
tensor in the above construction need not be restricted to the identity.

Finally, we consider the isoHamiltonian operator

Ĥ = 1̂/̂(2̂×̂m̂)×̂p̂2̂ + V̂0(t̂, x̂) + V̂k(t̂, v̂)×̂v̂k, (192)
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where p̂ may be taken to be either given by the Santilli isoquantization rule

p̂k×̂|ψ̂ >= −î×̂ ∂̂

∂̂xk
×̂|ψ̂ >, (193)

or by the diffusion representation p̂D, V̂0(t̂, x̂) and V̂k(t̂, v̂) are potential iso-
functions, the latter dependent on the isovelocities. Then the iso-Schroedinger
equation (or Schroedinger-Santilli isoequation) [16,17] is

î×̂ ∂̂

∂̂t̂
|ψ̂ >= Ĥ×̂|ψ > = Ĥ(t̂, x̂, p̂)× T̂ (t̂, x̂, ψ̂, ∂̂ψ̂, . . .)× |ψ̂ >, (194)

where the wave isofunction ψ̂ is an element in (Ĥ, < |×̂| >, Ĉ(ĉ, +̂, ×̂)) satisfies

Î×̂|ψ̂ >= |ψ̂ > . (195)

Solutions of this equation and the many important consequences for the strong
interactions and Hadronic Chemistry, have been discussed in [17] and references
therein; they were first obtained in 1978, while Prof. Santilli was affiliated
to the Physics Department, Harvard University, with the sponsorship of the
Department of Energy, US Government.

9.1 Hadronic Mechanics and Diffusion Processes

As we derived above, the components of drift vector field, projected on
M̂(x̂, ĝ, R) in the isotopic form of eq. (91) with A ≡ 0, is given by eq. (177)
with f̂ = l̂nφ̂, so that

ĝαβ(x̂)×̂ ∂̂ l̂nφ̂(x̂)

∂̂x̂α
, (196)

with φ̂(x̂) = êR̂(x̂)+Ŝ(x̂) the diffusion wave associated to the solution ψ̂(x̂) =
êR̂(x̂)+iŜ(x̂) of the Santilli-iso-Schroedinger eq. (194), and its adjoint wave is
˘̂
φ(x) = êR̂(x)−Ŝ(x). Therefore, the drift vector field is

ĝαβ(x̂)×̂ ∂̂

∂̂x̂α
(R̂t̂+̂St̂)(x̂). (197)

Finally, we shall write the isotopic lift of the stochastic differential equation for
eq. (194). By applying the non-unitary transformation of eq. (91) with A ≡ 0,
we obtain the iso-equation on M̂(x̂, Ĝ, R̂) for X̂(τ) given by

dX̂i
t̂

= (ĝαβ×̂ ∂̂

∂̂x̂α
(R̂t̂+̂St̂))(X̂t̂)×̂d̂t̂+ σ̂ij(X̂t̂)×̂dŴ

j

t̂
, (198)
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with dŴt̂ = Ŵ (t̂+̂d̂t̂)−̂Ŵ (t̂) the increment of a iso- Wiener process Ŵt̂ =
(Ŵ 1

t̂
, . . . , Ŵm

t̂
) with isoaverage equal to 0̂ and isocovariance given by δ̂ij×̂t̂; i.e.,

1̂/̂(4̂×̂π̂×̂t̂)m̂/̂2̂
∫̂
ŵi×̂ê−ŵ

2̂/̂4̂×t̂2̂×̂d̂ŵ = 0̂,∀i = 1, . . . ,m

(199)

and

1̂/̂(4̂×̂π̂×̂t̂)m̂/̂2̂
∫̂
ŵi×̂ŵj×̂ê−ŵ

2̂/̂4̂×̂t̂2̂×̂d̂ŵ = δ̂ij×̂t̂,∀i, j = 1, . . . ,m,

(200)

and
∫̂

denotes the isotopic integral defined by
∫̂
d̂x̂ = (

∫
T̂ × Î × dx) × Î =

(
∫
dx)× Î = x̂. Thus, formally at least, we have

X̂t̂ = X̂0̂+̂
∫̂ t̂

0̂

(ĝαβ×̂ ∂̂

∂̂x̂α
(R̂ŝ+̂Sŝ))(X̂ŝ)×̂d̂ŝ+

∫̂ t̂

0̂

σ̂ij(X̂ŝ)×̂dŴ j
ŝ . (201)

The integral in the first term of eq. (201) is an isotopic integral of a usual
Riemann-Lebesgue integral, while the second one is the isotopic lift of a stochas-
tic Itô integral; we shall not present here in detail the definition of this last term,
which follows from the notions of convergence in the isofunctional analysis elab-
orated by Kadeisvili, and the usual definition of Itô stochastic integrals [8,13,70].

9.2 The Extension to The Many-body Case

Up to know we have presented the case of the Schroedinger equation for
an ensemble of one-particle systems on space-time. Of course, our previous
constructions are also valid for the case of an ensemble of interacting multipar-
ticle systems, so that the dimension of the configuration space is 3d + 1, for
indistinguishable d particles; the general case follows with minor alterations. If
we start by constructing the theory as we did for an ensemble of one-particle
systems (Schroedinger’s cloud of electrons), we can still pass trivially for the
general case, by considering a diffusion in the product configuration manifold
with coordinates Xt = (X1

t , . . . , X
d) ∈Md, where Md is the d Cartesian prod-

uct of three dimensional space with coordinates Xi
t = (x1,i

t , x2,i
t , x3,i

t ) ∈ M , for
all i = 1, . . . , d. The distribution of this is µt = EQ ◦X−1

t , which is a probability
density inMd. To obtain the distribution of the system on the three-dimensional
space M , we need the distribution of the system Xt: Ux

t := 1
d

∑d
i=1 δxi

. which
is the same as

Uxt (B) =
1
d

d∑
i=1

1B(Xi
t), (202)
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where 1B(Xi
t) is the characteristic system for a measurable set B , equal to 1 if

Xi
t ∈ B, for any i = 1 . . . , d and 0 otherwise. Then, the probability density for

the interacting ensembles is given by

µxt (B) = EQ[Uxt (B)], (203)

where EQ is the mean taken with respect to the forward Kolmogorov represen-
tation presented above, is the probability distribution in the three-dimensional
space; see [13]. Therefore, the geometrical-stochastic representation in actual
space is constructable for a system of interacting ensembles of particles. Thus
the criticism to the Schroedinger equation by the Copenhagen school, as to the
unphysical character of the wave function since it was originally defined on a
multiple-dimensional configuration space of interacting system of ensembles, is
invalid [36].

10 Vorticity and Anomalous Phenomenae in Elec-
trolytic Cells

We have already discussed in [3] that the Brownian motions produce rota-
tional fields simply by considering the Hodge duality applied to the trace-torsion.
In the other hand, we have seen that this encompasses the Brownian motions
produced by the wave function of arbitrary quantum systems, and the case of
viscous fluids, magnetized or not. These examples are independent of any scale,
from the galactic to the quantum scales. In the galactic scales, according to Arp,
this may explain the red-shift without introducing any big-bang hypothesis [53].
Thus, we have a modified form of Le Sage’s kinetic theory producing universal
fluctuations which have additionally rotational fields associated to them, and
due to the universality of quantum wave functions, either obeying the rules of
linear or non-linear QM, or still of HM, then it comes as no surprise that vortices
and superconductivity (which is the case of the Rutherford-Santilli model of the
neutron which is derived from the previous constructions and can be framed
as we showed in terms of torsion field) appear as universal coherent structures;
superconductivity is usually related to a non-linear Schroedinger equation with
a Landau-Ginzburg potential, which is just an example of the Brownian motions
related to torsion fields with further noise related to the metric. Furthermore,
atoms and molecules have spin-spin interactions which will produce a contribu-
tion to the torsion field; we have seen already that the torsion geometry exists in
the realm of Quantum Chemistry and Hadronic Chemistry.6 This is the case of
the compressed hydrogen atom model of the neutron in the Rutherford-Santilli

6A different approach due to Akimov and Shipov is claimed to be at the origin of these
torsion fields [58] which stems from the torsion geometry of the vacuum through the teleparallel
geometries we explored in [24], alike to the present approach, yet it is not vinculated nor to QM
nor to fluid-dynamics, further claims to an hypothetical particle known as the phyton. Further
experiments related to torsion fields have been presented in the Journal of New Energies, we
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model, in which their is a spin alignment with opposite direction and magnetic
moments for the electron and the proton. This produces the stable state which
leads to fusion. This is not a cold fusion process since it appears to occur at
temperatures of the order of 5, 000 degrees Celsius. Yet in electrochemical re-
actions, there are sources of torsion which are given by the the wave functions
of the components involved, but furthermore the production of vortex struc-
tures. Gas bubbles appear after switching off the electrochemical potentials,
and sonoluminescence have been observed at the Oak Ridge National Labora-
tory at the USA [59]. There is a surprising phenomenae of remnant heat that
persists after death which could be produced by the vortex dynamics of the tip
effect [62]. These experimental findings have been claimed to be observed in
different laboratories across the world [57,59], have in some instances lead to
a theoretical explanation in terms of torsion fields [60,61]. Superconductors of
class II present also some surprising phenomenae such as low-frequency noise,
history- dependent dynamic response, and memory direction, amplitude direc-
tion and frequency of the previously applied current [60]. If these findings can
be reproduced systematically, we would have a new class of sources of energy,
which stem from the zero point fluctuations.

11 On the Experimental Evidence of Space-time
Fluctuations and Conclusions

We have shown that the equations of QM have an equivalent formulation as
diffusion processes which themselves generate space-time geometries or alterna-
tively are generated by them. We have extended these relations to the isotopic
deformations introduced in HM. Thus, wave functions of elementary particles,
atoms and molecules described by the Schroedinger and Santilli-iso-Schroedinger
equations, generate torsion fields. This is an universal phenomenae since the
applicability of these equations does not restrict to the microcospic realm, as
already shown in the astrophysical theory due to Nottale [10]; this universality
is associated with the fact that the Planck constant (or equivalently, the diffu-
sion constant) is multivalued, or still, it is context dependent, inasmuch as the
velocity of light has the same feature [17]. In the case of HM this can be seen
transparently in the fact that the isotopic unit plays the role, upon quantiza-
tion, of the Planck constant in QM, as we have already seen when we introduced
the diffusion-Heisenberg representation and its isotopic lift, or furthermore, by
its product with the noise tensor of the underlying Brownian motions.In the
galactic scales, this may explain the red-shift without introducing a big-bang
hypothesis [16,17]; an identical conclusion was reached by Arp in considering
as a theoretical framework the Le Sage’s model of a Universe filled with a gas

direct the reader to [61]. As we have shown in this article and [3] torsion fields appear in the
most fundamental theories of physics.
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of particles [52,53], in our theory, the zero-point fluctuations described by the
Brownian motions defined by the wave functions, as well as by viscous fluids,
spinor fields, or electromagnetic fields [2] (and which one can speculate as re-
lated to the so-called dark energy problem). A similar view has been proposed
by Santilli in which the elementary constituents are the so-called aetherinos [71],
while in Sidharth’s work, they appear to be elementary quantized vortices re-
lated to quantum-mechanical Kerr-Newman black holes [63]. Thus, whether we
examine the domains of linear or non-linear QM, or still the hyperdense domain
of HM, then it appears that vortices and superconductivity (which is the case of
the Rutherford-Santilli model of the neutron which is derived from the previous
constructions) appear as universal coherent structures. Superconductivity is
usually related to a non-linear Schroedinger equation with a Landau-Ginzburg
potential, which is just an example of the Brownian motions related to tor-
sion fields with further noise related to the metric. Furthermore, atoms and
molecules have spin-spin interactions which will produce a contribution to the
torsion field; we have seen already that the torsion geometry exists in the realm
of Quantum Chemistry and ultimately in Hadronic Chemistry, since we can
extend the construction to the many-body case. In distinction with the usual
Coulomb potential in nuclear physics, the isotopic deformations of the nuclear
symmetries yield attractive potentials such as the Hulten potential, which in the
range of 10−13 cm. yields the usual potential [15,56] without the need of intro-
ducing any sort of parameters or extra potentials. In contrast with the ad-hoc
postulates of randomness in the fusion models which are considered in the usual
approaches [32,33], in the present work randomness is intrinsic to space-time
itself or alternatively a by product of it, and in the case of HM, these geome-
tries incorporate at a foundational level, a generalized unit which incorporates
all the features of the fusion process itself: the non-canonical, non-local and
non-linear overlapping of the wave functions of the ensembles which correspond
to the separate ensembles under deformable collisions in which the particles lose
their pointlike structure, or in a hypercondensed plasma state, where the dy-
namics of the process may have a random behavior; the domain of validity of
this constructions are 10−13 cm., and outside this domain we find the quantum
fluctuations associated to the Schroedinger equation. This extension has been
possible essentially by taking in account the generalized isotopic units and the
isotopic lifts of all necessary mathematical structures.

There are already experimental findings that may lead to validate the present
view. In the last fifty years, a number of scientists at the Biophysics Institute of
the Academy of Sciences of Russia, directed by S. Shnoll (and presently devel-
oped in a world net which includes Roger Nelson, Engineering Anomalies Re-
search, Princeton University, B. Belousov, International Institute of Biophysics,
Neuss (Germany), J. Wilker, Max-Planck Institute for Aeronomy, Lindau, and
others), have carried out tens of thousands of different experiments of very dif-
ferent nature and energy scales (α decay, biochemical reactions, gravitational
waves antenna, etc.) in different points of the globe, and carried out a software
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analysis of the observed histograms and their fluctuations, to find out an amaz-
ing fit which is repeated with regularity of 24 hours, 27 days and the duration
of a sidereal year. Thus, the fine spectrum of these experiments reveal a non-
random pattern. At points of Earth with the same local hour, these patterns
are reproduced with the said periodicity. The only thing in common to these
experiments is that they are occur in spacetime, and thus this leads to conclude
that they stem from spacetime fluctuations, which may further be associated
with cosmological fields. Furthermore, the histograms reveal a fractal structure.
This fractal structure has been found to follow the pattern of the logarithmic
Muller fractal, which is associated with the existence of a global scale for all
structures in the Universe; see H. Muller [85]. This leads to reinforce the thesis
of time as an active field. Furthermore, the space and time Brownian motions
can exist, in principle, in the different space and time scales warranted by these
global scales. This structure is interpreted as appearing from an interference
phenomena related to the cosmological field; we recall that diffusion processes
present interference phenomena alike to , say, the two-slit experiment. Measure-
ments taken with collimators show fluctuations emerging from the rotation of
the Earth around its axis or its circumsolar orbit, showing a sharp anisotropy of
space. Furthermore,it is claimed that the spatial heterogeinity occurs in a scale
of 10−13 cm., coincidently with the scale of the strong interactions [80].

As a closing remark we would like to recall that Planck himself proposed
the existence of ensembles of random phase oscillators having the zero-point
structure as the basis for quantum physics [71]. Thus, the apeiron would be
related to the Brownian motions which we have presented in this work, and
define the space and time geometries, or alternatively, are defined by them. So
we are back to the idea due to Clifford, that there is no-thing but space and
time configurations, instead of a separation between substratum and fields and
particles appearing on it. Furthermore, what we perceive to be void, is the
hyperdense source of actuality.
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Distribution of distances in the solar system
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Abstract

The recently published application of a diffusion equation to pre-
diction of distances of planets in the solar system has been identified as
a two-dimensional Coulomb problem. A different assignment of quan-
tum numbers in the solar system has been proposed. This method
has been applied to the moons of Jupiter on rescaling.

PACS number: 96.35
Key words: regularities of planetary orbits, large scale quantization

1 Introduction

The 20th century is held for the golden age of the astronomy and astrophysics,
when many persistent questions were solved and the human view of the
universe changed radically. In spite of this, at the beginning of the 21st
century, one cannot find satisfactory answers to some questions our ancestors
posed as early as in the 16th century. For instance, Kepler looked for a
universal law, in his Mysterium cosmographicum, to explain the planetary
distances in the solar system. Nowadays, when discoveries of other planetary
systems occur, such a law could explain the distances of their planets.
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1

293

vic
Rectangle



In 1766 Titius formulated the law, which described distances of the bodies
in the solar system, and it even predicted new bodies at certain distances from
the Sun [1]. Actually its being criticized led to the discovery of the remaining
planets and new bodies – asteroids – in the solar system. It was the first,
controversial, description of the distances of the bodies in this planetary
system. But hardly any physical explanation has thus far been given. Is it a
mere extravagance, or does this law have some deep physical content? May
the planets around stars originate at definite distances?

Quest of the answer developed into invention of new empirical formulae,
which describe, with higher or lower accuracy, the distances of the bodies in
the solar system. For instance Armelini’s empirical formula has the form

rnA = 1.53n, (1)

where n assumes the values: Mercury −2, Venus −1, Earth 0, Mars 1, as-
teroid Vesta 2, asteroid Camilla 3, Jupiter 4, Saturn 5, asteroid Chiron 6,
Uranus 7, Neptune 8, and Pluto 9.

In 1938 Mohorovičić invented an empirical formula [2], which describes
the distances of planets and comets with high accuracy, and it also predicts
an asteroid belt between Mars and Jupiter. Mohorovičić’s law says that the
distances of the inner parts of the solar system increase in a sublinear manner
and those of the outer parts of this system increase in a superlinear manner.
In the paper [3] we have modified this law such that it satisfies also other
planetary systems and those of the moons of the giant planets.

Interesting is the empirical formula, which is similar to the laws of quan-
tum mechanics [4]

rmn =
1

2
(m2 + n2)r0, (2)

where m are natural numbers, n = 0, 1, . . . ,m and r0 = 0.387 AU. The Bohr–
Sommerfeld rule of (allowed) orbits for electrons in the electric fields of the
nuclei of various atoms resemble the distribution of planetary distances, but
do not let us forget that this rule describes bodies (electrons), which all
have the same inertial mass and the same electric charge, which replaces a
gravitational mass here. To obtain a distribution of the planetary distances,
one either replaces different planetary masses by their mean mass, or makes
the quantum of action depend on the actual mass.

Agnese and Festa described the solar system like a gravitational atom [5].
They utilized a quantum law for the hydrogen atom, which they applied to
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description of major semi-axes of allowed (discretized) elliptical orbits of the
bodies of the planetary system

rnAF = r1n
2, (3)

where n are natural numbers and r1 is the Bohr radius of the planetary
system, which is

r1 =
GM

α2
gc

2
, (4)

where G is the gravitational constant, M the mass of the central body, c the
vacuum speed of light and αg is a gravitational structure constant, which
has the property 1

αg
= 2113 ± 15. Agnese and Festa have shown that this

description of distances satisfies also the planetary system υ Andromedae [6]
and other stellar systems alike on substituting the mass of the appropriate
central star for the mass M . A study which elaborates on such ideas has
been presented in [7].

Recently, the significance of the Titius–Bode law has been evaluated both
by generating random planetary systems [8] and by the help of methods of
the modern statistical analysis [9]. In the papers [10, 11] the authors point
out quantum features also on large scales, namely discrete values of distances
of possible planets and galaxies.

In quantum mechanics one utilizes Schrödinger’s equation for the de-
scription of a physical system. In the paper [12], the stochastic mechanics is
constructed, i. e., the Schrödinger equation is obtained as a classical diffusion
equation by the help of the hypothesis that any particle in any interaction also
exhibits a universal Brownian motion [13]. The main problem of this kind of
derivation is a convincing physical origin for that universal Brownian motion,
although a possibility is the quantum nature of space-time [14]. The chaotic
behaviour of the solar system during its formation and evolution [15, 16]
suggests a diffusion process to be described in terms of a Schrödinger-type
equation. The description of the planetary system using a Schrödinger-type
diffusion equation has been realized in [17]. There the authors have adapted
the Schrödinger equation to the planetary system and shown that there exist
very many orbits, on which possible planets may originate. That paper has
stimulated us to the following considerations.
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2 Discrete distances in the gravitational field

of an astronomical body

Let us consider a body of the mass Mp, which orbits a central body of the
mass M and has the potential energy V (x, y, z) in its gravitational field.
Because planets and moons of the giant planets revolve approximately in the
same plane, we consider z = 0. Because they revolve in the same direction, we
choose directions of the axes x, y and z such that the planets or moons of giant
planets revolve counter-clockwise. Then we write the modified Schrödinger
equation for the wave function ψ = ψ(x, y) from the part of the Hilbert space
L2(R

2) ∩ C2(R2) and the eigenvalue 0 > E ∈ R in the form

− h̄2
M

2Mp

(
∂2

∂x2
+

∂2

∂y2

)
ψ + V (x, y)ψ = Eψ, (5)

where h̄M ≈ 1.48 × 1015Mp, V (x, y) = V (x, y, z) and E is the total energy.
Negative E classically correspond to the elliptic Kepler orbits and the local-
ization property (bound state) is conserved also in the quantum mechanics
for such total energies E. The factor 1.48× 1015 is not a dimensionless num-
ber, but the unit of its measurement is m2s−1. With respect to the unusual
unit we do not wonder that Agnese and Festa [5] consider this factor in the
form of a product, such that h̄M = λ̄McMp, where λ̄M ≈ 4.94× 106 m.

We transform equation (5) into the polar coordinates,

− h̄2
M

2Mp

(
∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r
+

1

r2

∂2ψ̃

∂θ2

)
+ Ṽ (r)ψ̃ = Eψ̃, (6)

where ψ̃ ≡ ψ̃(r, θ)=ψ(r cos θ, r sin θ) and Ṽ (r) = V (r cos θ, r sin θ) does not
depend on θ. Particularly we choose

Ṽ (r) = −GMpM

r
. (7)

With respect to the Fourier method we assume a solution of the equation (7)
in the form

ψ̃(r, θ) = R(r)Θ(θ). (8)

The original eigenvalue problem is transformed, equivalently, to two eigen-
value problems

Θ′′(θ) = −ΛΘ, (9)
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Θ(0) = Θ(2π) (10)

and

R′′(r) +
1

r
R′(r) +

{
−Λ

r2
+

[
E − Ṽ (r)

2Mp

h̄2
M

]}
R(r) = 0, (11)

lim
r→0+

[
√
rR(r)] = 0,

√
rR(r) ∈ L2((0,∞)). (12)

The solution of the problem (9)–(10) has the form

Θl(θ) =
1√
2π

exp (ilθ) (13)

for l = ±
√

Λ ∈ Z.
Here l = 0 should mean a body, which does not revolve at all. In the

classical mechanics such a body moves close to a line segment ending at the
central body, and it spends a short time in the vicinity of this body. In this
paper we utilize some – not all – of the concepts of quantum mechanics and
we will not avoid the case l = 0 [17]. In (13) l = 1, 2, . . . ,∞ corresponds to
the counter-clockwise revolution.

Respecting (7), the equation (11) becomes

R′′(r) +
1

r
R′(r) +

{
− l

2

r2
−B − 2Mp

h̄2
M

(
−GMpM

r

)}
R(r) = 0, (14)

where

B = −2MpE

h̄2
M

= − 2

(λ̄Mc)2

E

Mp

. (15)

Let us note that
MpGMpM

h̄2
M

=
GM

(λ̄Mc)2
. (16)

On substituting r = ρ

2
√

B
and introducing

R̃(ρ) = R

(
ρ

2
√
B

)
, (17)

equation (14) becomes

R̃′′(ρ) +
1

ρ
R̃′(ρ) +

(
−1

4
+
k

ρ
− l2

ρ2

)
R̃(ρ) = 0, (18)
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where

k =
GM

(λ̄Mc)2
√
B
. (19)

For later reference let us note that, inversely,

√
B =

GM

(λ̄Mc)2k
, (20)

−E
Mp

=
(λ̄Mc)

2

2
B (21)

=
(GM)2

2(λ̄Mc)2k2
. (22)

Expressing R̃(ρ) in the form

R̃(ρ) =
1
√
ρ
u (ρ) , (23)

we obtain an equation for u(ρ)

u′′(ρ) +

[
−1

4
+
k

ρ
−
(
l′2 − 1

4

)
1

ρ2

]
u (ρ) = 0, (24)

where l′ = l. It is familiar that this equation has two linear independent
solutions Mk,l′(ρ), Mk,−l′(ρ), if l′ is not an integer number. When l′ is integer,
the solution Mk,−l′(ρ) must be replaced with a more complicated solution.
It can be proven that the other solution is not regular for ρ = 0 (it diverges
as ln ρ for ρ → 0). The remaining solution Mk,l(ρ) can be transformed to a
wave function from the space L2((0,∞)) if and only if k − l − 1

2
= nr is any

nonnegative integer number. We choose this function to be

ukl(ρ) = CklMk,l(ρ), (25)

where Ckl is an appropriate normalization constant and Mk,l(ρ) is a Whit-
taker function, namely

Mk,l(ρ) = ρl+ 1
2 exp

(
−ρ

2

)
Φ
(
l − k +

1

2
, 2l + 1; ρ

)
, (26)
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where Φ is the confluent (or degenerate) hypergeometric function. In (25)
the constant Ckl has the property∫ ∞

0
r[Rkl(r)]

2dr = 1, (27)

or it is

Ckl = 2
√
B

1

(2l)!

√√√√ (n+ l − 1)!

2k(n− l − 1)!
. (28)

Then

Rkl(r) = 2
√
B

√√√√(n− l − 1)!

2kΓ(n+ l)
exp(−r

√
B)(2r

√
B)lL2l

n−l−1(2r
√
B), (29)

where n = k + 1
2
, L2l

n−l−1(x) is a Laguerre polynomial, and the relation (20)
holds.

3 Interpretation of formulae derived

Having solved the modified Schrödinger equation, we address interpretation
of the formulae derived. The probability density Pkl(r) of the revolving body
occurring at the distance r from the central body is

Pkl(r) = r[Rkl(r)]
2, r ∈ [0,∞). (30)

Mean distances of the planets are given by the relation

rkl =
∫ ∞
0

rPkl(r)dr (31)

=
(λ̄Mc)

2

4GM
[(2k − nr)(2k − nr + 1) + 4nr(2k − nr) + nr(nr − 1)] , (32)

where nr = n− l − 1, k = 1
2
, 3

2
, 5

2
, . . . ,∞ and l = 0, 1, 2, . . . , n.

For the solar system M = MSun holds and the Bohr radius of the solar
system r 1

2
0 = 0.055 AU. For survey one finds some expectation values rkl for

selected values k, l with the specification of described bodies in table 1 (cf.
[17]).
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Even though also in this case an empirical formula is tested for distribu-
tion of planetary distances, the predicted orbits fit those of the bodies in this
solar system.

Using the graphs of the probability densities we have plotted for every
predicted orbit of this system, we obtain surprising results. The graphs of
the probability densities for each orbit with k ≤ 9

2
and with 11

2
≤ k ≤ 31

2

are contained, respectively, in figure 1 and in figure 2. The vertical axis
denotes the probability density Pkl(r) and the longitudinal axis designates
the planetary distance r from the Sun. In figure 1 graph no. p = 1 is
interpreted such that the highest probability density is assigned to the orbit
of the radius of 0.055 AU and from the calm shape of the graph we infer that
an ideal circular orbit is tested. In figure 1 graph no. p = 14 is interpreted
such that the highest probability density is assigned to the orbit of the radius
of 3.32 AU and, of many peaks, which wave the shape, we infer that no stable
circular orbit is tested. After performing the analysis for all the orbits, we
obtain only a small number of stable circular orbits. The orbits, on which
big bodies – planets – may originate, are listed in table 2.

It emerges that, for every number k, there exists only one stable orbit, on
which a big body – a planet – may originate. Then we can interpret the num-
ber k as the principal quantum number and l as the orbital quantum number
equal to the number of possible orbits, but only for the greatest l there ex-
ists a stable orbit of a future body. A planet which does not confirm this
theory is the Earth. Since the description based on the modified Schrödinger
equation for the planetary system is not fundamental, it could not fit all the
stable orbits. Other deviations are likely to be incurred by collisions of the
bodies in early stages of the origin of the planets, thus nowadays we already
observe elliptical orbits, which are very close to circular orbits.

This procedure has been applied to moons of giant planets by us. It
emerges that the moons of giant planets also are fitted by the modified
Schrödinger equation and appropriate expectation values. Especially, the
predicted stable circular orbits of Jupiter’s moons are presented in table 3.
For Jupiter it holds that M = MJup and the Bohr radius (4) of this system
r1 = 6287 km. It emerges that the predicted lunar orbits fit the measured
orbits of the moons orbiting Jupiter.
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4 Conclusions

In this paper we assume that there exists a law by which big objects – planets
and moons of giant planets – do not originate anywhere, but at allowed
distances from the central body. Unnegligible number of authors have issued
from similar assumptions and derived empirical formulae for parameters of
allowed orbits.

The results we have presented in this paper are based on a modified
Schrödinger equation, which has been applied to the planetary system by us
for the quantum theory contained in the Schrödinger equation to create an
interesting view of the birth of such a stellar system, namely the orbits of
planets and moons being approximately quantized.
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[2] Guth Vl, Link F, Mohr JM, Šternberk B, Astronomy, Vol. I. Prague:
Czechoslovak Academy of Sciences Press, 1954 (in Czech).

[3] Pintr P, Peřinová V. The solar system from the quantization viewpoint.
Acta Universitatis Palackianae, Physica, 2003–2004; 42–43: 195-209.

[4] De Oliveira Neto N. A Niels Bohr-like atomic model for planetary orbit
description. Ciência e Cultura (Journal of the Brazilian Association for
the Advancement of Science), 1996; 48: 166–171.

[5] Agnese AG, Festa R. Clues to discretization on the cosmic scale. Physics
Letters A, 1997; 227: 165-171.

9

301

vic
Rectangle



[6] Agnese AG, Festa R. Discretizing υ-Andromedae planetary system.
astro-ph/9910534, v2, 1999.
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Table 1. Predicted distances of bodies from the Sun

Body k l rkl [AU]
— 1

2
0 0.055

Mercury 3
2

1 0.332
Mercury 3

2
0 0.387

Venus 5
2

2 0.829
Earth 5

2
1 0.995

Earth 5
2

0 1.050
Mars 7

2
3 1.548

Hungaria 7
2

2 1.824
Hungaria 7

2
1 1.990

Hungaria 7
2

0 2.046
Vesta 9

2
4 2.488

Ceres 9
2

3 2.875
Hygeia 9

2
2 3.151

Camilla 9
2

1 3.317
Camilla 9

2
0 3.372

Jupiter 11
2

0 5.031
— 13

2
0 7.021

Saturn 15
2

0 9.343
Chiron 17

2
0 11.997

Chiron 19
2

0 14.982
Uranus 21

2
0 18.300

— 23
2

0 21.948
HA2 (1992), DW2 (1995) 25

2
0 25.929

Neptune 27
2

0 30.241
— 29

2
0 34.885

Pluto 31
2

0 39.861
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Table 2. Bodies with stable circular orbits.

Body k l rkl [AU]
— 1

2
0 0.055

Mercury 3
2

1 0.332
Venus 5

2
2 0.83

Mars 7
2

3 1.54
Vesta 9

2
4 2.49

Fayet comet 11
2

5 3.64
Jupiter 13

2
6 5.03

Neujmin comet 15
2

7 6.636
— 17

2
8 8.46

Saturn 19
2

9 10.5
— 21

2
10 12.77

Westphal comet 23
2

11 15.26
Pons–Brooks comet 25

2
12 17.97

Uranus 27
2

13 20.9
— 29

2
14 24.055

— 31
2

15 27.43
Neptune 33

2
16 31.02

— 35
2

17 34.84
Pluto 37

2
18 38.88

— 39
2

19 43.134
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Table 3. Moons of Jupiter with stable circular orbits.

Body k l rkl [km]
— 1

2
0 6287

— 3
2

1 37722
Halo ring 5

2
2 94305

Outer ring 7
2

3 176036
— 9

2
4 282915

Io 11
2

5 414942
Europa 13

2
6 572117

— 15
2

7 754440
— 17

2
8 961911

Ganymede 19
2

9 1.19×106

— 21
2

10 1.452×106

Callisto 23
2

11 1.735×106
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1

Figure 1: Probability densities for a particle in states with quantum numbers k, l, which
correspond, respectively, (p is an ordinary number) to Mercury (p = 1, l = 1), Mercury
(p = 2, l = 0, the second possibility), Venus (p = 3, l = 2), Earth (p = 4, l = 1), Earth
(p = 5, l = 0, the second possibility), Mars (p = 6, l = 3), asteroid Hungaria (p = 7, l = 2),
asteroid Hungaria (p = 8, l = 1, the second possibility), asteroid Hungaria (p = 9, l = 0,
the third possibility), asteroid Vesta (p = 10, l = 4), asteroid Ceres (p = 11, l = 3), asteroid
Hygeia (p=12, l = 2), asteroid Camilla (p = 13, l = 1), and asteroid Camilla (p = 14, l = 0,
the second possibility). Here k ∈ {3

2
, 5

2
, . . . , 9

2
}, the quantum number k repeats n(= k + 1

2
)

times and r is measured in AU.
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2

Figure 2: Probability densities for a particle in states with quantum numbers k, l, which
correspond, respectively, (p is an ordinary number) to Jupiter (p = 1), nothing (p = 2),
Saturn (p = 3), Chiron (p = 4), Chiron (p = 5, the second possibility), Uranus (p = 6),
nothing (p = 7), HA2 (1992), DW2 (1995) (p = 8), Neptune (p = 9), nothing (p = 10) and
Pluto (p = 11), k ∈ {11

2
, 13

2
, . . . , 31

2
}, l = 0. Here k = p + 9

2
, r is measured in AU.

307



 

 

1 

NANOTECHOLOGY &  

SEMICONDUCTOR NANODEVICES 

Adel Helmy Phillips 

Eng. Physics & Math. Department 

Faculty of Engineering, Ain-Shams University 

Abbasia, CAIRO, EGYPT 

Email: adel_phillips@yahoo.com 

 

       Nanoscience and nanotechnology are advancing at a rapid pace and 
making revolutionary contributions in many fields including electronics, 
materials science, chemistry, biology, structures & mechanics, and 
optoelectronics [1]. Among these scientific and technological fronts, the 
most impressive progress has been made in the area of semiconductor 
technology. Semiconductor nano-structures have been enabled by the 
advancements in epitaxial growth techniques, which are now capable of 
growing epilayers as thin as one atomic layer and with interface 
roughness that area mere fraction of a monolayer [2, 3, 4]. 
Heterostructures at the nanometer scale such as quantum wells, quantum 
wires and quantum dots, have found robust applications in the generation, 
modulation, detection and processing of light. 
 
       Fundamental solid state physics has benefited greatly from the 
massive industrial research and development efforts towards the 
miniaturization of semiconductor devices, which allowed the fabrication 
of artificial structures or devices that exhibit new physical phenomena. 
These new phenomena occur as the structure size is decreased below 
some relevant physical length scale [2]. Examples of such phenomena 
and the associated length scales are quantum confinement and the Fermi 
wavelength, ballistic transport and the mean free path, quantum 
interference and the quantum mechanical phase coherence length. On 
these short length scales, the devices acquire neither unusual properties 
that are neither those of microscopic object (atoms and molecules) nor 
those of macroscopic systems. That is why the branch of physics devoted 
to the study of these effects in nanometer-sized systems at low 
temperatures has been called mesoscopic physics [5]. A universal feature 
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of mesoscopic systems is that the coherence length can be larger than the 
dimension of the device under study. With the help of sub-Kelvin 
cryogenic measurement equipment, electron coherent lengths of over 100 
microns can be observed, well within the large of today's nanometer scale 
fabrication techniques [5]. In addition, low-density semiconducting 
systems can have conduction electrons with very large electronic 
wavelength up to approximately 50 nm. With electron beam lithography, 
one can pattern arbitrary shapes near the scale of one wavelength. 

 

      Length Scales Characterizing Mesoscopic Systems :  

            In this section a brief account of lengths associated with 
mesoscopic systems [2] will be introduced. 

(1) Fermi Wavelength: One important length scale characterizing 
mesoscopic systems is the Femi wavelength. In semiconductors 
such as two-dimensional systems realized in GaAs/AlGaAs 
heterostructures, the Fermi wavelength λF≈ 40 nm for electron 
concentration n ≈ 3x1011 cm-2. This Fermi wavelength is large 
comparable to the system dimensions. 

(2) Mean Free Path: It is the average length covered by an electron 
before being scattered into a different wave vector direction. At 
very low temperature, the transport of electrons is determined by 
electrons in the vicinity of the Fermi energy EF, that is, the mean 

free path ℓ is expressed as: 

τFv=                   (1) 

where vF is the Fermi velocity and τ is the relaxation time. 

(3) Phase Coherence Length: In real semiconductors, electrons interact 
with many others and exchange their energies. For example, the 
electron moves from one eigen-state to another due to scattering 
from other electron or lattice vibrations. The phase of the electron 
is destroyed by such dynamical interactions and the distance over 
which an electron maintains its phase memory is called the phase 
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coherence length. For the phase relaxation time τφ determined by 
inelastic scattering, the phase coherence length is given by 

τ
τ

τ φ
φφ == DL           (2) 

where D is the diffusion coefficient. Eq.(2) is valid for diffusive 
regime. In the diffusive regime the electrons make random walk on 
a scale larger than the mean free path. 

The phase coherence length Lφ in the ballistic regime is given by: 

φφ τFv≈L              (3) 

The ballistic regime is characterized as the system dimension is 
smaller than the mean free path. 

       Rapid progress in nano-scale fabrication technology 
(nanotechnology) has enabled us to make various types of semiconductor 
devices using quantum dots. Quantum dots are small regions defined by 
tailor-made confining potentials in semiconductor materials, in which the 
number of electrons can vary between one and several hundred and 
whose size is comparable to the Fermi wavelength of the electrons.  

Two-Dimensional Electron Gas (2DEG) and Quantum Dots: Devices 

fabricated from semiconductor 2DEGs enable the direct manipulation and 

control of electron wave functions. This is due to both the large electronic 

wavelength, and more importantly, to a MOSFET-like structure in which 

metal gates situated directly above the 2DEG are able to deplete it. Fig.1 

shows a wide view of heterostructure, with both contacts to the 2DEG [2] 

and a depletion gate. Since the 2DEG is typically 50 to 200 nm below the 

surface of the crystal and gates, there is a lateral resolution limit on the 

ability to control and pattern the electron gas. In practice one can control 

the wave-function only to within a few wavelengths in a completely 

arbitrary way.  
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        A perspective quantum dot formed using depletion gates is 

shown in the bottom Fig.1 [6].  The 2DEG lies just under the surface. 

Two openings allow current to pass through the device is the fundamental 

means by which it is probed. In different regimes of operation, one can 

resolve information about energy, wave-function intensity, and aggregate 

trajectory interference with conductance measurements.  

 

Fig.1. Side and perspective view of gated quantum dot structure. 

Fig.2 shows the band structure which supports the 2DEG [2]. Starting at 

the wafer surface the GaAs cap passivates the surface from oxidation, the 

n-doped region provides carriers to occupy the quantum well, and the 

AlGaAs spacer keeps the donor sites away from the well, enhancing 

mobility. The 2DEG itself is defined by quantum well formed at the 

interface of the AlGaAs and the bulk GaAs. The 2DEG system created at 

this interface is very useful experimentally because, in addition to the 

large scale electron wavelength, GaAs and AlGaAs are almost perfectly 

lattice matched. As a result if the crystal is grown carefully, there are few 

of the normal interfacial defects due to lattice mismatch, and the mean 

free path can be over 100 microns, limited only by the presence of nearly 

dopants (donor impurities). It is convenient that AlxGa1-xAs has a simple 

band structure for mixture ratio x<0.4[6, 7], with a circular Fermi-
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surface. Thus, the quasiparticles in the 2DEG behave like electrons, with 

only an effective mass distribution [6, 7]. 

 

We begin by introducing what QDs are [6, 7]. QDs consist of nano-scale 
crystals from a special class of semiconductor materials, which are 
crystals, composed of chemical elements in the periodic groups II-VI, III-
V, or IV-IV. The size of QDs ranges from several to tens of nanometers 
in diameter, which is about 10–100 atoms. A QD can contain from a 
single electron to several thousand electrons since the size of the quantum 
dot is designable. QDs are fabricated in semiconductor material in such a 
way that the free motion of the electrons is trapped in a quasi-zero-
dimensional “dot.” Because of the strong confinement imposed in all 
three spatial dimensions, QDs behave similarly to atoms and are often 
referred to as artificial atoms. When a free electron is confined by a 
potential barrier, its continuous spectrum becomes discretized. In 
particular, the gap between two neighboring energy levels increases as 
the length where the free electron moves decreases. A similar thing 
happens in solid state. If the motion of electrons in the conduction band 
or that of the hole in the valence band is limited in a small region with a 
scale such as the de Broglie wavelength or a phase-coherence length,  
then the conduction band or the valence band is split into subbands or 
discrete levels depending on the dimensionality of the confined structure, 
such is the case when a material with a lower bandgap is confined within 
a material with a higher bandgap. More efficient recombination of 
electron-hole pairs can be achieved by incorporation of a thin layer of a 

 

Surface of wafer

Location of 2D 
electron gas

n-doped AlGaAs 

GaAs 
cap 

AlGaAs 
Spacer

(undoped)

Fermi Energy 

GaAs

+ 
+ + + + + + + + + + +

Fig. 2. Band diagram of a GaAs/AlGaAs heterostructure created to support a 
high -mobility two -dimensional electron gas. 

                                                312

vic
Rectangle



 

 

6 

semiconductor material, with a smaller energy gap than the cladding 
layers, to form a double heterostructure. As the active layer thickness in a 
double heterostructure becomes close to the de Broglie wavelength  or the 
Bohr exciton radius for lower dimensional structures, and as the motion 
of the electron is restricted within such a very small regime, energy 
quantization or momentum quantization is observed and quantum effects 
become apparent. Therefore, the electron states are not continuous but 
discrete. This phenomenon is known as the size quantization effect.  
There are two approaches to fabricate nano-scale QDs [8]: top-down and 
bottom-up. Semiconductor processing technologies, such as metal organic 
chemical vapor deposition, molecular beam epitaxy and e-beam 
lithography, etc. are used in the top-down approach. Surface and colloid 
chemistry such as self-assembly, vapor liquid- solid techniques are used 
in the bottom-up approach. 
       Quantum dots are suitable devices to study the interplay of classical 

charging effects and quantum confinement. These quantum dots are 

defined in a 2DEG formed within a heterostructure of the semiconductor 

materials. The 2DEG has a high electron mobility and low electron 

density [6, 7, 8, 9]. The low electron density results in a large Fermi-

wavelength, and a large screening length, enabling to vary the 2DEG 

density with an electric field. Lithographically defined semiconductor 

quantum dots have the shape of a disk with a diameter as small as 50-100 

nm, becoming of the same order of magnitude as the Fermi-wavelength. 

By attaching current and voltage probes to a quantum dot, it is possible to 

measure its electronic properties.  

         In the following discussion, two main important assumptions are 

made. First, the coulomb interactions among electrons in the dot, and 

between electrons in the dot and those in the environment are 

parameterized by a single, constant capacitance, C. This capacitance can 

be thought of as the sum of the capacitance between the dot and left lead 

(source), Cℓ, the right lead (drain), Cr, and the gate. Cg,:   

C = Cℓ + Cg + Cr. 
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Second, the discrete energy spectrum can be described independently 

of the number of electrons on the dot. 

  Using these assumptions, known as the constant interaction model 

[6, 7], the total energy of an N-electron quantum dot with the source-

drain voltage, V, applied to the left lead, and the right lead grounded, is 

given by [6, 7].  

( )
)(

2
][

)(
1

2
BE

C
VCVCNNe

NU
N

n
n

ggo ∑+
++−−

=
=

        (4) 

where e−  is the electron charge and oN  is the number of electrons in the 

dot at zero gate voltage, which compensates the positive background 

charge originating from the donors in the heterostructure. The term 

VC and  ggVC  can change continuously and represent the charge on the 

quantum dot that is induced by the bias voltage through the capacitance, 

C  and by the gate voltage, gC ,. The term { )(
1

BE
N

n
n∑

=
} is a sum over the 

occupied single particle energy levels )(BEn , which are separated by an 

energy 

1−−=∆ nnn EEE                  (5) 

The energy levels )(BEn  are measured from the bottom of the conduction 

band and depend on the characteristics of the confinement electron 

potential. Note that, within the constant interaction model, only these 

single-particle states depend on magnetic field, B,.  

 The minimum energy for adding Nth electron to the quantum dot is 

by definition the electrochemical potential of the dot [6]: 
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dot

EVCVC
e

EENN

NUNUN

++−−−=

−−≡µ
   (6) 

where Ec = e2/2C is the charging energy. The first two terms describe the 

electrostatic contribution, e− ΦN with ΦN the electrostatic potential of the 

Nth electron dot. The last term, EN, represents the chemical contribution. 

Hence, µdot(N) can be expressed as: 

),()( NeN chNdot
µµ +Φ−=          (7) 

Electron transport through the quantum dot is possible when 
dot

µ lies 

between µℓ and µr of the leads, that is 

,rdot µµµ ≥≥                (8) 

With Fig.(3), we have 

rVe µµ −=−                   (9) 

The electrochemical potential for adding the next electron µdot(N+1), is 

separated from µdot(N) by the addition energy, Ec +  ∆E, which is higher 

than µ so that the (N+1)th electron can not enter the dot. In this 

configuration the number of the electrons on the quantum dot, N, is fixed 

and transport through the dot is blocked (Coulomb Blockade) [10](see 

Fig. (3)). The electrostatic potential of the quantum dot is NeΦ− . The 

addition of the (N+1)th electron is allowed, since µdot(N+1) lies within the 

applied bias voltage. In this configuration the number of electrons on the 

quantum dot alternates between N and N+1 resulting electron transport 

through the dot.  
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In the linear transport regime (V~0), the Nth Coulomb peak is a 

direct measure of the lowest possible energy state of the N-electron 

quantum dot, i.e., the ground state electrochemical potential. 

 

 

 

The change in electrochemical potential when the fixed voltages an 

electron is added to the dot, is called the addition energy and is given by: 

.
)1()(2)1(

)()1()(

EE
NUNUNU

NNN

c

dotdotdot

∆+=
−+−+=

−+=∆ µµµ
           (10) 

The addition energy consists of a purely electrostatic part, the charging 

energy, Ec, and the energy spacing between two discrete quantum levels, 

∆E. Note that in the case those two electrons are added to the same (spin) 

degenerate level. 

 

µl µdot(N+1) µr 

-|e|V
   -|e|ΦN

-|e|ΦN+1

(b)N→N+1→N→N+1→…
… 

-|e|ΦN 

µdot(N+1) 

µdot(N) 

E
c
+ ∆E µl 

µr

-|e|V 

(a) Coulomb blockade 

Fig. (3) Schematic diagram of the potential landscape of a quantum dot. 

E c 
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  An electron tunneling onto the dot leads to an increase of the 

electrostatic energy by the charging energy Ec= e2/2C. The charging 

energy becomes important when it exceeds the thermal energy, kBT, and 

when the barriers are sufficiently opaque such that the electrons are 

located either in the reservoirs or in the dot.  

Single Electron Devices: The necessary nanofabrication techniques have 

become available during recent years, and have made possible a new field 

of mesoscopic physics, single electronics [11, 12]. Recent developments 

in nanotechnology allow us to control and measure single electron 

transport very accurately. An electron pump device, which carries exactly 

one electron during one cycle of voltage modulation, is considered a 

possible current standard with extremely high accuracy. A single electron 

device has extremely high charge sensitivity (about10-5electrons/ Hz ) a 

small quantum dot. This device would detect individual electron transport 

of a current on the order of a few nA.  So electron transport through a 

such quantum dot, known as single electron tunneling. An electron that 

has entered the quantum dot leaves it before another electron is allowed 

to enter.  

Coulomb Blockade and Single Electron Tunneling: 

 Let us consider a quantum dot connected to the source and drain 

electrodes via tunneling barriers and connected to a gate electrode with 

small capacitor [6, 13] (see Fig.(4)).   
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Fig.(5) 
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Fig. (4)
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Assuming zero bias voltage is applied between the source and 

drain electrodes, VSD = 0. The total energy U (N) of the system is given 

by Eq. (4), which changes with Vg as shown in Fig. (5), the number of 

electrons, N, is determined to minimize the total energy and therefore 

becomes a well defined integer. The energy gap to neighbor charge states 

can be maximized to (e2/2C), for instance, at Vg = Vg0. When excitation 

energies, such as thermal energy, are much smaller than this energy, an 

electron can neither enter nor leave the quantum dot. Therefore, transport 

through the quantum dot is blocked (Coulomb blockade). The energy gap 

can be made zero by adjusting the gate voltage at Vg =Vg1 (see Fig.(5)), 

where n can fluctuate between N0 and N0+1 only by one, but not more 

than one. This means that electrons tunnel trough the quantum dot one by 

one. This single electron tunneling scheme is maintained unless the 

excitation energy exceeds the charging energy. The Coulomb blockade 

and single electron tunneling appear alternately by sweeping the gate 

voltage with a period given by e/Cg (Coulomb blockade oscillation). 

When the source-drain, Vsd, is applied, the Coulomb blockade region 

shrinks and single electron tunneling expands as shown in the charging 

diagram of Fig.(5d). The maximum width of a Coulomb blockade 

diamond region is given by Ec/e in the Vsd direction and e/Cg in the Vg 

direction. The Coulomb blockade and single electrons in the dot, N, can 

be controlled by changing Vsd or Vg.   

Radio Frequency Single‐Electron Transistor(RF‐SET): It works as 

a wide-band and highly sensitive electrometer, is a SET combined with 

an impedance transformer (LC resonator)[13]. The capacitance of the 

problem can be cancelled by an external inductor located close to the SET 

device, if it is operated at the resonant frequency, fres. The maximum 
frequency of the RF-SET is approximately given by fres/QLC, where QLC is 
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the quality factor of the resonator. The external LC resonator placed close 

to an SET device has a typical bandwidth of about 100MHz with 

fres~1GHz and QLC ~10. Better performance (higher fres and larger QLC) 

may be obtained using an on-chip resonator. The conductance of the SET 

is measured by the reflection or the transmission of the rf-carrier signal at 

fres [14, 15]. The transmission amplitude or the small change in the 

reflected signal is, in principle, proportional to the admittance of the SET 

[15]. The sensitivity of a charge respective to the quantum dot can be 

about 10-5. e/ Hz , which is usually restricted by the noise of the high 

frequency amplifier. This means that the intrinsic noise of the RF-SET 

(shot noise) is very low at high frequency (>10 KHz), which it suffers 

from 1/f noise at low frequency. Theoretically, the noise of the RF-SET is 

expected to be very close to that of the conventional SET [16]. The 

charge sensitivity can be as low as 2*10-6e/ Hz  for an optimized device 

using practical superconductivity quantum dot and better sensitivity is 

expected by using a smaller quantum dot [13].  

Applications of the Single-Electron Transistor(SET): Because of its 

small size, low energy consumption and high sensitivity, SET has found 

many applications in many areas, for example: 

(a) Single electron memory [17]. 

(b)  High sensitivity electrometer [18, 19]. 

(c) Microwave detection [20, 21]. 

(d) Quantum information processing [22]. 

 Photon Assisted Tunneling(PAT): When the modulation frequency 

exceeds the tunneling rate, a quantum mechanical description of the 

system is required in order to understand the non-adiabatic transport 

characteristics. The Tien-Gordon theory [23] explains very well the I-V 

characteristics of the Josephson junctions and other tunneling devices like 
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resonant tunneling structures and superlattices in the presence of 

microwaves, millimeter waves, THz waves, and far infrared light [24, 25, 

26, 27]. A microwave, with photon energy of 4-20µeV is often used as a 

coherent photon source. Application of a microwave on a gate or source-

drain electrodes induces photon assisted tunneling on the two tunneling 

barriers. The photon tunneling from the continuum density of states in the 

electrode to a discrete energy state in quantum dot produces a pumping 

current. A broad pumping current with a width corresponding to the 

photon energy appears in the vicinity of the SET current peak. When a 

microwave is properly applied to modify the potential of the quantum dot, 

coherent tunneling through one of the photon side-bands is expected. An 

electron can tunnel into the dot by absorbing one photon through one 

barrier, and simultaneous by tunnel out from the quantum dot by emitting 

one photon through the other barrier. Distinct resonant PAT current peaks 

have been observed [28], indicating a coherent PAT process. In this case, 

the PAT current peaks are separated from the SET current peak by the 

photon energy. Furthermore, when the photon energy is made higher than 

the energy spacing in the quantum dot, one can excite inner electron in 

the quantum dot to the reservoir. When a sinusoidal voltage, 

V(t)=V0sin(ω t), is applied across a tunneling barrier, the wave function 

can be written as a superposition of a series of photon’s sidebands as: 

∑ −Ψ=Ψ
∞

−∞=n
n tinJtxtx ),exp()(),(),( 0 ωα        (11) 

where Jn(α) is the nth order Bessel function of the first kind, α≡eV0/( )ω   

is the normalized modulation amplitude, and of the first kind, ),(0 txΨ is 

the original stationary wave function in the absence of sinusoidal voltage. 

The energies of the photon sidebands are separated by the photon energy 
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ћω, and the amplitude of each wave function is proportional to Jn(α). 

Therefore, the photon-assisted tunneling can be considered as a normal 

tunneling process to one of the photon side bands. The effective tunneling 

rate to the nth sideband state is given by: 

),()()( 2 ωα nEJE nn ±Γ=Γ               (12) 

where Γ is the original tunneling rate in the absence of modulation. The 

subscript n = ±1,±2,±3,…….corresponds to the tunneling with n > 0 

photons absorption and emission for n < 0.  

        We shall now shed some light on only one of the applications of 

single electron transistor (SET), which is single photon detector in 

microwave range.  

Single-Photon Detector in Microwave Range: The sub-millimeter wave 

through the far-infrared region of the electromagnetic spectrum contains a 

variety of important spectra of various types of matter, such as the energy 

levels of semiconductor nanostructures, and the energy gaps of 

superconductors. An SET can sense a single-photon if the photon is 

converted to a charge through an appropriate excitation mechanism. The 

SET consists of double quantum dots. It is fabricated on a high mobility 

modulation doped GaAs/AlGaAs heterostructure with a 2DEG.Metal 

gates are deposited on top of the crystal. Such SET can detect a single 

photon in the sub-millimeter wave range ( ν= 500 ±90 GHz)[29]. 

Quantum Dot Turnstile: Because of the Coulomb blockade the current 

through a quantum dot is limited to one electron at a time. This property 

can be exploited to create an electron turnstile, a device which passes an 

electron in every cycle of an external driving field. Such a device was 

first realized by Geerligs and Co-workers [30] using a series of metal-
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dots. Electrons are moved one at a time through the quantum dot by two 

sinusoidal signals applied to the two tunneling barriers, 180 degrees out 

of phase. The rf-frequency of the applied signal, f= 10MHz, is much 

slower than the tunneling rate of electrons on and off the dot when the 

barriers are low. The driving signal is therefore in adiabatic limit in which 

the state of the dot is fully determined by the electrochemical potential on 

the side of the low barrier.  

 

Fig.(6) Schematic potential landscape for a quantum‐dot turnstile 

As depicted in (Fig (6)), in one cycle exactly one electron is transferred 

across the quantum dot: the cycle begins with N electrons on the dot. The 

barrier to the left lead is then lowered allowing an additional electron to 

enter the dot. The barrier to the left is then raised, providing the extra 

electron from escaping back to the left. The right barrier is then lowered 

and the electron escapes into the right lead. Raising the barrier to the right 

lead completes the cycle and returns the quantum dot to its initial 

configuration with N-electrons. By applying a larger source-drain bias to 
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increase the number of extra electrons allowed on the dot when the left 

barrier is lowered, two electrons, or three electrons, and so on, can be 

transferred in each cycle. As a result the time averaged current through 

the dot is just an integer times the signal electron charge times the driving 

frequency, I=nef, leads to a current quantization [31]. Each plateau 

corresponds to an integer number of electrons passing through the dot in 

each cycle.  

           The influence of time-varying fields on the transport through a 
mesoscopic device has been investigated [32a,b]. This mesoscopic device 
is modeled as a quantum dot coupled to superconducting reservoirs via 
quantum point contact. The effect of a magnetic field and the Andreev 
reflection process were taken into account. The conductance was deduced 
by using Landuaer–Buttiker equation. The main conclusion from these 
results is that the present mesoscopic device could be operated as a 
single-electron transistor in which the transfer of single electrons through 
the quantum dot might be controlled by applying a gate voltage. The 
results [32a,b] have valuable potential applications in the field of 
nanotechnology, e.g., photo-electron devices. 
 
            Also, the conductance and the time-averaged current of a quantum 
dot turnstile device [33,34] are deduced using the Landauer-Buttiker 
formula. The model proposed is: a quantum dot coupled to two 
superconducting reservoirs via two asymmetric tunnel barriers. These 
tunnel barriers are modulated by external radio frequency (rf) signals. 
The heights of the barriers are different and each of width, a, (see Fig.7). 
This model of mesoscopic device gives us some insight into how the 
Coulomb interaction and exchange, combined with an appropriate time 
dependent field, affect the success of the turnstile.  

 
Fig.(7) 
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The proposed turnstile device might be useful in future quantum 
information applications and other applications in the field of 
nanoelectronics.  
Solar Cells and Photovoltaic: Photovoltaic solar cells are used to 
directly convert light energy into electricity, and have been available for 
many years; major applications like solar panels on satellites made them 
famous, and smaller uses like calculator or watch energy supply. They are 
based on the photovoltaic effect, which allows the conversion of light 
(photons) to electricity (electrons).  Photovoltaic solar cells already have 
a large number of applications in addition to the potential for many more, 
particularly in the energy, communications, military, and space industries.  
Quantum dot (QD) solar cells have the potential to increase the maximum 
attainable thermodynamic conversion efficiency of solar photon 
conversion up to about 66% by utilizing hot photogenerated carriers to 
produce higher photovoltages or higher photocurrents.  In recent years it 
has been proposed [35, 36, 37, 38, 39, 40], and experimentally verified in 
some cases [41], that the relaxation dynamics of photogenerated carriers 
may be markedly affected by quantization effects in the semiconductor 
(i.e., in semiconductor quantum wells, quantum wires, quantum dots, 
superlattices, and nanostructures). That is, when the carriers in the 
semiconductor are confined by potential barriers to regions of space that 
are smaller than or comparable to their de Broglie wavelength or to the 
Bohr radius of excitons in the semiconductor bulk, the hot-carrier cooling 
rates may be dramatically reduced, and the rate of impact ionization could 
become competitive with the rate of carrier cooling [41]. 
 Quantum Dot Solar Cell Configurations: Photoelectrodes composed 
of quantum dot arrays. In this configuration, the QDs are formed into an 
ordered 3-D array with inter-QD spacing sufficiently small such that 
strong electronic coupling occurs and minibands are formed to allow 
long-range electron transport. The system is a 3-D analog to a 1-D 
superlattice and the miniband structures formed therein [42]. The 
delocalized quantized 3-D miniband states could be expected to slow the 
carrier cooling and permit the transport and collection of hot carriers to 
produce a higher photopotential in a PV cell or in a photoelectrochemical 
cell in which the 3-D QD array is the photoelectrode [43]. Also, impact 
ionization might be expected to occur in the QD arrays, enhancing the 
photocurrent. However, hot-electron transport/collection and impact 
ionization cannot occur simultaneously; they are mutually exclusive and 
only one of these processes can be present in a given system. 
Recently several design schemes have been proposed to increase the 
power conversion efficiency of photovoltaic devices. By using two or 
more p-n solar cell junctions, tandem cells made of different 
semiconductors; a multi-heterojunction design yields a better match to the 
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solar spectrum than a single-junction cell and may provide the efficiency 
of conversion greater than 50%. In fact, two-junction solar cells have 
been fabricated using GaAs and InP semiconductor allows which 
provides the highest power conversion efficiency [44]. Taking into 
account the recent advances in different optoelectronic devices[44], it 
would also seems appropriate to consider whether low dimensional (such 
as quantum dot) p-i-n structure could provide a new approach to the high 
efficiency solar cell problem.  A theoretical model is presented for a 
practical p-i-n QD solar cell [44] built on the base of the self-organized 
InAs/GaAs system. The effective band gap for absorption Eeff will be 
determined by the lowest confined states of QD s. High internal quantum 
efficiency for the collection of carriers' photoexcited in the QD s can 
occur as a result of channeling the electrons and holes through the 
coupling between aligned QD s. This effect allows one to separate and 
inject the generated electrons and holes in QD s, into an adjacent p- and 
n-regions with high efficiency. By changing the deposition mode one can 
change the size and shape of the InAs islands. Typically the dot size is 
around 10 nm and dot area densities range between 2.1010 cm-2 and 1011 

cm-2. The dot layers are separated by 5÷10 nm barrier layer and the real 
dot density in the active i-region can be ~1017 cm-3.  

Quantum Dots and Tunable Bandgap The first advantage derived from 
the use of quantum dots stems from their tunable bandgap, which allows 
evident to control the wavelength at which they will absorb or emit 
radiation. It is established that the greater the bandgap of a solar cell 
semiconductor, the greater the output voltage provided towards electricity 
generation. On the other hand, it is established that a lower bandgap 
results in a higher output of current for electricity generation, at the 
expense of a lower output voltage. Both high currents and voltages are 
desired for efficient solar-electric conversion. Thus, there exists an 
optimum bandgap that corresponds to the highest possible solar-electric 
energy conversion. Traditional semiconductor devices have bandgaps that 
are not altered cheaply or easily, and cannot absorb preferentially in one 
region of the spectrum. Quantum dots, on the other hand, can be designed 
specifically to absorb preferentially in a part of the spectrum specified by 
our desire. Therefore, quantum dots provide a much more exact method 
of matching the bandgap of the solar cell material to the optimum 
bandgap for energy conversion, resulting in greater efficiencies. 

 

Spintronics:  Spintronics is spin-based electronics with a spin degree of 
freedom added to the conventional charge-based electronic devices. 
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Electrons have a half spin angular momentum, that is, there are two states 
of electron spin: spin-up and spin-down. Spintronics distinguishes spin-
up electron current from spin-down electron current while charge-based 
electronics does not. Therefore, electron spin can be made to carry 
information in spintronics. Spintronics is a type of device that merges 
electronics, photonics and magnetism. It is currently developing at a rapid 
pace. Most recently, in particular after the advent of magnetic 
semiconductors [45, 46], a new level of control of the spin-dynamics has 
been achieved. Very long spin lifetime [47] and coherence [48] in 
semiconductors, spin coherence transport across interfaces [49], 
manipulation of both electronic and nuclear spins over fast time scales 
[50], and have been all already demonstrated. These phenomena, that 
collectively take the name of “spintronics” or “spin electronics” [51, 52, 
53] open a new avenue to the next generation of electronic devices where 
the spin of an electron can be used both for logic and memory purposes. 
The advantages of these new devices would be nonvolatility, increased 
data processing speed, decreased electrical power consumption, and 
increased integration densities compared with conventional 
semiconductor devices [51]. The ultimate target is to go beyond ordinary 
binary logic and use the spin entanglement for new quantum computing 
strategies [54]. This will probably require the control of the spin 
dynamics on a single spin scale, a remote task that will merge spintronics 
with the rapidly evolving field of molecular electronics [55]. The 
magnetic materials principally used in spin electronics are soft 
ferromagnetic alloys of the late 3d metals. These serve as sources and 
conduction channels for the spin-polarized electrons, as well as magnetic 
flux paths and shields. Most progress has been made with sensors, 
ranging from simple position sensors and elements for nondestructive 
testing of ferrous metals to sophisticated miniature sensor elements in 
read heads for digital tape and disc recording where requirements are 
very demanding; high permeability is required with a sharp low-field 
switching response that extends to frequencies in the GHz range.  
Tunneling magnetoresistance (TMR) in magnetic tunnel junctions (MTJs) 
has attracted much attention due to the possibility of its application in 
magnetic memories, magnetic field sensors and quantum computing 
devices [56, 57]. In a common MTJ, the TMR between two ferromagnetic 
electrodes separated by an insulator (superconductor or semiconductor) 
layer depends on the spin polarization of the ferromagnetic electrodes and 
spin dependent tunneling rates [45, 58].  
Ferromagnetic Semiconductors: The semiconductor currently used in 
integrated circuits, transistors and lasers, such as Si and GaAs are 
nonmagnetic in which the carrier energy is almost independent of the spin 
direction. However, in nanostructures where a device approaches the 
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limits of miniaturization, exchange interactions have more pronounced 
effects and the presence of spin of electrons becomes more tangible. In 
magnetic semiconductors, which have both properties of magnetic 
materials and semiconductors can give rise to pronounced spin-related 
phenomena. Coexistence of ferromagnetism and semiconducting 
properties in diluted magnetic semiconductors (DMSs) has opened the 
prospect of developing devices which make it possible to combine the 
information processing and data storage in the same material [52]. In the 
magnetic semiconductors, the exchange interaction between the itinerant 
carriers in the semiconducting band and the localized spins on magnetic 
impurity ions leads to spectacular magneto-optical effects, such as giant 
Faraday rotation or Zeeman splitting. Among different types of DMSs, 
Ga1-x MnxAs is one of the most suitable materials for use in spintronic 
devices. In this kind of materials, a fraction of the group-III sublattice is 
replaced at random by Mn ions which act as acceptors. According to the 
strong Hund coupling, the five 3d electrons in a Mn2+ ion give rise to a 
localized magnetic moment. The DMSs based on III-V semiconductors, 
like Ga1-xMnxAs compounds, exhibit ferromagnetism with Curie 
temperature as high as 110 K for Mn doping of around x=0.053. The 
origin of ferromagnetism in the GaAs-based DMSs can be demonstrated 
through the p-d exchange coupling between the itinerant holes in the 
valence band of GaAs and the spin of magnetic impurities [52]. 
Quantum Computing using Spins in Quantum Dots: A number of 
proposals have been made for quantum computers using a single-electron 
spin state in quantum dots as quantum bits [57], since it offers a two –
level system close to the ideal case and it has relatively long coherence 
time. To distinguish one quantum bit to be operated on from other 
quantum bit, the resonant frequency is shifted by, for example, applying a 
local magnetic field and this frequency is used for operation on the 
quantum bit. In a quantum computer proposed by Loss et al.[52], instead 
of subjecting the system to external electromagnetic waves, the temporal 
development of local exchange interactions between the target quantum 
dot and ferromagnetic materials is introduced by a gate allowing the spin 
to be manipulated. The use of semiconductor technology is thus 
advantageous in the way that it allows spin to be controlled electrically.  
Recently, the authors [59] proposed a spintronic device in which a 
quantum dot is embedded in one arm of Aharonov-Casher ring. The 
results show that the spintronic device can be exploited for quantum 
information processing. 
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§0. Introduction. We will show four original methods, published during the past years, 
that give applications in Digital, Discrete and Combinatorial Methods in an Euclidean or 
Riemannian context: [Boju2007_MontrealTech Press], [BojFun2007_Springer],   
[BojuFuna2007 –Asymptotics], [BojuFunar1996], ], [BojuFunar1993], [Boju1986], 
[Boju1985], [Boju1982] 
 
0.1. {About §1}. §1. DIGITAL GEOMETRY and DISCRETE/COMBINATORIAL 
METHODS: Applications & New Energy. The Stability Threshold and the Stability 
of a Digital-Energetic Level. Cap-Polynomial of Digital Spaces. 
Inverse Quotient Curvature Coefficients Method, Separation supposition and the 
analogy with Holcman-Pugh Kick Method; Holcman-Pugh Compactness 
Riemannian Boundary; the Trans-n-Riemannian Boundary. The Asymptotic-
IQCC-dimension. Super-Fractals. Riemannian Spaces. 
 
Leonhard Euler posed the following problem: how to find a path for a knight (thus, a 
motion (1; 2) in the digital plan) that touches every square exactly once in succession.  
Also, in [Boju1985] there are many problems of Geometric Combinatorics in a Digital 
Geometric context, including the knight problem.  
In §1, we are interested in general motions (L; K), L, K naturals = 0, 1, 2, ..., 2L + 1 ≤  K, 
in the sqCells-Digital-Plane (Square Cells Digital Plane) or in a HexCells-Digital-Plane 
(Hexagonal Cells Digital Plane). This is connected to the concept of Compartmented 
Energetic Bank/Generator Unit – CEBGU (see: [Boju2007, MontrealTech Press]).  
In [Boju2007, MontrealTech Press] are studied the intrinsic and extrinsic topological 
structures of the hyperspheres and disks, the Iso-Stable Digital Spaces, the general 
motions (1-L; 2-L; … ; w-L) in the w-hypercubicCells-Digital w-Space (w-hypercubic 
Cells Digital w-dimensional Space), as well as the asymptotic dimension and the 
properties of the multi-type-CEBGU digital structures. In particular, the caracteristics of 
the super-fractals are found. In the present paper we talk about authentic super-fractals, 
i.e. fractals of dimension of a complex caracter; namely:  1. it is a like-polynomial 
dimension; 2. the asymptotic dimension in the Digital Plane is  > 1.  
Inverse Quotient Curvature Coefficients Method, Separation supposition and the 
Holcman-Pugh Kick Method: the Inverse Quotient Curvature Coefficients Method leads 
to a Separation supposition (see [Boju2007, Montrealtech Press]) and  
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to the Trans-n-Riemannian Boundary whose value is 2π , for n=2. The Holcman-Pugh 
Kick Method is surprising because both the “finite shell” and “geometry at infinity” 
concepts appears in the present chapter, in a context completely opposite to the 
Riemannian one. 
Furthermore, some theoretic properties as well as experimental results evaluated 
through C++, TPascal and Python programs are presented.   

…………………………………..……………. 
 
0.2. { About §2}. Juxtaposition Combinatorial Measures and Juxtaposition Fractals. 
Applications in Intrinsic Measure Theory. 
 
In this paragraph, we show similar discrete methods to the ones of discrete digital spaces, 
but instead of covering the figure with a grid, we make use of the method of (exterior or 
interior) juxtaposition. This method was introduced by V. B. in [Boju1982] and was cited 
in [BojuFunar1993]. In this way, we obtain the JCM. (Juxtaposition Combinatorial 
Measure) and JF (Juxtaposition Fractals). The ulterior results on this subject were 
published and cited in: 
[BojuFunar2007_Springer], [BojuFunar2007-Asymptotics], [Börö2004] 

…………………………………..……………. 
 
0.3. { About §3} Riemannian Regression Submanifolds. Hamilton-Jacobi reduced 
equation, Discrete VTF Methods and D. Holcman-C. C. Pugh Kick Method. Holcman-Pugh 
Compactness Riemannian Boundary. Applications in Nanotechnologies. 
 
In this paragraph, the original methods of  VTF = Vector Type Functions and  
Riemannian Regression Submanifolds are presented. A special Hamilton-Jacobi reduced equation 
is studied. 
The fundamental results (Kick Method and Holcman-Pugh Compactness Riemannian Boundary) 
of  D. Holcman and C.C. Pugh  are presented and commented. 

…………………………………..……………. 
 
0.4. { About §4}. C++, TPascal and Python Programming Languages Applications.  
 
Some applications are mentioned. 
Then, the C++, TPascal and Python Programming Languages Applications are presented. 

 
^^^^^^^^^^^^^^^^^^^^^^ 

 
 
§1. DIGITAL GEOMETRY and DISCRETE/COMBINATORIAL METHODS: 
Applications & New Energy. The Stability Threshold and the Stability of a Digital-
Energetic Level. Cap-Polynomial of Digital Spaces. 
Inverse Quotient Curvature Coefficients Method, Separation supposition; the 
analogy with Holcman-Pugh Kick Method and Holcman-Pugh Compactness 
Riemannian Boundary. Trans-n-Riemannian Boundary. The Asymptotic-IQCC-
dimension. Super-Fractals. Riemannian Spaces. 
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§§1.1. Applications & New Energy. Compartmented Energetic Bank/Generator 
Unit (CEBGU). 
 
A raster image (a bitmap) represents a rectangular grid of points of color or 
Pixels; a heightmap is the result of a RLE on a voxel grid, and a sampling is a discretising 
of a continuous signal. 
Thus, it is natural that by discretising the space and the time, we also discretise the 
processes and the phenomena and implicitly we also discretise the subjacent energy 
vehiculated during their development. There is some similitude between our methods 
(multi-type-CEBGU) and those that are used in [Kitsiosy, Kota, Mitt, Ooiy, Soria, You, 
2006] – see below §§1.7. 
 
The present model represents a quantified space where the topology of the spaces (L; K, 
HexCells-Digital-Plane) and (L; K; sqCells-Digital-Plane) is one "totally-non-adjacent 
FETVWP" (FVWPET = from the viewpoint of the Euclidean topology) for K, L > 0. For 
instance, in the digital metric cases Hex or sq and for stable r, the r-Energetic Level and  
the (r+1)-Energetic Level are generally FVWPET-mani-linked. 
Notice the complexity of the topological structure of a r- Energetic Level if  FVWPET-
examined. Moreover, the r- Energetic Level presents itself in two completely different 
states in function of two different topological approaches: the intrinsic topological 
approach and the environmental one. Attention: their intrinsic topology is completely 
different from their environmentally induced one. For instance, the intrinsic connexity 
does not coincide with the induced one by the ambiant Euclidean or Riemannian space in 
which the (L;K)-digital space is represented. Precisely, the "TNA-FVWPET" (TNA = 
totally-non-adjacent) one favours interesting applications of the (L;K) spaces in the 
modelling of practical problems of energy engendering/stockage in a CEBGU 
(Compartmented Energetic Bank/Generator Unit). In fact, theoretically there are 
energetic processes where the energy is engendered/stored in (micro, macro or mega) 
quanta, but the stabilization of each stored energy quantum happens in a temporal 
quantum dt. 
 
An engendering/stockage in a CEBGU made by an (L; K) process, that realizes a spatial 
discretising and a temporal one dt’, can perturb the engendering/stockage of the energy if 
the values dt and dt’ are not harmonized. Thus, this implies an optimal choice  
of the (L; K) values.  
The assignation (similarly to chamfer modeling [Borg84, 86], [Rose66], [Thie1994]; the 
chamfer distances are based on a ponderation mask) of some physical/economical values 
(for instance the cost price), in function of a stable energetic level r, will confer to the 
optimal modeling an increased degree of complexity. Even in this case, the non-ponderal 
theoretical models (L; K, HexCells-Digital Plane) and (L; K; sqCells-Digital Plane) 
remain fundamental because they reveal surprising qualitative phenomena as: 
-the existence of a stability threshold; 
-the existence of iso-stable (L; K)-spaces; 
-a concrete class of dimensions – the asymptotic dimension of the  
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multi-type (L; K, HexCells-Digital Plane) and (L; K; sqCells-Digital Plane); moreover, 
we can say that we asymptotically deal with Super-Fractals.  
 
Remark.1.1. The phenomenon of the Stability of the Digital-Energetic Level allows an 
optimal and regular tilling of the space from an VWPET. 
 
We mention some papers where some types of energy, and sq-grids, 
hexagonal/hexahedral grids, polygonal-grids and topological-grids are used: 
 
-A cell by cell adaptive arbitrary Lagrangian Eulerian gas code. [Morr]  
 
-An adaptive multi-material arbitrary Lagrangian Eulerian algorithm for 
computational shock hydrodynamics, Swansea, 2002. [Barl2002] 
 
-Multi-Material ALE methods in unstructured grids. [PeerCarr2000] 
 
-An Arbitrary-Lagrangian-Eulerian code for polygonal mesh: ALE INC(ubator). [LoubShasLANL]. 
http://math.lanl.gov/Research/Highlights/PDF/alepoly.pdf). 
 
- L.G. Margolin, M.J. Shashkov – Second-order signpreserving 
conservative interpolation (remapping) on general grid. – Journal of Computational Physics, 184 (2003) 266-298. 
 
- P. Knupp – Hexaedral and tetrahedral mesh untangling. Engineering with Computers, 17 (2001) 261-268. 
 
- P. Vachal, M. Shashkov, R. Garimella– Untangling of 2D meshes in ALE simulations. – in review in Journal of 
Computational Physics. 
 
- E. J. Caramana and M. Shashkov – Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means 
of Lagarangian Subzonal Masses and Pressures. 
– Journal of Computational Physics, 142, pp. 521–561, (1998). 
 
- E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen – The Construction of Compatible Hydrodynamics 
Algorithms Utilizing Conservation of Total Energy. – Journal of Computational Physics, 146, pp. 227–262, (1998). 
 
- R. Loubere, M. Shashkov, A Subcell Remapping Method on Staggered Polygonal Grids for Arbitrary-Lagrangian-
Eulerian Methods, submitted to Journal of Computational Physics (2004), LAUR-04-6692 
 
- [Kitsiosy, Kota, Mitt, Ooiy, Soria, You, 2006] (see:  Figure 2. Topology of the modified    
  C-type grid. (a) block topology; (b) body-fitted airfoil grid; (c) ZNMF jet cavity). 
 
-DGCI-2006.pdf   Arithmetic Discrete Hyperspheres and Separating Capacity  
Christophe Fiorio and Jean-Luc Toutant, LIRMM - CNRS UMR 5506 - Universit de Montpellier II, 161 rue Ada - 
34392 Montpellier Cedex 5 - FRANCE 
Jennifer Morrell   j.m.morrell@rdg.ac.uk 
 

…………………………………..……………. 
 
§§1.2. f-Combinatorial-Algorithmic Metric (f-CAMetric) on Digital Spaces 
 
The Euclidean distance dist on the set N of naturals is  dist(n’, n”) = "' nn − . 
Let M be a countable set and  F : M →  N  a bijective function. 
 
The formula 
(1.2.1)  f(x, y) = dist(F(x), F(y))  is a distance on M. 
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Denominations. The distance f is named the One-one Combinatorial Distance induced by 
F  (f-OoCADistance, or even f-OoCAD)  and: 
- the space  (M, f) is said to be an f-OoCombinatorial Metric Space   
(f-OoCAM Space). 
   
This way suggests a generalization: 
  
1.2.2.1. f-CAD Criterion. A procedure Ŧ on a countable set M provides an  
f-Combinatorial-Algorithmic Distance under reasonable conditions (see M. Yamashita 
and T. Ibaraki. 1986. Distances defined by neighbourhood sequences. Pattern 
Recognition 19, 3, 237 – 246). 
We mention the practical mechanisme: 
-  Ŧ is an N-algorithme, i.e. a succession of multiple U-movements on M; that is to each 
i ∈  N corresponds a multiple U-movement from the  Ŧ (i)-cell (point of M) at U 
neighbouring “free” cells, which are “seized”. 
- [the exhaustion condition] the set M is completely exhausted (i.e., each cell is 
seizable). 

 
…………………………………..……………. 

 
 
§§1.3. Metric Structure of (L; K) Digital Spaces 
 
Let (1-L; 2-L; … ; w-L, w-hypercubicCells-Digital w-Space) be  
the semi-metric w-hypercubicCells-Digital w-Space generated by (1-L; 2-L; … ; w-L), 
where (i_L)  are the sequences of successive  cells parallels with the i-axis, and: 
- S(w-hypercubic; O, 1-L; 2-L; … ; w-L, w-Digital; r) = the r-hypersphere centered at O; 
- D(w-hypercubic; O, 1-L; 2-L; … ; w-L, w-Digital; r) = the r-disk centered at O. 
 
For w=2, L, K naturals = 0, 1, 2, ..., 2L + 1 ≤  K,  
let (L; K, HexCells-Digital Plane) be the semi-metric HexCells-Digital Plane generated 
by (L; K) and: 
- S(O, L; K; HexCells-Digital Plane; r) the r-Hex_sphere centered at O; 
- D(O, L; K; HexCells Digital Plane; r) the r-Hex_disk centered at O. 
 
For w=2, we have: 
- (L; K, 2-cubicCells-Digital 2-Space) is renoted by (L; K; sqCells-Digital Plane); 
- S(square; O, L; K; 2-Digital; r) = S(O, L; K; sqCells-Digital Plane; r), the r-sq_sphere 
centered at O; 
- D(square; O, L; K; 2-Digital; r) = D(O, L; K; sqCells-Digital Plane; r),  
the r-sq_disk centered at O. 
 
If O is the standard cell bottom-left corner being the origin of the digital grid-plane Z x Z, 
we agree to omit the letter O. 
 
In [Boju2007_MontrealTech Press], the general results are exposed.  
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Here are some particular results. 
 
§§§1.3.1. Non-Degeneracy Property 
 
THEOREM.1.3.1. Hex-Non-Degeneracy Property  
For 2L + 1 ≤  K and gcd(L; K) = 1, we have : 
(L; K; HexCells-Digital Plane) is a metric space iff  L + K ≠ 3m (i.e.: L + K = 3m + 1   
or   L + K = 3m + 2). 
Hint:  see 1.2.2.1. f-CAD Criterion and [ValB-CAB Hex-Procedure in the Digital 
Plane & the subsequent C-Program, © 2006 Valentin Boju & Antoniu Boju]. 
 
Denomination. Such a pair (L; K) is said to be Hex-nondegenerate. 
 
 
THEOREM.1.3.1. sq-Non-Degeneracy Property.  
For 2L + 1 ≤  K and gcd(L; K) = 1, we have : 
(L; K; sqCells-Digital Plane) is a metric space iff  (L=odd; K=even) or (L=even; F=odd), 
i.e.  L + K = odd. 
Hint:  see 1.2.2.1. f-CAD Criterion and [ValB-CAB sq-Procedure in the Digital Plane 
& the subsequent C-Program, © 2006 Valentin Boju & Antoniu Boju]. 
 
Denomination. Such a pair (L; K) is said to be sq-nondegenerate. 
 
 
§§§1.3.2.  
Hex-Stable Threshold   
Hex-Stability Formula 
sq-Stable Threshold  
sq-Stability Formula 
 
Let  (L; K) be Hex-nondegenerate and cap_S the capacity of the set S.  
 
(1.3.2. Hex-Stable Threshold). Then there is a  natural ŗ (if minimal, is named 
StabThresh(L; K, Hex)) such that: 
- for each  r ≥  ŗ ,  we have:  
 
(1.3.2. Hex-Stability Value).  cap_S(O, L; K; HexCells-Digital Plane; r+2) – 2 cap_S(O, 
L; K; HexCells-Digital Plane; r+1) + cap_S(O, L; K; HexCells-Digital Plane; r) =0 
i.e.  
cap_S(O, L; K; HexCells-Digital Plane; r+1) - cap_S(O, L; K; HexCells-Digital Plane; 
r)= const (L; K, Hex) 
Let    ř(L; K, Hex)  be the minimum ŗ  for which the formula (1.3.2. Hex-Stability Value) is 
true. 
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Denomination. ř(L, K, Hex) is named the Stable Threshold for the case (L; K, Hex) and 
is designated by StabThresh(L; K, Hex); the constant value   const (L; K, Hex)   is named 
the Stable Value in the case (L; K, Hex) and is designated by StabVal(L; K, Hex). 
The natural r is said to be (L; K, Hex)-superstable if  r  ≥   StabThresh(L; K, Hex).  
The natural r is said to be (L; K, sq)-superstable if  r  ≥   StabThresh(L; K, sq). 
 
Analogously, let  (L; K)  be sq-nondegenerate.  
 
(1.3.2. sq-Stable Threshold). Then there is a natural ŗ such that: 
- for each  r ≥  ŗ , we have:  
(1.3.2. sq-Stable Threshold).  cap_S(O, L; K; sqCells-Digital Plane; r+2) – 2 cap_S(O, L; 
K; sqCells-Digital Plane; r+1) + cap_S(O, L; K; sqCells-Digital Plane; r) =0, 
i.e. cap_S(O, L; K; sqCells-Digital Plane; r+1) - cap_S(O, L; K; sqCells-Digital Plane; 
r)= const (L; K, sq) 
  
Let    ř(L; K, sq)  be the min ŗ  for which the formula (1.3.2. sq-Stable Threshold) is true. 
Denomination. ř(L, K, sq) is named the Stable Threshold for the case (L; K, sq) and is 
designated by StabThresh(L; K, sq); the constant value   const (L; K, sq)   is named the 
Stable Value in the case (L; K, sq) and is designated by StabVal(L; K, sq). 
 
Property 1.3.2.A.1.  
1.3.2.A.1.1. For (L; K)  sq-nondegenerate,  we have ([Boju2007_MontrealTech Press]): 
 
(1.3.2.A.1.1. sq-nondegenerate-Stable Value Formula): 
  
           StabVal(L; K, sq) = 4(K 2  + 2LK - L 2 ) 
 
          (L; K)  sq-nondegenerate;  2L + 1 ≤  K 
 
1.3.2.A.1.2. If  (A; E) is  sq-degenerate, then we have ([Boju2007_MontrealTech 
Press]): 
 
(1.3.2.A.1.1. sq-degenerate-Stable Value Formula): 
  
 
           StabVal(A; E, sq) = 2(Ê 2  + 2 Â Ê - Â 2 ) 
 
                                   2 A + 1 ≤  E, 
 
        where: Â = A/D,   Ê = E/D,   D = gcd(A, E) 
 
 
 
1.3.2.B. Hex-Stability Formula 
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1.3.2.B.1.1. For (L; K)  Hex-nondegenerate,  we have ([Boju2007_MontrealTech 
Press]): 
 
(1.3.2.B.1.1. Hex- nondegenerate-Stable Value Formula): 
  
 
           StabVal(L; K, Hex) = 6(K 2  - L 2 ) 
 
(L; K)  Hex-nondegenerate;  2L + 1 ≤  K 
 
 
 
Also, there is a formula ([Boju2007_MontrealTech Press]) corresponding to the case (L; 
K)  Hex-degenerate .  
 
Remark. It is possible to have a “computer proof” for the above stable-value 
formulae (sq or Hex) by combining , for each (L; K), the computer image of an (L; 
K)-stable level and the algorithmic character of the (L; K)-procedure 
([Boju2007_MontrealTech Press]) 
 

.…………………………………..……………. 
 
§§1.4. The stability of Digital-Energetic Level 
 
 
1.4.1.  Growth of the Capacity of Digital Energetic Stable r-Level Constancy 
Theorem  
(GCDESLC Th). 
 
The geometric significance of the formulas for the StabVal is the following 
([Boju2007_MontrealeTch Press]): 
 
1.4.1.1. (GCDESLC Th). By excepting some few first values of  r, we have: 
 
1.4.1.1.Hex. The (L; K, HexCells-Digital Plane) is a space  with Constant Growth of the 
Capacity of  Digital Energetic r-Level, for r superstable, i.e. r ≥  StabThresh(L; K, Hex). 
 
1.4.1.1.sq. The (L; K, sqCells-Digital Plane) is a space  with Constant Growth of the 
Capacity of  Digital Energetic r-Level, for r superstable, i.e. r ≥  StabThresh(L; K, sq). 
 

…………………………………..……………. 
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§§1.5. Iso-Stable Digital Spaces 
 
 
§§§1.5.1. There are some Iso-Stable Digital Spaces. 
Conventional Signs: Non-Deg = Non-Degenerate; Deg = Degenerate; H = Hex 
 
1.5.1.A. For instance, the following (L; K, Hex) Digital Spaces are Iso-Stable (see 
each Row): 
 
(L; K)  StabThresh 

(L; K, H) 
StabVal 
(L; K, 
H) 

H (L; K)  StabTh
resh 
(L; K, 
H) 

StabVal
(L; K, 
H) 

(1; 3) Non-Deg 7 48 H (1; 5) Deg 7 48 
(1; 4) Non-Deg 9 90 H (2; 7) Deg 9 90 
(3;17) Non-Deg 34 1680  (9; 19) Non-Deg 46 1680 
 
 
1.5.1.B. For instance, the following (L; K, sq) Digital Spaces are Iso-Stable: 
 
(L; K)  StabThresh 

(L; K, sq) 
StabVal 
(L; K, 
sq) 

sq (L; K)  StabThresh 
(L; K, sq) 

StabVal
(L; K, 
sq) 

(2; 5) Non-Deg 14 164 sq (3; 7) Deg 14 164 
(3; 8) Non-Deg 21 412 sq (5; 11) Deg 21 412 
(1;10) Non-Deg 23 476 sq (3; 13) Deg 24 476 
(4; 9) Non-Deg 24 548 sq (5; 13) Deg 24 548 
 
 
 
Remark.1.5.1. 
a). StabThresh(3; 7, Hex) = 34  ≠   StabThresh(9; 19, Hex) but the both digital spaces are 
iso-stable; 
b). StabThresh(1; 10, sq) = 23  ≠   StabThresh(3; 13, sq) = 24 = StabThresh(5; 13, sq); 
i.e. : 
For (L; K)-Digital Spaces having a cap-polynomial of degree 1 (see [BojuMontrealTech 
Press]), the Digital Q-curvature of Digital-Energetic Level of radius r is not 1/r, because 
there are iso-stable Digital Spaces having an infinity of distinct capacities for Energetic r-
Levels of the same superstable variable r (see  1.7.2.2.4.). 
 
 
§§§1.5.2. The TOPOLOGY  of  the L-Maximal Digital Hex-Spaces:  [L; 2L+1; Hex] 
is characterized by the high regularity degree. 
 
Remark 1.5.2. Also, the beauty of the Super-Fractal [L; 2L+1; Hex] is maximal !!! 
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§§§1.5.3.A. Hex-Iso-Stability Diophantine Equation 
 
The Hex-Iso-Stable (L; K) Digital Spaces are the solutions of the following  
(L; K)- Hex-Iso-Stability Diophantine Equation: 
y 2  -  x 2  =  K 2  - L 2 ,  where   2x + 1 ≤   y   and  2L + 1 ≤   K 
 
 
1.5.3.B. sq-Iso-Stability Diophantine Equation 
 
The sq-Iso-Stable (L; K) Digital Spaces are the solutions of the following  
(L; K)- sq-Iso-Stability Diophantine Equation: 
y 2  + 2xy - x 2  = K 2  + 2LK - L 2 , where  2x + 1 ≤   y  and  2L + 1 ≤   K 

 
Question1.5. How many non-degenerate Iso-Stable Digital Spaces (Hex or sq) are 
there? 
 

…………………………………..……………. 
 
 
§§1.6. The cap-polynomial of [L; K, Hex] and  [L; K, sq] Digital Energetic r- 
superstable –Levels; (cap = capacity). 
 
 
There are different definitions of the “n-dimensionality” on M (see [Kees1992] in 
[Boju2007_MontrealTech Press]). One is that “à la Carathéodory” [Cara1914]:  
-the “0-condition for H ≥  n” (that is :  H-mes(M)=0); 
and 
-the “h-homogeneity condition” about the induced h-dimensional measure on A ⊂  M,  
(and, consequently, we talk about A as being h-dimensional): mes(tA) = t h mes(A), ∀  
the real h such that    0 ≤  h ≤  n. 
 
 
Our definition ([Boju2007_MontrealTech Press]), in a Digital stricture space , of a  
“cap-polynomial”, is based on the (L; K)-stability. 
Let  [iso-Transf; L; K; Hex] be the group of isometries of [L; K; Hex]-Digital Plane. 
Then  
[iso-Transf; L; K; Hex] is a FG (finitely generated) group. 
 
 
The polynomial property is relevant ([Boju2007_MontrealTech Press]) to the theory of 
FG-groups (see [Bell2007], [Dran2004] and [HingRoe2000]). 
N. Higson and J Roe [HingRoe2000] showed that for FG  (finitely generated) groups 
with bounded asdim function, Yu’s property A holds. 
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Al. Dranishnikov [Dran2004] proves that finitely generated groups with a polynomial 
dimension growth have Yu’s property A; then, the coarse Baum-Connes conjecture and 
Novikov conjectures hold for such groups. 
 
 
§§§1.6.1. The cap-polynomial of [L; K, Hex] Energetic Levels 
 
From 
 (1.3.2.A.1.1. sq-nondegenerate-Stable Value Formula), 
 (1.3.2.A.1.1. sq-degenerate-Stable Value Formula), 
and 
 (1.3.2.B.1.1. Hex-nondegenerate-Stable Value Formula), we obtain: 
 
1.6.1.sq- nondegenerate,  For 2L+1 ≤  K, r superstable, x  ≥   0, we have:  
cap_S(O, L; K; sqCells-Digital Plane; r + x) =  4(K 2  + 2LK - L 2 ) x  +   
+ cap_S(O, L; K; sqCells-Digital Plane; r) ,  ∀   an sq-superstable Energetic r-Level. 
 
 
Therefore, we have the polynomial 
1.6.1.1. sq- nondegenerate  
DP(L, K, r, x; sq) = 4(K 2  + 2LK - L 2 ) x  +  cap_S(O, L; K; sqCells-Digital Plane; r), 
defined for all  
sq- nondegenerate  (L, K),  2L+1 ≤  K, r superstable, and  x≥  0. 
For L, K, r fixed, it is named the cap-polynomial of an r-superstable Energetic r-Level of 
the (L, K, sq)-CEBGU. It is the same for each point p, therefore we may omit the letter 
O: 
DP(L, K, r, x; sq) = 4(K 2  + 2LK - L 2 ) x  +  cap_S(L; K; sqCells-Digital Plane; r), 
defined for all  
sq- nondegenerate  (L, K),  2L+1 ≤  K, r sq-superstable, and  x≥  0 (in fact, for  x > 0 
and  r ≥  StabTresh(L; K)). 
 
Exercise 1.6.1.sq-nondegenerate.  
Express the second numerical derivative of the 
cap_(L, K, r)-CEBGU = D(L; K; sqCells Digital Plane; r) 
in terms of the cap-polynomial of an r-superstable Energetic Level of  
an (L, K, sq)-CEBGU. 
Analogously, we have the sq-degenerate, Hex-degenerate and Hex-nondegenerate 
cases. For instance, we have: 
 
1.6.1.Hex-nondegenerate,  2L+1 ≤  K, r superstable, x  ≥   0.  
cap_S(O, L; K; HexCells-Digital Plane; r + x) =   
6(K 2  - L 2 ) x  +  cap_S(O, L; K; HexCells-Digital Plane; r) ,  ∀  an Hex-superstable 
Energetic r-Level. 
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Therefore, we have the polynomial 
1.6.1.1. Hex-nondegenerate  
DP(L, K, r, x, Hex) = 6(K 2 - L 2 ) x  +  cap_S(O, L; K; HexCells-Digital Plane; r), 
defined for all  
Hex- nondegenerate  (L, K),  2L+1 ≤  K, r Hex-superstable, and  x≥  0. 
For L, K, r fixed, it is named the cap-polynomial of an r-superstable Energetic r-Level of 
the (L, K, Hex)-CEBGU. It is the same for each point p, therefore we may omit the letter 
O: 
DP(L, K, r, x, Hex) = 6(K 2  - L 2 ) x  +  cap_S(L; K; HexCells-Digital Plane; r), 
defined for all  
Hex- nondegenerate  (L, K),  2L+1 ≤  K, r Hex-superstable, and  x≥  0 (in fact,  
For x > 0 and  r ≥  StabTresh(L; K, Hex)). 
 
 
Exercise 1.6.1. Hex-nondegenerate.  
Express the second numerical derivative of the 
cap_(L, K, r)-CEBGU = D(O, L; K; HexCells Digital Plane; r) 
in terms of the cap-polynomial of an r-superstable Energetic Level of  
the (L, K, Hex)-CEBGU. 
 
What is the cap-polynomial 
-of the plane; 
-of  E n ? 
 

…………………………………..……………. 
 
 
§§1.7.  The multi-type-CEBGU 
 
 
§§§Definition 1.7.1. multi-type-CEBGU 
 
1.7.1. A  p-centered-Hex-multi-type-Compartmented Energetic Bank/Generator Unit (p-
centered multi-type-CEBGU),  
or a   
[p-centered; (L; K)(L i ; K i  ; r i ), Hex]- CEBGU,  i = 1, …, T, 
is a succession of  (p-centered; L j ; K j  ; r j , Hex)-structures,  j = 0, …, T, 
such that: 
-( p-centered; L 0 , K 0 , r 0 , Hex)  be  (p-centered;L; K, Hex) structure which is runned 
for the  
steps 1, 2, … , r 1- 1; 
- the procedures (p-centered ; L i ; K i  ; r i , Hex),  are successively runed, for i = 1, …, T; 
- the Stable Thresholds  r i   are  superstable, i = 1, …, T. 
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Analogously: 
 
Definition 1.7.1. B. A sq-multi-type-Compartmented Energetic Bank/Generator Unit 
(multi-type-CEBGU),  
or a   
[p-centered; (L; K)(L i ; K i  ; r i ), sq]- CEBGU,  i = 1, …, T, p a sq-cell, 
is a succession of  (p-centered; L j ; K j  ; r j , sq)-structures,  j = 0, …, T etc. 
(for “p-centered”, or “centered at p”, see: §§1.3.). 
 
§§§1.7.2. Caution. The Stable Threshold of each [p-centered; (L i ; K i  ; Hex)] in a 
multi-type-CEBGU is distinct (generally inferior) from those in an single-type-CEBGU  
(or pure-type-CEBGU).  
For instance: 
 
1.7.2.1.1. Hex[p-centered; (9; 19), (3;17)]  
Let the multi-type-CEBGU of two Hex-iso-stable Digital Planes be 
[p-centered ; (9; 19; Hex,StabThresh46), (3;17; Hex, r 1 =53, multi-type StabThresh=3, 
StabVal=1680)] 
 
1.7.2.1.2. Hex[p-centered ; (3;17), (9; 19)]  
Let the multi-type-CEBGU of two Hex-iso-stable Digital Planes be 
[p-centered ; (3; 17; Hex, StabThresh34), (9;19; Hex, r 1 =53, multi-type StabThresh=12, 
StabVal=1680)] 
 
 
Comparison 1.7.2.2. 
 
1.7.2.2.1. The value of only multi-type StabThresh of the sequence Hex[p-centered ;   (9; 
19), (3;17)] (of 53 th rank r 1 =53) is 3,  and  3 p  p  StabThresh[3; 17; Hex] = 34 
while 
The value of only multi-type StabThresh of the sequence Hex[p-centered; (3;17) ,(9; 
19)] (of 53 th rank r 1 =53) is 12,   and  12 p  StabThresh[9; 19; Hex] = 46. 
 
We observe that the multi-type CEBGU  Hex[p-centered; (9; 19), (3;17)]    
 is more stable that  Hex[p-centered; (3;17) ,(9; 19)]. 
 
1.7.2.2.2. The both value are plainly inferior to the single ones. 
 
1.7.2.2.3. The Capacity of 61-CEBGU-Hex[p-centered; (3;17), (9; 19)] = 3.150.306 
Energetic Cells, 
while 
The Capacity of 61-CEBGU-Hex[p-centered; (9; 19), (3;17)] = 3.059.946 Energetic 
Cells; 
That is, the  Hex[p-centered; (9; 19), (3;17)]      is     “more compact”. 
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1.7.2.2.4. The Capacity of 61 th Energetic Level Hex[p-centered; (3; 17), (9; 19)] = 
108.156 Energetic Cells, 
while 
The Capacity of 61 th Energetic Level Hex[p-centered; (9; 19), (3; 17)] = 104.418 
Energetic Cells. 
That is, the  Hex[p-centered; (9; 19), (3; 17)]      is     “more compact”. 
 
1.7.2.2.5. The extrinsic TOPOLOGY  of the sequence Hex[p-centered; (9; 19), (3; 17)] 
is comparable with the topology of the Super-Fractal type [L; 2L+1; Hex], while the 
topology  of the sequence Hex [p-centered; (3; 17), (9; 19)] is very intricate; namely: 
 
The extrinsic topological structure of the multi-type-CEBGU of two Hex-iso-stable 
Digital Planes  
[p-centered ; (3; 17; Hex, StabThresh34), (9; 19; Hex,r1 =53, multi-type StabThresh=12, 
StabVal=1680)]: 
 
The 50th Stable Energetic Level (which is under the procedure (3; 17; Hex)) has 49 
extrinsic connected components: 
-12 components are extrinsic  simply-connected; 
-36 components are extrinsic  1-connected (each has 1 hole); 
-1 component is extrinsic  12-connected (has 12 holes). 
The principal component is composed by Joint Polygones, each having constant 
dimensions: each side contains 10 Energetic Cells; the big diagonal contains 20 
Energetic Cells. 
 
The 66th Stable Energetic Level (which is under the procedure (9; 19; Hex) ∈[L; 2L+1; 
Hex ] special type - see 1.5.2.) has 25 extrinsic connected components. 
 
§§§1.7.2.2.6. The remarquable Mechanism of Stability.  
For superstable levels, the phenomenon of stability has a natural mechanism 
([Boju2007_MontrealTech Press]: a detailed description of the extrinsic and intrinsic 
TOPOLOGY  of  the L-Maximal Digital Hex-Spaces  [L; 2L+1; Hex]): the “extrinsic  
transversal structures” of the r-Energetic Level and  (r+1)-Energetic Level coincide (i.e. 
are constant), while the longitudinal ones are “constantly increasing fonctions”. 
 
The Convex Hull is a Dodecagon, whose mean width is of 28 Energetic Cells. 
 
Generally, the conditions          
1.7.2.2.7.              1+iL  ≥  iL  and  1+iK  ≥  iK , I = 1, … , T, 
can realize (but not necessary: see 1.6.4.1. Hex[(9; 19), (3;17)], where the inequalities 
1.6.4.2.6.  are inversed for [9; 19, Hex] and [3;17, Hex]) the complete exhaustion.  
But, for each energetic type (L i ; K i  ; r i , Hex), i ≥  1,  may be calculated the minimum 
values for a good joining (that is, to fulfil the exhaustion). 
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Remark. 1.7.2.Hex.  The Hex-multi-type-Compartmented Energetic Bank/Generator 
Unit (multi-type-CEBGU), i.e. the Hex-Digital Space 
[p-centered; (L; K)(L i ; K i  ; r i ), Hex]- CEBGU,  i = 1, …, T, has a “Variable 
Topology”. 
 
There is a some similitude between our methods (multi-type-CEBGU) and those that are 
used in [Kitsiosy, Kota, Mitt, Ooiy, Soria, You, 2006] (see:  Figure 2. Topology of the 
modified C-type grid; see also:  (a) block topology; (b) body-fitted airfoil grid; (c) ZNMF 
jet cavity). 
 
Analogously, there is a similar Remark 1.7.2.sq. 
 
 
§§§1.7.3. The p-centered-distance function in a multi-type-CEBGU, i.e. in a  [(L; 
K)(L i ; K i  ; r i ), Hex  or  sq]-CEBGU,  i = 1, …, T 
 
Let p and q be cells in a Digital Space. 
 
1.7.3.A. The p-centered-distance function in a [p-centered ; (L; K)(L i ; K i  ; r i ), 
Hex]-CEBGU,  i = 1, …, T 
 
The p-centered-distance function in a [(L; K)(L i ; K i  ; r i ), Hex]- CEBGU,  i = 1, …, T,  
is a direct consequence of the  1.2.2.1. f-CAD Criterion  and of the    
Hex-multi-type-Compartmented Energetic Bank/Generator Unit (multi-type-CEBGU),  
or a   
[p-centered- (L; K)(L i ; K i  ; r i ), Hex]-CEBGU,  i = 1, …, T, 
as a succession of  (L j ; K j  ; r j , Hex)-structures,  j = 0, …, T. 
 
For instance (see 1.7.2.1.):  
 
Let Hex[p-centered; (9; 19), (3;17)] be the multi-type-CEBGU of two Hex-iso-stable 
Digital Planes  
[p-centered; (9; 19; Hex, StabThresh46), (3;17; Hex, r 1 =53, multi-type StabThresh=3, 
StabVal=1680)] 
We have: 
 
Hex[p-centered; (9; 19), (3;17)] is a Combinatorial-Algorithmic structure whose 
Combinatorial-Algorithmic p-centered-distance is: 
- [9; 19, Hex] for the cells p 1  and  p 2   from the levels i = 0; 1; … ; 52;  
- [3; 17, Hex] for the cells p, q, where  
  p∈52 th   level,  and      q∈53 th   level 
- [3; 17, Hex] for the cells  q 1  and  q 2    from the levels   i ≥  53.  
 
Analogously for 
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1.7.3.B. The p-centered-distance function in a [(L; K)(L i ; K i  ; r i ), sq]-CEBGU,  i = 
1, …, T 
 
 
 
§§§1.7.4. The Hybrid multi-type-CEBGU; p-centered-distances. 
 
In [Boju2007,MontrealTech Press] the concept of a Hybrid multi-type-CEBGU is 
studied. 
A Hybrid multi-type-CEBGU is analogue to a Hex or sq-multi-type-CEBGU, but 
the sequence contains Hex and sq  [L i ; K i ] zones. 
The most interesting phenomenon is the stability property. 
A Generalized Hybrid multi-type-CEBGU is obtained by replacing one or some  
[L i ; K i ] zones by some sets A, B etc.  
Examples and necessary conditions for the stability are presented. The [L; K]-
“machine” acts as a “enveloping mechanism”. 
 
 
1.7.4. Exercise.  (see 1.7.2.1.1. and 1.7.2.1.2). Let a, b, p, q,  be arbitrary points in Digital 
plane,  a ≠  b. Let A, B be the following distances: 
 
A is the a-centered-distance function corresponding to   Hex[a-centered; (9; 19; 
StabThresh46), (3;17; r 1 =53, multi-type StabThresh=3, StabVal=1680)]; 
 
B is the b-centered-distance function corresponding to   Hex[b-centered; (3; 17;  
StabThresh34), (9;19; Hex, r 1 =53, multi-type StabThresh=12, StabVal=1680)] 
 
A’ is the a-centered-distance function corresponding to   [a-centered; (9; 19; Hex; 
StabThresh46), (3;17; sq; r 1 =53, multi-type StabThresh=??, StabVal=???)]; 
 
1.7.4. Exercise.1.   
 Prove that     A(p, q) ≠  B(p, q) 
 

1.7.4. Exercise.2. 
Comment the equation 
A(p, q) = B(p, q) 
 

1.7.4. Exercise.3. 
Comment the equation 
A’(p, q) = B(p, q) 
 

1.7.4. Exercise.4. 
Comment the a-centered geodesics of A. 
 

…………………………………..……………. 
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§§1.8. The cap-polynomial of the multi-type-CEBGU,  
i.e. of a [b-centered; (L; K)(L i ; K i  ; r i ), Hex  or  sq]-CEBGU,  i = 1, …, T. 
 
§§§1.8.1.The sequence of cap-polynomials of  a multi-type-CEBGU, i.e. of a   
[b-centered; (L; K)(L i ; K i  ; r i ), Hex  or  sq]-CEBGU,  i = 1, …, T.    
 
For a  [b-centered; (L; K)(L i ; K i  ; r i ), Hex  ]-CEBGU,  i = 1, …, T, we have a 
sequence of cap-polynomials of  Hex-multi-type-CEBGU: 
…………………………………………………… 
P([b-centered; {L; K}_(L; K)(L i ; K i  ; r i ), Hex-CEBGU;  i = 1, …, T; r+x) = 6(K 2 - 
L 2 ) x  +  cap_S(O, L; K; HexCells-Digital Plane; r),     defined for  Hex- 
nondegenerate  (L, K),  2L+1 ≤  K, r superstable,  x≥  0, such that 
  StabThresh[L; K; Hex] ≤  r ≤  r + x ≤  r1  
…………………………………………………… 
P([b-centered; {L1; K1}_(L; K)(L i ; K i  ; r i ), Hex-CEBGU;  i = 1, …, T; r+x) = 6(K1

2 - 

L1
2 ) x  +  cap_S(O, L1; K1; HexCells-Digital Plane; r),     defined for  Hex- 

nondegenerate  (L1, K1),  2L1+1 ≤  K 1, r superstable,  x≥  0, such that    r1≤  r ≤  r 
+x ≤  r 2  
…………………………………………………… 
P([b-centered; {{LT-1; KT-1 }_(L; K)(L i ; K i  ; r i ), Hex-CEBGU;  i = 1, …, T; r+x) =  

6(KT-1 2 - LT-1 2 ) x  +  cap_S(O, LT-1; KT-1; HexCells-Digital Plane; r),    
defined for   Hex- nondegenerate  (LT-1, KT-1),  2 LT-1+1 ≤  KT-1,  
r superstable,  x≥  0, such that    r T-1≤  r ≤  r +x ≤  r T 
…………………………………………………… 
P([b-centered; {LT; KT }_(L; K)(L i ; K i  ; r i ), Hex-CEBGU;  i = 1, …, T; r+x) = 6(KT 
2 - LT 2 ) x  +  cap_S(O, LT; KT; HexCells-Digital Plane; r),    defined for   Hex- 
nondegenerate  (LT, KT),  2 LT+1 ≤  KT,  
r superstable,  x≥  0, such that    r T≤  r ≤  r +x  
…………………………………………………… 
Analogously, for a  [b-centered; (L; K)(L i ; K i  ; r i ), sq ]-CEBGU,  i = 1, …, T, we have 
a sequence of cap-polynomials of  sq-multi-type-CEBGU  
…………………………………………………… 
 
 
§§§1.8.2. Max-Cap-coefficients. Infinite multi-type-CEBGU. 
 
The sequence of the coefficients of x of maximal degree, in a sequence of  
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cap-polynomials of  a  Hex-multi-type-CEBGU (which are named “Max-Cap-
Coefficients”), i.e. of an  [(L; K)(L i ; K i  ; r i ), Hex  ]-CEBGU,  i = 1, …, T, is:    
c 0  =  6(K 2 - L 2 ) 

c 1 = 6(K1
2 - L1

2 ) 
. . . 
c T-1 = 6(KT-1

2 - LT-1
2 ) 

c T = 6(KT
2 - LT

2 ) 
The sequence of the coefficients of x in a sequence of cap-polynomials of  an infinite 
multi-type-CEBGU, i.e. of an  [(L; K)(L i ; K i  ; r i ), Hex  ]-CEBGU,  i = 1, …, ∞ , is as 
the above sequence {c i } ,...,...,1,0 Ti= , where  c 0  =  6(K 2 - L 2 ),  c i  = 6(K i

2 - L i
2 ), 

i = 1, …, ∞ . 
 
Analogously, the sq-case. 

…………………………………..……………. 
 
 
§§1.9. IQCC (=Inverse Quotient Curvature Coefficient) Method and the analogy 
with Holcman-Pugh Kick Method; Holcman-Pugh Compactness Riemannian 
Boundary; the Trans-n-Riemannian Boundary. 
The AsyL(= Asymptotic Limit) of multi-type_CEBGU-IQCC versus  AsyL of 
Riemannian   IQCC or positive supremum/infimum (eventually extrema) of 
Riemannian-IQCC, or b-point limit of IQCC and b-Diameter limit of an IQCC. 
 
§§§1.9.1. IQCC = Inverse Quotient Curvature Coefficients 
 
Definition 1.9.1.IQCC. 
Let IQCC ( = Inverse Quotient-Curvature Coefficient) be the following (p, r, d, h) 
function defined on a metric space (M; d) ([Boju 2007, MontrealTech Press]) or on a 
space with point-distances (see the the Hex-multi-type-CEBGU, the sq-multi-type-
CEBGU or the Hybrid multi-type-CEBGU ). For each  p∈M  and radius (admissible, 
i.e. an integer in the case of Digital Spaces, a real for Riemannian ones etc) r > o : 

    IQCC(p; r, d; m) = mes S(p, r, d) / r 1−m  
where : 
- mes is a d-compatible measure  (for instance, in the Digital Case a pure or a ponderation 
mask  capacity, a  [1-L; 2-L; … ; w-L, w-hypercubicCells-Digital w-Space]-compatible 
capacity etc); 
- S(p; r) is the hypersphere of  radius r, centered at  p∈M; 
m is a numerical parameter,  m  ≥  1, which is useful when the dimension of M is 
unknown; if (M, g) is a n-dimensional Rienannian or pseudo-Rienannian space, then m = 
n; m=2 when M is the digital plane, i.e.: 
    

          
        IQCC(p; r, d) = mes S(p, r, d) / r 
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                   for the digital plane 
 

 
 
 
 
Definition 1.9.1.1.1.  
AsyL(= Asymptotic Limit) of an IQCC: 
 
If (M, d) is unbounded, we define: 
AsyL-ICCQ(p, d, m) =  lim

∞→r
    IQCC(p; r, d, m) =  lim

∞→r
 ( mes S(p, r, d) / r 1−m ), 

if there is a limit for a certain m; if yes, we have: 
 
Definition 1.9.1.1.1.Infinity.  
The value of (m-1) for which there is a proper limit AsyL-ICCQ(p, d, m), is named 
“the dimension of the Hypersphere centered at p”.     
 
Definition 1.9.1.1.2.   
“p-point limit of an IQCC” (in the case of a Riemann space or etc): 
 
If p is an interior point of M, we define: 
p-point limit-ICCQ(p, d, m) =  lim

,0 orr >→

    IQCC(p; r, d; m) =  lim
,0 orr >→

 ( mes S(p, r, d) / 

r 1−m ), if there is one suitable (i.e. there is the limit) value of m. 
 
Definition 1.9.1.1.3.  p-Diameter limit of an IQCC (if M admits a finite diameter 
wuth regard to point p) 
For p∈M, we define: 
p-Diameter limit of IQCC (p, d, m) =  lim

)( pDr→
    IQCC(p; r, d, m) =   

lim
)( pDr→
 ( mes S(p, r, d) / r 1−m ), where D(p)  is the diameter of M related to point p∈M. 

Comment. It seems that p-Diameter limit of IQCC (p, d, m) is zero. 
 
Remark1.9.1.1.A. The definitions 1.9.1.IQCC.,   1.9.1.1.1. and 1.9.1.1.1.Infinity   are 
all valid for the Digital Spaces (including the [L; K]-Hex and [L; K]-sq Digital 
Spaces or multi-type w-dimensional Spaces); the all five definitions are valid for an  
n-dimensional Riemannian Space or n-dimensional pseudo-Riemannian one. 
 
1.9.1.1.E. Examples (Euclidean plane or non-degenerate Quadric Hypersurfaces – 
Hyp and Ellips.).  
 
1.9.1.1.E.1. (M, d) = Euclidean Plane.  IQCC = 2π  = Const 
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1.9.1.1.E.2. (M, d) = The 2-Sphere in 3-Euclidean Space  S(p, R): 
    p-point limit-ICCQ(p, d) = 2π  
    IQCC (p, D(p)/2) = 4 
    p-Diameter limit-ICCQ(p, d) = 0 
 
 
1.9.1.1.E.3. (M, d) =  Circular Hyperboloid: 
 AsyL-ICCQ of  Circular Hyperboloid  =  2π   cos w  <  2π , 
 p-point limit-ICCQ(p, d) = 2π  
where  w  is the angle  between the asymptote to an Hyperbola (for instance M ∩  xOz 
plane) and the Ox axis.   
 
 
 
1.9.1.1.E.4. (M, d) = (L; K)-Hex non-degenerate Digital Plane (see §1.8.) 
 
1.9.1.1.E.4.1.             IQCC(p, x+r, [L; K]-Hex) =  
6(K 2  - L 2 )/(1 + (r/x))     +     cap_(S(O, L; K; HexCells-Digital Plane; r))/(x+r) ,   
∀  r an Hex-superstable Energetic Level, x a natural. 
 
 
1.9.1.1.E.4.2.            AsyL IQCC([L; K]-Hex) =  6(K 2  - L 2 )  >  0 
 
 
Analogously, 
 
1.9.1.1.E.5. (M, d) = (L; K)-sq non-degenerate Digital Plane,  (see §1.8.) 
 
1.9.1.1.E.5.2.            AsyL IQCC([L; K]-sq) =  4(K 2 + 2LK  - L 2 )  >  0 
 
Remark1.9.1.1.B. Because always  2L+1 ≤  K, i.e. 
6(K 2  - L 2 ) ≥  6(3L 2  + 4L +1) ≥  6 
then 
6(K 2  - L 2 ) ≥  48,   for L ≥  1  
and 
4(K 2 + 2LK  - L 2 ) ≥   4 (7L 2  + 6L +1)  ≥  56, for L ≥  1, we have: 
 
Theorem 1.9.1. For  L ≥  1  (and  2L+1 ≤  K), for Hex or sq-Digital Plane (non-
degenerate), we have: 
 
1.9.1.1.Hex  AsyL IQCC([L; K]-Hex)  ≥   48   
and 
 
1.9.1.1.sq  AsyL IQCC([L; K]-sq)   ≥   56, 
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while 
 
AsyL IQCC on a standard Riemannian Surfaces as non-degenerate Quadric 
Hypersurfaces (i.e. elliptic or hyperbolic) or the Euclidean plane, is 
1.9.1.1.Riemann IQCC ≤  2π ; 
i.e. the value 2π  separates these spaces, these two families pf geometries, 
 
that is: 
 we have a Separation supposition  (see also : [HolcPugh2007]): 
 
Corollary1.9.1. (Separation supposition) The Euclidean Plane (whose IQCC value is 
2π ) is a Boundary between  the two following geometric families of spaces:  
-The family of all [L; K]-DIGITAL Planes with (sq or Hex)-[L; K]-nondegenerate; 
- The family of all Riemannian 2-dimensional spaces. 
 
Comments1.9.1. (see [Boju2007 MontrealTech Press]) 
Comments1.9.1.A. It seems plausible to assert that at least the two-dimensional Compact 
Complete Riemann Manifolds  have the (1.9.1.1.Riemann)) property, that is 
(1.9.1.1.Riemann property)   IQCC ≤  2π   
 
Comments1.9.1. B. The n-dimensional analogue seems valid (for instance, the sq 
case), i.e. :  
The n-dimensionel Separation supposition: 
the IQCC of the n-dimensional Euclidean Space  E n  separates the two Universes:  
the Digital and the Riemannian ones. 
 
Argument#1. See the “quasi-homothetic” character of the 1.9.1.1.Riemann property. 
Argument#2. The case “p-point limit of an IQCC”: 
Let (M, g) be an Nash-embedding of the considered Riemann space. For p-point limit of 
an IQCC, we can compare a neighborhood W of p with his orthogonal projection on 
the tangent space TMp (see the two-dimensional phenomenon). 
 
Comments1.9.1. C. We note the unity of the Riemannian Universe from the  
IQCC-Separation supposition point of view; the common reason consists in the common 
geometric phenomenon: the Tangent Space at each point of an n-dim Riemannian 
Manifold is even E n , i.e.:  
When a Riemannian Manifold is introspected into oneself, in a point p, then this becomes 
an Euclidian Univers.   
 
 
§§§1.9.2. Trans-n-Riemann Spaces 
 
1.9.2.1. Definition. A Trans-n-Riemann Space is a such n-dimensional point-distance 
space (M, p-compatible-distances) for which: 
-there are IQCCs; 
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- IQCC (n; M)  >  IQCC (n; Euclidean), 
(etc : i.e. different versions; see  1.9.1.IQCC.,   1.9.1.1.1., 1.9.1.1.1.Infinity, 1.9.1.1.2. 
1.9.1.1.3.) 
where: 

1.9.2.2. IQCC (n; Euclidean)  =  2 2
n

π  /  Γ (
2
n ),  

where  Γ  is the Gamma function (see Definition 1.9.1.IQCC.  and  1.10.3.6.). 
 
 
1.9.2.3. There are at least four examples of some Trans-n-Riemann Spaces ( see §§1.3 ): 
 
1.9.2.3.1.  (sq; 1-L; 2-L; … ; w-L, w-hypercubicCells-Digital w-Space)  
 
1.9.2.3.2.  (sq; 1-L; 2-L; … ; w-L, w-hypercubicCells-Digital w-Space) multi-type- 
    CEBGU  
 
1.9.2.3.3. (sq; 1-L; 2-L; … ; w-L, w-hypercubicCells-Digital w-Space) Hybrid multi- 
    type-CEBGU 
 
1.9.2.3.4.  (sq; 1-L; 2-L; … ; w-L, w-hypercubicCells-Digital w-Space)   Generalized  
    Hybrid multi-type-CEBGU with an admissible nucleus; 
 
A more general method to produce some Trans-Riemann Spaces is suggested by the 
proceeding  point-distances-spaces (M; p-d) with  Ω   Scaling Spheroidal Model (see  
[Boju2007_MontrealTech Press]). 
 

…………………………………..……………. 
 
 
§§1.10. The Asymptotic-IQCC-dimension. Super-Fractals.  
 
 
§§§1.10.1. The Curvature Method. 
 
The curvature method represents an “expressive” tool in the study of Riemann Spaces. 
 
On one side, the spaces with Constant Curvature or with QCQ (Quasi-Constant Curvature 
– see [BojuPope1978] and [BojuFunar1987]) provide the standard ones, which guide the 
qualitatively-local studies; particularly, for the study of IQCC-s.  
 
On the other side, a geometric way to a global approach consists in the study of the 
extreme values of the curvature or of the some substitutes of the asymptotic ones.  
For instance, the Holcman-Pugh Compactness Riemannian Boundary and Holcman-Pugh 
Kick Method ([Holc,Pugh2007]; Kick Method: that is  the existence “of a certain 
minimum amount of extra energy or curvature on a finite exp-shell”, that impose 
compactness and, at the same time, a class of Riemann manifolds) are a surprising 
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alternative to the asymptotic one, in the search of a Boundary between Compact and 
Noncompact Complete Riemann Manifolds. Moreover, this leads  to some ideas 
concerning the geometry at infinity and the classification of the geometry at infinity. 
But, the Holcman-Pugh Kick Method and Holcman-Pugh Compactness Riemannian 
Boundary are also surprising from an another completely different viewpoint: both “finite 
shell” and “geometry at infinity” appears in the present chapter, in a context opposite to 
the Riemannian one: 
- in a Digital one, i.e. a totally-discontinuous space; 
-while for classical surfaces (non-degenerate Quadric Hypersurfaces - i.e. elliptic or 
hyperbolic, or tle Euclidean plane) IQCC ≤  2π , for de non-degenerate [L; K]-Hex 
and  sq-Digital Plane, 
IQCC ≥   48, for L ≥  1. 
     
 
§§§1.10.2. The IQCC-dimension, the Asymptotic-IQCC-dimension 
 
The Corollary1.9.1(Separation supposition) points out the dimension of  
[L; K]-Hex and  sq-Digital Plane as a strange concept (IQCC-dimension), far away from 
the classical, numerical perception of dimension.  
 
It is plausible to talk on a “Cap-Polynomial Dimension”; see: 
- sequence of cap-polynomials of multi-type-CEBGU (§§§1.8.3.); 
- (1.9.1.1.E.4.1.)   the formula for IQCC(p, x+r, [L; K]-Hex). 
 
Moreover, the Corollary1.9.1 (Separation supposition) points out the  
Max-Cap-coefficients, whose sequence may be convergent to infinity; for instance, the 
sequence of  Hex-Max-Cap coefficients is: 
L = const = c;  c T = 6(KT

2 - c 2 ) (see 1.8.3. and and Theorem 1.3.1.), 
where: 
1.10.2.1. 
KT  =   3h+2    if      c = 2 or 3; 
KT  =   3h+1    if      c = 1 or 3; 
KT  =   3h    if      c = 1 or 2. 
 
Because 
   lim

∞→T
 (sequence of Max-Cap-coefficients  c T  from 1.10.2.1) = ∞ , 

(see [Kees 1992] - the analogy with the nesessary conditions of an number to represent a 
dimension), then the asymptotic dimension of the multi-type-CEBGU 1.10.2.1. is 
strictly superior to 1,  i.e.: 
 
Proposition 1.10.2.1. The multi-type-CEBGU 1.10.2.1. is a Super-Fractal. 
 
This property is illustrated by an example in §4. 
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§§§1.10.3. The Q-Like-a-DigitCurvature in a metric space.  
 
We dispose of three characteristics of a Hex Digital Space: 
1.10.3.1. StabThresh(L; K, Hex) 
1.10.3.2. StabVal(L; K, Hex)  (renoted here as  StabVal(L; K, H)) 
1.10.3.3. Cap-Polynomial 
 
1.10.3.4. The following (L; K, Hex) Digital Spaces (see 1.5.1.A. ) are Iso-Stable  
(L; K)  StabThresh 

(L; K, H) 
StabVal 
(L; K, H) 

H 
e 
x 

(L; K)  StabThre
sh 
(L; K, H) 

StabVal
(L; K, 
H) 

(3;17) Non-Deg 34 1680  (9; 19) Non-Deg 46 1680 
 
The above examples prove that the Q-Like-a-DigitCurvature in the (Hex or sq) 2-
Digital Space is neither  1/(34+x)  nor  1/(46+x),  
(even modulo an homothety), for the reason of the Cap-Polynomial phenomenon. 
 
 
The Q-Like-a-DigitCurvature of the Energetic (r+x)-Level in the metric space [L; 
K; Hex], is (see 1.6.1.1. Hex-nondegenerate) 
1.10.3.5.  Q-LDCurv (L; K; r+x; Hex) = 1/ DP(L, K, r, x; Hex) = 
= 1/ (6(K 2  - L 2 ) x  +  cap_S(O, L; K; HexCells-Digital Plane; r)) 
defined for all  
Hex- nondegenerate  (L, K),  2L+1 ≤  K, r Hex-superstable, and   r + x ≥  
StabTresh(L; K; Hex). 
 
For instance,  
the Q-LDCurv of the Energetic (r+x)-Level in the metric space [3; 17; Hex], r 
superstable, is 
 
1.10.3.5. Q-LDCurv (r+x) = 1/ ( 1680 x  +  cap_S(3; 17; HexCells-Digital Plane; r)), 
where  (r + x)   is Hex-superstable:  r ≥  StabTresh(3; 17; Hex). 
 
Analogously, 
 
The Q-LDCurv of the Energetic (r+x)-Level in the metric space [L; K; sq], is (see 
1.6.1.1. sq-nondegenerate) 
1.10.3.5.  Q-LDCurv (L; K; r+x; sq) = 1/ DP(L, K, r, x; sq) = 
1/ (4(K 2  + 2LK - L 2 ) x  +  cap_S(L; K; sqCells-Digital Plane; r)) 
defined for all  
sq-nondegenerate  (L, K),  2L+1 ≤  K, r sq-superstable, i.e.   
r ≥  StabTresh(L; K; sq). 
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By extension ([Boju2007_MontrealTech Press]), for the Euclidean space E n  we have: 
 
E n  is a metric space with   “ ř-almost constant Q-LDCurvature”, for ř = 0.  
The Q-LDCurv of the circle S1 (c,R) in the Euclidean plane E 2 is 1/2π R, while the 
Euclidean Curvature is  1/R. 
The Q-LDCurv of the sphere S 2 (c, R) in the Euclidean space E 3  is 1/4π R 2 , while the 
Euclidean Curvature is  1/R 2 . 
The Q-LDCurv of the sphere S 3 (c,R) in the Euclidean space E 4  is  
1/2π 2 R 3 . 
The Q-LDCurv of the sphere  S 1−n (c, R) in the Euclidean space E n  is 
 

1.10.3.6.  Γ (
2
n ) / 2 2

n

π 1−nR  , 

where   Γ  is the Gamma function. 

Thus, the  n-Trans-Riemannian Boundary is  2 2
n

π /Γ (
2
n ). 

 
 

^^^^^^^^^^^^^^^^^^^^^^ 
 
 
§2. Juxtaposition Combinatorial Measures and Juxtaposition Fractals. Applications 
in Intrinsic Measure Theory.  
 
{In this section, the results from [BojuFunar2007-Asymptotics], are presented. } 
 
 
§§2.1. Juxtaposition Combinatorial Measures 
 
The concept of “Juxtaposition Combinatorial Measure” and “Generalized 
Hadwiger Numbers”  was introduced and studied in  
[Boju1982] Valentin Boju. Fonctions de juxtaposition, Invariants. In: Proceedings of the 
13th NCGT, Univ. of Cluj, 1982, p. 36-37 
and 
[Boju1986] Valentin Boju. Courbures Riemannienes généralisées. International 
Conference on Geometry and Applications. As invited speaker (Victor Andreevici 
Toponogov, V. Boju, a.o.), Bulgarian Academy of Sciences, 1986, p. 47-48.  
 
The papers [Boju1982] and [Boju1982] are cited and continued in [BojuFunar1993-
ZAA]. The main theorem from [BojuFunar1993] is also presented in 
[BojuFunar2007_Springer]. 
 
 
Abstract 
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We give asymptotic estimates for the number of non-overlapping homothetic copies of  B 
which have a common point with F, extending previous work of the L.Fejes-Toth, 
K.Borockzy Jr., D.G.Larman, S.Sezgin, C.Zong and the authors. 
 
 
1. Introduction 
For closed topological disks F;B ⊆  R d , we denote by N λ (F; B) ∈  Z +  the following 
generalized Hadwiger number.  
Let A λ,,BF  denote the family of all sets, homothetic to B in the ratio λ , which have only 
boundary points in common with F. Then N λ  (F; B) is the greatest integer k such that 
A λ,,BF  contains k sets with pairwise disjoint interiors. In particular, N1 (F; F) is the 
Hadwiger number of F and N λ (F; F) the generalized Hadwiger number considered first 
by Fejes Toth for polytopes in ([4, 5]) and further in [1]. Extensive bibliography and 
results concerning this topic can be found in [2]. The main concern of this note is to find 
asymptotic estimates for N λ (F;B) as λ  approaches 0, in terms of geometric invariants of 
F and B, as it was done for F = B in [1], and to seek for the higher order terms. 
Roughly speaking, counting the number of homothetic copies of  B packed along the 
surface of a d-dimensional body F, amounts to compute the (d – 1)-area of its boundary, 
up to a certain density factor depending only on B. This factor is especially simple when 
dimension d = 2. 
 
 
2. Planar domains: approaching the perimeter 
 
Unless explicitly stated otherwise, throughout this section, B will denote a centrally 
symmetric plane oval. 
Any such B determines a norm B as a natural quotient. 
 
With this norm, R 2  becomes a Banach space whose unit disk is isometric to B.  
Set p B  (F) for the perimeter of the boundary ∂ F in the norm B . We also denote by d B  

the distance in the B  norm. 

We assume that F is regular, namely that its boundary ∂ F is piecewise C 2  and it is the 
union of  finitely many arcs with the property that each arc is either convex or concave. 
This is the case, for instance, when ∂ F is a piecewise analytic curve. 
Our first result generalizes theorem 1 from ([1]), where we considered the case F = B.  
 
Theorem 1. For any symmetric oval B and regular topological disk F in the plane, we 
have p B (F) = 2 lim

0→λ
λ N λ (F, B) 
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Definition 1. Elements of A λ,,BF  are called beads and a configuration of  beads with 
disjoint interiors is called a necklace. The necklace is complete when all pairs of 
consecutive beads have a common point and incomplete otherwise. 
 
 
Remark 1. One can also consider packings with disjoint homothetic copies of B laying in 
F and having a common point with the complement R 2 - int(F). Then a similar 
asymptotic result holds true. 
 
 
Second order estimates 
 
When F is convex, we can obtain more effective estimates of the rate of convergence: 
 
Theorem 2. For any symmetric oval B and convex disk F in the plane, the following 
inequalities hold true: 
p B (F) – 2λ   ≤    2λ N λ (F, B)  ≤   p B (F)  +  λ p B (B) 
 
Consider now the general case when F is not necessary convex. The estimates for the rate 
of convergence are not anymore sharp. By hypothesis, ∂ F can be decomposed into 
finitely many arcs A i , i = 1; m, which we call pieces, so that each piece is either convex 
or concave. Let  m = m(F)  denote the number of pieces. 
 
Theorem 3. For any symmetric oval B and regular topological disk F in the plane, we 
have the inequalities 
p B (F) – 2λ (p B (B)m(F) + m(F) - p B (B))  ≤   2λ N λ (F, B)  ≤   p B (F) + 2λ ( p B (B) 
+2m(F)) 
 
Theorem 4. Consecutive terms in N(F; B) are at most distance 11m(F) apart. When F is 
convex, consecutive terms in N(F; B) are at most distance 4 apart, if B is not a 
parallelogram and 5 otherwise. 
 
 
Corollary 1. Consecutive terms in N(B;B) ⊂  Z +  are at most distance 4 apart. 
 
Conjecture 1. If B = F is not a parallelogram, then N(B; B) contains all sufficiently large 
integers. 
 
Corollary 2. For convex F we have also some inequalities. 
 
 
Conjecture 2. There exists some constant c = c(B) such that the following limit exists 
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a some limit = ϕ  (α ), where   ϕ  : [0; 1) →  [ -2;  p B (B)]  is  a  right continuous 
function with finitely many singularities. If  F, B are polygons, then  ϕ    is linear on each 
one of its intervals of continuity. 
 
 
 
 
 
4 Higher dimensions 
 
The previous results have generalizations to higher dimensions in terms of some 
Busemann-type areas defined by B. Theorem 1, when F = B, was extended in 
[[Börö,Larman,Sezgin,Zing1999-2000]] and ([[Börö2004]], 9.10). However, the result 
involves the presence of an additional density factor which seems hard to compute. The 
same happens for general F and B. 
 
For a convex body K in R d , one defines the translative packing density  δ (K)  to be the 
supremum of the densities of periodic packings by translates of K. 
For convex and smooth B and F, and a centrally symmetric smooth domain B in R d , 
we obtain  
 
Theorem 5. 
 

  lim
∞→λ
λ 1−d N λ (F, B) = ∫∂ ∩ΔF

xTB )(
1 dx  , 

where  x  ∈  ∂ F  and  T x   is the tangent space at x on ∂ F.  
 
Conjecture 3. The largest distance between consecutive elements of N(F; B) is at most 
2

d
 with equality when B is a parallelohedron. 
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§§2.2. Juxtaposition Fractals. Hybrid Juxtaposition Fractals 
 
§§§2.2.1. Juxtaposition Fractals 
 
In this section is presented a class of fractals obtained using the juxtaposition function 
h F , defined ([Boju1982], [Boju1994]) by the “Juxtaposition Function”,  for a topological 
disk F in E n , and a symmetry with respect to partial F. For each λ  in (0, 1], consider a 
maximal collection { F p , p = 1, ..., h F (λ )} of sets with disjoint interiors, homothetic to 
F in ratio λ , which have only boundary points in common with F. For each F p , let w p  
be the similitude which sends F into F p .  

For the exterior case, we call the attractor of the IFS { E n  ; w p  , p = 1, ... , h F (λ )} the 
juxtaposition fractal (JF) associated to F, with parameter λ . The method is valid for 
both variants of the juxtaposition function (in the “interior” case, in a similar manner). 
Combining the two variants of this function in a random manner, we obtain a random 
juxtaposition fractal (RJF).  
Next we consider another variant of the juxtaposition function defined for two 
topological disks K, G in E n  and the corresponding JF associated to K and G.  
 
Some properties regarding the fractal dimension of the JF are given in 
[Boju2007_MontrealTech Press]. There are also given the IFS codes corresponding to the 
JF obtained for some pairs (K, G) of elementary patterns.  
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Next, using as generator for juxtaposition of a symmetric convex disk G, a method for 
increase the measure of convexity of a concave topological plane disk K is presented. An 
algorithm for the case when K itself is a polygon is given.  
 
 
 
 
 
§§§2.2.2. Hybrid Juxtaposition Fractals 
 
The Python Program (see §§4.2. Juxtapositin Fractals) is based on the properties (see 
[Kees1992]) of an IFS: it is possible to visualize the successive approximations by 
starting from arbitrary few points. For details see [Boju2007_MontrealTech Press]. 
 

^^^^^^^^^^^^^^^^^^^^^^ 
 
 
§3. Riemannian Regression Submanifolds. Hamilton-Jacobi reduced equation,  
Discrete VTF Methods and D. Holcman-C.C. Pugh Kick Method. Applications in 
Nanotechnologies 
 
 
The present section represents a continuation of the preprint [Boju1994-VTF-Regression 
Riem. Submanif.]. Its purpose is to VTF-regress a continuous function defined on a 
bordered domain in a Riemannian n-dimensional space (M, g).  
The versor type functions (VTF) were introduced in [Boju1976-Thesis] and studied in 
[BojuFilip2004], [BojuFunar1996], [Boju1978-Versor Type Functions], [Boju1978-
Gradient], [BojuPope1978-JDG], [BojuPope1974-Atti]. 
 
In [Boju1994-VTF-Regression Riem. Submanif.], a general method for regressing a 
continuous function w, defined on a bordered manifold D, is presented. The detailed 
procedure consists in two steps, as follows. Firstly, we consider a (versor type function) 
VTF-packing of the Riemannian manifold D which offers a standard proximity network. 
The integral value of w on each tile of the packing is concentrated in the w-center of 
gravity of each tile. Secondly, the weighted cloud is regressed to a VTF-hypersurface, the 
calculus being simplified since the vector field grad f  is a geodesic field. In this case, the 
VTF-method is a generalization of the semi-geodesic coordinates method.   
     Keywords: versor type gradient dynamical system, versor type functions (VTF), VTF-
foliations, Riemannian packings, Riemannian nonlinear regression, geodesic field, 
weighted/ dynamical cloud, disturbing zones of a dynamical system, flight dynamics, 
pathological metabolic activity, viral infection, high resolution standard nearness 
network, pipe inspection microrobotics. 
 
 
§§3.1. VTF Methods 
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3.1.1. Basic concept of VT-gradient dynamical system 

 We consider, in this part, the VTF method. Let Fk(M) be the set of functions of 

class Ck from M to R and D1(M) the set of vector fields of class C2 on M. It is well known 

that, locally, a vector field X is equivalent to a dynamical systemϕ . 

 Let grad be the operator )()(: 11 MDMFgrad → . The vector field )(1 MDZ ∈  

is locally the gradient of a function iff  

),,(),( XZgYZg YX ∇=∇  

where∇  is the Levi-Civita connection.   

 

 

3.1.2. Hamilton-Jacobi reduced equation 

 

3.1.2.1.1. Definition 1. A function )(3 MFf ∈ is a VTF if, for each point ,Mp∈  there 

is a neighbourhood V of p and a function )(3
1 VFf ∈  such that 

.1fgradfgradfgrad =  

The following are equivalent definitions.  

 

3.1.2.1.2. Definition 1’.  f is VTF iff 
( ) ( ) ,XffgradYYffgradX =  

).(, 1 MDYX ∈∀  

3.1.2.1.3. Definition 1’’. f is VTF iff ,: RRh →∃ 3Fh∈ such that ,fhfgrad o=  that 

is f satisfies a Hamilton-Jacobi reduced equation. Denote by VTF(M) the set of all 

versor type functions on M. 

 If f is a VTF, then, locally, over an open set ,MU ⊂  we have a unit dynamical 

system N and the function f1 such that  

.1fgrad
fgrad
fgradN ==  
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The corresponding Hesse tensor field H, defined by ,1fgradHX X∇=  ),(1 UDX ∈∀  is 

a self-adjoint operator. It follows immediately that ⊥N  is H-invariant, that is 

( ) .⊥⊥ ⊂ NNH  

 Some useful properties in our method of VTF-regression are the following: 

P1. For each ),(MVTFf ∈  we have locally ([2]) 

( ) =− kirrikj
ij fffffg2 ,⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

= rk

ij

kr

ij

ji f
x
gf

x
gff  

where ( )( ) ( )( ) ijij
ij

jiijii ggg
xx
ff

x
ff ,,, 1

2
−=

∂∂
∂

=
∂
∂

= being the components of the Riemannian 

metric.  

P2. Let f be in VTF(M); then the trajectories  of the dynamical system locally associated 

with grad f are geodesic lines [2].  

P3. For ),Im( fa∈  let f[a] denote the preimage of the value a with respect to f, that is f[a] 

is a constant level generalized hypersurface of f. If )(MVTFf ∈  then for each point 

Mp∈ and each q situated on the same trajectory determined by p, we have  

( ) ( ),),( qfpfqpd −=  

where d is the Riemannian distance.  

 
…………………………………..……………. 

 
§§3.2. Riemannian Regression Submanifolds & Nanotech Applications 
 
§§§3.2. 1. VTF regressions of a weighted cloud 
 
§§§3.2. 1.1. VTF regressions of a weighted cloud in a Riemannian space  

 Consider a weighted cloud ( ) ikiiii pmp ,, ,= being points from an n-dimensional 

Riemannian space (M, g) and 0>im  the given weights in pi, and f a versor type function 

on M. Put ( )ii pfc = .  

We approach the VTF-regression of the weighted cloud with a f∈VTF(M) by the 

least-squares estimate of a value b, which minimizes the error sum of squares  
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where b is the level of the optimal hypersurface of constant value of f. Let  iε  be the error 

approximation (see [10]), ( ) ,0=iE ε with ])[,( bfpd ii =ε .  

For mi = 1, i = 1, …, k, we have the classical regression problem: to minimize the 

error sum of squares  

( )∑
=

−=
k

i
i bcbq

1

2)( . 

 Usually, we dispose of different VTF-families depending on a scalar or vector 

parameter a  (see, for example, in Rn , the families of planar, cylindrical or spherical VTF 

on Rn - [1-3]). 

Let )(MVTFfa ∈  be such a family. The determination of the optimal fa and of the 

optimal hypersurface of constant level of fa, which realize the VTF regression of the 

weighted cloud, can be done using the generalized least-square method. The least-square 

estimatons for a, denoted by ,â  and for b, denoted by b̂ , minimize the function  

( )2

1
)(),( bpfmbaq ia

k

i
i −= ∑

=

. 

Since in the considered family there may be functions which have the same hypersurfaces 

of constant level, we can impose a reasonable condition for .afgrad  

By introducing an auxiliary fonction h(a), dependent on afgrad , we can obtain 

estimations for a and b. By  Lagrange’s multiplier method, the extremal values of q(a, b) 

are critical points of the function  

( ) )()(),,( 2

1
ahbpfmbaL ia

k

i
i λλ −−= ∑

=

. 

 

§§§3.2. 1.2. VTF regressions on Rn 

 If nn RRVTFf ),(∈ considered with the standard metric, then ([2]) the 

hypersurfaces of constant level of f are 

the special families mentioned above.  
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  Let ( )
kiiini

j
ii mxp

,,1 ,)(
==

 be a weighted cloud of points from 0, >i
n mR  being the 

weight of pi.  

Firstly, we search for a regression by a hyperplane. 

We consider VTF regressions with functions defined by 

,,)( 11 nnn
a Rxxaxaxf ∈∀++= K  with { }0\nRa∈ .  

The hypersurfaces of constant level of function f are parallel hyperplanes given 

by ,,,)( ii
aa xafgradRbbxf ∂∂=∈= 22212 )()( aaafgrad n

a =++= K  

and the dynamical system associated to the vector filed afgrad  is given 

by taxxt +=),(ϕ . Thus, the trajectories of the dynamical system associated to afgrad are 

geodesics of Rn - parallel lines whose director vector is a,  orthogonal to the 

hypersurfaces of constant level of f. Therefore, the VTF regression of a weighted cloud on 

Rn is equivalent to the problem of determining a hyperplane ,: 11 bxaxa nn =++Kα  

with 1=a  such that the sum 2

1
)),(( αi

k

i
i pdm∑

=

 is minimal.  

 The generalized least-squares estimates for a and b, minimize the function  

,)(),( 211

1
bxaxambaq n

i
n

i

k

i
i −++= ∑

=

K  

with respect to the condition 1=a . Now, we can apply Lagrange’s multiplier method as 

described above to find a regression hyperplane. Analogously, we can search for a 

regression hypercilinder or hypersphere. Finaly, the optimal regression will be obtain by 

choosing from the three VTF-family, the one which minimizes the sum of squares.  

 
 
§§§3.2.2. VTF-packings in nanotechnologies and biotechnologies 

 

§§§3.2.2.1. VTF-packings in nanotechnologies 

 Let D be a domain in M, whose border D∂   is a hypersurface S. The VTF 

functions come in handy in the building of a VTF-packing on D. To do this, it is 

sufficient to know a packing Pn-1 on a hypersurface Dn-1 with the property that the 

projection of the domain D onto Dn-1 by the dynamical system grad f is covered by Pn-1. It 
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is preferable for Dn-1 to be included in a hypersurface of constant level of the considered 

function f. In return, Pn-1 can itself be obtained using a VTF transport from a packing  Pn-2 

of a submanifold Dn-2, and so on. 

This method enables us to obtain a standard proximity network, in fact a VTF-network, 

named f-network (see [4]). The f-networks for appropriate )(MVTFf ∈ constitute a good 

frame in a nonlinear problem of nanotechnologies.  

In biotechnology, the VTF f is chosen accordingly with respect to the 

physiological, anatomical and metabolic properties of the considered bio-space/bio-

process which is to be controlled. For example ([9]), the appropriate nano-measuring of a 

circumstantial anatomical ultrastructure - the Nucleolus Associated Bodies in the 

interphasic nucleus - provides information regarding the physiological state of some plant 

or animal cells. This allows us to detect the cells with anomalously intense/pathological 

metabolic activity or with viral infection. 

Also, the high resolution standard nearness network is useful in: Aerospace 

technology, Flight Dynamics in Aerospace technology (see [8]) – the control of the 

disturbing zones of a dynamical system, Pipe Inspection Microrobotics, transcription 

technology, the improvement of a depth of focus, the modeling of 3D objects with respect 

to their shapes and motions, the control of the weighted and dynamical clouds, the control 

of computation algorithms for analysis of n-dimensional structures.  

 

§§§3.2.2.2.  VTF-packings in biotechnologies 

In the biotechnologies, the processes modeled by the dynamical systems, the 

considered case can be generalized by replacing the weighted cloud by a dynamical cloud 

thus: the cloud’s elements are pairs of the form (pi, vi), where 
ipii MvMp ∈∈ ,  and the 

considered bio-space is structured like an n-dimensional Riemannian manifold (M, g).  

 

Conclusion. 

The two methods – i.e. the VT packings and VT regressions – may be considered 

together [Boju1994-VTF-Regression Riem. Submanif.]. Thus, we obtain a general method 

for the regression of a continuous function w, defined on a bordered domain D, with 

),(, gMMD =∂ being an n-dimensional Riemannian space. The procedure consists in 
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two steps, as follows. First of all, a VTF-packing (of the domain D, using a VTF-

foliation) is considered, which allows to discretize the function w and to obtain a 

weighted cloud. Then, the weighted cloud is regressed to a VTF-hypersurface, generated 

by a versor type function f, the calculus being greatly simplified since the vector field 

grad f is a geodesic field.  

…………………………………..……………. 
 
 
§§3.3. VTF Methods: VTF-Methods, Holcman-Pugh Kick Method and Holcman-
Pugh Compactness Riemannian Boundary. 
 
3.3.1. Hamilton-Jacobi reduced equation 
 
The study of  Hamilton-Jacobi reduced equation 3.1.2.1.3. leads to interesting topological 
results in Riemannian Geometry.   
3.3.1.1. (Theorem 4.4., [BojuFunar1987]). The Real Cohomology of the n-Sphere and of 
a Compact, Connected and simply-Connected Riemannian n-manifold with Quasi-
Constant Curvature ([BojuPope78-JDG]) , with H, N > 0, is the same. 
 
3.3.1.2. The general solution of the equation 3.1. [Holcm-Pugh-2007)] is obtained in 
[BojuFunar1987] and used in [BojuFunar1996-ZAA] to obtain a compactness result for 
complete manifolds whose Ricci Curvature is bounded from below. 
 
3.3.2. The Comments from §§§1.10.1. are also relevant in this section. A global approach 
which consists in the study of the extreme values of the curvature or of the some 
substitutes of the asymptotic ones, provides the strong results.  
The Holcman-Pugh Kick Condition ([Holc,Pugh2007] Kick Method point off  “a certain 
minimum amount of extra energy or curvature on a finite exp-shell”) impose 
compactness and, at the same time, a class of Riemann manifolds. This method also 
solves a fundamental dilemma from Mathematical Philosophy. The answer in the 
question on the existence of a Boundary Between Compact and Noncompact Complete 
Riemann Manifolds is unexpected, in a certain “analytical light”: while there is no such 
boundary between convergent and divergent series ([Rudin1976]), the Kick Method 
emphasizes one. The Holcman-Pugh Compactness Riemannian Boundary phenomenon  
([Holc,Pugh2007]) represents another deeply inciting revelation: “the local perturbations 
have no global effect on series, while for curvature functions this is not so”. 

^^^^^^^^^^^^^^^^^^^^^^ 
 
§4. C, TPascal and Python Programming Languages Applications** 
 

There are many and remarkable Applications [© 2006-2007 Valentin Boju & 
Antoniu Boju; The Patents - MontrealTech Register] of the four original Methods, 
Concepts and Programs which are presented in this paper (regarding almost all 
domains of activity), elaborated and drawn up [The Patents - MontrealTech 
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Register] for: Industry, Economy, Architecture – Decorative & Mosaics Work – 
Ceramics & Urban Sculpture – Textile Pictures and Textures, Software and Data 
Technologies, Thermodynamics/hydrodynamics and Phase Stability Calculations, Pattern 
Recognitions, New (Discrete/Differentiable) Digital Metric Curvature Methods (with 
applications in Cosmological Modelling), Cryptography and Security Procedures, 
Interactive Entertainment, Biomedical Applications. 
The current applications of MontrealTech [The Patents - MontrealTech Portfolio - © 
2006-2007, authors], which are in a advanced phase, targe:  
- Graphics, Computer Vision and Image Processing; 
- Energy Units (Compartmented Energetic Bank/Generator Units); 
- Cryptography and Security Procedures; 
- Architecture – Decorative & Mosaics Work – Ceramics & Urban Sculpture – Textile, Pictures and `
 Textures; 
- Computer and Video Games; 
- Biomedical Applications; 
- (Exterior/Interior) Juxtapositin Fractal 
- Riemannian Regression Submanifolds, & Nanotech  Applications 
- Pattern Recognitions & Defence Research Programs. 
 

**. A team of students in MontrealTech, who finished a course of Riemannian Geometry of Doctoral level, did a stage during the 
realization of the programs of the 9th paragraph with the authors, that is Valentin Boju and Antoniu Boju. 
 
§§4.1.B. Hex-Superfractals – Program: C. [ValB-CAB Superfractals Hex-Procedure 
in the Digital Plane & the subsequent C-Program , © 2006-2007 Valentin Boju & 
Antoniu Boju; The Patents - MontrealTech Register, MontrealTech Portfolio - © 
2006-2007, authors] 

 
See Figure at 

Page 381 
 

“The Wonderful SuperFractal = The Fantastic Digital World ” created by Valentin and 
Antoniu Boju – in 2005-2007 ©, as an Expression of The New Energy, marked by “Copyright 
© 2006-2007, Valentin Boju and Antoniu Boju”, i.e. they are copyrighted and protected: the Berne copyright convention - 
All Rights Reserved: [The Patents - MontrealTech Register, MontrealTech Portfolio - © 2006-2007, authors]. The 
use of the specified §1,  §2 and §4 is allowed only for educational purposes under our  permission in written form, but 
not for commercial ones.  
The original music, composed by Valentin Boju, can be listen to the following address:  
http://www.soundclick.com/valentinmusicgroup 
This FANTASTIC COLOR IMAGE is available at: valentin@montrealtech.org,   
cosmin.antoniu@montrealtech.org 
or at: MontrealTech , C.P.78574, Succ Wilderton, Montréal, Qc, H3S 2W9, Canada 
http://pages.videotron.com/nanotech 
Program [L i ; K i ] 
 
By Valentin Boju and Antoniu Boju 
Selected fragments in C 
“Copyright © 2006-2007, Valentin Boju and Antoniu Boju”, i.e. they are copyrighted and protected: the Berne copyright 
convention - All Rights Reserved: [The Patents - MontrealTech Register, MontrealTech Portfolio - © 2006-2007, 
authors].  
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The use of the fragments is allowed only for educational purposes under our  permission in written form, but not for 
commercial ones.  
…………………………………………….. 
 GDate * date= g_date_new(); 
 g_date_set_time_t( date, time(NULL) );  
   
 tmp = text; 
 text = g_strdup_printf("%s_%d", text, g_date_get_day(date)); 
 g_free(tmp); 
  
 switch (g_date_get_month(date))  
  
 gchar *time_txt = get_timer_text(total_time); 
  
 tmp = text; 
 text = g_strdup_printf("SQR_%s-%s-%d_%d_%s", text, t, 
 g_date_get_year(date), current_step, time_txt); 
 g_free(tmp); 
  
 g_free(time_txt); 
  
  g_date_free(date); 
  
 *filename = text; 
 *dirname = dir; 
  
 return; 
…………………………………………….. 
{ 
 guint s, m, h; 
 guint tnow = seconds; /*(int)g_timer_elapsed(maintimer, NULL);*/ 
  
 s = tnow % 60; 
 m = ((tnow - s) / 60) % 60; 
 h = (tnow - s - m * 60) / 3600; 
  
 return g_strdup_printf("%02d:%02d:%02d", h, m, s); 
} 
………………. 
int gtkalgo_pause_computing() 
{  
 if (gtkalgo_is_on_pause) 
  return 1; 
  
 autosave_func(NULL); 
 g_source_remove( glib_idle_event ); 
 g_timer_stop(maintimer); 
 gtkalgo_is_on_pause = 1; 
  
 return 0; 
 } 
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…………………………………………….. 
int gtkalgo_start_computing() 
 
 if (gtkalgo_is_on_pause) { 
   
  int r; 
   
  dlgParameters = create_dlgParameters(); 
   
  if ((algo_step_vector[0] > 0) || (algo_step_vector[1] > 0)) { 
     
 gtk_spin_button_set_value(GTK_SPIN_BUTTON(lookup_widget(dlgParameters, 
"valParameterX")), algo_step_vector[0]); 
   
 gtk_spin_button_set_value(GTK_SPIN_BUTTON(lookup_widget(dlgParameters, 
"valParameterY")), algo_step_vector[1]); 
 } 
……………………………………………..   
  int x, y; 
    x = 
 gtk_spin_button_get_value(GTK_SPIN_BUTTON(lookup_widget(dlgParameters, 
"valParameterX"))); 
  y = 
 gtk_spin_button_get_value(GTK_SPIN_BUTTON(lookup_widget(dlgParameters, 
"valParameterY"))); 
   
  x = abs(x); 
  y = abs(y); 
   
  gtk_widget_destroy (dlgParameters); 
  dlgParameters = NULL; 
   
  if (current_action == 1) { 
   table = g_malloc(sizeof(*table) * table_backup_size); 
   table_size = table_backup_size; 
   g_memmove(table, table_backup, sizeof(*table) * table_size); 
   g_free(table_backup); 
   table_backup = g_malloc(sizeof(*table) * table_backup_size); 
  } 
   
  g_free(masktable); 
  masktable = g_malloc0(sizeof(*masktable) * table_size); 
   
  algo_step_vector_max[0] = MAX(algo_step_vector_max[0], x); 
  algo_step_vector_max[1] = MAX(algo_step_vector_max[1], y); 
   
  current_action = 2; 
  current_step--; 
   
  if (algo_step_vector[0] != x || algo_step_vector[1] != y) { 
   algo_step_vector[0] = x; 
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   algo_step_vector[1] = y; 
    
   stats_t t; 
    
   t.type = STATS_PARAMS_CHANGE; 
   t.newparameters[0] = x; 
   t.newparameters[1] = y; 
    
   add_stat_entry(&t); 
  } 
……………………………………………..void gtkalgo_update_progressbar() 
{ 
 gtk_progress_bar_set_fraction(GTK_PROGRESS_BAR(lookup_widget(winMain, 
 "progressbar1")), algo_status_fraction); 
} 
#define SET_GDK_SEGMENT_COORDS(s, _x1, _y1, _x2, _y2)  
void draw_small_text_int(int x, int y, int number, int zoom, GtkWidget 
 *drawing_area, GdkGC *gc) 
{ 
 void draw_small_char(char c, int pos) 
  int i; 
  for (i = 0; i < num_lines; i++)  
  gdk_draw_segments(drawing_area->window, gc, lines, num_lines); 
 } /* draw_small_char() */ 
  
 int n; 
 n = number; 
 if (n < 10) { 
  draw_small_char(n,0); 
  return; 
 } 
 draw_small_char(n % 10, ((double)zoom * 1.5 / 7)); 
 n = n/10; 
 draw_small_char(n % 10, -((double)zoom * 1.5 / 7)); 
} 
…………………………………………….. 
void draw_sqr(int x, int y, double zoom, GtkWidget *drawing_area, GdkGC 
 *gc) 
{ 
   if (gcs > -1) { 
    gdk_gc_set_rgb_fg_color(gc, &color); 
    draw_small_text_int(dx, dy, gcs, zoom, drawing_area, gc); 
   } 
  } 
…………………………………………….. 
void gtkalgo_drawingarea_do_redraw(int x1, int y1, int x2, int y2, 
 GtkWidget *drawing_area) 
 
void gtkalgo_do_redraw(GtkWidget *drawing_area) 
{ 
 int x; 
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 int y; 
  
 if (algo_need_redraw) { 
   
  if (winInfo) { 
    
   GtkTextBuffer *buffer; 
    
   buffer = gtk_text_view_get_buffer( 
 GTK_TEXT_VIEW(lookup_widget(winInfo, "textview1")) ); 
    
   gchar *text = NULL; 
    
   text = gtkalgo_get_info_text(); 
    
   gtk_text_buffer_set_text(buffer, text, -1); 
    
   g_free(text); 
    
   GtkTextIter iter; 
    
   gtk_text_buffer_get_end_iter(buffer, &iter); 
    
   GtkTextMark *mark = gtk_text_buffer_create_mark(buffer, NULL, 
&iter, 
 TRUE); 
    
 gtk_text_view_scroll_to_mark(GTK_TEXT_VIEW(lookup_widget(winInfo, 
 "textview1")),  
          mark,  
          0, TRUE, 0, 0); 
    
   gtk_text_buffer_delete_mark(buffer, mark); 
    
   gchar *s = g_strdup_printf("Info - [%d, %d]", algo_step_vector[0], 
 algo_step_vector[1]); 
    
   gtk_window_set_title(GTK_WINDOW(winInfo), s); 
    
   g_free(s); 
  } 
     
  gchar *s = g_strdup_printf("Main Window - [%d, %d]", 
 algo_step_vector[0], algo_step_vector[1]); 
   
  gtk_window_set_title(GTK_WINDOW(winMain), s); 
   
  g_free(s); 
   
…………………………………………….. 
     

373



  int i; 
   
  for (i = 0; i < gtkalgo_rgbbuf_width * gtkalgo_rgbbuf_height * 3; 
 i++) 
   gtkalgo_rgbbuf[i] = 127; 
   
  int r, g, b; 
   
  for (x = 0; x < current_d*2; x++) { 
   for (y = 0; y < current_d*2; y++) { 
    int gcs = get_cell_state(x-current_d,y-current_d); 
     

- % % % - 
…………………………………..……………. 

 
 
§§4.2. Juxtaposition Fractals – Program: Python. [ValB-CAB Juxtaposition Fractals 
Procedure & the subsequent Python Program, © 2006-2007 Valentin Boju & 
Antoniu Boju; The Patents - MontrealTech Register, MontrealTech Portfolio - © 
2006-2007, authors] 
 
Program: FRACTAL-Python 
By Valentin Boju and Antoniu Boju 
Selected fragments in C 
“Copyright © 2006-2007, Valentin Boju and Antoniu Boju”, i.e. they are copyrighted and protected: the Berne copyright 
convention - All Rights Reserved: [The Patents - MontrealTech Register, MontrealTech Portfolio - © 2006-2007, 
authors].  
The use of the fragments is allowed only for educational purposes under our  permission in written form, but not for 
commercial ones.  
…………………………………………….. 
 
class Fractal: 
    points = [] 
     
    R = 180 
    mu = 0.333333333 
    iteration = 0 
     
    data = [[], [], [], [], []] 
    fparam = [{},{},{},{},{}] 
     
    seq_length = 0 
     
    last_n = 0 
     
    def f(self, l, x, y): 
         
        c = (self.param['sequence'])[self.iteration % len(self.param['sequence'])] 
        n = 0 
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        if c == "A": 
            n = 0 
        elif c == "B": 
            n = 1 
        elif c == "C": 
            n = 2 
        elif c == "D": 
            n = 3 
        elif c == "E": 
            n = 4 
         
        for i in self.fparam[n]: 
            setattr(self, i, self.fparam[n][i]) 
        for p in self.data[n]: 
            l.append( (x * self.mu + p[0], y * self.mu + p[1], self.iteration) ) 
     
    def __init__(self, param): 
        self.last_n = 0 
        self.param = param 
        self.fparam = [{},{},{},{},{}] 
         
        self.seq_length = len(self.param['sequence']) 
         
        n = 0 
        for f in self.param['files']: 
            f.seek(0) 
            self.data[n] = [] 
            print "reading", f 
            for line in f: 
                if '=' in line: 
                    assign = line.split('=') 
                    if len(assign) != 2: 
                        continue 
                    assign[0] = assign[0].strip() 
                    assign[1] = (assign[1].strip()).replace("\n", "") 
                    self.fparam[n][assign[0]] = eval(assign[1]) 
                    print self.fparam[n][assign[0]] 
                elif ',' in line: 
                    xy = line.split(',') 
                    self.data[n].append( (float(xy[0]) * self.R, float(xy[1]) * self.R) ) 
                    print xy 
            n = n + 1 
         
        self.points = [(0,0,0)] 
        self._prepare_new_iteration() 
     
    def _prepare_new_iteration(self): 
        self._n = len(self.points) 
        self._i = self.last_n 
     
    def run(self): 
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        while self._i < self._n: 
            self.f(self.points, self.points[self._i][0], 
                self.points[self._i][1]) 
             
            if self._i % 2500 == 2499: 
                self._i = self._i + 1 
                break 
             
            self._i = self._i + 1 
         
        if self._i >= self._n: 
            print self._i, self._n 
            self.iteration = self.iteration + 1 
            self._prepare_new_iteration() 
         
        if self.iteration <= self.seq_length * self.param['iterations']: 
            return True 
        else: 
            return False 

………………………………..……………. 
 
§§4.3. VTF Methods – Riemannian Regression Submanifolds & Nanotech 
Applications - Program: TPascal  [ValB-CAB VTF Methods – Riemannian 
Regression Submanifolds & Nanotech Applications Procedure & the subsequent 
TPascal Program, © 2006-2007 Valentin Boju & Antoniu Boju; The Patents - 
MontrealTech Register, MontrealTech Portfolio - © 2006-2007, authors] 
 
The programs are presented in [Boju2007_MontrealTech Press]. 
 

- %%% - 
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The Hypergeometrical Standard Model 
*Marco A. Pereira, 

Citigroup, 390 Greenwich Street, New York, NY 10013, USA 

This paper presents a simple and purely geometrical Grand Unification Theory. Quantum Gravity, Electrostatic and Magnetic 
interactions are shown in a unified framework.  Biot-Savart Law is derived from first principles. Unification symmetry is defined for 
all the existing forces. A 4D Shock-Wave Hyperspherical topology is proposed for the Universe together with a Quantum Lagrangian 
Principle resulting in a quantized stepwise expansion for the whole Universe along a radial direction in a 4D spatial manifold. The 
hypergeometrical standard model for matter is presented. 

1. Introduction 
Grand Unification Theories are the subject of intense research.  Among current theories, Superstring, M-
Theory, Kaluza-Klein based 5D Gauge Theories have shown diverse degrees of success. All theories try to keep 
the current conceptual framework of science.  Kaluza-Klein melded both Electromagnetism and Einstein 
Gravitational equations in a 5D metric. 
Here is presented a theory that departs radically from other theories and tries to bridge the conceptual gap as 
opposed to explore the formalism gap.  Most research is concerned on how to express some view of Nature in a 
mathematically elegant formalism while keeping what we already know.  It has been said that for a theory to be 
correct, it has to be beautiful. 
This work concentrates on what to say, the conceptual framework of Nature instead. All the constructs of 
science, matter, charge, and energy are dropped in favor of just dilator positions and dilaton fields, which are 
metric modulators and traveling modulations, respectively.  There is no concept of charges or mass.  Mass is 
modeled a quantity proportional to the 4D displacement volume at precise phases of de Broglie cycles. Charge 
sign is modeled by dilaton phase (sign) on those specific phases. This mapping is not necessary for calibration; 
there are no calibration parameters in this theory.  The mapping is needed to show that the geometrical 
framework replicates current scientific knowledge. 
We propose that dilators are the basic model of matter.  They are coherences between two states in a rotating 
four-dimensional double well potential.  A single coherence between two 4D-space deformation states or 
fundamental dilator is shown to account of all the constituents of non-exotic matter (elements, neutrons, 
electrons and protons and their antimatter counterparties) and hyper-nuclei (hyperons) on Section 4.  This 
coherence is between two deformation states with 4D volumes corresponding to the electron and proton, or 
electron-proton coherence.  Here the proton, anti-proton, electron and positron are considered to be the 
same particle or the fundamental dilator, just four faces of the same coin. 
The equation that describes these states is not the subject of this work.  In section 2.4, a detailed description of 
the fundamental dilator is given, as well as the origin of the spin quantization. 
Dilaton are the 5D spacetime waves, traveling metric modulations, created by the alternating (back and forth) 
motion of the fundamental dilator from one state of the double potential well to the other.  Since these two 
states have different displacement volumes, spacetime waves are created.  Displacement volumes are the 
missing (extra) volume due to spacetime contraction (dilation).  Let’s say that one has two points separated by a 
distance L in a 4D space with a dilator in the middle.  The distance between those two points will change 
depending upon the phase of dilaton.  If one considers this maximum distance change along the four dimensions 
for each of the two states, would be able to determine the dilator volume on each state and thus fully 
characterize it. 
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In addition to tunneling back and forth, the proton-electron dilator is considered to be tumbling (spinning) as it 
propagates radially (along the radial expansion direction) and that poses a constraint on the spinning frequency.  
Spin half particles are modeled as having a spinning frequency equal to half the electron-proton dilator 
tunneling frequency.  Similarly higher spin particle coherences, e.g. spin N/2, are modeled as a complex dilator 
coherence having a accumulated N/2 spin per full dilator cycle.  A complex dilator coherence will contain many 
fundamental dilator sub-coherences and transmutation notes.  Transmutation notes correspond to 3D rotations 
which change the tunneling phase in phase with the Fabric of Space or 3D Shock-Wave Hyperspherical 
Universe. 
Whenever the word dilator is mentioned within this paper, it will refer to the fundamental dilator or 
fundamental coherence, although there are other coherences in nature and similarly associated particle pairs. 
The intersection of this 4D dilator displacement volume with the very thin 4D Universe (Fabric of Space) 
multiplied by a 4D mass density corresponds to the perceived 3D mass, a familiar concept.  Since both the 
dilator and the Fabric of Space are very thin, the intersection decreases extremely rapidly with spinning angle. 
The interaction between dilators and dilaton fields (generated by other dilators) is directly dependent upon that 
footprint. Since the footprint is non-null only at specific spinning angles, interaction is quantized and 
“existence” is quantized. Where existence was construed according to the following paradigm: “I interact, thus I 
exist”.  Neutrinos have been called “Ghostly Particles” due to their very small interaction with the rest of the 
Universe (dilators). This is the logical basis for the Quantum Lagrangian Principle used to derive the Grand 
Unification Equations. 
A logical framework is proposed on the Hypergeometrical Universe1 section.  This model conceptualize the 3D 
universe manifold as being a very thin 4D shock wave universe traveling at the speed of light in a direction 
perpendicular to itself, along the radial direction.   

Whenever a 3D Universe is mentioned, it should be understood as a very thin along the radial direction 
4D Lightspeed Expanding Shock-Wave Universe. 
Absolute time, absolute 4D Cartesian space manifold are proposed without loss of time and space relativism.  
Thus there are both preferential direction in space and preferential time, but they are both non-observables. 
On the cosmological coherence section, the consequences of the topology of the hypergeometrical universe and 
the homogeneity proposed in the Hypergeometrical Standard Model is shown to result in a cosmological 
coherence, that is, the whole 3D universe expands radially at light speed and in de Broglie (Compton) steps.   
When cosmological coherence is mentioned it is within the framework of absolute time and absolute 4D space 
(RXYZ).   
A new Quantum Lagrangian Principle (QLP) is created to describe the interaction of dilators and dilatons. 
Quantum gravity, electrostatics and magnetism laws are derived subsequently as the result of simple 
constructive interference of five-dimensional spacetime waves2 overlaid on an expanding hyperspherical 
universe described in section 3.  In the electrostatics and magnetism derivation, a one atomic mass unit (a.m.u) 
electron or fat electron is used. This means that the dilatons being 5D spacetime waves driven by coherent 
metric modulations are sensitive to both sides of the dilator coherence.  
Since 3D mass – the mass of an electron or proton from the 3D universe manifold perspective - is sensitive only 
to one phase of the dilator coherence, the phase of the dilator in phase with the 3D shock wave universe, a 
pseudo time-quantization is proposed in section 2.4. 
Section 4 contains a brief description of the Hypergeometrical Standard Model.  It shows that hyperons and the 
elements are modeled as longer coherences of tumbling 4D deformations.  Nuclear energy is proposed to be 
stored on sub-coherence local twisting of the fabric of space.   
A grand unification theory is a far-reaching theory and touches many areas of knowledge.  Arguments 
supporting this kind of theory have by definition to be equally scattered. Many arguments will be presented with 
little discussion when they are immediate conclusions of the topology or simple logic. 

2 
 

                        383

vic
Rectangle



2. Hyperspherical Universe 

2.1 Quantum Lagrangian Principle 

A new Quantum Lagrangian Principle (QLP) is defined in terms of dilator and dilaton fields.  It proposes that 
the dilator is always in phase with the surrounding dilatons at multiples of 2π wavelength. This simply means 
that a dilator, trying to change the metric in a specific region of 4D space, will always do that in phase with all 
the other dilators at phases where its Fabric of Space footprint is maximum. The fundamental dilaton 
wavelength will be called de Broglie wavelength and will be shown in the section 2.4 to correspond to the 
Compton wavelength, since motion along the radial direction is at lightspeed, of a one atomic mass unit particle. 

2.2 Topology 

The picture shown in Figure 1 represents a cross section of the hyperspherical light speed expanding universe.  
The universe is considered to be created by an explosion, but not by a three-dimensional explosion. Instead, it is 
considered the result of a four-dimensional explosion.  The evolution of a three-dimensional explosion is an 
expanding two-dimensional surface.  The evolution of a four-dimensional explosion is an expanding quasi 
three-dimensional hypersurface on quantized de Broglie steps. The steps have length equal to the 
Compton wavelength associated with the fundamental dilator (one atomic mass unit).  All times are made 
dimensional by the multiplication by the speed of light. 

 
Figure 1. Shows the cross-section Xτ  and XR for the expanding universe. The universe length along X is represented by 
the band. X (or Y or Z) is displayed along the perimeter of the circle.  Also shown in the diagram is Φ (cosmological time) 
and radial time projection R.  

Definitions: 

• Cosmological time Φ represents an absolute time frame, as envisioned by Newton and Mach - it is a 
fifth dimension in the hypergeometrical universe model. 

• The radial direction is a preferential direction in 4D space.  It is the radial expansion direction.  This 
direction doubles as a direction on 4D Space and a projection of the cosmological time.  Since they are 
related by the expansion speed (light speed), one can think about the radial direction as the radial time – 
an absolute time projection.   
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• Similarly, τ is any other propagation direction and also a projection of proper time, here called 
dimensional time.  For small velocities with respect to the fabric of space (see description below), the 
dimensional time approximately matches the 4D direction of propagation (atan (v/c)~atanh(v/c)~v/c). 
This maps our local frame proper time to a 4D direction of propagation and it is the source of the 
relativism in the theory of relativity.  Different angles of propagation reflect different relative velocities. 
Notice that although this argument made use of a preferential 4D direction, it could be done using any 
possible referential frame. Within the 3D space, one can only observe the relative angle and relative 
velocity. 

• This mapping done because of the consideration that a Lorentz transformation can be thought as a 
rotation around the directions perpendicular to proper time and velocity by an imaginary angle of atanh  
(v/c).  On a 4D spacetime, when one considers a proper frame of reference, one only travels in time.  
The addition of a fourth spatial dimension means also that when one is in one’s proper 3D frame of 
reference one is also propagating along either the directions R/Φ or r/τ. 

• R keeps a simple relationship with the dimensionalized cosmological time Φ (identical module 
relationship).   

• The Fabric of Space (FS) is just the region of 4D space – a traveling boundary- where the 3D 
hypersurface (shock wave universe) stands at any given time. It is different from the rest of the 4D space 
because it contains imprinted in local deformations, all particles in the universe. 

• Fabric of Space is used in two manners:  
o as the locally non-twisted 4D space – pointing to this traveling boundary-, where local proper 

time projection τ and direction of 4D propagation points in the radial direction Φ/ R and  
o the subject of deformation.  

• Under these conditions one can define a referential frame that is standing still with respect to the FS 
while traveling at the speed of light outwards radially.  This is a preferred referential frame.  Two 
preferred referential frames far apart in 3D space will recede from each other at the Hubble’s speed (see 
section 2.6). 

• After the shock wave universe passes through, the 4D space returns to it relaxed condition. 

• There are two kinds of deformations in 4D space: compression and torsion. The compression is what 
happens in dilators or particles. They represent coherence between two compression deformation states. 

• Torsional states are related to absolute state of motion of neutral matter and are defined by the local tilt 
of the perpendicular to the FS region inhabited by it.  The FS can be under torsional forces in the region 
near dilators. The region where a dilator exists will persist under stress (tilted) as the dilator moves 
towards a region where that stress can be relaxed. 

•  Far from matter (charge), there should be only residual torsional deformation due to the evanescing 
dilatons. On the other hand, the region of space where a “zero spin particle” or neutral matter  or spin 
half particle or charge exists, the local environment is permanently deformed through interactions with 
other bodies’ dilatons.  Deformation will last until all the interacting bodies reach regions where their 
relative velocity matches the Hubble velocity of that part of the Fabric of Space. 

• The angle between R (Φ) and r (τ) defines the local FS deformation. 

• The angle between τ’ (r’) and τ (r) defines the relative degree of local FS deformation. 

•  “Volumetric” and “superficial” dilatons are 5D and 4D spacetime waves define in analogy to 
volumetric and superficial sound waves.  Instead of having pressure or density modulations as in sound 
waves, one has metric (or 4D space) modulations.   
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• Since the hypersurface is our three-dimensional universe, a “superficial” dilaton is a spacetime 
disturbance that propagates along the FS.  Associated zero spin dilators will propagate always in 
perpendicular to the FS, although they might move sidewise between de Broglie expansion steps. 

• For example, in the case of a hydrogen atom,  the spin zero dilator which represents neutral matter are 
created by counter spinning spin half dilators (electron and proton). The Quantum Lagrangian Principle 
makes the dilator dimer (or polymer) to act as a single zero spin dilator.  At each de Broglie step in the 
expansion of the Universe, each component of the dilator dimer changes character (electron to positron 
or proton to antiproton or expansion to contraction). When that happens the individual direction of 
propagation also changes, but the ensemble continues drifting according to the calculations for 
gravitational interaction as shown in section  4. 

• A “volumetric” spacetime dilaton is free to redirect its k-vector on any direction.  Associated non-zero 
spin dilators will be able to freely change their propagation direction in addition to the sidewise motions 
at each de Broglie expansion step. 

• Dilatons and dilators are used interchangeably in certain situations since the QLP requires the dilatons to 
always be in phase (surf) the surrounding dilaton field. 

Figure 1 displays one time dimension (Φ), the Radial coordinate (R) and two time projections (τ and τ’). Each 
reference frame has its own proper time projection.  This figure also shows that the four-dimensional spacetime 
is curved, being the radius of curvature given by the dimensional age of the universe.   
This simple figure eliminates the need for cosmological constant questions, considerations about gravitational 
collapse or anti-gravitational acceleration of the expansion of the three-dimensional universe, since the universe 
is proposed to be four-dimensional plus a cosmological time Φ.  
In this model, the shock wave hyperspherical universe is clearly finite, circular (radius of curvature equal to the 
dimensional age of the universe, that is, the speed of light times the age of the universe).  It is also impossible to 
traverse, since it is expanding at the speed of light. The Cosmic Microwave Background is assigned to a 
Doppler shifted view of the initial Gamma Radiation Burst3. 

2.3 Origins of the Hyperspherical Expansion 

The clues for the creation of this models lies on relativity and quantum mechanics. Relativity states that the 
energy of a particle with rest mass m0 and momentum p is given by: 

 (2.1) 22
0

22 cmpcmcE +==

22
0

222 cmpmcP +== ⎟
⎠
⎞⎜

⎝
⎛

where m is the mass in motion. This equation has implicit assumptions which can be brought into light by 
considering it a momentum conservation equation instead: 

 (2.2) 

Where P is the four-momentum of the particle in motion (at the speed of light) traveling such that its τparticle 
makes angle α with the static reference frame τObserver. Implicit in equation (2.2) is that the particle is actually 
traveling along a four-dimensional space (timed by a fifth time dimension) and has two linear momentum 
components: 

a) Three-dimensional momentum p  
b) Perpendicular momentum m0c in the direction of radial time. 

 
Notice that equation 2.1 should have a version on each panel of Figure 1. 
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In addition, the particle travels at the speed of light in along a hypotenuse with an inertial mass m. Now it starts 
to become clear that the motion of the particle is actually in a five dimensional space (four physical dimensions 
and a time) and at the speed of light, being the three dimension motion just a drift. The trigonometric functions 
associated with a relativistic Lorentz transformation are given in terms of velocity by: 
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Manipulating equation (2.2) and using  one obtains: )cosh(0 αmm=

( ) 22
0

22 cmmv +=⎟
⎠
⎞mc⎜

⎝
⎛

( ) 22
0

2)cosh(2)cosh( 00 cmvmcm +=⎟⎞⎜
⎝
⎛ αα

( ) 22
0

2)sinh(0 cmcm +⎜
⎝
⎛ α

 (2.6) 

 (2.7) 
⎠

2)cosh(0 cm =⎟
⎠
⎞α  (2.8)  

222 111
⎟

 (2.9) 

'' ⎠

⎞
⎜
⎛−⎟
⎝⎠

⎞
⎜
⎛=⎟
⎝⎠

⎞
⎜
⎝

⎛
λλλ ττ x

With  
 de Broglie wavelength for the particle on its own reference frame, traveling at the speed of light in 
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Equation (2.9) is the basic equation for the quantization of relativity. It describes the motion of a particle as the 
interaction of two waves along proper time projection and three-dimensional space. The imePrτλ , that is, the 
projection on the τ’ axis of the wave propagating along the τ axis (resting reference frame) is given by: 
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)sinh(α
Prλ
λτ =

imex

 (2.11) 

This means that the projected de Broglie time-traveling wavelength is zero when the relative velocity reaches 
the speed of light.  Zero wavelengths means infinite energy is required to twist spacetime further.  The rate of 
spacetime twisting with respect to proper time relates to the power needed to accelerate the particle to a given 
speed.  From equation (2.5), acceleration in the moving reference frame can be calculated to be: 

'
2

Pr τ
)tanh(α

d
con ime =

dAccelerati  (2.12) 

In the particle reference frame the acceleration has to be given by Newton’s second law 

'
)tanh(2

0Pr0 τd
dcMonAcceleratiMForce ime ==

α  (2.13) 

This means that any force locally twists spacetime, and not only gravitation as it is considered in general 
relativity. It also shows that as the relative speed between the two reference frames increases towards the speed 
of light, the required force to accelerate the particle approaches infinite. The same reasoning can be done for the 
concomitant rotation perpendicular to RX, resulting in the replacing the minus sign by a plus sign on equation 
(2.9) and the recasting equations (2.10) and (2.11) in terms of trigonometric functions as opposed to hyperbolic 
functions. Rotations around τX or RX result in a real angle α= arctan(v/c). 
Figure 2 below displays the particle as a de Broglie wave oscillating as a function of cosmological time 
Φ, propagating along R.  This is a proper reference frame plot, that is, the particle is at rest at the origin with 

respect to the fabric of space and only travels along the radial time 
direction R.   
 
Figure 2.  This model shows a de Broglie oscillation as a function of 
Cosmological Time Φ using the proxy of time R.   

The diagram below represents the same observation from a moving 
frame of reference (relative velocity c times tan(α)): 

 
Figure 3. Projection of de Broglie Wave in the moving frame of reference. 
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2.3.1 Energy Conservation of de Broglie Waves: 

The total kinetic energy, calculated in terms of de Broglie momenta, is equal to the Relativistic Total Energy 
value of a free particle. The total energy is M0c2 in the proper reference frame and equal to: 
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in the moving referential frame. 

2.3.2 Phase Matched de Broglie Wave Interpretation of a Particle 

Let consider a particle as a de Broglie wave.  In its own referential, it just propagates in the direction of radial 
time R, as in figure 2.  On a moving reference frame, shown in figure 3, the de Broglie wave is decomposed in 
two: 

α
• One with wavelength 

τλλ
cosh(1

Pr

=
imex

)
 propagating along x 

α
• A second with wavelength 

ττ λλ
)sinh(1

=
Prime

 propagating along τ. 

Their nonlinear interaction results in: 
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ee

 (2.16) ψ

λ
or two waves propagating in the direction of α and –α with wavelength equal to e

)cosh(α
.  Thus a particle can 

be described as a phase matched wave propagating along its dimensional time direction as the hyperspherical 
universe expands as a function of cosmological time. 

2.3.3 The Fundamental Dilator 

The fundamental dilator is the paradigm behind the Fat Electron (one a.m.u. electron) used in the derivations of 
Electrostatic and Biot-Savart Laws.  I modeled “particles” as coherences between 4D stationary states of metric 
deformation.  These coherence can have spin (rotation along any axis perpendicular to R), and nuclear angular 
momentum (rotation around any axis in the Fabric of Space). 
Since the boundary where the Universe (3D) is located is moving at the speed of light along R, there isn’t the 
concept of particle since that doesn’t include the inherent lighspeed motion and has inherently some 
immutability assumptions. 
The dilator is by definition mobile and always tunneling back and forth.  It can have non-zero spin.  In the 
Hypergeometrical Standard Model in section 4, all particles models are shown to be decomposable into 
variations of the fundamental dilator.  Different phases of the fundamental dilator correspond to Proton, 
Electron, Positron and antiproton. 
There is an obvious analogy to musical notes. Each dilator phase (proton, electron, antiproton and positron) can 
be thought as dimensional notes (notes that modulate the space metric as opposed to air density). 
Next is a diagram showing the states involved with the fundamental dilator.    
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2.3.4 Electron Model 

Particle Symbol Rest Mass 
(Mev/c2) 

Decay 
Reaction 

Spin Coherence Lifetime 

Electron e- 0.510998918 e- 1/2 Stable 

 
Figure 4. 4D Stationary Deformation State diagram for electron 
The coherence four notes are meant to repeat forever. 
Where p=(2/3,2/3,-1/3),e=(0,-2/3,-1/3),e*=(0,-1/3,-2/3) are a subset of states involved in the three most 
common “particles”= proton, electron and neutron.  Below is another representation of the electron and 
positron.  Notice that the first and last elements of the coherence chain are the same and that the coherence 
repeats itself for its lifetime.  In the case of a proton/electron, that lifetime is infinite, since that coherence is 
between two ground states. 
This is an effort to represent a tumbling 4D object, which changes shape as it tumbles. Notice that the sidewise 
states have no FS overlap. Since in the theory, there is an absolute time, one can define an absolute phase and 
that is what distinguishes an electron from a positron. Later it will be clear that more complex coherences 
involving the e* state (neutrino) will result in a phase shift of the tunneling process with respect to the tumbling 
process, thus modifying which state is in phase with the shock-wave universe. 
The colors are shown only for states that have both a FS overlap and the same frequency as the fundamental 
dilator.   
Another important element of the model is the bolding of the third axis length (e.g. p=(2/3,2/3,-1/3)). This 
means that the spin is a tumbling process around and rotational axis perpendicular to both the radial direction 
(perpendicular to all three spatial coordinates and the z coordinate).  This defines a 4D angular momentum 
which has to be conserved.  More complex coherences like the ones associated with Delta and Sigma particles 
differs just by the final spin and thus by how the sub-coherences tumbles to make up the final amount of 
spinning. 

 
Figure 5.  Dimensional notes associated with Electron and Positron. 

0,-1/3,-2/3

0,-2/3,-1/3

2/3,2/3,-1/3

2/3,-1/3,2/3
2/3,0,1/3

0,-1/3,1/3
0,-1/3,1/3

0,1/3,-1/3

2/3,1/3,0

Electron
0,-1/3,1/3
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Yellow (ligther)= positive charge. 
Green (darker)= Negative charge. 
White = Invisible in 3D due to 4D orientation – perpendicular to the Fabric of Space. 

2.3.5 Proton Model 

Similarly for a proton: 
Particle Symbol Rest Mass (Mev/c2) Decay Reaction Spin Coherence Lifetime 

Proton P 938.3 Unobserved 1/2 Stable[1] 

 

 
Figure 6. 4D Stationary Deformation State diagram for proton 
The coherence four notes are meant to repeat forever, thus the fourth state represented is shown connecting to 
the initial state emphasizing the closing of the coherence cycle. Belly up states represent anti-states (anti-proton 
or positron states). 
Here is the representation of a proton and an antiproton. 

 
Figure 7. Dimensional notes associated with Proton and anti-Proton. 

2.36 Shadow Physics 

The meaning of Shadow Physics becomes clear if one remembers that the left panel of Figure 1 shows a 4D 
space with a 3D Shockwave Universe while the left pane only shows the 3D Shockwave.  This means that any 
Physics which takes place in 4D will have to be projected onto the 3D hypersurface. 

Proton

0,-1/3,-2/3

0,-2/3,-1/3

2/3,2/3,-1/3

2/3,-1/3,2/3
2/3,0,1/3

0,-1/3,1/3
0,-1/3,1/3

0,1/3,-1/3

2/3,1/3,0

0,-1/3,1/3
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That includes the Wave Physics presented in section 2.3.  This means that section 2.3 will refer to the right 
panel of the Figure 1 if one replaces the hyperbolic trigonometric function by their trigonometric counterparties, 
ατ by αr and τd  by dr . 

The revision of Newton’s Second Law in section 3 will make use of the same Shadow Physics argument. 

2.3.7  3D and 4D Masses 

The derivations in section 4 are done in the RXYZ and yield the acceleration for a single particle subject to one 
kilogram mass or to one kilogram of charge.  Notice that acceleration is not force.  To obtain a force, which is a 
3D (ФXYZ) concept, one has to multiply it by a 3D mass. To understand why one would use a one atomic mass 
unit electron, and what are the 3D and 4D masses, one has to see the process in 4D. First one needs to 
understand neutron decay to have some representation of the electron and proton 4-D deformational states. 
The hypergeometrical standard model for the neutron decay process is shown next: 

 neutron -> proton + electron + anti-neutrino 
Where the 4D deformation states are given: 
 (2/3,-1/3,-1/3) -> (2/3, 2/3,-1/3) + (0,-2/3,-1/3) + (0,-1/3, 1/3)   (2.20) 
respectively. 
Conversely: 

 proton + electron -> neutron + neutrino     
 (2/3, 2/3,-1/3) + (0,-2/3,-1/3) -> (2/3,-1/3,-1/3) + (0,1/3, -1/3)   (2.21) 
The representation of the neutron decay is presented here just to showcase how one thinks about nuclear 
chemistry in the hypergeometrical universe framework.  The “quark” numbers are not meant to be considered 
the quark composition of the particles. It is an equation of 4D volume conservation and the numbers represent 
the three axis lengths of a 4D ellipsoid of revolution. Negative numbers just means that they have opposing 
phases.  The total 4D volume of all particles in the universe should add up to zero. Any particle can be 
described through these types of equations and that will be discussed elsewhere. Notice that no number was 
given to the fourth dimension. There is no mentioning of the residual length of the fourth coordinate for 
simplicity, but it is certainly smaller than the others, thus the resulting skinny profile when the dilator is rotated 
by 90 degrees. This assignment was done considering the lowest 4D volumes or lowest numbers, the number 
ONE can be decomposed for representing the nuclear reaction (neutron decay). 
This is clearly unorthodox, since the electron is not supposed to have a quark composition.  

 
Figure 8. The figure above show an electron-proton dilator as it tumbles during two de Broglie wavelength universe 
expansion, with the two possible initial phases. The left (right) scheme corresponds to an electron (proton).  
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The red dot indicates that the coherence is on the proton side (2/3, 2/3,-1/3), while the green rectangle indicates 
that the coherence is on the electron side (0,-2/3,-1/3). Spin has been modeled as an extrinsic rotation 
perpendicular to RX.  Spin half means that the dilator performs half rotational cycle for each de Broglie 
expansion step. Notice that the representation of spin as a 4D rotation is distinct from orbital momentum L and 
total Momentum J.  This is a four-dimensional space theory and one has to have angular momentum 
conservation in four dimensions, thus the rules for total angular momentum conservation are valid. 
Orbital momentum L and total angular momentum J are 3D concepts and will result from the projection of the 
equations of motion solution on the 3D hypersurface. Quantum mechanics replication is outside the scope of 
this paper. The behavior required by the quantum Lagrangian principle has the similar traits to the Bohr model. 
If one considers that in the prescribed QLP 4D trajectories, the electron riding the 4D dilaton wave will also ride 
its 3D projection -the corresponding de Broglie matter wave- then it becomes clear that QLP will immediately 
reproduce the Bohr hydrogen model and more. 
Now, one can define the 3D and 4D masses. From Figures 6 and 7, it is clear that what distinguishes an electron 
from a proton is a rotational (spin) phase.  This means that our 3D interactions (material existence) support a 
pseudo time-quantization or intermittent interaction on quantized time steps.  Thus 3D masses are the masses 
one observes at de Broglie expansion phases 0, 2π, 4π….  It is worthwhile to notice that on the de Broglie 
expansion phases π, 3π, 5π... (when the dilator character changed totally and the 4D volume reaches a 
maximum) the FS overlap is minimal. These de Broglie phases correspond the perpendicular spinning phases.  
Notice that an hydrogen atom would go through a charge reversal at each 2π tunneling phase shift, but its 3D 
mass would not change and the atom would still be neutral and have total spin equal to zero (plus angular 
momentum which is a 3D concept). It takes a 4π or two de Broglie cycles for any half-spin dilator to reach its 
initial state. 
In the case of neutral matter, we considered that a charge reversed hydrogen atom to be an equivalent state, thus 
in Gravitational interaction, zero spin “particles” have a cycle equal to a de Broglie cycle.  Another way to think 
about this is that if one considers an electron or proton to have a one atomic mass unit 4D mass then a hydrogen 
atom would have a 4D mass 2 a.m.u and thus a de Broglie wavelength half of the one of an electron or proton. 
In the case of an electron, the de Broglie expansion phase π corresponds to a skinny or sidewise proton (nothing 
to grab).  Interaction is considered to be proportional to the 3D Mass (as in Newton’s Gravitational Law).  This 
also means that as soon as the dilator rotates, the overlap with the FS goes to zero (or thereabouts), thus 
quantizing interaction or perceived time.  This is the supporting argument to the Quantum Lagrangian Principle. 
In this work, we are not presenting the equations of motion of the 4D tunneling rotor, since they are not 
necessary for the understanding of the physical model. They are not needed either for the proposed grand 
unification theory. One only needs to know that 4D volumes are associated with electrons and protons and that 
electrons and protons are the two sides of the tunneling system.  One also has to keep in mind that the FS 
overlap of this 4D volume is proportional to the corresponding 3D mass or simply particle mass. The detailed 
shape of these states also doesn’t matter for this discussion.  One only needs to know that the thickness (radial 
dimension thickness) of these states is much smaller than the de Broglie (Compton) wavelength of the dilator 
(one a.m.u. particle) to understand that when the tunneling rotor (dilator) is rotated by any angle, it should show 
a much smaller volume from the perspective of the 3D universe. 

 
What would be the meaning of a 4D Mass? 
The 4D displacement volume is responsible for the dilaton creation. This means that from the model proposed 
in Figure 4-8,  proton, electron, positron, and antiproton all have the same 4 mass, that is the far-field dilaton 
intensity is independent upon which phase one starts with. Since these transitions are in phase with the dilaton 
wave (both dilator and dilaton travels at the speed of light along R), the dilator amplitudes are added coherently. 
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The 3D mass is just the volumes in contact with the fabric of space.  Due to spinning and tunneling, this overlap 
is sensitive to which phase is in-phase with the Fabric of Space. An electron will always be an electron unless it 
grabs a half muon neutrino to transmutate into a positron.  This will become clear in section 4. 
Remember that in a geometrical theory, mass has to be related to a 4D displacement volume. From the point of 
view of four-dimensional waves being generated by coherently located dilators, it doesn’t matter if the proton or 
electron are standing up or laying down, the 4D displacement volume is the same. The 4D displacement volume 
is what creates the dilatons.  The larger 4D volume, the larger the dilaton wave created. This means that the 4D 
mass of an electron is equal to the 4D mass of a proton - approximately one atomic mass unit. This might sound 
strange but it is a proportionality reason, it is an identity minus a constant. One atomic mass unit corresponds to 
a standing-up proton and a standing-up electron which is the exactly the mass of a hydrogen atom. This is an 
approximation because of the relativistic shrinking of volume as a function of relative motion.  The correction 
factor should be, in terms of 4D volumes, equal to (standing-up electron + laying-down proton)/(standing-up 
electron + standing-up proton). In other words, a standing-up electron (proton) has a different perceived 4D 
volume than a laying-down electron (proton). This correction factor should be related to the electron 
gyromagnetic ratio. From there, one should be able to derive an instantaneous tangential speed.  

2.4 Quantization of Time and the Fat Electron 

The theory makes use of a fat electron, that is, a one atomic mass unit electron in the derivations on sections 3.1 
and 3.2. 
The recovery of Newton’s, Gauss and Biot-Savart Laws indicates that the usage of a fat electron is appropriate 
and supports the fundamental dilator model of matter.  
If matter can be described with the usage of the fundamental dilator, then interaction among dilators only 
happens at specific dilator spinning angles and time can be said pseudo-quantized.  This means that from our 
perspective it is like the Universe only exists on given time steps. 
Of course, this is easy to understand on the RXYZ cross-section. On the ФXYZ, each inertial frame has its own 
time projection and the quantization will vary depending upon the FS angle associated with that inertial frame. 

2.5 The Meaning of Inertia 

From equation (2.12) it is clear that inertia is a measure of the spring constant of spacetime, that is, how 
difficult it is to twist spacetime.  Any change in the state of motion also changes the direction as referred to the 
absolute referential frame RΦ, which means that inertia is also a measure of how difficult it is to locally twist 
the fabric of space. 
Notice that Newton’s first equation (equation 2.13) can be recast as an equation stating that the stress on the 
fabric of space is the same on both projections shown in figure 1.  The stress as seen from the left cross-section 

shown in Figure 1, is giving by the product of a cross-section a rate of deformation 
dr

Rd )tan(α
 multiplied by the  

a unitary 4D volume 1. 
Similarly, on the right cross-section of Figure 1, the same stress is seen as a product of the rate of deformation 

τ
τ

d

αd )tanh(
  times the 4D volume FS overlap m, thus resulting in the geometrical version of Newton’s Second 

Law. 

dr
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d

d
m
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The usage of a unitary 4D volume is convenient since I also proposed a Hypergeometrical Standard Model 
where Proton and Electron are just two phases of a four dimensional deformation coherence (fundamental 
dilator).  Under this paradigm the 4D volume adds up to the sum of the 4D volume of a proton plus the 4D 
volume of an electron. Since the mass of a Hydrogen atom is one atomic mass and it corresponds to an electron 
and a proton as seen in our 3D space, the 4D Mass can be easily understood.  A proton state 4D FS overlap is 
1836.15267247 times larger than the 4D FS overlap of the electron state. 
To obtain the force (stress) needed to create such a strain, one needs to multiply the strain by the area subject to 
it. In the 4D hyperspherical paradigm, this means that the mass is proportional to the 4D FS overlap of the 4D 
displacement volume associated with the objects (particles). 
This identity is used thoroughly during the grand unification calculations on section 3. 

2.6 Why do things move? 

2.6.1 Hypergeometrical Newton’s First Law 

The relaxation of a fabric of space deformation is considered within this theory to be the cause of inertial 
motion. Two objects would act upon each other and then distance themselves until their interaction is 
vanishingly small. Under those conditions their distance would grow until they reach their Hubble equilibrium 
position, that is: 

 (2.17) v libriumHubbleEquiHubble LC *=

c
Rv D

rseAgeOfUnive
4*

L libriumHubbleEqui =  (2.18) 

 
Where it is clear that the Hubble constant is given by: 

D
rseAgeOfUnive

Hubble R
cC 4=

D
rseAgeOfUniveR4

 (2.19) 

Where  is the dimensionalized age of the Universe or circa 13.7 billion light years 

The 4D radius of the universe is shown in Figure 1, and it is equal to the age of the universe times c. At that 
point, 4D space would be relaxed and their distance would grow governed by the universe expansion.  Even 
though matter would be standing still with respect to the FS, their relative motion would continue at the Hubble 
speed forever. The fraction of the universe that is relaxed at any given time and direction can be measured from 
the distribution of Hubble constants.  The narrower the distribution of Hubble constants from a given region of 
the Universe, the more relaxed that region is. Needless to say, this is the underlying reason for Newton’s 
first law. The proposed topology implies that the Big Bang occurred on all points of the shock wave universe 
(or the currently known 3D Universe) at the same time.  Since matter is considered to have rushed away from 
each and every point of the 3D universe in a spherically symmetric manner, the Hubble constant has to be a 
constant for the average. Other cosmological implications will be discussed in a companion paper. 
Equation (2.16) might seem obvious but it is not.  There are questions about why the Hubble constant is not 
constant.  In this theory it is clear that the Hubble constant relates to the average velocity in a given region of 
space and thus it should not be a constant applicable to each and every observation. 
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2.6.2 Why is the Speed of Light the Limiting Speed 

In this model, in a de Broglie universe expansion step, the furthest a dilator can move is one de Broglie 
wavelength sidewise, that is, along the spatial direction (see Figure 1 RX cross-section).  That would result in a 
45 degrees angle with respect with R.   
The proposition of this theory is that this is the real reason for Lorentz transformations asymptotic behavior and 
that inertia is really a measure of the difficulty to bend local 4D space. In section 2.3 it became clear that they 
are the same rotation, driven by the change in velocity on both cross-sections of Fig.1. 

From Hubble considerations and from examining Figure 1, it is clear that the maximum absolute speed is π*c, 
but cannot be measured because one can never see or reach anything beyond one radian in the shock wave 
universe. 

2.7 Cosmological Coherence 

The coordinated actions of dilators implicit in the proposed Lagrangian principle mean that even though the 
dilator is a 5D spacetime wave generator it behaves as a wave, thus implicitly replicating wave behavior.   Its 
position is determined at each de Broglie step according to the local dilaton environment. 
The concept of 4D spacetime deformation coherences generating waves is created in analogy with 
electromagnetic waves being created by electronic coherences.  In the case of spacetime coherences, the 
coherences for the fundamental dilator (proton-electron dilator) are never dephased.  Dephasing would result in 
proton or electron decay or disappearance.  The states corresponding to the proton and to the electron are 
considered to be the ground states for each one of the two wells, thus they cannot decay further, only dephase. 
All matter in gravitational and electromagnetism studies here modeled are composed of protons, electrons and 
neutrons, thus are composed of this fundamental dilator.  Although current understanding of charged particles 
associates with them a gravitational mass, their gravitational field could never be measured. If it were to exist, 
their electric field would be 1036 times larger than their gravitational field.  
In this model, charged particles have no gravitational field, since in this model there is only one kind of 
interaction and two kinds of responses.  
The Quantum Lagrangian Principle means that all matter, charged or not, is synchronized with the surrounding 
dilatons (in the RXYZ cross-section), thus generating a cosmological coherence. 
This idea of a cosmological or macroscopic coherence might seem unexpected but it is built-in in the concept of 
field.  Fields are constructs derived from electromagnetism and gravitation equations.  In a purely geometrical 
theory, which has been the goal of many scientists and philosophers for thousands of years, there should be only 
a few constructs: space, space wave (metric modulations), and local and global symmetry rules (angular and 
linear momentum conservation) adapted to the appropriate constructs. There shouldn’t be mass or charge in a 
purely geometrical theory, only displacement volume and phase.  Returning to the concept of fields, when one 
consider gravitation/electrostatics to be an extensive properties of mass/charge, one is implicitly adding the 
corresponding wave amplitudes within an implicit geometrical theory without regard to their phases, that is, 
fields imply coherences.  This is a fine point that has been missed since nobody planned to eliminate the 
concept of mass and charge to build a geometrical theory.  Einstein’s gravitation theory used mass to deform 
spacetime.  Kaluza-Klein also used mass to deform spacetime and created a compact dimension to store the 
electromagnetic fields. In this theory, coherent dilatons controls dilators motions in a mutually consistent 
cosmic symphony. 
Figure 3 displays two inertial systems with the same origin. System with distinct origins would have an 
additional phase-shift due to the retarded potential interaction.  This is the reason why all the waves in a multi-
particle body can have their amplitudes added together, as opposed to having their amplitudes averaged out to 
zero due to a random phase relationship. It shows that a particle state of motion does not modify its phase 
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relationship with the expanding hypersurface (3D Universe). The particle is always phase matched to the rest of 
the universe.  This is the meaning of physical existence.  Our concept of existence is based on interaction.  If a 
particle had a de Broglie wavelength different from the one of the fundamental dilator, its interaction would 
average out to nothing.  No interaction means no material existence.  A neutrino is an almost perfect example of 
this pattern – it still interacts a little. The phase matching condition implies that the entire universe is in phase 
(lived the same number of de Broglie cycles) as it propagates along the radial direction R. This also means that 
the universe is thin along the radial direction of propagation (much less than one de Broglie wavelength thin). 

The number of de Broglie cycles a particle passes through is independent upon the angle α (relative 
velocity). This means that any dilator of a given type is always in phase with another of the same type, 
irrespectively of its trajectory through the universe. It also means that protons, electrons, neutrons 
created in the dawn of the universe kept the same phase relationship with all the other protons, electrons 
and neutron of the universe throughout the ages.  The same is true for any particle created at any time.   

This coherence is essential in creating a quantum gravity theory and it is essential to the hypergeometrical 
theory.  In fact, cosmological coherence is a hypothesis and a corollary of the hypergeometrical theory, because 
one could not construct a geometrical theory without a cosmological coherence due to the extensive property of 
gravitational, electrostatic and magnetic fields. 

2.10 The Meaning of a Charge 

From section 2.9 it becomes obvious what is the meaning of a charge. It is only the in-phase sign of the dilation.  
A proton is positive because it is dilated as a proton – it has proton 3D mass or proton 4D Volume, when 
observed by the shock wave universe.  An anti-proton would have the same 3D mass but the 4D displacement 
volume would be negative, that is, the modulation in metric had the opposite effect on 4D Space.  The 
difference in 4D Volume on specific phases is why a proton and an electron do not annihilate each other, as do a 
proton and an anti-proton.  Any annihilation is the result of dephasing a coherence between a dilator state and 
the Zero state.  The final volume should be zero and that is only true for particle-antiparticle pairs. A coherence 
between an electron-positron pair and the zero state is an oscillating dipole. This decays into zero by the 
emission of an electromagnetic wave. 

2.11 Hypergeometrical Newton’s Second Law 

Up to now, Science has only paid attention to the left panel of the figure 1.  Newton’s Second Law  F=m.a can 
be rewritten as: 

τ
τα

d

d
cmF

)tanh(2
0=  

This law was conceived without providing any guidance on how to calculate F.  Without guidance, scientists 
discovered Gravitation and Electromagnetism and inferred the Strong and Weak forces.  Strong force was 
concocted to explain why a theoretical construct (Quarks) were not seem by themselves in nuclear scattering 
experiments.  Weak force was concocted to explain Beta decay. 
I propose that Newton’s Second Law to be rewritten in geometrical terms following the Stress/Strain paradigm 
in the two cross-sections shown in Fig.1. 
This means that there wouldn’t be any side unknown.  The “observed” change in angle in the RXYZ cross-
section would correspond to an observed change in velocity and “Force” in the τXYZ cross-section.  I created a 
mechanism to guide the interaction of dilators and the Quantum Lagrangian Principle to guide their motion in a 
dilaton field. 
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τdDdrDF 0304

DStress 4

Φ+DStress

ταα d
cmrd
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)tanh(2)tanh(2

==  

Within a single de Broglie step, angles are very small and tanh(α)=tan(α) 
Where one introduce the concept of 3D and 4D masses.  3D masses are the masses we associate with particles 
in our daily experience, they correspond to the observed 4D displacement volume on our shock wave 3D 
Universe.  One does not observe any (very small) 3D volume when the dilator is rotated.  4D Masses are the 
masses associated with the Hypergeometrical Standard Model and the Fundamental Dilator model of matter. In 
the Hypergeometrical Model, the 4D mass of an electron or proton is equal to one atomic mass unit in first 
approximation. 
The “Forces” created by the interaction between dilators locally change the orientation of the Fabric of Space.  
We propose that the Stress along both cross-sections to be equal. The physics supporting this statement is that 
the twisting along both cross-sections is caused by the same dilator-dilator interaction.  The resulting strain 
along each cross-section will vary depending upon the dimensionality of the projected space: 

StrainDAreaDStressRX .44 ==  

=Φ+=Φ StrainDAreaDStressX 3.33  

Let’s make Area 4D =1 then Area3D is just the overlapping of the unitary dilator 4D volume with the FS. 
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Where  and .M0 is the electron or proton mass in a.m.u depending upon which one 

chooses to study in Electromagnetism (spin half) or one atomic mass unit (Hydrogen atom – spin zero) if one 
chooses to study Gravitation. The 4D mass of an electron or proton is one a.m.u. by a proportionality reasoning. 

4D oD3

If one considers that 

 
2

)tanh(

c
onAccelerati

d

d
⇔

τ

ατ  

one recovers the familiar form of Newton’s Second Law, otherwise one has a purely geometrical law: 
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Relating local deformations of the Fabric of Space in two cross-sections of the Hypergeometrical Universe.  To 

calculate all the “forces” in the Universe one just need to calculate 
dr

rd )tan(α
 on the RXYZ cross-section and 

multiply it by the number of dilators.  This is what is done in the next section. 

3. Force Unification 
3.1 Quantum Gravity and Electrostatic Interaction 
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Let’s consider a body and a particle interacting through their four-dimensional waves.  The body will always 
have a kilogram (of mass or charge) and the particle will always be a one a.m.u. (atomic mass unit) particle 
(~neutron or hydrogen atom).  For the gravitational interaction, this particle will have zero spin, while it will 
have spin half for the electrostatic interaction. Although the four-dimensional wave interaction is taking place 
on the hypersurface of a four-dimensional expanding hypersphere, one will make use of cross-sections to 
calculate interference patterns.  Interference is considered on each de Broglie expansion of the hyperspherical 
universe. One can briefly describe the source of waving as a four-dimensional particle (four-dimensional 
ellipsoid of revolution or particle X for simplicity).  The X particles are characterized by four axes lengths.  
Three axes lengths correlate with the quarks composition of matter. The fourth-axis always points in the radial 
time direction.  Needless to say, different quarks (axis lengths) and different rotational states around the four 
axis will be sufficient to maps all known particles (photons, mesons, neutrinos, etc). Volume (mass) tunnels in 
an out of the three-dimensional space for spinning particles (particles with non-zero spin) and out and in 
towards the radial time dimension.  Spin is considered to be a special rotation, since the rotation axis is 
perpendicular to radial time and one of the spatial coordinates. That gives spinning a different effect; it brings 
the particles in and out of the fabric of space, thus allowing for a realignment of the k-vector of associated 
spacetime waves. Let’s consider the interaction through a two-dimensional cross-section (X x τ). Particle one 
(one a.m.u “zero spin neutron” or fat electron) sits on x=0, while particle two (the body of 1 Kg) sits on x=R0. 
The four-dimensional dilatons are embedded in a fifth dimension (cosmological time).  A position in this space 
is defined by the following vector: 
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 using director cosines α, β and γ.  

r is the radial dimension on the RXYZ cross-section.  (3.1) 
At time zero, the positions for particles 1 and 2 are given by: 
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      and      (3.2) 

 
After a de Broglie cycle, one has these three vectors: 

    and      and       (3.3) 

λ ) is the unperturbed crest of the four-dimensional wave of particle 1 after a de Broglie cycle.  r( v is the 
position of the same crest under the influence of particle 2.  
The k-vector is given by: 
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Where  is the local metric of the five-dimensional space.  Again, cosmological distances would require a 

further refinement and the usage of a non-local metric.  This is not required in the calculation of near-proximity 
forces.  In the derivation of the Biot-Savart law, g will be rewritten with regard the corresponding non-zero 

relative speeds. Notice the ½ phase dependence on k-vector, corresponding to the fifth dimension for a half-spin 
fat electron.  

And 
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  (3.5) 

for a “static zero spin neutron ” forward time traveling wave.  Notice that the dilaton and the dilator are treated 
as one due to the QLP. Where  

• N=1Kg of Matter ≅1000 Avogardo’s Number=6.0221367360E+26 particles of type 1. 

• λ1 ≅ h*1000*Avogardo/(1 Kg x c)= 1.3310E-15 meters ( in the MKS system). 

• λ2=λ1Kg≅ h/(1Kg x c)= 2.2102E-42 meters ( in the MKS system). 

• GGravitational is the gravitational constant = 6.6720E-11 m3.Kg-1.s-2 

• Single electric charge ( Coulomb). 196022.1 −E

• qe is the effective value of the single electric charge= charge divided by a corrective factor of 
1.004145342= 1.59556231E-19 Coulomb 

• ε0=permittivity of the vacuum = 8.8542E-12 C2.N-1.m-2 (MKS) 

Starting with the standard MKS equation for electrostatic force between two one Kg bodies of electrons (one 
a.m.u. “electrons” or “protons”) = x Coulombs, one obtains: 
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E

The dilaton for a single particle can be represented by: 
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where 

• || means absolute value 

• ( ) rkrkrkf vv v vv v  .2.1),( 11 πθ −=

• Where θ is the Heaviside function. 

• P (absolute value of the phase volume) is 3.5 for a particle with spin half and 3 for neutral matter.  The 
meaning of P is that for one de Broglie wavelength traversed path by the hyperspherical universe, a 
propagating spacetime wave spread along by a factor of P2π (7π for charged particles and 6π for 
neutral-zero spin matter).  

Similarly, for a 1 Kg body located at position R
v

: 
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   (3.8) 

where the effect of the 1 kg mass is implicit in the k2-vector and expressed by the factor N.  The wave intensity 
scales up with the number of particles (N).  One kilogram of mass has 1000 moles of 1 a.m.u. “zero-spin 
neutrons”, or |k2| = 1000.Avogadro. |k1|=N. |k1|, where 

• M=1 for neutral matter-matter, antimatter-antimatter interactions or opposite charge interactions 

• M=-1 for same charge or matter-antimatter interactions 
To calculate the effect of gravitational/electrostatic attraction, one needs to calculate the displacement on the 
crest of each particle or body wave due to interaction with the dilatons generated by the other body.   
This is done for the lighter particle, by calculating the derivative of the waveform and considering the extremely 
fast varying gravitational wave from the macroscopic body always equal to one, since the maxima of these 
oscillations are too close to each other and can be considered a continuum. 
The total waveform is given by: 
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The term ),2( rRkf vvv
− contains the treatment for retarded potentials, but for simplicity we will neglect 

differences in dimensional time between R
v

 and rv . Equation (3.9) is the one and only unification equation, that 
is, it is the four-dimensional wave equation that yields all the forces, when one consider four-dimensional wave 
constructive interference. It shows that anti-matter will have gravitational repulsion or anti-gravity with respect 
to normal matter. The derivative for ψ1 is given by: 
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v vv  due to ( )0.1 rrk
v v v  << 2π. −

Similarly 

2.2

*~

1

),,,,(2
RPk

MN
x

rzyx
=

=∂
∂

λρ

φψ  (3.11) 

20 
 

                        401

vic
Rectangle



 
Solving for x: 
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==  (3.12) 

There are two regimen of spacetime travel and they are depicted in Figure 9 below: 
 

Figure 9. This figure shows the geometry of a surface bound 
particle.  This is a X versus R cross-section of the hyperspherical 
expanding universe. Notice that the two circles represent a one de 
Broglie expansion of the hyperspherical universe. 

At each de Broglie step both types of particles (zero and non-
zero) change position by the same amount x and that defines 
a change in k-vector direction.  The difference is with which 
referential that change in angle occurs.  In the case of 
volumetric waves (non-zero spin particles), the k-vector is 
allowed to change by the angle α1, while in the case of 
superficial waves (zero spin particles), the k-vector changes 
just by the amount given by α0 since its k-vector has to 
remain perpendicular to the fabric of space. Tan(α) is given 
by tan(α) =x/λ1 or by tan(α0) =x/λ1*( λ1/R0) depending upon 
if the interaction is such that the particle k-vector shifts as in 
α1 or it just acquires the radial pointing direction as in α0. A 
further refinement introduced by equation (3.13) below 
introduces a level of local deformation of the de Broglie 
hypersurface or fabric of space. A change in angle α0 

corresponds to a much smaller angle change between the radial directions (by a factor λ1/R0 = 9.385E-42, with 
R0 (circa 15 billion light-years) as the dimensional age of the Universe). The experimental spacetime torsion 
due to gravitational interaction lies someplace in between 1 and 10-41, thus showcasing a level of local 
deformation of the fabric of space. From figure 9, one calculates tan(α) as: 
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Where 19.385.10
0

≤≤= δ142- λ
R

1)tan( 0 =

 and M=1.  It will be shown that the upper limit is valid for charged particle 

interaction, while the lower limit modified by a slight deformation of the fabric of space will be associated with 
gravitational interaction.  For the case of light, one has the following equation: 

 (3.14) α

That is, light propagates with proper time projection/propagation direction τ at 450 with respect to the radial 
time/direction. To calculate the derivative of tan (α) with respect to τ, one can use the following relationship: 
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Acceleration is given by: 
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To calculate the force between two 1 Kg masses (1000 moles of 1 a.m.u. particles) separated by one meter 
distance one needs to multiply equation (3.15) by 1Kg (N particles/Kg* 1Kg): 
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For δ=1  and P=3.5 one obtains the GElectrostatic (3.5). 
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Where one made use of λ1=Nλ2 and considered the absolute value.  It is important to notice that the derivation 
of the GCalculated never made use of any electrostatic property of vacuum, charge etc.  It only mattered the mass 
(spacetime volumetric deformation) and spin. Of course, one used the Planck constant and the speed of light 
and Avogadro’s number.   By setting δ=1 one recovers the electrostatic value of G! 
To analyze gravitational interaction, let’s consider that Hubble coefficient measurements estimate the universe 
as being around 15 Billion Years old or 1.418E26 meters radius. To obtain the elasticity coefficient of 
spacetime, let’s rewrite δ= (λ1/R0)ξ on equation (3.17) and equate the GCalculated to GGravitational for two bodies of 1 
Kg separated by 1 meter. 
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Where P =3 since we are considering a spin-zero interaction.  Solving for ξ: 
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If we consider that the force is given by mass times acceleration: 
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The natural frequency of spacetime oscillations is: 

KHz 32.14
01

2

2
1

==Ω
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c
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λ
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π
 (3.23) 

Notice that this is not dependent upon any masses.  That should be the best frequency to look for or to create 
gravitational waves.  Of course, Hubble red shift considerations should be used to determine the precise 
frequency from a specific region of the universe. At last one can calculate the value of the vacuum permittivity 
from equations (3.5) and (3.18) as: 
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Not surprisingly, there is a perfect match between theoretical and experimental (8.85418782E-12 C2.N-1.m-2 ) 
values. The correction factor used to calculate the effective charge per particle is due to the effect of non-zero 
spin on matter, thus related to the particle gyromagnetic ratio. It is important to notice that this derivation don’t 
use any parameterization. The “gyromagnetic ratio” and the “FS elasticity” are predictions of the theory, which 
uses only electron charge, speed of light, Avogadro’s number and Planck’s constant to relate it to non-
hypergeometrical physics.  
The complete gravitation equation is given by: 
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Quantum aspects can be recovered by not using fast oscillation approximations. It is also important to 
notice that equations (3.8) and (3.9) can be used to calculate the interaction between any particles (matter or 
anti-matter) or to perform quantum mechanical calculations in a manner similar to molecular dynamic 
simulations. The quantum character is implicit in the de Broglie wavelength stepwise quantization.  It is also 
relativistic in essence, as it will become clear when one analyzes magnetism next. 

3.2 Magnetic Interaction 

The Derivation of the Biot-Savart Law 
Let’s consider two wires with currents i1 and i2 separated by a distance R. Let’s consider i2 on the element of 
length dl2 as the result of a moving charge of mass of 1Kg of fat electrons (one a.m.u. electrons). This is done to 
obtain the correct scaling factor. 
 
Without loss of generality, let’s consider that the distance between the two elements of current is given by: 
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The velocities are: 

        and          (3.27) 

 
Due to the spin half, one has after a two de Broglie cycles: 
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Since one expects that the motion of particle 2 will produce a drag on the particle 1 along particle 2 direction of 
motion.  
The figure below showcase the geometry associated with these two currents. 

 
Figure 10. Derivation of Biot-Savart law using spacetime waves.   

Notice also that the effect of the ½ spin is to slow down the rate of phase variation along the dimensional time τ 
in half. 
 
In the case of currents, the velocities are not relativistic and one can make the following approximations to the 
five-dimensional rotation matrix or metric: cosh(α) ≅1 and sinh(αι) ≅vi/c where vi is the velocity along the axis 
i. 
 
The k-vectors for the two electrons on the static reference frame are given by: 
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Similarly:  
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Where N= 1000 Avogadro, λ1= de Broglie wavelength of a one a.m.u (atomic mass unit) particle, λ2=de Broglie 
wavelength of a 1Kg particle= λ1/N. 
Now one can calculate: 
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Where p stands for proton and e for electron. 
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Where non-velocity dependent and single velocity dependent contributions where neglected due to the 
counterbalancing wave contributions from static positively charged centers. 
The force is given by: 
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Where one took into consideration that a particle with spin half has a cycle of 2 λ1 instead of λ1. 
The Biot-Savart law can be written as: 
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Comparing the two equations one obtains: 
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From equation (3.24) 
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Thus one recovers the relationship between μ0 and ε0. 
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3.3 Grand Unification Supersymmetry  

As the dimensional age of the universe becomes smaller, the relative strength of gravitation interaction 
increases.  Conversely, one expects that as the universe expands gravity will become weaker and weaker.  This 
and the four-dimensional light speed expanding hyperspherical universe topology explain the acceleration of 
expansion without the need of anti-gravitational dark matter.  
 
For gravitation the spring coefficient is given by: 

xgx
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Similarly for electrostatic interaction, one has: 
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 (3.52) 

Thus when R0 was smaller than times λ1 (3.8E-19s), gravitational and electromagnetic interactions 
had equal strength. They were certainly indistinguishable when the radius of the universe was one de Broglie 
wavelength long. This section is called Grand unification supersymmetry, because condition (3.52) plays the 
role of the envisioned group theoretical supersymmetry of the grand unification force in future theories.  Of 
course, it has a geometrical interpretation.  At that exact radius, an elastic spring constant of the fabric of space 
allows for a change in the local normal such that it is parallel to the redirection of k-vector of a freely moving 
dilator. This is not what most scientists in this field expected but science is not about expectations. 

4. Hypergeometrical Standard Model 
A new model for matter is proposed.  In this initial model, the elements, protons, electrons and neutrons and 
their antimatter counterparties are recast as being derived from a single particle. This particle is expressed in 
geometrical terms as being a coherence between two 4D deformation stationary states from a rotating 4D 
double potential well.  This coherence is called a dilator.  As the dilator oscillates between sides of the potential 
well, it creates a traveling modulation of the metric or 5D spacetime waves or dilatons. Spin is modeled not as 
an intrinsic degree of freedom, but as an extrinsic tumbling or rotation of the dilator.  Since the dilaton 
frequency is defined just by the gap between the fundamental dilator states, it frequency does not 
depends upon the mass of the dilator. Dilatons travel through the 4D space. 3D projections are known as de 
Broglie matter waves.  Planck’s constant is the connection between the 3D dilaton projection wavelength and 
the particle 3D linear momentum. Planck’s constant ensures that for the 3D observed mass and velocity, the 
de Broglie wavelength will match it fundamental dilaton 3D projection. Mass is considered to be 
proportional to dilator maximum 4D volume.  Calibration is made to replicate Gauss’ electrostatics law, 
Newton’s gravitational law and Biot-Savart law of magnetism.  Since mass is proportional to a 4D volume and 
volume depends upon lengths, which are Lorentz invariant , the 4D-mass volume representation is also Lorentz 
invariant. 4D-mass is defined as being the total mass or 4D volume displaced in an oscillation cycle.  Since the 
dilator oscillates between states corresponding to an electron and a proton, its 4D mass will be one atomic mass 
unit. 3D-mass is the mass or 4D displacement volume perceived in the 3D Space at given phases of the de 
Broglie expansion. 
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Dilators with spin zero are modeled to couple with superficial wave, and thus their position changes from one 
de Broglie cycle to the next just by the displacement governed by a new quantum Lagrangian principle. Its 
propagation direction continues to be perpendicular to the 3D universe hypersurface. Dilators with non-zero 
spin are modeled to couple with volumetric wave, and their position changes from one de Broglie cycle to the 
next just by the displacement governed by the Lagrangian principle. In addition, its propagation direction is 
redirected by the angle covered by this transition.  Since the change in angle is defined with respect to the last 
step k-vector, charged particles are to sense a much higher acceleration than zero spin particles (matter).  This is 
the proposed reason behind the strength difference between gravitation and electromagnetic Forces. 
Here is the Hyperon data sheet: 

Particle Symbol Rest 
Mass(Mev/c2) 

Decay 
Reaction 

Spin Coherence Lifetime 

NeutrinoElectron νe 0.0000022  1/2  

NeutrinoMuon νμ 0.17  1/2  

NeutrinoTau ντ 15.5 μ+ + νμ 1/2  

KaonMinus κ − 493.7 μ− - νμ 1/2  

KaonPlus κ+ 493.7 μ+  + νμ 1/2  

KaonPlus κ+ 493.7 π+ + π0 1/2  

KaonZeroShort K0
S 497.7 π0+ π0 1/2  

KaonZeroLong K0
L 497.7 π+ + e- + νe 1/2  

MuonMinus  μ− 105.7 e- - νe  +  νμ 1/2  

MuonPlus μ+ 105.7 e+ + νe  -  νμ 1/2  

Electron e- 0.510998918 e- 1/2 Stable 

PionMinus π- 139.57018 e- + νe 1/2  

PionPlus π+ 139.57018 e+ - νe 1/2  

PionZero πo 134.9766 e++ e- + hw 1/2  

Proton P 938.3 Unobserved 1/2 Stable[1] 

Neutron N 939.6 p + e- - νe 1/2 885.7±0.8[2] 

DeltaPlusPlus Δ++ 1232 π+ + p 3/2 6×10-24 

DeltaPlus Δ+ 1232 π+ + n 3/2 6×10-24 

DeltaPlus Δ+ 1232 π0 + p 3/2 6×10-24 

DeltaZero Δ0 1232 π0 + n 3/2 6×10-24 

DeltaZero Δ0 1232 π- + p 3/2 6×10-24 

DeltaMinus Δ- 1232 π- + n 3/2 6×10-24 

LambdaZero Λ0 1115.7 π- + p 1/2 2.60×10-10 

LambdaZero Λ0 1115.7 πo + n 1/2 2.60×10-10 

SigmaPlus Σ+ 1189.4 π0 + p 1/2 0.8×10-10 

SigmaPlus Σ+ 1189.4 π+ + n 1/2 0.8×10-10 

SigmaZero Σ0 1192.5 Λ0 + γ 1/2 6×10-20 

SigmaMinus Σ- 1197.4 π- + n 1/2 1.5×10-10 
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Xi Zero Ξ0 1315 Λ0 + π0 1/2 2.9×10-10 

Xi Minus Ξ- 1321 Λ0 + π- 1/2 1.6×10-10 

OmegaMinus Ω- 1672 Λ0 + K- 3/2 0.82×10-10 

OmegaMinus Ω- 1672 Ξ0 + π- 3/2 0.82×10-10 

 
 
The Fundamental Dilator is modeled as a coherence between two 4D deformational stationary states of a 4D 
double potential. 
The quantum numbers, associated with the 4D deformational states, are modeled as axes’ lengths of a 4D 
ellipsoid of revolution. Negative values correspond to 180 degrees in phase with respect to a dilator with a 
positive axis. This means that when the positive dilator is expanding the 4D space, the negative dilator is 
shrinking 4D space. 

Electron and Proton Models were shown before. 
Electron Neutrino Model  
Here is the Electron Neutrino model. Notice that there are no colors associated with the neutrino states since 
they have zero 3D volume. Since their frequency is not a perfect match to the Fundamental Dilator coherence, 
their interactions average to zero. 

 
Figure 11. Electron Neutrino coherence 
The Electron Neutrino corresponds to a 360 degrees rotation of Proton (2/3.2/3.-1/3) state 4D volume around 
the X axis. 
Electron Neutrino is a Majorama particle since it is clear that half of it applied to an anti-proton state would 
result in a Proton state and vice-versa. 

Muon Neutrino Model  
Here is the Muon Neutrino model. Notice that there are no colors associated with the neutrino states since they 
have zero 3D volume. The Muon Neutrino corresponds to a rotation around the X axis of a two dimensional 
coherence  between states (0,-2/3,-1/3) and (0,-1/3,-2/3). Since their frequency is not a perfect match to the 
Fundamental Dilator coherence, their interaction average to zero. 
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Figure 12. Muon Neutrino coherence 

Neutron Model 
Particle Symbol Rest 

Mass 

(Mev/c2 

Decay 
Reaction 

Spin Coherence 
Lifetime 

Neutron N 939.6 p + e- - νe 1/2 885.7±0.8[2] 

Below is the Neutron model.  It is worthwhile to notice that the Electron-Proton and Proton-Electron transitions 
(transmutation coherences) are not in phase with the tumbling process and thus lead to a mismatch between the 
Neutron overall tumbling and a number of full rotations.  This means that due to those sub-coherences, there is 
kinetic energy stored in the form of a local fabric of space twisting.  The angle error at the end of the coherence 
is the sum of those two contributions.  The electron and the proton coherences are by definition in phase with 
the tumbling process. 
The shift in phase is such that the electron/proton fabric of space twisting is 43.90266/-0.07294 degrees for a 
neutron at rest, respectively. This is the fabric of space twisting that would result in the observed relative 
velocities after neutron decaying.  Notice that twisting the fabric of space results in an increase in the mass or 
FS overlap of the 4D volume displacement associated with different states, and thus explains the extra mass 
involved in the neutron formation.  The same reasoning is applicable to all particles and elements.  The 
elements and isotopes are modeled as simple coherences involving only the fundamental dilator (electron and 
proton) and these two transmutation coherences. 
 

 
Figure 13. Neutron coherence 
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Where p=(2/3,2/3,-1/3),p*=(2/3,-1/3,2/3),e=(0,-2/3,-1/3),e*=(0,-1/3,-2/3).  Transmutation note (Electron-Proton 
Transition) contains angular momentum, that is, they correspond to a spinning rotation around the axis 
perpendicular to R and one of the 3D axes. 
Using that dephasing angle, all the stable isotopes lined up in a meaningful pattern scanning the first quadrant 
(0-p/4) or virtual velocities smaller than the speed of light. Nuclide information from http://ie.lbl.gov/toi/.  The 
dephasing is giving by 180*(Z+N*Θ − round( Z+N*Θ))  where Θ=0.24290 or 43.72 degrees. 

 
Figure 14. Neutron diagram 
The extra energy or mass associated with the neutron is due to the dephasing created by the Electron-Proton 
Transition and vice-versa.  The total angle is balanced between the two 3D footprints (electron and proton 
masses) to be 42.77/-0.07294 degrees, thus resulting in a dephasing angle by Electron-Proton Transmutation of 
around 21.4 degrees. 
Thus the available kinetic energy after neutron decay is the difference in twisting between these two 
coherences. Since one is considering a Neutron (or any other particle) in its own reference frame, to total 3D 
Stress has to add up to zero.  This is similar to consider the momentum conservation after the dissociation.  This 
also means that Nuclear Energy is stored in local Fabric of Space deformations.  
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Figure 15. Electron-Proton-Proton-Electron transmutation note 

Electron-Posit ron Transmutation Note

 
Figure 16. Electron-positron transmutation note. 
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Pions – Plus, Minus and Zero 
Pion Minus Model 

Particle Symbol Rest Mass  (Mev/c2) Decay Reaction Spin

PionMinus π- 139.57018 e- + νe 1/2 

 
Figure 17. Pion Minus Coherence. 

 
Figure 18. Pion Minus diagram. 
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Pion Plus Model 
Particle Symbol Rest Mass (Mev/c2) Decay Reaction Spin

PionPlus π+ 139.57018 e+ - νe 1/2 

 
Figure 19. Pion Plus Coherence. 

 
Figure 20. Pion Plus diagram. 
Pion Zero 

Particle Symbol Rest Mass (Mev/c2) Decay Reaction Spin

PionZero πo 134.9766 e++ e- + hw 1/2 

 
Figure 21. Pion Zero diagram. 
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DeltaZero= π0 + n = π - + p 
Particle Symbol Rest Mass (Mev/c2) Decay Reaction Spin

DeltaZero Δ0 1232 π0 + n 3/2 

DeltaZero Δ0 1232 π- + p 3/2 

LambdaZero Λ0 1115.7 π- + p 1/2 

LambdaZero Λ0 1115.7 πo + n 1/2 

 
Delta Zero and Lambda Zero particles differ only by the spin assignments on their sub-coherences and have the 
same diagram, thus I will only show the Delta Zero. 
Decay Pathway: Δ0   π0 + n and  Δ0    π - + p 

 
Figure 22. Delta Zero decay diagram.  
If one considers that this decay channel has two counter-spinning Electron-Proton transmutation notes (spin ¼ 
and – ¼). 
The next diagram is clarifies prior claims that a Neutron is equivalent to a dimer.  The double Proton-Electron 
transitions were performed first for sake of simplicity. The Pion Minus excited state is pentameric.  Since the 
initial phase of the coherence cannot be determined, the state is equivalent to five shifted states with a 0.2 
occupation number each.  Scattering experiments would indicate the existence of five “quarks”.  The relaxed 
Pion Minus state would insinuate the existence of three “quarks”. 
Under this paradigm it becomes clear how scattering experiments could be misinterpreted to yield support to the 
concept of quarks.  The impossibility to separate the shifted states can be easily misunderstood as supporting a 
gluonic field and the concept that quarks are inseparable. 
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Figure 23. Delta Zero decay diagram.  
It is also evident that helicity is a natural result of the model. The sequence of dimensional chords is such that as 
the pentamer or trimer or dimer travels along time or R, it pseudo-rotates. 
In relation with Majorama conjectures, Neutrinos and AntiNeutrinos are the same particles and their effect 
depends upon which state they are interacting with (electron or positron). Worth noticing also is that the Pion 
Zero is its own anti-particle (anti-Pion Zero) or a Majorama particle. 
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Figure 24. Delta Zero decay diagram. Pentameric intermediate state. 

37 
 

                        418

vic
Rectangle



Trimeric Prion Minus Plus Proton 

 
Figure 25. Delta Zero decay diagram with trimeric pion minus.  
The trimeric character of pion minus is due to the uncertainty on which phase is in phase with the FS. 
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Sigma Zero= Λ0 + γ 

Particle Symbol Rest Mass  (Mev/c2) Decay Reaction Spin

SigmaZero Σ0 1192.5 Λ0 + γ 1/2 

+ 
Gamma Ray 
Figure 26. Sigma Zero decay diagram.
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DeltaPlusPlus 
Particle Symbol Rest Mass  (Mev/c2) Decay Reaction Spin Coherence Lifetime 

DeltaPlusPlus Δ++ 1232 π+ + p 3/2 6×10-24 

 
Figure 27. Delta Plus Plus  decay diagram. 
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Figure 28. Delta Plus Plus  decay diagram. 
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Figure 36. Omega Minus diagram. 
Particle Symbol Rest Mass  (Mev/c2) Decay Reaction Spin

PionMinus π- 139.57018 e- + νe 1/2 

PionMinus π- 139.57018 μ− - νμ 1/2 

MuonMinus  μ− 105.7 e- - νe  +  νμ 1/2 

 
Figure 29. Pion Minus and related decay products diagram.  This is not a decay diagram. 
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Particle Symbol Rest Mass(Mev/c2) Decay Reaction Spin

KaonMinus κ− 493.7 π- + π0 1/2 

KaonMinus κ − 493.7 μ− + νe - νμ= e- - νe  +νe  +  νμ- νμ 1/2 

MuonMinus  μ− 105.7 e- - νe  +  νμ 1/2 

 
Figure 30. Kaon Minus decay diagram. 
Particle Symbol Rest Mass(Mev/c2) Decay Reaction Spin

KaonPlus κ+ 493.7 π+ + π0 1/2 

KaonPlus κ+ 493.7 μ+  - νe  + νμ= e+ + νe  -  νμ − νe   + νμ 1/2 

MuonPlus μ+ 105.7 e+ + νe  -  νμ 1/2 
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Particle Symbol Rest 
Mass(Mev/c2) 

Decay Reaction Spin 

NeutrinoTau ντ 15.5 μ+ + νμ= e+ + νe  -  νμ+ 
νμ 

1/2 

 

 
Figure 31. Neutrino Tau and Muon Plus coherence diagrams. 
A complete description of all Hyperons and isotopes is available from the blog site. 

5. Coherent Nuclear Fusion 
Let’s not be greed at this first analysis. Let’s study the following reaction: 

   

NeutrinoTau

→ T  (1.01 MeV)  +  p  (3.02 MeV) 

0,-1/3,-2/ 3

0,-2/3,-1/ 3

D  +  D
Where D stands for deuterium and T for Tritium, p for proton.  This reaction has 50% yield under normal fusion 
conditions. 
The advantage of having all charged particle as products is that one can use magneto-hydrodynamics energy 
extraction.  If one can make the products to follow specific directions (directional nuclear fusion), one can use 
coils to extract energy by induction. 
Below is the Hypergeometrical Standard Model representation of Deuterium.  
Out of a proton and one neutron on can create only one coherence: 
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Figure 32. Deuterium diagram. 
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Figure 33. Double Deuterium diagram.      Figure 49. Helium 3 diagram. 
 3He has the following configuration: 
The other product channel is given by: 

D + D → 3He (0.82 MeV) + n (2.45 MeV)
 
Now we can write the equations: 
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Figure 34. Nuclear Fusion diagram.

46 
 

                        427

vic
Rectangle

Administrator
Text Box



or +  

Figure 35. Nuclear Fusion products diagram. 
Which settles the correct configuration for tritium. 
The Hypergeometrical Standard Model uses the transmutation notes Electron-Proton and Proton-Electron to 
explain the internal Fabric of Space strain associated with each isotope. 
We propose the usage of phase matching to increase the quantum yield of the reaction by realizing that a 
product direction in an angle with respect to R (the radial expansion direction) corresponds to a local velocity. 

Another extremely important consideration  is that the reactant beams should be polarized.. The 
electromagnetic analogy is that one cannot perform nonlinear optics with scrambled  polarization 
electromagnetic fields. 
This means that there is an specific angle (velocity) for which this reaction yield increases significantly. This 
also means that a careful prepared experiment should be performed where two deuterium beams intersect each 
other at an specific angle and at varying velocities while products yield are measured along their phase 
matching (defined by momentum conservation) conditions. 
The calculation depends upon the evaluation of the deformation susceptibility of the Fabric of Space, using all 
known isotope masses and lifetimes. Precise calculation of the appropriate angle (relative velocity) will be 
presented elsewhere. 
Careful process optimization should create the same gains one have in nonlinear optics. 
A coherent fusion process would result in the same revolution one had with the invention of nonlinear optics or 
lasers. The only difference is that in this case it would be the birth of Nonlinear Hadronics. 
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6. Conclusions: 
The hypergeometrical theory, a model that considers the interference of four-dimensional wave on the 
hypersurface of a hyperspherical expanding universe was introduced.   
The complexity of the present description of the universe in our sciences4-6 is assigned to the fact that one is 
dealing with four-dimensional projections of a five dimensional process. Our inability to realize that made the 
description unnecessarily complex. 
These are the ingredients for a new and simple formulation of Physics: 

• A new quantum Lagrangian principle (QLP) was proposed. 

• Quantum gravity, electrostatics and electromagnetism were derived using the same equations (QLP), 
same framework.  The theory is inherently quantum mechanical. 

• The quantum version of this theory is readily achieved just by eliminating the high mass or short 
wavelength approximation on equation (3.9).  It is outside the scope of this paper to implement 
hypergeometrical universe quantum algorithms.  In a fully geometric theory, there are no energy or mass 
quanta. Motion is quantized by the QLP.  All the other quantizations can be recovered from that. 

• Two fundamental parameters of the universe were calculated from the first principles (permittivity and 
magnetic susceptibility of vacuum).  

• Biot-Savart law was derived from the first principles. 

• Grand unification supersymmetry conditions for the time when all forces were equal were derived from 
simple geometrical considerations.  

• The fabric of space can be considered to be the regions of the hypersphere where the normal to its local 
space is pointing in the radial direction.  Any region where that happens has a distinct and yet 
undistinguishable character. It is distinct because it is pointing in the direction of the universe expansion, 
but it is indistinguishable within the four-dimensional (relativistic) perspective.  All reference frames are 
equivalent within a four-dimensional perspective.  They become distinct but not distinguishable under a 
five-dimensional analysis. 

• The natural frequency of spacetime oscillations is derived to be 32.14 KHz.  

• Mach’s non-local gravitational interaction explanation for inertia is replaced by a hypergeometrical local 
fabric of space distortion argument. 

• Mach’s and Newton’s absolute times are assignable to the cosmological time.  That time is absolute but 
can only be measured by observing the expansion of the four-dimensional hyperspherical universe. 

• 3D masses were defined in terms of Fabric of Space overlap of a 4D displacement volume at specific 
phases of the hypergeometrical universe expansion.  4D masses account for all 4D displacement volume 
created within a de Broglie expansion cycle 

• Pseudo time-quantization was proposed. 

• A fundamental dilator corresponding to both the proton and the electron was proposed.  Particles were 
modeled as coherences between two 4D deformation states of a rotating 4D double potential well.   

• Dilatons from the fundamental dilator were proposed to be light speed traveling metric modulations 
generated as the dilator tunnels from one state to the other, thus changing character from electron to 
proton and vice-versa. Anti-matter was proposed to be the same dilator just with a negative phase. 
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• Since all non-exotic matter (elements, electrons, neutrons, protons, anti-elements, anti-electrons, anti-
neutrons and anti-protons) were proposed to be composed of the same dilator, a cosmological coherence 
is derived. 

• Exotic matter (hyperons) is proposed to be the more complex coherences shown in Section 4.  Nuclear 
energy is proposed to be stored in deformations of the fabric of space resulting from mismatch of 
tunneling and tumbling processes within a complex coherence period. The mismatching would result in 
a tilted state at the de Broglie phases of the Cosmological Coherence.  It is proposed that interaction of 
these particles with the Universe through the QLP, requires that the beginning and final states to be flat 
on the 3D hypersurface and that any distortion to be distributed among sub-coherences.  The amount of 
tilting on the individual sub-coherences is recovered at the moment of decay.   

• Higher degrees of internal tilting can be achieved by non-fundamental sub-coherences. The higher the 
degree of internal tilting the lower the element or isotope lifetime. 

• The only “force” is due to dilaton-dilator interactions subject to the quantum Lagrangian principle.  
There is no need for intermediating virtual particles to convey different forces.  

• Particle decay, as opposed to collisional reactions, can be explained by nonlinear optics methods or 
standard barrier tunneling methods – quantum chemistry methodology. Of course, to create quantum 
chemistry methodology one has to have the Schrodinger equation for the 4D deformation rotating 
double well potential.  This is outside the scope of this paper. 

• There is a dilaton bath from which one can envision virtual dilators popping into existence, but it is not 
clear they are needed at all.  Current science does not have the dilaton field, thus under those condition, 
virtual particles are need to explain nuclear chemistry.  Notice that a dilator field is a matter field, that is, 
it is a function of the proximity of matter and not a property of empty space.  It decays as one goes away 
from matter and thus it doesn’t blow up as vacuum zero point fluctuations would.  This is at the heart of 
the challenge to the action-at-distance paradox. The photon decay could be due to dephasing of the 
electronic coherence due to interaction with the dilaton black body field from the detectors themselves. 
Since the radiation arriving from the detector on the emitting molecule is polarized (by the polarizers), 
the outgoing photon will know its polarization at the moment of emission and not at the moment of 
interaction with the polarizers. This would eliminate the need of infinite velocity and thus eliminates 
the action-at-distance paradox.   

• The black body radiation due to dilators thermal fluctuations is not polarized and normally average to 
nothing. Thermal fluctuations are uncorrelated and isotropic. Any coherent motion will have a 
corresponding dilaton coherence along their 4D trajectory and a de Broglie projection in the 3D 
universe.  This 3D de Broglie projection is real, that is, it is independent upon a single electron and at 
the same time it is dependent upon each and every electron in the coherent flow.  The double slit 
experiment is done with a monochromatic flow of electrons passing through two slits.  Due to the QLP, 
electrons will travel or surf the 4D dilaton field. That will have a 3D projection, which means that the 
electron will also surf the 3D projection of this dilaton field. We propose that the electron does not pass 
the two slits at the same time.  It surfs a de Broglie dilaton projection that will create an interferometric 
pattern after the slits. Since the electron follows the dilaton field before and after the slits, it will follow 
the interferometric pattern and deposit accordingly. Thus the electron in the double slit experiment 
does not need to pass through both slits at the same time. 

• Dilatons and standard collisional excitation should suffice in this theory. In the same way that electronic 
transitions can be created by collisions, dilator collisions can create 4D deformation transitions.  These 
transitions, if accompanied with the creation of new coherences will interact with the existing universe 
otherwise they would just disappear. The appropriate description of the 4D deformational rotating 
double potential well and the dilator rotational dynamics will be described elsewhere. 

49 
 

                        430

vic
Rectangle



• A refinement on the fundamental dilator model is to consider it a four-dimensional ellipsoid of 
revolution with a FS intersection of the 4D volume proportional to the particle mass and three axes’ 
length quantum numbers equal to the corresponding quark composition.  This is a zero 4D Volume sum 
rule for all the particles in the universe.  Matter is energy and energy cannot be destroyed. 4D 
displacement volumes can! They have signs and any cosmogenesis theory basic on them will be able to 
reduce the whole universe to a fluctuation of zero.  A simple hypergeometrical universe 
cosmogenesis theory will be presented in a companion paper 

• Since quarks are modeled as quantum numbers (axis lengths) of a volume, they cannot be separated in 
the same way one cannot separate the X dimension from a three-dimensional object.  Structured 
scattering, which has been used as an indication of the existence of quarks, can be easily understood as 
an indication of the existence of a form or shape, that is, particles are not spheres.  Other dimensions of 
the standard model are modeled as rotations.  Spin is modeled as a rotation perpendicular to radial 
direction and one spatial coordinate (x, y or z).  Three/two additional dimensions are captured as 
rotational degrees of freedom for rotation along the three/two spatial axes. 

• Planck’s constant has a new meaning within this theory. It is the proportionality constant that ensures 
that the de Broglie wavelength, relating the observed 3D mass and 3D velocities, matches the 3D 
projection of the 4D dilaton.  Notice that the 4D dilaton wavelength (frequency) depends only upon the 
gap between the two states of the fundamental dilator.  This mapping is done through the linear 
momentum equation h=m.v.λ.   

Cosmological Conclusions: 

The hyperspherical expanding universe has profound cosmological implications: 

• The expanding hypersphere clearly shows in geometrical terms that any position (cosmological angle) in 
the hypersurface (3-D universe) has a Hubble receding velocity. 

• The HubbleVel, the Hubble cosmological expansion velocity at a cosmological angle θ  (see Figure 1) is 
given by 

o θcHubbleVel =   

o This means that the three-dimensional space is expanding at the Hubble cosmological expansion 
velocity (speed of light per radian) as the hypersphere moves outwards along the radial time 
direction. 

o The corresponding elicited motions to all interactions in the universe are just side-drifts from a 
light-speed travel along the radial time direction.  This explains why the speed of light is the 
limiting speed in our Universe.  It is the maximum velocity a transversal wave can travel. 
The transversal wave is a de Broglie wave (projection of the 4D dilator generated wave) 
traveling along the 3D hypersurface.  Under those conditions, the dilators would be 
traveling on the interference pattern of two perpendicular lightspeed wave fronts and 
would travel along the line making 45 degrees angle with the radial direction. 

Conclusions about Time 

• This model contains one absolute time, the Cosmological Time and time projections for each inertial 
frame of reference. 

• Although absolute, one cannot measure time using the Cosmological Time, unless one observes directly 
the Hyperspherical Expansion of The Universe. 
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• Our universe corresponds to the Xτ cross-section shown in figure 1. There one can only measure the 
relative angle between τ and τ’, and thus only the relative passage of time. 
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Hence time can be both Absolute and Relative and both Einstein and Newton were right. 

The Passage of Time 

The passage of time has been analyzed through Lorentz transformations in Relativity.  Experiments using 
atomic clocks have been performed to show that time follows Lorentz transforms.  In the Hypergeometrical 
Theory we showed that a single dilaton dilator interaction accounts for both Gravitation and Electromagnetism. 
At each de Broglie step in the hyperspherical expansion, dilator change their k-vectors by some angle α.  For an 
observer traveling at a different speed with respect to the Fabric of Space (angle α1) that angle α’  would be 
calculated as: 
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as α1 approaches 45 degrees (speed of light), the absolute incremental angle change decreases.  When one 
reaches the speed of light the incremental angle shift per de Broglie step goes to zero.  Absolute time continues 
its flow as usual.  

The other velocity (local Fabric of Space deformation angle) dependency is the dilator (hyperon or isotope) 
coherence lifetime.  That lifetime is proportional to the accumulated deformation angle due to the intra-
coherence transmutation notes.  Since that observation of that angle will also follow the same angle addition 
equation, the particle lifetimes will also behave according to the expectations from the Lorentz transformation. 

Notice that matter dynamics depends upon the rate of angle change as a function of radial expansion, while 
particle lifetime depends just upon the angle (not is derivative). 

This is a fortuitous coincidence for Relativity.  The here proposed unification and hypergeometrical standard 
model shed light into the underlying reasons for the slowing down of time. 

Notice that time has nothing to do with the slowing down of matter dynamics and coherence decay.
 

Astronomical Conclusions: 

• The entire Universe is contained in a very thin three-dimensional hypersurface of a four-dimensional 
hypersphere of radius c*[Age of The Universe]. 

• The average radius of curvature of this hypersurface is exactly the speed of light times the age of the 
Universe, or R=15 billion light-years or so. 
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• The visible Universe volume is given by:
3

4 3ReverseVolumVisibleUni π
= .  

• Beyond the visible Universe lies the Never-to-be-Seen-Universe, whose linear dimension is actually (2π-2) 
times the dimensional time radius of the hypersphere.  3π/2R of the Universe linear dimension can never be 
reached 

• Of course, the four-dimensional light speed expanding hypersurface topology also explains why the Big 
Bang radiation comes from all directions and why one cannot ever locate a simple point where the Big Bang 
occurred.  The Big Bang will always seem to have occurred in any direction if one looks far enough (the 
dimensional age of the Universe) and that is the result of four-dimensional explosion dynamics. 

• The other topology derived conclusion is that if one could “see and measure velocity using Cosmological 
Time” farther than the dimensional time radius of the Universe, galaxies would be traveling at speeds faster 
than the speed of light with respect to us. This wouldn’t be the case if we measure any velocity using cross-
reference time τ.  Under those circumstances the maximum velocity is always c. 
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• The fact that it is impossible to “see” any farther than the dimensional radius of the Universe means that the 
postulate of Relativity remains semi-solid.  If one travels far enough but not as far as the age of dimensional 
radius of the Universe, one still could travel at absolute speeds faster than the speed of light. 

• The highest absolute receding speed of this Universe is πc, which is the real speed bump in the whole 
Universe.  Absolute receding speeds are measure with respect to the Cosmological Time Φ. 

• Since the receding speed of the Big Bang is equal to the speed of light, all its electromagnetic energy is 
Doppler shifted by the time they arrive at us, thus one cannot ever observe the Big Bang with a telescope. 
On the other hand, one can probe the initial dynamics by looking as far as one can with a large telescope. 

• The Cosmic Microwave Background is likely to be Doppler Shifted Gamma Radiation and not Blackbody 
Equilibrium Radiation. 

• Another corollary of this theory is the Hubble conclusion about an expanding hyperspherical Universe.  The 
speed of light divided by the average numerical value for the Hubble constant is the inverse of the Age of 
the Universe (e.g. 16.4 Billion years, 55 Km/s per megaparsec with one megaparsec = 3 million light years).  
The averaging is necessary since if one looks at any direction, there will be debris from the Big Bang 
(Galaxies) of different sizes traveling towards and from your direction.   

• The topology offers the revolutionary perception that while we see ourselves at rest we are actually traveling 
at the speed of light in a direction perpendicular to all the three dimensions we can perceive in our daily life. 
General Relativity and present Cosmology has no qualms associating a Black Hole with a disturbance of 
spacetime continuum.  Since we could easily fall into a Black Hole, it is not surprising that we should be 
modeled as a disturbance of the spacetime continuum in a similar manner.  Like any disturbance, there is a 
natural propagation velocity, in our case that velocity is c (the speed of light). 

• One can easily see that the Big Bang occurred when the Universe was an infinitesimally small circle across 
each one of the three dimensions, thus it spanned the whole Universe. It occurred on all places at the same 
time. This is the basis for the non-locality of the Big Bang in a three-dimensional Universe projection. This 
means that in our Universe, the Big Bang occurred exactly where we are no matter where we are. The heat, 
horrendous explosion and debris has long since left this region and now one only can see the beginning of 
the Universe if one looks very far away to see the debris that traveled the age of the Universe and are only 
now reaching us.  This is a quite surprising and elegant conclusion. 

• Due to the topology of a four-dimensional Big Bang, the center of the Universe is a location in the radial 
direction and not in 3D space.   

• Unlike motions along other directions of the four dimensional space, travel along the radial time occurs only 
at the speed of light. 

• The visible Universe corresponds to a hyper-cap in this hypersphere. The hyper-cap radius is also the age of 
the Universe, which is also the average radius of curvature of the hypersphere.  Thus the Universe is not 
only finite but also curved: a perfect circle.   

• Despite of that one cannot travel around it (due to its expansion at the speed of light) and due to the limit 
imposed on the highest traveling speed in this Universe. Finite, circular but impossible to traverse.   

• In addition, the hypersphere model makes any point in the Universe equivalent to another; in the same way 
that no point on the surface of an expanding balloon is closer to the origin of times (its center or the point in 
space defined by the balloon when it was very small).  

• The fact that we cannot see the past or travel there is because it does not exist any longer, due to the 
extremely thin character of the hyperspherical Universe.  It is only a de Broglie wavelength thick.   Needless 
to say, one cannot either travel to the future because it doesn’t exist yet.  We can only reach the future when 
it is the present, since we are traveling there even as we speak.  
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• Beyond the Big Bang lies more of the same (Universe), albeit invisible Universe.  The furthest visible part 
of the Universe is the Big Bang, that doesn’t mean that one could traveling faster than the speed of light go 
there and see it firsthand.  It only means that if we travel at the speed of light in any direction, the cosmic 
microwave background will Doppler shift into gamma rays (a possible tremendous inconvenience for light 
speed travelers) and one will be able to actually see the beginning.  From Figure 1, it is clear that the 
hypersphere is uniform and that traveling in any direction wouldn’t bring us into the past.  The hypersphere 
travels inexorably into the future. 

• It becomes clear that the Hubble expansion theory has to be modified to accommodate a four-dimensional 
Big Bang. The change is that in a four-dimensional explosion the Big Bang occurred in each and every point 
of the initial circumference, that is, the Big Bang occurred in each and every point of the Universe at the 
same time.  From each and every point, energy and matter were ejected by tremendous forces.  This means, 
that at any given point of the Universe there is a three dimensional isotropic expansion and thus the average 
Hubble constant is equal to the inverse of the dimensional age of the Universe times the speed of light.  In a 
three-dimensional Big Bang, matter would expand radially from a single point, thus the Universe would be 
highly anisotropic and the Hubble constant would be a constant.   

• Finally, the relativistic effects and inertia are due to local distortions of the curvature of this hyperspherical 
surface.  The highest distortion one can create is to travel at the speed of light.  That corresponds to having 
one’s proper dimensional time vector τ at 45 degrees with the three-dimensional space. Different regions of 
the hypersurface have different tangents with respect to an originating point, thus flow of observed time will 
depend upon how fast and how far you travel.  One does have receding velocities that are larger than the 
speed of light, indicating the Relativity is a local approximation of Universe dynamics. 

Grand Unification Conclusions 

• The meaning of physical existence is being phase-matched along the radial direction. 

• Quarks are modeled as positive and negative axes’ length of the ellipsoid of revolution.  A negative axis 
length means that the four-dimensional wave generated along that axis direction has a negative phase (180 
degrees phase shift).  The directionality of waves will only play a role when one discusses polarized matter.  
This is supported by the grand unification equations presented in section 3.   

• Section 3 indicates that the conversion of matter to antimatter is done through half muon neutrinos 
interaction with matter. Cross-section for neutrino splitting might be low, thus explaining why there is an 
asymmetry in the proportions of matter and antimatter in the Universe. 

• The light speed, fast expanding hypersphere model of the Universe allows for the existence of an infinite 
number of other hyperspherical expanding Universes, separated by dimensional time intervals.  The source 
of “matter and energy” will be explained in the Cosmogenesis paper of this series. Although there is an 
allowance, it will be described that the Big Bang occurred simultaneously with Dimensional Transitions.  
This seems to preclude the coexistence of Hyperspherical Universes. 

• The fate of the Universe is continuous expansion.  It will become clear how the Universe recycles itself and 
what is the meaning of recycling in the Cosmogenesis paper. 

Solar Neutrino Deficit Conclusion: 

The proposed model for neutrinos (Electron Neutrino, Muon Neutrino and Tau Neutrino) indicates an 
alternative explanation for the Solar Neutrino Puzzle. The missing electron neutrinos could be due to an 
electron/muon neutrino capture event and not due to neutrino oscillations.  Neutrino oscillations defy energy 
conservation, due to the different neutrino masses. 
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In the absence of interactions, a body (locally deformed FS region) will drift within the hypersurface (3-D 
universe) until τ and R are parallel again or conversely until it reaches a point where its drift velocity 
equals the Hubble velocity of that region of space. 

The experimental setup for coherent nuclear fusion hadronics would be composed of an accelerator with hadron 
bunching, and magnetic lensing for controlled focusing.  Upon focusing at the phase-matching velocity, 
maximum nuclear fusion yields would occur and nuclear fusion products would be released at the appropriate 
directions and velocities. 

Current approaches to nuclear fusion uses a nuclear chemistry approach, where a barrier has to be overcome for 
the reaction to occur.  The realization that particles could be modeled as coherences, thus similar to 
electromagnetic waves, allows for a change in paradigm.  Instead of overcoming a barrier by extremely high 
temperatures, we might be able to create the products by fine tuning phase matching conditions in a 4D 
dynamics space. 

Notice that the apparent motion will still exist since the fabric of space is expanding and any place in the 3D 
universe has a Hubble expansion velocity. Although moving relatively to its original position, the body remains 
static with respect to the fabric of space ( ρ  parallel to R).  At that point, the local deformation ceases to exist 
and the body drifts with the expansion at the Hubble velocity. In other words, motion is a way for 4D space to 
relax; in the same way a tsunami is the means for the sea to regain a common level. 

The Hypergeometrical Standard Model provide the means to envision a new process of nuclear fusion where 
yields are much higher.  The conceptual basis for the concept of Coherent Hadronics is the direct result of the 
fundamental dilator and the hyperspherical expansion universe topology.  The fundamental dilator model for 
matter implies that particles are coherences of a malleable Fabric of Space, and thus can be subject to nonlinear 
processes. 
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Coherent Fusion Conclusion: 

Fundamental Conclusion: 
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     In the preceding article we argue that biquaternionic extension of Klein-Gordon 
equation has numerical solution with sinusoidal form, which differs appreciably from 
conventional Yukawa potential. In the present article we interpret and compare this 
result from the viewpoint of EQPET/TSC model described by Takahashi [1]. Further 
observation is of course recommended in order to refute or verify this proposition.   

 

Introduction  

In the preceding article [2] we argue that biquaternionic extension of ra-
dial Klein-Gordon equation (radialBQKGE) has numerical solution with 
sinusoidal form, which differs appreciably from conventional Yukawa po-
tential. We also argue that this biquaternionic extension of KGE may be 
useful in particular to explore new effects in the context of low-energy reac-
tion (LENR) [3].  

Interestingly, Takahashi [1] has discussed key experimental results in 
condensed matter nuclear effects in the light of EQPET/TSC. We argue here 
that the potential model used in his paper (STTBA) may be comparable to 
our derived sinusoidal potential from radial biquaternion KGE [2]. While we 
don’t offer yet numerical prediction, our qualitative comparison may be in-
terested to verified further in experiments. 

Solution of radial biquaternionic KGE (radial BQKGE)  

In our preceding paper [2], we argue that it is possible to write biquater-
nionic extension of Klein-Gordon equation as follows: 

    ( ) 0),(2 =+◊◊ txm ϕ ,                                                              (1) 
Provided we use this definition [2][3]: 
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Where e1, e2, e3 are quaternion imaginary units obeying (with ordinary 
quaternion symbols: e1=i, e2=j , e3 =k) [3][4]: 
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    ikjjk =−= , jikki =−= .                                               (3) 

And quaternion Nabla operator is defined as [1]: 
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      By using polar coordinates transformation [5], we get this for the 1-
dimensional situation: 
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The solution is given by [2]: 
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Therefore, we may conclude that numerical solution of radial biquater-
nionic extension of Klein-Gordon equation yields different potential com-
pared to the well-known Yukawa potential [2]: 
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     In the next section we will discuss an interpretation of this new potential 
(6) compared to the findings discussed by Takahashi [1] from condensed 
matter nuclear experiments.  

Comparison with Takahashi’s EQPET/TSC/STTBA model  

Takahashi reported some findings from condensed matter nuclear ex-
periments, including intense production of helium-4 (4He) atoms by elec-
trolysis and laser irradiation experiments.  

Furthermore he [1] analysed those experimental results using EQPET 
(Electronic Quasi-Particle Expansion Theory). Formation of TSC (Tetrahe-
dral symmetric condensate) were modelled with numerical estimations by 
STTBA (Sudden Tall Thin Barrier Approximation). This STTBA model 
includes strong interaction with negative potential near the center (where r  
0). See Figure 1. 

 
  
Figure 1. Potential for Coulomb barrier reversal for STTBA. Source [1] 
 

Inverse square law (Coulomb)

Plausible sinusoidal form potential

Note: This Figure is unscaled.
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Takahashi described that Gamow integral of STTBA is given by: 
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Using b=5.6 fm and r0=5 fm, he obtained [1]: 
      77.04 =dP                                                                                       (9) 
And 
       MeVVB 257.0=                                                                         (10) 
While his EQPET model gave significant underestimation for 4D fusion 

rate when rigid constraint of motion in 3D space attained, by introducing 
different values of d4λ can improve the result. [1]. Therefore we may con-
clude that STTBA can offer good approximation of condensed matter nu-
clear reaction (LENR). [5] 

Interestingly, the STTBA lacks sufficient theoretical basis, therefore one 
can expect that a sinusoidal form (or combined sinusoidal waves such as in 
Fourier method) may offer better result which agrees with experiments. 
However this issue will be discussed elsewhere.   

Nonetheless, we recommend further observation  in order to refute or ver-
ify this proposition of new type of potential derived from biquaternion radial 
Klein-Gordon equation. 
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     In the present article we argue that it is possible to find numerical solution of cou-
pled magnetic resonance equation for describing wireless energy transmit, as dis-
cussed recently by Karalis (2006) and Kurs et al. (2007). The proposed approach 
may be found useful in order to understand the phenomena of magnetic resonance.  
Further observation is of course recommended in order to refute or verify this propo-
sition.   

 

Introduction  

In recent years there were some new interests in methods to transmit en-
ergy without wire. While it has been known for quite a long-time that this 
method is possible theoretically (since Maxwell and Hertz [6]), until recently 
only a few researchers consider this method seriously. 

For instance, Karalis et al [1] and also Kurs et al. [2] have presented these 
experiments and reported that efficiency of this method remains low. A 
plausible way to solve this problem is by better understanding of the mecha-
nism of magnetic resonance [3]. 

In the present article we argue that it is possible to find numerical solution 
of coupled 1st order ODE for describing wireless energy transmitted using 
coupled magnetic resonance, as discussed recently by Karalis (2006) and 
Kurs et al. (2007). The proposed approach may be found useful in order to 
understand the phenomena of magnetic resonance.   

Nonetheless, further observation is of course recommended in order to re-
fute or verify this proposition. 

Numerical solution of coupled-magnetic resonance equation   

Recently, Kurs et al. [2] argue that it is possible to represent the physical 
system behind wireless energy transmit using coupled-mode theory, as fol-
lows:   

        ( ) ∑
≠

−+Γ−=
mn

mnnmmmmm tFtaitaita )()()()( κω .              (1) 

The simplified version of equation (1) for the system of two resonant ob-
jects is given by Karalis et al. [1, p.2]: 
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            ( ) 1222
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These equations can be expressed as linear 1st order ODE as follows: 
        )(.)(..)(' tgitfitf κα +−=                                                        (4) 

and 
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            )(.)(..)(' tfitgitg κβ +−=                                                        (5) 
where 
         =α ( )11 Γ− iω ,                                                                             (6) 
and 
         ( )22 Γ−= iωβ                                                                             (7) 
 
Numerical solution of these coupled-ODE equations can be found using 

Maxima [4] as follows. First we find test when parameters (6) and (7) are set 
=1. The solution is: 

 
(%i5) 'diff(f(x),x)+%i*f=%i*b*g(x); 
(%o5) 'diff(f(x),x,1)+%i*f=%i*b*g(x) 
(%i6) 'diff(g(x),x)+%i*g=%i*b*f(x); 
(%o6) 'diff(g(x),x,1)+%i*g=%i*b*f(x) 
(%i7) desolve([%o5,%o6],[f(x),g(x)]); 
 
The solution for f(x) and g(x) are: 
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Translated back to our equations (2) and (3), the solutions for 
1== βα are given by: 
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Now we will find  numerical solution of equations (4) and (5) when 

1≠≠ βα . Using Maxima [4], we find: 
 
(%i12) 'diff(f(t),t)+%i*a*f(t)=%i*b*g(t); 
(%o12) 'diff(f(t),t,1)+%i*a*f(t)=%i*b*g(t) 
(%i13) 'diff(g(t),t)+%i*c*g(t)=%i*b*f(t); 
(%o13) 'diff(g(t),t,1)+%i*c*g(t)=%i*b*f(t) 
(%i14) desolve([%o12,%o13],[f(t),g(t)]); 
 
And the solution is found to be quite complicated, as follows: 
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For the Maxima display of the result presented herein, see figure below: 
 

 
Figure 1. Maxima solution for the equation (4) and (5) 

 
     Translated back these results into our equations (2) and (3), the solutions 
are given by: 
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where we can define a new ‘ratio’: 
        

        222 42 ακαββξ ++−=                                                 
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   It is perhaps quite interesting to remark here that there is no ‘distance’ ef-
fect in these equations. For recent references on other methods to deliver 
wireless energy, see [7][8].        

Nonetheless, further observation is of course recommended in order to re-
fute or verify this proposition .          
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Text Box
Hadron models and related New Energy issues

The present book covers a wide-range of issues from alternative hadron models to their likely implications to New Energy research, including alternative interpretation of low-energy reaction (coldfusion) phenomena.

The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex Ginzburg-Landau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development.

F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses link between Torsion fields and Hadronic Mechanic.

A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications to New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles.

The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation.

While some of these discussions may be found a bit too theoretical, our view is that once these phenomena can be put into rigorous theoretical framework, thereafter more 'open-minded' physicists may be more ready to consider these New Energy methods more seriously. Our basic proposition in the present book is that considering these new theoretical insights, one can expect there are new methods to generate New Energy technologies which are clearly within reach of human knowledge in the coming years.
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