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Introduction

Notes from Michael Aizenman’s class “Mathematical Physics” at Princeton in Spring 2016.

This class is of interest to both physicists and mathematicians. Several recent Fields
medals are for work related to these topics.

I plan to cover the following topics. The focus is on Topics in Mathematical Statistic
Mechanics.

1. The statistical mechanic perspective: systems can be described at the microscopic
level with many degrees of freedom. We observe their collective behavior and find
emergent behavior.

2. Thermodynamics principles: Intellectually preceding statistical mechanics is ther-
modynamics, a field of physics which emerged through experimental and intellectual
work trying to understand what is happening with the transfer of heat. A couple of
principles emerged. This framework is more appropriate to the macroscopic descrip-
tion of physical systems. In departure from mechanics, which cares about equalities
like 𝐹 = 𝑚𝑎,𝐸 = 𝑚𝑐2, a unique thing about thermodynamics is that its key principle
is in inequality: entropy increases.

Δ𝑆 ≥ 0

3. The emergence of thermodynamics from statistical mechanics via the equidis-
tribution assumption and the “large deviation theory”. I would like to discuss
the emergence of thermodynamics from statistical mechanics. Mathematicians formal-
ized the theory but the concepts were introduced earlier by physicists. These principles
led Boltzmann to introduce these ideas and it took a while for physics to absorb the
ideas.1

4. Phase transitions: When you have a system, say H2O, which you can control with
temperature and pressure, you can induce changes in state. Continuous change in
control parameters results in discrete jumps in the result.

5. Critical phenomena, critical exponents, universality classes. Phase transitions
are fascinating since there are interesting critical phenomena which are characterized

1This may have led to his premature death via suicide.
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by critical exponents, which turn out (this is one of the suprising discoveries experi-
mentally) to result in universality classes of critical phenomena. Systems are macro-
scopically different, but the singularities you observe are given by the same power
laws.

6. Exact solution of the 2-D Ising model. Mathematically, 3 is the hardest dimension
to comprehend.

(a) 1-D is solvable: correlations can be described by Markov chains, and can be
computed.

(b) In 2-D, the conformal group is very important. It gives many constraints on
critical behavior, leading to a rich behavior.

(c) In 3-D, this does not apply except for ongoing work finding consequences in 3-D
from results in 2-D.

(d) Anything with ≥ 4 dimensions gets simpler. High dimensions are characterized
by the fact that loop effects do not play a large role. In 1-D a simple random walk
is recurrent. In sufficient high dimensions, a simple random walk is not recurrent.
The infinite-dimensional case reduces to models on trees; high dimensions exhibit
the same behavior as infinite dimensions.

In coding theory and discrete math people study phase transitions of different graphs
and are interested in the same topics.

The 2D Ising model is usually a highly specialized topic, but we will do it in a way done
a bit differently from normal. We would like to do this through “graph zeta functions”.
What I found fascinating about this topics is that there are a lot of connections to other
topics. There are analogues of the Riemann zeta function on graphs, and there is a
relationship. It is actually one of the simplest paths to tackle this proof by.

7. Stochastic geometry behind correlation functions at criticality: in the Ising
model we have a collection of spin variables 𝜎𝑥 = ±1 for 𝑥 ∈ Z𝑑. The spins are
correlated in such a way that agreement among neighbors is encouraged. Thus there
are correlations which spread through the system.

It is interesting and powerful to represent this correlation between spins is via a
“shadow system” in which you play the following game: decompose the collection
of spins at random into connected clusters. You see spin values but you don’t see who
is connected to whom. An analogy is that students form cliques in class, and then
each clique chooses what to do and votes unanimously. So if you just saw the voting
pattern, you would see some cliques, but the nature of correlations among the votes
become transparent if you know the clusters.

The states for critical Ising models become larger, but also become fractal. Fractal
geometric objects can be used to explain the structure. There is an interesting fractal
geometry which tells us about correlation functions.
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We will introduce all of this later in much detail from the ground up. This is related
to percolation.

8. Scaling limits: Finally, if time permits, I would like to discuss scaling limits. You may
want to know properties of a substance when you have something like a lattice that
is very fine-grained, a statistic mechanical system which macroscopically is described
by a myriad of variables. There are techniques of describing the relevant quantities
from the macroscopic perspective, and this becomes relevant for describing the critical
state. This provides a fascinating link between statistical mechanics and field theory.
It’s related to quantum field theory, except we are now in the Euclidean regime. There
are some related results for quantum spin systems.

In a way we have a mouthful here, and one could probably give a full course on each of
these topics. I will try not to be exhaustive, as we may not progress far. Previously I gave
a course on random operators. Each week would cover some area of this subject, saying
enough so you have a glimpse of the essence and get some comfort, and then moving on. It’s
now in a book format, and I would count it as a success if out of these lectures, something
similar would emerge. The idea is not to be exhaustive, but to give enough key results.
There is much more to be said, but I do not suppose to cover it all.

There is a broad spectrum of references, none of which I’ll follow exclusively.

∙ Sacha Friedli and Yvan Velenik’s online book project (on mathematical statistical me-
chanics) at http://www.unige.ch/math/folks/velenik/smbook/index.html.
I recommend this for people totally new to the subject.

∙ David Ruelle formulated models and basic results mathematically (late 70’s). His book
helped physicists organize their thoughts. It became outdated quickly, but remains a
good starting point and reference for the formalism.
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Chapter 1

Introduction to statistical mechanics

2-2-16

1 Canonical Ensembles for the Lattice Gas

1.1 Configurations and ensembles

One way to start is with the axioms of statistical mechanics. Instead I’ll take a simple
problem, see how it works, and present results in that context. There are simple problems
that teach us a lot. (“The elementary problems are the most precious, once you absorb them
they are part of your makeup.”) The simplest is a lattice gas.

Definition 1.1.1 (Lattice gas): A lattice gas is a substrate where at each lattice site there
may or may not be a particle. This model has been used to describe alloys where you have a
substrate which you can draw as a simple lattice (in particular, we will use Z𝑑 for simplicity).
Each point may have a particle of a certain type.

The configuration is a function 𝑛 : Z𝑑 → {0, 1}:

𝑛𝑥 =

⎧⎨⎩1, 𝑥 is occupied,

0, 𝑥 is vacant.

For now let us ignore energy conservation. Let us suppose the system is neutral, or at some
infinite temperature; energy is not an issue.

I’ll use 𝐿 to denote the size of the box we are considering, and Λ ⊂ Z𝑑 to be a region
(subset of the system) and we have 𝑚 particles. The configuration space is the space of
possible 𝑛’s, Ω = {0, 1}Λ.

If you have a finite system and energy does not play a role, but there is conservation
of the number of particles, if you shake the box the state may change. Essentially each
configuration gets equal weight, and particles do not overlap.
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Definition 1.1.2 (Equidistribution assumption): All particle configurations which have
an equal number of particles have equal probability.

This gives rise to the notion of ensembles.

Definition 1.1.3 (Ensemble): An ensemble is a probability measure with respect to which
you do averages over the configuration space Ω.

First, we define some notation.

Definition 1.1.4 (Indicator function):

1[cond] :=

⎧⎨⎩1, condition satisfied

0, else

Now we define two specific ensembles, the microcanonical ensemble and the grand
canonical ensemble.

Definition 1.1.5 (Microcanonical ensemble): In the microcanonical ensemble,

P(𝑛Ω) =
1[
∑︀
𝑥∈Ω 𝑛𝑥 = 𝑁 ]

𝑍

where 𝑍 is a normalization constant.
For every function 𝑓 : Ω → R assigning a real number to each configuration, define the

microcanonical ensemble average by

⟨𝑓⟩Can
𝑁,𝑛 =

∑︀
𝑛∈Ω 1[𝑛𝑥 = 𝑁 ]𝑓(𝑛)∑︀
𝑛∈Ω 1[

∑︀
𝑛𝑥 = 𝑁 ]

.

The ensemble we will focus on for this course is the grand canonical ensemble.

Definition 1.1.6 (Grand canonical ensemble): The grand canonical ensemble average
is defined as

⟨𝑓⟩Gr.C
𝜇,Λ =

∑︀
𝑛∈Ω 𝑒

−𝜇
∑︀

𝑥∈Λ
𝑛𝑥𝑓(𝑛)∑︀

𝑛∈Ω 𝑒
−𝜇
∑︀

𝑥∈Λ
𝑛𝑥

(Later on we will omit superscripts where it is clear.)

We can relate these two notions with the equivalence principle.

Definition 1.1.7 (Equivalence principle): Loosely, the equivalence principle says that for
any “local function”, the microcanonical average is approximately the grand canonical en-
semble average

⟨𝑓⟩Can
𝑁,Λ ≈ ⟨𝑓⟩Gr.C

𝜇,Λ

when we take 𝜇 = 𝑁
|Λ| .
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1.2 The equivalence principle

Consider functions which depend only on a system Λ ⊂ ÜΛ of much smaller volume, |Λ| ≪ |ÜΛ|.
This is the sense in which the averages match up.

We can think of the difference as the difference between two socities. One is draconian.
The first is highly centralized control economy. If you don’t fit the build, you get weight 0
and you’re thrown out. In the grand canonical, everything goes. Some contribute more than
others, and the contributions depend on the parameter 𝜇 which is adjustable. The density
of particles depends on 𝜇. And there is a value of 𝜇 for which the density is equal to 𝑁/|Λ̃|.
Here, the average of the draconian system is equal to the average of the lackadaiscal system,
asymptotically.

The micro-canonical ensemble is draconian: the number of particles is prescribed, all
other configurations get weight 0. In the grand canonical ensemble, each configuration
contributes. There is a value of 𝜇 where the density is the same; at that value the local
average of the draconian system is asymptotically the same at that of the more relaxed
system. This ≈ becomes = when you take the thermodynamic limit,ÜΛ → Z𝑑

𝑁 → ∞
𝑁

|ÜΛ| → 𝜌.

Now let us see where this comes from. What is the induced distribution of the micro-
canonical ensemble on Λ? If all you care about is the number of particles in the average
you care about, you just care about getting a small system. If the whole system has a
large number of particles, then it does not matter if you focus on a much smaller box since
you can trade particles very easily, if the larger volume has a ton of particles. Under the
microcanonical ensemble, the probability that 𝑛|Λ (𝑛 restricted to Λ) takes a particular
value depends only on one quantity, which is the number of particles the configuration
has (

∑︀
Λ 𝑛𝑥 = 𝑘 in the big box). This expression is equal to the cardinality (number) of

configurations in the rest of the big box (𝑛|Λ𝑐 , Λ complement) such that the total number
of points in Λ𝑐 is equal to 𝑁 − 𝑘. And that of course must be normalized. Now we come to
the question of how many configurations there are in the complement of Λ.

We count the number of ways to complete the configuration in Λ𝑐 = ÜΛ∖Λ:
| {𝑛Λ𝑐 :

∑︀
𝑥∈Λ𝑐 𝑛𝑥 = 𝑁 − 𝑘} |

𝑍

where 𝑍 is a normalization constant.
The number of configurations of 𝑀 particles in volume 𝑉 is

(︀
𝑉
𝑀

�
= 𝑉 !

𝑀 !(𝑉−𝑀)!
. Using

Stirling’s approximation
ln(𝑀 !) =𝑀(ln𝑀 − 1)(1 + 𝑜(1)),

After some gymnastics of an elementary nature, there is a fundamental formula. The log-
arithm of the number of configurations is of tremendous important. Ludwig Boltzmann’s

9
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grave has the formula which opened people’s eyes to what this mysterious entropy 𝑆 truly
is: the logarithm of the number of configurations.

Lemma 1.1.8 (Entropy). Defining

𝑠(𝜌) = −[𝜌 ln 𝜌+ (1− 𝜌) ln(1− 𝜌)],

we have (︃
𝑉

𝑀

)︃
=

𝑉 !

𝑀 !(𝑉 −𝑀)!
=: 𝑒𝑆(𝑀,𝑉 ) ≈ 𝑒𝑉 𝑠(𝜌)

where density 𝜌 = 𝑚/𝑉 and 𝑠(𝑝) = −𝑝 ln(𝑝)− (1− 𝑝) ln(1− 𝑝).
The ratio 𝜌 varies between 0 and 1. 𝑠(𝜌) is concave and attains maximum of ln 2 at 1

2

where it has quadratic behavior.

Proof. Please do this exercise once in your life; it’s good to do it once but not too often.

Shannon also found such a formula for entropy.
The implication is that if you slightly change the density, the number of configurations

changes drastically. In physical substances 𝑉 may be 1023. The change would then be 𝑒10
23Δ𝑠.

In any average over configurations, only those at the peak contribute: “winner takes all.”
What is the probability of observing 𝑘 particles in the small box given 𝑛 in the big box?

P(𝑛Λ) ≈
𝑒
|Λ𝑐|𝑠

(︁
𝑁−𝑘

|̃︀Λ|−|Λ|

)︁
𝑍

where 𝑍 is a normalizing constant. The probability is propotional in exponent to the volume
of the complement multiplied times the entropy of the density, which we saw in the exercise
above. Then we re-write the density of the small box in terms of the overall density:

𝑁 − 𝑘

|ÜΛ| − |Λ|
= 𝜌−

(︃
𝜌− 𝑁

|ÜΛ| − |Λ|

)︃
⏟  ⏞  
→0 independent of 𝑘

− 𝑘

|ÜΛ| − |Λ|

The entropy is infinitely differentiable except at the endpoints, so we can just expand. What-
ever you see inside affects the number outside, but does not effect the density outside. This
explains why we only have a tiny correction to 𝜌. Thus

𝑠

(︃
𝑁 − 𝑘

|ÜΛ| − |Λ|

)︃
≈ 𝑠(𝜌)− 𝑠′(𝜌)

𝑘

|Λ𝑐|

Changing 𝑘 by a little bit affects how many particles are outside but not so much the density
outside: the correction term is small. Hence for

∑︀
𝑥∈Λ 𝑛𝑥,

P(𝑛Λ) ≈
𝑒|Λ

𝑐|𝑠(𝜌)𝑒−𝑠
′(𝜌)𝑘

𝑍
.
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𝑒|Λ
𝑐|𝑠(𝜌) is a huge factor but it does not vary with 𝑘 so we can omit it. Writing out 𝑍 as the

sum of the numerators over all 𝑛Λ, and letting 𝜇 = 𝑠′(𝜌), we get that this equals

=
𝑒−𝜇𝑘∑︀

𝑛′∈ΩΛ
𝑒−𝜇

∑︀
𝑥∈Λ

𝑛′
𝑥

,

which is the grand canonical ensemble average. So all you have to do is be sure to pick 𝜇 as
the derivative of the thermodynamic function at the correct density. That is how we derive
the canonical ensemble in this case. The rest of the system acts on the small system as a
“particle (heat) bath.”

Here we used very explicit machinery, namely, the Stirling formula. We want a general
expression that doesn’t rely on the Stirling formula because in more complicated models,
we will not have the luxury of using the Stirling approximation. We’ll do this in the next
section.

Then we will be able to consider models where there are more energy constraints. The
general procedure is first make a list of energy constraint. There is a generalization of the
equivalence principle where

∙ in the micro-canonical ensemble we average over configurations where the constraints
have prescribed values. (We considered the special case where just the number of
particles was prescribed.)

∙ in the grand canonical ensemble, we add an energy term to the exponential: 𝑒−𝜇𝑁(𝑛)−𝛽ℰ(𝑛)

where 𝑁(𝑛) is the number of particles, −𝜇𝑁(𝑛) is the Gibbs factor, and ℰ(𝑛) the en-
ergy.

How can we construct an alternative method without the Stirling formula?

2-4-16

1.3 Generalizing Ensemble Analysis to Harder Cases

Previously we used very specific machinery to derive the grand canonical ensemble for the
lattice gas; how might we derive similar expressions for more complicated systems? We would
like to avoid using the Stirling formula, which only happened to work in the simple case.
To derive the entropy bypassing Stirling’s approximation, you may proceed by analyzing
partition functions.

Define the partition function for the grand canonical ensemble as the (unnormalized)
sum of the likelihoods over all configurations. At each site there are 2 possibilities and they

11
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are independent, so the sum factors into a product.1

𝑍Λ =
∑︁
𝑛∈Ω

𝑒−𝜇𝑁(𝑛)

=
∑︁
𝑛∈Ω

∏︁
𝑥∈Λ

𝑒−𝜇1[𝑛𝑥=1]

=
∏︁
𝑥∈̃︀Λ(1 + 𝑒−𝜇)

= (1 + 𝑒−𝜇)|Λ|

1

|Λ|
ln𝑍Λ = 1 + 𝑒−𝜇eq:z1 (1.1)

So what does this have to do with entropy? We can calculate 𝑍Λ a different way, as
follows. Note that the only thing that matters in the summand is the number of particles in
𝑛, so let’s group the summands by this. Letting 𝜌 = 𝑁

|Λ| , and using the fact that the number

of states with density 𝜌 is 𝑒|Λ|𝑠(𝜌),2

𝑍Λ =
∑︁
𝑛∈Ω

𝑒−𝜇𝑁(𝑛)

≈
∑︁

𝜌∈ 1
|Λ|Z

𝑒−𝜇𝑁(𝑛)𝑒|Λ|𝑠(𝜌)

=
∑︁

𝜌∈ 1
|Λ|Z

𝑒|Λ|[𝑠(𝜌)−𝜇𝜌]

eq:z2 ≈ 𝑒|Λ|max𝜌∈[0,1][𝑠(𝜌)−𝜇𝜌]. (1.2)

To get the last step, note that the error we are making by focusing on the maximal point
rather than counting with multiplicity the near-maximal value is at most a factor equal to
the volume, since we can upper bound our error by taking all points in Λ instead of merely an
𝜀-ball around the maximum. “In analysis, it often pays to avoid being excessively generous.”
Since 1

|Λ| ln |Λ| → 0, this term is negligible. The expression max𝜌∈[0,1][𝑠(𝜌)− 𝜇𝜌] is called the

Legendre transform of the entropy and denoted by 𝑠*(𝜌).

Matching (1.1) and (1.2), we find

𝑠*(𝜇) := max
0≤𝜌≤1

[𝑠(𝜌)− 𝜇𝜌] = ln(1 + 𝑒−𝜇)

Using this, we can derive the expression the formula for 𝑠(𝜌), using the inverse Legendre
transform.

1Note that Λ in the last section is the micro-canonical ensemble, but here it is the grand canonical
ensemble.

2Rather than getting this with 𝑠(𝜌) = −[𝜌 ln(𝜌)− (1− 𝜌) ln(1− 𝜌)] by the Stirling approximation in the
last section, we can take this as the definition of 𝑠 here, and use it to solve for 𝑠.
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To check that taking the maximum in (1.2) was legit, note that3

max
𝜌

[𝑠(𝜌)− 𝜇𝜌] ≤ 1

|Λ|
ln𝑍Λ ≤ max

𝜌
[𝑠(𝜌)− 𝜇𝜌] +

1

|Λ|
ln |Λ|⏟  ⏞  
→0

=⇒ lim
|Λ|→∞

1

|Λ|
ln𝑍Λ = sup

0≤𝜌≤1
[𝑠(𝜌)− 𝜌𝜇].

We can verify that 𝑠(𝜌) = −[𝜌 ln 𝜌 + (1 − 𝜌) ln(1 − 𝜌)] does indeed make (??) hold. We
find the maximum (critical point) or 𝑠(𝜌) − 𝜇𝜌 by setting the derivative to 0.4 We use the
trick

[𝑥(ln𝑥− 1)]′ = ln𝑥.

We can subtract 1 from each of the logs changing the expression by a constant. Thus

𝑠′(𝜌) = − ln 𝜌+ ln(1− 𝜌)− 𝜇 =⇒ 𝜌

1− 𝜌
= 𝑒−𝜇.

We can use this to solve for 𝜌 and find 𝑠*(𝜇) (do this yourself).

In general, a micro-canonical ensemble specifies all the conserved quantities: Particles,
energies, and whatever else there is. The grand canonical ensemble also generalizes by
changing the factor to 𝑒−𝜇𝑁𝑒𝛽𝐻 . Such factors are referred to as Gibbs factors or Gibbs
measures.

2 Concavity and the Legendre transform

2.1 Basic concavity results

Definition 1.2.1: A function on R𝑘 is concave if for any 𝑥0, 𝑥1 ∈ R𝑘, 0 ≤ 𝜆 ≤ 1,

𝐹 (𝜆𝑥1 + (1− 𝜆)𝑥0) ≥ 𝜆𝐹 (𝑥1) + (1− 𝜆)𝐹 (𝑥0).

For a convex function, the same inequality with the sign flipped holds. A negative convex
function is concave. Concavity (convexity) means if you draw a chord between two points,
it will lie below (above) the curve.5

For a strictly concave function, a maximum, whenever it exists, is unique.

Theorem 1.2.2. For any concave function on R,

3Mathematicians are paranoid, so we use sup instead of max. For many practical purposes they are the
same.

4Don’t differentiate in public.
5“As Richard Feynmann pointed out, getting the sign right is the hardest thing.”
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1. The directional derivatives 𝐹 ′(𝑥± 0) exist at all 𝑥 ∈ R. The directional derivative
is defined as

𝐹 ′(𝑥+ 0) = lim
𝜀→0+

𝐹 (𝑥+ 𝜀)− 𝐹 (𝑥)

𝜀

𝐹 ′(𝑥− 0) = lim
𝜀→0−

𝐹 (𝑥+ 𝜀)− 𝐹 (𝑥)

𝜀
.

2. 𝐹 ′(𝑥− 0) ≥ 𝐹 ′(𝑥+ 0) and 𝐹 ′(𝑥± 0) are decreasing.

3. For all but countably many values 𝑥 ∈ R, 𝐹 ′(𝑥−0) = 𝐹 ′(𝑥+0), i.e., 𝐹 is differentiable
at 𝑥.

4. Let 𝐹𝑛 be a sequence of concave functions which converge pointwise: for all 𝑥, lim𝑁→∞ 𝐹𝑁(𝑥) =:Ü𝐹 (𝑥) exists. Then
(a) Ü𝐹 is concave.

(b) At points of differentiability of Ü𝐹 , the derivatives also converge,6

𝐹 ′(𝑥± 0) → Ü𝐹 ′(𝑥).

Much of this generalizes to directional derivatives in 𝑛 dimensions.

Proof. For (1) note that concavity implies that the slope of the line between 𝑥, 𝑥 + 𝜀 is
increasing as 𝜀→ 0+.

6Finite energy functions are always smooth, but their limit can have discontinuous derivative.
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To prove (3), consider the graph of the derivative 𝐹 ′(𝑥+ 0). It’s a monotone decreasing
function: it starts somewhere and goes down. At points where 𝐹 ′(𝑥 + 0) is continuous,
we have 𝐹 ′(𝑥 + 0) = 𝐹 ′(𝑥 − 0). The discontinuities, or “steps,” are the points where
𝐹 ′(𝑥 + 0) ̸= 𝐹 ′(𝑥 − 0). Now we use the fact that the sum of any uncountable collection
of nonzero numbers is ∞. Applying this to the steps, we find that the number of steps is
countable, i.e., the total collection of discontinuity points has to be countable.7 8

2.2 Concave properties of the Legendre transform

Definition 1.2.3: The Legendre transform of a function is defined as

(𝑇𝐺)(𝑦) = inf
𝑥
[𝑦 · 𝑥−𝐺(𝑥)] = − sup

𝑥
[𝐺(𝑥)− 𝑦 · 𝑥]

7More rigorously, for every nonzero interval [𝐹 ′(𝑥 + 0), 𝐹 ′(𝑥 − 0)], we can associate with it a rational
number. Then note Q is countable.

8The set of discontinuities can still be devilishly dense, ex. all the rational numbers. In physics it used
to be thought that weird functions with Cantor-like sets of discontinuties could not occur, but there are
materials whose free energy discontinuities are dense in certain areas.
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Theorem 1.2.4. For any function 𝐺, 𝑇𝐺 is concave.

Proof. An efficient way to think about this is the following: for each value of the parameter
𝑥, as a function of 𝑦 this is a linear function. For each 𝑥 we get a linear function. Define the
transform by taking the infimum over that.

Take 2 points and draw the chord between them. For each linear function the chord lies
below it.9

Definition 1.2.5: The concave hull Ü𝐺 of 𝐺 is defined as the smallest concave function
that is at least the function value at every point:Ü𝐺(𝑥) = inf {𝐹 (𝑥) : 𝐹 concave, ∀𝑢, 𝐹 (𝑢) ≥ 𝐺(𝑢)} .

Theorem 1.2.6. For concave 𝐺,
𝑇 (𝑇𝐺) = 𝐺.

In general, 𝑇 (𝑇𝐺) is the concave hull of 𝐺.

9I.e., we use the following : Let ℱ be a collection of concave (e.g. linear) functions. Then inf𝑓∈ℱ 𝑓(𝑥) is
concave.
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Proof for 𝐺 differentiable. Use the fact that if 𝐺 is differentiable, then

inf
𝑥
[𝑦 · 𝑥−𝐺(𝑥)]

occurs at 𝑦 = 𝐺′(𝑥).

Note that we plotted the function and the dual function on the same graph. However,
they have inverse units, for example, energy and inverse temperature. You get a lot of
insights into physics if you keep track of the units.

Recall 𝜌 = 𝑁
|Λ| . If all 2|Λ| configurations are given equal weight, the typical value or 𝜌,

the particles per unit volume is 1
2
. The Law of Large Numbers says that with probability 1

the ratio tends to 1
2
. Is it possible that the density is 1

3
? Yes, but the probability of such a

density is given by the entropy: it’s exponentially small, 𝑒|Λ|[𝑠(
1
3)−ln 2]. Anything other than

1
2
is a large deviation; they occur with exponentially small probability. We want to quantify

the probability of large deviation events. Here is a language that people found useful.

Definition 1.2.7: df:ldp A sequence of probability measures on R is said to satisfy a large
deviation principle with speed {𝑎𝑁}, and rate function 𝐼(𝑥) if for each 𝑥 ∈ R, 𝜀 > 0,

− inf
|𝑢−𝑥|<𝜀

𝐼(𝑢) ≤ lim
𝑁→∞

1

𝑎𝑁
lnP𝑁((𝑥−𝜀, 𝑥+𝜀]) ≤ lim

𝑁→∞

1

𝑎𝑁
lnP𝑁((𝑥−𝜀, 𝑥+𝜀]) ≤ − inf

|𝑥−𝑢|≤𝜀
𝐼(𝑢)

For us, 𝐼(𝑥) = ln 2− 𝑠(𝑥).
2-9-16: Today we’ll talk about Gibbs states: definition, variational principle, and relations

to thermodynamic foundations.

Theorem 1.2.8 (Jensen’s inequality). Let 𝜌(𝑑𝑥) be a probability measure on R (R𝑑) with
finite expectation

∫︀ |𝑋|𝜌(𝑑𝑥) <∞, and let 𝐹 : R → R be a concave function. Then∫︁
𝐹 (𝑋)𝜌(𝑑𝑥) ≤ 𝐹

�∫︁
𝑋𝜌(𝑑𝑥)

�
.

To remember this, draw a picture. Consider the case where the measure is concentrated
on two points. The interpolated value

∫︀
𝐹 is less than the function value 𝐹 (

∫︀
). (In the case

of two points, this is the definition of Jensen.)

17
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Proof. Let ⟨𝑋⟩ =
∫︀
𝑋𝜌(𝑑𝑥). Take any tangent to 𝐹 at ⟨𝑋⟩. Note that 𝐹 may not be

differentiable, so take the line to have slope 𝐹 ′(⟨𝑋⟩ + 0). The first inequality (1.3) follows
from concavity.

Integrate and note that 𝐹 (⟨𝑋⟩) is constant to get (1.4).

eq:jensen1𝐹 (𝑋) ≤ 𝐹 (⟨𝑋⟩) + (𝑋 − ⟨𝑋⟩)𝐹 ′(⟨𝑋⟩+ 0) (1.3)

eq:jensen2

∫︁
𝐹 (𝑋)𝜌(𝑑𝑥) ≤ 𝐹 (⟨𝑋⟩)⏟  ⏞  ∫︀

𝜌(𝑑𝑥)=1

+ 0⏟ ⏞ ∫︀
[𝑋−⟨𝑋⟩] 𝜌(𝑑𝑥)=0

. (1.4)

This theorem is elementary but very useful.

3 Basic setup for statistical mechanics

The basic setup consists of...

1. A lattice or a homogeneous graph like Z𝑑. It will be important that for Λ𝐿 =
[−𝐿,𝐿]𝑑,

eq:bdary-ratio

|𝜕Λ𝐿|
|Λ𝐿|

𝐿→∞−−−→ 0. (1.5)

Here | · | means the size in terms of number of points (it doesn’t matter much how you
count—e.g. whether you count just the points on the edge, or adjacent too, etc.). (??)
says when you chop space into regions, the boundary plays a small role. This is good
becase we should be talking about extensive quantities.

2. Collection of local variables like {𝑛𝑥} taking values in 0, 1, or {𝜎𝑥} taking values
in ±1, magnetizations, etc.

18
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3. An extensive energy function, defined on finite subsets. For example,

𝐻Λ(𝜎) = −
∑︁

(𝑥,𝑦)⊂Λ,|𝑥−𝑦|≤𝑟
𝜎𝑥𝜎𝑦 − ℎ

∑︁
𝑥∈Λ

𝜎𝑥.

This is over a finite range; we can also consider unbounded ranges with some decay.

Here there are only pairwise interactions, but more generally, there can be interactions
between more variables: 3, 4... Typically the interactions are translation invariant.
The general equation is

𝐻Λ(𝜎) =
∑︁

𝐴⊂Z𝑑,diam(𝐴)≤𝑅
𝐾𝐴(𝜎),

where 𝐾𝐴(𝜎) depends on 𝜎�𝐴 (𝜎 restricted to 𝐴), and are shift covariant.

4. A reference a-priori (probability) measure 𝜌0(𝑑𝜎) (a probability distribution with
respect to which we integrate) on the configuration space ΩΛ (= {−1,+1}Z𝑑

).

For example, 𝜌0(𝑑𝜎) could be the product measure where {𝜎𝑥} are iid variables. (Think
of a system at high temperature.)1011

We will also allow measures which are not probability measures—normalization may
be “part of the game.”

Particle configurations are given by specifying locations and momenta. We can chop
space into boxes, and specify the number of particles in each box, and their positions
and momenta. The starting point is the Liouville measure, which is invariant under
time evolution by the Hamiltonian.

3.1 Gibbs equilibrium measure

Definition 1.3.1: df:gibbs-eq The finite-volume Gibbs equilibrium measure at temperature
𝑇 = 𝛽−1 is

eq:gibbs-eqProb(𝑑𝜎) =
𝑒−𝛽𝐻Λ(𝜎)

𝑍Λ

𝜌0(𝑑𝜎Λ). (1.6)

Here 𝑍Λ is the normalizing (partition) function

eq:zla𝑍Λ(𝛽) =
∫︁
𝑒−𝛽𝐻Λ(𝜎Λ)𝜌0(𝑑𝜎𝐴). (1.7)

10Note that it makes sense to talk about e.g. an infinite number of coin flips. There is such a thing as an
infinite product of probability measures. In an infinite product space, the result of any finite collection is
independent. Any single value has probability 0.

11How does the Declaration of Independence go? “We hold these truths to be self-evident... inalienable
rights...” The definition of person is time-dependent. But there is a reference measure, individuals are treated
equally. That’s how we start in statistical mechanics. E.g. Every spin configuration gives equal value. If the
spins are continuous, what would be a good starting point? Perhaps they are independently distributed on
the sphere.
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This is a generating function because taking the derivatives we can learn about the
distribution of the random variable.

The Gibbs equilibrium measure is the uniform measure multiplied by the Gibbs factor.
Here, 𝛽 is a factor corresponding to the inverse of the temperature.

∙ When 𝛽 = 0, local variables are independently distributed. We have chaos; all states
are equally likely.

∙ When 𝛽 cranked up, i.e., temperature is lowered, the probability distribution becomes
more concentrated (near the “ground state”). When 𝛽 = ∞, the distribution becomes
concentrated on configurations which minimize the energy.

We will see that the Gibbs equilibrium measure is the distribution of a system at thermal
equilibrium at temperature 𝑇 . Why is that so and what is the relation to microcanonical
ensemble?

We will try to understand the structure of these measures and the phase transition they
manifest.

3.2 Introduction to the Ising model

In biology, they study Drosophila, the fruit fly. Studying this simple organism tells us a lot.
The Ising model is the Drosophila of statistical physics. What you learn from it extrapolates
to many other systems, but not everything.

Consider the Ising model on Z𝑑,

𝐻Λ(𝜎) = −1

2

∑︁
|𝑥−𝑦|=1

𝐽𝜎𝑥𝜎𝑦 − ℎ
∑︁
𝑥∈Λ

𝜎𝑥, 𝐽 ≥ 0.

At 𝑇 = 0, 𝛽 = ∞, the state with all +’s and the state with all −’s are equally likely. There
is no continuous way to go from all spins + to all spins −. For nonzero, analytic even after
take infinite limit.

However, the analyticity would fail, and in fact you would find a line of first order
transitions at 𝐻 = 0 up to some temperature 𝑇𝑐. What happens is a natural extension at
zero temperature and infinite 𝛽. You go from configuration that is all + to all − going
through a discontinuity. The Gibbs state—the trivial distribution at this temperature—
comes in 2 flavors (at least, other possibilities can hold): The state would remember whether
the magnetic field 𝐻 was turned to 0 from the positive or negative side. This is a beautiful
example of what you observe in magnets.

The floor under the Atlantic ocean has ferromagnetic rocks. It was detected that the
direction of magnetization changes. When you cool a ferromagnet (ferromagnets develops
magnetic moments), which way it points is affected by the prevalent external field. Ac-
cording to prevailing wisdom, as the sea floor was expanding, the Earth’s magnetic moment
flipped. The rocks have encoded in them the direction of magnetization when they were
cooled past this critical temperature. This phenomenon is called residual magnetization.
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This phenomenon is eliminated when you raise to high enough temperature; then the state
becomes the analytic. We will discuss more about this phase transition, including behavior
near the critical point, later.

This refers to the infinite volume limit of such measures. In finite volume, everything
is analytic. At 0 temperature the configuration is all +, but at small temperature, thermal
fluctuations occur. Unlike when 𝛽 = ∞, when 𝛽 is finite, every local configuration gets
some nonzero weight. Even thoguht there is a preference for agreement, the system exhibits
fluctuations. Among the +’s there will be islands of minority spins. As temperature increase,
minority fluctutions increase to a point where each spin tries to agree both with its neighbors
and with magnetic field. When there is a lot of fluctuation among its neighbors, the effect
of magnetic field is not so significant. That’s how this discontinuity evaporates when you
increase temperature.

3.3 Entropy, energy, and free energy

Definition 1.3.2: Let 𝜌0 be a reference measure.

1. For any probability measure 𝜇 on ΩΛ
12, we can write it in terms of 𝜌0,

𝜇(𝑑𝜎Λ) = 𝑔(𝜎)𝜌0(𝑑𝜎Λ).

The function 𝑔(𝜎), the “ratio” of the measures, is called theRadon-Nikodym deriva-
tive, and denoted by

𝑔(𝜎) =
𝛿𝜇

𝛿𝜌0
.

2. Define the entropy of 𝜇 as

𝑆Λ(𝜇|𝜌0) = −
∫︁
𝑔(𝜎Λ) ln 𝑔(𝜎Λ)𝜌0(𝑑𝜎Λ).

3. Define the energy content of 𝜇 as

𝐸(𝜇) =
∫︁
𝐻Λ(𝜎Λ) 𝑔(𝜎Λ)𝜌0(𝑑𝜎Λ)⏟  ⏞  

𝜇(𝑑𝜎𝐴)

.

Theorem 1.3.3. thm:gibbs-eq For each 𝛽 ∈ [0,∞), the Gibbs equilibrium measure (1.6) is the
unique minimizer of

𝛽𝐹Λ(𝜇) := 𝛽𝐸Λ(𝜇)− 𝑆Λ(𝜇|𝜌0),

equivalently, the unique maximizer of 𝑆Λ(𝜇|𝜌0)− 𝛽𝐸Λ(𝜇).

Definition 1.3.4: The quantity 𝛽𝐹Λ(𝜇) is called the free energy.

12that is absolutely continuous with respect to 𝜌0
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We’ll keep 𝛽 positive, but we can make sense of some of the theory when 𝛽 is negative.
Sometimes we can even talk about 𝛽 complex!

The second law of thermodynamics says that nature “maximizes entropy under con-
straints.” Here we’re maximizing entropy minus energy. How to reconcile this? There is
some reservoir where the system trades with the entropy. As it trades off energy with the
reservoir, the energy of the reservoir is affected. It is the effect of the entropy of the reservoir
that the system has energy 𝐸. What the system is really maximizing is the entropy of the
system and reservoir.

The free energy 𝛽𝐹Λ(𝜇) is the energy you get from the system when in thermal contact.13

What is the consequence? The thermal states are the states which maximize the differ-
ence. This allows to quantify the difference. When 𝛽 is small, the energy plays a minor role.
The states maximize the entropy. As the temperature descreases and 𝛽 increases, 𝛽𝐸Λ(𝜇) in
the variational principle plays an increasing role; the energy has to be low; 𝛽 controls how
low it has to be.

What’s coming next? We’ll pay attention to the factor ln𝑍Λ(𝛽). (Recall 𝑍Λ(𝛽) was
defined in (1.10).) We will calculate

lim
Λ↗Z𝑑

1

|Λ𝐿|
ln𝑍Λ(𝛽).

The relevant contribution comes only from configurations which are at an energy where the
entropy is maximized.

Entropy appears in many guises. We talked about entropy over a measure, but you can
also talk about the entropy function of energy; the contribution from those particles would
be 𝑒𝑆(𝐸)𝑒−𝛽𝐸. Now it’s just a function of the energy. This function picks up the Legendre
transform of the entropy.

In the Ising model, there is a discontinuity in the nature of the states. Differentiability of
the free energy function breaks down across the line. There is an interplay between convexity
properties of thermodynamic functions. The left and right derivative—the mean values of
the magnetization—corresponds to 2 different limiting values, that are the two different
magnetizations depending on which way you arrive.

Statistical mechanics translates into the nonuniqueness of Gibbs equilibriums state. Sta-
tistical mechanics provides much more information because it looks at the joint distribution
of all these variables, whereas thermodynamics just fixes attention on a few relevant param-
eters. We will clarify this relation. We will clarify this and then discuss techniques to find
the phase transitions.

2-11-16: I started a couple of lines of discussion involving entropy; I would like to tie
up a few of those loose ends. Just to remind you, please do not hesitate to ask questions
about notation and the like; we have a very mixed audience and it’s good to be reminded of
elementary questions.

13It’s funny to talk about the energy crisis: we never run out of energy. The problem is that we have too
little free energy, we have too much entropy.
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Remark 1.3.5: Let Ω0 be the possible states (e.g., {−1,+1} for spin states) for a single
particle, and Ω = Ω𝐺

0 where 𝐺 is the lattice graph. Any 𝜎 ∈ Ω is in the form 𝜎 = {𝜎𝑥}𝑥∈𝐺,
where 𝜎𝑥 ∈ Ω0. In the discrete case (Ω0 and 𝐺 are finite), the probability of configuration 𝜎
is 𝜌(𝜎) = 𝜌({𝜎}). The expectation in the discrete case is a sum,

E𝜌(𝑓) =
∑︁
𝜎∈Ω

𝑓(𝜎)𝜌(𝜎).

In general, the expectation is an integral,∫︁
𝑓(𝜎)𝜌(𝑑𝜎).

Note that the sum is just integration respect to a discrete measure. The integral notation
is more flexible because it adapts to non-discrete cases, for instance, when Ω0 = 𝑆 takes
values on the sphere.

We talked about relative entropy, and entropy entered the situation different times in
different ways. Entropy appears in many different areas, and they are all either related by
precise relations or analogy.

Definition 1.3.6: Let 𝜌, 𝜇 be probability measures such that 𝜇 is absolutely continuous
with respect to 𝜌. Let 𝜇 = 𝐺(𝜎)𝑑𝜎, i.e., 𝐺 = 𝛿𝜇

𝛿𝜌
is the Radon-Nikodym derivative with

respect to 𝜌. The relative entropy is

𝑆(𝜇|𝜌) = −
∫︁
𝐺(𝜎) ln(𝐺(𝜎))𝜌(𝑑𝜎) = −

∫︁
ln𝐺(𝜎)𝜇(𝑑𝜎)

Before we talk about the Gibbs measure and the variational principle, let us give a useful
lemma.

Lemma 1.3.7. For any pair of probability measures,

𝑆(𝜇|𝜌) ≤ 0

with equality iff 𝜇 = 𝜌 (as measures).

Proof. Take 𝜓(𝑥) = −𝑥 ln(𝑥). Look at the tangent line (1 − 𝑥) intersecting the 𝑥-axis (see
photo) and see that the function is less:

−𝑥 ln(𝑥) ≤ 1− 𝑥 (1.8)

𝑆(𝜇|𝜌) =
∫︁
𝜓

�
𝛿𝜇

𝛿𝜌

�
𝜌(𝑑𝜎)

=
∫︁ �

𝜓

�
𝛿𝜇

𝛿𝜌

�
−
�
1− 𝛿𝜇

𝛿𝜌

��
𝜌(𝑑𝜎)

≤ 0
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where we used the fact that the derivative of 𝜌 against the Radon-Nikodym derivative with
respect to 𝜌 is just 1, ∫︁ �

𝛿𝜇

𝛿𝜌

�
𝜌(𝑑𝜎) =

∫︁
𝜇(𝑑𝜎) = 1,

so that 1− 𝛿𝜇
𝛿𝜌

integrates to 0. We added this term order to use (1.8).

Hence, this is a variational principle for entropy.

Remark 1.3.8: For cases where things are not absolutely continuous, we define the relative
entropy to be −∞, since things will blow up.

Now, we derive a useful relation for 𝜌𝛽(𝑑𝜎) =
𝑒−𝛽𝐻(𝜎)

𝑍
𝜌0(𝑑𝜎):

eq:2-11-2𝑆(𝜇|𝜌0)− 𝛽
∫︁
𝐻(𝜎)𝜇𝑑(𝜎) = ln(𝑍) + 𝑆(𝜇|𝜌𝛽) (1.9)

With a bit of political license, you may refer to this as the amount of free energy: It’s 𝛽
times the entropy.

Proof. We have�
𝑆(𝜇|𝜌0)− 𝛽

∫︁
𝐻(𝜎)𝜇𝑑(𝜎)

�
− ln(𝑍) = −

∫︁
ln

�
𝛿𝜇

𝛿𝜌
· 𝑍

𝑒−𝛽𝐻(𝑠)

�
𝜇(𝑑𝜎)

Now we must show this is the same thing as 𝑆(𝜇|𝜌𝛽). We can look at it slighlty differently,
as though we are modifying the Radon-Nikodym derivative with respect to the modified
measure. The above equals

= −
∫︁
ln

�
𝛿𝜇

𝛿𝜌𝛽

�
𝜇𝑑𝜎 = 𝑆(𝜇|𝜌𝛽)

by definition.

This is rather cool: It says a thermodynamic flavored quantity is equal to the relative
entropy with respect to the Gibbs-measure plus a positive constant.

So with this we have proof of what we said last time.

Theorem (Theorem 1.3.3). The (finite volume) Gibbs equilibrium measure 𝜌𝛽(𝑑𝜎) is the
unique maximum of

−𝛽𝐹 (𝜇) := 𝑆(𝜇|𝜌0)− 𝛽
∫︁
𝐻(𝜎)𝜇(𝑑𝜎)

Proof of Theorem 1.3.3. By (1.9), this equals ln𝑍 + 𝑆(𝜇|𝜌𝛽). 𝑆(𝜇|𝜌𝛽) is maximized for
𝜇 = 𝜌𝛽.
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The point was to show that this measure would be dominated by the Gibbs state. It’s
useful to know when things are maximum.

This kind of correction factor is typical in thermodynamics. It appears in dynamics with
some kind of conservation law, where the energy changes only due to interaction with a
heat path or some other large system at some fixed temperature which can exchange energy.
Then the fluctuations of the system energy are affectedby fluctuations in the reservoir. This
second term corresponds to the state of the universe if your state is at state 𝜇. The fact that
the Gibbs state is where this is maximal is a reflection of the second law of thermodynamics.
The fact is that the measure 𝜌0 is not just any measure; it’s a natural notion of an a priori
measure which is what the system typically does.

You may want to think of the statistical mechanics of a regular system like a lattice.
We can specify the dynamics by specifying the number of particles in each box, and let
everything flow freely. What would be a natural measure 𝜌0? We want a probability measure
of the system that is invariant with respect to state. You could just take the product
1
𝑁 !

∏︀
𝑑𝑞𝑖 · · · 𝑑𝑞𝑗: This is the classical measure which is stationary under any Hamiltonian

evolution regardless of the state function. Of course, people working in probability theory are
aware of the Bayesian approach to probability, where some notion of what a priori measure
is is fundamental.

4 Large deviation theory

We’ve touched on large deviation theory (Definition 1.2.7). For instance, consider spin
states:

𝜎𝑥 =

⎧⎨⎩+1, 𝑤.𝑝. 1
2

−1 𝑤.𝑝. 1
2
.

Let’s take a space Λ with some finite volume. The empirical average spin is 1
|Λ|
∑︀
𝑥∈Λ 𝜎𝑥. The

Law of Large Numbers says

P
(︃⃒⃒⃒⃒⃒

1

|Λ|
∑︁
𝑥∈Λ

𝜎𝑥 − ⟨𝜎⟩
⃒⃒⃒⃒⃒
> 𝜀

)︃
→ 0

as |Λ| → ∞. Significant deviation from the mean ⟨𝜎⟩ tends to zero. So we might ask now:
what id the probability that the empirical average is close to any other value 𝑚 is close to
0?

P
(︃⃒⃒⃒⃒⃒

1

|Λ|
∑︁
𝑥∈Λ

𝜎𝑥 −𝑚

⃒⃒⃒⃒⃒
≤ 𝜀

)︃
≈ 𝑒−𝑎𝑛𝐼(𝑚)

In this situation, 𝑎𝑛 = |Λ𝑛|, where we are taking a sequence of increasing volumes. I am
a bit ambiguous here, since for our purposes, these constants will be proportional to the
volume. A book on large deviation theory would formulate things in a more general way. It
goes without saying the volume is very large in the limit we are discussing, so this is a very
tiny probability. What we mean by approximate is also a little ambiguous here: it means
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when you take a log of the RHS, you’ll get the exponent in the probability. For us, the 𝐼(𝑚)
is nothing more than the entropy corrected by a constant. Again, we use the 𝐼 notation to
agree with large deviation books.

You never ask for a precise value of 𝑚 since the probability is typically 0, unless it’s a
multiple of |Λ|, instead you have some tolerance level 𝜀. Now how to prove this? In the first
lecture we used the Stirling formula, and derived it by hand. But I would now like to present
a method to conclude this kind of result. These variables are not independent variables, they
might be correlated like spin states.

The validity of a large-deviation principle can often be deduced using the following
theorem:

Theorem 1.4.1 (Gärtner-Ellis). Assume that for a sequence of random variables 𝐸, the
limit

𝑄(𝜆) = lim
𝑛→∞

1

𝑎𝑛
lnE

(︀
𝑒𝜆𝐸

�
exists and is finite for all 𝜆 (here, 𝑎𝑛 is the volume). We will also use more generally 𝑋 as
a vector of random variables, in which case define

𝑄(𝜆) = lim
𝑛→∞

1

𝑎𝑛
lnE

(︀
𝑒𝜆·𝑋

�
.

Then for any closed set 𝐹 and open set 𝐺:

lim
𝑛→∞

1

𝑎𝑛
lnP(𝐸 ∈ 𝐹 ) ≤ − inf

𝑥∈𝐹
𝑄*(𝑥)

lim
𝑛→∞

1

𝑎𝑛
lnP(𝐸 ∈ 𝐺) ≥ − inf

𝑥∈𝐺′
𝑄*(𝑥)

with 𝑄*(𝑥) = sup𝑥 [𝜆𝑥−𝑄(𝜆)] and 𝐺′ is the set of exposed points of 𝑄*.

We would like to consider systems of large volume. Let the number of points be 𝑎𝑛 = |Λ𝑛|.
Let 𝐸𝑛 be the total energy of configuration 𝜎 in the volume Λ𝑛 ,

𝐸𝑛 = 𝐻Λ𝑛(𝜎).

Alternatively, we can take the total energy in the box and break it down as the volume times
the energy per volume, 𝐸𝑛 = 𝑎𝑛 · 𝑥, where 𝑥 = 𝐸𝑛

𝑎𝑛
is the energy density. We will calculate

the mean value of the total energy in the 𝑛𝑡ℎ box, and estimate how large it should be should
a large deviation principle apply.

E
(︀
𝑒𝜆𝐸𝑛

�
=
∫︁
𝑒𝜆𝑥𝑎𝑛P(𝐸𝑛 ∈ 𝑎𝑛𝑑𝑥)

We want to reflect the fact that this probability is ridiculously small, as we saw before in
large deviation principle: P(𝐸𝑛 ∈ 𝑎𝑛𝑑𝑥) = 𝑒−𝑎𝑛𝐼(𝑥). Combining these factors, you get the
following integral: ∫︁

𝑒𝑎𝑛[𝜆𝑥−𝐼(𝑥)]𝑎𝑛𝑑𝑥
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In effect we are integrating 𝑥 over the exponential of a volume times some reasonable quantity.
So when you take the logarithm of that and divide by the volume,

1

𝑎𝑛
ln(E(𝑒𝜆𝐸𝑛)) ≈ max

𝑥
[𝜆𝑥− 𝐼(𝑥)].

Seeing this, you say, “Ah, I know what this is—this is the Legendre transform of the rate
function!”. What you’re really doing is taking the Legendre trasnform which is sensitive to
the convex hull of the rate function.

Suppose there is a certain interval where there are few configurations in a fallen entropy.
What would contribute to the expected value? In that situation, there will be competition
between situations: The volume may decompose into situations where you have a small
energy density for part of the volume and large energy density for the rest of the volume. So
it averages to something larger: Thus the expected value of the partition function gives you
information about the Legendre transform. This theorem tells you that if you want to learn
about the function, you need to do the inverse Legendre transform. The Legendre transform
has the property that you can recover the points of 𝐼(𝑥) on the convex hull of 𝐼(𝑥).

Now what are “exposed points of 𝑄*(𝑥)”? Exposed points are points on the intersection
of the convex hull and the original function.

We can learn about the thermodynamics of the system 1
|Λ𝑛| ln(𝑍(𝛽)). Notions of convexity

carry very nicely from the real line to general affine spaces. In that case, what you want to
do for spin systems like this, is to ask more detailed questions, like “What is the probability
that the energy for unit volume is in some area 𝑑𝐸, and the sum of the magnetization is
in some interval 𝑑𝑚?”. Such things are typically governed by large deviation principles.
In order to answer these kinds of questions, you can just take the partition function as
𝑍𝑛 = E(𝑒−𝜆·𝑋) where 𝑋 is the quantities you are interested in, and then you can just apply
the multidimensional version of the theorem we just stated.

I would also post some homework about using the calculation we derived here instead of
the Stirling inequality.

2-16-16

5 Free energy

We now discuss free energy.
Let us first start with a finite system. Consider a finite subset Λ of the grid Z𝑑. In

particular, consider Λ𝐿 = [−𝐿,𝐿]𝑑, a cube of size 2𝐿 in each dimension. The configuration
space is ΩΛ, which is the space of 𝜎 = {𝜎𝑥}𝑥∈Λ with

∙ 𝜎𝑥 ∈ {±1} for the Ising model, or

∙ 𝜎𝑥 ∈ {1, · · · , 𝑄} for the Potts model.

There are other possibilities as well.
We have the a priori probability measure 𝜌0(𝑑𝜎) =

⨂︀
𝑥 𝜌(𝑑𝜎𝑥).
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First we define free energy. Recall the partition function

eq:zla𝑍Λ =
∫︁
ΩΛ

𝑒−𝛽𝐻Λ(𝜎Λ)𝜌0(𝑑𝜎Λ) (1.10)

where the integral is over the spins in the cube with respect to the product measure, and

𝐻Λ(𝜎Λ) =
∑︁

𝐴⊂Λ,diam𝐴≤𝑅
𝐽𝐴Φ𝐴(𝜎𝐴)

where Φ is a translation invariant function and 𝐽𝐴 is a coupling constant.
For instance, in the Ising model,

eq:ising-h𝐻Λ = −
∑︁

𝑥,𝑦,|𝑥−𝑦|=1

𝐽𝜎𝑥𝜎𝑦 − ℎ
∑︁
𝑥

𝜎𝑥 (1.11)

(we sum over neighbors). This is an example of a formula in the type given above. Here 𝐽
is a coupling constant, and for single sites, the translation invariant coupling constant is ℎ.

Definition 1.5.1 (Free energy): The free energy is defined as

𝐹 (𝛽,Φ) = − 1

𝛽
ln(𝑍Λ)

where 𝑍Λ is defined in (1.10).

Here Φ can in general be complicated and 𝛽 = 1
𝑘𝐵𝑇

, where 𝑘𝐵 is the Boltzman constant
(in the following, choose units so 𝑘𝐵 = 1). For simplicity, given a specific model, we could
just write (𝐽, ℎ) instead of Φ.

5.1 Basic Properties

When we formulate the following models, we assume that max𝜎𝐴 |𝜑𝐴(𝜎𝐴)| <∞.

1. Assume the system obeys a large deviation principle with an entropy function 𝑆(𝐸)

where 𝐸 denotes the energy per unit volume. Using 𝐸 = 𝐻Λ(𝜎Λ)
|Λ| , we calculate

𝑍Λ =
∫︁
𝑒−𝛽𝐻Λ(𝜎)𝜌0(𝑑𝜎) ≈

∫︁
𝑒−𝛽|Λ|·𝐸𝑒|Λ|𝑠(𝐸)“𝑑𝐸”

where 𝑑𝐸 is kind of notation abuse: The number of values the energy can take is
essentially integer values over volume units, and this gives you essentially an integral.
The integral is dominated by the energy that gives the maximal exponent, and the fact
that the integral is an approximation is not too important.∫︁

𝑒|Λ|max𝐸(𝑠(𝐸)−𝛽𝐸)“𝑑𝐸”

28



PHY521/MAT597 Mathematical Physics

Then we can write the free energy as (𝑇 = 1
𝛽
)

𝐹 (𝛽) = − 1

𝛽
max
𝐸

(𝑠(𝐸)− 𝛽𝐸) = inf𝐸{𝐸 − 𝑇𝑠(𝐸)}

This is why it’s called the free energy: It’s the energy term corrected by 𝑇𝑠(𝐸) and is
related to the Legendre transform.14 The free energy is as much energy you can extract
from the system when it’s in contact with a thermal reservoir, and this is limited.

Recalling that energy is conserved, if you have a finite but huge system and let the
system evolve under whatever dynamics it has, it is reasonable to assume that all
states are equally likely (as in the microcanonical ensemble). If you look at a sub-
system, however, then energy fluctuates. The bulk of the system serves as a reservoir
for sub-systems.

At what temperature is this reservoir? Through the large deviation principle for en-
tropy, you are led to realize that even if in this entire universe the energy is fixed, for
subsystems, the energy is not constrained, and the distribution within the subsystem
is given by 𝑒−𝛽𝐻 , suitably normalized.

Hence, systems serve as the reservoir for the subsystems.

2. The free energy function is a generating function. The Gibbs state average energy per
volume is

⟨𝐻⟩
|Λ|

=
1

|Λ|

∫︁
𝐻Λ(𝜎Λ)

𝑒−𝛽𝐻Λ(𝜎Λ)𝜌0(𝑑𝜎Λ)

𝑍Λ

=
𝜕

𝜕𝛽
[𝛽𝐹 (𝛽)]

We have 𝛽𝐹 (𝛽) = − 1
|Λ| ln(𝑍Λ).

Suppose you want to know the total value of the Ising model magnetization,
⟨

1
|Λ|
∑︀
𝑥∈Λ 𝜎𝑥

⟩
.

Here, 𝐻Λ is given by (1.11). To find
⟨

1
|Λ|
∑︀
𝑥∈Λ 𝜎𝑥

⟩
, differentiate with respect to ℎ,

𝜕

𝜕ℎ
ln(𝑍Λ) =

𝛽

|Λ|

∫︁
(
∑︁
𝑥∈Λ

𝜎𝑥)
𝑒−𝛽𝐻Λ(𝜎)

𝑍
𝜌0(𝑑𝜎Λ).

In general, derivatives of the log of the partition function generate the averages you
desire. For instance, if you are somewhat sensitive to sums over triangles, then differ-
entiating the free energy with respect to this parameter would give you the average
value of that.

3. Variance of 𝐻Λ: To find the variance of 𝐻Λ, differentiate with respect to 𝛽 again. We
have

eq:var-h − 𝜕2

𝜕𝛽2
𝛽𝐹 (𝛽) = − 𝜕

𝜕𝛽

∫︁ 𝐻Λ

|Λ|
𝑒−𝛽𝐻Λ

𝑍Λ(𝛽)
𝜌0(𝑑𝜎) =

⟩︀
𝐻2

|Λ|

]︂
− ⟨𝐻⟩2

|Λ|
=

⟨(𝐻 − ⟨𝐻⟩)2⟩
|Λ|

,

(1.12)

14I would love it if energy was written in terms of entropy. Somehow, mankind discovered “energy” before
“entropy”, so we are continuously having to change notation between energy and entropy.
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which is the fluctuation, or variance, in the total energy.

What is the difference between the bulk (average) energy and the minimum energy?
Assuming the free energy is twice differentiable, how big would the fluctuation of the
total energy minus its mean be? It’s going to be big (we’re talking about energy in a
big universe).

(1.12) is of order 1, so ⟨(𝐻 − ⟨𝐻⟩)2⟩ is on the order of
È
|Λ| which is reminiscent of

independence of random variables. The Central Limit Theorem says that if you have
a sum of random variables, the fluctuation is 𝑂

(︁È
|Λ|
)︁
. We can prove an analogue of

the CLT if the function is twice differentiable, but this requires more work.

Note 𝐹 (𝛽) is convex in 𝛽 since it’s a supremum of linear functions in 𝛽 (?), and we just
proved that 𝛽𝐹 (𝛽) is concave. Concavity immediately implies differentiability with
the possible exception of some countable set of points15. In infinite systems, there is
more to be said, but for most sets, the second derivative is finite. Hence for Lesbegue
almost every value of 𝛽, 𝛽𝐹 (𝛽) is differentiable in 𝛽 and has a finite and bounded
second derivative.

Our next goal is the following two theorems.

Theorem 1.5.2. For any translation invariant system as described previously, the following
limit exists:

lim
𝐿→∞

1

|Λ𝐿|
ln(𝑍Λ(𝛽)) = − 1

𝛽
𝐹 (𝛽)

The limiting function is concave in 𝛽 because the limit of concave functions is concave.
The theorem says that the finite volume free energies converge (the limit is infinite dimen-
sional).

If the system is not translation invariant, the limit need not exist: if you set coupling
constant to new values as you go along, in that case, there’s no consistency between different
scales and the limit will not exist. However, translation invariance is a very rigid statement:
“Whatever was will be”. This general principle can be relaxed a bit, and it requires that the
system is stochastically invariant: It looks similar at different places.

Theorem 1.5.3. If the infinite volume free energy 𝐹 is differentiable at 𝛽,

1.

⟨𝐸⟩𝐿,𝛽 = ⟨𝐻Λ𝐿

|Λ𝐿|Λ𝐿,𝛽

⟩ → 𝜕

𝜕𝛽
[𝛽𝐹 (𝛽)]

2. For any 𝜖 > 0, then

PΛ𝐿;𝛽

(︃⃒⃒⃒⃒⃒
1

|Λ𝐿|
𝐻Λ𝐿

(𝜎Λ𝐿
)− ⟨𝐸⟩Λ𝐿,𝛽

⃒⃒⃒⃒⃒
≥ 𝜖

)︃
→𝐿→∞ 0

the probability is with respect to the Gibbs measure 𝜌Λ,𝛽.

15which could even be dense, this set of points can be of extreme interest: they are first order phase
transitions
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To explain part 1, we know the energy density in the finite volume is given by the finite
volume free energy. But what do the derivatives of finite volume functions have to do with
derivatives of limiting functions? There are functions which converge pointwise but whose
derivatives do not! So the first statement gives us a nontrivial fact. However, derivatives of
convex functions converge pointwise as well if a function converges pointwise, so we get a bit
extra.

Now, not only is the mean energy given in the limit, but we get part 2 above. Part 2
says that if we consider a gorwing sequence of finite boxes of size 𝐿, the empirical average
of the energy per volume is predictable.

In case of independent random variables, the weak law of large numbers says exactly this.
But we’re in the domain of correlated systems, and it is still true. All you need to know is
that the free energy is differentiable at a point.

Next we will prove this theorem and the full spelling out of this argument will be left to
you (Hint: Use Chebyshev bounds).

2-18

Good references include David Ruelle and Friedli-Velenik (see the introduction).

What is a thermodynamic limit? We would like to discuss systems of large volumes.

Definition 1.5.4: Let Λ(𝑎) =
⌋︀
𝑥 ∈ R𝑑 : 0 ≤ 𝑥𝑗 ≤ 𝑎

{︀
. (When we talk about the lattice,

replace R𝑑 with Z𝑑.) Let Λ𝑛(𝑎) = Λ(𝑎) + 𝑛𝑎 where 𝑛 ∈ Z𝑑. (The shifts tile space by boxes
of size 𝑎.)

For any Λ ⊂ R𝑑, let

𝑁+
𝑎 (Λ) =

⃒⃒⃒⌋︀
𝑛 ∈ Z𝑑 : Λ𝑛(𝑎) ∩ Λ ̸= 𝜑

{︀⃒⃒⃒
𝑁−
𝑎 (Λ) =

⃒⃒⃒⌋︀
𝑛 ∈ Z𝑑 : Λ𝑛(𝑎) ⊆ Λ

{︀⃒⃒⃒
.

They are the number of cells needed to cover Λ and the number of cells completely inside
Λ, respectively.

Definition 1.5.5: A sequence Λ𝑘 converges to Z𝑑 in the van Hove sense if for all 0 < 𝑎 <
∞,16

1. Λ𝑘 → Z𝑑,

2. 𝑁−
𝑎 (Λ𝑘) → ∞,

3. 𝑁+
𝑎 (Λ𝑘)

𝑁−
𝑎 (Λ𝑘)

→ 1 as 𝑘 → ∞. (This is equivalent to the surface-to-volume ratio |𝜕Λ𝑘|
|Λ𝑘|

→ 0.)

An example of a sequence violating (3) is a sequence of boxes with many “arms.” The arms
have volume proportional to the whole volume; in the arms, the distance to the boundary is
𝑂(1). We don’t want shapes whose boundaries are on the order of the volume.

16Careful: we use subscripts here in a different sense than in the previous definition.
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It is important that the conditions hold for all 𝑎. We will compute the free energy in
regular cubes, and see that whatever we prove for regular cubes is valid for a sequence
converging in the van Hove sense.

Define the partition function in a box Λ as

𝑍#
Λ (𝛽, ℎ) =

∫︁
Ω(Λ)

𝑒−𝛽𝐻
#
Λ (𝜎Λ)𝜌0(𝑑𝜎Λ)

where the # means we take into account the boundary conditions,

𝐻#
Λ (𝜎Λ) =

∑︁
𝐴⊆Λ

𝜑𝐴(𝜎𝐴) +
∑︁

𝐵 ∩ 𝜕Λ ̸= 𝜑
periodic terms

𝜑#
𝐵(𝜎𝐴)

Here,

∙ we allow finite-range interactions at the boundary.

∙ we also allow periodic (wrap-around) boundary conditions, e.g. a term to depend on
a pair of one point on the far left and a point on the far right.

We define the pressure in Λ as

𝜓Λ(𝛽, ℎ, . . .) =
1

|Λ|
ln𝑍Λ

(last time we defined this as −𝛽𝐹 ).

Theorem 1.5.6. For any Hamiltonian with a finite range translation invariant interaction,

lim
𝑘→∞

𝜓Λ𝑘
(𝛽, ℎ) = 𝜓(𝛽, ℎ)

exists for any van Hove sequence Λ𝑘 → Z𝑑 and is independent of the boundary conditions.

Proof. Consider first Λ𝑘 = Λ(𝑘𝑎) where

𝐻Λ(𝑘𝑎) =
∑︁

𝑛,0≤𝑛𝑗<𝑘

𝐻Λ𝑛(𝑎) +𝑅𝑘

where the sum gives the interactions within boxes, and the second term gives interactions
at the boundary of the boxes. We bound the total effect of the 𝑅𝑘 (the boundary corridors)
to estimate 𝑍(𝑘𝑎). Here 𝑟 is the radius of interactions (the width of the corridors),

‖𝑅𝑘‖∞ ≤ 𝐶𝑟|𝜕Λ(𝑎)|𝑘𝑑

𝑍Λ(𝑘𝑎) =
∫︁
𝑒−𝛽𝐻Λ(𝑘𝑎)𝜌(𝑑𝜎Λ(𝑘𝑎))

(𝑍Λ(𝑎))
𝑘𝑛𝑒−𝐶|𝜕Λ(𝑎)|ℎ𝑑 ≤ 𝑍(𝑘𝑎) ≤ 𝑍𝑘𝑛

Λ(𝑎)𝑒
𝐶|𝜕Λ(𝑎)|𝑘𝑑

1

Λ(𝑘𝑎)
ln𝑍(𝑘𝑎) =

1

|Λ(𝑎)|
1

𝑘𝑑
ln𝑍(𝑘𝑎)

ln𝑍(𝑎)

Λ(𝑎)
− 𝐶𝑟

|𝜕Λ(𝑎)|
|Λ(𝑎)|

≤ 1

Λ(𝑘𝑎)
ln𝑍(𝑘𝑎) ≤ ln𝑍(𝑎)

Λ(𝑎)
+ 𝐶𝑟

|𝜕Λ(𝑎)|
|Λ(𝑎)|
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(𝐶𝑟 ∝ 𝑟, but the exact dependence is not so important.) The log of the main term is
proportional to the number of boxes. Dividing by the number of boxes, we are left with the
following estimate. ⃒⃒⃒⃒⃒

1

|Λ(𝑘𝑎)|
ln𝑍(𝑘𝑎)− 1

|Λ(𝑎)|
ln𝑍(𝑎)

⃒⃒⃒⃒⃒
≤ 𝐶𝑟

|𝜕Λ(𝑎)|
|Λ(𝑎)|

.

(The partition function in the larger box, up to small error, is equal to the partition function

in the smaller box.) For any 𝜀 > 0, choose 𝑎 such that 𝐶𝑟
⃒⃒⃒
|𝜕Λ(𝑎)|
|Λ(𝑎)|

⃒⃒⃒
≤ 𝜀. Then for all 𝑘1, 𝑘2 ∈ N,⃒⃒⃒⃒⃒

ln𝑍(𝑘1, 𝑎)

|Λ(𝑘1, 𝑎)|
− ln𝑍(𝑘2, 𝑎)

|Λ(𝑘2, 𝑎)|

⃒⃒⃒⃒⃒
≤ 2𝜀.

This says that ln𝑍(𝑘1,𝑎)
|Λ(𝑘1,𝑎)| forms a Cauchy sequence for 𝑘 ↗ ∞.

Claim 1.5.7. For all 𝑎,

lim sup
𝑚→∞

1

|Λ(𝑚)|
ln𝑍(Λ(𝑚)) ≤ ln Λ(𝑎)

Λ(𝑛)
+ 𝐶𝑟

|𝜕Λ(𝑎)|
|Λ(𝑎)|

lim sup
𝑚→∞

1

|Λ(𝑚)|
ln𝑍(Λ(𝑚)) ≥ ln Λ(𝑎)

Λ(𝑛)
− 𝐶𝑟

|𝜕Λ(𝑎)|
|Λ(𝑎)|

Using tiling of boxes of length 𝑎, for large cubes you the free energy is approximately
what you get from the boxes of length 𝑎. The lim sup and lim inf are close up to small error.

𝜓Λ(𝑎) − 𝐶𝑟
|𝜕Λ(𝑎)|
|Λ(𝑎)|

≤ lim inf
𝑚→∞

𝜓Λ(𝑚) ≤ lim sup
𝑚→∞

𝜓Λ(𝑚) ≤ 𝜓Λ(𝑎) + 𝐶𝑟
|𝜕Λ(𝑎)|
|Λ(𝑎)|

The interval is of width 𝐶𝑟
|𝜕Λ(𝑎)|
|Λ(𝑎)| → 0. We have to take the 2 limits in the right order:

lim
𝑎→∞

lim
𝑚→∞

.

It’s of interest to extend this theorem (of fundamental importance in physics, free energy
exists independent of boundary conditions) to (decaying) long-range interactions; what is
the cutoff at which the argument breaks? The analogy is that analysts first prove for the
nicest (smooth) functions, and then estimate, for what range of slowly decaying functions
does this still work? 2-23: Make great reference to Prof. Aizenman’s other notes. Some of
this stuff will be added and corrected by Aizenman soon, for next class.

Refer to the notes given by hand as a basis for the discussion today.
We are discussing the first major result of the subject, which is the free energy. For an

extensive system, a useful form for Hamiltonian is an extensive function in finite volume,
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and 𝐻Λ(𝜎) refers to a sum over spin configurations, where Λ ⊂ Z𝑑 is a subset of a lattice or
more generally a homogenous graph. We can write

𝐻Λ(𝜎) =
∑︁
𝐴⊂Λ

𝜑𝐴(𝜎) =
∑︁
𝑥∈Λ

[︃∑︁
𝑥∈𝐴

1

|𝐴|
𝜑𝐴(𝜎𝐴)

]︃
This is true by summation by parts. Now why is this useful? This collection includes
the sum of those terms which affect the spin at 𝑥. It’s convenient to define as ‖𝜑‖ =∑︀

0∈𝐴
1
|𝐴|sup𝜎|𝜓𝐴(𝜎)|. What are spins in Ising models? For Ising, there are two types of

interactions: Pairs of spins, so we sum over ‖𝜑𝐼𝑠𝑖𝑛𝑔‖ = 1
2

∑︀
𝑢̸=0 |𝐽0,𝑢|+ℎ, where ℎ comes from

the external field. What is the range of interactions tolerated by the formalism? Well, the
norm must be finite, so the interactions must be summable. Also note that this expression
is good for translation invariant actions (see Eq. 1.12).

The basic theorem we are after is in on pg. 32 of the notes. Let us discuss boundary con-
ditions: If you have a system, it’s open to effects outside of the system, which we denote via
the # symbol. Sometimes we like to put periodic boundary conditions. When I was student,
it took me a while to figure out why people talk about periodic boundary conditions (we’re
effectively saying the boundary is neighbors). The reason is for very large systems, you see
emergent system invariants, and locally, often, things look similar in different places. So by
adding interactions across boundaries, you encourage this directly and it’s very mathemat-
ically convenient. Thus we have equation 1.18. In fact, in the infinite volume limit, if you
had a tiny bit of external field which is moved, the resulting state may or may not depend

on it. The argument can tolerate this extra term, as long as it’s ‖𝜑
#
Λ (𝜎)

|Λ| ‖ → 0 (this part is

more important). (See Eq. 1.20).
Now the strategy for the more general theorem is on page 32 (see Thm 1.4.4). Assuming

𝜑 is translation invariant, we can just assume that ‖𝜑‖ <∞ is finite, and the extra boundary
terms are 𝑜(|Λ|), the quantity 1

|Λ| ln(𝑍
#
Λ ) → 4(𝛽, 𝜑). For any van-Hove sequence, Λ𝑛 → Z𝑑

(approaches the lattice) and asymptotically covers the graph, and the boundary over the

volume tends to 0 ( |𝜕𝑁|Λ| → 0), where you measure it in terms of a discretized system. If you
take the volume and pack it by large cubes, then first pick the size of the cube you’re using
for packing, measure the boundary by the number of cubes which overlap, and the volume
by the number of cubes which fit inside, then the fraction goes to 0 no matter what size of
box you used.

Now this is called the pressure. The boundary conditions you add do not effect the
pressure. This is the physical notion of pressure. To explain this we will have to go into
thermodynamics, so we will postpone that.

I would like to discuss the strategy, since it is an example of how analysts approach
problems. You were trying to analyze a system with in principle, a potentially unbounded
range of interactions. It seems the energy per volume is dominated by the norm of the
interaction. Remember the norm of the interaction is defined in such a way as |𝐻Λ(𝜎)| ≤⃒⃒⃒∑︀

𝑥∈Λ

[︁∑︀
𝑥∈𝐴

1
|Λ|𝜑𝐴(𝜎)

]︁⃒⃒⃒
. So now the question to ask is how can I trim to get the system to

get something similar. Now as long as the norm is finite, as long as you chop diameters with
terms larger than 𝑅, you’re not making much of a dent in the volume. For every 𝜖 > 0, there
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exists 𝑅𝜖 which is finite such that |𝐻Λ(𝜎)−𝐻𝑅𝜖
Λ (𝜎)| ≤ 𝜖|Λ|. So you are shifting the energy

per density by a small amount. After all, we are interested in the logartihm of the partition
function. We have 𝑍 =

∫︀
𝑒−𝛽𝐻(𝜎)𝜌0(𝑑𝜎Λ). The effect of terms which are that small leads

us to bound 𝑍 by a factor at most exponential. Then | 1
|Λ| ln(𝑍) −

1
|Λ| ln𝑍

𝑅𝜖
Λ | ≤ 𝜖 to prove it

converges.
Now, let us divide up the space of size 𝑛 × 𝑛 into squares of size 𝑚 ×𝑚 with 𝑛 >> 𝑚.

Now there may be some boundary layer around the space which includes no 𝑚 inside. Now
how much is the partition function affected by turning off the boundary, and terms which
involve different boxes. These terms can be estimated by removing thin rectangles of size
𝑅𝜖 (call these of terms of type 1). What is effect of the energy of this on these terms on one
over the volume on the partition in this box. The right question to ask is how much energy
can you pack into the rectangle. We don’t care about constants since this is analysis.

Each box contributes a corridor of order 𝑅𝜖, so we have

| 1

|Λ𝑚|
ln(𝑍𝑅𝜖

Λ𝑚
)− 1

|Λ𝑚|
ln(𝑍Λ𝑚)| ≤ 𝑑𝛽‖𝜑‖

[︂
𝑅

𝑚
+
𝑚

𝑛

]︂
Here’s a cool way to prove this works: For 𝑛 fixed, the limit when 𝑛 → ∞ yields (if it

exists, however, just take the lim sup if this is the case), you learn |lim sup𝑛→∞| 1
|Λ𝑚| ln(𝑍

𝑅𝜖
Λ𝑚

)−
1

|Λ𝑚| ln(𝑍Λ𝑚)| ≤ 𝑑𝛽‖𝜑‖
�
𝑅
𝑚
+ 𝑚

𝑛

�
→ 𝑅

𝑚
‖𝜑‖𝑑𝛽. So now we see that 1

|Λ𝑚| ln(𝑍
𝑅𝜖
Λ𝑚

) is a number.
We learn that the finite volume partition functions are close to that number, with distance
at most 1/𝑚. Taking 𝑚 → ∞, we see that the upper bound goes to 0, and therefore
1

|Λ𝑚| ln(𝑍Λ𝑚) → 1
|Λ𝑚| ln(𝑍

𝑅𝜖
Λ𝑚

). This is very typical argument in analysis. If you now have an
unbounded interaction, you just use a norm estimate. That’s the proof outlined in the notes.
Later today I’ll upload the full proof using all approximations.

Now what is this free energy/pressure used for? We have 𝜓(𝛽, 𝜑) or 𝜓(𝛽, ℎ). Finite
volume Gibbs equilibrium states are 𝜌𝛽 are measures in the volume on spin configurations
(in discrete case, this amounts to 𝛿-measure where weights add up to 1), and the measure is

defined as 𝜌#𝛽,Λ(𝜎Λ) =
𝑒
−𝛽𝐻

#
Λ 𝜌0(𝑑𝜎Λ)

𝑍#
Λ

where 𝛽 = 1/𝑇 .

In thermodynamics, you take about extensive quantities, temperature, density, etc. In
statistical mechanics, you want to know the joint distribution of states in multitude of local
variables in Gibbs equilibrium. How does this inform you? It tells you some information,
but not everything. All of this is not complicated once you understand it, but let’s talk
about probability referring to 𝜌. Now consider 1

|Λ| ln(𝑍
#
Λ (𝛽 +Δ𝛽)) = 1

|Λ| ln(𝑍
#
Λ (𝛽)). Then

1

|Λ|
ln
∫︁
𝑒−(Δ𝛽)𝐻Λ(𝜎)𝜌𝛽(𝑑𝜎Λ)

So we write

𝑍Λ(𝛽 +Δ𝛽) =
∫︁
𝑒−(𝛽+Δ𝛽)𝐻Λ𝜌0(𝑑𝜎) = 𝑍Λ(𝛽)E𝛽(𝑒−(Δ𝛽𝐻Λ))

We basically split up the exponent, and divided by the normalizing factor, pulling it
outside the integral. The resulting integral is no more than 𝑒−(Δ𝛽)𝐻Λ averaged with respect
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to an average measure. Thus we have

E𝛽,Λ(𝑒−(Δ𝛽)𝐻Λ) =
𝑍Λ(𝛽 +Δ𝛽)

𝑍Λ(𝛽)
≥ 𝑒−Δ𝛽𝐸P𝛽(𝐻Λ < 𝐸)

This is exponentially small. Hence, for Δ𝛽 < 0, we learn that P𝛽(𝐻Λ < 𝐸) ≤ 𝑒𝐸Δ𝛽 𝑍Λ(𝛽+Δ𝛽)
𝑍(𝛽)

.
Now divide by the volume to get

1

|Λ|
ln(P𝛽(𝐻Λ < 𝐸)) ≤ Δ𝛽

𝐸

|Λ|
[𝜓(𝛽 +Δ𝛽 − 𝜓(𝛽)]

Let me just stop and give a picture and see the organized notes. Let’s just explain what’s
going on: Convex functions have directional derivatives exists, this means that as you move
along 𝜓 (image) and 𝛽 (domain), the pressure along 𝛽 gives the mean value of the energy.
What does this tell you about actual values? We want to extract that the energy deviates
by 𝜖 is a probability distribution, we can get it by studying the way the function behaves,
the main idea is that the slope of the function gives you mean energy, and if you want to
study energy which differs from slope, look at the free energy function. If you move by slope
different from tangent, you reach right above it. Then the biggest gap you can create is a
gap of exponential decay which is how much probability there is between yourself and the
mean.

At those temperatures where the pressure is differentiable, then the energy density is
equal to the thermodynamic value and is exponentially small in the volume. Each of the
Hamiltonian terms will get its own shift-invariant coefficient. Functions which are jointly
convex in a finite number of parameters are differentiable almost everywhere. You can then
read the expected values of the energy, the quantity related to 𝐻 (magnetization), and
various other local variables, can all be read off of this thermodynamic function 𝜓, and if
you want more parameters, just add those. So you capture parameters which are existing
where pressure is differentiable. People who study statistical mechanics not where everything
is smooth, but where the pressure is not differentiable. What happens at such points? The
Gibbs equilibrium states behave as if the slope of the function is the same at the point
according to higher up, it’s like there is one state. From the other side, you get a different
energy density. It’s very similar to phase transitions (solid → liquid → gas).

2-25

5.2 Convexity of the pressure and its implications

Theorem 1.5.8 (Hölder inequality). For any pair of functions 𝑓, 𝑔 : Ω → R on a (positive)
measure space, for 1

𝑝
+ 1

𝑞
= 1,⃒⃒⃒⃒∫︁
𝑓(𝜔)𝑔(𝜔) 𝑑𝜇(𝜔)

⃒⃒⃒⃒
≤
∫︁ �∫︁

|𝑓 |𝑝 𝑑𝜇
� 1

𝑝
�∫︁

|𝑔|𝑞 𝑑𝜇
� 1

𝑞

.

This can be proved using Jensen’s inequality.
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Theorem 1.5.9. For any function 𝜑 : Ω → R,

𝑃 (ℎ) = ln
∫︁
𝑒ℎ𝜑(𝜔) 𝑑𝜇(𝜔)

is convex in ℎ.

Proof 1. Differentiate:

𝑃 ′(ℎ) = ⟨𝜑⟩ℎ
𝑃 ′′(ℎ) =

¬
(𝜑− ⟨𝜑ℎ⟩)2

)︂
ℎ
≥ 0.

Proof 2. Let ℎ𝑡 = 𝑡ℎ0 + (1− 𝑡)ℎ1. Then∫︁
𝑒ℎ𝑡𝜑 𝑑𝜇 =

∫︁
(𝑒ℎ0𝜑)𝑡(𝑒ℎ1𝜑)1−𝑡 𝑑𝜇

≤
�∫︁

𝑒ℎ0 𝑑𝜇
�𝑡 �∫︁

𝑒ℎ1 𝑑𝜇
�1−𝑡

.

Hence
𝑃 (ℎ𝑡) ≤ 𝑡𝑃 (ℎ0) + (1− 𝑡)𝑃 (ℎ1).

Note the proof doesn’t assume differentiability of 𝜑.
We used the density for fluctution estimates.
Our goal is to estimate

P(𝐻(𝜎) ≤ ⟨𝐻⟩𝛽 − 𝜀|Λ|) =
∫︁
ΩΛ

1[𝐻(𝜎) ≤ ⟨𝐻⟩𝛽 − 𝜀|Λ|]𝑒
−𝛽𝐻Λ(𝜎) 𝜌0(𝑑𝜎)

𝑍Λ(𝛽)
.

We use the bound
1[𝐻 ≤ ⟨𝐻⟩ − 𝜀|Λ|] ≤ 𝑒−𝑡𝐻𝑒𝑡⟨𝐻⟩−𝜀|Λ|.

Then

P(𝐻(𝜎) ≤ ⟨𝐻⟩𝛽 − 𝜀|Λ|) ≤
[︂∫︁

ΩΛ

𝑒−𝑡𝐻𝜌𝛽(𝜎)
]︂
𝑒𝑡(⟨𝐻⟩−𝜀|Λ|)

=
𝑍(𝛽 + 𝑡)

𝑍(𝛽)
𝑒𝑡(⟨𝐻⟩−𝜀|Λ|);

we got the partition temperature at shifted temperature. The partition function is a gener-
ating function: its derivative up to sign gives energy,

𝜓(𝛽) =
1

|Λ|
ln
�∫︁

𝑒−𝛽𝐻Λ𝜌0(𝑑𝜎)
�⏟  ⏞  

𝑍Λ(𝛽)

⟨𝐻⟩𝛽 = −𝜓′
𝐴(𝛽)|Λ|.
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Using this, we get

P(𝐻(𝜎) ≤ ⟨𝐻⟩𝛽 − 𝜀|Λ|) ≤ 𝑍(𝛽 + 𝑡)

𝑍(𝛽)
𝑒−𝑡[𝜓

′(𝛽)+𝜀]|Λ|

≤ 𝑒𝜓(𝛽+𝑡)|Λ|

𝑒(𝜓(𝛽)+[𝜓′(𝛽)+𝜀]𝑡)|Λ| .

Thinking of 𝜓 as a function of inverse temperature 𝛽, 𝜓 is convex. The slope at a point is
𝜓′(𝛽). In the denominator is a linear function which is equal to 𝜓(𝛽) at 𝛽 but increases a
bit faster than the tangent line.

By convexity, for all 𝜀 > 0, 𝑡 > 0 small enough,

𝜓(𝛽) + 𝑡𝜀[𝜓
′(𝛽) + 𝜀]− 𝜓(𝛽 + 𝑡) ≥ 0

Pick 𝑡 to maximize this difference. Denoting 𝛿(𝜀) = sup𝑡>0 𝛿(𝑡) we have

P𝛽(𝐻Λ ≤ ⟨𝐻Λ⟩ − 𝜀|Λ|) ≤ 𝑒−𝛿(𝜀)|Λ|.

The probability that the energy density falls by 𝜀 below its mean decays exponentially.
This is the kind of decay we were talking about with large deviation principles. Similarly we
can show

P𝛽(𝐻 ≥ ⟨𝐻⟩+ 𝜀|Λ|) ≤ 𝑒−𝛿+(𝜀)|Λ|.

This is left as an argument. We can repeat the argument, or apply what we proved to a
system where the Hamiltonian is the negative.

The convex functions converge to a convex function. In the infinite volume limit, the
function may not be differentiable, but the left and right derivatives exist. Our argument is
really comparing with the slope of the function coming from above; for the other inequality,
compare with the slope of the function from below.

Since the pressure converges, you can conclude that given a van Hove sequence, for Λ
large enough, you can conclude the bounds (not optimally) with 𝛿/2.
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5.3 Large deviation principle for van Hove sequences

Theorem 1.5.10. Assume that the infinite volume pressure 𝜓 is differentiable at 𝛽0. Then
for all Λ𝑛 ↑ Z𝑑 (in the van Hove sense). Then for any 𝜀, there is 𝑁 < ∞ such that for all
𝑛 ≥ 𝑁 ,

P𝛽,Λ𝑛

(︃⃒⃒⃒⃒⃒
1

|Λ|
𝐻Λ(𝜎) + 𝜓′(𝛽)

⃒⃒⃒⃒⃒
≥ 𝜀

)︃
≤ 𝑒−

𝛿(𝜀)
2

|Λ|.

If the infinite volume pressure is differentiable at a particular 𝛽, then in large enough
finite volume, then the fluctuations per volume is small. with high probability. Look at the
infinite volume function; for every 𝜀, ask when we move right (left) at 𝜀 greater (less) than
the slope, how far we move to have the largest discrepancy. Wait for the gap between the
infinite and finite volume case function to be less than half.

So far we studied the distribution of the energy. But you may want to know the distri-
bution of other quantities such as magnetization, spin, and number of clusters of a certain
class. These are covered by the same analysis except you consider the dependence of the free
energy.

TODO: edit What is the physical implication for a lattice model? If you know the
pressure as a function of inverse temperature. Pressure is a thermodynamic function. We
are interested in sysm of deg ... tell us something... typical range of values of the energy
of this configuration. At places where the energy is differentiable, the total energy per unit
volume does not fluctuate much. We expect

√
volume of fluctuations. This is like CLT for

nonindependent variables.
What happens if the pressure is not differentiable? Without assuming differentiability of

𝜓(𝛽), we have

P𝛽,Λ
�

1

|Λ|
𝐻 ≥ 𝜓′(𝛽 + 0) + 𝜀

�
≤ 𝑒−

𝛿(𝜀)
2

|Λ|

P𝛽,Λ
�

1

|Λ|
𝐻 ≤ 𝜓′(𝛽 − 0)− 𝜀

�
≤ 𝑒−

𝛿(𝜀)
2

|Λ|.

(Note 𝜓′(𝛽 − 0) ≤ 𝜓′(𝛽 + 0).) To extend to the densities of other local observables,

𝐻(𝜎) =
∑︁
𝐴⊆Z𝑑

𝐽𝐴𝜑𝐴(𝜎)

with 𝐽𝐴 = 𝐽𝑆𝑛𝐴 for all shifts 𝑆𝑛. (The proper way to do this is to introduce coupling
constants depending on the equivalence class of terms modulo translation. For example,
Ising coupling has 2 parameters corresponding to nearest neighbor coupling and external
field.)

For a collection of translation-invariant interactions, we denote

𝜓(𝛽, 𝐽) = lim
𝜆↑Z𝑑

1

|Λ|
ln𝑍Λ(𝐽, 𝜑).
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Theorem 1.5.11. For any translation-invariant interaction with ‖𝐽‖ <∞, the limit 𝜓(𝛽, 𝐽)
exists and is a convex function of 𝐽 (it is jointly convex in all parameters).

We think of pressure as a function of both the temperature and parameters such as
the magnetic field. For example, for 𝐻 = −𝐽∑︀{𝑥,𝑦},|𝑥−𝑦|=1 𝜎𝑥𝜎𝑦 − ℎ

∑︀
𝑥 𝜎𝑥, 𝜓 is a function

𝜓(𝛽, 𝐽, ℎ). We have
𝜕𝜓Λ

𝜕ℎ
= 𝛽

⟨
1

|Λ|
∑︁
𝑥∈𝐴

𝜎𝑥

⟩
.

and

𝜓Λ(𝛽, 𝐽, ℎ) =
1

|Λ|
ln
∫︁
𝑒
𝛽(𝐽
∑︀

⟨𝑥,𝑦⟩ 𝜎𝑥𝜎𝑦+ℎ
∑︀

𝑥∈𝐴
𝜎𝑥)𝜌0(𝑑𝜎)

𝜓(𝛽, 𝐽) = lim
Λ↑Z𝑑

1

|Λ|
ln𝑍Λ(𝐽𝜑)

Introduce as many parameters as you think are relevant.
In the homework, you will look at the simplest system, ideal gas. There are no inter-

actions. We introduce something akin to the magnetization. Compute the pressure for an
ideal gas and use this to compute the entropy of the system. The Legendre transform allows
you to read the ... from the free energy. You’ll learn how to arrive at this celebrated formula

−𝜌 ln 𝜌+ (1− 𝜌) ln(1− 𝜌).

It becomes a challenge to evaluate partition functions and find their singularities. Ising
calculated the partition function for the 1-D model; you will do the calculation too. He said
it has no singularity. If you move to 2 dimensions, it does exhibit a phase transition. The
2-D model is solvable by other techniques. 3-1: First, notational adjustments

Let

𝐻Λ(𝜎) =
∑︁
𝐴⊆Λ

𝐽𝐴𝜑𝐴(𝜎)

and assume 𝜑 is normalized so that

sup
𝜎

|𝜑𝐴(𝜎)| = 1

(if it is not identically 0). For 𝐽 = {1𝐴}, define

‖𝐽‖ =
∑︁
𝐴∋0

1

|𝐴|
|𝐽𝐴|.

Definition 1.5.12: 𝐻 is translation invariant if for all 𝐴 ⊆ Λ,

1. (Coupling is translation covariant) 𝜑𝐴+𝑢(𝜎) = 𝜑𝐴(𝑆𝑢𝜎), where (𝑆𝑢𝜎)𝑥 = 𝜎𝑥+𝑢.

2. 𝐽𝐴 = 𝐽𝐴+𝑢.
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Note that 𝜑 is really “shift covariant” whereas 𝐻 is “shift invariant”, i.e. 𝐻(𝑆𝑛𝜎) = 𝐻(𝜎)
(formally). This is a formal expression because for an infinite system, the energy is infinite.
(There are various ways to make sense of this mathematically. For example, you can look
at a finite system with periodic bounary conditions, and we can talk about shift invariance
there.)

For translation invariant Hamiltonians,

𝜓(𝛽, 𝐽) = lim
Λ↑Z𝑑

1

|Λ|
ln𝑍Λ(𝛽, 𝐽))

where 𝑍Λ(𝛽, 𝐽) =
∫︀
ΩΛ
𝑒−𝛽𝐻Λ(𝛽)𝜌0(𝑑𝜎Λ).

We proved 2 theorems, Theorem 1.5.11 and the following. Let ℎ be one of the parameters
of 𝐽 = {𝐽Λ} and 𝑀 be the conjugate quantity

𝑀Λ(𝜎) = − 𝜕

𝜕ℎ
𝐻Λ(𝛽, 𝐽).

𝑀Λ(𝜎) = − 𝜕

𝜕ℎ
𝐻Λ(𝛽, 𝐽).

The example to keep in mind is the following.

Example 1.5.13: The Ising model is 𝐻Λ(𝜎) =
∑︀

{𝑥,𝑦} 𝐽𝑥−𝑦𝜎𝑥𝜎𝑢 − ℎ
∑︀
𝑥∈Λ 𝜎𝑥. Here,

− 𝜕

𝜕𝐻Λ(𝜎)
𝜕ℎ = 𝜎𝑥∈Λ𝜎𝑥 ≡𝑀.

We have 1
|Λ|E(𝑀Λ) =

1
𝛽
𝜕
𝜕ℎ
𝜓.

Theorem 1.5.14. For any (𝛽, 𝐽), for 𝜀 > 0, there exists 𝛿(𝜀) > 0 such that for any van
Hove sequence,

lim
Λ↑Z𝑑

1

|Λ|
lnPΛ

�
1
|Λ|𝑀Λ(𝜎) ≥ 1

𝛽
𝜕
𝜕ℎ
𝜓
⃒⃒⃒
+0

+ 𝜀 or
1
|Λ|𝑀Λ(𝜎) ≤ 1

𝛽
𝜕
𝜕ℎ
𝜓
⃒⃒⃒
−0

− 𝜀

�
≤ −𝛿(𝜀)

This says that

PΛ

�
1

|Λ|
𝑀Λ ≥ 𝜕

𝜕𝜓
ℎ+ 𝜀

�
≈ 𝑒−𝛿(𝜀)|Λ|.

6 1-D Ising model

Consider the 1-D Ising model. The spins are 𝜎𝑛 = ±1; the energy is

𝐻(𝜎) = −𝐽
∑︁
𝑛

𝜎𝑛𝜎𝑛+1 − ℎ
∑︁

𝜎𝑛.
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The first term encourages neighbors the agree, and the second term encourages the spins to
agree with the applied field.

(Here we just have nearest-neighbor interactions. In general we can have interactions
between longer distances, which complicates the calculations. When there are long-range
interactions (following a power law), there can be a phase transition.)

Theorem 1.6.1. Let ̂︀ℎ = 𝛽ℎ. Then

𝜓(𝛽, ℎ) := lim
𝑁→∞

1

𝑁
ln𝑍𝑁 = ln[𝑒𝛽𝐽 cosh ̂︀ℎ+ (𝑒2𝛽𝐽 sinh2 ̂︀ℎ+ 𝑒−2𝛽)

1
2 ]

The particular form of the formula is not so important; what’s important is that it is
explicit. As a corollary, 𝜓 is differentiable at all 𝛽 ≥ 0, ℎ ∈ R with

𝑚(𝛽, ℎ) :=
𝜕𝜓

𝜕ℎ
=

𝑒𝛽 sinh ̂︀ℎ
[𝑒2𝛽 sinh2 ̂︀ℎ+ 𝑒−2𝛽]

1
2

In particular,

lim
𝛽→∞

𝑚(𝛽, ℎ) =

⎧⎪⎪⎨⎪⎪⎩
1, ℎ > 0

0, ℎ = 0

−1, ℎ < 0.

Note that we do not see the signature of a first-order phase transition, that the energy is
discontinuous. The derivative is discontinuous, but the energy is not. We observe something
like this only at infinite 𝛽. This is a general feature of 1-D statistical mechanical models:
there is no symmetry breaking unless the model has very long-range interactions.
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Proof. Take an Ising model with periodic boundary conditions 𝜎𝐿 = 𝜎0. Then (it helps to
symmetrize the sum)

𝑍per
[0,𝐿] =

∑︁
𝜎𝑗 = ±1
𝜎0 = 𝜎𝐿

𝑒𝛽
∑︀𝐿

𝑚=1
𝜎𝑚𝜎𝑚+1+̂︀ℎ∑︀𝐿

1=1

𝜎𝑛+𝜎𝑛+1
2

= tr(𝐴𝐿)

where

𝐴 =

�
𝐴++ 𝐴+−
𝐴−+ 𝐴−−

�
=

�
𝑒𝛽+̂︀ℎ 𝑒−𝛽

𝑒−𝛽 𝑒𝛽−̂︀ℎ
�
.

Recall that

tr(𝐴𝐿) =
∑︁

𝜎0=𝜎𝐿∈±1

(𝐴𝐿)𝜎0𝜎𝐿 =
∑︁

𝜎𝑖 = ±1
𝜎0 = 𝜎𝐿

𝐴𝜎0,𝜎1𝐴𝜎1,𝜎2 · · ·𝐴𝜎𝐿−1,𝜎0 .

Since 𝐴 is self-adjoint, 𝐴 is diagonalizable. The eigenvalues have different modulus, |𝜆1| >
|𝜆2|, and

Tr(𝐴𝐿) = 𝜆𝐿1 + 𝜆𝐿2 = 𝜆𝐿1

[︃
1 +

�
𝜆2
𝜆1

�𝐿]︃
1

𝐿
ln𝑍𝐿 = ln𝜆1 +

1

𝐿
ln

[︃
1 +

�
𝜆2
𝜆1

�𝐿]︃
⏟  ⏞  

≈ 1
𝐿

(︀
𝜆2
𝜆1

�𝐿 using ln(1 + 𝜀) ≈ 𝜀.

lim
𝐿→∞

1

𝐿
ln𝑍𝐿 = ln𝜆1

The matrix 𝐴 is a transfer matrix (as in a Markov chain). Fixing the boundary
conditions 𝜎0, 𝜎𝐿, we have

𝑍𝑏.𝑐.
𝐿 =

∑︁
𝐴𝜎0𝜎1𝐴𝜎1𝜎2 · · ·𝐴𝜎𝐿−1𝜎𝐿 = (𝐴𝐿)𝜎0𝜎𝐿

(Exercise: write this in terms of the eigenvalues.)
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Consider 𝑍++
𝐿 , 𝑍+−

𝐿 , 𝑍−+
𝐿 , 𝑍−−

𝐿 . Assuming the magnetic field is positive (ℎ > 0), the
maximum is 𝑍++

𝐿 ; if ℎ < 0 then the maximum is 𝑍−−
𝐿 . We have⃒⃒⃒⃒⃒

𝑍++ − 𝑍−−

𝑍++

⃒⃒⃒⃒⃒
≤
⃒⃒⃒⃒⃒
𝜆2
𝜆1

⃒⃒⃒⃒⃒𝐿
With open-ended boundary conditions, the spins are an array of variables with the

Markov property. If you specify a spin, then the distribution of the future does not de-
pend on the past beyond the value of the previous spin. Thus the values form a Markov
chain, and the transfer matrix is familiar from the theory of Markov chains.

What happens beyond 1 dimension? Then the Markov property re-emerges in an inter-
esting way. When you talk about the distribution of a finite system, it’s sufficient to give the
spins at the boundary. There is a multidimensional Markov property, specified by boundary
spins. We will arrive at the theory of Gibbs states. 3-3-16

6.1 Transfer matrix method

This method applies to any finite model in 1 dimension. Suppose the individual states are
𝜎 = ±1, {𝜎𝑖}𝐿𝑖=0 The probability of observing a particular configuration is

P𝑏.𝑐.𝛽 ({𝜎Λ𝐿
}) = 𝑒−𝛽𝐻

𝑏𝑐
𝐿 (𝜎)

𝑍𝑏𝑟
𝐿 (𝛽)

1[𝜎0, 𝜎𝐿 satisfy boundary conditions]

(1.13)

P𝛽(𝜎 has boundary conditions 𝜎0, 𝜎𝐿) = (𝑇𝐿)𝜎0,𝜎𝐿 (1.14)

=
∑︁

𝜎={−1,1}[1,𝐿−1]

𝑇𝜎0,𝜎1 · · ·𝑇𝜎𝐿−1𝜎𝐿 . (1.15)

Here,

𝑇𝜎,𝜎′ = 𝑒
−
�
𝛽𝐽𝜎𝜎′+̂︀ℎ(︀𝜎+𝜎′

2

��
(1.16)

= 𝑒−𝛽𝐻(𝜎)𝑒
̂︀ℎ(𝜎0+𝜎𝐿

2 ). (1.17)

The product of these is

𝑒−𝛽𝐻(𝜎) = 𝑒
−𝛽
∑︀𝐿−1

𝑗=0
𝜎𝑗𝜎𝑗+1−̂︀ℎ∑︀𝐿

𝑗=0
𝜎𝑗 .

Another natural boundary condition is the periodic boundary conditions: we only allow
states where 𝜎0 = 𝜎𝐿, so

𝑍per
𝐿 = 𝑍+,+

𝐿 + 𝑍−,−
𝐿 = Tr(𝑇𝐿).

6.2 Markov chains

We summarize some basic facts about Markov chains.
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Definition 1.6.2: A 𝑄-state Markov chain is a collection of random variables {𝑤𝑛} with

values in [𝑄] = {1, . . . , 𝑄}. Let Ψ𝑛 =

�
𝑃𝑛(1)
...

𝑃𝑛(𝑄)

�
where 𝑃𝑛(𝑘) = P(𝜔𝑛 = 𝑘).

Ψ1 is in a given initial state17, i.e., the probability distribution of 𝜔1, and

Ψ𝑛+1 = 𝐴Ψ𝑛

where 𝐴𝑖𝑗 = P(𝜔𝑛+1|𝜔𝑛 = 𝑗) is doubly stochastic
∑︀
𝑗 𝐴𝑖𝑗 = 1 =

∑︀
𝑖𝐴𝑖𝑗, 𝐴𝑖𝑗 ≥ 0.18

Think of 𝑛 as the discrete time. Taking powers, we have

Ψ𝑛+1 = 𝐴𝑛Ψ1.

Markov chains have finite memory; the effect of the initial value decays exponentially.
Nice Markov chains have a “destiny” (equilibrium distribution). 19

A 1-D finite system looks like a Markov chain; boundary conditions are equivalent to
specifying initial and final states.

Theorem 1.6.3 (Perron-Frobenius). Let 𝐴 = (𝑎𝑖𝑗) be a 𝑄×𝑄 positive matrix 𝑎𝑖𝑗 ≥ 0.

1. There is a positive eigenvalue 𝑟 (the Perron-Frobenius eigenvalue) such that the spectral
radius of 𝐴 is 𝜌(𝐴) = 𝑟 and 𝐴 has no other eigenvalue with |𝛼| = 𝑟.

2. This eigenvalue is simple, and the corresponding eigenvector is positive.

3. Letting |𝑣⟩, ⟨𝑤| be the left and right eigenvectors of 𝐴 corresponding to the largest
eigenvalue, 𝐴|𝑣⟩ = 𝑟|𝑣⟩, ⟨𝑤| = 𝑟⟨𝑤|, 20

lim
𝐿→∞

1

𝑟𝐿
𝐴𝐿 = |𝑣⟩⟨𝑤|

In other words, there is 𝑆 such that

𝑆−1𝐴𝑆 ≈ 𝑟𝐿

�
1 0 · · ·
0 0 · · ·
...

...
. . .

�
.

17Probabilists use “state” to mean the value of the random variable; physicists use “states” to correspond
to probability measure. (In quantum physics, not all variables have concrete values.)

18The LHS equality says that the Markov chain is reversible.
19The basic laws of physics seem reversible; how to explain the arrow of time? Consider colliding molecules;

the impact parameters seem to be coming without precise aim in an uncorrelated way (Boltzmann’s hypoth-
esis), which isn’t true if it is played in reverse. Entropy keeps increasing. Is there a moment when the
entropy starts decreasing; does the arrow of time reverse?

20We use Dirac’s notation |𝑣⟩ = 𝑣𝑇 , ⟨𝑤| = 𝑤.
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Applying this to the 1-D Ising model,

𝑍per =
𝑄∑︁
𝑗=1

𝜆𝐿𝑗 (1.18)

≈ 𝜆𝐿max

�
1 +

⃒⃒⃒⃒⃒
𝜆2
𝜆1

⃒⃒⃒⃒⃒𝐿
+ · · ·

�
(1.19)

where

1 >

⃒⃒⃒⃒⃒
𝜆2
𝜆1

⃒⃒⃒⃒⃒
= 𝑒−𝛿

where 𝛿𝜆 > 0 is the spectral gap, the gap between 𝜆max and the next smaller eigenvalue (in
absolute value). Using this, it is an exercise to show that in the Ising model, in the infinite
volume limit the state exhibits exponential decay of correlations,

lim
𝐿→∞

⃒⃒⃒
⟨𝜎𝑥, 𝜎𝑦⟩[−𝐿,𝐿]

⃒⃒⃒
≤ 𝐴𝑒−𝛿|𝑥−𝑦|,

where ⟨𝐴,𝐵⟩ = ⟨𝐴𝐵⟩ − ⟨𝐴⟩ ⟨𝐵⟩ is the covariance. In the 1-D Ising model,

Ψ(𝛽, ℎ) = lim
𝐿→∞

1

𝐿
𝑍𝐿 = ln𝜆max,

where 𝜆max is the Perron-Frobenius eigenvalue of 𝑇 =

�
𝑒𝛽+̂︀ℎ 𝑒−𝛽

𝑒−𝛽 𝑒𝛽−̂︀ℎ
�
.

The matrix elements are analytic. Can we conclude from this the analyticity of eigen-
values? They are when they don’t bump into each other. When they do, funny things can
happen. But here, Perron-Frobenius tells us that eigenvalues will not be equal (all entries
in 𝑇 are positive). Thus the eigenvalues will be differentiable in 𝛽, ℎ and there is no phase
transition.

7 2-D Ising model

Studying the transfer matrix going up, certain models are integrable; you can get a for-
mula for the partition function. We’ll present a different method which is culturally very
important. There is no closed-form solution in 3-D.

In contrast to the 1-dimensional case, in 2 dimensions, the free energy is not differentiable.
Next we will show that for the 2D Ising model, for 𝛽 large enough (𝛽 > 𝛽𝑐) there exists

𝑚(𝛽) > 0 such that

P+
𝛽,𝑘=0

�
1

|Λ𝐿|
∑︁
𝑥∈Λ𝐿

𝜎𝑥𝑚 ≥ 𝑚

2

�
→ 1 (1.20)

P−
𝛽,𝑘=0

�
1

|Λ𝐿|
∑︁
𝑥∈Λ𝐿

𝜎𝑥𝑚 ≤ 𝑚

2

�
→ 1 (1.21)
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as 𝐿 → ∞. This indicates a phase transition. The signature of a phase transition is that
when you take 𝛽 > 𝛽𝑐, ℎ = 0 (so the Hamiltonian is invariant under spin-flip).

The Hamiltonian is 𝐻 = −∑︀𝑥,𝑦 neighbors 𝜎𝑥𝜎𝑦. With + boundary conditions, the spins
are overwhelmingly positive. With − boundary conditions, the spins are overwhelmingly
negative. The system deep inside remembers the boundary conditions. Locally, there is
symmetry; globally we have symmetry breaking.

What if we take symmetric boundary conditions, with +’s and −’s? Since it is invariant
under a reflection, the probability of observing ≥ 𝑚

2
+ 𝜀 vanishes exponentially. The system

organizes itself as follows: close to the +/− boundary there is mostly +/− with islands of
−/+; in between there is an interface.

We will see Peiech’s argument (?).
3-8
Peiech showed that these models can exhibit symmetry breaking.
In the 2-D Ising model,

𝐻 = −𝐽
∑︁
{𝑥,𝑦}

𝜎𝑥𝜎𝑦 − ℎ
∑︁
𝑥

𝜎𝑥.

Theorem 1.7.1 (Peiech). For the 2D nonnegative Ising model, there exists 𝛽0 < ∞ such
that for 𝛽 > 𝛽0, at ℎ = 0,

⟨𝜎𝑥⟩+Λ,𝛽,0 ≥ 𝑚(𝛽)

⟨𝜎𝑥⟩−Λ,𝛽,0 ≤ −𝑚(𝛽).

with some 𝑚(𝛽) > 0.

Why is this “symmetry breaking”? If you take the model at external field ℎ = 0 (so that
the measure is invariant under global spin flip), the expected value of any anti-symmetric
quantity like spin is 0. If you put + boundary conditions all around, then you expect there
to be more +’s. More surprisingly, if you fix any spin, even if the spins are far away, the
bias persists.

The theorem implies by linearity⟨
1

|Λ|
∑︁
𝑥∈Λ

𝜎𝑥

⟩+

≥ 𝑚(𝛽).

Taking the van Hove limit,

𝜕

𝜕ℎ
Ψ(𝛽, 0+) = lim

Λ⇑Z2

⟨
1

|Λ|
∑︁
𝑥∈Λ

𝜎𝑥

⟩+

≥ 𝑚(𝛽)

𝜕

𝜕ℎ
Ψ(𝛽, 0−) = lim

Λ⇑Z2

⟨
1

|Λ|
∑︁
𝑥∈Λ

𝜎𝑥

⟩−

≤ −𝑚(𝛽).

Thus the left and right derivatives of Ψ are unequal. There is a cusp at 0; there is a phase
transition.
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The theorem shows there is an asymmetry in the infinite volume limit of magnetization
at a site.

For each 𝜎Λ ∈ ΩΛ draw a green line separating +/− spins. Using

𝜎𝑥𝜎𝑦 = 21[𝜎𝑥 = 𝜎𝑦]− 1

(this takes ±1 values). We have

𝑒−𝛽𝐻(0) =
∏︁
{𝑥,𝑦}

𝑒𝛽𝜎𝑥𝜎𝑦 = 𝑒𝛽|𝜉|
∏︁
{𝑥,𝑦}

𝑒−2𝛽1[𝜎𝑥 ̸=𝜎𝑦 ] = 𝐾𝑒−2𝛽|𝐶|

where 𝐾 is a constant and 𝐶 is the set of contour lines.

If the boundary conditions are +, then for there to be a −, it must be separated from
the boundary by a green loop. We want to show that the probability for a given site to be
separated from the boundary by a loop is strictly less than 1

2
. Then the probability it agrees

with the boundary is > 1
2
.

Let Ω𝛾 be the set of configurations which has 𝛾 as a contour.

Lemma 1.7.2 (Peiech). The probability that a given loop 𝛾 is among the contours lines 𝐶(𝜎)
satisfies

P+
Λ,𝛽,0(𝐶(𝜎) ∋ 𝛾) =

¬
1Ω𝛾

)︂+
Λ,𝛽,0

≤ 𝑒−2𝛽|𝛾|.

Proof. First we do an energy estimate.

The idea is that each configuration can be associated with another configuration by a
mapping 𝑇𝛾 which flips the spin of all sites inside 𝛾. The disagreements of 𝛾 would be
erased. Because all spins inside are flipped, no other disagreement is affected. Note 𝑇𝛾 is an
involution—it is its own inverse.

For each 𝜎 ∈ Ω𝛾, its flip has higher probability because it has less disagreement, so

P+({𝜎}) = 𝑒−2𝛽|𝛾|P({𝑇𝛾𝜎})

Summing over 𝜎 ∈ Ω𝛾,

P+(Ω𝛾) = 𝑒−2𝛽|𝛾|P(𝑇𝛾Ω𝛾) ≤ 𝑒−2𝛽|𝛾.

Next we need an entropy estimate: we need to estimate how many loops there are so we
can do a union bound over them.

Lemma 1.7.3 (Entropy estimate). The number of non-repeating loops of length 𝑙 starting
from a specified point is 𝑁𝑙 ≤ 4

3
3𝑙.

Proof. There are 4 possibilities for the first step; for each of the next step there are ≤ 3
choices for the other 𝑙 − 1 steps because it can’t backtrack.
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Now we put the energy and entropy bound together. For each each loop around 𝑥, we
can start it at an node between 0 and 𝑙

2
steps to the right of 𝑥 where the path goes up. Then

P+(𝜎𝑥 = −1) ≤ P+ (𝑥 is separated from 𝜕Λ)

≤
∑︁

𝛾 loop separating 𝑥 from 𝜕Λ

𝑒−2𝛽|𝛾|

≤
∞∑︁
𝑙=4

𝑙

2
3𝑙−1𝑒−2𝛽𝑙

=
1

6

∞∑︁
𝑙=4

𝑙(3𝑒−2𝛽)𝑙.

This is ≤ 1
2
− 𝛿(𝛽) for 𝛽 > 𝛽0 where 𝛽0 is defined by the condition

1

6

∞∑︁
𝑙=4

𝑙(3𝑒−𝛽0)𝑙 =
1

2
.

The condition is ugly. With some extra finesse, we can show 3𝑒−𝛽 < 1 is sufficient for
there to be symmetry breaking.

This implies that for 𝛽 > 𝛽0

⟨𝜎0⟩+Z2 = lim
Λ⇑Z2

⟨𝜎0⟩+Λ,𝛽,0 ≥ 𝑚(𝛽) > 0.

Here we define an infinite volume probability distribution by taking the limit of finite proba-
bility distributions with + boundary conditions. Similarly define ⟨𝜎0⟩−Z2 . Symmetry breaking
refers to the fact that

⟨𝜎0⟩+Z2 ̸= ⟨𝜎0⟩−Z2 .

Consider a function 𝐺(𝑚) = 𝐺(−𝑚). If 𝐺 has the symmetry of the variational problem,
the minimum is at 0. If the minimum does not have the symmetry of the variational problem,
there may be multiple minima. We refer to this as symmetry breaking.

Remark 1.7.4: One can deduce symmetry breaking already for 𝛽 > 𝛽1 with 𝛽 defined by
3𝑒−2𝛽1 = 1.

Actually we’re counting self-avoiding walks; the rate that they grow is smaller than 3𝑙.
So we can replace 3 by the actual rate; this is more complicated. It’s harder to come up
with exact values.

The part of the estimate which is not relevant is short loops. Let’s look at a larger scale
and only count loops which surround a larger box. If the probability of there being a large
loop around 𝑥 is < 1

2
, then we can already conclude symmetry breaking. For 3𝑒−2𝛽 < 1, we

can choose 𝑙 large enough so that this holds.
If the box of size 𝑛 is not surrounded by a loop, we can conclude there exists some loop

of + spins outside the box which is connected to the boundary. This event is not compatible
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with the flip of the event. Thus the probability that there is a loop of −’s of size > 𝑛
connected to the boundary (with −) is < 1

2
.

In the infinite volume case, we cannot both have a loop connected to ∞ with −’s and a
loop connected to ∞ with +’s. The + event is more likely.

If you start with + boundary conditions, the + case will occur with large probability.
There is percolation of + sites. If there is no symmetry breaking, there is percolation of

− sites. You have to work to show that you can’t have infinite line of +’s and infinite line
of −’s with nonzero probability Harris developed the theory of this. We take a shortcut and
show that a stronger condition (with the ring of +/−’s) is incompatible.

When you take this approach, there are 2 special values of the parameters: a 𝛽 for which
we get no information (the sum diverges), and the 𝛽 for which the sum is less than a certain
threshold (1

2
). Looking at a renormalized version which eliminates the noise from the low

cases of the sum, and you can improve the 𝛽 threshold.
In higher dimensions, you have to enumerate surfaces. The energy bound is easy. The

energy (enumerating surfaces) is messier. The entropy estimate gives worse bounds. You
have to be clever to bring other techniques.

Another way is to take the restriction to 2 dimensions (a slice of the cube). If you
decouple the layers you just get the 2D model. Having other spins around only increases
cooperations. This brings us to the use of inequalities. For the 3D model, the magnetization
is greater than the 2D model for the same temperature.

With appropriate inequalities one can show

⟨𝜎0⟩+[−𝐿,𝐿]3 ≥ ⟨𝜎0⟩+[−𝐿,𝐿] .

This implies symmetry breaking in higher dimensions at the same temperature, so the critical
temperature is smaller,

𝛽3𝐷
𝑐 ≤ 𝛽2𝐷

𝑐 .

Here
𝛽𝑐 = inf

⌋︀
𝛽 : ⟨𝜎0⟩𝛽′ > 0∀𝛽′ > 𝛽

{︀
.

For 2 dimensions, 𝛽𝑐 is calculable; for 3 dimensions we don’t have an exact value. The 2-D
Ising model is exactly solvable by a nontrivial argument. We’ll present Feynman’s solution.

How singular is the magnetization? That’s not expected to change with local details, but
with dimension. We do not know 𝛽𝑐 for range 5 Ising model, but we expect that the power
of 𝑚(𝛽) is the same (it grows like a power function from the critical temperature).

3-10: We continue the 2D Ising model. Much of what we say will hold true for other
planar graphs.

The energy is ∑︁
𝑏∈ℰ

𝐽𝑏(𝜎𝜎)𝑏 − ℎ
∑︁
𝑥∈𝐺

𝜎𝑥

where the first sum is over edges (bonds) and if 𝑏 = 𝑏1𝑏2, then (𝜎
∑︀∞
𝑛=0)𝑏 denotes 𝜎𝑏1𝜎𝑏2 .

The state changes discontinuously across the line ℎ = 0 until some critical temperature
𝑇𝑐. Along the symmetry line the model is solvable.
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Theorem 1.7.5 (Onsager). For the nn Z2 at ℎ = 0, 𝐽𝑏 = 𝐽 ,

1

|Λ|
ln𝑍per

Λ (𝛽, 0) = ln cosh(𝛽𝐽) +
1

2

∫︁
(−𝜋,𝜋]2

𝑑𝑥1 𝑑𝑥2
(2𝜋)2

ln
⌋︀�
𝑌 (𝛽) + 𝑌 −1(𝛽)− 2

�
+ ℰ(𝑘)

{︀
where ℰ(𝑘) = 2

�
sin2

(︀
𝑘1
2

�
+ sin2

(︀
𝑘2
2

��
.

By the integral we really mean the discrete sum over 𝑘 ∈ (−𝜋, 𝜋]2∩ 2𝜋
𝐿
Z2. (In the infinite

volume limit it is an integral.)

For square summable function in a box, we can look at a basis of delta functions, or the
Fourier basis 𝑒𝑖𝑘·𝑥 for 𝑘 ∈ (−𝜋, 𝜋]2 ∩ 2𝜋

𝐿
Z2. I.e., 𝑘 is sampled from the dual lattice; [−𝜋, 𝜋] is

subdivided to have the right number of points.
Note sinh is an unbounded monotone increasing function.
For ℎ = 0, 𝑏 ∈ ℰ(𝒢),

𝑍Λ =
1

2|Λ|
∑︁
𝜎∈ΩΛ

𝑒−𝛽𝐻Λ(𝜎)

𝑒−𝛽𝐻(𝜎) = 𝑒
∑︀

𝑏
(𝜎𝜎)𝑏𝛽𝐽𝑏 =

∏︁
𝑏

𝑒𝛽𝐽𝑏(𝜎𝜎)𝑏 (factorizing over bonds)

=
1

2|Λ|
∑︁
𝜎∈ΩΛ

∏︁
𝑏

[cosh(𝛽𝐽𝑏) + sinh(𝛽𝐽𝑏)(𝜎𝜎)𝑏] 𝑒𝑥 = cosh𝑥+ sinh𝑥

=

[︃∏︁
𝑏

cosh(𝛽𝐽𝑏)

]︃
1

2|Λ|
∑︁
𝜎∈ΩΛ

∏︁
𝑏

[1 +𝐾𝑏(𝜎𝜎)𝑏] where 𝐾𝑏 = tanh(𝛽𝐽𝑏)

=

[︃∏︁
𝑏

cosh(𝛽𝐽𝑏)

]︃
E
𝜎

∑︁
Γ⊆ℰ(𝒢)

∏︁
𝑏∈Γ

𝐾𝑏

� ∏︁
𝑏={𝑥,𝑦} in Γ

(𝜎𝜎)𝑏

�
=

[︃∏︁
𝑏

cosh(𝛽𝐽𝑏)

]︃∑︁
Γ

∏︁
𝑏∈Γ

𝐾𝑏 E
𝜎

� ∏︁
𝑏={𝑥,𝑦} in Γ

(𝜎𝜎)𝑏

�
linearity of expectation

We expressed the sum in terms of the symmetric and anti-symmetric parts and pulled out
a factor cosh. The average is easy to compute: if there is a spin for which the power is odd,
the average is 0; if the power is even for all spins, the average is 1.

E
𝜎

(︃∏︁
𝑏∈Γ

(𝜎𝜎)𝑏

)︃
= E

𝜎

∏︁
𝑥

𝜎

∑︀
𝑏∈Γ

1[𝑏∋𝑥]
𝑥 = 1[∀𝑥, (−1)

∑︀
𝑏∈Γ

1[𝑏∋𝑥] = 1]

Let (𝜕Γ)2 = {𝑥 : 𝑥 belongs to an odd number of edges}. The condition for the summand
to not vanish is (𝜕Γ)2 = 𝜑.

We summarize this calculation as a lemma.

Lemma 1.7.6. For ℎ = 0,

𝑍Λ =

[︃∏︁
𝑏

cosh(𝛽𝐽𝑏)

]︃ ∑︁
Γ,(𝜕Γ)2=𝜑

∏︁
𝑏∈Γ

𝐾𝑏.
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Theorem 1.7.7 (Feynman-Sherman). Let 𝐾(Λ) =
∏︀
𝑏∈Γ𝐾𝑏.∑︁

Γ:(𝜕Γ)2=𝜑

𝐾(Γ) =
∏︁
loops

[1 + (−1)𝑛(𝑙)𝐾(𝑙)]

where 𝑛(𝑙) is the number of self-intersections of 𝑙.

Each graph can be covered by a collection of loops (which can cross and repeat edges).
Note the RHS is an infinite sum. By a lot of identities this infinite sum reduces to a finite
sum.

Kac-Ward introduced the Ihara zeta function.

The RHS is ∏︁
loops

[1 + (−1)𝑛(𝑙)𝐾(𝑙)] =
∑︁

𝑚:ℰ(𝐺)→Z+

∏︁
𝑏

𝐾𝑚𝑏
𝑏 𝑊 (𝑚)

where 𝑊 (𝑚) =
∑︁
ℓ1,...

∏︁
𝑗

(−1)𝑛ℓ𝑗1𝑚[{ℓ1, . . . , ℓ𝑘}].

Lemma 1.7.8. If ‖𝑚‖∞ := max𝑏(𝑚𝑏) = 1 then 𝑊 (𝑚) = 1.

Sum over the multisets of edges. We need to enumerate how many ways the multisets
can be realized as a union of loops. The Katz-Ward idea is enumerate all the different ways
to resolve the traffic jams at each vertex with an intersection: sum over all possible choices
with the right signs. The other vertices don’t present any choices for the prospective loop.

The three possibilities are:
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The parity is certain.

Lemma 1.7.9. If ‖𝑚‖∞ = 2 then 𝑊 = 0.

Proof. This means there is one edge traversed twice. Take one of these edges. How are
the loops arranged in the complement? There are 2 possibilities for how the loops hook up
through the bond. Summing you get 0.

What if it’s > 2? This is in fact true for any value > 1.
Why are the higher powers 0?

Theorem 1.7.10 (Sherman).∏︁
loops

[1 + (−1)𝑛(ℓ)𝐾(ℓ)]2 = det(1− ℒ)

where ℒ is a 2|ℰ| × 2|ℰ| matrix indexed by the oriented edges. Here

ℒ𝑒,𝑒′ = 𝛿𝑂(𝑒′),𝑡(𝑒)𝑒
𝑖∠(𝑒,𝑒′)

2 𝐾𝑒.

(The Kronecker delta function says that 𝑒 has to flow into 𝑒′, i.e., the terminal of 𝑒 is the
same as the origin of 𝑒′. Here ∠(𝑒, 𝑒′) means the angle between 𝑒, 𝑒′. We get a phase number
that’s half the sum of the turns. For a simple loop, we get −1.)

Trℒ𝑛 =
∑︀
𝑒1,...,𝑒𝑛 = ℒ𝑒1,𝑒𝑛 · · · ℒ𝑒2,𝑒1 . This is associated to an oriented loop.

Buried in this is an infinite collection of relations. In principle we have contributions in
the RHS of the theorem with arbitrarily many loops. But Sherman’s theorem says that it is
multilinear in the weights of the edges. Higher powers do not contribute.

You can decompose the Hilbert space into Fourier modes. For each value of the momen-
tum you have a finite-dimensional space. Edges are indexed by position and direction. If
you change to momenta and direction, the different momenta are not mixed by shifting. The
determinant is a block determinant where different values of the momenta are not mixed.
We get 4× 4 blocks; the determinants can be computed and we get the solution.
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3-22
We can use the transfer matrix method for 1D systems with finite range correlations (of

distance𝑅), not just nearest-neighbor interactions. Let the states be 𝜏𝑥 = {(𝜎𝑥, 𝜎𝑥+1, . . . , 𝜎𝑥+𝑅)}.
Switching to this space, we can now express the energy in terms of nearest neighbor inter-
actions,

𝐻 =
∑︁
𝑛

Φ(𝜏𝑛, 𝜏𝑛+1).

7.1 Ihara graph zeta function

Definition 1.7.11: A path in a graph 𝒢 is a set of edges (𝑥1, 𝑥2), . . . , (𝑥𝑛, 𝑥𝑛+1) ∈ ℰ . For
an oriented path, the direction matters. In a closed path, 𝑥𝑛+1 = 𝑥1. An oriented loop
is a closed oriented path where we don’t care about the starting point, i.e., an equivalence
class of paths modulo cyclic permutation. Two paths are equivalent here if 𝑦𝑖 = 𝑥𝑖+ℎ, with
indices taken modulo 𝑛.

Edges are allowed to repeat.
For a path 𝑝, denote by |𝑝| the number of edges in 𝑝.

We would like to eliminate paths which are powers of more elementary paths, complete
repetitions of a primitive path. A path is primitive if it is not a power of a shorter path.

Definition 1.7.12: A path is primitive if it cannot be written as 𝑞𝑘, 𝑘 > 1, where 𝑞 is a
closed path.

This may remind you of prime numbers. Any number can be written as a product of
numbers which cannot be decomposed. People applied number-theoretic ideas to graphs.

Theorem 1.7.13. Let 𝑀 be a matrix indexed by sites of a graph 𝒢. For ‖𝑀‖ small enough,

det(1−𝑀) =
∏︁
𝑝*
[1− 𝜒𝜇(𝑝)]

where the product is over equivalence classes 𝑝* of primitive oriented loops.
Here

𝜒𝑝 =
|𝑝|∏︁
𝑛=1

𝑀𝑥𝑛,𝑥𝑛+1 .

On the RHS, when we open the brackets, we can worry about convergence. For matrices
of small norm, it is convergent. To define the function for all 𝜆, note the theorem establishes
that for small 𝜆,

det(1− 𝜆𝑀) =
∏︁
𝑝*
[1− 𝜆𝜒𝜇(𝑝)].

Now we can take the analytic continuation.
Note the LHS is a finite calculation (and a multilinear function in entries of 𝑀), while

the RHS is an infinite product/sum.
It follows from the proof that the RHS is a convergent product (for ‖𝑀‖ small enough).
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Proof. First assume ‖𝑀‖ < 1. (This is the operator norm, ‖𝑀‖ = max𝑣
‖𝑀𝑣‖
‖𝑣‖ .) Then

ln det(1−𝑀) = tr ln(1−𝑀).

For Hermitian matrices, prove this by diagonalization: the LHS is ln
∏︀
𝑗(1−𝜆𝑗) =

∑︀
𝑗 ln(1−

𝜆𝑗).
For the general case, we can still use this method. Write 𝑀 = 𝑆−1𝑇𝑆 where 𝑇 is upper

triangular. If the diagonal entries are 𝜆1, . . . , 𝜆𝑛, the determinant is still
∏︀
𝑗(1− 𝜆𝑗).

Expanding gives

ln det(1−𝑀) = −
∞∑︁
𝑛=1

1

𝑛
tr(𝑀𝑛)

=
∑︁

𝑥=(𝑥0,...,𝑥𝑛)

1

𝑛

�
𝑛∏︁
𝑗=1

𝑀𝑥𝑗+1,𝑥𝑗

�
= −

∞∑︁
𝑘=1

∑︁
𝑝*

1

𝑘|𝑝*|
𝜒𝑀(𝑝*)𝑘

= −
∑︁
𝑝*

ln(1− 𝜒𝑀(𝑝*)).

𝑘 comes from properly weighing the volume of the path.

We want to avoid backtracking.

Theorem (Theorem 1.7.10). Let ℰ be the graph of oriented edges of a planar graph. Let

ℒ𝑒,𝑒′ = 1[𝑂(𝑒′) = 𝑡(𝑒)]𝐾𝑒𝑒
𝑖∠(𝑒′,𝑒)

2

For any oriented closed path, ∏︁
𝑗

ℒ𝑒𝑗 ,𝑒𝑗+1
=
∏︁
𝑖

𝐾𝑒(−1)𝑤(𝑝)

with
(−1)𝑤(𝑝)𝑛 = −(−1)𝑛(𝑝).

where 𝑤(𝑝) is the winding number and 𝑛(𝑝) is the number of crossings.

We have ∏︁
𝑝*
[1− 𝜒ℒ(𝑝

*)] =
∑︁

𝒫=(𝑝*1,...,𝑝
*
𝑛)

∏︁
𝑗

(−1)𝑛(𝑝𝑗)𝑘[𝑝]

=
∑︁
𝑚

𝜋𝑒𝐾
𝑚𝑒
𝑒 𝑊𝑚

where 𝑊𝑚 is the number of of paths with a given frequency of edges traversed.
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Lemma 1.7.14 (Kac-Ward). We have∑︁
𝑃 :max𝑒(𝑚(𝑃 ))=1

(−1)𝑛(𝑃 )𝐾(𝑃 ) =
∑︁

Γ:𝜕Γ=𝜑

∏︁
𝑒∈Γ

𝐾𝑒 = 𝑍(𝛽)

for 𝐾𝑒 = tanh(𝛽𝐽𝑒).

Each vertex has 3 possibilities.
3/24/16
Introduce 𝑡 = 𝛽−𝛽𝑐

𝛽𝑐
. What momenta contribute to the rise in the specific heat? That

which 𝐸 is on the order of 𝑌 + 𝑌 −1 − 2. Do some dimensional analysis.
The specific heat is

𝐶 =
𝜕

𝜕𝑇
⟨𝐻⟩𝛽 = 𝛽2 𝜕

2

𝜕𝛽2
Ψ = · · · ln |𝛽 − 𝛽𝑐|+ · · ·

Certain fermionic structures pop up. We start from a classical system and out of that
the excitations take the form of quantum objects, like quantum spinors (B Kaufman and
Lee Scholz). This employed the 2D transfer matrix. When you try to solve it, you transfer
from 1 layer to another; the dimension of the matrix is linearly proportional to 𝑛. In 2D, for
reasons to do with integrable systems in 1D, the transfer matrix can be diagonalized.

The loops we generate can have 1 edge multiple times. We have to disentangle the system
of graphs which correspond to configurtions of loops.

In a high dimension, loops typically miss each other. Perhaps Onsager’s solutions may
emerge in higher dimensions. (Dimension 3 is the hardest.)

Weight each loop by the product we want.
3-29-16

8 Gibbs states in the infinite volume limit

Let 𝑆 be the set of spin states. 𝑆 is typically a compact space. For example, in the Ising/Potts
spin models, 𝑆 = {1, . . . , 𝑄} ⊂ N. In the 𝑂(𝑛) spin models, 𝑆 = {𝜎 ∈ R𝑛 : |𝜎| = 1}.21 Let
𝒢 be a transitive graph, Λ ⊆ 𝒢. (Often, |Λ| <∞.)

The configuration space is ΩΛ = 𝑆Λ. Each 𝜔 ∈ ΩΛ is a map 𝜔 : Λ → 𝑆. Denote it by
𝜔 = {𝜎𝑥}𝑥∈Λ.

The configuration space of the infinite system is

Ω = 𝑆𝒢,

i.e., 𝜔 ∈ Ω is a map 𝒢 → 𝑆. Denote it by 𝜔 = {𝜎𝑥}𝑥∈𝒢.

21Note that physicists say that the sphere in R𝑛 is 𝑛-dimensional, while mathematicians say it is (𝑛− 1)-
dimensional.
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Recall the simplest non-finite probability space [0, 1]. Describing a point by its dyadic
representation

𝑥 =
∞∑︁
𝑗=1

1

2𝑗
𝜎𝑗.

Represent it by

𝑥 = {𝜎𝑗}∞𝑗=1,

an infinite sequence of binary variables. Similarly, points in the unit square [0, 1]2 correspond
to doubly infinite sequences of binary variables.

Since [0, 1] is a measure space, we can use the mapping above to make the space of infinite
binary sequences a measure space. How does the notion of convergence translate? We have
𝑥𝑛 → 𝑥 as 𝑛→ ∞ iff for all 𝑘 <∞, the sequence {𝜎𝑗}𝑘𝑗=1 stabilizes.

Theorem 1.8.1 (Tychonoff (Tikhonov)). The product of any collection of compact topolog-
ical spaces is compact with respect to the product topology.

We shall typically deal with countable products.
For countable products, the topology is characterized by sequential convergence. (Oth-

erwise, we have use nets.) Here, 𝜔𝑛 → 𝜔 in Ω = 𝑆𝒢 iff 𝜔𝑛|Λ → 𝜔𝑛|Λ for any fnite Λ ⊂ 𝒢
(each finite projection converges).

Our spaces are also metrizable. Note a countable product of metrizable spaces is metriz-
able. We can define the distance by

𝑑(𝜎, 𝜎′) =
∑︁
𝑥

1

2𝑛
𝑑(𝜎𝑥, 𝜎

′
𝑥)

if the distance is bounded. If it is not bounded, we normalize the distance first,

𝑑(𝜎, 𝜎′) =
∑︁
𝑥

1

2𝑛
𝑑(𝜎𝑥, 𝜎

′
𝑥)

1 + 𝑑(𝜎𝑥, 𝜎′
𝑥)
.

Theorem 1.8.2 (Riesz-Markov (Riesz representation)). Let Ω be a compact metric space,
𝐶(Ω,C) be the space of linear functionals 𝜌 : 𝐶(Ω) → C such that

1. |𝜌(𝑓)| ≤ ‖𝑓‖∞,

2. for all 𝑓 ≥ 0, 𝜌(𝑓) > 0,

3. 𝜌(1) = 1.

Then there exists a (Borel) probability measure 𝜇 on (Ω,Σ) such that 𝜌(𝑓) =
∫︀
Ω 𝑓(𝜔) 𝑑𝜇(𝜔).

Definition 1.8.3: A state of an infinite system is a (Borel) probability measure on its
configuration space Ω.
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The state of a system is not a configuration on it, but a probability measure. (In quantum
mechanics we can’t always specify configurations. We have observables and expected values
of operators; that’s as much as we can ask for in describing the state of a system. We now
use this not just in quantum mechanics.)

The theorem says we can capture a probability measure by giving the probabilities of
various events, or by giving the expected value of functions. It’s an analogy of von Neumann’s
Theorem, characterizing quantum states in terms of functionals.

See Barry Simon’s book.
In finite volumes, equilibrium states are measures of the form

𝜌Λ,𝛽(𝑑𝜎) =
𝑒−𝛽𝐻

(b.c.)
Λ (𝜎Λ)𝜌0(𝑑𝜎Λ)

𝑍(b.c.)
.

Why can’t we simply take the infinite-volume limit? The energy of the system is the sum
of an infinite number of terms. The typical order of magnitude is exponential in the size of
the system. When you take the system to ∞, we get 0

0
or ∞

∞ .
What survives out of this formula for conditional distributions. It is characterized by

saying how the probability of a configuration changes under local changes. If Λ is a finite
subet, conditioned on 𝐺Λ∖Λ0 , we have a probability measure on 𝐺Λ. This makes sense even
in the infinite-volume limit.

This formula is due to Dobrushin, Lonford, and Ruelle (DLR).

𝜌(𝜎Λ0|𝜎Λ∖Λ0) =
𝑒−𝛽𝐻Λ0

(𝜎Λ0
|𝜎Λ∖Λ0

)𝜌0(𝑑𝜎Λ0)

𝑍
𝜎Λ∖Λ0
Λ0

(1.22)

where 𝐻Λ(𝜎Λ0|𝜎Λ∖Λ0) =
∑︀
𝐴⊂Λ,𝐴∩Λ1 ̸=𝜑 𝐽𝐴𝜑𝐴(𝜎𝐴). The outside provides boundary conditions,

such that the conditional distribution is given by the Gibbs equilibrium formula.

Definition 1.8.4: A Gibbs equilibrium state of an infinite system is a probability mea-
sure on (Ω,Σ) for which the finite volume conditional expectations are given by the DLR
formula (1.22).

Definition 1.8.5: For each finite Λ, a function 𝑓 : Ω → C is measurable in Λ if 𝑓(𝜎) =
𝐹Λ(𝜎Λ) with 𝐹Λ : ΩΛ → C measurable.

Let ℬΛ denote the space of such functions,

ΣΛ = {𝛼 ∈ Ω : 1𝛼 ∈ ℬΛ}

and let
Σ =

⋃︁
Λ⊂𝒢,|Λ|<∞

ΣΛ.

Define the space of functions measurable at ∞ to be

ℬ∞ =
⋂︁

|Λ|<∞
ℬ𝒢∖Λ.
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Example 1.8.6: For 𝑥 = {𝜎𝑗}∞𝑗=1, lim𝐿→∞
1
𝐿

∑︀𝐿
𝑛=1 𝜎𝑛 is a function that is measurable at ∞.

For example, if 𝜎𝑗 are independent Bernoulli(1
2
) variables, this function is a.s. 1

2
by the

Law of Large Numbers. If 𝜎𝑗 are independent Bernoulli(𝑝) variables

𝜇𝑝({𝜎𝑛 = 1}) = 𝑝

𝜇𝑝({𝜎𝑛 = 0}) = 1− 𝑝,

it is a.s. 𝑝. These measures are orthogonal (mutually singular): there is an event with
probability 1 in one measure and 0 in the other (look at the value of the limsup).

In the infinite volume limit, we can ask whether what used to be the boundary values is
still detectable deep inside.

We are naturally led to questions of uniqueness of Gibbs measures. A discontinuity in
the derivative translates to nonuniqueness of Gibbs measures.

We already saw one proof of phase transitions. It’s a simple exercise to use the Piesch
argument to prove that the ferromagnetic Gibbs measure at low temperature is not unique.

Measurability at ∞ is a nice concept. Using results at probability theory, we can show
in 1 dimension there is no phase transition. We will show that a sufficient condition for
uniqueness of Gibbs state is that the total interaction to the left and right is uniformly
bounded. We will show a 0-1 law.

3/31/16: We are graduating from free energy to states of infinite systems.

8.1 Conditional expectation

A point 𝜎 ∈ Ω is given by 𝜎 = {𝜎𝑥}𝑥∈𝒢.
The conditional probability, conditioned on an event 𝐵 is P(𝐴|𝐵) = P(𝐴∩𝐵)

P(𝐵)
. We can

define probability conditioned on a 𝜎-algebra,

P(𝐴|Σ0)(𝜎).

Thinking of Σ0 as a partition (e.g. when it’s finite), it’s the probability of 𝐴 given the
element of the partition Σ0 that 𝜎 is in. We now define this more generally and formally.

Proposition 1.8.7 (Regular conditional expectation value): Let (Ω,Σ, 𝜇) be a probability
space and Σ0 ⊆ Σ (a sub 𝜎-algebra). Then there is a unique map

EΣ0 : 𝐿
∞(Ω,Σ) → 𝐿∞(Ω,Σ0)

such that for all 𝑓 ∈ 𝐿∞(Ω,Σ) and 𝑔 ∈ 𝐿∞(Ω,Σ0),

eq:cond-exp

∫︁
𝑓𝑔 𝑑𝜇(𝜎) =

∫︁
𝑔(𝜎)EΣ0(𝑓)𝜇(𝑑𝜎). (1.23)

Think of sub-𝜎-algebras as generalizations of partitions. Suppose for the moment that
Σ0 is a partition (the 𝜎-algebra breaks up into atoms). What do I know about a point
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given partial information about it, namely, in which set of the partition it is in? I can get
a conditional probability distribution by restricting to that set. To say that 𝑔 ∈ ℬΣ0 means
that 𝑔 is constant on elements of the partition. The function E(𝑓 |Σ0)(𝜎) is the mean value
of 𝑓 restricted to the partition Σ0. If 𝑔 ∈ ℬΣ0 , to find the expectation of 𝑓𝑔, (1.23) says that
you can either integrate it directly, or take the average of 𝑓 on each set of the partition first
and then integrate.

Furthermore, EΣ0 acts as an orthogonal projection onto 𝐿2(Ω,Σ0).
(In general things are more complicated. The 𝜎-algebra corresponding to specifying 𝑥

is a vertical line. There is an uncountable number of “atoms” each of zero measure. Here
measurable means only depending on 𝑥. The discussion on partitions is for primarily for
intuition.)

Recall that a Gibbs equilibrium state in a finite volume Λ with boundary conditions is a

probability measure on ΩΛ of the form 𝑒
−𝛽𝐻

(b.c.)
Λ

(𝜎Λ)

𝑍
(b.c.)
Λ

𝜌0(𝑑𝜎Λ).

Let Λ0 ⊆ Λ and assume that the boundary condition term in 𝐻 does not involve 𝜎Λ0 =
𝜎|Λ0 . Denote

E(𝑓 |ΣΛ∖Λ0)(𝜎) = E(𝑓 |𝜎Λ𝑐
0
).

Then (the DLR formula)

eq:dlr2E(𝑓 |𝜎Λ𝑐
0
) =

∫︁
𝑓(𝜎Λ0 , 𝜎Λ𝑐

0
)
𝑒
−𝛽𝐻Λ(𝜎Λ0

|𝜎Λ𝑐
0
)

𝑍
𝜌0(𝑑𝜎Λ0). (1.24)

This formula captures that for some equilibrium state in a huge volume, the local behavior
is given by a canonical expression. In the expression the configuration in Λ𝑐0 is frozen; we
integrate over the spins inside. This formula makes sense even if Λ is infinite. This allows
us to define Gibbs states for the infinite volume limit.

Definition 1.8.8: A probability measure 𝜇 on (Ω,Σ) is a Gibbs state for a Hamiltonian
𝐻 iff for any finite region Λ0, E(𝑓 |𝜎Λ𝑐

0
) is given by the DLR formula (1.24).

The Metropolis-Hastings algorithms gives a way to compute expectations by running
dynamical system. Pick a site at random and redraw it with right conditional probability
distribution. This is one way to numerically compute conditional expectation values. The
Gibbs state is stationary under these dynamics.

Theorem 1.8.9. Let Λ𝑛 ↗ 𝒢, (e.g. 𝒢 = Z𝑑) and 𝜇Λ𝑛 be a sequence of finite volume

𝜇Λ𝑛 =
𝑒−𝛽𝐻

(b.c.)
Λ𝑛

(𝜎Λ𝑛 )

𝑍
𝜌0(𝑑𝜎Λ𝑛).

If the weak limit

𝑤 lim
𝑛→∞

𝜇Λ𝑛 = 𝜇

exists then the limiting measure is a Gibbs state.
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Definition 1.8.10: We say 𝑤 lim𝑛→∞ 𝜇Λ𝑛 = 𝜇 if

lim
𝑛→∞

∫︁
𝑓 𝑑𝜇𝑛(𝑑𝜎)

exists for all local families, and this equals
∫︀
𝑓 𝜇(𝑑𝜎).

For finite systems you can ask questions like “what is the boundary”? In the infinite
limit, it doesn’t make sense to ask such questions.

The theorem follows from the DLR formula.

Lemma 1.8.11. The collection of Gibbs states is closed under convex combinations. I.e., if
𝜇0 are Gibbs states for a common Hamiltonian, then so is

1. 𝜇 = (1− 𝑡)𝜇0 + 𝑡𝜇1, 0 ≤ 𝑡 ≤ 1.

2. When 𝜈 is a probability measure (
∫︀
𝜈(𝑑𝛼) = 1) 𝜇(−) =

∫︀
𝜇𝛼(−) 𝜈(𝑑𝛼).

Definition 1.8.12: A Gibbs state is said to be a pure Gibbs measure if it does not admit
a decomposition as a convex combination of distinct Gibbs states.

For example, consider the Ising model at ℎ = 0, 𝛽 > 𝛽𝑐. We can take + boundary
conditions, − boundary conditions, or free/periodic boundary conditions. We have that the
Gibbs state with free/periodic boundary conditions is not a pure state:

𝜇 = lim
Λ𝑛↗Z𝑑

𝜇
(per)
Λ𝑛

=
1

2
𝜇(+) +

1

2
𝜇(−).

What if we mix +’s and −’s? The state of Gibbs states is large.

8.2 Symmetry and symmetry breaking

Definition 1.8.13: A symmetry of a statistical mechanical systems is an invertible (mea-
surable) mapping 𝑇 : Ω → Ω which preserves 𝜌0 and 𝐻 in the following sense:

1. for all 𝐴 ∈ Σ, 𝜌0(𝑇
−1𝐴) = 𝜌0(𝐴).

2. 𝐻(𝑇𝜎) = 𝐻(𝜎), 𝜑Λ(𝑇𝜎) = 𝜑Λ(𝜎).

Definition 1.8.14: A Gibbs state is said to exhibit simple symmetry breaking if 𝜇 is
not invariant under one of the system’s symmetries.

Example 1.8.15: The Ising model at ℎ = 0 is symmetric with respect to 𝑇 (𝜎) := −𝜎
because 𝜌𝑛(𝑑𝜎) and 𝐻 = −Σ𝐽𝑥,𝑦𝜎𝑥𝜎𝑦 are both invariant under 𝑇 (𝜎) := −𝜎.
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All spins get equal weight makes sense for a finite system. What’s the meaning for an
infinite collection, when all configurations have 0 probability? We mean that for all 𝑓 local
(depending on a finite number of spins),∫︁

𝑓(𝜎)𝜌0(𝑑𝜎) =
∫︁
𝑓(−𝜎)𝜌0(𝑑𝜎).

We can talk about expectation values of functions, rather than probabilities of individual
configurations.

Consider taking the limit

𝜌0(𝑑𝜎) ↦→ lim
Λ↗Z𝑑

𝑒−𝛽𝐻(𝜎)

𝑍
𝜌0(𝑑𝜎).

Before the limit, if we have free boundary conditions, this would be symmetric. If you put
boundary conditions, this would not be symmetric. Does the asymmetry persist in the limit?
It can’t disappear; the limit is characterized by the local DLR equation.

4-5-16
We define symmetry breaking slightly differently.

Definition 1.8.16: A symmetry is a measurable map 𝑇 : Ω → Ω that satisfies the follow-
ing.

1. It is invertible and preserves 𝜌0(𝑑𝜎).

2. 𝐻(𝑇𝜎) = 𝐻(𝜎) in the sense that 𝜑𝐴(𝑇𝜎) = 𝜑𝐴(𝜎) for all 𝐴 ⊆ 𝒢.

Definition 1.8.17: A Gibbs state 𝜇 is said to exhibit symmetry breaking if 𝜇 is decompos-
able into a linear combination of Gibbs state of which a positive fraction fail to be invariant
under one of the system’s symmetries.

Consider the 2D Ising model at low temperature with ℎ = 0 and free boundary conditions.
In this model, 𝐻 = −∑︀ 𝐽𝜎𝑥𝜎𝑦, and the symmetry is global spin flip, (𝑇𝜎)Λ = −𝜎Λ.

Theorem 1.8.18 (Symmetry breaking). The 2D Ising model with ℎ = 0 with free boundary
conditions exhibits symmetry breaking for all 𝛽 such that 3𝑒−2𝛽 < 1.

Recall we saw that P+(𝜎0 = −1) ≤ 4
3

∑︀
𝑙≥4(3𝑒

−2𝛽)𝑙. For each closed path 𝛾,

P(𝛾 occurs among the contours of 0) ≤ 𝑒−2𝛽|𝛾|.

The probability there exists a contour within the annular region of outer radius 𝑅 and inner
radius 𝑟 is ≤ ∑︀

4𝑟≤𝑙(3𝑒
−2𝜇)𝑙. This is the tail of a convergent series which can be made as small

as desired. By picking 𝑟 large enough, we do not find any contour enclosing that region.
There must be an infinite cluster of the same spins.

There are 2 types of configurations in the infinite volume limit: there is an infinite cluster
of +, or an infinite cluster of −.
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Let 𝐶+(𝑅) = {𝑥 ∈ Z2 : ...}. (to be filled in)
At low temperatures the Gibbs states show agreement among neighboring spins. The pre-

dominant behavior is a sponge that percolates to infinity (an infinite connected component)
where all spins have the same sign; there may be islands within the cluster. There are many
paths (exponentially many). If the energy penalty beats the entropy, then the probability
of seeing a lone line goes to 0. Any finite configuration will be realized somewhere, so you
have to localize the bounds.

Taking the Gibbs state with + boundary conditions, defined as

𝜇+
𝛽 = lim

Λ↗Z𝑑
𝜇
(+)
Λ .

We can prove 𝜇+ ̸= 𝜇− by showing 𝜇(+) ̸= 𝜇(−) for a well-chosen event 𝐴.

Theorem 1.8.19. A sufficient condition for 𝐻 to have a unique Gibbs state of given 𝛽 is that
for any pair of Gibbs equilibrium measures, there exists 𝐵 < ∞ such that 𝜇1(𝑓) ≤ 𝐵𝜇2(𝑓)
for all positive functions 𝑓 ∈ 𝐶(Ω,R).

Theorem 1.8.20. For 1D systems, a sufficient condition for uniqueness of the Gibbs state
is that for all 𝑥, ∑︁

𝐴 ⊂ Z, 𝐴 ∩ [𝑥,∞) ̸= 𝜑
𝐴 ∩ (−∞, 𝑥] ̸= 𝜑

𝐽𝐴 ‖𝜑𝐴‖ ≤ 𝐵 <∞.

For example, for the Ising model this is satisfied when
∑︀

𝑥 ≥ 0
𝑦 < 0

|𝐽𝑥−𝑦| < ∞ or equivalently,∑︀
𝑢≥0 |𝐽𝑢| <∞.

Here is a continuous version of the theorem.

Theorem 1.8.21 (Mernin-Wagner). Translation invariant systems in 𝐷 ≤ 2 dimensions
with finite-range interactions and continuous (compct) symmetry do not exhibit symmetry
breaking.

For example consider 𝑂(𝑁), with 𝐻 = −∑︀ 𝐽𝑥−𝑦 ⟨𝜎𝑥, 𝜎𝑦⟩, 𝑆 = {𝜎 ∈ R𝑛 : |𝜎| = 1}. Now
the system is invariant under global rotation. This symmetry is not broken if you only have
finite-range interactoins. We use the fact that the symmetry group here is compact.

We have
𝜇(−) =

∫︁
𝜇(−|ℬ∞)(𝜂)𝜇(𝑑𝜂).

Note that for each 𝜂 ∈ Ω,
𝜇(−|ℬ∞)(𝜂)

is a Gibbs state.
Recall DLR: For 𝑓 ∈ ℬΛ0 ,

𝜇(𝑓) =
∫︁
𝜇(𝑓 |ℬΛ𝑐

0
)(𝜂)𝜇(𝑑𝜂)
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where 𝜇(𝑓 |ℬ𝑐Λ0
) are given by DLR. (We have 𝜇(𝑓) =

∫︀
𝜇(𝑓 |ℬ)(𝜎)𝜇(𝑑𝜂) for any 𝜎-algebra ℬ.)

The formula says that the functional (measure) 𝜇 can be decomposed as an integral of
functionals (measure).

In the limit ℬ∞ =
⋂︀

|Λ0|<∞ ℬΛ𝑐
0
. “Does the configuration have a limit for the magnetization

and is it nonzero?” is a valid question.
The conditional expectation is a Gibbs measure in any finite volume so is a Gibbs measure.
Any Gibbs measure can be decomposed into a collection of extremal Gibbs measures so

that the 𝜎-algebra at ∞ is trivial with respect to each of those. The Gibbs measures are
mutually singular.

Claim 1.8.22. For almost every pair 𝜂1, 𝜂2 ∈ Ω,

𝜇(−|ℬ0)(𝜂1), 𝜇(−|ℬ0)(𝜂2)

are either equal or mutually singular.

Mutually singular means that their supports are disjoint.

Proof. For all 𝑔 ∈ ℬ∞,
𝜇(𝑔|ℬ∞)(𝜂) = 𝑔(𝜂).

𝜇(𝑔|ℬ∞) is the conditional mean of 𝑔 when only this information about 𝜂? If 𝑔 is measurable
with respect to 𝐵∞, it’s just 𝑔(𝜂).

“Is there a +/− measure” is measurable with respect to ℬ∞.

Take the 𝑂(𝑁) model with boundary spins oriented the same. Does it exhibit symmetry
breaking?

Symmetry breaking occurs even when you have a state that is itself symmetric. For
example, 1

2
(𝜇(+) + 𝜇(−)).

Consider a functional symmetric under rotation.
Symmetric breaking is associated with the picture of the Mexican hat, with minimum

attained on a ring. These points are not symmetric.
What if we rotate all boundary spins to another value? It is ferromagnetic so there

is a bias towards the condition prescribed by the boundary. We ask how these compare,
𝜇(↗)(𝑓(𝜎)) and 𝜇(↗)(𝑓(𝑅𝜎)) where 𝑅 is a rotation. The second is equal to 𝜇(𝑅↗)(𝑓(𝜎)).

What if you gradually untwist the rotation, doing it gradually throughout the system?
Do soft rotations.

8.3 Phase transitions

4-7-16
What may cause a phase transitions? There are other reasons besides symmetry breaking.
Consider the 1D Ising model 𝐻 = −∑︀ 𝐽𝑥,𝑦𝜎𝑥𝜎𝑦.

Theorem 1.8.23. For the 1D Ising model with
∑︀

𝑥 ≥ 𝑢
𝑦 < 𝑢

|𝐽𝑥,𝑦| ≤ 𝐵 <∞ for all 𝑢, the Gibbs

state is unique for all 𝛽 <∞.
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For example, if 𝐽𝑥,𝑦 =
1

|𝑥−𝑦|2 , there is no first order phase transition if 𝜏 > 2.
To see this, index the sum by the difference 𝑣 = 𝑥− 𝑦 and note each difference appears

𝑣 times. ∑︁
𝑥 ≥ 0
𝑦 < 0

|𝐽𝑥−𝑦| =
∑︁
𝑣≥0

𝑣|𝐽𝑣|.

Proof. It suffices to show that there exists 𝐶 such that for all 𝜇1, 𝜇2 and 𝑓 ∈ ℬ0 with 𝑓 ≥ 0,

𝜇1(𝑓) ≤ 𝐷𝜇2(𝑓).

The basic idea is to use conditional expectation. By DLR,

𝜇(𝑓) =
∫︁

E[𝑢,𝑣]𝑐(𝑓 |𝜎)𝜇(𝑑𝜎) (1.25)

EΛ𝑐(𝑓 |𝜎) =
∫︁
𝑓(𝜂Λ, 𝜎Λ𝑐)

𝑒−𝛽𝐻Λ(𝜂Λ,𝜎Λ𝑐 )

𝑍
(𝜎Λ𝑐 )
Λ

𝜌0(𝑑𝜂𝐴). (1.26)

Included in 𝑒−𝛽𝐻Λ(𝜂Λ,𝜎Λ𝑐 ) include interactions between sites inside the finite region and be-
tween sites in the finite region and the outside. Not included is interactions between outside
sites.

Now
|𝐻b.c.

Λ (𝜂Λ, 𝜎Λ𝑐)−𝐻∘
Λ(𝜂Λ)| ≤ 2𝐵.

Let f.b.c. denote “free boundary conditions.” We conclude that

EΛ𝑐(𝑓 |𝜎) ≤ Ef.b.c
Λ𝑐 (𝑓)𝑒4𝐵 (1.27)

EΛ𝑐(𝑓 |𝜎) ≥ Ef.b.c
Λ𝑐 (𝑓)𝑒−4𝐵 (1.28)

(Note we use the fact that 𝑓 is positive.)
Hence

𝜇𝑗(𝑓) =
∫︁
EΛ𝑐EΛ𝑐(𝑓(𝜎)) ≤ 𝜇𝑗(𝑓) (1.29)

𝑒−4𝐵Ef.b.c
Λ𝑐 (𝑓) ≤ 𝜇𝑗(𝑓) ≤ 𝑒4𝐵Ef.b.c

𝑁 (𝑓). (1.30)

This proves that there cannot be 2 mutually singular Gibbs states.

For the 𝑂(𝑁) model in 2D, we show there is also a unique Gibbs state by showing that
any extremal state is rotation invariant. Letting 𝑅𝜃 denote rotation by 𝜃 and defining its
action on functions and measures as

(𝑅𝑓)(𝜎) = 𝑓(𝑅𝜎) (1.31)

(𝑅𝜇)(𝑓) = 𝜇(𝑅𝑓). (1.32)

We will show that that in the 2D model with nearest neighbor interactions, for all 𝑓 ∈ 𝐵,
𝜇(𝑅𝑓) ≤ 𝐶𝜇(𝑓).
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Every extremal Gibbs state is actually equal to its rotation, so it is rotationally invariant.
Thus there is no symmetry breaking.

In 1D we disconnected the coupling. We can’t do this in 2D. The reason is that. Removing
couplings across the boundary costs 𝐿𝑑−1 = 𝐿, which is not uniformly bounded. However,
for rotational symmetry, consider the effect of gradual rotation. If we rotate spins uniformly
in the volume, we still pay the price of discontinuity. But if we rotate at a linear rate across
space, the effect on the energy is smaller.∑︁

𝑥, 𝑦 ∈ Λ𝐿∖Λ𝐿/2

|𝑥− 𝑦| = 1

((𝑅𝜃(𝑥)𝜎𝑥) ·𝑅𝜃(𝑥)(𝜎𝑦))− (𝜎𝑥, 𝜎𝑦).

Here is the heuristic idea. The quadratic term introduces a correction term which behaves
as 1

𝐿2 . The quadratic term is under control. Next time I’ll consider the linear term.
4/12
It suffices to prove in 2D there exists 𝐷 such that for all Gibbs states 𝜇,

𝜇(𝑅𝛼𝑓) ≤ 𝐷𝜇(𝑓)

for all positive 𝑓 ∈ ℬ0. Note that the measure ̃︀𝜇(𝑓) = 𝜇(𝑅𝛼𝑓) is also a Gibbs state.
To see this, consider a finite volume Gibbs state

𝜇Λ(𝑓) =
∫︁
𝑓(𝜎Λ)

𝑒−𝛽𝐻
b.c.
Λ (𝜎Λ)

𝑍b.c.
Λ

𝜌0(𝑑𝜎Λ).

Applying a rotation to this gives

̃︀𝜇(𝑓) := 𝜇(𝑅𝛼𝑓) =
∫︁
𝑓(𝑅𝛼𝜎Λ⏟  ⏞  

𝜂

)
𝑒−𝛽𝐻

b.c.
Λ (𝜎Λ)

𝑍b.c.
Λ

𝜌0(𝑑𝜎Λ) (1.33)

=
∫︁
𝑓(𝜂)

𝑒−𝛽𝐻
𝑅−1
𝛼 (b.c.)

Λ (��𝑅−1
𝛼 𝜂)

𝑍b.c.
Λ

𝜌0(𝑑�
��𝑅−1
𝛼 𝜂) (1.34)

= 𝜇𝑅𝛼(b.c.)(𝑓). (1.35)

(The boundary conditions are rotated by −𝛼.) The DLR condition is invariant under rota-
tions (exercise).

See lemma 11.5 in notes. Change 𝐷 to 𝐶 and < to ≥ in Lemma 11.5.

Proof. Let

𝜃(𝑥) = 𝜋

⎧⎪⎪⎨⎪⎪⎩
1, ‖𝑥‖ ≤ 𝐿0
2𝐿−‖𝑥‖∞

𝐿
, 𝐿0 ≤ ‖𝑥‖ ≤ 2𝐿0

0, ‖𝑥‖2 ≥ 2𝐿0.

(We rotate the configuration in such a way so that the rotation does not extend to ∞.)
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We will consider the rotation Ò𝑅𝛼
𝜋
𝜃 (we use a hat to emphasize that the rotation depends

on 𝑥). In the box ‖𝑥‖ ≤ 𝐿0, Ò𝑅𝛼
𝜋
𝜃 acts as uniform rotation:

𝜇(𝑅𝛼𝑓) = 𝜇(𝑓(Ò𝑅𝛼
𝜋
𝜃𝜎)) (1.36)

=
∫︁ ⎡⎢⎢⎢⎢⎣∫︁ΩΛ(2𝐿0)

𝑓(Ò𝑅𝛼
𝜋
𝜃𝜎̃︀Λ⏟  ⏞  
𝜎′̃︀Λ )

𝑒−𝛽𝐻̃︀Λ(𝜎̃︀Λ|𝜎̃︀Λ𝑐 )

𝑍̃︀Λ(𝜎̃︀Λ𝑐)
𝜌0(𝑑𝜎̃︀Λ)

⎤⎥⎥⎥⎥⎦ 𝜌(𝑑𝜎̃︀Λ𝑐) (1.37)

=
∫︁ ⎡⎢⎣∫︁

ΩΛ(2𝐿0)
𝑓(𝜎′̃︀Λ)𝑒−𝛽𝐻̃︀Λ(̂︀𝑅𝛼

𝜋
𝜎′̃︀Λ|𝜎̃︀Λ𝑐 )

𝑍̃︀Λ(𝜎̃︀Λ𝑐)
𝜌0(𝑑𝜎

′̃︀Λ)
⎤⎥⎦ 𝜌(𝑑𝜎̃︀Λ𝑐) (1.38)

When you carry out a gradual rotation, the energy does not change by a lot. We have

𝜇(𝑅𝛼𝑓) = 𝜇(Ò𝑅𝛼
𝜋
𝜃𝑓) (1.39)

= 𝜇(𝑓𝑒
−𝛽[𝐻(̂︀𝑅𝛼

𝜋 𝜃𝜎)−𝐻(𝜎)]
). (1.40)

Formally, we rewrote

𝑓(0)𝑒−𝛽𝐻(̂︀𝑅−1𝜎)𝜌0(𝑑𝜎)

𝑍
= 𝑒−𝛽[𝑅

−1𝐻−𝐻]𝑒−𝛽𝐻(𝜎)𝜌0(𝑑𝜎)

𝑍

Note 𝑅−1𝐻 − 𝐻 is finite; what is left is to estimte it. We estimate it in the case 𝐻 =
−∑︀|𝑥−𝑦|=1 𝜎𝑥 · 𝜎𝑦. We calculate

𝐻(𝑅−1𝜎)−𝐻(𝜎) = −
∑︁

nearest neighbor

[︁
(𝑅−1

𝜃(𝑥)𝜎𝑥) · (𝑅
−1
𝜃(𝑦)𝜎𝑦)− 𝜎𝑥 · 𝜎𝑦

]︁
(1.41)

=
∑︁

nearest neighbor

[𝜎𝑥 · 𝜎𝑦 − 𝜎𝑥 ·𝑅𝜃(𝑥)−𝜃(𝑦)𝜎𝑦] (1.42)

=
∑︁

nearest neighbor

[𝛼(𝜎𝑥 · ℒ𝜎𝑦)] (1.43)

=
∑︁

nearest neighbor

[
𝛼

𝜋
𝛿1(𝐻) + 𝛿2(𝐻)], (1.44)

where 𝛿𝑖 is the 𝑖th order correction, from the Tylor expansion. Then

𝜇(𝑅𝛼𝑓) = 𝜇(Ò𝑅𝛼
𝜋
𝜃𝑓) (1.45)

= 𝜇(𝑓𝑒
−𝛽[𝐻(̂︀𝑅−1

𝛼
𝜋 𝜃
𝜎)−𝐻(𝜎)]

(1.46)

= 𝜇(𝑓𝑒[
𝛼
𝜋
𝛿1(𝐻)+𝛿2(𝐻)]) (1.47)

with |𝛿2(𝐻)| ≤ 𝐶
∑︀ |𝜃(𝑥)− 𝜃(𝑦)|2 ≤ 𝐶𝐿𝐷−2.

If the dimension is 𝐷 ≤ 2 this is bounded. The soft rotation dropped this quantity from
𝐿𝐷−1 to 𝐿𝐷−2.
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However, 𝛿1(𝐻) might be bigger; a priori we only have |𝛿1(𝐻)| ≤ 𝐶
∑︀ |𝜃(𝑥) − 𝜃(𝑦)| =

𝑂(𝐿𝐷−1). The idea is that we can rotate “from the other side.” To deal with the first order
term,

𝜇(𝑓) = 𝜇(𝑓𝑒−
(2𝜋−𝛼)

𝜋
𝛿1(𝐻)+̃︀𝛿2(𝐻)) (1.48)

The second-order term is controllable, the first-order term is hard to control. We have two
expressions where the coefficient of the first-order terms has different signs. Let convexity
work for us.

Consider
𝑄(𝑡) = 𝜇(𝑓𝑒(1−𝑡)[

𝛼
𝜋
𝛿1(𝐻)+𝛿2(𝐻)]𝑒𝑡[−

(2𝜋−𝛼)
𝜋

𝛿1(𝐻)+̃︀𝛿2(𝐻)]).

The function ln𝑄(𝑡) is convex in 𝑡 with 𝑄(0) = 𝑄(1) = 𝜇(𝑅𝛼𝑓). Thus by convexity, or
Hölder’s inequality, for all 0 ≤ 𝑡 ≤ 1,

𝑄(𝑡) ≤ 𝑄(0)1−𝑡𝑄(1)𝑡 = 𝜇(𝑅𝑓).

(1− 𝑡)𝛼− 𝑡(2𝜋 − 𝛼) = 0. At 𝑡 = 𝑡𝛼,

𝑄(𝑡) = 𝜇(𝑓)𝑒(1−𝑡)𝛿2+𝑡
̃︀𝛿2 ≥ 𝑒−𝐶𝐿

𝐷−2

𝜇(𝑓)

giving us 𝜇(𝑅𝛼𝑓) ≥ 𝑒−𝐶𝐿
𝐷−2

𝜇(𝑓).

What gave physicists the intution to look at second order term is that at low temperature,
when the spins line up, the first order term vanishes. The second-order term is 𝐿𝑑

𝐿2 . But there
is chaos and term-by-term it’s not true that the first-order term can be ignored. We sidestep
this in the analysis.

If 𝐷 > 2, the bound says nothing.
The theorem implies that the pressure Ψ(𝛽, ℎ) is differentiable in ℎ at ℎ = 0. We know

it’s symmetric, but it could have a kink or be smooth with zero derivative. The theorem
tells us it is smooth.

The argument works equally well for quantum systems and for systems with disorder. For
a while people had two predictions based on 2 theories. Disordered systems in 𝐷 dimensions
behaved as ordered systems in 𝐷 − 2 dimensions. Imry and Ma predicted that for 𝐷 ≤ 4
there is no symmetry breaking. it uses this technology with bootstrapping.

Rigorous proofs arrived before physicists had a consensus.
Symmetry breaking occurs in dimensions 𝐷 ≥ 3.
4-14-16
Remarks on DLR condition: For any measure 𝜇 on (Ω,ℬ), we have a map

𝑃Λ𝑐(𝑓) = E(𝑓 |𝜎Λ𝑐) = EℬΛ𝑐 (𝑓 |𝜎),

giving the expected value of a function which depends on everything, conditioned on the
spins outside Λ.
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The towering property is the following: For Λ1 ⊂ Λ2 ⊂ · · · , for all 𝑚 > 𝑛,

(𝑃Λ𝑐
𝑚
𝑃Λ𝑐

𝑛
)𝑓 = 𝑃Λ𝑐

𝑚
𝑓.

The measures ℬΛ𝑐
𝑛
are decreasing.

ℬ0 are “local functions”: each only depends on variables in a finite region. An infinite
sum of these may not be local, for example,

∑︀
|𝑥|∈Z𝑑 𝑒−𝛼|𝑥|𝜎𝑥 ̸∈ ℬ0. However, up to 𝜀 > 0 it

can be approximated uniformly by local functions.
ℬ is the smallest collection of functions containing the local functions and that is closed

under the usual operations.
For all finite Λ, 𝑃Λ𝑐 is an orthonormal projection onto {𝑓 ∈ 𝐿2(𝑑𝜇) : 𝑓 ∈ ℬΛ𝑐}.

Theorem 1.8.24 (Based on martingale convergence theorem). For all bounded 𝑓 ,

Eℬ∞(𝑓 |𝜎) = lim
𝑛↗∞

𝑃Λ𝑐
𝑛
𝑓(𝜎)

exists for 𝜇-almost every 𝜎.

The averages stay the same but have diminishing fluctuations.
There are 𝜎 for which the limit does not converge, e.g., spins organized in rings of + and

−.
Gibbs measures are characterized by the fact that the conditional expectations are given

by nothing else other than the DLR conditions.
Any two configurations that differ by a finite number of spins are the same at ∞.
Suppose you have a function which is measurable and bounded. Suppose we only know

integrals of continuous functions. We can take pointwise limits. Use Monotone Convergence
Theorems.

Given a measure on the unit interval, how do we read the integral of measurable functions
which are not continuous?

Remarks on the Mermin-Wagner Theorem: In 2 dimensions there is no symmetry break-
ing. The idea was to look at the energy penalty for gradual rotation. To estimate 𝐻(Ò𝑅𝜃𝜎)−
𝐻(𝜎), we bounded the second-order term 𝛿2(𝐻) ≤ 𝑐

∑︀
{𝑥,𝑦},|𝑥−𝑦| |𝜃𝑥 − 𝜃𝑦|2.

Using discrete notation, we saw that (for 𝑟 = 𝐿,𝑅 = 2𝐿)

min

𝜃𝑥=

⎧⎨⎩0, |𝑥| = 𝑅

1, |𝑥| = 𝑟.

∑︁
𝑥

|∇𝜃|2 ≤ 𝑐𝐿𝑑−2

We could do better:

min

⎧⎨⎩∫︁𝑟<|𝑥|<𝑅
|∇𝜃|2 𝑑2𝑥 : 𝜃(𝑥) =

⎧⎨⎩0, |𝑥| = 𝑅

1, |𝑥| = 𝑟.

⎫⎬⎭ .
The solution is a harmonic function, satisfying Δ𝜃 = 0:

𝜃(𝑥) =
ln
(︀
1
𝑅

�
|𝑥|

ln 𝑅
𝑟

, ln |𝑥| = ℜ ln𝑥.
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We have ∇𝜃 = 1
ln 𝑅

𝑟

1
|𝑥| , and ∫︁

𝑟<|𝑥|<𝑅
|∇𝜃|2𝑑2𝑥 =

1

ln
(︀
𝑅
𝑟

� .
In the energy estimate, the second-order term can be made as small as desired.

9 Random field models

Let

𝐻0 = −
∑︁

𝐽𝑥−𝑦(𝜎𝑥 · 𝜎𝑦) =
∑︁
𝐴

𝐽𝐴Φ(𝜎𝐴);

this is rotationally invariant.

Consider now

𝐻 = 𝐻0 −
∑︁

(ℎ+ 𝜀𝜂
𝑥
, 𝜎𝑥);

we couple with an external field ℎ that encourages the spins to line up with it. However,
there is disorder; 𝜂

𝑥
are iid with |𝜂𝑥| = 1. What are the statistical mechanics?

Would the system remember boundary conditions or would the local disorder 𝜂
𝑥
domi-

nate?

Theorem 1.9.1 (Imry-Ma (Aizenmann-Wehr)). For such systems, in 𝐷 ≤ 4, for such a
system with continuous symmetry,

𝜓(𝛽, 𝜀, ℎ)

is differentiable at ℎ = 0.

Why is the pressure of such a system defined in the infinite-volume limit? We first
generate a random environment. It is defined because the way we prove existence of thermo-
dynamic limit was to partition it into noncommunicating regions. If you add randomness,
the law of large numbers for independent variables implies that the 𝜓(𝛽, 𝜀, ℎ) is independent
of 𝜂 almost surely (independent of disorder).

The pressure and free energy exist. With frozen disorder, If there is initally some bias,
then we maintain it. The disorder itself may create some symmetry breaking. In low dimen-
sions the disorder plays a decisive role.

10 Proof of symmetry-breaking of continuous symme-

tries

Let’s return to homogeneous systems. We are coming to research-level questions. There is
a dearth of arguments to prove symmetry breaking for continuous spaces.
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10.1 The spin-wave perspective

The key results were by Fröhlich-Simon-Spencer, Fröhlich-Israel-Lieb-Simon.
We can write

eq:csb-h1𝐻(𝜎) =
1

4

∑︁
𝑥,𝑦

𝐽𝑥,𝑦|𝜎𝑥 − 𝜎𝑦|2. (1.49)

(Note that |𝜎𝑥|2 + |𝜎𝑦|2 is constant, while the cross-term is what we had originally.) Define

eq:csb-f̂︀𝜎(𝑝) = 1È
|Λ|

∑︁
𝑥∈Λ

𝑒𝑖𝑝·𝑥𝜎𝑥. (1.50)

Being invariant under translations, we can express 𝐻 as a sum of Fourier modes,

eq:csb-h𝐻(𝜎) =
1

4

∑︁
𝑘

ℰ(𝑘)|̂︀𝜎(𝑘)|2 (1.51)

where 𝑘 ∈ 2𝜋
𝐿
Z𝑑 ∩ [−𝜋, 𝜋]𝑑, the momenta for which the function is periodic.

You may be tempted to say the problem is now trivial. There is energy for each mode
and no coupling. Had this been the end of the story, we have a bunch of independent
random variables. However, they are not independent. There are bizarre correlations be-
tween the Fourier modes. If we ignored them we would have a quadratic interaction and the
equipartition law says that the expected energy per mode is on the order of

ℰ(𝑘)|̂︀𝜎(𝑘)|2 ≈ 1

2𝛽
.

Under certain conditions (reflection positivity), we can prove

ℰ(𝑘)|̂︀𝜎(𝑘)|2 ≤ 1

2𝛽
.

We’ll show how to derive this and how to conclude the theorem from it. It’s a beautiful
argument but it’s a crystal vase. When you have reflection positivity, you use this physically
motivated argument; when you don’t, the vase breaks.

4-19-16: We continue talking about continuous symmetry breaking.
We will cover the infrared bound, reflection positivity, and the chessboard inequality.
Now the symmetry of the lattice will play a role.
Here 𝐻 = −∑︀{𝑥,𝑦} 𝐽𝑥−𝑦𝜎𝑥 · 𝜎𝑦. We first cover the nearest-neighbor case. Our argument

is not very robust; it only covers the nearest-neighbor case and several other special cases.
It would be an achievement to find a generalization.

We pass to the Fourier transform. A basis for the space of periodic functions is

1È
|Λ|

𝑒𝑖𝑘·𝑥, 𝑘 =
2𝜋

𝐿
(𝑛1, . . . , 𝑛𝑑).

We scale to take the (0, 𝐿]𝑑 grid into the grid (−𝜋, 𝜋]𝑑 with intervals |Δ𝑘𝑖| = 2𝜋
𝐿
.
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Let ̂︀𝜎(𝑝) be as in (1.50). The Fourier expansion of 𝜎 is

𝜎𝑥 =
1È
|Λ|

*∑︁
𝑘

𝑒−𝑖𝑘𝑥̂︀𝜎(𝑘). (1.52)

Letting 𝐻 be as in (1.49), we find that the momentum representation of 𝐻 is given by (1.51).
Think of (1.49) as the discrete analogue of the integral of a gradient. Similarly, (1.51) is the
discretized version of an integral.

We show that ̂︀𝜎(𝑘) = 2
𝑑∑︁
𝑗=1

sin2

�
𝑘𝑗
2

�
≈ 1

2
|𝑘|2.

We calculate

𝐻 = −1

2

�
1È
|Λ|

�2∑︁
𝑥,𝑦

∑︁
𝑘,𝑘′

̂︀𝜎(𝑘)̂︀𝜎(𝑘′)𝑒𝑖𝑘·𝑥𝑒−𝑖𝑘′·𝑦𝐽𝑥−𝑦 (1.53)

= −1

2

1

|Λ|
∑︁
𝑥,𝑦

∑︁
𝑘,𝑘′

̂︀𝜎(𝑘)̂︀𝜎(𝑘′)𝑒𝑖𝑘·(𝑥−𝑦)𝑒−𝑖(𝑘−𝑘′)·𝑦𝐽𝑥−𝑦 (1.54)

= −1

2

1

|Λ|
∑︁
𝑢,𝑦

∑︁
𝑘,𝑘′

̂︀𝜎(𝑘)̂︀𝜎(𝑘′)𝑒𝑖𝑘·𝑢𝑒−𝑖(𝑘−𝑘′)·𝑦𝐽𝑢 (1.55)

using
∑︁
𝑘,𝑘′

𝑒𝑖(𝑘−𝑘
′)·𝑦 =

1

|Λ|
𝛿𝑘,𝑘′ (1.56)

= −1

2

∑︁
𝑘

|̂︀𝜎(𝑘)|2 ̂︀𝐽(𝑘) (1.57)̂︀𝐽(𝑘) =∑︁
𝑢

𝑒𝑖𝑘·𝑢𝐽𝑢 (1.58)

=
𝑑∑︁
𝑗=1

(𝑒𝑖𝑘𝑗 + 𝑒−𝑖𝑘𝑗) (1.59)

= −1

2

𝑑∑︁
𝑗=1

cos(𝑘𝑗) (1.60)

= −
𝑑∑︁
𝑗=1

�
1− 2 sin2

�
𝑘𝑗
2

��
(1.61)

Looking at this intuitively, how big can we expect to be
∑︀
𝑥∈Λ 𝑒

𝑖𝑘𝑥𝜎𝑥? The Central Limit

Theorem suggest that the order of magnitude should be
È
|Λ|, making ̂︀𝜎(𝑘) = 𝑂(1) (in high

temperature). The energy 𝐻 is given by a sum of terms of order 1, hence is of order 𝑂(|Λ|).
This leads us to the right “infrared behavior.” ℰ(𝑘) = − ̂︀𝐽(𝑘) + ̂︀𝐽(0). (?)
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Plancharel’s identity tells us

1

|Λ|
∑︁
𝑥

|𝜎𝑥|2 =
1

|Λ|

*∑︁
𝑘

|̂︀𝜎(𝑘)|2 (1.62)

1 =
1

|Λ|
|̂︀𝜎(0)|2 + 1

|Λ|
∑︁

𝑘= 2𝜋
𝐿
𝑛∈(−𝜋,𝜋]𝑑

|̂︀𝜎(𝑘)|2 (1.63)

Think of this as a Riemann sum approximation to the integral 1
(2𝜋)𝑑

∫︀
(−𝜋,𝜋]𝑑 𝑑𝑢. (Each cube

has volume
(︀
2𝜋
𝐿

�𝑑
.

10.2 Infrared bound

Theorem 1.10.1 (Infrared bound). For the nearest neighbor (and other reflection positive
models), ¬

|̂︀𝜎(𝑘)|2)︂p.b.c
𝛽,𝐿

≤ 1

2𝛽ℰ(𝑘)
.

Equivalently,

eq:csb-fsℰ(𝑘)
¬
|̂︀𝜎(𝑘)|2)︂ ≤ 1

2𝛽
. (1.64)

Near 0, ℰ(𝑘) ≈ 1
2
|𝑘|2. Thus the infrared bound diverges at 0.

This is a very physical statement. The physical interpretation is that ℰ(𝑘) ⟨|̂︀𝜎(𝑘)|2⟩ is
the mean energy in the 𝑘th mode.

Take the mean value of (1.64) to obtain

1 =

⟩︀
1

|Λ|
|̂︀𝜎(0)|2]︂+

1

|Λ|
∑︁

𝑘= 2𝜋
𝐿
𝑛∈(−𝜋,𝜋]𝑑

¬
|̂︀𝜎(𝑘)|2)︂⏟  ⏞  

1
2𝛽

1
ℰ(𝑘)

.

If 𝑑 > 2, although the bound diverges at 0, it is integrable.
We have

1 ≤ 1

|Λ|
¬
|̂︀𝜎(0)|2)︂+ �∫︁ 1

(2𝜋)𝑑
“
∫︁
(−𝜋,𝜋),𝑘 ̸=0

”
1

ℰ(𝑘)

�
1

2𝛽
(1.65)

lim
𝐿→∞

1

𝐿𝑑
¬
|̂︀𝜎(0)|2)︂

𝐿,𝛽
≥ 1− 1

2𝛽

1

(2𝜋)𝑑

∫︁
(−𝜋,𝜋]𝑑

𝑑𝑢𝑑
1

ℰ(𝑘)⏟  ⏞  
=:𝐶𝑑<∞ when 𝑑>2

(1.66)

This says that “zero momentum requires positive mass.” Compare this to Bose-Einstein
condensation, when there is a point mass at a particular mode.

This is more informative if 𝛽 is large. For 𝛽 > 2𝐶𝐷,⃦⃒⃒⃒⃒⃒
1

|Λ|
∑︁

𝜎𝑥

⃒⃒⃒⃒⃒2⌋︂
=

1

|Λ|
¬
|̂︀𝜎(0)|2)︂

𝐿,𝛽
≥
�
1− 𝐶𝐷

2𝛽

�
> 0.
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Also,

⟨𝜎0𝜎𝑥⟩ =

⃦�
1È
|Λ|

*∑︁
𝑘′

̂︀𝜎(𝑘′)��
1È
|Λ|

*∑︁
𝑘

𝑒−𝑖𝑘·𝑥̂︀𝜎(𝑘)�⌋︂ (1.67)

⟨𝜎0𝜎𝑥⟩ =
1

|Λ|
∑︁
𝑘

¬
|̂︀𝜎(𝑘)|2)︂ 𝑒−𝑖𝑘·𝑥 (1.68)

1

|Λ|
∑︁
𝑥

|⟨𝜎0𝜎𝑥⟩|
2 =

1

|Λ|2
⟨|̂︀𝜎(0)|⟩2 + “

1

2𝜋

∫︁
(−𝜋,𝜋]𝑑

𝑑𝑢”
¬
|̂︀𝜎(𝑘)|2)︂ 𝑒𝑖𝑘𝑥. (1.69)

The function has an integrable singularity at the origin. A Riemann-Lebesgue argument
shows this tends to 0 as 𝑥→ ∞ with |𝑥| ≤ 𝐿

2
. (I.e., take lim|𝑥|→∞ lim𝐿→∞.)

We get that
⟨𝜎0, 𝜎𝑥⟩𝐿,𝛽 = Ω(1)

for all 𝐿 (long-range order).
To saturate the sum rule, we have to get massive density/volume-type occupation at 0.
The IR bound gives

𝑍 =
∫︁
𝑒

𝛽
2

∑︀
𝑥,𝑦

𝐽𝑥−𝑦 |𝜎𝑥−𝜎𝑦 |2 𝜌0(𝑑𝜎) (1.70)

𝑍(ℎ) =
∫︁
𝑒

𝛽
2

∑︀
𝑥,𝑦

𝐽𝑥,𝑦 |(𝜎𝑥+ℎ𝑥)−(𝜎𝑦+ℎ𝑦)|2 𝜌0(𝑑𝜎). (1.71)

We yank different spins out of ±1 by shifting. What is the optimal shift? The best you can
do is do nothing.

We claim 𝑍(ℎ) ≤ 𝑍(0).
Then 𝜕2

𝜕𝑥2
𝑍(𝜆ℎ)|𝜆=0 ≤ 0, giving the IR bound.

10.3 Reflection positivity

Recall the Cauchy-Schwarz inequality: If ⟨·, ·⟩ is a bilinear positive form (⟨𝜓, 𝜓⟩ ≥ 0), then

| ⟨𝜓, 𝜙⟩ | ≤ | ⟨𝜓|𝜓⟩ |
1
2 | ⟨𝜙, 𝜙⟩ |

1
2 .

Definition 1.10.2: A system is reflection positive with respect to a plane if letting 𝑅 be
the reflection around the plane, letting 𝐿 and 𝑅 be the left and right side of the plane, for
every 𝑓 ∈ ℬ𝐿,

(𝑅𝑓)(0) = 𝑓(𝑅𝜎)

and ¬
𝐹 (𝜎)𝐹 (𝑅𝜎)

)︂
≥ 0.

The Schwarz inequality and reflection positivity say that for all 𝐹,𝐺 ∈ ℬ𝐿,

| ⟨𝐹 (𝜎)𝐺(𝑅𝜎)⟩ | ≤
¬
𝐹𝑅𝐹

)︂ 1
2 · · ·

¬
𝐺𝑅𝐺

)︂ 1
2 .
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The idea is to take reflections over many different planes. Consider a product over boxes
𝛼,

⟨𝜋𝛼𝐹𝛼(𝜎)⟩ ≤
∏︁
𝛼

⟨∏︁
𝛼′
𝐹#
𝛼 (𝜎𝛼′)

⟩ 1
|Λ|

≥ 0

where 𝐹#
𝛼 is 𝐹𝛼 extended to all squares by reflection, the “chessboard” extension.
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