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1 Complex Analytic functions

Gerolamo Cardano, in the 16-th century, is credited for introducing complex numbers.
The set of complex numbers C forms a quadratic extension of the real numbers R by
the square root of —1, which is denoted by ¢ so that we have,

it =—1 (1.1)

Every complex number z € C, and its complex conjugate z € C, may be uniquely
decomposed into a pair of real numbers x,y € R which are respectively referred to as
the real and imaginary part of z,

z2=x+1y x:Re(z):%(z%—z)
Z=1x—1y y—Im(z)—%(z—Z) (1.2)

Thus, the set of complex numbers is isomorphic to the plane C ~ R? and we often
refer to C as the complex plane, represented schematically in Figure 1. Addition and

C Yy .
....................... Z:x+zy
0 T
....................... Z:gj—@y
-y

Figure 1: The isomorphism between C and the plane R2.

multiplication of complex numbers z = z + iy and 2z’ = 2’ + i3/ proceeds as follows,

24272 = (e+2)+ily+y)
22 = (xa' —yy') +ilzy +2'y) (1.3)

These operations promote C into a commutative field. The modulus |z| of z is defined
by |z| = (22)2 taking the positive branch of the square root |z| > 0. The modulus
is positive definite, and satisfies the triangle inequality |z + 2/| < |z| 4+ |Z/| for all
2,7z € C. The modulus thus provides a norm and a distance function which induce
the metric topology on C whose open sets are open discs of arbitrary radius centered
at arbitrary points in C (see Section 2 for an introduction to topological spaces).
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1.1 Holomorphic (or complex analytic) Functions

A function of a complex variable is a map from C to C. Equivalently it is a map from
R? to R?, namely from (z,y) € R? to (u,v) € R?, given by u = u(z, y) and v = v(z,y).
Treating z and z as independent variables, just as x and y are independent variables
and performing a change of variables from (x,y) to (2, 2z) using (1.2) we collect the
pair of real functions (u,v) into a single complex function f defined by,

f(z,2) = u(z,y) + iv(z,y) (1.4)
The function f is a general complex-valued function of the complex variables z, z.

The change of variables (1.2) may be applied to the partial derivatives with respect
to the variables x,y and z, zZ and gives the following relations,

1
0. = 5(0, — i9,) 0y = 0. + 0:

where we systematically use the modern notation 0, = 9/0x, 9, = 0/0y etc.

A complex-valued function f(z, Z) is holomorphic or complex analytic in a region
R of the complex plane provided it satisfies the differential equation,

d:f(z,2) =0 (1.6)

and the derivative 0, f(z, ) is continuous everywhere in R. The condition (1.6) means
that the function f is independent of the variable z and only depends on z in the
region R. Translating this condition into differential equations on the real functions
u, v using the change of variables (1.5), we obtain the Cauchy-Riemann equations,

Oyt — Oyv =0 00+ Oyu=0 (1.7)

Holomorphic functions are usually denoted by f(z) in which the variable Z is omitted
since the function does not depend on it. The rules for differentiation in z are identical
to the ones for differentiation of a function of a single real variable.

1.1.1 Single-valued functions

Examples of holomorphic functions may be obtained by replacing the real independent
variable in some of the familiar functions by the complex variable z. It will be
convenient to classify holomorphic functions according to the nature of their domain
of holomorphicity, and the singularities they exhibit outside the domain of analyticity.
In this subsection, we carry out this classification for single-valued functions f(z)
which assign a unique value f(z) to every z € C. The possible behaviors of a function
f(2) at a point z, are as follows.



e A function f(z) is holomorphic at a regular point z, if 0; f = 0 and 0, f(2) exists
in an open neighborhood around the point 2.

e A function f(z) has an isolated singularity at a point z; when there exists a
0 > 0 such that f is holomorphic inside the open disc of radius 0 centered at z
minus the point zy (the disc with puncture zp).

e The point zg is a pole of order n > 1 of f(z) if the limit lim, . (z — 20)" f(2)
exists and is non-zero, so that f(z) is singular at 2.

e A singular point zy of a function f(z) which is not a pole is an essential singu-
larity, sometimes also referred to as a pole of infinite order.

The main two classes of single-valued holomorphic functions that arise in view of
the above classification of singularities are as follows.

e Entire functions are holomorphic throughout the complex plane C.
Examples are polynomials P(z) of arbitrary degree; the exponential function
e?; the trigonometric functions cos z and sin z; the hyperbolic functions chz and
shz; and compositions of all of the above, such as e** etc. Non-constant entire
functions all blow up at oo (as a corollary of Liouville’s theorem, to be discussed
in Section 3). We note the Euler relations,

€ = cosz +isinz ch(iz) = cosz sh(iz) = isinz (1.8)

e Meromorphic functions are holomorphic throughout the complex plane C,
except for isolated poles of arbitrary but finite orders.
Meromorphic functions may be expressed as the ratio of two holomorphic func-
tions. Examples are rational functions P(z)/Q(z) where P(z) and Q(z) are
polynomials of arbitrary degree; trigonometric functions 1/ cos z, 1/ sin z, tan z;
hyperbolic functions 1/chz, 1/shz. The space of meromorphic functions forms
a function field over C. Compositions of meromorphic functions are not, how-
ever, necessarily meromorphic. This may be seen by considering the function
1/ sin(7/z) which has poles at 1/n for all n € Z, and these poles are not isolated.
Another example is e!/* which has an essential singularity at z = 0.

1.1.2 Multiple-valued functions and Riemann surfaces

The inverse function of a single-valued function is not necessarily a single-valued func-
tion and is generally multiple-valued. For example, consider the polynomial function
f(z) = 2% which is holomorphic in C and invariant under z — —z. Its inverse function
~42) = 27 is double-valued since at every non-zero value of f there correspond two
different pre-images. More generally, the function f(z) = 2" with n integer and n > 2
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is invariant under z — ze2™/" Its inverse function f~(z) = zn is n-valued since
to every non-zero value of f there correspond n different pre-images. The inverse
functions of general polynomials of degree n > 2 and rational functions are likewise
multiple-valued function, though these inverse functions are generally harder to write
down explicitly. Exponential, trigonometric, and hyperbolic functions are periodic
functions. For example, the single-valued function e* is invariant under the infinite
discrete group of shifts z — z 4 2wk for any k € Z and therefore its inverse function
the logarithm In(z) is infinitely multiple-valued.

There are two ways of handling multiple-valued functions.

e By introducing a branch cut in the complex plane and restricting the definition
of the function to the cut plane in which the function is now holomorphic.
For example, for the function f(z) = 27 we may cut the complex plane C by
removing the positive real axis, as shown in Figure 2. The branch cut is an
arbitrary continuous curve starting at the point 0 and ending at oo, which are
both referred to as branch points.

Figure 2: The branch cut for f(z) = z2 chosen along the positive real axis.

e By defining the function f on the union of two copies of the cut complex plane,
referred to as sheets, such that the first sheet corresponds to one sign of the
square root while the second sheet corresponds to the opposite sign. The sheets
are glued together at the branch cut by smoothly moving from the first to the
second sheet as one crosses the real positive axis, or vice-versa, as depicted in
Figure 3. The resulting surface is a simple example of a Riemann surface. An
arbitrary point on the surface may be labelled by the pair (z,w) with w? = 2z,
where z is the standard coordinate on a single copy of the complex plan, and
the inclusion of w in the data specifies the sheet.

More generally, the multiple-valued function f(z) = zn for arbitrary n > 2 may
defined with the same branch cut along the positive real axis, but the correspond-
ing Riemann surface now consists of n sheets, glued together at the branch cut.



A, B_
«—— «———————
0 B, 0 A

Figure 3: The double cover image of the function f(z) = 22 is obtained by sewing
together two copies of the plane with a branch cut, and identifying sides AL with one
another, and sides B4 with one another.

For f(z) = Inz, the Riemann surface consists of an infinite number of sheets glued
together in an infinite winding staircase. Much more will be discussed about multiple-
valued functions when we consider integration in Section 3.

1.2 Orthogonal families of curves - conformal mapping
Let f(z) be a holomorphic function with z = x + iy and f(z) = u(z,y) + iv(z,y).
1. The functions u, v are harmonic,
(02 + 8§)u =0 (02 + 85)21 =0 (1.9)
2. The curves u(x,y) = « and v(z,y) = [ are orthogonal for each «, 5 € R at all

points z where f'(z) # 0.

3. The transformation (or map) from the variable z to the variable w = f(2) is
conformal at all points z where f'(z) # 0.

Harmonicity follows from the Cauchy-Riemann equations obeyed by wu,v along with
the identity 0,0, = 0,0,. The curves are orthogonal provided their respective tangent
vectors are orthogonal to one another at an arbitrary point. The tangent vectors
t* = (t2,t2) and t” = (7, 17) obey the following equations,

u(z +etd,y+ety) = u(z,y)+ O

v(r+etly+ety)) = v(z,y)+O(E) (1.10)
Expanding to first order in €, and using the Cauchy-Riemann equations to eliminate
the v-derivatives in terms of the u-derivatives,

12 Opu + 19 dyu =
—t0 Opu+1t) Opu = 0 (1.11)
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Since the vectors (0,u, 9yu) and (—0,u, 0,u) are non-vanishing in view of the assump-
tion f’(z) # 0, and are manifestly orthogonal to one another, it follows that t* and t*
must be orthogonal to one another. Hence the curves are orthogonal to one another.

To show item 3. we recall that, in any dimension n, a map is conformal at a point
x provided it preserves the angles between arbitrary vectors at x. To define angles
it suffices to have a metric by which one can measure distances and from distances
deduce angles. The flat space Euclidean metric on R" is given by dsi = > | dz'da’
(on a curved space we use a general Riemannian metric). Scaling the metric by an
overall scalar function is referred to as a Weyl transformation resulting in a metric
ds/% = p*(z) >°1, da'dx’. We shall now show that a Weyl transformation is conformal.
To do so , we consider the inner product of two arbitrary vectors U(z) = (U!,--- ,U")
and V(z) = (V1,--- V") at the point x is given by,

Ulz)-V(z) = p*(2) Z Ui (1.12)

The angle 0 between the vectors U(z) and V(x) is given by,

U() V)
URGHUEGL

cos ) = (1.13)

which is independent of the Weyl factor p?. Returning now to the case at hand of the
flat two-dimensional plane, the flat metric is ds? = dz? + dy? and its Weyl-rescaled
form is ds? = p(z,y)*(da* 4 dy?). Expressing the metrics in complex coordinates we
have dsj = |dz|* and ds’ = p(z,%)*|dz|>. Now carry out the transformation from
the variable z to the variables w = f(z) with f(z) holomorphic and f’(z) # 0. The
transformation on the differential is dw = f’(z)dz and on the metric is as follows,

jdwl* = |f'(2)]* |dz|* (1.14)

This transformation is conformal at any point where f’(z) # 0, thus proving item 3.

1.2.1 Examples of conformal mappings

Conformal mappings allow one to relate holomorphic and harmonic functions on dif-
ferent domains in the complex plane. Global conformal transformations constitute a
special set of conformal transformations which are given by a Mébius transformation,

b 1
f(z) = Zid 1) = rray ad — be = 1 (1.15)
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Note that f’(z) is non-zero throughout the complex plane and thus globally conformal.
Representing the data in the form of a matrix,

a b
F= (C d) det F =1 (1.16)

the composition of two Mobius transformations corresponds to the multiplication of
the corresponding matrices, (f; o f2)(z) corresponds to the matrix FyFy. The set
of such matrices of unit determinant forms a group under multiplication, denoted
by SL(2,C) when a,b,c,d € C, SL(2,R) when a,b,c,d € R, and SL(2,Z) when
a,b,c,d € 7Z. There are further an infinity of other possibilities, which are all sub-
groups of SL(2,7) and referred to as arithmetic groups.
An key global conformal map is from the upper half plane H = {z € C,Im (z) > 0}
to the unit disc centered at zero D = {w € C, |w| < 1},
11— 2 1 —w
w(z) = T e=iTo (1.17)
Note that this transformation maps the real line into the unit circle, the point z =1
to the center of the disc w = 0 and 2z = oo to the point w = 1. Examples of global
conformal transformations other than Mdbius transformations are as follows.

e The map w = e* from the cylinder {z € C,z ~ 2z + 27, ¢ < Im(z) < L} to the
annulus {w € C, e’ < |w| < ef'}, where ~ stands for periodic identification;

e The map w = e* from the infinite strip {z € C,0 < Im (z) < 7} to the upper
half plane w.

Some transformations are conformal except at isolated points. The example from
which most others are constructed is given by the map w = z* for ¢ € R and
p > 5 from a wedge {z € C,z = pe®,0 < 6 < w/u} to the upper half plane. The
transformation fails to be conformal at z = 0 which allows the vertex of the wedge of
opening angle a = w/pu < 27 to be mapped onto a point on the real axis where the
opening angle is 7. We may express the inverse transformation as follows,

Q@

z=w" dz = —w*™ ! dw (1.18)

T
Consider a general planar polygon, with n vertices zq,--- , 2, € C with opening
angles aq, - - - , o, ordered along the boundary of the polygon, as depicted for the case

n = 5 in Figure 4. The Schwarz-Christoflel transformation maps this polygon onto
the upper half w-plane, with the vertices z; mapped to an ordered set of points x; on
the real line, and w and z related by the differential relation,

dz = AH(w — )™ dw (1.19)
i=1
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where A is a constant independent of z,w. To prove this formula, we make use of the
argument function of a complex number, defined by,

Arg(z) =60 z=|z]€e? (1.20)

The Arg-functions acts like a logarithm, so that Arg(zw) = Arg(z) + Arg(w) and
Arg(z") = puArg(z). Applying Arg to bot sides of (1.18), we have,

Arg(dz) = Arg(dw) + Arg(A) + Z (% — 1) Arg(w — ;) (1.21)

Moving w along the real line from right to left starting from 400, the function Arg(w—
x;) vanishes for w > z; and equals 7 for w < x;. Thus, as we move between two
consecutive points x; and z;,1, the value of Arg(dz) remains constant, i.e. the slope
of the line followed by z is constant. Crossing a point z; increases Arg(dz) by a; — 7,
just as in the case of a single wedge. The fact that the sum of the angles «; is 27
guarantees that the polygon closes.

Z4
&7

Z5
(€7

(07
323

03} (6%
21 22

Figure 4: Vertices z;, edges [z, z;+1] and angles «; between consecutive edges for a
planar pentagon in the case n = 5 are mapped onto the real line with marked points
x; so that the interior of the polygon is mapped into the upper half plane.

For example, for the case of a rectangle, we haven = 4 and o; = 7 fori =1,--- 4
so that the transformation is given by,

A
dz = dw (1.22)

V(W —an)(w — z2)(w — 23)(w — 24)

Its solution z = f~1(w) is given by an elliptic integral whose inverse w = f(z) by an
elliptic function, to be discussed later.
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1.3 Two-dimensional electrostatics and fluid flows

The mathematical problems of solving for two-dimensional electrostatics and station-
ary fluid flows are identical and reduce to obtaining harmonic functions in the presence
of sources. Concentrating on electrostatics we seek the electro-static potential ®(z, y)
which is a real function satisfying the Poisson equation,

(02 + 2)®(2.y) = —2mp(z.y) (1.23)

where p(z,y) is the density of electric charges, and (—0,®, —0,®) is the associated
electric field. Away from electric charges, ® is harmonic. The potential for an electric
charge of strength ¢ located at the point (xg,yo) is given by,

Oy (z,y) = —qIn/(z — 20)> + (y — y0)? (1.24)

Complex analysis is particularly useful to solve electrostatics problems when the
charge distribution is supported by isolated point-charges, or by charges distributed
on a curve or line interval. In those cases, the electric potential is harmonic in the
bulk of the plane. We now introduce a complex potential €2, defined by,

Qz,y) = O(x,y) +iV(z,y) (1.25)

Requiring €2 to be holomorphic guarantees that & and ¥ are conjugate harmonic
functions satisfying the Cauchy-Riemann equations. The lines of constant & are
electric equipotentials, while the lines of constant ® are electric field lines. For a
distribution of n point charges with strengths ¢; and positions z; in the complex
plane for i = 1,--- ,n, the complex potential is given by,

Qz) = — Z ¢ In(z — z) (1.26)

To obtain a charge distribution along a line segment, one may take the limit as n — oo
and transform the above sum into a line integral.

1.3.1 Example of conformal mapping in electrostatics

As an example, we want to obtain the electrostatic potential for an array of n charges
with strength ¢; located at points w; in the interior of the unit disc |w| < 1 whose
boundary unit circle is grounded at zero potential. The problem is linear, so it suffices
to solve it for a single charge and then take the linear superposition of n charges. It
is easy to solve this problem for the upper half plane with complex coordinate w. By
introducing an opposite image charge we ground the real axis to zero potential,

OT(2) = —¢In(z—2z)+q¢n(z — %)
®H(2,2) = —qiln|z—z* +q¢In|z — 7| (1.27)
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where it is clear from the second line that ® = 0 for 2 € R. Now make the confor-

mal transformation (1.17) from the upper half z-plane to the unit w-disc by setting
PSP (w, w) = ®H (2, %), and we find,

P (w, ) | 1—w 1_wi2+ | 1—w+1—u?i2 (1.28)
S\w,Ww) = —(@; 1N — i 11 — .
i T Trw| TP e T 1t
After some evident simplifications, we obtain the following equivalent form,
D _ 1— WW; 2
P’ (w,w) = ¢;In | —— (1.29)
w — w;

a result one would probably not have guessed so easily. One verifies that ®P indeed
vanishes for |w| = 1. The electric potential ® on the grounded disc with n charges
is the linear superposition of the contributions for one charge,

P (w, w) = Z@?(w,w) (1.30)

Thus we have solve a problem on the unit disc by mapping it to a problem on the
upper half where the solution may be obtained much more simply than on the disc
by using the symmetrical disposition of the image charges, as illustrated in Figure 5.

° 5
° Z2 ) H
Z1 o Z4
Z3
Oo_
o_ <3 o_
D 21 o 24
<2 o_
Z5

Figure 5: The unit disc D is on the left with vanishing potential on the unit circle and
point charges at the points w;. The upper half plane H is on the right with vanishing
potential on the real line, charges at z; in the upper half plane indicated bold dots
and opposite image charges at z; in the lower half plane indicated in circles.
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2 Topological Interlude

Topology is the modern language in terms of which analysis, including the local prop-
erties of functions such as continuity, differentiability, and integrability are formulated.
It is also the language in which shapes of sets can be grouped into equivalence classes
under the equivalence of being related to one another by a continuous deformation.
We shall introduce here some of the most basic definitions and results in topology.

2.1 Basic definitions

We begin with some very basic definitions.

Topology: A class of subsets of a non-empty set X is a topology T if and only
if the following axioms are satisfied,

1. X itself and the empty set () belong to T;
2. The union of any number of sets in 7 belongs to T;

3. the intersection of any finite number of sets in 7 belongs to T .

When these axions are satisfied, the members of 7 are referred to as open sets of T
and the pair (X, T) is referred to as a topological space. Note that a given space X
may be endowed with different topologies. One example is the trivial topology which
consists of T = {X, 0} for example, but this topology is essentially useless. If O is
an open set, which is not equal to X or (), then the complement X \ O is a closed set
and vice-versa.

The definition given above is incredibly general, which gives it great flexible power.
In practice, given a space X, we need some concrete prescription for describing its
open sets which will be useful for doing analysis. Almost always in physics, one has
some metric or distance function available.

Metric topology: The general definition of a metric is a real-valued function
d(x,y) for x,y € X which satisfies the following axions,

1. symmetry: d(z,y) = d(y, z) for all z,y € X

2. positivity: d(z,y) > 0 for all z,y € X;

3. definiteness: d(x,y) = 0 if and only if z = y;

4. triangle inequality: d(z,z2) < d(z,y) + d(y, z) for all z,y,z € X.
An important special case is when we are dealing with a vector space which is endowed

with a norm. In this case we can take the distance function to be simply the norm
of the difference between the two vectors. Thus, for example in R we have the
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norm=distance function |z — y| for z,y € R; in C the modulus is given by the
modulus z — w| with z,w € C; and more generally in R” and C" we have the norms,

I(@r, - aa)|® =) G- za)lP =) Jaf? (2.1)
i=1 i=1

In fact one may extend these norms to infinite-dimensional spaces and we then enter
the subject of Hilbert spaces which we shall discuss in section 5. A set equipped with
a metric is referred to as a metric space.

Given a metric d(z,y) on a set X, we may define open sets to be open balls of
arbitrary radius € > 0 centered at arbitrary points xg,

D.(zo) = {z € X,d(z,z0) < ¢} (2.2)

Note the crucial strict inequality in this definition. The closed ball corresponds to
replacing the strict inequality by d(z,x) < e. The class of open balls does not by
itself define a topology because for example the intersection and union of two open
balls is not necessarily an open ball. But the open balls form a basis for a topology:
the other open sets may be obtained by applying the rules for union and intersection,
given in the definition of a topology, to the open balls. By this process, one constructs
the metric topology T associated with the metric d(z,y) on X.

For example, the open sets of the metric topology of R are the open intervals |a, b]
with a < b € R and all possible unions thereof. The open sets of the metric topology
of C are generated by the open discs D.(zp) for arbitrary radius € > 0 and center z.

Note that there is a very good reason for the condition of taking the intersection
of only a finite number of open sets in the third axion of a topology. Consider for
example the open sets D%(O) =] — L, +1[for n € N. For each value of n, the point
0 is contained in D%(O), so that the infinite intersection ()~ ;] — £, [= {0} but this
set is not open; in fact it is closed !

Accumulation point: A point x is an accumulation point of a subset A € X if
every open set O which contains = contains at least one point of A different from =x.
For example, the point 0 is an accumulation point of the set of points {%}neN on the
real line. Also, the points a and b are accumulation points of the open interval |a, b]
fora < beR.

Closure of a set: Given a subset A of a topological space X, its closure A is the
union of A and of all its accumulation points. For example, the closure of the open
interval ]a,b] for a < b € R is the interval with its two accumulation point included,
which makes it into the interval [a, b] which is closed, since its complement is open.

Interior, exterior, boundary: An point x which belongs to a subset A of a
topological space X is an interior point of A if z belongs to an open set O C A. The
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set of all interior points of A is the interior of int(A) of A. The exterior rmext(A)
is the interior of the complement of A, and the boundary is the set of point which
are neither interior nor exterior to A, given by, 94 = X \ (int(A) U ext(A)). For
example, the interior, exterior, and boundary of the subset A =]|a, b] are respectively
int(A) =|a, b[, ext(A) =] — 00, aU]b, oo[ and 0A = {a, b}.

2.2 Sequences

Consider a topological space X. An infinite sequence in X is a set of points z, € X
indexed and ordered by the integers n € N, or an infinite subset thereof. This set
of point may have zero, one, or several accumulation points. More specifically, the
sequence may or may not converge. There are two convergence criteria which are
both important and widely used.

e Convergence to a point in a topological space X: A sequence of points
{zp}nen With x,, € X converges to a point z if and only if for every open set O
containing x there exists an N € N such that for all n > N we have x,, € O.

e Cauchy sequences in a metric space X: A sequence {x, },en with z, € X
is a Cauchy sequence if for every ¢ > 0, there exists an NV € N such that for all
m,n > N we have d(z,, x,) < €. A fundamental result is that every convergent
sequence is a Cauchy sequence. Thus, the notion of Cauchy sequence is more
general than that of a convergent sequence. A metric space X is complete if
every Cauchy sequence in X converges to a point in X. The spaces R and C
and more generally R” and C" are all complete metric spaces.

2.3 Continuous functions

Let X and Y be two topological spaces (their respective topologies will be understood
throughout), and let f : X — Y be a function from X to Y. The function f
is continuous if the image under the inverse function f~! of every open set of the
topology of Y is an open set of the topology of X. In fact, it suffices to require that
=1 of every open set of a basis of open sets of Y is an open set of X.

For example, in the case of a real-valued function f(z) on a subset A of the real
line, we can make this condition completely explicit. The open sets are generated by
the open intervals ]a, b[ contained by A. The criterion is that f~!(]a,b[) is an open
interval for ever a < b € R. Let us characterize the interval instead by a center point
o and a radius € > 0, so that now the criterion is that for all € > 0 and for all
corresponding o with D.(z) C A and such that |f(z) — f(x0)| < € the point z is in
an open set around the point xy which means that there exists some ¢ > 0 such that
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|z — x| < 6. We have just recovered the well-known Weierstrass characterization of
a real continuous function of a real variable. But the characterization by open sets is
much more general and useful.

2.4 Connectedness

A subset A of a topological space X is connected if any two points z,y € A can be
joined by a continuous function f : [0,1] — A given by f(s) for s € [0.1], such that
f(0) =z and f(1) = y. Note the criteria of continuity and that the image of [0, 1]
must be entirely contained in A. A set A which is not connected is disconnected. The
set of all disconnected components of A is denoted by mo(A) and referred to as the
zero-th homotopy of A.

A discrete set A of points z,, € X with n € N is disconnected, and my(A4) = A.
An interval [a,b] with a < b is connected. The union of two intervals [a, b] U [c, d] with
a < b and ¢ < d is connected when ¢ < b but disconnected when ¢ > b. A disc D.(z)
in R™ of radius R > 0 centered at an arbitrary point xy is connected.

2.5 Simply-connectedness

This notion will be very important in complex analysis. Let A be a connected subset
of a topological space X. A closed curve C C A is given by a continuous function
C :[0,1] — A such that C(0) = C(1). A subset A is simply-connected if every closed
curve in A can be continuously deformed, while remaining in A, to a point. To make
this more explicit, a closed curve C can be deformed to a point p provided there exists
a continuous function € from [0, 1] x [0,1] — A such that,

~ ~

C(s,1) =C(s) C(s,0)=p s €[0,1] (2.3)

Subsets which are not simply-connected are also very important, and one can
provide a measure by how much they fail to be simply connected. The key ingredient
is the notion of homotopy. Two curves Cy and C; in A which have the same end
points p, ¢ are homotopic to one another provided there exists a continuous function

A

C :[0,1] x [0,1] — A such that,

~

C(s,1) = Cy(s) C(1,t)
C(s,0) = Co(s) C(0,1)

Ci(1) = Co(1)
Cl(o) = CO(O)

p
q (2.4)
Homotopy induces an equivalence relation between curves, either with the same end-

points or between closed curves in A. Thus we may state the condition of simply-
connectedness as the fact that all closed curves in A are homotopic to points.
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The equivalence classes of closed curves in A under the homotopy equivalence
relation are referred to as the elements of the first homotopy group m(A). The
classes form a group under composition of curves by choosing two representatives C;
and Cy which have a point p in common and then composing the curves at the point p.

For example, the real line R, the complex plane C, as well as R” and C" are all
simply-connected. The sphere S™ with n > 2 are all simply connected, but the circle
S1, the annulus, and the n-dimensional torus 7™ are not simply-connected. Their
first homotopy groups are respectively m1(S') = Z, m(A) = Z and 7, (T") = Z".

2.6 Compactness
We begin by defining a cover of a subset A of a topological space X as a class of
open set O, with n € N such that A C (J O,.

Compactness: A subspace A of a topological space is compact if for every cover
{O,, }nen one can extract a finite sub-cover.

Heine-Borel theorem: A subset of Euclidean R"™ is compact if and only if it is
closed and bounded in the sense of the Euclidean metric.

The Heine-Borel theorem does not extend to infinite dimensions. The closed
unit ball in finite dimension is compact by the Heine-Borel theorem, but in infinite
dimension (say a Hilbert space), the closed unit ball is not compact.

One of the many key properties of a compact space is that a continuous function
maps a compact set to a compact set. In particular this means that a continuous real
function on a compact space A attains its minimum and its maximum in A.

2.7 Manifolds

Definition of a topological manifold: A topological space M is a topological man-
ifold provided every point x € M has an open neighborhood which is homeomorphic
to an open set in R".

A map is a homeomorphism provided it is bijective, continuous, and its inverse
map is also continuous. By continuity, the value of n must be constant throughout
the manifold, and n is referred to as the dimension of M.

Some important aspects of manifolds are as follows.

1. The homeomorphism ¢, from an open neighborhood U, of a point x into R"
provides “local coordinates” for the neighborhood U, C M.

2. The pair (U,, p,) is called a chart (think of a geographical map).
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3.

An atlas (Un, Yo )acs of charts is a set of charts such that

Uta=m (2.5)

a€esS

namely all points in M are in at least one chart, and may thus be described by
at least one local coordinate system.

Since the U, are open sets, the only way they can cover M is by having non-
trivial intersection. They only way two open sets U, and Uz can intersect
non-trivially is in an open set U, NUg. But in this open set we now have two
different homeomorphisms (i.e. coordinate sets) for the same point x, namely
o) and pg(z). Hence we can form the composition,

Vap = Pao @y R = R" (2.6)

Since the functions ¢, and g and their inverses are continuous, so must the
composite map 1, s then also be automatically be continuous. The functions
1a,p are referred to as transition functions.

While it follows from the definition of a topological manifold that the transition
functions 1, g are continuous, we may impose conditions on v, g which are stronger
than mere continuity. Here are some of the most frequently used extra conditions.

Differentiable manifold or more precisely C* differentiable manifold provided
the order k derivatives of the transition functions exist and are continuous;

Real analytic manifold provided the transition functions are real analytic, i.e.
given by their Taylor series;

Complex manifold exists provided n = 2m is even, and the transition functions
are holomorphic functions of several complex variables.

Riemann surfaces are complex manifold of two real, or one complex dimension
with holomorphic transition functions. When we speak of gluing different sheets
together, we mean that the transition functions used to do so are holomorphic.
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3 Complex Analysis

We now return to complex analysis.

3.1 Line integrals, Green’s theorem

In this subsection, we shall define the integral of a holomorphic function f(z) in the
variable z along an oriented curve C which is the boundary of a region R C C, as
depicted for example in Figure 6.

Figure 6: Examples of regions R and their boundaries. The orientations of the inner
and outer boundary curves are respectively clockwise and counter-clockwise.

Green’s theorem: Let p(x,y) and q(x.y) be continuous functions of x,y with
continuous first order partial derivatives in a region R and on its boundary C = OR.
The line integral of the differential one-form p(x,y)dx + q(z,y)dy along C satisfies,

y{(p dzx + qdy) = / dzx dy <6xq — (%p) (3.1)

c R

where the orientation of the boundary curve C = R is such that traveling along the
boundary with positive orientation leaves the interior on R to the left. The theorem is
valid for regions R that may be connected or have several disconnected components,
and that are simply-connected or not simply connected.

To prove Green’s theorem, we partition R into rectangular coordinate regions,
given by R = {(z,y),21 <z < 29 and y; < y < yo}. For each rectangular region,
the theorem is proven by integrating the right side of (3.1),

/:2 dx /:2 dy (6&(] - 3yp) = /y2 dy (qm, y) —q(1, y))

Y1

+ /xz dx (q(w, 1) —q(z, yz)) (3.2)

1

which produces the line integral of p(z, y)dx + q(z, y)dy along the closed curve C. The
process of partitioning R into a union of coordinate rectangles generally involves a
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limit of small rectangles near the boundary. To avoid this limit, one may equivalently
proceed to including also triangles with two coordinate sides and the third side being
a monotonic boundary curve which is differentiable.

Equivalently, Green’s theorem may be formulated in terms of a general complex
function f(z, z) which is continuous with continuous first order partial derivatives in
R and on its boundary C = R,

jf dz f(z,2) = 2i / dr dy 0. f (2, %) (3.3)

c R

To prove (3.3), we recast the left in terms of real variables using (1.2) and (1.4),

]{dzf(z,z):j{(dzu—dyv)+ij[(dxv+dyu) (3.4)

c C

and then use (3.1) on the real and imaginary parts of the result.

3.2 Complex integration

Line integrals of holomorphic functions behave as ordinary integrals, just as their
derivatives behave as the derivatives of functions of a single real variable. To make
this correspondence precise we begin by discussing Cauchy’s theorem.

Cauchy’s Theorem: A function f(z) which is holomorphic in a region R and
on its boundary curve C satisfies,

]idz f(z)=0 (3.5)

The theorem follows from Green’s theorem by taking f holomorphic.

An immediate consequence of Cauchy’s theorem may be deduced for open line
integrals. We now consider a more restricted setting where the region R is connected
and simply connected. Recall that a region is simply connected provided every closed
curve in R can be continuously shrunk to a point through R, as illustrated for the
planar case in Figure 7.

Let f(z) be a holomorphic function in a connected and simply-connected region
R and let C; and Cy be two oriented curves in R both of which begin at the point
z1 € R and end at the point z, € R. The integrals of f along the curves C; and Cy
are then equal to one another and the integrals depend only on the end-points zq, 23,

/C = 4(2) = /C = 1(2) = / d £(2) (3.6)
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Figure 7: The shaded region R; is simply connected as any closed curve ~; can be
continuously shrunk to a point through R, while the shaded region R is non-simply-
connected since the curve v, cannot be continuously shrunk to a point through R.

The result is readily proven by noting that the difference of the integrals over C; and
C, is an integral over the closed oriented curve C = C; — Cy, which is the boundary of
a region in R C C, so which vanishes by (3.5). Note that it is essential for the region
R to be simply-connected since otherwise C; — C2 may not be the boundary of any
region in R, as illustrated in Figure 8.

Ci

Cy
Rl RZ

Figure 8: Line integrals of holomorphic functions depend only on the endpoints in a
simply connected region R, but not in a non-simply-connected region R.

The result (3.6) fails to hold when either f is not holomorphic in R and/or when
R is not simply-connected. For example, the function f(z) = 1/z is holomorphic
in the annulus R = {z € C,1/2 < |z| < 2}, which is not simply-connected and its
integral over the unit circle |z| = 1 may be evaluated by changing variables z = pe®,
with dz = (dp +ipdf)e® with 0 < 0 < 27, and we find,

27
7{ %:/ idf = 2mi (3.7)
lz|=1 ? 0

which does not vanish. Viewing the unit circle as the boundary of the unit disc, which
is simply-connected, the same integral now fails to vanish because f(z) = 1/z fails to
be holomorphic in the unit disc, since it has a pole at z = 0.
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Actually, a very useful result that follows using the same methods is as follows,

f C_ oris,, (3.8)
|z

=R 2"

for any radius R > 0 and any integer n € Z. To prove it, we use the change of
variables z = Re® with 0 < # < 27 and that the integral over # vanishes fpr n # 1.

3.3 Cauchy’s integral formulas

Cauchy’s integral formula: Let f(z) be analytic inside a simply connected region
R and on its boundary C = OR. Then for every point w € R we have,

Fw) = —— i PRRAC) (3.9)

271 Z—w

To prove this result, we use the fact that the function f(z)/(z — w) is holomorphic
in R except at the point w. To make use of Cauchy’s theorem, we choose a contour
C U~ of integration which excludes the point w, as depicted in Figure 9.

CUy=0R

Figure 9: Oriented contour of integration C Uy in Cauchy’s integral formulas.

Cauchy’s theorem applies to the integration over the contour C U «, and decom-
posing the integral over C U« into separate integrals over C and v, we find,

S R C I PN ) 510

The first integral on the right side is the one we want to obtain. To evaluate the second
integral we choose v to be a circle of radius € > 0 centered at w, and parametrize
2 € v by setting z = w + ee ¥, with dz = —ice™*df with the angle # running from
0 to 27 to account for the clock-wise orientation of v, and we find,

]{dz JE) = /0277(—2‘) di f(w+ee™) = —2mif(w) (3.11)

Z—Ww
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Combining these results proves Cauchy’s integral formula.

Analyticity Theorem: If f(z) is holomorphic inside a simply-connected region
R, then all its derivatives are holomorphic in R.

This is an powerful result without analogue in the world of functions of a real
variable. It means that as soon as a function is differentiable once in the complex
sense with continuous first derivative, then it is differentiable any number of times.
The proof follows directly from Cauchy’s integral formulas, since by differentiating
both sides of (3.9) we have,

£ () = ]gdz(L (3.12)

T 2mi z —w)tl

which is well-defined as long as f(z) is analytic.

3.4 Liouville’s theorem, fundamental theorem of algebra

Liouville’s Theorem: A function f(z) which is holomorphic and bounded through-
out the entire complex plane C is constant.

The proof proceeds from the first derivative of Cauchy’s integral formula,

fl(w) = ! ]idz(fi (3.13)

T 2mi z—w)?

We choose C to be the circle of arbitrary radius R > 0 centered at w, and assume
|f(2)] < M for some positive constant M and all z € C. Taking the absolute value
of both sides in (3.13) and bounding the integral using Schwarz’s identity, we have,

z M
P < 5 g il 0 < (.14

But R is arbitrary and may be taken to be arbitrarily large, so that |f'(w)| is bounded
from above by an arbitrarily small number. Therefore f’(2) = 0 and f(z) is constant.

Fundamental Theorem of Algebra: A polynomial of degree n which is given
by P(2) = a2 + ap_12" ' + -+ +ag and a,, -+ ,a9 € C with a,, # 0 has n zeros.

The proof of the Theorem proceeds by contradiction using Liouville’s theorem. We
begin by proving that a polynomial of degree n > 1 has at least one zero. Suppose
the contrary, namely P(z) is a polynomial of degree n > 1 and has no zeros. Then
by continuity P(z) must be bounded from below and its inverse f(z) = 1/P(z) is
bounded from above and holomorphic throughout C. By Liouville’s theorem, P(z) is
then constant which is in contradiction to the assumption that P(z) has degree n > 1.
Therefore, the initial assumption that P(z) has no zeros must be false and P(z) has
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at least one zero. Having shown the existence of one zero, we proceed to prove the
Theorem by induction on the degree. For degree 1, we are done. For degree 2, we
have proven that there is at least one zero, say z;. Thus P(z)/(z— 21) is a polynomial
of degree 1 for which we repeat the process and so on.

3.5 Taylor series

One of the most useful tools for analytical as well as numerical calculations is the
representation of functions by Taylor series or Laurent series. We provide here the
precise statements of these results.

Taylor’s Theorem: Let f(z) be a holomorphic function inside and on a circle C
of radius R centered at the point a, then for any z inside C the Taylor expansion is,

(z—a

1) =Y B o) (3.15)

and this series has radius of convergence R or greater.

To prove the theorem we use the Cauchy integral formula,

1) = oo duw I

C2mi Jo w—z

(3.16)

where C = {w € C,|w — a| = R} as depicted in the left panel of Figure 10. Now
expand the denominator as follows,

1 _ 1 o (-a)n
w—z_(UJ—a)—(Z—a)_nz_o(w—a)”ﬂ (3.17)

C

Figure 10: The curves C and C’ are circles centered at the point a of respective radii
R and r < R. The shaded areas are the regions where the function f is holomorphic
respectively for the Taylor and Laurent expansions.
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This series is absolutely convergent since we have |w — a| > |z — a| for z inside C.
Substituting the result into Cauchy’s integral formula, we find,

f2) =Y (- a)"% ]{ dw # (3.18)

n=0 ¢

To complete the proof, we use Cauchy’s integral formula (3.12) for the n-th derivative
of f and express the integrals on the right side in terms of f™(a).

The radius of convergence of the Taylor series in (3.15) is greater than or equal
to R. As aresult, the radius of convergence of an entire function f(z) is infinite, since
f(z) is holomorphic inside a circle of arbitrarily large radius. On the other hand, the
radius of convergence for a meromorphic function f(z) is given by the distance of the
point a to the nearest pole or other type of singularity of f(z). For example, the
following Taylor series at the point a = 0,

L In(1 P 3.19
-3 S =32 (319

n=0

both have unit radius of convergence, namely |z| < 1 which corresponds to the dis-
tance to the singularity at z = 1, which is a pole for the first function and a branch
point for the second function.

3.6 Laurent series

Laurent’s Theorem: Let f(z) be a holomorphic function inside an annulus of inner
radius r and outer radius R centered at the point a, then for any z inside the annulus
we have the Laurent expansion,

(e 9]

FE =3 aG-a"+Y @‘l_;; (3.20)

where the Laurent coefficients are given by,

1 Flw) 1 f(w)
R T A

(3.21)

= oni c (w—a)rt!

with the contours C and C' as depicted in the right drawing of Figure 10.

To prove the theorem, we again use Cauchy’s integral formula in the form,

F(2) = idw J(w) +?{/ dw L) (3.22)

w—z w—z
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For the integral along C, we use the expansion of (3.17), while for the integral along
C’, we use the expansion

1 1 .
= 3.23
w—z (w—a)—(z—a) nzz—a”+1 (3:23)

This series is absolutely convergent since we have |w — a| < |z — a| for w € C" and 2
inside the annulus. Substituting both expansion into (3.22) gives (3.20).

The contributions from a_, with n > 1 are referred to as the pole part of the
Laurent series. The pole part vanishes for an entire function; it truncates to a finite
sum for a meromorphic function; and contains an infinite number of terms for an
essential singularity.

3.7 The residue theorem

Residue Theorem: Let R be a simply connected region with boundary C (oriented
clock-wise) and f(z) a single-valued function which is holomorphic in R and on its
boundary, except at isolated singularities at points z; in the interior of R for k =

1,--- ,N. Then we have the following formula,
N
]{dz f(z)= 27@2% (3.24)
¢ k=1

where 1, is the residue of f(z) at the point zj defined to be the coefficient a_1(ry) of
the Laurent series of f(z) at the point z.

The proof of the theorem is analogous to the proof of Cauchy’s integral formula.
We draw a disc Dy = {z € C,|z — 2| < ¢} of radius € > 0 centered at the pole z
and choose ¢ sufficiently small such that none of the circles overlap with one another.
The fact that the poles are isolated guarantees that we can find an € > 0 such that
this can be done. The integral of f(z) over the region R minus the union of the discs
vanishes by Cauchy’s theorem, so that,

é dz f(z) = i:: ngk dzf(2) (3.25)

where the orientation of 0D, is chosen to be clockwise. Using now the Laurent
expansion of f(z) at each point z, and the fact that,

z— zg)

jg i, 7{ d2f(z) = 2miay(ry)  (3.26)
oD, ( " ODx

26



so that the residue theorem follows. This formula is valid both whether z; is a pole
or an essential singularity.

To compute the residues, one does not always need to evaluate the entire Laurent
series, and this constitutes a great advantage of the residue method of calculation.
When the singularity zj is a pole of order n, the residue is given by,

re = lm ﬁ% <(Z - Zk)”f(z)> (3.27)

This formula is not applicable, of course, for essential singularities since then n = oo.

3.8 Examples of calculations using residues

In this subsection, we apply Cauchy’s theorem and the residue formulas to a set of
examples of increasing difficulty and physical significance.

3.8.1 A standard integral

A standard integral, which can be easily computed using residues is the following
integral over the real line,

I(a) = /OO __dr (3.28)

o (xZ + a2)n

where we take a € R, a > 0 and n € N. The integral is then absolutely convergent.

We begin by transforming this integral over R into an integral over a closed contour
in the complex plane. A guiding principle when using this method is to choose a
contour which includes the real line (giving the integral we want to evaluate in the
first place) union a contour along which the integral either vanishes or is easy to
evaluate. In practice, we compute the integral over the line segment [—R, R] and let
R — oo at the end of the calculation. The contour we choose is given in Figure 11.

The integral along the semi-circle of radius R tends to zero in the limit R — 0 and
thus will not contribute in the limit. But now we see that there is a single pole inside
C and so the integral may be computed by evaluating the residue r, at the point ia,

I(a) = fé (d—z — rir, (3.29)

22 + a2)n

Using the formula (3.27) to evaluate r,, we have,

— lim 1 d (p—ia)"\ _ 0 Dn—1)
T“_Zlﬁw<<n—1>!dznl <z2+a2>n) St e 330
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—R 0 R

Figure 11: The curves C and C" used to compute the integrals I,,(a) and J(a,b, c).

Taking the limit R — oo, we have,

I'(2n—1)
['(n)? (2a)>1

I,(a) =27 (3.31)

Note that this expression is positive, scales with a as a=?"*! and evaluates to 7/a
for n = 1, as expected from its definition. We also note that I,,(a) could have been
computed using the recursion relation 91I,,(a)/da? = —nl, 1 (a).

3.8.2 An integral involving a logarithm

A second example is a somewhat less standard integral,

Y In(2? + ¢?)
J@@@_K<majw:ﬁ (3.32)

[e.9]

for a,b,c € R and we may assume b,c > 0 without loss of generality. Using the
contour of Figure 11, the fact that the function In(z +ic) is holomorphic in the upper
half plane provided we choose its branch cut to lie in the lower half plane, and the
fact that the integrand is holomorphic inside the contour of C except for a simple
pole at a + ib, we evaluate the following integral by computing its residue at the pole
a + b, and we find,

In(z + ic) T oo
fédZm = Z ln(a + b + ZC) (333)

Since the contribution from the semi-circle tends to zero as R — oo, the integral
J(a,b, c) equals the above integral plus its complex conjugate and we find,

J@a@:%mf+w+&) (3.34)

Just to make sure that we understand things properly, let us verify that a direct
evaluation of the integral involving In(z — ic) yields the same result. We cannot
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integrate In(z — ic) over the contour C because In(z — ic) has a branch cut in the
upper half plane. So, we take a more complicated contour C’' also given in Figure 8.
The cut semi-circle at oo again tends to zero in the limit R — oo, and so does the
contribution from the small circle around ic as its radius tends to zero. The remaining
contributions are from the residue at a + ib and from the two vertical parts of the
contour which we parametrize by z = iy with y € [¢, R], and we find,

In(z —ic) T o [, discIn(iy — ic)
dz———— = —1 b— d 3.35
7{: Z(z—a)2+b2 bn(a+z zc)—i—z/c y(z’y—a)2+62 (3.35)
where the discontinuity of the log evaluates to,
discIn(iy — ic) = lir% (1n(iy —ic+e)—In(iy —ic — 5)) = 27 (3.36)
e—

Evaluating the integral over y by partial fraction decomposition of the integrand gives,
> 1 m. a+ib—ic
—2 dy——5—=—7Ihh ———— 3.37
7T/c y(z’y—a)Q—i-b2 b a—ib—ic (3:37)
Combining the two terms in (3.35) confirms that we indeed obtain the complex con-
jugate of (3.33).

3.8.3 An integral involving a pole on the real axis

A type of integral which is often encountered in physics is given by,

Oa(z) = / L (3.38)

o o2mik —a — ie
where a,x € R and € > 0. For ¢ = 0, there is a pole on the real axis and the integral
is ill-defined. The addition of the imaginary part € > 0 moves the pole into the
complex plane. The integral is now well-defined for x # 0 despite the fact that it is
not absolutely convergent on R because the exponential provides sufficient damping
for large k. In the physics literature, one is instructed to take the limit ¢ — 0.

To evaluate the integral we proceed as follows. If x > 0, then the exponential e
rapidly decays to zero for Im (z) > 1. Thus, we may close the contour in the upper
half plane, just as we did in the left figure of Figure 8. Since ¢ > 0, there a single

pole at k = a + ic in the upper half plane and thus we find by evaluating its residue,
Ou(z) = €™ x>0
=0 x <0 (3.39)

z

For z < 0, the exponential €* rapidly decays to zero for Im(z) < —1. But in
the lower half plane there are no poles, the integrand is holomorphic, and we have
0,(z) = 0 for z < 0. Note that for a = 0, the function y(z) is just the step function.
The value at z = 0 is undetermined.

29



3.8.4 Calculation of the Feynman propagator

In relativistic quantum field theory, one encounters a slight generalization of the above
case. The Green function G for a scalar field of mass m in d-dimensional Minkowski
space-time is defined to satisfy the differential equation,

(P —A+mGt—t,7—7) =id(t —t')s4 V(7 -7 (3.40)

where we have used units in which the speed of light is set to 1. By translation
invariance in time and space, we may set ' = I’ = 0 and solve the equation by
Fourier transform. We adopt here the Feynman ie prescription so that,

(3.41)

G(t7 f) _ / dko Ad—1[ iii(kot+k-f)
@m)® k2 — k2 —m? + e
where (ko, IZ) is the momentum vector, and € > 0 is to be taken to zero. The denomi-
nator has zeros at ko = +(w(k) —ic) where w(k)? = k24 m? and w(k) > 0. Thus, one
pole is in the upper half plane while the other is in the lower half plane. For ¢ > 0,
we can close the contour in the upper half plane, while for ¢ < 0, we can close in the
lower half plane and pick up the corresponding poles. Hence we have,

dA-1E k& oL o
2\ — —iw(k)t o +iw(k)t
Gl 7) / (2m)%1 2u(k) <9(t)e +o(=t)e ) (3-42)

Let us double check that this solution indeed satisfies the differential equation by
computing the first time derivative,

0.G(t, 7) = / ATk e (L gy gmietBr gy vt (3.43)
’ (2m)i-1 2 >

The contributions from the ¢-derivatives of #(4-t) cancel since their exponential factors
are equal to one another at t = 0. The second time derivative produces two types of
terms. Applied to the exponentials, it brings down a factor of w(lg) which combines
with the spatial Laplacian and the mass term, while applied to #(+t) and performing

the k integral we obtain 0(£)6(1(Z). Thus, G satisfies the differential equation.

3.9 Convergence of infinite series and integrals

In some of the preceding sections, we have shown how to obtain Taylor and Laurent
series of analytic functions. However, functions are often defined by infinite series
or integrals of holomorphic functions, and here we shall give some results on the
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analyticity of the resulting sums and integrals. Our definitions are given for infinite
series, and is similar for functions defined by integrals.

Let {f.(2)}nen be a sequence of functions. The sequence converges to a function
f(2) in a region R provided for every € > 0, there exists an N € N such that for all
n > N we have |f,(z) — f(2)| < e. Note that in this definition the number N may
depend on the point z, and is therefore referred to as point-wise convergent. If there
exists a number N which is independent of z € R then the sequence is uniformly
convergent in the region R.

An important special case of a sequence of functions is given by series,
fa(2) = om(2) F(2) =) ¢alz) (3.44)
m=1 n=1

One example is a Taylor series where ¢, (z) = ¢, 2" for some sequence of numbers ¢;,;
another example is a Fourier series with ¢, (z) = ¢, sin(nz). The question is what the
holomorphicity properties are of f(z).

The series is said to be absolutely convergent in a region R if the series >~ | |¢n(2)]
converges for every point z € R. When the series defining F'(z) converges, but
> lpn(2)| diverges, then the series is said to be conditionally convergent. Every
absolutely convergent series is convergent. Uniform convergence for infinite series is
defined just as it is for sequences. We now have the following results.

1. The terms in an absolutely convergent series may be ordered arbitrarily.

2. Different orderings of the terms in a conditionally convergent series produce
different sums.

Furthermore, we have the following important results for an infinite series (3.44)
which is uniformly convergent in a region R.

e If each function f,(z) is continuous in R, then the limit is continuous in R.

e If each function f,(2) is holomorphic in R, then the limit is holomorphic in R.

e If f,(2) is continuous, and f)(z) exists for all n, and the series Y~ fr(z)

converges uniformly while the series > | f,,(z) converges point-wise, then the
infinite sum symbol may be interchanged with the differentiation and we have,

Flz)=) 2 (3.45)
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e If f,(2) is continuous and the series is uniformly convergent in R then we may
interchange the infinite sum symbol with the integration over a curve C C R,

/C dzf(z) = ni: /C dzfo(2) (3.46)

The above results typically fail for series which are point-wise convergent in a region
R but fail to be uniformly convergent in R.

3.10 Analytic continuation

The domain R of uniform convergence of a sequence, infinite series, or integral of
a family of holomorphic functions may sometimes be extended to a larger region
R C R’ by the method of analytic continuation. This method is used very frequently
in physics. The fundamental ingredient is the following theorem.

Theorem

(a) Let f(z) be holomorphic in a region R and let C be an arc completely contained
inR. If f(z) =0 for all z € C then f(z) =0 for all z € R.

(b) As a corollary, if f1(z) is holomorphic in region Ry and f5(z) is holomorphic in
region Ry and f1(z) = fa(2) for every point of an arcC C (R1NR2) then fi(z) = fa(z)
for every point z € Ry MRy and one may define a function f(z) = fi(z) for z € R4
and f(z) = fa(2) for z € Ry which is analytic in the region R = Ry U Ro.

It suffices to prove (a) as (b) immediately follows from (a). To prove (a), we
choose a point zp € C C R and expand f(z) in Taylor series at 2o,

o ) (2
flz) =) (z— zo)”f n<' ) (3.47)

Its radius of convergence is set by the distance of zy to the nearest singularity of f(z),
which is larger or equal to the distance of zy to the boundary of R and non-zero since
f(2) is holomorphic in R. But since zg € C, we can now parametrize z along C where
f(2) = 0 for every point z € C. Thus f™(z) = 0 for all n, and hence f(z) = 0 in R.

3.10.1 Analytic continuation of the Euler Gamma-function

Euler’s I'-function is defined by its integral representation,
[(z) = / dtt*te™ (3.48)
0
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The integral is absolutely convergent for Re (z) > 0 and therefore defines a holomor-
phic function for Re (z) > 0. The value at z = 1 is given by I'(1) = 1 and integration
by parts shows that I' satisfies a functional relation for Re (z) > 0,

I'(z+1)==z20(2) (3.49)

so that I'(n + 1) = n! for any positive integer. Analytic continuation allows us to
extend I'(z) to a meromorphic function in C with simple poles at z =0, —1,—2,---.
To see this, we partition the integration range of the integral as follows,

0o 1
['(z) = / dtt*te !t + / dtt* e (3.50)
1 0

The first integral defined an entire function in z. Expanding the exponential in the
second integral in a Taylor series and evaluating the t-integrals, we find,

1 00 n 1 00 n
z—1 —t «_) z—14n __ (_» 1
/ ditt* " e ' = E o /0 dtt = E o (3.51)

0 n=0 n=0

While initially defined only for Re (z) > 0, each term in the last series may be trivially
analytically continued to the entire complex plane at the cost of simple poles at zero
and the negative integers. The same result may be derived by analytic continuation
directly of the functional relation, and gives the same values of the residues.

3.10.2 Analytic continuation of the Euler Beta-function

To obtain the Euler Beta function, we consider the product of two I'-functions,

[(x)[(y) :/0 ds/o dt sty tems Tt (3.52)

Changing integration variables from s,¢ to u = s + ¢ and s = wv decouples the
integrals in u and v. Performing the integral over u in terms of the I'-function gives
the expression for the Euler Beta-function,

/0 dvo™ (1 —v) ! = % (3.53)

Since we already know the analytic continuation of the ['-function, the analytic con-
tinuation of the Beta-function integral is now also available.

As an application we obtain another functional relation for the I'-function,

™

)1 —2) = (3.54)

sin(7z)
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To prove this formula, we set + = z and y = 1 — 2z in the formula for the Euler beta
function, evaluate the remaining z-integral for 0 < Re (2) < 1,

1
L)1 —2) = / dvv (1 —v)7? (3.55)
0
and then establish the result for general z € C by analytic continuation. To evaluate
the integral, we change variables by setting v = ¢/(1 +t), in terms of which we have,
tz—l

t+1

Pl —2) = / dt (3.56)
0

This integral may be evaluated in turn by contour integration around a contour C

consisting of concentric circles with origin 0 and radii € > 0 and R > ¢ in the limit

of e = 0 and R — oo, cut along the real axis to avoid the branch cut of +*~! along

the positive real axis. Picking up the residue at t = —1 = €™ | which lies inside the

contour, we have,

wz—l )
7{ dw-"— = 2mi ezl (3.57)
c w

The contributions from the circles vanish in these limit, and the contributions from
the positive real axis gives,

wzfl o] tzfl ) o] tzfl
lim lim ¢ dw = / dt — e2mil==1) / dt (3.58)
e=20R—oo Jo w41 0 t+1 0 t+1

from which we recover the claimed formula for 0 < Re(z) < 1. Both sides of the
equation are holomorphic functions away from the poles at integers, so the formula
extend throughout z € C. The formula guarantees that the analytic continuation of
I'(z) from Re (z) > 0 to Re () < 0 is manifest, and the poles are readily exposed. It
is also manifest from this relation that I'(z) nowhere vanishes in C.

3.11 Asymptotic series

Very often in physics, we use a perturbative expansion in one of the parameters of
the problem, but the resulting series does not converge. An example is to take an
ordinary integral which mimics the general problem, including of perturbation theory
in quantum mechanics of quantum field theory. Thus, we consider,

Z(m,\) = /+00 do exp{—m2¢2 — A2¢4} (3.59)

[e.e]
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The integral is absolutely convergent for Re (\?) > 0, regardless of m? € C. There
are now two possible expansions; the first in power of m, the second in powers of A.
The expansion in powers of m yields,

Z(m,\) = f}é_ﬂ / g g exp{_w}

_ iir(%——i_i) (_ﬁzyl (3.60)

= 2y/Al(n+1) A
while the expansion in powers of A yields,
— 1 2 e 4 2,2
Zm ) = S [ do ot exp{—m " }

n=0 —

B i": 1T2n+3) [ A2\" (3.61)

B = m I'(n+1) m* '

Clearly, from analyzing the n-dependence of the ratios of I' functions, the expansion
in m is convergent (with oo radius of convergence) while the expansion in power of A
has zero radius of convergence. This comes as no surprise. If we had flipped the sign
of m?, the integral itself would still be fine and convergent. On the other hand, if
we had flipped the sign of A%, the integral would badly diverge. Therefore, the series
in powers of A cannot have a finite radius of convergence around 0. The moral of
the story is that perturbation theory around a quadratic exponent in a higher degree
term is always given by an asymptotic series which has zero radius of convergence.
Nonetheless, these expansions have a well-defined meaning.

Generally an infinite series given by,

o0
Qn

fe =32 (3.62)

n=1
is asymptotic at oo provided for any given integer N > 1, we have,
Y a
lim 2V ( f(z) - ; Z—Z) =0 (3.63)

Asymptotic series may be added, multiplied, or integrated term by term. However,
they may generally not be differentiated term by term. If an asymptotic series exists
it is unique.
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3.12 The method of steepest descent

A problem often encountered in physics is to find the asymptotic behavior, and the
asymptotic series expansion of an integral of the following type,

f(z) = /cdtezg(t) (3.64)

for some path C in the complex plane, and z real. We assume that the integral
converges for all values of z > 0. For large values of z, the integral will be dominated
by contributions from the points ¢t where g(t) attains its largest value. We deform the
contour of integration such that the new C passes through ty. Let’s assume that there
is only one such point. In fact, this point does not always have to be a maximum,
but may be just a saddle, whence the name saddle-point approximation. Assuming
the function ¢(t) to be continuous and sufficiently differentiable, a saddle point is
reached for a point ty where ¢'(tg) = 0. Again, we assume that this point is unique.
Expanding ¢(t) around ¢t = ¢y, we have,

1
g(t) = g(to) + 5 (t = t0)*g" (to) + O(t — 1) (3.65)
If z is large enough, the function may be approximated as follows,
f(z) — ¢#9(to) / dt 6%g”(l‘/o)(tﬂfo)2 (3.66)
c

Extending the integration to the full real axis, and performing the Gaussian integral,
we obtain,

e29(to)
f(z) = T (3.67)

Higher order corrections may be obtained by carrying out a systematic perturbation
theory which results in an asymptotic series as illustrated by the first example above.

A simple but useful example is given by the asymptotic behavior of the I'-function,

L(z+1) = / dtt*e ™" = / dt e~ tH=mnt (3.68)

0 0

The argument of the exponential is the function,
g:(t) = —t+ zlnt (3.69)

We find a unique saddle point ¢y = z for Re(z) > 0. The second derivative at the
saddle point is ¢”(tg) = —1/z, so that we get the following large z approximation to
['(z + 1) referred to as Sterling’s formula,

I(z41) =V2rze #"2 (1 4+ 0(1/2)) (3.70)
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4 Periodic and elliptic functions

A beautiful application of the complex analysis studied in the preceding section is to
periodic functions, elliptic functions and their inverse functions. We shall start with a
brief review of periodic functions of a real variable, and then give two different points
of view on meromorphic periodic functions and their inverse functions. These new
points of view will be the ones in terms of which it is natural to introduce elliptic
functions and their inverse functions.

Period functions associated with periodic motion are pervasive in physics. Taking
an example from classical mechanics, we can ask whether the motion of a single
degree of freedom x(t) in a potential V(x) is periodic and if yes, why so. In Figure
12 we present the cases of a harmonic potential in the left figure, and a more general
potential in the right figure. In both cases is the range of x constrained by the
energy conservation relation £ = @2 + V(x), and is the motion periodic in t. At the
turning points a, b the potential energy is E and the kinetic energy vanishes, which
allows the particle to turn around and start the cycle all over. For every potential,
the mechanical motion defines a periodic function z(t). Trigonometric functions are
associated with the harmonic oscillator, elliptic functions with a potential which is
a quartic polynomial in x while polynomial potentials of arbitrary even degree will
produce hyper-elliptic functions.

V V

Figure 12: For systems with one degree of freedom z(t), and bounded range of x at
given energy F, the energy conservation equation forces the motion to be periodic.

4.1 Periodic functions of a real variable

We shall now give some more precise definitions. A function f : R — C is periodic
with period a € R if for all x € R it satisfies,

f(x+a) = f(z) (4.1)
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It is straightforward to generalize this construction to the case of functions R — C™.
There are various methods for constructing periodic functions out of non-periodic
functions. One is by starting with a function g : R — C which decays sufficiently
rapidly at oo and constructing f by the method of images,

f(@) =3 gla +na) (4.2)

nel

The functions ¥,,(z) = €*™™* for m € Z are all periodic with period 1, and in fact
form a basis for the square-integrable periodic functions L?(S'). One way to think
about this is that they are eigenfunctions of the free Schrodinger operator on the unit
interval with periodic boundary conditions, which we can write as R/Z,

d2
da?

Hpp, (z) = 47°m? ¢, (2) (4.3)

for all m € Z. Since the operator H is self-adjoint (to be defined more generally in
section 6) its eigenvalues are real and its eigenfunctions are mutually orthogonal,

1
/ dr eQﬂ'imz 6727rim’z _ 5m,m’ (44)
0

Finally, the eigenfunctions t,,(z) form a basis for L?(R/Z), as expressed by the
completeness relations (in the sense of distributions),

D e ey = N (2 — y 4 n) (4.5)
meZ nez
Thus, any periodic function f with period 1 may be decomposed in a Fourier series,

f#) = 3 fue o= [ e e (1.6)

meZ

We note that in the mathematics literature, one often uses the notation e(z) = e*™.

4.2 Unfolding trick and Poisson summation formula

An incredibly simple yet extremely useful tool is the unfolding trick. If g : R — C
decays sufficiently rapidly as its argument x — oo, then we have,

Z/Ol dx g(x +n) =/ dz g(z) (4.7)

[e's)
nez -
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We can now apply this to a combination of the method of images and Fourier decom-
position. We construct a periodic function f from a non-periodic function g using
the method of images in (4.2), and then calculate the Fourier coefficients f,, of (4.6)
using the unfolding trick in (4.7),

1 00
fm = Z/ dz g(z +mn)e 2™ = / dx g(z) e 2™ (4.8)
nez V0 e
The Fourier transform on the full real line will be denoted by a hat,
o) = [ dwglayenin (19)

so that f,, = g(m). Therefore, the function f may be expressed in two different ways,

flo)=> gle+n)=>_ g(m)emm (4.10)

neL meZ

Setting = 0 (or two any integer) gives the Poisson summation formula,

Y gn) =73 a(m) (4.11)

nes meZ

An immediate application is to the case where g is a Gaussian. It will be convenient
to normalize Gaussians as follows,

i(y) = — e ™/ (4.12)

The formulas are valid as long as Re (t) > 0, and may be continued to Re (t) = 0.
The corresponding Poisson summation formula then reads,

1
E —mtn? § —m? /t (4 13)
€ = —F= € .
nez \/Z meEZ

We shall see later on that this relation admits an important generalization to Jacobi
¥-functions, and corresponds to a special case of modular transformations.

4.3 Periodic functions of a complex variable

Periodic holomorphic or meromorphic functions have a very rich structure, and there
are various complementary viewpoints one may adopt to describe them.
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4.3.1 First viewpoint

The first viewpoint is obtained by constructing holomorphic periodic functions by the
method of images. For example, starting with a function ¢ which has a single simple
pole g(z) = 1/z the method of images produces a periodic meromorphic function,

}:Zin (4.14)

nez

The sum is conditionally convergent so that its value depends on the way we order
(or in physics parlance regularize) the series. A natural way to do this is by requiring
f(=2z) = —f(2) and taking a symmetric limit of a finite sum with this property, or
equivalently by grouping opposite n terms together under the summation,

Yoo 1 &/ 1 1
= i == 4.1
1) Nliréonz z+n z+z(z+n+z—n> (4.15)

=—N n=1

The meromorphic nature of f allows us to evaluate the sum by finding a known

function with identical poles, namely a simple pole with unit residue at every integer,

and identical symmetry property f(—z) = —f(z), referred to as the Lifschytz formula,
CoS T2 1 + e?miz

flz)=m = —iT ———— (4.16)

sin z 1 — e2miz

Since the poles and residues of these meromorphic functions match in (4.15) and
(4.16), their difference must be constant, but by their oddness of the function f we
have, for example, f(1/2) + f(—1/2) = 0 and hence this constant must vanish. Inte-
grating both expressions for f and determining the integration constant by matching
the behavior of z = 0 gives Euler’s product formula for the sin-function,

s 2
sinmz =7z H (1 - 2—2) (4.17)
n
n=1

We could also proceed differently by deriving a differential equation for f directly

from its series representation. For |z| < 1, we may expand the second representation
in (4.15) in a convergent power series in z,

1 o0
==--2 2m=le(2 4.18
o) =S =23 cgam) (4.18)
where ((s) is the Riemann zeta-function, defined by,
=1
()= — (4.19)
n=1 n



The combination f/'+4 f? is free of poles, bounded in C, and thus constant by Liouville’s
theorem. The constant is computed by evaluating the series near z = 0, and we find,

f' 4+ f2=-6¢12) = —n* (4.20)

which is a well-known differential equation for trigonometric functions.

4.3.2 Second viewpoint

The second viewpoint is by considering the inverse functions of periodic functions,
which by construction must be multiple-valued. To do so, let’s start from a single-
valued meromorphic function, such as 1/w. Now the line integral of 1/w is well-known
to be the logarithm of a complex variable,

" dw

i In(2) (4.21)

But the integral on the left side actually depends on the path chosen to go from the
point 1 to the point z, and more specifically on how it goes around the singularity
w = 0 of the integrand. The values around different paths differ by shifts by integer
multiples of 2mi. This “explains” why the logarithm function that it defines on the
right side is a multiple-valued function by shifts by 27:Z. The same argument can be
made for an intgeral involving a square root, such as,

© dw 1
/lﬁ:cosh (z) (4.22)

4.4 Definition of elliptic functions

Periodic functions may be generalized to several variables by considering the function
to be periodic in each variable separately. An elliptic function is a doubly periodic
function in two real dimensions, which is also a meromorphic function. The combina-
tion of double-periodicity and meromorphicity imposes extremely strong conditions
on the structure of the space of such functions. Just as for singly-periodic functions,
ellitptic functions may be approached by two complementary points of view: by the
method of images, and by integrals over rational functions for their inverses.

We shall now define elliptic functions and discuss them from these two viewpoints.
A function f: C — C is elliptic with periods wy, ws € C satisfying wo/w; & R if,

e f is meromorphic in C;

e [ is periodic with periods wy,ws, namely f(z +wi) = f(z 4+ wq) = f(2).
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It is advantageous to introduce the infinite lattice of periods depicted in Figure 13,
A =Zwy + Zuw, (4.23)

The second condition above is then simply f(z4w) = f(z) for allw € A. Elliptic func-
tions may alternatively be viewed as single-valued functions on the two-dimensional
torus C/A — C. It is often in this role that they appear in physics, namely in the
function theory of the torus C/A.

Figure 13: Schematic representation of the periods wy,wy spanning the infinite lattice
A, and the fundamental parallelogram P, where w3 = w; + ws. The fundamental
parallelogram P, is obtained from F; by translation by p € C.

Sums, products, and inverses of elliptic functions for a given lattice A are elliptic
functions for the same lattice A, and the constant function with value 1 is the identity
under multiplication, so that elliptic functions for a given A form a function field.

We define resy(w) to be the residue of f at the point w, and ords(w) = n to be
the order of f at the point w by the integer n such that f(u)(u —w)™" is a non-zero
constant as u — w. When ords(w) > 0, we have a zero of that order ords(w), while
when n < 0 we have a pole of order —ord;(w) > 0. In terms of these definitions we
have the following results,

Z resp(w) = 0

weP,

Zordf(w) =0 (4.24)

weP,

obtained by integrating in turn the functions f and f’/f over the boundary 0P,. We
obtain the conditions that are familiar from electro-static charge distributions on a
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compact surface: the sum of the residues vanishes and the number of poles equals the
number of zeros (both counted with multiplicities).

4.5 The Weierstrass elliptic function p

All elliptic functions may be built up from the Weierstrass elliptic function g, which
has one double pole. The Weierstrass elliptic function o(z) = p(z; A) for the lattice
A may be constructed with the method of images. It would be natural to consider,

1
> Trop (4.25)

weA
This series diverges, so we shall define o by the manifestly convergent series,

p2) = 5+ L; (ﬁ - %) (4.26)

where A’ = A\ {0}. p is even in z since the lattice is invariant under A — —A.

We start by describing the field of elliptic functions in terms of p(z) for even
functions. As a function of z for fixed w, the elliptic function p(z)—p(w) has a double
pole at z = 0 and no other poles, and therefore must have two zeros. Since z = f+w
are manifestly two distinct zeros, they must be the only zeros. If w = —w (mod A),
then the zeros are double. There are exactly four points in Py with w = —w(mod A),
namely the half periods 0, w; /2, ws/2, and w3/2 (mod A). At the three non-zero half
periods w, the function p(z) — p(w) has a double zero in z.

The first key result is that every even elliptic function f for the lattice A is a
rational function of p(z), given by,

72 =TT (o)~ o)) ™" (.27

which may be easily established by matching poles and zeros.

To incorporate elliptic functions which are odd under z — —z and functions
without definite parity we differentiate g,

¢'(z) =2 m (4.28)

This series is absolutely convergent and we have @'(—z) = —g/(z). The function
¢ (2)? is even and has a single pole of order 6 at z = 0. Thus, it must be expressible
as a polynomial of degree 3 in p(z). To determine this polynomial, we proceed by
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analogy with the trigonometric case. We expand both p and @' in powers of z near
z =0 in a convergent series,

[e.9]

1
o(z) = =t (m+1)Gpya 2™
-1
/ 2 = m—1
p(z) = ——3+Zm (m+1)Gpy2z (4.29)

=1
The coefficients G,,, depend only on A and are given by the convergent series,
=) — m>3 (4.30)
weN

The reflection symmetry —A = A implies that Gy, 1 = 0 for all m € N so that,
1
p(z) = 5 +3G42%+ 5Gszt + O(2°)
z
2
¢(z) = —= +6Gaz+20Ge2" + O(2°) (4.31)
z

Therefore, the pole of order six is cancelled in the combination (p')* — 4®, which in
fact has a pole only of order two in z. By matching all terms of positive or zero power
in z and then using Liouville’s theorem, we find the relation,

¢ (2)? = 4p(2)* — 60G4p(z) — 140Gy (4.32)

The roots of the cubic polynomial must all produce double zeros as a function of
z, since the left side is a perfect square. But we had seen earlier that double zeros
of p(z) — p(w) can occur only if w = —w (mod A), namely at the three non-zero
half-periods. Introducing the values of p at the half periods,

e = (%) i=1,2,3 (4.33)
we obtain the following factorized form of the cubic polynomial,
9'(2)* = 4(p(2) — e1)(p(2) — e2)(p(2) — e3) (4.34)

where the three symmetric functions of e; may be identified as,

€1 t+e+e3 = 0
e16s + ege3 +eze; = —15Gy
€1€9€3 — 35G6 (435)

Every elliptic function in z may be expressed as a rational function of p(z) and ¢'(z).
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4.5.1 Addition Theorem

An immediate application is the existence of an addition theorem,

p(z +w) + p(2) + p(w) — 411 (%) =0 (4.36)

To prove it, one begins by showing that the left side has no poles. For fixed generic
w, the function p(z 4+ w) is an elliptic function in z with one double pole at z =
—w (mod A), and thus a rational function of p(z) and ¢/(z). Now p(z) — p(w) has a
simple zero at z = —w, so it should occur to the power —2, but it also has a simple
zero at w = z, which is cancelled by multiplying by the square of ©/(z) — ¢’'(w). The
combination has a double pole in z at z = 0 which is cancelled by the addition of p(z)
and, by symmetry under the interchange of z and w, also p(w). This shows that the
left side has no poles and is therefore constant by Liouville’s theorem. The constant
vanishes by evaluation at a single point, for example z = w; /2.

4.6 Abelian differentials and elliptic integrals

In the previous subsection, we took the generalization of the first point of view we
used for trigonometric functions, namely by constructing them by infinite sums. Here
we shall now adopt the second point of view and construct inverse functions of elliptic
functions by integrating algebraic differentials.

The model used for the inverse trigonometric functions was the following integral,

z dw . (22—w1—w2)
= cosh _—
w1 \/(w—wl)(w—wg) w1 — Wo

(4.37)

The reason this function must be multiple-values is that we may take |z — w;| > 1
and complete a closed circle. In this approximation the integrand is just dw/w so we
get back the multiple-valuedness of the log.

The inverse function of an elliptic function is multiple-valued with two independent
periods, which we referred to as w; and wy. How could we get a second period 7
Consider the following 1-form,

dw
S TN | (TR Crgro  crpyy (4.3

for four distinct points w; € C with ¢ = 1, 2, 3,4. The square root on this fourth degree
polynomial may be well-defined by using two different branch cuts in the plane and
constructing a double cover on which the differential x is well-defined, and in fact x
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Figure 14: The double cover of C used to define the holomorphic differential «, and
the inequivalent cycles A and B.

is a holomorphic differential or Abelian differential of the first kind. One choice of
branch cuts is illustrated in Figure 14.
By construction, the Abelian integral,

z z d
/ K= v (4.39)
20 2z

o V(W —wi)(w —ws)(w — ws)(w — wy)

is multiple-valued when z is taken around one of the branch cuts, say [wq, ws], repre-
sented by A in Figure 14. When z is taken simultaneously around both branch cuts
the integral of x is single-valued since for large w the integrand behaves as dw /w?
whose integral is single-valued. Thus, the two independent periods cannot be gener-
ated simply by contours around the two branch cuts since their sum is single-valued.
But there is in fact a second cycle that has opened up between the two cuts, a choice
of which has been represented by cycle B in Figure 14. Thus we should expect an
identification between the periods w; and wy of the lattice A of the following form,

j{ K& W ?{ K R W (4.40)
A B

We shall now relate this approach to the Weierstrass p-function to obtain a pre-
cise correspondence. Under a M&bius transformation of SL(2,C), the compactified
complex plane (namely C U {oo}) maps to itself bijectively, and may be used to map
k into a standard form. Consider an arbitrary such transformation by letting,

ar +b ax; +b

— ;= 4.41
v cx+d v cx; +d ( )

for a,b,c,d € C and ad — bc = 1, and points z; which map to w; for i = 1,2,3,4.
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Under this transformation, we have,

dx T — X
dw = — —w; = . 4.42
v (cx + d)? vt (cx + d)(cx; + d) (442)

Therefore, the differential in terms of the coordinate x and the points z; becomes,

o (cxy + d)(cxe + d)(cx3 + d)(cxy + d) e (4.43)

\/(I —x1)(r — x2)(x — 23) (T — 24)

Hence, up to a multiplicative factor which does not depend on x, the differential x
transforms into a form of the same type. Given w;, ws, w3, wy, we shall now choose the
Mobius transformation such that x4 = oo by setting a = wyc, as well as x1+x2+x3 = 0
by further choices of b and d, and normalize the prefactor so that it is of the form,

B dz
\/4$3 — 92T — g3

Using the differential relation satisfied by p in (4.32), setting g2 = 60Gy, g3 = 140G,
and = p(z; A) for a lattice A generated by the period w; and ws, we find that,

K (4.44)

K =dz (4.45)

But now we are done because we know that the periods of p(z;A) are w; and ws, so
that the integrals around closed cycles of kK = dz must all lie in the lattice A.

4.7 Jacobi J-functions

In the Weierstrass approach to elliptic functions, the basic building block is the mero-
morphic p-function and its derivative @', in terms of which every elliptic function is
a rational function. Instead, the Jacobi ¥-function approach produces elliptic func-
tions in terms of Jacobi ¥-functions, which are holomorphic, at the cost of being
multiple-valued on C/A. We shall scale the lattice A so that w; = 1 and wy = 7 with
Im (7) > 0. The Jacobi ¥J-function is then defined by,

19(Z|T) — Z ei7r7'n2+27rinz (446)
ne”L

and is often denoted simply by ¥(z) when the 7-dependence is clear. The series is
absolutely convergent for Im (7) > 0 and defines a holomorphic function in z € C.
The function ¥(z|7) is manifestly even in z — —z, and transforms as follows under
shifts in the lattice A,

d(z+ 1) = J(z|1) | |
Iz+7T) = O(z|7) e "2 (4.47)
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Thus, J(z|7) is not an elliptic function in z. Indeed, it could never be as a doubly
periodic holomorphic must be constant. In fact, ¥ can be naturally viewed as a
holomorphic section of a holomorphic line bundle on C/A.

To find the number of zeros of ¥(z|7) as a function of z, we integrate its logarith-
mic derivative along the closed boundary of the fundamental parallelogram F,, and
decompose the integration as a sum of the line integrations along the four edges,

]gpodlnﬁ (/ / /1++/0) dInd(z|7) (4.48)

By periodicity of 9(z|7) under z — z + 1, the contributions from the second and
fourth integrals cancel. The contribution of the third integral is just a translate and
opposite of the first integral. Using the second relation in (4.47), this integral is
readily evaluated, and we find 27i which implies that 9J(z|7) has exactly one zero in
Py. Shifting z by %+§ produces an equivalent J-function, which we shall define more
precisely by,

1 T , ,
Vi(z|T) =9 (z + -+ %|T) et = Z eIV 2Ty (aty) (4.49)

2
VEZJF%
Since the function 9 (z|7) is odd in z — —z, it vanishes at the origin, which is its

only zero up to translates by A.

It is now a simple result to prove that any elliptic function f(z) with periods
1 and 7, zeros a; and poles b; for ¢ = 1,--- , N, may be expressed as a ratio of
U1 (z|7)-functions by matching the zeros and poles of f(z),

a2|7'
4.
H 191 Z — b |7' ( 50)

for a;,b; € C, not necessarily distinct. The function f is manifestly periodic under
z — z + 1, but generally has a non-trivial transformation property under z — z 4 7.
Double periodicity is assured by the condition,

N

D (ai—b) ez (4.51)

i=1
Note that the dependence on z in the exponential of the transformation law cancels
out automatically since the number of zeros and poles coincide.

Another construction is by taking a single logarithmic derivative,
Y1(z — a|7)

pa(z) = 0:In G

(4.52)
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for a,b € C. This combination is manifestly invariant under z — z + 1, while under
2z — 2+ 7 the logarithm of the ratio is shifted by a constant so that ¢, is an elliptic
function with simples poles at a,b with residues +1 at the points a,b. It is in fact
more proper to think of ¢, as a meromorphic differential 1-form ¢,;(2)dz, referred
to as an Abelian differential of the third kind.

The third construction is by taking a double logarithmic derivative,
0a(2) = 0,0, 091 (2 — a|T) = Ospun(2) (4.53)

Again, it is proper to view ¢,(z) as a meromorphic differential 1-form, referred to as
an Abelian differential of the second kind. It has a double pole at z = a. Translating
a to zero, o(z) has a double pole at 0 and differs from @(z) by a constant. The
constant may be evaluated by expanding near z = 0, and we find the relation,

2 07'(0]7)

2) =o(2) — =———— 4.54
where the primes on v, denote taking the derivative with respect to its first argument.
Integrating this formula twice in z and matching the integration constants gives the

product formula for the ¥;-function, with ¢ = 2™,

h(z|T) = 2¢% sin 7z H(l — ") (1 — ¢"e ) (1 — ¢") (4.55)

n=1

We shall leave its derivation as a problem set.

4.8 Scalar Green function on the torus

The scalar Green function G(z,w|A) on C/A, for the flat metric ds* = |dz|* on
C/A for A = Z + 77, is defined to be a real-valued symmetric function which is the
inverse of the Laplace operator A = —40,0; on the space of functions transverse
to constants. A standard normalization of the scalar Green function is obtained by
assuming translation invariance on C/A so that G(z, w|A) = G(z — w|7),

4
A.G(z — wl|r) = 478(2 — w) — Imz) (4.56)
The integration measure and Dirac d-function are normalized as follows,
Pz = ~dz A dz / 260z —w)f(z) = f(w) (4.57)
2 C/A
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so that the area of C/A is Im (7). The solution for G is easy to construct. For small
|z — w| we have G(z — w|T) ~ —1In |z — w|?. The function ¥;(z — w)/9¥(0) behaves
as z — w for small |z — w|, but it is not doubly periodic, so we must add a correction,

2

V1(z — w|T)
U1(0|7)

~ 2Im(7)

G(z—w|r) =—In (z—w—zZ+w)?*+Go(r) (4.58)

where Go(7) is independent of z, and may be fixed by requiring [ d*z G(z —w|7) = 0.

4.9 Modular transformations

We specified the lattice of periods A by giving two periods w; and wy such that
wy /we ¢ R. But this specification is not unique. Given two other points w},w) with
Wi /wh be in the lattice, we can ask when A is equivalently generated by these new
periods (i.e. we are seeking the automorphisms of the lattice A). Since wi,wy € A
they are linear combinations with integer coefficients of wy, wo,

Qj;) =M <Z;) M = (CCL Z) (4.59)

with a, b, c,d. To have w],w) generate the same lattice we need this transformation
to be invertible, which requires ad — bc = +1. To preserve the orientation of the
lattice (the ordering of w; and wsy, we must take ad — bc = 1, so that det M = 1.
These transformations form the modular group SL(2,7Z). Elliptic functions have
interesting transformation laws under SL(2,Z), but this topic goes beyond the scope
of these lectures.
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5 Fourier analysis and linear differential operators

In this section, we begin the study of linear differential operators, their symmetries,
spectrum, eigenfunctions, Green function, and resolvent. A natural setting for the
function spaces on which linear operators act is Hilbert space, familiar from quantum
mechanics. A good test case for the objects we study and the kind of questions we
ask is provided by Fourier series and the Fourier transform.

5.1 The Fourier transform

It is natural to associate the Fourier series and transform with a linear operator, such
as the Schrodinger operator of the free particle on an interval with periodic boundary
conditions or on the real line,
d2
H=— 5.1
e (5.1)
This operator is self-adjoint (to be defined in detail later) so that its eigenvalues are
real and its eigenvectors are mutually orthogonal. The operator H is invariant under
translations, whose infinitesimal generator is the momentum operator,
d
P=—i— 5.2
- (5.2)
The operator P is self-adjoint so that its eigenvalues are real. Since H and P commute
they may be diagonalized in the same basis. In fact, we may therefore generalize our
considerations to any operator $(P) which is a degree n polynomial of P,

H(P) = a,P" +ap P" -+ a P+ apl (5.3)

with real coefficients a,, € R. Any such $(P) is a linear differential operator with
constant real coefficients and may be diagonalized in the same basis as P. (Further
generalizations to an arbitrary real-analytic function $(P) will lead us to linear op-
erators which are not necessarily local.) The operator P may be easily diagonalized,
and we shall denote its eigenvalues by k and associated eigenfunctions by ¢y (x),

U(x) = ™ (5.4)

It is then immediate that ¢ (x) are also eigenfunctions of H with eigenvalue k* and
of $(P) with eigenvalue $(k). For z € [—m, 7], the periodicity condition requires

IThroughout, we shall strip physical quantities of mathematically irrelevant parameters such as
h, ¢, masses and coupling parameters. Their dependence may be easily restored using rescaling.
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k € Z, and the spectra of P, H, $(P) are all discrete. For = € R, the range of k is R,
and the spectra are continuous. Orthogonality for each case is expressed by,

/7r deg(x)(z) = 21k k.l eZ

—Tr

/Rdwk—(x)w(x) = 2m(k —0) kleR (5.5)

From quantum mechanics, we know that the space of eigenfunctions of a self-adjoint
operator is complete, so that we also have the following relations,

o= S B ) = S —) z.y € [-m.7]
| sra@t) = sy zy € R (56)

Note that on the interval [—m, 7], the eigenfunctions are normalizable and belong to
L*([—m,7]) while on the full line R, the eigenfunctions are not normalizable, and do
not belong to L?(R). But allowing for the Dirac d-function distribution, one may
nonetheless impose the above continuum normalization. With the help of the above
orthogonality and completeness relations, any L*-function f(z) may be decomposed
into a Fourier series or Fourier transform,

@) = 5= 3 e fo= [ deepa)
kezZ d
fa) = [ 5 dmy et fi = [ detpa) 5)

Functional inner products of two functions and their Fourier series or transforms are
related to one another by the Plancherel Theorem,

T dr — 1 -
/ﬂ%f(l‘)g(@“) = %kaﬁk

kEZ

| wT@ee = [ 5 fmaw 5:5)

(e e}

The convolution of two functions fxg is (inverse) Fourier transform of the the product
of the Fourier transforms f g, as given by the following formula (given here for R),

Feate) = [ dnfta=vat) = [ 5 F0 gt e 5.9
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5.2 The Green function on a finite interval

The Green function G is the inverse of H, when the inverse exists,
HG=1 (5.10)

For a self-adjoint operator, the existence of zero eigenvalues will present a difficulty in
defining the inverse. In fact, considering the operator H on the interval [—m, 7| with
periodic boundary conditions, it is clear that the constant function is an eigenfunction
with zero eigenvalue and thus, strictly speaking, the operator does not have an inverse.
We have here a problem of linear algebra that we shall address in all generality later
on. However, we can modify the problem by considering the operator H acting only
on functions that are orthogonal to the zero mode. This new operator is invertible,
as it has no zero eigenvalues. The corresponding differential equation is as follows,

d? 1 T
—RGH(x,y) =0(z—y) — . / dx Gyg(z,y) =0 (5.11)

—T

The right side has been modified so that it is orthogonal to the constant mode, i.e.
it integrates to zero. Since the operator is self-adjoint and real, the Green function is
naturally symmetric and real Gy (z,y) = Gy (y,x) and by translation invariance we
have Gg(z,y) = G(x — y). Thus, the equation determining G(x) are,

d_2G(x) = 0(x) — 1 /7r dx G(z) =0 (5.12)

 da? o ,,r
Decomposing G(z) in Fourier modes, we have,
1 P N
G(r)=— Y Gpe* BGy=1 keZ° 5.13
(2) = 5 ke%:ﬂ ke i € (5.13)

where Z° = Z \ {0}. We may also solve the differential equation for G(z) directly.
Away from x = 0 the solution is given by,

2

G(z) = —i—ﬁ—i—aix—i-bi (5.14)
where £ corresponds to x > 0 and z < 0. Continuity of G(z) at = 0 requires
b_ = by ; integrating the equation over a small interval [—¢, g] for £ > 0 gives G'(¢) —
G'(—¢) = ay —a_ = —1; and symmetry G(—z) = G(z) gives a_ = —a, so that,

| U
G(z) = — — ~|z| + = 5.15
(1) =5 el + (5.15)



The constant term was fixed by requiring that the integral of G(x) vanish. Note that
the function G(x) is automatically continuous at x = . This resulting expression
may be recast in terms of a Bernoulli polynomial 7By (|x|/27). If we had taken an
interval of general length [—7 L, L], the corresponding Green function would be,
2
x 1 L
Gz) = —— z|z|+ — (5.16)
We see that in the limit L. — oo at fixed x, the first term tends to zero, the second
term is finite, and the third term blows up. To understand this better, we may look
directly at the case of the full real line.

5.3 The Green function on R

On the real line R, we may attempt to define the Green function by,
d2

HGy =1 & —@GH(:B,y) =iz —vy) (5.17)

Since the operator H is translation invariant, the Green function satisfies Gy (z,y) =
G(z—vy). Since the operator H is self-adjoint but real, it is in fact symmetric, and it is
natural to require its inverse G to be symmetric as well so that Gy (y,z) = Gu(z,y)
and thus G(—z) = G(z). Thus, it simply remains to solve the following equation,

d2

——G(z) = §(x) G(—z) = G(z) (5.18)

dx?
There are several illuminating ways of solving this equation. The first, using the fact
that we have a differential equation with constant coefficients, is to take the Fourier
transform of both sides,

KG(k) =1 G(z) = / %G(k) eihe (5.19)
R 2T
We shall not attempt to evaluate the k-integral here since it diverges at £ = 0. The
second is to solve the differential equation as is familiar from undergraduate quantum
mechanics. Since away from x = 0 the right side of the equation vanishes, G(z) must
be linear in x, though both sides of x = 0 will have different coefficients,

. a,x + b+ T > O
Glz) = {a_x +b. <0 (5.20)

Symmetry requires a_ = —ay and b_ = b, , which automatically guarantees continu-
ity of G(z) across x = 0. Integrating the differential equation over the interval [—¢, €]
for £ > 0 gives G'(¢) — G'(—¢) = a; —a_ = —1 and thus,
1
G(z) = —5195\ +c (5.21)
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Here ¢ may be determined by boundary conditions. Looking back at the Fourier
transform solution, we see that the k-integral diverges at k = 0, that G(x) is not
an L? function, and does not admit a Fourier transform. The different ways of
regularizing this divergence lead to different values for the constant c.

The source of all of our problems is again that the range of the operator H is
functions which integrate to zero. We may modify the definition of the Green function
so that this property is manifest by introducing an opposite charge,

d2
—EGH(ZL";?J,Z) =0(z—y) —d(z —2) (5.22)
Now taking the Fourier transform in x, we find the solution,
dk eik(a:—y) _ eik(z—z)

R 2T 2

Gr(w;y,2) = (5.23)

This integral is convergent, and may be evaluated by solving the differential equation,
1 1

Gr(;y, 2) = —5lw =yl + 5z = 2| + 2\, 2) + ly,2) (524

where the functions A(y, z) and p(y, z) must be determined by boundary conditions,

or by differential equations on y and z.

5.4 The resolvent Green function

For a general self-adjoint operator, the resolvent Green function is a generalization of
the ordinary Green function which is made to depend on an extra parameter £ € C,

(H—E\Gp =1 (5.25)

Taking Im (F) # 0, we see that H — E genuinely has an inverse and the combined
operator has no zero modes. For simplicity let us assume that the spectrum of H is
discrete, with eigenvalues A, € R and eigenfunctions 1), (x) so that,

Hip(x) = A\t (2) (5.26)

and we have the completeness relation,

Z% Ualy) = 6(z,y) (5.27)

Then the resolvent Green function may be solved for in terms of these data,

e(z,y) Zw)\ —E (5.28)
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The function Gg(z,y) is analytic in £ € C except for poles on the real axis at the
eigenvalues \,,. By evaluating the Green function just above and just below the real
axis, we can actually pick up these poles, using the distributional equation,

1 1
lii% ()\ —ic A + is) = 2mio() (529)
we find,
Gazie(r,y) = Gryie(,y) = 218 Y 6(A = Xp) ()b (y) (5.30)

Thus we see that the the entire spectrum of the operator may be read off from the
resolvent Green function, including the normalized eigenfunctions.

However, the resolvent Green function may also be obtained by solving differential
equations. Thus, the solutions of the differential equation will allow us to simply
deduce the spectrum. To illustrate this method, we begin with the operator H on
the interval [—m, 7], for which the resolvent Green function satisfies,

2
(—% - w2> Gg(z,y) =2mid(x —y) (5.31)
Taking £ € C\R, the operator H — F has no zero modes, and is genuinely invertible.
To obtain Gg(r,y), we use translation invariance to set y = 0, set £ = w?, choose
Im (w) > 0, and solve the differential equation with periodic boundary conditions on
the interval [—7, 7]. Away from x = 0, the solution is given by a linear combination
of the exponentials ¢ and e~*?. The conditions Gg(z,0) = Gg(—=,0) together
with the discontinuity of the derivative at x = 0 give for z > 0,

i W . L —iwx
Gg(z,0) = (A+ E) et + (A 4w) e (5.32)

Continuity at = £7 is automatic by the symmetry Gg(x,0) = Gg(—=z,0), while

continuity of the first derivative requires 1/A = —4w tan(nw), so that for x > 0,
i eiwz e—iwx
G 0) = — . . 5.33
E(a:’ ) 2 (1 — e~ 2w + e2imw _ 1> ( )

Clearly, we have simple poles at integer values of w, and the residues are precisely
the normalized eigenfunctions.
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5.5 The resolvent and the zeta function

Closely related to the resolvent Green function is the resolvent, defined by,

R(E):Tr(HiE):;)\nl_E (5.34)

whenever it exists. For an operator H with positive spectrum, one also defines the
zeta-function,

Cu(s) =Tr (%) = ;A—ln (5.35)

If there there are zero modes, the summation is over the non-zero eigenvalues only,
an operation usually denoted by Tt’ instead of Tr. Introducing the spectral density,

p(N) = 6(A—A,) (5.36)

these quantities may be recast in integral form,

R(E) = /R d)\% Cals) = /O T () (5.37)
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6 Linear differential operators

In this section, we shall give the definition of a group, a field, a vector space, and a
Hilbert space, and linear operators acting on the Hilbert space.

6.1 Groups and Fields

A set GG equipped with an operation * is a group G, provided G and * satisfy,
1. Closure: For any pair of elements g1, g € G the operation obeys g; x g2 € G;
2. Associativity: For any triplet of elements g1, g2, g3 € G the operation obeys
(g1 % g2) * g3 = g1 % (g2 * g3) = g1 * g2 * g3;
3. Identity: There exists an element e € G such that exg = gxe = g for all g € G}
4. Inverse: For every g € G, there exists a g~ € G such that gxg~! = g txg = e.

It follows from the definition of a group that the identity element e is unique, and
that for every element g, the inverse ¢! is unique. A subset H of the group G, is a
subgroup H, of G, provided h;xhy € H for all hy,ho € H and h™! € H for all h € H.
A group G, is commutative or Abelian if the product satisfies g; x go = g2 * g1 for all
g1, 92 € G. Otherwise, the group is said to be non-commutative or non-Abelian.

Basic examples of groups under the operations of addition and multiplication are,

integers 7
rationals Q4+ 0
reals R, R?
complex C, C?, (6.1)

with the subgroup inclusion relations Z, € Q, C R, € C, and Q% c R% c C}
where the subscript 0 stands for the removal of 0, the identity element of addition.

Another example is the group of permutations G,, of a set A, with n elements.
For n < 4 this group is Abelian, but for n > 5 it is non-Abelian. More generally, a
group GG acting on a set A by permuting its elements is a transformation group even
when it is not the full permutation group. When the set A is a vector space, and G
acts by a linear transformation on A, we have a representation of G on A.

A set F' equipped with two operations, addition 4+, and multiplication X, is a field
provided F, is an Abelian group with identity element 0, F? is an Abelian group,
and the operations are related by the property of distributivity for all a,b,c € F,

ax(b+c)=axbt+axc (6.2)
The most frequently used examples of fields are Q, R and C, which allow us to do all

operations needed in physics.
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6.2 Vector spaces and Hilbert spaces
A vector space V over a field F' is a set V', equipped with two operation,

1. addition of vectors in V under which V' is an Abelian group;

2. scalar multiplication under which F' x V — V with the operation denoted as
multiplication, (a,u) € F X V — au € V satisfying the following axioms of
generalized distributivity for all a, 5 € F and all u,v € V|

(a+p)u = au+fu
a(u+v) = au+av

(af)u = a(fu) (6.3)

and with the zero 0 of F related to the zero 0 of V' by Ou = 0, and the unit 1
of F' acting trivially on V by 1lu = u.

The fields of interest in physics will be R or C giving respectively a real or a
complex vector space. The vector space V' will be either isomorphic to R™, C" or be
an infinite-dimensional generalization, such as a complex function space.

Consider a complex vector space V' and denote its elements by u or |u) in Dirac
notation. A Hermitian inner product is a map V x V' — C, denoted by (u, v) or (u|v)
for u,v € V such that for all u,v,w € V and all o, 8 € C we have,

(v,u) = (u,v)"
(w,av +pw) = a(u,v)+ [ (u,w)
(au+ pv,w) = a (u,w)+ 5" (v,w) (6.4)

From the Hermitian inner product, one defines |[u||> = (u,u) which is a norm on
V provided it is (1) positive ||ul|? > 0 for all u € V; (2) definite so that |ul| = 0
implies u = 0; (3) satisfies the triangle inequality |[u + v| < |[u|| + ||v| for all
u,v € V. A vector space with a norm is referred to as a normed vector space, which
is automatically a metric topological space, with the topology induced by the norm.

A Hilbert space H is a complex vector space endowed with a Hermitian inner prod-
uct and associated norm, which is metrically complete, i.e. every Cauchy sequence in
‘H converges in H. The completeness property is automatically satisfied if the vector
space has finite dimension, but gives a non-trivial condition when the dimension is
infinite. The Hilbert spaces in quantum mechanics are required to be separable, which
means that they admit a countable orthonormal basis. If the number of orthonormal
basis vectors of a separable Hilbert space H is N < oo, then H is isomorphic to CV.
On the other hand, all separable Hilbert spaces of infinite dimension are isomorphic
to one another.
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A linear form on H is a continuous map from H — C and every linear form may
be expressed as a map v' = (v,-) — C for some v € H, or (v| in Dirac notation. The
space of all continuous linear forms on H is by definition the Hilbert space dual to H
which for a Hilbert space coincides with H.

6.3 Linear operators on finite-dimensional Hilbert spaces

In a Hilbert space H of finite dimension N, we may choose an orthonormal basis of
vectors uy, - - - uy € H which satisfy (w,, w,) = dp,, for all 1 <m,n < N. It follows
that an arbitrary vector v € ‘H may be decomposed into a linear combination of u,,

N
v = Zvnun Up = (U, V) (6.5)
n=1

The inner product of two vectors v, w is then given by,

N
(v,w) = Z@n Wy, Uy = (Up, V), w, = (u,, w) (6.6)
n=1
The arbitrary vector v € H and the orthonormal basis vectors uy, ---uy € H may

be represented by column matrices, as follows,

U1 1 0 0

(%) 0 1 0
voVv=]. U= | - Uy=|-1 - uUv=|-| 67

UN 0 0 1

The linear forms may similarly be represented by row vectors,
(vi) =V = (vfv3 - 0R)
Ul = (10---0)
Ul = (01---0)
Ul = (00 - 1) (6.8)
The inner product of two vectors is then given by matrix contraction,

(v, w) =VIW => s, (6.9)

n=1
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The associated ||v||? satisfies all the axioms for a positive definite norm.

A linear operator (or simply operator when linearity is clear from the context) is
a linear map from H — H. Every linear operator A on an N-dimensional Hilbert
space H is equivalent to an N X N matrix, whose entries A,,,, are the matrix elements
in a given basis, such as the orthonormal basis {u, },—1,... v constructed earlier,

A = (0, Auy,) (W, Uy) = Sy, (6.10)

The identity operator may be represented by the completeness relation,

N N N
I = Zl U; UF = 7 g (wi] = Z:lu,-(ui, ) (6.11)

=1

The product of operators maps to matrix multiplication. If A,,, and B,,, are the
matrix elements of A and B in a common orthonormal basis {u, },en of H, then the
matrix elements (AB),,, of the product AB are analogously defined by (AB),,, =
(w,,, ABu,). Upon inserting the completeness relation between A and B, we find,

(AB)mn = i Ampon (6.12)

p=1

The product is associative and generally non-commutative. The identity operator is
the identity matrix I and the inverse of an operator A is the inverse matrix A1
when the inverse exists.

6.3.1 Hermitian operators and unitary operators

A Hermitian operator is represented by a Hermitian matrix AT = A, whose matrix
elements, for all m,n =1,--- | N, satisfy,

Amn = Appn, (6.13)

Hermitian operators correspond to physical observables in quantum mechanics and
therefore play a central role. Their spectrum obeys a set of fundamental properties.
1. The eigenvalues of a Hermitian matrix are real;
2. Eigenvectors corresponding to distinct eigenvalues are mutually orthogonal;

3. A Hermitian matrix may be written as a direct sum of mutually orthogonal
projection operators, weighted by the distinct eigenvalues.
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Let’s prove the assertions using the Dirac notation. Let A be a Hermitian matrix
with eigenvalue a and associated eigenvector |¢) # 0,

Alp) = alp) (6.14)

Taking the t of this equation gives (p|A" = a*(p|, and using the fact that AT = A,
simplifies this equation to (p|A = a*(p|. Taking the inner product of this equation
with |¢) and of the eigenvalue equation with (|, we obtain,

(plAlp) = al{plp) = a*(¢|p) (6.15)

Since |p) # 0, we have (p|p) # 0, and hence a* = a, which proves the first assertion.

To prove the second assertion, let a’ # a be two distinct eigenvalues (which are
both real by item 1.), and let |¢) and |¢') be their associated eigenvectors,

Alp) = a|p)
Al = dl¢) (6.16)

Taking the inner product of the first line with (¢’| and of the second line by (p|, and
using (p|¢") = ('|)*, and (p|Al¢’) = (¢'|ATp)* = (¢'|A|), we find that

(@'|Alp) = alple’) = d'{ply’) (6.17)

Since a’ # a, we must have (¢'|¢) = 0 which proves item 2..

Finally, to prove item 3. we note that a given eigenvalue a; may correspond to
one or several linearly independent eigenvectors, which span the entire eigenspace &;
associated with a;. By the result of item 2. the eigenspaces associated with distinct
eigenvalues are also mutually orthogonal, so that,

A= Z a; P; a; # a; when i#j (6.18)

where P; represents the projection operator on eigenspace &;. The dimension dim F;
is referred to as the degeneracy (or multiplicity) of the eigenvalue a;. This number
clearly coincides with the degeneracy of the root a; in the characteristic equation.
This produces a block-diagonal representation of A, which proves item 3.,

a1]1 0 0 cee 0
0 CLQIQ 0 ce 0
0 0 0 - anly
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Constructing eigenvalues and eigenvectors in general is difficult, even in finite dimen-
sion. If A is an N x N matrix, the eigenvalues obey the characteristic equation,

det (al — A) = a™ +c1a™ P+ a4+ ey =0 (6.20)
where ¢; = —trA and cy = (—)Vdet A. Clearly, for Hermitian A, all coefficients
¢, are real, and all roots are real. Assuming that, given A, the roots ay,as, - ,an

of this algebraic equation have been found (possibly numerically), then finding the
associated eigenvectors reduces to a linear problem,

(and — A) @) =0 (6.21)

which can be solved by standard methods of matrix algebra.

An matrix U is unitary provided UTU = I. These operators are also playing a
key role in quantum mechanics, and in particular include the time-evolution operator.
Unitary operators satisfy properties analogous to Hermitian operators,

1. The eigenvalues of a unitary matrix take the form e’ for ¢; € R ;

2. Eigenvectors corresponding to distinct eigenvalues are mutually orthogonal;

3. A unitary matrix may be written as a direct sum of mutually orthogonal pro-

jection operators, weighted by the distinct eigenvalues.

The proof of these properties proceeds analogously to the case of Hermitian operators.

6.4 Infinite-dimensional Hilbert spaces

A infinite-dimensional Hilbert space H in quantum physics will be separable and
have a countable orthonormal basis {|n)} where n may run over N or Z depending
on which one is more convenient (both are countable !). All separable Hilbert spaces
are isomorphic to one another, but they may arise in different guises. An arbitrary
vector |p) € H may be represented by the expansion,

) = caln) el =) leal® < 0 (6.22)

where again n may run over N or Z. The simplest example of an infinite-dimensional
separable Hilbert space is given by,

L*={c=(c1,c0,¢3,-+); ¢, € C} (c,d) = Zcfldn (6.23)

neN
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A more complicated example is provided by spaces of square integrable complex
functions on some interval S (or all of) the real line R, defined by

I(S) = {f: 5= C; (f.f) < o0} (f.9) = / drf(x)g(x)  (624)

These function spaces are ubiquitous in quantum mechanics. The Fourier transform
gives a convenient description of L?(S). For example, on an interval S = [—7/, +7/]
with periodic boundary conditions (or equivalently a circe of radius ¢), we have

F@) =3 fu m (f,9) = mz £ Gm (6.25)

where g, are the Fourier components of g. This shows that L? and L?(S) are iso-
morphic. The basis for L?(.S) used here corresponds to

6imx/€
|m) ~ Nor (6.26)
and is orthonormal in view of the relation,
+ml
/ g dx (eimz/g)* et = 2l 6, (6.27)

which is a standard relation of Fourier analysis.

6.5 Linear operators in infinite-dimensional Hilbert spaces

Whereas on a finite-dimensional Hilbert space ‘H every linear operator maps all of H
to H, this may or may not be true in an infinite-dimensional Hilbert space. We give
an example in each case by considering the action of the following two operators on
L? with basis vector |n) for n € N,

Bln) = %|”> H|n) = n*|n) (6.28)

Both operators are well-defined on every basis vector of H. Applying the operators
to a general vector |¢) € L?, as given in (6.22), and computing the norm squared of
these states we find,

|Cn|2
IBl)* = " [Hlp) > = n'le,|? (6.29)

neN neN

Since we have || B|e)||? < |||@)||* we see that whenever |p) € L? then we have Blp) €
L.
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6.5.1 Bounded operators

More generally, an operator B is said to be a bounded operator if there exists a
Cp > 0 such that for all |¢) € L? we have,

IBlo)I* < Calllo)® (6.30)

Note that Cp depends only on the operator B and not on |p). As an example,
all unitary operators are bounded and Cz = 1 and, for reference, any operator in
a finite-dimensional Hilbert space is bounded. We see that in all generality, any
bounded operator is well-defined on every vector |¢) € L?. Since all separable Hilbert
spaces of infinite dimension are isomorphic to one another, this property extends to
an arbitrary separable Hilbert space.

6.5.2 Unbounded operators

By contrast, let us now consider the properties of the operator H. As long as only a
finite number of ¢, are non-zero, the norm || H|p)||? is finite. But taking the state |o)
to be given by an infinite superposition with ¢, ~ 1/n as n — oo, we see that the norm
| H |p)||? is infinite, so that H|p) ¢ L?. Clearly, H is an unbounded operator, and it
is not true that H can be defined on every vector in L?. Instead of working in L?, we
may also see this phenomenon on differential operators acting on L?(S). The kinetic
operator —% does not map an arbitrary element of L?*(S) to a square-integrable
function. To see this, consider the function f(x) = |x| on the interval [—7¢, +7¢], and
note that its second derivative is proportional to Dirac d-functions at x = 0, 7/, which
are certainly not square integrable. In fact, the operator H is nothing but the kinetic
operator in Fourier modes, while one may think of the operator B as corresponding
to the discrete spectrum of the Hydrogen atom.

To proceed, we define the domain D(A) of an operator H as a dense subset of
H such that A : D(A) — H. A dense subset D of H is such that every point in H
is the limit of a Cauchy sequence {|p,)}nen wWhere |p,) € D for all n € N. For an
operator in a finite-dimensional Hilbert space, or for a bounded operator in an infinite
dimensional Hilbert space, the domain is always the entire Hilbert space H. But for
an unbounded operator A in an infinite-dimensional Hilbert space D(A) is strictly
included in H. For example, in a Hilbert space of L?(S) functions, D may consist of
the subset of functions of L?(S) which are infinitely differentiable, or even analytic.
More explicitly, we may define the domain as follows,

D(A) = {|p) € H such that ||A|p)| < oo} (6.31)

Such spaces are referred to as Sobolev spaces, but we shall not need this concept here.
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6.6 Hermitian, Adjoint, Self-adjoint, and Unitary Operators

e An operator A is Hermitian provided for all |p), [¢)) € D(A) we have,

(1), Alp)) = (Al¥), |#)) (6.32)

For a finite-dimensional Hilbert space, or for a bounded operator in an infinite-
dimensional Hilbert space, we have D(A) = H, and in the first case reduces to our
definition of Hermitian matrices.

e The adjoint of an operator A with domain D(A) is denoted by AT and its domain
by D(AT) and is defined to be such that for all |¢) € D(A) we have,

(1), Ale)) = (AT[), ) (6.33)

For a bounded operator A with D(A) = H, this relation is to hold for all |¢)) € H so
that D(AT) = H, as in the finite-dimensional case. For unbounded operator, D(A)
is defined as a dense subset of H such that (6.33) holds.

e An operator A is a self-adjoint operator provided AT = A and D(A") = D(A),
or equivalently provided it is Hermitian and the domains coincide. For a finite-
dimensional Hilbert space, a self-adjoint operator is simply a Hermitian operator
satisfying AT = A. For infinite dimensional Hilbert spaces and bounded operators, the
notions of Hermitian and self-adjoint coincide. However, for unbounded operators, in
an infinite-dimensional Hilbert space, self-adjointness is a stronger requirement than
Hermitian as the domains have to coincide.?

The rationale for the stronger condition is that the spectrum of a self-adjoint
operator A shares some of the important properties of finite-dimensional Hermitian
matrices discussed earlier,

1. The eigenvalues of a self-adjoint operator are real;

2. Eigenvectors corresponding to distinct eigenvalues of a self-adjoint operator are
mutually orthogonal;

3. A self-adjoint operator may be written as a direct sum of mutually orthogonal

projection operators, weighted by the distinct eigenvalues.

Note, however, that the eigenfunctions do not need to be L?, as is familiar from the
Fourier transform on the real line, and that the spectrum may be continuous.

2The terminology of Hermitian versus self-adjointness is standard, see for example Reed and
Simon’s Functional Analysis, Wiley 1980. Amazingly, in Arfken and Weber’s Mathematical Methods
for Physicists the terminology is inexplicably reversed.
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e An operator U is a unitary operator provided that for all |¢), |¢) € H, we have

Uly), Ulp)) = (1), 1¢)) (6.34)

for all |¢), [0) € H. Clearly, a unitary operator is a bounded operator and is invert-
ible. The inverse U~ may be defined by setting Uly) = |¢), so that (Ju),Uly)) =
(U u), |p)) for all |¢), |u) € H. Using now the definition of the adjoint of U, we see
that for a unitary operator, we have

U=yt UU = Iy (6.35)

Unitary operators are key ingredients in quantum mechanics because they preserve
probability amplitudes, and represent symmetries. Their spectral properties are anal-
ogous to those of finite-dimensional unitary matrices, though, as for self-adjoint oper-
ators, their eigenfunctions may not be L? and that their spectrum may be continuous.

e Finally, to every self-adjoint operator H there corresponds a one-parameter
family of unitary operators U(t) given by (the Schrodinger equation),

U(t) = et teR (6.36)

Under some conditions of differentiability, a one-parameter family of unitary operators
U(t) also defines a self-adjoint operator by —il/(0). Note that the correspondence
fails for a Hermitian operator which is NOT self-adjoint. A Hamiltonian which is
Hermitian but not self-adjoint will lead to violations of the conservation of probability.

6.7 The example of a free quantum particle on an interval

To illustrate the significance of the domain of an unbounded operator, the adjoint,
the meaning of self-adjointness and its failure is easily illustrated by an example of a
free quantum particle with Hamiltonian,

d2

H=—
dx?

(6.37)

on an interval, which we may choose to be = € [0, 1].

6.7.1 Periodic boundary conditions

We are already familiar with the case where the boundary conditions are periodic, so
that the Hilbert space is the space of square integrable functions H = L*([0, 1]) with
periodic boundary conditions. In this case, we know the spectrum,

V(1) = 2™ H,(x) = 47°n*, (v) nez (6.38)
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so that H is manifestly unbounded. The domain may be taken to be periodic functions
in L2([0,1]) which are infinitely differentiable, as the eigenfunctions are. Given a
function p(z) € L*([0, 1]), we have its Fourier series representation,

o(x) = Z Cp €27 Z cn|? < 00 (6.39)

ne”Z neZ
We now define the sequence ¢y (x) of infinitely differentiable functions by,

N

on(r) =Y cathul) (6.40)

n=—N

This sequence converges to ¢(x) and hence is a Cauchy sequence (recall that every
convergent sequence in a metric space is a Cauchy sequence). As a result, the linear
space generated by taking finitely many superpositions of the functions v, (x) is dense
in L?([0,1]), and we may take the domain D(H) to be this space. Clearly, H is Her-
mitian, and in fact it is self-adjoint, which is confirmed by the fact that its eigenvalues
are real and its eigenfunctions for different eigenvalues are mutually orthogonal.

6.7.2 Dirichlet, Neumann, and mixed boundary conditions

Now let’s consider H on the interval [0, 1] but not with periodic boundary conditions.
To get a self-adjoint operator, it must first of all be Hermitian, which requires,

(Hlp), [¢) = (I¢), H|v)) (6.41)

or in terms of its x-space representation,

1
/0 dz (" — ") =0 (6.42)

The functions ¢, in the domain D(H) must certainly be differentiable and we can
take them to be infinitely differentiable. Integrating by parts, we find that the above
condition is equivalent to,

(@' — ") (1) = (@' — @)(0) = 0 (6.43)

Physically, the condition states that the probability current (¢t — ¢¢)(z) must be
the same at both ends so that total probability is conversed. The condition was
clearly satisfied when ¢ and ¢ were periodic. But now let’s not take the functions
to be periodic. One way to satisfy the conditions is to take ¢, to obey Dirichlet
boundary conditions at both ends, ¢(1) = p(0) = ¥(1) = ¢(0) = 0, and this defines
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a suitable domain for H making H Hermitian. But is H self-adjoint ? This would
require in addition to Hermiticity that D(H') = D(H). To determine D(H)'), we
use the definition of HT,

(H' @), [¥) = (l), HI)) (6.44)

For all ¢ € D(H), the space of ¢ such that this equation holds will give the domain
D(HT). The probability current at each end may be made to vanish by setting,?

Y1)+ &) =0 Y'(0) + & (0) =0
=0 =0

@' (1) + & (1) ©'(0) + & »(0) (6.45)

for real parameters &1, &y. In each case do we have a self-adjoint H since the domains
of H and H' are equal to one another. The spectrum depends on the boundary
conditions. For example, Dirichlet (D) corresponds to £ = oo while Neumann (N)
corresponds to & = 0. The spectra are as follows,

(D, D) E, = n? () = sin(mnx) neN
(N,N) E, = mn? Y (x) = cos(mnr) n € NU{0}
(D,N) E, = m? Y, (z) = sin(mvx) veN—-1/2 (6.46)

For other values of &1, &, the spectrum interpolates continuously between these cases.

6.7.3 The momentum operator
Now consider the momentum operator,

d
P=—i— 6.47
o (6.47)
on the interval [0, 1]. For periodic boundary conditions, the operator is self-adjoint
and the eigenvalues are real. But now consider non-periodic boundary conditions.
The condition for self-adjointness is then,

(P, ) = (¢, Pyp) = i (1)3p(1) — ip™(0)9(0) = 0 (6.48)

For periodic boundary conditions, this equation always holds, and P is elf-adjoint.

But if we choose the domain D(H) to consist of differentiable functions which obey
Dirichlet boundary conditions (1) = ¢(0) = 0 then the equation (6.48) holds for ¢

3Mathematically, the operator is actually referred to as essentially self-adjoint: its Von Neumann
indices are non-zero but equal so that it admits an adjoint extension.
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with any boundary conditions. Thus the adjoint operator H' has a domain which is
different from D(H), and the operator is not self-adjoint. In fact, it is straightforward
to verify that the eigenvalue equation P|i)) = E|¢) has no solutions, as the solution
in the interior ¥(x) = €¥* cannot satisfy the boundary conditions for any value of
E. So the operator P with this domain has no spectrum at all.

If we choose the domain D(H) to consist of functions that obey Dirichet boundary
conditions on at one end (1) = 0, then we must have ¢(0) = 0 with no conditions on
©(1). Again one can see that the domains D(H) and D(HT) are different, and that the
operator P has no spectrum. There is in fact no way to choose the domains so that
D(H) = D(H') and the operator is not self-adjoint.* However on a two-component
wave-function the operator P is self-adjoint. Physically, a manifestation of this effect
is that in a closed cavity, such as a sphere or bag, you cannot make the chiral Dirac
operator self-adjoint.

6.8 Sturm-Liouville theory

Sturm-Liouville theory deals with self-adjoint second order differential operators in
one variable on a subset S of R. Consider a real Hilbert space H with inner product,

(6,) = / dr w(z) () () (6.49)

where w(z) > 0 is a measure on S. Now consider the most general second order
differential operator on one variable,

L=a(x)—— + b(m)% +¢(x) (6.50)

We begin by requiring that the operator is Hermitian, namely (Lo, ) = (¢, L) for
all ¢,1 € D(L), or explicitly,

/ drw(ag” + bd' + co)p — / dz wo(a” + b’ + cp) =0 (6.51)
s s

Integrating the double derivatives by parts once, and regrouping terms gives,

/a ) wa(gy' — @) + /S dz(¢'h — ') ((wa)’ - wb) =0 (6.52)

4Mathematically, the operator has non-zero Von Neumann indices but they are now unequal and
there exists no self-adjoint extension.
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where 05 stands for the boundary contributions if any. Setting w(x)a(z) = p(z) and

w(z)e(x) = —q(x) we have w(x)b(x) = p'(z) so that the operator becomes,
1 b oo d) -

which is the Sturm-Liouville operator. It remains to ensure the absence of the bound-
ary terms which may be achieved by requiring p(z) to vanish at the boundary. As-
suming that the Hermitian operator extends to a self-adjoint operator, the spectrum
of L will enjoy the following properties,

1. The eigenvalues X of L are real;
2. The corresponding eigenfunctions are mutually orthogonal;

3. The properly normalized eigenfunctions satisfy the completeness relation.

The equation satisfied by an eigenfunction 1, (z) for eigenvalue \ is given by,

PYN + DY) — qhr = Awihy (6.54)

Two linearly independent eigenfunctions ¢y, 1, associated with the same eigenvalue
A may be used to define the Wronskian,

W = ¢\hx — ot W=— (6.55)
where W, is a constant.

6.8.1 Discrete spectrum

In the special case where the spectrum is discrete, we may write down some explicit
formulas. We denote the eigenfunctions by v,,, n € N, with real eigenvalue \,, where
the eigenvalue may be double degenerate. The eigenfunction equation is then,

Py + PY, = o = Nawiby, (6.56)
The orthogonality relation, with properly normalized eigenfunctions, reads,

/S 4 (7)o (2)0m () = G (6.57)

while the completeness relation for these orthonormal eigenfunctions is given by,

S 0 @)bn(y) = ——b(z — y) (6.59)

neN w(x)
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for x,y € S. Note the proper normalization for the Dirac J-function in the presence
of a non-trivial measure factor. The Green function and the resolvent Green function,
familiar from the case of the Fourier transform discussion, are defined as follows,

LG(z,y) = (L — E)Gp(z,y) = o(z —y) (6.59)

1
w(z)
where L acts on the coordinate z. The resolvent Green function and the Green
function itself are solved for as follows,

Glary) = Y LeitNnlt) Glry) = Jm Grlr,y)  (660)

neN

With the help of the completeness relation, we see that any function f(z) for x € §
may be expanded in the basis of eigenfunctions ¢, (z),

@) =3 futin(a) o= [ dzta) fapinia) (6.61)

neN

providing examples of the integral transforms for the case of a discrete spectrum and
thereby generalizing the expansion of periodic functions in a Fourier series.
A simple example is provided by the harmonic oscillator for which S = R and
where w(z) = p(z) = 1 and ¢q(z) = w?2?, so that,
d2
L=— —uw? (6.62)

da?

The eigenfunctions are given by Hermite polynomials,
Un(x) = Ny H,_y(2)e "/ (6.63)

where N, is a normalization constant which guarantees that (6.57) holds. One then
automatically has the completeness relation,

S N2H,o1(2) Hoor (y)e @02 = 6(z — ) (6.64)
neN

Hermite polynomials will be discussed in more detail in section 8 on special functions.

6.8.2 Continuous spectrum

Let us also give a simple example for the continuous spectrum. Consider the 1/r?
potential on the half line » € RT, given by the Hamiltonian,

2 2 1
d v i

j{ —
dr? r2

(6.65)
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This Hamiltonian is homogeneous in r and thus covariant under scaling transforma-
tions; it has deep group-theoretic significance as will be shown in 231B. But here we
simply want to view it as a Hamiltonian with a continuous spectrum, as is dictated by
its scaling symmetry. The eigenvalue equation Hiy g = EYgr may be put in standard
form by rescaling g as follows,

Ui(r) = Vrép(r) (6.66)
so that ¢g(r) obeys the equation,
r2¢% + 1y + (Er? — v%)¢p =0 (6.67)

Now there are two regimes, either £ > 0 corresponding to the scattering regime, or
E < 0 corresponding to the bound state regime. In the scattering regime we set
E = k? for k € R and redefine = kr, while in the bound state regime we set
E = —k? for k € R and redefine x = k7. We then obtain the equations,

E=tK  bp(r) = Zkr)  2Z0) + 2 Zy(x) — (P — ) Zu(a)
E=—k* ¢pr)=M/(kr) 2*2M/!(z)+zM (z)— (*+2*)M,(z)

0
0 (6.68)
The solutions Z, are linear combinations of the Bessel functions with standard nor-
malization J, and J_, (or equivalently Y, ), while the solutions M, are linear com-
binations of modified Bessel functions with standard normalization [, and K, (the
normalizations will be spelled out in section 8 on special functions). The asymptotic
behavior of the Bessel functions J,, I, and K, is given by,

x—0 J(2) = 2" I(z) = 2" K,(z)~z7"
T — 00 J(2) = \/ze” I,(2) ~ \/ze? K, (2) ~\/ze™? (6.69)

Clearly, I, is not normalizable at oo, so this function is excluded.

For v > 1/2, the Hamiltonian is positive, so there are no solutions with £ < 0. In
this case, the spectrum consists of all & € RT and we should have the orthogonality
relation between z2(r) = +/rJ,(kr) functions,

/ e Jy (k) (Kr) = F(R)S(k — k) (6.70)

We shall verify this equation in section 8 on special functions, where we will also
determine the normalization factor to be f(k) = 1/k. As a result, the completeness
relation must then read,

/ ek gy () Jy () = S8(r — o) (6.71)

r
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which implies,

/000 dk k ¢z (r) g2 (r') = 6(r — 1") (6.72)

precisely with the correct coefficient 1 for the d-function on the right side.

The Green function and the resolvent Green function may then be computed as
well and we find,

G(r,r') = / i & 2202 () )W =V / J, (kr') (6.73)

0

Computing the Green function directly from the differential equation,

82 V2 o %1
__+ Gr’/r’/ :67’—7", 674
(~g + ot ) Gy =3t =) (6.74)
we find the solutions r* away from r = r’ with a = % + v. For r < r' we take the
solution 72+ that decays as r — 0 while for r» > r’ we take the solution r2~ that
decays as 7 — oo. The dependence on 7’ is fixed by requiring symmetry G(r',r) =
G(r,r") and the overall normalization is fixed by the discontinuity of the first derivative
at r =1', and we find,

o= (e () e

This result may be deduced from the integral representation of the Green function.

The completeness relation may be used to decompose any function on R* in the
basis of Bessel functions, which is referred to as the Bessel transform,

F(r) = / " dkk F(k)Vr, (k) F(k) = / " dr )Tk (6.76)

0 0

in complete analogy with the Fourier transform.
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7 Spectrum of the Laplace operator

The Laplace operator in R? with the flat Euclidean metric is familiar for dimensions
d = 2,3. Introducing global Cartesian coordinates £, i = 1,---,d the Euclidean
metric ds? and the Laplace operator are given by,

d d

) 02
ds® = (dg')? A=) —— (7.1)
i=1 i=1 (9€7)
It is often convenient to parametrize flat space by coordinates z¢, i = 1,--- ,d other

than Cartesian coordinates, such as spherical, hyperbolic, or parabolic coordinates.
This may be because the new coordinates are better adapted to either the boundary
conditions or to the inhomogeneous source term of the Laplace equation. Cartesian
coordinates are then functions £(x) which are given in terms of x. In the general
coordinates z¢, the flat metric then takes the form,

ogk o¢k
2 pr— —
ds oxt 0xd d

i7j7k

x'dr? (7.2)

and one may carry out the associated change of variables on the Laplacian. This
operation can be considerably simplified and generalized as discussed in the next
subsection.

7.1 The Laplace-Beltrami operator

Actually, one may make yet a further fundamental generalization and consider R?
not with the flat Euclidean metric, but with a curved metric. For example, by stere-
ographic projection onto R?, the metric on the round sphere may be represented this
way. Thus, in an arbitrary system of local coordinates x%, i = 1,--- ,d, an arbitrary
metric takes the following form,

d
ds® = Z gij(x)dz' dx? (7.3)

ij=1

where the functions g;; = g;; are real at every point x. Since the matrix g;; is real
symmetric it has real eigenvalues which may be positive, zero, or negative. We shall
assume that no zero eigenvalues occur in which case the metric is said to be non-
degenerate. The d eigenvalues may then be partitioned into p positive and ¢ negative
eigenvalues with p 4+ ¢ = d, and one says that the metric has signature (p, q). Clearly
an overall sign in the metric is just a matter of convention so that signatures (p, q)
and (g, p) are equivalent and we may choose p > ¢, the mostly positive convention.
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e Fuclidean signature corresponds to (d,0);
e Minkowski signature corresponds to (d — 1,1);

e Conformal signature corresponds to (d — 2,2).

Finally, we may also replace R? by a more general manifold M¢ of dimension d.
A differentiable manifold M¢ equipped with an metric of Euclidean signature is a
Riemannian manifold, while if the metric has signature (p, ) with pg # 0 it is said
to be pseudo-Riemannian.

The Laplace-Beltrami operator A, on a Riemannian manifold M? with local co-
ordinates 2%, i = 1,--- ,d and metric ds? is given by,

ds® = Z i (x)dz'dx? = 7 Z 9; (v/9970;) (7.4)
4,j=1 1,j=1

where g = det (g;;) and g“ are the components of the inverse matrix of g;; so that,

Z gz = o) (7.5)

The advantage of these formulas for the metric and the Laplace-Beltrami operator is
that they are completely intrinsic, namely independent of the local coordinates used
to parametrize M?. We start with the metric, and change coordinates from z' to
x! Z(x), requiring that the metric transform as follows,

ds® = Z gij(v)dz'dr? = Z Gro(2)da’ da' (7.6)

3,j=1 k(=1

" dzr' and identifying components of dz‘dz? we find,

Using chain rule da'* = 3. 2

) arl

ax’k ox'*
gl] Z gk‘f a’%Z ax] (77)
k=1

relating the old metric g;;(z) in the old coordinates to the new metric g; ,(z') in the
new coordinates z/. Taking the determinant of this equation to get g, we see that,

g(x) = g («') (det {% }) (73)

which implies that the volume element +/g(x)d%x is invariant under coordinate changes.
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7.2 The Laplace operator in spherical coordinates

Spherical coordinates for flat Euclidean space are defined as follows,
d
gi=rit i=1,---,d TQZZ(QJ)Q (7.9)
i=1

As a result, 2° are the coordinates of a unit vector or equivalently coordinates on
the unit sphere S?!'. Using the fact that the tangent vector d#’ is orthogonal to the
radial direction !, the flat Euclidean metric becomes,

d d
ds® = dr® + r?ds. . dsfar = Y _(di')” @) =1 (7.10)

i=1 =1

Now &' are constrained coordinates on the sphere with one more #¢ than dimensions
of S%1. Thus, we parametrize S%! by unconstrained local coordinates y®, a =
1,---,d—1, so that,

d—1
dsdas =Y hap(y)dy®dy’ (7.11)

a=1

To compute the Laplace operator using (7.4) we evaluate /g d%z = r*"'drv/hd®y
where h = det (h,p). Since the neither the metric g;; nor the inverse metric g has
cross-terms between dr and dy®, the Laplace operator becomes,

d—1

! O, (r*'Vho,) + ) ! Do (13 hhP d) (7.12)

A = -
rd—l\/ﬁ St Td—l\/ﬁ

In the first term the factor v/ is independent of r and cancels, while in the second

term %! is independent of y® and cancels, so that we are left with,

1 d—1

1 1
d_ (0%
A= mar(r '0,) + T_QASd_l Aga-1 = a%ﬂ ﬁ(%(\/ﬁh 85)  (7.13)

where we have recognized Aga—1 as the Laplace-Beltrami operator on the unit sphere.
It is important to notice that the radial and angular coordinates have been decoupled,
namely Ags—1 is independent of r. In quantum mechanics, for d = 3, this operator is
simply related to the total angular momentum square operator, Aga—1 = —L2.
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7.3 Separating the eigenvalue equation

Next, we concentrate on the eigenvalue equation —AVyg = EVg and express the
Laplacian in spherical coordinates. Since the dependence on the radial coordinate
r and the angular coordinates y“ is separated, the eigenfunction may be expanded
in a product basis, Vg(r,y*) = ¥(r)x(y*). The angular factor obeys the Laplace-
eigenvalue equation on the sphere,

—Agarx = L0 +d—2)x (7.14)

where we have used the above parametrization of the eigenvalues by a real number ¢
in anticipation of the result to be derived below that ¢ will be an integer. The radial
part obeys the equation,

1
rd—1

0 +d—2)

r2

O, (rro,) + Y = E (7.15)

which may be put it in standard form by setting v = ¢ + % and rescaling v,
1/}(7‘) = rlfg(b(r) T2¢// + T(b/ + (E?"Q . 1/2)¢ -0 (716)
This is the differential equation for the Bessel functions, with solutions,

o ¢(r) = Jy,(kr) for E = k* > 0 corresponding to the scattering states;
e ¢(r) = K, (rr) for E = —k? < 0 corresponding to the bound states.

(There is also a linearly independent exponentially growing solution I, (kr).)

Bessel functions will be studied in the next section.

7.4 Spectrum of the Laplace operator on the sphere

Spheres S9! may be parametrized by induction on the dimensions d — 1. Slicing the
sphere by a family of parallel planes parametrized by the angle 6 € [0, 7] produces
spheres S92 with radius sin 6, as shown in Figure 15. The metric ds%,_, on the sphere
of unit radius S?~! may thus be parametrized in terms of § and the metric ds%d_2 on
the sphere of unit radius S¢2 by,

ds%a-1 = df* + sin® 0 ds%, » (7.17)

Using again the general metric expressions for the corresponding Laplace operators
we find that they are related by,

1
Asd—l = TQQ 89 (Sind_Q 989) +

sin sin? Asi-s (7.18)
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Figure 15: Slicing the sphere S9! by vertical planes into spheres S92,

Since Aga-2 is independent of 0, we have [Aga-2, Aga-1] = 0, and the operators
may be diagonalized simultaneously. Assuming an eigenvalue \;_5 of —Agi2, the
remaining equation in 6 reduces to the following eigenvalue equation,

1 g A2 (0
TQQ 89<smd 2 9(99¢(9)> + 2—<) + )\d_ﬁ/f(e) =0 (719)

sin sin? 6

Extracting a power of sin # to make the function regular at 8 = 0, 7w, we set,
() = sin® 6 f(cos0) (7.20)

where a remains to be determined by regularity conditions. In terms of f, the equa-
tion now becomes,

pf

1 — 22

(1—a2)f" — a+d—1zf + + N1 —ala+d—2))f=0 (7.21)

where p = a(a+d —3) — A\g—2. Regularity at © = £1 requires us to choose « so that
p = 0 and thus

Ai2 =ala+d—3) (7.22)
so that the equation reduces to,
(1—2)f"—Ra+d—Dzf + (M1 —ala+d—2))f =0 (7.23)
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This equation is of the type of Jacobi functions or Gegenbauer functions, and has
solutions which are polynomial in x of degree m provided,

Ai1=m+a)im+a+d-—2) (7.24)

in which case the solutions are Jacobi polynomials P\"")(z) with v = « + 3 often
referred to as Gegenbauer or ultra-spherical polynomials for this special assignment
of super-indices.

We solve for the eigenvalues recursively. For d = 3, we know the eigenvalues of Agt,
since they are given by A\; = m? for m; € Z. Solving for a, we find o = m1, and hence
Ay = (mg+my)(mg+my+1). Setting l5 = my+my we recover the familiar spectrum
l5(ly 4+ 1) of orbital angular momentum states in three dimensions. Having A, we
may now seek the spectrum of Ags, namely the eigenvalues A3. To do so, we solve for
the corresponding o« = mgy +my, and obtain A3 = (mgs+mg+my)(ms+ms+my +2).
Setting /3 = m3 + ms + m; we obtain the well-known spectrum of Ags of the form
A3 = l3(¢5 + 2). One obtains the general spectrum by induction on d,

A1 = gd(fd +d— 2) (725)

In 231B we shall develop the group theoretic understanding of this construction. We
have not been very careful here about the ranges of the different integers which enter,
but we shall do so when we study the problem group-theoretically.
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8 Special functions

Special functions arise in a wealth of physical and mathematical problems that are
formulated in terms of second order differential equations in one or several variables,
and with constant or non-constant coefficients. I will concentrate here on problems
that arise often in quantum mechanics and electro-magnetism, but the same types of
equations arise in fluid dynamics or even in general relativity.

8.1 Orthogonal polynomials

There is a whole collection of families of orthogonal polynomials giving the definite
impression that every French mathematician of the 19-th century felt obliged to attach
his name to a polynomial. To put some order into this collection, we present here
a systematic viewpoint on these families of polynomials in one variable (there exist
generalizations to several variables which we shall not discuss but which may be
similarly constructed).

8.1.1 Definition and construction

A set of polynomials {f,(z)n € Z,n > 0}, where n is the degree of f,(z), is said to
be a family of orthogonal polynomials with respect to the measure w(x) > 0 on a set
S C R provided w(z) and f,(z) satisfy,

/Sda: w(x) frn(x) fr(x) = hpbmn (8.1)

for all m,n € Z and m,n > 0 and for h,, € R and h,, > 0. Setting h,, = 1 for all
m one obtains orthonormal polynomials. In practice, the set S may be taken to be
a single interval [a,b] for a,b € R, the half line [a, 0o, the half line | — 0o, b] or the
entire real line R. On a finite interval, continuity of polynomials guarantees that the
integrals of (8.1) make sense for any continuous function w(z), while when the set S
is infinite the measure w(x) must decay faster than any inverse power of |x|.

Given a set S and a measure w(x), the polynomials f,,(z) may be constructed
recursively from the moments i, of the measure w(z), defined by,

o, = /Sdac w(x)z™ m >0 (8.2)

Note that u,, may vanish for odd m, but it can never vanish for m even in view of
the positivity of w(xz). We choose the polynomials f,,(z) to be monic which means
that their highest degree term has unit coefficient,

m—1
k=0
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and require f,,(x) to be orthogonal to any polynomial of degree 0 < n < m. For this
purpose we may use the basis of polynomials x™, and we obtain,

m—1

[ 5 0la) fule)a” = pen + 3 st =0 (8.4
k=0

for all 0 <n < m. Choosing n = m — 1, we see that the coefficient of ¢, ;1 1S ftom—2
which is non-zero, and hence gives @, ,,—1 in terms of ¢, , with £ <m — 1, by
m—2

—Ho2m—2Pmm—1 = H2m—1 + Z Pm kHk+n (85)
k=0

Eliminating ¢, »—1 from (8.4) and setting n to successively lower values starting
at n = m — 2 determines all coefficients recursively. The normalization h,, is then
obtained by integrating the square of the monic polynomial and cannot vanish.

8.1.2 Recursion relation

All families of orthogonal polynomials satisfy three-step recursion relations. For monic
polynomials they take the simple form,

foa (@) = (& + an) fu(2) + bnfra (7) (8.6)

where a,, and b,, are constants which are independent of x but of course functionally
depend on the measure w(x). To prove this, we note that f,1i(z) — zf.(z) is a
polynomial of degree at most n, and may thus be represented as a linear combination,

Jarr(z) =2 fule) = Y Mfile) (8.7)

Now integrate both sides against w(x) f,,(z) for any 0 < m <n — 2,

/S 02 0(2) fn (2) (Far (2) — 2fa(2)) = o (5.8)

But the left side vanishes, since the term in f, ., integrates to zero since m < n + 1
and the term in f,, integrates to zero against z f,,, which is of degree at most n — 1.
Hence \,, = 0 for all 0 < m < n — 2, from which the recursion relation (8.6) readily
follows with a, = A, and b, = \,_1. The coefficients a,, b, are obtained by setting
m=mn—1and n=mnin (8.8), and we find,

hpa, = —/Salavw(yc):lcfn(yc)2
Bp1b, = —/dew(x)xfn(x)fn_l(x) (8.9)

The recursion relations hold for arbitrary w(z).
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8.1.3 The classic orthogonal polynomials

The classic orthogonal polynomials satisfy three further, but equivalent, conditions.
Conversely, any set of orthogonal polynomials which satisfies any one of these condi-
tions is a classical orthogonal polynomial.

1. They satisty a second order differential equation of the form,
A(z) [/ () + B(x) fo(x) + Cnfulz) = 0 (8.10)
where A(z) and B(z) are independent of n and C,, is independent of z;
2. The family of polynomials {f!(z)} is orthogonal;

3. They satisfy a Rodrigues formula,

Ko % (F(x)"w(x)) (8.11)

fn(x) =

w(z)
where k,, is constant and F'(x) is a polynomial in z which is independent of n.

The classical orthogonal polynomials are given in Table 1.

| Name | notation | S| w(z) | F(z) |
Hermite H,(x) R e 1
Laguerre L,(x) [0, o0] e~ x
Generalized Laguerre LY (x) [0, o0 x%e " x
Legendre P,(z) |[-1,41] 1 1—a?
Gegenbauer (ultra-spherical) | P (x) | [-1,+1] (1—a%)° 1—2?
Jacobi P,Eo"ﬁ)(:p) [~1,+1] | 1 —2)*(1 +2)? | 1 —2?

Table 1: The classical families of orthogonal polynomials.

As the notations suggest, Laguerre polynomials are special cases of the generalized
Laguerre polynomials with L, (z) = Lﬁ?’(:c). Similarly, Legendre polynomials and
Gegenbauer polynomials are special cases of Jacobi polynomials respectively with
P,(z) = PPY() and P (z) = P{*(z). Given these identifications, one may
concentrate on Hermite, generalized Laguerre, and Jacobi polynomials. They satisfy
the following differential equations,

fo(z) = Hy(2) 0=fl—2xf, +2nf, (8.12)
fulz) = LIV (2) O=af) +(a+1—2x)f,+nf,
fal@) =P (z)  0=(1-2")f+(B—a—(y+Dz)f +nn+)fn
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where v = o+  + 1 on the last line. Note that these equations are linear and thus
independent of the normalizations of the polynomials. It is straightforward to see
that each differential equation admits a degree n polynomial solution.

Hermite polynomials solve the quantum harmonic oscillator with Hamiltonian
(we have scaled out all mathematically irrelevant parameters),

d2
H=-a5+ z’ Hip, = (2n + 1), Un(w) = Hy(z) e ™/?  (8.13)
x
Recasting H in terms of raising and lowering operators,
H=a'a+1 a:i—i—x aT:—iqu (8.14)
dx dx

the ground state satisfies a1y = 0, while excited states are related by 1,11 = a1,
which gives the following differential recursion relation for Hermite polynomials (with
the standard normalization in which &, = 1 in the Rodrigues formula),

H) (x) =2nH,_1(x) (8.15)

Laguerre polynomials arise when solving the Coulomb problem (see any text-
book on quantum mechanics under the section of the Hydrogen atom).

Jacobi polynomials arise in many areas of physics. We consider here a simple
electro-statics problem in the plane where they provide a solution. Place N + 2
charges on the real line in the following arrangement. A charge p > 0 is held fixed
at z = 1 and a charge ¢ > 0 is held fixed at z = —1, while N unit charges reside
at points x; with ¢ = 1,--- , N which are constrained to lie on the real line in the
interval —1 < z; < 1. Find the (unstable !) equilibrium position of the charges z;.
The electro-static energy of the configuration is given by,

Z (pIn(1 — ;) + ¢In(1 + z;)) — Z In|z; — ] (8.16)

i=1 1<i<j<N
Extremizing E with respect to z; gives the electro-static equilibrium equations,

1

p n q
Iz—l l’z‘i‘]. j;éixi_xj
It is these equations that we need to solve. By the way, very similar looking equations
arise in the CHY formulation of scattering amplitudes to tree-level, and they also arise
in string theory. To solve them, we introduce a polynomial f(x) of degree N whose

zeros are the xy,

—0 (8.17)

N
H (x — x) (8.18)
k=1
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Evaluating its first and second derivatives at a point z; we find,

7w = [ — ) P =[[w-a)Y ——  (8.19)

ki ji i

so that the electro-static equation becomes,

p q (i)
po e s e = 0 (8.20)

Let’s now look for a polynomial of degree N which satisfies the equation for all z,

p ! q 1A 1!
— /@) + =7 @)+ (@) + al@) f(z) = 0 (8.21)

where «(z) is an undetermined function which is regular at all the points ;. Multi-
plying through (1 — 2?) we have,
(1=2)f"(z) + (¢(1 —z) = p(1 + 2)) f'(2) + a(z)(1 —2*) f(x) =0 (8.22)

Upon setting @« = p+ 1, 8 =g+ 1, and (1 — 2*)a(zr) = N(N+a+ S+ 1) we
recover exactly the differential equation for the Jacobi polynomials PJ(VP +1’q+1)(x), and
the points z; are the zeros of this Jacobi polynomial.

8.2 Bessel functions
We had encountered the differential equation for the Bessel functions Z,(z),
2720+ a2 (2) — (VP - 2D Z,(2) =0 (8.23)

while the equation appeared in the physical settings where we encountered them for
real z and real v we have here relax these restrictions and generally consider z and v
complex. Thus, Z,(z) will be a complex analytic function of z and v, which may of
course have poles and branch cuts.

The behavior as z — 0 is dominated by the solutions to the homogeneous equation,
2ZN2)+ 22 (2) — v Z,(2) = 0 (8.24)

plus corrections which are quadratic in z times Z,(z). The homogeneous equation
is solved by Z,(z) ~ 2 with a® = 1%, so that a = +v. This makes sense: the sign
of v is immaterial in the equation, but the solutions exist for both signs. We shall
define the function J — v(2) to behave as z” near z = 0, and we expect the following
expansion near z = (,

Jo(2) = 2" f(2) flz) =) fuz™ (8.25)
k=0
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The expansion will be in powers of z? rather than z since the terms we have neglected

to get the approximate behavior was in 22. To determine f;, we first obtain the

differential equation for f,
2f"(z2)+ v+ 1)f'(2) +2f(2) =0 (8.26)
Substituting the power series into this equation gives,
i fu (2k(2k 4wyl z2k+1> ~0 (8.27)
k=0
so that fr_; = —4k(k + v) fi, which is solved in terms of the first coefficient fy by,

f() F(l/ + 1)
(—)kT(k+v+1)T(k+1)
The normalization is chosen so that fy = 27%/I'(v 4 1) so that the Bessel function
with standard normalization is given by,

(A% (—=2*/4)F
o) = (§> kz:; T(k+v+ DIk +1) (8:29)

fr =

(8.28)

For any v € C, the series is absolutely convergent throughout z € C and thus 27" .J,(z2)
is an entire function. However, J,(z) itself is entire only when v € NU {0}, and has
a branch point at z = 0 for v ¢ Z. The functions J,(z) thus defined are sometimes
referred to as Bessel functions of the first kind.

The Bessel functions satisfy a simple recursion relation,
2v
Jy+1(2) + Jy,1(2> — ? J,,(Z) =0 (830)

To prove it, we use the Taylor series to compute,

2\ V-1 —(—22/4)k+1 (—22/4)*
Tra1(z) + S (2) = (5) > (F(k: o T+ 1) Tk + )Tk + 1))(8'31)

k=0

Changing summation variables in the first sum & — k£ — 1 and combining the I'-
functions, we readily derive the recursion relation.

8.2.1 Bessel functions of the second kind

For v = —n and n € N, the terms with £ < n in the series vanish and by shifting
k — k 4+ n one readily establishes the relation,

Jon(2) = (=)"Jn(2) (8.32)
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As a result, the functions J,(z) and J_,(z) are linearly dependent when v € Z.
Instead of J_,(z) one may therefore use the following linear combinations,

cos(mv)J,(2) — J_,(2)

sin v

Y, (2) =

(8.33)

For v € C\ Z this is just a linear combination, but for v € Z, the limit produces
the second linearly independent solution to the Bessel equation. Linear independence

can be investigated using the Wronskian of the differential equation. Two solutions
Z,, 7, define the Wronskian,

W2 2,)(2) = () 2u(2) — Zu(2) Z112) (8:34)
which satisfies W’ (z) = —W(z)/z and is solved by W(z) = Wy/z for a constant W
which may be obtained from the behavior of the functions as z — 0,

27

Wl Jo)(2) = 27” sin o WL, Y,](2) = (8.35)

and thus we see that J, and Y, are linearly independent solutions for all values of
v € C. The functions Y, (z) are referred to as Bessel functions of the second kind.

8.2.2 Integral representation

A convenient integral representations of the Bessel function is given by,

(/2" / rod
J(2) = —"——= dt (1 —t=)" 2" 8.36
&= ey |0 (3.36)
The integral is absolutely convergent for Re (v) > —% and may be analytically con-
tinued to v € C. To prove the validity of this integral representation, we expand the
right side in powers of z and show that this expansion coincides with the one obtained
in (8.29). Only even powers will contribute in the expansion, so we have,

_ (2/2)" - (=2%)" ' _ 2\w—12k
To(2) = \/%F(qu%);F(?kJrl) /_1dt(1 2yt (8.37)

Using the invariance under ¢ — —t to restrict the integration region to the interval
[0, 1] upon including a factor of 2, and changing variables t? = x, we obtain,

e & A -
Tu(z) = Val(v +1) ;; T'(2k + 1) /0 dz (1 - z)" 22"

N

(8.38)

Evaluating the integral via I'-functions and using the Gauss duplication formula,

VAT (2u+ 1) = 22T (u + 1)T(u + %) (8.39)

we verify that indeed we recover (8.29).
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8.2.3 Modified Bessel functions
We had encountered the differential equation for the modified Bessel functions M, (z),
2M!(2) + aM)(2) — (V* + 22)M,(2) =0 (8.40)

which corresponds to letting 2 — iz in the differential equation for Bessel functions.
The precise correspondence is as follows,

- <<
eSiTrl//QJy(Z 6—3i7r/2) g < arg(z) < T (841)

The prefactors have been chosen such that the Taylor expansion is as follows,

( ) (/4" (8.42)

Fk+1/+1 JT(k+1)

The analytic continuation of the 1ntegral representation for J,(z) is given by,

v 1
I(2) = %/ dt (1 — %) 2¢" (8.43)
For integer v = n € Z, we have I_,(z) = I,,(z) so that [, and I_, become linearly
dependent for v € Z. Thus, in analogy with Y,, we introduce K, (z) as follows,
I,(2) — L(2)

2 sin v

K,(2)=m (8.44)

8.2.4 Asymptotic behavior

The asymptotic behavior as z — 0 may be read off from the Taylor series expansions.
As z — 0o, we have,

2 1
Ju(z) = = cos(z — % — 5V7T> + O(M_l e|1mz\)
Y, I O(12]-1 =]
W(z) = — sin(z T QVW) 4 O(|2| L el
e® B
L&) = 0+ 00:)

K, (2) = 4/—e*(1+0(z™) (8.45)

Given the asymptotic behaviors of J, and Y, it is clearly natural to introduce linear
combinations which are just plane waves. These are the Hankel functions,

Hf(z) = J,(2)+iY,(2)
H,;(z) = J,(2)—1Y,(2) (8.46)

v

88



8.2.5 Spherical Bessel functions

Spherical Bessel functions are proportional to Bessel functions with v = ¢ + % with
¢ € 7Z, and one divides out by a power of z that makes them entire functions,

32 = |3 )
w(z) = \/§n+é(z) (8.47)

They arise in spherical decompositions in odd dimensions. Spherical Bessel functions
may be expressed in terms of powers and trigonometric functions. For example,

sin z . sinz cosz

Jjo(2) = p, Ji(z) = .

(8.48)

The general formulas are as follows,

) (-2 (5.0

Analogous formulas hold for I, 1and K 4o

8.2.6 Bessel functions of integer order

Bessel functions J,,(z) and I,,(z) of integer order n = 0 or n € N are entire functions,
and enjoy some extra properties. They arise in spherical decompositions in even
dimensions. They are given by a simple generating function,

Fet) = 3 #,(2) Flz,1) = exp {g(t - %)} (8.50)

n=—0oo

To prove this formula we start from the recursion relation (8.30), and deduce the
following relation on F,

(t + %) Fiet) -2 % iy (8.51)

Integrating this first order linear differential equation, we obtain the partial solution,

F2,1) = ) exp {f(t - 1)} (8.52)



where G(z) is independent of £. Then we use the fact that J, satisfies the Bessel
differential equation,

(2202 + 20, + 2> — 1?0} — 10;) F(2,t) =0 (8.53)
Substituting the partial solution into this equation, we obtain an equation for F—),
t—tHE+G" +(G)+2'G'=0 (8.54)

Since this equation has to hold for all £, G must be constant. Using the asymptotic
expansion as z — 0, we see that the constant must be 1. From the generating
function, we immediately deduce an integral representation,

1 dt z 1
Jn(Z) = 2—7” L prs] exXp {§(t — g)} (855)

or parametrizing t = €‘0, we have equivalently,

To(2) = % /0 "0 expli(zsinf — nd)} (8.56)

8.2.7 Free particles inside a spherical cavity

The bag model of Hadrons assumes that these composite particles may be modeled
by freely propagating quarks inside a spherical cavity of radius R, namely the bag.
For simplicity here we shall assume the particles in the bag to be non-relativistic
and their wave-function to be confined to the interior of the bag by requiring the
potential energy insider the bag to be zero, and outside to be infinite. Thus, we take
the Hamiltonian to be H = —A, with vanishing Dirichlet boundary conditions on the
bag. The eigenvalue equation is then HV,, ., = E, ¢V, ¢.,. In spherical coordinates,
r, 0, ¢, the wave-functions decompose as,

1
W
where Y, (0, ¢) are the spherical harmonics wave-functions. The radial factor i, ,(r)
satisfies the Bessel equation for v = ¢ + %,

2 ) — 2+ kP = 0 K = En (8.58)

U pm(r,0,0) = —=tbne(r)Y["(0,¢) (8.57)

with solutions which are normalizable at r = 0 given by v, ,(r) = J,(kr). Enforcing
the Dirichlet boundary conditions at r = R requires kR to be a zero 3, of the Bessel
function, labelled by n € N,

2
3,
R—j Jri1(3n) =0 (8.59)

For example, dno =NT, 311 = 4493, 321 = 7725, 331 = 10904, 312 = 5673, etc.

En,( =
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8.3 Hypergeometric functions

Recall that Jacobi polynomials pleP (x) satisfy the differential equation,
(1-2)f"+(B—a—-(a+B+2)2)f +nn+a+p+1)f=0 (8.60)

The existence of a polynomial solution requires n to be a positive integer. When n
is not an integer the equation becomes the hypergeometric differential equation. It
is customary to move the singular points from {—1, 1,00} to {0, 1, 00} by translating
and scaling to the new variable z = —1 4 2z, which we henceforth consider complex.
The canonical form of the hypergeometric differential equation is then given by,

2(1=2)F"+(¢c=(a+b+1)2)F' —abF =0 (8.61)

where a, b, ¢ are constants, which we will consider to be complex. All points z € C
are regular points, except for z = 0,1, 00 which are regular singular points (where
the coefficients in the differential equation have zeros of integer multiplicity). Near
each one of these points, we may obtain solutions whose leading behavior scales with
some exponent v whose expression may be found by solving the differential equation
near the point,

F(z) = 2% (1 SO ..)
F(z) = (z—1)" <1+f1(1)(z—1)—|—f1(2)(z—1)2+--->

1) @
F(z) = ! (14— LA +~-~> (8.62)

ZVeo z z?
At each regular singular points, there are two possible exponents, given as follows,
vn=01—c¢ m=0c—a—"> Voo =@, b (8.63)

The local behavior near each point provides a basis for the two linearly independent
solutions to the differential equation.

8.3.1 Gauss’s hypergeometric function

The hypergeometric function 5 F}, which is often written just as F' when no confusion
is expected to arise, is defined to be the solution to the differential equation which
admits a Taylor series at z = 0 with the following normalization,

I'(a+n)(b+n)(c)
Flabicz) =) r<<a>r<z>;)r((c n T)z) 7(1!) : (8.64)

n=0

91



To investigate convergence of the series, we use the asymptotic behavior of the fol-
lowing ratio of I'-functions which is readily deduced from Sterling’s formula,

I'(a+n)

F®+n):n*%1+0uhw) (8.65)

Hence the coefficients of the Taylor series have the asymptotic behavior n®+t*=¢=! for
large n, so that the domain of absolute convergence of the Taylor series is |z| < 1.
This is in accord with the fact that the differential equation has a singular point at
z = 1. Now the analysis of the exponents at z = 0 tells us that there must also be a
solution which behaves as 2'~¢ near z = 0. Thus, the two solutions are given by,

ug = Fl(a,b;c;2)

ugy = 27 °Fla+1—c,b+1—¢2—c;2) (8.66)
Their domain of convergence is again |z| < 1. Some complications arise due to the
degeneracies of the solutions when one or several of the parameters a,b,c or their

differences a — b, b — ¢, ¢ — a are integers, and for simplicity we shall assume that this
is not the case in the sequel.

Euler gave the following integral representation,

Fla,bic;2) = f153%§§%3753./§ dt 1 (1 — £ 11— ¢2) o (8.67)

A very useful result, due to Gauss, is the value of F at z =1,

L(c)'(c—a—10)
['(c—a)l(c—b)

F(a,b;c;1) = (8.68)

It may be proven directly from the integral representation by setting z = 1 and using
the formula for the Euler Beta function.
8.3.2 Analytic continuation

But we could have carried out the same analysis around the point z = 1 as well. We
already know the allowed exponents, and we find two solutions with Taylor expansions
around z = 1, as follows,

uf = Fla,bja+b+1—¢1—2)

uy = (1=2)"""Flc—a,c—bc—a—b+1;1—2) (8.69)
Finally, carrying out the same analysis around the point z = oo, we find,
ul, = (—2)*F(a,a+1—ca—b+1;27")
uy, = (=2)"Flb—c+1,bb—a+1;27") (8.70)
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Since the differential equation is second order, it has two linearly independent solu-
tions. As a result, the three pairs of solutions must be linearly related by invertible

matrices M, N with constant coefficients,
+ +
(%)chg (8.71)
Uoo Ug

()~ (3)
() ()

These formulas provide us with the analytic continuation of the function F'(a,b;c; 2)
from its domain of absolute convergence of the Taylor series |z| < 1 to the full complex
plane, which will require branch cuts. By inspection we see that the domains of
absolute convergence of the solutions are as follows,

and thus also,

ui(z) |z <1
ui(2) |z —1] <1
ut (2) |z| > 1 (8.73)

While the domains of convergence of ui(z) and uZ (z) have zero intersection, they
both intersect non-trivially with ui (). Hence they may be related to one another in
these overlapping domain, so that the function F'(a, b; ¢; z) may indeed be analytically
continued to the entire plane.

8.3.3 Explicit transition formulas

The entries of M, N, respectively denoted by M;;, N;; with ¢, j = £ are obtained as
follows. Take the example of expressing u] as a linear combination of u(jf,

i (2) = Myyu (2) + M —ug (2) (8.74)
Evaluating both sides at z = 0 and using Gauss’s formula (8.68), we obtain,

Fla4+b—c+1)I(1—-¢)

M = R e Db —c 1 1) (8.75)
while setting z = 1, we obtain,
I'(e)l'(c—a—Db) I'2—c¢l(c—a—-10)
1=M M, .
HTe—are—b TMTTAZ o —b) (8.76)



Solving for M _ by eliminating M, . and making use of the identity established earlier
['(2)[(1 — z)sinwz = m, we find M, _. The remaining entries may be determined in
a similar manner, and we find,

Fla+b+1—-0c)'(1—c¢) Fla+b+1—c)'(c—1)

Mot =1z AOL(b+1—¢) My = T'(a)I(b)

M=t ;:(1 - Z)E(bf F_(if 2= ;(i - Z);(bc)i((zj)_ 2w
Similarly, we may determined the entries of the matrix N, and we find,

Niy = ?EC; j—L ;)_(2)5—(1 : 3 N = = ;‘_(i);(ljc)i<lc))_ : et

Nov = ?E? - 2)_ Z))ﬁ - 2 = ;(2);(62)?(;)_ Deen )

8.3.4 Monodromies

The function ug (2) is holomorphic inside |z| < 1, but the function wu (2) has a branch
point at z = 0. Similarly, u{ (z) is holomorphic in the interior of |z —1] < 1 but uj (2)
has a branch point at z = 1, while both uZ have branch points at z = co. We shall
now define the operation of circling around each one of the branch point,

Co(z) = ¥z Ci(1—2) =e"(1—2) Coo(z7h)y =27t (8.79)

+

-~ may be represented

The effect of these transformations on the functions u(jf, ui,u
by matrices, for i = 0, 1, oo,

() (c@)-e (i) @ (6.50)

(2

and the matrices C; may be read off from the definitions of the functions and we find,

1 0 1 0 e?ma ()
CO = (O e—27ric> C1 = (0 e271'i(cab)> Coo = ( 0 e27rib> (881)

Using these results and the interrelations between the functions u;t then give formulas

for all the monodromies,
ut ut
(u) (Oj(z)> =, (uf ) (2) (8.82)

2

where C;; = C; and the off-diagonal matrices C;; are given as follows,

Cop=MC,M  Cyy= MCoM™ Coco = N7ICoN
COoo - NﬁlcooN Cloo - MNilcooNMil Cool - NMilclMNil (883)
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The Wronskian of te hypergeometric equation is given by,

WfL, fo] = fife — fufy = Woz o1 — 2) "¢

(8.84)

for a constant W, which depends upon the normalizations, and is given as follows,

W[u8_7 ua] = (C — 1) Z_C(l _ Z)C—a,—b—a
W[UT, UI] = (CL +b— C) 270(1 - Z)C*afbfa
W[u;, uy] = (a—0b) pime (1 — Z)c_a_b_a

The determinants of M and N are given by,

—u—b —b .
det M =S40 det N = L0 gime
c—1 c—1

One verifies that the Wronskians indeed satisfy the correct equations,

Wi, uy] = (det M) Wlug, ug]
Wlul,uy] = (det N) Wlug, ug]

8.3.5 Physical systems governed by hypergeometric functions
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