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I. Relativity 
 
A. Frames of Reference 
 
Physical systems are always observed from some point of view.  That is, the displacement, 
velocity, and acceleration of a particle are measured relative to some selected origin and 
coordinate axes.  If a different origin and/or set of axes is used, then different numerical values 
are obtained for r� , v� , and a� , even though the physical event is the same.  An event is a physical 
phenomenon which occurs at a specified point in space and time. 
 
1. Inertial Frames of Reference 
 
a. Definition 
An inertial frame is one in which Newton’s “Laws” of Motion are valid.  Moreover, any frame 
moving with constant velocity with respect to an inertial frame is also an inertial frame of 
reference.  While r�  and v�  would have different numerical values as measured in the two 
frames, amF �

�

=  in both frames. 
 
b. Newtonian relativity 
Quote: The Laws of Mechanics are the same in all inertial reference frames.  What does “the 
same” mean?  It means that the equations and formulae have identical forms, while the numerical 
values of the variables may differ between two inertial frames. 
 
c. Fundamental frame 
It follows that there is no preferred frame of reference—none is more fundamental than another. 
 
2. Transformations Between Inertial Frames 
 
a. Two inertial frames 
Consider two reference frames—one attached to a cart which rolls along the ground.  Observers 
on the ground and on the cart observe the motion of an object of mass m. 

 
The S’-frame is moving with velocity v�  relative to the S-frame.  As observed in the two frames: 
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In S’ we’d measure ∆t’, ∆x’, and 
t
xux ′∆
′∆=′ . 

 
 
 
 
 
 
 

In S we’d measure ∆t, ∆x, and 
t
xux ∆

∆= . 

 
 
 
 
 
 
 
b. Galilean transformation 
Implicitly, we assume that tt ′∆=∆ .  Also, we assume that the origins coincide at t = 0.  Then 

tvxx x ′∆+′=  
tvyy y ′∆+′=  
tvzz z ′∆+′=  

tt ′∆=∆  
The corresponding velocity transformations are 

xxxx vuv
dt
xd

dt
dxu +′=+

′
==  

yyyy vuv
dt
yd

dt
dyu +′=+

′
==  

zzzz vuv
dt
zd

dt
dzu +′=+

′
==  

For acceleration 

dt
dva

dt
dua x

x
x

x +′==  

dt
dv

a
dt

du
a y

y
y

y +′==  

dt
dva

dt
dua z

z
z

z +′==  

Note that for two inertial frames, the ′= xx aa , ′= yy aa , and ′= zz aa . 
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Example 
 

 
 
 
 
 
 
 
 
 
 
 
S-frame 

dt
pd

dt
udmamF

��

�

�

=== , if m is constant. 

 
S’-frame 

dt
pdamF
′

=′=′
�

�

�

, where ump ′=′ �� .  But vuu ��� −=′ , so F
dt
udm

dt
vd

dt
udmF

�

���

�

==






 −=′ .  That is, 

aa ′= �� , as they must for 2 inertial reference frames. 
 
Notice the technique.  Write the 2nd “Law” in the S’-frame, then transform the position and 
velocity vectors to the S-frame. 
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B. Special Relativity 
 
1. Michelson-Morley 
 
a. Wave speeds 
Midway through the 19th century, it was established that light is an electromagnetic (E-M) wave.  
Maxwell showed that these waves propagate through the vacuum with a speed 8103xc ≈ m/sec. 
 
Now, wave motion was well understood, so it was expected that light waves would behave 
exactly as sound waves do.  Particularly the measured wave speed was expected to depend on the 
frame of reference. 

 
In the S-frame, the speed of sound is u� ; in the S’-frame the speed is u ′� .  The source and the 
medium are at rest in the S-frame.  We find (measure) that vuu ��� +′= , in conformity with 
Newtonian or Galilean relativity.  We may identify a “preferred” reference frame, the frame in 
which the medium is at rest. 
 
b. Michelson-Morley 
Throughout the latter portion of the 19th century, experiments were performed to identify that 
preferred reference frame for light waves.  The questions were, what is the medium in which 
light waves travel and in what reference frame is that medium at rest?  That hypothetical medium 
was given the name luminiferous ether (æther).  As a medium for wave propagation, the ether 
must be very stiff, yet offer no apparent resistance to motion of material objects through it. 
 
The classic experiment to detect the ether 
is the Michelson-Morley experiment.  It 
uses interference to show a phase shift 
between light waves propagating the 
same distance but in different directions.   
 
The whole apparatus (and the Earth) is 
presumed to be traveling through the 
ether with velocity, v� .  A light beam 
from the source is split into two beams 
which reflect from the mirrors and are 
recombined at the beam splitter—
forming an interference pattern which is 
projected on the screen.  Take a look at 
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the two light rays as observed in the ether rest frame.   
 
The sideward ray: 
 
The time required for the light ray to travel 
from the splitter to the mirror is obtained 
from 

2
1

2

2
222 1)()(

−











−=⇒+=

c
v

c
tvtct �

� . 

 
Now c >> v, so use the binomial theorem to simplify 











+≈ 2

2

2
11

c
v

c
t � . 

 

The total time to return to the splitter is twice this:  









+≈= 2

2

1 2
1122

c
v

c
tt � . 

For the forward light ray, the elapsed time from splitter to mirror to splitter is 

.1212
2

2

2

2

2 







+≈








−=

+
+

−
=

c
v

cc
v

cvcvc
t ����  

The two light rays recombine at the beam splitter with a phase difference [let
c
λτ = .]: 

( ) 2

2

2

2

12 2
12

c
vc

c
v

c
ttct

λλλτ
�� ==−=∆ . 

Since 0≠∆
τ
t , the two light rays are out of phase even though they have traveled the same 

distance.  By measuring t∆  one could evaluate v . 
 
However, no such phase difference was/is observed!  So, there is no ether, no v�  with respect to 
such an ether.  This null result is obtained no matter which way the apparatus is turned.  The 
conclusion must be that either the “Laws” of electromagnetism do not obey a Newtonian 
relativity principle or that there is no universal, preferred, rest frame for the propagation of light 
waves. 
 
c. Expedients to explain the null result 
length contraction—movement through the ether causes the lengths of objects to be shortened in 
the direction of motion. 
 
ether-drag theory—ether is dragged along with the Earth, so that near the Earth’s surface the 
ether is at rest relative to the Earth. 
 

( ) �++++=− − 2

!2
)1(11 xnnnxx n  
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Ultimately, the expedients were rejected as being too ad hoc; it’s simpler to say there is no ether.  
This still implies that the “Laws” of electromagnetism behave differently under a transformation 
from one reference frame to another than do the “Laws” of mechanics. 
 
2. Postulates of Special Relativity 
 
a. Principle of Special Relativity 
It doesn’t seem sensible that one “part” of Physics should be different from another “part” of 
Physics.  Let’s assume that they are not different, and work out the consequences.  This is what 
Einstein did.  He postulated that ‘All the “Laws” of Physics are the same in all inertial reference 
frames.’ 
 
b. Second Postulate 
The second postulate follows from the first.  ‘The speed of light in a vacuum is (measured to be) 
the same in all inertial reference frames.’ 

 
When the speed of light is measured in the two reference frames, it is found that vcc +′≠ , 
rather cc ′= .  Evidently, the Galilean Transformation is not correct, or anyway not exact.  In any 
case, we assume the postulates are true, and work out the consequences. 
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C. Consequences of the Principle of Special Relativity 
 
1. Time Dilation 
 
a. Events 
An event may be regarded as a single observation made at a specific location and time.  One 
might say that an event is a point in space-time (x,y,z,t).  Two events may be separated by 
intervals in either space or in time or in both.   
 
b. Time intervals 
Consider a kind of clock: 

We observe two events:  i) the emission of a flash at O’ and ii) the 
reception of the flash at O’.  In this case, 0=′∆=′∆=′∆ zyx .  The 

time interval between the two events is 
c
dt
′

=′∆ 2 .   

 
Now let’s view the same two events from the point of view of 
another frame, S.  As shown below, the S’-frame is moving to the 
right with speed v relative to the S-frame.  In the S-frame, 0≠∆x . 

The elapsed time is 
c
dt 2=∆ , where 222

�+′= dd .  Substitute for 

d , d ′ , and �  in terms of t∆ , t ′∆ , c, and v. 

444

222222 tvtctc ∆+
′∆=∆  

Solve for 

2

2

2
1

22

2

1
c
v

t
vc

ctt
−

′∆=








−
′∆=∆ . 

 
 
 
 
 
 
 
 
 
 
 
 
example  (prob. 1-11 in the text) 
The lifetime of a pion in its own rest frame is 8106.2 −=′∆ xt sec.  Consider a pion moving with 
speed cv 95.0=  in a lab—what will be measured as its lifetime in the lab? 
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sec1033.8
312.0

sec106.2

95.01

sec106.2

1

8
8

2

8

2

2
−

−−
==

−
=

−

′∆=∆ xxx

c
v

tt . 

The lifetime of a fast-moving particle is measured by noting how far it travels before decaying.  
In this example 7.23sec1033.895.0 8 =⋅=∆= −xctv� m.  In practice, we measure �  and compute 

t∆ . 
 
c. Proper time 
The proper time is the time interval measured by an observer for whom the two events occur at 
the same place, so that 0=′∆=′∆=′∆ zyx . 
 
2. Length Contraction 
 
a. “Contraction” 
Consider an object, such as a meter stick, of length L in its 
own rest frame, S.   

 
 

 
 
 

 
 
 
 
A second frame, S’, moves to the right 
with a speed v relative to S. 
We observe two events: 
 i) the point A passes the left end of 
 the stick 
 ii) the point A passes the right end 
of  the stick. 
 
As measured in the S’ frame, tvL ′∆=′  
and 0=′∆x . 
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In the S frame, Lx =∆  and 

2

2
1

c
v

tt

−

′∆=∆ .  Therefore, 2

2

2

2
11

c
vL

c
vtvL −=−∆=′ . 

An observer in the S’ frame observes the stick to be shorter (contracted) than does the observer 
in the S frame.  Notice particularly that the stick is at rest in the S frame.   
 
The contraction takes place in the direction of the relative motion.  Lengths perpendicular to v  
are not affected.  So for instance in the situation discussed above the width and thickness of the 
meter stick are still measured the same in both reference frames. 
 
b. Proper length 
The proper length of an object is that length measured in the rest frame of the object. 
 
3. Simultaneity 
 
a. Space-time 
Each event has associated with it four numbers: x, y, z coordinates and a “value of time” which 
we read off a clock located at that spatial location.  There is no central universal clock, rather 
there is a clock at every point in space. 
 
b. Synchronization 
We would like all clocks in a reference frame to display exactly the same reading 
simultaneously, but can this be arranged?  Only by the exchange of signals, which is another way 
of saying only in terms of intervals.  However, as we have seen, intervals are not the same for 
observers in different inertial reference frames.  Therefore, the concept of two events being 
simultaneous has no absolute meaning. 
 
c. Non-simultaneity 
Two events viewed as simultaneous in one frame will not be seen as occurring simultaneously in 
another frame. 
 
example:  a train moving with constant velocity on a straight, smooth track.  One observer rides 
on the train, the other observer stands beside the track. 

 
Flashes of light are emitted at the points C1 and C2 when the origins (O & O’) of the two frames 
coincide.  To the trackside observer at O, the flashes are simultaneous.  To the observer on the 
train, however, the flash emitted at C’2 is received before the flash emitted at C’1.  Yet both 
observers measure the same speed of light, c. 
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4. Lorentz Transformation 
 
Now we wish to derive the transformation equations for the displacement and velocity of an 
object—the relativistic version of the Galilean transformation equations.  In what follows, we’ll 

be setting 

2

2
1

1

c
v−

=γ . 

 
a. Two frames 
Consider two inertial reference frames, S & S’ and assume that O = O’ at t’ = 0.   

 
What is the x-distance from O to the point P, as measured in the S’ frame?  In effect, then, we’ll 
have tt =∆  and tt ′=′∆ . 

tvx ′+′=′�  

In the S frame, x=� , so 
γ
x=′�  also.  Set ‘em equal. 

tvxx ′+′=
γ

 

( )tvxx ′+′= γ  

On the other hand, as measured in the S frame, 
γ
xvtx
′

+= .  Set them equal. 

( )
γ

γ xvttvx
′

+=′+′  

Solve for t. 

( )
γ

γ xtvxvt
′

−′+′=  








 ′+′= x
c
vtt 2γ  

 
b. Transformation equations 
We have, then, for relative motion along the x-axis: 

( )tvxx ′+′= γ ;  yy ′= ;  zz ′= ;  






 ′+′= x
c
vtt 2γ  
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Notes:  i) the inverse transformation is obtained by replacing v with –v. 
           ii) for v << c, these reduce to the Galilean transformation. 
 
c. 4-vectors 
Suppose that when O = O’, a flash of light is emitted from the origin O.  In the S frame, the 
distance the light wave front travels in time t is 222222 tczyxr =++= .  Measured in the S’ 
frame, it’s 222222 tczyxr ′=′+′+′=′ .  Subtract the second expression from the first and 
collect the S frame on one side of the equal sign, the S’ frame on the other side. 

222222 tctcrr ′−=′−  
222222 tcrtcr ′−′=−  

There is this quantity, a generalized displacement (call it s) which is the same in the two inertial 
reference frames. 

22 ss ′=  
We see that the quantity (ict) “acts like” a component of displacement along a fourth axis.  The 
interval between any two events in space-time is 222222 tczyxs ∆−∆+∆+∆=∆ .  The interval 
is invariant under the Lorentz Transformation.  That is, as measured in any two inertial frames, 

22 ss ′∆=∆ .  This is an extension of the invariance of lengths under a rotation of the coordinate 
axes. 
 
d. Transformation of velocities 
Since displacements and time intervals are transformed, obviously relative velocities won’t add 
simply, either. 
 

In the S’ frame an object moves with constant velocity along the x axis; 
td
xdux ′
′

=′ .  Transform to 

the S frame; ( )

x

x
x

u
c
v

vu

dt
dx

c
v

v
dt
dx

dx
c
vdt

vdtdxu

222
11 −

−
=

−

−
=








 −

−=′
γ

γ  and similarly for the y and z 

components.  While dy & dz are not contracted, dt is still dilated.   
 
example:   

 
cu A 5.0−=  and cuB 8.0−= , both as measured in the S frame.  The S’ frame rides along with 

spaceship B.  Therefore, Buv �� = . 
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25.08.01

)8.0(5.0

1 22

c

c
c

c
cc

u
c
v

vuu
A

A
A =

−

−−−=
−

−
=′  

Be careful with the directions of the velocities. 
 

Note that when cu <<  and cv << , then 02 →
c
vu  and vuu −=′ .  On the other hand, if cu = , 

then c

c
v
c
vc

c
cv
vcu =

−








 −
=

−

−=′
1

1

1 2

.   
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D. Energy and Momentum 
 
We require that all the “Laws” of Physics be the same in all inertial reference frames.  We 
require further that when v << c, we recover the familiar Newtonian forms of the “Laws.”  This 
latter requirement is called a Correspondence Principle.  What are those “Laws”? 
 
1. Conservation of Momentum 
 
We define a relativistic momentum so that the two conditions above are satisfied. 

ump �� γ=  
This m is the rest mass—the mass measured by an observer at rest with respect to the object.  
This quantity should be the same in all inertial reference frames.  With this definition, 

finalinitial pp �� =  in all inertial reference frames. 
 
2. Relativistic Energy 
 
a. Work-energy theorem (one dimensional) 
The work done by a force on an object changes its kinetic energy, thus 

∫==∆
2

1

12

x

x

FdxWK . 

∫=∆
2

1

x

x

dx
dt
dpK  

∫=∆
2

1

t

t

dt
dt
dx

dt
dpK  

∫=∆ udpK  
Integrate by parts. 

∫−=∆
2

1

2

1

u

u

u
u pduupK  

∫
−

−=∆
2

1

2

1

2

2
1

u

u

u
u du

c
u

muupK  

Recall that 
2

2duudu = . 

∫
−

−=∆

2

2

2

1
2

2

1

c
u

dumupK u
u  

Look up the form ∫ + bxa
dx  in a math tables book. 
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2

1

2

1

2

2

2

1

12

2

u

u

u
u

c

c
u

mupK





















−

−
−=∆  

2

1

2

2
2

2

2

2
1

1

u

u

c
umc

c
u

muK





















−+

−

=∆  





















−

∆=





















−

−+=∆

2

2

2

2

2

222

11

2

1
c
u

mc

c
u

mumcmuK

u

u

 

Now, if we started from rest, then u1 = 0 and u2 = u and 2

2

2

2

1

mc

c
u

mcK −

−

=∆ .  Therefore, we 

define the relativistic kinetic energy to be  
2

2

2

2

1

mc

c
u

mcK −

−

= . 

The quantity mc2 is called the rest energy, because it’s independent of u.  The total relativistic 
energy is E = K + mc2 + V, where V is the potential energy, if any.  If V = 0, then  

22 mcmcKE γ=+= . 
 
b. Energy-momentum relation 
Take a look at the quantity (V = 0) 



















−
=

−
=−

−
=−

2

2

22
2

2

2

222
42

2

2

42
422

111
c
u
umc

c
u
ucmcm

c
u
cmcmE . 

22422 pccmE =−  
42222 cmpcE +=  

For photons, m = 0 and E = pc. 
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c. Units of mass-energy 
It is convenient to express energy in units of electron-volts (eV).  An electron-volt is the energy 
gained by an electron upon being accelerated through a one Volt potential difference.  Thus 1 eV 
= 1.60x10-19Joules.  The rest energy of an electron is  

( ) MeVeVxJxmxkgxmc 511.010511.01020.8sec/1031011.9 61428312 ==== −− . 
Often, mass is expressed in terms of MeV/c2 so that the electron mass is 0.511MeV/c2.  
Sometimes, the c2 is dropped, but it’s understood to still be there.  Similarly, momentum is 
expressed in terms of MeV/c, since pc = units of MeV. 
 
3. Relativistic Mechanics 
 
a. Force 
We want the “Laws” of Mechanics to be invariant under the Lorentz Transformation.  Also, we 
want to recover the classical result when u << c.  So, we define the relativistic force component 

to be 
dt

dpF x
x = , where 

2

2
1

c
u

mu
p x

x

−

= . 

Let’s say the motion and force are entirely along the x-direction. 





















−

+

−

=





















−

=

2

2

2

2

2

2
1

1

11
c
udt

dmu
dt
du

c
u

m

c
u

mu
dt
dF  

dt
du

c
u

c
umu

dt
du

c
u

mF 






−









−







−+

−

=
−

2

2
3

2

2

2

2

21
2
1

1

 

























−+










−=

−− 2
3

2

2

2

22
1

2

2
11

c
u

c
u

c
u

dt
dumF  

dt
du

c
u

mF

2
3

2

2

1

1



















−
=  

Solve for the acceleration. 
2

3

2

2
1 










−=

c
u

m
F

dt
du  
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The result is, that as cu → , 0→
dt
du , no matter how large the applied force.  At the other 

extreme, when u << c, 
m
F

dt
du = . 

 
b. Collisions—conservation of momentum 
Consider the collision of two billiard balls.  They have equal masses, m.  Let’s say that one ball 
is initially at rest while the second ball has momentum po and energy Eo before the collision.  
After the collision, both balls have the same energy, E, and mass, m.  It’s an elastic collision.  
Momentum and energy are conserved. 

 
In the x direction, θcos2 ppo = .  Substitute for po and p using E2 = p2c2 + m2c4. 

θcos21 422422 cmE
c

cmE
c o −=−  

Conservation of energy allows us to eliminate E, since it was given that EmcEo 22 =+ .  Keep 
in mind that Eo is the relativistic total energy of the second ball, while mc2 is the rest energy of 
the first (target) ball.  At the same time, we solve for θcos , the cosine of the scattering angle. 

( )
( )( )
( )( )22

22

4222

422

34
cos

mcEmcE
mcEmcE

cmmcE

cmE

oo

oo

o

o

−+
−+

=
−+

−
=θ  

2

2

3
cos

mcE
mcE

o

o

+
+

=θ  

In the classical limit, 2mcEo ≈  and therefore 

o

mc
mc 45

2
1

4
2cos 2

2

=⇒=≈ θθ .  But, as Eo >> 

mc2, o01cos →⇒→ θθ ! 
 
c. Decay of a high-energy particle 
An unidentified high-energy particle is observed to 
decay into two pions (π mesons), as shown.   
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Knowing the momenta and masses of the decay products, we determine the mass of the incident 
particle, hoping to identify it.  

c
MeVp 9101 = , 

c
MeVp 3232 = , Mevmccmcm 6.13922

2
2

1 === . 

The energy and momenta are conserved.  The total energy is 
4222

2
4222

121 cmcpcmcpEEEo +++=+=  
MeVMeVMeVEo 1273352921 =+=  

The quickest way to obtain the magnitude of the incident momentum is to use the law of cosines: 

 
22

21
22

2
22

1
22 1034229cos2 MeVcppcpcpcpo =−+= θ  

MeVcpo 1017=  
Now that we have the total energy and the kinetic energy, the mass is obtained from 

42222 cmcpE ooo +=  

MeVcpEcm ooo 7652222 =−=  
Evidently, the incident particle was a ρ  meson.  What was its speed before it decayed?  Well, 

the total energy is also 

2

2

42
2

1
c
u
cmE o

o

−
= , so solve that for u. 

8.01 2

42

=−=
o

o

E
cm

c
u  

 
d. Mass-energy equivalence 
When we speak of the total energy being conserved that includes the total rest energy.  For 
instance, consider the decay of a neutron that is initially at rest. 

ν++→ epn  
The neutron decays into a proton, an electron and an anti-neutrino.  The three product particles 
are observed to have total kinetic energy of K = 0.781 MeV.  The initial energy is just the rest 
energy of the neutron, Ei = 939.57 MeV.  The total final energy is  

MeVMeVMeVMeVKcmcmE epf 57.939781.0511.028.93822 =++=++=  
Notes: i) The rest energy of the anti-neutrino is too small to bother with.   

ii) Keep in mind the rounding of numbers and significant digits when substituting 
 numerical values into the formulae. 

iii) Notice that epn mmm +≠ .  A portion of the neutron’s rest energy has been 
 converted into kinetic energy. 
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E. A Hint of General Relativity 
 
1. Equivalence  
 
In Special Relativity it is asserted that all inertial reference frames are equivalent—the “laws” of 
physics are the same in all inertial reference frames.  No experiment done in one frame can 
detect its uniform motion relative to another frame.  Can the same be said for reference frames 
that have a relative acceleration?   
 
a. Elevator 
Recall the past discussion of a person standing in an 
elevator.  If the elevator moves perfectly smoothly and 
there are no floor indicator lights, then the person inside 
will have no perception of the elevator’s motion, except 
for feeling perhaps the elevator floor pressing upward 
on his or her feet.  [Keep in mind:  the person gets no 
information from any source outside the reference frame 
of the elevator.]  Contrast this situation with that of 
another person standing in a similar elevator, but this 
elevator is simply resting level on the Earth’s surface.  
The person in this elevator also feels the floor pressing 
upward on his or her feet, also has no perception of the 
elevator’s motion.  We, as omniscient external 
observers, know that this second elevator is resting on the surface of a planet, and that what the 
person inside is experiencing is the gravitational force exerted by that planet.  The point is that 
there is no experiment that either of the persons inside the elevators could perform that would 
distinguish between the two situations.  Pendula would swing back and forth just the same; 
projectiles would follow the same kinds of arcs, etc.   
 
b. Light and gravity 
Imagine ourselves as observers far from any source of gravitational force.  Nearby, we observe a 
closed “elevator” which is accelerating, relative to us, at a constant rate, oa� .  A person standing 
inside the “elevator” sends a series of light pulses 
toward one wall—he or she and we see the light pulses 
dropping toward the floor as they approach the wall.  
The light follows a curved path inside the elevator. 
 
The Postulate of General Relativity asserts that the 
“laws” of physics have the same form for observers in 
any frame of reference, regardless of its acceleration 
relative to another frame.  We have seen that an 
accelerated frame is equivalent to one in a gravitational 
field.  It follows that the force of gravity must affect a 
beam of light just as it affects the motion of a massive 
projectile.  Indeed, experiment has shown that it does.  
But, light has no mass. 
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2. Curvature 
 
Classically, we would say that a mass, such as a planet, exerts a gravitational force on another 
mass, such as a moon or a person.  However, a person in an “elevator” cannot determine whether 
his or her “elevator” is in the gravitational field of a planet or is being accelerated at a constant 
rate by, say rocket motors.  If the “elevator” is in a gravitational field, we can nonetheless 
mathematically transform the “laws” of physics into versions of the same mathematical form that 
do not include gravity yet which make equally accurate predictions of the motions of particles 
and of light beams. 
 
What Einstein did was to formulate such a version of the “laws” of motion.  Objects and light 
beams move always in straight lines, but in a curved space-time.  Empty space-time is flat, but 
the presence of mass at any location curves space-time to a degree proportional to the amount of 
mass that is present. 
 
Predictions of General Relativity: 
 
Precession of orbits—Mercury  
 
Gravitational redshift—time runs slower in intense gravitational field  
 
Gravitational lensing—light paths curved  
 
Gravitational waves—ripples in space time(?); slowing binary neutron stars  
 



 21

II. Quantum Theory 
 
A. Black Body Radiation 
 
1. Equilibrium Between Matter and Radiation 
 
a. Thermal equilibrium 
Imagine a closed oven, maintained at a constant temperature, To.  Inside, E-M waves bounce 
from wall to wall, being absorbed and re-emitted over and over.  Ultimately, the radiation is 
rendered homogeneous, isotropic and unpolarized.  A thermometer placed in the center of the 
oven will stabilize at a temperature oTT = .  The radiation is said to be in thermal equilibrium 
with the walls of the oven. 
 
b. Emissivity 
From thermodynamics (Kirchhoff) the power radiated by a body in thermal equilibrium with 
radiation is expressed  

f

f

A
E

TfJ =),( , 

where J is the power radiated per unit area per unit frequency, Ef is the emissivity or intensity per 
unit frequency of the radiation emitted by the body and , Af is the fractional absorption of the 
body for radiation of frequency f.  Notice that the substance of which the body is made is not 
important.  For a black body, 0.1=fA  for all f.  The observed spectrum of radiation emitted by a 
black body looks qualitatively like this: 

 
c. Model for a black body 
One physical model for an ideal black body is a small opening in the 
wall of a heated cavity.  Because the opening is small, a light ray 
entering through the opening is very unlikely to bounce back out 
again.  Conversely, any light ray that exits through the opening will 
have reached equilibrium with the interior walls, having bounced off 
the walls many times.  The black body is not the oven as a whole, 
but the opening in the oven wall. 
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2. Stefan-Boltzmann “Law” 
 
a. Emissivity 
The total emissivity is obtained by integrating Efdf. 

∫
∞

=
0

dfEE f  

This quantity was found experimentally by J. Stefan to be proportional to T4. 
4TE σ=  

Subsequently, Boltzmann derived this result from Maxwell’s equations.  The proportionality 

constant is called the Stefan-Boltzmann constant, 42
81067.5

Km
Wx −=σ  or Wm-2K-4.  For non-

black bodies, 4TaE σ= , where a < 1. 
 
b. Wien’s displacement “law” 

Experimentally, KmxT ⋅=⋅ −3
max 10898.2λ , or KmxT

f
c ⋅=⋅ −3

max
10898.2 . 

 
3. Rayleigh-Jeans “Law” 
 
a. Wien’s exponential “law” 

),(4),( TfJ
c

Tfu = , 

where u is the energy per unit volume per unit frequency.  As derived from thermodynamics and 
Maxwell’s equations,  

T
f

eAfTfu
⋅−=

β
3),(  

where A and β  are constants.  When tested by experiment, this expression fails at long 
wavelengths.  But, Wien’s exponential “law” fits well near the peak, at maxf . 

 
b. Rayleigh’s approach 
Rayliegh proposed that the energy density be expressed as the product of the number of standing 
wave modes in the cavity and the average energy of each mode.  Let N(f)df be the number of 
modes between f and f+df. 

dfEfNudf )(=  
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We need to obtain expressions for N(f) and for E .  Picture standing waves in a cavity.  In one 
dimension: 
 
We imagine the whole volume of the cavity occupied with 
standing E-M waves, of many different frequencies.  The radiation 
is in equilibrium with the walls of the cavity, at temperature T.  
Classically, the probability that there will be a mode of energy, E, 
in the cavity is given by the Boltzmann distribution. 

Tk
E

BeEP
−

=)(  
The average energy per mode is therefore 

( ) Tk
Tk

Tk

dEe

dEEe
E B

B

B

Tk
E

Tk
E

B

B

===

∫

∫
∞ −

∞ −

2

0

0  

As for N(f), the density of states, consider a cubical box of side L. 

 
Inside the box, the x-component of the E-field satisfies the wave equation 022 =+∇ xx EkE .  If 
we assume that )()()( zwyvxuEx = , then we get three separated equations.  The one for u(x) is  

02
2

2
=+ uk

dx
ud

x , 

which has the solution xkuxu xo sin)( = .  Similarly, ykvyv yo sin)( =  and zkwzw zo sin)( = .  

The quantity k2 is like the square of a radius in k-space:  2222
zyx kkkk ++= .  Since we must have 

standing waves in the box, with the electric field vanishing at the walls, 
L

nk x
x

π
= , 

L
n

k y
y

π
=  

and  
L

nk z
z

π= , where the nx, ny and nz are positive integers.  In other words, only discrete points 

in k-space designate the allowed energy modes in the cubical cavity.  So, we count the number of 
k-points lying in a spherical shell of radius k and thickness dk. 
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We see that each point occupies a volume 
3










L
π  so the number of points in the shell is 

2

2

3

2

2

4
8
1

)(
ππ

π dkVk

L

dkk
dkkN =









= , 

where V = L3.  Finally, there are two perpendicular polarizations for each mode, so the number of 
modes per unit volume (the density of states) is 

2

2)(
π

dkkdk
V

kN = . 

In terms of frequency, 3

28)(
c

dffdf
V

fN π= , since 
π2

kcf = . 

 
At last the energy density is 

Tdfk
c
fdfEfNdfTfu B3

28)(),( π== . 

Alternatively, the energy density in terms of wavelength is 

λ
λ
πλλ TdkdTu B4

8),( =  

Compared with the observed black body spectrum, the 
Rayleigh-Jeans “law” is seen to diverge as 0→λ . 
 
What do we have so far?  We have regarded the range of 
allowed energies for a standing wave in the cavity to be a 
continuous variable.  The result obtained is proportional to 
one over the fourth power of the wavelength.  This diverges 
for small wavelengths (the ultraviolet catastrophe). 
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4. Planck’s “Law” 
 
a. Quantized energy modes 
Rather than visualize standing E-M waves inside a cavity, consider the atoms that form the walls 
of the cavity.  These atoms vibrate and absorb or emit E-M waves.  Let’s assume that the 
energies of these oscillators can change only in discrete steps, rather than continuously. 
 
Postulate:  En = nhf where n is a positive integer.  No other energy values are allowed. 
 

The average energy per vibration mode is a discrete sum  

∑

∑

∞

=

−

∞

=

−

=

0

0

n

Tk
E

n

Tk
E

n

B
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e

eE
E . 

Firstly, the denominator. . .
Tk

hf
n

Tk
nhf

B

B

e
e

−

∞

=

−

−

=∑
1

1
0

.  This follows from the series of the form 

r
r

n

n

−
=∑

∞

= 1
1

0
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Tk
hf

Ber
−

= . 

 
Secondly, substituting this into E . . . 
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Notice that 
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This result is multiplied by the number of modes having frequency f, 3

28)(
c
ffN π= , to obtain. . . 
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b. Planck’s distribution formula 














−

=
−

⋅=
1

8

1

8),(
3

3

3

2

Tk
hf

Tk
hf

BB ec

hf

e

hf
c
fTfu ππ . 

What do we have? 
 i) Assume that oscillators or standing waves are limited to discrete values of energy,  
  En = nfh. 
 ii) For high f, the 0

1

1 →
−Tk

hf
Be

, therefore the probability that a high frequency or short 

 wavelength mode is occupied or present is very low. 
 iii) An oscillator that emits energy can change its energy only in steps of nhfE =∆ , 
where f  is the vibration frequency of the oscillator. 
 
Fitting Planck’s formula to the observed black body radiation yields a value for Planck’s 
constant, h = 6.626x10-34J sec.   
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B. Photons 
 
1. Photo-electric Effect 
 
a. Kinetic energy 
When a metal surface is exposed to intense monochromatic E-M radiation, electrons are expelled 
from the metal.  A certain amount of energy, called the work function, is required to liberate an 
electron from the metal.  Once liberated, the photoelectrons have a distribution of kinetic 
energies.  We can evaluate the maximum, Kmax, of the kinetic energy distribution by applying a 
voltage, Vs, large enough to stop the fastest-moving electron from escaping.  Kmax = eVs. 

  
Finding:  Kmax is independent of the incident intensity, while the photocurrent is proportional to 
the incident intensity. 
 
Interpretation:  Increasing the intensity of the incident radiation does not increase the left over 
kinetic energy of the photoelectrons, only the number of electrons ejected from the metal. 
 
b. Work function 
Finding:  Kmax is proportional to the frequency, f, of the incident radiation with an fo below which 
no photoelectrons are produced (Kmax = 0). 

 
Interpretation:  φ−== hfeVK smax , where φ  is the work function of the metal, f is the 
frequency of the incident radiation and h is Planck’s constant.  That is, the light is absorbed in 
discrete portions, hfE =∆ , only.    If φ<hf , then no photoelectrons are produced; if φ>hf , 
increasing the intensity only liberates more electrons, each one absorbing one hf and no more.  If 
the incident frequency is such that φ≤hf , then Kmax = 0 and no electrons escape from the metal. 
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We conclude that E-M radiation is not a continuous wave form, but consists of discrete, localized 
wave packets, called a photon.  Either a photon is absorbed entirely, or not at all.  Likewise, light 
is emitted in the form of one or more discrete photons. 
 
2. Compton Effect 
 
a. Absorption of a classical E-M wave 
Suppose a continuous E-M wave (frequency fo) is incident on a free electron.  The classical 
prediction is that the electron will experience acceleration causing the electron to oscillate 
transversely and to move in the direction the light wave is traveling.  The accelerated electron in 
its turn emits a new E-M wave.  Since the electron is now moving, the emitted wave has a 
Doppler-shifted frequency.  The longer the electron is exposed to the incident radiation, the 
faster it translates and the greater is the Doppler shift.  The intensity of the incident radiation also 
influences the Doppler shift, since it influences the electron’s acceleration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
This is not what is observed. 
 
b. Collision between a photon and an electron 
Consider a collision between an x-ray photon and a stationary free electron. 

 
 
 
 
 
 
 
 
 
 
 
 
Qualitatively, what is observed is that the frequency, f ′ , of the scattered photon depends only 
on the scattering angle, θ .  Usually, the effect is expressed in terms of the shift in wavelength, 
thusly: 
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( )θλλ cos1−=−′
cm

h
e

. 

The quantity 0243.0=
cm

h
e

Å is called the Compton wavelength of the electron.   

 
c. Theoretical treatment as a collision 
As a collision between two particles, both energy and momentum are conserved.  It is necessary 
to use the relativistic forms of energy and momentum, since the photon is certainly moving at a 
speed close to, if not equal to c.   

Energy 

ee EEcmE +′=+ 2  

ee Efhcmhf +′=+ 2  
momentum components 

φθ coscos eppp +′=  
θφ sinsin0 ppe ′−=  

 
The first step is to eliminate φ  from the momentum component equations.   

2

sin1cos 






 ′
−+′= θθ

e
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Square both sides and solve for θcos2222 pppppe ′−+′= .  For the photon, 
λ
h

c
hf

c
Ep === . 

 
On the other hand, the energy of the electron is also 42222 cmcpE eee += .  Substitute for Ee and 
pe. 
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This Compton shift formula exactly matches the observations.  We conclude, then, that a photon 

behaves like a particle having relativistic energy hf and momentum 
λ
h . 
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C. Matter Waves 
 
We find that light is quantized and may be regarded in some circumstances as being particles of 
zero mass, momentum h/λ, and energy hf.  Some persons use the quantum point of view 
exclusively.  Might it be useful to investigate whether non-zero mass particles can be treated as 
having wave properties? 
 
1. deBroglie’s Postulate 
 
a. deBroglie wavelength 
For a photon, p = h/λ.  In a similar vein, define for any particle a wavelength λ = h/p, where p is 
the momentum (magnitude) of the particle.  Further, if E is the total relativistic energy of the 
particle, a frequency is defined as f = E/h. 
 
b. Phase velocity of a wave 
The phase velocity of a wave is vp = fλ = E/p.  If the relativistic expressions for E & p are used, 
then we get a phase velocity for a massive particle 

v
c

mv
c

v

c
v

mcv p

22
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2
2

2 1

1
=

−

−
= . 

 
2. Group velocity 
 
A particle occupies a limited volume, so if we are to represent it with a waveform, the waveform 
amplitude must be non-zero only in a limited region of space.  We accomplish this by 
superimposing many waves of differing wavelengths and amplitudes and phases. 
 
a. Waves in one dimension 








 −= ftxAy π
λ
π 22cos  and fv p λ= . 

 
We define the angular frequency, ω= 2πf and the wave number, k = 2π/λ.  Using these quantities, 

( )tkxAy ω−= cos  and 
k

vp
ω= . 

 
b. Beats 
Superimpose two waves:  ( ) ( )txkAtxkAyyy 221121 coscos ωω −+−=+= . 
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[Note: cos(a) + cos(b) = 2cos(½ (a-b)·cos(½ (a+b).] 
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We have a traveling wave whose amplitude is not constant.  ( )txkAy ω′−′′= cos , where 

2
21 kkk +

=′  and 
2

21 ωωω +
=′ .  The time-varying amplitude is ( )tkxAA ω∆−∆=′ cos2 .  This 

A′  is also known as the envelope. 

 

The envelope also travels at a speed called the group velocity, kkvg ∆
∆=

∆

∆
= ωω

2

2 .   

Evidently, from the form of A′ , π2=∆⋅∆ xk  and πω 2=∆⋅∆ t .  With sound waves, the 
regular rises and falls of the amplitude are known as beats. 
 
c. Wave packets 
The beating waveform still extends to ± ∞  in x.  That combination is constructed only of two 
waves having the same amplitude but slightly different frequencies or wave numbers.  We can 
construct a wave packet that is non-zero only in a small region by superimposing many waves 
having different amplitudes, and having a range of wave numbers centered on a ko.  The 
mathematics of the superposition will be explored in paragraph 4.  For the time being, we are 
concerned with the group velocity of the wave packet: 

o
o

o k

p

kp
k

g dk
dv

kv
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dv +== ω

, since pkv=ω .  

 
d. Dispersion 
If vp = vp(λ), then the medium through which the waves are propagating is said to be dispersive.  
The individual harmonic waves travel at different speeds, so the wave packet or wave group 
spreads out with time. 
 
e. Application to a massive particle 
We consider a massive particle (in this context, massive means having a non-zero mass), such as 
the electron.  Its mass is m and it is moving uniformly with speed v.  We postulate that the 
motion of the particle can be modeled by a traveling wave packet with frequency fo = E/h and 
wavelength λo = h/p where E is the total relativistic energy and p the total relativistic momentum 
of the particle.  The wave packet would be constructed by a superposition of harmonic waves 
having wavelengths centered on λ0. 
 
The phase velocity is vp = fλ = E/p.  Putting E in terms of p and p in terms of the wave number k 

yields  [
k2

hp and 
m

pE
π

==
2

2

] 
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From this expression, we obtain the group velocity 
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Previously, we saw that the phase velocity also equals c2/v.  Therefore, the group velocity of the 
wave packet coincides with the velocity of the massive particle:  vg = v. 
 
3. Davisson-Germer experiment 
 
How might wave-like behavior of massive particles be observed?  One of the prominent 
characteristics of waves is the fact that they interfere with each other to form interference 
patterns.  When a monochromatic light beam is incident on a diffraction grating, a characteristic 
interference pattern is observed, entirely understood in terms of the constructive and destructive 
interference among the scattered light waves. 
 
a. Electron diffraction 
Consider a mono-energetic beam of electrons incident on a crystal lattice.  The electrons will be 
scattered from regularly spaced centers.  We count the number of electrons that are scattered at 
an angle ϕ from the incident direction. 
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We do not observe either a uniform distribution with scattering angle, nor a sharp peak at ϕ = 0 
and no particles elsewhere.  Rather, we observe a distribution of scattered electrons something 
like this: 

 
b. Interpretation 
If this result is interpreted as wave-like interference, then the peak at ϕ = ϕmax occurs when 

λϕ =⋅sind , where d is the spacing between neighboring atoms in the crystal.  [We are 
imagining that the rows of atoms forming the surface of the crystal correspond to the closely 
spaced lines of a grating.]  We might solve for the wavelength:  λ = d·sin(ϕmax). 
 
Specifically, for 54 eV electrons impinging on a Ni crystal, ϕmax = 50o and d = 2.15Å whence we 
obtain λ = 1.65Å.  The question is, does this wavelength correspond to the deBroglie wavelength 
of such an electron? 
 
Firstly, it will be easier if the relativistic formulae are unnecessary.  So check how fast the 
electrons are moving.  The kinetic energy is K = γmc2 – mc2.  We have K = 54 eV and mc2 = .511 
MeV.  Thus γ – 1 = 0.0001.  We can use the classical expression K = p2/2m.  Therefore, 

mKp 2= .  The deBroglie wavelength is 
eV

c
MeV

seVx
p
h

54511.02

10136.4

2

15

⋅⋅

⋅==
−

λ  = 1.67Å.  That is 

close enough in view of the rounding used in the calculation.  It appears that the deBroglie 
postulate has some physical reality. 
 
4. Uncertainty and probability 
 
Consider a simplified electron diffraction experiment:  a mono-energetic beam of electrons 
impinging on two narrow slits.  The electrons all have the same kinetic energy and the same 
velocity.  Beyond the slits is a detector, which can be moved along the x-axis. 
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The observed result: 

 
Note that at a specific location, x, the detector counts electrons one at a time.  After counting for 
a “long” time at several x-values, the interference pattern is obtained. 
 
a. Probability 
We have a stream of many electrons incident on the double slits, passing through them, and 
being counted by the detector.  The detector counts the number of electrons arriving at x per unit 
time, so the intensity being measured is I(x) in particles per minute.  The number of particles we 
expect to count in the interval x’ to x’+∆x is proportional to the probability that an electron will 
be counted at x lying between x’ and x’+∆x.  Define a wave function, such that 2Ψ  equals that 
probability.  This parallels the definition of intensity for light waves. 
 
For a single slit we would obtain, with either one slit or the other open,  

 
For two slits spaced a distance D apart, open however just one at a time in succession, we would 
observe a superposition of the single-slit distributions.  If both the slits are open while electrons 
are being counted, we obtain, not the superposition of two single-slit distributions, but the 
following interference pattern: 
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Evidently, 2 2 2 2

1 2 1 2Ψ = Ψ +Ψ ≠ Ψ + Ψ , rather, 
 

( )2 2 2* * * * * *
1 1 1 2 1 2 2 2 1 2 1 2 1 2Ψ = Ψ Ψ +Ψ Ψ +Ψ Ψ +Ψ Ψ = Ψ + Ψ + Ψ Ψ +Ψ Ψ . 

 
Those additional terms in the parentheses are called interference terms.  Ψ* is the complex 
conjugate of  Ψ so that ΨΨ=Ψ *2 . 
 
b. Uncertainty. 
The wave function is interpreted as being related to the probability that a measurement will find 
a particle at a specified location, x’.  It is constructed by a superposition of plane waves 

∫
∞

−⋅=Ψ
0

)cos( dktkxak ω , where k is the wave number and ak is a Fourier coefficient.  As is often 

the case, we find it convenient to use the complex version: 

( )
∫
∞

−⋅=Ψ
0

dkea tkxi
k

ω
. 

This wave packet is to be zero everywhere except within a region of width ∆x.  To illustrate, 
consider a simple rectangular wave packet. 

 
The wave function is non-zero for a region on the x-axis of width ∆x centered on x = 0.  The total 
probability that the particle will be observed somewhere on the x-axis must be 1.0, so the wave 
function is x

x
∆

=Ψ 1)( . 

 
The Fourier transform of Ψ will yield a momentum wave packet, a(k).  That is, ( ) 2

a k  will tell 
us the probability that a particle will be observed to have momentum p = � k. 
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In terms of the momentum, p = �k, 
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The height of the central peak is much greater than the side-peaks, and the width of the central 

peak is roughly 
x

p
∆

≈∆ �
.  Now, look at the product �

� =
∆

∆≈∆⋅∆
x

xpx .  This is an uncertainty 

relation, saying that it is impossible to measure simultaneously both the position (x) and 
momentum (p) of a particle to arbitrary precision. 
 
In fact, a rectangular wave packet is not physical, since it is a discontinuous function.  Much 
theoretical work has gone into determining what sort of mathematical construction will give 
smooth wave packets with minimum initial uncertainty, ∆x.  For a physically realistic wave 

packet, it was found that 
2
�≥∆∆ px .   

This relation holds for any pair of conjugate variables, e.g., 
2
�≥∆∆ Et . 

 
 

[ Et
v
Etvpx ∆∆=∆∆=∆∆ ]       [The time rate of change of a particle’s kinetic energy: pvE ∆=∆ .] 
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D. Atoms 
 
The history of the concept of material objects being composed of small particles goes back to the 
ancient Greeks, and is beyond the scope of this course.  The “modern” picture of an atom was 
assembled in a series of experiments during the 19th and early 20th centuries. 
 
1. Charges/particles; e/m 
 
a. Faraday’s “Law” of Electrolysis 
When an electrical current is passed through molten NaCl, chlorine and sodium are deposited on 
the anode and cathode, respectively.  Quantitatively, 

ν⋅
⋅=

Coul
qMm

96500
, 

where m = mass deposited on the anode or cathode, M = molecular weight, ν = valance of the 
atoms [1 for Na & Cl, 2 for O, etc.], and q =  total charge passed through the NaCl.   

 
Faraday’s “Law” of Electrolysis demonstrates that i) molecules [NaCl] consist of elemental 
atoms and ii) subatomic particles have electric charge. 
 
b. Cathode Rays 
J. J. Thomson showed that cathode rays are streams of electrons.  As we know now, when a high 
voltage is applied to the ends of a partially evacuated glass tube, a glowing path of ionized air is 
formed inside the tube between the electrodes.  The ionization is caused by collisions between air 
molecules and fast-moving electrons.  Those electrons escape from one electrode and are 
accelerated toward the opposite electrode by the applied voltage.  The ionized air molecules emit 
the light seen along the glowing path.  At the time, the glowing path was mysterious.  Thomson’s 
experiments established that cathode rays were caused by charged particles, subatomic in mass 
and apparently present in all matter. 
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Pass a stream of electrons through a electric field and a magnetic field oriented at right angles to 
each other, as shown here: 

 
With no B-field, the electron stream hits the screen at the point D.  The deflection angle is 

x

y

v
v

=θtan , where t
m
eEtav yy ⋅=⋅= .  But 

xv
Lt = , so 

xx
y mdv

eVL
mv
eELv == .  Therefore,  

22
tan

xx dv
VL

m
e

mdv
eVL








==θ . 

So, knowing vx and measuring θ, we could obtain e/m, the charge to mass ratio of the electron.  
To know vx, we turn up the B-field until there is no deflection—the magnetic force on the 

moving electrons balances the electrostatic force.  BeveE x=  whence ( ) 22

2

LdB
V

BdVL
Vd

m
e ⋅=⋅⋅≅ θθ

. 

 
 
 
 
 
 
 
 
 
 
 
 
The electron as a universal constituent of matter is supported by the fact that the same e/m is 
obtained when i) different gases are in the tube, ii) different metals are used for the electrodes, 
and iii) the electrons are released via the photoelectric effect rather than by heating the cathode. 
 
e/m for the electron is many orders of magnitude smaller than e/m for the Hydrogen nucleus, so 
the electron mass is many orders of magnitude smaller than that of an atom. 
 
c. Millikan’s experiment 
The charge to mass ratio of a particle has two properties mixed together.  We’d like to get them 
separately.  For instance, what is the smallest possible charge a particle might have?  We suspend 
a small object, such as a droplet of oil or a tiny plastic bead, between two plates.  We may apply 
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a voltage between the plates and observe the vertical motion of the droplet or bead, and do the 
same with zero applied voltage. 
Forces on the droplet: 
D is the air resistance, C is the drag coefficient, and W is the weight of the droplet. 
                               Without E-Field                                          With E-Field 

 
                     At terminal velocity                                       Set E-Field such that v’ = constant 

 
0=−mgCv                                                      0=′−− vCmgqE  

v
mgC =  

Substitute for C in the right hand equation, 0=
′

−−
v
vmgmgqE , solve for q/m. 








 ′
−=

v
v

E
g

m
q 1  

Now, m is the mass of the droplet and q is the excess electric charge on the droplet.  The volume 
of the droplet can be obtained from Stoke’s “Law” for a sphere falling through a fluid medium.  
From the volume and density of the droplet, we obtain its mass, m.  We repeat the experiment for 
many, many droplets and find that always q = -ne, where n is an integer and e = 1.602x10-19 

Coulombs. 
 
2. Atomic architecture 
 
If atoms are made of smaller building blocks, such as electrons, how are those blocks arranged?  
We know, so far, that there are both positive and negative charges within an atom.  The problem 
is to arrange them in such a way that they stick together—the atom is stable. 
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a. Thomson 
Atoms consist of a uniform, positively charged sphere throughout which are embedded tiny 
negative particles—the electrons.  This model gives a stable arrangement of +/- charges.  
However, it fails to account for the observed emission & absorption spectra. 

 
b. Rutherford 
To determine the size of something too small to see, we can bombard that something with tiny 
projectiles and observe how those projectiles are scattered.  Rutherford (et al.) sent a beam of 
heavy particles (alpha particles) into a thin gold foil.  The result was the following: 

  
Most α-particles are undeviated, which means that the target gold atoms are not big mushy balls.  
As the scattering angle, φ, increases, fewer α-particles are scattered through that angle, but not 
zero, and some even bounce backward, φ > π/2.  We conclude that the target atoms are several 
times more massive than the α-particle and compact.  Just how compact we can estimate by 
using conservation of energy in a collision.  In a direct, head-on collision the α-particle reaches 
closest approach to the target atom when 

r
eZekvm 2

2
1 2 ⋅=αα . 

Solve for that )(

2
1

2
2

Zf
vm

ekZer =⋅=
αα

.  We find that 1410−≈r meters and that Z is roughly ½  the 

atomic weight of the target atom.  In other words, we find that the positive charge is confined to 
a very tiny volume.  However, the experiment does not tell us how the electrons in the target 
atom are arranged within the atom’s structure.  Rutherford proposed that either the electrons 
were indeed mixed in the positive nucleus, or they orbited the positive nucleus.  Just how the 
positive nucleus could stay together was still a puzzle.  Also still a puzzle was the emission & 
absorption spectra of atoms. 
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c. The problem of atomic spectra 
Certainly, an electron could orbit a positively charged nucleus just as planets orbit the Sun.  After 
all, the form of Coulomb’s “Law” is exactly the same as the “Law” of Universal Gravitation.  
But, according to classical Electro-Magnetism, an accelerated charge emits radiation.  That’s 
how radio signals are generated, for instance.  An electron in an orbit is certainly accelerated; it 
should continuously emit radiation.  Further, the emitted radiation should increase in wavelength 
as the electron continuously loses energy and spirals inward toward the nucleus.  What is 
observed?  i) Atoms do not emit continuous spectra nor ii) do atoms collapse—they are stable 
objects. 
 
During the latter part of the 19th century, many individuals measured the spectra of many 
substances.  Their findings are summarized by the following relation: 














−⋅=

22
111

if nn
R

λ , 

where ni and nf are integers and R is the Rydberg constant, R = 1.0973732x107m-1. 
 
For Hydrogen:   
  Balmer series:   nf = 2 and ni = 3, 4, 5, 6, . . . 
  etc.  see the Table 4.1 in the text. 
Note the spacing of the lines in each series, and that the series fall in different regions of the E-M 
spectrum.  These are the experimental results that Bohr set out to explain in his model of the 
atom. 
 
3. The Bohr Model of the Hydrogen Atom 
 
Bohr inferred certain properties of the atom from the observed spectra. 
a. Assumptions/Postulates 
 i) The electron moves in stable circular orbits about the proton.  The attractive force is the 
 Coulomb force. 
 ii) Only certain orbits are stable.  In a stable orbit, the electron does not radiate, so the 
 energy is constant. 

iii) Radiation is emitted when the electron makes a transition from one stable orbit to 
another, and hfE =∆ . 

 iv) The angular momentum of the electron in its orbit is quantized, �nmvr = .  This 
 postulate arises in part from the idea of a standing deBroglie matter wave filling the 
orbital  circumference. 
 
b. Energy levels of the Bohr H-atom 
We use the assumptions mentioned above to see if we can reproduce the observed emission 
spectra for Hydrogen.  We have two threads:  the conservation of energy and the quantization of 
angular momentum. 
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The total energy is 

r
ekmvE

2
2

2
1 −= .  Now, the v and r are not independent, since for a circular 

orbit Newton’s 2nd Law says that 
r
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r
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r

22
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r
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2 = .  Substitute this for mv2 in E, 

r
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r
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−=−= . 

This is the total mechanical energy of an electron in a circular orbit of radius, r.  However, we 
know that not all values of E are to be permitted, so at this point we invoke the quantization of 

angular momentum, setting �nmvr = , which leads to 22

22
2

rm
nv �= .  At the same time, 

mr
kev

2
2 = .  

So we have two expressions for v2; set ‘em equal. 
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Solve for r = rn 
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�= , n = 1, 2, 3, 4, . . . 

Finally, substitute this rn for r in the expression for E 
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Notice the factor of 
2

1
n

!  These are the allowed energy states of the H-atom, according to the 

Bohr Model, where m = mass of the electron, e = electric charge of the electron, k =  coulomb 
constant, and n is the principle quantum number.  The lowest energy, and the smallest orbit, is 
for n = 1.  The radius of that n = 1 orbit is called the Bohr Radius, ao. 

529.02

2
1 ===

mke
ar o

� Å. 

The corresponding lowest, or ground state energy is E1 = -13.6 eV.  The first excited state is for 

n = 2, eVeVE 4.3
4
6.13

2 −=−= , etc. 
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c. H-atom spectrum in the Bohr Model 
Often we chart the allowed energy states on an energy level diagram: 

 
The frequency of a photon emitted (or absorbed) in a transition between levels is 

22

2 11
2 ifo nnha
ke
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In terms of wavelength, λ, 
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The quantity 
hca

ke

o2

2
 is exactly equal to the experimentally derived Rydberg constant, R.  So, the 

Bohr Model of the H-atom can reproduce the observed emission/absorption spectrum. 
 
d. Hydrogenic atoms 
We may imagine extreme conditions wherein an atom is almost completely ionized, so that a 
single electron orbits a nucleus with charge Ze.  Then the Bohr Model would say: 
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An atom having a single electron orbiting a nucleus is called a hydrogenic atom. 
 
4. Correspondence Principle 
 
Classical, or preModern, Physics is not incorrect, only approximate and inaccurate for atomic-
scale systems, just as it was for fast-moving systems.  Thus, we would expect to be able to 
extend quantum-based predictions to macroscopic systems and recover the classical result, again 
just as the classical equations of motion were recovered for speeds small compared to c.  This 
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expectation is called a correspondence principle.  Such a principle serves as a check on 
quantum-based reasoning and derivations. 
 
E.g.  In the case of a quantized oscillator (such as a mass vibrating on a spring), where ω�nEn =  

and 
m
k=ω , on the macroscopic scale, we might have kgm 1≈  and 

m
Nk 1≈ , so that 

sec
1 rad≈ω .  

The spacing between energy levels would be JxE 34101 −≈≈∆ � .  Similarly, the spacing between 
adjacent energy levels of the H-atom approaches zero as the principle quantum number, n, 
increases.  To put it another way, in macroscopic systems, the level spacing is too fine to be 
perceived by the human observer, so the energy appears to be a continuous variable.   
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III. Quantum Mechanics & Atomic Structure (abbreviated) 
 
We now seek a full treatment of particle dynamics in terms of matter-waves.  That is, we want a 
scheme of producing equations of motion. 
 
A. Schrödinger Wave Equation—One Dimensional 
 
1. Free Particle 
A free particle is one subject to no external forces. 
 
a. Einstein-deBroglie relation 

ω�=E  and kp �= .  A plane wave with this E and p would be written:  

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p is the momentum, m is the mass, 
m

pE
2

2
=  is the kinetic energy and 

�

pk =  is the wave number.  

An alternative form is 
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.  Which form is used in a given case 

is a matter of convenience. 
 
b. Free wave packet 
A wave packet for a free particle is constructed of many plane waves:   
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The transform gives the coefficients:  ( )
∫
+∞

∞−

−Ψ= dxexka tkxi ω)0,()( . 

c. Wave equation 
This Ψ, a superposition of plane waves, satisfies the following differential equation: 

Ψ
∂
∂=Ψ

∂
∂−
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xm
�
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2

22

2
, 

which can be verified by substitution.  This equation is known as the Schrödinger Wave 
Equation for a free particle. 
 
2. Interpretation of the Wave Function, Ψ 
 
a. Claim 
The wave function contains all the information that can be known about a particle—its mass, 
charge, energy, momentum, etc. 
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b. Proposed interpretation 
The probability that the particle will be observed to be at a location between x and x+dx at time t 
is given by dxtxdxtxP 2),(),( Ψ= , where ΨΨ=Ψ *2  and P(x,t) is the probability density.  To be 

realistic, Ψ must be continuous and single valued and must be normalized, since 12 =Ψ∫
+∞

∞−

dx .  

That is, the particle must be somewhere on the x-axis.  This proposed interpretation is to be 
validated by experiment. 
 
c. Solving for the motion 
The problem, then, is to find Ψ(x,t), given Ψ(x,0), rather than x(t) given x(0), as in Newtonian 
mechanics.  We shall have to make the connection between 2Ψ  and the physical motion of the 
particle explicit subsequently.  That is, later. 
 
3. Particle Experiencing a Conservative Force 
 
We draw an analogy with a wave propagating in a dissipative medium. 
 
a. Schrödinger equation 

t
ixU

xm ∂
Ψ∂=Ψ+

∂
Ψ∂− �

� )(
2 2

22
, 

where U(x) is the potential energy function for the external conservative force.  The solution of 
this equation may be easy or difficult, depending on the form of the U(x).  Even so, we’re 
assuming the potential energy function is constant in time. 
 
b. Time independent Schrödinger equation 
If the U is not a function of time, then the differential equation is separable, in the usual way. 
We assume that ( ) ( ) ( )txtx φψ ⋅=Ψ , .  Then  
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where E is the constant total energy of the particle.  The space (x) equation to be solved is 

ψψψ ExU
xm
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∂
∂

− )(
2 2

22
� . 

To go farther, we need to consider specific potential energy functions. 
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B. One-Dimensional Potentials 
 
1. Infinite Well or One-Dimensional Box 
 
a. U(x) 
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b. Conditions on ψ 
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c. Solution 
We have 3 regions in which the Schrödinger equation must be solved.  Two regions are taken 
care of already in this case, as ψ = 0 outside the potential well.  Inside the well, U = 0, so the 
particle is free. 

ψψψ 2
22

2 2 kmE
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�

 

This is the equation for a plane wave, so for 0 < x < L, 
)cos()sin()( kxBkxAx +=ψ . 

To evaluate the coefficients, A & B, we apply the boundary conditions.  We require that ψ(0) = 0 
and ψ(L) = 0. 

0)0cos()0sin(0 =⇒+= BBA  
0)sin()cos()sin(0 =⇒+= kLkLBkLA , since B = 0. 

If both A & B are zero, we have the trivial solution, 0=ψ . 
 
d. Energy levels 
Because sin(kL) = 0, there is a restriction on the energy of the particle in the well.   
Evidently, kL = nπ, where n = 1, 2, 3, 4, 5, . . .  Substitute for k in the total energy 
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Note:  i) the quantized energy levels arise from the boundary conditions and ii) the lowest 

possible energy is 0
2 2
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E �π .  This lowest possible energy is called the zero-point energy, 

even though it isn’t zero. 
 
e. Normalization 

The wave functions corresponding to the energy levels are 
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Use the identity θθ 2cos1sin2 2 −= . 
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Because the wave function is zero outside the well, we integrate from 0 to L rather than ±∞ . 

Finally, we have 
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πψ sin2 .  [See Fig. 5.7 and 5.9 in the text.] 

2. Expectation Values 
 
a. Weighted averages 
When averaging a list of values, we say  
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1 , where pi is the number of times the value Ai appears in the list having N different 

values. 
 
b. Probability & expectation 
Now, 2Ψ  is the probability density, giving the odds that the particle will be observed to be in the 
state described by Ψ(x,t).  Suppose we make many observations of the position of the particle.  
Then the average of our observations would be 

∫ ∫=>=< dxxdxxx 2* ψψψ . 

This is called the expectation value of x.  The standard deviation of many observations of x is 
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where we could calculate ∫>=< dxxx 222 ψ . 

 
c. particle momentum 

We define the expectation value of the particle momentum as 
dt

xdmp ><>=< .  For macroscopic 

objects, this expression reduces to p = mv.  Also, 22 ><−><=∆ ppp . 
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C. Three-Dimensional Potentials 
 
1. Three-dimensional Schrödinger Equation 
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irU

m ∂
Ψ∂=Ψ+Ψ∇− �

�� )(
2

2
2

, where 2

2

2

2

2

2
2

xyx ∂
∂+

∂
∂+

∂
∂=∇  

The solutions have the form ( ) ( ) tiertr ωψ −=Ψ ��, . 
 
2. Central Forces; polar coordinates 
The Coulomb force is spherically symmetric, so it’s convenient to use spherical polar 
coordinates. 
 
a. Wave equation in polar coordinates 

( ) ( ) ( ) ( )rErrUr
rrrrm

����� ψψψ
ϕ

θ
θ

θ
θ
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





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
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
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∂
∂− 2

2
2

2

2
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csccot12
2

 

For central potentials, )()( rUrU =�  and we can separate the variables by assuming that 
)()()( ϕθψ ΦΘ= rR . 

( ) ( ) ( ) 0)(csccot12
2 2

2
2

2

2
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



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Multiply through by 2
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Collect the terms depending on r and divide through by ψ . 
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We’ll have to solve this thing one piece at a time. 
 
b. Angular momentum—the angular parts 

C−=Φ
∂
∂

Φ
+Θ

∂
∂

Θ
+Θ

∂
∂

Θ 2

22

2

2 csccot1
ϕ

θ
θ

θ
θ

 

-C is the separation constant. 
 
Multiply by θ2sin  

θ
ϕθ

θθ
θ

θ 2
2

2

2

22

sin1sincossin C−=Φ
∂
∂

Φ
+Θ

∂
∂

Θ
+Θ

∂
∂

Θ
 

 
Separate again 

Φ
∂
∂

Φ
−=+Θ

∂
∂

Θ
+Θ

∂
∂

Θ 2

2
2

2

22 1sinsincossin
ϕ

θ
θ

θθ
θ

θ C  = m2, another separation constant. 

 

Set 2
2

21 m=Φ
∂
∂

Φ
−

ϕ
, which equation has familiar solutions 

ϕime±=Φ . 
Substitute this into the θ-equation 

22
22

sinsincossin mC =+Θ
∂
∂

Θ
+Θ

∂
∂

Θ
θ

θ
θθ

θ
θ , rearrange 

 

( ) 0sinsinsin 22 =Θ−+






 Θ mC
d
d

d
d θ

θ
θ

θ
θ . 

 
This is a standard, “well known” differential equation—the Associated Legendre Equation.  The 
solutions are bounded and differentiable (the physical requirements) if  

( )1+= ��C  and ���� ,1,...,1, −+−−=m . 
We identify m with the angular momentum about the ẑ -axis, which is quantized:  

�
�

mLz = , �
�

±±±±= ,...,3,2,1,0m  
The other constant is identified with the magnitude of the total angular momentum 

( ) 22 1 ��� +=L , ,...3,2,1,0=�  
Note:  ⇒− 22sin

�
mC θ combination of angular momentum about the x̂ - and ŷ -axes. 

 
Define: ≡�  orbital quantum number and ≡

�
m  magnetic quantum number. 
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c. Spherical harmonics 
The “well known” solutions to the Associate Legendre Equation are the Spherical Harmonics: 
 

( ) ( ) ( )ϕθϕθ ,mY
�

=ΦΘ  

π2
10

0 =Y  

θ
π

cos3
2
10

1 =Y  

ϕθ
π

ieY ±± ⋅= sin
2
3

2
11

1 ∓  

etc. [see Table 8.3 in the text] 
 
d. Radial equation 
The radial part of the wave equation remains. 

ERRrUR
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dr
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r
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m
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The allowed energy levels are obtained from the boundary conditions applied to R(r); this will 
give the principle quantum number, n.  The details depend on the exact form of U(r).  In the case 

of the Hydrogen atom, 
r

kerU
2

)( −= . 

 
e. Angular momentum vectors 

Lz is the projection of L
�

 on the z-axis.  
Not only is the L

�

 quantized, but so is the 
Lz.  For instance, for 1=� , 

222 2)1( ���� =+=L , and 1,0,1 +−=m , 
so �� +−= ,0,zL .  The vector L

�

 
precesses around the z-axis.  The 

condition 
)1(

cos
+

==
��

�
m

L
Lzθ  gives 

the allowed projections on the z-axis.  

For 1=� , 
2

1,0,
2

1cos −=θ .  Fig. 7.7 

in the text shows the case of 2=� . 
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D. The Hydrogen Atom 

r
kerU

2
)( −=  

So far we have tim eYrRtr ωϕθϕθ −=Ψ ),()(),,,( �

�
.  Given U(r), we have to find R(r).  Notice that 

many 
�

� m,  combinations may apply to the same energy state, R(r)—degeneracy. 
 
1. Radial Equation 
 

ERR
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The whole equation is multiplied by r.  Then the second derivative term can be collapsed to 
 

)()(
2

)(
2

2

2

2

2
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rRErR
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ke
mr
LrR

dr
d

m
=


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


−+− � . 

 
A standard method of solution is to try a power series:  ∑=

j

j
j raR .  The boundary conditions 

will require that 0)0( =R  and that 0→R  as ∞→r .  The latter condition restricts the series to 
be a finite polynomial with the highest �>= nj .  This is what determines the allowed energy 
levels.  See Table 7.4 in the textbook. 

22

42 1
2 n

emkEn
�

−= , n = 1, 2, 3, 4, . . . 

Commonly, we write En in terms of the Bohr radius 

2

2 1
2 na
keE

o
n −= . 

 
It follows that the allowed orbital (angular momentum) states are � =0, 1, 2, 3, . . ., n-1. 
 
2. Spectroscopic Notation 
 
For a specified n, the allowed values of �  and 

�
m  label states having the same energy, En.  These 

states are said to form a shell; the allowed values of 
�

m  for a specified �  form a subshell.  We 
still use the naming scheme created by the preModern spectroscopists who measured atomic 
spectra in the 19th century.  As shown in the following table, the letter K stands for the n = 1 
shell, while a lower case d stands for an �  = 2 subshell. 
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n(shells) symbol � (subshells) symbol 

1 K 0 s 
2 L 1 p 
3 M 2 d 
4 N 3 f 
5 O 4 g 
6 P 5 h 

 
We see that the quantum numbers ( )

�
� mn ,,  arise from physical restrictions placed on the 

mathematical solutions to the Schrödinger equation.  Further, there is one quantum number for 
each degree of freedom. 
 
3. Probability Densities 

),()(,,, ϕθψ �

� ���

m
nmn YrR=  

 
a. Ground state 
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This function is spherically symmetric, since 0=� --i.e., it’s an s-state.  In fact, all states with 

0=�  are spherically symmetric.  The probability density is  

3

2

2
0,0,1

o
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a
e o

π
ψ

−

= , 

which is also spherically symmetric. 
 
We define the Radial Probability Distribution, P(r) such that drrdrrP 22 4)( πψ= . 
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Note that 22 )()( rRrrP =  and that 1)(
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=∫
∞

drrP . 

We can calculate the expectation value of r, the 
distance of the electron from the atomic nucleus. 
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oo
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Notice:  While r = ao is the most probable radius, the expectation value of the radius is <r> = 
1.5ao, that is, averaged over a large number of observations of r. 
 
b. First excited state 
In the first excited state, n = 2.  The orbital quantum number, � , may be 0 or 1.  If 1=� , then 

�
m  

= -1, 0, or +1.  Therefore, there are 4 states with the same energy, E2.  We say that the 
degeneracy is 4-fold.  According to the spectroscopic notation, the 2s state is 0,0,2ψ ; the 2p states 
are 1,1,2ψ , 0,1,2ψ , and 1,1,2 −ψ . 

    2
200ψ      2

211ψ  or 2
121−ψ     2

210ψ   

    
4. Normal Zeeman Effect 
 
a. Magnetic moments 
Viewed in preModern terms, in circulating about the proton, the orbiting electron creates a 
magnetic dipole field.  The dipole moment is µ� , having a magnitude of jA=µ , where j is the 
time-averaged electrical current and A is the area of the 

closed orbit.  If T is the orbital period, then 
T

ej −= .  On 

the other hand, the magnitude of the orbital angular 

momentum, according to Kepler, is 
T

AmL e2
= .  The 

magnetic moment vector becomes 
ee m
Le

m
TL

T
e

22

��

� −=−=µ .  

It’s convenient to define the quantity called the Bohr 
Magneton, thus: 

Gauss
eVx

Tesla
Joulsx

m
e

e
B

924 10788.510274.9
2

−− === �µ . 

Notice the charge-to-mass ratio:  e/me.  The quantity that appears in the magnetic moment is ½ 

the charge-to-mass ratio.  For any charged particle, we define the geomagnetic ratio to be 
m
q

2
, 
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where q is the particle charge and m is the particle mass.  The z-component of µ� , like Lz, is 
quantized:  

�
mBz ⋅−= µµ . 

 
b. Larmor precession 
In an externally applied magnetic field, a magnetic dipole will experience a torque,  

dt
LdB
�

�

�� =×= µτ . 

The µ�  vector precesses around an axis aligned along the B
�

, since 

the µ�
�

⊥
dt
Ld  and B

�

. 

dtLB
m
edtdLLd

e
θτϕθ sin

2
sin === �
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ee
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θ
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ω
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This precession rate is called the Larmor Frequency. 
 

c. Normal Zeeman effect 
With no external B-field, all the n = 2 states have the same energy, E2.  In the presence of a 
strong magnetic field, the interaction of the orbital magnetic dipole with the externally applied 

magnetic field leads to a change in the energy.  z
ee

L
m
eBBL

m
eBE

22
=⋅=⋅−=∆

���

�µ , where we 

have assumed that zBB ˆ=
�

.  Thus, if E2 is the state energy without the B-field, then 
�

� mEE Lω+= 2  is the energy 
with the B-field.  Since 0=

�
m , 

1± , 2± , 3± , . . ., ±� , the 
formerly degenerate energy 
levels are separated by 

Lm ω�
�

± .  We call this lifting 
the degeneracy.  The higher the 
value of n, the more 

�
m  values 

there are.  The Normal Zeeman 
Effect, then, is characterized by 
the splitting of spectral lines into 
sets of several uniformly spaced 
lines in the presence of a strong magnetic field. 
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5. Fine Structure 
 
a. Anomalous Zeeman effect 
In addition to the uniformly split lines due to the normal Zeeman effect, there are often 
nonuniform splittings of spectral lines.  These are called the anomalous Zeeman splittings.  
These are not accounted for by the orbital µ� . 
 
b. Stern –Gerlach experiment 
Atoms passing through a nonuniform magnetic 
field:  any net magnetic dipole possessed by the 
atoms will cause them to be deflected.  The 
observed result is that the atomic beam is divided 
into two beams with equal but opposite deflections.   
 
Interpretation:  i) the effect is not due to the orbital 
magnetic moment, else there would be either 12 +�  
or zero spots on the screen and ii) the deflections 
are due to a magnetic moment that has only two 
possible values. 

 
c. Electron spin 
We propose that a magnetic moment is produced by the electron itself, visualized as spinning.  In 
analogy to orbital angular momentum, we define a spin quantum number, s, such that the number 
of possible angular momentum z-components is 12 +s . 
 
Since Stern & Gerlach obtained 212 =+s , we infer that for the 

electron 
2
1=s  and that 

2
1±=sm .  The z-component of the spin 

angular momentum is �sz mS = , while 22 )1( �+= ssS .  This S2 
is constant, so this thing called spin is an intrinsic property of the 
electron as much as are its mass and electric charge. 
 

The spin magnetic moment is S
m
eg

e
s

�

�

2
=µ .  The quantity g is 

called the g-factor, which is a kind of a fudge factor.  For electrons, the g-factor is found 
experimentally to be 2=g .  This value indicates that the electric charge is not uniformly 
distributed in a tiny solid rotating sphere as our classical visualization depicts it. 
 
d. Total magnetic moment of an electron 
With these two contributions, the total magnetic moment of an electron in an orbit about a proton 

is ( )SgL
m
e
e

s

��

���

�
+−=+=

2
µµµ . 
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6. Spin-Orbit Interaction 
 
a. Potential energy of two magnetic dipoles 
The orbital angular momentum gives rise to a magnetic moment.  Call the B-field due to this 

moment 
�

�

B , where 
R
ev

R
vReB oo

22
)(
3

2 µµ
−=

−
=

�
 and L

Rm
e

B
e

o
��

� 2
µ

−= .  With the electron in the 

first Bohr orbit, R = ao.  L
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e

B
oe

o
��

� 2
µ

−= .  This 
�

�

B  exerts a torque on the spin magnetic moment, 

sµ
� :  

�

�

�� Bs ×= µτ  
The potential energy contribution is 

SL
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geBU
oe

o
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���

�

�
⋅−=⋅−=

2

2µµ , since S
m
eg

e
s

�

�

2
−=µ .  S

�

 has two 

possible orientations, so U may raise or lower the energy 
level.  What was once a single electron level becomes two.  
This is called fine structure doubling. 

 
 
b. Total angular momentum, J

�

 
The total angular momentum of the isolated Hydrogen atom is conserved:  SLJ

���

+= .  Let us 
examine the possible values J

�

 can have, based on the quantum restrictions on L
�

 and on S
�

. 
 
By analogy (again), we introduce a new quantum number, such that 22 )1( �+= jjJ  and 

�jz mJ = , with mj = j, j-1, . . ., -j+1, -j.  What is the range of j?  J
�

 is the sum of L
�

 and S
�

, so j 

takes on the values 
2
1±�  for atomic electrons. 

e.g.  2=� , 
2
1±=s  

  then 
2
5

2
12 =+=j  and 

2
31

2
12 =−+=j  
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e.g.  4=� , 
2
1±=s  

  then 
2
9

2
14 =+=j  and 

2
71

2
14 =−+=j  

The number of mj values is 2j + 1.  In terms of � , 
2
1±= �j , so there are 1

2
12 +






 ±�  values of 

mj—the projection of J
�

 on the z-axis. 

e.g.  
2
10

2
1 ±=⇒=⇒= jmj � .  [ 21

2
12 =+⋅ ] 

  
2
1,

2
31

2
3 ±±=⇒=⇒= jmj � .  [ 41

2
32 =+⋅ ] 

  
2
1,

2
32

2
3 ±±=⇒=⇒= jmj � .   

  
2
1,

2
3,

2
5,

2
7,

2
94

2
9 ±±±±±=⇒=⇒= jmj � .  [ 101

2
92 =+⋅ ] 

Each mj level has slightly different energy since the angle between sµ
�  and 

�

�

B  is different---fine 
structure. 
 
e.g.  the Sodium doublet 
 
 
 
 
 
 
 
 
 
c. Spectroscopic notation 
 number for n 
 capital letter for orbital angular momentum 
 subscript for total angular momentum 
 

e.g.  
2

12

2
1
0
2

S
j

n
⇒



















=
=
=

�    
2
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2
5
2
3

D
j

n
⇒



















=
=
=

�  

The usages of the 2 schemes of spectroscopic notation goes as follows:  for orbital subshells we 
use the lower case letters s, p, d, f, etc; for the energy states we use the capital letters S, P, D, etc. 
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E. Multi-electron Atoms 
 
Two effects are important:  i) screening of the nucleus and ii) the exclusion principle. 
 
1. Nuclear Screening 
 
In a multi-electron atom, each electron interacts not only with the atomic nucleus, but also with 
every other electron in the atom.  For instance, the two-electron Helium atom: 

 
The net effect is that electrons farther from the nucleus “see” a nuclear charge of something less 
than Ze.  The energy states are not simply the same ones found for the H-atom.  This means in 
practice that it is practically impossible to solve for the multi-electron energy states exactly—
they have to be approximated to some degree. 
 
2. Exclusion principle 
 
It turns out that no two electrons within an atom can be in exactly the same quantum state.  This 
is a property of a class of subatomic particles called fermions.  That is, no two electrons in an 
atom can have exactly the same set of values for their quantum numbers.  This has implications 
for the electronic structure of multi-electron atoms and the periodic table of elements.  Namely, 

no more than 2 electrons can occupy an atomic subshell, with 
2
1±=sm . 

 
3. Electronic Configurations of the Elements 
 
a. Shells & subshells 
We envision the atomic energy levels to be labeled by quantum numbers n and � --1s, 2p, 3s, 4f, 
etc.  These are called shells, since their probability densities are spherically symmetric around 
the nucleus.  The shells are divided into 12 +�  subshells, or orbitals, according to 

�
m .  With 

electron spin, each subshell has two levels.  According to the exclusion principle, one electron 
may occupy each level, so each shell may be occupied by up to ( )122 +�  electrons.   
 
In the atomic ground states, the subshells are filled in order of increasing energy.  Commonly, 
the outermost subshell is partially filled.  These are the valance electrons. 
 
b. Hund’s Rule 
Each orbital (subshell) holds two electrons, spin up and down.  However, within a shell, lower 
energy is usually obtained if the spins are aligned, but in different subshells. 
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e.g. for Carbon 2p shell 
 

this   
↑  ↑   

rather 
than 

  

↑ ↓    
1−=

�
m 0 +1 

 
This is Hund’s Rule:  a shell is filled first with one electron in each orbital, spins aligned.  Then 
the second electron, with opposite spin, is placed in each orbital. 
 
e.g. Oxygen & Fluorine 2p shell 
 

Oxygen ↑ ↓  ↑  ↑  
Fluorine ↑ ↓  ↑ ↓  ↑  

 
c. Notation 
The electronic configuration is written out by listing the occupied orbitals, and the number of 
electrons in each orbital.  See Table 8.2 for the ground states of the elements.  e.g., 
 

atom config 1s 2s 2p   3s 
H 1s1 ↑       
He 1s2 ↑ ↓       
Li 1s22s1 ↑ ↓  ↑      
Na 1s22s22p63s1 ↑ ↓  ↑ ↓  ↑ ↓  ↑ ↓  ↑ ↓  ↑  

 
As n increases, the spacing between levels decreases.  So there are quirks in the order in which 
shells are filled up. 
 
e.g. see the elements 18 – 30.  K is not [Ne] 3s23p63d1, but [Ne] 3s23p64s1.  The 4s level is of 
lower energy than 3d, so the 4s level fills before the 3d level is occupied. 
 
e.g. worse, look at V, Cr, and Mn.  The outer most shells are 3d34s2 for V; 3d54s1 for Cr;  3d54s2 
for Mn.   
 
Evidently, the energy levels are ordered thusly: 
 
1s<2s<2p<3s<3p<4s~3d<4p<5s<4d<5p<6s<4f~5d<6p<7s<6d~5f. . . . where “4s~3d” means 
these states have nearly the same energy. 
 


