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1

Classical Mechanics

The major foundations for classical mechanics were made by Isaac New-

ton (1643-1727). Newton was born on Christmas day, the fourth of January

1643. Newton’s birth date directly demonstrates the importance of plane-

tary motion and the need of accurate measurements in physics. Obviously,

January 4 is not really Christmas day. However, England was still adhering

to the Julian calendar introduced by Julius Caesar in 46 BC. In this system,

it is assumed that a year lasts 365 and a quarter days (hence, the leap year

every fourth year). This is pretty accurate, but unfortunately the real year is

actually 11 minutes shorter. This was rectified in 1582 by the introduction

by pose Gregory XIII of the Gregorian calendar and followed in most of

catholic Europe. Unfortunately, the wisdom of the Gregorian calendar was

not directly followed in protestant nations, such as the British Empire (in-

cluding their American colonies). Although 11 minutes is not a lot, it does

add up over the centuries. By the time it was finally introduced in England

in 1752, 11 days needed to be corrected (and people complain when loosing

an hour when daylight saving time starts). Isaac Newton was born in the

small village of Woolsthorpe the only son of a waelthy local farmer, also

named Isaac Newton, who died three months before he was born.

In 1661, at the age of seventeen Trinity College at Cambridge persuaded

Isaac’s mother to have him enter the university. In 1665, he derived a gen-

eralized binomial theorem. In 1665, the Great Plague broke out. This was

one of the several recurrences of the bubonic plague that occured in Eu-

rope since the Black Death in 1348-50 till about 1750. In London, the Great

Plague killed 100,000 people. about 20% of the population. As a precaution

Cambridge University was closed for a period of eighteen months and New-

ton had to return to Woolthorpe Manor. Although that might at first seem a

big disadvantage, for Newton, being left to think for himself was very fruit-

ful. It was during this 18-month break that he developed calculus, gained
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Figure 1.1 Sir Isaac Newton and a copy of his most famous work
PhilosophiæNaturalis Principia Mathematica

significant insight into the laws of planetary motion, and did major work

in optics. His theory of mechanics was published only two decades later

in 1687 in PhilosophiæNaturalis Principia Mathematica published (Math-

ematical Principles of Natural Philosophy), often simply referred to as the

Principia. In it, he laid out three major laws, which we discuss in the coming

sections.

1.1 Newton’s first law

Newton’s first law reads

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uni-

formiter in directum, nisi quatenus a viribus impressis cogitur statum illum

mutare.

or in plain old English

Law I: Every body persists in its state of being at rest or of moving uni-

formly straight forward, except insofar as it is compelled to change its state

by force impressed,

often abreviated to ”a body in motion stays in motion.” This phrase is very

famous and might seem somewhat obvious. First of all, one might wonder

why Newton even wrote it down. This was not really his invention, but

already discovered by Galileo Galilei and others. Furthermore, there is no

need to write it down, since it is already contained in Newton’s second, to
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which we will come back later. It seems so simple, you might even think

you could have thought of that yourself. However, just as many riddles and

magic tricks seem so obvious after you are told their solution or how they

work, figuring them out yourself is not that easy. To understand the revolu-

tionary nature of the ideas of the scientific revolution in the sixteenth and

seventeenth century, it is important to understand the background against

which they were developed. You really have to empty your mind and try to

imagine that you were living in those days. That you were educated ideas

that are not correct, but seem reasonable. Now not only do you have to

figure out that what you are being taught is incorrect, but you also have to

propose a valid alternative. Newton’s theory of motion was that alternative

for almost two centuries, when it was realized that it had deficiencies when

the speed approaches the speed of light and when looking at length scales of

the order of the size of atoms. However, just because Newton’s theory is not

entirely correct does not make it wrong. It is still used for most applications

that do not involve these limits (partially, because calculating things using

relativistic quantum mechanics is horribly complicated).

1.1.1 Aristotle’s natural philosophy

Whereas the scientific revolution had already started, many universities,

including Cambridge, still clung to the ideas of Aristotle (384 BC-322 BC),

see Fig. 1.2. Despite being born more than two millenia before Newton,

the philosophical framework developed by Aristotle still loomed large in

Western civilization. His writings incorporating the works of his teacher

Plato and Socrates (Plato’s teacher) were the first to create a comprehensive

philosophy on subjects in the natural sciences, logics, politics, arts, etc.

The adoption by the Roman Catholic church of many of the Aristotelian

philosophies made it even harder to develop new ideas on mechanics.

Aristotle was born in 384 BC in the small city of Stagira in the Macedo-

nian region of Greece. At age eighteen, he went to Athens to continue his

education at Plato’s academy. After spending time in Asia minor, Aristotle

was requested by Philips II of Macedon to become the teacher of his son

Alexander in 343 BC. Alexander (356 BC 323 BC) established one of the

largest empires and became known as Alexander the Great. Aristotle also

taught Ptolemy (367 BC 283 BC), a Macedonian general under Alexander

the Great, (323 BC 283 BC) and Cassander (350 BC 297 BC) who became

kings of Egypt and Macedonia, respectively after the split of the empire

following Alexander’s death.

Aristotle’s works are an encyclopedia of the knowledge in ancient Greece.
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Figure 1.2 Aristotle’s concepts in natural philosophy dominated western
civilization for two millenia. Aristotle was an important teacher who had
Alexander the Great as his pupil.

Besides including the current though on a very wide variety of subject, Aris-

totle also made numerous original contributions. Aristotle’s ambitions were

therefore much larger than Newton’s. His aim was to develop a natural phi-

losophy. It was not is intention to develop a modern scientific theory that

could be subjected to experimental verification. Physics or natural philoso-

phy was more seen as a conceptual puzzle. A larger question that Aristotle

dealt with, but modern physics not (at least not directly) is, for example,

how an apple can grow into an apple tree. This led Aristotle to the concept

of actual and potential forms. The apple has the actual form of an apple but

the potential form of an apple tree. Related to that is the idea of ”nature”,

which is the tendency to actualize its potential. The nature of an apple is

to grow into an apple tree. Obviously, this does not need to happen because

other things might prevent this actualization, but left to its own, the apple

would become an apple tree. We can apply the same philosophy to motion.

It is in a rock’s nature to fall to the center of the earth. On the other hand,

the nature of smoke directs it to go upward; it is in the nature of water to go

back to the ocean. Aristotle believed that every object was made out of the

four elements: earth, water, air, and fire. This qualitatively explains why a

falling feather falls more slowly than a falling rock. Even though both are

solid, the feather has more air inside it suppressing the nature of the earth

part to fall to the earth (and helping birds to fly). The rock is mainly earth

and therefore wants to be on the ground. Therefore, natural processes are

internally goal-directed.

The nature does not explain everything. The reason a rock falls is because

of its natural motion. However, a rock that is on the earth’s surface is already
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in its natural place. Therefore, moving a rock sideways or upwards is not

a natural motion. Aristotle called this forced motion. Now let us try to

come up with an equation that describes this motion and let us only look at

horizontal motion. Apparently, we need a force to keep something moving

at a particular speed. We have not really defined force, but basically it

says something about how hard we need to push to keep something moving.

Obviously, this force should depend on the speed. We all know from our own

experience that it is more difficult to move at a higher speed. In addition, it

should probably depend on the nature of things. Moving in a medium that

is close to your own nature is more difficult. It is easy to move in air, but

more difficult in water, because air is more different from earth than water.

On the other hand when you are stuck in the sand or when your feet are

buried in concrete, it is very hard to move since you are already in your

natural state and therefore you should remain at rest. Now if we were to put

this in equation form, it would look something like

F = Rv, (1.1)

where F is the force you need to apply to make an object move. The force

increases if the speed v becomes larger. In addition there is a factor R that

describes a resistance that depends on the difference in nature between the

object that you want to move and the medium that it is moving in. For

example, when you are stuck in sand, a solid object should be at rest and

the resistance is large. On the other, it is easy to move something in air and

the force should be less. Therefore, the resistance should be less. Mind you,

the Greeks never wrote down an equation like this. But it is close to what

they had in mind and modern notation makes life so much easier (although

you might disagree), that it is convenient to use.

Great, you might say, so now we are learning physics of ancient Greeks?

This equation must surely be incorrect. Actually it is not. This equation is

Stokes’ equation derived in 1851 by George Stokes, See Fig. 1.3. It describes

the drag force on a (spherical) particle in a viscous fluid. The drag force is

given by Fd = Rv. So the force that needs to be applied to maintain a con-

stant motion is F = Fd or F = Rv. Note that there is a different philosophy

behind it. The Greeks felt it was the object resisting the motion. If the ob-

ject is its proper nature, then it will resist a lot against the movement. The

modern interpretation is that it is the medium in which the object is mov-

ing is resisting the motion. However, both arrive at the same equation (ok,

the Greeks never wrote this equation down...). So if the equation is correct,

then what is the problem? How can someone that has the right equation be

wrong?
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Figure 1.3 Aristotle’s laws of motion are under certain circumstances equal
to Stokes’ law from the nineteenth century. However, in many situations
Aristotle’s laws are simply incorrect and certainly not fundamental laws of
physics.

The problems start when you take a correct equation and start interpret-

ing it as a law which is applicable everywhere. And this is were you should

be careful, not only in physics, but in every field of research. Just because

it works sometimes does not necessarily make it correct and certainly does

not make it a law. So why does it go wrong? Let us rewrite the equation

somewhat

v =
F

R
. (1.2)

This equation tells you the velocity v that the object will have when you

apply a certain force F . Note the R is now in the denominator. R is the

resistance that tells you how difficult it is to move something. For example,

it is easy to push something forward in air (low R), it becomes more difficult

in water (higher R), but when a solid object is buried under the ground, it

is in its nature and therefore must resist a lot to the motion. However, let us

see if we can decrease the resistance even more. Then it becomes even easier

to make an object move at a high speed. But what happens if R = 0. Then

any push, no matter how small, will make the object move at infinite speed.

To the ancient Greeks’ credit, they did think about this situation. They

concluded that moving at infinite speed did not make any sense. However,

they did not conclude that the equation was wrong. They concluded that a

vacuum cannot exist. This is known by the statement Horror vacui (which

is Latin nor Greek) or Nature abhors a vacuum. Then again, nobody had
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seen a vacuum in the first place. Aristotle’s view of matter is that there is

matter everywhere. The density can flucuate, but never go to zero, so that a

vacuum never exists. Everytime that a vacuum might develop, matter flows

in to prevent this from happening. The problem of the vacuum however re-

mained problematic till the twentieth century. We will come back to this

later.

Before we continue with the development of classical mechanics, one might

wonder why a theory that, as we shall see, wrong could persist for close to

two millenia. How can you ignore facts and measurements? First of all, mea-

surements are quite often hard to produce. In particular, as was the case in

ancient Greece, if you do not have proper measuring equipment such as a

clock. And even when you have measurements, then can be hard to interpret.

As we saw above, you might arrive at an equation that is correct, but leads

to wrong results if you interpret it incorrectly. Furthermore, for the ancient

Greeks having a consistent philosophy was more important than a theory

that might interpret some messy experiments. This sounds at first surpris-

ing, but even nowadays people often dismiss facts when they are in conflict

with their philosophy, their prejudices or their religious beliefs. Artistotle’s

philosophy had a certain consistency which the modern theory of classical

mechanics does not directly have. His notion of the nature of objects, giving

them an internal goal, explained why a rock falls to the earth, but, in addi-

tion, gives a natural explanation why an apple grows into an apple tree. On

the other hand, gravitation is downright spooky. What is this force pulling

objects? Gravitation? I do not see any gravitation. Furthermore, explaining

why an apple grows into an apple tree is horribly complicated in modern sci-

ence. Also, the idea that Earth was at the center at the universe was favored

by Aristotle over other ideas by others that the Earth rotates around the

Sun. It just makes a lot more sense that the Earth, and implicitly humans,

are at the center.

However, the ideas that inanimate objects, such as a rock, have an in-

ternal purpose was not entirely satisfactory either. Already before Newton,

René Descartes (1596-1650), see Fig. 1.4, started developing a new type of

philosopy that draws clearer distinctions between the laws of physics and the

intellectual and spiritual world. Descartes distinguished the mind (”thinking

substance”), bodies (”extended substance”), and God (”infinite substance”).

The laws of motion of physics only apply to bodies. The existence of the

mind was demonstrated by Descartes by the fact that he could doubt his

own existence: ”Cogito ergo sum” or ”I think, therefore I am”. Although this
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Figure 1.4 René Descartes developed a mechanical philosophy that sepa-
rated the minds, the bodies, and the spiritual world. Laws of motion only
apply to bodies and not to the thinking and spiritual substances.

division is rather nice, it also does pose some problems. Modern people are

rather willing to believe that a rock has no internal purpose, but what about

a mountain, the Earth, the universe? Or, if we start from very small, what

about DNA, cells, a human? Many people think that some of these have an

internal purpose. The tremendous growth of scientific thought leaves many

with the impression that science is threatening the other two substances. Is

life just a bunch of chemical reactions; are humans just DNA soup?

Still, the idea that facts can be ignored seems strange to people living

in the twenty first century. You cannot just make stuff up? Let us con-

sider some examples how poor measurements combined with arguments of

a more philosophical nature can bring us further from a factual world. Let

us take an American who is trying to explaing the world record long jump

to a Dutch guy. The world record is 29 ft and 4.5 inches. This is 8.95 me-

ters. However, suppose we are not entirely certain about our units and take

roughly 3 feet in a meter. We then end up with 29/3 m +4.5×2.5 cm= 9.77

meter. That is already quite a bit off. However, now let us assume that the

person who is trying to explain that same distance has no clue how much a

meter is. He therefore tries to explain it in a more graphic way by jumping

over people lying in a straight line on the ground. This would give roughly

a distance of five persons and a head. However, let us just round that off to

six persons (we do not want to sell the record holder short) ?. Now let us

take another step. The person explaining this is really impressed by the long

jumper. The record has stood since 1991, which is incredible. In addition,

the record holder is American, so we definitely do not want that Dutch man

to have a bad impression of this record. So let us add another person for

good measure. The Dutchman now calculates it back into his units, adding

a little bit more along the way since the average Dutch person is taller than
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Figure 1.5 Although we are used to accuracy in scientific works, this was
not always taken for granted. Often facts and numbers were adjusted to
convey other messages.

the average American. We now end up with 12.65 meter or 41 feet and 6.25

inches. Sure, you might say. This is ridiculous. You cannot just add a person.

This sounds more like a fish tale than science. We can call it a fish tale. A

bit more formally we can call it a literary device to create respect. The story

is now no longer scientifically correct. However, in some ways it is still try,

because the person holding the world record is still the greatest long jumper.

Okay, apart from fishermen, who would ever do such a thing? Let us

look at another example. The oldest known (documented) human being was

Jeanne Louise Calment who lived from 21 February 1875 to 4 August 1997,

i.e. 122 years and 164 days. She lived in Arles and met the Dutch painter

Vincent van Gogh in 1888. However, person living longer have been men-

tioned. For example, the first emperor of Japan lived from 711 BC to 585

BC to the ripe age of 126 years. However, that pales in comparison with Kay

Kavus, a shah of Persia who lived 500 years. You might easily discard this as

mythology or legend. However, what about Methuselah who lived 969 years

as is described in Genesis 5:1-32 of the Bible. Now for many people this is

an area where facts and religious beliefs start to conflict with each other. We

can interpret this as a literary device. The Bible is describing events long

before the Bible was written. These were the forefathers that required a lot

of respect. Since noone had ever met them, it made sense that they lived

longer since everything was better in the time of our forefathers. Judging by

the example from Japan and Persia this was apparently a common literary

device in ancient texts. Some Sumerian kings were even said to have lived

more than 10,000 years. However, many people grown up after the scien-

tific revolution are very uncomfortable doing this. If it is not a fact, then

it must be untrue. Several explanations to account for this longevity were

given. A reason good by that the conditions were ideal before the Flood de-

scribed in the Bible. Another theory states that the longevity genes were lost
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in the Flood. Lifespans decreased significantly after Noah (who died at 950).

Of course, some might interject that the Bible must be factually correct

because it comes from divine inspiration. Take for example the narrative of

the Flood: ”God plans to destroy humans because they have gone astray.

God warns Noah to build a boat and use pitch Every species of animal [· · · ]
are to be saved [· · · ]. The flood comes and destroys all life on the Earth.

The waters subside slowly and Noah sends out a dove, [· · · ] and raven. The

boat comes to rest on the top of Mt. Ararat.” Clearly this implies that

a flood must have happened. However, this text is not from the Bible. It

comes the flood epic in Gilgamesh with some minor adaptation: ”The gods’

plan to destroy humands because they have gone astray. The god Ea warns

Utnapishtim to build a boat and use pitch. Every species of animal and

of craftsmen are to be saved, as well as their family. The flood comes and

destroys all life on the Earth. The waters subside slowly and Utnapsihtim

sends out a dove, swallow and raven. The boat comes to rest on the top of

Mt. Nisir.” Now the epic of Gilgamesh is significantly older than the Bible.

Note that the Exodus takes place around 1290-1235BC during the reign of

Rameses II. It can still be divinely inspired, but clearly the gods (plural!)

that the Sumerian were talking about are clearly different from the one in

the Bible. Obviously, this still does not mean it is incorrect. People have

wondered why there are flood stories. One of the reasons could be that fos-

sils of sea animals are found on mountain tops. Modern science ascribes this

to plate tectonics, but to the ancient civilizations the presence of these fos-

sils must have been very confusing.

Related to the genealogy, is the age of the Earth. The age has been es-

timated from adding the ages of the forefathers to be around 6,000 years.

This is certainly different from the age estimated by modern scientist, which

is around 4.5 billion years. Unfortunately such a young Earth/universe cre-

ates a different set of problems. Since the universe is so big, 6,000 years is

an incredibly short time. Our own galaxy is estimated to measure about

100,000 light years across (a lightyear is the distance light travels in a year,

therefore looking into the sky is looking into the past). So we would only be

able to see a very small portion of our galaxy. New stars should be appearing

every night as their light finally reaches Earth. One of the nearest galaxies is

the Andromeda galaxy, which is 2.5 million light years away. If the universe

was created 6,000 years ago, we would not be able to see it. Other galaxies

are estimated to be more than 12 billion light years away. Of course, the

universe could have been created 6,000 years ago with all the light rays and
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all. However, this makes the Creator also a big deceiver, which is not very

satisfactory. Other explanations, invoking general relativity involve slowing

down time during the creation allowing 14 billion years to pass by in six days.

Now the point here is not to say that the Bible is not correct, but merely

to point out that the nice separation between the physical and the spiritual

world that Descartes described does not entirely work for many people since

it creates a conflict between them. However, Descartes might point out that

the Bible deals with the spiritual world and should not be treated as a sci-

entific document. Just because it is not 100% accurate on the scientific facts

does not mean it cannot be true on the spiritual one. In addition, one might

argue that for the people who wrote the Bible the whole geological and as-

tronomical history was rather irrelevant. What for them was important is

how their civilization came about. Ancient civilizations in the fertile crescent

between the Eufrates and the Tigris started around 3,500 BC. Looking at it

that way, 6,000 years is not a bad estimate at all. However, what is impor-

tant for us to note is that separating scientific facts from other influences,

such as philosophy, religion, and other biases is not easy at all. The ideas

that developed in the sixteenth and early seventeenth centuries that the laws

of nature independent of an underlying purpose (a mechanical philosophy)

were ideas that were far less trivial than they might appear to us. And the

notion that nature just goes about its business and that things develop at

random without any underlying purpose is still something that is difficult

to accept for many people.

While philosophers were busy undoing Aristotle’s notion that objects have

an internal purpose, others were looking into more detail at the laws of

motion. The area where Aristotle’s theory really becomes problematic is

with projectiles. If a force is needed to maintain movement, then how do

we explain the flight of an arrow? After the arrow leaves the bow, there is

no longer an obvious force working on the arrow. Several rather convoluted

ideas were developed trying to explain how the medium in which the arrow

moves (air...) effectively pushes the arrow forward. However, none of them

very satisfactory.

Other areas were also problematic. The Sun, the planets, and, in particu-

lar, the Moon are obviously massive objects. Yet they do not seem to follow

their nature, that is falling back to Earth. Obviously, this was noticed by

the Greeks, who offered a couple of solutions. Other ancient civilizations

had suggested that the celestial objects were attached to a sphere called the

firmament. Outside of that sphere, the Gods lived, breathing aether, the



12 Classical Mechanics

element of the Gods. An alternative solution, doing away with the firma-

ment, is that the celestial objects move around in the aether. The aether is

then a special element, where the usual laws of nature do not apply. There-

fore, massive objects do not have to follow their nature and fall to Earth.

This element is in addition to the usual four classical elements: earth, water,

wind, and fire. In more modern terminology, these elements are the differ-

ent phases of materials: solids, liquids, and gases. In addition, fire can be

understood as combustion or chemical reactions transforming one material

into another. Note, that fire/combustion connects for example solids with

gases, when, for example, smoke escapes burning wood. Aether is therefore

the fifth element necessary to keep the sky from falling on our heads. Note

that in latin, fifth element is quitessence. These concepts were remarkably

similar in many civilizations. For example, in Japanese philosophy, one en-

counters Chi (earth), Sui (water), Fu (wind), and Ka (fire). Surprisingly,

they also recognize a fifth element Ku (usually translated as void or heaven)

describing everything that cannot by the regular elements.

Of course, you might think that several centuries later this whole notion

was gone. However, this was not the case. It might not have been entirely

the same aether as the ancient Greeks were thinking about, but the problem

lied in the propagation of light. It was generally assumed that light moved in

a way similar to sound. Sound travels through air by making the molecules

in the air vibrate. This is the reason why sound changes when the medium

changes allowing you to talk like Donald Duck when you inhale helium. The

underlying physics is that helium atoms are a lot lighter than the oxygen

and nitrogen molecules that make up most of the air. The lighter molecules

prefer to vibrate with a higher frequency than the heavier ones, making your

voice higher. Light was generally assumed to propagate by making a medium

vibrate. However, this medium cannot be air because light travels in outer

space, but sound is impossible without air. This medium was known as the

aether. It was not until 1887, that Albert Michelson and Edward Morley

demonstrated that there is no such thing as an aether. Unfortunately, their

experiment is rather complex and we therefore do not discuss it at this stage.

Therefore, light, unlike sound, travels by itself. It vibrates on its own and

does not require a medium.

The first different thought on intertia were developed in the fourteenth

centure by the French priest Jean Buridan (c1300-1358) perhaps following

ideas by the Persian polymath Avicenna (c980-1037). Buridan’s writing ap-

pears remarkable close to Newton’s thoughts. Consider his words on throw-

ing an object:
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Figure 1.6 Galileo Galilei’s experiment on motion: A ball released from a
certain height on one leg will (approximately) reach the same height on the
opposite leg.

...after leaving the arm of the thrower, the projectile would be moved by

an impetus given to it by the thrower and would continue to be moved as

long as the impetus remained stronger than the resistance, and would be of

infinite duration were it not diminished and corrupted by a contrary force

resisting it or by something inclining it to a contrary motion

So it is not the projectile that is loosing its impetus because there is no

longer a force working on the projectile, but the projectile is loosing its

impetus because there is a force working on it. Therefore, in the absence of

an external force the projectile would simply keep moving.

Great strides in the understanding of motion were made by Galileo Galilei

(1564-1642). Galilei made a concerted effort to understand nature by means

of experiments (although some of these experiments were actually only

thought experiments). The key to understanding motion in its ”purest” form

depends on the elimination of friction. This is easier said than done. One

of his experiments involved rolling a ball down one leg and up another one,

see Fig. 1.6. When the resistance is small, the ball will approximately reach

the same height on the other leg. However, when the angle with the ground

of the other leg is decreased, see Fig. 1.7, the ball still reaches the same

height, but know it has to travel a greater distance. We can keep doing this

until the second leg is lying on the ground. Galileo concluded that in this

limit, the ball still wants to go back to the same height, but this implies

it keeps travelling till infinity because it never reaches it. Therefore, unless

acted upon by an external force, an object remain in motion. This is exactly

Newton’s first law.
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Figure 1.7 When one of the legs is lowered, the ball will still reach the
same height, but now it has to travel a larger distance. Therefore, when
the angle goes to zero, the ball will go on forever since it still wants to
reach the same height, but it will never get there.

1.1.2 Constant velocity

From the velocity v , we can calculate the distance x travelled in time t from

x = vt. (1.3)

For example,

v = 2 m/s and t = 10 s ⇒ x = vt = 2× 10 = 20 m. (1.4)

For t = 0 s, Equation (1.24) always has the object at x = 0. However, we

do not always want that. A more general equation is

x = vt+ x0, (1.5)

where the object is at x = x0 at time t = 0. We can now solve some more

complicated problems.

Suppose an object is at x = 10 km at t = 0. Where will the object be at

t = 4 h later given an average velocity of 40 km/h.

Answer:

x = vt+ x0 = 40t+ 10 km ⇒ (1.6)

at t = 4 h, we have x = 40× 4 + 10 km = 170 km (1.7)

Using this equation, we can also tackle more interesting problems.

Two cars start driving towards each other. One car starts in a city 100
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km away and drives 40 km/h. The other car drives at a speed of 60 km/h.

If the cars drive towards each other when and where do they meet?

Answer:

We have two equations of motion (one for each car)

x1 = v1t+ x10 = 60t km (1.8)

x2 = v2t+ x20 = −40t+ 100 km. (1.9)

The minus sign is very important. Not only have the cars different speeds,

they are also driving in opposite directions. So far the motion of the two

cars are separate problems. However, to find out when they meet, we have

to combine the two equations. At the time when they meet (tmeet), they are

in the same place, so their positions have to be equal.

x1 = x2 ⇒ 60tmeet = −40tmeet + 100 km. (1.10)

We can rewrite this as

100tmeet = 100 ⇒ tmeet = 1 h. (1.11)

Where are the cars at the time of the meeting? We can find this by inserting

tmeet in one of the equations of motion

x1 = 60tmeet = 60× 1 = 60 km. (1.12)

Obviously, we find the same value if we insert it in the second equation of

motion

x2 = −40tmeet + 100 = −40× 1 + 100 = 60 km, (1.13)

which is a good way to check your result.

Now what would have happened if we had messed up the sign? In that

case, we solve a different problem. The cars are now driving in the same

direction, but one car has a 100 km head start. We can also solve this

problem

60tmeet = 40tmeet + 100 km ⇒ 20tmeet = 100

⇒ tmeet = 5 h. (1.14)

They now meet at

x = 60tmeet = 300 km. (1.15)

Note that the meeting point now does not lie between the initial positions

of the cars.
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We can mess up the problems even more. What happens if we interchange

the velocities? Now the equations of motion are

x1 = v1t+ x10 = 40t km (1.16)

x2 = v2t+ x20 = 60t+ 100 km, (1.17)

where we take the cars driving in the same direction. When do they meet

now?

x1 = x2 ⇒ 40tmeet = 60tmeet + 100 km. (1.18)

The solution is now

−20tmeet = 100 ⇒ tmeet = −5 h. (1.19)

This looks strange. How can they meet at a negative time? The answer is it

cannot if the cars starting driving at t = 0. The car driving 40 km/h never

overtakes the one driving at 60 km/h if that car has a head start. However,

the answer tmeet = −5 h does have physical meaning. Suppose the cars did

not start driving at t = 0, but were already driving for several hours then

they were apparently at the same point five hours earlier. Therefore, the

solution is the answer to the question:

If at time t = 0 two cars are 100 km apart. The car driving 60 km/h

is ahead of the car driving 40 km/h. If the cars started at the same point,

when did they start driving?

The answer is then 5 hours earlier.

1.2 Newton’s second law

1.2.1 Constant acceleration

Newton’s first law deals with objects in the absence of a force and states

that they keep moving at a constant speed. Newton’s second law describes

what happens to the speed if an external force is applied. Before we can do

this, we need to look at speed in more detail. Speed is the distance travelled

divided by the time it takes, or in equation form

v =
∆x

∆t
, (1.20)

where ∆ indicates that we are talking about a difference. So ∆x = xend −
xbegin is the difference between the final and initial position. We can therefore

also write it as

v =
xend − xbegin
tend − tbegin

, (1.21)
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Likewise ∆t = tend − tbegin is the change in time needed to go from the

begin point to the end point. For example, if you have traveled 50 miles at

a constant speed for 1 hour, then the speed is 50 miles/h (say: miles per

hour). Generally, in science we prefer to use the metric system. In that case,

for example, running 1 kilometer for 10 min gives a speed of 1 km divided

by 1/6 hour or 6 km/h. The most typical unit of expressing speed is meters

per second or m/s.

Now we can also turn this the other way around

∆x = v∆t (1.22)

or the distance travelled is equal to the velocity times the time travelled.

Likewise, given the distance travelled and the speed, the time that it takes

is given by

∆t =
∆x

v
. (1.23)

Velocity is very close to speed, but in addition to the size the velocity also

indicates the direction. Therefore cars driving in opposite directions on a

road at the same speed do not have the same velocity since they drive in

different directions. In three dimensions, velocity is a vector whose magni-

tude is equal to the speed. We will come back to this later.

Let us look at this by having an object move at a constant velocity. The

position is then given by

x = vt, (1.24)

where we take the position where the object is a t = 0 as the point with

x = 0. Now let us check that Eq. (1.21) indeed gives us the velocity

v =
xend − xbegin
tend − tbegin

=
v(t+∆t)− vt

t+∆t− t
=

v∆t

∆t
= v, (1.25)

which indeed does what it is supposed to do. Therefore, we can obtain the

velocity from the change in position as a function of time. So position, time,

and velocity are intimately related with each.

However, let us first make our lives a little bit more difficult and consider

the situation where the speed is not constant. How do we determine the

speed? Well, consider you are sitting in an accelerating car. However, the

speedometer is changing all the time. Every time you look at it the speed

is different. What can you do? It would be nice if we could freeze time,

because then the speedometer would stand still and we would know exactly

what the speed would be. However, Equation (1.20) shows that you can also
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determine the speed by dividing the change in distance by the change in

time. However, no we are running into problems. If we freeze time again,

then everything is standing still. So we are stuck with a paradox. First, we

find that when we freeze time the velocity is constant and then we find that

nothing is moving. To add to our difficulties, the time is not changing, so

∆t = 0, which means we are dividing by zero which would give infinity.

These problems involving things that are infinitesimally small and prob-

lems involving infinity already bothered the ancient Greeks. Zeno of Elea

(490-430BC) had a whole array of paradoxes related to them. As Aristotle

put it ”That which is in locomotion must arrive at the half-way stage before

it arrives at the goal.” Let us consider an example. Suppose we want to

cross 1 meter at 1 meter per second. First, we need to reach the 1/2 meter

point. This takes 1/2 second. Then we need reach the halfway point between

1/2 and 1. That takes 1/4 second. Reaching the next half-way point takes

1/8 second and so on. However, in the end there is an infinite number of

half way points to reach. This requires an infinite number of tasks, which

is impossible to accomplish and therefore the end is never reached. We can

express the total time as

∆t =
1

2
+

1

4
+

1

8
+

1

16
+ · · · . (1.26)

However, this paradox is not really a paradox at all. Let us multiply ∆t by

1/2

1

2
∆t =

1

4
+

1

8
+

1

16
+

1

32
+ · · · . (1.27)

However, the right-hand side is equal to ∆t− 1
2
. Therefore,

1

2
∆t = ∆t−

1

2
⇒

1

2
∆t =

1

2
⇒ ∆t = 1 s. (1.28)

This is of course exactly equal to the time it takes to cross 1 m at 1 m/s.

Therefore, freezing time is apparently not a good idea and leads to weird

results. Now let us consider what happens if we do not freeze the time, but

only look a very small time later. Then the speedometer has barely changed,

so the speed still looks constant, but the object has moved (albeit by a very

small amount).

This dependence is known as parabolic. More generally, we can write

x =
1

2
at2, (1.29)

where the presence of the 1
2
will become apparent later. We also use the
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letter a for the constant and not v. We also return to that later. So at times

t = 0, 1, 2, 3, 4, the object is at 1
2
a, 2a, 9

2
a, 8a, respectively. Now let us look

at a particular time t and little bit later at t + ∆t. We can calculate the

velocity

v =
xend − xbegin
tend − tbegin

=
1
2
a(t+∆t)2 − 1

2
at2

(t+∆t)− t
. (1.30)

Now we can write

(t+∆t)2 = (t+∆t)(t+∆t) = t2 + 2t∆t+ (∆t)2. (1.31)

Now we have to realize that when ∆t is small, its square (∆t)2 is even

smaller. Let us take an example. If ∆t = 0.001, then (∆t)2 = 0.000001. The

difference in size only increases when ∆t becomes smaller. So at some point

we can simply neglect the (∆t)2 term and write

(t+∆t)2 ∼= t2 + 2t∆t, (1.32)

where the ∼= stands for approximately equal. Putting that back into the

equation gives

v ∼=
1
2
a(t2 + 2t∆t)− 1

2
at2

∆t
=

at∆t

∆t
= at. (1.33)

Therefore we have

x =
1

2
at2 ⇔ v = at (1.34)

Therefore, we can calculate the instantaneous velocity from the difference in

position in a very small time interval and divide this by the time interval.

Now we notice that when the position changes as t2, the speed is no longer

constant but increases in time.

∆v

∆t
=

a∆t

∆t
= a. (1.35)

The quantity a is known as the acceleration, which in this case is a constant.

Since a = ∆v/∆t, its unit is m/s/s=m/s2.

Example.− Given an acceleration of 5 m/s2, what are the velocity and

position at t = 10 s?

Using Eq. (1.34), we find

x =
1

2
at2 =

1

2
5× 102 = 250 m, v = at = 5× 10 = 50 m/s. (1.36)



20 Classical Mechanics

Example.− If the acceleration is 4 m/s2, what is the velocity at x = 50 m?

This problem splits into two parts. First, we need to find the time that

the object is a x = 50 m. This can be done via

x =
1

2
at2 =

1

2
4× t2 = 50 ⇒ t2 = 25 t = 5 s. (1.37)

Secondly, we need to find the velocity at that time:

v = at = 4× 5 = 20 m/s. (1.38)

1.2.2 Newton’s second law: F = ma

We have now find that the motion of an object is described by several

different components: the position x, the velocity v, and the acceleration a.

But what happens now when we apply a force? What component changes.

We saw earlier that the ancient Greeks thought that it requires a force

to change the position. This means that the force is proportional to the

velocity (which is the change in position with respect to time). Therefore,

in order to maintain a constant velocity, a constant force F is needed. This

proportionality can be written as F = Rv, where R describes the ”nature” of

the object. This leads to the intuitive conclusion that it requires a larger force

to maintain a constant velocity. It also means that if the force is removed

the object will go back to its natural state, i.e. rest. However, this seems

logical to many people, it is not correct.

First let us try to find out what quantity a force connects to. The concept

of ”nature” is not really well-defined from a physics point of view. There is

no simple experiment that tells me what the value of R is in the equation

F = Rv. However, there is a well-defined property of a material and that

is its mass. Relative masses can be easily determined by using a balance.

Although accurate measurements are not that easy, it is not too difficult

to find that different masses react differently under a different force. The

astronaut in Fig. 1.8 applies (approximately) the same force on each of the

balls while he is blowing. It is not really necessary to do this in space, but it is

rather nice to have the balls floating. Clearly, the ball with the greatest mass

obtains a much smaller final velocity than the wooden ball and the ping-

pong ball. It was therefore proposed that we should not use the concept of

nature, but mass.

Secondly, the first law of Newton already states that in the absence of a



1.2 Newton’s second law 21

Figure 1.8 The inertia of an object depends on its mass. While the as-
tronaut is blowing, he applies an (approximately) constant force on each
of the balls. However, then do not accelerate in the same way and obtain
different finite velocities.

force, an object keeps moving at the same velocity. Therefore, no force in

needed to maintain a constant velocity. However, a force is needed to change

the velocity. In the previous Section, we saw that the change in velocity is

the acceleration. The correct law is therefore

F = ma. (1.39)

The unit of force is

kg ×
m

s2
≡ N, (1.40)

where N stands for Newton, since kilogram meter per second squared is such

a mouth full. We see that the acceleration can be written as

a =
F

m
. (1.41)

Therefore, if the mass increases, the acceleration decreases. This directly

explains why the metal ball (with the greater mass) accelerates more slowly

than the wooden and plastic ball. If the astronaut is blowing with the same

force F for a time ∆t, then the final velocity vfinal is given by

vfinal = a∆t =
F∆t

m
. (1.42)
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Figure 1.9 A beaker is resting on a peace of paper. The paper is suddenly
pulled away. There is a friction force between the paper and the beaker.
However, due to the large mass of the beaker, this force gives the beaker
only a small acceleration. Before the beaker can significantly displace itself,
it lands on the table and quickly decelerates.

The balls keep moving at the speed vfinal after the astronaut stops blowing

(they will slow down because of air resistance. However, removing the air

from the experiment makes it very difficult to blow and has other annoying

side effects for the astronaut).

Mass is directly related to the concept of intertia. Now we can look at

it in two ways. First, an object at rest tends to stay at rest. Second, an

object in motion tends to stay in motion. From a physics point of view these

are the same. Both state that an objects tends to keep its original speed,

except in the former the speed in zero, whereas in the latter the speed is

finite. However, for our daily experience these two can often seem different.

Let us first look at the object at rest. Figure 1.9 shows a typical staple in

a magician’s repertoire, although in the end it is basic physics. A piece of

paper is under a beaker. The paper is suddenly pulled away. The beaker

wants to follow, but the friction force between the smooth glass surface of

the beaker and the paper is too small to give a significant acceleration to

the beaker. By the time the paper is gone, the beaker has moved only a

little and has a small velocity. However, the friction with the table brings

the beaker quickly to a stop. For this ”trick” to work, it is important that

the friction between the beaker and the paper is small. Using sand paper or

taping the paper to the beaker will have obviously disastrous results. It is

also important that the beaker is pulled away quickly. When the paper is

pulled slowly, the friction force can give the beaker sufficient acceleration to

make it follow the paper (for the experts: the friction force is approximately

proportional to the weight of the beaker. However, if the beaker does not

move the friction force is actually somewhat larger than for the case where

the paper starts sliding under the beaker).

The second example involves a car and a passenger (dummy) moving at

a constant velocity. The velocity of the car is suddenly changed by the
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Figure 1.10 A car and its passenger are moving at the same velocity. The
car suddenly decelerates. The friction force between the seat and the pas-
senger is insufficient to significantly the velocity of the dummy.

impact of the car with a wall. The friction force of the car seat on the

driver is insufficient to slow down the velocity of the dummy. The dummy

keeps moving forward at almost the same speed, before the steering wheel

and wind shield cause a sudden deceleration of the dummy. This is clear

reminder to wear a seat belt at all times!

We like to end this Section by reminding you that although the equa-

tion F = ma looks relatively simple, it is far from simple to invent it. The

great leap forward by Galileo, Newton, and others became possible because

they placed themselves in ideal conditions. Before them, all the efforts were

doomed to fail because one tried to incorporate friction and other kinds

of resistance into a fundamental law. Deriving such an elegant expression

became possible when these forces were removed from the consideration.

However, this is almost like placing yourself in outer space. A great example

of thinking outside the box.

Example.− If the mass if 10 kg and the force applied on it is 2 N, then

what is the acceration?

F = ma ⇒ 2 = 10a ⇒ a =
2

10
=

1

5
= 0.2

m

s2
. (1.43)
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Example.− If the velocity after 40 seconds is 80 m/s and the mass is 2 kg,

what was the applied force?

Step one is to calculate the acceleration

v = at ⇒ 80 = 40a ⇒ a = 2
m

s2
. (1.44)

From the acceleration, we can obtain the applied force

F = ma = 2× 2 = 4 N. (1.45)

1.3 Gravity

The prototypical example of a situation where the velocity changes is un-

der the influence of gravity. Let us go back to Galileo. Galileo devised some

clever experiments to study the motion of object in gravitation. Although

most people know him as the person who dropped objects from the leaning

tower of pisa, there are some problems with this story. First of all, it is not at

all clear that Galileo Galilei actually threw balls of the leaning tower of Pisa.

Such experiments might have been performed by Girolamo Borro in 1575.

It is certain the Simon Stevin (1548-1620) threw objects of different mass

from the Nieuwe Kerk (new church) in Delft, even before Galileo supposedly

performed the same experiment. However, it appears that Galileo did a sim-

ilar thought experiment. The surprising result was that both objects hit the

ground at the same time. This is in complete contradiction with Aristotle’s

philosophy that states that heavier objects should fall faster because it is

in their nature. Of course Aristotle might still say that the tendency of the

lighter ball to fall to earth is comparable to the heavier ball. It clearly does

not work for a piece of paper or a feather. This is indeed more difficult to

show. However, in a vacuum (however, good pumps were not available in

those days), feather and a ball do indeed fall in the same way. This is clearly

in disagreement with Aristotle. Then again, it also appears to contradict the

law F = ma, since doesn’t that say that heavier objects have more intertia

and therefore should be accelerated more slowly in a gravitational pull?

Galileo decided to look into this more carefully. Although the leaning-

tower story is about as indestructable as the apple that never fell on New-

ton’s head, the experiment itself is not ideal to study gravitation. Balls fall

very fast and, in addition, air resistance quickly leads to an almost constant

velocity. Galileo wanted more control. He therefore studied rolling balls, but
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Figure 1.11 Galileo’s inclined plane experiment. Galileo determined the
distances travelled in each time interval by attaching bells to the slope.

on an inclined plane, see Fig. 1.11. Less dramatic, but definitely more con-

trollable. The force (gravity) that moves the ball forward becomes less if

the angle with the ground becomes smaller. Still, the balls roll pretty fast

and it is not easy to figure out at what time the ball passes a certain point.

Again, Galileo thought of a clever trick. He attached bells to the inclined

plane which would sound every time the ball passed it. By rearranging the

bells until the the rhythm was exactly right. He then measured the distances

between the bells and found them to be in proportion 1, 3, 5, 7, 9,. . . , or,

measured from the beginning 0, 1, 4, 9, 16, 25, etc. The ratios were always

the same, independent of the angle of the inclined plane. This behavior can

be described by t2, where t is the time. Therefore, Galileo found that grav-

ity gives a constant acceleration, regardless of the mass. The conventional

letter to denote this acceleration is g. The gravitational pull is therefore mg.

Insterting this in Newton’s law gives

F = ma ⇒ mg = ma ⇒ a = g. (1.46)

The quantity mg is known as the weight. Since it is directly proportional

to mass, people often confuse the two. The problem lies in the gravitational

acceleration g. Although g does not differ too much over the Earth’s sur-

face (its average being 9.806 m/s2), it is not a constant. There are several

reasons for the deviations from the average value. First, of all the Earth is

not a perfect sphere, but is somewhat bulged at the equator as a result of

the spinning of the Earth. Since the acceleration decreases when you are
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Figure 1.12 The devitations from Earth’s gravity, relative to an idealized
smooth Earth, the earth ellipsoid. Larger and smaller values of g are indi-
cated in read and blue, respectively.

further away from the Earth’s center, g is smaller at the equator. Addition-

ally, the Earth is spinning around its axis, which also somewhat reduces the

effective g at the equator. The values of the gravitational acceleration are

g = 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles. So an

object weighs 0.5% more at the poles than at the equator. However, note

that the mass has not changed. In addition, there are other factors that can

change the gravitational constant, such as the topography (the presence of

mountains and valleys) and the geology (the local density of the materials in

the Earth). Such variations are shown in Fig. 1.12. Therefore, going to the

top of Mount Everest at 8,848 meters altitude causes a weight decrease of

0.28% (then again, the climb to the top probably produces a greater weight

loss than gravity). However, these variations are all pretty minor. Larger

effects occur when travelling to different planets. The gravitational acceler-

ation at the Moon is only 1.62 m/s2. Therefore, you weigh about 6 times

less, allowing you to jump around very easily even while wearing very heavy

spacesuits. On the other hand, you would weigh about 28 times more on

the surface of the Sun. However, the ambient temperature of 6000 K (about

10,000 degrees Fahrenheit) will incinerate you, before you can even test how

this will affect your jumping skills. However, be careful when comparing this

with astronauts that are weightless when in orbit around the Earth. Do not

make the mistate into thinking that they have gone away far enough from

Earth that they no longer experience the gravitational pull of the Earth. In

a typical orbit of a spaceship around the Earth (at an alitude of about 400

km), gravity is still 90% of what it is at the Earth’s surface. We will come
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back to this later.

Example.− If an object hits the ground with a velocity of 20 m/s, from

what height was it dropped?

The time can be expressed in terms of the gravitational acceleration and

the velocity as

v = gt ⇒ t =
v

g
. (1.47)

The height is then given by

h =
1

2
gt2 =

1

2
g

(

v

g

)2

=
1

2

v2

g
=

1

2

202

9.8
∼= 20.4 m. (1.48)

1.3.1 General formulas

In the equations used in the previous Section, x = v = 0 at time t = 0.

Obviously, this does not have to be the case. For example, an object can

already have a finite velocity at t = 0. One can obtain more general equations

that reflect this fact. The more general equations are where we have taken

the y coordinate since many problems deal with gravity and the acceleration

is in y axis. Note that for t = 0, we have y(0) = y0 and vy(0) = v0.

y(t) =
1

2
at2 + v0t+ y0

vy(t) = at+ v0, (1.49)

Let us give an example to see how this works:

Example.− Let us consider an object thrown upwards with an initial ve-

locity of v0 = 5 m/s a a height of 10 m. For simplicity, let us take the

gravitational acceleration g = −10 m/s2.

We can insert the initial conditions into Eq. (1.49), giving

y(t) = −5t2 + 5t+ 10 (1.50)

vy(t) = −10t+ 5 (1.51)

These functions are plotted in Figs. 1.13 and 1.14. When writing down these

equations, it is very important that you get the signs correct. The gravitional

acceleration is downwards and therefore gets a minus sign. The object is

thrown upwards and therefore gets a plus sign. We took y0 = 10 m. This
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Figure 1.13 The vertical position of an object thrown upwards with a ve-
locity v0 = 5 m/s from a height of 10 m.

means that we have taken the ground as y = 0. Note that this is a choice that

we make. We could have take the point where we throw the object upwards

as y0 = 0. Then the ground is at y = −10 m. However, it is probably less

confusing to be consistent and take the ground always at y = 0. Now that

we have the equations of motion down, we can ask ourselves some important

questions:

(a) When is the object back at the same height of 10 m?

For this, we need to know when the height is equal to 10 m, or

y(t) = 10 ⇒ − 5t2 + 5t+ 10 = 10 (1.52)

This equation is easily solved giving

−5t2 + 5t = 0 ⇒ − 5t(t− 1) = 0 ⇒ t = 0, 1 s. (1.53)

We find two solutions. The first, t = 0 seconds is the time when we threw

the object into the air. The object then goes up after which the graviational

acceleration pulls it down again. The second time, t = 1 s, is the time

when the object passes the point where it was thrown upwards. We can
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Figure 1.14 The velocity of an object thrown upwards with a velocity v0 =
5 m/s from a height of 10 m.

doublecheck this by inserting it back into the equation of motion, y(1) =

−5 × 12 + 5 × 1 + 10 = 10 m. We can also calculate the velocity which at

t = 1 s is

vy(1) = −10×+5 = −5 m/s, (1.54)

using Eq. (1.51). Note that this is exactly the initial speed, but the sign has

changed. First, the object was thrown upwards (positive sign) and,at t = 1

s, it is going down (negative sign).

(b) When does the object hit the ground?

Since we take the ground at y = 0, we have to solve the equation

−5t2 + 5t+ 10 = 0. (1.55)

This is a quadratic equation of the form

at2 + bt+ c = 0. (1.56)
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The roots of this quadratic equation are given by the well-known formula

t =
−b±

√
b2 − 4ac

2a
. (1.57)

Inserting that a = −5, b = 5, and c = 10 gives

t =
−5±

√

52 − 4(−5)10
2× (−5)

=
−5±

√
25 + 200

−10
=
−5±

√
225

−10
(1.58)

=
−5± 15

−10
=

{

10
−10

= −1
−20
−10

= 2
(1.59)

This is somewhat confusing. We obtain the right answer namely t = 2 s,

which we can also see by checking the plot in Fig. 1.13. However, we also find

that t = −1 s works. This almost seems like going backwards in time. What

does this all mean? The equations of motion in (1.49) give the trajectory of

the object. However, they contain nothing of the physical stuff like when it

is being thrown, when it hits the ground, etc. This is something we all put

in there ourselves. Equation (1.49) is the motion of an object that starts

at t = −∞ s (yes, indeed that is minus infinity, before the creation of

the universe) at a postion of y(−∞) = −∞ m, whereever that may be. . . .

It will also keep on going forever. Therefore, it is crucial that we put these

physical bounds into the equation. However, the time t = −1 s is not entirely

unphysical. At time t = 0 s, we had said that the object isthrown upwards

with a velocity of 5 m/s at a height of 10 m. This is not really contained in

the equation. The only things that the equations say is that the object is

at 10 m height and has a velocity of 5 m/s. It does not say anything about

being thrown at time t = 0. It only describes the situation at t = 0, not how

the object obtained this height and this velocity. The solution that y = 0 at

t = −1 seconds tells us that we could have obtained the same situation at

t = 0 by throwing the object upwards 1 second earlier with a velocity of

vy(−1) = −10× (−1) + 5 = 15 m/s. (1.60)

This situation is shown in Fig. 1.15. The next question we can ask is

(c) When is the object at its maximum and what height does it reach?

This is more complicated and we have several ways of calculating it. First,

we can look at the solution from (a). For Fig. 1.15, we see that the parabola

is symmetric around its maximum. We also know that it passes the same

height at t = 0 and t = 1 seconds. The maximum is therefore in the center
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Figure 1.15 An alternative way of looking at the same problem. The same
trajectory is obtained by throwing the object upwards with a velocity of
15 m/s at a time t = −1 s.

of those two times, or

tmax =
0 + 1

2
=

1

2
= 0.5 s. (1.61)

The height can now be found by inserting the time into the equation of

motion in (1.50). giving

y(
1

2
) = −5

(

1

2

)2

+ 5

(

1

2

)

+ 10 = −
5

4
+

5

2
+ 10 =

5

4
+ 10 = 11

1

4
m.

We could have found the same result by taking the looking at the times

when it was on the ground t = −1 and 2 seconds, which gives again tmax =

(−1 + 2)/2 = 1/2 s.

There is however a different way of looking at the problem. Let us ask

ourselves first, what defines the maximum in the equation of motion? Before

the object reaches the maximum, it is going upwards (vy > 0). After reaching

the maximum, it is going down (vy < 0). Therefore, at some point the

velocity vy changes from positive to negative. There is only one number that

can be positive and negative at the same time and that is zero. Therefore,
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Figure 1.16 Comparison between lifting an object in space and on Earth.
In space, the effect of gravity is absent and a much smaller force is needed
to give the same acceleration as on Earth.

we want to find the time for which vy = 0. This is given by

vy(−1) = −10t+ 5 = 0 ⇒ t =
5

10
=

1

2
s. (1.62)

This is the same time as we found earlier.

1.3.2 Weight and mass

Different instruments measure different things. The correct way to measure

mass is to use a balance. A balance compares different weights, but since

the gravitational acceleration is the same on both sides of the scale you are

effectively measuring mass. However, most scales actually measure weight

because the work with springs or other sensors that are sensitive to the

weight. They display shows the result in pounds or kilograms, the unit of

mass. However, when you would measure your weight on the Moon the result

will be incorrect.

1.3.3 Gravity and acceleration

Although g is an acceleration, one should not confuse it with the acceleration

in F = ma. Let us compare lifting an object in space and on Earth, see Fig.
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1.16. In space, one only has to overcome the inertia of an object in order to

give it a certain acceleration a. The force F is then given by

F = ma, (1.63)

where m is the mass of the object. Note that if you only give the object

a very small acceleration, little force is needed. Also, once you set it in

motion, there is no need to apply any additional force since once the object

is in motion, it will remain in motion. You need to apply an additional force

in the opposite direction to stop the object.

On Earth, one also has to overcome gravity. The force is then given by

F −mg = ma ⇒ F = m(g + a) (1.64)

We have to take care of the signs here. The force is working in the opposite

direction as gravity and one needs a minus sign to account for this. One

needs a larger force in order to obtain the same acceleration as in space.

The other way of writing the equation is

a =
F

m
− g. (1.65)

Depending on the size of the force, the acceleration can be positive or nega-

tive. If F > mg, where mg is the weight of the object, then the object moves

upwards. However, if F < mg the object falls back to the ground. But even

when there is no acceleration, you still need a force of F = mg to prevent

the object from falling.

In a spaceship orbiting Earth, objects and people are weightless. At first,

you might think that this is a result of the fact that the spaceship is not

close to Earth and therefore the gravitational acceleration is close to zero.

However, is that the case? We know that spaceships and spacestations that

orbit the Earth are closer than the Moon. Now, the Moon is held into orbit

by the graviational pull of the Earth. In fact, the spacestation orbits that

Earth at an altitude of about 400 kilometers. This is significantly closer

than the Moon, which is 400,000 km away from the Earth. Given that the

radius of the Earth is 6,400 km, the gravitational acceleration is smaller by a

factor (6, 400/6, 800)2 ∼= 0.89, which is only 11% smaller than at the Earth’s

surface. Athough it is a great way to loose some weight (but not mass!), it

certainly does not the weightlessness.

Let us return to the question: what is weight? Weight is what you measure

when you stand on a scale. The scale measures the gravitational pull that the

Earth exerts on you. This force F = −mg is the weight (not that the negative

sign indicates that gravity is pulling you down). However, although gravity
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Figure 1.17 Generally, cannonball shot from a cannon generally hits the
Earth’s surface after a while, see the left side of the Figure. However, for
a certain velocity the cannonball falls towards the Earth, but it will never
reach it and keeps going around the Earth (in the absence of air resistance).
The right side shows that also for other conditions, the canon ball would
”circle” around the center of earth, if it wasn’t for the annoying Earth’s
surface.

is pulling you towards the center of the Earth, you are not accelerating when

you are standing on a scale. This is because the scale is preventing you from

falling. This force is exactly equal to your weight, so

Fgravity + Fscale on you = −mg + Fscale on you = 0 = ma ⇒ a = 0,(1.66)

so the acceleration is zero. Now the force that the scale exerts on you is

exactly equal, but opposite, to the force that you exert on the scale

Fyou on scale = −Fscale on you = −mg. (1.67)

Now let us put the scale into an accelerating elevator. Note that the

elevator should be accelerating not just simply moving at a constant velocity.

We can now ask again the question: what does the scale indicate?

Fgravity + Fscale on you = −mg + Fscale on you = −ma. (1.68)

In the case that a > 0, the elevator will be accelerating downwards. The

gravitational pull has not changed, but we want to know what the scale

indicates. We can solve the above equation

Fscale on you = m(g − a). (1.69)

So the scale feels an effective weight of

Fyou on scale = −m(g − a). (1.70)
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For the very special case that g = a (basically the elevator is just falling

without any resistance), the scale indicates that your weight is zero. You are

weightless.

However, a spaceship is not an elevator. A dropping elevator eventually

hits the ground. A spaceship or spacestation does not crash into the Earth’s

surface and still the people and objects in there are weightless. The clue lies

in the observation that it is not only falling down, but also moving forward.

Figure 1.17 shows the situation for a cannonball. Generally, the velocity

is too small and the cannonball will hit the Earth’s surface. However, for a

certain velocity, the cannonball is still falling, but it simply never reaches the

ground and it will continue to orbit around the Earth (in the absence of air

resistance). Obviously, we cannot do this experiment too close to the Earth’s

surface since the Earth is not entirely spherical and the cannonball will hit

the ground somewhere. So, we have to shoot it from a higher vantage point.

We still need to shoot the cannon ball at about 28,000 km/hour. You can

save yourself 1670 km/hour if you shoot the cannonball in the direction of

the Earth’s rotation. These are very high velocities considering that a bullet

leaves an M16 rifle at about 3,500 km/h. This is in fact common practice

with rockets which are usually launched eastward. However, in principle,

the same thing would happen under different conditions, see the right side

of Fig. 1.17. If the Earth’s surface was not there (say, all the Earth’s mass

was concentrated in a very tiny ball), then the cannonball would describe

an ellipse around the center of the Earth. Note, that it would not describe

an ellipse if the cannonball could magically travel through the Earth. The

reason for that is the dependence of the gravitational acceleration inside the

Earth. If the cannonball is at a certain distance from the center of the Earth,

all the matter which is at a greated distance to the center of the Earth does

not contribute to the gravitational acceleration.

It is also possible to recreate free-fall conditions in a plane. At first, you

might think that just dropping out of the sky would do the trick. However,

this does not quite work because of the air resistance (drag) that prevents a

good free fall. However, with a place one can correct the imperfect free fall.

By making the plane describe a parabola in the sky, one can obtain roughly

25 seconds of weightlessness. This is followed by 25 seconds of feeling twice

the gravitational acceleration.

Besides the obvious effect of weightlessness, other things are also different

in zero gravity. For example, flames burn differently, see Fig. 1.18. At Earth,

convection plays an important in determining the shape of the flame.Om

Earth, convection plays an important role. Cold air is denser and therefore

heavier and will sink. Hot air is less dense and will rise causing the narrowing
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Figure 1.18 Flames burn differently in the presence (left) and absence
(right) of gravity. With gravity, the convection of the air gives the flames
its familiar shape. In zero gravity, there is no such thing as ”heavy” and
”light” air since everything is weightless. The heat radiates out uniformly
giving the flame a spherical shape.

of the flame. Without gravity, the air is weightless and there is nothing

like ”light” and ”heavy” air. The hot air will move away from the flame

uniformly. This causes the to become more spherical.

Also liquids behave differently in zero gravity. Without gravitational ac-

celeration, the liquid does not splash on the floor, but floats in the air, much

like a bubble on Earth. Although the surface tension keeping the liquid to-

gether is not strong, in the absence of gravity it is the force dominating the

behavior of the liquid. This makes it possible to perform some cool shock

wave experiments, see Fig. 1.19

1.3.4 Gravity: the mysterious force

Let us consider the expression for the gravitational force in more detail

F = mg. This expression for the force solves our problem from a mathe-

Figure 1.19 A shock wave propagating through a ball of weightless water.
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Figure 1.20 Einstein’s thought experiment of gravity. Einstein concluded
that for a person inside a room without windows, there is no way of knowing
whether he is at the Earth’s surface experiencing g due to the Earth’s
graviational field or being accelerated in free space with an acceleration
equal to g.

matical point of view, meaning that it gives the right result for the type of

experiments that Galileo performed. However, the more you look at it and

think about it the more confusing and mysterious it becomes. We will not

be able to provide every answer here, but asking the right questions is often

a crucial part in solving a problem. First, we have not solved in any way

the problem about the nature of the force. What is this mysterious force

that just acts through nowhere? Are there any strings somewhere pulling

us back to Earth? Can this force act through vacuum or does it need some

substance to mediate the interaction? Second, the gravitational force is pro-

portional to the mass. So not only does it act in some invisible fashion, in

some way the Earth is able to determine the mass of an object and apply a

force on it that is directly proportional to it. How on Earth does the Earth

do that? Thirdly, why does the gravitational force work on the mass, which

is exactly the same quantity as the one that appears in m times a, i.e. the

inertia. We will talk later about different forces, but none of them works on

mass. They all work on different quantities (such as charge for the Coulomb

interaction). Why doesn’t gravity work on a different quantity, say nonsense

(abbreviated by n)? So one object could have a mass (inertia) of 5 kg, but

have a nonsense of 15 kg, whereas another object could have the same mass
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of 5 kg, but a nonsense of only 10 kg. Then the gravitational forces given

by n × g would be different and the accelerations would be 3 and 2 m/s2,

respectively. Now this might seem like nonsense, but people have actually

looked into this and found the nonsense and the mass to be equivalent up to

many decimal places. This may sound absolutely silly to you, but it is this

line of thinking that led Einstein to his theory of general relativity. Einstein

wondered why there is such a strange similarity between acceleration a and

gravity g and he concluded that they are equivalent. Einstein formulated

the equivalence principle. He imagined someone sitting in a room with no

windows. On Earth, he this person would experience the gravitational ac-

celeration of 9.8 m/s2 of the Earth. However, Einstein concluded that this

experience would be exactly the same if he was sitting in the same room in

free space (without any gravity) being accelerated with 9.8 m/s2. Confus-

ing? It certainly is. How can standing still on the earth give exactly the same

experience as being accelerated in free space? However, this equivalence ex-

plains why the inertia in ma and the mass in the gravitational force mg is

exactly the same. This still does not answer the first couple of questions, but

this is not really the right place to talk about distortions in the space-time

continuum. However, it does show that asking the right questions is about

just as important as actually solving the questions.

1.4 The solar system

Ancient civilizations had an entirely different idea of the universe than

the modern one. The view is reflected in the old testament. It was believed

that the Earth was flat and resting on columns (the pillars of the Earth).

There was water below the Earth and also above the Earth. The Earth was

protected from the upper waters by the firmament. The Sun, Moon, and

starts were also attached to the firmament. Precipitation was the result of

the opening of flood gates in the firmament.

At the start of the renaissance in the sixteenth century, it was still gen-

erally assumed that the Earth is a the center of our solar system. However,

although this followed Aristotle’s view of our solar systems, some of the

ancient Greeks had a surprisingly well developed insights into our solar sys-

tems. Let us try to developed a view of our solar system in a number of steps.

STEP 1: How big is the earth?

The first thing that you need to know is the radius of the earth. Although,

you might stick to the point of view that the Earth is flat, it is not difficult
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Figure 1.21 The view of the universe for ancient civilizations. The upper
and lower waters were separated during the creation. The Earth was flat
and resting on pillars. The Sun, Moon and stars are attached to the firma-
ment. The firmament also contain floodgates.

to establish that the Earth has a curvature. For example, of a boat at the

horizon you first see the mast and only later the hull. The radius of the

Earth was first determined by the Greek Eratosthenes (279-194 B.C.). He

knew that on noon at the longest day of the year the sun was almost at its

zenith in Syene. Therefore, no shadows were cast. However, Eratosthenes

was in Alexandria and there a shadow was cast atnoon on the summer

solstice. Eratosthenes took a large obelisk and measured its shadow. Since

he knew the height of the obelisk, he could determine that the Sun appeared

at an angle of 7.2 degrees south of the zenith. This actually determines

the curvature of the earth between Syene and Alexandria. What was left

was to determine the distance between Syene and Alexandria. To this end

(astronomers apparently had some influence in those days), he ordered some

soldiers to walk from Alexandria to Syene to determine the distance. It turn

out to be 5000 stadia, roughly 750 km. The circumference of the Earth can
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then be determined

circumference = 750×
360◦

7.2◦
= 37, 500 km, (1.71)

which is close enough to the real value of 40,000 km. The diameter is then

obtained by dividing the circumference by π giving 12,700 km. Since the

Earth is spinning around its axis in 24 hours, this means that a person at

the equator moves at a velocity of about 1600 km/h due to the rotation of

the Earth.

An alternative example is by watching the sunset which does not involve

giving soldiers marching orders. Suppose you are lying down, watching the

Sun set. You start your stopwatch just after the Sun goes down. Then you

stand up and watch the Sun set again. Suppose your height is h =1.7 m and

the time elapsed is t =11.1 s. What is the radius of the Earth?

Solution: The idea is that if the Sun is setting the line connecting your eyes

to the Sun is a tangent to the Earth’s surface, see Fig. 1.22. Then you raise

yourself by h and draw a new tangent. This is drawn with great exaggeration

see Fig. 1.22. This forms a the red lines in the Figure form a triangle with

90◦ angle. We can therefore use Pythagoras theorem

Figure 1.22 Schematic diagram to calculate the size of the Earth by mea-
suring to different sunsets. Aperson lying down and one standing see a
different sunset by increasing the distance to the center of the Earth by h.
Note that h is greatly exaggerated.
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d2 + r2 = (r + h)2 ⇒ d2 = 2rh+ h2 ∼= 2rh. (1.72)

We can do the last approximation since h ≪ r. Now, d = r tanφ, where φ

is given in Fig. 1.22 and we can also write

r2 tan2 φ = 2rh ⇒ r =
2h

tan2 φ
(1.73)

We have to determine φ. However, we now that 11 s has passed and that

the Earth turns 360◦ in 24× 3600 = 86400 s. The angle is then given by

φ =
11.1

86400
× 360◦ = 0.04625◦. (1.74)

This gives for the radius

r =
2× 1.7

tan2 0.04625
= 5.22× 106 m, (1.75)

or about 5,000 km giving a diameter of roughly 10,000 km. Again not exact,

but a reasonable estimate nevertheless.

STEP 2: What is the size of the Moon?

This idea is again thought to originate from Eratosthenes. However, it was

first carried out by Aristarchus of Samos (310-230 B.C.). The idea is to de-

termine the relative sizes of the Earth and the Moon. Since we know the

size of the Earth, calculating the size of the Moon, should then be a piece of

cake. The trick was to make use of a lunar eclips, when the Moon is passing

through the shadow of the Earth. We want to compare the time it takes the

Moon to travel to the shadow of the Earth (which is roughly equal to the

size of the Earth if the Sun is sufficiently far away, so that its rays can be

considered parallel) to the time it takes for the moon to traverse its own

diameter. This can be done by measuring the difference between the time

that a moon covers a bright star and the time that the star reappears. Doing

this, Aristarchus found that the Moon’s diameter is about 3/8 that of the

Earth or 4700 km (it should be closer to 1/4). Okay, slightly off the real

diameter of 3476 km, but we are interested in the right order of magnitude.

STEP 3: What is the distance between the Earth and the Moon?

Now that we have the absolute diameter of the Moon, we can determine the

distance by measuring the angular diameter on the sky. The angle occupied
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Figure 1.23 The top part shows the Moon moving through the shadow of
the Earth. The lower part shows how to determine the distance to the Sun
when the Moon is in its third quarter.

by the full moon is about 0.5◦. or 0.5◦2π
360◦

= 0.0087 arcradians.

distanceEarth−Moon =
3476

0.0087
∼= 400, 000 km. (1.76)

This distance between the Earth and the Moon varies between 363,300-

405,500 km, since the orbit of the Moon around the Earth is elliptical and

not spherical.

Now that we determined the distance to the Moon, we might even try some-

thing more ambitious: Can we determine the distance to the moon as well?

STEP 4: What is the distance between the Earth and the Sun?

This is a bit trickier to determine than the distance to the moon. Again,

our good old friend Aristarchus found a method to determine the distance.
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The trick is to find a right angle. When we have a half Moon, the Sun-

Moon-Earth angle is 90◦. Since we know the distance from the Earth to the

Moon, we can determine the distance Earth-Sun, when we know the angle

α to the Sun, see Fig. 1.23. This is quite a difficult determination. There is

the unhealthy aspect of looking directly at the Sun, but in addition there

is the complication that the angle is almost 90◦. In fact, it is 89.853◦. The

calculation of the distance would then be

distanceEarth−Sun =
distanceEarth−Moon

cosα
=

400, 000

cos 89.85
∼= 150, 000, 000 km.

Aristarchus was off by a factor 20. Still, it means that he ended up with

a number in the millions of kilometers. Note that this distance to the Sun

means that we are flying through space at the relaxed speed of 100,000

km/h. While we are at it, we can also calculate the size of the Sun. Since

the Earth rotates around the Sun in 365 days, the Earth moves at a speed

of

v =
2π150, 000, 000

365× 24
= 108, 000 km/h. (1.77)

For comparison, the fastest speed achieved on land is a rocket sled that

managed to go 10,385 km/h. NASA’s X-43, an unmanned experimental hy-

personic aircraft, the fastest one on record, flew at 12,144 km/h.

STEP 5: What is the size of the Sun?

Just as for the Moon, we can again make use of the angle that the Sun

occupies in space. From solar eclipses, we know that the angular diameter of

the Sun is more or less that of the Moon, i.e. 0.5◦. Using the distance from

the Earth to the Sun, we can obtain a diameter of

diameter = 150× 106 km ×
0.5◦

360◦
× 2π ∼= 1.3× 106 km, (1.78)

which is several times larger than the size of the Moon’s orbit around Earth.

If this was all known more than two centuries before Christ, why did

this knowledge get lost for many centuries, only to be rediscovered after

the renaissance? Well, it did not really get lost, but it was largely ignored.

One of the reasons is that people prefer ignore things that they do not find

appealing. The idea of people walking upside down on the other side of the

Earth is just hard to believe. Also, wherever we are on Earth, the surface

looks more or less flat. A second factor is that people like to place themselves

at the center of the universe. If the Sun is that far away, it is more logical

that the Earth circles around it in 365 days, as opposed to the Sun circling
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around the Earth in 24 h at roughly 4 million miles per hour. However, that

makes the Earth less important than the Sun. So it is easier to ignore the

fact that the Sun is that far away. Of course, we may find that all very

silly, but still people like to stick to comfortable ideas and deny or ignore

things that makes them feel less special or makes them appear small and

irrelevant. The idea that the Earth rotates around the Sun is now reasonable

well accepted, but how many philosophies and religions have as foundation

that humans are absolutely unique and that the universe is just a backdrop

to our existence?

It is the idea that humans are central in the creation that defeated the

heliocentric model (the idea that the planets rotate around the Sun and not

the Earth. The latter is known as the geocentric model). The geocentric

model with the Earth at the center was refined by Ptolomy (90-168 AD).

Ptolomy was a Greek living in Egypt, around the time that the Roman

Empire was at its greatest extent. The basis of the model was that the

universe was made up of celestial spheres. The Sun was on a sphere about

1210 Earth radii. This is off by about a factor 20 (which is not too bad...).

The outer sphere was at 20,000 Earth radii, which coincidentally is very

close to the distance between the Earth and the Sun. However, it is only

about 0.000015 light years (the distance light travels in a year) or about

7 light minutes (light takes a little over 8 minutes to travel from the Sun

to the Earth at a speed of 300,000 km/s). The distance to the nearest star

(Proxima Centauri) is 4.2 light years, which is significantly further away. The

Greeks however noticed the the planets do not follow simple movements in

the sky, but often seemed to move backwards (retrograde motion), see Fig.

1.24. This was solved by introducing epicycles, additional circular motions

that the planets made in their orbits. Ptolomy’s work on the motion of the

planets was published in his influential book Almagest, around 150 AD.

1.4.1 Science between the Greeks and the Renaissance

The geocentric view held sway until the fifteenth century. Again we seem to

be hopping between the ancient Greeks and the renaissance. Did really noth-

ing happen in between? The Roman had a giant empire, but their interests

were not in fundamental science and philosophy, which they essentially took

from the Greeks. The Romans were great engineers who constructed building

such as the colosseum (72-80 AD) and the Pantheon (126). The Pantheon is

still the building with the largest dome made out of non reinforced concrete.

Some might say the the achievements of the ancient Egyptians, such as the

great pyramids were even greater. However, the pyramids while fantastic



1.4 The solar system 45

Figure 1.24 Ptolomy perfected the geocentric model by introducing epicy-
cles, little additional circles that the planets made in their orbits to explains
the peculiar motion that some of the planets made in the sky.

achievements are less difficult from an engineering point of view than, say,

the pantheon. You can see this for yourself. Try to build a pyramid or a

building ressembling the pantheon out of sand on the beach. And they have

to be the same, not only the outside, but also the inside. This is easy for the

pyramids which are not really buildings, but giant mounds (although they

have some relatively small interior spaces in there that you can no doubt

reproduce in a sand castle. However, the Pantheon, see Fig. 1.25 has an

interior space that exactly fits a sphere with a diameter that is slightly over

43 meters. Now try to reproduce that in a sand castle.

However, size is obviously more impressive. In fact, some people are so

impressed by the great pyramids in Egypt that they claim that they were

built by aliens. First, you might say that it is kind of strange that there

are also pyramids that are less impressive than the Great Pyramids. The

answer to that is that those pyramids were not built by aliens only the really

impressive ones. Second, you might wonder why aliens would come to Earth

to teach us how to stack stones into a perfect pyramids. It seems like such a

wasteful excersize. Wouldn’t you need something else if you were an alien?

And it the aliens really wanted to teach us something, why not teach the

ancient Egyptians, who were living in the bronze age, how to make stainless

steel, which they could then use to make nice stainless steel frame buildings?

Furthermore, the largest pyramid on Earth is not in Egypt, but actually in

North Korea (of all places): the 330 m high Ryugyong Hotel in Pyongyang.

Compare this to the Great Pyramid of Giza/Khufu/Cheops, which is only

146.5 meters high. In addition, the Ryugyong Hotel is a functional building

(if the North Korean finally manage to finish it). Again compare this with

the pyramids which are built for a single guest that has no intention of

checking out (at least not voluntarily). So apparently, the North Koreans
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Figure 1.25 One of the great architectural feats by the Romans: the Pan-
theon (126 AD).

are out-building the aliens civilizations that are familiar with interstellar

space travel. This does not make much sense.

However, people believing in aliens have more up their sleeve. Look at the

geat pyramid of Giza. Take four times its base and divide it by the height

and you get

4× Base

Height
=

4× 115.2

146.5
= 3.14 ∼= π, (1.79)

which is rather surprising since the ancient Egyptians were not supposed

to known about π, hence aliens. We can try to view this as a scientific

hypothesis. Now what is the sceptical scientist to do here? Now you might

try to argue that π has something to do with the area or the circumference

of a circle and that the division of base and height seems more like a tangent

which is not directly related to π, but you already feel that that argument

is not going to fly. 3.14, that can hardly be a coincidence, right? Does the

alien believer beat the sceptical scientist here?

Let us first have a look how Egyptians measured things. Their standard

measure was the Egyptian Royal cubit. The cubit was subdivided into 7

palms, which were again subdivided into 4 fingers, making a total of 28

digits. Now the Egyptian architects had to convey to the engineers how to

construct the pyramid. Now let us fix the height at 28 fingers. If we now
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Figure 1.26 The stepped pyramid (2600 BC) and a hypothesis on how the
ancients Egyptians might have worked with angles.

take half the base also at 28 fingers, then the angle is

θ = arctan
28

28
= arctan 1 = 45◦. (1.80)

Now this might not be entirely daring enough, so let us try something steeper

by reducing half the base to, say, 20?

θ = arctan
28

20
= arctan 1.4 = 54.5◦. (1.81)

All right construction starts, but at some point the pyramid starts to crum-

ble at the base and the whole thing is succumbing under its own weight.

Disaster! Now what to do. The easiest thing to do is to continue building at

a somewhat less daring angle. How about 30? All right, this gives an angle

of 43.0◦. Now let us compare this with the measured angles of the stepped

pyramid that was built for Sneferu: 54.8 and 43.4. That’s not too far off.

Accident? Let us continue with Sneferu’s son Khufu or Cheops. Obviously,

not wanting to repeat the disaster of his father, he decides to start with

a somewhat more conservative angle. A half-base of 22 gives an angle of

arctan 28
22

= 51.84◦. This is scarily close to the measured angle of 51.82◦

for the Great Pyramid of Giza/Khufu/Cheops (2560 BC). The next pharao

is Khafra or Chephren. Apparently, he does not want to be outdone by

his father and decides to go for a steeper pyramid. Taking half-base of 21

gives an angle of arctan 28
21

= 53.13◦. The measured angle of the other Great

Pyramid is 53.1◦.

Now what about π? Well, let us calculate the ratio of the base and the
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heights of the Great Pyramid of Gizeh

4× Base

Height
=

4× 22

28
=

22

7
= 3.1428. (1.82)

Now this is not the same as π = 3.1415, but the first three digits are the

same. Interestingly, 22/7 was the upper bound for π found by Archimedes

(287-212 BC) more than two millenia later, but maybe Archimedes was an

alien...

Now what does this proof? Not directly anything, since I have no proof

that the argument about the determination of the angles is correct. You

are still free to believe that the pyramids are built by aliens, although it is

not entirely obvious why you want to stick to that hypothesis. What does

this teach us about science? A number of things. First, do not get fooled by

coincidences. Just because something happens to be close, does not make it

the same. Second, keep thinking! Just because you found some interesting

hypothesis, does not directly make it a correct one. And thirdly, failing to

understand something does not prove something else. Just because you do

not understand where the 3.14 comes from is not a direct proof that aliens

built the pyramids.

However, not much else remains from the Roman Empire. Pliny the Elder

wrote a book on Naturalis Historiæ, which covers just about everything

and serves as a model for the modern encyclopedia (although missing the

convenient alphabetical organization). The work by Galen (129-200/216) did

influential work in medicine. He recognized two different types of blood, but

failed to see it as a circulatory system. Instead he thought that venous blood

was created in the liver and arterial blood in the heart.

The Roman Empire came down after subsequent invasions by the Visig-

oths, the Huns, and the Vandals. At the same time, the Empire was split

into a western and eastern part. The Eastern Empire, also known as the

Byzantine empire was of greater endurance than its western counterpart. It

played a great role in transferring knowledge from the islamic empire to the

renaissance Italy. Concurring with the decline in the western civilization,

the Arab world was on the rise following the teaching of the prophet Mo-

hammed (570-632). One of the innovations that came from the East was the

Hindu-Arabic numeral system. The Roman numerals, which are sometimes

used, are an inconvenient way to count that hindered the development of

mathematics. They consist of letters to represent numbers: M (1000), D

(500), C (100), L (50), X (10), V (five), and I (1). If they appear in the

right order then they need to be added, thus V I = V + I = 5 + 1 = 6.

However, if a number appears out of order then it needs to be subtracted
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from the following larger numeral: IV = −I + V = −1 + 5 = 4 (it is not

quite known why clocks generally use IIII instead of IV for the number 4).

From the number CIII = C + I + I + I = 100 + 1+ 1+ 1 = 1− 3, you can

see that Roman did not have the number zero. However, for larger numbers,

the system becomes rather cumbersome and intransparent

MCMLIV −M + CM + L+ IV = 1000 + 900 + 50 + 4 = 1954,(1.83)

although practice will undoubtedly help. The Arabic numerals entered Eu-

rope around the year 1000.

They also worked on irrational numbers. Rational numbers can be written

as fractions, such as 7/8, 113/435, and 90/17. When first comparing numbers

such as 1/7 = 0.142857 and π = 3.141592, you might not notice too much

of a difference (mind you, the decimal system was not yet invented in those

days). However, when including more digits you can clearly see a difference.

The fraction becomes

1

7
= 0.1428571428571428571428571428571428571428 · · · (1.84)

It clearly repeats itself after 6 digits. The number π on the other hand never

repeats itself

π = 3.1415926535897932384626433832795028841971693993751 · · ·(1.85)

It just goes on forever. There are other weird things going on. Suppose you

make a concerted effort to write down all possible numbers. Let just assume

that you think you are done writing down all the numbers between 0 and 1:

0.13567443567888999441 · · ·
0.67433356778889999657 · · ·
0.64485765323683566786 · · ·
0.88752727776945445657 · · ·
0.67949687878975655677 · · ·
0.25343645788657577888 · · ·
0.34789987975465457577 · · ·
0.23443645758787897978 · · ·

(1.86)

Then some clever guy comes along and takes your list of numbers. He takes

the first digit of the first number and adds 1. Now the new number can

never be equal to the first number since the first digit is unequal. Then he

takes the second number and takes the second digit and adds one, so that
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the new number is als not equal to the second number, etc. He ends up with

the number 0.28560796 · · · (where adding 1 to 9 gives 0 again). And, every

time you think the list is complete, you can do the same procedure again.

So, not only are there an infinite number of irrational numbers, you also

cannot count them.

In the islamic world, one was also studying astronomy. Astronomy has

always been an important branch of science, essential to calculate seasons

and religious days. Abu Ali al-Hasan ibn al-Hasan ibn al-Haytham, better

known in the west as Alhazen was one of the better known islamic scientists.

One of his works was ”Doubts concerning Ptolomy”, where he expressed his

concerns about the impossibility of the arrangements of the planets sug-

gested by Ptolomy and worries about how the rather abstract mathematical

models relates to actual physical motions. However, his intention was not

directly to replace Ptolomy’s geocentric model. In addition, Alhazen con-

tradicted Aristotle’s view that the Milky Way was ignition of emission from

the stars occuring in the Earth’s atmosphere. The absence of a parallax

made this assumption impossible to maintain. Although Alhazen did not

take the revolutionary steps taken by renaissance scientists, his doubts on

the centuries-old Ptolomaic system was an important step.

While the islamic world was experiencing a golden age, the western world

was barely surviving. The early middle ages (500-1000) saw de-urbanization.

The only remaining pockets of learning were in monasteries. However, sci-

entific exploration was not a primary concern of the clergy and their major

role was the preservation of knowledge from antiquity. A slight brighter pe-

riod started around the year 800 when Charlemagne united most of western

Europe under his rule. This is sometimes known as the Carolingian Renais-

sance, but that might be somewhat of an overstatement. Having to deal with

such a large empire, Charlemagne realized the need of enhancing literacy.

For example, not all priests could even read the bible in Latin. However,

being able to read is still a far cry from becoming interested in science.

However, the Carolingian Empire quickly fell apart due to the splitting of

his empire amongst his heirs following Frankish tradition. The western part

developed into France, the eastern part developed into modern-day Ger-

many, and the central part, containing Holland, Belgium, Alsace-Lorraine,

Switzerland, Burgundy, Savoy, and parts of Northern Italy developed into a

region that people would fight over for centuries to come.

Around 1000-1300, Europe enters the High Middle Ages. Despite Renais-

sance propaganda to portray the Middle Ages as the Dark Ages to offset

their own achievements, this period saw significant social change. The pop-

ulation was increasing rapidly to unprecedented levels. The prosperity of this
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period can still be seen by the magnificent gothic cathedrals built in this pe-

riod. In addition, there was renewed contact with the Byzantine Empire

and the Islamic world, although not always for the right reasons (crusades

against the muslims and the reconquista of Spain and Portugal from the

Arab empire). These contact led to a rediscovery of the works of Aristotle,

Euclid, Ptolomy, Galen, etc. The High Middle Ages also saw a formalization

of higher education often a already existing monastic or cathedral schools.

Several of these schools were granted charters by the pope. The first was

Bologna in 1088, which was at that time in the land owned by the pope (the

Papal States). Note that Italy only became unified in 1870 and was agglom-

eration of different states up to that time. This was followed in the following

two centuries by the foundation of universities in Paris (Sorbonne), Salerno,

Oxford, Cambridge, Salamanca (Spain), Coimbra (Portugal), Montpellier,

Modena, etc. These universities taught what is known as the Studium Gen-

erale which consisted of arts (containing everything from philosophy, music,

mathematics, natural philosophy) and at least one of the higher faculties:

theology, law, or medicine.

There was a renewed interest in scientific exploration. Roger Bacon (1214-

1294) was an English friar and philosopher who stressed the need for exper-

imental knowledge. However, our view might have been heavily influenced

by the romanticized interpretation of Bacon that occured in the nineteenth

century when he was seen as the first modern scientist, far ahead of his

time. A more modern view sees Bacon as not too much different from his

contemporaries, such as Grosseteste.

However, the High Middle Ages were followed by the Late Middle Ages

which saw a significant decline. First, there was a clear climate change oc-

curing around 1300, leading to a significant cooling in Europe. This is also

known as the Little Ice Age. This led to the Great Famine of 1315-7, with

repeated crop failures. In addition, there were repeated outbreaks of epe-

demics, such as the plague in 1348-50, known as the Black Death. Finally,

there was significant political upheaval such as the fall of Constantinople

(modern-day Instanbul and the capital of the Byzantine Empire) to the

Ottomans in 1453. Despite all of this there were a number of philosophi-

cal developments in the Late Middle Ages. One of them is known as Oc-

cam/Ockhams razor, which is traceable to John Duns Scotus (1265-1308)

or maybe even Aristotle and Ptolomy. The most familiar expression (al-

though absent in Occam’s works) is : ”Entia non sunt multiplicanda praeter

necessitatem”(entities must not be multiplied beyond necessity). We can

paraphrase this as ”Other things being equal, a simpler explanation is bet-

ter than a more complex one”. Although philosophically nice and practically
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useful, it is not really scientifically rigorous. Although in science one often

finds that simpler solutions are better, this is certainly not always the case.

Other advances of made by the Oxford calculators studying mechanics.

The most famous among them are Thomas Bradwardine and his followers

William Swineshead, John Dumbleton, and William Heytesbury. They found

that ”a body moving with constant velocity travels distance and time equal

to an accelerated body whose velocity is half the final speed of the acceler-

ated body”. Now this is very confusing to read, so let us try to express this

into modern terms. The body moving at constant velocity travels at half the

final speed of the accelerated body. Let us call the 1
2
v. The distance trav-

elled is then x = 1
2
vt. The accelerated body reaches a final speed of v. Since

v = at, the acceleration must have been a = v/t. The distance travelled by

the accelerated body is then

x =
1

2
at2 =

1

2

v

t
t2 =

1

2
vt. (1.87)

This is indeed the same as the distance travelled by the body moving at a

constant velocity. This result diffused to the continent and was known to

philosophers in France, Italy, and other places. This is basically the same

as Galileo found with his inclined-plane experiments. So why don’t we hear

more about this and why do we treat Galileo as a hero and not the Oxford

Calculators? Maybe we should. However, although it is a correct statement,

it just does not push the envelope far enough. In addition, it lacks the

algebraic basis to make it really useful and become the foundation of a real

theory of mechanics. So in the end, the whole thing kind of fizzled...

So in just a few pages, we summarized all the accomplishments of 1.5

millenia of scientific thought on the subject of natural philosophy (which

includes almost all of the modern-day sciences). We are back at the end of the

Middle Ages and the early Renaissance with a flat Earth at the center of the

Universe. Well, that is not entirely correct. Most educated people believed

that the Earth was actually spherical. This, as is well-known, led to the

discovery of America by Christopher Columbus, who mistakenly assumed

he had arrived in India. Well, apparently not everything was known about

the Earth. However, there was still no simple explanation for the retrograde

motion of the planets in the sky.

1.4.2 Geocentric model

This changed in 1543, when Nicolai Copernicus (1473-1543) published De

revolutionibus orbium coelestium(On the Revolutions of the Celestial Spheres).
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The essence of the book is that all the planets rotated around the Sun in

circular orbits. Copernicus was born into a wealthy family in Torún in the

Kingdom of Poland. He studied at the University of Kraków from 1491-5.

He continued his studies at the university of Bologna. Although studying

law, his interests were more in the natural sciences and he only obtained his

law degree after seven years. He also took a two year break to study medicin

at the University of Padua. Apart from several travels, he remained the next

forty years of his life in the Prince-Bishopric of Warmia as working secretary

and physician to the bishop and as economic administrator of Warmia. He

apparently still had time to develop his heliocentric model.

In the Renaissance, there were many advances in a wide variety of fields

and the period must have appeared vastly different to the Late Middle Ages

that preceded it (at least to the wealthy and educated people). However,

the Renaissance has often been romanticized. The contrast with the Mid-

dle Ages has been characterized by the phrases Memento Mori (Remember

you must die) in the Middle Ages and Carpe Diem (Seize the Day) in the

Renaissance. However, one should not underestimate the power and influ-

ence of religion in late fifteenth and sixteenth centuries. From a religious

point of view, there were great upheavals with the Protestant Reformation.

The Reformation had direct political ramifications with the Habsburg Em-

pire fighting against protestant powers, the religious wars in France, etc.

However, in the arts, it was a period of great change. In architecture, the

extensive gothic decorations were removed and one was looking for a greater

simplicity. In arts, this was found for a large part by a revival of classical

ideals in sculpture and in painting. However, one should not entirely write

off the Middle Ages as a period where absolutely nothing of interest hap-

pened. In particular, Gothic architecture has been an inspiration throughout

the next centuries. In addition, the Renaissance was not perfect either. It

was for a large part based on an incorrect interpretation of classical ideals

and many of these notions survive to this day. Since the paint had disap-

peared from building and sculpture, it was assumed that it was meant to be

monochrome. Since then, the major of the statues have been colorless. In

addition, we have even learnt to admire broken statues, such as the Venus

de Milo and the Nike of Samothrace. It was a period filled with ideals. The

focus turned back on men, but, after centuries of focus on religion, one nat-

urally turned to the phrase that men was created ”in the image of God”.

This certainly sets some pretty high standards for men.

It is in this background that one should see the development of Coperni-

cus’ heliocentric view. Certainly, Ptolomy’s geocentric model with all those

epicycles could not satisfy the idealistic view of the Renaissance man. And
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if the planets had to turn around the Sun, there is only one possible orbit:

the perfect circle. Obviously this view surmounted to openly defying the

Roman Catholic church, which, certainly in the days of the Reformation,

has serious issues with having their authority chalenged. Giordano Bruno

(1548-1600) went even several steps further in his view of the universe: ”The

universe is then one, infinite, immobile.... It is not capable of comprehension

and therefore is endless and limitless, and to that extent infinite and inde-

terminable, and consequently immobile”. An infinite universe: so much for

celestial spheres an the presence of heaven beyond the last celestial sphere.

In addition, Bruno claimed that the Sun is just another star and all stars are

like the Sun. This is another assault on the uniqueness of our solar system

and, inherently on us and therefore God Himself. However, it sounds strik-

ingly modern and some have claimed that modern astronomy started with

Bruno. Bruno also stated that the laws of motion applied everywhere. This

is entirely different from the belief that the universe is finite and divided

into a region where the laws of nature applied and the heavens filled with

æther, where the laws of heaven applied. For his beliefs, Bruno was burnt

at the stake in 1600. Although it has often been stated that Bruno was a

martyr of science, dying for his scientific beliefs, the Roman Catholic church

had in fact a whole list of acts of heresy against Bruno and the scientific

ones were only a minor component.

1.4.3 Galileo

The first person to revolutionize astronomy was Galileo Galilei. He made

a wide variety of observations. He observed the remnants of Kepler’s su-

pernova. He was certainly not the first to observe them. A supernova was

observed in 1054 in the crab constallation by Indian, Arabic, Chinese, and

Japanese astronomers (not sure what the Europeans were doing at the time).

We now know that a supernova is that has reached the end of its life and

that emits more energy in several weeks than the Sun in its entire lifetime.

However, Aristotle had posited that supernovas occur in the atmosphere.

Galileo studied Kepler’s supernova that occured in 1601. It was the explo-

sion of a star 20,000 light years (1.9 × 1017 km) removed from Earth. For

a period of several weeks it was brighter than all stars and planets, except

Venus. It was visible during the day for three weeks. It was described by

Johannes Kepler. This was a good period for supernovas since Tycho Bra-

hes supernova happened in 1572. Galileo wanted to find out if this effect

occurred in the Earth’s atmosphere. It this was the case, then it was close

and it should be possible to observe a parallax. The parallax of an object is
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Figure 1.27 The parallax is the movement of an object with respect to the
background due to a change in position of the observer. This movement is
the same as the change in position of a finger held in front of your eyes
when comparing it with either your left or right eye open. To observe the
parallax for stars you compare the position at different times of the year.

its motion with respect to the background when the position of the observer

is changed. This is the same effect that occurs when you look at your finger

with one eye closed. Alternating between your left and right eye, you see

the finger move with respect to the background, see Fig. 1.27. This effect is

smaller when your finger is further away from your eyes. Galileo was unable

to observe any sort of parallax of the supernova. He therefore concluded

that the supernova does not occur inside the atmosphere but outside of the

Earth. This directly implies that the universe does change, in contradiction

with the notions of Aristotle and the church.

Obviously, the distance between your eyes is not sufficient to observe a

parallax for a supernova or any star. However, for this you can use the

change in position that occurs throughout the year when the Earth moves

in its orbit around the Sun. This is a change in the position of the observer

of about 300,000,000 km. One of the largest parallaxes of a star is that of

61 Cygni which is a double star system. The motion was first observed by

Giuseppi Piazzi in 1804. The first calculation of a distance using the parallax
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Figure 1.28 Galileo’s observations of Jupiter’s moons combined with a
modern interpretation of the postions of the planet’s four largest satellites.

was done by Friedrich Bessel (1784-1846). He determined the distance to 61

Cygna to be 10.4 light years. This is not too far off from modern calculations

of 11.4 light years or 1.07× 1014 km.

A great breakthrough came when the telescope was invented in 1608 by

Dutch lens makers such as Hans Lippershey. Galileo heard of this and only

a year later he had built his own telescope, which had a magnification of 20

times. He made detailed observations of Jupiter and saw something orbiting

the large planet, see Fig. 1.28. He made observations on several days and

could only come to the conclusion that Jupiter had several moons of its own.

This was another shocking change to the view of the solar system. Galileo’s

telescope also allowed him to look at celestial objects in more detail. For

example, he could clearly see mountains on the Moon. He also observed

that the Milky Way was not a nebulous object, but in fact consisted of

separate stars.

Galileo also made detailed observations of the phases of Venus. One of the

things that he observed was a full phase of Venus. Full phases can only ob-

served when Venus, Earth, and the Sun are in a straight line. In a geocentric

system, the Sun is further away than Venus. However, if the three celestial

objects are now in a straight line, an observer on Earth is always looking

at the dark side of Venus. Therefore, there is no full phase. However, in a

heliocentric system there are two options for Venus, Earth, and the Sun to

be in a straight line. First, Venus is between the Earth and the Sun, then

the dark side of Venus is observed. Or Venus is on the opposite part of its

orbit. In that case a full phase is observed. Since Venus is then also at its
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farthest position from Earth, it should also appear small. This is exactly

what Galileo observed. This strengthened Galileo’s belief in the heliocentric

system. Galileo wrote his beliefs regarding the heliocentric system down in a

”Dialogue ceoncerning the two chief world systems” as a series of discussions

between Salviati (Copernican and heliocentric view), Simplicio (Ptolomean

and geocentric view), and Sagredo, a layman observer. As you might gather

from his name, Simplicio was not the smartest of the bunch. This book

got Galileo into serious problems with the church who found Galileo ”vehe-

mently suspect of heresy”. Galileo’s sentence of imprisonment was converted

into house arrest which he spent in Arcetri from 1633-42. Allegedly, Galileo

said ”Eppur si muove” (And yet it moves) after his sentence.

1.4.4 Tycho Brahe and Johannes Kepler

Important contributions to the understanding of planetary motion were

made by Tycho Brahe and Johannes Kepler. Brahe (1546-1601) was a Dan-

ish astronomer who live on Ven, an island between modern-day Denmark

and Sweden (it is currently in Sweden). Brahe was from a noble and very

rich family. He is also known for loosing part of his nose in sword duel over a

mathematical formula with his third cousin Manderup Parsberg. Brahe was

known for his very accurate measurements of the motion of the planets. He

developed his own ”compromise” model of the motion of the planet, which

is partially geocentric and partially heliocentric. The Earth is still at the

center and the Sun orbit around the Earth. The other planets however orbit

around the Sun. Just as with many compromises, this made nobody happy

and the model did not get that far. In addition to the planets, Brahe also

studied a supernova occured during his lifetime. Brahe died by contracting

kidney failure after etiquette prevented him from leaving the table during

dinner to go to the bathroom.

However, the person who made good use of Brahe’s measurements was

his assistant and successor Johannes Kepler (1571-1630). Kepler was born in

Weil der Stadt and attended the University of Tübingen. After his studies,

he became a mathematics and astronomy teacher in the Austrian city of

Graz from 1594 to 1600. There, he wrote his ”Mysterium Cosmographicum”,

which is essentially a defense of the Copernican system. Because of Kepler’s

refusal to convert to Catholicism, he had to leave his position in Graz. After

that, became Brahe’s assistant in the Bohemian city of Prague (nowadays

the capital of the Czech Republic). However, not too long after Kepler’s

arrival, Brahe died in 1601. After that he became advisor to Rudolf II, King

of Bohemia and Holy Roman Emperor. His employer, although obviously
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Catholic, was relatively tolerant to Kepler’s Lutheran faith. Although we

currently stress Kepler’s contributions to astronomy, a major part of his

position involved giving astrological advise to Rudolf II.

The detailed measurements done by Brahe and Kepler allowed the latter

to perform some serious tests on the geocentric model proposed by Nicolai

Copernicus. Although the heliocentric model gave a relatively simple expla-

nation of the retrograde motion of some of the planets in the sky, it was

not perfect. Kepler noticed that the assumption of perfect circles for the or-

bits could not reproduce the actual motion of the planets in the sky. What

did this imply? Did that mean that Copernicus model or even the entire

geocentric model was wrong? Kepler started to look for different solutions

although this goes entirely against the principle of Occam’s razor that the

simpler and more elegant solution (circles) is preferable to the more complex

one (ellipses, ovals, etc.). It also went against the entire Renaissance spirit

of harmony and simplicity. Certainly, if God had put the Sun at the center,

he would have built the solar system using perfect circles? Why go from the

messy Ptolomaic system with epicycles to the perfection of circles only to

mess things up again?

Although Kepler’s life overlapped with that (Galileo was born before Ke-

pler, but outlived him by 12 years), their spirit was rather different. Al-

though Galileo performed experiments, his mindset was much more of the

Renaissance. When Kepler moved away from circular orbits, Galileo did not

believe it. He could not believe that God’s creation was made up of imper-

fect shapes. On the other hand, Kepler wasted a lot of time, because he

could not identify himself with the Renaissance ideas. Following a circle,

the next most obvious shape is an ellipse. However, this was not Kepler’s

first try. He tried ovals, i.e. egg-shaped orbits, simply because he could not

believe that the previous generations had not tried ellipses (still pretty ideal

shapes). Coincidentally, similar changes in spirit were also observed in arts

and architecture. The period, starting around 1600, is known as the Baroque.

Baroque or barroco is the name of an imperfect pearl. The baroque period is

known for the shift away from the harmony and classical ideals of the renais-

sance towards a more dynamics world where emotion played a much larger

role. In 1609, Kepler published his Astronia Nova. The full title in English

is ”New Astronomy, Based upon Causes, or Celestial Physics, Treated by

Means of Commentaries on the Motions of the Star Mars, from the Obser-

vations of Tycho Brahe”. The book is over 650 pages and contains the first

two of Kepler’s laws. The first being:
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Figure 1.29 Johannes Kepler proposed on accurate measurements by Tycho
Brahe that the planet moved in ellipses and not in perfect circles.

The orbit of every planet is an ellipse with the Sun at one of the foci.

This situation is shown in Fig. 1.29. This was a very significant achieve-

ment. First of all, gathering the data was a tremendous effort that lasted for

years. Second, Kepler’s calculations are far from trivial, since they all had

to be done by hand. Thirdly, the deviations from circular orbits are rela-

tively small and could easily have been attributed to incorrect observations.

Kepler’s second is rather more mysterious

a line joining a planet and the Sun sweeps out equal areas during equal

intervals of time.

This law is shown in Fig. 1.30, where the wedges indicate the areas that

swept out in equal amounts of time. Note that the further the planet is

removed from the Sun, the narrower the wedges become. This means that

in the same amount of time, the distance travelled becomes smaller. The

green arrows in the Figure indicate the velocity. Note that the velocity is

always perpendicular to the orbit. This is not a coincidence. In fact, it is the

direction of the velocity that determines the orbit. The purple vector is the

acceleration. The acceleration always points towards the Sun, because it is

due to the gravitational force. It can be split into components parallel and

perpendicular to the orbit. The component perpendicular to the orbit makes

sure that the planet stays in the orbit. The component parallel to the orbit

causes accelerations and decelerations of the planets motion in the orbit.

How did Kepler arrive at his second law. He did not have a direct proof of

it. A proof was provided only by Newton, 80 years later, and it is rather

complicated. Kepler derived his second law using infinitesimals. Basically,
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Figure 1.30 The figure illustrates Kepler’s second law of planetary motion:
a line joining a planet and the Sun sweeps out equal areas during equal
intervals of time. The green arrow indicates the velocity of the planet. The
purple line is the acceleration which is split into a component along and
perpendicular to the orbit.

he determined the areas by dividing the total area into little shapes whose

area he knew and then counting the little areas. This might not seem very

important, but it is a big step forward.

When looking at some of the famous scientists in the Renaissance, we are

some surprised by the scope of subjects they are working on. The most fa-

mous example is Leonardo da Vince who was not only a famous painter,

but also left works related to natural philosophy, engineering, and anatomy.

However, many of the ”modern” scientific disciplines are still rather discon-

nected. What we nowadays call physics dealt mainly with laws of motion.

However, these laws were mainly discussed in philosophical or metaphysical

terms, for example, the debate on velocity between the views of Aristotle

versus those of Galileo and others. Mathematics was hardly used in physics.

Some attemps were made to include mathematics, but it never reached the

point of having equations of motion that allowed one to attack any type of

problem. In fact, most of the Renaissance physics focused on escaping Aris-

totle’s ideas that had dominated the field for over two millenia. Astronomy

focused mainly on observation of the celestial objects, such as the planets

and the stars. Very few were trying to make a connection between the laws

of motion in physics and the motion of the planets. Again, astronomy in

the Renaissance spent most of their time trying to get rid of Ptolomy’s geo-

centric world view. Mathematics on the other hand was a rather separate

discipline that was mainly concerned with algebra and geometry. Although
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Figure 1.31 The left part shows the Egyptian square tool. A derivation of
the rule was given by Pythagoras.

this is somewhat of an oversimplification, it was only during the seventeenth

century that clear connection were made between the different disciplines.

The most important development in physics was the development of calculus

which allowed a mathematics-based physics. The laws of motion expressed in

terms of calculus allowed one to approach any possible problem. The initial

steps for the development of astronomy were taken by Kepler, who described

astronomy as ”celestial physics”, thereby recognizing that the same physical

laws of motion that apply on Earth are also valid for describing the motion of

the planets. Granted, his second law of motion is more a phenomenological

rule than a derivation based on physical laws.

However, his use of infinitesimals was of significant important and di-

rectly linked geometry (the determination of areas, in this case) with laws

of motion. However, geometry had a long history, dating back, obviously, to

the Greeks. However, the link between geometry and algebra is not directly

apparent. So let us look at that in a little more detail.

We have all heard of Pythagoras rule. It is a relation between the sides

that applies to triangles with a right angles. Some of these triangles were

known to the ancient Egyptian before 2000 BC. One of the best-known

examples of Pythagoras rule is the 3-4-5 triangle. The relation between the

numbers is given by

32 + 42 = 52 or 9 + 16 = 25. (1.88)

By making a string with twelve equidistant knots, one is able to make a

square tool, see Fig. 1.31. Other Pythagorean triangles, such as 5-12-13

and 65-72-97 found on the clay tablet Plimpton 322 (1790-1750 BC), where

known to the Babylonians. Although, it is not known if they directly related

that to triangles. The first real proof came from Pythagoras (570-495 BC).

Although the proof is not known, it was generally attributed to him in
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ancient Greece. There is a great variety of ways to proof the theorem. Let

us do one, to get some feeling how to do a mathematical proof. Let us look

at the square in Fig. 1.31. The sides are divided into sections a and b. The

total area of the square is then

(a+ b)2 = a2 + 2ab+ b2 (1.89)

However, when connecting the points where the intersections are made, four

triangles are formed. The triangles have one right angle, the edges of the

square. Figure 1.31 shows that the are of the square can also be written as

the area of four triangles and a smaller square with sides of length c

4×
1

2
ab+ c2 = 2ab+ c2. (1.90)

Since both areas have to be equal, we obtain

a2 + 2ab+ b2 = 2ab+ c2 ⇒ a2 + b2 = c2. (1.91)

This is a good demonstration of the relationship between geometry and

algebra. However, let us turn our attention to the calculation of surfaces.

One problem that occupied many was the calculation of the circumference

and area of a circle. The first good way to calculate these was devised by

Archimedes (287-212 BC), probably the greatest physicist and mathemati-

cian of hellenistic Greece. Archimedes was born in Syracuse which is on Sicily

the island at the tip of the boot of Italy. Archimedes is well-known for dis-

covering the law of buoyancy that Archimedes. Its discovery led Archimedes

to run naked through the streets shouting ”Eureka” (I found it). He also

invented Archimedes’ screw and the heat ray devised to set the enemies’

ships on fire during the siege of Syracuse by focusing the Sun light on their

ships. Tragically, Archimedes was killed after the two-year siege ended and

the Romans invaded the city. As the story goes, Archimedes was occupied

with his mathematical work and refused to follow orders of a Roman soldier.

His last attributed words were: ”Do not disturb my circles”.

In mathematics circles, on the other hand, his greatest fame is related to

the calculation of π. Archimedes realized that the area of a circle must lie

between the areas of two polygons. Figure 1.32 shows the situation for two

hexagons. Let us take a circle with the radius set to 1. The largest hexagon

that fits into the circles touches the circles with its edges. Its area can be

calculated by taking the area of 6 triangles, see Fig. 1.32. These triangle can

be further split into 2 triangles with one angle equal to 180◦/6 = 30◦. Using

trigonometry, we are able to derive that the base and height of a triangle

with a right angle and a hypotenuse of 1 are 1
2
and 1

2

√
3, respectively. The
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Figure 1.32 Archimedes method of determining the area of a circle. Ar-
chemides noticed that the area of a circle can be estimated by determining
the areas of two different polygons, in this Figure, two hexagons. The area
of the circle must lie between these two limits.

area of the triangle is then 1
2
× 1

2
× 1

2

√
3 = 1

8

√
3. The total area of the

hexagon is then 12× 1
8

√
3 = 3

2

√
3 ∼= 2.59. We can also take a hexagon that

is larger than the circle. The smallest of such a hexagon touches the circle

with its sides, see Fig. 1.32. The base and the height are now 1
3

√
3 and 1,

respectively. The area of the triangle is then 1
2
× 1

3

√
3×1 = 1

6

√
3. The area of

the hexagon is then 12× 1
6

√
3 = 2

√
3 ∼= 3.46. Therefore the area of the circle

is between 2.59 and 3.46. Now, of course we now that the area of a circle is

given by πr2 (note that, although π is a Greek letter, Archimedes did not

use π in this context). Since the radius is one, the area is π ∼= 3.14. Note

that although this is a crude estimate, the methodology is more important

than the value (one probably could have obtained a better estimate by just

measuring the circumference). However, Archimedes managed to extend the

procedure up to a 96-gon and was able to show that

3
10

71
= 3.1408 < π < 3.1428 = 3

1

7
. (1.92)

Interestingly enough, the upper bound is 22/7 which is the number that

looked so surprisingle close to π in the base over height ration of the pyra-

mids. This result is all the more remarkable considering that Archimedes

did not have our standard knowledge on trigonometry, the decimal system,

let along a calculator! In fact, Archimedes method was the standard method

(at least in Europe) used to calculate π for the next 1700 years. Ludolph

van Ceulen, the first professor of mathematics at Leiden University in the

Netherlands, managed to calculate π up to 35 places using a polygon with

262 sides in 1596. In fact, it was Newton who used series to calculate π,
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although he did not improve on Van Ceulen’s calculation, because in the

end this is a boring exercize best left to computers.

Archimedes’ method, also known as the method of exhaustion, is in essence

the same as Kepler’s use of infinitesimals. By dividing an unknown area into

many much smaller shapes whose surface is known, one is able to determine

the area of the larger surface. We can express this (somewhat sloppily) as

an equation

total area =
∑

areasmall, (1.93)

where the summation is indicated Σ, the Greek capital letter S. The sum-

mation goes over all the little shapes, whose areas we know, that fit into the

total shape.

Kepler still had one more law left in him. In 1612, Rudolf II died and was

succeeded by his less tolerant brother Matthias. Kepler spent his remaining

years (1612-1630) as a mathematics teacher in Linz, thereby passing by a

post at the University of Padua, where he was recommended by Galileo as

his successor. However, Kepler preferred to remain in german-speaking Aus-

trian city of Linz. Kepler’s third law reads

The square of the orbital period of a planet is directly proportional to the

cube of the semi-major axis of its orbit.

or in mathematical form

Period2

Axis3
= constant. (1.94)

Let us compare this for Earth and Mars. For Earth, the period is, obviously,

one year, the semi-major axis can be easily found, giving

(365.25636 days)2

(149, 598, 261 km)3
= 3.9849× 10−20. (1.95)

For Mars, we find

(686.971 days)2

(227, 939, 100 km)3
= 3.9849× 10−20. (1.96)

This is particularly impressive. It is therefore not a surprise that Kepler’s

last book, published in 1619, was call Harmonices Mundi or The Harmony

of the World.



1.5 The Age of Calculus 65

1.5 The Age of Calculus

It is with Kepler that we see a transition in physics from a world of perfect

shapes (circles, spheres, parabolas, etc.) to one dominated by mathemat-

ics. This is also where Newton comes in. Although everybody is (at least

somewhat) familiar with Newton’s three laws, this is not where Newton had

the most lasting impact. In particular, since half of Newton’s laws are not

even his. The importance of Newton lies in the way he approached classical

mechanics. He developed a mathematical framework that allowed physicists

to attack any problem, not just those of constant acceleration. In fact he,

building on earlier work, devised a new way to deal with physical prob-

lems. It is known as calculus. Calculus is one of these subjects that many

students dread and since this is a non-calculus course, no questions will be

asked about them. However, physics revolves around calculus. Calculus is

the basis for classical mechanics, electricity and magnetism, thermoquantum

mechanics, relativistic quantum mechanics, etc.

However, we already sneaked in some calculus when we were dealing with

instantaneous velocities. At some point, we said that the velocity is defined

as

v =
∆x

∆t
, (1.97)

i.e. the velocity is the change in position divided by the change in time. We

noticed that problems could arise if ∆t was very small. But in the end, we

could relatively easily work around these problems for a constant accelera-

tion, giving

v =
x(t+∆t)− x(t)

t+∆t− t
=

1
2
a(t+∆t)2 − 1

2
at2

∆t
. (1.98)

Do not confuse the parentheses. In one case, we write x(t) = 1
2
at2, where the

parentheses indicate that x is a function of t. In the other case 1
2
a(t+∆t)2,

we are not talking about a as a function of t, but the parentheses group

(t + ∆t) together. Now if ∆t was very small, then (∆t)2 ≪ ∆t and this

equation simplifies to

v =
1
2
a(t2 + 2t∆t)− 1

2
at2

∆t
=

1
2
a2t∆t

∆t
= at. (1.99)

In summary, if we know how x depends on the time t, we can figure out how

v depends t

x =
1

2
at2 ⇒ v =

∆x

∆t
= at. (1.100)
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Now, if the difference in time is very small, infinitesimally small as it is called,

we prefer to use the notation due to Gottfried Wilhelm Leibniz (1646-1716)

who invented calculus along with Newton,

∆→ d ⇒ v =
dx

dt
. (1.101)

However, we can do the same procedure for v and obtain the acceleration

a =
v(t+∆t)− x(t)

t+∆t− t
=

a(t+∆t)− at

∆t
=

a∆t

∆t
= a. (1.102)

Again, if the change is very small, we can write

a =
∆v

∆t
→ a =

dv

dt
. (1.103)

Therefore, we can write

v =
dx(t)

dt
and a =

dv(t)

dt
. (1.104)

So, position, velocity, and acceleration are intimately related to each other.

Using the expression for the acceleration, we can rewrite Newton’s law as

F = ma ⇒ F = m
dv

dt
⇒

dv

dt
=

F

m
. (1.105)

The last term on the right-hand side, we can say in words as: The change in

velocity due to a change in time is given by the force divided by the mass.

From this, we can clearly see that the force is changing the velocity and not

the position. If there is no net force working on an object (F = 0), we find

that

dv

dt
= 0. (1.106)

Or, in words, the change in velocity v due to a change in time t is zero.

However, this means that only changing the time does not change the ve-

locity. This can only mean that, in the absence of a net force, the velocity

is constant or

v = constant. (1.107)

However, this is simply Newton’s first law. Therefore, Newton’s first law is

simply a special case of Newton’s second law. In fact, it is rather surprising

that three centuries later, we still talk about Newton’s laws in exactly the

same way as Newton.

Now that we have seen that we can go from x→ v → a, is it also possible to

go the other way. Earlier on, we talked about the determination of surfaces.
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Figure 1.33 The acceleration as a function of time t for the case that the
acceleration is equal to the constant a. In the case that the velocity at t = 0
equals zero, the final velocity is given by the shaded surface, i.e. v = at.

We talked about Kepler’s infinitesimals, which we related to earlier work by

Archimedes in the determination of π. However, what does determining an

area have to do with classical mechanics. Let us look at the expression of v

in terms of a constant acceleration a and the time t

v = at, (1.108)

where we have taken the velocity at t = 0 equal to zero. Figure 1.33 shows

a plot of the acceleration a as a function of time t. The dependence is very

simple since the acceleration does not change as a function of time. The

quantity at, which determines the velocity, is simply the area under the

straight horizontal line. Let us go one step further and plot v = at as a

function of t. This is again a straight line, but now with a slope (the slope

is equal to the acceleration a), see Fig. 1.34. We know that the position as

a function of time in the case of a constant acceleration is given by

x =
1

2
at2, (1.109)

for the situation where the velocity and position are zero at t = 0. Again

this equals the area under the line given by the shaded region in Fig. 1.34.

The area of the triangle is a little bit more difficult. At a particular time

t, the base of the triangle is t. Its height is given by v = at. Therefore, the
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Figure 1.34 The velocity as a function of time t for the case that the accel-
eration is equal to the constant a. In the case that the position and velocity
at t = 0 equal zero, the final position is given by the shaded surface, i.e.
x = 1

2
at2.

area is the area of a triangle, which is 1
2
× t × at = 1

2
at2. This is exactly

equal to the expression above. Generally, determining the surface under a

curve is more complicated that calculating the area under a triangle. In that

case, we have to divide the area into many smaller shapes whose area we

know, similarly to Archimedes and Kepler. This is shown in Fig. 1.35. Let us

assume that this is the curve for the velocity. The dependence of the velocity

as a function of time t is then given by the function v(t). The position at

time t is then given by the area under the curve given by v(t) (plus the

position at time t = 0, which, for convenience, we shall take equal to zero).

Somewhat sloppily, we can express this as

x = total area =
∑

all rectangles

arearectangle. (1.110)

Or, in words, the total area under the curve can be expressed as a sum over

all the rectangles that fit under the curve. If we know the expression for v(t)

then the area of the rectangles can be easily determined. At a particular

time t, the height is given by v(t). The width is given by ∆t, where ∆t is the

time step that we can choose. The smaller we take the time step, the more

accurate will be the determination of the area. The area of the rectangle is
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Figure 1.35 This figure shows how the area under a curve can be calcu-
lated by dividing the surface into many small rectangles. The smaller the
rectangles become, the closer the area of the sum of the rectangles is to the
total area under the curve.

then v(t)∆t. The total area is then

x =
∑

t

v(t)∆t, (1.111)

where the summation goes over all the time steps: 0,∆t, 2∆t, · · · . For very
small times steps, we use again Leibniz notation and change ∆ → d, but

also
∑

→
∫

, where the symbol is an elongated S indicating sum. We then

have

x =

∫

v(t)dt and v =

∫

a(t)dt. (1.112)

This procedure is known as integration.

The bottom line is therefore that differentation and integration allow one

to change between position, velocity, and acceleration

x(t)

differentiation−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−

integration

v(t)

differentiation−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−

integration

a(t)(1.113)

Therefore, these quantities are intimately related to each other. However,

now we understand by Newton’s famous book is called PhilosophiæNaturalis

Principia Mathematica or Mathematical Principles of Natural Philosophy

and not ”The Three Laws of Mechanics”. The three laws are nice, but it is

the calculus that is really the meat of the Principia.
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Figure 1.36 The tides are due to the combined gravitational forces of the
Moon and the Sun, where the effect of the Moon is about twice that of the
Sun. When there is a spring tide, the combined action of the Sun and the
Moon gives bigger tides. For first and third quarters Moons, the tides are
smaller.

1.6 Newton’s third law

1.6.1 Newton’s law of Gravitation

The solar system is held together by the gravitational pull of the Sun. We

discussed gravity before when talking about constant acceleration on Earth,

where we took the force to be equal to mg. However, if we look at the planets

then obviously this is a simplification. It is clear that the Sun pulls on the

Earth. However, we are all too familiar with the gravitational pull of the

Earth. Does the Earth also pull on the Sun? And if so, how much? Does the

Sun’s pull harder on the Earth? What about the Moon and the Earth.

Most people know that the Earth is feeling the gravity of the Moon, since it

is well known that the tides can be related to the gravitational pull of the

Earth, see Fig 1.36. In fact, this directly tells you that there must also be

a dependence on the distance. If there was no dependence on the distance

then the gravitational field of the Moon (and the Sun) would not change

when the Earth is rotating around its axis. However, this does not quite

explain why there are two tides. At first, you might think that there should

be only one tide, because on one side of the Earth the graviational pull is

more than on the other side. So when the Earth rotates around its axis,
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Figure 1.37 The red arrows give an exaggerated picture of the change in
gravitational pull by the Moon (or the Sun), which we take to be on the
right side. The arrows indicate the values on the left side, center, and right
side of the Earth, respectively, see also the Figure of the Earth in the center.
However, it is better to look at the differences with respect to the value
at the center of the Earth, see the blue arrows. In that case there is an
effective for to the left and right on the left and right side of the Earth,
respectively.

it would only pass the region with a stronger pull once. However, this is

incorrect. It is better to look at the differences of the gravitational pull with

respect to the center of the Earth. If we subtract the value at the center of

the Earth, then on the side that is closer to the Moon, see Fig. 1.37, there is

an effective force towards the Moon. However, on the opposite side, there is

an effective force away from the Moon. At a distance from the Moon equal

to that at the center of the Earth the effective force is zero. So twice a day,

the effective force is pulling the water away from the center of the Earth,

therefore there are two tides. The water on the Earth is shaped a bit like

jelly that is accelerated in the direction of the Moon. It is elongated along

the line connecting the Earth and the Moon. It then creates two blobs, one

on each side of the Earth-Moon axis.

The total tides are a combined effect of the gravitational forces of the

Moon and the Sun. The size of the tide depends on the relative positions of

the Moon. We know that the effect of the Moon is larger (the tides due to

the Sun are 46% of those due to the Moon). You might think at first that

this is due to the fact that the gravitational pull from the Moon is stronger.

However, this is not the case. The gravity of the Sun is larger. However, since

the distance to the Sun is so much larger, the relative variation in gravity on

different sides of the Earth is a lot smaller for the Sun than for the Moon.

The tides are large when the gravitational forces of the Moon and the Sun

work in the same direction. This occurs for full and new moons. For first-

and third-quarter moons, the gravitational forces of the Sun and the Moon

are at a 90 degree angle and the tides are smaller, see Fig. 1.36. However,

if you really want to accurately predict the tides, you also have to take
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Figure 1.38 The gravitational pull of the Earth on the Moon is equal in
magnitude but in opposite direction to the pull of the Moon on the Earth.

into account the tilting of the Earth, local conditions, etc., which turns this

problem into a rather nasty one.

However, although we have established that there is a gravitational force

of the Moon working on the Earth, we still have not answered the question

if the Earth or the Moon is pulling harder. The answer is neither, since both

are pulling in exactly the same fashion. We can understand this by looking

at the expression of the magnitude of Newton’s gravitational force

F = G
m1m2

r2
. (1.114)

We see that the force is determined by the product of the two masses of the

objects interacting (say, the Earth and the Moon), divided by the distance

squared, and multiplied by a constant G. Therefore, we have two gravita-

tional forces, that of the Earth on the Moon and that of the Moon on the

Earth, see Fig. 1.38. They are equal in magnitude, but their direction is

opposite

FEarth on Moon = −FMoon on Earth. (1.115)

This seems at first counterintuitive. One would expect the object with a

larger mass to exert a larger force on the object with the smaller mass. In

particular, based on our own experiences, we expect the Earth (large mass)

to exert a gravitational pull on us (small mass), and not really the other

way around. Apparently, the large mass is confusing, so let us just first look

at the gravitational force of two objects with equal masses, see Fig. 1.39.

There is no reason why the gravitational forces of the objects on each other

should be different

F1 on 2 = −F2 on 1. (1.116)

There is a perfect mirror symmetry between the masses 1 and 2 in Fig. 1.39,
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Figure 1.39 One expect the gravity of two equal masses to be the same due
to the mirror symmetry of the problem.

so we should also have

F2 on 1 = −F1 on 2 (1.117)

(which is obviously the same equation).

Now let us add an additional object of the same mass, see Fig. 1.40. If

this object has also the same mass as one, we have, following the above

argument,

F1 on 3 = −F3 on 1. (1.118)

We ignore here the gravitational interactions between 2 and 3, which are

not relevant for our considerations here. Now let us combine the objects 2

and 3 into one object 23, see Fig. 1.40. The forces are now given by

F1 on 23 = F1 on 2 + F1 on 3 = −F23 on 1 = −(F2 on 1 + F3 on 1).(1.119)

So we also find that the forces are equal in magnitude, but in opposite direc-

tions if the masses are unequal. We can extend this argument to arbitrary

masses. Let us consider masses of m1 = 2 and m2 = 3, see Fig. 1.41. The

total force is now proportional to the number of pairs we can make between

the different mass units. In the case of 2 and 3, the number of pairs equals

6. In general, the number of pairs is just given by the product of the masses

or m1 ×m2. The mass units are rather arbitrary and we can take them as

small as we want and the argument still holds.

The reason why we get confused is because we tend to mix up cause and
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Figure 1.40 In the top part we add an additional mass 3 on the right
side. Object 1 exerts a gravitation force on object 3 and object 3 gives an
additional pull to object 1. We ignore the interaction between 2 and 3. The
bottom part shows the situation if we merge objects 2 and 3.

effect. Although the forces (the cause) is equal in magnitude, that does not

mean that the effect (the acceleration) is the same. From the force of the

Earth on the Moon, we can calculate the acceleration of the Moon

FEarth on Moon = G
MEarthmMoon

R2
= mMoonaMoon

⇒ aMoon = G
MEarth

R2
(1.120)

Similarly, we can calculate the acceleration of the Earth

FMoon on Earth = G
MEarthmMoon

R2
= mEarthaEarth

⇒ aEarth = G
mMoon

R2
. (1.121)

Figure 1.41 The number of force lines between the two masses 1 and 2 is
equal to the number of pairs of mass units we can make. That means it is
proportional to m1 ×m2
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Note that the acceleration of the Moon is proportional to the mass of the

Earth, whereas the acceleration of the Earth is related to the mass of the

Moon. This implies that the acceleration of the Moon is larger than the

acceleration of the Earth. Still it remains surprising that the gravitational

force of you on Earth is equal to that of the Earth on you

FEarth on you = −Fyou on Earth. (1.122)

It suddenly makes you feel a lot stronger. Unfortunately, due to the very

large mass of the Earth, it does not really care about your gravitational

pull, but the force of the Earth on you is definitely a big deal. In fact, we

can calculate it if we use the gravitational constant

G = 6.674× 10−11 N m2 kg−2. (1.123)

We come back to this somewhat later. Inserting the values of the mass and

radius of the Earth, we obtain

g = ayou =
GMEarth

R2
Earth

=
6.674× 10−11 × 5.97× 1024

6, 371, 0002
= 9.81 m/s2,

which is the value that we used earlier. On the other hand, the acceleration

felt by the Earth is

aEarth =
Gmyou

R2
Earth

=
6.674× 10−11 × 80

6, 371, 0002
= 1.31× 10−22 m/s2

if we take a mass of 80 kg. This is why we generally take the Earth as a

Figure 1.42 The inverse-squared dependence of the force can be understood
by considering ”force lines” coming from a particular mass. The density of
the lines at a particular distance r decreases with the surface area.
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”frame of rest” as physicists like to call it. It certainly makes calculating

things easier if we simply neglect the effect of small masses on the Earth

and simply take the Earth as fixed.

Then we end up with the next part of Newton’s gravitational law, the

inverse square dependence of r or F ∼ 1/r2. This dependence can be under-

stood by looking at Fig. 1.42. Imagine the force of a particular mass is given

by force lines. Now force lines do not really exist. In fact, modern theories

assume that forces are due to exchange of particles. This works very well for

most fundamental forces. Unfortunately, the particles that should give rise

to gravity has never been observed. However, for the moment looking at the

problem in terms of force lines is sufficient. The density of force lines at a

particular distance r is the number of force lines divided by the particular

area that we are looking at. If we now increase the distance by a factor,

then the area increases by a factor 4, see Fig. 1.42. Equivalently, the area of

a sphere, which is given by 4πr2 increase by a factor 4 if r becomes twice

as large. However, the number of force lines remains fixed. Therefore, the

density of force lines decreases by a factor four. If we go to a distance 3r,

then the density decreases by a factor 9. Therefore, the force, which is pro-

portional to the density of force lines also decreases by a factor 1/r2. This

only leaves the factor G in Newton’s gravitational force.

1.6.2 Density of the earth

The determination of the factor G was framed in a somewhat different fash-

ion. The gravitational acceleration g can be written as

g = G
MEarth

R2
Earth

. (1.124)

If you know the Earth’s radius, you can essentially determine the factor

GM . This is very important for people on Earth, but it is not the fun-

damental constant G. However people in the seventeenth and eighteenth

century were actually more interested in MEarth. The emphasis on funda-

mental constants only developed later when more were discovered (the speed

of light, Boltzmann factor, Planck’s constant, etc.). However, the mass of the

Earth was something that had their interest. The determination of G was

done by Henry Cavendish (1731-1810) using a torsion balance built by John

Mitchell (1724-1793). Cavendish was one of the great “amateurs” in science.

He was provided for by his noble family being the elder son of Lord Charles

Cavendish, son of the second Duke of Devonshire. Cavendish inherited the

family fortune later in life. He was a great experimentalist who worked on
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gravity, electricity, and chemistry. When Maxwell edited unpublished work

by Cavendish he realized that many of the results pre-dated the important

work and conclusions made by Faraday and Coulomb. He also determined

that air consists of 79.167% phlogisticated air and 20.8333% dephlogisti-

cated air. The latter is now known to be oxygen and modern measurements

put the percentage at 20.95%. This is impressive indeed. By the way, the

phlogiston theory is completely obsolete now. The idea was that flammable

materials contained phlogiston. During burning phlogiston is released from

materials. The presence of a dephlogisticated gas helps the burning. Unfor-

tunately, this is rather opposite to what happens. Flammable materials are

in fact oxygenated when burned, for example, magnesium becomes heavier

when burned. However, a lot of materials disappear when burned (they turn

into CO2 and H2O), so it is understandable that people thought that burning

makes the materials lighter. Cavendish is best known for his determination

of the gravitational constant. He did this using a torsion experiment, see

Fig. 1.43. A rod with two light balls is attached to a torsion rod. When

hung between the two large masses the rod will turn. The amount of tor-

sion can then be related to G via Newton’s expression for gravity. Henry

Cavendish was one of the eccentrics in science. He rarely spoke and his only

social events seemed to be the Royal Society Club (a kind of science club).

Not that he spoke to there very often. He was incredibly shy of women (does

it need to be mentioned that he never married?) and communicated to his

servants through notes. He saw his principle heir for only a few minutes

each year (who inherited 700,000 pound plus an estate worth about 8,000

pound a year. For comparison, Mr. Darcy, the rich admirer of Elisabeth Ben-

net in Jane Austen’s “Pride and Prejudice” had an income of about 10,000

pound.) Note that the famous Cavendish Laboratory was founded with an

endowment by William Cavendish, seventh Duke of Devonshire in 1874.

Figure 1.43
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Once Cavendish measured the gravitational constant, he was able to de-

termine the mass of of the earth:

G
mM

r2
= mg ⇒ M =

gr2

G
=

9.8× (6× 106)2

6.67× 10−11
= 5.2× 1024 kg.

Since we know the radius, and therefore the volume, the density is then

ρ =
M

4
3
πr3

=
5.2× 1024

4
3
π(6× 106)3

= 5700 kg/m3 = 5.7 kg/dm3. (1.125)

Note that for water the density is 1 kg/dm3. This number is not entirely a

coincidence since 1 dm3 is a liter and the weight of a liter of water was the

definition of a kilogram. The earth is also made out of 34.1% iron (density

7.8), 17.2 % silicon (density 2.3). Also quite a bit of oxygen (28.2%), however

this is not in the form of solid oxygen, but as part of compounds. However,

the density of the Earth is not uniform. The top layer of several to tens of

kilometers is called the crust. Below that is the mantle. However, do not see

the Earth as a thin crust upon a fiery ball of burning lava. If you take a piece

of mantle, it is just a piece of rock. However, it is still ductile and moves

over sufficiently large time scales. The crust moves over the mantle causing

what is known as plate tectonics that lead to the formation of mountains in

regions where the plats move towards each other. Further deeper into the

Figure 1.44 The composition of the Earth.
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Earth is the core. The core consists of an inner core which is solid and about

70% the size of the Moon. The temperature is about 5700 K, which is about

the temperature at the surface of the Sun. The outer core is liquid, a fluid

made mainly out of iron an nickel. Although the inner core is liquid, this

is not where the lava for volcanoes comes from. The lava occurs at points

where the ocean and continental plates meet. Even though the temperature

of the mantle is high, it does not melt due to the high pressures. However, in

the regions where two plates meet or separate, the pressure is lowered and

the rock melts. The rising of molten rock leads to volcanoes.

1.6.3 Action equal minus reaction

Newton’s third law reads in Latin:

Lex III: Actioni contrariam semper et qualem esse reactionem: sive corpo-

rum duorum actiones in se mutuo semper esse quales et in partes contrarias

dirigi.

or in plain English: Law III: To every action there is always an equal and

opposite reaction: or the forces of two bodies on each other are always equal

and are directed in opposite directions. The first part ”To every action there

is always an equal and opposite reaction” is the part that everybody always

remembers. Unfortunately, it is also the part that is somewhat clumsily

formulated, since it implies that there is an object doing the acting and

another object doing the reacting. However, as we saw with gravity, there is

Figure 1.45 Several of the fundamental forces in nature.
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no such thing. Forces are interactions between two objects or, when looking

at a microscopic level, two particles. Fortunately, the second part is better:

”the forces of two bodies on each other are always equal and are directed in

opposite directions”. This is exactly what we saw when we were looking at

gravitation.

Newton’s third law always applies. The underlying reason is that all fun-

damental forces are always interactions between different particles, see Fig.

1.45. For example, the electric force or the Coulomb force is

F = f
q1q2
r2

, (1.126)

where q1 and q2 are charges. The other fundamental forces are much more

difficult, but the important aspect is that a force is something that occurs

between two particles or objects and, just like gravity, one cannot distinguish

which one is doing the acting and which one is doing the reacting. However,

you might ask, why do we experience that something is acting and something

else is reacting? This is just our perception and, in other cases, it is a result

of the simplifications that we make. As we saw before, we experience gravity

as a force acting on an object. This is because we completely ignore the force

of the object acting on the Earth. Even though it has the same magnitude

as the force of the Earth on the object, its effect on the Earth is negligible.

Now suppose that this was not the case and we had to include the force of

the object on Earth. However, if we cannot neglect this force, then we must

definitely also include also all the other forces of objects on Earth that are

of comparable size or larger. However, if this is the case then the problem

becomes completely unsolvable due to the large amount of objects that we

need to conclude in our calculations.

Another macroscopic force that satisfies Newton’s third law is friction.

Figure 1.46 The force that the man is exerting on the car is equal but
opposite to the force that the car is exerting on the man. However, note
that the forces are not working on the same thing.
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When looking on a microscopic scale, friction is a horribly complicated force

consisting of very many electrostatic interaction between the two surfaces

that are experiencing the friction. For example, the friction between a tire

and the road depends on the parts of the surface that interact with each

via electric interaction of the rubber molecules and the atoms in the road

surface. The amount of surface that interacts depends on the weight of the

car, the tire pressure, the roughness and material of the road, etc. The more

closely you look at this problem, the more surprising it is that quite often

you can describe friction simply with a coefficient of friction. However, all

these electrostatic interaction satisfy Newton’s law and the total friction also

satisfies Newton’s law.

When considering Newton’s third law do not make the following concep-

tual mistake. If for every action there is an equal but opposite reaction, then

the total net force is zero. This is because the forces are acting on different

things. For example, see Fig. 1.46. The force exerted by the man on the

car equals that of the car on the man. However, they do not cancel since

the man only feels the force of the car in this interaction and the car only

feels the interaction by the man in this interaction. This does not mean that

the car is going to move, since there are more interactions. The car is also

interacting with the road. The force of the man on the car is transferred via

the wheels to the ground. Due to the interaction with the ground, there is

also an interaction of the ground on the car. If the force of the man on the

car equals the force of the ground on the car then the car will not move. If

on the other hand the force of the man on the car is greater than the force

of the ground on the car then the car will move forward. However, the force

of the ground on the car can never be greater than the force of the man on

the car.

1.6.4 Planets/objects in orbit

Newton’s gravitational law can also be used to understand Kepler’s laws.

We restrict ourselves here to circular orbits, since these are a lot simpler

than ellipses. We already noticed earlier that an object or a planet stays

in orbit and does not fall into the Earth or the Sun, because it is essen-

tially falling all the time. However, the gravitational force is still acting on

the planet/object, so doesn’t the velocity change? Actually, the force does

change, not in magnitude, but in direction, see Fig. 1.47. The planet/object

only stays in a circular orbit if the velocity satisfies a particular condition.

At a particular point in the orbit the position vector r is perpendicular to

the velocity vector v, see the arrows in Fig. 1.47. The acceleration due to
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gravity has to be such that some time later the planet/object is still in the

orbit with the velocity perpendicular to the velocity. The change in angle θ

between the position vectors has to be exactly the same as the change in an-

gle between the velocity vectors. Therefore the distance travelled ∆r = v∆t

divided by the radius or the orbit r, must equal the change in velocity ∆v

divided by the velocity v due to symmetry

θ =
∆r

r
=

v∆t

r
=

∆v

v
⇒

∆v

∆t
=

v2

r
(1.127)

Remember that for very small changes, we write ∆→ d and the acceleration

is written as

a =
dv

dt
. (1.128)

Therefore, the acceleration needed to change the direction is

a =
v2

r
. (1.129)

The acceleration is a result of the gravitational force

F = ma ⇒ G
Mm

r2
= m

v2

r
. (1.130)

Figure 1.47 The change in velocity due to a central force such as gravita-
tion. Since the force, and hence the acceleration, is perpendicular to the
orbit, the magnitude of the velocity does not change, but its direction does.
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Now the velocity is given by the circumference 2πr divided by the period T

that it takes the planet to orbit the Sun.

G
M

r2
=

(

2πr

T

)2 1

r
⇒

T 2

r3
=

4π2

GM
(1.131)

The right side is the same for all planets, so we derived Kepler’s law (for

circular orbits).

1.7 Law of conservation of momentum

In an earlier Section, we saw that Newton’s first law was a direct consequence

of Newton’s second law in the absence of a net force

dv

dt
=

F

m
= 0 ⇒ v = constant. (1.132)

Since the change in velocity due to a change in time is zero, the only option

is that the change has to be constant. We can do the same when there is

more than one object. For example, for two objects in the absence of a new

force we have

m1
dv1
dt

+m2
dv2
dt

= 0, (1.133)

which is just the sum of Eq. 1.132 for objects 1 and 2. However, taking the

masses constant as a function of time, we can also rewrite this as

d

dt
(m1v1 +m2v2) = 0 (1.134)

or the change in the sum of the products of the mass times the velocity due

to a change in time is zero. Just as above, this can only be the case if

m1v1 +m2v2 = constant. (1.135)

Often the product of the mass times the velocity is defined as the momentum

p = mv. (1.136)

Using this we can write

p1 + p2 = constant, (1.137)

which is known as the law of conservation of momentum. This law was first

formulated in 1668-70 by John Wallis (1616-1703) after a call from the Royal

Society. Wallis is also known for introducing the symbol for infinity:∞. The
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absence of a net force does not imply that there are no forces. The objects

can still interact with each other:

m1
dv1
dt

+m2
dv2
dt

= F1 on 2 + F2 on 1 (1.138)

However, Newton’s third law states that the interactions between two objects

are equal but opposite, so

F1 on 2 = −F2 on 1, (1.139)

which recovers Eq. (1.133) and therefore momentum is still conserved in the

presence of internal forces. However, in the presence of an external force,

such as gravity, momentum is not a conserved quantity

m1
dv1
dt

+m2
dv2
dt

= −m1g −m2g. (1.140)

This does not mean that a typical collision such as billiard balls on a pool

table cannot be treated using conservation of momentum. The reason for

that is the collisions occur in the plane of the pool table, whereas the gravi-

tional force works in the direction perpendicular to the table. In gravity is

cancelled by the normal force of the pool table on the ball. The ball is not

accelerating in the vertical direction.

A typical example of conservation of momentum is the recoil of a rifle.

This problem is nice since the initial momentum is zero, since both bullet

and rifle are at rest. Momentum is created by the explosion of gun powder

and the resulting expansion of air. This is a complex process, but since all

the forces are internal momentum is still conserved. Now we do make an

approximation, since we will only consider the momentum of the bullet and

we neglect the momentum carried by the expanding gases through the barrel.

Since the initial momentum is zero, conservation of momentum implies for

the final momenta

Mriflevrifle +mbulletVbullet = 0. (1.141)

The velocity of the rifle is then

vrifle = −
mbulletVbullet

Mrifle

. (1.142)

Some typical values for the masses and the velocity of the bullet are

mbullet
∼= 10 grams (1.143)

Vbullet
∼= 1000 m/s (1.144)

Mrifle
∼= 4 kg (1.145)
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This gives a velocity for the rifle of

vrifle = −
mbulletVbullet

Mrifle

= −
0.01× 1000

4
× 36001000 = 10 km/h(1.146)

So the larger object obtain a velocity by ejecting a smaller object. This

is basically the principle of a rocket. A rocket moves forward by ejecting

rocket fuel. Although the rocket fuel is light, it is ejected with a very large

velocity. However, our premise of that mass is conserved in the collision is not

really valid here, since the rocket is losing mass rapidly due to the expulsion

of all the rocket fuel. The equations necessary to solve this problem are

significantly more complicated (it’s not called rocket science for nothing. . . ).

1.7.1 Inelastic Collisions

Another solvable example is that of a completely inelastic collision where

one of the objects (let’s call that object 2) is initially at rest. After the

collision, the two objects form approximately one objects with a combined

mass m1 + m2. Given an initial velocity of object 1 of v1, conservation of

momentum gives

m1v1 = (m1 +m2)v
′ ⇒ v′ =

m1

m1 +m2

v1. (1.147)

We can now look at some particular limits. If the masses are equal we have

m1 = m2 = m ⇒ v′ =
m

m+m
v1 =

m

2m
v1 =

1

2
v1, (1.148)

so the combined object with a mass of 2m continues at only half the initial

velocity of object 1 with mass m.

Other typical limits are where one of the masses is significantly larger that

the other. For example, if the moving object has a much larger mass then

m1 ≫ m2 ⇒ v′ =
m1

m1 +m2

v1 ∼=
m1

m1

v1 = v1. (1.149)

This means that the velocity is hardly changed by the collision. An example

is a freight train colliding into a stationary car. One the other hand, if the

moving object is very light then

m2 ≫ m1 ⇒ v′ =
m1

m1 +m2

v1 ∼=
m1

m2

v1 ∼= 0. (1.150)

A typical example is driving into a wall.

Another example of an completely inelastic collision is two cars in a head-

on collision. Now if the cars have roughly the same masses and velocities
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(although in opposite directions), then we have

mv −mv = 0 = (m+m)v′ = 2mv′ ⇒ v′ = 0. (1.151)

This means that after the collision the combined wreck of the two cars comes

to a complete stand still.

1.7.2 Elastic Collisions-Part 1

Conservation of momentum is significantly simplified in the case of com-

pletely inelastic collisions. Most problems are more complex. Let us con-

sider the case of a one-dimensional collision. Conservation of momentum

then becomes

m1v1 +m2v2 = m1v
′

1 +m2v
′

2. (1.152)

If the masses and initial velocities v1 and v2 are known, that still leaves us

with two unknowns: v′1 and v′2. Now this gives a problem. It is possible to

solve one equation with one unknown. For example,

2x+ 3 = 11 ⇒ x = 4 (1.153)

or two equations with two unknowns

x+ y = 10 and x− y = 2 ⇒ x = 6 and y = 4 (1.154)

Sometimes, we can solve three equations with three unknowns,

x+ y = 10 and x− y = 2 and 3x− y = 14 ⇒ x = 6 and y = 4

But thats only because the third is the sum of the first two. Usually the

third equation just ruins it, such as

x+ y = 10 and x− y = 2 and 2x+ y = 8,

which has no solution. We can increase the number of unknowns and still

get a solution

x+ y + z = 12 and x− y + z = 4 and 2x− y − z = 3

⇒ x = 5 and y = 4 and z = 3

But sometimes the third equation does not help:

x+ y + z = 12 and x− y + z = 4 and x+ z = 8.

This looks like three equations, but in fact they are only two equations since

the third is just half the sum of the first two.

However, Equation (1.152) is only one equation with two variables and
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there is no way to solve that. The situation becomes even worse in two

dimensions

m1v1 +m2v2 = m1v
′

1 +m2v
′

2. (1.155)

The vector notation only hides the fact that there are actually two equations,

one for each coordinate

m1v1x +m2v2x = m1v
′

1x +m2v
′

2x (1.156)

m1v1y +m2v2y = m1v
′

1y +m2v
′

2y. (1.157)

However, when the initial conditions are known, there are now two equations

with four unknowns. Therefore, we need more information to be able to solve

these problems. So far, we have considered collisions that were completely

inelastic. After the collision, the objects continue as one object. There is an

opposite limit, where the objects are not damaged at all. A typical situation

is the collision of billiard ball with each other or bowling balls against the

pins. In this case, one can use another condition, namely conservation of

energy.

1.8 Conservation of Energy

Before turning our attention back to collisions let us first reconsider the case

to objects dropping due to gravity. The equation of motion for an object

dropped from a height h is given by

y(t) = −
1

2
gt2 + h, (1.158)

where g is the acceleration due to gravity. The time t when the object hits

the ground is given by

−
1

2
gt2ground + h = 0 ⇒ tground =

√

2h

g
. (1.159)

The velocity at this time is given by

v = −gtground = −g

√

2h

g
= −

√

2gh, (1.160)

where the initial velocity is zero. We can rewrite this somewhat to obtain

1

2
v2 = gh (1.161)
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or when multiplying by the mas m

1

2
mv2 = mgh. (1.162)

This is a very nice result, since it directly relates the final velocity to the

initial height without the need to concern ourselves with detail such as: how

long does it take to fall down, the dependence of the position and velocity as

a function of time. The result is much more fundamental then is appears at

first and is known as conservation of energy. The principle of conservation

of energy is very important in physics. On the left-hand side, there is a term

related to the velocity. This energy is known as the kinetic energy. We can

also express this in terms of momentum p = mv

Ekin =
1

2
mv2 =

p2

2m
. (1.163)

The term on the right-hand side is related to the gravitational force and

the initial height. This quantity is known as the potential energy. We can

understand this by looking at the problem of a falling object not in terms

of time but in terms of space. Let us take Newton’s second law

F = ma. (1.164)

The following only works in the case of a constant acceleration, but it gives

a good idea of the underlying physics. Let us now consider a constant force

working on an object in free space or on a frictionless floor for a distance

d, see Fig. 1.48. All the force goes into accelerating the object. Applying a

force over a distance d gives

Fd = mad. (1.165)

However, from the equations of motion for constant acceleration, we know

that the distance can be written as d = 1
2
at2, giving

Fd = ma
1

2
at2 =

1

2
m(at)2 =

1

2
mv2, (1.166)

Figure 1.48 By exerting a force upwards in the horizontal direction we are
increasing the object’s kinetic energy (we are neglecting friction).
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since the velocity is given by v = at. The quantity on the left-hand side Fd

is known as the work. This is the energy that the force puts into the object.

Where did that energy go. Well, in this case it went into kinetic energy or

energy of motion.

Some of the notion of conservation of energy appeared around the time of

Isaac Newton. Gottfried Leibniz identified around 1676-89 the quantity mv2

with the ”living force” (or vis viva in Latin). He noticed that this quantity

was conserved for systems where the masses do not interact. However, in the

eighteenth century quite a few noticed that conservation of momentum alone

was insufficient to solve many collision problems. The used the Leibniz’s

principle as an additional constraint of collisions. In a following Section, we

shall deal with these type of collisions, known as elastic collisions. However,

the real basis for kinetic energy and its relation to work was laid down by

Gaspard-Gustav de Coriolis (1792-1843) and Jean-Victor Poncelet (1788-

1867) in the early ninetheenth century.

Now suppose the object is not in free space but is on Earth lying on the

ground. We now apply a force upwards that is equal to the gravitational

force on the object, i.e. F = mg. (Let us ignore the parts where we have

to accelerate it to set it in motion and decelerate it when we are at the

desired height), see Fig. 1.49.. The work done in that case is equivalent to

Figure 1.49 By exerting a force upwards in the vertical direction we are in-
creasing the object’s potential energy. This energy is converted into kinetic
energy when the object is released.
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Fh = mgh. However, at the end, there object does not have any kinetic

energy, since all the work went into overcoming the gravitational force. This

does not mean that the object does not have any energy. It has potential

energy. It is called potential energy because that energy can be converted

into a different energy. As we saw above, it we drop it from that height

then, by the time it reaches the ground, it will have a kinetic energy exactly

equivalent to the potential energy, or Ekin = mgh.

Let us now consider the situation where we do not drop it entirely to the

ground but look at a different height h1. Conservation of energy tells us

mgh+
1

2
mv2 = constant. (1.167)

Therefore, we can equate the total energy at different heights. If we drop

the object from a height h, then we know that the kinetic energy at that

height is zero. However, at a intermediate height, we have both potential

and kinetic energy. Equating the two gives

mgh = mgh1 +
1

2
mv21 ⇒

1

2
mv21 = mg(h− h1)

⇒ v1 =
√

2g(h− h1). (1.168)

This shows that the object gains velocity, but less than it would have if it

was dropped all the way to the ground since h − h1 < h. However, what

happens now if we drop it from height h1, but also give it the velocity v1 in

the downwards direction. Again, applying conservation of energy and taking

into account that there is no potential energy at the ground (h = 0), we have

1

2
mv2 = mgh1 +

1

2
mv21. (1.169)

However, using the result from above, we find

1

2
mv2 = mgh1 +mg(h− h1) = mgh, (1.170)

which is exactly equal to the kinetic energy that it would have had if it was

dropped from a height h with an initial velocity of zero. However, what is

weird is that the kinetic energy does not tell us which way the velocity at

height h1 is. We could have thrown it upwards with a velocity v1. In that case,

it would go up first; come to rest at the maximum of the orbit; then come

down again. However, as we saw before, when it is back at h1, it will again

have a velocity of v1 but now in the downward direction. But what is even

stranger is that we could also have thrown it in the horizontal direction with

a velocity v1, see Fig. 1.50. Now let us separate the different directions. We

now have a horizontal motion which does not change according to Newton’s
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first law, since there is no net force in the horizontal direction. The kinetic

energy related to the horizontal direction is then

1

2
mv2horizontal =

1

2
mv21 = mg(h− h1) (1.171)

In the vertical direction, the initial velocity at height h1 was zero. This is

equivalent to dropping an object from height h1. The kinetic energy for the

vertical direction is therefore

1

2
mv2vertical = mgh1. (1.172)

So the total kinetic energy at the ground is now

1

2
mv2 =

1

2
mv2horizontal +

1

2
mv2vertical

= mg(h− h1) +mgh1 = mgh, (1.173)

which is again the same result! However, the object is now moving with a

speed vhorizontal =
√

2g(h− h1) in the horizontal direction and vvertical =√
2gh1 in the negative vertical direction.

Figure 1.50 Conservation of energy also holds when the object is not
thrown in the direction in which the potential energy decreases.
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1.8.1 Conservation of Energy and Friction

In the previous Sections, we considered problems in the absence of friction

or air resistance. Let us consider again the situation where we push an object

in the horizontal plane, but now there is friction between the object and the

ground. We push again with the same force F , so the same amount of work

Fd is done over a distance d. Let us assume that the initial kinetic energy

is much smaller than the work. Let us take the situation where the friction

force is equal to the applied force. In that case, there is no acceleration, so

the final kinetic energy equals the initial kinetic energy. So we do not gain

any kinetic energy. Since the movement is in the horizontal plane, we also

are not putting any potential energy into the object. So, we are putting work

into the object, but the energy of the object does not change. This seems to

be in conflict with the law of conservation of energy. Obviously, this cannot

be correct. There are two ways to look at this problem. First, there is a

friction force working on the object. This force is working in the opposite

direction as the applied force and is therefore equal to −Ffrictiond. Since

the object does not accelerate this work is also equal to −Fd and therefore

cancel the work by the applied force. We can also say that, although we are

putting work into the object, the object is putting work into the ground

via the friction forces between the object and the ground. Second, although

from a pure mechanical point of view it look like energy is lost. This is why

friction is called a nonconservative force, However the energy is not really

lost, this energy is simply converted into a different type of energy. The

friction between the floor and the object generates heat, which is simply a

different type of energy. The friction raises the temperature of the surfaces

that are in contact with each other. Therefore, from a thermodynamic point

of view (the study of heat and its relation to energy and work), the law of

conservation of energy.

Does this mean that energy is always conserved? No, it does not, but

energy conservation holds in almost all of our every day experiences. The

Figure 1.51 When an object experiences friction with the floor while being
pushed, it does not gain any kinetic or potential energy when the applied
force is equal to the friction force. Instead the work is converted into heat
at the contact areas.
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concept of energy becomes much more important in other subjects, not

only thermodynamics, but also quantum mechanics. In quantum mechan-

ics, that deals with mechanics at an atomic level, one almost never talks

about forces, but mainly about kinetic and potential energy. One can also

demonstrate that conservation of energy is directly related with the absence

of a dependence of the interactions in time (and remember, we arrived at

energy because we wanted to get rid of the detailed time dependence of the

equations of motion). You might want to point out that the gravitational

force changes when an object falls, since its dependence on the height is not

constant but changes as 1/r2. However, this is not a change in the interac-

tion since gravitation always has a 1/r2 potential. Gravitation, even with

a more complicated r dependence is still a conservative force. A change in

time would be if suddenly the gravitation would, for example, change from

a 1/r2 potential to a 1/r3 potential. Apart from a lot of other disastrous

consequences, it would also mean that energy is no longer conserved. When

we look at relativity, energy is also not a conserved quantity. Einstein’s fa-

mous expression E = mc2 implies an equivalence between mass and energy.

Mass can be converted into energy and energy into mass. For example, we

can create particle and antiparticles out of nothing: out of gamma rays, elec-

trons (particle) and positron (antiparticle) can be created. The gamma rays

have no mass, but the electron and positron, even though there each others

antiparticles have both a positive mass. They do have an opposite charge.

That a lot of energy can be obtained from mass is well known from nuclear

explosions. However, this is a totally different topic.

1.8.2 Elastic Collisions-Part 2

In the previous Sections, we discovered another principle, conservation of

energy, that can help us solve collision problems. Obviously, this will only

help us if the collision indeeds conserves energy. In this case, we are talking

about conservation of mechanical energy. This is known as an elastic colli-

sion. No energy should be lost in the collision to heating of the objects. In

addition, no energy should be lost to create permanent deformations of the

objects. The objects are allowed to deform elastically in the same fashion as

a spring deforms elastically. A typical example is the collision of two billiard

balls which do not deform or heat during the collision. Unfortunately, this

still does not allow us to entirely treat the problem of hitting billiard balls

since in a real two-dimensional case, we also need to know how the balls hit

each other. In addition, there is the problem of spin. So we just consider

head-on collisions.
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Let us consider an elastic collision in one dimension. We know that mo-

mentum is conserved,

m1v1 +m2v2 = m1v
′

1 +m2v
′

2 (1.174)

Note that if the masses and the two initial velocities are given, there still

remain two unknowns v′1 and v′2. In the case of an elastic collision, we can

also use conservation of energy

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

′2
1 +

1

2
m2v

′2
2 . (1.175)

It is convenient to rewrite collect the velocities of each object on one side of

the equation

1

2
m1(v

2
1 − v′21 ) =

1

2
m2(v

′2
2 − v22). (1.176)

Using the special product a2 − b2 = (a− b)(a+ b), we can write

m1(v1 − v′1)(v1 + v′1) = m2(v
′

2 − v2)(v
′

2 + v2). (1.177)

We can rearrange the conservation of momentum in the same fashion

m1(v1 − v′1) = m2(v
′

2 − v2). (1.178)

Dividing these to equations gives

v1 + v′1 = v′2 + v2 ⇒ v1 − v2 = v′2 − v′1 = −(v′1 − v′2). (1.179)

This results shows the magnitude of the relative velocity remains the same,

but its sign changes.

Example: Equal masses. For two billiard balls with equal masses the conser-

vation of momentum reduces to

mv1 +mv2 = mv′1 +mv′2 ⇒ v1 + v2 = v′1 + v′2 (1.180)

In addition, we also have

v1 − v2 = v′2 − v′1. (1.181)

Adding the two equations gives v1 = v′2 and subtracting gives v2 = v′1. So

the velocities of 1 and 2 are simply exchanged. A particular case is when one

of the balls is at rest v2 = 0. This directly gives v′1 = 0 and v′2 = v1. This is

often observed when playing pools when the balls have equal masses and in

the absence of spin on the balls. It is also well-known from Newton’s cradle.
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General solution for a collision in one dimension. Two solve this problem,

we have two equations: conservation of momentum which we rewrote as

m1(v1 − v′1) = m2(v
′

2 − v2). (1.182)

and the condition for the relative velocities derived above

v1 − v2 = v′2 − v′1 ⇒ v′1 = v′2 − v1 + v2. (1.183)

Inserting v′1 in the equation for conservation of momentum gives

m1[v1 − (v′2 − v1 + v2)] = m2(v
′

2 − v2)

⇒ 2m1v1 + (m2 −m1)v2 = (m1 +m2)v
′

2, (1.184)

giving for v′2,

v′2 =
2m1

m1 +m2

v1 +
m2 −m1

m1 +m2

v2. (1.185)

We can use this to derive v′1,

v′1 = v′2 − v1 + v2

=
2m1

m1 +m2

v1 +
m1 −m2

m1 +m2

v2 +
m1 +m2

m1 +m2

(−v1 + v2)

=
m1 −m2

m1 +m2

v1 +
2m2

m1 +m2

v2. (1.186)

Apparently, we also could have found this by exchanging 1 and 2. There is

clearly some symmetry in the problem.

Example: Target at rest. For the target at rest, v2 = 0, we have

v′1 =
m1 −m2

m1 +m2

v1 and v′2 =
2m1

m1 +m2

v1. (1.187)

Let us consider some limiting cases:

m2 ≫ m1. In this limit, we obtain

v′1
∼= −v1 and v′2

∼= 0. (1.188)

In this limit, the target remains at rest, and the incoming ball simply bounces

back. This is comparable to the ball bouncing of a wall.

m1 ≫ m2. In this limit, we obtain

v′1
∼= v1 and v′2

∼= 2v1. (1.189)

Thus the velocity of m1 is hardly unchanged, however, mass m2 takes off


