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Preface

These lecture notes summarize the main content of the course Quantum Me-
chanics I (Theory D), taught at the Karlsruhe Institute of Technology during
the summer semester 2015. They are based on the graduate course Quantum
Physics, taught at Iowa State University during Fall 2006, 2007 and 2008.
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Chapter 1

The Schrödinger equation

1.1 De Broglie’s matter waves

The beginning of the 20th century was characterized by an increasing accumula-
tion of experimental data that could not be understood anymore using classical
mechanics, electrodynamics or classical statistical mechanics, even though these
approaches proved highly successful for a broad range of problems. These de-
velopments include:

1898 Marja Sklodowska (Mdm. Curie) Radioactive polonium and radium
1901 Max Planck Unification of blackbody radiation
1905 Albert Einstein Photoelectric effect
1911 Ernest Rutherford Internal structure of the atom
1913 Niels Bohr Quantum theory of spectra
1922 Compton Scattering photons off electrons
1927 Davisson-Germer electron interference measurement

These observations led to Planck’s analysis of the black-body radiation and
Einstein’s postulate that light should be understood as a superposition of single
quanta whose energy E and frequency ν are related by

E = hν. (1.1)

The proportionality factor is Planck’s constant

h = 6.6260755× 10−34Js (1.2)

and has dimension energy×time, just like an action. In his 1900 publication
Planck already estimates the value h ' 6.55 × 10−34Js. The momentum of the
photon is

p =
E

c
=
hν

c
. (1.3)
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Using the wave length λ = c/ν and, what is often more convenient, the wave
number

k =
2π

λ
(1.4)

it then follows
p = ~k (1.5)

with

~ =
h

2π
= 1.05457266× 10−34Js. (1.6)

Similarly this yields
E = ~ω (1.7)

with angular frequency ω = 2πν.
The idea that there is a particle character in what was accepted to be a wave

had a complement in case of electrons. Those were believed to be particles, yet
they displayed interference phenomena and thus behaves as waves. Louis de
Broglie then made the radical assumption that not only photons have a particle-
wave duality. The same is true for electrons and other quantum particles. He
assumed similarly that there are waves obeying p = ~k and E = ~ω. However,
the ω (k) dependence must be consistent with the energy momentum dispersion
relation

E =
p2

2m
. (1.8)

It is said that Schrödinger only wanted to put the de Broglie relationship on a
formally more satisfying level and searched for a wave equation that reproduces
the proper dispersion relation. Let us try to guess how such a wave equation
could look like. To obtain the correct dispersion relation we start from the
equation:

a
∂nψ

∂tn
= b

∂mψ

∂xm
. (1.9)

We want ψ to be a wave, i.e. a solution of the kind

ψ ∝ exp (ikx− iωt) . (1.10)

It holds ∂nψ
∂tn = (−i)n ωnψ and ∂mψ

∂xm = imkmψ and we find

a (−i)n ωnψ = bimkmψ. (1.11)

Since we want our wave equation to yield

ω =
E

~
=
p2/ (2m)

~
=

~k2

2m
(1.12)

we can insert this and find

a (−i)n
(
~k2

2m

)n
= bimkm (1.13)
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This requires a fixed relation between the temporal and spatial derivatives:

n =
m

2
. (1.14)

The number of time derivatives is half the number of space derivatives. This

result follows directly from the classical dispersion relation E = p2

2m , where the
energy is the square of momentum. In addition it holds for the pre-factors

a (−i)n
(

~
2m

)n
= bim (1.15)

This only determines (for given n) the ratio a/b. The simplest choice (but by
no means a unique choice) is to start with n = 1. This leads with a = i~ to:

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
. (1.16)

This is the Schrödinger equation for a single non-interacting non-relativistic
particle.

1.2 Interpretation of the Schrödinger equation

The generalization of the Schrödinger equation to more than one spatial dimen-
sion is obvious:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ. (1.17)

Having arrived at this new equation of motion a number of questions arise:

1. What is the physical interpretation of ψ (x, t)?

2. How to go beyond the limit of a particle on free space, i.e. how does this
equation look like in case of a finite potential?

3. How can one make contact to Newton’s equation of motion that proved
to be so successful for the mechanical motion of macroscopic bodies?

etc. etc.

A proposal that addresses the first question was made very early on by Max
Born. He realized that ψ (x, t) has not only an arbitrary sign (after all it is a
wave). In general it can also be complex. The latter is due to the fact that time
and space derivatives enter differently, leading to the imaginary unit i in the
wave equation. It makes therefore no sense to talk about a large or a small wave
function ψ (x, t). On the other hand |ψ (x, t)|2 can be large or small. Since it

is positive definite it seems natural to call |ψ (x, t)|2the density of the quantum
particle. However, since the wave function is supposed to describe the properties
of individual elementary particles, it makes strictly no sense to call |ψ (x, t)|2
the particle density, a notion that requires that some fraction of the particle is
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located at one position and another fraction elsewhere. Born refined this and
called

ρ (r, t) = |ψ (x, t)|2 = ψ∗ (x, t)ψ (x, t) (1.18)

the probability density. Thus, knowing |ψ (x, t)|2 determines the probability to
find the electron at a given time, t, at position x. This makes of course only
sense if the probability distribution is properly normalized, i.e. that:

ˆ
d3rρ (r, t) =

ˆ
d3xψ∗ (x, t)ψ (x, t) = 1. (1.19)

Since the Schrödinger equation is a linear equation it holds that λψ (x, t) is a
solution if ψ (x, t) is a solution, where λ is a time and coordinate independent
complex number. Thus, we can always fix λ to ensure Eq.1.19.

From probability we know that the expectation value of x, (i.e. the mean
value of the position) is given by

〈x〉t =

ˆ
d3xxρ (x, t)

=

ˆ
d3xψ∗ (x, t) xψ (x, t) . (1.20)

Similarly, the mean square of the position is

〈
x2
〉
t

=

ˆ
d3xx2ρ (x, t)

=

ˆ
d3xψ∗ (x, t) x2ψ (x, t) . (1.21)

The velocity (i.e. the change of the mean particle with time) is then

〈v〉t =
∂

∂t
〈x〉t

=

ˆ
d3x

(
∂

∂t
ψ∗ (x, t)

)
xψ (x, t) +

ˆ
d3xψ∗ (x, t) x

∂

∂t
ψ (x, t)

=
~

2mi

ˆ
d3x

[(
∇2ψ∗

)
xψ (x, t)− ψ∗ (x, t) x∇2ψ (x, t)

]
=

~
2mi

ˆ
d3x

[
ψ∗∇2xψ (x, t)− ψ∗ (x, t) x∇2ψ (x, t)

]
=

~
2mi

ˆ
d3x

[
ψ∗∇ ((∇x)ψ (x, t) + x∇ψ (x, t))− ψ∗ (x, t) x∇2ψ (x, t)

]
=

~
2mi

ˆ
d3x

[
ψ∗
(
(∇x)∇ψ (x, t) + (∇x)∇ψ (x, t) + x∇2ψ (x, t)

)
−ψ∗ (x, t) x∇2ψ (x, t)

]
=

~
mi

ˆ
d3xψ∗ (x, t)∇ψ (x, t) =

1

m

〈
~
i
∇
〉
t
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Classically we would expect that

〈v〉t =
1

m
〈p〉t (1.22)

and we therefore realize that in order to determine the mean value of the mo-
mentum we have to evaluate the average of

p̂=
~
i
∇ (1.23)

The physical quantity momentum is therefore represented by the operator ~
i∇.

This makes a lot of sense as

p̂ exp (ik · x− iωt) = ~k exp (ik · x− iωt) . (1.24)

For a perfect plane wave is the application of the operator p̂ identical to the
simple multiplication with ~k, the momentum according to the de Broglie pre-
scription. If correct, it suggests that the kinetic energy is represented by the
operator

T̂ =
p̂ · p̂
2m

= − ~2

2m
∇2, (1.25)

i.e. the Schrödinger equation for the free particle can be written as

i~
∂ψ

∂t
= T̂ψ, (1.26)

suggesting that in case of a finite potential V (x) the Schrödinger equation reads

i~
∂ψ

∂t
= Ĥψ, (1.27)

where
Ĥ = T̂ + V̂ (1.28)

is the energy operator. More precisely it is the Hamilton operator. V̂ = V (x̂)
is an operator, where the operator x̂ is defined as

x̂ψ (x, t) = xψ (x, t) , (1.29)

consistent with our above usage. This addresses question 2 above.
Eq.1.27 allows us to analyze the time dependence of an arbitrary expectation

value of an operator Â 〈
Â
〉
t

=

ˆ
d3xψ∗ (x, t) Âψ (x, t) . (1.30)

It follows

i~
∂

∂t

〈
Â
〉
t

= −
ˆ
d3x

(
Ĥψ∗ (x, t)

)
Âψ (x, t)− ψ∗ (x, t) ÂHψ (x, t)

= −
ˆ
d3xψ∗ (x, t) ĤÂψ (x, t)− ψ∗ (x, t) ÂHψ (x, t)

=
〈[
Â, Ĥ

]〉
t
, (1.31)
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where we introduced the commutator[
Â, Ĥ

]
= ÂĤ − ĤÂ. (1.32)

Eq.1.31 is called the Ehrenfest theorem.
The commutator determines to what extend the order of the application of

two operators matters. To evaluate commutators it is best to apply it to a wave
function. For example:

[p̂α, x̂β ]ψ =
~
i

∂

∂xα
(xβψ)− xβ

~
i

∂

∂xα
ψ

=
~
i

(
∂

∂xα
xβ

)
ψ +

~
i
xβ

∂

∂xα
ψ − xβ

~
i

∂

∂xα
ψ

=
~
i
δαβψ (1.33)

It follows for the operators:

[p̂α, x̂β ] =
~
i
δαβ . (1.34)

This yields [
p̂2, x̂α

]
=

∑
β

(p̂β p̂β x̂α − x̂αp̂β p̂β)

=
∑
β

(
p̂β x̂αp̂β − x̂αp̂β p̂β +

~
i
δαβ p̂β

)
= −i2~p̂α (1.35)

and we obtain again our earlier result

∂

∂t
〈x̂〉t =

i

~

〈[
Ĥ, x̂

]〉
t

=
i

~2m

〈[
p̂2, x̂

]〉
t

=
1

m
〈p̂〉t (1.36)

Similarly we can analyze

∂

∂t
〈p̂〉t =

i

~

〈[
Ĥ, p̂

]〉
t

=
i

~

〈[
V̂ , p̂

]〉
t

(1.37)

It holds

V (x) p̂αψ − p̂αV (x)ψ = V (x)
~
i

∂

∂xα
ψ − ~

i

∂

∂xα
(V (x)ψ)

= −~
i

(
∂

∂xα
V (x)

)
ψ (1.38)

and we obtain
∂

∂t
〈p̂〉t = −〈∇V (x)〉t . (1.39)
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This is indeed identical similar to Newton’s equation of motion, since

F (x) = −∇V (x) (1.40)

is nothing but the classical force. The change of the averaged momentum is
given by the averaged force. This relation between ∂

∂t 〈p̂〉t and 〈F〉 is called the
Ehrenfest theorem. All the beauty of quantum mechanics is apparently hidden
in the deviations from mean values. Still, in case of very narrow distribution
functions we see that there seems to exist a natural relation to the classical limit.
Thus we have answered question 2 above in the sense that classical physics was
so far concerned with the properties of mean values, while there are deviations
from the mean values, so called quantum fluctuations, that are due to the wave
nature of quantum particles.

1.3 Stationary Schrödinger equation

In case of an arbitrary time-independent potential, the Schrödinger equation
can be simplified. We make the product ansatz1

ψ (x, t) = f (t)ψ (x) , (1.41)

which gives

i~
∂f (t)

∂t
ψ (x) = − ~2

2m
f (t)∇2ψ (x) + f (t)V (x)ψ (x) (1.42)

and we obtain
i~∂f(t)

∂t

f (t)
=
− ~2

2m∇
2ψ (x) + V (x)ψ (x)

ψ (x)
. (1.43)

Since a purely time dependent function on the l.h.s. equals a purely space
dependent function on the r.h.s., both can only be a constant

i~
∂f (t)

∂t
= Ef (t)

Ĥψ (x) = Eψ (x) (1.44)

The first equation is solved readily:

f (t) = f (0) e−i
E
~ t. (1.45)

The time dependence of the wave function is then only a phase factor. In case
of time-independent potentials, the probability distribution |ψ (x, t)|2 = |ψ (x)|2
is independent on t.

The second equation is the time independent or stationary Schrödinger equa-
tion. It is an eigenvalue equation. In order to interpret the constant E we realize

1We use the common but slightly misleading notation where ψ (x, t) refers to the full space
and time dependent wave function and ψ (x) to the space dependent part of it.
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that it is the eigenvalue of the Hamilton operator. For the expectation value of
the Hamilton operator follows:〈

Ĥ
〉

=

ˆ
dxψ∗ (x, t) Ĥψ (x, t)

= E

ˆ
dxψ∗ (x, t)ψ (x, t) = E (1.46)

i.e. E is the expectation value of the energy in the state ψ (x, t). Thus, if a quan-
tum mechanical system is characterized by an eigenfunction of the Hamilton
operator, it’s energy is sharply defined and given by the associated eigenvalue.

1.4 Particle in a box

In order to get a better impression for the transition from the quantum to the
classical world we consider a simple example, the one dimensional potential
well. We consider a particle in one dimension (i.e. moving on a thin wire) that
is confined to move in the interval

[
−a2 ,

a
2

]
. The corresponding potential is

V (x) =

{
0 |x| < a

2
∞ |x| ≥ a

2

. (1.47)

Classically the motion of a particle on this wire is

x (t) = x0 + vt, (1.48)

at least until it is reflected on the walls. The probability of finding the particle
in the interval [x, x+ dx] under the condition that x0 is unknown equals the
fraction of time it spends in this interval. Thus

ρclassdx =
vdt

a
=
dx

a
(1.49)

yielding the obvious result that

ρclass =
1

a
= const. (1.50)

Since our potential is time-independent we can immediately focus on the
stationary Schrödinger equation

Ĥψ (x) = Eψ (x) . (1.51)

The infinite potential is only compatible with a vanishing wave function, i.e. we
need to request ψ

(
|x| ≥ a

2

)
= 0. Inside the well the potential vanishes and it

holds

− ~2

2m

∂2

∂x2
ψ (x) = Eψ (x) . (1.52)
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As discussed, the total, time-dependent wave function is given as:

ψ (x, t) = e−i
E
~ tψ (x) (1.53)

We further introduce for convenience the quantity k via

E =
~2

2m
k2 (1.54)

and obtain
∂2

∂x2
ψ (x) + k2ψ (x) = 0. (1.55)

The solutions of this second order differential equation with constant coefficients
is well known as:

ψ (x) = A cos (kx) +B sin (kx) . (1.56)

The two boundary conditions are

ψ
(a

2

)
= A cos (ka/2) +B sin (ka/2) = 0

ψ
(
−a

2

)
= A cos (ka/2)−B sin (ka/2) = 0, (1.57)

which gives

A cos (ka/2) = 0

B sin (ka/2) = 0. (1.58)

Thus, it must hold A = 0 or k = (2m+ 1) πa as well as B = 0 or k = 2mπ
a .

Thus, using

kn = n
π

a
(1.59)

ψ (x) =


√

2
a cos (knx) n odd√
2
a sin (knx) n even

(1.60)

The application of the kinetic energy equals the multiplication of the wave
function with the eigenvalue

En =
~2

2m
k2
n =

~2

2m

π2

a2
n2 (1.61)

Only a discrete set of energies is allowed. Energy is quantized!

Obviously we need to exclude n = 0 as it corresponds to ψ (x) = 0 which is
not normalizable. The lowest energy is therefore

E1 =
~2

2m

π2

a2
. (1.62)
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Even though the potential vanishes in the box (and classically a particle at
rest with energy E = 0 is allowed) this is not the case for the quantum solu-
tions. There exists a rather transparent physical interpretation for this zero-
point energy effect: In order to squeeze a wave in the box with proper boundary
conditions we need a wave length

λ =
a

2
(1.63)

yielding a wave number

k =
2π

λ
=
π

a
(1.64)

which the yields a energy

E = E1 =
~2

2m

π2

a2
. (1.65)

The wave nature of the solution simply enforces a finite kinetic energy of the
solution.

We also observe that we have two classes of solution that alternate if we
order them by their energy. Solutions with n odd are even under reflection

ψn (x) = ψn (−x) (1.66)

while the other solutions change sign

ψn (x) = −ψn (−x) . (1.67)

Thus while the potential is always even under reflection x → −x, the wave
function does not need to have this symmetry property. More generally: the
symmetry of the wave function can be lower than that of the Hamiltonian.

Finally, we analyze the probability density |ψn (x)|2 = 2
a cos2 (nπx/a) or

|ψn (x)|2 = 2
a sin2 (nπx/a). For large enough n this oscillates rapidly around

the classical value ρclass = 1
a . Averaging over regions of size δx ' a/n (that are

small compared to a for large n) gives:

ˆ
x,x+δx

dx |ψn (x)|2 → ρclass. (1.68)

In this sense is it possible to recover the classical limit. While states with low
energy behave fundamentally different from the classical limit, highly excited
states with large energy become increasingly similar to the behavior obtained
within classical mechanics. While the statement that mean values follows the
classical equations of motion is generally correct, the deviations from the mean
values are significant for low energy states.

This can also be seen from an analysis of the mean square deviation
〈
x2
〉
:

It holds

〈x〉 =

ˆ a/2

−a/2
x |ψ (x)|2 dx = 0, (1.69)
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as |ψ (x)|2 is always an even function, making the above integrand an odd func-
tion. On the average the particle is always in the middle. However it follows
easily (see Mathematica analysis)

〈
x2
〉

=

ˆ a/2

−a/2
x2 |ψ (x)|2 dx =

a2

12

(
1− 6

n2π2

)
. (1.70)

Thus, highly excited states have mean square deviations that approach
〈
x2
〉
→

a2

12 . This is exactly what we expect classically

〈
x2
〉

=

ˆ a/2

−a/2
ρclassx

2dx =
1

a

ˆ a/2

−a/2
x2dx

=
1

3a
x3
∣∣a/2
−a/2 =

a2

12
. (1.71)

1.5 Continuity of probability

We interpreted
ρ (x,t) = |ψ (x, t)|2 (1.72)

as probability density. It is therefore natural to ask whether probability is
conserved. Charge conservation in electrodynamics is for example related to
the conservation law

∂

∂t
ρ (x,t) +∇ · j (x,t) = 0 (1.73)

with charge current j (x,t). What is the corresponding expression for the prob-
ability current that follows from the Schrödinger equation.

It holds

∂

∂t
ρ (x,t) =

(
∂

∂t
ψ (x, t)

∗
)
ψ (x, t) + ψ (x, t)

∗ ∂

∂t
ψ (x, t) (1.74)

We use the Schrödinger equation to determine the time dependence of ψ∗ and
ψ:

i~
∂ψ

∂t
= Ĥψ

−i~∂ψ
∗

∂t
= Ĥψ∗, (1.75)

which gives

∂

∂t
ρ =

(
− 1

i~
Ĥψ∗

)
ψ + ψ∗

1

i~
Ĥψ

=
~

2im

(
∇2ψ∗

)
ψ − ψ∗∇2ψ

= − ~
2im
∇ · [ψ∗∇ψ − (∇ψ∗)ψ] (1.76)



18 CHAPTER 1. THE SCHRÖDINGER EQUATION

Thus, the probability current is

j =
~

2im
(ψ∗∇ψ − (∇ψ∗)ψ) . (1.77)

The net current I through the surface, ∂V , of a given volume V is given by the
change in the probability

P =

ˆ
V

d3xρ (x,t)

in that volume:

∂

∂t
P = −

ˆ
V

d3x∇ · j (x,t)

= −
ˆ
∂V

dσ · j (x,t) = −I (1.78)

Here dσ is the surface element with direction parallel to the surface normal
vector. I > 0 means that the current flows out of the volume implying that P
decreases.

Since we only talk about the absolute magnitude |ψ (x, t)|2 of the wave func-
tion one might think that the phase of the wave function carries no physical
information. However, this is not the case. Lets write

ψ (x,t) =
√
ρ (x,t) exp

(
iS (x,t)

~

)
(1.79)

It then follows

j (x,t) =
ρ (x,t)

m
∇S (x,t) (1.80)

The gradient of the phase determines the current flow of the probability and
(except for an overall constant that doesn’t contribute to the current) carries
important information. Only a constant in space phase carries no physical infor-
mation. This is obvious from the simple fact that ψ (x, t) solves the Schroedinger
equation of ψ (x, t) eiS0 does, where S0 is independent on x and t.



Chapter 2

Measurement and
uncertainty

2.1 Hermitian operators

A crucial observation of our analysis so far was, that the physical quantities
position x̂, momentum p̂ and energy Ĥ are all represented by operators. We
expect of course that their expectation values are real. This is obvious in case
of the position operator

〈x̂〉 =

ˆ
d3xx |ψ (x, t)|2 . (2.1)

However, this is less obvious for p̂

〈p̂〉 =
~
i

ˆ
d3xψ∗ (x, t)∇ψ (x, t) . (2.2)

Consider

〈p̂〉∗ = −~
i

ˆ
d3xψ (x, t)∇ψ∗ (x, t) (2.3)

we find

〈p̂〉 − 〈p̂〉∗ =
~
i

ˆ
d3x∇ |ψ (x, t)|2 (2.4)

Using Gauss theorem this corresponds to ~
i |ψ (x, t)|2 taken on the surface of the

integration volume. Formally one should always confine one selves to a specific
set of permissible functions. Since we always want to reach normalizability

ˆ
d3xψ∗ (x, t)ψ (x, t) = 1 (2.5)

it is obvious that the wave function must decay sufficiently fast for large x.
Thus, the above surface term can always be safely neglected since |ψ (x, t)|2

19
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vanishes at infinity. It follows that the expectation value of the momentum is
indeed real. As an aside we also learned that quantum mechanics is described
by the space of square integrable functions.

In case of the energy it also follows that

〈H〉 = 〈T 〉+ 〈V 〉 (2.6)

is real. This is obvious in case of the potential energy:

〈V 〉 =

ˆ
d3xV (x) |ψ (x, t)|2 . (2.7)

In case of the kinetic energy follows

〈T 〉 = − ~2

2m

ˆ
d3xψ (x, t)∇2ψ∗ (x, t) (2.8)

while

〈T 〉∗ = − ~2

2m

ˆ
d3xψ∗ (x, t)∇2ψ (x, t)

= − ~2

2m

ˆ
d3x

(
∇2ψ∗ (x, t)

)
ψ (x, t)

= 〈T 〉 . (2.9)

Once again we performed partial integrations and neglected surface terms.

More generally we can say that physical quantities are represented by op-
erators with real expectation values. Lets consider such a physical quantity,
characterized by an operator Ô. Consider the eigenfunctions of Ô

Ôϕn = onϕn. (2.10)

For the expectation value to be real in general, all eigenvalues must be real.
This is accomplished if we assume that Ô is Hermitian, i.e. that

ˆ
d3xψ∗ (x) Ôψ (x) =

ˆ
d3x

(
Ôψ (x)

)∗
ψ (x) . (2.11)

In other words, it doesn’t matter whether the operator acts on ψ (x) or ψ∗ (x).
Lets check that the eigenvalues of an Hermitian operator are real. It holds

ˆ
d3xϕ∗n (x) Ôϕn (x) = on

ˆ
d3xϕ∗n (x)ϕn (x) (2.12)

Lets take the complex conjugate

ˆ
d3xϕn (x)

(
Ôϕn (x)

)∗
= o∗n

ˆ
d3xϕ∗n (x)ϕn (x) (2.13)
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Thus o∗n = on for an Hermitian operator. It also follows easily that two eigen-
functions ϕn and ϕm with distinct eigenvalues on and om are orthogonal. It
holds

Ôϕn = onϕn

Ôϕm = omϕm (2.14)

and it follows ˆ
d3xϕ∗m (x) Ôϕn (x) = on

ˆ
d3xϕ∗m (x)ϕn (x)

ˆ
d3xϕ∗n (x) Ôϕm (x) = om

ˆ
d3xϕ∗n (x)ϕm (x) (2.15)

Subtracting the first from the complex conjugate of the second equation gives

0 = (on − om)

ˆ
d3xϕ∗m (x)ϕn (x) . (2.16)

Thus, for distinct eigenvalues follows
´
d3rϕ∗m (x)ϕn (x) = 0. If the eigenvalues

are the same, we can always orthogonalize the eigenfunctions. Thus, one can
always assume that the functions are orthonormal, i.e.ˆ

d3xϕ∗nϕm = δnm. (2.17)

An arbitrary function ψ (x) can be written as superposition of the ϕn

ψ=
∑
n

anϕn. (2.18)

We say that the {ϕn} form a complete set of functions. The fact that the set
of functions is complete follows from the relation∑

n

ϕ∗n (x)ϕn (x′) = δ (x− x′) (2.19)

If we want to calculate the expectation value of Ô, it follows:〈
Ô
〉

=

ˆ
d3xψ∗ (x) Ôψ (x)

=
∑
n,m

a∗nam

ˆ
d3xϕ∗nÔϕm

=
∑
n

|an|2 on. (2.20)

How can we determine the expansion coefficients an in ψ=
∑
n anϕn? To de-

termine them we multiply both sides of the equation by ϕ∗m and integrate over
space ˆ

d3rϕ∗m (x)ψ (x) =
∑
n

an

ˆ
d3rϕ∗m (x)ϕn (x) (2.21)
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Now we use the ortho-normality
´
d3rϕ∗m (x)ϕn (x) = δnm and obtain

am =

ˆ
d3rϕ∗m (x)ψ (x) . (2.22)

It follows ∑
n

|an|2 =
∑
n

ˆ
d3x

ˆ
d3x′ψ∗ (x)ϕn (x)ψ (x′)ϕ∗n (x′)

=

ˆ
d3xψ∗ (x) Ĉψ (x) (2.23)

where the action of the operator Ĉ is defined as

Ĉψ (x) =
∑
n

ˆ
d3x′ϕn (x)ϕ∗n (x′)ψ (x′) (2.24)

=
∑
n

anϕn (x) = ψ (x) (2.25)

such that Ĉ = 1 yielding ∑
n

|an|2 = 1 (2.26)

as expected for a probability distribution.
The above derived expression〈

Ô
〉

=
∑
n

|an|2 on (2.27)

has a nice physical interpretation. We can obviously interpret |an|2 as the
probabilities that on is in state n.

Let us finally comment on the completeness relation. Take an arbitrary
function ψ (x) and write

ψ (x) =

ˆ
ddx′δ (x− x′)ψ (x′)

=
∑
n

ˆ
ddx′ϕ∗n (x)ϕn (x′)ψ (x′)

=
∑
n

anϕn (x) ,

i.e. an arbitrary function can be represented in terms of the above expansion.
If we want to analyze the properties of an observable, i.e. a quantity that

is characterized by a Hermitian operator Ô, it is interesting to investigate the
deviations from the mean value.

∆Ô = Ô −
〈
Ô
〉

(2.28)
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and consider the mean square deviation〈(
∆Ô

)2
〉

=

ˆ
ddxψ (x)

∗
∆Ô∆Ôψ (x)

=

ˆ
ddx

(
∆Ôψ (x)

)∗
∆Ôψ (x)

=

ˆ
ddx

∣∣∣∆Ôψ (x)
∣∣∣2 (2.29)

If O is a physical quantity that we can sharply determine in the state ψ (x), it

must hold

〈(
∆Ô

)2
〉

= 0. Since the integrand is positive definite, this can only

hold for

∆Ôψ (x) = 0 (2.30)

i.e. for

Ôψ (x) =
〈
Ô
〉
ψ (x) . (2.31)

Thus, if O can be measured sharply, ψ (x) must be an eigenfunction of Ô and
the eigenvalue equals the expectation value. No deviations from this eigenvalue
occur in the state ψ (x).

Consider two quantities that can be simultaneously measured sharply in all
states ψn (x), i.e.

Ôψn (x) = onψn (x)

P̂ψn (x) = pnψn (x) . (2.32)

Then holds

ÔP̂ψn (x) = P̂ Ôψn (x) (2.33)

for all n, yielding [
Ô, P̂

]
= 0 (2.34)

Operators that can simultaneously be measured sharply must commute.

2.2 Dirac notation

We noticed that we frequently need to evaluate integrals of the type

ˆ
d3xψ (x)

∗
ϕ (x) . (2.35)

To facilitate the notation we write

〈ψ|ϕ〉 ≡
ˆ
d3xψ (x)

∗
ϕ (x) . (2.36)
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This achieves more than just saving to write the integral sign. In fact it turns
out that we can consider the abstract functions (as opposed to the values of the
function for given x)

|ϕ〉 and 〈ψ| . (2.37)

Since 〈ψ|ϕ〉 form a bracket one often calls 〈ψ| a bra vector and |ϕ〉 a ket vector.
The name vector is perfectly adequate as 〈ψ|ϕ〉 obeys all the properties of a
scalar product.

Let us remind of the properties of a scalar product: Take two vectors a and
b, the scalar product

a∗ · b =
∑
i

a∗i bi (2.38)

obeys

a∗ · (λb) = λ (a∗ · b)

a∗ · b = (b∗ · a)
∗

a∗ · (b + c) = a∗ · b + a∗ · c
a∗ · a ≥ 0. (2.39)

One can generalize the scalar product to more general Hilbert spaces (essentially
all Banach spaces, i.e. spaces with a norm, in which a scalar product can be
defined sensibly) and it follows immediately from our above definition of 〈ψ|ϕ〉
that:

〈ψ|λϕ〉 = λ 〈ψ|ϕ〉
〈ϕ|ψ〉∗ = 〈ψ|ϕ〉

〈ψ|ϕ+ ϕ′〉 = 〈ψ|ϕ〉+ 〈ψ|ϕ′〉 .
〈ψ|ψ〉 ≥ 0. (2.40)

In this sense is 〈ψ|ϕ〉 also considered the projection of |ϕ〉 on |ψ〉. If they are
orthogonal it follows 〈ψ|ϕ〉 = 0.

One can then analyze the action of an operator on a bra or ket. Let

|ϕ〉 = Ô |ψ′〉 (2.41)

then
〈ψ|ϕ〉 =

〈
ψ
∣∣∣Ô∣∣∣ψ′〉 =

〈
ψÔ†|ψ′

〉
(2.42)

where the last equation means to apply the operator Ô† on the bra 〈ψ| and then
to take the scalar product of the result with the ket |ψ′〉. It defines the adjoined

operator Ô† to Ô. It holds that the adjoined of the adjoined is the operator
himself:

〈
ψ
∣∣∣Ô∣∣∣ψ′〉 =

〈
ψÔ†|ψ′

〉
=
〈
ψ′|Ô†ψ

〉∗
=

〈
ψ′
(
Ô†
)†
|ψ
〉∗

=

〈
ψ

∣∣∣∣(Ô†)†∣∣∣∣ψ′〉 (2.43)
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or simply:

Ô =
(
Ô†
)†
. (2.44)

Obviously, self-adjoined operators, with Ô = Ô† are our Hermitian operators
that represent physical observables.

Looking at two operators it holds〈
ψ
∣∣∣ÔP̂ ∣∣∣ψ′〉 =

〈
ψÔ†

∣∣∣P̂ ∣∣∣ψ′〉 =
〈
ψP̂ †Ô†|ψ′

〉
=

〈
ψ
(
ÔP̂
)†
|ψ′
〉

(2.45)

which implies in an operator language(
ÔP̂
)†

= P̂ †Ô†. (2.46)

Thus, the product of two Hermitian operators is Hermitian itself only if the two
operators commute.

Expanding a function in terms of a complete set corresponds to

|ψ〉=
∑
n

an |ϕn〉 =
∑
n

an |n〉 (2.47)

where the last equal sign introduces a common notation. If the |ϕn〉 or simply
|n〉 are eigenfunctions of the operator it holds

Ô |n〉 = on |n〉 . (2.48)

Normalization corresponds to

〈n|m〉 = δnm (2.49)

and the action of Ô on |ψ〉 corresponds to

Ô |ψ〉 =
∑
n

anon |n〉 (2.50)

such that the expectation value is〈
ψ
∣∣∣Ô∣∣∣ψ〉 =

∑
n,m

a∗namom 〈n|m〉 =
∑
n

|an|2 on (2.51)

Clearly the projection an is

〈n|ψ〉 =
∑
m

am 〈n|m〉 = an (2.52)

and the condition ∑
n

|an|2 = 1 (2.53)
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yields

1 =
∑
n

〈n|ψ〉∗ 〈n|ψ〉 =
∑
n

〈ψ|n〉 〈n|ψ〉 = 〈ψ|ψ〉 (2.54)

which leads to the operator identity

1̂ =
∑
n

|n〉 〈n| . (2.55)

In this sense one can also define the operator

R̂lm = |l〉 〈m| (2.56)

which has the property

R̂lm |ψ〉 =
∑
n

anÔlm |n〉 =
∑
n

an |l〉 〈m|n〉 = am |l〉 . (2.57)

A particular appeal of this approach is that it leads to a formulation of quantum
mechanics using a matrix formulation. Take the complete set {|n〉}. Then the
Schrödinger equation

Ĥ |ψ〉 = E |ψ〉 (2.58)

can be written as ∑
n

anĤ |n〉 = E
∑
n

an |n〉 (2.59)

We multiply this from the left with the bra 〈m| and it follows∑
n

〈m| Ĥ |n〉 an = Eam (2.60)

If we call
Hmn = 〈m| Ĥ |n〉 (2.61)

the m,n matrix element of the matrix H and an the n-th component of the
vector a then the stationary Schrödinger equation reads

H·a =Ea (2.62)

with ordinary matrix multiplication. Similarly we can write for two operators

ÔP̂ |ψ〉 (2.63)

that

〈m| ÔP̂ |ψ〉 =
∑
n,l

〈m| Ô |n〉 〈n| P̂ |l〉 al

=
∑
n,l

OmnPnlal = (OP·a)m (2.64)
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2.3 The momentum representation

We discussed that one can expand the wave function in a complete set of func-
tions

ψ (x) =
∑
n

anϕn (x) (2.65)

where ϕn (x) are the eigenfunctions of an operator Ô, i.e. Ôϕn (x) = onϕn (x).

Then |an|2 is the probability for O to take the value on. It is then natural to ask

what happens of the operator Ô is the momentum operator p̂ or the position
operator x̂. Since they have a continuous spectrum we write instead

ψ (x) =

ˆ
dpapϕp (x) (2.66)

where the eigenfunctions of the momentum operator are

ϕp (x) =
1√
2π~

eipx/~ (2.67)

Similarly holds for the position operator

ψ (x) =

ˆ
dx′ax′ηx′ (x) (2.68)

with

x̂ηx′ (x) = x′ηx′ (x) . (2.69)

The eigenfunctions ηx′ (x) can be most easily identified if one realizes that

ψ (x) = ax (2.70)

since both |ψ (x)|2 and |ax|2 are the probability density to find the particle at
position x. Thus, it holds

ηx′ (x) = δ (x− x′) . (2.71)

Similarly we may write in bra-ket notation

|ψ〉 =

ˆ
dp |p〉 〈p|ψ〉 =

ˆ
dx |x〉 〈x|ψ〉 (2.72)

and we can identify

ψ (x) = 〈x|ψ〉 . (2.73)

This suggests to introduce the wave function in momentum representation

ψ (p) = 〈p|ψ〉 . (2.74)

What is the representation of p̂ and x̂ in this new representation.
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In position representation holds obviously

〈x |x̂|ψ〉 = xψ (x) (2.75)

and

〈x |p̂|ψ〉 =

ˆ
dp′ 〈x|p′〉 〈p′ |p̂|ψ〉

=

ˆ
dp′ 〈x|p′〉 p′ 〈p′|ψ〉 . (2.76)

Using 〈x|p′〉 = ϕp′ (x) it holds

p′ 〈x|p′〉 =
~
i

∂

∂x
ϕp′ (x) . (2.77)

Thus it follows the familiar result:

〈x |p̂|ψ〉 =
~
i

∂

∂x
ψ (x) . (2.78)

We can proceed along the same lines and analyze

〈p |x̂|ψ〉 =

ˆ
dx′ 〈p|x′〉x′ 〈x′|ψ〉 . (2.79)

Since 〈p|x′〉 = 〈x|p′〉∗ follows

〈p |x̂|ψ〉 = −~
i

∂

∂p
ψ (p) . (2.80)

Similarly follows
〈p |p̂|ψ〉 = pψ (p) . (2.81)

If we start from a Hamiltonian

H =
p̂2

2m
+ V (x̂) (2.82)

it follows in momentum representation

H =
p2

2m
+ V (i~∇p) . (2.83)

2.3.1 Particle in a homogeneous field

The problem of a particle in a homogeneous field is characterized by the potential

V (x) = −Fx (2.84)

leading in position representation to
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− ~2

2m

d2ψ (x)

dx2
− Fxψ (x) = Eψ (x) (2.85)

which is, as usual, a second order differential equation.
In momentum space the Schrödinger equation is however only a first order

differential equation

p2

2m
ψ (p)− i~F dψ (p)

dp
= Eψ (p) . (2.86)

This is equivalent to

−idψ
ψ

=
1

~F

(
E − p2

2m

)
dp. (2.87)

Integrating this equation on both sides yields

−i log
ψ (q)

ψ0
=

1

~F

(
Ep− p3

6m

)
(2.88)

with integration constant ψ0. This gives

ψ (q) ∝ exp

(
i
E

~F
p− i p3

6m~F

)
. (2.89)

Returning to position space yields

ψ (x) =

ˆ
dp√
2π~

ei
px
~ ψ (q)

∝
ˆ
dpe

i
[
p
~ (x+E

F )− p3

6m~F

]
. (2.90)

Energy enters only via the position

x0 = −E
F

(2.91)

which corresponds to E = V (x0), the classical turning point for a particle
moving towards negative x.

Introducing

p = (2m~F )
1/3

u

ξ =

(
x+

E

F

)(
2mF

~2

)1/3

(2.92)

gives

ψ (ξ) = A

ˆ
du cos

(
u3

3
− ξu

)
. (2.93)

Given the following representation of the Airy function

Ai (ξ) =

ˆ
du

π
cos

(
u3

3
+ ξu

)
(2.94)
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it follows
ψ (ξ) ∝ Ai (−ξ) . (2.95)

The behavior away from x0 is characterized by the asymptotic behavior of the
Airy function:

Ai (ξ) =


e−

2
3
ξ3/2

√
4πξ1/4

ξ > 0

sin( 2
3 |ξ|

3/2+π
4 )

√
π|ξ|1/4 ξ < 0

. (2.96)

For x > x0 the wave function oscillates while it decays for x < x0.

2.4 The Uncertainty principle

We have established above that two physical quantities can be sharply measured
simultaneously if they are represented by operators Ô and P̂ that commute, i.e.
for [

Ô, P̂
]

= 0. (2.97)

Next we will discuss what happens if we consider two operators that do not
commute [

Ô, P̂
]

= iR̂ (2.98)

It obviously holds that R̂ is Hermitian if Ô and P̂ are:

R̂ =
ÔP̂ − P̂ Ô

i
(2.99)

and

R̂† = − P̂ Ô − ÔP̂
i

= R̂ (2.100)

We now look at
∆Ô = Ô −

〈
Ô
〉

and ∆P̂ = P̂ −
〈
P̂
〉

(2.101)

and it follows [
∆Ô,∆P̂

]
= iR̂ (2.102)

We first prove the Schwarz inequality

〈α|α〉 〈β|β〉 ≥ |〈α|β〉|2 (2.103)

for two functions of a set that obey 〈α|α〉 ≥ 0 (i.e. not necessarily normalized
to unity). To show that this is correct we start from

(〈α|+ λ∗ 〈β|) (|α〉+ λ |β〉) ≥ 0 (2.104)

where λ can be any complex number. The inequality must in particular hold
when

λ = −〈β|α〉
〈β|β〉

(2.105)
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This yields

〈α|α〉 − |〈α|β〉|
2

〈β|β〉
− |〈α|β〉|

2

〈β|β〉
+
|〈α|β〉|2

〈β|β〉
≥ 0 (2.106)

which leads to the Schwarz inequality. If we now use

|α〉 = ∆Ô |ψ〉 (2.107)

|β〉 = ∆P̂ |ψ〉 (2.108)

Then 〈(
∆Ô

)2
〉

=
〈
ψ
∣∣∣∆Ô∆Ô

∣∣∣ψ〉 = 〈α|α〉 (2.109)

and similarly 〈(
∆P̂

)2
〉

= 〈β|β〉 (2.110)

and it follows 〈(
∆Ô

)2
〉〈(

∆P̂
)2
〉
≥
∣∣∣〈ψ ∣∣∣∆Ô∆P̂

∣∣∣ψ〉∣∣∣2 (2.111)

For the right hand side we use iR̂

∆Ô∆P̂ =
1

2

[
∆Ô,∆P̂

]
+

1

2

(
∆Ô∆P̂ + ∆P̂∆Ô

)
=

i

2
R̂+

1

2

(
∆Ô∆P̂ + ∆P̂∆Ô

)
(2.112)

Thus 〈
ψ
∣∣∣∆Ô∆P̂

∣∣∣ψ〉 =
i

2

〈
R̂
〉

+
1

2

(〈
∆Ô∆P̂ + ∆P̂∆Ô

〉 )
(2.113)

with real expectation values
〈
R̂
〉

and
〈

∆Ô∆P̂ + ∆P̂∆Ô
〉

. Thus∣∣∣〈ψ ∣∣∣∆Ô∆P̂
∣∣∣ψ〉∣∣∣2 ≥ 1

4

〈
R̂
〉2

(2.114)

and we obtain 〈(
∆Ô

)2
〉〈(

∆P̂
)2
〉
≥ 1

4

∣∣∣〈[Ô, P̂]〉∣∣∣2 (2.115)

Thus, if two operators do not commute, they cannot be measured sharply at
the same time. Another consequence of Eq.2.115 refers to quantities O that can

be sharply measured, i.e. for which holds that

〈(
∆Ô

)2
〉

= 0. The uncertainty

relation obviously states that for all physical quantities P̂ that do not commute

with Ô follows

〈(
∆P̂

)2
〉
→ ∞. Such observables are fully undetermined. If

we take for example Ô = x̂α and P̂ = p̂β it follows with

[p̂α, x̂β ] =
~
i
δαβ (2.116)
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that 〈
(∆p̂α)

2
〉〈

(∆x̂β)
2
〉
≥ ~2

4
δαβ (2.117)

In particular holds for a plane wave, with
〈

(∆p̂α)
2
〉

= 0 that the position of

the particle is completely undetermined.



Chapter 3

The harmonic oscillator

We consider a particle in an harmonic oscillator potential

V (x) =
k

2
x2 (3.1)

where k is the force constant. We know that classical particles oscillate in this
potential with frequency

ω =

√
k

m
. (3.2)

The Hamilton operator of the problem is

Ĥ = − ~2

2m

d2

dx2
+
k

2
x2. (3.3)

The stationary Schrödinger equation

Ĥψ = Eψ (3.4)

is then given as

− ~2

2m

d2ψ (x)

dx2
+
k

2
x2ψ (x) = Eψ (x) , (3.5)

which we rewrite as

d2ψ (x)

dx2
+

2m

~2

(
E − k

2
x2

)
ψ (x) = 0. (3.6)

A dimensional analysis yields: [k] = energy
length2 , [~ω] = energy, implying that

mω

~
=

k

~ω
(3.7)

carries unit of inverse length square. Thus,

ξ =

√
mω

~
x (3.8)

33
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is a dimensionless quantity. In what follows perform a substitution of variables
to the dimensionless length ξ. We furthermore introduce the dimensionless scale

ε =
2E

~ω
(3.9)

and obtain the Schrödinger equation in dimensionless units:

d2ψ

dξ2
+
(
ε− ξ2

)
ψ = 0. (3.10)

We first analyze the asymptotic solution for large ξ, where ξ2 � max {1, ε}.
Then we only need to solve

d2ψ

dξ2
= ξ2ψ. (3.11)

In order to determine the solution of this differential equation we multiply the
equation by 2dψdξ , yielding

d

dξ

(
dψ

dξ

)2

= ξ2 d

dξ
ψ2. (3.12)

A similar approach worked fine in case of Newton’s equation. Now however
the problem is explicitly ξ-dependent and the solution is more subtle. For our
purposes it is however sufficient to approximately solve the equation for large ξ
(elsewhere it isn’t valid anyway). We have

d

dξ

((
dψ

dξ

)2

− ξ2ψ2

)
= −2ξψ2 (3.13)

If the r.h.s. of the equation is negligible, we only have to solve

d

dξ

((
dψ

dξ

)2

− ξ2ψ2

)
= 0 (3.14)

which yields
dψ

dξ
= ±

√
C + ξ2ψ2. (3.15)

Since both ψ and dψ
dξ vanish as ξ →∞ it must hold that C = 0. Thus

dψ

dξ
= ±ξψ (3.16)

Thus
dψ

ψ
= ±ξdξ (3.17)

Integrating this differential equation finally gives

ψ = c exp

(
−1

2
ξ2

)
, (3.18)
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where we ignored the solution with + as it yields a wave function that diverges
as ξ → ∞. It is easy to check that ξψ2 is indeed small compared to the other
terms, justifying our earlier assumption. Alternatively we can just insert this
solution into Eq.3.11. It holds

d2ψ

dξ2
=
(
ξ2 − 1

)
ψ ' ξ2ψ, (3.19)

as required.
The asymptotic analysis suggest to make the following ansatz for the wave

function for arbitrary ξ:

ψ (ξ) = h (ξ) exp

(
−1

2
ξ2

)
. (3.20)

Substitution of this ansatz into Eq.3.10 gives:

h′′ (ξ)− 2ξh′ (ξ) + (ε− 1)h = 0. (3.21)

The boundary condition for h (ξ) are that it doesn’t grow faster than exp
(

1
2ξ

2
)

as ξ → ±∞. Otherwise the exp
(
− 1

2ξ
2
)

may not be able to compensate the
growths at large ξ. Furthermore, h (ξ) is not allowed to diverge anywhere for
finite ξ.

Since h (ξ) does not diverge for finite ξ it can we written as a power series
with non-negative powers:

h′′ (ξ) =

∞∑
n=0

anξ
n. (3.22)

Inserting this series into the above differential equation gives

h′′ (ξ) =

∞∑
n=2

ann (n− 1) ξn−2 =

∞∑
m=0

am+2 (m+ 2) (m+ 1) ξm

−2ξh′ (ξ) = −2

∞∑
n=1

annξ
n = −2

∞∑
m=0

ammξ
m

(ε− 1)h (ξ) = (ε− 1)

∞∑
m=0

amξ
m. (3.23)

In order to fulfill the differential equation the coefficients for each power have
to vanish independently, i.e.

∞∑
m=0

[am+2 (m+ 2) (m+ 1)− 2amm+ (ε− 1) am] ξm = 0 (3.24)

which yields
am+2 (m+ 2) (m+ 1) + (ε− 2m− 1) am = 0. (3.25)
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Thus, we obtain the recursion relation:

am+2 =
(2m+ 1− ε)

(m+ 2) (m+ 1)
am. (3.26)

Given a0 and a1 all am are determines by Eq.3.26. For large m it follows

am+2 '
2

m
am (3.27)

To get a better interpretation of this result we search for a known function with
similar recursion relation of the power series expansion. We expand

eξ
2

=
∑
m

ξ2m

m!
. (3.28)

The coefficient bm of ξm is

bm =
1

(m/2)!
. (3.29)

Thus it follows

bm+2 =
1(

m
2 + 1

)
!

=
1

m
2 + 1

1
m
2 !

=
2

m+ 2
bm. (3.30)

For large m this implies

bm+2 '
2

m
bm. (3.31)

We conclude that our polynomial ansatz behaves for large ξ (where large m are

relevant) as eξ
2

which diverges faster than exp
(

1
2ξ

2
)
. Thus, we have to reject

the solution that allows am 6= 0 for arbitrary large m.
The only way out is to restrict the power series to a finite number of terms.

This can be achieved if ε equals 2n+ 1 with some integer n. Thus we find

εn =
2En
~ω

= 2n+ 1 (3.32)

or

En = ~ω
(
n+

1

2

)
. (3.33)

and n = 0, 1, · · · . The requirement to have a wave function that vanishes at
infinity is again the origin for energy quantization. We observe that, in distinc-
tion to the potential well, the difference between two consecutive eigenvalues is
constant En+1 − En = ~ω. This is reminiscent of the behavior one encounters
in case of photons. One way to interpret this result is to say that there are n
non-interacting elementary quanta in the system each contributing an energy
~ω to the total energy. In this sense is n the number of such quanta.

For a given n the recursion relation of the coefficients am is:

am+2 =
2 (m− n)

(m+ 2) (m+ 1)
am (3.34)
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which yields am+2 = 0 for m > n. However the condition εn = 2n + 1 can
only stop the recursion for either the coefficients of even or of odd powers in ξ.
Thus, to avoid that the power series grows as eξ

2

we require a0 = 0 if n odd
and a1 = 0 if n even. Thus we find

ψn (ξ) = (−1)
n
ψn (−ξ) . (3.35)

The wave functions are either even or odd. In case of the infinitely deep potential
well we already realized that the solution of the Schrödinger equation for a
symmetric potential V (x) = V (−x) led to solutions that where even or that
where odd under reflection. The same holds for the harmonic oscillator.

The lowest energy is not zero but ~ω
2 , called zero point energy. It is a natural

consequence of the uncertainty principle. To see this we estimate

E '
p2

typ

2m
+
k

2
x2

typ (3.36)

with typical momentum and position values, consistent with the uncertainty
principle. Thus we obtain

p2
typ '

〈
(∆p̂)

2
〉
' ~2

4
〈

(∆x̂)
2
〉

x2
typ '

〈
(∆x̂)

2
〉
, (3.37)

which yields

E ' ~2

4
〈

(∆x̂)
2
〉 1

2m
+
k

2

〈
(∆x̂)

2
〉
. (3.38)

Minimizing this w.r.t.
〈

(∆x̂)
2
〉

gives〈
(∆x̂)

2
〉

=
~

2
√
km

(3.39)

and then

E ' 1

4
~ω0 +

1

4
~ω0 =

1

2
~ω0. (3.40)

This is even the exact result. Important is that it gives us the correct order of
magnitude.

Lets return to our determination of the eigenfunctions. The solution hn (ξ) is
therefore an easy to determine polynomial. For the ground state holds am=0 =
const and am>1 = 0.

h (ξ) = const. (3.41)

where the constant is determined by normalization. Thus we obtain for the
ground state wave function

ψ (ξ) ∝ exp

(
−1

2
ξ2

)
. (3.42)
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Returning to the original length scale x and normalizing the wave function gives:

ψ (x) =
1√
2

(mω
~π

)1/4

exp
(
−mω

2~
x2
)
. (3.43)

In general we can write for the wave function that

ψn (x) = CnHn

(√
mω

~
x

)
exp

(
−mω

2~
x2
)

(3.44)

where the Hn (ξ) are the Hermite polynomials. Using our recursion relation
yields

H0 (ξ) = 1

H1 (ξ) = 2ξ

H2 (ξ) = −2 + 4ξ2

H3 (ξ) = −12ξ + 8ξ3

H4 (ξ) = 12 + 48ξ2 + 16ξ4

H5 (ξ) = 120ξ − 160ξ3 + 32ξ5 (3.45)

The so defines Hermite polynomial obey relations such as:

Hn (ξ) = (−1)
n
eξ

2 dn

dξn
e−ξ

2

= e
ξ2

2

(
ξ − d

dξ

)n
e−

ξ2

2 (3.46)

and have the propertyˆ
dξHn (ξ)Hm (ξ) e−ξ

2

=
√
π2nn!δnm (3.47)

This allows us to determine the normalization coefficient

Cn =
2−n/2√
n!

(mω
~π

)1/4

(3.48)

of the wave function.
We could now proceed and evaluate matrix elements such as 〈n |x̂|m〉 or

〈n |p̂|m〉 using properties of the Hermite polynomials. It turns out however
that there is an easier and more elegant way to look at the problem. We al-
ready realized that ξ =

√
mω
~ x is an appropriate dimensionless length scale.

equally,
√

1
~mωp is a dimensionless momentum variable. We therefore introduce

a dimensionless combination

â =

√
mω

2~

(
x̂+

i

mω
p̂

)
=

1√
2

(
ξ +

d

dξ

)
(3.49)

which is not a Hermitian operator. Its adjoint operator is

â† =

√
mω

2~

(
x̂− i

mω
p̂

)
=

1√
2

(
ξ − d

dξ

)
(3.50)
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The virtue of these operators is that they obey very simple commutation rela-
tions: [

â, â†
]

=
mω

2~

[
x̂+

i

mω
p̂, x̂− i

mω
p̂

]
= − i

2~
[x̂, p̂] +

i

2~
[p̂, x̂] = 1. (3.51)

We also define the operator
N̂ = â†â (3.52)

which is Hermitian and thus represents a physical observable (N̂† =
(
â†â
)†

=

â†â = N̂). It holds

N̂ =
mω

2~

(
x̂− i

mω
p̂

)(
x̂+

i

mω
p̂

)
=

mω

2~
x̂2 +

1

2m~ω
p̂2 − i

2~
[p̂, x̂]

=
1

~ω

(
p̂2

2m
+
mω2

2
x̂2

)
− 1

2
. (3.53)

We therefore obtain

Ĥ = ~ω
(
N̂ +

1

2

)
. (3.54)

Since the eigenvalues of Ĥ are given as En = ~ω
(
n+ 1

2

)
we conclude that the

eigenvalues of the operator N̂ are the integers n that determine the eigenstates
of the harmonic oscillator.

N̂ |n〉 = n |n〉 . (3.55)

We can also give a specific interpretation to the operators â and â†. We first
analyze [

N̂ , â
]

=
[
â†â, â

]
= â†ââ− ââ†â

= ââ†â− â− ââ†â = −â. (3.56)

Likewise we find the adjoint equation[
N̂ , â†

]
= â† (3.57)

As a result, we have

N̂ â† |n〉 =
[
N̂ ,̂ a†

]
|n〉+ â†N̂ |n〉

= (n+ 1) â† |n〉 . (3.58)

and

N̂ â |n〉 =
[
N̂ ,̂ a

]
|n〉+ âN̂ |n〉

= (n− 1) â |n〉 . (3.59)
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We conclude that â† |n〉 is an eigenstate to N̂ with eigenvalue increased by one
and similarly â |n〉 an eigenstate with an eigenvalue decreased by one. Thus

â |n〉 = c |n− 1〉 (3.60)

where c is a numerical constant. to be determines from the condition that |n〉
and |n− 1〉 are normalized. It holds

〈n| â† = c∗ 〈n− 1| (3.61)

and we conclude
〈n| â†â |n〉 = |c|2 〈n− 1|n− 1〉 (3.62)

which gives |c|2 = n and we find

â |n〉 =
√
n |n− 1〉 . (3.63)

Similarly it follows
â† |n〉 =

√
n+ 1 |n+ 1〉 . (3.64)

The operator â† and â raise and lower the quantum number (i.e. the number of
quanta). For these reasons, these operators are often called creation and annihi-
lation operators. Nowhere in our analysis did we really need to assume that the
eigenvalues n of N̂ are integers. However, the result â |n〉 =

√
n |n− 1〉 implies

that we can generate lower and lower eigenstates with energies unbounded from
below. Since this is not what we expect, the only way out is to request that the
n are integers. Then

â |n = 0〉 = 0 (3.65)

and no states with |n = −1〉 is being generated.
This allows us to determine the wave functions of the harmonic oscillator.

The ground state wave function obviously obeys√
mω

2~

(
x+

~
mω

d

dx

)
〈x|n = 0〉 = 0 (3.66)

which we write as
1√
2

(
ξ +

d

dξ

)
ψ0 (ξ) = 0 (3.67)

This differential equation has the solution

ψ0 (ξ) = A0 exp
(
−ξ2/2

)
(3.68)

Next we determine the first excited state via

|1〉 = â† |0〉 (3.69)

and higher excited states via

|2〉 =
1√
2
â† |1〉 =

1√
2

(
â†
)2 |0〉

|n〉 =
1√
n!

(
â†
)n |0〉 (3.70)
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which we write as

ψn (ξ) = An

(
ξ − d

dξ

)n
exp

(
−ξ2/2

)
(3.71)

With our above expression for the Hermite polynomials

Hn (ξ) = e
ξ2

2

(
ξ − d

dξ

)n
e−

ξ2

2 (3.72)

follows

ψn (ξ) = AnHn (ξ) e−
ξ2

2 . (3.73)

The pre-factors An are easily by normalizing the wave function and we find the
same results for the wave function as before.

Using the above properties of the operators â and â†, we easily obtain for
an arbitrary matrix element

〈m| â |n〉 =
√
n 〈m|n− 1〉 =

√
nδm,n−1

〈m| â† |n〉 =
√
n+ 1 〈m|n+ 1〉 =

√
n+ 1δm,n+1. (3.74)

This allows us to determine the matrix elements of the position and momentum
operators

x̂ =

√
~

2mω

(
â† + â

)
p̂ = i

√
m~ω

2

(
â† − â

)
. (3.75)

We obtain

〈m| x̂ |n〉 =

√
~

2mω

(√
n+ 1δm,n+1 +

√
nδm,n−1

)
〈m| p̂ |n〉 = i

√
m~ω

2

(√
n+ 1δm,n+1 −

√
nδm,n−1

)
. (3.76)

Of course the same results follow from the explicit analysis of the Hermite
polynomials. The beauty of the present approach is that it doesn’t actually
require knowledge of the wave functions. Also, the formalism outlined here is
hugely important in the formulation of many body quantum field theory.
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Chapter 4

Additional one-dimensional
problems

4.1 One dimensional barriers

We want to study what happens to an incoming particle (originating in a region
with vanishing potential) that enters a region with nonzero potential. We con-
sider a stationary process, i.e. we assume that the solution of the Schrödinger
equation does not depend on time. Thus, a constant flux of incoming particles
is being considered. Later we will discuss scattering theory and discuss to what
extend this assumption is realistic and justified.

4.1.1 The step potential

To be specific we consider first the potential

V (x) =

{
0 x < 0
V0 x ≥ 0

(4.1)

For x < 0 we have to solve the non-interacting Schrödinger equation

− ~2

2m

d2ψ (x)

dx2
= Eψ (x) (4.2)

with solution

ψ (x) = Aeikx +Be−ikx (4.3)

where

k =

√
2mE

~
(4.4)

43
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depends on the energy of the incoming particle. The currents associated with
the two terms are

jinc =
~

2mi
2ik |A|2

jrefl = − ~
2mi

2ik |B|2 (4.5)

where we used j = ~
2mi

(
ψ∗ ∂ψ∂x − ψ

∂ψ∗

∂x

)
. This motivates to define the reflection

coefficient

R =

∣∣∣∣jrefljinc

∣∣∣∣ =

∣∣∣∣BA
∣∣∣∣2 (4.6)

For x > 0 the Schrödinger equation is

− ~2

2m

d2ψ (x)

dx2
= (E − V0)ψ (x) . (4.7)

If E > V0 it follows

ψ (x) = C ′eik
′x (4.8)

with

k′ =

√
2m (E − V0)

~
. (4.9)

By assumption we neglect a contribution De−ik
′x corresponding to an incoming

wave from the x > 0 region. If E < V0 the solution is

ψ (x) = Ce−κx (4.10)

where

κ =

√
2m (V0 − E)

~
(4.11)

and we ignored the exponentially rising solution ∝ eκx.
For E < V0 the wave function is (except for the x-independent pre-factor

C) real and no current is being transmitted (jtrans = j (x > 0) = 0), while for
E > V0 holds

jtrans =
~

2mi
2ik′ |C|2 . (4.12)

This leads for E > V0 to the transmission coefficient

T = 1−R =

∣∣∣∣jtransjinc

∣∣∣∣ =
k′

k

∣∣∣∣CA
∣∣∣∣2 (4.13)

The relation T = 1 − R follows from the continuity equation ∂j
∂x = 0 of our

stationary process that gives

j (x→ −∞) = j (x→∞) . (4.14)
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Since j (x→ −∞) = jinc + jrefl and j (x→∞) = jtrans follows jinc + jrefl =
jtrans yielding ∣∣∣∣jtransjinc

∣∣∣∣ = 1−
∣∣∣∣jrefljinc

∣∣∣∣ (4.15)

which is equivalent to Eq.4.13.
In order to determine the ratios B/A and C/A we use the boundary condi-

tions at x = 0

ψ
(
0+
)

= ψ
(
0−
)

ψ′
(
0+
)

= ψ′
(
0−
)

(4.16)

It follows

A+B = C

A−B =
k′

k
C (4.17)

and we can solve this for

C

A
=

2

1 + k′/k

B

A
=

1− k′/k
1 + k′/k

(4.18)

and we finally obtain the transmission and reflection coefficients

T =
4k′/k

(1 + k′/k)
2

R =

(
1− k′/k
1 + k′/k

)2

(4.19)

It furthermore holds (
k′

k

)2

= 1− V0

E
. (4.20)

It follows

T =
4
√

1− V0

E(
1 +

√
1− V0

E

)2 (4.21)

Obviously, T (E →∞)→ 1 and T (E → V0)→ 0. Close to those limits holds

T (E ' V0) ' 4

√
E − V0

V0

T (E � V0) ' 1− 1

4

(
V0

E

)2

(4.22)
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In case E < V0 we can again determine the boundary conditions for the wave
function and its first derivative to determine C ′/A and B/A. It holds

A+B = C ′

A−B = i
κ

k
C ′ (4.23)

which yields

C ′

A
=

2

1 + iκ/k
(4.24)

B

A
=

1− iκ/k
1 + iκ/k

(4.25)

The expression for B/A is of the form z∗

z = e−i2φ where z = reiφ. The phase is

φ = arctan
κ

k
(4.26)

which yields 1 +
(
κ
k

)2
= 1

cos2 φ . Thus we obtain

ψ (x < 0) = A
(
eikx + e−i(kx+2φ)

)
ψ (x > 0) = 2A |cosφ| e−iφe−κr (4.27)

φ is called the phase shift of the potential

φ = arctan
κ

k
= arctan

√
V0 − E
E

(4.28)

It holds

φ '


π
2 −

√
E−V0

V0
E � V0√

V0−E
V0

E → V0 − 0+
(4.29)

4.1.2 Rectangular barrier and tunneling

From our previous analysis we learned that the incoming wave penetrates the
potential even if E < V0. Since the potential stays at the value V0 up to
x → ∞, the particle will eventually decay. It is however interesting to analyze
the situation where the potential is finite only in a limited region of space. Thus
we analyze the rectangular barrier:

V (x) =

 0 x < −a
V0 −a ≤ x ≤ a
0 a < x

. (4.30)

We have to solve the Schrödinger equation in three different regions: for x < −a,
for −a < x < a and for x > a, separated by two boundaries.
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We start with the situation where E > V0. From our previous analysis we
know that the solution in the three regions are

ψ (x) =


Aeikx +Be−ikx x < −a
Ceik

′x +De−ik
′x −a ≤ x ≤ a

Feikx a < x

(4.31)

where,

k =

√
2mE

~

k′ =

√
2m (E − V0)

~
. (4.32)

similar to our previous solution, we do not allow for a reflected, left moving
wave in the region x > a. We also noticed before that we can only determine
the ratios B/A, C/A of the reflected and transmitted amplitudes relative to
the incoming amplitude. To simplify the notation we can therefore set A = 1,
i.e. we measure all amplitudes in units of A. For convenience we introduce the
dimensionless strength of the potential

γ2

4
=

V0

~2

2ma2

= (ak)
2 − (ak′)

2
. (4.33)

The problem is then characterized by γ and by the dimensionless ratio

ε =
E

V0
(4.34)

We can furthermore determine the transmission and reflection coefficients

T =

∣∣∣∣jtransjinc

∣∣∣∣ = |F |2

R =

∣∣∣∣jrefljinc

∣∣∣∣ = |B|2 (4.35)

We have two boundaries at x = ±a and two boundary conditions for each
boundary. This yields for the first boundary at x = −a:

e−ika +Beika = Ce−ik
′a +Deik

′a

k
(
e−ika −Beika

)
= k′

(
Ce−ik

′a −Deik
′a
)

(4.36)

and for the second boundary at x = a

Ceik
′a +De−ik

′a = Feika

k′
(
Ceik

′a −De−ik
′a
)

= kFeika (4.37)

The coefficients C and D occur for both boundaries, so it is wise to eliminate
them and obtain equations for B and F only, as those are the ones that deter-
mine the reflection and transmission coefficients.
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The last two equations can be solved for C and D for given F :

Ceik
′a =

F

2

(
1 +

k

k′

)
eika

D e−ik
′a =

F

2

(
1− k

k′

)
eika (4.38)

Substituting this into the first two equations gives

e−ika +Beika =
Feika

2

((
1 +

k

k′

)
e−2ik′a +

(
1− k

k′

)
e2ik′a

)
e−ika −Beika =

k′

k

Feika

2

((
1 +

k

k′

)
e−2ik′a −

(
1− k

k′

)
e2ik′a

)
Which can be simplified to

e−ika +Beika = Feika cos (2k′a)− i k
k′
Feika sin (2k′a)

e−ika −Beika = Feika cos (2k′a)− ik
′

k
Feika sin (2k′a) (4.39)

Adding and subtracting these two equations gives

F =
2e−i2ka

cos (2k′a)− i
2
k2+k′2

k′k sin (2k′a)

2B = i
k′2 − k2

k′k
F sin (2k′a) (4.40)

The transmission coefficient is most simply obtained from the second of these,
together with the relation

T +R = |F |2 + |B|2 = 1. (4.41)

It follows
1

T
=

1

|F |2
= 1 +

|B|2

|F |2
(4.42)

From the second equation above follows

B

F
=
i

2

k′2 − k2

k′k
sin (2k′a) (4.43)

and we find for the transmission coefficient for E > V0

1

T
= 1 +

1

4

(
k′2 − k2

k′k

)2

sin2 (2k′a)

= 1 +
1

4

V 2
0

E (E − V0)
sin2 (2k′a) (4.44)
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In terms of the dimensionless quantities γ and ε follows with k′a = γ
2

√
ε− 1

T =
1

1 +
sin2(γ

√
ε−1)

4ε(ε−1)

(4.45)

While obviously holds that T ≤ 1, the transmission is perfect (T = 1) for
sin2 (2k′a) i.e. for

2k′a = nπ. (4.46)

Setting k′ = 2π/λ with wave length λ this equals to

2a = n
λ

2
. (4.47)

When the barrier width 2a is an integer times half the wave length, the bar-
rier becomes transparent, just like the total transmission of light through thin
refracting layers. Written in terms of E and V , the condition for perfect trans-
mission becomes

E − V0 = n2

(
π2~2

8a2m

)
= n2E1 (4.48)

where E1 is the ground state energy of a one dimensional box.
For the case E < V0 the set of equations is identical to the one for E > V0

with the simple modification

k′ =
i
√

2m (V0 − E)

~
= iκ′ (4.49)

This gives
B

F
= − i

2

κ′2 + k2

κ′k
sinh (2κ′a) (4.50)

and consequently

1

T
= 1 +

1

4

(
κ′2 + k2

κ′k

)2

sinh2 (2κ′a) (4.51)

Thus

T =
1

1 + 1
4

V 2
0

(V0−E)E sinh2 (2κ′a)
(4.52)

The dimensionless variable γ is now given as

γ2

4
=

V0

~2

2ma2

= (ak)
2

+ (aκ′)
2

(4.53)

and it follows with κ′a = γ
2

√
V0−E
V0

that in dimensionless units

T =
1

1 + 1
4

sinh2(γ
√

1−ε)
(1−ε)ε

. (4.54)
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For E = V follows with sinh (x) ' x for small x that the transmission coefficient
is:

T =
1

1 + γ2

4

< 1. (4.55)

The fact that T > 0 for E < V is a purely quantum mechanical effect. Particles
can pass through barriers that are impenetrable for classical objects, a phe-
nomenon known as tunneling. It allows emission of α-particles from a nucleus
and field emission from a metal surface in the presence of an electric field.

For large a it follows that γ is large and we can write that

sinh
(
γ
√

1− ε
)
' 1

2
eγ
√

1−ε (4.56)

and it follows

γ = 2

√
V0

~2

2m

a (4.57)

T = 16 (1− ε) εe−2γ
√

1−ε = 16

(
1− E

V0

)
E

V0
e− a/ξ (4.58)

with characteristic length

ξ =
1

4

√
~2

2m
/ (V0 − E) (4.59)

Finally we can use our results to analyze the situation where the potential
is attractive instead of repulsive:

V (x) =

 0 x < −a
−W0 −a ≤ x ≤ a

0 a < x
(4.60)

with W0 > 0. In this case we obviously have only oscillatory solutions of the
kind

ψ (x) =


Aeikx +Be−ikx x < −a
Ceik

′x +De−ik
′x −a ≤ x ≤ a

Feikx a < x

(4.61)

and we can again use our earlier solution and substitute

V0 = −W0. (4.62)

It follows for the reflection coefficient

1

T
= 1 +

1

4

V 2
0

E (E + V0)
sin2 (2k′a) (4.63)

where now

k′ =

√
2m (E +W0)

~
. (4.64)
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Using dimensionless quantities ε = E
W0

and γ2

4 = W0
~2

2ma2

yields

T =
1

1 +
sin2(γ

√
ε+1)

4ε(ε+1)

(4.65)

Again there are energy values where the barrier is fully transparent (if sin2 (2k′a) =
0) a phenomenon called Ramsauer effect. Most striking is however the fact that
even an attractive potential leads to a reflection and thus a reduced transmission
of the incoming wave.

4.2 Bound and extended states

4.2.1 Rectangular box

We consider the same potential as in the above scattering problem:

V (x) =

 V0 x < −a
0 −a ≤ x ≤ a
V0 a < x

(4.66)

only shifted by a constant such that V (x) = 0 in the center. In distinction to
the situation of an incoming potential entering from one side, we are now only
interested in the analysis of the solutions of the stationary Schrödinger equation.
Then we can use the fact that for a potential

V (x) = V (−x) (4.67)

follows that the wave function behaves as

ψ (x) = ±ψ (−x) . (4.68)

The latter occurred already in the solution of the infinite potential well as well
as for the harmonic oscillator. It can be generally seen from the following
argument: Introduce the parity operator

P̂ψ (x) = ψ (−x) . (4.69)

It is an Hermitian operator

ˆ
dxψ (x)

∗
P̂ψ (x) =

ˆ
dxψ (x)

∗
ψ (−x)

=

ˆ
dxψ (−x)

∗
ψ (x)

=

ˆ
dx
(
P̂ψ (x)

)∗
ψ (x) . (4.70)
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It also commutes with a Hamiltonian with V (x) = V (−x)

P̂ Ĥψ (x) = P̂

(
~2

2m

∂2

∂x2
+ V (x)

)
ψ (x)

=

(
~2

2m

∂2

∂x2
+ V (−x)

)
P̂ψ (x)

= ĤP̂ψ (x) (4.71)

Thus Ĥ and P̂ share the same eigenfunctions. It holds

P̂ 2ψ (x) = P̂ψ (−x) = ψ (x) (4.72)

The eigenvalues of P̂ 2 are 1. Thus, the eigenvalues of P̂ are ±1. Thus, the
eigenfunctions of the Hamiltonian are either even or odd.

If E > V0, it holds

ψ (x) =

 Aeik
′x +Be−ik

′x x < −a
Ceikx +De−ikx −a ≤ x ≤ a
Eeik

′x + Fe−ik
′x a < x

(4.73)

with

k =

√
2mE

~

k′ =

√
2m (E − V0)

~
. (4.74)

The fact that ψ (x) = ±ψ (−x) yields E = ±B, F = ±A and D = ±C. Even
though there are two boundaries, the assumed reflection symmetry implies that
it is sufficient to analyze only one. Doing so eliminates two of the three remaining
constants. The final constant is being determined by the condition that the wave
function is normalized inside some large volume L� a. We could proceed and
do this analysis, but not much of interest happens. The key issue is that for
E > V0 a continuum of states (strictly a continuum only for L→∞) occurs.

It is more interesting to analyze E < V0. In this case we have either

ψ (x) =

 Aeκ
′x x < −a

C cos kx −a ≤ x ≤ a
Ae−κ

′x a < x

(4.75)

for even wave functions or

ψ (x) =

 Aeκx x < −a
C sin kx −a ≤ x ≤ a
−Ae−κx a < x

(4.76)

for odd wave functions. Here we introduced

k =

√
2mE

~

κ =

√
2m (V0 − E)

~
. (4.77)
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We first analyze even functions. It holds

e−κa =
C

A
cos ka

κe−κ
′a = k

C

A
sin ka (4.78)

Thus
κ = k tan ka (4.79)

In case of odd wave functions follows

−e−κa =
C

A
sin ka

κe−κa = k
C

A
cos ka (4.80)

which yields
κ = −k cot ka (4.81)

For convenience we introduce dimensionless quantities

ξ = ka

η = κa (4.82)

Since k and κ both depend on energy we find

ξ2 + η2 = a2

(
2mE

~2
+

2m (V0 − E)

~2

)
=

V0

~2

2ma2

≡ γ2 (4.83)

Given the potential strength and width, we know γ. The above equation is
determines a circle of radius γ. Since we know that ξ > 0 and κ > 0 we are
only interested in the upper right quarter of the radius. In addition to Eq.4.83
we also need to solve

η =

{
ξ tan ξ if ψ (x) = +ψ (−x)
−ξ cot ξ if ψ (x) = −ψ (−x)

(4.84)

For γ < π
2 only one solution exists as cot ξ < 0 only for ξ > π

2 . Thus for

V0 <
(π

2

)2 ~2

2ma2
(4.85)

only one bound state exists that is even. For π
2 < γ < π we have one additional

bound state that is odd. For γ < mπ
2 , corresponding to

V0 <
(
m
π

2

) ~2

2ma2
(4.86)
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we have a total of m bound states. Obviously for γ → ∞ all states are bound
states. In this limit we know the eigenvalues

E∞n =
(nπ

2

)2 ~2

2ma2
(4.87)

Thus, our condition for the existence of bound states is essentially that bound
states disappear if

E∞n > V0. (4.88)

One can also eliminate the variable η as follows:

ξ2 + η2 = ξ2
(
1 + tan2 ξ

)
=

ξ2

cos2 ξ
(4.89)

or

ξ2 + η2 = ξ2
(
1 + cot2 ξ

)
=

ξ2

sin2 ξ
(4.90)

Thus, it must hold

ξ =

{
γ cos ξ if ψ (x) = +ψ (−x)
γ sin ξ if ψ (x) = −ψ (−x)

(4.91)

and the roots of this equation determine the eigenvalues (one must however keep
in mind to only accept solutions with cot ξ < 0 in case of odd functions and
tan ξ > 0 in case of odd functions).

In the limit γ � 1, where we have only one bound state we have to solve.

ξ = γ cos ξ (4.92)

for small γ. Thus, we expect a solution for very small ξ. We expand the cosine

ξ = γ

(
1− 1

2
ξ2

)
(4.93)

which is solved for

ξ =

√
1 + 2γ2 − 1

γ
(4.94)

Expanding ξ2 for small γ yields

ξ2 ' γ2 − γ4 (4.95)

which we can insert to obtain the eigenvalue of the single bound state:

E0 =
~2k2

2m
=

~2ξ2

2ma2
= V0 −

2ma2

~2
V 2

0 . (4.96)



Chapter 5

Angular momentum and
spin

5.1 Particle on a circular orbit

Before we start to develop the formal apparatus of the angular momentum
theory we analyze a simple problem, the motion of a particle on a circular orbit.
We start from the classical Lagrange function

L (ϕ, ϕ̇) =
mR2

2
ϕ̇2 − V (ϕ) , (5.1)

with radius R of the orbit. The canonical momentum conjugated to ϕ is:

pϕ =
∂L (ϕ, ϕ̇)

∂ϕ̇
= mR2ϕ̇ (5.2)

such that the classical Hamiltonian function is

H (pϕ, ϕ) =
p2
ϕ

2mR2
+ V (ϕ) (5.3)

Using the quantization rules:

V (ϕ) → V (ϕ)

pϕ → ~
i

∂

∂ϕ
(5.4)

gives the Hamilton operator

H = − ~2

2mR2

∂2

∂ϕ2
+ V (ϕ) . (5.5)

Take a system without potential gives the Schrödinger equation

− ~2

2mR2

∂2

∂ϕ2
ψ (ϕ) = Eψ (ϕ) . (5.6)

55
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Since we consider a motion on a ring, we must obey the boundary condition

ψ (ϕ+ 2π) = ψ (ϕ) . (5.7)

The solution is

ψ (ϕ) =
1√
2π
eimϕ. (5.8)

The boundary condition implies that

1 = eim2π, (5.9)

i.e. m is an integer. The eigenvalues of the momentum pϕ conjugated to ϕ are
~m. The energy eigenvalues are:

Em =
~2

2mR2
m2. (5.10)

The same result can be obtained if one writes the Laplace operator in spher-
ical coordinates

x = x1 = r cosϕ sin θ

y = x2 = r sinϕ sin θ

z = x3 = r cos θ (5.11)

The Laplacian, ∇2 =
∑
α

∂2

∂x2
α

, in spherical coordinates is

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
(5.12)

The motion on a ring can be understood by fixing r = R and θ = π
2 . Then

∇2 =
1

R2

∂2

∂ϕ2
(5.13)

and we obtain the above Hamiltonian.

5.2 angular momentum operator

Classically the angular momentum operator is

L = r× p (5.14)

In component notation this is

Lα = εαβγxβpγ (5.15)



5.2. ANGULAR MOMENTUM OPERATOR 57

where we sum over indices that occur twice. Since the momentum and position
operators do not commute one might be afraid that r× p and −p× x are
different. However writing the components explicitly gives

Lx = ypz − zpy
Ly = zpx − xpz
Lz = xpy − ypx. (5.16)

The order of the operators obviously does not matter. Thus

L̂x = −i~
(
y
∂

∂z
− z ∂

∂y

)
(5.17)

and similar for the other components. In vector notation this can be written as

L̂ = −i~r×∇. (5.18)

Similar to classical mechanics, we can establish a relation between the in-
variance of a physical system with respect to rotations. Consider a rotation of
the coordinates by an infinitesimal angle δφ around an axis along the direction
δφ:

r→ r + δr (5.19)

with
δr = δφ× r. (5.20)

The wave function in the new coordinates can be expanded:

ψ (r + δr) ' ψ (r) + δr · ∇ψ (r)

= ψ (r) + (δφ× r) ·∇ψ (r)

= (1 + δφ· (r×∇))ψ (r) (5.21)

The last step follows from (δφ× r) ·∇ =εαβγδφαxβ∂γ . Thus

1 + δφ· (r×∇) (5.22)

is the operator of infinitesimal rotations. If the Hamiltonian is invariant with

respect to rotations it must hold
[
(r×∇) , Ĥ

]
= 0, which obviously corresponds

to [
L̂, Ĥ

]
= 0. (5.23)

The angular momentum is conserved (remember we showed that it holds in

general i~ ∂
∂t

〈
Â
〉
t

=
〈[
Â, Ĥ

]〉
t
) and can be measured sharply in the eigenstates

of the Hamiltonian.
Using [x̂α, p̂β ] = i~δαβ gives[

L̂x, L̂y

]
= (yp̂z − zp̂y) (zp̂x − xp̂z)− (zp̂x − xp̂z) (yp̂z − zp̂y)

= yp̂x (p̂zz − zp̂z) + xp̂y (zp̂z − p̂zz)
= i~ (xp̂y − yp̂x) = i~L̂z (5.24)
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In similar fashion follows [
L̂y, L̂z

]
= i~L̂x[

L̂z, L̂x

]
= i~L̂y (5.25)

or generally: [
L̂α, L̂β

]
= i~εαβγL̂γ . (5.26)

An interesting consequence of these commutation relation is that the magnitude
of the angular momentum operator

L̂2 = L̂2
x + L̂2

y + L̂2
z (5.27)

commutes with its components. It holds:[
Lz,L

2
]

=
[
Lz, L

2
x

]
+
[
Lz, L

2
y

]
.

The first term gives[
Lz, L

2
x

]
= LzLxLx − LxLxLz
= LxLzLx + i~LyLx − LxLxLz
= i~ (LyLx + LxLy) , (5.28)

while the second one leads to[
Lz, L

2
y

]
= LzLyLy − LyLyLz
= LyLzLy − i~LxLy − LyLyLz
= −i~ (LyLx + LxLy) . (5.29)

Thus, it holds [
Lz,L

2
]

= 0 (5.30)

and in a similar fashion follows for all components:[
Lα,L

2
]

= 0. (5.31)

Thus, the components of L have simultaneous eigenfunctions with L2. On the
other hand, the individual components do not have common eigenstates.

The last statement sounds paradox at first. The situation is however resolved
if we take into account that all relevant states with nontrivial angular momentum
are degenerate. We first analyze the expectation values

〈Lα〉 = −i~εαβγ
ˆ
d3rψ∗ (r)xβ

∂

∂xγ
ψ (r) . (5.32)

It holds that 〈Lα〉 vanishes for non-degenerate eigenvalues. To proof this state-
ment we proceed as follows: First, if ψ (r) is real (we ignore overall phase factors)
then

〈Lα〉 = i× real number. (5.33)
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However 〈Lα〉 must be real itself since it is Hermitian. Thus if ψ (r) is real it
holds 〈Lα〉 = 0. Next, we show that the wave function of a non-degenerate state
is real. The stationary Schrödinger equation(

− ~2

2m
∇2 + V (r)

)
ψ (r) = Eψ (r) (5.34)

is purely real. If ψ (r) is a solution then ψ∗ (r) is also a solution with same
eigenvalue. Since by assumption our wave function is non-degenerate, ψ (r) and
ψ∗ (r) are the same function, i.e. the wave function of a non-degenerate state is
real.

A related issue is the following: If we have two operators F̂ and Ĝ that both
commute with the Hamiltonian but that don’t commute with each other the
spectrum must be degenerate. Assume ψ is a state where in addition to the
energy E the quantity F can be measured sharply. Then

Ĝψ 6= ψ (5.35)

since otherwise the F̂ and Ĝ could be determined simultaneously. However

ĤĜψ = ĜĤψ = EĜψ. (5.36)

Thus, indeed, Ĝψ is degenerate with ψ but is not identical.
Thus we conclude that for a set of functions ϕm that are eigenvalues of, say

L̂z
L̂zϕm = ~mϕm (5.37)

holds that

L̂xϕm 6= ϕm and L̂yϕm 6= ϕm. (5.38)

In case of a spherically symmetric potential hold however that ϕm, L̂xϕm, and
L̂yϕm are all degenerate. Thus, if there is an eigenstate of the Hamiltonian
in which we can measure one component of the angular momentum sharply,
we cannot measure in that same state the others sharply. On the other hand,
we can construct linear combinations of those degenerate functions and in this
state another component of L can be measured sharply while the one we could
previously determine is not sharply defined anymore.

5.3 General properties of angular momentum
operators

In what follows we will analyze the properties of operators Ĵα that obey the
angular momentum algebra [

Ĵα, Ĵβ

]
= i~εαβγ Ĵγ . (5.39)
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We use a new symbol Ĵα to express that these operators do not have to be
identical to −i~r×∇. We already showed that[

Ĵα, Ĵ
2
]

= 0 (5.40)

as we only used the commutation relation of the type of Eq.5.39 to prove this
result.

It is convenient to define

Ĵ± = Ĵx ± iĴy (5.41)

and it obviously holds that J+ = J†−. Some immediate properties of these
operators are [

Ĵz, Ĵ±

]
= ±~Ĵ±[

Ĵ±, Ĵ
2
]

= 0 (5.42)

It also follows
[J+, J−] = 2~Jz (5.43)

as well as

Ĵ2 = J−J+ + J2
z + ~Jz

= J+J− + J2
z − ~Jz. (5.44)

We construct now the eigenfunctions of these operators.
Let

Jzϕm = ~mϕm (5.45)

be the eigenfunctions of Jz with eigenvalue ~m. It holds

JzJ+ϕm = (~J+ + J+Jz)ϕm = ~ (m+ 1) J+ϕm (5.46)

Thus, J+ϕm is an (un-normalized) eigenfunction of Jz with eigenvalue ~ (m+ 1).

J+ϕm = αmϕm+1. (5.47)

where αm is a constant pre-factor that guarantees normalization.
Applying J+ again gives

J2
+ϕm = αmJ+ϕm+1 = αmαm+1ϕm+2. (5.48)

In a similar fashion we obtain

J−ϕm = α′mϕm−1 (5.49)

etc. and we have found a scheme of generating a sequence of eigenfunctions
from one eigenfunction.
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Since Ĵ2 commutes with Jz, they have common eigenfunctions

Ĵ2ϕm = ~2K2
mϕm. (5.50)

Since Ĵ2 also commutes with J± it follows

Ĵ2ϕm+1 =
1

αm
Ĵ2J+ϕm = J+Ĵ2ϕm

=
1

αm
~2K2

mJ+ϕm = ~2K2
mϕm+1 (5.51)

But it also holds
Ĵ2ϕm+1 = ~2K2

m+1ϕm+1 (5.52)

implying K2
m = K2

m+1.
Equally we find K2

m = K2
m−1. Since m is arbitrary it follows that K2 is

independent of m for all ϕm of the above sequence.
How many such eigenfunctions are there? It follows〈

m
∣∣∣Ĵ2
∣∣∣m〉 = ~2K2 =

〈
m
∣∣∣Ĵ2
x

∣∣∣m〉+
〈
m
∣∣∣Ĵ2
y

∣∣∣m〉+ ~2m2 (5.53)

which implies
K2 ≥ m2 (5.54)

Thus, for a given value K > 0, the possible values of m fall between −K and K.
We can always assume K > 0 as only K2 is relevant. If mmax is the maximal
value of m for given K, then

J+ϕmmax
= 0 (5.55)

and similarly
J−ϕmmin

= 0. (5.56)

Using the above result for Ĵ2 and the last two equations, one obtains

Ĵ2 = J−J+ + J2
z + ~Jz

= J+J− + J2
z − ~Jz. (5.57)

Ĵ2ϕmmax = ~2K2ϕmmax = ~2mmax (mmax + 1)ϕmmax (5.58)

as well as
Ĵ2ϕmmin

= ~2K2ϕmmin
= ~2mmin (mmin − 1)ϕmmin

(5.59)

and it follows
mmax (mmax + 1) = mmin (mmin − 1) (5.60)

This quadratic equation for mmax has two solutions

mmax = −mmin

mmax = mmin − 1 (5.61)



62 CHAPTER 5. ANGULAR MOMENTUM AND SPIN

The last one is obviously not allowed as by construction mmax ≥ mmin. The
possible values form therefore a symmetric sequence about m = 0. Let us call

mmax = j (5.62)

then m runs from −j to j in unit steps. Thus, it follows

j =
integer if m = 0 is included

1
2 × odd integer if m = 0 is not included

(5.63)

Draw picture for j = 2 and j = 3
2 . It also follows that m is an integer if j is

and that m is an odd multiple of 1
2 if j is 1

2×odd integer. In either case follows

Ĵ2ϕj,m = ~2j (j + 1)ϕj,m.

Jzϕj,m = ~mϕj,m with mj = −j, ..., j (5.64)

We can also determine the coefficients αm and α′m that occur if we apply J±:

J+ |m〉 = αm |m+ 1〉
J− |m〉 = α′m |m− 1〉 (5.65)

To determine αm we evaluate the norm of J+ |m〉 as

|αm|2 = 〈m |J−J+|m〉 =
〈
m
∣∣∣Ĵ2 − J2

z − ~Jz
∣∣∣m〉

= ~2
[
j (j + 1)−m2 +m

]
〈m|m〉 (5.66)

Which yields

αm = ~
√
j (j + 1)−m (m+ 1) (5.67)

Similarly we obtain

α′m = ~
√
j (j + 1)−m (m− 1) (5.68)

Thus, it holds

J±ϕj,m = ~
√
j (j + 1)−m (m± 1)ϕj,m±1 (5.69)

which obey immediately that J+ϕmmax
= 0 and J−ϕmmin

= 0.

5.4 Eigenfunctions of the angular momentum

First, we determine the angular momentum in spherical coordinates. For exam-
ple in case of the z-component holds

L̂z = −i~
(
x
∂

∂y
− y ∂

∂x

)
(5.70)
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To determine L̂z we use holds the following:

∂

∂y
=
∂θ

∂y

∂

∂θ
+
∂ϕ

∂y

∂

∂ϕ
+
∂r

∂y

∂

∂r
(5.71)

and similar for ∂
∂x . Using the following relation for spherical coordinates

r2 = x2 + y2 + z2

cos θ =
z

r

tanφ =
y

x
(5.72)

gives
∂r

∂x
=
x

r
and

∂r

∂y
=
y

r
. (5.73)

Alternatively we can analyze:

− sin θ
∂θ

∂x
=

∂

∂x
cos θ = z

∂

∂x

1

r

= −zx
r3

= −cosϕ sin θ cos θ

r
(5.74)

This leads to:
∂θ

∂x
=

cosϕ cos θ

r
. (5.75)

Other derivatives can be analyzed along the same fashion and it follows

L̂x = i~
(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
L̂z = i~

(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)
L̂z = −i~ ∂

∂ϕ
(5.76)

Thus, our particle on a circular orbit has an Hamiltonian

Hcirc =
~2

2mR2
L̂2
z + V (ϕ) (5.77)

This suggests to analyze

L̂2 = −~2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
(5.78)

and with our earlier form of the Laplace operator in spherical coordinates follows

H =
−~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L̂2

2mr2
+ V (r) . (5.79)
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If one introduces

p̂r = −i~1

r

∂

∂r
r (5.80)

the Hamiltonian can also be written as:

H =
1

2m

(
p̂2
r +

L̂2

r2

)
+ V (r) . (5.81)

The last results make explicit that for

V (r) = V (r) (5.82)

holds that [L,H] = 0.
Next we determine the eigenfunctions of the operators Lα. We write

LzYl,m (θ, ϕ) = ~mYl,m (θ, ϕ) (5.83)

where m = −l, ..., l. In spherical coordinates holds

L̂z = −i~ ∂

∂ϕ
(5.84)

and we find
∂

∂ϕ
Yl,m (θ, ϕ) = imYl,m (θ, ϕ) . (5.85)

This equation determines only the ϕ part. If we set

Yl,m (θ, ϕ) = Φm (ϕ) Θlm (θ) (5.86)

it follows

Φm (ϕ) =
1√
2π
eimϕ (5.87)

which is normalized according to
ˆ 2π

0

dϕ |Φm (ϕ)|2 = 1. (5.88)

The index m can be determined from the single valuedness of Φ

Φ (ϕ) = Φ (ϕ+ 2π) (5.89)

which yields that m is an integer. From our above analysis follows immediately
that l must also be an integer. We therefore obtain

Yl,m (θ, ϕ) =
1√
2π
eimϕΘlm (θ) . (5.90)

Using the results for the angular momentum in spherical coordinates gives

L̂+ = L̂x + iL̂y = ~eiϕ
(
i cot θ

∂

∂ϕ
+

∂

∂θ

)
L̂− = L̂x − iL̂y = ~e−iϕ

(
i cot θ

∂

∂ϕ
− ∂

∂θ

)
(5.91)
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Since l = mmax it must hold

L̂+Yl,l (θ, ϕ) = 0 (5.92)

which gives

eiϕ
(
i cot θ

∂

∂ϕ
+

∂

∂θ

)
eilϕΘl,l (θ) = 0 (5.93)

evaluating the derivative w.r.t ϕ gives(
−l cot θ +

∂

∂θ

)
Θl,l (θ) = 0 (5.94)

which is identical to
∂Θl,l

∂θ
= l cot θΘl,l (5.95)

Using the identity

l cot θ =
∂

∂θ
log sinl θ (5.96)

we can write
1

Θl,l

∂Θl,l

∂θ
=
∂ log Θl,l

∂θ
=

∂

∂θ
log sinl θ (5.97)

This is simply integrated to yield

Θl,l = C sinl θ (5.98)

Including the normalization factor yields

Yl,l (θ, ϕ) =
(−1)

l

2ll!

√
(2l + 1)!

4π
sinl θeilϕ (5.99)

where the sign factor (−1)
l

is convention.
Similarly it follows from

L̂−Yl,−l (θ, ϕ) = 0 (5.100)

that

Yl,−l (θ, ϕ) =
1

2ll!

√
(2l + 1)!

4π
sinl θe−ilϕ. (5.101)

Other values for Yl,m (θ, ϕ) can be obtained from by applying L̂+ to Yl,−l (θ, ϕ):

Yl,−l+1 (θ, ϕ) =
L̂+Yl,−l (θ, ϕ)

~
√

2 (2l − 1)

=
eiϕ√

2 (2l − 1)

(
i cot θ

∂

∂ϕ
+

∂

∂θ

)
1

2ll!

√
(2l + 1)!

4π
sinl θe−ilϕ

=

√
(2l + 1)!

8π (2l − 1)

eiϕ

2ll!

(
l cot θ +

∂

∂θ

)
sinl θe−ilϕ

=

√
(2l + 1)!

8π (2l − 1)

2l

2ll!
cos θ sinl−1 θ ei(−l+1)ϕ (5.102)



66 CHAPTER 5. ANGULAR MOMENTUM AND SPIN

In general this can be written as

Yl,m (θ, ϕ) = (−1)
m+|m|

2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

Pml (cos θ) eimϕ. (5.103)

with associated Legendre polynomials

Pml (µ) =
(
1− µ2

)m/2 dmPl (µ)

dµm
(5.104)

for m ≥ 0 and Legendre polynomials

Pl (µ) =
1

2ll!

dl

dµl
(
µ2 − 1

)l
. (5.105)

It holds P−ml (µ) = Pml (µ). The pre-factors are chosen to ensure that

ˆ
dΩY ∗l,m (θ, ϕ)Yl′,m′ (θ, ϕ) = δll′δmm′ (5.106)

where
´
dΩ... =

´
sin θdθdϕ....

It holds

P0 (µ) = 1

P1 (µ) = µ

P2 (µ) =
1

2

(
3µ2 − 1

)
P3 (µ) =

1

2

(
5µ3 − 3µ

)
(5.107)

and in general it holds that

Pl (µ) = (−1)
l
Pl (−µ) . (5.108)

This leads immediately to

Pml (µ) = (−1)
l−m

Pml (−µ) . (5.109)

These results allow us to analyze the properties of Yl,m (θ, ϕ) under the parity
operation. For a vector on a sphere it holds that r→ −r corresponds to

(θ, ϕ) = (π − θ, ϕ+ π) (5.110)

and the thus using Yl,m (θ, ϕ) = ClmP
m
l (cos θ) eimϕ gives

PYl,m (θ, ϕ) = Yl,m (π − θ, ϕ+ π)

= ClmP
m
l (− cos θ) eimϕ (−1)

m

= (−1)
l−m

(−1)
m
ClmP

m
l (cos θ) eimϕ

= (−1)
l
Yl,m (θ, ϕ) . (5.111)
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Thus, for l even is the parity of an angular momentum state 1 while it is −1 for
l odd.

Also, since the Pml are purely real functions, it follows

Yl,−m (θ, ϕ) = (−1)
m
Y ∗l,m (θ, ϕ) . (5.112)

The explicit result for l = m = 0 is:

Y0,0 =
1

2
√
π

(5.113)

For l = 1 follows:

Y1,−1 =
1

2
e−iφ

√
3

2π
sin θ

Y1,0 =
1

2

√
3

π
cos θ

Y1,1 = −1

2
eiφ
√

3

2π
sin θ (5.114)

For l = 2 holds instead.

Y2,−2 =
1

4
e−2iφ

√
15

2π
sin2 θ

Y2,−1 =
1

2
e−iφ

√
15

2π
cos θ sin θ

Y2,0 =
1

4

√
5

π
(3 cos2 θ − 1)

Y2,1 =
−1

2
eiφ
√

15

2π
cos θ sin θ

Y2,2 =
1

4
e−2iφ

√
15

2π
sin2 θ (5.115)

Since the spherical harmonics build a complete set of functions, each function
f (θ, ϕ) on the surface of a sphere can be expanded as

f (θ, ϕ) =

∞∑
l=0

l∑
m=−l

al,mYl,m (θ, ϕ) (5.116)

where

alm =

ˆ
dΩY ∗l,m (θ, ϕ) f (θ, ϕ) . (5.117)

5.5 The spin

Electrons that are sent through an inhomogeneous magnetic field display a de-
flection in two subsets. This is the so called Stern–Gerlach experiment. It
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clearly shows that there exists an internal degree of freedom that can naturally
be captured by generalizing the wave function as

ψ (r)→ ψ (r, σ) . (5.118)

Since there there are two values of the internal degree of freedom, we write σ =↑
and ↓ or σ = ±1. Often it is also useful to write the wave function as a spinor

Ψ (r) =

(
ψ↑ (r)
ψ↓ (r)

)
. (5.119)

The coupling to the magnetic field suggests that this internal degree of free-
dom is an angular momentum. Thus, there is an operator s with [sα, sβ ] =
i~εαβγsγ . The operator acts on a two dimensional Hilbert space and is thus a
2× 2 matrix. This is accomplished by

sα =
~
2
σα (5.120)

where σα are the Pauli matrices.

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(5.121)

Gives

ŝ2 =
3

4
~2 = s (s+ 1) ~2 (5.122)

thus this is a spin s = 1
2 .

It is related to a magnetic moment

µ = −γs (5.123)

where γ ' e
mc . Thus, assuming the equal sign, gives

µ = −µBσ (5.124)

where µB = e~
2mc = 9.2740154 × 10−24JT−1 is the Bohr magneton. In the case

of an external magnetic field holds V = −µ ·B which gives rise to

H → H + γs ·B =H+µBσ ·B (5.125)
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5.5.1 Precession of a spin in a magnetic field

Ignore the space dependence and consider only the spin degree of freedom

i~
∂Ψ

∂t
= ĤΨ (5.126)

If the magnetic field points into the z-direction it follows

Ĥ = µBσ ·B =µBB

(
1 0
0 −1

)
(5.127)

The eigenvalues of the Hamiltonian are immediately determined as

Eσ = σµBB = ms~ωL (5.128)

where σ = ±1 or ms = ± 1
2 . Here

ωL =
2µBB

~
=
eB

mc
. (5.129)

is the Lamor frequency .
Thus, it follows

i~
∂ψ↑
∂t

= µBBψ↑

i~
∂ψ↓
∂t

= −µBBψ↓ (5.130)

Which is readily solved as

ψ↑ (t) = ψ↑ (0) ei
ωL
2 t

ψ↓ (t) = ψ↓ (0) e−i
ωL
2 t (5.131)

We can for example analyze the expectation value

〈sx〉 = Ψ∗sxΨ =
~
2

(
ψ∗↑ (t) , ψ∗↓ (t)

)( 0 1
1 0

)(
ψ↑ (t)
ψ↓ (t)

)
=

~
2

(
ψ∗↑ (t)ψ↓ (t) + ψ∗↓ (t)ψ↑ (t)

)
=

~
2

(
ψ∗↑ (0)ψ↓ (0) e−iωLt + ψ∗↓ (0)ψ↑ (0) eiωLt

)
(5.132)

Since
ψ∗↑ (0)ψ↑ (0) + ψ∗↓ (0)ψ↓ (0) = 1 (5.133)

we can write

ψ↑ (0) = cosαeiϕ

ψ↓ (0) = sinα (5.134)

and it follows
〈sx〉 = A cos (ωLt+ ϕ) . (5.135)

with A = ~ cosα sinα. It follows similarly

〈sy〉 = A sin (ωLt+ ϕ) . (5.136)
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5.6 Addition of angular momentum

We consider a system of two particles moving on a sphere (also called two
rotor system) with angular momentum L1 and L2 or of a particle with angular
momentum L and spin S. In both cases we can describe the state of the system
by the combined wave function

|l,ml〉 |s,ms〉 (5.137)

or
|l1,m1〉 |l2,m2〉 . (5.138)

However, the conserved quantity is in such situations often the total angular
momentum

L = L1 + L2 (5.139)

or
J = L + S (5.140)

making it more appropriate to use a basis where the quantum numbers are those
of L or J. To be specific, we analyze the case of the two rotor system.

We first need to identify the correct quantum numbers, i.e. quantum num-
bers that can be simultaneously determined. It is natural to chose

L2 = (L1 + L2)
2

= L2
1 + L2

2 + 2L1 · L2

Lz = L1,z + L2,z (5.141)

Furthermore it holds that[
L2

1,L
2
]

= 2
[
L2

1,L1 · L2

]
= 0 (5.142)

and [
L2

1, Lz
]

=
[
L2

1, L1,z + L2,z

]
=
[
L2

1, L1,z

]
= 0 (5.143)

Thus, a complete set of quantum numbers is

|l,m, l1l2〉 (5.144)

We need to know how one state can be expressed in terms of the other i.e.

|l,m, l1l2〉 =
∑
m1,m2

|l1,m1〉 |l2,m2〉 〈l,m, l1l2|l1,m1, l2,m2〉 (5.145)

Since Lz = L1,z + L2,z it hold of course

m = m1 +m2 (5.146)

and we have only one summation left. The coefficients

Clml1l2m1,m2
= 〈l,m, l1l2|l1,m1, l2,m2〉 (5.147)



5.7. INTERACTING SPINS 71

are called Clebsch-Gordan coefficients. The quantity∣∣∣Clml1l2m1,m2

∣∣∣2 (5.148)

measures the probability that for two particles with total angular momentum
l1 and l2 at fixed l and m the measurement finds one particle with L1,z = ~m1

and the other with L2,z = ~m2.
Example: We consider:

|l,m, l1l2〉 = |1,−1, 1, 1〉 (5.149)

Using m1 +m2 = −1 it follows

|1,−1, 1, 1〉 = C0,−1 |1, 0〉 |1,−1〉+ C−1,0 |1,−1〉 |1, 0〉 (5.150)

The coefficients are determined by normalization and application of L± opera-
tors.

L− |1,−1, 1, 1〉 = 0

= (L1− + L2−)C0,−1 |1, 0〉 |1,−1〉
+ (L1− + L2−)C−1,0 |1,−1〉 |1, 0〉 (5.151)

It holds
L1− |1, 0〉1 =

√
2 |1,−1〉1 (5.152)

and similarly for the second particle. Thus

0 =
√

2 (C0,−1 + C−1,0) |1,−1〉 |1,−1〉 (5.153)

which gives
C0,−1 = −C−1,0. (5.154)

Normalization gives |C0,−1|2 = |C−1,0|2 = 1
2 such that

|1,−1, 1, 1〉 =
1√
2
|1, 0〉 |1,−1〉 − 1√

2
|1,−1〉 |1, 0〉 (5.155)

5.7 Interacting spins

As a simple toy model for interacting spins we consider two coupled spin- 1
2

particles described by the Hamiltonian:

H = Js1 · s2 + γ (s1 + s2) ·B (5.156)

Consider first B = 0. If we consider the total spin

S = s1 + s2

S2 = s2
1 + s2

2 + 2s1 · s2 (5.157)
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we obtain immediately:
S2 = S (S + 1) ~2 (5.158)

Either we have singlets or triplets S = 0 or S = 1. For the Hamiltonian follows

H = Js1 · s2 =
J~2

2

(
S (S + 1)− 3

2

)
(5.159)

Thus, for J > 0 the ground state is a singlet

ES=0 = −3

4
J~2 (5.160)

and the excited states are degenerated triplet states

ES=1 =
J~2

4
. (5.161)

If we add the magnetic field B = (0, 0, B) we obtain

ES,m =
J~2

2

(
S (S + 1)− 3

2

)
+mγB~ (5.162)

Thus, the singlet state as well as them = 0 triplet are unaffected by the magnetic
field, while the two m = ±1 triplet states are affected. There is a critical field
Bc where the m = −1 triplet states becomes lower than the singlet

−3

4
J~2 =

J~2

4
− γBc~ (5.163)

which yields

Bc =
J~
γ
. (5.164)



Chapter 6

Particles in an external
magnetic field

6.1 Gauge invariance

Classically a particle in an external electromagnetic field is characterized by the
Hamiltonian

H =
1

2m

(
p−e

c
A
)2

+ eϕ (6.1)

where A is the vector potential and ϕ the scalar potential. They determine the
magnetic and electric fields

B = ∇×A,

E = ∇ϕ+
1

c

∂A

∂t
(6.2)

We know that the magnetic and electric fields are unaffected if there is a gauge
transformation

A → A′ = A +∇f

ϕ → ϕ′ = ϕ− 1

c

∂f

∂t
(6.3)

In what follows we will quantize this theory. Write the corresponding Schrödinger
equation

i~
∂ψ (r,t)

∂t
=

(
1

2m

(
p̂− e

c
A (r̂)

)2

+ eϕ (r̂)

)
ψ (r,t) . (6.4)

Lets first analyze the consequences of a gauge transformation:

i~
∂ψ (r,t)

∂t
=

(
1

2m

(
p̂− e

c
A′ +

e

c
∇f
)2

+ eϕ′ (r̂) +
e

c

∂f

∂t

)
ψ (r,t) . (6.5)

We introduce
ψ (r,t) = ψ′ (r,t) e−i

e
~c f (6.6)

73
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which gives

i~
∂ψ (r,t)

∂t
=

(
i~
∂ψ′ (r,t)

∂t
+
e

c
ψ′ (r,t)

∂f (r,t)

∂t

)
e−i

e
~c f(r,t) (6.7)

p̂ψ (r,t) =
(
p̂ψ′ (r,t)− e

c
ψ′ (r,t)∇f (r,t)

)
e−i

e
~c f(r,t) (6.8)

such that(
p̂− e

c
A′ +

e

c
∇f (r,t)

)
ψ (r,t) =

(
p̂− e

c
A′
)
ψ′ (r,t) e−i

e
~c f(r,t) (6.9)

and thus(
p̂− e

c
A′ +

e

c
∇f (r,t)

)2

ψ (r,t) =
(
p̂− e

c
A′
)2

ψ′ (r,t) e−i
e
~c f(r,t) (6.10)

Thus it follows

i~
∂ψ′ (r,t)

∂t
=

(
1

2m

((
p̂− e

c
A′
)2
)2

+ eϕ′ (r̂)

)
ψ′ (r,t) (6.11)

The Schrödinger equation is therefore only invariant with respect to the gauge
transformation of the electromagnetic potential if the wave function is simulta-
neously transformed as

ψ (r,t)→ ψ′ (r,t) = ψ (r,t) ei
e
~c f(r,t). (6.12)

The phase of the wave function is therefore related to the gauge function of the
electromagnetic field.

When we discussed the continuity equation for the probability density we
concluded that the gradient of the phase determines the probability current and
is therefore measurable. This statement was however only correct for parti-
cles without magnetic field. Within a magnetic field the corresponding current
density is given by

j =
~

2im
(ψ∗∇ψ − (∇ψ∗)ψ)− e

mc
A |ψ|2 (6.13)

which is gauge invariant.

6.2 Landau levels in a magnetic field

We consider non-interacting electrons in a homogeneous magnetic field

B = (0, 0, B) . (6.14)

This can be generated from the vector potential

A = (−By, 0, 0) , (6.15)
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which leads to

H =
1

2m

(
px +

eB

c
y

)2

+
p2
y

2m
+

p2
z

2m
(6.16)

translation invariant w.r.t x and y coordinate. Thus

ψ (r) = ei(kxx+kzz)u (y) . (6.17)

Insert (
p̂2
y

2m
+

1

2m

(
~kx +

eB

c
y

)2

+
~k2

z

2m

)
u (y) = Eu (y) (6.18)

(
p̂2
y

2m
+

1

2m

(
eB

c

)2

(y0 + y)
2

+
k2
z

2m

)
u (y) = Eu (y) (6.19)

with

y0 =
c~kx
eB

(6.20)

Thus, introducing

k̃ =
1

m

(
eB

c

)2

Ẽ = E − ~k2
z

2m
(6.21)

we obtain (
p̂2
y

2m
+
k̃

2
(y + y0)

2

)
u (y) = Ẽu (y) (6.22)

Thus we can use our results for the one dimensional harmonic oscillator to
determine the eigenvalues

Ẽ = ~ωL
(
n+

1

2

)
(6.23)

where

ωL =

√
k̃

m
=
eB

mc
(6.24)

is again the Larmor frequency. Thus, we obtain

E =
~k2

z

2m
+ ~ωL

(
n+

1

2

)
. (6.25)

The eigenfunctions are given by

un (y) = CnHn

(√
mωL
~

(y + y0)

)
exp

(
−mωL

2~
(x+ y0)

2
)

(6.26)
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with

Cn =
2−n/2√
n!

(mωL
~π

)1/4

. (6.27)

The total wave function is given by

ψ (r) = ei(kxx+kyy)u (y) . (6.28)

Obviously, the wave function is not symmetric with respect to the components
x and y perpendicular to the field. This is not surprising as the phase depends
on the specific gauge, and does not need to reflect a physical symmetry. The
wave function also demonstrates that in a magnetic field a new length scale

lB =

√
~

mωL
=

√
~c
eB

(6.29)

Even though kx is a continuously varying variable, it does not occur in the
energy eigenvalues. Thus, the states we obtained are highly degenerate. To
obtain a physical understanding of this issue we realize that y0 corresponds to
the center of the circular orbit of a classical particle in the magnetic field. The
corresponding operator

ŷ0 =
cp̂x
eB

+ ŷ (6.30)

commutes with the Hamiltonian. Similar

x̂0 =
cp̂y
eB

+ x̂ (6.31)

commutes with H, but it does not commute with ŷ0. Thus we have a situa-
tion where two operators commute with H but not with each other, implying
degenerate states.

To estimate the degeneracy of the Landau levels we consider the motion in
a area of size A = LxLy, such that px there are Lx/ (2π~) values between px
and px + ∆px. Using 0 < y0 < Ly yields ∆px =

eBLy
c , such that the total

degeneracy becomes

Lx/ (2π~)×∆px =
eBA

2π~c
. (6.32)

This is a macroscopic degeneracy of the Landau levels inside a magnetic field.
Essentially the same result can be obtained by packing quasi-classical orbits of
area πl2B into the area A yielding A

l2B
= eBA

π~c .

6.2.1 Landau levels with spin

We can now combine the results of the previous chapters and obtain for the full
Hamiltonian of a non-relativistic particle inside a magnetic field:

Ĥ =

(
1

2m

(
p̂− e

c
A (r̂)

)2

+ eϕ (r̂)

)
σ0 + µBσ ·B, (6.33)
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where

σ0 =

(
1 0
0 1

)
. (6.34)

The corresponding Schrödinger equation for the spinor state

i~
∂Ψ (r,t)

∂t
= ĤΨ (r,t) (6.35)

is also referred to as the Pauli equation.
Inside a homogeneous field follows

Ĥ =

(
1

2m

(
px +

eB

c
y

)2

+
p2
y

2m
+

p2
z

2m

)
σ0 + µBσ ·B. (6.36)

Thus we obtain

E =
~k2

z

2m
+ ~ωL

(
n+ms +

1

2

)
. (6.37)

6.3 Atom in a magnetic field

We consider a hydrogen atom inside a homogeneous magnetic field. The Hamil-
tonian is

Ĥ =

(
1

2m

(
p̂ +

e

c
A (r̂)

)2

+ eϕ (r)

)
σ0 +

e

mc
s·B (6.38)

If we chose

A =
1

2
(B× r) (6.39)

it follows
∇ ·A = 0, (6.40)

which implies that p̂A (r̂)ψ = A (r̂) p̂ψ, i.e. the momentum operator and the
vector potential commute. Thus, it holds

Ĥ = Ĥ0 +
e

mc
A · p̂σ0+

e2

2mc2
A2 +

e

mc
s ·B (6.41)

where Ĥ0 is the Hamiltonian without magnetic field. We can insert our choice
for the vector potential

A · p̂ =
1

2
(B× r) · p =

1

2
B· (r× p)

=
1

2
B · L (6.42)

with angular momentum L = r×p̂. Thus we obtain

Ĥ = Ĥ0 +
e

2mc
(L+2s) ·B+

e2

8mc2
(B× r)

2
(6.43)
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Thus, without field, the presence of the spin leads to an additional degeneracy
2 of each state. Inside a magnetic field, the energy depends explicitly on the
angular momentum quantum number m as for B = (0, 0, Bz) the energy depends
on Lz. Finally, the field couples to a total moment

µtot = − e

2mc
(L+2s) . (6.44)

6.4 Magnetic Monopoles

The Maxwell equations of electrodynamics with electrical charges and currents
are

∇ ·E = 4πρe

∇ ·B = 0

−∇×E =
∂B

∂t

∇×B =
∂E

∂t
+ 4πje (6.45)

Dirac investigated the possibility that there may be magnetic monopoles, i.e.
that in fact

∇ ·E = 4πρe

∇ ·B = 4πρm

−∇×E =
∂B

∂t
+ 4πjm

∇×B =
∂E

∂t
+ 4πje (6.46)

with monopole density ρm and magnetic current jm.
Let us consider a single such monopole at the origin, i.e.

ρm = emδ (r) (6.47)

with magnetic charge em. The resulting magnetic field is easily obtained from
the known electric point charge problem

B =
em
r2

er (6.48)

where er is the unit vector in radial direction. In order to determine the corre-
sponding vector potential we use

∇×A = er

[
1

r sin θ

(
∂

∂θ
(Aϕ sin θ)− ∂Aθ

∂ϕ

)]
+ eθ

1

r

[
1

sin θ

∂Ar
∂ϕ
− ∂ (rAϕ)

∂r

]
+ eϕ

1

r

(
∂ (rAθ)

∂r
− ∂Ar

∂θ

)
.(6.49)
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This suggests

A =
em (C − cos θ)

r sin θ
eϕ, (6.50)

where C is an arbitrary constant. Let us first consider C = 1. This vector
potential has one difficulty. It is singular on the negative z-axis (θ = π). This
was to be expected because usually the vector potential is being introduced to
guarantee ∇·B = 0, since ∇·∇ ×A = 0 except for regions where A is singular.

One might now argue that because the vector potential is just a device for
obtaining B, we need not insist on having a single expression for it everywhere.
Suppose we construct the potential

AI =
em (1− cos θ)

r sin θ
eϕ if z > 0

AII =
em (−1− cos θ)

r sin θ
eϕ if z < 0, (6.51)

i.e. we chose C = 1 for z > 0 and C = −1 for z < 0. Together these potentials
lead to the correct expression for B. Since both potentials lead to the same
magnetic field they must be related to each other by a gauge transformation

AII −AI = ∇χ = − 2em
r sin θ

eϕ. (6.52)

Lets remember that

∇χ = er
∂χ

∂r
+ eθ

1

r

∂χ

∂θ
+ eϕ

1

r sin θ

∂χ

∂ϕ
(6.53)

we obtain
χ = −2emϕ. (6.54)

Changing the gauge implies

ψII = ei
e
~cχψI , (6.55)

which corresponds to

ψII (θ, ϕ, r) = e−i2
eem
~c ϕψI (θ, ϕ, r) . (6.56)

Both wave functions must be single valued. This must be true in particular
when we increase the angle ϕ along the equator and go around once, say from
ϕ = 0 to ϕ = 2π:

ψI
(
θ =

π

2
, ϕ, r

)
= ψI

(π
2
, ϕ+ 2π, r

)
ψII

(
θ =

π

2
, ϕ, r

)
= ψII

(π
2
, ϕ+ 2π, r

)
(6.57)

Thus, it follows
e−i2

eem
~c 2π (6.58)
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The uniqueness of the wave function implies therefore:

2eem
~c

= 0,±1,±2 (6.59)

Thus, the smallest possible monopole charge is ~c
2|e| . On the other hand, the

existence of magnetic monopoles requires charge quantization.

6.5 The Aharonov-Bohm effect

We consider a double slit experiment supplemented with a solenoid behind the
double slit. Inside the solenoid the magnetic field B is finite, but outside of
it, the field vanishes. However, that does not imply that the vector potential
vanishes, i.e. for ∇ × A = 0. In this case the vector potential can always be
represented as the gradient of a scalar function. i.e.

A (r) = ∇χ (r) . (6.60)

We first study a particle with Hamiltonian

1

2m

(
p̂− e

c
A (r)

)2

ψ (r) + V (r)ψ (r) = Eψ (r) . (6.61)

The wave function of a free electron (no spin) within an external magnetic field
is given by

ψ (r) = exp
(
i
e

~c
χ (r)

)
ψ0 (r) ,

where ψ0 (r) is the wave function without the field. This can most directly be
seen by inserting this solution:

~
i
∇ψ (r) = exp

(
i
e

~c
χ (r)

) ~
i
∇ψ0 (r) + ψ (r)

e

c
∇χ (r) , (6.62)

such that for ∇χ (r) = A (r) follows:(
p̂− e

c
A (r)

)
ψ (r) = exp

(
i
e

~c
χ (r)

)
p̂ψ0 (r) . (6.63)

Thus yields(
p̂− e

c
A (r)

)2

ψ (r) =
(
p̂− e

c
A (r)

)
exp

(
i
e

~c
χ (r)

)
p̂ψ0 (r)

= ei
e
~cχ(r)p̂2ψ0 (r)− e

c
A (r) ei

e
~cχ(r) ~

i
∇ψ0 (r)

+ ei
e
~cχ(r) ~

i
∇ψ0 (r)

e

c
∇χ (r) , (6.64)

which gives again (
p̂− e

c
A (r)

)2

ψ (r) = ei
e
~cχ(r)p̂2ψ0 (r) . (6.65)
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It follows
p̂2

2m
ψ0 (r) + V (r)ψ0 (r) = Eψ0 (r) , (6.66)

i.e. the wave function corresponds to the case where the vector potential is
absent.

In case of B = 0, the energy of the state is unaffected and the wave function
magnitude is unaffected. The only difference is therefore the phase change. It
holds

χ (r) = χ (r0) +

ˆ r

r0

A (r′) · dr′. (6.67)

One has to be careful with this integration. It cannot wind around the solenoid.
The reason is that the function χ is either not unique or not differentiable. This
becomes evident if we analyze the vector potential of a solenoid

A (r) =
Φ

2πr
eϕ (6.68)

which leads to χ = Φ
2πϕ, where ϕ is the polar angle relative to the center of

the solenoid. performing the integration in such a way that the curve contains
a loop around the solenoid yields that χ → χ + Φ. However, for our problem
we need a locally unique function χ (r) , which can be obtained if one avoids
the mentioned loops around the solenoid. If the solenoid is located behind the
double slit and if the design it such that the particle never enters the region
with finite B field, there is nevertheless a measurable effect.

If we now write the wave function originating in the two slits as

ψ(1) (r) = ψ
(1)
0 (r) ei

e
~cχ

(1)(r)

ψ(2) (r) = ψ
(2)
0 (r) ei

e
~cχ

(2)(r) (6.69)

and the total wave function as

ψ (r) = ψ(1) (r) + ψ(2) (r) (6.70)

which is then characterized by an interference term determined by the phase
difference

∆φ = χ(1) (r)− χ(2) (r) . (6.71)

The phase difference between two paths that avoid the solenoid is then

∆φ =
e

~c

˛
A (r) · dr =

e

~c

ˆ
A

B·df . (6.72)

Thus there is a measurable phase difference between the two paths that is ex-
pressed in terms of the flux

Φ =

ˆ
A

B·df (6.73)

of the solenoid. This phenomenon is called the Aharonov Bohm effect. The key
aspect of this result is that a quantum particle, given the non-locality of the
wave function, “feels” the magnetic field even though it never penetrates the
regime of a finite B−field.
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Chapter 7

Pictures in quantum
mechanics

The time dependent Schrödinger equation

i~
∂ψ (r,t)

∂t
= Ĥψ (r,t) (7.1)

determines the time dependence of the wave function. In case of a time inde-
pendent Hamiltonian it is even possible to determine a formal solution of the
type:

ψ (r,t) = e−
itĤ
~ ψ (r,0) . (7.2)

Whenever we are considering a function f
(
Ô
)

of an operator, it is really only

defined via the Taylor expansion of that function. Let

f (x) =
∑
m

fmx
m (7.3)

be the Taylor expansion of f , we have

f
(
Ô
)

=

∞∑
m=0

fmÔ
m. (7.4)

Arbitrary powers of an operator are of course well defined. If |n〉 are the eigen-
functions of Ô with eigenvalue on it holds

f
(
Ô
)
|n〉 =

∞∑
m=0

fmÔ
m |n〉 . (7.5)

Using Ôm |n〉 = omn |n〉 we obtain

f
(
Ô
)
|n〉 =

∞∑
m=0

fmo
m
n |n〉 = f (on) |n〉 . (7.6)
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Thus, f (on) is the eigenvalue of the operator f
(
Ô
)

, if on is the eigenvalue of

Ô.
Using these results we can now show that the above formal solution solves

the Schrödinger equation. This can be explicitly shown by expanding

ψ (r,0) =
∑
n

anϕn (r,0) . (7.7)

into the set of eigenfunctions of the Hamiltonian. Using

e−
itĤ
~ ϕn (r,0) = e−i

tEn
~ ϕn (r,0) (7.8)

gives the result we obtained earlier

ψ (r,t) =
∑
n

ane
−i tEn~ ϕn (r,0) . (7.9)

We can now insert this function into the Schrödinger equation and find that i~ ∂
∂t

has the same effect as applying the Hamiltonian, i.e. it solves the Schödinger
equation.

This result suggests to introduce the operator

Û (t, t′) = e−
i(t−t′)Ĥ

~ (7.10)

that determines the time-evolution of the wave function. The inverse of the
time evolution operator, defined via

Û (t, t′)
−1
Û (t, t′) = 1 (7.11)

is given as

Û (t, t′)
−1

= e
i(t−t′)Ĥ

~ . (7.12)

It corresponds to the backwards evolution of the state. To check that this is the
case we consider the general case of an operator

eiŜ = 1 + iŜ − 1

2
Ŝ2 · · · , (7.13)

we can then show that

e−iŜ = 1− iŜ − 1

2
Ŝ2 · · · (7.14)

is indeed the inverse operator. Multiplying both operators yields

eiŜe−iŜ =

(
1 + iŜ − 1

2
Ŝ2

)(
1− iŜ − 1

2
Ŝ2

)
= 1 + iŜ − iŜ − Ŝ2 + Ŝ2...

= 1. (7.15)
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This demonstrates in particular that Û−1 is the inverse of Û . Another inter-
esting property of the time-evolution operator follows from the fact that it has

the form eiŜ , where Ŝ is an Hermitian operator. It follows for the adjoint or
hermitian conjugate operator that(

eiŜ
)†

=

(
1 + iŜ − 1

2
Ŝ2 · · ·

)†
= 1− iŜ† − 1

2

(
Ŝ2
)†
· · · (7.16)

Since S is Hermitian it holds(
Ŝm
)†

= Ŝ† · · · Ŝ† = Ŝ · · · Ŝ = Ŝm (7.17)

and we obtain (
eiŜ
)†

= e−iŜ . (7.18)

Thus we found that Û−1 = Û†, which defines a unitary transformation. Let u
consider two states

|ϕ〉 = Û |ϕ′〉
|ψ〉 = Û |ψ′〉 (7.19)

where U is a unitary transformation It follows immediately

〈ϕ|ψ〉 =
〈
ϕ′
∣∣∣Û†Û ∣∣∣ψ′〉

=
〈
ϕ′
∣∣∣Û−1Û

∣∣∣ψ′〉 = 〈ϕ′|ψ′〉 . (7.20)

We find that a unitary transformation has the interesting property that it con-
serves scalar products, including the norm of states. Thus, the time evolution
dictated by quantum mechanics is unitary.

Let us now consider an operator equation of the type

Ô |ϕ (t)〉 = |ψ (t)〉 , (7.21)

with some operator and with wave functions that are time dependent We can
now express those states as time evolved from some arbitrary initial time, say
t′ = 0:

|ϕ (t)〉 = Û (t, 0) |ϕ0〉
|ψ (t)〉 = Û (t, 0) |ψ0〉 (7.22)

It follows
ÔÛ (t, 0) |ϕ0〉 = Û (t, 0) |ψ0〉 (7.23)

We multiply this equation with Û (t, 0)
−1

from the left and obtain

Ô (t) |ϕ0〉 = |ψ0〉 , (7.24)
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where
Ô (t) = Û (t, 0)

−1
ÔÛ (t, 0) . (7.25)

Thus, we can transform an equation where the operators are time independent
and the wave functions are time dependent into an equivalent form where the
operators are time-dependent and the wave functions are not. Any matrix
element and observable, can be determined either in one or in the other form.
Since scalar products do not change under a unitary transformation, it doesn’t
matter which approach one uses.

Thus we introduce the transformation of the wave functions from the Schrödinger
to the Heisenberg picture.

|ϕH〉 = e
itĤ
~ |ϕ (t)〉 (7.26)

along with corresponding transformation of the operators:

OH (t) = e
itĤ
~ O (t) e−

itĤ
~ , (7.27)

where we even allowed for some explicit time dependence of the operator. It
follows

dOH (t)

dt
=
de

itĤ
~

dt
O (t) e−

itĤ
~ + e

itĤ
~ O (t)

de−
itĤ
~

dt
+ e

itĤ
~
∂O (t)

∂t
e−

itĤ
~ . (7.28)

In order to perform the derivatives we use that:

e−
i(t+ε)Ĥ

~ = e−
itĤ
~

(
1− iε

~
Ĥ

)
, (7.29)

which gives

i~
de−

itĤ
~

dt
= e−

itĤ
~ Ĥ. (7.30)

Thus, it follows the Heisenberg equation of motion:

i~
dOH (t)

dt
= [OH (t) , H] + i~

∂OH (t)

∂t
(7.31)

Since the wave function is time independent, we do not need to bother looking
at its time evolution. The time evolution is instead one of the operators that
are governed by the above equation of motion.

Example: precession of a spin in a magnetic field. We chose B = (0, 0, B)
and obtain:

Ĥ = −γs · ·B =µBσ ·B

= µBB

(
1 0
0 −1

)
(7.32)

It obviously holds [sz, H] and we obtain for the spin operator in Heisenberg
picture:

dsz (t)

dt
= 0. (7.33)
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Next we analyze sx (t). Since there is no explicit time dependence it follows

i~
dsx (t)

dt
=
[
sx, Ĥ

]
= −γB [sx, sz] = i~γBsy (7.34)

and similarly

i~
dsy (t)

dt
=
[
sy, Ĥ

]
= −γB [sy, sz] = −i~γBsx (7.35)

which gives
d2sx (t)

dt2
= −γ2B2sx (7.36)

which is solved via

sx (t) = aeiωLt + be−iωLt

sy (t) = i
(
aeiωLt − be−iωLt

)
(7.37)

with

ωL = γB =
eB

mc
. (7.38)

Thus

a+ b = sx (0)

i (a− b) = sy (0) (7.39)

yielding

a =
1

2
(sx (0)− isy (0))

b =
1

2
(sx (0) + isy (0)) (7.40)

In addition to the so called Schrödinger and Heisenberg pictures, there is also
an intermediate possibility that plays an important role in the time dependent
perturbation theory (that will not be part of this lecture). For completeness,
we still mention the basic idea of this interaction picture. Let us consider a
Hamiltonian of the form

H = H0 + V (t) (7.41)

We now strip off the time dependence that is caused by the (usually simpler)
Hamiltonian H0

|ϕI (t)〉 = e
itĤ0

~ |ϕ (t)〉 (7.42)

and transfer it to the time dependence of the operators:

OI (t) = e
itĤ0

~ O (t) e−
itĤ0

~ . (7.43)
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We can now determine the equation of motion for the wave function in the
interaction representation, which follows as

i~
∂ |ϕI (t)〉

∂t
= V |ϕI (t)〉 . (7.44)

with formal solution:

|ϕI (t)〉 = |ϕI (t0)〉+
1

i~

ˆ t

t0

V (t′) |ϕI (t′)〉 dt′. (7.45)

The real appeal of this split approach will only become clear in the context of
time dependent perturbation theory. It also plays a fundamental role in the
perturbative formulation of quantum field theory.



Chapter 8

Particle in a central
potential

We consider a system of two particles with a potential V (r1 − r2) that only
depends on the distance between these particles

H = − ~2

2m1
∇2

1
− ~2

2m1
∇2

2
+ V (r1 − r2) . (8.1)

We introduce center of gravity and relative coordinates

R =
m1r1 +m2r2

m1 +m2

r = r1 − r2 (8.2)

yielding

H = − ~2

2 (m1 +m2)
∇2

R −
~2

2m
∇2

r + V (r) . (8.3)

with reduced mass m determined by

1

m
=

1

m1
+

1

m2
. (8.4)

The center of gravity behaves just like a free particle while the relative coordi-
nate behaves like a particle in a potential. In what follows we assume that the
potential only depends on the magnitude r = |r| of the vector r and not on its
direction:

V (r) = V (r) . (8.5)

This is what is called a central potential.
The Schrödinger equation of the relative motion is then given as(

−~2

2m
∇2

r + V (r)

)
ψ (r) = Eψ (r) . (8.6)
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Using our previous results for the Laplacian in spherical coordinates we write(
1

2m

[
p̂2
r +

L̂2

r2

]
+ V (r)

)
ψ (r) = Eψ (r) (8.7)

with

p̂r = −i~1

r

∂

∂r
r (8.8)

We make the product ansatz

ψ (r) = R (r) y (θ, ϕ) (8.9)

and obtain(
1

2m
p̂2
r +

1

2m

L̂2

r2
+ V (r)

)
R (r) y (θ, ϕ) = ER (r) y (θ, ϕ) (8.10)

gives

r2

R (r)
p̂2
rR (r) + (V (r)− E) 2mr2 =

1

y (θ, ϕ)
L̂2y (θ, ϕ) = C (8.11)

Thus we have to solve
L̂2y (θ, ϕ) = Cy (θ, ϕ) (8.12)

and we obtain immediately

y (θ, ϕ) = Ylm (θ, ϕ) (8.13)

and C = ~2l (l + 1). It then follows(
1

2m
p̂2
r + Veff (r)

)
R (r) = ER (r) (8.14)

with

Veff (r) = V (r) +
1

2m

~2l (l + 1)

r2
. (8.15)

8.1 The hydrogen atom

The potential is

V (r) = −e
2

r
. (8.16)

The wave function is again assumed to be

ψ (r) = R (r)Ylm (θ, ϕ) (8.17)

and the only part that determines on the potential is the radial wave function(
1

2m
p̂2
r + Veff (r)

)
R (r) = ER (r) (8.18)
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with

Veff (r) = −e
2

r
+

1

2m

~2l (l + 1)

r2
. (8.19)

Introducing

u (r) = rR (r) (8.20)

we obtain (
− d2

dr2
+
l (l + 1)

r2
− 2m

~2

e2

r
− 2mE

~2

)
u (r) = 0 (8.21)

Next, we make the substitution

x = 2κr
~2κ2

2m
= −E

n2 = −R0

E
(8.22)

where

x =
2Z

n

r

a0
(8.23)

R0 =
~2

2ma2
0

(8.24)

is the Rydberg constant and

a0 =
~2

me2
(8.25)

is the Bohr radius. They are given by

R0 = 13.6056981eV = 2.1798741× 10−18J

a0 = 0.529177249× 10−10m. (8.26)

In these variables it holds

d2u

dx2
− l (l + 1)

x2
u+

(
n

x
− 1

4

)
u = 0. (8.27)

For large values of x the equation reduces to

d2u

dx2
− u

4
= 0 (8.28)

so that

u ∝ e±x/2 (8.29)

where we discard the positive sign as it is inconsistent with a bound state. For
small x it follows

d2u

dx2
− l (l + 1)

x2
u = 0. (8.30)



92 CHAPTER 8. PARTICLE IN A CENTRAL POTENTIAL

Substitution of the ansatz u = ρq gives

q (q − 1) = l (l + 1) (8.31)

which yields

u = Ax−l +Bxl+1 (8.32)

In order for u to vanish at the origin we chose A = 0.
To cover the entire x regime we make the ansatz

u (x) = xl+1e−x/2F (x) (8.33)

where F (ρ) is finite everywhere. Thus we assume

F (x) =

∞∑
n=0

Cix
i. (8.34)

Substituting the above ansatz for u into the differential equation gives[
x
d2

dx2
+ (2l + 2− ρ)

d

dx
− (l + 1− n)

]
F (x) = 0 (8.35)

Inserting the power-law ansatz gives

Ci+1 =
(i+ l + 1)− n

(i+ 1) (i+ 2l + 2)
Ci ≡ Γi,lCi (8.36)

If the recursion relation continues to large i it holds

Ci+1 '
1

i
Ci (8.37)

which corresponds to F (ρ) ∝ eρ. This leads to a divergent wave function and
requires that Γi,l = 0 above some i. Thus at the maximal value for i it holds

(imax + l + 1)− n = 0 (8.38)

Thus n must be an integer. It then follows

En = − 1

n2
R0. (8.39)

It is obvious that n ≥ 1 as n = 0 will not lead to a termination of the recursion.
It obviously holds that imax ≥ 0 which gives

n ≥ l + 1. (8.40)

We notice that the energy eigenvalues do not depend on the angular momentum
quantum number l, an effect typically referred to as accidental degeneracy. For
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given l we have a degeneracy 2l + 1, reflecting the different values m can take.
Because of n ≥ l + 1 holds that the total degeneracy is

gn =

n−1∑
l=0

(2l + 1) = (n− 1)n+ n = n2. (8.41)

The polynomials Fn,l (x) are of order n − l − 1 and are known as associated
Laguerre polynomials L2l+1

n−l−1 (x) that can be determines as

Lqp (x) = (−1)
q dq

dxq
Lp+q (x) (8.42)

where

Lp (x) = ex
dp

dxp
xpe−x. (8.43)

It holds for example:

L1 (x) = 1− x

L2 (x) = 1− 2x+
x2

2
. (8.44)

The characteristic length scale of the wave function is determined by our di-
mensionless units:

r = λx
1

4

~2

2mλ2
= −En (8.45)

Thus

λn =
na0

2
(8.46)

The characteristic length scale is therefore dependent on the principle quantum
number. The larger n the further away from the nucleus is the electron located.

The usual notation is to refer to the different l values as

l 0 1 2 3 4
code s p d f g

(8.47)

such that a state with n = 1 and l = 0 is called 1s, a state with n = 2 and
l = 0 as 2s a state with n = 2 and l = 1 as 2p, a state with n = 3, l = 2 as 3d
or a state with n = 4 and l = 3 as 4f etc.
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The corresponding wave functions ψn,l,m (r) can then be explicitly given as

ψ1,0,0 (r) =
2

a
3/2
0

e−r/a0Y0,0 (θ, ϕ)

ψ2,0,0 (r) =
2

(2a0)
3/2

(
1− r

2a0

)
e−r/(2a0)Y0,0 (θ, ϕ) ψ2,1,1 (r)

ψ2,1,0 (r)
ψ2,1,−1 (r)

 =
1

√
3 (2a0)

3/2

r

a0
e−r/(2a0)

 Y1,1 (θ, ϕ)
Y1,0 (θ, ϕ)
Y1,−1 (θ, ϕ)


ψ3,0,0 (r) =

2

3 (3a0)
3/2

(
3− 2r

a0
+

2r2

9a2
0

)
e−r/(3a0)Y0,0 (θ, ϕ) ψ3,1,1 (r)

ψ3,1,0 (r)
ψ3,1,−1 (r)

 =
4
√

2

9 (3a0)
3/2

r

a0

(
1− r

6a0

)
e−r/(3a0)

 Y1,1 (θ, ϕ)
Y1,0 (θ, ϕ)
Y1,−1 (θ, ϕ)




ψ3,2,2 (r)
ψ3,2,1 (r)
ψ3,2,0 (r)
ψ3,2,−1 (r)
ψ3,2,−2 (r)

 =
2
√

2

27
√

5 (3a0)
3/2

r2

a2
0

e−r/(3a0)


Y2,2 (θ, ϕ)
Y2,1 (θ, ϕ)
Y2,0 (θ, ϕ)
Y2,−1 (θ, ϕ)
Y2,−2 (θ, ϕ)

 .



Chapter 9

Time independent
Perturbation theory

An exact solution of a quantum mechanical problem exists only in rather few
cases. In many situations is it therefore important to use approximate methods
to gain qualitative insight into the properties of a physical system. Progress can
be made if the Hamiltonian can be split into two contributions:

H = H0 + V. (9.1)

Here H0 is the unperturbed part of the Hamiltonian. We assume that we know
the solution of the Schrödinger equation

H0ψ
(0)
n = E(0)

n ψ(0)
n . (9.2)

The second part of the Hamiltonian is the perturbation V which we assume
to be small. What exactly we mean by smallness will be specified as we go
along. In what follows we consider three cases: time independent non-degenerate
perturbation theory, time independent degenerate perturbation theory and time
dependent perturbation theory.

In case of time independent perturbation theory we assume that V does not
depend explicitly on time. Thus, we need to solve the Schrödinger equation

Hψn = Enψn. (9.3)

For the formal analysis of the theory it is useful to introduce a dimensionless
variable λ such that

Hλ = H0 + λV (9.4)

and expand the wave functions and eigenvalues as a power series in λ

ψn = ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + · · ·

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · (9.5)

95
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Inserting this ansatz into the Schrödinger equation and sorting terms according
to their order in λ yields the following set of equations: At zeroth order in λ
follows as expected

H0ψ
(0)
n = E(0)

n ψ(0)
n . (9.6)

At first order in λ follows

H0ψ
(1)
n + V ψ(0)

n = E(1)
n ψ(0)

n + E(0)
n ψ(1)

n (9.7)

while at second order holds

H0ψ
(2)
n + V ψ(1)

n = E(2)
n ψ(0)

n + E(1)
n ψ(1)

n + E(0)
n ψ(2)

n . (9.8)

Before we solve Eq.9.7 we note that there is a certain ambiguity: if ψ
(1)
n is a

solution, so is ψ
(1)
n + aψ

(0)
n . This follows by inserting this solution into Eq.9.7.

Since we want to preserve normalization of the wave function it follows up to
first order in λ:

1 = 〈ψn|ψn〉 '
〈
ψ(0)
n |ψ(0)

n

〉
+ λ

〈
ψ(0)
n |ψ(1)

n

〉
+ λ

〈
ψ(1)
n |ψ(0)

n

〉
(9.9)

We require
〈
ψ

(0)
n |ψ(1)

n

〉
= 0 since

〈
ψ

(0)
n |ψ(0)

n

〉
= 1. This fixes the above ambi-

guity.

9.1 Non-degenerate perturbation theory

We first consider the situation of non-degenerate time independent perturbation

theory. We assume that the unperturbed eigenvalues E
(0)
n are all distinct. We

first consider the first order correction of Eq.9.7. We expand the wave function

ψ
(1)
n w.r.t. the unperturbed wave functions ψ

(0)
l :

ψ(1)
n =

∑
l

cnlψ
(0)
l . (9.10)

Since
〈
ψ

(0)
n |ψ(1)

n

〉
= 0 it follows immediately that cnn = 0. Inserting this result

into Eq.9.7 gives∑
l

cnlH0ψ
(0)
l .+ V ψ(0)

n = E(1)
n ψ(0)

n + E(0)
n

∑
l

cnlψ
(0)
l . (9.11)

We multiply this equation from the left with ψ
(0)
m and integrate over space. It

follows
cnmE

(0)
m +

〈
ψ(0)
m |V |ψ(0)

n

〉
= E(1)

n δnm + E(0)
n cnm. (9.12)

In case of n = m follows

E(1)
n = Vnn ≡

〈
ψ(0)
n |V |ψ(0)

n

〉
, (9.13)
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while for n 6= m holds that

cnm =

〈
ψ

(0)
m |V |ψ(0)

n

〉
E

(0)
n − E(0)

m

. (9.14)

Thus we obtain for the wave function to first order

ψ(1)
n =

∑
m6=n

〈
ψ

(0)
m |V |ψ(0)

n

〉
E

(0)
n − E(0)

m

ψ(0)
m (9.15)

In order to analyze the second order corrections we analyze Eq.9.8. We
expand again in terms of the non-perturbed wave functions

ψ(2)
n =

∑
l

dnlψ
(0)
l (9.16)

and insert this into Eq..9.8.∑
l

E
(0)
l dnlψ

(0)
l + V ψ(1)

n = E(2)
n ψ(0)

n + E(1)
n ψ(1)

n + E(0)
n

∑
l

dnlψ
(0)
l (9.17)

We multiply this equation again from the left with ψ
(0)
m and integrate over space.

It follows

E(0)
m dnm +

〈
ψ(0)
m |V |ψ(1)

n

〉
= E(2)

n δnm + E(1)
n

〈
ψ(0)
m |ψ(1)

n

〉
+ E(0)

n dnm (9.18)

We consider n = m and obtain

E(2)
n =

〈
ψ(0)
n |V |ψ(1)

n

〉
=

∑
m 6=n

〈
ψ

(0)
m |V |ψ(0)

n

〉〈
ψ

(0)
n |V |ψ(0)

m

〉
E

(0)
m − E(0)

m

=
∑
m 6=n

∣∣∣〈ψ(0)
m |V |ψ(0)

n

〉∣∣∣2
E

(0)
n − E(0)

m

(9.19)

We observe the interesting effect that the second order correction to the ground

state is negative E
(2)
n=0 ≤ 0.

If we consider n 6= m we obtain

dnm =
E

(1)
n

〈
ψ

(0)
m |ψ(1)

n

〉
−
〈
ψ

(0)
m |V |ψ(1)

n

〉
E

(0)
m − E(0)

n

. (9.20)

The coefficient dnn can be obtained by ensuring normalization of the wave func-
tion.
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We summarize the result for the energy eigenvalues in perturbation theory:

En = E(0)
n + Vnn +

∑
m 6=n

|Vmn|2

E
(0)
n − E(0)

m

+ · · · (9.21)

with Vmn =
〈
ψ

(0)
m |V |ψ(0)

n

〉
.

9.1.1 Example: anharmonic oscillator

We consider the anharmonic oscillator with unperturbed part of the Hamilto-
nian:

H0 =
p̂2

2m
+
mω2x̂2

2
(9.22)

and perturbation

V = γx̂3. (9.23)

Before we start we note that this problem is ill defined if we tried to determine
the exact solution of the Hamiltonian H0 + V . Depending on the sign of γ, a
particle would always disappear to x → ±∞ where the potential approaches
V → −∞. Within perturbation theory we do not recognize this effect as the
solution will always be close to the unperturbed one.

It is useful to determine the appropriate dimensionless coupling constant of
the problem. From the solution of the harmonic oscillator we know that the

characteristic length scale of the problem is x0 =
√

~
mω , while the characteristic

energy scale is ~ω. Thus we write

V =
γx3

0

~ω

(
x̂

x0

)3

~ω = Γ

(
x̂

x0

)3

~ω (9.24)

where

Γ =
γx3

0

~ω
=

γ

~ω

(
~
mω

)3/2

(9.25)

is the the appropriate dimensionless strength of the potential V . Therefore, we
suspect that Γ� 1 is the appropriate small parameter of the theory.

The first order correction to the energy vanishes

E(1)
n = γ

ˆ
dxψ (x)

∗
x3ψ (x) = 0 (9.26)

since |ψ (x)|2 is an even function and x3 is odd. Thus we analyze the second
order correction. In order to proceed we need to determine the matrix element:〈

m
∣∣x̂3
∣∣n〉 =

∑
l,r

〈m |x̂| l〉 〈l |x̂| r〉 〈r |x̂|n〉 (9.27)
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We substitute our earlier result for the matrix element of the position operator
of the harmonic oscillator

〈m| x̂ |n〉 =

√
~

2mω

(√
n+ 1δm,n+1 +

√
nδm,n−1

)
(9.28)

〈m| x̂2 |n〉 =
~

2mω

∑
l

(√
l + 1δm,l+1 +

√
lδm,l−1

) (√
n+ 1δl,n+1 +

√
nδl,n−1

)
=

~
2mω

(√
(n+ 2) (n+ 1)δm,n+2 + (2n+ 1) δm,n +

√
(n− 1)nδm,n−2

)
.

This yields 〈
m
∣∣x̂3
∣∣n〉( ~

2mω

)3/2 =
√

(n+ 1) (n+ 2) (n+ 3)δm,n+3

+
√
n (n− 1) (n− 3)δm,n−3

+3 (n+ 1)
3/2

δm,n+1 + 3n3/2δm,n−1. (9.29)

For the ground state n = 0, there are two nonzero matrix elements:

〈1 |V | 0〉 = 3γ

(
~

2mω

)3/2

〈3 |V | 0〉 =
√

6γ

(
~

2mω

)3/2

(9.30)

Thus we obtain

E
(2)
0 =

|〈1 |V | 0〉|2

E
(0)
0 − E(0)

1

+
|〈3 |V | 0〉|2

E
(0)
0 − E(0)

3

= −
9γ2

( ~
2mω

)3
~ω

−
6γ2

( ~
2mω

)3
3~ω

= −
11γ2

( ~
mω

)3
8~ω

= −11

8
Γ2~ω (9.31)

and we find

E0 =
1

2
~ω − 11γ2~2

8m3ω4
=

~ω
2

(
1− 11

4
Γ2

)
(9.32)

As expected, the second order correction is small for Γ� 1.

9.2 Degenerate perturbation theory

Next we analyze the problem of degeneracy for the unperturbed problem. Thus,

we consider the situation where the states ψ
(0)
n , . . . , ψ

(0)
n+q all have the same
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energy: E
(0)
n = E

(0)
n+1 = · · · = E

(0)
n+q. To proceed we keep in mind that any

linear combination

ψ̃
(0)
l =

n+q∑
m=n

αlmψ
(0)
m (9.33)

is also an eigenfunction with same eigenvalue E
(0)
n . In the subspace spanned by

the q degenerate eigenfunction, the matrix elements

Vlm =
〈
ψ

(0)
l |V |ψ

(0)
m

〉
(9.34)

have, in general, diagonal elements Vll and off diagonal elements Vlm with l 6=
m. We can however always use a linear combination ψ̃

(0)
l of the ψ

(0)
m that

diagonalizes the matrix Vlm. In this case follows

E
(1)
l =

〈
ψ̃

(0)
l |V | ψ̃

(0)
l

〉
. (9.35)

The easiest way to show this is by writing evaluating the matrix elements of

H0 + V (9.36)

with respect to the ψ̃l and for n ≤ l,m ≤ n+ q follows〈
ψ̃

(0)
l |H0 + V | ψ̃(0)

m

〉
=
(
E

(0)
l +

〈
ψ̃

(0)
l |V | ψ̃

(0)
l

〉)
δlm (9.37)

If we ignore off diagonal elements to other states, not contained in the degenerate
set, we then obtain

El ' E(0)
l +

〈
ψ̃

(0)
l |V | ψ̃

(0)
l

〉
(9.38)

The above approximation to ignore the coupling to other states is correct to first

order in V and we obtain Eq.9.35. If the matrix elements
〈
ψ̃

(0)
l |V | ψ̃

(0)
l

〉
are

distinct for different l, the degeneracy of the unperturbed problem is completely
lifted.

We conclude that the way to determine the eigenvalues of a system with
degeneracy corresponds to determining the eigenvalues of the perturbation Vlm
in an arbitrary basis. In other words, we solve

det
(
Vlm − E(1)δlm

)
= 0 (9.39)

and the eigenvalues E
(1)
l of this secular equation correspond to the first order

corrections to the wave function.

9.2.1 Example 1: two fold degenerate state

We first consider an arbitrary two fold degenerate state. In this case the secular
equation becomes ∣∣∣∣ V11 − E(1) V12

V ∗12 V22 − E(2)

∣∣∣∣ = 0 (9.40)
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and we obtain the two solutions

E(1) =
1

2
(V11 + V22 ± δE) (9.41)

where

δE =

√
(V11 − V22)

2
+ 4 |V12|2. (9.42)

is the difference of the two eigenvalues. Thus, an additional perturbation lifts a
twofold degeneracy unless V11 = V22 and V12 = 0, i.e. the two states do not mix
and the perturbation has identical matrix elements. We can also determine the
eigenvectors (α+,1, α+,2) and (α−,1, α−,2) of the secular matrix. The adequate
linear combination of the wave functions is then

ψ̃± = α±,1ψ1 + α±,2ψ2 (9.43)

where ψ1 and ψ2 are the initial degenerate wave functions. It holds

α±,1 =
V ∗12

2 |V12|

(
1± V11 − V22

δE

)1/2

α±,2 = ± V12

2 |V12|

(
1± V22 − V11

δE

)1/2

. (9.44)

9.2.2 Example 2: Stark Effect

We consider a hydrogen atom in an external electric field Eel:

H = H0 + V (9.45)

with (assume e > 0):
V = eEelz = 2Eelr cos θ (9.46)

Here H0 is the Hamiltonian of the hydrogen problem (ignore the spin for sim-
plicity). The unperturbed eigenstates are n2-fold degenerate, where n is the
principle quantum number of the problem. We consider n = 2 and have the
four wave functions in the |nlm〉 notations

|200〉 , |211〉 , |210〉 , |21− 1〉 (9.47)

In order to analyze the secular equation we have to analyze the matrix elements

〈2lm |V | 2l′m′〉 . (9.48)

Only two elements survive integration. Diagonal elements all vanish as the po-
tential is odd in z. All elements with different m values vanish by orthogonality
of the ϕ integration. Thus we only need to analyze

〈210 |V | 200〉 = 〈200 |V | 210〉

= eEel

ˆ
d3rψ210 (r) cos θψ200 (r) (9.49)
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It holds

ψ200 (r) =
2

(2a0)
3/2

(
1− r

2a0

)
e−r/(2a0)Y0,0 (θ, ϕ)

ψ2,1,0 (r) =
1

√
3 (2a0)

3/2

r

a0
e−r/(2a0)Y1,0 (θ, ϕ) (9.50)

where Y1,0 = 1
2

√
3
π cos θ and Y0,0 = 1

2
√
π

. Thus, it follows

〈210 |V | 200〉 = eEel
1

2π (2a0)
3

ˆ ∞
0

r2dr
r

a0

(
1− r

2a0

)
e−r/a0r

×
ˆ 2π

0

dϕ×
ˆ π

0

sin θdθ cos2 θ (9.51)

This gives with ρ = r/a0 and x = cos θ

〈210 |V | 200〉 = eEel
a0

32π

ˆ ∞
0

dρρ4 (2− ρ) e−ρ
ˆ 2π

0

dϕ

ˆ 1

−1

dxx2 (9.52)

It holds ˆ ∞
0

dρρ4 (2− ρ) e−ρ = −72

ˆ 1

−1

dxx2 =
2

3
(9.53)

and we obtain

〈210 |V | 200〉 = −eEel
a0

16

2

3
72 = −3eEela0 ≡ −∆ (9.54)

The secular equation is then∣∣∣∣∣∣∣∣
−E(1) 0 −∆ 0

0 −E(1) 0 0
−∆ 0 −E(1) 0

0 0 0 −E(1)

∣∣∣∣∣∣∣∣ = 0 (9.55)

The four eigenvalues are
E(1) = 0, 0,∆,−∆ (9.56)

Thus, the two states |211〉 and |21− 1〉are unaffected by the perturbation and
remain doubly degenerate. On the other hand, the two states

1√
2

(|200〉 ± |210〉) (9.57)

are split. Obviously, the perturbation mixes the m = 0 states, while the m = ±1
states are eft degenerate.



Chapter 10

Variational principle

Often it is not possible to find the exact solution of the Schrödinger equation
and perturbative approaches are not useful because of the absence of a natural
small parameter. In this case one can still approximately determine the ground
state energy by minimizing

Ev = 〈φv |H|φv〉 (10.1)

with respect to certain variational parameters. Here, |φv〉 is assumed to be
normalized, i.e.

〈φv|φv〉 = 1. (10.2)

The proof of the variational principle is straightforward. We show that for an
arbitrary normalized state |φ〉 holds that:

〈φ |H|φ〉 ≥ E0 (10.3)

where E0 is the exact ground state energy of H. This follows from the fact that
any |φ〉 can be expanded w.r.t. the set of eigenfunctions |ψµ〉 of H:

|φ〉 =
∑
µ

αµ |ψµ〉 (10.4)

such that
〈φ |H|φ〉 =

∑
µ

|αµ|2Eµ. (10.5)

Here Eµ are the eigenvalues of H. Since
∑
µ |αµ|

2
= 1, the mean value of the

energy in |φ〉 cannot be smaller than its smallest possible value, yielding Eq.10.3.
Using this result one typically starts from an educated guess of the wave

function
φv (r) = φv (λi; r) (10.6)

where λi is a set of variational parameters that characterize our guess. We then
determine λi by minimizing

Ev (λi) = 〈φv |H|φv〉 . (10.7)
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Thus, the quality of the wave function is judged by how close it comes to the
ground state.

Often one expands the trial wave function w.r.t. a known set of functions
and considers the expansion coefficients as variational parameters.

|φv〉 =

q∑
µ=1

αµ |ϕµ〉 (10.8)

The approximation is now that the Hilbert space is assumed to have finite
dimension. The variational value for the ground state is then naturally the
smallest eigenvalue of the matrix

Hµν = 〈ϕµ |H|ϕν〉 (10.9)

i.e. we have to solve
det (Eδµν −Hµν) = 0. (10.10)

If the wave functions are not orthogonal this can easily be generalized to

det (E 〈ψµ|ψν〉 −Hµν) = 0. (10.11)

where 〈ψµ|ψν〉 is the overlap integral.
Example 1: harmonic oscillator We start from the harmonic oscillator

and make the guess

φv (x) =

(
2λ

π

)1/4

exp
(
−λx2

)
(10.12)

where λ is the variational parameter.
It holds

− ~2

2m

d2

dx2
φv (x) = − ~2

2m
2λ
(
2λx2 − 1

)
φv (x) (10.13)

which leads to

〈T 〉v = − ~2

2m

ˆ
φv (x)

∗ d2

dx2
φv (x) dx =

~2

2m
λ (10.14)

On the other hand follows

〈V 〉v =
mω2

2

ˆ
φv (x)

∗
x2φv (x) dx =

mω2

2

1

4λ
(10.15)

It follows

Ev (λ) =
~2

2m
λ+

mω2

2

1

4λ
= ~ω

(
~

2mω
λ+

mω

2~
1

4λ

)
. (10.16)

Thus we may as well minimize the energy w.r.t.

µ =
~
mω

λ (10.17)
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since

Ev (µ) =
~ω
2

(
µ+

1

4µ

)
(10.18)

It holds
∂Ev (µ)

∂µ
=

~ω
2

(
1− 1

µ24

)
= 0 (10.19)

which gives µmin = ± 1
2 . Only µ > 0 (i.e. λ > 0 corresponds to a normalized

wave function). It follows

Ev (µmin) =
~ω
2

(10.20)

which is even the exact result. This is no surprise as the exact wave function is
a Gaussian. The wave function is then given as

φv (x) =
(mω
π~

)1/4

exp
(
−mω

2~
x2
)
. (10.21)

We obtain the exact result. It is generally true that the exact ground state is
reproduced if it can be expressed in terms of the variational guess for a specific
set of parameters. Had we decided for φv (x) = A exp

(
−λx4

)
, we would not

have obtained the exact result.
Example 2: double minimum
We have a particle in a potential

V (x) =
k

8a2
0

(
x2 − a2

0

)2
(10.22)

Here the pre-factor is chosen such that

V (x ' ±a) ' k

2
(x∓ a0)

2
(10.23)

Thus, for large a0 we have two separated harmonic oscillators. A reasonable
variational ansatz is then

φv (x) = α (ψ0 (x− a0)± ψ0 (x+ a0)) (10.24)

with ground state energy of the harmonic oscillator

ψ0 (x) =
(mω
π~

)1/4

exp
(
−mω

2~
x2
)
. (10.25)

Here, the key variational parameter is discrete, it is the relative sign ±. We
can now evaluate the potential and kinetic energy. It is useful to introduce
dimensionless units

ξ =

√
mω

~
x =

x

l0
(10.26)

and then
ψ0 (ξ) = π−1/4 exp

(
−ξ2/2

)
(10.27)
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such that
´
ψ0 (ξ)

2
dξ = 1. Then

− ~2

2m

d2

dx2
= − ~2

2m

mω

~
d2

dξ2
= −~ω

2

d2

dξ2

V (ξ) =
~ω
2

1

4ρ2

(
x2 − ρ2

)2
(10.28)

where ρ = a0/l0.
It follows for the variational wave function

φv (ξ) = α (ψ0 (ξ − ρ)± ψ0 (ξ + ρ)) (10.29)

The normalization is then
ˆ
dξφv (ξ)

2
= 2α2

(
1±
ˆ
dξψ0 (ξ − ρ)ψ0 (ξ + ρ)

)
= 2α2

(
1± e−ρ

2
)

(10.30)

which gives

α =
1

√
2
(
1± e−ρ2

)1/2 . (10.31)

For the Kinetic energy follows

〈φv |T |φv〉 =
~ω
2
α22

(〈
ψ+

∣∣∣∣ d2

dξ2

∣∣∣∣ψ+

〉
±
〈
ψ+

∣∣∣∣ d2

dξ2

∣∣∣∣ψ−〉) (10.32)

It holds 〈ψ+ |T |ψ+〉 = 〈ψ− |T |ψ−〉 = 1
2 and 〈ψ+ |T |ψ−〉 = 1

2e
−ρ2 (2ρ2 − 1

)
such

that

〈φv |T |φv〉 =
~ω
4

1± e−ρ2
(
2ρ2 − 1

)
1± e−ρ2

(10.33)

The potential energy is

〈φv |V |φv〉 =
~ω
2

α2

2ρ2

(〈
ψ+

∣∣∣(ξ2 − ρ2
)2∣∣∣ψ+

〉
±
〈
ψ+

∣∣∣(ξ2 − ρ2
)2∣∣∣ψ−〉) (10.34)

It holds 〈
ψ+

∣∣∣(ξ2 − ρ2
)2∣∣∣ψ+

〉
= 2ρ2 − 3

4〈
ψ+

∣∣∣(ξ2 − ρ2
)2∣∣∣ψ−〉 = e−ρ

2

(
ρ4 − ρ2 +

3

4

)
(10.35)

and we find:

〈φv |V |φv〉 =
~ω
4

1− 3
8ρ2 ±

1
2e
−ρ2

(
ρ2 − 1 + 3

4ρ2

)
1± e−ρ2

 (10.36)
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It then follows for the variational energy

Ev =
~ω
2

1− 3
16ρ2 ± e

−ρ2
(

5
4ρ

2 − 3
4 + 3

16ρ2

)
1± e−ρ2

(10.37)

This function is easily analyzed graphically. The relevant regime is ρ > 1. For
1 < ρ < 1.065 is the energy of the positive sign lower. For ρ > 1.065 is the wave
function with negative sign is lower in energy. For large ρ is the energy gain of
the negative solution

∆E =
~ω
2

5

4
ρ2e−ρ (10.38)

i.e. it is exponentially small as it is a result of the overlap of the two wave
functions.

Example 3: Hydrogen molecule
We consider the hydrogen molecule H+

2 , i.e. a molecule with two nuclei and
one electron. The Hamiltonian is

H =
p̂2

2m
+
e2

R
− e2

r1
− e2

r2
(10.39)

where r1 = |r−R1| and r2 = |r−R2| is the distance of the electors from the
first and second nucleus, respectively. R = |R1−R2| is the distance between
the two nuclei.

A natural ansatz for the ground state is

|φv〉 = α1 |ψ1〉+ α2 |ψ2〉 (10.40)

where

ψi (r) = 〈r|ψi〉 =
1√
πa3

0

e−ri/a0 (10.41)

is the ground state of the hydrogen atom centered around Ri. The variational
parameters are the coefficients αi and the distance between the nuclei R. We
first need to determine the eigenvalues of the matrix(

H11 − E H12 − E 〈ψ1|ψ2〉
H21 − E 〈ψ1|ψ2〉∗ H22 − E

)
(10.42)

It holds H11 = H22 amd H12 = H21, which gives

E+ =
H11 +H12

1 + ∆12

E− =
H11 −H12

1−∆12
(10.43)

with eigenvectors

|φ+〉 = N (|ψ1〉+ |ψ2〉)
|φ+〉 = N (|ψ1〉 − |ψ2〉) (10.44)
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We only need to determine

I = −e2

〈
ψ1

∣∣∣∣ 1

r2

∣∣∣∣ψ1

〉
K = −e2

〈
ψ1

∣∣∣∣ 1

r1

∣∣∣∣ψ2

〉
(10.45)

and obtain

E+ = EH +
e2

R
+
I −K
1 + ∆

E− = EH +
e2

R
+
I +K

1−∆
(10.46)

where EH is the ground state energy of the Hydrogen atom. It follows from a
numerical evaluation of the matrix elements that I,K < 0 and that E+ is lower
than E−.

There exists another, physically very appealing formulation of quantum me-
chanics invented by Richard Feynman. The idea is very simple: If we consider a
double slit experiment we would have a source and a screen to detect the signal.
The probability amplitude to hit the screen is then the sum over the amplitude
of the two paths:

A (source→ screen) =

2∑
i=1

A (source→ si → screen) (10.47)

This idea can be generalized to many slits and many screens, and the idea is to
consider every potential as a superposition of slits and screens.



Chapter 11

Path integral formulation of
quantum mechanics

The physical picture behind the path integral approach is that one can achieve
a correct reformulation of quantum mechanics in terms of interfering classical
paths. When we discuss a double slit experiment, we usually draw two classical
paths, one where the particle goes through the upper and one where it goes
through the lower slit. After the scattering at the slit potential the interference
between such paths is considered. The spitit of the path integral approach is
to describe each potential and an sum of many multiple-slit setups. We then
consider all possible interference pattern, which eventually determine matrix
elements and expectation values. The path integral is therefore a formulation
of quantum mechanics that can be achieved without introducting operators. It
also makes very direct contact to the classical limit. While path integrals are
not the most efficient tools to solve generic problems of single particle quantum
mechanics, their generalization to functional integrals in quantum field theories
turn out to be extremely useful.

The time evolution of a quantum state is given by

|ψ (t)〉 = e−i
Ht
~ |ψ〉 . (11.1)

It is therefore interesting to analyze the transitions from an initial state to a
final state, or to ask what is the probability that a particle at time t = T is
in state |ψf 〉 under the condition that it was in a state |ψi〉 at t = 0. This is
information is given by 〈

ψf

∣∣∣e−iHT~ ∣∣∣ψi〉 . (11.2)

To be specific we analyze the case where |ψi〉 and |ψf 〉 are eigenstates of the
position operator 〈

xf

∣∣∣e−iHT~ ∣∣∣xi〉 . (11.3)

If
H = T + V (11.4)
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it holds in general that

e−i
Ht
~ 6= e−i

Tt
~ e−i

V t
~ . (11.5)

However, for very small time steps one can write

e−i
Ht
~ = e−i

Tt
~ e−i

V t
~ +O

(
t2
)
. (11.6)

To see this we expand both sides in a Taylor series and compare:

1− iHt
~

+O
(
t2
)

=

(
1− iT t

~

)(
1− iV t

~

)
+O

(
t2
)

' 1− i (T + V ) t

~
+O

(
t2
)
. (11.7)

Thus, the trick is to introduce small time steps δt = T/N and consider the
evolution during those short times

e−i
HT
~ =

(
e−i

Hδt
~

)N
. (11.8)

Then, we can write

e−i
Hδt
~ = e−i

Tδt
~ e−i

V δt
~ +O

(
(δt)

2
)
. (11.9)

The transition amplitude can now we written as:〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 =
〈
xf

∣∣∣e−iHδt~ e−i
Hδt
~ ...e−i

Hδt
~

∣∣∣xi〉 . (11.10)

We next introduce a complete set of states for each intermediate time slice:

1 =

ˆ
dxj |xj〉 〈xj | . (11.11)

Then〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 =

ˆ N−1∏
j=1

dxj 〈xf | e−i
Hδt
~ |xN−1〉 〈xN−1| e−i

Hδt
~ |xN−2〉

× ... 〈x2| e−i
Hδt
~ |x1〉 〈x1| e−i

Hδt
~ |xi〉 (11.12)

If xi = x0 and xf = xN , it follows:

〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 =

ˆ N−1∏
j=1

dxj

N−1∏
j=0

〈xi+1| e−i
Hδt
~ |xi〉 . (11.13)

We need to analyze the matrix elements for small δt:

〈xj+1| e−i
Hδt
~ |xj〉 ' 〈xj+1| e−i

Tδt
~ e−i

V δt
~ |xj〉

= 〈xj+1| e−i
Tδt
~ |xj〉 e−i

V (xj)δt
~ . (11.14)
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Furthermore, it holds for the kinetic energy matrix element:

〈xj+1| e−i
Tδt
~ |xj〉 =

ˆ
dp 〈xj+1| e−i

Tδt
~ |p〉 〈p|xj〉

=

ˆ
dp 〈xj+1|p〉 〈p|xj〉 e−i

T (p)δt
~ (11.15)

Since 〈xj+1|p〉 =
exp( i~pxj+1)

2π it follows:

〈xj+1| e−i
Tδt
~ |xj〉 =

ˆ
dp

2π
e−

i
~ (T (p))δei

p
~ (xj+1−xj). (11.16)

The integral over p is known as a Gaussian integral

ˆ ∞
−∞

dpei
a
2 p

2

=

ˆ ∞
0

dzei
a
2 z

√
z

=

√
2πi

a
(11.17)

which follows from ˆ ∞
−∞

dpe−
α
2 p

2

=

√
2πi

α
(11.18)

which is convergent for Reα > 0. We then write α = ia + η and set η → 0 at
the end. It follows

〈xj+1| e−i
Tδt
~ |xj〉 =

( m

2πi~δt

)1/2

e
iδtm2

(
xj+1−xj

δt

)2

. (11.19)

Then follows with the abbreviation

ˆ
Dx · · · =

( m

2πi~δt

)N/2 ˆ N−1∏
j=1

dxj · · · (11.20)

that 〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 =

ˆ
Dx

N−1∏
j=0

e
iδtm2

(
xj+1−xj

δt

)2
−i

V (xj)δt
~ . (11.21)

If we perform the limit δt→ 0 we can write〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 =

ˆ
Dxe

i
~S[x], (11.22)

where

S [x] =

ˆ T

0

dt
(m

2
ẋ2 − V (x)

)
(11.23)

is the classical action.
A path from xi to xf can be written as

x (t) = xcl (t) + δx (t) (11.24)
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where xcl (t) is the classical path, as obtained from

δS

δx
= 0 (11.25)

which corresponds to

m
d2xcl (t)

dt2
= −∂V (xcl)

∂xcl
. (11.26)

In case of a free particle it holds for example

xcl (t) = xi +
t

T
(xf − xi) . (11.27)

yielding the classical action S [xcl] = m
2

(xf−xi)2
T .

For the quantum fluctuations δx (t) follows obviously that

δx (0) = δx (T ) = 0. (11.28)

Inserting this decomposition into the action gives

T [x] =

ˆ T

0

dt
m

2
ẋ2 =

ˆ T

0

dt
m

2
ẋ2

cl +

ˆ T

0

dt
m

2
(δẋ)

2

+m

ˆ T

0

dtẋclδẋ. (11.29)

The last term gives

ˆ T

0

dtẋclδẋ = −
ˆ T

0

dt
d2xcl (t)

dt2
δx (t) + ẋclδx|T0

= −
ˆ T

0

dt
d2xcl (t)

dt2
δx (t)

=

ˆ T

0

dt
∂V (xcl)

∂xcl
δx (t) (11.30)

and we obtain

S [x] = Scl [x] +

ˆ T

0

dt
m

2
(δẋ)

2

−
ˆ T

0

dt

(
V (xcl + δx)− V (xcl)−

∂V (xcl)

∂xcl
δx

)
(11.31)

In case of a smooth potential one can expand

V (xcl + δx) ' V (xcl) +
∂V (xcl)

∂xcl
δx+

1

2

∂2V (xcl)

∂x2
cl

δx2 (11.32)

and the quadratic term is the only that contributes

S [x] = Scl [x] + Sq [x] (11.33)
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where

Sq [x] =
1

2

ˆ T

0

dt

(
m (δẋ)

2 − ∂2V (xcl)

∂x2
cl

δx2

)
. (11.34)

In this limit follows〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 ' e i~Scl[x]

ˆ
Dxe

i
~Sq[x] (11.35)

and quantum fluctuations enter the theory only through a Gaussian integral.

11.1 Path integral of a free particle

To perform at least once a path integral explicitly, we consider the free particle
limit with V = 0. It holds〈

xf

∣∣∣e−iHT~ ∣∣∣xi〉 =

ˆ
Dx

N−1∏
j=0

e
iδtm2~

(
xj+1−xj

δt

)2

=
( m

2πi~δt

)N/2 ˆ
dx1dx2...dxN−1e

imδt2~

(
xN−xN−1

δt

)2

× e
imδt2~

(
xN−1−xN−2

δt

)2

...ei
mδt
2~ ( x2−x1δt )

2

ei
mδt
2~ ( x1−x0δt )

2

(11.36)

with

xi =

√
2~δt
m

yi (11.37)

follows〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 = (iπ)
−N2

√
m

2~δt

ˆ
dy1dy2...dyN−1e

i(yN−yN−1)2

× ei(yN−1−yN−2)2 ...ei(y2−y1)2ei(y1−y0)2 , (11.38)

where we used ( m

2πi~δt

)N/2(2~δt
m

)N−1
2

= (iπ)
−N2

√
m

2~δt
. (11.39)

It is useful to introduce
zi = yi − yi−1 (11.40)

Then follows

z1 = y1 − y0

z2 = y2 − y0 − z1

zN = yN − y0 −
N−1∑
l=1

zl (11.41)
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It holds ˆ
dy1e

i(y2−y1)2ei(y1−y0)2 =

√
π

2i
e
i
2 (y2−y0)2

ˆ
dy2e

i(y3−y2)2e
i
2 (y2−y0)2 =

√
2π

3i
e
i
3 (y3−y0)2

ˆ
dy3e

i(y4−y3)2e
i
4 (y3−y0)2 =

√
3π

4i
e
i
4 (y4−y0)2

ˆ
dyle

i(yl+1−yl)2e
i
l+1 (yl−y0)2 =

√
lπ

(l + 1) i
e
i
4 (yl+1−y0)2 , (11.42)

Which yields〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 =

√
m

2πi~Nδt
e
i
N (yl+1−y0)2 (11.43)

=

√
m

2πi~Nδt
exp

(
i

m

2~Nδt
(xf − xi)2

)
(11.44)

Using
Nδt = T (11.45)

follows finally〈
xf

∣∣∣e−iHT~ ∣∣∣xi〉 =

√
m

2πi~T
exp

(
i
m (xf − xi)2

2~T

)
. (11.46)

We call this transition probability amplitude:

G (xf , xi, t) =
〈
xf

∣∣∣e−iHt~ ∣∣∣xi〉 (11.47)

and it follows

∂G (xf , xi, t)

∂t
=

i~
2m

∂2G (xf , xi, t)

∂x2
i

(11.48)

i~
∂G (xf , xi, t)

∂t
= − ~2

2m

∂2G (xf , xi, t)

∂x2
i

(11.49)

With an arbitrary initial wave function ψi (x) follows

ψf (x, t) =
〈
x
∣∣e−it∣∣ψi〉 =

ˆ
dxi

〈
x
∣∣∣e−iHT~ ∣∣∣xi〉 〈xi|ψi〉

=

ˆ
dxiG (x, xi, t)ψi (xi) (11.50)

such that

i~
∂ψf (x, t)

∂t
= i~

ˆ
dxi

∂G (xf , xi, t)

∂t
ψi (xi)

− ~2

2m

∂2ψf (x, t)

∂x2
= − ~2

2m

ˆ
dxi

∂2G (xf , xi, t)

∂x2
i

ψi (xi) (11.51)
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Thus, it follows that the wave function generated this way also obeys Schrödinger’s
equation:

i~
∂ψf (x, t)

∂t
= − ~2

2m

∂2ψf (x, t)

∂x2
. (11.52)
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Chapter 12

Scattering Theory

H = H0 + V (12.1)

H0 =
p2

2m
(12.2)

H0 |φ〉 = E |φ〉 (12.3)

Want to solve
(H0 + V ) |ψ〉 = E |ψ〉 (12.4)

formally solved by
|ψ〉 = (E −H0)

−1
V |ψ〉+ |φ〉 (12.5)

need to regularize ∣∣∣ψ(±)
〉

= (E ± iε−H0)
−1
V |ψ〉+ |φ〉 (12.6)

Gives〈
r|ψ(±)

〉
= 〈r|φ〉+

ˆ
d3r′

〈
r
∣∣∣(E ± iε−H0)

−1
∣∣∣ r′〉〈r′|V ψ(±)

〉
(12.7)

It holds

〈r|φ〉 =
eik·x

(2π)
3/2

(12.8)

G± (r, r′) =
~2

2m

〈
r
∣∣∣(E ± iε−H0)

−1
∣∣∣ r′〉 (12.9)

= − 1

4π

e±ik|r−r
′|

|r− r′|
(12.10)

Gives

ψ(±) (r) = φ (r)− 2m

~2

ˆ
d3r′

e±ik|r−r
′|

4π |r− r′|
V (r′)ψ(±) (r′) (12.11)
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If r = |r| � r′ = |r′| follows with

k′ = k
r

r
(12.12)

that

ψ(+) (r) =
1

(2π)
3/2

(
eik·r +

eikr

r
f (k′,k)

)
(12.13)

where the scattering amplitude is

f (k′,k) = −2m

~2

√
π

2

ˆ
d3r′e−ik·r

′
V (r′)ψ(+) (r′) (12.14)

The differential cross section dσ
dΩ . Consider a large number of identically pre-

pared particles all characterized by a free particle wave function. What is the
number of incident particles crossing a plane perpendicular to the incident di-
rection per unit area per unit time? This is just the probability flux due to the
first term. What is the number of scattered particles going into a small area dσ
around a differential solid angle element dΩ?

dσ

dΩ
dΩ =

# particles scattered into dΩ per unit time

# of incident particles crossing unit area per unit time

=
r2 |jscatt|
|jincid|

= |f (k′,k)|2 dΩ (12.15)

If V (r) = V (r) follows that f (k′,k) is only a function of |k′ − k| ≡ q = 2k sin θ
2

where θ is the angle between incoming and outgoing momentum. Thus we obtain

ψ(+) (r) =
1

(2π)
3/2

(
eik·r +

eikr

r
f (θ)

)
(12.16)


