Lecture by Professor Tigran Tchrakian

Quantum Mechanics I

Tobias Hofbaur

May 9, 2006

Contents

1	Introduction						
2	Part 2.1	icle-wave-duality Model for a massive particles/waves:	5				
	2.2	Time-evolution equation for $\psi(x,t)$	7				
	2.3	Physical Interpretation of $\psi(x,t)$	8				
	2.4	Quantum Mechanics \rightarrow Classical Mechanics	9				
3	Formulation of QM 11						
	3.1	Prescription of canonical Quantisation	11				
	3.2	Compability $QM \leftrightarrow CM$	12				
	3.3	Stationary State Schrödinger Equation	12				
	3.4	Eigenvalues and eigenvalue equations	13				
	3.5		14				
	3.6	· · · · · · · · · · · · · · · · · · ·	14				
4	Арр	Applications 16					
	4.1		16				
		4.1.1 Outstanding technical problems	16				
		4.1.2 Scattering off a 1-dim step barrier	18				
		4.1.3 Tunneling example	21				
			22				
	4.2	· · · · · · · · · · · · · · · · · · ·	27				
		·	28				
		·	28				
			29				
		9	30				
	4.3	0	31				
5	New	Formalism (Hilbert space)	33				
	5.1		33				
	5.2	·	35				
	5.3		35				
	5.4	±	36				

6	Matrix Mechanics				
	6.1	Prope:	rties of operators	39	
	6.2	Re-cal	culation of some result	39	
		6.2.1	QM Harmonic Oscillator	39	
		6.2.2	Infinitely deep square well	40	
	6.3	Outloo	ok	41	

1 Introduction

Classical mechanics breaks down at (sub)atomic scales

• Black body radiation: physical system = (ideal) gas of photons; classical statistical mechanics \rightarrow average energy $\langle E \rangle = \frac{\int Ef(E)dE}{\int f(E)dE}$ leads to wrong result: Max Planck:

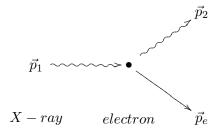
$$\int Ef(E)dE \to \sum_{n} E_{n}f(E_{n})$$
$$\int f(E)dE \to \sum_{n} f(E_{n})$$

In subatomic mechanics the spectrum of energy is DISCRETE

$$E_n = n\hbar\omega$$

i.e. energy comes in packets (quantum) of \hbar

• Compton Scattering



From energy and momentum conservation, we get

$$\left(\frac{1}{\omega_1} - \frac{1}{\omega_2}\right) = \left(\frac{\hbar}{mc^2}\right)\sin^2\frac{\theta}{2}$$

Louis de Broglie: particles = waves

$$\frac{\hbar}{mc^2} = \frac{1}{\omega_e}$$

2 Particle-wave-duality

- 0. Radiation (photons) = waves propagating with speed of light
 - Maxwell waves are not localised in x-space

$$\psi(x,t) = e^{-i(\omega t - kx)}$$

- 1. de Broglie: also m > 0 particles are waves
 - m > 0 waves should be localised in x-space

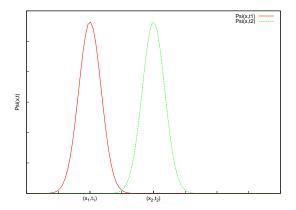


Figure 2.1: Wave function for a massive particle

• m > 0: speed $u = \frac{|\vec{p}|c^2}{E}$

•

$$m<0\Rightarrow u>0$$
 tachyons
$$m=0\Rightarrow u=c$$
 photons
$$m>0\Rightarrow u<0$$
 massive particles

2.1 Model for a massive particles/waves:

0. massless particles (photons):

$$\psi_{plane}(x,t) = e^{-i(\omega t - kx)}$$

Most general solution to the wave equation is a linear superposition of plane waves, i.e. a Fourier superposition

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int a(k)e^{-i(\omega t - kx)} dk$$

where $\omega = ck$

1. Massive particles

a) They are localised, i.e. peaked in x-space. Recall that

$$\int |\psi(x)|^2 dx = \int |a(k)|^2 dk$$

Then if a(k) is peaked, $\psi(x)$ is also peaked, so to have a peaked profile for $\psi(x,t)$ we must employ a peaked a(k).

b) u < c, i.e. $\omega \neq ck$ Using $E = \hbar \omega$ and $\vec{p} = \hbar \vec{k}$ yields

$$u = \frac{pc^2}{E} = \frac{\hbar kc^2}{\hbar \omega} = \frac{kc^2}{\omega}$$

so for massless particles with $\omega = kc \Rightarrow u = c$

Let $\omega = \omega(k)$ which is a monotonic function of k. Since a(k) is peaked, say to a narrow band around $k = k_0$, the integral for $\psi(x,t)$ gets its contribution mostly from this narrow range of integration. This allows us to approximate using the expansion of $\omega(k)$ around k_0 , i.e. use

$$\omega(k) = \omega(k_0) + (k - k_0) \frac{d\omega}{dk} |_{k=k_0} + \dots$$

i.e.

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int dk \ a(k) e^{-i\left[\left(\omega(k_0) + (k-k_0)\frac{d\omega}{dk}|_{k=k_0}\right)t - kx\right]} =$$

$$= \frac{1}{\sqrt{2\pi}} \underbrace{e^{-i\left(\omega(k_0) - k_0\frac{d\omega}{dk}|_{k=k_0}\right)t}}_{\text{Time dependent phase to be ignored}} \int dk \ a(k) e^{-i\left(k\frac{d\omega}{dk}k_0t - kx\right)}$$

$$\psi(x,t) \cong \frac{1}{\sqrt{2\pi}} \int dk \ a(k) e^{-ik\left(\frac{d\omega}{dk}|_{k_0}t - x\right)}$$

whose speed of propagation is

$$v_g = \frac{d\omega}{dk}$$

using a) and b) we get a peaked profile for $\psi(x,t)$ which propagates with speed

$$v = \frac{d\omega}{dk} = \frac{d\frac{E}{\hbar}}{d\frac{p}{\hbar}} = \frac{dE}{dp}$$

(Aside: in 3D $\vec{v} = \vec{\nabla}_p E$)

i) $u \ll c$ non relativistic particle $E = \frac{p^2}{2m}$

$$\Rightarrow v = \frac{dE}{dp} = \frac{2p}{2m} = \frac{p}{m} = \frac{mu}{m} = u$$

ii) u comparable to c: relativistic particle $E = c\sqrt{p^2 + m^2c^2}$

$$\Rightarrow v = \frac{dE}{dp} = \frac{1}{2}c(p^2 + m^2c^2)^{-1/2}2p = \frac{pc}{(p^2 + m^2c^2)^{1/2}} = \frac{pc^2}{E} = u$$

2.2 Time-evolution equation for $\psi(x,t)$

For massless particles we had

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int dk a(k) e^{-i(\omega t - kx)}$$

Using $E = \hbar \omega$ and $p = \hbar k$ we get

$$\psi(x,t) \cong \frac{1}{\sqrt{2\pi\hbar}} \int dp a(p) e^{-\frac{i}{\hbar}(Et-px)}$$

To deduce the Time-evolution we calculate different derivatives of $\psi(x,t)$:

$$\frac{\partial \psi}{\partial t} = -\frac{i}{\hbar} E \psi \qquad \qquad \frac{\partial^2 \psi}{\partial t^2} = \left(-\frac{i}{\hbar} E\right)^2 \psi$$

$$\frac{\partial \psi}{\partial x} = \frac{ip}{\hbar} \psi \qquad \qquad \frac{\partial^2 \psi}{\partial x^2} = \left(\frac{ip}{\hbar}\right)^2 \psi$$

i) nonrelativistic (free) particle: $E - \frac{p^2}{2m} = 0$

$$\begin{split} i\hbar\frac{\partial\psi}{\partial t} + \frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} &= E\psi - \frac{p^2}{2m}\psi = 0\\ \Rightarrow i\hbar\frac{\partial\psi}{\partial t} &= -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} \end{split}$$

Schrödinger-equation for a free particle

ii) relativistic (free) particle: $\frac{E^2}{c^2} - p^2 = m^2 c^2$

$$-\frac{\hbar^2}{c^2}\frac{\partial^2 \psi}{\partial t^2} + \hbar^2 \frac{\partial^2 \psi}{\partial x^2} = \frac{E^2}{c^2}\psi - p^2\psi = m^2c^2\psi$$
$$\Rightarrow \frac{1}{c^2}\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x^2} = -\frac{m^2c^2}{\hbar^2}\psi$$

Klein-Gordon-Equation

2.3 Physical Interpretation of $\psi(x,t)$

Entirely different from that of Maxwell-waves, obeying

$$\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x^2} = 0$$

where ψ is complex, but because

$$\psi(x,t) = e^{-i(\omega t - kx)} = \cos(\omega t - kx) - i\sin(\omega t - kx)$$

 ψ is a physical observable.

This is not the case with Schrödinger-equation where the differential operator

$$i\hbar \frac{\partial}{\partial t} + \frac{\partial^2}{\partial x^2}$$

is itself comlex valued! \Rightarrow solutions $\psi(x,t)$ are in general complex!

Max Born: Born's probabilistic interpretation of $\psi(x,t)$. The simplest real quantity of ψ is $|\psi(x,t)|^2 = \psi^* \psi \ge 0$. $|\psi|^2 \ge 0$ is like a probability density $\rho(x,t) \ge 0$. $(|\psi(x,t)|^2 dx)$ is the probability of finding the particle between x and x + dx

Remark.

- QM is therefore an INDETERMINISTIC regime
- In QM x is not an explicit function of t
- In QM all the dynamical information (i.e. time-evolution) information is encoded in $\psi(x,t)$
- Total probability

$$N = \int |\psi(x,t)|^2 dx < \infty$$

Convention: Normalize ψ

$$\int |\psi(x,t)|^2 dx = 1$$

- Convergence of this integral requires that $\psi \xrightarrow{x \to \pm \infty} 0$
- \bullet expectation value of x

$$\langle x \rangle = \frac{\int x |\psi(x,t)|^2 dx}{\int |\psi|^2 dx}$$

• In general the integral is a function of time:

$$\int_{x=a}^{x=b} f(x,t)dx = g(t)$$

but the total probability must be independent of t for ψ obeying the QM equation of motion. Check:

$$i\hbar \frac{\partial}{\partial t} \int |\psi|^2 dx = \int \left[\left(i\hbar \frac{\partial \psi^*}{\partial t} \right) \psi + \psi^* \left(i\hbar \frac{\partial \psi}{\partial t} \right) \right] dx$$

$$= \frac{\hbar^2}{2m} \int \left[\frac{\partial^2 \psi^*}{\partial x^2} \psi - \psi^* \frac{\partial^2 \psi}{\partial x^2} \right] dx$$

$$= \frac{\hbar^2}{2m} \int \left[\frac{\partial}{\partial x} \frac{\partial \psi^*}{\partial x} \psi - \psi^* \frac{\partial}{\partial x} \frac{\partial \psi}{\partial x} \right] dx$$
using $\psi \frac{\partial}{\partial x} \frac{\partial \psi^*}{\partial x} = \frac{\partial}{\partial x} \left(\psi \frac{\partial \psi^*}{\partial x} \right) - \frac{\partial\psi}{\partial x} \frac{\partial\psi^*}{\partial x}$

$$i\hbar \frac{\partial}{\partial t} \int |\psi|^2 dx = \frac{\hbar^2}{2m} \int \left[\frac{\partial}{\partial x} \left(\psi \frac{\partial\psi^*}{\partial x} \right) - \frac{\partial}{\partial x} \left(\psi^* \frac{\partial\psi}{\partial x} \right) \right] dx$$

$$= \frac{\hbar^2}{2m} \left[\psi \frac{\partial\psi^*}{\partial x} - \psi^* \frac{\partial\psi}{\partial x} \right]_{-\infty}^{+\infty}$$

Klein-Gordon-Equation is no use for this purpose \Rightarrow restrict to NONRELATIVISTIC QM

2.4 Quantum Mechanics → Classical Mechanics

i.e.

For the size of the system going from micro to macro the Quantum Mechanical values shoul go to the classical values, i.e.

$$\langle x \rangle \xrightarrow{QM \to CM} x \quad \langle p \rangle \xrightarrow{QM \to CM} p$$

$$\langle p \rangle \stackrel{Def}{=} m \frac{\partial}{\partial t} \langle x \rangle$$

$$i\hbar \langle p \rangle = i\hbar m \frac{\partial}{\partial t} \int x |\psi|^2 dx$$

$$= m \int x \left(i\hbar \frac{\partial \psi^*}{\partial t} \psi + \psi^* i\hbar \frac{\partial \psi}{\partial t} \right) dx$$

$$= \frac{m\hbar^2}{2m} \int x \left(\frac{\partial^2 \psi^*}{\partial x^2} \psi - \psi^* \frac{\partial^2 \psi}{\partial x^2} \right) dx$$

$$\langle \frac{\partial \psi^*}{\partial x^2} \rangle = \psi \frac{\partial \psi^*}{\partial x^2} - x \frac{\partial \psi}{\partial y^*} \frac{\partial \psi^*}{\partial x^2}$$

using
$$x\psi \frac{\partial^2 \psi^*}{\partial x^2} = \frac{\partial}{\partial x} \left(x\psi \frac{\partial \psi^*}{\partial x} \right) - \psi \frac{\partial \psi^*}{\partial x} - x \frac{\partial \psi}{\partial x} \frac{\partial \psi^*}{\partial x}$$

$$i\hbar \langle p \rangle = \frac{\hbar}{2} \int \left\{ \frac{\partial}{\partial x} \left[x\psi \frac{\partial \psi^*}{\partial x} - x\psi^* \frac{\partial \psi}{\partial x} \right] - \psi \frac{\partial \psi^*}{\partial x} + \psi^* \frac{\partial \psi}{\partial x} \right\} dx$$

$$\frac{2i}{\hbar} \langle p \rangle = \left[x \left(\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right) \right]_{-\infty}^{\infty} + \int \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right) dx$$

$$\langle p \rangle = \frac{i\hbar}{2} \int \left(\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right) dx$$

Conventional choice

$$\int \psi \frac{\partial \psi^*}{\partial x} dx = \int \left[\frac{\partial}{\partial x} (\psi \psi^*) - \frac{\partial \psi}{\partial x} \psi^* \right] = [|\psi|^2]_{-\infty}^{\infty} - \int \psi^* \frac{\partial \psi}{\partial x} dx$$
$$\langle p \rangle = \int \psi^* \left(-i\hbar \frac{\partial \psi}{\partial x} \right) dx$$

i.e. p can be interpreted as the operator $-i\hbar\frac{\partial}{\partial x}=\hat{p}$

3 Formulation of QM

3.1 Prescription of canonical Quantisation

$$\begin{split} x(t) & \xrightarrow{CM \to QM} \hat{x} = x \\ p(t) & \xrightarrow{CM \to QM} \hat{p} = -i\hbar \frac{\partial}{\partial x} \\ \vec{x}(t) & \xrightarrow{CM \to QM} \hat{\vec{x}} = \vec{x} \\ \vec{p}(t) & \xrightarrow{CM \to QM} \hat{\vec{p}} = -i\hbar \vec{\nabla} \end{split}$$

ONLY FOR CARTESIAN COORDINATES

Energy

$$\begin{split} H(t) &= \frac{p^2}{2m} + V(x) \xrightarrow{CM \to QM} \hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \\ \hat{H} &= -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \end{split}$$

The free particle Schrödinger-equation is

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}_0 \psi \qquad \hat{H}_0 = \frac{\hat{p}^2}{2m}$$

i.e. for a particle in the field of a force with potential V(x) the full Schrödinger-equation is

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$$

In general we define the expectation value of a Quantum mechanical observable represented by the operator \hat{A} by

$$\langle A \rangle = \int \psi^* (\hat{A}\psi) dx$$

3.2 Compability QM ↔ CM

Does
$$\frac{\partial}{\partial t} \langle p \rangle = \langle F \rangle \xrightarrow{QM \to CM} \frac{\partial}{\partial t} p = F$$
? where $\langle F \rangle = \int \psi^* (\hat{F}\psi) dx = \int \psi^* (-\frac{\partial V}{\partial x}\psi) dx$

$$\frac{\partial}{\partial t} \langle p \rangle = \frac{\partial}{\partial t} \int \psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \psi dx$$

$$= \left[-i\hbar \frac{\partial \psi^*}{\partial t} \frac{\partial \psi}{\partial x} - i\hbar \psi^* \frac{\partial^2 \psi}{\partial t \partial x} \right] dx$$

$$= \int (\hat{H}\psi^*) \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} (\hat{H}\psi) dx$$

$$= \int \left\{ \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi^* + V \psi^* \right] \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi + V \psi \right] \right\} dx$$

using
$$\int \psi^* \frac{\partial}{\partial x} \frac{\partial^2}{\partial x^2} \psi dx = \underbrace{\int \frac{\partial}{\partial x} \left(\psi^* \frac{\partial^2}{\partial x^2} \psi \right) dx}_{=0} - \int \frac{\partial \psi^*}{\partial x} \frac{\partial^2 \psi}{\partial x^2} dx = \underbrace{\int \frac{\partial}{\partial x} \left(\psi^* \frac{\partial^2}{\partial x^2} \psi \right) dx}_{=0} - \int \frac{\partial}{\partial x} \left(\frac{\partial \psi^*}{\partial x} \frac{\partial \psi}{\partial x} \right) + \int \frac{\partial^2}{\partial x^2} \psi^* \frac{\partial \psi}{\partial x}$$

$$\begin{split} \frac{\partial}{\partial t} \left\langle p \right\rangle &= \int \left\{ -\frac{\hbar^2}{2m} \frac{\partial^2 \psi^*}{\partial x^2} \frac{\partial \psi}{\partial x} + V \psi^* \frac{\partial \psi}{\partial x} + \frac{\hbar^2}{2m} \frac{\partial^2 \psi^*}{\partial x^2} \frac{\partial psi}{\partial x} - \psi^* \frac{\partial}{\partial x} (V \psi) \right\} dx = \\ &= \int \left\{ V \psi^* \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial V}{\partial x} \psi + V \psi^* \frac{\partial \psi}{\partial x} \right\} dx \\ &= \int \psi^* \left(-\frac{\partial V}{\partial x} \right) \psi dx \end{split}$$

So $\frac{\partial}{\partial t} \left = \left< -\frac{\partial V}{\partial x} \right>$ like Newton's 2nd law.

3.3 Stationary State Schrödinger Equation

For time independent potentials, seek Separable solutions:

$$\psi(x,t) = u(x)v(t)$$

$$i\hbar \frac{\partial \psi}{\partial t} = i\hbar \frac{\partial}{\partial t}(uv) = i\hbar u \frac{\partial v}{\partial t} \qquad \hat{H}\psi = v(\hat{H}u)$$

$$i\hbar u \frac{\partial v}{\partial t} = v(\hat{H}u)$$

$$i\hbar \frac{1}{v} \frac{\partial v}{\partial t} = \frac{1}{u} \hat{H}u$$

$$i\hbar \frac{d}{dt} \ln(v)(t) = u^{-1}(\hat{H}u)(x)$$

$$= const = E$$

$$\frac{d}{dt} \ln v = -\frac{i}{\hbar} E$$

$$\ln v = -\frac{i}{\hbar} Et$$

$$v = e^{-\frac{i}{\hbar} Et}$$

Note.

- E has dimensions of energy
- Provided $\frac{\partial V}{\partial t} = 0$, i.e. a "usual" potential
- time dependence is fixed, such that $\psi(x,t)=u(x)e^{-\frac{i}{\hbar}Et}$ and $\psi(x,t)$ is called a stationary State.

$$\hat{H}u = Eu \tag{3.1}$$

is called the stationary Schrödinger Equation.

• Expectation value of H, i.e. the energy

$$\langle H \rangle = \int \psi^*(\hat{H}\psi)dx$$

$$= \int u^* e^{\frac{i}{\hbar}Et}(\hat{H}ue^{-\frac{i}{\hbar}Et})dx$$

$$= \int u^*(\hat{H}u)dx$$

$$= \int |u|^2 Edx$$

$$= E$$

i.e. unlike p and x, E is an observable whose measurement is exact

3.4 Eigenvalues and eigenvalue equations

$$\hat{A}u = au$$

Question: Can several obserables be measured (exactly) simultaneously?

$$\hat{A}u = au$$
$$\hat{B}u = bu$$

using the operators on the other equations we get

$$\hat{B}\hat{A}u = bau$$

$$\hat{A}\hat{B}u = abu$$

$$[\hat{B}\hat{A} - \hat{A}\hat{B}]u = 0$$

This has to be true for all u. We denote the condition for simultaneously observability as an operator expression (commutator brackets)

$$\hat{A}\hat{B} - \hat{B}\hat{A} = [\hat{A}, \hat{B}] = 0$$

Example.

i) Free particle, V = 0

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \quad \hat{p} = -i\hbar \frac{\partial}{\partial x}$$

$$[\hat{H},\hat{p}]f = \frac{i\hbar^3}{2m}\frac{\partial^2}{\partial x^2}\frac{\partial f}{\partial x} - \frac{i\hbar^3}{2m}\frac{\partial}{\partial x}\frac{\partial^2 f}{\partial x^2} = 0$$

energy and momentum of free particle are simultaneously observable

ii) Particle in potential $V(x) \neq 0$

$$[\hat{H}, \hat{p}]f = -i\hbar V(x)\frac{\partial f}{\partial x} + i\hbar \frac{\partial V f}{\partial x} = fi\hbar \frac{\partial V}{\partial x}$$

i.e. in this case $[\hat{H},\hat{p}] = -\hat{p}V \neq 0$

3.5 Canonical Commutation Relations (CCR)

Canonical Quantisation $\rightarrow \hat{x}$ and \hat{p}

CCR:
$$[\hat{x}, \hat{p}] = i\hbar$$

$$[\hat{x}, \hat{p}]f = x(-i\hbar \frac{\partial f}{\partial x}) - (-i\hbar \frac{\partial}{\partial x})(xf) = i\hbar f$$

 $CCR \Rightarrow \hat{x}$ and \hat{p} are not simultaneously observable

3.6 Heisenberg uncertainty relation

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

 $\Delta x, \Delta p$ "uncertainties":

$$(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2$$

$$(\Delta p)^2 = \langle p^2 \rangle - \langle p \rangle^2$$

Choice of $\langle x \rangle = \langle p \rangle = 0$.

$$(\Delta x)^2 = \langle x^2 \rangle$$
$$(\Delta p)^2 = \langle p^2 \rangle$$

Consider the integral

$$I(\lambda) = \int \left| \lambda \hbar \frac{\partial \psi}{\partial x} + x \psi \right|^2 dx \ge 0 =$$

$$= \int \left(\lambda \hbar \frac{\partial \psi^*}{\partial x} + x \psi^* \right) \left(\lambda \hbar \frac{\partial \psi}{\partial x} + x \psi \right) dx =$$

$$= \int \left(\lambda^2 \hbar^2 \frac{\partial \psi^*}{\partial x} \frac{\partial \psi}{\partial x} + \lambda \hbar x \psi \frac{\partial \psi^*}{\partial x} + \lambda \hbar x \psi^* \frac{\partial \psi}{\partial x} + x^2 \psi^* \psi \right) dx =$$

$$= \int \left[\lambda^2 \hbar^2 \frac{\partial}{\partial x} \left(\psi^* \frac{\partial \psi}{\partial x} \right) - \lambda^2 \hbar^2 \psi^* \frac{\partial^2 \psi}{\partial x^2} + \lambda \hbar x \frac{\partial}{\partial x} |\psi|^2 + \psi^* (x^2 \psi) \right] dx =$$

$$= 0 + \lambda^2 \int \psi^* \left(-i\hbar \frac{\partial}{\partial x} \right)^2 \psi dx + 0 + \langle x^2 \rangle + \lambda \hbar \int \left[\frac{\partial}{\partial x} (x |\psi|^2) - |\psi|^2 \right] dx =$$

$$= \lambda^2 \langle p^2 \rangle + \langle x^2 \rangle - \lambda \hbar$$

$$I(\lambda) = (\Delta p)^2 \lambda^2 - \hbar \lambda + (\Delta x)^2 \ge 0$$

Quadratic in lambda and as $I(\lambda \geq 0)$ the determinant has to be ≤ 0 :

$$[\hbar^2 - 4(\Delta p)^2 (\Delta x)^2] \le 0$$
$$4(\Delta p)^2 (\Delta x)^2 \ge \hbar^2$$
$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

$$[\hat{x}, \hat{p}] = i\hbar \leftrightarrow \Delta x \Delta p \ge \frac{\hbar}{2}$$

Limiting case: $\Delta x \Delta p = \frac{\hbar}{2}$

$$\lambda \hbar \frac{\partial \psi}{\partial x} + x\psi = 0$$

$$\frac{1}{\psi} \frac{\partial \psi}{\partial x} = -\frac{1}{\lambda \hbar} x$$

$$\int \frac{\partial}{\partial x} \ln \psi dx = -\frac{1}{\lambda \hbar} \int x dx$$

$$\ln \psi \cong -\frac{x^2}{2\lambda \hbar}$$

$$\psi \cong e^{-\frac{x^2}{2\sigma^2}} \quad \text{The Gaussian}$$

4 Applications

Start with 1-dimensional systems

- 1. Piecewise constant potential (i.e. discontinuous V(x))
- 2. Simple Harmonic Oszillator (SHO) $V(x)=\frac{1}{2}m\omega^2x^2$

4.1 Piecewise constant potential

4.1.1 Outstanding technical problems

- Normalisation of scattering states
- Boundary conditions for discontinuous V(x)
- i) Scattering States
 Initial State (Free particle state), Free particle ≡ Superposition of plane waves

$$\psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int dp a(p) e^{-\frac{i}{\hbar}(Et - px)}$$

 $\langle p \rangle$ depends on a(p) and has an average value, i.e. not exact. Only the plane wave

$$\psi_{plane} = e^{-\frac{i}{\hbar}(Et-px)}$$

has exact momentum

$$\hat{p}\psi_{plane} = -i\hbar \frac{\partial}{\partial x} e^{-\frac{i}{\hbar}(Et - px)} = p\psi_{plane}$$

$$\psi_{plane} = \psi_{stationary\ state} = e^{-\frac{i}{\hbar}Et}u(x)$$

Normalisation:

$$u_p(x) = e^{-\frac{i}{\hbar}Et}$$

$$\int |u_p(x)|^2 dx = \int 1 dx \to \infty$$

Not normalizable.

What happens to probability conservation i.e. $\frac{\partial}{\partial t} \int |\psi|^2 dx = 0$?

Define a probability current $\vec{J}(x,t)$ such that the continuity equation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0$$

is satisfied i.e. probability is conserved.

$$\begin{split} i\hbar\frac{\partial\rho}{\partial t} &= i\hbar(\frac{\partial\psi^*}{\partial\psi} + \psi^*\frac{\partial\psi}{\partial t}) = \\ &= \psi^*\hat{H}\psi - \psi\hat{\psi}^* \\ &= \psi^*(-\frac{\hbar^2}{2m}\nabla.\nabla\psi + V(x)\psi) - \psi(-\frac{\hbar^2}{2m}\nabla.\nabla\psi^* + V(x)\psi^*) = \\ &= -\frac{\hbar^2}{2m}(\psi^*\nabla.\nabla\psi - \psi\nabla.\nabla\psi^*) \\ &= -\frac{\hbar^2}{2m}\left[\nabla.(\psi^*\nabla\psi) - \nabla.(\psi\nabla\psi^*)\right] \\ \frac{\partial\rho}{\partial t} &= \frac{\hbar}{2im}\nabla.(\psi\nabla\psi^* - \psi\nabla\psi^*) \end{split}$$

i.e.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0 \tag{4.1}$$

where \vec{J} is defined by

$$\vec{J} = \frac{\hbar}{2im} (\psi^* \nabla \psi - \psi \nabla \psi^*)$$
 (4.2)

For stationary states

$$\vec{J} = \frac{\hbar}{2im} (u^* \nabla u - u \nabla u^*)$$

in which case the continuity equation is

$$\frac{\partial}{\partial t}u^*u + \nabla \cdot \vec{J} = 0$$
$$\nabla \cdot \vec{J} = 0$$

ii) Boundary conditions for discontinuous V(x)

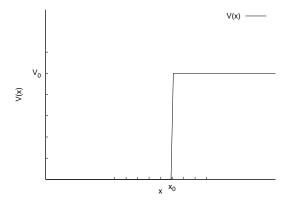


Figure 4.1: Potential with discontinuity at x_0

Starting with the 1-dim St. St. Schrödinger Equation we get

$$\hat{H}u = Eu$$

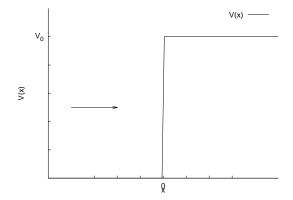
$$-\frac{\hbar^2}{2m}\frac{\partial^2 u}{\partial x^2} + Vu = Eu$$

$$u'' + \frac{2m}{\hbar^2}(E - V)u = 0$$

$$u'' + k^2 u = 0 \quad k = \frac{\sqrt{2m(E - V)}}{\hbar}$$

 $V(x_0)$ is not single valued, i.e. u'' is not single valued. But if u' is discontinuous at x_0 $u'' \xrightarrow{x \to x_0} \infty$ i.e. $\hat{p}^2 u \to \infty$ unphysical: energy $<\infty \Rightarrow u'(x_0)$ must be continuous. Also if u is discontinuous at x_0 then $u' \xrightarrow{x \to x_0} \infty$ i.e. $\hat{p}u \to \infty$ unphysical: $\langle p \rangle < \infty$ i.e. $u(x_0)$ must be continuous

4.1.2 Scattering off a 1-dim step barrier



$$V(x) = \begin{cases} V_0 & x \ge 0\\ 0 & x < 0 \end{cases}$$

Choose initial conditions: Incoming particle wave is incident from $L \to R$ and has definite momentum p i.e.

$$\psi(x,t) = e^{-\frac{i}{\hbar}Et}u_p(x)$$
 $u_p(x) = e^{\frac{i}{\hbar}px}$

The Schrödinger equation in this case is:

$$u'' + k^2 u = 0$$
 $k = \frac{\sqrt{2m(E - V)}}{\hbar}$ (4.3)

• in
$$L, x < 0$$

$$u''_L + k_0^2 u_L = 0 \quad k_0 = \frac{\sqrt{2mE}}{\hbar}$$

i.e. $u_L \cong e^{\pm ik_0x}$, but incoming from $L \to R$ so choose incident wave to be

$$e^{ik_0x} \equiv e^{\frac{i}{\hbar}px}$$

General solution in L region is

$$u_L = Ae^{ik_0x} + Re^{-ik_0x}$$

i.e. there is a reflected wave

• in $R, x \ge 0$

$$u'' + k^2 u = 0$$
 $k = \frac{\sqrt{2m(E - V_0)}}{\hbar}$

so $u_R \cong e^{\pm ikx}$

$$u_R = Te^{ikx} + Be^{-ikx}$$

transmitted wave only

$$u_L = Ae^{ik_0x} + Re^{-ik_0x}$$
$$u_R = Te^{ikx}$$

Note. Plane waves are not normalizeable. One condition on A, R, T can/must be fixed arbitrarily. Natural choice: A = 1

1. $E>V_0$. In classical mechanics we would expect $R=0, T\neq 0$, in QM we have both $R,T\neq 0$

$$u_L = e^{ik_0x} + Re^{-ik_0x}$$
$$u_R = Te^{ikx}$$

 $k = \frac{\sqrt{2m(E-V_0)}}{\hbar}$ real. Now impose boundary conditions

$$u_L(0) = u_R(0)$$

$$1 + R = T$$

$$u'_L(0) = u'_R(0)$$

$$ik_0 - ik_0R = Tik$$

$$1 - R = \frac{k}{k_0}T$$

$$2 = T + \frac{k}{k_0}T$$

$$T = \frac{2k_0}{k + k_0}$$
$$R = \frac{k_0 - k}{k + k_0}$$

2. $E < V_0$, in classical mechanics we would expect $R \neq 0, T = 0$

$$k = \frac{sqrt - 2m(V_0 - E)}{\hbar} = \frac{i\sqrt{2m(V_0 - E)}}{\hbar} = i\kappa$$

pure imaginary

$$u_L = e^{ik_0x} + Re^{-ik_0x}$$
$$u_R = Te^{-\kappa x}$$

BC:

$$u_L(0) = u_R(0)$$

$$1 + R = T$$

$$u'_L(0) = u'_R(0)$$

$$ik_0 - ik_0 R = -\kappa T$$

$$1 - R = \frac{i\kappa}{k_0} T$$

$$2 = T(1 + \frac{i\kappa}{k_0}) = T\left(\frac{k_0 + i\kappa}{k_0}\right)$$

$$T = \frac{2k_0}{k_0 + i\kappa}$$

$$R = \frac{k_0 - i\kappa}{k_0 + i\kappa}$$

$$|R|^2 = 1$$

Probability current

$$J = \frac{\hbar}{2mi}(\psi^*\nabla\psi - c.c) = \frac{\hbar}{2mi}(u^*u' - c.c.)$$

i)

$$J_{L} = \frac{\hbar}{2im} \left\{ (e^{-ik_{0}x}R^{*}e^{ik_{0}x})(ik_{0}e^{ik_{0}x} - ik_{o}Re^{-ik_{0}x}) - c.c. \right\}$$

$$= \frac{\hbar}{2im} \left\{ (ik_{0})(1 - Re^{-2ik_{0}x} + R^{*}e^{2ik_{0}x} - |R|^{2} - c.c. \right\}$$

$$= \frac{\hbar}{2im} \left\{ 2ik_{0}(1 - |R|^{2}) \right\}$$

$$= \frac{\hbar}{m}k_{0}\left\{ 1 - |R|^{2} \right\}$$

$$J_{L} = \frac{\hbar k_{0}}{m} \left\{ 1 - \left(\frac{k_{0} - k}{k_{0} + k}\right)^{2} \right\}$$

$$= \frac{\hbar k_{0}}{m} \left\{ \frac{k_{0}^{2} + 2kk_{0} + k^{2} - k_{0}^{2} + 2k_{0}k - k^{2}}{(k_{0} + k^{2})} \right\}$$

$$= \frac{4\hbar k_{0}^{2}k}{m(k_{0} + k)^{2}}$$

$$J_{R} = \frac{\hbar}{2im} \left\{ T^{*}e^{-ikx}T(ik)e^{ikx} - c.c. \right\}$$

$$= \frac{\hbar}{2im} \left\{ |T|^{2}2ik \right\}$$

$$= \frac{\hbar k}{m}|T|^{2}$$

$$J_{R} = \frac{\hbar k}{m} \frac{4k_{0}^{2}}{(k_{0} + k)^{2}} = J_{L}$$

ii)

$$J_{L} = \frac{\hbar k_{0}}{m} \left\{ 1 - |R|^{2} \right\} = 0$$

$$J_{R} = \frac{\hbar}{2im} \left\{ T^{*}e^{-\kappa x}T(-\kappa)e^{-\kappa x} - c.c. \right\} = 0 = J_{L}$$

4.1.3 Tunneling example

$$V(x) = \begin{cases} V_0 & -a \le x \le a \\ 0 & |x| > a \end{cases}$$

 $E < V_0$

- L: $u_L'' + k_0^2 u_L = 0$
- R: $u_R'' + k_0^2 u_R = 0$
- I: $u_I'' + k^2 u_I = 0$ $k = \frac{i\sqrt{2m(V_0 E)}}{\hbar} = i\kappa$

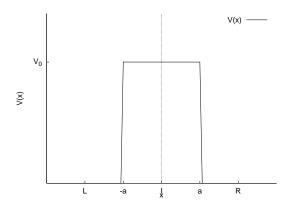


Figure 4.2: Potential step barrier for tunneling

Solutions:

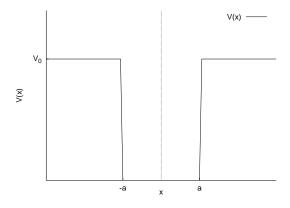
$$u_L = e^{ik_0x} + Re^{-ik_0x}$$
$$u_I = Be^{-\kappa x} + Ae^{\kappa x}$$
$$u_R = Te^{ik_0x}$$

Boundary conditions:

$$\begin{array}{ll} u_I(a) = u_R(a): & Ae^{\kappa a} + Be^{-\kappa a} = Te^{ik_0 a} \\ u_I'(a) = u_R'(a): & \kappa (Ae^{\kappa a} - Be^{-\kappa a}) = ik_o Te^{ik_0 a} \\ u_I(-a) = u_L(-a): & Ae^{-\kappa a} + Be^{\kappa a} = e^{-ik_0 a} + Re^{ik_0 a} \\ u_I'(-a) = u_L'(-a): & \kappa (Ae^{-\kappa a} - Be^{\kappa a}) = ik_o (e^{-ik_0 a} - Re^{ik_0 a}) \end{array}$$

4.1.4 Bound State system

Iniftely deep square well



$$V(x) = \begin{cases} 0 & |x| \le a \\ V_0 \to \infty & |x| > a \end{cases}$$

$$u_I'' + k_0^2 u_I = 0$$

$$k_0 = \frac{\sqrt{2mE}}{\hbar}$$

$$u_R'' - K^2 u_R = 0$$

$$K = \frac{\sqrt{2m(V_0 - E)}}{\hbar}$$

Solutions:

$$u_I = A\sin(k_0x) + B\cos(k_0x)$$

$$u_R = Ce^{-Kx} + De^{Kx}$$

D=0 as otherwise $\psi \xrightarrow{x\to\infty} \infty$. Therefore $u_R=Ce^{-K(V_0)x} \xrightarrow{V_0\to\infty} 0$. $u_R=0$. Boundary conditions:

$$u_R(a) = u_I(a)$$

BUT: In 1-dim system with symmetric V(x) = V(-x) $u(x) = \pm u(-x)$. As

$$(Hu)(x) = Eu(x) \qquad H(x) = H(-x)$$

$$(Hu)(-x) = Eu(-x)$$

$$u(-x) = \alpha u(x) \quad u(x) = \alpha u(-x) = \alpha^2 u(x)$$

$$\Rightarrow \alpha = \pm 1$$

$$u(x) = \pm u(-x)$$

$$u^{(A)}(x) = A\sin(k_0 x)$$

$$u^{(S)}(x) = B\cos(k_0 x)$$

Now impose the Boundary condition. For the antisymmetric case we get

$$u^{(A)}(a) = u_R(a) = 0$$

$$\sin k_0 a = 0 \qquad \Rightarrow k_0 a = m\pi \quad m \in \mathbb{N}$$

$$u_m^{(A)}(x) = A_m \sin \frac{m\pi}{a} x$$

For the symmetric case we get

$$u^{(S)}(a) = u_R(a) = 0$$

 $\cos k_0 a = 0 \qquad \Rightarrow k_0 a = n \frac{\pi}{2} \quad n \text{ odd int}$
 $u_m^{(S)}(x) = B_n \cos \frac{n\pi}{2a} x$

rewrite $u_n^{(A)} = A_n \sin \frac{n\pi}{2a} x$ n =even. Then

$$u_n(x) = A_n \sin \frac{n\pi}{2a} x + B_n \cos \frac{n\pi}{2a} x \tag{4.4}$$

Our boundary condition then set either $B_n = 0$ for even n or $A_n = 0$ for odd n.

$$k_0 = \frac{\sqrt{2mE}}{\hbar} = \frac{n\pi}{2a}$$
$$\frac{2mE}{\hbar^2} = \frac{n^2\pi^2}{4a^2}$$
$$E_n = \frac{\hbar^2\pi^2}{8ma^2}n^2$$

Energy spectrum of bound-state system is DISCRETE! Properties of bound state system:

- 1. Enery spectrum is discrete
- 2. Ground state energy > 0 Lowest energy state is n=0, i.e. $u_0^{(A)}(x)=A_0\sin(0)=0$, i.e. $|u_0^{(A)}(x)|^2=0$... vanishing probability ... forbidden state. \Rightarrow Ground state is E_1 : $u_1^{(S)}=B_1\cos\frac{\pi}{2a}x\neq 0$
- 3. $V(x) = V(-x) \Rightarrow u(x) = \pm u(-x)$
- 4. Bound states are normalisable and mutually orthonormal

$$\int_{-\infty}^{\infty} u_n^* u_m dx = \delta_{nm}$$

$$1 = |A_n|^1 \int_{-a}^a \sin^2 \frac{n\pi}{2a} x \, dx$$

$$= \frac{1}{2} |A_n|^2 \int_{-a}^a \left(1 - \cos \frac{n\pi}{a} x \right) dx$$

$$= \frac{1}{2} |A_n|^2 \left[x - \frac{\sin \frac{n\pi}{a} x}{\frac{n\pi}{a}} \right]_{-a}^a$$

$$= \frac{2a}{a} |A_n|^2$$

$$A_n = \frac{1}{\sqrt{a}}$$

$$1 = |B_n|^2 \int_{-a}^a \cos^2 \frac{n\pi}{2a} x \, dx =$$

$$= \dots$$

$$B_n = \frac{1}{\sqrt{a}}$$

Orthonormality

$$\int_{-a}^{a} \sin \frac{n\pi}{2a} x \sin \frac{m\pi}{2a} x \, dx = \frac{1}{2} \int_{-a}^{a} \left[-\cos \frac{n+m}{2a} \pi x + \cos \frac{n-m}{2a} \pi x \right] dx$$

$$= \frac{1}{2} \left[\frac{-\sin \frac{n+m}{2a} \pi x}{\frac{n+m}{2a} \pi} + \frac{\sin n - m2a\pi x}{\frac{n-m}{2a} \pi} \right]_{-a}^{a}$$

$$= \frac{-\sin \frac{n+m}{2a} \pi}{\frac{n+m}{2a} pi} + \frac{\sin n - m2\pi}{\frac{n-m}{2a} \pi}$$

$$= 0$$

as $m \neq nn$ and m, n even

$$\int_{-\infty}^{\infty} u_n^* u_m dx = \delta_{nm}$$

5. Ground state is the state with highest symmetry; with increasing energy symmetry decreases. number of nodes increases with energy

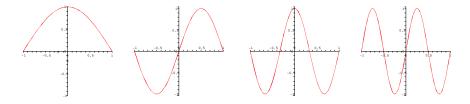
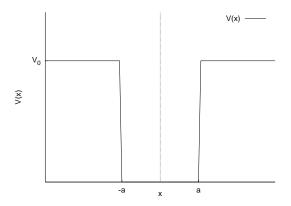


Figure 4.3: Eigenfunctions for n = 1, 2, 3, 4

Finitely deep square well



$$V(x) = \begin{cases} 0 & |x| \le a \\ V_0 & |x| > a \end{cases}$$

$$u_I'' + k_0^2 u_I = 0$$

$$u_R'' - K^2 u_R = 0$$

Solutions

$$u_I^{(S)} = B \cos k_0 x$$

$$u_I^{(A)} = A \sin k_0 x$$

$$u_R^{(S)} = C e^{-Kx} \quad u_L^{(S)} = C e^{-K|x|}$$

$$u_R^{(A)} = D e^{-Kx} \quad u_L^{(A)} = -D e^{-K|x|}$$

Boundary conditions:

$$u_I(a) = u_R(a)$$

$$u'_I(a) = u'_R(a)$$

1. Symmetric case

$$B\cos k_0 a = Ce^{-Ka}$$
$$-Bk_0 \sin k_0 a = -CKe^{-Ka}$$

Dividing gives

$$k_0 \tan k_0 a = K$$

$$K^{2} = k_{0}^{2} \tan^{2} k_{0} a$$

$$\frac{2m(V_{0} - E)}{\hbar^{2}} = \frac{2mE}{\hbar^{2}} \tan^{2} \frac{\sqrt{2mEa}}{\hbar}$$

$$\frac{V_{0}}{E} - 1 = \tan^{2} \frac{\sqrt{2mEa}}{\hbar}$$

$$\frac{V_{0}}{E} = \frac{1}{\cos^{2} \frac{\sqrt{2ma}}{\hbar} \sqrt{E}}$$

$$\frac{V_{0}}{\epsilon^{2}} = \frac{1}{\cos^{2} \lambda \epsilon}$$

$$\epsilon^{2} = V_{0} \cos^{2} \lambda \epsilon$$

This equation is only satisfied for some ϵ , i.e. discrete E. To see this we plot the two functions ϵ^2 and $\cos^2 \epsilon$ (Figure 4.4)

2. antisymmetric case

$$A\sin k_0 a = De^{-Kx}$$
$$Ak_0 \cos k_0 a = -KDe^{-Kx}$$

Dividing gives

$$k_0 \cot k_0 a = -K$$

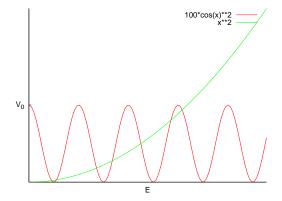


Figure 4.4: Discrete energy spectrum for symmetric case

$$K^{2} = k_{0}^{2} \cot^{2} k_{0} a$$

$$\frac{V_{0}}{E} - 1 = \cot^{2} \frac{\sqrt{2ma}}{\hbar} \sqrt{E}$$

$$\frac{V_{0}}{\epsilon^{2}} = \frac{1}{\sin^{2} \lambda \epsilon}$$

$$\epsilon^{2} = V_{0} \sin^{2} \lambda \epsilon$$

Figure 4.5 again shows the discrete energies

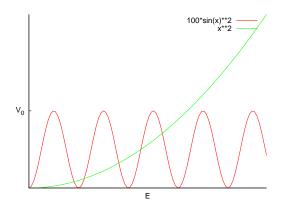


Figure 4.5: Discrete energy spectrum for assymetric case

Note the ground state is the most symmetric state:

4.2 Quantum mechanical harmonic Oscillator

$$V(x) = \frac{1}{2}kx^2 \qquad k = m\omega^2$$

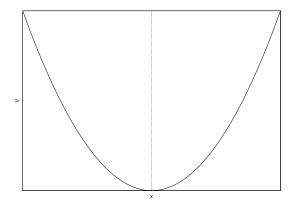


Figure 4.6: Potential for harmonic oscillator

Canonical quantisation and V being time-independent leads to Stationary State Schrödinger-equation:

$$Hu = Eu$$

$$H = \frac{\hat{p}^2}{2m} + V(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2$$
(4.5)

4.2.1 Reduce Schrödinger equation

Seek to make the eigen-value dimensionless

$$\frac{1}{\hbar\omega} \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 \right) u = \underbrace{\frac{E}{\hbar\omega}}_{\epsilon} u$$

$$\frac{1}{2} \left(-\frac{\hbar}{m\omega} \frac{d^2}{dx^2} + \frac{m\omega}{\hbar} x^2 \right) u = \epsilon u$$

Let $y = \sqrt{\frac{m\omega}{\hbar}}x$ Now we have the new Schrödinger equation

$$\left[-\frac{d^2}{dy^2} + y^2 \right] u = 2\epsilon u$$

$$\left[\frac{d^2}{dy^2} - y^2 \right] u = -2\epsilon u$$
(4.6)

4.2.2 Factorization of differential operators

"factorize" the differential operators

$$\left(\frac{d}{dy} \pm y\right) \left(\frac{d}{dy} \mp y\right) f = \frac{d^2}{dy^2} f \mp y \frac{d}{dy} f \mp f \pm y \frac{d}{dy} f - y^2 f =$$

$$= \left(\frac{d^2}{dy^2} - y^2\right) f \mp f \left(\frac{d}{dy} \pm y\right) \left(\frac{d}{dy} \mp y\right) = \left(\frac{d^2}{dy^2} - y^2\right) \mp 1$$

So we can express our Schrödinger equation in terms of our new factorisation:

$$\left(\frac{d}{dy} + y\right)\left(\frac{d}{dy} - y\right)u_n = -(2\epsilon_n + 1)u_n \tag{4.7}$$

$$\left(\frac{d}{dy} - y\right)\left(\frac{d}{dy} + y\right)u_n = -(2\epsilon_n - 1)u_n \tag{4.8}$$

where n is a quantum number.

4.2.3 Eigenvalues

Act on (4.7) with $\left(\frac{d}{dy} - y\right)$ and on (4.8) with $\left(\frac{d}{dy} + y\right)$:

$$\left(\frac{d}{dy} - y\right) \left(\frac{d}{dy} + y\right) \left[\left(\frac{d}{dy} - y\right) u_n\right] = -(2\epsilon_n + 1) \left[\left(\frac{d}{dy} - y\right) u_n\right] \tag{4.9}$$

$$\left(\frac{d}{dy} + y\right) \left(\frac{d}{dy} - y\right) \left[\left(\frac{d}{dy} + y\right) u_n\right] = -(2\epsilon_n - 1) \left[\left(\frac{d}{dy} + y\right) u_n\right] \tag{4.10}$$

(4.9) and (4.10) are Schrödinger equations too, but for different functions

$$u_m \propto \left(\frac{d}{dy} - y\right) u_n \tag{4.11}$$

Find the corresponding eigenvalue by identifying (4.9) with (4.8). So we get $2\epsilon_m - 1 = 2\epsilon_n + 1$

$$\epsilon_m = \epsilon_n + 1 \tag{4.12}$$

The same for (4.10) and (4.7) yields

$$u_m \propto \left(\frac{d}{dy} + y\right) u_n \tag{4.13}$$

and

$$\epsilon_m = \epsilon_n - 1 \tag{4.14}$$

So by using $\left(\frac{d}{dy} - y\right)$ and $\left(\frac{d}{dy} + y\right)$ we can jump between our eigen-functions.

$$\left(\frac{d}{dy} - y\right)$$
 raising operator (4.15)

$$\left(\frac{d}{dy} + y\right)$$
 lowering operator (4.16)

From this we deduce, that our eigen-values have to obey

$$\epsilon_n = \epsilon_0 + n \tag{4.17}$$

4.2.4 Eigenfunctions

When lowering operator acts on u_0 it annihilates it

$$\left(\frac{d}{dy} + y\right) u_0 = 0$$

$$\int \frac{1}{u_0} du_0 = -\int y dy$$

$$\ln u_0 \cong -\frac{1}{2} y^2$$

$$u_0 \cong e^{-\frac{1}{2} y^2}$$
(4.18)

Write (4.8) for n = 0:

$$0 = -(2\epsilon_0 - 1)u_0$$

$$\epsilon_0 = \frac{1}{2}$$

$$\epsilon_n = n + \frac{1}{2}$$

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$
(4.19)

Properties of bound states:

- 1. Discrete energy spectrum: $\epsilon_n = n + \frac{1}{2}$
- 2. Ground state energy > 0: $\epsilon_0 = \frac{1}{2}$
- 3. $V(x) = V(-x) \Rightarrow u(x) = \pm u(-x)$

$$u_0(y) = u_0(-y)$$

$$u_1 \cong \left(\frac{d}{dy} - y\right) u_0$$

$$\Rightarrow u_1(y) = -u_1(-y)$$

$$u_2(y) = u_2(-y)$$

4. $\int u_n^* u_m = \delta_{mn}$ mutually orthonormal

$$u_{1} = A_{1} \left(\frac{d}{dy} - y \right) e^{-\frac{1}{2}y^{2}}$$

$$= A_{1} \left(-ye^{-\frac{1}{2}y^{2}} - ye^{-\frac{1}{2}y^{2}} \right)$$

$$= -2A_{1}ye^{-\frac{1}{2}y^{2}}$$

$$u_{2} = -A_{2} \left(\frac{d}{dy} - y \right) ye^{-\frac{1}{2}y^{2}}$$

$$= -A_{2} \left(e^{-\frac{1}{2}y^{2}} - y^{2}e^{-\frac{1}{2}y^{2}} - y^{2}e^{-\frac{1}{2}y^{2}} \right)$$

$$= A_{2}(2y^{2} - 1)e^{-\frac{1}{2}y^{2}}$$

$$etc$$

Normalise:

$$\int |u_0|^2 dy = A_0^2 \int_{-\infty}^{\infty} e^{-y^2} dy = A_0^2 \sqrt{\pi}$$

$$\int |u_1|^2 dy = A_1^2 \int_{-\infty}^{\infty} y^2 e^{-y^2} dy = -\frac{1}{2} \int y \frac{d}{dy} e^{-y^2} dy$$

$$= -\frac{1}{2} \left[y e^{-y^2} \Big|_{-\infty}^{\infty} - \int e^{-y^2} dy \right]$$

$$= \frac{\sqrt{\pi}}{2} A_1^2$$

Orthogonality

$$\int u_0^* u_1 dy = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} y e^{-\frac{1}{2}y^2} dy = \int y e^{-y^2} = 0$$

$$\int u_m^* u_n dy = 0 \quad \text{if } n = odd/even \ m = even/odd$$

$$\int u_0^* u_2 dy = A_0 A_2 \int (2y^2 - 1) e^{-y^2} dy = A_0 A_2 \left(2\frac{\sqrt{\pi}}{2} - \sqrt{\pi} \right) = 0$$

5. Number of nodes increases with ϵ_n , see Figure 4.7

4.3 General properties of Quantum mechanical states

(States are solutions of eigenvalue equation)

- 1. Orthonormal (immediately/manifest for bound state) e.g. for Scattering: $\int u_p^*(x)u_{p'}(x)dx = \delta(p-p')$
- 2. a) Energy (and all other observables') eigenstates are real
 - b) all expectation values are also real

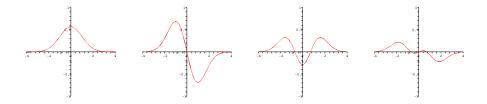


Figure 4.7: Eigenfunctions for Simple Harmonic Oszillator for $n=0,1,2,3\,$

5 New Formalism (Hilbert space)

- ullet QM state functions are elements of a (finite or infinite) dimensional space ${\cal H}$
- \mathcal{H} is spanned by an orthonormal basis $u_n(x)$ or $u_p(x)$

$$\int u_n^*(x)u_m(x)dx = \delta_{mn} \tag{5.1}$$

$$\int u_p^*(x)u_k(x)dx = \delta_D(p-k) \tag{5.2}$$

A general state is

$$\psi(x) = \sum_{n} c_n u_n(x) \qquad \text{or} \qquad (5.3)$$

$$\psi(x) = \int c_p u_p(x) dp \tag{5.4}$$

• Definition of an inner product in \mathcal{H}

$$\langle \psi, \phi \rangle = \int \psi^*(x)\phi(x)dx$$
 (5.5)

It has no geometric meaning. The Schwarz inequality holds:

$$\langle \psi, \psi \rangle \langle \phi, \phi \rangle \ge |\langle \psi, \phi \rangle|^2$$

Definition of matrix element of an operator

$$A_{mn} = \langle u_m, Au_n \rangle = \int u_m^*(\hat{A}u_n) dx \tag{5.6}$$

More generally $\langle \psi, A\phi \rangle = \int \psi^* \hat{A}\phi$

5.1 Hermiticity

Physical measurements must be real, i.e. expectation value of an operator representing an observable must be real. For a Hermitian operator holds:

$$\langle \psi, A\psi \rangle = \langle A\psi, \psi \rangle \tag{5.7}$$

Stronger condition of Hermiticity. $\psi, \phi \in \mathcal{H}$

$$\langle \psi, A\phi \rangle = \langle A\psi, \phi \rangle \tag{5.8}$$

Both conditions are equivalent: 1) \Rightarrow 2) clear; 2) \Rightarrow 1): $\psi, \phi \in \mathcal{H} \Rightarrow (\psi + \lambda \phi) \in \mathcal{H}$

$$\langle \psi + \lambda \phi, A(\psi + \lambda \phi) \rangle - av A(\psi + \lambda \phi), \psi + \lambda \phi = 0$$

$$\langle \psi, A\psi \rangle + \lambda \langle \psi, A\phi \rangle + \lambda^* \langle \phi, A\psi \rangle + |\lambda|^2 \langle \phi, A\phi \rangle -$$

$$- \langle A\psi, \psi \rangle - \lambda \langle A\psi, \phi \rangle - \lambda^* \langle A\phi, \psi \rangle - |\lambda|^* \langle A\phi, \phi \rangle = 0$$

$$\lambda (\langle \psi, A\phi \rangle - \langle A\psi, \phi \rangle) + \lambda^* (\langle \phi, A\psi \rangle - \langle A\phi, \psi \rangle) = 0$$

As λ is arbitrary and λ and λ^* are in general linearly independent:

$$\langle \psi, A\phi \rangle - \langle A\psi, \phi \rangle = 0$$

 $\langle \phi, A\psi \rangle - \langle A\phi, \psi \rangle = 0$

and therefore

$$\langle \psi, A\phi \rangle = \langle A\psi, \phi \rangle$$

If operator is not Hermitian this defines the Hermitian conjugate:

$$\langle \psi, A\psi \rangle = \left\langle A^{\dagger}\psi, \psi \right\rangle$$

Examples: $\hat{x}, \hat{p}, \hat{H}$

1.
$$\langle x \rangle = \int \psi^* x \psi dx = \langle x \rangle^*$$

2.

$$\langle p \rangle = \int \psi^*(\hat{p}\psi)dx = \int \psi^* \left(-i\hbar \frac{\partial}{\partial x} \psi \right) dx$$

$$\langle p \rangle^* = \left(\int \psi^* \left(-i\hbar \frac{\partial}{\partial x} \psi \right) dx \right)^* = \int \psi \left(-i\hbar \frac{\partial}{\partial x} \psi \right)^* dx = \int i\hbar \frac{\partial \psi^*}{\partial x} \psi dx =$$

$$= \int i\hbar \frac{\partial}{\partial x} |\psi|^2 dx - \int i\hbar \psi^* \frac{\partial \psi}{\partial x} dx = \langle p \rangle$$

3. $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$ and therefore hermitian

examples of non-hermitian Operator: the raising/lowering operator

$$A = \sqrt{\frac{\hbar}{m}} \frac{d}{dx} \mp \sqrt{\frac{m\omega}{\hbar}} x = \frac{d}{dy} \mp y$$

Hermitian conjugate:

$$\left\langle A^{\dagger}\psi,\phi\right\rangle = \left\langle \psi,A\phi\right\rangle =$$

$$= \int \psi^* \left(\frac{d\phi}{dy} \mp x\phi\right) dx =$$

$$= \int \psi^* \frac{d\phi}{dx} dx \mp \int (x\psi)^* \phi dx =$$

$$= \int \frac{d}{dx} (\psi^* \phi) - \int \frac{d\psi^*}{dx} \phi dx \mp \int (x\psi)^* \phi dx$$

$$= \int \left(\left(-\frac{d}{dx} \mp x\right)\psi\right)^* \phi dx$$

$$= \left\langle \left(-\frac{d}{dx} \mp x\right)\psi,\phi\right\rangle$$

i.e. $A^{\dagger} = -\frac{d}{dx} \mp x \neq \frac{d}{dx} \mp x = A$ Hermitian conjugate of a matrix:

$$\langle e_{(\alpha)}, Me_{(\beta)} \rangle = \langle Me_{(\alpha)}, e_{(\beta)} \rangle \Rightarrow M^{\dagger} = (M^T)^*$$

5.2 Dirac's Notation

$$,\psi \to |\psi\rangle \quad \text{ket}$$
 $\psi,=\psi^* \to \langle \psi| \quad \text{bra}$

 $bra-ket = \langle \psi | \phi \rangle$

$$u_n \to |n\rangle$$

 $u_n^* \to \langle n|$

5.3 Completness

$$\sum_{\alpha} e_i^{(\alpha)} \bar{e}_j^{(\alpha)} = \delta_{ij}$$

$$\sum_{n} u_n u_n^* = \mathbf{1}$$

$$\sum_{n} |n\rangle \langle n| = \mathbf{1}$$
(5.9)

5.4 Preparation for Matrix mechanics, Operators

Harmonic Oszillator:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$

We had the raising (and lowering) operator:

$$\frac{d}{dy} - y = \sqrt{\frac{\hbar}{\omega m}} \frac{d}{dx} - \sqrt{\frac{m\omega}{\hbar}} x =$$

$$= \frac{i}{\hbar} \sqrt{\frac{\hbar}{m\omega}} \hat{p} - \sqrt{\frac{m\omega}{\hbar}} \hat{x} =$$

$$= \sqrt{\frac{m\omega}{\hbar}} \left(\frac{i}{m\omega} \hat{p} - \hat{x} \right)$$

Define new operators:

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right)$$
 lowering operator (5.10)

$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right)$$
 raising operator (5.11)

a and a^{\dagger} are up to sign and const the lowering and raising operators respectively.

$$\begin{bmatrix} a, a^{\dagger} \end{bmatrix} = \frac{m\omega}{2\hbar} \left[\left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right) \right] =
= \frac{m\omega}{2\hbar} \left(0 - \frac{i}{m\omega} \left[\hat{x}, \hat{p} \right] + \frac{i}{m\omega} \left[\hat{p}, \hat{x} \right] + 0 \right) =
= \frac{m\omega}{2\hbar} \frac{-2i}{m\omega} \left[\hat{x}, \hat{p} \right] =
= \frac{-i}{\hbar} (i\hbar) = 1$$

$$\begin{bmatrix} a, a^{\dagger} \end{bmatrix} = 1 \tag{5.12}$$

$$\begin{split} aa^{\dagger} &= \frac{m\omega}{2\hbar} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right) \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right) = \\ &= \frac{m\omega}{2\hbar} \left(\hat{x}^2 - \frac{i}{m\omega} \left[\hat{x}, \hat{p} \right] - \frac{i^2}{m^2\omega^2} \hat{p}^2 \right) = \\ &= \frac{m\omega}{2\hbar} \left(\frac{\hat{p}^2}{m^2\omega^2} + \hat{x}^2 - \frac{i^2\hbar}{m\omega} \right) = \\ &= \frac{1}{\hbar\omega} \left\{ \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 + \frac{\hbar\omega}{2} \right\} \end{split}$$

So therefore

$$aa^{\dagger}\hbar\omega = \hat{H} + \frac{\hbar\omega}{2}$$

analogue we get

$$a^{\dagger}a\hbar\omega = \hat{H} - \frac{\hbar\omega}{2}$$

$$\left(aa^{\dagger} - \frac{1}{2}\right)u_n = \epsilon u_n \tag{5.13}$$

$$\left(a^{\dagger}a + \frac{1}{2}\right)u_n = \epsilon u_n \tag{5.14}$$

i) Act on au_n

$$\left(aa^{\dagger} - \frac{1}{2}\right)au_n = a(a^{\dagger}a)u_n - \frac{1}{2}au_n =$$

$$= a(aa^{\dagger} - \left[a, a^{\dagger}\right])u_n - \frac{1}{2}au_n =$$

$$= a(aa^{\dagger} - 1)u_n - \frac{1}{2}au_n =$$

$$= a(aa^{\dagger} - \frac{1}{2})u_n - au_n =$$

$$= \epsilon_n au_n - au_n = (\epsilon_n - 1)(au_n)$$

i.e. the eigenvalue of au_n is $\epsilon - 1$

ii) Act on a^{\dagger}

$$\left(a^{\dagger}a + \frac{1}{2}\right)a^{\dagger}u_n = a^{\dagger}(aa^{\dagger})u_n + \frac{1}{2}a^{\dagger}u_n =$$

$$= a^{\dagger}(a^{\dagger}a + 1)u_n + \frac{1}{2}a^{\dagger}u_n =$$

$$= a^{\dagger}(a^{\dagger}a + \frac{1}{2})u_n + a^{\dagger}u_n =$$

$$= a^{\dagger}\epsilon_n u_n + a^{\dagger}u_n =$$

$$= (\epsilon_n + 1)(a^{\dagger}u_n)$$

i.e $a^{\dagger}u_n$ has eigenvalue ϵ_n+1

iii)
$$(a^{\dagger}a + \frac{1}{2})u_0 = \epsilon_0 \Rightarrow \epsilon_0 = \frac{1}{2}$$
 and $\epsilon_n = n + \frac{1}{2}$

Calculate the scaling factors for the raising and lowering operators.

$$au_n = \kappa_n^- u_{n-1}$$
$$a^{\dagger} u_n = \kappa_n^+ u_{n+1}$$

Take the inner product

$$\langle au_n, au_n \rangle = \langle \kappa_n^- u_{n-1}, \kappa_n^- u_{n-1} \rangle = |\kappa_n^-|^2$$

$$\langle a^{\dagger} u_n, a^{\dagger} u_n \rangle = \langle \kappa_n^+ u_{n+1}, \kappa_n^+ u_{n+1} \rangle = |\kappa_n^+|^2$$

$$\langle u_n, a^{\dagger} au_n \rangle = |\kappa_n^-|^2$$

$$\langle u_n, aa^{\dagger} u_n \rangle = |\kappa_n^+|^2$$

But
$$\left(aa^{\dagger} - \frac{1}{2}\right)u_n = (n + \frac{1}{2})u_n$$
 and $\left(a^{\dagger}a + \frac{1}{2}\right)u_n = (n + \frac{1}{2})u_n$

$$|\kappa_n^-|^2 = \langle u_n, nu_n \rangle = n$$

$$|\kappa_n^+|^2 = \langle u_n, (n+1)u_n \rangle = n+1$$

$$au_n = \sqrt{n}u_{n-1}$$
 (5.15)
 $a^{\dagger}u_n = \sqrt{n+1}u_{n+1}$ (5.16)

Repeat this calculation in Dirac notation:

$$a|n\rangle = \kappa_n^- |n-1\rangle$$

 $a^{\dagger}|n\rangle = \kappa_n^+ |n+1\rangle$

Take inner product:

$$\langle n| a^{\dagger} a | n \rangle = |\kappa_n^-|^2 \langle n - 1|n - 1 \rangle = |\kappa_n^-|^2$$
$$\langle n| a a^{\dagger} | n \rangle = |\kappa_n^+|^2 \langle n + 1|n + 1 \rangle = |\kappa_n^+|^2$$

$$\left(aa^{\dagger} - \frac{1}{2}\right)|n\rangle = \left(n + \frac{1}{2}|n\rangle\right)$$
$$\left(a^{\dagger} + \frac{1}{2}\right)|n\rangle = \left(n + \frac{1}{2}|n\rangle\right)$$

$$|\kappa_n^-|^2 = (n) \langle n|n\rangle$$

 $|\kappa_n^+|^2 = (n+1) \langle n|n\rangle$

Fock space

6 Matrix Mechanics

QM formulated as wave-mechanics (particles \leftrightarrow waves), operator representation of observables.

But operators can be employed also abstractly! Also they can be represented by matrices. The Matrix element of an operator was defined as

$$A_{mn} = \langle u_m, Au_n \rangle$$

If A satisfies an eigen-value equation, i.e. $Au_n = a_n u_n$ we get: $A_{mn} = a_n \delta_{mn}$ N.B. much more useful when spectrum of eigenvalues is discrete

6.1 Properties of operators

 $\langle A \rangle$ is real if A is hermitian, i.e. if $A=A^{\dagger}$. If A is hermitian it can be diagonalised (i.e. the eigen-functions and eigen-values be found). If A is not hermitian, then $\langle \psi, A\phi \rangle = \langle A^{\dagger}\psi, \phi \rangle$. The hermitian conjugate of a matrix element is

$$(A^{\dagger})_{mn} = \left\langle u_m, A^{\dagger} u_n \right\rangle = \left\langle A u_m, u_n \right\rangle = \left\langle u_n, A u_m \right\rangle^* = ((A^*)^T)_{mn}$$

6.2 Re-calculation of some result

6.2.1 QM Harmonic Oscillator

$$H = \hbar\omega(aa^{\dagger} - \frac{1}{2})$$
$$= \hbar\omega(a^{\dagger}a + \frac{1}{2})$$
$$\left[a, a^{\dagger}\right] = 1$$

Solve the eigenvalue problem

$$(aa^{\dagger} - \frac{1}{2})u_n = \epsilon_n u_n$$

From before:

$$\epsilon_n = n + \frac{1}{2}$$

and for the raising and lowering operators:

$$au_n = \sqrt{n}u_{n-1}$$
$$a^{\dagger} = \sqrt{n+1}u_{n+1}$$

Matrix Representation of H, a, a^{\dagger}

$$H_{mn} = \langle u_m, Hu_n \rangle = \langle u_m, E_n u_n \rangle = \hbar \omega (n + \frac{1}{2}) \delta_{mn}$$

$$H = \hbar \omega \begin{bmatrix} \frac{1}{2} & & & \\ & \frac{3}{2} & & 0 \\ & & \frac{5}{2} & \\ & 0 & & \ddots \end{bmatrix}$$
(6.1)

$$a_{mn} = \langle u_m, au_n \rangle = \langle u_m, \sqrt{n}u_{n-1} \rangle = \sqrt{n}\delta_{m,n-1}$$

$$a = \begin{bmatrix} 0 & \sqrt{1} & 0 & & \\ & 0 & \sqrt{2} & 0 & & \\ & & 0 & \sqrt{3} & 0 \\ & & & 0 & \ddots \end{bmatrix}$$
 (6.2)

$$a^{\dagger} = \sqrt{n+1}\delta_{m,n+1}$$

$$a^{\dagger} = \begin{bmatrix} 0 & & & \\ \sqrt{1} & 0 & & & \\ 0 & \sqrt{2} & 0 & & \\ & 0 & \sqrt{3} & 0 & \\ & & 0 & \ddots & \\ \end{bmatrix}$$
 (6.3)

What about eigen-functions?

eigen-functions \rightarrow eigen-vectors

$$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix} \qquad u_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} \qquad \dots$$
$$\langle u_n, u_m \rangle = \delta_{nm}$$

6.2.2 Infinitely deep square well

$$Hu_{n} = \frac{\hbar^{2}\pi^{2}}{8ma^{2}}n^{2}u_{n}$$

$$H_{mn} = \langle u_{m}, Hu_{n} \rangle = \frac{\hbar^{2}\pi^{2}}{8ma^{2}}n^{2}\delta_{mn}$$

$$H = \frac{\hbar^{2}\pi^{2}}{8ma^{2}}\begin{bmatrix} 1 & & & \\ & 4 & & 0 \\ & & 9 & \\ & & 0 & & \ddots \end{bmatrix}$$
(6.4)

6.3 Outlook

When are matrix representations indispensible? When describing intrinsic angular momentum \equiv spin (no classical analogue), otherwise cannot go beyond orbital angular momentum (Orbital has classical analogue).