Lecture by Professor Tigran Tchrakian

Quantum Mechanics |

Tobias Hofbaur

May 9, 2006



Contents

1 Introduction

2 Particle-wave-duality
2.1 Model for a massive particles/waves: . . . . . ... ... L. L.
2.2 Time-evolution equation for ¢(z,¢) . . . . . . .. ... ... L.
2.3 Physical Interpretation of t¢(z,t) . . . . ... ..o
2.4  Quantum Mechanics — Classical Mechanics . . . . . ... ... ... ...

3 Formulation of QM
3.1 Prescription of canonical Quantisation . . . . . ... ... .. ... .. ..
3.2 Compability QM «— CM . . . . . . . ... . .
3.3 Stationary State Schrodinger Equation . . . . . ... ... .. ...
3.4 Eigenvalues and eigenvalue equations . . . . . . ... ... ... ...
3.5 Canonical Commutation Relations (CCR) . . .. ... ... ... .. ...
3.6 Heisenberg uncertainty relation . . . . . . .. .. ... .00

4 Applications
4.1 Piecewise constant potential . . . . . . . . ... .00
4.1.1 Outstanding technical problems . . . . . . .. ... ... ... ...
4.1.2 Scattering off a 1-dim step barrier . . . . .. ...
4.1.3 Tunneling example . . . . . . .. ..o
414 Bound State system . . . .. ... oo
4.2  Quantum mechanical harmonic Oscillator . . . . . .. ... ... ... ..
4.2.1 Reduce Schrodinger equation . . . . . . ... ...
4.2.2 Factorization of differential operators . . . . . . . . .. .. ... ..
4.2.3 Eigenvalues . . . . .. .. L
424 Eigenfunctions . . . . .. ... Lo
4.3 General properties of Quantum mechanical states . . . . . . ... ... ..

5 New Formalism (Hilbert space)
5.1 Hermiticity . . . . . . . . L
5.2 Dirac’s Notation . . . . . . . .. . . ...
5.3 Completness . . . . . . . . L
5.4 Preparation for Matrix mechanics, Operators . . . . . .. ... ... ...

11
11
12
12
13
14
14

16
16
16
18
21
22
27
28
28
29
30
31



6 Matrix Mechanics 39

6.1
6.2

6.3

Properties of operators . . . . .. . ..o 39
Re-calculation of some result . . . . .. ... .. ... ... ... 39
6.2.1 QM Harmonic Oscillator . . . . . . ... ... ... ... ... .. 39
6.2.2 Infinitely deep square well . . . . . . . .. ... .. L. 40
Outlook . . . . . . 41



1 Introduction

Classical mechanics breaks down at (sub)atomic scales

e Black body radiation: physical system = (ideal) gas of photons; classical statistical

mechanics — average energy (E) = TENEYE 0 4s to wrong result:

J F(E)dE
Max Planck:

In subatomic mechanics the spectrum of energy is DISCRETE
FE, = nhw
i.e. energy comes in packets (quantum) of A

e Compton Scattering

X —ray electron De

From energy and momentum conservation, we get

1 _1)y_ i Sin2€
w1 wy/)  \me? 2

Louis deBroglie: particles = waves



2 Particle-wave-duality

0. e Radiation (photons) — waves propagating with speed of light
o Maxwell waves are not localised in z-space

¢(3§,t) _ e—i(wt—kx)

1. de Broglie: also m > 0 particles are waves

e m > 0 waves should be localised in z-space

/\

Psi(x,t1)
Psi(x.2)

Psi(x,{)

\
\

/ \/

I
(xpty)

I
(Xat2)

Figure 2.1: Wave function for a massive particle

2
e m > 0: speed u = ‘ﬂEc

[ ]
tachyons

m<0=u>0
photons

m=0=u=c
m>0=u<0 massive particles

2.1 Model for a massive particles/waves:

0. massless particles (photons):

wplane(x7 t) = e—i(wt—kx)



Most general solution to the wave equation is a linear superposition of plane waves,
i.e. a Fourier superposition

(w,t) = \/% / a(k)ewi=k) g

where w = ck

1. Massive particles

a)

They are localised, i.e. peaked in x-space. Recall that

[wiar= [lawpa

Then if a(k) is peaked, 1(z) is also peaked, so to have a peaked profile for
Y (x,t) we must employ a peaked a(k).

u<ec ie w#ck .
Using E = hw and p' = hk yields

B pc? B hkc? B kc?

T E hw
so for massless particles with w = ke = u=c¢
Let w = w(k) which is a monotonic function of k. Since a(k) is peaked, say to a
narrow band around k = kg, the integral for ¢(x,t) gets its contribution mostly
from this narrow range of integration. This allows us to approximate using the
expansion of w(k) around ko, i.e. use

dw
k) = (ko) + (k — ko) G lkcy +
i.e.
1 . dw
b(z,t) = — /dk: a(k)e (ko) (k—ko) G lkmro )t—ha] _
V2
1

Tlme dependent phase to be ignored
bz, t) 2 —— / dk a(k @ lkgt—2)

whose speed of propagation is

o~ i(w(ko)—ko G lk=ko )t dk a(k)e (kzm t— km)

dw
dk

Vg =

using a) and b) we get a peaked profile for ¢(z,t) which propagates with speed

do_d5 _ar

UTak T dR T dp

St

(Aside: in 3D ¥ = ﬁpE)



2
. L : _p
i) u < c non relativistic particle F' = 2—

dE 2p P mu
>V =—=—="— = — =1
dp 2m m m

ii) u comparable to ¢: relativistic particle E = ¢y/p? + m2¢?

L o 2 2\—1/2 pc
= = — = — =" =
U= 20(p +mc”) p )

2.2 Time-evolution equation for ¥ (z,1t)

— _ﬂ-/dka(k)e—i(wt—kx)

Using F = hw and p = hk we get

For massless particles we had

% Et—px)

IZ

Pl t) =

To deduce the Time-evolution we calculate different derivatives of ¢ (z, t):

N % ([ i\
o = R = (i) v
o ip % (ip\’
e Y P (E) v
i) nonrelativistic (free) particle: E — % =0
8¢ h2 82¢ 2
ot T amanz =~ PV _ﬂ’ =0
o K%
=S = omaa?

Schrodinger-equation for a free particle

ii) relativistic (free) particle: }63—22 —p? = m?c?

ROy | 0% E

_nrewv 2
22 922 w PP = m?c*y
i@zﬂ) B 621[) B _m202¢
2 ot2 ox2 K2

Klein-Gordon-Equation



2.3 Physical Interpretation of ¢ (z,t)
Entirely different from that of Maxwell-waves, obeying
10 % _,
2 ot2 ox?
where 1 is complex, but because

Y, t) = e "Wk — cos(wt — ka) — isin(wt — kx)

1 is a physical observable.
This is not the case with Schrédinger-equation where the differential operator

Z‘hﬁ + 8_2
ot Ox?

is itself comlex valued! = solutions 1 (x,t) are in general complex!

Max Born: Born’s probabilistic interpretation of ¢(z,t). The simplest real quantity of
W is [z, )2 = ¢*p > 0. ||? > 0 is like a probability density p(x,t) > 0. (|¢(z,t)[>dx)
is the probability of finding the particle between x and = + dx

Remark.
e QM is therefore an INDETERMINISTIC regime
e In QM z is not an explicit function of ¢

e In QM all the dynamical information (i.e. time-evolution) information is encoded

in (z, 1)
e Total probability
N:/w@@ﬂm<m

Convention: Normalize 1)

/%M%wﬁmzl

e Convergence of this integral requires that ToE

e expectation value of x

[zl (x,t)?da
[ YPdx

e In general the integral is a function of time:

(z) =

r=b
/; f(a, 1)z = g(t)



but the total probability must be independent of ¢ for ¢ obeying the QM equation
of motion. Check:

0 _ o o (00
zha/]wﬁda:—/ Km 5 >w+w <zha>} dx

h2 a2w* *a2w
) [axﬂ”” W}dm

= o o L0 o
) [a_ 9 VY O_x%}d

; g oY* _ 9 oY+ oY oY*
using Yz 5, = gs <¢W> ~ Or 0r

0 o B2 [T (00 0 [ 0
Zha/'w'dx—% [%@m)‘%@%)]“

2m | Ox oz | _
=0
Klein-Gordon-Equation is no use for this purpose = restrict to NONRELATIVIS-

TIC QM

2.4 Quantum Mechanics — Classical Mechanics

For the size of the system going from micro to macro the Quantum Mechanical values
shoul go to the classical values, i.e.

<x> QM—CM T <p> QM—CM
i.e. 5
Def 9
v " e (o)

. L0
ih(p) = zhma/xlwﬁdx
=m [ x (ihaw* Y+ ¢*ihaw> dx

ot ot
-2 o (Ggv-vwit)a
ih (p) = g/{a% [wa@f —w*g—f] —waaf +w*g—x}d:g
o= (05 m)] S E )

iR [ e Loy
=5 [ (V5 -G



Conventional choice

00 [T ey 98] e [0
[o5rae= [ - Shw| = lpp - [ itas

(p) = / s <—mg—i’> da

i.e. p can be interpreted as the operator —iha% =p

10



3 Formulation of QM

3.1 Prescription of canonical Quantisation

CM—QM
z(t) —— ==
CM—QM L0
t = —th—
p(t) = p = —ihg
o CM—QM -, N
I(t) ———— ¥ =17
) L f— iy
ONLY FOR CARTESIAN COORDINATES
Energy
2 ~2
p CM—QM - P N
H(t) = — H=—
() =2 +vie) 2= g = v
- n? 92
H=———+V
2m Ox? +V(z)
The free particle Schrodinger-equation is
L NI
ot 0 07 om

i.e. for a particle in the field of a force with potential V' (z) the full Schrédinger-equation

1S 81/}

In general we define the expectation value of a Quantum mechanical observable repre-
sented by the operator A by

(4) = / o (Anp)da

11



3.2 Compability QM «— CM

Does % (p) = (F) QM—OM, %p = F ? where (F) = [¢*(Fy)dr = fT/J*(—%—‘;l/J)dw

[ (o)

[0 0%
_[ ot ox ”“pata} v

/(Hw 90—y D (Hda

2 2 2 2
(e ek e

: L, 0 0 B 0 , 0 n*o*y
using /¢ a—xwwdﬂn—/a—x <¢ W¢> dx — 9% B S odr =

=0

B / o+ oY w o

N oz \ 0z Oz 22 Ox
o, . h2 92 aq,z) oY h* O*ropsi ., 0 vy b e —
E@_/{_% 0z 8:E ¢_ om 0z2 dr g( ¢)} o

/{vwa—‘” v vwa—‘”}

()

So % (p) = <—%—¥> like Newton’s 2nd law.

3.3 Stationary State Schrodinger Equation
For time independent potentials, seek Separable solutions:

P(x,t) = u(z)o(t)

0 _ 0 ov SR
zha zha(u v) = zhua Hvy = v(Hu)

12



ov N

ihua =v(Hu)
2711@ = lﬁu
vt  u
d ~
ih% In(v)(t) = v (Hu)(x)
=const=F
d
% an = _ﬁE
)
Inv=—=Ft
nov 5
v = e_%Et

Note.
e F has dimensions of energy

e Provided %—‘{ =0, i.e. a "usual" potential

e time dependence is fixed, such that ¥ (z,t) = u(m)e_%Et and ¥ (x,t) is called a

stationary State.
Hu = FEu (3.1)

is called the stationary Schrédinger Equation.

e Expectation value of H, i.e. the energy
() = [ v (o)

— / u*e%Et(ﬁue_%Et)dx

i.e. unlike p and z, E is an observable whose measurement is exact

3.4 Eigenvalues and eigenvalue equations

Au = au
Question: Can several obserables be measured (exactly) simultaneously?
Au = au

A

Bu =bu

13



using the operators on the other equations we get

BAu = bau
ABu = abu
(BA— ABJu=0

This has to be true for all u. We denote the condition for simultaneously observability
as an operator expression (commutator brackets)

AB— BA—=[AB =0
Ezample.

i) Free particle, V =0
5 h? 02
)in Z

= Tomar PTG,

. i3 9% Of  ikd 9 9%
Bl = g 5 9s om0 922 —

energy and momentum of free particle are simultaneously observable
ii) Particle in potential V(x) # 0

o af OV OV

i.e. in this case []fl,ﬁ] =—pV #£0

3.5 Canonical Commutation Relations (CCR)

Canonical Quantisation — & and p
CCR: [z,p] = ih

oA L of ., 0 .
[, p]f = x(—lha—x) - (—Zh%)(l’f) =thf

CCR = z and p are not simultaneously observable

3.6 Heisenberg uncertainty relation

AxAp > g

Az, Ap "uncertainties":

14



Choice of (x) = (p) = 0.

Consider the integral

2
:/‘Aha—er:w
_ ROV O _

_/< by > (Aha—Jr:w)dx—
/ <)\2h286¢* gw + \ha sz* + Aha* ¢ x%*zp) dr =

= [ e (0 5E) — wewtur S8 v 2o a0 e -

dr > 0=

:0+>\2/1/)*<—ih66>1/)dm+0+<x +>\h/[ (z|y]?) — |¢|2]d:p:

=N (p*) + (2®) = Ah
I\ = (Ap)2X2 —hA + (Az)2 >0

Quadratic in lambda and as I(A > 0) the determinant has to be < 0:

[7* — 4(Ap)*(Az)*] <0
(Ap) (Ax)2 > K2
h
AxAp > 3
h

[#,p] = ih — AzAp > 3

Limiting case: AzAp = g

)\ha—w+$¢:0
ox
1oy 1
wor AR
0 1
/8—ln¢d1‘ BV xdx
2
~ Y
e ==

2
P = ¢”22 The Gaussian

15



4 Applications

Start with 1-dimensional systems
1. Piecewise constant potential (i.e. discontinuous V(x))

2. Simple Harmonic Oszillator (SHO) V (z) = tmw?a?

4.1 Piecewise constant potential

4.1.1 Outstanding technical problems

e Normalisation of scattering states

e Boundary conditions for discontinuous V (z)

i) Scattering States
Initial State (Free particle state), Free particle = Superposition of plane waves

1 i (Bt—pr
vlant) = —— [ dpa(p)e#E0

(p) depends on a(p) and has an average value, i.e. not exact. Only the plane wave

wplcme =e % (Bt=pa)

has exact momentum

— % (Et—pzx

. L 0
p¢plane = _Zh%e ) = p¢plane

_ iRt
wplcme = wstationary state = € P U(x)

Normalisation:

up(z) = e_%Et

/|up(x)|2d:r :/ldw — 00
Not normalizable.

What happens to probability conservation i.e. % [ |w]2dx = 0?

-

Define a probability current J(z,t) such that the continuity equation

16



is satisfied i.e. probability is conserved.
R TN
Zh@t ih( o0 +yYt—) =
= Hyp — "
h2
=" (——V Vi + V(@)y) = (=5 —V.Ve" + V(2)y") =

e A AT
i V. V) - V.6V

" 2m
dp _ h . x
% %V-(Tﬂvﬂl YVY©)
ie. 9
P 7_
a5 +V.J=0 (4.1)
where J is defined by
= (VY — V) (42)
im

For stationary states

- h
J = S — (u*Vu — uVu®)

in which case the continuity equation is

ii) Boundary conditions for discontinuous V' (z)

V(x)

Vo +

V(x)

Figure 4.1: Potential with discontinuity at xg

17



Starting with the 1-dim St. St. Schrédinger Equation we get

Hu = Eu
—%%+Vu:Eu
u”—i—2h—7?(E—V)u:0
W EPu=0 k= —2m(hE—V)

V(z0) is not single valued, i.e. u” is not singlevalued. But if ’ is discontinuous at x
mETT, 50 fe. pPu — oo unphysical: energy < oo = u'(xg) must be continuous.
Also if w is discontinuous at zo then u/ =—-% oo i.e. pu — oo unphysical: (p) <

i.e. u(zg) must be continuous

4.1.2 Scattering off a 1-dim step barrier

V(x)

Vo +

V(x)

\% >0
0 x<0
Choose initial conditions: Incoming particle wave is incident from L — R and has definite

momentum p i.e.
;
— opbT
up(z) = en

D(,t) = e~ Py ()

The Schrédinger equation in this case is:

2m(E -V
u’ + ku =0 k:% (4.3)
e inlL xz<0
2mE

18



+ikox

ie up Ze , but incoming from L — R so choose incident wave to be

eik():c = e%px
General solution in L region is
up, = Aeikox‘ +Re—ik20x
i.e. there is a reflected wave

e inR x>0
2m(E — Vo)

" k2 =0 k=
U + KU 3

s0 up = etk

up = Teikx + Boe—ik:c
transmitted wave only
ur, = Ae*o® 4 Re~thor
up = Te'r®

Note. Plane waves are not normalizeable. One condition on A, R,T can/must be fixed
arbitrarily. Natural choice: A =1

1. E > Vy. In classical mechanics we would expect R = 0,7 # 0, in QM we have

both R, T # 0
up, = eik‘ox +Re—ik‘ox‘
up = Teikx
k= w real. Now impose boundary conditions
ur(0) = ur(0)
1+R=T

uz,(0) = ug(0)
iko — ikoR = Tik
k

1-R=—T
R=1

k
2=T+ T

2%k
_k—i-ko
ko — k
k+ ko

R =

19



2. E < Vj, in classical mechanics we would expect R # 0,7 =0

b — sqrt—27r;i(V0 —F) _ z\/2m(;l/0 —F) e

pure imaginary
up, = ezkom + Re—zkox
ugp = Te ™

BC:

ur(0) = up(0)

1+R=T

up,(0) = ug(0)
ik‘o - ikoR = —gT

K
1-R=-—-T
ko
1K ko + ik
2=T(1+—)=T
(+ko) ( ko >
2ko
T —
ko + ik
ko—i/i
R=
ko + ik
|R|* =1

Probability current

J = i,(?[)*V?[) —cc) = QL(u*u' —c.c.)

2ma mi

20



_ h —ikox p* ikox\ /[ ; ikox . —ikox
Jr = S {(e R*e'™%)(ikge ikoRe ) c.c.}

_ i . o —2ikox * 2ikoxr 2
= 5o {(zko)(l Re + R%e |R)| c.c.}
h , 9
h
= ho{1 - R}
_ Tiko ko — k>
Jr = - {1 <ko—i—k> }
_ %{k§+2k;kzg+k2—k§+2kok—k2}
(ko + k?)

m
 ARkZk
N m(ko + k)2
_ h * —ikxr . ikx
Jr = Tim {T e ""T(ik)e c.c.}
h
= — {|T|*2ik
2 T2k}
hk
= By
m

hk  4k2 ;
= = JL

JR_H(kOJrk)? B

ii)
_ o
a m

h * —RI —RT
JR:% T e ™T(—k)e™ —ce.} =0=Jg

JL {1-|RP} =0

4.1.3 Tunneling example

E <V,
o L:uf +kjur =0
o R: v+ kiur=0

i3 = 1K

21



V(x)

Vo +

V(x)

Figure 4.2: Potential step barrier for tunneling

Solutions:
up, = eik‘ox + Re—ik‘ox
uy = Be ™" 4+ Ae™

UR = Tetkox

Boundary conditions:

Aet@ + Be ke — Teikoa

ur(a) = ug(a) :

up(a) = up(a) : k(A" — Be™") = ik, Te*0®
ur(—a) =ur(—a): Ae R 4 Bera = ¢~ikoa | Rikoa
up(—a) = v} (—a) : K(Ae " — BeR?) = jk,(e 00 — Rethoa)

4.1.4 Bound State system

Iniftely deep square well

V(x)

Vo

V(x)

22



V(m):{o x| <a

Vo—o00 |z|>a

2mE
=0 o= Y20

2m(Vp — F
u;/z—KzuR:O K= m(ho )

Solutions:
ur = Asin(koz) + B cos(kox)
up = Ce K% 4 Dei®

Vo—oo
—

D = 0 as otherwise ¢ —— co. Therefore up = Ce K (V0)x 0. ugr =0.

Boundary conditions:
ug(a) = ur(a)
BUT: In 1-dim system with symmetric V(z) = V(—z) u(z) = £u(—z). As
(Hu)(z) = Bu(z)  H(z) = H(—a)
(Hu)(—z) = Eu(—z)
u(—z) = oau(z) u(z) = au(—z) = o®u(x)

= oa==1
u(z) = fu(—x)

u (z) = Asin(kox)
u™(x) = B cos(koz)
Now impose the Boundary condition. For the antisymmetric case we get

u(A)(a) =ug(a) =0

sin kga = 0 = kpa=mnmr meN

uld) (z) = Ay, sin %x

For the symmetric case we get
u®(a) = up(a) =0

cos kpa = 0 = koa = ng n odd int

u') (z) = By, cos Z—Wx
a

23



(4)

rewrite uy - = A, sin 2%

9, N =even. Then
a

up(z) = Ay sin %x + By, cos %x (4.4)

Our boundary condition then set either B, = 0 for even n or A, = 0 for odd n.

VomE nmw
ko = = —
h 2a
2mE B n2n?
h2 4a2
R2r?
En = 8maz

Energy spectrum of bound-state system is DISCRETE!
Properties of bound state system:

1. Enery spectrum is discrete

2. Ground state energy > 0
Lowest energy state is n = 0, i.e. u((]A)(:E) = Apsin(0) = 0, i.e. |u((]A)(x)|2 =

0... vanishing probability ... forbidden state. = Ground state is FEj: ugs) =

By cos gz #0
3. V(z) =V(—2z) = u(x) = tu(—x)

4. Bound states are normalisable and mutually orthonormal

[o¢]
*
/ Uy U AT = Oy,

—0o0

a
1= |An|1/ sin? 2X g dy
—a 2a
1 a
= —]An]2/ (1 — cos n—ﬂx) dx
2 —a a
in T

1 sin M4 1@
= gl [x - T}
a —a

2a
= _’An’2
a

a
1= \Bn]2/ cos? 20 dy =
2a

—a

24



Orthonormality

@ nw . omm 1 [ n+m n—m
sin —ax sin —x dr = — — COS X + CoS 5 x| dx
a

—a 2a 2a 2 J_, 2a
. . a
1 [— sin ";amwx N sinn — m2a7m:]
Y n+m n—m
2 2a T 2a Qs —a
—sin ”ngﬂ sinn — m2mw
- n+m, - n—m
2a bt 2a Q0
=0
as m #% nn and m, n even
o0
*
/ Uy U AT = Oy,
— 0o

5. Ground state is the state with highest symmetry; with increasing energy symmetry
decreases. number of nodes increases with energy

/TN NN
SUPTSIS R S IR P

T R L S t]

} \/ j \/ EAV “\/‘7 \/

Figure 4.3: Eigenfunctions for n = 1,2, 3,4

Finitely deep square well

V(x)

Vo

V(x)

—~
8

~
I

0 Jz|<a
Vo lz|>a

25



u}'—l—kguj =0

uh — K*up =0

Solutions
ugs) = Bcos kox
ugA) = Asin kox
ug) = Ce K= u(LS) Ce Kl
ug) De—Kx U(A) _De—K\x\

Boundary conditions:

1. Symmetric case

B cos koa = Ce™ K4

—Bkgsin kga = —CKe K¢

Dividing gives
ko tan kopa = K

K? = k2 tan® koa

2m(Vo — E)  2mE 5, v2mEa

R PR
1% 2mE
Eo—lztan2$
Vo 1
E 0052%@
o 1

€2 cos? e
€2 =V cos® \e

This equation is only satisfied for some ¢, i.e. discrete E. To see this we plot the
two functions €2 and cos? e (Figure 4.4)

2. antisymmetric case

Asinkga = De™K*

Akg cos koa = —K De™K®

Dividing gives
kg cot kga = — K

26



100%CoS(X)*2 ———
X2

V,
0 A N\ /X A\
/o [\ a [
\ [ [\
I A U Vo
“\ y“’ \ / r‘" \ |
\ | / \
\ ,,/ / ./ \
/ \ / / \ ]
/ \\ // \ // \ //
E

Figure 4.4: Discrete energy spectrum for symmetric case

K? = kg cot? koa

v V2

EO —1 = cot? %\/E
Vo 1
A

sin? \e

€2 = Vysin? Ae
Figure 4.5 again shows the discrete energies

100*sin(x)**2
x**2

Vor A\ \
[\ /\ [\
[\ [\
/ [\
/ \ [ \
[

Figure 4.5: Discrete energy spectrum for assymetric case
Note the ground state is the most symmetric state:

4.2 Quantum mechanical harmonic Oscillator

1
Vix) = Ek:x2

k=muw

27



Figure 4.6: Potential for harmonic oscillator

Canonical quantisation and V' being time-independent leads to Stationary State Schro-
dinger-equation:
Hu= Fu
A2 2 72

H p—+V(m):———+—mwaz

o (4.5)

4.2.1 Reduce Schrédinger equation

Seek to make the eigen-value dimensionless

2 mw da? h -

Let y = /7”2 Now we have the new Schrédinger equation
2
o u =2

[d_2 - 2} u=—2eu (4.6)

4.2.2 Factorization of differential operators

"factorize" the differential operators
d d d? d d
ty) (= Fy)f=-SfFy—fFfEy—f—v*f=
dy dy dy

dy dy
2o, d d 2o,
(dy2 Y ) I¥1 <dy y) (dy ﬂ/) <dy2 > i
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So we can express our Schrodinger equation in terms of our new factorisation:

<% _ y> <% + y> Up = — (26, — 1)uy, (4.8)

where n is a quantum number.

4.2.3 Eigenvalues

Act on (4.7) with <d% - y) and on (4.8) with (d% —I—y):

(&) (&) [ monf(E )] e
ERR L] R0 RS 0

(4.9) and (4.10) are Schridinger equations too, but for different functions

d
Uy, X <d_y — y> Up, (4.11)

Find the corresponding eigenvalue by identifying (4.9) with (4.8). So we get 2¢,, — 1 =
26, +1

€m =€n+1 (4.12)
The same for (4.10) and (4.7) yields
d + (4.13)
U X | — U .
m dy Y ) Un
and
€m =€p — 1 (4.14)

So by using <% — y) and (d% + y> we can jump between our eigen-functions.

d
<— — y) raising operator (4.15)
dy
d :
o +y lowering operator (4.16)
Y

From this we deduce, that our eigen-values have to obey

€n =€+ N (4.17)
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4.2.4 Eigenfunctions

When lowering operator acts on ug it annihilates it

(£ )= e

1
/—duo = —/ydy
(s

1
Inugy = —§y2

_1l9
uyg = e 2Y

Write (4.8) for n = 0:

1
6025
1
en:n—|—§
1
E, = <n+ 5) hw (4.19)

Properties of bound states:
1. Discrete energy spectrum: €, =n + %
2. Ground state energy > 0: ¢y = %

3. V(z) =V(—2z) = u(x) = tu(—x)
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4. [ W}t = 6y mutually orthonormal

d 1
up = Ay (d_ - y> e 2V’
Y
1 1
= A (—ye_§y2 — ye_§y2>
1.5
= —2A,ye” 2Y
d 1
ug = —As <d_ - y) ye 12’
Y
1 1 1
=4, <e_§y2 — g2V y2€_§y2>

1
= Ay(2¢% — 1)e_§y2

etc
Normalise:
o0 2
/\uOlzdy = A%/ eV dy = Ajv/m
—00
o0
2 2 2 _ 2 1 d 2
ur|“dy = A / y'e ydy:——/y—e Y dy
[l =z [ 5 v
1 _y2 & _y2
= —5 ye — e dy
— 0o
NZ3
=5 A
Orthogonality

N ° Ly Lo —y?
ugurdy = e 279 ye 27 dy = [ ye =0
—00

/ufnundy =0 if n =odd/even m = even/odd

/u8u2dy = ApA, /(2y2 — 1)e_y2dy = ApA, <2? — \/7_r> =0

5. Number of nodes increases with ¢,, see Figure 4.7

4.3 General properties of Quantum mechanical states

(States are solutions of eigenvalue equation)
1. Orthonormal (immediately /manifest for bound state) e.g. for Scattering:
Jup(@)uy (z)dz = 6(p — 1)
2. a) Energy (and all other observables’) eigenstates are real

b) all expectation values are also real
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Figure 4.7: Eigenfunctions for Simple Harmonic Oszillator for n =0,1,2,3
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5 New Formalism (Hilbert space)

e QM state functions are elements of a (finite or infinite) dimensional space H

e H is spanned by an orthonormal basis u,(x) or u,(x)
/u;(:n)um(x)dx = dmn (5.1)
/ u(@)ug (2)dx = Sp(p — k) (5.2)
A general state is
P(x) = Z Cpip () or (5.3)
vla) = [ epup(o)dp (5.4
e Definition of an inner product in ‘H
0.6) = [ ¥ @ola)da (55)
It has no geometric meaning. The Schwarz inequality holds:

(W, ¥) (6, 0) > | (¥, ) |?

Definition of matrix element of an operator
A = (U, Auy,) = /uin(flun)dx (5.6)
More generally (¢, Ap) = fw*fl(ﬁ

5.1 Hermiticity

Physical measurements must be real, i.e. expectation value of an operator representing
an observable must be real. For a Hermitian operator holds:

(4, Av) = (A, ) (57)
Stronger condition of Hermiticity. 1, ¢ € H
(v, Ag) = (AY, ¢) (5.8)
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Both conditions are equivalent: 1) = 2) clear; 2) = 1): ¥, 0 € H = (¢ + \p) € H

(¥ + A, A(Y) + X)) — avA(Y + M), ¥ + A = 0

(0, Ap) + A (0, Ag) + X (¢, AY) + |\ (¢, Ag) —
— (A, ) — X (A, ¢) — X" (Ag, 1)) — |A[* (Ad, ¢) =0
A((1, Ag) — (A, §)) + A" ((¢, AY) — (A, ) =0

As X is arbitrary and A and A\* are in general linearly independent:

(1, Ap) — (AY,¢) =0
(¢, AY) — (A, b)) =0

and therefore
(1, Ag) = (A1, ¢)

If operator is not Hermitian this defines the Hermitian conjugate:

(0, Av) = (Al )

Examples: z,p, H
L (@) = [ ¢radds = (a)°

2.
W)= [ v Gw)da = [ v <—ma%¢> iz

s (o D . 0Nt oot
() —</¢ <—zh%¢>da¢> —/¢<—zh%¢> dx_/m@x Ydx =

) )
= /m%wm;p — /ihq/)*%d:p = (p)

3. H= % + V(x) and therefore hermitian

examples of non-hermitian Operator: the raising/lowering operator

Ao Jhd e d
N mdm$ hx_dy$y
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Hermitian conjugate:
<Aw,¢> = <w,A¢>> -
( :Fm) dz =
/ v e [(@0) ods =
:/ zvo- [ F
J((iae)e) o
:<<—d—m> »9)

: d d
i.e. AT:—%:FI'#%:F@':A
Hermitian conjugate of a matrix:

/ ) pdx

(e()s Megg)) = (Me(ay,e)) = MT = (M)

5.2 Dirac’'s Notation

bra-ket = (1|¢)

5.3 Completness

> In)(n[=1 (5.9)
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5.4 Preparation for Matrix mechanics, Operators

Harmonic Oszillator:
c P 1
H=—+-
om 3™

We had the raising (and lowering) operator:

.i'2

d h d mw
dy V" VNomde N R T
i h mw .
T hVmet VR T
mw T ..
VR (Tﬁ - 9”)
Define new operators:
a = me <§: + Lﬁ) lowering operator
2h mw

t mw [ . . ..
a'=\/— |2 ——p ralsing operator
2h mw

a and a! are up to sign and const the lowering and raising operators respectively.

mw
_%__Zi[@ ]
2k mw T
= iy =1
[a,aq =1
mw
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So therefore

analogue we get

i) Act on auy,

1 1
<anr - §> auyn, = a(ala)u, o Min =

t t 1

= a(aa’ — [a,a })un — p0Un =

1

= a(aa’ — Vu, — 5@ =
.i. 1

= a(aa — §)un aun -

i.e. the eigenvalue of au, is € — 1
ii) Act on af

1 1
<aTa + §> a'u, = a'(aa")u, + §aTun =

1
=a'(aTa + 1)u, + EaTun =

=dal(aa + %)un + a'u, =
= d'eyup, + alu, =
= (en + 1)(aTuy)
i.e atu, has eigenvalue €, + 1
iii) (a%—k%)uo =€ = €= % and €, :n+%
Calculate the scaling factors for the raising and lowering operators.

Ay, = K, Up—1

_ .t
aTun = K, Un+1
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Take the inner product

(aup, au,) = </£ Up—_1, Ky, Up— 1>: |k |?

</€ Un+1=/inun+1> = ”f:\z

<a un,a U,

<un7a aun> Kn |2
<un,aa un> +|2
But (aa’ — 3) up = (n+ $)u, and (afa+ 3) u, = (n+ 3w,

"‘%‘2 (Un,nup) =n

512 = (up, (0 + Duy) =n+1

aty, = /Ny _1 (5.15)
atu, = V/n+ 1upa1 (5.16)

Repeat this calculation in Dirac notation:

aln) = kg [n = 1)

a'|n) =kt |n+1)
Take inner product:

(nla'aln) = |k, > (n = 1n — 1) = |n,,

(nfaa’ n) = |w}1* (n+ 1n + 1) = |}

~3) I =+ 3o

7N
=
)
i
DO | =

)i =+ 5o

Fock space

38



6 Matrix Mechanics

QM formulated as wave-mechanics (particles «» waves), operator representation of ob-
servables.

But operators can be employed also abstractly! Also they can be represented by matrices.
The Matrix element of an operator was defined as

Amn = <um7Aun>
If A satisfies an eigen-value equation, i.e. Au, = apu, we get: Apn = andmn
N.B. much more useful when spectrum of eigenvalues is discrete
6.1 Properties of operators

(A) is real if A is hermitian, i.e. if A = A", If A is hermitian it can be diagonalised (i.e.
the eigen-functions and eigen-values be found). If A is not hermitian, then (¢, A¢) =
<AT1/), ¢> The hermitian conjugate of a matrix element is

(AN = (1t Al ) = (At ) = (tn, At = (A7) )un)

6.2 Re-calculation of some result

6.2.1 QM Harmonic Oscillator

Solve the eigenvalue problem
(aa’ — %)un = €pliy

From before:

1
€, =N + 5
and for the raising and lowering operators:

AUp = \/ﬁun—l

al = v+ lupg
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Matrix Representation of H,a,al

2
1
2
3 0
H = hw 3 (6.1)
0
Amn = (umyaun> = <um7 \/ﬁun—1> \/ﬁ(sm,n—l
0 vl 0
0 V2 0
0
al =vn + 16, n+1
- 0 -
vi 0
=10 Vv2 0 (6.3)
0 V3 0
- 0 - -
What about eigen-functions?
eigen-functions — eigen-vectors
1 0
0 1
ug = 0 uy = 0
<un7 um> = 5nm
6.2.2 Infinitely deep square well
h2m?
Hu, = Sma? n2un
h2n?
Hmn = <’I,Lm,H’LLn> = WTF&W
1
R272 4 0
H = 6.4
8ma? 9 (64)
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6.3 Outlook

When are matrix representations indispensible? When describing intrinsic angular mo-
mentum = spin (no classical analogue), otherwise cannot go beyond orbital angular
momentum (Orbital has classical analogue).
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