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Lecture Notes in Quantum Mechanics

Doron Cohen
Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel

These are the lecture notes of quantum mechanics courses that are given by DC at Ben-Gurion
University. They cover textbook topics that are listed below, and also additional advanced topics
(marked by *) at the same level of presentation.

Fundamentals I

• The classical description of a particle
• Hilbert space formalism
• A particle in an N site system
• The continuum limit (N =∞)
• Translations and rotations

Fundamentals II

• Quantum states / EPR / Bell
• The 4 postulates of the theory
• The evolution operator
• The rate of change formula
• Finding the Hamiltonian for a physical system
• The non-relativistic Hamiltonian
• The ”classical” equation of motion
• Symmetries and constants of motion

Fundamentals III

• Group theory, Lie algebra
• Representations of the rotation group
• Spin 1/2, spin 1 and Y ℓ,m

• Multiplying representations
• Addition of angular momentum (*)
• The Galilei group (*)
• Transformations and invariance (*)

Dynamics and driven systems

• Systems with driving
• The interaction picture
• The transition probability formula
• Fermi golden rule
• Markovian master equations
• Cross section / Born

• The adiabatic equation
• The Berry phase
• Theory of adiabatic transport (*)
• Linear response theory and Kubo (*)
• The Born-Oppenheimer picture (*)

The Green function approach (*)

• The evolution operator
• Feynman path integral
• The resolvent and the Green function

• Perturbation theory for the resolvent
• Perturbation theory for the propagator
• Complex poles from perturbation theory

Scattering theory (*)

• Scattering: T matrix formalism
• Scattering: S matrix formalism
• Scattering: R matrix formalism
• Cavity with leads ‘mesoscopic’ geometry
• Spherical geometry, phase shifts
• Cross section, optical theorem, resonances

Quantum mechanics in practice

• The dynamics of a two level system
• Fermions and Bosons in a few site system (*)
• Quasi 1D network systems (*)

• Approximation methods for H diagonalization
• Perturbation theory for H = H0 + V
• Wigner decay, LDOS, scattering resonances

• The Aharonov-Bohm effect
• Magnetic field (Landau levels, Hall effect)
• Motion in a central potential, Zeeman
• The Hamiltonian of spin 1/2 particle, implications

Special Topics (*)

• Quantization of the EM field
• Fock space formalism

• The Wigner Weyl formalism
• Theory of quantum measurements
• Theory of quantum computation
• The foundations of Statistical Mechanics

http://arXiv.org/abs/quant-ph/0605180v3
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Opening remarks

These lecture notes are based on 3 courses in non-relativistic quantum mechanics that are given at BGU: ”Quan-
tum 2” (undergraduates), ”Quantum 3” (graduates), and ”Advanced topics in Quantum and Statistical Mechanics”
(graduates). The lecture notes are self contained, and give the road map to quantum mechanics. However, they do
not intend to come instead of the standard textbooks. In particular I recommend:

[1] L.E.Ballentine, Quantum Mechanics (library code: QC 174.12.B35).

[2] J.J. Sakurai, Modern Quantum mechanics (library code: QC 174.12.S25).

[3] Feynman Lectures Volume III.

[4] A. Messiah, Quantum Mechanics. [for the graduates]

The major attempt in this set of lectures was to give a self contained presentation of quantum mechanics, which is not

based on the historical ”quantization” approach. The main inspiration comes from Ref.[3] and Ref.[1]. The challenge
was to find a compromise between the over-heuristic approach of Ref.[3] and the too formal approach of Ref.[1].

Another challenge was to give a presentation of scattering theory that goes well beyond the common undergraduate
level, but still not as intimidating as in Ref.[4]. A major issue was to avoid the over emphasis on spherical geometry.
The language that I use is much more suitable for research with “mesoscopic” orientation.

Some highlights for those who look for original or advanced pedagogical pieces: The EPR paradox, Bell’s inequality,
and the notion of quantum state; The 4 postulates of quantum mechanics; Berry phase and adiabatic processes; Linear
response theory and the Kubo formula; Wigner-Weyl formalism; Quantum measurements; Quantum computation;
The foundations of Statistical mechanics. Note also the following example problems: Analysis of systems with 2
or 3 or more sites; Analysis of the Landau-Zener transition; The Bose-Hubbard Hamiltonian; Quasi 1D networks;
Aharonov-Bohm rings; Various problems in scattering theory.

Credits

The first drafts of these lecture notes were prepared and submitted by students on a weekly basis during 2005.
Undergraduate students were requested to use HTML with ITEX formulas. Typically the text was written in Hebrew.
Graduates were requested to use Latex. The drafts were corrected, integrated, and in many cases completely re-written
by the lecturer. The English translation of the undergraduate sections has been prepared by my former student Gilad

Rosenberg. He has also prepared most of the illustrations. The current version includes further contributions by my
PhD students Maya Chuchem and Itamar Sela. I also thank my colleague Prof. Yehuda Band for some comments on
the text.

The arXiv versions are quite remote from the original (submitted) drafts, but still I find it appropriate to list the
names of the students who have participated: Natalia Antin, Roy Azulai, Dotan Babai, Shlomi Batsri, Ynon Ben-
Haim, Avi Ben Simon, Asaf Bibi, Lior Blockstein, Lior Boker, Shay Cohen, Liora Damari, Anat Daniel, Ziv Danon,
Barukh Dolgin, Anat Dolman, Lior Eligal, Yoav Etzioni, Zeev Freidin, Eyal Gal, Ilya Gurwich, David Hirshfeld,
Daniel Horowitz, Eyal Hush, Liran Israel, Avi Lamzy, Roi Levi, Danny Levy, Asaf Kidron, Ilana Kogen, Roy Liraz,
Arik Maman, Rottem Manor, Nitzan Mayorkas, Vadim Milavsky, Igor Mishkin, Dudi Morbachik, Ariel Naos, Yonatan
Natan, Idan Oren, David Papish, Smadar Reick Goldschmidt, Alex Rozenberg, Chen Sarig, Adi Shay, Dan Shenkar,
Idan Shilon, Asaf Shimoni, Raya Shindmas, Ramy Shneiderman, Elad Shtilerman, Eli S. Shutorov, Ziv Sobol, Jenny
Sokolevsky, Alon Soloshenski, Tomer Tal, Oren Tal, Amir Tzvieli, Dima Vingurt, Tal Yard, Uzi Zecharia, Dany
Zemsky, Stanislav Zlatopolsky.

Warning

This is the third version. Still it may contain typos.
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Fundamentals (part I)

[1] Introduction

====== [1.1] The Building Blocks of the Universe

The world we live in consists of a variety of particles which are described by the ”standard model”. The known
particles are divided into two groups:

• Quarks: constituents of the proton and the neutron, which form the ∼ 100 nuclei known to us.
• Leptons: include the electrons, muons, taus, and the neutrinos.

In addition, the interaction between the particles is by way of fields (direct interaction between particles is contrary
to the principles of the special theory of relativity). These interactions are responsible for the way material is
”organized”. The gravity field has yet to be incorporated into quantum theory. We will be concerned mostly with
the electromagnetic interaction. The electromagnetic field is described by the Maxwell equations.

====== [1.2] What Happens to a Particle in an Electromagnetic Field?

Within the framework of classical electromagnetism, the electromagnetic field is described by the scalar potential

V (x) and the vector potential ~A(x). In addition one defines:

B = ∇× ~A (1)

E = −1

c

∂ ~A

∂t
−∇V

We will not be working with natural units in this course, but from now on we are going to absorb the constants c and
e in the definition of the scalar and vector potentials:

e

c
A → A, eV → V (2)

e

c
B → B, eE → E

In classical mechanics, the effect of the electromagnetic field is described by Newton’s second law with the Lorentz
force. Using the above units convention we write:

ẍ =
1

m
(E − B × v) (3)

The Lorentz force dependents on the velocity of the particle. This seems arbitrary and counter intuitive, but we shall
see in the future how it can be derived from general and fairly simple considerations.

In analytical mechanics it is customary to derive the above equation from a Lagrangian. Alternatively, one can use a
Legendre transform and derive the equations of motion from a Hamiltonian:

ẋ =
∂H
∂p

(4)

ṗ = −∂H
∂x
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Where the Hamiltonian is:

H(x, p) =
1

2m
(p−A(x))2 + V (x) (5)

====== [1.3] Canonical Quantization

The historical method of deriving the quantum description of a system is canonical quantization. In this method we
assume that the particle is described by a ”wave function” that fulfills the equation:

∂Ψ(x)

∂t
= − i

~
H
(
x,−i~ ∂

∂x

)
Ψ(x) (6)

This seems arbitrary and counter-intuitive. In this course we will not use this historical approach. Rather, we will
construct quantum mechanics in a natural way using only simple considerations. Later we will see that classical
mechanics can be obtained as a special limit of the quantum theory.

====== [1.4] Second Quantization

The method for quantizing the electromagnetic field is to write the Hamiltonian as a sum of harmonic oscillators
(normal modes) and then to quantize the oscillators. It is exactly the same as finding the normal modes of spheres
connected with springs. Every normal mode has a characteristic frequency. The ground state of the field (all the
oscillators are in the ground state) is called the ”vacuum state”. If a specific oscillator is excited to level n, we say
that there are n photons with frequency ω in the system.

A similar formalism is used to describe a many particle system. A vacuum state and occupation states are defined.
This formalism is called ”second quantization”. A better name would be ”formalism of quantum field theory”.

In the first part of this course we will not talk about ”second quantization”: The electromagnetic field will be described
in a classic way using the potentials V (x), A(x), while the distinction between fermions and bosons will be done using
the (somewhat unnatural) language of ”first quantization”.

====== [1.5] Definition of Mass

The ”gravitational mass” is defined using a scale. Since gravitational theory is not includes in this course, we will not
use that definition. Another possibility is to define ”inertial mass”. This type of mass is determined by considering
the collision of two bodies:

m1v1 + m2v2 = m1u1 + m2u2 (7)

So:

m1

m2
=
u2 − v2
v1 − u1

(8)

In order to be able to measure the inertial mass of an object, we must do so in relation to a reference mass. In other
words: we use an arbitrary object as our basic mass unit.

Within the framework of quantum mechanics the above Newtonian definition of inertial mass will not be used. Rather
we define mass in an absolute way. We shall define mass as a parameter in the ”dispersion relation”, and we shall see
that the units of mass are:

[m] =
T

L2
(9)
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If we choose to set the units of mass in an arbitrary way to be kg, then a units conversion scheme will be necessary.
The conversion scheme is simply a multiplication by the Planck constant:

m[kg] = ~m (10)

====== [1.6] The Dispersion Relation

It is possible to prepare a ”monochromatic” beam of (for example) electrons that all have the same velocity, and
the same De-Broglie wavelength. The velocity of the particles can be measured by using a pair of rotating circular
plates (discs). The wavelength of the beam can be measured by using a diffraction grating. We define the particle’s
momentum (”wave number”) as:

p = 2π/wavelength (11)

It is possible to find (say by an experiment) the relation between the velocity of the particle and its momentum. This
relation is called the ”dispersion relation”. For low velocities (not relativistic) the relation is approximately linear:

v =
1

m
p (12)

This relation defines the ”mass” parameter and also the units of mass.

====== [1.7] Spin

Apart from the degrees of freedom of being in space, the particles also have an inner degree of freedom called ”spin”
(Otto Stern and Walter Gerlach 1922). We say that a particle has spin s if its inner degree of freedom is described by a
representation of the rotations group of dimension 2s+ 1. For example, ”spin 1

2” can be described by a representation
of dimension 2, and ”spin 1” can be described by a representation of dimension 3. In order to make this abstract
statement clearer we will look at several examples.

• Electrons have spin 1
2 , so 180o difference in polarization (”up” and ”down”) means orthogonality.

• Photons have spin 1, so 90o difference in linear polarizations means orthogonality.

If we position two polarizers one after the other in the angles that were noted above, no particles will pass through.
We see that an abstract mathematical consideration (representations of the rotational group) has very ”realistic”
consequences.
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[2] Digression: The classical description of nature

====== [2.1] The Classical Effect of the Electromagnetic Field

The electric field E and the magnetic field B can be derived from the vector potential A and the electric potential V :

E = −∇V − 1

c

∂ ~A

∂t
(13)

B = ∇× ~A

The electric potential and the vector potential are not uniquely determined, since the electric and the magnetic fields
are not affected by the following changes:

V 7→ Ṽ = V − 1

c

∂Λ

∂t
(14)

A 7→ Ã = A+∇Λ

Where Λ(x, t) is an arbitrary scalar function. Such a transformation of the potentials is called ”gauge”. A special
case of ”gauge” is changing the potential V by an addition of a constant.

Gauge transformations do not affect the classical motion of the particle since the equations of motion contain only
the derived fields E ,B.

d2x

dt2
=

1

m

[
eE − e

c
B × ẋ

]
(15)

This equation of motion can be derived from the Langrangian:

L(x, ẋ) =
1

2
mẋ2 +

e

c
ẋA(x, t) − eV (x, t) (16)

Or, alternatively, from the Hamiltonian:

H(x, p) =
1

2m
(p− e

c
A)2 + eV (17)

====== [2.2] Lorentz Transformation

The Lorentz transformation takes us from one reference frame to the other. A Lorentz boost can be written in matrix
form as:

S =





γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



 (18)

Where β is the velocity of our reference frame relative to the reference frame of the lab, and

γ =
1√

1− β2
(19)
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We use units such that the speed of light is c = 1. The position of the particle in space is:

x =





t
x
y
z



 (20)

and we write the transformations as:

x′ = Sx (21)

We shall see that it is convenient to write the electromagnetic field as:

F =





0 E1 E2 E3
E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0



 (22)

We shall argue that this transforms as:

F ′ = SFS−1 (23)

or in terms of components:

E ′1 = E1 B′
1 = B1

E ′2 = γ(E2 − βB3) B′
2 = γ(B2 + βE3)

E ′3 = γ(E3 + βB2) B′
3 = γ(B3 − βE2)

====== [2.3] Momentum and energy of a particle

Let us write the displacement of the particle as:

dx =





dt
dx
dy
dz



 (24)

We also define the proper time (as measured in the particle frame) as:

dτ2 = dt2 − dx2 − dy2 − dz2 = (1− vx2 − vy2 − vz2)dt2 (25)

or:

dτ =
√

1− v2dt (26)

The relativistic velocity vector is:

u =
dx

dτ
(27)
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and obviously:

u2
t − u2

x − u2
y − u2

z = 1 (28)

We also use the notation:

p = mu =





E
px
py
pz



 (29)

According to the above equations we have:

E2 − p2
x − p2

y − p2
z = m

2 (30)

and we can write the dispersion relation:

E =
√

m2 + p2 (31)

v =
p√

m2 + p2

We note that for non-relativistic velocities pi ≈ mvi for i = 1, 2, 3 while:

E = m
dt

dτ
=

m√
1− v2

≈ m +
1

2
mv2 + . . . (32)

====== [2.4] Equations of Motion for a Particle

The non-relativistic equations of motion for a particle in an electromagnetic field are:

d~p

dt
= m

d~v

dt
= eE − eB × ~v (33)

The rate of change of the particle’s energy E is:

dE

dt
= ~f · ~v = eE · ~v (34)

The electromagnetic field has equations of motion of its own: Maxwell’s equations. As we shall see shortly Maxwell’s
equations are Lorentz invariant. But Newton’s laws as written above are not. In order for the Newtonian equations
of motion to be Lorentz invariant we have to adjust them. It is not difficult to see that the obvious way is:

dp

dt
= m

du

dt
= eFu (35)

To prove the invariance under the Lorentz transformation we write:

dp′

dτ
=

d

dτ
(Sp) = S

d

dτ
p = S(eFu) = eSFS−1(Su) = eF ′u′ (36)

Hence we have deduced the transformation F ′ = SFS−1 of the electromagnetic field.
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====== [2.5] Equations of Motion of the Field

Back to Maxwell’s equations. A simple way of writing them is

∂†F = 4πJ† (37)

Where the derivative operator ∂, and the four-current J , are defined as:

∂ =





∂
∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z



 ∂† = (
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z
) (38)

and:

J =





ρ
Jx
Jy
Jz



 J† = (ρ,−Jx,−Jy,−Jz) (39)

The Maxwell equations are invariant because J and ∂ transform as vectors. For more details see Jackson. An
important note about notations: in this section we have used what is called a ”contravariant” representation for the
column vectors. For example u = column(ut, ux, uy, uz). For the ”adjoint” we use the ”covariant” representation
u = row(ut,−ux,−uy,−uz). Note that u†u = (ut)

2 − (ux)
2 − (uy)

2 − (uz)
2 is a Lorentz scalar.



12

[3] Hilbert space

====== [3.1] Linear Algebra

In Euclidean geometry, three dimensional vectors can be written as:

~u = u1~e1 + u2~e2 + u3~e3 (40)

Using Dirac notation we can write the same as:

|u〉 = u1|e1〉+ u2|e2〉+ u3|e3〉 (41)

We say that the vector has the representation:

|u〉 7→ ui =




u1

u2

u3



 (42)

The operation of a linear operator A is written as |v〉 = A|u〉 which is represented by:




v1
v2
v3



 =




A11 A12 A13

A21 A22 A23

A13 A23 A33








u1

u2

u3



 (43)

or shortly as vi = Aijuj.

Thus the linear operator is represented by a matrix:

A 7→ Aij =




A11 A12 A13

A21 A22 A23

A13 A23 A33



 (44)

====== [3.2] Orthonormal Basis

We assume that an inner product 〈u|v〉 has been defined. From now on we assume that the basis has been chosen to
be orthonormal:

〈ei|ej〉 = δij (45)

In such a basis the inner product (by linearity) can be calculated as follows:

〈u|v〉 = u∗1v1 + u∗2v2 + u∗3v3 (46)

It can also be easily proved that the elements of the representation vector can be calculated as follows:

uj = 〈ej |u〉 (47)

And for the matrix elements we can prove:

Aij = 〈ei|A|ej〉 (48)
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====== [3.3] Completeness of the Basis

In Dirac notation the expansion of a vector is written as:

|u〉 = |e1〉〈e1|u〉+ |e2〉〈e2|u〉+ |e3〉〈e3|u〉 (49)

which implies

1 = |e1〉〈e1|+ |e2〉〈e2|+ |e3〉〈e3| (50)

Above 1 stands for the identity operator:

1 7→ δij =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 (51)

Now we can define the ”completeness of the basis” as
∑

j |ej〉〈ej | = 1 where P j = |ej〉〈ej | are called ”projector
operators”. Projector operators have eigenvalues 1 and 0. For example:

P 1 7→




1 0 0
0 0 0
0 0 0



 (52)

====== [3.4] Operators

Definition: an adjoint operator is an operator which satisfies the following relation:

〈u|Av〉 = 〈A†u|v〉 (53)

If we substitute the basis vectors in the above relation we get the equivalent matrix-style definition (A†)ij = A∗
ji. In

what follows we are interested in ”normal” operators that are diagonal in some orthonormal basis. [Hence they satisfy
A†A = AA†]. Of particular importance are Hermitian operators [A† = A] and unitary operators [A†A = 1]. It follows
from the discussion below that any normal operator can be written as a function f(H) of an Hermitian operator H .

Say that we have a normal operator A. This means that there is a basis {|a〉} such that A is diagonal. This means
that:

A =
∑

a

|a〉a〈a| =
∑

a

aP a (54)

In matrix representation this can be written as:




a1 0 0
0 a2 0
0 0 a3



 = a1




1 0 0
0 0 0
0 0 0



+ a2




0 0 0
0 1 0
0 0 0



+ a3




0 0 0
0 0 0
0 0 1



 (55)

Thus we see that any normal operator is a combination of projectors.

It is useful to define what is meant by B̂ = f(Â) where f() is an arbitrary function. Assuming that Â =
∑ |a〉a〈a|, it

follows by definition that B̂ =
∑ |a〉f(a)〈a|. Another useful rule to remember is that if A|k〉 = B|k〉 for some complete

basis k, then it follows by linearity that A|ψ〉 = B|ψ〉 for any vector, and therefore A = B.
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Hermitian operators are of particular importance. By definition they satisfy H† = H and hence their eigenvalues
are real numbers (λ∗r = λr). Another class of important operators are unitary operators. By definition they satisfy
U † = U−1 or equivalently U †U = 1. Hence their eigenvalues satisfy λ∗rλr = 1, which means that they can be written
as:

U =
∑

r

|r〉eiϕr 〈r| = eiH (56)

where H is Hermitian. In fact it is easy to see that any normal operator can be written as a function of some H . We
can regard any H with non-degenerate spectrum as providing a specification of a basis, and hence any other operator
that is diagonal in that basis can be expressed as a function of that H . An operator which is not ”normal” can be
expressed as Q = A + iB where A and B are non-commuting Hermitian operators. Operator in ”normal” iff A and
B commute.

====== [3.5] Change of basis

Definition of T :

Assume we have an ”old” basis and a ”new” basis for a given vector space. In Dirac notation:

old basis = { |a = 1〉, |a = 2〉, |a = 3〉, . . . } (57)

new basis = { |α = 1〉, |α = 2〉, |α = 3〉, . . . }

The matrix Ta,α whose columns represent the vectors of the new basis in the old basis is called the ”transformation
matrix from the old basis to the new basis”. In Dirac notation this may be written as:

|α〉 =
∑

a

Ta,α |a〉 (58)

In general, the bases do not have to be orthonormal. However, if they are orthonormal then T must be unitary and
we have

Ta,α = 〈a|α〉 (59)

In this section we will discuss the general case, not assuming orthonormal basis, but in the future we will always work
with orthonormal bases.

Definition of S:

If we have a vector-state then we can represent it in the old basis or in the new basis:

|ψ〉 =
∑

a

ψa |a〉 (60)

|ψ〉 =
∑

α

ψ̃α |α〉

So, the change of representation can be written as:

ψ̃α =
∑

a

Sα,aψa (61)

Or, written abstractly:

ψ̃ = Sψ (62)



15

The transformation matrix from the old representation to the new representation is: S = T−1.

Similarity Transformation:

A unitary operation can be represented in either the new basis or the old basis:

ϕa =
∑

a

Aa,bψb (63)

ϕ̃α =
∑

α

Ãα,βψ̃β

The implied transformation between the representations is:

Ã = SAS−1 = T−1AT (64)

This is called a similarity transformation.

====== [3.6] Generalized spectral decompositions

Not any operator is normal: that means that not any matrix can be diagonalized by a unitary transformation. In
particular we have sometime to deal with non-Hermitian Hamiltonian that appear in the reduced description of open
systems. For this reason and others it is important to know how the spectral decomposition can be generalized. The
generalization has a price: either we have to work with non-orthonormal basis or else we have to work with two
unrelated orthonormal sets. The latter procedure is known as singular value decomposition (SVD).

Given a matrix A we can find its eigenvalues λr, which we assume below to be non degenerate. without making any
other assumption we can always define a set |r〉 of right eigenstates that satisfy A|r〉 = λr |r〉. We can also define a
set |r̃〉 of left eigenstates that satisfy A†|r̃〉 = λ∗r |r̃〉. Unless A is normal, the r basis is not orthogonal, and therefore
〈r|A|s〉 is not diagonal. But by considering 〈r̃|A|s〉 we can prove that 〈r̃|s〉 = 0 if r 6= s. Hence we have dual basis
sets, and without loss of generality we adopt a normalization convention such that

〈r̃|s〉 = δr,s (65)

so as to have the generalized spectral decomposition:

A =
∑

r

|r〉λr〈r̃| = T [diag{λr}] T−1 (66)

where T is the transformation matrix whose columns are the right eigenvectors, while the rows of T−1 are the
left eigenvectors. In the standard decomposition method A is regarded as describing stretching/squeezing in some
principal directions, where T is the transformation matrix. The SVD procedure provides a different type of decom-
positions. Within the SVD framework A is regarded as a sequence of 3 operations: a generalized ”rotation” followed
by stretching/squeezing, and another generalized ”rotation”. Namely:

A =
∑

r

|Ur〉
√
pr〈Vr | = U

√
diag{pr}V † (67)

Here the positive numbers pr are called singular values, and Ur and Vr are not dual bases but unrelated orthonormal
sets. The corresponding unitary transformation matrices are U and V .

====== [3.7] Notational conventions

In Mathematica there is a clear distinction between dummy indexes and fixed values. For example f(x ) = 8 means
that f(x) = 8 for any x, hence x is a dummy index. But if x = 4 then f(x) = 8 means that only one element of the
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vector f(x) is specified. Unfortunately in the printed mathematical literature there are no clear conventions. How
ever the tradition is to use notations such as f(x) and f(x′) where x and x′ are dummy indexes, while f(x0) and
f(x1) where x0 and x1 are fixed values. Thus

Aij =

(
2 3
5 7

)
(68)

Ai0j0 = 5 for i0 = 2 and j0 = 1

Another typical example is

Tx,k = 〈x|k〉 (69)

Ψ(x) = 〈x|k0〉
Ψk(x) = 〈x|k〉

In the first equality we regard 〈x|k〉 as a matrix: it is the transformation matrix form the position to the momentum
basis. In the second equality we regard the same object (with fixed k0) as a state vector. In the third equality we
define a set of ”wavefunctions”.

We shall keep the following extra convention: representation indexes are always lower indexes. The upper indexes are
reserved for specification. For example

Y ℓm(θ, ϕ) = 〈θ, ϕ|ℓm〉 = spherical harmonics (70)

ϕn(x) = 〈x|n〉 = harmonic oscillator eigenfunctions

Sometime it is convenient to use the Einstein summation convention, where summation over repeated dummy indexes
is implicit. For example:

f(θ, ϕ) =
∑

ℓm

〈θ, ϕ|ℓm〉〈ℓm|f〉 = fℓmY
ℓm(θ, ϕ) (71)

In any case of ambiguity it is best to translate everything into Dirac notations.

====== [3.8] The separation of variables theorem

Assume that the operator H commutes with an Hermitian operator A. It follows that if |a, ν〉 is a basis in which A
is diagonalized, then the operator H is block diagonal in that basis:

〈a, ν|A|a′, ν′〉 = aδaa′δνν′ (72)

〈a, ν|H|a′, ν′〉 = δaa′H(a)
νν′ (73)

Where the top index indicates which is the block that belongs to the eigenvalue a.
To make the notations clear consider the following example:

A =





2 0 0 0 0
0 2 0 0 0
0 0 9 0 0
0 0 0 9 0
0 0 0 0 9




H =





5 3 0 0 0
3 6 0 0 0
0 0 4 2 8
0 0 2 5 9
0 0 8 9 7




H(2) =

(
5 3
3 6

)
H(9) =




4 2 8
2 5 9
8 9 7



 (74)
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Proof: [H, A] = 0 (75)

〈a, ν|HA−AH|a′, ν′〉 = 0

a′〈a, ν|H|a′, ν′〉 − a〈a, ν|H|a′, ν′〉 = 0

(a− a′)Haν,a′ν′ = 0

a 6= a′ ⇒ Haν,a′ν′ = 0

〈a, ν|H|a′, ν′〉 = H(a)
νν′δaa′

It follows that there is a basis in which both A and H are diagonalized. This is because we can diagonalize the
matrix H block by block (the diagonalizing of a specific block does not affect the rest of the matrix).

The best know examples for “separation of variables” are for the Hamiltonian of a particle in a centrally symmetric
field in 2D and in 3D. In the first case Lz is constant of motion while in the second case both (L2, Lz) are constants
of motion. The full Hamiltonian and its blocks in the first case are:

H =
1

2
p2 + V (r) =

1

2

(
p2
r +

1

r2
L2
z

)
+ V (r) (76)

H(m) =
1

2
p2
r +

m2

2r2
+ V (r) where p2

r 7→ −
1

r

∂

∂r

(
r
∂

∂r

)
(77)

The full Hamiltonian and its blocks in the second case are:

H =
1

2
p2 + V (r) =

1

2

(
p2
r +

1

r2
L2

)
+ V (r) (78)

H(ℓm) =
1

2
p2
r +

ℓ(ℓ+ 1)

2r2
+ V (r) where p2

r 7→ −
1

r

∂2

∂r2
r (79)

In both cases we have assumed units such that m = 1.



18

[4] A particle in an N site system

====== [4.1] N Site System

A site is a location where a particle can be located. If we have N = 5 sites it means that we have a 5-dimensional
Hilbert space of quantum states. Later we shall assume that the particle can ”jump” between sites. For mathematical
reasons it is conveneint to assume torus topology. This means that the next site after x = 5 is x = 1. This is also
called periodic boundary conditions.

The standard basis is the position basis. For example: |x〉 with x = 1, 2, 3, 4, 5 [mod 5]. So we can define the position
operator as follows:

x̂|x〉 = x|x〉 (80)

In this example we get:

x̂ 7→





1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5




(81)

The operation of this operator on a state vector is for example:

|ψ〉 = 7|3〉+ 5|2〉 (82)

x̂|ψ〉 = 21|3〉+ 10|2〉

====== [4.2] Translation Operators

The one-step translation operator is defined as follows:

D̂|x〉 = |x+ 1〉 (83)

For example:

D 7→





0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




(84)

and hence D|1〉 = |2〉 and D|2〉 = |3〉 and D|5〉 = |1〉. Let us consider the superposition:

|ψ〉 = 1√
5
[|1〉+ |2〉+ |3〉+ |4〉+ |5〉] (85)

It is clear that D|ψ〉 = |ψ〉. This means that ψ is an eigenstate of the translation operator (with eigenvalue ei0). The
translation operator has other eigenstates that we will discuss in the next section.
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====== [4.3] Momentum States

The momentum states are defined as follows:

|k〉 → 1√
N

eikx (86)

k =
2π

N
n, n = integer mod (N)

In the previous section we have encountered the k = 0 momentum state. In Dirac notation this is written as:

|k〉 =
∑

x

1√
N

eikx|x〉 (87)

or equivalently as:

〈x|k〉 =
1√
N

eikx (88)

While in old fashioned notation it is written as:

ψkx = 〈x|k〉 (89)

Where the upper index k identifies the state, and the lower index x is the representation index. Note that if x were
continuous then it would be written as ψk(x).

The k states are eigenstates of the translation operator. This can be proved as follows:

D|k〉 =
∑

x

D|x〉〈x|k〉 =
∑

x

|x+ 1〉 1√
N

eikx =
∑

x′

|x′〉 1√
N

eik(x
′−1) = e−ik

∑

x′

|x′〉 1√
N

eikx
′

= e−ik|k〉 (90)

Hence we get the result:

D|k〉 = e−ik|k〉 (91)

and conclude that |k〉 is an eigenstate of D̂ with an eigenvalue e−ik. Note that the number of independent eigenstates
is N . For exmaple for a 5-site system we have eik6 = eik1 .

====== [4.4] Momentum Operator

The momentum operator is defined as: p̂|k〉 ≡ k|k〉 From the relation D̂|k〉 = e−ik|k〉 it follows that D̂|k〉 = e−ip̂|k〉.
Therefore we get the operator identity:

D̂ = e−ip̂ (92)

We can also define 2-step, 3-step, and r-step translation operators as follows:

D̂(2) = (D̂)2 = e−i2p̂ (93)

D̂(3) = (D̂)3 = e−i3p̂

D̂(r) = (D̂)r = e−irp̂
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[5] The continuum limit

====== [5.1] Definition of the Wave Function

Below we will consider a site system in the continuum limit. ǫ→ 0 is the distance between the sites, and L is the length
of the system. So, the number of sites is N = L/ǫ→∞. The eigenvalues of the position operator are xi = ǫ× integer
We use the following recipe for changing a sum into an integral:

∑

i

7→
∫
dx

ǫ
(94)

|2>|1>

The definition of the position operator is:

x̂|xi〉 = xi|xi〉 (95)

The representation of a quantum state is:

|ψ〉 =
∑

i

ψi|xi〉 =

∫
dxψ(x)|x〉 (96)

where we define

ψ(xi) =
1√
ǫ
ψi (97)

|x〉 =
1√
ǫ
|xi〉 [infinite norm!] (98)

The Dirac delta function is defined as δ(0) = 1/ǫ and zero otherwise. We have orthonormality in a generalized sense,
namely 〈x|x′〉 = δ(x−x′). Note that we still have ψ(x) = 〈x|ψ〉, and the normalization of the ”wave function” is:

〈ψ|ψ〉 =
∑

x

|ψx|2 =

∫
dx

ǫ
|ψx|2 =

∫
dx|ψ(x)|2 = 1 (99)

====== [5.2] Momentum States

The definition of the momentum states using this normalization convention is:

ψk(x) =
1√
L

eikx (100)

Where the eigenvalues are:

k =
2π

L
× integer (101)
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We use the following recipe for changing a sum into an integral:

∑

k

7→
∫

dk

2π/L
(102)

We can verify the orthogonality of the momentum states:

〈k2|k1〉 =
∑

x

〈k2|x〉〈x|k1〉 =
∑

x

ψk2x
∗
ψk1x =

∫
dxψk2(x)

∗
ψk1(x) =

1

L

∫
dxei(k1−k2)x = δk2,k1 (103)

The transformation from the position basis to the momentum basis is:

Ψk = 〈k|ψ〉 =
∑

x

〈k|x〉〈x|ψ〉 =

∫
ψk(x)

∗
ψ(x)dx =

1√
L

∫
ψ(x)e−ikxdx (104)

For convenience we will define:

Ψ(k) =
√
LΨk (105)

Now we can write the above relation as a Fourier transform:

Ψ(k) =

∫
ψ(x)e−ikxdx (106)

Or, in the reverse direction:

ψ(x) =

∫
dk

2π
Ψ(k)eikx (107)

====== [5.3] Translations

We define the translation operator:

D(a)|x〉 = |x+ a〉 (108)

If |ψ〉 is represented by ψ(x) then D(a)|ψ〉 is represented by ψ(x− a). In Dirac notation we may write:

〈x|D(a)|ψ〉 = 〈x− a|ψ〉 (109)

This can obviously be proved easily by operating D† on the ”bra”. However, for pedagogical reasons we will also
present a longer proof: Given

|ψ〉 =
∑

x

ψx|x〉 (110)

Then

D(a)|ψ〉 =
∑

x

ψ(x)|x + a〉 =
∑

x′

ψ(x′ − a)|x′〉 =
∑

x

ψ(x− a)|x〉 (111)
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====== [5.4] The Momentum Operator

The momentum states are eigenstates of the translation operators:

D(a)|k〉 = e−iak|k〉 (112)

The momentum operator is defined the same as in the discrete case:

p̂|k〉 = k|k〉 (113)

Therefore the following operator identity emerges:

D̂(a) = e−iap̂ (114)

For an infinitesimal translation:

D(δa) = 1− iδap̂ (115)

We see that the momentum operator is the generator of the translations.

====== [5.5] The differential representation

In the continuum limit the operation of p can be realized by a differential operator. We have already proved the
identity:

〈x|D(a)|ψ〉 = 〈x− a|ψ〉 (116)

Therefore for an infinitesimal translation we have:

D(δa)|ψ〉 7→ ψ(x − δa) = ψ(x) − δa d
dx
ψ(x) (117)

From here it follows that

〈x|p|ψ〉 = −i d
dx
〈x|ψ〉 (118)

In other words, we have proved the following statement: The operation of p on a wavefunction is realized by the
differential operator −i(d/dx).

====== [5.6] Algebraic characterization of translations

If |x〉 is an eigenstate of x̂ with eigenvalue x, then D|x〉 is an eigenstate of x̂ with eigenvalue x+ a. In Dirac notations:

x̂(D|x〉) = (x+ a)(D|x〉) for any x (119)

Which is equivalent to:

x̂(D|x〉) = D((x̂ + a)|x〉) for any x (120)
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Therefore the following operator identity is implied:

x̂ D = D (x̂+ a) (121)

Which can also be written as

[x̂, D] = aD (122)

The opposite is correct too: if an operator D fulfills the above relation with another operator x, then the former is a
translation operator with respect to the latter, where a is the translation distance.

The above characterization applies to any type of translation operators, include ”raising/lowering” operators which
are not necessarily unitary. A nicer variation of the algebraic relation that characterizes a translation operator is
obtained if D is unitary:

D−1x̂D = x̂+ a (123)

If we write the infinitesimal version of this operator relation, by substituting D(δa) = 1− iδap̂ and expanding to the
first order, then we get the following commutation relation:

[x̂, p̂] = i (124)

The commutation relations allow us to understand the operation of operators without having to actually use them on
wave functions.

====== [5.7] Vector Operators

Up to now we have discussed the representation of a a particle which is confined to move in a one dimensional
geometry. The generalization to a system with three geometrical dimensions is straightforward.

|x, y, z〉 = |x〉 ⊗ |y〉 ⊗ |z〉 (125)

x̂|x, y, z〉 = x|x, y, z〉
ŷ|x, y, z〉 = y|x, y, z〉
ẑ|x, y, z〉 = z|x, y, z〉

We define a ”vector operator” which is actually a ”package” of three operators:

r̂ = (x̂, ŷ, ẑ) (126)

And similarly:

p̂ = (p̂x, p̂y, p̂z) (127)

v̂ = (v̂x, v̂y, v̂z)

Â = (Âx, Ây, Âz)

Sometimes an operator is defined as a function of other operators:

Â = A(r̂) = (Ax(x̂, ŷ, ẑ), Ay(x̂, ŷ, ẑ), Az(x̂, ŷ, ẑ)) (128)

For example Â = r̂/|r̂|3. We also note that the following notation is commonly used:

p̂2 = p̂ · p̂ = p̂2
x + p̂2

y + p̂2
z (129)
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====== [5.8] The Translation Operator in 3-D

The translation operator in 3-D is defined as:

D̂(a)|r〉 = |r + a〉 (130)

An infinitesimal translation can be written as:

D̂(δa) = e−iδaxp̂xe−iδay p̂y e−iδaz p̂z (131)

= 1̂− iδaxp̂x − iδay p̂y − iδaz p̂z = 1̂− iδa · p̂

The matrix elements of the translation operator are:

〈r|D(a)|r′〉 = δ3(r− (r′ + a)) (132)

====== [5.9] The Matrix Elements of the Momentum Operator

In one dimension, the matrix elements of the translation operator are:

〈x|D(a)|x′〉 = δ((x− x′)− a) (133)

For an infinitesimal translation we write:

〈x|(1̂ − iδap̂)|x′〉 = δ(x− x′)− δaδ′(x− x′) (134)

So that we get:

〈x|p̂|x′〉 = −iδ′(x − x′) (135)

We notice that the delta function is symmetric, so its derivative is anti-symmetric. In analogy to multiplying a
matrix with a column vector we write: Â|Ψ〉 7→∑

j AijΨj . Let us examine how the momentum opertor operates on
a ”wavefunction”:

p̂|Ψ〉 7→
∑

x′

p̂xx′Ψx′ =

∫
〈x|p̂|x′〉Ψ(x′)dx′ = (136)

= −i
∫
δ′(x− x′)Ψ(x′)dx′ = i

∫
δ′(x′ − x)Ψ(x′)dx′

= −i
∫
δ(x′ − x) ∂

∂x′
Ψ(x′)dx′ = −i ∂

∂x
Ψ(x)

Therefore:

p̂|Ψ〉 7→ −i ∂
∂x

Ψ(x) (137)

The generalization of the previous section to three dimensions is straightforward:

p̂|Ψ〉 7→
(
−i ∂
∂x

Ψ,−i ∂
∂y

Ψ,−i ∂
∂z

Ψ

)
(138)

or in simpler noation p̂|Ψ〉 7→ −i∇Ψ. We also notice that p2|Ψ〉 7→ −∇2Ψ.
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[6] Rotations

====== [6.1] Euclidean Rotation Matrix

The Euclidean Rotation Matrix RE(~Φ) is a 3× 3 matrix that rotates the vector r.




x′

y′

z′



 =

(
ROTATION
MATRIX

)


x
y
z



 (139)

The Euclidean matrices constitute a representation of dimension 3 of the rotation group. The parametrization of a

rotation is done using three numbers which are kept in a vector: ~Φ. The three parameters are: Two parameters of
the axis of rotation: θ, ϕ. How much to rotate (the length of the vector): Φ.

~Φ = Φ~n = Φ(sin θ cosφ, sin θ sinφ, cos θ) (140)

A 3× 3 small angle rotation of r can be written as:

RE(δ~Φ)r = r + δ~Φ× r (141)

====== [6.2] The Rotation Operator Over the Hilbert Space

The rotation operator over the Hilbert space is defined (in analogy to the translation operator) as:

R̂(~Φ)|r〉 ≡ |RE(~Φ)r〉 (142)

This operator operates over an infinite dimension Hilbert space (the standard basis is an infinite number of ”sites” in
the three-dimensional physical space). Therefore, it is represented by an infinite dimension matrix:

Rr′r = 〈r′|R̂|r〉 = 〈r′|REr〉 = δ(r′ −REr) (143)

That is in direct analogy to the translation operator which is represented by the matrix:

Dr′r = 〈r′|D̂|r〉 = 〈r′|r + a〉 = δ(r′ − (r + a)) (144)

As discussed in a previous section if a wavefunction ψ(r) is translated by D(a) then it becomes ψ(r− a). In complete
analogy, if the wavefunction is rotated by R(Φ), then it becomes ψ(RE(−Φ)r).

====== [6.3] Which Operator is the Generator of Rotations?

The generator of rotations (the ”angular momentum operator”) is defined in analogy to the definition of the generator
of translations (the ”linear momentum operator”). In order to define the generator of rotations around the axis n we
will look at an infinitesimal rotation of an angle δΦ~n. An infinitesimal rotation is written as:

R(δΦ~n) = 1− iδΦLn (145)

Below we will prove that the generator of rotations around the axis n is:

Ln = ~n · (r× p) (146)
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Where:

r̂ = (x̂, ŷ, ẑ) (147)

p̂ = (p̂x, p̂y, p̂z)

Proof: We shall show that both sides of the equation give the same result if they operate on any basis state |r〉. This
means that we have an operator identity.

R(δ~Φ)|r〉 = |RE( ~δΦ)r〉 = |r + δ~Φ× r〉 = D(δ~Φ× r)|r〉 (148)

= [1̂− i(δ~Φ× r) · p̂]|r〉 = [1̂− ip̂ · δ~Φ× r]|r〉 = [1̂− ip̂ · δ~Φ× r̂]|r〉

So we get the following operator identity:

R(δ~Φ) = 1̂− ip̂ · δ~Φ× r̂ (149)

Which can also be written (by exploiting the cyclic property of the triple vectorial multiplication):

R(δ~Φ) = 1̂− iδ~Φ · (r̂× p̂) (150)

From here we get the desired result. Note: The more common procedure to derive this identity is based on expanding
the rotated wavefunction ψ(RE(−δΦ)r) = ψ(r − δΦ× r), and exploiting the association p 7→ −i∇.

====== [6.4] Algebraic characterization of rotations

A unitary operator D̂ realizes a translation in the basis which is determined by an observable x̂ if we have the equality

D̂|x〉 = |x+ a〉 for any x (151)

This means that D̂|x〉 is an eigenstate of x̂ with an eigenvalue x+ a, which can be written as x̂[D̂|x〉] = (x+ a)[D̂|x〉],
or as x̂D̂|x〉 = D̂(x̂+ a)|x〉. Therefore an equivalent way to write the defining condition of a translation operator is

x̂D̂ = D̂(x̂+ a) (152)

or

D̂−1x̂D̂ = x̂+ a (153)

By considering an infinitesimal translation we get another way of writing the same thing:

[p̂, x̂] = −i (154)

In complete analogy, a unitary operator R̂ realizes rotation Φ in the basis which is determined by an observable x̂. If
we have the equality

R̂|r〉 = |REr〉 for any r (155)

where RE is the Euclidean rotation matrix. This can be written as

R̂−1r̂iR̂ = REij r̂j (156)
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(with implicit summation over j). By considering an infinitesimal rotation we get another way of writing the same
thing:

[Ĵj , r̂i] = −iǫijkr̂k (157)

Thus in order to know if J generates rotations of eigenstates of a 3-component observable A, we have to check if the
following algebraic relation is fulfilled:

[Ĵi, Âj ] = iǫijkÂk (158)

(for convenience we have interchanged the order of indices).

====== [6.5] Scalars, Vectors, and Tensor Operators

We can classify operators according to the way that they transform under rotations. The simplest possibility is a
scalar operator C. It has the defining property

R̂−1ĈR̂ = Ĉ (159)

for any rotation, which means that

[Ji, C] = 0 (160)

Similarly the defining property of a vector is

R̂−1ÂiR̂ = REijÂj (161)

for any rotation, which means that

[Ĵi, Âj ] = iǫijkÂk (162)

The generalization of this idea leads to the notion of a tensor. A multicomponent observer is a tensor of rank ℓ, if it
transforms according to the Rℓij representation of rotations. Hence a tensor of rank ℓ should have 2ℓ+ 1 components.
In the special case of a 3-component ”vector”, as discussed above, the transformation is done using the Euclidean
matrices REij .

It is easy to prove that if A and B are vector operators, then C = A · B is a scalar operator. We can prove it either
directly, or by using the commutation relations. The generalization of this idea to tensors leads to the notion of
”contraction of indices”.

====== [6.6] Wigner-Eckart Theorem

If we know the transformation properties of an operator, it has implications on its matrix elements. In the case of a
scalar the operator C should be diagonal in the basis |j,m〉:

Cm′m = c δm′m within a given j irreducible subspace (163)

else it would follow from the “separation of variables theorem” that all the generators (Ji) are block-diagonal in the
same basis. Note that within the pre-specified subspace we can write c = 〈C〉, where the expectation value can be
taken with any state. A similar theorem applies to a vector operator A. Namely,

[Ak]m′m = g × [Jk]m′m within a given j irreducible subspace (164)
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How can we determine the coefficient g? We simply observe that from the last equation it follows that

[A · J ]m′m = g [J2]m′m = g j(j + 1) δm′m (165)

in agreement with what we had claimed regarding scalars in general. Therefore we get the formula

g =
〈J · A〉
j(j + 1)

(166)

where the expectation value of the scalar can be calculated with any state.

The direct proof of the Wigner-Eckart theorem, as e.g. in Cohen-Tannoudji, is extremely lengthy. Here we propose
a very short proof that can be regarded as a variation on what we call the ”separation of variable theorem”. From
[Ax, Jx] = 0 we deduce that Ax is diagonal in the Jx basis, so we can write this relation as Ax = f(Jx). The rotational
invariance implies that the same function f() related Ay to Jy and Az to Jz. Next we realize that for a vector operator
[Jz, A+] = A+ where A+ = Ax + iAy. It follows that A+ is a raising operator in the Jz basis, and therefore must
be expressible as A+ = g(Jz)[Jx + iJy], where g() is some function. It is clear that the only way to satisfy the
equality f(Jx) + if(Jy) = g(Jz)[Jx + iJy], is to have f(X) = gX and g(X) = g, where g is a constant. Hence the
Wigner-Eckart theorem is proved.
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Fundamentals (part II)

[7] Quantum states / EPR / Bell / postulates

====== [7.1] Is the world classical? (EPR, Bell)

We would like to examine whether the world we live in is “classical” or not. The notion of classical world includes
mainly two ingredients: (i) realism (ii) determinism. By realism we means that any quantity that can be measured
is well defined even if we do not measure it in practice. By determinism we mean that the result of a measurement
is determined in a definite way by the state of the system and by the measurement setup. We shall see later that
quantum mechanics is not classical in both respects: In the case of spin 1/2 we cannot associate a definite value of
σ̂y for a spin which has been polarized in the σ̂x direction. Moreover, if we measure the σ̂y of a σ̂x polarized spin, we
get with equal probability ±1 as the result.

In this section we would like to assume that our world is ”classical”. Also we would like to assume that interactions
cannot travel faster than light. In some textbooks the latter is called ”locality of the interactions” or ”causality”. It
has been found by Bell that the two assumptions lead to an inequality that can be tested experimentally. It turns
out from actual experiments that Bell’s inequality are violated. This means that our world is either non-classical or
else we have to assume that interactions can travel faster than light.

If the world is classical it follows that for any set of initial conditions a given measurement would yield a definite
result. Whether or not we know how to predict or calculate the outcome of a possible measurement is not assumed.
To be specific let us consider a particle of zero spin, which disintegrates into two particles going in opposite directions,
each with spin 1/2. Let us assume that each spin is described by a set of state variables.

state of particle A = xA1 , x
A
2 , ... (167)

state of particle B = xB1 , x
B
2 , ...

The number of state variables might be very big, but it is assumed to be a finite set. Possibly we are not aware or
not able to measure some of these “hidden” variables.

Since we possibly do not have total control over the disintegration, the emerging state of the two particles is described
by a joint probability function ρ

(
xA1 , ..., x

B
1 , ...

)
. We assume that the particles do not affect each other after the

disintegration (“causality” assumption). We measure the spin of each of the particles using a Stern-Gerlach apparatus.
The measurement can yield either 1 or −1. For the first particle the measurement outcome will be denoted as a,
and for the second particle it will be denoted as b. It is assumed that the outcomes a and b are determined in a
deterministic fashion. Namely, given the state variables of the particle and the orientation θ of the apparatus we have

a = a(θA) = f(θA, x
A
1 , x

A
2 , ...) = ±1 (168)

b = b(θB) = f(θB, x
B
1 , x

B
2 , ...) = ±1

where the function f() is possibly very complicated. If we put the Stern-Gerlach machine in a different orientation
then we will get different results:

a′ = a(θ′A) = f
(
θ′A, x

A
1 , x

A
2 , ...

)
= ±1 (169)

b′ = b(θ′B) = f
(
θ′B , x

B
1 , x

B
2 , ...

)
= ±1

We have following innocent identity:

ab+ ab′ + a′b− a′b′ = ±2 (170)

The proof is as follows: if b = b′ the sum is ±2a, while if b = −b′ the sum is ±2a′. Though this identity looks innocent,
it is completely non trivial. It assumes both ”reality” and ”causality” This becomes more manifest if we write this
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identity as

a(θA)b(θB) + a(θA)b(θ′B) + a(θ′A)b(θB)− a(θ′A)b(θ′B) = ±2 (171)

The realism is reflected by the assumption that both a(θA) and a(θ′A) have definite values, though it is clear that in
practice we can measure either a(θA) or a(θ′A), but not both. The causality is reflected by assuming that a depends
on θA but not on the distant setup parameter θB.

Let us assume that we have conducted this experiment many times. Since we have a joint probability distribution ρ,
we can calculate average values, for instance:

〈ab〉 =
∫
ρ
(
xA1 , ..., x

B
1 , ...

)
f
(
θA, x

A
1 , ...

)
f
(
θB , x

B
1 , ...

)
(172)

Thus we get that the following inequality should hold:

|〈ab〉+ 〈ab′〉+ 〈a′b〉 − 〈a′b′〉| ≤ 2 (173)

This is called Bell’s inequality. Let us see whether it is consistent with quantum mechanics. We assume that all the
pairs are generated in a singlet (zero angular momentum) state. It is not difficult to calculate the expectation values.
The result is

〈ab〉 = − cos(θA − θB) ≡ C(θA − θB) (174)

we have for example

C(0o) = −1 (175)

C(45o) = − 1√
2

C(90o) = 0

C(180o) = +1

If the world were classical the Bell’s inequality would imply

|C(θA − θB) + C(θA − θ′B) + C(θ′A − θB) + C(θ′A − θ′B)| ≤ 2 (176)

Let us take θA = 0o and θB = 45o and θ′A = 90o and θ′B = −45o. Assuming that quantum mechanics holds we get

∣∣∣∣

(
− 1√

2

)
+

(
− 1√

2

)
+

(
− 1√

2

)
−
(

+
1√
2

)∣∣∣∣ = 2
√

2 > 2 (177)

It turns out, on the basis of celebrated experiments that Nature has chosen to violate Bell’s inequality. Furthermore
it seems that the results of the experiments are consistent with the predictions of quantum mechanics. Assuming that
we do not want to admit that interactions can travel faster than light it follows that our world is not classical.
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====== [7.2] The notion of quantum state

A-priory we can classify the possible ”statistical states” of a prepared system as follows:

• Classical state: any measurement gives a definite value.

• Pure state: there is a complete set of measurements that give definite value, while any other measurement gives
an uncertain value.

• Mixture: it is not possible to find a complete set of measurements that give a definite value.

When we go to Nature we find that classical states do not exist. The best we can get are ”pure states”. For example the
best we can have with the spin of an electron is 100% polarization (say) in the X direction, but then any measurement
in any different direction gives an uncertain result, except the −X direction which we call the ”orthogonal” direction.
Consequently we are inclined to postulate that polarization (say) in the non-orthogonal Z direction is a superposition
of the orthogonal X and −X states. Similarly with photons we are inclined to postulate that linear polarization
in the 45o direction is a superposition of the orthogonal X polarization and Y polarization states. With the same
reasoning, and on the basis of the “two slit experiment” phenomenology, we postulate that a particle can be in a
superposition state of two different locations. The only subtlety here is that superposition of different locations is
not another location but rather (say) a momentum state, while superposition of different polarizations states is still
another polarization state. Note however that also with higher spins (say spin 1), the superposition of polarized states
can give a different type of polarization (linear / circular / elliptic).

Having postulated that all possible pure states can be regarded as forming an Hilbert space, it still does not help us to
define the notion of quantum state in the statistical sense. We need a second postulate that would imply the following:
If a full set of measurements is performed (in the statistical sense), then one should be able to predict (in the statistical
sense) the result of any other measurement. For example, in the case of spins 1/2, say that I measure the average
polarization Mi in the i = X,Y, Z directions. Can one predict the result for Mn, where n is a unit vector pointing
in an arbitrary direction. According to the second postulate of quantum mechanics (see next section) the answer is
positive. Indeed experiments reveal that Mn = n ·M . Taking together the above two postulates, our objective would
be to derive and predict such linear relations from our conception of Hilbert space. In the spin 1/2 example we would
like to view Mn = n ·M as arising from the dim=2 representation of the rotation group. Furthermore, we would like
to derive more complicated relations that would apply to other representations (higher spins).

====== [7.3] The four Postulates of Quantum Mechanics

The 18th century version classical mechanics can be derived from three postulates: The three laws of Newton. The
better formulated 19th century version of classical mechanics can be derived from three postulates: (1) The state
of classical particles is determined by the specification of their positions and its velocities; (2) The trajectories are
determined by a minimum action principle. (3) The form of the Lagrangian of the theory is determined by symmetry
considerations, namely Galilei invariance in the non-relativistic case. See the Mechanics book of Landau and Lifshitz
for details.

Quantum mechanically requires four postulates: Two postulates define the notion of quantum state, while the other
two postulates, in analogy with classical mechanics, are about the laws that govern the evolution of quantum me-
chanical systems. The four postulates are:

(1) The collection of ”pure” states is a linear space (Hilbert).

(2) The expectation values of observables obey linearity: 〈αX̂ + βŶ 〉 = α〈X̂〉+ β〈Ŷ 〉

(3) The evolution in time obey the superposition principle: α|Ψ0〉+ β|Φ0〉 → α|Ψt〉+ β|Φt〉

(4) The dynamics of a system is invariant under specific transformations (”gauge”, ”Galilei”).

The first postulates refer to ”pure states”. These are states that have been filtered. The filtering is called ”prepara-
tion”. For example: we take a beam of electrons. Without ”filtering” the beam is not polarized. If we measure the
spin we will find (in any orientation of the measurement apparatus) that the polarization is zero. On the other hand,
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if we ”filter” the beam (e.g. in the left direction) then there is a direction for which we will get a definite result (in
the above example, in the right/left direction). In that case we say that there is full polarization - a pure state. The
”uncertainty principle” tells us that if in a specific measurement we get a definite result (in the above example, in
the right/left direction), then there are different measurements (in the above example, in the up/down direction) for
which the result is uncertain. The uncertainty principle is implied by postulate [1].

The second postulate use the notion of ”expectation value” that refers to ”quantum measurement”. In contrast with
classical mechanics, the measurement has meaning only in a statistical sense. We measure ”states” in the following
way: we prepare a collection of systems that were all prepared in the same way. We make the measurement on all the
”copies”. The outcome of the measurement is an event x̂ = x that can be characterized by a distribution function.
The single event can show that a particular outcome has a non-zero probability, but cannot provide full information
on the state of the system. For example, if we measured the spin of a single electron and get σ̂z = 1, it does not mean
that the state is polarized ”up”. In order to know if the electron is polarized we must measure a large number of
electrons that were prepared in an identical way. If only 50% of the events give σ̂z = 1 we should conclude that there
is no definite polarization in the direction we measured!

====== [7.4] Observables as random variables

Observable is a random variable that can have upon measurement a real numerical value. In other words x̂ = x
is an event. Let’s assume, for example, that we have a particle that can be in one of five sites: x = 1, 2, 3, 4, 5. An
experimenter could measure Prob(x̂ = 3) or Prob(p̂ = 3(2π/5)). Another example is a measurement of the probability
Prob(σ̂z = 1) that the particle will have spin up.

The collection of values of x is called the spectrum of values of the observable. We make the distinction between
random variables with a discrete spectrum, and random variables with a continuous spectrum. The probability
function for a random variable with a discrete spectrum is defined as:

f(x) = Prob(x̂ = x) (178)

The probability density function for a random variable with a continuous spectrum is defined as:

f(x)dx = Prob(x < x̂ < x+ dx) (179)

The expectation value of a variable is defined as:

〈x〉 =
∑

x

f(x)x (180)

where the sum should be understood as an integral
∫
dx in the case the x has a continuous spectrum. Of particular

importance is the random variable

P̂ x = δx̂,x (181)

This random variable equals 1 if x̂ = x and zero otherwise. It expectation value is the probability to get 1, namely

f(x) = 〈P̂ x〉 (182)

Note that x̂ can be expressed as the linear combination
∑
x xP̂

x.
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====== [7.5] Observables as operators

In the quantum mechanical treatment we regard the observable x̂ as an operator. Namely we define its operation on
the basis states as x̂|x〉 = x|x〉, and by linearity its operation is defined on any other state. In particular if follows

that P̂ x are projectors. For example

x̂ 7→




1 0 0
0 2 0
0 0 3



 ; P̂ 1 7→




1 0 0
0 0 0
0 0 0



 ; P̂ 2 7→




0 0 0
0 1 0
0 0 0



 ; P̂ 3 7→




0 0 0
0 0 0
0 0 1



 ; (183)

Thus the first postulate of Quantum Mechanics implies that with any observable we can associate an Hermitian
operator that belongs to an N2-dimensional space of operators. The linear relations between different basis sets
translate into a linear relations between operators. Accordingly we can span the whole space of observables by any
set of N2 independent operators P̂ r. These may but do not have to be projectors: for example in the dim = 2 case
it is convenient to take {1, σ̂1, σ̂2, σ̂3} as the basis set.

From the second postulate of Quantum mechanics it follows that if Â =
∑

r arP̂
r then

〈Â〉 =
∑

r

arρr (184)

where the set of N2 expectation values ρr ≡ 〈P̂ r〉 fully characterizes the quantum state. In the dim = 2 case it is

implied that any expectation value can be calculated using a linear relation of the form 〈Â〉 = a0 + a ·M , where
M = (〈σ̂1〉, 〈σ̂2〉, 〈σ̂3〉) is the polarization vector. More generally we can create a package ρ = {ρr} which we call
probability matrix. The term “matrix” is used because in general the label r that distinguishes the N2 basis operators
is composed of two indexes. The definition of ρ is further discussed in the following section. First we recall the
definition of the corresponding object in classical statistical mechanics, and then we turn to the quantum mechanical
definition.

====== [7.6] Quantum Versus Statistical Mechanics

Quantum mechanics stands opposite classical statistical mechanics. A particle is described in classical statistical
mechanics by a probability function:

ρ(x, p)dxdp = Prob(x < x̂ < x+ dx, p < p̂ < p+ dp) (185)

Optionally this definition can be expressed as the expectation value of a phase space projector

ρ(x, p) = 〈 δ(x̂− x) δ(p̂− p) 〉 (186)

The expectation value of a random variable Â = A(x̂, p̂) is calculated using the definition:

〈Â〉 =
∫
A(x, p)ρ(x, p)dxdp (187)

From this follows the linear relation:

〈αÂ+ βB̂〉 = α〈Â〉+ β〈B̂〉 (188)

We see that the linear relation of the expectation values is a trivial result of classical probability theory. It assumes
that a joint probability function can be defined. But in quantum mechanics we cannot define a ”quantum state”
using a joint probability function, as implied by the observation that our world is not “classical”. For example we
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cannot have both the location and the momentum we defined simultaneously. For this reason, we have to use a more
sophisticated definition of ρ. The more sophisticated definition is based on regarding ρ as the expectation value of
projector, and taking the linearity of the expectation value as a postulate.

====== [7.7] Definition of the probability matrix

The definition of ρ in quantum mechanics is based on the trivial observation that and observable A can be written as a
linear combination of N2 − 1 independent projectors. If we make N2 − 1 independent measurements over a complete
set of projectors, then we can predict the result of any other measurement. The possibility to make a prediction is
based on taking the linearity of the expectation value as a postulate. The above statement is explained below, but
the best is to consider the N = 2 example that comes later.

Any Hermitian operator can be written as a combination of N2 operators as follows:

A =
∑

i,j

|i〉〈i|A|j〉〈j| =
∑

i,j

AijP
ji (189)

Where P ji = |i〉〈j|. We notice that the P i = P ii = |i〉〈i| are elementary projectors on the basis states. They fulfill

the relation
∑
i P

i = 1̂. The rest of the operators can be written as P ij = X + iY . Note that the adjoint opera-
tors are P ji = X − iY . So for each combination of ij we have two hermitian operators X and Y . We can write
X = 2P x − P i − P j, and Y = 2P y − P i − P j where P x and P y are elementary projectors. Thus we have established
that the operator A is a combination of the N + 2[N(N−1)/2] = N2 projectors {P i, P x, P y} with one constraint. If
we make N2 − 1 independent measurements of these projectors we can predict the result of any other measurement
according to the equation:

〈A〉 =
∑

i,j

Aijρji = trace(Aρ) (190)

Where ρ is the probability matrix. Each entry in the probability matrix is a linear combination of expectation values
of projectors. Note that the expectation value of a projector P = |ψ〉〈ψ| is the probability to find the systems in the
state |ψ〉.

====== [7.8] Example: the quantum state of spin 1
2

We will look at a two-site system, and write the matrix:

(
a b
c d

)
in the following way:

(
a b
c d

)
= a ·

(
1 0
0 0

)
+ b ·

(
0 1
0 0

)
+ c ·

(
0 0
1 0

)
+ d ·

(
0 0
0 1

)
(191)

We may write the basis of this space in a more convenient form. For this reason we will define the Pauli matrices:

1̂ =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(192)

We note that these matrices are all Hermitian.

Any operator can be written as a linear combination of the Pauli matrices:

Â = c1̂ + ασx + βσy + γσz (193)

If the operator A is Hermitian then the coefficients of the combination are real. We see that in order to determine
the quantum state of spin 1

2 we must make three independent measurements, say of σx,y,z. Then we can predict the
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result of any other measurement by:

〈A〉 = c+ α〈σx〉+ β〈σy〉+ γ〈σz〉 (194)

One way of ”packaging” the 3 independent measurements is the polarization vector:

~M = (〈σx〉, 〈σy〉, 〈σz〉) (195)

But the standard ”package” is the probability matrix whose elements are the expectation values of:

P ↑↑ = | ↑〉〈↑ | =
(

1 0
0 0

)
=

1

2
(1 + σz) = P z (196)

P ↓↓ = | ↓〉〈↓ | =
(

0 0
0 1

)
=

1

2
(1 − σz) = 1− P z

P ↓↑ = | ↑〉〈↓ | =
(

0 1
0 0

)
=

1

2
(σx + iσy) =

1

2
(2P x − 1) +

i

2
(2P y − 1)

P ↑↓ = | ↓〉〈↑ | =
(

0 0
1 0

)
=

1

2
(σx − iσy) =

1

2
(2P x − 1)− i

2
(2P y − 1)

We get the following relation between the two types of ”packages”:

ρ = 〈P ji〉 =

(
1
2 (1 +M3)

1
2 (M1 − iM2)

1
2 (M1 + iM2)

1
2 (1−M3)

)
=

1

2
(1̂ + ~M · ~σ) (197)

====== [7.9] Pure states as opposed to mixed states

After diagonalization, the probability matrix can be written as:

ρ→





p1 0 0 .
0 p2 0 .
0 0 p3 .
. . . .

.
.




(198)

The convention is to order the diagonal elements in descending order. Using the common jargon we say that the state
represented by ρ is a mixture of |1〉, |2〉, |3〉, . . . with weights p1, p2, p3, . . .. The most well known mixed state is the
canonical state:

pr =
1

Z
e−βEr (199)

Where β = kBT . A ”pure state” is the special case where the probability matrix after diagonalization is of the form:

ρ→





1 0 0 .
0 0 0 .
0 0 0 .
. . . .

.
.




(200)
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This may be written in a more compact way as ρ = |1〉〈1| = |ψ〉〈ψ| = Pψ. Note that 〈Pψ〉 = 1. This means a definite
outcome for a measurement that is aimed in checking whether the particle is in state ”1”. That is why we say that
the state is pure.

====== [7.10] Various versions of the expectation value formula

[1] The standard version of the expectation value formula:

〈A〉 = tr(Aρ) (201)

[2] The ”mixture” formula:

〈A〉 =
∑

r

pr〈r|A|r〉 (202)

[3] The ”sandwich” formula:

〈A〉ψ = 〈ψ|A|ψ〉 (203)

[4] The ”projection” formula:

Prob(φ|ψ) = |〈φ|ψ〉|2 (204)

The equivalence of statements 1-4 can be proved. In particular let us see how we go from the fourth statement to the
third:

〈A〉ψ =
∑

a

Prob(a|ψ)a =
∑

a

|〈a|ψ〉|2a = 〈ψ|A|ψ〉 (205)
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[8] The evolution of quantum mechanical states

====== [8.1] The Evolution Operator and the Hamiltonian

We will discuss a particle in site |1〉. If we multiply the basis vector by a constant, for example −8, we will get a new
basis: |1̃〉 = −8|1〉 which isn’t normalized and therefore not convenient to work with. Explanation: if we represent
the state |ψ〉 as a linear combination of normalized basis vectors |ψ〉 =

∑
j ψj |j〉, then we can find the coefficients of

the combination by using the following formula: ψi = 〈i|ψ〉.

Even if we decide to work with ”normalized” states, there is still a some freedom left which is called ”gauge freedom”
or ”phase freedom”. We will consider the state | ↑〉 and the state e

π
8 i| ↑〉. For these states ρ is the same: Multiplying

a vector-state with a phase factor does not change any physical expectation value.

From the superposition principle and what was said above regarding the normalization, it follows that the evolution
in quantum mechanics will be described by a unitary operator.

|ψt=0〉 → |ψt〉 (206)

|ψt〉 = U |ψt=0〉

In order to simplify the discussion we will assume that the environmental conditions are constant (constant fields in
time). In such a case, the evolution operator must fulfill:

U(t2 + t1) = U(t2)U(t1) (207)

It follows that the evolution operator can be written as

U(t) = e−itH (208)

Where H is called the Hamiltonian or ”generator” of the evolution.

Proof: The ”constructive” way of proving the last formula is as follows: In order to know the evolution of a system
from t1 to t2 we divide the time interval into many small intervals of equal size dt = (t2 − t1)/N . This means that:

U(t2, t1) = U(t2, t2 − dt) · · · U(t1 + 2dt, t1 + dt)U(t1 + dt, t1) (209)

The evolution during an infinitesimal time interval can be written as:

U(dt) = 1̂− idtH = e−idtH (210)

In other words, the Hamiltonian is the evolution per unit of time. Or we may say that H is the derivative of U with
respect to time. By multiplying many infinitesimal time steps we get:

Û = (1− idtH) · · · (1− idtH)(1 − idtH) = e−idtH · · · e−idtHe−idtH = e−itH (211)

Where we have assumed that the Hamiltonian does not change in time, so that the multiplication of exponents can
be changed into a single exponent with a sum of powers. We remember that that this is actually the definition of the
exponential function in mathematics: exp(t) = (1 + t/N)N .

====== [8.2] The Schrödinger Equation

Consider the evolution of a pure state:

ψt+dt = (I − idtH)ψt (212)

dψ

dt
= −iHψ
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This is the Schrödinger equation. For a general mixture

ρ =
∑

r

|r〉pr〈r| (213)

we have

|r〉 → U |r〉, 〈r| → 〈r|U † (214)

Therfore the evolution of ρ in time is:

ρt = Uρt=0U
† (215)

dρ

dt
= −i[H, ρ]

This is Liouville Von-Neumann equation. One of its advantages is that the correspondence between the formalism of
statistical mechanics and quantum mechanics becomes explicit. The difference is that in quantum mechanics we deal
with a probability matrix whereas in mechanical statistics we deal with a probability function.

====== [8.3] Stationary States (the ”Energy Basis”)

We can find the eigenstates |n〉 and the eigenvalues En of a Hamiltonian by diagonalizing it.

H|n〉 = En|n〉 (216)

U |n〉 = e−iEnt|n〉
U → δnme−iEnt

Using Dirac notation:

〈n|U |m〉 = δnme−iEnt (217)

If we prepare a state that is a superposition of basis states:

|ψt=0〉 =
∑

n

ψn|n〉 (218)

we get after time t

|ψ(t)〉 =
∑

n

e−iEntψn|n〉 (219)

====== [8.4] Rate of change of the expectation value

For any operator Â we define an operator B̂:

B̂ = i[Ĥ, Â] +
∂A

∂t
(220)
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such that

d〈Â〉
dt

= 〈B̂〉 (221)

proof: From the expectation value formula:

〈Â〉t = trace(Âρ(t)) (222)

We get

d

dt
〈Â〉t = trace(

∂A

∂t
ρ(t)) + trace(Â

dρ(t)

dt
) (223)

= trace(
∂A

∂t
ρ(t))− itrace(A[H, ρ(t)])

= trace(
∂A

∂t
ρ(t)) + itrace([H, A]ρ(t))

= 〈∂A
∂t
〉+ i〈[H, A]〉

Where we have used Liouville’s equation and the cyclic property of the trace. Alternatively, if the state is pure we
can write:

〈Â〉t = 〈ψ(t)|Â|ψ(t)〉 (224)

and then we get

d

dt
〈Â〉 = 〈 d

dt
ψ|Â|ψ〉+ 〈ψ|A| d

dt
ψ〉+ 〈ψ|∂A

∂t
|ψ〉 (225)

= i〈ψ|HA|ψ〉 − i〈ψ|AH|ψ〉+ 〈ψ|∂A
∂t
|ψ〉

Where we have used the Schrödinger equation.

We would like to highlight the distinction between a full derivative and a partial derivative. Let’s assume that there
is an operator that perhaps represents a field that depends on the time t:

Â = x̂2 + tx̂8 (226)

Then the partial derivative with respect to t is:

∂A

∂t
= x̂8 (227)

While the total derivative of 〈Â〉 takes into account the change in the quantum state too.

====== [8.5] Definition of generalized forces

We would like to know how the system’s energy changes when we change one of the parameters (X) that the
Hamiltonian (H) depends on. We define the generalized force F as

F = −∂H
∂X

(228)
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We remember that the rate of change formula for an operator A is:

d〈Â〉
dt

=

〈
i[Ĥ, Â] +

∂Â

∂t

〉
(229)

In particular, the rate of change of the energy is:

dE

dt
=
d〈Ĥ〉
dt

=

〈
i[Ĥ, Ĥ] +

∂H
∂t

〉
=

〈
∂H
∂t

〉
= Ẋ

〈
∂H
∂X

〉
= −Ẋ 〈F〉 (230)

If E(0) is the energy at time t = 0 we can calculate the energy E(t) at a later time, and the work W :

W = −(E(t)− E(0)) =

∫
〈F〉 Ẋdt =

∫
〈F〉 dX (231)

A ”Newtonian force” is associated with the displacement of a piston. A generalized force called ”pressure” is associated
with the change of the volume of a box. A generalized force called ”polarization” is associated with the change in an
electric field. A generalized force called ”magnetization” is associated with the change in a magnetic field.

====== [8.6] Definition of currents

There are two ways to define ”current” operators. The ”probability current” is defined via the rate of change of the
occupation operator (see discussion of the ”continuity equation” in a later section). The ”electrical current” is defined
as the generalized force associated with the change in a magnetic flux, as explained below.

Lets assume that at a moment t the flux is Φ, and that at the moment t+ dt the flux is Φ + dΦ. The electromotive
force (measured in volts) is according to Faraday’s law:

EMF = −dΦ
dt

(232)

If the electrical current is I then the amount of charge that has been displaced is:

dQ = Idt (233)

Therefore the work which is done is:

W = EMF× dQ = IdΦ (234)

This formula implies that the generalized force which is associated with the change of magnetic flux is in fact the
electrical current. Note the analogy between flux and magnetic field, and hence between current and magnetization.
In fact one can regard the current in the ring as the ”magnetization” of a spinning charge.

====== [8.7] How do we know what the Hamiltonian is?

We construct the Hamiltonian from ”symmetry” considerations. In the next lecture our object will be to show that
the Hamiltonian of a non-relativistic particle is of the form:

H =
1

2m
(p−A(x))2 + V (x) (235)

In this lecture we will discuss a simpler case: the Hamiltonian of a particle in a two-site system. We will make the
following assumptions about the two-site dynamics:
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• The system is symmetric with respect to reflection.
• The particle can move from site to site.

These two assumptions determine the form of the Hamiltonian. In addition, we will see how ”gauge” considerations
can make the Hamiltonian simpler, without loss of generality.

First note that because of gauge considerations, the Hamiltonian can only be determined up to a constant.

H → H+ ǫ01̂ (236)

Namely, if we add a constant to a Hamiltonian, then the evolution operator only changes by a global phase factor:

U(t)→ e−it(H+ǫ01̂) = e−iǫ0te−itH (237)

This global phase factor can be gauged away by means of time dependent gauge transformation. We shall discuss
gauge transformations in the next sections.

====== [8.8] The Hamiltonian of a two-site system

It would seem that the most general Hamiltonian for a particle in a two-site system includes 4 parameters:

H =

(
ǫ1 ce−iφ

ceiφ ǫ2

)
(238)

Because of the assumed reflection symmetry ǫ1 = ǫ2 = ǫ it seems that we are left with 3 parameters. But in fact there
is only one physical parameter in this model. Thanks to gauge freedom we can define a new basis:

|1̃〉 = |1〉 (239)

|2̃〉 = eiφ|2〉

and we see that:

〈2̃|H|1̃〉 = e−iφ〈2|H|1〉 = e−iφceiφ = c (240)

Therefore we can set φ = 0 without loss of generality. Then the Hamiltonian can be written as:

H =

(
ǫ 0
0 ǫ

)
+

(
0 c
c 0

)
= ǫ1̂ + cσ1 (241)

We also can make a gauge transformation in time. This means that the basis is time t is identified as |1̃〉 = exp(−iǫt)|1〉
and |2̃〉 = exp(−iǫt)|2〉. Using this time dependent basis we can get rid of the constant ǫ. In fact, on physical grounds,
one cannot say whether the old or new basis is ”really” time dependent. All we can say is that the new basis is time
dependent relative to the old basis. This is just another example of the relativity principle. The bottom line is that
without loss of generality we can set ǫ = 0.
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====== [8.9] The evolution of a two-site system

The eigenstates of the Hamiltonian are the states which are symmetric or anti-symmetric with respect to reflection:

|+〉 = 1√
2
(|1〉+ |2〉) (242)

|−〉 = 1√
2
(|1〉 − |2〉)

The Hamiltonian in the new basis is:

H =

(
c 0
0 −c

)
= cσ3 (243)

Let us assume that we have prepared the particle in site number one:

|ψt=0〉 = |1〉 = 1√
2
(|+〉+ |−〉) (244)

The state of the particle, after time t will be:

|ψt〉 = 1√
2
(e−ict|+〉+ e−i(−c)t|−〉) = cos(ct)|1〉 − i sin(ct)|2〉 (245)

We see that a particle in a two-site system makes coherent oscillations between the two sites. That is in contrast with
classical stochastic evolution where the probability to be in each site (if we wait long enough) would become equal. In
the future we will see that the ability to pass from site to site is characterized by a parameter called ”inertial mass”.
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[9] The non-relativistic Hamiltonian

====== [9.1] N Site system in the continuum Limit

In the last lesson we found the Hamiltonian Ĥ in a two-site system by using gauge and symmetry considerations.
Now we will generalize the result for an N -site system. We will give each site a number. The distance between two
adjacent sites is a. The basic assumption is that the particle can move from site to site. The generator of the particle’s
movement is Ĥ.

|2>|1>

Uij(dt) = δij − idtHij (246)

The Hamiltonian should reflect the possibility that the particle will either stay in its place or move one step right or
left. Say that N = 4. Taking into account that it should be Hermitian it has to be of the form

Hij =





v c∗ 0 c
c v c∗ 0
0 c v c∗

c∗ 0 c v



 (247)

For a moment we assume that all the diagonal elements (“on sites energies”) are the same, and that also all the
hopping amplitudes are the same. Thus for general N we can write

Ĥ = cD + c∗D−1 + Const = ce−iap̂ + c∗eiap̂ + Const (248)

We define c = c0e
iφ, where c0 is real, and get:

Ĥ = c0e
−i(ap̂−φ) + c0e

i(ap̂−φ) + Const (249)

We define A = φ/a (phase per unit distance) and get:

Ĥ = c0e
−ia(p̂−A) + c0e

ia(p̂−A) + Const (250)

By using the identity eix ≈ 1 + ix− (1/2)x2 we get:

Ĥ =
1

2m
(p̂−A)2 + V (251)

Where we have defined 1/(2m) = −c0a2 and V = 2c0 + Const. Now Ĥ has three constants: m, A, V . If we assume
that the space is homogenous then the constants are the same all over space. But, in general, it does not have to be
so, therefore:

Ĥ =
1

2m(x)
(p̂−A(x))2 + V (x) (252)

In this situation we say that there is a field in space. Such a general Hamiltonian could perhaps describe an electron
in a metal. At this stage we will only discuss a particle whose mass m is the same all over space. This follows if
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we require the Hamiltonian to be invariant under Galilei transformations. The Galilei group includes translations,
rotations and boosts (boost = one system moves at a constant velocity relative to another system). The relativistic
version of the Galilei group is the Lorentz group (not included in the syllabus of this course). In addition, we expect
the Hamiltonian to be invariant under gauge transformations. This completes our basic requirement for invariance.

====== [9.2] The Hamiltonian of a Particle in 3-D Space

In analogy to what we did in one dimension, we write:

H = cDx + c∗D−1
x + cDy + c∗D−1

y + cDz + c∗D−1
z = (253)

= ce−iap̂x + c∗eiap̂x + ce−iap̂y + c∗eiap̂y + ce−iap̂z + c∗eiap̂z

After expanding to second order and allowing space dependence we get:

H =
1

2m
(p̂− Â)2 + V̂ =

1

2m
(p̂−A(r̂))2 + V (x̂) (254)

=
1

2m
(p̂x −Ax(x̂, ŷ, ẑ))2 +

1

2m
(p̂y −Ay(x̂, ŷ, ẑ))2 +

1

2m
(p̂z −Az(x̂, ŷ, ẑ))2 + V (x̂, ŷ, ẑ)

====== [9.3] Geometric phase and dynamical phase

Consider the case where there is no hopping between sites (c0 = 0), hence the Hamiltonian Ĥ does not include a
kinetic part:

Ĥ = V (x) (255)

Û(t) = e−itV (x̂)

Û(t)|x0〉 = e−itV (x0)|x0〉

The particle does not move in space. V̂ is the ”dynamical phase” that the particle accumulates per unit time. V in a
specific site is called ”binding energy” or ”on site energy” or ”potential energy” depending on the physical context.
A V that changes from site to site reflects the nonhomogeneity of the space or the presence of an ”external field”. If
the system were homogeneous, we would expect to find no difference between the sites.

Once we assume that the particle can move from site to site we have a hopping amplitude which we write as c = c0e
iφ.

It includes both the geometric phase φ and the ”inertial” parameter c0, which tells us how ”difficult” it is for the
particle to move from site to site. More precisely, in the Hamiltonian matrix we have on the main diagonal the
”spatial potential” Vi, whereas on the other diagonals we have the hopping amplitudes ci→je

iφi→j . If the space is
not homogeneous, the hopping coefficients do not have to be identical. For example |c2→3| can be different from
|c1→2|. Irrespective of that, as the particle moves from site i to site j it accumalates a geometric phase φi→j . By
definition the vector potential A is the ”geometric phase” that the particle accumulates per unit distance. Hence

φi→j = ~A · (rj − ri).

====== [9.4] Invariance of the Hamiltonian

The definition of ”invariance” is as follows: Given that H = h(x, p;V,A) is the Hamiltonian of a system in the labora-

tory reference frame, there exist Ṽ and Ã such that the Hamiltonian in the ”new” reference frame is H̃ = h(x, p; Ṽ , Ã).
The most general Hamiltonian that is invariant under translations, rotations and boosts is:

Ĥ = h(x̂, p̂;V,A) =
1

2m
(p̂−A(x̂))2 + V (x̂) (256)
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Let us demonstrate the invariance of the Hamiltonian under translations: in the original basis |x〉 we have the fields

V (x) and A(x). In the translated reference frame the Hamiltonian looks the same, but with Ṽ (x) = V (x+ a) and

Ã(x) = A(x+ a). We say that the Hamiltonian is ”invariant” (keeps its form). In order to make sure that we have not
”mixed up” the signs, we will assume for a moment that the potential is V (x) = δ(x). If we make a translation with

a = 7, then the basis in the new reference frame will be |x̃〉 = |x+ 7〉, and we would get Ṽ (x) = V (x+ a) = δ(x+ 7)
which means a delta at x = −7.

====== [9.5] Invariance under Gauge Transformation

Let us define a new basis:

|x̃1〉 = e−iΛ1 |x1〉 (257)

|x̃2〉 = e−iΛ2 |x2〉

and in general:

|x̃〉 = e−iΛ(x)|x〉 (258)

The hopping amplitudes in the new basis are:

c̃1→2 = 〈x̃2|Ĥ|x̃1〉 = ei(Λ2−Λ1)〈x2|Ĥ|x1〉 = ei(Λ2−Λ1)c1→2 (259)

We can rewrite this as:

φ̃1→2 = φ1→2 + (Λ2 − Λ1) (260)

Dividing by the size of the step and taking the continuum limit we get:

Ã(x) = A(x) +
d

dx
Λ(x) (261)

Or, in three dimensions:

Ã(x) = A(x) +∇Λ(x) (262)

So we see that the Hamiltonian is invariant (keeps its form) under gauge. As we have said, there is also invariance
for all the Galilei transformations (notably boosts). This means that it is possible to find transformation laws that
connect the fields in the ”new” reference frame with the fields in the ”laboratory” reference frame.

====== [9.6] Is it possible to simplify the Hamiltonian further?

Is it possible to find a gauge transformation of the basis so that A will disappear? We have seen that for a two-site
system the answer is yes: by choosing Λ(x) correctly, we can eliminate A and simplify the Hamiltonian. On the other
hand, if there is more than one route that connects two points, the answer becomes no (in other words, for systems
with three sites or more). The reason is that in every gauge we may choose, the following expression will always be
gauge invariant:

∮
Ã · dl =

∮
A · dl = gauge invariant (263)

In other words: it is possible to change each of the phases separately, but the sum of phases along a closed loop will
always stay the same. We shall demonstrate this with a three-site system:
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|1> |2>

|3>

|1̃〉 = e−iΛ1 |1〉 (264)

|2̃〉 = e−iΛ2 |2〉
|3̃〉 = e−iΛ3 |3〉
φ̃1→2 = φ1→2 + (Λ2 − Λ1)

φ̃2→3 = φ2→3 + (Λ3 − Λ2)

φ̃3→1 = φ3→1 + (Λ1 − Λ3)

φ̃1→2 + φ̃2→3 + φ̃3→1 = φ1→2 + φ2→3 + φ3→1

If the system had three sites but with an open topology, then we could have gotten rid of A like in the two-site system.
That is also generally true of all the one dimensional problems, if the boundary conditions are ”zero” at infinity. Once
the one-dimensional topology is closed (”ring” boundary conditions) such a gauge transformation cannot be made.
On the other hand, when the motion is in two or three dimensional space, there is always more than one route that
connects any two points, without regard to the boundary conditions, so in general one cannot eliminate A.

====== [9.7] The classical equations of motion

If x̂ is the location of a particle, then its rate of change is called velocity. By the rate of change formula we identify v
as

v̂ = i[Ĥ, x̂] = i[
1

2m
(p̂−A(x̂))2, x̂] =

1

m
(p̂−A(x)) (265)

and we have:

d〈x̂〉
dt

= 〈v̂〉 (266)

The rate of change of the velocity v̂ is called acceleration:

d〈v̂〉
dt

= 〈â〉 (267)

â = i[Ĥ, v̂] +
∂v̂

∂t
=

1

m

[
1

2
(v × B − B × v) + E

]

Where we have defined:

B = ∇×A (268)

E = −∂A
∂t
−∇V

We would like to emphasize that the Hamiltonian is the ”generator” of the evolution of the system, and therefore all
the equations of motion can be derived from it. From the above it follows that in case of a ”minimal” wavepacket the
expectation values of x̂ and v̂ and â obey the classical equations approximately.
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In the expression for the acceleration we have two terms: the “electric” force and the “magnetic” (Lorentz) force.
These forces bend the trajectory of the particle. It is important to realize that the “bending” of trajectories has to
do with interference and has a very intuitive heuristic explanation. This heuristic explanation is due to Huygens: We
should regard each front of the propagating beam as a point-like source of waves. The ‘next front (after time dt) is
determined by interference of waves that come from all the points of the previous front. For presentation purpose
it is easier to consider first the interference of N = 2 points, then to generalize to N points, and then to take the
continuum limit of plain front. The case N = 2 is formally equivalent to a two slit experiment. The main peak of
constructive interference is in the forward direction. We want to explain why a non uniform V (x) or the presence of
magnetic field can shift the main peak. A straightforward generalization of the argument explains why a trajectory
of a plane wave is bent.

Consider the interference of partial waves that originate from two points on the front of a plane wave. In the absence
of external field there is a constructive interference in the forward direction. However if V (x) in the vicinity of one
point is smaller, it is like having larger “index of refraction”. As a result the phase of ψ(x) grow more rapidly, and
consequently the constructive interference peak is shifted. We can summarize by saying that the trajectory is bending
due to the gradient in V (x). A similar effect happens if the interfering partial waves enclose an area with a magnetic
field. We further discuss this interference under the headline “The Aharonov Bohm effect”: It is important to realize
that the deflection is due to an interference effect. Unlike the classical point of view it is not B(x) that matters but
rather A(x), which describes the geometric accumulation of the phase along the interfering rays.

====== [9.8] The continuity Equation (conservation of probability)

The Schrodinger equation is traditionally written as follows:

Ĥ = H(x̂, p̂) (269)

∂|Ψ〉
∂t

= −iĤ|Ψ〉
∂Ψ

∂t
= −iH

(
x,−i ∂

∂x

)
Ψ

∂Ψ

∂t
= −i

[
1

2m
(−i∇−A(x))2 + V (x)

]
Ψ(x)

Using the ”rate of change formula” for the probability density we can obtain a continuity equation:

∂ρ(x)

∂t
= −∇ · J(x) (270)

Where the probability density and probability current are:

ρ(x) = |Ψ(x)|2 (271)

J(x) = Re[Ψ∗(x)
1

m
(−i∇−A(x))Ψ(x)] (272)

The procedure to get this result is best illustrated once applied to an N -site system (see appropriate ”QM in practice”
section). One should realize that both the probability density and the probability current are expectation values:

ρ(x) = 〈Ψ|ρ̂(x)|Ψ〉 (273)

J(x) = 〈Ψ|Ĵ(x)|Ψ〉

where we have defined the operators:

ρ̂(x) = δ(x̂− x) (274)

Ĵ(x) =
1

2
(v̂δ(x̂− x) + δ(x̂− x)v̂))
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[10] Symmetries and their implications

====== [10.1] The Concept of Symmetry

Pedagogical remark: In order to motivate and to clarify the abstract discussion in this section it is recommended to
consider the problem of finding the Landau levels in Hall geometry, where the system is invariant to x translations and
hence px is a constant of motion. Later the ideas are extended to discuss motion in centrally symmetrical potentials.

We emphasize that symmetry and invariance are two different concepts. Invariance means that the laws of physics
and hence the form of the Hamiltonian do not change. But the fields in the Hamiltonian may change. In contrast
to that in case of a symmetry we requite H̃ = H, meaning that the fields look the literally same. As an example
consider a particle that moves in the periodic potential V (x;R) = cos(2π(x − R)/L). The Hamiltonian is invariant
under translations: If we make translation a then the new Hamiltonian will be the same but with R = R− a. But in
the special case that R/L is an integer we have symmetry, because then V (x;R) stays the same.

====== [10.2] What is the meaning of commutativity?

Let us assume for example that [H, px] = 0. We say in such case that the Hamiltonian commutes with the generator
of translations. What are the implication of this statement? The answer is that in such case:

• The Hamiltonian is symmetric under translations
• The Hamiltonian is block diagonal in the momentum basis
• The momentum is a constant of motion
• There might be systematic degeneracies in the spectrum

The second statement follows from the “separation of variables” theorem. The third statement follows from the
expectation value rate of change formula:

d〈px〉
dt

= 〈i[H, px]〉 = 0 (275)

For time independent Hamiltonians E = 〈H〉 is a constant of the motion because [H,H] = 0. Thus 〈H〉 = const
is associated with symmetry with respect to “translations” in time, while 〈p〉 = const is associated with symmetry
with respect to translations in space, and 〈L〉 = const is associated with symmetry with respect to rotations. In the
follwing two subsection we further dwell on the first and last statements in the above list.

====== [10.3] Symmetry under translations and rotations

If [H, px] = 0 then for every translation a:

[H, D(a)] = HD −DH = 0 (276)

D−1HD = H

If we change to a translated frame of reference, then we have a new basis which is defined as follows:

|x̃〉 = |x+ a〉 = D|x〉 (277)

This means that the transformation matrix is T = D(a), and that the following symmetry is fulfilled:

H̃ = T−1HT = H (278)

We say that the Hamiltonian is symmetric under translations. This can be summarized as follows:

[H, D(~a)] = 0, for any ~a (279)
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is equivalent to

[H, pi] = 0 for i = x, y, z (280)

An analogous statement holds for rotations: Instead of writing:

[H, R(~Φ)] = 0, for any ~Φ (281)

We can write:

[H, Li] = 0 for i = x, y, z (282)

If this holds it means that the Hamiltonian is symmetric under rotations.

====== [10.4] Symmetry implied degeneracies

Let us assume that H is symmetric under translations D. Then if |ψ〉 is an eigenstate of H then also |ϕ〉 = D|ψ〉 is
an eigenstate with the same eigenvalue. This is because

H|ϕ〉 = HD|ψ〉 = DH|ψ〉 = E|ϕ〉 (283)

Now there are two possibilities. One possibility is that |ψ〉 is an eigenstate of D, and hence |ϕ〉 is the same state as
|ψ〉. In such case we say that the symmetry of |ψ〉 is the same as of H, and a degeneracy is not implied. The other
possibility is that |ψ〉 has lower symmetry compared with H. Then it is implied that |ψ〉 and |ϕ〉 span a subspace of
degenerate states. If we have two symmetry operations A and B, then we might suspect that some eigenstates would
have both symmetries: that means both A|ψ〉 ∝ |ψ〉 and B|ψ〉 ∝ |ψ〉. If both symmetries hold for all the eigenstates,
then it follows that [A,B] = 0, because both are diagonal in the same basis.

In order to argue symmetry implies degeneracies the Hamiltonian should commute with a non-commutative group of
operators. It is simplest to explain this statement by considering an example. Let us consider particle on a clean ring.
The Hamiltonian has symmetry under translations (generated by p̂) and also under reflections (R). We can take the
kn states as a basis. They are eigenstates of the Hamiltonian, and they are also eigenstates of p̂. The ground state
n = 0 has the same symmetries as that of the Hamiltonian and therefore there is no implied degeneracy. But |kn〉
with n 6= 0 has lower symmetry compared with H, and therefore there is an implied degeneracy with its mirror image
|k−n〉. These degeneracies are unavoidable. If all the states were non-degenerated it would imply that both p̂ and R
are diagonal in the same basis. This cannot be the case because the group of translations together with reflection is
non-commutative.

The dimension of a degenerate subspace must be equal to the dimension of a representation of the symmetry group.
This is implied by the following argument: One can regardH as a mutual constant of motion for all the group operators;
therefore, by the “separation of variables theorem”, it induces a block-decomposition of the group representation. The
dimensions of the blocks are the dimensions of the degenerate subspaces, and at the same time they must be compatible
with the dimensions of the irreducible representations of the group.

Above we were discussing only the systematic degeneracies which are implied by the symmetry group of the Hamil-
tonian. In principle we can have also “accidental” degeneracies which are not implied by symmetries. The way to
”cook” such symmetry is as follows: pick two neighboring levels, and change some parameters in the Hamiltonian so
as to make them degenerate. It can be easily argued that in general we have to adjust 3 parameters in order to cook
a degeneracy. If the system has time reversal symmetry, then the Hamiltonian can be represented by a real matrix.
In such case it is enough to adjust 2 parameters in order to cook a degeneracy.
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Fundamentals (part III)

[11] Group representation theory

====== [11.1] Groups

A group is a set of elements with a binary operation:

• The operation is defined by a multiplication table for τ1 ∗ τ2.
• There is a unique identity element 1.
• Every element has an inverse element so that ττ−1 = 1
• Associativity: τ1 ∗ (τ2 ∗ τ3) = (τ1 ∗ τ2) ∗ τ3

Commutativity does not have to be fulfilled: this means that in general τ1 ∗ τ2 6= τ2 ∗ τ1.

The Galilei group is our main interst. It includes translations, rotations, and boosts. A translation is specified
uniquely by three parameters (a1, a2, a3), or for short a. Rotations are specified by (θ, ϕ,Φ), or for short Φ. A boost
is parametrized by the relative velocity (u1, u2, u3). A general element is any translation, rotation, boost, or any
combination of them. Such a group, that has a general element that can be defined using a set of parameters is called
a Lie group. The Galilei group is a Lie group with 9 parameters. The rotation group (without reflections!) is a Lie
group with 3 parameters.

====== [11.2] Realization of a Group

If there are ℵ elements in a group, then the number of rows in the full multiplication table will be (ℵ9)2 = ℵ18. The
multiplication table is too big for us to construct and use. Instead we will have to make a realization: we must realize
the elements of the group using transformations over some space. The realization that defines the Galilei group is
over the six dimensional phase space (x,v). The realization of a translation is

τa :

{
x̃ = x + a
ṽ = v

(284)

The realization of a boost is

τu :

{
x̃ = x
ṽ = v + u

(285)

and the realization of a rotation is

τΦ :

{
x̃ = RE(Φ)x
ṽ = RE(Φ)v

(286)

A translation by b, and afterward a translation by a, gives a translation by τb+a. This is simple. More generally the
”multiplication” of group elements τ3 = τ2 ∗ τ1 is realized using a very complicated function:

(a3,Φ3,u3) = f(a2,Φ2,u2,a1,Φ1,u1) (287)

We notice that this function receives input that includes 18 parameters and gives output that includes 9 parameters.

====== [11.3] Realization using linear transformations

As mentioned above, a realization means that we regard each element of the group as an operation over a space. We
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treat the elements as transformations. Below we will discuss the possibility of finding a realization which consists of
linear transformations.

First we will discuss the concept of linear transformation, in order to clarify it. As an example, we will check whether
f(x) = x+ 5 is a linear function. A linear function must fulfill the condition:

f(αX1 + βX2) = αf(X1) + βf(X2) (288)

Checking f(x):

f(3) = 8, f(5) = 10, f(8) = 13 (289)

f(3 + 5) 6= f(3) + f(5)

Hence we realize that f(x) is not linear.

In case of the defining realization of the Galilei group over the phase space, rotations are linear transformations, but
translations and boosts are not. If we want to realize the Galilei group using linear transformations, the most natural
way would be to define a realization over the function space. For example, the translation of a function is defined as:

τa : Ψ̃(x) = Ψ(x− a) (290)

The translation of a function is a linear operation. In other words, if we translate αΨ1(x) + βΨ2(x), we get the
appropriate linear combination of the translated functions: αΨ1(x− a) + βΨ2(x− a).

Linear transformations are represented by matrices. That leads us to the concept of a ”representation”.

====== [11.4] Representation of a group using matrices

A representation is a realization of the elements of a group using matrices. For every element τ of the group, we
find an appropriate matrix U(τ). We demand that the ”multiplication table” for the matrices will be one-to-one to
the multiplication table of the elements of the group. Below we will ”soften” this demand and be satisfied with the
requirement that the ”multiplication table” will be the same ”up to a phase factor”. In other words, if τ3 = τ2 ∗ τ1,
then the appropriate matrices must fulfill:

U(τ3) = ei(phase)U(τ2)U(τ1) (291)

It is natural to realize the group elements using orthogonal transformations (over a real space) or unitary transforma-
tions (over a complex space). Any realization using linear transformation is automatically a ”representation”. The
reason for this is that linear transformations are always represented by matrices. For example, we may consider the
realization of translations over the function space. Any function can be written as a combination of delta functions:

Ψ(x) =

∫
Ψ(x′)δ(x − x′)dx (292)

In Dirac notation this can be written as:

|Ψ〉 =
∑

x

Ψx|x〉 (293)

In this basis, each translation is represented by a matrix:

Dx,x′ = 〈x|D(a)|x′〉 = δ(x − (x′ + a)) (294)
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Finding a ”representation” for a group is very convenient, since the operative meaning of ”multiplying group elements”
becomes ”multiplying matrices”. This means that we can deal with groups using linear algebra tools.

====== [11.5] Commutativity of translations and boosts?

If we make a translation and afterward a boost, then we get the same transformation as we would get if we made the
boost before the translation. Therefore, boosts and translations commute. It is not possible to find a representation
over function space that shows this commutativity. Therefore, we will have to ”soften” the definition of ”representa-
tion” and demand that the multiplication table will be correct ”up to a phase factor”. Therefore, from now on we
will assume that translations and boosts do not commute!

Proving the last conjecture is very intuitive if we use the physics language. Let’s assume that boosts do commute
with translations. Say we have a particle in the laboratory reference frame that is described by a wave function that
is an eigenstate of the translation operators. In other words, we are talking about a state with a defined momentum
k. We will move to a moving reference frame. It is easy to prove that if Ψ(x) is an eigenstate with a specific k, then

Ψ̃(x) is an eigenstate in the moving reference frame, with the same k. This follows from our assumption that boosts
and translations commute. From this we come to the absurd conclusion that the particle has the same momentum in
all the reference frames... If we don’t want to use a trivial representation over the function space, we have to assume
that boosts and translations do not commute.

====== [11.6] Generators

Every element in a Lie group is marked by a set of parameters: 3 parameters for the group of rotations, and
9 parameters for the Galilei group which includes also translations and boosts. Below we assume that we have a
”unitary representation” of the group. That means that there is a mapping

τ 7→ U(τ1, τ2, ..., τµ, ...) (295)

We will also use the convention:

1 7→ U(0, 0, ..., 0, ...) = 1̂ = identity matrix (296)

We define a set of generators Ĝµ in the following way:

U(0, 0, ..., δτµ, 0, ...) = 1̂− iδτµĜµ = e−iδτµĜµ (297)

(there is no summation here) For example:

U(δτ1, 0, 0, ...) = 1̂− iδτ1Ĝ1 = e−iδτ1Ĝ1 (298)

The number of basic generators is the same as the number of parameters that marks the elements of the group (3
generators for the rotation group). In the case of the Galieli we have 9 generators, but since we allow arbitarary phase
factor in the multiplaication table, we have in fact 10 generators:

P̂x, P̂y, P̂z, Ĵx, Ĵy, Ĵz, Q̂x, Q̂y, Q̂z, and 1̂. (299)

The generators of the boosts, when using a representation over the function space, are Q̂x = −mx̂, etc., where m is
the mass. It is physically intuitive, since we may conclude from the commutation relation [x̂, p̂] = i that −x̂ is the
generator of translations in p̂.
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====== [11.7] How to use generators

In general a transformation which is generated by A would not commute with a transformation which is generated
by B,

eÂeB̂ 6= eB̂eÂ 6= eÂ+B̂ (300)

But if the generated transformations are infinitesimal then:

eǫÂeǫB̂ = eǫB̂eǫÂ = 1̂ + ǫÂ+ ǫB̂ +O(ǫ2) (301)

We can use this in order to show that any transformation U(τ) can be generated using the complete set of generators
that has been defined in the previous section. This means that it is enough to know what are the generators in order
to calculate all the matrices of a given representation. The calculation goes as follows:

U(τ) = (U(δτ))N (302)

= (U(δτ1)U(δτ2)...)
N =

= (e−iδτ1Ĝ1e−iδτ2Ĝ2 ...)N =

= (e−iδτ1Ĝ1−iδτ2Ĝ2...)N =

= (e−iδτ ·Ĝ)N = e−iτ ·Ĝ

The next issue is how to multiply transformations. For this we have to learn about the algebra of the generators.

====== [11.8] Combining generators

It should be clear that if A and B generate (say) rotations, it does not imply that (say) the hermitian operator
AB +BA is a generator of a rotation. On the other hand we have the following important statement: if A and B are
generators of group elements, then also G = αA+ βB and G = i[A,B] are generators of group elements.

Proof: by definition G is a generator if e−iǫG is a matrix that represents an element in the group. We will prove the
statement by showing that the infinitesimal transformation e−iǫG can be written as a multiplication of matrices that
represent elements in the group. In the first case:

e−iǫ(αA+βB) = e−iǫαA e−iǫβB (303)

In the second case we use the identity:

eǫ[A,B] = e−i
√
ǫB e−i

√
ǫA ei

√
ǫB ei

√
ǫA + O(ǫ2) (304)

This identity can be proved as follows:

1 + ǫ(AB −BA) = (1− i√ǫB − 1

2
ǫB2)(1− i√ǫA− 1

2
ǫA2)(1 + i

√
ǫB − 1

2
ǫB2)(1 + i

√
ǫA− 1

2
ǫA2) (305)
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====== [11.9] Structure constants

Any element in the group can be written using the set of basic generators:

U(τ) = e−iτ ·Ĝ (306)

From the previous section it follows that i[Ĝµ, Ĝν ] is a generator. Therefore, it must be a linear combination of the
basic generators. In other words, there exit constants cλµν such that the following closure relation is fulfilled:

[Gµ, Gν ] = i
∑

λ

cλµνGλ (307)

The constants cλµν are called the ”structure constants” of the group. Every ”Lie group” has its own structure
coefficients. If we know the structure coefficients then we can reconstruct the group’s ”multiplication table”. Below
we will find the structure coefficients of the rotation group, and in the following lectures we will learn how to build
all the other representations of the rotation group, from our knowledge of the structure coefficients.

====== [11.10] The structure constants and the multiplication table

In order to find the group’s multiplication table from our knowledge of the generators, we must use the formula:

eAeB = eA+B+C (308)

Where C is an expression that includes only commutators. There is no simple expression for C. However, it is possible
to find (”per request”) an explicit expression up to any accuracy wanted. By Taylor expansion up to the third order
we get:

C = log(eAeB)−A−B =
1

2
[A,B]− 1

12
[[A,B], (A −B)] + ... (309)

From this we conclude that:

e−iα·G−iβ·G = e−iγ·G (310)

Where:

γλ = αλ + βλ +
1

2
cλµναµβν −

1

12
cλκσc

κ
µν(α− β)σαµβν + ... (311)

For more details see paper by Wilcox (1967) available in the course site.
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[12] The group of rotations

====== [12.1] The rotation group SO(3)

The rotation group SO(3) is a non-commutative group. That means that the order of rotations is important. Despite
this, it is important to remember that infinitesimal rotations commute. We have already proved this statement in
general, but we will prove it once again for the specific case of rotations:

R(δΦ)r = r + δΦ× r (312)

So:

R(δΦ2)R(δΦ1)r = (r + δΦ1 × r) + δΦ2 × (r + δΦ1 × r) = (313)

= r + (δΦ1 + δΦ2)× r =

= R(δΦ1)R(δΦ2)r

Obviously, this is not correct when the rotations are not infinitesimal:

R(~Φ1)R(~Φ2) 6= R(~Φ1 + ~Φ2) 6= R(~Φ2)R(~Φ1) (314)

We can construct any infinitesimal rotation from small rotations around the major axes:

R(δ~Φ) = R(δΦx~ex + δΦy~ey + δΦz~ez) = R(δΦx~ex)R(δΦy~ey)R(δΦz~ez) (315)

If we mark the generators by ~M = (Mx,My,Mz), then we conclude that a finite rotation around any axis can be
written as:

R(Φ~n) = R(~Φ) = R(δ~Φ)N = (R(δΦx)R(δΦy)R(δΦz))
N = (e−iδ

~Φ· ~M )N = e−i
~Φ· ~M = e−iΦMn (316)

We have proved that the matrix Mn = ~n · ~M is the generator of the rotations around the axis ~n.

====== [12.2] Structure constants of the rotation group

We would like to find the structure constants of the rotation group SO(3), using its defining representation. The SO(3)
matrices induce rotations without performing reflections and all their elements are real. The matrix representation of
a rotation around the z axis is:

R(Φ~ez) =




cos(Φ) − sin(Φ) 0
sin(Φ) cos(Φ) 0

0 0 1



 (317)

For a small rotation:

R(δΦ~ez) =




1 −δΦ 0
δΦ 1 0
0 0 1



 = 1̂ + δΦ




0 −1 0
1 0 0
0 0 0



 = 1̂− iδΦMz (318)

Where:

Mz =




0 −i 0
i 0 0
0 0 0



 (319)
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We can find the other generators in the same way:

Mx =




0 0 0
0 0 −i
0 i 0



 (320)

My =




0 0 i
0 0 0
−i 0 0





Or, written compactly:

(Mk)ij = −iǫijk (321)

We have found the 3 generators of rotations. Now we can calculate the structure constants. For example
[Mx,My] = iMz, and generally:

[Mi,Mj] = iǫijkMk (322)

====== [12.3] Motivation for finding dim=2 representation

We defined the rotation group by the Euclidean realization over 3D space. Obviously, this representation can be used
to make calculations (”to multiply rotations”). The advantage is that it is intuitive, and there is no need for complex
numbers. The disadvantage is that they are 3 × 3 matrices with inconvenient algebraic properties, so a calculation
could take hours. It would be convenient if we could ”multiply rotations” with simple 2× 2 matrices. In other words,
we are interested in a dim=2 representation of the rotation group. The mission is to find three simple 2× 2 matrices
that fulfill:

[Jx, Jy] = iJz etc. (323)

In the next lecture we will learn a systematic approach to building all the representations of the rotation group. In
the present lecture, we will simply find the requested representation by guessing. It is easy to verify that the matrices

Sx =
1

2
σx, Sy =

1

2
σy, Sz =

1

2
σz (324)

fulfill the above commutation relations. So, we can use them to create a dim=2 representation of the rotation group.
We construct the rotation matrices using the formula:

R = e−i
~Φ·~S (325)

The matrices that we get will necessarily fulfill the right multiplication table.

We should remember the distinction between a realization and a representation: in a realization it matters what we
are rotating. In a representation it only matters to us that the correct multiplication table is fulfilled. Is it possible
to regard any representation as a realization? Is it possible to say what the rotation matrices rotate? When there is a
dim=3 Euclidean rotation matrix we can use it on real vectors that represent points in space. If the matrix operates
on complex vectors, then we must look for another interpretation for the vectors. This will lead us to the definition
of the concept of spin (spin 1). When we are talking about a dim=2 representation it is possible to give the vectors
an interpretation. The interpretation will be another type of spin (spin 1/2).
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====== [12.4] How to calculate a general rotation matrix

The general formula for constructing a 3× 3 rotation matrix is:

R(~Φ) = R(Φ~n) = e−iΦMn = 1− (1 − cos(Φ))M2
n − i sin(Φ)Mn (326)

where Mn = ~n · ~M is the generator of a rotation around the ~n axis. All rotations are ”similar” one to the other
(moving to another reference frame is done by means of a similarity transformation that represents change of basis).
The proof is based on the Taylor expansion. We notice that M3

z = Mz, from this it follows that for all the odd powers
Mk
z = Mz, while for all the even powers Mk

z = M2
z where k > 0.

The general formula for finding a 2× 2 rotation matrix is derived in a similar manner. All the even powers of a given
Pauli matrix are equal to the identity matrix, while all the odd powers are equal to the original matrix. From this
(using Taylor expansion and separating into two partial sums), we get the result:

R(Φ) = R(Φ~n) = e−iΦSn = cos(Φ/2)1̂− i sin(Φ/2)σn (327)

where σn = ~n · ~σ, and Sn = (1/2)σn is the generator of a rotation around the ~n axis.

====== [12.5] An example for multiplication of rotations

Let us make a 90o rotation R(900ez) around the Z axis, followed by a 90o rotation R(900ey) around the Y axis. We
would like to know what this sequence gives. Using the Euclidean representation

R = 1− i sinΦMn − (1 − cosΦ)M2
n (328)

we get

R(900ez) = 1− iMz −M2
z (329)

R(900ey) = 1− iMy −M2
y

We do not wish to open the parentheses, and add up 9 terms which include multiplications of 3× 3 matrices. Therefore,
we will leave the Euclidean representation and try and do the same thing with a dim=2 representation, which means
we will work with the 2× 2 Pauli matrices.

R(Φ) = cos(Φ/2)1̂− i sin(Φ/2)σn (330)

R(900ez) =
1√
2
(1̂− iσz)

R(900ey) =
1√
2
(1̂− iσy)

Hence

R = R(900ey)R(900ez) =
1

2
(1− iσx − iσy − iσz) (331)

Where we have used the fact that σyσz = iσx. We can write this result as:

R = cos
120o

2
− i sin 120o

2
~n · ~σ (332)

Where n = 1√
3
(1, 1, 1). This defines the equivalent rotation which is obtained by combining the two 90o rotations.



58

====== [12.6] Euler Angles

We can prove the following identity in the same way:

R(900ex) = R(−900ez)R(900ey)R(900ez) (333)

This identity is actually trivial: a rotation round the X axis is the same as a rotation round the Y axis, if we change
to a different reference frame.

Alternatively, we can look at the above as a special case of a ”Euler rotation”. Euler showed that any rotation can
be assembled from rotations round the Y axis and rotations round the Z axis:

R = e−iαJz e−iβJye−iγJz (334)

The validity of the idea is obvious, but finding the Euler angles can be complicated.
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[13] Building the representations of rotations

====== [13.1] Irreducible representations

A reducible representation is a representation for which a basis can be found in which each matrix in the group
decomposes into blocks. In other words, each matrix can be separated into sub-matrices. Each set of sub-matrices
must fulfill the multiplication table of the group. To decompose a representation means that we change to a basis in
which all the matrices decompose into blocks. Only in a commutative group a basis can be found in which all the
matrices are diagonal. So, we can say that a representation of a commutative group decomposes into one-dimensional
representations. The rotation group is not a commutative group. We are interested in finding all the irreducible
representations of the rotation group. All the other representations of the rotation group can be found in a trivial
way by combining irreducible representations.

We are interested in finding representations of the rotation group. We will assume that someone has given us a ”gift”:
a specific representation of the rotation group. We want to make sure that this is indeed a ”good gift”. We will check
if the representation is reducible. Maybe we have ”won the lottery” and had received more than one representation?
Without loss of generality, we will assume that we only had received one (irreducible) representation. We will try
to discover what are the matrices that we had received. We will see that it is enough to know the dimension of
the representation in order to determine what are the matrices. In this way we will convince ourselves that there is
only one (irreducible) representation for each dimension, and that we have indeed found all the representations of the
rotation group.

====== [13.2] First Stage - determination of basis

If we had received a representation of the rotation group then we can look at infinitesimal rotations and define
generators. For a small rotation around the X axis, we can write:

U(δΦ~ex) = 1̂− iδĴx (335)

In the same way we can write rotations round the Z and Y axes. So, we can find the matrices Ĵx, Ĵy, Ĵz. How can
we check that the representation that we have is indeed a representation of the rotation group? All we have to do is
check that the following equation is fulfilled:

[Ĵi, Ĵj ] = iǫijkĴk (336)

We will also define:

Ĵ± = Ĵx ± iĴy (337)

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z =

1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ2

z

We notice that the operator Ĵ2 commutes with all the generators, and therefore also with all the rotation matrices.
From the “separation of variable” theorems it follows that if Ĵ2 has (say) two different eigenvalues, then it induces a
decomposition of all the rotation matrices into two blocks. So in such case the representation is reducible. Without
loss of generality our interest is focused on irreducible representations for which we necessarily have Ĵ2 = λ1, where λ
is a constant. Later we shall argue that λ is uniquely determined by the dimension of the irreducible representation.

If we have received a representation as a gift, we still have the freedom to decide in which basis to write it. Without
loss of generality, we can decide on a basis that is determined by the operator Ĵz :

Ĵz|m〉 = m|m〉 (338)



60

Obviously, the other generators, or a general rotation matrix will not be diagonal in this basis, so we have

〈m|Ĵ2|m′〉 = λδmm′ (339)

〈m|Ĵz|m′〉 = mδmm′

〈m|R|m′〉 = Rλmm′

====== [13.3] Reminder: Ladder Operators

Given an operator D̂ (which does not have to be unitary or Hermitian) and an observable x̂ that fulfill the commutation
relation

[x̂, D̂] = aD̂ (340)

we will prove that the operator D̂ is an operator that changes (increments or decrements) eigenstates of x̂.

x̂D̂ − D̂x̂ = aD̂ (341)

x̂D̂ = D̂(x̂ + a)

x̂D̂|x〉 = D̂(x̂+ a)|x〉
x̂D̂|x〉 = D̂(x+ a)|x〉
x̂[D̂|x〉] = (x+ a)[D̂|x〉]

So the state |Ψ〉 = D̂|x〉 is an eigenstate of x̂ with eigenvalue (x+ a). The normalization of |Ψ〉 is determined by:

||Ψ|| = 〈Ψ|Ψ〉 = 〈x|D̂†D̂|x〉 (342)

====== [13.4] Second stage: identification of ladder operators

It follows from the commutation relations of the generators that:

[Ĵz, Ĵ±] = ±Ĵ± (343)

So Ĵ± are ladder operators in the basis that we are working in. By using them we can move from a given state |m〉
to other eigenstates: ..., |m− 2〉, |m− 1〉, |m+ 1〉, |m+ 2〉, |m+ 3〉, ....

From the commutation relations of the generators

(Ĵ+Ĵ−)− (Ĵ−Ĵ+) = [Ĵ+, Ĵ−] = 2Ĵz (344)

From the definition of Ĵ2

(Ĵ+Ĵ−) + (Ĵ−Ĵ+) = 2(Ĵ2 − (Ĵz)
2) (345)

By adding/subtracting these two identities we get:

Ĵ−Ĵ+ = Ĵ2 − Ĵz(Ĵz + 1) (346)

Ĵ+Ĵ− = Ĵ2 − Ĵz(Ĵz − 1)
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Now we can find the normalization of the states that are found by using the ladder operators:

||Ĵ+|m〉|| = 〈m|Ĵ−Ĵ+|m〉 = 〈m|Ĵ2|m〉 − 〈m|Ĵz(Ĵz + 1)|m〉 = λ−m(m+ 1) (347)

||Ĵ−|m〉|| = 〈m|Ĵ+Ĵ−|m〉 = 〈m|Ĵ2|m〉 − 〈m|Ĵz(Ĵz − 1)|m〉 = λ−m(m− 1)

It will be convenient from now on to write the eigenvalue of Ĵ2 as λ = j(j + 1). Therefore:

Ĵ+|m〉 =
√
j(j + 1)−m(m+ 1)|m+ 1〉 (348)

Ĵ−|m〉 =
√
j(j + 1)−m(m− 1)|m− 1〉

====== [13.5] Third stage - deducing the representation

Since the representation is of a finite dimension, the process of incrementing or decrementing cannot go on forever.
By looking at the results of the last section we may conclude that there is only one way that the incrementing could
stop: at some stage we get m = +j. Similarly, there is only one way that the decrementing could stop: at some stage
we get m = −j. Hence in the incrementing/decrementing process we get a ladder that includes 2j + 1 states. This
number must be an integer number. Therefore j must be either an integer or half integer number.

For a given j the matrix representation of the generators is determined uniquely. This is based on the formulas of the
previous section, from which we conclude:

[Ĵ+]m′m =
√
j(j + 1)−m(m+ 1)δm′,m+1 (349)

[Ĵ−]m′m =
√
j(j + 1)−m(m− 1)δm′,m−1

And all that is left to do is to write:

[Ĵx]m′m =
1

2

[
(Ĵ+)m′m + (Ĵ−)m′m

]
(350)

[Ĵy]m′m =
1

2i

[
(Ĵ+)m′m − (Ĵ−)m′m

]

[Ĵz]m′m = mδm′m

And then we get every rotation matrix in the representation by:

Rm′m = e−i
~Φ· ~J (351)

A technical note: In the raising/lowering process described above we got ”multiplets” of m state. It is possible
that we will get either one multiplet, or several multiplets of the same length. In other words it is possible that the
representation will decompose into two identical representations of the same dimension. Without loss of generality
we assume that we deal with an irreducible representation, and therefore there is only one multiplet.
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[14] Rotations of spins and of wavefunctions

====== [14.1] Building the dim=2 representation (spin 1/2)

Let us find the j = 1/2 representation. This representation can be interpreted as a realization of spin 1/2. We
therefore we use from now on the notation S instead on J .

S2|m〉 = 1

2
(
1

2
+ 1)|m〉 (352)

Sz =

(
1
2 0
0 − 1

2

)

Using formulas of the previous section we find S+ and S− and hence Sx and Sy

S+ =

(
0 1
0 0

)
(353)

S− =

(
0 0
1 0

)
(354)

Sx =
1

2

((
0 1
0 0

)
+

(
0 0
1 0

))
=

(
0 1

2
1
2 0

)
=

1

2
σx (355)

Sy =

(
0 − i

2
i
2 0

)
=

1

2
σy (356)

We recall that

R(Φ) = R(Φ~n) = e−iΦSn = cos(Φ/2)1̂− i sin(Φ/2)σn (357)

where

~n = (sin θ cosϕ, sin θ sinϕ, cos θ)

σn = ~n · ~σ =

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
(358)

Hence

R(~Φ) =

(
cos(Φ/2)− i cos(θ) sin(Φ/2) −ie−iϕ sin(θ) sin(Φ/2)
−ieiϕ sin(θ) sin(Φ/2) cos(Φ/2) + i cos(θ) sin(Φ/2)

)
(359)

In particular a rotation around the Z axis is given by:

R = e−iΦSz =

(
e−iΦ/2 0

0 eiΦ/2

)
(360)

And a rotation round the Y axis is given by:

R = e−iΦSy =

(
cos(Φ/2) − sin(Φ/2)
sin(Φ/2) cos(Φ/2)

)
(361)
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====== [14.2] Polarization states of Spin 1/2

We now discuss the physical interpretation of the ”states” that the s = 1/2 matrices rotate. Any state of ”spin 1/2” is
represented by a vector with two complex number. That means we have 4 parameters. After gauge and normalization,
we are left with 2 physical parameters which can be associated with the polarization direction (θ, ϕ). Thus it makes
sense to represent the state of spin 1/2 by an arrow that points to some direction in space.

The eigenstates of Sz do not change when we rotate them around the Z axis (aside from a phase factor). Therefore
the following interpretation comes to mind:

∣∣∣∣m = +
1

2

〉
= |~ez〉 = | ↑〉 7→

(
1
0

)
(362)

∣∣∣∣m = −1

2

〉
= | − ~ez〉 = | ↓〉 7→

(
0
1

)

This interpretation is confirmed by rotating the ”up” state by 180 degrees, and getting the ”down” state.

R = e−iπSy =

(
0 −1
1 0

)
(363)

We see that:

(
1
0

)
→ 1800 →

(
0
1

)
→ 1800 → −

(
1
0

)
(364)

With two rotations of 180o we get back the ”up” state, with a minus sign. Optionally one observes that

e−i2πSz = e−iπσz = −1 (365)

and hence by similarity this holds for any 2π rotation. We see that the representation that we found is not a one-to-
one representation of the rotation group. It does not obey the multiplication table in a one-to-one fashion! In fact,
we have found a representation of SU(2) and not SO(3). The minus sign has a physical significance. In a two slit
experiment it is possible to turn destructive interference into constructive interference by placing a magnetic field in
one of the paths. The magnetic field rotates the spin of the electrons. If we induce 360o rotation, then the relative
phase of the interference change sign, and hence constructive interference becomes destructive and vice versa. The
relative phase is important! Therefore, we must not ignore the minus sign.

It is important to emphasize that the physical degree of freedom that is called ”spin 1/2” cannot be visualized as a
arising from the spinning of small rigid body around some axis like a top. If it were possible, then we could say that
the spin can be described by a wave function. In this case, if we would rotate it by 360o we would get the same state,
with the same sign. But in the representation we are discussing we get minus the same state. That is in contradiction
with the definition of a (wave) function as a single valued object.

We can get from the ”up” state all the other possible states merely by using the appropriate rotation matrix. In
particular we can get any spin polarization state by combining a rotation round the Y axis and a rotation round the
Z axis. The result is:

|~eθ,ϕ〉 = R(ϕ)R(θ)| ↑〉 = e−iϕSze−iθSy | ↑〉 7→
(

e−iϕ/2 cos(θ/2)
eiϕ/2 sin(θ/2)

)
(366)
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====== [14.3] Building the dim=3 representation (spin 1)

Let us find the j = 1 representation. This representation can be interpreted as a realization of spin 1, and hence we
use the notation S instead of J as in the previous section.

S2|m〉 = 1(1 + 1)|m〉 (367)

Sz =




1 0 0
0 0 0
0 0 −1





S+ =




0
√

2 0

0 0
√

2
0 0 0





So, the standard representation is:

S →



 1√
2




0 1 0
1 0 1
0 1 0



 ,
1√
2




0 −i 0
i 0 −i
0 i 0



 ,




1 0 0
0 0 0
0 0 −1







 (368)

We remember that the Euclidean representation is:

M →








0 0 0
0 0 −i
0 i 0



 ,




0 0 i
0 0 0
−i 0 0



 ,




0 −i 0
i 0 0
0 0 0







 (369)

Now we have two different dim=3 representations that represent the rotation group. They are actually the same
representation in a different basis. By changing bases (diagonalizing Mz) it is possible to move from the Euclidean
representation to the standard representation. It is obvious that diagonalizing Mz is only possible over the complex
field. In the defining realization, the matrices of the Euclidean representation rotate points in the real space. But it
is possible also to use them on complex vectors. In the latter case it is a realization for spin 1.

For future use we list some useful matrices:

Sx =
1√
2




0 1 0
1 0 1
0 1 0



 Sy =
1√
2




0 −i 0
i 0 −i
0 i 0



 Sz =




1 0 0
0 0 0
0 0 −1



 (370)

From this:

S2
x =

1

2




1 0 1
0 2 0
1 0 1



 S2
y =

1

2




1 0 −1
0 2 0
−1 0 1



 S2
z =




1 0 0
0 0 0
0 0 1



 (371)

And as expected from 〈ℓ,m|S2|ℓ′,m′〉 = ℓ(ℓ+ 1)δℓ,ℓ′δm,m′ we get

S2 = S2
x + S2

y + S2
z =




2 0 0
0 2 0
0 0 2



 (372)

Having found the generators we can construct any rotation of spin 1. We notice the following equation:

S3
i = S2

i Si = Si for i = x, y, z (373)
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From this equation we conclude that all the odd powers (1, 3, 5, ...) are the same and are equal to Si, and all the even
powers (2, 4, 6, ...) are the same and equal to S2

i . It follows (by way of a Taylor expansion) that:

U(~Φ) = e−i
~Φ·~S = 1̂− i sin(Φ)Sn − (1− cos(Φ))S2

n (374)

Where:

Sn = ~n · ~S (375)

Any rotation can be given by a combination of a rotation round the z axis and a rotation round the y axis. We will
mark the rotation angle round the y axis by θ and the rotation angle round the z axis by ϕ, and get:

U(ϕ~ez) = e−iϕSz =




e−iϕ 0 0

0 1 0
0 0 eiϕ



 (376)

U(θ~ey) = e−iθSy =





1
2 (1 + cos θ) − 1√

2
sin θ 1

2 (1 − cos θ)
1√
2

sin θ cos θ − 1√
2

sin θ
1
2 (1− cos θ) 1√

2
sin θ 1

2 (1 + cos θ)





====== [14.4] Polarization states of a spin 1

The states of ”Spin 1” cannot be represented by simple arrows. This should be obvious in advance because it is
represented by a vector that has three complex components. That means we have 6 parameters. After gauge and
normalization, we will still have 4 physical parameters. Hence it is not possible to find all the possible states of spin 1
by using only rotations. Below we further discuss the physical interpretation of spin 1 states. This discussion suggest
to use the following notations for the basis states of the standard representation:

|m = 1〉 = |~ez〉 = | ⇑〉 7→




1
0
0



 (377)

|m = 0〉 = |ēz〉 = | m〉 7→




0
1
0





|m = −1〉 = | − ~ez〉 = | ⇓〉 7→




0
0
1





The first and the last states represent circular polarizations. By rotating the first state by 180o around the Y axis
we get the third state. This means that we have 180o degree orthogonality. However, the middle state is different: it
describes linear polarization. Rotating the middle state by 180o degrees around the Y axis gives the same state again!
This explains the reason for marking this state with a double headed arrow.

In order to get further insight into the variety of polarization states we can define the following procedure. Given an
arbitrary state vector (ψ+, ψ0, ψ−) we can re-orient the z axis in a (θ, ϕ) direction such that ψ0 = 0. We may say
that this (θ, ϕ) direction define a “polarization plane”. Using φ rotation around the new Z axis, and taking gauge
freedom into account we can bring the state vector into the form (cos(q), 0, sin(q)), where without loss of generality
0 ≤ q ≤ π/2. Thus we see that indeed an arbitrary state is characterized by the four parameters (θ, ϕ, φ, q). In the
most general case we describe the polarization as elliptic: (θ, ϕ) defines the plane of the ellipse, φ describes the angle
of major axes in this plane, and q describes the ratio of the major radii. It is important to realize that 180o rotation
in the polarization plane leads to the same state (up to a sign). The special case q = 0 is called circular polarization
because any rotation in the polarization plane leads to the same state (up to a phase). The special case q = π/2 is
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called linear polarization: the ellipse becomes a double headed arrow. Note that in the latter case the orientation of
the polarization plane is ill defined.

If we rotate the linear polarization state | m〉 by 90o, once around the Y axis and once around the X axis, we get an
orthogonal set of states:

|ēx〉 =
1√
2
(−| ⇑〉+ | ⇓〉) 7→ 1√

2




−1
0
1



 (378)

|ēy〉 =
i√
2
(| ⇑〉+ | ⇓〉) 7→ 1√

2




i
0
i





|ēz〉 = | m〉 7→




0
1
0





This basis is called the linear basis. States of ”spin 1” can be written either in the standard basis or in the basis
of linear polarizations. The latter option, where we have 90o orthogonality of the basis vectors, corresponds to the
Euclidean representation.

We can rotate the state | ⇑〉 in order to get other circularly polarized states:

|~eθ,ϕ〉 = U(ϕ~ez)U(θ~ey)| ⇑〉 =




1
2 (1 + cos θ)e−iϕ

1√
2

sin θ
1
2 (1 − cos θ)eiϕ



 (379)

Similarly, we can rotate the state | m〉 in order to get other linearly polarized states:

|ēθ,ϕ〉 = U(ϕ~ez)U(θ~ey)| m〉 =




− 1√

2
sin θe−iϕ

cos θ
1√
2

sin θeiϕ



 (380)

The circularly polarized states are obtained by rotating the | ⇑〉 state, while the linearly polarized states are obtained
by rotating the | m〉 state. But a general polarization state will not necessarily be circularly polarized, neither linearly
polarized, but rather elliptically polarized. As explained above it is possible to find one-to-one relation between
polarization states of spin 1 and ellipses. The direction of the polarization is the orientation of the ellipse. When
the ellipse is a circle, the spin is circularly polarized, and when the ellipse shrinks down to a line, the spin is linearly
polarized.

====== [14.5] Translations and rotations of wavefunctions

We first consider in this section the space of functions that live on a torus (bagel). We shall see that the representation
of translations over this space decomposes into one-dimensional irreducible representations, as expected in the case of
a commutative group. Then we consider the space of functions that live on the surface of a sphere. We shall see that
the representation of rotations over this space decomposes as 1⊕ 3⊕ 5⊕ . . .. The basis in which this decomposition
becomes apparent consists of the spherical harmonics.

Consider the space of functions that live on a torus (bagel). This functions can represent the motion of a particle in a
2-D box of size Lx × Ly with periodic boundary conditions. Without loss of generality we assume that the dimensions
of the surface are Lx = Ly = 2π, and use x = (θ, ϕ) as the coordinates. The representation of the state of a particle
in the standard basis is:

|Ψ〉 =
∑

θ,ϕ

ψ(θ, ϕ)|θ, ϕ〉 (381)
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The momentum states are labeled as k = (n,m). The representation of a wavefunction in this basis is:

|Ψ〉 =
∑

n,m

Ψn,m|n,m〉 (382)

where the transformation matrix is:

〈θ, ϕ|n,m〉 = ei(nθ+mϕ) (383)

The displacement operators in the standard basis are not diagonal:

Dx,x′ = δ(θ − (θ′ + a))δ(ϕ − (ϕ′ + b)) (384)

However, in the momentum basis we will get diagonal matrices:

Dk,k′ = δn,n′δm,m′ e−i(an+bm) (385)

In other words, we have decomposed the translations group into 1-D representations. This is possible because the
group is commutative. If a group is not commutative it is not possible to find a basis in which all the matrices of the
group are diagonal simultaneously.

Now we consider the space of functions that live on the surface of a sphere. This functions can represent the motion
of a particle in a 2-D spherical shell. Without loss of generality we assume that the radius of the sphere is unity. In
full analogy with the case of a torus, the standard representation of the states of a particle that moves on the surface
of a sphere is:

|Ψ〉 =
∑

θ,ϕ

ψ(θ, ϕ)|θ, ϕ〉 (386)

Alternatively, we can work with a different basis:

|Ψ〉 =
∑

ℓm

Ψℓm|ℓ,m〉 (387)

where the transformation matrix is:

〈θ, ϕ|ℓ,m〉 = Y ℓm(θ, ϕ) (388)

The ”displacement” matrices are actually ”rotation” matrices. They are not diagonal in the standard basis:

Rx,x′ = δ(θ − f(θ′, ϕ′))δ(ϕ− g(θ′, ϕ′)) (389)

where f() and g() are complicated functions. But if we take Y ℓm(θ, ϕ) to be the spherical harmonics then in the new
basis the representation of rotations becomes simpler:

Rℓm,ℓ′m′ =





1× 1 0 0 0
0 3× 3 0 0
0 0 5× 5 0
0 0 0 . . .



 = block diagonal (390)

When we rotate a function, each block stays ”within itself”. The rotation does not mix states that have different ℓ. In
other words: in the basis |ℓ,m〉 the representation of rotations decomposes into a sum of irreducible representations
of finite dimension:

1⊕ 3⊕ 5⊕ . . . (391)
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In the next section we show how the general procedure that we have learned for decomposing representations, does
indeed help us to find the Y ℓm(θ, ϕ) functions.

====== [14.6] The spherical harmonics

We have already found the representation of the generators of rotations over the 3D space of wavefunctions. Namely

we have proved that ~L = ~r × ~p. If we write the differential representation of L is spherical coordinates we find as
expected that the radial coordinate r is not involved:

Lz = −i ∂
∂ϕ

(392)

L± = e±iϕ
(
± ∂

∂θ
+ i cot(θ)

∂

∂ϕ

)
(393)

L2 →
[

1

sin(θ)

∂

∂θ
(sin(θ)

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

]
(394)

Thus the representation trivially decompose with respect to r, and without loss of generality we can focus on the
subspace of wavefunctions Ψ(θ, ϕ) that live on a spherical shell of a given radius. We would like to find the basis in
which the representation decompose, as defined by

L2Ψ = ℓ(ℓ+ 1)Ψ (395)

LzΨ = mΨ (396)

The solution is:

Y ℓm(θ, φ) =

[
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!

]1/2
[(−1)mPℓm(cos(θ))] eimϕ (397)

It is customary in physics textbooks to ”swallow” the factor (−1)m in the definition of the Legendre polynomials. We
note that it is convenient to start with

Y ℓℓ(θ, φ) ∝ (sin(θ))ℓ eiℓϕ (398)

and then to find the rest of the functions using the lowering operator:

|ℓ,m〉 ∝ L
(ℓ−m)
− |ℓ, ℓ〉 (399)

Let us give some examples for Spherical Functions. The simplest function is spread uniformly over the surface of the
sphere, while a linear polarization state along the Z axis is concentrated mostly at the poles:

Y 0,0 =
1√
4π
, Y 1,0 =

√
3

4π
cos(θ) (400)

If we rotate the polar wave function by 90 degrees we get:

Y 1,x =

√
3

4π
sin(θ) cos(ϕ), Y 1,y =

√
3

4π
sin(θ) sin(ϕ) (401)

While according to the standard ”recipe” the circular polarizations are:

Y 1,1 = −
√

3

8π
sin(θ)eiϕ, Y 1,−1 =

√
3

8π
sin(θ)e−iϕ (402)
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[15] Multiplying representations

====== [15.1] Multiplying representations

Let us assume we have two Hilbert spaces. One is spanned by the basis |i〉 and the other is spanned by the basis |α〉.
We can multiply the two spaces ”externally” and get a space with a basis defined by:

|i, α〉 = |i〉 ⊗ |α〉 (403)

The dimension of the Hilbert space that we obtain is the multiplication of the dimensions. For example, we can
multiply the ”position” space x by the spin space m. We will assume that the space contains three sites x = 1, 2, 3,
and that the particle has spin 1

2 with m1 = − 1
2 ,+

1
2 . The dimension of the space that we get from the external

multiplication is 2× 3 = 6. The basis states are

|x,m〉 = |x〉 ⊗ |m〉 (404)

A general state is represented by a column vector:

|Ψ〉 →





Ψ1↑
Ψ1↓
Ψ2↑
Ψ2↓
Ψ3↑
Ψ3↓




(405)

Or, in Dirac notation:

|Ψ〉 =
∑

x,m

Ψx,m|x,m〉 (406)

If x has a continuous spectrum then the common notational style is

|Ψ〉 =
∑

x,m

Ψm(x)|x,m〉 7→ Ψm(x) =

(
Ψ↑(x)
Ψ↓(x)

)
(407)

If we prepare separately the position wavefunction as ψx and the momentum polarization as χm, then the state of
the particle is:

|Ψ〉 = |ψ〉 ⊗ |χ〉 7−→ Ψx,m = ψxχm =





ψ1χ↑
ψ1χ↓
ψ2χ↑
ψ2χ↓
ψ3χ↑
ψ3χ↓




(408)

It should be clear that in general an arbitrary |Ψ〉 cannot be written as a product state of some |ψ〉 with some |χ〉.
In we have a non-factorized preparation of the particle we say that the its space and its spin degrees of freedom were
entangled.

====== [15.2] External multiplication of operators

Let us assume that in the Hilbert space that is spanned by the basis |α〉, an operator is defined: Â→ Aαβ . And in

another Hilbert space that is spanned by the basis |i〉, an operator is defined: B̂ → Bij . An operator Ĉ = B̂ ⊗ Â in
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the new space is defined as follows:

Ciα,jβ = BijAαβ (409)

In Dirac notation:

〈iα|Ĉ|jβ〉 = 〈i|B̂|j〉〈α|Â|β〉 (410)

For example, let us assume that we have a particle in a three-site system:

x̂ =




1 0 0
0 2 0
0 0 3



 (411)

|1> |2> |3>

If the particle has spin 1
2 we must define the position operator as:

x̂ = x̂⊗ 1̂ (412)

That means that:

x̂|x,m〉 = x|x,m〉 (413)

And the matrix representation is:

x̂ =




1 0 0
0 2 0
0 0 3



⊗
(

1 0
0 1

)
=





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 3




(414)

The system has a 6 dimensional basis. We notice that in physics textbooks there is no distinction between the notation
of the operator in the original space and the operator in the space that includes the spin. We must understand the
”dimension” of the operator representation by the context. A less trivial example of an external multiplication of
operators:




1 0 4
0 2 0
4 0 3



⊗
(

2 1
1 2

)
=





2 1 0 0 8 4
1 2 0 0 4 8
0 0 4 2 0 0
0 0 2 4 0 0
8 4 0 0 6 3
4 8 0 0 3 6




(415)

Specifically, we see that if the operator that we are multiplying externally is diagonal, then we will get a block diagonal
matrix.
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====== [15.3] External multiplication of spin spaces

Let us consider two operators in different Hilbert spaces L̂ and Ŝ. The bases of the spaces are |mℓ〉, |ms〉. The
eigenvalues are mℓ = 0,±1 and ms = ±1/2. We will mark the new states as follows: | ⇑↑〉, | ⇑↓〉, | m↑〉, | m↓〉, | ⇓↑〉,
| ⇓↓〉 The system has a basis with 6 states. Therefore, every operator is represented by a 6×6 matrix. We will define,
as an example, the operator:

Ĵx = Ŝx + L̂x (416)

The three operators operate in 6-D space. A mathematician would write it as follows:

Ĵx = 1̂⊗ Ŝx + L̂x ⊗ 1̂ (417)

In the next sections we learn how to make the following decompositions:

2⊗ 2 = 1⊕ 3 (418)

2⊗ 3 = 2⊕ 4

rep. over sphere = 1⊕ 3⊕ 5⊕ 7⊕ ...

The first decomposition will be used in connection with the problem of two particles with spin 1
2 , where we can define

a basis that includes three symmetrical states (the ”triplet”) and one anti-symmetric state (the ”singlet”). The second
example is useful in analyzing the Zeeman splitting of atomic levels. The third example, which is the decomposition of
the representation of the rotation group over function space, is best illustrated by considering the motion of a particle
on a spherical shell.

====== [15.4] Rotations of a Composite system

We assume that we have a spin ℓ entity whose states are represented by the basis

|mℓ = −ℓ...+ ℓ〉 (419)

and a spin s entity whose states are represented by the basis

|ms = −s...+ s〉 (420)

The natural (2ℓ+ 1)× (2s+ 1) basis for the representation of the composite system is defined as

|mℓ,ms〉 = |mℓ〉 ⊗ |ms〉 (421)

A rotation of the ℓ entity is represented by the matrix

R = Rℓ ⊗ 1̂ = e−iΦLn ⊗ 1̂ = e−iΦLn⊗1̂ (422)

We have used the identity f(A)⊗ 1̂ = f(A⊗ 1̂) which is easily established by considering the operation of both sides
on the basis states |mℓ,ms〉. More generally we would like to rotate both the ℓ entity and the s entity. This two
operations commute since they act on different degrees of freedom (unlike two successive rotation of the same entity).
Thus we get

R = e−iΦ1̂⊗Sn e−iΦLn⊗1̂ = e−i
~Φ·J (423)
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where

J = L⊗ 1̂ + 1̂⊗ S = L+ S (424)

From now on we use the conventional sloppy notations of physicists as in the last equality: the space over which the
operator operates and the associated dimension of its matrix representation are implied by the context. Note that in
full index notations the above can be summarized as follows:

〈mℓms|R|m′
ℓm

′
s〉 = Rℓmℓ,m′

ℓ
Rsms,m′

s
(425)

〈mℓms|Ji|m′
ℓm

′
s〉 = [Li]mℓ,m′

ℓ
δms,m′

s
+ δmℓ,m′

ℓ
[Si]ms,m′

s
(426)

It is important to realize that the basis states are eigenstates of Jz but not of J2.

Jz
∣∣mℓ,ms

〉
= (mℓ +ms)

∣∣mℓ,ms

〉
≡ mj

∣∣mℓ,ms

〉
(427)

J2
∣∣mℓ,ms

〉
= superposition

[∣∣mℓ[±1],ms[∓1]
〉]

(428)

The second expression is based on the observation that

J2 = J2
z +

1

2
(J+J− + J−J+) (429)

J± = L± + S± (430)

This means that the representation is reducible, and can be written as a sum of irreducible representations. Using
the conventional procedure we shall show in the next section that

(2ℓ+ 1)⊗ (2s+ 1) = (2|ℓ+ s|+ 1)⊕ · · · ⊕ (2|l− s|+ 1) (431)

We shall call it the ”addition of angular momentum” theorem. The output of the ”addition of angular momentum”
procedure is a new basis |j,mj〉 that satisfies

J2|j,mj〉 = j(j + 1)|j,mj〉 (432)

Jz|j,mj〉 = mj |j,mj〉 (433)

We shall see how to efficiently find the transformation matrix between the ”old” and the ”new” bases. The entries
of the transformation matrix are called the Clebsch-Gordan-Racah Coefficient and are commonly expressed using the
Wigner 3j-symbol:

Tmℓms,jmj
= 〈mℓ,ms|j,mj〉 = (−1)ℓ−s+m

√
2j + 1

(
ℓ s j
mℓ ms −m

)
(434)

Note that the Wigner 3j-symbol is non-zero only if its entries can be regarded as the sides of a triangle which is formed
by 3 vectors of length ℓ and s and j whose projections mℓ and ms and −m sum to zero. This geometrical picture is
implied by the addition of angular momentum theorem.

With the Clebsch-Gordan-Racah transformation matrix we can transform states and the operators between the two
optional representations. In particular, note that J2 is diagonal in the ”new” basis, while in the ”old basis” it can be
calculated as follows:

[J2]old basis 7→ 〈m′
ℓ,m

′
s|J2|mℓ,ms〉 = 〈m′

l,m
′
s|j′,m′

j〉〈j′,m′
j|J2|j,mj〉〈j,mj |mℓ,ms〉 = T [J2]diagonalT

† (435)
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We shall see that in practical applications each representation has its own advantages.

====== [15.5] The inefficient decomposition method

Let us discuss as an example the case ℓ = 1 and s = 1/2. In the natural basis we have

Lz →




1 0 0
0 0 0
0 0 −1



⊗
(

1 0
0 1

)
=





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




(436)

Sz →




1 0 0
0 1 0
0 0 1



⊗ 1

2

(
1 0
0 −1

)
=

1

2





1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1




(437)

etc. In order to find J2 we apparently have to do the following calculation:

J2 = J2
x + J2

y + J2
z (438)

The simplest term in this expression is the square of the diagonal matrix

Jz = Lz + Sz → [6× 6 matrix] (439)

We have two additional terms that contain non-diagonal 6× 6 matrices. To find them in a straightforward fashion
can be time consuming. Then we have to diagonalize J2 so as to get the ”new” basis.

In the next section we explain the efficient procedure to find the ”new” basis. Furthermore, it is implied by the
”addition of angular momentum” theorem that 3⊗2 = 4⊕2, meaning that we have a j = 3/2 subspace and a j = 1/2
subspace. Therefore it is clear that after diagonalization we should get.

J2 →





(15/4) 0 0 0 0 0
0 (15/4) 0 0 0 0
0 0 (15/4) 0 0 0
0 0 0 (15/4) 0 0
0 0 0 0 (3/4) 0
0 0 0 0 0 (3/4)




(440)

This by itself is valuable information. Furthermore, if we know the transformation matrix T we can switch back to
the old basis by using a similarity transformation.

====== [15.6] The efficient decomposition method

In order to explain the procedure to build the new basis we will consider, as an example, the addition of ℓ = 2 and
s = 3

2 . The two graphs below will serve to clarify this example. Each point in the left graph represents a basis state
in the |mℓ,ms〉 basis. The diagonal lines connect states that span Jz subspaces. That means mℓ +ms = const ≡ mj .
Let us call each such subspace a ”floor”. The upper floor mj = ℓ + s contains only one state. The lower floor also
contains only one state.
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ms

lm

3/2

1/2

−1/2

−3/2

210−1−2

jm

1/2 3/2 5/2 7/2

−1/2

7/2

5/2

3/2

1/2

−3/2

−7/2

−5/2

j

We recall that

Jz|mℓ,ms〉 = (mℓ +ms)|mℓ,ms〉 (441)

S−|mℓ,ms〉 =
√
s(s+ 1)−ms(ms − 1)|mℓ,ms − 1〉 (442)

L−|mℓ,ms〉 =
√
ℓ(ℓ+ 1)−mℓ(mℓ − 1)|mℓ − 1,ms〉 (443)

J− = S− + L− (444)

J2 = J2
z +

1

2
(J+J− + J−J+) (445)

Applying J− or J+ on a state takes us either one floor down or one floor up. By inspection we see that if J2 operates
on the state in the upper or in the lower floor, then we stay ”there”. This means that these states are eigenstates of
J2 corresponding to the eigenvalue j = ℓ+ s. Note that they could not belong to an eigenvalue j > ℓ+ s because this
would imply having larger (or smaller) mj values.

Now we can use J− in order to obtain the multiplet of j = ℓ + s states from the mj = ℓ + s state. Next we look at
the second floor from above and notice that we know the |j = ℓ+ s,mj = ℓ+ s− 1〉 state, so by orthogonalization we
can find the |j = ℓ+ s− 1,mj = ℓ+ s− 1〉 state. Once again we can get the whole multiplet by applying J−. Going
on with this procedure will give us a set of states as arranged in the right graph.

By suggesting the above procedure we have in fact proven the ”addition of angular momentum” statement. In the
displayed illustration we end up with 4 multiplets (j = 7

2 ,
5
2 ,

3
2 ,

1
2 ) so we have 5⊗ 4 = 8⊕ 6⊕ 4⊕ 2. In the following

sections we review some basic examples in detail.

====== [15.7] The case of 2⊗ 2 = 3⊕ 1

Consider the addition of ℓ = 1
2 and s = 1

2 (for example, two electrons). In this case the ”old” basis is

|mℓ,ms〉 = | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉 (446)

The ”new” basis we want to find is

|j,mj〉 = |1, 1〉, |1, 0〉, |1,−1〉︸ ︷︷ ︸, |0, 0〉︸ ︷︷ ︸ (447)

These states are called triplet and singlet states. It is very easy to apply the procedure as follows:

|1, 1〉 = | ↑↑〉 (448)

|1, 0〉 ∝ J−| ↑↑〉 = | ↑↓〉+ | ↓↑〉 (449)

|1,−1〉 ∝ J−J−| ↑↑〉 = 2| ↓↓〉 (450)
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By orthogonaliztion we get the singlet state, which after normalization is

|0, 0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) (451)

Hence the transformation matrix from the old to the new basis is

Tmℓ,ms|j,mj
=





1 0 0 0
0 1√

2
0 1√

2

0 1√
2

0 − 1√
2

0 0 1 0



 (452)

The operator J2 in the |mℓ,ms〉 basis is

〈m′
ℓ,m

′
s|J2|mℓ,ms〉 = T





2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0



T † =





2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2



 (453)

ms

lm

−1/2

1/2

1/2−1/2

jm

0

1

−1

10 j

− +

====== [15.8] The case of 3⊗ 2 = 4⊕ 2

Consider the composite system of ℓ = 1 and s = 1
2 .

In this case the ”old” basis is

|mℓ,ms〉 = | ⇑↑〉, | ⇑↓〉, | m↑〉, | m↓〉, | ⇓↑〉, | ⇓↓〉 (454)

The ”new” basis we want to find is

|j,mj〉 = | 32 , 3
2
〉, | 3

2
, 1

2
〉, | 3

2
, − 1

2
〉, | 3

2
, − 3

2
〉

︸ ︷︷ ︸
, | 1

2
, 1

2
〉, | 1

2
, − 1

2
〉

︸ ︷︷ ︸
(455)

It is very easy to apply the procedure as in the previous section. All we have to remember is that the lowering operator
L− is associated with the

√
2 prefactor:

| 3
2
, 3

2
〉 = | ⇑↑〉 (456)

| 3
2
, 1

2
〉 ∝ J−| ⇑↑〉 = | ⇑↓〉+

√
2| m↑〉 (457)

| 3
2
, − 1

2
〉 ∝ J−J−| ⇑↑〉 = 2

√
2| m↓〉+ 2| ⇓↑〉 (458)

| 3
2
, − 3

2
〉 ∝ J−J−J−| ⇑↑〉 = 6| ⇓↓〉 (459)
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By orthogonalization we get the starting point of the next multiplet, and then we use the lowering operator again:

| 1
2
, 1

2
〉 ∝ −

√
2| ⇑↓〉+ | m↑〉 (460)

| 1
2
, − 1

2
〉 ∝ −

√
2| m↓〉+ | ⇓↑〉 (461)

Hence the transformation matrix from the old to the new basis is

Tmℓ,ms|j,mj
=





1 0 0 0 0 0

0
√

1
3 0 0 −

√
2
3 0

0
√

2
3 0 0

√
1
3 0

0 0
√

2
3 0 0 −

√
1
3

0 0
√

1
3 0 0

√
2
3

0 0 0 1 0 0





(462)

and the operator J2 in the |mℓ,ms〉 basis is

〈m′
ℓ,m

′
s|J2|mℓ,ms〉 = T





15
4 0 0 0 0 0
0 15

4 0 0 0 0
0 0 15

4 0 0 0
0 0 0 15

4 0 0
0 0 0 0 3

4 0
0 0 0 0 0 3

4




T † =





15
4 0 0 0 0 0

0 7
4

√
2 0 0 0

0
√

2 11
4 0 0 0

0 0 0 11
4

√
2 0

0 0 0
√

2 7
4 0

0 0 0 0 0 15
4




(463)

This calculation is done in the Mathematica file zeeman.nb.

lm

sm

10−1

−1/2

1/2

jm

1/2

−1/2

−3/2

1/2

3/2

j3/2

====== [15.9] The case of (2ℓ + 1)⊗ 2 = (2ℓ + 2)⊕ (2ℓ)

The last example was a special case of a more general result which is extremely useful in studying the Zeeman Effect
in atomic physics. We consider the addition of integer ℓ (angular momentum) and s = 1

2 (spin). The procedure is

exactly as in the previous example, leading to two multiplets: The j = ℓ + 1
2 multiplet and the j = ℓ − 1

2 multiplet.
The final expression for the new basis states is:

∣∣∣∣j = ℓ+
1

2
,m

〉
= +β

∣∣∣∣m+
1

2
, ↓
〉

+ α

∣∣∣∣m−
1

2
, ↑
〉

(464)

∣∣∣∣j = ℓ− 1

2
,m

〉
= −α

∣∣∣∣m+
1

2
, ↓
〉

+ β

∣∣∣∣m−
1

2
, ↑
〉

(465)
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where

α =

√
ℓ+ (1/2) +m

2ℓ+ 1
(466)

β =

√
ℓ+ (1/2)−m

2ℓ+ 1
(467)

The ± signs are for the respective two multiplets. The transformation matrix between the bases has the structure

Tml,ms|j,mj
=





1 0 0 . . . 0 0 0 0 . . . 0
0 +β 0 . . . 0 0 −α 0 . . . 0
0 +α 0. . . . 0 0 +β 0 . . . 0
0 0 +β . . . 0 0 0 −α . . . 0
0 0 +α . . . 0 0 0 +β . . . 0
0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . 0
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . +β 0 0 0 . . . −α
0 0 0 . . . +α 0 0 0 . . . +β
0 0 0 . . . 0 1 0 0 . . . 0





(468)
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[16] Galilei group and the non-relativistic Hamiltonian

====== [16.1] The Representation of the Galilei Group

The defining realization of the Galilei group is over phase space. Accordingly, that natural representation is with
functions that ”live” in phase space. Thus the a-translated ρ(x, v) is ρ(x−a, v) while the u-boosted ρ(x, v) is ρ(x, v−u)
etc.

The generators of the displacements are denoted Px,Py,Pz, the generators of the boosts are denoted Qx,Qy,Qz,
and the generators of the rotations are denoted Jx,Jy,Jz. Thus we have 9 generators. It is clear that translations
and boosts commute, so the only non-trivial structure constants of the Lie algebra have to do with the rotations:

[Pi,Pj ] = 0 (469)

[Qi,Qj] = 0 (470)

[Pi,Qj ] = 0 (to be discussed) (471)

[Ji,Aj ] = iǫijkAk for A = P,Q, J (472)

Now we ask the following question: is it possible to find a faithful representation of the Galilei group that ”lives”
in configuration space. We already know that the answer is ”almost” positive: We can represent pure quantum
states using ”wavefunctions” ψ(x). These wavefunctions can be translated and rotated. On a physical basis it
is also clear that we can talk about ”boosted” states: this means to give the particle a different velocity. So we
can also boost wavefunctions. On physical grounds it is clear that the boost should not change |ψ(x)|2. In fact
it is not difficult to figure out that the boost is realized by a multiplication of ψ(x) by ei(mu)x. Hence we get the
identifications Px 7→ −i(d/dx) and Qx 7→ −mx for the generators. Still the wise reader should realize that in this
”new” representation boosts and translations do not commute, while in case of the strict phase space realization they
do commute!

On the mathematical side it would be nice to convince ourselves that the price of not having commutation between
translations and boosts is inevitable, and that there is a unique representation (up to a gauge) of the Galilei group using
”wavefunctions”. This mathematical discussion should clarify that the ”compromise” for having such a representation
is: (1) The wavefunctions have to be complex; (2) The boosts commute with the translations only up to a phase factor.

We shall see that the price that we have to pay is to add 1̂ as a tenth generator to the Lie algebra. This is similar
to the discussion of the relation between SO(3) and SU(2). The elements of the latter can be regarded as ”rotations”
provided we ignore an extra ”sign factor”. Here rather than ignoring a ”sign factor” we have to ignore a complex
”phase factor”.

Finally, we shall see that the most general form of the non-relativistic Hamiltonian of a spinless particle, and in
particular its mass, are implied by the structure of the quantum Lie algebra.

====== [16.2] The Mathematical Concept of Mass

An element τ of the Galilei group is parametrized by 9 parameters. To find a strict (unitary) representation means
to associate with each element a linear operator U(τ) such that τ1 ⊗ τ2 = τ3 implies

U(τ1)U(τ2) = U(τ3) (473)

Let us see why this strict requirement cannot be realized if we want a representation with ”wavefunctions”. Suppose
that we have an eigenstate of P̂ such that P̂ |k〉 = k|k〉. since we would like to assume that boosts commute with

translations it follows that also Uboost|k〉 is an eigenstate of P̂ with the same eigenvalue. This is absurd, because
it is like saying that a particle has the same momentum in all reference frames. So we have to replace the strict
requirement by

U(τ1)U(τ2) = ei×phaseU(τ3) (474)
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This means that now we have an extended group that ”covers” the Galilei group, where we have an additional
parameter (a phase), and correspondingly an additional generator (1̂). The Lie algebra of the ten generators is
characterized by

[Gµ, Gν ] = i
∑

λ

cλµνGλ (475)

where G0 = 1̂ and the other nine generators are Pi, Qi, Ji with i = x, y, z. It is not difficult to convince ourselves
that without loss of generality this introduces one ”free” parameter into the algebra (the other additional structure
constants can be set to zero via appropriate re-definition of the generators). The ”free” non-trivial structure constant
m appears in the commutation

[Pi,Qj ] = imδij (476)

which implies that boosts do not commute with translations.

====== [16.3] Finding the Most General Hamiltonian

Assume that we have a spinless particle for which the standard basis for representation is |x〉. With appropriate gauge
of the x basis the generator of the translations is P 7→ −i(d/dx). From the commutation relation [P,Q] = im we
deduce that Q = −mx̂+ g(p̂), where g() is an arbitrary function. With appropraite gauge of the momentum basis we
can assume Q = −mx̂.

The next step is to observe that the effect of a boost on the velocity operator should be

Uboost(u)
−1v̂Uboost(u) = v̂ + u (477)

which implies that [Q, v̂] = −i. The simplest possibility is v̂ = p̂/m. But the most general possibility is

v̂ =
1

m
(p̂−A(x̂)) (478)

where A is an arbitrary function. This time we cannot gauge away A.

The final step is to recall the rate of change formula which implies the relation v̂ = i[H, x̂]. The simplest operator
that will give the desired result for v is H = 1

2m
(p − A(x))2. But the most general possibility involves a second

undetermined function:

H =
1

2m
(p̂−A(x̂))2 + V (x) (479)

Thus we have determined the most general Hamiltonian that agrees with the Lie algebra of the Galilei group. In the
next sections we shall see that this Hamiltonian is indeed invariant under Galilei transformations.
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[17] Transformations and invariance

====== [17.1] Transformation of the Hamiltonian

First we would like to make an important distinction between passive [”Heisenberg”] and active [”Schrödinger”] points
of view regarding transformations. The failure to appreciate this distinction is an endless source of confusion.

In classical mechanics we are used to the passive point of view. Namely, to go to another reference frame (say a
displaced frame) is like a change of basis. Namely, we relate the new coordinates to the old ones (say x̃ = x− a), and
in complete analogy we relate the new basis |x̃〉 to the old basis |x〉 by a transformation matrix T = e−iap̂ such that
|x̃〉 = T |x〉 = |x+ a〉.

However we can also use an active point of view. Rather than saying that we ”change the basis” we can say that we
”transform the wavefunction”. It is like saying that ”the tree is moving backwards” instead of saying that ”the car is
moving forward”. In this active approach the transformation of the wavefunction is induced by S = T−1, while the
observables stay the same. So it is meaningless to make a distinction between old (x) and new (x̃) coordinates!

From now on we use the more convenient active point of view. It is more convenient because it is in the spirit of the
Schrödinger (rather than Heisenberg) picture. In this active point of view observables do not transform. Only the
wavefunction transforms (”backwards”). Below we discuss the associated transformation of the evolution operator
and the Hamiltonian.

Assume that the transformation of the state as we go from the ”old frame” to the ”new frame” is ψ̃ = Sψ. The
evolution operator that propagates the state of the system from t0 to t in the new frame is:

Ũ(t, t0) = S(t)U(t, t0)S
−1(t0) (480)

The idea is that we have to transform the state to the old frame (laboratory) by S−1, then calculate the evolution
there, and finally go back to our new frame. We recall that the Hamiltonian is defined as the generator of the
evolution. By definition

Ũ(t+ δt, t0) = (1− iδtH̃(t))Ũ (t, t0) (481)

Hence

H̃ = i
∂Ũ

∂t
Ũ−1 = i

[
∂S (t)

∂t
US (t0)

−1 + S(t)
∂U

∂t
S(t0)

−1

]
S(t0)U

−1S(t)−1 (482)

and we get the result

H̃ = SHS−1 + i
∂S

∂t
S−1 (483)

In practice we assume a Hamiltonian of the form H = h(x, p;V,A). Hence we get that the Hamiltonian in the new
frame is

H̃ = h(SxS−1, SpS−1;V,A) + i
∂S

∂t
S−1 (484)

Recall that ”invariance” means that the Hamiltonian keeps its form, but the fields in the Hamiltonian may have
changed. So the question is whether we can write the new Hamiltonian as

H̃ = h(x, p; Ã, Ṽ ) (485)
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To have ”symmetry” rather than merely ”invariance” means that the Hamiltonian remains the same with Ã = A and
Ṽ = V . We are going to show that the following Hamiltonian is invariant under translations, rotations, boosts and
gauge transformations:

H =
1

2m

(
p̂− ~A(x)

)2

+ V (x) (486)

We shall argue that this is the most general non-relativistic Hamiltonian for a spinless particle. We shall also discuss
the issue of time reversal (anti-unitary) transformations.

====== [17.2] Invariance Under Translations

T = D(a) = e−iap̂ (487)

S = T−1 = eiap̂

The coordinates (basis) transform with T , while the wavefunctions are transformed with S.

Sx̂S−1 = ˆx+ a (488)

Sp̂S−1 = p̂

Sf(x̂, p̂)S−1 = f(Sx̂S−1, Sp̂S−1) = f(x̂+ a, p̂)

(489)

Therefore the Hamiltonian is invariant with

Ṽ (x) = V (x+ a) (490)

Ã(x) = A(x+ a)

====== [17.3] Invariance Under Gauge

T = e−iΛ(x) (491)

S = eiΛ(x)

Sx̂S−1 = x̂

Sp̂S−1 = p̂−∇Λ(x)

Sf(x̂, p̂)S−1 = f(Sx̂S−1, Sp̂S−1) = f(x̂, p̂−∇Λ(x))

Therefore the Hamiltonian is invariant with

Ṽ (x) = V (x) (492)

Ã(x) = A(x) +∇Λ(x)

Note that the electric and the magnetic fields are not affected by this transformation.
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More generally we can consider time dependent gauge transformations with Λ(x, t). Then we get in the ”new”
Hamiltonian an additional term, leading to

Ṽ (x) = V (x)− (d/dt)Λ(x, t) (493)

Ã(x) = A(x) +∇Λ(x, t)

In particular we can use the very simple gauge Λ = ct in order to change the Hamiltonian by a constant (H̃ = H− c).

====== [17.4] Boosts and Transformations to a Moving System

From an algebraic point of view a boost can be regarded as a special case of gauge:

T = ei(mu)x (494)

S = e−i(mu)x

Sx̂S−1 = x̂

Sp̂S−1 = p̂+ mu

Hence Ṽ (x) = V (x) and Ã(x) = A(x)−mu. But a transformation to a moving frame is not quite the same thing. The
latter combines a boost and a time dependent displacement. The order of these operations is not important because
we get the same result up to a constant phase factor that can be gauged away:

S = eiphase(u) e−i(mu)x ei(ut)p (495)

Sx̂S−1 = x̂+ ut

Sp̂S−1 = p̂+ mu

The new Hamiltonian is

H̃ = SHS−1 + i
∂S

∂t
S−1 = SHS−1 − up̂ =

1

2m
(p̂− Ã(x))2 + Ṽ (x) + const(u) (496)

where

Ṽ (x, t) = V (x + ut, t)− u ·A(x + ut, t) (497)

Ã(x, t) = A(x+ ut, t)

Thus in the new frame the magnetic field is the same (up to the displacement) while the electric field is:

Ẽ = −∂Ã
∂t
−∇Ṽ = E + u× B (498)

In the derivation of the latter we used the identity

∇(u · A)− (u · ∇)A = u× (∇×A) (499)

Finally we note that if we do not include the boost in S, then we get essentially the same results up to a gauge. By
including the boost we keep the same dispersion relation: If in the lab frame A = 0 and we have v = p/m, then in

the new frame we also have Ã = 0 and therefore v = p/m still holds.

====== [17.5] Transformations to a rotating frame

Let us assume that we have a spinless particle held by a a potential V (x). Assume that we transform to a rotating
frame. We shall see that the transformed Hamiltonian will have in it a Coriolis force and a centrifugal force.
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The transformation that we consider is

S = ei(
~Ωt)·L̂ (500)

The new Hamiltonian is

H̃ = SHS−1 + i
∂S

∂t
S−1 =

1

2m
p2 + V (x)− Ω · L̂ (501)

It is implicit that the new x coordinate is relative to the rotating frame of reference. Without loss of generality we

assume ~Ω = (0, 0,Ω). Thus we got Hamiltonian that looks very similar to that of a particle in a uniform magnetic
field (see appropriate lecture):

H =
1

2m
(p−A(x))2 + V (x) =

p2

2m
− B

2m
Lz +

B2

8m
(x2 + y2) + V (x) (502)

The Coriolis force is the ”magnetic field” B = 2mΩ. By adding and subtracting a quadratic term we can write the
Hamiltonian H̃ in the standard way with

Ṽ = V − 1

2
mΩ2(x2 + y2) (503)

Ã = A+ m~Ω× r

The extra −(1/2)mΩ2(x2 + y2) term is called the centrifugal potential.

====== [17.6] Time Reversal transformations

Assume for simplicity that the Hamiltonian is time independent. The evolution operator is U = e−iHt. If we make a
transformation T we get

Ũ = T−1e−iHtT = e−i(T
−1HT )t = e−iH̃t (504)

where H̃ = T−1HT . Suppose we want to reverse the evolution in our laboratory. Apparently we have to engineer
T such that T−1HT = −H. If this can be done the propagator Ũ will take the system backwards in time. We can
name such T operation a ”Maxwell demon” for historical reasons. Indeed for systems with spins such transformations
have been realized using NMR techniques. But for the ”standard” Hamiltonian there is a fundamental problem.
Consider the simplest case of a free particle H = p̂2/(2m). To reverse the sign of the Hamiltonian means to make
the mass m negative. This means that there is an unbounded spectrum from below. The feasibility of making such a
transformation would imply that a physical system cannot get into thermal equilibrium.

Digression: when Dirac found his Lorentz invariant Hamiltonian, it came out with a spectrum that had an unbounded
set of negative energy levels. Dirac’s idea to ”save” his Hamiltonian was to assume that all the negative energy levels
are full of particles. Thus we have a meaningful ground state. If we kick a particle from a negative to a positive
energy level we create an electron-positron pair, which requires a positive excitation energy.

But we know from classical mechanics that there is a transformation that reverses the dynamics. All we have to do
is to invert the sign of the velocity. Namely p 7→ −p while x 7→ x. So why not to realize this transformation in
the laboratory? This was Loschmidt’s claim against Boltzman. Boltzman’s answer was ”go and do it”. Why is it
”difficult” to do? Most people will probably say that to reverse the sign of an Avogadro number of particles is tough.
But in fact there is a better answer. In a sense it is impossible to reverse the sign even of one particle! If we believe
that the dynamics of the system are realized by a Hamiltonian, then the only physical transformations are proper
canonical transformations. In quantum mechanical language we say that any physical realizable evolution process is
described by a unitary operator. We are going to claim that the transformation p 7→ −p while x 7→ x cannot be
realized by any physical Hamiltonian. The time reversal transformations that we are going to discuss are anti-unitary.
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They cannot be realized in an actual laboratory experiment. This leads to the distinction between ”microreversibility”
and actual ”reversibility”: It is one thing to say that a Hamiltonian has time reversal symmetry. It is a different story
to actually reverse the evolution.

Assume that we have a unitary transformation T such that T p̂T−1 = −p̂ while T x̂T−1 = x̂. This would imply
T [x̂, p̂]T−1 = −[x̂, p̂]. So we get i = −i. This means that such a transformation does not exist. But there is a way out.
Wigner has proved that there are two types of transformations that map states in Hilbert space such that the overalp
between states remains the same. These are either unitary transformations or antiunitary transformations. We shall
explain in the next section that the ”velocity reversal” transformation can be realized by an antiunitary rather than
unitary transformation. We also explain that in the case of an antiunitary transformation we get

Ũ = T−1e−iHtT = e+i(T−1HT )t = e−iH̃t (505)

where H̃ = −T−1HT . Thus in order to reverse the evolution we have to engineer T such that T−1HT = H, or
equivalently [H, T ] = 0. If such a T exists then we say that H has time reversal symmetry. In particular we shall
explain that in the absence of a magnetic field the non-relativistic Hamiltonian has a time reversal symmetry.

====== [17.7] Anti-unitary Operators

An anti-unitary operator has an anti-linear rather than linear property. Namely,

T (α |φ〉+ β |ψ〉) = α∗T |φ〉 + β∗T |ψ〉 (506)

An anti-unitary operator can be represented by a matrix Tij whose columns are the images of the basis vectors.
Accordingly |ϕ〉 = T |ψ〉 implies ϕi = Tijψ

∗
j . So its operation is complex conjugation followed by linear transformation.

It is useful to note that H̃ = T−1HT implies H̃µν = T ∗
iµH

∗
ijTjν . This is proved by pointing out that the effect of double

complex conjugation when operating on a vector is canceled as far as its elements are concerned.

The simplest procedure to construct an anti-unitary operator is as follows: We pick an arbitrary basis |r〉 and define
a diagonal anti-unitary operator K that is represented by the unity matrix. Such operator maps ψr to ψ∗

r , and has

the property K2 = 1. Note also that for such operator H̃ij = H∗
ij . In a sense there is only one anti-unitary operator

per choice of a basis. Namely, assume that T is represented by the diagonal matrix {eiφr}. That means

T |r〉 = eiφr |r〉 (507)

Without loss of generality we can assume that φr = 0. This is because we can gauge the basis. Namely, we can define
a new basis |r̃〉 = eiλr |r〉 for which

T |r̃〉 = ei(φr−2λr) |r̃〉 (508)

By setting λr = φr/2 we can make all the eigenvalues equal to one, and hence T = K. Any other antiunitary
operator can be written trivially as T = (TK)K where TK is unitary. So in practice any T is represented by complex
conjugation followed by a unitary transformation. Disregarding the option of having the ”extra” unitary operation,
time reversal symmetry T−1HT = H means that in the particular basis where T is diagonal the Hamiltonian matrix
is real (H∗

r,s = Hr,s), rather than complex.

Coming back to the ”velocity reversal” transformation it is clear that T should be diagonal in the position basis (x
should remain the same). Indeed we can verify that such a T automatically reverses the sign of the momentum:

|k〉 =
∑

x

eikx |x〉 (509)

T |k〉 =
∑

x

T eikx |x〉 =
∑

x

e−ikx |x〉 = |−k〉
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In the absence of a magnetic field the kinetic term p2 in the Hamiltonian has symmetry with respect to this T .
Therefore we say that in the absence of a magnetic field we have time reversal symmetry. In which case the Hamiltonian
is real in the position representation.

What happens if we have a magnetic field? Does it mean that there is no time reversal symmetry? Obviously in
particular cases the Hamiltonian may have a different anti-unitary symmetry: if V (−x) = V (x) then the Hamiltonian
is symmetric with respect to the transformation x 7→ −x while p 7→ p. The anti-unitary T in this case is diagonal in
the p representation. It can be regarded as a product of ”velocity reversal” and ”inversion” (x 7→ −x and p 7→ −p).
The former is anti-unitary while the latter is a unitary operation.

If the particle has a spin we can define K with respect to the standard basis. The standard basis is determined by
x̂ and σ3. However, T = K is not the standard time reversal symmetry: It reverse the polarization if it is in the
Y direction, but leave it unchanged if it is in the Z or in the X direction. We would like to have T−1σT = −σ. This
implies that

T = e−iπSyK = −iσyK (510)

Note that T 2 = (−1)N where N is the number of spin 1/2 particles in the system. This implies Kramers degeneracy
for odd N . The argument goes as follows: If ψ is an eigenstate of the Hamiltonian, then symmetry with respect to T
implies that also Tψ is an eigenstate. Thus we must have a degeneracy unless Tψ = λψ, where λ is a phase factor.
But this would imply that T 2ψ = λ2ψ while for odd N we have T 2 = −1. The issue of time reversal for particles with
spin is further discussed in [Messiah p.669].



86

Dynamics and Driven Systems

[18] Probabilities and FGR rates of transitions

====== [18.1] Time dependent Hamiltonians

To find the evolution which is generated by a time independent Hamiltonian is relatively easy. Such a Hamiltonian
has eigenstates |n〉 which are the ”stationary” states of the system. The evolution in time of an arbitrary state is:

|Ψ(t)〉 =
∑

n

e−iEntψn|n〉 (511)

But in general the Hamiltonian can be time-dependent [H(t1),H(t2)] 6= 0. In such case the strategy that was described
above for finding the evolution in time loses its significance. In this case, there is no simple expression for the evolution
operator:

Û(t) = (1− idtnH(tn)) · · · (1− idt2H(t2))(1 − idt1H(t1)) 6= e−i
R

t
0
H(t′)dt′ (512)

We are therefore motivated to develop different methods to deal with driven systems. Below we assume that the
Hamiltonian can be written as a sum of a time independent part H0 and a time dependent perturbation. Namely,

H = H0 + V = H0 + f(t)W (513)

====== [18.2] The interaction picture

We would like to work in a basis such that H0 is diagonal:

H0|n〉 = En|n〉 (514)

|Ψ(t)〉 =
∑

n

Ψn(t)|n〉

The evolution is determined by the Schrödinger’s equation:

i
dψn
dt

= Enψn +
∑

n′

Vnn′Ψn′ (515)

which can be written in a matrix style as follows:

i
d

dt




Ψ1

Ψ2

...



 =




E1Ψ1

E2Ψ2

...



+




V11 V12 · · ·
V21 V22 · · ·
...

...
. . .








Ψ1

Ψ2

...



 (516)

Without the perturbation we would get ψn(t) = cne
−iEnt, where cn are constants. It is therefore natural to use the

variation of parameters method, and to write

Ψn(t) = cn(t)e
−iEnt (517)
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In other words, we represent the ”wave function” by the amplitudes cn(t) = ψn(t)e
iEnt rather than by the amplitudes

Ψn(t). The Schrödinger’s equation in the new representation takes the form

i
dcn
dt

=
∑

n′

ei(En−En′)tVnn′cn′(t) (518)

This is called the Schrödinger’s equation in the ”interaction picture”. It is a convenient equation because the term
on the right is assumed to be ”small”. Therefore, the amplitudes cn(t) change slowly. This equation can be solved
using an iterative scheme which leads naturally to a perturbative expansion. The iteration are done with the integral
version of the above equation:

cn(t) = cn(0)− i
∑

n′

∫ t

0

eiEnn′ t′Vn,n′cn′(t′)dt′ (519)

where Enn′ = En − En′ . In each iteration we get the next order. Let us assume that the system has been prepared
in level n0. This means that the zero order solution is

c[0]n (t) = cn(0) = δn,n0 (520)

We iterate once and get the first-order solution:

cn(t) = δn,no
− i
∫ t

0

eiEnn0 t
′

Vn,n0dt
′ (521)

So that the leading order is:

cn(t) ≈ 1 forn = n0 (522)

cn(t) = −iWn,n0

∫ t

0

f(t′)eiEnn0 t
′

dt′ otherwise

We notice that for very short times t≪ 1/(En − En′) we get cn(t) ≈ −iVn,n0t which reflects the definition of the matrix
elements of the Hamiltonian as a ”hopping” amplitude per unit of time. For longer times the hopping amplitude is
multiplied by a factor that oscillates at a frequency En − En′ . This factor makes it ”harder” for the particle to move
between energy levels, since it does not allow the particle to ”accumulate” amplitude.

In order to illustrate the effect of the oscillating factor, consider a problem in which the unperturbed Hamiltonian is
”to be in some site”. We consider the possibility to move from site to site as a perturbation. The energy differences
in the site problem are the ”potential differences”. Let us assume we have a step potential. Even though the
hopping amplitude is the same in each ”hop” (even if the hop is through a wall), the probability amplitude does not
”accumulate”. What stops the particle from crossing the step is the potential difference between the sites.

====== [18.3] The transition probability formula

The expression we found for the transition amplitude using first-order perturbation theory can be written as:

cn(t) ≈ −iWn,no
FT [f(t)] (523)

Therefore, the transition probability is:

Pt(n|m) ≈ |Wn,m|2 |FT [f(t)]|2 (524)
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Where the Fourier transform is defined by:

FT [f(t)] =

∫ ∞

−∞
f(t′)eiEnmt

′

dt′ (525)

And we use the convention that f(t) = 0 before and after the pulse. For example, if we turn on a constant perturbation
for a certain amount of time, then f(t) is a rectangle function.

====== [18.4] The effect of a constant perturbation

We consider the following scenario: A particle is prepared in the state n0, and then a constant perturbation is turned
on for a time t. We want to know what is the probability of finding the particle at some later time in the state n.
Using the transition probability formula we get

cn(t) = Wnn0

1− ei(En−En0)t

En − En0

(526)

We notice that the transition amplitude is larger to closer levels and smaller for distant levels.

Pt(n|n0) = |cn(t)|2 = |Wnn0 |2
∣∣∣∣
1− ei(En−En0)t

En − En0

∣∣∣∣
2

(527)

In the next section we shall see that this expression can be regarded as a special case of a more general result.

====== [18.5] The effect of periodic driving

We will now discuss a more general case:

f(t′) = e−iΩt
′

for t′ ∈ [0, t] (528)

We notice that the Hamiltonian should be hermitian. Therefore this perturbation has a physical meaning only if
it appears together with a conjugate term e+iΩt′ . In other words, the driving is done by a real field cos(Ωt′) that
changes periodically. Below we will treat only ”half” of the perturbation. We can get the effect of the second half by
making the swap Ω 7→ −Ω. The calculation is done the same way as in the case of a constant perturbation. Using
the transition probability formula we get

Pt(n|n0) = |Wnn0 |2
∣∣∣∣
1− ei(En−En0−Ω)t

En − En0 − Ω

∣∣∣∣
2

(529)

A more convenient way of writing this expression is:

Pt(n|n0) = |Wn,n0 |2
2[1− cos(En − En0 − Ω)t)]

(En − En0 − Ω)2
= |Wn,n0 |2

4 sin2((En − En0)− Ω)t/2)

(En − En0 − Ω)2
(530)

And another optional notation is:

Pt(n|n0) = |Wn,n0 |2 t2 sinc2((En − En0 − Ω)t/2) = 2π |Wn,n0 |2 δ2π/t(En − En0 − Ω)× t (531)

Where:

sinc(ν) ≡ sin(ν)

ν
(532)

∫ ∞

−∞

dν

2π
sinc2

(ν
2

)
= 1
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We have used the notation δǫ(ω) for a narrow function with width ǫ.

====== [18.6] The effect of a noisy driving

In the previous subsection we have derived an expression for the transition probability if the driving is purely harmonic.
In this section we assume a noisy driving. The “noise” is characterized by a correlation function

〈f(t)f(t′)〉 = F (t− t′) (533)

where the average is taken over realizations of f(t). The Fourier transform of of the correlation function is the power

spectrum of the noise F̃ (ω). From the transition probability formula we get

Pt(n|m) = |Wnm|2
∫ t

0

∫ t

0

〈f(t′)f(t′′)〉eiEnm(t′−t′′)dt′dt′′ ≈ |Wnm|2 F̃ (ω=Enm)× t (534)

where the approximation assumes that the duration of the noise much larger compared with its correlation time.
The intensity of the noise F (0) = 〈f2〉 ≡ ε2 is commonly characterized by its RMS value ε. Accordingly the ‘area’

under the power spectrum F̃ (ω) is 2πε2. Of particular interest is the case of driving by low frequency noise. In such

case F̃ (ω) is very narrow. Its spectral width 2π/τc, is determined by the correlation time τc. More generally we

can consider a noisy harmonic driving, for which F̃ (ω) is concentrated around some frequency Ω. In such case it is
suggestive to re-write the above result as

Pt(n|n0) ≈ 2πε2 |Wn,n0 |2 δ2π/τc
((En − En0)− Ω)× t (535)

Note that ε can be absorbed into the definition of W . The above result for constant rate transition between levels is
commonly regarded as a special version of the Fermi golden rule that we discuss in the next section.

====== [18.7] The Fermi golden rule (FGR)

The main transitions which are induced by a purely harmonic driving is to energy levels that obey the ”resonance
condition”:

(En − En0) ∼ ~Ω (536)

From the expression we found, we see that the probability of transition to levels that obey |En − (En0 + Ω)| < 2π~/t
is proportional to t2. That is what we would expect to get by the definition of the Hamiltonian as the probability
amplitude for transitions per unit time. But the ”width” of the area that includes these levels is proportional to
2π~/t. From this we conclude that the probability of transition to other levels grows linearly. We will call the rate of
transition to other levels Γ.

Γ =
2π

∆
|Wn,n0 |2 = 2π̺(E) |Wn,n0 |2 (537)

The formula can be proved by calculating the probability to stay in level n0:

P (t) = 1−
∑

n( 6=n0)

Pt(n|n0) = 1−
∫
dE

∆
Pt(E|E0) = 1− 2πt

∆
|Wn,n0 |2 = 1− Γt (538)

It is implicit in the above derivation that we assume a dense spectrum with well defined density of states. We also
assume that the relevant matrix elements are all of the same order of magnitude.
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Let us discuss the conditions for the validity of the Fermi golden rule picture. First-order perturbation theory is valid
while P (t) ≈ 1, or equivalently Γt≪ 1. An important time scale that gets into the game is the Heisenberg time which
is defined as:

tH =
2π~

∆
(539)

We will distinguish below between the case of weak perturbation (|W | ≪ ∆) from the case of strong perturbation
(|W | > ∆).

In the case |W | ≪ ∆ perturbation theory is still valid when t = tH . If perturbation theory is valid up to this time
then it is valid at any time, since after the Heisenberg time the (small) probability that has moved from the initial
state to other energy levels oscillates, and does not grow further. This argument is based on the assumption that the
difference (En − (En0 + Ω)) is of the order ∆, even for levels in the middle of the resonance. If there is an ”exact”
resonance, it is possible to show that the probability will oscillate between the two energy levels, as in the ”two-site”
problem, and there is no ”cumulative” leakage of the probability to other levels.

We will now discuss the case ∆ < |W |. In this case, first-order perturbation theory breaks down before the Heisenberg
time. Then we must go to higher orders of perturbation theory. With some limitation we find the result:

P (t) = e−Γt (540)

This means that there is a decay. In another lecture we analyze a simple model where we can get this result exactly.
In the general case, this is an approximate result that is valid (if we are lucky) for times that are neither too long nor
too short.

[19] Master equations
The FGR is commonly used in order to determine the rates constants in Master equations that provide a reduced
description for the dynamics of a system that is coupled to a bath or to a noise source. Here we demonstrates how
it emerges in the latter case. The Hamiltonian is H = H0 + f(t)W , were f(t) represents white: that means that
upon ensemble average 〈f(t)〉 = 0, while 〈f(t)f(t′)〉 = νδ(t− t′). The Liouville von-Neumann equation for the time
evolution of ρ can be solved iteratively in order to determine ρ(t+ dt) given ρ(t), where dt is small time interval:

ρ(t+ dt) = ρ− i
∫ t+dt

t

dt′ [H, ρ]−
∫ t+dt

t

∫ t′

t

dt′dt′′ [H, [H, ρ]] + ... (541)

Averaging over realizations of f(t) all the odd orders in this expansion vanish, while the leading dt contribution comes
only from the zero order term that involves H0 and from the second order term that involves W . Consequently we
get the following Master equation:

dρ

dt
= −i[H0, ρ]−

1

2
ν[W, [W,ρ]] (542)

In the most standard example W = x̂, and the second term corresponds to the diffusion term (ν/2)∂2ρ/∂p2 in the
classical Fokker-Plank equation.

In the weak noise limit the rate of the noise induced transitions becomes much smaller compared with the Bloch
frequency of the coherent transitions. Then we can ignore all the highly oscillating terms that involve the off-diagonal
terms, because they average to zero. Consequently we get the so-called Pauli mater equation for the probabilities pn

dp

dt
= W p W =




−Γ1 w12 ...
w21 −Γ2 ...
... ... ...



 (543)
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In this equation theW matrix is in agreement with the FGR picture. Namely, the rate constants are wnm = ν|Wnm|2,
and the decay constants are Γn =

∑
mwnm. We note that if we had interaction with a bath, then the ratio w12/w21

would not be unity, but would favor downwards transitions.

The noise induced “diffusion” term in the master equation that we have derived is WρW − (1/2)(WWρ+ ρWW ).
We can regard it as a special case of the so-called Lindblad equation:

dρ

dt
= −i[H0, ρ] +

∑

r

[W r]ρ[W r]† − 1

2
[Γρ+ ρΓ] (544)

where Γ =
∑

r[W
r]†[W r]. Lindblad equation is the most general form of a Markovian master Equation for the

probability matrix. The heart of the argument is as follows: The most general linear relation between matrices is

ρ̃αβ =
∑

α′β′

W(αβ|α′β′) ρα′β′ (545)

This linear transformation is required to preserve the hermiticity of ρ. Changing notation to W(αβ|α′β′) =Wαα′,ββ′

one observes thatWαα′,ββ′ should be hermitian, with eigenvalues wr. Accordingly we can find a spectral decomposition
with a transformation matrix T (αα′|r). Changing notation to W r

α,α′ =
√
wrT (αα′|r) we get the Lindblad from∑

r[W
r]ρ[W r]†. Now we have to distinguish between two cases: If ρ̃ is the new probability matrix, then conservation

of trace requires
∑

r[W
r]†[W r] = 1. If on the other hand we look on the incremental change ρ̇, then (after some

non-trivial algebra) we arrive to the Lindblad from of the Master equation. There is a complete analogy here with
the Pauli equation where the decay rates in the main diagonal of W have to counter-balance the ingoing transitions.
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[20] The cross section in the Born approximation

====== [20.1] Cross Section

In both classical mechanics and quantum mechanics there are two types of problems: closed systems and open systems.
We will discuss an open system. The dynamical problem that we will analyze is called a ”scattering problem”. For
example, a wave that is scattered on a sphere. In a problem of this type the energy is given. We assume that there
is an ”incident particle flux” and we ask what is the ”scattered flux”.

shadow

We notice that the sphere ”hides” a certain area of the beam. The total hidden area is called the ”total cross
section” σtotal. Let us assume that we have a beam of particles with energy E and velocity vE , so that the current
density is:

J [particles/time/area] = ρ0vE (546)

Where ρ0 is the particle density. We write the scattered current as:

iscattered = [σtotal]× J (547)

Where the cross section σtotal is defined as the ratio of the scattered current iscattered to the incident particle flux
density J . We notice that each area element of the sphere scatters to a different direction. Therefore, it is more
interesting to talk about the differential cross section σ(Ω). In full analogy σ(Ω)dΩ is defined by the formula:

iscattered = [σ(Ω)dΩ]× J (548)

Where iscattered is the current that is scattered into the angular element dΩ.

====== [20.2] Cross section and rate of transition

For the theoretical discussion that will follow, it is convenient to think of the space as if it has a finite volume
L3 = LxLyLz with periodic boundary conditions. In addition we assume that the ”incident” beam takes up the whole
volume. If we normalize the particle density according to the volume then ρ0 = 1/L3. With this normalization, the
flux J (particles per unit time) is actually the ”probability current” (probability per unit time), and the current
iscattered is in fact the scattering rate. Therefore an equivalent definition of the cross section is:

Γ(k ∈ dΩ|k0) = [σ(Ω)dΩ] × 1

L3
vE (549)

Given the scattering potential U(r) we can calculate its Fourier transform Ũ(q)

Ũ(q) = FT[U(r)] =

∫ ∫ ∫
U(r)e−i~q·~rd3r (550)
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Then we get from the Fermi golden rule (see derivation below) a formula for the differential cross section which is
called the ”Born approximation”:

σ(Ω) =
1

(2π)2

(
kE
vE

)2

|Ũ(k − k0)|2 =
(

m

2π

)2 ∣∣∣Ũ(~kΩ − ~k0)
∣∣∣
2

(551)

The second expression assumes the non-relativistic dispersion relation vE = kE/m. The Born approximation is a
first-order perturbation theory approximation. It can be derived with higher order corrections within the framework
of scattering theory.

====== [20.3] The DOS for a free particle

In order to use the Fermi golden rule we need an expression for the density of states of a free particle. In the past
we defined ̺(E)dE as the number of states with energy E < Ek < E + dE. But in order to calculate the differential
cross section we need a refined definition:

̺(E,Ω)dEdΩ = Number of states withE < Ek < E + dE and ~k ∈ dΩ (552)

If we have a three-dimensional space with volume L3 = LxLyLz and periodic boundary conditions, then the momentum
states are:

knx,ny,nz
=

(
2π

Lx
nx,

2π

Ly
ny,

2π

Lz
nz

)
(553)

k
x

k y

The number of states with a momentum that in a specified region of k space is:

dkx dky dkz
2π
Lx

2π
Ly

2π
Lz

=
L3

(2π)2
d3k =

L3

(2π)3
k2dkdΩ =

L3

(2π)3
k2
E

dE

vE
dΩ (554)

Where we have moved to spherical coordinates and used the relation dE = vEdk. Therefore, we find the result:

̺(E,Ω)dEdΩ =
L3

(2π)3
k2
E

vE
dEdΩ (555)
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====== [20.4] Derivation of the Born formula

Let us assume that we have a flux of particles that are moving in a box with periodic boundary conditions in the
z direction. As a result of the presence of the scatterer there are transitions to other momentum states (i.e. to other
directions of motion). According to the Fermi golden rule the transition rate is:

Γ(k ∈ dΩ|k0) = 2π [̺(E,Ω)dΩ] |Uk,k0 |2 (556)

By comparing with the definition of a cross section we get the formula:

σ(Ω) =
2π

vE
L3 ̺(E,Ω) |Uk,k0 |2 (557)

We notice that the matrix elements of the scattering potential are:

〈~k|U(r)| ~k0〉 =

∫
d3x

L3
e−ik·rU(r) eik0·r =

1

L3

∫
U(r) e−i(k−k0)·rd3r =

1

L3
Ũ(k − k0) (558)

By substituting this expression and using the result for the density of states we get the Born formula.

====== [20.5] Scattering by a spherically symmetric potential

In order to use the Born formula in practice we define our system of coordinates as follows: the incident wave
propagates in the z direction, and the scattering direction is Ω = (θΩ, ϕΩ). The difference between the k of the

scattered wave and the k0 of the incident wave is q = k − k0. Next we have to calculate Ũ(q) which is the Fourier
transform of U(r). If the potential is spherically symmetric we can use a rotated coordinate system for the calculation
of the Fourier transform integral. Namely, we can use spherical coordinates such that θ = 0 is the direction of ~q.
Consequently

Ũ(q) =

∫ ∫ ∫
U(r)e−iqr cos(θ)dϕd cos(θ)r2dr = 4π

∫ ∞

0

U(r) sinc(qr) r2dr (559)

where the angular integration has been done using

∫ 1

−1

e−iλsds =

[
e−iλs

−iλ

]1

−1

=
eiλ − e−iλ

iλ
=

2 sin(λ)

λ
= 2sinc(λ) (560)

We can go on calculating the total cross section:

σtotal =

∫ ∫
σ(Ω)dΩ =

1

(2π)2

(
kE
vE

)2 ∫ π

0

|Ũ(q)|2 2π sin θΩdθΩ (561)

We note that by simple trigonometry:

q = 2kE sin

(
θΩ
2

)
; dq = kE cos

(
θΩ
2

)
dθΩ ; sin θΩdθΩ =

qdq

k2
E

(562)

Hence we can write the integral of the cross section as:

σtotal =
1

2πv2
E

∫ 2kE

0

|Ũ(q)|2qdq (563)
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[21] Dynamics in the adiabatic picture

====== [21.1] The notion of adiabaticity

Consider a particle in a one dimensional box with infinite walls. We now move the wall. What happens to the particle?
Let us assume that the particle has been prepared in a certain level. It turns out that if the wall is displaced slowly,
then the particle will stay in the same level. This is called the ”adiabatic approximation”. We notice that staying in
the same energy level means that the state of the particle changes! If the wall is moved very fast then the state of the
particle does not have time to change. This is called the ”sudden approximation”. In the latter case the final state
(after the displacement of the wall) is not an eigenstate of the (new) Hamiltonian. After a sudden displacement of
the wall, the particle will have to ”ergodize” it state inside the box.

The fact that the energy of the particle decreases when we move the wall outwards, means that the particle is doing
work. If the wall is displaced adiabatically and then displaced back to its original location, then there is no net work
done. In such case we say that the process is reversible. But if the displacement of the wall is not slow then the
particle makes transitions to other energy levels. The scattering to other energy levels is in general irreversible.

In the problem that we have considered above, the parameter X that we change is the length L of the box. Therefore
V = Ẋ is the velocity at which the wall (or the ”piston”) is displaced. In other problems X could be any field. An

important example is a particle in a ring where X = Φ is the magnetic flux through the ring, and EMF = −Ẋ is the
electro motive force (by Faraday law). In problems of this type, the change in the parameter X can be very large,
so we cannot use standard perturbation theory to analyze the evolution in time. Therefore, we would like to find
another way to write Schrödinger’s equation, so that Ẋ is the small parameter.

====== [21.2] The Schrödinger equation in the adiabatic basis

We assume that we have Hamiltonian H(Q̂, P̂ ;X) that depends on a parameter X . The adiabatic states are the
eigenstates of the instantaneous Hamiltonian:

H(X) |n(X)〉 = En(X) |n(X)〉 (564)

It is natural in such problems to work with the adiabatic basis and not with a fixed basis. We will write the state of
the system as:

|Ψ〉 =
∑

n

an(t)|n(X(t))〉 (565)

which means an(t) ≡ 〈n(X(t))|Ψ(t)〉. If we prepare the particle in the energy level n0 and change X in an adiabatic
way, then we expect |an(t)|2 ≈ δn,n0 . In a later stage we shall find a slowness condition for the validity of this
approximation. But in general we have the Schrödinger’s equation

dΨ

dt
= −iH(x, p;X(t))Ψ (566)

from which we get:

dan
dt

= 〈n| d
dt

Ψ〉+ 〈 d
dt
n|Ψ〉 = −i〈n|Hψ〉+

∑

m

〈 d
dt
n|m〉〈m|Ψ〉 = −iEnan + Ẋ

∑

m

〈 ∂
∂X

n|m〉am (567)

Using the notation

Anm = −i〈 ∂
∂X

n|m〉 (568)
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The Schrödinger’s equation takes the form

dan
dt

= −iEnan + iẊ
∑

m

Anmam (569)

For sake of analysis it is convenient to separate the diagonal part of the perturbation. So we define An = Ann. We
pack the off diagonal part into a matrix which is defined as Wnm = −ẊAnm for n 6= m and zero otherwise. With
these notations the Schrödinger’s equation in the adiabatic representation takes the form

dan
dt

= −i(En − ẊAn)an − i
∑

m

Wnmam (570)

It should be notices that the strength of the perturbation in this representation is determined by the rate Ẋ and not
by the amplitude of the driving.

====== [21.3] The calculation of Anm

Before we make further progress we would like do dwell on the calculation of the perturbation matrix Anm. First of
all we notice that

Anm = −i〈 ∂
∂X

n|m〉 = i〈n| ∂
∂X

m〉 (571)

This is true because for any X

〈n|m〉 = δnm (572)

⇒ ∂

∂X
〈n|m〉 = 0

⇒ 〈 ∂
∂X

n|m〉+ 〈n| ∂
∂X

m〉 = 0

In other words 〈 ∂∂Xn|m〉 is anti-Hermitian, and therefore −i〈 ∂∂Xn|m〉 is Hermitian. We define more notations:

An(X) = Ann = i〈n| ∂
∂X

n〉 (573)

Vnm =

(
∂H
∂X

)

nm

We want to prove that for n 6= m:

Anm =
iVnm

Em − En
(574)

This is a very practical formula. Its proof is as follows:

〈n|H|m〉 = 0 for n 6= m (575)

⇒ ∂

∂X
〈n|H|m〉 = 0

⇒ 〈 ∂
∂X

n|H|m〉+ 〈n| ∂
∂X
H|m〉+ 〈n|H| ∂

∂X
m〉 = Em〈

∂

∂X
n|m〉+ Vnm + En〈n|

∂

∂X
m〉 = 0

From the latter equality we get the required identity.
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====== [21.4] The adiabatic approximation

If Ẋ is small enough the perturbation matrix W will not be able to induce transitions between levels, and then we
get the adiabatic approximation |an(t)|2 ≈ const. This means that the probability distribution does not change with
time. In particular, if the particle is prepared in level n, then is stays in this level all the time.

From the discussion of first-order perturbation theory we know that we can neglect the coupling between two different
energy levels if the absolute value of the matrix element is smaller compared with the energy difference between the
levels. Assuming that all the matrix elements are comparable the main danger to the adiabaticity are transitions to
neighboring levels. Therefore the adiabatic condition is |W | ≪ ∆ or

Ẋ ≪ ∆2

~σ
(576)

where σ is the estimate for the matrix element Vnm that couples neighboring levels.

An example is in order. Consider a particle in a box of length L. The wall is displaced at a velocity Ẋ. Given that the
energy of the particle is E we recall that the energy level spacing is ∆ = (π/L)vE , while the coupling of neighboring
levels, based on a formula that we have derived in a previous section, is

σ =
1

mL
k2
n =

1

mL
(mvE)2 =

1

L
mv2

E (577)

It follows that the adiabatic condition is

Ẋ ≪ ~

mL
(578)

Note that the result does not depend on E. This is not the typical case. In typical cases the density of states increases
with energy, and consequently it becomes more difficult to satisfy the adiabatic condition.

Assuming we can ignore the coupling between different levels, the adiabatic equation becomes

dan
dt

= −i(En − ẊAn)an (579)

And its solution is:

an(t) = e−i
R

t
0
(En−ẊAn)dt′an(0) (580)

As already observed the probability |an(t)|2 to be in a specific energy level does not change in time. That is the
adiabatic approximation. But it is interesting to look also at the phase that the particle accumulates. Apart from
the dynamical phase, the particle also accumulates a geometrical phase

phase =

∫ t

0

(En − ẊAn)dt′ = −
∫ t

0

Endt
′ +

∫ X(t)

X(0)

An(X
′)dX ′ (581)

An interesting case is when we change more than one parameter. In this case, just as in the Aharonov-Bohm effect,
the particle accumulates a ”topological” phase that is called the ”Berry phase”.

Berry phase ≡
∮
An(X)dX (582)

In fact, the Aharonov-Bohm effect can be viewed as a specific case of the topological effect that was explained above.
In order to discuss further topological effects we have to generalize the derivation of the Adiabatic equation. This will
be done in the next section.
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[22] The Berry phase and adiabatic transport
In the following lectures we discuss the adiabatic formalism and the linear-response (Kubo) theory adopting the
presentation and the notations as in [http://arxiv.org/abs/cond-mat/0307619]. Note that unlike most textbooks
we write the Schrödinger equation in the adiabatic representation without switching to the “interaction picture”.

====== [22.1] Definitions of A and B

The adiabatic equation is obtained from the Schrödinger equation by expanding the wavefunction in the x-dependent
adiabatic basis:

d

dt
|ψ〉 = − i

~
H(x(t)) |ψ〉 (583)

|ψ〉 =
∑

n

an(t) |n(x(t))〉

dan
dt

= − i
~
Enan +

i

~

∑

m

∑

j

ẋjA
j
nmam

where we define

Ajnm(x) = i~

〈
n(x)

∣∣∣
∂

∂xj
m(x)

〉
(584)

Differentiation by parts of ∂j〈n(x)|m(x)〉 = 0 leads to the conclusion that Ajnm is a Hermitian matrix. Note that the
effect of gauge transformation is

|n(x)〉 7→ e−i
Λn(x)

~ |n(x)〉 (585)

Ajnm 7→ ei
Λn−Λm

~ Ajnm + (∂jΛn)δnm

Note that the diagonal elements Ajn ≡ Ajnn are real, and transform as Ajn 7→ Ajn + ∂jΛn.

Associated with An(x) is the gauge invariant 2-form, which is defined as:

Bkjn = ∂kA
j
n − ∂jAkn = −2~Im〈∂kn|∂jn〉 = −2

~
Im
∑

m

AknmA
j
mn (586)

This can be written in abstract notation as B = ∇∧A.

Using standard manipulations, namely via differentiation by parts of ∂j〈n(x)|H|m(x)〉 = 0, we get for n 6= m the
expressions:

Ajnm(x) =
i~

Em − En

〈
n

∣∣∣∣
∂H
∂xj

∣∣∣∣m
〉
≡ − i~F jnm

Em − En
(587)

and hence

Bkjn = 2~

∑

m( 6=n)

Im
[
FknmF jmn

]

(Em − En)2
(588)

The mathematical digression in the next section is useful in order to clarify the analogy between B and the notion of
magnetic field. This leads to better understanding of topological effects that are associated with adiabatic processes.

http://arxiv.org/abs/cond-mat/0307619
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====== [22.2] Vector Analysis and “Geometrical Forms”

Geometrical forms are the “vector analysis” generalization of the length, area and volume concepts to any dimension.
In Euclidean geometry with three dimensions the basis for the usual vector space is ê1, ê2, ê3. These are called 1-forms.
We can also define a basis for surface elements:

ê12 = ê1 ∧ ê2 (589)

ê23 = ê2 ∧ ê3
ê31 = ê3 ∧ ê1

These are called 2-forms. We also have the volume element ê1 ∧ ê2 ∧ ê3 which is called 3-form. There is a natural
duality between 2-forms and 1-forms, namely ê12 7→ ê3 and ê23 7→ ê1 and ê31 7→ ê2. Note that ê21 = −ê12 7→ −ê3,
and ê1 ∧ ê2 ∧ ê3 = −ê2 ∧ ê1 ∧ ê3 etc.

The duality between surface elements and 1-forms does not hold in Euclidean geometry of higher dimension. For
example in 4 dimensions the surface elements (2-forms) constitute C2

4 = 6 dimensional space. In the latter case we
have duality between the hyper-surface elements (3-forms) and the 1-forms, which are both 4 dimensional spaces.
There is of course the simplest example of Euclidean geometry in 2 diemnsional space where 2-forms are regarded as
either area or as volume and not as 1-form vectors. In general for N dimensional Euclidean geometry the k forms
constitute a CkN dimensional vector space, and they are dual to the (N − k) forms.

We can take two 1-forms (vectors) so as to create a surface element:

∑
Aiêi ∧

∑
Biêj =

∑

i,j

AiAj êi ∧ êj =
∑

i<j

(AiAj −AjAi)êi ∧ êj (590)

Note that êi ∧ êi = Null. This leads to the practical formula for a wedge product

(A ∧B)ij = AiBj −AjBi (591)

We can also define the notation

(∂ ∧A)ij = ∂iAj − ∂jAi (592)

Note that in 3 dimensional Euclidean geometry we have the duality

∂ ∧A 7→ ∇×A if A is a 1-forms (593)

∂ ∧B 7→ ∇ ·B if B is a 2-forms

The above identifications are implied by the following:

∂ = ∂1ê1 + ∂1ê2 + ∂1ê3 (594)

A = A1ê1 +A2ê2 +A3ê3

B = B12 · ê12 +B23 · ê23 +B31 · ê31

hence

(∂ ∧A)12 = ∂1A2 − ∂2A1 = (∇×A)3 etc (595)

and

∂ ∧B = (∂1ê1 + ∂2ê2 + ∂3ê3) ∧ (B12ê12 +B23ê23 +B31ê31) = (∂1B23 + ∂2B31 + ∂3B12)ê123 7→ ∇ · B (596)
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The generalized Stokes theorem relates the closed boundary integral over k-form to an integral over (k + 1) form
within the interior.

∮
A · dl =

∫ ∫
∂ ∧A · ds (597)

In 3 dimensional Euclidean geometry this is the Stokes Integral Theorem if A is a 1-form, and the Divergence Integral
Theorem if A is a 2-form.

====== [22.3] The Berry phase

We define the perturbation matrix as

Wnm = −
∑

j

ẋjA
j
nm for n 6= m (598)

and W j
nm = 0 for n = m. Then the adiabatic equation can be re-written as follows:

dan
dt

= − i
~
(En − ẋAn)an −

i

~

∑

m

Wnmam (599)

If we neglect the perturbation W , then we get the strict adiabatic solution:

|ψ(t)〉 = e
− i

~

“

R

t

0
En(x(t′))dt′−

R x(t)

x(0)
An(x)·dx

”

|n(x(t))〉 (600)

The time dependence of this solution is exclusively via the x dependence of the basis states. On top, due to An(x)
we have the so called geometric phase. This can be gauged away unless we consider a closed cycle. For a closed cycle,

the gauge invariant phase 1
~

∮
~A · ~dx is called the Berry phase.

With the above zero-order solution we can obtain the following result:

〈Fk〉 =

〈
ψ(t)

∣∣∣∣−
∂H
∂xk

∣∣∣∣ψ(t)

〉
= − ∂

∂xk
〈n(x)| H(x) |n(x)〉 (601)

In the case of the standard examples that were mentioned previously this corresponds to a conservative force or to a
persistent current. From now on we ignore this trivial contribution to 〈Fk〉, and look for the a first order contribution.

====== [22.4] Adiabatic Transport

For linear driving (unlike the case of a cycle) the An(x) field can be gauged away. Assuming further that the adiabatic
equation can be treated as parameter independent (that means disregarding the dependence of En and W on x) one
realizes that the Schrödinger equation in the adiabatic basis possesses stationary solutions. To first order these are:

|ψ(t)〉 = |n〉+
∑

m( 6=n)

Wmn

En − Em
|m〉 (602)

Note that in a fixed-basis representation the above stationary solution is in fact time-dependent. Hence the explicit
notations |n(x(t))〉 and |m(x(t))〉 are possibly more appropriate.

With the above solution we can write 〈Fk〉 as a sum of zero order and first order contributions. From now on we
ignore the zero order contribution, but keep the first order contribution:

〈Fk〉 = −
∑

m( 6=n)

Wmn

En − Em

〈
n
∣∣∣
∂H
∂xk

∣∣∣m
〉

+ CC =
∑

j

(
i
∑

m

AknmA
j
mn + CC

)
ẋj = −

∑

j

Bkjn ẋj (603)
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For a general stationary preparation, either pure or mixed, one obtains

〈Fk〉 = −
∑

j

Gkj ẋj (604)

with

Gkj =
∑

n

f(En) Bkjn (605)

Where f(En) are weighting factors, with the normalization
∑

n f(En) = 1. For a pure state preparation f(En)

distinguishes only one state n, while for a canonical preparation f(En) ∝ e−En/T , where T is the temperature.
For a many-body system of non-interacting particles f(En) is re-interpreted as the occupation function, so that∑

n f(En) = N is the total number of particles.

Thus we see that the assumption of a stationary first-order solution leads to a non-dissipative (antisymmetric) con-
ductance matrix. This is known as either ”adiabatic transport” or ”geometric magnetism”. In the next sections we
are going to see that ”adiabatic transport” is in fact a special limit of Kubo formula.

====== [22.5] Beyond the strict adiabatic limit

If the driving is not strictly adiabatic the validity of the stationary adiabatic solution becomes questionable. In general
we have to take non-adiabatic transitions between levels into account. This leads to the Kubo formula for the response
which we discuss in the next section. The Kubo formula has many type of derivations. One possibility is to use the
same procedure as in the previous section starting with

|ψ(t)〉 = e−iEnt|n〉 +
∑

m( 6=n)

[
−iWmn

∫ t

0

ei(En−Em)t′dt′
]

e−iEmt|m〉 (606)

We shall not expand further on this way of derivation, which becomes quite subtle once we go beyond the stationary
adiabatic approximation. The standard textbook derivation is presented in the next section.
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[23] Linear response theory and the Kubo formula

====== [23.1] Linear Response Theory

We assume that the Hamiltonian depends on several parameters, say three parameters:

H = H(~r, ~p; x1(t), x2(t), x3(t)) (607)

and we define generalized forces

Fk = − ∂H
∂xk

(608)

Linear response means that

〈Fk〉t =
∑

j

∫ ∞

−∞
αkj(t− t′) δxj(t′)dt′ (609)

Where αkj(τ) = 0 for τ < 0. The expression for the response Kernel is known as the Kubo formula:

αkj(τ) = Θ(τ)
i

~
〈[Fk(τ),F j(0)]〉0 (610)

Where the average is taken with the assumed zero order stationary solution. Before we present the standard derivation
of this result we would like to illuminate the DC limit of this formula, and to further explain the adiabatic limit that
was discussed in the previous section.

====== [23.2] Susceptibility and DC Conductance

The Fourier transform of αkj(τ) is the generalized susceptibility χkj(ω). Hence

[〈Fk〉]ω =
∑

j

χkj0 (ω)[xj ]ω −
∑

j

µkj(ω)[ẋj ]ω (611)

where the dissipation coefficient is defined as

µkj(ω) =
Im[χkj(ω)]

ω
=

∫ ∞

0

αkj(τ)
sin(ωτ)

ω
dτ (612)

In the ”DC limit” (ω → 0) it is natural to define the generalized conductance matrix:

Gkj = µkj(ω ∼ 0) = lim
ω→0

Im[χkj(ω)]

ω
=

∫ ∞

0

αkj(τ)τdτ (613)

Consequently the non-conservative part of the response can be written as a generalized Ohm law.

〈Fk〉 = −
∑

j

Gkj ẋj (614)
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It is convenient to write the conductance matrix as

Gkj ≡ ηkj +Bkj (615)

where ηkj = ηjk is the symmetric part of the conductance matrix, while Bkj = −Bjk is the antisymmetric part.
In our case there are three parameters so we can arrange the elements of the antisymmetric part as a vector
~B = (B23, B31, B12). Consequently the generalized Ohm law can be written in abstract notation as

〈F〉 = −η · ẋ − B ∧ ẋ (616)

where the dot product should be interpreted as matrix-vector multiplication, which involves summation over the
index j. The wedge-product can also be regarded as a matrix-vector multiplication. It reduces to the more familiar
cross-product in the case we have been considering - 3 parameters. The dissipation, which is defined as the rate at
which energy is absorbed into the system, is given by

Ẇ = −〈F〉 · ẋ =
∑

kj

ηkj ẋkẋj (617)

which is a generalization of Joule’s law. Only the symmetric part contributes to the dissipation. The contribution of
the antisymmetric part is identically zero.

The conductance matrix is essentially a synonym for the term ”dissipation coefficient”. However, ”conductance” is a
better (less misleading) terminology: it does not have the (wrong) connotation of being specifically associated with
dissipation, and consequently it is less confusing to say that it contains a non-dissipative component. We summarize
the various definitions by the following diagram:

?



�
XXXXXXz

?

@@R��	

αkj(t− t′)

χkj(ω)

Re[χkj(ω)] (1/ω)Im[χkj(ω)]

ηkj Bkj

(non-dissipative)

Gkj

(dissipative)

====== [23.3] Derivation of the Kubo formula

A one line derivation of the Kubo formula is based on the interaction picture, and is presented in another section of
these lecture notes. There are various different looking derivations of the Kubo formula that highlight the quantum-
to-classical correspondence and/or the limitations of this formula. The advantage of the derivation below is that it
also allows some extensions within the framework of a master equation approach that takes the environment into
account. For notational simplicity we write the Hamiltonian as

H = H0 − f(t)V (618)
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and use units with ~ = 1. We assume that the system, in the absence of driving, is prepared in a stationary state ρ0.
In the presence of driving we look for a first order solution ρ(t) = ρ0 + ρ̃(t). The equation for ρ̃(t) is:

∂ρ̃(t)

∂t
≈ −i[H0, ρ̃(t)] + if(t)[V, ρ0] (619)

Next we use the substitution ρ̃(t) = U0(t)˜̃ρ(t)U0(t)
−1, where U0(t) is the evolution operator which is generated by

H0. Thus we eliminate from the equation the zero order term:

∂ ˜̃ρ(t)

∂t
≈ if(t)[U0(t)

−1V U0(t), ρ0] (620)

The solution of the latter equation is straightforward and leads to

ρ(t) ≈ ρ0 +

∫ t

i [V (−(t−t′)), ρ0] f(t′)dt′ (621)

where we use the common notation V (τ) = U0(τ)
−1V U0(τ).

Consider now the time dependence of the expectation value 〈F〉t = trace(Fρ(t)) of an observable. Disregarding the
zero order contribution, the first order expression is

〈F〉t ≈
∫ t

i trace (F [V (−(t−t′)), ρ0]) f(t′)dt′ =

∫ t

α(t− t′) f(t′)dt′

where the response kernel α(τ) is defined for τ > 0 as

α(τ) = i trace (F [V (−τ), ρ0]) = i trace ([F , V (−τ)]ρ0) = i〈[F , V (−τ)]〉 = i〈[F(τ), V ]〉 (622)

Where we have used the cyclic property of the trace operation; the stationarity U0ρ0U
−1
0 = ρ0 of the unperturbed

state; and the notation F(τ) = U0(τ)
−1FU0(τ).
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[24] The Born-Oppenheimer picture
We now consider a more complicated problem, where x becomes a dynamical variable. The standard basis for the
representation of the composite system is |x,Q〉 = |x〉 ⊗ |Q〉. We assume a total Hamiltonian of the form

Htotal =
1

2m

∑

j

p2
j +H(Q,P ;x)− f(t)V (Q) (623)

Rather than using the standard basis, we can use the Born-Oppenheimer basis |x, n(x)〉 = |x〉 ⊗ |n(x)〉. Accordingly
the state of the combined system is represented by the wavefunction Ψn(x), namely

|Ψ〉 =
∑

n,x

Ψn(x) |x, n(x)〉 (624)

The matrix elements of H are

〈x, n(x)|H|x0,m(x0)〉 = δ(x− x0)× δnmEn(x) (625)

The matrix elements of V (Q) are

〈x, n(x)|V (Q)|x0,m(x0)〉 = δ(x − x0)× Vnm(x) (626)

The matrix elements of p are

〈x, n(x)|pj |x0,m(x0)〉 = (−i∂jδ(x−x0))× 〈n(x)|m(x0)〉

The latter can be manipulated ”by parts” leading to

〈x, n(x)|pj |x0,m(x0)〉 = −i∂jδ(x− x0)δnm − δ(x− x0)A
j
nm(x) (627)

This can be summarized by saying that the operation of pj on a wavefunction is like the differential operator
−i∂j −Ajnm(x). Thus in the Born-Oppenheimer basis the total Hamiltonian takes the form

Htotal =
1

2m

∑

j

(pj −Ajnm(x))2 + δnmEn(x)− f(t)Vnm(x) (628)

Assuming that the system is prepared in energy level n, and disregarding the effect of A and V , the adiabatic motion of
x is determined by the effective potential En(x). This is the standard approximation in studies of diatomic molecules,
where x is the distance between the nuclei. If we treat the slow motion as classical, then the interaction with A can
be written as

H(1)
interaction = −

∑

j

ẋjA
j
nm(x) (629)

This brings us back to the theory of driven systems as discussed in previous sections. The other interaction that can
induce transitions between levels is

H(2)
interaction = −f(t)Vnm(x) (630)

The analysis of molecular ”wavepacket dynamics” is based on this picture.
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The Green function approach

[25] The propagator and Feynman path integral

====== [25.1] The propgator

The evolution of a quantum mechanical system is described by a unitary operator

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 (631)

The Hamiltonian is defined by writing the infinitesimal evolution as

U(t+ dt, t) = 1− idtH(t) (632)

This expression has an imaginary i in order to make H a Hermitian matrix. If we want to describe continuous
evolution we can ”break” the time interval into N infinitesimal steps:

U(t, t0) = (1 − idtNH) . . . (1− idt2H)(1 − idt1H) ≡ T e
−i
R

t
t0

H(t′)dt′
(633)

For a time independent Hamiltonian we get simply U(t) = e−itH because of the identity eAeB = eA+B if [A,B] = 0.

If we consider a particle and use the standard position representation then the unitary operator is represented by a
matrix U(x|x0). The time interval [t0, t] is implicit. We alway assume that t > t0. Later it would be convenient to
define the propagator as U(x|x0) for t > t0 and as zero otherwise. The reason for this convention is related to the
formalism that we are going to introduce later on.

====== [25.2] The Propagator for a free particle

Consider a free particle in one dimension. Let us find the propagator using a direct calculation. The hamiltonian is:

H =
p2

2m
(634)

As long as the Hamiltonian has a quadratic form, the answer will be a Gaussian kernel:

U(x|x0) =
〈
x
∣∣∣e−i

t
2m
p2
∣∣∣x0

〉
=
(

m

2πit

) 1
2

ei
m

2t
(x−x0)

2

(635)

We note that in the case of a harmonic oscillator

H =
p2

2m
+

1

2
mΩ2x2 (636)

The propagator is

U(x|x0) =

(
mΩ

2πi sinΩt

) 1
2

ei
mΩ

2 sin Ωt
[cosΩt(x2+x2

0)−2xx0] (637)

If we take t→ 0 then U → 1̂, and therefore U(x|x0)→ δ(x − x0).
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The derivation of the expression for the propagator in the case of a free particle goes as follows. For clarity we use
units such that m = 1:

〈x|e−ı 12 tp2 |x0〉 =
∑

k

〈x|k〉e−ı 12 tk2〈k|x0〉 =

∫
dk

2π
e−ı

1
2 tk

2+ik(x−x0) (638)

This is formally an inverse FT of a Gaussian. One obtains the desired result, which is formally a Gaussian that has
an imaginary variance σ2 = it. We note that we can write the result in the form

〈x|e−ı 12 tp2 |x0〉 =
1√
2πıt

e
ı(x−x0)2

2t =
1√
2πıt

[
cos

1

2t
(x− x0)

2 + ı sin
1

2t
(x − x0)

2

]
(639)

If t → 0 we should get a delta function. This is implied by the FT, but it would be nice to verify this statement
directly. Namely we have to show that in this limit we get a narrow function whose ”area” is unity. For this purpose
we use identity

∫
cos r2 . . . dr =

∫
cosu

2
√
u
. . . du (640)

and a similar expression in case of sin function. Then we recall the elementary integrals

∫ ∞

0

sinu√
u
du =

∫ ∞

0

cosu√
u
du =

√
π

2
(641)

Thus the ”area” of the two terms in the square brackets is proportional to (1 + i)/
√

2 which cancels the
√
i of the

prefactor.

====== [25.3] Feynman Path Integrals

How can we find the propagator U(x|x0) for the general HamiltonianH = p2

2m
+V (x)? The idea is to write 〈x|e−ıtH|x0〉

as a convolution of small time steps:

〈x|e−ıtH|x0〉 =
∑

x1,x2,...xN−1

〈x|e−ıδtNH|xN−1〉 . . . 〈x2|e−ıδt2H|x1〉〈x1|e−ıδt1H|x0〉 (642)

Now we have to find the propagator for each infinitesimal step. At first sight it looks as if we just complicated the
calculation. But then we recall that for infinitesimal operations we have:

eεA+εB ≈ eεAeεB ≈ eεBeεA for any A and B (643)

This is because the higher order correction can be made as small as we want. So we write

〈xj |e−ıδt(
p2

2m
+V (x))|xj−1〉 ≈ 〈xj |e−ıδtV (x))e−ıδt

p2

2m |xj−1〉 ≈ (
m

2πıdtj
)

1
2 e
ı m

2dtj
(xj−xj−1)2−dtjV (xj)

(644)

and get:

U(x|x0) =

∫
dx1dx2 . . . dxN−1(

m

2πıdt
)

N
2 eiA[x] ≡

∫
d[x] eiA[x] (645)
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where A[x] is called the action.

A[x] =

N−1∑

j=1

[
m

2dt
(xj − xj−1)

2 − dtV (x)
]

=

∫
(
1

2
mẋ2 − V (x))dt =

∫
L(x, ẋ)dt (646)

More generally, if we include the vector potential in the Hamiltonian, then we get the Lagrangian

L(x, ẋ) =
1

2
mẋ2 − V (x) + A(x)ẋ (647)

leading to:

A[x] =

∫
(
1

2
mẋ2 − V (x))dt +

∫
A(x) · dx (648)

====== [25.4] Stationary Point Approximation

The Stationary Point Approximation is an estimate for an integral of the form
∫

eıA(x)dx. The main contribution to
the integral comes from the point x = x̄, called a stationary point, where A′(x) = 0. We expand the function A(x)
near the stationary point:

A(x) = A(x̄) +
1

2
A′′(x̄)(x − x̄)2 + . . . (649)

Leading to

∫
eıA(x)dx ≈ eıA(x̄)

∫
eı

1
2A

”(x̄)(x−x̄)2dx =

√
i2π

A”(x̄)
eıA(x̄) (650)

Where the exponential term is a leading order term, and the prefactor is an ”algebraic decoration”.

The generalization of this method to multi-dimensional integration over d[x] is immediate. The stationary point is
in fact the trajectory for which the first order variation is zero (δA = 0). This leads to Lagrange equation, which
implies that the ”stationary point” is in fact the classical trajectory. Consequently we get the so called semiclassical
(Van-Vleck) approximation:

U(x|x0) =

∫
d[x] eiA[x] ≈

∑

cl

(
1

i2π~

)d/2 ∣∣∣∣det

(
− ∂

2Acl
∂x∂x0

)∣∣∣∣
1/2

eiAcl(x,x0)−i(π/2)νcl (651)

Where d is the number of degrees of freedom, and

Acl(x, x0) ≡ A[xcl] (652)

is the action of the classical trajectory as a function of the two end points. In d dimensions the associated determinant
is d× d. The Morse-Maslov index νcl counts the number of conjugate points along the classical trajectory. If the time
is short it equals zero and then both this index and the absolute value that enclosed the determinant can be omitted.
Otherwise the recipe for the determination of the Morse index is as follows: The linearized equation of motion for
x(t) = xcl(t) + δx(t) is

mδẍ+ V ′′(xcl)δx = 0 (653)
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A conjugate point (in time) is defined as the time when the linearized equation has a non-trivial solution. With
this rule we expect that in case of a reflection from a wall, the Morse index is +1 for each collision. This is correct
for “soft” wall. In case of “hard” wall the standard semiclassical result for νcl breaks down, and the correct result
turns out to be +2 for each collision. The latter rule is implied by the Dirichlet boundary conditions. Note, that
it would be +0 in the case of Neumann boundary conditions. The Van-Vleck semiclassical approximation is exact
for quadratic Hamiltonians because the ”stationary phase integral” is exact if there are no higher order terms in the
Taylor expansion.

Let us compute again U(x|x0) for a free particle, this time using the Van-Vleck expression: The action A[x] for the
free particle is

A[x] =

∫ t

0

1

2
mẋ2dt′. (654)

Given the end points we find the classical path

xcl = x0 +
x− x0

t
t′ (655)

and hence

Acl(x, x0) =

∫ t

0

1

2
m(
x− x0

t
)2dt′ =

m

2t
(x− x0)

2. (656)

We also observe that

− ∂2Acl
∂x∂x0

=
m

t
(657)

which leads to the exact result. The big advantage of this procedure emerges clearly once we try to derive the more
general expression in case of a harmonic oscillator.
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[26] The resolvent and the Green function

====== [26.1] The resolvent

The resolvent is defined in the complex plane as

G(z) =
1

z −H (658)

In case of a bounded system it has poles at the eigenvalues. We postpone for later the discussion of unbounded
systems. It is possibly more illuminating to look on the matrix elements of the resolvent

G(x|x0) = 〈x|G(z)|x0〉 =
∑

n

ψn(x)ψn(x0)
∗

z − En
≡
∑

n

qn
z − En

(659)

where ψn(x) = 〈x|n〉 are the eigenstates of the Hamiltonian. If we fix x and x0 and regard this expression as a function
of z this is formally the complex representation of an electric field in a two dimensional electrostatic problem.

We can look on G(x|x0), with fixed z = E and x0, as a wavefunction in the variable x. We see that G(x|x0) is a
superposition of eigenstates. If we operate on it with (E − H) the coefficients of this superposition are multiplied
by (E − Ek), and because of the completeness of the basis we get δ(x − x0). This means that G(x|x0) satisfies the
Schrodinger equation with the complex energy E and with an added source at x = x0. Namely,

(E −H)G(x|x0) = δ(x − x0) (660)

This is simply the standard representation of the equation (z −H)G = 1̂ which defines the matrix inversion
G = 1/(z −H). The wavefunction G(x|x0) should satisfy that appropriate boundary conditions. If we deal with
a particle in a box this means Dirichlet boundary conditions. In the case of an unbounded system the issue of
boundary conditions deserves further discussion (see later).

The importance of the Green functions comes from its Fourier transform relation to the propagator. Namely,

FT
[

Θ(t)e−γt U(t)
]

= iG(ω + iγ) (661)

Where Θ(t) is the step function, Θ(t)U(t) is the ”propagator”, and e−ηt is an envelope function that guarantees
convergence of the FT integral. Later we discuss the limit η → 0.

We note that we can extract from the resolvent useful information. For example, we can get the energy eigenfunction
by calculation the residues of G(z). The Green functions, which we discuss in the next section are obtained (defined)
as follows:

G±(ω) = G(z = ω ± i0) =
1

ω −H ± i0 (662)

From this definition follows that

Im[G+] ≡ − i
2
(G+ −G−) = −πδ(E −H) (663)

From here we get expression for the density of states ̺(E) and for the local density of states ρ(E), where the latter
is with respect to an arbitrary reference state Ψ

̺(E) = − 1

π
trace

(
Im[G+(E)]

)
(664)

ρ(E) = − 1

π

〈
Ψ
∣∣∣ Im[G+(E)]

∣∣∣Ψ
〉
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Further applications of the Green functions will be discussed later on.

Concluding this section we note that from the above it should become clear that there are three methods of calculating
the matrix elements of the resolvent:

• Summing as expansion in the energy basis
• Solving an equation (Helmholtz for a free particle)
• Finding the Fourier transform of the propagator

Possibly the second method is the simplest, while the third one is useful in semiclassical schemes.

====== [26.2] Mathematical digression

Let us summarize some useful mathematical facts that are related to the theory of the resolvent. First of all we have
the following identity for a decomposition into ”principal” and ”singular” parts:

1

ω + i0
=

ω

ω2 + 02
− i 0

ω2 + 02
=

1

ω
− iπδ(ω) (665)

where 0 is an infinitesimal. An optional proof of this identity in the context of contour integration is based on
deforming the contour into a semicircle in the upper complex half plane, and then displacing the pole to be on the real
axis. Then the first term is contributed by the principal part, while the second term is contributed by the semicircle.

The following Fourier transform relation is extremely useful, and we would like to establish it both in the forward
and in the backward directions:

FT [Θ(t)] =
i

ω + i0
(666)

An equivalent relation is

FT

[
Θ(t)− 1

2

]
=

i

ω
[the FT that gives the principal part] (667)

In the forward direction the proof is based on taking the γ → 0 limit of

FT
[
Θ(t)e−γt

]
=

∫ ∞

0

e−(γ−iω)tdt =
1

γ − iω (668)

Note that this is not the same as

FT
[
e−γ|t|

]
=

2γ

ω2 + γ2
[the FT that gives the singular part] (669)

In the backward direction the simplest is to use contour integration:

∫ ∞

−∞

dω

2π

[
ie−iωt

ω + i0

]
= 2πi× Residue [for t > 0 the contour is closed in the lower half plane] (670)

The other possibility is to stay with the original contour along the real axis, but to split the integrand into principal
part and singular part. The integral over the principal part is in-fact the inverse Fourier transform of i/ω. Its
calculation is based on the elementary integral

∫ +∞

−∞

sin(ax)

x
dx = Sign(a)π = ±π (671)



112

====== [26.3] Analytic continuation

The resolvent is well defined for any z away from the real axis. We define G+(z) = G(z) in the upper half of the
complex plane. As long as we discuss bounded systems this ”definition” looks like a duplication. The mathematics
becomes more interesting once we consider unbounded systems with a continuous energy spectrum. In the latter case
there are circumstances that allow analytic continuation of G+(z) into the lower half of the complex plane. This
analytical continuation, if exists, would not coincide with G−(z).

In order to make the discussion of analytical continuation transparent let us assume, without loss of generality, that
we are interested in the following object:

f(z) = 〈Ψ|G(z)|Ψ〉 =
∑

n

qn
z − En

(672)

The function f(z) with z = x + iy can be regarded as describing the electric field in a two dimensional electrostatic
problem. The field is created by charges that are placed along the real axis. As the system grows larger and larger
the charges become more and more dense, and therefore in the ”far field” the discrete sum

∑
n can be replaced by

an integral
∫
̺(E)dE where ̺(E) is the smoothed density of states. By ”far field” we mean that Im[z] is much larger

compared with the mean level spacing and therefore we cannot resolve the finite distance between the charges. In the
limit of an infinite system this becomes exact for any finite (non-zero) distance from the real axis.

In order to motivate the discussion of analytical continuation let us consider a typical problem. Consider a system
built of two weakly coupled 1D regions. One is a small ”box” and the other is a very large ”surrounding”. The barrier
between the two regions is a large delta function. According to perturbation theory the zero order states of the
”surrounding” are mixed with the zero order bound states of the ”box”. The mixing is strong if the energy difference
of the zero order states is small. Thus we have mixing mainly in the vicinity of the energies Er where we formerly had
bound states of the isolated ”box”. Let us assume that Ψ describes the initial preparation of the particle inside the
”box”. Consequently we have large qn only for states with En ≈ Er. This means that we have an increased ”charge
density” in the vicinity of energies Er. It is the LDOS rather than the DOS which is responsible for this increased
charge density. Now we want to calculate f(z). What would be the implication of the increased charge density on
the calculation?

In order to understand the implication of the increased charge density on the calculation we recall a familiar problem
from electrostatics. Assume that we have a conducting metal plate and a positive electric charge. Obviously there
will be an induced negative charge distribution on the metal plate. We can follow the electric field lines through the
plate, from above the plate to the other side. We realize that we can replace all the charge distribution on the plate
by a single negative electric charge (this is the so called ”image charge”).
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Returning to the resolvent, we realize that we can represent the effect of the increased ”charge density” using an
”image charge” which we call a ”resonance pole”. The location of the ”resonance pole” is written as Er − i(Γr/2).
Formally we say that the resonance poles are obtained by the analytic continuation of G(z) from the upper half plane
into the lower half plane. In practice we can find these poles by looking for complex energies for which the Schrodinger
equation has solutions with ”outgoing” boundary conditions. In another section we give an explicit solution for the
above problem. Assume that this way or another we find an approximation for f(z) using such ”image charges”:

f(E) = 〈Ψ|G+(E)|Ψ〉 =
∑

n

qn
E − (En − i0)

=
∑

r

Qr
E − (Er − i(Γr/2))

+ smooth background (673)

We observe that the sum over n is in fact an integral, while the sum over r is a discrete sum. So the analytic
continuation provides a simple expression for G(z). Now we can use this expression in order to deduce physical
information. We immediately find the LDOS can be written as as sum over Lorentzians. The Fourier transform of
the LDOS is the survival amplitude, which comes out a sum over exponentials. In fact we can get the result for the
survival amplitude directly by recalling that Θ(t)U(t) is the FT of iG+(ω). Hence

〈x|U(t)|x0〉 =
∑

r

Qre
−iErt−(Γr/2)t + short time corrections (674)

If Ψ involves contribution from only one resonance, then the probability to stay inside the ”box” decreases exponen-
tially with time. This is the type of result that we would expect form either Wigner theory or from the Fermi Golden
rule. Indeed we are going later to develop a perturbation theory for the resolvent, and to show that the expression
for Γ in leading order is as expected.

====== [26.4] The Green function of a bounded particle

In order to get insight into the mathematics of G+(z) we first consider how G(z) looks like for a particle in a very
large box. To be more specific we can consider a particle in a potential well or on a ring. In the latter case it means
periodic boundary conditions rather than Dirichlet boundary conditions. Later we would like to take the length L of
the box to be infinite so as to have a ”free particle”. Expanding ψ(x) = 〈x|G(z)|x0〉 in the energy basis we get the
following expressions:

〈x|Gwell(z)|x0〉 =
2

L

∑

n

sin(knx) sin(knx0)

z − En
(675)

〈x|Gring(z)|x0〉 =
1

L

∑

n

eikn(x−x0)

z − En

where the real kn correspond to a box of length L. As discussed in the previous lecture, this sum can be visualized
as the field which is created by a string of charges along the real axis. If we are far enough from the real axis we get
a field which is the same as that of a smooth distribution of ”charge”. Let us call it the ”far field” region. As we
take the volume of the box to infinity the ”near field” region, whose width is determined by the level spacing, shrinks
and disappears. Then we are left with the ”far field” which is the resolvent of a free particle. The result should not
depend on whether we consider Dirichlet of periodic boundary conditions.

The summation of the above sums is technically too difficult. In order to get an explicit expression for the resolvent
we recall that ψ(x) = 〈x|G(z)|x0〉 is the solution of a Schrodinger equation with complex energy z and a source at
x = x0. The solution of this equation is

〈x|G(z)|x0〉 = −im
k

eik|x−x0| +Aeikx +Be−ikx (676)

where k = (2mz)1/2 corresponds to the complex energy z. The first term satisfies the matching condition at the
source, while the other two terms are ”free waves” that solve the associated homogeneous equation. The coefficients
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A and B should be adjusted such that the boundary conditions are satisfied. For the ”well” we should ensure the
Dirichlet boundary conditions ψ(x) = 0 for x = 0, L, while for the ”ring” we should ensure the periodic boundary
conditions ψ(0) = ψ(L) and ψ′(0) = ψ′(L).

Let us try to gain some insight for the solution. If z is in the upper half plane then we can write k = kE + iα where
both kE and α are positive(!) real numbers. This means that a propagating wave (either right going or left going)
exponentially decays to zero in the propagation direction, and exponentially explodes in the opposite direction. It is
not difficult to conclude that in the limit of a very large L the coefficients A and B become exponentially small. In
the strict L → ∞ limit we may say that ψ(x) should satisfy ”outgoing boundary conditions”. If we want to make
analytical continuation of G(z) to the lower half plane, we should stick to these ”outgoing boundary conditions”. The
implication is that ψ(x) in the lower half plane exponentially explodes at infinity.

An optional argument that establishes the application of the outgoing boundary conditions is based on the observation
that the FT of the retarded G+(ω) gives the propagator. The propagator is identically zero for negative times. If we
use the propagator to propagate a wavepacket, we should get a non-zero result for positive times and a zero result for
negative times. In the case of an unbounded particle only outgoing waves are consistent with this description.

====== [26.5] Solving the Helmholtz equation in 1D/2D/3D

The simplest method to find the Green function is by solving the Schrodinger equation with a source and appropriate
boundary conditions. In the case of a free particle we get the Helmholtz equation which is a generalization of the
Poisson equation of electrostatic problems:

(∇2 + kE
2)G(r|r0) = −qδ(r− r0) (677)

where the ”charge” in our case is q = −2m/~2. For kE = 0 this is the Poisson equation and the solution is the
Coulomb law. For kE 6= 0 the solution is a variation on Coulomb law. We shall explore below the results in case of a
particle in 3D, and then also for 1D and 2D.

The 3D case:

In the 3D case the ”Coulomb law” is:

G(r|r0) =
q

4π|r− r0|
cos(kE |r− r0|) (678)

This solution still has a gauge freedom, just as in electrostatics where we have a ”free constant”. We can add to this
solution any ”constant”, which in our case means an arbitrary (so called ”free wave”) solution of the homogeneous
equation. Note that any ”free wave” can be constructed from a superpostion of planar waves. In particular the
”spherical” free wave is obtained by averaging eik·r over all directions. If we want to satisfy the ”outgoing wave”
boundary conditions we get:

G(r) =
q

4πr
cos(kEr) + i

q

4πr
sin(kEr) =

q

4πr
eikEr = − m

2πr
eikEr (679)

The solutions for 1D and 2D can be derived in the same way.

The 1D case:

In the one dimensional case the equation that determines the Green function is

(
∂2

∂x2
+ k2

E

)
G(x) = −qδ(x) (680)

where for simplicity we set x0 = 0. The delta function source requires a jump of the derivative G′(+0)−G′(−0) = −q.
Using different phrasing: in order for the second derivative to be a delta function the first derivative must have a step
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function. Thus, when kE = 0 we get the 1D Coulomb law G(x) = −(q/2)|x|, but for kE 6= 0 we have a variation on
Coulomb law

G(x) = − q

2kE
sin(kE |x|) (681)

(see figure). To this we can add any 1D free wave. In order to satisfy the ”outgoing waves” boundary conditions we
add cos(kx) = cos(k|x|) to this expression, hence we get the retarded Green’s function in 1D

G(x) = i
q

2kE
eikE |x| = −i m

kE
eikE |x| (682)
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The 2D case:

In two dimensions for kE = 0 we use Gauss’ law to calculate the electrostatic field that goes like 1/r, and hence the
electrostatic potential is G(r) = −(1/(2π)) ln r. for kE 6= 0 we get the modulated result

G(r) = − q
4
Y0(kEr) (683)

where Y0(x) is the Bessel function of the second kind

Y0
′(x) = −Y1(x) (684)

Y0(x) ∼
√

2

πx
sin(x− π

4
) , for large x

The second independent solution of the associated homogeneous equation is the Bessel function of the first kind J0(x).
Adding this ”free wave” solution leads to a solution that satisfies the ”outgoing wave” boundary conditions. Hence
we get the retarded Green’s function in 2D

G(r) = i
q

4
H0(kEr) = −im

2
H0(kEr) (685)

where H0(x) = J0(x) + iY0(x) is the Hankel function.

====== [26.6] The Green function via direct diagonalization

For a free particle the eigenstates are known and we can calculate the expression by inserting a complete set and
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integrating. From now on we set m = 1 in calculations, but we restore it in the final result.

G+(x|x0) =
∑

k

〈x|k〉 1

E − 1
2k

2 + i0
〈k|x0〉 (686)

=

∫
dk

(2π)d
eik·r

1

E − 1
2k

2 + i0

where d is the dimension of the space. In order to compute this expression we define ~r = ~x − ~x0 and choose our
coordinate system in such a way that the ẑ direction will coincide with the direction of r.

G+(x|x0) =

∫
2eikr cos θ

kE
2 − k2 + i0

dΩkd−1dk

(2π)d
(687)

where kE =
√

2mE is the wavenumber for a particle with energy E. The integral is a d-dimensional spherical integral.
The solutions of |k| = k in 1D give two k’s, while in 2D and 3D the k’s lie on a circle and on a sphere respectively.
We recall that Ωd is 2, 2π, 4π in 1D, 2D and 3D respectively, and define averaging over all directions for a function
f(θ) as follows:

〈f(θ)〉d =
1

Ωd

∫
f(θ)dΩ (688)

With this definition we get

〈eikr cos θ〉d =






cos(kr), d=1;
J0(kr), d=2;
sinc(kr), d=3.

(689)

where J0(x) is the zero order Bessel function of the first kind. Substituting these results and using the notation z = kr
we get in the 3D case:

G+(r) =
1

π2r

1

2

∫ ∞

−∞

z sin z

zE2 − z2 + i0
dz =

1

π2r

1

4i

∫ ∞

−∞

z(eiz − e−iz)

zE2 − z2 + i0
dz (690)

=
1

π2r

1

4i

[
−
∫

zeiz

(z − (zE + i0))(z + (zE + i0))
dz +

∫
ze−iz

(z − (zE + i0))(z + (zE + i0))
dz

]

=
1

2πr

∑

poles

Res[f(z)] =
1

2πr

[
−1

2
eizE − 1

2
e−i(−zE)

]
= − m

2π

eikEr

r

−(E+i0)

E+i0

Im

Re



117

The contour of integration (see figure) has been closed in the upper half of the plane for the term containing eiz ,
and in the lower half for the term with e−iz , so the arc at infinity add zero contribution. Then the contour has been
deformed, so the contribution for each term comes from one of the poles at ±(zE + i0). We see that the solution is a
variation on the familiar Coulomb law.

====== [26.7] Green function for a quasi 1D network

There is a very simple expression for the Green function of a particle that has energy E in a quasi 1D network (see
”QM is practice” section):

G(x|x0) = −i 1

vE

∑

p

Ap(E) eikELp (691)

where p labels trajectories that start at x0 and end at x. The length of a given trajectory is Lp, while Ap(E) is
the product of transmission and reflection amplitudes due to scattering at the nodes of the network. The proof
of this formula is a straightforward generalization of the standard 1D case: The function Ψ(x) = G(x|x0) satisfies
the Schrodinger equation for any x 6= x0, and in particular the matching conditions at the nodes are satisfied by
construction. At x0 the function Ψ(x) has the same discontinuity as in the standard 1D case, because for the direct
trajectory Lp = |x−x0| has a jump in its derivative. This discontinuity reflects having a source at x = x0 as required.

Possibly the simplest quasi 1D networks, is a line with one node. We can describe the node as a delta function
potential:

V (x) = uδ(x) = |0〉u〈0| (692)

In the last equality we point out that V (x) is essentially a projector |ψ〉〈ψ|. For this type of potential there is a
simple inversion formula that we discuss below, that allows a direct evaluation of the resolvent. Optionally one can
calculate the reflection and the transmission coefficients for a delta function potential, and use the general formula of
the previous paragraph.

The following inversion formula can be proved simply by selecting a basis that contains the ψ as one of its states. In
such basis the matrix in the denominator is diag{1−λ, 1, 1, 1, ...},

1

1− |ψ〉λ〈ψ| = 1 +
λ

1− λ |ψ〉λ〈ψ| (693)

A generalization of this formula for general invertible A, and B = |ψ〉λ〈ψ| is

1

A−B =
1√
A

[
1− 1√

A
B

1√
A

]−1
1√
A

=
1

A
+

(
1

1− trace(A−1B)

)
1

A
B

1

A
(694)

We can use this formula in order to find the resolvent in the case of a delta function:

G =
1

(E −H0)− V
= G0 +

(
1

1− uG(E)

)
G0V G0 7→ G0(x|x0) + r G0(x|0)G0(0|x0) (695)

where

G(E) = G0(0|0) = − i

vE
(696)

r = reflection coefficient =
−i(u/vE)

1 + i(u/vE)
(697)
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For G0(x|x0) we use the explicit result that has been derived for a free particle. By inspection we deduce that the
transmission coefficient is t = 1 + r.

====== [26.8] Semiclassical evaluation of the Green function

The semiclassical procedure, based on the Van-Vleck formula, provides a common approximation for all the special
cases that have been discussed above, and also allows further generalization. The Green function is the FT of the
propagator:

G(x|x0) ∼
∫ ∞

0

eiAcl(x,x0)+iEtdt ∼ eiScl(x,x0) (698)

In order to derive the last expression one applies the stationary phase approximation for the evaluation of the dt
integral. The stationary point is determined by the equation Ecl = E where Ecl ≡ −dAcl/dt. The reduced action is
defined as

Scl(x, x0) = Acl + E =

∫ t

0

[Lcl + E]dt =

∫ x(t)

x(0)

pcl · dx (699)

It is implicit in this definition that the reduced action is evaluated for a classical trajectory that has energy E and
connects the points x(0) and x(t), and likewise the classical momentum pcl is evaluated along this trajectory.

====== [26.9] The boundary integral method

The Schrödinger equation Hψ = Eψ0 can be written as HEψ = 0 where

HE = −∇2 + UE(r) (700)

with UE(r) = U(r) − E. Green’s function solves the equation HEG(r|r0) = −qδ(r − r0) with q = −2m/~2. In this
section we follow the convention of electrostatics and set q = 1. From this point on we use the following (generalized)
terminology:

Laplace equation [no source]: HEψ(r) = 0 (701)

Poisson equation: HEψ(r) = ρ(r) (702)

Definition of the Coulomb kernel: HEG(r|r0) = δ(r − r0) (703)

The solution of the Poisson equation is unique up to an arbitrary solution of the associated Laplace equation. If the
charge density ρ(r) is real, then the imaginary part of ψ(r) is a solution of the Laplace equation. Therefore without
loss of generality we can assume that ψ(r) and G(r|r0) are real. From the definition of the Coulomb kernel it follows
that the solution of the Poisson equation is

Coulomb law: ψ(r) =

∫
G(r|r′)ρ(r′)dr′ (704)

In particular we write the solution which is obtained if we have a charged closed boundary r = r(s). Assuming that
the charge density on the boundary is σ(s) and that the dipole density (see discussion below) is d(s) we get:

ψ(r) =

∮ (
[G(r|s)]σ(s) + [∂sG(r|s)]d(s)

)
ds (705)

We use here the obvious notation G(r|s) = G(r|r(s)). The normal derivative ∂ = ~n · ∇ is taken with respect to the
source coordinate, where ~n is a unit vector that points outwards.
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It should be obvious that the obtained ψ(r) solves the Laplace equation in the interior region, as well as in the exterior
region, while across the boundary it satisfies the matching conditions

Gauss law: ∂ψ(s+)− ∂ψ(s−) = −σ(s) (706)

ψ(s+)− ψ(s−) = d(s) (707)

These matching conditions can be regarded as variations of Gauss law. They are obtained by integrating the Poisson
equation over an infinitesimal range across the boundary. The charge density σ(s) implies a jump in the electric field
−∂ψ(s). The dipole density d(s) is formally like a very thin parallel plates capacitor, and it implies a jump in the
potential ψ(s).

Let us ask the inverse question: Given a solution of Laplace equation in the interior region, can we find σ(s) and d(s)
that generate it? The answer is yes. In fact, as implied from the discussion below, there are infinitely many possible
choices. But in particular there is one unique choice that gives ψ(r) inside and zero outside. Namely, σ(s) = ∂ψ(s)
and d(s) = −ψ(s), where ψ(s) = ψ(r(s)). Thus we get:

The bounday integral formula: ψ(r) =

∮ (
[G(r|s)]∂ψ(s) − [∂sG(r|s)]ψ(s)

)
ds (708)

The bounday integral formula allows to express the ψ(r) at an arbitrary point inside the domain using a boundary
integral over ψ(s) and its normal derivative ∂ψ(s).

The standard derivation of the boundary integral formula is based on formal algebraic manipulations with Green’s
theorem. We prefer below a simpler physics-oriented argumentation. If ψ(r) satisfies Laplace equation in the interior,
and it is defined to be zero in the exterior, then it satisfies (trivially) the Laplace equation also in the exterior. On
top it satisfies the Gauss matching conditions with σ(s) = ∂ψ(s−) and d(s) = −ψ(s−). Accordingly it is a solution of
the Poisson equation with σ(s) and d(s) as sources. But for the same σ(s) and d(s) we can optionally obtain another
solutions of the Poisson equation from the bounday integral formula. The two solutions can differ by a solution of
the associated Laplace equation. If we supplement the problem with zero boundary conditions at infinity, the two
solutions have to coincide.

For the case where the wave function vanishes on the boundary ψ(s) = 0 the expression becomes very simple

ψ(r) =

∮
G(r|s′)ϕ(s′)ds′ (709)

where ϕ(s) = ∂ψ(s), and in particular as we approach the boundary we should get:

∫
G(s|s′)ϕ(s′)ds′ = 0 (710)

An obvious application of this formula leads to a powerful numerical method for finding eigenfunctions. This is the
so called boundary integral method. Let us consider the problem of a particle in a billiard potential. Our Green’s
function is (up to a constant)

G(s|s′) = Y0(kE |r(s) − r(s′)|) (711)

If we divide the boundary line into N segments then for any point on the boundary the equality
∫
G(s|s′)ϕ(s′)ds′ = 0

should hold, so:

∑

j

Aijϕj = 0 with Aij = Y0(kE |r(si)− r(sj)|) (712)

Every time the determinant det(A) vanishes we get a non trivial solution to the equation, and hence we can construct
an eigenfunction. So all we have to do is plot the determinant det(A) as a function of kE . The points where det(A)
equals zero are the values of kE for which the energy E is an eigenvalue of the Hamiltonian H.
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[27] Perturbation theory

====== [27.1] Perturbation theory for the resolvent

If A and B are operators then

1

(1−B)
= (1 −B)−1 =

∞∑

n=0

Bn (713)

1

A−B = (A(1 −A−1B))−1 = (1−A−1B)−1A−1 =
∑

n

(A−1B)nA−1 =
1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ . . .

Consider

G(z) =
1

z −H =
1

z − (H0 + V )
=

1

(z −H0)− V
(714)

From the above it follows that

G(z) = G0(z) +G0(z)V G0(z) +G0(z)V G0(z)V G0(z) + . . . (715)

Or, in matrix representation

G(x|x0) = G0(x|x0) +

∫
G0(x|x2)dx2〈x2|V |x1〉dx1G0(x1|x0) + . . . (716)

Note that for the scalar potential V̂ = u(x̂) we get

G(x|x0) = G0(x|x0) +

∫
dx′G0(x|x′)u(x′)G0(x

′|x0) + . . . (717)

====== [27.2] Perturbation Theory for the Propagator

For the Green function we get

G+(ω) = G+
0 (ω) +G+

0 (ω)V G+
0 (ω) +G+

0 (ω)V G+
0 (ω)V G+

0 (ω) + . . . (718)

Recall that

G+(ω)→ FT → −iΘ(τ)U(τ) (719)

Then from the convolution theorem it follows that

(−i)[Θ(t)U(t)] = (−i)[ΘU0(t)] + (−i)2
∫
dt′[Θ(t− t′)U(t− t′)] [V ] [Θ(t

′

)U(t
′

)] + . . . (720)

which leads to

U(t) = U0(t) +

∞∑

n=1

(−i)n
∫

0<t1<t2<···<tn<t
dtn . . . dt2dt1 U0(t− tn)V . . . U0(t2 − t1)V U0(t1) (721)
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for t > 0 and zero otherwise. This can be illustrated diagrammatically using Feynman diagrams.

Let us see how we use this expression in order to get the transition probability formula. The first order expression for
the evolution operator is

U(t) = U0 − i
∫
dt

′

U0(t− t
′

)V U0(t
′

) (722)

Assume that the system is prepared in an eigenstate m of the unperturbed Hamiltonian, we get the amplitude to find
it after time t in another eigenstate n is

〈n|U(t)|m〉 = e−iEntδnm − i
∫
dt

′

e−iEn(t−t′ )〈n|V |m〉e−iEmt
′

(723)

If n 6= m it follows that:

Pt(n|m) = |〈n|U(t)|m〉|2 =

∣∣∣∣
∫ t

0

dt′Vnmei(En−Em)t′
∣∣∣∣
2

(724)

====== [27.3] Perturbation theory for the evolution

In this section we review the elementary approach to solve the evolution problem via an iterative scheme with the
Schrodinger equation. Then we make the bridge to a more powerful procedure. Consider

|Ψ〉 =
∑

n

Ψn(t)|n〉 (725)

It follows that:

i
∂Ψn

∂t
= EnΨn +

∑

n′

Vnn′ Ψn′ (726)

We want to solve in the method which is called ”variation of parameters”, so we set:

Ψn(t) = cn(t)e
−iEnt (727)

Hence:

dcn
dt

= −i
∑

n′

ei(En−En′)tVnn′cn′(t) (728)

From the zero order solution cn(t) = δnm we get after one iteration:

cn(t) = δnm − i
∫ t

0

dt′ei(En−Em)t′Vnm (729)

In order to make the connection with the formal approach of the previous and of the next section we write

cn = eiEntΨn =
〈
n|U−1

0 U(t)|m
〉
≡ 〈n|UI(t)|m〉 (730)
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and note that

ei(En−Em)tVnm =
〈
n|U0(t)

−1V U0(t)|m
〉
≡ 〈n|VI(t)|m〉 (731)

Hence the above first order result can be written as

〈n|UI(t)|m〉 = δnm − i
∫ t

0

〈n|VI(t′)|m〉 dt′ (732)

In the next sections we generalize this result to all orders.

====== [27.4] The Interaction Picture

First we would like to recall the definition of time ordered exponentiation

U(t, t0) = (1− idtNH(tN )) . . . (1− idt2H(t2))(1 − idt1H(t1)) ≡ T e
−i
R

t

t0
H(t′)dt′

(733)

Previously we have assumed that the Hamiltonian is not time dependent. But in general this is not the case, so we
have to keep the time order. The parenthesis in the above definition can be ”opened” and then we can assemble the
terms of order of dt. Then we get the expansion

U(t, t0) = 1− i(dtNH(tN )) · · · − i(dt1H(t1)) + (−i)2(dtNH(tN ))(dtN−1H(tN−1)) + . . . (734)

= 1− i
∫

t0<t′<t

H(t′)dt′ + (−i)2
∫

t0<t′<t′′<t

H(t′′)H(t′)dt′′dt′ + . . .

=

∞∑

n=0

(−i)n
∫

t0<t1<t2···<tn<t
dtn . . . dt1H(tn) . . .H(t1)

Note that if H(t′) = H is not time dependent then we simply get the usual Taylor expansion of the exponential
function where the 1/n! prefactors would come from the time ordering limitation.

The above expansion is not very useful because the sum is likely to be divergent. What we would like to consider is
the case H = H0 + V , where V is a small perturbation. The perturbation V can be either time dependent or time
independent. We shall write the evolution operator as

U(t, t0) = U0(t, t0)UI(t, t0)U0(t0, 0) (735)

So UI = 1 if V = 0, and otherwise it gives the effect of the interaction as if it happened at the reference time t0. For
simplicity we adopt from now on the convention t0 = 0, and use the notation U(t) instead of U(t, t0). By definition
of H as the generator of the evolution we have:

d

dt
U(t) = −i(H0 + V )U(t) (736)

We define

UI(t) = U0(t)
−1U(t) (737)

VI(t) = U0(t)
−1 V U0(t)

With these notations the evolution equation takes the form

d

dt
UI(t) = −iVI(t)UI(t) (738)
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The solution is by time ordered exponentiation

UI(t) = T exp

(
−i
∫ t

0

VI(t
′)dt′

)
=

∞∑

n=0

(−i)n
∫

0<t1<t2···<tn<t
dtn . . . dt1 VI(tn) . . . VI(t1) (739)

Which can be written formally as

UI(t) =
∞∑

n=0

(−i)n
N !

∫ t

0

dtn . . . dt1 T VI(tn) . . . VI(t1) (740)

Optionally we can switch back to the Schrodinger picture:

U(t) =

∞∑

n=0

(−i)n
∫

0<t1<t2<···<tn<t
dtn . . . dt2dt1 U0(t− tn)V . . . U0(t2 − t1)V U0(t1) (741)

The latter expression is more general than the one which we had obtained via FT of the resolvent expansion, because
here V is allowed to be time dependent.

====== [27.5] The Kubo formula

Consider the special case of having a time dependent perturbation V = f(t)Â. The first order expression for the
evolution operator in the interaction picture is

UI(t) = 1− i
∫ t

0

AI(t
′)f(t′)dt′ (742)

where AI(t) is A in the interaction picture. If our interest is in the evolution of an expectation value of another

observable B̂, then we have the identity

〈B〉t = 〈ψ(t)|B|ψ(t)〉 = 〈ψ|BH(t)|ψ〉 = 〈ψ|UI(t)−1BI(t)UI(t)|ψ〉 (743)

To leading order we find

〈B〉t = 〈BI(t)〉 +
∫ t

0

α(t, t′)f(t′)dt′ (744)

where the linear response kernel is given by the Kubo formula:

α(t, t′) = −i〈[BI(t), AI(t′)]〉 (745)

In the above formulas expectation values without subscript are taken with the state ψ.

====== [27.6] The S operator

The formula that we have found for the evolution operator in the interaction picture can be re-written for an evolution
that starts at t = −∞ (instead of t = 0) and ends at t =∞. For such scenario we use the notation Ŝ instead of UI
and write:

Ŝ =

∞∑

n=0

(−i)n
N !

∫ +∞

−∞
dtn . . . dt1 T VI(tn) . . . VI(t1) (746)
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It is convenient to regard t = −∞ and t =∞ as two well defined points in the far past and in the far future respectively.
The limit t→ −∞ and t→∞ is ill defined unless Ŝ is sandwiched between states in the same energy shell, as in the
context of time independent scattering.

The S operator formulation is useful for the purpose of obtaining an expression for the temporal cross-correlation
of (say) two observables A and B. The type of system that we have in mind is (say) a Fermi sea of electrons. The
interest is in the the ground state ψ of the system which we can regard as the “vacuum state”. The object that we
want to calculate, written in the Heisenberg / Schrodinger / Interaction pictures is

CBA(t2, t1) = 〈ψ|BH(t2)AH(t1)|ψ〉 (747)

= 〈ψ|U(t2)
−1 B U(t2, t1)AU(t1) |ψ〉 (748)

= 〈ψ|UI(t2)−1 BI(t2)UI(t2, t1)AI(t1)UI(t1) |ψ〉 (749)

where it is implicitly assumed that t2 > t1 > 0, and we use the notation UI(t2, t1) = UI(t2)UI(t1)
−1, which is the

evolution operator in the interaction picture referenced to the time t1 rather than to t=0. Note that Ŝ = UI(∞,−∞).
Assuming that ψ is obtained from the non-interacting ground state φ via an adiabatic switching of the perturbation
during the time −∞ < t < 0 we can rewrite this expression as follows:

CBA(t2, t1) = 〈φ|UI(∞,−∞)−1 UI(∞, t2)BI(t2)UI(t2, t1)AI(t1)UI(t1,−∞) |φ〉 (750)

= 〈φ| Ŝ† T Ŝ BI(t2)AI(t1) |φ〉 (751)

In the last line it is implicit that one should first substitute the expansion for Ŝ, and then (prior to integration)
perform the time ordering of each term. The Gell-Mann-Low theorem rewrites the above expression as follows:

〈ψ|T BH(t2)AH(t1)|ψ〉 =
〈φ|T ŜBI(t2)AI(t1)|φ〉

〈φ|Ŝ|φ〉
= 〈φ|T ŜBI(t2)AI(t1)|φ〉connected (752)

The first equality follows from the observation that due to the assumed adiabaticity the operation of Ŝ on φ is merely
a multiplication by a phase factor. The second equality is explained using a diagrammatic language. Each term in the
perturbative expansion is illustrated by a Feynman diagram. It is argued that the implicit unrestricted summation
of the diagrams in the numerator equals to the restricted sum over all the connected diagrams, multiplied by the
unrestricted summation of vacuum-to-vacuum diagrams (as in the numerator). The actual diagrammatic calculation
is carried out by applying Wick’s theorem. The details of the diagrammatic formalism are beyond the scope of our
presentation.
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[28] Complex poles from perturbation theory

====== [28.1] Models of interest

In this section we solve the particle decay problem using perturbation theory for the resolvent. We are going to show
that for this Hamiltonian the analytical continuation of the resolvent has a pole in the lower part of the complex
z-plane. The imaginary part (”decay rate”) of the pole that we find is the same as we found by either the Fermi
golden rule or by the exact solution of the Schrödinger equation.

We imagine that we have an ”unperturbed problem” with one energy level |0〉 of energy E0 and a continuum of levels
|k〉 with energies Ek. A model of this kind may be used for describing tunneling from a metastable state. Another
application is the decay of an excited atomic state due to emission of photons. In the latter case the initial state would
be the excited atomic state without photons, while the continuum are states such that the atom is in its ground state
and there is a photon. Schematically we have

H = H0 + V (753)

where we assume

〈k|V |0〉 = σk (coupling to the continuum) (754)

〈k′|V |k〉 = 0 (no transitions within the continuum)

Due to gauge freedom we can assume that the coupling coefficients are real numbers without loss of generality. The
Hamiltonian matrix can be illustrated as follows:

H =





E0 σ1 σ2 σ3 . . . σk .
σ1 E1 0 0 . . . 0 .
σ2 0 E2 0 . . . 0 .
σ3 0 0 E3 . . . 0 .
. . . . . . . 0 .
. . . . . . . 0 .
. . . . . . . 0 .
σk 0 0 0 0 0 0 Ek .
. . . . . . . . .





(755)

We later assume that the system under study is prepared in state |0〉 at an initial time (t = 0), and we want to obtain
the probability amplitude to stay in the initial state at a later times.

It is important to notice the following (a) we take one state and neglect other states in the well. (b) we assume that V
allows transitions from this particular state in the well (zero state |0〉) into the |k〉 states in the continuum, while we do
not have transitions in the continuum itself. These assumptions allow us to make exact calculation using perturbation
theory to infinite order. The advantage of the perturbation theory formalism is that it allows the treatment of more
complicated problems for which exact solutions cannot be found.

====== [28.2] Heuristic approach

The Hamiltonian of the previous section is of the form

H = H0 + V =

(
HP

0 0

0 HQ
0

)
+

(
0 V PQ

V QP 0

)
(756)

and the wavefunction can be written as

Ψ =

(
ψ
χ

)
(757)
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In the decay problem of the previous section HP
0 is a 1× 1 matrix, and HQ

0 is an ∞×∞ matrix. The perturbation
allows transitions between P and Q states. In the literature it is customary to define projectors P and Q on the
respective sub-spaces.

P +Q = 1̂ (758)

Our interest is focused only in the ψ piece of the wavefunction, which describes the state of the particle in the P space.
On the other hand we assume that H has a continuous spectrum, and therefore any E above the ground state defines
a stationary state via the equation

(
HP

0 V PQ

V QP HQ
0

)(
ψ
χ

)
= E

(
ψ
χ

)
(759)

From the second raw of the above equation it follows that χ = GQV QPψ, where GQ0 = 1/(E −HQ
0 ). Consequently

the reduced equation for ψ is obtained from the first raw of the matrix equation

[
HP

0 + V PQGQV QP
]
ψ = Eψ (760)

The second term in the square brackets Σ(E) = V PQGQ0 V
QP is the so called ”self energy”. Using the vague prescrip-

tion E 7→ E + i0 we can split it into an effective potential due to so called ”polarization cloud” (also known as Lamb
shift) and an imaginary part due to FGR decay:

HP = HP
0 + ∆− iΓ/2 (761)

∆ij =
∑

r∈P

VirVrj
E − Er

(762)

Γij = 2π
∑

r∈P
VirVrjδ(E − Er) (763)

We argue that HP generates the time evolution of ψ within P space. This effective Hamiltonian is non-hermitian
because probability can escape to the Q space. It can be diagonalized so as to get the decay modes of the system.
Each mode is characterized by its complex energy Er − i(Γr/2). Note that the effective Hamiltonian is non-hermitian
and therefore the eigen-modes are in general non-orthogonal [see discussion of generalized spectral decomposition in
the Fundementals I section].

The advantage of the above treatment is its technical simplicity. However, the mathematical significance of the
E 7→ E + i0 prescription is vague. We therefore turn to a more formal derivation of the same result, which illuminates
how the non-hermiticity emerges once the Q continuum is eliminated.

====== [28.3] The P + Q formalism

We want to calculate the resolvent. But we are interested only in the single matrix element (0, 0) because we want to
know the probability to stay in the |0〉 state:

survival probability =
∣∣∣FT

[
〈0|G(ω)|0〉

]∣∣∣
2

(764)

Here G(ω) is the retarded Green function. More generally we may have several states in the well. In such a case
instead of P = |0〉〈0| we have

P =
∑

n∈well

|n〉〈n| (765)
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If we prepare the particle in an arbitrary state Ψ inside the well, then the probability to survive in the same state is

survival probability =
∣∣∣FT

[
〈Ψ|G(ω)|Ψ〉

]∣∣∣
2

=
∣∣∣FT

[
〈Ψ|GP (ω)|Ψ〉

]∣∣∣
2

(766)

Namely, we are interested only in one block of the resolvent which we call

GP (z) = PG(z)P (767)

Using the usual expansion we can write

GP = PGP = P
1

z − (H0 + V )
P = P (G0 +G0V G0 + . . . )P (768)

= PG0P + PG0(P +Q)V (P +Q)G0P + PG0(P +Q)V (P +Q)G0(P +Q)V (P +Q)G0P + . . .

= GP0 +GP0 ΣPGP0 +GP0 ΣPGP0 ΣPGP0 + . . .

=
1

z − (HP
0 + ΣP )

where the ”self energy” term

ΣP = V PQGQ0 V
QP (769)

represents the possibility of making a round trip out of the well. Note that only even order terms contribute to this
perturbative expansion because we made the simplifying assumption that the perturbation does not have ”diagonal
blocks”. In our problem ΣP is a 1× 1 matrix that we can calculate as follows:

ΣP =
∑

k

〈0|V |k〉〈k|G0|k〉〈k|V |0〉 =
∑

k

|Vk|2
E − Ek + i0

(770)

=
∑

k

|Vk|2
E − Ek

− iπ
∑

k

|Vk|2δ(E − Ek) ≡ δE0 − i(Γ0/2)

where

Γ0 = 2π
∑

k

|Vk|2δ(E − Ek) ≡ 2π̺(E) |V |2 (771)

which is in agreement with the Fermi golden rule. Thus, the resolvent is the 1× 1 matrix.

GP (z) =
1

z − (HP
0 + ΣP )

=
1

z − (ε0 + δE0) + i(Γ0/2)
(772)

We see that due to the truncation of the Q states we get a complex Hamiltonian, and hence the resolvent has a pole
in the lower plane. The Fourier transform of this expression is the survival amplitude. After squaring it gives a simple
exponential decay e−Γt.
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Scattering Theory

[29] The plane wave basis
There are several different conventions for the normalization of plane waves:
• Box normalized plane waves |n〉
• Density normalized plane waves |k〉
• Energy shell normalized plane waves |E,Ω〉

We are going to be very strict in our notations, else errors are likely. We clarify the three conventions first in the 1D
case, and later in the 3D case, and then to remark on energy shell bases in general.

====== [29.1] Plane waves in 1D

The most intuitive basis set originates from quantization in a box with periodic boundary conditions (a torus):

|n〉 −→ 1√
L

eiknx (773)

where

kn =
2π

L
n (774)

Orthonormality:

〈n|m〉 = δnm (775)

Completeness:

∑

n

|n〉〈n| = 1̂ (776)

The second convention is to have the density normalized to unity:

|k〉 −→ eikx (777)

Orthonormality:

〈k|k′〉 = 2πδ(k − k′) (778)

Completeness:

∫
|k〉dk

2π
〈k| = 1̂ (779)

Yet there is a third convention which assumes that the states are labeled by their energy, and by another index that
indicate the direction.

|E,Ω〉 = 1√
vE
|kΩ〉 −→

1√
vE

eikΩx (780)
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where 0 < E <∞ and Ω is the direction of propagation with nΩ = ±1, hence

kΩ = nΩkE = ±
√

2mE (781)

Orthonormality:

〈E,Ω|E′,Ω′〉 = 2πδ(E − E′)δΩΩ′ (782)

Completeness:

∫
dE

2π

∑

Ω

|E,Ω〉〈E,Ω| = 1̂ (783)

In order to prove the orthonormality we note that dE = vEdk and therefore

δ(E − E′) =
1

vE
δ(k − k′) (784)

The energy shell normalization of plane waves in 1D is very convenient also for another reason. We see that the
probability flux of the plane waves is normalized to unity. We note that this does not hold in more than 1D. Still also
in more than 1D, the S matrix formalism reduces the scattering problem to 1D channels, and therefore this property
is very important in general.

====== [29.2] Plane waves in 3D

The generalization of the box normalization convention to the 3D case is immediate. The same applied to the density
normalized plane waves:

|~k〉 −→ ei
~k~x (785)

Orthonormality:

〈~k|~k′〉 = (2π)3δ3(~k − ~k′) (786)

Completeness:

∫
|~k〉 d

3k

(2π)3
〈~k| = 1̂ (787)

The generalization of the energy shell normalization convention is less trivial:

|E,Ω〉 = 1

2π

kE√
vE
|~kΩ〉 −→

1

2π

kE√
vE

ei
~kΩ·~x (788)

where we define the direction by Ω = (θ, ϕ), with an associated unit vector ~nΩ and a wavenumber

~kΩ = kE~nΩ (789)

Orthonormality:

〈E,Ω|E′,Ω′〉 = 2πδ(E − E′)δ2(Ω− Ω′) (790)
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Completeness:

∫
dE

2π

∫
|E,Ω〉dΩ〈E,Ω| = 1̂ (791)

To prove the identities above we note that

d3k = k2dkdΩ = k2
E

dE

vE
dΩ = k2

E

dE

vE
dϕd cos θ (792)

and

δ3(~k − ~k′) =
vE
k2
E

δ(E − E′)δ2(Ω− Ω′) =
vE
k2
E

δ(E − E′)δ(ϕ− ϕ′)δ(cos θ − cos θ′) (793)

In general we have to remember that any change of the ”measure” is associated with a compensating change in the
normalization of the delta functions.

====== [29.3] Optional energy shell bases

Instead of the standard energy shell basis |E,Ω〉 one can use some other basis |E, a〉, where a is a quantum number
that labels the different basis states. In particular in 3D problem it is convenient to use the |E, ℓm〉 basis:

〈E′,Ω|E, ℓm〉 = 2πδ(E′ − E) Y ℓm(Ω) (794)

Note that in position representation we have

〈r,Ω|E, ℓm〉 = 2
kE√
vE

jℓ(kEr) Y
ℓm(Ω) (795)

This wavefunction is properly normalized as an energy-shell basis state. The asymptotic behaviour of the spherical
Bessel function is jℓ(kr) ∼ sin(kr − phase)/(kr), and accordingly, as in the 1D case, this wavefunction is also ”flux
normalized”: the flux of both the ingoing and the outgoing wave components is unity.
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[30] Scattering in the T -matrix formalism

====== [30.1] The Scattering States

Our purpose is to solve the Schrödinger’s equation for a given energy E.

(H0 + V )Ψ = EΨ (796)

If we rearrange the terms, we get:

(E −H0 − V )Ψ = 0 (797)

In fact we want to find scattering solutions. These are determined uniquely if we define what is the ”incident wave”
and require outgoing boundary conditions for the scattered component. Thus we write Ψ as a superposition of a free
wave and a scattered wave,

Ψ = φ+ Ψscatt (798)

The scattered wave Ψscatt is required to satisfy outgoing boundary conditions. The free wave φ is any solution of:

H0φ = Eφ (799)

Substituting, we obtain:

(E −H0 − V )Ψscatt = V φ (800)

with the solution

Ψscatt = G+V φ (801)

leading to:

Ψ = (1 +G+V )φ (802)

====== [30.2] The Lippman Schwinger equation

The explicit solution for Ψ that was found in the previous section is in typically useless, because it is difficult to get G.
A more powerful approach is to write an integral equation for Ψ. For this purpose we re-arrange the differential
equation as

(E −H0)Ψ = VΨ (803)

Using exactly the same procedure as in the previous section we get

Ψ = φ+G+
0 VΨ (804)

This Lippman Schwinger equation can be solved for Ψ using standard techniques (see example in the next section).
More generally closed analytical solutions cannot be obtained. Still if V is small we can try to find a solution iteratively,
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starting with the free wave as a zero order solution. This leads to a perturbative expansion for Ψ which we are going
to derive in a later section using a simpler approach.

====== [30.3] Example: scattering by a regularized delta function

Let us demonstrate the procedure of solving Lippman Schwinger equation for scattering on a delta potential uδ(x) in
one dimension. The relation Ψ = φ+G+

0 VΨ is written as

Ψ(x) = eikx − i u
vE

Ψ(0)eik|x| (805)

Setting x = 0 we obtain a closed equation for the unknown wave amplitude Ψ(0), whose solution leads to

Ψ(x) = eikx + reik|x|, r =
−i(u/vE)

1 + i(u/vE)
(806)

where r is identified as the reflection coefficient, while the transmission coefficient is t = 1 + r. It is instructive to
consider the more general case of scattering by a regularized delta function in any dimension, and with any dispersion
relation. This generalization is also known as s-scattering. In particular it illuminates how a divergent series for the
T matrix (see next section) can give a finite result, and why in the absence of regularization a delta function does not
scatter in more than one dimension. By a regularized delta function we mean a potential V (x) that has the matrix
elements Vk,k′ = u for any k and k′ within some finite momentum range. For example |k| < Λ, where Λ is a large
momentum cutoff. Another possibility which is of relevance in the analysis of Kondo problem is EF < |k| < Λ, where
EF is the Fermi energy. Using the Lippman Schwinger equation procedure we deduce that that the solution of the
scattering problem is

Ψ(x) = φ(x) +G0(x|0)ueffφ(0), ueff =
u

1− uG(E)
(807)

where

G(E) = G0(0|0) =
∑

k

1

E − Ek + i0
(808)

Using the T matrix language of the next sections, one observes that T = ueffδ(x) is simply a renormalized version
of the potential V = uδ(x). An optional method to derive this result is to generalize the calculation that we had
presented for the Green function G = G0 +G0TG0 of a particle in quasi 1D network.

The k summation in the G(E) calculation should be treated with the appropriate integration measure. It equals −i/vE
for a non-regularized Dirac delta function in one dimension. In higher dimensions G(E) has a real part that diverges,
which implies that the scattering goes to zero. The regularization makes G(E) finite. In three dimensions we get
G(E) = −(m/π2)ΛE where

ΛE = −2π2

∫ Λ

0

d3k

(2π)3
1

k2
E − k2 + i0

= Λ− 1

2
kE log

(
Λ + kE
Λ− kE

)
+ i

π

2
kE (809)

Another interesting case to consider is having (say) a constant density of states with a threshold energy. The divergence
of G(E) near a threshold is logarithmic. It is quite amusing that the second order as well as all the higher terms in
perturbation theory are divergent, while their sum goes to zero...

====== [30.4] Perturbation Theory for the Scattering State

Going back to the formal solution for Ψ we can substitute there the perturbative expansion of G

G = G0 +G0V G0 +G0V G0V G0 + . . . (810)
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leading to

Ψ = (1 +G+V )φ = φ+G0V φ+G0V G0V φ+ . . . (811)

As an example consider the typical case of scattering by a potential V (x). In this case the above expansion to leading
order in space representation is:

Ψ(x) = φ(x) +

∫
G0(x, x

′)V (x′)φ(x′) dx′ (812)

====== [30.5] The T matrix

It is customary to define the T matrix as follows

T = V + V G0V + V G0V G0V + . . . = V + V GV (813)

The T matrix can be regarded as a ”corrected” version of the potential V , so as to make the following first order
look-alike expression exact:

G = G0 +G0TG0 (814)

Or the equivalent expression for the wavefunction:

Ψ = φ+G+
0 Tφ (815)

Later it is convenient to take matrix elements in the unperturbed basis of free waves:

Vαβ =
〈
φα |V |φβ

〉
(816)

Tαβ(E) =
〈
φα |T (E)|φβ

〉

In principle we can take the matrix elements between any states. But in practice our interest is in states that have
the same energy, namely Eα = Eβ = E. Therefore it is convenient to use two indexes (E, a), where the index a
distinguishes different free waves that have the same energy. In particular a may stand for the ”direction” (Ω) of the
plane wave. Thus in practice we are interested only in matrix elements ”on the energy shell”:

Tab(E) =
〈
φE,a |T (E)|φE,b

〉
(817)

One should be very careful to handle correctly the different measures that are associated with different type of indexes.
In particular note that in 3D:

TΩ,Ω0 =
1

vE

(
kE
2π

)2

TkΩ,kΩ0
(818)

====== [30.6] Scattering states in 1D problems

In this section we look for a scattering solution that originates from the free wave |k0〉. Using the result of a previous
section we write Ψ = φk0 +G+

0 Tφ
k0 with

φk0(r) = eik0x [density normalized] (819)
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In Dirac notations:

|Ψ〉 = |φk0〉+G+
0 T |φk0〉 (820)

In space representation:

〈x|Ψ〉 = 〈x|φk0 〉+ 〈x|G+
0 T |φk0〉 (821)

or in ”old style” notation:

Ψ(x) = φk0(x) +

∫
G+

0 (x|x0)dx0〈x0|T |k0〉 (822)

In 1D problems the green function is

G+
0 (x|x0) = 〈x|G+

0 |x0〉 = − i

vE
eikE |x−x0| (823)

Thus we get:

ψ(x) = ei
~k0x − i

vE

∫
eikE |x−x0|dx0〈x0|T |k0〉 (824)

By observation of the left and right asymptotic regions we deduce that the reflection coefficient is

r = − i

vE
〈−k0|T |k0〉 (825)

while the transmission coefficient is

t = 1− i

vE
〈k0|T |k0〉 (826)

====== [30.7] Scattering states in 3D problems

The derivation is the 3D case follows the same procedure as in the 1D case. The incident wave is

φk0(r) = ei
~k0·~r [density normalized] (827)

and the implied scattering state is

Ψ(r) = φk0(r) +

∫
G+

0 (r|r0)dr0〈r0|T |k0〉 (828)

where

G+
0 (r|r0) = 〈r|G+

0 |r0〉 = −
m

2π

eikE |r−r0|

|r − r0|
(829)
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Thus we get

Ψ(r) = φk0(r) − m

2π

∫
eikE |r−r0|

|r − r0|
〈r0|T |k0〉 dr0 (830)

So far everything is exact. Now we want to get a simpler expression for the asymptotic form of the wavefunction.
Note that from the experimental point of view only the ”far field” region (far away from the target) is of interest.
The major observation is that the dr0 integration is effectively bounded to the scattering region |r| < r0 where the
matrix elements of V and hence of T are non-zero. Therefore for |r| ≫ |r0| we can use the approximation

|~r − ~r0| =
√

(~r − ~r0)2 =
√
|r|2 − 2~r · ~r0 +O(|r0|2) ≈ |r|

[
1− ~nΩ ·

~r0
|r|

]
= |r| − ~nΩ · ~r0 (831)

Here and below we use the following notations:

~r ≡ |r|~nΩ (832)

Ω = (θ, ϕ) = spherical coordinates

~nΩ = (sin θ cosφ, sin θ sinφ, cos θ)

~kΩ = kE~nΩ

φ

θ

k 0

k Ω

z

x

y

r
r0

With the approximation above we get:

Ψ(r) ≈ ei
~k0·~r − m

2π

eikE |r|

r

∫
e−i

~kΩ·~r0〈r0|T |k0〉 dr0 ≡ ei
~k0·~r + f(Ω)

eikE |r|

|r| (833)

where

f(Ω) = − m

2π
〈~kΩ|T (E)|~k0〉 (834)

It follows that the differential cross section is

dσ

dΩ
= |f(Ω)|2 =

(
m

2π~

)2
∣∣∣∣
1

~
TkΩ,k0

∣∣∣∣
2

(835)

This formula assumes density normalized plane waves. It relates the scattering which is described by f(Ω) to the T
matrix. It can be regarded as a special case of a more general relation between the S matrix and the T matrix, as
discussed in later sections (and see in particular the discussion of the ”optical theorem” below).
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====== [30.8] Born approximation and beyond

For potential scattering the first order approximation T ≈ V leads to the Born approximation:

f(Ω) = − m

2π
〈~kΩ|T (E)|~k0〉 ≈ −

m

2π
Ṽ (q) (836)

where ~q = ~kΩ − ~k0 and Ṽ (~q) is the Fourier transform of V (~r). The corresponding formula for the cross section is
consistent with the Fermi golden rule.

It is customary in high energy physics to take into account higher orders. The various terms in the expansion are
illustrated using Feynman diagrams. However, there are circumstance where we can gain better insight by considering
the analytical properties of the Green function. In particular we can ask what happens if G has a pole at some complex
energy z = Er − i(Γr/2). Assuming that the scattering is dominated by that resonance we get that the cross section
has a Lorentzian line shape. More generally, If there is an interference between the resonance and the non-resonant
terms then we get a Fano line shape. We shall discuss further resonances later on within the framework of the S
matrix formalism.

====== [30.9] The Optical Theorem

From the energy-shell matrix elements of the T operator we can form an object that later we identify as the S matrix:

Sab = δab − i〈E, a|T |E, b〉 (837)

Using a more sloppy notation the equation above can be written as S = 1 − iT . We should remember that S is not
an operator, and that Sab are not the matrix elements of an operator. In contrast to that Tab are the on-shell matrix
elements of an operator. This relation assumes that the energy shell basis states are properly normalized.

The S matrix, as we define it later, is unitary. So we have S†S = 1, and therefore we conclude that the T matrix
should satisfy the following equality:

(T † − T ) = iT †T (838)

In particular we can write:

〈a0|T − T †|a0〉 = −i
∑

a

〈a0|T |a〉〈a|T †|a0〉 (839)

and we get:

∑

a

|Taa0 |2 = −2Im[Ta0a0 ] (840)

This so called ”optical theorem” establishes a connection between the ”cross section” and the forward scattering
amplitude Ta0a0 . It should be clear that if this relation holds in one particular energy-shell basis, then it holds also
in any other (properly normalized) energy shell basis. In 3D scattering problems we can write one of the following
expressions:

∑

ℓ,m

|〈φE,ℓ,m|T |φE,ℓ0,m0〉|2 = −2Im[〈φE,l0,m0 |T |φE,l0,m0〉] (841)

∑

Ω

|〈φE,Ω|T |φE,Ω0〉|2 = −2Im[〈φE,Ω0 |T |φE,Ω0〉]
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Using the relations

|E,Ω〉 =
1√
vE

kE
2π
|kΩ〉 (842)

f(Ω) = − m

2π
〈~kΩ|T (E)|~k0〉

we get the familiar versions of this theorem:

∫
|〈~kΩ|T |~k0〉|2dΩ = −2vE

(
2π

kE

)2

Im[〈~k0|T |~k0〉] (843)

σtotal =

∫
|f(Ω)|2dΩ =

4π

kE
Im[f(0)]
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[31] Scattering in the S-matrix formalism

====== [31.1] Channel Representation

Before we define the S matrix, Let us review some of the underlying assumptions of the S matrix formalism. Define

ρ(x) = |Ψ(x)|2 (844)

The continuity equation is

∂ρ

∂t
= −∇ · J (845)

We are working with a time-independent Hamiltonian and looking for stationary solutions, hence:

∇ · J = 0 (846)

The standard basis for representation is |x〉. We assume that the wave function is separable outside of the scattering
region. Accordingly we arrange the basis as follows:

|x ∈ inside〉 = the particle is located inside the scattering region (847)

|a, r〉 = the particle is located along one of the outside channels

and write the quantum state in this representation as

|Ψ〉 =
∑

x∈inside

ϕ(x) |x〉 +
∑

a,r

Ra(r) |a, r〉 (848)

The simplest example for a system that has (naturally) this type of structure is a set of 1D wires connected together
to some ”dot”. In such geometry the index a distinguishes the different wires. Another, less trivial example, is a lead
connected to a ”dot”. Assuming for simplicity 2D geometry, the wavefunction in the lead can be expanded as

Ψ(x) = Ψ(r, s) =
∑

a

Ra(r)χ
a(s) (849)

where the channel functions (waveguide modes) are:

χa(s) =

√
2

ℓ
sin
((π

ℓ
a
)
s
)

with a = 1, 2, 3 . . . and 0 < s < ℓ (850)

In short, we can say that the wavefunction outside of the scattering region is represented by a set of radial functions:

Ψ(x) 7→ Ra(r) where a = 1, 2, 3 . . . and 0 < r <∞ (851)

The following figures illustrate several examples for scattering problems (from left to right): three connected wires,
dot-waveguide system, scattering in spherical geometry, and inelastic scattering. The last two systems will be discussed
below and in the exercises.
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====== [31.2] The Definition of the S Matrix

Our Hamiltonian is time-independent, so the energy E is a good quantum number, and therefore the Hamiltonian
H is block diagonal if we take E as one index of the representation. For a given energy E the Hamiltonian has an
infinite number of eigenstates which form the so called ”energy shell”. For example in 3D for a given energy E we

have all the plane waves with momentum |~k| = kE , and all the possible superpositions of these waves. Once we are
on the energy shell, it is clear that the radial functions should be of the form

Ra(r) = AaR
E,a,−(r) −BaRE,a,+(r) (852)

For example, in case of a waveguide

RE,a,±(r) =
1√
va

e±ikar [flux normalized] (853)

where the radial momentum in channel a corresponds to the assumed energy E,

ka =

√

2m

(
E − 1

2m

(π
ℓ
a
)2
)

(854)

and the velocity va = ka/m in channel a is determined by the dispersion relation. Thus on the energy shell the
wavefunctions can be represented by a set of ingoing and outgoing amplitudes:

Ψ(x) 7−→ (Aa, Ba) with a = 1, 2, 3 . . . (855)

But we should remember that not all sets of amplitudes define a stationary energy state. In order to have a valid
energy eigenstate we have to match the ingoing and outgoing amplitudes on the boundary of the scattering region.
The matching condition is summarized by the S matrix.

Bb =
∑

a

SbaAa (856)

By convention the basis radial functions are ”flux normalized”. Consequently the current in channel a is ia =
|Ba|2 − |Aa|2 and from the continuity equation it follows that

∑

a

|Ba|2 =
∑

a

|Aa|2 (857)

From here follows that the S matrix is unitary. The unitarity of the S matrix sometimes implies surprising conse-
quences. For example: in 1D the transmission from-left-to-right must be equal to the transmission from-right-to-left.
More generally: if we have a system with two different leads 1 and 2 then

∑
a∈1,b∈2

|Sba|2 =
∑
a∈2,b∈1

|Sba|2. The
latter observation is essential for the theory of the two-terminal Landauer conductance.
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In order to practice the definition of the S matrix consider a system with a single 2D lead. Let us assume that the
lead has 3 open channels. That means that ka is a real number for a = 1, 2, 3, and becomes imaginary for a > 3. The
a > 3 channels are called ”closed channels” or ”evanescent modes”. They should not be included in the S matrix
because if we go far enough they contribute nothing to the wavefunction (their contribution decays exponentially).
Thus we have a system with 3 open channels, and we can write

R1(r) =
1√
v1

(A1e
−ik1r −B1e

+k1r) (858)

R2(r) =
1√
v2

(A2e
−ik2r −B2e

+k2r)

R3(r) =
1√
v3

(A3e
−ik3r −B3e

+k3r)

and




B1

B2

B3



 = S




A1

A2

A3



 (859)

====== [31.3] Example: scattering by a delta junction

The simplest non-trivial example for an S matrix, is for a system which is composed of two 1D wires labeled as i = 1, 2,
attached by a junction that is modeled as a delta barrier uδ(x). Using the standard ”s-scattering” convention the
channel wavefunctions are written as Ψ(r) ∝ Ai exp(−ikr)−Bi exp(ikr) where r = |x|. The linear relation between
the As and the Bs is determined by the matching conditions. The matching conditions for the channel wavefunction at
the origin r = 0 in the case of a delta barrier are discussed in the ”QM in practice I” section, where it is also generalized
to the case of having a junction withM wires. The S matrix which is implied by these matching conditions is

S = −
(
r t
t r

)
, [such that S=1 for u=∞] (860)

with

vE ≡ (2E/m)1/2 (861)

t =
1

1 + i(u/vE)
(862)

r = −1 + t (863)

(864)

In practice it is more convenient to use in the present context an ad-hoc convention of writing a raw-swapped S̃
matrix, corresponding to the re-definition of the outgoing amplitudes as B̃1 = −B2 and B̃2 = −B1, namely,

S̃ =

(
t r
r t

)
= eiγ

( √
geiφ −i√1−ge−iα

−i√1−geiα √
ge−iφ

)
[such that S̃=1 for u=0] (865)

with

γ = arg(t) = − arctan(u/vE) mod (π) (866)

g =
1

1 + (u/vE)2
= (cos(γ))2 (867)

α = 0 (868)

φ = 0 (869)
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The advantage of the ad-hoc convention is the possibility to regard u = 0 as the unperturbed Hamiltonian, and to
use the T matrix formalism to find the S̃ matrix. All the elements of the T matrix equal to the same number T , and
the equality S̃ = 1− iT implies that r = −iT and t = 1− iT .

====== [31.4] Scattering states

Let us define the unperturbed HamiltonianH0 as that for which the particle cannot make transitions between channels.
Furthermore without loss of generality the phases of Ra±(r) is chosen such that Sab = δab, or equivalently Ba = Aa,
should give the ”free wave” solutions. We label the ”free” energy states that correspond to the Hamiltonian H0 as
|φ〉. In particular we define a complete set |φα〉, that are indexed by α = (E, a), Namely, we define

|φα〉 = |φEαaα〉 7−→ δa,aα
(Ra−(r) −Ra+(r)) (870)

The following figure illustrates how the ”free wave” |φE,2〉 l of a three wire system looks like.
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It is clear that the states |φE,a〉 form a complete basis. Now we take the actual HamiltonianH that permits transitions
between channels. The general solution is written as

|Ψα〉 7−→ AaR
a−(r)−BaRa+(r) (871)

where Ba = SabAb or the equivalent relation Aa = (S−1)abBb. In particular we can define the following sets of
solutions:

|Ψα+〉 = |ΨEαaα+〉 7−→ δa,aα
Ra−(r)− Sa,aα

Ra+(r) (872)

|Ψα−〉 = |ΨEαaα−〉 7−→ (S−1)a,aα
Ra−(r) − δa,aα

Ra+(r)

The set of (+) states describes an incident wave in the aα channel (Aa = δa,aα
) and a scattered wave that satisfies

”outgoing” boundary conditions. The sign convention is such that |φα〉 is obtained for S = 1. The set of (−) states
is similarly defined. We illustrate some of these states in the case of a three wire system.

|ΨE,1,+〉 |ΨE,2,+〉 |ΨE,1,−〉
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====== [31.5] Time reversal in scattering theory

It is tempting to identify the (−) scattering states as the time reversed version of the (+) scattering states. This is
indeed correct in the absence of a magnetic field, when we have time reversal symmetry. Otherwise it is wrong. We
shall clarify this point below.
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Assuming that we have the solution

|ΨE,a0,+〉 7−→ δa,a0e
−ikx − Sa,a0e

+ikx (873)

The time reversed state is obtained via complex conjugation:

T |ΨE,a0,+〉 7−→ δa,a0e
ikx − (S∗)a,a0e

−ikx (874)

This should be contrasted with

|ΨE,a0,−〉 7−→ (S−1)a,a0e
−ikx − δa,a0e

ikx (875)

We see that the two coincide (disregarding a global minus) only if

S∗ = S−1 (876)

which means that the S matrix should be symmetric (ST = S). This is the condition for having time reversal
symmetry in the language of scattering theory.

====== [31.6] Orthonormality of the scattering states

The (+) states form a complete orthonormal basis. Also the (−) states form a complete orthonormal basis. The
orthonormality relation and the transformation that relates the two basis sets are

〈E1, a1,+|E2, a2,+〉 = 2πδ(E1 − E2)δa1,a2 (877)

〈E1, a1,−|E2, a2,−〉 = 2πδ(E1 − E2)δa1,a2 (878)

〈E1, a1,−|E2, a2,+〉 = 2πδ(E1 − E2)Sa1,a2 (879)

The last equality follows directly from the definition of the S matrix. Without loss of generality we prove this lemma
for the 3 wire system. For example let us explain why it is true for a1 = 1 and a2 = 2. By inspection of the figure in
a previous section we see that the singular overlaps comes only from the first and the second channels. Disregarding
the ”flux” normalization factor the singular part of the overlap is

〈E1, 1,−|E2, 2,+〉
∣∣∣
singular

=

∫ ∞

0

[
− eikr

]∗[
− S12e

+ik0r
]
dr +

∫ ∞

0

[
(S−1)21e

−ikr
]∗[

e−ik0r
]
dr (880)

=

∫ ∞

0

S12e
−i(k−k0)rdr +

∫ 0

−∞
S12e

−i(k−k0)rdr = 2πδ(k − k0)S12

where is the second line we have changed the dummy integration variables of the second integral from r to −r,
and used (S−1)∗21 = S12. If we restore the ”flux normalization” factor we get the desired result. One can wonder
what about the non-singular contributions to the overlaps. These may give, and indeed give, an overlap that goes
like 1/(E ± E0). But on the other hand we know that for E 6= E0 the overlap should be exactly zero due to the
orthogonality of states with different energy (the Hamiltonian is Hermitian). If we check whether all the non-singular
overlaps cancel, we find that this is not the case. What is wrong? The answer is simple. In the above calculation we
disregarded a non-singular overlap which is contributed by the scattering region. This must cancel the non-singular
overlap in the outside region because as we said, the Hamiltonian is Hermitian.

====== [31.7] Getting the S matrix from the T matrix

The derivation of the relation between the S matrix and the T matrix goes as follows: On the one hand we express
the overlap of the ingoing and outgoing scattering states using the S matrix. On the other hand we express it using
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the T matrix. Namely,

〈ΨE1,a1,−|ΨE2,a2,+〉 = 2πδ(E1 − E2)Sa1a2 (881)

〈ΨE1,a1,−|ΨE2,a2,+〉 = 2πδ(E1 − E2) (δa1a2 − iTa1a2)

By comparing the two expressions we derive a relation between the S matrix and the T matrix.

Sa1a2 = δa1a2 − iTa1a2 (882)

or in abstract notation S = 1− iT . Another way to re-phrase this relation is to say that the S matrix can be obtained
from the matrix elements of an Ŝ operator:

〈φE1,a1 |Ŝ|φE2,a2〉 = 2πδ(E1 − E2)Sa1a2 (883)

where the Ŝ operator is the evolution operator in the interaction picture. Within the framework of the time dependent
approach to scattering theory the latter relation is taken as the definition for the S matrix. The two identities that we
prove in the previous and in this section establish that the time-independent definition of the S matrix and the time
dependent approach are equivalent. The rest of this section is dedicated to the derivation of the T matrix relation.

We recall that the scattering states are defined as the solution of HΨ = EΨ and they can be expressed as

ΨE2,a2,+ = (1 +G+(E2)V )φE2,a2 =

(
1 +

1

E2 −H + i0
V

)
φE2,a2 (884)

ΨE1,a1,− = (1 +G−(E1)V )φE1,a1 =

(
1 +

1

E1 −H0 − i0
T (E1)

†
)
φE1,a1

where the last equality relays on GV = G0T . In the following calculation we use the first identity for the ”ket”, and
after that the second identity for the ”bra”:

〈ΨE1,a
−

1 |ΨE2,a
+
2 〉 = 〈ΨE1,a

−

1

∣∣∣∣1 +
1

E2 −H+ i0
V

∣∣∣∣φ
E2,a2〉 (885)

= 〈ΨE1,a
−

1

∣∣∣∣1 +
1

E2 − E1 + i0
V

∣∣∣∣φ
E2,a2〉

= 〈φE1,a1

∣∣∣∣

[
1 + T (E1)

1

E1 −H0 + i0

] [
1 +

V

E2 − E1 + i0

]∣∣∣∣φ
E2,a2〉

= 〈φE1,a1

∣∣∣∣

[
1 +

T (E1)

E1 − E2 + i0

]∣∣∣∣φ
E2,a2〉+ 〈φE1,a1

∣∣∣∣
V + T (E1)G

+
0 (E1)V

E2 − E1 + i0

∣∣∣∣φ
E2,a2〉

= 〈φE1,a1

∣∣∣∣1 +
T (E1)

E1 − E2 + i0

∣∣∣∣φ
E2,a2〉+ 〈φE1,a1

∣∣∣∣
T (E1)

E2 − E1 + i0

∣∣∣∣φ
E2,a2〉

= 2πδ(E1 − E2)δa1a2 − i2πδ(E1 − E2)〈φE1,a1 |T (E1)| φE2,a2〉

where before the last step we have used the relation V + TG0V = T .

====== [31.8] Subtleties in the notion of cross section

Assume that we have a scattering state Ψ. We can write it as a sum of ”ingoing” and ”outgoing” waves or as a sum
of ”incident” and ”scattered” waves. This is not the same thing!

Ψ = Ψingoing + Ψoutgoing (886)

Ψ = Ψincident + Ψscattered
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The ”incident wave” is a ”free wave” that contains the ”ingoing” wave with its associated ”outgoing” component.
It corresponds to the H0 Hamiltonian. The ”scattered wave” is what we have to add in order to get a solution to
the scattering problem with the Hamiltonian H. In the case of the usual boundary conditions it contains only an
”outgoing” component.

ΨoutgoingΨingoing

Ψscattered

Ψincident

Below is an illustration of the 1D case where we have just two directions of propagation (forwards and backwards):

Ψingoing

Ψoutgoing
Ψoutgoing Ψscattered

Ψincident

The S matrix gives the amplitudes of the outgoing wave, while the T = i(1̂ − S) matrix gives the amplitudes of the
scattered component (up to a phase factor). Let us consider extreme case in order to clarify this terminology. If we
have in the above 1D geometry a very high barrier, then the outgoing wave on the right will have zero amplitude.
This means that the scattered wave must have the same amplitude as the incident wave but with the opposite sign.

In order to define the ”cross section” we assume that the incident wave is a density normalized (ρ = 1) plane wave.
This is like having a current density J = ρvE . If we regard the target as having some ”area” σ then the scattered
current is

iscattered = (ρvE)× σ (887)

It is clear from this definition that the units of the cross section are [σ] = Ld−1. In particular in 1D geometry the
”differential cross section” into channel a, assuming an incident wave in channel a0 is simply

σa = |Ta,a0 |2 (888)

and by the ”optical theorem” the total cross section is

σtotal = −2Im[Ta0,a0 ] (889)

The notion of ”cross section” is problematic conceptually because it implies that it is possible for the scattered flux to
be larger than the incident flux. This is most evident in the 1D example that we have discussed above. We see that
the scattered wave is twice the incident wave, whereas in fact the forward scattering cancels the outgoing component
of the incident wave. Later we calculate the cross section of a sphere in 3D and get twice the classical cross section
(2πa2). The explanation is the same - there must be forward scattering that is equal in magnitude (but opposite in
sign) to the outgoing component of the incident wave in order to create a ”shadow region” behind the sphere.
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====== [31.9] The Wigner time delay

A given element of the S matrix can be written as

Sab =
√
geiθ (890)

where 0 < g < 1 is interpreted as either transmission or reflection coefficient, while θ is called phase shift. The cross
section is related to g while the Wigner time delay that we discuss below is related to theta. The Wigner time delay
is defined as follows:

τdelay(E) = ~
dθ

dE
(891)

Consider for example the time delay in the case of a scattering on a “hard” sphere of radius R. We shall see that in
such case we have a smooth energy dependence θ ≈ −2kR and consequently we get the expected result τ ≈ −2R/vE.
On the other hand we shall consider the case of a scattering on a shielded well. If the energy is off resonance we get
the same result τ ≈ −2R/vE. But if E is in the vicinity of a resonance, then we can get a very large (positive) time
delay τ ∼ ~/Γr, where Γr is the so called “width” of the resonance. This (positive) time delay reflects ”trapping” and
it is associated with an abrupt variation of the cross section as discussed in a later section.

Let us explain the reasoning that leads to the definition of the Wigner time delay. For this purpose we consider the
propagation of a Gaussian wavepacket in a given channel:

Ψ(x) =

∫
dk e−σ

2(k−k0)2 √g exp [i (k(x − x0) + θ − Et)] (892)

where both g and θ and E are functions of k. In order to determine the position x̄ of the wavepaket we use the
stationary phase approximation. Disregarding the Gaussian envelope, and regarding g as constant at the energy
range of interest, most of contribution to the dk integral comes from the k region where the phase is stationary. This
leads to

x− x0 +
dθ

dk
− dE

dk
t = 0 (893)

The position x̄ of the wavepacket is determined by the requirement that the above equation should have a solution
for k ∼ k0. Thus we get

x̄ = x0 + vgroup × (t− τdelay) (894)

where vgroup = (dE/dk) is the group velocity for k = k0 and τdelay is the Wigner time delay as defined above. How
this is related to a scattering problem? Consider for example scattering on one dimensions where we have ”left” and
”right” channels. Assume that the wavepacket at t = 0 is an undistorted Gaussian with θ = 0. The initial wavepacket
is centered on the ”left” around x̄ = x0 with momentum k̄ = k0. We would like to know how x̄ evolves with time
before and after the scattering. Say that we observe the transmitted part of the wavepacket that emerges in the
”right” channel. Following the above analysis we conclude that the effect of introducing θ 6= 0 is the Wigner time
delay.

====== [31.10] The Friedel phase and the DOS

The issue that we discuss in this section is how to determine the number N (E) of energy levels in the scattering
region if we know how the S matrix depends on the energy E. This would be the number of no interacting Fermions
that can be accommodated there at zero temperature. More precisely what we can extract from S(E) is the density
of states ̺(E) in the scattering region. To have a clear idea of the physical picture it is best to imagine a single lead
system, where the lead is a waveguide with M modes, and the “depth” of the scattering region is L. In such system

̺(E) ∼ M× vE

π

L
∼ M× τdelay (895)
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where τdelay ∼ L/vE is the semiclassical estimate for the time delay. We shall see that the so called Friedel-sum-rule
is merely a refinement of the latter formula. In complete analogy with the Wigner formula, that express τdelay as the
E derivative of the scattering phase shift, we are going to express ̺(E) as the E derivative of the “Friedel phase”.

The most illuminating way to define the energy levels of the scattering region is to impose Dirichlet boundary condition
at the r = 0 section. This leads to the equation (say for 3 modes):

S




A1

A2

A3



 =




A1

A2

A3



 (896)

This equation has a non-trivial solution if and on if

det
(
S(E)− 1

)
= 0 (897)

Form this condition we can extract the eigen-energies. Recall that the S matrix is unitary. Therefore itsM complex
eigenvalues eiθr are located on a circle. We get zero determinant in the above equation each time that one of the
eigen-phases cross through θ = 0. Thus the mean level spacing is simply 2π/M divided by the average “velocity”
dθ/dE. This leads to

̺(E) =
1

2π

(
dθE

dE

)
=

1

2πi
trace

(
dS

dE
S†
)

(898)

where the Friedel phase is θE =
∑

r θr. The last equality is easily derived by calculating the trace in the basis in which
S is diagonal.

A straightforward generalization of the above considerations allow to calculate the number of fermions that are emitted
from the scattering region if a parameter X is being varied very very slowly such that at any moment we have zero
temperature occupation. The result can be written as dN = −GdX where

G =
1

2πi
trace

(
dS

dX
S†
)

(899)

The further generalization of this relation to multi-lead geometry has been discussed by Brouwer following the work
of Buttiker Pretre and Thomas, and is known as the scattering approach to quantum pumping.

====== [31.11] Phase shifts and resonances

If we have only one wire (hence one channel) the S matrix is 1× 1, and accordingly we can write

S00 = exp[i2δ0(E)] (900)

T00 = −eiδ02 sin(δ0) (901)

where δ0(E) is known as the phase shift. If the scattering potential is short range one can use a matching procedure in
order to determine the phase shift. This will be discussed in the next lecture. Another possibility is to use perturbation
theory via the T matrix formalism:

T00 = V00 + (V GV )00 = Born expansion (902)

It is essential to calculate the matrix elements using properly flux-normalized free waves:

|φE〉 =
1√
vE

e−ikEr − 1√
vE

e+ikEr = −i 1√
vE

2 sin(kEr) (903)

There are two limiting cases of particular interest.
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• First order non-resonant scattering by a weak potential V

• Resonant scattering which is dominated by a single pole of G

In the case of scattering by a weak potential we can use the first order Born approximation for the T matrix:

T00 ≈ V00 = 〈φE |V |φE〉 =
4

vE

∫ ∞

0

V (r) (sin(kEr))
2
dr (904)

The assumption of weak scattering implies δ0 ≪ 1, leading to the first order Born approximation for the phase shift:

δBorn

0 ≈ − 2

vE

∫ ∞

0

V (r) (sin(kEr))
2
dr (905)

This formula is similar to the WKB phase shift formula. It has a straightforward generalization to any ℓ which we
discuss in the context of spherical geometry. We note that we have manged above to avoid the standard lengthy
derivation of this formula, which is based on the Wronskian theorem (Messiah p.404).

The other interesting case is resonant scattering where

T00 ≈ (V GV )00 =
〈φE |V |r〉〈r̃|V |φE〉
E − Er + i(Γr/2)

(906)

From the optical theorem 2Im[T00] = −|T00|2 we can deduce that the numerator, if it is real, must equal Γr. Thus we
can write this approximation in one of the following equivalent ways:

T00 =
Γr

E − Er + i(Γr/2)
(907)

S00 =
E − Er − i(Γr/2)

E − Er + i(Γr/2)
(908)

tan(δℓ) = − Γr/2

E − Er
(909)

Note that if the optical theorem were not satisfied by the approximation we would not be able to get a meaningful
expression for the phase shift. In order to prove the equivalence of the above expressions note that δ0 can be regarded
as the polar phase of the complex number z = (E−Er)− i(Γr/2).

The Wigner time delay is easily obtained by taking the derivative of δ0(E) with respect to the energy. This gives a
Lorentzian variation of τdelay as a function of (E−Er). The width of the Lorentzian is Γr, and the time delay at the
center of the resonance is of order ~/Γr.
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[32] Scattering in quasi 1D geometry
In this lecture we consider various scattering problems is which the radial functions are exp(±ikar), where a is the
channel index. In order to find a scattering solution we have to use a matching procedure. Namely the ingoing and
outgoing free wave solutions should match an interior solution within the scattering region. This requirement imposes
a boundary condition that relates the wavefunction amplitude and its derivative on the boundary. The simplest
example for this class of systems is a network that consists of M semi 1D wires that are connected at one junction.
The problem of s-scattering (ℓ = 0) in spherical geometry is formally the same asM=1 ”semi 1D wire” problem. We
shall discuss the general case (any ℓ) in a later lecture. The 1D scattering problem on a line, where we have ”left”
and ”right” leads, is formally anM=2 ”semi 1D wire” system. Then it is natural to consider less trivialM channel
systems that can be regarded as generalizations of the 1D problem, including scattering in waveguides and multi-lead
geometries. Also inelastic scattering in 1D can be formally re-interpreted as anM channel ”semi 1D wire” problem.

====== [32.1] The matching procedure

In this section we would like to outline a procedure for finding an exact result for the phase shift is quasi 1D one
channel geometry. This procedure will allow us to analyze s-scattering by “hard” spheres as well as by “deep” wells.
The key assumption is that we have a finite range potential which is contained within the region r < R. The boundary
of the scattering region at r = R is fully characterized by the logarithmic derivative k̃0(E). The definition of the latter
is as follows: given the energy E, one finds the regular solution ψ(r) of the Schrodinger equation in the interior (r ≤ R)
region; Typically this solution is required to satisfy Dirichlet boundary conditions at the origin r = 0; Once the regular
solution is known, the logarithmic derivative at the boundary is calculated as follows:

k̃0 =

[
1

ψ(r)

dψ(r)

dr

]

r=R

(910)

The derivative should be evaluated at the outer side of the boundary. For each problem k̃0(E) should be evaluated
from scratch. But once it is known we can find both the E < 0 bound states and the E > 0 scattering states of the
system.

Finding the bound states: In the case of a bound state the wavefunction in the outside region is ψ(r) ∝ exp(−|kE |r).
The matching with the interior solution gives the equation k̃0(E) = −|kE |. This equation determines the eigen-energies

of the system. In order to have bound states k̃0 should become negative. A necessary condition for that is to have an
attractive potential (V < 0).

Of particular interest is the long-wavelength limit, which means kER≪ 1 where R is the radius of the scattering region.
Then the regular solution for r ∼ R, where the potential is zero, has the form ψ(r) ∝ x− as. The parameter as is

called the scattering length. The logarithmic derivative at r = R is k̃0 = 1/(R− as). If we have as > R then it becomes
negative and we find a single bound state whose energy is

Ebound = − 1

2m(as −R)2
(911)

Finding the scattering states: For positive energies we look for scattering states. The scattering solution in the
outside region is

Ψ(r) = Ae−ikEr −BeikEr = A(e−ikEr − ei2δ0eikEr) = C sin(kEr + δ0) (912)

where δ0 is the phase shift. The matching with the interior solutions gives the equation

kE cot(kER+ δ0) = k̃0 (913)

This equation can be written as

tan(δ0 − δ∞0 ) =
kE

k̃0

(914)
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where δ∞0 = −kER is the solution for “hard sphere scattering”. Thus the explicit solution is

δ0 = δ∞0 + arctan(
kE

k̃0

) (915)

====== [32.2] Low energy scattering

It is clear that in practical problems the boundary r = R is an arbitrary radius in the ”outside” region. It is most
natural to extrapolate the outside solution into the the region r < R as if the potential there is zero. Then it is
possible to define the logarithmic derivative k̄0 of the extrapolated wavefunction at r = 0. This function contains the
same information as k̃0, while the subtlety of fixing an arbitrary R is being avoided.

At low energies the logarithmic derivative at the origin is k̄0 = ((1/k̃0)−R)−1. For a sphere of radius R we have

k̃0 =∞ and therefore k̄0 = −1/R. More generally it is customary to expand k̄0 as follows:

k̄0(E) ≡ kE cot(δ0(E)) = − 1

as

+
1

2
rsk

2
E + ... (916)

The parameter as is known as the scattering length. For a sphere of radius R we have as = R while more generally we
have as = R− (1/k̃0). From the previous section we recall that a bound state exists only if as > R, which is feasible
only for an attractive potential.

We see that at low energies the phase shift can be expressed using the scattering length as δ0 = −kEas. In a later
section we shall see that in 3D s-scattering this means that the total cross section is

σtotal =
4π

k2
E

sin2(δ0) ≈ 4πa2
s

(917)

A delta function V (x) = u δ3(x) in 3D has a zero total cross section. Still from the first order Born approximation
for the T matrix we get as an artifact

σtotal = 4π
(

m

2π
u
)2

(918)

It is therefore common to describe an s-scatterer which is characterize by a scattering length as ≫ R, as a negative
delta scatterer with u = −2πas/m. One should be very careful with the latter point of view.

====== [32.3] Inelastic scattering by a delta scatterer

We consider the following scattering problem in one dimensions [http://arxiv.org/abs/0801.1202]:

H =
p2

2m
+Qδ(x) +Hscatterer (919)

The scatterer is assumed to have energy levels n with eigenvalues En. It should be clear that inelastic scattering of
a spinless particle by a multi level atom is mathematically equivalent to inelastic scattering of a multi level atom by
some static potential. Outside of the scattering region the total energy of the system (particle plus scatterer) is

E = ǫk + En (920)

We look for scattering states that satisfy the equation

H|Ψ〉 = E|Ψ〉 (921)

http://arxiv.org/abs/0801.1202
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The scattering channels are labeled as

n = (n0, n) (922)

where n0 = left,right. We define

kn =
√

2m(E − En) for n ∈ open (923)

αn =
√
−2m(E − En) for n ∈ closed (924)

later we use the notations

vn = kn/m (925)

un = αn/m (926)

and define diagonal matrices v = diag{vn} and u = diag{un}. The channel radial functions are written as

R(r) = Ane
−iknr +Bne

+iknr for n ∈ open (927)

R(r) = Cne−αnr for n ∈ closed (928)

where r = |x|. Next we derive expression for the 2N × 2N transfer matrix T and for the 2N × 2N scattering matrix
S, where N is the number of open modes. The wavefunction can be written as

Ψ(r, n0, Q) =
∑

n

Rn0,n(r)χ
n(Q) (929)

The matching equations are

Ψ(0, right, Q) = Ψ(0, left, Q) (930)

1

2m
[Ψ′(0, right, Q) + Ψ′(0, left, Q)] = Q̂Ψ(0, Q) (931)

The operator Q̂ is represented by the matrix Qnm that has the block structure

Qnm =

(
Qvv Qvu
Quv Quu

)
(932)

For sake of later use we define

Mnm =

(
1√
v
Qvv

1√
v

1√
v
Qvu

1√
u

1√
u
Quv

1√
v

1√
u
Quu

1√
u

)
(933)

The matching conditions lead to the following set of matrix equations

AR +BR = AL +BL (934)

CR = CL (935)

−iv(AR −BR +AL −BL) = 2Qvv(AL +BL) + 2QvuCL (936)

−u(CR + CL) = 2Quv(AL +BL) + 2QuuCL (937)
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from here we get

AR +BR = AL +BL (938)

AR −BR +AL −BL = i2(v)−1Q(AL +BL) (939)

where

Q = Qvv −Qvu
1

(u +Quu)
Quv (940)

The set of matching conditions can be expressed using a transfer matrix formalism that we discuss in the next
subsection, where

M =
1√
v
Q 1√

v
= Mvv −Mvu

1

1 +Muu
Muv (941)

====== [32.4] Finding the S matrix from the transfer matrix

The set of matching conditions in the delta scattering problem can be written as

(
B̃R
ÃR

)
= T

(
ÃL
B̃L

)
(942)

where Ãn =
√
vnAn and B̃n =

√
vnBn. The transfer 2N × 2N matrix can be written in block form as follows:

T =

(
T++ T+−
T−+ T−−

)
=

(
1− iM −iM
iM 1 + iM

)
(943)

The S matrix is defined via

(
B̃L
B̃R

)
= S

(
ÃL
ÃR

)
(944)

and can be written in block form as

Sn,m =

(
SR ST
ST SR

)
(945)

A straightforward elimination gives

S =

(
−T−1

−−T−+ T−1
−−

T++−T−+T−1
−−T+− T+−T−1

−−

)
=

(
(1 + iM)

−1 − 1 (1 + iM)
−1

(1 + iM)
−1

(1 + iM)
−1 − 1

)
(946)

Now we can write expressions for SR and for ST using the M matrix.

ST =
1

1 + iM = 1− iM−M2 + iM3 + ... (947)

SR = ST − 1 (948)
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====== [32.5] Elastic scattering by a delta in a waveguide

The elastic scattering of a spinless particle by a regularized delta scatterer in a waveguide is mathematically the same
problem as that of the previous section. We have

Q = cδ(y − y0) (949)

for which

Qnm = c

∫
χnδ(y − y0)χmdy = c χn(y0)χ

m(y0) (950)

Given the total energy we define

Mnm =
1√
|vn|

Qnm
1√
|vm|

≡
(
Mvv Mvu

Muv Muu

)
(951)

Regularization means that one impose a cutoff on the total number of coupled channels, hence M is a finite (truncated)
matrix. Using the formula for inverting a matrix of the type 1− aa†, we first obtainM and then obtain

SR =
iMvv

1 + i trace[Mvv] + trace[Muu]
(952)

Let us consider what happens as we change the total energy: Each time that a new channels is opened the scattering
cross section becomes zero. Similarly, if we remove the regularization we get zero scattering for any energy because
of the divergent contribution of the closed channels.

====== [32.6] Analysis of the cavity plus leads system

Consider a cavity to which a lead is attached. The Fisher-Lee relation established a connection between the S = 1−iT
matrix and the Green function G. It can be regarded as a special variant of T = V + V GV . The channels index is a
and the cavity states are n. There is no direct coupling between the channels, but only a lead-cavity coupling W . On
the energy shell we need the matrix elements Wan = 〈E, a|W |n〉. Consequently we expect an expression of the form

S = 1− iT = 1− iWGW † (953)

From perturbation theory we further expect to get

G =
1

E −Hin + i(W †W/2)
(954)

where Hin is the truncated Hamiltonian of the interior region. The latter is known as the Widenmiller formula, and
can be regarded as the outcome of R matrix theory which we detail below.

The standard derivation of the Fisher-Lee relation goes as follows [Datta]: We place a source at the lead and use the
S matrix to define the boundary conditions on the surface x(s) of the scattering region. We solve for the outgoing
amplitudes and find that

G(s|s0) = i
∑

ab

1√
va
χa(s) (S − 1)ab

1√
vb
χb(s0) (955)

This relation can be inverted:

Sab = δab − i
√
vavb

∫
χa(s) G(s|s0) χb(s0) dsds0 (956)
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The definition of W is implied by the above expression. In the next section we find it useful to define a complete set
ϕ(n)(x) of cavity wavefunctions. Then the integral over s becomes a sum over n, and we get

Wan =
√
va

∫
χa(s)ϕ(n)(x(s)) ds (957)

The R matrix formalism opens the way for a powerful numerical procedure for finding the S matrix of a cavity-lead
system. The idea is to reduce the scattering problem to a bound state problem by chopping the leads. It can be
regarded as a generalization of the one-dimensional phase shift method where the outer solution is matched to an
interior solution. The latter is characterized by its log derivative on the boundary. In the same spirit the R matrix
is defined through the relation

Ψ(s) =

∫
R(s, s′)∂Ψ(s′) ds′ (958)

If we decompose this relation into channels we can rewrite it as

Ψa =
∑

b

Rab∂Ψb (959)

Expressing Ψa and ∂Ψa as the sum and the difference of the ingoing and the outgoing amplitudes Aa and Ba, one
finds a simple relation between the R matrix and the S matrix:

Rab = i
1√
kakb

(
1− S

1 + S

)

ab

(960)

The inverse relation is

S =
1 + i

√
kR
√

k

1− i
√

kR
√

k
(961)

From the Green theorem it follows that

R(s, s′) = − ~
2

2m
GN (s′|s) (962)

where GN is the Green function of the interior with Neumann boundary conditions on the surface of the scattering
region. If we find a complete set of interior eigenfunctions then

GN (s′|s) =
∑

n

ϕ(n)(s′)ϕ(n)(s)

E − En
(963)

and consequently

Rab = −1

2

∑

n

(
Wan√
ka

)
1

E − En

(
Wbn√
kb

)
(964)

The corresponding result for the S matrix is obtained by expanding (1 + x)/(1 − x) = 1 + 2(...) with the identification
of (...) as the diagrammatic expression of the resolvent. The result is known as the Weidenmiller formula:

S = 1− iW 1

E −Hin + i(W †W/2)
W † (965)

which agree with the Fisher Lee relation.
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[33] Scattering in a spherical geometry
Of special interest is the scattering problem in 3D geometry. We shall consider in this lecture the definitions of the
channels and of the S matrix for this geometry. Later analyze in detail the scattering by a spherically symmetric
target. In the latter case the potential V (r) depends only on the distance from the origin. In order to find the
scattering states we can perform separation of variables, where ℓ and m are good quantum numbers. In the (ℓ,m)
subspace the equation for the radial function u(r) = rR(r) reduces to a one dimensional Schrödinger equation on the
0 < r <∞ axis. To avoid divergence in R(r) we have to use the boundary condition u(0) = 0, as if there is an infinite
wall at r = 0.

Most textbooks focus on the Coulomb interaction V (r, θ, ϕ) = −α/r for which the effective radial potential is
Veff(r) = −α/r + β/r2. This is an extremely exceptional potential because of the following:

• There is no centrifugal barrier.
• Therefore there are no resonances with the continuum.
• It has an infinite rather than a finite number of bound states.
• The frequencies of the radial and the angular motions are degenerate.
• Hence there is no precession of the Kepler ellipse.

We are going to consider as an example scattering on a spherical target which we call either ”sphere” or ”well”.
The parameters that characterize the sphere are its radius a, the height of the potential floor V , and optionally the
”thickness” the shielding U . Namely,

V (r, θ, ϕ) = VΘ(a− r) + Uδ(r − a) (966)

Disregarding the shielding the effective radial potential is Veff(r) = VΘ(a− r) + β/r2. We consider first hard sphere
(V0 =∞) and later on the scattering on a spherical well (V0 < 0). The effective potential for 3 representative values
of V is illustrated in panels (a)-(b)-(c) of the following figure. In panels (d) we illustrate, for sake of comparison, the
effective potential in case of a Coulomb interaction.

effV   (r)

2

22ma
l

2

22ma
l

2

22ma
l

2

22ma
l

V0

a a

0V <0

0+V <0 −a/r + b/r2

Classically it is clear that if the impact parameter b of a particle is larger than the radius a of the scattering region
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then there is no scattering at all. The impact parameter is the distance of the particle trajectory (extrapolated as
a straight line) from form the scattering center. Hence its angular momentum is ℓ = mvEb. Thus the semiclassical
condition for non-negligible scattering can be written as

b < a ⇔ ℓ < kEa ⇔ ℓ2

2ma2
< E (967)

The last version is interpreted as the condition for reflection from the centrifugal barrier (see Fig). In the channels
where the semiclassical condition is not satisfied we expect negligible scattering. (no phase shift). This semiclassical
expectation assumes that the ”forbidden” region is unaccessible to the particle, hence it ignores the possibility of
tunneling and resonances that we shall discuss later on. Whenever we neglect the latter possibilities, the scattering
state is simply a free wave which is described by the spherical Bessel function jℓ(kEr). For kEr ≪ ℓ this spherical
Bessel function is exponentially small due to the centrifugal barrier, and therefore it is hardly affected by the presence
of the sphere.

====== [33.1] The spherical Bessel functions

Irrespective of whether the scattering potential is spherically symmetric or not the Schrodinger equation is separable
outside of the scattering region. This means that we can expand any wavefunction that satisfies HΨ = EΨ in the
outside region as follows:

Ψ(x) =
∑

ℓ,m

Rℓ,m(r)Y ℓm(θ, ϕ) (968)

The channel index is a = (ℓ,m) while Ω = (θ, ϕ) is analogous to the s of the 2D lead system. The Y ℓm are the channel
functions. In complete analogy with the case of 1D geometry we can define the following set of functions:

h+
ℓ (kEr)↔ eikEr (969)

h−ℓ (kEr)↔ e−ikEr

jℓ(kEr)↔ sin(kEr)

nℓ(kEr)↔ cos(kEr)

Note that the right side equals the left side in the special case ℓ = 0, provided we divide by r. This is because the
semi-1D radial equation becomes literally the 1D Schrödinger equation only after the substitution R(r) = u(r)/r.

In what follows we use Messiah convention p.489. Note that other textbooks may use different sign convention. The
relation between the functions above is defined as follows:

h±ℓ = nℓ(kr) ± ijℓ(kr) (970)

We note that the jn(r) are regular at the origin, while the nn(r) are singular at the origin. Therefore only the former
qualify as global ”free waves”. The l = 0 functions are:

j0(kr) =
sin(kr)

kr
(971)

n0(kr) =
cos(kr)

kr
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The asymptotic behavior for kr ≫ ℓ+1 is:

h±ℓ (kr) ∼ (∓i)ℓ e±ikr

kr
(972)

nℓ(kr) ∼
cos(kr − π

2 ℓ)

kr

jℓ(kr) ∼
sin(kr − π

2 ℓ)

kr

The short range kr≪ ℓ+1 behavior is:

nℓ(kr) ≈ (2l− 1)!!

(
1

kr

)ℓ+1 [
1 +

1

2(2l − 1)
(kr)2 + . . .

]
(973)

jℓ(kr) ≈
(kr)ℓ

(2l+ 1)!!

[
1− 1

2(2l+ 3)
(kr)2 + . . .

]

====== [33.2] Free spherical waves

On the energy shell we write the radial wavefunctions as

Rℓm(r) = AℓmR
E,ℓm,−(r) −BℓmRE,ℓ,m,+(r) (974)

where in complete analogy with the 1D case we define

RE,ℓm,±(r) =
kE√
vE

h±ℓ (kEr) (975)

The asymptotic behavior of the spherical Hankel functions is (∓i)ℓe±ikEr/(kEr). From this follows that the flux of the
above radial functions is indeed normalized to unity as required. Also the sign convention that we use for RE,ℓm,±(r)
is appropriate because the free waves are indeed given by

|φE,ℓm〉 = [Rlm−(r) −Rlm+(r)]Y ℓm(θ, ϕ) = −i kE√
vE

2jℓ(kEr)Y
ℓm(θ, ϕ) (976)

This spherical free wave solution is analogous to the planar free wave |φE,Ω〉 7→ eikE~nΩ·~x. If we decide (without loss of
generality) that the planar wave is propagating in the z direction, then we can use the following expansion in order
to express a planar wave as a superposition of spherical waves:

eikEz =
∑

ℓ

(2ℓ+ 1) (i)ℓ Pℓ(cos(θ)) jℓ(kEr) (977)

We note that we have only m = 0 basis functions because there is no dependence on the angle ϕ. In different phrasing
one may say that a plane wave that propagates in the z direction has Lz = 0 angular momentum. Using the identity

Y ℓ0 =

√
2ℓ+ 1

4π
Pℓ(cos(θ)) (978)

we can write

eikEz =
∑

ℓ,m=0

√
(2l + 1)π (i)ℓ+1

√
vE

kE
φE,ℓ,m(r, θ, ϕ) (979)
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which makes it easy to identify the ingoing and the outgoing components:

(eikz)ingoing =
∑

ℓm

AℓmY
ℓm(θ, ϕ)Rℓm−(r) (980)

(eikz)outgoing = −
∑

ℓm

BℓmY
ℓm(θ, ϕ)Rℓm+(r)

where

Bℓm = Aℓm = δm,0
√

(2l + 1)π (i)ℓ+1

√
vE

kE
(981)

This means that the incident flux in channel (ℓ, 0) is simply

iincident =

[
π

k2
E

(2ℓ+ 1)

]
vE (982)

The expression in the square brackets has units of area, and has the meaning of cross section. The actual cross section
(see next section) contains an additional factor that express how much of the incident wave is being scattered. The
maximum fraction that can be scattered is 400% as explained in the previous section.

====== [33.3] The scattered wave, phase shifts, cross section

In the past we were looking for a solution which consists of incident plane wave plus scattered component. Namely,

Ψ(r) = eik0z + f(Ω)
eikEr

r
(983)

From the decomposition of the incident plane wave it is implied that the requested solution is

Ψingoing =
∑

ℓm

AℓmY
ℓm(θ, ϕ)Rℓm−(r) (984)

Ψoutgoing = −
∑

ℓm

BℓmY
ℓm(θ, ϕ)Rℓm+(r)

where

Aℓm = δm,0
√

(2l + 1)π (i)ℓ+1

√
vE

kE
(985)

Bℓm = Sℓm,ℓ′m′ Aℓ′m′

If we are interested in the scattered wave then we have to subtract from the outgoing wave the incident component.
This means that in the expression above we should replace Sℓm,ℓ′m′ by −iTℓm,ℓ′m′ .

Of major interest is the case where the target has spherical symmetry. In such case the S matrix is diagonal:

Sℓm,ℓ′m′(E) = δℓℓ′δmm′ e2iδℓ (986)

Tℓm,ℓ′m′(E) = −δℓℓ′δmm′ eiδℓ 2 sin(δℓ)

Consequently we get

Ψscattered = −
∑

ℓm

Tℓℓ
√

(2ℓ+ 1)π (i)ℓ Y ℓ0(θ, ϕ)h+
ℓ (r) ∼ f(Ω)

eikr

r
(987)
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with

f(Ω) = − 1

kE

∑

ℓ

√
(2ℓ+ 1)π Tℓℓ Y

ℓ0(θ, ϕ) (988)

It follows that

σtotal =

∫
|f(Ω)|2dΩ =

π

k2
E

∑

ℓ

(2ℓ+ 1)|Tℓℓ|2 =
4π

k2
E

∑

ℓ

(2ℓ+ 1)| sin(δℓ)|2 (989)

By inspection of the scattered wave expression we see that the scattered flux in each of the (ℓ,m=0) channels can be
written as iℓ = σℓvE , where the partial cross section is

σℓ = |Tℓℓ|2 ×
[
(2ℓ+ 1)

π

k2
E

]
= (2ℓ+ 1)| sin(δℓ)|2

4π

k2
E

(990)

It is important to realize that the scattered flux can be as large as 4 times the corresponding incident flux. The
maximum is attained if the scattering induces a π/2 phase shift which inverts the sign of the incident wave. In such
case the scattered wave amplitude should be twice the incident wave with an opposite sign.

====== [33.4] Finding the phase shift from T matrix theory

We can get expressions for Tℓℓ = Vℓℓ + (V GV )ℓℓ using the Born expansion, and hence to get approximations for the
phase shift δℓ and for the partial cross section σℓ. The derivation is the same as in the quasi 1D ℓ=0 case. The
flux-normalized free waves are

|φEℓm〉 = −i kE√
vE

2jℓ(kEr)Y
ℓm(θ, ϕ) (991)

The first order result for the phase shift is

δBorn

ℓ ≈ − 2

~vE

∫ ∞

0

V (r) (kErjl(kEr))
2
dr (992)

while in the vicinity of resonances we have

δℓ = δ∞ℓ − arctan

(
Γr/2

E − Er

)
(993)

where δ∞ℓ is a slowly varying “background” phase that represent the non-resonant contribution.

There are two physical quantities which are of special interest and can be deduced from the phase shift. One is the
time delay that we already have discussed in the quasi one dimensional context. The other is the cross section:

σℓ(E) = (2ℓ+ 1)
4π

k2
E

| sin(δℓ)|2 (994)

For resonant scattering the ”line shape” of the cross section versus energy is typically Breit-Wigner and more generally
of Fano type. The former is obtained if we neglect δ∞ℓ , leading to

σℓ = (2ℓ+ 1)
4π

k2
E

(Γr/2)2

(E − Er)2 + (Γr/2)2
(995)
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We see that due to a resonance the partial cross section σℓ can attain its maximum value (the so called ”unitary
limit”). If we take δ∞ℓ into account we get a more general result which is known as Fano line shape:

σℓ = (2ℓ+ 1)
4π

k2
E

[sin(δ∞ℓ )]2
[ε+ q]2

ε2 + 1
(996)

where ε = (E − Er)/(Γ/2) is the scaled energy, and q = − cot(δ∞ℓ ) is the so called Fano asymmetry parameter.
The Breit-Wigner peak is obtained in the limit q → ∞, while a Breit-Wigner dip (also known as anti-resonance) is
obtained for q = 0.

====== [33.5] Scattering by a soft sphere

Assuming that we have a soft sphere (|V | is small), we would like to evaluate the phase shift using the Born approx-
imation. Evidently the result makes sense only if the phase shift comes out small (δℓ ≪ 1). There are two limiting
cases. If ka≪ ℓ+1 we can use the short range approximation of the spherical Bessel function to obtain

δBorn

ℓ ≈ − 2

(2ℓ+ 3) [(2l + 1)!!]
2

mV

~2
a2(ka)2ℓ+1 (997)

On the other hand, if ka≫ ℓ+1 we can use the ”far field” asymptotic approximation of the spherical Bessel function
which implies [krjℓ(kr)]

2 ≈ [sin(kr)]2 ≈ 1/2. Then we obtain

δBorn

ℓ ≈ − 1

~vE
V a = −mV

~2
a2(ka)−1 (998)

====== [33.6] Finding the phase shift by matching

We would like to generalize the quasi one-dimensional matching scheme to any ℓ. First we have to find the radial
function for 0 < r < a and define the logarithmic derivative

kℓ =

(
1

R(r)

dR(r)

dr

)

r=a

(999)

Note that we use here R(r) and not u(r) and therefore in the ℓ = 0 case we get k0 = k̃0 − (1/a). The solution in the
outside region is

R(r) = Ah−ℓ (kEr)−Bh+
ℓ (kEr) (1000)

= A(h−ℓ (kEr)− ei2δℓh+
ℓ (kEr))

= C(cos(δℓ)jℓ(kEr) + sin(δℓ)nℓ(kEr))

We do not care about the normalization because the matching equation involves only logarithmic derivatives:

kE
cos(δ)j′ + sin(δ)n′

cos(δ)j + sin(δ)n
= kℓ (1001)

solving this equation for tan(δℓ) we get

tan(δℓ) = − kℓjℓ(ka)− kEj′ℓ(ka)
kℓnℓ(ka)− kEn′

ℓ(ka)
(1002)
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which can also be written as:

ei2δℓ =

(
h−ℓ
h+
ℓ

)
kℓ − (h′−ℓ /h

−
ℓ )kE

kℓ − (h′+ℓ /h
+
ℓ )kE

(1003)

In order to go from the first expression to the second note that if tan(δ) = a/b determines the phase of a complex
number z = a+ ib then (a+ ib)/(a− ib) = ei2δ. Thus we have expressions for the phase shift given the log derivative
of the regular solution on the boundary of the scattering region.

====== [33.7] Scattering by a hard sphere

The phase shifts for a hard sphere (V →∞) can be found from the phase shift formula of the previous section using
kℓ →∞, leading to

tan(δ∞ℓ ) = − jℓ(kEa)
nℓ(kEa)

(1004)

or equivalently

ei2δ
∞
ℓ =

h−(kEa)

h+(kEa)
(1005)

From the first version it is convenient to derive the result

δ∞ℓ ≈ −
1

(2ℓ+ 1)!!(2ℓ− 1)!!
(kEa)

2ℓ+1 for ℓ≫ ka (1006)

where we have used the short range expansions jℓ ∝ rℓ and nℓ ∝ 1/rℓ+1. From the second version it is convenient to
derive the result

δ∞ℓ = − arg(h+(kEa)) ≈ −(kEa−
π

2
ℓ) for ℓ≪ ka (1007)

where we have used the asymptotic expression h(r) ∼ (−ı)ℓ eikEr/r.

Small hard sphere: In the case of a small sphere (kEa ≪ 1) we have 1 ≫ δ0 ≫ δ1 ≫ δ2 . . . and the ℓ = 0 cross
section is dominant

δ0 = −(kEa) (1008)

Hence

σtotal =
4π

k2

∞∑

l=0

(2l+ 1) sin2 (δℓ) ≈
4π

k2
sin2 (δ0) ≈ 4πa2 (1009)

We got a σ that is 4 times bigger than the classical one. The scattering is isotropic because only the ℓ = 0 component
contributes to the scattered wave.

Large hard sphere: Now we turn to the case of a large sphere (kEa≫ 1). We neglect all δℓ for which ℓ > kEa. For
the non-vanishing phase shifts we get

δℓ = −(kEa) for ℓ = 0, 2, 4, . . . (1010)

δℓ = −(kEa) + π
2 for ℓ = 1, 3, 5, . . .
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hence

σtotal =
4π

k2




∑

ℓ=0,2...ka

(2l + 1) sin2(kEa) +
∑

ℓ=1,3...ka

(2l+ 1) cos2(kEa)



 (1011)

≈ 4π

k2

ℓ=ka∑

ℓ=0,1...ka

(2l+ 1)
1

2
≈ 2π

k2

∫ ka

0

2xdx =
2π

k2
(kEa)

2 = 2πa2

This time the result is 2 times the classical result. The factor of 2 is due to forward scattering which partially cancels
the incident wave so as to create a shadow region behind the sphere.

====== [33.8] Summary of results for scattering on a sphere

We have discussed scattering on a ”hard sphere”, on a ”deep well”, and finally on a ”soft sphere”. Now we would like
to put everything together and to draw an (a, V ) diagram of all the different regimes.

V~  h
ma2

2

 h
ma2

2
V~ −

V

a

E
V~EBorn

ka>>1

Hard Sphere

ka<<1

Resonance

Let us discuss the various regimes in this diagram. It is natural to begin with a small sphere. A small sphere means
that the radius is small compared with the De-Broglie wavelength (ka < 1). This means that disregarding resonances
the cross section is dominated by s-scattering (ℓ = 0). On the one hand we have the Born approximation and on the
other hand the hard sphere result:

δBorn

0 ≈ −2

3

[
mV

~2
a2

]
(ka) (1012)

δHard

0 ≈ −(ka)

Thus we see that the crossover from ”soft” to ”hard” happens at V ∼ ~
2/(ma2). What about V < 0? It is clear

that the Born approximation cannot be valid once we encounter a resonance (at a resonance the phase shift becomes
large). So we are safe as long as the well is not deep enough to contain a quasi bound state. This leads to the sufficient
condition −~

2/(ma2) < V < 0. For more negative V values we have resonances on top of a ”hard sphere” behavior.
Thus we conclude that for ka < 1 soft sphere means

|V | < ~
2/(ma2) (1013)
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We now consider the case of a large sphere (ka≫ 1). In the absence of resonances we have for small impact parameter
(ℓ≪ ka) either the Born or the hard sphere approximations:

δBorn

ℓ ≈ − V

~vE
a (1014)

δHard

ℓ = O(1)

Also here we have to distinguish between two regimes. Namely, for ka≫ 1 soft sphere means

|V | < ~vE/a (1015)

If this condition breaks down we expect to have a crossover to the Hard sphere result. However, one should be aware
that if V < E, then one cannot trust the hard sphere approximation for the low ℓ scattering.
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QM in Practice (part I)

[34] Overview of prototype model systems
Below we consider some simple one-particle closed systems in 0D/1D/2D/3D. Later we further illuminate and analyze
some prototype problems.

Quasi 0D systems: These are N site systems. The simplest is the two site (N = 2) system. If we want to have
non-trivial topology we must consider at least a 3-site (N = 3) system. Next we can construct N -site chains, or rings
or networks or so called tight-binding arrays. If we regard these models as a coarse grained description of motion in
free space, then the hopping amplitude per unit time between two nearby sites i and j is determined by the mass of
the particle (m) and by the hopping distance (a):

Vij = − 2

2ma2
(1016)

Quasi 1D systems: A 1D segment can be regarded as the continuum limit of quasi 0D chain. If the particle in
confined between two ends, the model is know as ”infinite well” or as 1D box with hard walls. If there are periodic
boundary conditions, the model is know as ”1D ring”. Several ”1D boxes” can be connected into a network: each 1D
segment is called ”bond”, and the junctions are called ”vortices”.

Soft walls: If the confining potential is not stepwise, but changes smoothly, then we call it ”well with soft walls”. The
simplest example is the harmonic oscillator where the potential is V (x) = x2. The prototype example for anharmonic
potential with a dividing separatrix in phase space is the pendulum where V (x) = cos(x).

2D systems: Genuine 2D systems are chaotic, and typically called ”billiards”. These serve as prototype models for
”quantum chaos” studies. But if the system has (say) rectangular or cylindrical symmetry then the problem reduces
back to 1D.

3D systems: Genuine 3D systems are rarely considered. Typically people consider models with spherical symmetry
(e.g. the Hydrogen atom) where the problem is reduced to 1D, while the perturbations that do not respect the high
symmetry are treated within a quasi 0D framework (a few-level approximation).

Interacting particles: The treatment of non-interacting system with Bosons or with Fermions reduces to one-
particle analysis. In order to have new physics we have to take into account interactions. The prototype models

(Kondo / Hubburd) assume that the interaction is of the type U ∝ (n̂−1)n̂ where n̂ = a†1a1 is the simplest non-trivial

possibility in the case of Bosons, while n̂ = a†1a1 + a†2a2 is the simplest non-trivial possibility in the case of Fermions.

System-bath models: If we have few distinguished degrees of freedom that we call ”system”, and all the other
degrees of freedoms form a weakly coupled background that we call ”environment”, then there is a sense in using
a system-bath model in order to describe the (reduced) dynamics of the system. Typically the environment is
characterized by its fluctuations, and then modeled as a large collection of harmonic oscillators.

[35] Quasi 0D networks
The simplest non-trivial network that we can imagine is of course a two site system. Without loss of generality we
can write the Hamiltonian as

H =

(
ǫ/2 c
c −ǫ/2

)
=

ǫ

2
σz + cσx = ~Ω · ~S (1017)

where ~Ω = (2c, 0, ǫ). We can define the occupation operator of (say) the first site as

N̂1 ≡ |1〉〈1| ≡ 1

2
(1 + σz) (1018)
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The definition of the current that comes out from this site is implied by the ”rate of change formula”, namely

Î1→2 ≡ −i[H,N1] = −cσy (1019)

So we have the continuity equation

d

dt
〈N̂1〉 = −〈Î1→2〉, 〈N̂1〉 = |ψ1|2, 〈Î1→2〉 = −c Im[ψ∗

1ψ2] (1020)

The generalization from a two site system to an N site system is straightforward. Assuming that the one-particle
Hamiltonian in the standard (position) basis is represented by a matrix Hij , we define occupation operators and
current operators as follow:

N̂i ≡ |i〉〈i| (1021)

Îi→j ≡ −i
[
|j〉Hji〈i| − |i〉Hij〈j|

]
(1022)

so as to have the continuity equation

d

dt
〈N̂i〉 = −

∑

j

〈Îi→j〉 (1023)

Of particular important is the the standard tight binding model where we have a chain of N sites with near neighbor
hopping. For simplicity we assume periodic boundary conditions, which is like saying that we have a closed ring. We
also use length units such that the sites are positioned at x = 1, 2, 3.... The Hamiltonian can be written as

H = −c(D̂ + D̂−1) + V (x̂) = −2c cos(p̂) + V (x̂) (1024)

where D is the one site displacement operator. The definition of the velocity operator is implied by the ”rate of
change formula”, namely

v̂ = i[H, x̂] = ic(D̂ − D̂−1) = 2c sin(p) (1025)

Note that for small velocities we have linear dispersion relation v = (1/m)p, where the mass is m = 1/(2c). If distance
between the sites were a rather then unity one would conclude the identification c = 1/(2ma2).
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[36] Bloch oscillation and and Landau-Zener dynamics

====== [36.1] Bloch dynamics of a two level system

The most general Hamiltonian for a particle with spin 1
2 is:

H = ~Ω · ~S = ΩxSx + ΩySy + ΩzSz (1026)

Where ~S = 1
2~σ. The evolution operator is:

U(t) = e−itĤ = e−i(
~Ωt)·~S = R(~Φ(t)) (1027)

where ~Φ(t) = ~Ωt. This means that the spin makes precession. It is best to represent the state of the spin using the

polarization vector ~M . Then we can describe the precession using a classical-like, so called ”Bloch sphere picture”.
The formal derivation of this claim is based on the relation between M(t) and ρ(t). We can write it either as

M(t) = trace(σρ(t)) or as an inverse relation ρ(t) = (1 + ~M(t) · σ)/2. In the former case the derivation goes as
follows:

Mi(t) = trace(σjρ(t)) = trace(σi(t)ρ) (1028)

= trace((R−1σiR)ρ) = trace((REijσj)ρ) = REij(Φ(t)) Mj(0)

where we have used the evolution law ρ(t) = U(t)ρ(0)U(t)−1 and the fact that ~σ is a vector operator.

We notice that the evolution of any system whose states form a dim=2 Hilbert space can always be described using
a precession picture. The purpose of the subsequent exposition is (i) to show the power of the precession picture as
opposed to diagonalization; (ii) To explain the notion of small versus large perturbations. With appropriate gauge of
the standard basis the Hamiltonian can be written as:

H =

(
ǫ/2 c
c −ǫ/2

)
=

ǫ

2
σz + cσx = ~Ω · ~S (1029)

Where ~Ω = (2c, 0, ǫ). In the case of a symmetric system (ǫ = 0) we can find the eigenstates and then find the evolution
by expanding the initial state at that basis. The frequency of the oscillations equals to the energy splitting of the
eigen-energies. But once (ǫ 6= 0) this scheme becomes very lengthy and intimidating. It turns out that it is much
much easier to use the analogy with spin 1/2. Then it is clear, just by looking at the Hamiltonian that the oscillation
frequency is

Ω =
√

(2c)2 + ǫ2 (1030)

and hence the eigenenergies are E± = ±Ω/2. Furthermore, it is clear that the precession axis is tilted relative to the
z axis with an angle

θ0 = arctan(2c/ǫ) (1031)

Accordingly the eigenstates can be obtained from the ↑ and from the ↓ states by rotating them an angle θ0 around
the y axis:

|+〉 =
(

cos(θ0/2)
sin(θ0/2)

)
, |−〉 =

(
− sin(θ0/2)
cos(θ0/2)

)
(1032)
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Let us assuming that initially the system is in the ↑ state, and let us define P (t) as the probability to be found after
time t in the same state. So initially we have P (0) = 1. We can easily find an explicit expression for P (t) in a later
time without having to do any diagonalization of the Hamiltonian. Rather we exploit the well know result for a
spin 1/2 rotation around a tilted axis:

P (t) = |〈↑ |e−i~Ωt·~S | ↑〉|2 = 1− sin2(θ0) sin2

(
Ωt

2

)
(1033)

This result is called Rabi Formula. We see that in order to have nearly complete transitions to the other site after
half a period, we need a very strong coupling (c ≫ ǫ). In the opposite limit (c ≪ ǫ) the particle tends to stay in the
same site, indicating that the eigenstates are barely affected.

We note that the Rabi Formula can be optionally derived by considering the precession of the polarization vectorM(t).
This procedure is on the one hand more illuminating, but on the other requires better geometrical insight: One should
realize that the inclination angle of M(t) oscillates between the values θ = 0 and θ = 2θ0. Therefore Mz(t) oscillates
between the maximal value Mz = 1 and the minimal value Mz = cos(2θ0). Using the relation P (t) = (1 +Mz(t))/2
one concludes that P (t) oscillates with the frequency Ω between the maximal value 1 and the minimal value (cos(θ0))

2

leading to the Rabi Formula.

====== [36.2] Landau-Zener dynamics

A prototype adiabatic process is the Landau-Zener crossing of two levels. The Hamiltonian is

H =
1

2

(
αt κ
κ −αt

)
=

1

2
αtσ3 +

1

2
κσ1 (1034)

Let us assume that the system is prepared at t = −∞ in the lower (”-”) level (which is the ”up” state). We want to
find what is the probability to find the system at t =∞ in the upper (”+”) level (which is again the ”up” state!).
The exact result is know as the Landau-Zener formula:

p = P∞(+|−) = P∞(↑ | ↑) = exp

[
−π

2

κ2

α

]
(1035)

For a “fast” (non-adiabatic) process the problem can be treated using conventional (fixed basis) perturbation theory.
This gives the equation

dc↓(t)

dt
= −iκ

2
exp

[
−i1

2
αt2
]
c↑(t) (1036)

Setting c↑(t) 7→ 1 and performing the time integration, one obtains the first order estimate for the probability 1−p
to make a transition form the ”up” to the ”down” state. This leads to p = 1− (π/2)[κ2/α] in accordance with the
Landau-Zener formula. Below we assume that the process is adiabatic, and explain how the general result is obtained.

In order to analyze the Landau-Zener transition we write the Schrodinger equation in the adiabatic basis. The
instantaneous eigenenergies are

En = ±1

2
Ω (1037)

and the associated eigenstates are

|+〉 =
(

cos(θ/2)
sin(θ/2)

)
, |−〉 =

(
− sin(θ/2)
cos(θ/2)

)
(1038)
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where

Ω(t) =
√

(αt)2 + κ2 (1039)

θ(t) = arctan (κ/(αt)) . (1040)

Note that θ=π at t=−∞ evolves to θ=0 at t=∞. In our choice of gauge the adiabatic eigenstates have real amplitudes,
and therefore the Berry “vector potential” comes out zero. At the same time the non-zero element of the perturbation
matrix Wnm is

W+− = i
α

E+ − E−

[
1

2
σ3

]

+−
= −iα sin(θ)

2Ω
= −i ακ

2Ω2
= − i

2

α

κ

[
1

(αt/κ)2 + 1

]
(1041)

Following the standard procedure as in time-dependent perturbation theory we substitute

a±(t) = c±(t) exp

[
−i
∫ t

E±dt
′
]

(1042)

Using the rescaled variable τ = αt/κ, and changing to τ = sinh(z), the expression for the dynamical phase is

Φ(t) =
κ2

α

∫ τ

dτ
√
τ2 + 1 =

κ2

α
× 1

2

(
z +

1

2
sinh(2z)

)
(1043)

Thus for the amplitude c+(t) we get the equation

dc+(t)

dt
= −1

2

α

κ

[
1

(αt/κ)2 + 1

]
eiΦ(t) c−(t) (1044)

Starting with the zero order solution (c−(t) 7→ −1), and performing the time integration, one obtains the first order
adiabatic estimate for the amplitude c+(t), leading to

PLZ ≈
∣∣∣∣
1

2

∫ ∞

−∞

1

τ2 + 1
eiΦ(τ)dτ

∣∣∣∣
2

=

∣∣∣∣
1

2

∫ ∞

−∞

1

cosh(z)
eiΦ(z)dz

∣∣∣∣
2

(1045)

In order to evaluate this integral once can use contour integration. The explicit expression for the phase Φ as a
function of z = x+ iy is

Φ(z) =
κ2

α
× 1

2

[(
x+

1

2
sinh(2x) cos(2y)

)
+ i

(
y +

1

2
cosh(2x) sin(2y)

)]
(1046)

The original contour of integration is y = 0, but we would like to deform it into the complex plane so as to get rid
of the rapid oscillations of the phase factor, and have instead a smooth monotonic variation. The deformed contour
is displayed in the figure. The phase is pure imaginary along the curves C− and C+. At z0 = 0 + i(π/2) we have
Φ = i(π/4)κ2/α, while cosh z ≈ i(z − z0). Consequently we have a pole leading to the same exponent as in the
Landau-Zener result. The prefactor come out (π/3)2. The derivation of the correct prefactor, which is unity, requires
either exact solution of the differential equation using parabolic cylinder functions, or otherwise iterations of the above
procedure to infinite order.

====== [36.3] Adiabatic transfer from level to level

A practical problem which is encountered in Chemical Physical applications is how to manipulate coherently the
preparation of a system. Let us as assume that an atom is prepared in level |Ea〉 and we want to have it eventually at
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level |Eb〉. We have in our disposal a laser source. This laser induce AC driving that can couple the two levels. The
frequency of the laser is ω and the induced coupling is Ω. The detuning is defined as δ = ω − (Eb − Ea). Once the laser

is turned “on” the system starts to execute Bloch oscillation. The frequency of these oscillation is Ω̃ = (Ω2 + δ2)1/2.
This is formally like the coherent oscillations of a particle in a double well system. Accordingly, in order to simplify
the following discussion we are going to use the terminology of a site-system. Using this terminology we say that with
a laser we control both the energy difference δ and the coupling Ω between the two sites.

By having exact resonance (δ = 0) we can create “complete” Bloch oscillations with frequency Ω. This is formally
like the coherent oscillations of a particle in a symmetric double well system. In order to have 100% transfer from
state |Ea〉 to state |Eb〉 we have to keep δ = 0 for a duration of exactly half period (t = π/Ω). In practice this is
impossible to achieve. So now we have a motivation to find a practical method to induce the desired transfer.

There are two popular methods that allow a robust 100% transfer from state |Ea〉 to state |Eb〉. Both are based on an
adiabatic scheme. The simplest method is to change δ gradually from being negative to being positive. This is called
“chirp”. Formally this process is like making the two levels “cross” each other. This means that a chirp induced
transfer is just a variation of the Landau-Zener transition that we have discussed in the previous section.

There is another so called “counter intuitive scheme” that allows a robust 100% transfer from state |Ea〉 to state |Eb〉,
which does not involve a chirp. Rather it involves a gradual turn-on and then turn-off of two laser sources. The first
laser source should couple the (empty) state |Eb〉 to a third level |Ec〉. The second laser source should couple the (full)
state |Ea〉 to the same third level |Ec〉. The second laser is tuned on while the first laser it turned off. It is argued in
the next paragraph that this scheme achieves the desired transfer. Thus within the framework of this scheme it looks
as if a transfer sequence a 7→ c 7→ b is realized using a counter intuitive sequence c 7→ b followed by a 7→ c.

The explanation of the “counter intuitive scheme” is in fact very simple. All we have to do is to draw the adiabatic
energy levels E−(t) and E0(t) and E+(t) as a function of time, and then to figure out what is the “identity” of (say)
the middle level at each stage. Initially only the first laser in “on” and therefore |Eb〉 and |Ec〉 split into “even”
and “odd” superpositions. This means that initially E0(t) corresponds to the full state |Ea〉. During the very slow
switching process an adiabatic evolution takes place. This means that the system remains in the middle level. At the
end of the process only the second laser is “on” and therefore, using a similar argumentation, we conclude that E0(t)
corresponds to the state |Eb〉. The conclusion is that a robust 100% transfer from state |Ea〉 to state |Eb〉 has been
achieved.

[37] A few site system with Fermions

====== [37.1] A two-site system with one particle

The problem of ”positioning a particle of spin 1
2 in a specific location” is formally identical to the problem of ”putting

a particle in a two-site system”. In both cases the system is described by a two-dimensional Hilbert space dim = 2.
Instead of discussing an electron that can be either ”up” or ”down”, we shall discuss a particle that can be either in
site 1 or in site 2. In other words, we identify the states as: |1〉 = | ↑〉 and |2〉 = | ↓〉.

|1> |2>

The standard basis is the position basis |x = 1〉, |x = 2〉. The k states are defined in the usual way. We have the even
and the odd states with respect to reflection:

|k = 0〉 = |+〉 =
1√
2

(|1〉+ |2〉) (1047)

|k = π〉 = |−〉 =
1√
2

(|1〉 − |2〉)

Note the formal analogy with spin 1/2 system:
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|+〉 = | →〉 represents spin 1
2 polarized right.

|−〉 = | ←〉 represents spin 1
2 polarized left.

The representation of the operator x̂ is:

x̂→
(

1 0
0 2

)
= 1 +

1

2
(1− σ3) (1048)

where σ3 =

(
1 0
0 −1

)
is the third Pauli matrix. The translation operator is actually a reflection operator:

R̂ = D̂ →
(

0 1
1 0

)
= σ1 (1049)

where σ1 is the first Pauli matrix. The k states are the eigenstates of the operator D, so they are the eigenstates
of σ1.

====== [37.2] A two site system with two different particles

In this case the Hilbert space is four dimensional: dim = (2× 2) = 4. If the two particles are different (for example,
a proton and a neutron) then each state in the Hilbert space is ”physical”. The standard basis is:

|1, 1〉 = |1〉 ⊗ |1〉 - particle A in site 1, particle B in site 1
|1, 2〉 = |1〉 ⊗ |2〉 - particle A in site 1, particle B in site 2
|2, 1〉 = |2〉 ⊗ |1〉 - particle A in site 2, particle B in site 1
|2, 2〉 = |2〉 ⊗ |2〉 - particle A in site 2, particle B in site 2

The transposition operator T̂ swaps the location of the particles:

T̂ |i, j〉 = |j, i〉 (1050)

We must not make confusion between the transposition operator and the reflection operators:

T̂ 7→





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 (1051)

R̂ 7→





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0





Instead of the basis |1, 1〉, |1, 2〉, |2, 1〉, |2, 2〉, we may use the basis |A〉, |1, 1〉, |S〉, |2, 2〉, where we have defined:

|A〉 = 1√
2

(|1, 2〉 − |2, 1〉) (1052)

|S〉 = 1√
2

(|1, 2〉+ |2, 1〉)

The state |A〉 is anti-symmetric under transposition, and all the others are symmetric under transposition.

====== [37.3] Placing together two identical particles

The motivation for discussing this system stems from the question: is it possible to place two electrons in the same
location so that one of the spins is up and the other is down, or maybe they can be oriented differently. For example,
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one spin left and one right, or one right and the other up. We shall continue using the terminology of the previous
section. We may deduce, from general symmetry considerations that the quantum state of identical particles must
be an eigenstate of the transposition operator (otherwise we could conclude that the particles are not identical). It
turns out that we must distinguish between two types of identical particles. According to the ”spin and statistics
theorem”, particles with half-odd-integer spins (fermions) must be in an antisymmetric state. Particles with integer
spins (bosons) must be in a symmetric state.

Assume that we have two spin zero particles. Such particles are Bosons. There is no problem to place two (or more)
Bosons at the same site. If we want to place two such particles in two sites, then the collection of possible states is
of dimension 3 (the symmetric states), as discussed in the previous section.

Electrons have spin 1/2, and therefore they are Fermions. Note that the problem of placing ”two electron in one site”
is formally analogous to the hypothetical system of placing ”two spinless electrons in two sites”. Thus the physical
problem is formally related to the discussion in the previous section, and we can use the same notations. From the
requirement of having an antisymmetric state it follows that if we want to place two electrons at the same location
then there is only one possible state which is |A〉. This state is called the ”singlet state”. We discuss this statement
further below.

Let us try to be ”wise guys”. Maybe there is another way to squeeze to electrons into one site? Rather than placing
one electron with spin ”up” and the other with spin ”down” let us try a superposition of the type | →←〉 − | ←→〉.
This state is also antisymmetric under transposition, therefore it is as ”good” as |A〉. Let us see what it looks like in
the standard basis. Using the notations of the previous section:

1√
2

(|+−〉 − | −+〉) =
1√
2

(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉) (1053)

=
1

2
√

2
((|1〉+ |2〉)⊗ (|1〉 − |2〉))− 1

2
√

2
((|1〉 − |2〉)⊗ (|1〉+ |2〉))

= − 1√
2

(|1〉 ⊗ |2〉 − |2〉 ⊗ |1〉) = −|A〉

So, we see that mathematically it is in fact the same state. In other words: the antisymmetric state is a single state
and it does not matter if we put one electron ”up” and the other ”down”, or one electron ”right” and the other ”left”.
Still let us try another possibility. Let us try to put one electron ”up” and the other ”right”. Writing | ↑→〉 in the
standard basis using the notation of the previous section we get

|1〉 ⊗ |+〉 = 1√
2
|1〉 ⊗ (|1〉+ |2〉) =

1√
2
(|1, 1〉+ |1, 2〉) (1054)

This state is not an eigenstate of the transposition operator, it is neither symmetric nor anti-symmetric state. Therefore
it is not physical.

[38] A few site system with Bosons

====== [38.1] A two site system with N Bosons

We discuss in what follows the Bose-Hubbard Hamiltonian for N Bose particles in a two site system. The dimension
of the Hilbert space is N = N + 1. Later we assume N ≫ 1 so N ∼ N . For simplicity we might further assume N to
be even, and define j = N/2, so as to have N = 2j + 1. The Hamiltonian is

H =
∑

i=1,2

[
ǫin̂i +

U

2
n̂i(n̂i − 1)

]
− K

2
(â†2â1 + â†1â2) (1055)

where we denote by K the hopping, by U the interaction, and by ǫ = ǫ2 − ǫ1 the bias. Since n1 + n2 = N is constant
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of motion, the Hamiltonian for a given N is formally equivalent to the Hamiltonian of a spin j particle. Defining

Jz ≡ 1

2
(n̂1 − n̂2) (1056)

J+ ≡ â†1â2 (1057)

we can re-write the Hamiltonian as

H = UĴ2
z − ǫĴz −KĴx + const (1058)

In the absence of interaction this is like having a spin in magnetic field with precession frequency Ω = (K, 0, ǫ). In
order to analyze the dynamics for finite U it is more convenient to re-write this Hamiltonian with canonically conjugate
variables. Formally we are dealing with two coupled oscillators. So for each we can define action-angle variables in
the following way (no approximations involved):

âi =





0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









0 0 0 0

0
√

1 0 0

0 0
√

2 0

0 0 0
√

3



 =





0
√

1 0 0

0 0
√

2 0

0 0 0
√

3
0 0 0 0



 ≡ eiϕ
√
n̂i (1059)

One should be aware that the translation-like operator eiϕ is in fact non-unitary because it annihilates the ground

state. We shall denote its adjoint operator as e−iϕ, so we have â†i =
√
n̂ie

−iϕi . Now it is possible to re-write the
Hamiltonian using the conjugate variables n̂ ≡ n̂1 and ϕ ≡ ϕ1 −ϕ2 as follows:

H = Un2 − ǫn − K

2

[√
(N − n̂)(n̂+ 1) eiϕ + h.c.

]
(1060)

So far no approximation are involved. But now we want to allow an approximation which is valid for an N ≫ 1
system. Consequently we ignore the small corrections that are associated with the proper ordering of the operators
and write

H ≈ Un̂2 − ǫn̂ − K
√

(N − n̂)n̂ cos(ϕ) (1061)

In the n ∼ N/2 region of phase space this resembles the so-called Josephson Hamiltonian, which is essentially the
Hamiltonian of a pendulum

HJosephson = EC(n̂− n0)
2 − EJ cos(ϕ) (1062)

with Ec = U and EJ = KN/2, while n0 is linearly related to ǫ. The Josephson Hamiltonian is an over-simplification
because it does not capture correctly the global topology of phase space. In order to shed better light on the actual
Hamiltonian it is convenient to define in addition to the ϕ operator also a θ operator such that Jz ≡ (N/2) cos(θ)
while Jx ≈ (N/2) sin(θ) cos(ϕ). It is important to realize that ϕ and θ do not commute. In the (ϕ, n) language the
defining relation is

n̂ ≡ (N/2)
[
1 + cos(θ)

]
(1063)

Using the (ϕ,θ) coordinates, the Hamiltonian takes the form

H ≈ NK

2

[
1

2
u(cosθ)2 − ε cosθ − sin θ cosϕ

]
(1064)
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where the scaled parameters are

u ≡ NU

K
, ε ≡ ǫ

K
(1065)

We can describe phase space using the canonical coordinates (ϕ, n), so the total area of phase space is 2πN and
Planck cell is 2π~ with ~ = 1. Optionally we can use spherical coordinates (ϕ,θ), so the total area of phase space
is 4π and Planck cell 4π/N . Note that an area element in phase space can be written as dϕd cosθ.

Within the framework of the semiclassical picture a quantum state is described as a distribution in phase space, and
the eigenstates are associated with strips that are stretched along contour lines H(ϕ,θ) = E of the Hamiltonian. The
|n〉 states are the eigenstates of the K = 0 Hamiltonian. In particular the |n=N〉 state (all the particles are in the
first site) is a Gaussian-like wavepacket which is concentrated in the NorthPole. By rotation we get from it a family
of states |θ,ϕ〉 that are called coherent states. If U is large, ǫ = 0, and K is very small, then the eigenstates are the
symmetric and the antisymmetric superpositions of the | ± n〉 states. In particular we have ”cat states” of the type:

|CatState〉 = |n1=N,n2=0〉 + eiphase|n1=0, n2=N〉 (1066)

If a coherent state evolves, then the non-linearity (for non zero U) will stretch it. Sometimes the evolved state
might resemble a cat state. We can characterize the one-body coherence of a state by defining the one-body reduced
probability matrix as

ρ
(1)
ji =

1

N
〈â†i âj〉 =

1

2
(1 + 〈S〉 · σ) (1067)

where Si = (2/N)Ji and the so called polarization vector is 〈S〉 = (〈Sx〉, 〈Sy〉, 〈Sz〉). Note that

AverageOccupation = (N/2) [1 + 〈Sz〉] (1068)

OneBodyPurity = (1/2)
[
1 + 〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2

]
(1069)

The coherent states have maximum OneBodyPurity. This purity can be diminished due to non-linear effects or due to
interaction with environmental degrees of freedom. First example: If we prepare the particles in the ground state of
the U = 0 Hamiltonian of a symmetric double well, then we have a coherent state ”polarized” in the x direction. If we
turn on U , then this state will be stretched and eventually it will spread over the whole equator, thus leading to loss
of the OneBodyPurity. Second example: The interaction with the environment leads to the loss of OneBodyPurity
due to the loss of the ManyBodyPurity. If we have an environmental collisional effect that ”measures” in which well
are the particles (Jz interaction), then it leads to dephasing towards the z axis, while if the collisional effect is like
measuring whether the particles are in the barrier region (Jz interaction) then the dephasing is towards the x axis.

====== [38.2] An M site system with N Bosons

A double well system with Bosons has formally the same Hilbert space as that of spin N/2 particle. The generalization
of this statement is straightforward. The following model systems have formally the same Hilbert space:

• The “N particle” states of a Bosonic system with M sites.
• The “N quanta” states of M Harmonic oscillators.
• The states of a dim(N) ”spin” of the SU(M) group.

We shall explain and formulate mathematically the above statements, and later we shall use the formal analogy with
”spin” in order to shed light on the dynamics of N Bosons in M = 2 site system.

To regard Bosonic site as an Harmonic ”mode” is just a matter of language: We can regard the ”creation” operator a†i
as a ”raising” operator, and we can regard the ”occupation” of the ith site n̂i = a†iai as the number of quanta stored
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in ith mode. The one particle states of an M site system form an M dimensional Hilbert space. The set of unitary
transformations within this space is the SU(M) group. Let us call these transformation generalized ”rotations”. If we
have N particles in M sites then the dimensionality of Hilbert space is dim(N) = (N+1)!/[(M−1)!N−M+2)!]. For
example for M = 2 system we have dim(N) = N+1 basis states |n1, n2〉 with n1 + n2 = N . We can ”rotate” the whole
system using dim(N) matrices. Thus we obtain a dim(N) representation of the SU(M) group. By definition these

”rotations” can be expressed as a linear combination of the SU(M) generators Jµ, and they all commute with N̂ .
We shall see that the many body Hamiltonian H may contain “non linear” terms such as J2

µ that correspond to
interactions between the particles. Accordingly H of an interacting system is not merely a ”rotation”. Still we assume
that H commutes with N̂ , so we can work within dim(N) subspace.

There is a common mean field approximation which is used in order to analyze the dynamics of many Bosons system.
In the semiclassical framework the dynamics in phase space is generated by the Hamilton equations of motion for the
action-variables ṅi and ϕ̇i. These are the “polar coordinates” that describe each of the oscillators. Optionally one
can define a “macroscopic wavefunction”

ψi ≡
√
ni e

iϕ representing a single point in phase space (1070)

The equation for Ψ̇i is known as the discrete version of the non-linear Schrodinger (DNLS) equation:

i
dψi
dt

=
(
ǫi + U |ψi|2

)
Ψi −

K

2
(ψi+1 + ψi−1) (1071)

In the continuum limit this equations is known as the Gross-Pitaevskii equation:

i
dψ(x)

dt
=

[
V (x) + gs|ψ(x)|2 − 1

2m
∇2
]
ψ(x) (1072)

The potential V (x) corresponds to the ǫi of the DNLS equation, and the mass m is associated with the hopping am-
plitude K using the standard prescription. In addition to that we have the interaction parameter gs that corresponds
to U multiplied by the volume of a site. It also can be related to the scattering length using the relation gs = 4πas/m.

Within the framework of the proper semiclassical treatment the quantum state is described as a distribution of points
in phase space. The proper semiclassical treatment goes beyond the conventional mean field approximation. The
latter assumes that in any time the state of the system looks like a coherent state. Such a state corresponds to a
Gaussian-like distribution is phase space (“minimal wavepacket”) and accordingly it is characterized by ni = 〈ni〉 and
ϕi = 〈ϕi〉 or equivalently by the mean field

ψi = 〈ψi〉 representing the center of a wavepaket (1073)

To the extend that the mean field assumption can be trusted the equation of motion for ψi is the DNLS. Indeed
if U = 0 there is no non-linear spreading and the mean field description becomes exact. Otherwise it is a crude
approximation.

[39] Quasi 1D network systems
A 1D segment can be regarded as the continuum limit of quasi 0D chain. If the particle in confined between two
ends, the model is know as ”infinite well” or as ”1D box”. If there are periodic boundary conditions, the model is
know as ”1D ring”. Several ”1D boxes” can be connected into a network: each 1D segment is called ”bond”, and the
junctions are called ”vortices”.

The ends of an isolated bond can be regarded as hard walls. It is easily argued that the wavefunction should satisfy
Dirichlet boundary conditions at the boundary of a hard wall. The perturbation which is created by an infinitesimal
displacement of the wall is finite (see section below).

The coupling between two wavefunctions in a network due to the introduction of a connecting junction can be deduced
by considering a wire which is divided by a high uδ(x) barrier (see section below).
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We characterize a network by specifying the lengths {La} of the bonds, and the the potentials u at each vertex. Given
this information we would like to find the eigenfunctions and the eigenenergies. We describe below two procedures for
that purpose: one is based on a straightforward generalization of the standard matching conditions, while the other
is based on the scattering matrix formalism.

====== [39.1] Hard walls

Let us assume that we have a particle in a one dimensional box of length L, such that V (x) = 0 within the interval
0 < x < L. We assume Dirichlet boundary conditions at x = 0, while at x = L0 we assume a potential step, such that
V (x) = U0 for x > L0. We are going to see that if we take the limit U0 →∞, then this implies Dirichlet boundary
conditions at x = L0 too. Then we are going to find the perturbation term that describes a dL displacement of the
wall.

The wavefunction of nth eigenstate has to satisfy the Dirichlet boundary conditions at x = 0, and therefore has to be
of the form

ψ(x) =

{
A sin(kx) for 0 < x < L
Be−αx for x > L

(1074)

where

k =
√

2mE (1075)

α =
√

2m(U0 − E) ≈
√

2mU0

The normalization factor at the limit U0 →∞ is A = (2/L)1/2, and it would be convenient later to multiply the
functions by (−1)n, so as to have positive slope at x = L. The matching condition at x = L is:

ψ‘(x)

ψ(x)

∣∣∣∣
x=L−0

=
ψ‘(x)

ψ(x)

∣∣∣∣
x=L+0

= −α (1076)

So the eigenvalue equation is

k cot(kL) = −α (1077)

In the limit U0 →∞ the equation becomes sin(kL) = 0 which implies that the unperturbed eigen-energies are
En = k2

n/2m with kn = (π/L)n. In this limit we see that the matching condition at x = L simply forces the wave-
function to be zero there. Thus we have established that Hard walls implies Dirichlet boundary conditions.

In order to find the perturbation due to a small shift dL is the position of the wall we keep U0 finite, though we
assume it to be very very large. We shall take the strict limit U0 →∞ only at the end of the calculation. For L = L0

the unperturbed Hamiltonian after digonalization is

[H0]nm =
1

2m

(
π

L0
n

)2

δnm (1078)

If we displace the wall a distance dL the new Hamiltonian becomes H = H0 + dLV . We ask what are the matrix
elements Vnm of this perturbation. At first sight it looks as if to displace an ”infinite wall” constitutes ”infinite
perturbation” and hence Vnm =∞. But in fact it is not like that. We shall see that

Vnm = − π2

mL3
0

nm (1079)
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For the following calculation we point out that for very large U0 the derivative of the nthe wavefunction at the wall is

d

dx
ψ(n)(x)

∣∣∣∣
x=L

=

√
2

L
kn (1080)

The Hamiltonian of the original system (before we displace the wall) is:

H0 =
p2

2m
+ U1(x) (1081)

The Hamiltonian after we have displaced the wall a distance dL is:

H =
p2

2m
+ U2(x) (1082)

So the perturbation is:

δU(x) = U2(x)− U1(x) ≡ dL× V (1083)

which is a rectangle of width dL and height −U0. It follows that the matrix elements of the perturbation are

Vnm =
1

dL

∫ L+dL

L

ψ(n)(x)[−U0]ψ
(m)(x)dx = −U0ψ

(n)(L)ψ(m)(L) = −U0
1

α2

(
d

dx
ψ(n)(L)

)(
d

dx
ψ(m)(L)

)

where in the last step we have used the ”matching conditions”. Now there is no problem to take the limit U0 →∞

Vnm = −U0
1

2mU0

(√
2

L
kn

)(√
2

L
km

)
= −

(
1

mL

)
knkm = − π2

mL3
n m (1084)

It is easily verified that the diagonal terms VnndL of the perturbation matrix give correctly the first order shift dEn
of the energy levels due to the dL displacement.

====== [39.2] The definition of a delta junction

The simplest junction is composed ofM = 2 wires that are connected at one point. We can model such a junction as
a delta barrier V (x) = uδ(x). The matching condition at x = 0 is implied by the Schrodinger equation, and relates
the jump in the derivative to the value of the wavefuntion at that point.

1

2m
[∂ψ(+0)− ∂ψ(−0)] = u ψ(0) (1085)

A more elegant way of writing this relation is

M∑

a=1

dψa
dr

∣∣∣∣
r=0

= Mmuψ(0) (1086)

with M = 2. The derivative of the radial functions ψ1(r) = ψ(−r) and ψ2(r) = ψ(+r) is with respect to the radial
coordinate r = |x|. It is implicit that these wavefuntions should have the same value at the meeting point r = 0. If we
haveM wires connected at one point we can define a generalized “delta junction” using the same matching condition.
Say that we have a = 1, 2, 3 leads. The matching conditions at the junction are ψ1(0) = ψ2(0) = ψ3(0) ≡ ψ(0) while
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the sum over the radial derivatives should equal Mmuψ(0). This means that the sum over the outgoing currents is
zero.

More generally a junction can be fully characterized by its S matrix. So we can ask what is the S matrix of a delta
junction. It is straightforward to find out that the S matrix which is implied by the above matching conditions is

Sab = δab −
2

M

(
1

1 + i(u/vE)

)
[such that S=1 for u=∞] (1087)

For u = 0 we get zero reflection if M = 2, while ifM = 3 we get

S =




+1/3 −2/3 −2/3
−2/3 +1/3 −2/3
−2/3 −2/3 +1/3



 (1088)

In the limitM→∞ we get total reflection.

Sometimes we want to treat the connecting junction as a perturbation. Consider for example the simplest possibility
of having two 1D boxes connected at x = 0 hence forming a double well structure which is described by a Hamiltonian
H(x, p;u) in which the barrier is represented by V (x) = uδ(x). The eigenstates n of the unperturbed Hamiltonian
H(x, p;∞) are those of the left box together with those of the right box. We want to have an explicit expression
for the perturbation Wnm due to the coupling at x = 0. Note that W is defined as the difference H(u)−H(∞) so
it is not the same as V = H(u)−H(0). We can obtain the total perturbation W from a sequence of infinitesimal
variations of the barrier height starting from u =∞. Namely,

H(u) = H(∞)−
∫ ∞

u

(
∂H
∂u

)
du′ ≡ H(∞) +W (1089)

For any value of u the Hilbert space of the system is spanned by a set of (real) eigenfunction labeled by n. The matrix
elements for an infinitesimal variation of the barrier height is

(
∂H
∂u

)

nm

= ψ(n)(0) ψ(m)(0) =
1

(2mu)2

[dψ(n)

dr

]

0

[dψ(m)

dr

]

0
(1090)

where is the last step we have used the matching conditions in order to express the wave function by the total radial
derivative. For a large barrier with small transmission the nth and the mth states remain similar to the unperturbed
states and accordingly, upon integration, we get the result [http://arxiv.org/abs/0807.2572]:

Wnm = − 1

4m2u

[dψ(n)

dr

]

0

[dψ(m)

dr

]

0
(1091)

The d/dr in this expression is the total radial derivative, but in fact the contribution comes from one term only,
because the unperturbed wavefunction of a given eigenstate ψ(n) is non-zero only in one box.

====== [39.3] Finding the eigenstates of a network

Consider a network which is composed of b bonds and v vertexes. The wavefunction on bond a ≡ (i, j) that connects
vertex i to vertex j is written as

ψa(x) = Bae
ikax +Aae

−ikãx (1092)

where 0 < x < La is the position of the particle along the bond with the origin at vertex i. Note that the wavefunction
on ã = (j, i) is with Aã = Bae

ikaLa and Bã = Aae
−ikãLa . The wavenumber is ka =

√
2mE + (φa/La), where φa is

http://arxiv.org/abs/0807.2572
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determined by the vector potential. Note that φã = −φa. For simplicity we assume below that there is no magnetic
field, and accordingly kã = ka.

The most economical way to represent the wavefunction is by a vector ψ 7→ {ψ1, ψ2, ..., ψv} that contains the wave
amplitudes at the vertexes. If we know this vector then we can construct the whole wavefunction on bond a = (i, j)
using the formula

ψa(x) =
1

sin(kaLa)

[
ψi sin(ka(La−x)) + ψj sin(kax)

]
(1093)

The in order to find the eigenstates we simply have to write the v matching conditions of the vertexes, and look for
the energies E for which there is non-trivial solution for this homogeneous set of equations.

Optionally the wavefunction can be represented by the vector A = {Aa} of length 2b, or equivalently by the vector
B = {Ba}. The wavefunction and its gradient in a particular vertex are related to the latter as follows:

ψ = B +A (1094)

∂ψ = ik × (B −A) (1095)

If the junctions are represented by a scattering matrix and not by a simple matching condition there is an optional
procedure for finding the eigenstates. The A and the B vectors are related by

B = S A (1096)

A = J eikL B (1097)

where S is a 2b × 2b matrix that relates the outgoing to the ingoing fluxes, and J is a 2b × 2b permutation matrix
that induces the mapping a 7→ ã, and L = diag{La}, and k = diag{ka}. The equation for the eigenstates is

(
JeikLS − 1

)
A = 0 (1098)

We can get from this equation a set of eigenvalues En with the corresponding eigenvectors A(n) and the associated
amplitudes B(n) = SA(n).

The S matrix of the network (if appropriately ordered) has a block structure, and can be written as S =
∑
j Sj ,

where Sj is the vj × vj block that describes the scattering in the jth vertex. vj is the number of leads that stretch out
of that vertex. A delta function scatterer is regarded as a vj = 2 vertex. Let us construct a simple example. Consider
a ring with two delta barriers. Such ring can be regarded as a network with two bonds. The bonds are labeled as
12A, 12B, 21A, 21B, where A and B distinguish the two arms. The matrices that define the system are

S =





r1 t1 0 0
t1 r1 0 0
0 0 r2 t2
0 0 t2 r2



 , L =





LA 0 0 0
0 LB 0 0
0 0 LA 0
0 0 0 LB



 , J =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



 (1099)

Finally we note that k =
√

2mE + φ/L, where the fluxes matrix is φ = diag{φa}. If there is a single flux line φ one
can write φ = φP , where P can be expressed as a linear combination of the channel projectors Pa. For example, if
only one wire a encloses the flux line, then P = Pa − Pã and we get

k =
1

~

√
2mE + φ

P

L
(1100)

The obvious application of this procedure is for the analysis of a multi-mode Aharonov-Bohm ring, where the ”bonds”
are the propagation-modes of the ring, and they all enclose the same flux line.
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QM in Practice (part II)

[40] Approximation methods for finding eigenstates

====== [40.1] The WKB approximation

In the next sections we discuss the canonical version of perturbation theory. The small parameter is the strength
of the perturbation. Another family of methods to find approximate expressions for the eigen-functions is based on
treating “~” as the small parameter. The ~ in this context is not the ~ of plank but rather its scaled dimensionless
version that controls quantum-to-classical correspondence. For a particle in a box the scaled ~ is the ratio between the
De-Broglie wavelength and the linear size of the box. Such approximation methods are known as semi-classical. The
most elementary example is known as the WKB (Wentzel, Kramers, Brillouin) approximation [Messiah p.231]. It is
designed to treat slowly varying potentials in 1D where the wavefunction looks locally like a plane wave (if V (x) < E)
or as a decaying exponential (in regions where V (x) > E). The refined version of WKB, which is known as ”uniform
approximation”, allows also to do the matching at the turning points (where V (x) ∼ E). The generalization of the
d = 1 WKB to d > 1 dimensions integrable systems is known as the EBK scheme. There is also a different type of
generalization to d > 1 chaotic systems.

Assuming free wave propagation, hence neglecting back reflection, the WKB wavefunction is written as

Ψ(x) =
√
ρ(x)eiS(x) (1101)

This expression is inserted into the 1D Schrödinger equation. In leading order in ~ we get a continuity equation for
the probability density ρ(x), while the local wavenumber should be as expected

dS(x)

dx
= p(x) =

√
2m(E − V (x)) (1102)

Hence (for a right moving wave) one obtains the WKB approximation

ψ(x) =
1√
p(x)

EXP
[
i

∫ x

x0

p(x′)dx′
]

(1103)

where x0 is an arbitrary point. For a standing wave the ”EXP” can be replaced by either ”sin” or ”cos”. It should
be clear that for a ”flat” potential floor this expression becomes exact. Similarly in the ”forbidden” region we have a
decaying exponential. Namely, the local wavenumber ±p(x) is replaced by ±iα(x), where α(x) = (2m(V (x)−E))1/2.

If we have a scattering problem in one dimension we can use the WKB expression (with exp) in order to describe
(say) a right moving wave. It should be realized that there is no back-reflection within the WKB framework, but still
we can calculate the phase shift for the forward scattering:

θWKB =

∫ ∞

−∞
p(x)dx −

∫ ∞

−∞
pEdx =

∫ ∞

−∞

[√
2m(E − V (x)) −

√
2mE

]
dx (1104)

=
√

2mE

∫ ∞

−∞

[√
1− V (x)

E
− 1

]
dx ≈ −

√
m

2E

∫ ∞

−∞
V (x)dx

Hence we get

θWKB = − 1

~vE

∫ ∞

−∞
V (x)dx (1105)
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It should be noted that θWKB

1D is the phase shift in a 1D scattering geometry (−∞ < x <∞). A similar looking result
for semi-1D geometry (r > 0) is known as the Born approximation for the phase shift.

If we have a particle in a well, then there are two turning points x1 and x2. On the outer sides of the well we have
WKB decaying exponentials, while in the middle we have a WKB standing wave. As mentioned above the WKB
scheme can be extended so as to provide matching conditions at the two turning points. Both matching conditions
can be satisfied simultaneously if

∫ x2

x1

p(x)dx = (
1

2
+ n)π~ (1106)

where n = 0, 1, 2, . . . is an integer. Apart from the 1/2 this is a straightforward generalization of the quantization
condition of the wavenumber of a particle in a 1D box with hard walls (k × (x2 − x1) = nπ). The (1/2)π phase shift
arise because we assume soft rather than hard walls. This 1/2 becomes exact in the case of harmonic oscillator.

The WKB quantization condition has an obvious phase space representation, and it coincides with the ”Born Oppen-
heimer quantization condition”:

∮
p(x)dx = (

1

2
+ n)2π~ (1107)

The integral is taken along the energy contour which is formed by the curves p = ±p(x). This expression implies that
the number of states up to energy E is

N (E) =

∫∫

H(x,p)<E

dxdp

2π~
(1108)

The d > 1 generalization of this idea is the statement that the number of states up to energy E is equal to the phase
space volume divided by (2π~)d. The latter statement is known as Weyl law, and best derived using the Wigner-Weyl
formalism.

====== [40.2] The variational scheme

The variational scheme is an approximation method that is frequently used either as an alternative or in combination
with perturbation theory. It is an extremely powerful method for the purpose of finding the ground-state. More
generally we can use it to find the lowest energy state within a subspace of states.

The variational scheme is based on the trivial observation that the ground state minimize the energy functional

F [ψ] ≡ 〈ψ|H|ψ〉 (1109)

If we consider in the variational scheme the most general ψ we simply recover the equation Hψ = Eψ and hence
gain nothing. But in practice we can substitute into F [] a trial function ψ that depends on a set of parameters
X = (X1, X2, ...). Then we minimize the function F (X) = F [ψ] with respect to X .

The simplest example is to find the ground state on an harmonic oscillator. If we take the trail function as a Gaussian
of width σ, then the minimization of the energy functional with respect to σ will give the exact ground state. If we
consider an anharmonic oscillator we still can get a very good approximation. A less trivial example is to find bonding
orbitals in a molecules using as a trial function a combination of hydrogen-like orbitals.
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====== [40.3] Perturbation theory - motivation

Let us consider a particle in a two dimensional box. On the left a rectangular box, and on the right a chaotic box.

For a regular box (with straight walls) we found: Enx,ny
∝ (nx/Lx)

2 + (ny/Ly)
2, so if we change Lx we get the energy

level scheme which is drawn in the left panel of the following figure. But if we consider a chaotic box, we shall get
energy level scheme as on the right panel.

L

E
n

L

E
n

The spectrum is a function of a control parameter, which in the example above is the position of a wall. For generality
let us call this parameter X . The Hamiltonian is H(Q̂, P̂ ;X). Let us assume that we have calculated the levels either
analytically or numerically for X = X0. Next we change the control parameter to the value X = X0 + λ. Possibly, if
δX is small enough, we can linearize the Hamiltonian as follows:

H = H(Q̂, P̂ ;X0) + λV (Q̂, P̂ ) = H0 + λV̂ (1110)

With or without this approximation we can try to calculate the new energy levels. But if we do not want or cannot
diagonalize H for the new value of X we can try to use a perturbation theory scheme. Obviously this scheme will
work only for small enough λ that do not ”mix” the levels too much. There is some ”radius of convergence” (in λ)
beyond which perturbation theory fails completely. In many practical cases X = X0 is taken as the value for which
the Hamiltonian is simple and can be handled analytically. In atomic physics the control parameter X is usually
either the prefactor of the spin-orbit term, or an electric field or a magnetic field which are turned on.

There is another context in which perturbation theory is very useful. Given (say) a chaotic system, we would like to
predict its response to a small change in one of its parameters. For example we may ask what is the response of the
system to an external driving by either an electric or a magnetic field. This response is characterized by a quantity
called ”susceptibility”. In such case, finding the energies without the perturbation is not an easy task (it is actually
impossible analytically, so if one insists heavy numerics must be used). Instead of ”solving” for the eigenstates it
turns out that for any practical purpose it is enough to characterize the spectrum and the eigenstates in a statistical
way. Then we can use perturbation theory in order to calculate the ”susceptibility” of the system.
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====== [40.4] Perturbation theory - a mathematical digression

Let us illustrate how the procedure of perturbation theory is applied in order to find the roots of a toy equation.
Later we shall apply the same procedure to find the eigenvalues and the eigenstates of a given Hamiltonian. The toy
equation that we consider is

x+ λx5 = 3 (1111)

We assume that the magnitude of the perturbation (λ) is small. The Taylor expansion of x with respect to λ is:

x(λ) = x(0) + x(1)λ+ x(2)λ2 + x(3)λ3 + . . . (1112)

The zero-order solution gives us the solution for the case λ = 0:

x(0) = 3 (1113)

For the first-order solution we substitute x(λ) = x(0) + x(1)λ in the equation, and get:

[x(0) + x(1)λ] + λ[x(0) + x(1)λ]5 = 3 (1114)

[x(0) − 3] + λ[x(1) + (x(0))5] +O(λ2) = 0

By comparing coefficients we get:

x(0) − 3 = 0 (1115)

x(1) + (x(0))5 = 0

Therefore:

x(1) = −(x(0))5 = −35 (1116)

For the second-order solution, we substitute x(λ) = x(0) + x(1)λ+ x(2)λ2 in the equation, and get:

[x(0) + x(1)λ+ x(2)λ2] + λ[x(0) + x(1)λ+ x(2)λ2]5 = 3 (1117)

Once again, after comparing coefficients (of λ2), we get:

x(2) = −5(x(0))4x(1) = 5× 39 (1118)

It is obviously possible to find the corrections for higher orders by continuing in the same way.
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[41] Perturbation theory for the eigenstates

====== [41.1] Degenerate perturbation theory (zero-order)

We will take a general Hamiltonian after diagonalization, and add a small perturbation that spoils the diagonalization:

H =





2 0.03 0 0 0 0.5 0
0.03 2 0 0 0 0 0
0 0 2 0.1 0.4 0 0
0 0 0.1 5 0 0.02 0
0 0 0.4 0 6 0 0

0.5 0 0 0.02 0 8 0.3
0 0 0 0 0 0.3 9





(1119)

The Hamiltonian can be visualized using an energy level diagram:

2

8
9

6
5

The eigenvectors without the perturbation are:





1
0
0
0
0
0
0









0
1
0
0
0
0
0









0
0
1
0
0
0
0





· · · (1120)

The perturbation spoils the diagonalization. The question we would like to answer is what are the new eigenvalues
and eigenstates of the Hamiltonian. We would like to find them ”approximately”, without having to diagonalize the
Hamiltonian again. First we will take care of the degenerated blocks. The perturbation can remove the existing
degeneracy. In the above example we make the following diagonalization:

2 ·




1 0 0
0 1 0
0 0 1



 + 0.03 ·




0 1 0
1 0 0
0 0 0



 →




1.97 0 0
0 2.03 0
0 0 2



 (1121)

We see that the perturbation has removed the degeneracy. At this stage our achievement is that there are no matrix
elements that couple degenerate states. This is essential for the next steps: we want to ensure that the perturbative
calculation would not diverge.
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For the next stage we have to transform the Hamiltonian to the new basis. See the calculation in the Mathematica
file ”diagonalize.nb”. If we diagonalize numerically the new matrix we find that the eigenvector that corresponds to
the eigenvalue E ≈ 5.003 is

|Ψ〉 →





0.0008
0.03

0.0008
1

−0.01
−0.007
0.0005





=





0
0
0
1
0
0
0





+





0.0008
0.03

0.0008
0

−0.01
−0.007
0.0005





≡ Ψ[0]
n + Ψ[1,2,3,... ]

n (1122)

We note that within the scheme of perturbation theory it is convenient to normalize the eigenvectors according to the
zero order approximation. We also use the convention that all the higher order corrections have zero overlap with the
zero order solution. Else the scheme of the solution becomes ill defined.

====== [41.2] Perturbation theory to arbitrary order

We write the Hamiltonian as H = H0 + λV where V is the perturbation and λ is the control parameter. Note that
λ can be ”swallowed” in V . We keep it during the derivation in order to have clear indication for the ”order” of the
terms in the expansion. The Hamiltonian is represented in the unperturbed basis as follows:

H = H0 + λV =
∑

n

|n〉εn〈n| + λ
∑

n,m

|n〉Vn,m〈m| (1123)

which means

H →





ε1 0 0 0
0 ε2 0 0
0 0 ε3 0
0 0 0 . . .



+





V1,1 V1,2 . . . . . .
V2,1 V2,2 . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .



 (1124)

In fact we can assume without loss of generality that Vn,m = 0 for n = m, because these terms can be swallowed into
the diagonal part. Most importantly we assume that none of the matrix element couples degenerated states. Such
couplings should be treated in the preliminary ”zero order” step that has been discussed in the previous section.

We would like to introduce a perturbative scheme for finding the eigenvalues and the eigenstates of the equation

(H0 + λV )|Ψ〉 = E|Ψ〉 (1125)

The eigenvalues and the eigenvectors are expanded as follows:

E = E[0] + λE[1] + λ2E[2] + · · · (1126)

Ψn = Ψ[0]
n + λΨ[1]

n + λ2Ψ[2]
n

where it is implicit that the zero order solution and the normalization are such that

E[0] = εn0 (1127)

Ψ[0]
n = δn,n0

Ψ[1,2,3,... ]
n = 0 for n = n0

It is more illuminating to rewrite the expansion of the eigenvector using Dirac notations:

|n0〉 = |n[0]
0 〉+ λ|n[1]

0 〉+ λ2|n[2]
0 〉+ · · · (1128)
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hence

〈n[0]|n0〉 = 〈n[0]|n[0]
0 〉+ λ〈n[0]|n[1]

0 〉+ λ2〈n[0]|n[2]
0 〉+ · · · (1129)

which coincides with the traditional notation. In the next section we introduce a derivation that leads to the following
practical results:

Ψ[0]
n = δn,n0 (1130)

Ψ[1]
n =

Vn,n0

εn0 − εn
E[0] = εn0

E[1] = Vn0,n0

E[2] =
∑

m( 6=n0)

Vn0,mVm,n0

εn0 − εm

The calculation can be illustrated graphically using a ”Feynman diagram”. For the calculation of the second order
correction to the energy we should sum all the paths that begin with the state n0 and also end with the state n0.
We see that the influence of the nearer levels is much greater than the far ones. This clarifies why we cared to treat
the couplings between degenerated levels in the zero order stage of the calculation. The closer the level the stronger
the influence. This influence is described as ”level repulsion”. Note that in the absence of first order correction the
ground state level always shifts down.

====== [41.3] Derivation of the results

The equation we would like to solve is





ε1 0 0 0
0 ε2 0 0
0 0 ε3 0
0 0 0 . . .








Ψ1

Ψ2

. . .



+ λ





V1,1 V1,2 . . . . . .
V2,1 . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .








Ψ1

Ψ2

. . .



 = E




Ψ1

Ψ2

. . .



 (1131)

Or, in index notation:

εnΨn + λ
∑

m

Vn,mΨm = EΨn (1132)

This can be rewritten as

(E − εn)Ψn = λ
∑

m

Vn,mΨm (1133)

We substitute the Taylor expansion:

E =
∑

k=0

λkE[k]) = E[0] + λE[1] + . . . (1134)

Ψn =
∑

k=0

λkΨ[k]
n = Ψ[0]

n + λΨ[1]
n + . . .
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We recall that E[0] = εn0 , and

Ψ(0)
n = δn,n0 →





. . .
0
0
1
0
0
. . .





, Ψ[k 6=0]
n →





. . .
?
?
0
?
?
. . .





(1135)

After substitution of the expansion we use on the left side the identity

(a0 + λa1 + λ2a2 + . . . )(b0 + λb1 + λ2b2 + . . . ) =
∑

k

λk
k∑

k′=0

ak′bk−k′ (1136)

Comparing the coefficients of λk we get a system of equations k = 1, 2, 3...

k∑

k′=0

E[k′]Ψ[k−k′ ]
n − εnΨ[k]

n =
∑

m

Vn,mΨ[k−1]
m (1137)

We write the kth equation in a more expanded way:

(E[0] − εn)Ψ(k)
n + E[1]Ψ[k−1]

n + E[2]Ψ[k−2]
n + · · ·+ E[k]Ψ[0]

n =
∑

m

Vn,mΨ[k−1]
m (1138)

If we substitute n = n0 in this equation we get:

0 + 0 + · · ·+ E[k] =
∑

m

Vn0,mΨ[k−1]
m (1139)

If we substitute n 6= n0 in this equation we get:

(εn0 − εn)Ψ[k]
n =

∑

m

Vn,mΨ[k−1]
m −

k∑

k′=1

E[k′]Ψ[k−k′]
n (1140)

Now we see that we can solve the system of equations that we got in the following order:

Ψ[0] → E[1] → Ψ[1] → E[2] → . . . (1141)

Where:

E[k] =
∑

m

Vn0,mΨ[k−1]
m (1142)

Ψ[k]
n =

1

(εn0 − εn)

[
∑

m

Vn,mΨ[k−1]
m −

k∑

k′=1

E[k′]Ψ[k−k′]
n

]

The practical results that were cited in the previous sections are easily obtained from this iteration scheme.
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[42] Perturbation theory / Wigner

====== [42.1] The overlap between the old and the new states

We have found that the perturbed eigenstates to first-order are given by the expression

|n0〉 ≈ |n[0]
0 〉+

∑

n

Vn,n0

εn0 − εn
|n[0]〉 (1143)

So, it is possible to write:

〈n[0]|n0〉 ≈
Vnn0

εn0 − εn
for n 6= n0 (1144)

which implies

P (n|m) ≡ |〈n[0]|m〉|2 ≈ |Vnm|2
(Em − En)2

for n 6= n0 (1145)

In the latter expression we have replaced in the denominator the unperturbed energies by the perturbed energies.
This is OK because in this level of approximation the same result is obtained. In order for our perturbation theory
to be valid we demand

|V | ≪ ∆ (1146)

In other words, the perturbation must be much smaller than the mean level spacing. We observe that once this
condition breaks down the sum

∑
m P (n|m) becomes much larger then one, whereas the exact value is exactly one

due to normalization. This means that if |V | ≫ ∆ the above first order expression cannot be trusted.

Can we do better? In principle we have to go to higher orders of perturbation theory, which might be very complicated.
But in fact the generic result that comes out is quite simple:

P (n|m) ≈ |Vn,m|2
(En − Em)2 + (Γ/2)2

(1147)

This is called ”Wigner Lorentzian”. As we shall see later, it is related to the exponential decay law that is also named
after Wigner (”Wigner decay”). The expression for the ”width” of this Lorentzian is implied by normalization:

Γ =
2π

∆
|V |2 (1148)

The Lorentzian expression is not exact. It is implicit that we assume a dense spectrum (high density of states). We
also assume that all the matrix elements are of the same order of magnitude. Such assumption can be justified e.g.
in case of chaotic systems. In order to show that

∑
m P (n|m) = 1 one use the recipe:

∑

n

f(En) ≈
∫
dE

∆
f(E) (1149)

where ∆ is the mean level spacing. In the following we shall discuss further the notion Density of States (DOS) and
Local Density of States (LDOS) which are helpful in further clarifying the significance of the Wigner Lorentzian.
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====== [42.2] The DOS and the LDOS

When we have a dense spectrum, we can characterize it with a density of states (DOS) function:

̺(E) =
∑

n

δ(E − En) (1150)

We notice that according to this definition:

∫ E+dE

E

̺(E′)dE′ = number of states with energy E < En < E + dE (1151)

If the mean level spacing ∆ is approximately constant within some energy interval then ̺(E) = 1/∆.

The local density of states (LDOS) is a weighted version of the DOS. Each level has a weight which is proportional
to its overlap with a reference state:

ρ(E) =
∑

n

|〈Ψ|n〉|2δ(E − En) (1152)

The index n labels as before the eigenstates of the Hamiltonian, while Ψ is the reference state. In particular Ψ can be
one of the eigenstates of the unperturbed Hamiltonian. In such case the Wigner Lorentzian approximation implies

ρ(E) =
1

π

(Γ/2)

(E − En0)
2 + (Γ/2)2

(1153)

It should be clear that by definition we have

∫ ∞

−∞
ρ(E)dE =

∑

n

|〈Ψ|n〉|2 = 1 (1154)

E

ρ(
E

)

====== [42.3] Wigner decay and its connection to the LDOS

Let us assume that we have a system with many energy states. We prepare the system in the state |Ψ〉. Now we
apply a field for a certain amount of time, and then turn it off. What is the probability P (t) that the system will
remain in the same state? This probability is called the survival probability. By definition:

P (t) = |〈Ψ(0)|Ψ(t)〉|2 (1155)
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Let H0 be the unperturbed Hamiltonian, while H is the perturbed Hamiltonian (while the field is ”on”). In what
follows the index n labels the eigenstates of the perturbed Hamiltonian H. We would like to calculate the survival
amplitude:

〈Ψ(0)|Ψ(t)〉 = 〈Ψ|U(t)|Ψ〉 =
∑

n

〈n|Ψ〉|2e−iEnt (1156)

We notice that:

〈Ψ(0)|Ψ(t)〉 = FT

[
∑

n

〈n|Ψ〉|22πδ(ω − En)
]

= FT [2πρ(ω)] (1157)

If we assume that the LDOS is given by Wigner Lorentzian then:

P (t) =
∣∣∣FT [2πρ(E)]

∣∣∣
2

= e−Γt (1158)

Below we remind ourselves of the customary way to perform the Fourier transform in this course:

F (ω) =

∫
f(t)eiωtdt (1159)

f(t) =

∫
dω

2π
F (ω)e−iωt

The Wigner decay appears when we ”break” first-order perturbation theory. The perturbation should be strong
enough to create transitions to other levels. Else the system stays essentially at the same level all the time (P (t) ≈ 1).
Note the analogy with the analysis of the dynamics in a two level system. Also there, in order to have for P (t)
large amplitude oscillations, the hopping amplitude should be significantly larger compared with the on site energy
difference.
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[43] Decay into a continuum

====== [43.1] Definition of the model

In the problem of a particle in a two site system, we saw that the particle oscillates between the two sites. We will
now solve a more complicated problem, where there is one site on one side of the barrier, and on the other side there
is a very large number of energy levels (a ”continuum”).

We will see that the particle ”decays” into the continuum. In the two site problem, the Hamiltonian was:

H =

(
E0 σ
σ E1

)
(1160)

Where σ is the transition amplitude through the barrier. In the new problem, the Hamiltonian is:

H =





E0 σ σ σ . . .
σ E1 0 0 . . .
σ 0 E2 0 . . .
σ 0 0 E3 . . .
. . . . . . .
. . . . . . .




(1161)

We assume a mean level spacing ∆ between the continuum states. If the continuum states are states of a one-
dimensional box with length L, then the quantization of the momentum is π/L, and from the relation between the
energy and the momentum (dE = vEdp) we get:

∆ = vE
π

L
(1162)

From Fermi golden rule we expect to find the decay constant

Γ = 2π
1

∆
σ2 (1163)

Below we shall see that this result is exact. We are going to solve both the eigenstate equation

(H0 + V )nn′Ψn′ = EΨn (1164)

and the time dependent Schrödinger’s equation

dΨn

dt
= −i

∑

n′

(H0 + V )nn′Ψn′ (1165)
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where the perturbation term V includes the coupling elements σ.

====== [43.2] An exact solution for the eigenstates

The unperturbed basis is |0〉, |k〉 with energies E0 and Ek. The level spacing of the quasi continuum states is ∆. The
couplings between the discrete state and the quasi continuum states all equal σ. The system of equations for the
eigenstates |n〉 is

E0Ψ0 +
∑

k

σΨk = EΨ0 (1166)

EkΨk + σΨ0 = EΨk (1167)

From the second line we get how the eigenstates look like:

Ψk =
σ

E − Ek
Ψ0 (1168)

where Ψ0 should be determined by normalization, while the eigenenergies E = En are determined by the equation

∑

k

σ2

E − Ek
= E − E0 (1169)

For equal spacing this can be written as

cot

(
π
E

∆

)
=

1

π

∆

σ2
(E − E0) (1170)

leading to the solution

En =

(
n+

1

π
ϕn

)
∆ (1171)

where ϕ changes monotonically from π to 0. Now we can determine the normalization, leading to

Ψ0 =
σ√

(En − E0)2 + (Γ/2)2
(1172)

where

Γ

2
=

√
σ2 +

( π
∆
σ2
)2

(1173)

This is the Wigner Lorentzian. It gives the overlap of the eigenstates with the unperturbed discrete state. A related
result is due to Fano. Assuming that we have an initial state |F 〉 that has coupling Ω to the state |0〉 and a coupling
σF to the states |k〉. Then we get for the decay amplitudes:

〈n|H|F 〉 = Ω〈n|H|0〉+ σF
∑

k

〈n|H|k〉 =
Ωσ + (En − E0)σF√
(En − E0)2 + (Γ/2)2

(1174)

The decay amplitudes to levels En that are far away from the resonance is σF as in the unperturbed problem. On
the other hand, in the vicinity of the resonance we have levels to which the decay is suppressed due to destructive
interference.
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====== [43.3] An exact solution of the time dependent problem

We switch to the interaction picture:

Ψn(t) = cn(t)e
−iEnt (1175)

We distinguish between ck and c0, and get the system of equations:

i
dc0
dt

=
∑

k

ei(E0−Ek)t V0,k ck(t) (1176)

i
dck
dt

= ei(Ek−E0)t Vk,0 c0(t)

From the second equation we get:

ck(t) = 0 − i
∫ t

0

ei(Ek−E0)t′ Vk,0 c0(t
′) dt′ (1177)

By substituting into the first equation we get:

dc0
dt

= −
∫ t

0

C(t− t′) c0(t′) dt′ (1178)

Where:

C(t− t′) =
∑

k

|Vk,0|2 e−i(Ek−E0)(t−t′) (1179)

The Fourier transform of this function is:

C̃(ω) =
∑

k

|Vk,0|2 2πδ(ω − (Ek − E0)) ≈
2π

∆
σ2 (1180)

Which means that:

C(t− t′) ≈
[
2π

∆
σ2

]
δ(t− t′) = Γδ(t− t′) (1181)

We notice that the time integration only ”catches” half of the area of this function. Therefore, the equation for c0 is:

dc0
dt

= −Γ

2
c0(t) (1182)

This leads us to the solution:

P (t) = |c0(t)|2 = e−Γt (1183)
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====== [43.4] The Gamow Formula

A particle of mass m in 1D is confined from the left by an infinite potential wall and from the right by a delta function
U(x) = uδ(x − a). We assume large u such that the two regions are weakly coupled. In this section we shall derive
an expression for the decay constant Γ. We shall prove that it equals the ”attempt frequency” multiplied by the
transmission of the barrier. This is called Gamow formula.

V

x=ax=0 x

U

We will look for complex energy solutions that satisfy ”outgoing wave” boundary conditions. Setting k = kr − iγr we
write the energy as:

E =
k2

2m
= Er − i

Γr
2

(1184)

Er =
1

2m
(k2
r − γ2

r )

Γr =
2

m
krγr = 2vrγr

In the well the most general solution of Hψ = Eψ is ψ(x) = Aeikx +Be−ikx. Taking the boundary condition ψ(0) = 0
at the hard wall, and the outgoing wave boundary condition at infinity we get

ψ(x) = C sin(kx) for 0 < x < a (1185)

ψ(x) = Deikx for x > a

The matching conditions across the barrier are:

ψ(a+ 0)− ψ(a− 0) = 0 (1186)

ψ′(a+ 0)− ψ′(a− 0) = 2α ψ(a)

where

α = m
u

~2
(1187)

Thus at x = a the wave functions must fulfill:

ψ′

ψ

∣∣∣
+
− ψ′

ψ

∣∣∣
−

= 2α (1188)

leading to

ik − k cot(ka) = 2α (1189)
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We can write last equation as:

tan(ka) = −
k
2α

1− i k2α
(1190)

The zero order solution in the coupling (u =∞) are the energies of an isolated well corresponding to

k = kn =
π

a
n (1191)

We assume small coupling c and expand both sides of the equation around kn. Namely we set k = (kn + δk)− iγ
where δk and γ are small corrections to the unperturbed energy of the isolated state. To leading order we get:

aδk − iaγ = − kn
2α
− i
(
kn
2α

)2

(1192)

From the last equation we get:

kr = kn + δk = kn −
1

a

kn
2α

(1193)

γr =
1

a

(
kn
2α

)2

From here we can calculate both the shift and the ”width” of the energy. To write the result in a more attractive way
we recall that the transmission of the delta barrier at the energy E = En is

g =
1

1 + (α/k)2
≈
(
k

α

)2

(1194)

hence

Γr ≈ 2vE
1

a

(
kn
2α

)2

≈ vE
2a
g (1195)

This is called Gamow formula. It reflects the following semiclassical picture: The particle oscillates with velocity
vE =

√
2E/m inside the well, hence vE/(2a) is the number of collisions that it has with the barrier per unit time.

The Gamow formula expresses the decay rate as a product of this“attempt frequency” with the transmission of the
barrier. It is easy to show that the assumption of weak coupling can be written as g ≪ 1.
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====== [43.5] From Gamow to the double well problem

Assume a double well which is divided by the same delta function as in the Gamow decay problem. Let us use the
solution of the Gamow decay problem in order to deduce the oscillation frequency in the double well.

x=0

V

x

U

x=a

Going back to the Gamow problem we know that by Fermi golden rule the decay rate is

Γ =
2π

∆L
|Vnk|2 (1196)

where Vnk is the probability amplitude per unit time to make a transitions form level n inside the well to any of the
k states outside of the well. It is assumed that the region outside of the well is very large, namely it has some length
L much larger than a. The k states form a quasi-continuum with mean level spacing ∆L. This expression should be
compared with the Gamow formula, which we write as

Γ =
vE
2a
g =

1

2π
g∆a (1197)

where g is the transmission of the barrier, and ∆a is the mean level spacing in the small (length a) region. The
Gamow formula should agree with the Fermi golden rule. Hence we deduce that the transition amplitude is

|Vnk| =
1

2π

√
g∆a∆L (1198)

With some further argumentation we deduce that the coupling between two wavefunctions at the point of a delta
junction is:

Vnk = − 1

4m2u
[∂ψ(n)][∂ψ(k)] (1199)

where ∂ψ is the radial derivative at the point of the junction. This formula works also if both functions are on the
same side of the barrier. A direct derivation of this result is also possible but requires extra sophistication.

Now we can come back to the double well problem. For simplicity assume a symmetric double well. In the two level
approximation n and k are “left” and “right” states with the same unperturbed energy. Due to the coupling we have
coherent Bloch oscillation whose frequency is

Ω = 2|Vnk| =
1

π

√
̺∆a∆a =

vE
a

√
g (1200)
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[44] Scattering resonances

====== [44.1] Fabry Perrot interference / transmission resonance

The Fabry Perrot problem is to find the transmission of a double barrier given the transmission of each barrier and
their ”optical distance”: (i.e. the distance in wavelength units which determines phase difference). For clarity we may
assume that the barriers are represented by delta functions. The conventional way of solving this problem is to match
together the solutions in the three segments. Another way of solving this problem is to ”sum over paths”, similar to
the way one solves the interference problem in the two slit geometry.

L

 

We take as given the transmission coefficient T = |t|2, and the reflection coefficient R = |r|2 = 1− T . If the distance
between the two barriers is a, then a wave accumulates a phase φ = kL when going from the one barrier to the other.
The transmission of both barriers together is:

transmission = |t× eiφ × (1 + (reiφ)2 + (reiφ)4 + . . . )× t|2 (1201)

Every round trip between the barriers includes two reflections, so the wave accumulates a phase (reiφ)2. We have a
geometrical series, and its sum is:

transmission =

∣∣∣∣t×
eiφ

1− (reiφ)2
× t
∣∣∣∣
2

= (1202)

After some algebra we find the Fabry Perrot expression:

transmission =
1

1 + 4[R/T 2](sin(φ))2
(1203)

We notice that this is a very ”dramatic” result. If we have two barriers that are almost absolutely opaque R ∼ 1,
then as expected for most energies we get a very low transmission of the order of magnitude of T 2. But there are
energies for which φ = π × integer and then we find that the total transmission is 100%! In the following figure we
compare the two slit interference pattern (left) to the Fabry Perrot result (right):
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====== [44.2] Scattering on a single level system

The most elementary example for a resonance is when the scattering region contains only one level. This can be
regarded as a simplified version of the Fabry-Perrot double barrier problem, or it can be regarded as simplified version
of scattering on a shielded well which we discuss later on.

We assume, as in the Wigner decay problem that we had been analyzed in a previous lecture, that the scattering
region contains a single level of energy E0. Due to the coupling with the continuum states of the lead, this level
acquire withs Γ0. This width would determine the Wigner decay rate if initially the particle were prepared in this
level. But we would like to explore a different scenario in which the particle is scattered from the outside. Then we
shall see that Γ0 determines the Wigner delay time of the scattering.

In order to perform the analysis using the a formal scattering approach we need a better characterization of the lead
states |k〉. For simplicity of presentation it is best to imagine the leas as a 1D segment of length L (later we take L to
be infinite). The density of states in the energy range of interest is L/(πvE). The coupling between the E0 state and

any of the volume-normalized k states is V0,k = w/
√
L. The coupling parameter w can be calculated if the form the

barrier or its transmission are known (see appropriate ”QM is practice I” sections). Consequently we get the the FGR
width of the level E0 is Γ0 = (2/vE)w2. Using a formal language it means that the resolvent of the E0 subsystem is

G(E) =
1

E − E0 + i(Γ0/2)
(1204)

In order to find the S matrix, the element(s) of the T matrix should be calculated in a properly normalized basis.
The relation between the flux-normalized states and the volume-normalized states is:

|φE〉 =

√
2L

vE
|k〉 7−→ 1√

vE
e−ikx − 1√

vE
e+ikx (1205)

Consequently we get for the 1× 1 scattering matrix the expected result

S(E) = 1− iT = 1− iVkE ,0G(E)V0,kE
= 1− i Γ0

E − E0 + i(Γ0/2)
(1206)

which implies a phase shift

δ0 = arctan

[
− Γ0/2

E − E0

]
(1207)

and accordingly the time delay is

τ0 =
Γ0

(E − E0)2 + (Γ0/2)2
(1208)

Note that at resonance the time delay is of order 1/Γ0.

The procedure is easily generalized in order to handle several leads, say two leads as in the double barrier problem.
Now we have to use an index a = 1, 2 in order to distingush the left and right channels. The width of the E0 levels is
Γ0 = (2/vE)[w2

1 + w2
2 ]. The freewaves solution is the leads are labled as |φE,a〉, and the S matrix comes out

Sab(E) = δa,b − iTab = δa,b − i
Γ0/2

E − E0 + i(Γ0/2)

[
2wawb
w2

1 + w2
2

]
(1209)

We see that the maximum transmission is for scattering with E = E0, namely |2wawb/(w2
1 + w2

2)|2, which becomes
100% transmission if w1 = w2 as expected from the Fabry-Perrot analysis.
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====== [44.3] Scattering resonance of a shielded 1D well

A shielded 1D well is defined by

V (r) = VΘ(R− r) + Uδ(r −R) (1210)

where V is the potential floor inside the scattering region 0 < r < R, and U is a shielding potential barrier at the
boundary r = R of the scattering region. We add the shield in order to have distinct narrow resonances. The interior
wave function is

ψ(r) = SIN(αr) (1211)

where α =
√

2m|E − V |, and SIN is either sin or sinh depending on whether E is larger or smaller than V . Taking
the logarithmic derivative at r = R and realizing that the effect of the shield U is simply to boost the result we get:

k̃0(E;V, U) ≡
[

1

ψ(r)

dψ(r)

dr

]

r=R+0

= αCTG(αR) + 2mU (1212)

where CTG is either cot or coth depending on the energy E. It should be realized that k̃0 depends on the energy as
well as on V and on U . For some of the discussions below, and also for some experimental application it is convenient
to regard E as fixed (for example it can be the Fermi energy of an electron in a metal), while V is assumed to be

controlled (say by some gate voltage). The dependence of k̃0 on V is illustrated in the following figure. At V = E

there is a smooth crossover from the ”cot” region to the ”coth” region. If V is very large then k̃0 = ∞. This means
that the wavefunction has to satisfy Dirichlet (zero) boundary conditions at r = R. This case is called “hard sphere
scattering”: the particle cannot penetrate the scattering region. If U is very large then still for most values of V we
have “hard sphere scattering”. But in the latter case there are narrow strips where k̃0 has a wild variation, and it
can become very small or negative. This happens whenever the CTG term becomes negative and large enough in
absolute value to compensate the positive shield term. We refer to these strips as “resonances”. The locations V ∼ Vr
of the resonances is determined by the equation tan(αR) ∼ 0. We realize that this would be the condition for having
a bound state inside the scattering region if the shield were of infinite height.

k

V

1/R

V
0

E

~

In order to find the phase shift we use the standard matching procedure. In the vicinity of a resonance we can linearize
the logarithmic derivative with respect to the control parameter V as k̃0(V ) ≈ (V − Vr)/vr or if V is fixed, then with

respect to the energy E as k̃0(E) ≈ −(E − Er)/vr, where the definitions of either Vr or Er and vr are implied by the
linearization procedure. The two procedures are equivalent but for clarity we prefer the former. Thus in the vicinity
of the resonance we get for the the phase shift

δ0 = δ∞0 + arctan

[
kE

k̃0(V )

]
= −kER + arctan

[
Γr/2

V − Vr

]
(1213)

where Γr = 2vrkE . The approximation above assumes well separated resonances. The distance between the locations
Vr of the resonances is simply the distance between the metastable states of the well. Let us call this level spacing ∆0.
The condition for having a narrow resonance is Γr < ∆0. By inspection of the plot it should be clear that shielding
(large U) shifts the plot upwards, and consequently vr and hence Γr become smaller. Thus by making U large enough
we can ensure the validity of the above approximation.
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In order to get the Wigner time delay we regard V as fixed, and plot the variation of k0(E) as a function of E. This

plot looks locally the same as the k̃0(V ) plot, with E ↔ −V . Then we can obtain δ0 as a function of E, which is
illustrated in the figure below. The phase shift is defined modulo π, but in the figure it is convenient not to take the
modulo so as to have a continuous plot. At low energies the s-scattering phase shift is δ0(E) = −kER and the time
delay is τ ≈ −2R/vE. As the energy is raised there is an extra π shift each time that E goes through a resonance.
In order to ensure narrow resonance one should assume that the well is shielded by a large barrier. At the center of
a resonance the time delay is of order 1/Γr.

3π

2π

π

δ (E)

−kR

1E 3E2E

====== [44.4] Scattering resonance of a spherical shielded well

The solution of the ℓ > 1 version of the shielded well scattering problem goes along the same lines as in the ℓ = 0
case that has been discussed above. The only modification is a change of convention: we work below with the
radial functions R(r) = u(r)/r and not with u(r). Accordingly for the logarithmic derivative on the boundary of the

scattering region we use the notation kℓ instead of k̃ℓ. Once we know the k̃ℓ the phase shift can be calculated using
the formula

ei2δℓ =

(
h−ℓ
h+
ℓ

)
kℓ(V )− (h′−ℓ /h

−
ℓ )kE

kℓ(V )− (h′+ℓ /h
+
ℓ )kE

(1214)

In what follows we fix the energy E of the scattered particle, and discuss the behavior of the phase shift and the cross
section as a function of V . In physical applications V can be interpreted as some ”gate voltage”. Note that in most
textbooks it is customary to fix V and to change E. We prefer to change V because then the expansions are better
controlled. In any case our strategy gives literally equivalent results. Following Messiah p.391 and using the notations

(
h−ℓ
h+
ℓ

)
≡ ei2δ

∞
ℓ , kE

(
h′+ℓ
h+
ℓ

)

r=a

≡ ǫ+ iγ (1215)

we write

ei2δℓ =
(
ei2δ

∞
ℓ

) kℓ(V )− ǫ+ iγ

kℓ(V )− ǫ− iγ (1216)

which gives

δℓ = δ∞ℓ + arctan

[
γ

kℓ(V )− ǫ

]
(1217)

We can plot the right hand side of the last equation as a function of V . If the shielding is large we get typically
δℓ ≈ δ∞ℓ as for a hard sphere. But if V is smaller than E we can find narrow resonances as in the ℓ = 0 quasi 1D
problem. The analysis of these resonances is carried out exactly in the same way. Note that for ℓ > 0 we might have
distinct resonances even without shielding thanks to the centrifugal barrier.
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QM in Practice (part III)

[45] The Aharonov-Bohm effect

====== [45.1] The Aharonov-Bohm geometry

In the quantum theory it is natural to treat the potentials V,A as basic variables and E ,B as derived variables. Below
we will discuss the case in which E = B = 0 in the area where the particle is moving. According to the classical theory
we expect that the motion of the particle will not be affected by the field, since the Lorentz force is zero. However,
we will see that according to the quantum theory the particle will be affected, since A 6= 0. This is a topological effect
that we are going to clarify.

In what follows we discuss a ring with magnetic flux Φ through it. This is called Aharonov-Bohm geometry. To have
flux through the ring means that:

∮
~A · d~l =

∫ ∫
B · d~s = Φ (1218)

Therefore the simplest possibility is

A =
Φ

L
(1219)

where L is the length of the ring. Below we will ”spread out” the ring so that we get a particle in the interval
0 < x < L with periodical boundary conditions.

Ĥ =
1

2m

(
p̂− eΦ

cL

)2

(1220)

The eigenstates of H are the momentum states |kn〉 where:

kn =
2π

L
× integer (1221)

The eigenvalues are:

En =
1

2m

(
2π~

L
n− eΦ

cL

)2

=
1

2m

(
2π~

L

)2(
n− eΦ

2π~c

)2

(1222)

The unit 2π~c/e is called ”fluxon”. It is the basic unit of flux in nature. We see that the energy spectrum is influenced
by the presence of the magnetic flux. On the other hand, if we draw a graph of the energies as a function of the flux
we see that the energy spectrum repeats itself every time the change in the flux is a whole multiple of a fluxon. (To
guide the eye we draw the ground state energy level with thick line).
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The fact that the electron is located in an area where there is no Lorentz force E = B = 0, but is still influenced by
the vector potential is called the Aharonov Bohm Effect. This is an example of a topological effect.

====== [45.2] The energy levels of a ring with a scatterer

Consider an Aharonov-Bohm ring with (say) a delta scatterer:

H =
1

2m

(
p− eΦ

L

)2

+ uδ(x) (1223)

We would like to find the eigenenergies of the ring. The standard approach is to write the general solution in the empty
segment, and then to impose the matching condition over the delta scatterer. A simpler method of solution, which
is both elegant and also more general, is based on the scattering approach. In order to characterize the scattering
within the system, the ring is cut at some arbitrary point and the S matrix of the open segment is specified. It is
more convenient to use the row-swapped matrix, such that the transmission amplitudes are along the diagonal:

S̃ = eiγ
( √

geiφ −i√1− ge−iα
−i√1− geiα √

ge−iφ

)
(1224)

The periodic boundary conditions imply the equation

(
A
B

)
= S̃

(
A
B

)
(1225)

which has a non-trivial solution if and only if

det(S̃(E)− 1) = 0 (1226)

Using

det(S̃− I) = det(S̃)− trace(S̃) + 1 (1227)

det(S̃) = (eiγ)2 (1228)

trace(S̃) = 2
√
geiγ cosφ (1229)
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we get the desired equation:

cos(γ(E)) =
√
g(E) cos(φ) (1230)

where φ = eΦ/~. With a delta scatterer the transmission of the ring is

g(E) =

[
1 +

(
m

~2kE
u

)2
]−1

(1231)

and the associated phase shift is

γ(E) = kEL− arctan

(
m

~2kE
u

)
(1232)

Note that the free propagation phase is included in γ. In order to find the eigen-energies we plot both sides as a function
of E. The left hand side oscillates between −1 and +1, while the right hand side is slowly varying monotonically.

====== [45.3] Perturbation theory for a ring + scatterer

Let us consider a particle with mass m on a 1D ring. A flux Φ flows through the ring. In addition, there is a scatterer
on the ring, described by a delta function. The Hamiltonian that describes the system is:

H =
1

2m

(
p− Φ

L

)2

+ ǫδ(x) (1233)

This Hamiltonian’s symmetry group is O(2). This means symmetry with respect to rotations and reflections. In fact,
in one dimension, rotations and reflections are the same (since a 1D ring = a circle). Only in higher dimensions they
are different (torus 6= sphere).

Degeneracies are an indication for symmetries of the Hamiltonian. If the eigenstate has a lower symmetry than the
Hamiltonian, a degeneracy appears. Rotations and reflections do not commute, that is why we have degeneracies.
When we add flux or a scatterer, the degeneracies open up. Adding flux breaks the reflection symmetry, and adding
a scatterer breaks the rotation symmetry. Accordingly, depending on the perturbation, it would be wise to use one
of the following two bases:

The first basis: The first basis complies with the rotation (=translations) symmetry:

|n = 0〉 = 1√
L

(1234)

|n, anticlockwise〉 = 1√
L

eiknx

|n, clockwise〉 = 1√
L

e−iknx

Where kn = 2π
L n with n = 1, 2, 3, . . .. The degenerate states are different under reflection. Only the ground state

|n = 0〉 is symmetric under both reflections and rotations, and therefore it does not have to be degenerate. It is very
easy to calculate the perturbation matrix elements in this basis:

〈n|δ(x)|m〉 =

∫
Ψn(x)δ(x)Ψm(x)dx = Ψn(0)Ψm(0) =

1

L
(1235)
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so we get:

Vnm =
ǫ

L





1 1 1 1 . . .
1 1 1 1 . . .
1 1 1 1 . . .
1 1 1 1 . . .
. . . . . . . . . . . . . . .




(1236)

The second basis: The second basis complies with the reflection symmetry:

|n = 0〉 = 1√
L

(1237)

|n,+〉 =
√

2

L
cos(knx)

|n,−〉 =
√

2

L
sin(knx)

The degeneracy is between the even states and the odd states that are displaced by half a wavelength with respect
to each other. If the perturbation is not the flux but rather the scatterer, then it is better to work with the second
basis, which complies with the potential’s symmetry. The odd states are not influenced by the delta function, and
they are also not ”coupled” to the even states. The reason is that:

〈m|δ(x)|n〉 =

∫
Ψm(x)δ(x)Ψn(x)dx = 0 (1238)

if one of the states is odd. (the sine function is not influenced by the barrier, because it is zero at the barrier).

Consequently the subspace of odd states is not influenced by the perturbation, i.e. V
(−)
nm = 0, and we only need to

diagonalize the block that belongs to the even states. It is very easy to write the perturbation matrix for this block:

V (+)
nm =

ǫ

L





1
√

2
√

2
√

2 . . .√
2 2 2 2 . . .√
2 2 2 2 . . .√
2 2 2 2 . . .

. . . . . . . . . . . . . . .




(1239)

Energy levels: Without a scatterer the eigenenergies are:

En(Φ, ǫ=0) =
1

2m

(
2π

L
× integer− Φ

L

)2

, integer = 0,±1,±2, ... (1240)

On the other hand, in the limit ǫ→∞ the system does not ”feel” the flux, and the ring becomes a one-dimensional
potential. The eigenenergies in this limit are:

En(Φ, ǫ=∞) =
1

2m

(π
L
× integer

)2

, integer = 1, 2, 3, ... (1241)

As one increases ǫ the number of the energy levels does not change, they just move. See figure below. We would like
to use perturbation theory in order to find corrections to the above expression. We consider how we do perturbation
theory with respect to the ǫ=0 Hamiltonian. It is also possible to carry out perturbation theory with respect to the
ǫ=∞ Hamiltonian (for that one should use the formula for the interaction at a junction).
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The corrections to the energy: The first-order correction to the energy of the states is:

En=0 = E
[0]
n=0 +

ǫ

L
(1242)

En=2,4,... = E[0]
n +

2ǫ

L

The correction to the ground state energy, up to the second order is:

En=0 = 0 +
ǫ

L
+
( ǫ
L

)2 ∞∑

k=1

(
√

2)2

0− 1
2m

(
2π
L k
)2 =

ǫ

L

(
1− 1

6
ǫmL

)
(1243)

Where we have used the identity:

∞∑

k=1

1

k2
=
π2

6
(1244)

What happens if we choose the first basis: We will now assume that we did not notice the symmetry of the
problem, and we chose to work with the first basis. Using perturbation theory on the ground state energy is simple
in this basis:

En=0 = 0 +
ǫ

L
+
( ǫ
L

)2

2
∞∑

k=1

(1)2

0− 1
2m

(
2π
L k
)2 =

ǫ

L

(
1− 1

6
ǫmL

)
(1245)

But using perturbation theory on the rest of the states is difficult because there are degeneracies. The first thing we
must do is ”degenerate perturbation theory”. The diagonalization of each degenerate energy level is:

(
1 1
1 1

)
→
(

2 0
0 0

)
(1246)

Now we must move to the ”new” basis, where the degeneracy is removed. This is exactly the ”second” basis that we
chose to work with because of symmetry considerations. The moral is: understanding the symmetries in the system
can save us work in the calculations of perturbation theory.
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====== [45.4] The Aharonov-Bohm effect in a closed geometry

The eigen-energies of a particle in a closed ring are periodic functions of the flux. In particular in the absence of
scattering

En =
1

2m

(
2π~

L

)2(
n− eΦ

2π~c

)2

=
1

2
mv2

n (1247)

That is in contrast with classical mechanics, where the energy can have any positive value:

Eclassical =
1

2
mv2 (1248)

According to classical mechanics the lowest state of a magnetic field is energy zero with velocity zero. This is not true
in quantum mechanics. In other words: when we add magnetic flux, we can observe its effect on the system. The
effect can be described in one of the following ways:

• The spectrum of the system changes (it can be measured using spectroscopy)
• For flux that is not an integer or half integer number there are persistent currents in the system.
• The system has either a diamagnetic or a paramagnetic response (according to the occupancy).

We already have discussed the spectrum of the system. So the next thing is to derive an expression for the current in
the ring. The current operator is defined as (see digression):

Î = −∂H
∂Φ

=
e

L

[
1

m
(p̂− eΦ

L
)

]
=

e

L
v̂ (1249)

It follows that The current which is created by an electron that occupies the nth level is:

In = −dEn
dΦ

(1250)

By looking at the plot of the energies En(Φ) as a function of the flux, we can determine (according to the slope) the
current that flows in each occupied energy level. If the flux is neither integer nor half integer, all the states ”carry
current” so that in equilibrium the net current is not zero. This phenomenon is called ”persistent currents”. The
equilibrium current in such case cannot relax to zero, even if the temperature of the system is zero.

There is a statement in classical statistical mechanics that the equilibrium state of a system is not affected by magnetic
fields. The magnetic response of any system is a quantum mechanical effect that has to do with the quantization of
the energy levels (Landau magnetism) or with the spins (Pauly magnetism). Definitions:
• Diamagnetic System - in a magnetic field, the system’s energy increases.
• Paramagnetic System - in a magnetic field, the system’s energy decreases.

The Aharonov Bohm geometry provides the simplest example for magnetic response. If we put one electron in a
ring, then when we increase the magnetic flux slightly, the system energy increases. We say that the response is
”diamagnetic”. The electron cannot ”get rid” of its kinetic energy because of the quantization of the momentum.

====== [45.5] Dirac Monopoles

Yet another consequence of the ”Aharonov Bohm” effect is the quantization of the magnetic charge. Dirac has claimed
that if magnetic monopoles exist, then there must be an elementary magnetic charge. The formal argument can be
phrased as follows: If a magnetic monopole exists, it creates a vector potential field in space (A(x)). The effect of

the field of the monopole on an electron close by is given by the line integral
∮
~A · d~r. We can evaluate the integral

by calculating the magnetic flux Φ through a Stokes surface. The result cannot depend on the choice of the surface,
otherwise the phase will not be well defined. Therefore the phase φ = eΦ/~c must be zero modulo 2π. Specifically, we
may choose one Stokes surface that passes over the monopole, and one Stokes surface that passes under the monopole,
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and conclude that the net flux must be an integer multiple of 2π~c/e. By using ”Gauss law” we conclude that the
monopole must have a magnetic charge that is an integer multiple of ~c/2e.

Dirac’s original reasoning was somewhat more constructive. Let us assume that a magnetic monopole exist. The
magnetic field that would be created by this monopole would be like that of a tip of a solenoid. But we have to
exclude the region in space where we have the magnetic flux that goes through the solenoid. If we want this ”flux
line” to be unobservable then it should be quantized in units of 2π~c/e. This shows that Dirac ”heard” about the
Aharonov Bohm effect, but more importantly this implies that the ”tip” would have a charge which equals an integer
multiple of ~c/2e.

====== [45.6] The Aharonov-Bohm effect: path integral formulation

We can also illustrate the Aharonov-Bohm Effect in an open geometry. In an open geometry the energy is not
quantized, but rather it is determined ahead of time. We are looking for stationary states that solve the Schrödinger
equation for a given energy. These states are called ”scattering states”. Below we will discuss the Aharonov-Bohm
effect in a ”two slit” geometry and then in a ”ring” geometry with leads.

First we notice the following rule: if we have a planar wave ψ(x) = eikx, then if the amplitude at the point x = x1 is
ψ(x1) = C, then at another point x = x2 the amplitude is ψ(x2) = Ceik(x2−x1).

Now we will generalize this rule for the case in which there is a vector potential A. For simplicity’s sake, we will
assume that the motion is in one-dimension. The eigenstates of the Hamiltonian are the momentum states. If the
energy of the particle is E then the wavefunctions that solve the Schrödinger’s equation are ψ(x) = eik±·x. Where:

k± = ±
√

2mE +A ≡ ±kE +A (1251)

Below we will treat the advancing wave: if at point x = x1 the amplitude is ψ(x1) = A, then at another point x = x2

the amplitude is ψ(x2) = AeikE(x2−x1)+A·(x2−x1). It is possible to generalize the idea to three dimensions: if a wave
advances along a certain path from point x1 to point x2 then the accumulated phase is:

φ = kE × distance +

∫ x2

x1

A · dx (1252)

If there are two different paths that connect the points x1 and x2, then the phase difference is:

∆φ = kE ·∆distance +

∫

curve2
A · dx−

∫

curve1
A · dx = (1253)

= kE ·∆distance +

∮
A · dx =

= kE ·∆distance +
e

~c
Φ

Where in the last term we ”bring back” the standard physical units. The approach which was presented above for
calculating the probability of the particle to go from one point to another is called ”path integrals”. This approach was
developed by Feynman, and it leads to what is called ”path integral formalism” - an optional approach to calculations in
Quantum Mechanics. The conventional method is to solve the Schrödinger’s equation with the appropriate boundary
conditions.

====== [45.7] The Aharonov-Bohm effect in a two slits geometry

We can use the path integral point of view in order to analyze the interference in the two slit experiment. A particle
that passes through two slits, splits into two partial waves that unite at the detector. Each of these partial waves
passes a different optical path. Hence the probability of reaching the detector, and consequently the measures intensity
of the beam is

intensity = |1× eikr1 + 1× eikr2 |2 ∝ 1 + cos(k(r2 − r1)) (1254)
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If we mark the phase difference as φ = k(r2 − r1), then we can write the result as:

intensity ∝ 1 + cosφ (1255)

Changing the location of the detector causes a change in the phase difference φ. The ”intensity”, or more precisely
the probability that the particle will reach the detector, as a function of the phase difference φ makes an ”interference
pattern”. If we place a solenoid between the slits, then the formula for the phase difference will be:

φ = k(r2 − r1) +
e

~c
Φ (1256)

If we draw a graph of the ”intensity” as a function of the flux we will get the same graph as we would get if we
changed the location of the detector. In other words, we will get an ”interference pattern” as a function of the flux.

Detector

Slits Screen

Source

If we want to find the transmission of an Aharonov-Bohm device (a ring with two leads) then we must sum all the
paths going from the first lead to the second lead. If we only take into account the two shortest paths (the particle
can pass through one arm or the other arm), then we get a result that is formally identical to the result for the two
slit geometry. In reality we must take into account all the possible paths. That is a very long calculation, leading to
a Fabry-Perrot type result (see previous lecture). In the latter case the transmission is an even function of Φ, even if
the arms do not have the same length. Having the same transmission for ±Φ in the case of a closed device is implied
by time reversal symmetry.
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[46] Motion in uniform magnetic field (Landau, Hall)

====== [46.1] The two-dimensional ring geometry

Let us consider a three-dimensional box with periodic boundary conditions in the x direction, and zero boundary
conditions on the other sides. In the absence of magnetic field we assume that the Hamiltonian is:

H =
1

2m
p̂2
x +

[
1

2m
p̂2
y + V (y)

]
+

[
1

2m
p̂2
z + Vbox(z)

]
(1257)

The eigenstates of a particle in such box are labeled as

|kx, ny, nz〉 (1258)

kx =
2π

L
× integer

ny, nz = 1, 2, 3 . . .

The eigenenergies are:

Ekx,ny,nz
=

k2
x

2m
+ εny

+
1

2m
(
π

Lz
nz)

2 (1259)

We assume Lz to be very small compared to the other dimensions. We will discuss what happens when the system is
prepared in low energies such that only nz = 1 states are relevant. So we can ignore the z axis.

====== [46.2] Classical Motion in a uniform magnetic field

Below we will discuss the motion of electrons on a two-dimensional ring. We assume that the vertical dimension
is ”narrow”, so that we can safely ignore it, as was explained in the previous section. For convenience’s sake we
will ”spread out” the ring so that it forms a rectangle with periodical boundary conditions on 0 < x < Lx, and an
arbitrary potential V (y) on axis y. In addition, we will assume that there is a uniform magnetic field B along the z
axis. Therefore, the electrons will be affected by a Lorentz force F = −eB × v. If there is no electrical potential, the
electrons will perform a circular motion with the cyclotron frequency:

ωB =
eB
mc

(1260)

If the particle has a kinetic energy E, then its velocity is:

vE =

√
2E

m
(1261)

And then it will move in a circle of radius:

rE =
vE
ωB

=
mc

eB vE (1262)

If we take into account a non-zero electric field

Ey = −dV
dy

(1263)
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we get a motion along a cycloid with the drift velocity (see derivation below):

vdrift = c
Ey
B (1264)

Let us remind ourselves why the motion is along a cycloid. The Lorentz force in the laboratory reference frame is
(from now on we will ”swallow” the charge of the electron in the definition of the field):

F = E − B × v (1265)

If we move to a reference frame that is moving at a velocity v0 we get:

F = E − B × (v′ + v0) = (E + v0 × B)− B × v′ (1266)

Therefore, the non-relativistic transformation of the electromagnetic field is:

E ′ = E + v0 × B (1267)

B′ = B

If we have a field in the direction of the y axis in the laboratory reference frame, we can move to a ”new” reference
frame where the field will be zero. From the transformation above we conclude that in order to zero the electrical
field, the velocity of the ”new” system must be:

v0 = c
E
B (1268)

In the ”new” reference frame the particle moves in a circle. Therefore, in the laboratory reference frame it moves
along a cycloid.

x

y

(x,y)
(v  ,v  )x y

(X,Y)

Conventionally the classical state of the particle is described by the coordinates r = (x, y) and v = (vx, vy). But from
the above discussion it follows that a simpler description of the trajectory is obtained if we follow the motion of the
moving circle. The center of the circle R = (X,Y ) is moving along a straight line, and its velocity is vdrift. The
transformation that relates R to r and v is

~R = ~r − ~ez ×
1

ωB
~v (1269)

where ~ez is a unit vector in the z direction. The second term in the right hand side is a vector of length rE in the
radial direction (perpendicular to the velocity). Thus instead of describing the motion with the canonical coordinates
(x, y, vx, vy), we can use the new coordinated (X,Y, vx, vy).
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====== [46.3] The Hall Effect

If we have particles spread out in a uniform density ρ per unit area, then the current density per unit length is:

Jx = eρvdrift = ρ
ec

B Ey = −ρe
2c

B
dV

dy
(1270)

where V is the electrical potential (measured in Volts) and hence the extra e. The total current is:

Ix =

∫ y2

y1

Jxdy = −ρe
2c

B (V (y2)− V (y1)) = −ρecB (µ2 − µ1) (1271)

So that the Hall conductance is:

GHall = −ρe
2c

B (1272)

Classically we have seen that Jx ∝ (dV/dy). We would like to derive this result in a quantum mechanical way and to
find the quantum Hall conductance. In the quantum analysis we shall see that the electrons occupy ”Landau levels”.
The density of electrons in each Landau Level is B/2π~c. From this it follows that the Hall conductance is quantized
in units of e2/2π~, which is the universal unit of conductance in quantum mechanics.

We note that both Ohm’s law and Hall’s law should be written as:

I = G× 1

e
(µ2 − µ1) (1273)

and not as:

I = G× (V2 − V1) (1274)

Where µ is the electrochemical potential. When the electrical force is the only cause for current, then the elec-
trochemical potential is simply the electrical potential (multiplied by the charge of the electron). At zero absolute
temperature µ can be identified with the Fermi energy. In metals in equilibrium, according to classical mechanics,
there are no currents inside the metal. This means that the electrochemical potential must be uniform. This does
not mean that the electrical potential is uniform! For example: when there is a difference in concentrations of the
electrons (e.g. different metals) then there should be a ”contact potential” to balance the concentration gradient,
so as to have a uniform electrochemical potential. Another example: in order to balance the gravitation force in
equilibrium, there must be an electrical force such that the total potential is uniform. In general, the electrical field
in a metal in equilibrium cannot be zero!

====== [46.4] Electron in Hall geometry: Landau levels

In this section we will see that there is an elegant and formal way of treating the problem of an electron in Hall
geometry within the framework of the Hamiltonian formalism. This method of solution is valid both in classical
mechanics and in quantum mechanics (all one has to do is to replace the Poisson brackets with commutators). In the
next lecture we will solve the quantum problem again, using the conventional method of ”separation of variables”.
Below we use the Landau gauge:

~A = (−By, 0, 0) (1275)

B = ∇× ~A = (0, 0,B)
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Therefore, the Hamiltonian is (from here we will ”swallow” the charge of the electron in the definition of the field):

H =
1

2m
(p̂x + By)2 +

1

2m
(p̂y)

2 + V (y) (1276)

We define a new set of operators:

vx =
1

m
(px + By) (1277)

vy =
1

m
py

X = x+
1

ωB
vy = x+

1

Bpy

Y = y − 1

ωB
vx = − 1

Bpx

We notice that from a geometrical perspective, X,Y represent the ”center of the circle” that the particle moves in.
We also notice the commutation relations: the operators X,Y commute with vx, vy. On the other hand:

[X,Y ] = −i(eB
c

)−1 (1278)

[vx, vy] = i
1

m2

eB
c

So that we can define a new set of canonical coordinates:

Q1 =
mc

eB vx (1279)

P1 = mvy

Q2 = Y

P2 =
eB
c
X

And rewrite the Hamiltonian as:

H(Q1, P1, Q2, P2) =
1

2m
P 2

1 +
1

2
mω2

BQ
2
1 + V (Q1 +Q2) (1280)

We see (as expected) that Q2 = Y is a constant of motion. We also see that the kinetic energy is quantized in units
of ωB. Therefore, it is natural to mark the eigenstates as |Y, ν〉, where: ν = 0, 1, 2, 3 . . ., is the kinetic energy index.

====== [46.5] Electron in Hall geometry: The Landau states

The Hamiltonian that describes the motion of a particle in the Hall bar geometry is:

Ĥ =
1

2m
(p̂x + Bŷ)2 +

1

2m
(p̂y)

2 + V (ŷ) (1281)

Recall that we have periodic boundary conditions in the x axis, and an arbitrary confining potential V (y) in the y
direction. We also incorporate a homogeneous magnetic field B = (0, 0,B). The vector potential in the Landau gauge

is ~A = (−By, 0, 0). We would like to find the eigenstates and the eigenvalues of the Hamiltonian.

The key observation is that in the Landau gauge the momentum operator px is a constant of motion. It is more
physical to re-phrase this statement in a gauge independent way. Namely, the constant of motion is in fact

Y = ŷ − 1

ωB
v̂x = − 1

B p̂x (1282)
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which represents the y location of the classical cycloid. In fact the eigenstates that we are going to find are the
quantum mechanical analog of the classical cycloids. The eigenvalues of p̂x are 2π/Lx × integer, Equivalently, we may

write that the eigenvalues of Ŷ are:

Yℓ =
2π

BLx
ℓ, [ℓ = integer] (1283)

That means that the y distance between the eigenstates is quantized. According to the ”separation of variables
theorem” the Hamiltonian matrix is a block diagonal matrix in the basis in which the Ŷ matrix is diagonal. It is
natural to choose the basis |ℓ, y〉 which is determined by the operators p̂x, ŷ.

〈ℓ, y|Ĥ|ℓ′, y′〉 = δℓ,ℓ′ Hℓyy′ (1284)

It is convenient to write the Hamiltonian of the block ℓ in abstract notation (without indexes):

Ĥℓ =
1

2m
p̂2
y +
B2

2m
(ŷ − Yℓ)2 + V (ŷ) (1285)

Or, in another notation:

Ĥℓ =
1

2m
p̂2
y + Vℓ(ŷ) (1286)

where the effective potential is:

Vℓ(y) = V (y) +
1

2
mω2

B(y − Yℓ)2 (1287)

For a given ℓ, we find the eigenvalues |ℓ, ν〉 of the one-dimensional Hamiltonian Ĥℓ. The running index is
ν = 0, 1, 2, 3, . . ..

For a constant electric field we notice that this is the Schrödinger equation of a displaced harmonic oscillator. More
generally, the harmonic approximation for the effective potential is valid if the potential V (y) is wide compared to
the quadratic potential which is contributed by the magnetic field. In other words, we assume that the magnetic field
is strong. We write the wave functions as:

|ℓ, ν〉 → 1√
Lx

e−i(BYℓ)x ϕ(ν)(y − Yℓ) (1288)

We notice that BYℓ are the eigenvalues of the momentum operator. If there is no electrical field then the harmonic
approximation is exact, and then ϕ(ν) are the eigenfunctions of a harmonic oscillator. In the general case, we must
”correct” them (in case of a constant electric field they are simply shifted). If we use the harmonic approximation
then the energies are:

Eℓ,ν ≈ V (Yℓ) + (
1

2
+ ν)ωB (1289)
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ρ

density of electrons

Plotting Eℓ,ν against Yℓ we get a picture of ”energy levels” that are called ”Landau levels” (or more precisely they
should be called ”energy bands”). The first Landau level is the collection of states with ν = 0. We notice that the
physical significance of the term with ν is the kinetic energy. The Landau levels are ”parallel” to the bottom of
the potential V (y). If there is an area of width Ly where the electric potential is flat (no electric field), then the
eigenstates in that area (for a given ν) will be degenerate in the energy (they will have the same energy). Because of
the quantization of Yℓ the number of particles that can occupy a band of width Ly in each Landau level is finite:

glandau =
Ly

2π/(BLx)
=

LxLy
2π
B (1290)

====== [46.6] Hall geometry with AB flux

Here we discuss a trivial generalization of the above solution which will help us in the next section. Let us assume
that we add a magnetic flux Φ through the ring, as in the case of Aharonov-Bohm geometry. In this case, the vector
potential is:

~A =

(
Φ

Lx
− By, 0, 0

)
(1291)

We can separate the variables in the same way, and get:

Eℓ,ν ≈ V

(
Yℓ +

1

BLx
Φ

)
+

[
1

2
+ ν

]
ωB (1292)
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====== [46.7] The Quantum Hall current

We would like to calculate the current for an electron that occupies a Landau state |ℓ, ν〉:

Ĵx(x, y) =
1

2
(evxδ(x̂− x)δ(ŷ − y) + h.c.) (1293)

Ĵx(y) =
1

Lx

∫
Ĵx(x, y)dx =

e

Lx
v̂xδ(ŷ − y)

Îx = −∂H
∂Φ

=
e

Lx
vx =

∫
Ĵx(y)dy

Recall that vx = (eB/m)(ŷ − Ŷ ), and that the Landau states are eigenstates of Ŷ . Therefore, the current density of
an occupied state is given by:

Jνℓx (y) = 〈ℓν|Ĵx(y)|ℓν〉 =
e2B
Lxm

〈
(ŷ − Ŷ ) δ(ŷ − y)

〉
=

e2B
mLx

(y − Yℓ) |ϕν(y − Yℓ)|2 (1294)

If we are in the region (Yℓ < y) we observe current that flows to the right (in the direction of the positive x axis), and
the opposite if we are on the other side. This is consistent with the classical picture of a particle moving clockwise in
a circle. If there is no electric field, the wave function is symmetric around Yℓ, so we get zero net current. If there
is a non-zero electric field, it shifts the wave function and then we get a net current that is not zero. The current is
given by:

Iℓνx =

∫
Jℓνx (y)dy = −∂Eℓν

∂Φ
= − 1

BLx
dV (y)

dy

∣∣∣∣
y=Yℓ

(1295)

For a Fermi occupation of the Landau level we get:

Ix =
∑

ℓ

Iℓνx =

∫ y2

y1

dy

2π/(BLx)

(
− 1

BLx
dV (y)

dy

)
(1296)

= − 1

2π
(V (y2)− V (y1)) = − e

2π~
(µ2 − µ1)

In the last equation we have restored the standard physical units. We see that if there is a chemical potential difference
we get a current Ix. The Hall coefficient is e/2π~ times the number of full Landau levels. In other words: the Hall
coefficient is quantized in units of e/2π~.
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[47] Motion in a central potential

====== [47.1] The Hamiltonian

Consider the motion of a particle under the influence of a spherically symmetric potential that depends only on the
distance from the origin. We can write the Hamiltonian in spherical coordinates.

H =
1

2m
p2 + eV (r) =

1

2m
(p2
r +

1

r2
L2) + eV (r) (1297)

where

~L = ~r × ~p (1298)

p2
r → −

1

r

∂2

∂r2
r (1299)

The Hamiltonian commutes with rotations:

[Ĥ, R̂] = 0 (1300)

And in particular:

[Ĥ, L2] = 0 (1301)

[Ĥ, Lz] = 0

According to the separation of variables theorem the Hamiltonian becomes block diagonal in the basis which
is determined by L2 and Lz. The states that have definite ℓ and m quantum numbers are of the form
ψ(x, y, z) = R(r)Y ℓm(θ, ϕ), so there is some freedom in the choice of this basis. The natural choice is |r, ℓ,m〉

〈r, θ, ϕ|r0, ℓ0,m0〉 = Y ℓ0,m0(θ, ϕ)
1

r
δ(r − r0) (1302)

These are states that ”live” on spherical shells. Any wavefunction can be written as a linear combination of the states
of this basis. Note that the normalization is correct (the volume element in spherical coordinates includes r2). The
Hamiltonian becomes

〈r, ℓ,m|H|r′, ℓ′,m′〉 = δℓ,ℓ′δm,m′H(ℓ,m)
r,r′ (1303)

H(ℓ,m) =
1

2m
p̂2 +

(
ℓ(ℓ+ 1)

2mr2
+ V (r)

)
=

1

2m
p2 + V (ℓ)(r)

Where p→ −i(d/dr). The wavefunction in the basis which has been defined above are written as

|ψ〉 =
∑

r,ℓ,m

uℓm(r) |r, ℓ,m〉 7−→
∑

ℓm

uℓm(r)

r
Y ℓ,m(θ, ϕ) (1304)

In the derivation above we have made a ”shortcut”. In the approach which is popular in textbooks the basis is not
properly normalized, and the wave function is written as ψ(r, θ, ϕ) = ψ(x, y, z) = R(r)Y ℓ,m(θ, ϕ), without taking the
correct normalization measure into account. Only in a later stage they define u(r) = rR(r). Obviously eventually
they get the same result. By using the right normalization of the basis we have saved an algebraic stage.

By separation of variables the Hamiltonian has been reduced to a semi-one-dimensional Schrödinger operator acting
on the wave function u(r). By ”semi-one-dimensional” we mean that 0 < r <∞. In order to get a wave function
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ψ(x, y, z) that is continuous at the origin, we must require the radial function R(r) to be finite, or alternatively the
function u(r) has to be zero at r = 0.

====== [47.2] Eigenstates of a particle on a spherical surface

The simplest central potential that we can consider is such that confine the particle to move within a spherical shell
of radius R. Such potential can be modeled as V (r) = −λδ(r −R). For ℓ = 0 we know that a narrow deep well has
only one bound state. We fix the energy of this state as the reference. The centrifugal potential for ℓ > 0 simply lifts
the potential floor upwards. Hence the eigen-energies are

Eℓm =
1

2mR2
ℓ(ℓ+ 1) (1305)

We remind ourselves of the considerations leading to the degeneracies. The ground state Y 00, has the same symmetry
as that of the Hamiltonian: both invariant under rotations. This state has no degeneracy. On the other hand, the
state Y 10 has a lower symmetry and by rotating it we get 3 orthogonal states with the same energy. The degeneracy
is a ”compensation” for the low symmetry of the eigenstates: the symmetry of the energy level as a whole (i.e. as a
subspace) is maintained.

We mark the number of states up to energy E by N(E). It is easy to prove that the density of states is:

dN

dE
≈ m

2π~2
A (1306)

Where A is the surface area. It can be proved that this formula is valid also for other surfaces. The most trivial
example is obviously a rectangular surface for which

En,m =
π2

2mL2
x

n2 +
π2

2mL2
y

m2 (1307)

The difference between the Eℓm spectrum of a particle on a sphere and the En,m spectrum of a particle on a rectangular
is in the way that the eigenvalues are spaced, not in their average density. The degeneracies of the spectrum are
determined by the symmetry group of the surface on which the motion is bounded. If this surface has no special
symmetries the spectrum is expected to be lacking systematic degeneracies.

====== [47.3] The Hydrogen Atom

The effective potential V ℓ(r) that appears in the semi-one-dimensional problem includes the original potential plus
a centrifugal potential (for ℓ 6= 0). Typically, the centrifugal potential +1/r2 causes a ”potential barrier” (positive).
But in the case of the Hydrogen atom the attractive potential −1/r wins and there is no such barrier. Moreover,
unlike typical short range potentials, the potential has an infinite number of bound states in the E < 0 range. In
addition, there are also ”resonance” states in the range E > 0, that can ”leak” out through the centrifugal barrier (by
tunneling) into the continuum of states outside. Another special property of the Hydrogen atom is the high degree
of symmetry (the Hamiltonian commutes with the Runge-Lentz operators). This is manifested in the degeneracy of
energy levels that have different ℓ.

For sake of later reference we write the potential as:

V (r) = −α
r

(1308)

Solving the radial equation (for each ℓ separately) one gets:

Eℓ,m,ν = − α2
m

2(ℓ+ ν)2
(1309)
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Where ν = 1, 2, 3, . . .. The energy levels are illustrated in the diagram below:

0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

l

E
lν

In the rest of this section we remind the reader why there are degeneracies in the energy spectrum (this issue has been
discussed in general in the section about symmetries and their implications). If the Hamiltonian has a single constant
of motion, there will usually not be a degeneracy. According to the separation of variables theorem it is possible to
change to a basis in which the Hamiltonian will have a block structure, and then diagonalize each block separately.
There is no reason for a conspiracy amongst the blocks. Therefore there is no reason for a degeneracy. If we still get
a degeneracy it is called an accidental degeneracy.

But, if the Hamiltonian commutes with a ”non-commutative group” then there are necessarily degeneracies that are
determined by the dimensions of the irreducible representations. In the case of a central potential, the symmetry
group is the ”rotation group”. In the special case of the potential −1/r a larger symmetry group exists.

A degeneracy is a compensation for having eigenstates with lower symmetry compared with the Hamiltonian. The
degree of degeneracy is determined by the dimensions of the irreducible representations. These statements were
discussed in the concluding Fundamentals II section. Let us paraphrase the argument in the present context: Assume
that we have found an eigenstate of the Hamiltonian. If it has full spherical symmetry then there is no reason for
degeneracy. These are the states with ℓ = 0. But, if we have found a state with a lower symmetry (the states with
ℓ 6= 0) then we can rotate it and get another state with the same energy level. Therefore, in this case there must be
a degeneracy.

Instead of ”rotating” an eigenstate, it is simpler (technically) to find other states with the same energy by using ladder
operators. This already gives an explanation why the degree of the degeneracy is determined by the dimension of
the irreducible representations. Let us paraphrase the standard argument for this statements in the present context:
The Hamiltonian H commutes with all the rotations, and therefore it also commutes with all their generators and
also with L2. We choose a basis |n, ℓ, µ〉 in which both H and L2 are diagonal. The index of the energy levels n is
determined by H, while the index ℓ is determined by L2. The index µ differentiates states with the same energy and
the same ℓ. According to the ”separation of variables theorem” every rotation matrix will have a ”block structure” in
this basis: each level that is determined by the quantum numbers (n, ℓ) is an invariant subspace under rotations. In
other words, H together with L2 induce a decomposition of the group representation. Now we can apply the standard
procedure in order to conclude that the dimension of the (sub) representation which is characterized by the quantum
number ℓ, is 2ℓ+ 1. In other words, we have “discovered” that the degree of the degeneracy must be 2ℓ+ 1 (or a
multiple of this number).
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[48] The Hamiltonian of a spin 1/2 particle

====== [48.1] The Hamiltonian of a spinless particle

The Hamiltonian of a spinless particle can be written as:

H =
1

2m
(~p− e ~A(r))2 + eV (r) =

p2

2m
− e

2m
( ~A · ~p+ ~p · ~A) +

e2

2m
A2 + eV (r) (1310)

We assume that the field is uniform B = (0, 0,B0). In the previous lectures we saw that this field can be derived from
~A = (−B0y, 0, 0), but this time we use a different gauge, called ”symmetrical gauge”:

~A =

(
−1

2
B0y,

1

2
B0x, 0

)
=

1

2
B × ~r (1311)

We will also use the identity (note that triple multiplication is associative):

~A · ~p =
1

2
(B × ~r) · ~p =

1

2
B · (~r × ~p) =

1

2
B · ~L (1312)

Substitution into the Hamiltonian gives:

H =
p2

2m
+ eV (r)− e

2m
B · ~L+

e2

8m
(r2B2 − (~r · B)2) (1313)

Specifically for a homogeneous field in the z axis we get

H =
p2

2m
+ eV (r)− e

2m
B0Lz +

e2

8m
B2

0(x
2 + y2) (1314)

The two last terms are called the ”Zeeman term” and the ”diamagnetic term”.

HZeeman,orbital motion = − e

2m
B · ~L (1315)

====== [48.2] The additional Zeeman term for the spin

Spectroscopic measurements on atoms have shown, in the presence of a magnetic field, a double (even) Zeeman
splitting of the levels, and not just the expected ”orbital” splitting (which is always odd). From this Zeeman has
concluded that the electron has another degree of freedom which is called ”spin 1/2”. The Hamiltonian should include
an additional term:

HZeeman,spin = −g e0
2m
B · ~S (1316)

where e0 = |e| is the elementary unit charge. The spectroscopic measurements of the splitting make it possible to
determine the gyromagnetic coefficient to a high precision. The same measurements were conducted also for protons,
neutrons (a neutral particle!) and other particles:

Electron: ge = −2.0023
Proton: gp = +5.5854
Neutron: gn = −3.8271
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The implication of the Zeeman term in the Hamiltonian is that the wavefunction of the electron precesses with the
frequency

Ω = − e

2m
B (1317)

while the spin of the electron precesses with a twice larger frequency

Ω = −g e

2m
B,

[
g = |ge| ≈ 2

]
(1318)

====== [48.3] The spin orbit term

The added Zeeman term describes the interaction of the spin with the magnetic field. In fact, the ”spin” degree of
freedom (and the existence of anti-particles) is inevitable because of relativistic considerations of invariance under
the Lorentz transformation. These considerations lead to Dirac’s Hamiltonian. There are further ”corrections” to the
non-relativistic Hamiltonian that are needed in order to make it ”closer” to Dirac’s Hamiltonian. The most important
of these corrections is the ”spin orbit interaction”:

Hspin−orbit = − e

2m2
(E × ~p) · ~S (1319)

where we implicitly use g ≈ 2. In other words, the spin interacts with the electric field. This interaction depends on
its velocity. This is why the interaction is called spin-orbit interaction. If there is also a magnetic field then we have
the additional interaction which is described by the Zeeman term.

We can interpret the ”spin-orbit” interaction in the following way: even if there is no magnetic field in the ”laboratory”
reference frame, still there is a magnetic field in the reference frame of the particle, which is a moving reference frame.
This follows from Lorentz transformation:

B̃ = B − ~vframe × E (1320)

It looks by this argument that there is a missing factor g ≈ 2 in the spin-orbit term. But it turns out that this factor
is canceled by another factor of 1/2 that comes from the so called “Thomas precession”.

We summarize this section by writing the common non-relativistic approximation to the Hamiltonian of a particle
with spin 1/2.

H =
1

2m
(~p− e ~A(r))2 + eV (r) − g e

2m
B · ~S − e

2m2
(E × ~p) · ~S (1321)

In the case of spherically symmetric potential V (r) the electric field is

E = −V
′(r)

r
~r (1322)

Consequently the Hamiltonian takes the form

H =
1

2m

(
p2
r +

1

r2
L2

)
+ eV (r) + DiamagneticTerm− e

2m
B · ~L− g e

2m
B · ~S +

e

2m2

V ′(r)

r
~L · ~S (1323)

====== [48.4] The Dirac Hamiltonian

In the absence of an external electromagnetic field the Hamiltonian of a free particle should be a function of the
momentum operator aloneH = h(p̂) where p̂ = (x̂, ŷ, ẑ). Thus p is a good quantum number. The reduced Hamiltonian
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within a p subspace is H(p) = h(p). If the particle is spineless h(p) is a number and the dispersion relation is ǫ = h(p).
But if the particle has an inner degree of freedom (spin) then h(p) is a matrix. In the case of Pauli Hamiltonian

h(p) = (p2/(2m))1̂ is a 2× 2 matrix. We could imagine a more complicated possibility of the type h(p) = σ · p+ ....
In such case p is a good quantum number, but the spin degree of freedom is no longer degenerated: Given p, the
spin should be polarized either in the direction of the motion (right handed polarization) or in the opposite direction
(left handed polarization). This quantum number is also known as helicity. The helicity might be a good quantum
number, but it is a ”Lorentz invariant” feature only for a massless particle (like a photon) that travels in the speed
of light, else one can always transform to a reference frame where p = 0 and the helicity become ill defined.

Dirac has speculated that in order to have a Lorentz invariant Schrodinger equation (dψ/dt = ...) for the evolution,
the matrix h(p) has to be linear (rather than quadratic) in p. Namely h(p) = α · p+ constβ. The dispersion relation

should be consistent with ǫ2 = m
2 + p2 which implies h(p)2 = (m2 + p2)1̂. It turns out that the only way to satisfy

the latter requirement is to assume that α and β are 4× 4 matrices:

αj =

[
0 σj
σj 0

]
β =

[
1 0
0 1

]
(1324)

Hence the Dirac Hamiltonian is

H = α · p+ βm (1325)

It turns out that the Dirac equation, which is the Schrodinger equation with Dirac’s Hamiltonian, is indeed invariant
under Lorentz. Given p there are 4 distinct eigenstates which we label as |p, λ〉. The 4 eigenstates are determined via

the diagonalization of h(p). Two of them have the dispersion ǫ = +
√
p2 + m2 and the other two have the dispersion

ǫ = −
√
p2 + m2. It also turns out that the helicity (in a give reference frame) is a good quantum number. The helicity

operator is Σ · p where

Σj =

[
σj 0
0 σj

]
(1326)

This operator commutes with Dirac Hamiltonian. Thus the electron can be right or left handed with either positive
or negative mass. Dirac’s interpretation for this result was that the ”vacuum” state of the universe is like that of an
intrinsic semiconductor with gap 2mc2. Namely, instead of talking about electrons with negative mass we can talk
about holes (positrons) with positive mass. The transition of an electron from an occupied negative energy state to
an empty positive energy state is re-interpreted as the creation of an electron positron pair. The reasoning of Dirac
has lead to the conclusion that particles like the electron must have a spin as well as antiparticle states.
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[49] Implications of having ”spin”

====== [49.1] The Stern-Gerlach effect

We first discuss the effect that the Zeeman term has on the dynamics of a ”free” particle. We will see that because of
this term, there is a force on the particle if the magnetic field is not homogeneous. For simplicity’s sake, we will assume
that there is a magnetic field in the direction of the Z axis (note that this can be true only as an approximation). If
we keep only the Zeeman term then the Hamiltonian is:

H =
~p2

2m
− g e

2m
Bz(x)Sz (1327)

We see that Sz is a constant of motion. That means that if we have prepared a particle in the ”up” state, it sees an
effective potential:

Veff = −1

2
g
e

2m
Bz(x) (1328)

While a particle with spin ”down” sees an inverted potential (with the opposite sign). That means that the direction
of the force depends on the direction of the spin. We can come to the same conclusion by looking at the equations of
motion. As we have seen before:

d

dt
〈x〉 = 〈i[H, x]〉 = 〈 1

m
(~p−A(x))〉 (1329)

This still holds with no change. But what about the acceleration? We see that there is a new term:

d

dt
〈v〉 = 〈i[H, v]〉 =

1

m

〈
Lorentz force + g

e

2m
(∇Bz)Sz

〉
(1330)

The observation that in inhomogeneous magnetic field the force on the particle depends on the spin orientation is
used in order to measure the spin using a Stern-Gerlach apparatus.

====== [49.2] The reduced Hamiltonian in a central potential

The reduced Hamiltonian for with the ℓ sub-space of a particle moving in a central potential can be written as:

H(ℓ) = H(ℓ)
0 −

e

2m
BLz − g

e

2m
BSz + f(r)L · S (1331)

The interaction L · S commutes with L2, therefore ℓ is still a good quantum number. If we assume that the last terms
in the Hamiltonian are a weak perturbation that does not ”mix” energy levels, then we can make an approximation(!)
and reduce further by taking the states that have the same energy:

H(ℓν) = −hLz − ghSz + vL · S + const (1332)

Where the first term with h = eB/(2m) is responsible for the orbital Zeeman splitting, and the second term with gh
is responsible to the spin-related Zeeman splitting. We also use the notation

v = 〈ℓ, ν|f(r)|ℓ, ν〉 (1333)

If the spin-orbit interaction did not exist, the dynamics of the spin would become independent of the dynamics of the
wave function. But even when there is a spin-orbit interaction, the situation is not so bad. L · S couples only states
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with the same ℓ. From now we focus on the second energy level of the Hydrogen atom. The Hamiltonian matrix is
8 × 8. But it decomposes trivially into matrix blocks of 2 × 2 and 6 × 6. We notice that the 2 × 2 block is already
diagonalized: the only term that could destroy the diagonalization within this block is L · S, but it is zero in this
block since ℓ = 0. So, we only have to diagonalize the 6× 6 block.

Why does L · S couple only states with the same ℓ? The full rotation generator J = L+ S rotates both the wave
equation and the spin. The system is symmetrical to rotations. So, it is obvious that [H, J ] = 0 and specifically
[L · S, J ] = 0. On the other hand, the symmetry: [H, L2] = [L · S,L2] = 0 is less trivial. The Hamiltonian is not
symmetrical under rotations generated by L. We must rotate both the wave function and the spin together, in order
for the Hamiltonian to stay the same. In order to prove the commutation relation with L2, we notice that:

~L · ~S =
1

2

(
J2 − L2 − S2

)
(1334)

We consider the reduced Hamiltonian for the state ℓ = 1, ν = 1, in the standard basis |ℓ = 1, ν = 1,mℓ,ms〉. As
mentioned above, the Hamiltonian is represented by a 6× 6 matrix. It is easy to write the matrices for the Zeeman
terms:

Lz →




1 0 0
0 0 0
0 0 −1



⊗
(

1 0
0 1

)
=





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




(1335)

Sz →




1 0 0
0 1 0
0 0 1



⊗ 1

2

(
1 0
0 −1

)
=

1

2





1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1





But the spin-orbit term is not diagonal. In principle, we must make the following calculation:

~L · ~S =
1

2

(
J2 − L2 − S2

)
=

1

2

(
J2
x + J2

y + J2
z − 2 − 3

4

)
(1336)

Where the most simple term in this expression includes the diagonal matrix:

Jz = Lz + Sz → [6× 6 matrix] (1337)

And there are two additional terms that include 6× 6 matrices that are not diagonal . . . We will see later on that
there is a relatively simple way to find the representation of J2 in the ”normal” basis. In fact, it is very easy to
”predict” what it will look like after diagonalization:

J2 →





(15/4) 0 0 0 0 0
0 (15/4) 0 0 0 0
0 0 (15/4) 0 0 0
0 0 0 (15/4) 0 0
0 0 0 0 (3/4) 0
0 0 0 0 0 (3/4)




(1338)

It follows that the eigenenergies of the Hamiltonian in the absence of a magnetic field are:

Ej= 3
2

= v/2 degeneracy = 4 (1339)

Ej= 1
2

= −v degeneracy = 2
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On the other hand, in a strong magnetic field the spin-orbit term is negligible, and we get:

Emℓ,ms
= −(mℓ + gms)h (1340)

====== [49.3] Detailed analysis of the Zeeman effect

The reduced Hamiltonian that describes (for example) the first ℓ = 1 level of the Hydrogen atom is the 6× 6 matrix

H = hLz + ghSz + v~L · ~S (1341)

where h = |e|
2m
B is the magnetic field in appropriate units, and v is determined by the spin orbit interaction. Also we

have g = 2.0023. Using the identity

~L · ~S =
1

2

(
J2 − L2 − S2

)
=

1

2

(
J2 − 2 − 3

4

)
(1342)

the Hamiltonain can be written in the alternate form:

H = hLz + ghSz +
v

2

(
J2 − 11

4

)
(1343)

Using the results of previous sections we see that the Hamiltonian matrix in the |mℓ,ms〉 basis is:

H = h





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




+ gh





1
2 0 0 0 0 0
0 − 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 − 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 − 1

2




+ v





1
2 0 0 0 0 0
0 − 1

2
1√
2

0 0 0

0 1√
2

0 0 0 0

0 0 0 0 1√
2

0

0 0 0 1√
2
− 1

2 0

0 0 0 0 0 1
2





(1344)

while in the |j,mj〉 basis we have

H =
h

3





3 0 0 0 0 0

0 1 0 0 −
√

2 0

0 0 −1 0 0 −
√

2
0 0 0 −3 0 0

0 −
√

2 0 0 2 0

0 0 −
√

2 0 0 −2




+ g

h

6





3 0 0 0 0 0

0 1 0 0 2
√

2 0

0 0 −1 0 0 2
√

2
0 0 0 −3 0 0

0 2
√

2 0 0 −1 0

0 0 2
√

2 0 0 1




+
v

2





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2





The spectrum of H can be found for a range of h values. See again the Mathematica file zeeman.nb. The results (in
units such that v = 1) are illustrated in the following figure:
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If the field is zero the Hamiltonian is diagonal in the |j,mj〉 basis and we find that

Ej= 3
2

=
v

2
degeneracy = 4 (1345)

Ej= 1
2

= −v degeneracy = 2 (1346)

In a very strong magnetic field we can make a rough approximation by neglecting the spin-orbit coupling. With this
approximation the Hamiltonian is diagonal in the |mℓ,ms〉 basis and we get

Emℓ,ms
= (mℓ + gms)h (1347)

In fact there are two levels that are exact eigensates of the Hamiltonian for any h. These are:

Ej= 3
2 ,mj=± 3

2
=

v

2
± (1 +

g

2
)h (1348)

For a weak magnetic field it is better to write the Hamiltonian in the |j,mj〉 basis, so as to have ~L · ~S diagonal,
while the Zeeman terms are treated as a perturbation. We can determine (approximately) the splitting of the j
multiplets by using degenerate perturbation theory. In order to do so we only need to find the j sub-matrices of
the the Hamiltonian. We already know that they should obey the Wigner Eckart theorem. By inspection of the
Hamiltonian we see that this is indeed the case. We have gL = 2

3 and gS = 1
3 for j = 3

2 , while gL = 4
3 and gS = − 1

3

for j = 1
2 . Hence we can write

Ej,mj
= Ej + (gMmj)h (1349)

where gM = gL + ggS is associated with the vector operator ~M = ~L+ g~S. In order to calculate gL and gS we do not
need to calculate the multiplication of the 6× 6 matrices. We can simply can use the formulas

gL =
〈 ~J · ~L〉
j(j + 1)

=
j(j + 1) + ℓ(ℓ+ 1)− s(s+ 1)

2j(j + 1)
(1350)

gS =
〈 ~J · ~S〉
j(j + 1)

=
j(j + 1) + s(s+ 1)− ℓ(ℓ+ 1)

2j(j + 1)
(1351)



224

Special Topics

[50] Quantization of the EM Field

====== [50.1] The Classical Equations of Motion

The equations of motion for a system which is composed of non-relativistic classical particles and EM fields are:

mi
d2xi
dt2

= eiE − eiB × ẋi (1352)

∇ · E = 4πρ

∇× E = −∂B
∂t

∇ · B = 0

∇× B =
∂E
∂t

+ 4π ~J

where

ρ(x) =
∑

i

eiδ(x− xi) (1353)

J(x) =
∑

i

eiẋiδ(x− xi)

We also note that there is a continuity equation which is implied by the above definition and also can be regarded as
a consistency requirement for the Maxwell equation:

∂ρ

∂t
= −∇ · J (1354)

It is of course simpler to derive the EM field from a potential (V,A) as follows:

B = ∇×A (1355)

E = −∂A
∂t
−∇V

Then we can write an equivalent system of equations of motion

mi
d2xi
dt2

= eiE − eiB × ẋi (1356)

∂2A

∂t2
= ∇2 ~A− ∂

∂t
∇V + 4πJ

∇2V = −4πρ

====== [50.2] The Coulomb Gauge

In order to further simplify the equations we would like to use a convenient gauge which is called the ”Coulomb gauge”.
To fix a gauge is essentially like choosing a reference for the energy. Once we fix the gauge in a given reference frame
(”laboratory”) the formalism is no longer manifestly Lorentz invariant. Still the treatment is exact.
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Any vector field can be written as a sum of two components, one that has zero divergence and another that has zero
curl. For the case of the electric field E , the sum can be written as:

E = Eq + E⊥ (1357)

where ∇ · E⊥ = 0 and ∇×Eq = 0. The field E⊥ is called the transverse or solenoidal or ”radiation” component, while
the field Eq is the longitudinal or irrotational or ”Coulomb” component. The same treatment can be done for the
magnetic field B with the observation that from Maxwell’s equations ∇ · B = 0 yields B‖ = 0. That means that there
is no magnetic charge and hence the magnetic field B is entirely transverse. So now we have

EM field = (Eq, E⊥,B) = Coulomb field + radiation field (1358)

Without loss of generality we can derive the radiation field from a transverse vector potential. Thus we have:

Eq = −∇V (1359)

E⊥ = −∂A
∂t

B = ∇×A

This is called the Coulomb gauge, which we use from now on. We can solve the Maxwell equation for V in this gauge,
leading to the potential

V (x) =
∑

j

ej
|x− xj |

(1360)

Now we can insert the solution into the equations of motion of the particles. The new system of equations is

mi
d2xi
dt2

=




∑

j

eiej ~nij
|xi − xj |2



+ eiE⊥ − eiB × ẋi (1361)

∂2A

∂t2
= ∇2 ~A+ 4πJ⊥

It looks as if Jq is missing in the last equation. In fact it can be easily shown that it cancells with the ∇V term due
to the continuity equation that relates ∂tρ to ∇ · J , and hence ∂t∇V to Jq respectively.

====== [50.3] Hamiltonian for the Particles

We already know from the course in classical mechanics that the Hamiltonian, from which the equations of motion of
one particles in EM field are derived, is

H(i) =
1

2mi
(pi − eiA(xi))

2 + eiV (xi) (1362)

This Hamiltonian assumes the presence of A while V is potential which is created by all the other particles. Once we
consider the many body system, the potential V is replaced by a mutual Coulomb interaction term, from which the
forces on any of the particles are derived:

H =
∑

i

1

2mi
(pi − eiA(xi))

2 +
1

2

∑

i,j

eiej
|xi − xj |

(1363)
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By itself the direct Coulomb interaction between the particles seems to contradict relativity. This is due to the non-
invariant way that we had separated the electric field into components. In fact our treatment is exact: as a whole the
Hamiltonian that we got is Lorentz invariant, as far as the EM field is concerned.

The factor 1/2 in the Coulomb interaction is there in order to compensate for the double counting of the interactions.
What about the diagonal terms i = j? We can keep them if we want because they add just a finite constant term
to the Hamiltonian. The ”self interaction” infinite term can be regularized by assuming that each particle has a very
small radius. To drop this constant from the Hamiltonian means that ”infinite distance” between the particles is taken
as the reference state for the energy. However, it is more convenient to keep this infinite constant in the Hamiltonian,
because then we can write:

H =
∑

i

1

2mi
(pi − eiA(xi))

2 +
1

8π

∫
E2

q d
3x (1364)

In order to get the latter expression we have used the following identity:

∫
ρ(x)ρ(x′)

|x− x′| d
3xd3x′ =

1

8π

∫
E2

q d
3x (1365)

The derivation of this identity is based on Gauss law, integration by parts, and using the fact that the Laplacian of
1/|x− x′| is a delta function. Again we emphasize that the integral diverges unless we regularize the physical size of
the particles, or else we have to subtract an infinite constant that represents the ”self interaction”.

====== [50.4] Hamiltonian for the Radiation Field

So now we need another term in the Hamiltonian from which the second equation of motion is derived

∂2A

∂t2
−∇2 ~A = 4π ~J⊥ (1366)

In order to decouple the above equations into ”normal modes” we write ~A in a Fourier series:

~A(x) =
1√

volume

∑

k

~Ak eikx =
1√

volume

∑

k,α

Ak,α εk,αeikx (1367)

where εk,α for a given k is a set of two orthogonal unit vectors. If A were a general vector field rather than a transverse

field, then we would have to include a third unit vector. Note that ∇ · A = 0 is like k · ~Ak = 0. Now we can rewrite
the equation of motion as

Äk,α + ω2
kAk,α = 4πJk,α (1368)

where ωk = |k|. The disadvantage of this Fourier expansion is that it does not reflect that A(x) is a real field. In fact
the Ak,α should satisfy A−k,α = (Ak,α)∗. In order to have proper ”normal mode” coordinates we have to replace each
pair of complex Ak,α and A−k,α by a pair of real coordinates A′

k,α and A′′
k,α. Namely

Ak,α =
1√
2
[A′
k,α + iA′′

k,α] (1369)

We also use a similar decomposition for Jk,α. We choose the 1/
√

2 normalization so as to have the following identity:

∫
J(x) ·A(x) dx =

∑

k,α

J∗
k,αAk,α =

∑

[k],α

(J ′
k,αA

′
k,α + J ′′

k,αA
′′
k,α) ≡

∑

r

JrQr (1370)
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In the sum over degrees of freedom r we must remember to avoid double counting. The vectors k and −k represent
the same direction which we denote as [k]. The variable A′

−k,α is the same variable as A′
k,α, and the variable A′′

−k,α
is the same variable as −A′′

k,α. We denote this set of coordinates Qr, and the conjugate momenta as Pr. We see that

each of the normal coordinates Qr has a ”mass” that equals 1/(4π) [CGS!!!]. Therefore the conjugate ”momenta” are

Pr = [1/(4π)]Q̇r, which up to a factor are just the Fourier components of the electric field. Now we can write the
Hamiltonian as

Hrad =
∑

r

[
1

2 ·mass
P 2
r +

1

2
mass · ω2

r Q
2
r − JrQr

]
(1371)

where r is the sum over all the degrees of freedom: two independent modes for each direction and polarization. By
straightforward algebra the sum can be written as

Hrad =
1

8π

∫
(E2

⊥ + B2)d3x−
∫

~J · Ad3x (1372)

More generally, if we want to write the total Hamiltonian for the particle and the EM field we have to ensure that
−∂H/∂A(x) = J(x). It is not difficult to figure out the the following Hamiltonian is doing the job:

H = Hparticles +Hinteraction +Hradiation =
∑

i

1

2mi
(pi − eiA(xi))

2 +
1

8π

∫
(E2 + B2)d3x (1373)

The term that corresponds to ~J ·A is present in the first term of the Hamiltonian. As expected this terms has a dual
role: on the one hand it gives the Lorentz force on the particle, while on the other hand it provides the source term
that drives the EM field. I should be emphasized that the way we write the Hamiltonian is somewhat misleading:
The Coulomb potential term (which involves E2

q
) is combined with the ”kinetic” term of the radiation field (which

involves E2
⊥).

====== [50.5] Quantization of the EM Field

Now that we know the ”normal coordinates” of the EM field the quantization is trivial. For each ”oscillator” of ”mass”
1/(4π) we can define a and a† operators such that Qr = (2π/ω)1/2(ar + a†r). Since we have two distinct variables for
each direction, we use the notations (b, b†) and (c, c†) respectively:

Q[k]′α = A′
kα = A′

−kα =

√
2π

ωk

(
b[k]α + b†[k]α

)
(1374)

Q[k]′′α = A′′
kα = −A′′

−kα =

√
2π

ωk

(
c[k]α + c†[k]α

)
(1375)

In order to make the final expressions look more elegant we use the following canonical transformation:

a+ =
1√
2
(b + ic) (1376)

a− =
1√
2
(b − ic)

It can be easily verified by calculating the commutators that the transformation from (b, c) to (a+, a−) is canonical.

Also note that b†b + c†c = a†+a+ + a†−a−. Since the oscillators (normal modes) are uncoupled the total Hamiltonian
is a simple sum over all the modes:

H =
∑

[k],α

(ωkb
†
k,αbk,α + ωkc

†
k,αck,α) =

∑

k,α

ωka
†
k,αak,α (1377)
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For completeness we also write the expression for the field operators:

Ak,α =
1√
2
(A′ + iA′′) =

1√
2

[√
2π

ωk
(b + b†) + i

√
2π

ωk
(c+ c†)

]
=

√
2π

ωk
(ak,α + a†−k,α) (1378)

and hence

~A(x) =
1√

volume

∑

k,α

√
2π

ωk
(ak,α + a†−k,α) εk,αeikx (1379)

The eigenstates of the EM field are

|n1, n2, n3, . . . , nk,α, . . . 〉 (1380)

We refer to the ground state as the vacuum state:

|vacuum〉 = |0, 0, 0, 0, . . . 〉 (1381)

Next we define the one photon state as follows:

|one photon state〉 = â†kα |vacuum〉 (1382)

and we can also define two photon states (disregarding normalization):

|two photon state〉 = â†k2α2
â†k1α1

|vacuum〉 (1383)

In particular we can have two photons in the same mode:

|two photon state〉 = (â†k1α1
)2 |vacuum〉 (1384)

and in general we can have N photon states or any superposition of such states.

An important application of the above formalism is for the calculation of spontaneous emission. Let us assume
that the atom has an excited level EB and a ground state EA. The atom is prepared in the excited state, and the
electromagnetic field is assume to be initially in a vacuum state. According to Fermi Golden Rule the system decays
into final states with one photon ωk = (EB − EA). Regarding the atom as a point-like object the interaction term is

Hinteraction ≈ −e
c
A(0) · v̂ (1385)

where v̂ = p̂/m is the velocity operator. It is useful to realize that v̂AB = i(EB − EA)x̂AB . The vector ~D = x̂AB is
known as the dipole matrix element. It follows that matrix element for the decay is

|〈nkα = 1, A|Hinteraction|vacuum, B〉|2 =
1

volume

(e
c

)2

2πωk|εk,α ·D|2 (1386)

In order to calculate the decay rate we have to multiply this expression by the density of the final states, to integrate
over all the possible directions of k, and to sum over the two possible polarizations α.
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[51] Quantization of a many body system

====== [51.1] Second Quantization

If we regard the electromagnetic field as a collection of oscillators then we call a† and a raising and lowering operators.
This is ”first quantization” language. But we can also call a† and a creation and destruction operators. Then it is
”second quantization” language. So for the electromagnetic field the distinction between ”first quantization” and
”second quantization” is merely a linguistic issue. Rather than talking about ”exciting” an oscillator we talk about
”occupying” a mode.

For particles the distinction between ”first quantization” and ”second quantization” is not merely a linguistic issue.
The quantization of one particle is called ”first quantization”. If we treat several distinct particles (say a proton and
an electron) using the same formalism then it is still ”first quantization”.

If we have many (identical) electrons then a problem arises. The Hamiltonian commutes with ”transpositions” of
particles, and therefore its eigenstates can be categorized by their symmetry under permutations. In particular there
are two special subspaces: those of states that are symmetric for any transposition, and those that are antisymmetric
for any transposition. It turns out that in nature there is a ”super-selection” rule that allows only one of these two
symmetries, depending on the type of particle. Accordingly we distinguish between Fermions and Bosons. All other
sub-spaces are excluded as ”non-physical”.

We would like to argue that the ”first quantization” approach, is simply the wrong language to describe a system of
identical particles. We shall show that if we use the ”correct” language, then the distinction between Fermions and
Bosons comes out in a natural way. Moreover, there is no need for the super-selection rule!

The key observation is related to the definition of Hilbert space. If the particles are distinct it makes sense to ask
”where is each particle”. But if the particles are identical this question is meaningless. The correct question is ”how
many particles are in each site”. The space of all possible occupations is called ”Fock space”. Using mathematical
language we can say that in ”first quantization”, Hilbert space is the external product of ”one-particle spaces”. In
contrast to that, Fock space is the external product of ”one site spaces”.

When we say ”site” we mean any ”point” in space. Obviously we are going to demand at a later stage ”invariance” of
the formalism with respect to the choice of one-particle basis. The formalism should look the same if we talk about
occupation of ”position states” or if we talk about occupation of ”momentum states”. Depending on the context we
talk about occupation of ”sites” or of ”orbitals” or of ”modes” or we can simply use the term ”one particle states”.

Given a set of orbitals |r〉 the Fock space is spanned by the basis {|..., nr, ..., ns, ...〉}. We can define a subspace of all
N particles states

spanN{|..., nr, ..., ns, ...〉} (1387)

that includes all the superpositions of basis states with
∑

r nr = N particles. On the other hand, if we use the first
quantization approach, we can define Hilbert subspaces that contains only totally symmetric or totally anti-symmetric
states:

spanS{|r1, r2, ..., rN 〉} (1388)

spanA{|r1, r2, ..., rN 〉}

The mathematical claim is that there is a one-to-one correspondence between Fock spanN states and Hilbert spanS
or spanA states for Bosons and Fermions respectively. The identification is expressed as follows:

|Ψ〉 = |..., nr, ..., ns, ...〉 ⇐⇒
1

N !

√
CnN

∑

P

ξP P |r1, r2, ..., rN 〉 (1389)

where r1, ..., rN label the occupied orbitals, P is an arbitrary permutation operator, ξ is +1 for Bosons and −1 for
Fermions, and CnN = N !/(nr!ns!...). We note that in the case of Fermions the formula above can be written as a Slater
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determinant. In order to adhere to the common notations we use the standard representation:

〈x1, ..., xN |Ψ〉 =
1√
N !

∣∣∣∣∣∣∣

〈x1|r1〉 · · · 〈x1|rN 〉
...

...
〈xN |r1〉 · · · 〈xN |rN 〉

∣∣∣∣∣∣∣
=

1√
N !

∣∣∣∣∣∣∣

ϕ(1)(x1) · · · ϕ(N)(x1)
...

...
ϕ(1)(xN ) · · · ϕ(N)(xN )

∣∣∣∣∣∣∣
(1390)

In particular for occupation of N = 2 particles in orbitals r and s we get

Ψ(x1, x2) =
1√
2

(
ϕr(x1)ϕ

s(x2)− ϕs(x1)ϕ
r(x2)

)
(1391)

In the following section we discuss only the Fock space formalism. Nowadays the first quantization Hilbert space
approach is used mainly for the analysis of two particle systems. For larger number of particles the Fock formalism
is much more convenient, and all the issue of ”symmetrization” is avoided.

====== [51.2] Raising and Lowering Operators

First we would like to discuss the mathematics of a single ”site”. The basis states |n〉 can be regarded as the eigenstates
of a number operator:

n̂|n〉 = n|n〉 (1392)

n̂ −→





0 0
1

2

0
. . .





In general a lowering operator has the property

â |n〉 = f(n) |n− 1〉 (1393)

and its matrix representation is:

â −→





0 ∗
. . .

. . .

. . . ∗
0 0




(1394)

The adjoint is a raising operator:

â† |n〉 = f(n+ 1) |n+ 1〉 (1395)

and its matrix representation is:

â† −→





0 0

∗ . . .
. . .

. . .

∗ 0




(1396)
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By appropriate gauge we can assume without loss of generality that f(n) is real and non-negative. so we can write

f(n) =
√
g(n) (1397)

From the definition of â it follows that

â†â|n〉 = g(n)|n〉 (1398)

and therefore

â†â = g (n̂) (1399)

There are 3 cases of interest

• The raising/lowering is unbounded (−∞ < n <∞)

• The raising/lowering is bounded from one side (say 0 ≤ n <∞)

• The raising/lowering is bounded from both sides (say 0 ≤ n < N )

The simplest choice for g(n) in the first case is

g(n) = 1 (1400)

In such a case â becomes the translation operator, and the spectrum of n stretches from −∞ to ∞. The simplest
choice for g(n) in the second case is

g(n) = n (1401)

this leads to the same algebra as in the case of an harmonic oscillator. The simplest choice for g(n) in the third case
is

g(n) = (N − n)n (1402)

Here it turns out that the algebra is the same as that for angular momentum. To see that it is indeed like that define

m = n− N − 1

2
= −s, . . . ,+s (1403)

where s = (N − 1)/2. Then it is possible to write

g(m) = s(s+ 1)−m(m+ 1) (1404)

In the next sections we are going to discuss the “Bosonic” case N = ∞ with g(n) = n, and the “Fermionic” case
N = 2 with g(n) = n(1 − n). Later we are going to argue that these are the only two possibilities that are relevant
to the description of many body occupation.



232

−s

0 1 2 N... n

m

dim=N

Fermions

+s

N−1

g(n)

Bosons

It is worthwhile to note that the algebra of “angular momentum” can be formally obtained from the Bosonic algebra
using a trick due to Schwinger. Let us define two Bosonic operators a1 and a2, and

c† = a†2a1 (1405)

The c† operator moves a particle from site 1 to site 2. Consider how c and c† operate within the subspace of (N − 1)

particle states. It is clear that c and c† act like lowering/raising operators with respect to m̂ = (a†2a2 − a†1a1)/2.
Obviously the lowering/raising operation in bounded from both ends. In fact it is easy to verify that c and c† have
the same algebra as that of “angular momentum”.

====== [51.3] Algebraic characterization of field operators

In this section we establish some mathematical observations that we need for a later reasoning regarding the classifi-
cation of field operators as describing Bosons or Fermions. By field operators we mean either creation or destruction
operators, to which we refer below as raising or lowering (ladder) operators. We can characterize a lowering operator
as follows:

n̂
(
â |n〉

)
= (n− 1)

(
â |n〉

)
for any n (1406)

which is equivalent to

n̂â = â(n̂− 1) (1407)

A raising operator is similarly characterized by n̂â† = â†(n̂+ 1).

It is possible to make a more interesting statement. Given that

[a, a†] = aa† − a†a = 1 (1408)

we deduce that a and a† are lowering and raising operators with respect to n̂ = a†a. The prove of this statement
follows directly form the observation of the previous paragraph. Furthermore, from

||a|n〉|| = 〈n|a†a|n〉 = n (1409)

||a†|n〉|| = 〈n|aa†|n〉 = 1 + n (1410)

Since the norm is a non-negative value it follows that n = 0 and hence also all the positive integer values n = 1, 2, ...
form its spectrum. Thus in such case a and a† describe a system of Bosons.



233

Let us now figure our the nature of an operator that satisfies the analogous anti-commutation relation:

[a, a†]+ = aa† + a†a = 1 (1411)

Again we define n̂ = a†a and observe that a and a† are characterized by n̂â = â(1− n̂) and n̂â† = â†(1− n̂). Hence
we deduce that both a and a† simply make transposition of two n states |ǫ〉 and |1−ǫ〉. Furthermore

||a|n〉|| = 〈n|a†a|n〉 = n (1412)

||a†|n〉|| = 〈n|aa†|n〉 = 1− n (1413)

Since the norm is a non-negative value it follows that 0 ≤ ǫ ≤ 1. Thus we deduce that the irreducible representation
of a is

â =

(
0

√
ǫ√

1−ǫ 0

)
(1414)

One can easily verify the the desired anti-commutation is indeed satisfied. We can always re-define n̂ such that n=0
would correspond to one eigenvalue and n=1 would correspond to the second one. Hence it is clear that a and a†

describe a system of Fermions.

====== [51.4] Creation Operators for ”Bosons”

For a ”Bosonic” site we define

â |n〉 =
√
n |n− 1〉 (1415)

hence

â† |n〉 =
√
n+ 1 |n+ 1〉 (1416)

and

[
â, â†

]
= ââ† − â†â = 1 (1417)

If we have many sites then we define

â†r = 1⊗ 1⊗ · · · ⊗ â† ⊗ · · · ⊗ 1 (1418)

which means

â†r |n1, n2, . . . , nr, . . . 〉 =
√
nr + 1 |n1, n2, . . . , nr + 1, . . . 〉 (1419)

and hence

[âr, âs] = 0 (1420)

and

[
âr, â

†
s

]
= δr,s (1421)
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We have defined our set of creation operators using a particular one-particle basis. What will happen if we switch to
a different basis? Say from the position basis to the momentum basis? In the new basis we would like to have the
same type of ”occupation rules”, namely,

[
âα, â

†
β

]
= δαβ (1422)

Let’s see that indeed this is the case. The unitary transformation matrix from the original |r〉 basis to the new |α〉
basis is

Tr,α = 〈r|α〉 (1423)

Then we have the relation

|α〉 =
∑

r

|r〉 〈r|α〉 =
∑

r

Tr,α |r〉 (1424)

and therefore

â†α =
∑

r

Tr,αâ
†
r (1425)

Taking the adjoint we also have

âα =
∑

r

T ∗
r,αâr (1426)

Now we find that

[
âα, â

†
β

]
=
∑

r,s

[
T ∗
rαâr, Tsβâ

†
s

]
= T ∗

rαTsβδrs =
(
T †)

αr
Trβ =

(
T †T

)
αβ

= δαβ (1427)

This result shows that âα and â†β are indeed destruction and creation operators of the same ”type” as âr and â†r. Can
we have the same type of invariance for other types of occupation? We shall see that the only other possibility that
allows ”invariant” description is N = 2.

====== [51.5] Creation Operators for ”Fermions”

In analogy with the case of a ”Boson site” we define a ”Fermion site” using

â |n〉 =
√
n |n− 1〉 (1428)

and

â† |n〉 =
√
n+ 1 |n+ 1〉 with mod(2) plus operation (1429)
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The representation of the operators is, using Pauli matrices:

n̂ =

(
1 0
0 0

)
=

1

2

(
1̂ + σ3

)
(1430)

â =

(
0 0
1 0

)
=

1

2
(σ1 − iσ2)

â† =

(
0 1
0 0

)
=

1

2
(σ1 + iσ2)

â†â = n̂

ââ† = 1̂− n̂[
â, â†

]
+

= ââ† + â†â = 1

while

[
â, â†

]
= 1− 2n̂ (1431)

Now we would like to proceed with the many-site system as in the case of ”Bosonic sites”. But the problem is that
the algebra

[
âr, â

†
s

]
= δr,s(1 − 2â†râr) (1432)

is manifestly not invariant under a change of one-particle basis. The only hope is to have

[
âr, â

†
s

]
+

= δr,s (1433)

which means that ar and as for r 6= s should anti-commute rather than commute. Can we define the operators ar in
such a way? It turns out that there is such a possibility:

â†r |n1, n2, . . . , nr, . . . 〉 = (−1)
P

s(>r) ns
√

1 + nr |n1, n2, . . . , nr + 1, . . . 〉 (1434)

For example, it is easily verified that we have:

a†2a
†
1|0, 0, 0, . . . 〉 = −a†1a†2|0, 0, 0, . . . 〉 = |1, 1, 0, . . . 〉 (1435)

With the above convention if we create particles in the ”natural order” then the sign comes out plus, while for any
”violation” of the natural order we get a minus factor.

====== [51.6] One Body Additive Operators

Let us assume that we have an additive quantity V which is not the same for different one-particle states. One
example is the (total) kinetic energy, another example is the (total) potential energy. It is natural to define the many
body operator that corresponds to such a property in the basis where the one-body operator is diagonal. In the case
of potential energy it is the position basis:

V =
∑

α

Vα,αn̂α =
∑

α

â†αVα,αâα (1436)

This counts the amount of particles in each α and multiplies the result with the value of V at this site. If we go to a
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different one-particle basis then we should use the transformation

âα =
∑

k

T ∗
k,αâk (1437)

â†α =
∑

k′

Tk′,αâ
†
k′

leading to

V =
∑

k,k‘

â†k′Vk′,kâk (1438)

Given the above result we can calculate the matrix elements from a transition between two different occupations:

|〈n1 − 1, n2 + 1|V |n1, n2〉|2 = (n2 + 1)n1 |V2,1|2 (1439)

What we get is quite amazing: in the case of Bosons we get an amplification of the transition if the second level is
already occupied. In the case of Fermions we get ”blocking” if the second level is already occupied. Obviously this
goes beyond classical reasoning. The latter would give merely n1 as a prefactor.

====== [51.7] Two Body “Additive” Operators

It is straightforward to make a generalization to the case of two body “additive” operators. Such operators may
represent the two-body interaction between the particles. For example we can take the Coulomb interaction, which
is diagonal in the position basis. Thus we have

U =
1

2

∑

α6=β
Uαβ,αβn̂αn̂β +

1

2

∑

α

Uαα,αα n̂α (n̂α − 1) (1440)

Using the relation

â†αâ
†
βâβ âα =

{
n̂αn̂β for α 6= β

n̂α(n̂α − 1) for α = β
(1441)

We get the simple expression

U =
1

2

∑

α,β

â†αâ
†
β Uαβ,αβ âβ âα (1442)

and for a general one-particle basis

U =
1

2

∑

k′l′,kl

â†k′ â
†
l′ Uk′l′,kl âlâk (1443)

We call such operator “additive” (with quotations) because in fact they are not really additive. An example for
a genuine two body additive operator is [A,B], where A and B are one body operators. This observation is very
important in the theory of linear response (Kubo).
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====== [51.8] Matrix elements with N particle states

Consider an N particle state of a Fermionic system, which is characterized by a definite occupation of k orbitals:

|RN 〉 = â†N . . . â
†
2â

†
1 |0〉 (1444)

For the expectation value of a one body operator we get

〈RN |V |RN 〉 =
∑

k∈R
〈k|V |k〉 (1445)

because only the terms with k = k′ do not vanish. If we have two N particle states with definite occupations, then the
matrix element of V would be in general zero unless they differ by a single electronic transition, say from an orbital
k0 to another orbital k′0. In the latter case we get the result Vk′0,k0 as if the other electrons are not involved.

For the two body operator we get for the expectation value a more interesting result that goes beyond the naive
expectation. The only non-vanishing terms in the sandwich calculation are those with either k′ = k and l′ = l or with
k′ = l and l′ = k. All the other possibilities give zero. Consequently

〈RN |U |RN 〉 =
1

2

∑

k,l∈R
〈kl|U |kl〉
direct

− 〈lk|U |kl〉
exchange

(1446)

A common application of this formula is in the context of multi-electron atoms and molecules, where U is the
Coulomb interaction. The direct term has an obvious electrostatic interpretation, while the exchange term reflects the
implications of the Fermi statistics. In such application the exchange term is non-vanishing whenever two orbitals have
a non-zero spatial overlap. Electrons that occupy well separated orbitals have only a direct electrostatic interaction.

====== [51.9] Introduction to the Kondo problem

One can wonder whether the Fermi energy, due to the Pauli exclusion principle, is like a lower cutoff that “regularize”
the scattering cross section of of electrons in a metal. We explain below that this is not the case unless the scattering
involves a spin flip. The latter is known as the Kondo effect. The scattering is described by

V =
∑

k′,k

a†k′Vk′,kak (1447)

hence:

T [2] =

〈
k2

∣∣∣∣V
1

E −H+ i0
V

∣∣∣∣ k1

〉
=

∑

k′
b
,kb

∑

k′a,ka

〈
k2

∣∣∣∣a
†
k′

b
Vk′

b
,kb
akb

1

E −H+ i0
a†k′aVk

′
a,ka

aka

∣∣∣∣ k1

〉
(1448)

where both the initial and the final states are zero temperature Fermi sea with one additional electron above the
Fermi energy. The initial and final states have the same energy:

E = E0 + ǫk1 = E0 + ǫk2 (1449)

where E0 is the total energy of the zero temperature Fermi sea. The key observation is that all the intermediate
states are with definite occupation. Therefore we can pull out the resolvent:

T [2] =
∑

k′
b
,kb,k′a,ka

Vk′
b
,kb
Vk′a,ka

E − Eka,k′a

〈
k2

∣∣∣a†k′
b
akb

a†k′aaka

∣∣∣ k1

〉
(1450)
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where

Eka,k′a = E0 + ǫk1 − ǫka
+ ǫk′a (1451)

time

k = represeneted by directionk = represeneted by vertical shift

Energy levels diagram Feynman diagram

As in the calculation of “exchange” we have two non-zero contribution to the sum. These are illustrated in the figure
above: Either (k′b, kb, k

′
a, ka) equals (k2, k

′, k′, k1) with k′ above the Fermi energy, or (k′, k1, k2, k
′) with k′ below the

Fermi energy. Accordingly E − Eka,k′a equals either (ǫk1 − ǫk′) or −(ǫk1 − ǫk′). Hence we get

T [2] =
∑

k′

[
Vk2,k′Vk′,k1

+(ǫk1 − ǫk′) + i0

〈
k2

∣∣∣a†k2ak′a
†
k′ak1

∣∣∣ k1

〉
+

Vk′,k1Vk2,k′

−(ǫk1 − ǫk′) + i0

〈
k2

∣∣∣a†k′ak1a
†
k2
ak′
∣∣∣ k1

〉]
(1452)

Next we use

〈
k2

∣∣∣a†k2ak′a
†
k′ak1

∣∣∣ k1

〉
=
〈
k2

∣∣∣a†k2(1− nk′)ak1
∣∣∣ k1

〉
= +1×

〈
k2

∣∣∣a†k2ak1
∣∣∣ k1

〉
(1453)

which holds if k′ is above the Fermi energy (otherwise it is zero). And

〈
k2

∣∣∣a†k′ak1a
†
k2
ak′
∣∣∣ k1

〉
=
〈
k2

∣∣∣ak1(nk′)a
†
k2

∣∣∣ k1

〉
= −1×

〈
k2

∣∣∣a†k2ak1
∣∣∣ k1

〉
(1454)

which holds if k′ is below the Fermi energy (otherwise it is zero). Note that without loss of generality we can assume

gauge such that 〈k2|a†k2ak1 |k1〉 = 1 Coming back to the transition matrix we get a result which is not divergent at the
Fermi energy:

T [2] =
∑

k′∈above

Vk2,k′Vk′,k1
ǫk1 − ǫk′ + i0

+
∑

k′∈below

Vk2,k′Vk′,k1
ǫk1 − ǫk′ − i0

(1455)

If we are above the Fermi energy, then it is as if the Fermi energy does not exist at all. But if the scattering involves
a spin flip, as in the Kondo problem, the divergence for ǫ close to the Fermi energy is not avoided. Say that we want
to calculate the scattering amplitude

〈k2 ↑,⇓ |T |k1, ↑,⇓〉 (1456)

where the double arrow stands for the spin of a magnetic impurity. It is clear that the only sequences that contribute
are those that take place above the Fermi energy. The other set of sequences, that involve the creation of an electron-
hole pair do not exist: Since we assume that the magnetic impurity is initially ”down”, it is not possible to generate
a pair such that the electron spin is ”up”.
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====== [51.10] Green functions for many body systems

The Green function in the one particle formalism is defined via the resolvent as the Fourier transform of the propagator.
In the many body formalism the role of the propagator is taken by the time ordered correlation of field operators.
In both cases the properly defined Green function can be used in order to analyze scattering problems in essentially
the same manner. It is simplest to illustrate this observation using the example of the previous section. The Green
function in the many body context is defined as

Gk2,k1(ǫ) = −iFT
[〈

Ψ
∣∣T ak2(t2)a†k1(t1)

∣∣Ψ
〉]

(1457)

If Ψ is the vacuum state this coincides with the one particle definition of the Green function:

Gk2,k1(ǫ) = −iFT
[
Θ(t2−t1)

〈
k2|U(t2 − t1)|k1〉

]
(1458)

But if Ψ is (say) a non-empty zero temperature Fermi sea then also for t2 < t1 we get a non-zero contribution due to
the possibility to annihilate an electron in an occupied orbital. Thus we get

Gk2,k1(ǫ) =
∑

ǫk>ǫF

δk1,kδk2,k
ǫ− ǫk + i0

+
∑

ǫk<ǫF

δk1,kδk2,k
ǫ− ǫk − i0

(1459)

One should observe that the many-body definition is designed so as to reproduce the correct T matrix as found in
the previous section. The definition above allows us to adopt an optional point of view of the scattering process: a
one particle point of view instead of a many body point of view! In the many body point of view an electron-hole pair
can be created, and later the hole is likely to be annihilated with the injected electron. In the one particle point of
view the injected electron can be “reflected” to move backwards in time and then is likely to be scattered back to the
forward time direction. The idea here is to regard antiparticles as particles that travel backwards in time. This idea
is best familiar in the context of the Dirac equation.
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[52] Wigner function and Wigner-Weyl formalism

====== [52.1] The classical description of a state

Classical states are described by a probability function. Given a random variable x̂, we define ρ(x) = Prob(x̂ = x) as
the probability of the event x̂ = x, where the possible values of x are called the spectrum of the random variable x̂. For
a random variable continuous spectrum we define the probability density function via ρ(x)dx = Prob(x < x̂ < x+ dx).

The expectation value of a random variable Â = A(x̂) is defined as

〈Â〉 =
∑

ρ(x) A(x) (1460)

and for a continuous variable as. For simplicity we use, from now on, a notation as if the random variables have a
discrete spectrum, with the understanding that in the case of a continuous spectrum we should replace the

∑
by an

integral with the appropriate measure (e.g. dx or dp/(2π~)). Unless essential for the presentation we set ~ = 1.

Let us consider two random variables x̂, p̂. One can ask what is the joint probability distribution for these two
variables. This is a valid question only in classical mechanics. In quantum mechanics one usually cannot ask this
question since not all variables can be measured in the same measurement. In order to find the joint probability
function of these two variables in quantum mechanics one needs to build a more sophisticated method. The solution
is to regard the expectation value as the fundamental outcome and to define the probability function as an expectation
value. In the case of one variable such as x̂ or p̂, we define probability functions as

ρ(X) ≡ 〈 δ(x̂−X) 〉 (1461)

ρ(P ) ≡ 〈 2πδ(p̂− P ) 〉

Now we can also define the joint probability function as

ρ(X,P ) = 〈2πδ(p̂− P ) δ(x̂−X) 〉 (1462)

This probability function is normalized so that

∫
ρ(X,P )

dXdP

2π
=

〈∫
δ(p̂− P )dP

∫
δ(x̂−X)dX

〉
= 1 (1463)

In the next section we shall define essentially the same object in the framework of quantum mechanics.

====== [52.2] Wigner function

Wigner function is a real normalized function which is defined as

ρW(X,P ) =
〈 [

2πδ(p̂− P ) δ(x̂−X)
]

sym

〉
(1464)

In what follows we define what we mean by symmetrization (“sym”), and we relate ρW(X,P ) to the conventional
probability matrix ρ(x′, x′′). We recall that the latter is defined as

ρ(x′, x′′) =
〈
P x

′x′′
〉

=
〈
|x′′〉〈x′|

〉
(1465)

The “Wigner function formula” that we are going to prove is

ρW(X,P ) =

∫
ρ

(
X +

1

2
r,X − 1

2
r

)
e−iPrdr (1466)
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Thus to go from the probability matrix to the Wigner function is merely a Fourier transform, and can be loosely
regarded as a change from “position representation” to “phase space representation”.

Moreover we can use the same transformation to switch the representation of an observable Â from A(x′, x′′) to
A(X,P ) . Then we shall prove the “Wigner-Weyl formula”

trace(Aρ) =

∫
A(X,P )ρW(X,P )

dXdP

2π
(1467)

This formula implies that expectation values of an observable can be calculated using a semi-classical calculation.
This extension of the Wigner function formalism is known as the Wigner-Weyl formalism.

====== [52.3] Mathematical derivations

Fourier transform reminder:

F (k) =

∫
f(x)e−ikxdx (1468)

f(x) =

∫
dk

2π
F (k)eikx

Inner product is invariant under change of representation

∫
f(x)g∗(x)dx =

∫
dk

2π
F (k)G∗(k) (1469)

For the matrix representation of an operator A we use the notation

A(x′, x′′) = 〈x′|A|x′′〉 (1470)

It is convenient to replace the row and column indexes by diagonal and off-diagonal coordinates:

X =
1

2
(x′ + x′′) = the diagonal coordinate (1471)

r = x′ − x′′ = the off diagonal coordinate

x′ = X +
1

2
r

x′′ = X − 1

2
r

and to use the alternate notation

A(X, r) =

〈
X +

1

2
r
∣∣∣A
∣∣∣X − 1

2
r

〉
(1472)

Using this notation, the transformation to phase space representations can be written as

A(X,P ) =

∫
A(X, r)e−iPrdr (1473)

Note that if A is hermitian then A(X,−r) = A∗(X,+r), and consequently A(X,P ) is a real function. Moreover, the
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trace of two hermitian operators can be written as a phase space integral

trace(ÂB̂) =

∫
A(x′, x′′)B(x′′, x′)dx′dx′′ =

∫
A(x′, x′′)B∗(x′, x′′)dx′dx′′ (1474)

=

∫
A(X,+r)B∗(X, r)dXdr =

∫
A(X,P )B(X,P )

dXdP

2π

This we call the ”Wigner-Weyl formula”.

For the derivation of the “Wigner function formula” we have to show that δ(p̂− P )δ(x̂−X) form a complete set of
observables that are linearly related to the standard set |x′〉〈x′′|. First we cite an helpful identity:

|X〉〈X | = δ(x̂−X) =

∫
dp

2π
eip(x̂−X) (1475)

In order to prove the first part of this identity it is easier to use discrete notation, |n0〉〈n0| = δn̂,n0 . The left hand
side is a projector whose only non-zero matrix element is n = m = n0. The right hand side is a function of f(n̂)
such that f(n) = 1 for n = n0 and zero otherwise. Therefore the right hand side is also diagonal in n with the same
representation. Now we can write

|x′〉〈x′′| =
∣∣∣X−(r/2)

〉〈
X+(r/2)

∣∣∣ = ei(r/2)p̂|X〉〈X |ei(r/2)p̂ = ei(r/2)p̂δ(x̂−X)ei(r/2)p̂ (1476)

=

∫
dp

2π
ei(r/2)p̂eip(x̂−X)ei(r/2)p̂ =

∫
dp

2π
eirp̂+ip(x̂−X) (1477)

where in the last step we have used the identity eÂ+B̂ = eÂeB̂e
1
2 [Â,B̂], and the commutation [x̂, p̂] = i, in order to join

the exponents as in the equality ep̂/2ex̂ep̂/2 = ex̂+p̂. With the same spirit we define the symmetrized operator

[
2πδ(p̂− P ) δ(x̂−X)

]

sym

≡
∫
drdp

2π
eir(p̂−P )+ip(x̂−X) (1478)

The derivation of the Wigner function formula follows in a straightforward fashion from the implied linear relation

[
2πδ(p̂− P ) δ(x̂−X)

]

sym

=

∫
dre−irP

∣∣∣X−(r/2)
〉〈
X+(r/2)

∣∣∣ (1479)

====== [52.4] Applications of the Wigner Weyl formalism

In analogy with the definition of the Wigner function ρW(X,P ) which is associated with ρ̂ we can define a Wigner-

Weyl representation AWW(X,P ) of any hermitian operator Â. The phase space function AWW(X,P ) is obtained from
the standard representation A(x′, x′′) using the same “Wigner function formula” recipe. Let us consider the simplest
examples. First consider how the recipe works for the operator x̂:

〈 x′|x̂|x′′〉 = x′δ(x′ − x′′) = Xδ(r)
WW7−→ X (1480)
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Similarly p̂
WW→ P . Further examples are:

f(x̂)
WW7−→ f(X) (1481)

g(p̂)
WW7−→ g(P ) (1482)

x̂p̂
WW7−→ XP +

1

2
i (1483)

p̂x̂
WW7−→ XP − 1

2
i (1484)

1

2
(x̂p̂+ p̂x̂)

WW7−→ XP (1485)

In general for appropriate ordering we get that f(x̂, p̂) is represented by f(X,P ). But in practical applications f(x̂, p̂)
will not have the desired ordering, and therefore this recipe should be considered as a leading term in a semiclassical
~ expansion.

There are two major applications of the Wigner Weyl formula. The first one is the calculation of the partition function.

Z(β) =
∑

r

e−βEr =
∑

r

〈
r|e−βH |r

〉
= trace(e−βH) =

∫
dXdP

2π
(e−βH(X,P )) +O(~) (1486)

The second one is the calculation of the number of eigenstates up to a given energy E

N (E) =
∑

Er≤E
1 =

∑

r

Θ(E − Er) = trace[Θ(E − Ĥ)] (1487)

≈
∫
dXdP

2π
Θ(E −H(X,P )) =

∫

H(X,P )≤E

dXdP

2π

Below we discuss some further applications that shed light on the dynamics of wavepackets, interference, and on the
nature of quantum mechanical states. We note that the time evolution of Wigner function is similar but not identical
to the evolution of a classical distribution unless the Hamiltonian is a quadratic function of x̂ and p̂.

====== [52.5] Wigner function for a Gaussian wavepacket

A Gaussian wavepacket in the position representation is written as

Ψ(x) =
1√√
2πσ

e−
(x−x0)2

4σ2 eip0x (1488)

The probability density matrix is

ρ(X, r) = Ψ

(
X+

1

2
r

)
Ψ∗
(
X−1

2
r

)
(1489)

=
1√
2πσ

e−
((X−x0)+ 1

2
r)2

4σ2 − ((X−x0)− 1
2

r)2

4σ2 +ip0r =
1√
2πσ

e−
(X−x0)2

2σ2 − r2

8σ2 +ip0r

Transforming to the Wigner representation

ρW(X,P ) =

∫
1√
2πσ

e−
(X−x0)2

2σ2 − r2

8σ2 −i(P−p0)rdr =
1

σxσp
e
− (X−x0)2

2σ2
x

− (P−p0)2

2σ2
p (1490)
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where σx = σ and σp = 1
2σ . It follows that σxσp = 1/2. Let us no go backwards. Assume that have a Gaussian in

phase space, which is characterized by some σx and σp. Does it represent a legitimate quantum mechanical state?
The normalization condition trace(ρ) = 1 is automatically satisfied. We also easily find that

trace(ρ2) =

∫
1

σ2
xσ

2
p

e
− (X−x0)2

σ2
x

− (P−p0)2

σ2
p

dXdP

2π
=

1

2σxσp
(1491)

We know that trace(ρ2) = 1 implies pure state. If trace(ρ2) < 1 it follows that we have a mixed state, whereas
trace(ρ2) > 1 is not physical. It is important to remember that not any ρ(X,P ) corresponds to a legitimate quantum
mechanical state. There are classical states that do not have quantum mechanical analog (e.g. point like preparation).
Also the reverse is true: not any quantum state has a classical analogue. The latter is implied by the possibility to
have negative regions in phase space. These is discussed in the next example.

====== [52.6] The Winger function of a bounded particle

Wigner function may have some modulation on a fine scale due to an interference effect. The simplest and most
illuminating example is the Wigner function of the nth eigenstate of a particle in a one dimensional box (0 < x < L).
The eigen-wavefunction that correspond to wavenumber k = (π/L)× integer can be written as the sum of a right

moving and a left moving wave ψ(x) = (1/
√

2)(ψ1(x) + ψ2(x)) within 0 < x < L, and ψ(x) = 0 otherwise. The
corresponding Wigner function is zero outside of the box. Inside the box it can be written as

ρW(X,P ) =
1

2
ρ1(X,P ) +

1

2
ρ2(X,P ) + ρ12(X,P ) (1492)

where ρ12 is the interference component. The semiclassical components are concentrated at P = ±k, while the
interference component is concentrated at P = 0. The calculation of ρ1(X,P ) in the interval 0 < x < L/2 is
determined solely by the presence of the hard wall at x = 0. The relevant component of the wavefunction is

ψ1(x) =
1√
L

Θ(x)eikx (1493)

and hence

ρ1(X,P ) =

∫ ∞

−∞
ψ1(X + (r/2))ψ∗

1(X − (r/2))e−iPrdr =
1

L

∫ ∞

−∞
Θ(X + (r/2))Θ(X − (r/2))e−i(P−k)rdr

=
1

L

∫ 2X

−2X

e−i(P−k)rdr =
4X

L
sinc(2X(P − k)) (1494)

This shows that as we approach the sharp feature the non-classical nature of Wigner function is enhanced, and the
classical (delta) approximation becomes worse. The other components of Wigner function are similarly calculated,
and for the interference component we get

ρ12(X,P ) = −2 cos(2kX)× 4X

L
sinc(2XP ) (1495)

It is easily verified that integration of ρW(X,P ) over P gives ρ(x) = 1 + 1− 2 cos(2kX) = 2(sin(kX))2.

In many other cases the energy surface in phase space is “soft” (no hard walls) and then one can derive a uniform
semiclassical approximation [Berry, Balazs]:

ρW(X,P ) =
2π

∆sc(X,P )
Ai

(H(X,P )− E
∆sc(X,P )

)
(1496)
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where for H = p2/(2m) + V (x)

∆sc =
1

2

[
~

2

(
1

m
|∇V (X)|2 +

1

m2
(P · ∇)2V (X)

)]1/3
(1497)

What can we get out of this expression? We see that ρW(X,P ) decays exponentially as we go outside of the energy
surface. Inside the energy surface we have oscillations due to interference.

The interference regions of the Wigner function might be very significant. A nice example is given by Zurek. Let
us assume that we have a superposition of N ≫ 1 non-overlapping Gaussian. we can write the Wigner function as
ρ = (1/N)

∑
ρj + ρintrfr. We have trace(ρ) = 1 and also trace(ρ2) = 1. This implies that trace(ρintrfr) = 0, while

trace(ρ2
intrfr) ∼ 1. The latter conclusion stems from the observation that the classical contribution is N × (1/N)2 ≪ 1.

Thus the interference regions of the Wigner function dominate the calculation.

====== [52.7] The Winger picture of a two slit experiment

The textbook example of a two slit experiment will be analyzed below. The standard geometry is described in the
upper panel of the following figure. The propagation of the wavepacket is in the y direction. The wavepacket is
scattered by the slits in the x direction. The distance between the slits is d. The interference pattern is resolved on
the screen. In the lower panel the phase-space picture of the dynamics is displayed. Wigner function of the emerging
wavepacket is projected onto the (x, px) plane.

slits

x

p

∆

∆

x

x

px

y

The wavepacket that emerges from the two slits is assumed to be a superposition

Ψ(x) ≈ 1√
2
(ϕ1(x) + ϕ2(x)) (1498)

The approximation is related to the normalization which assumes that the slits are well separated. Hence we can
regard ϕ1(x) = ϕ0(x+ (d/2)) and ϕ2(x) = ϕ0(x− (d/2)) as Gaussian wavepackets with a vanishingly small overlap.
The probability matrix of the superposition is

ρ(x′, x′′) = Ψ(x′)Ψ∗(x′′) = (ϕ1(x
′) + ϕ2(x

′))(ϕ∗
1(x

′′) + ϕ∗
2(x

′′)) =
1

2
ρ1 +

1

2
ρ2 + ρinterference (1499)
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All the integrals that are encountered in the calculation are of the Wigner function are of the type

∫
ϕ0

(
(X −X0) +

1

2
(r − r0)

)
ϕ0

(
(X −X0)−

1

2
(r − r0)

)
e−iPrdr ≡ ρ0(X −X0, P ) e−iPr0 (1500)

where X0 = ±d/2 and r0 = 0 for the classical part of the Wigner function, while X0 = 0 and r0 = ±d/2 for the
interference part. Hence we get the result

ρW(X,P ) =
1

2
ρ0

(
X +

d

2
, P

)
+

1

2
ρ0

(
X − d

2
, P

)
+ cos(Pd) ρ0(X,P ) (1501)

Note that the momentum distribution can be obtained by integrating over X

ρ(P ) = (1 + cos(Pd))ρ0(P ) = 2 cos2(
Pd

2
)ρ0(P ) (1502)

In order to analyze the dynamics it is suggestive to write ρ(X,P ) schematically as a sum of partial-wavepackets, each
characterized by a different transverse momentum:

ρW(X,P ) =

∞∑

n=−∞
ρn(X,P ) (1503)

By definition the partial-wavepacket ρn equals ρ for |P − n × (2π~/d)| < π~/d and equals zero otherwise. Each
partial wavepacket represents the possibility that the particle, being scattered by the slits, had acquired a transverse
momentum which is an integer multiple of

∆p =
2π~

d
(1504)

The corresponding angular separation is

∆θ =
∆p

P
=

λB
d

(1505)

as expected. The associated spatial separation if we have a distance y from the slits to the screen is ∆x = ∆θy. It is
important to distinguish between the “preparation” zone y < d, and the far-field (Franhaufer) zone y ≫ d2/λB. In
the latter zone we have ∆x≫ d or equivalently ∆x∆p≫ 2π~.

====== [52.8] Thermal states

A stationary state ∂ρ/∂t has to satisfy [H, ρ] = 0. This means that ρ is diagonal in the energy representation. It can
be further argued that in typical circumstances the thermalized mixture is of the canonical type. Namely

ρ̂ =
∑
|r〉pr〈r| =

1

Z
∑
|r〉e−βEr〈r| = 1

Z e−βĤ (1506)

Let us consider some typical examples. The first example is spin 1/2 in a magnetic field. In this case the energies are
E↑ = ǫ/2 and E↓ = ǫ/2. Therefore ρ takes the following form:

ρ =
1

2 cosh(1
2βǫ)

(
eβ

ǫ
2 0

0 e−β
ǫ
2

)
(1507)
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Optionally one can represent the state of the spin by the polarization vector

~M =
(
0, 0, tanh(

1

2
βǫ)
)

(1508)

The next example is a free particle. The Hamiltonian is H = p̂2/2m. The partition function is

Z =

∫
dk

(2π)/L
e−β

k2

2m =

∫
dXdP

2π
e−β

P2

2m = L

(
m

2πβ

) 1
2

(1509)

The probability matrix ρ is diagonal in the p representation, and its Wigner function representation is identical
with the classical expression. The standard x̂ representation can be calculated either directly or via inverse Fourier
transform of the Wigner function:

ρ(x′, x′′) =

(
1

L

)
e−

m
2β

[x′−x′′]2 (1510)

Optionally it can be regarded as a special case of the harmonic oscillator case. In the case of an harmonic oscillator
the calculation is less trivial because the Hamiltonian is not diagonal neither in the x nor in the p representation.
The eigenstates of the Hamiltonian are H |n〉 = En|n〉 with En =

(
1
2 + n

)
ω. The probability matrix ρnn′ is

ρnn′ =
1

Z δnn′e−βω(
1
2 +n) (1511)

where the partition function is

Z =
∞∑

n=0

e−βEn =

(
2 sinh

(
1

2
βω

))−1

(1512)

In the x̂ representation

ρ(x′, x′′) =
∑

n

〈x′|n〉pn〈n|x′′〉 =
∑

n

pnϕ
n(x′)ϕn(x′′) (1513)

The last sum can be evaluated by using properties of Hermite polynomials, but this is very complicated. A much
simpler strategy is to use of the Feynman path integral method. The calculation is done as for the propagator
〈x′| exp(−iHt)|x′′〉 with the time t replaced by −iβ. The result is

ρ(x′, x′′) ∝ e−
mω

2 sinh(βω) [cosh(βω)((x′′2+x′2)−2x′x′′] (1514)

which leads to the Wigner function

ρW(X,P ) ∝ e
−β
 

tanh( 1
2

βω)
1
2

βω

!

h

P2

2m
+ 1

2mω
2X2

i

(1515)

It is easily verified that in the zero temperature limit we get a minimal wavepacket that represent the pure ground
state of the oscillator, while in high temperatures we get the classical result which represents a mixed thermal state.



248

[53] Theory of quantum measurements

====== [53.1] The reduced probability matrix

In this section we consider the possibility of having a system that has interacted with its surrounding. So we have
“system ⊗ environment” or “system ⊗ measurement device” or simply a system which is a part of a larger thing
which we can call “universe”. The question that we would like to ask is as follows: Assuming that we know what is
the sate of the “universe”, what is the way to calculate the state of the “system”?

The mathematical formulation of the problem is as follows. The pure states of the ”system” span Nsys dimensional
Hilbert space, while the states of the ”environment” spanNenv dimensional Hilbert space. So the state of the ”universe”
is described by N ×N probability matrix ρiα,jβ , where N = NsysNenv. This means that if we have operator A which
is represented by the matrix Aiα,jβ , then it expectation value is

〈A〉 = trace(Aρ) =
∑

i,j,α,β

Aiα,jβ ρjβ,iα (1516)

The probability matrix of the ”system” is defined in the usual way. Namely, the matrix element ρsys

j,i is defined as the

expectation value of P ji = |i〉〈j| ⊗ 1. Hence

ρsys

j,i = 〈P ji〉 = trace(P jiρ) =
∑

k,α,l,β

P jikα,lβρlβ,kα =
∑

k,α,l,β

δk,iδl,jδα,β ρlβ,kα =
∑

α

ρjα,iα (1517)

The common terminology is to say that ρsys is the reduced probability matrix, which is obtained by tracing out the
environmental degrees of freedom. Just to show mathematical consistency we note that for a general system operator
of the type A = Asys ⊗ 1env we get as expected

〈A〉 = trace(Aρ) =
∑

i,α,jβ

Aiα,jβρjβ,iα =
∑

i,j

Asys

i,jρ
sys

j,i = trace(Asysρsys) (1518)

====== [53.2] Entangled superposition

Of particular interest is the case where the universe is in a pure state Ψ. Choosing for the system ⊗ environemnt an
arbitrary basis |iα〉 = |i〉 ⊗ |α〉, we can expand the wavefunction as

|Ψ〉 =
∑

i,α

Ψiα|iα〉 (1519)

By summing over α we can write

|Ψ〉 =
∑

i

√
pi|i〉 ⊗ |χ(i)〉 (1520)

where |χ(i)〉 ∝∑αΨiα|α〉 is called the ”relative state” of the environment with respect to the ith state of the system,

while pi is the associated normalization factor. Note that the definition of the relative state implies that Ψiα =
√
pjχ

(i)
α .

Using these notations it follows that the reduced probability matrix of the system is

ρsys

j,i =
∑

α

ΨjαΨ∗
iα =

√
pipj 〈χ(i)|χ(j)〉 (1521)
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The prototype example for a system-environment entangled state is described by the superposition

|Ψ〉 =
√
p1 |1〉 ⊗ |χ(1)〉+√p2 |2〉 ⊗ |χ(2)〉 (1522)

where |1〉 and |2〉 are orthonormal states of the system. The singlet state of two spin 1/2 particles is possibly the
simplest example for an entangled superposition of this type. Later on we shall see that such entangled superposition
may come out as a result of an interaction between the system and the environment. Namely, depending on the state
of the system the environment, or the measurement apparatus, ends up in a different state χ. Accordingly we do not
assume that χ(1) and χ(2) are orthogonal, though we normalize each of them and pull out the normalization factors
as p1 and p2. The reduced probability matrix of the system is

ρsys

j,i =

(
p1 λ∗

√
p1p2

λ
√
p1p2 p2

)
(1523)

where λ = 〈χ(1)|χ(2)〉. At the same time the environment is in a mixture of non-orthogonal states:

ρenv = p1 |χ(1)〉〈χ(1)|+ p2 |χ(2)〉〈χ(2)| (1524)

The purity of the state of the system in the above example is determined by |λ|, and can be characterized by
trace(ρ2) = 1− 2p1p2(1−|λ|2). The value trace(ρ2) = 1 indicates a pure state, while trace(ρ2) = 1/N with N = 2
characterizes a 50%-50% mixture. Optionally the purity can be characterized by the Von Neumann entropy as
discussed in a later section: This gives S[ρ] = 0 for a pure state and S[ρ] = log(N) with N = 2 for a 50%-50%
mixture.

====== [53.3] Schmidt decomposition

If the ”universe” is in a pure state we cannot write its ρ as a mixture of product states, but we can write its Ψ as an
entangled superposition of product states.

|Ψ〉 =
∑

i

√
pi|i〉 ⊗ |Bi〉 (1525)

where the |Bi〉 is the ”relative state” of subsystem B with respect to the ith state of subsystem A, while pi is the
associated normalization factor. The states |Bi〉 are in general not orthogonal. The natural question that arise is
whether we can find a decomposition such that the |Bi〉 are orthonormal. The answer is positive: Such decomposition
exists and it is unique. It is called Schmidt decomposition, and it is based on singular value decomposition (SVD).
Let us regard Ψiα = Wi,α as an NA ×NB matrix. From linear algebra it is known that any matrix can be written in
a unique way as a product:

W(NA×NB) = UA(NA×NA)D(NA×NB)U
B
(NB×NB) (1526)

where UA and UB are the so called left and right unitary matrices, while D is a diagonal matrix with so called
(positive) singular values. Thus we can re-write the above matrix multiplication as

Ψiα =
∑

r

UAi,r
√
pr U

B
r,α (1527)

Substitution of this expression leads to the result

|Ψ〉 =
∑

r

√
pr|Ar〉 ⊗ |Br〉 (1528)
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where |Ar〉 and |Br〉 are implied by the unitary transformations. We note that the normalization of Ψ implies∑
pr = 1. Furthermore the probability matrix is ρA+B

iα,jβ = Wi,αW
∗
j,β , and therefore the calculation of the reduced

probability matrix can be written as:

ρA = WW † = (UA)D2(UA)† (1529)

ρB = (WT )(WT )† = [(UB)†D2(UB)]∗

This means that the matrices ρA and ρB have the same non-zero eigenvalues {pr}, or in other words it means that
the degree of purity of the two subsystems is the same.

====== [53.4] The violation of Bells’s inequality

We can characterize the entangled state using a correlation function as in the EPR thought experiment. The correlation
function C(θ) = 〈Ĉ〉 is the expectation value of a so-called “witness operator”. If we perform the EPR experiment

with two spin 1/2 particles (see the Fundamentals II section), then the witness operator is Ĉ = σz ⊗ σθ, and the
correlation function comes out C(θ) = − cos(θ), which violates Bell inequality.

Let us see how the result for C(θ) is derived. One possibility is to perform a straightforward calculation using explicit
representation for the assumed singlet state, and for the witness operator in the standard basis:

Ψ =
1√
2





0
1
−1
0



 , Ĉ = σz ⊗ σθ =

(
σθ 0
0 −σθ

)
, C(θ) =

1

2

(
〈σθ〉↓ − 〈σθ〉↑

)
, (1530)

leading to the desired result. There is another way to derive this result, which is more physically illuminating. The
idea is to relate correlation functions to conditional calculation of expectation values. Let A = |a0〉〈a0| be a projector
on state a0 of the first subsystem, and let B some observable which is associated with the second subsystem. We can
write the state of the whole system as an entangled superposition

Ψ =
∑

a

√
pa |a〉 ⊗ |χ(a)〉 (1531)

Then it is clear that 〈A⊗B〉 = pa0〈χ(a0)|B|χ(a0)〉. More generally if A =
∑
a |a〉a〈a| is any operator then

〈A⊗B〉 =
∑

a

pa a 〈χ(a)|B|χ(a)〉 (1532)

Using this formula with A = σz = | ↑〉〈↑ | − | ↓〉〈↓ |, and B = σθ we have p↑ = p↓ = 1/2, and we get the same result
for C(θ) as in the previous derivation.

====== [53.5] Purity and the Von Neumann entropy

The purity of a state can be characterized by the Von Neumann entropy:

S[ρ] = −trace(ρ log ρ) = −
∑

r

pr log pr (1533)

In the case of a pure state we have S[ρ] = 0, while in the case of a uniform mixture of N states we have S[ρ] = log(N).
From the above it should be clear that while the ”universe” might have zero entropy, it is likely that a subsystem
would have a non-zero entropy. For example if the universe is a zero entropy singlet, then the state of each spin is
unpolarized with log(2) entropy.
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We would like to emphasize that the Von Neumann entropy S[ρ] should not be confused with the Boltzmann entropy
S[ρ|A]. The definition of the latter requires to introduce a partitioning A of phase space into cells. In the quantum
case this “partitioning” is realized by introducing a complete set of projectors (a basis). The pr in the case of the
Boltzmann entropy are probabilities in a given basis and not eigenvalues. In the case of an isolated system out of
equilibrium the Von Neumann entropy is a constant of the motion, while the appropriately defined Boltzmann entropy
increases with time. In the case of a canonical thermal equilibrium the Von Neumann entropy S[ρ] turns out to be
equal to the thermodynamic entropy S. The latter is defined via the equation dQ = TdS, where T = 1/β is an
integration factor which is called the absolute temperature.

If the Von Neumann entropy were defined for a classical distributions ρ = {pr}, it would have all the classical “in-
formation theory” properties of the Shanon entropy. In particular if we have two subsystems A and B one would
expect

S[ρA], S[ρB] ≤ S[ρAB] ≤ S[ρA] + S[ρB] (1534)

This property is also satisfied in the quantum mechanical case provided the subsystems are not entangled in a sense
that we define below.

====== [53.6] Quantum entanglement

Let us consider a system consisting of two sub-systems, ”A” and ”B”, with no correlation between them. Then, the
state of the system can be factorized:

ρA+B = ρAρB (1535)

But in reality the state of the two sub-systems can be correlated. In classical statistical mechanics ρA and ρB are
probability functions, while ρA+B is the joint probability function. In the classical state we can always write

ρA+B(x, y) =
∑

x′,y′

ρA+B(x′, y′)δx,x′δy,y′ (1536)

where x and y labels classical definite states of subsystems A and B respectively. This means schematically that we
can write

ρA+B =
∑

r

prρ
(Ar)ρ(Br) (1537)

where r = (x′, y′) is an index that distinguish pure classical states of A⊗ B, and pr = ρA+B(x′, y′) are probabilities
such that

∑
pr = 1, and ρ(Ar) 7→ δx,x′ is a pure classical state of subsystem A, and ρ(Br) 7→ δy,y′ is a pure classical

state of subsystem B. Thus any classical state of A⊗B can be expressed as a mixture of product states.

By definition a quantum state is not entangled if it is a product state or a mixture of product states. Using explicit
matrix representation it means that it is possible to write

ρA+B
iα,jβ =

∑

r

pr ρ
(Ar)
i,j ρ

(Br)
α,β (1538)

It follows that an entangled state, unlike a non-entangled state cannot have a classical interpretation. The simplest
implication of non-entanglement is the validity of the entropy inequality that was mentioned in the previous section.
We can use this mathematical observation in order to argue that the zero entropy singlet state is an entangled state:
It cannot be written as a product of pure states, neither it cannot be a mixture of product states.

The case where ρA+B is a zero entropy pure state deserves further attention. As in the special case of a singlet, we
can argue that if the state cannot be written as a product, then it must be an entangled state. Moreover for the
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Schmidt decomposition procedure it follows that the entropies of the subsystems satisfy S[ρA] = S[ρB]. This looks
counter intuitive at first sight because subsystem A might be a tiny device which is coupled to a huge environment
B. We emphasize that the assumption here is that the ”universe” A⊗B is prepared in a zero order pure state. Some
further thinking leads to the conjecture that the entropy of the subsystems in such circumstance is proportional to the
area of surface that divides the two regions in space. Some researchers speculate that this observation is of relevance
to the discussion of black holes entropy.

====== [53.7] Measurements, the notion of collapse

In elementary textbooks the quantum measurement process is described as inducing “collapse” of the wavefunction.
Assume that the system is prepared in state ρinitial = |ψ〉〈ψ| and that one measures P̂ = |ϕ〉〈ϕ|. If the result of the

measurement is P̂ = 1 then it is said that the system has collapsed into the state ρfinal = |ϕ〉〈ϕ|. The probability for
this “collapse” is given by the projection formula Prob(ϕ|ψ) = |〈ϕ|ψ〉|2.

If one regard ρ(x, x′) or ψ(x) as representing physical reality, rather than a probability matrix or a probability
amplitude, then one immediately gets into puzzles. Recalling the EPR experiment this world imply that once the
state of one spin is measured at Earth, then immediately the state of the other spin (at the Moon) would change from
unpolarized to polarized. This would suggest that some spooky type of “interaction” over distance has occurred.

In fact we shall see that the quantum theory of measurement does not involve any assumption of spooky “collapse”
mechanism. Once we recall that the notion of quantum state has a statistical interpretation the mystery fades away.
In fact we explain (see below) that there is “collapse” also in classical physics! To avoid potential miss-understanding
it should be clear that I do not claim that the classical “collapse” which is described below is an explanation of the
the quantum collapse. The explanation of quantum collapse using a quantum measurement (probabilistic) point of
view will be presented in a later section. The only claim of this section is that in probability theory a correlation is
frequently mistaken to be a causal relation: “smokers are less likely to have Alzheimer” not because cigarettes help
to their health, but simply because their life span is smaller. Similarly quantum collapse is frequently mistaken to be
a spooky interaction between well separated systems.

Consider the thought experiment which is known as the “Monty Hall Paradox”. There is a car behind one of three
doors. The car is like a classical ”particle”, and each door is like a ”site”. The initial classical state is such that the car
has equal probability to be behind any of the three doors. You are asked to make a guess. Let us say that you peak
door #1. Now the organizer opens door #2 and you see that there is no car behind it. This is like a measurement.
Now the organizer allows you to change your mind. The naive reasoning is that now the car has equal probability to
be behind either of the two remaining doors. So you may claim that it does not matter. But it turns out that this
simple answer is very very wrong! The car is no longer in a state of equal probabilities: Now the probability to find it
behind door #3 has increased. A standard calculation reveals that the probability to find it behind door #3 is twice
large compared with the probability to find it behind door #2. So we have here an example for a classical collapse.

If the reader is not familiar with this well known ”paradox”, the following may help to understand why we have this
collapse (I thank my colleague Eitan Bachmat for providing this explanation). Imagine that there are billion doors.
You peak door #1. The organizer opens all the other doors except door #234123. So now you know that the car is
either behind door #1 or behind door #234123. You want the car. What are you going to do? It is quite obvious that
the car is almost definitely behind door #234123. It is also clear the that the collapse of the car into site #234123
does not imply any physical change in the position of the car.

====== [53.8] Quantum measurements, Schroedinger’s cat

What do we mean by quantum measurement? In order to clarify this notion let us consider a system and a detector
which are prepared independently as

|Ψ〉 =

[
∑

a

ψa|a〉
]
⊗ |q = 0〉 (1539)



253

As a result of an interaction we assume that the detector correlates with the system as follows:

ÛmeasurementΨ =
∑

ψa|a〉 ⊗ |q = a〉 (1540)

We call such type of unitary evolution ideal projective measurement. If the system is in a definite a state, then it is not
affected by the detector. Rather, we gain information on the state of the system. One can think of q as representing
a memory device in which the information is stored. This memory device can be of course the brain of a human
observer. Form the point of view of the observer, the result at the end of the measurement process is to have a
definite a. This is interpreted as a ”collapse” of the state of the system. Some people wrongly think that ”collapse”
is something that goes beyond unitary evolution. But in fact this term just makes over dramatization of the above
unitary process.

The concept of measurement in quantum mechanics involves psychological difficulties which are best illustrated by
considering the ”Schroedinger’s cat” experiment. This thought experiment involves a radioactive nucleus, a cat, and
a human being. The half life time of the nucleus is an hour. If the radioactive nucleus decays it triggers a poison
which kills the cat. The radioactive nucleus and the cat are inside an isolated box. At some stage the human observer
may open the box to see what happens with the cat... Let us translate the story into a mathematical language. A
time t = 0 the state of the universe (nucleus⊗cat⊗observer) is

Ψ = | ↑= radioactive〉 ⊗ |q = 1 = alive〉 ⊗ |Q = 0 = ignorant〉 (1541)

where q is the state of the cat, and Q is the state of the memory bit inside the human observer. If we wait a very
long time the nucleus would definitely decay, and as a result we will have a definitely dead cat:

UwaitingΨ = | ↓= decayed〉 ⊗ |q = −1 = dead〉 ⊗ |Q = 0 = ignorant〉 (1542)

If the observer opens the box he/she would see a dead cat:

UseeingUwaitingΨ = | ↑= decayed〉 ⊗ |q = −1 = dead〉 ⊗ |Q = −1 = shocked〉 (1543)

But if we wait only one hour then

UwaitingΨ =
1√
2

[
| ↑〉 ⊗ |q = +1〉+ | ↓〉 ⊗ |q = −1〉

]
⊗ |Q = 0 = ignorant〉 (1544)

which means that from the point of view of the observer the system (nucleus+cat) is in a superposition. The cat at
this stage is neither definitely alive nor definitely dead. But now the observer open the box and we have:

UseeingUwaitingΨ =
1√
2

[
| ↑〉 ⊗ |q = +1〉 ⊗ |Q = +1〉 + | ↓〉 ⊗ |q = −1〉 ⊗ |Q = −1〉

]
(1545)

We see that now, form the point of view of the observer, the cat is in a definite(!) state. This is regarded by the
observer as “collapse” of the superposition. We have of course two possibilities: one possibility is that the observer sees
a definitely dead cat, while the other possibility is that the observer sees a definitely alive cat. The two possibilities
”exist” in parallel, which leads to the ”many worlds” interpretation. Equivalently one may say that only one of the
two possible scenarios is realized from the point of view of the observer, which leads to the ”relative state” concept
of Everett. Whatever terminology we use, ”collapse” or ”many worlds” or ”relative state”, the bottom line is that we
have here merely a unitary evolution.

====== [53.9] Measurements, formal treatment

In this section we describe mathematically how an ideal projective measurement affects the state of the system. First
of all let us write how the U of a measurement process looks like. The formal expression is

Ûmeasurement =
∑

a

P̂ (a) ⊗ D̂(a) (1546)
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where P̂ (a) = |a〉〈a| is the projection operator on the state |a〉, and D̂(a) is a translation operator. Assuming that the

measurement device is prepared in a state of ignorance |q = 0〉, the effect of D̂(a) is to get |q = a〉. Hence

ÛΨ =

[
∑

a

P̂ (a) ⊗ D̂(a)

](
∑

a′

ψa′ |a′〉 ⊗ |q = 0〉
)

=
∑

a

ψa|a〉 ⊗ D̂(a)|q = 0〉 =
∑

a

ψa|a〉 ⊗ |q = a〉 (1547)

A more appropriate way to describe the state of the system is using the probability matrix. Let us describe the above
measurement process using this language. After ”reset” the state of the measurement apparatus is σ(0) = |q=0〉〈q=0|.
The system is initially in an arbitrary state ρ. The measurement process correlates that state of the measurement
apparatus with the state of the system as follows:

Ûρ⊗ σ(0)Û † =
∑

a,b

P̂ (a)ρP̂ (b) ⊗ [D̂(a)]σ(0)[D̂(b)]† =
∑

a,b

P̂ (a)ρP̂ (b) ⊗ |q=a〉〈q=b| (1548)

Tracing out the measurement apparatus we get

ρfinal =
∑

a

P̂ (a)ρP̂ (a) ≡
∑

a

paρ
(a) (1549)

Where pa is the trace of the projected probability matrix P̂ (a)ρP̂ (a), while ρ(a) is its normalized version. We see that
the effect of the measurement is to turn the superposition into a mixture of a states, unlike unitary evolution for
which

ρfinal = U ρ U † (1550)

So indeed a measurement process looks like a non-unitary process: it turns a pure superposition into a mixture. A
simple example is in order. Let us assume that the system is a spin 1/2 particle. The spin is prepared in a pure
polarization state ρ = |ψ〉〈ψ| which is represented by the matrix

ρab = ψaψ
∗
b =

(
|ψ1|2 ψ1ψ

∗
2

ψ2ψ
∗
1 |ψ2|2

)
(1551)

where 1 and 2 are (say) the ”up” and ”down” states. Using a Stern-Gerlach apparatus we can measure the polarization
of the spin in the up/down direction. This means that the measurement apparatus projects the state of the spin using

P (1) =

(
1 0
0 0

)
and P (2) =

(
0 0
0 1

)
(1552)

leading after the measurement to the state

ρfinal = P (1)ρP (1) + P (2)ρP (2) =

(
|ψ1|2 0

0 |ψ2|2
)

(1553)

Thus the measurement process has eliminated the off-diagonal terms in ρ and hence turned a pure state into a mixture.
It is important to remember that this non-unitary non-coherent evolution arise because we look only on the state of
the system. On a universal scale the evolution is in fact unitary.
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[54] Theory of quantum computation

====== [54.1] Motivating Quantum Computation

Present day secure communication is based on the RSA two key encryption method. The RSA method is based on
the following observation: Let N be the product of two unknown big prime numbers p and q. Say that we want to
find are what are its prime factors. The simple minded way would be to try to divide N by 2, by 3, by 5, by 7, and
so on. This requires a huge number (∼ N) of operations. It is assumed that N is so large such that in practice the
simple minded approached is doomed. Nowadays we have the technology to build classical computers that can handle
the factoring of numbers as large as N ∼ 2300 in a reasonable time. But there is no chance to factor larger numbers,
say of the order N ∼ 2308. Such large numbers are used by Banks for the encryption of important transactions. In
the following sections we shall see that factoring of a large number N would become possible once we have a quantum
computer.

Computational complexity: A given a number N can be stored in an n-bit register. The size of the register should
be n ∼ log(N), rounded upwards such that N ≤ 2n. As explained above in order to factor a number which is stored
in an n bit register by a classical computer we need an exponentially large number (∼ N) of operations. Obviously
we can do some of the operations in parallel, but then we need an exponentially large hardware. Our mission is to
find an efficient way to factor an n-bit number that do not require exponentially large resources. It turns out that a
quantum computer can do the job with hardware/time resources that scale like power of n, rather than exponential
in n. This is done by finding a number N2 that has a common divisor with N . Then it is possible to use Euclid’s
algorithm in order to find this common divisor, which is either p or q.

Euclid’s algorithm: There is no efficient algorithm to factor a large number N ∼ 2n. The classical computational
complexity of this task is exponentially large in n. But if we have two numbers N1 = N and N2 we can quite easily
and efficiently find their greater common divisor GCD(N1, N2) using Euclid’s algorithm. Without loss of generality we
assume that N1 > N2. The two numbers are said to be co-prime if GCD(N1, N2) = 1. Euclid’s algorithm is based on
the observation that we can divide N1 by N2 and take the reminder N3 = mod(N1, N2) which is smaller thanN2. Then
we have GCD(N1, N2) = GCD(N2, N3). We iterate this procedure generating a sequence N1 > N2 > N3 > N4 > · · ·
until the reminder is zero. The last non-trivial number in this sequence is the greater common divisor.

The RSA encryption method: The RSA method is based on the following mathematical observation. Given two
prime numbers p and q define N = pq. Define also a and b such that ab = 1 mod [(p− 1)(q − 1)]. Then we have the
relations

B = Aa mod [N ] (1554)

A = Bb mod [N ] (1555)

This mathematical observation can be exploited as follows. Define

public key = (N, a) (1556)

private key = (N, b) (1557)

If anyone want to encrypt a message A, one can use for this purpose the public key. The coded message B cannot be
decoded unless one knows the private key. This is based on the assumption that the prime factors p and q and hence
b are not known.

====== [54.2] The factoring algorithm

According to Fermat’s theorem, if N is prime, then MN = M mod (N) for any number M(< N). This can be
re-phrased as saying that the period of the function f(x) = Mx mod (N) is r = N−1. That means f(x+ r) = f(x).
If N is co-prime to M , but not necessarily prime, then the period of f(x) would be smaller than N , because mod N
is a finite group. This integer period r is called “the order”.

The quantum computer is a black box that allows to find the period r of a function f(x). How this is done will be
discussed in the next section. Below we explain how this ability allows us to factor a given large number N .
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(1) We have to store N inside an n-bit register.

(2) We pick a large number M which is smaller than N . We assume that M is co-prime to N . This assumption can
be easily checked using Euclid’d algorithm. If by chance the chosen M is not co-prime to N then we are lucky
and we can factor N without quantum computer. So we assume that we are not lucky, and M is co-prime to N .

(3) We build a processor that can calculate the function f(x) = Mx mod (N). This function has a period r which
is smaller than N .

(4) Using a quantum computer we find one of the Fourier components of f(x) and hence its period r. This means
that M r = 1 mod (N).

(5) If r is not even we have to run the quantum computer a second time with a different M . There is a mathematical
theorem that guarantees that with probability of order one we should be able to find M for which r is even.

(6) Assuming that r is even we define Q = M r/2 mod (N). We have Q2 = 1 mod (N), and therefore
(Q− 1)(Q+ 1) = 0 mod (N). Consequently both (Q − 1) and (Q + 1) must have either p or q as common
divisors with N .

(6) Using Euclid’s algorithm we find the GCD of N and Ñ = (Q− 1), hence getting either p or q.

The bottom line is that given N and M an an input, we would like to find the period r of the functions

f(x) = Mx mod (N) (1558)

Why do we need a quantum computer to find the period? Recall that the period is expected to be of order N .
Therefore the x register should be nc bits, where nc is larger or equal to n. Then we have to make order of 2nc

operations for the purpose of evaluating f(x) so as to find out its period. It is assumed that n is large enough such
that this procedure is not practical. We can of course try to do parallel computation of f(x). But for that we need
hardware which is larger by factor of 2n. It is assumed that to have such computational facility is equally not practical.
We say that factoring a large number has an exponentially complexity.

The idea of quantum processing is that the calculation of f(x) can be done “in parallel” without having to duplicate
the hardware. The miracle happens due to the superposition principle. A single quantum register of size nc can be
prepared at t = 0 with all the possible input x values in superposition. The calculation of f(x) is done in parallel
on the prepared state. The period of f(x) in found via a Fourier analysis. In order to get good resolution nc should
be larger than n so as to have 2nc ≫ 2n. Neither the memory, nor the number of operation, are required to be
exponentially large.

====== [54.3] The quantum computation architecture

We shall regard the computer as a machine that has registers for memory and gates for performing operations. The
complexity of the computation is determined by the total number of memory bits which has to be used times the
number of operations. In other words the complexity of the calculation is the product memory× time. As discussed
in the previous section classical parallel computation do not reduce the complexity of a calculation. Both classical
and quantum computers work according to the following scheme:

|output〉 = U [input] |0〉 (1559)

This means that initially we set all the bits or all the qubits in a zero state (a reset operation), and then we operate
on the registers using gates, taking the input into account. It is assumed that there is a well define set of elementary
gates. An elementary gate (such as ”AND”) operates on few bits (2 bits in the case of AND) at a time. The size of
the hardware is determined by how many elementary gates are required in order to realize the whole calculation.

The quantum analog of the digital bits (”0” or ”1”) are the qubits, which can be regarded as spin 1/2 elements. These
are ”analog” entities because the ”spin” can point in any direction (not just ”up” or ”down”). The set of states such
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that each spin is aligned either ”up” or ”down” is called the computational basis. Any other state of a register can be
written a superposition:

|Ψ〉 =
∑

x0,x1,x2,...

ψ(x0, x1, x2...) |x0, x1, x2, ...〉 (1560)

The architecture of the quantum computer which is requited in order to find the period r of the function f(x) is
illustrated in the figure below. We have two registers:

x = (x0, x1, x2, ..., xnc−1) (1561)

y = (y0, y0, y2, ..., yn−1) (1562)

The registers x and y can hold binary numbers in the range x < Nc and y < N̄ respectively, where Nc = 2nc and
N̄ = 2n ∼ N . The y register is used by the CPU for processing mod(N) operations and therefore it requires n bits.
The x register has nc bits and it is used to store the inputs for the function f(x). In order to find the period of f(x)
the size nc of the latter register should be some number (say 100) times n. Such large nc is required if we want to
determine the period with large accuracy.

x1

xnc−1

x0

y0
y1

yn−1

...

...

viewerx=00..000

y=00..001 M

FH

We are now ready to describe the quantum computation. In later sections we shall give more details, and in par-
ticular we shall see that the realization of the various unitary operations which are listed below does not require an
exponentially large hardware. The preliminary stage is to make a ”reset” of the registers, so as to have

|Ψ〉 = |x; y〉 = |0, 0, 0, ..., 0, 0; 1, 0, 0, ..., 0, 0〉 (1563)

Note that it is convenient to start with y = 1 rather than y = 0. Then come a sequence of unitary operations

U = UFUMUH (1564)

where

UH = UHadamard ⊗ 1 (1565)

UM =
∑

x

|x〉〈x| ⊗ U (x)
M (1566)

UF = UFourier ⊗ 1 (1567)

The first stage is a unitary operation UH that sets the x register in a democratic state. It can realized by operating
on Ψ with the Hadamard gate. Disregarding normalization we get

|Ψ〉 =
∑

x

|x〉 ⊗ |y=1〉 (1568)
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The second stage is an x controlled operation UM . This stage is formally like a quantum measurement: The x register
is ”measured” by the y register. The result is

|Ψ〉 =
∑

x

|x〉 ⊗ |y=f(x)〉 (1569)

Now the y register is entangled with the x register. The fourth stage is to perform Fourier transform on the x register:

|Ψ〉 =
∑

x

[
∑

x′

ei
2π
Nc
xx′ |x′〉

]
⊗ |f(x)〉 (1570)

We replace the dummy integer index x′ by k = (2π/Nc)x
′ and re-write the result as

|Ψ〉 =
∑

k

|k〉 ⊗
[
∑

x

eikx|f(x)〉
]
≡

∑

k

pk|k〉 ⊗ |χ(k)〉 (1571)

The final stage is to measure the x register. The probability to get k as the result is

pk =

∣∣∣∣∣

∣∣∣∣∣
∑

x

eikx|f(x)〉
∣∣∣∣∣

∣∣∣∣∣

2

(1572)

The only non-zero probabilities are associated with k = integer × (2π/r). Thus we are likely to find one of these k
values, from which we can deduce the period r. Ideally the error is associated with the finite length of the x register.
By making the x register larger the visibility of the Fourier components becomes better.

====== [54.4] Elementary quantum gates

The simplest gates are one quibit gates. They can be regarded as spin rotations. Let us list some of them:

T =

(
1 0
0 eiπ/4

)
(1573)

S = T 2 =

(
1 0
0 i

)

Z = S2 =

(
1 0
0 −1

)
= σz = ie−iπSz

X =

(
0 1
1 0

)
= σx = ie−iπSx = NOT gate

Y =

(
0 −i
i 0

)
= σy = ie−iπSy = iR2

H =
1√
2

(
1 1
1 −1

)
=

1√
2
(σx + σy) = ie−iπSn = Hadamard gate

R =
1√
2

(
1 −1
1 1

)
=

1√
2
(1− iσy) = e−i(π/2)Sy = 90deg Rotation

We have R4 = −1 which is a 2π rotation in SU(2). We have X2 = Y 2 = Z2 = H2 = 1 which implies that these are π
rotations in U(2). We emphasize that though the operation of H on ”up” or ”down” states looks like π/2 rotation,
it is in fact a π rotation around a 45o inclined axis:

H =
1√
2

(
1 1
1 −1

)
=

(
1√
2
, 0,

1√
2

)
·→σ =

→
n ·→σ (1574)



259

More interesting are elementary gates that operate on two qubits. In classical computers it is popular to use ”AND”
and ”OR” gates. In fact with ”AND” and the one-bit operation ”NOT” one can build any other gate. The ”AND”
cannot be literally realized as quantum gate because it does not correspond to unitary operation. But we can build
the same logical circuits with ”CNOT” (controlled NOT) and the other one-qubit gates. The definition of CNOT is
as follows:

UCNOT =





1 0
0 1

0

0
0 1
1 0



 (1575)

The control bit is not affected while the y bit undergoes NOT provided the x bit is turned on. The gate is schematically
illustrated in the following figure:

y + xy

x x

I is amusing to see how SWAP can be realized by combining 3 CNOT gates:

USWAP =





1
0 1
1 0

1



 (1576)

which is illustrated is the following diagram:

y

x
x

x+y x+yy

x 2x+y 2x+y

3x+2y
x

y

The generalization of CNOT to the case where we have two qubit control register is known as Toffoli. The NOT
operation is performed only if both control bits are turned on:

TT T TH

T T S

T

H

The realization of the Toffoli gate opens the way to the quantum realization of an AND operation. Namely, by setting
y = 0 at the input, the output would be y = x1 ∧ x2. For generalization of the Toffoli gate to the case where the x
register is of arbitrary size see p.184 of Nielsen and Chuang.
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====== [54.5] The Hadamard Transform

In the following we discuss the Hadamard and the Fourier transforms. These are unitary operations that are defined
on the multi-qubit x register. A given basis state |x0, x1, x3, ...〉 can be regarded as the binary representation of an
integer number:

x =

nc∑

r=0

xr2
r (1577)

We distinguish between the algebraic multiplication for which we use the notation xx′, and the scalar product for
which we use the notation x · x′,

x · x′ =
∑

r

xrx
′
r (1578)

xx′ =
∑

r,s

xrx
′
s2
r+s

So far we have defined the single qubit Hadamard gate. If we have an multi-qubit register it is natural to define

UHadamard = H ⊗H ⊗H ⊗ · · · (1579)

The operation of a single-qubit Hadamard gate can be written as

|x1〉 H−→ 1√
2

(|0〉+ (−1)
x1 |1〉) (1580)

If we have a multi-qubit register we simply have to perform (in parallel) an elementary Hadamard transform on each
qubit:

|x0, x1, ..., xr, ...〉 H−→
∏

r

1√
2

(|0〉+ (−1)xr |1〉) =
1√
2nc

∏

r




∑

kr=0,1

(−1)krxr |kr〉



 (1581)

=
1√
Nc

∑

k0,k1,...

(−1)k0x0+k1x1+... |k0, k1, ..., kr, ...〉 =
1√
Nc

∑

k

(−1)k·x |k〉

The Hadmard transform is useful in order to prepare a ”democratic” superposition state as follows:

|0, 0, ..., 0〉 H−→ 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ ...⊗ 1√

2
(|0〉+ |1〉) 7→ 1√

Nc





1
1
.
.
.
1




(1582)

To operate with a unitary operator on this state is like making parallel computation on all the possible x basis states.
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====== [54.6] The quantum Fourier transform

The definitions of the Hadamard transform and the quantum Fourier transform are very similar in style:

UHadamard|x〉 =
1√
Nc

∑

k

(−1)k·x|k〉 (1583)

UFourier|x〉 =
1√
Nc

∑

k

e−i
2π
Nc
kx|k〉 (1584)

Let us write the definition of the quantum Fourier transform using different style so as to see that it is indeed a
Fourier transform operation in the conventional sense. First we notice that its matrix representation is

〈x′|UFourier|x〉 =
1√
Nc

e−i
2π
Nc
x′x (1585)

If we operate with it on the state |ψ〉 =
∑

x ψx|x〉 we get |ϕ〉 =
∑

x ϕx|x〉, where the column vector ϕx is obtained
from ψx by a multiplication with the matrix that represents UFourier. Changing the name of the dummy index form x
to k we get the relation

ϕk =
1√
Nc

Nc−1∑

x=0

e−i
2π
Nc
kxψx (1586)

This is indeed the conventional definition of





ψ0

ψ1

ψ2

.

.

.
ψNc−1





FT−→





ϕ0

ϕ1

ϕ2

.

.

.
ϕNc−1





(1587)

The number of memory bits which are required to store these vectors in a classical register is of order N ∼ 2n. The
number of operations which is involved in the calculation of a Fourier transform seems to be of order N2. In fact
there is an efficient “Fast Fourier Transform” (FFT) algorithm that reduces the number of required operations to
N logN = n2n. But this is still an exponentially large number in n. In contrast to that a quantum computer can
store these vectors in n qubit register. Furthermore, the ”quantum” FT algorithm can perform the calculation with
only n2 logn log logn operations. We shall not review here how the Quantum Fourier transform is realized. This
can be found in the textbooks. As far as this presentation is concerned the Fourier transform can be regarded as a
complicated variation of the Hadamard transform.

====== [54.7] Note on analog or optical computation

A few words are in order here regarding quantum computation versus classical analog computation. In an analog
computer every analog ”bit” can have a voltage within some range, so ideally each analog bit can store infinite amount
of information. This is of course not the case in practice because the noise in the circuit defines some effective finite
resolution. Consequently the performance is not better compared with a digital computers. In this context the analog
resolution is a determining factor in the definition of the memory size. Closely related is optical computation. This
can be regarded as a special type of analog computation. Optical Fourier Transform of a ”mask” can be obtained
on a ”screen” that is placed in the focal plane of a lens. The FT is done in one shot. However, also here we have
the same issue: Each pixel of the mask and each pixel of the screen is a hardware element. Therefore we still need
an exponentially large hardware just to store the vectors. At best the complexity of FT with optical computer is of
order 2n.
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====== [54.8] The UM operation

The CNOT/Toffoli architecture can be generalized so as to realize any operation of the type y = f(x1, x2, ...), as an
x-controlled operation, where y is a single qubit. More generally we have

x = (x0, x1, x2...xnc−1) (1588)

y = (y0, y1, y2, ...yn−1) (1589)

and we would like to realize a unitary controlled operation

U =
∑

x

|x〉〈x| ⊗ U (x) ≡ P (0) ⊗ U (0) + P (1) ⊗ U (1) + P (2) ⊗ U (2) + ... (1590)

This is formally like a measurement of the x register by the y register. Note that x is a constant of motion, and that
U has a block diagonal form:

〈x′, y′|U |x, y〉 = δx′,xU
(x)
y′,y =





U (0)

U (1)

U (2)

...



 (1591)

Of particular interest is the realization of a unitray operation that maps y = 1 to y = f(x). Let us look on

U
(x)
M

∣∣∣y
〉

=
∣∣∣f(x)y mod (N)

〉
(1592)

If M is co-prime to N then U is merely a permutation matrix, and therefore it is unitary. The way to realize this
operation is implied by the formula

Mx = M
P

s xs2s

=
∏

s

(
M2s

)xs

=

nc−1∏

s=0

Mxs
s (1593)

which requires nc stages of processing. The circuit is illustrated in the figure below. In the s stage we have to perform
a controlled multiplication of y by Ms ≡M2s

mod (N).

x1

x2

M1 M2M0

x0

xM  yy=1
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[55] The foundation of statistical mechanics

====== [55.1] The canonical formalism

Consider some system, for example particles that are confined in a box. The Hamiltonian is

H = H(r,p;X) (1594)

where X is some control parameter, for example the length of the box. The energy of the system is defined as

E ≡ 〈H〉 = trace(Hρ) =
∑

r

prEr (1595)

where is the last equality we have assume that we are dealing with a stationary state. Similarly the expression for
the generalized force y is

y ≡
〈
−∂H
∂X

〉
=

∑

r

pr

(
− Er
dX

)
(1596)

It is argued that the weak interaction with an environment that has a huge density of state ̺env leads after relaxation
to a canonical state which is determined by the parameter β = d log(̺env(E))/dE that characterizes the environment.
The argument is based on the assumption that the universe (system+environment) is a closed system with some total
energy Etotal. After ergodization the system get into a stationary-like state. The probability pr to find the system in
state Er is proportional to ̺env(Etotal−Er) ≈ ̺env(Etotal)e

−βEr . Accordingly

pr =
1

Z
e−βEr (1597)

where the so-called partition function provides the normalization

Z (β;X) =
∑

r

e−βEr (1598)

One observes that the energy can be obtained from

E = −∂ lnZ

∂β
(1599)

while the generalized force is

y =
1

β

∂ lnZ

∂X
(1600)

If we slightly change X and β and assume that the state of the system remains canonical then

dE =
∑

r

dprEr +
∑

prdEr ≡ TdS − ydX (1601)

where the absolute temperature is defined as the integration factor of the first term

T = integration factor =
1

β
(1602)
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and the implied definition of the thermodynamic entropy is

S = −
∑

pr ln pr (1603)

Note that the thermodynamic entropy is an extensive quantity in the thermodynamic limit. At this state it is
convenient to define the Helmholtz generating function

F (T,X) ≡ − 1

β
lnZ(β;X) (1604)

which allows to write the state equation in an elegant way:

S = −∂F
∂T

(1605)

y = − ∂F
∂X

(1606)

and

E = F + TS (1607)

====== [55.2] Work

In the definition of work the system and the environment are regarded as one driven closed unit. On the basis of the
“rate of change formula” we have the following exact expression:

W = −
∫
〈F 〉t dX (1608)

where F = −dH/dX . Note that 〈F〉t is calculated for the time dependent (evolving) state of the system. From linear
response theory of driven closed systems we know that in leading order

〈F〉t ≈ 〈F〉X − ηẊ (1609)

The first terms is the conservative force, which is a function of X alone. The subscript implies that the expectation
value is taken with respect to the instantaneous adiabatic state. The second term is the leading correction to the
adiabatic approximation. It is the “friction” force which is proportional to the rate of the driving. The net conservative
work is zero for a closed cycle while the “friction” leads to irreversible dissipation of energy with a rate ηẊ2.

The above reasoning implies that for a quasi static process we can calculate the work as the sum of two contributions:
W = −W +Wirreversible. The conservative work is defined as

W =

∫ B

A

y(X)dX (1610)

The rate of irreversible work is

Ẇirreversible = ηẊ2 (1611)

where η is the “friction” coefficient, which can be calculated using linear response theory.
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====== [55.3] Heat

In order to understand which type of statements can be extracted form the canonical formalism we have to discuss
carefully the physics of work and heat. We distinguish between the system and the environment and write the
Hamiltonian in the form

Htotal = H(r,p;X(t)) +Hint +Henv (1612)

It is implicit that the interaction term is extremely small so it can be ignored in the calculation of the total energy.
We define

W = work ≡
(
〈Htotal〉B − 〈Htotal〉A

)
(1613)

Q = heat ≡ −
(
〈Henv〉B − 〈Henv〉A

)
(1614)

Efinal − Einitial ≡ 〈H〉B − 〈H〉A = Q + W (1615)

If for a general process we know the work W and the change in the energy of the system, then we can deduce
what was the heat flow Q. If we compare dE = TdS − ydX with the expression dE = d̄Q + d̄W we deduce that
TdS = d̄Q+d̄Wirreversible. This implies that the change in the entropy of the system is:

Sfinal − Sinitial =

∫ B

A

1

T

(
d̄Q+d̄Wirreversible

)
(1616)

Optionally we can write

∫ B

A

TdS = Q+Wirreversible (1617)

This is the change in the energy
∑

r dprEr which is resulted from transitions between levels. These transitions are
induced by the coupling to the environment and/or by the non-adiabaticity of the driving.

====== [55.4] The second law of thermodynamics

There are two possible approaches to discuss irreversible processes and the notion of entropy. One is based on the
theory of ergodic motion, while the other on the above thermodynamic approach. We summarize both in this section,
and exploit the opportunity to distinguish between Shanon entropy, Von-Newman entropy, Boltzmann entropy and
Thermodynamic entropy. All are defined by the same look alike formula S = −∑r pr log(pr) but the context and the
meaning of the pr is in general not the same.

If we have a probability distribution {pr} then S provides a measure for the uncertainty which is involved in our
knowledge of the statistical state. This point of view that regards S as an information measure has been promoted
by Shanon. In the quantum mechanical context we define “classical state” as implying 100% certainty for any
measurement. Such states do not exist in Nature. Rather the states of minimum uncertainty in N dimensional Hilbert
space are the pure states, and they have finite information entropy. See http://arxiv.org/abs/quant-ph/0401021.
They should be contrasted with the worst mixed state whose entropy is S = log(N). Irrespective of that, Von-Newman
has used a look-alike formula in order to characterize the purity of the state. In the Von-Newman definition of purity
the pr are the weights of pure states in the mixture. It is important to realize that the Von-Newman entropy has
nothing to do with the theory of irreversibility. If we consider for example the free expansion of a wavepacket in a big
chaotic box, then we have S = 0 at any moment. Still it is nice that the Von-Newman entropy of a canonical state
coincides with the thermodynamic definition.

It was Boltzmann who has defined S is a way that allows to discuss irreversibility. The idea was to divide the phase
space of a system into small cells, and to characterize the statistical state in this representation using S. Then
Boltzmann has proposed the “H theorem” stating that S has the tendency to increase with time if the motion is

http://arxiv.org/abs/quant-ph/0401021
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chaotic. The same reasoning can be carried out in the quantum mechanical context where the division of Hilbert
space into “cells” is defined by a complete set of projectors. Obviously in the latter context recurrences imply that
the dynamics of a quantized closed chaotic system looks irreversible only for a limited time.

Coming back to the thermodynamic definition of entropy we would like to see how it is related to the theory of
irreversibility. For this purpose let us discuss again its definition within the framework of the canonical formalism.
The state of a system in equilibrium is represented by a “point” in the canonical space (β,X), where X is a set of
control parameters. If we have a closed system we can take it from state A to state B adiabatically in a reversible
manner. This way we can define set of adiabatic surfaces:

∑

r

dprEr =

[
∑

r

dpr
dβ

Er

]
dβ +

[
∑

r

dpr
dX

Er

]
dX = 0 (1618)

We can label each adiabatic surface by a number that we would like to call entropy. The convention would be that
S[A] < S[B] if we can get from A to B via an irreversible process. Then it is possible to re-write the left hand side
of the above equation as T (β,X)dS, where the implied definition of the function T (β,X) depends on our somewhat
arbitrary definition of the function S(β,X).

At this stage the definition of the entropy function is not unique, and the function T (β,X) might depended on X . By
definition the adiabatic surfaces are described by the equation S(β,X) = const. For a reversible quasi static process
we can make the identification d̄Q = T (β,X)dS. During a reversible quasi-static process the change of the entropy of
the system is

∫
d̄Q/Tsys(β,Xsys) while that of the bath is −

∫
d̄Q/Tbath(β,Xbath). We would like to define the entropy

of the combined system+bath as the sum of the respective entropies, and to have zero entropy change if the process
is reversible. This wishful thinking can be realized if the so-called integration factor T (β,X) is a function of β alone.
Indeed the canonical formalism implies that such integration factor exists, leading to the canonical definitions of
absolute temperature and thermodynamic entropy.

====== [55.5] Fluctuations

The partition function and hence the thermodynamic equations of state give information only on the spectrum {En}
of the system. In the classical context this observation implies that a magnetic field has no influence on the equilibrium
state of a system because the spectrum remains E = mv2/2 with 0 < |v| <∞. In order to probe the dynamics we have
to look on the fluctuations S(t) = 〈F(t)F(0)〉, where F is some observable. The Fourier transform of S(t) describes
the power spectrum of the fluctuations:

S̃(ω) =

∫ ∞

−∞
S(t)eiωτdτ =

∑

n

pn
∑

m

|Fmn|2 2πδ (ω − (Em−En)) (1619)

This is the same object that appears in the Fermi-Golden-rule for the rate of transitions due to a perturbation
term V = −f(t)F . In the above formula ω > 0 corresponds to absorption of energy (upward transitions), while
ω < 0 corresponds to emission (downward transitions). It is a straightforward algebra to show that for a canonical
preparations with pn ∝ exp(−En/T ) there is a detailed balance relation:

S̃(ω) = S̃(−ω) exp

(
~ω

T

)
(1620)

This implies that if we couple to the system another test system (e.g. a two level “thermometer”) it would be driven
by the fluctuations into a canonical state with the same temperature.

The connection with Fermi-Golden-rule is better formalized within the framework of the so called fluctuation-
dissipation relation. Assume that the system is driven by varying a parameter X , and define F as the associated
generalized force. The Kubo formula (see Dynamics and driven systems lectures) relates the response kernel to S(t).
In particular the dissipation coefficient is:

η(ω) =
S̃(ω)− S̃(−ω)

2ω
(1621)
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If the system is in a canonical state it follow that the zero frequency response is η0 = S̃(0)/(2T ). If we further assume
“Ohmic response”, which means having constant η(ω) = η0 up to some cutoff frequency, then the above relation can
be inverted:

S̃ohmic(ω) = η0
2ω

1− e−ω/T
(1622)

The best known application of this relation is known as the Nyquist theorem. If a ring is driven by an electro-motive
force −Φ̇, then the rate of heating is Ẇ = GΦ̇2, which is know as Joule law. The generalized force which is associated
with Φ is the current I, and G is known as the conductance. Note that Joule law is equivalent to Ohm law 〈I〉 = −GΦ̇.
It follows from the fluctuation-dissipation relation that the fluctuations of the current at equilibrium for ω ≪ T are
described by S̃(ω) = 2GT . It should be clear that in non-equilibrium we might have extra fluctuations, which in this
example are known as shot noise.

====== [55.6] The modeling of the environment

It is common to model the environment as a huge collection of harmonic oscillators, and to say that the system if
subject to the fluctuations of a field variable F which is a linear combination of the bath coordinates:

F =
∑

α

cαQα =
∑

α

cα

(
1

2mαωα

)1/2

(aα + a†α) (1623)

For preparation of the bath in state n = {nα} we get

S̃(ω) =
∑

α

∑

±
c2α |〈nα±1|Qα|nα〉|2 2πδ(ω ∓ ωα) (1624)

Using

〈nα+1|Qα|nα〉 =

(
1

2mαωα

)1/2 √
1 + nα (1625)

〈nα−1|Qα|nα〉 =

(
1

2mαωα

)1/2 √
nα (1626)

we get

S̃(ω) =
∑

α

1

2mαωα
2πc2α

[
(1+nα)δ(ω − ωα) + nαδ(ω + ωα)

]
(1627)

For a canonical preparation of the bath we have 〈nα〉 = f(ωα) ≡ 1/(eω/T − 1). It follows that

S̃(ω) = 2J(|ω|)×
{

(1 + f(ω))
f(−ω)

= 2J(ω)
1

1− e−βω
(1628)

where we used f(−ω) = −(1 + f(ω)), and defined the spectral density of the bath as

J(ω) =
π

2

∑

α

c2α
mαωα

δ(ω − ωα) (1629)

with anti-symmetric continuation. For an Ohmic bath J(ω) = ηω, with some cutoff frequency ωc.
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