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Introduction

Solid state physics (or condensed matter physics) is one of the most active and versatile branches
of modern physics that have developed in the wake of the discovery of quantum mechanics. It
deals with problems concerning the properties of materials and, more generally, systems with
many degrees of freedom, ranging from fundamental questions to technological applications. This
richness of topics has turned solid state physics into the largest subfield of physics; furthermore,
it has arguably contributed most to technological development in industrialized countries.
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Figure 1: Atom cores and the surrounding electrons.

Condensed matter (solid bodies) consists of atomic nuclei (ions), usually arranged in a regular
(elastic) lattice, and of electrons (see Figure 1). As the macroscopic behavior of a solid is
determined by the dynamics of these constituents, the description of the system requires the use
of quantum mechanics. Thus, we introduce the Hamiltonian describing nuclei and electrons,

ﬁ - ﬁe+ﬁn+ﬁn—ev (1)
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where H, (H,) describes the dynamics of the electrons (nuclei) and their mutual interaction and
Hn e includes the interaction between ions and electrons. The parameters appearing are

m | free electron mass 9.1094 x 10~3'kg
e elementary charge 1.6022 x 10~ 9As
M; | mass of j-th nucleus ~10% — 10*xm
Zj | atomic (charge) number of j-th nucleus

The characteristic scales known from atomic and molecular systems are



Length: Bohr radius az = A?/me? ~ 0.5 x 10~ m
Energy: Hartree e?Jap = me*/h? = mc?a® ~ 27eV = 2Ry

with the fine structure constant a = e?/fic = 1/137. The energy scale of one Hartree is much
less than the (relativistic) rest mass of an electron (~ 0.5MeV), which in turn is considered small
in particle physics. In fact, in high-energy physics even physics at the Planck scale is considered,
at least theoretically. The Planck scale is an energy scale so large that even gravity is thought
to be affected by quantum effects, as

h hG
Eplanck = ¢/ g ~10°GeV,  Iplnak = Vo~ 16 10735m, (3)

where G = 6.673 x 10~ "'m3kg~'s ™2 is the gravitational constant. This is the realm of the GUT
(grand unified theory) and string theory. The goal is not to provide a better description of
electrons or atomic cores, but to find the most fundamental theory of physics.
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Figure 2: Energy scales in physics.

In contrast, in solid state physics we are dealing with phenomena occurring at room temperature
(T ~ 300K) or below, i.e., at characteristic energies of about E ~ kzT ~ 0.03eV = 30meV,
which is even much smaller than the energy scale of one Hartree. Correspondingly, the impor-
tant length scales are given by the extension of the system or of the electronic wave functions.
The focus is thus quite different from the one of high-energy physics.

There, a highly successful phenomenological theory for low energies, the so-called standard
model, exists, whereas the underlying theory for higher energies is unknown. In solid state
physics, the situation is reversed. The Hamiltonian (1) describes the known ’high-energy’ physics
(on the energy scale of Hartree), and one aims at describing the low-energy properties using re-
duced (effective, phenomenological) theories. Both tasks are far from trivial.

Among the various states of condensed matter that solid state theory seeks to describe are
metals, semiconductors, and insulators. Furthermore, there are phenomena such as magnetism,
superconductivity, ferroelectricity, charge ordering, and the quantum Hall effect. All of these
states share a common origin: Electrons interacting among themselves and with the ions through
the Coulomb interaction. More often than not, the microscopic formulation in (1) is too compli-
cated to allow an understanding of the low-energy behavior from first principles. Consequently,
the formulation of effective (reduced) theories is an important step in condensed matter theory.
On the one hand, characterizing the ground state of a system is an important goal in itself. How-
ever, measurable quantities are determined by excited states, so that the concept of ’elementary
excitations’ takes on a central role. Some celebrated examples are Landau’s quasiparticles for



Fermi liquids, the phonons connected to lattice vibrations, and magnons in ferromagnets. The
idea is to treat the ground state as an effective vacuum in the sense of second quantization,
with the elementary excitations as particles on that vacuum. Depending on the system, the
vacuum may be the Fermi sea or some state with a broken symmetry, like a ferromagnet, a
superconductor, or the crystal lattice itself.

According to P. W. Anderson,! the description of the properties of materials rests on two princi-
ples: The principle of adiabatic continuity and the principle of spontaneously broken symmetry.
By adiabatic continuity we mean that complicated systems may be replaced by simpler systems
that have the same essential properties in the sense that the two systems may be adiabatically
deformed into each other without changing qualitative properties. Arguably the most impres-
sive example is Landau’s Fermi liquid theory mentioned above. The low-energy properties of
strongly interacting electrons are the same as those of non-interacting fermions with renormal-
ized parameters. On the other hand, phase transitions into states with qualitatively different
properties can often be characterized by broken symmetries. In magnetically ordered states the
rotational symmetry and the time-reversal invariance are broken, whereas in the superconduct-
ing state the global gauge symmetry is. In many cases the violation of a symmetry is a guiding
principle which helps to simplify the theoretical description considerably. Moreover, in recent
years some systems have been recognized as having topological order which may be considered
as a further principle to characterize low-energy states of matter. A famous example for this is
found in the context of the Quantum Hall effect.

The goal of these lectures is to introduce these basic concepts on which virtually all more elab-
orate methods are building up. In the course of this, we will cover a wide range of frequently
encountered ground states, starting with the theory of metals and semiconductors, proceeding
with magnets, Mott insulators, and finally superconductors.

'P.W. Anderson: Basic Notions of Condensed Matter Physics, Frontiers in Physics Lecture Notes Series,
Addison-Wesley (1984).



Chapter 1

Electrons in the periodic crystal -
band structure

One of the characteristic features of many solids is the regular arrangement of their atoms
forming a crystal. Electrons moving in such a crystal are subject to a periodic potential which
originates from the lattice of ions and an averaged electron-electron interaction (like Hartree-
Fock approximation). The spectrum of extended electronic states, i.e. delocalized eigenstates of
the Schrodinger equation, form bands of allowed energies and gaps of ”forbidden” energies.
There are two limiting starting points towards the understanding of the band formation: (1)
the free electron gas whose continuous spectrum is broken up into bands under the influence of
a periodic potential (electrons undergo Bragg scattering); (2) independent atoms are brought
together into a lattice until the outer-most electronic states overlap and lead to delocalized
states turning a discrete set of states into continua of electronic energies - bands. In this
chapter we will address the emergence of band structures from these two limiting cases. The
band structure of electrons is essential for the basic classification of materials into metals and
insulators (semiconductors).

1.1 Symmetries of crystals

1.1.1 Space groups of crystals

Most solids consist of a regular lattice of atoms with perfectly repeating structures. The minimal
repeating unit of such a lattice is the unit cell. The symmetries of a crystal are contained in
the space group R, a group of symmetry operations (translations, rotations, the inversion or
combinations) under which the crystal is left invariant. In three dimensions, there are 230
different space groups! (cf. Table 1.1).

! All symmetry transformations form together a set which has the properties of a group. A group G combined
with a multipliation ”+” has the following properties:

e the product of two elements of G is alsoin G: a,be G = axb=ceqg.
e multiplications are associative: a x (b*c) = (a* b) * c.

e 2 unit element e € G exists with: exa=axe=aforalla € G.

e for every element a € G there is an inverse aleGwitha' xa=axa® =e.

A group with a * b = bx* a for all pairs of element is called Abelian group, otherwise it is non-Abelian. A subset
G’ C G is called a subgroup of G, if it is a group as well.
Guides to group theory in the context of condensed matter physics can be found in the textbooks

- Mildred S. Dresselhaus, Gene Dresselhaus and Ado Jorio: Group Theory - Application to the Physics of
Condensed Matter

- Peter Y. Yu and Manuel Cardona: Fundamentals of Semiconductors, Springer.



We consider here a crystal displayed as a point lattice, each point either symbolizing an atom or
a whole unit cell (Fig.1.1 for a square lattice). Translations in the space group are represented by
linear combinations of a basic set of translation vectors {a;} (primitive lattice vectors) connecting
lattice points. Any translation that maps the lattice onto itself is a linear combination of the
{a;} with integer coefficients,

R, = niaq + noas + nzas. (1.1)
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Figure 1.1: Crystal point lattice in two dimensions: the vectors a; and as form the basic set
of translations and R = 2a; + as in the figure. The shaded area is the Wigner-Seitz cell which
is obtained by drawing perpendicular lines (planes in three dimensions) through the center of
all lines connecting neighboring lattice points. The Wigner-Seitz cell also constitutes a unit cell
of the lattice.

General symmetry transformations including general elements of the space group may be written
in the notation due to Wigner,

v = gr+a={gla}r, (1.2)

where g represents a rotation, reflection or inversion with respect to lattice points, axes or
planes. The elements g form the generating point group P. In three dimensions there are 32
point groups. We distinguish the following basic symmetry operations:

basic translations {Ela},
rotations, reflections, inversions {g|0},

screw axes, glide planes {gla},

where F is the unit element (identity) of P. A screw axis is a symmetry operation of a rotation
followed by a translation along the rotation axis. A glide plane is a symmetry operation with
reflection at a plane followed by a translation along the same plane. The symmetry operations
{g]a}, together with the associative multiplication

{gla}{d'|la"} = {g9d'lga’ + a} (1.3)

form a group with unit element { £|0}. In general, these groups are non-Abelian, i.e., the group
elements do not commute with each other. However, there is always an Abelian subgroup of
R, the group of translations {F|a}. The elements g € P do not necessarily form a subgroup,



because some of these elements (e.g., screw axes or glide planes) leave the lattice invariant only
in combination with a translation. Nevertheless, the relation

{gla}{Ela"}gla}~" = {Elga’} (1.4)
{gla} " {Ela'}gla} = {Elg~"a’}

holds generally. If P is a subgroup of R, then R is said to be symmorphic. In this case, the
space group contains only primitive translations { £|a} and neither screw axes nor glide planes.
The 14 Bravais lattices? are symmorphic. Among the 230 space groups 73 are symmorphic and
157 are non-symmorphic.

crystal system point groups space group numbers
(# point groups, # space groups) Schonflies symbols international tables

triclinic (2,2) Cy, C1 1-2

monoclinic (3,13) Cy, Cy, Oy, 3-15
orthorhombic (3,59) Dy, Coy, Doy, 16-74

tetragonal (7,68) Cy, S4,Cup, Dy, Cay, Doy, Dyy, 75-142

trigonal (5,25) Cs3, Sg, D3, C3y, D3g4 143-167
hexagonal (7,27) Cs, Csp, Cen, D¢, Cev, D3n, Den 168-194

cubic (5, 36) T,1h,0,Tq, Oy, 195-230

Table 1.1: List of the point and space groups for each crystal system in three dimensions.

1.1.2 Reciprocal lattice

We define now the reciprocal lattice which is of importance for the electron band structure and
x-ray diffraction on a periodic lattice. The reciprocal lattice is also perfectly periodic with a
translation symmetry with a basic set {b;} defining arbitrary reciprocal lattice vectors as

G, = m1b1 + maby + m3bs | (1.6)
where m; are integers and
ai-bj:27r5ij 5 i,j:1,2,3, (17)
such that
a; X ag bj X bk

b, =27 and a; = 2w (1.8)

a; - (aj X ak) bi . (b]’ X bk) '

The reciprocal lattice of a simple cubic lattice is simple cubic. However, a body centered cubic
(bce) lattice has a face centered cubic (fcc) reciprocal lattice and vice versa (see slides).
It follows that any real space lattice vector R, and any reciprocal lattice vector G, have the
property that

G, - R, = 2w (mini + mang + mgn3) = 271N (1.9)

2Crystal systems, crystals, Bravais lattices are discussed in more detail in

- Czycholl, Theoretische Festkorperphysik, Springer

10



with N being an integer. This allows us to expand any function f(r) periodically in the real
lattice as

fr) =" fae'ST (1.10)
G
with the obvious property: f(r + R) = f(r). The coefficients are given by
1 ,
fa==— [ d&rfr)eCr (1.11)
Quc Juc

where the integral runs over the unit cell of the periodic lattice with the volume Quc. Finally, we
define the (first) Brillouin zone as the ”"Wigner-Seitz cell” constructed in the reciprocal lattice
(see Fig.1.1 and 1.2).

1.2 Bloch’s theorem and Bloch functions

We consider a Hamiltonian H of electrons invariant under a discrete set of lattice translations
{{E|a}}, a symmetry introduced by a periodic potential. This implies that the corresponding
translation operator fa on the Hilbert space commutes with the Hamiltonian H = He + Hie
(purely electronic Hamiltonian H,, interaction between electrons and ions Hie),

~

[Ta, H] = 0. (1.12)

This translation operator is defined through fa|r) = |r + a). Neglecting the interactions among
electrons, which would be contained in H,, we are left with a single particle problem

~2
_ b -
Ho Ho= o+ V(@) (1.13)

where 7 and P are position and momentum operators, and

V(T) = Z Vion(T - Rj), (114)
J

describes the potential landscape of the single particle in the ionic background. With R; being
the position of the j-th ion, the potential V' (r) is by construction periodic, with V(r+a) = V(r)
for all lattice vectors a, and represents H;e. Thereonre, Ho commutes with T, w. For a Hamilto-
nian Hy commuting with the translation operator Ty, the eigenstates of Hy are simultaneously
eigenstates of fa.

Bloch’s theorem states that the eigenvalues of fa lie on the unit circle of the complex plane,
which ensures that these states are extended. This means

~

Tath(r) = (r — a) = Aa®(r) , Tiab(r) = (r —la) = Th(r) = ALy(r) (1.15)

with [ an integer. The wave function delocalized in a periodic lattice satisfies,

() = [(r = la)]* = PG fle(r)? (1.16)
requiring ‘
Aol =1 = Ag = €9 . (1.17)
This condition is satisfied if we express the wave function as product of a plane wave e*7 and
a periodic Bloch function ug(r)
1 ik-r
wn,k(r) = —=¢€ un,k(r) . (118)

3

11



with

faun,k(r) = un,k(r - a) = un,k(r)a (119)
Taln k(1) = Ypr(r —a) = e *%, 1 (r), (1.20)
HoVnk(T) = €np¥nk(r). (1.21)

The integer n is a quantum number called band index, k is the pseudo-momentum (wave vector)
and ) represents the volume of the system. Note that the eigenvalue of 1, i (7) with respect to
fa, e~ka implies periodicity in the reciprocal space, the k-space, because e!(k+G)a — ¢ik-a for
all reciprocal lattice vectors G. We may, therefore, restrict k to the first Brillouin zone.

Bloch’s theorem simplifies the initial problem to the so-called Bloch equation for the periodic

function wug,

<(z3 +2- nfzkﬂz

+ V(?)> ug(r) = epur(r), (1.22)

where we suppress the band index to simplify the notation. This equation follows from the
relation

p eik'ruk(r) = eik'r(ﬁ + hk)ug(r), (1.23)

which can be used for more complex forms of the Hamiltonian as well. There are various
numerical methods which allow to compute rather efficiently the band energies €, for a given
Hamiltonian H.

1.3 Nearly free electron approximation

We start here from the limit of free electrons assuming the periodic potential V(r) is weak.
Using Eqs.(1.10) and (1.11) we expand the periodic potential,

V(r)=> Vg9, (1.24)
G
1 ,
Ve = /d3r V(r)e G, (1.25)
QUC o
U

The potential is real and we assume it also to be invariant under inversion (V(r) = V(—r)),
leading to Vg = V*5 = V_g. Note that the uniform component Vj corresponds to an irrelevant
energy shift and may be set to zero. Because of its periodicity, the Bloch function ug(r) is
expressed in the same way,

u(r) =Y cge™ 9T, (1.26)
G

where the coefficients cg = cg(k) are functions of k, in general. Inserting this Ansatz and the
expansion (1.24) into the Bloch equation, (1.22), we obtain a linear eigenvalue problem for the
band energies ¢,

h2
<2’rn(k — G)2 — €k> CcG + Z VGI_G CG/ = 0 (127)
G/

This represents an eigenvalue problem in infinite dimensions with eigenvectors cg (k) and eigen-

values €, as band energies. These ¢ include corrections to the bare parabolic dispersion,
eg]) = h2k? /2m, due to the potential V(7). Obviously, the dispersion 6560) is naturally parabolic

12



in absence of the potential V(r) whereby the eigenstates would be simply plane waves. As a
lowest order approach we obtain the approximative energy spectrum within the first Brillouin
zone, considering only all parabolic bands of the type ex(G) = h%(k — G)?/2m centered around
the reciprocal wave vectors G (see dashed line in Fig.1.2)).

We illustrate here the nearly free electron method using the case of a one-dimensional lattice.
Assuming that the periodic modulation of the potential is weak, say |Vg| < h?G2/2m (taking G
as a characteristic wavevector in the periodic system), the problem (1.27) can be simplified. Let
us start with the lowest energy values around the center of the first Brillouin zone, i.e. k£ ~ 0
(|k| < 7/a). For the lowest energy eigenvalue we solve Eq.(1.27) by

1 for G =0

cg ~ 2mVg (1.28)
- Wk — G2 — 12} <1 forG#0

leading to the energy eigenvalue

h2k2 |VG|2 B2k
€ A Z X ~ —— + Ey (1.29)
G#0 2m kQ] 2m
with
Sy ek (1.30
o2m '
G+£0
and
L 1)y > el (1.31)
* = - G :
m m &0

with A\g = Vg /{h?G?/2m} (|Ag| < 1). We observe that € is parabolic with a slightly modified
(effective) mass, m — m* > m. Note that this result resembles the lowest order corrections in the
Rayleigh-Schrodinger perturbation theory for a non-degenerate state. This solution corresponds
to the lowest branch of the band structure within this approach (see Fig.1.2). The parabolic
approximation of the band structure at a symmetry point with an effective mass m*, is a standard
way to approximate band tops or bottoms. It is called k - p-approximation ("k-dot-p”).

We stay at the zone center and address the next eigenstates which are dominated by the parabola
originating from Gy = +27/a = +G which cross for k = 0 at a value h2@2/2m. Restricting
ourselves to these two components we obtain the two-dimensional eigenvalue equation system,

h2
am B~ G)* — e [ ‘¢ )y (1.32)
VZG‘ %(kf + G)Q — €k c_é
The eigenvalues are obtained through the secular equation,
h2
dot | gk~ G — e Vac =0, (1.33)
| 2% %(k +G)? — ¢

leading to

=3 QHQ{(k+@)2+(k—@)2}i\/<m{<k+é)2—(k—é)2}>2+4|‘/§é|2

(1.34)
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with the effective mass 1 1
~ — (122" 1.35
Lo (1.35)

mi
where m% > 0 and m* < 0 as |[Az| < 1. We observe a energy band gap separating two bands

with opposite curvature (see Fig.1.2). Note that the curvature diverges for V,5 — 0 as m%i — 0.
The wavefunctions at k = 0 are given by

E) =

(£)
7G~ - :F‘

Y36 5 _ o) (1.36)
V2G’ ‘i +G )

where we have chosen V, to be real and positive. Thus,

sinGz  for €k=0,+
up=o(x) = ) (1.37)
cosGxr for ep—o,—

one being even and the other odd under parity operation x — —z.

A similar analysis can be done at the boundary of the first Brillouin zone where two energy
parabolas cross. For example at k = £7/a we find the two dominant contributions originate
from G = 427 /a and —27/a, respectively, together with G = 0. Also here the energy eigenvalues
show a band gap with parabolic bands centered at k = +7/a (boundary of the first Brillouin
zone in one-dimension) with positive and negative effective mass (see Fig.1.2). Analogous as
for the band center we can distinguish the wavefunction with even and odd parity for the two
bands at the Brillouin zone boundary. Indeed every crossing energy parabola centered around
different reciprocal lattice points contributes to a band gap. By construction we can extend the
band structure beyond the first Brillouin zone and find a periodic energy spectrum with

€k+G = €k (1.38)

where G is a reciprocal lattice ”vector”. Moreover, we find in Fig.1.2 that e_; = € due to parity
as well as time reversal symmetry, like for free electrons.
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Figure 1.2: Band structure obtained by the nearly free electron approximation for a regular
one-dimensional lattice.



1.4 Tight-binding approximation

We consider now a regular lattice of atoms which are well separated such that their atomic
orbitals have small overlaps only. Therefore, in a good approximation the electronic states are
rather well represented by localized atomic orbitals, ¢, (7). The discrete spectrum of the atoms
is obtained with the atomic Hamiltonian,

/Ha(R)@bn(r - R) = €n¢n(r - R) s (1'39)

for an atom located at position R, so that

Ho(R) = ;’—m +V,(r —R) (1.40)

with V,(r) as the rotation symmetric atomic potential as shown in Fig.1.3 a). The index n shall
include all necessary quantum numbers, besides the principal quantum number also angular
momentum (/,m) and spin. The single-particle Hamiltonian combines all the potentials of the
atoms on the regular lattice (see Fig.1.3 b)),

-9
p
H= s ;Va(r — Rj) = Huo(Ry) + AVR, () (1.41)

where we single out one atomic potential (the choice of R; is arbitrary) and introduce the
correction

AVg,(r)= Y Valr—Ry). (1.42)
R;#R;
Q) b) v

extended states

\

localized
atomic orbitals

Figure 1.3: Potential landscape: a) a single atomic Coulomb potential yields a discrete spectrum
electronic states; b) atoms arranged in a regular lattice give rise to a periodic potential which
close to the atom sites look much like the attractive Coulomb-like potential. Electron states
of low energy can be considered as practically localized at the atom sites, as the extension of
their wave functions is very small. The higher energy states, however, extend further and can
delocalize to form itinerant electron states which form bands.

1.4.1 Linear combination of atomic orbitals - LCAO

We use here a linear combination of atomic orbitals (LCAO) to approximate the extended Bloch
states

_ _ L ek Bin (p _ R
Yiik(T) \/N%; Pa(r — Rj) , (1.43)
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where N denotes the number of lattice sites. This superposition has obviously the properties of
a Bloch function through t;r(r + a) = €%y (r) for all lattice vectors a. Note that this is
similar to the Hund-Mullikan ansatz for molecular orbitals.

First we determine the norm of this Bloch function,

(Dan (k) = /d3m/)ﬁk( ) Vivie(r Z /d?’Telk BB gt (r — Ry) i (r — Ryr)

R],R ,

= [ @re g e - Ryo(r)
R;

nn 1+ Z € ik Jaﬁfl, Rj)
R;#0
(1.44)
where due to translational invariance in the lattice we may set Rj = 0 eliminating the sum over
R and dropping the factor 1/N. To estimate the energy we calculate,

k) =5 3> [ @re g~ Ry) (Ho(Ry) + AV, (1)} (r — Ry

R],R ’

= Bl (k) + 4 3 [ e R (¢ Ry) AV, ()~ Ry)

R;,R;
= B (Law (k) + ABrw + > e *Binga(Ry)
R;#0
(1.45)
where
N / @15 (r) AV o ()b (1) (1.46)
and
’}/ﬁﬁ/(Rj) = /d?’r(b};(r — Rj)AVRj,:O(’I“)d)fL/(T’) . (147)
From this we can now calculate the band energies through the secular equation,
det [(H)an (k) — ex(1)an (k)] = 0. (1.48)

The merit of the approach is that the tightly bound atomic orbitals have only weak overlap such
that both o (R;) and 75 (R;) fall off very quickly with growing R;. Mostly it is sufficient to
take R; connecting nearest-neighbor and sometimes next-nearest-neighbor lattice sites. This is
for example fine for bands derived from 3d-orbitals among the transition metals such as Mn, Fe
or Co etc.. Also transition metal oxides are well represented in the tight-binding formulation.
Alkali metals in the first row of the periodic table, Li, Na, K etc. are not suitable because
their outermost s-orbitals have generally a large overlap. Note that the construction of the
Hamiltonian matrix ensures that k — k + G does not change €g, if G is a reciprocal lattice
vector.

1.4.2 Band structure of s-orbitals

The most simple case of a non-degenerate atomic orbital is the s-orbital with vanishing angular
momentum (¢ = 0). Since these orbitals have rotation symmetric wavefunctions, ¢s(r) = ¢s(|7|),
the matrix elements only depend on the distance between sites, |R;|. As an example we consider
a simple cubic lattice taking nearest-neighbor (R; = %(a,0,0), £(0,a,0) and +(0,0,a)) and
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next-nearest-neighbor coupling (R; = (£a, £a,0), (+a,0,*a), (0, +a, F+a)) into account. For
simplicity we will neglect the overlap integrals ass(R;), as they are not important to describe
the essential feature of the band structure.

—t R, connects nearest neighbors
Vss(R;) = (1.49)
—t’ Rj; connects next nearest neighbors

which leads immediately to

€. =FE;+AE, — tz e Ry _ g Z e kR
R; R;

(1.50)
= Es+ AE, — 2t{cos(kza) + cos(kya) + cos(k.a)}

—4t'[cos(kya) cos(kya) + cos(kya) cos(k,a) + cos(k,a) cos(kya)}

Note that AVR,(r) < 0 in most cases due to the attractive ionic potentials. Therefore ¢, > 0.
There is a single band resulting from this s-orbital, as shown in Fig.1.4. We may also consider
the k - p-approximation at k = 0 which yields an effective mass

h2
ek:E5+AES+6t+12t’+2—*k2+~- (1.51)
m
with 1 9

Note that ¢ and ¢’ shrink quickly, if with growing lattice constant a the overlap of atomic orbitals
decreases.

1.4.3 Band structure of p-orbitals

We turn to the case of degenerate orbitals. The most simple case is the p-orbital with angular
momentum ! = 1 which is three-fold degenerate, represented by the atomic orbital wavefunctions
of the form,

Ge(r) = (1), ¢y(r) = yop(r), ¢=(r) = 20(r) , (1.53)

with ¢(r) being a rotation symmetric function. Note that {x,y, 2z} can be represented by spher-
ical harmonics Y7 ,,. We assume again a simple cubic lattice such that these atomic orbitals
remain degenerate. Analyzing the properties of the integrals by symmetry, we find,

Egr; = Ly = EZ = Ep and AEﬁﬁl = AEP (Sﬁﬁ/ . (154)
The overlaps Eq.(1.47) for nearest neighbors,

t R;=(+£a,0,0) || & (o — bonding)
Toa(Ry) = (1.55)
—t' Rj = (0,%a,0),(0,0,+a) L & (7 — bonding)

and analogous for 7y, and 7., while vz = 0, if 7 # 7/. For next-nearest neighbors by symmetry
we obtain,
t  R;=(%a,+a,0),(+a,0,+a)
Yoz (Rj) = _ (1.56)
-t R;j = (0,%a, +a)
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Figure 1.4: Band structures derived from atomic orbitals with s- (one band, upper panel) and
p-symmetry (three bands, lower panel) in a simple cubic lattice. Left side: First Brillouin zone
of the simple cubic lattice. Dispersion given along the k-line connecting I' = X — R—I'— M. We
choose the parameters: ¢’ = 0.2t for the s-orbitals; t' = 0.2¢, £ = 0.1¢, ' = 0.05t and ¢’ = 0.15¢.
For the band derived from atomic p-orbitals, the irreducible representations of the bands are
given at the symmetry points: I'l; (d=3); X5 (d=1),X; (d=2); Rj; (d=3); My (d=1),
My (d = 2) where d is the dimension of the representation showing the degeneracy.

and analogous for 7y, and 7,,. Next-nearest neighbor coupling also allows for inter-orbital
matrix elements, e.g.

Yoy (Rj) = Yya(Rj) = tWSinganny) (1.57)

for R; = (+a,+a,0) and analogous for 7,.(R;) and v.,(R;). The different configuration of
nearest- and next-nearest-neighbor coupling is shown in Fig.1.5.
Now we may setup the coupling matrix,

E.(k) —4¢" sin(kya) sin(kya) —4¢" sin(kya) sin(k;a)
(H)aw = | —4t"sin(kza) sin(kya) _ By(k) —4t" sin(kya) sin(k,a) (1.58)
—4t" sin(kya) sin(k.a) —4t" sin(kya) sin(k.a) E.(k)

with

E.(k) = E,+ AE, + 2tcos(kya) — 2t'(cos(kya) + cos(k.a)) (150
1.59
+4t cos(kya)(cos(kya) + cos(k.a)) — 4¢' cos(kya) cos(k,a)

and analogous for Ey(k), E. (k). The three bands derived from the atomic p-orbitals are obtained
by solving the secular equation of the type Eq.(1.48) and shown in Fig.1.4.

Also in this case we may consider a k- p-approximation around a symmetry point in the Brillouin
zone. For the I'-point we find the expansion around k = 0:

Ak2+ B(k2 + k2) Chyky Chyk,
(H)aw = Er + Chyky AR+ B(k2 + k2) Clyk, (1.60)
Chyk, Chyk, Ak2 + B(k2 + k2)
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Figure 1.5: The configurations for nearest- and next-nearest-neighbor coupling between p-
orbitals on different sites. The p-orbitals are depicted by the dumb-bell structured wavefunction
with positve (blue) and negative (red) lobes. For nearest-neighbor couplings we distinguish here
o-bonding (full rotation symmetry around connecting axis) and w-bonding (two-fold rotation
symmetry around connecting axis). Generally the coupling is weaker for 7- than for o-bonding.
No coupling for symmetry reasons are obtained between orbitals in the lower panel.

with Epr = E, + AE, + 2t — 4t + 4t — 4, A = —a?(t + 41), B = a*(t' — 2t + 2t') and C = —4¢".
These band energies have to be determined through the secular equations and lead to three
bands with anisotropic effective masses.

1.4.4 Wannier functions
An alternative approach to the tight-binding approximation is through Wannier functions. These
are defined as the Fourier transformation of the Bloch wave functions,

(T *kRy(r — R) w(r—R)=—= Z e * Ry (r) (1.61)

1
=—=> e
R
where the Wannier function w(r — R)? is centered on the real-space lattice site R. We consider
here the situation of a non-degenerate band analogous to the atomic s-orbital case, such that

3 Ambiguity of the Wannier functions: The Wannier function is not uniquely defined, because there is a ” gauge
freedom” for the Bloch function which can be multiplied by a phase factor

Yr(r) = eXF () (1.62)

where x(k) is an arbitrary real function. In particular, we find different degrees of localization of w(r — R) around
its center R depending on the choice of x(k).
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there is only one Wannier function per site. Wannier functions obey the orthogonality relation

/d37’ w*(,’, _ R’)w(r . R) — %Zeik-Rfik’.R/ /dgrw;;/("")wk("’)

k'

1 L. g /. !
_ N Zezk R—ik'-R 5kk:/ _ 5RR"
kK’

(1.63)

We consider the one-particle Hamiltonian to be of the form H = —h2V?/2m + V(r), with a
periodic potential V(7). Then, € can be expressed through

€ = /d3r Vi (r)Hg(r) = % Z ¢ k(' -R) /d3r w*(r — R)Hw(r — R)

R.R

(1.64)
= Z e R R / r w*(r — R)YHw(r) ,
R
where we took translational invariance of the lattice into account. With the definitions
€ = /d3r w*(r)Hw(r), (1.65)
HR) = / Brw(r — RYHw(r) for R 40 (1.66)
the band energy can be written as
c=rco+ Y t(R)e *FE, (1.67)
R

This is the same type of tight-binding band structure as we have derived above from the LCAO
view point.

We can extend the Wannier function to the case of several bands, like the p-orbital bands. Then
we define

1 ik-R
n = —7= T epn(k)wia(r — R 1.68
() = 7 2 k(s — R (1.68)
where for all k,

The matrix cp;;(k) rotates the Wannier function from the band basis into the atomic orbital
basis, i.e. for p-bands into the three Wannier function with symmetry like {z,y, z}.
Again we can express the band energy in terms of a tight-binding Hamiltonian,

e = / 1 (7 Hi (1)
=3 a®ennt)e T [ dru(r— R)Huws(r) (1.70)

=3 chn(k)enn(k)e ™ Ftas (R) .
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1.4.5 Tight binding model in second quantization formulation

The tight-binding formulation of band electrons can also be implemented very easily in second
quantization language and provides a rather intuitive interpretation. For simplicity we restrict
ourselves to the single-orbital case and define the following Fermionic operators,

é;s creates an electron of spin s on lattice site R; ,
(1.71)
¢;,s annihilates an electron of spin s on lattice site R; ,
in the corresponding Wannier states. We introduce the following Hamiltonian,
H= Z ﬁoé},séj,s + Z tz’jéj,séj,s (1.72)

with t;; = t;; real. These coefficients ¢;; are called "hopping matrix elements”, since é;r <Cj.s
annihilates an electron on site R; and creates one on site R;, in this way an electron moves
(hops) from R; to R;. Thus, this Hamiltonian represents the "kinetic energy” of the electron.
Let us now diagonalize this Hamiltonian by following Fourier transformation, equivalent to the
transformation between Bloch and Wannier functions,

i 1 t  —ik-R; N . kR,
.= —— a;..e J and Cig = —— Aks€ J 1.73
158 /N zk: ks 7,8 /*N zk: ks ( )

where d}; . (Gks) creates (annihilates) an electron in the Bloch state with pseudo-momentum k
and spin s. Inserting Eq.(1.73) into the Hamiltonian (1.72) leads to

1 L LY. R 1 ieR—ik' R | At » At
=Y = 3 eqeilkH) Ry N S by Ry ik Ry al, s = S ek al ans  (1.74)
kK s i ] ks

where &L <aks = Ngs constitutes the number operator for electrons. The band energy is the same
as obtained above from the tight-binding approach. The Hamiltonian (1.72) will be used later
for the Hubbard model where a real-space formulation is helpful.

The real-space formulation of the kinetic energy allows also for the introduction of disorder, non-
periodicity which can be most straightforwardly implemented by site dependent potentials ¢y —
€oi and to spatially (bond) dependent hopping matrix elements t;; = t(R;, R;) # t(R; — R;).

1.5 Symmetry properties of the band structure

The symmetry properties of crystals are a helpful tool for the analysis of their band structure.
They emerge from the symmetry group (space and point group) of the crystal lattice. Consider
the action S(g|q) of an element {g|a} of the space group on a Bloch wave function 1 (r) 4

“In Dirac notation we write for the Bloch state with pseudo-momentum k as

Yr(r) = (r|vw). (1.75)
The action of the operator §{g|a} on the state |r) is given by
§{g|a}|r> =|gr+a) and <r|§{g|a} =(g"'r—g 'al, (1.76)
such that
(7S (g1ay|n) = Yi(g ' — g a). (1.77)

The same holds for pure translations.
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Siglayt(r) = vr({gla}'r) = vu(g'r — g 'a). (1.79)

Because {g|a} belongs to the space group of the crystal, we have [S{g|a}, Ho] = 0. Applying a
pure translation Ty = S{ Ela’} to this new wave function and using Eq.(1.5)

TaS(glaytn(7) = S(giayTy-1ark(r) = Sigiaye 0 Ny (r)
= Siglaye " @y (r)
= e 1R G k(1) (1.80)

the latter is found to be an eigenfunction of T o With eigenvalue e~ilgk)-a’, Remember, that,
according to the Bloch theorem, we chose a basis {¢g} diagonalizing both fa and Hg. Thus,
apart from a phase factor, the action of a symmetry transformation {g|a} on the wave function®
corresponds to a rotation from k to g~ 'k.

Stglay () = A(gla) Yor(r), (1.82)

with |)\{g|a}]2 =1, or

Stgiarlk) = Arglay|gk). (1.83)
in Dirac notation. Then it is easy to see that
egk = (gk[Holgk) = (kIS |, HoS{glay k) = (k[Holk) = e (1.84)

Consequently, there is a star-like structure of equivalent points gk with the same band energy
(— degeneracy) for each k in the Brillouin zone (cf. Fig. 1.6).

For a general point k the number of equivalent points in the star equals the number of point
group elements for this k (without inversion). If k lies on points or lines of higher symmetry, it
is left invariant under a subgroup of the point group. Consequently, the number of beams of the
star is smaller. The subgroup of the point group leaving k unchanged is called little group of k.
If inversion is part of the point group, —k is always contained in the star of k. In summary, we
have the simple relations

€nk — €ngk, €nk — €n,—k, €nk — Enkt+G- (185)

Note that this definition has also implications on the sequential application of transformation operators such
as

§{g1\01}§{92\a2}wk(r) = (r[S{g11a1}Sgzlas} [Vk) = <{91|a1}717'|s{92|a2}|wk>

(1.78)
= ({g2]a2} " Hgrlar} ' rvn) = v ({92la2} " {gilas} " 'r) .
This is important in the context of Eq.(1.80).
®Symmetry behavior of the wave function.
o 1 5 ik-r iG-r 1 zk( e _10.) iG<( —lp_ _1a)
Siglat¥e(r) = —=5Sigare ca(k)e = —e"\ g ca(k)e'™\I g
{gla} NG {gla} %: v XG:
1 72 a 7, ™ 71 z (g 7, -
_ \/ﬁ i(gk)-a i(gk)r ZCG i(gG)r _ (gk)-a_* _i(gk) ZC 71G iG (1.81)

—i(gk)a 1 i(gk)- iG-
—e (g )aﬁe (g )T%:CG(gk)e r:)\{g\a}d}gk("'%

where we use the fact that ca = ca(k) is a function of k with the property c,-15(k) = ca(gk) i.e. §{g‘a}uk('r) =
Ugr(T).
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Figure 1.6: Star of k-points in the Brillouin zone with degenerate band energies: Left panel:
Star of k; Right panel: contour plot of a two dimensional band ej, = —2t{cos(k,a)+ cos(kya)} +
4t' cos(kya) cos(kya). The dots correspond to the star of k with degenerate energy values, demon-
strating €,x = €, gk-

We can also use symmetries to characterize Bloch states for given pseudo-momentum k. Let us
take a set of degenerate Bloch states belonging to the band n, {|y;n, k)} satisfying the eigenvalue
equation,

Hlvin, k) = enk|vin, k) (1.86)

For given k we consider the little group operations. Operating an element g of the little group
on a state |y;n, k) we obtain again an eigenstate of the Hamiltonian H, as S{g,0) commutes with

H,

§{9,0}|7> 7’Lk> = Z h/a nk) <’7/> nk|§{g,0} |’77 nk)J . (187)
,y/
=M, (9)

We transform only within the subspace of degenerate states |y,nk) and the matrix M., ,(g) is
a representation of the group element g on the vector space of eigenstates {|y, nk)}. If this rep-
resentation is irreducible then its dimension corresponds to the degeneracy of the corresponding
set of Bloch states.

Looking back to the example of tight-binding bands derived from atomic p-orbitals (Fig.1.4).
The symmetry at the I'-point (k = 0) is the full crystal point group Oy, (simple cubic lattice).
The representation I'j; is three-dimensional corresponding to a basis set {x,y, 2} (p-orbital).
At the X-point (symmetry point on the Brillouin zone boundary) the group is reduced to Dyy,
(tetragonal) and the representations appearing are X, (one-dimensional corresponding to z)
and X7 (two-dimensional corresponding to {x,y}). Note that generally the little group of k has
lower symmetry and leads to splitting of degeneracies as can be seen on the line I' — M where
the bands, degenerate at the I'-point split up into three and combine again at the M-point
into two level of degeneracy one and two, respectively. The symmetry group of the M-point
is Dyj, while for arbitrary k || [110] it is C9, containing only four elements leaving k invariant:
Coy C Dyy, C Oy,

1.6 Band-filling and materials properties

Due to the fermionic character of electrons each of the band states |n,k,s) can be occupied
with one electron taking also the spin quantum number into account with spin s =1 and |
(Pauli exclusion principle). The count of electrons has profound implications on the properties
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of materials. Here we would like to look at the most simple classification of materials based on
independent electrons.
1.6.1 Electron count and band filling

We consider here a most simple band structure in the one-dimensional tight-binding model with
nearest-neighbor coupling. The lattice has N sites (/N even) and we assume periodic boundary
conditions. The Hamiltonian is given by

N
=ty > {8+ & Gs) (1.88)
j=1s=1,

where we impose the equivalence j + N = j (periodic boundary conditions). This Hamiltonian
can be diagonalized by the Fourier transform

. 1 ~ iRk
Cis = —— g ap s 1.89
7,8 \/N - k,s ( )

leading to
H=> era) ars  with e, =—2tcoska. (1.90)
k,s
Now we request
: : ) 2
etk — iR+ L)k = Lk = Nak = 2mn = k= %n = %% (1.91)

with the pseudo-momentum & within the first Brillouin zone (-2 < k < Z) and n being an

integer. On the real-space lattice an electron can take 2N different states. Thus, for £ we find
that n should take the values, n+ N/2=1,2,...,N —1, N. Note that k = —7/a and k = +7/a
differ by a reciprocal lattice vector G = 27/a and are therefore identical. This provides the
same number of states (2V), since per k we have two spins (see Fig.1.7).
We can fill these states with electrons following the Pauli exclusion principle. In Fig.1.7 we show
the two typical situations: (1) N electrons corresponding to half of the possible electrons which
can be accommodated leading to a half-filled band and (2) 2N electrons exhausting all possible
states representing a completely filled band. In the case of half-filling we define the Fermi energy
as the energy e of the highest occupied state, here ez = 0. This corresponds to the chemical
potential, the energy necessary to add an electron to the system at T'= 0K.
An important difference between (1) and (2) is that the former allows for many different states
which may be separated from each other by a very small energy. For example, considering
the ground state (as in Fig.1.7) and the excited states obtained by moving one electron from
k=m/2a (n=N/4) to k' =2n(1+ N/4)/Na (n =1+ N/4), we find the energy difference
AFE = € — € N Qt% X % (1.92)
which shrinks to zero for N — co. On the other hand, for case (2) there is only one electron
configuration possible and no excitations within the one-band picture.

1.6.2 Metals, semiconductors and insulators

The two situations depicted in Fig.1.7 are typical as each atom (site) in a lattice contributes an
integer number of electrons to the system. So we distinguish the case that there is an odd or
an even number of electrons per unit cell. Note that the unit cell may contain more than one
atom, unlike the situation shown in our tight-binding example.
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Figure 1.7: One-dimensional tight-binding model with N = 8 and periodic boundary conditions.
The dispersion has eight different k-levels whereby it has to be noticed that +m/a and —7/a
are equivalent. The condition of half-filling and complete filling are shown, where for half-filling
a ground state configuration is shown (note there are 4 degenerate states). For the completely
filled band all k levels are occupied by two electrons of opposite spin. This means in real space
that also all sites are occupied by two electrons. This is a non-degenerate state.

e The bands can be either completely filled or empty when the number of electrons per
atom (unit cell) is even. Thus taking the complete set of energy bands into account, the
chemical potential cannot be identified with a Fermi energy but lies within the energy
gap separating highest filled and the lowest empty band (see Fig.1.8). There is a finite
energy needed to add, to remove or to excite an electron. If the band gap Fj, is much
smaller than the bandwidth, we call the material a semiconductor. for E, of the order of
the bandwidth, it is an (band) insulator. In both cases, for temperatures T' < E,/ky the
application of a small electric voltage will not produce an electric transport. The highest
filled band is called wvalence band, whereas the lowest empty band is termed conduction
band. Examples for insulators are C' as diamond and for semiconductors Si and Ge. They
have diamond lattice structure with two atoms per unit cell. As these atoms belong to
the group IV in the periodic table, each provides an even number of electrons suitable for
completely filling bands. Note that we will encounter another form of an insulator, the
Mott insulator, whose insulating behavior is not governed by a band structure effect, but
by a correlation effect through strong Coulomb interaction.

e If the number of electrons per unit cell is odd, the uppermost non-empty band is half
filled (see Figure 1.8). Then the system is a metal, in which electrons can move and
excitations with arbitrarily small energies are possible. The electrons remain mobile down
to arbitrarily low temperatures. The standard example of a metal are the Alkali metals
in the first column of the periodic table (Li, Na, K, Rb, Cs), as all of them have the
configuration [noble gas] (ns)!, i.e., one mobile electron per ion.

e In general, band structures are more complex. Different bands need not to be separated
by energy gaps, but can overlap instead. In particular, this happens, if different orbitals

25



insulator metal
semiconductor metal semimetal
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Figure 1.8: Material classes according to band filling: left panel: insulator or semiconductor
(partially filled bands with the Fermi level in band gap); center panel: metal (Fermi level inside
band); right panel: metal or semimetal (Fermi level inside two overlapping bands).

are involved in the structure of the bands. In these systems, bands can have any fractional
filling (not just filled or half-filled). The earth alkaline metals are an example for this
(second column of the periodic table, Be, Mg, Ca, Sr, Ba), which are metallic despite
having two (n, s)-electrons per unit cell. Systems, where two bands overlap at the Fermi
energy but the overlap is small, are termed semi-metals. The extreme case, where valence
and conduction band touch in isolated points so that there are no electrons at the Fermi
energy and still the band gap is zero, is realized in graphene.

The electronic structure is also responsible for the cohesive forces necessary for the formation
of a regular crystal. We may also classify materials according to relevant forces. We distinguish
four major types of crystals:

Molecular crystals are formed from atoms or molecules with closed-shell atomic structures
such as the noble gases He, Ne etc. which become solid under pressure. Here the van der
Waals forces generate the binding interactions.

Ionic crystals combine different atoms, A and B, where A has a small ionization energy while
B has a large electron affinity. Thus, electrons are transferred from A to B giving a
positively charged AT and a negatively charge B~. In a regular (alternating) lattice the
energy gained through Coulomb interaction can overcome the energy expense for the charge
transfer stabilizing the crystal. A famous example is NaCl where one electron leaves Na
([Ne] 3s) and is added to Cl ([Ne] 3523p®) as to bring both atoms to closed-shell electronic
configuration.

Covalent-bonded crystals form through chemical binding, like in the case of the Hs, where
neighboring atoms share electrons through the large overlap of the electron orbital wave-
function. Insulators like diamond C or semiconductors like Si or GaAs are important
examples of this type as we will discuss later. Note that electrons of covalent bonds are
localized between the atoms.

Metallic bonding is based on delocalized electrons (in contrast to the covalent bonds) stripped
from their atoms. The stability of simple metals like the alkaly metals Li, Na, K etc will
be discussed later. Note that many metals, such as the noble metals Au or Pt, can also
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involve aspects of covalent or molecular bonding through overlapping but more localized
electronic orbitals.

1.7 Dynamics of band electrons - semiclassical approach

In quantum mechanics, the Ehrenfest theorem shows that the expectation values of the position
and momentum operators obey equations similar to the equation of motion in Newtonian me-
chanics. An analogous formulation holds for electrons in a periodic potential, where we assume
that the electron may be described as a wave packet of the form

wk(r’ t) _ ng(kj,)eik/’r_iek/t, (193)
k/

where g (k') is centered around k in reciprocal space and has a width of Ak. Ak should be
much smaller than the size of the Brillouin zone for this Ansatz to make sense, i.e., Ak < 27 /a.
Therefore, the wave packet is spread over many unit cells of the lattice since Heisenberg’s
uncertainty principle (Ak)(Ax) > 1 implies Az > a/27. In this way, the pseudo-momentum k
of the wave packet remains well defined. Furthermore, the applied electric and magnetic fields
have to be small enough not to induce transitions between different bands. The latter condition
is not very restrictive in practice.

1.7.1 Semi-classical equations of motion

We introduce the rules of the semi-classical motion of electrons with applied electric and magnetic
fields without proof:

e The band index of an electron is conserved, i.e., there are no transitions between the bands.

e The equations of motion read®

i = v k) = Ok (1.96)
hk = —eE(r,t) — Z'vn(k) % H(r,1). (1.97)

e All electronic states have a wave vector that lies in the first Brillouin zone, as k and k+ G
label the same state for all reciprocal lattice vectors G.

e In thermal equilibrium, the electron density per spin in the n-th band in the volume
element d®k/(27)3 around k is given by

1
= elen(®)—ul/ksT 11

nrlen (k)] (1.98)

Each state of given k and spin can be occupied only once (Pauli principle).

SA plausibility argument concerning the conservation of energy leading to the equation (1.97) is given here.
The time derivative of the energy (kinetic and potential)

E = ea(k(t)) — e(r(t)) (1.94)
has to vanish, i.e.,

0= dE _ Oen(k)

Todt T Ok
From this, equation (1.97) follows directly for the electric field E = —V ¢ and the Lorentz force is allowed because
the force is always perpendicular to the velocity v,.

k- eVt =vn(k)- (hkfeV¢). (1.95)
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Note that Ak is not the momentum of the electron, but the so-called lattice momentum or pseudo
momentum in the Bloch theory of bands. It is connected with the eigenvalue of the translation
operator on the state. Consequently, the right-hand side of the equation (1.97) is not the force
that acts on the electron, as the forces exerted by the periodic lattice potential is not included.
The latter effect is contained implicitly through the form of the band energy e(k), which governs
the first equation.

1.7.2 Bloch oscillations

The fact that the band energy is a periodic function of k leads to a strange oscillatory behavior of
the electron motion in a static electric field. For illustration, consider a one-dimensional system

where the band energy ¢, = —2coska leads to the solution of the semi-classical equations
(1.96,1.97)
hk = —eE (1.99)
Et
= k= _% (1.100)
2 Eat
= i’z—%sin <e ha > (1.101)

in the presence of a homogenous electric field E. It follows immediately, that the position = of
the electron oscillates like

(t) = ;E cos <€Eha’t> . (1.102)

This behavior is called Bloch oscillation and means that the electron oscillates around its initial
position rather than moving in one direction when subjected to a static electric field. This effect
can only be observed under very special conditions where the probe is absolutely clean. The
effect is easily destroyed by damping or scattering.

0.5

time

Figure 1.9: Experimental observation of Bloch oscillation for accelerated cesium atoms trapped
in an periodic optical lattice generated by standing waves of laser light: mean velocity (v) versus
time [M.B. Dahan et al, Phys. Rev. Lett. 76, 4508 (1996)].

1.7.3 Current densities

We will see in chapter 6 that homogenous steady current carrying states of electron systems can
be described by the momentum distribution n(k). Assuming this property, the current density

28



follows from

3 3

j=—2 / (gwljgv(k)n(k) = 2 / (gﬁljgn(k)a(;é’;), (1.103)

BZ BZ

where the integral extends over all k in the Brillouin zone (BZ) and the factor 2 originates
from the two possible spin states of the electrons. Note that for a finite current density j, the
momentum distribution n(k) has to deviate from the equilibrium Fermi-Dirac distribution in
equation (1.98). It is straight forward to show that the current density vanishes for an empty
band. The same holds true for a completely filled band (n(k) = 1) where equation (1.96) implies

. 3k 10e(k)
J —26/ @S h ok D (1104

BZ

because €(k) is periodic in the Brillouin zone, i.e., e(k+ G) = €(k) when G is a reciprocal lattice
vector. Thus, neither empty nor completely filled bands can carry currents.

An interesting aspect of band theory is the picture of holes. We compute the current density
for a partially filled band in the framework of the semi-classical approximation,

3
j=—e / %n(kz)vn(k) (1.105)
BZ
3 3
- —e[ /i:;v(k) —/irl;[l—n(k)]v(k)} (1.106)
BZ BZ
3
- —I—e/ir];[l — (k) (k). (1.107)
BZ

This suggests that the current density comes either from electrons in filled states with charge
—e or from ’holes’, missing electrons carrying positive charge and sitting in the unoccupied
electronic states. In band theory, both descriptions are equivalent. However, it is usually easier
to work with holes, if a band is almost filled, and with electrons if the filling of an energy band
is small.

Appendix: Approximative band structure calcuations

While the approximation of nearly free electrons gives a qualitative picture of the band structure,
it rests on the assumption that the periodic potential is weak, and, thus, may be treated as
a small perturbation. Only few states connected with different reciprocal lattice vectors are
sufficient within this approximation. However, in reality the ionic potential is strong compared
to the electrons’ kinetic energy. This leads to strong modulations of the wave function around
the ions, which is not well described by slightly perturbed plane waves.

Pseudo-potential

In order to overcome this weakness of the plane wave solution, we would have to superpose a
very large number of plane waves, which is not an easy task to put into practice. Alternatively,
we can divide the electronic states into the ones corresponding to filled low-lying energy states,
which are concentrated around the ionic core (core states), and into extended (and more weakly
modulated) states, which form the valence and conduction bands. The core electron states
may be approximated by atomic orbitals of isolated atoms. For a metal such as aluminum (Al
1522522p53523p) the core electrons correspond to the 1s-, 2s-, and 2p-orbitals, whereas the 3s-
and 3p-orbitals contribute dominantly to the extended states of the valence- and conduction
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Figure 1.10: Separation into extended and core electronic states (example Aluminium).

bands. We will focus on the latter, as they determine the low-energy physics of the electrons.
The core electrons are deeply bound and can be considered inert.

We introduce the core electron states as |¢;), with H|¢;) = Ej|¢;) where H is the Hamiltonian
of the single atom. The remaining states have to be orthogonal to these core states, so that we
make the Ansatz

’¢n,k> - ’Xnk:) - Z ’¢j><¢j‘Xn,k:>a (1'108)

with |xn k) an orthonormal set of states. Then, (¢, k|¢;) = 0 holds for all j. If we choose plane
waves for the |x,k), the resulting |¢, k) are so-called orthogonalized plane waves (OPW). The
Bloch functions are superpositions of these OPW,

Ynk) =D bkrclénpia), (1.109)
G

where the coefficients b ¢ converge rapidly, such that, hopefully, only a small number of OPWs
is needed for a good description.
First, we again consider an arbitrary |x,k) and insert it into the eigenvalue equation H|pnk) =

Enk|¢nk>’

J

H|Xnk:> - ZH’¢J><¢3‘Xn,k:> = Enk:(’Xnk) - Z ‘¢]><¢]|Xn,k>) (1-110)
J

or

H|Xnk) + Z(Enk — E;)[90j){(0j1xnk) = Enk|xnk)- (1.111)

We introduce the integral operator in real space V' = 3 i (Enk — Ej)|#;)(¢;|, describing a non-
local and energy-dependent potential. With this operator we can rewrite the eigenvalue equation
in the form

(H + ‘7/)|Xn,k> = (HO + ‘/} + ‘/}/)’Xn,k> = (H + ?ps)|Xn,k> = Enk|Xnk:> (1-112)

This is an eigenvalue equation for the so-called pseudo-wave function (or pseudo-state) |xnk),
instead of the Bloch state |t,k), where the modified potential Vs = V + V' is called pseudo-
potential. The attractive core potential V' = V(7) is always negative. On the other hand,
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Enr > Ej, such that V' is positive. It follows that XA/pS is weaker than both V and V’. An
arbitrary number of core states 3, a;[t);) may be added to [xnk) without violating the orthog-
onality condition (1.108). Consequently, neither the pseudo-potential nor the pseudo-states are
uniquely determined and may be optimized variationally with respect to the set {a;} in order
to optimally reduce the spatial modulation of either the pseudo-potential or the wave-function.

potenial pseudo-potenial

° ° ° L ° L] ° ° ° ° ° °
N—"N— —" —~" —~ —"
v v v v/ v\ v\
VI VI \V Vo ) Vo
V1 i 1

wave function

Figure 1.11: Illustration of the pseudo-potential.
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Figure 1.12: Pseudopotential: Ashcroft, Heine and Abarenkov form.

If we are only interested in states inside a small energy window, the energy dependence of the
pseudo-potential can be neglected, and Vs may be approximated by a standard potential (see
Figure 1.11). Such a simple Ansatz is exemplified by the atomic pseudo-potential, proposed by
Ashcroft, Heine and Abarenkov (AHA). The potential of a single ion is assumed to be of the
form

\% r < R,
ops(r) =3y (1.113)
P —Ziene® 5 R

where Zjo, is the charge of the ionic core and R, its effective radius (determined by the core
electrons). The constants R. and Vj are chosen such that the energy levels of the outermost
electrons are reproduced correctly for the single-atom calculations. For example, the 1s-, 2s-,
and 2p-electrons of Na form the ionic core. R. and Vj are adjusted such that the one-particle
problem p?/2m + vps(r) leads to the correct ionization energy of the 3s-electron. More flexible
approaches allow for the incorporation of more experimental input into the pseudo-potential.
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The full pseudo-potential of the lattice can be constructed from the contribution of the individual
atoms,

Vis(1) = D ups( = Ry)), (1.114)

n

where R; is the lattice vector. For the method of nearly free electrons we need the Fourier
transform of the potential evaluated at the reciprocal lattice vectors,

1 X N )
Vise = g /d3r Vis(r)e T = Q/d3r vps (1) ICT (1.115)
For the AHA form (1.113), this is given by

47TZion€2
Vos,ag = ——r (COS(GRC)
Vo

+ Zion€2G

((R2G? — 2) cos(GR,) + 2 — 2R.Gsin(GR.)) > (1.116)
For small reciprocal lattice vectors, the zeroes of the trigonometric functions on the right-hand
side of (1.116) reduce the strength of the potential. For large G, the pseudo-potential decays
o 1/G?. Tt is thus clear that the pseudo-potential is always weaker than the original potential.
Extending this theory for complex unit cells containing more than one atom, the pseudo-potential
may be written as

Vos(r) = oS (7 — (R; + Ra)), (1.117)

n,x

where R, denotes the position of the a-th base atom in the unit cell. Here, v is the pseudo-
potential of the a-th ion. In reciprocal space,

N . , .
Ves,g = Q Z ¢ G Ra /ddr vg‘s(\r\)e_lg'r (1.118)
(e}
- Z e IGRap o (1.119)
(e}

The form factor F, g contains the information of the base atoms and may be calculated or
obtained by fitting experimental data.

Augmented plane wave

We now consider a method introduced by Slater in 1937. It is an extension of the so-called
Wigner-Seitz cell method (1933) and consists of approximating the crystal potential by a so-
called muffin-tin potential. The latter is a periodic potential, which is taken to be spherically
symmetric and position dependent around each atom up to a distance 74, and constant for larger
distances. The spheres of radius 7 are taken to be non-overlapping and are contained completely
in the Wigner-Seitz cell” (Figure 1.13).

The advantage of this decomposition is that the problem can be solved using a divide-and-
conquer strategy. Inside the muffin-tin radius we solve the spherically symmetric problem, while
the solutions on the outside are given by plane waves; the remaining task is to match the

"The Wigner-Seitz cell is the analogue of the Brillouin zone in real space. One draws planes cutting each
line joining two atoms in the middle, and orthogonal to them. The smallest cell bounded by these planes is the
Wigner-Seitz cell.
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Figure 1.13: Muffin-tin potential.

solutions at the boundaries.
The spherically symmetric problem for |r| < r4 is solved with the standard Ansatz

p(r) =

where (7,0, ¢) are the spherical coordinates or r and the radial part u;(r) of the wave function
obeys the differential equation
[ 2 d®>  RA(L+1)

—_t —— — E)=0. 1.121
2mdr2+ Sy + V(r) E] u(r,E) =0 ( )

) 6,6, (1.120)

We define an augmented plane wave (APW) A(k,r, E), which is a pure plane wave with wave
vector k outside the Muffin-tin sphere. For this, we employ the representation of plane waves
by spherical harmonics,

oo l
) 2 LAY ()Y, () (1.122)
=0 m=—

where j,(x) is the [-th spherical Bessel function. We parametrize

r u,(r, F) v* (i )
\/7 ZZ jl l E) m(k)yvlm(r% r < Tgs
UC |m s’

Alk,r,E) = (1.123)
szl k?“ lm ( ) 7“>’l“s’
ﬁ o
where ) is the volume of the unit cell. Note that the wave function is always continuous at

r = r,, but that its derivatives are in general not continuous. We can use an expansion of the
wave function v (r) similar to the one in the nearly free electron approximation (see equations
(1.18) and (1.26)),

r) =) cgk)Ak+G,r, E), (1.124)

where the G are reciprocal lattice vectors. The unknown coefficients can be determined varia-
tionally by solving the system of equations

S (AWEB)H — Bl Ay, g(E))egk) =0, (1.125)

G
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where

2k - k'
<Ak(E)\H—E1Ak,(E)>—< o —E> Qoo + Vi (1.126)
with
k- K gk —K'|r.)
, = 2| _ . ) 1 S
ijk 47Tr8[ ( o ) |k—k'[
> B2 Iy uj(r,, E)
— 20+ 1P (k-k)j(kr)j(k'r) s 1.12
+lz;2m( + 1) Py( )7, (kr )7, ( TS)UI(TS’E) (1.127)

Here, P)(z) is the [-th Legendre polynomial and v’ = du/dr. The solution of (1.125) yields
the energy bands. The most difficult parts are the approximation of the crystal potential by
the muffin-tin potential and the computation of the matrix elements in (1.125). The rapid
convergence of the method is its big advantage: just a few dozens of G-vectors are needed and
the largest angular momentum needed is about [ = 5. Another positive aspect is the fact that
the APW-method allows the interpolation between the two extremes of extended, weakly bound
electronic states and tightly bound states.
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Chapter 2

Semiconductors

The technological relevance of semiconductors can hardly be overstated. In this chapter, we
review some of their basic properties. Regarding the electric conductivity, semiconductors are
placed in between metals and insulators. Normal metals are good conductors at all temperatures,
and the conductivity usually increases with decreasing temperature. On the other hand, for
semiconductors and insulators the conductivity decreases upon cooling (see Figure 2.1).

o o
0 0
T T
semiconductor /isolator metal

Figure 2.1: Schematic temperature dependence of the electric conductivity for semiconductors
and metals.

We will see that the conductivity may be written as

o= , (2.1)

where n is the density of mobile electrons, 7 is the average time between two scattering events
of the electrons, and m and e are the electronic mass and charge, respectively. In metals, n is
independent of temperature, whereas the scattering time 7 decreases with increasing tempera-
ture. Thus, 7 determines majorly the temperature dependence of the conductivity in metals.
On the other hand, insulators and semiconductors have no mobile charges at 7' = 0. At finite
temperature, charges are induced by thermal excitations which have to overcome the band gap'
E, between the valence and the conduction band, yielding

3/2
n~n <T> / e~ Fa/2kBT (2.3)
0 TO ’ :

! Actually, one has to count both the excited electrons in the conduction band and the resulting holes in the
valence band, as both contribute to the current,

2
j=(ocr+o0_)E, with o+ = %, (2.2)
m+

where 4+ and — stand for holes and electrons, respectively, and n4+ = n_ holds for thermal excitation. Note that,
in general, the effective masses and scattering times are not the same for the valence and conduction bands.
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where 7|, = 300K and the electron density in the material n, is typically 10%° cm~3. For
insulators, the energy gap is huge, e.g., 5.5 eV for diamond. Consequently, the charge carrier
density at room temperature 7' = 300K is around n ~ 1072“cm™3. For a higher charge carrier
density n ~ 103 — 10cm ™3, smaller gaps Eg ~ 0.5 — 1eV are necessary. Materials with
a band gap in this regime are not fully isolating and therefore are termed semiconductors.
However, the carrier densities of both insulators and semiconductors are dwarfed by the electron
density in metals contributing to current transport (n .. ~ 102 — 10*%cm™3). Adding a
small amount of impurities in semiconductors, a process called doping with acceptors or donors,
their conductivity can be engineered in various ways, rendering them useful as components in
innumerable applications.

2.1 The band structure of the elements in group IV

2.1.1 Crystal and band structure

The most important semiconductor for technological applications is silicon (Si) that — like carbon
(C), germanium (Ge) and tin (Sn) — belongs to the group IV of the periodic table. These
elements have four electrons in their outermost shell in the configuration (ns)?(np)? (n=2 for
C, n=3 for Si, n=4 for Ge, and n=5 for Sn). All four elements form crystals with a diamond
structure (cf. Figure 2.2), i.e., a face-centered cubic lattice with a unit cell containing two atoms
located at (0,0,0) and (1,1, 1) (for Sn this is called a-Sn). The crystal structure is stabilized
by hybridization of the four valence electrons, leading to covalent bonding of oriented orbitals,

|th1) = |ns) + [np,) + np,) + [np,), |thg) = [ns) + [np,) — |np,) — [np,),
|th3) = |ns) — [np,) + [np,) — |np.), |thy) = [ns) — np,) — [np,) + |np_). (2.4)

Locally, the nearest neighbors of each atom form a tetrahedron around it, which leads to the
diamond structure of the lattice.

R,
oINS

Figure 2.2: The crystal structure of diamond corresponds to two face-centered cubic latices
shifted by a quarter of lattice spacing along the (1,1,1) direction.

The band structure of these materials can be found around the I'-point by applying the free-
electron approximation discussed in the previous chapter. I'; is the corresponding representation
to the parabolic band centered around the center of the Brillouin zone (0,0,0). Note that the
reciprocal lattice of a face-centered cubic (fcc) lattice is body-centered cubic (bee). The Brillouin
zone of a fce crystal is embedded in a bcec lattice as illustrated in Figure 2.3).

The next multiplet with an energy of € = 672h%/ma? derives from the parabolic bands emanating
from the neighboring Brillouin zones, with G = G(£1,+1,+1) and G = 27/a. The eight states
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Figure 2.3: The Brillouin zone of a face-centered cubic crystal (in real space) is embedded in a
bec lattice.

are split into I'; @'y &', ; ®I'y;. The magnitude of the resulting energies are obtained from band
structure calculations, lifting the energy degeneracy e, < ep - <ep, <ep, in the presence of a
periodic potential V(7). The essential behavior of the low-energy band structure of C and Si is
shown in Figure 2.4.

C

15.5eV _|1.12eV

*(1,1,1) = (0,0,0) = %(1,0,0) Z%(1,1,1)  (0,0,0)  %(1,0,0)
2 )A(k)A“( ) A 000

L r X L r X

Figure 2.4: Band structure of C and Si.

With two atoms per unit cell and four valence electrons, there are totally eight electrons per unit
cell. It follows that the bands belonging to I'; (non-degenerate) and I'y; (threefold degenerate)
are completely filled. The maximum of the valence band is located at the I'-point and belongs
to the representation I'y;. Because of the existence of an energy gap between valence and
conduction band, the system is not conducting at 7' = 0. The gap is indirect, meaning that the
minimum of the conduction band and the maximum of the valence band lie at different points
in the Brillouin zone, i.e., the gap is minimal between the I'-point of the valence band and some
finite momentum Ak along the [100]-direction of the conduction band.? A typical example of a

2Energy gaps in semiconductors and insulators are said to be direct if the wave-vector connecting the maximum
of the valence band and the minimum of the conduction band vanishes. Otherwise a gap is called indirect (see
Figure 2.5).
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semiconductor with a direct gap is GaAs, composed of one element of the third and fifth group,
respectively.

E E

3

N/

direct energy gap indirect energy gap

Figure 2.5: Illustration of direct and indirect band gaps.

Next we list some facts about these materials of the group IV:

e Carbon has an energy gap of around 5.5eV in the diamond structure. Thus, in this
configuration it is not a semiconductor but an insulator. The large energy gap causes the
transparency of diamond in the visible range (1.5-3.5eV), as the electromagnetic energy in
this range cannot be absorbed by the electrons.

e The energy gap of silicon is 1.12eV and thus much smaller; furthermore, it is indirect.
e Germanium has an indirect gap of 0.67eV.

e GaAs has a direct energy gap of 1.43eV.

2.2 Elementary excitations in semiconductors

We consider a simple two-band model to illustrate the most basic properties of the excitation
spectrum of a semiconductor. The Hamiltonian is given by

_ 4 A 4~
H= Z VkCVk,sCVik,s T Z €c,kCC k,sCC ks (2.5)
k,s k,s

where €y, and €, are the band energies of the valence band and conduction band, respectively.

The operator lek s (k) creates (annihilates) an electron with (pseudo-)momentum k and spin
s in the band n, n € {V,C}. In the ground state |®),

0) = [ &s.

k,s

0), (2.6)

the valence band is completely filled, whereas the conduction band is empty. The product on the
right-hand side runs over all wave vectors in the first Brillouin zone. The ground state energy
is given by

Ey=2) ey (2.7)
k
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The total momentum and spin of the ground state vanish. We next consider single electron
excitations from that ground state.?

2.2.1 Electron-hole excitations

A simple excitation of the system consists of removing an electron (i.e., creating a hole) from
the valence band and inserting it into the conduction band. We write such an excitation as

|k +q,s:k,s) = ETc,Hq,ﬁv,k,s/\‘I’o% (2.12)

where we remove an electron with pseudo-momentum k and spin s’ in the valence band and
replace it by an electron with k + q and s in the conduction band. The possibility of changing
the spin from s’ to s and of shifting the wave vector of conduction electrons by q is included.
Furthermore |k + g, s; k, s') is assumed to be normalized. The electron-hole pair may either be
in a spin-singlet (pure charge excitation s = s’) or a spin-triplet state (spin excitation s # ).
Apart from spin, the state is characterized by the wave vectors k and q. The excitation energy
is given by

E=c¢cpiqg— v (2.13)

The spectrum of the electron-hole excitations with fixed q is determined by the spectral function

I(q,E) = Z [k +q,s:k, 8/|ET0,k+q786V,ks'|®0>|25(E - (EC,kJrq - EV,k))' (2.14)

/
k,s,s

Excitations exist for all pairs E' and g for which I(g, F) does not vanish, thus, only above a g-
dependent threshold, which is minimal for ¢ = k,, where k, = 0 (k, # 0) for a direct (indirect)
energy gap. As k is arbitrary, there is a continuum of excited states above the threshold for
each q (see Figure 2.6).

For the electron-hole excitations considered here, interactions among them was assumed to
be irrelevant, and the electrons involved are treated as non-interacting particles. Note the
analogy with the Dirac-sea in relativistic quantum mechanics: The electron-hole excitations of
a semiconductor correspond to electron-positron pair creation in the Dirac theory.

3 Where is the chemical potential? We assume a simple band structure for a direct-gap semiconductor based
on the k - p approximation:
k> k>
and eck = g+

(2.8)

€V = —

2my 2mco

Now we calculate the electron distribution. The overall electron density is n:

n:ZZl:Q/ (;ﬁl;l. (2.9)

kEBZ s BZ

w

The density of electrons in the conduction and valence band for small finite temperatue are given by

d*k d*k 1 &k plee e eP1=Eq)
=92 P = —_—— = —_— €C.k H):72 kT3/2
ne /Bz (2m)3 nr(ec.k) Bz 4T3 eBleck—r) 4 1 Bz 473 ¢ 473 (2rmcksT) ’
d*k d*k 1 Ak ey - e P
- = - - &5 - C R plevie—n) 2 ksT)*/? .
o /BZ 47"3( nr(evs)) /BZ 4m3 e=Blevie—h) 4] /BZ 473 ¢ 43 (@mmy ksT)

(2.10)
Here we assumed that both u and E, — p are much larger than kT (8 = 1/ksT). Now we see that electron
count gives nc +ny = n such that we can set the two lines of the above equation equal to obtain for the chemical

potential,
E,

_ 3 my
p= +4kBTln(mC) . (2.11)

At T = 0 the chemical potential is exactly in the center of the band gap and then moves with increasing T, if the
effective masses are different. Note also that for small temperatures the thermally activated carriers, electrons
and holes, are well described by the classical Maxwell-Boltzmann distribution, as was used in the approximation
of the integrals.
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Figure 2.6: Electron-hole excitation spectrum for k; # 0. Excitations exist in the shaded region,
where I(q, E) # 0.

2.2.2 Excitons

Taking into account the Coulomb interaction between the electrons, there is another class of
excitations called excitons. In order to discuss them, we extend the Hamiltonian (2.5) by the
Coulomb interaction,

~ —~ —~ 2 ~ —~
7= / Br P F ) () ()T (r), (2.15)

|r — /| s

where the field operators are defined by
- 1 A
U (r)=—= > D t,,(r)e*7e, ., (2.16)
\/ﬁn:V,C k

where unk(r) are the Bloch functions of the band n = C,V. Now, we consider a general
particle-hole state,

) =D AR)EL oy g Criw|®o) = D Alk)k + q, 51k, ), (2.17)
k k

and demand that it satisfies the stationary Schrodinger equation (H + 17)|<I>q> = (Ey+ E,)|2,)-
This two-body problem can be expressed as

Yk +q.s:k, S| H+VIK +q,5:K,5)A(K') = (Ey+ E,)A(k). (2.18)
kl

The matrix elements are given by
(k+q,s:k,s|H|K'+q,s;K',s') = Op e 1B0 t €Chrq — €Vt (2.19)

and

(k+q,s:k,s|VIK +q,s:k,5) =

25 / * * — 3. ! 62
ﬁ /d?’r d3r' uakJrq(r)uV,k(r)uakurq(r')uv,k, (r')e i (r=r") P
1 % * 4 N AW PN 62
— @ / d37‘ d37', UC,k+q('r')uV"k (’I“/)uc7k/+q(r)uv7k/ ('rl)ez(k k)-(r—r )m, (220)

The first term is the exchange term, and the second term the direct term of the Coulomb
interaction. Now we consider a semiconductor with a direct energy gap at the I'-point. Thus,
the most important wave vectors are those around k = 0. We approximate

un,k/ (T)un,k(r) ~ Q/d3run,k/(r)un,k(r) = ﬁ(un,k'|un,k> ~ ]" (221)
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which is reasonable for k ~ k'(= k + q). In the same manner, we see that

. 1 1
Uikt q(M) Uy k(1) & & (U g gluve) = o (U kluyg) =0, (2.22)

Note that the semiconductor is a dielectric medium with a dielectric constant ¢ (D = ¢E).
Classical electrodynamics states that
4
v.E="" (2.23)
€

i.e., the Coulomb potential is partially screened due to dielectric polarization. Including this
effect in the Schrédinger equation phenomenologically, the matrix element (2.20) takes on the
form

(k+q,s:k s|VIK +q, sk, s) = dre? (2.24)
q,S8; R, q,s; ’ - Q€|k_k/‘2' :
Thus, we can write the stationary equation (2.18) as
1 4me? ,
<€C,k+q &y T E) A(k) — Q ; WA(k )=0. (2.25)

We include the band structure using the k - p - approximation which, for a direct energy gap,

leads to - -
ek h°k
=—4+F d = —

€k 2mc + g an €V

. 2.26
s (2.26)

For simplicity we assume now that my, = m, = m*, We define a so-called envelope function
F(r) by

F(r) = \/15 S Ak, (2.27)
k

This function satisfies the differential equation

h2V2 62 h2q2
_ ~“ \Fr=!lE-E — F 9.2
[ . e|r|] (r) { ’ 2Mex} *) (2.28)

where p is the reduced mass, i.e., ,ue;l = 2/m* and total mass M__ = 2m*.
The stationary equation (2.28) is equivalent to the Schrédinger equation of a hydrogen atom.
The energy levels then are given by

fo et R2q?

EFE =F — 2.29
q 9 2e2h2n2 + 2M, ( )

which implies that there are excitations below the particle-hole continuum, corresponding to
particle-hole bound states. This excitation spectrum is discrete and there is a well-defined
relation between energy and momentum (q), which is the wave vector corresponding to the
center of mass of the particle-hole pair. This non-trivial quasiparticle is called exciton. In the
present approximation it takes on the form of a simple two-particle state. In fact, however, it
may be viewed as a collective excitation, as the dielectric constant includes the polarization by
all electrons. When the screening is neglected, the excitonic states would not make sense as
their energies would not be within the band gap but much below. For the case of weak binding
considered above, the excitation is called a Wannier exciton. The typical binding energy is

Fex

FE. ~
b e

Ry. (2.30)

Typical values of the constants on the right-hand side are € ~ 10 and ., ~ m/10, so that the
binding energy is in the meV range. This energy is much smaller than the energy gap, such that
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Figure 2.7: Qualitative form of the exciton spectrum below the electron-hole continuum.

the excitons are inside the gap, as shown schematically in Figure 2.7.

The exciton levels are dispersive and their spectrum becomes increasingly dense with increasing
energy, similar to the hydrogen atom. When they merge with the particle-hole continuum the
bound state is ‘ionized’, i.e., the electron and the hole dissociate and behave like independent
particles.

Strongly bound excitons are called Frenkel excitons. In the limit of strong binding, the pair is
almost local, so that the excitation is restricted to a single atom rather than involving the whole
semiconductor band structure.

Excitons are mobile, but they carry no charge, as they consist of an electron and a hole with
opposite charges. Their spin quantum number depends on s and s’. If s = s’ the exciton is a
spin singlet, while for s # s’ it has spin triplet character, both corresponding to integer spin
quasiparticles. For small densities they approximately obey Bose-Einstein statistics, as they
are made from two fermions. In special cases, Bose-Einstein condensation of excitons can be
observed experimentally.

2.2.3 Optical properties

Excitation in semiconductors can occur via the absorption of electromagnetic radiation. The
energy and momentum transferred by a photon is fiw and hq, respectively. With the linear light
dispersion relation w = ¢|q| and the approximation Eg ~ 1leV ~ €?/a, we can estimate this
momentum transfer in a semiconductor
2

%:%QWN%%lq%§<%; (2.31)
where ¢ denotes the speed of light, a the lattice constant, and « ~ 1/137 the fine structure
constant. With this, the momentum transfer from a photon to the excited electron can be
ignored. In other words, pure electromagnetic excitations lead only to ’direct’ excitations. For
semiconductors with a direct energy gap (e.g., GaAs) the photo-induced electron-hole excitation
is most easy and yields absorption rates with the characteristics

(hw — Eg)1/2, dipole-allowed,
Fabs(w) X (232)
(hw — E,)*?, dipole-forbidden.

Here, the terms “dipole-allowed” and “dipole-forbidden” have a similar meaning as in the exci-
tation of atoms regarding whether matrix elements of the type (uy, ,|7|us ) are finite or vanish,
respectively. Obviously, dipole-allowed transitions occur at a hiéher rate for photon energies
immediately above the energy gap E,, than for dipole-forbidden transitions.

For semiconductors with indirect energy gap (e.g., Si and Ge), the lowest energy transition con-
necting the top of the valence band to the bottom of the conduction band is not allowed without
the help of phonons (lattice vibrations), which contribute little energy but much momentum
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transfer, as ﬁwQ < hw with wg = ¢,|Q| and the sound velocity ¢, < ¢. The requirement of a
phonon assisting in the transition reduces the transition rate to

[ e (w) o ¢ (hw + hwg — B )? + ¢_(hw — hwg — E,)?, (2.33)

where ¢, are constants and @ corresponds to the wave vector of the phonon connecting the top
of the valence band and the bottom of the conduction band. There are two relevant processes:
either the phonon is absorbed (c_ -process) or it is emitted (c_-process) (see Figure 2.8).

A

Figure 2.8: Phonon-assisted photon absorption in a semiconductor with indirect gap: phonon
absorption (left panel) and phonon emission (right panel).

In addition to the absorption into the particle-hole spectrum, absorption processes inducing
exciton states exist. They lead to discrete absorption peaks below the absorption continuum.
In Figure 2.9, we show the situation for a direct-gap semiconductor.

excitons

r i n=1

electron-hole
continuum

! -
E, hw

Figure 2.9: Absorption spectrum including the exciton states for a direct-gap semiconductor
with dipole-allowed transitions. The exciton states appear as sharp lines below the electron-hole
continuum starting at iw = E ”

Naturally, the recombination of electrons and holes is important as well; in particular, if it is
a radiative recombination, i.e., leads to the emission of a photon. Additionally, other recom-
bination channels such as recombination at impurities, interfaces and through Auger processes
are possible. The radiative recombination for the direct-gap semiconductors is most relevant for
applications. The photon emission rate follows the approximate law

[o(w) o [N, (w) + 1] (hw — E,)/2e™/ksT (2.34)

em(
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with the photon density NV V(w). This yields the dominant rate for Aw very close to £ o

2.3 Doping semiconductors

Let us replace a Si atom in a Si semiconductor by aluminum Al (group III) or phosphorus P
(group V), which then act as impurities in the crystal lattice. Both Al and P are in the same
row of the periodic table, and their electron configurations are given by

Al [(15)%(25)2(2p)°] (35)*(3p),

The compound Al (P) has one electron less (more) than Si.

2.3.1 Impurity state

We consider the case of a P-impurity contributing an additional electron whose dynamics is
governed by the conduction band of the semiconductor. For the sake of simplicity, we describe
the conduction band by a single isotropic band with effective mass m,
hk?

€ =——+F . 2.35

k 2mC g ( )
In the neutral Si background, the phosphorus (P) ion represents a positively charged center,
which attracts its additional electron. In the simplest model, this situation is described by the
so-called Wannier equation

{ h2v? e

T €!f1} F(r) = EF(r), (2.36)

which is nothing else than the static Schrodinger equation for the hydrogen atom, where the
dielectric constant € measures the screening of the ionic potential by the surrounding electrons.
Analogous to the discussion of the exciton states, F'(r) is an envelope wave function of the
electron. Therefore, the low energy states of the additional electron are bound states around
the P ion. The electron may become mobile when this “reduced hydrogen atom” is ionized. The
binding energy relative to the minimum of the conduction band given by
4
g _g —_ M me

n 97 T on2e2n? 7m52n2Ry’ (2.37)

for n € N and the effective radius (corresponding to the renormalized Bohr radius in the material)
of the lowest bound state reads
h?e em

= - 2.38
T e me @B ( )

where a, = 0.53A is the Bohr radius for the hydrogen atom. For Si we find me ~ 0.2m and
€ =~ 12, such that

E, =~ —20meV (2.39)
and
r, ~ 30A. (2.40)

Thus, the resulting states are weakly bound, with energies inside the band gap. We conclude
that the net effect of the P-impurities is to introduce additional electrons into the crystal, whose
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energies lie just below the conduction band (Eg ~ 1eV while £, — E| ~ 10meV). Therefore,
they can easily be transferred to the conduction band by thermal excitation (ionization). One
speaks of an n-doped semiconductor (n: negative charge). In full analogy one can consider
Al-impurities, thereby replacing electrons with holes: An Al-atom introduces an additional hole
into the lattice which is weakly bound to the Al-ion (its energy is slightly above the band edge
of the valence band) and may dissociate from the impurity by thermal excitation. This case is
called p-doping (p: positive charge). In both cases, the chemical potential is tied to the dopand
levels, i.e., it lies between the dopand level and the valence band for p-doping and between the
dopand level and the conduction band in case of n-doping (Figure 2.10).

conduction band conduction band conduction band
/.l/_ ___';___ ;.___; T— —
impurity levels
/-l/ ______________
impurity levels
M - T T T =
valence band valence band valence band
no doping n-doped p-doped

Figure 2.10: Position of the chemical potential in semiconductors.

The electric conductivity of semiconductors (in particular at room temperature) can be tuned
strongly by doping with so-called ‘donors’ (n-doping) and ‘acceptors’ (p-doping). Practically
all dopand atoms are ionized, with the electrons/holes becoming mobile. Combining differently
doped semiconductors, the possibility to engineer electronic properties is enhanced even more.
This is the basic reason for the semiconductors being ubiquitous in modern electronics.

2.3.2 Carrier concentration

Let us briefly compare the carrier concentration in doped and undoped semiconductors at room
temperature. Carriers are always created in form of electron hole pairs, following the “reaction
formula”

e+h <, (2.41)

where 7 denotes a photon which is absorbed (e-h-creation) or emitted (e-h-recombination) and
accounts for the energy balance. The carrier concentration is described by a mass action law of
the form,

T

3
neny, = ng <T> e FalknT — nX(T), (2.42)
0

where T}, n, and E, are parameters specific to the semiconductor. In the case of undoped
silicon at T' = 300K, n_n;, ~ 1020 (cm_3)2. Thus, for the undoped semiconductor we find
n, =mn, ~ 10'%m™3. On the other hand, for n-doped Si with a typical donor concentration of

n, ~ 107cm™3 we can assume that most of the donors are ionized at room temperature such
that

n,~ n, ~107cm™> (2.43)
and
2
T
n, = ") e, (2.44)
n



We conclude, that in n-doped superconductors the vast majority of mobile carriers are electrons,
while the hole carriers are negligible. The opposite is true for p-doped Si.

2.4 Semiconductor devices

Semiconductors are among the most important components of current high-technology. In this
section, we consider a few basic examples of semiconductor devices.

2.4.1 pn-contacts

The so-called pn-junctions, made by bringing in contact a p-doped and an n-doped version
of the same semiconductor, are used as rectifiers. When contacting the two types of doped
semiconductors the chemical potential, which is pinned by the dopand (impurity) levels, deter-
mines the behavior of the electrons at the interface. In electrostatic equilibrium, the chemical
potential is constant across the interface. This is accompanied by a “band bending” leading
to the ionization of the impurity levels in the interface region (see Figure 2.11). Consequently,
these ions produce an electric dipole layer which induces an electrostatic potential shift across
the interface. Additionally, the carrier concentration is strongly reduced in the interface region
(depletion layer).

ionized

electric
A dipole
- == T =‘-.. ----- - -’.— LSl SO v
p-doped n-doped

Figure 2.11: Occupation of the impurity levels of a pn-junction.

In the absence of a voltage U over the junction, the net current flow vanishes because the dipole
is in electrostatic equilibrium. This can also be interpreted as the equilibrium of two oppositely
directed currents, called the drift current J,,, and the diffusion current Jg;5. From the point
of view of the electrons, the dipole field exerts a force pulling the electrons from the p-side to
the n-side. This leads to the drift current Jy ;. On the other hand, the electron concentration
gradient leads to the diffusion current J4 from the n-side to the p-side. The diffusion current
is directed against the potential gradient, so that the diffusing electrons have to overcome a
potential step. The equilibrium condition for U = 0 is given by

0= Jo (U=0)=Jyg + Jqup x C} (T)eFolkeT CQ(T)G_Eg/kBT =0, (2.45)

where C; = C, = C. Both currents are essentially determined by the factor C(T Ye~Pa/kBT  For
the drift current, the exponential behavior e £¢/k57T stems from the dependence of the current
on the concentration of mobile charge carriers (electrons and holes on the p-side and n-side,
respectively), which are created by thermal excitation (Boltzmann factor). Applying a voltage
does not change this contribution significantly. For the diffusion current however, the factor

4dt. Gleichrichter
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C(T)e F4/FBT describes the thermal activation over the dipole barrier, which in turn strongly
depends on the applied voltage U. For zero voltage, the height of the barrier £, is essentially
given by the energy gap E, ~ E,. With an applied voltage, this is modified according to
E, =~ E, —eU, where eU = p, — p, is the difference of the chemical potentials between the
n-side and the p-side. From these considerations, the well-known current-voltage characteristic
of the pn-junctions follows directly as

oo (U) = C(T)eEo/ksT (eeU/’fBT - 1) . (2.46)

For U > 0, the current is rapidly enhanced with increasing voltage. This is called forward bias.
By contrast, charge transport is suppressed for U < 0 (reverse bias), leading to small currents
only. The current-voltage characteristics J(U) (see Figure 2.12) shows a clearly asymmetric
behavior, which can be used to rectify ac-currents. Rectifiers (or diodes) are an important
component of many integrated circuits.

J

A-el reverse bias
dmmmmo forward bias

S e e s e sl

U

p-doped n-doped p-doped

Figure 2.12: The pn-junction with an applied voltage and the resulting J-U characteristics.

2.4.2 Semiconductor diodes
Light emitting diode

As mentioned above, the recombination of electrons and holes can lead to the emission of photons
(radiative recombination) with a rather well-defined frequency essentially corresponding to the
energy gap E,. An excess of electron-hole pairs can be produced in pn-diodes by running a
current in forward direction. Using different semiconductors with different energy gaps allows
to tune the color of the emitted light. Direct-gap semiconductors are most suitable for this kind
of devices. Well-know are the semiconductors of the GaAs-GaN series (see table 2.1). These
techniques are commonly used in LED (light emitting diode) lamps.

There appear efficiency problems concerning the emission of light by semiconductors. In

semiconductor GaAs | GaAs, P, | GaAs, P4 | GaP GaN
wave length (nm) 940 660 620 550 340
color infrared red yellow green | ultraviolet

Table 2.1: Materials commonly used for LEDs and their light emitting properties.

particular, the difference in refractive indices inside ng- ~ 3 and outside n ;. =~ 1 the device
leads to large reflective losses. Thus, the efficacy of diode light sources, defined as the number
of photons emitted per created particle-hole pair, is small, but still larger than the efficiency of
conventional dissipative light bulbs.

Solar cell

Inversely to the previous consideration, the population of charge carriers can be changed by the
absorption of light. Suppose that the n-side of a diode is exposed to irradiation by light, which
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leads to an excess of hole carriers (minority charge carriers). Some of these holes will diffuse
towards the pn-interface and will be drawn to the p-side by the dipole field. In this way, they
induce an additional current J, modifying the current-voltage characteristics to

oot = Ty — I, = J(eV/FT —1) — J. (2.47)

It is important for the successful migration of the holes to the interface dipole that they do not
recombine too quickly. When J,_, = 0, the voltage drop across the diode is

kT (J
U, ="l (JL+1>. (2.48)

s

The maximum efficiency is reached by applying an external voltage U, < U, such that the
product J U, is maximized, where J, = J, (U = U,) (cf. Figure 2.13).

contacts

non-reflecting layer J A
/ .
n UL
p T~
maximal
power
_J; rectangle

Figure 2.13: Solar cell design and shifted current-voltage characteristics. The efficiency is max-
imal for a maximal area of the power rectangle.

2.4.3 MOSFET

The arguably most important application of semiconductors is the transistor, an element ex-
isting with different architectures. Here we shortly introduce the MOSFET (Metal-Oxide-
Semiconductor-Field-Effect-Transistor). A transistor is a switch allowing to control the current
through the device by switching a small control voltage. In the MOSFET, this is achieved by
changing the charge carrier concentration in a p-doped semiconductor using a metallic gate.
The basic design of a MOSFET is as follows (see Figure 2.14): A thin layer of SiO, is deposited
on the surface of a p-type semiconductor. SiO, is a good insulator that is compatible with the
lattice structure of Si. Next, a metallic layer, used as a gate electrode, is deposited on top of

the insulating layer.
p-type Si z
| x,Y
SiO2, insulator
/gource : \

metal gate drain
n-type Si n-type Si

Figure 2.14: Schematic design of a MOSFET device.

The voltage between the Si semiconductor and the metal electrode is called gate voltage U.,.
The insulating SiO, layer ensures that no currents flow between the electrode and the semicon-
ductor when a gate voltage is applied. The switchable currents in the MOSFET flow between
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Figure 2.15: Depletion layer at the SiO,-Si interface for 0 < eU, < E, (left panel) and the
inversion layer E, < eU,, (right panel).

the source and the drain which are heavily n-doped semiconductor regions.
Depending on the applied gate voltage U, three different regimes can be realized:

1. U, =0

Virtually no current flows, as the conduction band of the p-doped semiconductor is empty. The
doping states (acceptor levels) are occupied by thermal excitations.

U
2.O<6E—gc<1

In this case, the energy of the Si bands is lowered, such that in a narrow region within the
p-doped Si the acceptor levels drops below the chemical potential and the states are filled with
electrons (or, equivalently, holes are removed). This depletion layer has the extension d measured
from the Si-SiO, interface. The negative charge of the acceptors leads to a position-dependent
potential ®(z), where z is the distance from the boundary between SiO, and Si. This potential
®(z) satisfies the simple one-dimensional Poisson equation

d? (2) = 4mp(z)

il ’ 2.49
dz? € (249)
where the charge density originates in the occupied acceptor levels,
—en,, z <d,
p(2) { v (250)
and n , is the density of acceptors. The boundary conditions are given by
P(z=0)=U, and ®(z=d)=0. (2.51)
The solution for 0 < z < d then reads
2 U
B(z) = A @) with A= -G (2.52)
€ 2men,

The thickness of the depletion layer increases with increasing gate voltage d? oc U o
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3. 1< e

When the applied gate voltage is sufficiently large, a so-called inversion layer is created (cf.
Figure 2.15). Close to the boundary, the conduction band is bent down so that its lower edge
lies below the chemical potential. The electrons accumulating in this inversion layer providing
carriers connecting the n-type source and drain electrodes and producing a large, nearly metallic,
current between source and drain. Conduction band electrons accumulating in the inversion layer
behave like a two-dimensional electron gas. In such a system, the quantum Hall effect (QHE),
which is characterized by highly unusual charge transport properties in the presence of a large
magnetic field, can occur.
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Chapter 3

Metals

The electronic states in a periodic atomic lattice are extended and have an energy spectrum
forming energy bands. In the ground state these energy states are filled successively starting
at the bottom of the electronic spectrum until the number of electrons is exhausted. Metallic
behavior occurs whenever in this way a band is only partially filled. The fundamental difference
that distinguishes metals from insulators and semiconductors is the absence of a gap for electron-
hole excitations. In metals, the ground state can be excited at arbitrarily small energies which
has profound phenomenological consequences.

We will consider a basic model suitable for the description of simple metals like the Alkali metals
Li, Na, or K, where the (atomic) electron configuration consists of closed shell cores and one
single valence electron in an ns-orbital. Neglecting the core electrons (completely filled bands),
we consider the valence electrons only and apply the approximation of nearly free electrons. The
lowest band around the I'-point is then half-filled. First, we will also neglect the influence of
the periodic lattice potential and consider the problem of a free electron gas subject to mutual
(repulsive) Coulomb interaction.

3.1 The Jellium model of the metallic state

The Jellium' model is the probably simplest possible model of a metal that is able to describe
qualitative and to some extend even quantitative aspects of simple metals. The main simpli-
fication made is to replace the ionic lattice by a homogeneous positively charged background
(Jellium). The uniform charge density en,  is chosen such that the whole system — electrons
and ionic background - is charge neutral, i.e. n; , = n, where n is the electron density. In this
fully translational invariant system, the plane waves

|
Y, (1) = —=e"7 3.1

k:,s( ) \/ﬁ ( )
represent the single-particle wave functions of the free electrons. Here €2 is the volume of the
system, k and s € {,|} denote the wave vector and spin, respectively. Assuming a cubic
system of side length L and volume Q = L3 we impose periodic boundary conditions for the
wave function

Vg s (r 4+ (L,0,0)) = 1y, (7 + (0, L,0)) = ¢y, ((r + (0,0, L)) = 9y, (r) (32)
such that the reciprocal space is discretized as

2T
k= f(nx,ny,nz) (3.3)

1Jellium originates form the word jelly (gelatin) and was first introduced by Conyers Herring.
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where (nx,ny,nz) € Z3. The energy of a single-electron state is given by ¢, = h2k? /2m, (free
particle). The ground state of non-interacting electrons is obtained by filling all single particle
states up to the Fermi energy with two electrons. In the language of second quantization the

ground state is, thus, given by
wo) = [ [Te.0 (3.4)
|k|<kp s

where the operators EL s (¢ ) create (annihilate) an electron with wave vector k and spin s.
The Fermi wave vector k, with the corresponding Fermi energy e, = hzk‘% /2m is determined
by equating the filled electronic states with the electron density n. We have

1 A3k A7 k3
= = 1=2 [ — "2 1=9" _"F .
n=g 2. / (23 3 (2m)3 (3:5)
k| <kp,s
which results in
k, = (3n2n)Y/3 . (3.6)

Note k. is the radius of the Fermi sphere in k-space around k = 0.2

3.1.1 Theory of metals - Sommerfeld and Pauli

In a first step we neglect the interaction among the electrons and consider the electrons in the
metal simply as a Fermi gas. Then thermodynamic properties can be described by using the
Fermi-Dirac distribution function,

1
e—p)/ksT 4 ]

fle) = = (37)

and the density of states

d3k h2k? Q 5 m vVo2mE
N(E) kzs:&(E—ek)2Q/(27T)35<E—m> W/dﬂdkk ﬂa b

_ 9 (am\? L, 3N (BN
212 \ Rh2 2¢p \€ep ’
(3.8)

for £ > 0 with N = n{) as the total number of electrons. We first address the temperature
dependence of the chemical potential up second power in T for fixed electron number N, by
using the equation

+oo o 7T2
N=Yfe)= [ aB (ENE) = [CaEN @)+ TN L (39)
k,s

0

where we used the Sommerfeld expansion assuming T' < Ty = €5 /kg.> We now use

/ou dEN(E) ~ / dEN(E)+ (- ep)N'(ep) = N + (- ep)N'(ep)  (3.14)

2Note that the function kg (n) o (/9 depends on the dimensionality d of the system.
3 Sommerfeld expansion: In the limit kgT < ¢r the derivative df(E)/OF is well concentrated around E = p.
We consider

[T am g (<) < [ o+ @ - w0+ ESE g o} (<202

2

! toe ™ 2
— o)+ T [ (e -7 (<22 )+ = a0 + T 0T

(3.10)
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leading to

N~ N+ (u—ep)N'(e )+7T—2(k TN'(e) = u(T)=c¢ _ﬁ(k T)zN’(eF)
F F 6 B F 6 B N(GF)

+ .- (3.15)

with N'(ez)/N(€ep) = 1/2¢. Now we also determine the internal energy

[ee) w 71_2
U(T) :/O dE EN(E)f(E) %/0 dE EN(E) + E(kBT)2 {uN'(1) + N ()}
€r 7.[.2 2

~ [ a5 BN E) + e {0 - o) er) + Ty TN () |+ 5 (TP N )
0

-~

=0

=U,+ g(kBT) N(EF) )

(3.16)
where we used Eq.3.15. The specific heat is then given by
10U 72
= —— = —_k%TN(ep) =~T 1

and shows a T-linear behavior where « is the Sommerfeld coefficient, proportional to the density
of states at the Fermi energy.

Next we consider the effect of a magnetic field coupling to the electron spin, so that ¢, — ¢, , =
€, — ppsH with yu — B the Bohr magneton and s = £1. We consider the magnetization due to
the spin polarization of the electrons,

/J/ [o¢] o0
M=V, = ) =2 [T AENENE -yt - [ aENE)E + i)
pg [ of (E) 2 /OO of (E) 2

~ =2 EN(E)| ——=% | 2upH ~ un HN E|———— | =usHN .

o [T aene) (<202 ot ~ i ntey) [T ap (<20E)) < i)
(3.18)

By taking the derivative with respect to H we find for the susceptibility,
oM

Xo = 5 N%N(EF) : (3.19)

This is the Pauli paramagnetic susceptibility which is to lowest order temperature independent
and proportional to the density of states at the Fermi energy, like v*.

and analogous

+oo 2
| ar (%2) 1) = e + T Gohe T 4 (3.11)
With the definition
E —+oo " 2
oB) = [ apr@) ~ [ Carrmpm) = [ arrm s Tesn T e (312)
Note that oo P . )
T7e T

4 Temperature dependence of the x,: In Eq.(3.18) we go beyond the lowest order approximation using Eq.(3.10),

s it [ amnm) (<28 < i { G+ T N 0} (3.20)
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3.1.2 Stability of metals - a Hartree-Fock approach

Now we would like to examine the stability of the Jelium model. For this purpose, we compute
the ground state energy of the Jellium system variationally, using the density n as a variational
parameter, which is equivalent to the variation of the lattice constant. In this way, we will
obtain an understanding of the stability of a metal, i.e. the cohesion of the ion lattice through
the itinerant electrons (in contrast to semiconductors where the stability was due to covalent
chemical bonding). The variational ground state shall be |¥) from Eq.(3.4) for given k. The
Hamiltonian splits into four terms

with
Hygn = Z EkELsEks (3.24)
k,s
1 Sy SN ~
Moo= 3 3 [0 a¥ B () 8, (08, (3.25)
3. 3.1 ne? THoAT
Hei = — g d’r d°r W\PS(T)‘I}S(T) (326)
1 3 13 n2e?
L= = .2
Hy 2/drdr el (3.27)

where we have used in second quantization language the electron field operators
~ 1 .
Tir) = —=Y ¢ e (3.28)
\/ﬁ k
~ 1 .
T (r)=—=> 5" (3.29)
\/ﬁ k

The variational energy — which we want to minimize with respect to n — can be computed from
E, = (Uo|H[¥) and consists of four different contributions:

First we have the kinetic energy

B = (ol Hyan|W0) = > €, (Wy[ch, %) (3.30)
k,s _ 7
- nks
A3k 3
= QQ/ W Ek nks — NgEF (331)

where we used N = {)n the number of valence electrons and

1 |k <k,
Mg, = . (3.32)
0 |kl >k,
With Eq.(3.15) we write
N(u) ~ N <€F - %(kBT)QJXT((:;))> ~ N(er) — %(kBT)QJjV((Z)) : (3.21)
which leads to )
M~ p3HN(er) |1+ %(chT)2 {(JJ\[V((:;)) - ]]VV((:)) H = xp(T)H , (3.22)

and defines the temperature dependent spin susceptibility, which depends on details of the density of states.
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Secondly, there is the energy resulting from the Coulomb repulsion between the electrons,

1 e? =~ =~ = =~
B =3 / d*r d>r' - > ([T ()T ()T, ()T (r)| W) (3.33)
8,8’
Y e € (n?—G(r—1))=E +E (3.34)
- 2 r r ”l‘ — ’l‘l‘ n r r — “Hartree Fock* :

For this contribution we used the fact, that the two-particle correlation function from equation
(3.33) may be expressed® as

> (T[T )T ()T () (7)) = n® = G(r — ) (3.42)

8,8’

where

G(r) =

97712 <kF\r\coskF|r\ —sink,|r|\? (3.43)
) :

2 (kplr)?

The Coulomb repulsion H_, between the electrons leads to two terms, called the direct or Hartree
term describing the Coulomb energy of a uniformly spread charge distribution, and the ezchange
or Fock term resulting from the exchange hole that follows from the Fermi-Dirac statistics (Pauli
exclusion principle).

The third contribution originates in the attractive interaction between the (uniform) ionic back-
ground and the electrons,

2
_ 3, 3.0 € T T
E, = —/d rd3r - r/‘nz<\lfo|\l'l(r)\lfs(r)|\llo> (3.44)
s

62

= —/d3r d3r' - n?. (3.45)
=
®We shortly sketch the derivation of the pair correlation function. Using equations (3.28) and (3.29) we find
= = = T 1 —i(k—k')r _—i(g—q')-r’ S -~

(o Wl ()W, (#') T (r) s ()W) = 5 S eI memHata g ol Gl Cgr B Do) (3.35)

k.k’,q,q9"

We distinguish two cases:
First, consider s # s,

<(I>0 |/C\LS/C\L.9’EQ'S'/C\IC’S |(I)0> = 6kk’ 6qq’nkans’ (336)
leading to
~y o ~ ~ 1 n?
(o Wl ()T, (#") T (r) s ()W) = o8 > nksngs = T (3.37)
k,q

Secondly, assume s = s’ such that

‘I>0|5T ETSE ’sac/s|q)0> = (5kk’5 1+ — Opqr 0, k/)nkans s (3-38)
( ksCasCq aq q’%q
which in turn leads to
(Wo| T ()BT ()T, (') Ty (r) | Wo) = Z( e’“*’”"’*’“)) Tiks M- (3.39)
k,q

Both cases eventually lead to the result in equation (3.42) with

1 ik-r ’ dSk ik-r
(r)=2 (Q ?e nk> =2 / @n5° (3.40)

2

kp
_ 1 . _ 1 sinkpr — krprcoskpr 2
=2 (271’27' /dk k smkr) =2 (2#2 3 ) (3.41)

0

and n = k% /3% (k = |k| and r = |r|).
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Were the expectation value <W0\\f/£(r)\lf <(1)|¥,) corresponds to the uniform density n, as is
easily calculated from the definitions (3.28) and (3.29).
Finally we have the repulsive ion-ion interaction

, n2e?

1
By = (Vo H;| W) = 2/d37" d’r (3.46)

r =7l

n?-G(r-r’)

5 K. (1)

Figure 3.1: Pair correlation function (schematic graph).

It is easy to verify that the three contributions Fyy, (..., F., and E; compensate each other
to exactly zero. Note that these three terms are the only ones that would arise in a classical
electrostatic calculation, implying that the stability of metals relies purely on quantum effect.

The remaining terms are the kinetic energy and the Fock term. The latter is negative and reads

9n? e? [sink,|r| — k,|r|cosk,|r|\? 3e?
FEp . =-0—" [ &*r— a r r =-N"Fk_. 3.47
o= 0% [ (FEGREE) - Nk e

Eventually, the total energy per electron is given by

E, 3n°k2  3é? 221 0.916
9 b
= == ——k,=(—5 — R 3.48
N 52m 4x F < r2 T > Y (348)
where 1Ry = €?/2a,, and the dimensionless quantity r, is defined via
3
= 3.49
" o (349)
and
d 97\ 3 me?
=— == ) 3.50
s T, < 4 ) 12k, (3:50)

The length d is the average radius of the volume occupied by one electron. Minimizing the
energy per electron with respect to n is equivalent to minimize it with respect to r,, yielding
7y = 4.83 d ~ 2.5A. This corresponds to a lattice constant of a = (47/3)/3d ~ 4A. This
estimate is roughly in agreement with the lattice constants of the Alkali metals : roL = 3-22,
Tona = 9-96, 7, = 4.86. Note that in metals the delocalized electrons are responsible for the
cohesion of the ’positive background yielding a stable solid.

The good agreement of this simple estimate with the experimental values is due to the fact that
the Alkali metals have only one valence electron in an s-orbital that is delocalized, whereas the
the core electrons are in a noble gas configuration and, thus, relatively inert. In the variational
approach outlined above correlation effects among the electrons due to the Coulomb repulsion
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have been neglected. In particular, electrons can be expected to ’avoid’ each other not just
because of the Pauli principle, but also as a result of the repulsive interaction. However, for the

problem under consideration the correlation corrections turn out to be small for r_ ~r_ . :
b

By, (221 0916
ot

3 +0.062Inr, — 0.096 + ) Ry (3.51)

which can be obtained from a more sophisticated quantum field theoretical analysis.

3.2 Charge excitations and the dielectric function

In analogy to semiconductors, the elementary excitations of metallic systems are the electron-
hole excitations, which for metals, however, can have arbitrarily small energies. One particularly
drastic consequence of this behavior is the strong screening of the long-ranged Coulomb potential.
As we will see, a negative test charge in a metal reduces the electron density in its vicinity, and
the induced cloud of positive charges, relative to the uniform charge density, weaken the Coulomb
potential as,

—r/l
V(r) « 1 — V'(r) €

r T

(3.52)

i.e. the Coulomb potential is modified into the short-ranged Yukawa potential with screening
length . In contrast to metals, the finite energy gap for electron-hole excitations the charge
distribution in semiconductors reduces the adaption of the system to perturbations, so that the
screened Coulomb potential remains long-ranged,

V(r) o« . — V() o« o (3.53)

As mentioned earlier, the semiconductor acts as a dielectric medium and its screening effects are
accounted for by the polarization of localized electric dipoles, i.e., the Coulomb potential inside
a semiconductor is renormalized by the dielectric constant e.

3.2.1 Dielectric response and Lindhard function

We will now investigate the response of an electron gas to a time- and position-dependent weak
external potential V, (r,t) in more detail based on the equation of motion. We introduce the
Hamiltonian

M= gy + My = 2 8+ 3 [ A VT, (r) (3.54)
k,s s

where the second term is considered as a small perturbation. In a first step we consider the
linear response of the system to the external potential. On this level we restrict ourself to one
Fourier component in the spatial and time dependence of the potential,

V. (r,t) =V, (q,w)e et (3.55)

where 77 — 0_ includes the adiabatic switching on of the potential. To linear response this
potential induces a small modulation of the electron density of the form n, 4(r,t) = ng, +
dn,,q(r,t) with

5nind(r7 t) = 5nind(q7w)eiq""—iwt' (3'56)
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Using equations (3.28) and (3.29) we obtain for the density operator in momentum space,
R g i, o _ 1 N
T KR O T DICRANES DO PRI
s k,s

where we define pj, as = ’c\}; sClat qs- The perturbation term #, now reads

=2 / dr V, (r )WL)V, (r) = PV, (g.w)e e QZpkqs a(@w)e e,
(3.58)

with ,?)L 4 = 5;6 +qsCks- The density operator p,(t) in Heisenberg representation is the relevant
quantity needed to describe the electron density in the metal. We introduce the equation of
motion for py . ((¢):

d ~ ~
Zhdtpk q,s [pk:,q,s? /H} = [pk,q,s7 Hkin + HV] (359)
= (ek—i-q - 6k:)ﬁk:,q,s + (/C\Lseks - E;rc+qsek+qs)va(qa w)eiiwtent' (360)

We now take the thermal average (A) = Tr[Ae #"]/Tr[e~#*] and follow the linear response
scheme by assuming the same time dependence for (py, , ((t)) o e~ Wttt a5 for the potential |
so that the equation of motion reads,

(hw + ihn) <ﬁk:,q,s> = (ek-‘rq o ek) <ﬁk:,q,s> + (nOk:,s B n(]k-i—q,s)va(q’w) (3'61)

N
where ng, o = (¢,,C,) and, therefore,

1 "0k+q,s — "0k,s
0 g — E ’ : ) .62
nmd q,w Q pk,q s Q £ P o — Zh?]Va(q’ W) (3 6 )

With this, we define the dynamical linear response function as

. 1 nOk—}—q,s - nOk,s
Xo(a:w) = g  —;

> e (3.63)

such that én, ,4(q,w) = x,(q,w)V,(q,w), where x,(q,w) is known to be the Lindhard func-
tion. So far we treated the linear response of the system to an external perturbation without
considering ”feedback effects” due to the interaction among electrons. In fact, the density fluc-
tuation dn(r,t) can be thought as a source for an additional Coulomb potential Vj, which can
be determined by means of the Poisson equation,

V2V, (r,t) = —dme*dn(r, t) (3.64)
or in Fourier space

4e?
%n(q7 w) -

5—on(q,w). (3.65)

If we allow feedback effects in our system with external perturbation V,(q,w), the effective
potential V' felt by the electrons is determined self-consistently via

Vig,w) = V,(q,w) + V5, (q,w) (3.66)

2
=V, (q,w) +

= on(q,w), (3.67)
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where

on(g,w) = xo(q,w)V(q,w). (3.68)

The relation between V' and V, may then be written as

Vig,w) = ‘m (3.69)
with
4me?
e(q,w)=1-— 7x0(q,w), (3.70)

where £(q,w) is termed the dynamical dielectric function and describes the renormalization of
the external potential due to the dynamical response of the electrons in the metal. Extending
Eq.(3.68) to

5n(qaw) = XO(q>w)V(qaw) = X(q,w)Va(q,w). (371)

we define the response function x(q,w) within "random phase approximation” ¢ to be

o) =0 - — o7
7 1- q2 XO((LOJ)

This response function x(g,w) contains also effects of electron-electron interaction and comprises
information not only about the renormalization of potentials, but also on the excitation spectrum
of the metal.

3.2.2 Electron-hole excitation

For simple particle-hole excitations in metals, neglecting Coulomb interaction between the elec-
trons, it is sufficient to study the bare response function x,(q,w). We may separate x, into its
real and imaginary part, x,(q,w) = X;(q, w) + ix(y(q,w). Using the relation

lim —— =P C) +imd(2) (3.74)

n—0y 2 — 7,77

where the Cauchy principal value P of the first term has to be taken, we separate the Lindhard
function (3.63) into

1 n —-n
Xou(@w) = g D P (H) (3.75)

ks €k+q — €k
1
Xoo(@,w) = = E (M0 ke q — T04e) (€ g — € — Tw) (3.76)
Q
k,s

5The equation (3.73) can be written in the form of a geometric series,

4re? 4re? 2
x(q,w) = xo(gq,w) |1+ 7 XO(‘LW)"'( e XO(‘LW)) +-ee (3.72)

From the point of view of perturbation theory, this series corresponds to summing a limited subset of perturbative
terms to infinite order. This approximation is called Random Phase Approximation (RPA) and is based on the
assumption the phase relation between different particle-hole excitations entering the perturbation series are
random such that interference terms vanish on the average. This approximation is used quite frequently, in
particular, in the discussion of instabilities of a system towards an ordered phase.

99



The real part will be important later in the context of instabilities of metals. The excitation
spectrum is visible in the imaginary part which relates to the absorption of energy by the
electrons subject to a time-dependent external perturbation.” Note that Xo2(q,w) corresponds
to Fermi’s golden rule known from time-dependent perturbation theory, i.e. the transition rate
from the ground state to an excited state of energy Aiw and momentum q.

e k+q

Fermi-See

Figure 3.2: Schematic view of an particle-hole pair creation (electron-hole excitation).

The relevant excitations originating from the Lindhard function are particle-hole excitations.
Starting from the ground state of a completely filled Fermi sea, one electron with momentum k
is removed and inserted again outside the Fermi sea in some state with momentum k + q (see
Figure 3.2). The energy difference is then given by

Bl g = €kiq — € >0 (3.77)

In analogy to the semiconducting case, there is a continuum of particle-hole excitation spectrum
in the energy-momentum plane — sketched in Figure 3.3. Note the absence of an energy gap for
excitations.

A
W
Plasmaresonanz

2k g q

Figure 3.3: Excitation spectrum in the w-g¢-plane. The large shaded region corresponds to
the electron-hole continuum and the sharp line outside the continuum represents the plasma
resonance which is damped when entering the continuum.

3.2.3 Collective excitation

For the electron-hole excitations the Coulomb interaction was ignored (by using x,(q,w) instead
of x(g,w)), such that the bare Lindhard function provides information about the single particle
spectrum. Including the Coulomb interaction a new collective excitation will arise, the so-called
plasma resonance. For a long-ranged interaction like the Coulomb interaction this resonance
appears at finite frequency for small momenta q. We derive it here using the response function

"See Chapter 6 “Linear response theory” of the course “Statistical Physics” FS09.
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x(q,w). Assuming |q| < k, we expand x,(q,w) in g, starting with

on
Nogiq = Mok + 5o a0 Vier (3.79)

Note that dn,/0¢;, = —0(e, —€,) at T =0 and V, ¢, = hv,, is the velocity. Since we will deal
with states located at the Fermi energy here, v, = vpk/|k| is the Fermi velocity. This leads to
the approximation

Bk q-v,.0(e — 1)
~ —2 F-\"k
XO(qvw) /(277)3q-vF—w—i77

_ L +1dC050 k% qup cos n qup cos ) 2_|_ M 3_|_.-- (3.80)
(271')2 1 h'UF w+l77 W""LT/ W""LT/ .
o EE (8 o5
3m2m(w + in)? 5 (w +1in)? |
2 2 2
_ @ (3 0\ 3.82
e (1 e ar) o

According to equation (3.70), we find

w2
lim e(q,w)=1-— (3.83)

|g|—0 w
for the dielectric function in the long wavelength limit (|g| — 0), with

dme3n,
2 0
Wy, = . (3.84)

We now use the result in Eq.(3.82) to approximate x(q,w),

n0q2R(q7 w)2

~ 3.85
x(g:w) m(w + in)? — dre?nd R(q, w)? (3.85)
B n0q2R(q,w) 1 1
_ , S (3.86)
2mw, w +in — wa(q, w) wHin+ wa(q, w)
where we introduced
3v2.q>
R 2=(1 ). 3.87
(@02 = (142 ) (3.87)
Applying the relation (3.74) in Eq.(3.82) we obtain
2
’/Tn()q R(q7w )
Im[x(q,w)] ~ w—p [(5((» —w,R(q,w,)) —6(w +w,R(q, wp))} (3.88)
P
which yields a sharp excitation mode,
3viq?
w(g) = w,R(q,w,) =w, {1 + 102 +-0 0, (3.89)

which is called plasma resonance with w, as the plasma frequency. Similar to the exciton,
the plasma excitation has a well-defined energy-momentum relation and may consequently be
viewed as a quasiparticle (plasmon) which has bosonic character. When the plasmon dispersion
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metal Wg(pr) [eV] wz(fheo) [eV]
Li 7.1 8.5
Na 5.7 6.2
K 3.7 4.6
Mg 10.6 -
Al 15.3 -

Table 3.1: Experimental values of the plasma frequency for different compounds. For the alkali
metals a theoretically determined w, is given for comparison, using equation (3.84) with m the
free electron mass and n determined through Topi = 3:22, 7 N, = 3.96 and r, ¢ = 4.806.

merges with the electron-hole continuum it is damped (Landau damping) because of the allowed
decay into electron-hole excitations. This results in a finite life-time of the plasmons within
the electron-hole continuum corresponding to a finite width of the resonance of the collective
excitation.

It is possible to understand the plasma excitation in a classical picture. Consider negatively
charged electrons in a positively charged ionic background. When the electrons are shifted

uniformly by r with respect to the ions, a polarization P = —nger results. The polarization
causes an electric field E = —4n P which acts as a restoring force. The equation of motion for
an individual electron describes harmonic oscillations
d? 9
moat = —eFE = —4me n,r. (3.90)

with the same oscillation frequency as in Eq.(3.84), the plasma frequency,

, Ame’n,

2 —. (3.91)

Classically, the plasma resonance can therefore be thought as an oscillation of the whole electron
gas cloud on top of a positively charged background.

—

r
+

Figure 3.4: Classical understanding of the plasma excitation.

3.2.4 Screening
Thomas-Fermi screening

Next, we analyze the potential V' felt by the electrons exposed to a static field (w — 0). Using
the expansion (3.79) we obtain
1 k‘% 3n,

1
Xo(q,o) = _ﬁ Zé(ek — EF) = —pﬂ = 26F (392)
k,s
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and thus

e(q,0) =1+ -~LE (3.93)

with the so-called Thomas-Fermi wave vector k2, = 6me?ng/e,. The effect of the renormalized
g-dependence of the dielectric function can best be understood by considering a bare point
charge V, (r) = €2/r (or V,(q) = 4me?/q?) and its renormalization in momentum space

V (q) 4re?
Vv — a — 3.94
(@) (0.0 " P (3.94)
or in real space
o2
V(r)=—e e, (3.95)

The potential is screened by a rearrangement of the electrons and this turns the long-ranged
Coulomb potential into a Yukawa potential with exponential decay. The new length scale is k ;,
the so-called Thomas-Fermi screening length. In ordinary metals k., is typically of the same
order of magnitude as k,, i.e. the screening length is of order 5A comparable to the distance
between neighboring atoms.® As a consequence also external electric fields cannot penetrate a
metal, but are screened on this length 1/k; . This legitimates one of the basic assumptions

used in electrostatics with metals.

Friedel oscillations

The static dielectric function can be evaluated exactly for a system of free electrons, resulting
for 3 dimensions in

(q,0) =1+

462mkF 1 4]@ —¢® |2k, +q
— | L . .102
g2 {2 + 8k,.q . 2k, —q } (3.102)

8The Thomas-Fermi approach for electron gas is sketched in the following. The Thomas-Fermi theory for
the charge distributions slowly varying in space is based on the approximation that locally the electrons form a
Fermi gas with Fermi energy e and electron density n.(er) neutralizing the ionic background. The electrostatic
potential ®(7) of an external charge distribution pex(r) induces a charge redistribution pina () relative to ne(er).
Within Thomas-Fermi approximation the induced charge distribution can then be written as

Pind(T) = —€[ne(er + e®(7)) — ne(er)] (3.96)
with
ne(er) = ;% = 3TF%FLQ(%LEF)S/Q (3.97)

where € = li*k%/2m. This approach is justified, if the spacial change of the potential ®(r) is slow compared to
kr', so that locally we may describe the electron gas as a filled Fermi sphere of corresponding electron density.
The Poisson equation may now be formulated as

Oone
V2®(r) = —4n[pina(r) + pex(r)] ~ 47 |:62<I>(7') ”86(6) - pex(r)] (3.98)
e=ep
= k7 ®(r) — A7 pexc(T) (3.99)
with the Thomas-Fermi momentum krr defined as,
2
K2, = dme? el _ omeTne (3.100)
e _ €r
€E=€p
and ne = ne(er). For a point charge @ located at the origin we obtain,
e—TkTF
B(r) = Q (3.101)

r

This is the Yukawa potential as obtained above.
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Noticeably the dielectric function varies little for small ¢ < k,. At ¢ = +2k,, there is, however,
a logarithmic singularity. This is a consequence of the sharpness of the Fermi surface in k-space.
Consider the induced charge of a point charge at the origin: en,(r) = en,,0(r) which is Fourier
transformed is n,(q) = n."

Sn(r) = /(;iq)g {5(1(1) _ l}na( ciar — iZg q) sin gr dg (3.104)

with
(3.105)

Note that g(g) vanishes for both ¢ — 0 and ¢ — co. Using partial integration twice, we find

_ Mo
= 103/9 ) sin grdq (3.106)
0
where
q(q) = Aln|qg — 2k, | (3.107)
and
A
" ~ ‘1
9" (q) p—T (3.108)

dominate around ¢ ~ 2k,. Hence, for kpr > 1,

2kp+A

Sn(r) ~ An sin[(q — 2k, )r] cos 2k .r + cos[(q — 2k:F)r]sin2kFrdq (3.109)
r3 q— 2k,
2kp—A
2k
—s mAn e (3.110)
r

with a cutoff A — oo. The induced charge distribution exhibits so-called Friedel oscillations.
Finally we may ask what is the total electron charge displaced around the point charge en ,d(r).
We take Eq.(charge-displace) and integrate over r.

1
0Q = edn = e/d3r n(r) = éiir(l) {E(q) - 1} n,(q) = —eny, (3.111)
where we used 1/e(q) — 0 for ¢ — 0. The charge displacement corresponds to the exact op-
posite amount of charge of of the point charge. Thus we find a perfect compensation which
corresponds to perfect screening.

9The charge distribution can be deduced from the Poisson equation (3.65):

edn(a) = 723 Vin(@) = x0(@.00V (@) = xo(a,0) A% — LD (g0 (3.108)

The charge distribution in real space can be obtained by Fourier transformation.
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Figure 3.5: Friedel oscillations of the charge distribution.

Dielectric function in various dimensions

Above we have treated the dielectric function for a three-dimensional parabolic band. Similar
calculations can be performed for one- and two-dimensional systems. In general, the static
susceptibility is given by

.
NENNERE 1D
2mq  |s—2
1 40\ /2
Xolgw=0)=9 ——{1-(1-=) 6(s—2)p, 2D (3.112)
2 52
k, S 4 s+2
-1 -—(1-—= |1 D
iRl e

where s = ¢/k,. Interestingly x,(¢,0) has a singularity at ¢ = 2k, in all dimensions. The
singularity becomes weaker as the dimensionality is increased. In one dimension, there is a
logarithmic divergence, in two dimensions there is a kink, and in three dimensions only the
derivative diverges. Later we will see that these singularities may lead to instabilities of the
metallic state, in particular for the one-dimensional case.

A
x(0,0) -\ 1D
I
0 1 -
0 2k q

Figure 3.6: Lindhard functions for different dimensions. The lower the dimension the stronger
the singularity at ¢ = 2k ..
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3.3 Lattice vibrations - Phonons

The atoms in a lattice of a solid are not immobile but vibrate around their equilibrium positions.
We will describe this new degree of freedom by treating the lattice as a continuous elastic medium
(Jellium with elastic modulus A). This approximation is sufficient to obtain some essential
features of the interaction between lattice vibrations and electrons. In particular, renormalized
screening effects will be found. Our approach here is, however, limited to mono-atomic unit cells
because the internal structure of a unit cell is neglected.

3.3.1 Vibration of a isotropic continuous medium

The deformation of an elastic medium can be described by the displacement of the infinitesimal
volume element d®r around a point r to a different point 7/(r). We can introduce here the
so-called displacement field u(r) = r'(r) — r as function of r. In general, u is also a function of
time. In the simplest form of an isotropic medium the elastic energy for small deformations is
given by

E,= ;/d% (V- u(r,t))? (3.113)

where \ is the elastic modulus (note that there is no deformation energy, if the medium is
just shifted uniformly). This energy term produces a restoring force trying to bring the system
back to the undeformed state. In this model we are neglecting the shear contributions.!'® The
continuum form above is valid for deformation wavelengths that are much longer than the lattice
constant, so that details of the arrangement of atoms in the lattice can be neglected. The kinetic
energy of the motion of the medium is given by

2
_ P [ 3 (Ou(ri)
Ekin = 5 d’r (8{; (3115)
where p, = M;n, is the mass density with the ionic mass M; and the ionic density n,. Variation
of the Lagrangian functional L[u] = E,, — E_ with respect to u(r,t) leads to the equation of
motion

1 2
C—Z%u(r,t) CV(V - ur,t) =0, (3.116)

which is a wave equation with sound velocity c? = A/py- The resulting displacement field can
be expanded into normal modes,

u(r.t) = <= Y e (a0 + a(07e ) (3.117)

k
where every ¢, (t) satisfies the equation
d? 9
@qk’ + wiqy, = 0, (3.118)
ONote that the most general form of the elastic energy of an isotropic medium takes the form
Ba= a3 |30 @sus) + n(O0us) Oous)] . (3.114)
a,B=x,y,2

where 0o = 0/0ro. The Lamé coefficients A and p characterize the elastic properties. The elastic constant A
describes density modulations leading to longitudinal elastic waves, whereas p corresponds to shear deformations
connected with transversely polarized elastic waves. Note that transverse elastic waves are not important for the
coupling of electrons and lattice vibrations.
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with the frequency w,, = c,|k| = ¢,k and the polarization vector e, has unit length. Note that
within our simplification for the elastic energy (3.114), all modes correspond to longitudinal
waves, i.e. V x u(r,t) = 0 and e, || k. The total energy expressed in terms of the normal
modes reads

E =" pow? [ax(D)a () + g (g (1)) (3.119)
k

Next, we switch from a Lagrangian to a Hamiltonian description by defining the new variables

Qr = vPo(4 + a,) (3.120)

d —iWi /P, — a5) (3.121)

Pe=0 dt

in terms of which the energy is given by

1

=3 > (P +wipQp)- (3.122)
k

Thus, the system is equivalent to an ensemble of independent harmonic oscillators, one for each
normal mode k. Consequently, the system may be quantized by defining the canonical conjugate
operators P, — P, and Q, — @, which obey, by definition, the commutation relation,

Qe Pyr] = i 4 (3.123)

As it is usually done for quantum harmonic oscillators, we define the raising and lowering
operators

~ 1 ~ -~
b= e (<@ + Py ) (3.124)

1 S~
/b\IL = Shioy, (Wka - sz:) ; (3.125)

satisfying the commutation relations

(b DL ] = O 1 (3.126)
[bg by] = 0, (3.127)
[bs,, b, = 0. (3.128)

These relations can be interpreted in a way that these operators create and annihilate quasi-
particles following the Bose-Einstein statistics. According to the correspondence principle, the
quantum mechanical Hamiltonian corresponding to the energy (3.122) is

~ 1
H=> hw, <3,Qbk + 2) . (3.129)
k

b,
(E)\k) create (annihilate) a phonon, a quasiparticle with well-defined energy-momentum relation,

wy, = ¢,|k|. Using Eqgs.(3.118, 3.121, and 3.125) the displacement field operator u(r) can now

be defined as
1 A~ . .
ar) = — N e | —— [b kT Ll emikT| 3.130
"= 752 R R (3.130)
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As mentioned above, the continuum approximation is valid for long wavelengths (small k) only.
For wavevectors with k ~ 7 /a the discreteness of the lattice appears in the form of corrections
to the linear dispersion wy, o< |k|. Since the number of degrees of freedom is limited to 3N, (N,
number of atoms), there is a maximal wave vector called the Debye wavevector!'! k - We can now
define the corresponding Debye frequency w,, = ¢k, and the Debye temperature © , = hw,, /k,,.
In the continuous medium approximation there are only acoustic phonons. For the inclusion of
optical phonons, the arrangement of the atoms within a unit cell has to be considered, which

goes beyond this simple picture.

3.3.2 Phonons in metals

The consideration above is certainly valid for semiconductors, where ionic interactions are me-
diated via covalent chemical bonds and oscillations around the equilibrium position may be
approximated by a harmonic potential, so that the form of the elastic energy above is well moti-
vated. The situation is more subtle for metals, where the ions interact through the long-ranged
Coulomb interaction and are held to together through an intricate interplay with the mobile
conduction electrons.

First, neglecting the gluey effect of the electrons, the positively charged background can it-
self be treated as an ionic gas. Similar to the electronic gas (3.84), the background exhibits a
well-defined collective plasma excitation at the ionic plasma frequency

2 _ 47”%’(216)2

Q) = —4 -, (3.131)

(2

For equation (3.131) we used the formula (3.84) with n, — n; = n,/Z, the density of ions with
charge number Z;, e — Z,e, and m — M, the atomic mass. Apparently the excitation energy
does not vanish as k — 0. So far, the background of the metallic system can not be described
as an elastic medium where the excitation spectrum is expected to be linear in k, w, o< |k

The shortcoming in this discussion is that we neglected the feedback effects of the electrons that
react nearly instantaneously to the slow ionic motion, due to their much smaller mass. The
finite plasma frequency is a consequence of the long-range nature of the Coulomb potential (as
mentioned earlier), but as we have seen above the electrons tend to screen these potentials, in
particular for small wavevectors k. The “bare” ionic plasma frequency (1, is thus renormalized
to

0 Rz

2 2
“k e(k,0) K2+ k2, (cgk)”, ( )

where the presence of the electrons leads to a renormalization of the Coulomb potential by a
factor 1/¢(k,w). Having included the back-reaction of the electrons, a linear dispersion of a
sound wave (wy, = c,|k|) is finally recovered, and the renormalized velocity of sound c, reads

02 Zmuw? 1
2 P P72, (3.133)

CTR, T MR, 3TN,

For the comparison of the energy scales we find,

b Cq 1_m
—2 o~ L= - 1 3.134
T, vp \/ 37 M, <5h ( )

where we used kT, =€, and k, = k.

@

1 See course of Statistical Physics HS09.



Kohn anomaly

Notice that phonon frequencies are much smaller than the (electronic) plasma frequency, so that
the approximation

2
&
e(k,0)

wi = (3.135)
is valid even for larger wavevectors. Employing the Lindhard form of e(k,0), we deduce that
the phonon frequency is singular at |k| = 2k,. More explicitly we find

Owy,

Tk oo (3.136)

in the limit & — 2k,. This behavior is called the Kohn anomaly and results from the interaction
between electrons and phonons. This effect is not contained in the previous elastic medium
model that neglected ion-electron interactions.

3.3.3 Peierls instability in one dimension

The Kohn anomaly has particularly drastic effects in (quasi) one-dimensional electron systems,
where the electron-phonon coupling leads to an instability of the metallic state. We consider a
one-dimensional Jellium model where the ionic background is treated as an elastic medium with a
displacement field u along the extended direction (z-axis). We neglect both the electron-electron
interaction and the slow time evolution of the background modulation so that the Hamiltonian
reads,

H = Higol + Hing (3.137)
where contributions of the isolated electronic and ionic systems are included in
Higo) = kzs: h;:jczscks + % /da: (ZZ(@)Q (3.138)
whereas the interactions between the system comes in via the coupling
Moy =10 / d da' V (z — x')%u(x)@g(x’)@s(x’) (3.139)
s
In the general theory of elastic media V - u = —dn/n, describes density modulations, so that

the second term in (3.137) models the coupling of the electrons to charge density fluctuations of
the positively charged background!? mediated by the screened Coulomb interaction V (z — z').
Consider the ground state of IV electrons in a system of length L, leading to an electronic density
ny = N/L. For a uniform background u(z) = const, the Fermi wavevector of free electrons is
readily determined to be

+kr

L L
N=>" o / dk 1= 22k, (3.140)
s “kp
leading to
s
ke = 5. (3.141)

12Note that only phonon modes with a finite value of V - u couple in lowest order to the electrons. This is only
possible of longitudinal modes. Transverse modes are defined by the condition V -« = 0 and do not couple to
electrons in lowest order.
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Perturbative approach - instability

Now we consider the Kohn anomaly of this system. For a small background modulation u(x) #
const, the interaction term H; , can be treated perturbatively and will lead to a renormalization
of the elastic modulus A in (3.137). For that it will be useful to express the full Hamiltonian in
momentum space,

h2k2 Qp
Higol = Z 2m k‘s Crs T - qu Ugl—g (3.142)

—ZZ V ckws Vu cksckJrqs] (3.143)

7q7

where we used from previous considerations Ag? = powg. Furthermore we defined
1 i
= u,", (3.144)
q
VL 4
1 .
==Y Ve, (3.145)
q
VL 4

with f/q = 4me?/q?e(q,0) =~ const. - we consider an effectively short-ranged potential. We
compute the second order correction to the ground state energy using Rayleigh-Schrodinger
perturbation theory (note that the linear energy shift vanishes)

4 = 2 o~ 2
2177 12 (WolCh s Chg,sl )™ + (W[ g Cr sl
AE® =" PV, Puu _qz T (3.146)
k,q,s 0 n
_ 512 2 Metqg — "
=>_IV,Pq “q“—qZﬁ (3.147)
q k q
—QZIVI o2, 0)ugu_, (3.148)

where the virtual states |n) are electron-hole excitations of the filled Fermi sea. This term gives
a correction to the elastic term in (3.142). In other words, the elastic modulus A and, thus, the
phonon frequency qu =2/ poq2 = cqu is renormalized according to

712,42 712
ren\2 . 2 ‘V’ 2 "/q|q q—|—2kF
(w5™)" ~wg + Xo(@:0) =wy = 5rln | = (3.149)

From the behavior for ¢ — 0 we infer that the velocity of sound is renormalized. However, a much
more drastic modification occurs at ¢ = 2k,. Here the phonon spectrum is 'softened’, i.e. the
frequency vanishes and even becomes negative. The latter effect is an artifact of the perturbation
theory.!3 This hints at an instability triggered by the Bose-Einstein condensation of phonons
with a wave vector of ¢ = 2k,. This coherent superposition'® of many phonons corresponds
classically to a static periodic deformation of the ionic background with wave vector 2k,. The
unphysical behavior of the frequency w, indicates that in the vicinity of 2k, the current problem
can not be treated with the help of perturbation theory around the uniform state.

13Note that indeed the expression

2 o
P
wy, = 3.150
"7 2,0) (3:150)
in (3.135) does not yield negative energies but gives a zero of wy at ¢ = 2kr.
We introduce the coherent state

| Dy = ¢l /22 n' (3.151)
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Figure 3.7: Kohn anomaly for the one-dimensional system with electron-phonon coupling. The
renormalization of the phonon frequency is divergent at ¢ = 2k ..

Peierls instability at Q = 2k,

Instead of the perturbative approach, we assume that the background shows a periodic density
modulation (coherent phonon state)

u(x) = uy cos(Qx) (3.154)

where Q = 2k, and u, remains to be determined variationally. We investigate the effect of
this modulation on the electron-phonon system. To this end we show that such a modulation
lowers the energy of the electrons. Assuming that wu, is small we can evaluate the electronic
energy using the approximation of nearly free electrons, where () appears as a reciprocal lattice
vector. The electronic spectrum for 0 < k < @ is then approximately determined by the secular
equation

h2k2
—F A
det ( QTI’LA* ﬁ2(k‘—Q)2 _E > =0 (3155)

2m

where A follows from the Fourier transform of the potential V' (z),

A = —iQugnV, (3.156)
with

V, = / dz 9%V (z). (3.157)

The equation (3.155) leads to the energy eigenstates

h2

Ef = —
k dm

[(k QP+ K E£V{(k—-Q)2 - k212 + 16m2yA\2/h4] . (3.158)

which does not have a definite phonon number for the mode of wave vector Q. On the other hand, this mode is
macroscopically occupied, since

ng = (®3"[bhbe|0G") = |af® (3.152)
and, moreover, we find
~ 1 i * —1
<(I>S)h|u(x)|q)§?oh> — h [ae Q= +a'e Qﬂc] = ug CoS(Qx) (3.153)
L 2powq

with uo = ha/poLwg, assuming « being real.
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The total energy of the electronic and ionic system is then given by

ALQ?
Biilug) =2 > E,_+ . u? (3.159)
0<k<@Q

where all electronic states of the lower band (E,_) are occupied and all states of the upper band
(E,,,) are empty. The amplitude v of the modulation is found by minimizing E , with respect
to uy:

0

1 dE
0= Zﬁ (3.160)
0
. Q
R 32QPmPnVE [ dk 1 A
oy [ o —— + Q% (3.161)
)T — Q)2 — K22 + 16m2Q2n2V 2ud /1t
~ ., +kr
4Qmn2V?2 1 A
=y e / dq —— + 0%, (3.162)
e \/q2 + 4m2n?V3ug /bt
8Qmn*V?2 2k A
= —uyg——s—2arsinh [ ——=— | + ZQ%u,. 3.163
O p2r 2mnV,u, 2Q 0 ( )

We solve this equation for u, using arsinh(z) ~ In(2z) when z > 1.

_ 2 & 1N (3.164)

Uy = i~
0 k., nVQ

12k, R2k, 7\
R 8mn2f/(§

mnVQ

where €, = h?k2/2m is the Fermi energy and N(0) = 2m/7h?k, is the density of states at the
Fermi energy. We introduced the coupling constant g = 4n2‘~/5 /A that describes the phonon-
induced effective electron-electron interaction. The coupling is the stronger the more polarizable
(softer) ionic background, i.e. when the elastic modulus A is small. Note that the static displace-
ment u, depends exponentially on the coupling and on the density of states. The underlying
reason for this so-called Peierls instability to happen lies in the opening of an energy gap,

AE = E; - B, =2|A] =8¢, exp (]\7(10)g> , (3.165)
at k = £k, i.e. at the Fermi energy. The gap is associated with a lowering of the energy of the
electron states in the lower band in the vicinity of the Fermi energy. For this reason this kind
of instability is called a Fermi surface instability. Due to the gap the metal has turned into a
semiconductor with a finite energy gap for all electron-hole excitations.

The modulation of the electron density follows the charge modulation due to the ionic lattice
deformation, which can be seen by expressing the wave function of the electronic states,

B iAeikx + (B, — ek)ei(k_Q)x
VO (B —e)?+[AP

Y () (3.166)

which is a superposition of two plane waves with wave vectors k and k — @, respectively. Hence
the charge density reads

2(e,, — B,)|A
(E), —€)* + A2

pi(z) = —e|) (z)|* = —% 1— sin Qx (3.167)
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Figure 3.8: Change of the electron spectrum. The modulation of the ionic background yields
gaps at the Fermi points and the system becomes an insulator.

and its modulation from the homogeneous distribution —en is given by

kp

e [ dk m|A|sin Qz
o) = 3 pyla) = (—em) = § [ G2 (3.168)
p ) 2T R E? 4 m2Ap2
en|Al, |2, .
= In | =L | sin(2k, ). 1
T6e, n‘ N sin(2k,.x) (3.169)

Such a state, with a spatially modulated electronic charge density, is called a charge density
wave (CDW) state. This instability is important in quasi-one-dimensional metals which are for
example realized in organic conductors such as TTF-TCNQ (tetrathiafulvalene tetracyanoquino-
methane). In higher dimensions the effect of the Kohn anomaly is generally less pronounced, so
that in this case spontaneous deformations rarely occur. As we will see later, a charge density
wave instability can nevertheless be observed in multi-dimensional (d > 1) systems with a so-
called nested Fermi surface. These systems resemble in some respects one-dimensional systems.
Finally, notice that the electron-phonon interaction strongly contributes to another kind of Fermi
surface instability, when metals exhibit superconductivity.

3.3.4 Dynamics of phonons and the dielectric function

We have seen that an external potential V, is screened by the polarization of the electrons.
As the positively charged ionic background is also polarizable, it should be included in the
renormalization of the external potential. In general, the fully renormalized potential V  may
be expressed via

V. =V

ren a’

(3.170)

with the full dielectric function . In order to determine V. and ¢, we define the "bare’ (unrenor-

malized) electronic (ionic) dielectric function ® (£1°"). The renormalized potential in (3.170)

can be expressed considering three other points of view. First, if the ionic potential V,_ is added
to the external potential V,, the remaining screening is due to the electrons only, i.e.,
EEIX/I‘en - V(l + -‘/101’1' (3'171)

Secondly, the electronic potential V,; may be added to the external potential V,, so that the ions
exclusively renormalize the new potential V; + V_, resulting in

€V _ =V +V,. (3.172)

ren

Note that in (3.172) all effects of electron polarization are included in V,, so that the dielectric
function results from the ’bare’ ions. Finally we use the fact that V. may be expressed as

ren
V=V, +Vy+V, (3.173)

ren ion*
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Adding (3.171) to (3.172) and subtracting (3.170), we obtain

(e +em -V, =V +V, +V

ren ion

(3.174)
which simplifies with (3.173) to
e=¢el4om_1 (3.175)

In order to find an alternative expression relating the renormalized potential V, to the external
potential V, we make the Ansatz

1 1 1
‘/ren - gVa - @g a (3176)

i.e. the potential V, /ael that results from bare screening of the polarizable electrons is addi-
tionally screened by an effective ionic dielectric function el which includes electron-phonon
ion

interactions. Using equation (3.175) and the definition of el via (3.176) we obtain

. 1 .
S =1+ (" - 1), (3.177)

or using the definition (3.70)

ion
ion __ Xo
Xoeff = el

(3.178)

Taking into account the discussion of the plasma excitation of the bare ions in Eqgs.(3.83, 3.84,
and 3.131), and considering the long wave-length excitations (k — 0), we approximate

. 0?2
gor=1- ;g (3.179)
=1+ K (3.180)
R :

For the electrons we used the result from the quasi-static limit in (3.93). The full dielectric
function now reads

K2, 9 k2 w}
s_1+]:;“—u)2_<1+]:;><—cﬂ>. (3.181)

k, € k+q, e+

k'€ k'-q.e~«

Figure 3.9: Diagram for the electron-electron interaction involving also electron-phonon cou-
pling.
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The time-independent Coulomb interaction

4 2
v, = = (3.182)
q
between the electrons is replaced in a metal by an effective interaction
4rre?
v = 3.183
@) = (3.183)
Ame? w?
= . (3.184)
k2. +q? <w2 - w3>

This interaction corresponds to the matrix element for a scattering process of two electrons
with momentum exchange q and energy exchange w. The phonon frequency Wy is always less
than the Debye frequency w,,. Hence the effect of the phonons is almost irrelevant for energy
exchanges w that are much larger than w,,. The time scale for such energies would be too short
for the slow ions to move and influence the interaction. Interestingly, the repulsive bare Coulomb
potential is renormalized to an interaction with an attractive channel for w < w, because of
overcompensation by the ions. This aspect of the electron-phonon interaction is most important
for superconductivity.
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Chapter 4

Itinerant electrons in a magnetic
field

Electrons couple through their orbital motion and their spin to external magnetic fields. In
this chapter we focus on the case of orbital coupling which can be also used as a diagnostic
tool to observe the presence of a Fermi surface in a metallic system and to map out the Fermi
surface topology. A further most intriguing feature of electrons moving in a magnetic field is
the Quantum Hall effect of a two-dimensional electronic system. In both case the Landau levels
with play an important role and will be introduced here in a first step.

4.1 The de Haas-van Alphen effect

The ground state of a metal is characterized by the existence of a discontinuity of the occupation
number in momentum space - the Fermi surface. The de Haas-van Alphen experiment is one
of the best methods to verify its existence and to determine the shape of a Fermi surface. It is
based on the behavior of electrons at low temperatures in a strong magnetic field.

4.1.1 Landau levels

Consider a free electron gas subject to a uniform magnetic field B = (0,0, B). The one-particle
Hamiltonian for an electron is given by

1 : e N> 9hpg
7t Qm( ihv c h S (4.1)
We fix the gauge freedom of the vector potential A by working in the Landau gauge, A =

(0, Bz, 0), satisfying B =V x A. Hence the Hamiltonian (4.1) simplifies to

1| R T o B/

In this gauge, the vector potential acts like a confining harmonic potential along the z-axis. As
translational invariance in the y- and z-directions is preserved, the eigenfunctions separate in
the three spacial components and take the form

P(r) = e*=ekg(z)e, (4.3)

where £, is the spin wave function. The states ¢(x) are found to be the eigenstates of the
harmonic oscillator problem, so that we have

b () = e H [(z — k £2) /€)= (R 26 (4.4)

Y V2r n! 27 02
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where H (x) are the Hermite polynomials and ¢ represents the magnetic length defined via
(%2 = he/|eB|. The eigenenergies of the Hamiltonian (4.2) read

h2k2 1 gl
E | —-=£B 4.
nkss = o < 2) hot (45)

where s = +h/2, n € N, and we have introduced the cyclotron frequency w, = |eB|/mc. Note
that the energy (4.5) does not depend on ky. The apparent differences in the spatial dependence

of the wave functions for the 2- and y-directions are merely a consequence of the chosen gauge.!
The fact that the energy does not depend on k‘y in the chosen gauge indicates a huge degeneracy
of the eigenstates. To obtain the number of degenerate states we concentrate for simplicity on
k, = 0 and neglect the electron spin. We take the electrons to be confined to a cube of volume
L? with periodic boundary conditions, i.e., k:y = 27my /L with n, € Ny. As the wave function
Pk, (z) is centered around k:yEQ, the condition

0<k,><L (4.8)

fixes the maximal number NV

deg of degenerate states

2 I’B @ o)
¢ 212 hele 9, '

0<ny<Nd

where ®, = hc/e is the magnetic flux quantum (e.g. Aharonov-Bohm interference effect). Thus
the degeneracy N, deg corresponds to the number of flux quanta included in the total magnetic
flux @ threading the system.

The energies correspond to a discrete set of one-dimensional systems, so that the density of states
is determined by the structure of the one-dimensional dispersion (with square root singularities
at the band edges) along the z-direction:

Ny(E,n,s) = mg}:a ~E,,;.,) (4.10)
—1/de5 E—@—hw( Ly s (4.11)
~on2 | or om AT ) TP '

3/2

8m2h?  \/E — hw,(n +1/2) + gu,Bs/h

The total density of states Ny (E) for a given energy E is obtained by summing over n € N, and
s = +h/2. This should be compared to the density of states without the magnetic field,

N,(E,B =0) Zé (E - h2k2> - (27;);;2@. (4.13)

The density of states for finite applied field is shown in Fig. 4.1 for one spin-component.

1Like the vector potential, the wave function is a gauge dependent quantity. To see this, observe that under a
gauge transformation

A(r,t) — A'(r,t) = A(r,t) + Vx(r,t) (4.6)
the wave function undergoes a position dependent phase shift

P(r,t) — @' (r,t) = P(r, t)e XD/ (4.7)
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Figure 4.1: Density of states for electrons in a magnetic field due to Landau levels. The dashed
line shows the density of states in the absence of a magnetic field.

4.1.2 Oscillatory behavior of the magnetization

In the presence of a magnetic field, the smooth density of states of the three-dimensional metal
is replaced by a discontinuous form dominated by square root singularities. The position of the
singularities depends on the strength of the magnetic field. In order to understand the resulting
effect on the magnetization, we consider the free energy

F=Nu-TS=Np—k,7 Y In (1 + e*(En,kz,stkBT) (4.14)

kzakyvnas

and use the general thermodynamic relation M = —0F/0B. For the details of the somewhat
tedious calculation, we refer to J. M. Ziman, Principles of the Theory of Solids?> and merely
present the result

X kT €. < 1 sin (% - WGE)

M=Ny,B |1+ Do [ Tr N~ o A° M (4.15)
} Xp 1B\ ppB ; V¥ sinn (2T )

B

Here x,, is the Pauli-spin susceptibility originating from the Zeeman-term and the second term
X, = —X,/3 is the diamagnetic Landau susceptibility which is due to induced orbital currents
(the Landau levels). For sufficiently low temperatures, k£, 7" < pu,B ~ hw,, the magnetization as
a function of the applied field exhibits oscillatory behavior. The dominant contribution comes
from the summand with ¥ = 1. The oscillations are a consequence of the singularities in the
density of states that influence the magnetic moment upon successively passing through the
Fermi energy as the magnetic field is varied. The period in 1/B of the oscillations of the term
v =1 is easily found to be

TE, 1>
—EA|l=| =27 4.16
Jo (B (4.16)

A <;> _ 2;66;%) (4.17)

where we used that p1, = he/2mc and defined the cross sectional area A(k,) = 7k? of the Fermi
sphere perpendicular to the magnetic field.

2German title : Prinzipien der Festkorpertheorie
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4.1.3 Onsager equation

The behavior we have found above for a free electron gas, generalizes to systems with arbitrary
band structures. In these cases there are usually no exact solutions available. Instead of gener-
alizing the above treatment to such band systems, we discuss the behavior of electrons within
the semiclassical approximation, as introduced in Section 1.7, and consider the closed orbits of
a wave packet subject to a magnetic field. The semiclassical equations of motion for the center
of mass of the wave packet (1.96, 1.97) simplify in the absence of an electric field to

Oey,
= = — 4.18
hk = —ka « B. (4.19)

This defines a closed path in a plane perpendicular to the applied uniform field. Hence, we can
apply the Bohr-Sommerfeld quantization scheme yielding quantized closed paths P,

§ pdr =t (420

n

with n being an integer and v a system specific shift, irrelevant for the final result and h = 27h.
The momentum within the semiclassical approach is expressed as

p=tk-A=-S(rxB+A), (4.21)
C C

where we used Eq.(4.19) integrated over time. Thus, Eq.(4.20) can be now evaluated as

j{p-dr:—i% {pr+A}~dr:fmcec<I>n+gB~ rxdr =h(n+7v), (4.22)

=2eB, Sn/c=2e®P,/c

where S, is the area encircled by the path P and ®, = B, S, the magnetic flux threading.
With this we find
e =M+, . (4.23)

Now we compare the areas of a given trajectory in real and reciprocal space, S, and A, ,respectively.
Considering hk = e(r x B)/c yields

|dr| = %o |dk| = S = Py 2A (4.24)
T_27TBJ_ o \2rB, n '

With the flux quantization in Eq.(4.23) we obtain for a given magnetic field the area A ,

B
A, = (n+y)dn? =L (4.25)
2
while for a given area A we obtain,
B 42
A= (n+y)4n?=2 = (n/ + V)LBW . (4.26)
0 0

Thus changing the field B by a certain amount B, — B, ,; would yield the same A and one
period of chaning density of states, i.e. magnetization. From this we conclude that there is a
regular oscillation as a function of 1/B and the period is connected with the area A,

A<1>: L (4.27)

B Bn—i—l Bn_A(I)O .
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Figure 4.2: Concentric tubes represent the quantized orbits in the reciprocal space corresponding
to the areas A, embedded in the original Fermi surface which limits the height of the tubes,
occupation along the kj-direction (k; || B). Left panel: 3-dimensional view of system with a
simple Fermi surface. Right panel: cross section including k:”. Extremal areas represent the
band edges (bottom: maximal A; and top: minimal A).

As we have seen above (Eq.(4.12)) the Fermi energy passes through a singularity in the density
of states at the band bottom of the one-dimensional motion of the electrons along &, or k| | B.
This corresponds the extremal area A(k:H). Note, also a band top yields the same type of
singularity and corresponds to a minimum of A(kH). Therefore, in experiment the magnetization
maxima oscillate with a period in the inverse magnetic field as given by Eq.(4.27).

The oscillations in the magnetization, thus, allow to measure the cross sectional area of the
Fermi ’sphere’. By varying the orientation of the field the topology of the Fermi surface can
be mapped. As an alternative to the measurement of magnetization oscillations one can also
measure resistivity oscillations known under the name Schubnikov-de Haas effect. For both
methods it is crucial that the Landau levels are sufficiently clearly recognizable. Apart from
low temperatures this necessitates sufficiently clean samples. In this context, sufficiently clean
means that the average life-time 7 (average time between two scattering events) has to be much
larger than the period of the cyclotron orbits, i.e. w, 7 > 1. This condition follows from the
uncertainty relation

h
Ae ~ = < huw, (4.28)
T

4.2 Quantum Hall Effect

Classical Hall Effect

The Hall effect, discovered by Edwin Hall in 1879, originates from the Lorentz force exerted by
a magnetic field on a moving charge. This force is perpendicular both to the velocity of the
charged particle and to the magnetic field. In the presence of an electrical current, a Lorentz
force produces a transverse voltage, whenever the applied magnetic field points in a direction
non-collinear to the current in the conductor. This so-called Hall effect can be used to investigate
some properties of the charge carriers. Before treating the quantum version, we briefly review
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the original Hall effect. To this end we consider the classical equation of motion of an electron,
subject to an electric and a magnetic field

dv
dt

*

S (E + % X B) , (4.29)

where m* is the effective electron mass. For this classical system, the steady state equation
reads

<E + % X B) —0. (4.30)

For the Hall geometry shown in Fig. 4.3 with fixed current j = (O,jy,O) = (0, —nyev,0) and
magnetic field B = B,, the steady state condition (4.30) simplifies to

vB, _
c

E_ +

T

0. (4.31)

The solution £, = —vB,/c yields the Hall voltage that compensates the Lorentz force. The Hall
conductivity o, is defined as the ratio between the longitudinal current Ty and the transverse
electric field E_, leading to

_ji_noec_ e
oy == = (4.32)

T z

where v = nyhc/Be. We infer from Eq.(4.32), that the measurements of the Hall conductivity
can be used to determine both the charge density n, and the sign of the charge carriers, i.e.
whether the Fermi surfaces encloses the I'-point for electron-like, negative charges or a point on
the boundary of the Brillouin zone for hole-like, positive charges.

Figure 4.3: Schematic view of a Hall bar. The current runs a long the y-direction and the
magnetic field is applied along z-direction. The voltage v, determines the conductance along
the Hall bar, while V, corresponds to the transverse Hall voltage.

Discovery of the Quantum Hall Effects

When measuring the Hall effect in a special two-dimensional electron system, Klaus von Klitzing
and his collaborators made 1980 an astonishing discovery.> The system was the inversion layer
of GaAs-MOSFET device with a sufficiently high gate voltage (see Section 2.4.3) which behaves
like a two-dimensional electron gas with a high mobility er/m* due to the mean free path
I ~ 10A and low density (n, ~ 10em™2. The two extended dimensions correspond to the
interface of the MOSFET, whereas the electrons are confined in the third dimension like in a

3See [von Klitzing, Dorda, and Pepper, Phys. Rev. Lett. 45, 494 (1980)] for the original paper.
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potential well (cf. Section 2.4.3). In high magnetic fields between 1 — 30T and at sufficiently
low temperatures (T" < 4K), von Klitzing and coworkers observed a quantization of the Hall
conductivity corresponding to exact integer multiples of €2 /h

2

e
Tu =y

(4.33)
where v, € N. By now, the integer quantization is so widely verified, that the von Klitzing
constant (resistance quantum named after the discoverer of the Quantum Hall effect) R, =
h/e? = 25812.80755712 is used in resistance calibrations. In the field range where the transverse
conductivity shows integer plateaus in v o< 1/B, the longitudinal conductivity Ty vanishes and

takes finite values only when o, crossed over from one quantized value to the next (see Fig.
4.4).

—~
c
~
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Figure 4.4: Integer Quantum Hall effect: As a function of the filling factor v plateaus in o,
appear at multiples of e2/h. The longitudinal conductance o,, is only finite for fillings where

Oy changes between plateaus.

In 1982, Tsui, Stérmer, and Gossard* discovered an additional quantization of o 4> corresponding
to certain rational multiples of 2 /h. Correspondingly, one now distinguishes between the integer
quantum Hall effect (IQHE) and the fractional quantum Hall effect (FQHE). These discoveries
marked the beginning of a whole new field in solid state physics that continues to produce
interesting results.

4.2.1 Hall effect of the two-dimensional electron gas

Here we first discuss the Hall effect in the quantum mechanical treatment. For this purpose
we start with the Hamilton operator (4.1) and neglect the electron spin. Working again in
the Landau gauge, A = (0, Bz,0), and confining the electronic system to two dimensions, the
Hamiltonian reduces to

2 2
T [—7?8 + <—ma + 63x> (4.34)

- 2m Ox? oy ¢

For the two-dimensional gas there is no motion in the z-direction, so that the highly degenerate
energy eigenvalues are given by the spectrum of a one-dimensional harmonic oscillator E, =
Tw,(n+1/2), where again w, = |eB|/m*c. Here, we will concentrate on the lowest Landau level

“See [Tsui, Stérmer and Gossard Phys. Rev. Lett. 48, 1559 (1982)] for the original paper
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(n = 0) with the wave function

1

o—(@=20)?/202 ikyy (4.35)
27l?

%,ky =

where the magnetic length £ = \/hc/|eB| gives the extension of the wave function in the presence
of the magnetic field. In z-direction, the wave function is localized around z, = —kyEQ, whereas
it takes the form of a plane wave in y-direction. As discussed previously, the energy does not
depend on ky.

We now introduce an electric field E_ along the z-direction. The Hamilton operator (4.34) is
then modified by an additional potential U(r) = —eE_x. This term can easily be absorbed into
the harmonic potential and leads to a shift of the center of the wave function,

, B 9 eF
zo(k,) = xo(k,) = —k, " — m*i(jg (4.36)
Moreover the degeneracy of the Landau level is lifted since the energy becomes k:y—dependent
and (after completing the square) takes the form

hw m* (cE \*
E,_(k,) = 2c—|—eEx1:6(ky)—|— 5 <Bfﬂ> . (4.37)

The energy (4.37) corresponds to the wave function ¢, from (4.35) where z is replaced by ().
The velocity of the electrons is then given by

1dE, _(k,) eE (? ckE
k; — n= Y e T = — i 4
olky) =3 dk, h B’ (4.38)
and from this, we determine the current density,
. ck, ev ck, e?
J, = —engv,(k,) = eng B =R B = VﬁEm =o0,FE, (4.39)

where v = n027r€2 is the filling of the Landau level.® The Hall conductivity is then identical to
the result (4.32) derived previously based on the quasiclassical approximation. There is a linear
relation between the Hall conductivity o, and the index v o B~L

4.2.2 Integer Quantum Hall Effect

The plateaus observed by von Klitzing in the Hall conductivity o, of the two-dimensional
electron gas as a function of the magnetic field correspond to the values o, = Vn62 /h, as if
v = v, € N was restricted to be an integer. Meanwhile, the longitudinal conductivity of the
electron gas vanishes when a plateau of o, is realized

o =2, (4.40)

and only becomes finite at the transition points of o, between two plateaus (cf. Fig. 4.4). This
fact seems to be in contradiction with the results from the consideration above. The solution
to this mysterious behavior lies in the fact that disorder, which is always present in a real
inversion layer, plays a crucial role and should not be neglected. In fact, due to the disorder, the
electrons move in a randomly modulated potential landscape U(z,y). As we will find out, even
small amounts of disorder lead to the localization of electronic states in this two-dimensional

5Note that v~ = B/no®o where ®g = hc/e represents the flux quantum, i.e. v~! < B is the number of flux
quanta g per electron.
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system. To illustrate this new aspect we focus on the lowest Landau level in the symmetric
gauge A = (—y, z,0)B/2. The Schrodinger equation in polar coordinates is given by

h2[188 (18 e

oo \ap  one

2
~or or BT) ] U(r,p) + Uz, y)o(r, ) = EY(r, @) . (4.41)

2m*
Without the external potential U(z,y) we find the ground state solutions
1 r\m —imp — 2/442
= - " 4.42
oo 9) = e (1) (42

where all values of m € N, correspond to the same energy E,_, = fw,_/2. One easily verifies,
that the wave functions |4, _ . (r, )| are peaked on circles of radius r,, = v2m{ (see Fig.4.5).
Note that the magnetic flux threading such a circle is given by

h h
7Brl = rB2mi® = 27rmBT_f3 =m= = md,, (4.43)
(& €

which is an integer multiple of the flux quantum ®, = hc/e.
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Figure 4.5: Wavefunction of a Landau level state in the symmetric gauge.

Now we consider the effect of the disorder potential. The gauge can be adjusted to the potential
landscape. If, for simplicity, we assume the potential to be rotationally invariant around the
origin, the symmetric gauge is already optimal. For the potential

C
Ulz,y) =U(r) = 721 + Cyr? + Cy, (4.44)

the exact expression of all eigenstates of equation (4.41) in the lowest Landau level is obtained
using the Ansatz

L L>a e imp e /A (4.45)

wo,m(rv (P) = \/27'[‘€*22O‘F(O( T 1) (g*

After introducing the dimensionless parameters C; = 2m*C,/h? and Cj = 8¢*m*C,/h?, the
quantities o and £* from equation (4.45) can be expressed via

a? =m?+Cf (4.46)

() 2= () 1+ C5 . (4.47)

Indeed, the Ansatz (4.45) describes eigenstates of the disordered problem (4.41). The degeneracy
of the ground state energy (the lowest Landau level) is now lifted,

hw, [ 2

om = 5 [5*2(0%1) ]+03. (4.48)
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The wave functions are concentrated around the radii r,, = +2af*. For weak potentials
C7,C5 < 1 and m > 1 the energy is approximatively given by

hw, C
E,,, =~ C+r71+02r§n+03+..., (4.49)

7m 2

m

i.e. the wave function adjusts itself to the potential landscape. It turns out that the same is true
for arbitrarily structured weak potential landscapes. The wave function describes electrons on
quasi-classical trajectories that trace the equipotential lines of the underlying disorder potential.
Consequently the states described here are localized in the sense that they are attached to the
structure of the potential. The application of an electric field cannot set the electrons in the
concentric rings in motion. Therefore, the electrons are localized and do not contribute to
electric transport.

Picture of the potential landscape

When the magnetic field is varied the filling v = n027r€2 of the Landau level is adjusted accord-
ingly. While all states of a given level are degenerate in the transitionally invariant case, now,
these states are spread over a certain energy range due to the disorder. In the quasi-classical ap-
proximation, these states correspond to equipotential trajectories that are either filled or empty
depending on the strength of the magnetic field, i.e. they are either below or above the chemical
potential. These considerations lead to an intuitive picture on localized (closed trajectories) and
extended (percolating trajectories) states. We may consider the potential landscape like a real
landscape where the the trajectories are contour lines. Assume that we fill now water into such
a landscape. The trajectories of the particles is restricted to the shore line. For small filling, we
find lakes whose shores are closed and correspond to contour lines. They correspond to closed
electron trajectories and represent localized electronic states. At very high water level, only
the large mountains of the potential landscape would reach out of the water, forming islands in
the sea. The coastlines again represent closed trajectories corresponding to localized electronic
states. At some intermediate filling, a boundary between the lake and the island topology,
there is a water level at which the coast lines become arbitrarily long and percolate through
the whole landscape. Only these contour lines correspond to extended (non-localized) electron
states. From this picture we conclude that when a Landau level of a system subject to a random
potential is gradually filled, first all occupied state are localized (low filling). At some special in-
termediate filling level, the extended states are filled and contribute to the current transport. At
higher chemical potential (filling) the states would be localized again. In the following argument,
going back to Robert B. Laughlin, the presence of filled extended states plays an important role.

Laughlin’s gauge argument

We consider a long rectangular Hall element that is deformed into a so-called Corbino disc, i.e.
a circular disc with a hole in the middle as shown in Fig.4.7. The Hall element is threaded
by a constant and uniform magnetic field B along the z-axis. In addition we can introduce an
arbitrary flux ® through the hole without influencing the uniform field in the disc. This flux
is irrelevant for all localized electron trajectories since only extended (percolating) trajectories
wind around the hole of the disc and by doing so receive an Aharonov-Bohm phase. When the
flux is increased adiabatically by d®, the vector potential is changed according to

A A+LJA=A+Vy,

which in our case means

(BA), = —. (4.50)
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Figure 4.6: Contour plot of potential landscape. There are closed trajectories and extended
percolating trajectories.

At the same time, the wave function acquires a phase factor
W = 1p el x/he = l0F/P0) 2, (4.51)

If the disc was translationally invariant, meaning that disorder is neglected and only extended
states exist, we could use the wave functions wO,m from (4.42), so that Bm"fn =m®,+ 5. The
single-valuedness of the wave function implies that m has to be adjusted, m — m — 6®/®,,.
This guarantees, that increasing ® by one flux quantum leads to a decrease of m by 1. Hence,
gauge invariance implies that the wave functions are shifted in their radius. This argument is
also applicable to higher Landau levels.

Q)

Figure 4.7: Corbino disk for Laughlin’s argument. According to the Hall bar in Fig. 4.3, the
radial (transverse) component of the Corbino disc is denoted by x, while the angular (longitu-
dinal) component is termed as y. Both the homogeneous magnetic field B and the flux ® point
along the z-axis perpendicular to the plane of the disc.

Since this argument is topological in nature, it will not break down for independent electrons
when disorder is introduced. The transfer of one electron between neighboring extended states
due to the change of ® by ®, leads to a net shift of one electron from the outer to the inner
boundary. If an electric field E_ is applied in the radial direction (here denoted by x-direction,
see Fig. 4.7), the transfer of this electron results in the energy change

Aey, = —eE L (4.52)
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where L is the distance between the inner and the outer boundary of the Corbino disc. A further
change in the electromagnetic energy
I 09
Ae, = 41— (4.53)

1 c

is caused by the constant current Iy (here the angular component is denoted by y, see Fig.4.7)
in the disc when the magnetic flux is increased by d®. Following the Aharonov-Bohm argument
that the energy of the system is invariant under a flux change by integer multiples of @,
the two energies should compensate each other. Thus, setting & = ®; and demanding that
Aey, + Ae, = 0 leads to
Ay 1y e

o, = E—m = L—Em =5 (4.54)
We conclude from this argument, that each filled Landau level containing percolating states
will contribute e?/h to the total Hall conductivity. Hence, for v, € N, filled levels the Hall
conductivity is given by o, = Vn€2 /h. Note the importance of the topological nature of the Hall
conductivity ensuring the universal character of the quantization.

Localized and extended states

The density of states of the two-dimensional electron gas (2DEG) in absence of an external
magnetic field is given by

B2 (k% + k2) L.Lm
N2DEG(E) = 2kzk: d (E - om 4 = Y ) (4.55)
THvy

with twice degenerate energy states for the spins, whereas for the Landau levels in a clean
sample, we have

L.L
N (B) =5 ﬁy Y §(E-E,,). (4.56)

Here the prefactor is given by the large degeneracy (4.9) of each Landau level.

B=0 Bx0 B0
NG, Ne, T NG, cisor cusgeoen
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Figure 4.8: Density of states for the two-dimensional electron gas in three different cases. On
the left panel, the system without applied magnetic field. On the middle panel, an external
magnetic field is applied to a clean system showing sharp strongly degenerate Landau levels.
The right panel visualizes the effect of disorder in the two-dimensional system with magnetic
field; the Landau levels are spread and the density of state shows broadened peaks where most
of the states are localized and only few states in the center percolate.

According to our previous discussion, the main effect of a potential is to lift the degeneracy of the
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states comprising a Landau level. This remains true for random potential landscapes. Most of
the states are then localized and do not contribute to electric transport. Only the few extended
states contribute to the transport if they are filled (see Fig. 4.8). For partially filled extended
states the Hall conductivity o, is not an integer multiple of e2/h, since not all percolating states
— necessary for transferring one electron from one edge to the other, when the flux is changed
by @, (in Laughlin’s argument) — are occupied. Thus, the charge transferred does not amount
to a complete —e. The appearance of partially filled extended states marks the transition from
one plateau to the next and is accompanied by a finite longitudinal conductivity Ty When all
extended states of a Landau level are occupied, the contribution to the longitudinal transport
stops, i.e., in the range of a plateau Tyy vanishes. Because of thermal occupation, the plateaus
quickly shrink when the temperature of the system is increased. This is the reason why the
Quantum Hall Effect is only observable for sufficiently low temperatures (7' < 4K).

Edge states and Biittiker’s argument

A confining potential prevents the electrons from leaving the metal. This potential at the edges
of the sample has also to be considered in the potential landscape. Interestingly, equi-potential
trajectories of states close to the edge are always extended and percolate along the edge. The
corresponding wave functions have already been discussed in Section 4.2.1. From Eq.(4.37), we
find that the energy is not symmetric in k,, the wave vector along the edge, i.e. E (ky) +F (—k:y).
This implies that the states are chiral and can move in one direction only for a given energy.
The edge states on the opposing edges move in opposite directions, a fact that can be readily
verified by inspection of (4.37) based on Fig.4.9. The total current flowing along the edge for a
given Landau level is

(&
I=3 7, (4.57)
ky Y

meaning that one state per k:y extends over the whole length L, of the Hall element. Thus,
the density is given by 1/ Ly. The wave vector is quantized according to the periodic boundary
conditions; k, = 2mn, / L, with n,, € Z. The velocity v, is given by equation (4.38). In summary,
we have

I=——
21h dk h h
. Yy .
occupied occupied

e dE,(k,) ¢ dE e 0
n\fy) e (V)
/ dk, = / dx, dn (u— E) (4.58)

where x, = ky€2 is the transversal position of the wave function and p is the chemical potential.
Sufficiently far away from the boundary E, is independent of xz;, and approaches the value
ET(ZO) = hw,(1/2+n) of a translationally invariant electron gas. The potential difference between
the two opposing edges leads to a net current along the edge direction of the Hall bar,

h h
,uA—,uB:eVH:eEILI:g(IA+IB):gIH, (4.59)
and with that
I, e?
o = == (4.60)
= E/L, h
where for 1, = p,, we have I, = —I_. Note that I,, = I, 4 I, is only valid when no currents

are present in the bulk of the system. The latter condition is ensured by the localization of the
states at the chemical potential. This argument by Biittiker leads to the same quantization as
derived before, namely every Landau level contributes one edge state and thus o, = l/n€2 /h (v,
is the number of occupied Landau levels). Note that this argument is independent of the precise
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Figure 4.9: Edge state picture by Biittiker. The left panel gives a top view of the two dimensional
system (L = L,) where chiral edge states exist on both edges of the Hall bar with opposite
chirality. On the middle panel, a single Landau level without and with transverse potential
difference is shown, where the latter yields a finite net current due to current imbalance between
left and right edge. The right panel visualizes the two lowest Landau levels which are occupied.
All higher Landau levels are empty. This fixes the Hall conductance value v, to 2.

shape of the confining edge potential.

Within this argument we are able to understand why the longitudinal conductivity has to vanish
at the Hall plateaus. For that we express Ohm’s law However it is simpler to discuss the
resistivity. Like the conductivity & the resistivity p is a tensor:

j=0FE (4.61)
E=pj (4.62)
where the conductivity & and the resistivity p are both a symmetric 2 x 2 tensor with o, = Tyy
and p,, = py,- Therefore we find
Pyy
o, = 5, (4.63)
" i
Py (4.64)

g. =& -
Yy 2 2
pyy+pxy

In the following argument, we explain why the longitudinal resistivity Pyy I two dimensions
has to vanish in the presence of a finite Hall resistivity Py Since the edge state electrons with
a given energy can only move in one direction, there is no backward scattering by obstacles as
long as the edges are far apart from each other. No scattering between the two edges implies
Pyy =0 and hence oy, =0. A finite resistivity can only occur when extended states are present
in the bulk, such that the edge states on opposite edges are no longer spatially separated from
each other.

4.2.3 Fractional Quantum Hall Effect

Only two years after the discovery of the Integer Quantum Hall Effect, Stormer, Tsui and
Gossard observed further series of plateaus of the Hall resistivity in a 2DEG realized with very
high quality MOSFET inversion layers at low temperatures. The most pronounced of these
plateaus is observed at a filling of v = 1/3 (0, = ve?/h). Later, an entire hierarchy of plateaus
at fractional values v = = p/m with p,m € N has been discovered,

1 2 2 3 3
= Ty Ty Ty Ty e - 4.65
o € {5 5 3 30 oo} (4.65)

The emergence of these new plateaus is a clear evidence of the so-called Fractional Quantum
Hall Effect (FQHE).

1%
p’m
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Figure 4.10: Experimental evidence of the Fractional Quantum Hall Effect.

It was again Laughlin who found the key concept to explain the FQHE. Unlike the IQHE, this
new quantization feature can not be understood from a single-electron picture, but is based on
the Coulomb repulsion among the electrons and the accompanying correlation effects. Laughlin
specially investigated the case Vpm =1 /3 and made the Ansatz

z|?
Wy (21,00 2y) o 1_[(,2Z — z;)™ exp (— Z |4Z|2 ) (4.66)

i<j

for the N-body wave function, where z = x—iy is a complex number representing the coordinates
of the two-dimensional system. Limiting ourselves to the consideration of the lowest Landau
level, this state gives a stable plateau with o, = (1/3)e?/h, when m = 3.

Aharanov-Bohm-Phase

® ® — O @ ®
2 2

] Austausch

Figure 4.11: Exchange of two particles in two dimensions involves the motion of the particles
around each other. There are two topologically distinct paths.

A heuristic interpretation of the Laughlin state was proposed by J. K. Jain and it is based on
the concept of so-called composite fermions. In fact, Laughlin’s state (4.66) can be written as

Uy, =[G =2 ey (4.67)

1<j
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where W is the Slater determinant® describing the completely filled lowest Landau level. We
see that the prefactor of ¥ in equation (4.67) acts as a so-called Jastrow factor that introduces
correlation effects into the wave function, since only the correlations due to the Pauli exclusion
principle are contained in W.. The Jastrow factor treats the Coulomb repulsion among the
electrons and consequently leads to an additional suppression of the wave function whenever
two electrons approach each other. In the form introduced above, it produces an phase factor
for the electrons encircling each other. In particular, exchanging two electrons (see Fig. 4.11)
leads to a phase

exp(i(m — 1)) = exp <¢7§Cm;1q>0) , (4.72)

since ®, = 2mhc/e. This phase has to be unity since the Slater state ¥ is odd under exchange
of two electrons. Therefore m is restricted to odd integer values. This guarantees that the total
wave function ¥, /m still changes sign when two electrons are exchanged.

composite composite Fermions

Fermion B, # * * # * * im externen Feld
o -8

_2% Bor = B o 2R 0y
Feld-Kompensation
Beff TOTOTOTOTOTOT IQHE

Figure 4.12: Sketch of the composite Fermion concept. Electrons with attached magnetic flux
lines, here for the state of v = 1/3.

According to the Footnote 5 (see equation (4.39)), the case v, = 1/3 implies that there are
three flux quanta ®, per electron. In order to understand the FQHE, one constructs so-called
composite fermions which do not interact with each other. Here, a composite fermion consists of

5The Slater determinant of the lowest Landau level is obtained from the states of the independent electrons.
In symmetric gauge, the states are labelled by the quantum number m € Ny and apart from the normalization
(given in equation (4.42)) they are given by

in(z) = 2™ 1A (4.68)

where z = x — iy. The Slater determinant for N independent electrons is

1 I ¢70(21) ¢N—1(21) ]
Us(21,...,28) = Wil det (4.69)
' L ¢o(zn) -+ dn-alzn) |
1T = zf zfvfl ]
1 =z 22 ... ZNTE 2
. 1 2 2 2 |Z1|
= 5 det ST ; exp( Z e ) (4.70)
L1 2y 2% - 20

The remaining determinant is a so-called Vandermonde determinant, which can be reexpressed in the form of a
product, such that

Vs = H(Zz — zj) exp ( Z |Zz|2 > . (4.71)

1<J

The prefactor is a homogenous polynomial with roots whenever z; = z;, which is a manifestation of the Pauli
exclusion principle. We also see that the state U5 has a well defined total angular momentum L, = Nh.
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an electron that has two (in fact m — 1) negative flux quanta attached to it. These objects may
be considered as independent fermions since the attached flux quanta compensate the Jastrow
factor in equation 4.67 through factors of the type (z; — zj)_(m_l). The exchange of two such
composite fermions in two dimensions leads to an Aharanov-Bohm phase that is just opposed
to that in equation (4.72). Due to the presence of the flux —2®, per electron, the composite
fermions are subject to an effective field composed of the external field and the attached flux
quanta:

Bg=B-) 28(z) (4.73)

= %B - (Z 28,(2,) — §B> (4.74)

For an external field B = 3n,®,,, the expression in the brackets of equation (4.74) vanishes and
the composite fermions feel an effective field B g = ny®, (Fig. (4.12)). Thus, these fermions
form an Integer Quantum Hall state with v =1 (for B = 3ny®), as discussed previously. This
way of interpretation is applicable to other Fractional Quantum Hall states, too, since for n
filled Landau levels with composite fermions consisting of an electron with an attached flux of
—2k®,, the effective field reads

) o
B¢ =nyg—2 — 2kny,®, = ny,—_. (4.75)
p7m n
From this we infer, that
1 1
— 42k =— (4.76)
n Vpm
or equivalently
v =L " (4.77)

P T Okn 41

Despite the apparent simplicity of the treatment in terms of independent composite fermions, one
should keep in mind that one is dealing with a strongly correlated electron system. The structure
of the composite fermions is a manifestation of the fact that the fermions are not independent
electrons. No composite fermions can exist in the vacuum, they can only arise within a certain
many-body state. The Fractional Quantum Hall state also exhibits unconventional excitations
with fractional charges. For example in the case v, ,, =1 /3, there are excitations with effective
charge e* = e/3. These are so-called 'topological’ excitations, that can only exist in correlated
systems. The Fractional Quantum Hall system is a very peculiar ’ordered’ state of a two-
dimensional electron system that has many interesting and complex properties.”

" Additional literature on the quantum Hall effects. For the Integer quantum Hall effect consult
- K. von Klitzing et al., Physik Journal 4 (6), 37 (2005)
while detailed literature on the fractional quantum Hall effect is found in
- R. Morf, Physik in unserer Zeit 33, 21 (2002)
- J.K. Jain, Advances in Physics 41, 105 (1992).
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Chapter 5

Landau’s Theory of Fermi Liquids

In the previous chapters, we considered the electrons of the system as more or less independent
particles. The effect of their mutual interactions only entered via the renormalization of poten-
tials and collective excitations. The underlying assumptions of our earlier discussions were that
electrons in the presence of interactions can still be described as particles with a well-defined
energy-momentum relation, and that their groundstate is a filled Fermi sea with a sharp Fermi
surface. Since there is no guarantee that this hypothesis holds in general (and in fact they do
not), we have to show that in metals the description of electrons as quasiparticles is justified.
This quasiparticle picture will lead us to Landau’s phenomenological theory of Fermi liquids.

5.1 Lifetime of quasiparticles

We first consider the lifetime of a state consisting of a filled Fermi sea to which one electron
is added. Let k with |k| > k, (e, = h*k?/2m with ¢, > €,) be the momentum (energy) of
the additional electron. Due to interactions between the electrons, this state will decay into a
many-body state. In momentum space such an interaction takes the form

o g ~t ~ A
Hee = Z ZV(q)Cqu7sck’+q,8’ck',8’ck,s7 (5.1)
k,k',q 5,5

where V(q) represents the electron-electron interaction in momentum space while g indicates
the momentum transfer in the scattering process. Below, the short-ranged Yukawa potential

2 2

4e _ 4re (5.2)

Vig) =
(@) ¢’c(q,0) 2+ k2,

from equation (3.94) will be used. As we are only interested in very small energy transfers
hw < €., the static approximation is admissible.

o K
k-q

Figure 5.1: The decay of an electron state above the Fermi energy happens through scattering
by creating particle-hole excitations.

In a perturbative treatment, the lowest order effect of the interaction is the creation of a particle-
hole excitation in addition to the single electron above the Fermi energy. As the additional
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electron changes its momentum from k to k — q, a hole appears at k' and a second electron with
wavevector k' 4+ q is created outside the Fermi sea. The transition is allowed whenever both
energy and momentum are conserved, meaning

k=(k-q)—K +(K+aq), (5.3)
and

€ = €p_qg — T Epigr (5.4)

We calculate the lifetime 7, of the initial state with momentum k using Fermi’s golden rule,
yielding the transition rate from the initial state of a filled Fermi sea and one particle with
momentum k to a state with two electrons above the Fermi sea, with momenta k — q and k' +q,
and a hole with k', as shown in Fig. 5.1. Since neither the momenta k’ and g, nor the spin of
the created electron are fixed, a summation over the possible configuration has to be performed,
1eading to

27r 1
= Z Z V(g ’ Mo, e "o,qu)(l - ”0,k’+q)5(€qu — e, — (e — 5k/+q))- (5.5)
k/q s/

Note that the term ng /(1 —ngp_)(1 — 1g g, ,) takes care of the Pauli principle, by ensuring
that the final state after the scattering process exists, i.e. the hole state k' lies inside and the
two particle states k — q and k' + q lie outside the Fermi sea. First the integral over k' is
performed under the condition that the energy €, q €k of the excitation is small. With that,
the integral reduces to

1
Slwer @) = g > (1 =10 4 (g — €1 — (€3 — €1 g)) (5.6)
k/
1
= (271_)3 /d3k/ nOJC/(l — n07k1+q)(5(6k/+q — €t — hwq,k) (57)
_ N(ep) Yo .
4 qup .

where N(e,) = mk,/m?h? is the density of states of the electrons at the Fermi surface and
hwq k= h%(2k-q—q?)/2m > 0 is the energy loss of the decaying electron.! In order to compute

!Small w are justified, because fiw < (2krq — ¢*)/2m for most allowed w. The integral may be computed using
cylindrical coordinates, where the vector g points along the axis of the cylinder. It results in

R P S
_ Y ’ q AN
ko 0
m
= Am2h2q (k% - k‘%) ) (5.10)

with k% = k2 — k:ﬁ}o and k2 = k2 — (kjo+ q)?, where kjo= (2mw — fig?)/2hq is enforced by the delta function.

The wave vectors k2 and ki are the upper and lower limits of integration determined from the condition ng /(1 —
No k' +q) > 0 and can be obtained by simple geometric considerations. equation (5.8) follows immediately.
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the remaining integral over g, we assume that the matrix element |V (q)|> depends only weakly

on q when ¢ < k,. This is especially true when the interaction is short-ranged. In spherical
coordinates, the integral reads

2 N
W h Z\v
Tk 4v Q

= e / Tq|V(q) 2 (5.12)

(5.11)

(27T)22hv q
02
__Nep) ,
(27r)4mv/dq“/( )|2q2(/d951n9(2kc050—q) (5.13)
—_ N(GF) 1 02
- <27r>4m/ dalV(@) e [—% (@heost — 0| (5.14)

The restriction of the domain of integration of @ follows from the two conditions k? > (k —q)? >
k% and (k — q)? = k? — 2kqcos® + ¢*. From the first condition, cos 6, = q/2k, and from the
second, cosf; = (k* — k% + ¢*)/2kq. Thus,

1 N(e,.) 1 9
— (Qﬂ/dq\V(q) 2@ (k* — k2) (5.15)
(;\;()63 %y h4( —GF)Q/d(JIV(q)!2 (5.16)
= 87rlh3 Ni;f) (g — EF)Z/dq\V(q)IQ- (5.17)

Note that convergence of the last integral over ¢ requires that the integrand does not diverge
stronger than ¢* (o < 1) for ¢ — 0. With the dielectric constant obtained in the previous
chapter, this condition is certainly fulfilled. Essentially, the result states that

1 o (€ — €,)? (5.18)
Tk

for k slightly above the Fermi surface. This implies that the state |ks) occurs as a resonance of
width h/7,, and features a quasiparticle, which can be observed in the spectral function A(E, k)
as depicted in Fig.5.2.2 The quasiparticle (coherent) part of the spectral function has a weight
reduced from one (corresponding to the quasiparticle weight Z,). The remaining weight is
shifted to higher energies as a so-called incoherent part (continuum without clear momentum-
energy relation).

The resonance becomes arbitrarily sharp as the Fermi surface is approached

h/T,

lim =0, (5.21)
k—kp Ek — 6F
2The spectral function is defined as
A(E, k) o< Y [(Wn[tks|Wo)|* 6(E — Ey) (5.19)

where |Wg) is the exact (renormalized) ground state and |¥,) are the corresponding exact excited states. The
coherent part of the spectral function can be represented as a Lorentzian form

Zxh 1
Tk (B — &) + 22

T2

ACOI](Ey k) = (520)

where Zj is the quasiparticle weight, smaller than 1.
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Figure 5.2: Quasiparticle spectrum: Quasiparticle peaks appear the sharper the closer the
energy lies to the Fermi energy. The area under the “sharp” quasiparticle peak corresponds to
the quasiparticle weight. The missing quasiparticle weight is transferred to higher energies.

so that the quasiparticle concept is asymptotically valid. The equation (5.21) can also be seen as
a verification of Heisenberg’s uncertainty principle. Consequently, the momentum of an electron
is a good quantum number in the vicinity of the Fermi surface. Underlying this result is the
Pauli exclusion principle, which restricts the phase space for decay processes of single particle
states close to the Fermi surface. In addition, the assumption of short ranged interactions is
crucial. Long ranged interactions can change the behavior drastically due to the larger number
of decay channels.

5.2 Phenomenological Theory of Fermi Liquids

The existence of well-defined fermionic quasiparticles in spite of the underlying complex many-
body physics inspired Landau to the following phenomenological theory. Just like the states of
independent electrons, quasiparticle states shall be characterized by their momentum k and spin
o. In fact, there is a one-to-one mapping between the free electrons and the quasiparticles. Con-
sequently, the number of quasiparticles and the number of electrons coincide. The momentum
distribution function of quasiparticles, defined as n_(k), is subject to the condition

N=> n,(k). (5.22)
k,o

In analogy to the Fermi-Dirac distribution of free electrons, one demands, that the ground state

distribution function nl(jo)(k) for the quasiparticles is described by a simple step function

nl (k) = O(k, — |K|). (5.23)

o

For a spherically symmetric electron system, the quasiparticle Fermi surface is a sphere with
the same radius as the one for free electrons of the same density. For a general point group
symmetry, the Fermi surface may be deformed by the interactions without changing the un-
derlying symmetry. The volume enclosed by the Fermi surface is always conserved despite the
deformation.? Note that the distribution ngo)(k:) of the quasiparticles in the ground state and
that ng,, = <ELJE,€ ,) of the real electrons in the ground state are not identical (Figure 5.3).
Interestingly, n,, is still discontinuous at the Fermi surface, but the height of the jump is, in
general, smaller than unity. The modification of the electron distribution function from a step

3This is the content of the Luttinger theorem [J.M. Luttinger, Phys. Rev. 119, 1153 (1960)].
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Figure 5.3: Schematic picture of the distribution function: Left panel: modified distribution
function of the original electron states; right panel: distribution function of quasiparticle states
making a simple step function.

function to a “smoother” Fermi surface indicates the involvement of electron-hole excitations
and the renormalization of the electronic properties, which deplete the Fermi sea and populate
the states above the Fermi level. The reduced jump in ng, is a measure for the quasiparticle
weight at the Fermi surface, Z kg 1€ the amplitude of the corresponding free electron state in
the quasiparticle state.

In Landau’s theory of Fermi liquids, the essential information on the low-energy physics of the
system shall be contained in the deviation of the quasiparticle distribution n_ (k) from its ground
state distribution n(%)(k),

n, (k) = n, (k) — nO (k). (5.24)

The symbol § is generally used in literature to denote this difference. Unfortunately this may
suggest that the term dn, (k) is small, which is not true in general. Indeed, dn (k) is con-
centrated on momenta k very close to the Fermi energy only, where the quasiparticle concept
is valid. This distribution function, describing the deviation from the ground state, enters a
phenomenological energy functional of the form

E=E,+Y ¢,(k)on,(k)+ % SN foor (kK )on, (K)on,, (k) + O(6n®) (5.25)
k,o k,k' o0

where E; denotes the energy of the ground state. Moreover, the phenomenological parameters
€, (k) and f,_,(k, k') have to be determined by experiments or by means of a microscopic theory.
The variational derivative

= (B) + o5 3 (kK )6, () (5.26)

K o'

yields an effective energy-momentum relation €_(k), whose second term depends on the distribu-
tion of all quasiparticles. A quasiparticle moves in the “mean-field” of all other quasiparticles, so
that changes dn (k) in the distribution affect € (k). The second variational derivative describes
the coupling between the quasiparticles
§*E 1

—— = —f (kK. 5.27

én, (k)on,, (k') Qf‘” ( ) (5:27)
We introduce a parametrization for these couplings f,_,(k, k') by assuming spherical symmetry
of the system. Furthermore, the radial dependence is ignored, as we only consider quasiparticles
in the vicinity of the Fermi surface where |k|, |k’| = k. Therefore the dependence of f__,(k, k')
on k, k' can be reduced to the relative angle ‘91% i

foor(k ) = f5(k,K') + o0’ f(k, k') (5.28)
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where k = k/|k|. The symmetric (s) and antisymmetric (a) part of f,_,(k,k’) can be expanded
in Legendre-polynomials P,(z) 4, leading to

ok, k) = Zfls’aPl(cos 07, ) (5.31)
1=0

The density of states at the Fermi surface is defined as

2 k2 m*k
N(GF) = Q Zé(e(k) - 6F) = ﬂ-thvF = thg (532)
k

and follows from the dispersion €(k) of the bare quasiparticle energy

hk,,

m*

Vi k)|, = vp = (5.33)

where for a fully rotation symmetric system we may write e(k) = h?k%/2m* with m* as an
?effective mass”, although we will be only interested at the spectrum in the immediate vicinity
of the Fermi energy. With this definition, we also introduce the so-called Landau parameters

F}S = N<€F)flsv (534)
= N(e ) fi", (5.35)
commonly used in the literature.® In the following, we want to study the relation between the dif-
ferent phenomenological parameters of Landau’s theory of Fermi liquids and the experimentally

accessible quantities of a real system, such as specific heat, compressibility, spin susceptibility
among others.

5.2.1 Specific heat - Density of states

Since the quasiparticles are fermions, they obey Fermi-Dirac statistics

1

(0) —
no (1K) = em—aria 41 (5-36)
with the chemical potential u. For low temperatures, we find
ony (k) = n{(T, k) — n{)(0, k) (5.37)
which, using Eq.(5.26) leads to €(k) = e(k), because here
1
o > foor (ke KON (K) =0 (5.38)

’
k',o

In dn_, (k') there are as many particles (positive) as holes (negative) such that they cancel in
the correction term. Therefore we rewrite the Fermi-Dirac distribution (5.36) as

1

"o (k) = T 1 1 (5.39)
4 Legendre- Polynomials: The Legendre polynomials satisfy the orthogonality relation
+1 ,
/C%’“ Pi(cos 0) Py (cos 0) = [1 d2Py(2)Pu(2) = 2%31 (5.29)
for all 1 =0,1,2,.... The first few polynomials are
Po(z)=1, Pi(z)=z, Ps(z)= %(3% _1), Pie) = %(5;’ _32). (5.30)

% Another frequently used notation for the Landau parameters in the literature is F; = F and Z; = F{*.
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with the bare quasiparticle energy e_(k) in place of the renormalized dispersion €_(k). Further-
more, we replaced p = €, + O(T?) by e - When focussing on leading terms, which are usually
of the order T° and T, corrections of higher order may be neglected in the low-temperature
regime. In order to discuss the specific heat, we employ the expression for the entropy of a
fermion gas. For each quasiparticles with a given spin there is one state labelled by k. The
entropy density may be computed from the distribution function

S = —% Z [n,(k)In (n,(k)) + (1 —n, (k) In (1 —n,(k))]. (5.40)
k,o

Taking the derivative of the entropy S with respect to T, the specific heat

a8
o(T) = Ta—T (5.41)
LT £(k)/ksT k k
= s(:)/k T 5 <l )2 In ( o) > (5.42)
Py (e sl + 1) kT 1—n,(k)
kT 1
4o dcosh (&(k)/2k,T)* kT% kT
is obtained, where we introduced (k) = €(k) — €. In the limit 7" — 0 we find
C(T)  Nlep) / &
~ dé———F——— 5.44
T 4k T3 5cosh?(g/szT) (5:44)
BN [ 7
~ 2L d 5.45
4 / ycoshQ(y/Q) (5.45)
27.2
= Tk Vi) (), (5.46)

which is the well-known linear behavior C(T') = 4T for the specific heat at low temperatures,
with v = 72k% N (e,.)/3. Since N(e,) = m*k,/m*h?, the effective mass m* of the quasiparticles
can directly determined by measuring the specific heat of the system.

5.2.2 Compressibility - Landau parameter F}

A Fermi gas has a finite compressibility because each fermion occupies a finite amount of space
due to the Pauli principle. The compressibility « is defined as®

1 /090
K=—— | =— 5.48
Q <3P>T,N ( )

where p is the uniform hydrostatic pressure. The indices T, N mean, that the temperature T
and the particle number N are kept fixed. We consider the response of the Fermi liquid upon
application of uniform pressure p. The shift of the quasiparticle energies is given by

_ Oe(k) Ok 00 k()

De(k)
= 5 o= ——0p = —— vy, - k 0p = 7,505 5.49

de(k)

5An alternative definition considers the change of particle number upon change of the chemical potential,

1 (0On

with n = N/Q.
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with v, = hv,, - k/3 = 2¢_(k)/3. Analogous we introduce the shift of the renormalized quasi-
particle energies,

1
= _ _ 0 § : ! l
(560_(143) — fyk/ﬂ',(sp = 'yk/ﬁ',( )(Sp =+ Q o~ fo.7o./(k, k )677;0./(’47 )

= 1 Vop + & me ~/((:/))5€g/(k3’) . (5.50)

= ’yk/-@ 0gp — = Z fga (k,K')5(¢,.(K') — €p)yp ks Op
k:/ !

Changes are concentrated on the Fermi surface such that we can replace v, = 2¢,/3 so that

ad;, . .
k=r — ,{N(GF)/ 4; S(ky k') = kO — KES . (5.51)
Therefore we find
«(0)
=T F (5.52)
0
Now we determine x(©) from the volume dependence of the energy
3 3 hkL 3 RN N\??
0) — 2 F _ 24V
E kz;ea(k) Nep =N L =10 ( T Q> . (5.53)
Then we determine the pressure
oE©) 12N (. ,N\*?1
- _ - - _ — .54
P <aQ 5 m* <3” Q> Q (5:54)
N
and 5 2
1 op 1 2
o) 50 §m*Q( 2p)2/3 = 3Nep - (5.55)

Figure 5.4: Deviations of the distribution functions: Left panel: isotropic increase of the Fermi
surface as used for the uniform compressibility; right panel: spin dependent change of size of
the Fermi surface as used for the uniform spin susceptibility.
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5.2.3 Spin susceptibility - Landau parameter Fj

In a magnetic field H coupling to the electron spins the bare quasiparticle energy is supplemented
by the Zeeman term,

R’ k2
olk) = Gnr
where ¢ = 41 denotes the spin component parallel to the applied field. The shift of the
renormalized quasiparticle energy due to the applied field is

o
- QNBH§ (5.56)

5¢ (k) = ¢, (H, k) — é(H = 0, k)

o 1
= —gp,H 3 + 5 >tk K )on,, (K) (5.57)

)
k' o

Note that by symmetry, én (k) = —6n__(—k). Due to interactions, the renormalized gyromag-
netic factor g differs from the value of g = 2 for free electrons. We focus on the second term in
Eq.(5.57), which can be reexpressed as

l / AN l / 8nal(k/) ~ /
1 Nere 1 _ o'
=5 Z [0 (kK )O(E, (K') — eF)g,uBH§ (5.58)
kK o’

Combining this result with the Eqs. (5.57) and (5.58), we derive

~ ~ dsy;, a(i. 1 ~1a
g ZQ—QN(GF)/Jf (k. k') =g - gFg, (5.59)
or equivalently
g
9=1 T FS (5.60)
The magnetization of the system can be computed from the distribution function,
o ocon_(k) ..
M = — k)= —— k
glUJB ; 25710_( ) g/‘LB; 2 8€U(k) 660’( )
o, _ o
=gy Y 506 (k) = ep)gpsHy (5.61)
k,o
from which the susceptibility is immediately found to be
M pyN(e,)
pr— i . . 2
XTHQT 1+ F¢ (5.62)

The changes in the distribution function induced by the magnetic field feed back into the sus-
ceptibility, so that the latter may be either weakened (F§ > 0) or enhanced (F§ < 0). For the
magnetic susceptibility, the Landau parameter F§ and the effective mass m* (through N(e,))
lead to a renormalization compared to the free electron susceptibility.
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5.2.4 Galilei invariance - effective mass and F§

We initially introduced by hand the effective mass of quasiparticles in €, (k). In this section
we show, that overall consistency of the phenomenological theory requires a relation between
the effective mass and one Landau parameter (F}). The reason is, that the effective mass
is the result of the interactions among the electrons. This self-consistency is connected with
the Galilean invariance of the system. When the momenta of all particles are shifted by hq
(lg| shall be very small compared to the Fermi momentum £, in order to remain within the
assumption-range of the Fermi liquid theory) the distribution function given by

on, (k) =nQ(k +q) —nlV (k) ~ q- V;,n0) (k). (5.63)

This function is strongly concentrated around the Fermi energy (see Figure 5.5).

Figure 5.5: Distribution function due to a Fermi surface shift (Galilei transformation).

The current density can now be calculated, using the distribution function n_(k) = n{? (k) +
dn, (k). Within the Fermi liquid theory this yields,

Jq = %Zv(k)ng(k) = é v(k)dn, (k) (5.64)
k,o
with
o .
’U(k}) = ﬁvk ea(k)
- 71@<Vk € (k) + % > Vi Lo (K, k’)5no(k’))- (5.65)

’
k' o

Thus we obtain for the current density,

1 hk 1 1
G =g 2 o)+ gz D0 D00 ) + 00, (k)] Y S (e, K0, (K)
k,o

k.o k' o
1« hk . / / )
T Q D O (K Z Z [V 1 ()] f o0 (s K )31, (K) + O(q7) (5.66)
k.o k.o k' o
1 hk 1 hk:/ ' )
= D0, (k) g DD g Uk K3, () — ) bm, (K) + O(¢?) = i, + o
k,o k.o ko’

where, for the second line, we performed an integration by parts and neglect terms quadratic in
én and, in the third line, used f,__,(k,k') = f,, (K, k) and

on) (k) h’k

Viny) (k) = WVk €5 (k) = —0(e, (k) — €,) Vi €, (k) = —0(e, (k) —€p) . (5.67)

102



The first term of equation (5.67) denotes quasiparticle current, j,, while the second term can
be interpreted as a drag current, j,, an induced motion (backflow) of the other particles due to
interactions.

From a different viewpoint, we consider the system as being in the inertial frame with a velocity
hg/m, as all particles received the same momentum. Here m is the bare electron mass. The
current density is then given by

. Nhq hk
Jq=q QZ QZ—én (5.68)

Since these two viewpoints have to be equivalent, the resulting currents should be the same.
Thus, we compare equation (5.67) and (5.68) and obtain the equation,

hk'

m*

hkﬁ hk g].zz fo.o. k k/) (U(kl) _EF)

0‘

(5.69)

m

which with k = k/k, then leads to

kK1 s,
= ’“ fS(k k) cos,, (5.70)
m m N e’
szoF Pi(cosBs)  Pi(cosbr)

1
m m*

() / e o i, i)

or by using the orthogonality of the Legendre polynomials,

m* 1

— =1+ -F}. 5.71

where 1/3 = 1/(21 + 1) for | = 1 originates from the orthogonality relation of Legendre-
polynomials, as shown above. Therefore, the relation (5.71) has to couple m* to F} in order for
Landau’s theory of Fermi liquids to be self-consistent. Generally, we find that F}* > 0 so that
quasiparticles in a Fermi liquid are effectively heavier than bare electrons.

5.2.5 Stability of the Fermi liquid

Upon inspection of the renormalization of the quantities treated previously

L= (5.72
Yo m )
K m* 1
b 5.73
kg m 1+ F§’ (5.73)
X m* 1
= = 5.74
X0 m 1+ F§ ( )
with . .
m
— =1+ _F 5.75
m + 3 1> ( )
and the the response functions of the non-interacting system are given by
kZmk 3m mkp
—B_F and x, = ph—L 2ﬁ2 (5.76)

0T T 0T kg

one notes that the compressibility & (susceptibility x) diverges for F§ — —1 (F§ — —1),
indicating an instability of the system. A diverging spin susceptibility for example leads to a
ferromagnetic state with a split Fermi surface, one for each spin direction. On the other hand, a
diverging compressibility leads to a spontaneous contraction of the system. More generally, the
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deformation of the quasiparticle distribution function may vary over the Fermi surface, so that
arbitrary deviations of the Fermi liquid ground state may be classified by the deformation

oo+l

ong(k) =" dnyy Ym0 bp) (5.77)

=0 m=-1

Note that we allow here formally for complex distribution functions. For pure charge density de-
formations we have dn Jﬁl’m(l;:) = (5n77l,m(/%), while pure spin density deformations are described
by 5n+,l,m(]%) = —5n7’l7m(l;:). The general response function for a redistribution 5n0(l;') with the
anisotropy V), (6, ¢;,) is given by 7

Xiom

Xt = — o -
1+ 2l+1

(5.85)

Stability of the Fermi liquid against any of these deformations requires

Fs,a

1+-—Lt—>o0. 5.86

T (5.86)

If for any deformation channel ! this conditions is violated one talks about a ”Pomeranchuck

instability”.® Generally, the renormalization of the Fermi liquid leads to a change in the Wilson
ratio, defined as

R x7v%_ 1

RO_X07 _1+F61

(5.87)

" General response and distribution deformations: We consider a force field F' with conjugate ”polarisation” P
which yields a modification of the quasiparticle dispersion,

Seo(k) = —ads(k)F and ¢, (k) = —ar, (k)F (5.78)

where we assume that A\, (k) = Yi,m (03, 0;) = (—1)"Y)"_,.(6;, ¢;) without spin dependence. Then we can write
- - s oo, Ongs

& (k) = deo (K +—g;ngkk6m()—&a +—g;nakk%€%)&d . (5.79)

In the last step we take for dn,/ (k') the self-consistent value taking the feedback of the quasiparticle coupling
into account. We now use the relation

s ari 1. - s a [ > fs,a a *
(k, k") 2} Bk k) = an 37 St 37 Yim 05, 64) i B 030) (5.80)
1=0 =0 m=—1

and insert Eq.(5.78) to find

@Xo(k)F = als(k)F — N(ep) 2lf+ : Yim (0, ng,;)o?/ko/Yljn(G,;M b3 ) Ao (k') F (5.81)
which leads straightforwardly to
- . F? - «
G=a—a = a= yo (5.82)
2A+1 L+ 2z-ls-1

Now the polarisation is calculated which we may define as

1 Ongr
= —— U = — o g No- == ~N F .
Za)\ k)onq ( aQ koa)\ (k) e (k)ée (k) = aaN (er) (5.83)
such that the linear response is given by
P a®’N(e
X=F= 7(%1:) : (5.84)
L+ oy

®1.J. Pomeranchuk, JETP 8, 361 (1958)
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where R, = x,/7, = 6p%/7?k%. Note that the Wilson ratio does not depend on the effective
mass. A remarkable feature of the Fermi liquid theory is that even very strongly interacting
Fermions remain Fermi liquids, notably the quantum liquid 3He and so-called heavy Fermion
systems, which are compounds of transition metals and rare earths. Both are strongly renormal-
ized Fermi liquids. For *He we give some of the parameters in Table 5.1 both for zero pressure
and for pressures just below the critical pressure at which He solidifies (p. ~ 2.5MPa = 25bar).

pressure | m*/m | F§ | F$ | FY | /Ky | X/Xo
p=0 3.0 10.1 | -0.52 | 6.0 | 0.27 6.3
p <Dp, 6.2 94 |-0.74 | 15.7 | 0.065 | 24

Table 5.1: List of the parameters of the Fermi liquid theory for 3He at zero pressure and at a
pressure just below solidification.

The trends show obviously, that the higher the applied pressure is, the denser the liquid becomes
and the stronger the quasiparticles interact. Approaching the solidification the compressibility
is reduced, the quasiparticles become heavier (slower) and the magnetic response increases dras-
tically. Finally the heavy fermion systems are characterized by the extraordinary enhancements
of the effective mass which for many of these compounds lie between 100 and 1000 times higher
than the bare electron mass (e.g. CeAl;, UBe,,, etc.). This large masses lead the notion of
almost localized Fermi liquids, since the large effective mass is induced by the hybridization of
itinerant conduction electrons with strongly interacting (localized) electron states in partially
filled 4 f- or 5 f-orbitals of Lanthanide and Actinide atoms, respectively.

5.3 Microscopic considerations

A rigorous derivation of Landau’s Fermi liquid theory requires methods of quantum field theory
and would go beyond the scope of these lectures. However, plain Rayleigh-Schrédinger theory
applied to a simple model allows to gain some insights into the microscopic fundament of this
phenomenologically based theory. In the following, we consider a model of fermions with contact
interaction Ud(r — 7'), described by the Hamiltonian

H=3 el + / dr & B, (), () U (r — 1) () () (5.88)
= Zek/c\Tks/c\ks Z ckﬂﬁck, qick/ickT (5.89)
kk’,q
where €, = h2k? /2m is a parabolic dispersion of non-interacting electrons. We previously

noticed that, in order to find well-defined quasiparticles, the interaction between the Fermions
has to be short ranged. This specially holds for the contact interaction.

5.3.1 Landau parameters

Starting form the Hamiltonian (5.88), we will determine Landau parameters for a corresponding
Fermi liquid theory. For a given momentum distribution n,, = <CL sCls) = ngcos) +0n,,, we can ex-
pand the energy resulting form equation (5.89) following the Rayleigh-Schrodinger perturbation

method,

E=E0 4 p0) L g@ 4 . .. (5.90)
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with

EO =3¢ ny,. (5.91)
k,s
E(I):an o (5.92)
Q kTl | .
kK’
-0 Z P (1~ ) (1= 1)) (5.93)
Q i €t € — €prq — kg

The second order term E?) describes virtual processes corresponding to a pair of particle-hole
excitations. The numerator of this term can be split into four different contributions.

We first consider the term quadratic in n,, and combine it with the first order term EW | which
has the same structure,

- 2 Ty a Ty
50— g | U;Q 3 e annm (5.94)
Q kk/q6k+6k'_6k+q_€k'q kk’

In the last step, we defined the renormalized interaction U through,

U? 1
U=U+ — . (5.95)
Q q €k+€k’7€k+q7€k’—q

In principle, U depends on the wave vectors k and k’. However, when the wave vectors are
restricted to the Fermi surface (|k| = |k'| = k,), and if the range of the interaction ¢ is small
compared to the mean electron spacing, i.e., k f < 1,% this dependency may be neglected.

Since the term quartic in n, vanishes due to symmetry, the remaining contribution to E® ig
cubic in ny, and reads

B@ _ v ety (M g + nk’fqi).

2 _ _
Q g € T € — €prq — €k —q

(5.100)

We replaced U? by U2, which is admissible at this order of the perturbative expansion. The
variation of the energy F in Eq.(5.90) with respect to 5”k¢ can easily be calculated,

. ey (it & M —qy) ~ Mgt —ay
k' q q q

9We should be careful with our choice of a contact interaction, since it would lead to a divergence in the large-g
range. A cutoff for g of order Q. ~ ¢~! would regularize the integral which is dominated by the large-g part.
Thus we may use the following expansion,

Qe
1 1 1 , .
e A R e (5.96)
+1 d 5 Qe

_m_ cos _om q—

(2 )Q/dqq/Kcose—qf(gw)2/dqqln q+K‘ (5.97)
QC Q(’ -
B _# (Qc AT Foyern KD (5.98)
2 c K2 K4

B (%22 <1 @t (Qg)) ’ (5.99)

where we use K = |k’ — k| < 2kr < Q.. From this we conclude that the momentum dependence of U is indeed
weak.
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and an analogous expression is found for e i(I~c) The coupling parameters f, _,(k,k’) may be
determined using the definition (5.26). Starting with fﬁ(kpvk;) with wave-vectors on the

Fermi surface (|k,| = |k’.| = k), the terms contributing to the coupling can be written as
02 N —ql — k' k:+q%kp nggl
@an+qTek+ek/—ek+ — € an T Z ek/—ek/
k'.q 1 4 K’ K
Q*kp kp
(5.102)
Zn,m 5 Xo(Ky — k), (5.103)

(0)

Kot
will contribute the ground state energy in Landau’s energy functional. Here, x,(q) is the static
Lindhard susceptibility as it was defined in (3.63). With the help of equation (5.26), it follows

immediately, that

where we consider n,, , = n(g) +0n,, .. Note that the part in this term which depends on n
kRt kRT kRt

UQ
fTT(kF7k/F) = f\L\L(kF’k/F) = 7)(0(]{:1? - k/F) (5.104)

The other couplings are obtained in a similar way, resulting in

- U?
fTJ,(kFﬂ k) = fu(kwk;) =U- o [2X0<kF + k) = xolky, — k,p)] ) (5.105)
where the function y(q) is defined as

0)

’ —"_ n !

k +qT k'l

E 1

Xol T Q 2€, — €priq — Cx (5-106)

If the couplings are be parametrized by the angle 6 between k,, and k',, they can be expressed

UN(GF) cos 6 1+ sin(6/2)
(1 ! 2 (2 - 25sin(6/2) n 1— sin(@/z))> 0o (5.107)

B (1 L UN 2(6F> <1 _ Sin(g/ 2 1 izzggg;)) aa'] . (5.108)

U
fao" (6) - 5

Finally, we are in the position to determine the most important Landau parameters by matching
the expressions (5.104) and (5.105) to the parametrization (5.107),

Fs = a[1+a[1+1(2+1n(2))]]= @+ 1.449 @2, (5.109)

Fo = —u[l +afl - 7(1 ~In(2 ))]] = - 0.895 @2, (5.110)

Q

P = ﬁQ%(7ln(2) —1) 0.514 @2, (5.111)
where i = UN/(e,) has been introduced for better readability. Since the Landau parameter F
is responsible for the modification of the effective mass m* compared to the bare mass m, m*
is enhanced compared to m for both attractive (U < 0) and repulsive (U > 0) interactions.
Obviously, the sign of the interaction U does not affect the renormalization of the effective mass
m*. This is so, because the existence of an interaction (whatever sign it has) between the particles
enforces the motion of many particles whenever one is moved. The behavior of the susceptibility
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and the compressibility depends on the sign of the interaction. If the interaction is repulsive
(@ > 0), the compressibility decreases (F§ > 0), implying that it is harder to compress the
Fermi liquid. The susceptibility is enhanced (F < 0) in this case, so that it is easier to polarize
the spins of the electrons. Conversely, for attractive interactions (@ < 0), the compressibility is
enhanced due to a negative Landau parameter F;, whereas the susceptibility is suppressed with
a factor 1/(1 + F§), with F§ > 0. The attractive case is more subtle because the Fermi liquid
becomes unstable at low temperatures, turning into a superfluid or superconductor, by forming
so-called Cooper pairs. This represents another non-trivial Fermi surface instability.

5.3.2 Distribution function

Finally, we examine the effect of interactions on the ground state properties, using again
Rayleigh-Schrodinger perturbation theory. The calculation of the corrections to the ground
state |¥), the filled Fermi sea can be expressed as

1) = [wO) 4 gDy 1 ... (5.112)
where

v ) = !‘Po> (5.113)

C / C / / s
Z Yo e g, 0,). (5.114)

kk/qss 6k+€k/_€k+ _6k/

The state |¥) represents the ground state of non-interacting fermions. The lowest order cor-
rection involves particle-hole excitations, depleting the Fermi sea by lifting particles virtually
above the Fermi energy. How the correction (5.114) affects the distribution function, will be
discussed next. The momentum distribution n,, = (EL +Crs) 1s obtain as the expectation value,

_ {Y[EEslY) )

2
e (7 T R R (5.115)

where ng)s) is the unperturbed distribution ©(k, — |k|), and

U? (1= mp )1 —ny )0y
- Z - — 5 Okt ke Jey koo k| <k,

2 e _
k1,ko,ks3 (ek T ks ~ ekQ)
on{?) = : (5.116)
U2 Mg, M, (1 —nkg)
— 0 k| >k
7 D s O e .
& ki1 ,k2 ks (s + €y = % ~ s R

This yields the modification of the distribution functions as shown in Figure 5.6. It allows us
also to determine the size of the discontinuity of the distribution function at the Fermi surface,

UN 2
Mg — Tgpe = 1 — (2(6F)> In(2), (5.117)
where
20 4 g
= i on). 5.118

The jump of n, at the Fermi surface is reduced independently of the sign of the interaction.
The reduction is quadratic in the perturbation parameter UN (e,). This jump is also a measure
for the weight of the quasiparticle state at the Fermi surface.
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Figure 5.6: Momentum distribution functions of electrons for a three-dimensional (left panel)
and one-dimensional (right panel) Fermion system.

5.3.3 Fermi liquid in one dimension?

Within a perturbative approach the Fermi liquid theory can be justified for a three-dimensional
system and we recognize the one-to-one correspondence between bare electrons and quasipar-
ticles renormalized by (short-ranged) interactions. Now we would like to show that within the
same approach problems appear in one-dimensional systems, which are conceptional nature and
hint that interaction Fermions in one dimension would not form a Fermi liquid, but a Luttinger
liquid, as we will motivate briefly below.

The Landau parameters have been expressed above in terms of the response functions x,(q =
k,—k") and X,(q = kp — k'z). For the one-dimensional system, as given in Egs.(5.104 - 5.106),
the relevant contributions come from two configurations, since there are two Fermi points only
(instead of a two-dimensional Fermi surface),

(kp k) = q=kp—kp=0,%2k,. (5.119)

We find that the response functions show singularities for some of these momenta,'? and we
obtain

Fro Gl ) = £, (s Fhiy) — 00 (5.122)

as well as
fN(k:F,j:kF) = fH(k:F,:FkF) — 00 (5.123)

giving rise to the divergence of all Landau parameters. Therefore the perturbative approach to
a Landau Fermi liquid is not allowed for the one-dimensional Fermi system.

The same message is obtained when looking at the momentum distribution form which had in
three dimensions a step giving a measure for the (reduced but finite) quasiparticle weight. The

While x0(q) is the Lindhard function given in Eq.(3.112) which diverges logarithmically at ¢ = +2kp, we
obtain for the other response function

B 2m ln<\/2kp+q—\/2kp—q> la| < 2k
12 \/4k% — ¢? V2kr +q+ V2kr — ¢
Xo(q) = (5.120)
2m q+2kr q—2kr
—— | arctan + arctan > 2k
R2\/q? — 4k, ( \/ q — 2kr V q+ 2kp> la r
which diverges as
. - q . - m . ~ ™m 1
1 =————In(=— 1 = — d 1 = . (5121
Jim Xo(q) 2 n(sz) ; L Xo(a) = 73 ey vd Xo(q) N TN T ( )
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analogous calculation as in Sect.5.3.2 leads here to

1 U? k
— 1 k> k
@ 872 ﬁ?v% i k—Fk, F
n\) ~ . (5.124)
1 U 1 ke k<k
Tsmmd Ck—k

Here, k, are cutoff parameters of the order of the Fermi wave vector k.. Apparently the
quality of the perturbative calculation deteriorates as k — kp,, since we encounter a logarithmic

Connnnn
quuV \p,n
bbb TR

g=—e §=0 S=1/2 q=0

Figure 5.7: Visualization of spin-charge separation. The dominant anti-ferromagnetic spin cor-
relation is staggered. A charge excitation is a vacancy which can move, while spin excitation
may be considered as domain wall. Both excitations move independently.

Indeed, a more elaborated approach shows that the distribution function is continuous at k = k.
in one dimension, without any jump. Correspondingly, the quasiparticle weight vanishes and the
elementary excitations cannot be described by Fermionic quasiparticles but rather by collective
modes. Landau’s Theory of Fermi liquids is inappropriate for such systems. This kind of
behavior, where the quasiparticle weight vanishes, can be described by the so-called bosonization
of fermions in one dimension, a topic that is beyond the scope of these lectures. However,
a result worth mentioning, shows that the fermionic excitations in one dimensions decay into
independent charge and spin excitations, the so-called spin-charge separation. This behavior can
be understood with the naive picture of a half-filled lattice with predominantly antiferromagnetic
spin correlations. In this case both charge excitations (empty or doubly occupied lattice site)
and spin excitations (two parallel neighboring spins) represent different kinds of domain walls,
and are free to move at different velocities.
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Chapter 6

Transport properties of metals

The ability to transport electrical current is one of the most remarkable and characteristic
properties of metals. At zero temperature, a ideal pure metal is a perfect electrical conductor,
i.e., its resistivity is zero. However, disorder due to impurities and lattice defects influence the
transport and yield a finite residual resistivity, as found in real materials. At finite temperature,
electron-electron and electron-phonon scattering lead to a temperature-dependent resistivity.
Furthermore, an external magnetic field may influence the resistivity, a phenomenon called
magnetoresistance, and also leads to the previously studied Hall effect. In this chapter, the
effects of a magnetic field will not be considered. Finally, heat transport, which is also mostly
mediated by electrons in metals, is going hand in hand with the electric transport. In this
context, transport phenomena such as thermoelectricity (Seebeck and Peltier effect) will be
analyzed here.

6.1 Electrical conductivity

In a normal metal, an electrical current density j(q,w) (in gq,w-space) is induced by an applied
electrical field E(q,w). For a homogeneous isotropic metal, we define the scalar! electrical
conductivity o(q,w) within linear response, through

J(q,w) = o(q,w)E(q,w). (6.1)

The current density j(q,w) is related to the charge density p(r,t) = —en(r,t), via the continuity
equation

0 .

ap(rat) —|—V'](7‘,t) =0, (62)
or, in Fourier transformed,

wp(q,w) — g - j(g,w) = 0. (6.3)

It is interesting to see that a relation between the conductivity o(q,w) and the dynamical
dielectric susceptibility x,(q,w) defined in equation (3.68) of chapter 3 arises from the equations
(6.1) and (6.3). For this, we can calculate

plg,w)  q-jlq,w)

CeV(qw) ewV(q,w)

i _O'(Q,W) q- E(Qaw) _ _U(q>w) [tiV(Q’w)]
S TTee Viaw) T w Vigw) (64)

Xo(va) =

Tn an anisotropic material, the conductivity & would be a full 3 x 3 tensor.
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In the first line, we used the definition (3.68) of x,(q,w) and the continuity equation (6.3). To
the second line, we made use of the definition (6.1) of o(g,w) and then replaced E(q,w) by
—iqV(q,w), which is nothing else than the Fourier transform of the equation

—eE(r,t) =V, V(r,t). (6.5)

From this calculations we conclude that

Xo(q7w) = e2w U(qaw)v (66)
and thus
4re? 4
e(qw)=1- qTXo(q,W) =1+ To(q,w). (6.7)

In the limit of large wavelengths ¢ < k,, we know from previous discussions? that £(0,w) =
1-— wg Jw?. Then the conductivity simplifies to

o(w) = —L. (6.8)

One might conclude from this result that the conductivity is purely imaginary in the small-q
limit. However, this conclusion is wrong, since the real part of o(w) is related to its imaginary
part via the Kramers-Kronig relation. Defining o, (0,) as the real (imaginary) part of o, this
relation states that

+oo
1
oy (w) = - P / dw’ o wlaz(w') (6.9)
and
+oo
1 . /
oy(w) = ;77 dw w—w’al(w) . (6.10)

A simple calculation with o, from equation (6.8), yields

w2

01(w) = (W), (6.11)
w2

oy(w) = ﬁ. (6.12)

Obviously this metal is perfectly conducting (¢ — oo for w — 0), which comes from the fact
that we considered systems without dissipation so far.

An additional important property coming from complex analysis, is the existence of the so-called
f-sum rule,

[e%] —+o00 2

1 w 2
/ d' oy (w') = 5 / dl oy() = & = ”;m”. (6.13)
0 —0o0

This relation is valid for all electronic systems (including semiconductors).

2In the small-q limit we approximate xo(q,w) =~ ng*/mw? from equation (3.82).
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6.2 Transport equations and relaxation time

We introduce here Boltzmann’s transport theory as as rather simple and efficient way to deal
with dissipation and momentum relaxation of non-stationary electronic states in metals.

6.2.1 The Boltzmann equation

In order to tackle the problem of a finite conductivity, we use a formalism similar to Landau’s
Fermi liquid theory, based on a distribution function of quasiparticles. In transport theory, the
distribution function can be used to describe the deviation of the system from an equilibrium.
If the system is isolated from external influence, equilibrium is reached through relaxation after
some time, a process which is accompanied with an increase of entropy as discussed in statistical
physics. Analogously to the theory of transport phenomena, let us introduce the distribution
function® f(k,r,t), where

d®k

( 27r>3d3r (6.14)

f(k,r,t)

is the number of particles in the infinitesimal phase space volume d®rd3k/(27)3 centered at (k,r),
at time ¢. Such a description is only applicable if the temporal and spacial variations occur at
long wavelengths and small frequencies, respectively, i.e., if typically ¢ < k, and lw < €,. The
total number of particles N is given by

3
N = 2/ (;lwljgd?’rf(k,r,t). (6.15)

The equilibrium distribution f; for the fermionic quasiparticles is given by the Fermi-Dirac

distribution,

1
ew—n)/kBT 4 1’

folk,7,t) = " (6.16)
and is independent of space r and time ¢t. The general distribution function f(k,r,t) obeys the
Boltzmann equation

D 0 . af

—fk,rt)=({=+7-V_+k-V, k,r,t)=|(—= 6.17

il = (5 5V, k9, ) ftkr = (5) (6.17)
where the substantial derivative in phase space D/Dt is defined as the total temporal derivative
in a frame moving with the phase-space volume. The right-hand side is called collision integral
and describes the rate of change in f due to collision processes. Without scattering, the equation

(6.17) would represent a continuity equation for f. Now, consider the temporal derivatives of r
and k from a quasi-classical viewpoint. In absence of a magnetic field, we find

hk
S 6.18
= (6.18)
hk = —cE, (6.19)

i.e., the force hik, which is our central interest, originates from the electric field. The collision
integral may be expressed via the probability W (k,k') to scatter a quasiparticle with wave
vector k to k’. For simple scattering on static potentials, the collision integral is given by

3 1./
<%§>Con = —/(C;T:C)B[W(k,k’)f(k,r,t)(l — f(K',r,1)) (6.20)
—W(K k) f(K,r,t)(1— f(k,7,1))]. (6.21)

3For simplicity we neglect spin the electron spin. In general there would be a distribution function f,(k,r,t)
for each spin species o.
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The first term, describing the scattering® from k to k', requires a quasiparticle at k, hence
the factor f(k,r,t), and the absence of a particle at k', therefore the factor 1 — f(k',r,t).
This process describes the scattering out of the phase space volume d3k/(27)3, i.e., reduces the
number of particles in it. Therefore, it enters the collision integral with negative sign. The
second term describes the opposite process and, according to its positive sign, increases the
number of particles in the phase space volume d3k/(27)3. For a system with time inversion
symmetry, we have W (k,k') = W(k', k). Assuming this, we can combine both terms and end

up with

of 3K , ,
<8t )COH = / (2W)3W(k:, K [f(K rt)— f(k,71)]. (6.22)
The Boltzmann equation is a complicated integro-differential equation and suitable approxi-
mations are required. Usually, we study processes close to equilibrium, where the deviation
f(k,r,t) — fo(k,r,t) is small compared to f(k,r,t). Here, to generalize we assume f(k,r,t)
to be a local equilibrium distribution for which the temperature T' = T'(r,t) and the chemical
potential u = p(r,t) vary slowly in r and ¢, such that f,(k,r,t) can still be expressed via the lo-
cal Fermi-Dirac distribution (6.16). At small deviations from equilibrium (or local equilibrium),
we can approximate the collision integral by the relaxation-time approrimation. For simplicity,
we assume that the system is isotropic, such that the quasiparticle dispersion ¢, only depends
on |k| and, furthermore, that the scattering probabilities are elastic and depend on the angle
between k and k’. Then, we make the Ansatz

(af> [l t) = fylk, )
ot coll T(ﬁk) '

The time scale 7(¢,,) is called relazation time and gives the characteristic time within which the
system relaxes to equilibrium.

(6.23)

Consider the simplest case of a system at constant temperature subject to a small uniform electric
field E(t). With f(k,r,t) = fy(k,r,t) +df(k,7,t), we can calculate the Fourier-transform of
Boltzmann equation (6.17) in relaxation-time approximation and find, after linearizing in § f,

—iwd f(k,w) — kafo(kz) = _5{((1:;;;) (6.24)
with
f(k,t):/_+oo Z—:f(k,w)e_i“’t and E(k,t):/_+oo d—:E(k,w)e_m. (6.25)

In order to come to this expression, we used that f(k,r,t) = f(k,t) for E = E(t) are spacially
uniform, and assumed for linearizing equation (6.24) that 0 f oc |E|. Thus, the equation (6.24)
is consistent to linear order in |E| and can be easily solved as

eTE(w) erE(w) 0fy(e)
= - = . .2
(5f(k3,£d) h(l _ 'iQ)T) k:f(]( ) h(l - in) e Vkek (6 6)
This result leads straightforwardly to the quasiparticle current j(w),
, d*k (W) - vy 0o (k)
9 k. 3, k1Vk OJ0\Ek 9
) = =20 [ Eu i) = - 5 [anT S e e SCEY

4Note that if spin was considered here, this collision term would account for scattering processes where spin is
conserved. However, there are in principle also scattering process where the electron spin can be transferred to
the lattice (spin-orbit coupling) or an impurity (Kondo effect) and would not be conserved independently.
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with hv,, = V€., which in turn can be simplified to
Jalw) = 3 00 5(w) By(w), (6.28)
B
where the conductivity tensor o4 reads

e? Afy(e)  7(e) VakVsk
— —— [ de=0 A k2 kP 2
Tap 473 o 1- iwT(€) / kY Rl (6:29)

This corresponds to the Ohmic law. Note that o, 5= U&aﬁ in isotropic systems. We recover in
this case the expression (6.1) for the conductivity, which we introduced at the beginning of this
chapter. It is also important to notice that df,(€)/de concentrates around ¢ = p for T' < Tp.
In the following, we consider the result (6.29) for an isotropic system in different limiting cases.

6.2.2 The Drude form

For wr > 1 equation (6.29) becomes independent on the relaxation time. In an isotropic system
Oop = aéaﬁ at low temperatures 1" < 7', this leads to

( )N,€2m221F/dQ 9 _,e2n_,wl2, (6.30)
T = 3 R KUz = V0 T e '

which reproduces the result from equation (6.8). However now, this does not mean that our
system is a perfect conductor, as becomes clear when we turn towards small w (wr < 1). We are
actually interested in the static limit, where the ”dc conductivity” (w = 0; "dc¢” means ”direct
current”) reduces to

e*n Int %2,7_'

o= de%T(e) = = —. (6.31)

m Oe m 47

Since the function 0 f,/0e is strongly peaked around the Fermi energy €,., we introduced a mean
relaxation time 7 = [ der(€)df,/de. In the form (6.31), the result recovers the well-known
Drude® form of the conductivity.

If the relaxation time 7 depends only weakly on energy, we can simply calculate the optical
conductivity at finite frequency,

) 5 < T T +i (6.32)
o) =1 —ior dn =0, +i0,. i
71— wT 4 \ 1+ w272 1 4 w272 1 2

Note that the real part satisfies the f-sum rule,

[e'e) 00 9 B )

w T w
— p _7p
fawai = [ s i = (6.33)
0 0

and that o(w) recovers the behavior of equation (6.12) in the limit 7 — 00.% This form of the
conductivity yields the dielectric function

1 wgf 1 wgfz 7 wgi' 6.5
e(w) = _w(i—kuﬁ')_ _1+wz7"2+al-i—¢a1277'27 (6.35)

5Note, that the phenomenological Drude theory of electron transport can be deduced from purely classical
considerations.
5 Note that ¢y (w) has Lorentzian form and naturally leads to a delta function:

2 _ 2
Wp T TF—00 Wp
= — —6 . 6.34
(W) = T e 1 0w) (6.34)
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which can be used to discuss the optical properties of metals. The complex index of refraction
n + ik is given through (n + ix)? = . Next, we discuss three important regimes of frequency.
To probe optical properties we consider the reflectivity of light hitting a metal surface perpen-
dicularly. Then the reflectivity is given by

(n—1)% + &2
Inside the metal the light propagation is renormalised by k — k(n + ix) with k = w/c such that
eik(n—l—m)z _ eiknze—fekz _ eiknze—z/§ (637)
defining the penetration length
5= (6.38)
WK

Relaxation-free regime (w7 < 1 < w,T)

In this limit, the real (e;) and imaginary (e,) part of the dielectric function (6.35) read

& (w) &= —w27?, (6.39)
wfﬁ
gq(w) = " (6.40)

The real part e, is constant and negative, whereas the imaginary part e, becomes singular in
the limit w — 0. Thus, the refractive index turns out to be dominated by e,

/ w27
n(w) = k(w) =~ 52(;}) ~ i > 1, (6.41)

As a result, the reflectivity R is practically 100%. The absorption index k(w) determines the
penetration depth 6 through

o(w) = ~—)—. (6.42)

With this, the skin depth of a metal with the famous relation §(w) o w™/2 is reproduced
within the relaxation time approximation of the Boltzmann equation. While length §(w) is in
the centimeter range for frequencies of the order of 10 — 100Hz, the Debye length ¢/ Wy, 18 only

of the order of 100A for hw, =10 eV. (cf. Figure 6.1).

Relaxation regime (1 < w7 < w,7)

Here, we can expand the dielectric function (6.35) in (w7)~!, yielding

2 w2
ew)=1- wig + inp%. (6.43)

The real part e, ~ —wg /w? is large and negative and dominates in magnitude over €y. For the
optical properties, we obtain

K(w) ~ % (6.44)
n(w) ~ %. (6.45)

We find k(w) > n(w) > 1, which implies a large reflectivity of metals in this frequency range as
well. Note that visible frequencies are part of this regime (see Figures 6.2 and 6.3). The frequency
dependence of the penetration depth becomes weak, and its magnitude is approximately given
by the Debye length, § ~ c/wp.
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Figure 6.1: The frequency dependent reflectivity and penetration depth for w,T = 500.

Ultraviolet regime (w~ w, and w > w,)

In this regime, the imaginary part of ¢ is approximately zero and the real part has the well
known form

2
e (w) =1- -3, (6.46)

such that the reflectivity drops drastically, from close to unity towards zero (cf. Figure 6.1).
Metals become nearly transparent in the range w > w,,. In Figure 6.1, one also notices the rapid
increase in the penetration depth §, showing the transparency of the metal.

In all these considerations, we have neglected the contributions to the dielectric function due to
the ion cores (core electrons and nuclei). This may be incorporated in Eq.(6.46) in the following
approximate way:

w2

€1(w) = — -2, (6.47)
w

This influences the reflecting properties of metals; particularly, the value of w, is reduced to

w;) =uw, / /s Where €__ is the frequency-independent part of the dielectric function. With this,

the reflectivity for frequencies above w;) approaches R _ = (¢, —1)?/(e,+1)?,and 0 < R__ <1

(see Figure 6.2 and 6.3).

Color of metals

The practically full reflectance for frequencies below w, is a typical feature of metals. Since for
most metals, the plasma frequency lies well above the range of visible light (fuww = 1.5 — 3.5eV/),
they appear shiny to our eye. While most polished metal surfaces appear shiny white, like
silver, there are some metals with a color, like gold which is yellow and copper which is reddish.
White shininess results from reflectance on the whole visible frequency range, while for colored
metals there is a certain threshold above which the reflectance drops and frequencies towards
blue are not or much weaker reflected. In most cases this drop is not connected with the plasma
frequency, but with light absorption due to interband transitions. Note that the single band
metal which was used for the Drude theory does not allow for optical absorption apart from the
plasma excitation. Interband transition play a particularly important role for the noble metals,
Cu, Ag and Au. For these metals, the reflectance drop is caused by the transition from the
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Figure 6.2: Reflectance spectra for silver and copper. In both cases the drop of reflectance is due
to optical transitional between the completely filled d-band and the partially filled s-band. Note
the logarithmic scale for the reflectivity. (Source: An introduction to the optical spectroscopy of
inorganic solids, J. Garcia Solé, L.E. Bausd and D. Jaque, Wiley (2005))

completely occupied d-band to the partially filled s-band, 3d — 4s in case of Cu. For copper,
this drop appears below 2.5eV so that predominantly red light is reflected (see Figure 6.2). For
gold, this threshold frequency is slightly higher, but still in the visible, while for silver, it lies
beyond the visible range (see Figure 6.2). For all these cases, the plasma frequency is not so
easily recognizable in the reflectance. On the other hand, aluminum shows a reflectance rather
close to the expected behavior (see. Figure 6.3). Also here, there is a small reduction of the
reflection due to interband absorption. However, this effect is weak and the strong drop occurs
at the plasma frequency of hwp = 15.8eV. Like silver also polished aluminum is white shiny.

6.2.3 The relaxation time

By replacing the collision integral by a relaxation time approximation, we implicitly introduced
a connection between the scattering rate W (k, k') and the relaxation time 7. This relation,

_ 31.
HEL DB, [ W e k)7 (h) = 18} (6.45)

will be studied for an isotropic system, with elastic scattering, and a small external field E. The
solution of equation (6.24) is of the form

f(k) = fo(k) + A(k)k - E, (6.49)
such that

F(k) — F(K)) = A(k)(k — k) - E. (6.50)
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Figure 6.3: Reflectance spectrum of aluminum. The slight reduction of reflectivity below w, is
due to interband transitions. The thin solid line is the theoretical behavior for 7 = 0 and the
dashed line for finite 7. (Source: An introduction to the optical spectroscopy of inorganic solids,
J. Garcia Solé, L.E. Bausa and D. Jaque, Wiley (2005))

Without loss of generality, we define Z || k, and introduce the parametrization of the angles 6,
polar angle of E and 0 (¢') polar (azimuth) angle of k'), leading to

k-E =kEcosb, (6.51)
k-k = kK cost, (6.52)
k'-E =K E(cosfcos§ + sinfsinf cos¢'). (6.53)

For elastic scattering, k = k’, we obtain
f(k) — f(K') = A(k)kE[ cos (1 — cos ') — sinfsin 6’ cos ¢']. (6.54)

Inserting this into the right-hand side of equation (6.48), the ¢’-dependent part of the integration
vanishes for an isotropic system, and we are left with

f(k)T(_ekj;O(k) = / Ay [f (k) = (KW (k, k) (6.55)
= A(k)kE cos 6 / dQy (1 — cos 0 )W (k, k') (6.56)
— (k) — fo(k) / 4 (1 — cos )W (k, k). (6.57)
The factor [f(k) — f,(k)] can be dropped on both sides of the equation, resulting in
1 3K , ,
e = / WW(k, k") (1 —cos?'), (6.58)

where one should remember that, for elastic scattering, the quasiparticle energy €, = ¢/ is
conserved in the collision process. The scattering probability W (k, k') accounts for this re-
striction. In the next few sections we discuss different scattering processes, looking at collision
probabilities, relaxation times and the resulting conductivity and resistivity contributions.

6.3 Impurity scattering

6.3.1 Potential scattering

Every deviation from the perfect periodicity of the ionic lattice is a source of quasiparticle
scattering, leading to the loss of their original momentum. Without translational invariance,

119



the conservation of momentum is lost, the energy, however, is still conserved. Possible static
scatterers are among others vacancies, dislocations, and impurity atoms. The scattering rate
W (k, k') for a potential V can be determined applying Fermi’s golden rule,”

2T

Wk, ) = o,

K |V|E)26(e), — €)- (6.59)
By 1y, We denote the density of impurities, assuming only one species of them. For small densi-
ties nlmp, it is reasonable to neglect interference effects between different impurities. According
to equation (6.58), the relaxation time 7 of a quasiparticle with momentum #k is given by

1 _ 2 T T Oy o .
5= i | G VR = 96— o) (6.60)
— (k- vk)/;lg(kz k)1 - k)de/ (6.61)

with the differential scattering cross section do /d€) and =k /|k|. Here, we used the connection®
between Fermi’s golden rule and the Born approximation. Note the difference in the expressions
for the relaxation time 7 in equation (6.58) and for the lifetime 7,

1 &k
— = | —=W(k,K), 6.65
s = [ G kR (6.65)
given by Fermi’s golden rule. The factor (1 — cos#’) in equation (6.58) gives more weight to
backscattering (§' ~ ) compared to forward scattering (6’ ~ 0), since the former has more
influence in impeding transport. This explains why 7 is also termed transport lifetime.

Assuming defects in the form of point charges Ze, whose screened potential is

A Ze?

K|V|k) = 5

(6.66)
In the limit of very strong screening, kpp > k., the differential cross section becomes inde-
pendent of the deviation (k — k'), the transport and the usual lifetime become equal, 7 = 7, *
and

1 ArZe?\”
i e) (6.67)

i
I ﬁN(fF)nimp <,€ng

With this, we are now able to determine the conductivity for scattering on Coulomb defects,
assuming s-wave scattering only. Then, since 7(€) depends weakly on energy, equation (6.31)
yields

o= r (6.68)

"This corresponds to the first Born approximation in scattering theory. Note, that this approximation is
insufficient to describe resonant scattering.
8The scattering of particles with momentum Ak into the solid angle dQ around k' yields

2w

W (k, k' )d% = - ST UK VIR0 (ex — €rr) (6.62)
k’'€dQ,,
2 d*K 2 N
= %ko/ / Ok (K'|V|Kk)|*5(ex — ) = %koIN(e)\(k’W\k)F. (6.63)

k'€dQy,
The scattering per incoming particle current jindo(k, k') = W (k, k')dQ determines the differential cross section

do 27 N (e)
dQ(kk) h 4rw

k- v (K |V |E) 2. (6.64)

leading to equation (6.61).
9In the context of partial wave expansion, one speaks of s-wave scattering, i.e., 6150 — O.
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or, for the specific resistivity p = 1/0,

m (6.69)

P= e2nt(e,)’
Both ¢ and p are independent of temperature. This contribution is called the residual resis-
tivity of a metal, which approaches zero for a perfect material. The temperature dependence
of the resistivity is induced in other scattering processes like electron-phonon scattering and
electron-electron scattering, which will be considered below. The so-called residual resistance
ratio RRR = R(T = 300K)/R(T = 0) is an often used quantity to benchmark the quality of
a material. It is defined as the ratio between the resistance R at room temperature and the
resistance at zero temperature. The bigger the RRR, the better the quality of the material.
The typical value of RRR for common copper is 40-50, while the RRR for very clean aluminum

reaches values up to 20000.

6.3.2 Kondo effect

There are impurity atoms inducing so-called resonant scattering. If the resonance occurs close to
the Fermi energy, the scattering rate is strongly energy dependent, inducing a more pronounced
temperature dependence of the resistivity. An important example is the scattering off magnetic
impurities with a spin degree of freedom, yielding a dramatic energy dependence of the scattering
rate. This problem was first studied by Kondo in 1964 in order to explain the peculiar minima
in resistivity in some materials. The coupling between the local spin impurities S; at R, and
the quasiparticle spin s has the exchange form

V.= Z = JZ S, - -R) (6.70)

= JZ (SW )+ S*”( )+ 2§;§+(r)> 5(r—R,) (6.71)
Jh 22~ 4~ 4~ — o —i(k—k/)-R;
=50 [S (Cchk’T CL&HJ) + Sfifk% + S, cchk/J e ik—K)Rs (6.72)
kK i

Here, it becomes important that spin flip processes, which change the spin state of the impurity
and that of the scattered electron, are enabled. The results for the scattering rate are presented
here without derivation,

D€F|)} , (6.73)

Wk, k') ~ J*S(S + 1) [1 +2JN(e,)In (|(E
. —

where D is the bandwidth and we have assumed that JN(e,) < 1. The relaxation time is found
to be

1 J*5(S+1)
T(e) h

Note that W (k, k') does not depend on angle, meaning that the process is described by s-wave
scattering. The energy dependence is singular at the Fermi energy, indicating that we are not
dealing with simple resonant potential scattering, but with a much more subtle many-particle
effect involving the electrons very near the Fermi surface. The fact that the local spins S,
can flip, makes the scattering center dynamical, because the scatterer is constantly changing.
The scattering process of an electron is influenced by previous scattering events, leading to the
singularity at €,. This cannot be described within the first Born approximation, but requires
at least the second approximation or the full solution.!® As mentioned before, the resonant

N(e) {1 +2JN(e,) In (D)] . (6.74)

’6k: _€F|

10WWe refer to J.M. Ziman, Principles of the Theory of Solids, and A.C. Hewson, The Kondo Problem to Heavy
Fermions for more details.
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behavior induces a strong temperature dependence of the conductivity. Indeed,

e2k§ 1

o(T) = —; de 5
6m2m 4k T cosh®(e —€,,)/2k,,T)

7(€) (6.75)

B
2 2 1)[1 — 2JN(e,) In(D/é
L _en /ng S(S+1)[ i ~J (€,)In( /e)] (6.76)
8mk,T cosh”(€/2k,T')
A simple substitution in the integral leads to
e*n D
o(T) ~ %J S(S+1) [1 —2JN(e,)In (kB—T) . (6.77)

Usual contributions to the resistance, like electron-phonon scattering discussed below, typically
decrease with temperature. The contribution (6.77) to the conductivity is strongly increas-
ing, inducing a minimum in the resistance, when we crossover from the decreasing behavior
at high temperatures to the low-temperature increase of p(7T'). At even lower temperatures,
the conductivity would decrease and eventually even turn negative which is an artifact of our
approximation. In reality, the conductivity saturates at a finite value when the temperature is
lowered below a characteristic Kondo temperature 7',

kT, = De”Y/INr), (6.78)

a characteristic energy scale of this system. The real behavior of the conductivity at temperatures
T < T, is not accessible by simple perturbation theory. This regime, known as the Kondo
problem, represents one of the most interesting correlation phenomena of many-particle physics.

6.4 Electron-phonon interaction

Even in perfect metals, the conductivity becomes non-zero at finite temperature. The thermally
induced distortions of the lattice, phonons, act as fluctuating scattering centers. In the language
of electron-phonon interaction, electrons are scattered via absorption and emission of phonons,
which induce local fluctuations in volume (cf. Chapter 3). The corresponding coupling term
was given in equation (3.143) and simplifies with the definition (3.130) to

, ~ h ~ N -
My =20 YV, e al(by — bLg)Ch 4.sChes- (6.79)
k,q,s 0™q
The interaction is formally similar to the coupling between electrons and photons. The dominant
processes consist of single-phonon processes, i.e., the absorption or emission of one phonon. En-
ergy and momentum are conserved, such that, for the scattering of an electron from momentum

k to k' due to the emission of a phonon with momentum g, we have

k=K +q+G, (6.80)

Here, Wy = €4 is the phonon spectrum, while the reciprocal lattice vector G allows for scat-
tering!! in nearby Brillouin zones. By this, the phase space available for scattering is strongly
reduced, especially near the Fermi energy. Note that hw, < hw, < €,. In order to calculate

"This so-called Umklapp phenomenon will be discussed in some more detail later in this chapter.
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the scattering rates, the matrix elements'? of the available processes,

(k+q; Ny |(b — )CL_Q <Cres| E; N’ Y = (k +q|EL+q78€kS|k>< N 5Nq/,N;,—1 Og.a
— /N[;' +1 5Nq/,N;,+1 5q,q,>,
(6.82)
need to be calculated. From Fermi’s golden rule we obtain
0
i Z 9(@P? |[FR)(1— 7k + @) (N, +1)
ot coll
- f(k + q)(]' - f(k))N—q]5(€k+q - ek + ﬁw—q)
—[f(k+aq)(1 - f(k)) (N, +1)
— f(R)(1 = f(k+@)N,|0(epq — € — Ty |5 (6.83)

where g(q) = f/q|q|1 /2h/pyw,. Each of these four terms describes one of the single phonon

scattering processes depicted in Figure 6.4.

e

Figure 6.4: The four single-phonon electron-phonon scattering processes.

The collision integral leads to a complicated integro-differential equation, whose solution is te-
dious and would involve the solution of the non-equilibrium phonon-problem as well. Instead of
a full rigorous calculation including the non-equilibrium redistribution of phonons, we will con-
sider the behavior in various temperature regimes by an approximate treatment of the phonons.
The characteristic temperature of phonons, the Debye temperature © , < 7', is much smaller
than the Fermi temperature. Hence, the phonon energy is virtually unimportant for the en-
ergy conservation, € . ~ €. Therefore we are allowed to impose momentum conservation
€htq = €k and consider the lattice distortion as being essentially static, in the sense of an
adiabatic Born-Oppenheimer approximation. The approximate collision integral then reads

(W) - Z| VPN () (k + ) — F) (g — ) (6.84)
at coll

where we assume the occupation of phonon states according to the equilibrium distribution for
bosons,

1

Na) = et 1

(6.85)

This approximation includes all important aspects of the electron-phonon scattering we need to
derive the temperature dependence of p(7T).

121 analogy to the discussion on electromagnetic radiation, the phenomenon of spontaneous phonon emission
due to zero-point fluctuations appears. It is formally visible in the additional “+1” in the factors (Niq) + 1.

123



In analogy to previous approaches, we obtain for with relaxation-time Ansatz

1 2T A d3q
T h fiwg N (wg) (1 = cos 0)d(ex.y g 6.86
(en) B N(e,) / (amysWalV (wq) (1 = cos)0{ep g — ). (6.86)
where |k| = |k + q| = k,,, meaning that only the electrons in a thin shell close to the Fermi

surface are relevant. Furthermore, we parametrized g(q) according to

A

2

= —hw 6.87
where A is a dimensionless electron-phonon coupling constant. In usual metals A < 1. As in the
case of defect scattering, the relaxation time depends only weakly on the electron energy. But,
unlike previously, the direct temperature dependence enters via the dependence on temperature
of the phonon occupation N(w,).

Figure 6.5: The geometry of electron-phonon scattering.

In order to perform the integration in equation (6.86), we have to re-express 6(€y,, — €) by
writing

h? m q
O(€prq —€) =9 <2m(q2 _ 2]<:Fqc0$fy)> = o q5 <2k: — cosv) , (6.88)
F F

where v is defined in Figure 6.5. From there, we also see that 2v 4+ 6§ = w, and thus, find the
relation

1 —cosf =1+ cos(2y) = 2cos?(y). (6.89)

Obviously, we have to integrate ¢ over the range [0,2k,] on the right-hand side of equation
(6.86), which can be reformulated to

2kp 71—/2
- 19 4q N dy sinycos(y) (5~ - 6.90
T(ep,T)  Nle,) RPrk, 0/ g qwg (wq)o/ 7y sin~y cos(y) (QkF COS’y) ( )
2kp A
- )\ o / o (6.91)
4N(€F) h%rki’; ehesq/kpT _ 1 .
0
20p /T
_ #mcsk% l > /D yidy 692)
"~ 4AN(e,) R2m \ O, w1’ '
0
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where we have approximated the Debye temperature by k,0, ~ 2hc k.. We notice the two
distinct characteristic temperature regimes,

k 5
6¢(5)am 290 (T) T<e,
1 h \©,

1o (6.93)

-
ke, (T
—= | — T .
AT . (@D> , >0,

The prefactors depend on the details of the approximation, whereas the qualitative temperature
dependence does not. We finally obtain the conductivity and resistivity from equation (6.29),

2

o= %T(T), (6.94)
m 1
p= (D) (6.95)

where we used the weak energy dependence of 7(e ~ €,,,T). With this, we obtain the well-known
Bloch-Griineisen form

T, T<0O,,
p(T) x (6.96)
T, T>0,.

At high temperatures, p is determined by the occupation of phonon states
kT

hwq

N(w,) (6.97)

which change the scattering strength (amplitude) of the lattice modulation linear in 7. At low
temperature only the lowest phonon states are occupied hwq < kgT yield ¢ < kgT/hc,. Thus, at
low temperatures only long-wave length modulations of the lattice generate a scattering poten-
tials which deflects electrons only slightly from their trajectories (forward scattering dominates).
This represents a restriction of the scattering phase space becoming ever smaller with decreasing
temperature.

6.5 Electron-electron scattering

In Chapter 5 we have learned, that, taking a short-ranged electron-electron interaction into
account, the lifetime of a quasiparticle strongly increases close to the Fermi surface. The basic
reason was the constraint of the scattering phase space due to the Pauli principle. The lifetime,
which we can identify with the relaxation time here, has the form

o (e ) (6.99)
—— x (e —€,)". .
7(€) "
Note that this phase space reduction does not restrict the momentum transfer, so that in prin-
ciple 0 < g < 2k is valid for all energies e. This allows determining the conductivity from
equation (6.29), and we find

1

o(T) x T2

(6.99)

The resistivity p oc T2 increases quadratically in 7. This is a key property of a Fermi liquid and
is often considered an identifying criterion.
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Umklapp process

An important point, kept quiet so far, requires some explanation. One could argue, that the
momentum of the Fermi liquid is conserved upon the collision of two electrons. With this
argument, it is not quite clear what causes a finite resistance. This argument, however, is based
on translational invariance and ignores the existence of the underlying lattice. In the sense that
the kinematics (momentum conservation) is also satisfied for electrons being scattered from the
Fermi surface of one Brillouin zone to the one of another Brillouin zone, while incorporating a
reciprocal lattice vector. The equation of momentum conservation,

k=K +G, (6.100)

where G is a reciprocal vector of the lattice, allows for scattering to other Brillouin zones
(G #0). By this, the momentum is transferred to a static deformation of the lattice. Such pro-
cesses are termed Umklapp processes and play an important role in electron-phonon scattering
as well (see equation (6.80)).

ordinary Umkplapp

scattering scattering
\ /

R R \/

K &

k

15t Brillouin zone

Figure 6.6: Considering energy and momentum conservation in two-electron collision there are
ordinary scattering processes (k,k’) — (k + q,k’ — q) which does not lead to a momentum
relaxation, and there are Umklapp scattering processes (k, k") — (k + q,k” — q) leading to a
neighbouring Brillouin zone, here visualized by an extended Brillouin zone scheme.

6.6 Matthiessen’s rule and the Ioffe-Regel limit

Matthiessen’s rule states, that the scattering rates of different scattering processes can simply
be added, leading to

W(k,k') =W, (k, k') + W,(k, k'), (6.101)
or, expressed in the relaxation time approximation,
1 1 1
=4 (6.102)
T T, Ty
and
m m (1 1
= =—|—4+—|= . 6.103
P=netr T e (Tl + T2> Prt Py ( )



This rule is not a theorem and corresponds effectively to a serial coupling of resistors in a clas-
sical circuit. It is applicable, if the different scattering processes are independent. Actually,
the assumption that the impurity scattering rate depends linearly on the impurity density Nimp
is already an application of Matthiessen’s rule. Mutual influences of impurities, e.g., through
interference effects due to the coherent scattering of an electron at different impurities, would in-
validate this simplification. An example where Matthiessen’s rule is violated is a one-dimensional
system, where a single scatterer ¢ induces a finite resistance I?;. Two serial scatterers then lead

to a total resistance

262

h

The reason is, that in one-dimensional systems, the interference of backscattered waves is un-
avoidable and no impurity can be treated as isolated. Furthermore, every particle traversing the
whole system has to pass all scatterers. The more general Matthiessen’s rule,

R=R,+Ry+ —RR, > R, + R,. (6.104)

p =Pyt P (6.105)

is still valid. Another source of deviation from Matthiessen’s rule arises, if the relaxation time
depends on k, since then the averaging is not the same for all scattering processes. The electron-
phonon coupling can be modified by the scattering on impurities, most importantly in the
presence of anisotropic Fermi surfaces. For the analysis of resistance data of simple metals, we
often assume the validity of Matthiessen’s rule. A typical example is the resistance minimum
explained by Kondo, where

P(T) = py+ pop(T) + pp(T) + po_(T) (6.106)
= py + T’ + B(1 +2JN(e,) In(D/k,T)) + T2, (6.107)

where «, 3, and  are numerical constants. Upon decreasing temperature, the Kondo term is
increasing, whereas the electron-phonon and electron-electron contributions decrease. Conse-
quently, there is a minimum.

We now turn to the discussion of resistivity in the high-temperature limit. Believing the previous
considerations entirely, the electrical resistivity would grow indefinitely with temperature. In
most cases, however, the resistivity will saturate at a finite limiting value. We can understand
this from simple considerations writing the mean free path £ = v,7(e,.) as the mean distance an
electron travels freely between two collisions. The lattice constant a is a natural lower boundary
to £ in the crystal lattice. Furthermore, we assumed so far that scattering occurs between two
states with sharp momenta k and k’. If the de Broglie wavelength becomes comparable to the
mean free path, the framework becomes unfounded and k;l would become a boundary for £. In
most systems a and k;l are comparable lengths. Empirically, the resistivity is described via the
formula

1 1 1
= + , (6.108)
o(T)  pur(T)  Prax

corresponding to the parallel addition of two resistivities; on one hand, p,,.(T"), which we have
investigated using the Boltzmann transport theory, and on the other hand the limiting value
Pmax- This is in clear disagreement to Matthiessen’s rule, which is to be expected, since for

k£ ~ 1, complex interference effects will arise. The saturated resistivity p_ . can be estimated
from the Jellium model,

m 3m2m h 3=
= = = — 6.109
Pmax e2nr(e,) e2kdr(e,) e?2k24 ( )
h 3m
~ 6.110
e? 2k, ( )
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where we used £~ ~ k,. For a typical value k, ~ 108¢cm ™! of the Fermi wave vector, we find
~ 1mQcm, which is called the Ioffe-Regel™® limit. Establishing a quantitative estimate of
Pmax fOr & given material is often difficult. There are even materials whose resistivity surpasses
the Toffe-Regel limit.

pmax

6.7 General transport coefficients

Simultaneously with charge, electrons will also transport energy, i.e., heat and entropy. This is
why charge and heat transport are naturally interconnected. In the following, we generalize the
transport theory set up above to include this interplay.

6.7.1 Generalized Boltzmann equation

We consider a metal with weakly space-dependent temperature 7'(r) and chemical potential
wu(r). The distribution function then reads

0f(k;r) = f(k;r) — fo(k,T(r), pu(r)), (6.111)
where
1
Tolk, T(r), 1(r)) = S et 11 (6.112)
In addition, we require the charge density to remain constant in space, i.e.,
3k
for all r. In this section, we introduce the electrochemical potential n(r) = —ed(r) + wu(r)

generating the general force field £ = =V (e¢p + ), where ¢(r) denotes the electrostatic poten-
tial which produces the electric field E = —V¢. With this, the Boltzmann equation for the
stationary situation reads

of B .
<8t>coll =0V f+k-V, f (6.114)
B of € — M B
= e, U < v, s) . (6.115)

In the relaxation time approximation for the collision integral, we obtain the solution

af, €, — It
5f(k) = —8—627(%)% : (5 - ’“TV,, T> , (6.116)
which allows us to calculate the charge and heat currents,
A3k
Jo—o [ Lk 5f (K 11
q= W(Ek — v f(k), (6.118)

13The saturated resistivity pmax ~ 1mQcm= 1000xcm should be compared to the room-temperature resistivity
of good conductors,

metal Cu| Au | Ag | Pt Al | Sn | Na | Fe | Ni | Pb
pluQcem] | 1.7 | 22| 1.6 | 105 | 2.7 | 11 | 46 | 98 | 7 21

which are all well below pmax-.
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Figure 6.7: Schematic view of the distribution functions § f (k) on a slice cut through the k-space
(k, = 0) with a circular Fermi surface for two situations. On the left panel (a), for an applied
electric field along the negative z-direction, on the right panel (b) for a temperature gradient in
z-direction.

respectively. Inserting the solution (6.116) into the two definitions above yields

J,=eKOg - %fdl) (—VT), (6.119)
N 1 -~
_ 1 2
J,=-KWE+ TK( ) (=VT), (6.120)

where V should be understood as V,, and the tensors K™ (n € Ny) are defined as

(V)
K =~ [ de Geree - [an i, (6.121)
€

For an isotropic system these transport coefficients are no longer tensors but represented by
scalars,

KM — _% de 68{07(6)(6 — )" (6.122)

In the case T' < T, we can calculate the coefficients,

KO e,) = W (6.125)
KW(e,) = 7;2(/{37’)2 imo)(e) L (6.126)
K®(e,) = 7;2(1<:BT)217<(0>(6F). (6.127)

We measure the electrical resistivity assuming thermal equilibrium, V71 = 0 for all ». With
this, we find the expression

oc=e’KO. (6.128)

171f a function g(¢) depends only weakly on ¢ in the vicinity of ez, we can use the Sommerfeld (Taylor) expansion
to derive a general approximation for following integrals

2 829(5)

—/deg(e)% = gler) + T ZAI g (6.123)
and
—/deg(E)(6 - ep)% = %Z(kBT)2 a%(:) .., (6.124)

e=ep

in the limit 7" — 0. We used that 1 — € in that asymptotic case.
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In order to determine the thermal conductivity ~ relating the heat current J, to VI when no
external electric field E is applied, we set J, = 0 as for an open circuit. Then, the equations
(6.119) and (6.120) reveal the appearance of an general force field

KO
Thus, the heat current is given by
1 K12
- _— (2 _ - _z
J, T (K %0 ) vT kRVT. (6.130)

In simple metals, the second term in (6.130) is often negligible as compared to the first one and
we obtain in this case

f=_K®="T8pgO T Tsps (6.131)

which is the well-known Wiedemann-Franz law. Note, that we can write the thermal conductivity
in the form

. (O

where C' = 2N (e, )k%T/3 denotes the electronic specific heat.

6.7.2 Thermoelectric effect

Equation (6.129) shows, that a temperature gradient induces an electric field. For a simple,
isotropic system, this relation reduces to

K®
with the Seebeck coefficient
Qk.ZT /
Q=- "7 © (6.134)

3 e 0(6) | e,

This is the so-called Mott formula which looses its validity at high-temperatures or very anisotropic
scattering. Using o(€) = n(e)e?r(e)/m, we investigate o’ (¢),

/ !/ /
70 = 2D (0 + () = T gy 4 O
7(€) n(e) 7(€) n(e)
and obtain an additional contribution to @), if the relaxation time depends strongly on energy.
This is most prominent in collision processes in which resonant scattering is involved (e.g., the
Kondo effect). In the opposite situation, namely, when the first term is irrelevant, the Seebeck
coefficient

o(e), (6.135)

2 1.2
Q= T RTNe) 3 (6.136)

3 e n(e,) ne

is simply reduced to the entropy per electron. For simple metals such as the alkali metals we
may estimate the low-temperature values using equation (6.136)

2K2T kT

__mhkpd T Fp (6.137)

2 eep 2 eIy
which for Tp(Na, K) ~ 3 x 10K leads to Q = —14nVK ™! x T[K]. A comparison with
experiments in Fig.6.8 shows that the order of magnitude works reasonably well for Na and K.
However, for Li and Cs even the sign is different. Differences occur through phonon effects, such
as the so-called phonon drag which we have neglected here.
In the following, we consider two different types of thermoelectric effects.
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Figure 6.8: Seebeck coefficient for the Alkali metals Li, Na, K, and Cs at low temperatures. The
dashed line represents the estimate for Na and K following Eq.(6.137). (adapted from D.K.C.
MacDonald, Thermoelectricity: an introduction to the principles, Dover (2006).)

Seebeck effect

The first is the Seebeck effect, where a thermoelectric voltage appears in a bi-metallic system
(cf. Figure 6.9). With equation (6.133), a temperature gradient across metal B induces an

electromotive force!®
Uy = / dl-€ (6.138)
T Ts To
=Q, /dl~VT—|—QB /dl-VT+QA /dl-VT (6.139)
To T Ty
= (QB - QA)(TZ - Tl)' (6.140)
The resulting voltage Vj; ..., = Upyr @Ppears between the two ends of a second metal A, whose

contacts are kept at the same temperature 7). Here, a bi-metallic configuration was chosen to
reveal voltage differences across the contacts which are absent in a single metal.

15The term electromotive force, first introduced by Alessandro Volta, is misleading in the sense, that it measures
a voltage instead of a force.
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Figure 6.9: Schematics of thermoelectric effects. On the left panel (a) a representation of Seebeck
effect is given, where the symbol E is used instead of £. On the right panel (b) the Peltier effect
is represented. In our analysis, both systems were effectively one-dimensional.

Peltier effect

The second phenomenon, termed Peltier effect, emerges in a system kept at the same temper-
ature everywhere. Here, an electric current J, between the two contacts of the metal A (see
Figure 6.9) induces a heat current in the bi-metallic system, such that heat is transferred from
one reservoir (top) to another (bottom). This follows from the equations (6.119) and (6.120) by
assuming V7T = 0, where

J, =e*KOF
(6.141)
J,=-KVE
implies
K@
Jy= =2y te = W, = QT (6.142)

The coupling II = T'Q) between J, and J, is called Peltier coefficient. According to Figure 6.9,
a contribution to the heat current is to be expected from both metals A and B,

J,= (I, —1,)J, = Ty(Q, — Q) .. (6.143)

This means, that the heat transfer between reservoirs can be controlled by electrical current.

It has to be emphasized here that the bi-metal design of the devices in Fig. 6.9 serves the
observation of the two effects which both represent bulk effects of the two metals A and B. By
no means, it should be mistaken as an effect originating from the inter-metal contacts.

6.8 Anderson localization in one-dimensional systems

Transport in one spatial dimension is very special, since there are only two different directions
to go: forward and backward. We introduce the transfer matrix formalism and use it to express
the conductivity through the Landauer formula. We will then investigate the effects of multiple
scattering at different obstacles, leading to the so-called Anderson localization, which turns a
metal into an insulator.

6.8.1 Landauer Formula for a single impurity

t16

The transmission and reflection at an arbitrary potential with finite support'® in one dimension

can be described by a transfer matrix 7.

The support (dt. Triger) of a function is the set of all points, where the function takes non zero values.
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Figure 6.10: Transfer matrices are sufficient to describe potential scattering in one dimension.

In this situation, a suitable choice for a basis of the electron states is the set of plane waves
{e***} (cf. Figure 6.10) moving in the positive (negative) z-direction with wave vector +k
(—k). Only plane waves with the same |k| on the left (I;) and right (I,) side of the scatterer
are interconnected. Therefore, we write

Py (x) = aHeikI +a, e kT (6.144)
Py(x) = a2+eik‘r + ay_e T, (6.145)

where 1, (1) is defined in the area I} (I,). The vectors a; = (a,,,a;_) i € {1,2} are connected
via the linear relation,

. T, T
a, =Ta, = 12 >a , (6.146)
? ! ( Ty Ty !
with the 2 x 2 transfer matrix 7. The conservation of current (J, = .J,) requires that T is

unimodular, i.e., detT' = 1. Here,
_ih [(dy*(x)
dz

- 2m

v - v @) ). (6.147)

such that, for a plane wave 9 (z) = (1/v/L)e**® in a system of length L, the current results in
J=v/L (6.148)

with the velocity v defined as v = iik/m. Time reversal symmetry implies that, simultaneously
with ¢ (z), the complex conjugate ©*(z) is a solution of the stationary Schrédinger equation.
From this, we find T}, = T, and T, = T%;, such that

A T, T
T = < 1712 ) . (6.149)
T1*2 Tll

It is easily shown that a shift of the scattering potential by a distance x, changes the coefficient

i2kxq

T,, of T by a phase factor e . Meanwhile, the coefficient 7}; remains unchanged.

With the Ansatz for a right moving incoming wave (o €**®), producing a reflected (oc re=#?)

and transmitted (oc te?*®) part, the wave functions on both sides of the scatterer read
1 ikx —ikx
T)=—=(e"" +re , 6.150
1 .
Py() = —=(te'*™). (6.151)

VL

The coefficients of 7' can be determined explicitly in this situation, resulting in

1
~ . t* t*
T = < o > (6.152)
t t




Here, the conservation of currents imposes the condition 1 = |r|?+[t|2. Furthermore, we can find
a relation between the parameters (r, t) of the potential barrier and the electric resistivity. For
this, we notice that the incoming current density J, is split into a reflected J, and transmitted
J, part, all given by

1

Jy = —pve = —ngve, (6.153)
r[?

J, = —p ve=—n,ve, (6.154)
|t

J, = — - ve = —nyve, (6.155)

with the velocity v = hk/m, the electron charge —e, and the particle densities ny, n,, and n,
corresponding to the incoming, reflected and transmitted particles respectively. The electron
density on the two sides of the barrier is given by

1 2
ny =ng+n, = +L‘T’ : (6.156)
|t

From this consideration, a density difference n = n; —n, = (1+|r|* —|¢|?)/L = 2|r|?/L results
between the left and the right side of the scatterer. The resistance R of the barrier is defined
by the ratio between the voltage drop over the resistor 0V and the transmitted current J,, i.e.

_

R
Jy

(6.158)

Consequently, a relation between JV and the electron density dn remains to be established to
determine R. The connection is easily found via the existing energy difference dE = —edV
between the two sides of the resistor, such that the expression

dn

on = S LOE (6.159)
_ ;l—g(—eéV) (6.160)

produces the wished relation. Here, g%dE is the number of states per unit length in the energy
interval [E, E + dE] and we find

dn 1 h2k2 dk h2k2 1
dE L %S: ( 2m > / 27 < 2m > mhu(E) (6.161)

The resistance R is finally obtained from the equations (6.158), (6.159), and (6.161), leading to

h|rf?
R=—+—7 6.162

At (6.162)
The Klitzing constant R, = h/e? ~ 25.8k(} is a resistance quantum named after the discoverer
of the Quantum Hall Effect. The result (6.162) is the famous Landauer formula, which is
valid for all one-dimensional systems and whose application often extends to the description of
mesoscopic systems and quantum wires.
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I T,

Figure 6.11: Two spatially separated scattering potentials with transmission matrices Tl and T2
respectively.

6.8.2 Scattering at two impurities

We consider now two spatially separated scattering potentials, represented by Tl and T2 each
determined by r,t; and ry,t, respectively.

The particles are multiply scattered at these potentials in a unknown manner, but the global
result can again be expressed via a simple transfer matrix T = T1T2, given by the matrix
multiplication of each transfer matrix. All previously found properties remain valid for the new
matrix 7', given by

1 + rire rs ry 1 r*
A T ix t¥to T T Tt Tt
T oA R . (6.163)
_rm _ T2 1 4 1T _r 1
tlt; tito ti1to tlts t t

For the ratio between reflection and transmission probability we find

"
LA 6.164
FETE (6.164)
1 rorit |2
= 14+ -122 1 6.165
PR T (6.165)
1 9 2, T1Taty | TiToth
= 7|t1|2\t2|2 (1 + |y |7y |* + i + ‘ - 1. (6.166)

Assuming a (random) distance d = z, — 2, between the two potential barriers, we may average
over this distance. Note, that for x; = 0, we find r, o e~ 2kd while Ty, ty, and ¢, are independent
on d. Consequently, all terms containing an odd power of r, or r3 vanish after averaging over
d. The remainders of equation (6.166) can be collected to

P 1 (L4 |ry Plry)?) — 1 (6.167)
|t|2 avg ‘t1|2’t2|2 ! 2 ‘
‘7“1|2 |7‘2|2 |7“1‘2 |7"2|2
= + + 2 ) (6.168)
L2y S . A R A

Even though two scattering potentials are added in series, an additional non-linear combination
emerges beside the sum of the two ratios |r;|?/|¢;|?. It results from the Landauer formula applied
to two scatterers, that resistances do not add linearly to the total resistance. Adding R, and
R, serially, the total resistance is not given by R = R, + R,, but by

R\R
R:R1+R2+2}1{ 2> R, +R,, (6.169)
K

with R, = h/ e? This result is a consequence of the unavoidable multiple scattering in one
dimensions. This effect is particularly prominent if R, > h/ e? for i € {1,2}, where resistances
are then multiplied instead of summed.
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6.8.3 Anderson localization

Let us consider a system with many arbitrarily distributed scatterers, and let p be a mean
resistance per unit length. R(¢) shall be the resistance between points 0 and ¢. The change in
resistance by advancing an infinitesimal ¢ is found from equation (6.169), resulting in

dR = pdl + Q@pd& (6.170)
RK
which yields
¢ R(0) iR
dl = —_— 6.171
/ P / 1+2R/R,’ (6.171)
0 0
and thus,
h
pl = ] In (1+2R(¢)/R,). (6.172)

Finally, solving this equation for R({), we find

Ry (ezpe/RK _ 1) _ (6.173)

R() = =

Obviously, R grows almost exponentially fast for increasing ¢. This means, that for large ¢, the
system is an insulator for arbitrarily small but finite p > 0. The reason for this is that, in one
dimension, all states are bound states in the presence of disorder. This phenomenon is called
Anderson localization. Even though all states are localized, the energy spectrum is continuous,
as infinitely many bound states with different energy exist. The mean localization length £ of
individual states, related to the mean extension of a wave function, is found from equation (6.173)
to be £ = p/R,.. The transmission amplitude is reduced!” on this length scale, since |t| ~ 2e /¢
for £ > ¢. In one dimension, there is no linearly increasing electric resistance, R({) ~ pf.
For non-interacting particles, only two extreme situations are possible. Either, the potential
is perfectly periodic and the states correspond to Bloch waves. Then, coherent constructive
interference produces extended states'® that propagate freely throughout the system, resulting
in a perfect conductor without resistance. On the other hand, if the scattering potential is
disordered, all states are strictly localized. In this case, there is no propagation and the system
is an insulator. In three-dimensional systems, the effects of multiple scattering are far less drastic
and the Ohmic law is applicable. Localization effects in two dimensions is a very subtle topic
and part of today’s research in solid state physics.

"For an expanded discussion of this topic, the article [P.W. Anderson, D.J. Thouless, E. Abrahams, and D.S.
Fisher, New method for a scaling theory of localization, Physical Review B 22, 3519 (1980)] is recommended.

18We have also seen in the context of chiral edge states in the Quantum Hall state, that perfect conductance in
a one-dimensional channel is obtained if there is no backscattering due to the lack of states moving in the opposite
direction. In chiral states, particle move only in one direction.
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Chapter 7

Magnetism in metals

Magnetic ordering in metals can be viewed as an instability of the Fermi liquid state. We enter
this new behavior of metals through a detailed description of the Stoner ferromagnetism. The
discussion of antiferromagnetism and spin density wave phases will be only brief here. In Stoner
ferromagnets the magnetic moment is provided by the spin of itinerant electrons. Magnetism
due to localized magnetic moments will be considered in the context of Mott insulators which
are subject of the next chapter.

Well-known examples of elemental ferromagnetic metals are iron (Fe), cobalt (Co) and nickel
(Ni) belonging to the 3d transition metals, where the 3d-orbital character is dominant for the
conduction electrons at the Fermi energy. These orbitals are rather tightly bound to the atomic
cores such that the electron mobility is reduced, enhancing the effect of interaction which is
essential for the formation of a magnetic state.

Other forms of magnetism, such as antiferromagnetism and the spin density wave state are found
in the 3d transition metals Cr and Mn. On the other hand, 4d and 5d transition metals within
the same columns of the periodic system are not magnetic. Their d-orbitals are more extended,
leading to a higher mobility of the electrons, such that the mutual interaction is insufficient to
trigger magnetism. It is, however, possible to find ferromagnetism in ZrZn, where zink (Zn) may
act as a spacer reducing the mobility of the 4d-electrons of zirconium (Zr). The 4d-elements
Pd and Rh and the 5Hd-element Pt are, however, nearly ferromagnetic. Going further in the
periodic table, the 4 f-orbitals appearing in the lanthanides are nearly localized and can lead
to ferromagnetism, as illustrated by the elements going from Gd through Tm in the periodic
system.

Magnetism appears through a phase transition, meaning that the metal is non-magnetic at
temperatures above a critical temperature T, the Curie-temperature (cf. Table 7.1). In many
cases, magnetism appears at 7T, as a continuous, second order phase transition involving the
spontaneous violation of symmetry. This transition is lacking latent heat (no discontinuity in
entropy and volume) but instead features a discontinuity in the specific heat.

element T, (K) type element T, (K) type
Fe 1043 ferromagnet (3d) Gd 293 ferromagnet (4f)
Co 1388  ferromagnet (3d) Dy 85 ferromagnet (4f)
Ni 627  ferromagnet (3d) Cr 312  spin density wave (3d)
Zr7n, 22 ferromagnet a-Mn 100 antiferromagnet
Pd - paramagnet Pt - paramagnet
HfZn,, - paramagnet

Table 7.1: Selection of (ferro)magnetic materials with their respective form of magnetism and
the critical temperature T,.
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7.1 Stoner instability

In the following section, we study the emergence of the metallic ferromagnetism originating from
the Stoner mechanism. In close analogy to the first Hund’s rule, the exchange interaction among
the electrons plays a crucial role here. The alignment of the electronic spins in a favored direction
allows the system to reduce the energy contribution due to Coulomb repulsion. According
to Landau’s theory of Fermi liquids, the interaction between electrons renormalizes the spin
susceptibility x, to

Xo
1+ F§’

m*
= 7.1
X m ( )

which obviously diverges for Fij — —1 and leads to a correlation driven instability of the Fermi
liquid, as we will discuss here.

7.1.1 Stoner model within the mean field approximation

Consider a model of conduction electrons with a repulsive contact interaction,

H=> €l e + U / d*r &' py(r)s(r —v)p, (1), (7.2)
k,s

where we use the electron density p () = \Tll('r)\/l} s(r) and the field operator ‘ifl (U ,) follows
from the definition (3.28) [(3.29)]. Due to the Pauli exclusion principle, the contact interaction is
only active between electrons with opposite spins. This is a consequence of the exchange hole in
the two-particle correlation between electrons of identical spin (cf. Figure 3.1). The derivation
of the full solution of this model goes beyond the scope of this lecture. However, a mean field
approximation will already provide very useful insights '. We rewrite,

p(r) =ng + [py(r) —ny, (7.3)
where
n, = (7,(r), (7.4)

and (') represents the expectation value of the argument. We stipulate that the deviation from
the mean value ng shall be small. In other words

([B,(r) — nJ?) < n?. (7.5)

Inserting equation (7.3) into the Hamiltonian (7.2), we obtain

Hong = Z ekﬁ;rgs/c\ks +U / d3r [pr(r)n) + p, (r)ny —nun || (7.6)
k,s

- Z (6k + Ung) /C\Tks/c\k:s - UQnTnia (77)
k,s

the so-called mean field Hamiltonian, describing electrons which move in the uniform background
of electrons of opposite spin coupling via the spin dependent exchange interaction (S denotes
to opposite spin s). Fluctuations are ignored here. The advantage of this approximation is,
that the many-body problem is now reduced to an effective one-particle problem, where only

'Note that the following mean field calculation is equivalent to a variational approach using simple many-body
wavefunction (Slater determinant) with different concentrations of up and down spins.
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the mean electron interaction is taken into account. This is equivalent to a generalized Hartree-
Fock approximation and enables us to calculate certain expectation values, such as the density
of one spin species

ne= o S Eht) = g O Fle + Uny) (7.8)
k k
_ /de é S (e — e — Un)) () (7.9)
k

= /de %N(e - Uni)f(e). (7.10)

An analogous result is found for the opposite spin direction. These mean densities are determined
self-consistently, namely such that the insertion of n in into the mean field Hamiltonian (7.7)
provides the correct output according to the expectation values given in equation (7.8). Fur-
thermore, the constraint that the total number of electrons is conserved, must be implemented.
The real magnetization M = p1,m is proportional to m defined via

1 Ng + sm
ng = 5[(nT+n¢)+s(nT—n¢)] = OT, (7.11)
where n, is the total particle density. This leads to the two coupled equations
1
no =3 /de (N(e —Un,) + N(e - UnT)) o), (7.12)
1
m= / de (N~ Uny) = N(e—Un)) (o). (7.13)

or equivalently

ny = %Z /deN (e - % — 3U2m> f(e), (7.14)

m:—%z s /deN <6—U2%—3U2m> f(e), (7.15)

which usually can not be solved analytically and must be treated numerically.

7.1.2 Stoner criterion

An approximate solution can be found if m < n,. In this limit, the equations (7.14) and (7.15)
are solved by adapting the chemical potential u. For low temperatures and small magnetization
we can expand u as

pu(m,T) =€, + Au(m,T). (7.16)
The constant energy shift —Un,,/2 appearing in the equations (7.14) and (7.15) has been ab-
sorbed into €,. The Fermi-Dirac distribution takes the form

1
= Ble—u(m D] 1 1’

f(e) (7.17)

where 8 = (k,T)~!. After expanding equation (7.14) for small m, one obtains
1 2
ng % / de f(e) [N(e) +3 <U2m> N”(e)] (7.18)
€F

7T2 m 2
~ / Ae [N (] + Nlep) g+ (b, TN () + % (U) N(e),  (7.19)
0
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where we introduced the abbreviations N'(e¢) = dN(¢)/de and N"(e) =
first term on the right side of equation (7.19) is identical to ny, Ap(m, T
to be given by

d*>N(€)/de?. Since the
) is immediately found

N'(e,.) Um
A T)~ — E T 2
. 1)~ =55 [ by d () (7.20)
Analogously, the expansion of equation (7.15) in m and T, results in
3
m /def [N’ -y o N”’(e) U;”) (7.21)

<U2m> L (122

7'('2 m 2
~ [zv(eF) TN + g () Ve + Aue,)
(

and finally, inserting the result for Ay from (7.20) into (7.22), we find

m=Nie) [1= T mnzien] (5) - v () o)
where
o= (3eg) e o Me=5(5) oy 0

The structure of equation (7.23) is m = am + bm?, where b is assumed to be negative. Thus,
two types of solutions emerge
0, a<l,

2 _
mi=q B (7.25)
by a>1.

With this, a = 1 corresponds to a critical value.

A ]

m|UN(ep) > 2, /\wm

Figure 7.1: Graphical solution of equation (7.23) and the resulting magnetization. The Fermi
sea of each spin configuration is shifted by +Um/2, resulting in a finite total magnetization.

In our situation, this condition corresponds to

1 72
= SUN(e,) {1 — G(kBTC)QAf(eF)} , (7.26)
yielding
V6 2 U
kT, = 1-— 1—=£ 2
PR mA(e,) UN(e,) = U (7.27)



for U > U, = 2/N(e,). This is an instability condition for the nonmagnetic Fermi liquid state
with m = 0, and T, is the Curie temperature, below which the ferromagnetic state appears (see
Figure 7.1). The temperature dependence of the magnetization M of the ferromagnetic state
(T <T,) is given by

M(T) = p,m(T) x /T, —-T, (7.28)

close to the phase transition (7, — T < T,). Note that the Curie temperature 7, is nonzero
for UN(¢,.) > 2, and T, — 0 in the limit UN(¢,) — 2. For UN(¢,) < 2 no phase transition
occurs. This condition for a finite transition temperature 7T, is known as the Stoner criterion.
This simple model also describes a so-called quantum phase transition, i.e., a phase transition
that appears at T' = 0 as a function of system parameters, which in our case are the density
of states N(e,) and the Coulomb repulsion U. While thermal fluctuations destroy the ordered
state at some finite temperature via entropy increase, entropy is irrelevant at T' = 0. The order
is now suppressed by quantum fluctuations (Heisenberg’s uncertainty principle).

AT AT

Paramagnet
Ferromagnet

Paramagnet Ferromagnet

2 UNC(Ep) Druck

Figure 7.2: Phase diagram of a Stoner ferromagnet in the T-UN (¢,.) and T-p plane, respectively.

The density of states as an internal parameter can, for example be changed by applying an
external pressure. By reducing the lattice constant, pressure may facilitate the motion of the
conduction electrons and increase the Fermi velocity. Consequently, the density of states is
reduced (cf. Figure 7.2). Indeed, pressure is able to destroy ferromagnetism in weakly ferromag-
netic materials as ZrZn,, MnSi, and UGe,. In other materials, the Curie temperature is high
enough, such that the technologically applicable pressure is insufficient to suppress magnetism.
It is, however, possible, that pressure leads to other transitions, such as structural phase tran-
sitions, that eventually destroy magnetism. This is seen in iron (Fe), where a pressure of about
12 GPa induces a transition from magnetic iron with body-centered crystal (bcc) structure to a
nonmagnetic, hexagonal close packed (hcp) structure (cf. Figure 7.3).

While this structural transition is a quantum phase transition as well, it appears as a discontin-

TK) 1o
50
1000
€-fe
FM hpe
0.5 1 1.5 p (GPa) 20 b (GPC

Figure 7.3: Phase diagrams of UGe, and Fe.
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uous, first order? transition. In some cases, pressure can also induce an increase in N (€), for
example in metals with multiple bands, where compression leads to a redistribution of charge.
One example is the ruthenate Sr;Ru,O. for which uniaxial pressure along the z-axis leads to
magnetism.

bnee)

=
€

€ €
Ni Cu

Figure 7.4: The position of the Fermi energy of Cu and Ni, respectively.

Let us eventually turn to the question, why Cu, being a direct neighbor of Ni in the 3d-row of
the periodic table, is not ferromagnetic, even though both elemental metals share the same fcc
crystal structure. The answer is given by the Stoner instability criterion UN(e,) = 2. While
the conduction electrons at the Fermi level of Ni have 3d-character and belong to a narrow
band with a large density of states, the Fermi energy of Cu is situated in the broad 4s-band
and constitutes a much smaller density of states (cf. Figure 7.4). With this, the Cu conduction
electrons are much less localized and feature a weaker tendency towards ferromagnetic order.
Copper is known to be a better conductor than Ni for the same reason.

7.1.3 Spin susceptibility for 7" > T,

Next, we study the response of a metallic system to an external perturbation. For this purpose,
we apply an infinitesimal magnetic field H along the z-axis, which induces a spin polarization
due to the Zeeman coupling.

1, =gy [ 03 {5.00-5,n)} (7.29)

From the self-consistency equations (7.14) and (7.15) we obtain

m= f% /def(e) Z s N (e — psH — SUQm) (7.30)
= [acseno (5" i) (731)

2 Um

= N(ep) [1= T, T e | (55 o) (7.32)

2The Stoner instability is a simplification of the quantum phase transition. In most cases, a discontinuous
phase transition originates in the band structure or in fluctuation effects, which were ignored here, For more
details consult [D. Belitz and T.R. Kirkpatrick, Phys. Rev. Lett. 89, 247202 (2002)].
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to lowest order in m and H. Solving this equation for m yields

Xo(T)

M=p,m= H, (7.33)
T 1=Ux(T) /20
and consequently, the magnetic susceptibility y reads
M T
H ™ 1= Uxo(T)/22
where the bare susceptibility x, is given by
2 m 2 2
Xo(T) = piN(e,) |1 — E(kBT) A (e)*| - (7.35)

We see, that the denominator of the susceptibility x(7") vanishes exactly when the Stoner insta-
bility criterion is fulfilled. The diverging susceptibility

Xo(T,)

X(T) = 75—, (7.36)
1
T2

indicates the instability. Note that for " — T, from above, the susceptibility diverges like
x(T) « |T, — T|7' corresponding to the mean field behavior, since the mean field critical
exponent v for the susceptibility takes the value v = 1.

7.2 General spin susceptibility and magnetic instabilities

The ferromagnetic state is characterized by a uniform magnetization. There are, however,
magnetically ordered states which do not feature a nonzero net magnetization. Examples are
spin density wave (SDW) states, antiferromagnets and spin spiral states. In this section, we
analyze general instability conditions for metallic systems.

7.2.1 General dynamic spin susceptibility

We consider a magnetic field, oscillating in time and with spacial modulation
H(r,t) = He' 9" et (7.37)

and calculate the resulting magnetization, for the corresponding Fourier component. For that,
we proceed analogously as in Chapter 3 and define the spin density operator S(r) in real space,

e . ;fj@ I\ (r) + \1{1(:)\1/1@)
S(r) = 5 > Vi(r)o,, T, (r) = o) —i\lﬁ(r)/\\li () —{—/:If L) y(r) (7.38)
- i (r) Wy (r) = W ()W (r)
with momentum space representation
S 3. Q —ig-r h T 1 Q
Sq = d TS(T')@ = E Z Ck,sass’ck+q,s’ = 5 Z Sk,q’ (739)
k,s,s’ k
where S’k’q = (h/Q)CL s0ss/Cliqe- The Hamiltonian of the electronic system with contact

interaction is given by

H=H,+MH,+H (7.40)

int?
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where

Ho = D €ulhylhs: (7.41)
k,s

M, = s / BrH(r,t) - S(r), (7.42)

Mg = U [ @15, (r). (7.43)

The operator H, describes the Zeeman coupling between the electrons of the metal and the
perturbing field. We investigate a magnetic field

1
1 o
H = §H+(q,w)ezq"’_’“’t6"t —1 (7.44)
0
in the xy-plane. The Zeeman term then simplifies to
1, = -8 g+(qw)S=, +he (7.45)
2= q, "4 .C., .

where the Hermitian conjugate (h.c.) part will be ignored in the following. We use
o A o
k

In the framework of linear response theory, this coupling will induce a magnetization M;q 4=
(1t5/h)(S;t1(q,w)). Using the same equations of motion as in Section 3.2,

d
ih Sia =18 Hl, (7.47)

with §,‘: = ELTEk 4|+ We can determine this induced magnetization, first without the interaction
term (U=0). We obtain for the given Fourier component,

0 ~ ~ SN . . .
ih 555 Oig = g — RS (1) = 9011 Eh By, — T gyt H (@)™ (7.48)

Performing the Fourier transform from frequency space to real time, and applying the thermal
average we obtain,

(€prq — € — I — ihn)(SZ’q) = —ghpis(Ngy gr — nki)H'F(q,w), (7.49)

which then leads to the induced spin density (o< magnetization),

+ +
<Slnd q7 Q Z (q7 )H (q7 w)’ (7'50)
with
2 _
gHg "ktqt ~ TRy
Xo(q,w) = — o (7.51)
0 Q - €rq — € — Iw — thn

Note that the form of the bare susceptibility x,(q,w) is similar to the Lindhard function (3.63).
The result (7.50) describes the induced spin density within linear response approximation.

In the next step, we want included the effects of the interaction. Analogously to the charge
density wave state found in Section 3.2, the induced spin density generates in turn an effective
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field. The induced spin polarization appears in the exchange interaction as an effective magnetic
field. We rewrite the contact interaction term in equation (7.40) in the form

. ~F ~ A ~
Hine = ¢ D gt Ci_q
kk'.q'

U PO &4~
— —5 Z CLTCIC‘F(]/J,CZ:/\LC’CI*(I/T + const. (752)
k, k/

Toor ZSW*

The induced spin polarization <S$d(q, w)) acts through the exchange interaction as an effective
(local) field, as can be seen by replacing §; — (S (q, w))8, o 0 Eq.(7.53) ,

u - u G- g o
) S+S ;= —ﬁ<S+(q,w)>5’fq = — hB H' (qw w)S~, (7.53)
q
where the effective magnetic field H;,(q,w) finally reads
Hyjqy(g,w) = (S*(q,w)). (7.54)

gpzh
This induced field acts on the spins as well, such that the total response of the spin density on
the external field becomes

M*(g.w) = B2 (S (q.w))

= XO(Q,W)[H+(Q, ) + Hmd(q7 )]
= o(@. ) H (@.0) + Xo(0) -

B

(5" (q,w)) (7.55)

U
= xo(q,w)H " (q,w) + xo(q,w)mﬂﬁ(q,w)-

B

With the definition
M*(q,w) =x(q,w)H" (q,w) (7.56)

of the susceptibility in the random phase approximation (RPA) (see Section 3.2), we find

w) = Xo(q’w)
Mow = (7.57)

This form of the susceptibility is found to be valid for all field directions, as long as spin-orbit
coupling is neglected and the spin is isotropic (Heisenberg model). Within the random phase
approximation, the generalization of the Stoner criterion for the appearance of an instability of
the system at finite temperature reads

U
1= %xo(q,w). (7.58)

For the limiting case (q,w) — (0,0) corresponding to a uniform, static external field, we obtain
for the bare susceptibility

2% x— "htqt — Tkl

X (q,O) = -
0 Q ~ Chiq K
q—0 2,uzB 0f ()
2 S = ), (759

k
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which corresponds to the Pauli susceptibility (¢ = 2). Then, x(7') from equation (7.57) is again
cast into the form (7.34) and describes the instability of the metal with respect to ferromagnetic
spin polarization, when the denominator vanishes. Similar to the charge density wave, the
isotropic deformation for g = 0 is not the leading instability, when x,(Q,0) > x,(0,0) for a
finite Q. Then, another form of magnetic order will occur.

7.2.2 Instability with finite wave vector Q

In order to show that, indeed, the Stoner instability does not always prevail among all possible
magnetic instabilities, we first go through a simple argument based on the local susceptibility.
For that, we define the local magnetic moment along the z-axis, M(r) = p,(p;(r) —p, (7)), and
consider the nonlocal relation

M(r) = /d3r’ Xo(r — ) H ('), (7.60)
within the linear response approximation. In Fourier space, the same relation reads
with
Xo(q) = /d?’r )Zo(r)efiqw. (7.62)
1.5
) (] I . S — —
D:o
05 |
0 ; .
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Figure 7.5: R, the ratio between the local susceptibility and the static susceptibility, plotted
for a box-shaped band with width 2D. Depending where the Fermi energy lies n = €,./D, the
susceptibility is dominated by the contribution x,(g = 0) or by the susceptibility at finite q.

Now, compare x,(q = 0) with x,(q) = X,(r = 0), i.e., the uniform and the local susceptibility
at T'= 0. The local susceptibility appears to be the average of x,(q) over all g,

242 Npyrqg — M 2 fle) = f(€)
Xo(q) = Q2B - +_q€ — QB/deN(e)/de'N(e')el_e(, (7.63)
k,q k k+q

and must be compared to x,(q = 0) = p2N(e,) (f(€) = O(ep — €)). The local susceptibility
depends on the density of states and the Fermi energy of the system. A very good qualitative
understanding can be obtained by a very simple form

1
57 -D S € S -Da

N(e) = (7.64)
0, le| > D,
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for the density of states. N(e) forms a band with the shape of a box with band width 2D. With
this rough approximation, the integral in equation (7.63) is easily evaluated. The ratio between
x(q) and x,(q = 0) is then found to be

R, - X(:(Cfl(i)o) —In (1:“772> + i G;Z) , (7.65)

with 7 = €, /D. For both small and large band fillings (e, close to the band edges), the tendency
towards ferromagnetism dominates (cf. Figure 7.5), whereas when ¢, tends towards the middle
of the band, the susceptibility x,(q) will cease to be maximal at g = 0, and magnetic ordering
with a well-defined finite ¢ = @ becomes more probable.

7.2.3 Influence of the band structure

Whether magnetic order arises at finite g or not depends strongly on the details of the band
structure. The argument given above, comparing the local (r = 0) to the uniform (g = 0)
susceptibility is nothing more than a vague indicator for a possible instability at nonzero q. A
crucial ingredient for the appearance of magnetic order at a given g = Q) is the so-called nesting
of the Fermi surface, i.e. within extended areas in close proximity to the Fermi surface the
energy dispersion satisfies the nesting condition,

$erg = Sk (7.66)

where &, = €, — €, and Q is some fixed vector. If the Fermi surface of a material features
such a nesting trait, the susceptibility will be dominated by the contribution from this vector
Q. In order to see this, let us investigate the static susceptibility x,(q) for ¢ = Q under the
assumption, that equation (7.66) holds for all k. Thus,

25 e T / Pk f(=&) = [(&)
Q 2= & — &g 7J (2m)? &k

Xo(@;T) : (7.67)

where f(&) = f(€ +¢,) = f(e) and f is the Fermi-Dirac distribution. Under the further
assumption that &, is weakly angle dependent, we find

3 h k 2 h k
Xo(@Q;T) :M%/ (;lﬂi;g tan (fgk/2 =T) _ 'L;B/di@‘*’ﬁF)W' (7.68)

In order to approximate this integral properly, we notice that the integral only converges if a
cutoff ¢, is introduced which we take at half the bandwidth D, i.e. ¢; ~ D. Furthermore, the
leading contribution comes from the immediate vicinity of the Fermi energy (£ ~ 0), so that,
within the integration range, a constant density of states N(e,) can be assumed. Finally, the
susceptibility reads

€0

WQT) =~ N(e,) [ dfta“h(i%BT)
0

o, & 4\ 1.14e,
=y, N(e,) (111 (2k:BT> +1In < - >) ~ upN(e,)In ( W) (7.70)

where we assumed €, > kT, and where v = 0.57721 is the Euler constant. The bare sus-
ceptibility x, diverges logarithmically at low temperatures. Inserting the result (7.70) into the
generalized Stoner relation (7.58), results in

UN(e,) 1.14e
0 2 <2kBTC>’ (7.71)

(7.69)
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with the critical temperature
kT, = 1.14e e 2/UN(r), (7.72)

A finite critical temperature persists for arbitrarily small positive values of UN (€,,). The nesting
condition for a given Q leads to a maximum of x,(q,0;7) at ¢ = Q and triggers the relevant
instability in the system. The latter finally stabilizes in a magnetic ordered phase with wave
vector @, the so-called spin density wave. The spin density distribution takes, for example, the
form

S(r)=2Scos(Q - r), (7.73)

without a uniform component. In comparison, the charge density wave was a modulation of the
charge density with a much smaller amplitude than the height of the uniform density, i.e.,

p(r) = py + dpcos(Q - 1), (7.74)

with dp < p,. The spin density state frequently appear in low-dimensional systems like organic
conductors, or in transition metals such as chromium (Cr) for example. In all cases, nesting
plays an important role (cf. Figure 7.6).

eindimensional quasi—eindimensional Chrom
H
. ) @
. ‘
BZ ‘
i N[
; elekfronartige
lochartige Fermiflache
FermiflGche

Figure 7.6: Sketch of Fermi surfaces favorable for nesting. In purely one-dimensional systems
(left panel) there is a well-defined nesting vector pointing from one end of the Fermi surface to
the other one. In quasi-one-dimensional systems nesting is almost perfect (central panel). In
special cases (e.g. Cr) the Fermi surface(s) of three-dimensional systems show nesting properties
(right panel) promoting an instability of the susceptibility at finite q.

In quasi-one-dimensional electron systems, a main direction of motion dominates over two other
directions with weak dispersion. In this case, the nesting condition is very probable to be
fulfilled, as it is schematically shown in the center panel of Figure 7.6. Chromium is a three-
dimensional metal, where nesting occurs between a electron-like Fermi surface around the I'-point
and a hole-like Fermi surface at the Brillouin zone boundary (H-point). These Fermi surfaces
originate in different bands (right panel in Figure 7.6). Chromium has a cubic body centered
crystal structure, where the H-point at (7/a,0,0) leads to the nesting vector Q, || (1,0,0) and
equivalent vectors in y- and z-direction, which are incommensurable with the lattice.

The textbook example of nesting is found in a tight-binding model of a simple cubic lattice with
nearest-neighbor hopping at half filling. The band structure is given by

e, = —2t[cos(k,a) + cos(k,a) + cos(k,a)], (7.75)

where a is the lattice constant and ¢ the hopping term. Because of half filling, the chemical
potential p lies at p = 0. Obviously, €, o5 = —¢, holds for all k, for the nesting vector

148



Q = (7/a)(1,1,1). This full nesting trait is a signature of the total particle-hole symmetry.
Analogously to the Peierls instability, the spin density wave induces the opening of a gap at the
Fermi surface. This is another example of a Fermi surface instability. In this situation, the gap
is confined to the areas of the Fermi surface obeying the nesting condition. Contrarily to the
ferromagnetic order, the material can become insulating when forming the spin density wave
state.

7.3 Stoner excitations

In this last section, we discuss the elementary excitations of the ferromagnetic ground state
with n, > n, including both particle-hole excitations and collective modes. We focus on spin
excitations, for which we make the Ansatz

0g) = > FilrsquCtly)- (7.76)
k

In this excitation, an electron is extracted from the ground state \1/19> and is replaced by an
electron with opposite spin. We consider excitations with a fixed momentum transfer g. We have
to ensures that an electron with (k,]) is available to be removed, and that the state (k + g, 1)
is unoccupied. The excitation energy can be obtained by solving the following Schrédinger
equation

Hltb,) = (B, + hwp)hb,) (7.77)

with £ , as the ground state energy (H|v g) =F g]z/J g)). Actually it is more convenient to rearrange
this equation into the following form eliminating E,,

hwgltrg) = FulM, Ch g Crillty) (7.78)
k
with the Hamiltonian
4 - U A A N
H= Z ekcLSckS + a Z C;rc+q’TCkTCLLq/¢Ck’¢ . (7.79)
k,s k:ykaq’

Evaluating the commutator in Eq.(7.78) we obtain

hwq|/lzz)q> = (ek—i-q - ekz)|/¢)q>

u 4 o~ N T
TQ DY {Ck'+qf¢ck/¢ck+q—q'¢ck¢ - Ck+qick*Q'Tck’—q’¢ck’¢} [%g) -
k

K .q
(7.80)
The four-c-operator terms are not so easy to handle. Therefore we decouple them through the
following approximation,

o o o o a4 o~ o =
b+t K hra—a' LBt T Chtal k-t —q LKL
f ~ — ~
0o (M = M) Cerg it + (Mgl Ok g — Tt O +q7) ChemgrrqiCh-q't
(7.81)
where n,,, is the Fermi-Dirac distribution for electrons of spin s with the energy ¢, . We insert

this approximation now into the Schrdingier equation (7.78) and multiply from the left with
<1/1g]/c\}cT’c\,;Jﬂj_li to obtain the projected equation,

U
f {hwq R (e ni)} = G2 felgy =) = By (7.82)
k
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where we used that the density of electrons of spin s is given by

= % > g, - (7.83)
o
and we defined R,. We solve now Eq.(7.82) for the wave function f, and obtain
fo = fq (7.84)
hwg = €higy T nr

with €, = €, + Un,. We use now f,, to reexpress R, which yields the implicit equation for the
excitation energies hw,,

"ktal ~ "kt
R,=UR 7.85
B 7
where we may divide by R, # 0. This equation contains a continuum of states corresponding
to the electron-hole excitations given by

hwy = €piql — €kt = €hrg — e TUMy—n)) =€~ +A. (7.86)

This part of the spectrum is depicted by the shaded region in Fig.7.7. Note that the spin
splitting of the spectrum opens a window in the low-energy low-momentum transfer sector of
the excitations.

There is also a collective mode. It is easy to see from Eq.(7.85) that in the ¢ — 0 limit we find

U(n; —ny)

1=

= hwy =0 (7.87)

indicating that there are excitations in the mentioned window. We calculate now the dispersion
for small g (< kp). Using the fact that iw, < A we can expand Eq.(7.85) leading to

Mgl ~ "kt
1+5 Z

Cktql ~ €kt

-1
”k+q¢ ”M (
: 7.88)

For small ¢ we expand up order ¢ (actually g-linear contributions cancel),

2

% 3 "etql — Mt %gzmqrnm | ke "% (kg ~ %

Qleep i —+A O A A A
k q k

U [+ 7y B2q? Ty — My (217K - q)°
—— _ 7.89
9 Zk: { A2 2m A? 4m2A (7.89)

and analogously

= _ ~— (7.90)

such that we obtain

N h2q* 2¢
77 2mA 3

h2q2 U 1/2
N -2 — | =-1 . 91
UNGep) -2 x 5 (1) (1)
Were we use that A oc (U — U,)"/2 for U — U,. Hence, if U > U, = 2/N(e}) we find hw, > 0.
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This collective excitation features a ¢?>-dependent dispersion, vanishing in the limit ¢ — 0. This
is a consequence of the ferromagnetic state breaking a continuous symmetry. The continuous
rotation symmetry is broken by the choice of a given direction of magnetization. A uniform g = 0
rotation of the magnetization does not cost any energy w, = 0. This result was already found
in equation (7.87) and is predicted by the so-called Goldstone theorem.® Such an infinitesimal
rotation is induced by a global spin rotation,

> et = Sioy (7.92)
k

which acting on the ground state \1/19> leads to a degenerate state and corresponds to the state
(7.76) with a wave function f,, = const.. Since the elementary excitations have an energy gap of
the order of A at small g, the collective excitations, which are termed magnons, are well-defined
quasiparticles describing propagating spin waves. When these modes enter the electron-hole
continuum, they are damped in the same way as plasmons decaying into electrons and holes
(see Figure 7.7). Being a bound state composed of an electron and a hole, magnons are bosonic
quasiparticles.

mq A
electron-hole
A continuum
magnon - an
N
krpt —kpy kry +kry (;

Figure 7.7: Schematic diagram of the elementary spin excitationspectrum (light gray) and col-
lective modes (magnons, solid line) of the Stoner ferromagnet.

3The Goldstone theorem states that, in a system with a short-ranged interaction, a phase which is reached
by the breaking of a continuous symmetry features a collective excitation with arbitrarily small energy, so-called
Goldstone modes. These modes have bosonic character. In the case of the Stoner ferromagnet, these modes are
the magnons or spin waves.
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Chapter 8

Magnetism of localized moments

Up to now, we have mostly assumed that the interaction between electrons leads to secondary
effects. This was, essentially, the message of the Fermi liquid theory, the standard model of
condensed matter physics. There, the interactions of course renormalize the properties of a
metal, but their description is still possible by using a language of nearly independent fermionic
quasiparticles with a few modifications. Even in connection with the magnetism of itinerant
electrons, where interactions proved to be crucial, the description in terms of extended Bloch
states. Many properties were determined by the band structure of the electrons in the lattice,
i.e., the electrons were preferably described in k-space.

However, in this chapter, we will consider situations, were it is less clear wether we should
describe the electrons in momentum or in real space. The problem becomes obvious with the
following Gedanken experiment: We look at a regular lattice of H-atoms. The lattice constant
should be large enough such that the atoms can be considered to be independent for now. In the
ground state, each H-atom contains exactly one electron in the 1s-state, which is the only atomic
orbital we consider at the moment. The transfer of one electron to another atom would cost the
relatively high energy of F(H')+FE(H~)—2E(H) ~ 15eV, since it corresponds to an ionization.
Therefore, the electrons remain localized on the individual H-atoms and the description of the
electron states is obviously best done in real space. The reduction of the lattice constant will
gradually increase the overlap of the electron wave functions of neighboring atoms. In analogy
to the H, molecule, the electrons can now extend on neighboring atoms, but the cost in energy
remains that of an “ionization”. Thus, transfer processes are only possible virtually, there are
not yet itinerant electrons in the sense of a metal.

1)
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Figure 8.1: Possible states of the electrons in a lattice with weak or strong overlap of the electron
wave functions, respectively.

On the other hand, we know the example of the alkali metals, which release their outermost ns-
electron into an extended Bloch state and build a metallic (half-filled) band. This would actually
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work well for the H-atoms for sufficiently small lattice constant too.! Obviously, a transition

between the two limiting behaviors should exist. This metal-insulator transition, which occurs,
if the gain of kinetic energy surpasses the energy costs for the charge transfer. The insulating
side is known as a Mott insulator.

While the obviously metallic state is reliably described by the band picture and can be sufficiently
well approximated by the previously discussed methods, this point of view becomes obsolete
when approaching the metal-insulator transition. According to band theory, a half-filled band
must produce a metal, which definitely turns wrong when entering the insulating side of the
transition. Unfortunately, no well controlled approximation for the description of this metal-
insulator transition exists, since there are no small parameters for a perturbation theory.
Another important aspect is the fact, that in a standard Mott insulator each atom features
an electron in the outermost occupied orbital and, hence, a degree of freedom in the form of
a localized spin s = 1/2, in the simplest case. While charge degrees of freedom (motion of
electrons) are frozen at small temperatures, the same does not apply to these spin degrees of
freedom. Many interesting magnetic phenomena are produced by the coupling of these spins.
Other, more general forms of Mott insulators exist as well, which include more complex forms
of localized degrees of freedom, e.g., partially occupied degenerate orbital states.

8.1 Mott transition

First, we investigate the metal-insulator transition. Its description is difficult, since it does
not constitute a transition between an ordered and a disordered state in the usual sense. We
will, however, use some simple considerations which will allow us to gain some insight into the
behavior of such systems.

8.1.1 Hubbard model

We introduce a model, which is based on the tight-binding approximation we have introduced in
chapter 1. It is inevitable to go back to a description based on a lattice and give up continuity.
The model describes the motion of electrons, if their wave functions on neighboring lattice sites
only weakly overlap. Furthermore, the Coulomb repulsion, leading to an increase in energy, if a
site is doubly occupied, is taken into account. We include this with the lattice analogue of the
contact interaction. The model, called Hubbard model, has the form

H=—t> (@, +hc)+UD Ay, (8.1)
(i:3). i

where we consider hopping between nearest neighbors only, via the matrix element —¢. Note,
that Eg) are real-space field operators on the lattice (site index i) and n;, = 5;[551-3 is the density
operator. We focus on half filling, n = 1, one electron per site on average. There are two obvious

limiting cases:

o Insulating atomic limit: We put ¢t = 0. The ground state has exactly one electron on
each lattice site. This state is, however, highly degenerate. In fact, the degeneracy is 2V
(number of sites V), since each electron has spin 1/2; i.e.,

[®aotsit) = T2l 10, (8:2)

where the spin configuration {s,} can be chosen arbitrarily. We will deal with the lifting
of this degeneracy later. The first excited states feature one lattice site without electron

In nature, this can only be induced by enormous pressures metallic hydrogen probably exists in the centers
of the large gas planets Jupiter and Saturn due to the gravitational pressure.
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and one doubly occupied site. This state has energy U and its degeneracy is even higher,
i.e., 2Y"2N(N — 1). Even higher excited states correspond to more empty and doubly
occupied sites. The system is an insulator and the density of states is shown in Figure 8.2.

e Metallic band limit: We set U = 0. The electrons are independent and move freely
via hopping processes. The band energy is found through a Fourier transform of the
Hamiltonian. With

~ 1 ik
Cis = ﬁ chse * Y (83)
k

we can rewrite

—t Y (@, he) =D €l s (8.4)

(3,3),s k,s
where

€, = _tz eika — _op (cos k,a+ cosk a+ cos kza) , (8.5)
a

and the sum runs over all vectors a connecting nearest neighbors. The density of states is
also shown in Figure 8.2. Obviously, this system is metallic, with a unique ground state

[®p) = H@(_Ek)ELTELJm- (8.6)
k

Note, that €, = 0 at half filling, whereas the bandwidth 2D = 12¢.

E E
V)
N(E) NE
atomic limit metallic limit

Figure 8.2: Density of states of the Hubbard model in the atomic limit (left) and in the free
limit (right).

8.1.2 Insulating state

We consider the two lowest energy sectors for the case ¢ < U. The ground state sector a has
already been defined: one electrons sits on each lattice site. The lowest excited states create the
sector B with one empty and one doubly occupied site (cf. Figure 8.3). With the finite hopping
matrix element, the empty (holon) and the doubly occupied (doublon) site become “mobile”. A
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fraction of the degeneracy (2V 2N (N —1)) is herewith lifted and the energy obtains a momentum
dependence,

Epp=U+¢,+es >U— 12t (8.7)

Even though ignoring the spin configurations here is a daring approximation, we obtain a qual-
itatively good picture of the situation.? One notices that, with increasing |t|, the two energy
sectors approach each other, until they finally overlap. In the left panel Figure8.2 the holon-
doublon excitation spectrum is depicted by two bands, the lower and upper Hubbard bands,
where the holon is a hole in the lower and the doublon a particle in the upper Hubbard band.
The excitation gap is the gap between the two bands and we may interpret this system as an
insulator, called a Mott insulator. (Note, however, that this band structure depends strongly on
the correlation effects (e.g. spin correlation) and is not rigid as the band structure of a semicon-
ductor.) The band overlap (closing of the gap) indicates a transition, after which a perturbative
treatment is definitely inapplicable. This is, in fact, the metal-insulator transition.

[ S W W A W T S A Y WY VY W W
FTylrylvyvy Ty FTy =y byl Ty

o —sector [B—sector

N
|
|
[
|

Figure 8.3: Illustration of the two energy sectors, a and S.

8.1.3 The metallic state

On the metallic side, the initial state is better defined since the ground state is a filled Fermi sea
without degeneracy. The treatment of the Coulomb repulsion U turns out to become difficult,
once we approach the Mott transition, where the electrons suffer a strong impediment in their
mobility. In this region, there is no straight-forward way of a perturbative treatment. The so-
called Gutzwiller approximation, however, provides a qualitative and very instructive insights
into the properties of the strongly correlated electrons.

For this approximation we introduce the following important densities:

1: electron density
sy: density of the singly occupied lattice sites with spin 1
s,: density of the singly occupied lattice sites with spin |
d: density of the doubly occupied sites

h: density of the empty sites

It is easily seen, that h = d and Sp =8 =5 /2, as long as no uniform magnetization is present.
Note, that d determines the energy contribution of the interaction term to Ud, which we regard
as the index of fixed interaction energy sectors. Furthermore,

l=s+2d (8.8)

holds. The view point of the Gutzwiller approximation is based on the renormalization of the
probability of the hopping process due to the correlation of the electrons,exceeding restrictions

*Note that the motion of an empty site (holon) or doubly occupied site (doublon) is not independent of the
spin configuration which is altered through moving these objects. As a consequence, the holon/doublon motion
is not entirely free leading to a reduction of the band width. Therefore the band width seen in Figure8.2 (left
panel) is smaller than 2D, in general. The motion of a single hole was in detail discussed by Brinkman and Rice
(Phys. Rev. B 2, 1324 (1970).
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due to the Pauli principle. With this, the importance of the spatial configuration of the electrons
is enhanced. In the Gutzwiller approximation, the latter is taken into account statistically by
simple probabilities for the occupation of lattice sites.

We fix the density of the doubly occupied sites d and investigate the hopping processes which
keep d constant. First, we consider an electron hopping from a singly occupied to an empty
site (i — 7). Hopping probability depends on the availability of the initial configuration. We
compare the probability to find this initial state for the correlated (P) and the uncorrelated (F,)
case and write

P(10)+ P 0) = g,[F(10) + F,(J 0)]. (8.9)

The factor g, will eventually appear as the renormalization of the hopping probability and, thus,
leads to an effective kinetic energy of the system due to correlations. We determine both sides
statistically. In the correlated case, the joint probability for ¢ to be singly occupied and j to be
empty is obviously

P(10)+ Pl 0)=sh=sd=d(1—2d). (8.10)
where we used equation (8.8). In the uncorrelated case (where d is not fixed), we have

Py(10) = mgg (1= m )1 =y )(1 =) = oo (s.11)
The case for | follows accordingly. In order to collect the total result for hopping processes which
keep d constant, we have to do the same calculation for the hopping process (1/,1) — (1,1J),
which leads to the same result. Processes of the kind (11,0) — (1,]) leave the sector of fixed
d and are ignored.> With this, we obtain in all cases the same renormalization factor for the
kinetic energy,

gy = 8d(1 — 2d), (8.12)

ie., t — gt. We consider the correlations by treating the electrons as independent but with a
renormalized matrix element g,t. The energy in the sector d becomes

0
1
E(d) = g,6,5, + Ud = 8d(1 — 2d)ey;, + Ud, €hin = 7 / de N (e)e. (8.13)
“p

For fixed U and ¢, we can minimize this with respect to d (note that this in not a variational
calculation in a strict sense, the resulting energy is not an upper bound to the ground state

energy), and find
d= *1 1- U and g =1- U (8.14)
4 t ’ ’

[

with the critical value
U, = 8eg,| ~ 25t ~ 4D. (8.15)

For uw > U,, double occupancy and, thus, hopping is completely suppressed, i.e., electrons
become localized. This observation by Brinkman and Rice [Phys. Rev. B 2, 4302 (1970)]
provides a qualitative description of the metal-insulator transition to a Mott insulator, but

3This formulation is based on plausible arguments. A more rigorous derivation can be found in the
literature, e.g., in D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984); T. Ogawa et al., Prog. Theor.
Phys. 53, 614 (1975); S. Huber, Gutzwiller-Approzimation to the Hubbard-Model (Proseminar SS02,
http://www.itp.phys.ethz.ch/proseminar/condmat02).
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takes into account only local correlations, while correlations between different lattice sites are not
considered. Moreover, correlations between the spin degrees of freedom are entirely neglected.
The charge excitations contain contributions between different energy scales: (1) a metallic part,
described via the renormalized effective Hamiltonian

o= 9160k Gy + Ud, (8.16)
k,s

and (2) a part with higher energy, corresponding to charge excitations on the energy scale U,
i.e., to excitations raising the number of doubly occupied sites by one (or more).

We can estimate the contribution to the metallic conduction. Since in the tight-binding descrip-
tion the current operator contains the hopping matrix element and is thus subject to the same
renormalization as the kinetic energy, we obtain

OJ*2 )
01(w) = —f-0(w) + o™ T (w), (8.17)

where we have used equation (6.12) for a perfect conductor (no residual resistivity in a perfect
lattice). There is a high-energy part which we do not specify here. The plasma frequency is
renormalized, w;Z = gtwg, such that the f-sum rule in equation (6.13) yields

s 2 w2
= / dwo, (w gt + Lyigh cnergy gp. (8.18)
0

For U — U,, the coherent metallic part becomes weaker and weaker,

U)2 U 2 w2
Py =(1-(= - 1
2 ( (U)> ’ (8.19)

According to the f-sum rule, the lost weight must gradually be transferred to the “high-energy”
contribution.

8.1.4 Fermi liquid properties of the metallic state

The just discussed approximation allows us to discuss a few Fermi liquid properties of the metallic
state close to metal-insulator transition in a simplified way. Let us investigate the momentum
distribution. According to the above definition,

1
kin = ¥ Z €k (8.20)
keFS

where the sum runs over all k in the Fermi sea (FS). One can show within the above approxi-
mation, that the distribution is a constant within (n;,) and outside (n, ) the Fermi surface for
finite U, such that, for k in the first Brillouin zone,

=== Z Ny + Z Mo (g + Mot) (8.21)
ker k:g_fFS
and
1 1
91€in = 77 Z Mine + 37 Z [ (8.22)
kEFS k¢FS
Taking into account particle-hole symmetry, i.e.,

Zek—Zek—i—Zek—O (8.23)

keFS k¢FS
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we are able to determine n,, and n_,,

nin + nout =1 . nin = (1 + gt)/2 ) (824)
i = Nout = 9t Nout = (1 - gt)/2

With this, the jump in the distribution at the Fermi energy is equal to g,, which, as previously,

corresponds to the quasiparticle weight (cf. Figure 8.4). For U — U, it vanihes, i.e., the

quasiparticles cease to exist for U = U.,.

A
Ny

K K

Figure 8.4: The distribution function in the Gutzwiller approximation, displaying the jump at
the Fermi energy.

Without going into the details of the calculation, we provide a few Fermi liquid parameters. It
is easy to see that the effective mass

m
_° 2
m* 9> (8 5)
and thus
3U?
s __ -1 —
i —3(9t _1) —ma (8.26)
where ¢ = 1/2m and the density of states N(e,.)* = N(e,)g; *. Furthermore,
UN(e,) 20, +U N (e,
Fg = -l e = = e r 8.27
0 4 (U+ UC)2 c) X 1 +F0a b ( )
UN(e,) 2U,—-U N(e,)*
Fs — F C U = = Y F/ . 8.28
I (A TR E) (8:28)

It follows, that the compressibility x vanishes for U — U, as expected, since it becomes more and
more difficult to compress the electrons or to add more electrons, respectively. The insulator is, of
curse, incompressible. The spin susceptibility diverges because of the diverging density of states
N (e, )*. This indicates, that local spins form, which exist as completely independent degrees of
freedom at U = U,. Only the antiferromagnetic correlation between the spins would lead to a
renormalization, which turns y finite. This correlation is, as mentioned above, neglected in the
Gutzwiller approximation. The effective mass diverges and shows that the quasiparticles are
more and more localized close to the transition, since the occupation of a lattice site is getting
more rigidly fixed to 1.* As a last remark, it turns out that the Gutzwiller approximation is
well suited to describe the strongly correlated Fermi liquid *He (cf. [D. Vollhardt, Rev. Mod.
Phys. 56, 99 (1984)]).

4This can be observed within the Gutzwiller approximation in the form of local fluctuations of the particle
number. For this, we introduce the density matrix of the electron states on an arbitrary lattice site,

p = h|0){O] +d|TI) (1] + % (DA +1DED (8:29)
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8.2 The Mott insulator as a quantum spin system

One of the most important characteristics of the Mott insulator is the presence of spin degrees of
freedom after the freezing of the charge. This is one of the most profound features distinguishing
a Mott insulator from a band insulator. In our simple discussion, we have seen that the atomic
limit of the Mott insulator provides us with a highly degenerate ground state, where a spin-1/2
degree of freedom is present on each lattice site. We lift this degeneracy by taking into account
the kinetic energy term H,, (¢t < U). In this way new physics appears on a low-energy scale,
which can be described by an effective spin Hamiltonian. Prominent examples for such spin
systems are transition-metal oxides like the cuprates La,Cu0O,, SrCu,O or vanadates CaV,QO,
NaV,0;.

8.2.1 The effective Hamiltonian

In order to employ our perturbative considerations, it is sufficient to observe the spins of two
neighboring lattice sites and to consider perturbation theory for discrete degenerate states. Here,
this is preferably done in real space. There are 4 degenerate configurations, {| 1,1),| T,4),] 4, T
)| 4, 4)}. The application of H,;, yields

%kin| T7T> = %kin| \L7~L> = 07 (831)
Hygn| T4) = =Hygy| 1, 1) = —t[ 11, 0) = ¢[0, 1), (8.32)
where, in the last two cases, the resulting states have an energy higher by U and lie outside the

ground state sector. Thus, it becomes clear that we have to proceed to second order perturbation,
where the states of higher energy will appear only virtually (cf. Figure 8.5).

——————————————

initial final
spin configuration "7 7777 spin configurations

virtual states

Figure 8.5: Illustration of the origin of the superexchange.

We obtain the matrix elements

My, sist sy =~ Z<51’32|%kin|”><

————(n|H,. |8], 55H), (8.33)
— n|HCoul|n> kinl®12°2

where |n) = | 1],0) or |0,1)), such that the denominator is always U. We end up with

2t
Myypy = Mpgp = =My g = =My == (8.34)
from which we deduce the variance of the occupation number,
) — ) =m* —1=tr(pn®) —1=4d +s — 1 = 2d. (8.30)

The deviation from single occupation vanishes with d, i.e., with the approach of the metal-insulator transition.
Note that the dissipation-fluctuation theorem connects (n?) — (n)? to the compressibility.
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Note that the signs originates from the anti-commutation properties of the Fermion operators.
In the subspace {| 1,1),| J,1)} we find the eigenstates of the respective secular equations,

1

Lty —int, B--2C (3.36)
V2o T U’ '

Since the states | 1,1) and | |,]) have energy E = 0, the sector with total spin S = 1 is
degenerate (spin triplet). The spin sector S = 0 with the energy —4t2/U is the ground state
(spin singlet).

An effective Hamiltonian with the same energy spectrum for the spin configurations can be
written with the help of the spin operators ‘§1 and 3’2 on the two lattice sites

~ o R 4¢2
Heg=J(S5,-5,— =) J = oz > 0. (8.37)
This mechanism of spin-spin coupling is called superexchange and introduced by P.W. Anderson
[Phys. Rev. 79, 350 (1950)].

Since this relation is valid between all neighboring lattice sites, we can write the total Hamilto-
nian as

H, :ngi-§j+const. (8.38)
(4,9
This model, reduced to spins only, is called Heisenberg model. The Hamiltonian is invariant
under a global SU(2) spin rotation,

U0) =% §=3"§. (8.39)
J

Thus, the total spin is a good quantum number, as we have seen in the two-spin case. The

coupling constant is positive and favors an antiparallel alignment of neighboring spins. The

ground state is therefore not ferromagnetic.

8.2.2 Mean field approximation of the anti-ferromagnet

There are a few exact results for the Heisenberg model, but not even the ground state energy
can be calculated exactly (except in the case of the one-dimensional spin chain which can be
solved by means of a Bethe Ansatz). The difficulty lies predominantly in the treatment of
quantum fluctuations, i.e., the zero-point motion of coupled spins. It is easiest seen already
with two spins, where the ground state is a singlet and maximally entangled. The ground state
of all antiferromagnetic systems is a spin singlet (S,,, = 0). In the so-called thermodynamic
limit (N — oo) there is long-ranged anti-ferromagnetic order in the ground state for dimensions
D > 2. Contrarily, the fully polarized ferromagnetic state (ground state for a model with J < 0)
is known exactly, and as a state with maximal spin quantum number S2 it features no quantum
fluctuations.

In order to describe the antiferromagnetic state anyway, we apply the mean field approximation
again. We can characterize the equilibrium state of the classical Heisenberg model (spins as
simple vectors without quantum properties) by splitting the lattice into two sublattices A and
B, where each A-site has only B-sites as neighbors, and vice-versa.> On the A-(B-)sublattice,
the spins point up (down). This is unique up to a global spin rotations. Note, that this spin

SLattices which allow for such a separation are called bipartite. There are lattices, where this is not possible,
e.g., triangular or cubic face centered lattices. There, frustration phenomena appear, a further complication of
anti-ferromagnetically coupled systems.
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configuration doubles the unit cell.
We introduce the respective mean field,

-~

m+ (S7 —m) icA
g — . (8.40)
-m+(S;+m) i€B

This leads to the mean field Hamiltonian
2
Hog = Hy+ Hy = —Jom Y 87+ Jzm > S+ 2o N4 - (8.41)
; , 2
€A i€EB
with the coordination number z, the number of nearest neighbors (z = 6 in a simple cubic
lattice). It is simple to calculate the partition sum of this Hamiltonian,

7 =tr (e_BH"‘f> = [(eﬁ‘hmh/2 + e_’BJmZh/2) e_ﬁsz2/2} N . (8.42)
The free energy per spin is consequently given by
1 m?

F(m,T) = _NkBTan = J27 — k,T'In(2cosh(B8Jzmh/2)). (8.43)

At fixed temperature, we minimize the free energy with respect to m to determine the thermal
equilibrium state,’ i.e., set F/Om = 0 and find

h Jzmh
= —tanh . 44
m 2taua <2kBT> (8.44)

This is the self-consistency equation of the mean field theory. It provides a critical temperature
T, (Néel temperature), below which the mean moment m is finite. For ' — T'y,_, m approaches
0 continuously. Thus, T, can be found from a linearized self-consistency equation,

B Jzmh? (8.45)
4k, T T:TN’ '
and thus
Jzh?
T = . 8.46
N 4kB ( )

This means, that T, scales with the coupling constant and with z. The larger J and the more
neighbors are present, the more stable is the ordered state.” For T close to T, , we can expand

the free energy in m,
T 2 (T,\*
(- 7) e 5 (7) ’"] (847)

This is a Landau theory for a phase transition of second order, where a symmetry is spon-
taneously broken. The breaking of the symmetry (from the high-temperature phase with high
symmetry to the low-temperature phase with low symmetry) is described by the order parameter
m. The minimization of F' with respect to m yields (cf. Figure 8.6)

J
F(m,T)=F, + 7’2

0, T>T,,
m(T) = (8.48)

h
3\/3(@/T 1), T<T,.

S Actually, a magnetic field pointing into the opposite direction on each site would be another equilibrium
variable (next to the temperature). We set it to zero.
"At infinite z, the mean field approximation becomes exact.
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T>T N

T<Tn

Figure 8.6: The free energy and magnetization of the anti-ferromagnet above and below T, .

8.3 Collective modes — spin wave excitations

Besides its favorable properties, the mean field approximation also has a number of insufficien-
cies. Quantum and some part of thermal fluctuations are neglected, and the insight into the
low-energy excitations remains vague. As a matter of fact, as in the case of the ferromagnet,
collective excitations exist here. In order to investigate these, we write the Heisenberg model in
its spin components, i.e.,

Hy=J) <§f§j + % (§j§; + Sﬂ?j)) : (8.49)
(i.9)

In the ordered state, the moments shall be aligned along the z-axis. R
To observe the dynamics of a flipped spin, we apply the operator W = Zf\i o /1S, on the ground
state |®,), and determine the spectrum, by solving the resulting eigenvalue equation

(Hyy — Bg) WD) = [H,, W]|B) = hwW| D), (8.50)

with the ground state energy E,. Using the spin-commutation relations

a1
[sj 5; ] = 25%5,,, (8.51)
Jz ot ot
15:.87] = +874,, (8.52)
then yields the equation
ST-IY 55 + 0385 hwS | |@g) =0, (8.53)

l J J

where Z; runs over all neighbors of [. We decouple this complicated problem by replacing

the operators 5= by their mean fields. Therefore, we have to distinguish between A and B
sublattices, such that we end up with two equations,

> <sz§l +Jm> S5, - m?,) |B,) =0, L€ A, (8.54)
leA a
S (—sz§; —JmY Sy, - hw§;> |B,) =0, I'e B. (8.55)
l’'eB a

Choosing

(8.56)

2 .
=2 veB,
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we introduce the operators

. 2 L

S, =4/ N Za(ge’q'”, (8.57)
q

a— 2 ENPRT B

Sy =1/ 2 Ohe ™ (8.58)
q

with [ € A and I’ € B, and, vice versa,

al = \/72 Spetam (8.59)

leA
bl = ‘/N > Spetiamy, (8.60)
l'eB

and insert them into the equation and obtain,

<sz— DS —“1"1+sz 1N S, —“W> o) =0, (8.61)
leA l'eB
((—sz — hw) Z §;e*iq""l’ sz elre Z Sye ”) o) =0. (8.62)
l’'eB leA
From this follows that
((Tmz = rwyl + Tmy B ) 1@6) = 0, (8.63)
((—sz — )bl meqajl) 1B,) = 0, (8.64)

with v, = Y a9 = 2(cosq,a + cos q,a + cos q,a). This eigenvalue equation is easily solved
leading to the description of spin waves in the antiferromagnet. The energy spectrum is given
by

hw, = £Jmy /22 — ]

2. (8.65)

Note, that only the positive energies make sense. It is interesting to investigate the limit of
small q,

22 — 72 — 22¢* + O(q"), (8.66)
where
hw, = Jmzlg| + - . (8.67)

This means that, in contrast to the ferromagnet, the spin waves of the antiferromagnet have a
linear low-energy spectrum (cf. Figure 8.7). The same applies here if we expand the spectrum
around Q = (1,1,1)7/a (folding of the Brillouin zone due to the doubling of the unit cell).

After a suitable normalization, the operators aq and Bq are of bosonic nature; this comes about

since, due to the mean field approximation, the §li are bosonic as well,

S, 5;7) = 2576,; ~ +2md

; (8.68)

lj>

where the sign depends on the sublattice. The zero-point fluctuations of these bosons yield quan-
tum fluctuations, which reduce the moment m from its mean field value. In a one-dimensional
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Figure 8.7: Spectrum of the spin waves in the antiferromagnet.

spin chain these fluctuations are strong enough to suppress antiferromagnetically order even for
the ground state. The fact that the spectrum starts at zero has to do with the infinite degener-
acy of the ground state. The ordered moments can be turned into any direction globally. This
property is known under the name Goldstone theorem, which tells that each ordered state that
breaks a continuous symmetry has collective excitations with arbitrary small (positive) energies.
The linear spectrum is normal for collective excitations of this kind; the quadratic spectrum of
the ferromagnet has to do with the fact that the state breaks time-inversion symmetry.

These spin excitations show the difference between a band and a Mott insulator very clearly.
While in the band insulator both charge and spin excitations have an energy gap and are inert,
the Mott insulator has only gapped charge excitation. However, the spin degrees of freedom for
a low-energy sector which can even form gapless excitations as shown just above.

164



	Introduction
	Electrons in the periodic crystal - band structure
	Symmetries of crystals
	Space groups of crystals
	Reciprocal lattice

	Bloch's theorem and Bloch functions
	Nearly free electron approximation
	Tight-binding approximation
	Linear combination of atomic orbitals - LCAO
	Band structure of s-orbitals
	Band structure of p-orbitals
	Wannier functions
	Tight binding model in second quantization formulation

	Symmetry properties of the band structure
	Band-filling and materials properties
	Electron count and band filling
	Metals, semiconductors and insulators

	Semi-classical description
	Equations of motion
	Bloch oscillations
	Current densities


	Semiconductors
	The band structure in group IV
	Crystal and band structure

	Elementary excitations
	Electron-hole excitations
	Excitons
	Optical properties

	Doping semiconductors
	Impurity state
	Carrier concentration

	Semiconductor devices
	pn-contacts
	Diodes
	MOSFET


	Metals
	The Jellium model
	Theory of metals - Sommerfeld and Pauli
	Stability of metals - a Hartree-Fock approach

	Charge excitations
	Dielectric response and Lindhard function
	Electron-hole excitation
	Collective excitation - Plasmon
	Screening

	Phonons
	Vibration of a isotropic continuous medium
	Phonons in metals
	Peierls instability in one dimension
	Dynamics of phonons and the dielectric function


	Itinerant electrons in a magnetic field
	The de Haas-van Alphen effect
	Landau levels
	Oscillatory behavior of the magnetization
	Onsager equation

	Quantum Hall Effect
	Hall effect of the two-dimensional electron gas
	Integer Quantum Hall Effect
	Fractional Quantum Hall Effect


	Landau's Theory of Fermi Liquids
	Lifetime of quasiparticles
	Phenomenological Theory of Fermi Liquids
	Specific heat
	Compressibility
	Spin susceptibility
	Galilei invariance
	Stability of the Fermi liquid

	Microscopic considerations
	Landau parameters
	Distribution function
	Fermi liquid in one dimension?


	Transport properties of metals
	Electrical conductivity
	Transport equations and relaxation time
	The Boltzmann equation
	The Drude form
	The relaxation time

	Impurity scattering
	Potential scattering
	Kondo effect

	Electron-phonon interaction
	Electron-electron scattering
	Matthiessen's rule and the Ioffe-Regel limit
	General transport coefficients
	Generalized Boltzmann equation
	Thermoelectric effect

	Anderson localization
	Landauer Formula for a single impurity
	Scattering at two impurities
	Anderson localization


	Magnetism in metals
	Stoner instability
	Stoner model within the mean field approximation
	Stoner criterion
	Spin susceptibility for  T > TC

	General spin susceptibility and magnetic instabilities
	General dynamic spin susceptibility
	Instability with finite wave vector bold0mu mumu QQQQQQ
	Influence of the band structure

	Stoner excitations

	Magnetism of localized moments
	Mott transition
	Hubbard model
	Insulating state
	The metallic state
	Fermi liquid properties of the metallic state

	The Mott insulator as a quantum spin system
	The effective Hamiltonian
	Mean field approximation of the anti-ferromagnet

	Collective modes – spin wave excitations


