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Chapter 1

Introduction

This monogram is written with the graduate student in mind. I had in mind to write a
short, crisp book that would introduce my students to the basic ideas and concepts behind
many body physics. At the same time, I felt very strongly that I should like to share my
excitement with this field, for without feeling the thrill of entering uncharted territory, I
do not think one has the motivation to learn and to make the passage from learning to
research.

Traditionally, as physicists we ask “what are the microscopic laws of nature ?”, often
proceeding with the brash certainty that once revealed, these laws will have such profound
beauty and symmetry, that the properties of the universe at large will be self-evident. This
basic philosophy can be traced from the earliest atomistic philosophies of Democritus, to
the most modern quests to unify quantum mechanics and gravity.

The dreams and aspirations of many body physics interwine the atomistic approach with
a complimentary philosophy- that of emergent phenomena. From this view, fundamentally
new kinds of phenomena emerge within complex assemblies of particles which can not be
anticipated from an à priori knowledge of the microscopic laws of nature. Many body physics
aspires to synthesize from the microscopic laws, new principles that govern the macroscopic
realm, asking

What new principles and laws emerge as we make the journey from the microscopic to the
macroscopic?

This is a comparatively new scientific philosophy. Darwin was the perhaps the first to
seek an understanding of emergent laws of nature. Following in his footsteps, Boltzmann was
probably the first physicist to appreciate the need to understand how emergent principles
are linked to microscopic physics, From Boltzmann’s biography[1], we learn that he was
strongly influenced and inspired by Darwin. In more modern times, a strong advocate
of this philosophy has been Philip Anderson, who first introduced the phrase “emergent
phenomenon” into physics[2].

In an ideal world, I would hope that from this short course your knowledge of many
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body techniques will grow hand-in-hand with an appreciation of the motivating philsophy.
In many ways, this dual track is essential, for often, one needs both inspiration and overview
to steer one lightly through the formalism, without getting bogged down in mathematical
quagmires.

I have tried in the course of the book to mention aspects of the history of the field. We
often forget that act of discovering the laws of nature is a very human and very passionate
one. Indeed, the act of creativity in physics research is very similar to the artistic process.
Sometimes, scientific and artistic revolution even go hand in hand - for the desire for change
and revolution often crosses between art and sciences[3]. I think it is important for students
to gain a feeling of this passion behind the science, and for this reason I have often included a
few words about the people and the history behind the ideas that appear in this text. There
are unfortunately, very few texts that tell the history of many body physics. Pais’ book
“Inward Bound” has some important chapters on the early stages of many body physics.
A few additional references are included at the end of this chapter[4, 5, 6, 7]

There are several texts that can be used as reference books in parallel with this mono-
gram, of which a few deserve special mention. The student reading this book will need
to consult standard references on condensed matter and statistical mechanics. Amongst
the various references let me recommend “Statistical Physics Part II” by Landau and
Pitaevksii[8]. For a conceptual underpining of the concepts of condensed matter physics,
may I refer you to the Anderson’s classic “Basic Notions in Condensed Matter Physics”[9].
Amongst the classic references to many body physics let me mention “AGD”[10], Methods
of Quantum Field Theory by Abrikosov, Gorkhov and Dzyaloshinksi. This is the text that
drove the quantum many body revolution of the sixties and seventies, yet it is still very
relevant today, if rather terse. Other many body texts which introduce the reader to the
Green function approach to many body physics include “Many Particle Physics” by G.
Mahan[11], notable for the large number of problems he provides, “Green Functions for
“Green’s functions for Solid State Physics” by Doniach and Sondheimer[12] and the very
light introduction to the subject “Feynman diagrams in Solid State Physics” by Richard
Mattuck[13]. Amongst the more recent treatments, let me note Alexei Tsvelik’s “Quan-
tum Field Theory” in Condensed Matter Physics”[14], provides a wonderful introduction to
many of the more modern approaches to condensed matter physics, including an introduc-
tion to bosonization and conformal field theory. As a reference to the early developments of
many body physics, I recommend “The Many Body Problem”, by David Pines[15], which
contains a compilation of the classic early papers in the field. Lastly, let me recommend
the reader to numerous excellent online reference sources, in addition to the online physics
archive http://arXiv.org, let me mention writing include online lecture notes on many body
theory by Ben Simon and Alexander Atlund[16] and lecture notes on Solid State Physics
and Many Body Theory by Chetan Nayak[17].

Here is a brief summary of what we will cover:

1. Scales and complexity, where we discuss the gulf of time (T), length-scale (L), particle
number (N) and complexity that separates the microscopic from the macroscopic.
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2. Second Quantization. Where make the passage from the wavefunction, to the field
operator, and introduce the excitation concept.

3. Introducing the fundamental correlator of quantum fields: the Green’s functions. Here
we develop the tool of Feynman diagrams for visualizing and calculating many body
processes.

4. Finite temperature and imaginary time. By replacing it −→ τ, e−iHt −→ e−Tτ , we will
see how to extend quantum field theory to finite temperature, where we will find that
there is an intimate link between fluctuations and dissipation.

5. The disordered metal. Second quantized treatment of weakly disordered metals: the
Drude metal, and the derivation of “Ohm’s law” from first principles.

6. Opening the door to Path Integrals, linking the partition function and S-matrix
to an integral over all possible time-evolved paths of the many-body system. Z =∫
PATH e

−S/h̄.

7. The concept of broken symmetry and generalized rigidity, as illustrated by supercon-
ductivity and pairing.

8. A brief introduction to the physics of local moment systems

7
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Chapter 2

Scales and Complexity

We do infact know the microscopic physics that governs all metals, chemistry, materials and
possibly life itself. In principle, all can be determined from the many-particle wavefunction

Ψ(~x1, ~x2 . . . ~xN , t), (2.1)

which in turn, is governed by the Schödinger equation[?]



− h̄2

2m

N∑

j=1

∇2
j +

∑

i<j

V (~xi − ~xj) +
∑

j

U(~xj)



Ψ = ih̄

∂Ψ

∂t
(2.2)

[ Schrödinger, 1926]

There are of course many details that I have omitted- for instance, in an electromagnetic
field we must gauge the derivatives ∇ → ∇+ i(e/h̄) ~A, U(x) → U(x)− eVext(~x). Here V (x)
is the Coulomb interaction potential,

V (~x) =
e2

4πεo

1

|~x| . (2.3)

Also, to be complete, we must discuss spin, and the antisymmetry of Ψ under particle
exchange. With these provisos, we have every reason to believe that this is the equation
that governs the microsopic behavior of materials.

Unfortunately this knowledge does not help us! Why? At the most pragmatic level,
we are defeated by the sheer complexity of the problem. Even for the chemist, the task of
solving the Schrödinger equation for modest multi-electron atoms proves insurmountable
without bold approximations. The problem facing the condensed matter physicist, with
systems involving 1023 atoms, is qualitatively more severe. The amount of storage required
for numerical solution of Schrodinger equation grows exponentially with the number of
particles, so with a macroscopic number of interacting particles this becomes far more than
a technical problem- it becomes one of principle. Indeed, we believe that the gulf between

11
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the microscopic and the macroscopic is something qualitative and fundamental, so much
so that new types of property emerge in macroscopic systems that we can not anticipate a
priori by using brute-force analyses of the Schrödinger equation.

Let us dwell a little more on this gulf of complexity that separates the microscopic from
the macroscopic. We can try to describe this gulf using four main catagories of scale:

• T. Time 1015.

• L. Length 107.

• N. Number of particles. 1022

• C Complexity.

2.1 Time scales

We can make an estimate of the characteristic quantum time scale by using the uncertainty
principle ∆τ∆E ∼ h̄, so that

∆τ ∼ h̄

[1eV ]
∼ h̄

10−19J
∼ 10−15s, (2.4)

Although we know the physics on this timescale, in our macroscopic world, the the charac-
teristic timescale ∼ 1s, so that

∆τMacro

∆τQuantum
∼ 1015. (2.5)

To link quantum, and macroscopic timescales, we must make a leap comparable with an ex-
trapolation from the the timescale of a heart-beat to the age of the universe. (10 billion yrs ∼
1017 s.)

2.2 L: Length scales

An approximate measure for the characteristic length scale in the quantum world is the de
Broglie wavelength of an electron in a hydrogen atom,

LQuantum ∼ 10−10m, (2.6)

so
LMacroscopic

LQuantum
∼ 108 (2.7)

12
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1 cm 3

de Broglie wave

1A

Figure 2.1: The typical size of a de Broglie wave is 10−10m, to be compared with a typical
scale 1cm of a macroscopic crystal.

2.3 N: particle number

To visualize the number of particles in a single mole of substance, it is worth reflecting that
a crystal containing a mole of atoms occupies a cube of roughly 1cm3. From the quantum
perspective, this is a cube with approximately 100million atoms along each edge. Avagadros
number

NMacroscopic = 6 × 1023 ∼ (100 million)3 (2.8)

a number which is placed in perspective by reflecting that the number of atoms in a grain
of sand is roughly comparable with the number of sand-grains in a 1 mile beach. Notice
however that we are used to dealing with inert beaches, where there is no interference
between the constituent particles.

2.4 C: Complexity and diversity.

Real materials are like macroscopic atoms, where the quantum interference amongst the
constituent particles gives rise to a range of complexity and diversity that constitutes the
largest gulf of all. We can attempt to quantify the ”complexity” axis by considering the
number of atoms per unit cell of a crystal. Whereas there are roughly 100 stable elements,
there are roughly 1002 stable binary compounds. The number of stable tertiary compounds

13
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2     3UPd  Al   

Heavy Fermion
Metal

Elemental
SC

High Temperature
SC

YBa  Cu  O   2 3 7

Atoms/unit cell
No. inequivalent

21 3 4 20
Binary Tertiary Quarternary

GaAs

Nb Simplest Biological
Moleculese.g.

Semiconductor.

Complexity

# different types
of compound. 102 10 10 104 6 8

Figure 2.2: Examples of crystals of increasing complexity. As the number of inequivalent
atoms per unit cell grows, the complexity of the material and the potential for new types
of behavior grows.

is conservatively estimated at more than 106, of which still only a tiny fraction have been
explored experimentally. At each step, the range of diversity increases, and there is reason
to believe that at each level of complexity, new types of phenomenon begin to emerge.

When experimentalists began to explore the properties of quaternary compounds ten
years ago, they came across the completely unexpected phenomenon of high temperature
superconductivity. At present we have only just begun to scratch the surface of quaternary
materials physics, and it seems not unreasonable to suppose that there are other similar
surprises awating us. But lest you think that this is where it ends, it is worth reflecting on
the fact that further out along the complexity axis we reach the most elementary molecules
of life: an emergent phenomenon that is still unfolding from its inorganic origins roughly
1010 years ago.
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Chapter 3

Quantum Fields: Overview

At the heart of quantum many body theory lies the concept of the quantum field. Like
other quantum variables, the quantum field is in general a strongly fluctuating degree of
freedom that only becomes sharp in certain special eigenstates; its function is to add or
subtract particles to the system.

Quantum fields are intimately related to the idea of second quantization. First quan-
tization permits us to make the jump from the classical world, to the simplest quantum
systems. The classical momentum and position variables are replaced by operators, such as

E → ih̄∂t,
p → p̂ = −ih̄∂x, (3.1)

whilst the Poisson bracket which relates canonical conjugate variables is now replaced by
the quantum commutator[1, 2]:

[x, p] = ih̄. (3.2)

The commutator is the key to first quantization, and it is the non-commuting property that
leads to quantum fluctuations and the Heisenberg uncertainty principle. (See examples).
Second quantization permits us to take the next step, extending quantum mechanics to

• Macroscopic numbers of particles.

• Develop an “excitation” or “quasiparticle” description of the low energy physics.

• Describe the dynamical response and internal correlations of large systems.

• To describe collective behavior and broken symmetry phase transitions.

17
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Classical string.

Quantum string.

φ(  )x

xπ(  )

x

xφ(  )

π(  )

Figure 3.1: Contrasting a classical, and a quantum string.

In its simplest form, second quantization elevates classical fields to the status of opera-
tors. The simplest example, is the quantization of a classical string as shown in Fig. 3.1.
Classically, the string is described by a smooth field φ(x) which measures the displacement
from equilibrium, plus the conjugate field π(x) which measures the transverse momentum
per unit length. The classical Hamiltonian is

H =

∫
dx

[
T

2
(∇xφ(x))2+

1

2ρ
π(x)2

]
(3.3)

where T is the tension in the string and ρ the mass per unit length. In this case, second-
quantization is accomplished by imposing the canonical commutation relations

[φ(x), π(y)] = ih̄δ(x − y), Canonical commutation relation (3.4)

In this respect, second-quantization is no different to conventional quantization, except
that the degrees of freedom are defined continuously throughout space. The basic method
I have just described works for describing collective fields, such as sound vibrations, or the
electromagnetic field, but we also need to know how to develop the field theory of identical
particles, such as an electron gas in a metal, or a fluid of identical Helium atoms.

For particle fields, the process of second-quantization is more subtle, for here we the
underlying fields have no strict classical counterpart.

18
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Carbon without
Exclusion principle

Carbon with
Exclusion principle

Figure 3.2: Without the exclusion principle, all electrons would occupy the same atomic
orbital. There would be no chemistry, no life.

Historically, the first steps to dealing with such many particle systems were made in
atomic physics. In 1925 Pauli proposed his famous “exclusion principle”[3] to account for
the diversity of chemistry, and the observation that atomic spectra could be understood only
if one assumed there was no more than one electron per quantum state. (Fig. 3.2.)Shortly
thereafter, Dirac and Fermi examined the consequences of this principle for a gas of particles,
which today we refer to as “fermions”. In 1926, Dirac realized that the two fundamental
varieties of particle- fermions and bosons could be related to the parity of the many-particle
wavefunction under particle exchange[4]

Ψ(particle at A, particle at B) = eiΘΨ(particle at B, particle at A) (3.5)

If one exchanges the particles twice, the total phase is e2iΘ. If we are to avoid a many-valued
wavefunction, then we must have

e2iΘ = 1 ⇒ eiΘ = ±1

{
bosons

fermions
(3.6)

The choice of eiΘ = 1 leads to a wavefunction which is completely antisymmetric under
particle exchange, which immediately prevents more than one particle in a given quantum
state. 1

In 1927, Jordan and Klein realized that to cast physics of a many body system into
a more compact form, one needs to introduce an operator for the particle itself-the field

1In dimensions below three, it is possible to have wavefunctions with several Reimann sheets, which gives
rise to the concept of fractional statistics and “anyons”.
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operator. With their innovation, it proves possible to unshackle ourselves from the many
body wavefunction. The particle field

ψ̂(x) (3.7)

operator can be very loosely regarded as a quantization of the one-body Schrodinger wave-
function. Jordan and Klein[5] proposed that the particle field, and its complex conjugate
are conjugate variables. With this insight, the second-quantization of bosons is achieved by
introducing a non-zero commutator between the particle field, and its complex conjugate.
The new quantum fields that emerge play the role of creating, and destroying particles (see
below)

ψ(x), ψ∗(x)︸ ︷︷ ︸
1 ptcle wavefunction

[ψ(x), ψ†(y)] = δ(x − y)−→ ψ̂(x), ψ̂†(x)︸ ︷︷ ︸
destruction /creation operator

Bosons (3.8)

For fermions, the existence of an antisymmetric wavefunction, means that particle fields
must anticommute, i.e

ψ(x)ψ(y) = −ψ(y)ψ(x), (3.9)

a point first noted by Jordan, and then developed by Jordan and Wigner[6]. The simplest
example of anticommuting operators, is provided by the Pauli matrices: we are now going to
have to get used to a whole continuum of such operators! Jordan and Wigner realized that
the second-quantization of fermions requires that the the non-trivial commutator between
conjugate particle fields must be replaced by an anticommutator

ψ(x), ψ∗(x)︸ ︷︷ ︸
1 ptcle wavefunction

{ψ(x), ψ†(y)} = δ(x− y)−→ ψ̂(x), ψ̂†(x)︸ ︷︷ ︸
destruction /creation operator

Fermions. (3.10)

The operation {a, b} = ab+ ba denotes the anticommutator. Remarkably, just as bosonic
physics derives from commutators, fermionic physics derives from an algebra of anticom-
mutators.

How real is a quantum field and what is its physical significance? To begin to to get
a feeling of its meaning, let us look at some key properties. The transformation from
wavefunction, to operator also extends to more directly observable quantities. Let us begin
with Born’s famous expression for the probability density in first quantization, ρ(x) =
ψ∗(x)ψ(x). By elevating the wavefunction to the status of a field operator, we obtain

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (3.11)

which is now the operator that represents the fluctuating particle density in the many body
systems, so loosely speaking, the intensity of the quantum field represents the density of
particles

Another aspect of the quantum field we have to understand, is its relationship to the
many-body wavefunction. This link depends on a new concept, the “vacuum”. This unique

20



c©2004 P. Coleman Chapter 3.

ψ

|1  =     (1) ψ ψ ψ |0  |1,2,3  =     (3)     (2)    (1)

ψ ψ

|0  ψ
|0  

Vacuum

12

3

1

(1) (3)(2)
(i) (ii) (iii)

Figure 3.3: Action of creation operator on vacuum to create (i) a one particle and (ii) a
three particle state

state, denoted by |0〉 is devoid of particles, and for this reason it is the only state for which
there is no amplitude to destroy a particle so

ψ(x)|0〉 = 0. The vacuum (3.12)

We shall see that as a consequence of the canonical algebra, the creation operator ψ̂†(x)
increments the number of particles by one, creating a particle at x, so that

|x1〉 = ψ†(x1)|0〉 (3.13)

is a single particle at x1,

|x1, . . . xN 〉 = ψ†(xN ) . . . ψ†(x1)|0〉 (3.14)

is the N -particle state with particles located at x1 . . . xN and

〈x1, . . . xN | = 〈0|[ψ(xN ) . . . ψ(x1)]
† = 〈0|ψ(x1) . . . ψ(xN ) (3.15)

is its conjugate “bra” vector. The wavefunction of an N particle state, |N〉 is given by the
overlap of 〈x1, . . . xN | with |N〉:

ψ(x1, . . . xN ) = 〈x1, . . . xN |N〉 = 〈0|ψ(x1) . . . ψ(xN )|N〉 (3.16)

So many body wavefunctions correspond to matrix elements of the quantum fields. From
this link we can see that the exchange symmetry under particle exchange is directly linked
to the exchange algebra of the field operators. For Bosons and Fermions respectively, we
have

〈0| . . . ψ(xr)ψ(xr+1) . . . |N〉 = ±〈0| . . . ψ(xr+1)ψ(xr) . . . |N〉 (3.17)
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(where + refers to Bosons, −to fermions), so that

ψ(xr)ψ(xr+1) = ±ψ(xr+1)ψ(xr) (3.18)

From this we see that Bosonic operators commute, but fermionic operators must anticom-
mute. Thus ultimately, it is the exchange symmetry of the two types of particles which
dictates their commuting, or anticommuting algebra.

Unlike a classical field, quantum fields are in a state of constant fluctuation. This ap-
plies to both collective fields, as in the example of the string in Fig. 3.1, and to quantum
fluids. Just as the commutator between position and momentum gives rise to the uncer-
tainty principle: [x, p] = ih̄ −→ ∆x∆p >˜ h̄, the canonical commutation, or anticommutation

relations give rise to a similar relatio between the amplitude and phase of the quantum
field. Under certain conditions the fluctuations of a quantum field can be eliminated, and
in these extreme limits, the quantum field begins to take on a tangible classical existence.
In a bose superfluid for example, the quantum field becomes a sharp variable, and we can
really ascribe a meaning to the expectation of the quantum field

〈ψ(x)〉 =
√
ρse

iθ (3.19)

where ρs measures the density of particles in the superfluid condensate. We shall see that
there is a completely parallel uncertainty relation between the phase and density of quantum
fields,

∆N∆θ >
˜

1 (3.20)

where θ is the average phase of a condensate and N the number of particles it contains.
When N is truly macroscopic, the uncertainty in the phase may be made arbitrarily small,
so that in a Bose superfluid, the phase becomes sufficiently well defined that it becomes
possible to observe interference phenomenon! Similar situations arise inside a Laser, where
the phase of the electromagnetic field becomes well-defined, or a superconductor, where the
phase of the electrons in the condensate becomes well defined.

Perhaps the greatest distinction between quantum, and classical fields, is the appearance
of particles. The commutation, or anticommutation properties of quantum fields leads to
an intrinsic “graininess” that is absent in classical fields. Quantum fields, though nominally
continuous degrees of freedom, can always be decomposed in terms of a discrete particular
content. The action of a collective field involves the creation of a wavepacket centered at x
by both the creation, and destruction of quanta, schematically,

φ(x) =
∑

k

[
boson creation,

momentum -k
+

boson destruction
momentum k

]
e−ik·x, (3.21)

Examples of such quanta, include quanta of sound, or phonons, and quanta of radiation, or
photons. In a similar way, the action of a particle creation operator creates a wavepacket
of particles at x, schematically,

ψ†(x) =
∑

k

[
particle creation
momentum k

]
e−ik·x. (3.22)
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When the underlying particles develop coherence, the quantum field begins to behave clas-
sically. It is the ability of quantum fields to describe continuous classical behavior and
discrete particulate behavior in a unified way that makes them so very special.

In the next two chapters we shall go back and see how these features appear system-
atically in the context of “free field theory”. We shall begin with collective bosonic fields,
which behave as a dense ensemble of coupled Harmonic oscillators. In the next chapter, we
shall move to conserved particles, and see how the exchange symmetry of the wavefunction
leads to the commutation, and anticommutation algebra of bose and Fermi fields. We shall
see how this information enables us to completely solve the properties of a non-interacting
Bose, or Fermi fluid.

Example. By considering the positivity of the quantity 〈A(λ)†A(λ)〉, where

Â = x̂ + iλp and λ is a real number, prove the Heisenberg uncertainty
relation ∆x∆p ≥ h̄

2 .

Example. How does the uncertainty principle prevent the collapse of the
Hydrogen atom. Is the uncertainty principle enough to explain the stability
of matter?

23





Bibliography

[1] M. Born and P. Jordan. Zur quantenmechanik (on quantum mechanics). Zeitschrift fur
Physik, 34:858, 1925.

[2] P. A. M. Dirac. The fundamental equations of quantum mechanics. Proc. Royal Soc.
A., 109:642, 1925.

[3] W. Pauli. Die quantumtheorie und die rotverschiebung der spektralien (quantum theory
and the red shift of spectra). Zeitschrift fur Physik, 26:765, 1925.

[4] P. A. M. Dirac. Proc. Royal Soc. A., 112:661, 1926.

[5] P. Jordan and O. Klein. Zeitschrift fur Physik, 45:751, 1927.

[6] P. Jordan and E. Wigner. Uber das paulische aquivalenzverbot (on the pauli exclusion
principle). Zeitschrift fur Physik, 47:631, 1928.

25





Chapter 4

Collective Quantum Fields

In this chapter, we will begin to familiarize ourselves with quantum fields by developing the
field theory of a free, bosonic field. It is important to realize that a bosonic quantum field
is fundamentally nothing more than a set of linearly coupled oscillators, and in particular,
so long as the system is linear, the modes of oscillation can always be decomposed into a
linear sum of independent normal modes. Each normal mode is nothing more than a simple
harmonic oscillator, which provides the basic building block for bosonic field theories.

Our basic strategy for quantizing collective, bosonic fields, thus consists of two basic
parts. First, we must reduce the Hamiltonian to its normal modes. For translationally
invariant systems, this is just a matter of Fourier transforming the field, and its conjugate
momenta. Second, we then quantize the normal mode Hamiltonian as a sum of independent
Harmonic oscillators.

H(φ, π) [F.T.] −→ Normal Co-ords φq∼(aq+a†−q)−→ H =
∑

q

h̄ωq(nq + 1
2) (4.1)

The first part of this procedure is essentially identical for both quantum, and classical
oscillators. The second-stage is nothing more than the quantization of a single Harmonic
oscillator. Consider the family of lattices shown in Figure 4.1. We shall start with a
single oscillator at one site. We shall then graduate to one and higher dimensional chain of
oscillators, as shown in Fig 4.1.

4.1 Harmonic oscillator: a zero-dimensional field theory

Although the Schrodinger approach is most widely used in first quantization, it is the Heisen-
berg approach that opens the door to second-quantization. In the Schrödinger approach,
one solves the wave-equation

(
−h̄2∂2

x

2m
+

1

2
mω2x2

)
ψn = Enψn (4.2)
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x
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Figure 4.1: Family of zero, one and three-dimensional Harmonic crystals.

from which one finds the energy levels are evenly spaced, according to

En = (n+
1

2
)h̄ω, (4.3)

where ω is the frequency of the oscillator.
The door to second-quantization is opened by re-interpreting these evenly spaced energy

levels in terms of “quanta”, each of energy h̄ω. The nth excited state corresponds to the
addition of n quanta to the ground-state. We shall now see how we can put mathematical
meat on these words by introducing an operator “a†” that creates these quanta, so that
the n-th excited state is obtained by acting n times on the ground-state with the creation
operator.

|n〉 =
1√
n!

(a†)n|0〉. (4.4)

Let us now see how this works. The Hamiltonian for this problem involves conjugate position
and momentum operators as follows

H = p2

2m + 1
2mω

2x2

[x, p] = ih̄,

]
. (4.5)
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In the ground-state, the particle in the Harmonic potential undergoes zero-point motion,
with an uncertainty in position and momentum ∆p and ∆x which satisfy ∆x∆p ∼ h̄. Since
the zero-point kinetic and potential energies are equal, ∆p2/2m = mω2∆x2/2, so

∆x =

√
h̄

mω
, ∆p =

√
mωh̄ (4.6)

define the scale of zero-point motion. It is useful to define dimensionless position and
momentum variables by factoring out the scale of zero-point motion

ξ =
x

∆x
, pξ =

p

∆p
. (4.7)

One quickly verifies that [ξ, pξ] = i are still canonically conjugate, and that now

H =
h̄ω

2

[
ξ2 + p2

ξ

]
. (4.8)

Next, introduce the “creation” and “annihilation” operators

a† =
1√
2
(ξ − ipξ), “creation operator”

a =
1√
2
(ξ + ipξ), “annihilation operator”. (4.9)

Since [a, a†] = −i
2 ([ξ, pξ] − [pξ, ξ]) = 1, these operators satisfy the algebra

[a, a] = [a†, a†] = 0

[a, a†] = 1.





canonical commutation rules (4.10)

It is this algebra which lies at the heart of bosonic physics, enabling us to interpret the cre-
ation and annihilation operators as the objects which add, and remove quanta of vibration
to and from the system.

To follow the trail further, we rewrite the Hamiltonian in terms of a and a†. Since
ξ = (a+ a†)/

√
2, pξ = (a− a†)/

√
2i, the core of the Hamiltonian can be rewritten as

ξ2 + p2
ξ = a†a+ aa† (4.11)

But aa† = a†a+ 1, from the commutation rules, so that

H = h̄ω[a†a+
1

2
]. (4.12)

This has a beautifully simple interpretation. The second term is just the zero-point energy
E0 = h̄ω/2 The first term contains the “number operator”

n̂ = a†a, ”number operator” (4.13)
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which counts the number of vibrational quanta added to the ground state. Each of these
quanta carries energy h̄ω.

To see this, we need to introduce the concept of the vacuum, defined as the unique state
such that

a|0〉 = 0. (4.14)

From (4.12), this state is clearly an eigenstate of H, with energy E = h̄ω/2. We now assert
that the state

|N〉 =
1

λN
(a†)N |0〉 (4.15)

where λN is a normalization constant, contains N quanta.
To verify that n̂ counts the number of bosons, we use the commutation algebra to show

that [n̂, a†] = a† and [n̂, a] = −a, or

n̂a† = a†(n̂+ 1)
n̂a = a(n̂− 1) (4.16)

which means that when a† or a act on a state, they respectively add, or remove one quantum
of energy. Suppose that

n̂|N〉 = N |N〉 (4.17)

for some N , then from (4.16),

n̂ a†|N〉 = a†(n̂+ 1)|N〉 = (N + 1) a†|N〉 (4.18)

so that a†|N〉 ≡ |N + 1〉 contains N + 1 quanta. Since (4.17) holds for N = 0, it holds for
all N . To complete the discussion, let us fix λN by noting that from the definition of |N〉,

〈N − 1|aa†|N − 1〉 =

(
λN
λN−1

)2

〈N |N〉 =

(
λN
λN−1

)2

, (4.19)

but since aa† = n̂ + 1, 〈N − 1|aa†|N − 1〉 = N〈N − 1|N − 1〉 = N. Comparing these two
expressions, it follows that λN/λN−1 =

√
N , and since λ0 = 1, λN =

√
N !.

Summarizing the discussion

H = h̄ω(n̂+ 1
2)

n̂ = a†a, “number operator”

|N〉 = 1√
N !

(a†)N |0〉 N-Boson state

(4.20)
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Figure 4.2: Illustrating the excitation picture for a single harmonic oscillator.

Using these results, we can quickly learn many things about the quantum fields a and a†.
Let us look at a few examples. First, we can transform all time dependence from the states
to the operators by moving to a Heisenberg representation, writing

a(t) = eiHt/h̄ae−iHt/h̄ Heisenberg representation (4.21)

This transformation preserves the canonical commutation algebra, and the form of H. The
equation of motion of a(t) is given by

da

dt
=
i

h̄
[H, a(t)] = −iωa(t) (4.22)

so that the Heisenberg operators are given by

a(t) = e−iωta,
a†(t) = eiωta† (4.23)

Using these results, we can decompose the original momentum and displacement operators
as follows

x̂(t) = ∆xξ(t) =
∆x√

2
(a(t) + a†(t)) =

√
h̄

2mω
(ae−iωt + a†eiωt)

p̂(t) = ∆ppξ(t) = −i
√
mh̄ω

2
(ae−iωt − a†eiωt) (4.24)

Notice how the displacement operator- a priori a continuous variable, has the action of
creating and destroying discrete quanta.

We can use this result to compute the correlation functions of the displacement.
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Example 1. Calculate the autocorrelation function S(t−t′) = 1
2 〈0|{x(t), x(t′)}|0〉

and the “response” function R(t−t′) = (i/h̄)〈0|[x(t), x(t′)]|0〉 in the ground-
state of the quantum Harmonic oscillator.

Solution We may expand the correlation function and response function as
follows

S(t1 − t2) =
1

2
〈0|x(t1)x(t2) + x(t2)x(t1)|0〉

R(t1 − t2) = (i/h̄)〈0|x(t1)x(t2) − x(t2)x(t1)|0〉 (4.25)

But we may expand x(t) as given in (4.24). The only term which survives
in the ground-state, is the term proportional to aa†, so that

〈0|x(t)x(t′)|0〉 =
h̄

2mω
〈0|aa†|0〉e−iω(t1−t2) (4.26)

Now using (4.25) we obtain

1

2
〈0|{x(t), x(t′)}|0〉 =

h̄

2mω
cos
[
ω(t− t′)

]
“Correlation function”

−i〈0|[x(t), x(t′)]|0〉 =
1

mω
sin
[
ω(t− t′)

]
”Response function”

• We shall later see that R(t− t′) gives the response of the ground-state
to an applied force F (t′), so that at a time t, the displacement is given
by

〈x(t)〉 =

∫ t

−∞
R(t− t′)F (t′)dt′ (4.27)

Remarkably, the response function is identical with a classical Har-
monic oscillator.

Example 2. Calculate the number of quanta present in a Harmonic oscil-
lator with characteristic frequency ω, at temperature T .

To calculate the expectation value of any operator at temperature T , we
need to consider an ensemble of systems in different quantum states |Ψ〉 =∑

n cn|n〉. The expectation value of operator Â in state |Ψ〉 is then

〈Â〉 = 〈Ψ|Ψ〉 =
∑

m,n

c∗mcn〈m|Â|n〉 (4.28)

In a position basis, this would be

〈Â〉 =
∑

m,n

c∗mcn

∫
dxψ∗

m(x)A(x)ψm(x) (4.29)
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But now we have to average over the typical state |Ψ〉 in the ensemble,
which gives

〈Â〉 =
∑

m,n

c∗mcn〈m|Â|n〉 =
∑

m,n

ρmn〈m|Â|n〉 (4.30)

where ρmn = c∗mcn is the “density matrix”. If the ensemble is in equilib-
rium with an incoherent heat bath, at temperature T , quantum statistical
mechanics asserts that there are no residual phase correlations between the
different energy levels, which acquires a Boltzmann distribution

ρmn = c∗mcn = pnδn,m (4.31)

where pn = e−βEn/Z is the Boltzman distribution, with β = 1/kBT , and
kB is Boltzmann’s constant. Let us now apply this to our problem, where

Â = n̂ = a†a (4.32)

is the number operator. In this case,

〈n̂〉 =
∑

n

(e−βEn/Z)〈n|n̂|n〉 =
1

Z

∑

n

ne−βEn (4.33)

To normalize the distribution, we must have
∑

n pn = 1, so that

Z =
∑

n

e−βEn (4.34)

Finally, since En = h̄ω(n+ 1
2 ),

〈n̂〉 =

∑
n e

−βh̄ω(n+ 1
2
)n

∑
n e

−βh̄ω(n+ 1
2
)

=

∑
n e

−λnn∑
n e

−λn
, λ = βh̄ω. (4.35)

The sum in the denominator is a geometric series
∑

n

e−λn =
1

1 − e−λ
, (4.36)

and the numerator is given by

∑

n

e−λnn = − ∂

∂λ

∑

n

e−λn =
e−λ

(1 − e−λ)2
(4.37)

so that

〈n̂〉 =
1

eλ − 1
=

1

eβh̄ω − 1
(4.38)

which is the famous Bose-Einstein distribution function.

Example 3. (Boguilubov transformation)Calculate the spectrum of the
Harmonic oscillator with a pairing term:

H = ω(a†a+
1

2
) +

1

2
∆(a†a† + a a) (4.39)

Hint: show that the transformation b = ua + va† preserves the canonical
commutation alegbra when u2−v2 = 1. By assuming that H = ω̃(b†b+ 1

2 ),
obtain an expression for ω̃, u and v.
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4.2 Collective modes: phonons

We now extend the discussion of the last section from zero to higher dimensions. Let us
go back to the lattice shown in Fig 4.1 . To simplify our discussion, let imagine that at
each site there is a single elastic degree of freedom. For simplicity, let us imagine we are
discussing the longitundinal displacement of an atom along a one-dimensional chain that
runs in the x-direction. For the j-th atom,

xj = x0
j + φj . (4.40)

If πj is the conjugate momentum to xj, then the two variables must satisfy canonical
commutation relations

[φi, πj] = ih̄δij . (4.41)

Notice how variables at different sites are fully independent. We’ll imagine that our one-
dimensional lattice has Ns sites, and we shall make life easier by working with periodic
boundary conditions, so that φj+Ns ≡ φj and πj ≡ πj+Ns . Suppose nearest neighbors are
connected by a “spring”, in which case, the total total energy is then a sum of kinetic and
potential energy

Ĥ =
∑

j=1,Ns

[
π2
j

2m
+
mω2

2
(φj − φj+1)

2

]
(4.42)

where m is the mass of an atom.
Now the great simplifying feature of this model, is that that it possesses translational

symmetry, so that under the translation

πj → πj+1, φj → φj+1 (4.43)

the Hamiltonian and commutation relations remain unchanged. If we shrink the size of
the lattice to zero, this symmetry will become a continuous translational symmetry. The
generator of these translations is the crystal momentum operator, which must therefore
commute with the Hamiltonian. Because of this symmetry, it makes sense to transform
to operators that are diagonal in momentum space, so we’ll Fourier transform all fields as
follows:

φj = 1√
Ns

∑
q e

iqRjφq,

πj = 1√
Ns

∑
q e

iqRjπq,

}
Rj = ja. (4.44)

The periodic boundary conditions, φj = φj+Ns , πj = πj+Ns mean that the values of q
entering in this sum must satisfy qL = 2πn, where L = Nsa is the length of the chain and
n is an integer, thus

q =
2π

L
n, (n ∈ [1, Ns]) (4.45)

Notice that q ∈ [0, 2π/a] defines the range of q. As in any periodic structure, the crystal
momentum is only defined modulo a reciprocal lattice vector, which in this case is 2π/a, so
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that q + 2π
a ≡ q, (you may verify that (q + 2π

a )Rj = qRj + 2πm, which is why we restrict
n ∈ [1, Ns]. The functions 1√

Ns
eiqRj ≡ 〈j|q〉 form a complete orthogonal basis, so that in

particular

∑

j

〈q′|j〉〈j|q′〉 ≡ 1

Ns

∑

j

ei(q−q
′)Rj = 〈q|q′〉 ≡ δq,q′ . orthogonality (4.46)

is only unity if q = q′. This relationship (which extends to any number of dimensions) is
immensely useful, and we shall use it time and time again. Using the orthogonality relation,
we can check that the inverse transformations are

φq = 1√
Ns

∑
j e
−iqRjφj

πq = 1√
Ns

∑
q e
−iqRjπj (4.47)

Notice that since φj and πj are Hermitian operators, it follows that φ†(q) = φ(−q) and
π†(q) = π(−q). Using the orthogonality, we can verify the transformed commutation rela-
tions are

[φ(−q), π(q′)] =
1

Ns

∑

i,j

ei(qRi−q
′Rj)

ih̄δij︷ ︸︸ ︷
[φi, πj ]

=
ih̄

Ns

∑

j

ei(q−q
′)Rj = ih̄δqq′ (4.48)

We shall now see that πq and φq are quantized version of “normal co-ordinates” which
bring the Hamiltonian back into the standard Harmonic oscillator form. To check that the
Hamiltonian is truly diagonal in these variables we

1. expand φj and πj in terms of their Fourier components,

2. regroup the sums so that the summation over momenta is on the outside,

3. Eliminate all but one summation over momentum by carrying out the internal sum
over site variables. This will involve terms like N−1

s

∑
j e

i(q+q′)Rj = δq+q′ , which
constrains q′ = −q and eliminates the sum over q′.

With a bit of practice, these steps can be carried out very quickly. In transforming the
potential energy, it is useful to rewrite it in the form

V =
mω2

2

∑

j

φj(2φj − φj+1 − φj−1). (4.49)

The term in brackets can be Fourier transformed as follows:

(2φj − φj+1 − φj−1) =
1√
Ns

∑

q

φqe
iqRj

4 sin2(qa/2)︷ ︸︸ ︷
[2 − eiqa − e−iqa] (4.50)
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so that

V =
m

2

∑

q,q′

φ−qφq′ω
2
q

δq,q′︷ ︸︸ ︷
N−1
s

∑

j

ei(q
′−q)Rj

=
∑

q

mω2
q

2
φ−qφq (4.51)

where we have defined ω2
q = 4ω sin2(qa/2). Carrying out the same procedure on the kinetic

energy, we obtain

H =
∑

q

(
1

2m
πqπ−q +

mω2
q

2
φqφ−q

)
(4.52)

which expresses the Hamiltonian in terms of “normal co-ordinates”, φq and πq. So far, all of
the transformations we have preserved the ordering of the operators, so it is no surprise that
the quantum and classical expressions for the Hamiltonian in terms of normal co-ordinates
are formally identical. Notice that we have essentially reduced the problem to a single
harmonic oscillator- one set of oscillators for each momentum

The next step merely repeats the procedure carried out for the single harmonic oscillator.
We define a set of conjugate creation and annihilation operators

aq =
√

mωq
2h̄ (φq + i

mωq
πq)

a†q =
√

mωq
2h̄ (φ−q − i

mωq
π−q)



 [aq, a

†
q′ ] = −i

2h̄

[
[φq, π−q′ ] − [πq, φ−q′ ]

]
= δq,q′

(4.53)
Note that the second expression for a†q is obtained by taking the complex conjugate of aq,
and remembering that φ†q = φ−q and π†q = π−q, since the underlying fields are real.

The inversion of these expressions is

πq = −i
√

mωq h̄
2 (aq − a†−q)

φa =
√

h̄
2mωq

(aq + a†−q)



 (4.54)

Notice how the Fourier component of the field at wavevector q either destroys a phonon of
momentum q or creates a phonon of momentum −q. Both have reduce the total momentum
by q.

From these expressions, it follows that

πqπ−q =
mωqh̄

2
(a†−qa−q + aqa

†
q − a†−qa

†
q − aqa−q)

φqφ−q =
h̄

2mωq
(a†−qa−q + aqa

†
q + a†−qa

†
q + aqa−q) (4.55)

Adding the two terms inside the Hamiltonian then gives

H =
1

2

∑

q

h̄ωq(a
†
qaq + aqa

†
q), (4.56)
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Figure 4.3: Illustrating the excitation picture for a chain of coupled oscillators, length L=14.

or using the commutation relations,

H =
∑

q

h̄ωq(a
†
qaq +

1

2
) (4.57)

Since each set of aq and a†q obey canonical commutation relations, we can immediately iden-
tify nq = a†qaq as the number operator for quanta in the q-th momentum state. Remarkably,
the system of coupled oscillators can be reduced to a sum of independent Harmonic oscil-
lators, with characteristic frequency ωq, energy h̄ωq and momentum q. Each normal mode
of the original classical system corresponds to particular phonon excitation.

We can immediately generalize all of our results from a single Harmonic oscillator. For
example, the general state of the system will now be an eigenstate of the phonon occupancies,

|Ψ〉 = |nq1 , nq2 . . . nqN 〉 =
∏

⊗
|nqi〉 =

[
∏

i

(a†qi)
nqi

√
nqi!

]
|0〉 (4.58)

where the vacuum is the unique state that is annihilated by all of the aq. In this state, the
occupation numbers nq are diagonal, so this is an energy eigenstate with energy

E = Eo +
∑

q

nqh̄ωq (4.59)

where Eo = 1
2

∑
q h̄ωq is the zero-point energy.
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Remarks

• The quantized displacements of a crystal are called phonons. Quantized fluctuations
of magnetization in a magnet are “magnons”.

• We can easily transform to a Heisenberg representation, whereapon aq(t) = aqe
−iωqt.

• We can expand the local field entirely in terms of phonons. Using (4.54), we obtain

φj(t) =
1√
Ns

∑

q

φqe
iqRj

=
1√
Ns

∑

q

√
h̄

2mωq
(aq(t) + a†−q(t))e

iqRj . (4.60)

• The transverse displacements of the atoms can be readily included by simply upgrad-
ing the displacement and momentum φj and πj to vectors. For “springs”, the energy
associated with transverse and longitudinal displacements is not the same because the
stiffness associated with transverse displacements depends on the tension. Neverthe-
less, the Hamiltonian has an identical form for the one longitudinal and two transverse
modes, provided one inserts a different stiffness for the transverse modes. The initial
Hamiltonian is then simply a sum over three degenerate polarizations λ ∈ [1, 3]

Ĥ =
∑

λ=1,3

∑

j=1,Ns

[
π2
jλ

2m
+
mω2

λ

2
(φjλ − φj+1λ)

2

]
(4.61)

where ω2
1 = ω2 for the longitudinal mode, and ω2

2,3 = T/a, where T is the tension in
the spring, for the two transverse modes. By applying the same procedure to all three
modes, the final Hamiltonian then becomes

H =
∑

λ=1,3

∑

q

h̄ωqλ(a
†
qλaqλ +

1

2
).

where ωqλ = 2ωλsin(qa/2). Of course, in more realistic crystal structures, the energies
of the three modes will no longer be degenerate.

• We can generalize all of this discussion to a 2 or 3 dimensional square lattice, by
noting that the orthogonality relation becomes

N−1
s

∑

j

e−i(q−q′)·Rj = δq−q′ (4.62)

where now,

q =
2π

L
(ii, i2 . . . iD) (4.63)

and Rj is a site on the lattice. The general form for the potential energy is slightly
more complicated, but one can still cast the final Hamiltonian in terms of a sum over
longitudinal and transverse modes.

38



c©2004 P. Coleman Chapter 4.

• The zero-point energy Eo = 1
2

∑
q h̄ωq is very important in He−4 and He−3 crystals,

where the lightness of the atoms gives rise to such large phonon frequencies that the
crystalline phase is unstable, except at high pressures.

4.3 The Thermodynamic Limit

In the last section, we examined a system of coupled oscillators on a finite lattice. By
restricting a system to a finite lattice, we impose a restriction on the maximium wavelength,
and hence, the excitation spectrum. This is known as an “infra-red” cut-off. When we take
L→ ∞, the allowed momentum states become closer and closer together, and we now have
a continuum in momentum space.

What happens to the various momentum summations in the thermodynamic limit,
L → ∞? When the allowed momenta become arbitrarily close together, the discrete sum-
mations over momentum must be replaced by continuous integrals. For each dimension, the
increment in momentum appearing inside the discrete summations is

∆q =
2π

L
(4.64)

so that L∆q
2π = 1. Thus in one dimension, the summation over the discrete values of q can

be formally rewritten as
∑

qj

{. . .} = L
∑

qj

∆q

2π
{. . .} (4.65)

where qj = 2π j
L , and j ∈ [1, Ns]. When we take L → ∞, q becomes a continuous variable

q ∈ [0, 2π/a], where a = L/Ns is the lattice spacing, so that the summation can now be
replaced by a continuous integral:

∑

q

{. . .}−→L

∫ 2π/a

0

dq

2π
{. . .} (4.66)

Similarly, in in D-dimensions, we can regard the D-dimensional sum over momentum as a
sum over tiny hypercubes, each of volume

(∆q)D =
(2π)D

LD
(4.67)

so that LD (∆q)D

(2π)D
= 1 and

∑

q

{. . .} = LD
∑

q

(∆q)D

(2π)D
{. . .}−→LD

∫

0<qi<2π/a

dDq

(2π)D
{. . .} (4.68)

where the integral is over a hypercube in momentum space, with sides of length 2π/a.
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yq

/L2π

qx

qz

Figure 4.4: Illustrating the grid of allowed momenta for a three-dimensional crystal of
dimensions L3. In the limit L → ∞, the grid becomes a continuum, with (L/2π)3 points
per unit volume of momentum space.

Once the momentum sums become continuous, we need to change the normalization of
our states. By convention, we now normalize our plane wave basis per unit volume, writing

〈~x|~k〉 −→ ei~x·
~k (4.69)

In a finite volume, this means that the orthogonality condition on these plane waves is

〈~k′|~k〉 =

∫
dDxei(

~k−~k′)·~x = LDδ~k−~k′ , (4.70)

where δ~k−~k′ is the discrete delta function on the grid of allowed wavevectors. In the ther-
modynamic limit, this becomes

∫
dDxei(

~k−~k′)·~x = (2π)DδD(~k − ~k′) (4.71)

so that the continuum limit of the discrete delta-function is given by

LDδ~k~k′ −→ (2π)DδD(~k − ~k′) (4.72)

Example 4.Re-express the Hamiltonian Ĥ of a simplified three-dimensional
Harmonic crystal in terms of phonon number operators and calculate the
zero-point energy, where

H =
∑

j

π2
j

2m
+

∑

j,~a=(x̂,ŷ,ẑ)

mω2
o

2
(Φj − Φj+~a)2 (4.73)
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where φj ≡ φ(xj) and πj ≡ π(xj) denote canonically conjugate (scalar)
displacement, and momenta at site j, and â = (x̂, ŷ, ẑ) denotes the unit
vector separating nearest neigbor atoms.

Solution First we must Fourier transform the co-ordinates and the Har-
monic potential. The potential can be re-written as

V̂ =
1

2

∑

i,j

Vi−jφiφj (4.74)

where
VR = mω2

o

∑

~a=(x̂,ŷ,ẑ)

(2δR − δR−~a − δR+~a) (4.75)

The Fourier transform of this expression is

Vq =
∑

R

VRe
−iq·R

= mω2
o

∑

~a=(x̂,ŷ,ẑ)

(2 − e−iq·a − eiq·a)

= mω2
o

∑

l=x,y,z

[2 − cos(qla)] (4.76)

so that writing Vq = m(ωq)2, it follows that the normal mode frequency
are given by

ωq = 2ωo[sin
2(qxa/2) + sin2(qya/2) + sin2(qza/2)]

1
2 (4.77)

Fourier transforming the fields

φj =
1√
Ns

∑

q

φqe
iq·x

πj =
1√
Ns

∑

q

πqe
iq·x (4.78)

where q = 2π
L (i, j, k) are the discrete momenta of a cubic crystal of volume

L3, with periodic boundary conditions, we find

H =
∑

q

[
πqπ−q

2m
+
mω2

q

2
φqφ−q

]
(4.79)

Defining the creation and annihilation operator

bq =

√
mωq

2h̄

(
φq +

i

mωq

πq

)
, b†q =

√
mωq

2h̄

(
φ−q − i

mωq

π−q

)
, (4.80)

we reduce the Hamiltonian to its standard form

H =
∑

q

h̄ωq

(
n̂q +

1

2

)
(4.81)
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where n̂q = b†qbq is the phonon number operator.

In the ground-state, nq = 0, so that the zero-point energy is

Eo =
∑

q

h̄ωq

2
−→ V

∫
d3q

(2π)3
h̄ωq

2
(4.82)

where V = L3. Substituting for ωq, we obtain

Eo = V
∏

l=1,3

∫ 2π/a

0

dql
2π

h̄ωo

√∑

l=1,3

sin2(qla/2)

= Nsh̄ωoI3 (4.83)

where

I3 =

∫

0<u1,u2,u3<π

d3u

π3

√∑

l=1,3

sin2(ul) = 1.19 (4.84)

and Ns is the number of sites.

Remarks

• The zero point energy per unit cell of the crystal is h̄ωo(I3/π
3), a

finite number.

• Were we to take the “continuum limit”, taking the lattice separation
to zero, the zero-point energy would diverge, due to the profusion of
ultraviolet modes.

4.4 Continuum Limit

In contrast to the thermodynamic limit, when we take the continuum limit we remove the
discrete character of the problem, allowing fluctuations of arbitrarily small wavelength, and
hence arbitrarily large energy. For a discrete system with periodic boundary conditions, the
momentum in any one direction can not exceed 2π/a. By taking a to zero, we remove the
ultra-violet cut-off in momentum.

As a simple example, we shall consider a one-dimensional string. The important lesson
that we shall learn, is that both the discrete model, and the continuum model have the
same long-wavelength physics. Their behavior will only differ on very short distances,
at high frequencies and short times. This is a very simple example of the concept of
renormalization. Provided we are interested in low energy properties, the details of the
string at short-distances- whether it is discrete, or continuous don’t matter.

Of course, in many respects, the continuum model is more satisfying and elegant. We
shall see however, that we always have to be careful in going to the continuum limit, because
this introduces quantum fluctuations on arbitrarily short length scales. These fluctuations
don’t affect the low energy excitations, but they do mean that the zero-point fluctuations
of the field become arbitrarily large.
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Continuum limit  a    0

x

jπ

T

φ j

j

a

π (x)
(x)φ T

T

T

Figure 4.5: Illustrating a (a) discrete and a (b) continuous string. By taking the length
between units in the string to zero, maintaining the density per unit length and the tension,
we arrive at the continuum limit.

Let us start out with a discrete string, as shown in fig 4.5. For small displacements, the
Hamiltonian for this discrete string is identical to that of the last section, as we can see
by the following argument. If a string is made up of point particles of mass m, separated
by a distance a, with a tensile force T acting between them, then for small transverse
displacements φj, the link between the j th and j + 1th particle is expanded by an amount
∆sj = (φj −φj+1)

2/2a, raising the potential energy by an amount T∆sj. The Hamiltonian
is then

Ĥ =
∑

j=1,Ns

[
π2
j

2m
+
T

2a
(φj − φj+1)

2

]
(4.85)

which reverts to (4.42) with the replacement T/a→ mω2.
To take the continuum limit, we let a → 0, preserving ρ = m/a. In this limit, we may

replace

a
∑

j

→
∫
dx,

(φj − φj+1)
2

a2
→ (∇xφ(x))2, (4.86)
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Making the replacement
πj/a→ π̃(x) (4.87)

we obtain

H =

∫
dx

[
T

2
(∇xφ)2+

1

2ρ
π̃(x)2

]
(4.88)

On the discrete lattice, the commutation relations

[φi, π̃j] = ih̄δ̃(xi − xj), (4.89)

where δ̃(xi− xj) = a−1δij . In the limit a→ 0, δ̃(xi− xj) behaves as a Dirac delta function,
so that in this limit,

[φ(x), π̃(y)] = ih̄δ(x − y) (4.90)

We now make the jump to Fourier space, writing

φ(x) =

∫
dq

2π
φqe

iqxe−ε|q|/2 (4.91)

with a similar relation between π(x) and πq. In the continuum limit, q is no longer bounded
by the cut-off 2π/a. To control the wild fluctuations that arise at high momentum we still
need some kind of cut-off, and this is why we introduce the small exponential convergence
factor into the inverse Fourier transform. Now it is just a question of repeating the same
steps of the last section, but for the continuous fields φq and πq. We may confirm that in the
canonical commutation relation, we must now replace 〈q|q ′〉 = δqq′ by 〈q|q′〉 = 2πδ(q − q′),
so that

[φq, π−q′ ] = ih̄2πδ(q − q′) (4.92)

When we transform the Hamiltonian, we obtain

H =

∫
dq

2π

[
πqπ−q

2ρ
+
ρω2

q

2
φqφ−q

]
e−ε|q| (4.93)

where now ωq = c|q|, and c =
√
T/ρ is the velocity of the phonons. Notice how this

has almost exactly the same form as the the discrete lattice. Defining the creation and
annihilation operator by the relations

φq =

√
h̄

2ρωq
[aq + a†−q]

πq = −i
√
h̄ρωq

2
[aq − a†−q] (4.94)

we find that the creation and annihilation operators satisfy

[aq, a
†
q′ ] = 2πδ(q − q′). (4.95)
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We may now rewrite the Hamiltonian as

H =

∫ ∞

−∞

dq

2π

h̄ωq

2
(a†qaq + a−qa

†
−q)e

−ε|q| (4.96)

If we re-order the Boson operators, we obtain

H =

∫ ∞

∞

dq

2π
h̄ωq(a†qaq +

“L′′︷ ︸︸ ︷
2πδ(0)

1

2
)e−|εq|/2 (4.97)

The first terms corresponds to the excitations of string, and we recognize the last term as
the zero-point energy of the string. Had we been less ambitious, and started out on a finite,
but lattice long , the term 2 πδ(0) would be replaced by L, which is merely the statement
that the zero-point energy scales with the length,

EZP = L

∫
dq

2π
h̄c|q||e−ε|q|ε = Lh̄(

c

ε
) (4.98)

is the total zero-point energy. Once we remove the momentum cut-off, the momentum sum
is unbounded and the zero-point energy per unit length becomes infinite in the continuum
limit. It often proves convenient to remove this nasty infinity by introducing the concept of
“normal ordering”. If we take any operator A, then we denote its normal ordered count-part
by the symbol : A :. The operator : A : is the same as A, excepting that all the creation
operators have been ordered to the left of all of the annihilation operators. All commutators
associated with the ordering are neglected, so that the normal ordered Hamiltonian is

: H := h̄c

∫ ∞

−∞
|q|n̂q (4.99)

measures the excitation energy above the ground-state.
Finally, let us look at the field correlations in the continuum string. The fields in co-

ordinate space are given by

φ(x, t) =

∫
dq

2π

√
h̄

2ρωq
[aq(t) + a−q(t)]e

iqxe−ε|q|/2 (4.100)

where, as in the case of the Harmonic oscillator

aq(t) = aqe
−iωqt, a†q(t) = aqe

iωqt, (4.101)

Example 5.Calculate the the equal-time ground-state correlation function

S(x) =
1

2
〈0|(φ(x) − φ(0))2|0〉. (4.102)

for a one-dimensional string.
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Solution: Let us begin by rewriting

S(x) = 〈0|(φ(x)φ(0) − φ(0)2)|0〉 (4.103)

where we have used translational invariance to replace the expectation value
of φ(x)2 by the expectation value of φ(0)2. When we expand φ(x) and φ(0)
in terms of creation and annihilation operators, only the terms of the form
〈0|aqa

†−q′ |o〉 = 〈0|[aq , a
†−q′ ]|o〉 = (2π)δ(q − q′) will survive. Let us write

this out explicitly:

S(x) =

∫
dqdq′

(2π)2
h̄

2ρc
√
|q||q′|

〈0|[aq + a†−q][a−q′ + a†q′ ]|0〉(eiqx − 1)e−|q|ε

=
h̄

2ρc

∫
dq

2π
e−|q|ε

(
eiqx − 1

|q|

)

=

(
h̄

ρc

)[
1

4π
ln
( ε2

ε2 + x2

)]
(4.104)

where to obtain the last step, we first calculate

dS

dx
= − h̄

ρc

∫ ∞

0

dq

2π
e−|q|ε sin(qx) = −

(
h̄

2πρc

)
x

x2 + ε2
(4.105)

and then integrate the answer on x, noting S(0) = 0.

Remarks

• Note that at small distances the fluctuations in the string displace-
ment grow as ln(|x|). This is because the number of short-wavelength
fluctuations is unbounded.

• Note also that we could have obtained this result by working with a
discrete string, and taking a → 0 at the end of the calculation. Had
we done this, we would have found that

S(x) =
ah̄

2ρ

∫
dq

2π

(
eiqx − 1

ωq

)
(4.106)

which has the same long-wavelength behavior.

• Had we repeated this calculation in D dimensions, the integral over q
becomes a d-dimensional integral. In this case,

S(x) ∼
∫
dDq

(
eiqx − 1

|q|

)
∼ 1

xD−1
(4.107)

In higher dimensions, the phase space for number of short-wavelength
fluctuations grows as qD, which leads to stronger fluctuations at short-
distances.
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4.5 Exercises for chapter 4

1. For the Harmonic oscillator H = h̄ω[a†a+ 1
2 ], we know that

〈n̂〉 = n(ω) =
1

eβh̄ω − 1
, (4.108)

where β = 1/(kBT ) and n̂ = a†a is the number operator. In the ground-state, using the
equations of motion for the creation and annihilation operators, we showed that the zero-
point fluctuations in position were described by the correlation function

1

2
〈{x(t), x(0)}〉 =

h̄

2mω
cosωt. (4.109)

Generalize this result to finite temperatures. You should find that there are two terms in the
correlation function. Please give them a physical interpretation.

2. (a) Show that if a is a canonical bose operator, the canonical transformation

b = ua+ va†,
b† = ua† + va, (4.110)

(where u and v are real), preserves the canonical commutation relations, provided u2−v2 = 1.

(b) Using the results of (a), diagonalize the Hamiltonian

H = ω(a†a+
1

2
) +

1

2
∆(a†a† + aa), (4.111)

by transforming it into the form H = ω̃(b†b+ 1
2 ). Find ω̃, u and v in terms of ω and ∆. What

happens when ∆ = ω?

(c) The Hamiltonian in (b) has a boson pairing term. Show that the ground-state of H can
be written as coherent condensate of paired bosons, given by

|0̃〉 = e−α(a†a†)|0〉.

Calculate the value of α in terms of u and v. (Hint: |0̃〉 is the vacuum for b, i.e b|0̃〉 =

(ua+ va†)|0̃〉 = 0. Calculate the commutator of [a, e−αa†a†

] by expanding the exponential as
a power series. Find a value of α that guarantees that b annihilates the vacuum |0̃〉. )

3. (Harder) Find the classical normal mode frequencies and normal co-ordinates for the one
dimensional chain with Hamiltonian

H =
∑

j

[
p2

j

2mj
+
k

2
(φj − φj−1)

2

]
(4.112)

where at even sites m2j = m and at odd sites m2j+1 = M . Please sketch the dispersion
curves.

(ii) What is the gap in the excitation spectrum?

(iii)Write the diagonalized Hamiltonian in second quantized form and discuss how you might
arrive at your final answer. You will now need two types of creation operator.
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4. (Harder) According to the “Lindeman” criterion, a crystal melts when the rms displacement of
its atoms exceeds a third of the average separation of the atoms. Consider a three dimensional
crystal with separation a, atoms of mass m and a nearest neigbor quadratic interaction V =
(mω2/2)(~ΦR − ~ΦR+a)2.

(i) Using strictly physical arguments, show that if

h̄

mωa2
> ζc (4.113)

the crystal will melt due to zero-point fluctuations. (Hint... what would the answer be for a
simple harmonic oscillator?)

(ii)Calculate ζc. If you like, to start out, imagine that the atoms only move in one direction,
so that Φ is a scalar displacement at the site with equilibrium position R. Calculate the rms
zero-point displacement of an atom

√
〈0|Φ(x)2|0〉. Now generalize your result to take account

of the fluctuations in three orthogonal directions.

(iii)Suppose h̄ω/kB = 300K, and the atom is a Helium atom. Estimate the maximum atomic
separation at which the solid will be stable against quantum fluctuations.

5. (Harder) Find the transformation that diagonalizes the Hamiltonian

H =
∑

j

{
J1(a

†
i+1ai +H.c) + J2(a

†
i+1a

†
i +H.c)

}
(4.114)

where the ith site is located at Rj = aj. You may find it helpful to (i) transform to momentum
space, writing aj = 1

N1/2

∑
q e

iqRjaq and (ii) carrying out a canonical transformation of the

form bq = uqaq + vqa
†−q , where u2 − v2 = 1. What happens when J1 = J2?

6. (Harder) This problem sketches the proof that the displacement of the quantum Harmonic
oscillator, originally in its ground-state (in the distant past), is given by

〈x(t)〉 =

∫ ∞

0

R(t− t′)f(t′)dt′, (4.115)

where

R(t− t′) =
i

h̄
〈0|[x(t), x(t′)]|0〉 (4.116)

is the “response function” and x(t) is the position operator in the Heisenberg representation
of H0. A more detailed discussion can be found in chapter 10.

An applied force f(t) introduces an additional forcing term to the harmonic oscillator Hamil-
tonian

Ĥ(t) = H0 + V (t) = Ĥ0 − f(t)x̂, (4.117)

where H0 = h̄ω(a†a + 1
2 ) is the unperturbed Hamiltonian. To compute the displacement of

the Harmonic oscillator, it is convenient to work in the “interaction representation”, which
is the Heisenberg representation for H0. In this representation, the time-evolution of the
wavefunction is due to the force term. The wavefunction of the harmonic oscillator in the
interation representation |ψI (t)〉 is related to the Schrodinger state |ψS(t)〉 by the relation
|ψI (t)〉 = eiH0t/h̄|ψS(t)〉.
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(a) By using the equation of motion for the Schrodinger state ih̄∂t|ψS(t)〉 = (H0+V (t))|ψS(t)〉,
show that the time evolution of the wavefunction in the interaction representation is

ih̄∂t|ψI (t)〉 = VI (t)|ψI(t)〉 = −f(t)x̂(t)|ψI (t)〉, (4.118)

where VI(t) = eiH0t/h̄V̂ (t)e−iH0t/h̄ = −x(t)f(t) is the force term in the interaction
representation.

(b) Show that if |ψ(t)〉 = |0〉 at t = −∞, then the leading order solution to the above
equation of motion is then

|ψI (t)〉 = |0〉 +
i

h̄

∫ t

−∞
dt′f(t′)x̂(t′)|0〉 +O(f2), (4.119)

so that

〈ψI (t)| = 〈0| − i

h̄

∫ t

−∞
dt′f(t′)〈0|x̂(t′) +O(f2). (4.120)

(c) Using the results just derived expand the expectation value 〈ψI(t)|x(t)|ψI (t)〉 to linear
order in f , obtaining the above cited result.
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Chapter 5

Conserved Particles

The method we have just examined is fine for “collective excitations” of a medium, but
it does not make it self-evident how we should proceed for systems of conserved particles,
such as a gas of Helium-4 atoms, or an electron gas inside a metal. Now we shall return to
discuss conserved particles.

First quantized quantum mechanics can deal with many body physics, through the in-
troduction of a many particle wavefunction. This is the approach favored in fields such
as quantum chemistry, where the number of electrons is large, but not macroscopic. The
quantum chemistry approach revolves around the many-body wavefunction. For N parti-
cles, this a function of 3N variables and N spins. The Hamiltonian is then an operator
expressed in terms of these co-ordinates:

ψ −→ ψ(x1, x2 . . . xN , t)

H −→
∑

j

[
− h̄2

2m
∇2
j + U(xj)

]
+

1

2

∑

i<j

V (xi − xj) (5.1)

With a few famous exceptions this method is cumbersome, and ill-suited to macroscop-
ically large systems. The most notable exceptions occur in low dimensional problems,
where wavefunctions of macroscopically large ensembles of interacting particles have been
obtained. Examples include

• Bethe Ansatz solutions to interacting one, and zero-dimensional problems.

• Laughlin’s wavefunction for interacting electrons in high magnetic fields, at commen-
surate filling factors.

Second-quantization provides a general way of approaching many body systems in which
the wavefunction plays a minor role. As we mentioned in chapter 3, the essence of second-
quantization is a process of raising the Schrodinger wavefunction to the level of an operator
which satisfies certain “canonical commutation” or “canonical anticommutation ”algebras”.
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In first quantized physics physical properties of a quantum particle, such as its density, ki-
netic energy, potential energy can be expressed in terms of the one-particle wavefunction.
Second quantization elevates each of these quantities to the status of an operator by replac-
ing the one-particle wavefuncion by its corresponding field operator:

ψ(x, t) −→ ψ̂(x, t)
one particle wavefunction Field operator

O(ψ∗, ψ) −→ Ô(ψ̂†, ψ̂)





2nd Quantization (5.2)

For example, Born’s famous expression for the one-particle (probability) density becomes
an operator as follows:

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (5.3)

so that the potential energy associated with an external potential is

V̂ =

∫
d3xU(x)ρ̂(x). (5.4)

Similarly, the Kinetic energy in first-quantization

T [ψ∗, ψ] =

∫
d3xψ∗(x)

[
− h̄2

2m
∇2

]
ψ(x) (5.5)

becomes the operator

T̂ =

∫
d3xψ̂†(x)

[
− h̄2

2m
∇2

]
ψ̂(x). (5.6)

Finally

H =

∫
d3xψ̂†(x)

[
− h̄2

2m
∇2 + U(x)

]
ψ +

1

2

∫
d3xd3x′V (x− x′) : ρ̂(x)ρ̂(x′) : (5.7)

is the complete many-body Hamiltonian in second-quantized form. Here V (x − x ′) is the
interaction potential between the particles, and the symbol “:” reflects the fact that ordering
of the field operators is important. The colons either side of an operator, such as “:A:”
indicate that A is “normal ordered”, which implies that all creation operators between the
two colons are ordered to lie to the left of all destruction operators.

5.1 Commutation and Anticommutation Algebras

In 1927, Jordan and Wigner[1] proposed that the microscopic field operators describing
identical particles divide up into two types. These are axioms of quantum field theory. For
identical bosons, field operators satisfy a commutation algebra, whereas for fermions, the

54



c©2004 P. Coleman Chapter 5.

field operators satisfy an anticommutation algebra. Since we will be dealing with many of
their properties in parallel, it useful to introduce the notation

[a, b]± = ab± ba, fermions/bosons (5.8)

to denote commutators (−) for bosons or anticommutators (+) for fermions . The algebra
of field operators is then

[ψ(1), ψ(2)]± = [ψ†(2), ψ†(1)]± = 0

[ψ(1), ψ†(2)]± = δ(1 − 2)





Fermions/ Bosons (5.9)

When spin is involved, 1 ≡ (x1, σ1) and δ(1 − 2) = δ(D)(x1 − x2)δσ1σ2 . We shall motivate
these axioms in two ways: (i) by showing, in the case of Bosons, that they are a natural
result of trying to quantize the one-particle wavefunction. ; (ii) by showing that they lead
to the first quantized formulation of many-body physics, naturally building the particle
exchange statistics into the mathematical framework.

5.1.1 Heuristic Derivation for Bosons

The name second-quantization derives from the notion that many body physics can be
obtained by quantizing the one-particle wavefunction. Philosophically, this is very tricky,
for surely, the wavefunction is already a quantum object? Let us imagine however, a thought
experiment, when we prepare a huge number of non-interacting particles, prepared in such
a way that they are all in precisely the same quantum state. The feasibility of this does
not worry us here, but note that it can actually be done for a large ensemble of bosons, by
condensing them into a single quantum state. In this circumstance, every single particle
lies in the same one-particle state. If we time evolve the system we can begin to think of
the single-particle wavefunction as if it is a classical variable.

Let us briefly recall one-particle quantum mechanics. If the particle is in a state |ψ〉,
then we can always expand the state in terms of a complete basis {|n〉}, as follows:

|ψ(t)〉 =
∑

n

|n〉
ψn(t)︷ ︸︸ ︷

〈n|ψ(t)〉 =
∑

n

|n〉ψn(t) (5.10)

so that |ψn(t)|2 = pn(t) gives the probability of being in state n. Now applying Schrodinger’s
equation, Ĥ|ψ〉 = ih̄∂t|ψ〉 gives

ih̄ψ̇n(t) =
∑

m

〈n|H|m〉ψm(t)

ih̄ψ̇∗n(t) = −
∑

m

〈m|H|n〉ψ∗m(t) (5.11)

Now if we write the ground-state energy as a functional of the ψm(t), we get

H(ψ,ψ∗) = 〈H〉 =
∑

m,n

ψ∗mψn〈m|H|n〉 (5.12)
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we see that the equations of motion can be written in Hamiltonian form

ψ̇m =
∂H(ψ,ψ∗)
ih̄∂ψ∗m

, (c.f q̇ =
∂H

∂p
)

ih̄ψ̇∗m = −∂H(ψ,ψ∗)
∂ψm

, (c.f ṗ = −∂H
∂q

) (5.13)

so we can identify

{ψn, ih̄ψ∗n} ≡ {qn, pn} (5.14)

as the canonical position and momentum co-ordinates.

But suppose we don’t have a macroscopic number of particles in a single state. In this
case, the amplitudes ψn(t) are expected to undergo quantum fluctuations. Let us examine
what happens if we “second-quantize” these variables, making the replacement

[qn, pm] = ih̄δnm = ih̄[ψn, ψ
†
m] (5.15)

or

[ψn, ψm] = [ψ†n, ψ†m] = 0,

[ψn, ψ
†
m] = δnm

(5.16)

In terms of these operators, our second quantized Hamiltonian becomes

H =
∑

m,l

ψ̂†mψ̂l〈m|H|l〉 (5.17)

If we now use this to calculate the time-evolution of the quantum fields we obtain

−ih̄∂tψj = [Ĥ, ψj ] =
∑

m,l

〈m|H|l〉
−δmjψl︷ ︸︸ ︷

[ψ†mψl, ψj ] (5.18)

Eliminating the sum over m, we obtain

−ih̄∂tψj = −
∑

l

〈j|H|l〉ψl

−ih̄∂tψ†j = [Ĥ, ψ†j] =
∑

l

ψ†l〈l|H|j〉, (5.19)

where the complex conjugated expression gives the time evolution of ψ†l. Remarkably, the
equations of motion of the operators match the time evolution of the one-particle ampli-
tudes. But now we have operators, we have all the new physics associated with quantum
fluctuations of the particle fields.
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5.2 What about Fermions?

Remarkably, as Jordan and Wigner first realized, we recover precisely the same time-
evolution if second-quantize the operators using anticommutators, rather than commutators,
and it this is what gives rise to fermions and the exclusion principle. But for fermions, we
can not offer a heurtistic argument, because they don’t condense: as far as we know, there
is no situation in which individual fermi field operators behave semi-classically. although of
course, in a superconductor, pairs of fermions that behave semi-classically.

In fact, all of the operations we carried out above work equally well with either canonical
commutation or canonical anticomutation relations:

[ψn, ψm] = [ψ†n, ψ†m]± = 0,

[ψn, ψ
†
m]± = δnm

(5.20)

where the ± refers to fermions (+) and bosons (−) respectively. To evaluate the equation of
motion of the field operators, we need to know the commutator [H,ψn]. Using the relation

[ab, c]± = a[b, c]± ∓ [a, c]± (5.21)

we may verify that

[ψ†mψl, ψj ] = ψ†m[

0︷ ︸︸ ︷
ψl, ψj ]±

−δmj︷ ︸︸ ︷
∓[ψ†m, ψj ]± ψl

= −δmjψl (5.22)

so that

−ih̄∂tψj = [Ĥ, ψj] =
∑

m,l

〈m|H|l〉
−δmjψl︷ ︸︸ ︷

[ψ†mψl, ψj ]

= −
∑

l

〈j|H|l〉ψl (5.23)

independently of whether we use an anticommuting, or commuting algebra.

Let us now go on, and look at some general properties of second-quantized operators
that hold for both bosons and fermions.

5.3 Field operators in different bases

Let us first check that our results don’t depend on the one-particle basis we use. To do this,
we must confirm that the commutation or anticommutation algebra of bosons or fermions
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is basis independent. Suppose we have two bases of one-particle states: the {|r〉} basis, and
a new {|s̃〉} basis, where

|ψ〉 =
∑

r

|r〉ψr =
∑

s

|s̃〉as (5.24)

where 〈s̃|ψ〉 = as, and 〈r|ψ〉 = ψr. Introducing the completeness relation 1 =
∑
r |r〉〈r| into

the first expression, we obtain
as︷ ︸︸ ︷

〈s̃|ψ〉 =
∑

r

〈s̃|r〉
ψs︷ ︸︸ ︷

〈r|ψ〉 (5.25)

If this is how the one-particle states transform between the two bases, then we must use
the same unitary transformation to relate the field operators that destroy particles in the
two bases

âs =
∑

r

〈s̃|r〉ψ̂r (5.26)

The commutation algebra of the new operators is now

[âs, â
†
p]± =

∑

l,m

〈s̃|l〉
δlm︷ ︸︸ ︷

[ψ̂l, ψ̂
†
m]±〈m|p̃〉 (5.27)

This is just the pre- and post-multiplication of a unit operator by the unitary matrix Usl〈s̃|l〉
and its conjugate U †mp = 〈m|p̃〉. The final result, is unity, as expected:

[âs, â
†
p]± =

∑

r

〈s̃|r〉〈r|p̃〉 = 〈s̃|p̃〉 = δsp (5.28)

In other words, the canonical commutation algebra is preserved by unitary transformations
of basis.

A basis of particular importance, is the position basis. The one-particle wavefunction
can always be decomposed in a discrete basis, as follows

ψ(x) = 〈x|ψ(t)〉 =
∑

n

〈x|n〉ψn (5.29)

where 〈x|n〉 = φn(x) is the wavefunction of the nth state. We now define the corresponding
destruction operator

ψ̂(x) =
∑

n

〈x|n〉ψ̂n (5.30)

which defines the field operator in real space. and we can also use the orthogonality relation

“
∑

x

”〈n|x〉〈x|m〉 = δnm, (“
∑

x

” =

∫
dDx) (5.31)

to invert these relations:

ψn =

∫
dDx〈n|x〉ψ, ψ†n =

∫
dDxψ†(x)〈x|n〉 (5.32)
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You can see by now, that so far as transformation laws are concerned, ψn and ψ(x) trans-
forms like “bra” vectors, whilst their conjugates transform like “kets”.

By moving to a real-space representation, we have traded in a discrete basis, for a
continuous basis. The corresponding “unit” operator appearing in the commutation algebra
now becomes a delta-function.

[ψ(x), ψ†(y)]± =
∑

n,m

〈x|n〉〈m|y〉
δnm︷ ︸︸ ︷

[ψn, ψ
†
m]±

=
∑

n

〈x|n〉〈n|y〉 = 〈x|y〉

= δ3(x− y) (5.33)

where we have assumed a three-dimensional system.
Another basis of importance, is the basis provided by the one-particle energy eigenstates.

In this basis 〈l|H|m〉 = Elδlm, so the Hamiltonian becomes diagonal

H =
∑

l

Elψ
†
lψl =

∑
Eln̂l (5.34)

The Hamiltonian of the non-interacting many-body system thus divides up into a set of
individual components, each one describing the energy associated with the occupancy of
a given one-particle eigenstate. The eigenstates of the many-body Hamiltonian are thus
labelled by the occupancy of the lth one-particle state. Of course, in a real-space basis
the Hamiltonian becomes more complicated. Formally, if we transform this back to the
real-space basis, we find that

H =

∫
dDxdDx′ψ†(x)〈x|H|x′〉ψ(x′) (5.35)

For free particles in space, the one-particle Hamiltonian is

〈x|H|x′〉 =

[
− h̄2

2m
∇2 + U(x)

]
δD(x− x′) (5.36)

so that the Hamiltonian becomes

H =

∫
dDxψ†(x)

[
− h̄2

2m
∇2 + U(x)

]
ψ(x) (5.37)

which despite its formidable appearance, is just a a transformed version of the diagonalized
Hamiltonian (5.34).

5.4 Fields as particle creation and annihilation operators.

By analogy with collective fields, we now interpret the quantity n̂l = ψ†lψl as the number
number operator, counting the number of particles in the one-particle state l. The total
particle number operator is then

N =
∑

l

ψ†lψl (5.38)
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Using relation (5.21), it is easy to verify that for both fermions and bosons,

[N̂ , ψl] = [n̂l, ψl] = −ψl, [N̂ , ψ†l] = [n̂l, ψ
†
l] = ψ†l. (5.39)

In other words, N̂ψ†l = ψ†l(N̂ + 1) so that ψ†l adds a particle to state l. Similarly, since
N̂ψl = ψl(N̂ − 1), ψl destroys a particle from state l.

There is however a vital and essential difference between bosons and fermions. For
bosons, the number of particles nl in the lth state is unbounded, but for fermions, since

ψ†
2
l =

1

2
{ψ†l, ψ†l} = 0 (5.40)

the amplitude to add more than one particle to a given state is always zero. We can
never add more than one particle to a given state: in otherwords, the exclusion principle
follows from the algebra! The occupation number bases for bosons and fermions are given by

|n1, n2 . . . nl . . .〉 =
∏
l

(ψ†l)
nl√

nl!
|0〉, (nr = 0, 1, 2 . . .) bosons

|n1, n2 . . . nr〉 = (ψ†r)nr . . . (ψ†1)n1 |0〉, (nr = 0, 1) fermions

(5.41)

A specific example for fermions, is

| 1

1
2

0
3

1
4

1
5

0
6

1〉 = ψ†6ψ
†
4ψ
†
3ψ
†
1|0〉 (5.42)

which contains particles in the 1st, 3rd, 4th and 6th one-particle states. Notice how the
order in which we add the particles affects the sign of the wavefunction, so exchanging
particles 4 and 6 gives

ψ†4ψ
†
6ψ
†
3ψ
†
1|0〉 = −ψ†6ψ†4ψ†3ψ†1|0〉 = −| 1

1
2

0
3

1
4

1
5

0
6

1〉 (5.43)

By contrast, a bosonic state is symmetric, for example

| 1

8
2

0
3

5
4

2
5

4
6

1〉 =
1√

4!2!5!8!
ψ†6(ψ

†
5)

4(ψ†4)
2(ψ†3)

5(ψ†1)
8|0〉 (5.44)

To get further insight, let us transform the number operator to a real-space basis by
writing

N̂ =

∫
dDxdDy

∑

l

ψ†(x)

δD(x−y)︷ ︸︸ ︷
〈x|l〉〈l|y〉ψ(y) (5.45)

so that

N̂ =

∫
dDxψ†(x)ψ(x) (5.46)
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From this expression, we are immediately led to identify

ρ(x) = ψ†(x)ψ(x) (5.47)

as the density operator. Furthermore, since

[ρ(y), ψ(x)] = ∓[ψ†(y), ψ(x)], ±ψ(y) = −δ3(x− y)ψ(y). (5.48)

we can we can identify ψ(x) as the operator which annihilates a particle at x.

Example Using the result (5.48) that if

N̂R =

∫

~y∈R
d3yρ(~y) (5.49)

measures the number of particles in some region R, show that

[N̂R, ψ(x)] =

{
−ψ(x), (x ∈ R)

0 (x 6∈ R)
(5.50)

By localizing region R around x, use this to prove that ψ(x) annihilates a
particle at position x.

Example Suppose b~q destroys a boson in a cubic box of side length L,where
~q = 2π

L (i, j, k) is the momentum of the boson. Express the field operator in
real space, and show they satisfy canonical commutation relations. Write
down the Hamiltonian in both bases.

Solution The field operators in momentum space satisfy [b~q, b
†
~q′ ] = δ~q~q′ .

We may expand the field operator in real space as follows

ψ(x) =
∑

q

〈~x|~q〉b~q (5.51)

Now

〈~x|~q〉 =
1

L3/2
ei~q·~x (5.52)

is the one-particle wavefunction of a boson with momentum ~q. Calculating
the commutator between the fields in real space, we obtain

[ψ(~x), ψ†(~y)] =
∑

~q,~q′

〈~x|~q〉〈~q′|~y〉

δ~q~q′︷ ︸︸ ︷
[b~q , b

†
~q′ ] =

∑

~q

〈~x|~q〉〈~q|~y〉

=
1

L3

∑

q

ei~q·(~x−~y) = δ(3)(~x− ~y). (5.53)

The last two steps could have been carried out by noting that
∑

q |q〉〈q| = 1,

so that [ψ(~x), ψ†(~y)] = 〈x|y〉 = δ3(x− y).

The Hamiltonian for the bosons in a box is

H = − h̄2

2m

∫
d3xψ†(x)∇2ψ(x) (5.54)
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We now Fourier transform this, writing

ψ†(x) =
1

L3/2

∑

q

e−i~q·~xb†q

∇2ψ(x) = − 1

L3/2

∑

q

q2ei~q·~xbq (5.55)

Substituting into the Hamiltonian, we obtain

H =
1

L3

∑

q, q′

εqb
†
q′bq

∫
d3x

L3δq−q′︷ ︸︸ ︷
ei(q−q′)·x =

∑

q

εqb
†
qbq, (5.56)

where

εq =

(
h̄2q2

2m

)
. (5.57)

is the one-particle energy.

5.5 The vacuum and the many body wavefunction

We are now in a position to build up the many-body wavefunction. Once again, of fun-
damental importance here, is the notion of the vacuum, the unique state |0〉 which is
annihilated by all field operators. If we work in the position basis, we can add a particle at
site x to make the one-particle state

|x〉 = ψ†(x)|0〉, (5.58)

Notice that the overlap between two one-particle states is

〈x|x′〉 = 〈0|ψ(x)ψ†(x′)|0〉. (5.59)

By using the (anti) commutation algebra to move the creation operator in the above ex-
pression to the right-hand side, where it annihilates the vacuum, we obtain

〈0|ψ(x)ψ†(x′)|0〉 = 〈0|
δ(3)(x−x′)︷ ︸︸ ︷

[ψ(x), ψ†(x′)]±|0〉 = δ(3)(x− x′). (5.60)

We can equally well add many particles, forming the N -particle state:

|x1, x2 . . . xN 〉 = ψ†(xN ) . . . ψ†(x2)ψ
†(x1)|0〉 (5.61)

Now the corresponding “bra” state is given by

〈x1, x2 . . . xN | = 〈0|ψ(x1)ψ(x2) . . . ψ(xN ) (5.62)

The wavefunction of the N-particle state Ψ is the overlap with this state
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Ψ(x1, x2, . . . xN ) = 〈x1, x2 . . . xN |Ψ〉 = 〈0|ψ(x1)ψ(x2) . . . ψ(xN )|Ψ〉 (5.63)

The commutation/ anticommutation algebra guarantees that the symmetry of this wave-
function under particle exchange is positive for bosons, and negative for fermions, so that
if we permute the particles, (12 . . . N) → (P1P2 . . . PN )

〈0|ψ(xP1)ψ(xP2) . . . ψ(xPN )|Ψ〉 = (∓1)P 〈0|ψ†(x1)ψ(x2) . . . ψ(xN )|Ψ〉 (5.64)

where P is the number of pairwise permutations involved in making the permutation. Notice
that for fermions, this guarantees that the wavefunction vanishes if any two co-ordinates
are the same.

Example Two spinless fermions are added to a cubic box with sides of
length L, in momentum states k1 and k2, forming the state

|Ψ〉 = |k1,k2〉 = c†k2
c†k1

|0〉 (5.65)

Calculate the two-particle wavefunction

Ψ(x1, x2) = 〈x1, x2|Ψ〉 (5.66)

Solution Written out explicitly, the wavefunction is

Ψ(x1, x2) = 〈0|ψ(x1)ψ(x2)c
†
k2
c†k1

|0〉 (5.67)

To evaluate this quantity, we commute the two destruction operators to the
right, until they annihilate the vacuum. Each time a destruction operator
passes a creation operator, we generate a “contraction” term

{ψ(x), c†k} =

∫
d3y

δ3(x−y)︷ ︸︸ ︷
{ψ(x), ψ†(y)}〈y|k〉 = 〈x|k〉 = L−3/2eik·x (5.68)

Carrying out this procedure, we generate a sum of pairwise contractions,
as follows:

〈0|ψ(x1)ψ(x2)c
†
k2
c†k1

|0〉 = 〈x1|k1〉〈x2|k2〉 − 〈x1|k2〉〈x2|k1〉
=

1

L3

[
ei(k1·x1+k2·x2) − ei(k1·x2+k2·x1)

]

5.6 Interactions

Second-quantization is easily extended to incorporate interactions. Classically, the interac-
tion potential energy between particles is given by

V =
1

2

∫
d3x

∫
d3x′ V (x− x′)ρ(x)ρ(x′) (5.69)
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so we might expect that the corresponding second-quantized expression is

1

2

∫
d3x

∫
d3x′ V (x− x′)ρ̂(x)ρ̂(x′) (5.70)

This is wrong, because we have not been careful about the ordering of operators. Were
we to use (5.70), then a one-particle state would interact with itself! We require that the
action of the potential on the vacuum, or a one-particle state, gives zero

V̂ |0〉 = V̂ |x〉 = 0 (5.71)

To guarantee this, we need to be careful that we “normal-order” the field operators, by
permuting them so that all destruction operators are on the right-hand-side. All additional
terms that are generated by permuting the operators are removed, but the sign associated
with the permutation process is preserved. We denote the normal ordering process by a
pair of colons. Thus

: ρ(x)ρ(y) : = : ψ†(x)ψ(x)ψ†(y)ψ(y) :
= ∓ : ψ†(x)ψ†(y)ψ(x)ψ(y) :=: ψ†(y)ψ†(x)ψ(x)ψ(y) : (5.72)

and the correct expression for the interaction potential is then

V =
1

2

∫
d3x

∫
d3x′ V (x− x′) : ρ̂(x)ρ̂(x′) :

=
1

2

∑

σ,σ′

∫
d3x

∫
d3x′ V (x− x′)ψσ

†(x)ψσ′
†(x′)ψσ′(x

′)ψσ(x) (5.73)

where we have written a more general expression for fields with spin.

Example. Show that the action of the operator V on the many body
state |x1, . . . xN 〉 is given by

V̂ |x1, x2, . . . xN 〉 =
∑

i<j

V (xi − xj)|x1, x2, . . . xN 〉 (5.74)

Solution: To prove this, we need the intermediate result

[V, ψ†(x)] =

∫
d3yV (x− y)ψ†(x)ρ(y). (5.75)

We now calulate

V |x1, . . . xN 〉 = V ψ†(xN ) . . . ψ†(x1)|0〉 (5.76)

by commuting V successively to the right until it annihilates with the vac-
uum. At each stage, we generate a “remainder term”. When we commute
it between the “jth” and the “j-1st” creation operator, we obtain

ψ†(xN ) . . . V ψ†(xj) . . . ψ
†(x1)|0〉 = ψ†(xN ) . . . ψ†(xj)V . . . ψ†(x1)|0〉 + Rj
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where the remainder is

Rj =

∫
d3yV (y − xj)ψ

†(xN ) . . . ψ†(xj)ρ(y) . . . ψ
†(x1)|0〉 (5.77)

By commuting the density operator to the right until it annihilates the
vacuum, the remainder term can be written

Rj =
∑

i<j

V (xi − xj)ψ
†(xN ) . . . ψ†(x1)|0〉. (no sum on j) (5.78)

When we commute V all the way from the right until it annihilates the
vacuum, our final answer is the sum of all these remainder terms,

V ψ†(xN ) . . . ψ†(x1)|0〉 =
∑

j=2,N

Rj

=
∑

i<j

V (xi − xj)|x1, x2 . . . xN 〉. (5.79)

In otherwords, the state |x1 . . . xN 〉 is an eigenstate of the interaction op-
erator, with eigenvalue given by the classical interaction potential energy.

To get another insight into the interaction, we shall now rewrite it in the momentum
basis. This is very useful in translationally invariant systems, where momentum is conserved
in collisions. Let us imagine we are treating fermions, with spin. The transformation to a
momentum basis is then Writing

ψσ(x) = “
∑

k

”〈x|k〉ckσ =

∫

k
ckσe

i(k·x)

ψσ(x) = “
∑

k

”c†kσ〈k|x〉 =

∫

k
c†kσe

−i(k·x) (5.80)

where {ckσ, c†k′σ′} = (2π)3δ3(k−k′)δσσ′ are canonical fermion operators and we have used
the short-hand notation ∫

k
=

∫
d3k

(2π)3
. (5.81)

We shall also Fourier transform the interaction

V (x− x′) =

∫

q
V (q)eiq·(x−x′). (5.82)

When we substitute these expressions into the interaction, we need to regroup the Fourier
terms so that the momentum integrals are on the outside, and the spatial integrals are on
the inside. Doing this, we obtain

V̂ =
1

2

∑

σσ′

∫

k1...k4, q
V (q) × c†k4σc

†
k3σ′ck2σ′ck1σ × spatial integrals (5.83)
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Figure 5.1: Scattering of two particles, showing transfer of momentum. q.

where the spatial integrals take the form
∫
d3x

∫
d3x′ei(k1−k4+q)·xei(k2−k3−q)·x′ = (2π)6δ(3)(k4 − k1 − q)δ(3)(k3 − k2 + q) (5.84)

which impose momentum conservation at each scattering event. Using the spatial integrals
to eliminate the integrals over k3 and k4, the final result is

V̂ =
1

2

∑

σσ′

∫

k1,2,q

d3q

(2π)3
V (q)c†k1+qσc

†
k2−qσ′ck2σ′ck1σ (5.85)

In other words, when the particles scatter at positions x and x′, momentum is conserved.
Particle 1 comes in with momentum k1, and transfers momentum q to particle 2. Particle
2 comes in with momentum k2, and thereby gains momentum q:

particle 1 k1 −→ k1 + q
particle 2 k2 −→ k2 − q

(5.86)

as illustrated in Fig. 5.1. The matrix element associated with this scattering process is
merely the Fourier transform of the potential V (q).

Example: Particles interact via a delta-function interaction V (x) = Ua3δ(3)(x).
Write down the second-quantized interaction in a momentum space repre-
sentation.

Solution: The Fourier transform of the interaction is

V (q) =

∫
d3xUa3δ(x)e−iq·x = Ua3 (5.87)

so the interaction in momentum space is

V̂ =
∑

σσ′

Ua3

2

∫

k1,2,q

d3q

(2π)3
c†k1−qσc

†
k2+qσ′ck2σ′ck1σ (5.88)

66



c©2004 P. Coleman Chapter 5.

Example: A set of fermions interact via a screened Coulomb (Yukawa)
potential

V (r) =
Ae−λr

r
(5.89)

Write down the interaction in momentum space.

Solution: The interaction in momentum space is given by

V̂ =
1

2

∑

σσ′

∫

k1,2,q

d3q

(2π)3
V (q)c†k1+qσc

†
k2−qσ′ck2σ′ck1σ (5.90)

where

V (q) =

∫
d3x

Ae−λr

r
e−iq·x (5.91)

To carry out this integral, we use Polar co-ordinates with the z-axis aligned
along the direction q̂. Writing q · x = qr cos θ, then d3x = r2dφd cos θ →
2πr2d cos θ, so that

V (q) =

∫
4πr2drV (r)

1

2

∫ 1

−1

d cos θ

︸ ︷︷ ︸
〈e−iq·x〉= sin qr

qr

e−iqr cos θ (5.92)

so that for an arbitrary spherically symmetric potential

V (q) =

∫ ∞

0

4πr2drV (r)

(
sin qr

qr

)
(5.93)

In this case,

V (q) =
4πA

q

∫ ∞

0

dre−λr sin(qr) =
4πA

q2 + λ2
, (5.94)

Notice that the Coulomb interaction,

V (r) =
e2

4πε0r
, (5.95)

is the infinite range limit of the Yukawa potential, with λ = 0, A = e2/4πεo,
so that for the Coulomb interaction,

V (q) =
e2

q2εo
. (5.96)

Example: If one transforms to a new one particle basis, writing ψ(x) =∑
s Φs(x)cs, show that the interaction becomes

V̂ =
1

2

∑

lmnp

c†lc
†
mcncp〈lm|V |pn〉 (5.97)
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where

〈lm|V |pn〉 =

∫

x,x′

Φ∗
l (x)Φp(x)Φ∗

m(x′)Φ∗
n(x′)V (x − x′) (5.98)

is the matrix element of the interaction between the two particle states |lm〉
and |pn〉.

Table. 5.1. First and Second Quantization .

First Quantization Second Quantization

Wavefn −→ Field
Operator

ψ(x) = 〈x|ψ〉 ψ̂(x)

Commutator [x, p] = ih̄ [ψ(x), ψ(x′)]± = δD(x− x′)

Density ρ(x) = |ψ(x)|2 ρ̂(x) = ψ̂†(x)ψ̂(x)

Arbitrary Basis ψλ = 〈λ|ψ〉 ψ̂λ

Change of Basis 〈s̃|ψ〉 =
∑
λ〈s̃|λ〉〈λ|ψ〉 âs =

∑
λ〈s̃|λ〉ψ̂λ

Orthogonality 〈λ|λ′〉 = δλλ′ [ψλ, ψ
†
λ′ ]± = δλλ′

One ptcle Energy p2

2m + U ψ†
(
− h̄2

2m + U(x)

)
ψ

Interaction
∑
i<j V (xi − xj) V̂ = 1

2

∫
x,x′ V (x− x′) : ρ̂(x)ρ̂(x′) :

= 1
2

∑
V (q)c†k+qc

†
k′−qck′ck

Many Body
Wavefunction

Ψ(x1, x2 . . . xN ) 〈0|ψ̂(x1) . . . ψ̂(xN )|0〉

Schrodinger Eqn
(∑Hi +

∑
i<j Vij

)
Ψ = ih̄Ψ̇ [H(0) +

∫
x′ ρ(x

′)V (x′ − x)]ψ(x) = ih̄ψ̇(x)

Table 5.1 summarizes the main points of second-quantization.

5.7 Identical Conserved Particles in Thermal Equilibrium

5.7.1 Generalities

By quantizing the particle field, we have been led to a version of quantum mechanics with
a vastly expanded Hilbert space which includes the vacuum and all possible states with
an arbitrary number of particles. An exactly parallel development occurs in statistical
thermodynamics, in making the passage from a canonical, to a grand canonical ensemble,
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Figure 5.2: Illustrating equilibrium between a small system and a large heat bath. Inset
illustrates how the number of states with energy Eλ, particle number Nλ is proportional to
the density of states in the big system.

where systems are considered to be in equilibrium with a heat and particle bath. Not
surprisingly then, second quantization provides a beautiful way of treating a grand canonical
ensemble of identical particles.

When we come to treat conserved particles in thermal equilibrium, we have to take into
the account the conservation of two independent quantities

• Energy. E

• Particle number. N

When we consider an ensemble of small systems, in equilibrium with a heat bath, we must
now consider the possibility of an exchange of both energy, and particles with the heat bath,
as shown in Fig. 5.2. Suppose our system of interest is in equilibrium with a huge heat and
particle bath. In the huge heat and particle bath, the energy levels are so close together,
that they behave almost as a continuum. The density of states per unit energy and particle
number is taken to be g(E,N), where E is the energy and N the number of particles in
the bath. Suppose that the total number of particles and energy are E and N respectively.
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When the system is in a quantum state |λ〉 with energy Eλ, particle number Nλ, the large
system has energy E −Eλ, particle number N −Nλ.

The probability that the small system is in state |λ〉 is then given by

p(Eλ, Nλ) ∝ g(E −Eλ, N −Nλ) = elng(E−Eλ,N−Nλ) (5.99)

In the heat bath, we assum that the logarithm of the density of states is a smoothly varying
function of energy and particle number, so that we may expand it around E and N , writing

lng(E −Eλ, N −Nλ) = lng(E,N) −Eλ
∂lng

∂E
−Nλ

∂lng

∂N
+ . . . (5.100)

We define the two quantities

∂lng

∂E
= β =

1

kBT
,

∂lng

∂N
= − µ

kBT
. (5.101)

These are the two Lagrange multipliers associated with the conservation of energy and
particle number. It is only later, after calculating some physical quantities, that one can
physically identify T as the temperature, and µ as the chemical potential. Once we have
made this expansion, it follows that the probability to be in state |λ〉 is

pλ =
1

Z
e−β(Eλ−µNλ) (5.102)

where now the normalizing partition function can be written

Z =
∑

λ

e−β(Eλ−µNλ)

=
∑

λ

〈λ|e−β(Ĥ−µN̂)|λ〉 = Tr[e−β(Ĥ−µN̂)] (5.103)

Finally, we can go to a position independent basis by noting that if A is a quantity that is
diagonal in the state |λ〉, then the expectation value of A in the ensemble is

〈A〉 =
∑

λ

pλ〈λ|Â|λ〉 = Tr[ρ̂Â] (5.104)

where we have elevated the probability distribution pλ to an operator- the density matrix:

ρ̂ =
∑

λ

|λ〉pλ〈λ| = Z−1e−β(Ĥ−µN̂) (5.105)

A central assumption of quantum statistical mechanics , is that (5.104) holds for all observ-
able quantities represented by an operator Â, whether or not the quantity is diagonal in
the basis of energy and particle number eigenstates.
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5.7.2 Identification of the Free energy: Key Thermodynamic Properties

There are a number of key thermodynamic quantities of great interest: the energy E, the
particle number N , the entropy S and the Free energy F = E − ST − µN . One of the key
relations from elementary thermodynamics is that

dE = TdS − µdN − PdV (5.106)

By putting F = E − TS − µN , dF = dE − dTS − SdT − µdN −Ndµ, one can also derive

dF = −SdT −Ndµ− PdV (5.107)

a relationship of great importance.

The energy and particle number can be easily written in the language of second-
quantization as

E = Tr[Ĥρ̂],
N = Tr[N̂ ρ̂], (5.108)

but what about the entropy? From statistical mechanics, we know that the general expres-
sion for the entropy is given by

S = −kB
∑

λ

pλlnpλ (5.109)

Now since the diagonal elements of the density matrix are pλ, we can rewrite this expression
as

S = −kBTr[ρ̂lnρ̂] (5.110)

If we substitute lnρ̂ = −β(Ĥ − µN̂) − lnZ into this expression, we obtain

S =
1

T
Trρ̂(H − µN) − kBT lnZ

=
1

T
(E − µN) + kB lnZ (5.111)

i.e −kBT lnZ = E − ST − µN , from which we identify

F = −kBT lnZ (5.112)

as the Free energy. Summarizing these key relationships all together, we have

Thermodynamic Relations
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F = −kBT lnZ, Free energy

Z = Tr[e−β(Ĥ−µN̂)], Partition function

ρ̂ =
e−β(Ĥ−µN̂)

Z
, Density Matrix

N = Tr[N̂ ρ̂] = −∂F
∂µ Particle number

S = −kBTr[ρ̂lnρ̂] = −∂F
∂T Entropy

P = − ∂F
∂V , Pressure

E − µN = Tr[(Ĥ − µN̂)ρ̂],= −∂Z
∂β Energy

(5.113)

Notice how, in this way, all the key thermodynamic properties can be written as appropriate
derivatives of Free energy.

Example (i) Enumerate the energy eigenstates of a single fermion Hamil-
tonian.

H = εc†c (5.114)

where {c, c†} = 1, {c, c} = {c†, c†} = 0. (ii) Calculate the number of
fermions at temperature T .

Solution (i) The states of this problem are the vacuum state and the one-
particle state

|0〉 E = 0,
|1〉 = c†|0〉, E = ε.

(5.115)

(ii) The number of fermions at temperature T is given by

〈n̂〉 = Tr[ρ̂n̂] (5.116)

where n̂ = c†c,

ρ = e−β(Ĥ−µN̂)/Z (5.117)

is the density matrix, and where

Z = Tr[e−β(H−µN)] (5.118)

is the “partition function”. For this problem, we can write out the matrices
explicitly.

e−βH =

[
1 0
0 e−β(ε−µ)

]
, n̂ =

[
0 0
0 1

]
(5.119)

so that
Z = 1 + e−β(ε−µ) (5.120)
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and
Tr[n̂e−βH ] = e−β(ε−µ) (5.121)

The final result is thus

〈n̂〉 =
e−β(ε−µ)

1 + e−β(ε−µ)
=

1

eβ(ε−µ) + 1
(5.122)

which is the famous Fermi-Dirac function for the number of fermions in a
state of energy ε, chemical potential µ.

Example: (i) Show that for a general system of conserved particles at
chemical potential, the total particle number in thermal equilibrium can be
written as

N = −∂F/∂µ (5.123)

where

F = −kBT lnZ

Z = Tr[e−β(Ĥ−µN)]. (5.124)

(ii) Apply this to a single bosonic energy level, where

H − µN = (ε− µ)a†a (5.125)

and â† creates either a Fermion, or a boson, to show that

〈n̂〉 =
1

eβ(ε−µ) − 1
(5.126)

Why does µ have to be negative positive for bosons?

5.7.3 Independent Particles

In a system of independent particles with many energy levels, ελ each energy level can be
regarded as an independent member of a microcanonical ensemble. Formally, this is because
the Hamiltonian is a sum of independent Hamiltonians

H − µN =
∑

λ

(ελ − µ)n̂λ (5.127)

so that the partition function is then a product of the individual partition functions:

Z = Tr[
∏

λ ⊗
e−β(ελ−µ)n̂λ ] (5.128)

and since the trace of an (exterior) product of matrices, is equal to the product of their
individual traces, (Tr

∏
λ⊗ =

∏
λTr),

Z =
∏

λ

Tr[e−β(ελ−µ)n̂λ ] =
∏

λ

Zλ (5.129)

73



Chapter 5. c©P. Coleman 04

Since

Zλ =

{
1 + e−β(ελ−µ) Fermions

1 + e−β(ελ−µ) + e−2β(ελ−µ) + . . . = (1 − e−β(ελ−µ))−1 Bosons
(5.130)

The corresponding Free energy is given by

F = ∓kBT
∑

λ

ln[1 ± e−β(ελ−µ)],

{
fermions
bosons

(5.131)

The occupancy of the l th level is independent of all the other levels, and given by

〈n̂l〉 = Tr[ρ̂n̂l] = Tr[(
∏

⊗
ρ̂λ)n̂l]

=
∏

λ6=l

=1︷ ︸︸ ︷
Tr[ρλ]×Tr[ρln̂l] =

1

eβ(εl−µ) ± 1
(5.132)

where (+) refers to Fermions and (−) to bosons.
In the next chapter, we shall examine the consequences of these relationships.

5.8 Exercises for chapter 5

1. In this question ci
† and ci are fermion creation and annihilation operators and the states are

fermion states. Use the convention

|11111000 . . .〉 = c5
†c4†c3†c2†c1†|vacuum〉.

(i) Evaluate c3
†c6c4c6†c3|111111000 . . .〉.

(ii) Write |1101100100 . . .〉 in terms of excitations about the “filled Fermi sea” |1111100000 . . .〉
. Interpret your answer in terms of electron and hole excitations.

(iii) Find 〈ψ|N̂ |ψ〉 where |ψ〉 = A|100〉 +B|111000〉, N̂ =
∑

i ci
†ci.

2. (a) Consider two fermions, a1 and a2. Show that the Boguilubov transformation

c1 = ua1 + va†2
c†2 = −va1 + ua†2 (5.133)

where u and v are real, preserves the canonical anti-commutation relations if u2 + v2 = 1.

(b) Use this result to show that the Hamiltonian

H = ε(a†1a1 − a2a2
†) + ∆(a†1a

†
2 + H.c.) (5.134)

can be diagonalized in the form

H =
√
ε2 + ∆2(c†1c1 + c†2c2 − 1) (5.135)

(c) What is the ground-state energy of this Hamiltonian?
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3. Show that for a general system of conserved particles at chemical potential, the total particle
number in thermal equilibrium can be written as

N = −∂F/∂µ (5.136)

where

F = −kBT lnZ

Z = Tr[e−β(Ĥ−µN)]. (5.137)

(ii) Apply this to a single bosonic energy level, where

H − µN = (ε− µ)a†a (5.138)

and â† creates either a Fermion, or a boson, to show that

F = ±kBT ln[1 ∓ e−β(ε−µ)]

〈n̂〉 =
1

eβ(ε−µ) ∓ 1
(5.139)

where the upper sign refers to bosons, the lower, to fermions. Sketch the occupancy as a
function of ε for the case of fermions and bosons. Why does µ have to be negative for bosons?

4. Consider a system of fermions or bosons, created by the field ψ†(~r) interacting under the
potential

V (r) =

{
U, (r < R),
0, (r > R),

(5.140)

(i) Write the interaction in second quantized form.

(ii) Switch to the momentum basis, where ψ(~r) =
∫

d3k
(2π)3 c~ke

i~k·~r. Verify that [c~k, c
†
~k′ ]± =

(2π)3δ(3)(~k − ~k′), and write the interaction in this new basis. Please sketch the form of the
interaction in momentum space.
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Chapter 6

Simple Examples of
Second-quantization

In this section, we give three examples of the application of second quantization, mainly to
non-interacting systems.

6.1 Jordan Wigner Transformation

A “non-interacting” gas of Fermions is still highly correlated: the exclusion principle intro-
duces a “hard-core” interaction between fermions in the same quantum state. This feature
is exploited in the Jordan -Wigner representation of spins. A classical spin is represented
by a vector pointing in a specific direction. Such a representation is fine for quantum spins
with extremely large spin S, but once the spin S becomes small, spins behave as very new
kinds of object. Now their spin becomes a quantum variable, subject to its own zero-point
motions. Furthermore, the spectrum of excitations becomes discrete or grainy.

Quantum spins are notoriously difficult objects to deal with in many-body physics,
because they do not behave as canonical fermions or bosons. In one dimension however,
it turns out that spins with S = 1/2 actually behave like fermions. We shall show this by
writing the quantum spin-1/2 Heisenberg chain as an interacting one dimensional gas of
fermions, and we shall actually solve the limiting case of the one-dimensional spin-1/2 x-y
model.

Jordan and Wigner noticed that the down and up state of a single spin can be thought
of as an empty or singly occupied fermion state, (Fig. 6.1.) enabling them to make the
mapping

| ↑〉 ≡ f †|0〉, | ↓〉 ≡ |0〉. (6.1)

.

An explicit representation of the spin raising and lowering operators is then

S+ = f † =

[
0 1
0 0

]
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Figure 6.1: Showing how the “up” and “down” states of a spin-1/2 can be treated as a one
particle state which is either full, or empty.

S− = f ≡
[
0 0
1 0

]
(6.2)

The z component of the spin operator can be written

Sz =
1

2

[
| ↑〉〈↑ | − | ↓〉〈↓ |

]
≡ f †f − 1

2
(6.3)

We can also reconstruct the transverse spin operators,

Sx =
1

2
(S+ + S−) =

1

2
(f † + f),

Sy =
1

2i
(S+ − S−) =

1

2i
(f † − f), (6.4)

The explicit matrix representation of these operators makes it clear that they satisfy the
same algebra

[Sa, Sb] = iεabcSc. (6.5)

Curiously, due to a hidden supersymmetry, they also satisfy an anti-commuting algebra

{Sa, Sb} =
1

4
{σa, σb} =

1

2
δab, (6.6)

and in this way, the Pauli spin operators provided Jordan and Wigner with an elementary
model of a fermion.

Unfortunately the represeentation needs to be modified if there is more than one spin,
for independent spin operators commute, but independent fermions anticommute! Jordan
and Wigner discovered a way to fix up this difficulty in one dimension by attaching a phase
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factor called a “string” to the fermions. For a chain of spins in one dimension, the Jordan
Wigner representation of the spin operator at site j is defined as

S+
j = fj

†eiφj (6.7)

where the phase operator φj contains the sum over all fermion occupancies at sites to the
left of j,

φj = π
∑

l<j

nj (6.8)

The complete transformation is then

Szj = f †jfj − 1
2 ,

S+
j = f †je

iπ
∑

l<j
nj ,

S−j = fje
iπ
∑

l<j
nj





Jordan Wigner transformation (6.9)

Notice how the sign infront of the phase factor does not matter. The important point
in this representation, is that the operator eiπnj anticommutes with the fermion operators
at the same site:

{eiπnj , f (†)
j } = eiπnjf

(†)
j + f

(†)
j eiπnj = (−)[f

(†)
j − f

(†)
j ] = 0 (6.10)

so that by multiplying a fermion by the string operator, one changes it from a fermion,
into a boson. We can verify that the transverse spin operators now satisfy the correct
commutation algebra. Suppose j < k, then eiφj commutes with both fj and fk. eiφk

commutes with fk, but it contains eiπnj , which does not commute with fj or f †j. Thus we
may write

[S
(±)
j , S

(±)
k ] = [f

(†)
j eiφj , f

(†)
k eiφk ]

= [f
(†)
j , f

(†)
k eiπnj ]

= {f (†)
j , f

(†)
k }eiπnj − f

(†)
k {f (†)

j , eiπnj} = 0. (6.11)

To see how this works, we shall now discuss the one-dimensional Heisenberg model

H = −J
∑

[Sxj S
x
j+1 + Syj S

y
j+1] − Jz

∑

j

SzjS
z
j+1 (6.12)

In real magnetic systems, local moments can interact via ferromagnetic, or antiferromagnetic
interactions. Ferromagnetic interactions generally arise as a result of “direct exchange”,
whereby the Coulomb repulsion energy is lowered when electrons are in a triplet state, be-
cause the wavefunction is then spatially antisymmetric. Antiferromagnetic interactions are
generally produced by the mechanism of “double exchange”, whereby electrons in antipar-
allel spin states can lower their energy by undergoing virtual fluctuations into high energy
states where two electrons occupy the same orbital. Here we have written the model as if
the interactions are ferromagnetic.

81



Chapter 6. c©P. Coleman 04

For convenience, the model can be rewritten as

H = −J
2

∑
[S+
j+1S

−
j + H.c] − Jz

∑

j

SzjS
z
j+1 (6.13)

To fermionize the first term, we note that all terms in the strings cancel, except for a eiπnj

which has no effect,

J

2

∑

j

S+
j+1S

−
j =

J

2

∑

j

fj+1
†eiπnjfj =

J

2

∑

j

fj+1
†fj (6.14)

so that the transverse component of the interaction induces a “hopping” term in the fermion-
ized Hamiltonian. Notice that the string terms would enter if the spin interaction involved
next-nearest neighbors. The z-component of the Hamiltonian becomes

−Jz
∑

j

Szj+1S
z
j = −Jz

∑

j

(nj+1 −
1

2
)(nj −

1

2
) (6.15)

Notice how the Ferromagnetic interaction means that spin-fermions attract one-another.
The transformed Hamiltonian is then

H = −J
2

∑

j

(f †j+1fj + f †jfj+1) + Jz
∑

j

nj − Jz
∑

j

njnj+1. (6.16)

Interestingly enough, the pure x-y model has no interaction term in it, so we can solve this
case as a non-interacting fermion problem.

To write out the fermionized Hamiltonian in its most compact form, let us transform to
momentum space, writing

fj =
1√
N

∑

k

ske
ikRj (6.17)

where s†k creates a spin excitation in momentum space, with momentum k. In this case,
the one-particle terms become

Jz
∑

j

nj = Jz
∑

k

s†ksk.

−J
2

∑

j

(f †j+1fj + H.c) = − J

2N

∑

k

(e−ika + eika)s†ksk′

Nδkk′︷ ︸︸ ︷∑

j

e−i(k−k
′)Rj

= −J
∑

k

cos(ka)s†ksk. (6.18)

The Heisenberg Hamiltonian can thus be written

H =
∑

k

ωks
†
ksk − Jz

∑

j

njnj+1 (6.19)
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where

ωk = (Jz − J cos ka) (6.20)

defines a magnon excitation energy, and the second interaction term is still written in the
position basis. We can easily cast the second-term in momentum space, by noticing that the
interaction is a function of i−j which is −Jz/2 for i−j = ±1 but zero otherwise.The Fourier
transform of this short-range interaction is V (q) = −Jz cos qa, so that Fourier transforming
the interaction term gives

H =
∑

k

ωks
†
ksk −

Jz
Ns

∑

k,k′,q

cos(qa) s†k−qs
†
k′+qsk′sk. (6.21)

This transformation holds for both the ferromagnet and antiferromagnet. In the former
case, the fermionic spin excitations corrrespond to the magnons of the ferromagnet. In the
latter case, the fermionic spin excitations are often called “spinons”.

To see what this Hamiltonian means, let us first neglect the interactions. This is a
reasonable thing to do in the limiting cases of (i) the Heisenberg Ferromagnet, Jz = J and
(ii) the x-y model Jz = 0 .

Heisenberg Ferromagnet

0

2J

/a

ωq

/a−π πq

Goldstone mode.

Figure 6.2: Excitation spectrum of the one dimensional Heisenberg Ferromagnet.

• Heisenberg Ferromagnet. Jz = J

In this case, the spectrum

ωk = 2J sin2(ka/2) (6.22)

83



Chapter 6. c©P. Coleman 04

is always positive, so that there are no magnons present in the ground-state. The
ground-state thus contains no magnons, and can be written

|0〉 = | ↓↓↓ . . .〉 (6.23)

corresponding to a state with a spontaneous magnetization M = −Ns/2.

Curiously, since ωk=0 = 0, it costs no energy to add a magnon of arbitrarily long
wavelength. This is an example of a Goldstone mode, and the reason it arises, is
because the spontaneous magnetization could actually point in any direction. Suppose
we want to rotate the magnetization through an infinitesimal angle δθ about the x
axis, then the new state is given by

|ψ〉′ = eiδθSx | ↓↓ . . .〉
= | ↓↓ . . .〉 + i

δθ

2

∑

j

S+
j | ↓↓ . . .〉 +O(δθ2) (6.24)

The change in the wavefunction is proportional to the state

S+
TOT | ↓↓ . . .〉 ≡

∑

j

fj
†eiφj |0〉

=
∑

j

fj
†|0〉 =

√
Nss

†
k=0|0〉 (6.25)

In otherwords, the action of adding a single magnon at q = 0, rotates the magnetiza-
tion infinitesimally upwards. Rotating the magnetization should cost no energy, and
this is the reason why the k = 0 magnon is a zero energy excitation.

• x-y Ferromagnet As Jz is reduced from J , the spectrum develops a negative part, and
magnon states with negative energy will become occupied. For the pure x− y model,
where Jz = 0, the interaction identically vanishes, and the excitation spectrum of the
magnons is given by ωk = −J cos ka as sketched in Fig. 6.3. All the negative energy
fermion states with |k| < π/2a are occupied, so the ground-state is given by

|Ψg〉 =
∏

|k|<π/2a
s†k|0〉 (6.26)

The band of magnon states is thus precisely half-filled, so that

〈Sz〉 = 〈nf −
1

2
〉 = 0 (6.27)

so that remarkably, there is no ground-state magnetization. We may interpret this
loss of ground-state magnetization as a consequence of the growth of quantum spin
fluctuations in going from the Heisenberg, to the x-y ferromagnet.

Excitations of the ground-state can be made, either by adding a magnon at wavevec-
tors |k| > π/2a, or by annihilating a magnon at wavevectors |k| < π/2a, to form a
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0

0

x-y Ferromagnet

Occupied
states

particles

holes

-J

J

/2a /a/2a−π

q

π

qω

π/a−π

Figure 6.3: Excitation spectrum of the one dimensional x-y Ferromagnet, showing how the
negative energy states are filled, the negative energy dispersion curve is “folded over” to
describe the positive hole excitation energy.

“hole”. The energy to form a hole is −ωk. To represent the hole excitations, we make
a “particle-hole” transformation for the occupied states, writing

s̃k =

{
sk, (|k| > π/2a),

s†−k, (|k| < π/2a)
(6.28)

These are the “physical” excitation operators. Since s†ksk = 1 − sks
†
k, the Hamilto-

nian of the pure x-y ferromagnet can be written

Hxy =
∑

k

J | cos ka|(s̃†ks̃k −
1

2
) (6.29)

Notice that unlike the pure Ferromagnet, the magnon excitation spectrum is now
linear. The ground-state energy is evidently

Eg = −1

2

∑

k

J | cos ka|

= −a
2

∫ π/2a

−π/2a

dk

2π
J cos(ka) = −J

π
. (6.30)

But if there is no magnetization, why are there zero-energy magnon modes at q =
±π/a? Although there is no true long-range order, it turns out that the spin-
correlations in the x-y model display power-law correlations with an infinite spin
correlation length, generated by the gapless magnons in the vicinity of q = ±π/a.
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6.2 The Hubbard Model

In a real electronic systems, such as a metallic crystal at first sight it might appear to
be a task of hopeless complexity to model the behavior of the electron fluid. Fortunately,
even in complex systems, at low energies only a certain subset of the electronic degrees of
freedom are excited. This philosophy is closely tied up with the idea of renormalization-
the idea that the high energy degrees of freedom in a system can be successively eliminated
or “integrated out” to reveal an effective Hamiltonian that describes the important low
energy physics. One such model, which has enjoyed great success, is the Hubbard model,
first introduced in the early sixties.

Suppose we have a lattice of atoms where electrons are almost localized in atomic orbitals
at each site. In this case, we can use a basis of atomic orbitals. The operator which creates
a particle at site j is

c†jσ =

∫
d3xΦ(x−Rj)ψ

†(x)σ (6.31)

where Φ(x) is the wavefunction of a particle in the localized atomic orbital. In this basis, the
Hamiltonian governing the motion, and interactions between the particles can be written
quite generally as

H =
∑

i,j

〈i|Ho|j〉c†iσcjσ +
1

2

∑

lmnp

〈lm|V |pn〉c†lσc†mσ′cnσ′cpσ (6.32)

where 〈i|Ho|j〉 is the one-particle matrix element between states i and j, and 〈lm|V |pn〉 is
the interaction matrix element between two-particle states |lm〉 and |pn〉.

Let us suppose that the energy of an electron in this state is ε. If this orbital is highly
localized, then the amplitude for it to tunnel or “hop” between sites will decay exponentially
with distance between sites, and to a good approximation, we can eliminate all but the
nearest neighbor hopping. In this case, the one-particle matrix elements which govern the
motion of electrons between sites are then

〈j|H(o)|i〉 =





ε j = i
−t i, j nearest neighbors
0 otherwise

(6.33)

The hopping matrix element between neigboring states will generally be given by an overlap
integral of the wavefunctions with the negative crystalline potential, and for this reason, it
is taken to be be negative. Now the matrix element of the interaction between electrons at
different sites will be given by

〈lm|V |pn〉 =

∫

x,x′
Φ∗l (x)Φp(x)Φ

∗
m(x′)Φ∗n(x

′)V (x− x′), (6.34)

but in practice, if the states are well localized, this will be dominated by the onsite inter-
action between two electrons in a single orbital, so that we may approximate

〈lm|V |pn〉 =

{
U i = j = m = n
0 otherwise

(6.35)
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E
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Figure 6.4: Illustrating the Hubbard Model. When two electrons of opposite spin occupy a
single atom, this gives rise to a Coulomb repulsion energy U . The amplitude to hop from
site to site in the crystal is t.

In this situation, the interaction between the interaction term in (6.32) simplifies to

U

2

∑

j,σσ′

c†jσc
†
jσ′cjσ′cjσ = U

∑

j

nj↑nj↓, (6.36)

where the exclusion principle (c2jσ = 0) means that the interaction term vanishes unless σ
σ′ are opposite spins. The Hubbard model can be thus be written

H = −t
∑

j,â,σ

[c†j+âσcjσ + H.c] + ε
∑

jσ

c†jσcjσ + U
∑

j

nj↑nj↓, (6.37)

where njσ = c†jσcjσ represents the number of electrons of spin σ at site j. For completeness,
let us rewrite this in momentum space, putting

cjσ =
1√
Ns

∑

k

ckσe
ik·Rj (6.38)

whereupon

H =
∑

kσ

εkc
†
kσckσ +

U

Ns

∑

q,k,k′

c†k−q↑c
†
k′+q↓c

†
k′↓c

†
k↑ (6.39)

Hubbard model
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where

εk =
∑

i

〈j + Ri|Ho|j〉eik·Ri

= −2t(cos kx + cos ky + cos kz) + ε (6.40)

is recognized as the kinetic energy of the electron excitations which results from their
coherent hopping motion from site to site. We see that the Hubbard model describes a
band of electrons with kinetic energy εk, and a momentum independent “point” interaction
of strength U between particles of opposite spin.

Remark

• This model has played a central part in the theory of magnetism, metal-insulator tran-
sitions, and most recently, in the description of electron motion in high temperature
superconductors. With the exception of one dimensional physics, we do not, as yet
have a complete understanding of the physics that this model can give rise to. One
prediction of the Hubbard model which is established, is that under certain circum-
stances, if interactions become too large the electrons become localized to form what
is called “Mott insulator”. This typically occurs when the interactions are large and
the number of electrons per site is close to one. What is very unclear at the present
time, is what happens to the Mott insulator when it is doped, and there are many
who believe that a complete understanding of the doped Mott insulator will enable
us to understand high temperature superconductivity.

6.3 Gas of charged particles

6.3.1 Link with first quantization

As a final example, we should like to briefly consider an interacting gas of charged particles.
The second-quantized Hamiltonian for this case is

H =

Ho︷ ︸︸ ︷
∑

σ

∫

x
ψσ
†
[
− h̄

2∇2

2m
+ U(x) − µ

]
ψσ(x) +

V̂︷ ︸︸ ︷
1

2

∑

σσ′

∫

x,x′
V (x− x′) : ρ̂(x)ρ̂(x′) : . (6.41)

where
∫
x ≡ ∫

d3x, and by convention, we work in the Grand Canonical ensemble, subtracting
the term µN from the Schrödinger Hamiltonian HS , H = HS − µN to take account of the
Grand Canoncial ensemble. For a Coulomb interaction

V (x− x′) =
e2

4πεo|x− x′| (6.42)
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but the interaction might have a more general form, as in the case of a fluid of He − 3
fermions or He − 4 bosons. One can not underestimate the hidden subtleties behind this
Hamiltonian! As far as we know for example, it is an essentially complete many body
description of the electronic motions of electrons in any electronic medium, even your mind!

Let us now develop the equations of motion for this Hamiltonian, and confirm that using
it, we can fully recover the first quantized approach to many body physics. The equation
of motion for the Fermi field is given by

ih̄
∂ψσ
∂t

= −[H,ψσ ] (6.43)

Now we can divide the Hamiltonian up into a one-particle part and an interaction. Using
the general relations

[ψσ′
†(x′)Ox′ψσ′(x

′), ψσ(x)] = −δσσ′δ3(x− x′)Oxψσ(x),
: [ρ(x1)ρ(x2), ψσ(x)] : = : [ρ(x1), ψσ(x)]ρ(x2) : + : ρ(x1)[ρ(x2), ψσ(x)] :

= −δ3(x1 − x)ρ(x2)ψσ(x) − δ3(x2 − x)ρ(x1)ψσ(x)

we can see that the comutators of the one- and two-particle parts of the Hamiltonian with
the field operators are

−[Ho, ψσ(x)] =

[
− h̄

2∇2

2m
+ U(x) − µ

]
ψσ(x)

−[V, ψσ(x)] =

∫
d3x′V (x′ − x)ρ(x′)ψσ(x) (6.44)

The final equation of motion of the field operator thus resembles a one-particle Schrodinger
equation.

ih̄
∂ψσ
∂t

=

[
− h̄

2∇2

2m
+ U(x) − µ

]
ψσ(x) +

∫
d3x′V (x′ − x)ρ(x′)ψσ(x) (6.45)

If we now apply this to the many body wavefunction, we obtain

ih̄
∂Ψ(1, 2, . . . N)

∂t
= ih̄

∑

r=1,2S

〈0|ψ(1) . . . ∂tψ(r) . . . ψ(N)|Ψ〉

=
∑

j

[
−
h̄2∇2

j

2m
+ U(xj) − µ

]
Ψ

+
∑

j

∫
d3x′V (x′ − xj)〈0|ψ(1) . . . ρ(x′)ψσ(xj) . . . ψ(N)|Ψ〉

By commuting the density operator to the left, until it annihilates with the vacuum, we
find that

〈0|ψ(1) . . . ρ(x′)ψσ(xj) . . . ψ(N)|Ψ〉 =
∑

l<j

δ3(x′ − xl)〈0|ψ(1) . . . ψ(N)|Ψ〉 (6.46)
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so that the final expression for the time evolution of the many body wavefunction is precisely
the same as we obtain in a first quantized approach.

ih̄
∂Ψ

∂t
=


∑

j

H(o)
j +

∑

l<j

Vjl


Ψ (6.47)

Our second-quantized approach has many advantages- it builds in the exchange statistics,
and it does not need to make an explicit reference to the cumbersome many body wave-
function.

6.4 Non-interacting particles in thermal equilibrium

k

n

k

kn k

z

xk

yk

kz

k

k

k

FERMIONS

Fermi Surface

y

k F

x

ykF

Condensate

BOSONS

Figure 6.5: Contrasting the ground-states of non-interacting Fermions and non-interacting
Bosons. Fermions form a degenerate Fermi gas, with all one-particle states below the Fermi
energy individually occupied. Bosons form a Bose Einstein condensate, with a macroscopic
number of bosons in the zero momentum state.

Before we start to consider the physics of the interacting problem, let us go back and
look at the ground-state properties of free particles. What is not commonly recognized, is
that the ground-state of non-interacting, but identical particles is in fact, a highly correlated
many body state. For this reason, the non-interacting ground-state has a robustness that
does not exist in its classical counterpart. In the next chapter, we shall embody some of
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these thoughts in by considering the action of turning on the interactions adiabatically. For
the moment however, we shall content ourselves with looking at a few of the ground-state
properties of non-interacting gases of identical particles.

In practice, quantum effects will influence a fluid of identical particles at the point
where their characteristic wavelength is comparable with the separation between particles.
At a temperature T the rms momentum of particles is given by p2

RMS = 3mkBT , so that
characteristic de Broglie wavelength is given by

λT =
h√
p2
RMS

=
h√

3mkBT
(6.48)

so that when λT ∼ ρ−1/3, the characteristic temperature is of order

kBT
∗ ∼ h̄2ρ2/3

2m
(6.49)

Below this temperature, identical particles start to interfere with one-another, and a quantum-
mechanical treatment of the fluid becomes necessary. In a Fermi fluid, exclusion statistics
tends to keep particles apart, enhancing the pressure, whereas for a Bose fluid, the corre-
lated motion of particles in the condensate tends to lower the pressure, ultimately causing it
to vanish at the Bose Einstein condensation temperature. In electron fluids inside materials,
this characteristic temperature is two orders of magnitude larger than room temperature,
which makes the electricity one of the most dramatic examples of quantum physics in ev-
eryday phenomena!

6.4.1 Fluid of non-interacting Fermions

The thermodynamics of a fluid of fermions leads to the concept of a “degenerate Fermi
liquid”, and it is important in a wide range of physical situations, such as

• The ground-state and excitations of metals.

• The low energy physics of liquid Helium 3.

• The degenerate Fermi gas of neutrons, electrons and protons that lies within a neutron
star.

The basic physics of each of these cases, can to a first approximation be described by a fluid
of non-interacting Fermions, with Hamiltonian

H = HS − µN =
∑

kσ

(Ek − µ)c†kσckσ (6.50)

Following the general discussion of the last section, the Free energy of such a fluid of fermions
is is described by a single Free energy functional

F = −kBT
∑

kσ

ln[1 + e−β(Ek−µ)]
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= −2kBTV

∫

k
ln[1 + e−β(Ek−µ)] (6.51)

where we have taken the thermodnamic limit, replacing
∑

kσ → 2V
∫
k. By differentiating

F with respect to volume, temperature and chemical potential, we can immediately derive
the pressure, entropy and particle density of this fluid. Let us however, begin with a more
physical discussion.

In thermal equilibrium the number of fermions in a state with momentum p = h̄k is

nk = f(Ek − µ) (6.52)

where

f(x) =
1

eβx + 1
(6.53)

is the Fermi-Dirac function. At low temperatures, this function resembles a step, with a
jump in occupancy spread over an energy range of order kBT around the chemical potential.
At absolute zero f(x) → θ(−x), so that the occupancy of each state is given by

nk = θ(µ−Ek) (6.54)

is a step function with an abrupt change in occupation when ε = µ, corresponding to the fact
that states with Ek < µ, are completely occupied, and states above this energy are empty.
The zero-temperature value of the chemical potential is often called the “Fermi energy”. In
momentum space, the occupied states form a sphere, whose radius in momentum space, kF
is often refered to as the Fermi momentum.

The ground-state corresponds to a state where all fermion states with momentum k < kF
are occupied:

|ψg〉 =
∏

kσ

c†kσ|0〉 (6.55)

Excitations above this ground-state are produced by the addition of particles at energies
above the Fermi wavevector, or the creation of holes beneath the Fermi wavevector. To
describe these excitations, we make the following particle-hole transformation

a†kσ =

{
c†kσ (k > kF ) particle

σc−k−σ (k > kF ) hole
(6.56)

Beneath the Fermi surface, we must replace c†kσckσ → 1 − a†kσakσ, so that in terms of
particle and hole excitations, the Hamiltonian can be re-written

H − µN =
∑

kσ

|(Ek − µ)|a†kσakσ + Fg (6.57)

where respectively,

Fg =
∑

|k|<kF ,σ
(Ek − µ) = 2V

∫

|k|<kF
(Ek − µ), (6.58)
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is the ground-state Free energy, and Eg and N are the ground-state energy and particle
number. Notice that

• To create a hole with momentum k and spin σ, we must destroy a fermion with
momentum −k and spin −σ. (The additional multiplying factor of σ in the hole
definition is a technical feature, required so that the particle and holes have the same
spin operators.)

• The excitation energy of a particle or hole is given by ε∗k = |Ek−µ|, corresponding to
“reflecting” the excitation spectrum of the negative energy fermions about the Fermi
energy.

The ground-state density of a Fermi gas is given by the volume of the Fermi surface, as
follows

〈ρ̂〉 =
1

V

∑

kσ

〈c†kσckσ〉 = 2

∫

k<kF

d3k

(2π)3
=

2

(2π)3
VFS (6.59)

where

VFS =
4π

3
k3
F =

(
4π

3

)(
2mεF

h̄2

)3/2

(6.60)

is the volume of the Fermi surface. The relationship between the density of particles, the
Fermi wavevector and the Fermi energy is thus

〈N̂
V
〉 =

1

3π2
k3
F =

1

3π2

(
2mεF

h̄2

)3/2

(6.61)

In an electron gas, where the characteristic density is N/V ∼ 1029m−3 the characteristic
Fermi energy is of order 1eV ∼ 10, 000K. In other words, the characteristic energy of an
electron is two orders of magnitude larger than would be expected classically. This is a
stark and dramatic consequence of the exchange interference between identical particles,
and it is one of the great early triumphs of quantum mechanics to have understood this
basic piece of physics.

Let us briefly look at finite temperatures. Here, by differentiating the Free energy with
respect to volume and chemical potential, we obtain

P = −∂F
∂V

=
−F
V

= 2

∫

k
ln[1 + e−β(Ek−µ)]

N = −∂F
∂µ

= 2

∫

k
f(Ek − µ) (6.62)

The second equation defines the chemical potential in terms of the particle density at a
given temperature. The first equation shows that, since the Free energy is an extensive

93



Chapter 6. c©P. Coleman 04

function of volume, the pressure is simply the −1× the Free energy density per unit volume.
These two equations can be solved parametrically as a function of chemical potential. At
high temperatures the pressure reverts to the ideal gas law PV = NkBT , but at low
temperatures, the pressure is given by −1× the ground-state Free energy per unit volume

P = 2

∫

|k|<kF
(µ−Ek) =

2N

5V
εF (6.63)

The final result is obtained by noting that the first term in this expression is µ(N/V ). The
first term contains an integral over d3k ∼ k2 → k3

F /3, whereas the second term contains
an integral over Ekd

3k ∼ k4 → k5
F /5, so the second term is 3/5 of the first term. Not

surprisingly, this quantity is basically the density of fermions times the Fermi energy- a
pressure that is hundreds of times larger than the classical pressure in a room temperature
electron gas.

Remarks

• At first sight, it might seem very doubtful as to whether the remarkable features of
the degenerate Fermi gas would survive once interactions are present. In particular,
one would be tempted to wonder whether the Fermi surface would be blurred out
by particle-particle interactions. Remarkably, for modest repulsive interactions, the
Fermi surface is believed to be stable in dimensions bigger than one. This is because
electrons at the Fermi surface have no phase space for scattering. This is the basis of
Landau’s Fermi liquid Theory of interacting Fermions.

• In a remarkable result, due to Luttinger and Ward, the jump in the occupancy at the
Fermi wavevector remains finite, though reduced from unity, in the non-interacting
Fermi liquid to a finite ZkF

< 1.

6.4.2 Fluid of Bosons: Bose Einstein Condensation

Bose Einstein condensation was predicted in 1924- the outcome of Einstein extending Bose’s
new calculations on the statistics of a gas of identical bosons. However, it was not until
seventy years later- in 1995, that the groups of Cornell and Wieman and independently that
of Ketterle, succeeded in cooling a low density gas of atoms - initially rubidium and sodium
atoms - through the Bose Einstein transition temperature. The closely related phenomenon
of superfluidity was first observed in the late 30’s by Kapitza. Superfluidity results from a
kind of Bose-Einstein condensation, in a dense quantum fluid, where interactions between
the particles become important. In the modern context, ultra cold, ultra-dilute gases of
alkali atoms are produced using lasers to contain a small quantity of atoms inside a magnetic
trap. The most energetic atoms are allowed to evaporate out of the well and as the height
of the well is reduced, the temperature of the gas reduces. Temperatures in the nano-Kelvin
range are required to produce Bose-Einstein condensation in these materials.

To understand the phenomenon of BEC, conside the density of a gas of bosons, which
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(b)(a) (c)

Figure 6.6: Illustrating evaporative cooling in an atom trap. (a) Atoms are held within a
magnetic potential. (b) As the height of the potential well is dropped, the most energetic
atoms “evaporate” from the well, progressively reducing the temperature. (c) A Bose
Einstein condensate, with a finite fraction of the gas in a single momentum state, forms
when the temperature drops blow the condensation temperature.

at a finite temperature takes almost precisely the same form as for fermions

ρ =

∫

k

1

eβ(Ek−µ) − 1
(6.64)

where we have written the expression for spinless bosons, as would be the case for a gas
of liquid Helium-4, or ultra-dilute Potassium atoms, for instance. But there is a whole
world of physics in the innocent minus sign in the denominator! Whereas for fermions, the
chemical potential is positive, the chemical potential for bosons is negative. For a gas at
fixed volume , the above expression (6.64) thus defines the chemical potential µ(T ). By
changing variables, writing

x = βEk = β
h̄2k2

2m
,

(
m

βh̄2

)
dx = kdk

d3k

(2π)3
→ 4πk2dk

(2π)3
=

1√
2π2

(
m

βh̄2

)3/2 √
xdx (6.65)

we can rewrite the Boson density in the form

ρ =
2√
πλ̃3

T

∫ ∞

0
dx

√
x

1

ex−βµ − 1
(6.66)

where

λ̃T =

(
2πh̄2

mkBT

)1/2

(6.67)
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is a convenient definition of the thermal de Broglie wavelength In order to maintain a fixed
density, as one lowers the temperature, the chemical potential µ(T ) must rise. At a certain
temperature, the chemical potential becomes zero, ρ(T, µ = 0) = N/V At this temperature,

(
λ̃T
a

)3

=
2√
π

∫ ∞

0
dx

√
x

1

ex − 1
= ζ(

3

2
) = 2.61 (6.68)

where a = ρ−1/3 is the interparticle spacing. The corresponding temperature

kBTo = 3.31

(
h̄2

ma2

)
(6.69)

is the Bose-Einstein condensation temperature.
Below this temperature, the number of Bosons in the k = 0 state becomes macroscopic,

i.e.

nε=0 =
1

e−βµ − 1
= No(T ) (6.70)

becomes a finite fraction of the total particle number. Since No(T ) is macroscopic, it follows
that

µ

kBT
= − 1

No(T )
(6.71)

is infinitesimally close to zero. For this reason, we must be careful to split off the k = 0
contribution to the particle density, writing

N = No(T ) +
∑

k6=0

nk (6.72)

and then taking the thermodynamic limit of the second term. For the density, this gives

ρ =
N

V
= ρ0(T ) +

∫

k

1

eβ(Ek) − 1
(6.73)

The the second term is proportional to λ̃T−3 ∝ T 3/2. Since the first term vanishes at
T = To, it follows that below the Bose Einstein condensation temperature, the density of
bosons in the condensate is thus given by

ρo(T ) = ρ

[
1 −

(
T

To

)3/2
]

(6.74)

Remarks

• The Bose Einstein Condensation is an elementary example of a second-order phase
transition.
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• Bose Einstein condensation is an example of a broken symmetry phase transition. It
turns out that the same phenomenon survives in a more robust form, if repulsive inter-
actions between the Bosons are present. In the interacting Bose Einstein Condensate,
the field operator ψ(x) for the bosons actually acquires a macroscopic expectation
value

〈ψ(x)〉 =
√
ρoe

iφ(x) (6.75)

In a non-interacting Bose condensate, the phase φ(x) lacks rigidity, and does not have
a well-defined meaning. In an interacting condensate, the phase φ(x) is uniform, and
gradients of the phase result in a superflow of particles- a flow of atoms which is
completely free from viscosity.

Example: In a laser-cooled atom trap, atoms are localized in a region of
space through the Zeeman energy of interaction between the atomic spin
and the external field. As the field changes direction, the “up” and “down”
spin atoms adiabatically evolve their orientations to remain parallel with
the magnetic field, and the trapping potential of the “up” spin atoms is
determined by the magnitude of the Zeeman energy V (x) = gµBJB(x),
which has a parabolic form

V (x) =
m

2

[
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
]

Show that the fraction of bosons condensed in the atom trap is now given
by

N0(T )

N
= 1 −

(
T

TBE

)3

.

Solution: In the atom trap, one particle states of the atoms are Harmonic
oscillator states with energyElmn = h̄(lωx+mωy+nωz) (where the constant
has been omitted). In this case, the number of particles in the trap is given
by

N =
∑

l,m,n

1

eβElmn − 1

The summation over the single-particle quantum numbers can be converted
to an integral over energy, provided the condensate fraction is split off the
sum, so that

∑

lmn

1

eβElmn − 1
= N0(T ) +

∫
dEρ(E)

1

eβE − 1
,

where N0 is the number of atoms in the condensate and

ρ(E) =
∑

lmn, (Elmn 6=0)

δ(E −Elmn)
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is the density of states. When the number of occupied states is very large,
we can replace the discrete sum over l,m and n by an integral

∑
l,m,n →∫

dldmdn, so that

ρ(E) =

∫
dldmdnδ(E −Elmn). (6.76)

Substituting (Ex, Ey, Ez) = (lh̄ωx, mh̄ωy, nh̄ωz), we obtain

ρ(E) =

∫
dExdEydEz

h̄ωxh̄ωyh̄ωz
δ(Ex +Ey +Ez −E)

=
1

(h̄ω̃)3

∫ E

0

dEx

∫ Ex

0

dEy =
E2

2(h̄ω̃)3
. (ω̃ = (ωxωyωz)

1/3)

The quadratic dependence of this function on energy replaces the square-
root dependence of the corresponding quantity for free Bosons. (For free
bosons, ρ(E) ∝ E(D−2)/2 where D is the dimension, so the trap has the
effect of raising the effective dimensionality from D = 3 to D = 6.) The
number of particles outside the condensate is proportional to T 3,

∫
dEρ(E)

1

eβE − 1
=

T 3

2(h̄ω̃)3

2ζ3︷ ︸︸ ︷∫
dx

x2

ex − 1
= N

(
T

TBE

)3

where kBTBE = h̄ω̃(N/ζ3)
1/3, so that the condensate fraction is now given

by

N0(T )

N
= 1 −

(
T

TBE

)3

.

Example: Using the results of the previous section, show that the ideal
gas law is modified by the interference between identical particles, so that

P = nkBTF±(µ/kBT ) (6.77)

where n is the number density of particles, F±(z) = g±(z)/h±(z) and

g±(z) = ±
∫ ∞

0

dx
√
xln[1 ± e−(x−z)]

h±(z) =

∫ ∞

0

dx
√
x

1

e(x−z) ± 1
(6.78)

where the upper sign refers to fermions, the bottom to bosons. Sketch the
dependence of pressure on temperature for a gas of identical bosons and a
gas of identical fermions with the same density.

Solution: Let us begin by deriving an explicit expression for the Free energy
of a free gas of fermions, or bosons. We start with

F = ∓(2S + 1)kBTV

∫

k

ln[1 ± e−β(Ek−µ)] (6.79)
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Figure 6.7: Pressure dependence in a Fermi or Bose gas, where temperature is measured in
units of kBT0 = h̄2/ma2 Showing P/nkB

where S is the spin of the particle. Making the change of variables,

x = βEk = β
h̄2k2

2m
,

d3k

(2π)3
→ 2

λ̃3
T

√
π

√
xdx (6.80)

where λ̃T =
√

2πh̄2/(mkBT ) is the rescaled Thermal de Broglie wave-

length, we obtain

F = ∓(2S + 1)kBT
V

λ̃3
T

2√
π

∫
dx

√
xln[1 ± e−(x+µβ)] (6.81)

Taking the derivative with respect to volume, and chemical potential, we
obtain the following results for the Pressure and the particle density.

P = −∂F
∂V

= ±(2S + 1)
kBT

λ̃3
T

2√
π

∫
dx

√
xln[1 ± e−(x−µβ)]

n = − ∂F

V ∂µ
=

(2S + 1)

λ̃3
T

2√
π

∫
dx

√
x

1

e(x−µβ) ± 1
(6.82)

Dividing the pressure by the density, we obtain the quoted result for the
ideal gas.
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To plot these results, it is convenient to rewrite the temperature and pres-
sure in the form

T = To[h
±(µβ)]−2/3

P

nkBT0
=

g±(µβ)

[h±(µβ)]5/3
, (6.83)

where kBTo = h̄2

ma2 , permitting both the pressure and the temperature to
be plotted parametrically as a function of µβ. Fig 6.7 shows the results of
such a plot.

6.5 Exercises for chapter 6

1. (i)Use the Jordan Wigner transformation to show that the one dimensional anisotropic XY
model

H = −
∑

j

[J1Sx(i)Sx(i+ 1) + J2Sy(i)Sy(i+ 1)] (6.84)

can be written as

H = −
∑

j

[t(d†i+1di + H.c) + ∆(d†i+1d
†
i + H.c)] (6.85)

where t = 1
4 (J1 + J2) and ∆ = 1

4 (J2 − J1).

(ii)Calculate the excitation spectrum for this model and sketch your results. Comment specif-
ically on the two cases J1 = J2 and J2 = 0.

2. (a) Consider the non-interacting Hubbard model for next nearest neighbor hopping on a two
dimensional lattice

H − µN = −t
∑

j,â=x̂,ŷ,σ

[c†j+âσcjσ + H.c] − µ
∑

jσ

c†jσcjσ

where njσ = c†jσcjσ represents the number of electrons of spin component σ = ±1/2 at
site j. Show that the dispersion of the electrons in the absence of interactions is given
by

ε(~k) = −2t(cos kxa+ cos kya) − µ

where a is the distance between sites, and ~k = (kx, ky) is the wavevector.

(b) Derive the relation between the number of electrons per site ne and the area of the Fermi
surface.

(c) Sketch the Fermi surface when

i. ne < 1.

ii. “half filling” where ne = 1

(d) The corresponding interacting Hubbard model, with an interaction term Un↑n↓ at each
site describes a class of material called “Mott insulators”, which includes the mother
compounds for high temperature superconductors. What feature of the Fermi surface at
half-filling makes the non-interacting ground-state unstable to spin density wave forma-
tion and the development of a gap around the Fermi surface ?
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(e) Derive the dispersion for the case when, in the one-particle Hamiltonian there is an
additional next-nearest neighbor hopping matrix element of strength across the diagonal,

−t′. (Hint: use the Fourier transform of t(R), given by t(~k) =
∑

~R t(
~R)e−i~k·~R). How

does this affect the dispersion at half filling?

3. Consider an atom trap where the confining potential is given by a harmonic potential

V (x, y, z) =
1

2
mω2(x2 + y2 + z2)

so that the quantized kinetic energy of an atom in the trap is

Elmn = h̄ω(l +
3

2
)

l = n1 + n2 + n3 (6.86)

where n1,2,3 ≥ 0 are non-negative integers.

(a) Show that in thermal equilibtrium, the total number of particles in the trap is given by

N =
z

1 − z
+
∑

l6=0

1

z−1eβh̄ωl − 1

where z = eβµ∗

, µ∗ = µ − 3
2 h̄ω and the sum over l, denotes a sum over all values of

n1,2,3. What is the interpretation of the first term? Why must µ∗ be negative? What
happens to z when condensation develops?

(b) Show that below the Bose Einstein condensation temperature,

N = N0(T ) +

∞∑

k=1

[(
1

1 − e−xk

)3

− 1

]
, (x = βh̄ω)

where N0(T ) is the number of atoms condensed in the lowest energy state. (Hint, Taylor
expand the second term in (a) and then invert the order of summation. )

(c) Show that when x is small,

N = No(T ) +
T 3

(h̄ω)3
ζ(3) +

T 2

(h̄ω)2
ζ(2) +O(T )

where ζ(n) =
∑∞

k=1
1

kn . Notice that if the first term is of order N , the second term is of

order N2/3 << N , if N is large.

(d) Calculate an expression for the Bose Einstein condensation temperature TBE of the trap,
and show that to a good approximation,

No(T )

N
= 1 −

(
T

TBE

)3

.

(e) Qualitatively: what do you expect to happen to the density profile across the trap, once
the atoms start to condense?
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Chapter 7

Greens Functions

Ultimately, we are interested in more than just free systems. We should like to understand
what happens to our system as we dial up the interaction strength from zero, to its full
value. We also want to know response of our complex systemto external perturbations,
such as an electromagnetic field. We have to recognize that we can not, in general expect to
diagonalize the problem of interest. We do not even need interactions to make the problem
complex: a case in interest is a disordered metal, where we our interest in averaging over
typically disordered configurations introduces effects reminiscent of interactions, and can
even lead to new kinds of physics, such as electron localization. We need some general way
of examinining the change of the system in response to these effects even though we can’t
diagonalize the Hamiltonian.

In general then, we will be considering problems where we introduce new terms to a
non-interaction Hamiltonian, represented by V . The additional term might be due to

• External electromagnetic fields, which modify the Kinetic energy in the Hamiltonian
as follows

− h̄2

2m
∇2 → − h̄2

2m

(
∇− i

e

h̄
A

)2

(7.1)

• Interactions between particles.

V̂ =
1

2

∫
d1d2ψ†(1)ψ†(2)ψ(2)ψ(1) (7.2)

• A random potential

V̂ =

∫
d1V (1)ρ(1) (7.3)

where V (x) is a random function of position.
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Figure 7.1: “Dialing up the interaction”. Motivating the need to be able to treat perturba-
tions to a non-interacting Hamiltonian by dialing up the strength of the perturbation.

One of the things we would like to do, is to examine what happens when we consider the
change in the Hamiltonian to small enough to be considered a perturbation. Even if the
term of interest is not small, we can still try to make it small by writing

H = Ho + λV̂ (7.4)

This is a useful excercise, for it enables us to consider the effect of adiabatically dialing
up the strength of the additional term in the Hamiltonian from zero, to its full value, as
illustrated in fig7.1. This is a dangerous procedure, but sometimes it really works. Life
is interesting, because in macroscopic systems the perturbation of interest often leads to
an instability. This can sometimes occur for arbitrarily small λ. Othertimes, when the
instability occurs when the strength of the new term reaches some critical value λc. When
this happens, the ground-state can change. If the change is a continuous one, then the
point where the instability develops is a Quantum Critical Point, a point of great interest.
Beyond this point, for λ > λc, if we are lucky, we can find some new starting H ′o = Ho+∆H,
V̂ ′ = V̂ − ∆H. If H ′o is a good description of the ground-state, then we can once again
apply this adiabatic procedure, writing,

H = H ′o + λ′V̂ ′ (7.5)
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If a phase transition occurs, then H ′o will in all probability have display a spontaneous
broken symmetry. The region of Hamiltonian space where H ∼ H ′o describes a new phase
of the system, and H ′o is closely associated with the notion of a “fixed point” Hamiltonian.

All of this discussion motivates us developing a general perturbative approach to many
body systems, and this rapidly leads us into the realm of Greens functions and Feynman
diagrams. A Green’s function describes the elementary correlations and responses of a
system. Feynman diagrams are a way of graphically displaying the scattering processes
that result from a perturbation.

7.1 Interaction representation

Up until the present, we have known two representations of quantum theory- the Schrödinger
representation, where it is the wavefunction that evolves, and the Heisenberg, were the op-
erators evolve and the states are stationary. We are interested in observable quantities more
than wavefunctions, and so we aspire to the Heisenberg representation. In practice however,
we always want to know what happens if we change the Hamiltonian a little. If we change
Ho to Ho +V , but we stick to the Heisenberg representation for Ho, then we are now using
the “interaction” representation.

Table. 5.1. Representations .

Representation States Operators

Schrödinger Change rapidly Os- operators constant

i ∂∂t |ψS(t)〉 = H|ψS(t)〉

Heisenberg Constant Evolve

−i∂OH(t)
∂t = [H,OH(t)]

Interaction States change slowly Evolve according to Ho

H = Ho + V i ∂∂t |ψI(t)〉 = VI(t)|ψI(t)〉 −i∂OI(t)∂t = [Ho, OI(t)]

Let us now examine the interaction representation in greater detail. We begin by writing
the Hamiltonian as two parts H = Ho + V . States and operators in this representation are
defined as

|ψI(t)〉 = eiHot|ψS(t)〉,

OI(t) = eiHotOSe
−iHot





Removes rapid state evolution due to Ho (7.6)
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The evolution of the wavefunction is thus

|ψI(t)〉 = U(t)|ψI(0)〉,

U(t) = eiHote−iHt


 (7.7)

or more generally,

|ψI(t)〉 = S(t, t′)|ψI(t′)〉,

S(t) = U(t)U †(t′) (7.8)

The time evolution of U(t) can be derived as follows

i
∂U

∂t
= i

(
∂eiHot

∂t

)
e−iHt + ieiHot

(
∂e−iHt

∂t

)

= eiHot(−Ho +H)e−iHt

= [eiHotV e−iHot]U(t)

= VI(t)U(t) (7.9)

so that

i
∂S(t2, t1)

∂t1
= V (t2)S(t2, t1) (7.10)

where from now on, all operators are implicitly assumed to be in the interaction represen-
tation.

Now we should like to exponenentiate this time-evolution equation, but unfortunately,
the operator V (t) is not constant, and furthermore, V (t) at one time, does not commute
with V (t′) at another time. To overcome this difficulty, Schwinger invented a device called
the “time-ordering operator”.

Time ordering operator Suppose {O1(t1), O2(t2) . . . ON (tN )} is a set of
operators at different times {t1, t2 . . . tN}. If P is the permutation that
orders the times, so that tP1

> tP2
. . . tPN , then if the operators are en-

tirely bosonic, containing an even number of fermionic operators,the time
ordering operator is defined as

T
[
O1(t1)O2(t2) . . . ON (tN )

]
= OP1

(tP1
)OP2

(tP2
) . . . OPN (tPN ) (7.11)

For later use, we note that if the operator set contains fermionic operators,
composed of an odd number of fermionic operators, then

T
[
F1(t1)F2(t2) . . . FN (tN )

]
= (−1)PFP1

(tP1
)FP2

(tP2
) . . . FPN (tPN ) (7.12)

where P is the number of pairwise permutations of fermions involved in the
time ordering process.
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Figure 7.2: Each contribution to the time-ordered exponential corresponds to the amplitude
to follow a particular path in state space. The S-matrix is given by the limit of the process
where the number of time segments is sent to infinity.

Suppose we divide the time interval [t1, t2], where t2 > t1 into N identical segments of period
∆t = (t2− t1)/N , where the time at the midpoint of the nth segment is τn = t1 +(n− 1

2)∆t.
The S-matrix can be written as a product of S-matrices over each intermediate time segment,
as follows:

S(t2, t1) = S(t2, τN − ∆t
2 )S(τN−1 + ∆t

2 , τN−1 − ∆t
2 ) . . . S(τ1 + ∆t

2 , t1) (7.13)

Provided N is large, then over the short time interval ∆t, we can approximate

S(τ + ∆t
2 , τ − ∆t

2 ) = e−iV (τ)∆t +O(1/N 2) (7.14)

so that we can write

S(t2, t1) = e−iV (τN )∆te−iV (τN−1)∆t . . . e−iV (τ1)∆t +O(1/N) (7.15)

Using the time-ordering operator, this can be written

S(t2, t1) = T [
N∏

j=1

e−iV (τj)∆t] +O(1/N) (7.16)
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The beauty of the time-ordering operator, is that even though A(t1) and A(t′) don’t com-
mute, we can treat them as commuting operators so long as we always time-order them.
This means that we can write

T [eA(t1)eA(t2)] = T [eA(t1)+A(t2)] (7.17)

because in each time-ordered term in the Taylor expansion, we never have to commute
operators, so the algebra is the same as for regular complex numbers. With this trick, we
can write,

S(t2, t1) = LimN→∞T [e
−i
∑

j
V (τj)∆t] (7.18)

The limiting value of this time-ordered exponential is written as

S(t2, t1) = T

[
exp

{
−i
∫ t2

t1
V (t)dt

}]
, Time-ordered exponential (7.19)

This is the famous time-ordered exponential of the interaction representation.

Remarks

• The time-ordered exponential is intimately related to Feynman’s notion of the path
integral. The time-evolution operator S(τj + ∆τ/2, τj − ∆τ/2) = Sfr(τj) across each
segment of time is a matrix that takes one from state r to state f . The total time
evolution operator is just a matrix product over each intermediate time segment. Thus
the amplitude to go from state i at time t1 to state f at time t2 is given by

Sfi(t2, t2) =
∑

path={p1,...pN1
}
Sf,pN−1

(τN ) . . . Sp2p1(τ2)Sp1i(τ1) (7.20)

Each term in this sum is the amplitude to go along the path of states

path i → f : i→ p1 → p2 → . . . pN−1 → f. (7.21)

The limit where the number of segments goes to infinity is a path integral.

• One can formally expand the time-ordered exponential as a power series, writing,

S(t2, t1) =
∑

n=0,∞

(−i)n
n!

∫ t2

t1
dτ1 . . . dτnT [V (τ1) . . . V (τn)] (7.22)

The nth term in this expansion can be simply interpreted as the amplitude to go
from the initial, to the final state, scattering n times off the perturbation V . This
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form of the S-matrix is very useful in making a perturbation expansion. By explicitly
time-ordering the n− th term, one obtains n! identical terms, so that

S(t2, t1) =
∑

n=0,∞
(−i)n

∫ t2

t1, {τn>τn−1...>τ1}
dτ1 . . . dτnV (τn) . . . V (τ1) (7.23)

This form for the S-matrix is obtained by iterating the equation of motion,

S(t2, t1) = 1 − i

∫ t2

t1
dτV (τ)S(τ, t1) (7.24)

which provides an alternative derivation of the time-ordered exponential.

7.1.1 Driven Harmonic Oscillator

To illustrate the concept of the time-ordered exponential, we shall show how it is possible
to evaluate the S-matrix for a driven harmonic oscillator, where H = Ho + V (t),

Ho = ω(b†b+
1

2
)

V (t) = z̄(t)b+ b†z(t)



 (7.25)

Here the forcing terms are written in their most general form. z(t) and z̄(t) are forces
which “create” and “annihilate” quanta respectively. A conventional force in the Hamilto-
nian, H = Ho − f(t)x̂ gives rise to a particular case, where z̄(t) = z(t) = (h̄/2mω)

1
2 f(t).

We shall show that if the forcing terms are zero in the distant past and distant future and
the system is initially in the ground-state, the amplitude to stay in this state is

〈0|Te−i
∫∞
−∞

dt[z̄(t)b(t)+b†(t)z(t)]|0〉 = exp

[
−i
∫ ∞

−∞
dtdt′z̄(t)G(t− t′)z(t′)

]
. (7.26)

where G(t − t′) = −iθ(t− t′)e−iω(t−t′) is our first example of a one particle “Green’s func-
tion”. The importance of this result, is that we have a precise algebraic result for the
response of the ground-state to an arbitrary force term. Once we know the response to an
arbitrary force, we can, as we shall see, deduce the n-th ordered moments, or correlation
functions of the Bose fields.

Remarks:

• The time-ordered exponential is an example of a “functional”: a quantity which is a
function of a function (in this case, z(t) and z̄(t)). With this result we can examine
how the ground-state responds to an arbitrary external force. The quantity G(t− t ′)
which determines the response of the ground-state to the forces, z(t) and z̄(t), is called
the “one particle Green’s function”, defined by the relation

G(t− t′) = −i〈0|Tb(t)b†(t′)|0〉. (7.27)
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We may confirm this relation by expanding both sides of (7.26) to first order in z̄ and
z. The left hand side gives

1 + (−i)2
∫
dtdt′z̄(t)〈0|Tb(t)b†(t′)|0〉.z(t′) +O(z̄2, z2) (7.28)

whereas the right-hand side gives

1 − i

∫
dtdt′z̄(t)G(t− t′)z(t′) +O(z̄2, z2) (7.29)

By comparing the coefficients, we are able to confirm the above relation.

• By expanding the time-ordered exponential as a power-series in z and z̄, we find that
the n-th order term is

(−i)n
n!

∫ ∞

−∞

∏

r=1,n

dtrdt
′
rz̄(tr)z(t

′
r) × coeff (7.30)

where

coeff = G(1, . . . n; 1′ . . . n′) = (−i)n〈0|Tb(1) . . . b(n)b†(n′) . . . b†(1′)|0〉 (7.31)

is called the n-particle Greens function. Here we have used the conventient notation
r ≡ tr, r

′ ≡ t′r. By expanding the right-hand-side, we find that the corresponding
coefficient of z and z̄ is given by the sum over all possible ways of connecting initial
times {r′} with final times {r} by a single-particle Green’s function,

G(1, . . . n; 1′ . . . n′) =
∑

P

∏

r

G(r − P ′r), (7.32)

a result known as Wick’s theorem. It is a remarkable property of non-interacting
systems, that the n-particle Green’s functions are determined entirely in terms of the
one-particle Green functions. In (7.32) each destruction event at time tr ≡ r is paired
up with a corresponding creation event at time t′Pr ≡ P ′r. The connection between
these two events is often called a “contraction”, denoted as follows

+-,/.1032547698 :<;=;>;@?A+CBD0E;>;=;@?@F>+HGJIK 0E;=;>;A8L6NM = G(r − P ′r) × (−i)n−1〈0|T . . . |0〉 (7.33)

Notice that since particles are conserved, we can only contract a creation operator
with a destruction operator. According to Wick’s theorem, the expansion of the n-
particle Green function in (7.31) is carried out as a sum over all possible contractions,
denoted as follows

G(1 . . . n′) =
∑

P

G(1 − P ′1)G(2 − P ′2) . . . G(r − P ′r) . . .
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=
∑

P

O-P/Q1R3SUT7V9W X/YAO1Z[R1YAO]\^RE_>_>_@Y`OCaDRb_=_>_cYedfOHgJhi Rb_=_>_cYedfOHgJhj RE_>_=_kYedfOHgJhl RE_=_>_`WLVEm
... ... ...

(7.34)

Physically, this result follows from the identical nature of the bosonic quanta or par-
ticles. When we take the n particles out at times t1 . . . tn, there is no way to know
in which order we are taking them out. The net amplitude is the sum of all possible
ways of taking out the particles- This is the meaning of the sum over permutations
P .

• This result can be generalized to an arbitrary number of oscillators by replacing
(z, z̄) → (zr, z̄r), whereupon

〈 0|T exp

[
−i
∫ ∞

−∞
dt[z̄r(t)br(t) + br

†(t)zr(t)]
]
|0〉

= exp

[
−i
∫ ∞

−∞
dtdt′z̄r(t)Grs(t− t′)zs(t

′)
]

(7.35)

where now, Grs(t − t′) = −i〈0|Tbr(t)b†s(t′)|0〉 = −iδrsθ(t − t′)e−iωr(t−t
′), and sum-

mation over repeated indices is implied. This provides the general basis for Wick’s
theorem.

• The concept of a generating functional can also be generalized to Fermions, with the
proviso that now we must use replace (z, z̄) by anticommuting numbers (η, η̄).

Proof: To demonstrate this result, we need to evaluate the time ordered exponential

〈 0 |T exp

[
−i
∫ t2

−t1
dt[z̄(t)b(t) + b†(t)z(t)]

]
|0〉 (7.36)

where b(t) = beiωt and b†(t) = b†eiωt. To evaluate this integral, we divide up the interval
t ∈ (t1, t2) into N segments, t ∈ (τj −∆τ/2, τj + ∆τj) of width ∆τ = (t2 − t1)/N and write
down the discretized time-ordered exponential as

SN = eAN−A
†
N × . . . eAr−A

†
r × . . . eA1−A†1 (7.37)

where we have used the short-hand notation,

Ar = −iz̄(τr)b(τr)∆τ,
A†r = ib†(τr)z(τr)∆τ (7.38)

To evaluate the ground-state expectation of this exponential, we need to “normal” order
the exponential, bringing the terms involving annihilation operators eAr to the right-hand
side of the expression. To do this , we use the result

eα+β = eβeαe[α,β]/2 (7.39)
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and the related result ,

eαeβ = eβeαe[α,β] (7.40)

which hold if [α, β] commutes with α and β. We observe that in our case, the Ar commute
with each other, as do the the A†r. Fortunately, the commutator

[Ar, A
†
s] = ∆τ2z̄(τr)z(τs)e

−iω(τr−τs) (7.41)

is a c-number, so we can use the above theorem. We first normal order each term in the
product, writing eAr−A

†
r = e−A

†
reAre−[Ar,A†r ]/2 so that

SN = e−A
†
N eAN . . . e−A

†
1eA1e−

∑
r
[Ar,A†r ]/2 (7.42)

Now we move the general term eAr to the right-hand side, picking up the residual commu-
tators along the way to obtain

SN =

:SN :︷ ︸︸ ︷
e−
∑

r
A†re

∑
r
Ar exp[−

∑

r≥s
[Ar, A

†
s](1 − 1

2
δrs)] (7.43)

The vacuum expectation value of the first term is unity, so that

S(t2, t1) = lim
∆τ→0

exp

[
−
∑

s≤r
∆τ2z̄(τr)z(τs)e

−iω(τr−τs)(1 − 1

2
δrs)

]

= exp

[
−
∫ t2

t1
dτdτ ′z̄(τ)θ(τ − τ ′)e−iω(τ−τ ′)z(τ ′)

]
(7.44)

So placing G(t− t′) = −iθ(τ − τ ′)e−iω(τ−τ ′),

S(t2, t1) = exp

[
−i
∫ t2

t1
dτdτ ′z̄(τ)G(t− t′)z(τ ′)

]
(7.45)

Finally, taking the limits of the integral to infinity, we obtain the quoted result.

Example: Show that the probability that a charged particle of charge q
in a harmonic potential with mass m and characteristic frequency ω when
exposed to an electric field E , remains in the ground-state after time T is
given by

p = exp
[
−4g2 sin2(ωT/2)] (7.46)

where ω is the frequency of the oscillator

g2 =
Vspring

h̄ω
(7.47)

is the ratio between the classical energy Vspring = q2E2/(2mω2) stored in
a classical “spring” stretched by a force qE to the quantum of energy h̄ω.
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Solution:

We need to write the probability p to remain in the ground-state, interms
of the modulus squared of the amplitude to remain in the ground-state,

p = |S(T, 0)|2 (7.48)

Where

S(T, 0) = 〈φ|Te−
i
h̄

∫
T

0
V (t)dt|φ〉 (7.49)

is the amplitude to remain in the ground-state and

V (t) = −qE(t)x(t). (7.50)

is the perturbation, where E(t) is the electric field. Writing x =
√

h̄
2mω (b+

b†), we can recast V in terms of boson creation and annihilation operators
as V (t) = z̄(t)b(t) + b†(t)z(t), where,

z(t) = z̄(t) = −q
√

h̄

2mω
E(t) =

{
−
√

V
h̄ω (T > t > 0)

0 (otherwise)
(7.51)

where V = q2E2

2mω2 is the classical energy stored in a stretched spring. Using
the relationship derived in (7.45), we deduce that

S(T, 0) = e−iA

where

A =

∫ T

0

dt1dt2z̄(t1)G(t1 − t2)z(t2)

and G(t) = −ie−iωtθ(t) is the Green function. Carrying out the integral,
we obtain

A = −iV ω
h̄

∫ T

0

dt

∫ t′

0

dt′e−iω(t−t′) = −V T
h̄

+
2V

h̄ω
e−iωT/2 sin

ωT

2

= −V T
h̄

[
1 − sin(ωT )

ωT

]
− i

2V

h̄ω
sin2

(
ωT

2

)
. (7.52)

The real part contains a transient, plus the phase shift −V T/h̄ resulting
from the shift in energy ∆E = −V associated with the electric field. The
imaginary part determines the probability to remain in the ground-state.
Taking the modulus square of e−iA, we obtain

p = |e−iA|2 = exp

(
−4V

h̄ω
sin2 ωT

2

)
.

demonstrating the oscillatory amplitude to remain in the ground-state.
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7.2 Greens Functions

Green’s functions are the elementary response functions of a many body system. The one
particle Green’s function is defined as

Gλλ′(t− t′) = −i〈φ|Tψλ(t)ψ†λ′(t′)|φ〉 (7.53)

where |φ〉 is the many body ground-state, ψλ(t) is the field in the Heisenberg representation
and

Tψλ(t)ψ
†
λ′(t
′) =





ψλ(t)ψ
†
λ′(t
′) (t > t′)

±ψ†λ′(t′)ψλ(t) (t < t′) ±
{

Bosons
Fermions

(7.54)

defines the time-ordering for fermions and bosons. Diagramattically, this quantity is repre-
sented as follows

Gλλ′(t− t′) =
λ,t ’λ, t’

(7.55)

Quite often, we shall be dealing with translationally invariant systems, where λ denotes
the momentum and spin of the particle λ ≡ pσ. If spin is a good quantum number, (no
magnetic field, no spin-orbit interactions), then

Gkσ,k′σ′(t− t′) = δσσ′δkk′G(k, t − t′) (7.56)

is diagonal, ( where in the continuum limit, δkk′ → (2π)Dδ(D)(k − k′)). In this case, we
denote

G(k, t− t′) = −i〈φ|Tψkσ(t)ψ
†
kσ(t

′)|φ〉 = t’ t
k

(7.57)

We can also define Green’s function in co-ordinate space,

G(x − x′, t) = −i〈φ|Tψσ(x, t)ψ†σ(x′, t′)|φ〉 (7.58)

which we denote diagramatically, by

G(x − x′, t) = (x,t) (x’,t’) (7.59)

By writing ψσ(x, t) =
∫
k ψkσe

i(k·x), we see that the co-ordinate-space Green’s function is
just the Fourier transform of the momentum-space Green’s function:

G(x − x′, t) =

∫

k,k′
ei(k·x−k′·x′)

δkk′G(k,t−t′)
︷ ︸︸ ︷
−i〈φ|Tψkσ(t)ψ

†
k′σ(0)|φ〉

=

∫
d3k

(2π)3
G(k, t)eik·(x−x′) (7.60)
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It is also often convenient to Fourier transform in time, so that

G(k, t) =

∫ ∞

−∞

dω

2π
G(k, ω)e−iωt (7.61)

The quantity

G(k, ω) =

∫ ∞

−∞
dtG(k, t)eiωt

=
k,ω

(7.62)

is known as the propagator. We can then relate the Green’s function in co-ordinate space
to its propagator, as follows

−i〈φ|Tψσ(x, t)ψσ(x′, t′)|φ〉 =

∫
d3kdω

(2π)4
G(k, ω)ei[(k·(x−x′)−ω(t−t′)] (7.63)

7.2.1 Green’s function for free Fermions

As a first example, let us calculate the Green’s function of a dengenerate Fermi liquid of non-
interacting Fermions in its ground-state. We shall take the heat-bath into account, using
a Heisenberg representation where the heat-bath contribution to the energy is subtracted
away, so that

H = Ĥo − µN =
∑

σ

εkc
†
kσckσ. (7.64)

is the Hamiltonian used in the Heisenberg representation and εk = p2

2m−µ. The ground-state
for a fluid of fermions is given by

|φ〉 =
∏

σ|k|<kf
c†kσ|0〉 (7.65)

In the Heisenberg representation, c†kσ(t) = eiεktc†kσ, ckσ(t) = e−iεktckσ. For forward time
propagation, it is only possible to add a fermion above the Fermi energy, and

〈φ|ckσ(t)c†k′σ′(t′)|φ〉 = δσσ′δkk′e
−iεk(t−t′)〈φ|ckσc†kσ|φ〉

= δσσ′δkk′(1 − nk)e−iεk(t−t′) (7.66)

where nk = θ(|kF | − |k|). For backward time propagators, it is only possible to destroy a
fermion, creating a hole, below the Fermi energy

〈φ|c†k′σ′(t′)ckσ(t)|φ〉 = δσσ′δkk′nke
−iεk(t−t′) (7.67)

so that

G(k, t) = −i[(1 − nk)θ(t) − nkθ(−t)]e−iεkt
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=





−iθ|k|−|kF |e−iεkt (t > 0) “electrons”

iθ|kF |−|kF |e
−iεkt (t < 0) holes = “electrons moving backwards in time”

(7.68)

This unification of hole and electron excitations in a single function is one of the great
utilities of the time-ordered Green’s function. 1

Next, let us calculate the Fourier transform of the Green’s function. This is given by

G(k, ω) = −i
∫ ∞

−∞
dtei(ω−εk)t

cnvgnce factor︷ ︸︸ ︷
e−|t|δ

[
θk−kF θ(t) − θkF−kθ(−t)

]

= −i
[

θk−kF
δ − i(ω − εk)

− θkF−k
δ + i(ω − εk)

]
=

1

ω − εk + iδk
(7.69)

where δk = sign(k − kF). The free fermion propagator is then

G(k, ω) =
1

ω − εk + iδk
=

k,ω
(7.70)

The Green’s function contains both static, and dynamic information about the motion of
particles in the many-body system. For example, we can use it to calculate the density of
particles in a Fermi gas

〈ρ̂(x)〉 =
∑

σ

〈ψ†σψσ〉 = −
∑

σ

〈φ|Tψσ(x, 0−)ψ†σ(x, 0)|φ〉

= −i(2S + 1)G(x, 0−)|x=0 (7.71)

where S is the spin of the fermion. We can also use it to calculate the Kinetic energy
density, which is given as follows

〈T̂ (x)〉 = − h̄2

2m

∑

σ

〈ψ†σ∇2
xψσ(x)〉 =

h̄2∇2
x

2m

∑

σ

〈φ|Tψσ(x, 0−)ψ†σ(~x
′, 0)|φ〉

∣∣∣∣∣
x−x′=0

= i(2S + 1)
h̄2∇2

2m
G(x, 0−)

∣∣∣∣∣
x=0

(7.72)

1According to aprocyphyll story, the relativistic counterpart of this notion, that positrons are the electrons
travelling backwards in time, was invented by Richard Feynman as a graduate student of John Wheeler.
Wheeler was very strict, allowing Feynman precisely half an hour of discussion, and using a chess clock as
a timer. When the time was up, Wheeler stopped the clock and announced that the session was over. At
the second meeting, when Feynman and Wheeler were discussing the physics of positrons, Feynman arrived
with his own clock, and at the end of the half hour, Feynman stopped his own clock, as if to say that his
advisors time was up. At the third meeting, having come up with the idea that a positron was an electron
travelling backwards in time, Feynman arrived at the meeting with a clock started at 30 minutes and ran
backwards to zero!

118



c©2004 P. Coleman Chapter 7.

Example: By relating the particle density and kinetic energy density to
one-particle Green’s function to the particle density, calculate the particle
and kinetic energy density of particles in a degenerate Fermi liquid.

Solution: We begin by writing 〈ρ̂(x)〉 = −i(2S + 1)G(~0, 0−). Writing this
out explicitly we obtain

〈ρ(x)〉 = (2S + 1)

∫
d3k

(2π)3

[∫
dω

2πi
eiωδ 1

ω − εk + iδk

]
(7.73)

where the convergence factor appears because we are evaluating the Green’s
function at a small negative time −δ. We have explicitly separated out the
frequency and momentum integrals. The poles of the propagator are at
ω = εk − iδ if k > kF , but at ω = εk + iδ if k < kF , as illustrated in
Fig. 7.3. The convergence factor means that we can calculate the complex

F(k< k   )

F(k> k   )

k

εkz =     - i δ

z=      i ε  +  δ

Figure 7.3: Showing how the path of integration in (7.74) picks up the pole contributions
from the occupied states beneath the Fermi surface.

integral using Cauchy’s theorem by completing the contour in the upper
half complex plane, where the integrand dies away exponentially. The pole
in the integral will only pick up those poles associated with states below
the Fermi energy, so that

∫
dω

2πi
eiωδ 1

ω − εk + iδk
= θkF −|k| (7.74)
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and hence

ρ = (2S + 1)

∫

k<kF

d3k

(2π)3
= (2S + 1)

VF

(2π)3
(7.75)

In a similar way, the kinetic energy density is written

〈T (x)〉 = (2S + 1)

∫
d3k

(2π)3
h̄2k2

2m

[∫
dω

2πi
eiωδ 1

ω − εk + iδk

]

= (2S + 1)

∫

k<kF

d3k

(2π)3
h̄2k2

2m
=

3

5
εF ρ (7.76)

7.2.2 Green’s function for free Bosons

As a second example, let us examine the Green’s function of a gas of non-interacting bosons,
described by

H =
∑

q

ωq[b†qbq +
1

2
] (7.77)

where physical field operator is related to a sum of creation and annihilation operators:

φ(x) =

∫

q
φqe

iq·x

φq =

√
h̄

2mωq

[bq + b†−q] (7.78)

Since there are no bosons present in the ground-state, boson destruction operators annihilate
the ground-state |φ〉. The only terms contributing to the Green function are then

−i〈φ|Tbq(t)b†q(0)|φ〉 = −iθ(t)e−iωqt,
−i〈φ|Tb†−q(t)b−q(0)|φ〉 = −iθ(−t)eiωqt, (7.79)

so that

D(q, t) = −i〈φ|φ(q, t)φ(−q, t)|φ〉 = −i h̄

2mωq

[θ(t)e−iωqt + θ(−t)eiωqt] (7.80)

If we Fourier transform this quantity, we obtain the boson propgator,

D(q, ν) =

∫ ∞

−∞
dte−δ|t|+iνtD(q, t)

= −i h̄

2mωq

[
1

δ − i(ν − ωq)
+

1

δ + i(ν − ωq)

]
(7.81)

or

D(q, ν) =
h̄

2mωq

[
2ωq

ν2 − (ωq − iδ)2

]
, Bose propagator (7.82)

Remarks:
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• Note that the bose propagator has two poles at ν = ±(ω − iδ). You can think of
the bose propagator as a sum of two terms, one involving a boson emission, that
propagates forwards in time from the emitter, a second involving boson absorption
that propagates backwards in time from the absorber,

D(q, ν) =
h̄

2mωq




emission︷ ︸︸ ︷
1

ν − (ωq − iδ)
+

absorption︷ ︸︸ ︷
1

−ν − (ωq − iδ)




(7.83)

• We shall shortly see that amplitude to absorb and emit bosons by propagating fermions
is directly related to the Boson propagator. For example, when there is an interaction
of the form

Hint = g

∫
d3xφ(x)ρ(x) (7.84)

The exchange of virtual bosons between particles gives rise to retarded interactions,

V (q, t− t′) =
g2

h̄
D(q, t− t′), (7.85)

whereby a passing fermion produces a the potential change in the environment which
lasts lasts a characteristic time ∆τ ∼ 1/ωo where ωo is the characteristic value of ωq.
From the Fourier transform of this expression, you can see that the time average of
this interaction, proportional to D(q, ν = 0) = − h̄

mω2
q

is negative: i.e. the virtual

exchange of a spinless boson mediates an attractive interaction.

7.3 Adiabatic concept

The adiabatic concept is one of the most valuable concepts in many body theory. What does
it mean to understand a many body problem when we can never, except in the most special
cases, expect to solve the problem exactly? The adiabatic concept provides an answer to
this question.

Suppose we are interested in a many body problem with Hamiltonian H, with ground-
state |Ψg〉 which we can not solve exactly. Instead we can often solve a simplified version
of the many body Hamiltonian Ho where the ground-state |Ψ̃g〉 has the same symmetry as
|Ψg〉. Suppose we start in the ground-state |Ψ̃g〉, and now slowly evolve the Hamiltonian
from Ho to H, i.e, if V̂ = H −Ho, we imagine that the state time-evolves according to the
Hamiltonian

H(t) = Ho + λ(t)V
λ(t) = e−|t|δ (7.86)
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Figure 7.4: Illustrating the evolution of the Hilbert space as the Hamiltonian is adiabatically
evolved. In the first case, the ground-state can be adiabatically evolved all the way to λ = 1.
In the second case, a phase transition occurs at λ = λc, where a previously excited state,
with a different symmetry to the ground-state crosses below the ground-state.

where δ is arbitrarily small.

As we adiabatically evolve the system, the ground-state, and excited states will evolve,
as shown in Fig. 7.4. In such an evolution process, the energy levels will typically show
“energy level repulsion”. If any two levels get too close together, matrix elements between
the two states will cause them to repel one-another. However, it is possible for states of
different symmetry to cross, because selection rules prevent them from mixing. Sometimes,
such an adiabatic evolution will lead to “level crossing”, whereby at λ = λc when some
excited state ψr with different symmetry to the ground-state, crosses to a lower energy
than the ground-state. Such a situation leads to “spontaneous symmetry breaking”. A
simple example is when a Ferromagnetic ground-state becomes stabilized by interactions.

In general however, if there is no symmetry changing phase transition as the interaction
V is turned on, the procedure of adiabatic evolution, can be used to turn on “interactions”,
and to evolve the ground-state from Ψ̃g to Ψg.

These ideas play a central role in the development of perturbation theory and Feynman
diagrams. They are however also of immense qualitative importance, for the physics of
adiabatically related ground-states is equivalent. Adiabatic evolution defines an equivalence
class of ground-states with the same qualitative physics. The adiabatic principle was first
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employed with great success in the fifties. Gell Mann and Low used it to prove their famous
relation linking non-interacting, and interacting Green’s functions[1]. Later in the fifties,
Landau[2] used the adiabatic idea in a brilliantly qualitative fashion, to formulate his theory
of interacting Fermi liquids. We will now look at both applications of the adiabatic principle.

7.3.1 Gell-Man Low Theorem

Suppose we gradually turn on, and later, gradually turn- off an interaction V so that

V (t) = e−ε|t|V (0) (7.87)

acquires its full magnetitude at t=0 and vanishes in the distant past and in the far-future.
Adiabaticity requires that we ultimately let ε → 0. When we start out at t = −∞, the
ground-state is | − ∞〉, and the interaction and Heisenberg representations coincide. If we
now evolve to the present in the Heisenberg representation, the states do not evolve, so the
ground-state is unchanged

|φ〉H ≡ | −∞〉, (7.88)

and all the interesting physics of the interaction V is encoded in the the operators. We
would like to calculate the correlation or Green’s functions of a set of observables in the
fully interacting system. The Gell-Mann Low theorem enables us to relate the Green’s
function of the interacting system to the Green’s functions of the non-interacting system at
t = −∞. The key result is

〈φ|TA(t1)B(t2) . . . R(tr)|φ〉H = 〈+∞|TS[∞,−∞]A(t1)B(t2) . . . R(tr)| −∞〉I
S[∞,−∞] = T exp

[
−i
∫ ∞

−∞
V (t′)dt′

]
(7.89)

where the subscript H and I indicate that the operators, and states are to be evalu-
ated in the Heisenberg and interaction representations, respectively. The state | + ∞〉 =
S(∞,−∞)| −∞〉 corresponds to the ground-state, in the interaction representation in the
distant future. If adiabaticity holds, then the process of slowly turning on, and then turn-
ing off the interaction, will return the system to its original state, up to a phase, so that
| + ∞〉 = e2iδ| −∞〉. We can then write e2iδ = 〈−∞|∞〉, so that so that

〈+∞| = e−2iδ〈−∞| =
〈−∞|

〈−∞| + ∞〉 (7.90)

and the Gell-Mann Low formula becomes

〈φ|TA(t1)B(t2) . . . R(tr)|φ〉H =
〈−∞|TS[∞,−∞]A(t1)B(t2) . . . R(tr)| −∞〉I

〈−∞|S[∞,−∞]| −∞〉 (7.91)
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Remarks:

• With the Gell-Mann Low relation, we relate the Green’s function of a set of complex
operators in an interacting system, to a Green’s function of a set of simple operators
multiplied by the S-matrix.

• The Gell-Mann Low relation is the starting point for the Feynman diagram expansion
of Green’s functions. When we expand the S-matrix as a power-series in V , each
term in the expansion can be written as an integral over Greens functions of the
non-interacting problem. Each of these terms corresponds to a particular Feynman
diagram.

• When we expand the vacuum expectation value of the S-matrix, we will see that this
leads to “Linked Cluster” diagrams.

Proof: To prove this result, let U(t) = S(t,−∞) be the time-evolution operator for the
interaction representation. Since the interaction, and Heisenberg states coincide at t = −∞,
and |ψH〉 does not evolve with time,

|ψI(t)〉 = U(t)|ψH〉 (7.92)

Since U(t)AH(t)|ψH〉 = AI(t)|ψI(t)〉 = AI(t)U(t)|ψH 〉, the relation between operators in
the two representations must be

AH(t) = U †(t)AI(t)U(t) (7.93)

Suppose t1 > t2 > t3 . . . tr, then using this relation we may write

〈φ|A(t1) . . . R(tr)|φ〉H = 〈−∞|U †(t1)AI(t1)
S(t1,t2)︷ ︸︸ ︷

U(t1)U
†(t2) . . .

S(tr−1,tr)︷ ︸︸ ︷
U(tr−1)U

†(tr)RI(tr)U(tr)| −∞〉

where we have identified |φ〉H ≡ | −∞〉. Now S(t1, t2) = U(t1)U
†(t2) is the operator that

time evolves the states of the interaction representation, so we may rewrite the above result
as

〈0|A(t1) . . . R(tr)|0〉H = 〈−∞|
S†(t1 ,−∞)︷ ︸︸ ︷
U †(t1) AI(t1)S(t1, t2) . . . S(tr−1, tr)RI(tr)

S(tr ,−∞)︷ ︸︸ ︷
U(tr) | −∞〉

where we have replaced U(t) → S(t,−∞). Now S(∞, t1)S(t1,−∞)| − ∞〉 = |∞〉 and
since S is a unitary matrix, S†(∞, t1)S(∞, t1) = 1, so multiplying both sides by S†(∞, t1),
S(t1,−∞)| −∞〉 = S†(∞, t1)|∞〉 and by taking its complex conjugate,

〈−∞|S†(t1,−∞) = 〈∞|S(∞, t1) (7.94)
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Inserting this into the above expression gives,

〈0|A(t1) . . . R(tr)|0〉H = 〈+∞|S(∞, t1)AI(t1)S(t1, t2) . . . S(tr−1, tr)RI(tr)S(tr,−∞)| −∞〉

Finally, since we assumed t1 > t2 > . . . tr, we can write,

〈φ|T [A(t1) . . . R(tr)]|φ〉H = 〈+∞|T [S(∞,−∞)AI(t1)BI(t2) . . . RI(tr)]| −∞〉 (7.95)

Although we proved this expression for a particular time-ordering, it is clear that if we
permute the operators the time-ordering will always act to time-order both sides, and thus
this expression holds for an arbitary time-ordering of operators.

7.3.2 Generating Function for Free fermions

The generating function derived for the harmonic oscillator can be generalized to free
fermions by the use of “anticommuting” or Grassman numbers η and η. The simplest
model is

H = εc†c
V (t) = η̄(t)c(t) + c†(t)η(t)

}
(7.96)

The corresponding Generating functional is given by

S[η̄, η] = 〈φ|T exp−i
∫
dt
[
η̄(t)c(t) + c†(t)η(t)

]
|φ〉 = exp

[
−i
∫
d1d2η̄(1)G(1 − 2)η(2)

]

G(1 − 2) = −i〈φ|Tc(1)c†(2)|φ〉 (7.97)

where |φ〉 is the ground-state for the non-interacting Hamiltonian. To prove this result,
we use the same method as used for the harmonic oscillator. As before we split up the S
matrix into N discrete time-slices, writing

SN = eAN−A
†
N × . . . eAr−A

†
r × . . . eA1−A†1 (7.98)

where

Ar = η̄(tr)(−ice−iεtr )∆t,
A†r = η(tr)(ic

†eiεtr)∆t. (7.99)

The next step requires a little care, for when ε < 0, |φ〉 = c†|0〉 is the vacuum for holes
h = c†, rather than particles, so that in this case we need to “anti-normal order” the S
matrix. Carrying out the ordering process, we obtain

SN =





e−
∑

r
A†re

∑
r
Ar exp

[
−∑r≥s[Ar, A

†
s](1 − 1

2δrs)

]
(ε > 0)

e
∑

r
Are−

∑
r
A†r exp

[∑
r≤s[Ar, A

†
s](1 − 1

2δrs)

]
(ε < 0)

(7.100)
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When we take the expectation value 〈φ|SN |φ〉, the first term in these expressions gives
unity. Calculating the commutators, in the exponent, we obtain

[Ar, A
†
s] = ∆t2[η̄(tr)c, c

†η(ts)]e
−iε(tr−ts)

= ∆t2η̄(tr){c, c†}η(ts)e−iε(tr−ts)
= ∆t2η̄(tr)η(ts)]e

−iε(tr−ts). (7.101)

( Notice how the anticommuting property of the Grassman variables η̄(tr)η(ts) = −η(ts)η̄(tr)
means that we can convert a commutator of [Ar, As] into an anticommutator {c, c†}.) Next,
that taking the limit N → ∞, we obtain

S[η̄, η] =





exp

[
−
∫ ∞

−∞
dtdt′η̄(t)θ(t− t′)η(t′)e−iε(t−t

′)
]

(ε > 0)

exp

[∫ ∞

−∞
dτdτ ′η̄(τ)θ(t′ − t)η(τ ′)e−iε(t−t

′)
]

(ε < 0)

(7.102)

By introducing the Green function,

G(t) = −i [(1 − f(ε))θ(t) − f(ε))θ(−t)] e−iεt

we can compactly combine these two results into the final form

S(t2, t1) = exp

[
−i
∫ ∞

−∞
dtdt′η̄(t)G(t − t′)η(t′)

]
. (7.103)

A more heuristic derivation however, is to recognized that derivatives of the generating
functional bring down fermi operators inside the time-ordered exponential,

i
δ

δη(t)
〈φ|T Ŝ . . . |φ〉 = 〈φ|T Ŝc†(t) . . . |φ〉

i
δ

δη̄(t)
〈φ|T Ŝ . . . |φ〉 = 〈φ|T Ŝc(t) . . . |φ〉 (7.104)

where Ŝ = T exp
[
−i ∫ dt′

(
η̄(t′)c(t′) + c†(t′)η(t′)

)]
so that inside the expectation value,

i
δ

δη(t)
≡ c†(t)

i
δ

δη̄(t)
≡ c(t), (7.105)

and

i
δ lnS

δη(1)
=

〈φ|Tc†(1)Ŝ|φ〉
〈φ|Ŝ|φ〉

≡ 〈c†(1)〉, (7.106)

where Ŝ = T exp [−i ∫ V (t′)dt′]. Here, we have used the Gell-Mann Low theorem to identify
the quotient above as the expectation value for c†(1) in the presence of the source terms.
Differentiating one more time,

(i)2
δ2 lnS[η̄, η]

δη̄(2)δη(1)
=

〈φ|Tc(2)c†(1)Ŝ|φ〉
〈φ|Ŝ|φ〉

− 〈φ|Tc(2)Ŝ|φ〉
〈φ|Ŝ|φ〉

〈φ|Tc†(1)Ŝ|φ〉
〈φ|Ŝ|φ〉
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= 〈Tc(2)c†(1)〉 − 〈c(2)〉〈c†(1)〉
= 〈Tδc(2)δc†(1)〉. (7.107)

This quantity describes the variance in the fluctuations δc(†)(2) ≡ c(†)(2) − 〈c(†)(2)〉 of the
fermion field about their average value. When the source terms η and η̄ are introduced, they
will change the average values of the fields 〈c(1)〉 and 〈c†(1)〉 but the absence of interactions
between the modes mean they won’t change the amplitude of fluctuations about the mean,
so that

(i)2
δ2 lnS[η̄, η]

δη̄(2)δη(1)
= 〈Tc(1)c†(2)〉

∣∣∣
η, η̄=0

= iG(1 − 2),

and we can then deduce that

lnS[η̄, η] = −i
∫
d1d2η̄(2)G(2 − 1)η(1). (7.108)

There is no constant term, because S = 1 when the source terms are removed, and we arrive
back at (7.97).

The generalization of the generating functional to a gas of Fermions with many one-
particle states is just a question of including an appropriate sum over one-particle states,
i.e

H =
∑
λ ελc

†
λcλ

V (t) =
∑
λ η̄λ(t)cλ(t) + cλ

†(t)ηλ(t)

}
(7.109)

The corresponding Generating functional is given by

S[η̄, η] = 〈φ|T exp

[
−i
∫
dtV (t)

]
|φ〉 = exp

[
−i
∑

λ

∫
d1d2η̄λ(1)Gλ(1 − 2)ηλ(2)

]

Gλ(1 − 2) = −i〈φ|Tcλ(1)c†λ(2)|φ〉 (7.110)

Example: Show using the generating function, that in the presence of a
source term,

〈cλ(t′)〉 =

∫
dt′Gλ(t− t′)η(t′).

7.3.3 The Spectral Representation

In the non-interacting Fermi liquid, we saw that the propagator contained a single pole, at
ω = εk. What happens to the propagator when we turn on the interactions? Remarkably it
retains its same general analytic structure, excepting that now, the single pole divides into
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a plethora of poles, each one corresponding to an excitation energy for adding, or removing
a particle from the ground-state. The general result, is that

G(k, ω) =
∑

λ

|Mλ|2
ω − ελ + iδλ

(7.111)

where δλ = δsign(ελ) and the total pole strength
∑

λ

|Mλ|2 = 1 (7.112)

is unchanged. If the ground-state is an N particle state, then the state |λ〉 is either an
N + 1, or N − 1 particle state. The corresponding excitation energies are

ελ =

{
Eλ −Eg (|λ〉 ∈ |N + 1〉)
Eg −Eλ (|λ〉 ∈ |N − 1〉) (7.113)

and the corresponding matrix elements are

Mλ =





〈λ|c†kσ|φ〉, (|λ〉 ∈ |N + 1〉),

〈λ|ckσ |φ〉, (|λ〉 ∈ |N − 1〉).
(7.114)

In practice, the poles in the interacting Green function blur into a continuum of ex-
citation energies, with an infinitesimal separation. To deal with this situation, we define
a quantity known as the spectral function, given by the imaginary part of the Green’s
function,

A(k, ω) =
1

π
ImG(k, ω − iδ), Spectral Function (7.115)

Using the Cauchy’s principle part equation, 1/(x− iδ) = P (1/x)+ iπδ(x), where P denotes
the principal part, we can use the spectral representation (7.111) to write

A(k, ω) =
∑

|Mλ|2δ(ω − ελ) (7.116)

where now, the normalization of the pole-strengths means that
∫ ∞

−∞
A(k, ω)dω =

∑

λ

|Mλ|2 = 1 (7.117)

Since the excitation energies are always positive, ελ is positive for electron states and neg-
ative for electron states, so

A(k, ω) = θ(ω)ρe(k, ω) + θ(−ω)ρh(k,−ω) (7.118)

where ρe(ω) and ρh(ω) are the spectral functions for adding or holes of energy ω to the
system respectively. To a good approximation, in high energy spectroscopy, ρe,h(k, ω) is
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directly proportional to the cross-section for adding, or removing an electron of energy |ω|
to the material. Photoemission and inverse photoemission experiments can, in this way, be
used to directly measure the spectral function of electronic systems.

To derive this spectral decomposition, we imagine that we know the complete Hilbert
space of energy eigenstates {|λ〉}. By injecting the completeness relation

∑ |λ〉〈λ| = 1
between the creation and annihilation operators in the Green’s function, we can expand it
as follows

G(k, t) = −i
∑

λ

[
〈φ|ckσ(t)

=1︷ ︸︸ ︷
|λ〉〈λ| c†kσ(0)|φ〉θ(t) + i〈φ|c†kσ(0)

=1︷ ︸︸ ︷
|λ〉〈λ| ckσ(t)|φ〉θ(−t)

]

By using energy eigenstates, we are able to write

〈φ|ckσ(t)|λ〉 = 〈φ|eiHtckσe−iHt|λ〉 = 〈φ|ckσ |λ〉ei(Eg−Eλ)t

〈λ|ckσ(t)|φ〉 = 〈λφ|eiHtckσe−iHt|φ〉 = 〈λ|ckσ |φ〉ei(Eλ−Eg)t (7.119)

Notice that the first term involves adding a particle of momentum k, spin σ, so that the
state |λ〉 = |N + 1;kσ〉 is an energy eigenstate with N + 1 particles, momentum k and spin
σ. Similarly, in the second matrix element, a particle of momentum k, spin σ has been
subtracted, so that |λ〉 = |N − 1;−k − σ〉. We can thus write the Greens function in the
form:

G(k, t) = −i
∑

λ

[
|〈λ|c†kσ|φ〉|2e−i(Eλ−Eg)tθ(t) − |〈λ|ckσ |φ〉|2e−i(Eg−Eλ)tθ(−t)

]
,

where we have simplified the expression by writing 〈φ|ckσ|λ〉 = 〈λ|c†kσ|φ〉∗ and 〈λ|ckσ |φ〉 =
〈φ|c†kσ|λ〉∗. This has precisely the same structure as a non-interacting Greens function,
except that εk → Eλ −Eg in the first term, and εk → Eg −Eλ in the second term. We can
use this observation to quickly carry out the Fourier transform, whereapon

G(k, ω) =
∑

λ

[
|〈λ|c†kσ|φ〉|2

ω − (Eλ −Eg)) + iδ
+

|〈λ|ckσ |φ〉|2
ω − (Eg −Eλ) − iδ

]

which is the formal expansion of the result quoted above.
To show that the total pole-strength is unchanged by interactions, we expand the sum

over pole strengths, and then use completeness again, as follows

∑

λ

|Mλ|2 =
∑

λ

|〈λ|c†kσ|φ〉|2 + |〈λ|ckσ |φ〉|2

=
∑

λ

〈φ|ckσ
=1︷ ︸︸ ︷

|λ〉〈λ| c†kσ|φ〉 + 〈φ|c†kσ
=1︷ ︸︸ ︷

|λ〉〈λ| ckσ|φ〉

= 〈φ|
=1︷ ︸︸ ︷

{ckσ , c†kσ} |φ〉 = 1 (7.120)
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7.4 Many particle Green’s functions

The n-particle Green’s function determines the amplitude for n-particles to go from one
starting configuration to another:

initial particle positions︷ ︸︸ ︷
{1′, 2′ . . . n′} G−→

final particle positions︷ ︸︸ ︷
{1′, 2′ . . . n′} (7.121)

where 1′ ≡ (x′, t′), etc. and 1 ≡ (x, t), etc.. The n-particle Green’s function is defined as

G(1, 2, . . . n; 1′, 2′, . . . n′) = (−i)n〈φ|Tψ(1)ψ(2) . . . ψ(n)ψ†(n′) . . . ψ†(1′)|φ〉

and represented diagramatically as

G(1, 2, . . . n; 1′, 2′, . . . n′) = 2

1 1’

n n’

2’
G

(7.122)

In systems without interactions, the n-body Green’s function can always be decomposed
in terms of the one-body Green’s function, a result known as “Wick’s theorem”. This is
because particles propagate without scattering off one-another. Suppose a particle which
ends up at r comes from location P ′r, where Pr is the r-th element of a permutation P of
(1, 2, . . . n). The amplitude for this process is

G(r − P ′r) (7.123)

and the overall amplitude for all n-particles to go from locations P ′r to positions r is then

ζpG(1 − P ′1)G(2 − P ′2) . . . G(n− P ′n) (7.124)

where ζ = ± for bosons (+) and fermions (-) and p is the number of pairwise permutations
required to make the permutation P . This prefactor arises because for fermions, every
time we exchange two of them, we pick up a minus sign in the amplitude. Wick’s theorem
states the physically reasonable result that the n-body Green’s function of a non-interacting
system is given by the sum of all such amplitudes:

G(1,2, . . . n;1′,2′, . . .n′) =
∑

ζP
∏

r=1,n

G(r − P ′r) (7.125)
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For example, the two-body Green’s function is given by

G(1,21′,2′) = G(1,1′)G(2,2′) ±G(1,2′)G(2,1′)

1

2

1’

2’

G =

2 2’

1’1
±

1 1’

2 2’

The process of identifying pairs of initial, and final states in the n-particle Green’s function
is often referred to as a “contraction”. When we contraction two field operators inside a
Green’s function, we associate an amplitude with the contraction as follows

〈0|T [. . . ψ(1) . . . ψ†(2) . . .]|0〉 −→ 〈0|T [ψ(1)ψ†(2)]|0〉 = iG(1 − 2)

〈0|T [. . . ψ†(2) . . . ψ(1) . . .]|0〉 −→ 〈0|T [ψ†(2)ψ(1)]|0〉 = ±iG(1 − 2)

Each product of Green’s functions in the Wick-expansion of the propagator is a particular
“contraction” of the n-body Green’s function, thus

n1oqp1r1sEtHu5v w)x yzn3{|r7yzn~}5r��f�f�-yznC��r��f�f��y���nC�J��^r��f�f��y���nH�J��`rb�f�f�-y���nC�J��Ur7�1v�u^�
= ζPG(1 − P ′1)G(2 − P ′2) . . . G(n − P ′n) (7.126)

where now P is just the number of times the contraction lines cross-one another. Wick’s
theorem then states that the n-body Green’s function is given by the sum over all possible
contractions

(−i)n〈φ| T ψ(1)ψ(2) . . . ψ†(n′)|φ〉 =

∑

All contractions

�~���C�~�����D� ��� �9�~���C�9�C `�D¡�¡¢¡~�9��£��D¡¢¡�¡]�¥¤c��¦¨§©>�D¡¢¡�¡]�¥¤k�ª¦¨§«e�D¡¢¡�¡~�¬¤k�ª¦¨§­A�¯®~� �=°

Example: Show how the expansion of the generating functional in the
absence of interactions can be used to derive Wick’s theorem.
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7.5 Landau’s Fermi Liquid Theory

One of Landau’s many creative inventions, is the idea of Fermi liquid theory[2, 3, 4, ]. In
the early fifties, the availability of isotopic pure He − 3 as a biproduct of the Manhattan
project, made it possible for the first time, to experimentally study an almost ideal Fermi
liquid. He− 3 atoms contain an odd number of nucleii, neutralized by two orbital electrons
in a singlet state. It behaves as a composite neutral fermion with spin 1/2.

Prior to Landau’s theory, the only available theory of a Fermi fluid was the Sommerfeld’s
model for a non-interacting Fermi liquid. A key property of the non-interacting Fermi-gas,
is the presence of a large, finite density of single-particle excitations at the Fermi energy,
given by

N(0) = 2
(4π)p2

(2πh̄)3
dp

dE

∣∣∣∣∣
p=pF

=
mpF

π2h̄3 (7.127)

In such a fluid, application of a magnetic field splits the “up” and “down” Fermi seas,
changing the energy by an amount ∓gµBB, where gµB is the magnetic moment of the
Fermion. The number of “up” and “down fermions is thereby shifted by an amount δN↑ =
−δN↓ = 1

2N(0)µBB thereby changing the magnetization by an amount M = χB where,

χ = gµB(N↑ −N↓)/B = µ2
fN(0) (7.128)

is the “Pauli paramagnetic susceptibility” . In a degenerate Fermi liquid, the energy is
given by

E(T ) − µN =
∑

kσ=±1/2

εk
1

eβεk + 1
(7.129)

The variation of this quantity at low temperatures (where to order T 2, the chemical po-
tential is constant ) depends only on the density of states at the Fermi energy, so the low
temperature specific heat

CV =
dE

dT
= N(0)

∫ ∞

−∞
dεε

d

dT

(
1

eβε + 1

)

= N(0)k2
BT

π2/3︷ ︸︸ ︷∫ ∞

−∞
dx

x2

(ex + 1)(e−x + 1)
=

=γ︷ ︸︸ ︷
π2

3
N(0)k2

B T (7.130)

is linear in the temperature. Since both the specific heat, and the magnetic susceptibility
are proportional to the density of states, their ratio is set purely by the size of the magnetic
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moment:

χ

γ
= g2 3µ2

B

π2k2
B

(7.131)

Remarkably, the early experiments by Fairbank, Ard and Walters at Duke University[5]
confirmed the Pauli paramagnetism in in Helium-3, but the zero temperature value was
about ten times too large.

Landau’s approach to this problem was elegantly simple. He imagined starting with a
hypothetical gas of Helium atoms with no forces of repulsion between them: this is case he
could understand using Sommerfeld’s model. Landau imagined gradually turning back on
the interactions between the atoms until they reached their full value. What would happen,
if one could do this extremely slowly, or “adiabatically”? Nothing! Landau argued that since
the fermions near the Fermi surface had nowhere to scatter to, as interactions were smoothly
turned on, the quantum states of the metal would evolve smoothly, without any of the
energies of the quantum states crossing one-another to become equal. With this reasoning,
Landau concluded that each quantum state of the fully-interacting liquid Helium-3, would
be in precise one-to-one correspondence with the states of the idealized “non-interacting”
Fermi-liquid.[3] One of the key concepts to emerge from the Landau Fermi-liquid theory,
is the idea of a “quasiparticle” - in essence, the adiabatic evolution of the non-interacting
fermion into an interacting environment. One of the key results of the Landau theory, is
that although the spin and charge of the quasiparticle are unchanged by turning on the
interactions, the magnetic moment and the mass of the quasiparticle are renormalized to
values g∗ and m∗ respectively. Subsequent to Landau’s theory, measurements of the specific
heat[4, ] revealed that to fit the experiment, the He-3 effective mass and enhanced magnetic
moment g∗ are approximately

m∗ = (2.8)m(He3),

(g∗)2 = 3.3(g2)(He3). (7.132)

Suppose we label the momentum of each particle in the original non-interacting Fermi
liquid by ~p and spin component σ = ±1/2. The number of fermions momentum ~p, spin
component σ, npσ, is either one, or zero. The complete quantum state of the non-interacting
system is labeled by these occupancies. We write

Ψ = |np1σ1 , np2σ2 , . . .〉 (7.133)

In the ground-state, Ψo all states with momentum p less than the Fermi momentum are
occupied, all states above the Fermi surface are empty

Ground − state Ψo : npσ =

{
1 (p < pF)
0 (otherwise p > pF)

(7.134)

Landau argued, that if one turned on the interactions slowly, then this state would evolve
smoothly into the ground-state of the interacting Fermi liquid. The energy of this state
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is unknown, but we can call it E0. Suppose we now add one fermion to the original state
with momentum po > pF. Once again we can slowly turn on the interactions. This process
conserves the momentum of the state, which will now evolve smoothly into a final state
that we can label as:

Quasi − particle : Ψpo np =

{
1 (p < pF and p = po)
0 (otherwise)

(7.135)

This state has total momentum po and an energy E(po) > Eo larger than the ground-state.
It is called a “quasiparticle-state” because it behaves in every respect like a single particle.
This concept is a triumph of Landau’s theory, for it enables us to continue using the idea
of an independent particle, even in the presence of strong interactions; it also provides a
framework for understanding the robustness of the Fermi surface whilst accounting for the
effects of interactions. The “excitation energy” required to create a single quasiparticle, is

εpo = E(po) −Eo (7.136)

The quasiparticle concept would be of limited value if it was limited to individual excitations.
At a finite temperature, a dilute gas of these particles is excited around the Fermi surface
and these particles interact. At first sight, this is a hopeless situation: how can the particle
concept survive once one has a finite density of excitations?

Landau’s appreciation of a very subtle point enabled him to go much further: he realized
that near the Fermi surface, electron-electron scattering is severely limited by the phase
space constraints of the exclusion principle. In particular, the amount of momentum that
two particles can exchange in a collision goes to zero for particles that are on the Fermi
surface:

(p1,p2) → (p1 − q,p2 + q) (q = 0 On Fermi surface.) (7.137)

In the low density Fermi gas formed around the Fermi surface, particles only scatter in the
forward direction, and in the asymptotic low-energy limit, the number of particles at a given
momentum is unchanged by scattering, becoming a constant of the motion.

These physical considerations led Landau to conclude that the energy of a gas of quasi-
particles could be expressed as a functional of the average number of quasiparticles, np at
momentum p. Since the density of quasiparticles is low, it is sufficient to expand the energy

in the small deviations in particle number δnpσ = npσ − n
(o)
pσ from equilibrium. This leads

to the Landau energy functional for the Fermi surface,

E({npσ}) = E0 +
∑

pσ

εpδnpσ +
1

2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . (7.138)

where

εp =
δE

δnpσ
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fpσ,p′σ′ =
δ2E

δnpσδnp′σ′
(7.139)

are the first and second-derivatives of the functional, evaluated in the ground-state (δnp =
0). This functional proves of immense facility in understanding the properties of interacting
Fermi gases, for it turns out that many physical quantities can be directly related to the
first two terms in this expansion, and higher order terms are generally not needed. The
first term in the expansion, εp is just the single quasi-particle energy mentioned above. It
is easily seen that the change in total energy when np → np + δnp is

δE

δnpσ
= εp +

∑

p′σ′

fpσ,p′,σ′δnp′σ′ . (7.140)

The second-term is naturally interpreted as the change in the quasiparticle energy energy
due to a the low density of quasiparticles δnp′σ′ at momentum p′. In Helium-3, which is an
isotropic Fermi liquid, the interaction is invariant under both spin rotations, which means
that

fpσ,p′,σ′ = f sp,p′ + fap,p′σσ
′. (7.141)

Furthermore, since the interaction is invariant under spatial rotations, on the Fermi surface
these terms only depend on the relative angle between p and p′, which permits them to be
expanded in terms of Legendre polynomials. By convention one writes

N(0)f s,ap,p′ = F s,ap,p′ =
∞∑

l=0

F s,al Pl(cos θ~p,~p′) (7.142)

where

N(0) =
m∗pF
π2h̄3 (7.143)

is the density of one-particle quasiparticle states at the Fermi energy. The parameters F s
l

and F al are called the Landau parameters.
To determine the equilibrium distribution of quasiparticles, we need the Free energy

F = E − TS. However, here Landau’s application of adiabaticity comes to the rescue.
When we turn on the interactions, we do not change the entropy, which must still have the
same form as in the non-interacting system, i.e.

S = −kB
∑

p,σ

[npσlnnpσ + (1 − npσ)ln(1 − npσ)] (7.144)

The complete free energy is then the sum of (7.140) and (7.144). Taking the variation with
respect to small changes in npσ, we obtain

δF =
∑

pσ

δnpσ

[
εp + kBT ln

(
npσ

1 − npσ

)]
+ Ø(δnpσ

2) (7.145)
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The condition that the Free energy be stationary w.r.t. small variations in npσ means that
the first term in this expression must vanish, i.e.

npσ =
1

eβεp + 1
(7.146)

obeys the Fermi distribution function.
Using this formulation of the interacting Fermi gas, Landau was able to deduce three

major consequences. The first consequence of the Landau quasiparticle interactions, is the
renormalization of the quasi-particle mass. As the fermion moves through the medium, it
produces a “wake” of other quasiparticle excitations which moves along with it (Fig. 7.5).
This changes its inertia, modifying its energy, as follows

m −→ m∗

ε(p) =
p2

2m∗
− εF . (7.147)

Landau was able to relate the renormalized mass m∗ to the interactions. He did this by
considering two situations (Fig. 7.6).

1. A stationary Fermi surface observed from a reference frame moving at velocity u.

2. A Fermi surface in which the distribution functions have been modified to produce a
Fermi surface that is centered around the momentum −mu.

Using the “Galilean” equivalence of the two situations, Landau argued that the momentum
carried by the quasiparticle could be written

~p = m~v(1 +
1

3
F s1 ) (7.148)

where the additional term is derived from the back-flow of particles displaced by the quasi-
particle. Since the velocity at which the particle moves is given by ~v = ~p/m∗, it follows
that ~p = m

m∗ (1 + 1
3F

s
1 )~p or

1δp =(1 / 3) mv Fs

p = mv

Quasiparticle wake.

Figure 7.5: Illustrating the wake of particle-hole excitations that moves with a quasiparticle.

m∗

m
= 1 +

1

3
F s1 (7.149)
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Detailed Discussion To see how Gallilean invariance works, recall that
if (E,P ) are the energy and momentum of the Lab frame, then in a frame
moving with velocity u, to leading order in u, the energy and momenta are

(E′,P′) = (E −P · u,P−Mu) (7.150)

Let us apply this to a Landau Fermi liquid. Suppose we have a distribution
of quasiparticles, then in the Lab frame, the energy and momentum are

E = E[npσ ],

P =
∑

p,σ

pnpσ. (7.151)

Now suppose we move to a moving frame. We know that in the moving

u

(a) (b)

−mu

Figure 7.6: Gallilean equivalent quasiparticle distributions: (a) Fermi sea observed from
frame moving to right at velocity u, (b) Fermi sea with distribution functions modified so
as to translate the Fermi sea a momentum −mu to the left.

frame, the distribution of quasiparticles is now shifted, so that it is now
centered around a momentum −mu, i.e.

n′
pσ = np+muσ = npσ +mu · ∇pnpσ. (7.152)

We can now compute the energy in the moving frame by two different
methods:

1. Using a Gallilean boost to compute ∆E = −P · u.

2. By microscopically simulating a Gallilean boost, adjusting the dis-
tribution functions with δnpσ = mu · ∇pnpσ , and then computing
∆E =

∑
pσ

δE
δnpσ

δnpσ .

Here’s our strategy. Following Landau, we compare these two expressions,
to obtain two separate expressions for the total momentum P of the Fermi
fluid. When we differentiate these expressions with respect to the particle

137



Chapter 7. c©P. Coleman 04

occupancy npσ, we will be able to relate the momentum of each quasipar-
ticle to its group velocity. The coefficient of vp in the expression for the
momentum will then be the effective mass p = m∗v.

Let us first compute the energy in the moving frame. This is

E′ = E[n′
pσ ] = E[npσ ] +

∑

pσ

δE

δnpσ
mu · ∇pnpσ (7.153)

The second term can be integrated by parts to yield

E[n′
pσ] = E[npσ] − u ·

∑

pσ

m∇p

(
δE

δnpσ

)
npσ (7.154)

It is convenient at this point to identify an effective group velocity of each
quasiparticle by

vpσ = ∇p

(
δE

δnpσ

)
, (7.155)

so that

E[n′
pσ] = E[npσ ] − u ·

∑

pσ

mvpσnpσ (7.156)

By comparing (7.154) with (7.150) we thus see that in the original Lab
frame there are two ways of writing the momentum

P =
∑

pσ

pnpσ = m
∑

pσ

vpσnpσ (7.157)

To obtain the quasiparticle momentum, we must differentiate these expres-
sions with respect to the particle occupancy δnpσ . The left hand-side of
this expression gives us

δP

δnpσ
= p.

When we come to consider the right-hand side of this expression, we must
be careful to realize that because of interactions, vpσ itself depends on the
distribution of particles.

If we examine the variation of the right-hand-side of (7.157) with respect
to the quasiparticle occupancies, we obtain

δP = m
∑

pσ

vpσδnpσ + (δvpσ)npσ (7.158)

Using (7.140), we see that

δ(vpσ) =
∑

p′σ′

∇p

(
δ2E

δnpσδnp′σ′

)
δnp′σ′ =

∑

pσ′

∇pfpσ,p′σ′δnp′σ′ (7.159)
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so that

δP = m
∑

pσ

δnpσ

(
vpσ + (∇p′fpσ,p′σ′)np′σ′

)

=
∑

pσ

δnpσ

(
mvpσ

pwake︷ ︸︸ ︷
−mfpσ,p′σ′∇p′np′σ′

)
(7.160)

where we have integrated the second-term by parts. Physically, the second
term is the momentum associated with the “wake” of particle- hole pairs
that accompanies the quasiparticle.

To calculate the “wake” momentum we use the ground-state distribution,
npσ = npσ

(0), so that ∇pnpσ
(0) = −∇pεp(∂np/∂εp) = −vpδ(εp). Carrying

out the integral for p on the Fermi surface, we obtain

pwake = −m
∑

pσ′

fpσ,p′σ′∇p′n
(0)
p′σ′ = 2m

∫

p′

fs
pp′vp′δ(εp′) (7.161)

Replacing

2

∫

p′

δ(εp′) = N(0)

∫
dΩp̂′

4π
(7.162)

where dΩp̂′ is the element of solid angle, and resolving vp′ along vp we
obtain

pwake = mv

∫
dΩp̂′

4π

F s(cos θ)︷ ︸︸ ︷
N(0)fs(cos θ) cos θ (7.163)

where cos θ = p̂ · p̂′. Using the Legendre decomposition of the interaction
(7.142), this is then

pwake = mvF s(cos θ) cos θ =
1

3
mvF s

1 , (7.164)

so that

~p = m~v(1 +
1

3
F s

1 ), (7.165)

as in the main text.

“Mass renormalization” has the effect of compressing the the spacing between the
fermion energy levels, which increases the number of quasi-particles that are excited at
a given temperature by a factor m∗/m: this enhances the linear specific heat to the renor-
malized value

C∗V =
m∗

m
CV (7.166)
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Figure 7.7: (a) A temperature T that is smaller than the Fermi energy, slightly “blurs”
the Fermi surface; (b) even though the interaction energy is greater than the temperature,
often greater than the Fermi energy, in a Fermi liquid, the exclusion principle stabilizes the
jump in occupancy at the Fermi surface.

where CV is the Sommerfeld value for the specific heat capacity. Experimentally, the specific
heat of Helium-3 is greater than that expected based on the Sommerfeld model and from the
observed enhancement, we know that the quasiparticle mass in Helium three is m∗ ≈ 3m.

Lastly, when a Fermi gas is spin-polarized by a magnetic field, interactions polarize the
cloud surrounding each quasiparticle. This leads to an additional renormalization of the
susceptibility relative to the specific heat capacity,

χ∗ =
m∗

m(1 − F a0 )
χ (7.167)

This enabled Landau to account for the observation that the Pauli susceptibility of He-3 is
enhanced four times more than the linear specific heat capacity.

Helium-3 is a much simpler Fermi liquid than that found in metals, nevertheless many
aspects of the Fermi-liquid picture generalize to the electron fluid. Amazingly, even when the
Coulomb interactions are comparable or bigger than the electron kinetic energies, the effects
of the Pauli Exclusion principle are seen to be strong enough to sustain the Fermi liquid in
simple metals. In the early sixties, Luttinger and Ward provided a detailed mathematical
foundation for Landau’s picture, and showed that provided one can adiabatically turn on
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the interactions, the “precipice”, or jump in occupation survives, but reduced by the factor
m/m∗ (Fig. 7.7(b)).

7.6 Exercises for chapter 7

1. A particle with S = 1/2 is placed in a large magnetic field ~B = (B1 cos(ωt), B1 sin(ωt), Bo),
where Bo >> B1.

(a) Treating the oscillating part of the Hamiltonian as the interaction, write down the Schrödinger
equation in the interaction representation.

(b) Find U(t) = T exp

[
−iHint(t

′)dt′
]

by whatever method proves most convenient.

(c) If the particle starts out at time t = 0 in the state Sz = − 1
2 , what is the probability it is

in this state at time t ?

2. (Optional derivation of bosonic generating functional.) Consider the forced Harmonic oscilla-
tor

H(t) = ωb†b+ z̄(t)b+ b†z(t) (7.168)

where z(t) and z̄(t) are arbitrary, independent functions of time. Consider the S-matrix

S[z, z̄] = 〈0|TŜ(∞,−∞)|0〉 = 〈0|T exp

(
−i
∫ ∞

−∞
dt[z̄(t)b(t) + b̄(t)†z(t)]

)
|0〉, (7.169)

where b̂(t) denotes b̂ in the interaction representation. Consider changing the function z̄(t) by
an infinitesimal amount

z̄(t) → z̄(t) + ∆z̄(to)δ(t− to), (7.170)

The quantity

lim
∆z̄(to)→0

∆S[z, z̄]

∆z̄(to)
=
δS[z, z̄]

δz̄(to)

is called the “functional derivative” of S with respect to z̄. Using the Gell-Man Lowe formula

〈ψ(t)|b|ψ(t)〉 = 〈0|T Ŝ(∞,−∞)b(t)|0〉
〈0|T Ŝ(∞,−∞)|0〉 prove the following identity

iδlnS[z, z̄]/δz̄(t) ≡ b̃(t) = 〈b̂(t)〉 = 〈ψ(t)|b̂|ψ(t)〉. (7.171)

(ii) Use the equation of motion to show that

∂

∂t
b̃(t) = i〈[H(t), b̂(t)]〉 = −i[εb̃(t) + z(t)].

(iii) Solve the above differential equation to show that

b̃(t) =

∫ ∞

−∞
G(t− t′)z(t′) (7.172)
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where G(t− t′) = −i〈0|T [b(t)b†(t′)]|0〉 is the free Green’s function for the harmonic oscillator.

(iv) Use (iii) and (i) together to obtain the fundamental result

S[z, z̄] = exp

[
−i
∫ ∞

−∞
dtdt′z̄(t)G(t− t′)z(t′)

]
(7.173)

3. (Harder problem for extra credit).

Consider a harmonic oscillator with charge e, so that an applied field changes the Hamiltonian
H → Ho − eE(t)x̂, where x is the displacement and E(t) the field. Let the system initially be
in its ground-state, and suppose a constant electric field E is applied for a time T .

(i) Rewrite the Hamiltonian in the form of a forced Harmonic oscillator

H(t) = ωb†b+ z̄(t)b+ b†z(t) (7.174)

and show that

z(t) = z̄(t) =

{
ωα (T > t > 0)

0 (otherwise)
, (7.175)

deriving an explicit expression for α in terms of the field E, mass m, and frequency ω of the
oscillator.

(ii) Use the explicit form of S(z̄, z)

S[z, z̄] = exp

[
−i
∫ ∞

−∞
dtdt′z̄(t)G(t− t′)z(t′)

]
(7.176)

where G(t − t′) = −i〈0|T [b(t)b†(t′)]|0〉 is the free bosonic Green-function, to calculate the
probability p(T ) that the system is still in the ground-state after time T . Please express your
result in terms of α, ω and T . Sketch the form of p(T ) and comment on your result.
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Chapter 8

Feynman Diagrams: T=0

The preceeding chapter discussed adiabaticity, and we learned how Green’s functions func-
tions of an interacting system, can be written in terms Green’s functions of the non-
interacting system, weighted by the S-matrix, e.g.

〈φ|Tψ(1)ψ†(2)|φ〉 =
〈φo|T Ŝψ(1)ψ†(2)|φo〉

〈φo|Ŝ|φo〉

Ŝ = T exp

[
−i
∫ ∞

−∞
V (t′)dt′

]
(8.1)

where |φo〉 is the ground-state of Ho. In this chapter we shall learn how to expand to expand
these quantities, order by order in the strength of the interaction. The Feynman diagram
approach provides a succinct visual rendition of this expansion which is physically intuitive,
but also allows us to manipulate and resum the various terms in this vast expansion.

From the Feynman rules, we learn how to evaluate

• The ground-state S− matrix

S = 〈φo|Ŝ|φo〉 =
∑

{Unlinked Feynman Diagrams} . (8.2)

• The logarithm of the S− matrix, which is directly related to the shift in the ground-
state energy due to interactions.

E −Eo = lim
τ→∞

∂

∂τ
ln〈φo|S[τ/2,−τ/2]|φo〉 = i

∑
{Linked Feynman Diagrams} (8.3)

where each Linked Feynman diagrams describes a different virtual excitation induced
by the perturbation.

• Green’s functions.

G(1 − 2) =
∑

{Two-legged Feynman Diagrams} (8.4)
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• Response functions. These are a different type of Green’s function, of the form

R(1 − 2) = −i〈φ|[A(1), B(2)]|φ〉θ(t1 − t2) (8.5)

8.1 Heuristic Derivation

Feynman initially derived his diagramatic expansion as a mnemonic device for calculating
scattering amplitudes. His approach was heuristic: each diagram has a physical meaning in
terms of a specific scattering process. Feynman derived a set of rules rules that explained
how to convert the diagrams into concrete scattering amplitudes. These rules were fine
tuned and tested in the simple cases where they could be checked by other means; later,
he applied his method to cases where the direct algebraic approach was impossibly cum-
bersome. It was only later that Dyson showed how his diagramatic expansion could be
developed systematically.

Formally, a perturbation theory for the fully interacting S-matrix is is obtained by
expanding the S-matrix as a power-series, then using Wick’s theorem to write the resulting
correlation functions as a sum of contractions.

〈φo|Ŝ|φo〉 =
∞∑

n=0

(−i)n
n!

∫ ∞

−∞
dt1 . . . dtn

∑

Contractions

〈φo| ±³²µ´¯¶¢·-¸�²µ´¹¶1ºc¸b»f»f»k²µ´¯¶7¼A¸ |φo〉(8.6)

The Feynman rules tell us how to expand these contractions as a sum of diagrams, where
each diagram provides a precise, graphical representation of a scattering amplitude that
contributes to the complete S-matrix.

Let us see examine how we might develop, heuristically, a Feynman diagram exapnsion
for simple potential scattering, for which

V (1) ≡
∫
d3x1U(~x1)ψ

†(~x1, t1)ψ(~x1, t1). (8.7)

where we’ve suppressed spin indices into the background. When we start to make contrac-
tions we will break up each product V (1)V (2) . . . V (r) into pairs of creation and annihilation
operators, replacing each pair as follows

½¿¾¯À>Á�Â¢ÂkÂ3½¥Ã-¾HÄeÁ −→ (
√
i)2 ×G(2 − 1). (8.8)

where we have divided up the the prefactor of i two factors of
√
i, which we will transfer onto

the scattering amplitudes where the particles are created and annihilated. This contraction
is denoted by

G(2 − 1) = 2 1
(8.9)
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representing the propagation of a particle from “1” to “2”. Pure potential scattering gives
us one incoming, and one outgoing propagator, so we denote a single potential scattering
event by the diagram Å Æ

Ç È ÉEÊªË9ÌÎÍ�Ï = (
√
i)2 ×−iU(x) ≡ U(x)

(8.10)

Here, the “−i” has been combined with the two factors of
√
i taken from the incoming, and

outgoing propagators to produce a purel real scattering amplitude (
√
i)2 ×−iU(x) = U(x).

The Feynman rules for pure potential scattering tell us that the S-matrix for potential
scattering is the exponential of a sum of connected “vacuum” diagrams

S = exp [ + + + . . .] .
(8.11)

The “vacuum diagrams” appearing in the exponential do not have any incoming or outgoing
propagators- they represent the amplitudes for the various possible processes by which
electron-hole pairs can bubble out of the vacuum. Let us examine the first, and second
order contractions for potential scattering. To first order

−i〈φ0| ÐÒÑªÓ1Ô1Õ |φ0〉 = −i
∑

σ

∫
d3xU(x)〈φ0|T ÖJ×Ø¥Ù]Ú�ÛeÜeÝ Þ¿ß Ö Ø Ù]Ú�ÛeÜ=àÞ9ß |φ0〉 (8.12)

This contraction describes a single scattering event at (~x, t1). Note that the creation op-
erator occurs to the left of the annihilation operator, and to preserve this ordering inside
the time-ordered exponential, we say that the particle propagates “backwards in time”
from t = t+1 to t = t−1 . When we replace this term by a propagator the backward time
propagation introduces a factor of ζ = −1 for fermions, so that

〈φ0|T áJâã¥ä]å�æeçeè é¿ê á ã ä]å�æeç=ëé9ê |φ0〉 = iζG(~x− ~x, t−1 − t+1 ) = iζG(~0, 0−) (8.13)

We carry along the factor U(~x) as the amplitude for this scattering event. The result of
this contraction procedure is then

−i
∫ ∞

−∞
dt1〈φ0| ìÒíªî1ï1ð |φ0〉 = −i(2S + 1)

∫
dt1 ×

∫
d3xU(x) × iζG(~0, 0−)

= , (8.14)

where we have translated the scattering amplitude into a a single diagram. You can think
of it as the spontaneous creation, and re-annhilation of a single particle. Here we may

147



Chapter 8. c©P. Coleman 04

tentatively infer a number of important “Feynman rules” - listed in Table 8.1: that we
must associate each scattering event with an amplitude U(x), connected by propagators
that describe the amplitude for electron motion between scattering events. The overall
amplitude involves an integration over the space time co-ordinates of the scattering events,
and apparantly, when a particle loop appears, we need to introduce the factor ζ(2S + 1)
(where ζ = −1 for fermions) into the scattering amplitude to account for the presence of an
odd-number of backwards-time propagators and the 2S+1 spin components of the particle
field. These rules are summarized in the table below:

Table. 8.1 Real Space Feynman Rules .

1 2 G(2 − 1)

x1 U(x1)

1 2 iV (1− 2)

∏

i

∫
d3xidti

Integrate over all intermediate
times and positions.

−(2S + 1)G(~0, 0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

z(1) ñ z(1)

ò −iz̄(1) −iz̄(1)

p = 2
1

p

×
p = 8

p = order of symmetry group.
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Physically, the vacuum diagram we have drawn here can be associated with the small
first-order shift in the energy ∆E1 of the particle due to the potential scattering. This
inturn produces a phase shift in the scattering S-matrix,

S ∼ exp

[
−i∆E1

∫
dt

]
∼ 1 − i∆E1

∫
dt, (8.15)

where the exponential has been audaciously expanded to linear order in the strength of the
scattering potential. If we compare this result with our leading Feynman diagram expansion
of the S-matrix,

〈φo|Ŝ|φo〉 = 1 + ,

we see that we can interprete the overall factor of
∫
dt1 in (8.14) as the time period over which

the scattering potential acts on the particle. If we factor this term out of the expression we
may identify

∆E1 =

ρ︷ ︸︸ ︷
iζ(2S + 1)G(~0, 0−)

∫
d3xU(x) (8.16)

Here, following our work in the previous chapter, we have identified iζ(2S + 1)G(~0, 0−) =∑
σ〈ψ†σ(x)ψσ(x)〉 = ρ as the density of particles. giving ∆E1 = ρ

∫
d3xU(x). The corre-

spondence of our result with first order perturbation theory is a check that the tentative
Feynman rules are correct.

Let us go on to look at the second order contractions

〈φ0|T óõô¯ök÷�ø�óõô¯ö1ù@ø |φ0〉 = 〈φ0|T ú�ûCü¢ý�þ¢ú�û¯ü1ÿ@þ |φ0〉 + 〈φ0|T �������������	��
�� |φ0〉 (8.17)

which now generate two diagrams

1

2!
(−i)2

∫ ∞

−∞
dt1dt2〈φ0|T 
���������
��	����� |φ0〉 =

1

2
[ ]2 = [ ]

1

2!
(−i)2

∫ ∞

−∞
dt1dt2〈φ0|T �������������	����� |φ0〉 = , (8.18)

The first term is simply a product of two first order terms- the beginning of an exponential
combination of such terms. Notice how the square of one diagram is the original diagram,
repeated twice. The factor of 1/2 that occurs in the expression on the left hand-side is
absorbed into this double diagram as a so-called “symmetry factor”. We shall return to
this issue shortly, but briefly, this diagram has a permutation symmetry described by a
group of dimension d = 2, according to the Feynman rules, this generates a prefactor
1/d = 1/2. The second term derives from the second-order shift in the particle energies due
to scattering, and which, like the first order shift, produces a phase shift in the S-matrix.
This diagram has a cyclic group symmetry of dimension d = 2, and once again, there is
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a symmetry factor of 1/d = 1/2. This connected, second-order diagram gives rise to the
scattering amplitude

=
1

2
ζ(2S + 1)

∫
d1d2U(1)U(2)G(1 − 2)G(2 − 1) (8.19)

where 1 ≡ ( ~x1, t1), so that
∫
d1 ≡

∫
dt1d

3x1

G(2 − 1) ≡ G(~x2 − ~x1, t2 − t1). (8.20)

Once again, the particle loop gives a factor ζ(2S+1), and the amplitude involves an integral
over all possible space-time co-ordinates of the two scattering events. You may interpret
this diagram in various ways- as the creation of a particle-hole pair at (~x1, t1) and their
subsequent reannilation at (~x2, t2) (or vice versa). Alternatively, we can adopt an idea that
Feynman developed as a graduate student with John Wheeler- the idea than that an anti-
particle (or hole), is a particle propagating backwards in time. From this perspective, this
second-order diagram represents a single particle that propagates around a loop in space
time. Equation (8.19) can be simplified by first making the change of variables t = t1 − t2,
T = (t1 + t2)/2, so that

∫
dt1dt2 =

∫
dT × ∫ dt. Next, if we Fourier transform the scattering

potential and Green functions, we obtain

=

∫
dT × 1

2
ζ(2S + 1)

∫
dtd3qd3k|U(~q1)|2G(~k + ~q, t)G(~k,−t) (8.21)

Once again, an overall time-integral factors out of the overall expression, and we can identify
the remaining term as the second-order shift in the energy

∆E2 =
i

2
ζ(2S + 1)

∫
dt

d3k

(2π)3
d3q

(2π)3
|U(~q1)|2G(~k + ~q, t)G(~k,−t). (8.22)

To check that this result is correct, let us consider the case of fermions, where

G(k, t) = −i[(1 − nk)θ(t) − nkθ(−t)]e−iεkt (8.23)

which enables us to do the integral

i

∫
dte−δ|t|G(~k + ~q, t)G(~k,−t) =

(1 − nk+q)nk

εk+q − εk
+ (k ↔ k + q) (8.24)

We recognize the first process as the virtual creation of an electron of momentum ~k + ~q,
leaving behind a hole in the state with momentum ~k. The second-term is simply a duplicate
of the first, with the momenta interchanged, and the sum of the two terms cancels the factor
of 1/2 infront of the integral. The final result

∆E2 = −(2S + 1)

∫
d3k

(2π)3
d3q

(2π)3
|U(~q)|2 (1 − nk+q)nk

εk+q − εk
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is recognized as the second-order correction to the energy derived from these virtual pro-
cesses. Of course, we could have derived these results directly, but the important point,
is that we have established a tentative link between the diagramatic expansion of the con-
tractions, and the perturbation expansion for the ground-state energy. Moreover, we begin
to see that our diagrams have a direct interpretation in terms of the virtual excitation
processes that are generated by the scattering events.

To second-order, our results do indeed correspond to the leading order terms in the
exponential

S = 1 + [ + . . .] +
1

2!
[ + . . .]2 + . . . = exp [ + + . . .] .

Before we go on to complete this connection more formally in the next section, we need
to briefly discuss “source terms”, which couple directly to the creation and annihilation
operators. The source terms let us examine how the S-matrix responds to incoming currents
of particles. Source terms add directly to the scattering potential, so that

V (1) −→ V (1) + z̄(1)ψ(1) + ψ†(1)z(1).

The source terms terms involve a single creation or annihilation operator, thus produce
either the beginning

z(1) ≡
∫
d1 . . . × z(1)

(8.25)

or the end

−iz̄ ≡ −i
∫
d2z̄(2) × . . .

(8.26)

of a Feynman diagram. In practice, each z̄ and z arrive in pairs, and the factor −i which
multiplies z̄ combines the two factors of −i from a pair (z̄, z) with the factor of i derived
from the propagator line they share. We need these terms, so that we can generate diagrams
which involve incoming and outgoing electrons. The simplest contraction with these terms
generates the bare propagator

(−i)2
2!

∫
d2d1〈0| �����	� �"!$#% ���&�(')�	� �"!*',+����&� % �	� ��-.�����0/1�2!$#% �0/1�0')�0/1�2!*',+��0/1� % �(/��3- |0〉

=

∫
d1d2

(√
−iz̄(2)G(2 − 1)

√
−iz(1)

)

= −iz̄ z. (8.27)

If we now include the contraction with the first scattering term we produce the first scat-
tering correction to the propagator
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(−i)3
3!

∫
d2dXd1〈0| 4658797�7�:<;=6>@?BADCE>@?FA :�79797 GIHKJ >ML�ADCONP>MLQADCE>ML�A :�79797 RSH�7�797�: CONP>DTUA�=6>DTUA RV:XWZY9[�\^]U_ |0〉

=

∫
d1d2

(√
−iz̄(2)

∫
dXG(2 −X)V (X)G(X − 1)

√
−iz(1)

)

= −iz z. (8.28)

where we have only shown one of six equivalent contractions on the first line. This diagram
is simply interpreted as a particle, created at 1, scattering at position X before propagating
onwards to position 2. Notice how we must integrate over the the space-time co-ordinate of
the intermediate scattering event at X, to obtain the total first order scattering amplitude.
Higher order corrections will merely generate multiple insertions into the propagator and
we will have to integrate over the space-time co-ordinate of each of these scattering events.
Diagramatically, the sum over all such diagrams generates the “renormalized propagator”,
denoted by

G∗(2 − 1) = 2 1

= 2 1 + +

2 1 2 1
+ ... (8.29)

Indeed, to second-order in the scattering potential, we can see that all the allowed contrac-
tions are consistent with the following exponential form for the generating functional

S = exp

[
+ + . . .− iz̄ z

]
. (8.30)

To prove this result formally requires a little more work, that we now go into in more detail.
The important point for you to grasp right now, is that the sum over all contractions in the S-
matrix can be represented by a sum of diagrams which concisely represent the contributions
to the scattering amplitude as a sum over all possible virtual excitation processes about the
vacuum.

8.2 Developing the Feynman Diagram Expansion

A neat way to organize this expansion is obtained using the source term approach we
encountered in the last chapter. There we found we could completely evaluate the the
response of a non-interacting the system to a source term which injected and removed
particles. We start with the source term S-matrix

Ŝ[z̄, z] = T exp

[
−i
∫
d1[ψ†(1)z(1) + z̄(1)ψ(1)]

]
. (8.31)

Here, for convenience, we shall hide details of the spin away with the space-time co-ordinate,
so that 1 ≡ (x1, t1, σ1), ψ(1) ≡ ψσ(x, t). You can think of the quantities z(1) and z̄(1) as
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“control-knobs” which we dial up, or down, the rate at which we are adding, or subtracting
particles to the system. For fermions, these numbers must be anticommuting Grassman
numbers: numbers which anticommute with each and all Fermion field operators. The
vacuum expectation value of this S-matrix is then

S[z̄, z] = 〈φ|Ŝ[z̄, z]|φ〉 = exp

[
−i
∫
d1d2z̄(1)G(1 − 2)z(2)

]
(8.32)

where here, G(1 − 2) ≡ δσσ2G(x1 − x2, t1 − t2) is diagonal in spin. In preparation for our
diagramatic approach, we shall denote

∫
d1d2z̄(1)G(1 − 2)z(2) = z̄ z (8.33)

where an integral over the space-time variables (x1, t1) and (x2, t2) and a sum over spin
variables σ1, σ2 is implied by the diagram. The S-matrix equation can then be written

S[z̄, z] = exp

[
−iz̄ z

]
(8.34)

This is called a “generating functional”. By differentiating this quantity with respect to
the source terms, we can compute the expectation value of any product of operators. Since
Grassman numbers anticommute, we need to distinguish whether we are differentiating from
the right, or the left. We shall adopt the convention that when we functionally differentiate
with respect to z̄, we differentiate from the left, but that when we functionally differentiate
with respect to z, we differentiate from the right, i.e 1

δ

δz̄
≡
→
δ

δz̄
,

δ

δz
≡
←
δ

δz
(8.35)

Each time we differentiate the S-matrix with respect to z̄(1), we pull down a field operator
inside the time-ordered product

i
δ

δz̄(1)
→ ψ(1)

i
δ

δz̄(1)
〈φ|T Ŝ{. . .}|φ〉 = 〈φ|T Ŝ{ψ(1) . . .}|φ〉 (8.36)

For example, the field operator has an expectation value

〈ψ(1)〉 =
〈φ|Ŝ[z̄, z]ψ(1)|φ〉
〈φ|Ŝ[z̄, z]|φ〉

= i
δ

δz̄(1)
lnS[z̄, z]

1With Grassman differentiation, we need to distinguish between left, and right differentiation. The
differential operators δ

δz
and δ

δz̄
are defined to satisfy the Euler expansion F = Fo + z̄ ∂F

∂z̄
+ ∂F

∂z
z where

“barred” quantities lie to the left of unbarred quantities. With this convention, ∂F
∂z

is the coefficient lying

to the left of z. This means that δ
δz

≡
←
δ
δz

differentiates from the right, so that for example, the differential

of a product fg is δ
δz

(fg) = f δg
δz

− δf
δz

g and the chain rule is δ
δz

F [g] = F ′[g] δg
δz

. This definition avoids the
need to carry a factor of ζ in equation (8.38 ).
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=

∫
G(1 − 2)z(2)d2

≡ [1 ` z] (8.37)

Notice how the differential operator i δ
δz̄(1) “grabs hold” of the end of a propagator and

connects it up to space-time co-ordinate 1. Likewise, each time we differentiate the S-
matrix with respect to z(1), we pull down a field creation operator inside the time-ordered
product.

i
δ

δz(1)
→ ψ†(1), (8.38)

so that the creation operator has the value

〈ψ†(2)〉 =
〈φ|Ŝ[z̄, z]ψ†(2)|φ〉

〈φ|Ŝ[z̄, z]|φ〉
= i

δ

δz(2)
lnS[z̄, z]

=

∫
d1z̄(1)G(1 − 2)

≡ [z̄ a 2] (8.39)

If we differentiate either (8.37) w.r.t. z(2), or (8.39 ) w.r.t. z̄(1) we obtain

i
δ

δz(2)
〈ψ(1)〉

∣∣∣∣
z=z̄=0

= i
δ

δz̄(1)
〈ψ†(2)〉

∣∣∣∣
z=z̄=0

= 〈φ|Tψ(1)ψ†(2)|φ〉 = iG(1 − 2) (8.40)

as expected.
In general, we can calculate arbitrary functions of the field operators by acting on the

S-matrix with the appropriate function of derivative operators.

〈φ|T Ŝ[z̄, z]F [ψ†, ψ]|φ〉 = F

[
i
δ

δz
, i
δ

δz̄

]
exp

[
−iz̄ z

]
. (8.41)

If we now set F [ψ†, ψ] = Te−i
∫
V [ψ†,ψ]dt, then

SI [z̄, z] = 〈φ|Te−i
∫∞
−∞

dt(V (ψ†,ψ)+source terms)|φ〉 (8.42)

can be written completely algebraically, in the form

SI [z̄, z] = e
−i
∫∞
−∞

V (i δ
δz
,i δ
δz̄

)dt
exp

[
−iz̄ z

]
(8.43)

The action of the exponentiated differential operator on the source terms generates all of
the contractions. It is convenient to recast this expression in a form that groups all the
factors of “i”. To do this, we write α = z, ᾱ = −iz̄, this enables us to rewrite the expression
as SI [z̄, z] = SI [ᾱ, α]|α=z,ᾱ=−iz̄, where

SI [ᾱ, α] = e
(i)n−1

∫∞
−∞

V ( δ
δα
, δ
δᾱ

)dt
exp

[
ᾱ α

]
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where we have written

V (i
δ

δz
, i
δ

δz̄
) = inV (

δ

δα
,
δ

δᾱ
) (8.44)

for an interaction involving n creation and n annihilation operators ( n-particle interaction).
This equation provides the basis for all Feynman diagram expansions.

To develop the Feynman expansion, we need to recast our expression in a more graphical
form. To see how this works, let us first consider a one-particle scattering potential (n = 1).
In this case, we write

in−1V (
δ

δα
,
δ

δᾱ
) =

∫
d3xU(x)

δ

δα(x)

δ

δᾱ(x)
(8.45)

which we denote as

δ
δᾱ(1)

δ
δα(1)

.
(8.46)

Notice that the basic scattering amplitude for scattering at point x is simply U(x) (or
U(x)/h̄ if we reinstate Planck’s constant). Schematically then, our Feynman diagram ex-
pansion can be written as

SI [ᾱ, α] = exp

[

δ
δᾱ(1)

δ
δα(1)

]
exp

[
ᾱ α

]

The differential operators acting on the bare S-matrix, glue the scattering vertices to the
ends of the propagators, and thereby generate a sum of all possible Feynman diagrams.
Formally, we must expand the exponentials on both sides, e.g.

SI [ᾱ, α] =
∑

n,m

1

n!m!

[

δ
δᾱ(1)

δ
δα(1)

]n[
ᾱ α

]m

(8.47)

The action of the differential operator on the left hand-side is to glue the m propagators
together with the n vertices, to make a series of Feynman diagrams. Now, at first sight,
this sounds pretty frightening- we will have a profusion of diagrams. Let us just look at a
few: do not at this stage worry about the details, just try to get a feeling for the general
structure. The simplest n = 1, m = 1 term takes the form
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[

δ
δᾱ(1)

δ
δα(1)

][
ᾱ α

]
= ζ

∫
d1V (1)

δ2

δᾱ(1−)δα(1)

∫
dXdY ᾱ(X)G(X − Y )α(Y )

= ζ

∫
d1V (1)G(1− − 1) = (8.48)

This is the simplest example of a “linked-cluster” diagram, and it results from a single con-
traction of the scattering potential. The sign ζ = −1 occurs for fermions, because the fermi
operators need to be interchanged to write the expression as a time-ordered propagator.
One can say that the expectation value involves the fermion propagating backwards in time
from time t to an infinitesimally earlier time t− = t− ε. The term n = 1, m = 2 gives rise
to two sets of diagrams, as follows:

[

δ
δᾱ(1)

δ
δα(1)

][
ᾱ α

]2
= ᾱ α+ [ × ᾱ α]

(8.49)

The first term corresponds to the first scattering correction to the propagator, written out
algebraically,

ᾱ α =

∫
d1d2ᾱ(1)

∫
dXG(1 −X)V (X)G(X − 2)α(2)

whereas the second term is an unlinked product of the bare propagator, and the first linked
cluster diagram. The Feyman rules enable us to write each possible term in the expansion
of the S-matrix as a sum of unlinked diagrams. Fortunately, we are able to systematically
combine all of these diagrams together, with the end result that

SI(ᾱ, α) = exp
[∑

linked diagrams
]

= exp

[
+ + . . . ᾱ α

]
. (8.50)

When written in this exponential form, the unlinked diagrams entirely disappear- a result of
the so-called “link-cluster” theorem we are shortly to encounter. The Feynman rules tell us
how to convert these diagrams into mathematical expressions. These rules are summarized
in table 8.1.

Let us now look at how the same procedure works for a two-particle interaction. Working
heuristically, we expect a two-body interaction to involve two incoming and two outgoing
propagators. We shall denote a two-body scattering amplitude by the following diagram

1 2 = (
√
i)4 ×−iV (1 − 2) ≡ iV (1 − 2). (8.51)

Notice how, in contrast to the one-body scattering amplitude, we pick up four factors of√
i from the external legs, so that the net scattering ampligude involves an awkward factor
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of “i”. If we now proceed using the generating function approach, we set n = 2 and then
write

in−1V (
δ

δα
,
δ

δᾱ
) = i

1

2

∫
d3xd3x′V (x− x′)

δ

δα(x)

δ

δα(x′)
δ

δᾱ(x′)
δ

δᾱ(x)
(8.52)

Notice how the amplitude for scattering two particles is now iV (x− x′) (or iV (x− x′)/h̄ if
we reinstate Planck’s constant). We can now formally denote the scattering vertex as

1

2
δ

δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)

(8.53)

This gives rise to the following expression for the generating functional

SI [ᾱ, α] = exp

[
1

2 bδ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)]

exp

[
ᾱ α

]

for the S-matrix of interacting particles.

As in the one-particle scattering case, the differential operators acting on the bare S-
matrix, glue the scattering vertices to the ends of the propagators, and thereby generate a
sum of all possible Feynman diagrams. Once again, we are supposed to formally expand
the exponentials on both sides, e.g.

SI [ᾱ, α] =
∑

n,m

1

n!m!

[
1

2 cδ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)]n[

ᾱ α

]m
(8.54)

Let us again look at some of the leading diagrams that appear in this process. For instance

1

2!

[
1

2 dδ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)][

ᾱ α

]2
=

1

2

[
+ ζ

]
.

We shall see later that these are the Hartree and Fock contributions to the Ground-state
energy. The prefactor of 1

2 arises here because there are two distinct ways of contracting the
vertices with the propagators. At each of the vertices in these diagrams, we must integrate
over the space-time co-ordinates and sum over the spins. Since spin is conserved along each
propagator, so this means that each loop has a factor of (2S + 1) associated with the spin
sum. Once again, for fermions, we have to be careful about the minus signs. For each
particle loop, there is always an odd number of fermion propagators propagating backwards
in time, and this gives rise to a factor

ζ(2S + 1) = −(2S + 1) (8.55)
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per fermion loop. This is the origin of the factor ζ in the second linked cluster diagram
above. The algebraic rendition of these Feynman diagrams is then

1

2

∫
d1d2V (1 − 2)

[
(2S + 1)2G(0, 0−)2 + ζ(2S + 1)G(1 − 2)G(2 − 1)

]
(8.56)

Notice finally, that the first Hartree diagram contains a propagator which “bites its own
tail”. This comes from a contraction of the density operator,

−i
∑

σ

〈. . . ψσ†(x, t)ψσ(x, t) . . .〉 = ζ(2S + 1)G(x, 0−) (8.57)

and since the creation operator lies to the left of the destruction operator, we pick up a
minus sign for fermions. As a second example, consider

1

3!

[
1

2 eδ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)][

ᾱ α

]3
= ᾱ


ζ +


α

corresponding to the Hartree and Fock corrections to the propagator. Notice how a sim-
ilar minus sign is associated with the single fermion loop in the Hartree self-energy. By
convention the numerical prefactors are implicitly absorbed into the Feynman diagrams, by
introducing two more rules: one which states that each fermion loop gives a factor of ζ,
the other which relates the numerical pre-factor to the symmetry of the Feynman diagram.
When we add all of these terms, the S-matrix becomes

SI(ᾱ, α) = 1 +


 + + + . . .




+ ᾱ


f + + + . . .


α

+ . . .

+

[
×

]
+

[
× + . . .

]
(8.58)

The diagrams on the first line are “linked-cluster” diagrams: they describe the creation
of virtual particle-hole pairs in the vacuum. The second-line of diagrams are the one-
leg diagrams, which describe the one-particle propagators. There are also higher order
diagrams (not shown) with 2n legs, coupled to the source terms, corresponding to the n-
particle Green’s functions. The diagrams on the third line are “unlinked” diagrams. We
shall shortly see that we can remove these diagrams by taking the logarithm of the S-matrix.
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8.2.1 Symmetry factors

Remarkably, in making the contractions of the S-matrix, the prefactors in terms like eq.
(8.54) are almost completely absorbed by the combinatorics. Let us examine the number
of ways of making the contractions between the two terms in (8.54). Our procedure for
constructing a diagram is illustrated in Fig. 8.1
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3 3
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      2   W(P) W(P’)  =   2  3! 6!

W=

(a)

(b)

Figure 8.1: (a) Showing how six propagators and three interaction lines can be arranged on
a Feynman diagram of low symmetry (p = 1). (b) In a Feynman diagram of high symmetry,
each possible assignment of propagators and interaction lines to the diagram belongs to a p−
tuplet of topologically equivalent assignments, where p is the order of the symmetry group
of permutations under which the topology of the diagram is unchanged. In the example
shown above, p = 3 is the order of the symmetry group. In this case, we need to divide the
number of assignments W by a factor of p.

1. We label each propagator on the Feynman diagram 1 through m and label each vertex
on the Feynman diagram (1) through (n).

2. The process of making a contraction corresponds to identifying each vertex and each
propagator in (8.54 ) with each vertex and propagator in the Feynman diagram un-
derconstruction. Thus the P ′r th propagator is placed at position r on the Feynman
diagram, and the Pk-th interaction line is placed at position k on the Feynman dia-
gram, where P is a permutation of (1, . . . n) and P ′ a permutation of (1, . . . ,m).
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3. Since each interaction line can be arranged 2 ways at each location, there are 2nW (P ) =
2nn! ways of putting down the the interaction vertices andW (P ′) = m! ways of putting
down the propagators on the Feynman diagram, giving a total of W = 2nn!m! ways.

4. The most subtle point is notice that if the topology of the Feynman graph is invariant
under certain permutations of the vertices, then the above procedure overcounts the
number of independent contractions by a “symmetry factor” p, where p is the dimen-
sion of the set of permutations under which the topology of the diagram is unchanged.
The point is, that each of the 2nn!m! choices made in (2) actually belongs to a p−
tuplet of different choices which have actually paired up the propagators and vertices
in exactly the same configuration. To adjust for this overcounting, we need to divide
the number of choices by the symmetry factor p, so that the number of ways of making
the same Feynman graph is

W =
2nn!m!

p
(8.59)

As an example, consider the simplest diagram,

1

2 (8.60)

This diagram is topologically invariant under the group of permutations

G = {(12), (21)} (8.61)

so p = 2. In a second example
1 2

4 3

(8.62)

the invariance group is

G = {(1234), (3412)} (8.63)

so once again, p = 2. By contrast, for the diagram
1 2

4 3

(8.64)

the invariance group is

G = {(1234), (3412), (2143), (4312)} (8.65)

so that p = 4.
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8.2.2 Linked Cluster Theorem

One of the major simplifications in developing a Feynman diagram expansion arise because
of the Linked Cluster Theorem. Ultimately, we are more interested in calculating the
logarithm of the S-matrix, lnS(z̄, z). This quantity determines both the energy shift due
to interactions, but also, it provides the n-particle (connected) Green’s functions. In the
Feynman diagram expansion of the S-matrix, we saw that there are two types of diagram:
linked-cluster diagrams, and unlinked diagrams, which are actually products of linked-
cluster diagrams. The linked cluster theorem states that the logarithm of the S-matrix
involves just the sum of the linked cluster diagrams:

lnSI [z̄, z] =
∑

{Linked Cluster Diagrams} (8.66)

To show this result, we shall employ a trick called the “replica trick”, which takes advantage
of the relation

lnS = lim
n→0

[
Sn − 1

n

]
(8.67)

In other words, if we expand Sn as a power-series in n, then the linear coefficient in the
expansion will give us the logarithm of S. It proves much easier to evaluate Sn diagra-
matically. To do this, we introduce n identical, but independent replicas of the original
system, each “replica” labelled by λ = (1, n). The Hamiltonian of the replicated system is
just H =

∑
λ=1,n and since the operators of each replica live in a completely independent

Hilbert space, they commute. This permits us to write

(SI [z̄, z])
N = 〈φ|Te

−i
∫ ∞

−∞
dt
∑

λ

(V (ψλ
†, ψλ) + source terms)

|φ〉 (8.68)

When we expand this, we will generate exactly the same Feynman diagrams as in S, ex-
cepting that now, for each linked Feynman diagram, we will have to multiply the amplitude
by N . The diagram expansion for interacting fermions will look like

SI(ᾱ, α) = 1

+ N ×

 + + ᾱ


g + + + . . .


α+ . . .




+ N2

[( )2

+

( )2

+ ( × + . . .

]

+ N3

[( )3

+ . . .

]
+ . . . (8.69)

from which we see that the coefficient of N in the replica expansion of SN is equal to the
sum of the linked cluster diagrams, so that

lnSI(ᾱ, α) =


 + + ᾱ


h + + + . . .


α+ . . .



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By differentiating the log of the S-matrix with respect to the source terms, extract the
one-particle Green’s functions as the sum of all two-leg diagrams

G(1 − 2) =
δ2lnSI(ᾱ, α)

δᾱ(1)δα(2)
=
∑

{Two leg diagrams}

=


2i 1 + 2 1 + 2 1 + . . .


 (8.70)

This is a quite non-trivial result. Were we to have attempted a head-on Feynman diagram
expansion of the Green’s function using the Gell Mann Lowe theorem,

G(1 − 2) = −i 〈φ|TSψ(1)ψ†(2)|φ〉
〈φ|S|φ〉 (8.71)

we would have to consider the quotient of two sets of Feynman diagrams, coming from the
contractions of the denominator and numerator. Remarkably, the unlinked diagrams of the
S matrix in the numerator cancel the unlinked diagrams appearing in the Wick expansion
of the denominator, leaving us with this elegant expansion in terms of two-leg diagrams.

The higher order derivatives w.r.t. α and ᾱ correspond to the connected n-body Green’s
functions

Example: By introducing a chemical potential source term into the orig-
inal Hamiltonian,

H =

∫
d3xδφ(x, t)ρ̂(x) (8.72)

show that the change in the logarithm of the S-matrix is

lnS[φ] = lnS[0] +
1

2


δφ(1) jZjZjZjZjZjZjZjZjjZjZjZjZjZjZjZjZjjZjZjZjZjZjZjZjZjjZjZjZjZjZjZjZjZjjZjZjZjZjZjZjZjZjjZjZjZjZjZjZjZjZjjZjZjZjZjZjZjZjZjjZjZjZjZjZjZjZjZj

kZkZkZkZkZkZkZkZkkZkZkZkZkZkZkZkZkkZkZkZkZkZkZkZkZkkZkZkZkZkZkZkZkZkkZkZkZkZkZkZkZkZkkZkZkZkZkZkZkZkZkkZkZkZkZkZkZkZkZkkZkZkZkZkZkZkZkZk
δφ(2)


 (8.73)

where
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y y y y y y y y y yy y y y y y y y y yy y y y y y y y y yy y y y y y y y y yy y y y y y y y y yy y y y y y y y y yy y y y y y y y y yy y y y y y y y y y
= + + + ... (8.74)

denotes the sum of all diagrams that connect two “density” vertices. Use
this result to show that the time-ordered density correlation function is
given by

−i〈φ|Tδρ(1)δρ(2)|φ〉 = i
δ2

δφ(1)δφ(2)
lnS[φ] = i 1 z&z&z&z&z&z&z&z&z&zz&z&z&z&z&z&z&z&z&zz&z&z&z&z&z&z&z&z&zz&z&z&z&z&z&z&z&z&zz&z&z&z&z&z&z&z&z&zz&z&z&z&z&z&z&z&z&zz&z&z&z&z&z&z&z&z&zz&z&z&z&z&z&z&z&z&z

{&{&{&{&{&{&{&{&{{&{&{&{&{&{&{&{&{{&{&{&{&{&{&{&{&{{&{&{&{&{&{&{&{&{{&{&{&{&{&{&{&{&{{&{&{&{&{&{&{&{&{{&{&{&{&{&{&{&{&{{&{&{&{&{&{&{&{&{
2(8.75)
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Example: Expand the S-matrix to quadratic order in α and ᾱ, and use
this to show that the two-particle Green’s function is given by

1

S[ᾱ, α]

δ4S

δᾱ(1)δᾱ(2)δα(3)δα(4)
= −〈φ|T [ψ(1)ψ(2)ψ†(3)ψ†(4)]|φ〉

=
1 4

32

1 4

32

1 4

2 3
+/− + |}|}|}||}|}|}||}|}|}||}|}|}|~}~}~}~~}~}~}~~}~}~}~~}~}~}~

(8.76)

Show that the last term, which is the connected two-particle Green’s func-
tion, is the quartic term coefficient in the expansion of lnS[ᾱ, α].

8.3 Feynman rules in momentum space

Though it is easiest to motivate the Feynman rules in real space, practical computations are
much more readily effected in momentum space. We can easily transform to momentum
space by expanding each interaction line and Green’s function in terms of their Fourier
components:

1 2 = G(X1 −X2) =

∫
ddp

(2π)d
G(p)eip(X1−X2)

1 2 = V (X1 −X2) =

∫
ddq

(2π)d
V (q)eiq(X1−X2) (8.77)

where we have used a short-hand notation p = (p, ω), q = (q, ν), X = (x, t), and pX =
p · x− ωt. We can deal with source terms in similar way, writing

α(X) =

∫
ddp

(2π)d
eipXα(p). (8.78)

Having made these transformations, we see that the space-time co-ordinates associated with
each vertex, now only appear in the phase factors. At each vertex, we can now carry out the
integral over all space-time co-ordinates, which then imposes the conservation of frequency
and momentum at each vertex.

, q
p1

p2

X =

∫
ddXei(p1−p2−q)X = (2π)dδ(d)(p1 − p2 − q) (8.79)

Since momentum and energy are conserved at each vertex, this means that there is one
independent energy and momentum per loop in the Feynman diagram. Thus the trans-
formation from real-space, to momentum space Feynman rules is effected by replacing the
sum over all space-time co-ordinates by the integral over all loop momenta and frequency.
(Table 8.2). The convergence factor

eiωO
+

(8.80)
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is included in the loop integral. This term is only really needed when the loop contains
a single propagator, propagating back to the point from which it eminated. In this case,
the convergence factor builds in the information that the corresponding contraction of field
operators is normal ordered.

Actually, since all propagators and interaction variables depend only on the difference
of position, the integral over all n space-time co-ordinates can be split up into an integral
over the center-or-mass co-ordinate

Xcm =
X1 +X2 + . . . Xn

n
(8.81)

and the relative co-ordinates

X̃r = Xr −X1, (r > 1), (8.82)

as follows
∏

r=1,n

ddXr = ddXcm

∏

r=2,n

ddX̃r (8.83)

The integral over the X̃r imposes momentum and frequency conservation, whilst the integral
over Xcm can be factored out of the diagram, to give an overall factor of

∫
ddXcm = (2π)dδ(d)(0) ≡ V T (8.84)

where V is the volume of the system, and T the time over which the interaction is turned
on. This means that the proper expression for the logarithm of the S-matrix is

lnS = V T
∑

linked cluster diagrams in momentum space}. (8.85)

In other words, the phase-factor associated with the S-matrix grows extensively with the
volume and the time over which the interactions act.

8.3.1 Relationship between energy, and the S-matrix

One of the most useful relationships of perturbation theory, is the link between the S-
matrix and the ground-state energy. Here the basic idea is very simple. When we turn on
the interaction, the ground-state energy changes which causes the phase of the S-matrix to
evolve. If we turn on the interaction for a time T , then we expect that for sufficiently long
times, the phase of the S-matrix will be given by −i∆ET :

S[T ] = 〈−∞|Û(T/2)U †(−T/2)|∞〉 ∝ e−i∆ET (8.86)

where ∆E = Eg = Eo is the shift in the ground-state energy as a result of interactions.
This means that at long times,

lnS[T ] = −i∆ET + constant (8.87)
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Table. 8.2 Momentum Space Feynman Rules .

(k, ω)
Go(k, ω) Fermion propagator

iV (q) Interaction

(q, ν)
1 2

ig2
qDo(q) Exchange Boson.

q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, ν)

∫
ddqdν

(2π)d+1
eiω0+ Integrate over internal loop

momenta and frequency.

p = 2

1

p
p = order of symmetry group.

×
p = 8

But from the linked cluster theorem, we know that

S = V T
∑

{linked clusters in momentum space} (8.88)

which then means that the change in the ground-state energy due to interactions is given by

∆E = iV
∑

{linked clusters in momentum space} (8.89)

To show this result, let us turn on the interaction for a period of time T , writing the
ground-state S-matrix as

S[T ] = 〈−∞|Û (T/2)U †(−T/2)|∞〉 (8.90)
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If we insert a complete set of energy eigenstates 1 =
∑
λ |λ〉〈λ| into this expression for the

S-matrix, we obtain

S[T ] =
∑

λ

〈−∞|Û(T/2)|λ〉〈λ|U †(−T/2)|∞〉 (8.91)

In the limit T → ∞, the only state with an overlap with the time-evolved state U †(−T/2)|φo〉
will be the true ground-state |ψg〉 of the interacting system, so we can write

S(T ) → U(T/2)U †(−T/2)〈φ|U †(−T/2)|∞〉 (8.92)

where U(τ) = 〈−∞|Û(τ/2)|φ〉. Now differentiating the first term in this product, we obtain

∂

∂τ
U(τ) =

∂

∂T
〈ψo|eiHoτ/2e−iHτ/2|ψg〉

=
i

2
〈ψo|{HoU(τ/2) − U(τ/2)H}|ψg〉

= − i∆E
2

U(τ) (8.93)

Similarly, ∂
∂τ U†(−τ) = − i∆E

2 U†(−τ), so that

∂S(T )

∂T
= −i∆ES(T ) (8.94)

which proves the original claim.

8.4 Examples

8.4.1 Hartree Fock Energy

As a first example of the application of Feynman diagrams, we use the linked cluster theorem
to expand the ground-state energy of an interacting electron gas to first order. To leading
order in the interaction strength, the shift in the ground-state energy is given by

Eg = Eo + iV

[
+

]
(8.95)

corresponding to the Hartree, and Fock contributions to the ground-state energy. Writing
out this expression explicitly, noting that the symmetry factor associated with each diagram
is p = 2, we obtain

∆EHF =
iV

2

∫
d3kd3k′

(2π)6
dωdω

(2π)2

[
(−[2S + 1])(iVk−k′) + (−[2S + 1])2(iVq=0

]
G(k)G(k′)

In the last chapter, we obtained the result

∫
dω

2π
G(k, ω) = ifk = iθ(kF − |k|) (8.96)
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Table. 8.3 Relationship With Physical Quantities.

∆E iV
∑{linked clusters} iV

[
+ + . . .

]

lnS V T
∑{linked clusters} V T

[
+ + . . .

]

1
−i〈Tψ(2)ψ†(1)〉

2
∑{Two leg diagrams} �

+ + +

(−i)n〈Tψ(1) . . . ψ†(2n)〉 ∑{2n- leg diagrams}

G n = 2
− + +

Response Functions

(−i)2〈ψ|T [A(2)B(1)]|ψ〉 = χTAB

B(1) �Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z�
�Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z�

A(2)
χAB = −iχTAB(ω − iδ) + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB

so that the shift in the ground-state energy is given by

∆EHF =
V

2

∫
d3kd3k′

(2π)6

[
(2S + 1)2(Vq=0) − (2S + 1)(Vk−k′)

]
fkfk′ (8.97)

In the first term, we can identify ρ = (2S+1)
∑
fk as the density, so this term corresponds

to the classical interaction energy of the Fermi gas. The second term is the exchange
energy. This term is present because the spatial wavefunction of parallel spin electrons is
antisymmetric, which keeps them apart, producing a kind of “correlation hole” between
parallel spin electrons.

Let us examine the exchange correlation term in more detail. To this end, it is useful
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to consider the equal time density correlation function,

Cσσ′(~x− ~x′) = 〈φ0| : ρσ(x)ρσ′(x
′) : |φ0〉

In real space, the Hartree Fock energy is given by

〈φ0|V̂ |φ0〉 =
1

2

∑

σ,σ′

∫
d3xd3yV (~x− ~y)〈φ0| : ρ̂σ(~x)ρ(σ

′)(~y)|φ0〉

=
1

2

∑

σ,σ′

∫
d3xd3yV (~x− ~y)Cσσ′(~x− ~y) (8.98)

Now if we look at the real-space Feynman diagrams for this energy,

∆E = i [ + ]

= −1

2

∑

σσ′

∫

x,x′
V (x− x′)

[( σ
x

σ’
x′
)
+ x

σ
x′
]

(8.99)

since each interaction line contributes a iV (x− x′) to the total energy, we deduce that the
Feynman diagram for the equal time density correlation functions are

Cσσ′(x − y) = − [(
σ

x
σ’

x′
)
+
(
x

σ
x′
)
δσσ′

]
(8.100)

Written out explicitly,

Cσσ′(~x− ~y) = −


−δσσ′G(~x− ~y, 0−)G(~y − ~x, 0−) + (

iρ0︷ ︸︸ ︷
−G(~0, O−))2)




= ρ2
0 + δσσ′G(~x− ~y, 0−)G(~y − ~x, 0−) (8.101)

where we have identified G(~0, 0−) = iρ0 with the density of electrons per spin. From this
we see that C↑↓(~x− ~y) = ρ2

0 is independent of separation- there are no correlations between
the up and down-spin density in the non-interacting electron ground state. However, the
correlation function between parallel spin electrons contains an additional term. We can
calculate this term from the equal time electron propagator, which in real space is given by

G(~x, 0−) =

∫

k
G(k, 0−)ei

~k·~x

= i

∫

k<kF

k2dk

2π2

sin kr
kr︷ ︸︸ ︷∫

d cos θ

2
eikr cos θ

=
kF
2π2

[
sin(kF r) − kF r cos kF r

r2

]

= ρ0P (kFx) (8.102)
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where ρ0 =
k3
F

6π2 and

P (x) =
3π

2x
j1(x) = 3

sinx− x cos(x)

x2
(8.103)

so that

C↑↑(~x− ~y) = ρ2
0

[
1 − (P (kF |~x− ~y|))2

]

This function is shown in Fig. 8.2. At ~x−~y = 0, this function goes to zero, corresponding to
the fact that the probability to find two “up” electrons in the same place actually vanishes.
It is this hole in the correlation function that gives the interacting electron fluid a pre-
disposition towards the development of ferromagnetism and triplet paired superfluids.

Figure 8.2: “Correlation hole”. The equal time correlation function C↑↑(kF r) for the non-
interacting Fermi gas. Notice how this function vanishes at the origin, corresponding to a
vanishing probability to find two “up” electrons at the same location in space.

Before we end this section, let us examine the Hartree Fock energy for the Coulomb
gas. Formally, with the Coulomb interaction the Hartree interaction becomes infinite, but
in practice, we need not worry, because to stabilize the charged Fermi gas, we need to
compensate the charge of the Fermi gas with a uniformly charged background. Provided the
Fermi gas is uniform, the classical Coulomb energy of the combined system is then identically
zero. The leading order expression for the ground-state energy of the compensated Coulomb
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gas of Fermions is then

Eg
V

= (2S + 1)

∫

k

h̄2k2

2m
fk − (2S + 1)

2

∫

k,k
fkfk′

4πe2

(k− k)2
(8.104)

A careful evaluation of the above integrals (see Problem 8.1) gives

Eg
V

= ρ

[
3

5
εF − 3e2kF

4π

]

where ρ = (2S + 1)k3
F /(3π

2) is the density of particles. An important parameter for the
electron gas is the dimensionless separation of the electrons. The separation of electrons
Rein a Fermi gas is defined by

4πR3
e

3
= ρ−1

where ρ is the density of electrons. The dimensionless separation rs is defined as rs = Re/a

where a = ch̄2

me2
is the Bohr radius. The Fermi momentum can be expressed

kF =
1

αrsa

where α =
(

4
9π

) 1
3 ≈ 0.521. Using rs, we can re-write the above energy of the electron gas

as

E

ρV
=

3

5

RY
α2r2s

− 3

2π

RY
αrs

=

(
2.21

r2s
− 0.916

rS

)
RY (8.105)

where RY = h̄2

2ma2 = 13.6eV is the Rydberg energy. From this, we see that the most strongly
correlated limit of the electron gas is the dilute limit.

8.4.2 Response functions

One of the most valuable applications of Feynman diagrams, is to evaluate response func-
tions. Suppose we couple the interacting system up to an external source field,

H(t) = Ho +Hs(t) (8.106)

where

Hs(t) = −A(t)f(t) (8.107)

involves the coupling of an external force to a variable of the system. Examples would
include

Hs(t) = −µB
∫
d3x~σ(x) · B(x, t), External magnetic field
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Hs(t) = −
∫
d3xρ(x)Φ(x, t) External potential (8.108)

In each case, the system will respond by a change in the variable A(t). To calculate this
change, the interaction representation of H(t) , so that

AH(t) = U †(t)AI(t)U(t) (8.109)

where, from chapter 7,

U(t) = T exp

[
−i
∫ t

−∞
Hs(t

′)dt′
]

(8.110)

We shall now drop the subscript I, because AI(t) = A(t) also corresponds to the Heisenberg
representation of Ho. Expanding (8.109) to linear order in Hs, we obtain

AH(t) = A(t) − i

∫ t

−∞
[A(t),Hs(t

′)]dt′ +O(H2
s ) (8.111)

Finally, taking expectation values, we obtain

〈AH(t)〉 = 〈φ|A(t)|φ〉 − i

∫ t

−∞
〈φ|[A(t),Hs(t

′)]|φ〉dt′ (8.112)

But if A is zero in the absence of the applied force, i.e. 〈φ|A(t)|φ〉 = 0, then the linear
response of the system is given by

〈AH(t)〉 =

∫ ∞

−∞
dt′χ(t− t′)f(t′)dt′ (8.113)

where

χ(t− t′) = i〈φ|[A(t), A(t′)]|φ〉θ(t− t′) (8.114)

is called the “dynamical susceptibility” and A(t) is in the Heisenberg representation of the
unperturbed system.

Now in diagramatic perturbation theory, we are able to evaluate time-ordered Green
functions, such as

χT (1 − 2) = (−i)2〈φ|TA(1)A(2)|φ〉. (8.115)

Here, the prefactor (−i)2 has been inserted because almost invariably, A is a bilinear of the
quantum field, so that χT is a two-particle Greens function. Fortunately, there is a very
deep link between the dissipative response function, and the fluctuations associaed with a
correlation function, called the “fluctuation-dissipation” theorem. The Fourier transforms
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of R and G are both governed by precisely the same many-body excitations, with precisely
the same spectral functions, with one small difference: in the complex structure of χ(ω),
all the poles lie just below the real axis, guaranteeing a retarded response. By contrast, in
χT (ω), the positive and negative energy poles give rise to retarded, and advanced responses,
respectively. The spectral decomposition of these functions are then,

χ(ω) =
∑

λ

2|Mλ|2ωλ
ω2
λ − (ω + iδ)2

χT (ω) = i
∑

λ

2|Mλ|2ωλ
(ωλ − iδ)2 − ω2

(8.116)

where Mλ = 〈λ|A|φ〉 is the matrix element between the ground-state and the excited state
λ and ωλ = Eλ − Eg is the excitation energy. In this way, the response function can be
simply related to the time-ordered response at a small imaginary frequency:

χ(ω) = −iχT (ω + iδ) (8.117)

We can obtain the Feynman rules for the time-ordered correlation function, by introducing
a source term Hs and calculating the S-matrix S[f ]. In this case,

−i δ2

δf(1)δf(2)
lnS[f ] = i〈φ|T [A(1)A(2)]|φ〉 = −i1 �Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z�

�Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z��Z�Z�Z�Z�Z�Z�Z�Z�
2 (8.118)

Diagramatically, the time-ordered correlation function for the quantity A, is given by

χT (ω) =
∑

{diagrams formed by connecting two ”A” vertices together.} (8.119)

as summarized in Table 8.3.

8.4.3 Magnetic susceptibility of non-interacting electron gas

One of the fundamental quantities of an fermi liquid, is the non-local Suppose for exam-
ple, one introduces a highly localized “delta-function” disturbance in the magnetic field,
δBz(x) = Bδ3(x). Since the fermions have a characteristic wave vector of order kF , this lo-
cal disturbance will “heal” over a length-scale of order l ∼ 1/kF . Indeed, since the maximum
wavevector for low-energy particle-hole excitations is sharply cut-off at 2kF , the response
produces oscillations in the spin density with a wavelength λ = 2π/kF that decay gradually
from the site of the disturbance. These oscillations are called “Friedel Oscillations” (Fig.
8.3). In the case of the example just cited, the change in the spin density in response to the
shift in the chemical potential is given by

δM(~x) = χs(~x)B (8.120)
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Figure 8.3: “Friedel oscillations in the spin density, in response to a delta-function dis-
turbance in the magnetic field at the origin.These oscillations may be calculated from the
Fourier transform of the Lindhard function.

where

χs(~x) =

∫

q
χ(q, ω = 0)ei~q·~x (8.121)

is the Fourier transform of the dynamical spin susceptibility. We shall now calculate this
quantity as an example of the application of Feynman diagrams.

From the interaction in (8.108 ) the magnetization is given by

~M(x) =

∫
d4x′χ(x− x′) ~B(x′) (8.122)

where
χ
ab

(x) = i〈φ|[σa(x), σb(0)]|φ〉θ(t) (8.123)

The electron fluid mediates this non-local response. If we Fourier transform this expression,
then ~M(q) = χ(q) ~B(q), where (in a relativistic short-hand)

χab(q) = iµ2
B

∫
d4x〈φ|[σa(x), σb(0)]|φ〉θ(t)e−iq·x (8.124)

We can relate χab(~q, ν) = −iχTab(~q, ν + iδ) where the time ordered Greens function is given
by

χTab(q) = µ2
B

k+q

k

bσ σ a
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= −µ2
B

∫

k

dω

2π

δabG(k+q)G(k)︷ ︸︸ ︷
Tr
[
σaG(k + q)σbG(k)

]
= δabχ

T (q). (8.125)

The susceptibility χT (q) is then

χT (q) = −2µ2
B

∫

k

dω

2π

[
1

ω + ν − ε̃k+q

1

ω − ε̃k

]
(8.126)

where we have invoked the notation ε̃k = εk−iδsgn(εk). The term inside the square brackets
has two poles at ω = ε̃k and at ω = ε̃k+q − ν,

∫

ω
=

∫
dω

2π

1

(ε̃k+q − ε̃k) − ν

[
1

ω + ν − εk+q + iδk+q

− 1

ω − εk + iδk

]

We may carry out the frequency integral by completing the contour in the upper half plane.
Each Green function gives a contribution 2πi× fermi function, so that

χT (q) = −2iµ2
B

∫

k

fk+q − fk
(ε̃k+q − ε̃k) − ν

(8.127)

so that the dynamic susceptibility χ(q, ν) = −iχT (q, ν + iδ) is given by

χ(q, ν + iδ) = 2µ2
B

∫

k

fk+q − fk
ν − (εk+q − εk) + iδ

dynamic spin susceptibility (8.128)

There are a number of important pieces of physics encoded in the above expression that
deserve special discussion:

• Spin Conservation. The total spin of the system is conserved, so that the application
of a strictly uniform magnetic field to the fluid can not change the total magnetization.
Indeed, in keeping with this expectation, if we take ~q → 0 we find lim~q→0 χ(~q, ν) = 0.

• Static susceptibility. When we take the limit ν → 0, we obtain the magnetization
response to a spatially varying magnetic field. The static susceptibility is given by

χ(q) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk)
. (8.129)

This response is finite, because the spins can always redistribute themselves in re-
sponse to a non-uniform field. When we take the When we take the wavelength of
the applied field to infinity, i.e q → 0, we recover the Pauli susceptibililty

χ→ 2µ2
B

∫

k

(
−df(ε)

dε

)
= 2µ2

B

∫

k
δ(εk) = µ2

BN(0), (8.130)

174



c©2004 P. Coleman Chapter 8.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.2

0.4

0.6

0.8

1
F

(

q

2kF

)

q/(2kF )

Figure 8.4: “The Lindhard function”. The Fourier transform of this function governs the
magnetic response of a non-interacting metal to an applied field. Notice the weak singu-
larity around q/(2kF ) = 1 that results from the match between the Fermi surface, and the
wavevector of the magnetic response.

where N(0) = mkF
π2 is the total density of states. The detailed momentum-dependent

static susceptibility can be calculated (see below), and is given by

χ(q) = 2µ2
BF (

q

2kF
)

F (x) =
1

4x
(1 − x2)ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣+
1

2
(8.131)

The function (x) is known as the Lindhard function: it has the property that F (0) = 1,
and that dF/dx is singular at x = 1.

• Dissipation and the imaginary part of the susceptibility. The full dynamic spin sus-
ceptibility has both a real and an imaginary part, given by

χ(q, ν) = χ′(q, ν) + iχ′′(q, ν).

where the imaginary part determines the dissipative part of the magnetic response.
The dissipation arises because an applied magnetic field generates a cloud of electron
hole pairs which carry away the energy. If we use the Dirac-Cauchy relation 1/(x +
iδ) = P (1/x) − iπδ(x) in (8.128 ), we obtain

χ′′(q, ν) = 2µ2
B

∫

k
πδ[ν − (εk+q − εk)](fk − fk+q), (8.132)

This quantity defines the density of states of particle-hole excitations. The excitation
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χ
′′(q, ν)

ν/(4εF )

q/(2kF )
2

1

2

0 1
F

q ~ 0

q ~ 2k

Figure 8.5: Density plot of the imaginary part of the dynamical spin susceptibility, cal-
culated from (8.138) showing the band of width 2kF that spreads up to higher energies.
Excitations on the left side of the band correspond to low momentum transfer excitations of
electrons from just beneath the Fermi surface to just above the Fermi surface. Excitations
on the right hand side of the band correspond to high momentum transfer processes, right
across the Fermi surface.

energy of a particle hole pair is given by

εk+q − εk =
q2

2m
+
qk

m
cos θ

where θ is the angle between k and q. This quantity is largest when θ = 0, k = kF
and smallest when θ = π, k = kF so that

q2

2m
+
qkF
m

> ν >
q2

2m
− qkF

m

defines a band band of allowed wavevectors where the particle-hole density of states
is finite, as shown in Figure 8.5. Outside this region, χo(q, ν) is purely real.

Derivation of Lindhard Function

The dynamic spin-susceptibility

χ(q, ν) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk − ν)
. (8.133)

can be rewritten as

χ(q, ν) = 2µ2
B

∫

k
fk

[
1

(εk+q − εk − ν)
+

1

(εk−q − εk + ν)

]
(8.134)
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Written out explicity, this is

χ(q, ν) = 2µ2
B

∫ kF

0

k2dk

2π2

∫ 1

−1

d cos θ

2

[
1

(εk+q − εk − ν)
+ ((ν, q) → −(ν, q))

]
.

By replacing εk → k2

2m − µ rescaling x = k/kF , q̃ = q/(2kF ) and ν̃ = ν/(4εF ), we obtain
χ(q, ν) = µ2

BN(0)F(q̃, ν̃), where

F(q̃, ν̃) =
1

4q̃

∫ 1

0
x2dx

∫ 1

−1
dc

[
1

xc+ q̃ − ν̃
q̃

+ (ν → −ν)
]

(8.135)

is the “Lindhard Function”. Carrying out the integral over angle, we obtain

F(q̃, ν̃) =
1

4q̃

∫ 1

0
xdx

(
ln

[
q̃ − ν̃

q̃ + x

q̃ − ν̃
q̃ − x

]
+ (ν̃ → −ν̃)

)

=
1

8q̃

([
1 −

(
q̃ − ν̃

q̃

)2
]

ln

[
q̃ − ν̃

q̃ + 1

q̃ − ν̃
q̃ − 1

]
+ (ν̃ → −ν̃)

)
+

1

2
(8.136)

This function is known as the Lindhard function. Its static limit, F (q̃) = F(q̃, ν̃ = 0),

F (q̃) =
1

4q̃

([
1 − q̃2

]
ln

∣∣∣∣
q̃ + 1

q̃ − 1

∣∣∣∣
)

+
1

2
(8.137)

has the property that F (0) = 1, and that dF/dx is singular at x = 1 as shown in Fig. 8.4.
The imaginary part of χ(q, ν + iδ) is given

χ′′(q, ν) = µ2
BN(0) × π

8q̃

{(
1 −

[
q̃ − ν̃

q̃

]2)
θ

[
1 −

[
q̃ − ν̃

q̃

]2]
− (ν → −ν)

}
(8.138)

which is plotted in Fig. 8.5.

8.4.4 Electron in a scattering potential

As an illustration of the utility of the Feynman diagram approach, we now consider an
electron scattering off an attractive central scattering potential. Here, by resumming the
Feynman diagrams, it is easy to show how in dimensions d ≤ 2, an arbitrarily weak attractive
potential gives rise to bound-states.

The Hamiltonian is given by

H =
∑

k

εkc
†
kck +Hsc (8.139)

where εk = k2/2m− µ and the scattering potential is given by

Hsc =

∫
d3xψ†(x)ψ(x)U(x) (8.140)
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If we Fourier transform the scattering potential, writing

U(x) =

∫

q
U(q)eiq·x (8.141)

then the scattering potential becomes

Hsc =

∫

k,k′
Uk−k′︸ ︷︷ ︸

amplitude to transfer momentum k − k′

c†kck′ (8.142)

The Feynman diagrams for the one-electron Green’s function are then

k′ k
= δk,k �

k
+

k′ k
+

k′ k′′ k
+ . . .(8.143)

where �
k

= Go(k, ω) =
1

ω − εk − iδk
(8.144)

denotes the propagator in the absence of potential scattering and�
k′ k

= Uk−k′ (8.145)

is the basic scattering vertex. The first diagram represents the amplitude to be transmitted
without scattering; subsequent diagrams represent multiple scattering processes involving
one, two three and more scattering events. We shall lump all scattering processes into a
single amplitude, called the t-matrix, represented by

tk,k′(ω) = � = � +
k′′

+
k′′

k′′′
+ . . .(8.146)

With this short-hand notation, the diagrams for the electron propagator become

k′ k
= δk,k′ �

k
+

k′ k

tkk′(ω)
(8.147)

Written out as an equation, this is

G(k,k′, ω) = δk,k′G
o(k, ω) +Go(k, ω)tk,k′(ω)Go(k′, ω) (8.148)

If we look at the second, third and higher scattering terms in the t-matrix, we see that they
are a combination of the t-matrix plus the bare scattering amplitude. This enables us to
re-write the t-matrix as the following self-consistent set of Feynman diagrams�

= � +
k′′

tkk′(ω)
(8.149)

Written out explicitly, this is

tkk′(ω) = Uk−k′ +
∑

k′′

Uk−k′′G
o(k′′, ω)tk′′k′(ω) (8.150)

178



c©2004 P. Coleman Chapter 8.

Equations (8.148) and (8.150) fully describe the scattering off the impurity.
As a simplified example of the application of these equations, let us look at the case of

s-wave scattering off a point-like scattering center:

U(x) = Uδ(d)(x) (8.151)

In this case, U(q) = U is independent of momentum transfer. By observation, this means
that the t-matrix will also be independent of momentum, i.e. tk,k′(ω)− t(ω). The equation
for the t-matrix then becomes

t(ω) = U + U
∑

k′′

Go(k′′, ω)t(ω) (8.152)

or

t(ω) =
U

1 − UF (ω)
(8.153)

where

F (ω) =

∫
ddp

(2π)d
1

ω − εk + iδk

=

∫ Λ

0
dεN(ε)

1

ω − ε+ iδsign(ε)
(8.154)

and N(ε) is the density of states. A high-energy cut-off has been introduced to guarantee
the convergence of the integral. Physically, such a cut-off corresponds to the energy scale,
beyond which ,the scattering potential no longer behaves as a point potential. At low
energies, F (ω) < 0, so that if U < 0, there is the possibility of poles in the t-matrix,
corresponding to bound-states.

As we have derived it, our scattering t-matrix describes scattering in the presence of a
Fermi sea. To recover free particle behavior, we imagine that the Fermi sea is empty, so
that the chemical potential is zero so that

εk =
k2

2m
(8.155)

In d-dimensions, the density of states is given by

N(ε) ∝ kd−1dk

dε
∝ ε

d
2
−1 (8.156)

The low energy behavior of F (ω) is then given by

F (ω) ∝ −ωd/2−1 (8.157)

This quantity diverges in dimensions d ≤ 2, so that for there will be bound-states for
arbitrarily small attractive potentials. In two dimensions, the density of states is N(ω) =
N(0)and F (ω) = −N(0)ln Λ

−ω , so that for attractive U = −|U |,

t(ω) = − |U |
1 − |U |N(0)ln Λ

−ω
=

1

N(0)ln
(
ωo
−ω

) (8.158)
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where ωo = Λe
− 1
|U|N(0) , giving rise to a bound-state at energies ω = −ωo.

Remarks

• The energy scale ωo can not be written as a power-series in U , and as such, is an
elementary example of a “non-perturbative” result. The bound-state appears because
an infinite class of Feynman diagrams have been resummed.

• The appearance of a bound-state for electrons scattering off an arbitrarily weak at-
tractive potential is similar to the Cooper instability.

8.5 The self-energy

The concept of the self-energy enables us to understand the feedback of the interacting
environment on a propagating particle. This is one of the most important examples of the
power of Feynman diagram resummation.

Let us consider the Greens function of a fermion in an interacting environment. Every
diagram contributing to the propagator consists of free propagators, separated by various
scattering processes are “inserted”. If we lump all of these scattering processes into one
quantity, called the self-energy, the propagator has the structure

= � + Σ + Σ Σ + . . .(8.159)

where

Σ(k, ω) = Σ = + + + + . . .(8.160)

denotes the self-energy: the sum of all scattering processes that can not be separated into
two by cutting a single propagator.

The one-particle propagator can be written in terms of the self-energy as follows

G(k, ω) = � + Σ + Σ Σ + . . .

= Go + GoΣGo + Go(ΣGo)2 + . . .
= 1

(Go)−1−Σ

(8.161)

So that

G(k, ω) =
1

ω − εk − Σ(k, ω)
(8.162)
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Physically, the self-energy describes the cloud of particle-hole excitations that form the wake
which accompanies the propagating electron. In general, the self-energy has both a real,
and an imaginary component.

Σ(k, ω − iδ) = Σ′(k, ω) + iΓ(k, ω) (8.163)

If we use this expression to evaluate the one-particle spectral function, we obtain

A(k, ω) =
1

π
ImG(k, ω − iδ) =

Γ(k, ω)

[ω − εk − Σ′(k, ω)]2 + Γ(k, ω)2
(8.164)

If the self-energy is small, we see that this corresponds to a Lorentzian of centered around a
renormalized energy ε∗k = εk +Σ′(k, ε∗k). If we expand the Lorentzian around this point, we
must be careful to write ω− εk−Σ′(k, ω) = (ω− ε∗k)Zk where Z−1

k = (1 − ∂ωΣ′(k, ω))|ω=ε∗
k
.

Near the renormalized energy,

G(k, ω − iδ) =
Zk

ω − ε∗k − iΓ∗k
(8.165)

corresponding to a “quasiparticle” excitation with a finite lifetime. The finite width reflects
the fact that an electron can now decay into combinations of electrons, plus electron-hole
pairs. The reduced weight reflects the finite overlap between the bare electron, and the
renormalized excitation:

ε∗k = εk + Σ′(k, ε∗k), renormalized energy

τ−1 = ZkΓ(k, ε∗k), Lifetime

Zk = |〈q.ptcle kσ|c†kσ|φ〉|2 “Wavefunction renormalization”

(8.166)

8.5.1 Hartree-Fock Self-energy

The simplest example of the self-energy is the Hartree-Fock self energy, given by the two
diagrams

ΣHF (p, ω) = +

= i

∫

p′

{−(2S + 1)Vq=0 + Vp−p′
} ∫ dω

2π
Go(k)eiω0+

(8.167)

Here we see a case where we must include a convergence factor, associated with the normal
ordering of the operators inside the interaction. Identifying

∫
dωGo(k)eiω0+

= 2πifp′ , we
obtain

ΣHF (p) =

∫

|p′|<kF

d3k′

(2π)3

[
(2S + 1)Vq=0 − Vp−p′

]
(8.168)
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In the Hartree-Fock approximation, the electron acquires a renormalized energy

ε∗p = εp + ΣHF (p) (8.169)

but since the Hartree-Fock self-energy is completely static, in this approximation, the quasi-
particle has an infinite lifetime. The mass of the quasiparticle is nevertheless renormalized.
Suppose we write

p

m∗
= ∇pε

∗
p =

[
p

m
+ ∇pΣHF (p)

]
(8.170)

then integrating by parts,

∇pΣHF (p) = −
∫

p′
Vp−p′∇p′fp′ (8.171)

Writing ∇pfp = ∇pε
∗
p∂f/∂ε

∗ = p
m∗ δ(ε

∗
p), we then obtain

∇pΣHF (p) =
p

3m∗
F s1 (8.172)

where, by analogy with Fermi liquid theory, we have written,

F s1 = −N(0)

∫
dΩp̂′

4π
Vp−p′ cos(p̂ · p̂′). (8.173)

where N(0) = m∗pF /(π2h̄3) is the renormalized density of states, and we have included
the minus sign in the definition in keeping with the exchange origin of this term. The
renormalized mass is then

m∗

m
= 1 +

1

3
F s1 (8.174)

Formally, this result is the same as that derived in Landau Fermi liquid theory. How-
ever, a more realistic theory would take into account the screening and modification of the
interactions by the medium, a subject which we touch on in as our next topic.

8.6 Large-N electron gas

Although the Feynman diagram approach gives us a way to generate all perturbative cor-
rections, we still need a way to selecting the physically important diagrams. In general, as
we have seen from the last examples, it is important to resum particular classes of diagrams
to obtain a physical result. What principles can be used to select classes of diagrams?

Frequently however, there is no obvious choice of small parameter, in which case, one
needs an alternative strategy. For example, in the electron gas, we could select diagrams
according to the power of rs entering the diagram. This would give us a high-density
expansion of the properties - but what if we would like to examine a low density electron
gas in a controlled way?

One way to select Feynman diagrams in a system with no natural small parameter is
to take the so-called “large-N” limit. This involves generalizing some internal degree of
freedom so that it has N components. Examples include:
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• The Hydrogen atom in N-dimensions.

• The electron gas with N = 2S + 1 spin components

• Spin systems, with spin S in the limit that S becomes large.

• Quantum Chromodynamics, with N, rather than three colours.

In each of these cases, the limit N → ∞ corresponds to a new kind of semiclassical limit,
where certain variables cease to undergo quantum fluctuations. The parameter 1/N plays
the role of an effective h̄

1

N
∼ h̄ (8.175)

This does not however mean that quantum effects have been lost, merely that their macro-
scopic consequences can be lumped into certain semi-classical variables.

We shall now examine the second of these two examples. The idea is to take an in-
teracting Fermi gas where each fermion has N = 2S + 1 possible spin components. The
interacting Hamiltonian is still written

H =
∑

k,σ

εkc
†
kσckσ +

1

2

∑
Vqc
†
k+qσc

†
k′−qσ′ck′σ′ckσ (8.176)

but now, the spin summations run over N = 2S + 1 values, rather than just two. As N
is made very large, it is important that both the kinetic and the interaction energy scale
extensively with N , and for this reason, the original interaction Vq is rescaled, writing

Vq =
1

N
Vq (8.177)

where it is understood that as N → ∞, U is to be kept fixed. The idea is to now calculate
quantities as an expansion in powers of 1/N , and at the end of the calculation, to give N
the value of specific interest, in our case, N = 2. For example, if we are interested in a
Coulomb gas of spin 1/2 electrons, then study the family of problems where

Vq =
1

N

4πẽ2

q2
(8.178)

and ẽ2 = 2e2. At the end, we set N = 2, hoping that the key features of the solution around
N = 2 will be shared by the entire family of models.

With the above substitution, the Feynman rules are unchanged, excepting that now
we associate a factor 1/N with each interaction vertex. Let us examine how the fermions
interact in this large-N fermi gas. We can expand the effective interaction as follows�

iVeff (q)
= �

i
Vq
N

+

i
Vq
N i

Vq
N

χ +

i
Vq
N i

Vq
N i

Vq
N

χ χ + . . .
(8.179)
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The ”self-energy” diagram for the interaction line is called a ”polarization bubble”, and has
the following diagramatic expansion.

χ
O(N) O(1) O(1) O(1/N)

+ + + +  ...= = iNχ(q) (8.180)

By summing the geometric series that appears in (8.179) we obtain

Veff =
1

N

V(q)

1 + V(q)χ(q)
(8.181)

This modification of the interaction by the polarization of the medium is an example of
“screening”. In the large-N limit, the higher-order Feynman diagrams for χ(q) are smaller
by factors of 1/N ., so in the large-N limit, these terms can be neglected giving

iχ0(q)N = (8.182)

In the case of a Coulomb interaction, where the screened interaction becomes

Veff (q, ω) =
1

N

4πẽ2

q2ε(q, ω)
(8.183)

where we have identified

ε(q, ω) = 1 + V(q)χ(q) = 1 +
4πẽ2

q2
χo(q) (8.184)

as the dielectric function of the charged medium. Notice how, in the interacting medium,
the interaction between the fermions has become frequency dependent, indicating that the
interactions between the particles are now retarded. From our previous study of the Linhard
function, we showed that χo(q) = Ns(0)F(q/(2kF )), ν/(4εF )) where F is the dimensionless
Lindhard function and Ns(0) = mkF

π2h̄2 is the density of states per spin at the Fermi surface,
so we may write

ε(q, ω) = 1 + λ

(F(q̃, ν̃)

q̃2

)
(8.185)

where λ = ẽ2m
πkF h̄

2 =
(

2α
π

)
rs plays the role of a dimensionless coupling constant. Notice that

the accuracy of the large N approach does not restrict the size of λ.
At zero frequency and low momentum, F → 1, so the effective interaction becomes

Veff (q, ν) =
1

N

4πẽ2

q2 + κ2
(8.186)

where κ =
√

4πẽ2Ns(o) can be identified as an inverse screening length. κ−1 is the “Thomas
Fermi” screening length of a classical charge plasma. In this way, the long-range uniform

184



c©2004 P. Coleman Chapter 8.

part of the interaction is screened out by the Fermi sea. Note however, that there is still
a weak singularity in the susceptibility induces a long-range oscillatory interaction between
the particles of the form

Veff (r) ∝
cos 2kF r

r3
(8.187)

This oscillatory component is directly associated with Friedel oscillations.
In the opposite limit of finite frequency, but low momentum, we may approximate χ0

by expanding it in momentum, as follows

χo(q, ν) =

∫

k

fk+q − fk
ν − (εk+q − εk)

≈
∫

k

(q · vk)

ν − (q · vk)

(
df(ε)

dε

)
(8.188)

where vk = ∇kεk is the group velocity. Expanding this to leading order in momentum gives

χo(q, ν) = −
∫

k

(q · vk)2

ν2

(
−df(ε)

dε

)
= −Ns(0)v

2
F

3

(
q2

ν2

)
= −

(
ñ

m

)(
q2

ν2

)
, (8.189)

where ñ = n/N is the density of electrons per spin, so that

εo(q, ν) = 1 − ω2
p

ν2
(8.190)

where

ω2
p =

4πẽ2ñ

m
. (8.191)

is the plasma frequency. This zero in the dielectric function at ω = ωp indicates the
presence of collective plasma oscillations in the medium at frequency ωp. This collective
mode is split-off above the particle-hole continuum, as shown in Fig. 8.6.

Let us now examine the linked cluster expansion of the ground-state energy. First, note
that all diagrams which involve insertions to zero-momentum interaction lines, other than
the basic Hartree diagram, such as

, (8.192)

identically vanish. This is because, these diagrams involve a power of the propagator higher
than one, inside integrals of the form

∫
dωG(k, ω)n = o, (n > 1) (8.193)
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ν/(4εF )

q/(2kF )

χ
′′(q, ν)

2

1

2

0 1

Figure 8.6: Density plot of the imaginary part of the dynamical spin susceptibility
Im[χ0(q, ν)/ε(q, ν)] in the presence of the Coulomb interaction calculated for λ = 1,
rs = 3.01. using eq. (8.185) and eq. (8.136). Notice the split-off plasmon frequency
mode, and how the charge fluctuations have moved up to frequencies above the plasma
frequency.

which are zero, because there is no other ω dependent function inside the integral. The
only nonzero diagrams are then:

∆E

V
= i


 +


 + + + +...

O(1)




+


 + +...

O(1/N)


+




2O(1/N  )

+...

+ . . . ...


 (8.194)

We shall select the two leading contributions,

∆Ecl
V

= i

[ ]
, (O(N)) (8.195)

which corresponds to the classical repulsive energy between particles, and the sum




+ + + +...

O(1)




(8.196)

These diagrams are derived from the zero the zero-point fluctuations in charge density,
which modify the ground-state energy E → Eo + Ezp. Now the nth diagram in this series
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has a symmetry factor p = 2n, and a contribution (−χo(q)V(q))n associated with the n
polarization bubbles and interaction lines. The energy per unit volume associated with this
series of diagrams is thus

Ezp = i
∞∑

n=1

1

2n

∫
d4q

(2π)4
(−χo(q)V(q))n. (8.197)

By interchanging the sum and the integral, we see that we obtain a series of the form∑
n

(−x)n
n = −ln(1 + x), so that the zero-point correction to the ground-state energy is

Ezp = −i1
2

∫
d4q

(2π)4
ln[1 + Vqχo(q)]

Now the logarithm has a branch cut just below the real axis, for positive frequency, but
just above the real axis for negative frequency. If we carry out the frequency integral by
completing the contour in the lower half plane, we can distort the contour integral around
the branch cut at positive frequency, to obtain

Ezp = − i

2

∫

q

∫ ∞

0

dω

2π
[ln[1 + χo(q, ν + iδ)Vq] − ln[1 + χo(q, ν − iδ)Vq]]

=
1

2

∫

q

∫ ∞

0

dω

π
arctan

(
Vqχ

′′(q, ν)
[1 + Vqχ′(q, ν)]

)
(8.198)

If we associate a “phase shift”

δ(q, ω) = arctan

(
Vqχ

′′(q, ν)
[1 + Vqχ′(q, ν)]

)
(8.199)

then we can the zero-point fluctuation energy can also be written in the form

∆Ezp =

∫
d3q

(2π)3

∫ ∞

0
dωΛ(ω)

[
ω

2

]
(8.200)

where

Λ(ω) =
1

π

∂δ(q, ω)

∂ω
. (8.201)

We can interpret Λ(ω) as the “density of states” of charge fluctuations at an energy ω. When
the interactions are turned on, each charge fluctuation mode in the continuum experiences a
scattering phase shift δ(~q, ω) which has the effect of changing the density of states of charge
fluctuations. The zero-point energy describes the change in the energy of the continuum
due to these scattering effects.
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8.7 Exercises for chapter 8

1. The separation of electrons Rein a Fermi gas is defined by

4πR3
e

3
= ρ−1

where ρ is the density of electrons. The dimensionless separation rs is defined as rs = Re/a

where a = ch̄2

me2 is the Bohr radius.

(a) Show that the Fermi wavevector is given by

kF =
1

αrsa

where α =
(

4
9π

) 1
3 ≈ 0.521.

(b) Consider an electron plasma where the background charge density precisely cancels the
charge density of the plasma. Show that the ground-state energy to leading order in the
strength of the Coulomb interaction is given by

E

ρV
=

3

5

RY

α2r2s
− 3

2π

RY

αrs

=

(
2.21

r2s
− 0.916

rS

)
RY (8.202)

where RY = h̄2

2ma2 is the Rydberg energy. (Hint - in the electron gas with a constant
charge background, the Hartree part of the energy vanishes. The Fock part is the second
term in this expression. You may find it useful to use the integral

∫ 1

0

dx

∫ 1

0

dyxy ln |x+ y

x− y
| =

1

2

(c) When can the interaction effects be ignored relative the kinetic energy?

2. Consider a gas of particles with interaction

V̂ = 1/2
∑

~k~k′~qσσ′

Vqc
†
~k−~qσc

†
~k′+~qσ′c~k′σ′c~kσ

(a) Let |φ〉 represent a filled Fermi sea, i.e. the ground state of the non interacting problem.
Use Wick’s theorem to evaluate an expression for the expectation value of the interaction
energy 〈φ|V̂ |φ〉 in the non-interacting ground state. Give a physical interpretation of the two
terms that arise and draw the corresponding Feynman diagrams.

(b) Suppose |φ̃〉 is the full ground-state of the interacting system. If we add the the interaction
energy 〈φ̃|V̂ |φ̃〉 to the non-interacting ground-state energy, do we obtain the full ground-state
energy? Please explain your answer.

(c) Draw the Feynman diagrams corresponding to the second order corrections to the ground-
state energy. Without calculation, write out each diagram in terms of the electron propagators
and interaction Vq , being careful about minus signs and overall pre-factors.
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3. Consider a d-dimensional system of fermions with spin-degeneracy N = 2S + 1, mass m and
total density Nρ, where ρ is the density per spin component. The fermions attract one-another
via the two-body potential

V (ri − rj) = −αδ(d)(ri − rj), (α > 0) (8.203)

(a.) Calculate the total energy per particle, εs(N, ρ) to first order in α.

(b.) Beyond some critical value αc, the attraction between to the particles becomes so great
that the gas becomes unstable, and may collapse. Calculate the dependence of αc on the
density per spin ρ. To what extent do you expect the gas to collapse in d = 1, 2, 3 when αc is
exceeded?

(c.) In addition to the above two-body interaction nucleons are also thought to interact via
a repulsive three-body interaction. Write the three-body potential V (ri, rj , rk) = βδ(d)(ri −
rj)δ

(d)(rj − rk), in second-quantized form.

(d.) Use Feynman diagrams to calculate the ground-state energy per particle, εs(N, ρ) to
leading order in both β and α. How does your result compare with that obtained in (a) when
N = 2?

(e.) If we neglect Coulomb interactions, why is the case N = 4 relevant to nuclear matter?

4. (a. )Consider a system of fermions interacting via a momentum-dependent interaction V (q) =
1
NU(q), where N = 2S + 1 is the spin degeneracy. When N is large, the interactions in this
fluid can be treated exactly. Draw the Feynman diagram expansion for the ground-state
energy, identifying the leading and subleading terms in the 1/N expansion.

(b) Certain classes of Feynman diagrams in the linked-cluster expansion of the ground-state
energy identically vanish. Which ones, and why?

(c.) If Nχ(o)(q) = 〈δρ(q)δρ(−q)〉o is the susceptibility of the non-interacting Fermi gas, i.e

= iNχ(o)(q), (8.204)

where q = (q, ν), what is the effective interaction between the fermions in the large N limit?
Suppose that in real space, U(r) = e2/r is a long-range Coulomb interaction, explain in detail
what happens to the effective interaction at long-distances.

5. Compute the rms quantum fluctuations ∆ρ =
√
〈(ρ− ρo)2〉 in the charge density of the

electron gas about its average density, ρo, in the large-N limit. Show that ∆ρ/ρo ∼ O(1/N),
so that the density behaves as a semiclassical variable in the large N limit.

6. Show that the dynamical charge susceptibility of an interacting electron gas in the large N
limit, defined by

χ(q, ν + iδ) =

∫
d3x

∫ ∞

0

i〈φ|[ρ(x, t), ρ(0, 0)]|φ〉e−i(q·x−ωt) (8.205)

contains a pole at frequencies

ωq = ωp(1 +
3

10
qvF ) (8.206)

where ωp =
√

4πẽ2ñ/m is the Plasma frequency and vF = pF /m is the Fermi velocity.
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Chapter 9

Finite Temperature Many Body
Physics

For most purposes in many body theory, we need to know how to include the effects of
temperature. At first sight, this might be thought to lead to undue extra complexity in the
mathematics, for now we need to average the quantum effects over an ensemble of states,
weighted with the Boltzmann average

pλ =
e−βEλ

Z
(9.1)

It is here that some of the the most profound aspects of many body physics come to our
aid.
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Ground State T=0

¡£¢¥¤§¦ ¨I© ªV«¬
Ensemble of states at temperature T> 0

Figure 9.1: At zero temperature, the properties of a system are determined by the ground-
state. At finite temperature, we must average the properties of the system over an ensemble
which includes the ground-state and excited states, averaged with the Boltzmann probability
weight e−βEλ

Z .

Remarkably, finite temperature Many Body physics is no more difficult than its zero
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temperature partner, and in many ways, the formulation is easier to handle. The essential
step that makes this possible is due to the Japanese physicist Kubo, who noticed in the early
fifties that the quantum-mechanical partition function can be regarded as a time-evolution
operator in imaginary time:

ρ̂ ∝ e−βĤ = U(−ih̄β),

where U(t) = e−i
tH
h̄ is the time-evolution operator, and by convention, we write H =

H0 − µN to take into account of the chemical potential. Kubo’s observation led him to
realize that finite temperature many body physics can be compactly reformulated using an
imaginary, rather than a real time to time-evolve all states

it

h̄
−→ τ.

Kubo’s observation was picked up by Matsubara, who wrote down the first imaginary time
formulation of finite temperature many body physics. In the imaginary time approach, the
partition function of a quantum system is simply the trace of the time-evolution operator,
evaluated at imaginary time t = -i h̄β,

Z= Tre− βH= TrU(−ih̄β),

whilst the expectation value of a quantity A in thermal equilibrium is given by

〈A〉 =
Tr [U(−ih̄β)A]

Tr [U(−ih̄β)]
,

an expression reminiscent of the Gell-Mann Lowe formula excepting that now, the S-matrix
is replaced by time-evolution over the finite interval t ∈ [0,−ih̄β]: The imaginary time
universe is of finite extent in the time direction! We will see that physical quantities turn
out to be periodic in imaginary time, over this finite interval τ ∈ [0, h̄β]. This can loosely
understood as a consequence of the incoherence induced by thermal fluctuations: thermal
fluctuations lead to an uncertainty kBT in energies, so

τT =
h̄

kBT

represents a characteristic time of a thermal fluctuation. Processes of duration longer than
τT loose their phase coherence, so coherent quantum processes are limited within a world
of finite temporal extent, h̄β.

One of the most valuable aspects of finite temperature quantum mechanics, first explored
by Kubo concerns the intimate relationship between response functions and correlation
functions in both real and imaginary time, which are mathematically quantified via the
“fluctuation dissipation theorem”.
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(b)

0

0

τ

Figure 9.2: (a) Zero temperature field theory is carried out in a space that extends infinitely
from t = −∞ to t = ∞. (b) Finite temeprature field theory is carried out in a space that
extends over a finite time, from τ = 0 to τ = h̄β. Bosonic fields (ψB) are periodic over this
interval whereas Fermionic fields (ψF ) are antiperiodic over this interval.

Quantum/thermal Fluctuations ↔ Dynamic Response

“Fluctuation dissipation”

These relationships, first exploited in detail by Kubo, and now known as the “Kubo for-
malism”, enable us to calculate correlation functions in imaginary time, and then, by ana-
lytically continuing the Fourier spectrum, to obtain the real-time response and correlation
functions at a finite temperature.

Most theoretical many body physics is conducted in the imaginary time formalism, and
theorists rarely give the use of this wonderful method a moments use. It is probably fair to
say that we do not understand the deep reasons why the imaginary time formalism works.
Feynman admits in his book on Statistical mechanics, that he has sought, but not found a
reason for why imaginary time and thermal equilibrium are so intimately intertwined. In
relativity, it turns out that thermal density matrices are always generated in the presence
of an event horizon, which excludes any transmission of information between the halves of
the universe of different sides of the horizon. It would seem that a complete understanding
of imaginary time may be bound-up with a more complete understanding of information
theory and quantum mechanics than we currently possess. What-ever the reason, it is a very
pragmatic and beautiful approach, and it is this which motivates us to explore it further!
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9.1 Imaginary time

The key step in making the jump from zero temperature, to finite temperatures many body
physics, is the replacement

it

h̄
→ τ. (9.2)

With this single generalization, we can generalize almost everything we have done at zero
temperature. In zero temperature quantum mechanics, we introduced the idea of the
Schrödinger, Heisenberg and interaction representations. We went on to introduce the
concept of the Greens function, and developed a Feynman diagram expansion of the S-
matrix. We shall now repeat this exact procedure in imaginary time, reinterpreting the
various entities which appear in terms of finite temperature statistical mechanics. Table
1. summarizes the key analogies between real time zero temperature, and imaginary time,
finite temperature many body physics.

Table. 9.0 The link between real and imaginary time formalisms.

Schrödinger eqn |ψs(t)〉 = e−itH |ψs(0)〉 |ψs(τ)〉 = e−τH |ψs(0)〉

Heisenberg rep Ah = eitHAse
−itH AH = eτHAse

−τH

Interaction rep |ψI(t)〉 = e−itH0 |ψI(t)〉 |ψI(τ)〉 = e−τH0 |ψI(τ)〉
Perturbation
Expansion S = 〈−∞|Te−i

∫
V dt|∞〉 Z

Z0
= Tr

[
e−
∫ β
0
V dτ

]

Wick’s Theorem ÉEÊ}Ë�Ì}ÉOÍ�ÊÏÎBÌVÐ<ÑÏÒ6Ó ÔÁÉSÊDËUÌDÉOÍUÊÏÎBÌ9Ó Ò�Õ ÖØ×0ÙÛÚ0ÖÈÜ�×�Ý6ÚEÞàß¿á.ÖØ×0ÙÛÚ0ÖÈÜ�×�Ý Ú9â
Green’s function Gλλ′(t) = −i〈0|Tψλ(τ)ψ†λ′(0)|0〉 Gλλ′(τ) = −〈Tψλ(τ)ψ†λ′(0)〉

Feynman Diagrams
lnS = TV

∑
[linked clusters] =

−iT∆E
ln Z

Zo
= βV

∑
[linked clusters] =

−β∆F
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9.1.1 Representations

The imaginary time generalization of the Heisenberg and interaction representations pre-
cisely parallels the development in real time, but there are some minor differences that
require us to go through the details here. After making the substitution t→ −iτ h̄, the real
time Schrödinger equation

H|ψs〉 = ih̄
∂

∂t
|ψs〉, (9.3)

becomes

H|ψs〉 = − ∂

∂τ
|ψs〉. (9.4)

so the time-evolved wavefunction is given by

|ψs(τ)〉 = e−Hτ |ψs(0)〉. (9.5)

The Heisenberg representation removes all time-dependence from the wavefunction, so
that |ψH〉 = |ψs(0)〉 and all time-evolution is transfered to the operators,

AH(τ) = eiH(−iτ)ASe
−iH(−iτ) = eHτASe

−Hτ . (9.6)

so that the Heisenberg equation of motion becomes

∂AH
∂τ

= [H,AH ]

If we apply this to the free particle Hamiltonian

H =
∑

εkc
†
kck

we obtain

∂ck
∂τ

= [H, ck] = −εkck
∂c†k
∂τ

= [H, c†k] = εkc
†
k (9.7)

so that
ck(τ) = e−εkτ ck
c†k(τ) = eεkτ c†k

}
(p.s c†k(τ) 6= (ck(τ))

† ). (9.8)

Notice a key difference to the real-time formalism: in the imaginary time Heisenberg rep-
resentation, creation and annihilation operator are no longer Hermitian conjugates.

We go on next, to develop the Interaction representation, which freezes time-evolution
from the non-interacting part of the Hamiltonian H0, so that

|ψI(τ)〉 = eH0τ |ψs(τ)〉 = eH0τe−Hτ |ψH〉 = U(τ)|ψH 〉
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where U(τ) = eH0τe−Hτ) is the time evolution operator. The relationship between the
Heisenberg and the interaction representation of operators is given by

AH(τ) = eHτASe
−Hτ = U−1(τ)AI(τ)U(τ)

In the interaction representation, states can be evolved between two times as follows

|ψI(τ1)〉 = U(τ1)U
−1(τ2))|ψI(τ2)〉 = S(τ1, τ2)|ψI(τ2)〉

The equation of motion for U(τ) is given by

− ∂

∂τ
U(τ) = − ∂

∂τ

[
eHoτe−Hτ

]

= eHoτV e−Hτ

= eHoτV e−HoτU(τ)
= VI(τ)U(τ) (9.9)

and a similar equation applies to S(τ1, τ2),

− ∂

∂τ
S(τ1, τ2) = VI(τ1)S(τ1, τ2). (9.10)

These equations parallel those in real time, and following exactly analogous procedures, we
deduce that the imaginary time evolution operator in the interaction representation is given
by a time-ordered exponential, as follows

U(τ) = T exp

[
−
∫ τ

0
VI(τ)dτ

]

S(τ1, τ2) = T exp

[
−
∫ τ2

τ1
VI(τ)dτ

]
. (9.11)

One of the immediate applications of these results, is to provide a perturbation expan-
sion for the partition function. We can relate the partition function to the time-evolution
operator in the interaction representation as follows

Z = Tr
[
e−βH

]
= Tr

[
e−βHoU(β)

]

=

Z0︷ ︸︸ ︷
Tr
[
e−βH0

]

〈U(β)〉0︷ ︸︸ ︷


Tr
[
e−βHoU(β)

]

Tr [e−βH0 ]




= Z0〈U(β)〉0 (9.12)

enabling us to write the ratio of the interacting, to the non-interacting partition function
as the expectation value of the time-ordered exponential in the non-interacting system.

Z

Z0
= e−β∆F = 〈T exp

[
−
∫ β

0
VI(τ)dτ

]
〉 (9.13)
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Notice how the logarithm of this expression gives the shift in Free energy resulting from
interactions. The perturbative expansion of this relation in powers of V is basis for the
finite temperature Feynman diagram approach.

9.2 Imaginary Time Green Functions

The finite temperature Green function is defined to be

Gλλ′(τ − τ ′) = −〈Tψλ(τ)ψλ′ †(τ ′)〉 = −Tr
[
e−β(H−F )ψλ(τ)ψλ′

†(τ ′)
]

(9.14)

where ψλ can be either a fermionic or bosonic field, evaluated in the Heisenberg represen-
tation, F = −T lnZ is the Free energy. The T inside the angle brackets the time-ordering
operator. Provided H is time independent, time-translational invariance insures that G is
solely a function of the time difference τ − τ ′. In most cases, we will refer to situations
where the quantum number λ is conserved, which will permit us to write

Gλλ′(τ) = δλλ′Gλ(τ).

For the case of continuous quantum numbers λ, such as momentum, it is convention to
promote the quantum number into the argument of the Green function, writing G(p, τ)
rather than Gp(τ).

As an example, consider a non-interacting system with Hamiltonian

H =
∑

ελψ
†
λψλ, (9.15)

where ελ = Eλ − µ is the one-particle energy, shifted by the chemical potential. Here, the
equal time expectation value of the fields is

〈ψλ′†ψλ〉 = δλλ′

{
n(ελ) (Bosons)
f(ελ) (Fermions)

(9.16)

where

n(ελ) =
1

eβελ−1

f(ελ) =
1

eβελ+1
(9.17)

are the Bose and Fermi functions respectively. Similarly,

〈ψλψ†λ′〉 = δλλ′ ± 〈ψλ′ †ψλ〉 = δλλ′

{
1 + n(ελ) (Bosons)
1 − f(ελ) (Fermions)

(9.18)

Using the time evolution of the operators,

ψλ(τ) = e−ελτψλ(0)
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ψ†λ(τ) = eελτψ†λ(0) (9.19)

we deduce that

Gλλ′(τ − τ ′) = −
[
θ(τ − τ ′)〈ψλ′†ψλ〉 + ζθ(τ ′ − τ)〈ψλ′ †ψλ〉

]
e−ελ(τ−τ ′) (9.20)

where we have re-introduced ζ = 1 for Bosons and −1 for fermions, from Chapter 8. If we
now write Gλλ′(τ − τ ′) = δλλ′Gλ(τ − τ ′), then

Gλ(τ) = −e−ελτ .
{

[(1 + n(ελ))θ(τ) + n(ελ)θ(−τ)] (Bosons)
[(1 − f(ελ))θ(τ) − f(ελ)θ(−τ)] (Fermions)

(9.21)

There are several points to notice about this Green’s function:

• Apart from prefactors, at zero temperature the imaginary time Green’s function Gλ(τ)
is equal to zero-temperature Green’s function Gλ(t), evaluated at a time t = −iτ ,
Gλ(τ) = −iGλ(−iτ).

• If τ < 0 the Green function satisfies the relation

Gλλ′(τ + β) = ζGλλ′(τ)

so that the bosonic Green function is periodic in imaginary time, while the fermionic
Green function is antiperiodic in imaginary time, with period β.

9.2.1 Periodicity and Antiperiodicity

The (anti) periodicity observed in the last example is actually a general property of finite
temperature Green functions. To see this, take −β < τ < 0, then we can expand the Green
function as follows

Gλλ′(τ) = ζ〈ψ†λ′(0)ψλ(τ)〉
= ζTr

[
e−β(H−F )ψ†λ′e

τHψλe
−τH

]
(9.22)

Now we can use the periodicity of the trace Tr(AB) = Tr(BA) to cycle the operators on
the left of the trace over to the right of the trace, as follows

Gλλ′(τ) = ζTr
[
eτHψλe

−τHe−β(H−F )ψ†λ′
]

= ζTr
[
e−βF eτHψλe

−(τ+β)Hψ†λ′
]

= ζTr
[
e−β(H+F )eτ+βHψλe

−(τ+β)Hψ†λ′
]

= ζTr〈ψλ(τ + β)ψ†λ′(0)〉
= ζGλλ′(τ + β) (9.23)

This periodicity, or antiperiodicity was noted by Matsubara. In the late 1950’s, Abrikosov,
Gorkov and Dzyalozinski observed that we are infact at liberty to extend the function outside
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G(τ) outside the range τ ∈ [−β, β] by assuming that this periodicity, or antiperiodicity
extends indefinitely along the entire imaginary time axis. In otherwords, there need be no
constraint on the value of τ in the periodic or antiperiodic boundary conditions

Gλλ′(τ + β) = ±Gλλ′(τ)

With this observation, it becomes possible to carry out a Fourier expansion of the Green
function in terms of discrete, so called “Matsubara” frequencies.

9.2.2 Matsubara Representation

The Matsubara frequencies are defined as

νn = 2πnkBT (Boson)
ωn = π(2n+ 1)kBT (Fermion). (9.24)

where by convention, νn is reserved for Bosons and ωn for fermions. These frequencies have
the property that

eiνn(τ+β) = eiνnτ

eiωn(τ+β) = −eiωnτ (9.25)

The periodicity or antiperiodicity of the Green function is then captured by expanding it
as a linear sum of these functions:

Gλλ′(τ) =

{
T
∑
n Gλλ′(iνn)e−iνnτ Boson

T
∑
n Gλλ′(iωn)e−iωnτ Fermion

(9.26)

and the inverse of these relations is given by

Gλλ′(iαn) =

∫ β

0
dτGλλ′(τ)eiαnτ , (αn = {Matsubara frequency}) (9.27)

Example : Free Fermions and Free Bosons

For example, let us use (9.27) to derive the propagator for non-interacting fermions or bosons
with H =

∑
ελψ

†
λψλ. For fermions, the Matsubara frequencies are iωn = π(2n+ 1)kBT so

using the real time propagator(9.21), we obtain

Gλ(iωn) = −
∫ β

0
dτe(iωn−ελ)τ

[1+e−βελ ]−1

︷ ︸︸ ︷
(1 − f(ελ))

= − 1

iωn − ελ

−1︷ ︸︸ ︷
(e(iωn−ελ) − 1)

1 + e−βελ
(9.28)

so that
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Gλ(iωn) =
1

iωn − ελ
Free Fermions (9.29)

In a similar way, for Free Bosons, where the Matsubara frequencies are iνn = π2nkBT ,
using (9.27) and (9.21), we obtain

Gλ(iνn) = −δλ
∫ β

0
dτe(iνn−ελ)τ

[1−e−βελ ]−1

︷ ︸︸ ︷
(1 + n(ελ))

= − 1

iνn − ελ

−1︷ ︸︸ ︷
(e(iνn−ελ) − 1)

1 − e−βελ
(9.30)

so that

Gλ(iνn) = − 1

iνn − ελ
Free Bosons (9.31)

Remarks

• Notice how the finite temperature propagators (9.29) and (9.31) are essentially iden-
tical for free fermions and bosons. All the information about the statistics is encoded
in the Matsubara frequencies.

• With the replacement ω → iωn the finite temperature propagator for Free fermions
(9.29) is essentially identical to the zero temperature propagator, but notice that the
inconvenient iδsign(ελ) in the denominator has now disappeared.

Example: Finite temperature Propagator for the Harmonic Oscillator

As a second example, let us calculate the finite temperature Green function

D(τ) = −〈Tx(τ)x(0)〉 (9.32)

and its corresponding propagator

D(iν) =

∫ β

0
eiνnτD(τ) (9.33)

for the simple harmonic oscillator

H = h̄ω(b†b+
1

2
)
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x =

√
h̄

2mω
(b+ b†) (9.34)

Expanding the Green function in terms of the creation and annihilation operators, we
have

D(τ) = − h̄

2mω
〈T (b(τ) + b†(τ))(b(0) + b†(0))〉

= − h̄

2mω

(
〈Tb(τ)b†(0)〉 + 〈Tb†(τ)b(0)〉

)
, (9.35)

where terms involving two creation or two annihilation operators vanish. Now using the
derivations that led to (9.21 )

−〈Tb(τ)b†(0)〉 = G(τ) = −[(1 + n(ω))θ(τ) + n(ω)θ(−τ)]e−ωτ . (9.36)

and

−〈Tb†(τ)b(0)〉 = −[n(ω)θ(τ) + (1 + n(ω))]eωτ

= [(1 + n(−ω))θ(τ) + n(−ω)θ(−τ)]eωτ . (9.37)

which corresponds to −G(τ) with the sign of ω inverted. With this observation,

D(τ) =
h̄

2mω
[G(τ) − {ω → −ω}] . (9.38)

When we Fourier transform the first term inside the brackets, we obtain 1
iνn−ω , so that

D(iνn) =
h̄

2mω

[
1

iνn − ω
− 1

iνn + ω

]

=
h̄

2mω

[
2ω

(iνn)2 − ω2

]
. (9.39)

This expression is identical to the corresponding zero temperature propagator, evaluated at
frequency z = iνn.

Example: Consider a system of non-interacting Fermions, described by

the Hamiltonian H =
∑

λ ελc
†
λcλ where ελ = Eλ − µ and Eλ is the energy

of a one-particle eigenstate and µ is the chemical potential.

Show that the total number of particles in equilibrium is

N(µ) = T
∑

Gλ(iωn)eiωnO+

where Gλ(iωn) = (iωn − ελ)−1 is the Matsubara propagator. Using the
relationship N = −∂F/∂µ show that that Free energy is given by

F (T, µ) = −kBT
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO+

+ C(T ) (9.40)
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Solution: The number of particles in state λ can be related to the equal
time Green’s function as follows

Nλ = 〈c†λcλ〉 = −〈Tcλ(0−)c†λ〉 = Gλ(0−).

Rewriting Gλ(τ) = T
∑

iωn
Gλe

−iωnτ , we obtain

N(µ) =
∑

λ

Nλ = T
∑

λ,iωn

Gλ(iωn)eiωn0+

Now since −∂F/∂µ = N(µ), it follows that

F = −
∫ µ

dµN(µ) = −T
∑

λ,iωn

∫ µ

dµ
eiωnO+

iωn −Eλ + µ

= −T
∑

λ,iωn

ln [ελ − iωn] eiωnO+

= −T
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO+

+ C(T ). (9.41)

We shall shortly see that C = 0 using Contour integral methods.

Example: Consider the an electron gas where the spins are coupled to
a magnetic field, so that ελ ≡ εk − µBσB. Write down an expression for
the magnetization and by differentiating w.r.t the field B, show that the
temperature dependent magnetic susceptibility is given by

χ(T ) =
∂M

∂B
= −2µ2

BkBT
∑

k,iωn

G(k)2

where G(k) ≡ G(k, iωn) is the Matsubara propagator.

Solution: The magnetization is given by

M = µB

∑

λ,σ

σ〈c†kσckσ〉 = µBT
∑

kσ,iωn

σGσ(k, iωn)eiωn0+

Differentiating this w.r.t. B and then setting B = 0, we obtain

χ =
∂M

∂B

∣∣∣∣B = 0 = −µ2
BT

∑

kσiωn

σ2Gσ(k, iωn)2

∣∣∣∣∣
B=0

= −2µ2
BkBT

∑

k,iωn

G(k)2 (9.42)

9.3 The contour integral method

In practice, we shall do almost all of our finite temperature calculations in the frequency
domain. To obtain practical results, we will need to be able to sum over the Matsubara
frequencies, and this forces us to make an important technical digression. As an example
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of the kind of tasks we might want to carry out, consider how we would calculate the
occupancy of a given momentum state in a Fermi gas at finite temperature, using the
Matsubara propagator G(p, iωn). This can be written in terms of the equal time Green
function, as follows

〈c†pσcpσ〉 = G(p, 0−) = T
∑

n

1

iωn − ε(p)
eiωnO

+
. (9.43)

A more involved example, is the calculation of the finite temperature dynamical spin sus-
ceptibility χ(q) of the Free electron gas at wavevector and frequency q ≡ (q, iνn). We shall
see that this quantity derives from a Feynman polarization bubble diagram which gives

χ(q) = −2µ2
BT

∑

p

G(p+ q)G(p) = 2µ2
B

∑

p

(
kBT

∑

r

G(p + q, iωr + iνn)G(p, iωr)

)
.(9.44)

where the −1 derives from the Fermion loop. In both cases, we need to know how to do the
sum over he discrete Matsubara frequencies, and to do this, we use the method of contour
integration. To make this possible, observe that the Fermi function f(z) = 1/[ezβ + 1] has
poles of strength −kBT at each discrete frequency z = iωn, because

f(iωn + δ) =
1

eβ(iωn+δ) + 1
= − 1

βδ
= −kBT

δ

so that for a general function F (iωn), we may write

kBT
∑

n

F (iωn) = −
∫

C

dz

2πi
F (z)f(z) (9.45)

where the contour integral C is to be taken anticlockwise around the poles at z = iωn as
shown in Fig. 9.3 (a)

Once we have cast the sum as a contour integral, we may introduce “null” contours
(Fig. 9.3 (b)) which allow us to distort the original contour C into the modified contour C ′

shown in Fig. 9.3 (c), so that now

kBT
∑

n

F (iωn) = −
∫

C′

dz

2πi
F (z)f(z) (9.46)

where C ′ runs clockwise around all the poles and branch-cuts in F (z). Here we have used
“Jordan’s lemma” which guarantees that the contribution to the integral from the contour
at infinity vanishes, provided the function F (z) × f(z) dies away faster than 1/|z| over the
whole contour.

For example, in case (9.43), F (z) = ez0
+

z−εp , so that F (z) has a single pole at z = εp, and
hence

〈npσ〉 = T
∑

n

1

iωn − ε(p)
eiωnO

+
= −

∫

C′

dz

2πi

1

z − εp
ez0

+
f(z)
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C

n

Pole of F(z)

C’C’

(c)

of F(z)
Branch−cut

ιωn(a)

Pole of F(z)
of F(z)
Branch−cut

C

(b)

ιω

Figure 9.3: (a) Contour integration around the poles in the Fermi function enables us to
convert a discrete Matsubara sum T

∑
F (iωn) to a continuous integral (b) The integral can

be distorted around the poles and branch-cuts of F (z) provided that F (z) dies away faster
than 1/|z| at infinity.

= f(εp), (9.47)

recovering the expected result. In this example, the convergence factor ez0
+

that results
from the small negative time increment in the Green function, plays an important role
inside the Contour integral, where it gently forces the function F (z) to die away faster than
1/|z| in the negative half-plane. Of course the original contour C integral could have been
made by arbitrarily replacing f(z) with f(z)−constant. However, the requirement that the
function dies away in the positive half plane forces us to set the constant term here to zero.

In the second example (9.44)

F (z) = G(p + q, iνn + z)G(p, z) =
1

iνn + z − εp+q

1

z − εp

which has two poles at z = εp and z = −iνn+ εp+q. The integral for this case is then given
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by

χ(q) = 2µ2
B

∑

p

∫

C′

dz

2πi
G(p + q, z + iνn)G(p, z)f(z)

= −
∑

p

(G(p,−iνn + εp+q)f(−iνn + εp+q) +G(p + q, εp)f(εp)) (9.48)

The first term in the above expression deserves some special attention. In this term we
shall make use the periodicity of the Fermi function to replace

f(−iνn + εp+q) = f(εp+q).

This replacement may seem obvious, however, later, when we analytically extending iνn → z
we will keep this quantity fixed, i.e, we will not analytically extend f(−iνn + εp+q) →
f(−z+ εp+q). In other words, the Matsubara sum and the replacement iνn → z are not to
be commuted. With this understanding, we continue, and find that the resulting expression
is given by

χ(q, iνn) = 2µ2
B

∑

p

(
fp+q − fp

iνn − (εp+q − εp)

)
(9.49)

where we have used the shorthand fp ≡ f(εp). The analytic extension of this quantity is
then

χ(q, z) = 2µ2
B

∑

p

(
fp+q − fp

z − (εp+q − εp)

)
(9.50)

A completely parallel set of procedures can be carried for summation over Matsubara
boson frequencies iνn, by making the observation that the Bose function n(z) = 1

eβz−1
has

a string of poles at z = iνn of strength kBT . Using a completely parallel procedure to the
fermions, we obtain

kBT
∑

n

P (iνn) =

∫

C

dz

2πi
P (z)n(z) =

∫

C′

dz

2πi
P (z)n(z)

where C is an anticlockwise integral around the imaginary axis and C ′ is a clockwise integral
around the poles and branch-cuts of F (z). (See problem 9.1.)

Example: Starting with the expression

F = −T
∑

λiωn

ln[(ελ − iωn)eiωn0+

+ C(T )

derived in example (9.1), use the contour integration method to show that

F = −T
∑

λ

ln
[
1 + e−βελ

]
+ C(T )

so that C(T ) = 0.
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Solution: Writing the Free energy as a contour integral around the poles
of the imaginary axis, we have

F =
∑

λ

∫

P

dz

2πi
f(z) ln [ελ − z] ez0+

+ C(T )

where the path P runs anticlockwise around the imaginary axis. There is
a branch cut in the function F (z) = ln[ελ − z] running from z = ελ to
z = +∞. If we distort the contour P around this branch-cut, we obtain

F =
∑

λ

∫

P ′

dz

2πi
f(z) ln [ελ − z] ez0+

+ C(T )

where P ′ runs clockwise around the branch cut, so that

F =
∑

λ

∫ ∞

ελ

dω

π
f(ω) + C(T )

=
∑

λ

−T ln(1 + e−βελ) + C(T ) (9.51)

so that C(T ) = 0, to reproduce the standard expression for the Free energy
of a set of non-interacting fermions.

9.4 Generating Function and Wick’s theorem

The zero temperature generating functions for Free fermions or bosons, derived in chapter
7. can be generalized to finite temperatures. Quite generally we can consider adding a
source term to a free particle Hamiltonian to form H(τ) = H0 + V (τ),

H0 =
∑
εψ†λψλ

V (τ) = −∑λ z̄(τ)ψλ + ψ†λz(τ)

}
(9.52)

The corresponding finite temperature Generating functional is actually the partition func-
tion in the presence of the perturbation V . Using a simple generalization of (9.13), we
have

Z0[z̄, z] = Z0〈Te−
∫ β
0
VI(τ)dτ 〉0

= Z0〈T exp

[∫ β

0
dτ
∑

λ

(
z̄λ(τ)ψλ(τ) + ψ†λ(τ)zλ(τ)

)]
〉0 (9.53)

where the driving terms are complex numbers for bosons, but are anticommuting C-numbers
or Grassman numbers, for fermions. For free fields, the Generating functional is given by

Z0[z̄, z]

Z0
= exp

[
−
∑

λ

∫ β

0
dτ1dτ2z̄λ(1)Gλ(τ1 − τ2)zλ(2)

]

Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (9.54)

208



c©2004 P. Coleman Chapter 9.

A detailed proof of this result is given in Appendix A of this chapter. However, a heuristic
proof is obtained by appealing to the “Gaussian” nature of the underlying Free fields. As
at zero temperature, we expect the the physics to be entirely Gaussian, that is, that the
amplitudes of fluctuation of the free fields are entirely independent of the driving terms.
The usefulness of the generating function, is that we can convert partial derivatives with
respect to the source terms into field operators inside the expectation values,

δ

δz̄(1)
→ ψλ1

†(1),

δ

δz(2)
→ ψ†(2) (9.55)

( where we have used the short-hand notation z(1) ≡ zλ(τ1), ψ(1) ≡ ψλ(τ1)), so that in
particular

δ lnZ0[z̄, z]

δzλ(2)
= 〈ψ†(2)〉 (9.56)

where the derivative of the logarithm of Z0[z̄, z] is required to place a Z0[z̄, z] in the denom-
inator for the correctly normalized expectation value. Likewise,

δ2 lnZ0[z̄, z]

δz̄(1)δz(2)
=

1

Z0[z̄, z]

δ

δz̄(1)

[
1

Z0[z̄, z]

δZ0[z̄, z]

δz(2)

]

=
1

Z0[z̄, z]

δ2Z0[z̄, z]

δz̄(1)δz(2)
− 1

Z0[z̄, z]

[
δZ0[z̄, z]

δz̄(1)

]
1

Z0[z̄, z]

[
δZ0[z̄, z]

δz(2)

]

= 〈ψ(1)ψ†(2)〉 − 〈ψ(1)〉〈ψ†(2)〉
= 〈(ψ(1) − 〈ψ(1)〉)

(
ψ†(2) − 〈ψ†(2)〉

)
〉 (9.57)

which represents the fluctuation of the field ψ around its mean value. If this quantity is
independent of the source terms, then it follows that the fluctuations must be equal to their
value in the absence of any source field, i.e.

δ2 lnZ0[z̄, z]

δz̄λ(τ1)δzλ(τ2)
= −Gλ(τ1 − τ2).

A more detailed, algebraic rederivation of this result is given in Appendix A. One of the
immediate corolloraries of (??) is that the multi-particle Green functions can be entirely
decomposed in terms of one-particle Green functions, i.e., the imaginary time Green func-
tions obey a Wick’s theorem. If we decompose the original generating function (9.126) into
a power series, we find that the general coefficient of the source terms is given by

(−1)nG(1, 2, . . . n; 1′, 2′, . . . n′) = 〈Tψ(1) . . . ψ(n)ψ†(n′) . . . ψ(1′)〉

by contrast, if we expand the right-hand side of (9.127) in the same way, we find that the
same coefficient is given by

(−1)n
∑

P

(ζ)p
n∏

r=1

G(r − Pr)
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where p is the number of pairwise permutations required to produce the permutation P .
Comparing the two results, we obtain the imaginary time Wick’s theorem

G(1, 2, . . . n; 1′, 2′, . . . n′) =
∑

P

(−1)p
n∏

r=1

G(r − Pr)

Although this result is the precise analog of the zero-temperature Wick’s theorem, notice
that that unlike its zero-temperature counterpart, we can not easily derive this result for
simple cases by commuting the destruction operators operators so that they annihilate
against the vacuum, since there is no finite temperature vacuum.

Just as in the zero temperature case, we can define a “contraction” as the process of
connecting two free -field operators inside the correlation function,

〈T [. . . ψ(1) . . . ψ†(2) . . .]〉 −→ 〈T [ψ(1)ψ†(2)]〉 = −G(1 − 2)

〈T [. . . ψ†(2) . . . ψ(1) . . .]〉 −→ 〈T [ψ†(2)ψ(1)]〉 = −ζG(1 − 2)

so that as before,

(−1)n〈T [ψ(1)ψ(2) . . . ψ(n) . . . ψ†(P′
2
) . . . ψ†(P′

1
) . . . ψ†(P′

n
)]〉

= ζPG(1 − P ′1)G(2 − P ′2) . . . G(n − P ′n). (9.58)

Example:
Use Wick’s theorem to calculate the interaction energy of a dilute Bose gas of spin S

bosons particles interacting via a the interaction

V̂ =
1

2

∑

q,kσ,k′,σ′

V (q)b†k+qσb
†
k′σ′bk′+qσ′bkσ

at a temperature above the Bose Einstein condensation temperature.
Solution: To leading order in the interaction strength, the interaction energy is given by

〈V 〉 =
∑

q,k,k′,σ,σ′

V (q)〈b†k+q,σb†k′,σ′bk′+q,σ′bkσ〉
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Using Wick’s theorem, we evalute

〈b†k+q,σb†k′,σ′bk′+q,σ′bk,σ〉 = 〈b†k+q,σb
†
k′,σ′bk′+q,σ′bk,σ〉 + 〈b†k+q,σb

†
k′,σ′bk′+q,σ′bk,σ〉

= nknk′δq,0 + nknk+qδk,k′δσσ′ (9.59)

so that

〈V̂ 〉 =
1

2

∫

k,k′
nknk′

[
(2S + 1)2Vq=0 + (2S + 1)Vk−k′

]

where nk = 1
eβ(εk−µ)−1

.

9.5 Feynman diagram expansion

We are now ready to generalize the Feynman approach to finite temperatures. Apart from
a very small change in nomenclature, almost everything we learnt for zero temperature
in chapter 8 now generalizes to finite temperature. Whereas previously, we began with a
Wick expansion of the S matrix, now we must carry out a Wick expansion of the partition
function

Z = e−βF = Z0〈T exp

[
−
∫ β

0
V̂ (τ)dτ

]
〉0 =

All the combinatorics of this expansion are unchanged at finite temperatures.

Now we are at finite temperature, the Free energy F = E−ST−µN replaces the energy.
The main results of this procedure can almost entirely be guessed by analogy. In particular:

• The partition function

Z = Z0

∑
{Unlinked Feynman diagrams }

• The change in the Free energy due to the perturbation V is given by

∆F = F − F0 = −kBT ln

[
Z

Z0

]
= −kBT

∑
{Linked Feynman diagrams}

This is the finite temperature version of the linked cluster theorem.

• Matsubara one-particle Green’s functions

G(1 − 2) =
∑

{Two-legged Feynman diagrams}

, and the main changes are

(i) the replacement of a −i −→ −1 in the time-ordered exponential.
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(ii) the finite range of integration in time

∫ ∞

−∞
dt −→

∫ β

0
dτ

which leads to the discrete Matsubara frequencies.

The effect of these changes on the real-space Feynman rules is summarized in Table 9.1.

The book-keeping that leads to these diagrams now involves the redistribution of a “−1”
associated with each propagator

ã.ä	å&æèç�çFç9ãEéUä3ê1æ −→ (i)2 × G(2 − 1). (9.60)

where as before,

G(2 − 1) = 2 1
(9.61)

represents the propagation of a particle from “1” to “2”, but now we must redistribute an i
(rather than a

√
−i) to each end of the progator. When these terms are redistributed onto

one-particle scattering vertices, they cancel the −1 from the time-ordered exponential

i

i

−U(x) = (i)2 ×−U(x) ≡ U(x)
(9.62)

whereas for a two-particle scattering potential V (1−2), the four factors of i give a (i)4 = 1,
so that the two-particle scattering amplitude is −V (1 − 2).

1 2 = (i)4 ×−V (1 − 2) ≡ −V (1 − 2). (9.63)

Apart from these small changes, the real-time Feynman rules are basically the same as those
at zero temperature.

9.5.1 Feynman rules from Functional Derivative

As in chapter 8, we can formally derive the Feynman rules from a functional derivative
formulation. Using the notation

∫
d1d2z̄(1)G(1 − 2)z(2) = z̄ z (9.64)
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Table. 9.1 Real Space Feynman Rules: Finite Temperature .

2 1 G(2 − 1)

x1 U(x1)

1 2 −V (1 − 2)

∏

i

∫
d3xi

∫ β

0
dτ Integrate over all intermediate times and positions.

−(2S + 1)G(~0, 0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

ë
z(1) z(1)

− z̄(1) ì −z̄(1)

p = 2
1

p

×
p = 8

p = order of symmetry group.
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where d1 and d2 implies the integration over the space-time variables (~1, τ1) and (~2, τ2) and
a sum over suppressed spin variables σ1 and σ2, we can write the non-interacting generating
functional as

Z0[z̄, z]

Z0
= 〈Ŝ〉0 = exp

[
−z̄ z

]
(9.65)

where we have used the short-hand

Ŝ = T exp

[∫ β

0
d1[z̄(1)ψ(1) + ψ†(1)z(1)]

]

Now each time we differentiate Ŝ with respect to its source terms, we bring down an
additional field operator, so that

δ

δz̄(1)
〈T . . . Ŝ〉0 = 〈. . . ψ(1) . . . Ŝ〉0,

δ

δz(2)
〈T . . . Ŝ〉0 = 〈T . . . ψ†(2) . . . Ŝ〉0 (9.66)

we can formally evaluate the time-ordered expectation value of any operator F [ψ†, ψ] as

〈TF
[
ψ†, ψ

]
Ŝ〉0 = F [

δ

δz
,
δ

δz̄
] exp

[
−z̄ z

]

so that

Z[z̄, z]

Z0
= 〈Texp

[
−
∫ β

0
V̂ (τ)dτ

]
Ŝ〉0

= 〈exp

[
−
∫ β

0
dτV

(
δ

δz
,
δ

δz̄

)]
exp

[
−z̄ z

]

The formal expansion of this functional derivative generates the Feynman diagram ex-
pansion. Changing variables to (α, ᾱ) = (z,−z̄), we can remove the minus-sign associated
with each propagator, to obtain

Z[−ᾱ, α]

Z0
= exp

[
(−1)n

∫ β

0
dτV

(
δ

δα
,
δ

δᾱ

)]
exp

[
ᾱ α

]
(9.67)

for an n− body interaction. The appearance of the (−1)n in the exponent indicates that
we should associate a (−1)n with the corresponding scattering amplitude.

As in the case of zero temperature, we may regard (??) as a machine for generating a
series of Feynman diagrams- both linked and unlinked, so that formally,

Z[ᾱ, α] = Z0

∑
{Unlinked Feynman diagrams}.
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Table. 9.2 Momentum Space Feynman Rules: Finite Temperature .

(k, iωn)
Go(k, iωn) Fermion propagator

−V (q) Interaction

(q, νn)
1 2

−g2
qDo(q, iνn) Exchange Boson.

= −g2
q

[
2ωq

(iνn)2 − ω2
q

]

q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, iνn)
T
∑

n

∫
ddq

(2π)d
eiαn0+ Sum over internal loop frequency

and momenta.

p = 2

1

p
p = order of symmetry group.

×
p = 8
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9.5.2 Feynman rules in frequency/momentum space

As at zero temperature, it is generally more convenient to work in Fourier space. The
transformation to Fourier transform space follows precisely parallel lines to that at zero
temperature, and the Feynman rules which result are summarized in Table 9.2. We first
re-write each interaction line and Green’s function in a Feynman diagram in terms of their
Fourier transformed variables

1 2 = G(X1 −X2) =
∑

n

∫
dd−1p

(2π)d−1
G(p)eip(X1−X2)

1 2 = V (X1 −X2) = T
∑

n

∫
dd−1q

(2π)d−1
V (q)eiq(X1−X2) (9.68)

where we have used a short-hand notation p = (p, iαn) (where αn = ωn for fermions,
αn = νn for bosons), q = (q, iνn), X = (x, iτ), ip.X = ip ·x−iωnτ and iq.X = iq ·x−iνrτ).
As an example, consider a screened Coulomb interaction

V (r) =
e2

r
e−κr

In our space time notation, we write the interaction as

V (X) = V (x, τ) =
e2

|x|e
−κ|x| × δ̃(τ)

Where the delta function in time arises because the interaction is instantaneous. (Subtle
point: we will infact inforce periodic boundary conditions by taking the delta function to be
a periodic delta function δ̃(τ) =

∑
n δ(τ−nβ)). When we Fourier transform this interaction,

we obtain

V (Q) = V (q, iνr) =

∫
d4XV (X)e−iQ.X

=

∫
d3x

∫ β

0
dτV (x)δ̃(τ)e−i(q·x−νrτ)

= V (q) =
4πe2

q2 + κ2
(9.69)

and the delta function in time translates to an interaction that is frequency independent.

We can also transform the source terms in a similar way, writing

z(X) = T
∑

n

∫
dd−1p

(2π)d−1
eipXz(p)

z̄(X) = T
∑

n

∫
dd−1p

(2π)d−1
e−ipX z̄(p)

(9.70)
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where, ipX = i~p · ~x − iαnτ . With these transformations, the space-time co-ordinates as-
sociated with each scattering vertex now only appear as “phase factors”. By making the
integral over space-time co-ordinates at each such vertex, we impose the conservation of
momentum and (discrete) Matsubara frequencies at each vertex

, q p1

p2

X =

∫
ddXei(p1−p2−q)X = (2π)3βδ(d−1)(p1 − p2 − q)δα1+α2−νr (9.71)

Since momentum and frequency are conserved at each vertex, this means that there is one
independent energy and frequency per loop in the Feynman diagram. To be sure that
this really works, let us count the number of independent momenta that are left over after
imposing a constraint at each vertex in the diagram. Consider a diagram with V vertices
and P propagators. Each propagator introduces P × d, momenta. When we integrate over
the space-time co-ordinates of the V vertices, we must be careful to split the integral up
into the integral over the V − 1 relative co-ordinates X̃j = Xj+1 − Xj and the center of
mass co-ordinates: ∫ V∏

j=1

ddXj =

∫
ddXCM

∫ V−1∏

j=1

ddX̃j

This imposes (V − 1) constraints per dimension, so the number of independent momenta
are then

no. of independent momenta = d[P − (V − 1)]

Now in a general Feynman graph, the apparent number of momentum loops is the same as
the number of facets in the graph, and this is given by

L = E + (P − V )

where E is the Euler characteristic of the object. The Euler characteristic is equal to one for
planar diagrams, and equal to one plus the number of “handles” in a non-planar diagram.
For example, the diagram

V=4, P=6, L=4 (9.72)

has V = 4 vertices, P = 6 propagators and it has one handle with Euler characteristic
E = 2, so that L = 6 − 4 + 2 = 4 as expected. So from the above, we deduce that the
number of independent momenta is given by

d[L− (E − 1)]
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This result needs a moments pause. One might have expected number of independent
momentum loops to be equal to L. However, when there are handles, this overcounts the
number of independent momentum loops - for each handle added to the diagram adds only
one additional momentum loop, but L increases by 2. If you look at our one example,
this diagram can be embedded on a cylinder, and the interaction propagator which loops
around the cylinder only counts as one momentum loop, giving a total of 4 − (2 − 1) = 3
independent momentum loops.

L =  4 − 1 = 3

Handle

L=4 (9.73)

In this way, we see that L̃ = L+ (E − 1) is the correct number of independent momentum
loops. Indeed, our momentum constraint does indeed convert the diagram from an integral
over V space-time co-ordinates to L̃ independent momentum loops.

In this way, we see that the transformation from real-space, to momentum space Feyn-
man rules is effected by replacing the sum over all internal space-time co-ordinates by an
integral/sum over all loop momenta and frequencies. A convergence factor

eiαn0+

is included in the loop integral. This term guarantees that if the loop contains a single prop-
agator which propagates back to the point from which it eminated, then the corresponding
contraction of field operators is normal ordered.

9.5.3 Linked Cluster Theorem

The linked cluster theorem for imaginary time follows from the replica trick, as at zero
temperature. In this case, we wish to compute the logarithm of the partition function

ln(
Z

Z0
) = lim

n→0

1

n

[(
Z

Z0

)n
− 1

]

It is worth mentioning here that the replica trick was infact originally invented by Edwards
as a device for dealing with disorder- we shall have more to say about this in chapter 11.

We now write the term that contains (Z/Z0)
n as the product of contributions from n

replica systems, so that
(
Z

Z0

)n
=

〈
exp

[
−
∫ β

0
dτ

n∑

λ=1

V (λ)(τ)

]〉

0
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When we expand the right-hand side as a sum over unlinked Feynman diagrams, each
separate Feynman diagram has a replica index that must be summed over, so that a single
linked diagram is of order O(n), whereas a group of k unlinked diagrams is of order O(nk).
In this way, as n → 0, only the unlinked diagrams survive, so that. The upshot of this
result is that the shift in the Free energy ∆F produced by the perturbation V̂ , is given by

−β∆F = ln(Z/Z0) =
∑

{Closed link diagrams in real space}}

Notice that unlike the zero temperature proof, here we do not have to appeal to adiabaticity
to extract the shift in Free energy from the closed loop diagrams.

When we convert to momentum space, Fourier transforming each propagator and inter-
action line, an overall integral over the center of mass co-ordinates factors out of the entire
diagram, giving rise to a prefactor

∫
ddXcm = β(2π)d−1δ(d−1)(0) ≡ V β

where V is the spatial volume. Consequently, expressed in momentum space, the change in
Free energy is given by

∆F

V
= −

∑
{Closed linked diagrams in momentum space} .

Finally, let us say a few words about Green-functions Since the n− th order coefficients
of α and ᾱ are the irreducible n-point Green-functions,

lnZ[ᾱ, α] = −β∆F +

∫
d1d2ᾱ(1)G(1 − 2)α(2)

+
1

(2!)2

∫
d1d2d3d4ᾱ(1)ᾱ(2)α(3)α(4)Girr(1, 2; 3, 4) + . . . . (9.74)

n-particle irreducible Green functions are simply the n-particle Green functions in which
all contributions from n− 1 particle Green functions have been subtracted. Now since the
n-th order coefficients in the Feynman diagram expansion of lnZ[ᾱ, α] are the connected
2n-point diagrams, it follows that the n-paricle irreducible Green functions are given by the
sum of all 2n point diagrams

Girr(1, 2, . . . n; 1′, 2′, . . . n′) =
∑

{Connected n-point diagrams}.

The main links between finite temperature Feynman diagrams and physical quantities
are given in table 9.3.

9.6 Examples of the application of the Matsubara Technique

To illustrate the Matsubara technique, we shall examine three examples. In the first, we
will see briefly how the Hartree Fock approximation is modified at finite temperatures. This
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will give some familiarily with the techniques. In the second, we shall examine the effect
of disorder on the electron propagator. Surprisingly, the spatial fluctuations in the electron
potential that arise in a disordered medium behave like a highly retarded potential, and the
scattering created by these fluctuations is responsible for the Drude lifetime in a disordered
medium. As our third introductory example, we will examine an electron moving under the
retarded interaction effects produced by the exchange of phonons, examining for the first
time how inelastic scattering generates an electron lifetime.

9.6.1 Hartree Fock at a finite temperature.

As a first example, consider the Hartree-Fock correction to the Free energy,

∆FHF
V

= −


 +


 (9.75)

These diagrams are precisely the same as those encountered in chapter 8, but now to evaluate
them, we implement the finite temperature rules, which give,

∆FHF
V

=
1

2

∑

k

G(k)
∑

k′

G(k′)
{
[−(2S + 1)]2 V (k − k′) − (2S + 1)V (q = 0)

}
(9.76)

where the prefactor is the p = 2 symmetry factor for these diagrams and

∑

k

G(k) ≡
∫

k
T
∑ 1

iωn − εk
eiωn0+

Using the contour integration method introduced in section (9.3), following (9.47 ), we have

T
∑ 1

iωn − εk
eiωn0+

=

∫

C

dz

2πi

1

z − εk
ez0

+
f(z) = f(εk),

where the contour C runs anticlockwise around the pole at z = εk, so that the first order
shift in the Free energy is

∆FHF =
1

2

∫

k,k′

[
(2S + 1)2(Vq=0) − (2S + 1)(Vk−k′)

]
fkfk′ .

This is formally exactly the same as at zero temperature, excepting that now fk refers to
the finite temperature Fermi Dirac. Notice that we could have applied exactly the same
method to bosons, the main result being a change in sign of the second Fock term.
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9.6.2 Electron in a disordered potential

As a second example of the application of finite temperature methods, we shall consider the
propagator for an electron in a disordered potential. This will introduce the concept of an
“impurity average”.

Our interest in this problem is driven ultimately by a desire to understand the bulk
properties of a disordered metal. The problem of electron transport is almost as old as
our knowledge of the electron itself. The term “electron” was first coined to describe
the fundamental unit of charge (already measured from electrolysis) by the Irish physicist
George Johnstone Stoney in 1891[1]. Heinrich Lorentz derived his famous force law for
charged “ions” in 1895[2], but did not use the term electron until 1899. In 1897 J. J.
(“JJ”) Thomson[3] made the crucial discovery of the electron by correctly interpreting his
measurement of the m/e ratio of cathode rays in terms of a new state of particulate matter
“from which all chemical elements are built up”. Within three years of this discovery, Paul
Drude[4] had synthesized these ideas and had argued, based on the idea of a classical gas
of charged electrons, that electrons would exhibit a mean-free path l = velectronτ , where
τ is the scattering rate an l the average distance between scattering events. In Drude’s
theory electrons were envisioned as diffusing through the metal, and he was able to derive
his famous formula for the conductivity σ

σ =
ne2τ

m
.

Missing from Drude’s pioneering picture, was any notion of the Fermi-Dirac statistics of
the electron fluid. He had for example, no notion that the characteristic velocity of the
electrons was given by the Fermi velocity, velectron ∼ vF a vastly greater velocity at low
temperatures than could ever be expected on the grounds of a Maxwell Boltzman fluid of
particles. This raises the question - how - in a fully quantum mechanical picture of the
electron fluid, can we rederive Drude’s basic model?

A real metal contains both disorder and electron-electron interactions - in this course
we shall only touch on the simpler problem of disorder in an otherwise free electron gas.
We shall actually return to this problem in earnest in the next chapter. Our task here in
our first example will be to examine the electron propagator in a disordered medium of
elastically scattering impurities. We shall consider an electron in a disordered potential

H =
∑

k

εkc
†
kck + Vdisorder

Vdisorder =

∫
d3xU(~x)ψ†(x)ψ†(x) (9.77)

where U(x) represents the scattering potential generated by a random array ofNi impurities
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located at positions Rj, each with atomic potential U(x−Rj),

U(x) =
∑

j

U(x −Rj)

An important aspect of this Hamiltonian, is that it contains no interactions between elec-
trons, and as such the energy of each individual electron is conserved: all interactions are
elastic.

We shall not be interested in calculating the value of a physical quantity for a specific
location of impurities, but rather on the value of that quantity after we have averaged over
the locations of the impurities, i.e.

〈A〉 =

∫ ∏

j

1

V
d3Rj〈Â[{Rj}]〉

This is an elementary example of a “quenched average”, in which the “impurity average”
takes place after the Thermodynamic average. Here, we’ll calculate the impurity averaged
Green function. To do this we need to know something about the fluctuations of the
impurity scattering potential about its average. It is these fluctuations that scatter the
electrons.

Electrons will in general scatter off the fluctuations in the potential. The average im-
purity potential U(x) plays the roll of a kind of shifted chemical potential. Indeed, if we
shift the chemical potential by an amount ∆µ, the scattering potential becomes U(x)−∆µ,
and we can always choose ∆µ so that U(x) − µ = 0. The more important quantity are
the fluctuations about the average potential δU(x) = U(x) − U(x). These fluctuations are
spatially correlated, with variance

δU(x)δU(x′) =

∫

q
eiq·(x−x′)ni |u(q)|2 (9.78)

where u(q) =
∫
d3xU(x)e−iq·x is the Fourier transform of the scattering potential and

ni = Ni/V is the concentration of impurities. It is these fluctuations that scatter the
electrons, and when we come to draw the impurity averaged Feynman diagrams, we’ll
see that the spatial correlations in the potential fluctuations induce a sort of “attractive
interaction”, denoted by the diagram

x x’
∫
ni|u(q)|2eiq·(x−x′) = −Veff(x − x′)

(9.79)

Although in principle, we should keep all higher moments of the impurity scattering po-
tential, in practice, the leading order moments are enough to extract a lot of the basic
physics in weakly disordered metals. Notice that the fluctuations in the scattering potential
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are short-range - they only extend over the range of the scattering potential. Indeed, if
we neglect the momentum dependence of u(q), assuming that the impurity scattering is
dominated by low energy s-wave scattering, then we can writie u(q) = u0. In this situation,
the fluctuations in the impurity scattering potential are entirely local,

δU(x)δU(x′) = niu
2
0δ(x − x′) white noise potential

In our discussion today, we will neglect the higher order moments of the scattering potential,
effectively assuming that it is purely Gaussian.

To prove (9.78 ), we first Fourier transform the potential

U(q) =
∑

j

e−iq·Rj

∫
d3x U(x−Rj)e

−iq·(x−Rj) = u(q)
∑

j

e−iq·Rj, (9.80)

so that the locations of the impurities are encoded in the phase shifts which multiply u(q).
If we now carry out the average,

δU (x)δU (x′) =

∫

q,q′
ei(q·x−q·x′)

(
U(q)U(−q′) − U(q) U(−q′)

)

=

∫

q,q′
ei(q·x−q·x′) u(q)u(−q′)

∑

i,j

(
e−iq·Rieiq

′·Rj − e−iq·Ri eiq
′·Rj

)
(9.81)

Now since the phase terms are independent at different sites, the variance of the random
phase term in the above expression vanishes unless i = j, so

∑

i,j

(
e−iq·Rieiq

′·Rj − e−iq·Ri eiq
′·Rj

)
= Ni ×

∫
1

V
d3Rje

−i(q−q′)·Rj

= ni(2π)3δ(3)(q − q′) (9.82)

from which
U(q)U(−q′) − U(q) U(−q′) = ni|u(q)|2(2π)3δ(3)(q − q′)

and (9.78) follows.
Now let us examine how electrons scatter off these fluctuations. If we substitute ψ†(x) =∫

k c
†
ke
−ik·x into V̂disorder, we obtain

V̂disorder =

∫

k,k′
c†kck′δU(k − k′)

We shall represent the scattering amplitude for scattering once

jR

k k’

δU(k − k′) =


u(k − k′)

∑

j

ei(k−k′)·Rj


− ∆µδk−k′ .
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Figure 9.4: Double scattering event in the random impurity potential.

(9.83)

where we have subtracted the scattering off the average potential. The potential transfers
momentum, but does not impart any energy to the electron, and for this reason frequency
is conserved along the electron propagator. Let us now write down, in momentum space
the Greens function of the electron

G(k,k′, iωn) = ++ + + ,

= G0(k, iωn)δk,k′ + G0(k, iωn)δU (k − k′)G0(k′, iωn)

+

∫

k1

G0(k, iωn)δU (k − k1)G0(k1, iωn)δU (k1 − k′)G0(k′, iωn) + . . .(9.84)

where the frequency iωn is constant along the electron line. Notice that G0 is actually
a function of each impurity position! Fig. 9.4 illustrates one of the scattering events
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contributing to the third diagram in this sum. We want to calculate the quenched avaerage
G(k,k′, iωn), and to do this, we need to average each Feynman diagram in the above series.

When we impurity average the single scattering event, it vanishes:

G0(k, iωn)δU (k − k′)G0(k′, iωn) = G0(k, iωn)

=0︷ ︸︸ ︷
δU (k− k′)G0(k′, iωn)

but the average of a double scattering event is

∑

k1

G0(k, iωn)G0(k1, iωn)G0(k′, iωn) ×

ni|uk−k′ |2δk−k′︷ ︸︸ ︷
δU (k− k1)δU (k1 − k′)

= δk−k′ × G0(k, iωn)
2ni

∑

k1

u(k − k1)
2G0(k1, iωn)G0(k, iωn) (9.85)

Notice something fascinating - after impurity averating, momentum is now conserved. We
can denote the impurity averaged double scattering event Feynman diagram

k k

k−q

q

=
(9.86)

where we have introduced the Feynman diagram

k

k−Q

Q k’+Q

k’

ni|u(q)|2 = −Veff(Q)

(9.87)

to denote the momentum transfer produced by the quenched fluctuations in the random
potential. In writing the diagram this way, we bring out the notion that quenched disorder
can be very loosely thought of as an interaction with an effective potential

Veff(q, iνn) =

∫ β

0
dτeiνnτ

−ni|u(q)|2︷ ︸︸ ︷
Veff(q, τ) = −βδn0ni|u(q)|2

where the βδn0 ≡ ∫
dτeiνnτ is derived from the fact that the interaction Veff(q, τ)does not

depend on the time difference guarantees that there is no energy transferred by the quenched
scattering events. In otherwords, quenched disorder induces a sort of infinitely retarded,
but “attractive” potential between electrons. (Our statement can be made formally correct
in the language of replicas - this interaction takes place between electrons of the same, or
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different replica index. In the n→ 0 limit, the residual interaction only acts on one electron
in the same replica. ) The notion that disorder induces interactions is an interesting one,
for it motivate the idea that disorder can lead to new kinds of collective behavior.

After the impurity averaging, we notice that momentum is now conserved, so that the
impurity averaged Green function is now diagonal in momentum space,

G(k,k′, iνn) = δk−k′G(k, iνn).

If we now carry out the impurity averaging on multiple scattering events, only repeated
scattering events at the same sites will give rise to non-vanishing contributions. If we
take account of all scattering events induced by the Gaussian fluctuations in the scattering
potential, then we generate a series of diagrams of the form

G(k) = + + +

In the Feynman diagrams, we can group all scatterings into connected self-energy diagrams,
as follows:

Σ(k) = Σ = + + +

G(k) = + += Σ Σ Σ

= [iωn − εk − Σ(k)]−1 (9.88)

In the case of s-wave scattering, all momentum dependence of the scattering processes
is lost, so that in this case Σ(k) = Σ(iωn) only depends on the frequency. In the above
diagram, the double line on the electron propagator indicates that all self-energy corrections
have been included. From the above, you can see that the self-energy corrections calculated
from the first expression are fed into the electron propagator, which in turn is used in a
self-consistent way inside the self-energy

We shall begin by trying to calculate the first order above diagrams for the self-energy
without imposing any self-consistency. This diagram is given by

Σ(iωn) = = ni
∑

k′

|u(k − k′)|2G(k′, iωn)

= ni
∑

k′

|u(k − k′)|2 1

iωn − εk′
(9.89)
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Now we can replace the summation over momentum inside this self-energy by an integration
over solid angle and energy, as follows

∑

k′

→
∫
dΩk′

4π
dε′N(ε′)

where N(ε) is the density of states. With this replacement,

Σ(iωn) = niu
2
0

∫
dεN(ε)

1

iωn − ε

where

u2
0 =

∫
dΩk′

4π
|u(k − k′)|2 =

1

2

∫ 1

−1
d cos θ|u(θ)|2

is the angular average of the squared scattering amplitude. To a good approximation, this
expression can be calculated by replacing the energy dependent density of states by its value
at the Fermi energy. In so doing, we neglect a small real part to the self-energy, which can,
in any case be absorbed by the chemical potential. This kind of approximation is extremely
common in many body physics, in cases where the key physics is dominated by electrons
close to the Fermi energy. The deviations from constancy in N(ε), will in practice affect the
real part of Σ(iωn), and these small changes can be accomodated by a shift in the chemical
potential. The resulting expression for Σ(iωn) is then

Σ(iωn) = niu
2
0N(0)

∫ ∞

−∞
dε

1

iωn − ε
= −i 1

2τ
sgn(ωn) (9.90)

where we have identified 1
τ = 2πniu

2
0 as the electron elastic scattering rate. We notice that

this expression is entirely imaginary, and it only depends on the sign of the Matsubara
frequency. Notice that in deriving this result we have extended the limits of integration to
infinity, an approximation that involves neglecting terms of order 1/(εF τ).

We can now attempt to recompute Σ(iωn) with self-consistency. In this case,

Σ(iωn) = = niu
2
0

∑

k′

1

iωn − εk′ − Σ(iωn)
(9.91)

If carry out the energy integration again, we see that the imposition of self-consistency has
no effect on the scattering rate

Σ(iωn) = niu
2
0N(0)

∫ ∞

−∞
dε

1

iωn − ε− Σ(iωn)

= −i 1

2τ
sgn(ωn). (9.92)

Our result for the electron propagator, ignoring the “vertex corrections” to the scattering
self-energy is given by

G(k, z) =
1

z − εk + i 1
2τ sgnIm(z)
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where we have boldly extended the Green function into the complex plane. We may now
make a few remarks:

• The original pole of the Green function has been broadened. The electron “spectral
function”,

A(k, ω) =
1

π
=G(k, ω − iδ) =

1

π

(2τ)1

(ω − εk)2 + (2τ)−2

is a Lorentzian of width 1/τ . The electron of momentum k now has a lifetime τ due
to elastic scattering effects.

• Although the electron has a mean-free path, l = vF τthe electron propagator displays
no features of diffusion. The main effect of the finite scattering rate is to introduce
a decay length into the electron propagation. The electron propagator does not bear
any resemblance to the “diffusion propagator” χ = 1/(iν −Dq2) that is the Greens
function for the diffusion equation (∂t −D∇2)χ = −δ(x, t). The physics of diffusion
and Ohm’s law do not appear until we are able to examine the charge and spin
response functions, and for this, we have to learn how to compute the density and
current fluctuations in thermal equilibrium. (Chapter 10).

• The scattering rate that we have computed is often called the “classical” electron
scattering rate. The neglected higher order diagrams with vertex corrections are
actually smaller than the leading order contribution by an amount of order

1

εF τ
=

1

kF l

This small parameter defines the size of “quantum corrections” to the Drude scattering
physics, which are the origin of the physics of electron localization. To understand
how this small number arises in the self-energy, consider the first vertex correction to
the impurity scattering,

k  + k   − k1 2

k2 k 1k k

(9.93)

This diagram is given by

Σ2 =

−i 1
2τ︷ ︸︸ ︷

N(0)

∫
dε1

iωn − ε1

−i 1
2τ︷ ︸︸ ︷

N(0)

∫
dε2

iωn − ε2

∼ −i
kF vF︷ ︸︸ ︷∫

dΩ1dΩ2

(4π)2
1

iωn − εk1+k2−k

∼ i
1

τ
× 1

kF l
(9.94)
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where the last term in the integral derives from the central propagator in the self-
energy. In this self-energy, the momentum of the central propagator is entirely deter-
mined by the momentum of the two other internal legs, so that the energy associated
with this propagator is ε−k+k1+k2 . This energy is only close to the Fermi energy when
k1 ∼ −k2, so that only a small fraction 1/(kF l) of the possible directions of k2 give a
large contribution to the scattering processes.

9.7 Interacting electrons and phonons

The electron phonon interaction is one of the earliest successes of many body physics
in condensed matter. In many ways, it is the condensed matter analog of quantum-
electrodynamics - and the early work on the electron phonon problem was carried out
by physicists who had made their early training in the area of quantum electrodynamics.

When an electron passes through a crystal, it attracts the nearby ions, causing a local
build-up of positive charge. Perhaps a better analogy, is with a supersonic aircraft, for
indeed, an electron is a truly supersonic particle inside crystals, moving at many times the
velocity of sound. To get an idea of just how much faster the electron moves in compar-
ison with sound, notice that the ratio of the sound velocity vs to the Fermi velocity vF is
determined by the ratio of the Debye frequency to the Fermi energy, for

vs
vF

∼ ∇kωk
∇kεk

∼ ωD/a

εF/a
=
ωD
εF

where a is the size of the unit cell. Now an approximate estimate for the Debye frequency
is given by ω2

D ∼ k/M , where M is the mass of an atomic nucleus and k ∼ εF/a
2 is the

“spring constant” associated with atomic motions, thus

ω2
D ∼

(
εF
a2

)
1

M

and
ω2
D

ε2F
∼ 1

(εFa
2)︸ ︷︷ ︸

∼1/m

1

M
∼ m

M

so that the ratio
vs
vF

∼
√
m

M
∼ 1

100
.

so an electron moves at around Mach 100. As it moves through the crystal, it leaves behind
it a very narrow wake of “positively charged” distortion in the crystal lattice which attracts
other electrons, long after the original disturbance has passed by. This is the origin of the
weak attractive interaction produced by the exchange of virtual phonons. This attractive
interaction is highly retarded, quite unlike the strongly repulsive Coulomb interaction that
acts between electrons which is almost instantaneous in time. (The ratio of characteristic
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timescales being ∼ εF
ωD

∼
√

M
m ∼ 100). Thus- whereas two electrons at the same place

and time, feel a strong mutual Coulomb repulsion, two electrons which arrive at the same
place, but at different times can be subject to an attractive electron phonon interaction.
It is this interaction that is responsible for the development of superconductivity in many
conventional metals.

In an electron fluid, we must take into account the quantum nature of the sound-
vibrations. An electron can not continously interact with the surrounding atomic lattice
- it must do so by the emission and absorption of sound quanta or “phonons”. The basic
Hamiltonian to describe the electron phonon problem is the Frohlich Hamiltonian, derived
by Fröhlich, a German emigré to Britain, who worked in Liverpool shortly after the second-
world war[5]. Fröhlich recognized that the electron-phonon interaction is closely analogous
to the electron-photon interaction of QED. Fröhlich appreciated that this interaction would
give rise to an effective attraction between electrons and he was the first to identify it as
the driving force behind conventional superconductivity.

To introduce the Frohlich Hamiltonian, we will imagine we have a three phonon modes
labelled by the index λ = (1, 2, 3), with frequency ωqλ. For the moment, we shall also ignore
the Coulomb interaction between electrons. The Fröhlich Hamiltonian is then

He =
∑

kσ

εkc
†
kσckσ

Hp =
∑

q,λ

ωqλ(a
†
qλaqλ +

1

2
)

HI =
∑

k,q,λ

gqλc
†
k+qσckσ

[
aqλ + a†−qλ

]
(9.95)

To understand the electron phonon coupling, let us consider how long-wavelength fluctu-
ations of the lattice couple to the electron energies. Let ~Φ(x) be the displacement of the
lattice at a given point x, so that the strain tensor in the lattice is given by

uµν(x) =
1

2
(∇µΦν(x) + ∇νΦµ(x))

In general, we expect a small change in the strain to modify the background potential of
the lattice, modifying the energies of the electrons, so that locally,

ε(k) = ε0(k) + Cµνuµν(x) + . . .

Consider the following, very simple model. In a free electron gas, the Fermi energy is related
to the density of the electrons N/V by

εF =
1

2m

(
3π2N

V

) 2
3

. (9.96)
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When a portion of the lattice expands from V → V + dV , the positive charge of the
background lattice is unchanged, and preservation of overall charge neutrality guarantees
that the number of electrons N remains constant, so the change in the Fermi energy is given
by

δεF
εF

= −2

3

dV

V
∼ −2

3
~∇ · ~Φ

On the basis of this simple model, we expect the following coupling between the displacement
vector and the electron field

HI = C

∫
d3xψσ

†(x)ψσ(x)~∇.~Φ C = −2

3
εF (9.97)

The quantity C is often called the “deformation potential”. Now the displacement of the
the phonons was studied in Chapter 4. In a general model, it is given by

Φ(x) = −i
∑

qλ

eλq ∆xqλ

[
aqλ + a†−qλ

]
eiq·x

where we’ve introduced the shorthand

∆xqλ =

(
h̄

2MNsωqλ

) 1
2

to denote the characteristic zero point fluctuation associated with a given mode. (Ns is the
number of sites in the lattice. ) The body of this expression is essentially identical to the
displacement of a one-dimensional harmonic lattice (see (4.60)), dressed up with additional
polarization indices. The unfamiliar quantity eλq is the polarization vector of the mode. For

longitudinal phonons, for instance, eLq = q̂. The “−i” in front of the expression has been
introduced into the definition of the phonon creation and annihilation operators so that the
requirement that the Hamiltonian is hermitian (which implies (eλq)∗ = −(eλ−q)) is consistent
with the convention that e changes sign when the momentum vector q is inverted.

The divergence of the phonon field is then

~∇ · Φ(x) =
∑

qλ

q · eλq∆xqλ

[
aqλ + a†−qλ

]
eiq·x

In this simple model, the electrons only couple to the longitudinal phonons, since these are
the only phonons that change the density of the unit cell. When we now Fourier transform
the interaction Hamiltonian, making the insertion ψσ(x) = 1√

V

∑
k ckσe

ik·x (9.97), we obtain

HI = C

∫
d3xψσ

†(x)ψσ(x)~∇~Φ(x)
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=
∑

k,k′,q,λ

c†k′σckσ
[
aqλ + a†−qλ

]
δk′−(k+q)︷ ︸︸ ︷

1

V

∫
d3xei(q+k−k′)·x ×C∆xqλ(q · eλq)

=
∑

qkλ

gqλc
†
k+qσckσ

[
aqλ + a†−qλ

]
(9.98)

where

gqλ =




Cq∆xqλ = Cq

(
h̄

2MNsωqλ

) 1
2 (λ = L)

0 (otherwise )

( Note that Ns = V/a3, where a is the lattice spacing. To go over to the thermodynamic
limit, we will replace our discrete momentum sums by continuous integrals,

∑
q ≡ V

∫
q →∫

q. Rather than spending a lot of time keeping track of how the volume factor is absorbed

into the integrals, it is simpler to regard V = 1 as a unit volume, replacing Ns → a−3

whenever we switch from discrete, to continuous integrals. With this understanding, we

will use ∆xqλ =
√
h̄a3/(2Mωqλ).) Our simple model captures the basic aspects of the

electron phonon interaction, and it can be readily generalized. In a more sophisticated
model,

• C becomes momentum dependent and should be replaced by the Fourier transform of
the atomic potential. For example, if we compute the electron - phonon potential from
given by the change in the atomic potential Vatomic resulting from the displacement
of atoms,

δV (x) =
∑

j

δVatomic(x −R0
j − ~Φj) = −

∑

j

~Φj · ~∇Vatomic(x−R0
j )

we must replace interaction,

C → Vatomic(q) =
1

vcell

∫
d3xVatomic(x)e−iq·x. (9.99)

• When the plane-wave functions are replaced by the detailed Bloch wavefunctions of the
electron band, the electron phonon coupling becomes dependent on both the incoming
and outgoing electron momenta, so that

gk′−kλ → gk′,kλ.

Nevertheless, much can be learnt from our simplified model In the discussion that follows,
we shall drop the polarization index, and assume that the phonon modes we refer to are
exclusively longitudinal modes.

In setting up the Feynman diagrams for our Frohlich model, we need to introduce two
new elements- a diagram for the phonon propagator, and a diagram to denote the vertex.
If we denote φq = aq + a†−q, then the phonon Green function is given by

D(q, τ − τ ′) = −〈Tφq(τ)φq(τ ′)〉 = T
∑

iνn

D(q)e−iνn(τ−τ ′) (9.100)
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where the propagator

D(q) =
2ωq

(iνn)2 − (ωq)2

is denoted by the diagram í
(q, iνn)

= D(q, iνn) (9.101)

The interaction vertex between electrons and phonon is denoted by the diagram

k

k + q

q
= (i)3 ×−gq = igq (9.102)

The factor i3 arises because we have three propagators entering the vertex, each donating
a factor of i. The −1gq derives from the interaction Hamiltonian in the time-ordered
exponential. Combining these two Feynman rules, we see that when two electrons exchange
a boson, this gives rise to the diagram

(q, νn)
1 2 = (igq)2D(q) = −(gq)2D(q) (9.103)

so that the exchange of a boson induces an effective interaction

Veff(q, z) = g2
q

2ωq

(z)2 − ω2
q

(9.104)

Notice two things about this interaction -

• It is strongly frequency dependent, reflecting the strongly retarded nature of the elec-
tron phonon interaction. The characteristic phonon frequency is the Debye frequency
ωD ∼, and the characteristic “restitution” time associated with the electron phonon
interaction is τ ∼ 1/ωD, whereas the corresponding time associated with the repul-
sive Coulomb interaction is of order 1/εF . The ratio εF /ωD ∼ 20 is a measure of how
much more retarded the electron-phonon interaction is compared with the Coulomb
potential.

• At frequencies below the Debye energy, ω <˜ωD the denominator in Veff changes sign,

and the residual low-energy interaction is actually attractive. It is this component of
the interaction that is responsible for superconductivity in conventional superconduc-
tors.

We wish to now calculate the effect of the electron-phonon interaction on electron prop-
agation. The main effect on the electron propagation is determined by the electron-phonon
self energy. The leading order Feynman diagram for the self-energy is given by
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k
k − q

q

k
≡ Σ(k) =

∑

q

(igq)2G0(k − q)D(q) (9.105)

or written out explicitly,

Σ(k, iωn) = −T
∑

q,iνn

g2
q

[
2ωq

(iνn)2 − ω2
q

]
1

iωn − iνn − εk−q

= −T
∑

q,iνn

[
1

iνn − ωq

1

iωn − iνn − εk−q

− (ωq → −ωq)

]
(9.106)

where we have simplified the expression by splitting up the boson propagator into a positive
and negative frequency component, the latter being obtained by reversing the sign on ωq.
We shall carry out the Matsubara sum over the bosonic frequencies by writing it as a contour
integral with the Bose function:

−T
∑

iνn

F (iνn) = −
∫

C

dz

2πi
n(z)F (z) =

∫

C′

dz

2πi
n(z)F (z) (9.107)

where C runs anti-clockwise around the imaginary axis and C ′ runs anticlockwise around
the poles in F (z). In this case, we choose

F (z) =
1

z − ωq

1

iωn − z − εk−q

=

[
1

z − ωq

− 1

z − (iωn − εk−q)

]
1

iωn − (ωq + εk−q)
(9.108)

which has two poles, one at z = ωq and one at z = iωn− εk−q (Fig. 9.5). Carrying out the

ιω  − εn k−q

ω q

ιω  − εn k−q

ω q
−1 x   =

C

C’

C’

Figure 9.5: Contours C and C ′ used in evaluation of Σ(k, iωn)
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contour integral, we then obtain

Σ(k) =
∑

q

g2
q



n(ωq) −

−(1−fk−q)
︷ ︸︸ ︷
n(iωn − εk−q)

iωn − (ωq + εk−q)
− {ωq → −ωq}




=
∑

q

g2
q

[
1 + nq − fk−q

iωn − (ωq + εk−q)
− {ωq → −ωq}

]
(9.109)

The second term in this expression is obtained by reversing the sign on ωq in the first term,
which gives finally,

Σ(k, z) =
∑

q

g2
q

[
1 + nq − fk−q

z − (εk−q + ωq)
+

nq + fk−q

z − (εk−q − ωq)

]

where we have taken the liberty of analytically extending the function into the complex
plane. There is a remarkable amount of physics hidden in this expression.

The terms appearing in the electron phonon self-energy can be interpreted in terms of
virtual and real phonon emission processes. Consider the zero temperature limit, when the
Bose terms nq = 0. If we look at the first term in Σ(k), we see that the numerator is only
finite if the intermediate electron state is empty, i.e |k−q| > kF . Furthermore, the poles of
the first expression are located at energies ωq + εk−q, which is the energy of an electron of
momentum k−q and an emitted phonon of momentum ωq, so the first process corresponds
to phonon emission by an electron. If we look at the second term, then at zero temperature,
the numerator is only finite if |k− q| < kF , so the intermediate state is a hole. The pole in
the second term occurs at −z = −εk−q + ωq, corresponding to a state of one hole and one
phonon, so one way to interpret the second term as the energy shift that results from the
emission of virtual phonons by holes. At zero temperature then,

Σ(k, z) =
∑

q

g2
q

[
virtual/real phonon emission by electron

︷ ︸︸ ︷
1 − fk−q

z − (εk−q + ωq)
+

virtual/real phonon emission by hole
︷ ︸︸ ︷

fk−q

z − (εk−q − ωq)

]

As we shall discuss in more detail in the next chapter, the analytically extended Greens
function

G(k, z) =
1

z − εk − Σ(k, z)

can be used to derive the real-time dynamics of the electron in thermal equilibrium. In
general, Σ(k, ω− iδ) = ReΣ(k, ω− iδ) + iImΣ(k, ω− iδ) will have a real and an imaginary
part. The solution of the relation

ε∗k = εk +ReΣ(k, ε∗k)
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determines the renormalized energy of the electron due to virtual phonon emission. Lets
consider the case of an electron, for which ε∗k is above the Fermi energy. The quasiparticle
energy takes the form

ε∗k = εk −

energy lowered by virtual phonon emission︷ ︸︸ ︷
∑

|k−q|>kF
g2
q

1

(εk−q + ωq) − ε∗k
+

energy raised by blocking vacuum fluctuations︷ ︸︸ ︷
∑

|k−q|<kF
g2
q

1

ε∗k + |εk−q| + ωq

.

If we approximate ε∗k by its unrenormalized value εk, we obtain the second-order pertur-
bation correction to the electron quasiparticle energy, due to virtual phonon processes. To
understand these two terms, it is helpful to redraw the Feynman diagram for the self energy
so that the scattering events are explicitly time ordered, then we see that there are two vir-
tual processes - depending on whether the intermediate electron line propagates forwards
or backwards in time:

Virtual phonon emission

2t
1t

1 2<(t t  )

Virtual phonon and e−h pair

1t
2t

1 2>(t t  )k

k

k−q

k−q

q

The first term is recognized as the effect of virtual scattering into an intermediate state
with one photon and one electron. But what about the second term? This term involves
the initial formation of an electron-hole pair and the subsequent reannihilation of the hole
with the incoming electron. During the intermediate process, there seem to be two electrons
(with the same spin) in the same momentum state k. Can it really be that virtual processes
violate the exculsion principle? Fortunately, another interpretation can be given. Under
close examination, we see that unlike typical virtual fluctuations to high energy states,
which lower the total energy, this term actually raises the quasiparticle energy. These
energy raising processes are a “blocking effect” produced by the exclusion principle, on the
vacuum fluctuations. In the ground-state, there are virtual fluctuations

GS ⇀↽ electron (k′) + hole (−k′ − q) + phonon (q)

which lower the energy of the ground-state. When a single electron occupies the state of
momentum k, the exclusion principle prevents vacuum fluctuations with k′ = k, raising the
energy of the quasiparticle. So time ordered diagrams that appear to violate the exclusion
principle describe the suppression of vacuum fluctuations by the exclusion principle.

If we now extend our discussion to finite temperatures, for any given k and q, both
the first and the second terms in the phonon self-energy are presen. For phonon emission
processes, the appearance of the additional Bose terms nq is the the effect of stimulated
emission, whereby the occupancy of phonon states enhances the emission of phonons. The
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terms which vanish at zero temperature can also be interpreted as the effect of phonon
absorption of the now thermally excited phonons, i.e

Σ(k, z) =
∑

q

g2
q

[
1 − fk−q + nq

z − (εk−q + ωq)
︸ ︷︷ ︸

virtual/real phonon absorption by hole

+
fk−q + nq

z − (εk−q − ωq)
︸ ︷︷ ︸

virtual/real phonon absorption by electron

]

By contrast, the imaginary part of the self-energy determines the decay rate of the
electron due to real phonon emission, and the decay rate of the electron is related to the
quantity

Γk = 2ImΣ(k, ε∗k − iδ) ≈ 2ImΣ(k, εk − iδ)

If we use the Dirac relation
[

1

x− a− iδ

]
= P

1

x− a
+ iπδ(x− a)

then we see that for a weak interaction, the decay rate of the electron is given by

Γk = 2π
∑

q

g2
q

[ phonon emission︷ ︸︸ ︷
(1 + nq − fk−q)δ(εk − (εk−q + ωq)) +

phonon absorption︷ ︸︸ ︷
(nq + fk−q)δ(εk − (εk−q − ωq))

]

which we may identify as the contribution to the decay rate from phonon emission and
absorption, respectively. Schematically, we may write

Im

[

k k − q

q

k
]

=
∑

q





[

k
k− q

q

]2

+

[

k
k− q

q

]2


× 2πδ(Ef −Ei)

so that taking the imaginary part of the self-energy “cuts” the internal lines. The link
between the imaginary part of the self-energy and the real decay processes of absorption
and emission is sometimes refered to as the “optical theorem”.

9.7.1 α2F : the electron-phonon coupling function

One of the most important effects of the electron phonon interaction, is to give rise to a
superconducting instability. Superconductivity is driven by the interaction of low-energy
electrons very close to the Fermi surface, so the amount of energy transferred in an interac-
tion is almost zero. For this reason, the effective interaction between the electrons is given
by (9.104)

Veff(q, 0) = −2g2
q

ωq

Now the momentum dependence of this interaction is very weak. In our simple model, for

example, g2
q/2ωq ∼ q2

ω2
q
∼ constant, and a weak momentum dependence implies that to a
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first approximation then, the effective low energy interaction is local, extending over one
unit cell and of approximate form

Heff ≈ −g
∑

σσ′

∑

q,k,k′,(|εk|, |εk′ |)<ωD)

ψ†k+qσψ
†
k′σ′ψk′+qσ′ψkσ (9.110)

where the sum over electron momenta is restricted to within a narrow band of energies,
within ωD of the Fermi energy. (Which means that the interaction is “instantaneous” to
within a time-scale of δt ∼ 1/ωD and the effective interaction strength g is the sum over all
2g2

q/ωq,

g = V
∑

q

2g2
q

ωq

≡
∫

q

2g2
q

ωq

(V ≡ 1) (9.111)

Bardeen and Pines were the amongst the realize that the electron-electron interaction in-
duced by phonon exchange is highly retarded relative to the almost instantaneous Coulomb
interaction, so that for low energy processes, the Coulomb interaction could be ignored.
The attractive interaction in (9.110) was then the basis of the “Bardeen-Pines” model[6] -
a predecessor of the BCS Hamiltonian. We can make an order-of-magnitude estimate of g,
by replacing

g ∼
g2
2kF

a3ωD
∼ 1

ωD

(g2kF )2

︷ ︸︸ ︷[(
h̄2a3

2MωD

)
ε2F (2kF )2

]
∼

M
m︷ ︸︸ ︷(
ε2F
ω2
D

)
h̄2k2

F

2M
∼ εF

where we have replaced
∫
q → 1/a3 and Ns → 1/a3, setting V = 1 to normalize the

thermodynamic limit. The electron phonon coupling constant is defined as the product of
the interaction strength, times the electron density of states,

λ = N(0)g =
∑

q

2N(0)g2
q

ωq

(9.112)

This dimensionless quantity is not reduced by the small ratio of electron to atom mass, and
in typical metals λ ∼ 0.1−0.2. We’ll now see that we relate the electron phonon self energy
to this quantity.

The electron-phonon self-energy can be simplified by the introduction of a function we
call “α2F”, that keeps track of the frequency dependence of the electron-phonon coupling
constant, where α(ω) is the typical energy dependent coupling constant and F is the phonon
density of states. It turns out that α2F can be actually measured inside superconductors
and F can be measured by neutron scattering.

The basic idea here, is that the frequency dependence of the electron-phonon self energy
is far greater than the momentum dependence. The approximate dimensionless ratio of the
momentum, to frequency dependence is given by the small ratio of the Debye frequency to
the Fermi energy, ωD/εF

(
1

vF
|∇kΣ|

)
/

(
∂Σ

∂ω

)
∼ ωD

εF
<< 1
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To a good approximation then, the electron phonon self-energy can be averaged over the
Fermi surface, writing

Σ(ω) =

∫
dSΣ(k, ω)∫

dS

where
∫
dS ≡ ∫

d2k/(2π)3 is an integral over the Fermi surface. Now the sum over k′ inside
the self-energy can be replaced by a combination of an energy integral, and a Fermi surface
integral, as follows

∑

k′

→
∫
dS′dk′perp =

∫
dS′

|dεk′/dk′|
dε′ =

∫
dS′

vF (S′)
dε′

where dS′ ≡ d2k is a surface integral along the surface of constant energy and vF (S) =
n · ∇kεk is the local Fermi velocity normal to this surface. Making this substitution,

Σ(ω) =
1∫
dS

∫
dSdS′

v′F
dε′g2

k−k′

[
1 + nk−k′ − f(ε′)
z − (ε′ + ωk−k′)

+
nk−k′ + f(ε′)
z − (ε′ − ωk−k′)

]

If we introduce a delta function in the phonon frequency into this expression, using the
identity 1 =

∫
dνδ(ν − ωqλ), then we may rewrite it as follows

Σ(ω) =
1∫
dS

∫
dε′dν

∫
dS dS′

v′F
g2
k−k′δ(ν − ωk−k′)

[
1 + n(ν) − f(ε′)
z − (ε′ + ν)

+
n(ν) + f(ε′)
z − (ε′ − ν)

]

=

∫ ∞

−∞
dε

∫ ∞

0
dνα2(ν)F (ν)

[
1 + n(ν) − f(ε′)
z − (ε′ + ν)

+
n(ν) + f(ε′)
z − (ε′ − ν)

]
(9.113)

where the
F (ω) =

∑

q,λ

δ(ω − ωqλ)

is the phonon density of states, and

α2F (ν) =
1∫
dS

∫
dS dS′

v′F
δ(ω − ωk−k′)g

2
k−k′λ

is the Fermi surface average of the phonon matrix element and density of states. With this
definition, we may rewrite the self energy as

Σ(z) =

∫ ∞

−∞
dε

∫ ∞

0
dνα2(ν)F (ν)

[
1 + n(ν) − f(ε)

z − (ε+ ν)
+
n(ν) + f(ε)

z − (ε− ν)

]

where the energy dependence of the electron density of states has been neglected. This is a
very practical form for the electron self-energy. In practice, most of the energy dependence
in α2F is determined by the phonon density of states. As we shall see later, in a conven-
tional electron-phonon superconductor, one may infer the function α2F using the density of
electron states in the superconductor measured by tunneling in the superconducting state.
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9.7.2 Mass Renormalization by the electron phonon interaction

Our simplified for of the self-energy enables us to examine how electron propagation is
modified by the exchange of virtual phonons. Let us expand the electron-phonon self energy
around zero frequency in the ground-state. In the ground-state,

Σ(ω) =

∫ ∞

−∞
dε

∫ ∞

0
dνα2(ν)F (ν)

[
θ(ε)

z − (ε+ ν)
+

θ(−ε)
z − (ε′ − ν)

]

=

∫ ∞

0
dνα2(ν)F (ν) ln

[
ν − z

ν + z

]

so that at low frequencies,
Σ(ω) = Σ(0) − λω

where

λ = − dΣ(ω)

dω

∣∣∣∣
ω=0

= 2

∫
dν
α2(ν)F (ν)

ν
(9.114)

If we look at our definition of α2F , we see that this expression is the Fermi surface average
of the electron phonon coupling constant defined in (9.112).

Now at low energies, we can write the electron propagator in terms of the quasiparticle
energies, as follows

G(k, ω − iδ) =
1

ω − εk − Σ(ω − iδ)

=
1

ω − εk − Σ(ε∗k − iδ)︸ ︷︷ ︸
ε∗
k
−iΓ/2

+λ(ω − ε∗k)
, (9.115)

or

G(k, ω − iδ) =
Z

ω − ε∗k − iΓ∗/2
(9.116)

where

Z = (1 + λ)−1 wavefunction renormalization
ε∗k = εk + Σ(ε∗k) quasiparticle energy
Γ∗ = 2ZImΣ(ε∗k − iδ) quasiparticle decay rate.

(9.117)

We see that in the presence of the electron phonon interaction, electron quasiparticles are
still well-defined at low temperatures. Indeed, at the Fermi surface, Γ∗ = 0 in the ground-
state, so that electron quasiparticles are infinitely long-lived. This is an example of a Landau
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Fermi liquid, discussed in chapter 8. If we differentiate εk with respect to ε∗k, we obtain

dεk
dε∗k

= (1 + λ) =

(
m∗

m

)

so that the effective mass of the electron is enhanced by the cloud of virtual phonons which
trails behind it. The density of states is also renormalized in the same way

N(0)∗ =
dεk
dε∗k

N(0) = N(0)(1 + λ)

while the electron group velocity is renormalized downwards according to

v∗F = ∇kε
∗
k =

dε∗k
dεk

∇kεk = ZvF

Thus the electron phonon interaction drives up the mass of the electron, effect of squeez-
ing the one-particle states more closely together and driving the electron group velocity
downwards. This in turn will mean that the linear coefficient of the electronic specific heat
Cv = γ∗T

γ∗ =
π2k2

B

3
N∗(0) = γ0(1 + λ)

is enhanced.
We can give the wavefunction renormalization another interpretation. Recall that using

the method of contour integration, we can always rewrite the Matsubara representation of
the Green function

G(k, τ) = T
∑

n

G(k, iωn)e
−iωnτ

as

G(k, τ) = −
∫
dω

π
[(1 − f(ω))θ(τ) − f(ω)θ(−τ)]A(k, ω)e−ωτ (9.118)

where A(k, ω) = ImG(k, ω − iδ) is the spectral function. Now, from the normalization of
the fermionic commutation relation {ckσ , c†kσ} = 1, we deduce that the spectral function
is normalized:

1 = 〈{ckσ , c†kσ}〉 =

〈c†kσckσ〉︷ ︸︸ ︷
G(k, 0−)−

−〈ckσc†kσ〉︷ ︸︸ ︷
G(k, 0+)

=

∫
dω

π
A(k, ω) (9.119)

The quasiparticle part of the spectral function (9.116) is a Lorentzian of width Γ∗k, weight
πZ, and since the width Γ∗k → 0 as ε∗k gets closer to the Fermi energy, we deduce that for
k ∼ kF , the quasiparticle part of the spectral function ever more closely represents a delta
function of weight Z, so that

1

π
A(k, ω) ∼ Zδ(ω − ε∗k) + incoherent background
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where the incoherent background is required so that the total frequency integral of the
spectral function is equal to unity.

Now from (9.118), we see that the ground-state occupancy of the electron momentum
state k is given by

nkσ = 〈n̂kσ〉T=0 = −G(k, 0−) =

∫
dω

π
f(ω)A(k, ω)

∣∣∣∣
T=0

=

∫ 0

−∞

dω

π
A(k, ω), (T = 0) (9.120)

The presence of the quasiparticle pole in the spectral function means that at the Fermi
surface, there is a discontinuity in the occupancy given by

nkσ|k=k−F − nkσ|k=k+
F

= Z =
1

1 + λ

as shown in Fig. 9.6

ZZ
F
−

F
+

F

1

a) b)

c)

A(k,  )ω

ω

A(k,  )ω

ω

k = k k = k 

k

kn

k

Z= 1/(1+  )λ

Figure 9.6: Illustrating the relationship between the coherent, quasiparticle component in
the electron spectral function, and the discontinuity in the momentum-space occupancy at
the Fermi surface due to the electron-phonon interaction. a) Spectral function just below
the Fermi surface - quasiparticle peak occupied. b) Spectral function just above Fermi
surface - quasiparticle peak unoccupied. c) Momentum space occupancy nk.

Remarks:

• The survival of a sharp “coherent” delta-function peak in the quasiparticle spectral
function, together with this sharp precipace-like discontinuity in the momentum-space
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occupancy, are one of the hallmark features of the Landau Fermi liquid. In an electron-
phonon mediated superconductor, it is the coherent part of the spectral function which
condenses into the pair condensate.

• At first sight, one might imagine that since the density of states N ∗(0) = (1+λ)N(0) is
enhanced, the magnetic susceptibility will follow suit. In actual fact, the compression
of the density of states produced by phonons is always located at the Fermi energy,
and this means that if the electron phonon interaction is turned on adiabatically,
it does not affect the Fermi momenta of either up, or down electrons, so that the
magnetization, and hence the magnetic susceptibility are unaffected by the electron
phonon interaction.

9.7.3 Migdal’s theorem.

At first sight, one might worry about the usefulness of our leading order self-energy correc-
tion. We have already seen that the size of the electron phonon interaction λ is of order
unity. So what permits us to ignore the vertex corrections to the self energy?

One of the classic early results in the electron phonon problem, is Migdal’s theorem[7],
according to which that the renormalization of the electron-phonon coupling by phonon

exchange, is of order
√

m
M . Migdal’s theorem is a result of the huge mismatch between the

electron and phonon dispersion. Basically- when an electron scatters off a phonon, it moves
away so fast that other phonons can not “catch up” with the outgoing electron.

Migdal’s theorem concerns the correction to the electron-phonon vertex. Diagramati-
cally, the electron self-energy can be expanded as follows

Σ = + + . . . (9.121)

which we can denote by the shorthand

Σ = (9.122)

243



Chapter 9. c©P. Coleman 04

Here, the shaded circle denotes the vertex part, given by

= + + . . . = ig(q)(1 + Λ(q)) (9.123)

We shall discuss the leading order vertex correction,

q

k′ + q

k − k′

k + q

k′
k

= (igq)Λ(q) (9.124)

where the vertex function Λ(q) is given by

Λ(q) = T
∑

k′≡(iω′n,k
′)

(igk−k′)
2G(k′ + q)G(k′)D(k − k′) (9.125)

We are interested in an order of magnitude estimate of this quantity.
Now at low temperatures, we can replace the summation over the Matsubara frequency

can be replaced by an integral,

T
∑

ω′n

→
∫
dω′n
2π

so that

Λ(q) = −
∫
dω′n
2π

∫
d3k′

(2π)3
(gk−k′)

2G(k′ + q)G(k′)D(k − k′)

Now the propogator

D(k − k′) = − ωk−k′

(ωn − ω′n)2 + ω2
q

vanishes as 1/(ω′n)
2 in the region where |ωn−ω′n|>˜ωD, so we restrict this integral, writing

Λ(q) = −
∫ ωD

−ωD

dω′n
2π

∫
d3k′

(2π)3
(gk−k′)

2D(k − k′)G(k′ + q)G(k′)

Inside the restricted frequency integral, to obtain an estimate of this quantity, we shall
replace g2

k−k′D(k − k′) ∼ a3g × 2ωk−k′D(k − k′) ∼ −g, since 2ωk−k′D(k − k′) ∼ −1. To
good approximation, the frequency integral may be replaced by a single factor ωD, so that

Λ(q) ∼ ωDga
3

∼ (kF )3

ε2
F︷ ︸︸ ︷∫

d3k′

(2π)3
G(k′ + q)G(k′)

∣∣∣∣∣
ω′n=ωn

.
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Now inside the momentum summation over k′, the electron momenta are unrestricted so
the energies εk′ and εk′+q are far from the Fermi energy and we may estimate this term as

of order (kF a)
3

ε2F
. Putting these results together,

Λ ∼ gωD
(kFa)

3

ε2F

Now since g ∼ λεF and (kF a)
3 ∼ 1, we see that

Λ ∼ λ
ωD
εF

∼
√
m

M

In otherwords, even though the electron phonon interaction is of order unity, the large ratio
of electron to ion mass leads to a very small vertex correction.
Remarks:

• Perhaps the main difficulty of the Migdal argument, is that it provides a false sense
of security to the theorist- giving the impression that one has “proven” that the
perturbative treatment of the electron phonon interaction is always justified. Migdal’s
argument is basically a dimensional analysis. The weak-point of the derivation, is that
the dimensional analysis does not work for those scattering events where the energies
of the scattered electrons are degenerate. While such scattering events may make up
a small contribution to the overall phase space contributing to the self-energy, they
become important because the associated scattering amplitudes can develop strong
singularities that ultimately result in a catastrophic instability of the Fermi liquid. The
dimensional analysis in the Migdal argument breaks down when electrons inside the
loop have almost degenerate energies. For example, the Migdal calculation, does not
work for the case where q is close to a nesting vector of the Fermi surface, when q spans
two nested Fermi surfaces, this causes εk′ and εk′+q to become degenerate, enhancing
the size of the vertex by a factor of εF/ωD× log(ωD/T ). The singular term ultimately
grows to a point where an instability to a density wave takes place, producing a
charge density wave. The other parallel instability is the Cooper instability, which is a
singular correction to the particle-particle scattering vertex, caused by the degeneracy
of electron energies for electrons of opposite momenta.

9.8 Appendix A

In this appendix, we consider the Hamiltonian

H =

H0︷ ︸︸ ︷∑

λ

ελψ
†
λψλ−

−VI︷ ︸︸ ︷∑

λ

[
z̄λ(τ)ψλ + ψ†)λ

]

and show that the generating functional

Z0[z̄, z] = Z0〈Te−
∫ β
0
VI(τ)dτ 〉0
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= Z0〈T exp

[∫ β

0
dτ
∑

λ

(
z̄λ(τ)ψλ(τ) + ψ†λ(τ)zλ(τ)

)]
〉0 (9.126)

is explicitly given by

Z0[z̄, z]

Z0
= exp

[
−
∑

λ

∫ β

0
dτ1dτ2z̄λ(1)Gλ(τ1 − τ2)zλ(2)

]

Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (9.127)

for both bosons and fermions.
We begin by evaluating the equation of motion of the fields in the Heisenberg represen-

tation:
∂ψλ
∂τ

= [H,ψλ] = −ελψλ(τ) + zλ(τ)

Multiplying this expression by the integrating factor eελτ , we obtain

∂

∂τ
[eελτψλ(τ)] = eελτzλ(τ)

which we may integrate from τ ′ = 0 to τ ′ = τ , to obtain

ψλ(τ) = e−ελτψλ(0) +

∫ τ

0
dτ ′e−ελ(τ−τ ′)zλ(τ

′)dτ ′

We shall now take expectation values of this equation, so that

〈ψλ(τ)〉 = e−ελτ 〈ψλ(0)〉 +

∫ τ

0
dτ ′e−ελ(τ−τ ′)zλ(τ

′)dτ ′ (9.128)

If we impose the boundary condition 〈ψλ(β)〉 = ζ〈ψλ(0)〉, where ζ = 1 for bosons and
ζ = −1 for fermions, then we deduce that

〈ψλ(0)〉 = ζnλ

∫ β

0
eελτ

′
zλ(τ

′)dτ ′,

where nλ = 1/(eβελ − ζ) is the Bose (ζ = 1), or Fermi function ζ = −1. Inserting this into
(9.128), we obtain

〈ψλ(τ)〉 = ζnλ

∫ β

0
e−ελ(τ−τ ′)zλ(τ

′)dτ ′ +
∫ β

0
e−ελ(τ−τ ′)θ(τ − τ ′)zλ(τ

′)dτ ′, (9.129)

where we have introduced a theta function in the second term, in order to extend the upper
limit of integration to β. Rearranging this expression, we obtain

〈ψλ(τ)〉 =

∫ β

0
dτ ′

−Gλ(τ−τ ′)︷ ︸︸ ︷
e−ελ(τ − τ ′)

[
(1 + ζnλ)θ(τ − τ ′) + ζnλθ(τ

′ − τ)
]
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= −
∫ β

0
dτ ′Gλ(τ − τ ′)zλ(τ

′) (9.130)

so Gλ(τ) is the imaginary time response of the field to the source term. We may repeat the
same procedure for the expectation value of the creation operator. The results of these two
calculations may be summarized as

〈ψλ(τ)〉 =
δZ[z̄, z]

δz̄(τ)
= −

∫ β

0
dτ ′Gλ(τ − τ ′)zλ(τ

′)

〈ψ†λ(τ)〉 =
δZ[z̄, z]

δz(τ)
= −

∫ β

0
dτ ′z̄(τ)Gλ(τ − τ ′). (9.131)

Notice how the creation field propagates backwards in time from the source. The common
integral to these two expression is

lnZ[z̄, z] = lnZ0 −
∫ β

0
dτdτ ′z̄λ(τ)Gλ(τ − τ ′)zλ(τ

′)

where the constant term lnZ0 has to be intependent of both z and z̄. The exponential of
this expression recovers the result (9.127 ).

9.9 Exercises for chapter 9

1. Use the method of complex contour integration to carry out the Matsubara sums in the
following:

(i) Derive the density of a spinless Bose Gas at finite temperature from the boson propagator
D(k) ≡ D(k, iνn) = [iνn − ωk]−1, where ωk = Ek − µ is the energy of a boson, measured
relative to the chemical potential.

ρ(T ) =
N

V
= V −1

∑

k

〈Tbk(0−)b†k(0)〉 = −(βV )−1
∑

iνn,k

D(k)eiνn0+

. (9.132)

How do you need to modify your answer to take account of Bose Einstein condensation?

(ii) The dynamic charge-susceptibility of a free Bose gas, i.e

χc(q, iνn) =

D(k+q)

D(k)

= T
∑

iνn

∫
d3k

(2π)3
D(q + k)D(k). (9.133)

Please analytically extend your final answer to real frequencies.

(iii) The “pair-susceptibility” of a spin-1/2 free Fermi gas, i.e.

χP (q, iνn) =

G(k+q)

G(-k)

= T
∑

iωr

∫
d3k

(2π)3
G(q + k)G(−k) (9.134)
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where G(k) ≡ G(k, iωn) = [iωn − εk]−1. (Note the direction of the arrows: why is there no
minus sign for the Fermion loop?) Show that the static pair susceptibility, χP (0)is given by

χP =

∫
d3k

(2π)3
tanh[βεk/2]

2εk
(9.135)

Can you see that this quantity diverges at low temperatures? How does it diverge, and why ?
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2. A simple model an atom with two atomic levels coupled to a radiation field is described by
the Hamiltonian

H = Ho +HI +Hphoton, (9.136)

î£î£î£î£î£î£î£î£î£î£î£î£îî£î£î£î£î£î£î£î£î£î£î£î£îî£î£î£î£î£î£î£î£î£î£î£î£îï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ïï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ïï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ï£ï

E

−1

ρ(E)

−τ

+
−1 ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ðð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ðð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ðð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð£ð

ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ññ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ññ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ññ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ£ñ
τ

γ ò£ò£ò£ò£ò£ò£ò£ò£ò£ò£ò£ò£ò£ò£òó£ó£ó£ó£ó£ó£ó£ó£ó£ó£ó£ó£ó£ó
E

E-

+

οω

where

Ho = Ẽ−c
†
−c− + Ẽ+c

†
+c+ (9.137)

describes the atom, treating it as a fermion

HI = V −1/2
∑

~q

g(ω~q)

(
c†+c− + c†−c+

)[
a†~q + a−~q

]
(9.138)

describes the coupling to the radiation field (V is the volume of the box enclosing the radiation)
and

Hphoton =
∑

~q

ω~qa
†
~qa~q , (ωq = cq) (9.139)

is the Hamiltonian for the electromagnetic field. The “dipole” matrix element g(ω) is weak
enough to be treated by second order perturbation theory and the polarization of the photon
is ignored.

(i) Calculate the self-energy Σ+(ω) and Σ−(ω) for an atom in the + and − states.

(ii) Use the self-energy obtained above to calculate the life-times τ± of the atomic states, i.e.

τ−1
± = 2ImΣ±(Ẽ± − iδ). (9.140)

If the gas of atoms is non-degenerate, i.e the Fermi functions are all small compared with
unity, f(E±) ∼ 0 show that

τ−1
+ = 2π|g(ωo)|2F (ωo)[1 + n(ωo)]

τ−1
− = 2π|g(ωo)|2F (ωo)n(ωo), (9.141)

where ωo = Ẽ+ − Ẽ− is the separation of the atomic levels and

F (ω) =

∫
d3q

(2π)3
δ(ω − ωq) =

ω2

2πc3
(9.142)

is the density of state of the photons at energy ω. What do these results have to do with
stimulated emission? Do your final results depend on the initial assumption that the atoms
were fermions?

(iii)Why is the decay rate of the upper state larger than the decay rate of the lower state by
the factor [1 + n(ω0)]/n(ω0)?
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Table. 9.3 Relationship With Physical Quantities: Finite Temperature

∆F −V ∑{linked clusters} −V
[

+ + . . .

]

lnZ/Zo V β
∑{linked clusters} V T

[
+ + . . .

]

1
−〈Tψ(2)ψ†(1)〉

2
∑{Two leg diagrams} ô

+ + +

(−1)n〈Tψ(1) . . . ψ†(2n)〉 ∑{2n- leg diagrams}

G n = 2
− + +

Response Functions

〈ψ|T [A(2)B(1)]|ψ〉 = χTAB

B(1) õZõZõZõZõZõZõZõZõõZõZõZõZõZõZõZõZõõZõZõZõZõZõZõZõZõõZõZõZõZõZõZõZõZõõZõZõZõZõZõZõZõZõõZõZõZõZõZõZõZõZõõZõZõZõZõZõZõZõZõõZõZõZõZõZõZõZõZõ
öZöZöZöZöZöZöZöZööZöZöZöZöZöZöZöZööZöZöZöZöZöZöZöZööZöZöZöZöZöZöZöZööZöZöZöZöZöZöZöZööZöZöZöZöZöZöZöZööZöZöZöZöZöZöZöZööZöZöZöZöZöZöZöZö

A(2)
χAB = χTAB(ω − iδ) + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB
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Chapter 10

Fluctuation Dissipation Theorem
and Linear Response Theory

10.1 Introduction

In this chapter we will discuss the deep link between fluctuations about equilibrium, and
the response of a system to external forces. If the susceptibility of a system to external
change is large, then the fluctuations about equilibrium are expected to be large. The
mathematical relationship that quantifies this this connection is called the “fluctuation-
dissipation” theorem. We shall discuss and derive this relationship in this chapter. It
turns out that the link between fluctuations and dissipation also extends to imaginary
time, enabling us to relate equilibrium correlation functions and response functions to the
imaginary time Greens function of the corresponding variables.

To describe the fluctuations and response at a finite temperature we will introduce three
related three types of Green function- the correlation function S(t),

S(t− t′) = 〈A(t) A(t′)〉 =

∫ ∞

−∞

dω

2π
e−iω(t−t′)S(ω),

the dynamical susceptibility χ(t)

χ(t− t′) = i〈[A(t), A(t′)]〉θ(t− t′),

which determines the retarded response

〈A(t)〉 =

∫ ∞

−∞
dt′χ(t− t′)f(t′), 〈A(ω)〉 = χ(ω)f(ω),

to a force f(t) term coupled to A inside the Hamiltonian HI = −f(t)A(t), and lastly, the
imaginary time response function χ(τ)

χ(τ − τ ′) = 〈TA(τ)A(τ ′)〉
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.
The fluctuation dissipation theorem relates the Fourier transforms of these quantities.

according to

S(ω)︸ ︷︷ ︸
Fluctuations

= 2h̄[

Quantum︷︸︸︷
1 +

Thermal︷ ︸︸ ︷
nB(ω)] χ′′(ω)︸ ︷︷ ︸

Dissipation

,

where χ′′(ω) = Im χ(ω) describes the dissipative part of the response function. In the limit,
ω << kBT , when n(ω) ∼ kBT/h̄ω, this result reverts to the classical fluctuation-dissipation
theorem,

S(ω) =
2kBT

ω
χ′′(ω).

Thus in principle, if we know the correlation functions in thermal equilibrium, we can
compute the response function of the system.

The dissipative response of the system also enters into the Kramer’s Kronig expansion
of the response function,

χ(z) =

∫
dω

π

1

ω − z
χ′′(ω)

and this expression can be used to analytically extend χ(ω) into the complex plane. In prac-
tice, the theorist takes advantage of a completely parallel fluctuation-dissipation theorem
which exists in imaginary time. The imaginary time correlation function χ(τ) is periodic
in time. χ(τ + β) = χ(τ), and has an discrete Matsubara Fourier expansion, given by

χ(τ) = 〈TA(τ)A(0)〉 =
1

β

∑

n

e−iνnτχM(iνn)

The key relation between this function and the physical response function is that

χM (iνn) = χ(z).|z=iνn .
This relation permits us to compute the physical response function by analytically con-
tinuing the Fourier components of the imaginary-time correlation functions onto the real
axis.

To understand these relations, we need first to understand the nature of the quantum
mechanical response functions. We shall then carry out a “spectral decomposition” of each
of the above functions, deriving the fluctuation dissipation theorem by showing that the
same underlying matrix elements enter into each expression. A heuristic understanding of
the relationship between fluctuations and dissipation, is obtained by examining a classical
example. The main difference between the classical and the quantum fluctuation-dissipation
theorem, is that in classical mechanics we are obliged to explicitly include the external
sources of noise, whereas in the quantum case, the noise is intrinsic, and we can analyse the
fluctuations without any specific reference to external sources of noise. Nevertheless, the
classical case is highly pedagagocical, and it is this limit that we shall consider first.

254



c©2004 P. Coleman Chapter 10.

10.2 Fluctuation dissipation theorem for a classical harmonic

oscillator

fluctuations
︷ ︸︸ ︷

〈x(t)x(0)〉 = 2kBT

∫
dω

2π

χ′′(ω)

ω
︸ ︷︷ ︸

dissipation

e−iωt

t

x(t)

Figure 10.1: Fluctuations in a classical harmonic oscillator are directly related to the dissi-
pative response function via the “fluctuation dissipation theorem”.

In a classical system, to examine correlation functions we need to include an explicit
source of external noise. To illustrate the procedure, consider a harmonic oscillator in
thermal equilibrium inside a viscous medium. Suppose that thermal fluctuations give rise
to a random force, acting on the oscillator, according to the quation of motion:

m(ẍ+ ω2
ox) + ηẋ = f(t)

If we Fourier transform this relationship, we obtain

x(ω) = χ(ω)f(ω)
χ(ω) = [m(ω2

0 − ω2) − iωη]−1 (10.1)

Here χ(ω) is the response function , or susceptibility to the external force. The imaginary
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part of the susceptibility governs the dissipation and is given by

χ′′(ω) =
ωη

m(ω2
0 − ω2) + ω2η2

= |χ(ω)|2ωη. (10.2)

Now let us consider the fluctuations in thermal equilibrium. Over long time periods, we
expect the two-point correlation function to be purely a function of the time difference:

〈x(t)x(t′)〉 = 〈x(t− t′)x(0)〉

The power spectrum of fluctuations is defined as

〈|x(ω)|2〉 =

∫
dt〈x(t)x(0)〉eiωt

and the inverse relation gives

〈x(t)x(t′)〉 =

∫
dω

2π
e−iω(t−t′)〈|x(ω)|2〉.

Now in thermal equilibrium, the equipartition theorem tells us that

mω2
0

2
〈x2〉 =

kBT

2
,

or

〈x2〉 =

∫
dω

2π
〈|x(ω)|2〉 =

∫
dω

2π
|χ(ω)|2〈|f(ω)|2〉 =

kBT

mω2
0

Since the integrand is very sharply peaked around |ω| = ω0, we replace 〈|f(ω)|2〉 →
〈|f(ω0)|2〉 in the above expression. Replacing |χ(ω)|2 → 1

ωηχ
′′(ω) we then obtain

kBT

mω2
0

=
〈|f(ω0)|2〉

2η

∫
dω

π

χ′′(ω)

ω
=

|f(ω0)|2
2ηmω2

0

.

so that the spectrum of force fluctuations is determined by the viscosity η

〈|f(ω0)|2〉 = 2ηkBT.

Now if we assume that the noise spectrum it depends only on the properties of the viscous
medium in which the oscillator is embedded, and that it does not depend on the properties
of the oscillator, then we expect this expression holds for any frequency ω0, and since it is
independent of the frequency, we conclude that the power spectrum of the force is a flat
function of frequency, enabling us to replace ω0 → ω in the above expression. This implies
that in thermal equilibrium, the force coupling the system to the environment is a source
of white noise of amplitude which depends on the viscosity of the medium

〈f(t)f(t′)〉 =

∫
dω

2π
e−iω(t−t′)

2ηkBT︷ ︸︸ ︷
〈|f(ω)|2〉 = 2ηkBTδ(t− t′)
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We can now compute the noise spectrum of fluctuations, which is given by

S(ω) = 〈|x(ω)|2〉 = |χ(ω)|2〈|f(ω)|2〉 = 〈|f(ω)|2〉χ
′′(ω)

ωη
=

2kBT

ω
χ′′(ω).

This expression relates the thermal fluctuations of a classical system to the dissipation, as
described by the imaginary part of the response function, χ′′(ω).

10.3 Quantum Mechanical Response Functions.

Suppose we couple a force f to variable A. For later generality, it suits our need to consider
a force in both in real and imaginary time, with Hamiltonian

H = Ho − f(t)A
H = Ho − f(τ)A. (10.3)

We shall now show that the response to these forces are given by

〈A(t)〉 = 〈A〉 +

∫ ∞

−∞
χ(t− t′)f(t′)dt′

〈A(τ)〉 = 〈A〉 +

∫ β

0
χ̃(τ − τ ′)f(τ ′)dτ ′ (10.4)

χ(t− t′) = i〈[A(t), A(t′)]〉θ(t− t′)

χ̃(τ − τ ′) = 〈TA(τ)A(τ ′)]〉 − 〈A〉2 (10.5)

where 〈A〉 is the value of A in thermal equilibrium. Let us begin in real time. Using the
interaction representation, we know that

AH(t) = U †(t)AI(t) U(t),

where

U(t) = T exp i

∫ t

−∞
dt′AI(t

′)f(t′).
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Remembering that the interaction representation corresponds to the Heisenberg represen-
tation for Ho, we can drop the subscript on AI(t) ≡ A(t), so that to linear order in f(t),

U(t) = 1 + i

∫ t

−∞
dt′A(t′)f(t′),

U †(t) = 1 − i

∫ t

−∞
dt′A(t′)f(t′)

so that

AH(t) = A(t) + i

∫ t

−∞
dt′[A(t), A(t′)] f(t′),

In thermal equilibrium if 〈A(t)〉 = 〈A〉 , so the response to the applied force is given by

〈AH(t)〉 = 〈A〉 +

∫ +∞

−∞
dt′ χ(t− t′) f(t′),

where

χ(t− t′) = i〈[A(t), A(t′)] 〉θ(t− t′)

is the “retarded response function”, also known as the “dynamical susceptibility”. The
above equation is particularly interesting, for it relates a quantum-mechanical response
function to a correlation-function.

Let us now consider imaginary time. In this case, the partition function in the presence
of the perturbation is

Z = Z0〈T exp

∫ β

0
dτf(τ)AI(τ)〉0

The expectation value of A(τ) is then given by

〈A(τ)〉 =
δ lnZ

δf(τ)
=

〈TA(τ) exp
∫ β
0 dτ

′f(τ ′)AI(τ ′)〉
〈T exp

∫ β
0 dτ

′f(τ ′)AI(τ ′)〉

= 〈A〉 +

∫ β

0
dτ ′

χ̃(τ−τ ′)︷ ︸︸ ︷[
〈TA(τ)A(τ ′)〉 − 〈A〉2

]
+O(f2) (10.6)

so that

χ̃(τ) = 〈TA(τ)A(0)〉 − 〈A〉2
= 〈T (A(τ) − 〈A〉)(A(0) − 〈A〉)〉 (10.7)

where the expectation values are to be taken in thermal equilibrium for H0.
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10.4 Fluctuations and Dissipation in a quantum world

Unlike classical mechanics, the quantum Boltzmann formulation of many body physics is
naturally tailored to a discussion of the statistics of fluctuations and dissipation. Quantum
systems are naturally noisy, and there is no need for us to add any additional noise source
to examine the deep link between flucutations and dissipation in a quantum many body
system. Indeed, the quantum fluctuation dissipation theorem can be derived in rather
mechanistic fashion by carrying out out a spectral decomposition of the various response
and correlation functions. The procedure is formally more direct that its classical analogue,
but the algebra tends to hide the fact that the underlying physics holds precisely the same
link between fluctuations- now both thermal and quantum in character- and dissipation.

To derive the quantum fluctuation theorem, we must first spectrally decompose the
correlation function S(t− t′) and the response function χ(t− t′).

10.4.1 Spectral decomposition I: the correlation function S(t − t′)

This is the easiest decomposition of the three to carry out. We begin by expanding the
response function in terms of a complete set of energy eigenstates which satisfy

H |λ〉 = Eλ |λ〉 ,∑

λ

|λ〉 〈λ| = 1,

〈λ |A(t)| ζ〉 =
〈
λ
∣∣∣eiHtAe−iHt

∣∣∣ ζ
〉

= e−i(Eζ−Eλ)(t−t′) 〈λ |A| ζ〉 .

Using these key results, we make the expansion as follows,

S(t− t′) = 〈A(t)A(t′)〉
=

∑

λ,ζ

e−β(Eλ−F ) 〈λ |A(t)| ζ〉 〈ζ
∣∣A(t′)

∣∣λ
〉

=
∑

λ,ζ

e−β(Eλ−F ) |〈ζ |A| λ〉|2 e−i(Eζ−Eλ)(t−t′) (10.8)

If we now Fourier transform this expression, the frequency dependent correlation function
can be written

S(ω) =

∫ ∞

−∞
dteiωtS(t)

=
∑

λ,ζ

e−β(Eλ−F ) |〈ζ |A| λ〉|2 2πδ(Eζ −Eλ − ω). (10.9)

This is the frequency spectrum of the correlations.
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10.4.2 Spectral decomposition II: the response function χ(t − t′)

We now use the same spectral decomposition approach for the response function. In this
case, we need to take care of two operator orderings inside the commutator, which yield

χ(t− t′) = i
∑

λ,ζ

e−β(Eλ−F ) {〈λ |A(t)| ζ〉 〈ζ
∣∣A(t′)

∣∣λ
〉− 〈λ

∣∣A(t′)
∣∣ ζ
〉 〈ζ |A(t)| λ〉} θ(t− t′)

= i
∑

λ,ζ

eβF (e−βEλ − e−βEζ ) |〈ζ |A|λ〉|2 e−i(Eζ−Eλ)(t−t′)θ(t− t′).

By introducing the spectral function

χ′′(ω) = π(1 − e−βω)
∑

λ,ζ

|〈ζ |A| λ〉|2 δ[ω − (Eζ −Eλ)]e
−β(Eλ−F ), (10.10)

we see that the retarded response function can be written,

χ(t) = i

∫
dω e−iωtθ(t)χ′′(ω). (10.11)

Fourier transforming this result, using

i

∫ ∞

0
dtei(ω−ω

′+iδ) t =
1

ω′ − ω − iδ
,

we obtain

χ(ω) =

∫
dω′

π

1

ω′ − ω − iδ
χ′′(ω′). (10.12)

This “Kramers-Krönig” relation can be used to extend the response function into the com-
plex plane. Notice that because the response function is retarded, χ(ω) is analytic in the
upper-half complex plane and the poles lie just below the real axis, at z = ω ′ − iδ. Finally,
taking the imaginary part of this expression, using the Dirac relation Im[1/(ω ′ −ω− iδ) =
πδ(ω′ − ω), we are able to identify

χ′′(ω) = Imχ(ω + iδ)

as the dissipative part of the response function.

10.4.3 Quantum Fluctuation dissipation Theorem

If we compare the relations (10.10 ) and (10.9), we see that

S(ω) =
2

1 − e−βω
χ′′(ω).

If we restore h̄, this becomes

S(ω) =
2h̄

1 − e−βh̄ω
χ′′(ω) = 2h̄ [1 + nB(h̄ω)]χ′′(ω). (10.13)

Thus, by carrying out a spectral analysis, we have been able to directly link the correlation
function S(ω) with the dissipative part of the response function χ(ω).
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10.4.4 Spectral decomposition III: fluctuations in imaginary time

For the final of our three decompositions, we move to imaginary time, and write, τ−τ ′ > 0,

χ(τ − τ ′) =
∑

λ,ζ

e−β(Eλ−F ) {〈λ |A(τ)| ζ〉 〈ζ
∣∣A(τ ′)

∣∣λ
〉}

=
∑

λ,ζ

e−β(Eλ−F )e−(Eλ−Eζ)(τ−τ ′) |〈ζ |A| λ〉|2 .

Now ∫ β

0
dτ eiνnτe−(Eλ−Eζ)τ =

1

(Eζ −Eλ − iνn)
(1 − e−(Eλ−Eζ)β),

so

χ(iνn) =

∫ β

0
dτ eiνnτχ(τ)

=
∑

λ,ζ

e−β(Eλ−F )(1 − e−β(Eζ−Eλ)) |〈ζ |A| λ〉|2 1

(Eζ −Eλ − iνn)
.

Using (10.10 ), we can write this as

χ(iνn) =

∫
dω

π

1

ω − iνn
χ′′(ω) (10.14)

so that χ(iνn) is the unique analytic extension of χ(ω) into the complex plane. Our proce-
dure to calculate response functions will be to write χ(iνn) in the form 10.14, and to use
this to read off χ′′(ω).

10.5 Calculation of response functions

Having made the link between the imaginary time, and real time response functions, we
are ready to discuss how we can calculate response functions from Feynman diagrams.
Our procedure is to compute the imaginary time response function, and then analytically
continue to real frequencies. Suppose we are interested in the response function for A where,

A(x) = ψ†α(x)Aαβψβ(x).

(See table 10.0). The corresponding operator generates the vertex

β

α

x = Aαβ

(10.15)
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Table. 10.0 Selected Operators and corresponding response function.

Quantity Operator Â A(k) Response Function

Density ρ̂(x) = ψ†(x)ψ(x) ραβ = δαβ Charge susceptibility

Spin density ~S(x) = ψα
†(x)

(
~σ
2

)
αβ
ψβ(x) ~Mαβ = µB~σαβ Spin susceptibility

Current density e
mψ
†(x)

(
−ih̄ ↔∇ −e ~A

)
ψ(x) ~j = e~vk = e~∇εk Conductivity

Thermal current h̄2

2mψ
†(x)

↔
∇
↔
∂ t ψ(x) ~jT = iωn~vk = iωn~∇εk Thermal conductivity

(Where
↔
∇≡ 1

2

(→
∇ − ←∇

)
,
↔
∂ t≡ 1

2

(→
∂ t −

←
∂ t
)

)

where the spin variables αβ are to be contracted with the internal spin variables of the
Feynman diagram. This innevitably means that the variable Aαβ becomes part of an in-
ternal trace over spin variables. If we expand the corresponding response function χ(x) =
〈A(x)A(0)〉 using Feynman diagrams, then we obtain

χ(τ) = 〈A(x)A(0)〉 =
∑

closed linked two-vertex diagrams

= ÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷÷,÷,÷,÷,÷,÷,÷,÷,÷

ø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,øø,ø,ø,ø,ø,ø,ø,ø,ø
x 0

For example, in a non-interacting electron system, the imaginary time spin response
function involves A(x) = µBψα

†(x)σαβψβ(x), so the corresponding response function is

χab(x− x′) = µ2
B × αβ

a
σ βα

b
σ

β

α

x x’

= −

Trace over
spin variables︷ ︸︸ ︷

Tr
[
σaG(x− x′)σbG(x′ − x)

]

= −δab2µ2
BG(x− x′)G(x′ − x) (10.16)
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Now to analytically continue to real frequencies, we need to transform to Fourier space,
writing

χ(q) =

∫
d4xe−iqxχ(x)

where the integral over time τ runs from 0 to β. This procedure converts the Feynman
diagram from a real-space, to a momentum space Feynman diagram. At the measurement
vertex at position x, the incoming and outgoing momenta of the fermion line give the
following integral ∫

d4xe−iqxei(kin−kout)x = βV δ4(kout − kin + q).

As in the case of the Free energy, the βV term cancels with the 1/(βV )
∑
k terms associated

with each propogator, leaving behind one factor of 1/(βV ) = T/V per internal momentum
loop. Schematically, the effect of the Fourier transform on the measurement vertex at
position x, is then

∫
d4xe−iqx


 x


 =

q
k

k+q

(10.17)

For example, the momentum-dependent spin response function of the free electron gas
is given by

χab(q) = µ2
B × a

σ
b

σ

k

k+q

= − 1

βV

∑

k

Tr
[
σaG(k + q)σbG(k)

]
= δabχ(q) (10.18)

where

χ(q, iνr) = −2µ2
B

∫

k
T
∑

iωn

G(k + q, iωn + iνr)G(k, iωn) (10.19)

When we carry out the Matsubara summation in the above expression by a contour integral,
(see Chapter 9), we obtain

−T
∑

iωn

G(k + q, iωn + iνr)G(k, iωn) = −
∫

C′

dz

2πi
f(z)G(k + q, z + iνr)G(k, z)

=

(
fk − fk−q

(εk+q − εk) − iνr

)
, (10.20)
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where C ′ encloses the poles of the Green functions. Inserting this into (10.19), we obtain
χ(q, iνr) = χ(q, z)|z=iνr , where

χ(q, z) = 2µ2
B

∫

k

(
fk − fk−q

(εk+q − εk) − iνr

)
(10.21)

From this we can also read off the power-spectrum of spin fluctuations

χ′′(q, ω) = Imχ(q, ω + iδ) = 2µ2
B

∫

q
πδ(εq+k − εk − ω) [fk − fk+q] (10.22)

When we come to consider conductivities, which involve the response function of current
operators, we need to know how to deal with an operator that involves spatial, or temporal
derivatives. To do this, it is convenient to examine the Fourier transform of the operator
A(x), ∫

d4xe−iqxψ†(x)Aψ(x) =
∑

k

ψ†(k − q/2)Aψ(k + q/2)

In current operators, A is a function of gradient terms such as
↔
∇ and

↔
∂ t. In this case,

the use of the symmetrized gradient terms ensures that when we Fourier transform, the
derivative terms are replaced by the midpoint momentum and frequency of the incoming
or outgoing electron.

∫
d4xe−iqxψ†(x)A[−i ↔∇, i

↔
∂ t]ψ(x) =

∑

k

ψ†(k − q/2)A(k, iωn)ψ(k + q/2)

for example, the current operator ~J(x) = eh̄
m

(
−i ↔∇

)
becomes

J(q) =
∑

k

e~vkψ
†(k − q/2)ψ(k + q/2),

where ~vk = h̄~k
m is the electron velocity. For the thermal current operator ~Jt(~x) = h̄2

m

(↔
∇
↔
∂ t
)
,

~Jt(q) =
∑

k

iωn
h̄2~k

m
ψ†(k − q/2)ψ(k + q/2).

Example: Calculate the imaginary part of the dynamic susceptibility for
non-interacting electrons and show that at low energies ω << εF ,

χ′′(q, ω)

ω
=

{
µ2

B
N(0)
vF q (q ≤ 2kF )

0 (q > 2kF )

where vF = h̄kF /m is the Fermi velocity.
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Solution: Starting with (10.22) In the low energy limit, we can write

lim
ω→0

χ′′(q, ω)

ω
= 2µ2

B

∫

q

δ(εq+k − εk)
fk+q − fk
εk − εk+q

= 2µ2
B

∫

q

δ(εq+k − εk)

(
− df

dεk

)
(10.23)

Replacing ∫

q

→
∫
dεN(ε)

∫ 1

−1

d cos θ

2

we obtain

lim
ω→0

χ′′(q, ω)

ω
= 2µ2

BN(0)

∫ 1

−1

d cos θ

2
δ(
q2

2m
+
qkF
m

cos θ)

= 2µ2
BN(0)

m

2qkF
= µ2

B

(
N(0)

vF q

)
(q < 2kF ) (10.24)

10.6 Spectroscopy: linking measurement and correlation

The spectroscopies of condensed matter provide the essential window on the underlying
excitation spectrum, the collective modes and ultimately the ground-state correlations of
the medium. Research in condensed matter depends critically on the creative new inter-
pretations given to measurements. It is from these interpretations, that new models can be
built, and new insights discovered, leading ultimately to quantitative theories of matter.

Understanding the link between experiment and the microscopic world is essential for
theorist and experimentalist. At the start of a career, the student is often flung into a
seminar room, where it is often difficult to absorb the content of the talk, because the true
meaning of the spectroscopy or measurements is obscure to all but the expert - so it is
important to get a rough idea of how and what each measurement technique probes - to
know some of the pitfalls of interpretation - and to have an idea about how one begin to
calculate the corresponding quantities from simple theoretical models.
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Table. 10.1 Selected Spectroscopies .

C
H

A
R

G
E

S
P

IN
E

L
E

C
T

R
O

N

NAME SPECTRUM Â Questions and Issues

Surface probe. T ∼ 0 measurement.

STM
dI

dV

dI

dV
(x) ∝ A(x, ω)|ω=eV ψ(x) Is the surface different?

ARPES I(k, ω) ∝ f(−ω)A(k,−ω) ckσ(t) p⊥ unresolved.
Surface probe. No magnetic field

Inverse PES I(ω) ∝
∑

k

[1 − f(ω)]A(k, ω) c†kσ(t) p unresolved.

Surface probe.

χDC χDC =

∫
dω

πω
χ′′(q = 0, ω) M χ ∼ 1

T local moments.

Uniform Susceptibility χ ∼ cons paramagnet

Inelastic Neutron
Scattering What is the background?
d2σ

dΩdω
S(q, ω) =

1

1 − e−βω
χ′′(q, ω) S(q, t) Quality of crystal?

NMR
Knight Shift Kcontact ∝ χlocal S(x, t) How is the orbital part subtracted?

1

T1
T

∫

q
F (q)

χ′′(q, ω)

ω

∣∣∣∣
ω=ωN

How does powdering affect sample?

What is the resistance ratio?

Resistivity ρ ρ =
1

σ(0)
~j(q = 0) (R300/R0)

Reflectivity:

Optical σ(ω) =
1

−iω
[〈j(ω′)j(−ω′)〉]ω0 ~j(ω) How was the Kramer’s Krönig done?

Conductivity Spectral weight transfer?
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Fundamentally, each measurement is related to a given correlation function. This is seen
most explicity in scattering experiments. Here, one is sending in one a beam of particles,
and measuring the flux of outgoing particles at a given energy transfer E and momentum
transfer q. The ratio of outgoing to incoming particle flux determines the differential
scattering cross-section

d2σ

dΩdω
=

Outward particle flux

Inward particle flux

When the particles scatter, they couple to some microscopic variable A(x) within the matter,
such as the spin density in neutron scattering, or the particle field itself A(x) = ψ(x) in
photo-emission. The differential scattering cross-section this gives rise to is, in essence a
measure of the autocorrelation function of A(x) at the wavevector q and frequency ω = E/h̄
inside the material,

d2σ

dΩdω
∼
∫
d4x〈A(x, t)A(0)〉e−i(q·x−ωt) = S(q, ω)

Remarkably scattering probes matter at two points in space! How can this be? To un-
derstand it, recall that the differential scattering rate is actually an (imaginary) part of
the forward scattering amplitude of the incoming particle. The amplitude for the incoming
particle to scatter in a forward direction, contains the Feynman process where it omits a
fluctuation of the quantity A at position x′, travelling for a brief period of time as a scat-
tered particle, before reabsorbing the fluctuation at x. The amplitude for the intermediate
process is nothing more than

k−q

k

k

A(x’)

A(x)

amplitude =

amplitude for fluctuation︷ ︸︸ ︷
〈A(x)A(x′)〉 × ei[q·(x−x′)−ω(t−t′)]

︸ ︷︷ ︸
amplitude for particle to scatter at x’,

and reabsorb fluctuation at x .

(10.25)

(In practice, since the whole process is translationally invariant, we can replace x by x− x ′

and set x′ = 0. )

The relationship between the correlation function and scattering rate is really a natural
consequence of Fermi’s Golden rule, according to which

d2σ

dΩdω
∼ Γi→f =

2π

h̄

∑

f

pi|〈f |V |i〉|2δ(Ef −Ei)
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where pi is the probability of being in the initial state |i〉. Typically, an incoming particle
(photon, electron, neutron) with momentum k scatters into an outgoing particle state (pho-
ton, electron, neutron) with momentum k′, and the system undergoes a transition from a
state |λ〉 to a final state |λ′〉:

|i〉 = |λ〉|k〉, |f〉 = |λ′〉|k′〉
If the scattering Hamiltonian with V ∼ g

∫
x ρ(x)A(x), where ρ(x) is the density of the

particle beam, then the scattering matrix element is

〈f |V̂ |i〉 = g

∫

x′
〈k′|x〉〈λ′|A(x′)|λ〉〈x|k〉 =

g

Vo

∫

x′
eiq·x

′〈λ′|A(x)|λ〉 (10.26)

so the scattering rate is

Γi→f =
1

V 2
0

∫

x, x′
pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉e−iq·(x−x′)2πδ(Eλ′ −Eλ − ω) (10.27)

where pλ = e−β(Eλ−F ) is the Boltzmann probability. Now if we repeat the spectral decom-
position of the correlation function made in (10.9)

∫
dteiωt〈A(x, t)A(x′, 0)〉 = 2π

∑

λ,λ′

pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉δ(Eλ′ −Eλ − ω),

we see that

Γi→f ∼ g2

V 2
0

∫

x,x′
dteiωt)〈A(x, t)A(x′, 0)〉

=
g2

V0

∫
d3xdteiω(t)〈A(x, t)A(0)〉

where the last simplification results from translational invariance. Finally, if we divide the
transition rate by the incoming flux of particles ∼ 1/V0, we obtain the differential scattering
cross-section.

For example, in an inelastic neutron scattering (INS) experiment, the neutrons couple
to the electron spin density A = S(x) of the material, so that

d2σ

dΩdω
(q, ω) ∼

∫
d4x〈S−(x, t)S+(0)〉e−i(q·x−ωt) ∝ 1

1 − e−βω
χ′′(q, ω)

where χ(q, ω) is the dynamic spin susceptibility which determines the magnetization M(q, ω) =
χ(q, ω)B(q, ω) by a modulated magnetic field of wavevector q, frequency ω. By contrast,
in an angle resolved photo-emission (ARPES) experiment, incoming X-rays eject electrons
from the material, leaving behind “holes”, so that A = ψ is the electron annihilation oper-
ator and the intensity of emitted electrons measures the correlation function

I(k, ω) ∼
∫
d4x〈ψ†(x)ψ(0)〉e−i(k·x−ωt) =

f(−ω)︷ ︸︸ ︷
1

1 + eβω
A(k,−ω)

where the Fermi function replaces the Bose function in the fluctuation dissipation theorem.
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10.7 Electron Spectroscopy

10.7.1 Formal properties of the electron Green function

The spectral decompositions carried out for a bosonic variable A can all be generalized to
the fermionic variable ckσ . The basic electron “correlation” functions are

〈ckσ(t)c†kσ(0)〉 =

∫
dω

2π
G>(k, ω)e−iωt

〈c†kσ(0)ckσ(t)〉 =

∫
dω

2π
G<(k, ω)e−iωt (10.28)

called the “greater” and “lesser” Green functions. A spectral decomposition of these rela-
tions reveals that

G>(k, ω) =
∑

λ,ζ

pλ|〈ζ|c†kσ|λ〉|22πδ(Eζ −Eλ − ω)

G<(k, ω) =
∑

λ,ζ

pλ|〈ζ|ckσ |λ〉|22πδ(Eζ −Eλ + ω)

describe the positive energy distribution functions for particles (G>) and the negative
energ distribution function for holes (G<) respectively. By relabelling ζ ↔ λ in (10.29) it
is straightforward to show that

G<(k, ω) = e−βωG>(k, ω)

We also need to introduce the retarded electron Green function, given by

GR(k, t) = −i〈{ckσ(t), c†kσ(0)}〉θ(t) =

∫
dω

2π
GR(k, ω)e−iωt

(note the appearance of an anticommutator for fermions and the minus sign pre-factor)
which is the real-time analog of the imaginary time Green function

G(k, τ) = −〈Tckσ(τ)c†kσ(0)〉 = T
∑

n

G(k, iωn)e
−iωnτ

A spectral decomposition of these two functions reveals that reveals that they share the same
power-spectrum and Kramer’s Krönig relation, and can both be related to the generalized
Green function

G(k, z) =

∫
dω′

π

1

z − ω
A(k, ω) (10.29)

where

GR(k, ω) = G(k, ω + iδ) =

∫
dω′

π

1

ω − ω′ + iδ
A(k, ω)
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G(k, iωn) = G(k, z)|z=iωn =

∫
dω

π

1

iωn − ω
A(k, ω), (10.30)

and the spectral function

A(k, ω) = (1 + e−βω)
∑

λ,ζ

|〈ζ|c†kσ|λ〉|2πδ(Eζ −Eλ − ω)

=
1

2
[G>(k, ω) +G<(k, ω)] (10.31)

is the sum of the particle and hole energy distribution functions. From the second of (10.31)
and (10.28), it follows that A(k, ω) is the Fourier transform of the anticommutator

〈{ckσ(t), c†kσ(0)}〉 =

∫
dω

π
A(k, ω)e−iωt (10.32)

At equal times, the commutator is equal to unity, {ckσ , c†kσ} = 1, from which we deduce
the normalization ∫

dω

π
A(k, ω) = 1.

For non-interacting fermions, the spectral function is a pure delta-function, but in Fermi
liquids the delta-function is renormalized by a factor Z and the remainder of the spectral
weight is transfered to an incoherent background.

A(k, ω)

π
= Zkδ(ω −Ek) + background

The relations

G>(k, ω) =
2

1 + e−βω
A(k, ω) = 2(1 − f(ω))A(k, ω) (particles)

G<(k, ω) =
2

1 + eβω
A(k, ω) = 2f(ω)A(k, ω) (holes) (10.33)

are the fermion analog of the fluctuation dissipation theorem.

10.7.2 Tunneling spectroscopy

Tunneling spectroscopy is one of the most direct ways of probing the electron spectral
function. The basic idea behind tunneling spectroscopy, is that a tunneling probe is close
enough to the surface that electrons can tunnel through the forbidden region between the
probe and surface material. Traditionally, tunneling was carried out using point contact
spectroscopy, whereby a sharp probe is brought into contact with the surface, and tunneling
takes place through the oxide layer separating probe and surface. With the invention of
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Figure 10.2: Showing the redistribution of the quasiparticle weight into an incoherent back-
ground in a Fermi liquid.

the Scanning Tunneling Microscope, by Gerd Binnig and Heinrich Rohrer in the 80’s has
revolutionized the field. In recent times, Seamus Davis has developed this tool into a
method that permits the spectral function of electrons to be mapped out with Angstrom
level precision across the surface of a conductor.

In the WKB approximation, the amplitude for an electron to tunnel between probe and
surface is

t(x1, x2) ∼ exp

[
−1

h̄

∫ x2

x1

√
2m[V (x) −E]ds

]
(10.34)

where the integral is evaluated along the saddle-point path between probe and surface. The
exponential dependence of this quantity on distance means that tunneling is dominated
by the extremal path from a single atom at the end of a scanning probe, giving rise to
Angström - level spatial resolution.

The Hamiltonian governing the interaction between the probe and the sample can be
written

V̂ =
∑

k,k′

tk,k′
[
c†kσpk′σ + H.c.

]
.

where tk,k′ is the tunnelling matrix element between the probe and substrate, c†kσ and
p†kσ create electrons in the sample and the probe respectively. The tunneling current of
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electrons from probe to sample is given by

IP→S = 2πe
∑

k,k′,ζ,ζ′,λ,λ′,σ

pλpλ′ |tk,k′ |2|〈ζ, ζ ′|c†kσpk′σ|λ, λ′〉|2δ(Eζ +Eζ′ −Eλ −Eλ′)

where |λ, λ′〉 ≡ |λ〉|λ′〉 and |ζ, ζ ′〉 ≡ |ζ〉|ζ ′〉 refer to the joint many body states of the sample
(unprimed) and probe (primed), and we have dropped h̄ from the equation. This term
creates electrons in the sample, leaving behind holes in the probe. Now if we rewrite this
expression in terms of the spectral functions of the probe and sample, after a little work,
we obtain

IP→S = 4πe
∑

k,k′

|tk,k′ |2
∫
dω
AS(k, ω)

π

AP (k, ω)

π
(1 − f(ω))fP (ω).

where we have taken care to use the notation fP (ω) = f(ω+eV ) for the energy distribution
of the probe, and doubled the expression to account for spin. You can check the validity of
these expressions by expanding the spectral functions using (10.31), but the expression is
simply recognized as a product of matrix element, density of states and Fermi-Dirac electron
and hole occupancy factors.

Similarly, the tunneling current of electrons from sample to probe is

Is→p = 2πe
∑

k,k′,ζ,ζ′,λ,λ′,σ

pλpλ′ |tk,k′ |2|〈ζ, ζ ′|p†k′σckσ|λ, λ′〉|2δ(Eζ +Eζ′ −Eλ −Eλ′)

= 4πe
∑

k,k′

|tk,k′ |2
∫
dω
AS(k, ω)

π

AP (k, ω)

π
[1 − fP (ω)]f(ω). (10.35)

Subtracting these two expressions, we obtain

I = 4πe
∑

k,k′

|tk,k′ |2
∫
dω
AS(k, ω)

π

AP (k, ω)

π
[f(ω − eV ) − f(ω)]. (10.36)

We shall ignore the momentum dependence of the tunneling matrix elements, writing |t|2 =
|tk,k′ |2, we obtain

I(V ) = 2e

Γ︷ ︸︸ ︷
2π|t|2N(0)

∫
dω

π

AS(ω)

π
[f(ω − eV ) − f(ω)]. (10.37)

where

AS(ω) =
∑

k

AS(k, ω)

N(ω) =
∑

k

AP (k, ω) ∼ N(0) (10.38)

are now the local spectral functions for the sample and probe, respectively. Typically,
the probe is a metal with a featureless density of states, and this justifies the replacement

272



c©2004 P. Coleman Chapter 10.

N(ω) ∼ N(0) in the above expression. The quantity 2πt2N(0) = Γ is the characteristic res-
onance broadening width created by the tunnelling out of the probe. If we now differentiate
the current with respect to the applied voltage, we see that the differential conductivity

G(V ) =
dI

dV
=

(
2e2

h̄

)
Γ

∫
dω

π
A(S)(ω)

∼δ(ω−eV )︷ ︸︸ ︷(
−df(ω − eV )

dω

)

At low temperatures, the derivative of the Fermi function gives a delta function in energy,
so that

G(V ) =

(
4e2Γ

h

)
AS(ω)|ω=eV

Thus by mapping out the differential conductance as a function of position, it becomes
possible to obtain a complete spatial map of the spectral function on the surface of the
sample.

10.7.3 ARPES, AIPES and inverse PES

ARPES (angle resolved photoemission spectroscopy), AIPES (angle integrated photoemi-
sion spectroscopy) and inverse PES (inverse photo-electron spectrosopy) are the alternative
ways of probing the hole and electron spectra in matter. The first two involve “photon
in, electron out”, the second “electron in, photon out”. The coupling of radiation to light
involves the dipole coupling term

HI = −
∫
d3x~j(x) · ~A(x)

where ~j(x) = −i eh̄2mψσ
†(x)~∇ψσ(x) is the paramagnetic current operator. Unlike STM or

neutron scattering, this is a strongly coupled interaction, and the assumption that we can
use the Golden Rule to relate the absorption to a correlation function is on much shakier
ground. ARPES spectroscopy involves the absorption of a photon, and the emission of
a photo-electron from the material. The interpretation of ARPES spectra is based on the
“sudden approximation”, whereby it is assumed that the dipole matrix element between the
intial and final states has a slow dependence on the incoming photon energy and momentum,
so that the matrix element is i.e

〈ζ,k + q| −~j · ~A|λ,q〉 ∼ Λ(q, êλ)〉ζ|ckσ|λ〉

On the assumption that Λ is weakly energy and momentum dependent, we are able to
directly relate the absorption intensity to the spectral density beneath the Fermi energy,
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IARPES(k, ω) ∝ f(−ω)A(k,−ω) ùOùOùOùOùOùOùùOùOùOùOùOùOùùOùOùOùOùOùOùùOùOùOùOùOùOùùOùOùOùOùOùOùùOùOùOùOùOùOù
úOúOúOúOúOúOúúOúOúOúOúOúOúúOúOúOúOúOúOúúOúOúOúOúOúOúúOúOúOúOúOúOúúOúOúOúOúOúOú

inγ e out

(10.39)

The appearance of the Fermi function masks states above the Fermi energy, and some-
times causes problems for the interpretation of ARPES spectra near the Fermi energy -
particularly for the estimation of anisotropic, superconducting gaps. There is a large caveat
to go with this equation: when photo-electrons escape from a surface, the component of
their momentum perpendicular to the surface is modified by interactions with the surface.
Consequently, ARPES spectroscopy can not resolve the momenta of the spectral function
perpendicular to the surface. The other consideration about ARPES, is that it is essentially
a surface probe - X-ray radiation has only the smallest ability to penetrate samples, so that
the information obtained by these methods provides strictly a surface probe of the system.

In recent years, tremendous strides in the resolution of ARPES have taken place, in large
part because of the interest in probing the electron spectrum of the quasi- two-dimensional
cuprate superconductors. These methods have, for example, played an important role in
exhibiting the anisotropic d-wave gap of these materials.

Inverse photo-electron spectroscopy probes the spectral function above the Fermi energy.
At present, angle resolved IPES is not a as well developed, and most IPES work involves
unresolved momenta, i.e

IIPES(ω) ∝
∑

k

[1 − f(ω)]A(k, ω) ûèûèûèûèûèûûèûèûèûèûèûûèûèûèûèûèûûèûèûèûèûèûûèûèûèûèûèûûèûèûèûèûèû
üèüèüèüèüèüüèüèüèüèüèüüèüèüèüèüèüüèüèüèüèüèüüèüèüèüèüèüüèüèüèüèüèü

outγe in

(10.40)

In certain materials, both PES and IPES spectra are available. A classic example is in the
spectroscopy of mixed valent cerium compounds. In these materials, the Ce atoms have a
singly occupied f-level, in the 4f 1 configuration. PES spectroscopy is able to resolve the
energy for the hole excitation

4f1 → 4f0 + e−, ∆EI = −Ef

where Ef is the energy of a single occupied 4f level. By contrast, inverse PES reveals the
energy to add an electron to the 4f 1 state,

e− + 4f1 → 4f2, ∆EII = Ef + U

where U is the size of the Coulomb interaction between two electrons in an f-state. By
comparing these two absorption energies, it is possible to determine the size of the Coulomb
interaction energy
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10.8 Spin Spectroscopy

10.8.1 D.C. magnetic susceptibility

If one measures the static D. C. magnetization of a medium, one is measuring the magnetic
response at zero wavevector q = 0 and zero frequency ω = 0. By the Kramer’s Krönig
relation encountered in (10.12), we know that

χDC =

∫
dω

π

χ′′(q = 0, ω)

ω

So the static magnetic susceptibility is an economy-class measurement of the magnetic fluc-
tuation power spectrum at zero wavevector. Indeed, this link between the two measurements
sometimes provides an important consistency check of neutron scattering experiments.

In static susceptibility measurements, there are two important limiting classes of behav-
ior, Pauli paramagnetism, in which the susceptibility is derived from the polarization of a
Fermi surface, and is weakly temperature dependent,

χ ∼ µ2
B

εF
∼ constant. (Pauli paramagnetism)

and Curie paramagnetism, produced by unpaired electrons localized inside atoms, com-
monly known as “local moments”. where the magnetic susceptibilty is inversely proportional
to the temperature, or more generally

χ(T ) ∼ ni

M2
eff︷ ︸︸ ︷(

g2µ2
Bj(j + 1)

3

)
× 1

T + T ∗
(local moment paramagnetism)

where ni is the concentration of local moments and M 2
eff is the effective moment produced

by a moment of total angular momentum j, with gyromagnetic ratio, g. T ∗ is a measure of
the interaction between local moments. For Ferromagnets, T ∗ = −Tc < 0, and ferromag-
netic magnetic order sets in at T = Tc, where the uniform magnetic susceptibility diverges.
For antiferromagnetis, T ∗ > 0 gives a measure of the strength of interaction between the
local moments.

10.8.2 Neutron scattering

Neutrons interact weakly with matter, so that unlike electrons or photons, they provide an
ideal probe of the bulk properties of matter. Neutrons interact with atomic nucleii via an
interaction of the form

ĤI = α

∫
d3xψ†N (x)ψN (x)ρ(x),

where ρ(x) is the density of nucleii and ψN (x) is the field of the neutrons. This interaction
produces unpolarized scattering of the neutrons, with an inelastic scattering cross-section
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of the form (see example below),

d2σ̃

dΩdE
=
kf
ki

(
αmN

2πh̄2

)2 S(q, E)

2π

where S(q, E) is the autocorrelation function of nuclear density fluctuations in the medium.
Where do these come from? They are of course produced by phonons in the crystal. The
neutrons transfer energy to the nucleii by exciting phonons, and we expect that

S(q, E) ∼ (1 + nB(E))δ(E − h̄ωq)

where ωqλ is the phonon dispersion spectrum inside the medium.
The second important interaction between neutrons and matter, is produced by the

interaction between the nuclear moment and the magnetic fields inside the material. The
magnetic moment of the neutron is given by

~M = γµN
~σ

2

where γ = −1.91 is the gyromagnetic ratio of the neutron and µN = eh̄
2mN

is the neutron
Bohr magneton. The interaction with the fields inside the material is then given by

ĤI =
γµN

2

∫
d3xψ†N (x)~σψN (x) · ~B(x),

The magnetic field inside matter is produced by two sources- the dipole field generated by
the electron spins, and the orbital field produced by the motion of electrons. We will only
discuss the spin component here. The dipole magnetic field produced by spins is given by

B(x) =

∫
d3x′V (x − x′) · ~M(x′)

where ~M(x) = µBψ
†(x)~σψ(x) is the electron spin density and

V (x) = −~∇× ~∇×
(

µ0

4π|x|

)

We can readily Fourier transform this expression, by making the replacements

~∇ → i~q,
1

(4π|x|) → 1

q2
(10.41)

so that in Fourier space,

[V (q)]ab = µ0

[
~q × ~q ×

(
1

q2

)]

ab

= µ0 [q̂ × q̂×]ab

= µ0

Pab(q̂)︷ ︸︸ ︷
[δab − q̂aq̂b] . (10.42)
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The only effect of the complicated dipole interaction, is to remove the component of the
spin parallel to the q-vector. The interaction between the neutron and electron spin density
is simply written

HI = g

∫

q
σN (−q)P(q̂) · ~Se(q), g = µ0γµNµB

Apart from the projector term, this is essentially, a “point interaction” between the neutron
and electron spin density. Using this result, we can easily generalize our earlier expression for
the nuclear differential scattering to the case of unpolarized neutron scattering by replacing
α→ g, and identifying

S⊥(q, E) = Pab(q̂)Sab(q, E)

as the projection of the spin-spin correlation function perpendicular to the q-vector. For
unpolarized neutrons, the differential scattering cross-section is then

d2σ̃

dΩdE
=
kf
ki
r2oS⊥(q, E)

where

r0 =

(
gmN

2πh̄2

)
=
γ

2

1
4πε0c

2

︷ ︸︸ ︷(
µ0

4π

)
e2

m

=

(
γ

2

)
e2cgs
mc2

(10.43)

is, apart from the prefactor, the classical radius of the electron.

Example: Calculate, in the imaginary time formalism, the self-energy of
a neutron interacting with matter and use this to compute the differential
scattering cross-section. Assume the interaction between the neutron and
matter is given by

ĤI = α

∫
d3xψ†

N (x)ψN (x)ρ(x)

where ψN (x) is the neutron field and ρ(x) is the density of nuclear matter.

Solution:

We begin by noting that the the real-space self-energy of the neutron is
given by

Σ(x− x′) = α2〈δρ(x)δρ(x′)〉G(x − x′)

where 〈δρ(x)δρ(x′)〉 = χ(x− x′) is the real-time density response function
of the nuclear matter. (Note that the minus sign in −α2 associated with the
vertices is absent because the propagator used here 〈δρ(x)δρ(0)〉 contains
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no minus sign pre-factor. ) If we Fourier transform this expression, we
obtain

Σ(k) =
α2

βV

∑

q

G(k − q)χ(q)

= α2

∫

q

T
∑

iνn

G(k − q)χ(q) (10.44)

Carrying out the Matsubara summation, we obtain

Σ(k, z) = α2

∫

q

dE′

π

1 + n(E′) − fk−q

z − (Ek−q +E′)
χ′′(q, E′)

where Ek is the kinetic energy of the neutron and the Fermi function fk of
the neutron can be ultimately set to zero (there is no Fermi sea of neutrons),
fk → 0, so that

Σ(k, z) = α2

∫

q

dE′

π

1

z − (Ek−q +E′)

S(q,E)︷ ︸︸ ︷
(1 + n(E′))χ′′(q, E′)

From the imaginary part of the self-energy, we deduce that the lifetime τ
of the neutron is given by

1

τ
=

2

h̄
ImΣ(k, Ek − iδ) =

2α2

h̄

∫

k′

S(k − k′, Ek − Ek′)

where we have changed the momentum integration variable from q to k′ =
k − q. Splitting the momentum integration up into an integral over solid
angle and an integral over energy, we have

∫

k′

=

∫ (
mNkf

8π2h̄2

)
dE′dΩ′

from which we deduce that the mean-free path l of the neutron is given by

1

l
=

1

vNτ
=

1

vN
2ImΣ(k, Ek−iδ) =

∫
dΩk′dEk′ ×

[
kf

ki

(
αmN

2πh̄2

)2

S(q, E)

]

where q = k − k′ and E = Ek − Ek′ and vN = h̄ki/mN is the incoming
neutron velocity.

Normally we write l = 1/(niσ) , where σ is the cross-section of each scat-
terer and ni is the concentration of scattering centers. Suppose σ̃ = niσ
is the scattering cross-section per unit volume, then σ̃ = 1/l, so it follows
that

σ̃ =
1

vN
2ImΣ(k, Ek − iδ) =

∫
dΩk′dEk′ ×

[
kf

ki

(
αmN

2πh̄2

)2

S(q, E)

]

from which we may identify the differential scattering cross-section as

d2σ̃

dΩdE
=
kf

ki

(
αmN

2πh̄2

)2

S(q, E)
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10.8.3 NMR

Knight Shift K

Nuclear Magnetic resonance, or “Magnetic resonance imaging” (MRI), as it is more
commonly referred to in medical usage, is the use of nuclear magnetic absorption lines
to probe the local spin environment in a material. The basic idea, is that the Zeeman
interaction of a nuclear spin in a magnetic field gives rise to a resonant absorption line in
the microwave domain. The interaction of the nucleus with surrounding spins and orbital
moments produces a “Knight shift” this line and it also broadens the line, giving it a width
that is associated with the nuclear spin relaxation rate 1/T1.

The basic Hamiltonian describing a nuclear spin is

H = −µn~I · ~B +Hhf

where ~I is the nuclear spin, µn is the nuclear magnetic moment. The term Hhf describes the
“hyperfine” interaction between the nuclear spin and surrounding spin degrees of freedom.
The hyperfine interaction between a nucleus at site i and the nearby spins can be written

Hhf = −~Ii · ~Bhf (i)
~Bhf (i) = Acontact · ~Si +Aorbital · ~Li +

∑

j

Atrans(i− j) · Sj. (10.45)

where Bhf (i) is an effective field induced by the hyperfine couplings. The three terms
in this Hamiltonian are derived from a local contact interaction, with s-electrons at the
same site, an orbital interaction, and lastly, a transfered hyperfine interaction with spins
at neighboring sites. The various tensors A are not generally isotropic, but for pedagogical
purposes, let us ignore the anisotropy.

The Knight shift - the shift in the magnetic resonance line, is basically the expectation
value of the term that couples In a magnetic field, the electronic spins inside the material
become polarized, with 〈Sj〉 ∼ χB, where χ is the magnetic susceptibility, so in the simplest
situation, the Knight shift is simply a measure of the local magnetic susceptibility of the
medium. in turn, a measure of the electron density of states 〈N(ε)〉, thermally averaged
around the Fermi energy, so

K ∼ Bhf ∼ χB ∼ 〈N(ε)〉B.

One of the classic indications of the development of a gap in the electron excitation spectrum
of an an electronic system, is the sudden reduction in the Knight shift. In more complex
systems, where there are different spin sites, the dependence of the Knight shift can depart
from the global spin susceptibility.

Another application of the Knight shift, is as a method to detect magnetic, or antiferro-
magnetic order. If the electrons inside a metal develop magnetic order, then this produces
a large, field-independent Knight shift that can be directly related to the size of the ordered
magnetic moment

K ∼ 〈Slocal〉
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Unlike neutron scattering, NMR is able to distinguish between homogenious and inhomoge-
nious magnetic order.

Relaxation rate 1/T1

The second aspect to NMR, is the broadening of the nuclear resonance. If we ignore all
but the contact interaction, then the spin-flip decay rate of the local spin is determined by
the Golden Rule,

1

T1
=

2π

h̄
I2A2

contactS+−(ω)

∣∣∣∣
ω=ωN

where ωN is the nuclear resonance frequency and

S+−(ω) =

∫

q
[1 + nB(ω)]χ′′+−(q, ω)

∼ T

∫
d3q

(2π)3
1

ω
χ′′+−(q, ω) (10.46)

at frequencies ω ∼ ωN , so for a contact interaction, The net nuclear relaxation rate is then

1

T1
=

2π

h̄
I2A2

contact × T

∫
d3q

(2π)3
1

ω
χ′′+−(q, ω)

∣∣∣∣∣
ω=ωN

In a classical metal, χ′′(ω)/ω ∼ N(0)2 is determined by the square of the density of states.
This leads to an NMR relaxation rate

1

T1
∝ TN(0)2 ∼ kBT

ε2F
Korringa relaxation

This linear dependence of the nuclear relaxation rate on temperature is name a “Korringa
relaxation” law, after the Japanese theorist who first discovered it. Korringa relaxation
occurs because the Pauli principle allows only a fraction fraction TN(0) ∼ T/εF of the elec-
trons to relax the nuclear moment. In a more generally, Fermi system, the NMR relaxation
rate is determined by the thermally averaged square density of states.

1

T1
∼ T

∫ (
−df(ω)

dω

)
N(ω)2 ∼ T × [N(ω ∼ kBT )]2

In a wide class of anisotropic superconductors with lines of nodes along the Fermi surface,
the density of states is a linear function of energy. One of the classic signatures of these
line nodes across the Fermi surface is then a cubic dependence of 1/T1 on the temperature

line nodes in gap ⇒ N(ε) ∝ ε, ⇒ 1

T1
∝ T 3

In cases where the transferred hyperfine couplings are important, the non-locality in-

troduces a momentum dependence into A(k) =
∑

~RA(~Rj)e
−ik·~Rj these couplings. In this

case,
1

T1
=

2π

h̄
I2 × T

∫
d3q

(2π)3
A(q)2

1

ω
χ′′+−(q, ω)

∣∣∣∣∣
ω=ωN
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These momentum dependences can lead to radically different temperature dependences
in the relaxation rate at different sites. One of the classic examples of this behavior oc-
curs in the normal state of the high temperature superconductors. The active physics of
these materials takes place in quasi-two dimensional layers of copper oxide, and the NMR
relaxation rate can be measured at both the oxygen (O17) and copper sites.

(
1

T1

)

Cu
∼ constant,

(
1

T1

)

O
∼ T,

The appearance of two qualitatively different relaxation rates is surprising, because the
physics of the copper-oxide layers is thought to be described by a single-band model, with
a single Fermi surface that can be seen in ARPES measurements. Why then are there two
relaxation rates?

One explanation for this behavior has been advanced by Mila and Rice, who argue that
there is indeed a single spin fluid, located at the copper sites. They noticed that whereas
the copper relaxation involves spins at the same site, so that

ACu(q) ∼ constant,

the spin relaxation rate on the oxygen sites involves a transfered hyperfine coupling between
the oxygen px or py orbitals and the neigboring copper spins. The odd-parity of a px or py
orbital means that the corresponding form factors have the form

Apx(q) ∼ sin(qxa/2).

Now high temperature superconductors are doped insulators. In the insulating state,
cuprate superconductors are “Mott insulators”, in which the spins on the Copper sites
are antiferromagnetically ordered. In the doped metallic state, the spin fluctuations on
the copper sites still contain strong antiferromagnetic correlations, and they are strongly
peaked around ~Q0 ∼ (π/a, π/a), where a is the unit cell size. But this is precisely the point
in momentum space where the transfered hyperfine couplings for the Oxygen sites vanish.
The absence of the Korringa relaxation at the cupper sites is then taken as a sign that the
copper relaxation rate is driven by strong antiferromagnetic spin fluctuations which do not
couple to oxygen nucleii.

10.9 Electron Transport spectroscopy

10.9.1 Resistivity and the transport relaxation rate

One of the remarkable things about electron transport, is that one of the simplest possi-
ble measurements - the measurement of electrical resistivity, requires quite a sophisticated
understanding of the interaction between matter and radiation for its microscopic under-
standing. We shall cover this relationship in more detail in the next chapter, however, at
basic level, DC electrical resistivity can be interpreted in terms of the basic Drude formula

σ =
ne2

m
τtr
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where 1/τtr is the transport relaxation rate. In Drude theory, the electron scattering rate
τtr is related to the electron mean-free path l via the relation

l = vF τ

where vF is the Fermi velocity. We need to sharpen this understanding, for 1/τtr is not the
actual electron scattering rate, it is the rate at which currents decay in the material. For
example, if we consider impurity scattering of electrons with a scattering amplitude u(θ)
which depends on the scattering angle θ, the electron scattering rate is

1

τ
= 2πniN(0)|u(θ)|2

where

|u(θ)|2 =

∫ 1

−1

d cos θ

2
|u(θ)|2.

denotes the angular average of the scattering rate. However, as we shall see shortly, the
transport scattering rate which governs the decay of electrical current is contains an extra
weighting factor:

1

τtr
= 2πniN(0)|u(θ)|2(1 − cos θ)

|u(θ)|2(1 − cos θ) =

∫ 1

−1

d cos θ

2
|u(θ)|2(1 − cos θ). (10.47)

The angular weighting factor (1−cos θ) derives from the fact that the change in the current
carried by an electron upon scattering through an angle θe is evF (1−cos θ). In other words,
only large angle scattering causes current decay. For impurity scattering, this distinction
is not very important but in systems where the scattering is concentrated near q = 0, such
as scattering off ferromagnetic spin fluctuations, the (1 − cos θ) term substantially reduces
the effectiveness of scattering as a source of resistance.

At zero temperature, the electron scattering is purely elastic, and the zero temperature
resistance R0 is then a measure of the elastic scattering rate off impurities. At finite tem-
peratures, electrons also experience inelastic scattering, which can be strongly temperature
dependent. One of the most important diagnostic quantities to characterize the quality of a
metal is the resistance ratio - the ratio of resistance at room temperature to the resistance
at absolute zero

RR = Resistance Ratio =
R(300K)

R(0)

The higher this ratio, the lower the amount of impurities and the higher the quality of
sample. Hardware quality copper piping already has a resistance ratio of order a thousand!
A high resistance ratio is vital for the observation of properties which depend on the coherent
balistic motion of Bloch waves, such as de-Haas van Alphen oscillations or the development
of anisotropic superconductivity, which is ultra-sensitive to impurity scattering.
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With small caveat of distinction between transport and scattering relaxation rates, the
temperature dependent resistivity is an excellent diagnostic tool for understanding the in-
elastic scattering rates of electrons:

ρ(T ) =
m

ne2
×
(

1

τtr(T )

)

There are three classic dependences that you should be familiar with:

• Electron phonon scattering above the Debye temperature

1

τtr
= 2πλkBT

Linear resistivity is produced by electron-phonon scattering at temperatures above the
Debye temperature, where the coefficient λ is the electron-phonon coupling constant
defined in the previous chapter. In practice, this type of scattering always tends
to saturate once the electron mean-free path starts to become comparable with the
electron wavelength. It is this type of scattering that is responsible for the weak linear
temperature dependence of resistivity in many metals. A note of caution - for linear
resistivity does not necessarily imply electron phonon scattering! The most well-known
example of linear resitivity occurs in the normal state of the cuprate superconductors,
but here the resistance does not saturate at high temperatures, and the scattering
mechanism is almost certainly a consequence of electron-electron scattering.

Electron-electron or Baber scattering

1

τtr
=
π

h̄
|UN(0)|2N(0)(πkBT )2

where

|UN(0)|2 = N(0)2
∫
dΩk̂′

4π
|U(k − k′)|2(1 − cos(θk,k′))

is the weighted average of the electron-electron interaction U(q). This quadratic
temperature dependence of the inelastic scattering rate can be derived from the Golden
rule scattering rate

1

τtr
=

4π

h̄

∑

k′,k′′

|U(k − k′)|2(1 − cos θk,k′)(1 − fk′)(1 − fk′′)fk′+k′′−kδ(εk′ + εk′′ − εk′′′)

where the 4π = 2 × 2π prefactor is derived from the sum over internal spin indices If
we neglect the momentum dependence of the scattering amplitude, then this quantity
is determined entirely by the three-particle phase space

1

τtr
∝

∫
dε′dε′′(1 − f(ε′))(1 − f(ε′′))f(−ε′ − ε′′)
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= T 2
∫
dxdy

(
1

1 − e−x

)(
1

1 − e−y

)(
1

1 − e−(x+y)

)
=
π2

4
T 2 (10.48)

In practice, this type of resistivity is only easily observed in strongly interacting
electron materials, where it is generally seen to develop at low temperatures when
a Landau Fermi liquid develops. The T 2 resistivity is a classic hallmark of Fermi
liquid behavior.

Kondo spin-flip scattering

In metals containing a dilute concentration of magnetic impurities, the spin-flip scat-
tering generated by the impurities gives rise to a temperature dependent scattering
rate of the form

1

τtr
∼ ni

1

ln2
(
T
TK

)

where TK is the “Kondo temperature”, which characterizes the characteristic spin
fluctuation rate of magnetic impurity. This scattering is unusual, because it becomes
stronger at lower temperatures, giving rise to a “ resistance minimum” in the resis-
tivity.

In heavy electron materials, the Kondo spin-flip scattering is seen at high temperatures, but
once a coherent Fermi liquid is formed, the resistivity drops down again at low temperatures,
ultimately following a T 2 behavior.

10.9.2 Optical conductivity

Probing the electrical properties of matter at finite frequencies requires the use of optical
spectroscopy. In principle, optical spectroscopy provides a direct probe of the frequency
dependent conductivity inside a conductor. The frequency dependent conductivity is defined
by the relation

~j(ω) = σ(ω) ~E(ω)

Modern optical conductivity measurements can be made from frequencies in the infra -red
of order ω ∼ 10cm−1 ∼ 1meV up to frequencies in the optical, of order 50, 000cm−1 ∼ 5eV .
The most direct way of obtaining the optical conductivity is from the reflectivity, which is
given by

r(ω) =
1 − n(ω)

1 + n(ω)
=

1 −
√
ε(ω)

1 +
√
ε(ω)

,

where n(ω) =
√
ε(ω) is the diffractive index and ε(ω) is the frequency dependent dielectric

constant. Now ε(ω) = 1 + χ(ω) where χ(ω) is the frequency dependent dielectric suscep-
tibility. Now since the polarization P (ω) = χ(ω)E(ω), and since the current is given by
j = ∂tP , it follows that j(ω) = −iωP (ω) = −iωχ(ω)E(ω), so that χ(ω) = σ(ω)/(−iω) and
hence

ε(ω) = 1 +
σ(ω)

−iω .
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Thus in principle, knowledge of the complex reflectivity determines the opical conductivity.
In the simplest measurements, it is only possible to measure the intensity of reflected

radiation, giving |r(ω)|2. More sophisticated “ elipsometry” techniques which measure the
reflectivity as a function of angle and polarization, are able to provide both the amplitude
and phase of the reflectivity, but here we shall discuss the simplest case where only the
amplitude |r(ω)| is available. In this situation, experimentalists use the “Kramers’ Kro-
nig” relationship which determines the imaginary part imaginary part σ2(ω) of the optical
conductivity in terms of the real part, σ1(ω), (Appendix A)

σ2(ω) = ω

∫ ∞

0

dω′

π

σ1(ω
′)

ω2 − ω′2

This is a very general relationship that relies on the retarded nature of the optical response.
In principle, this uniquely determines the dielectric function and reflectivity. However, since
the range of measurement is limited below about 5eV , an assumption has to be made about
the high frequency behavior of the optical conductivity where normally, a Lorentzian form
is assumed.

With these provisos, it becomes possible to invert the frequency dependent reflectivity
in terms of the frequency dependent conductivity. We shall return in the next chapter for a
consideration of the detailed relationship between the optical conductivity and the micro-
scopic correlation functions. We will see shortly that the interaction of an electromagnetic
field with matter involves the transverse vector potential, which couples to the currents in
the material without changing the charge density. The optical conductivity can be related
to the following response function

σ(ω) =
1

−iω

[
ne2

m
− 〈j(ω)j(−ω)〉

]

This expression contains two parts - a leading diamagnetic part, which describes the high
frequency, short-time response of the medium to the vector potential, and a second, “para-
magnetic” part, which describes the slow recovery of the current towards zero. We have
used the shorthand

〈j(ω)j(−ω)〉 = i

∫ ∞

0
dtd3x〈[j(x, t), j(0)]〉eiωt

to denote the retarded response function for the “paramagnetic” part of the electron current
density j(x) = −i h̄mψ†~∇ψ(x).

10.9.3 The f-sum rule.

One of the most valuable relations for the analysis of optical conductivity data, is the so-
called “f-sum rule”, according to which the total integrated weight under the conductivity
spectrum is constrained to equal the plasma frequency of the medium,

∫ ∞

0

dω

π
σ(ω) =

ne2

m
= ω2

P ε0 (10.49)
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where n is the density of electronic charge and ωP is the Plasma frequency. To understand
this relation, suppose we apply a sudden pulse of electric field to a conductor

E(t) = E0δ(t), (10.50)

then immediately after the pulse, the net drift velocity of the electrons is changed to v =
eE0/m, so the instantaneous current after the field pulse is

j(0+) = nev =
ne2

m
E0, (10.51)

where n is the density of carriers. After the current pulse, the electric current will decay.
For example, in the Drude theory, there is a single current relaxation time rate τtr, so that

j(t) =
ne2

m
e−t/τtrE0 (10.52)

and thus

σ(t− t′) =
ne2

m
e−(t−t′)/τtrθ(t− t′) (10.53)

and by Fourier transforming we deduce that

σ(ω) =

∫ ∞

0
dteiωtσ(t) =

ne2

m

1

τ−1
tr − iω

(10.54)

Actually, the f-sum rule does not depend on the detailed form of the curent relaxation.
Using the instantaneous response in (10.51) we obtain

J(t = 0+) = Eoσ(t = 0+) = Eo

∫ ∞

−∞

dω

2π
e−i0

+
σ(ω) =

ne2

m
E0 (10.55)

is a consequence of Newton’s law. It follows that (independently of how the current subse-
quently decays), ∫ ∞

0

dω

π
σ(ω) =

ne2

m
= ε0ω

2
p (10.56)

where we have identified ε0ω
2
p = ne2

m with the plasma frequency ωp of the gas. This rela-
tionship is called the f-sum rule, and it is important because it holds, independently of the
details of how the current decays.

The important point about the f-sum rule, is that in principle, the total weight under the
optical spectrum, is a constant, providing one integrates up to a high-enough energy. When
the temperature changes however, it is possible for the spectral weight to redistribute. In a
simple metal, the optical conductivity forms a simple “Drude peak” - Lorentzian of width
1/τtr around zero frequency. In a semi-conductor, the weight inside this peak decays as
e−∆/T , where ∆ is the semi-conducting gap. In a simple insulator, the balance of spectral
weight must then reappear at energies above the direct gap energy ∆g. By contrast, in a
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Figure 10.3: The f-sum rule. Illustrating (a ) the spectral weight transfer down to the
condensate in a superconductor (b) the Drude weight in a simple metal and (c) The spectral
weight transfer up to the conduction band in an insulator. )

superonductor, the formation of a superconducting condensate causes the spectral weight
in the optical conductivity to collapse into a delta-function peak.

Appendix A: Kramer’s Krönig relation

The Kramer’s Krönig relation applies to any retarded linear response function, but we
shall derive it here in special reference to the conductivity. In time, the current and electric
field are related by the retarded response function

j(t) =

∫ t

−∞
dt′σ(t− t′)E(t′) (10.57)

which becomes j(ω) = σ(ω)E(ω) in Fourier space, where σ(ω) is the Fourier transform of
the real-time response function σ(t− t′)

σ(ω) =

∫ ∞

0
dteiωtσ(t).

This function can be analytically extended into the upper-half complex plain ,

σ(z) = σ(x+ iy) =

∫ ∞

0
dteiztσ(t) = .

∫ ∞

0
dteixt−ytσ(t).

So long as z lies above the real axis, the real part −yt of the exponent is negative, guaran-
teeing that the integral σ(z) is both convergent and analytic. Provided Imz0 > 0, then the
conductivity can be written down using Cauchy’s theorem

σ(z0) =

∫

C′

dz

2πi

σ(z)

z − zo
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where C ′ runs anti-clockwise around the point z0. By distorting the contour onto the real
axis, and neglecting the contour at infinity, it follows that

σ(z0) =

∫ ∞

−∞

dω′

2πi

σ(ω′)
ω′ − z0

Taking z0 = ω + iδ, and writing σ(ω + iδ) = σ1(ω) + iσ2(ω) on the real axis, we arrive at
the “Kramer’s Krönig” relations

σ2(ω) = −
∫ ∞

−∞

dω′

2π

σ1(ω
′)

ω′ − ω
= ω

∫ ∞

0

dω′

π

σ1(ω
′)

ω2 − ω′2

σ1(ω) =

∫ ∞

−∞

dω′

2π

σ2(ω
′)

ω′ − ω
=

∫ ∞

0

dω′

π

ω′σ2(ω
′)

ω2 − ω′2
(10.58)

10.10 Exercises for chapter 10

1. Spectral decomposition. The dynamic spin susceptibility of a magnetic system, is defined as

χ(q, t) = i〈[S−(q, t1), S
+(−q, t2)] > θ(t1 − t2) (10.59)

where S±(q) = Sx(q) ± iSy(q) are the spin raising and lowering operators at wavevector q,
i.e

S±(q) =

∫
d3e−iq·xS±(x) (10.60)

so that S−(q) = [S+(−q)]†. The dynamic spin susceptibility determines the response of the
magnetization at wavevector q in response to an applied magnetic field at this wavevector

M(q, t) =
µB

2

∫
dt′χ(q, t− t′)B(t′). (10.61)

(i)Make a spectral decomposition, and show that

χ(q, t) = iθ(t)

∫
dω

π
χ′′(q, ω)eiωt (10.62)

where χ′′(q, ω) ( often called the “power-spectrum” of spin fluctuations) is given by

χ′′(q, ω) = (1 − e−βω)
∑

λ,ζ

e−β(Eλ−F )|〈ζ|S+(−q)|λ〉|2πδ[ω − (Eζ −Eλ)] (10.63)

and F is the Free energy.

(ii)Fourier transform the above result to obtain a simple integral transform which relates
χ(q, ω) and χ′′(q, ω). The correct result is called a “Kramers Kronig” transformation.

(iii)In neutron scattering experiments, the inelastic scattering cross-section is directly propor-
tional to a spectral function called S(q, ω),

d2σ

dΩdω
∝ S(q, ω) (10.64)
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where S(q, ω) is the Fourier transform of a correlation function:

S(q, ω) =

∫ ∞

−∞
dteiωt〈S−(q, t)S+(−q, 0)〉 (10.65)

By carrying out a spectral decomposition, show that

S(q, ω) = (1 + n(ω))χ
′′

(q, ω) (10.66)

This relationship, plus the one you derived in part (i) can be used to completely the dynamical
spin susceptibility via inelastic neutron scattering.
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Chapter 11

Electron transport Theory

11.1 Introduction

Resistivity is one of the most basic properties of conductors. Surprisingly, Ohm’s law

V = IR

requires quite a sophisticated understanding of the quantum many body physics for its
understanding. In the classical electron gas, the electron current density

~j(x) = ne~v(x)

is a simple c-number related to the average drift velocity ~v(x) of the electron fluid. This
is the basis of the Drude model of electricity, which Paul Drude introduced shortly after
the discovery of the electron. Fortunately, many of the key concepts evolved in the Drude
model extend to the a quantum description of electrons, where ~j(x) is an operator. To
derive the current operator, we may appeal to the continuity equation, or alternatively, we
can take the derivative of the Hamiltonian with respect to the vector potential,

~j(x) = − δH

δ ~A(x)

where

H =

∫
d3x

[
1

2m
ψ†(x)

(
− ih̄~∇− e ~A(x)

)2

ψ(x) − eφ(x)ψ†(x)ψ(x)

]
+ VINT

Now only the Kinetic term depends on ~A, so that

~j(x) =
−ih̄
2m

ψ†(x)
↔
∇ ψ(x) −

(
e2

m

)
~A(x)ρ(x). (11.1)

The discussion we shall follow dates back to pioneering work by Fritz London. London
noticed in connection with his research on superconductivity, that the current operator splits
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up into components, which he identified with the paramagnetic and diamagnetic response
of the electron fluid:

~j(x) = ~jP (x) +~jD(x)

where

~jP (x) =
−ih̄
2m

ψ†(x)
↔
∇ ψ(x)

and

~jD(x) = −
(
e2

m

)
~A(x)ρ(x).

Although the complete expression for the current density is invariant under gauge transfor-
mations ψ(x) → eiφ(x)ψ(x), ~A(x) → ~A+ h̄

e
~∇φ(x) the separate parts are not. However, in a

specific gauge, such as the London or Coulomb gauge, where ~∇ ·A = 0, they do have phys-
ical meaning. We shall identify this last term as the term responsible for the diamagnetic
response of a conductor, and the first term, the “paramagnetic current”, is responsible for
the decay of the current a metal.
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Figure 11.1: (a) Illustrating the diffusion of electrons on length-scales large compared with
the mean-free path l, (b) The Drude frequency dependent conductivity. The short-time
behavior of the current is determined by Newton’s law, which constrains the area under the
curve to equal

∫
dωσ(ω) = π ne

2

m , a relation known as the f-sum rule.
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In a non-interacting system, the current operator commutes with the Kinetic energy
operator H0 and is formally a constant of the motion. In a periodic crystal, electron
momentum is replaced by the lattice momentum k, which is, in the absence of lattice
vibrations, a constant of the motion, with the result that the electron current still does not
decay. What is the origin of electrical resistance?

There are then two basic sources of current decay inside a conductor:

• Disorder - which destroys the translational invariance of the crystal,

• Interactions - between the electrons and phonons, and between the electrons them-
selves, which cause the electron momenta and currents to decay.

The key response function which determines electron current is the conductivity, relating
the Fourier component of current density at frequency ω, to the corresponding frequency
dependent electric field,

~j(ω) = σ(ω) ~E(ω)

We should like to understand how to calculate this response function in terms of microscopic
correlation functions.

The classical picture of electron conductivity was developed by Paul Drude, shortly
after the discovery of the electron. Although his model was introduced before the advent of
quantum mechanics, many of the basic concepts he introduced carry over to the quantum
theory of conductivity. Drude introduced the the concept of the electron mean-free path
l - the mean distance between scattering events. The characteristic timescale between
scattering events is called the transport scattering time τtr. ( We use the “tr” subscript to
delineate this quantity from the quasiparticle scattering time τ , because not all scattering
events decay the electric current.) In a Fermi gas, the characteristic velocity of electrons is
the Fermi velocity and the mean-free path and transport scattering time are related by the
simple relation

l = vF τtr

The ratio of the mean-free path to the electron wavelength is the same order of magnitude
as the ratio of the scattering time to the characteristic timescale associated with the Fermi
energy h̄/εF is determined by the product of the Fermi wavevector and the mean-free path

l

λF
=
kF l

2π
∼ τtr
h̄/εF

=
ετtr
h̄

In very pure metals , the mean-free path of Bloch wave electrons l can be tens, even hundreds
of microns, l ∼ 10−6m, so that this ratio can become as large as 104 or even 106. From
this perspective, the rate at which current decays in a good metal is very slow on atomic
time-scales.

There are two important aspects to the Drude model:

• the diffusive nature of density fluctuations,
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• the Lorentzian line-shape of the optical conductivity

σ(ω) =
ne2

m

1

τ−1
tr − iω

Drude recognized that on length scales much larger than the mean-free path multiple
scattering events induce diffusion into the electron motion. On large length scales, the
current and density will be related by he diffusion equation,

~j(x) = −D~∇ρ(x),

where D = 1
3
l2

τtr
= 1

3v
2
F τtr, which together with the continuity equation

~∇ ·~j = −∂ρ
∂t

gives rise to the diffusion equation
[
− ∂

∂t
+D∇2

]
ρ = 0.

The response function χ(q, ν) of the density to small changes in potential must be the
Green’s function for this equation, so that in Fourier space

[iν −Dq2]χ(q, ν) = 1

from which we expect the response function and density-density correlation functions to
contain a diffusive pole

〈δρ(q, ν)δρ(−q,−ν)〉 ∼ 1

iν −Dq2

The second aspect of the Drude theory concerns the slow decay of current on the typical
time-scale τtr, so that in response to an electric field pulse E = E0δ(t), the current decays
as

j(t) = e
− t
τtr

In the last chapter, we discussed how, from a quantum perspective, this current is made up
of two components, a diamagnetic component

jDIA = −ne
2

m
A =

ne2

m
E0, (t > 0)

and a paramagnetic part associated with the relax9ation of the electron wavefunction, which
grows to cancel this component,

jPARA =
ne2

m
E0(e

−t/τtr − 1), (t > 0)

We should now like to see how each of these heuristic features emerges from a microscopic
treatment of the conductivity and charge response functions. To do this, we need to relate
the conductivity to a response fucntion - and this brings us to the Kubo formula.
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11.2 The Kubo Formula

Lets now look again at the form of the current density operator. According to (11.1), it can
divided into two parts

~j(x) = ~jP +~jD (11.2)

where

~jP = − ih̄
m
ψ†(x)

↔
∇ ψ(x) paramagnetic current

~jD = −e
2

m

∫
d3x ρ(x) ~A(x) diamagnetic current (11.3)

are the “paramagnetic” and “ diamagnetic” parts of the current. The total current operator
is invariant under gauge transformations ψ(x) → eiφ(x)ψ(x), ~A(x) → ~A + h̄

e
~∇φ(x) and

speaking, the two terms in this expression for the current can’t be separated in a gauge
invariant fashion. However, in a specific gauge. We shall work in the London gauge

~∇ · ~A = 0 “London Gauge” .

In this gauge, the vector potential is completely transverse, ~q · ~A(~q) = 0. The equations of
the electromagnetic field in the London Gauge are

(
1

c2
∂2
t −∇2

)
~A(x) = µ0

~j(x)

−∇2φ(x) =
ρ(x)

ε0
(11.4)

so that the potential field ρ(x) is entirely determined by the distribution of charges inside
the material, and the only independent external dynamic field coupling to the material is
the vector potential. We shall then regard the vector potential as the only external field
coupling to the material.

We shall now follow Fritz London’s argument for the interpretation of these two terms.
Let us carry out a thought experiment, in which we imagine a toroidal piece of metal, as in
Fig. 11.2 in which a magnetic flux is turned on at t = 0, passing up through the conducting
ring, creating a vector potential around the ring given by A = A0θ(t) = φ0

2πrθ(t), where r is
the radius of the ring. The Electric field is related to the external vector potential via the
relation

~E = −∂
~A

∂t
= −A0δ(t)

so ~E = − ~Aoδ(t) is a sudden inductively induced electrical pulse.
Suppose the system is described in the Schrödinger representation by the wavefunction

|ψ(t)〉, then the current flowing after time t is given by

〈~j(t)〉 = 〈ψ(t)|~jP |ψ(t)〉 − ne2

m
Aoθ(t) (11.5)
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Figure 11.2: Schematic diagram to illustrate diamagnetic current pulse produced by a
sudden change of flux through the conducting loop.

where we have assumed that 〈ρ(x)〉 = n is the equilibrium density of electrons in the
material. We see that the second “diamagnetic” term switches on immediately after the
pulse. This is nothing more than the diamagnetic response - the effect of the field induced
by Faraday’s effect. What is so interesting, is that this component of the current remains
indefinitely, after the initial step in the flux through the toroid. But the current must decay!
How?

The answer is that the initial “paramagnetic” contribution to the current starts to de-
velop after the flux is turned on. Once the vector potential is present, the wavefunction
|ψ(t)〉 starts to evolve, producing a paramagnetic current that rises and in a regular conduc-
tor, ultimately exactly cancels the time-independent diamagnetic current. From this point
of view, the only difference between an insulator and a metal, is the timescale required
for the paramagnetic current to cancel the diamagnetic component. In an insulator, this
time-scale is of order the inverse (direct) gap ∆g, τ ∼ h̄/∆g, whereas in a metal, it is the
transport relaxation time τ ∼ τtr.

These arguments were first advanced by Fritz London. He noticed that if, for some
unknown reason the wavefunction of the material could become “rigid”, so that it would
not respond to the applied vector potential. In this special case, the paramagnetic current
would never build up, and one would then have a perfect diamagnet - a superconductor.
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Lets now look at this in more detail. We need to compute

~j(~x, t) = 〈~jP (x, t)〉 − ne2

m
~A(x, t)

Now if we are to compute the response of the current to the applied field, we need to
compute the build up of the paramagnetic part of the current. Here we can use linear
response theory. The coupling of the vector potential to the paramagnetic current is simply
− ∫ d3x~j(x) · ~A(x), so the response of this current is given by

〈jαP (t)〉 =

∫

t′<t
d3x′dt′i〈[jαP (x), jβP (x′)]〉Aβ(x′) (11.6)

In other words, we may write

~j(1) = −
∫
d2Q(1 − 2) ~A(2)

Qαβ(1 − 2) =
ne2

m
δαβδ(1 − 2) − i〈[jαP (1), jβP (2)]〉θ(t1 − t2). (11.7)

The quantity Q(1 − 2) is the “London response” Kernel. In the most general case, this
response is non-local in both space and time. In a metal, this response is non-local over a
distance given by the electron mean-free path l = vF τtr. In a superconductor the response
to the vector potential is non-local over the “Pippard coherence length”, ξ = vF/∆, where
∆ is the superconducting gap. We can write the above result in Fourier space as

~j(q) = −Q(q) ~A(q)

where

Qαβ(q) =
ne2

m
δαβ − i〈[jα(q), jβ(−q)〉

and we have used the cavalier notation,

〈[jα(q), jβ(−q)〉 =

∫
d3x

∫ ∞

0
dt〈[jα(x, t), jβ(0)〉e−i(~q·~x−νt).

Finally, if we write ~E = −∂A
∂t , or A(q) = 1

iνE(q), we deduce that

~j(q) = σ(q) ~E(q) Kubo formula

σαβ(q) = − 1

iν
Qαβ(q) =

1

−iν

{
ne2

m
δαβ − i〈[jα(q), jβ(−q)〉

}
(11.8)
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Now in practice, the high velocity of light means that q = ν/c << kF is much shorter than
an electronic wavevector, so that in electronic condensed matter physics, we may consider
the limit ~q = 0, writing σ(ν) = σ(~q = 0, ν). This is the quantity that is measured in optical
conductivity measurements. The D.C. conductivity is given by the zero-frequency limit of
the uniform conductivity, i.e. σDC = Ltν→0σ(ν).

In a regular conductor, σDC is finite, which implies that Q(ν = 0) = 0, so that in a
conductor

i〈[jα(q), jβ(−q)〉|q=0 =
ne2

m
δαβ

We shall see that this identity breaks down in a system with broken gauge invariance - and
this is the origin of superconductivity. In a normal fluid however, we can use this identity
to rewrite the expression for the conductivity as

σαβ(ν) =
1

−iν

[
− i〈[jα(ν ′), jβ(−ν ′)〉

]ν′=ν

ν′=0
(11.9)

A practical calculation of conductivity depends on our ability to extract this quantity
from the imaginary time response function. We can quickly generalize expression (11.7) to
imaginary time, by replacing i〈[A(1), B(2)]〉 → 〈TA(1)B(2)〉, so that in imaginary time,

~j(1) = −
∫
d2Q(1 − 2) ~A(2), (1 ≡ (~x1, τ1))

Qαβ(1 − 2) =
ne2

m
δαβδ(1 − 2) − 〈TjαP (1)jβP (2)〉 (11.10)

so that in Fourier space, our expression for the optical conductivity is given by

σαβ(iνn) = − 1

νn

[
〈Tjα(ν ′)jβ(−ν ′)〉

]ν′=iνn

ν′=0
(11.11)

where we have used the short-hand notation

〈Tjα(iνn)j
β(−iνn)〉 =

∫ β

0
dτeiνnτ 〈Tjα(τ)jβ(0)〉

11.3 Drude conductivity: diagramatic derivation

In the last section we showed how the fluctuations of the electrical current can be related
to the optical conductivity. Let us now see how these fluctuations can be computed using
Feynman diagrams in a disordered electron gas with dispersion εk = k2

2m . First, let us review
the Feynman rules. We shall assume that we have taken the leading order effects of disorder
into account in the electron propagator, denoted by

= G(k) =
1

iωn − εk + isgnωn
1
2τ
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The current operator is jα(q) =
∑
ek

α

m ψ
†
k−q/2σψk+q/2σ, which we denote by the vertex

α ≡ e
kα

m

The set of diagrams that represent the current fluctuations can then be written
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〈jα(q)jβ(−q)〉 = α β

k+q

k

+ +α β α β + . . .

+ +βα βα + . . . (11.12)

In the above expansion, we have identified three classes of diagrams. The first diagram,
denotes the simplest contribution to the current fluctuation: we shall see shortly that this is
already sufficient to capture the Drude conductivity. The second set of diagrams represent
the leading impurity corrections to the current vertex: these terms take account of the fact
that low-angle scattering does not affect the electric current, and it is these terms that are
responsible for the replacement of the electron scattering rate τ by the transport relaxation
rate τtr. We shall see that these terms vanish for isotropicaly scattering impurities, and
justifying our neglect of these contributions in our warm-up calculation of the conductivity.

The last set of diagrams involve crossed impurity scattering lines - we have already
encountered these types of diagrams in passing, and the momentum restrictions associated
with crossed diagrams lead to a reduction factor of order O( 1

kF l
) ∼ λ

l , or the ratio of the
electron wavelength to the mean-free path. These are the “quantum corrections” to the
conductivity. These maximally crossed diagrams were first investigated by Langer and Neal
in 1966, during the early years of research into electron transport , but it was not until the
late 1970’s that they became associated with the physics of electron localization - more on
this later.

Using the Feynman rules, the first contribution to the current fluctuations is given by

i rω  

βα

ω   +    νii r n

= 〈jα(iνn)j
β(−iνn)〉

= −2e2T
∑

k,iωr

kαkβ

m2
G(k, iωr + iνn)G(k, iωr) (11.13)

where the minus sign derives from the fermion loop and the factor of two derives from
the sum over spin components. The difference between the fluctuations at finite and zero
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frequencies is then

[
〈jα(ν)jβ(−ν)〉

]iνn
0

= −2e2T
∑

k,iωr

kαkβ

m2

[
G(k, iωr + iνn)G(k, iωr) − {iνn → 0}

]
(11.14)

Now the amplitude at current fluctuations at any one frequency involves electron states far
from the Fermi surface. However, the difference between the current fluctuations at two
low frequencies cancels out most of these contributions, and the only important remaining
contributions involve electrons with near the Fermi surface. This observation means that
we can replace the momentum summation in (11.14) by an energy integral in which the
density of states is approximated by a constant, and the limits are extended to infinity, as
follows

∑

k

kαkβ

m2

[
. . .

]
→

∫
4πk2dk

(2π)3

∫
dΩ

k̂

4π

kαkβ

m2

[
. . .

]

→ δαβ
v2
FN(0)

3

∫ ∞

−∞
dε

[
. . .

]
(11.15)

The London Kernel then becomes

Qαβ(iνn) = 2δαβ
e2v2

FN(0)

3
T
∑

ωr

×

2

∫ ∞

−∞
dε





Poles on opposite side if ω+
r > ωr︷ ︸︸ ︷(

1

iω+
r − ε+ isgnω+

r /2τ

)(
1

iωr − ε+ isgnωr/2τ

)
−

Poles on same side︷ ︸︸ ︷(
iνn → 0

)




We can now carry out the energy integral by contour methods. We shall assume that νn > 0.
Now, provided that iω+

r > 0 and iωr < 0, the first term inside this summation has poles on
opposite sides of the real axis, at ε = iωr+i/2τ and ε = iωr−1/2τ , whereas the second term
has poles on the same side of the real axis. Thus, when we complete the energy integral
we only pick up contributions from the first term. (It doesn’t matter which side of the real
axis we complete the contour, but if we choose the contour to lie on the side where there
are no poles in the second term, we are able to immediately see that this term gives no
contribution. ) The result of the integrals is then

Qαβ(iνn) = δαβ

ne2

m︷ ︸︸ ︷
2e2v2

FN(0)

3
T

∑

0>ωr>−νn,

2πi

iνn + iτ−1

= δαβ
ne2

m

νn
τ−1 + νn

(11.16)

Converting the London Kernel into the optical conductivity,

σαβ(iνn) =
1

νn
Qαβ(iνn) = δαβ

ne2

m

1

τ−1 − i(iνn)

303



Chapter 11. c©P. Coleman 04

Finally, analytically continuing onto the real axis, we obtain

σαβ(ν + iδ) =
ne2

m

1

τ−1 − iν
Transverse conductivity

There are a number of important points to make about this result

• Our result ignores the effects of anisotropic scattering. To obtain these we need to
include the “ladder” vertex corrections, which we will shortly see, replace

1

τ
→ 1

τtr
= 2πniN(0)(1 − cos θ)|u(θ)|2, (11.17)

where the (1 − cos θ) term takes into account that small angle scattering does not
relax the electrical current.

• Our result ignores localization effects that become important when 1
kF l

∼ 1. In one or
two dimensions, the effects of these scattering events accumulates at long distances,
ultimately localizing electrons, no matter how weak the impurity scattering.

• Transverse current fluctuations are not diffusive - this is not surprising, since trans-
verse current fluctuations do not involve any fluctuation in the charge density.

To improve our calculation, let us now examine the vertex corrections that we have so
far neglected. Let us now re-introduce the “ladder” vertex corrections shown in (11.12).
We shall write the current-current correlator as

〈jα(q)jβ(−q)〉 = α β

k+q

k

(11.18)

where the vertex correction is approximated by a sum of ladder diagrams, as follows

β = β + +β β + . . . = ΛevβF

(11.19)

We shall re-write the vertex part as a self-consistent Dyson equation, as follows:
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ΛevβF = β + β
p’

p’+q

(11.20)

where q = (0, iνn) and p′ = (~p ′, iωr). The equation for the vertex part is then

evβFΛ(ωr, νn) = evβF + ni
∑

~p ′

|u(~p− ~p ′)|2G(~p ′, iω+
r )G(~p ′, iωr)Λ(ωr, νn)ev

′β
F . (11.21)

Assuming that the vertex part only depends on frequencies, and has no momentum depen-
dence, we may then write

Λ = 1 + Λni

∫
d cos θ

2
|u(θ)|2 cos θ

∫
d3p′

(2π)3
G(~p ′, iω+

r )G(~p ′, iωr)

We can now carry out the integral over ~p ′ as an energy integral, writing

N(0)

∫
dεG(ε, iω+

r )G(ε, iωr) = N(0)

∫
dε

1

iω̃+
n − ε

1

iω̃n − ε

where

ω̃n = ωn + signωn(
1

2τ
)

Carrying out this integral, we obtain

N(0)

∫
dεG(ε, iω+

r )G(ε, iωr) =

{
πN(0) 1

νn+τ−1 −νn < ωr < 0

0 otherwise

so that

Λ = 1 +

(
τ̃−1

νn + τ−1

)
Λθνn,ωr

where τ̃−1 = 2πniN(0)cos θ|u(θ)|2 and θνn,ωr = 1 if −νn < ωr < 0 and zero otherwise, so
that

Λ =

{
νn+τ−1

νn+τ−1
tr

−νn < ωr < 0

1 otherwise
(11.22)

where
τ−1
tr = τ−1 − τ̃−1 = 2πniN(0)(1 − cos θ)|u(θ)|2.

when we now repeat the calculation, we obtain

Qαβ(iωn) =
ne2

m
δαβT

∑

iωr

∫ ∞

−∞
dε
[
G(ε, iω+

r )G(ε, iωr) − (iνn → 0)
]
Λ(iωr, iνn)
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=
ne2

m
δαβT

∑

iωr

2πi

iνn + iτ−1

νn + τ−1

νn + τ−1
tr

=
ne2

m

(
νn

νn + τ−1
tr

)
δαβ (11.23)

So making the analytic continuation to real frequencies, we obtain

σ(ν + iδ) =
ne2

m

1

τ−1
tr − iν

Note that

• We see that transverse current fluctuations decay at a rate τ−1
tr < τ . By renormalizing

τ → τtr, we take into account the fact that only backwards scattering relaxes the
current. τtr and τtr are only identical in the special case of isotropic scattering. This
distinction between scattering rates becomes particularly marked when the scattering
is dominated by low angle scattering, which contributes to τ−1, but does not contribute
to the decay of current fluctuations.

• There is no diffusive pole in the transverse current fluctuations. This is not surprising,
since transverse current fluctuations do not change the charge density.

11.4 Electron Diffusion

To display the presence of diffusion, we need to examine the density response function.
Remember that a change in density is given by

〈δρ(q)〉 = i〈[ρ(q), ρ(−q)]〉
−eV (q)︷ ︸︸ ︷
δµ(q)

where V is the change in the electrical potential and

i〈[ρ(q), ρ(−q)]〉 =

∫
d3xdti〈[ρ(x, t), ρ(0)]〉e−i~q ·~x+iωt

We shall calculate this using the same set of ladder diagrams, but now using the charge
vertex. Working with Matsubara frequencies, we have

〈ρ(q, iνn)ρ(−q,−iνn)〉 =
k

k+q

+ + + . . .
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=

k+q

k
(11.24)

where the current vertex

k+q

k

= +
k

k+q k’+q

k’
= Λc(k, q).

(11.25)

Let us now rewrite (11.24) and (11.25) as equations. From (11.24) the density-density
response function is given by

〈ρ(q, iνn)ρ(−q,−iνn)〉 = −2T
∑

k

G(k + q)G(k)Λc(k, q).

From (11.25), the Dyson equation for the vertex is

Λc(k, q) = 1 + ni
∑

p′

|u(k − k′)|2G(k′ + q)G(k′)Λc(k
′, q) (11.26)

For convenience, we will assume point scattering, so that u = u0 is momentum independent
so that Λc(k, q) only depends on the frequency component part of k = (iωr,k), so

Λc(iωr, q) = 1 + niu
2
0

∑

p′

G(k′ + q)G(k′)Λc(iωr, q)

= 1 + Π(iωr, q)Λc(iωr, q) (11.27)

or

Λc(iωr, q) =
1

1 − Π(iωr, q)

where the polarization bubble

Π(iωr, q) = niu
2
0

∑

p′

G(k′ + q)G(k′)

= niu
2
0N(0)

∫
dΩ

4π

∫
dε

1

iω̃+
r − (ε+ ~q · ~vF )

1

iω̃r − ε
(11.28)

Now if iνn > 0, then the energy integral in π(iωr, q) will only give a finite result if −νn <
ωr < 0. Outside this frequency range, π(iωr, q) = 0 and Λc = 1. Inside this frequency
range, Π(iωr, q) = Π(q) is frequency independent, and given by

Π(q) =

τ−1/(2π)︷ ︸︸ ︷
niu

2
0N(0)

∫
dΩ

4π

2πi

iνn + iτ−1 + ~q · ~vF
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=

∫
dΩ

4π

1

1 + νnτ − i~q · ~vF τ
(11.29)

Now we would like to examine the slow, very long wavelength charge flucations, which means
we are interested in q small compared with the inverse mean-free path, q << l−1 = 1/(vF τ),
and in frequencies that are much smaller than the inverse scattering length νnτ << 1. This
permits us to expand Π in powers of ~q. We shall take the first non-zero contribution, which
comes in at order q2. With these considerations in mind, we may expand Π as follows

Π(q) =

∫
dΩ

4π

(
1 − νnτ + i~q · ~vF τ + i2(vF · q)2τ2 + . . .

)

=

(
1 − νnτ −

v2
F τ

3
q2τ + . . .

)
(11.30)

where we neglect terms of order O(q2νn). We may identify the combination v2
f τ/3 = D in

the second term with the diffusion constant D. Note that had we done this integral in d
dimensions, the “3” in the denominator of the second term above would be replaced by d,
but the general form for the diffusion constant in d dimensions is D = v2

fτ/d, so that in any
dimension, we obtain

Π(q) =
(
1 − νnτ −Dq2τ + . . .

)
(11.31)

We then obtain

Λc(q) =
1

1 − Π(q)
=

τ−1

νn +Dq2
, (−νn < ωr < 0). (11.32)

Summarizing then, the long-wavelength, low frequency charge vertex has the form

Λc(iωr, q) =

{
iτ−1

νn+Dq2 , (−|νn| < sgn(νn)ωr < 0)

1 otherwise

and thus the dynamic charge correlation function is given by

〈ρ(q)ρ(−q)〉 =

k+q

k
= −2N(0)T

∑

iωr

∫
dεG(ε, iω+

r )G(ε, iωr)Λc(ωr, νn)

(11.33)

Now if we evaluate this quantity at zero frequency, νn = 0, where Λc = 1, we obtain the
static susceptibility

χ0 = −2T
∑

r,k

!

(iω̃r − εk)2
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= 2

∫
dεN(ε)

∫
dω

2πi
f(ω)

{
1

(ω + i/(2τ) − ε)2
− 1

(ω − i/(2τ) − ε)2

}

= 2

∫
dεN(ε)

∫
dω

2πi

df(ω)

dω

−2iA(ε,ω)︷ ︸︸ ︷{
1

(ω + i/(2τ) − ε)
− 1

(ω) − i/(2τ) − ε)

}

= 2

∫
dω

(
−df(ω)

dω

)
=N(ω)︷ ︸︸ ︷∫

dε
N(ε)

π
A(ε, ω) = 2N(0) unrenormalized (11.34)

so that the static charge susceptibility is unaffected by the disorder. This enables us to
write

〈ρ(q)ρ(−q)〉 = χ0 − 2T
∑

iωr

∫
N(ε)dε

[
G(ε, iω+

r )G(ε, iωr)Λc(ωr, νn) − {νn → 0}]

Since this intgeral is dominated by contributions near the Fermi energy, we can extend the
energy integral over the whole real axis, replacing

∫
N(ε)dε→ N(0)

∫ ∞

−∞
dε

enabling the energy integral to be carried out by contour methods, whereupon,

〈ρ(q)ρ(−q)〉 = χ0 − 2TN(0)
∑

iωr

∫ ∞

−∞
dε
[
G(ε, iω+

r )G(ε, iωr)Λc(ωr, νn) − {νn → 0}]

= χ0 − χ0

→νnτ︷ ︸︸ ︷(
νn

νn + τ−1

)[
τ−1

νn +Dq2

]

where, again, in the last step we have assumed |νn|τ << 1. The Matsubara form for the
charge susceptibility is then

χo(~q, iνn) = χ0
Dq2

|νn| +Dq2

Analytically continuing this result, we finally obtain

χ(~q, ν + iδ) = χ0

(
Dq2

Dq2 − iν

)
(11.35)

. Note that:

• Density fluctuations are diffusive. Indeed, we could have anticipated the above form
on heuristic grounds. The solution of the diffusion equation D∇2ρ = ∂ρ

∂t is, in Fourier
space,

ρ(~q, ν) =
1

Dq2 − iν
ρ(q)
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where ρ(q) is the Fourier transform of the initial charge distribution. If we require
ρ(~q, ν = 0) = χ0U(~q), where U(~q) is the Fourier transform of the applied potential,
then this implies (11.35)

• The order of limits is important, for whereas

lim
q→0

lim
ν→0

χ(q, ν) = χ0

which is the response to a static potential of large, but finite wavelength,

lim
ν→0

lim
q→0

χ(q, ν) = 0

which states that the response to a uniform potential of vanishingly small frequency
is zero. The difference in these two response functions is due to the conservation of
charge - if one wants to change the charge density in one place, it can only be done by
redistributing the charge. If one applies a static uniform potential, the charge density
does not change.

• We can use these results to deduce the longitudinal conductivity - the current response
to a longitudinal electric field for which ~q · ~E 6= 0. Let φ(q) be the electric potential,
then δρ(q) = −χ(q)eφ(q), so that

δρ(q) = −χ0
Dq2

Dq2 − iν
eφ(q) = χ0

Di~q ·
~∇φ=− ~E(q)︷ ︸︸ ︷
(i~qφ(q))

Dq2 − iν

= −χ0

(
Di~q

Dq2 − iν

)
· ~E(q) (11.36)

Now since ∂ρ
∂t ≡ −iνρ(q), it follows that

ρ̇(q) = −eχ0

(
Dν~q

Dq2 − iν

)
· ~E(q). (11.37)

Now by continuity, e ∂ρ∂t = −~∇ · ~j(q) = −~∇~j(q) == −i~q · ~j(q), where ~j is the charge
current, so by comparing with (11.36) we deduce that the longitudinal current is

jL(q) = e2χ0D

(
iν

iν −Dq2

)
~E(q),

so the longitudinal conductivity contains a diffusive pole

σLONG(q) = χ0D

(
iν

iν −Dq2

)
.

Note also that at q = 0, σ = e2χ0D, which can be written as the Einstein relation
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σ = e2χ0D =
ne2

m
τ Einstein Relation

11.5 Weak Localization

We should like to finish our brief introduction to electron transport by touching on the
concept of electron localization. The disorder that has been considered in this chapter is
weak and the electron states we have considered are delocalized. We have remarked on a
few occasions that disorder is like a kind of “attractive” but infinitely retarded interaction,
and like other attractive interactions, it has the capacity to induce new kinds of collective
behavior amongst the electrons. Infact, disorder actually gives rise to collective interference
effects within the electron gas, which ultimately lead to the localization of the electron
wavefunction. This idea was first proposed by Anderson in the late 1950’s, but it took two
decades for the idea to gain acceptance in the physics community. Our modern understand-
ing of electron localization was greatly aided by a conceptual break-through on this problem
made by Thouless who proposed that the resistance of a material, or rather, the inverse re-
sistance, the conducance G = 1/R is a function of scale. Thouless’s idea, initially proposed
for one dimension, was taken up by the so called “Gang of Four”, Abrahams, Anderson
Licciardello and Ramakrishnan and extended to higher dimensions leading to the modern
“scaling theory” of localization. One of the ideas that emerged from this break-through,
is that electron localization results from the coherent interference between electron waves,
which at long-distances ultimately builds up to produce a disorder-drive metal-insulator
transition - a kind of phase transition in which the order parameter is the conductance.
Like all phase transitions, localization is sensitive to the dimensionality. Whereas in three
dimensions, electron localization requires that the disorder exceed a critical value, in two
and one dimension, an arbitrarily small amount of disorder is sufficient to localize elec-
trons, and the leading order effects of localization can already be seen in weakly disordered
materials. These ideas can all be developed for weakly disordered conductors by a simple
extention of the Feynman diagram methods we have been using.

To develop a rudimentary conceptual understanding of electron localization, we shall
follow a heuristic argument by Altshuler, Aronov, Larkin and Khmelnitskii[??], (see also
Bergman [??]) who pointed out that weak localization results from the constructive inter-
ference between electrons passing along time-reversed paths. Consider the amplitude for
an electron to return to its starting point. In general, it can do this by passing around a a
sequence of scattering sites labelled 1 through n, as shown in Fig. 11.3, where we identify
n ≡ 1 as the same scattering site. The amplitude for scattering around this loop is

AP = GR(n, n− 1)GR(n− 1, n− 2) . . . GR(2, 1)
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P

P

n−1

1

2

3n−2

Figure 11.3: Scattering of an electron around two time-reversed paths

where

GR(~x1, ~x2) =

∫
ddk

(2π)d
1

ω − εk + iδ
ei
~k·(~x1−~x2)

is the retarded propagator describing the amplitude for an electron of frequency ω to prop-
agate between two sites. Now for each path P, there is a corresponding time-reversed path
P̃ . The amplitude for the same electron to follow P̃ starting at 1 ≡ n, is

AP̃ = GR(1, 2)GR(2, 3) . . . GR(n− 1, n)

The total propability associated with passage along both paths is given by

P = |AP +AP̃ |2 = |AP |2 + |AP̃ |2 + 2Re[A∗
P̃
AP ]

Now if AP =
√
p1e

iφ1 and AP̃ =
√
p2e

iφ2 then total probability to scatter back to the
starting point via the two paths,

pTOT = p1 + p2 + 2
√
p1p2 cos(φ2 − φ1).

contains an interference term 2
√
p1p2 cos(φ2 − φ1). If the two paths were unrelated, then

the impurity average of interference term would be zero, and we would expect P = p1 + p2.
However! The two paths are related by time-reversal, so that AP̃ = AP , with precisely the
same magnitude and phase, and so the two processes always constructively interfere,

pTOT = 4p1

Without the interference term pTOT = 2p1, so we see that constructive interference between
time-reversed paths doubles the return probabilty.
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This means that an electron that enters into a random medium has an quantum-
mechanically enhanced probability of returning to its starting point - quantum electrons
“bounce back” twice as often as classical electrons in a a random medium! The same phe-
nomenon causes the light from a car’s headlamps to reflect backwards in a Fog. These
effects tend to localize waves - causing light localization in the case of fog - and electron
localization in disordered conductors. We shall see that the return probability is enhanced
in lower dimensions, and in one, or two dimensions, these effects innevitably lead to the
localization of electrons, for arbitrarily small amounts of disorder.

Let us now make a diagramatic identification of these interference terms. The complex
conjugate of the retarded propagator is the advanced propagator

GR(2 − 1, ω)∗ = G(2 − 1, ω + iδ)∗ = G(2 − 1, ω − iδ) == GA(2 − 1, ω)

so the interference term

A∗
P̃
AP =

n−1∏

j=1

GR(j + 1, j;ω)GA(j + 1, j;ω)

which is represented by a “ladder diagram” for repeated scattering of electron pairs. The

ωi +

ωi
r

r 2 n−1 n

j j+1

1

Figure 11.4: n-th order contribution to the “Cooperon”

sum of all such diagrams is called a “Cooperon”, because of its similarity to the pair
susceptibility in superconductivity. Notice that the lower electron line involves the advanced
propagator GA, whereas the upper involves the retarded propagator GR. In the Matsubara
approach the distinction between these two propagators is enforced by running a frequency
iω+
r ≡ iωr + iνn along the top line, and a frequency iωr along the bottom. When νn is

analytically continued and ultimately set to zero, this enforces the distinction betwen the
two propagators. Now if we twist the Cooperon around, we see that it is equivalent to a
maximally crossed, or “Langer-Neal” diagram

ωi r

ωi +
r

21 n−1 n

n n−1 2 1

Figure 11.5: A twisted cooper diagram forms a maximally crossed diagram.
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Let us now compute the amplitudes associated with these localization corrections to the
conductivity. We begin by denoting the Cooperon by a sum of ladder diagrams

C(q) =

q
= + + ...+

k’kk

−k+q −k+q −k’+q
=

niu
2
0

1 − Π̃(q)
(11.38)

where

Π̃(q) = niu
2
0

∑

k

GR(k)GA(−k + q)

where we have denoted GR(k) ≡ G(k, iω+
r ) and GA(k) ≡ G(k, iωr), implicitly assuming that

ω+
r and ωr are of opposite sign. Now if we look carefully at Π̃, we see that it is identical to

the particle hole bubble Π that we encountered when computing diffusive charge fluctuations
in (11.28 ), excepting that in the hole line has been replaced by a particle line, and in so
doing, we replace k + q → −k + q in the momentum of the propagator. However, thanks
to time-reversal symmetry holds, this this does not change the value of the polarization
bubble, and we conclude that

Π̃(q) =
(
1 − νnτ −Dq2τ + . . .

)

and thus

C(q) = niu
2
0

τ−1

Dq2 + |νn|
=

1

2πN(0)τ 2

1

Dq2 + |νn|
We shall redraw the maximally crossed contributions to the conductivity as follows

∆Qab = + +

=

k −k+q

k −k+q

+

k −k+q

k −k+q

+

k −k+q

k −k+q

= q

k −k+q

k −k+q

(11.39)
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Written out explicitly, this gives

∆σab(iνn) =
∆Qab

νn

=
2e2T

νn

∑

k=(k,iωr)
q

vakv
b
−k+q

[
C(q)G+(k)G−(k)G+(−k + q)G−(−k + q) − {iνn → 0}]

At this point, we can simplify the diagram by observing that to extract the most singular,
long-distance effects of localization, we can ignore the smooth q dependence of the conduc-
tion electron lines. By setting q = 0 along the conduction lines, we decouple ∆σ into a
product of two terms

∆σab(iνn) =
2e2T

νn

∑

q

C(q)

− νn
2πT

ne2

m
δab
∫
dε

︷ ︸︸ ︷∑

k

vakv
b
−k

[
(G+(k))2(G−(k))2 − {iνn → 0}

]

= −ne
2

m
δab

1

2πN(0)τ 2

∫
ddq

(2π)d
1

Dq2 + |νn|

∫
dε

2π
G2
R(ε)G2

A(ε) (11.40)

The energy integral in the second term yields

∫
dε

2π
G2
R(ε)G2

A(ε) = 2τ 3.

We need to consider the upper and lower bounds to the momentum integral. The upper
bound is set by the condition that Dq2 = τ−1, the elastic scattering rate. The lower bound
is set either by the size of the system L, in which case q = L−1, or by the inelastic scattering
rate τ−1

i . We may define

τ−1
0 = max(

D

L2
, τ−1
i )

as the inverse time-scale associated with the lower cutoff. The quantity

Eth = h̄
D

L2

is called the “Thouless” energy, and corresponds to the energy scale associated with the
phase-coherent diffusion of electrons from one side of the sample, to the other. In an ultra-
pure, or small system, it is this scale that provides the infra-red cut-off to localization effects.
We may then write

∆σab(ν) = −δab
(
ne2τ

m

)
1

2πN(0)

∫ (Dτ)−1/2

(Dτo)−1/2

ddq

(2π)d
1

Dq2 − iν
(11.41)
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If we apply a sudden pulse of electric field E = E0δ(t), giving rise to a white noise field
spectrum, E(ν) = E0, the current induced by localization effects has a frequency spectrum

j(ν) = ∆σ(ν)E(ν) = ∆σ(ν)E0 ∝
∫ (Dτ)−1/2

(Dτ0)−1/2

ddq

(2π)d
1

Dq2 − iν

In highly phase-coherent systems, the characteristic time scale of the localization back-
scattering response in the current pulse is given by t ∼ D/L2 which we recongnize as the
time for electrons to diffuse across the entire sample. This is a kind of backscattering “echo”
produced by the phase-coherent diffusion of electrons along time-reversed paths that cross
the entire sample. The momentum integral in ∆σ is strongly dependent on dimensionality.
in three and higher dimensions, this term is finite, so that the weak-localization effects are
a perturbation to the Drude conductivity. However, if the dimension d ≤ 2, this integral
becomes divergent, and in a non-interacting system, it is cut off only by the frequency, or
the finite size L of the system. In two dimensions,

∫ (Dτ)−1/2

(Dτo)−1/2

ddq

(2π)d
1

Dq2 − iν
=

1

4πD
ln(

τ

τ0
)

giving rise to a localization correction to the static conductivity that is

∆σ = −
(
ne2τ

m

)
1

8π2N(0)D
ln(

τ0
τ

) (11.42)

Replacing nτ/m→ 2N(0)D, we obtain

∆σ = −
(
e2

2π2

)
ln(

τ

τ0
) → − 1

2π2

(
e2

h̄

)
ln(

τ0
τ

) (11.43)

where we have restored h̄ into the expression. The quantity g0 = e2

h̄ ∼ 1
10 (kΩ)−1 is known

as the universal conductance.
There are a number of interesting consequences of these results

• By replacing 2πN(0)D = 1
2kF l, the total conductivity can be written

σ = σ0

[
1 − 1

2πkF l
ln(

τ0
τ

)

]
(11.44)

We see that the quantum-interference correction to the conductivity is of orderO(1/(kF l)),
justifying their neglect in our earlier calculations.

• If we consider the case where inelastic scattering is negligible, the localization correc-
tion to the conductivity in two dimensions is

σ = σ0

[
1 − 1

2πkF l
ln(

1

EThτ
)

]
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∼ σ0

[
1 − 1

πkF l
ln(

L

l
)

]
(11.45)

so that the conductivity drops gradually to zero as the size of the sample increases.
The conductivity becomes of order e2

h̄ at the “localization length”

Lc ∼ lekF l

independently of the strength of the interaction. In two dimensions, resistivity and
resistance have the same dimension, so we expect that when the size of the system
is equal to the localization length, the resistivity is always of order 10kΩ! At longer
length-scales, the material evolves into insulator.

• The weak localization corrections are not divergent for dimensions greater than 2, but
become much stronger in dimensions below d = 2. It was this observation that led the
the “Gang of Four”, Abrahams, Anderson, Licciardello and Ramakrishnan, to propose
the scaling theory for localization, in which dc = 2 is the critical dimensionality.

We shall end this section by making a brief remark about the scaling theory of local-
ization. Stimulated by the results in two dimensions, and earlier work on one dimensional
wires, by Thouless, Abrahams et al. were led to propose that in any dimension, conduc-
tance, or inverse resistance, G = 1/R could always be normalized to form a dimensionless
parameter

g(L) =
G(L)
e2

h̄

which satisfies a one-parameter scaling equation

d ln g(L)

d lnL
= β(g)

When this quantity is large, we may use the Drude model, so that g(L) = ne2τ
m Ld−2, and

β(g) = (d− 2), (g → ∞)

is independent of g. When the conductance was small g → 0, on scales longer than the
localization length Lc, they argued that g(L) would decay exponentially g(L) ∼ e−L/Lc , so
that for small conductance,

β(g) ∼ − ln g, (g → 0)

By connecting up these two asymptotic limits, Abrahams et al reasoned that the beta
function for conductance would take the form shown in Fig. 11.6. In dimensions d ≤ 2,
the β(g) is always negative, so the conductance always scales to zero and electrons are
always localized. However in dimensions d > 2, there is a disorder-driven metal-insulator
transition at the critical conductance g = gc. As the amount of disorder is increased, when
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−(L / L   )cg(L) ~ e

g(L) ~ L
(d−2)

d ln (g)
d ln L

β(    ) = g

gc

d−2

d>2

d=2

d<2

ln g

Insulator

Metal

Figure 11.6: The scaling function β(g) deduced by Abrahams et al. for a non-interacting
metal. For d > 2 there is critical conductance gc which gives rise to a disorder-driven metal-
insulator transition. In d ≤ 2, disorder always gives rise to localization and the formation
of an insulator.

the short-distance conductance g passes below gc, the material becomes an insulator in the
thermodynamic limit. These heuristic arguments stimulated the development of a whole
new field of research into the collective effects of disorder on conductors, and the basic
results of the scaling theory of localization are well-established in metals where the effects
of interactions between electrons are negligible. Interest in this field continues actively
today, with the surprise discovery in the late 1990s that two dimensional electron gases
formed within heterojunctions appear to exhibit a metal insulator transition - a result that
confounds the one-parameter scaling theory, and is thought in some circles to result from
electron-electron interaction effects.

11.6 Exercises for chapter 11

1. (Alternative derivation of the electrical conductivity. )
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In our treatment of the electrical conductivity, we derived

σab(iνn) = e2
T

νn

∑

k,iωr

va
kv

b
k

[
G(k, iωr + iνn)G(k, iωr) −G(k, iωr)

2
]

This integral was carried out by first integrating over momentum, then integrating over fre-
quency. This techique is hard to generalize and it is often more convenient to integrate the
expression in the opposite order. This is the topic of this question. Consider the case where

G(k, iωr) =
1

iωr − εk − Σ(iωr)

and Σ(iωr) is any momentum-independent self-energy.

(a) By rewriting the momentum integral as an integral over kinetic energy ε and, angle show
that the conductivity can be rewritten as σab(iνn) = δabσ(iνn), where

σ(iωn) =
ne2

m

1

νn

∫ ∞

−∞
dε T

∑

iωr

[
G(ε, iωr + iνn)G(ε, iωr) −G(ε, iωr)

2
]
.

and

G(ε, z) ≡ 1

z − ε− Σ(z)

(b) Carry out the Matsubara sum in the above expression to obtain

σ(iωn) =
ne2

m

1

νn

∫ ∞

−∞

dω

π

∫ ∞

−∞
dεf(ω) [G(ε, ω + iνn) +G(ε, ω − iνn)]A(ε, ω),

where A(ε, ω) = ImG(ε, ω − iδ). (Hint - replace T
∑

n → −
∫

dz
2πif(z), and notice

that while G(ε, z) has a branch cut along z = ω with discontinuity given by G(ε, ω −
iδ) − G(ε, ω + iδ) = 2iA(ε, ω), while while G(ε, z + iνn) has a similar branch cut along
z = ω − iνn. Wrap the contour around these branch cuts and evaluate the result).

(c) Carry out the energy integral in the above expression to obtain

σ(iωn) =
ne2

m

1

νn

∫ ∞

−∞

dω

π
f(ω)

×
[

1

iνn − (Σ(ω + iνn) − Σ(ω − iδ))
− 1

iνn − (Σ(ω + iδ) − Σ(ω − iνn))

]
.(11.46)

(d) Carry out the analytic continuation in the above expression to finally obtain

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f(ω − ν/2) − f(ω + ν/2)

ν

]
×

1

−iν + i(Σ(ω + ν/2 + iδ) − Σ(ω − ν/2 − iδ))
. (11.47)

(e) Show that your expression for the optical conductivity can be rewritten in the form

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f(ω − ν/2) − f(ω + ν/2)

ν

]
1

τ−1(ω, ν) − iνZ(ω, ν)
. (11.48)
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where

τ−1(ω, ν) = Im [Σ(ω − nu/2− iδ) + Σ(ω + ν/2− iδ)] (11.49)

is the average of the scattering rate at frequencies ω ± ν/2 and

Z−1(ω, ν) − 1 = −1

ν
Re [Σ(ω − ν/2) − Σ(ω + ν/2)]

is a kind of “wavefunction renormalization”.

(f) Show that if the ω dependence of Z and τ−1 can be neglected, one arrives at the phe-
nomenological form

σ(ν) =
ne2

m

[
1

τ−1(ν) − iνZ−1(ν)

]

This form is often used to analyze optical spectra.

(g) Show that the zero temperature conductivity is given by the thermal average

σ(ν + iδ) =
ne2τ

m
(11.50)

where τ−1 = 2ImΣ(0− iδ).
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Chapter 12

Path Integrals and Phase
transitions

12.1 Introduction: Broken symmetry, coherent states and
path integrals.

In this chapter, we begin our effort to understand the concept of “Broken Symmetry”.
This concept represents one of the monumental achievements of the 20th century. In 1937,
Landau[?] formulated the concept of broken symmetry- proposing that phase transitions
take place via the process of symmetry reduction, which he described in terms of his order
parameter concept. Landau introduced the idea of a an order parameter ψ, in terms of
which the Free energy can be written

F [ψ] = −a(Tc − T )|ψ|2 + b|ψ|4

When the temperature T drops below T = Tc, the quadratic term in this function becomes
negative, and the minimum of the Free energy moves from ψ = 0 to ψ = ±√

ρ, where
ρ = ψ|2 = a

2b(Tc−T ), thereby forming a state that breaks the ψ → −ψ invariance symmetry
of F .

One can not understate the huge impact that order parameter and symmetry reduction
concept, epitomized by Landau’s almost trivial polynomial Free energy function, has had on
physics today. The Landau Ginzburg generalization of this function, which includes gradient
terms, provides the foundation to our understanding of phase transitions, superconductivity,
the Meissner effect, and through it the so-called “Anderson Higg’s” mechanism by which
a gauge boson can acquire a mass as a result of symmetry breaking. This one concept
explains at a stroke, the exclusion of magnetic fields from superconductors, and the weak
force of radioactive β decay. Furthermore, the Landau concept provides the foundation for
our understanding of criticality, and the concept of the renormalization group. It is only
today, at the dawn of the 21st century that we are beginning to understand the important
ways in which the Landau Ginzburg approach may break down.
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cT < T

cT = T critical

normal

Broken Symmetry
>0ψ

F[   ]ψ

ψ

cT > T

Figure 12.1: Illustrating the Landau free energy functional F [ψ].

In this chapter, we should like to relate the order parameter concept to many body
quantum physics. One of the key ideas that we will need here, is the concept of “off-diagonal
long range order”. This extension of Landau’s broken symmetry idea was first developed
by Onsager and Penrose in the early 1950’s. They were interested in the microscopic
nature of the order parameter in superfluid, which is really a Bose Einstein condensate
in an interacting bosonic fluid. Penrose and Onsager proposed that a superfluid could be
understood as a state of matter in which the two-particle density matrix

ρ(x, x′) = 〈ψ†(x′)ψ(x)〉

could be factorized as
ρ(x, x′) = ψ∗(x′)ψ(x) + small terms

where
ψ(x) =

√
ρ)se

iφ = 〈N − 1|ψ̂(x)|N〉
is the order parameter of the superfluid. ρs is the superfluid density and φ the phase of the
condensate. In this way, Onsager and Penrose were able to link Landau’s phenomenological
order parameter with a microscopic matrix element of the particle field. This concept of
“off-diagonal long-range order” (ODLRO) was subsequently generalized to Fermi systems
as part of the BCS theory of superconductivity, where the off-diagonal order parameter

F (x− x′) = 〈N − 2|ψ̂↓(x)ψ̂↑(x′)|N〉

defines the wavefunction of the Cooper pair.
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One of the remarkable spin-offs of superconductivity, was that it led to an understanding
of how a gauge boson can acquire a mass as a result of symmetry breaking. This idea was
first discussed by Anderson in 1959[?], and in more detail in 1964[?, ?], but the concept
evolved further and spread from Bell Laboratories to the particle physics community, ulti-
mately re-appearing as the Higg’s mechanism for spontaneous symmetry breaking in a Yang
Mills theory. The Anderson-Higgs mechanism is a beautiful example of how the study of
cryogenics led to a fundamentally new way of viewing the universe, providing a mechanism
for the symmetry breaking between the electrical and weak forces in nature.

Another consequence of broken symmetry concept is the notion of “generalized rigidity”[?],
a concept which has its origins in London’s early model of superconductivity and the two-
fluid models of superfluidity proposed independently by Tisza , according to which, if the
phase of a boson or Cooper pair develops a rigidity, then it costs a phase bending energy

U(x) ∼ 1

2
ρs(∇φ(x))2, (12.1)

from which we derive that the “superflow” of particles is directly proportional to the amount
of phase bending, or the gradient of the phase

js = ρs∇φ. (12.2)

Anderson noted that we can generalize this concept to a wide variety of broken symmetries,
each with their own type of superflow (see table 1). Thus broken translation symmetry
leads to the superflow of momentum, or sheer stress, broken spin symmetry leads to the
superflow of spin or spin superflow. There are undoubtedly new classes of broken symmetry
yet to be discovered.

Table. 1. Order parameters, broken symmetry and rigidity.

Name Broken Symmetry Rigidity/Supercurrent

Crystal Translation Symmetry Momentum superflow
(Sheer stress)

Superfluid Gauge symmetry Matter superflow

Superconductivity E.M. Gauge symmetry Charge superflow

Antiferromagnetism Spin rotation symmetry Spin superflow
(x-y magnets only)

? Time Translation Symmetry Energy superflow ?
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But to relate these various threads, we shall need some new tools. In particular, we
shall need to introduce the concept of the “coherent state”. Coherent states are simply
eigenstates of the field operators. For example, the coherent state for a single boson is
given by

|α〉 = eb̂
†α|0〉

We recall that since [b, b†] = 1, [b, (b†)n] = n(b†)n−1 and [b, eαb
†
] = αbeαb

†
, it follows that

b|α〉 =

0︷ ︸︸ ︷
eαb̂
†
b|0〉+

αeαb
†

︷ ︸︸ ︷
[b, eαb̂

†
] |0〉 = α|α〉

is an eigenstate of the field operator. By taking α =
√
Neiθ, where N >> 1 is the total

number of particles in the condenstate, one arrives at the coherence state wavefunction for
a “Bose-Einstein” or superfluid condensate in which

〈b〉 =
√
Neiθ

and N is the number of particles in the condensate. In a bosonic superfluid or Bose Einstein
condensate,

b ≡ 1√
V

∫
d3xψ(x)

is actually the zero momentum component of the field operator.

When we come to consider broken symmetry states involving fermions, the correspond-
ing boson b̂ is made up out of bilinears of fermions, for example the ground-sate of a
Bardeen-Cooper-Schrieffer (BCS) wavefunction for a superconductor, for a Cooper pair,
and

b̂† →
∑

k

αkc
†
k↑c
†
−k↓

becomes the creation operator for a Cooper pair, and the corresponding coherent state is
written

|α〉 = e
∑

k
αkc
†
k↑c
†
−k↓ |0〉. (12.3)

We can expand this product

|α〉 =
∏

k

(1+αkc
†
k↑c
†
−k↓)︷ ︸︸ ︷

eαkc
†
k↑c
†
−k↓ |0〉 =

∏

k

(1 + αkc
†
k↑c
†
−k↓)|0〉 (12.4)

where the last step is made possible by Taylor expanding the exponential and noting that
(c†k↑c†−k↓)n = 0 for n > 1. This last form for a coherent state is the BCS wavefunction,
whose discovery led to a revolution in many body physics. To develop an understanding of
these remarkable states of matter, we need to take a step back and develop the quantum
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physics of coherent states. This leads us naturally to the path integral formulation of many
body physics.

There are two key ideas behind the path integration technique: (i) the Feynman concept
of summing over quantum histories,

Z =
∑

path

exp

[
−Spath

]
(12.5)

where Spath is the “action” associated with the particular configuration of fields and (ii)
the concept of “coherent states”, whereby one works with eigenstates of the microscopic
quantum fields. We define

|ψ(x)〉 = exp

[
−
∫
d3xψ(x)ψ̂†(x)

]
|0〉 (12.6)

to be the coherent state of the field ψ. This state is the eigenvector of the microscopic
quantum field, in that

ψ̂(x)|ψ〉 = ψ(x)|ψ〉 (12.7)

where ψ(x) is a “c-number”, not an operator. We shall be able to do this for both bosons
and fermions, by generalizing our concept of “c-numbers” to include anticommuting grass-
man numbers. Coherent states have several marvelous properties. In particular, we can
immediately write down the matrix elements of the Hamiltonian in this basis, simply by
replacing the field operators by their expectation values. More importantly, each set of
functions ψ(x, t) now defines a “history”, or path over which the system evolves at each
point in space. The action associated with each path is given simply by

SPATH =

∫ β

0
dτL[ψ̄, ψ] (12.8)

xψ(   , τ)

where

L[ψ̄, ψ] =

∫
d3x[ψ̄(x, τ)∂τψ(x, τ)] +H[ψ̄, ψ] (12.9)
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is the Lagrangian density, and H is the Hamiltonian, with field operators replaced by the
c-numbers ψ, and their conjugates ψ̄. It turns out that we can do the corresponding path
integral for all non-interacting problems. This is already a major achievement. It is made
still more powerful, by the fact that many broken symmetry problems can be transformed,
by the method of “Hubbard Stratonovich”, into a problem of “free” particles moving in
a fluctuating effective field. This provides the formal back-bone for the study of broken
symmetry phase transitions.

Zinteracting −→
∑

{∆}

[
path integral of fermions moving in field ∆

]
(12.10)

where {∆} denotes a given configuration of the symmetry breaking field ∆. In these notes I
will show you how this works for the case of fermions. Fermions are more problematic than
bosons, because the numbers ψ(x) appearing in the coherent states must anticommute with
each-other. They are thus a new kind of number, which requires some new algebraic tricks.

12.2 Coherent states and Grassman mathematics

To illustrate the basic approach, we shall consider the simpler problem, of a single fermionic
field ĉ†. The coherent state for this field is

|c〉 = eĉ
†c|0〉

and its conjugate is given by
〈c̄| = 〈0|ec̄ĉ

We use c̄, rather than a dagger, because we shall need to consider c and c̄ to be independent
variables. Fermionic coherent states are a little tricky. On the one hand, the quantities c
and c̄ must behave as “c-numbers”, in so far as they commute with all observables Ô

cÔ = Ôc

On the other hand, in order that the numbers c and c̄ correctly represent the anticommuting
algebra of the original Fermi fields, they must anticommute amongst themselves, and with
other Fermi operators, so that

cc̄+ c̄c = 0, (12.11)

cψ̂ + ψ̂c = 0, (12.12)

But c must also anticommute with itself, which means that

c2 = c̄2 = 0,

But how can we possibly deal with numbers which when squared, give zero? At first sight
this task might seem doomed to failure or triviality. Actually, this proves not to be the
case, and the concept of anticommuting or “Grassman” numbers can be developed into a
fully consistent calculus. Indeed, the leap to this new type of number is no worst than the
jump from real, to complex numbers.
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Table. 1. Grassman Calculus .

Algebra
c1c2 = −c2c1 anticommute with Fermions and other

Grassman numbers

cb̂ = b̂c, cψ̂ = −ψ̂c commute with bosons, anticommute with
Fermi operators.

Functions f [c̄, c] = fo + c̄f1 + f̃1c+ f12c̄c
Since c2 = 0, truncate at linear order in
each variable.

Calculus

∂f = −f̃1 − f12c̄
Differentiation

∂̄f = f1 + f12c

∫
dc ≡ ∂c

∫
dc1 = ∂c1 = 0

∫
dcc = ∂cc = 1

Completeness

〈c|c〉 = ec̄c Over-complete basis.
∫
dc̄dce−c̄c|c〉〈c̄| = 1 Completeness relation.

Tr[Â] = −
∫
dc̄dcec̄c〈c̄|Â|c〉 Trace Formula.

Change of
variable

J

(
c1 . . . cr
ξ1 . . . ξr

)
=

∣∣∣∣
∂c1 . . . cr
∂ξ1 . . . ξr

∣∣∣∣
−1

Jacobian - inverse of Bosonic Jacobian.

Gaussian
Integrals

∫ ∏

j

dc̄jdcje
−[c̄·A·c̄−j̄·c−c̄·j] = detA × e[j̄·A

−1·j]

The main effect of the anticommuting properties of Grassmans is to drastically reduce the
set of possible functions and the set of possible linear operations one can carry out on such
functions. For example, the Taylor series expansion of Grassman functions has to truncate
at first order in any particular variable. Thus a function of two variables, f(c̄, c)

f [c̄, c] = fo + c̄f1 + f̃1c+ f12c̄c

only has four terms! The coherent state (12.2) also truncates, so that

|c〉 = |0〉 + ĉ†c|0〉
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= |0〉 + |1〉c (12.13)

so that the overlap between the “n” fermion state (n = 0, 1) and the coherent state is given
by

〈n|c〉 = cn, (n = 0, 1)

To develop a path integral representation for fermions one needs to know how to carry out
Grassman calculus. The key properties of Grassman algebra are summarized in table 1. A
more detailed discussion of these properties is given in the appendix at the end of these
notes.

12.2.1 Completeness and matrix elements

Coherent states are over-complete: you can see that

〈c̄|c〉 = 〈0|(1 + c̄ĉ)(1 + ĉ†c)|0〉 = 1 + c̄c = ec̄c (12.14)

and we need to cancel out this term in the measure for summing over coherent states. If
we start with the identity

∫
dc̄dce−c̄ccnc̄m = δnm, (n,m = 0, 1)

we see that the overlap between the eigenstates |n〉 of definite particle number is given by

〈n|m〉 =

∫
dc̄dce−c̄c

〈n|c〉︷︸︸︷
cn

〈c̄|m〉︷︸︸︷
c̄m

δnm =

∫
dc̄dce−c̄c〈n|c〉〈c̄|m〉 (12.15)

and since the basis {|n〉} = {|0〉, |1〉} is complete, the only way this can hold true for all
state |n〉, |m〉 ∫

dc̄dc|c〉〈c̄|e−c̄c = |0〉〈0| + |1〉〈1| ≡ 1 (12.16)

is the identity. This is the completeness relation for coherent states. |1〉 = ĉ†|0〉 is the state
with one particle in it. The exponential may be loosely regarded as a normalizing factor
which takes account of the over-completeness:

e−c̄c|c〉〈c̄| ∼ |c〉〈c̄|
〈c̄|c〉 .

We can regard the combination

∑

c̄, c

≡
∫
dc̄dc|c〉〈c̄|e−c̄c (12.17)
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as the measure for fermionic coherent states, With this understanding, the completeness
relation can be written simply as ∑

c̄,c

|c〉〈c̄| = 1

Matrix elements between coherent states are easy to evaluate. If an operator A[ĉ†, ĉ] is
normal ordered, then since the coherent states are eigenvectors of the quantum fields, it
follows that

〈c̄|Â|c〉 = 〈c̄|c〉A[c̄, c] = ec̄cA[c̄, c], (12.18)

i.e
〈c̄|Â|c〉 = ec̄c × c-number formed by replacing (ĉ, ĉ†) → (c, c̄).

It is this wonderful feature that makes coherent states so very special, for at a swoop, we
can convert normal-ordered operators into C-numbers.

The last result we need is the trace of A. We might guess that the appropriate expression
is

Tr[Â] =
∑

c̄,c

〈c̄|Â|c〉

actually - this is almost right, but infact, it turns out that the anticommuting properties of
the Grassmann’s force us to introduce a minus sign into this expression

Tr[Â] =
∑

c̄,c

〈−c̄|Â|c〉 =

∫
dc̄dce−c̄c〈−c̄|Â|c〉 (12.19)

which we shall shortly see, gives rise to the antisymmetric boundary conditions of fermionic
fields. To prove the above result, write A in the basis of definite occupation,

Â =
∑

n,m=0,1

|n〉Anm〈m|

and insert it into the above expression. This gives
∫
dc̄dce−c̄c〈−c̄|Â|c〉 =

∑

n,m

∫
dc̄dce−c̄c〈−c̄|n〉Anm〈m|c〉

=
∑

n,m

Anm

∫
dc̄dce−c̄c(−c̄)ncm

=
∑

n,m

Anm

δmn︷ ︸︸ ︷∫
dc̄dce−c̄ccm(c̄)n

=
∑

n=0,1

Ann = Tr[Â] (12.20)

where the all-important minus sign is absorbed after the second line, when we anticommute
cm and c̄n. We shall make extensive use of the completeness and trace formulae (12.16)
and (12.19) in developing the path integral. Both expressions are simply generalized to
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many fields cj by making the appropriate change in the measure and by replacing c̄c in the
exponent, by the dot product,

dc̄dc ≡
∏

j

dc̄jdcj , (12.21)

c̄c =
∑

j

c̄jcj .

12.3 Path integral for the partition function

To begin with, we consider a single fermion, with Hamiltonian

H = εĉ†ĉ (12.22)

Using the trace formula (12.19), the partition function

Z = Tre−βH

can be re-written in terms of coherent states as

Z = −
∫
dc̄Ndc1e

c̄N c1〈c̄N |e−βH |c1〉, (12.23)

where the labeling anticipates the next step. Now we expand the exponential into a sequence
of time-slices

e−βH =

(
e−∆τH

)N
, ∆τ = β/N.

Between each time slice we introduce the completeness relation
∫
dc̄jdcj+1|cj+1〉〈c̄j |e−c̄jcj+1 = 1

so that

Z = −
∫
dc̄Ndc1e

c̄N c1
N−1∏

j=1

dc̄jdcj+1e
−c̄jcj+1

N∏

j=1

〈c̄j |e−H∆τ |cj〉 (12.24)

where the first integral is associated with the trace and the subsequent integrals with the
N − 1 completeness relations. Now if we define

cN+1 = −c1, c̄0 = −cN (12.25)

we are able to identify the N +1 st time slice with the 1st time slice and the 0 th time slice
with the N the time-slice. In this way, the integral associated with the trace

−
∫
dc̄Ndc1e

c̄Nc1〈c̄N | . . . |c1〉 =

∫
dc̄NdcN+1e

−c̄N cN+1〈c̄N | . . . | − cN+1〉

=

∫
dc̄0dc1e

−c̄0c1〈−c̄0| . . . |c1〉 (12.26)
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can be absorbed into the other N − 1 integrals, and furthermore, we notice that the fields
entering into the discrete path integral are antiperiodic.

With this observation,

Z = −
∫ N∏

j=1

dc̄jdcj+1e
−c̄jcj+1

N∏

j=1

〈c̄j |e−H∆τ |cj〉 (12.27)

Provided each time-slice is of sufficiently brief duration, we can replace e−∆τH by its normal
ordered form, so that

〈c̄j |e−H∆τ |cj〉 = ec̄j c̄je−H[c̄jcj ]∆τ +O(∆τ2),

where H[c̄, c] = εc̄c is the normal-ordered Hamiltonian, with Grassman numbers replacing
operators.

1= dcdc e−cc|c><c|

τ=β

τ=0

∆τ

c j cj−(1+ε ∆τ)
e

Fig. 2 Division of time evolution into “time-slices”.

Combining (12.23) and (12.24) we can write

Z = LtN→∞ZN

ZN =

∫ N∏

j=1

dc̄jdcj exp

[
−S

]

S =
N∑

j=1

[
c̄j(cj+1 − cj)/∆τ + εc̄j , cj

]
∆τ, (12.28)

Let us pause to reflect on what this means. This path integral represents a sum over all
possible values “histories” of the fields:

c(τj) ≡ {c1, c2 . . . cN}, (12.29)

c̄(τj) ≡ {c̄1, c̄2 . . . c̄N} (12.30)

as illustrated in Fig. 2. This kind of integral is also called a “functional integral”, because it
involves integrating over all possible values of the functions c(τ) and c̄(τ). When we take the
thickness of the time slices to zero, the discrete functions c(τ) and c̄(τ) become functions of
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continuous time. The boundary condition (12.25) implies that the set of complete functions
which we sum over must satisfy anti-periodic boundary conditions

c(τ + β) = −c(τ), c̄(τ + β) = −c̄(τ)

In the continuum limit, N → ∞, we now replace

c̄j(cj − cj−1)/∆τ → c̄∂τ c,
∑

j

∆τ →
∫ β

0
dτ. (12.31)

These cavalier replacements require some thought, for we are certainly not dealing with
smooth functions - if such a notion is even valid for Grassman functions! The sense in
which cj becomes “close” to cj+1 needs to be carefully understood. Suppose we rewrite the
antiperiodic cj in terms of their frequency components as

cj =
1√
β

∑

|n|≤N/2
c(iωn)e

−iωnτj ,

then in this new basis,

∑

j

c̄j(cj+1 − cj) =
∑

|n|≤N/2
c̄(iωn)

[
e−iωn∆τ − 1

∆τ

]
c(iωn)

In practice, the path-integral is dominated by functions cj with a maximum characteristic
temporal frequency max(|ωn|) ∼ ε, so that as ∆τ → 0, we can replace

[
e−iωn∆τ − 1

∆τ

]
→ −iωn

which is the Fourier transform of ∂τ .

With these provisos, the continuum limit of the action and path integral are then

S =

∫ ∞

0
dτ

[
c̄(∂τ + ε)c

]
,

Z =

∫
D[c̄, c] exp

[
−S

]
(12.32)

where we use the notation

D[c̄, c] =
∏

τl

dc̄(τl)dc(τl)

At first sight, it might seem a horrendous task to carry out the integral over all possible
functions c(τ). How can we possibly do this in a controlled fashion? The clue to this
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problem lies in the observation that the set of functions c(τ) (and its conjugate, c̄(τ) ) are
spanned by a discrete but complete set of anti-periodic functions, as follows

c(τ) =
1√
β

∑

n

cne
−iωnτ ,

We can integrate over all possible functions c(τ) by integrating over all possible values of
the coefficients cn and since the transformation which links these two bases is unitary, the
Jacobian which links the two bases is unity, i.e.

D[c̄, c] ≡
∏

n

dc̄ndcn

It is much easier to visualize and work with a discrete basis. We can transform to this basis,
by replacing ∂τ → −iωn in the action, rewriting it as

S =
∑

n

c̄n(−iωn + ε)cn

Now the path integral is just a discrete Gaussian integral

Z =

∫ ∏

n

dc̄ndcn exp

[∑

n

c̄n(−iωn + ε)cn

]
=
∏

n

(−iωn + ε)

so that the Free energy is given by

F = −T lnZ = −T
∑

n

ln(ε− iωn)e
iωn0+

Here we have added a small convergence factor eiωn0+
because the time-evolution from τ = 0

to τ = β is equivalent to time evolution from τ = 0 to τ = 0−.
We can show that this reverts to the standard expression for one-particle free energy by

replacing the Matsubara sum with a contour integral:

F = T

∮
dz

2πi
f(z)ln[ελ − z]ez0

+
(12.33)

where the contour integral passes counter-clockwise around the poles of the Fermi function
at z = iωn, and the choice of f(z) is dictated by the convergence factor. We take the
logarithm to have a branch cut which extends from z = ελ to infinity. By deforming the
integral around this branch cut we obtain

F = −
∫ ∞

ε

dω

2πi
f(ω)

[
ln(ε− ω − iδ) − (c.c.)

]

=

∫ ∞

ε
dωf(ω)

= −T ln[1 + e−βε] (12.34)

which is the well-known Free energy of a single fermion.
Of course, here we have used a sledge-hammer to crack a walnut, but the virtue of the

method is the ease with which it can be generalized to much more complex problems. Three
important points need to be made about this result:
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• This result can easily be generalized to an arbitrary number of Fermi-fields. In this
case,

S =

∫ ∞

0
dτ

[∑

λ

c̄λ∂τ cλ +H[c̄, c]

]
,

and the measure for the path integral becomes

D[c̄, c] =
∏

τl,r

dc̄λ(τl)dcλ(τl)

• The derivation did not depend on any details of H, and can thus be simply general-
ized to interacting Hamiltonians. In both cases, the conversion of the normal-order
Hamiltonian occurs by simply replacing operators with the appropriate Grassman
variables.

: H[c†, c] :→ H[c̄, c]

• Because the Jacobian for a unitary transformation is unity, we can change basis inside
the path integral. For example, if we start with the action for a gas of fermions

S =

∫ β

0
dτ
∑

k

c̄k(∂τ + εk)ck,

where εk = (k2/2m) − µ, we can transform to a completely discrete basis by Fourier
transforming in time,

ck =
1√
β

∑

n

ckne
iωnτ ,

∂τ → −iωn

D[c̄, c] →
∏

k,n

dc̄kndckn. (12.35)

In the this discrete basis, the action becomes

S =
∑

k,n

(εk − iωn)c̄knckn

This basis usually proves very useful for practical calculations. We can also transform
to a continuum real-space basis, as follows

ck =
1√
V

∫
d3xψ(x)e−ik·x,

εk → −∇2

2m
− µ

D[c̄, c] → D[ψ̄, ψ]. (12.36)
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In the new basis, the the action becomes

S =

∫ β

0
dτ

∫
d3xψ̄(x)

[
∂τ −

∇2

2m
− µ

]
ψ(x).

As in the case of a single field, the discrete and continuous measures, (12.35) and
(12.36) are equivalent ∏

k,n

dc̄kndckn ≡ D[ψ̄, ψ].

because the space of continuous functions ψ(x) is spanned by a complete, but discrete
set of basis functions.

ψ(x, τ) =
1√
βV

∑

k,n

ckne
i(k·x−ωnτ),

We can integrate over all possible functions ψ(x, τ) by integrating over all values of
the discrete vector ckn.

12.4 General evaluation of Path Integral for non-interacting
Fermions

For non-interacting fermions the action only involves bilinears of the Fermi fields, so the
path integral is of Gaussian form and can always be evaluated. To discuss the most general
case, we shall include “source terms” in the original Hamiltonian, writing

H(τ) =
∑

λ

[ελc
†
λcλ − j̄λ(τ)cλ − c†λjλ(τ)]

where c†λ creates a fermion in the eigenstate with energy ελ. With source terms, the
partition function becomes a “generating functional”

Z[j̄, j] = Tr

[
Texp{−

∫ β

0
dτH(τ)}

]
.

Derivatives of the generating functional generate the irreducible Green’s functions of the
fermions, for instance,

δlnZ[j̄, j]

δj̄(1)
= 〈c(1)〉 (12.37)

δ2lnZ[j̄, j]

δj̄(2)δj(1)
= 〈T [c(1)c†(2)]〉 − 〈c(2)〉〈c†(1)〉 (12.38)

where

〈. . .〉 =
1

Z[j̄, j]
Tr

[
Texp{−

∫ β

0
dτH(τ)} . . .

]
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Transforming to a path integral representation, now

Z[j̄, j] =

∫
D[c̄, c]e−S (12.39)

S =

∫
dτ

[
c̄(τ)(∂τ + h)c(τ) − j̄(τ)c(τ) − c̄(τ)j(τ)

]
(12.40)

where hαβ = εαδαβ is the one-particle Hamiltonian. One can carry out functional derivatives
on this integral without actually evaluating it. For example, we find that

〈c(1)〉 =
1

Z[j̄, j]

∫
D[c̄, c]c(1)e−S (12.41)

〈T [c(1)c†(2)]〉 =
1

Z[j̄, j]

∫
D[c̄, c]c(1)c̄(2)e−S (12.42)

Notice how the path integral automatically furnishes us with time-ordered expectation
values.

Fortunately, the path integral is Gaussian, allowing us to use the general result obtained
in Appendix C,

∫ ∏

j

dξ̄jdξj exp[−ξ̄ ·A · ξ + j̄ · ξ + ξ̄ · j] = detA exp[j̄ ·A−1 · j].

In the case considered here, A = ∂τ + h, so we can do the integral, to obtain

Z[j̄, j] = det[∂τ + h] exp

[
−
∫
dτdτ ′j̄(τ)G[τ − τ ′]j(τ ′)

]
(12.43)

where

−(∂τ + h)−1 = G[τ − τ ′] (12.44)

By differentiating (12.43) with respect to j and j̄, we are able to identify

δ2 lnZ

δj̄(τ)δj(τ ′)
= 〈c(τ)c†(τ ′)〉 = −G[τ − τ ′], (12.45)

so the inverse of the Gaussian coefficient in the action −[∂τ + h]−1 directly determines the
imaginary time Green-function of these non-interacting fermions.

From the partition function in (12.43), the Free energy is then given by

F = −T lnZ = −T lndet[∂τ + h] = −TTrln[∂τ + h] = TTrln[−G−1]

where we have used the result lndet[A] = Trln[∂τ + h].
To explicitly compute the Free energy it is useful to transform to Fourier components,

cλ(τ) =
1√
β

∑

n

cλne
−iωnτ ,
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jλ(τ) =
1√
β

∑

n

jλne
−iωnτ , (12.46)

In this basis,

(∂τ + ελ) −→ (−iωn + ελ)
G = −(∂τ + ελ)

−1 −→ (iωn − ελ)
−1 (12.47)

so that

S =
∑

λ,n

[
[−iωn + ελ]c̄λncλn − j̄λncλn − c̄λnjλn

]
(12.48)

whereupon,

det[∂τ + h] = =
∏

λ,n

(−iωn + ελ)

Z[j̄, j] =
∏

λ,n

(−iωn + ελ) exp

[∑

λ,n

(−iωn + ελ)
−1j̄λnjλn

]
(12.49)

If we set j = 0 in Z we obtain the Free energy in terms of the Fermionic Green function.

F = −T
∑

λ,n

ln[−iωn + ελ]

As in the case of a single field, by replacing the Matsubara sum with a contour integral we
obtain

F = T
∑

λ

∮
dz

2πi
f(z)ln[ελ − z] (12.50)

= −T
∑

λ

ln[1 + e−βελ] (12.51)

If we differentiate Z with respect to its source terms, we obtain the Green’s function:

− δ2lnZ

δj̄λnδjλ′n′
= [G]λn,λ′n′ = δλλ′δnn′

1

iωn − ελ

12.5 Hubbard Stratonovich transformation

The “Hubbard Stratonovich” transformation maps certain classes of interacting fermion
problem, onto non-interacting electrons moving through an effective field. Let us suppose
that the interaction part of the Hamiltonian involves the product of two fermion bilinears,
H = Ho +HI , where

HI = −g
∫
d3xA†(x)A(x),
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in the continuum, or on a lattice,

HI = −g
∑

j

A†jAj ,

Examples of such bilinears might be the pair density

A(x) = ψ↓(x)ψ↑(x), A†(x) = ψ↑
†(x)ψ†↓(x),

in a superconductor, or the spin-raising and lowering operators in a magnetism problem.

A(x) ≡ S−(x) = ψ†↓(x)ψ↑(x), A†(x) ≡ S+(x) = ψ†↑(x)ψ↓(x),

The Hubbard Stratonovich transformation replaces the combination −gA(x) by an effective
field −gA(x) → ∆(x), in the following way

−gA†(x)A(x) → A†(x)∆(x) + ∆̄(x)A(x) +
∆̄(x)∆(x)

g

A similar type of replacement occurs in the mean-field treatment of interactions, where ∆ is
taken to be a static field By elevating ∆ to the status of a field, this transformation becomes
exact. You may think of ∆ as the exchange boson which mediates the original interaction.

Let us begin by reminding ourselves about Gaussian integrals. Suppose ∆ = ∆1 − i∆2

and ∆̄ = ∆1 + i∆2 then since

∫
d∆1d∆2e

−(∆2
1+∆2

1)/g = πg,

by writing d∆d∆̄ = 2id∆1d∆2 , we obtain

∫
d∆d∆̄

2πig
e−∆̄∆/g = 1. (12.52)

Now suppose that ∆(x, τ) is a function of space and time, defined on a grid in space time
that can be made infinitely fine. We can naturally generalize (12.52) as follows

∫
D[∆̄,∆] exp

[
−
∫
d3x

∫ β

0
dτ

∆̄(x)∆(x)

g

]
= 1, (12.53)

where

D[∆̄,∆] ≡
∏

τ,j

d∆̄(xj , τ)d∆(xj , τ)

N

Here N = 2πig/(∆x3∆τ) is a normalization and we have taken the continuum limit,
(δx,∆τ) → 0, replacing the discrete sum over the grid

∑
xj ,τj ∆̄(xj)∆(xj) by a continu-

ous integral
∫
d3x

∫ β
0 dτ∆̄(x)∆(x).
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Now consider the following path integral

Z =

∫
D[c̄, c]e

−
∫ β
0
dτ

[
c̄(∂τ+h)c+HI

]

By introducing the unit identity (12.53) into the fermionic path integral, we obtain

Z =

∫
D[c̄, c]

∫
D[∆̄,∆]e

−
∫ β
0
dτ

[
c̄(∂τ+h)c+H′I

]

(12.54)

where

H ′I =

∫
d3x

{
∆̄(x)∆(x)

g
− gĀ(x)A(x)

}
(12.55)

Now if we shift the ∆ field as follows

∆(x) → ∆(x) + gA(x),
∆̄(x) → ∆̄(x) + gĀ(x),

the measure is unchanged. Making this substitution in (12.55), we obtain

H ′I =

∫
d3x

{
Ā(x)∆(x) + ∆̄(x)A(x) +

∆̄(x)∆(x)

g

}
. (12.56)

In other words, we have absorbed the interaction, replacing it by an effective field which
couples to the fermion bilinear A. If we now invert the order of integration inside the path
integral (12.54), we now obtain

Z =

∫
D[∆̄,∆]e−

∫
d3dτ

∆̄(x)∆(x)
g

∫
D[c̄, c]e−S̃

S̃ =

∫ β

0
dτ c̄∂τ c+Heff [∆̄,∆] (12.57)

where

Heff [∆̄,∆] = Ho +

∫
d3x

{
Ā(x)∆(x) + ∆̄(x)A(x)

}

represents the action for electrons moving in the fluctuating field ∆(x). The weight function

e
−
∫
d3xdτ

∆̄(x)∆(x)
g

is a Gaussian distribution function for a white noise field with correlation function 1

〈∆(x)∆(x′)〉 = gδ(4)(x− x′).

1To show this, it is helpful to consider the generating functional

Λ[j̄, j] =

∫
D[∆̄, ∆] exp

[
−

∫
d
3
x

∫ β

0

dτ

(
∆̄(x)∆(x)

g
− j̄(x)∆(x) − ∆̄(x)j(x)

)]
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It is these white noise fluctuations that mediate the interaction between the fermions, much
as an exchange boson mediates interactions in particle physics. More schematically,

Z =
∑

{∆}
e
−
∫
d4x
|∆|2

g [ Path integral of fermions moving in field ∆ ]

where the summation represents a sum over all possible configurations {∆} of the auxiliary
field ∆. Of course, the coupling of the auxiliary field to the fermions modifies its distribution
function. Since the fermionic action inside the path integral is actually Gaussian, we can
formerly integrate out the fermions as follows

e−Sψ [∆̄,∆] =

∫
D[c̄, c]e−S̃ = det[∂τ + heff [∆̄,∆]] (12.58)

where heff is the matrix representation of Heff . The Full path integral may thus be written

Z =

∫
D[∆̄,∆]e−Seff [∆̄,∆]

where

Seff [∆̄,∆] =

∫
d3xdτ

∆̄(x)∆(x)

g
− ln det[∂τ + heff [∆̄,∆]]

=

∫
d3xdτ

∆̄(x)∆(x)

g
− Trln[∂τ + heff [∆̄,∆]] (12.59)

where we have made the replacement ln det → Trdet. This quantity is called the “effective
action” of the field ∆. The additional fermionic contribution to this action can profoundly
change the distribution of the field ∆. For example, if Seff develops a minima away around
∆ = ∆o 6= 0, the ∆ = −A/g will acquire a “vacuum expectation value”. This makes the
Hubbard Stratonovich transformation an invaluable tool for studying the development of
broken symmetry in interacting Fermi systems.

12.6 Superconductivity and BCS theory

12.6.1 Introduction: Superconductivity pre-history

As a specific illustration of the above approach, we shall now develop the BCS theory of
superconductivity using the path integral method.

By changing variables, ∆(x) → ∆(x) + gj(x), we can absorb the terms linear in j, to obtain

Λ[j̄, j] = exp

[∫
d
3
x

∫ β

0

dτgj̄(x)j(x)

]

Differentiating this with respect to j(x), we find that

∂2lnΛ[j, j̄]

∂j̄(x)∂j(x′)

∣∣∣∣
j,j̄=0

= 〈∆(x)∆̄(x′)〉 = gd
(4)(x − x

′)
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Before we start, a brief diversion about the history of superconductivity. Supercon-
ductivity - the phenomenon whereby the resistance of metal spontaneously drops to zero
upon cooling below its critical temperature, was discovered by Kamerlingh Onnes in 1906.
However, it took more than 50 years to fully develop the conceptual framework required
to understand this collective phenomenon. During this time, many great physicists, in-
cluding Bohr, Pauli and Feynman tried, yet failed to develop a microscopic theory of the
phenomenon.

Some highlights in the development of the theory of superconductivity were

• Discovery of the Meissner effect in 1933 by Meissner and Ochsenfeld. When a super-
conductor is cooled in a small magnetic field, the flux is spontaneously excluded as it
becomes superconducting. The Meissner effect demonstrates that a superconductor
is, in essence a perfect diamagnet.

• London’s observation in 1937, that perfect diamagnetism develops if the wavefunction
develops a rigidity which prevents the paramagnetic component of the current evolving
to screen out the diamagnetic current. (See earlier discussions) Using this reasoning,
London deduced the famous relationship

~j = −nse
2

m
~A, (~∇ ·A = 0).

• Development of the Landau Ginzburg theory in 1951. Landau and Ginzburg extended
the Landau theory of phase transitions, proposing that superconductivity involves a
complex order parameter Ψ(x). Using arguments of gauge invariance, LG reasoned
that the Free energy must contain a gradient term of the form

f =

∫
d3x

1

2m∗
|(−ih̄~∇− e∗ ~A)ψ(x)|2

Although we now know that e∗ = 2e, in the original version of the theory, Landau
erroneously convinced Ginzburg that he had an argument based on gauge invariance,
that proves e∗ = e. The vitally important aspect of this free energy function is that
once ψ 6= 0, the electromagnetic field develops a mass giving rise to a super-current

~j = − δf

δ ~A(x)
= −(e∗)2

m∗
|ψ|2 ~A(x)

The BCS Hamiltonian is one of the earliest examples of “model Hamiltonians”. By the
early fifties, the observation of the isotope effect by Bernie Serin at Rutgers University,
had lead to the realization that the mechanism of superconductivity in conventional metals
was driven by the electron phonon interaction. Frohlich had proposed his Hamiltonian for
the electron phonon interaction, and had discovered that these interactions can give rise to
sliding charge density waves. Frohlich’s theoretical prediction of charge density waves was
twenty five years ahead of its time, but it also misled him into thinking that charge density
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waves could provide the explanation of the Meissner effect. Frohlich’s error was to neglect
the effect of pining, which in any disordered materials, prevents incommensurate charge
density waves from sliding freely.

In the early fifties, Bardeen and Pine’s recognized that to make progress with the theory
of superconductivity, it would be necessary to simplify the Hamiltonian by carrying out a
canonical transformation that eliminates the phonon degrees of freedom, giving rise to an
effective electron-electron interaction. The Bardeen Pine Hamiltonian is the immediate
predecessor of the BCS model

12.6.2 The BCS Hamiltonian

We start with the BCS Hamiltonian

H =
∑

kσ

εkσc
†
kσckσ −

g0
V
A†A

where

A =
∑

k,|εk|<ωD
c−k↓ck↑, A† =

∑

k

c†k↑c
†
−k↓,

are the operators that annihilate or create a uniform pair density. Note how the interaction
between electrons is limited to within an energy ωD of the Fermi energy. This “simplified”
pairing Hamiltonian is the one originally used by BCS. Notice how the interaction

HI = −g0
V

∑

k,k′

c†k↑c
†
−k↓c−k′↓ck′↑,

involves pairs of infinite spatial extent (all momenta summed over). This feature enhances
the mean-field properties of the model to the point where mean-field theory actually gives
the exact solution.
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(i) Decoupled
from Fermions

∆

Seff

0

δ∆
S =

∫
d4x

|∆|2
g

white noise

(ii) Coupled to
Fermions: δ∆

∆

∆ο

Seff

0

Seff =

∫
d4x

|∆|2
g

−Trln(∂τ +heff [∆̄,∆])

∆o 6= 0

Fig. 3 Effective action for auxilliary field.

The volume normalizing factor 1/V is required so that this term grows linearly, rather than
quadratically with volume V . We shall redefine g = g0/V to simplify our maniupations,
re-instating the volume at the end of the calculation.

The appearance of just one A and A† in the Hamiltonian makes it particularly easy to
apply the methods introduced in the last section. We begin by writing the problem as a
path integral

Z =

∫
D[c̄, c]e−S

where

S =

∫ β

0

∑

kσ

c̄kσ(∂τ + εk)ckσ − gĀA
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Next we introduce the identity

∫
D[∆̄,∆] exp

[
1

g

∫ β

0
dτ∆̄(τ)∆(τ)

]
= 1 (12.60)

into the path integral. By shifting the variables ∆ → ∆ + gA, ∆̄ → ∆̄ + gĀ, we obtain

Z =

∫
D[∆̄,∆, c̄, c]e−S

S =

∫ β

0
dτ

{
∑

kσ

c̄kσ(∂τ + εk)ckσ + ∆A+ Ā∆ +
1

g
∆̄∆

}
(12.61)

where ∆(τ) is a function of time only. In a Nambu notation, this can be re-written

S =

∫ β

0
dτ

{
∑

k

ψ̄k(∂τ + hk)ψk +
1

g
∆̄∆

}
(12.62)

where

ψk =

(
ck↑
c̄−k.↓

)
(12.63)

defines the Nambu spinor and

hk =

[
εk ∆(τ)

∆̄(τ) −εk

]
= εkτ3 + ∆1τ1 + ∆2τ2 (12.64)

is the matrix Hamiltonian, where ∆ = ∆1 − i∆2, ∆̄ = ∆1 + i∆2, and (τ1, τ2, τ3) are the
three Pauli matrices. ( By convention the symbol τ is used to denote an “isospin” from a
conventional spin.) Notice that the action is now quadratic in the Fermi fields, so we can
formally carry out the Gaussian integral of the Fermi fields, “integrating out” the Fermions
to obtain

e−Seff [∆̄,∆] =
∏

k

det[∂τ + hk(τ)]e−
∫ β
0
dτ ∆̄∆

g

for the effective action, where we have separated the fermionic determinant into a product
over each decoupled momentum. Thus

Seff [∆̄,∆] =

∫ β

0
dτ

∆̄∆

g
+
∑

k

Trln(∂τ + hk).

where we have replaced lndet → Trln. Except for certain uniform, or almost uniform
configurations of ∆, we can not calculate Seff explicitly. It turns out however, that these
configurations dominate the path integral in the limit V → ∞. To see this consider the
path integral

Z =

∫
D[∆̄,∆]e−Seff [∆̄,∆]

The effective action is actually extensive in the volume, V , so that as V → ∞, S/V is a
constant. This means that when we find the configuration of ∆ = ∆o which minimizes
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Seff , the cost of fluctuations δ∆ around this configuration will also be of order O(V ), i.e.
the amplitude for a small fluctuation is given by

e−S = e−So+O(V )×|δ∆|2

The appearance of V in the coefficient of this Gaussian distribution implies the variance
of small fluctuations around the minimum will be of order O(1/V), so that to a good
approximation,

Z = e−Seff [∆̄o,∆o]+O(1)

This is why the mean-field approximation to the path integral is essentially exact for the
BCS model.

Since the original problem is translationally invariant, we expect the configurations that
minimize the action to also be uniform. The mean-field approximation to the path integral
is made by replacing the integral over the ∆ field by its uniform “saddle-point” value,
obtained by replacing ∆(τ) with a uniform field ∆(τ) = ∆1 − i∆2. In this case, we can use
momentum and frequency eigenstates for the Nambu fields

ψk(τ) =
1√
β

∑

n

ψkne
−iωnτ

In this basis,
∂τ + h→ [−iωn + hk]

so that the determinant

det[∂τ + hk] =
∏

n

det[−iωn + hk] =
∏

n

[ω2
n + ε2k + |∆|2]

and the effective action for a uniform field is

Feff =
Seff
β

= −T
∑

kn

ln[ω2
n + ε2k + |∆|2] +

|∆|2
g

We see that this is nothing more than the mean-field free-energy for the BCS model. Min-
imizing Feff w.r.t ∆ gives us the gap equations

∂Feff
∂∆̄

= −
∑

kn

∆

ω2
n +E2

k

+ V
∆

g0
= 0 (12.65)

or

1

g0
=

1

βV

∑

kn

1

ω2
n +E2

k

BCS Gap equation (12.66)

where
Ek =

√
ε2k + |∆|2
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is the quasiparticle energy and we have re-instated g0 = g/V . This is the BCS gap equation.

Actually, for most of our purposes, it proves easier to manipulate the Free energy in its
discrete, Matsubara form. We can in fact carry out the Matsubara sum at any stage in the
above manipulation. Using the contour integration method,

Feff = −
∑

k

∮
dz

2πi
f(z)ln[z2 −E2

k] + V
|∆|2
g0

where the integral runs anti-clockwise around the poles of the Fermi function. The logarithm
inside the integral can be split up into two terms

ln[z2 −E2
k] → ln[Ek − z] + ln[−Ek − z]

which we immediately recognize as the contributions from fermions with energies ±Ek, so
that the result of carrying out the contour integral, is

Feff = −TV
∫

d3k

(2π)3

[
ln[1 + e−βEk ] + ln[1 + eβEk ]

]
+ V

|∆|2
g0

= −2TV

∫

|εk|<ωD

d3k

(2π)3

[
ln[2 cosh(βEk/2)]

]
+ V

|∆|2
g0

(12.67)

Differentiating w.r.t. ∆̄ and setting ∂Feff/∂∆̄ = 0, then gives

1

g0
=

∫

|εk|<ωD

d3k

(2π)3

[
tanh(βEk/2)

2Ek

]
(12.68)

If we approximate the density of states by a constant N(0) per spin over the narrow shell of
states around the Fermi surface, we may replace the momentum sum by an energy integral

1

g0
= N(0)

∫ ωD

0
dε

[
tanh(β

√
ε2 + ∆2/2)√

ε2 + ∆2

]
. (12.69)

12.6.3 Computing Tc

To compute Tc we shall take the Matsubara form of the gap equation (12.66), which we
rewrite replacing the sum over momenta by an integral near the Fermi energy, replacing
1
V

∑
k → N(0)

∫
dε we get

1

g0
= TN(0)

∑

n

∫ ∞

−∞
dε

1

ω2
n + ε2k + ∆2

= πTN(0)
∑

|ωn|<ωD

1√
ω2
n + ∆2

where we have extended the limits of integration over energy to infinity. By carrying out the
integral over energy first, we are forced to impose the cut-off on the Matsubara frequencies.
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If we now take T → 0 in this expression, we may replace

T
∑

ωn

= T
∑ ∆ωn

2πT
→
∫
dω

2π
(12.70)

so that at zero temperature and set T = 0, we obtain

1 = gN(0)

∫ ωD

0

dε√
ε2 + ∆2

= gN(0)

[
sinh−1

(
ωD
∆

)]
≈ gN(0) ln

(
2ωD
∆

)

where we have assumed gN(0) is small, so that ωD/∆ >> 1. We may now solve for the
zero temperature gap, to obtain

∆ = 2ωDe
− 1
gN(0) (12.71)

To calculate the transition temperature, we note that just below the transition temperature,
the gap becomes infinitesimally small, so that ∆(T −c ) = 0. Substituting this into (12.70),
we obtain

1

gN(0)
= πTc

∑

|ωn|<ωD

1

|ωn|
= 2πTc

∞∑

n=0

(
1

ωn
− 1

ωn + ωD

)

where we have imposed the limit on ωn by subtracting off an identical term, with ωn →
ωn + ωD. Simplifying this expression gives

1

gN(0)
=
∞∑

n=0

(
1

n+ 1
2

− 1

ωn + 1
2 + ωD

2πTc

)

At this point we can use an extremely useful identity of the digamma function ψ(z) =
d
dz ln Γ(z),

ψ(z) = −C −
∞∑

n=0

(
1

z + n
− 1

1 + n

)

where C = 0.577 is the Euler constant, so that

1

gN(0)
=

≈ln(ωD/(2πTc))︷ ︸︸ ︷
ψ(

1

2
+

ωD
2πTc

)−ψ(
1

2
) = ln

(
ωDe

−ψ( 1
2
)

2πTc

)
,

We we have approximated ψ(z) ≈ ln(z) for large |z|. Thus,

Tc =

≈1.13︷ ︸︸ ︷(
e−ψ(1/2)

2π

)
ωDe

− 1
g0N(0) (12.72)
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Notice that the details of the way we introduced the cut-off into the sums affects both the
gap ∆ in (12.71) and the transition temperature in (12.72). However, the ratio of twice the
gap to TC ,

2∆

Tc
= 8πeψ( 1

2
) ≈ 3.53

is universal for BCS superconductors, because the details of the cut-off cancel out of this
ratio. Experiments confirm that this ratio of gap to transition is indeed observed in phonon
mediated superconductors.

12.6.4 The structure of the Boguilubov quasiparticle and the BCS wave-
function

Below the transition temperature, the finite pairing field ∆ modifies the motion of the elec-
trons. Let us examine the Hamiltonian which appears in (12.64). If restore the Grassman
variables to full-fledged operators, we see that

H =
∑

k

: ψ†khkψk :

=
∑

k

: (c†k↑, c−k↓)
[
εk ∆
∆̄ −εk

](
ck↑
c̄−k.↓

)
:

=
∑

kσ

εkc
†
kσckσ +

∑

k

[
∆̄c−k↓ck↑ + ∆c†k↑c

†
−k↓

]
(12.73)

Notice how the off-diagonal terms associated with the pair condensate cause electrons to
interconvert into holes with the same momentum and spin. This kind of scattering is
sometimes referred to as “Andreev scattering”2. In making this transformation, charge 2e
is transferred into the electron condensate.

One of the interesting aspects of superconductivity, is that it can be regarded as closely
analogous to a magnetic ordering process. Magnetism involves an ordering or condensation
of spins. Superconductivity takes place in charge rather than spin space, and we may regard
the Nambu isospin operators ~τ as a direct analog of the Pauli spin operators, operating in
charge or “isospin” space.

It is very convenient to introduce the unit vector, defined by

n̂k =

(
∆1

Ek

,
∆2

Ek

,
εk
Ek

)

where as before, Ek =
√
ε2k + |∆|2 is the energy of the paired electrons. Notice that n̂2 = 1

is a unit vector. For the discussion here, we shall choose the phase of ∆ so that ∆2 = 0. In
terms of this vector,

hk = εkτ3 + ∆1τ1 + ∆2τ2 = Ekn̂k · ~τ
2Andreev noticed that although the momentum of the hole is the same as the incoming electron, its group

velocity ∇k(−ε−k) = ∇k(−εk) = −∇kεk, is reversed. Andreev reasoned that such scattering at the interface
of a superconductor leads to non-specular reflection of electrons, which scatter back as holes movign in the
opposite direction to incoming electrons.
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where ~τ = (τ1, τ2, τ3). The vector n̂ points “upwards” above the Fermi surface, and “down-
wards” beneath it. In a normal metal, the n̂ vector abruptly reverses at the Fermi surface
forming a sharp domain wall. In a superconductor, the n̂ vector is aligned at an angle θ to
the ẑ axis, where

cos θ =
εk
Ek

,

and the domain wall is now spread out over a kinetic energy range of order ∆, as shown
in figure (12.2). From this perspective, ~Bk = −Ekn̂k is a kind of “Weiss field” acting

θ

∆

FS

ε<0

εk

εk

εk

(b)

(a) 

FS
ε>0

Figure 12.2: Showing the reversal of the isospin direction n̂ around the Fermi momentum
for (a) a normal metal and (b) a superconductor.

in isopsin space. This is the basis of Anderson’s “pseudo-spin” interpretation of the BCS
ground-state. According to this picture, one expects the isospin at each momentum k to
align itself parallel to this field, i.e

〈ψ†k~τψk〉 = −n̂k = −(sin θk, 0, cos θk)

In a normal metal, the “z” component of the isospin is given by

ψ†kτ3ψk = nk↑ + nk↓ − 1 =

{
−1 (k > kF )

1 (k < kF )

but in a superconductor, this becomes

2nk − 1 = − εk
ε2k + ∆2
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so the occupancy becomes smeared around the Fermi surface.
Let us begin by constructing the BCS ground-state wavefunction. We wish to construct

a state where the isospin at each k vector is rotated to be antiparallel to the effective field
~Bk = −Ekn̂k. At each k vector, we shall identify the empty state and doubly occupied
state as “down” and “up” states respectively:

| ⇓k〉 ≡ |nk = 0〉
| ⇑k〉 ≡ |nk = 2〉 = c†k↑c

†
−k↓|0〉. (12.74)

To produce the state where the isospin is rotated through an angle θk about the y axis, we
act on the vacuum with the isospin rotation operator as follows

|θk〉 = e−i
θk
2
ψ†kτyψk | ⇓k〉 =

(
cos

θk
2

− i sin
θk
2
ψ†kτyψk

)
| ⇓k〉

= cos
θk
2
| ⇓k〉 − sin

θk
2
| ⇑k〉

=

(
cos

θk
2

− sin
θk
2
c†k↑c

†
−k↓

)
| ⇓k〉 (12.75)

The ground-state will then be a product of these isospin states

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
cos

θk
2

− sin
θk
2
c†k↑c

†
−k↓

)
|0〉 (12.76)

By convention, the coefficients cos
(
θk
2

)
and sin

(
θk
2

)
are labelled uk and vk respectively,

where, writing

u2
k ≡ cos2

(
θk
2

)
=

1

2

[
1 +

εk
Ek︷ ︸︸ ︷

cos θk

]
=

1

2

[
1 +

εk
Ek

]

v2
k ≡ sin2

(
θk
2

)
=

1

2

[
1 − cos θk

]
=

1

2

[
1 − εk

Ek

]
(12.77)

By convention, the normalization of this state is dropped, and the BCS wavefunction is
written

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
1 + γkc

†
−k↓c

†
k↑
)
|0〉, (γk =

vk
uk

) (12.78)

Remarks

• Since (c†−k↓c†k↑)2 = 1, (1+ γkc
†−k↓c†k↑) = Exp(γkc

†−k↓c†k↑), the BCS wavefunction
can be re-written as an explicit coherent state

|BCS〉 = eb
† |0〉

where
b† =

∑

k

γkc
†
−k↓c

†
k↑

is the bosonic pair operator that condenses.
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• The BCS ground-state has an indefinite number of particles and can be written as a
linear combination of states of definite numbers of particles

|BCS〉 =
∑ 1

n!
|n〉

where |n〉 = (b†)n|0〉 is a state of n electron pairs. Since the pair operator has con-
densed, it costs no energy to add a pair, and in the thermodynamic limit, each of
these states has the same free energy per unit volume.

• If the phase of the electron operator is changed c†kσ → eiθc†kσ, the pair order parame-
ter ∆ = −g∑k〈c−k↓ck↑〉, until now assumed to be real, acquires a phase ∆ → e−2iθ∆,
and the BCS wavefunction becomes

|θ〉 =
∏

k

|θk〉 =
∏

k

(
1 + ei2θγkc

†
−k↓c

†
k↑
)
|0〉 =

∑ 1

n!
ei2nθ|n〉 (12.79)

The action of the number operator N̂ on this state may be represented as a differential
with respect to phase,

N̂ |θ〉 =
∑ 1

n!
2nei2nθ|n〉 = −i d

dθ
|θ〉.

so that

N̂ ≡ −i d
dθ
.

In other words, the phase of the order parameter is conjugate to the number operator,
and like position and momentum, or energy and time, the two variables therefore obey
an uncertainty principle

∆θ∆N >
˜ 1.

so that a state of matter with a precise phase, has an ill-defined particle number.

• The electron pair operator b† can also be rewritten as a real-space operator

b† =

∫
d3r

∫
d3r′γ(~r − ~r′)ψ†↓(~r)ψ

†
↑(~r
′)

where γ(~r)is the Fourier transform of γk. In this way, we see that b† creates a single
Cooper pair with a spatial wavefunction given by γ(~x− ~x′). The spatial extent of the
Cooper pair is governed by the region of momentum space where uk and vk deviate
significantly from unity or zero - i.e the area within a momentum ∆kF of the Fermi
surface, where vF∆k <˜∆. The corresponding spatial extent of the Cooper pair is

then

ξ ∼ 1

∆k
=
vF
∆

This length is known as the “coherence length” of a superconductor. Notice how the
larger the gap, the smaller the coherence length. Conventional superconductors have
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coherence lengths of several hundreds of Angstroms, but high temperature supercon-
ductors, which have very large gaps, and in heavy electron superconductors, which
have very small Fermi velocities, the coherence length can drop to a size comparable
with the lattice constant.

Let us now construct the quasiparticle operators that diagonalize the mean-field Hamil-
tonian for the paired superconductor. In a superconductor, the Andreev scattering mixes
particle and holes to produce the gapped spectrum illustrated in Fig. 12.3. We accordingly
expect that the quasiparticle operators are linear combinations of electron and hole states.

Figure 12.3: In a superconductor, the presence of the pair condensate Andreev scatters
particles into holes, producing a gap in the quasiparticle excitation spectrum

Let us first recall that for any one-particle Hamiltonian H = ψ†αhαβψβ, we can construct
“quasiparticle” operators a†λ = ψ†β〈β|λ〉 which transform H into the diagonal form H =∑
λEλa

†
λaλ. Now the matrix element between the original one particle state |α〉 = ψ†α|0〉

and the quasiparticle state |λ〉 = a†λ|0〉 is 〈α|Ĥ |λ〉 = hαβ〈β|λ〉 == Eλ〈α|λ〉, in other
words, 〈β|λ〉 is an eigenvector of hαβ . Now in BCS theory, the ψ†α ≡ (c†k↑, c−k↓) are the
components of the Nambu spinor, whose first and second components respectively create a
particle and and a hole. Remarkably then, the procedure of diagonalizing the one-particle
Hamiltonian must mix particle and hole.

To construct the quasiparticles, we note that the Nambu Hamiltonian,

hk = Ekn̂ · ~τ

has two eigenvalues, ±Ek with eigenvectors

(
uk

vk

)
and

(−vk
uk

)
which describe isospins that
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are parallel and antiparallel to n̂, respectively. These satisfy

n̂ · ~τ
(
uk

vk

)
=

(
uk

vk

)
, n̂ · ~τ

(−vk
uk

)
= −

(−vk
uk

)

It follows that the appropriate quasiparticle operators for the BCS Hamiltonian are

α†k↑ = ψ†k

(
uk

vk

)
= c†k↑uk + c−k↓vk Boguilubov quasiparticles

α−k↓ = ψ†k

(−vk
uk

)
= c−k↓uk − c†k↑vk (12.80)

which respectively create a spin up quasiparticle and quasihole with momentum k. The
transformation that mixes particle and hole in this way is called a Boguilubov transforma-
tion. Boguilubov originally studied this kind of transformation for interacting bosons inside
a Bose-Einstein condensate.

We can combine these two quasiparticle operators into a single Nambu spinor α†k as
follows

α†k = (α†k↑, α−k↓) = ψ†k

=Uk︷ ︸︸ ︷(
uk −vk
vk uk

)
= ψ†kUk

where Uk is a unitary matrix whose columns are the eigenvectors of hk. Taking the Hermi-
tian conjugate, αk = U †kψk and since UU † = 1, it follows that ψk = Ukαk. Now since Uk

contains the eigenvectors of hk,

hkψk =

UkEkτ3︷ ︸︸ ︷
hkUk αk = UkEkτ3αk

so that

H =
∑

k

ψ†khkψk =
∑

k

α†kEkτ3αk

is diagonal in the quasiparticle basis. Written out explicitly,

H =
∑

k

Ek(α†k↑αk↑ − α−k↓α
†
−k↓)

=
∑

kσ

Ek(α†kσαkσ) −
∑

k

Ek (12.81)

from which we see that the ground-state energy is given by

Eg = −
∑

k

Ek
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Let us now explicitly check our results by verifying that the destruction operators αkσ

annihilate the BCS ground-state, αkσ|BCS〉 = 0 To see this, first note that αk↑ commutes
with (uk′ + vk′c

†−k′↓c†k′↑) unless k′ = k, and in this case,

αk↑(uk + vkc
†
−k↓c

†
k↑) = (uk + vkc

†
−k↑c

†
k↑)αk↑ + vk

−ukc
†
−k↑︷ ︸︸ ︷

[αk↑, c
†
−k↑c

†
k↑]

= uk(uk + vkc
†
−k↑c

†
k↑)ck↑ (12.82)

so that

αk↑|BCS〉 = αk↑
∏

k′

(uk′ + vk′c
†
−k′↓c

†
k′↑)|0〉 = uk

∏

k′

(uk′ + vk′c
†
−k′↓c

†
k′↑)ck↑|0〉 = 0

The down-spin case can be proved in a similar fashion.

12.6.5 The Nambu Greens function

To describe the propagation of electrons and this interconversion between electron and hole,
we require a matrix Greens function, often called the Nambu Greens function, which is just
the Greens function formed from two Nambu spinors:

Gαβ(k, τ) = −〈Tψkα(τ)ψ†kβ(0)〉 (12.83)

which may be written out more explicitly as

G(k, τ) = −
〈
T

(
ck↑(τ)
c̄−k↓(τ)

)
⊗ (c†k↑(0), c−k↓(0))

〉

= −
[ 〈Tck↑(τ)c†k↑(0)〉 〈Tck↑(τ)c−k↓(0)〉
〈Tc†−k↓(τ)c†k↑(0)〉 〈Tc†−k↓(τ)c−k↓(0)〉

]
(12.84)

The off-diagonal elements of this propagator result from the Andreev reflection. These
anomalous parts of the propagator were first discussed by Gorkov, and are written as

F (k, τ) = −〈Tck↑(τ)c−k↓(0)〉, F̄ (k, τ) = −〈Tc†−k↓(τ)ck↑(0)〉, (12.85)

From our general path integral result (12.43), we note that just as in the normal metal,

1

iωn − εk
= −

∫ β

0
dτeiωnτ 〈Tckσ(τ)c†kσ〉, (12.86)

in the matrix generalization,

[iωn − hk]−1 =

∫ β

0
dτeiωnτG(k, τ) (12.87)

is the Nambu propagator in Fourier space. From (12.64), we have hk = εkτ3 +∆1τ1 +∆2τ2.
For simplicity, lets assume that ∆ is real, so that ∆2 = 0, then

G(k) =
1

iωn − εkτ3 + ∆τ1
=
iωn + εkτ3 + ∆τ1

(iωn)2 −E2
k

(12.88)
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Written out explicitly, this is

G(k, iωn) =
1

(iωn)2 −E2
k

[
iωn + εk ∆

∆ iωn − εk

]
(12.89)

where Ek =
√
ε2k + ∆2 is the quasiparticle energy. (One can restore a complex ∆ by

replacing ∆ → ∆̄ in the lower-left component of G(k)).

Let us now examine how to obtain the same results diagrammatically. The Andreev
scattering converts a particle into a hole, so we we may associate scattering vertices with
the Andreev reflection events as follows:

∆̄c−k↓ck↑ ≡
∆k −k

∆̄

∆c†k↑c
†
−k↓ ≡

∆−k k
∆ (12.90)

The “bare” propagators for the electron and hole are the diagonal components of the bare
Nambu propagator

G0(k) =
1

iωn − εkτ3
=

[ 1
iωn−εk

1
iωn+εk

]
. (12.91)

We denote these two components by the diagrams

k
≡ G0(k) =

1

iωn − εk−k
≡ −G0(−k) =

1

iωn + εk
(12.92)

(The minus sign in the second term is because we have commuted creation and annihilation
operators to construct the hole propagator. ) The Feynman diagrams for the conventional
propagator are given by

= ...k −kk k k −k −kk k
(12.93)

Notice how the electron Andreev scatters an even number of times. This enables us to
identify a “self-energy” term that takes the form

k

Σ = Σ(k) =
−k

=
|∆|2

iωn + εk

Inserting this into the propagator, yields

G(k) = ...ΣΣΣ

=
1

iωn − εk − Σ(iωn)
=

1

iωn − εk − |∆|2
iωn+εk

=
iωn + εk

(iωn)2 −E2
k

. (12.94)
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In a similar way, the anomalous propagator is given by

= ...−k k k−k k −k

=
−k k

(12.95)

so that

F (k) =
∆

iωn + εk

1

iωn − εk − |∆|2
iωn+εk

=
∆

(iωn)2 −E2
k

Finally, note that we can also see the quasiparticle structure in the Nambu propagators.
The operators

P+(k) =
1

2
(1 + n̂ · ~τ), P−(k) =

1

2
(1 − n̂ · ~τ),

satisfy P 2
+ = P+, P 2

− = P− and P+ + P− = 1, and furthermore,

P+(k)(n̂k · ~τ) = P+(k), P−(k)(n̂k · ~τ) = −P−(k),

so that these operators conveniently project the isospin onto the directions ±nk.
We can use the projectors P±(k) to project the Nambu propagator as follows

G = (P+ + P−)
1

iωn −Ekn̂ · ~τ
= P+

1

iωn −Ekn̂ · τ̂ + P−
1

iωn −Ekn̂ · τ̂
= P+

1

iωn −Ek

+ P−
1

iωn +Ek

(12.96)

we can interpret these two terms as the “quasiparticle” and “quasi-hole” parts of the Nambu
propagator. If we explicitly expand out this expression, using

P± =
1

2
±
[

εk
Ek

∆
2Ek

∆
2Ek

− εk
2Ek

]

we find that the diagonal part of the Green’s function is given by

G(k) =
u2
k

iωn −Ek

+
v2
k

iωn +Ek

.

confirming that uk and vk determin the overlap between the electron and the quasiparticle
and quasihole, respectively.

Example:

(a) Starting with the equation of motion of the Boguilubov quasiparticle,
If the Boguilubov quasiparticle α†

k↑ = c†k↑uk + c−k↓vkα−k↓,

[H,α†
k↑] =

∂α†
k↑

∂τ
= Ekα

†
k↑ (12.97)
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where Ek is the quasiparticle energy, explicitly show that

(
uk

vk

)
must

be an eigenvector of hk that satisfies

hk

(
uk

vk

)
=

(
εk ∆
∆ −εk

)(
uk

vk

)
= Ek

(
uk

vk

)

(b) By solving the eigenvalue problem assuming the gap is real, show
explicitly that

u2
k =

1

2

[
1 +

εk√
ε2k + ∆2

]

v2
k =

1

2

[
1 − εk√

ε2k + ∆2

]
(12.98)

Solution:

(a) We begin by writing

αk↑ = ψ†
k ·
(
uk

vk

)

where ψ†
k = (c†k↑, c−k↓) is the Nambu spinor. Now since [H, ψ†

k] =
ψ†

k hk, it follows that

[H,α†
k↑] = ψ†

k hk

(
uk

vk

)
(12.99)

Comparing (12.97) and (12.99), we see that the spinor

(
uk

vk

)
is an

eigenvector of hk,

hk

(
uk

vk

)
=

(
εk ∆
∆ −εk

)(
uk

vk

)
= Ek

(
uk

vk

)
(12.100)

(b) Taking the determinant of the eigenvalue equation, det[hk − Ek1] =
E2

k − ε2k −∆2=0, and imposing the condition that Ek > 0, we obtain

obtain Ek =
√
ε2k + ∆2.

Expanding the eigenvalue equation (12.100) we obtain

(Ek − εk)uk = ∆vk
∆uk = (Ek + εk)vk (12.101)

Multiplying these two equations, we obtain (Ek−εk)u2
k = (Ek+εk)v2

k,
or εk(u2

k + v2
k) = εk = Ek(u2

k − v2
k), since u2

k + v2
k = 1 . It follows that

u2
k − v2

k = εk/Ek. Combining this with u2
k + v2

k = 1, we obtain the
results given in ( 12.98 ).
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12.6.6 Twisting the phase: the Anderson Higg’s mechanism

One of the key features in a superconductor is the appearance of a complex order parameter,
with a phase. It is the rigidity of this phase that endows the superconductor with its ability
to sustain a superflow of electrons. This feature is held in common between superfluids
and superconductors - and indeed, the liquid He− 3 undergoes a pairing instability around
3mK, involving a condensation of triplet Cooper pairs.

The feature of superconductors that makes them stand apart from their neutral coun-
terparts, is our ability to couple to the phase of the condensate with the electromagnetic
field. The important point here, is that the phase of the order parameter, and the vector
potential are linked by gauge invariance. To see this, consider that the the microscopic
Kinetic energy term

T =

∫
d3x

1

2m
ψ†σ(x)(−ih̄~∇− e ~A(x))2ψσ(x))

is invariant under the gauge transformations

ψσ(x) → eiα(x)ψσ(x)

~A(x) → ~A(x) +
h̄

e
~∇α(x) (12.102)

If we now consider the order parameter

Ψ(x) = 〈ψ↓(x)ψ↑(x)〉

we see that under a gauge transform, Ψ(x) → ei2α(x)Ψ(x), in other words, the phase of the
order parameter Ψ(x) = |Ψ(x)|eiφ(x), transforms as

φ(x) → φ(x) + 2α(x)

Now if the phase becomes “rigid” beneath Tc, then the overall energy of the superconductor
must acquire a phase stiffness term of the form

F ∼
∫

x

ρs
2

(∇φ)2 (12.103)

However, such a coupling term is not gauge invariant under the combined transformation

φ → φ+ 2α,

~A → ~A+
h̄

e
~∇α(x) (12.104)

Indeed, in order that the Free energy gauge invariant, the phase stiffness must take the form

F ∼
∫

x

ρs
2

(
~∇φ(x) − 2e

h̄
~A(x)

)2

+ Fem[A]

=

∫

x

Q

2

(
~A(x) − h̄

2e
~∇φ(x)

)2

+ Fem[A] (12.105)
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where Fem[A] is the Free energy of the electromagnetic field and we have substituted

Q =
(2e)2

h̄2 ρs

Since Fem is invariant under gauge transformations, it becomes possible to redefine the
vector potential

A(x) → ~A(x) − h̄

2e
~∇φ(x)

to “absorb” the phase of the order parameter. Once the phase of the order parameter is
absorbed into the electromagnetic field,

F ∼
∫

x

4e2ρs

2h̄2
~A(x)2 + Fem[A], (12.106)

and the vector potential has acquired a mass. This phenomenon whereby the gauge field,
“eats up” the phase of a condensate, losing manifest gauge invariance by acquiring a mass
is called the “Anderson-Higgs” mechanism. This is the root mechanism by which gauge
fields acquire a mass in particle physics.

Shortly after the importance of this mechanism for relativistic Yang Mills theories was
noted by Higgs and Anderson, Weinberg and Salem independently applied the idea to de-
velop the theory of “electro-weak” interactions. According to this picture, the universe we
live is a kind of cosmological Meissner phase, formed in the early universe, which excludes
the weak force by making the vector bosons which carry it, become massive. It is a re-
markable thought that the very same mechanism that causes superconductors to levitate
lies at the heart of the weak nuclear force responsible for nuclear fusion inside stars. In
trying to discover the Higg’s particle, physicists are in effect trying to probe the cosmic
superconductor above its gap energy scale.

If we now look back at (12.105), we see that the electrical current carried by the con-
densate is

~j = − δF
δ ~A(x)

= −Q
(
~A(x) − h̄

2e
~∇φ(x)

)
.

This permits us to identify Q with the “London Kernel” introduced earlier in the study of
electron transport. What is different here, is that this quantity is now finite in the DC,
zero frequency limit. Thus, once a charged order parameter develops a rigidity, the matter
becomes a perfect diamagnet, developing superconductivity.

Let us now continue to calculate the phase stiffness or “superfluid density” of a BCS
superconductor. Formally, to twist the phase of the order parameter, we need to allow the
order parameter to become a function of position, so that now the interaction that gives
rise to superconductivity can not be infinitely long-ranged. In the simplest case, we can
simply consider a local interaction

HI = −g
∫
d3xψ†↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x)
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Under the Hubbard Stratonovich transformation, this becomes

HI →
∫
d3x

[
∆̄(x)ψ↓(x)ψ↑(x) + ψ†↑(x)ψ

†
↓(x)∆(x) +

∆̄(x)∆(x)

g

]

so that now, the phase of the order parameter can develop a non-uniform configuration.
We’ll imagine a superconductor on a torus in which the phase of the order parameter is
twisted, so that ∆(L) = ei∆φ∆(0). Let us consider a uniform twist, so that

∆(x) = ei~a·~x∆0,

where ~a = ∆φ
L x̂. Now by gauge invariance, this twist of the order parameter can be removed

by a gauge transformation,

∆(x) → e−i~a·~x∆(x) = ∆0

~A = ~A− h̄

2e
~a (12.107)

so a twist in the order parameter is gauge equivalent to a uniform vector potential ~A = h̄
2e~a,

and vice versa- a uniform vector potential is gauge equivalent to a twisted order parameter
field.

So to calculate the stiffness we need to compute the Free energy in the presence of a
uniform vector potential. On a taurus, this implies a threaded magnetic flux. Indeed, the
total change in the phase of the order paramter is given by

∆φ = αL =
2e

h̄
AL =

2e

h̄
Φ = 2π

(
Φ
h
2e

)

where Φ is the magnetic flux through the torus. The twist angle can by written

∆φ = 2π
Φ

Φ0
,

where

Φ0 =
h̄

2e

is known as the superconducting flux quantum. Each time the flux through the taurus
increases by Φ0, the superconducting order parameter is twisted by an additional 2π.

Introduction of vector potential ε~k → ε~k−e ~A, so inside hk

ε~kτ3 →
(
ε~k−e ~A

−ε−~k−e ~A

)
=

(
ε~k−e ~A

−ε~k+e ~A

)
≡ ε~k−e ~Aτ3 (12.108)

i.e ,

h~k → h~k−e ~Aτ3
= ε~k−e ~Aτ3τ + ∆τ1
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The Free energy in a field is then

F = −T
∑

k,iωn

Tr ln[ε~k−e ~Aτ3τ + ∆τ1 − iωn] +
∆2

g

We need to calculate

Qab = − 1

V

∂2F

∂Aa∂Ab

Taking the first derivative with respect to the vector potential gives us the steady-state
diamagnetic current

−〈Ja〉 =
1

V

∂F

∂Aa
=

1

βV

∑

k≡(k,iωn)

Tr
[
e∇aε~k−e ~Aτ3 G(k − eA)

]

where we have introduced the shorthand G(k−eA) = [iωn−h~k−e ~Aτ3
]−1 = [iωn−ε~k−e ~Aτ3τ3−

∆τ1]
−1.

Taking one more derivative,

Qab = − 1

V

∂2F

∂Aa∂Ab

∣∣∣∣∣
A=0

=
e2

βV

∑

k




diamagnetic part︷ ︸︸ ︷
∇2
abε~kTr [τ3G(k)] +

paramagnetic part︷ ︸︸ ︷
∇aε~k∇bε~kTr [G(k)G(k)]




where we first used the relation ∂
∂Ab

G(k − eA) = e∇bε~kG(k − eA)2 and then set A = 0.
We may identify the above expression as a sum of the diamagnetic, and paramagnetic
parts, respectively, of the superfluid stiffness. The diamagnetic part of the response can be
integrated by parts, to give

e2

βV

∑

k,n

∇2
abε~kTr [τ3G(k)] = − e2

βV

∑

k,n

∇aε~kTr [τ3∇bG(k)]

= − e2

βV

∑

k,n

∇aε~k∇bε~kTr [τ3G(k)τ3G(k)] (12.109)

Notice how this term is identical to the paramagnetic term, apart from the τ3 insertions.
We now add these two terms, to obtain

Qab = − e2

βV

∑

k

∇aε~k∇bε~k




diamagnetic part︷ ︸︸ ︷
Tr [τ3G(k)τ3G(k)]−

paramagnetic part︷ ︸︸ ︷
Tr [G(k)G(k)]


 .

Notice, that when pairing is absent, the τ3 commute with G(k), and the diamagnetic and
paramagnetic contributions exactly cancel. We can make this explicit, by writing

Qab = − e2

2βV

∑

k

∇aε~k∇bε~kTr
[
[τ3, G(k)]2

]
.
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Now

[τ3, G(k)] = 2i
∆τ2

(iωn)2 −E2
k

so

−Tr
[
[τ3, G(k)]2

]
= 8

∆2

[(ωn)2 + ε2k + ∆2]2
.

so that

Qab =
4e2

βV

∑

k

∇aε~k∇bε~k
∆2

[(ωn)2 + ε2k + ∆2]2
.. (12.110)

Remarkably, although the diamagnetic and paramagnetic parts of the superfluid stiffness in-
volve electrons far away from the Fermi surface, the difference between the two is dominated
by electrons near the Fermi surface. This enables us to replace

2

V

∑

k

∇aε~k∇bε~k {. . .} = N(0)

∫ ∞

−∞
dε

∫
1
3
v2F δab︷ ︸︸ ︷

dΩ
k̂

4π
vavb {. . .} =

δab
3
N(0)v2

F

∫ ∞

−∞
dε {. . .} .

Note that the factor of two is absorbed into the total density of states of up and down
electrons. We have taken advantage of the rapid convergence of the integrand to extend the
limits of the integral over energy to infinity. Replacing 1

3N(0)v2
F = n

m , we can now write
Qab = Qδab, where

Q(T ) =
ne2

m
T
∑

n

∫ ∞

−∞
dε

2∆2

(ε2 + ω2
n + ∆2)2

=

(
ne2

m

)
πT

∑

n

∆2

(ω2
n + ∆2)

3
2

Now at absolute zero, we can replace T
∑
n → ∫ dω

2π , so that

Q(0) ≡ Q0 =

(
ne2

m

)
=1︷ ︸︸ ︷∫ ∞

−∞

dω

2

∆2

(ω2 + ∆2)
3
2

=

(
ne2

m

)
.

In other words, all of the electrons have condensed to form a perfect diamagnet. The finite
temperature stiffness can then be written

Q(T )

Q0
= πT

∑

n

∆2

(ω2
n + ∆2)

3
2

A Appendix: Grassman Calculus

A.1 Differentiation and Integration

Differentiation is defined to have the normal linear properties of the differential operator.
We denote

∂ ≡ ∂

∂c
, ∂̄ ≡ ∂

∂c̄
(12.111)
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so that

∂c = ∂̄c̄ = 1. (12.112)

If we have a function

f(c̄, c) = f0 + f̄1c+ c̄f1 + f12c̄c (12.113)

then differentiation from the left-hand side gives

∂f = f̃1 − f12c̄
∂̄f = f1 + f12c (12.114)

where the minus sign in the first expression occurs because the ∂̄ operator must anticom-
mute with c. But how do we define integration? This proves to be much easier for Grass-
man variables, than for regular c-numbers. The great sparseness of the space of functions
dramatically restricts the number of linear operations we can apply to functions, forcing
differentiation and integration to become the same operation :

∫
dc ≡ ∂,

∫
dc̄ ≡ ∂̄ (12.115)

In other words, ∫
dc̄c̄ = 1,

∫
dcc = 1,

∫
dc̄ =

∫
dc = 0

A.2 Change of variable

Suppose we change variables, writing

(
c
c̄

)
= A

(
ξ
ξ̄

)

where A is c-number matrix. If we make this substitution in the polynomial f, we form a
new polynomial

g(ξ, ξ̄) = f(c, c̄).

Equating each term in the function, we have

f12cc̄ = g12ξξ̄ = (f12detA)ξξ̄.

Now we would like to know the Jacobian for this transformation, which is defined so that

dc̄dc = J

(
c̄, c

ξ̄, ξ

)
dξ̄dξ

Now ∫
dc̄dcf(c, c̄) = f12 = g12(detA)−1,

∫
dξ̄dξg(ξ, ξ̄) = g12
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For a linear transformation the Jacobian should be just a number, so by comparing the
above, we see that

J

(
c̄, c

ξ̄, ξ

)
= (detA)−1

This result can be easily generalized to a large number of variables, so that

J

(
c1 . . . cr
ξ1 . . . ξr

)
=

∣∣∣∣
∂c1 . . . cr
∂ξ1 . . . ξr

∣∣∣∣
−1

which is precisely the inverse of the bosonic Jacobian. This has important implications
for super-symmetric field theories, where the Jacobian of the bosons and fermions pre-
cisely cancels. For our purposes however, the most important point, is that for a Unitary
transformation, the Jacobian is unity.

A.3 Gaussian Integrals

The basic Gaussian integral is simply
∫
dc̄dce−ac̄c =

∫
dc̄dc(1 − ac̄c) = a

If now we introduce a set of N variables, then
∫ ∏

j

dc̄jdcj exp−[
∑

j

aj c̄jcj ] =
∏

j

aj

Suppose now, we carry out a unitary transformation, for which the Jacobian is unity, then
since

c = Uξ, c̄ = ξ̄U †,

the integral then becomes
∫ ∏

j

dξ̄jdξj exp[−ξ̄ ·A · ξ] =
∏

j

aj

where Aij =
∑
l U
†
ilalUlj is the matrix with eigenvalues al. It follows that

∫ ∏

j

dξ̄jdξj exp[−ξ̄ · A · ξ] = detA

Finally, by shifting the variables ξ → ξ−A−1j, where j is an arbitrary vector, we find that

Z[j] =

∫ ∏

j

dξ̄jdξj exp[−ξ̄ ·A · ξ + j̄ · ξ + ξ̄ · j] = detA exp[j̄ ·A−1 · j]

This is the basic Gaussian integral for Grassman variables. Notice that using the result
lndet[A] = Trln[A], it is possible to take the logarithm of both sides to obtain

S[j] = −lnZ[j] = −Trln[A] − j̄ ·A−1 · j.
The main use of this integral, is for evaluating the Path integral for free field theories. In
this case, the matrix A → −G−1 becomes the inverse propagator for the fermions, and
ξn → ψ(iωn) is the Fourier component of the Fermi field at Matsubara frequency iωn.

366



c©2004 P. Coleman Chapter 12.

Exercises

1. Repeat the calculation of section 3. without taking the continuum limit. Show that
the path integral for a single fermion with a large, but finite number of time slices is
given by

ZN =
∏

−N/2≤n<N/2
(ε− iωnJo(ωn∆τ/2))

where Jo(x) = sinx/x, so that in the limit ∆τ → 0, the partition function reverts to
the form obtained from the continuum action.

2. Using path integrals, calculate the partition function for an electron in a magnetic
field, with the action

S =

∫
dτ f̄α

(
δαβ∂τ + ~σαβ · ~B

)
fβ

Why is your answer not the same as the partition function of a spin 1/2 in a magnetic
field?

3. Suppose

M = e
1
2

∑
i,j
Aijc†ic†j

where Aij is an N × N antisymmetric matrix, and the c†j are a set of N canonical
Fermi creation operators. Using coherent states, calculate

Tr[MM†]

where the trace is over the 2N dimensional Hilbert space of fermions. (Hint: notice
that MM† is already normal ordered, so that by using the trace formula, you can
rewrite this in terms of a simple Grassman integral.)

4. Calculate, to Gaussian order, the change in the BCS effective action for a fluctuation
in the gap function of the following form

∆(τ) = ∆0 +
1√
β

∑

n

δ∆ne
−iνnτ

where νn = 2πTn is the Bose Matsubara frequency and ∆0 is a value of ∆ which
minimizes the effective action. Use your result to confirm that the BCS Free energy
per unit volume is accurate to O(1/V ), where V is the volume.

5. Re-derive table 1. for the case of bosonic coherent states.

|b〉 = ebb̂
† |0〉

where the Grassman variable is now replaced by a conventional c-number b.
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B Exercises for chapter 12

1. (a) Suppose H = εc†c represents a single fermion state. Consider the approximation to the
partition function obtained by dividing up the period τ ∈ [0, β] into N equal time-slices,

ZN = Tr[(e−∆τH)N ] (12.116)

where ∆τ = β/N . By using coherent states |c〉 = eĉ†c|0〉, and approximating the matrix
element from time τj to time τj+1, where τj = j∆τ by

〈c̄j+1|e−∆τH |cj〉 = eαc̄j+1cj +O(∆τ2) (12.117)

where α = (1 − ∆τε), (Fig. 1.)

0ττ3 2 1β=τ
(12.118)

show that Z3 can be written as a “toy functional integral”,

Z3 =

∫
dc̄3dc3dc̄2dc2dc̄1dc1 exp



−(c̄3, c̄2, c̄1)




1 −α 0
0 1 −α
α 0 1





c3
c2
c1





 (12.119)

(b) Evaluate Z3.

(c) Generalize the result to N time slices and obtain an expression for ZN . What is the
limiting value of your result as N → ∞?

2. Derive the completeness and trace formulae for a set of bosonic coherent states,

|α〉 = eb†α| (12.120)

You may assume the basic result

δnm =

∫
db̄db

2πi
e−b̄bbnb̄m

In particular

(a) Show that the completeness relation is given by
∑

|b〉, |b̄〉
|b〉〈b̄| = 1

∑

|b〉, |b̄〉
=

∫
db̄db

2πi
e−b̄b (12.121)

(b) Show that the trace formula is given by

Tr[Â] =
∑

|b〉, |b̄〉
〈b̄|Â|b〉

(c) What is the key difference between the derivation of the Bosonic and the Fermionic path
integrals?
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3. The one dimensional electron gas is prone to the development of charge-density wave insta-
bilities. The treatment of these instabilities bears close resemblance to the BCS theory of
superconductivity. Suppose we have a one-dimensional conductor, described by the Hamilto-
nian

H − µN = Ho +HI ,

Ho = −t
∑

j, σ

(
ψ†

j+1 σψj σ + ψ†
j σψj+1 σ

)
,

HI = −g
∑

j

nj↑nj↓ (12.122)

where g > 0 and ψ†
jσ creates an electron with spin σ = ± 1

2 at site j. The separation between
sites is taken to be unity and the chemical potential has been chosen to be zero, giving a
half-filled band.

(a) Show that Ho can be diagonalized in the form

Ho = −
∑

k σ

(2t cosk)c†kσckσ , (12.123)

where ckσ = 1√
N

∑
j ψjσe

−ikj , k = 2π
N (0, 1, . . .N − 1) . Please note that the band is exactly

half-filled, so that the Fermi surfaces are separated by a distance π in momentum space and
the average electron density is 1 per site.

(b) Suppose a staggered potential Vj = −(−1)jΦ is applied to the conductor. This will induce
a staggered charge density to the sample

〈njσ〉 =
1

2
+ (−1)j∆j/g (12.124)

At low temperatures, the staggered order will remain even after the applied potential is re-
moved. Why? If the RMS fluctuations in the staggered charge density can be ignored, show
that the interaction Hamiltonian can be recast in the form

HI →
∑

j

(
(−1)j∆j n̂j +

∆2
j

g

)
+O(δn̂2

j ). (12.125)

(c) How can the above transformation be elevated to the status of an exact result using a
path integral? (Note that the order parameter is no longer complex- does this change your
discussion?)

(d) Calculate the excitation spectrum in the presence of the uniformly staggered order pa-
rameter ∆j = ∆. (Hint: write the mean field Hamiltonian in momentum space and treat the
terms that scatter from one-side of the Fermi surface in an analogous fashion to the pairing

terms in superconductivity. You may find it useful to work with the spinor Ψkσ =

(
ckσ

ck+πσ

)
.)

(e) Calculate the Free energy F [∆] and sketch your result as a function of temperature. Write
down the gap equation for the value of ∆(T ) that develops spontaneously at low temperatures.
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