So You Want to Learn to
Program?

James M. Reneau, M.S.
Assistant Professor
Shawnee State University
Portsmouth Ohio USA

http://www.basicbook.org

James M. Reneau
P.O. Box 278
Russell, Kentucky 41169-2078 USA

Book Version: 20101113a
For BASIC-256 Version 0.9.6.48 or later

So You Want to Learn to Program?

James M. Reneau, M.S. - im@renejm.com

Copyright C) 2010
James Martel Reneau
P.O. Box 278 - Russell KY 41169-0278 USA

Createspace Print ISBN: 978-1456329044

The work released under:Creative Commons Attribution-Noncommercial-
Share Alike 3.0 United States License. See http://creativecommons.org

for more information.
Under this'license you are free:

+ .to Share — to copy, distribute and transmit the work

Under the following conditions:

« Attribution — You must attribute the work or any fragment of the work to the
author (but not in any way that suggests that they endorse you or your use of the
work).

« Noncommercial — You may not use this work for commercial purposes.

Share Alike — If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same or similar license to this one.

mailto:jim@renejm.com

Page i

Table of Contents

Chapter 1: Meeting BASIC-256 - Say Hello.......... 1
The BASIC-256 WINAOW:.....oiuiiiiiie e i 1
MU Bar . e e 2

B 1o Yo B = 7T P o S S 2
PrOgramM Al A .. i e R e a e 3
TeXt OULPUL Area: ... b e e B e e e 3
Graphics OULPUL Area:.....ocvieiiiiiiiie e S T e e 3
Your first program - The say statement:....«i e, 3
BASIC-256 is really good with numbers - Simple Arithmetic:. 7
Another use for + (Concatenation):....ci e, 9
The text output area - The print statement:...................o...e. 10
What is @ “Syntax error iimmss e eee e ienenere e 12
Chapter 2: Drawing Basic Shapes..........cvvvveus 13
Drawing Rectangles and Circles:.........cccoiviiiiiiiiiiiiiiiineen, 13
Saving Your Program and koading it Back:.................cceeil. 23
Drawing with Lines: . .o, 23
Setting Individual-Paints on the Screen:..........ccoooiiviiinnn. 26
Chapter 3: Sound and MusSIiC......ccovviiiriiinncnnnanas 31
Sound Basics.~ Things you need to know about sound.:........ 31
Numeric Variables: ... 36
Chapter 4: Thinking Like a Programmer........... 41
PSEUAOCOAE: .. . it 41
Flowcharting:...ooo 44
Flowcharting Example One:.....o i 45
Flowcharting Example TWO ..o 46
Chapter 5: Your Program Asks for Advice......... 49
Another Type of Variable - The String Variable:................... 49

So You Want to Learn to Program? © 2010 James M. Reneau.

Input - Getting Text or Numbers From the User:.................. 50
Chapter 6: Decisions, Decisions, Decisions....... 57
True and False ..., 57
Comparison OpPeratorS: .. oo 57
Making Simple Decisions - The If Statement:....................... 59
Random NUmMbers: ... B 61
Logical Operators:....ccoiiii i e 62
Making Decisions with Complex Results - If/End If............... 65
Deciding Both Ways - If/Else/End Ifi.............. L 67
Nesting DecCiSiONS:....c.vvviiiiiiiieeee e S B e e eenn 68
Chapter 7: Looping and Counting - Do.it Again
and Again......iiccciiiinrsssisinnsssasadi s nassan s nanannnns 71
B A L= e] g 1 Yo o P S 71
Do Something Until | Tell You To.Stop:.....ccooviviiiiiiiiiinnns 75
Do Something While | Tell Yot To' Do It:.......coooiiiiiiiiiniinns 77
Fast GraphiCs:.. ..o i e e e 79
Chapter 8: Custom Graphics - Creating Your Own
] 4 1= T o = RS 85
Fancy Text for Graphics Output:..........ocooviiiiiiin 85
Resizing the Graphics Output Area:......cccovvviiiiiiiiiiieennns 88
Creating a Custom Polygon:......ccooviiiiiiiiiiin e 90
Stamping @ POlYgoN:o 92
Chapter9: Subroutines - Reusing Code.......... 101
Labels and GOto:....cc v, 101
Reusing Blocks of Code - The Gosub Statement.:............... 104
Chapter 10: Mouse Control - Moving Things
Around.......ccociiiiiiiiiiiir i s s s s e r s r s 111
Tracking MoOde:o 111
CHCKING MO . i 113

So You Want to Learn to Program? © 2010 James M. Reneau.

Page iii

Chapter 11: Keyboard Control - Using the

Keyboard to Do ThingS.....ccciviriiirnnssnnnnsnnnnnnns 121
Getting the Last Key Press: ..o 121
Chapter 12: Images, WAVSs, and Sprites......... 129
IMmages From a File:i.. .o 129
Playing Sounds From a WAV file:.......coiiiiiiiiiii sl 132
Moving Images - SPriteS:..ccoi i T 135
Chapter 13: Arrays - Collections of Information.
.. 145
One-Dimensional Arrays of Numbers:.......a7 e, 145
Arrays of StriNgS:....oiiii i e 151
ASSIGNING AITAY S ittt e et en e enenenes 152
SOUNd aNd AITAYS: . it fe et e 153
GraphiCs and ArrayS: ..o i e eee e aaeneeaaaas 155
Advanced - Two Dimensional Arrays:........cccoevviiiiiiiininnnns 158
Really Advanced - Array SizeSici....c.ovvviiiiiiiiiiiiiiiiniiiieieneen, 159
Really Really Advanced - Resizing ArraysS:.......ccooevvivnininnennn 161
Chapter 14: Mathematics - More Fun With
Numbers.......cxtiiiiiiiiiniiirssss s sss s sss s ssnsssnnnnnnnnns 167
NEW OPeIratOrS:t 167
MOdUIO OPErator:. ... 167
Integer Division Operator:......ccovcviiiiiiiiii e, 170
POWeEr OpPerator:o 171
New Integer FUNCLIONS:o, 173
New Floating Point FUNCLIONS: ..o 175
Advanced - Trigonometric Functions:...........cccovvviiiiiiinnnns 175
[0 11 0 1< PP 177
Y1 =P 177
AN N e 178
Degrees FUNCHION:i i 178
Radians FUNCLION:. ... e 179

So You Want to Learn to Program? © 2010 James M. Reneau.

1RV 2T ST 0 1= 1 0 T 179
[NV 2T TSI Y1 L P 179
INVErse TangeNt e 180
Chapter 15: Working with Strings.................. 187
The String FUNCEIONS: .. .o 187
SEANG() FUNCEION ... it e e 188
Length() FUNCHION ...l 189
Left(), Right() and Mid() FUNCLIONS:......coviiiiii e it 190
Upper() and Lower() FUNCLIONS:......cocoviiiiii i, 191
INSEr() FUNCEION . e et i e 192
Chapter 16: Files - Storing Information For Later.
.. 197
Reading Lines From a File: ... it 197
Writing Lines to a File:....ccooiiii e 201
Read() Function and Write Statement:..........cocvvviviiiiinnnnns. 205
Chapter 17: Stacks, Queues, Lists, and Sorting
.. 209
1) 1= Lol T 209
(@ 1= U 1 211
Linked List:. .t e 214
Slow and Inefficient Sort - Bubble Sort:..........oooovvviiininnne. 222
Better Sort —Insertion Sort:.......cccooiiiiiii 225
Chapter 18 - Runtime Error Trapping............. 229
B O T e 229
Finding Out Which Error.....cccooiiiiee, 230
Turning Off Error Trapping:...ccccvviiiicvc e 233
Chapter 19: Database Programming.............. 235
What is @ Database: ... 235
The SQL Language:...ccco i e 235
Creating and Adding Data to a Database:.......................... 236

So You Want to Learn to Program? © 2010 James M. Reneau.

Retrieving Information from a Database:..............c.cooonii. 243
Chapter 20: Connecting with a Network......... 247
Socket CoNNECTION: .. .iii i 247
A Simple Server and Client:........coiiiiii 248
Network Chat:.......ooiii e, 251
Appendix A: Loading BASIC-256 on your PC or
USB Pen Drive....ccicciviiinicinicsnssnssssnnnnsmsnninnshs 261
1 - Download:.....ooi e e i 261
2 - INStalling .. 264
3 - Starting BASIC-256......ccciiiiiiiiiiiei st e e eee e 269
Appendix B: Language Reference - Statements
... 271
circle - Draw a Circle on the Graphics Output Area (2)...... 271
changedir - Change Your Current Working Directory (16)..271
clg - Clear Graphics Output Area (2).....ccoeoeiiiiiiiiiiiiee, 272
clickclear - Clear the Last Mouse Click (10)........coceviviinnnn. 272
close - Close the Currently-Open File (16).......c..ccevenvnnennn.. 272
cls - Clear Text Qutput Window (1)....ccccoviviiiiiiiiiiiinnn, 273
color or colour- Set Color for Drawing (2).......ccccovvevininnen. 273
ABCIOSE (19). .. i 273
dbcloseset (19). ..o 274
dbexecUte (19)....cooiri i 274
ABOPEN (19) ... 274
dbopenset (19). i 274
AECIMAL () e e 275
dim - Dimension a New Array (13)....cccoeiiiiiiiiiiiiiiieen 275
do / until - Do / Until LOOP (7)..ieveiiiiiiiiiiiiiiineeceeea 275
end - Stop Running the Program (9).......c.cocoiiiiiiiiiiinnnnnn. 276
fastgraphics - Turn Fast Graphics Mode On (8).................. 276
font - Set Font, Size, and Weight (8).......cc.cooviiiiiiiiiinnnn, 276

So You Want to Learn to Program? © 2010 James M. Reneau.

for/next - Loop and Count (7)...ccovieiiiiiiiiiiieeeee, 277
goto - Jump toa Label (9)..cooiiii 277
gosub/return - Jump to a Subroutine and Return (9).......... 278
graphsize - Set Graphic Display Size (8)......ccocvvviiiiinnnnnnn. 278
if then - Test if Something is True - Single Line(6)............. 278
if then / end if - Test if Something is True - Multiple Line (6)
.. 278
if then / else / end if - Test if Something is True - Multiple
Line With EISe (6)....cvvviiiiiiiic Bt d 279
imgload - Load an image from a file and display.(12)........ 279
imgsave - Save the Graphics Output Area.......o...wt e, 280
input - Get a String Value from the User (7)...cc..ccoovvneinine. 280
Kill = Delete @ File@ (). s e o e 281
line - Draw a Line on the Graphics Output‘Area (2)............ 281
NEECIOSE (20 ettt e e et eareeaneens 281
L=l elo] o] a =Tl Ml 074 0) e 281
LI TR =] T 74 O) S 282
NEEWIIEE (20) .ttt e i et e e re e eneenneens 282
Offerror (18). ..o i o e 282
ONEITON (L8)u ittt et i 283
open - Open a filefor Reading and Writing (16)................. 283
pause - Pause the-Program (7)......ccccovviiiiiiiiiiiiiiiiiien 283
plot - Put a Point on the Graphics Output Area (2)............. 284
poly - Draw-a Polygon on the Graphics Output Area (8).....284
portout - Output Data to a System Port...........coooviieiiinn, 284
print.- Display a String on the Text Output Window (1)..... 285

putslice - Display a Captured Part of the Graphics Output. 285
rect - Draw a Rectangle on the Graphics Output Area (2)..285

redim - Re-Dimension an Array (12).....ccccoviiviiiiiiniininnnn. 286
refresh - Update Graphics Output Area (8).......cccevvvvvnennnnn. 286
rem - Remark or Comment (2).....ccccociiiiiiiiiiiiiiiieeen, 286
reset - Clear an Open File (16).....cc.ccoovviiiiiiiiiiiiiiicee, 287

So You Want to Learn to Program? © 2010 James M. Reneau.

Page vii

say - Use Text-To-Speech to Speak (1)....ccocvvviiiiiiiinnnnnnn. 287
seek - Move the File I/O Pointer (16)......cccocvvveviiiiiinnnnnn.n. 287
setsetting - Save a Value to a Persistent Store.................. 288
spritedim - Initialize Sprites for Drawing (12)............ccevvee. 288
spritehide - Hide a Sprite (12)....cccoiviiiiiiiiiiiiee, 289
spriteload - Load an Image File Into a Sprite (12).............. 289

spritemove - Move a Sprite from Its Current Location (12) 289
spriteplace - Place a Sprite at a Specific Location (12):.. .. 290

spriteshow - Show a Sprite (12)....cccoeivviiiiiiii i i de 290
spriteslice - Capture a Sprite (12).....ccoovvii b e, 290
sound - Play a beep on the PC Speaker (3)......u.. ... 291
stamp - Put a Polygon Where You Want It (8).................... 291
system - Execute System Command‘in a Shell.................. 291
text - Draw text on the Graphics Output Area (8).............. 292
volume - Adjust Amplitude of Sound Statement................ 292
wavplay - Play a WAV audio file in"the background (12)....292
wavstop - Stop playing WAV audio file (12)........cccccceneee. 293
wavwait - Wait for the WAV to finish (12)......ccvvvvvivnvvinnnen. 293
while / end while —While Loop (7)..ccccovvvviiiiiiiiiiiieee, 293
write - Write Data to the Currently Open File (16)............. 293

writeline - Write a-Line to the Currently Open File (16)...... 294
Appendix.C: Language Reference - Functions. 295

abs — AbSOIULE Value (14)...c.ovviiiiiii e e 295
acos— Return the Arc-cosing (14)...covveiiiiiiiiiiiiiiiiiineens 296
asc = Return the Unicode Value for a Character (11).......... 296
asin —Return the Arc-sine (14)....ccoovviiiiiiii e 297
atan - Return the Arc-tangent (14)........cciiiiiiiiiiiiinnn, 297
ceil —RoUNA UP (14).eeii i, 298
chr - Return a Character (11)...cooviiiiiiiiiiieee e 299
clickb- Return the Mouse Last Click Button Status (10)...... 299
clickx- Return the Mouse Last Click X Position (10)............ 300
clicky- Return the Mouse Last Click Y Position (10)............ 301

So You Want to Learn to Program? © 2010 James M. Reneau.

Page viii

COS = COSINE (14)eniniiii e 301
currentdir - Current Working Directory (16).........cccccvvvnnnn. 302
day - Return the Current System Clock - Day (9).............. 302
dbfloat - Get a Floating Point Value From a Database Set (19)
.. 303
dbint - Get an Integer Value From a Database Set (19)..... 303
dbrow - Advance Database Set to Next Row (19)..........4.. 304

dbstring - Get a String Value From a Database Set (19)....304
degrees - Convert a Radian Value to a Degree Value (14).305
eof - Allow Program to Check for End Of File Condition (16)

.. 305
exists - Check to See if a File Exists (16)..c.....0..ccivieinnnnn. 306
float - Convert a String Value to A FloatValue (14)........... 306
floor — ROUNA DOWN (L14)...uiiniiniiiie it esie e eennennennens 307
getcolor - Return the Current Drawing Color..................... 308
getsetting - Get a Value from.the Persistent Store............ 308
getslice - Capture Part of the Graphics Output.................. 309
graphheight - Return the Height of the Graphic Display (8)

.. 309
graphwidth - Return'the Width of the Graphic Display (8). 310
hour - Return the Current System Clock - Hour (9)............ 310
instr - Return Position of One String in Another (15).......... 311
int - Convert'Value to an Integer (14)........cooiviiiiiiiiininnnn 312
key - Return-the Currently Pressed Keyboard Key (11)...... 313
lasterror —'Return Last Error (18)......cccovvviiiiiiiiiiiiiiiiiinnn 313
lasterrorextra - Return Last Error Extra Information(18)....314
lasterrorline - Return Program Line of Last Error (18)........ 314
lasterrormessage - Return Last Error as String (18)........... 315
left - Extract Left Sub-string (15).....cocovviiiiiiiiiiiie, 315
length - Length of a String (15)...ccccvviiiiiiii 315
lower - Change String to Lower Case (15).......cccovvvivinnennnen 316
md5 - Return MD5 Digest of a String.........oooovviiiiiiinnnni, 316

So You Want to Learn to Program? © 2010 James M. Reneau.

mid - Extract Part of a String (14).....cccooiiiiin, 317
minute - Return the Current System Clock - Minute (9)...... 317
month - Return the Current System Clock - Month (9)....... 318
mouseb- Return the Mouse Current Button Status (10)...... 319

mousex- Return the Mouse Current X Position (10)............ 320
mousey- Return the Mouse Current Y Position (10)............ 320
netaddress - What Is My IP Address (20)......cccocvvviiiennvin.. 321
netdata - Is There Network Data to Read (20)...........¢00. 321
netread - Read Data from Network(20).............ooo it annen 322
pixel - Get Color Value of a Pixel.........c.cooo it 322
portin - Read Data from a System Port............0.. 0t . 323
radians - Convert a Degree Value to a_Radian Value (16)..323
rand - Random NUmMbBer (6)......ccvvves i st i e 324
read - Read a Token from the Currently. Open File (16)..... 325
readline - Read a Line of Text from a File (16)................... 325
rgb - Convert Red, Green, and.Blue*Values to RGB (12)....326
right - Extract Right Sub-string (15)........cccooveiiiiiiiinnnni. 326
second - Return the Current System Clock - Second (9).....327
SIN = SINE (16)..u it itim e a0t e ae e 327
size - Return the size of the open file (15)......ccccceiiininin. 328
spritecollide - Return the Collision State of Two Sprites (12)

.. 329
spriteh - Return the Height of Sprite (12)......ccccovvviiiinnn, 329
Spritev'- Return the Visible State of a Sprite (12).............. 330
spritew - Return the Width of Sprite (12)......ccccovvvvininnn.n. 330
spritex - Return the X Position of Sprite (12).........ccoeet... 330
spritey - Return the Y Position of Sprite (12).......ccccoeeennei. 331
string - Convert a Number to a String (14)..........c.oooeinne. 331
tan - Tangent (16)....cccoiiiiiiii 332
upper - Change String to Upper Case (15).....cccvvvvviiininnnnnn, 333
year - Return the Current System Clock - Year (9)............. 333

Appendix D: Language Reference - Operators

So You Want to Learn to Program? © 2010 James M. Reneau.

and Constants.......ciccvviiiniiinrcinscsnsssnsssnsannnnss 335
Mathematical Operators:........coooiiiiiiiii 335
Mathematical Constants or Values:...........ccoiiiiiiiinne, 335
Color Constants or Values: ... 336
Logical Operators:.....cooiiiiiiii 337
Logical Constants or Values:........ccooiiiiiiiiicce 337
Bitwise Operators:.....ccvvviiiiii e 338

Appendix E: Color Names and Numbers.......... 341

Appendix F: Musical ToOnesS.....ccovvrususassissrsnnnss 343

Appendix G: Key ValuesS......ccvremmeibansnariannannnas 345

Appendix H: Unicode Character Values - Latin

(English)..ccccciiiiiiiiiiciii s csnn i e ssnn st nnn s nn s nnnns 347

Appendix I: Reserved WordsS........:cccvvunrnnnnnnnss 349

Appendix J: Error Numbers...........ccovvivviinnnnnnn 351

Appendix K: GloSsary........cccovrcinrnsnrnssnnnsnnasnns 355

So You Want to Learn to Program? © 2010 James M. Reneau.

IndeXx

Program 1:
Program 2:
Program 3:
Program 4:
Program 5:
Program 6:
Program 7:
Program 8:
Program 9:

Program 10:
Program 11:
Program 12:
Program 13:
Program 14:
Program 15:
Program 16:
Program 17:
Program 18:
Program 19:
Program 20:
Program.21.;
Program 22:
Program 23:
Program 24:
Program 25:
Program 26:
Program 27:
Program 28:
Program 29:
Program 30:

So You Want to Learn to Program?

Page xi

of Programs

Say Hello. 3
Say a NUMber.. .o 6
Say the ANSWET ... 8
Say another ANSWEr......cvviiiiiiiiiieeeiee e eide e 8
Say Hello to BOD...o.ovivici i 9
Say it One More TimMe. ..o bbb 9
Print Hello There........cooiiiiiiivi il e, 10
Many Prints One Line........coooivi i i it e, 11
Grey SPOtS...coiiiii b 13
Face with Rectangles......i ... i, 21
Smiling Face with Circles....o...tiiiiiiiiiiiin, 22
Draw a Triangle....... b, 24
Draw a Cube......ou e i, 26
Use Plot to Draw PointS........cooovviiiiiiiiiie, 27
Big Program ~Talking Face..............cooiiiiiinnnnns 30
Play Three Individual Notes..........c.ccoovviiiiiinnenn, 32
List Of SOUNAS......c.oviiiiiii e, 32
Chargel . 36
Simple.Numeric Variables..............coooviiinn. 37
Charge! with Variables...........ccooviiiiiiiinn, 38
Big Program - Little Fuge in G...........coooeviiiinnnns 39
SChOOI BUS.....oviiiii 43
I LIKE Jim. 49
[LK e 51
Math-WizZ.....ooiii 53
Fancy - Say Name......coooiiiiiee 54
Big Program - Silly Story Generator.................... 55
Compare TWO AQES....cciiiiiiiiiii e 59
COIN FlP.ii i 61
ROIING DICe..cuiiiiiiii e 66

© 2010 James M. Reneau.

Program 31:
Program 32:
Program 33:
Program 34:
Program 35:
Program 36:
Program 37:
Program 38:
Program 39:
Program 40:
Program 41.:
Program 42:
Program 43:
Program 44:
Program 45:
Program 46:
Program 47:
Program 48:
Program 49:
Program 50:
Program 51.:
Program 52:
Program 53;
Program:/54:
Program 55:
Program 56:
Program 57:
Program 58:
Program 59:
Program 60:
Program 61:
Program 62:

So You Want to Learn to Program?

Page xii

Coin Flip - WIith Else.....ccccooiiiiiiiiia 68
Big Program - Roll a Die and Draw It................... 70
For Statement..........oooii i, 71
For Statement - With Step........cooooiiiiiin 72
MOiré Pattern.......ccooovii i 73
For Statement - Countdown.........ccoovviiiiiininnnns 74
Get a Number from 1 to 10......ccccveviiniiiininnitin.n. 76
Do/Until Count to 10....cccovvviiiiiiiiiiiii i 76
LOOp FOrever. ... B b i, 77
While Count to 10.....ccoiviiiiii B e e 78
Kalidescope....oovviiiiici b 80
Big Program - Bouncing Balle...L...ou..i e, 82
Hello on the Graphics Output/Area...................... 85
Re-size GraphiCS.....coovvvviiiiii it e, 89
Big Red ArrOW.....cco i i 91
Fill Screen with Triangles:..........cccoiiiiiiiiinnn, 94
One Hundred Random Triangles.............cocevveneen. 97
Big Program < A Flower FOr YOU.........cccovvvninnnnn. 100
Goto With a.Label..............oooii, 101

Text Clock - Improved.........ccooviiviiiiiiiiin 107
Big Program - Roll Two Dice Graphically........... 110
Mouse TraCKing.......coeiviiiiii e, 112
Mouse CHCKING.....cocoviiiiiii e, 114
Big Program - Color Chooser............cccoeviiinnni. 118
Read Keyboard..........cooiiiiiiiee 122
Move Ball.......ooooi e, 125
Big Program - Falling Letter Game.................... 127
Imgload a GraphiC......ccocoviiiiiiiiii, 129
Imgload a Graphic with Scaling and Rotation....131
Spinner with Sound Effect.............coooiiiiini. 133

© 2010 James M. Reneau.

Program 63:
Program 64:
Program 65:
Program 66:
Program 67:
Program 68:
Program 69:
Program 70:
Program 71.:
Program 72:
Program 73:
Program 74:
Program 75:
Program 76:
Program 77:
Program 78:
Program 79:
Program 80:
Program 81:
Program 82:
Program 83:
Program 84:
Program 85;:
Program:86:
Program 87/
Program 88:
Program 89:
Program 90:
Program 91.:
Program 92:
Program 93:
Program 94:

So You Want to Learn to Program?

Page xiii

Bounce a Ball with Sprite and Sound Effects..... 136
Sprite ColliSiON......cccviiiii 140
Paddleball with Sprites..........ccocviiiiiiiiii . 143
One-dimensional Numeric Array........ccooveevnvnnn. 145
Bounce Many Balls.......ccccooiiiiiiici, 149
Bounce Many Balls Using Sprites..............c....... 151
List of My Friends.........coooviiiiiiiiiie i, 152
Assigning an Array With a List.................a0% 153
Space Chirp Sound.........cooiiiiiiiiii i e 154
Shadow Stamp.....cccoiviiiii 156
Randomly Create a Polygon...........u.. it 157
Grade Calculator.......oovvioiin i 159
Get Array Size.....covvvii s 160
Re-Dimension an Array.......ci e iiiieniieaeans 162
Big Program - SpaceWarp Game...............ceuenes 165
The Modulo Operator.. ... s 168
Move Ball - Use Modulo to Keep on Screen....... 170
Check Your Long Division........cccccoveveiiiiiiinenennnn. 171
The POWErs of TWO.......oviviiiiiiii e 172
Difference Between Int, Ceiling, and Floor........ 174
Big Program - Long Division...........cocvcvviiiiinnnn. 184
The String FUNCtion........cocovviiiii e 188
The Length Function...........ccooiiiiiiiiciiinn, 189
The Left, Right, and Mid Functions.................... 190
The Upper and Lower Functions........................ 192
The Instr Function.......c.cooviiiica 193
Big Program - Radix Conversion...........ccc.ceuvvenn. 195
Read Lines From a File.........oooiiiiiiiiicicn 198
Clear File and Write Lines..........ccoovevvviiiniiinenen, 202
Append Linestoa File......cocoiiiiiiicin, 204
Big Program - Phone List..........coooiiiiiiiiinn, 207
SEACK e 211

© 2010 James M. Reneau.

Page xiv

Program 95: QUEUE.......iii e 214
Program 96: Linked LiSt......ccoiiiiiii e 221
Program 97: Bubble Sort.........co 225
Program 98: Insertion Sort.........cooiiiiiiiic e 228
Program 99: Simple Runtime Error Trap......ccccvevvviiiiiiinnnenns 229
Program 100: Runtime Error Trap - With Messages............... 231
Program 101: Turning Off the Trap.......covevviiiiiiiii it 233
Program 102: Create a Database.........ccooviiiiiiii i, 238
Program 103: Insert Rows into Database.................é e 241
Program 104: Update Row in a Database......... ... wls 242
Program 105: Selecting Sets of Data from a Database.......... 244
Program 106: Simple Network Server.....c...io.. i, 248
Program 107: Simple Network Client... ...t s 249
Program 108: Network Chat.........coooi it 253
Program 109: Network Tank Battle...............cooiiil, 259

So You Want to Learn to Program? © 2010 James M. Reneau.

Page xv

Index of lllustrations

[llustration 1:
[llustration 2:
[llustration 3:
[llustration 4:
Output Area
[llustration 5:
[llustration 6:
[llustration 7:
[llustration 8:
[llustration 9:

[llustration 10:
[llustration 11:
[llustration 12:
[llustration 13:
[llustration 14:
[llustration 15:
[llustration 16:
[llustration 17:
[llustration 18:
[llustration 19:

[llustration 20:
[Hustration 21:
[llustration 22:
[llustration 23:
[llustration 24:
[llustration 25:
[llustration 26:
[llustration 27:
[llustration 28:

So You Want to Learn to Program?

The BASIC-256 SCreen....cccveiviiiiiiiiiiiiiie e 1
BASIC-256 - New Dialog.....ccccoooviiiiiiiiiiiieen, 5
Color NAMBS. e 17
The Cartesian Coordinate System of the Graphics
... 18
Rectangle. ..o 18
L1 ol [S S 19
SOUNA WaAVES. . e i e i e aaneans 31
Musical Notes....cocoviiiiiii e e 34
Charge!l. ..o e Bt 34
First Line of J.S. Bach's Little.Fuge in G............ 39
SChOOI BUS.c i e 42
Breakfast - Flowchartime ..o 46
Soda Machine < Flowchart.........ccvvviiiiiiinnnnne, 47
Compare Two Ages - Flowchart....................... 60
Common Windows FONtS......ccovevviiiiiiiiiiiinen, 88
Big REA AIMTOW. ... 91
Equilateral Triangle.......cccoiviiiiiiiiie, 93
Degrees and Radians.........cccovvvviiviiiiiiiiinenennnn 96
Big Program - A Flower For You - Flower Petal
... 99
Right Triangle.....cccoooiiiii 177
CoS() FUNCEION ... e 177
SiN() FUNCEION... i 178
Tan() FUNCEION....ioiie e 178
ACOS() FUNCEION ..ot 179
Asin() FuNnction.....coooviiiii 180
Atan() FUNCEION.....c i, 181
What is @ Stack......covviiiiiii 209
WHhat iS @ QUEBUE.....ceiieiiiie e 212

© 2010 James M. Reneau.

[llustration 29:
[llustration 30:
[llustration 31:
[llustration 32:
[llustration 33:
[llustration 34:
Database........
[llustration 35:
[llustration 36:
[llustration 37:
[llustration 38:
[llustration 39:
[llustration 40:
[llustration 41:
[llustration 42:
[llustration 43:
[llustration 44:
[llustration 45:
[llustration 46:
[llustration 47:

So You Want to Learn to Program?

Page xvi

Linked List.....cccooiii e, 215
Deleting an Item from a Linked List............... 215
Inserting an Item into a Linked List................ 216
Bubble Sort - Flowchart............ccocovviiiinnnn, 223
Insertion Sort - Step-by-step.......ccccevvviinnnnn. 226

Entity Relationship Diagram of Chapter

... 237
Socket Communication......covevvvvivvvirne il 247
BASIC-256 on Sourceforge..........c.oocotheiian e, 262
Saving Install File.......cooovv i e, 262
File Downloaded.........ccovvvviiiiiie it i e 263
Open File Warning.........otvoie e i s, 264
Open File Security Warning....osi..coooiiiieinnnnn, 265
Installer - Welcome Screen..ci...ccooviviiviininnens 266
Installer - GPL License Screen.......coooeevvvvinnnns 267
Installer - What to.Install..........ccoovviiiiiinnsns 268
Installer - Where to Install.........cocoooviiiiiinnnns 268
Installer - Complete.........coiiiiin, 269
XP Start Button.........ccoooiiiiiii 269
BASIC-256.Menu from All Programs............... 270

© 2010 James M. Reneau.

Page xvii

Acknowledgments:

A big thanks go to all the people who have worked on the BASIC-256
project, at Sourceforge. Most especially, lan Larsen_(aka:.DrBlast) for
creating the BASIC-256 computer language and his original vision.

| also feel the need to thank the Sumer 2010 programming kids at the

Russell Middle School and Julia Moore.; Also a shout to my peeps Sergey
Lupin and Joel Kahn.

Dedications:

To my wife Nancy and my daughter Anna.

So You Want to Learn to Program? © 2010 James M. Reneau.

Page xviii

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello.

Chapter 1: Meeting BASIC-256 - Say
Hello.

Page 1

This chapter will introduce the BASIC-256 environment using the
print and say statements. You will see the difference between
commands you send to the computer, strings of text, and numbers
that will be used by the program. We will also explore simple
mathematics to show off just how talented your computer.is. Lastly
you will learn what a syntax-error is and how to fix them.

The BASIC-256 Window:

The BASIC-256 window is divided into five sections: the Menu Bar,
Tool Bar, Program Area, Text Output Area, and Graphics Output
Area (see lllustration 1: The BASIC-256 Screen below).

— ————— =
189 Untiticd - BASIC-256 | ——
|| Etle Edit view Run Hep |‘]Ienu Bar
he & p - A X
New Open Save Rur Step Stop Undo

D ool Bar
in Debug Stop Redo Cut Copy Paste
Text Output

> - [= 5 [

Text Output

| Program Area A

Graphics Output

Graphics Output
Area

Ready.

lllustration 1: The BASIC-256 Screen

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 2

Menu Bar:

The menu bar contains several different drop down menus. These
menus include: “File”, “Edit”, “View”, “Run”, and “About”. The
“File” menu allows you to save, reload saved programs, print and
exit. The “Edit” menu allows you to cut, copy and paste text and
images from the program, text output, and graphics output areas.
The “View” menu will allow you to show or hide various parts:of the
BASIC-256 window. The “Run” menu will allow you to execute and
debug your programs. The “About” menu option will display a pop-
up dialog with information about BASIC-256 and_theversion‘you are
using.

Tool Bar:

The menu options that you will use the mostsare also available on
the tool bar.
t New - Start a new program

= Open - Open a:saved program
Q Save - Save the current program to the computer's hard disk
drive.or your USB pen drive
;r Run -.Execute the currently displayed program

Debug - Start executing program one line at a time
H Step - When debugging - go to next line
= Stop - Quit executing the current program
*‘ Undo - Undo last change to the program.
‘*‘ Redo - Redo last change that was undone.

& Cut - Move highlighted program text to the clipboard

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 3

[D Copy - Place a copy of the highlighted program text on the
clipboard

[:D Paste - Insert text from the clipboard into program at current
insertion point

Program Area:

Programs are made up of instructions to tell the computer exactly
what to do and how to do it. You will type your programs, . modify
and fix your code, and load saved programs intorthis area of the
screen.

Text Output Area:
This area will display the output of your programs. This may

include words and numbers. Ifthe program needs to ask you a
question, the question (and what you type) will be displayed here.

Graphics Output Area:

BASIC-256 is a graphical language (as you will see). Pictures,
shapes, and graphics you will create will be displayed here.

Your first program - The say statement:

Let's actually write a computer program. Let us see if BASIC-256
will say hello to us. In the Program Area type the following one-line
program:

[say “hello”

Program 1: Say Hello

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 4

Once you have this program typed in, use the mouse, and click on
4 “Run” in the tool bar.

Did BASIC-256 say hello to you through the computer's speakers?

say expression

The say statement is used to make BASIC-256 read an
New expression aloud, to the computer's speakers.

Concept

an

BASIC-256 treats letters, numbers, and punctuation that
N are inside a set of double-quotes as a block. This block is
ew called asstring.

Concept

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 5

New
Concept

Lr “Run” on the tool bar - or- “Run” then “Run” on the
menu

You must tell BASIC-256 when you want it to start
executing a program. It doesn't automatically know when
you are done typing your programming code in. You do

this by clicking on the ;r “Run” icon on the tool bar or

by clicking on “Run” from the menu bar then selecting
“Run” from the drop down menu.

To clear out the program you are workingonand completely start a

new program we use the t “New” button on the tool bar. The
new button will display the following dialog.box:

m Mew Program? |t

"6" Are you sure you want to completely clear this program and start a new one?

[Yes l | Cancel

Illustration 2: BASIC-256 - New Dialog

If yourare fine with clearing your program from the screen then click
on the | Yes | “Yes” button. If you accidentally hit “New” and

do not want to start a new program then click on the Cancel

“Cancel” button.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 6

“New” on the tool bar - or - “File” then “New” on the
menu

The “New” command tells BASIC-256 that you want to
clear the current statements from the program area and
New start a totally new program. If you have not saved your

program to the computer (Chapter 2) then you will lose. all
CDI‘ICEpt changes you have made to the program.

Try several different programs using-the say statement
with a string. Say hello to yourbest friend, have the
computer say your favorite coler;"havefun.

Explore

You can also have the say.statement speak out numbers. Try the
following program:

lsay 123456789

Program 2: Say a Number

Once you have this program typed in, use the mouse, and click on
o “Run” in the tool bar.

Did BASIC-256 say what you were expecting?

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 7

numbers

BASIC-256 allows you to enter numbers in decimal format.
Do not use commas when you are entering large
numbers. If you need a number less than zero just place
New the negative sign before the number.

Concept |, oies include: 1.56, 23456, -6.45 and .5

BASIC-256 is really good with numbers - Simple
Arithmetic:

The brain of the computer (called the Central’Processing Unit or
CPU for short) works exclusively'with numbers. Everything it does
from graphics, sound, and all the rest.is done by manipulating
numbers.

The four basic operations of addition, subtraction, multiplication,
and division are carried-out-using the operators show in Table 1.

Operator|Operation

+ Addition
expressionl + expression2

- Subtraction
expressionl - expression2

* Multiplication
expressionl * expression2

/ Division
expressionl / expression2

Table 1: Basic Mathematical Operators

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 8

Try this program and listen to the talking super calculator.

lsay 12 * (2 + 10)

Program 3: Say the Answer

The computer should have said “144” to you.

|say 5/ 2

Program 4: Say another Answer

Did the computer say “2.5”7

“+

T |

New)

Concept|the four basic mathematical operations: addition (+),
subtraction (-), division (/), and multiplication(*) work with
numbers to perform calculations. A numeric value is
required on both sides of these operators. You may also
use parenthesis to group operations together.

Examplesinclude: 1 +1,5*7,3.14*6 + 2, (1 + 2) *3
and5-5

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 9

Try several different programs using the say statement
and the four basic mathematical operators. Be sure to try
all four of them.

Explore

Another use for + (Concatenation):

The + operator also will add strings together. This operation is
called concatenation, or “cat” for short. When we.concatenate we

are joining the strings together, like train cars,.to make a longer
string.

Let's try it out:

[say "Hello " + "Bob.'
Program 5: Say Hello to ' Bob

The computer should have said hello to Bob.

Try another.

|say 1 + " more time"

Program 6: Say it One More Time

The + in the last example was used as the concatenate operator
because the second term was a string and the computer does not
know how to perform mathematics with a string (so it 'cats').

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 10

+ (concatenate)

Another use for the the plus sign (+) is to tell the

computer to concatenate (join) strings together. If one or

New both operands are a string, concatenation will be
performed; if both operands are numeric, then additionuis

Concept |performed.

Try several different programs using the say statement
and the + (concatenate) operator: Join.strings and
numbers together with other stringssand numbers.

Explore

The text output area - The print statement:

Programs that use the Text to Speech (TTS) say statement can be
very useful and fun.but is is also often necessary to write
information. (strings and numbers) to the screen so that the output
can be read. ;The print statement does just that. In the Program
Area type the following two-line program:

print “hello”
print “there”

Program 7: Print Hello There

Once you have this program typed in, use the mouse, and click on

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 11

4 “Run” in the tool bar. The text output area should now show
“hello” on the first line and “there” on the second line.

print expression
print expression;

The print statement is used to display text and numbers
N on the text output area of the BASIC-256 window. Print
ew normally goes down to the next line but you may print

chcept several things on the same line by usingia ; (semicolon) at
the end of the expression.

The print statement, by default, advances the text area so that the
next print is on the next line. If'you place a ; (semicolon) on the
end of the expression being printed, it'will suppress the line
advance so that the next print will be on the same line.

cls

print “Hello %
print “there,
print “my friend.”

Program 8: Many Prints One Line

cls

The cls statement clears all of the old displayed
New information from the text output area.

Concept

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 - Say Hello. Page 12

Try several different programs using the print statement.
Use strings, numbers, mathematics, and concatenation.

Explore

What is a “Syntax error”:

Programmers are human and occasionally make.mistakes. “Syntax
errors” are one of the types of errors that we.may encounter. A
“Syntax error” is generated by BASIC-256 when it does not
understand the program you have typed in. Usually syntax errors
are caused by misspellings, missing.commas, incorrect spaces,
unclosed quotations, or unbalanced parenthesis. BASIC-256 will tell
you what line your error is on and will even attempt to tell you
where on the line the error.is.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 13

Chapter 2: Drawing Basic Shapes.

In this chapter we will be getting graphical. You will learn how to
draw rectangles, circles, lines and points of various colors. These
programs will get more and more complex, so you will also learn

how to save your programs to long term storage and how to load
them back in so you can run them again or change them.

Drawing Rectangles and Circles:

Let's start the graphics off by writing a‘graphicalsprogram for our
favorite sports team, the “Grey Spots”. Their.«colors are blue and

grey.

c2 greyspots.kbs

a program for our team - the grey spots

clg

color blue

rect 0,0,300,300

color grey

cipcle 149,149,100

say«"Grey Spots, Grey Spots, Grey spots rule!"

O J oy Ol W DN

Program 9::Grey Spots

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 14

Sample Output 9: Grey
Spots

Notice: Program listings from-here on will have each line
numbered. DO NOT type in the line numbers when you
are entering the-program.

Warning

Let's go line by lineithrough the program above. The first line is
called a remark or comment statement. A remark is a place for the
programmer to place comments in their computer code that are
ignored bythe system. Remarks are a good place to describe what
complex blocks of code is doing, the program's name, why we wrote
a program, or who the programmer was.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 15

#

rem

The # and rem statements are called remarks. A remark
New statement allows the programmer to put comments about
the code they are working on into the program. The
Concept computer sees the # or rem statement and will ignore-all
of the rest of the text on the line.

On line two you see the clg statement. It is much like the cls
statement from Chapter 1, except that the clg statement will clear
the graphic output area of the screen.

clg

The clg statement erases the graphics output area so that
New we have .a cleanplace to do our drawings.
Concept

Lines four.and six contain the color statement. It tells BASIC-256
what colorto use for the next drawing action. You may define
colors either by using one of the eighteen standard color names or
you may define one of over 16 million different colors by mixing the
primary colors of light (red, green, and blue) together.

When you are using the numeric method to define your custom
color be sure to limit the values from 0 to 255. Zero (0) represents
no light of that component color and 255 means to shine the
maximum. Bright white is represented by 255, 255, 255 (all colors
of light) where black is represented by 0, 0, 0 (no colors at all). This
numeric representation is known as the RGB triplet. lllustration 3

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 16

shows the named colors and their numeric values.

color color name
color red, green, blue
color RGB number

New color can also be spelled colour.

Cnncept The color statement allows you to set the color that will
be drawn next. You may follow the color'statement with
a color name (black, white, red, darkred, green,
darkgreen, blue, darkblue, cyan,.darkcyan, purple,
darkpurple, yellow, darkyellow, orange, darkorange,
grey/gray, darkgrey/darkgray), with three numbers (0-
255) representing how much red, blue, and green should
be used to make the color, or with a single value
representing red * 256:*256 + green * 256 + blue

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 17

I - 000

| white (248 248 248)
B - (5500
_ darkred (128 0 0)

| green (0255 0)
_ darkgreen (0 128 0)
I biue (00 255)
_ darkblue (0 0 128)

| cyan (0 255 255)
_ darkcyan (0 128 128)
T purple (255 0 255)
_ darkpurple (128 0 128)

| yellow (255 255 0)
_ darkyellow (128 128 0)
[orange (255 102 0)
_ darkorange (170 51 0)

| grey or gray (164 164 164)

_ darkgrey or darkgray (128 128 128)

| clear (-1)

I/lustrat/on 3: Color Names

The graphics display area, by default is 300 pixels wide (x) by 300
pixels high*(y). A pixel is the smallest dot that can be displayed on
your‘computer monitor. The top left corner is the origin (0,0) and
the'bottom right is (299,299). Each pixel can be represented by
two numbers, the first (x) is how far over it is and the second (y)
represents how far down. This way of marking points is known as
the Cartesian Coordinate System to mathematicians.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 18

d
0 X 299

0
§7 5,50)
*10 7,88]

*100, P00)

%206 244)

F299

Illustration 4: The Cartesian
Coordinate System‘of the
Graphics Output Area

The next statement (line 5) is'reet. It is used to draw rectangles on
the screen. It takes four numbers separated by commas; (1) how
far over the left side of the rectangle is from the left edge of the
graphics area, (2)+how fardown the top edge is, (3) how wide and

(4) how tall. All four numbers are expressed in pixels (the size of
the smallest dot that can be displayed).

| width |

Illustration 5: Rectangle

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 19

You can see the the rectangle in the program starts in the top left
corner and fills the graphics output area.

rect x, y, width, height

The rect statement uses the current drawing color and
places a rectangle on the graphics output window. The
top left corner of the rectangle is specified by the first.two
New numbers and the width and height is specified by the

chcept other two arguments.

Line 7 of Program 9 introduces the circle statement to draw a
circle. It takes three numeric arguments, .the first two represent
the Cartesian coordinates for the center of the circle and the third
the radius in pixels.

lllustration 6:
Circle

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 20

circle x, y, radius
The circle statement uses the current drawing color and
draws a filled circle with its center at (x, y) with the
specified radius.
New
Concept
Can you create a graphic screen using colors, rectangles
and circles for your school or favorite sports team?
Explore

Here are a couple of sample programs that use the new statements
clg, color, rect and circle. Type the programs in and modify
them. Make them a frowning face, alien face, or look like somebody

you know.

1 # c2_rectanglesmile.kbs
2

3 #.clear the screen
4 clg

S

6 # draw the face

7/ color yellow

3 rect 0,0,299,299

9

10 # draw the mouth

11 color black

12 rect 100,200,100, 25
13

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2:

14
15
16
17
18
19

Drawing Basic Shapes.

put on the eyes
color black

rect 75,75,50,50
rect 175,75,50,50

say "Hello."

Page 21

Program 10: Face with Rectangles

Sample Output 10:
Face.with Rectangles

O J oo N> WD

= = = ©
N O

—
w

c2 circlesmile.kbs

clear the screen
clg

color white

rect 0,0,300,300

draw the face
color yellow
circle 150,150,150

draw the mouth
color black

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 22

14 circle 150,200,770
15 color yellow

16 circle 150,150,70
17

18 # put on the eyes
19 color black

20 circle 100,100, 30
21 circle 200,100,30

Program 11: Smiling Face with Circles

Sample Output 11: Smiling
Face with Circles

Combine rectangles and circles to create your own face
graphic.

Explore

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 23

Saving Your Program and Loading it Back:

Now that the programs are getting more complex, you may want to
save them so that you can load them back in the future.

You may store a program by using the Save button G on the tool
bar or Save option on the File menu. A dialog will display.-asking
you for a file name, if it is a new program, or will save the changes
you have made (replacing the old file).

If you do not want to replace the old version of‘the program and
you want to store it using a new name you may use the Save As
option on the File menu to save a copy with a different name.

To load a previously saved program you would use the Open button

= on the tool bar or the Open option on the File menu.

Drawing with Lines:

The next drawing-statement is line. It will draw a line one pixel
wide, of the current color, from one point to another point. Program
12 shows an‘example of how to use the line statement.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 24

c2 triangle.kbs - draw a triangle

clg
color black

line 150, 100, 100, 200
line 100, 200, 200, 200
line 200, 200, 150, 100

O J oy U b W DN

Program 12: Draw a Triangle

Sample Output 12: Draw a Triangle

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 25

line start x, start y, finish x, finish y

Draw a line one pixel wide from the starting point to the
ending point, using the current color.

New
Concept

Use a piece of graph-paper to draw othershapes and then
write a program to draw them. Try a right triangle,
pentagon, star, or other shapes.

Explore

The next program is a sample of what you can do with complex
lines. It draws a cube on'the screen.

1 # c2 cubetkbs .= draw a cube
2

3 clg

4 color black

5

6 # draw back square

7 Iine 150, 150, 150, 250

8 line 150, 250, 250, 250

9 line 250, 250, 250, 150

10 line 250, 150, 150, 150
11

12 # draw front square

13 1line 100, 100, 100, 200
14 line 100, 200, 200, 200
15 1line 200, 200, 200, 100

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2:

16
17
18
19
20
21
22

Drawing Basic Shapes.

line

200, 100, 100, 100

connect the corners

line
line
line
line

100, 100, 150, 150
100, 200, 150, 250
200, 200, 250, 250
200, 100, 250, 150

Page 26

Program 13: Draw a Cube

Sample Output 13: Draw a Cube

Setting Individual Points on the Screen:

The last graphics statement covered in this chapter is plot. The
plot statement sets a single pixel (dot) on the screen. For most of
us these are so small, they are hard to see. Later we will write
programs that will draw groups of pixels to make very detailed
images.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes.

Page 27

O J oy O W DN

\©

10
11
12
13

c2 plot.kbs - use plot to draw points

clg

color red
plot 99,100
plot 100,99
plot 100,100
plot 100,101
plot 101,100

color darkgreen
plot 200,200

Program 14: Use Plot to Draw Points

9

a

Sample Output 14: Use Plot to Draw

Points (circled for emphasis)

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 28
plot x, vy
Changes a single pixel to the current color.
New
Concept
At the end of each chapter there will be one ormore big
programs for you to look at, type in, and experiment with.
These programs will contain only topics.that we have
covered so far in the book.
Big This “Big Program” takes the idea.of a face and makes it
Prng ram talk. Before the program will say each word the lower half
of the face is redrawn with a-different mouth shape. This
creates a rough animation ‘and makes the face more fun.
1 # c2 talkingface.kbs
2 # draw fac¢e background with eyes
3 color yellow
4 rect.0,0,300,300
S} color black
6 rect.75,75,50,50
7 re¢t 175,75,50,50
3
9 #erase old mouth
10 color yellow
11 rect 0,150,300,150
12 # draw new mouth
13 color black
14 rect 125,175,50,100
15 # say word
16 say "i"

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes.

17

18 color yellow

19 rect 0,150,300,150
20 color black

21 rect 100,200,100,50
22 say "am"

23

24 color yellow

25 rect 0,150,300,150
26 color black

27 rect 125,175,50,100
28 say "glad"

29

30 color yellow

31 rect 0,150,300,150
32 color black

33 rect 125,200,50,50
34 say "you"

35

36 color yellow

37 rect 0,150,300, 150
38 color black

39 rect 100,200,100, 50
40 say "are!

41

42 color 'yellow

43 wrect 0,150,300,150
44 color black

45 “wrwect 125,200,50,50
46, say "my"

477

48 # draw whole new face with round smile.
49 color yellow

50 rect 0,0,300,300

51 color black

52 circle 150,175,100
53 color yellow

Page 29

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 30

54 circle 150,150,100
55 color black

56 rect 75,75,50,50
57 rect 175,75,50,50
58 say "friend"

Program 15: Big Program - Talking Face

Sample Output 15: Big Program -
Talking Face

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 31

Chapter 3: Sound and Music.

Now that we have color and graphics, let's add sound and make
some music. Basic concepts of the physics of sound, numeric
variables, and musical notation will be introduced. You will be able
to translate a tune into frequencies and durations to have the
computer synthesize a voice.

Sound Basics - Things you need to know about
sound:

Sound is created by vibrating air striking‘your ear-drum. These
vibrations are known as sound waves. When the air is vibrating
quickly you will hear a high note and when the air is vibrating slowly
you will hear a low note. The rate of the vibration is called

frequency.

low frequency = low note

high frequency = high note

lllustration 7: Sound Waves

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 32

Frequency is measured in a unit called hertz (Hz). It represents how
many cycles (ups and downs) a wave vibrates through in a second.
A normal person can here very low sounds at 20 Hz and very high
sounds at 20,000 Hz. BASIC-256 can produce tones in the range of
50Hz to 7000Hz.

Another property of a sound is it's length. Computers are.very fast
and can measure times accurately to a millisecond (ms)." A
millisecond (ms) is 1/1000 (one thousandths) of a second.

Let's make some sounds.

1 # c3 sounds.kbs
2 sound 233, 1000
3 sound 466, 500

4 sound 233, 1000

Program 16: Play Three Individual Notes

You may have heard a'clicking noise in your speakers between the
notes played in'the/dast example. This is caused by the computer
creating the sound and needing to stop and think a millisecond or
so. The'sound statement also can be written using a list of
frequencies and durations to smooth out the transition from one
note to.another.

1 # c3 soundslist.kbs
2 sound {233, 1000, 466, 500, 233, 1000}

Program 17: List of Sounds

This second sound program plays the same three tones for the

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 33

same duration but the computer creates and plays all of the sounds
at once, making them smoother.

New
Concept

sound frequency, duration

sound {frequencyl, durationl, frequencyZz,
durationZ ...}

sound numeric array

The basic sound statement takes two arguments;.(1) the
frequency of the sound in Hz (cycles per second) and (2)
the length of the tone in milliseconds (ms). The second
form of the sound statement uses curly braces and can
specify several tones and durations in.a list. The third
form of the sound statement uses an array containing
frequencies and durations: Arrays are covered in Chapter
11.

How do we get BASIC-256 to play a tune? The first thing we need to
do is to convert the notes on'a music staff to frequencies.
[llustration 7 shows two octaves of music notes, their names, and
the approximate frequency the note makes. In music you will also
find a special mark.called the rest. The rest means not to play
anything.for a certain duration. If you are using a list of sounds you
can inserta rest by specifying a frequency of zero (0) and the
needed duration for the silence.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 3: Sound and Music.

Page 34

f . . | - Bo be
y o |o |4pg P o tEp 1T K .*
Wl F I ! I T
B C C Sharp D D Sharp E F F Sharp
D Flat E Flat G Flat
A 494 523 554 587 622 659 698 740
r‘i\ | T ! iy 1 E .-! P . .-! 11.! c.ai [%] 'H.‘c.al b|'-7'_"
Wl P e] ﬁd t_l:."" > [&] ﬁ.ﬂ Ll = - Rl il I
D D Sharp E F F Sharp G G Sharp A A Sharp
E Flat G Flat A Flat B Flat
294 311 330 349 370 392 415 440 466
. | m by . H.« bo O - #ﬁ‘“ LF'
J—o e T wE T g : -* !
F F Sharp G G Sharp A A Sharp B C C Sharp
(; Flat A Flat B Flat D Flat
175 85 196 208 220 233 247 262 277

lllustration 8: Musical Notes

Take a little piece of music and.then‘leok up the frequency values
for each of the notes. Why don't'we have the computer play

“Charge!”.

The music is in“lllustration 9. You might notice that the

high G in the music.dsinot.on the musical notes; if a note is not on
the chart you can double (to make higher) or half (to make lower)

the same note from one octave away.

0 — .
i e e
el F
G C E G E G
492 523 659 78B4 659 784

Illustration 9: Charge!

Now that we have the frequencies we need the duration for each of
the notes. Table 2 shows most of the common note and rest
symbols, how long they are when compared to each other, and a

few typical durations.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 3: Sound and Music.

Page 35

Duration in milliseconds (ms) can be calculated if you know the
speed if the music in beats per minute (BPM) using Formula 1.

Note Duration=1000* 60/ Beats Per Minute * Relative Length
Formula 1: Calculating Note Duration

Note Name | Symbols | Relative | At 100 At 120 At 140
for Note | Length BPM BPM BPM
and Rest Duration | Duration | Duration

ms ms ms
Dotted Whole o ™ 6.000 3600 3000 2571
Whole s - 4.000 2400 2000 1714
Dotted Half — 3.000 1800 1500 1285
Half 5] — 2.000 1200 1000 857
Dotted '* o 1:500 900 750 642
Quarter L -

t = 1. 42
Quarter = _1_, 000 600 500 8
Dotted Eighth -';,_ °E 0.750 450 375 321
Eighth H 5 0.500 300 250 214

-
Dotted N ‘,‘F' 0.375 225 187 160
Sixteenth LS
Sixteenth hl 0.250 150 125 107
ol 7

Table 2: Musical Notes and Typical Durations

Now with the formula and table to calculate note durations, we can

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 36

write the program to play “Charge!”.

1 # c3 charge.kbs - play charge

2 sound {392, 375, 523, 375, 659, 375, 784, 250,
659, 250, 784, 250}

3 say "Charge!"

Program 18: Charge!

Go on-line and find the music for “Row-row-row Your
Boat” or another tune and write a program to play it.

Explore

Numeric Variables:

Computers are really good at remembering things, where we
humans sometimes have trouble. The BASIC language allows us to
give names. to places in the computer's memory and then store
information in them. These places are called variables.

There are four types of variables: numeric variables, string
variables, numeric array variables, and string array variables. You
will'learn how to use numeric variables in this chapter and the
others in later chapters.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 37

New
Concept

Numeric variable

A numeric variable allows you to assign a name to a block
of storage in the computer's short-term memory. You
may store and retrieve numeric (whole or decimal) values
from the numeric variable in your program.

A numeric variable name must begin with a letter; may
contain letters and numbers; and are case sensitive. You
may not use words reserved by the BASIC-256 language
when naming your variables (see Appendix).

Examples of valid variable names include:'a, b6, reader, X,
and zoo.

Warning

Variable names are case sensitive. This means that an
upper case variable” and a lowercase variable with the
same letters do not represent the same location in the
computer's memory.

Program.19.is an example of a program using numeric variables.

1 # €3 numericvariables.kbs

2 numerator = 30

3 denominator = 5

4 result = numerator / denominator
5

print result

Program 19: Simple Numeric Variables

The program above uses three variables. On line two it stores the

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 3: Sound and Music.

value 30 into the location named “numerator”.
the value 5 in the variable “denominator”.

Page 38

Line three stores
Line four takes the value

from “numerator” divides it by the value in the “denominator”

variable and stores the value in the variable named “result”.

Now that we have seen variables in action we could re-write the
“Charge!” program using variables and the formula to calculate
note durations (Formula 1).

O U B W DN

5

c3 charge2.kbs

play charge - use variables

beats = 120

dottedeighth = 1000 * 60 / beats * .75
eighth = 1000 * 60 / beats *".5

sound {392, dottedeighth, 523,".dottedeighth,
659, dottedeighth, 784;. eighth, 659, eighth,
784, eighth}

say "Charge!"

Program 20: Charge! with Variables

Warning

value stored in the beats

Change the speed of the music playing by adjusting the

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 3: Sound and Music.

Page 39

For this chapter's big program let's take a piece of music
by J.S. Bach and write a program to play it.

The musical score is a part of).S. Bach's Little Fuge in G.

1

to ”)

| 181

£

._- ; BT ,._;_ I-it‘

lllustration 10: First Line of J.S. Bach's Little Fuge in G

e,
d
Sy
Sy
Sy

1 # c3 _littlefuge.kbs

2 # Music by J.S.Bach - XVILI Fuge in G moll.

3 tempo = 100 # beats per minute

4 milimin = 1000 * 60 #.miliseconds in a minute

5 g = milimin /.tempo # quarter note is a beat

6 h = g * 2 # half note (2 gquarters)

7 e = g/ 2 # eight note (1/2 quarter)

8 s = q / 4 # sixteenth note (1/4 quarter)

9 de = e + s # dotted eight - eight + 16th

10 dgs= g + e # doted quarter - quarter + eight

11

12 sound{392, q, 587, g, 466, dqg, 440, e, 392,
466, e, 440, e, 392, e, 370, e, 440, e, 294,
392, e, 294, e, 440, e, 294, e, 406, e, 440,
392, s, 440, e, 294, e, 392, e, 294, s, 392,
440, e, 294, s, 440, s, 466, e, 440, s, 392,
440, s, 294, s}

Program 21: Big Program

So You Want to Learn to Program?

- Little Fuge in G

© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 40

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 41

Chapter 4: Thinking Like a Programmer

One of the hardest things to learn is how to think like a
programmer. A programmer is not created by simple books or
classes but grows from within an individual. To become a “good”
programmer takes passion for technology, self learning, basic
intelligence, and a drive to create and explore.

You are like the great explorers Christopher Columbus;:Neil
Armstrong, and Yuri Gagarin (the first human in‘space). You have
an unlimited universe to explore and to create withinthe computer.
The only restrictions on where you can go.will be your creativity and
willingness to learn.

A program to develop a game or interesting application can often
exceed several thousand lines of.'computer code. This can very
quickly become overwhelming;~even to the most experienced
programmer. Often we programmers will approach a complex
problem using a three step process, like:

1. Think about the problem.

2. Break theproblem up into pieces and write them down
formally.

3. Convert the"pieces into the computer language you are using.

Pseudocode:

Pseudocode is a fancy word for writing out, step by step, what your
program needs to be doing. The word pseudocode comes from the
Greek prefix “pseudo-" meaning fake and “code” for the actual
computer programming statements. It is not created for the
computer to use directly but it is made to help you understand the
complexity of a problem and to break it down into meaningful
pieces.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 42

There is no single best way to write pseudocode. Dozens of
standards exist and each one of them is very suited for a particular
type of problem. In this introduction we will use simple English
statements to understand our problems.

How would you go about writing a simple program to draw a school
bus (like in lllustration 11)?

lllustration11: School Bus

Let's break this problem into two steps:

draw the wheels
draw the/body

Now let's break the initial steps into smaller pieces and write our
pseudocode;

Set color to black.
Draw both wheels.
Set color to yellow.
Draw body of bus.
Draw the front of bus.

Table 3: School Bus - Pseudocode

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 43

Now that we have our program worked out, all we need to do is

write it:
Set color to black. color black
Draw both wheels. circle 50,120,20
circle 200,120,20
Set color to yellow. color yellow
Draw body of bus. rect 50,0,200,100
Draw the front of bus. |rect 0,50,50,50

Table 4: School Bus - Pseudocode with BASIC-256 Statements

The completed school bus program (Pregram 22) is listed below.
Look at the finished program and you will see.ccomment statements
used in the program to help the. programmer remember the steps
used during the initial problem solving.

schoolbus.kbs
clg

draw wheels
color black

circle 50,120,20
circle.200,120,20
draw bus body
color yellow

rect 50,0,200,100
10 rect 0,50,50,50

Program 22: School Bus

OoOoONOULS”WNHKF

In the school bus example we have just seen there were many
different ways to break up the problem. You could have drawn the
bus first and the wheels last, you could have drawn the front before

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 44

the back,... We could list dozens of different ways this simple
problem could have been tackled.

One very important thing to remember, THERE IS NO WRONG WAY
to approach a problem. Some ways are better than others (fewer

instructions, easier to read, ...), but the important thing is that you
solved the problem.

Try your hand at writing pseudocode:. How would you tell
BASIC-256 to draw a stick figure?

Explore

Flowcharting:

Another techniquethat pregrammers use to understand a problem
is called flowcharting. Following the old adage of “a picture is worth
a thousand words”; programmers will sometimes draw a diagram
representing the'logic of a program. Flowcharting is one of the
oldest and.commonly used methods of drawing this structure.

This‘briefintroduction to flowcharts will only cover a small part of
whatthat can be done with them, but with a few simple symbols
and connectors you will be able to model very complex processes.
This technique will serve you well not only in programming but in
solving many problems you will come across. Here are a few of the
basic symbols:

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 45

Symbol Name and Description

Flow - An arrow represents moving from
one symbol or step in the process to
—) another. You must follow the direction of
the arrowhead.

Terminator - This symbol tells us where to
(Term) start and finish the flowchart. Each
erminator

flowchart should have two of these: a start
and a finish.

Process - This symbol represents activities
or actions that the program will need-to
take. There should be only one arrow
leaving a process.

Input and Output (I/0) - This'symbol
/ Input and / represents data or/items being read by the

Process

0 system or being written out of the system.
utput . g

An example would'be saving or loading
files.

Decision - The decision diamond asks a
simple yes/no or true/false question. There
should'be two arrows that leave a decision.
Depending on the result of the question we
will follow one path out of the diamond.

Table 5: Essential Flowcharting Symbols

The best way to learn to flowchart is to look at some examples and
to try your own hand it it.

Flowcharting Example One:

You just rolled out of bed and your mom has given you two choices

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer

Page 46

for breakfast. You can have your favorite cold cereal or a
scrambled egg. If you do not choose one of those options you can

go to school hungry.

Scrambled
eggs?

Y

A

Get bowl, milk,
and cereal.

Fix eggs.

‘ Finish

lllustration 12: Breakfast -

Flowchart

Take a look at Illustration 12 (above) and follow all of the arrows.
Do you see how that picture represents the scenario?

Flowcharting Example Two:

Another food example. You are thirsty and want a soda from the

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 47

machine. Take a look at lllustration 13 (below).

Do we have
enough change
for the machine?

No

Y

Insert coin.

Have we
Inserted enough?

A 4

Make selection.

Yes

Sold out?

Getcan.

v

Get change if any.

Y
‘ Finish)

lllustration 13: Soda Machine - Flowchart

Notice in the second flowchart that there are a couple of times that
we may need to repeat a process. You have not seen how to do
that in BASIC-256, but it will be covered in the next few chapters.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 48

Try your hand at drawing some simple flow charts. Try a
chart for how to brush your teeth or how to cross the
street.

Explore

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 49

Chapter 5: Your Program Asks for
Advice.

This chapter introduces a new type of variables (string variables)
and how to get text and numeric responses from the user.

Another Type of Variable - The String Variable:

In Chapter 3 you got to see numeric variables, which can only store
whole or decimal numbers. Sometimesyou will want to store a
string, text surrounded by “”, in the computer's memory. To do this
we use a new type of variable called the string variable. A string
variable is denoted by appending.a dollar sign $ on a variable
name.

You may assign and retrievewalues from a string variable the same
way you use a numeric variable. Remember, the variable name,
case sensitivity, and.reserved word rules are the same with string
and numeric variables.

ilikejim.kbs

names$.~= "Jim"

fipstmessage$S = name$ + " is my friend."
secondmessages = "I like " + name$S + "."

print firstmessage$
say firstmessages$
print secondmessage$
say secondmessage$

O J oy O v N -

Program 23: | Like Jim

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 50

Jim is my friend.
I like Jim.

Sample Output 23: | Like Jim

New
Concept

String variable

A string variable allows you to assign a name to.ablock of
storage in the computer's short-term memory. You may
store and retrieve text and character values from the
string variable in your program.

A string variable name must begin with a letter; may
contain letters and numbers; are.Case'sensitive; and ends
with a dollar sign. Also, you cannot use words reserved
by the BASIC-256 language when naming your variables
(see Appendix I). Examples-of valid string variable names
include: d$, c7$, book$, X$, and barnYard$.

Warning

You may be tempted to assign a number to a string
variable or a string to a numeric variable. If you do you
will receive a syntax error.

Input - Getting Text or Numbers From the User:

So far we have told the program everything it needs to know in the
programming code. The next statement to introduce is input. The
input statement captures either a string or a number that the user
types into the text area and stores that value in a variable.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 51

Let's take Program 23 and modify it so that it will ask you for a
name and then say hello to that person.

ilikeinput.kbs

input “enter your name>”, name$
firstmessage$ = name$ + " is my friend."
secondmessage$ = "I like " + name$ + "."

print firstmessage$
say firstmessage$
print secondmessage$
say secondmessages$

O J oy U i W DN

Program 24: | Like?

enter your name>Vance
Vance is my friend.
I like Vance.

Sample Output 24: | Like?

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 52

New
Concept

input “prompt”, stringvariable$
input “prompt”, numericvariable
input stringvariable$
input numericvariable

The input statement will retrieve a string or a number
that the user types into the text output area of the screen.
The result will be stored in a variable that may be used
later in the program.

A prompt message, if specified, will display.on the text
output area and the cursor will directly. follow-the prompt.

If a numeric result is desired (numeric. variable specified in
the statement) and the user types a.string that can not be
converted to a number.the input 'statement will set the
variable to zero (0).

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 53

The “Math-wiz” program shows an example of input with numeric

variables.

1 # mathwiz.kbs

2 input "a? ", a

3 input "b? ", Db

4 print a + "+" + b + "=" + (a+t+b)
5 print a + "-" + b + "=" + (a-b)
6 print b + "-" + a + "=" + (b-a)
7 print a + "*" + b + "=" + (a*b)
8 print a + "/" + b + "=" + (a/b)
9 print b + "/" + a + "=" + (b/a)

Program 25: Math-wiz

a? 7

b? 56
7+56=63
7-56=-49
S56-7=49
7*56=392
7/56=0.125
56/7=8

Sample Output 25: Math-wiz

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 54

This chapter has two “Big Programs” The first is a fancy
program that will say your name and how old you will be
in 8 years and the second is a silly story generator.

Big
Program
1 # sayname.kbs
2 input "What is your name?", names$
3 input "How old are you?", age
4 greeting$ = "It is nice to meet you, " + name$
+ " . "
5 print greeting$
6 say greeting$
7 greeting$ = "In 8 years you will be " + (age +
8) + " years old.smWow,. thats old!"
8 print greetings$
9 say greetings$

Program 26: Fancy - Say.Name

(What issyour name?Joe

How old are you?l3

It idssnice to meet you, Joe.

In 8 years you will be 21 years old. Wow, thats
old!

Sample Output 26: Fancy - Say Name

sillystory.kbs

print "A Silly Story."

S w NN

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 55

5 input "Enter a noun? ", nounl$

6 input "Enter a verb? ", verbl$

7 input "Enter a room in your house? ", rooml$

3 input "Enter a verb? ", verb2$

9 input "Enter a noun? ", noun2$

10 input "Enter an adjective? ", adjls$

11 input "Enter a verb? ", verb3s$

12 input "Enter a noun? ", noun3$

13 input "Enter Your Name? ", name$

14

15

16 sentence$ = "A silly story, by " +enameS.+_ "."

17 print sentence$

18 say sentence$

19

20 sentence$ = "One day, not so longago, I saw a
" + nounl$ + " " + verblS$/+ " down the stairs."

21 print sentences$

22 say sentence$

23

24 sentence$ = "It was going to my " + rooml$ + "
to " + verb2S$ 4w @ " + noun2$s

2?5 print sentences$

26 say sentences$

27

28 sentence$ = "The " + nounl$ + " became " +
adjlsS & " when I " + verb3$ + " with a " +
noun3$ + "."

29 “print sentence$

30 say sentences$

31

32 sentence$ = "The End."

33 print sentence$

34 say sentence$

Program 27: Big Program - Silly Story Generator

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 56

Fnter
Fnter
Fnter
Fnter
Fnter
Fnter
Fnter
Fnter
Fnter

A Silly Story.

a

(VIR

an adjective? huge

a
a

Your Name? Jim
A silly story, by Jim.
One day,
stairs.
It was going to my kitchen to sing a telewision
The car became huge when I watch with a computer.
The End.

noun? car

verb? walk

room in your house? kitchen
verb? sing

noun? television

verb? watch
noun? computer

not so long ago, I saw a car walk ‘down the

Sample Output 27: Big Program - Silly<Story Generator

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 57

Chapter 6: Decisions, Decisions,
Decisions.

The computer is a whiz at comparing things. In this chapter we will
explore how to compare two expressions, how to work with complex
comparisons, and how to optionally execute statements depending
on the results of our comparisons. We will also look at how to
generate random numbers.

True and False:

The BASIC-256 language has one more special type of data that can
be stored in numeric variables. It.is the Boolean data type.

Boolean values are either true-or false and are usually the result of
comparisons and logical operations. Also to make them easier to
work with there are two Boolean‘constants that you can use in
expressions, they are: true and false.

true
false

The two Boolean constants true and false can be used in
any numeric or logical expression but are usually the
New result of a comparison or logical operator. Actually, the

constant true is stored as the number one (1) and false is
Concept stored as the number zero (0).

Comparison Operators:

Previously we have discussed the basic arithmetic operators, itis

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 58

now time to look at some additional operators. We often need to
compare two values in a program to help us decide what to do. A
comparison operator works with two values and returns true or false
based on the result of the comparison.

Operator |Operation

< Less Than

expressionl < expression2

Return true if expressionl is less than expression2, else
return false.

<= Less Than or Equal

expressionl <= expression2

Return true if expressionl is less than orequal to
expression2, else return false.

> Greater Than

expressionl > expression2

Return true if expressionl is greater than expression2, else
return false.

>= Greater Than or Equal

expressionl >= expression2

Return true.if expressionl is greater than or equal to
expression2, else return false.

= Equal

expressionl = expression2

Return true if expressionl is equal to expression2, else return
false.

<> Not Equal

Expressionl <> expression2

Return true if expressionl is not equal to expression2, else
return false.

Table 6: Comparison Operators

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 59

New
Concept

The six comparison operations are: less than (<), less
than or equal (<=), greater than (>), greater than or
equal (>=), equal (=), and not equal (<>). They are used
to compare numbers and strings. Strings are compared
alphabetically left to right. You may also use parenthesis
to group operations together.

Making Simple Decisions - The If Statement:

The if statement can use the result of a comparison to optionally
execute a statement or block of statements. This first program
(Program 28) uses three if statements to display whether your
friend is older, the same age, oriyounger.

1 # compareages.kbs.-.compare two ages

2 input "how old are you?", yourage

3 input "how oldsis your friend?", friendage

4

5 print, "You are ";

6 ifl yourage < friendage then print "younger
Than';

" ifiyourage = friendage then print "the same age
as";

8 if yourage > friendage then print "older than";

9 print " your friend"

Program 28: Compare Two Ages

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 60

how old are you?l13
how old is your friend?12
You are older than your friend

Sample Output 28: Compare Two Ages

get your age
get friend's age

no yes

your age
less than
friend's age

| print that you are younger

your age
equals
friend's age

A
greater than

friend's age

Illlustration 14: Compare Two
Ages - Flowchart

print that you are the same age

print that you are older

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 61

if condition then statement

If the condition evaluates to true then execute the
New statement following the then clause.

Concept

Random Numbers:

When we are developing games and simulations:it may become
necessary for us to simulate dice rolls, spinners, and other random
happenings. BASIC-256 has a built in random number generator to
do these things for us.

rand

A random'number is returned when rand is used in an

expression:” The returned number ranges from zero to

one, but will never be one (0=n<1.0).

New
Often you will want to generate an integer from 1 to r, the

CDI'ICEIJt following statement can be used n = int(rand *r) + 1

1 # coinflip.kbs

2 coin = rand

3 if coin < .5 then print "Heads."
4 if coin >= .5 then print "Tails."

Program 29: Coin Flip

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 62

[fails.

Sample Output 29: Coin Flip

Warning

In program 5.2 you may have been tempted to use the
rand expression twice, once in each if statement. This
would have created what we call a “Logical Error”.

Remember, each time the rand expression is.executed it
returns a different random number.

Logical Operators:

Sometimes it is necessary to join simple comparisons together.
This can be done with the four logical operators: and, or, xor, and
not. The logical operators work*very similarly to the way
conjunctions work in the English language, except that “or” is used
as one or the other or both.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions.

Page 63

Operator

Operation

AND

Logical And
expressionl AND expression2

If both expressionl and experssion2 are true then return a

true value, else return false.

expressionl

AND
TRUE | FALSE
expression | TRUE | TRUE FALSE
2 FALSE| FALSE | FALSE

OR

Logical Or
expressionl OR expression2

If either expressionl or experssion2 are true then return a

true value, else return false.

expressionl

OR
TRUE | FALSE
expression | TRUE | TRUE TRUE
2 FALSE| TRUE FALSE

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 64
XOR |Logical Exclusive Or
expressionl XOR expression2
If only one of the two expressions is true then return a true
value, else return false. The XOR operator works like “or”
often does in the English language - “You can have your cake
XOr you can eat it..
expressionl
OR
TRUE FALSE
2 FALSE| TRUE | FALSE
NOT |Logical Negation (Not)
NOT expressionl
Return the opposite of expressionl. If expression 1 was true
then return false. If experssionl was false then return a true.
NOT
. |TRUE | FALSE
expressio
nl FALS | TRUE
E
and or xor not
The four logical operations: logical and, logical or, logical
exclusive or, and logical negation (not) join or modify
comparisons. You may also use parenthesis to group
New ' Y I thesis t
operations together.
Concept

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 65

Making Decisions with Complex Results - If/End
If:

When we are writing programs it sometimes becomes necessary to
do multiple statements when a condition is true. This is done with
the alternate format of the if statement. With this statement you do
not place a statement on the same line as the if, but you place
multiple (one or more) statements on lines following the if
statement and then close the block of statements with'the.end if
statement.

if condition then

statement (s) to execute when true
end if

New The if/end if statements allow you to create a block of
programming code. to.execute when a condition is true. It

CDI'ICEIJt is often custemary to indent the statements with in the

if/end if statements so they are not confusing to read.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions.

Page 66

1 # dice.kbs

2 diel = int(rand * 6) + 1
3 die2 = int(rand * 6) + 1
4 total = diel + die2

5

6 print "die 1 = " + diel

7 print "die 2 = " + die2

3 print "you rolled " + total
9 say "you rolled " + total
10

11 if total = 2 then

12 print "snake eyes!"

13 say "snake eyes!"

14 end 1if
15 1f total = 12 then

16 print "box cars!"

17 say "box cars!"

18 end 1if

19 if diel = die2 then

20 print "doubles"=.roldl again!"
21 say "doubdes = roll again!"
22 end 1if

Program 30: Rolling Dice

die 1 = 6

die 2Z.= 06

yvou rolled 12

box “cars!

doubles - roll again!

Sample Output 30: Rolling Dice

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 67

“Edit” then “Beautify” on the menu

The “Beautify” option on the “Edit” menu will clean up the

format of your program to make it easier to read. It will

New remove extra spaces from the beginning and ending of
lines and will indent blocks of code (like in the if/fend if

Conce pt statements).

Deciding Both Ways - If/Else/End If:

The third and last form of the if statement is the iffelse/end if. This
extends the if/fend if statements by allowing you to create a block of
code to execute if the condition is true and another block to
execute when the condition is false.

if condition then

statement (s) to execute when true
else

statement (s) to execute when false

New end if

Concept|rieif, else, and end if statements allow you to define
two blocks of programming code. The first block, after
the then clause, executes if the condition is true and the
second block, after the else clause, will execute when the
condition if false.

Program 31 re-writes Program 29 using the else statement.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 68

coinflip2 - coin flip with else
coin = rand
if coin < .5 then
print "Heads."
say "Heads."
else
print "Tails."
say "Tails."
end if

O 00 J oy U W N

Program 31: Coin Flip - With Else

Eeads.
Sample Output 31: Coin Flip - With Else

Nesting Decisions:

One last thing. With'the'if/fend if and the if/else/end if statements it
is possible to nest an.finside the code of another. This can become
confusing but you.will see this happening in future chapters.

This chapter's big program is a program to roll a single 6-
sided die and then draw on the graphics display the

. number of dots.
Big
Program

1 # dieroll.kbs
2 # hw - height and width of the dots on the dice

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions.
hw = 70
margin - space before each dot

[Ny

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

28
29

30
31
32

So You Want to Learn to Program?

1/4 of the space left over after we draw 3
dots

margin = (300 - (3 * hw)) / 4

z1 - x and y position of top of top row and
column of dots

z1l = margin

¥ z2 - x and y position of top of middle row
and column of dots

z2 = z1 + hw + margin

z3 - x and y position of top of bottom. row
and column of dots

z3 = z2 + hw + margin

get roll
roll = int(rand * 6) +4l
print roll

color black
rect 0,0,300,300

color white

top row

if roll <> 1 then rect z1l,zl,hw,hw
if s«rolkl = 6 then rect z2,z1,hw,hw
if"roll >= 4 and roll <= 6 then rect
z3,z1,hw, hw

#.middle

if roll = 1 or roll = 3 or roll = 5 then rect
z2,22,hw, hw

bottom row

if roll >= 4 and roll <= 6 then rect
z1l,z3,hw, hw

if roll = 6 then rect z2,z3,hw,hw

if roll <> 1 then rect z3,z3,hw,hw

Page 69

© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 70

[33 say "you rolled a " + roll |

Program 32: Big Program - Roll a Die and Draw It

Sample Output 32: Big Program -
Roll.a.Die and Draw It

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 71

Chapter 7: Looping and Counting - Do
it Again and Again.

So far our program has started, gone step by step through our
instructions, and quit. While this is OK for simple programs, most
programs will have tasks that need to be repeated, things counted,
or both. This chapter will show you the three looping statements,
how to speed up your graphics, and how to slow the program down.

The For Loop:

The most common loop is the for loop. The for loop repeatedly
executes a block of statements a specified.number of times, and
keeps track of the count. The count can begin at any number, end
at any number, and can step bysany increment. Program 33 shows
a simple for statement used to say the numbers 1 to 10
(inclusively). Program 34 will count by 2 starting at zero and ending

at 10.

1 # for.kbs

2 for t = 1L+/tosr10
3 print t

4 say .t

S next t

Program 33:.For Statement

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 72

P ©O© 00 Jo O b W NP

0

Sample Output 33: For Statement

1 # forstep2.kbs

2 for t = 0 to 10 step 2
3 print t

4 say t

o next t

Program 34: For Statement — With Step

= oo o DN O

0

Sample Output 34: For Statement - With Step

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 73

New
Concept

for variable = exprl to expr? [step expr3]
statement (s)
next variable

Execute a specified block of code a specified number of
times. The variable will begin with the value of exprl.
The variable will be incremented by expr3 (or one if step
is not specified) the second and subsequent time through
the loop. Loop terminates if variable exceeds expr2.

Using a loop we can easily draw very interesting graphics. Program
35 will draw a Moiré Pattern. This really interesting graphic is
caused by the computer being unable to draw perfectly straight
lines. What is actually drawn are pixels in a stair step fashion to
approximate a straight line. If you look closely at the lines we have
drawn you can see that they actually are jagged.

1 # moire.kbs

2 clg

3 color black

4 for t = 1 to 300 step 3
5

6

7

nextg t

line 0,0,300,t
Iine 0,0,t,300

Program 35: Moiré Pattern

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 74

Sample Output 35: Moiré
Pattern

What kind of MoiréPatterns can you draw? Start in the
center, use different step values, overlay one on top of
another, trydifferent colors, go crazy.

Explore

For statements can even be used to count backwards. To do this
set the step to a negative number.

1 # forstepnegl.kbs

2 for t = 10 to 0 step -1
3 print t

4 pause 1.0

S next t

Program 36: For Statement — Countdown

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 75

(@)

RPN WSOy J oo o

(@)

Sample Output 36: For Statement - Countdown

pause seconds

The pause statement tells BASIC-256 to stop executing

the current program for a specified number of seconds.

New The number of seconds may be a decimal number if a
fractional'second pause is required.

Concept P a

Do Something Until I Tell You To Stop:

The'next type of loop is the do/until. The do/until repeats a block of
code one or more times. At the end of each iteration a logical
condition is tested. The loop repeats as long as the condition is
false. Program 37 uses the do/until loop to repeat until the user
enters a number from 1 to 10.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 76

dountil.kbs
do
input "enter a number from 1 to 10?",n
until n>=1 and n<=10
print "you entered " + n

g w N

Program 37: Get a Number from 1 to 10

enter a number from 1 to 10766
enter a number from 1 to 10?-56
enter a number from 1 to 10723
vou entered 3

Sample Output 37: Get a Number from 1 to 10

do
statement (s)
until condition

New Do the statements. in the block over and over again while
the condition is false. The statements will be executed
Concept |one ormore times.

Program 38 uses a do/until loop to count from 1 to 10 like Program
33 did.witha for statement.

dountilfor.kbs
t =1
do

print t

t =t + 1
until t >= 11

Program 38: Do/Until Count to 10

oY O b W N

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 77

R O 00 Jo O b WN R

0
Sample Output 38: Do/Until Count to 10

Do Something While | Tell You To Do It:

The third type of loop is the while/end while. It tests a condition
before executing each iteration and if it evaluates to true then
executes the code in.the loop. The while/end while loop may
execute the code inside the.loop zero or more times.

Sometimes we will'want a program to loop forever, until the user
stops the program..This can easily be accomplished using the
Boolean true constant (see Program 39).

whiletrue.kbs
while true

print “nevermore “;
end while

W N B

Program 39: Loop Forever

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 78

nevermore.
nevermore.
nevermore.
nevermore.
nevermore.
. runs until you stop it

Sample Output 39: Loop Forever

while condition
statement (s)
end while

New Do the statements in the block'ever and over again while

the condition is true. The statements will be executed
Concept |zero or more times.

Program 40 uses a while/loop to count from 1 to 10 like Program 33
did with a for statement.

1 # whilefor.kbs
2 Tt =yl

3 while &t <= 10
4 print t

o t =t + 1

6 end while

Program 40: While Count to 10

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 79

P © 00 Jo O b W N

0
Sample Output 40: While Count to 10

Fast Graphics:

When we need to execute many graphics quickly, like with
animations or games, BASIC-256 offers us a fast graphics system.
To turn on this mode you execute the fastgraphics statement. Once
fastgraphics mode is.started the graphics output will only be
updated once yousexecute.the refresh statement.

fastgraphics
refresh

Start the fastgraphics mode. In fast graphics the screen

will only be updated when the refresh statement is
New executed.

Concept

Once a program executes the fastgraphics statement it
can not return to the standard graphics (slow) mode.

1 # kalidescope.kbs
2 clg

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again.

3
4
5
6
7
3

9
10
11
12
13
14
15
16
17
18

fastgraphics

for t =

5 O X OW R
|

colo
rect
rect
rect
rect
next t
refresh

= int (rand *

(
(

= int (rand
= int (
(

= int (rand

1 to 100

256)

256)

256)

300)
)
)
)

rand
rand

int
int

300
100
100
r rgb(r,qg,b)
X,Y,W,h
300-x-w,y,w,h %
x,300-y-h,w,h .
300-x-w,300-y-h,w, h L

rand

int (rand

X% % % % X%

Page 80

Program 41: Kalidescope

So You Want to Learn to Program?

Sample Output 41: Kalidescope

© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again.

Page 81

Explore

difference?

In Program 41, try running it with the fastgraphics
statement removed or commented out. Do you see the

In this chapter's “Big Program” let's use a while loop to
animate a ball bouncing around-<on the graphics display

Big area.
Program
1 # bouncingball.klbs
2 fastgraphics
3 clg
4
5 # starting pesition of ball
6 x =_rand * 300
7 y = rand * 300
8 #size of ball
9 r = 10
10 # speed in x and y directions
11 dx = rand * r + 2
12 dy = rand * ¥ + 2
13
14 color green
15 rect 0,0,300,300
16
17 while true
18 # erase old ball

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again.

19
20
21
22
23
24
25
2 6
27
2 8
29

30
31
32
33
34
35
36
37
38
39

color white

circle x,vy,r

calculate new position

X = x + dx

y =y + dy

if off the edges turn the ball around

if x < 0 or x > 300 then
dx = dx * -1
sound 1000,50

end if

if off the top or bottom turn the'ball

around

if y < 0 or y > 300 then
dy = dy * -1
sound 1500,50

end if

draw new ball

color red

circle x,vy,r

update the display

refresh

end while

Page 82

Program 42: Big Program - Bouncing Ball

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 83

Sample Output

Bouncing Ball o

So You Want to Learn to Program? © 2010 James M. Reneau.

Page 84

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 85

Chapter 8: Custom Graphics - Creating
Your Own Shapes.

This chapter we will show you how to draw colorful words and
special shapes on your graphics window. Several topics will be
covered, including: fancy text; drawing polygons on the graphics
output area; and stamps, where we can position, re-size, and rotate
polygons. You also will be introduced to angles and how to
measure them in radians.

Fancy Text for Graphics Output:

You have been introduced to the print statement (Chapter 1) and
can output strings and numbers:to the text output area. The text
and font commands allow you to place numbers and text on the
graphics output area.

graphichel lo.kbs

clg

color red

fonts"Tahoma", 33,100
text,100,100,"Hello."
font "Impact", 33,50

text 100,150,"Hello."
font "Courier New", 33,50
text 100,250, "Hello."

O 00 & 0y O b W N -

Program 43: Hello on the Graphics Output Area

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 86

Hello.

Hello.

Sample Output 43: Hello on the
Graphics Output.Area

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 87

New
Concept

font font name, size in point, weight

Set the font, size, and weight for the next text statement
to use to render text on the graphics output area.

Argument

Description

font_name

String containing the system font name to
use. A font must be previously loaded in
the system before it may be used.
Common font names under Windows
include: "Verdana", "Courier New",
"Tahoma", "Arial", and-"Times New
Roman".

size_in_point

Height of text to be rendered in a
measurement known as point. There are
72 points.in an inch.

New
Concept

weight Numberfrom 1 to 100 representing how
dark letter should be. Use 25 for light, 50
for normal, and 75 for bold.

text x, y, expression

Draw the contents of the expression on the graphics
output area with it's top left corner specified by x and y.
Use the font, size, and weight specified in the last font

statement.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 88

Microsoft Sans Serif Impact

Verdana Times New Roman
Courier New Arial Black
Tahoma Georgia

Arial Palatino Linotype
Trebuchet MS Century Gothic
Comic Sans MS Monotype Corsiva
Lucida Console ..k Scupt KI

lllustration 15: Common Windows Fonts

Resizing the Graphics Output Area:

By default the graphics output.area is*300x300 pixels. While this is
sufficient for many programs, it may be too large or too small for
others. The graphsize statement will re-size the graphics output
area to what ever custom size you require. Your program may also
use the graphwidth.and.graphheight functions to see what the
current graphics.size.is set to.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes.

Page 89

resizegraphics.kbs
graphsize 500,500
xcenter = graphwidth/2
ycenter = graphheight/2

color black
line xcenter,
10

8 line xcenter -
ycenter

o O b LW DN

ycenter - 10,

10, ycenter,
9
10
11

font "Tahoma",12,50
text xcenter + 10,
+ xcenter + "," + ycenter +

ycenter + 10,

H) "

xcenter,

xcenter + 10,

"Center at ("

ycenter +

Program 44: Re-size Graphics

Center at (200,100

Sample Output 44: Re-size Graphics

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 90

graphsize width, height

Set the graphics output area to the specified height and
New width.

Concept

graphwidth or graphwidth ()
graphheight or graphheight ()

Functions that return the current graphics height and

New width for you to use in your program.

Concept

Creating a Custom Polygon:

In previous chapters we learned how to draw rectangles and circles.
Often we want todraw other shapes. The poly statement will allow
us to draw.a custom polygon anywhere on the screen.

Let's.draw a big red arrow in the middle of the graphics output area.

First,"draw it on a piece of paper so we can visualize the coordinates
of the vertices of the arrow shape.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes.

.
(100,100)

B
(100,150 125,150) (175,150) | (200,150)
(125,200) " (175,200)

lllustration 16: Big RedArrow

Page 91

Now start at the top of the arrow going-clockwise and write down

the x and y values.

bigredarrow.kbs
clg
color red

S w NN

125, 200, 125, 150, 100, 150}

poly {150ms100, 200, 150, 175, 150, 175,

200,

Program 45: Big-Red Arrow

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 92

Sample Output 45: Big Red Arrow

poly {(x1, yl1, x2, y2 ...}
poly numeric array

New Draw a polygon.

Concept

Stamping a Polygon:

The poly statement allowed ue to place a polygon at a specific
location on the screen but it would be difficult to move it around or
adjust it. These problems are solved with the stamp statement.
The stamp statement takes a location on the screen, optional
scaling (re-sizing), optional rotation, and a polygon definition to

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 93
allow us to place a polygon anywhere we want it in the screen.
Let's draw an equilateral triangle (all sides are the same length) on

a piece of paper. Put the point (0,0) at the top and make each leg
10 long (see lllustration 17).

(-5,0) ﬁu 0)

/ N
/ \

45,8 (5.8.6)

lllustration*1.7:Equilateral Triangle

Now we will create.a program, using the simplest form of the stamp
statement, to fillthe screen with triangles. Program 46 Will do just
that. It uses the triangle stamp inside two nested loops to fill the
screen.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 94

1 # stamptri.kbs

2 clg

3 color black

4 for x = 25 to 200 step 25

) for y = 25 to 200 step 25

6 stamp x, vy, {0, 0, 5, 8.6, -5, 8.6}
7 next vy

8 next x

Program 46: Fill Screen with Triangles

[B N N
N B N B B
L N N B
(L B N A L
N N N B O
[B N N
[I N B
[B N N

Sample Output 46: Fill Screen with
Triangles

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 95

New
Concept

stamp x, y, {x1, yl1, x2, y2 ...}

stamp x, y, numeric array

stamp x, vy, scale, {x1, yl, x2, y2 ...}

stamp x, y, scale, numeric array

stamp x, vy, scale, rotate, {xI1, yl, x2, y2
. }

stamp x, y, scale, rotate, numeric array

Draw a polygon with it's origin (0,0) at the sCreen position
(x,y). Optionally scale (re-size) it by the decimal scale
where 1 is full size. Also you may also rotate the stamp
clockwise around it's origin by specifying how far to rotate
as an angle expressed in radians (0 to 2m).

New
Concept

Radians O to 2m

Angles in BASIC-256 are expressed in a unit of measure

known as a.radian. Radians range from 0 to 2m. A right

angle is M2 radians and an about face is tradians. You

can convert degrees to radians with the formula
r=d/[180%Tr .

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 96

270° 3112

247.5° 11m/8 | 292.5° 13m/8
225° 5m/4 315° Tr/4

202.5° 9m/8 337.5° 15n/8

135% 3n/4 45° In/4
112.5° 5n/8 67.5° 3m/8

Degrees Radians |90° 112

lllustration 18: Degrees and Radians

Let's look at another example of the stamp program. Program 47
used the same isosceles triangle as the last program but places 100
of them at random:locations, randomly scaled, and randomly
rotated on the screen.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 97

1 # stamptri2.kbs

2 clg

3 color black

4 for t = 1 to 100

5 x = rand * graphwidth

6 y = rand * graphheight

'/ s = rand * 7

3 r = rand * 2 * pi

9 stamp %, vy, s, r, {0, 0, 5, 8.6, -5, 8.6}
10 next t

Program 47: One Hundred Random Triangles

A .
Sample Output 47: One Hundred
Random Triangles

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 98

pi
The constant pi can be used in expressions so that you do
not have to remember the value of . I is approximately
New 3.1415.
Concept

In Program 47, add statements to make the color random.
Also create your own polygon to stamp.

Explore

Let's send flowers to somebody special. The following
program draws a flower using rotation and a stamp.

Big
Program

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes. Page 99
+l‘-) ifn 0]
FARY
Fi LY
f LY
f L1
i \
Fi L1
£ \
i 1
Fi
20} (5,20)
(0,25)
Illustration 19;: 'Big
Program - A"Elower For
You -.Flower Petal Stamp
1 # aflowerforyou.kbs
2 clg
3
4 colér.green
5 rect 148,150,4,150
6
i color 255,128,128
3 for r = 0 to 2*pi step pi/4
9 stamp graphwidth/2, graphheight/2, 2, r, {0,
o, 5, 20, 0, 25, -5, 20}
10 next r
11
12 color 128,128,255
13 for r = 0 to 2*pi step pi/5
14 stamp graphwidth/2, graphheight/2, 1, r, {0,

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 8: Custom Graphics - Creating Your Own Shapes.

15
16
17
18
19
20
21
22

o, 5, 20, 0, 25, =5, 20}
next r

message$ = "A flower for you."

color darkyellow

font "Tahoma", 14, 50
text 10, 10, message$
say messages$

Page 100

Program 48: Big Program - A Flower For You

So You Want to Learn to Program?

A flower for you.

¢

Sample Output 48: Big Program - A
Flower For You

© 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code. Page 101

Chapter 9: Subroutines - Reusing Code.

This chapter introduces the concept of setting labels within your
code and then jumping to those labels. This will allow a program to
execute the code in a more complex order. You will also see the
subroutine. A gosub acts like a jump with the ability to jump back.

Labels and Goto:

In Chapter 7 we saw how to use language'structures to perform
looping. In Program 49 we can see an example.of looping forever
using a label and a goto statement.

gotodemo.kbs
top:

print "hi"
goto top

Program 49: Goto With-a Label

S w NN

h i
h i
h i
hi
. repeats forever

Sample Output 49: Goto With a Label

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code. Page 102

New
Concept

label:

A label allows you to name a place in your program so you
may jump to that location later in the program. You may
have multiple labels in a single program.

A label name is followed with a colon (:); must be on asline
with no other statements; must begin with a letter; may
contain letters and numbers; and are case sensitive. ‘Also,
you can not use words reserved by the BASIC-256
language when naming your variables {(see Appendix I).

Examples of valid labels include: tops, far999:, and About:.

New
Concept

goto label

The goto statement causes the execution to jump to the
statement directly following the label.

Some programmers use labels with goto statements throughout
theirprograms. While it is sometimes easier to program with goto
statements they can add complexity to large programs, making the
program more difficult to debug and maintain. It is recommended
that you keep the use of goto statements to an absolute minimum.

Let's take a look at another example of a label and goto statement.
In Program 50 we create a colorful clock.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code.

Page 103

fastgraphics
font "Tahoma",
color blue

color yellow

O J oy Ol W DN

showtime:

color blue

10 rect 100, 100,

11 color yellow

12 text 100, 100,
second

13 refresh

14 pause 1.0

15 goto showtime

O

textclock.kbs

rect 0, 0, 300,

20, 100

300

text 0, 0, "My Clock."

200, 100

hour +

+ minutes=+. "3" +

Program 50: Text Clock

Sample Output 50: Text Clock

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code. Page 104

hour or hour ()
minute or minute ()
second or second()
month or month ()

New day or day()
CDHCEpt year or year ()

The functions year, month, day, hour, minute,-and
second return the components of the system clock. They
allow your program to tell what time it is.

year Returns the system 4 digit year.

month Returns month numberQ.to 11. O - January,
1-February...

day Returns the day of the month 1 to 28,29,30,
or 31.

hour Returns the hour 0 to 23 in 24 hour format.

0+12AM;1-1AM, ...13-12PM, 14 - 1 PM,

minute Returns the minute 0 to 59 in the current
hour.

second Returns the second 0 to 59 in the current
minute.

Reusing Blocks of Code - The Gosub Statement:

Throughout many programs we will find lines or even whole
sections of code being needed over and over again. To help with
this problem BASIC-256 includes the concept of a subroutine. A
subroutine is a block of code that can be called by other parts of the
program to do a task or part of a task. When a subroutine is

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code. Page 105
finished it returns control back to where it was called.

Program 51 shows an example of a subroutine that is called three
times.

gosubdemo.kbs
gosub showline
print "hi"
gosub showline
print "there"
gosub showline
end

showline:
0 print v "
1

R BB O 0 J o U b W Nk

Sample Output 51: Gosub

gosub Ilabel

The gosub statement causes the execution to jump to the
New subroutine defined by the label.

Concept

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code. Page 106

return

Execute the return statement within a subroutine to send
New control back to where it was called from.

Concept

end

New Terminates the program (stop).

Concept

Now that we have'seensthe'subroutine in action let's write a new
digital clock program.using a subroutine to format the time and
date better (Program 52).

textelockimproved.kbs
fastgraphics

while true
color Dblue
rect 0, 0, graphwidth, graphheight
color white
font "Times New Roman", 40, 100

R B O 00 J o O b N -

= O

line$ = ""

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code.

35 ## append a two digit number in n to the

12 n = month + 1
13 gosub addtoline
14 line$ = line$ +
15 n = day
16 gosub addtoline
17 line$ = line$ +
18 line$ = line$ + year
19 text 50,100, line$
20
21 line$ = ""
22 n = hour
23 gosub addtoline
2 4 line$ = line$ +
25 n = minute
26 gosub addtoline
27 line$ = line$ +
2 8 n = second
29 gosub addtoline
30 text 50,150, linesS
31 refresh
32 end while
33
34 addtolines
string line$
36 if n < 10 then line$ = line$ +
37 line$ = line$ + n
38 return

Page 107

HO"

Program 52: Text Clock - Improved

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 9: Subroutines - Reusing Code. Page 108

04/29/2010

11:09:28

Sample Output 52: Text Clock -
Improved

In our “Big Program” this chapter, let's make a program to
roll two dice, draw them on the screen, and give the total.
Let's use a gosub to draw the image so that we only have
Big to write it.once.

Program

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 9:

Subroutines - Reusing Code.

Page 109

O J oy O W DN

\©

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
2
28
29

30
31

32
33

roll2dice.kbs
clg
total = 0

x = 30

y = 30

roll = int(rand * 6) + 1
total = total + roll
gosub drawdie

x = 130

y = 130

roll = int(rand * 6) + 1
total = total + roll
gosub drawdie

print "you rolled " +_totales+ "."
end

drawdie:

set x,y for.teop left and roll for number of
dots

draw 70x70 with dots 10x10 pixels

color black

rect x,vy,70,70

eolor white

top row

#f roll <> 1 then rect x + 10, y + 10, 10, 10
if roll = 6 then rect x + 30, y + 10, 10, 10
if roll >= 4 and roll <= 6 then rect x + 50,
+ 10, 10, 10

middle

if roll = 1 or roll = 3 or roll = 5 then rect
+ 30, y + 30, 10, 10

bottom row

if roll >= 4 and roll <= 6 then rect x + 10,

So You Want to Learn to Program? © 2010 James

y

X

Yy

M. Reneau.

Chapter 9: Subroutines - Reusing Code. Page 110

+ 50, 10, 10
34 if roll = 6 then rect x + 30,

35 if roll <> 1 then rect x + 50,
36 return

vy + 50, 10, 10
y + 50, 10, 10

Program 53: Big Program - Roll Two Dice Graphically

Sample Output 53: Big Program -
Roll Two Dice Graphically

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around. Page 111

Chapter 10: Mouse Control - Moving
Things Around.

This chapter will show you how to make your program respond to a
mouse. There are two different ways to use the mouse: tracking
mode and clicking mode. Both are discussed with sample
programs.

Tracking Mode:

In mouse tracking mode, there are three numeric functions
(mousex, mousey, and mouseb) that will return the coordinates
of the mouse pointer over the graphics output area. If the mouse is
not over the graphics display area then the mouse movements will
not be recorded (the last location will be returned).

1 # mousetrack.kbs

2 print "Movesthe mouse around the graphics
window."

3 print "Cldiek left mouse button to quit."

4

5 fastgraphics

6

7 #rdowdt over and over until the user clicks
left

3 while mouseb <> 1

9 # erase screen

10 color white

11 rect 0, 0, graphwidth, graphheight

12 # draw new ball

13 color red

14 circle mousex, mousey, 10

15 refresh

16 end while

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around.

17
18 print "all done."
19 end

Page 112

Program 54: Mouse Tracking

%

Sample Output 54: Mouse Tracking

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around. Page 113

mousex Oor mousex ()
mousey Or mousey ()
mouseb or mouseb ()

New The three mouse functions will return the current location

of the mouse as it is moved over the graphics display
Concept area. Any mouse motions outside the graphics display
area are not recorded, but the last known coordinates will
be returned.

mousex |Returns the x coordinate of the mouse pointer
position. Ranges from 0 to graphwidth -1.

mousey |Returns the y coordinate of the mouse pointer
position. Ranges from'0 to graphheight -1.

mouseb || Returns this value when no mouse
button.is.being pressed.

1 Returns this value when the “left”
mouse button is being pressed.

2 Returns this value when the “right”
mouse button is being pressed.

4 Returns this value when the “center”
mouse button is being pressed.

If multiple mouse buttons are being pressed at
the same time then the value returned will be
the button values added together.

Clicking Mode:

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around. Page 114

The second mode for mouse control is called “Clicking Mode”. In
clicking mode, the mouse location and the button (or combination
of buttons) are stored when the click happens. Once a click is
processed by the program a clickclear command can be executed
to reset the click, so the next one can be recorded.

1 # mouseclick.kbs

2 # X marks the spot where you click

3 print "Move the mouse around the graphics
window"

4 print "click left mouse button to mark your
spot"

S print "click right mouse button to. stop."

6 clg

7 clickclear

3 while clickb <> 2

9 # clear out last click. and

10 # wait for the user to click a button

11 clickclear

12 while clickb =0

13 pause .01

14 end while

15 #

16 color blue

17 stamp clickx, clicky, 5, {-1, -2, 0, -1, 1,
-2, 23 -1, 1, 0, 2, 1, 1, 2, 0, 1, -1, 2, -2,
i, -1, 0, -2, -1}

18 end while

19% print "all done."

20 end

Program 55: Mouse Clicking

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around. Page 115

3

Sample Output 55: Mouse Clicking

clickx or clickx ()
clicky or clicky ()
clickb or clickb()

New The values of the three click functions are updated each

time a mouse button is clicked when the pointer is on the
Cnncept graphics output area. The last location of the mouse
when the last click was received are available from these
three functions.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around. Page 116

clickclear
The clickclear statement resets the clickx, clicky, and
New clickb fl_Jnctions to zero so that a new click will register
when clickb <> 0.
Concept
The big program this chapter uses the mouse to move
color sliders so that we can see all. 16,777,216 different
. colors on the screen.
Big
Program
1 # colorchoosemn. kbs
2 fastgraphics
3
4 print "colerchooser - find a color"
S print "cliek and drag red, green and blue
sliders"
6
7 # variables to store the color parts
8 o= 128
9 g = 128
10 b = 128
11
12 gosub display
13
14 while true
15 # walit for click
16 while mouseb = 0

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around.

17
18
19
20
21
22
23
24
25
2 6
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
477
48
49
50
51
52
53

pause .01
end while
change color sliders
if mousey < 75 then

r = mousex
if r > 255 then r = 255

end if

if mousey >= 75 and mousey < 150 then
g = mousex
if g > 255 then g = 255

end if

if mousey >= 150 and mousey < 225 then
b = mousex
if b > 255 then b = 255

end if

gosub display
end while
end

display:

clg

draw red

color 255,+0,:.0

font "Tahoma", 30,

text 260, %0, "xr"

for t = 0 to 255
color t, 0, O
line t,0,t,37
color t, g, Db
line t, 38, t, 75

next t

color black

rect r-1, 0, 3, 75

draw green

color 0, 255, 0

font "Tahoma", 30,

text 260, 85, "g"

100

100

So You Want to Learn to Program?

Page 117

© 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around.

54 for t = 0 to 255

55 color 0, t, O

56 line t,75,t, 75 + 37

57 color r, t, Db

58 line t, 75 + 38, t, 75 4+ 75
59 next t

60 color black

6l rect g-1, 75, 3, 75

62 # draw blue

63 color 0, 0, 255

64 font "Tahoma", 30, 100

65 text 260, 160, "b"

66 for t = 0 to 255

67 color 0, O, t

68 line t, 150, t, 150 + 37

69 color r, g, t

70 line t, 150 4+ 38, t, 150 + 75
71 next t

72 color black

73 rect b-1, 150, 3,775

74 # draw swatch

75 color black

76 font "Tahoma", 15, 100

777 text 5, 235, "(" + r + "," + g+ "
78 color r,g,b

79 rec¢t 151,226,150,75

30 refresh

31 return

Page 118

"+ b +

") "

Program 56: Big Program - Color Chooser

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around. Page 119

(220,162,239)

Sample Output 56: Big Program -
Color Chooser

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 10: Mouse Control - Moving Things Around. Page 120

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page
121

Chapter 11: Keyboard Control - Using
the Keyboard to Do Things.

This chapter will show you how to make your program respond.to
the user when a key is pressed (arrows, letters, and special keys)on
the keyboard.

Getting the Last Key Press:

The key function returns the last raw keyboard code generated by
the system when a key was pressed. Certain keys (like control-c
and function-1) are captured by the BASIC256 window and will not
be returned by key. After the. last key press value has been
returned the function value will be set to zero (0) until another
keyboard key has been pressed:

The key values for printable characters (0-9, symbols, letters) are

the same as theirupper case Unicode values regardless of the
status of the caps-lock or shift keys.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page
122

1 # readkey.kbs

2 print "press a key - Q to quit"
3 do

4 k = key

5 if k <> 0 then

6 if k >=32 and k <= 127 then
7 print chr (k) + "=";

8 end if

9 print k

10 end if

11 until k = asc("Q")

12 end

Program 57: Read Keyboard

press a key - Q to quit
A=65

Z2=90

M="7"7

16777248

&=38

7=55

Sample Output 57: Read Keyboard

key
key ()

The key function returns the value of the last keyboard
New key the user has pressed. Once the key value is read by

the function, it is set to zero to denote that no key has
Concept |been pressed.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page

123

Unicode

The Unicode standard was created to assign numeric
values to letters or characters for the world's writing
systems. There are more than 107,000 different

New characters defined in the Unicode 5.0 standard.
CDHCEpt See: http://www.unicode.org

asc (expression)

Thg asc function returns an integer. represenFing the
New g;;)crce)g;gr?llue of the first character of the string
Concept

New
Concept

chr (expression)

The chr function returns a string, containing a single
character with the Unicode value of the integer
expression.

How about we look at a more complex example? Program 58 Draws
a red ball on the screen and the user can move it around using the
keyboard.

|1 # moveball.kbs

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page

124

22
23
24
25
26

27
28
29
30
31

32
33

print "use i for up, j for left, k for right, m for
down, g to quit"

fastgraphics
clg
ballradius = 20

position of the ball

start in the center of the screen
x = graphwidth /2

y = graphheight / 2

draw the ball initially on the 'screen
gosub drawball

loop and wait for thé user to press a key
while true
k = key
if k = asc("I'")=then
y = y .=wballradius

if y°< ballradius then y = graphheight -
ballradius
gosub drawball
end if
if+ -k = asc("Jd") then
X = x - ballradius
if x < ballradius then x = graphwidth -
ballradius
gosub drawball
end if

if k = asc("K") then
X = x t+ ballradius
if x > graphwidth - ballradius then x =
ballradius
gosub drawball
end if

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page

125

34 if k = asc("M") then

35 y =y + ballradius

36 if y > graphheight - ballradius then y
ballradius

37 gosub drawball

38 end if

39 if k = asc("Q") then end

40 end while

41

42 drawball:

43 color white

44 rect 0, 0, graphwidth, graphheight

45 color red

46 circle x, vy, ballradius

477 refresh

48 return

Program 58: Move Ball

Sample Output 58: Move
Ball

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page
126

The big program this chapter is a game using the
keyboard. Random letters are going to fall down the
screen and you score points by pressing the key as fast as

Big you can.

Program
1 # fallinglettergame.kbs
2
3 speed = .15 # drop speed - lower to make faster
4 nletters = 10 # letters to play
5
6 score = 0
7 misses = 0
3 color black
9
10 fastgraphics
11
12 clg

13 font "Tahoma", 20, 50

14 text 20, 80, "Falling Letter Game"

15 text 20, 140, "Press Any Key to Start"

16 refresh

17 # clear keyboard and wait for any key to be
pressed

13 k = key

19 while key = 0

20 pause speed

21 end while

22

23 for n = 1 to nletters

24 letter = int((rand * 26)) + asc("A")
25 Xx = 10 + rand * 225

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page
127

2 6 for y = 0 to 250 step 20

27 clg

28 # show letter

29 font "Tahoma", 20, 50

30 text x, y, chr(letter)

31 # show score and points

32 font "Tahoma", 12, 50

33 value = (250 - vy)

34 text 10, 270, "Value "+ wvalue
35 text 200, 270, "Score "+ score
36 refresh

37 k = key

38 if k <> 0 then

39 if k = letter then

40 score = score + value
41 else

42 score = score =mwvalue
43 end if

44 goto nextiletter

45 end if

46 pause .speed

477 next vy

48 misses = misses + 1

49 nextlettens:

50 next n

51

52 clg

8 font "Tahoma", 20, 50

54 text 20, 40, "Falling Letter Game"
55 text 20, 80, "Game Over"

56 text 20, 120, "Score: " + score
57 text 20, 160, "Misses: " + misses
58 refresh

59 end

Program 59: Big Program - Falling Letter Game

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 11: Keyboard Control - Using the Keyboard to Do Things.Page
128

Yalue 110 Score -30

Sample Output 59: Big Program -
Falling Letter Game

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 129

Chapter 12: Images, WAVs, and Sprites

This chapter will introduce the really advanced multimedia and
graphical statements. Loading images from files, playing sounds
asynchronously from WAV files, and really cool animation using
sprites.

Images From a File:

So far we have seen how to create shapes and graphics using the
built in drawing statements. The imgload statement allows you to
load a picture from a file and display it inyour BASIC-256 programs.

1 # imgload ball.kbs < Show,Imgload

2 clg

3 for i = 1 to.50

4 imgloadirand *wgraphwidth, rand *
graphheight, "greenball.png"

S next i

Program 60: Imgload a Graphic

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 130

@ (!
Q @
@ QQ &
. QQQ%’Q
- 93“3
e a®% a QQ

Sample Output 60: Imgload a
Graphic

0)

Program 60 Shows an example of this.statement in action. The last
argument is the name of a file on your computer. It needs to be in
the same folder as the proegram, unless you specify a full path to it.
Also notice that the eoordinates (x,y) represent the CENTER of the
loaded image and'not the top left corner.

Most of the time you will want to save the program into
the'same folder that the image or sound file is in BEFORE
you run the program. This will set your current working
directory so that BASIC-256 can find the file to load.

Warning

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 131

New
Concept

imgload x, y, filename
imgload x, y, scale, filename
imgload x, y, scale, rotation, filename

Read in the picture found in the file and display it on the
graphics output area. The values of x and y represent the
location to place the CENTER of the image.

Images may be loaded from many different file formats,
including: BMP, PNG, GIF, JPG, and JPEG.

Optionally scale (re-size) it by the decimal scale where 1
is full size. Also you may also rotate/the.image clockwise
around it's center by specifying how far to rotate as an
angle expressed in radians (0 to 2m).

The imgload statement also allows optional scaling and rotation
like the stamp statement does. Look at Program 61 for an

example.

1 # imgload picasso.kbs - Show Imgload with
rotation and scaling

2 graphsize 500,500

3 clg

4 for= = 1 to 50

5 imgload graphwidth/2, graphheight/2, 1i/50,
2*pi*i/50, "picasso selfportl907.jpg"
next i

7 say "hello Picasso."

Program 61: Imgload a Graphic with Scaling and Rotation

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 132

Sample Output 61: Imgload a
Graphic with Scaling and Rotation

Playing Sounds From a WAV file:

So far we haveexplored making sounds and music using the sound
command and textto speech with the say statement. BASIC-256
will also play sounds stored in WAV files. The playback of a sound
from a WAV file will happen in the background. Once the sound
starts the program will continue to the next statement and the
sound will continue to play.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites

Page 133

O J o) U b W DN

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
2.4
28
2 9
30
31
32

spinner.kbs
fastgraphics

wavplay "roll.wav"

setup spinner

angle = rand * 2 *

speed = rand * 2
color darkred
rect 0,0,300,300

for t = 1 to 100
draw spinner
color white

pi

circle 150,150,150

color black

line 150,300,150,0
line 300,150,0,150

update

text 100,100, "A"
text 200,100, "B"
text 200,200, "C"
text 100,200,"D"
color darkgreen
line 150,150,150

sin (angle)>*150

refresh

angle =
speed = speed *
pause .05

next t

+ cos (angle) *150,

angle for next redraw
angle + speed
.9

wait for sound to complete

wavwait

150 +

Program 62: Spinner with Sound Effect

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 134

Sample Output 62: Spinner
with Sound Effect

wavplay filename
wavwait
wavstop

New The wayvplay statement loads a wave audio file (.wav)

from the.current working folder and plays it. The playback
CDHCEpt will be synchronous meaning that the next statement in
the/program will begin immediately as soon as the audio
begins playing.

Wavstop will cause the currently playing wave audio file
to stop the synchronous playback and wavwait will cause
the program to stop and wait for the currently playing
sound to complete.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites

Moving Images - Sprites:

Page 135

Sprites are special graphical objects that can be moved around the
screen without having to redraw the entire screen. In addition to

being mobile you can detect when one sprite o

verlaps (collides)

with another. Sprites make programming complex games and

animations much easier.

So You Want to Learn to Program?

1 # sprite lball.kbs

2

3 color white

4 rect 0, 0, graphwidth, graphheight

5

6 spritedim 1

-

8 spriteload 0, "bluebadl.png"

9 spriteplace 0, 100,100

10 spriteshow O

11

12 dx = rand * 10

13 dy = rands*. 10

14

15 while true

16 if spritex(0) <=0 or spritex(0) >=
graphwidth -1 then

17 dx = dx * -1

18 wavplay
"4359 NoiseCollector PongBlipF4.wav"

19 end if

20 if spritey(0) <= 0 or spritey(0) >=
graphheight -1 then

21 dy = dy * -1

22 wavplay
"4361 NoiseCollector pongblipA 3.wav"

23 endif

© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 136

2 4 spritemove 0, dx, dy
25 pause .05
20 end while

Program 63: Bounce a Ball with Sprite and Sound Effects

Sample Output 63: Bounce a
BallwithSprite and Sound
Effects

As you can'see in Program 63 the code to make a ball bounce
around the screen, with sound effects, is much easier than earlier
programs to do this type of animation. When using sprites we must
tell BASIC-256 how many there will be (spritedim), we need to set
them up (spriteload or spriteplace), make them visible
(spriteshow), and then move them around (spritemove). In
addition to these statements there are functions that will tell us
where the sprite is on the screen (spritex and spritey), how big
the sprite is (spritew and spriteh) and if the sprite is visible
(spritev).

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 137

New
Concept

spritedim numberofsprites

The spritedim statement initializes, or allocates in
memory, places to store the specified number of sprites.
You may allocate as many sprites as your program may
require but your program may slow down if you create too
many sprites.

spriteload spritenumber, filename

This statement reads an image file (GIF,.BMP, PNG, JPG, or
JPEG) from the specified path and creates a sprite.

New By default the sprite will be placedwith its center at 0,0
CDHCEpt and it will be hidden. You should move the sprite to the
desired position on the . screen (spritemove or
spriteplace) and then show it (spriteshow).
spritehide spritenumber
spriteshow spritenumber
The spriteshow statement causes a loaded, created, or
hidden sprite to be displayed on the graphics output area.
New P play grap p
COHCEpt Spritehide will cause the specified sprite to not be drawn

on the screen. It will still exist and may be shown again
later.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 138

spriteplace spritenumber, x, y

The spriteplace statement allows you to place a sprite's
New center at a specific location on the graphics output area.

Concept

spritemove spritenumber, dx, dy

Move the specified sprite x pixels to/the.right and y pixels
down. Negative numbers can.also be specified to move
the sprite left and up.
New

A sprite's center will not. move beyond the edge of the
CDHCEpt current graphics output window (0,0) to (graphwidth-1,
graphheight-1).

You may move a hidden sprite but it will not be displayed
until you show'the sprite using the showsprite
statement.

spritev (spritenumber)

This function returns a true value if a loaded sprite is
currently displayed on the graphics output area. False will

New be returned if it is not visible.

Concept

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites

Page 139

spriteh
spritew
spritex
spritey

o~ o~ o~ —~

New

spritenumber
spritenumber
spritenumber
spritenumber

)
)
)
)

These functions return various pieces of information about

Concept |a loaded sprite.

spriteh Returns the height of a sprite in pixels.

spritew Returns the width of a sprite in pixels.

spritex Returns the position.on.the x axis of the
center of the sprite.

spritey Returns the position.on the y axis of the
center of the sprite.

The second sprite example«(Program 64) we now have two sprites.
The first one (humber.zero) is stationary and the second one
(number one) will bounce off of the walls and the stationary sprite.

So You Want to Learn to Program?

1 # sprite bumper.kbs

2

3 color white

4 rect 0, 0, graphwidth, graphheight
9

6 spritedim 2

4

8 # stationary bumber

9 spriteload 0, "paddle.png"

10 spriteplace 0,graphwidth/2,graphheight/2
11 spriteshow O

12

13 # moving ball

14 spriteload 1, "blueball.png"

© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites

15
16
17
18
19
20
21

22
23
24

25
26
27
28
29
30
31
32
33

spriteplace 1, 50, 50
spriteshow 1

dx = rand * 5 + 5

dy = rand * 5 + 5

while true
if spritex(l) <=0 or spritex(l) >=
graphwidth -1 then
dx = dx * -1
end if
if spritey(l) <= 0 or spritey(l). >=
graphheight -1 then
dy = dy * -1
end if
if spritecollide(0,1) then
dy = dy * -1
print "bump"
end if
spritemove 1, dx, dy
pause .05
end while

Page 140

Program 64: Sprite Collision

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 141

Sample Output 64: Sprite
Collision

spritecollide (spritenumberl,
spritenumber?)
New This function returns true of the two sprites collide with or
overlap eachother.
Concept
The “Big Program” for this chapter uses sprites and
. sounds to create a paddle ball game.
Big
Program

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites

Page 142

1 # sprite paddleball.kbs
2
3 color white
4 rect 0, 0, graphwidth, graphheight
5
6 spritedim 2
.
3 spriteload 1, "greenball.png"
9 spriteplace 1, 100,100
10 spriteshow 1
11 spriteload 0, "paddle.png"
12 spriteplace 0, 100,270
13 spriteshow O
14
15 dx = rand * .5 + .25
16 dy = rand * .5 + .25
17
18 bounces = 0
19
20 while spritey (1) <ugraphheight -1
21 k = key
22 if chr (k) =""K"™ then
23 spriastemove 0, 20, O
24 end if
25 if chri(k) = "J" then
26 spritemove 0, -20, O
27 end if
28 if spritecollide(0,1) then
b Y # bounce back ans speed up
30 dy = dy * -1
31 dx = dx * 1.1
32 bounces = bounces + 1
33 wavstop
34 wavplay
"96633 CGEffex Ricochet metal5.wav"
35 # move sprite away from paddle
36 while spritecollide(0,1)

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites

377
38
39
40

41
42
43

44
45
46
477
48

49
50
51
52
53

spritemove 1, dx, dy
end while
end if
if spritex(l) <=0 or spritex(l) >=
graphwidth -1 then
dx = dx * -1
wavstop
wavplay
"4359 NoiseCollector PongBlipF4.wav"
end 1if
if spritey(l) <= 0 then
dy = dy * -1
wavstop
wavplay
"4361 NoiseCollector pongblipA 3 wav"
end 1if
spritemove 1, dx, dy
end while

print "You bouncedsthe ball " + bounces
times."

Page 143

Program 65: Paddleball with Sprites

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites

Page 144

Sample Output 65:

Paddleball with Sprites

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 145

Chapter 13: Arrays - Collections of

Information.

We have used simple string and numeric variables in many
programs, but they can only contain one value at a time. Often.we
need to work with collections or lists of values. We can do this with
either one-dimensioned or two-dimensioned arrays. This.chapter
will show you how to create, initialize, use, and re-size.arrays.

One-Dimensional Arrays of Numbers:

A one-dimensional array allows us to createa list in memory and to
access the items in that list by a numeric address (called an index).
Arrays can be either numeric orstring depending on the type of

variable used in the dim statement.

Program 66: One-dimensional Numeric Array

So You Want to Learn to Program?

1 # numericld.kbs

2

3 dim a (10)

4

5 al0]s=.100

6 aflle= 200

¥ al3] = all]l] + al[Z2]

3

9 input "Enter a number", al9]
10 af[8] = al[9] - al3]

11

12 for t = 0 to 9

13 print "a[" + t + "] =" + alt]
14 next t

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 146

FEnter a number63
a[0] = 100
a[l] = 200
al[2] = 0
a[3] = 200
al4] = 0
a[5] = 0
al[6] = 0
al7] = 0
a[8] = -137
a[9] = 63

Sample Output 66: One-dimensional Numeric Array

dim
dim
dim
dim
New

The dim statement creates an array in the computer's
CO“CEpt memory.the size that was specified in the parenthesis.
Sizes (items, rows, and columns) must be integer values
greatersthan one (1).

The dim statement will initialize the elements in the new
array with either zero (0) if numeric or the empty string
(“"), depending on the type of variable.

variable (items)
variable$S (items)
variable (rows, columns)
variable$ (rows, columns)

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 147

New
Concept

variable[index]

variable[rowindex, columnindex]
variable$ [index]
variableS$S|[rowindex, columnindex]

You can use an array reference (variable with index(s) in
square brackets) in your program almost anywhere you
can use a simple variable. The index or indexes must be
integer values between zero (0) and one less than the size
used in the dim statement.

It may be confusing, but BASIC-256 uses zero+«(0) for the
first element in an array and the:last element has an
index one less than the size. Computer.people call this a
zero-indexed array.

We can use arrays of numbers to.draw many balls bouncing on the
screen at once. Program 66 uses 5 arrays to store the location of
each of the balls, it's.direction, and color. Loops are then used to
initialize the arrays and.toranimate the balls. This program also
uses the rgb() function to calculate and save the color values for

each of the balls.

manyballbounce.kbs
fastgraphics

r = 10 # size of ball
balls = 50 # number of balls

dim x(balls)
dim y(balls)
dim dx(balls)
dim dy(balls)
dim colors (balls)

R = O 00 J o O b0 N

= O

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 148

12

13 for b = 0 to balls-1

14 # starting position of balls

15 x[b] =0

16 y[b] =0

17 # speed in x and y directions

18 dx[b] = rand * r + 2

19 dy[b] = rand * r + 2

20 # each ball has it's own color

21 colors[b] = rgb(rand*256, rand*25¢,
rand*256)

22 next b

23

24 color green

25 rect 0,0,300,300

2 6

27 while true

28 # erase screen

29 clg

30 # now positionsandi.draw the balls

31 for b = 0+to balls -1

32 X [b] = x[l] + dx[b]

33 y[ble="y[b] + dylb]

34 # dfsoff the edges turn the ball around

35 if xfb] < 0 or x[b] > 300 then

36 dx[b] = dx[b] * -1

37 end if

38 # if off the top of bottom turn the ball
around

39 if y[b] < 0 or y[b] > 300 then

40 dy[b] = dy[b] * -1

41 end if

42 # draw new ball

43 color colors([b]

4 4 circle x[b],y[b],r

45 next b

46 # update the display

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 149

477 refresh
48 pause .05
49 end while

Program 67: Bounce Many Balls

',
o N5, o
..‘ o

® ¢
O a oL

Sample Output 67: Bounce Many
Balls

rgb (redexp, greenexp, blueexp)

The rgb function returns a single number that represents
a color expressed by the three values. Remember that

New color component values have the range from 0 to 255.

Concept

Another example of a ball bouncing can be seen in Program 68.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 150

This second example uses sprites and two arrays to keep track of
the direction each sprite is moving.

So You Want to Learn to Program?

1 #manyballsprite.kbs

2

3 # another way to bounce many balls using
sprites

4

5 fastgraphics

6 color white

'/ rect 0, 0, graphwidth, graphheight

8

9 n = 20

10 spritedim n

11

12 dim dx (n)

13 dim dy(n)

14

15 for b = 0 to n-1

16 spriteloadub, "greenball.png"

17 spriteplace b, graphwidth/2,graphheight/2

18 spriteshow. b

19 dx[b]l =frand * 5 + 2

20 dy[b] "=wrand * 5 + 2

21 next b

22

23 while true

24 for b = 0 to n-1

25 if spritex(b) <=0 or spritex(b) >=
graphwidth -1 then

2 6 dx[b] = dx[b] * -1

27 end 1if

28 if spritey(b) <= 0 or spritey(b) >=
graphheight -1 then

29 dy[b] = dy[b] * -1

30 end 1if

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 151

31 spritemove b, dx[b], dylb]
32 next b
33 refresh

34 end while

Program 68: Bounce Many Balls Using Sprites

-
-

® -

b
- -
@ ® -

o -

- 99
p® e

Sample Output 68: Bounce Many
Balls Using Sprites

Arrays of Strings:

Arrays can also be used to store string values. To create a string
array use a string variable in the dim statement. All of the rules
about numeric arrays apply to a string array except the data type is
different. You can see the use of a string array in Program 69.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 152

1 # listoffriends.kbs

2 print "make a list of my friends"
3 input "how many friends do you have?", n
4

5 dim names$ (n)

6

7 for 1 = 0 to n-1

8 input "enter friend name ?",
9 next i

10

11 cls

12 print "my friends"

13 for i = 0 to n-1

14 print "friend number ";

15 print 1 + 1;

16 print " is " + namesS$[i]

17 next i

namesS$S[1i]

Program 69: List of My Friends

make a list of my“friends
how many friends. dowyou have?3
enter friend name ?Bill
enter friend name ?Ken
enter friend name ?Sam
- screen clears -
my friends
friend number 1 is Bill
friendsnumber 2 is Ken
friend number 3 is Sam

Sample Output 69: List of My Friends

Assigning Arrays:

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 153

We have seen the use of the curly brackets ({}) to play music, draw
polygons, and define stamps. The curly brackets can also be used
to assign an entire array with custom values.

arrayassign.kbs
dim number (3)
dim name$ (3)

number = {1, 2, 3}
name$ = {"Bob", "Jim", "Susan"}

for i = 0 to 2
print number[i] + " " + name$[i]
0 next 1

R O 0 J o U b WDN

Program 70: Assigning an Array With a List

1 Bob
2 Jim
3 Susan

Sample Output 70: Assighing an Array With a List

array = {valueO, valuel, ..}
array$S = {valueO, valuel, ..}

An array may be assigned values (starting with index 0)
New from a list of values enclosed in curly braces. This works

CDHCEpt for numeric and string arrays.

Sound and Arrays:

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 154

In Chapter 3 we saw how to use a list of frequencies and durations
(enclosed in curly braces) to play multiple sounds at once. The
sound statement will also accept a list of frequencies and durations
from an array. The array should have an even number of elements;
the frequencies should be stored in element 0, 2, 4, ...; and the
durations should be in elements 1, 3, 5,

The sample (Program 71) below uses a simple linear formula to
make a fun sonic chirp.

o U b W DN

'/
8
9
10
11
12
13

spacechirp.kbs

even values 0,2,4...
odd values 1,3,5...

chirp starts at 100hz.and increases by 40 for
each of the 50 total"sounds in list,

is always 10

dim a (100)

for i = 0 to 98 step 2
ali] "= & * 40 + 100
afpi+l] = 10

next i

sound a

- frequency

= duration

duration

Program 71: Space Chirp Sound

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 155

What kind of crazy sounds can you program. Experiment
with the formulas you use to change the frequencies and
durations.

Explore

Graphics and Arrays:

In Chapter 8 we also saw the use of lists for creating polygons and
stamps. Arrays may also be used to drawstamps.and polygons.
This may help simplify your code by allowing the.same stamp or
polygon to be defined once, stored in an‘array, and used in various
places in your program.

In an array used for stamps andpolygons, the even elements (0, 2,
4, ...) contain the x value for each of the points and the odd
element (1, 3, 5, ...) contain'they value for the points. The array
will have two values for each point in the shape.

In Program 72 we will.use the stamp from the mouse chapter to
draw a big X with a.shadow. This is accomplished by stamping a
gray shape.shifted in the direction of the desired shadow and then
stamping the object that is projecting the shadow.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 156
1 # shadowstamp.kbs
2
3 dim xmark (24)
4 xmark = {-1, -2, O, -1, 1, -2, 2, -1, 1, 0O, 2,
i, 1, 2, 0, 1, -1, 2, -2, 1, -1, 0, -2, -1}
5
6 clg
g color grey
8 stamp 160,165,50,xmark
9 color black
10 stamp 150,150,50, xmark

Program 72: Shadow Stamp

Sample Output 72: Shadow

Stamp

Arrays can also be used to create stamps or polygons
mathematically. In Program 73 we create an array with 10
elements (5 points) and assign random locations to each of the
points to draw random polygons. BASIC-256 will fill the shape the
best it can but when lines cross, as you will see, the fill sometimes

leaves gaps and holes.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 157

1 # mathpoly.kbs

2

3 dim shape(10)

4

5 for £t = 0 to 8 step 2
6 x = 300 * rand
7 y = 300 * rand
8 shape[t] = x

9 shape[t+1l] =y
10 next t

11

12 clg

13 color black

14 poly shape

Program 73: Randomly Create a Polygon

Sample Output 73: Randomly
Create a Polygon

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 158

Advanced - Two Dimensional Arrays:

So far in this chapter we have explored arrays as lists of numbers or
strings. We call these simple arrays one-dimensional arrays
because they resemble a line of values. Arrays may also be created
with two-dimensions representing rows and columns of data.
Program 74 uses both one and two-dimensional arrays to calculate
student's average grade.

1 # grades.kbs

2 # calculate average grades for each student

3 # and whole class

4

S nstudents = 3 # number of students

6 nscores = 4 # number of.scores per student

.

8 dim students$ (nstudents)

9

10 dim grades (nstudents, nscores)

11 # store the secores as columns and the students
as rows

12 # first student

13 students$07 = "Jim"

14 grades[0,0] = 90

15 grades(0,1] = 92

16" .grades[0,2] = 81

N grades[0,3] = 55

18 # second student

19 students$[1] = "Sue"

20 grades[1,0] = 66

21 grades[1l,1] = 99

22 grades[1,2] = 98

23 grades[1l,3] = 88

24 # third student

25 students$[2] = "Tony"

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 159
26 grades[2,0] = 79
27 grades[2,1] = 81
28 grades|[2,2] = 87
29 grades|[2,3] = 73
30
31 total = 0
32 for row = 0 to nstudents-1
33 studenttotal = 0
34 for column = 0 to nscores-1
35 studenttotal = studenttotal + grades[row,
column]
36 total = total + grades|[row, c¢olumn]
37 next column
38 print students$[row] + "'s.average iis ";
39 print studenttotal / nscores
40 next row
41 print "class average is.";
42 print total / (nscores * .nstudents)
43
44 end

Program 74: Grade Calculator

Jim's average is 79.5
Sue's average is 87.75
Tony's average is 80

class average is 82.416667

SampleOutput 74: Grade Calculator

Really Advanced - Array Sizes:

Sometimes we need to create programming code that would work
with an array of any size. If you specify a question mark as a index,
row, or column number in the square bracket reference of an array

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 160

BASIC-256 will return the dimensioned size. In Program 70 we
modified Program 67 to display the array regardless of it's length.
You will see the special [?] used on line 16 to return the current size

of the array.

size.kbs

dim number (3)

number = {77, 55, 33}
print "before"

gosub shownumberarray

create a new element on the end
redim number (4)

number [3] = 22

10 print "after"

11 gosub shownumberarray

O J o U b Wb

Ne

12 #

13 end

14 #

15 shownumberarray:

16 for i = 0 to number([?] -1
17 print..d +."." + number[i]

18 next 1
19 return

Program 75: Get'Array Size

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 161

before
0 77
1 55
2 33
after
0 77
1 55
2 33
3 22

Sample Output 75: Get Array Size

New array

Concept

The [?] reference returns the length of a one-dimensional
array or the total number of elements (rows * column) in a
two-dimensional array. The [?,] reference returns the
number ofrows and the [,?] reference returns the number
of columns of a two dimensional array.

Really Really Advanced - Resizing Arrays:

BASIC-256 will also allow you to re-dimension an existing array.
The redim statement will allow you to re-size an array and will
preserve the existing data. If the new array is larger, the new
elements will be filled with zero (0) or the empty string (“”). If the
new array is smaller, the values beyond the new size will be
truncated (cut off).

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.

Page 162

O 0O J o U W DN

0

redim.kbs
dim number (3)
number = {77, 55, 33}
create a new element on the end
redim number (4)
number [3] = 22
#
for i = 0 to 3
print 1 + " " + number[i]
next i

Program 76: Re-Dimension an Array

N~ O

77
55
33
22

Sample Output 76: Re-Dimension an Array

New

Concept

redim variable(items)
redim variable$ (items)

if it fits.

columns.

redim variable(rows, columns)
redim variable$ (rows, columns)

The redim statement re-sizes an array in the computer's
memory. Data previously stored in the array will be kept,

When resizing two-dimensional arrays the values are
copied in a linear manner. Data may be shifted in an
unwanted manner if you are changing the number of

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 163

The “Big Program” for this chapter uses three numeric
arrays to store the positions and speed of falling space
debris. You are not playing pong but you are trying to

Big avoid all of them to score points.
Program

1 # spacewarp.kbs

2 # The falling space debris game

3

4 balln = 5 # number of balls

5 dim ballx(balln) # arrays to.hold ball

position and speed

o dim bally(balln)

7 dim ballspeed(balln)

8 ballr = 10 # radius.of balls

9

10 minx = baller # minimum x value for balls

11 maxx = graphwidth - ballr # maximum x value
for balls

12 miny = ballr # minimum y value for balls

13 maxy = graphheight - ballr # maximum y value
foriballs

14 & score = 0 # initial score

15 “playerw = 30 # width of player

16, playerm = 10 # size of player move

17 playerh = 10 # height of player

18 playerx (graphwidth - playerw) /2 # initial
position of player

19 keyj = asc("J") # value for the 'j' key
20 keyk = asc("K") # value for the 'k' key
21 keyqg = asc("Q") # value for the 'gq' key
22 growpercent = .20 # random growth - bigger is

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information.
faster
speed = .15 # the lower the faster

23
24
25

2 6
27
2 8
29
30
31
32
33
34
35
36
377
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54

print "spacewarp - use j and k keys to avoid
the falling space debris"
print "g to quit"

fastgraphics

setup initial ball positions and speed
for n = 0 to balln-1

gosub setupball
next n

more = true
while more
pause speed
score = score + 1

clear screen
color black
rect 0, "0, .graphwidth, graphheight

draw balls and check for collission
color white
for n = 0 to balln-1
bally[n] = bally[n] + ballspeed[n]
if bally[n] > maxy then gosub setupball
circle ballx[n], bally[n], ballr
if ((bally[n]) >= (maxy-playerh-ballr))
and ((ballx[n]+ballr) >= playerx) and
((ballx[n]-ballr) <= (playerx+playerw)) then
more = false
next n

draw player
color red

So You Want to Learn to Program? © 2010 James

Page 164

M. Reneau.

Chapter 13: Arrays - Collections of Information.

55

56
57
58
59

60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
777
78
79
80
81

rect playerx, maxy - playerh, playerw,
playerh
refresh

make player bigger
if (rand<growpercent) then playerw = playerw
+ 1

get player key and move if key pressed

k = key

if k = keyj then playerx = playerx = playerm
if k = keyk then playerx = playerxs+ playerm
if k keyg then more = false

keep player on screen

if playerx < 0 then playerx =_.0

if playerx > graphwidth - playerw then
playerx = graphwidth - playerw

end while

print "score " = String(score)

print "you died."

end

setupball:

bally[n] = miny

ballx[n] = int(rand * (maxx-minx)) + minx
ballspeed[n] = int(rand * (2*ballr)) + 1
return

Program 77: Big Program - Space Warp Game

So You Want to Learn to Program?

Page 165

© 2010 James M. Reneau.

Chapter 13: Arrays - Collections of Information. Page 166

Sample Output 77: Big Program -
Space Warp Game

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 167

Chapter 14: Mathematics - More Fun
With Numbers.

In this chapter we will look at some additional mathematical
operators and functions that work with numbers. Topics will be
broken down into four sections: 1) new operators; 2) new integer
functions, 3) new floating point functions, and 4) trigonometric
functions.

New Operators:

In addition to the basic mathematical operations we have been
using since the first chapter, there are three more operators in
BASIC-256. Operations similar to:these three operations exist in
most computer languages. They. are the operations of modulo,
integer division, and power.

Operation Operator Description
Modulo % Return the remainder of an integer
division.
Integer Division \ Return the whole number of times one
integer can be divided into another.
Power ~ Raise a number to the power of another
number.

Modulo Operator:

The modulo operation returns the remainder part of integer
division. When you do long division with whole numbers, you get a

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 168

remainder - that is the same as the modulo.

1 # mod.kbs

2 input "enter a number ", n

3 if n % 2 = 0 then print "divisible by 2"
4 if n $ 3 = 0 then print "divisible by 3"
5 if n % 5 =0 then print "divisible by 5"
6 if n % 7 =0 then print "divisible by 7"
7 end

Program 78: The Modulo Operator

enter a number 10
divisible by 2
divisible by 5

Sample Output 78: The Modulo Operator

expressionl % expressionZ?

The Modulo (%) operator performs integer division of
expressionl divided by expression2 and returns the
remainder of that process.
New

4 |If.one or both of the expressions are not integer values
COHCEpt (whole numbers) they will be converted to an integer
value by truncating the decimal (like in the int() function)
portion before the operation is performed.

You might not think it, but the modulo operator (%) is used quite
often by programmers. Two common uses are; 1) to test if one
number divides into another (Program 78) and 2) to limit a number
to a specific range (Program 79).

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

Page 169

D

o 1 o U1

9
10
11
12
13
14
15
16
17
18
19
20
21
22

23

24
25
2 6
27

28
29
30
31

moveballmod.kbs
rewrite of moveball.kbs using the modulo
operator to wrap the ball around the screen

print "use i for up, j for left, k for right,
for down, g to quit"

fastgraphics
clg
ballradius = 20

position of the ball

start in the center of the s€reen
x = graphwidth /2

y = graphheight / 2

draw the ball initially sen-the screen
gosub drawball

loop and wadt for the user to press a key
while true

k = key

if k =.dasc("I") then

vy cansgo negative, + graphheight keeps it
positive

Yy = (y - ballradius + graphheight) %
graphheight
gosub drawball
end if
if k = asc("J") then
X = (x - ballradius + graphwidth) %
graphwidth
gosub drawball
end if
if k = asc("K") then
X = (x + ballradius) % graphwidth

So You Want to Learn to Program? © 2010 James

m

M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
477

gosub drawball

end if

if k = asc("M") then
y = (y + ballradius) % graphheight
gosub drawball

end if

if k = asc("Q") then end

end while

drawball:

color white

rect 0, 0, graphwidth, graphheight
color red

circle x, vy, ballradius

refresh

return

Page 170

Program 79: Move Ball - Use Modulo to Keep on Screen

Integer Division Operator:

The Integer Division.(\) operator does normal division but it works
only with integers(whole numbers) and returns an integer value.
As an example, 13 divided by 4 is 3 remainder 1 - so the result of
the integer division is 3.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 171

integerdivision.kbs

input "dividend ", dividend

input "divisor ", divisor

print dividend + " / " 4+ divisor + " is ";
print dividend \ divisor;

print "r";
print dividend % divisor;

o O b LW DN

Program 80: Check Your Long Division

dividend 43
divisor 6
43 / 6 is Trl

Sample Output 80: Check Your Long Division

expressionl \ expressionZ

The Integer Division (\)-operator performs division of
expressionl'| expression2 and returns the whole number
of times expressionl goes into expression?2.

New

If one orboth of the expressions are not integer values
CDHCEpt (whole'numbers), they will be converted to an integer
value by truncating the decimal (like in the int() function)
portion before the operation is performed.

Power Operator:

The power operator will raise one humber to the power of another
number.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

Page 172

g w N

power.kbs
for t = 0 to 16

print "2 A " + t + " — ";
print 2 ~ t

next t

Program 81: The Powers of Two

N DNDDNDDNDNDNDDNDNDNDNDDNDDNDNDNDNDNDDNDDNDDNDDNDDN
>

AN

O J o Ul w NP O

o)

10 =

11
12
13
14
15
16

I N

8

16

32

64

128

256

512
1024
2048
4096
8192
16384
32768
65536

Sample Output'81: The Powers of Two

New

Concept

expressionl » expressionZ?

The mathematical expression a=5°
BASIC-256 asa =b "~ c.

The Power (™) operator raises expressionl to the
expression2 power.

would be written in

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 173

New Integer Functions:

The three new integer functions in this chapter all deal with how to
convert strings and floating point numbers to integer values. All
three functions handle the decimal part of the conversion
differently.

In the int() function the decimal part is just thrown away, this has
the same effect of subtracting the decimal part from positive
numbers and adding it to negative numbers. This.can cause
troubles if we are trying to round and there are humbers less than
zero (0).

The ceil() and floor() functions sort of fix theproblem with int().
Ceil() always adds enough to every floating point number to bring it
up to the next whole number while floor(0) always subtracts enough
to bring the floating point number down to the closest integer.

We have been taughtito round a number by simply adding 0.5 and
drop the decimal part: «if we use the int() function, it will work for
positive numbers.but not for negative numbers. In BASIC-256 to
round we should always use a formula like a= floor(b+0.5) .

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 174
Function Description
int (expression) Convert an expression (string,
integer, or decimal value) to an
integer (whole number). When
converting a floating point value
New the decimal part is truncated
Concept (ignored). If a string does_not
contain a number a«zero is
returned.
ceil (expression) |Converts a floating point value to
the next highest integer value.
floor (expression |[Converts a floating point
) expression to the next lowers
integer value. You should use this
function for rounding
a= floor(b+0.5)
1 # intceilfloon.kbs
2 for t =1 to 10
3 n = rand»* 200 - 50
4 printin;
5 print " int=" + int(n);
0 print " ceil=" + ceil(n);
7 print " floor=" + floor (n)
8 next t

Program 82: Difference Between Int, Ceiling, and Floor

-46.850173 1int=-46 ceil=-46 floor=-47
-43.071987 int=-43 ceil=-43 floor=-44
23.380133 int=23 ceil=24 floor=23
4.620722 int=4 ceil=5 floor=4
3.413543 int=3 ceil=4 floor=3
-26.608505 int=-26 ceil=-26 floor=-27

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

-18.813465 1int=-18 ceil=-18 floor=-19
7.096065 1int=7 ceil=8 floor=7
23.482759 int=23 ceil=24 floor=23
-45.463169 1int=-45 ceil=-45 floor=-46

Page 175

Sample Output 82: Difference Between Int, Ceiling, and Floor

New Floating Point Functions:

The mathematical functions that wrap up this chapter are ones you
may need to use to write some programs. In the vast majority of

programs these functions will not be needed.

Concept is returned.

Function Description
float (expression j|Cenvert expression (string,
) Integer, or decimal value) to a
decimal value. Useful in changing
New strings to numbers. If a string

does not contain a number a zero

value.

abs (expression) Converts a floating point or
integer expression to an absolute

(base e) of a number.

log (expression) Returns the natural logarithm

) a number.

logl0 (expression |Returns the base 10 logarithm of

Advanced - Trigonometric Functions:

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

Page 176

Trigonometry is the study of angles and measurement. BASIC-256
includes support for the common trigonometric functions. Angular
measure is done in radians (0-2p). If you are using degrees (0-360)
in your programs you must convert to use the “trig” functions.

New
Concept

Function

Description

cos (expression)

Return the cosine of an angle.

sin (expression)

Return the sine of.an angle.

tan (expression)

Return the tangent of an angle.

degrees (expression

)

Convert Radians (0 - 2m) to
Degrees (0-360).

radians (expression

)

Convert.Degrees (0-360) to
Radians (0 - 2m).

acos (expression)

Return the inverse cosine.

asin (expression)

Return the inverse sine.

atan (expression)

Return the inverse tangent.

The discussion of'the first three functions will refer to the sides of a
right triangle. lllustration 20 shows one of these with it's sides and
angles.labeled.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 177

a - Upposite B
b - Adjacent
C - Hypoteruse .
a
A, b I_C

lllustration 20: Right Triangle
Cosine:

A cosine is the ratio of the length of the adjacent leg over the length
of the hypotenuse cosA:% . The cosine repeats itself every 2n

radians and has a range from+1to 1. lllustration 20 graphs a
cosine wave from 0 to 2m radians.

AN a

-1
Illustration 21: Cos() Function

Sine:

The sine is the ratio of the adjacent side over the hypotenuse

sinAZ% . The sine repeats itself every 2mntradians and has a range

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 178

from -1 to 1. You have seen diagrams of sine waves in Chapter 3 as
music was discussed.

pi 2pi

1

lllustration 22: Sin() Function

Tangent:

The tangent is the ratio of the adjacent side over the opposite side

tan A=% . The sine repeats itself every mradians and has a range
from -o to ». The tangent has this range because when the angle

gets very small the‘'length.of the opposite side becomes very small.

pi 2pi

lllustration 23: Tan() Function

Degrees Function:

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 179

The degrees() function does the quick mathematical calculation to
convert an angle in radians to an angle in degrees. The formula
used is degrees =radians/21*360 .

Radians Function:

The radians() function will convert degrees to radians.using the
formula radians=degrees/360%217 . Remember all of the
trigonometric functions in BASIC-256 use radians-and.not degrees
to measure angles.

Inverse Cosine:

The inverse cosine function acos() will return an angle
measurement in radians for.the specified cosine value. This
function performs the.opposite of the cos() function.

Toi

1 1

Illustration 24: Acos() Function

Inverse Sine:

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 180

The inverse sine function asin() will return an angle measurement
in radians for the specified sine value. This function performs the
opposite of the sin() function.

T1/pi

T-1/2pi

lllustration 25: Asin() Function

Inverse Tangent:

The inverse tangent function atan() will return an angle
measurement in.radians for the specified tangent value. This
function performsthe opposite of the tan() function.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

m1/2pi

m-1/zpi

lllustration 26: Atan() F

unction

Page 181

The big program this chapter allows the user to enter two
positive whole numbers.and then performs long division.
This program used logarithms-to calculate how long the
numbers are, modulo and integer division to get the
individual digits,/and is.generally a very complex program.
Don't be scared or put off if you don't understand exactly

Big
Prng ramj/how it works;yet.
1 # lengdivision.kbs
2
positive integers
3
4 input "dividend? ", Db
5 input "divisor? ", a
6
7 originx = 100
3 originy = 20
9 height = 12
10 width = 9
11 margin = 2
12

So You Want to Learn to Program?

Ishow graphically the long division of two

© 2010 James M. Reneau.

13
14
15
16
17
18
19
20
21
22
23
24
25
2 6
27
2.8

29

30
31

32
33
34
35

Chapter 14: Mathematics - More Fun With Numbers.
b = int(abs (b))
a = 1int (abs(a))
clg
display original problem
row = 0
col = -1
number = a
underline = false
gosub drawrightnumber
row = 0
col =0
number = b
gosub drawleftnumber
line originx - margin, originy, .0originx +
(width * 11), originy
line originx - margin, originy, originx -
margin, originy + height
calculate_ how ' many digits are in the
dividend
1b = ceil(loglO(abs(b)))
r =0
bottomrow = 0 ## row for bottom calculation
display

36
3/

38
39

40
41
42
43

So You Want to Learn to Program?

loop through all of the digits from the left
to the right
for tb = 1b-1 to 0 step -1

drop down the next digit to running
remainder and remove from dividend

r =1r * 10

r=1r + (b \ (10 ~ tb))

b=Db % (10 ~ tb)

display running remainder

Page 182

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

44
45
46
477
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
L
72
73
74
75

76
777

So You Want to Learn to Program?

row = bottomrow
bottomrow = bottomrow + 1
col = 1b - tb -1
number = r
underline = false
gosub drawrightnumber
calculate new digit in answer and display
digit = r \ a
row = -1
col = 1b - tb - 1
gosub drawdigit
calculate gquantity to removeafrom running
and display
number = digit * a
r = r - number
col = 1b - tb - 1
row = bottomrow
bottomrow = bottomrow =i
underline = true
gosub drawrightnumber
next tb
#
print remainder at bottom
row = bottomrow
col = 1lb =1
number = r
underline = false
gosub drawrightnumber
end

drawdigit:
pass row and col convert to x y
text col * width + originx, row * height +
originy, digit
if underline then

line col * width + originx - margin, (row +
1) * height + originy, (col + 1) * width +

Page 183

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 184

originx - margin, (row + 1) * height + originy

78 end if

79 return

30

31 drawleftnumber:

32 # pass start row, col, and number - from left
column

33 if number < 10 then

34 digit = number

35 gosub drawdigit

36 else

37 Inumber = ceil (1logl0 (abs (numbexn)))

38 for tnumber = lnumber-1 to 0 step -1

39 digit = (number \ (10 ~tnumber)) % 10

90 gosub drawdigit

91 col = col + 1

92 next tnumber

93 endif

94 return

95

96 drawrightnumber:

97 # pass start row, col, and number - from right
column

98 if number.< 10 then

99 digit =snumber

100 gosub drawdigit

101 .else

102 Ilnumber = ceil (1loglO0 (abs (number)))

103 for tnumber = 0 to lnumber - 1

104 digit = (number \ (10 ~ tnumber)) % 10

105 gosub drawdigit

106 col = col - 1

107 next tnumber

108 endif

109 return

Program 83: Big Program - Long Division

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers.

Page 185

dividend? 123456
divisor? 78

Sample Output 83: Big Program - Long Division (one)

Sample Output
83: Big Program
- LongDivision

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 14: Mathematics - More Fun With Numbers. Page 186

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings.

Page 187

Chapter 15: Working with Strings.

We have used strings to store non-numeric information, build
output, and capture input. We have also seen, in Chapter 11, using
the Unicode values of single characters to build strings.

This chapter shows several new functions that will allow you to

manipulate string values.

The String Functions:

BASIC-256 includes eight common functions for the manipulation of
strings. Table 7 includes a summary of them.

Function

Description

string (expression)

Convert expression (string, integer,
or decimal value) to a string value.

length (string)

Returns the length of a string.

left(string, length)

Returns a string of length
characters starting from the left.

right(string, length)

Returns a string of length
characters starting from the right.

mid (string, start,
length)

Returns a string of length
characters starting from the middle
of a string.

upper (expression)

Returns an upper case string.

lower (expression)

Returns a lower case string.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 188

Function Description
instr (haystack, needle) Searches the string “haystack” for
the “needle” and returns it's
location.

Table 7: Summary of String Functions

String() Function:

The string() function will take an expression of any.format and will
return a string. This function is a convenientiway to convert an
integer or floating point number into characters.so that it may be
manipulated as a string.

1 # string.kbs

2 a$ = string (10 + 13)
3 print as$

4 b$ = string(2 *.pi)
5 print bs$

Program 84: The String Function

23
6.283185

Sample Output 84: The String Function

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 189

New

Concept

string (expression)

Convert expression (string, integer, or decimal value) to a
string value.

Length() Function:

The length() function will take a string expression and return it's
length in characters (or letters).

g b w N

length.kbs

prints 6, 0, and 17

print length ("Heldo.™)

print length« (")

print length ("Programming Rulz!")

Program 85: The Length Function

6
0
17

Sample Qutput 85: The Length Function

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 190

length (expression)

Returns the length of the string expression. Will return
New zero (0) for the empty string “”.

Concept

Left(), Right() and Mid() Functions:

The left(), right(), and mid() functions will extract sub-strings (or
parts of a string) from a larger string.

leftrightmid.kbs

as$ = "abcdefghijklm"

prints "abcd"

print left (a$pd)

prints "Im"

print right(as,2)

printsi "def™ and "jklm"
print midas$, 4, 3)

print mid(a$,10,9)

Program 86:.The'Left, Right, and Mid Functions

O O J o) U i W N

abed
k1l
def
Jklm

Sample Output 86: The Left, Right, and Mid Functions

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 191

New
Concept

left(string, length)

Return a sub-string from the left end of a string. If length
is equal or greater then the actual length of the string the
entire string will be returned.

New
Concept

right(string, length)

Return a sub-string from the right.end of a string. If
length is equal or greater then the actual length of the
string the entire string will.be returned.

New
Concept

mid (string, start, length)

Return:a sub-string of specified length from somewhere
on the middle of a string. The start parameter specifies
where the sub-string begins (1 = beginning of string).

Upper() and Lower() Functions:

The upper() and lower() functions simply will return a string of
upper case or lower case letters. These functions are especially
helpful when you are trying to perform a comparison of two strings
and you do not care what case they actually are.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 192

upperlower.kbs
a$ = "Hello."

prints "hello."
print lower (a$)

prints "HELLO."
print upper (a$s)

oY O b W N

Program 87: The Upper and Lower Functions

hello.
HELLO.

Sample Output 87: The Upper and Lower Functions

lower (string)
upper (string)

Returns an.all upper case or lower case copy of the string
New expression. Non-alphabetic characters will not be

CDI‘ICEpt modified.

Instr() Function:

The instr() function searches a string for the first occurrence of
another string. The return value is the location in the big string of
the smaller string. If the substring is not found then the function
will return a zero (0).

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 193

instr.kbs

a$ = "abcdefghijklm"

find location of "hi"
print instr(a$,"hi™)

find location of "bye"
print instr(as,"bye")

oY U b LW DN

Program 88: The Instr Function

Sample Output 88: The Instr Function

instr (haystack, needle)

Find the sub-string (needle) in another string expression
(haystack)..Returnthe character position of the start. If

New sub-string is_not found return a zero (0).

Concept

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 194

The decimal (base 10) nhumbering system that is most
commonly used uses 10 different digits (0-9) to represent
numbers.

. Imagine if you will what would have happened if there

Blg were only 5 digits (0-4) - the number 23 (2%10'+3%10°)
would become

Prog ram 43 (4%5'+3x5°) to represent the same number of items.

This type of transformation is called radix (or base)

conversion.

The computer internally does not understand base 10
numbers but converts everything tobase 2. (binary)
numbers to be stored in memory.

The “Big Program” this chapter will'‘convert a positive
integer from any base 2.to 36 (where letters are used for
the 11% - 26" digits) to any“other base.

1 # radix.kbs

2 # convert a number from one base (2-36) to
another

3

4 digits$ =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

5

6 message$ = "from base"

7 gosub getbase

8 frombase = base

9

10 input "number in base " + frombase + " >",
numbers$

11 number$ = upper (number$)

12

13 # convert number to base 10 and store in n

14 n =20

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 15: Working with Strings.

15 for i = 1 to length (number$)

21 gosub getbase
22 tobase = base
23

25 results = ""
26 while n <> 0

38 return

16 n = n * frombase

17 n =n + instr(digits$, mid(numbers$, i, 1)) -
1

18 next 1

19

20 message$ = "to base"

24 # now build string in tobase

27 result$ = mid(digits$, n tobase + 1, 1) +
results

28 n = n \ tobase

29 end while

30

31 print "in base " + tobase'+ " that number is "
+ result$

32 end

33

34 getbase: # _get a base from 2 to 36

35 do

36 input message$+"> ", base

37 until base >= 2 and base <= 3606

Page 195

Program 89: Big Program - Radix Conversion

from base> 10

number in base 10 >999

to base> 16

in base 16 that number is 3E7

Sample Output 89: Big Program - Radix Conversion

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 196

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later.

Page 197

Chapter 16: Files - Storing Information

For Later.

We have explored the computer's short term memory with variables
and arrays but how do we store those values for later? There are

many different techniques for long term data storage.

BASIC-256 supports writing and reading information frem files on
your hard disk. That process of input and output.is often.written as

/0.

This chapter will show you how to read values from a file and then

write them for long term storage.

Reading Lines From a File:

Our first program using files is going to show you many of the
statements and constants you will need to use to manipulate file
data. There aresseveral new statements and functions in this

program.

#readlfile.kbs
input "file name>", fn$
If not exists(fn$) then
print fn$ + " does not exist."
end
end if
#
n =20
open fn$
0 while not eof
1 1$ = readline

R = O 0 J o O b W N -

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 198

12 n=n+1

13 print n + " " + 18

14 end while

15 #

16 print "the file " + fn$ + " is " + size + "
bytes long."

17 close

Program 90: Read Lines From a File

file name>test.txt

1 These are the times that

2 try men's souls.

3 - Thomas Paine

the file test.txt is 58 bytes long.

Sample Output 90: Read Lines From a File

exist (expression)

Look on the.computer for a file name specified by the
string expression. Drive and path may be specified as part
of the file name, but if they are omitted then the current
New working-directory will be the search location.

Concept

Returns true if the file exists; else returns false.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 199

open expression

open (expression)

open filenumber, expression
open (filenumber, expression)

New Open the file specified by the expression for reading and
CDHCEpt writing to the specified file number. If the file does not
exist it will be created so that information may be added
(see write and writeline). Be sure to execute the close
statement when the program is finished with thefile.

BASIC-256 may have a total of eight (8) files'open 0 to 7.
If no file number is specified then the file will be opened
as file number zero (0).

eof
eof ()
eof (filenumber)

New The eof function returns a value of true if we are at the
end of.the file for reading or false if there is still more data

Concept to be read.

If filenumber is not specified then file number zero (0) will
beused.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 200

readline
readline ()
readline (filenumber)

New Return a string containing the contents of an open file up

to the end of the current line. If we are at the end of the
COHCEpt file [eof(filenumber) = true] then this function will return
the empty string (“”).

If filenumber is not specified then file number.zero (0) will
be used.

size
size ()
size (filenumber)

New This function returns the length of an open file in bytes.

Cuncept If filenumber.is not specified then file number zero (0) will
be used.

close

close ()

close filenumber
close (filenumber)

New

CDI'ICEIJt The close statement will complete any pending 1/O to the
file and allow for another file to be opened with the same
number.

If filenumber is not specified then file number zero (0) will
be used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 201

Writing Lines to a File:

In Program 90 we saw how to read lines from a file. The next two
programs show different variations of how to write information.to a
file. In Program 91 we open and clear any data that may have been
in the file to add our new lines and in Program 92 we append our
new lines to the end (saving the previous data).

1 # resetwrite.kbs

2 open "resetwrite.dat"

3

4 print "enter a blank line to close file"
5

6 # clear file (reset) and start over
7 reset

8 repeat:

9 input ">", 1§

10 4if 1$ <> "™ .then

11 writeldne 1$

12 goto repeat

13 end if

14

15 #.90 _fhe the start and display contents
16 ".s85eek O

1/ k=0

18 while not eof ()

19 k =k +1

20 print k + " " + readline()

21 end while

22

23 close

24 end

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 202

Program 91: Clear File and Write Lines

enter a blank line to close file
>this is some

>data, I am typing

>into the program.

>

1 this is some

2 data, I am typing

3 into the program.

Sample Output 91: Clear File and Write Lines

reset or

reset () or

reset filenumber
reset (filenumber)

New Clear any data in an open file and move the file pointer to
Concept |the beginning:

If filenumber'is not specified then file number zero (0) will
be used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 203

New
Concept

seek expression

seek (expression)

seek filenumber,expression
seek (filenumber,expression)

Move the file pointer for the next read or write operation
to a specific location in the file. To move the current
pointer to the beginning of the file use the value zero (0).
To seek to the end of a file use the size() function as the
argument to the see statement.

If filenumber is not specified then file numberzero (0) will
be used.

New
Concept

writeline expression

writeline (expression)

writeline filenumber, expression
writeline (filenumber,expression)

Output the contents of the expression to an open file and
then append.an end of line mark to the data. The file
pointer'will be positioned at the end of the write so that
the next write statement will directly follow.

If-filenumber is not specified then file number zero (0) will
be used.

oY U b W N

appendwrite.kbs
open "appendwrite.dat"

print "enter a blank line to close file"

move file pointer to end of file and append

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later.

7 seek size()
8 repeat:
9 input ">", 18

10 if 1$ <> "" then

11 writeline 1$

12 goto repeat

13 end if

14

15 # move file pointer to beginning and show
contents

16 seek 0

17 k =0

18 while not eof ()

19 k=%k +1

20 print kK + " " + readline ()

21 end while

22

23 close

2 4 end

Page 204

Program 92: Append Lines to a File

enter a blank line to close file
>sed sed sed
>vim vim vim

bar. . bar bar
foor foo foo
grap grap grap
sed sed sed
vim vim vim

g B> 0NN PV

Sample Output 92: Append Lines to a File

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 205

Read() Function and Write Statement:

In the first three programs of this chapter we have discussed the
readline() function and writeline statement. There are two other
statements that will read and write a file. They are the read()
function and write statement.

read
read ()
read (filenumber)

New Read the next word or number (token).from a file. Tokens
are delimited by spaces, tab characters, or end of lines.
CDI'ICEpt Multiple delimiters between tokens will be treated as one.

If filenumber is not specified then file number zero (0) will
be used.

write expression

write (expression)

write filenumber,expression
write (filenumber,expression)

New Write the string expression to a file file. Do not add an
Concept |end of line or a delimiter.

If filenumber is not specified then file number zero (0) will
be used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 206

This program uses a single text file to help us maintain a
list of our friend's telephone numbers.

Big
Program
1 # phonelist.kbs
2 # add a phone number to the list and show
3 filename$ = "phonelist.txt"
4
S print "phonelist.kbs - Manage.your phone list."
6 do
7 input "Add, List, Quit/ (a/l/qg)?",action$
3 if left (lower (action$) A== "a" then gosub
addrecord
9 if left (lower (aetiens$),1) = "1" then gosub
listfile
10 until left (lowewx (aetion$),1) = "g"
11 end
12

13 listfile:
14 if jexists (filename$) then

15 # list the names and phone numbers in the
file

Lo open filename$

17 print "the file is " 4+ size + " bytes long"

18 while not eof

19 # read next line from file and print it

20 print readline

21 end while

22 close

23 else

24 print "No phones on file. Add first."

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 207

25 end if
26 return
27

28 addrecord:

29 input "Name to add?", name$

30 input "Phone to add", phone$

31 open filename$

32 # seek to the end of the file

33 seek size()

34 # we are at end of file - add new line
35 writeline name$ + ", " + phone$

36 close

37 return

Program 93: Big Program - Phone List

phonelist.kbs - Manage your.phone list.
Add, List, Quit (a/l/qg)?1
the file is 46 bytes long
jim, 555-5555

sam, 555-7777

doug, 555-3333

Add, List, Quit. (a/l/q)?a
Name to add?ang

Phone to add556=0987

Add, List,r Quit (a/l/qg)?1
the file is 61 bytes long
Jim, 555-5555

sam, «555-7777

doug, 555-3333

ang, 555-0987

Add, List, Quit (a/l/qg)?q

Sample Output 93: Big Program - Phone List

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 16: Files - Storing Information For Later. Page 208

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 209

Chapter 17: Stacks, Queues, Lists, and
Sorting

This chapter introduces a few advanced topics that are commonly
covered in the first Computer Science class at the University level.
The first three topics (Stack, Queue, and Linked List) are very
common ways that information is stored in a computer system.. The
last two are algorithms for sorting information.

Stack:

A stack is one of the common data structures used by programmers
to do many tasks. A stack works like the “discard pile” when you
play the card game “crazy-eights”. 'When you add a piece of data
to a stack it is done on the top«(called a “push”) and these items
stack upon each other. When you want a piece of information you
take the top one off the stack and reveal the next one down (called
a “pop”). lllustration 27 shows a graphical example.

Push Pop
(Add One) (Take One)

tem \ /> tem

Item

ltem

Item

lllustration 27: What is a Stack

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 210

The operation of a stack can also be described as “last-in, first-out”
or LIFO for short. The most recent item added will be the next item
removed. Program 94 implements a stack using an array and a
pointer to the most recently added item. In the “pushstack”
subroutine you will see array logic that will re-dimension the array
to make sure there is enough room available in the stack for
virtually any number of items to be added.

stack.kbs
implementing a stack using an array

DS w N

dim stack(l) # array to hold stack with initial
size
nstack = 0 # number of selements on stack

value =1
gosub pushstack
9 wvalue = 2
10 gosub pushstack
11 wvalue = 3
12 gosub pushstack
13 wvalue = 4
14 gosub pushstack
15 wvalue.= 5
16 gosub. pushstack

oo 1 oy Ul

1%

18 while nstack > 0
19 gosub popstack
20 print value

21 end while

22

23 end

24

25 popstack: #
26 # get the top number from stack and set it in

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

value
27 1if nstack = 0 then
2 8 print "stack empty"
29 else
30 nstack = nstack - 1
31 value = stack[nstack]
32 end if
33 return

34
35 pushstack: #

40 nstack = nstack + 1
41 return

36 # push the number in the variable wvalue.onto

the stack

37 # nake the stack larger if it is full

38 1f nstack = stack[?] then redim .stack(stack[?]
+ 5)

39 stack[nstack] = wvalue

Page 211

Program 94: Stack

Queue:

The queue (pronounced like the letter Q) is another very common
data structure. The queue, in its simplest form, is like the lunch line
at schoal. .The first one in the line is the first one to get to eat.

[llustration.28 shows a block diagram of a queue.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

E nqueue
(Add One)

Item

Iltem Item Item Item

Dequeue
(Take One)

Item

lllustration 28: What is a Queue

Page 212

The terms enqueue (pronounced'in-q) and dequeue (pronounced
dee-q) are the names we: use to.describe adding a new item to the
end of the line (tail)or. removing an item from the front of the line
(head). Sometimes. thisiis described as a “first-in, first-out” or FIFO.
The example in Program 95 uses an array and two pointers that

keep track of the-head of the line and the tail of the line.

1 #_ queue.kbs

2 # implementing a queue using an array

3

4 queuesize = 4 # maximum number of entries in
the queue at any one time

5 dim queue (queuesize) # array to hold queue
with initial size

6 tail = 0 # location in queue of next new
entry

7 head = 0 # location in gqueue of next entry to
be returnrd (served)

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

8 inqueue = 0
9
10 value =1

11 gosub enqueue

12 value = 2

13 gosub enqueue

14

15 gosub dequeue

16 print value

17

18 value = 3

19 gosub enqueue

20 value = 4

21 gosub enqueue

22

23 gosub dequeue

24 print value

25 gosub dequeue

26 print value

27

28 value = 5

29 gosub enqueue

30 value = 6

31 gosub enqueue

32 value = 7

33 gosub enqueue

34

35 # empty everybody from the queue
36 while inqueue > O

37 gosub dequeue

38 print value

39 end while

40

41 end

42

43 dequeue: #

44 if inqueue = 0 then

So You Want to Learn to Program?

number of entries in queue

Page 213

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

45 print "queue is empty"

46 else

477 inqueue = inqueue - 1

48 value = queuel[head]

49 print "dequeue value=" + value + " from="
head + " inqueue=" + inqueue

50 # move head pointer - if we are at end of
array go back to the begining

51 head = head + 1

52 if head = queuesize then head = 0

53 end if

54 return

55

56 enqueue: #

57 if inqueue = gqueuesize then

58 print "queue is full"

59 else

60 inqueue = inqueue + 1

ol queue[tail] = value

62 print "enqueuesmwvalue=" + value + " to=" +
tail + " ingqueue=" + inqueue

63 # move tail spointer - if we are at end of
array go back to the begining

64 tail = tail + 1

65 if tail = queuesize then tail = 0

66 end 1if

67 return

Page 214

+

Program 95: Queue

Linked List:

In most books the discussion of this material starts with the linked
list. Because BASIC-256 handles memory differently than many

other languages this discussion was saved after introducing stacks
and queues.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 215

A linked list is a sequence of nodes that contains data and a pointer
or index to the next node in the list. In addition to the nodes with
their information we also need a pointer to the first node. We call
the first node the “Head”. Take a look at lllustration 29 and you will
see how each node points to another.

.—» Data ‘—} Data .—} Data | O

Pointer Head Tail
to the
Head

lllustration 29: Linked List

An advantage to the linked list, over an array, is the ease of
inserting or deleting a node. To delete-a node all you need to do is
change the pointer on the previous node (lllustration 30) and
release the discarded nodesso that it may be reused.

O r | @ DataXO paa | O

Pointer Head Tail
to the
Head

Illustration 30: Deleting an Item from a Linked List

Inserting a new node is also as simple as creating the new node,
linking the new node to the next node, and linking the previous
node to the first node. lllustration 31 Shows inserting a new node
into the second position.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

Page 216

.——) Data , Data

-f))» Data | O

Pointer Head *
to the
Head Data *

Tail

Illustration 31: Inserting an Item into a Linked List

Linked lists are commonly thought of as the simplest data
structures. In the BASIC language we can't allocate memory like in
most languages so we will simulate this behavier'using arrays. In
Program 96 we use the data$ array to store the text in the list, the
nextitem array to contain the index to the next node, and the
freeitem array to contain a stack of free (unused) array indexes.

9 for t = 0 to n-1
10 freeitem[t] = t
11 next t

12 lastfree = n-1

13

So You Want to Learn to Program?

1 # linkedlist.kbs

2

3 n = 8 # maximum size of list

4 dim data$«{n) ~# data for item in list

5 dim nextitem(n) # pointer to next item in
list

6 dime.freeitem(n) # list of free items

¥

8 # initialize freeitem stack

14 head = -1 # start of list -

= pointer

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

15
16
17
18
19
20
21
22
23
24
25
2 6
27
28
29
30
31
32
33
34
35
36
37
57
39
40
41
42
43
44
45

to nowhere

list of 3 items
text$ = "Head"
gosub append

text$ = "more"
gosub append

text$ = "stuff"
gosub append

gosub displaylist
gosub displayarrays
gosub wait

print "delete item 2"
r = 2

gosub delete

gosub displaylist
gosub displayartrays
gosub wait

print "insert item 1"
r =1

text$.= "bar"

gosub insert

gosub displaylist
gosub displayarrays
gosub wait

print "insert item 2"
r =2

text$ = "foo"

gosub insert

So You Want to Learn to Program?

Page 217

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

46 gosub displaylist
477 gosub displayarrays
48 gosub wait

49
50 print "delete item 1"
51 r =1

52 gosub delete

53 gosub displaylist

54 gosub displayarrays

55 gosub wait

56

57 end

58

59 wait: ## wait for enter

61 print
62 return
63

linked list
65 print "list...™"

66 k =0

67 i/=,head

68 do

69 k =%k +1

70 print k + " ";

71 print data$[i]

72 i = nextitem[i]
73 until i = -1

74 return

75

So You Want to Learn to Program?

60 input "press enter? ",.garbage$

64 displaylist: #wshowlist by following the

displayarrays: # show data actually stored and

Page 218

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 219

how

76 print "arrays..."

777 for i = 0 to n-1

78 print 1 + " " + data$[i] + +
nextitem[i] ;

79 for k = 0 to lastfree

30 if freeitem[k] = i then print " <<free";

S1 next k

32 if head = i then print " <<head";

33 print

34 next 1
35 return
86

38 if r = 1 then

So You Want to Learn to Program?

37 insert: # insert text$ at positien r

39 gosub createitem

90 nextitem[index] = head

91 head = index

92 else

93 k = 2

94 i = head

95 while <> -1 and k <> r

96 k =%k +1

97 i = nextitem[i]

98 end while

99 if 1 <> -1 then

100 gosub createitem

101 nextitem[index] = nextitem[i]
102 nextitem[1i] = index

103 else

104 print "can't insert beyond end of list"
105 end if

© 2010 James M. Reneau.

Chapter 17:

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

So You Want to Learn to Program?

Stacks, Queues, Lists, and Sorting Page 220

end 1if
return

delete: # delete element r from linked list
if r = 1 then

index = head

head = nextitem[index]

gosub freeitem

else
k =2
i = head
while 1 <> -1 and k <> r
k =k +1
i = nextitem[i]

end while
if 1 <> -1 then
index = nextitem[i]
nextitem[i] = nextitem[nextitem[i]]
gosub freeitem
else
print "can't delete beyond end of list"
end if
ends1f

retyurn

append: # append text$ to end of linked list
if head = -1 then

gosub createitem

head = index
else

i = head

while nextitem[i] <> -1

© 2010 James M. Reneau.

Chapter 17:

138
139
140
141
142
143
144
145

146
147
148
149
150

Stacks, Queues, Lists, and Sorting Page 221

i = nextitem[i]
end while
gosub createitem
nextitem[i] = index
endif
return

freeitem: # free element in index and add baek
to the free stack

lastfree = lastfree + 1
freeitem[lastfree] = index
return

createitem: # save text$ in data.and return
index to new location

So You Want to Learn to Program?

151 if lastfree < 0 then
152 print "no free cell to allocate"
153 end
154 end if
155 1index = freeitem[lastfree]
156 data$[index] = text$
157 nextitemlfindex] = -1
158 lastfree = lastfree - 1
159 ctunn
Program 96:.Linked List

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 222

Re-write Program 96 to implement a stack and a queue
using a linked list.

Explore

Slow and Inefficient Sort - Bubble Sort:

The “Bubble Sort” is probably the worst algorithm. ever devised to
sort a list of values. It is very slow and inefficient except for small
sets of items. This is a classic example of-a bad algorithm.

The only real positive thing that can be said about this algorithm is
that it is simple to explain and to implement. Illustration 32 shows
a flow-chart of the algorithm. The.bubble sort goes through the

array over and over again swapping.the order of adjacent items
until the sort is complete,

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

Page 223

setsorted flag to true

start with first two elements of array

i=0

is the next element
less than the current?
dfi+1] >d[i]

no

have we compared all
elements?
i =length(d) - 2

swap elements

and set sorted flag

t=dli]

\ 4

‘ Finish ’

dfi] =d[i+1]
dii+l]=t

to false

N

Y

move to next element
i =i+l

Illustration 32: Bubble Sort - Flowchart

So You Want to Learn to Program?

1 # bubblesort.kbs

2 # implementing a simple sort

3

4 # a bubble sort is one of the SLOWEST
algorithms

5 # for sorting but it is the easiest to
implement

6 # and understand.

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

.
3
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
2 4
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#

The algorithm for a bubble sort is

1. Go through the array swaping adjacent
values

so that lower value comes first.

2. Do step 1 over and over until there have
been no swaps (the array is sorted)

#

dim d(20)

£fill array with unsorted numbers
for i = 0 to d[?]-1

d[i] = rand * 1000
next i

print "*** Un-Sorted *%*"
gosub displayarray

gosub bubblesort

print "***"Sorted **x"
gosub displayarray
end

displayarray:
print out the array's values
for i = 0 to d[?]-1
print d[i] + " ";
next i
print
return

bubblesort:
do
sorted = true
for i = 0 to d[?] - 2

So You Want to Learn to Program? © 2010 James

Page 224

M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

43
44
45
46
477
48
49
50
51

if d[i]
sorte
temp
dli+l
df[i]

end if

next 1

until sorted
return

> d[i+1l] then
d false

= d[i+1]

dfi]

= temp

Q1

Page 225

Program 97: Bubble Sort

Better Sort - Insertion Sort:

The insertion sort is another algorithm for sorting a list of items. It
is usually faster than the bubble sort;"but in the worst case case
could take as long.

The insertion sort gets it's name from how it works. The sort goes
through the elements'of the array (index = 1 to length -1) and
inserts the value.in the correct location in the previous array
elements. lllustration 33 shows a step-by-step example.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

Page 226

Original Aray
2 7 1 3 5 4 6
L unsorted
Start with second elementand
7 insert it where it goes in sorted part
a (shift if needed to make room)
2 1 3 5 4 6

= unsorted

C 1 Shift the elements in the sorted part and
(’- insert the next element where it goes
2 7 3 5 4 6
W I unsorted
Keep shifting and inserting each element
b 3 until you have gone through all of the
f unsorted items in the array
1 2 7 5 4 6
A

3 unsorted

e

2 3 7 4 6

¥ unsorted

1 2 3 5 7 6
W D unsorted

Sorted Array

1

2 3 4 5 6 7

Illustration 33: Insertion Sort - Step-by-step

So You Want to Learn to Program?

1 # insertionsort.kbs

2 # dmplementing an efficient sort
3

4 dim d(20)

5

6 # fill array with unsorted numbers
7 for i = 0 to d[?]-1

8 d[i] = rand * 1000

9 next i

10

11 print "*** Un-Sorted ***"

12 gosub displayarray

13

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

32
33
34

35

36

3/
38
39
40
41
42
43
44
45

So You Want to Learn to Program?

gosub insertionsort

print "*** Sorted ***"
gosub displayarray
end

displayarray:
print out the array's values
for i = 0 to d[?]-1
print d[i] + " ";
next i
print
return

insertionsort:

loops thru the list starting.at the second
element.

takes current element andw=inserts it

in the the correct sorted place in the
previously

sorted elements

moving from backward from the current
location

and sliding elements with a larger value
foward

to make room for the current value in the
gorrect

#+place (in the partially sorted array)

for i =1 to d[?] - 1
currentvalue = d[i]
3 =1-1
done = false
do

if d[j] > currentvalue then
shift value and stop looping if we

Page 227

© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 228

are at begining

46 d[j+1] = d[3J]

47 =73 -1

48 if j < 0 then done = true

49 else

50 # jJ is the element before where we
want to insert

51 done = true

52 endif

53 until done

54 d[j+1] = currentvalue

55 next i

56 return

Program 98: Insertion Sort

Re-write Program 98 using a linked list like in Program 96.

Explore

Research other sorting algorithms and write them in
BASIC-256.

Explore

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 18 - Runtime Error Trapping Page 229

Chapter 18 - Runtime Error Trapping

As you have worked through the examples and created your own
programs you have seen errors that happen while the program is
running. These errors are called “runtime errors”. BASIC-256
includes a group of special commands that allow your program te
recover from or handle these errors.

Trapping errors, when you do not mean too, can cause problems.
Error trapping should only be used when needed and disabled when
not.

Error Trap:

When error trapping is turnedon; with the onerror statement, the
program will jump to a specified subroutine when an error occurs.
If we look at Program 99 we will see that the program calls the
subroutine when it tries to.read the value of z (an undefined
variable). If we try to run the same program with line one
commented out orrremoved the program will terminate when the
error happens.

1 onerror errortrap

2

5 print "z =" + z

4 print "Still running after error"
5 end

6

7 errortrap:

8 print "I trapped an error."

9 return

Program 99: Simple Runtime Error Trap

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 18 - Runtime Error Trapping Page 230

I trapped an error.
z =0
Still running after error

Sample Output 99: Simple Runtime Error Trap

onerror label

Create an error trap that will automatically jump to the
New subroutine at the specified label whenan error occurs.

Concept

Finding Out Which Error:

Sometimes just knowing that an error happened is not enough.
There are functions.that will return the error number (lasterror),
the line where the.errorhappened in the program (lasterrorline), a
text message describing the error (lasterrormessage), and extra
command. specific'error messages (lasterrorextra).

Program 100 modifies the previous program to print details of what
error-actually happened. More complex logic could be added to
your error trap, specifically to change the behavior with different
errors happen.

1 onerror errortrap

2

3 print "z =" 4+ z

4 print "Still running after error"
S} end

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 18 - Runtime Error Trapping Page 231

O J o

9
10
11
12

errortrap:

print "Error Trap -
print " Error ="
print " On Line =
print " Message =
return

Activated"

+ lasterror

" + lasterrorline

" + lasterrormessage

Program 100: Runtime Error Trap - With Messages

Z

Frror Trap - Activated
Error = 12
On Line =
Message = Unknown variable

3

Still running after error

Sample Output 100: Runtime Error Trap. - With Messages

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 18 - Runtime Error Trapping Page 232

lasterror or lasterror ()

lasterrorline or lasterrorline ()
lasterrormessage or lasterrormessage ()
lasterrorextra or lasterrorextra ()

New The four “last error” functions will return information
COI‘ICEpt about the last trapped error. These values will remain
unchanged until another error is encountered.

lasterror Returns the numberiof the last
trapped error. If no errors have
been trapped this function will
return a zero. 'See Appendix J: Error
Numbers fora complete list of
trappable errors.

lasterrorline Returns the line number, of the
program, where the last error was
trapped.

lasterrormessage |Returns a string describing the last
error.

lasterrorextra Returns a string with additional error

information. For most errors this
function will not return any
information.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 18 - Runtime Error Trapping Page 233

Turning Off Error Trapping:

Sometimes in a program we will want to trap errors during part of
the program and not trap other errors. You will see examples of
this type of error trapping logic in subsequent chapters.

The offerror statement turns error trapping off. This causes‘all
errors encountered to stop the program.

1 onerror errortrap

2 print "z = " + z

3 print "Still running after first etrror"
4

5 offerror

6 print "z = " + z

'/ print "Still running after second error"
3

9 end

10

11 errortrap:

12 print "Error . Trap - Activated"

13 return

Program 101: Turning Off the Trap

FError Traps - Activated

z =0

Still running after first error
FRROR on line 6: Unknown variable

Sample Output 101: Turning Off the Trap

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 18 - Runtime Error Trapping Page 234

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 19: Database Programming Page 235

Chapter 19: Database Programming

This chapter will show how BASIC-256 can connect to a simple
relational database and use it to store and retrieve useful
information.

What is a Database:

A database is simply an organized collection of numbers, string, and
other types of information. The most common.type of database is
the “Relational Database”. Relational Databases are made up of
four major parts: tables, rows, columns; and relationships (see Table

8).

Table A table consists of-a-predefined number or
columns any any number of rows with information
about a.specific object or subject. Also known as a
relation.

Row Also called a tuple.

Column This'can also be referred to as an attribute.

Relationship A reference of the key of one table as a column of
another table. This creates a connection between
tables.

Table 8: Major Components of a Relational Database

The SQL Language:

Most relational databases, today, use a language called SQL to
actually extract and manipulate data. SQL is actually an acronym
for Structured Query Language. The original SQL language was
developed by IBM in the 1970s and has become the primary

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 19: Database Programming Page 236
language used by relational databases.

SQL is a very powerful language and has been implemented by
dozens of software companies, over the years. Because of this
complexity there are many different dialects of SQL in use. BASIC-
256 uses the SQLite database engine. Please see the SQLite web-
page at http://www.sqlite.org for more information about the dialect
of SQL shown in these examples.

Creating and Adding Data to a Database:

The SQLite library does not require the installation of a database
sever or the setting up of a complex system. 'The database and all
of its parts are stored in a simple file on your computer. This file
can even be copied to another computer and used, without
problem.

The first program (Program 102: Create a Database) creates a new

sample database file and.tables.. The tables are represented by the
Entity Relationship Diagram (ERD) as shown in lllustration 34.

So You Want to Learn to Program? © 2010 James M. Reneau.

http://www.sqlite.org/

Chapter 19: Database Programming

owner

‘owner d hteger
°ownemam e ext
°phonenum ber text

pet
tpet o hteger
cowner d nteger
°pethame text
°type text

lllustration 34: Entity Relationship Diagram of
Chapter Database

Page 237

—

o O b W N

O# O

11
12
13
14

So You Want to Learn to Program?

delete old database and.create a database
with two tables

errors = 0

file$ = "pets.sglite3"

if exists(file$) then kill(file$)

dbopen file$

stmt$, = "CREATE TABLE owner (owner id
INTEGER, ownername TEXT, phonenumber TEXT,
PRIMARY KEY (owner id));"

gosub execute

stmt$ = "CREATE TABLE pet (pet id INTEGER,
owner id INTEGER, petname TEXT, type TEXT,
PRIMARY KEY (pet id), FOREIGN KEY (owner id)
REFERENCES owner (owner id));"

gosub execute

wrap everything up
dbclose

© 2010 James M. Reneau.

Chapter 19: Database Programming

15 print file$ + " created. " + errors + "
errors."

16 end

17

18 execute:

19 print stmt$

20 onerror executeerror

21 dbexecute stmt$

22 offerror

23 return

24

25 executeerror:

206 errors = errors + 1

27 print "ERROR: " + lasterror ++™ " +
lasterrormessage + " " + lasteprorextra

28 return

Page 238

Program 102: Create a Database

CREATE TABLE ownex, (owner id INTEGER,
TEXT, phonenumber TEXT,+PRIMARY KEY
CREATE TABLE pet "(pet id INTEGER,
petname TEXT, type TEXT, PRIMARY KEY
FOREIGN KEY (owner id) REFERENCES owner
(owner id));

pets.sqglitel3 created.

0 errors.

ownername
(owner id));
owner id INTEGER,
(pet_id),

SampleOutput 102: Create a Database

So far you have seen three new database statements: dbopen -
will open a database file and create it if it does not exist,
dbexecute - will execute an SQL statement on the open database,

and dbclose - closes the open database file.

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 19: Database Programming Page 239

©

New
Concept

dbopen filename

Open an SQLite database file. If the database does not
exist then create a new empty database file.

New
Concept

dbexecute sglstatement

Perform the SQL statement on_the currently open SQLite
database file. No value will be returned but a trappable
runtime error will occur if there were any problems
executing the statement on the database.

Q

New
Concept

dbclose

Close the currently open SQLite database file. This
statement insures that all data is written out to the
database file.

These same three statements can also be used to execute other
SQL statements. The INSERT INTO statement (Program 103) adds
new rows of data to the tables and the UPDATE statement (Program
104) will change an existing row's information.

1 # add rows to the database

2

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 19: Database Programming
3 file$ = "pets.sglite3"
4 dbopen file$
S
6 owner id = 0
7 pet id = 0
8
9 ownername$ = "Jim": phonenumber$ = "555-3434"
10 gosub addowner
11 petname$ = "Spot": type$ = "Cat"
12 gosub addpet
13 petname$ = "Fred": type$ = "Cat"
14 gosub addpet
15 petname$ = "Elvis": type$ = "Cat"
16 gosub addpet
17
18 ownername$ = "Sue": phonenumberS$S.= "555-8764"
19 gosub addowner
20 petname$ = "Alfred": typeS$w= "Cat"
21 gosub addpet
22 petname$ = "Fido“#utypeS = "Dog"
23 gosub addpet
24
25 ownernames$, = "Amy": phonenumber$ = "555-9932"
26 gosub addowner
27 petname$ =«"Bones": type$ = "Dog"
28 gosub addpet
29
30 ownername$ = "Dee": phonenumber$ = "555-4433"
L gosub addowner
32 petname$ = "Sam": type$ = "Goat"
33 gosub addpet
34
35 # wrap everything up
36 dbclose
37 end
38
39 addowner:

So You Want to Learn to Program? © 2010 James

Page 240

M. Reneau.

Chapter 19: Database Programming

40 owner id = owner id + 1

41 stmt$ = "INSERT INTO owner (owner id,
ownername, phonenumber) VALUES ("_+ owner id +
"," + chr(34) + ownername$ + chr(34) + "," +
chr (34) + phonenumber$ + chr(34) + ");"

42 print stmts$

43 onerror adderror

44 dbexecute stmt$

45 offerror

46 return

47

48 addpet:

49 pet id = pet id + 1

50 stmt$ = "INSERT INTO pet (petgsid, owner id,
petname, type) VALUES (" + pet_dd +="," +
owner id + "," + chr(34) + petname$ + chr(34)
+ "," + chr(34) + type$ +ichr(34) + ");"

51 print stmts$

52 onerror adderror

53 dbexecute stmt$

54 offerror

55 return

56

577 adderron:

58 print "ERROR: " + lasterror + " " +
lasterrormessage + " " + lasterrorextra

59 return

Page 241

Program 103: Insert Rows into Database

INSERT INTO owner
phonenumber) VALUES
INSERT INTO pet (pet id, owner id,
VALUES (1,1,"Spot","Cat");

INSERT INTO pet (pet id, owner id,
VALUES (2,1, "Fred","Cat");

INSERT INTO pet (pet id, owner id,

(owner id,

So You Want to Learn to Program?

ownername,
(1,"Jim","555-3434");

petname, type)

petname, type)

petname, type)

© 2010 James M. Reneau.

Chapter 19: Database Programming Page 242

VALUES (3,1,"Elvis","Cat");

INSERT INTO owner (owner id, ownername,
phonenumber) VALUES (2, "Sue","555-8764");

INSERT INTO pet (pet id, owner id, petname, type)
VALUES (4,2,"Alfred","Cat");

INSERT INTO pet (pet id, owner id, petname, type)
VALUES (5,2,"Fido"™, "Dog");

INSERT INTO owner (owner id, ownername,
phonenumber) VALUES (3, "Amy","555-9932");

INSERT INTO pet (pet id, owner id, petname, type)
VALUES (6,3, "Bones", "Dog") ;

INSERT INTO owner (owner 1id, ownername,
phonenumber) VALUES (4, "Dee","555-4433").;

INSERT INTO pet (pet id, owner id, petname, ‘type)
VALUES (7,4,"Sam", "Goat") ;

Sample Output 103: Insert Rows into Database

update a database row
dbopen "pets.sglite3d"

createsand populate

s$ = "UPDATE owner SET phonenumber = " +
chr (34) +""555-5555" + chr(34) + " where
owner id = 1;"

7 print.sss

dbexecute s$

9 dbclose

oY U b LW DN

[e9)

Program 104: Update Row in a Database

UPDATE owner SET phonenumber = "555-5555" where
owner id = 1;

Sample Output 104: Update Row in a Database

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 19: Database Programming Page 243

Retrieving Information from a Database:

So far we have seen how to open, close, and execute a SQL
statement that does not return any values. A database would be
pretty useless if we could not get information out of it.

The SELECT statement, in the SQL language, allows us.to retrieve
the desired data. After a SELECT is executed a “record set” is
created that contains the rows and columns of .data that was
extracted from the database. Program 105 shows three different
SELECT statements and how the data is.read’into your BASIC-256
program.

Get data from the pets database
dbopen "pets.sglited™

show owners:and their phone numbers

print "Owners. and Phone Numbers"

dbopenset s/"SELECT ownername, phonenumber FROM
owner ORDER BY ownername;"

7 while dbrow ()

8 print dbstring(0) + " " + dbstring(1l)

9 end while

10 dbcloseset

1T

12 print

13

14 # show owners and their pets

15 print "Owners with Pets"

16 dbopenset "SELECT owner.ownername, pet.pet id,
pet.petname, pet.type FROM owner JOIN pet ON
pet.owner id = owner.owner id ORDER BY

oY U b W N

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 19: Database Programming

ownername, petname;"
17 while dbrow ()
18 print dbstring(0) + " " + dbint (1)
dbstring(2) + " " + dbstring(3)
19 end while
20 dbcloseset
21
22 print
23
24 # show average number of pets
25 print "Average Number of Pets"

numpets;"
27 while dbrow ()
28 print dbfloat (0)

29 end while

30 dbcloseset

31

32 # wrap everything up
33 dbclose

+ "

"

26 dbopenset "SELECT AVG(c) FROM (SELECT. COUNT(*)
AS c FROM owner JOIN pet ON pet.owner id =
owner.owner id GROUP BY ownersowner 1id) AS

Page 244

+

Program 105: Selecting Sets.of Data from a Database

Owners 'and /Phone Numbers
Amy 555-9932
Dee 555-4433
Jim 555-5555
Sue 555-8764

Owners with Pets
Amy 6 Bones Dog

Dee 7 Sam Goat
Jim 3 Elvis Cat
Jim 2 Fred Cat

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 19: Database Programming Page 245

1.75

Jim 1 Spot Cat
Sue 4 Alfred Cat
Sue 5 Fido Dog

Average Number of Pets

Sample Output 105: Selecting Sets of Data from a Database

dbopenset sglstatement

Execute a SELECT statement on'the database and create
a “record set” to allow the program to'read in the result.

New The “record set” may contain 0 or more rows as extracted
by the SELECT.

Concept|”’
dbrow or dbrow ()
Functionsto'advance the result of the last dbopenset to
the next row. Returns false if we are at the end of the
selected-data.

New

Concept You need to advance to the first row, using dbrow, after a

dbopenset statement before you can read any data.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 19: Database Programming Page 246

dbint (column)
dbfloat (column)
dbstring (column)

New These functions will return data from the current row of
the record set. You must know the zero based numeric

Concept column number of the desired data.

dbint Return the cell data as'an integer.

dbfloat Return the cell data as a floating
point number.

dbstring Return the.cell data as a string.

dbcloseset

Close and.discard the results of the last dbopenset
New statement.

Concept

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 247

Chapter 20: Connecting with a Network

This chapter discusses how to use the BASIC-256 networking
statements. Networking in BASIC-256 will allow for a simple
“socket” connection using TCP (Transmission Control Protocol). This

chapter is not meant to be a full introduction to TCP/IP socket
programming.

Socket Connection:

TCP stream sockets create a connection between two computers or
programs. Packets of information may be sent and received in a bi-
directional (or two way) mannersover the connection.

To start a connection we need one computer or program to act as a
server (to wait for the incoming telephone call) and the other to be
a client (to make the telephone call). lllustration 35 shows
graphically how a stream connection is made.

1

2.
Server Client
-y

3.

1. Server listens for client to connect

2. Client connects to port

3. Bi-directional (2-way) communication
between client and server.

lllustration 35: Socket Communication

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 248

Just like with a telephone call, the person making the call (client)
needs to know the phone number of the person they are calling

(server). We call that number an IP address. BASIC-256 uses IP
version 4 addresses that are usually expressed as four numbers
separated by periods (999.999.999.999).

In addition to having the IP address for the server, the client and
server must also talk to each-other over a port. You can think of
the port as a telephone extension in a large company. Alperson is
assigned an extension (port) to answer (server) and.if you want to
talk to that person you (client) call that extension.

The port number may be between 0 and 65535 but various Internet

and other applications have been reserved-ports in the range of 0-
1023. It is recommended that you avoid'using these ports.

A Simple Server and Client:

1 # simple sexverwkbs

2 print "listening to port 9999 on " +
netaddressi()

3 NetListen=9999

4 NetWrite "The simple server sent this
message."

) NetClose

Program 106: Simple Network Server

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 249

[

simple client.kbs

input "What is the address of the
simple server?", addrs$

if addr$ = "" then addr$ = "127.0.0.1"
#

NetConnect addr$, 9999

print NetRead

NetClose

N

~ o O W

Program 107: Simple Network Client

ﬂistening to port 9999 on xX.xXX.XX.XX

Sample Output 106: Simple Network Server

[What is the address of the simple server?
The simple server sent this message.

Sample Output 107: Simple Network Client

netaddress
netaddress ()

Function that returns a string containing the numeric IPv4

New network address for this machine.

Concept

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 250

netlisten portnumber

netlisten (portnumbrer)

netlisten socketnumber, portnumber
netlisten (socketnumber, portnumber)

New Open up a network connection (server) on a specific port
COI‘ICEpt address and wait for another program to connect. If
socketnumber is not specified socket number zero (0) will

be used.

netclose

netclose ()

netclose socketnumber
netclose (socketnumber)

New Close the specified network connection (socket). If
Concept socketnumber is not specified socket number zero (0) will
be closed.

netwrite string

netwrite (string)
netwrite socketnumber, string
netwrite (socketnumber, string)

New Send a string to the specified open network connection. If
CDI'ICEIJt socketnumber is not specified socket number zero (0) will
be written to.

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 251

netconnect servername, portnumber

netconnect (servername, portnumber)

netconnect socketnumber, servername,
portnumber

New netconnect (socketnumber, servername,

ortnumber)
Concept poTEE

Open a network connection (client) to a server. The [P
address or host name of a server are specified in the
servername argument, and the specific network port
number. If socketnumber is not specified socket'number
zero (0) will be used for the connection.

netread
netread ()
netread (socketnumber)

New Read data from the specified network connection and

return it @s a string. This function is blocking (it will wait
CDI'ICEIJt until data'is received). If socketnumber is not specified
socket number zero (0) will be read from.

Network Chat:

This example adds one new function (netdata) to the networking
statements we have already introduced. Use of this new function
will allow our network clients to process other events, like
keystrokes, and then read network data only when there is data to
be read.

The network chat program (Program 108) combines the client and
server program into one. If you start the application and it is unable

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network

Page 252

to connect to a server the error is trapped and the program then
becomes a server. This is one of many possible methods to allow a

single program to fill both roles.

one become one
8 OnError startserver
9 NetConnect addr$, 9999
10 OffError
11 print "connected to server"
12
13 chatloop:
14 while true

So You Want to Learn to Program?

1 # chat.kbs

2 # uses port 9999 for server

3

4 input "Chat to address (return for server or
local host)?", addr$

5 if addr$ = "" then addr$ = "127.0.0.1"

6 #

7 # try to connect to server - if there ‘is not

15 # get key pressed and send it
16 k = key

17 if k >0 then

18 gosub’ show

19 netwrite string (k)

20 end if

21 # get key from network and show it
. ¥ if NetData () then

23 k = int (NetRead())

24 gosub show

25 end if

26 pause .01

27 end while

28 end

29

30 show:

© 2010 James M. Reneau.

Chapter 20: Connecting with a Network

31 if k=16777220 then

32 print
33 else
34 print chr(k);

35 end if

36 return

37

38 startserver:
39 OffError

client"
41 NetListen 9999
42 print "client connected"
43 goto chatloop
44 return

40 print "starting server - waiting for chat

Page 253

Program 108: Network Chat

The following is observed.when the user on the client types the
message “HI SERVER” and then the user on the server types “Hl

CLIENT".

starting server - waiting for chat client
client ‘econnected

HI SERVER

HT CLIENT

Chat to address (return for server or local host)?

Sample Output 108.1: Network Chat (Server)

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network

Page 254

Chat to address (return for server or local host)?
connected to server

HI SERVER

HI CLIENT

Sample Output 108.2: Network Chat (Client)

netdata or netdata ()

Returns true if there is network data waiting to be read.
This allows for the program to continue operations without

So You Want to Learn to Program?

New waiting for a network packet to arrive.
Concept
The big program this chapter creates a two player
networked tank'battle game. Each player is the white
tank on their screen and the other player is the black
Bi tank. Use thearrow keys to rotate and move. Shoot with
g the space bar.
Program
1 #battle.kbs
2 # uses port 9998 for server
3
4 kspace = 32
5 kleft = 16777234
6 kright = 16777236
7 kup = 16777235
8 kdown = 16777237
9 dr = pi / 16 # direction change

© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 255

10 dxy = 2.5 # move speed

11 scale = 20 # tank size

12 shotscale = 4 # shot size

13 shotdxy = 5 # shot move speed

14 port = 9998 # port to communicate on
15

16 dim tank (30)

17 tank = {-1,-.66, -.66,-.66, -.66,-.33, -.33,
-.33, 0,-1, .33,-.33, .66,-.33, .66,-.66,
1,-.66, 1,1, .66,1, .66,.66, -.66,.66, -.66,1,
_l/l}

18 dim shot (14)

19 shot = {0,-1, .5,-.5, .25,0, .5,.75, —«25,.75,
-.25,0, -.5,-.5}

20

21 print "Tank Battle - You are the white tank."

22 print "Your mission is¢.tol shoot and kill the"

23 print "black one. Use arrows. to move and"

24 print "space to shoot.™

25 print

26 input "Address (return for server or local
host)?", addr$

27 if addr$ = "" then addr$ = "127.0.0.1"
28
29 # try to connect to server - if there is not

ong" become one
30 OnError startserver
31 NetConnect addr$, port
&L OffError
33 print "connected to server"

34

35 playgame:

36

37 myx = 100

38 myy = 100

39 myr = 0

40 mypx = 0 # projectile position direction and

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network

41
42
43
44
45
46
477

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

remaining length

(no shot when mypl=0)

mypy = 0
mypr = O
mypl = O
yourx = 200
youry = 200
yourr = pi
yourpx = 0
and remaining length
yourpy = 0
yourpr = 0
yourpl = 0

gosub writeposition

fastgraphics
while true
get key pressed and move tank on the
screen
k = key
if k <> 0 then
if k =skup then
myx =smyxX + sin(myr) * dxy
myy = myy — cos(myr) * dxy
end 4f
if "ke= kdown then
myx = myx - sin(myr) * dxy
myy = myy + cos(myr) * dxy
end if
if k = kspace then
mypr = myr
mypx = myx + sin(mypr) * scale
mypy = myy — cos (mypr) * scale
mypl = 100
end if
if myx < scale then myx = graphwidth -

scale

if myx > graphwidth-scale then myx

So You Want to Learn to Program?

projectile position direction

Page 256

© 2010 James M. Reneau.

74

75

Chapter 20: Connecting with a Network
scale
if myy < scale then myy = graphheight -
scale
if myy > graphheight-scale then myy =
scale

76
777
78
79
80
81
82
83
84

85

86

87

88

89
90

91
92
&0
94
95
96
97
98
99
100
101

So You Want to Learn to Program?

if k = kleft then myr = myr - dr
if k kright then myr = myr + dr
gosub writeposition
end if
move my projectile (if there is one)
if mypl > 0 then
mypx = mypx + sin(mypr) * shotdxy
mypy = mypy - cos (mypr) * shotdxy
if mypx < shotscale then mypx =
graphwidth - shotscale
if mypx > graphwidth-shotscale then mypx
= shotscale
if mypy < shotscale.then mypy =
graphheight - shotscale
if mypy > graphheight-shotscale then
mypy = shotscale
if (mypx=youwrx) "2 + (mypy-youry)"2 <
scale”2 then
NetWrite "!"
print "You killed your opponent. Game

overy"
end

end if

mypl = mypl - 1

gosub writeposition
end if
get position from network
gosub getposition

#

gosub draw
#

pause .1

Page 257

© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 258

102 end while

103

104 writeposition: ###

105 # 10 char for x, 10 char for y, 10 char for r
(rotation)

106 position$ = left(myx + "
",10)+left (myy + " ",10) +left (myr + "
",10)+left (mypx + " ",10)+left (mypy +
" ",10)+left (mypr + "
",10)+left (mypl + " ", 10)

107 NetWrite position$

108 return

109

110 getposition: ###

111 # get position from network ‘andssetwwvariables
for the opponent

112 while NetData ()

113 position$ = NetRead ()

114 if position$ = "!M then

115 print "You Died. -~ Game Over"

116 end

117 end if

118 yourx = 300 - float (mid(position$,1,10))
119 youry =.300"- float (mid(position$,11,10))
120 yourr = pi + float (mid(position$,21,10))
121 vourpx = 300 - float (mid(position$,31,10))
122 yourpy = 300 - float (mid(position$,41,10))
123 yourpr = pi + float (mid(position$,51,10))
124 yourpl = pi + float (mid(position$,61,10))

125 end while
126 return

127
128 draw: ###
129 clg

130 color green
131 rect 0,0,graphwidth,graphheight
132 color white

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network

133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148

149
150
151
152

stamp myx, myy, scale, myr, tank
if mypl > 0 then
stamp mypx, mypy, shotscale, mypr, shot
end if
color black
stamp yourx, youry, scale, yourr, tank
if yourpl > 0 then
color red
stamp yourpx, yourpy, shotscale, yourpr,
shot
end if
refresh
return

Startserver:

OffError

print "starting server'.- waiting for chat
client"”

NetListen port

print "client connected"

goto playgame

return

Page 259

Program 109: Network Tank Battle

So You Want to Learn to Program?

© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 260

Sample Output Network Tank
Battle

So You Want to Learn to Program? © 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 261

Appendix A: Loading BASIC-256 on
your PC or USB Pen Drive

This chapter will walk you step by step through downloading and
installing BASIC-256 on your Microsoft Windows PC. The
instructions are written for Windows XP with Firefox 3.x as your Web
browser. Your specific configuration and installation may.be
different but the general steps should be similar.

1 - Download:

Connect to the Internet and navigate to the'Web site
http://www.basic256.org and follow the download link. Once you
are at the Sourceforge project.page click on the green “Download
Now!”button (lllustration 36) to start the download process.

So You Want to Learn to Program? © 2010 James M. Reneau.

http://www.basic256.org/

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 262

) BASIC-256 | Get BASIC-256 at SourceForge. net - Mozilla Firefox
Ele Edt View History Bookmarks Tools Help

@- (e tar | B httpiffsourceforge.netjprojects/kidbasici By -|[28-

[B] Most Visited | 7| Customize Links | | Free Hotmail | | Windows Marketplace &7 Windaws Media | | Windows

m BASIC-256 | Get BASIC-256 at Sourc...| -+ -
~
sourczm FIND AND DEWELOP OPEH SOURCE SOFTWARE E

Find Software | Develogp Create Project Blog | Site Support | About

I=ourceForge net = Find Software » BAZIC-256

Gd BASIC-256 by drblast, renejm

Surmrmary | Files | Support | Develop

BASIC-256 is an easy to use version of BASIC designed to teach children how to
pragram. A built-in graphics mode lets them draw pictures on screen in minutes, and

a set of easy-to-follow tutorials introduce prograrmming concepts through fun
exercises.

“iew screenshots Wiew all files ¥

hitpcifkidhasic.sourceforge.net

EDIT
<

Dane

Illustration 36: BASIC-256 on Sourceforge

The download process may.ask you what you want to do with the
file. Click the “Save File” button (lllustration 37).

Opening BASIC256_EE™ =a_Win32_Install.exe

‘ol have chosen to open

[] BASICZ56_8ai"s_Win32_Install.exe
which is a: Application
Fram: http: ficdnetworks-us-1.dl sourceforge net

tould wou like to save this File?

l Save File] [cancel |

lllustration 37: Saving Install File

Firefox should display the “Downloads” window and actually

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 263

download the BASIC-256 installer. When it is finished it should look
like Illustration 38. Do not close this window quite yet, you will

need it to start the Installation.

Downloads

Clear List

7

lllustration 38:.File Downloaded

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 264

2 - Installing:

Once the file has finished downloading (lllustration 38) use your
mouse and click on the file from the download list. You will then
see one or two dialogs asking if you really want to execute this file

(Ilustration 39) (lllustration 40). You need to click the “OK” or
“Run” buttons on these dialogs.

Open Executable File? E|

6 "BASIC2SE M Win3z_Install{Z).exe" is an executable file, Executable files may conkain viruses

or okther malicious code that could harm wour computer, Use caution when opening this File, Are wou
sure vwou wank ko launch "BASICESE M Win3Z2_Install(2).exe"?

[] Don't ask me this again

Eook [Cancel

Illustration 39: Open File Warning

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 265

Open File - Security Warning

The publizher could not be verified. Are you sure you want to
run thig software?

Mame: BASIC2S6 M Win3Z_Instal(z),exe
Fublizher: Unknown Publizher
Type: Application

From: Ci\Documents and SettingsijreneauiMy Document, ..

Bun I| Cancel |

Always azk before opening thiz file

Thiz file does nat have a valid digital zignature that venfies its
publizher. You should only run software from publizhers pou st
How can | decide what software to run?

Illustration 40: Open File'Security Warning

After the security warnings are cleared you will see the actual
BASIC-256 Installer application. Click the “Next>" button on the
first screen (lllustration 41).

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 266

#5 BASIC256 Mt (2Mamemiett) Setup: BASIC256 ... [= |[C1/[X]

BASICZSE M o 2l =t

This installer will load BASIC256. Pervious versions will be overwritten and any
saved files will be preserved.

Cancel

lllustration 41: Installer - Welcome.Screen

Read and agree to the GNU GPL software license and click on “I
Agree” (lllustration 42). The GNU GPL license is one of the most
commonly used “Open Source” and”Free” license to software. You
have the right to use, give away, and modify the programs released
under the GPL. Thislicense only relates to the BASIC-256 software
and not the contents of this book.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 267

5 BASIC256 00 (2D) Setup: License Ag... [2 |[T1/[X]

| Please review the license agreement before installing BASIC2SE N5
(20—, If vou accept all kerms of the agreement, click I Agree.

GMU GEMERAL PLBLLC LICEMSE s
Version 2, June 1991

Copyright £ 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
af this license document, but changing it is not allowed.

Prearmnble
The licenses For mosk software are designed to take away vour

freedom ko share and change ik, By contrask, the GNU General Public
lirense is inkended b anarankee wone Feredom bashare and channe Fres b’

Cancel < Back | I Agree |

lllustration 42: Installer - GPL License Screen

The next Installer screen asks you what you want to install
(Hllustration 43). If you are“installing BASIC-256 to a USB or other
type of removable drive then it is suggested that you un-check the
“Start Menu Shortcuts™ For most users who are installing to a hard
drive, should do.a.complete install. Click “Next>".

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 268

i BASIC256 0= (20dmss) Setup: Installation... [= |51

Check the components vou want to install and uncheck the components
wou don't want ko install. Click Mext ko continue.

Select components ko install: o) I
Start Menu Shorbouts

Space required; 1EMB

Cancel < Back ‘ Mext = |

Illustration 43: Installer - What to Install

lllustration 44 shows the last sc€reen before the install begins. This
screen asks you what folder to install the BASIC-256 executable
files into. If you are installing to your hard drive then you should

accept the defaultpath.

i BASIC256 @uuwsy (20messcy) Setup: Installation... [= |[C1|[X]

__ Setup will install EASTCZSE m i (2iemssses) in the Following folder. To
":—‘ install in a different Falder, click Browse and select another Falder. Click
=" Install to start the installation.

Destination Folder

Browse., ..

Space required: LWEME
Space available: WAGE

Cancel = Back | Install |

lllustration 44: Installer - Where to Install

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 269

The installation is complete when you see this screen (lllustration
45). Click “Close”.

5 BASIC256 @ % (2@0mssietd) Setup: Completed [= (71|36

___ Cumpleted_
o HNEREREREREENRRENENRNERRRNREREEN]

Show details

—l ilsaft ystern v2 sack [0

Illustration 45: Installer - Complete

3 - Starting BASIC-256

The installation'is complete. You may now click on the Windows
“Start” button and then “All Programs >" (lllustration 46).

&ll Programs D

lllustration 46: XP Start
Button

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 270

You will then see a menu for BASIC-256. You may open the
program by clicking on it, uninstall it, or view the documentation
from this menu (lllustration 47).

B Basicese

Ei‘ ninstall

/& Documentation_EM

Illustration 47: BASIC-256 Menu from All Programs

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 271

Appendix B: Language Reference -
Statements

Chapter number where this statement is introduced is shown in
parentheses.

circle - Draw a Circle on the Graphics Output
Area (2)

circle x, y, radius

The circle command draws a filled circle on the graphics output
area. The center of the circle isidefined by the x and y parameters
and the size is defined as radius.

Example:

clg

color 255,128,128
circle 150,150,150
color red

ciprele 150,150,100

changedir - Change Your Current Working
Directory (16)

changedir path
The changedir command allows you to change the current working
directory for you application. When you specify a file without a full

path (in imgload, open, spriteload, or other statement that
requests a file name) the application uses this directory. You can

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 272

check your currently set path using the currentdir function.

clg - Clear Graphics Output Area (2)
clg

This command clears the graphics output area. The graphics output
area is not cleared automatically when an program is.run:” This will
sometimes leave undesired graphics visible. If you are.using
graphics it is advised that you always clear the output window, first.

clickclear - Clear the Last Mouse Click (10)

clickclear

When the mouse is being read in.click mode the x position, y
position, and button click information are stored when the mouse
button is clicked. These values can be retrieved with the clickx(),
clicky(), and clickb() functions. The stored values can be reset to
zero (0) using clickclear.

close - Close the Currently Open File (16)

close

close ()

close filenumber
close (filenumber)

Closes open file. This will flush any pending disk output. If file

number parameter is not specified then file number zero (0) will be
used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 273

cls - Clear Text Output Window (1)
cls

This command clears the Text Output window. The Text Output
window is automatically cleared when a program is run.

color or colour- Set Color for Drawing (2)

color colorname
color rgbvalue
color red, green, blue

Sets the foreground color for all graphical. commands. The color
may be specified by the color name (see Appendix E), an integer
representing the RGB value, or by three numbers representing the
RGB value as separate component colors.

A special color named. CLEAR or represented by -1 tells the drawing
commands to erase the.pixels from the drawing and make them
transparent.

Example:

clg

color black

rect 100,100,100,100
color 255,128,128
circle 150,150,75

dbclose (19)
dbclose

Close the currently open SQLite database file.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 274

dbcloseset (19)

dbcloseset

Close the currently open record set opened by DBOpenSet.

dbexecute (19)

dbexecute statement
dbexecute (statement)

Execute an SQL statement on the open SQLite database file. This
statement does not create a record set but will return an error if the
statement did not execute.

dbopen (19)

dbopen filename
dbopen (filename)

Open an SQLite database file. If the file does not exist then create
it.
dbopenset (19)

dbopenset statement
dbopenset (statement)

Perform an SQL statement and create a record set so that the
program may loop through and use the results.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 275

decimal ()

decimal n
decimal (n)

Description...

dim - Dimension a New Array (13)

dim variable(items)
dim variableS (items)
dim variable (rows, columns)
dim variableS(rows, columns)

The dim statement creates an array in the computer's memory the
size that was specified in.the parenthesis. Sizes (items, rows, and
columns) must be integer values greater than or equal to one (1).
The dim statement will'initialize the elements in the new array with
either zero (0) if-numeric or the empty string (“”), depending on the
type of variable.

do / until -.Do / Until Loop (7)

do
statement (s)
until condition

Repeat the statements in the block over and over again. Stop
repeating when the condition is true. The statements will be
executed one or more times.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 276

end - Stop Running the Program (9)
end

Terminates the program (stop).

fastgraphics - Turn Fast Graphics Mode.On (8)
fastgraphics

The fastgraphics statement will switch BASIC-256 into fast
graphics mode. In this mode the graphics output area is only
refreshed (drawn), when the program requests. This speeds up
graphically intense programs. The refresh statement signals that
draw process. Once fast graphicsimode is entered in a program you
may not return to the default.slow graphics.

font - Set Font, Size, and Weight (8)

font fontname, point, weight

The font command sets the font that will be used by the next text
command. You must specify the name of the font or font family,
the point size, and the weight.

Each computer may have several different fonts available but
"Helvetica", "Times", "Courier", "System", “"Symbol" should be
available on most computers. The point size represents how tall the
letters will be drawn. Weight is used to specify how dark the letters
will be drawn (25-light, 50-normal, 63-demi bold, 75-bold, 100-
black).

Example:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 277

clg
color black
n = 5
dim fonts$ (n)
fonts$ = {"Helvetica", "Times", "Courier",
"System", "Symbol"}
for t = 0 to n-1
font fonts$[t], 32, 50
text 10, t*50, fonts$[t]
next t

for/next - Loop and Count (7)

for variable = exprl to expr?2 [step expr3]
statement (s)
next variable

Execute a block of code a specified number of times. The variable
will begin with the value of exprl and be incremented and the
looping will continue until the variable is greater than expr2. If
the step clauseis.included in the statement the increment will
be expr3 and not the default value of one (1).

goto - Jump'to a Label (9)

goto label

The goto statement causes the execution to jump to the statement
directly following the label.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 278

gosub/return - Jump to a Subroutine and Return

(9)

gosub label
return

The gosub statement causes the execution to jump to the
subroutine defined by the label. Execute the return statement

within a subroutine to send control back to where it was called
from.

graphsize - Set Graphic Display'Size (8)

graphsize width, height

Set the graphics output area to.the specified height and width.

if then - Test if Something is True - Single Line(6)
if condition then statement

If the condition evaluates to true then execute the statement
following the then clause.

if then / end if - Test if Something is True -
Multiple Line (6)

if condition then
statement (s) to execute when true
end if

The if and end if statements allow you to create a block of

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 279

programming code to execute when a condition is true. It is often
customary to indent the statements within the if/end if statements
so they are not confusing to read.

if then / else / end if - Test if Something is True -
Multiple Line with Else (6)

if condition then

statement (s) to execute when true
else

statement (s) to execute when false
end if

The if, else, and end if statements allow you to define two blocks
of programming code. The first'block, after the then clause,
executes if the condition is true andthe second block, after the
else clause, will execute when the condition is false.

imgload - Load animage from a file and display
(12)

imgload x, y, filename
imgload x, y, scale, filename
imgload x, y, scale, rotation, filename

Read in the picture found in the file and display it on the graphics
output area. The values of x and y represent the location to place
the CENTER of the image.

Images may be loaded from many different file formats, including:
BMP, PNG, GIF, JPG, and JPEG.

Optionally scale (re-size) it by the decimal scale where 1 is full size.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 280

Also you may also rotate the image clockwise around it's center by
specifying how far to rotate as an angle expressed in radians (0 to
21).

imgsave - Save the Graphics Output Area

imgsave filename

imgsave filename, type
imgsave (filename)
imgsave (filename, type)

This statement saves the graphics outputiarea to an image file. By
default the image is saved in the Portable Network Graphics (PNG)

file format. The second type argument, a string, may be specified

with one of the following types: “BMP”, “JPG”, “JPEG”, or “PNG”".

input - Get a String Value from the User (7)

input “prompt”, stringvariable$
input “prompt”, numericvariable
input stringvariables
input numericvariable

Thedinput.statement will retrieve a string or a number that the user
types into the text output area of the screen. The result will be
stored in a variable that may be used later in the program.

A prompt message, if specified, will display on the text output area
and the cursor will directly follow the prompt.

If a numeric result is desired (numeric variable specified in the

statement) and the user types a string that can not be converted to
a number the input statement will set the variable to zero (0).

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 281

kill - Delete a File ()

kill filename
kill (filename)

Delete a file from the file system

line - Draw a Line on the Graphics Output Area
(2)

line start x, start y, finish x, finish y

Draw a line one pixel wide from the starting point to the ending
point, using the current color.

netclose (20)

netclose

netclose ()
netclose socket
netclose (socket)

Close.the specified network connection (socket). If socket number is
not number zero (0) will be used.

netconnect (20)

netconnect server, port

netconnect (server, port)
netconnect socket, server, port
netconnect (socket, server, port)

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 282

Open a network connection (client) to a server. The IP address or
host name of a server are specified in the server name argument,
and the specific network port number in the port humber argument.
If socket number is not specified zero (0) will be used.

netlisten (20)

netlisten port

netlisten (port)
netlisten socket, port
netlisten (socket, port)

Open up a network connection (server) on a specific port address
and wait for another program to.connect. If'socket number is not
specified zero (0) will be used.

netwrite (20)

netwrite string

netwrite (string)
netwrite socket, string
netwrite (socket, string)

Send a string to the specified open network connection. If socket
number is not specified zero (0) will be used.

offerror (18)

offerror

Turns off error trapping and restores the default error behavior.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 283

onerror (18)
onerror label

Causes the subroutine at label to be executed when an runtime
error occurs. Program control may be resumed at the next
statement with a return statement in the subroutine.

open - Open a file for Reading and Writing (16)

open filename
open filenumber, filename

Open the file specified for reading and.writing. If the file does not
exist it will be created so that infermation may be added (see write
and writeline). Be sure to-execute the close statement when the
program is finished with the file.

BASIC-256 may have up to eight (8) files opened at any one time.
The files will be numbered from zero(0) to seven(7). If a file number
is not specified then file number zero (0) will be used.

pause -.Pause the Program (7)

pause seconds

The pause statement tells BASIC-256 to stop executing the current
program for a specified number of seconds. The number of seconds
may be a decimal number if a fractional second pause is required.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 284

plot - Put a Point on the Graphics Output Area
(2)

plot x, y

Changes a single pixel to the current color.

poly - Draw a Polygon on the Graphics Output
Area (8)

poly {(xI1, yl1, x2, y2 ...}
poly numeric array

Draw a polygon. The array or list should contain an even number of
elements so that the each vertex of the polygon is represented by

first two values.
portout - Output Data.to a System Port

portout ioport, outbyte
portout (ioport, outbyte)

Writes.value(0-255) to system I/O port.

Reading and writing system 1/O ports can be dangerous and can
cause unpredictable results. This statement may be disabled
because of potential system security issues.

Functionality only available in Windows.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 285

print - Display a String on the Text Output
Window (1)

print expression
print expression;

The print statement is used to display text and numbers on the
text output area of the BASIC-256 window. Print normally goes
down to the next line but you may output several things on the
same line by using a ; (semicolon) at the end of the expression.

putslice - Display a Captured Part of the
Graphics Output

putslice x, y, slice
putslice x, y, slice, rgbcolor

This statement will draw the.captured slice (see the getslice
function) back onte'the graphics output area. If an RGB color is
specified then the slice will be drawn with pixels of that color
being omitted (transparent).

rect - Draw a Rectangle on the Graphics Output
Area (2)

rect x, y, width, height

The rect command draws a filled rectangle on the graphics output
area. The top left corner will be placed at the point (x, y).

Example:

klg

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 286

color darkblue

rect 75,75,100,100
color blue

rect 100,100,100,100

redim - Re-Dimension an Array (12)

redim variable (items)
redim variableS (items)
redim variable(rows, columns)
redim variableS(rows, columns)

The redim statement re-sizes an array.in the computer's memory.
Data previously stored in the array will be kept, if it fits.

When resizing two-dimensional arrays the values are copied in a

linear manner. Data may be shifted.in an unwanted manner if you
are changing the number of columns.

refresh - Update Graphics Output Area (8)

refresh

In fast.graphics mode (see fastgraphics) the graphics output area
is.only refreshed, drawn, when the program requests. This speeds
up graphically intense programs. The refresh statement signals
that draw process.

rem - Remark or Comment (2)

rem comment text
comment text

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 287

Insert remark, also called a comment, into a program. Any text, on
a line, following the rem or # will be ignored by BASIC-256.
Remarks are used by programmers to place information about what
the program does, who wrote or changed it, and how it works.

reset - Clear an Open File (16)

say

reset
reset ()
reset filenumber

Clear any data from an open file and move the file pointer to the

beginning.
If file number is not specified then file number.zero (0) will be used.

- Use Text-To-Speech to Speak (1)

say expression

The say statement is.usedto make BASIC-256 read an expression
aloud,
to the computer's.speakers.

seek - Move the File 1/0 Pointer (16)

seek expression

seek (expression)

seek filenumber, expression
seek (filenumber, expression)

Move the file pointer for the next read or write operation to a
specific location in the file. To move the current pointer to the
beginning of the file use the value zero (0). To seek to the end of a
file use the size() function as the argument to the seek statement.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 288

If file number parameter is not specified then file number zero (0)
will be used.

setsetting - Save a Value to a Persistent Store

setsetting program name, key name, setting value
setsetting (program name, key name,
setting value)

Save a setting_value to the system registry (or other persistent
storage). The program_name and key name are used to categorize
and to make sure that settings accessed when.needed and not
accidentally changed by another program.

The saved value will be available'to other BASIC-256 programs and
should remain available for an-extended period.

spritedim - Initialize Sprites for Drawing (12)
spritedim numberofsprites

The spritedim statement initializes, or allocates in memory, places
to store the specified number of sprites. Each sprite will need to be
loaded (spriteload) or created (spriteslice) before it may be
displayed. You may allocate as many sprites as your program may
require but your program may be slow if you create many sprites.

Sprites are drawn on the graphics output area in order by their
assigned sprite number. A sprite will be drawn under any sprite
with a higher number and over all sprites with a lower number.
Sprites are numbered from zero (0) to one less than the number
specified in this command (numberofsprites -1).

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 289

spritehide - Hide a Sprite (12)
spritehide spritenumber

This statement will cause the specified sprite to not be drawn on
the screen. It will still exist and may be shown using the
spriteshow statement.

spriteload - Load an Image File Into a Sprite (12)
spriteload spritenumber, filename

This statement reads an image file (GIF, BMP;PNG, JPG, or JPEG)
from the specified path and createsia sprite. The sprite muse be
allocated using the spritedim statement before you may load it.

By default the sprite will be placed with its center at 0,0 and it will
be hidden. You should move the sprite to the desired position on
the screen (spritemove or spriteplace) and then show it
(spriteshow).

spritemove - Move a Sprite from Its Current
Location (12)

spritemove spritenumber, dx, dy

Move the specified sprite x pixels to the right and y pixels down.
Negative numbers can also be specified to move the sprite left and
up. A sprite's center will not move beyond the edge of the current
graphics output window.

You may use the spritex and spritey functions to determine the
current location of the sprite.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 290

You can move a hidden sprite but it will not be displayed until you
show the sprite using the showsprite statement.

spriteplace - Place a Sprite at a Specific Location
(12)

spriteplace spritenumber, X, y

The spriteplace statement allows you to place_ a sprite's center at a
specific location on the graphics output area.

spriteshow - Show a Sprite (12)
spriteshow spritenumber

The spriteshow statement.causes a loaded, created, or hidden
sprite to be displayed:on the graphics output area.

spriteslice - Capture a Sprite (12)
spriteslice spritenumber, x, y, width, height

This statement will allow you to create a sprite by copying it from
the graphics output area. The arguments x, y, width, and height
specify a rectangular area to capture and use for the sprite. Pixels
that have not been drawn since the last cls statement or that were
drawn using the color clear will be transparent when drawn.

By default the sprite will be placed with its center at 0,0 and it will
be hidden. You should move the sprite to the desired position on
the screen (spritemove or spriteplace) and then show it
(spriteshow).

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 291

sound - Play a beep on the PC Speaker (3)

sound frequency, duration

sound {frequencyl, durationl, frequencyZ,
duration?2 ...}

sound numeric array

The first form of the sound statement takes two arguments; (1) the
frequency of the sound in Hz (cycles per second) and.(2) the length
of the tone in milliseconds (ms). The second uses curly‘braces and
can specify several tones and durations in a list. The third form uses
an array containing frequencies and durations.

stamp - Put a Polygon Where.You Want It (8)

stamp x, vy, {x1, yI1, x2, y2 ...}

stamp x, y, numeric array

stamp x, y, scale, {x1, yl, x2, y2 ...}

stamp x, y, scale, numeric array

stamp x, y, scale, rotate, {x1, yl, x2, y2 ...}

stamp x, y, scale, rotate, numeric array
Draw a polygon with it's origin (0,0) at the screen position (x,y).
Optionally scale (re-size) it by the decimal scale where 1 is full size.
Also you may also rotate the stamp clockwise around it's origin by
specifying how far to rotate as an angle expressed in radians (0 to
21).

system - Execute System Command in a Shell

system expression

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 292

Open a command window and execute the operating system
command.

text - Draw text on the Graphics Output Area (8)

text x, y, output

The text command will draw characters on the graphies output
area. The x and y arguments represent the top left corner and will
draw the text with the current color and font.

Example:

clg

font “Helvetica”, 32, 50
color red

text 100, 100, “Hi Mom.”

volume - Adjust Amplitude of Sound Statement

volume expression
Adjust the‘height of the waveform generated by the sound

statement.

wavplay - Play a WAV audio file in the
background (12)

wavplay filename

Load .wav (wave) audio file data from the file name and play. The
playback will be synchronous and the next statement in the

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 293
program will begin immediately as soon as the audio begins
playing.

wavstop - Stop playing WAV audio file (12)
wavstop

If there is a currently playing audio file (see wavplay) then stop the
synchronous playback.

wavwait - Wait for the WAV to finish (12)

wavwait
If there is a currently playing audio file (see wavplay) then wait for
it to finish playing.

while / end while - While Loop (7)

while condition
statement (s)
end while

Do the statements in the block over and over again while the
condition is true. The statements will be executed zero or more
times.

write - Write Data to the Currently Open File (16)

write expression
write (expression)

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 294

write filenumber, expression
write (filenumber, expression)

Write the string expression to an open file. Do not add an end of
line or a delimiter.

If file number parameter is not specified then file number zero (0)
will be used.

writeline - Write a Line to the Currently Open
File (16)

writeline expression

writeline (expression)

writeline filenumber, expression
writeline (filenumber, expression)

Output the contents of the expression to an open file and then
append an end of line:mark to the data. The file pointer will be

positioned at the endof the write so that the next write statement
will directly follows

If file number parameter is not specified then file number zero (0)
will be used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 295

Appendix C: Language Reference -
Functions

Functions perform calculations, get system values, and return them to the

program.

Each function will return a value of a specific type (integer, Boolean,

floating point, or string) and potentially a specific range of values.

Chapter number where this function is introduced is shown in
parentheses.

abs - Absolute Value (14)

abs (expression)

Argument(s): Name: Type:
expression [floating point

Return Value floating point

Type:

Return Value 0.0 to ...

Range:

This function returns the absolute value of the expression or
numeric value passed to it.

Example:

a = -3
print string(a) + % ™ + string(abs(a))

will display the following on the text output area

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 296

-3 3

acos - Return the Arc-cosine (14)

acos (expression)

Argument(s): Name: Type:
expression [floating point

Return Value floating point

Type:

Return Value Otom

Range:

The inverse cosine function acos(). will return an angle
measurement in radians for the specified cosine value.

asc - Return the Unicode Value for a Character
(11)

asc (expression)

Argument(s): Name: Type:
expression [string

Return Value integer

Type:

Return Value 0 to 65535

Range:

The asc() function will extract the first character of the string
expression and return the character's Unicode value.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions

Example:

Page 297

English
print asc ("A")
Russian
print asc ("H")

will display:

65
1067

asin - Return the Arc-sine (14)

asin (expression)

Argument(s):

Name:

Type:

expression |[floating point

Return Value
Type:

floating point

Return Value
Range:

-Lontolem

The inverse sine function asin() will return an angle measurement

in‘radians for the specified sine value.

atan - Return the Arc-tangent (14)

atan (expression)

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 298

Argument(s): Name: Type:
expression [floating point

Return Value floating point

Type:

Return Value -YntoYem

Range:

The inverse tangent function atan() will return an angle
measurement in radians for the specified tangent value.

ceil - Round Up (14)

ceil (expression)

Argument(s): Name: Type:
expression [floating point

Return Value integer

Type:

Return Value

Range:

This function returns an equal or next highest integer value. This
method 'will round up if necessary.

Example:

a = ceil (=-3.14)
b = ceil (7)
print a

porint b

print ceil (9.2)

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 299

will display the following on the text output area

-3
.
10

chr - Return a Character (11)

chr (expression)

Argument(s): Name: Type:
expression |integer

Return Value string

Type:

The chr() function will return a single character string that contains

the letter or character that corresponds to the Unicode value in the
expression.

Example:

print chr (34)

+ "In quotes." + chr(34)

will display:

["In quotes."

clickb- Return the Mouse Last Click Button Status
(10)

clickb

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 300

clickb ()

Return Value integer
Type:

Return Value Oto7
Range:

Returns the state of the last mouse button or combination-of
buttons that was pressed. If multiple buttons were being pressed at
a single time then the returned value will be sum of the button
values that were pressed.

Button Description
Value

0 Returns this value.when no mouse button has
been pressed, sinceithe last clickclear
statement.

1 Returns thisvalue when the “left” mouse
button-was pressed.

2 Returns this value when the “right” mouse
button was pressed.

4 Returns this value when the “center” mouse
button was pressed.

clickx- Return the Mouse Last Click X Position
(10)

clickx
clickx ()

Return Value integer
Type:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions

Page 301

Return Value
Range:

0 to graphwidth() - 1

Returns the x coordinate of the mouse pointer position on the
graphics output window when the mouse button was last clicked.

clicky- Return the Mouse Last Click Y Position

(10)

clicky
clicky ()

Return Value
Type:

integer

Return Value
Range:

0 to graphheight() - 1

Returns the y coordinate of the mouse pointer position on the
graphics output windew:when the mouse button was last clicked.

cos - Cosine (14)

Cos (expression)

Argument(s): Name: Type:
expression |[floating point

Return Value floating point

Type:

Return Value -1.0to 1.0

Range:

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 302

This function returns the cosine of the expression. The angle should
be represented in radians. The result is approximate and may not
exactly match expected results.

Example:

a = cos (pi/3)
print a

will display the following

0.5

currentdir - Current Working Directory (16)

currentdir
currentdir ()

Return Value string
Type:

This function returns a string containing the full path of the
application's working directory.

day -'Return the Current System Clock - Day (9)

day

day ()

Return Value integer
Type:

Return Value 1to 31

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 303

Range:

This function returns the current day of the month from the current
system clock. It returns the day number from 1 to 28, 29, 30, or 31.

Example:

print day

On 8/23/2010 it will display the following

23

dbfloat - Get a Floating Point Value From a
Database Set (19)

dbfloat (column)

Name: Type:

column integer
floating point

Argument(s):

Return Value
Type:

Return afloating point (decimal value) from the specified column of
the current row of the open recordset.

dbint - Get an Integer Value From a Database Set
(19)

dbint (column)

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 304

Argument(s): Name: Type:
column integer

Return Value integer

Type:

Return an integer (whole number) from the specified column of‘the
current row of the open recordset.

dbrow - Advance Database Set to Next Row (19)

dbrow
dbrow ()

boolean

Return Value
Type:

Function that advances the record set to the next row. Returns a
true value if there is'a row or false if we are at the end of the record

set.

dbstring - Get a'String Value From a Database
Set (19)

dbstring (column)

Argument(s): Name: Type:
column integer

Return Value string

Type:

Return a string from the specified column of the current row of the

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 305

open recordset.

degrees - Convert a Radian Value to a Degree
Value (14)

degrees (expression)

Argument(s): Name: Type:
expression [floating point

Return Value floating point

Type:

The degrees() function does the quick mathematical calculation to

convert an angle in radians to an.angle in degrees. The formula
used is degrees =radians/ 21w X360_ .

eof - Allow Program to Check for End Of File
Condition (16)

eof
eof ()
eof (filenumber)

Return Value Boolean
Type:

Return Value true or false
Range:

Returns a Boolean true if the open file pointer is at the end of the

file. If file number parameter is not specified then file number zero
(0) will be used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 306

eXists - Check to See if a File Exists (16)

exists (filename)

exists filename

Argument(s): Name: Type:
filename string

Return Value Boolean

Type:

Return Value true or false

Range:

Returns a Boolean value of true if the file exists and false if it does

not exist.

Example:

fileerror

if not exists (™myfile.dat”) then goto

float - Convert a String Value to A Float Value

(14)

float (expression)

Argument(s):

Name:

Type:

expression

string or integer

Return Value
Type:

floating point

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions

Page 307

Returns a floating point number from either a string or an integer
value. If the expression can not be converted to a floating point

number the function returns a zero (0).

Example:

asS = “1.234"
b = float (a$)
print a$
print b

will display:

1.234
1.234

floor - Round Down (14)

floor (expression)

Argument(s): Name:

Type:

expression |[floating point

Return Value
Type:

integer

This function returns an equal or next lowest integer value. This

method will round down if necessary.

Example:

a = floor(-3.14)
b = floor (7)
print a

print b

print floor(9.2)

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions

will display:

Page 308

-4
o
9

getcolor - Return the Current Drawing Color

getcolor
getcolor ()

Return Value integer

Type:

Return Value 0to 16777215 or -1
Range:

Returns the RGB value of the current drawing color (set by the color

statement). If the color has been set to CLEAR then this function
will return a value of -1.

getsetting - Get'a Value from the Persistent

Store
getsetting (program name, key name)
Argument(s): Name: Type:
program_name string
key name string
Return Value string

Type:

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 309

Get a saved value from the system registry (or other persistent
storage). The program_name and key _name are used to categorize
and to make sure that settings accessed when needed and not
accidentally changed by another program.

If a value does not exist the empty string “” will be returned.

getslice - Capture Part of the Graphics Output

getslice(x, y, width, height)

Argument(s): Name: Type:
X integer
y integer
width integer
height integer
Return Value string
Type:

This function returns a string of hexadecimal digits that represent
the pixels in the rectangle specified in the parameters. The slice
can then be placed back on the screen at it's original location or a
new location with the putslice statement.

graphheight - Return the Height of the Graphic
Display (8)

graphheight
graphheight ()

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 310

Return Value integer
Type:

Return Value Oto ...
Range:

The graphheight() function will return the height, in pixels, of the
current graphics output area.

graphwidth - Return the Width of the Graphic
Display (8)

graphwidth
graphwidth ()

Return Value integer
Type:

Return Value 0to...
Range:

The graphwidth() function will return the width, in pixels, of the
current graphics output area.

hour - /Return the Current System Clock - Hour

(9)

hour

hour ()

Return Value integer
Type:

Return Value 0 to 23

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions

Page 311

Range:

This function returns the hour part of the current system clock. It
returns the hour number from 0 to 23. Midnight is represented by 0,
AM times are represented by 0-11, Noon is represented as 12, and
Afternoon (PM) hours are 12-23. This type of hour numbering is
known as military time or 24 hour time.

Example:

print hour

will display at 3:27PM:

15

instr - Return Position of One String in Another

(15)

instr (haystack, needle)

Argument(s): Name: Type:
needle string
haystack |string

Return Value integer

Type:

Return Value 0 to length(haystack)
Range:

Return the position of the string needle within the string haystack.
If the needle does not exist in the haystack then the function will

return O (zero).

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language

Example:

Reference - Functions

Page 312

print instr (“Hello Jim,
print instr (“Hello Jim,

How are you?”,”Jim”)
How are you?”,”Bob”)

will display:

:
0

int - Convert Value to an Integer (14)

int (expression)

Argument(s):

Name:

Type:

expression ‘|floating point or string

Return Value
Type:

integer

This function will convert a decimal number or a string into an
integer value. When converting a decimal number it will truncate
the decimal part and just return the integer part.

When converting a string value the function will return the integer
value in‘'the beginning of the string. If an integer value is not found,
the function will return 0 (zero).

Example:

orint int
print int
orint int
orint int
print int

(9)
(9.9999)

(-8.765)

(™ 321 555 foo”)

(“ I have 42 bananas.”)

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions

will display:

Page 313

key - Return the Currently Pressed Keyboard Key

(11)

key
key ()

Return Value
Type:

integer

Return Value
Range:

Oto...

Return the key code for the last keyboard key pressed. If no key
has been pressed since the last call to the key function a zero (0)
will be returned. Each key on the keyboard has a unique key code
that typically.is the upper-case Unicode value for the letter on the

key:

lasterror - Return Last Error (18)

lasterror
lasterror ()

Return Value
Type:

integer

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 314

Return Value See error code listing in Appendix |
Range:

Returns the last runtime error number.

lasterrorextra - Return Last Error Extra
Information(18)

lasterrorextra
lasterrorextra ()

Return Value string
Type:

Returns statement specific “extra” information about the last
runtime error.

lasterrorline - Return‘Program Line of Last Error
(18)

lasterrorline
lasterrorline ()

Return Value integer
Type:

Returns the line number in the program where the runtime error
happened.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 315

lasterrormessage - Return Last Error as String
(18)

lasterrormessage
lasterrormessage ()

Return Value string

Type:
Returns a string representing the last runtime error.

left - Extract Left Sub-string (15)

left (expression, length)
Argument(s): Name: Type:
expression|string
length integer
Return Value string
Type:

Returnsia sub-string, the number of characters specified by length,

from'the left end of the string expression. If length is greater than
the'length of the string expression then the entire string is returned.

length - Length of a String (15)

length (expression)

Type:

Name:

Argument(s):

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 316

expression [string

Return Value integer
Type:

Returns the length of the string expression in characters.

lower - Change String to Lower Case (15)

lower (expression)

Argument(s): Name: Type:
expression [string

Return Value string

Type:

This function will return a string with the upper case characters
changed to lower case characters.

Example:

hrint lower(“Hello.”)

will display:

lhello.

md5 - Return MD5 Digest of a String

md5 (expression)

Argument(s): Name: Type:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions

Page 317

expression [string

Return Value
Type:

string

Returns a hexadecimal string with the MD5 digest of the string
argument. This function was derived from the RSA Data Security,

Inc. MD5 Message-Digest Algorithm.

MD5 digests are commonly used to return a checksum of a string to
verify if a transmission was performed correctly.

mid - Extract Part of a String (14)

mid (expression,

start, length)

Argument(s): Name: Type:
expression |string
start integer
length integer

Return Value string

Type:

Return a sub-string from somewhere on the middle of a string. The

start'parameter specifies where the sub-string begins (1 =
beginning of string) and the length parameter specifies how many

characters to extract.

minute - Return the Current System Clock -

Minute (9)

minute

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 318

minute ()

Return Value integer
Type:

Return Value 0 to 59
Range:

This function returns the number of minutes from the current
system clock. Values range from 0 to 59.

Example:

print minute

will display at 6:47PM:

477

month - Return the-Current System Clock - Month
(9)

month
month ()

Return Value integer
Type:
Return Value Oto 1l
Range:

This function returns the month number from the current system
clock. It returns the month number from 0 to 11. January is O,
February is 1, March is 2, April is 3, May is 4, June is 5, July is 6,
August is 7, September is 8, October is 9, November is 10, and

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 319
Decemberis 11.

Example:

dim months$ (12)

months$ — {"Jan"’ "Feb"’ "Mar"’ "Apr"’ "May"’
"Jun"’ "Jul"’ "Aug"’ "Sept"’ "OCt"’ "NOV",

" DeC" }

orint month + 1

print months$[month]

will display on 9/5/2008:

9
Sept

mouseb- Return the Mouse Current Button
Status (10)

mouseb
mouseb ()

Return Value integer
Type:
Return Value Oto7
Range:

Returns the state of the mouse button or buttons being pressed. If
multiple buttons are being pressed at a single time then the
returned value will be sum of the button values being pressed.

Button Description
Value

0 Returns this value when no mouse button is

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 320

being pressed.

1 Returns this value when the “left” mouse
button is being pressed.

2 Returns this value when the “right” mouse
button is being pressed.

4 Returns this value when the “center” mouse
button is being pressed.

mousex- Return the Mouse Current X.Position
(10)

mousex
mousex ()

Return Value integer
Type:
Return Value 0 to.graphwidth() - 1
Range:

Returns the x coordinate of the mouse pointer position on the
graphics output window.

mousey- Return the Mouse Current Y Position
(10)

mousey
mousey ()

Return Value integer
Type:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 321

Return Value 0 to graphheight() -1
Range:
Returns the y coordinate of the mouse pointer position on the

graphics output window.

netaddress - What Is My IP Address (20)

netaddress
netaddress ()

Return Value string

Type:

Returns a string with the current'IPv4 address of this computer. If
there are multiple address assighed to this machine only the first

one will be returned.

netdata - Is There Network Data to Read (20)

netdata
netdata ()
netdata (socket)
Argument(s): Name: Type:
socket integer
Return Value boolean
Type:

Returns true of there is data to be read from the specified network
connection. If there is no data on the socket waiting then false will
be returned. If the socket number is omitted the default socket

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 322

number of zero (0) will be used.

netread - Read Data from Network(20)

netread
netread ()
netread (socket)

Argument(s): Name: Type:
socket integer

Return Value string

Type:

Reads the last packed received on the specified network
connection. If there is no data on the.socket waiting to be read the
program will wait until a message is.received. You may use the
netdata function to detect.of there is data waiting to be read. If
the socket number iscomitted the default socket number of zero (0)

will be used.

pixel - Get ColorValue of a Pixel

pixel (x, y)

Argument(s): Name: Type:
X integer
y integer

Return Value integer

Type:

Return Value Oto 16777215 0r-1

Range:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions

Page 323

Returns the RGB color of a single pixel on the graphics output
window. If the pixel has not been set since the last clg statement
or was set to transparent by drawing with the color CLEAR (-1) then

this function will return -1.

portin - Read Data from a System Port

portin (ioport)

Argument(s): Name: Type:
ioport integer

Return Value integer

Type:

Return Value 0 to 255

Range:

Read value (0-255) from'a system 1/O port.

Reading and writing system 1/O ports can be dangerous and can
cause unpredictable results. This statement may be disabled

because of potential system security issues.

Port I/O is typically used to read and write data to a parallel printer
port. .This functionality is only available in Windows.

radians - Convert a Degree Value to a Radian

Value (16)

radians (expression)

Argument(s):

Name:

Type:

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 324

expression |[floating point

Return Value floating point
Type:

The radians function does the quick mathematical calculation to
convert an angle measured in degrees to an angular measure of
radians. The formula used is radians =degrees /360X 21

rand - Random Number (6)

rand
rand ()

Return Value floating point
Type:

Return Value 0.0 to 0.999999
Range:

This function returns.a random decimal number between 0 and 1.
To generate random integer values, convert to integer the product
of rand and the desired integer value.

Example:

print rand
display a number from 1 to 100
print int (rand*100)+1

will display something like:

0.35
22

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 325

read - Read a Token from the Currently Open File
(16)
read

read ()
read (filenumber)

Return Value string
Type:
Return Value
Range:

Read the next word or number (token) from a file. Tokens are
delimited by spaces, tab characters, or end of'lines. Multiple
delimiters between tokens will be treated as one. If file number
parameter is not specified then file humber zero (0) will be used.

readline - Read a Line of Text from a File (16)

readline
readline ()
readline (filenumber)

Return Value string
Type:
Return Value
Range:

Return a string containing the contents of an open file up to the end
of the current line. If we are at the end of the file [eof() = true]
then this function will return the empty string (“”). If file number
parameter is not specified then file number zero (0) will be used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 326

rgb - Convert Red, Green, and Blue Values to
RGB (12)

rgb (red, green, blue)

Argument(s): Name: Type:
red integer (0 to 255)
green integer (0 to 255)
blue integer (0 to:255)

Return Value integer

Type:

Return Value 0to 16777215

Range:

The rgb function returns a single humber that represents a color
expressed by the three color.component values. Remember that
color component values have the range from 0 to 255. RGB color is
calculated by the formula RGB=RED x256°+GREEN x256+BLUE .

right - Extract Right Sub-string (15)

right (expression, length)

Syntax:

Argument(s): Name: Type:
expression |string
length integer

Return Value string

Type:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 327

Returns a sub-string, the number of characters specified by length,
from the right end of the string expression. If length is greater than
the length of the string expression then the entire string is returned.

second - Return the Current System Clock -
Second (9)

second
second ()

Return Value integer
Type:

Return Value 0 to 59
Range:

This function returns the/number of seconds from the current
system clock. Values range.from 0 to 59.

Example:

orint hour + “:“ + minute + “:“ + second

will'display at 5:23:56 PM:

[17:23:56

sin - Sine (16)

sin (expression)

Argument(s): Name: Type:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 328

expression |[floating point
Return Value floating point
Type:
Return Value -1.0to 1.0
Range:

This function returns the sine of the expression. The angle should
be represented in radians. The result is approximate.and may not
exactly match expected results.

Example:

a = sin(pi/3)
print string(a)

will display

[0.87 |

size - Return the size of the open file (15)

size
size ()
size (filenumber)

Return Value integer
Type:

Return Value Oto ...
Range:

This function returns the length of an open file in bytes. If file
number parameter is not specified then file number zero (0) will be
used.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 329

spritecollide - Return the Collision State of Two
Sprites (12)

spritecollide (expressionl, exressionZ2)

Argument(s): Name: Type:
expression [integer
1
expression [integer
2
Return Value boolean

Type:

This function returns true of thestwo sprites collide with or overlap
each other. The collision detection is done by

spriteh - Return the Height of Sprite (12)

spriteh (expression)

Argument(s): Name: Type:
expression [integer

Return Value integer

Type:

Return Value 0to...

Range:

This function returns the height, in pixels, of a loaded sprite. Pass
the sprite number in expression.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 330

Spritev - Return the Visible State of a Sprite (12)

spritev (expression)

Argument(s): Name: Type:
expression [integer

Return Value boolean

Type:

This function returns a true value if a loaded sprite is currently

displayed on the graphics output area. Pass the sprite number in
expression.

spritew - Return the Width of Sprite (12)

spritew (expression)

Argument(s): Name: Type:
expression [integer

Return Value integer

Type:

Return Value O0to...

Range:

This function returns the width, in pixels, of a loaded sprite. Pass
the sprite number in expression.

spritex - Return the X Position of Sprite (12)

spritex (expression)

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 331

Argument(s): Name: Type:
expression |integer

Return Value integer

Type:

Return Value O0to...

Range:

This function returns the position on the x axis of the:center;in
pixels, of a loaded sprite. Pass the sprite number.in‘expression.

spritey - Return the Y Position of Sprite (12)

spritey (expression)

Argument(s): Name: Type:
expression [integer

Return Value integer

Type:

Return Value 0to...

Range:

This function returns the position on the y axis of the center, in
pixels,.of a loaded sprite. Pass the sprite number in expression.

string - Convert a Number to a String (14)

string (expression)

Argument(s): Name: Type:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 332

expression [floating point or integer

Return Value string
Type:

Returns a string representation of an integer or floating point
number.

Example:

a = 1.234

[0S = string(a)
print a

print b$

will display:

1.234
1.234

tan - Tangent (16)

tan (expression)

Argument(s): Name: Type:
expression [floating point

Return Value floating point

Type:

This function returns the tangent of the expression. The angle
should be represented in radians. The result is approximate and
may not exactly match expected results.

Example:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 333

a = tan (pi/3)
print string(a)

will display:

[1.73 |

upper - Change String to Upper Case (15)

upper (expression)

Argument(s): Name: Type:
expression [string

Return Value string

Type:

This function will return a_string with the lower case characters
changed to upper case characters.

Example:

orint upper(“Hello.”)

will-display:

[HELLO. |

year - Return the Current System Clock - Year (9)

year
year ()

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix C: Language Reference - Functions

Page 334

Return Value
Type:

integer

This function returns the year part the current system clock. It

returns the full 4 digit Julian year number.

Example:

orint year

will display on 1/3/2009:

ZRE

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix D: Language Reference - Operators and Constants Page 335

Appendix D: Language Reference -
Operators and Constants

Mathematical Operators:

Mathematical operators take one or more numeric values, do something,
and return a number.

+ - Adds Two Numbers or Concatenates Two Strings (1)
- - Subtracts Two Numbers (1)

* - Multiplies Two Numbers (1)

/ - Divides Two Numbers (1)

% - Returns the Remainder of Integer Division of Two
Numbers (13)

\ - Integer Division(14)
~ - Exponent (14)

() - Groups Operators (1)

Mathematical Constants or Values:

A mathematical constant is sort of like a variable. It returns a
predefined value so that you do not need to remember what it is.

Constant: Value:
pi 3.141593

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix D: Language Reference - Operators and Constants

Color Constants or Values:

Page 336

BASIC-256 also includes a list of constants defining a simple pallet
of colors. The color constants are integers that represent the RGB
value required to draw that color on the screen.

Constant: Value: Same as:
black 0(rgb(0, 0, 0)
white 16,316,664 |rghb(248,:248, 248)
red 16,711,680 rgh(255, 0,:0)
darkred 8,388,608|rghb(128, 0, 0)
green 65,280 rgb(0, 255, 0)
darkgreen 32,768|rgb(0, 128, 0)
blue 255|rgb(0, 0, 255)
darkblue 128|rgb(0, 0, 128)
cyan 65,535|rgb(0, 255, 255)
darkcyan 32,896 (rgb(0, 128, 128)
purple 16,711,935(rgb(255, 0, 255)
darkpurple 8,388,736|rgh(128, 0, 128)
yellow 16,776,960(|rgb(255, 255, 0)
darkyellow 8,421,376|rghb(128, 128, 0)
orange 16,737,792 |rgb(255, 102, 0)
darkorange 11,154,176|rgb(170, 51, 0)
gray /grey 10,790,052 |rgb(164, 164, 164)
darkgray / 8,421,504 |rgb(128, 128, 128)
darkgrey

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix D: Language Reference - Operators and Constants Page 337

clear -1

Logical Operators:

Logical operators return a true/false value that can then be used'in
the IF statement. They are used to compare values or return the
state of a condition in your program.

= - Test if Two Values are Equal (6)

<> - Test if Two Values are Not Equal (6)

< - Test if One Value is Less Than Another Value (6)

<= - Test if One Value is Less Than or Equal Another Value
(6)

> - Test if One Value is Greater Than Another Value (6)

>= - Test if One Value is Greater Than or Equal Another
Value (6)

and - Returns True if Both Values are True (6)
not - Changes True to False and False to True (6)

or - Returns True if One or Both Values are True (6)

Logical Constants or Values:

A logical constant is sort of like a variable. It returns a predefined
value so that you do not need to remember what it is. You can not
change a constant's value in your program.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix D: Language Reference - Operators and Constants Page 338

Constant: |Value: Notes:

true 1 Represents a true event with the
number one.

false 0 A false condition is expressed
with the integer zero.

Bitwise Operators:

Bitwise operators manipulate values at the individual bit (binary
digit) level. These operations will only werk with integer numbers.

& - Bitwise And

The statement “print 11 & 77 will display 3 because of the
following bit level manipulation:

1011

& 0111
0011

| - Bitwise Or

The statement “print 10 | 6” will display 14 because of the
following bit level manipulation:

1010

| 0110
1110

~ - Bitwise Not

The statement “print ~12” will display -13 because of the
following bit level manipulation:

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix D: Language Reference - Operators and Constants Page 339

~ 00000000000000000000000000001100
11111111111111111111111111110011

Note: Integers in BASIC-256 are stored internally as 32 bit
signed numbers. Negative numbers are stored as a binary
ones-compliment.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix D: Language Reference - Operators and Constants Page 340

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix E: Color Names and Numbers Page 341

Appendix E: Color Names and Numbers

Listing of standard color names used in the color statement. The
corresponding RGB values are also listed.

Color RGB Values Swatch
black D 0
white 255, 255, 255
darired 26 00 |
darkgreen o126, 0|
blue DEEERN |
dariblue 00, 178 o~ |
cyan 0, 2554255
darkcyan 0y 128,128 _
purple =g, 25 |
darkpurple 128, 0, 128 _
yellow 255, 255, 0
darkyellow 128, 128, 0 _
darkerange 176, 61, 0 _
gray /grey 160, 160, 164
darkgray / darkgrey [128, 128, 128 _
clear

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix E: Color Names and Numbers Page 342

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix F: Musical Tones Page 343

Appendix F: Musical Tones

This chart will help you in converting the keys on a piano into
frequencies to use in the sound statement.

F-175
G-196 F# A
G#
A - 220
& 233
B - 247
Middle C - 262
C# - 277
D - 294
D# - 311
E- 330
F - 349
F# - 370
G- 392
G# - 415
A - 440
A# - 466
B - 49
C-5
C# - 554
' 587
D# - 622
@ 7659
i F - 698
F# - 740
G- 784
G# - 831
A - 880
A# - 932

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix F: Musical Tones Page 344

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix G: Key Values

Appendix G: Key Values

Key values are returned by the key() function and represent the last
keyboard key pressed since the key was last read. This table lists
the commonly used key values for the standard English keyboard.

Other key values exist.

Page 345

English (EN) Keyboard Codes
Key |# Key |# Ke |(# Key #
y
Spac (32 A 65 L 76 wW 87
e
0 48 B 66 M |77 X 88
1 49 C 67 N ~78 Y 89
2 50 D |68 Q |79 Z 90
3 51 E 69 P. (80 ESC 16777216
4 52 F 70 Q |81 Backspace|16777219
5 53 G }71 R |82 Enter 16777220
6 54 H 72 S 183 Left Arrow (16777234
7 55 I 73 T |84 Up Arrow [16777235
8 56 J 74 U |85 Right 16777236
Arrow
9 57 K 75 V (86 Down 16777237
Arrow

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix G: Key Values Page 346

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix H: Unicode Character Values - Latin (English) Page 347

Appendix H: Unicode Character Values
- Latin (English)

This table shows the Unicode character values for standard Latin
(English) letters and symbols. These values correspond with the
ASCII values that have been used since the 1960's. Additional
character sets are available at http://www.unicode.orqg.

CHR | # CHR | # CHR | # CHR | # CHR | # CHR | #
NUL | O SYN |22 , 44 B |66 X 88 n |110
SOH | 1 ETB |23 - |45 C |67 Y 89 o [111
STX | 2 CAN |24 . 46 D |68 Z 90 p |112
ETX | 3 EM |25 /[|47 E |69 [91 q |[113
ET | 4 SUB |26 0 |48 F |70 \ 92 r 1114
ENQ | 5 ESC |27 1 |49 G. |71] 93 s |115
ACK | 6 FS |28 2 |50 H |72 ~ 94 t |116
BEL | 7 GS |28 3 |51 | 73 B 95 u |117
BS | 8 RS |30 4 |52 J 74 i 96 v |118
HT | 9 us |31 5 /53 K |75 a 97 w |119
LF |10 Space |32 6 |54 L |76 b 98 x 1120
VT |11 ! 33 7 |55 M |77 C 99 y |121
FF 12 “ 34 8" |56 N |78 d]100 z |122
CR |13 # 35 9 |57 O |79 e |101 { [123
SO |14 $ 36 : 58 P |80 f 102 | 124
SI |15 %" |37 , 59 Q |81 g |103 } 125
DLE |16 & 38 < |60 R [82 h |104 ~ 1126
DC1 |17 ' 39 = |61 S |83 i 105 DEL | 127
DC2.| 18 (40 > [62 T |84 j 106
DC3 |19) 41 ? |63 U |85 k |[107
DC4'| 20 * 42 @ |64 V |86 I 108
NAK |21 + 43 A |65 W |87 m |109

0-31 and 127 are non-printable.
Adapted from the Unicode Standard 5.2 - Available from
http://www.unicode.org/charts/PDF/U0000.pdf

So You Want to Learn to Program? © 2010 James M. Reneau.

http://www.unicode.org/

Page 348

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix |: Reserved Words

Appendix I: Reserved Words

Page 349

These are the words that the BASIC-256 language uses to perform
various tasks. You may not use any of these words for variable
names or labels for the GOTO and GOSUB statements

#

abs

acos

and

asc

asin

atan

black

blue

ceil
changedir
chr

circle
clear

clg

clickb
clickclear
clickx
clicky
close

cls

color
colour

cos
currentdir
cyan
darkblue
darkcyan
darkgray
darkgrey
darkgeeen
darkorange
darkpurple
darkred
darkyellow
day
dbclose

dbcloseset
dbexecute
dbfloat
dbint
dbopen
dbopenset
dbrow
dbstring
decimal
degrees
dim

do

else

end

endif
endwhiile
eof

exists
false
fastgraphics
float
floor

font

for
getcolor
getslice
getsetting
gosub

goto
graphheight
graphsize
graphwidth
gray

grey

green

hour

if

So You Want to Learn to Program?

imgload
imgsave

input

instr

int

key

kill
lastexror
lasterrorextra
lasterrorline
lasterrormessage
left

length

line

log

logl0

lower

md5

mid

minute

month

mouseb

mousex
mouseynetaddress
netclose
netconnect
netdata
netlisten
netread
netwritenext
not

offerror

open

onerror

or

orange

pause

© 2010 James M. Reneau.

pi
pixel
plot
poly
portin
portout
print
purple
putslice
radians
rand
read
readline
rect
red
redim
refresh
rem
reset
return
rgb
right

Appendix |: Reserved Words

say
second

seek
setsetting
sin

size

sound
spritecollide
spritedim
spriteh
spritehide
spriteload
spritemove
spriteplace
spriteshow
spriteslice
spritev
spritew
spritex
spritey
stamp

step

So You Want to Learn to Program?

string
system
tan
text
then

to

true
until
upper
volume
wavplay
wavstop
wavwait
while
white
write
writeline
XOr
year
yellow

Page 350

© 2010 James M. Reneau.

Appendix J: Error Numbers

Page 351

Appendix J: Error Numbers

Error # Error Description (EN)
0 ERROR_NONE
1 ERROR_NOSUCHLABEL “No such label”

“lllegal FOR - start number > end

2 ERROR_FOR1 number”
“lllegal FOR - start number < end
3 |ERROR_FOR2 U
4 ERROR_NEXTNOFOR “Next without FOR”
5 ERROR_FILENUMBER “Invalid File Number”
6 ERROR_FILEOPEN “Unable to open file”
7 ERROR_FILENOTOPEN “File not open.”
8 ERROR_FILEWRITE “Unable to write to file”
9 ERROR_FILERESET “Unable to reset file”
10 |ERROR_ARRAYSIZELARGE [“Array dimension too large”
11 |[ERROR_ARRAYSIZESMALL [“Array dimension too small”
12 ERROR_NOSUCHVARIABLE [“Unknown variable”
13 |ERROR_NOTARRAY “Not an array variable”
14 ERROR_NOTSTRINGARRAY [“Not a string array variable”
15 |ERROR_ARRAYINDEX “Array index out of bounds”
16 ERROR_STRNEGLEN “Substring length less that zero”
17 ERROR_STRSTART “Starting position less than zero”
“String not long enough for given
18 |ERROR_STREND startingg characgter" k k
“Non-numeric value in numeric
19 |[ERROR_NONNUMERIC expression”
“RGB Color values must be in the range
20 |ERROR_RGB of O t0 958 » g
21 ERROR_PUTBITFORMAT “String input to putbit incorrect.”

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix J: Error Numbers

Page 352

“Argument not an array for

22 |ERROR_POLYARRAY ooly()/stamp()*
23 ERROR POLYPOINTS “Not enough pls)lnts in array for
- poly()/stamp()
24 |ERROR_IMAGEFILE “Unable to load image file.”
25 ERROR_SPRITENUMBER “Sprite number out of range.”
26 ERROR_SPRITENA “Sprite has not been assigned.”
27 |ERROR_SPRITESLICE “Unable to slice image.”
28 |ERROR_FOLDER “Invalid directory name.”
29 |ERROR DECIMALMASK ;‘)Dtc(a)cir;z,all mask must be in the range of
30 |ERROR_DBOPEN “Unable to open SQLITE database.”
“Database query error (message
31 |ERROR_DBQUERY follows).”
32 |ERROR_DBNOTOPEN “Database must be opened first.”
33 ERROR _DBCOLNO “Column number out of range.”
34 |ERROR_DBNOTSET “Record set must be opened first.”
35 ERROR_EXTOPBAD “Invalid Extended Op-code.”
36 |ERROR_NETSOCK “Error opening network socket.”
37 |ERROR_NETHOST “Error finding network host.”
38 |ERROR_NETCONN “Unable to connect to network host.”
39 |ERROR NETREAD ”Unablelto r"ead from network
- connection.
40 |ERROR NETNONE “Networ'l'< connection has not been
- opened.
a1 ERROR NETWRITE “Unable.to \ﬁ/rite to network
- connection.
42 |ERROR_NETSOCKOPT “Unable to set network socket options.”
43 ERROR_NETBIND “Unable to bind network socket.”
44 [ERROR_NETACCEPT “Unable to accept network connection.”
45 |ERROR_NETSOCKNUMBER [“Invalid Socket Number”

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix J: Error Numbers

Page 353

"You do not have permission to use this
46 [ERROR_PERMISSION statement/function."”
47 ERROR IMAGESAVETYPE “Invalid image save type."

“Feature not implemented in this
9999 [ERROR_NOTIMPLEMENTED environment.”

So You Want to Learn to Program?

© 2010 James M. Reneau.

Appendix J: Error Numbers Page 354

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix K: Glossary Page 355

Appendix K: Glossary
Glossary of terms used in this book.

algorithm - A step-by-step process for solving a problem.

angle - An angle is formed when two line segments (or rays) start at the
same point on a plane. An angle's measurement is the
amount of rotation from one ray to another on the plane and

is typically expressed in radians or degrees.

argument - A data value included in a statement or function call used to
pass information. In BASIC-256 argument values are not
changed by the statement or function:

array - A collection of data, stored in.the.computer's memory, that is
accessed by using one or mere integer indexes. See also
numeric array, one dimensional array, string array,
and two dimensional array.

ASCII - (acronym for American Standard Code for Information
Interchange) Defines a numeric code used to represent
letters and symbols used in the English Language. See also
Unicode.

asynchronous - Process or statements happening at one after the
other.

Boolean Algebra - The algebra of true/false values created by Charles
Boole over 150 years ago.

Cartesian Coordinate System - Uniquely identify a point on a plane
by a pair of distances from the origin (0,0). The two distances
are measured on perpendicular axes.

column (database) - defines a single piece of information that will be

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix K: Glossary Page 356
common to all rows of a database table.
constant - A value that can not be changed.

data structure - is a way to store and use information efficiently in a
computer system

database - An organized collection of data. Most databases are
computerized and consist of tables of similar information.that

are broken into rows and columns. See also: column, row,
SQL, and table.

degrees - A unit of angular measure. Angles on a_planeican have
measures in degrees of 0 to 360. Aright angle is 90 degrees.
See also angle and radians.

empty string - A string with no characters and a length of zero (0).
Represented by two quotation marks (“”). See also string.

false - Boolean value representing net true. In BASIC-256 it is actually
short hand for'the integer zero (0). See also Boolean
Algebra andtrue.

floating point number = A numeric value that may or may not contain
a decimal point. Typically floating point numbers have a
range of +1.7x10"" with 15 digits of precision.

font - A style of drawing letters.

frequency - The number of occurrences of an event over a specific
period of time. See also hertz.

function - A special type of statement in BASIC-256 that may take zero
or more values, make calculations, and return information to
your program.

graphics output area - The area on the screen where drawing is

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix K: Glossary Page 357
displayed.

hertz (hz) - Measure of frequency in cycles per second. Named for
German physicist Heinrich Hertz. See also frequency.

integer - A numeric value with no decimal point. A whole number.
Typically has a range of -2,147,483,648 to 2,147,483,647.

IP address - Short for Internet Protocol address. An IP addresssis.a
numeric label assigned to a device on a network,

label - A name associated with a specific place in the program. Used for
jumping to with the goto and gosub statements.

list - A collection of values that can be used to assign-arrays and in some
statements. In BASIC-256 lists are represented as comma (,)
separated values inside a set of curly-braces ({}).

logical error - An error that causes the program to not perform as
expected.

named constant - A value that.is represented by a name but can not
be changed.

numeric array - Anarray of numbers.

numeric variable - A variable that can be used to store integer or
floating point numbers.

one dimensional array - A structure in memory that holds a list of data
that is addressed by a single index. See also array.

operator - Acts upon one or two pieces of data to perform an action.
pixel - Smallest addressable point on a computer display screen.

point - Measurement of text - 1 point = 1/72”. A character set in 12
point will be 12/72” or 1/6” tall.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix K: Glossary Page 358

port - A software endpoint number used to create and communicate on a
socket.

pseudocode - Description of what a program needs to do in a natural
(non-computer) language. This word contains the prefix
“pseudo” which means false and “code” for programming
text.

radian - A unit of angular measure. Angles on a plane can have
measures in radians of 0 to 2m. A right angle is /2'degrees.
See also angle and degrees.

radius - Distance from a circle to it's center. Also, ¥ of a.circle's
diameter.

RGB - Acronym for Red Green Blue. Light is made up of these three
colors.

row (database) - Also called a record.ortuple. A row can be thought of
as a single member-of.a table.

socket - A software endpoint.that allows for bi-directional (2 way)
network communications between two process on a single
computer ortwo computers.

sprite - An image that is integrated into a graphical scene.

SQL - Acronym for Structured Query Language. SQL is the most widely
used language to manipulate data in a relational database.

statement - A single complete action. Statements perform something
and do not return a value.

string - A sequence of characters (letters, numbers, and symbols).
String constants are surrounded by double quotation marks

(ll).
string array - An array of strings.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix K: Glossary Page 359

string variable - A variable that can be used to store string values. A
string variable is denoted by placing a dollar sign ($) after the
variable name.

sub-string - Part of a larger string.

subroutine - A block of code or portion of a larger program that
performs a task independently from the rest of the program:.
A piece that can be used and re-used by many parts-of a
program.

syntax error - An error with the structure of a starement'so that the
program will not execute.

synchronous - Happening at the same time.

table (database) - Data organized into rows and columns. A table has
a specific number of defined.columns and zero or more rows.

transparent - Able to see through.

text output area - The area ofithe screen where plain text and errors is
displayed.

true - Boolean value representing not false. In BASIC-256 it is actually
short'hand for the integer one (1). See also Boolean
Algebra and false.

two dimensional array - A structure in memory that will hold rows and
columns of data. See also array.

Unicode - The modern standard used to represent characters and
symbols of all of the world's languages as integer numbers.

variable - A named storage location in the computer's memory that can
be changed or varied.

So You Want to Learn to Program? © 2010 James M. Reneau.

Appendix K: Glossary Page 360

So You Want to Learn to Program? © 2010 James M. Reneau.

	Chapter 1: Meeting BASIC-256 – Say Hello.
	The BASIC-256 Window:
	Menu Bar:
	Tool Bar:
	Program Area:
	Text Output Area:
	Graphics Output Area:

	Your first program – The say statement:
	BASIC-256 is really good with numbers – Simple Arithmetic:
	Another use for + (Concatenation):
	The text output area - The print statement:
	What is a “Syntax error”:

	Chapter 2: Drawing Basic Shapes.
	Drawing Rectangles and Circles:
	Saving Your Program and Loading it Back:
	Drawing with Lines:
	Setting Individual Points on the Screen:

	Chapter 3: Sound and Music.
	Sound Basics – Things you need to know about sound:
	Numeric Variables:

	Chapter 4: Thinking Like a Programmer
	Pseudocode:
	Flowcharting:
	Flowcharting Example One:
	Flowcharting Example Two:

	Chapter 5: Your Program Asks for Advice.
	Another Type of Variable – The String Variable:
	Input – Getting Text or Numbers From the User:

	Chapter 6: Decisions, Decisions, Decisions.
	True and False:
	Comparison Operators:
	Making Simple Decisions – The If Statement:
	Random Numbers:
	Logical Operators:
	Making Decisions with Complex Results – If/End If:
	Deciding Both Ways – If/Else/End If:
	Nesting Decisions:

	Chapter 7: Looping and Counting - Do it Again and Again.
	The For Loop:
	Do Something Until I Tell You To Stop:
	Do Something While I Tell You To Do It:
	Fast Graphics:

	Chapter 8: Custom Graphics – Creating Your Own Shapes.
	Fancy Text for Graphics Output:
	Resizing the Graphics Output Area:
	Creating a Custom Polygon:
	Stamping a Polygon:

	Chapter 9: Subroutines – Reusing Code.
	Labels and Goto:
	Reusing Blocks of Code – The Gosub Statement:

	Chapter 10: Mouse Control – Moving Things Around.
	Tracking Mode:
	Clicking Mode:

	Chapter 11: Keyboard Control – Using the Keyboard to Do Things.
	Getting the Last Key Press:

	Chapter 12: Images, WAVs, and Sprites
	Images From a File:
	Playing Sounds From a WAV file:
	Moving Images - Sprites:

	Chapter 13: Arrays – Collections of Information.
	One-Dimensional Arrays of Numbers:
	Arrays of Strings:
	Assigning Arrays:
	Sound and Arrays:
	Graphics and Arrays:
	Advanced - Two Dimensional Arrays:
	Really Advanced - Array Sizes:
	Really Really Advanced - Resizing Arrays:

	Chapter 14: Mathematics – More Fun With Numbers.
	New Operators:
	Modulo Operator:
	Integer Division Operator:
	Power Operator:
	New Integer Functions:
	New Floating Point Functions:
	Advanced - Trigonometric Functions:
	Cosine:
	Sine:
	Tangent:
	Degrees Function:
	Radians Function:
	Inverse Cosine:
	Inverse Sine:
	Inverse Tangent:

	Chapter 15: Working with Strings.
	The String Functions:
	String() Function:
	Length() Function:
	Left(), Right() and Mid() Functions:
	Upper() and Lower() Functions:
	Instr() Function:

	Chapter 16: Files – Storing Information For Later.
	Reading Lines From a File:
	Writing Lines to a File:
	Read() Function and Write Statement:

	Chapter 17: Stacks, Queues, Lists, and Sorting
	Stack:
	Queue:
	Linked List:
	Slow and Inefficient Sort - Bubble Sort:
	Better Sort – Insertion Sort:

	Chapter 18 – Runtime Error Trapping
	Error Trap:
	Finding Out Which Error:
	Turning Off Error Trapping:

	Chapter 19: Database Programming
	What is a Database:
	The SQL Language:
	Creating and Adding Data to a Database:
	Retrieving Information from a Database:

	Chapter 20: Connecting with a Network
	Socket Connection:
	A Simple Server and Client:
	Network Chat:

	Appendix A: Loading BASIC-256 on your PC or USB Pen Drive
	1 – Download:
	2 – Installing:
	3 – Starting BASIC-256

	Appendix B: Language Reference - Statements
	circle – Draw a Circle on the Graphics Output Area (2)
	changedir – Change Your Current Working Directory (16)
	clg – Clear Graphics Output Area (2)
	clickclear – Clear the Last Mouse Click (10)
	close – Close the Currently Open File (16)
	cls – Clear Text Output Window (1)
	color or colour– Set Color for Drawing (2)
	dbclose (19)
	dbcloseset (19)
	dbexecute (19)
	dbopen (19)
	dbopenset (19)
	decimal ()
	dim – Dimension a New Array (13)
	do / until – Do / Until Loop (7)
	end – Stop Running the Program (9)
	fastgraphics – Turn Fast Graphics Mode On (8)
	font – Set Font, Size, and Weight (8)
	for/next – Loop and Count (7)
	goto – Jump to a Label (9)
	gosub/return – Jump to a Subroutine and Return (9)
	graphsize – Set Graphic Display Size (8)
	if then – Test if Something is True - Single Line(6)
	if then / end if – Test if Something is True – Multiple Line (6)
	if then / else / end if – Test if Something is True – Multiple Line with Else (6)
	imgload – Load an image from a file and display (12)
	imgsave – Save the Graphics Output Area
	input – Get a String Value from the User (7)
	kill – Delete a File ()
	line – Draw a Line on the Graphics Output Area (2)
	netclose (20)
	netconnect (20)
	netlisten (20)
	netwrite (20)
	offerror (18)
	onerror (18)
	open – Open a file for Reading and Writing (16)
	pause – Pause the Program (7)
	plot – Put a Point on the Graphics Output Area (2)
	poly – Draw a Polygon on the Graphics Output Area (8)
	portout – Output Data to a System Port
	print – Display a String on the Text Output Window (1)
	putslice – Display a Captured Part of the Graphics Output
	rect – Draw a Rectangle on the Graphics Output Area (2)
	redim – Re-Dimension an Array (12)
	refresh – Update Graphics Output Area (8)
	rem – Remark or Comment (2)
	reset – Clear an Open File (16)
	say – Use Text-To-Speech to Speak (1)
	seek – Move the File I/O Pointer (16)
	setsetting – Save a Value to a Persistent Store
	spritedim – Initialize Sprites for Drawing (12)
	spritehide – Hide a Sprite (12)
	spriteload – Load an Image File Into a Sprite (12)
	spritemove – Move a Sprite from Its Current Location (12)
	spriteplace – Place a Sprite at a Specific Location (12)
	spriteshow – Show a Sprite (12)
	spriteslice – Capture a Sprite (12)
	sound – Play a beep on the PC Speaker (3)
	stamp – Put a Polygon Where You Want It (8)
	system – Execute System Command in a Shell
	text – Draw text on the Graphics Output Area (8)
	volume – Adjust Amplitude of Sound Statement
	wavplay – Play a WAV audio file in the background (12)
	wavstop – Stop playing WAV audio file (12)
	wavwait – Wait for the WAV to finish (12)
	while / end while – While Loop (7)
	write – Write Data to the Currently Open File (16)
	writeline – Write a Line to the Currently Open File (16)

	Appendix C: Language Reference - Functions
	abs – Absolute Value (14)
	acos – Return the Arc-cosine (14)
	asc – Return the Unicode Value for a Character (11)
	asin – Return the Arc-sine (14)
	atan – Return the Arc-tangent (14)
	ceil – Round Up (14)
	chr – Return a Character (11)
	clickb- Return the Mouse Last Click Button Status (10)
	clickx- Return the Mouse Last Click X Position (10)
	clicky- Return the Mouse Last Click Y Position (10)
	cos – Cosine (14)
	currentdir – Current Working Directory (16)
	day – Return the Current System Clock – Day (9)
	dbfloat – Get a Floating Point Value From a Database Set (19)
	dbint – Get an Integer Value From a Database Set (19)
	dbrow – Advance Database Set to Next Row (19)
	dbstring – Get a String Value From a Database Set (19)
	degrees – Convert a Radian Value to a Degree Value (14)
	eof – Allow Program to Check for End Of File Condition (16)
	exists – Check to See if a File Exists (16)
	float – Convert a String Value to A Float Value (14)
	floor – Round Down (14)
	getcolor – Return the Current Drawing Color
	getsetting – Get a Value from the Persistent Store
	getslice – Capture Part of the Graphics Output
	graphheight – Return the Height of the Graphic Display (8)
	graphwidth – Return the Width of the Graphic Display (8)
	hour – Return the Current System Clock - Hour (9)
	instr – Return Position of One String in Another (15)
	int – Convert Value to an Integer (14)
	key – Return the Currently Pressed Keyboard Key (11)
	lasterror – Return Last Error (18)
	lasterrorextra – Return Last Error Extra Information(18)
	lasterrorline – Return Program Line of Last Error (18)
	lasterrormessage – Return Last Error as String (18)
	left – Extract Left Sub-string (15)
	length – Length of a String (15)
	lower – Change String to Lower Case (15)
	md5 – Return MD5 Digest of a String
	mid – Extract Part of a String (14)
	minute - Return the Current System Clock - Minute (9)
	month - Return the Current System Clock - Month (9)
	mouseb- Return the Mouse Current Button Status (10)
	mousex- Return the Mouse Current X Position (10)
	mousey- Return the Mouse Current Y Position (10)
	netaddress – What Is My IP Address (20)
	netdata – Is There Network Data to Read (20)
	netread – Read Data from Network(20)
	pixel – Get Color Value of a Pixel
	portin – Read Data from a System Port
	radians – Convert a Degree Value to a Radian Value (16)
	rand – Random Number (6)
	read – Read a Token from the Currently Open File (16)
	readline – Read a Line of Text from a File (16)
	rgb – Convert Red, Green, and Blue Values to RGB (12)
	right – Extract Right Sub-string (15)
	second - Return the Current System Clock - Second (9)
	sin – Sine (16)
	size – Return the size of the open file (15)
	spritecollide – Return the Collision State of Two Sprites (12)
	spriteh – Return the Height of Sprite (12)
	Spritev – Return the Visible State of a Sprite (12)
	spritew – Return the Width of Sprite (12)
	spritex – Return the X Position of Sprite (12)
	spritey – Return the Y Position of Sprite (12)
	string – Convert a Number to a String (14)
	tan – Tangent (16)
	upper – Change String to Upper Case (15)
	year - Return the Current System Clock - Year (9)

	Appendix D: Language Reference – Operators and Constants
	Mathematical Operators:
	Mathematical Constants or Values:
	Color Constants or Values:
	Logical Operators:
	Logical Constants or Values:
	Bitwise Operators:

	Appendix E: Color Names and Numbers
	Appendix F: Musical Tones
	Appendix G: Key Values
	Appendix H: Unicode Character Values – Latin (English)
	Appendix I: Reserved Words
	Appendix J: Error Numbers
	Appendix K: Glossary

