C+ Tutorial
Java 1.5 Based

University of Waterloo

Version 1.0

Peter A. Buhr©*2005

last update: December 4, 2007

Good code has good design elements;
good code also uses the dominant metaphors in a language
to make it easy for other programmers to understand.

*Permission is granted to make copies for personal or edurdtuse.

2 C+ Tutorial
Contents
1 Introduction 4
2 Brief History of C/C+ 4
3 C/C+ Source File 4
4 Compilation 4
5 Execution 5
6 Program Structure 5
6.1 Comment. e e e e e 5
6.2 Statement. L e e e 6
7 First Program 6
8 Declaration 7
8.1 Identifier. e 7
8.2 BaSICTYPES. . . o o o i e e 7
8.3 Variable Declaration. e 7
8.4 TypeQualifier. e e 8
8.5 Constants. e e e e 9
8.6 Type CONSIIUCIOr. o o e e e e e e 9
8.6.1 Enumeration. e e 10
8.6.2 Pointer/Reference. 10
8.6.3 Aggregation (structure/array) e 13
8.6.4 TypeAliasing. e 14
8.7 Type-ConstructorConstant. e 14
9 Expression 15
9.1 CONVEISION . . o v o it e e e e e e e e e e e e 17
10 Control Structure 18
10.1 BIOCK . . . o 18
10.2 Conditional. e e 18
10.3 Selection L e e 18
10.4 Conditional Expression Evaluation. L 19
10.5 LOOPING. . o o o o 02
11 Preprocessor 21
11.1 Substitution. e e e 21
11.2 FileInClusion. o e 22
11.3 ConditionalInclusion L 23
12 Input/Output 23
12,1 INPUL . o o e e e e 24
12.2 OUIPUL. . . o L e e e e e e 25
13 Dynamic Storage Management 26
14 Routine 29
14.1 Argument/Parameter Passing e e 30

14.2 Array Parameter e 31

C+ Tutorial 3

15 String 31
16 Shell Argument 33
17 Object 34
17.1 Operator MemMDErS. e e 36
17.2 Nesting o 73
17.3 CONStruCtOr. e e e e 37
17.3.1 Constant. e e e e e e e e 38
17.3.2 CONVEISION. . . . o o e e e e e e e e e e e e e e e e 39
17.3.3 COPY .« o o o e e 39
17.3.4 constMember. e e 40
17.4 DeStrUuCtorn e e e e e e e e 40
18 Forward Declaration 41
19 Overloading 44
20 Inheritance 46
20.1 Implementation Inheritance. L e 46
20.2 Typelnheritance. L e e a7
20.3 VirtualRoutine e e 49
20.4 DOWN Cast . . . o v o o e e e e e e e e 50
20.5 Constructor/DeStruCtor e e e e e e e e e e e e e 50
20.6 AbstractInterface e e e 51
21 Template 51
22 Namespace 55
23 Encapsulation 55
24 Separate Compilation 56
25 Acknowledgments 60
A Pulling It All Together 60

Index 62

4 C+ Tutorial

1 Introduction

This tutorial is designed to give a working knowledge of Cand indirectly parts of C) as quickly as possible for
people with Java programming experience and familiarityrwiasic programming language concepts. By working
through the exercises, core CH concepts can be learnedracticpd. This tutorial is not a substitute for a good C+
textbook; in several places, you are referred to a textbookiore complete information. This tutorial also assumes
familiarity with the UNIX operating system and a text edithny corrections or suggestions about this tutorial can
be sent tgpabuhr@uwaterloo.ca.)

Throughout the tutorial, the following symbols are used:

=- This symbol indicates that you are to perform the action matby the arrow.

>1 This symbol indicates that the section explains a concegitrttay be unfamiliar even if you have some previous
programming experience. Make sure you understand thisepdiefore advancing in the tutorial.

NOTE: A particular programming style is used in this tutbrtdowever, each course may have its own program-
ming style; always follow that particular style.

2 Brief History of C/CH

C was designed for and implemented on the UNIX operatingeaystf a DEC PDP-11 by Dennis Ritchie, starting in
1970. The intent was to create a language more powerful thsemebly language but still allow direct access to the
machine. C is often used to write system software, such aUNI

C+ was designed by Bjarne Stroustrup, starting in 1980dtb @bject-oriented capabilities, along with other
important extensions to C. CH imostlya superset of C. While CH made important improvements,dtrdit fix
existing problems with C to maintain backwards compatipillherefore, C+ has both its problems and C’s problems.

3 C/C+ Source File

A C+ source file should be created in a UNIX file with the suféi .cxx, .cpp, .cp, .c++ or .C. (Suffix.C is used in
this document.) A C source file should be created with suffibAny text editor may be used to create a source file.
Many text editors use a file’s suffix to infer the kind of datahim the file. Then the editor provides language-specific
operations, such as colourization, indentation, seagctatc. As well, the C+ compiler uses the file suffix to decide
which files are used for specific compilation steps.

4 Compilation

The C+ compilation command performs the following stepseppocessing, compilation, assembly and linkage to
produce an executable file callacbut. (The filea.out is overwritten for each compilation.) By using appropriate
command-line options, individual steps of the compilatéonl actions within a step can be controlled. This tutorial
uses the GNW++ compiler; anyg++ specific material is always identified. The general form ofta €mpilation
command is:

g++ -option -option ... source-filel.C source-file2.C ...

There is often only one source file.

An option starts with a-” (minus character) followed by a single-character name@oss$ibly a value depending
on the option. In most cases, the option value can immegi&dbw the option name or be separated from it by
spaces. In general, no options are required; some usefohspire (seenan g++ for a complete list of options):

-E Perform only the preprocessor step, printing the outputamdard output (see Sectidd, p. 21).
-c Perform only the preprocessor and compilation steps (set@8&4, p. 56).

-0 name Name the executable file to the specified name insteadoaf, e.g.,g++ -0 assnl yourprogram.C creates
an executable callegksnl instead of.out.

-O Optimize the code generated by the compiler so the programfaster.
-Wall Printall useful compilation warning messageg+< only)

-g Produce additional symbol-table information for a symbdkbuggerdbx or gdb).

C+ Tutorial 5

5 Execution

Once an executable file is created from a C+ source progtasipresented to a shell to be loaded and run, like
built-in commands (e.gls, emacs, rm). Unless the directory where the executable resides isislibll's search path,
the shell cannot find the executable file. It then becomesssacg to specify the location of the executable using an
absolute or relative directory path. The full (absolute®diory path can be specified, but if the executable is ldcate
in the current directory, its location can be specified usinglative path, such as/”. For example, if working in
directory/u/userid/work, the executabla.out can be run by specifying eith&ruserid/work/a.out or . /a.out on the shell
command line.

Like built-in commands, a C/CH executable may have comntanedoptions; accessing these shell arguments is
discussed in Sectiobhg, p. 33.

6 Program Structure

A C+ program is composed of two components: comments Istfimt people, and statements for both people and
the preprocessor/compiler. A source file contains a mixtdreomments and statements. The C/C+ preproces-
sor/compiler only reads the statements and ignores the eosm

6.1 Comment

Comments are essential to document what a program does and thoes it. Like Java, a comment may be placed
anywhere a whitespace (space, tab, newline) is allowedttard are two kinds of comments in C/C+, which are
identical to those in Java:

| Java/C/C+ |

1| /fx... o
2 | /l remainder of line

The first form begins with the start symbal, and ends with the terminator symbael, and hence, can extend over
multiple lines. Like Javathis form cannot be nested one within another
T i

Here, the first terminatok/, ends the comment and the remaining comment text is treatstheements. Hence, be
extremely careful in using this form of comment to elide/coemt-out code:
/+ attempt to comment-out a number of statements

while (...) {
I« ... nested comment causes errors x/
if (...){

/+ ... nested comment causes errors «/

}

}
<l

The second form begins with the start symligland continues to the end of the line, i.e., only one line ldrike
Java, this form of comment can be nested one within another:
/Il ... Il ... nested comment

so it can be used to comment-out code:

/' while (...){

1 /« ... nested comment does not cause errors «/
Il if (...){

1 /I ... nested comment does not cause errors
Il }

I}

Sectionl1.3 p. 23 presents another way to comment-out code.

When asked to enter or modify a program in this document, it isunnecessary to enter comments in the
program; these comments provide additional explanation ad never affect the program’s execution. In fact, all
the code for each work assignment (labelle@x V) is available online; ask for the specific location.

6 C+ Tutorial

6.2 Statement

C+ is actually composed of 3 languages:

1. The preprocessor language modifies (text-edits) therpnolgeforecompilation (see Sectiohl, p.21).
2. The template (generic) language adds new types and esdtiming compilation (see Sectiapl, p. 51).
3. The programming language specifies declarations andatdlioiv to be executeafter compilation.

A programmer uses the three programming languages in tloevialg way:
user edits— preprocessor edits> templates expands> compilation linking/loading— execution)

The syntax for a preprocessor statement#scharacter, followed by a series of tokens separated by sgate,
which is usually a single line and not terminated by pundétuatThe syntax for a C/C+ statement (both template and
regular) is a series of tokens separated by whitespace anthtgted by a semicoloh.

7 First Program
The standard first C+ program prints “Hello World!” to theesen.

= Editafile calledhello.C
= Enter the C+ progranir{cluding comments:

| Java I C+
/I First C++ program by: YourFirstName YourLastName
/I Print “Hello World!” to the screen.
import java.lang.*; // implicit #include <iostream> /I import 1/O facilities
class hello { using namespace std; // direct naming of 1/O facilities
public static void main(String[] args) { int main() { /I program starts here
System.out.printin(" Hel 1 o Wor I d!'"); cout << "Hell o Worl d!" << endl;
System.exit(0); return O; /I return O to shell
} }
}

Several important points are illustrated in this program:

1. When writing programs, there should be comments at thmbieg) identifying the programmer and what the
program does. Additional comments should appear withirsthece code to explain how the program works.
Different courses have different documentation guidaljités your responsibility to follow those guidelines.

2. Thet#include <iostream> imports the basic input and output (I/O) facilities for Cehich facilitates reading
and writing of values (no equivalent in Java).

3. Theusing namespace std allows imported 1/0 names to be accessed directly, wihoutqualification, like
Javaimport java.lang.x.

4. The routine headént main() is the default location to begin execution when an execatfild is called from a
shell. There is only onmain routine per program and it returns an integer code to itskimgpshell.

5. Like Java, the curly braces, .. }, denote the start and end of a block of code, and this blodkeidbdy of
routinemain.

6. The statementout << "Hel | o Worl d! " << endl prints the text'Hel | o Wor | d! " to standard output, called
cout, which is usually the terminal screen (liBgstem.out in Java). Think of the information as cascading from
right to left, as indicated by the chevrous, to be printed orcout. endl ensures the stringHel | o Wor | d!
appears on its own line, lik&intln in Java.

7. Thereturn 0 returns zero to the shell indicating successful completiotihe program; non-zero usually indi-
cates an error. In many C/CH programs, routireén does not return a value; in this case, an implicit value of 0
is returned. Only routinmain has this special property. The routiset, like JavaSystem.exit, can also be used
to stop a program at any location and return a code to the ingaell, e.g.exit(0).

1 The exception is a block, denoted with which forms a complete statement so it is not terminatel wisemicolon (see Sectidd.1, p. 18).

C+ Tutorial 7

= Compile the first program with the commargi+ hello.C

= If the compilation produces error messages, read the messagl make appropriate changes to the code.
=- Once the program compiles properly, run it by issuing theroamd./a.out in the shell.

= Edit file hello.C.

= Remove %< end!l” from the output statemenb(t not the semicolor).

=- Compile and run the program again.

Notice the difference in output between the two programs.

8 Declaration

A declaration defines new variables and types in a programiablas and types may be named or be anonymous.

8.1 Identifier

An identifier is a name used to refer to a variable or type. Ui&ea, identifiers in C/C+ may be arbitrarily long, and
the first character must be a letter (upper or lower case) anderscore “”; characters other than the first can be any
of the previous, or a digit. An identifier sase-sensitiva.e., an identifier written in upper-case is not the samenas o

in lower case or in mixed case (both upper and lower case)mpbes of valid identifiers are:

VeryLongVariableName Pagel Income_ Tax _75
Some identifiers are reserved as they denote keywords (gehambold font in this document); see a C+ text-
book for a complete list of reserved identifiers. (Identgibeginning with an underscore are reserved for the C+
implementation.)
8.2 Basic Types

The basic types in C/C+ are like those in Java:

Java C/C+
boolean || bool?
char char/wchar_t
byte char/wchar_t | integral types
int int
float float floating-point types
double double

aC requires<stdbool.h>

Unlike Java, C/C+ treathar andwchar_t (for unicode characters) as an integral type for computatitava types
short andlong are created using type qualifiers (see Secgigh

8.3 Variable Declaration

A simple variable declaration in C/C+ is the same as in Jawgipe followed by a list of identifiers.
| Java/C/C+ |

char a, b, c, d;
int i, j, k;
double x, vy, z;
Declarations in C/C+ can be global to a source file (unlika)leand local to a block forming a routine body or any of
its containing (nested) blocks. Declarations can be intexdhamong executable statements within a block; variable
names can be reused in nested blocks, i.e., fader(idg names in a containing block. All global variables of the
basic types are zero-initialized, while similar local \adnfies in a block areotinitialized. Unlike Java, C/C+ do not
check for uninitialized variablesA C/C+ declaration may have an initializing assignmentépt for astruct /class
member, see Sectigh6.3 p. 13):

int i =3;

= Edit file hello.C.

2Using the-wall and-0 compilation flags (see Sectiah p.4) does check for uninitialized variablesga+, which are not optimized away.

8 C+ Tutorial

=- Enter the following program:

#include <iostream> /I Ex01
using namespace std;
bool x; /I global declaration in a source file
int main () {
short y; /I local (automatic) declaration in block
cout << "x:" << x << endl; /I use of global variable
cout << "y:" <<y << endl /I use of local variable
int z; /I local declaration anywhere in block
cout << "z:" << z << endl; /I use of local variable
{
long vy; /I nested local redeclaration, hide previous y
cout << "y:" <<y << endl; // use of local variable
double z; /I nested local redeclaration, hide previous z

cout << "z:" << z << endl; // use of local variable

}

= Compile with compilation flagswall -O and run the program.

Since variableg andz are uninitialized, the values printed may not be zero anddceary each time the program is
run. Why is variable initialized?

8.4 1 Type Qualifier

C/C+ provide only two basic integral typelsar andint; other integral types, like Jawhort andlong, are generated
using type qualifiers. Like Java, C/C+ provide signed (ipeesinegative) integral types; unlike Java, C/C+ also
provide unsigned (positive only) integral types.

| integral types | range |
signed char orchar at least127 to 127
unsigned char at least0 to 255
signed short int or short at least-32767 t0 32767
unsigned short int or unsigned short at least0 to 65535
signed int orint at least-32767 t0 32767
unsigned int at least0 to 65535
signed long int orlong at least-2147483647 t0 2147483647
unsigned long int or unsigned long at least0 to 4294967295
signed long long int orlong long , g++ only at least9223372036854775807 t0 9223372036854775807
unsigned long long int or unsigned long long , g++ | at leasto to 18446744073709551615

Unlike Java, the range of values fot is machine specific; usually 2 bytes for 16-bit computers 4riu/tes for
32/64-bit computers. Similarlyong is usually 4 bytes for 16-bit computers and 8 bytes for 3Ziad¢omputers.

Like Java, C/CH support constant variables that are vanitee/read-only. Java uses type qualifieal, while
C/C+ use type qualifietonst , applicable in any variable declaration context. Unlikea)aa C/C+const identifier
mustbe assigned a value on its declaration (or through a constisideclaration); the value can be the result of a
runtime expression:

| Java I C/C+ |
final short x = 3,vy; constshortint x=3,y=x+7;
y=X+7; disallowed
final char ¢ ="x"; constchar ¢ ="x";

A constant variable can appear in read-only contexts dftginitialized.

= Editfile hello.C
=- Enter the following program:

C+ Tutorial 9

#include <iostream> /I Ex02
using namespace std;
int main () {
long int x;
x = 10000000000;
unsigned short int y = -1;
constint z=y + 3;
z = 4;
}
= Compile the program.
= Read the messages from the compiler and do not proceed antilyderstand why each is generated.

8.5 Constants

Java and C/C+ share almost all the same constants for tietppss (except for unsigned). designatecconstant
indicates its type with suffixeg/l for long, LL/Il for long long,U/u for unsigned, ané@/f for float. Unlike Java, there is
no D/d suffix for double constants. Amndesignatecdhtegral constant (octal/decimal/hexadecimal) is thellasiant
type that holds the value, and a floating-point constant tgmédouble .

boolean| false, true
decimal | 123, -456L, 789u, 21UL
octal, prefixd | 0144, -045l, 0223U, 067ULL
hexadecimal, prefigX or 0x | Oxfe, -0X1fL, Ox11leU, OxffUL
floating-point| .1, 1., -1., -7.3E3, -6.6e-2F useE/e for exponent
character, single charactera’, '\ "’
string, multi-character "abc","\"\""

Care must be taken to use the right kind of constant with tjiet Kind of character or string variable. Like Java,
an escape sequence for special characters can appear abgrrafrtimes in a string constant. An escape sequence
starts with a backslash, The most common escape sequences are (see a C+ textbothdis):

W\ backslash

"\, "\"" | single and double quote

"\t’,’\n" | tab, newline

O’ zero, string termination character

"\ 000’ octal character value, wheoeo is up to 3 octal digits

"\ xhh’ hexadecimal character value, whéteis up to 2 hexadecimal digits (not in Java)

Unlike Java, a C/C+- string constant is implicitly termiediwith a character containing the value 0. For example,

[R R}

the string" abc" is actually 4 characters composed af,’b’,’c¢’,’\ 0'. (The reason is given in Sectid’, p.31)

= Editfile hello.C
=- Make the following modification to routin®@ain:
int main () { /I Ex03
cout << 12 << endl << 014 << endl << 0Oxc << endl;
cout << 1234.5 << endl << 1.2345e3 << endl;
cout <<'w << '\’ <<\ << " <<\ n’ << endl;
cout << "WA\"\ "\ n" << endl;

}

=- Compile and run the program.
= Check the output carefully.

Some of the printed values are different from the constamtiseé output statements. Sectid?.2, p. 25 explains how
to precisely control the format of printed values.

8.6 Type Constructor

A type constructor is a declaration that builds a more corpype from the basic types.

10 C+ Tutorial

constructor| Java I C/C+ |
enumeration| enum Colour { R, G, B} enum Colour{ R, G, B}
pointer any-type p;
reference| class-type r; any-type &r; (C+ only)
structure| class struct or class
array | int v[] = new int [10]; int v[10];
int m[][] = new int [10][10]; || int m[10][10];
type aliasing typedef char name[25];
name first, last;

Like Java, C/C+ usaame equivalenc® decide if two types are the same:

class T1 { class T2 { // identical structure
int i, j, k; int i, j, k;
double x, vy, z; double x, vy, z;

} }

T1tl = new T1();

T2 2 = t1; /I incompatible types

Here the typeg1 and T2 have identical structure (same fields in the same placeshdug different names so the
initialization of variable2 fails, even though technically it could work. Agliasis a different name for the same type,
so alias types are equivalent.

8.6.1 Enumeration

An enumerationis a type defining a set of named constants with only compayrigssignment and cast to integer
operations:

enum Names { John, Mary, Fred, Jane }; // declare type and its constants

Names name = Mary; // only assignment operation
The Java enumeration capabilities are more sophistichsedih C/C+. A C/C+ enumeration can only give names to
integral values, whereas a Java enumeration can give nameé®perations) to any value. Like Java, an enumeration
in C+ denotes a new type; in C an enumeration is an aliastforhe names in an enumeration are caledmerators
In Java, the enumerator names are contained in the scope efhtimeration and must always be qualified. In C/C+,
the enumerator names are contained in the scope where theemtion is declared and are not qualified; hence,
enumerator names must be unique in a declaration scopeJaiee the enumerators can be numbered explicitly.

= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /I Ex04
enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering
Day day = Sat; /I variable declaration, initialization
enum {Yes, No} vote = Yes; /I anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type and variable declaration, explicit numbering
colour = B; /I assignment

cout << "day:" << day <<" vote:" <<vote <<" colour:" << colour << endl;

}
=- Compile the program, run it, check the output, and make sowemnderstand it.

In C, the keywordenum must always be specified when declaring an enumerationblaria
enum Day day = Sat; // repeat “enum” on variable declaration

8.6.2 Pointer/Reference

A pointer'references an indirect (versus direct) mechanism to access a typsios. To understand pointers/references
itis necessary to know thatl variables have an address in memory, éng.x =5,y = 7:

type int int

variable/value X 5 y 7

address 100 200

C+ Tutorial

11

The value of a pointer/reference is simply the address ofiahl@; access to this address is different depending on
whether it is a pointer or reference.
There are two basic pointer/reference operations:

1. referencing obtain the address of a variable; unary operator C+:

&x — 100
&y — 200

2. dereferencingretrieve the value at an address; unary operatoC+H-:

(&X) — %(100) — 5
(&y) — #(200) — 7

In addition, there is a special address no variable can releddhenull pointer (null in Java, 0 in C+).
A pointer/reference variable has as its value either the ongmddress of another variable (calliedlirection) or
the null pointer (or an undefined address if the pointer Wéeigs uninitialized):

pointer to int

int

5

100

pl 100
50
p2 200
60
p3 0
70

7

200

null pointer

&pl — 50

&p2 — 60

&p3 — 70
*(&pl) — 100
*(&p2) — 200
*(&p3) — 0
*(x(&pl)) — 5
((&p2)) — 7
*(x(&p3)) — error

A pointer/reference may point to the same memory addressather pointer/reference (dashed line). Also, derefer-
encing the null pointer is an error because no variable ixated at address O.

Explicit dereference is an operation usually associated avpointer:
x; /I value assignment

*P2 = «pl;
Pl = *p2 + 3;

y
X

y*3;

In the first expression, the value pointed to (i®/is assigned the value pointed to py, which is an indirect way
to performy = x. In the second expression, the value pointed t@bys assigned the value pointed to pg times
3, which is an indirect way to perform=y » 3. Note, the unary and binary use of operatdor deference and
multiplication, respectively. Address assignment doggequire dereferencing:

p2 = pi; /I address assignment

Here,p2 is assigned the same memory addregslage., p2 points atx; the values ok andy do not change.
When pointers are used frequently, having to perform eitgliereferencing can be tedious and error prone. For

example, in:
pl = p2 * 3;

/I implicit deference

it is unreasonabléo interpret this expression as is assigned the addressphtimes 3, because there is no multipli-
cation operation for address values and there may not bediintdger variable at memory locati@0. Instead, it
is reasonable to interpret this expression as the valudqibtn byp1 is assigned the value pointed to p¥ times 3,
as both pointers refer to integer variables and there is &ipfichtion operation for integers. A pointer that provéde
implicit dereferencing is geference However, implicit dereferencing generates an ambiguiuatgon for:

p2 = pl;

Should this expression perform address or value assignaetathow are both cases specified? Disambiguating this
expression is discussed next.
C provides only a pointer; C+ provides a pointer and a retstlireference; Java provides only a general reference.

1. C/C+ pointer: created using thaype-constructor, may point to any type (i.e., basic or objgpe) in any
storage location (i.e., global, stack or heap storage) narichplicit referencing or dereferencing.

= Edit file hello

.C

=- Make the following modification to routin®@ain:

12

C+ Tutorial

int main() { /I Ex05

int x=5y=7, /I basic type

int «pl, «p2; /I pointer to basic type

pl = &x; /I point to x, explicit referencing

p2 = &y; /I point to y, explicit referencing

pl = p2; /| address assignment

*p2 = xpl; /I value assignment, explicit dereferencing

*pl = xp2 « 3; /I explicit dereferencing

cout << "pl:" << pl <<" xpl:" << «pl << end|;
cout << "p2:" << p2 << " xp2:" << «p2 << end|;

}

=- Compile the program, run it, check the output, and make soweupnderstand it.
Type qualifiers (see Sectidh4, p. 8) can be used to modify pointer types:

const short int w = 25; b

const short int *p3 = &w; P3 300 L 25 Jw

int « const p4 = &x; reeo o N

(int &p4 = x;) p41 100 1 ' 5 X

const long int z = 37, e . e .

const long int x const p5 =&z, p5! 308 ™ 37 Lz
Lo - - - - - - - - — — _ _ _

Pointerp3 may point at anyonst short int

variable. In this case, the pointer can change to point &reifit

variables, but the value of the variables cannot be chartgedigh the pointer because eacleaast . Pointer
p4 may only point at variable. In this case, the pointer cannot change to point at a differariable because it
is const , but the value of the variable can be changed through theagrofPointeip5 may only point at variable
z. In this case, the pointer cannot change to point at a differ@riable because it ionst , and the value of the
variablez cannot be changed through the pointer because it isats .

2. C+ reference: created using théype-constructor, may point to any type (i.e., basic or otijgpe) in any stor-
age location (i.e., global, stack or heap storage), résttito a constant pointer to user created (non-temporary/-
non-constant) storage, and always has implicit derefangnc

= Edit file hello.C

=- Make the following modification to routin®@ain:

int main() { /I Ex06
int x,y; /I basic type
int &1 = x, &2 =y; /I restricted reference to basic type
rl =5; /I initialize x, implicit dereferencing
=171, /I initialize y, implicit dereferencing
r2 =ri,; /I value assignment, implicit dereferencing
rl =r2 x3; /I implicit dereferencing

cout << "&r1:" << &rl << " ri1:" <<rl << endl;
cout << "&r2:" << &r2 << " r2:" << r2 << endl;

}

=- Compile the program, run it, check the output, and make soweunderstand it.
= Change the initialization aofl. to x + y and then t.
=- Compile the program for each change and explain the errosages

Due to the constant-pointer restriction, a C+ referenegisvalent to a Javéinal reference ok const pointer
with implicit dereferencing (see previous diagram). A Jesfg@rence can vary what it points to, but it can only
pointto objects in heap storage (see Seciigp. 26). The C+ constant-pointer restriction has two implicaio

e A C+reference must be initialized at the point of declanatiNote, the initializing expression has implicit

referencing because an addresaligaysrequired; hence, putting aabefore the initializing expression is
an error because there is implicitly one there:
int &1 = &x; // error, unnecessary & before x

e There is no need for address assignment after a C+ refedmutaration because the address cannot

C+ Tutorial 13

change. Whereas, a Java reference always intergretsl as address assignment and provides no mech-
anism to perform value assignment between reference tipesjo assignment of the member values in
one object to the corresponding members in another.

Finally, the pointer/reference type-constructor in C/{G#ot distributed across the identifier ljg.g.:
int » p1, p2; // only plis a pointer, p2 is an integer, should be int «pl, *p2;
int & rx, ry; // only rx is a reference, ry is an integer, should be int &rx, &ry;
8.6.3 Aggregation (structure/array)

Like Java, C+- is object-oriented, but it does not subsdilibe Java notion that everything is a basic type or an abject
Instead, aggregation is performed by structures and agrasygscomputation is performed by routines; an object type
is the composition of a structure and routines (see Sedfipp. 34). As a consequence, in CH, a routine can exist
without being embedded instruct /class (see Sectiori4, p. 29).

Structure is a mechanism to group together heterogeneous valuesdingl(nested) structures:

| Java I C/CH |
class foo { struct foo {
public int i = 3; int i; // no initialization
... Il more fields ... I more members
} }; /I semi-colon terminated

The components of a structure are calleémberd in C+. Like Java, all members of a structure are accessible
(public) by default (excluding Jaygackage visibility). Unlike Java, a structure member cannot bectiseinitialized
(see Sectio®.7and 17.3 p.37), and a structure is terminated with a semicolon.

As for enumerations, a structure can be defined and instaectsred in a single statement.

= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /I ExQ7
struct complex { double r, i; }; /I type declaration
complex a, b; /I variable declaration
struct { double r, i; } c, d; /I anonymous type and variable declaration
struct Complex { double r, i; } e; /I type and variable declaration
a.r = 3.0; /I . (period) is used for member selection and decimal point
a.i = 2.1;
b =a; /I copies both members r and i
cout << "a=" << ar<<"+" <<ai<<"i" <<endl
cout << "b=" << br<<"+" << bi<<"i" << end|
c=a d=b;e=a; /I assignments allowed ?
}

= Compile the program.
= While the messages from the compiler are cryptic, why arg gle@erated (think name equivalence for types)?
= Comment-out the last line, and compile and run the program.

In C, the keywordstruct must always be specified when declaring a structure variable
struct complex a, b; /I repeat “struct” on variable declaration

Recursive types, like lists and trees, can be defined usioggp in a structure:

struct node {
/I data members
node xlink; /I pointer to another node

h

Array is a mechanism to group together homogeneous values. Tdeiai€/C+ is primitive in comparison to Java
because dimension information is not stored with an arrggabb Therefore, there is no equivalent to Javersth
member for arraysno subscript checkingand no array assignment. (See Secfdnp. 51 for the C+-vector type,

3Java subdivides members into fields (data) and methodsr{esiit

14 C+ Tutorial

which is similar to a Java array.) Unlike Java, array vagabh C/C+ can have dimensions specified on declaration
and all the array elements are implicitly allocated:

int x[10]; /I int X[] = new int[10]
int y[10][20]; /I int y[][] = new int[10][20]
Be careful not to write (explained in Sectiéh
int b[10, 20]; /I not int b[10][20]
C+ only supports a compile-time dimension valget allows a runtime expression.
int r, c;
cin >>r >> c; /I input dimensions (reading is explained later)
int array][r]; /I dynamic dimension, g++ only
int matrix[r][c]; /I dynamic dimension, g++ only

Like Java, an array is subscripted starting at 0.

= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /I Ex08
char c1[3], c2[3];
cl[0] ='T; cl[1l] =’0"; c1[2] = 'm; /I initialization
c2[2] = c1]0]; c2[1] = c1[1]; c2[0] = c1[2]; /| array copy

cout << ¢1[0] << c1[1] << c1[2] << end];
cout << ¢2[0] << c2[1] << c2[2] << end];

int v[3];
v[0] = 93; v[1] = 67; V[2] = 77; I/ initialization
cout << v[0] << " " << V[1] << " " << V[2] << " " << V[3] << end];

}

=- Compile the program, runit, and check the output.
Notice the invalid subscript[3], does not generate an error and prints an undefined value!

8.6.4 1« Type Aliasing

Java provides no mechanism to rename types; C/CH prowjipktef
typedef short int shrintl; // shrintl => short int
typedef shrintl shrint2; /I shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrintl s1; /I implicitly rewritten as: short int s1
shrint2 s2; /I implicitly rewritten as: short int s2
shrint3 s3; /I implicitly rewritten as: short int s3

All possible combinations of assignments are allowed antbagariables1, s2 ands3, because they have the same
type name $hort int ” (see “name equivalence” in Secti@m®b, p. 9).

8.7 pa Type-Constructor Constant

enumeration| enumerators

pointer 0 or NULL indicates a null pointer
structure struct { double r,i;}c={3.0,2.1}
array int v3]={1,2,3}

C/C+ use0 to initialize pointers versusull in Java. Certain system include-files define the preprocess@ble
NULL aso0 (see Sectiod 1, p.21).
Structure and array initialization can only occur as para declaration. d++ allows type-constructor constants
in executable statements, see Secfidn p.17.) Values in the initialization list are placed into a vatibtarting at
the beginning of the structure or array, but not all the masifleéements have to be initialized. A nested structure or
multidimensional array is initialized by creating corresding nesting levels using braces:
struct {int i; struct { double r,i;}s;}d={1, {3.0,21}} / nested structure initialization
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array initialization

String constants can be used as a shorthand array initighee:
char s[6] = "abcde"; implicitly rewrittenas char s[6]={’'a’, 'b’,’c’,’'d,’e’,’'\0" }

C+ Tutorial 15

When initializing, it is possible to leave out the first dins@m, and the compiler infers its value from the number of
constants in that dimension:

char s[] = "abcde"; / first dimension inferred as 6 (Why 67?)

int v[]={0,1, 2,3, 4}/ first dimension inferred as 5

int m[][3] = {{93, 67, 72}, {77, 81, 86} }; /I first dimension inferred as 2

= Editfile hello.C
=- Make the following modification to routin®@ain:
int main() { /I Ex09
char n[] =" Tont;
int m[][2] = { {93, 67}, {77, 81} };
struct complex { double r, i;} ¢ ={3.4} // not all members initialized
cout << n[0] << n[1] << n[2] << end];
cout << m[0][0] << " " << m[O][1] << " " << m[1][0] << " " << m[1][1] << end];
cout << c.r << " " << c.i << endl;

}

=- Compile the program, runit, and check the output.

9 Expression

| Java I C/C+ | priority
unary ., (), [], call . =>, (), [1, call, dynamic_cast high
cast,+, -, |, ~, new cast,+, -, !, ~, &, *, new, delete, sizeof
binary|, /, % * 1, %
+, - +, -
bit shift| <<, >>, >>> << >>
<, <=, >, >=, instanceof <, <=, >, >=
== I= == I=
& &
exclusive-or» A
I I
&& &&
[[
=, +=, =, AT, [, %, <<=, >>=) >35> &=, M=) ||| E, =, -3, S, =, %=, <<=, >>=, &=, M=) =
, low

Like algebra, both Java and C/C+ prioritize operators artbpm the operations in an expression from highest to
lowest priority. If two operators have the same prioritgyttare done left to right, except for una®y, and assignment
operators, which associate right to left. In Java, the ooflevaluation of subexpressions of an operator and argument
evaluation is from left to right; however, in C/C+, it is yegified:

(i+j)«(k+j) /I either + may be done first
(i=j)y+(j=1); /I either = may be done first
g(i)+f(k)+h(j); /I g, f, or h may be called in any order

f(p++, p++, p++); /I arguments may be evaluated in any order

Both the referencing (address-of), and dereference, operators (see Secti@6.2 p. 10) do not exist in Java
because access to storage is restricted. Note, it is pedsillletermine the address of any variable in any storage
context, e.g.&x is the address of, &s.d is the address of membaerin structures, and&v[5] is the address of array
elementv[5].

The arrow operator>, is unique to C/C+ and is an anomaly among programming lagest It exists solely
because the priority of the selection operatdis'incorrectly higher than the dereference operatyrso «p.f executes
as«(p.f) instead of(xp).f. Rather than correct this mistake, the speetabperator exists to perform a dereference and
member selection in the correct order, ipxf is implicitly rewritten ag(xp).f.

= Editfile hello.C
=- Make the following modification to routin®@ain:

16 C+ Tutorial

int main() { /I Ex10
struct node { int val; node «link; };
node x = { 5, NULL }, y = {3, & }, *n = &y;

cout << n->val << endl; /I print first node
n = n->link; /I n = (xn).link, advance to next node
cout << n->val << endl; /I print second node

}

=- Compile the program, runit, and check the output (drawingtupe of the linked list is helpful).

The pseudo-routinsizeof does not exist in Java because it is related to explicit gioraanagement. It returns
the number of bytes for a type or variable:

long int i;
sizeof (long int); Il type, at least 4
sizeof (i); /I variable, at least 4

Thesizeof a pointer (type or variable) is the size of the pointer on faaticular computer and not the size of the type
the pointer references.

= Editfile hello.C
=- Make the following modification to routin®@ain:
int main() { /I Ex11
struct node { int val; node «link; };
node x = { 5, NULL }, y = {3, & }, *n = &y;
cout << sizeof (node) << " " << sizeof (x) << " " << sizeof (n) << " " << sizeof (xn) << endl;
cout << sizeof (" abc") << endl;

}

=- Compile the program, runit, and check the output.

The bit-shift operatorss< (left), and>> (right), are identical to those in Java. (Notice, the biftsiperators are
overloading with the input and output operators in C+.) yTaee used to shift bits in integral variables left and right.
Shifting left is defined to be equivalent to multiplying byrpdulus the variable’s size; shifting right is equivalemt t
dividing by 2 if the integer is unsigned or positive, and ufitterd otherwise. For example,<< 3 shifts the value 1, 3
bits left, giving 8, while8 >> 3, shifts the value 8, 3 bits right, giving 1. The Jaze> operator does not exist in C/C+
and handles shifting right for positiand negative values.

Like Java, assignment in C/C+ is an operator, which is udefucascade assignmett initialize multiple vari-
ables of the same type to a common value:

a=b =c=0; / cascade assignment

X=y=2z+4
Other uses of assignment in an expression are discouragaddgechanging variables during the evaluation of an
expression can cause unknown side-effects. Except foadasassignment, good programming practice is to have
only one assignment in an expression on the left-hand side,dne side-effect after an expression is evaluated.
Finally, unlike Java, C/C+ allows any expression to apjsaa statement:

3 jri (i+])x(k+]) sin(x)

Other assignment operators, suchhas+= rhs, are implicitly rewritten as:
temp = &(lhs); xtemp = «temp + rhs;

Hence, the left-hand sids, is evaluated only once:

v[rand() % 5] += 1; /I only calls random once
virand() % 5] =v[rand() % 5] + 1; // calls random twice

The first expression increments a random element of the,amtaije the second increments a random value of the
array, and assigns the incremented value to a random andhgyatifferent element of the array.

The comma expression is a series of expressions separatedriogas; the expressions are evaluated left to right
with the value of the rightmost expression returned as theltref the comma expression. The comma expression
allows multiple expressions to be evaluated in a contexrevbely a single expression is allowed (see pafe Note,
the earlier dimension problem witfi10, 20] (see pagé4) actually means[20] becausdo0, 20 is a comma expression
not a dimension list. The same problem occurs with subsngatsb[3, 4] means[4], the 4th row of the matrix.

C+ Tutorial 17

This tutorial strongly discourages the general use of theement/decrement operatersand-- even though both
are standard idioms in Java and C/C+ (see e Having a special operator to increment/decrement by sne i
largely superfluous and is an anomaly among programmingikages. It is more general to use= 1 rather thari++
because the former can be trivially changed to add any anamhthe latter cannot.

9.1 Conversion

Conversion is transforming a value from one type to anoyyss,twhich can be performed implicitly or explicitly (see
Sectionl17.3.2 p. 39). Conversions are divided into two kinds:

e wideningconversion, no information is lost:

char — shortint — longint — double
"\ x7’ 7 7 7.000000000000000

e narrowingconversion, information can be lost:

double — longint — shortint — char
(707707707777 777 77777 12241 "\ xdl’

Java only supports implicit widening conversions; C/Ctpmart both implicit widening and narrowing conversions.
Clearly, implicit narrowing conversions can cause proldesach as:

int i;

double r;

i=r=3.5; /I value of r?
r=i=3.5; /I value of r?

In both expressions,is assigned the valug because of the implicit conversion of floating-point to geg butr is
assigned.5 in the first expression arglo in the second because its value is first narrowegl aod then widened to
3.0. Be careful!

Like Java, C/C+ support explicit narrow conversions usherastoperator. Due to potential loss of information,
itis good programming practice in C/C+ to use an explicito&ing conversion rather than an implicit one:

int i;

double x,vy;

i = (int) x; /I explicit narrowing conversion

i=(int) x / (int) y; /I explicit narrowing conversions to get integer division
i=(int)(x /y); /I alternative technique

C/C+ supports casting among the basic types and user défipesl (see Sectioh?, p. 34).

= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /I Ex12
char c;
short int si;
long int Ii;
double d;
d=li=si=c="\x41"; /I implicit widening conversions
cout << (int)c << " " <<si<< " " << li<<" " << d << endl;
c=si=li=d=77777.77777777777; /I implicit narrowing conversions
cout << (int)c << " " <<si<<" " << li<<" " << d << endl;

}

=- Compile the program, run it, check the output for anomahes, make sure you understand it.

The cast (int)” of variablec forcesc’s value to be printed as an integer and not a character. (ifying the program
without the cast.) Again, some of the printed values arethffit from the constants in the assignment statements.
As mentioned in Sectio8.7, p. 14, g++ has a cast extension allowing construction of structuresaray constants

in executable statements not just declarations:

void rtn(const int m[2][3]);

struct complex { double r, i; } c;

rtn((int [2][3])1{ {93, 67, 72}, {77, 81, 86} }); /I g++ only

¢ = (complex){ 2.1, 3.4 }; /I g++ only

In both cases, a cast is used to indicate the meaning andwstud the constant.

18 C+ Tutorial

10 Control Structure

| Java I C/CH+
block | {intermixed decls/stmts } { intermixed decls/stmts }
selection| if (bool-exprl) stmtl if (cond-exprl) stmtl
else if (bool-expr2) stmt2 else if (cond-expr2) stmt2
else stmtn else stmtn
switch (integral-expr) { switch (integral-expr) {
case cl: stmtl; break; case cl: stmtl; break;
case cn: stmtn; break; case cn: stmtn; break;
default : stmtO; default : stmtO;
} }
looping | while (bool-expr) stmt while (cond-expr) stmt
do stmt while (bool-expr) ; do stmt while (cond-expr) ;
for (init-expr; bool-expr; incr-expr) stmt || for (init-expr; cond-expr; incr-expr) stmt
transfer| break [label] break
continue [label] continue
goto label
return [expr] return [expr]
label | label : stmt label : stmt
10.1 Block

A blockis a series of statements bracketed by brace$, which can be nested one within another. (As opposed to
a comma expression, see pade which only contains expressions.) A block serves two psego bracket several
statements into a single statement and introduce locahdggimns. For control structures requiring a statemenvoalg
programming practice is to always use a block as it allowg @asertion and removal of statements to or from that
block. Putting local declarations precisely where theyreseded can help reduce declaration clutter at the beginning
of an outer block; however, it can also make locating themendifficult.

10.2 < Conditional

Java uses a “boolean” expression in control structurescénates conditional transfer based on the result of the ex-
pression, e.g., iif, while , do, andfor control structures. C/C+ uses a “conditional” expressiothe same context,
which is evaluated and implicitly tested for not equal toozere., cond-expr = expr != 0. Boolean expressions are
converted to O fofalse and 1 fortrue before comparison to zero, e.g.:

if (x>y)... implicitly rewrittenas if ((x>y)!=0) ...
As a result, other expressions are allowed in a conditigiahg the following C/C+ idiom:
if (x)... implicitly rewrittenas if ((x)!=0) ...
while (x) ... while ((x)!=0) ...
Watch for the common mistake in a conditional:
if (x=y)... implicitly rewrittenas if ((x=y)!'=0) ...

which assigng to x and testx != 0.
=- Explain the one situation in Java where this mistake alsarsc¢Think about the type of the operands.)

10.3 Selection

The C/C+ selection statemenifsandswitch , are the same as in Java, except for the difference betwesadmand
conditional expression (see Sectib.?).
An if statement selectively executes one of two alternativescbas the result of a comparison, e.g.:
if (x>y)max = x;
else max =vy;

C+ Tutorial 19

Like Java, C/C+ has theangling elseproblem of correctly associating afse clause with its matching in nested
if statements. For example, reward the WIDGET salespersorsaldanore than $10,000 worth of WIDGETS and
dock the pay of those who sold less than $5,000.

| Dangling Else | Fix Using Null Else | Fix Using Blocks |

if (sales < 10000) if (sales < 10000) if (sales < 10000) {

if (sales < 5000) if (sales < 5000) if (sales <5000) {

income -= penalty; income -= penalty; income -= penalty;
else /I incorrect match!!! else ; // null statement

income += bonus; else } else {

income += bonus; income += bonus;
}

The solution using blocks is preferred because it allowg addition or removal of statements.

A switch statement selectively executes oné\ohlternatives based on matching an integral value with aseffi
case clauses, e.g.:

switch (day) { /I integral expression
case MON: case TUE: case WED: case THU: // list of case values
cout << " PROGRAM' << endl;
break; /I exit switch
case FRI:
wallet += pay;

case SAT:
cout << "PARTY" << endl;
wallet -= party;

break; /I exit switch
case SUN:

cout << "REST" << endl;

break; /I exit switch
default :

cerr << "ERROR' << endl;

exit(-1); /| terminate program

}

Once a case clause is matched, its statements are exeaqutiezhrarol continues to theextstatement. Like Java, a
break statement is used at the end of a case clause to exivited statement. (It is a common error to forget the
break.) If no case clause is matched and theredsfault clause, its statements are executed, and control contioues
thenextstatement; otherwise, thitch statement does nothing. Only one label is allowed for eash clause but

a list of case clauses is possible.

10.4 Conditional Expression Evaluation

Conditional expression evaluation is used to perform abetialuation of expressions. These are control structures
not true operators because both operands may not be evhlaatir real operators.

| Symbol | Meaning |

&& short-circuit logical and: only evaluates the right operé#rihe left operand is true
[short-circuit logical or: only evaluates the right operdinthe left operand is false
?: if statement in an expression: only evaluates one of tworadte/e parts of an expressian

Conditional&& and|| (often referred to ashort-circuit), are similar to logica& and| for boolean operands, i.e., both
produce a logical conjunctive or disjunctive result. Hoem\conditionalk& and|| evaluate operands lazily until a
result is determined, short-circuiting the evaluationthfes operands, while logic& and| evaluate operands eagerly,
evaluating both operands. In many situations with boolg@rands, the corresponding operators are interchangeable

= Editfile hello.C
=- Make the following modification to routin®@ain:

20 C+ Tutorial

int main() { /I Ex13
if ((cout<<"a",true) | (cout<<"b", true)) cout << endl; // note, comma expression
if ((cout<<"a",true) || (cout<<"b", true)) cout << endl; // note, comma expression

}

=- Compile the program, run it, check the output, and make sowemnderstand it.

Conditional?: evaluates one of two expressions, and returns the resuileevaluated expression, i.e., it acts like
anif statement in an expression, eaps2 =(a<0?-a:a) + 2. Like the comma expression, this operator is used
infrequently.

= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /Il Ex14
int w=1;
cout << "There " << (w>1?"are ""is ") <<w<<" widget" << (w>1?"s":"") << end]
w = 2;
cout << "There " << (w>1?"are ""is ") <<w<<" widget" << (w>1?"s":"") << end]
}

=- Compile the program and run it.

10.5 Looping

The C/C+ looping statements are the same as in Java, exaeftef difference between boolean and conditional
expression (see Sectid®.2, p. 18). A while statement executes its statement zero or more times, siatement
executes its statement one or more times, afwl gtatement is a specializedhile statement for iterating using an
index. As for Java, beware of accidental infinite loops:

X =0; X =0;
while (x < 5); /I extra semicolon! while (x < 5) // missing block
X=X+ 1 Y=y + X
X=X+ 1;

= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /I Ex15
int val = 1; /I initialize
while (val) { /I conditional
cout << val << endl;
val <<= 1; /I shifting left 1 bit position
}
}

=- Compile the program and run it.
=- Explain the last value printed and why the loop stopped. r{Kloif the internal representation of integer values
and how a conditional works.)

Thefor statement is a specializedhile statement with an index:
init-expr;
while (cond-expr) { for (init-expr; cond-expr; incr-expr) {
stmt; stmt;
incr-expr;
} }
There are many ways to use tioe statement to construct iteration:
for (i=1;i<=10;i+=1){ /I count up
// loop 10 times
} /] i has the value 11 on exit
for (i=10;1<=ii-=1){ /I count down
// loop 10 times
} /I i has the value 0 on exit

C+ Tutorial 21

for (p =1; p!= NULL; p = p->link) { /I pointer index
/Il loop through list structure
} /I p has the value NULL on exit
for (i=1,p=1i<=10 & p!= NULL; i +=1, p = p->link) { // 2 indices
/l loop until 10th node or end of list encountered
}
The last example illustrates the use of the comma expregsampagéd. 6) to initialize and increment 2 indices in a
context where normally only a single expression is allowéthile the loop control variable can be modified in the
loop body, it is discouraged. A default valuetafe is inserted if no conditional is specified fofa statement.
for (;;) /I rewritten as: for (; true ;)

= Editfile hello.C
=- Make the following modification to routin®@ain:
int main() { /I Ex16
int val;
for (val = 1; val; val <<=1) {
cout << val << endl;
}
}

=- Compile the program and run it.

A common example of short-circuit expression evaluati@e (Sectioril0.4 p. 19) is a linear search of an array
for a key, where the loop index indicates the position of tbgik the array if the key is found, or the array size plus 1
if not found:

for (i=0;i<size && list[i] '= key; i +=1); // no loop body
The short-circui&& only evaluates the second operand of the conditional if teedperand is true, otherwise there is
a potential subscript error when the key is not fouind:equal tosize on the last loop iteration, and if both operands
are evaluated, it results iist[size], which is one past the end of the array (subscripts haverorgio). Therefore,
using logical& would be incorrect because it evaluates both operands. \Wingyvabout array subscript problems,
even when C/C+ does not perform subscript checking? Thsones that the invalid subscript can result in other
errors, such as addressing outside the program’s memoighvghcalled asegment fault

Finally, thecontinue /break statements can be used in all iteration constructs to causediate advancement to
the next loop iteration or termination of the loop construespectively. The previous linear search using shoctidir
&& can be rewritten using loop exits.

for (i=0;;i+=1){ /I infinite loop, conditional defaults to “true”
if (1==size) break; /I exit if not found
if (list[i] == key) break; /I exit if found

}

Since the loop exits whearns equal tasize a subscript error cannot occur. Unlike Java, C/C+ doesupgart labelled
continue /break for transferring among multiple levels of nested contralistures.
Thegoto statement is not discussed (see a C+ textbook), but it itasito the Java labellebreak andcontinue .

11 w Preprocessor

The preprocessor manipulates the text of the prodrafarecompilation (see Sectio®.2, p. 6). Hence, the program
you see is not what the compiler sees; the compiler sees tlygggmnafter it is changed by the preprocessor. Occa-
sionally it is necessary to use tHeflag (see Sectiod, p.4) to print the output of the preprocessor to understand why
the compiler is generating error messages.

The three most commonly used preprocessor facilities avstisution, file inclusion, and conditional inclusion
(see a C+ textbook for other preprocessor facilities). 3ymax of a preprocessor statement is @ the start of a
line, followed by optional spaces, and then a preprocesateraentno semi-coloh

11.1 Substitution

The#define statement declares a preprocessor variable, and its wlidhe text after the name up to the end of line.
= Editfile hello.C

22 C+ Tutorial

=- Enter the following programirfcluding comments:
#define Integer int Il Ex17
#define begin {
#define end }
#define Pl 3.14159

#define X 1 +
#define Y Fred =
Integer main() begin /I same as: int main() {
Integer x = 3; /I same as: int X = 3;
Y X Pl /I same as: Fred = 1 + 3.14159;
XY Pl /I same as: 1 + Fred = 3.14159;
end /| same as: }

= Compile the program with the commangk+ -E hello.C
= Look carefully at the output.

The initial lines starting with# inform the compiler of the source-file name and other infdfameso the compiler can
generate meaningful error messages. Then there is an epgatly where the preprocessgalefine s used to be; since
preprocessor statements are not understood by the conthgrare removed. Finally, the preprocessed statements
appear, without comments, which the compiler sees and desapi

As the example shows, the preprocessor can transform tihedyagax of a C/C+ program (discouraged). It is
also possible to make mistakes that are difficult to locateabse what you see is not what the compiler sees. Finally,
itis possible to define and initialize preprocessor vagalftom the compilation command (see Sectop. 4):

g++ -Dxxx=2 -Dyyy ... source-filel.C

which creates two preprocessor: variableg which is initialized to 2, anglyy, which is uninitialized; both variables
exist in the compilation of each source file in the compilatommand. Finally, a C/C+ compiler may have predefined
preprocessor-variables identifying the kind of hardwdwe ¢compiler is generating code for, e.g., variafblgpu is
assigned the kind of CPU.
Traditionally, textual substitution was used to give nattesonstants; this is better done usigst declarations

(final in Java):

const double Pl = 3.14159;

const int arraySize = 100;

#define can also be used to declare macros with parameters, whiemeéxpline during compilation, textually sub-
stituting arguments for parameters, e.g.:

#define MAX(a, b) ((a>Db)?a:b)

z = MAX(X, ¥); /I implicitly rewritten as: z = (X >y) ? X : y)

However, this capability is better handled ibline routines in C/C+ (see a C+ textbook for details).

11.2 File Inclusion

File inclusion is used to copy a block of text from a file into &8 program; an included file may contain anything.
In effect, file inclusion is a shorthand for retyping the same into a program. Most commonly, an include file
contains preprocessor and C/C+ declarations for libranyines used in a program. All included text goes through
every compilation step, i.e., preprocessor, compiler, @wa does implicit inclusion by matching class names with
file names iINCLASSPATH directories, and extracting and including necessary dztitems.

The#include statement specifies the file to be included. C convention theesuffix “h” for include files con-
taining C declarations; C+ convention drops the suffiX for its standard libraries and uses special file names for
equivalent C files (e.gcstdio versusstdio.h).

#include "user.h"
#include <system.h> /I C style
#include <system> /I C++ style

The file name can be enclosed'ih or <>. " " means the preprocessor starts looking for the file in the shraetory
as the file being compiled, then it looks in the system incldidectories <> means the preprocessor only looks in the
system include directories. WitJ++, it is possible to determine which system include direet®dre searched.

= Enter the commandy++ -v Hello.C
= Look carefully at the output for something similar to:

C+ Tutorial 23

#include <...> search starts here:
/usr/include/c++/3.3
fusr/include/c++/3.3/i486-linux
/usr/include/c++/3.3/backward
/usr/local/include
Justr/lib/gcc-lib/i486-linux/3.3.5/include
fusr/include

The list of UNIX path names are the system directories in Wwhiie compiler searched for files.
The system include filegnits.h andunistd.h contains many usefuldefine s, like the null pointer constanuLL.

= Editfile: /usr/include/limits.h
= Look carefully at the file. While not all of the file may make sennotice some of the usefitdefine s.

11.3 Conditional Inclusion

The preprocessor has énstatement, which may be nested, to conditionally add/rencade from a program. The
conditional of thef uses the same relational and logical operators as C/C+héwiperands can contain only integer
or character values (no float or string values).

#define DEBUG 0 /I declare and initialize preprocessor variable
#if DEBUG == /I level 1 debugging

include "debugl.h"

#elif DEBUG == /I level 2 debugging

include "debug2.h"

#else /I non-debugging code

#endif

By changing the value of the preprocessor varidiBUG, different parts of the program can be included into the
compilation.
A simple way to exclude code (comment-out) is to hawecanditional because implies false.
#if O
/I code commented out
#endif
Itis also possible to check if a preprocessor variable is)ddfor not defined by usingifdef or #ifndef , respectively:

#ifndef __ MYDEFS_H__ /I if not defined
#define _ MYDEFS_H__ 1 // make it so

#endif
This technique is used in atinclude file to ensure its contents are only expanded into a program (eee Sectiop4,
p. 56). Notice the difference between checking if a preprocesadable is defined and checking the value of the

variable. The former capability does not exist in most pamgming languages, i.e., checking if a variable is declared
before trying to use it.

12 Input/Output

Input/Output (I/0) is divided into two kinds: formatted andformatted. Formatted I/O transfers data with implicit
conversion of internal values to/from human-readable foconversion is based on the type of variables and for-
mat codes. Unformatted I/O transfers data without conearse.g., internal integer and floating-point values. Only
formatted 1/O is discussed as it is the most common (see aektbbdok for unformatted 1/0O).

C+ provides one kind of formatted I/O library and C proviéesther. While C+ can use both libraries, only the
C+ library is discussed in detail (see a C textbook for @llbrary).

24 C+ Tutorial

| Java | C | C+ |
File, Scanner FILE ifstream
PrintStream FILE ofstream
Scanner in = new Scanner(new File("f")) || fopen("f","r"); ifstream in("f");
PrintStream out = new PrintStream(" g") out = fopen("g","wW') ofstream out("g")
in.close() close(in) scope ends
out.close() close(out) scope ends
nextint() fscanf(in, "9@", &i) in>>T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, " %", &c)
next() fscanf(in, "9%", &s)
hasNext() feof(in) in.eof()
hasNextT() fscanf return value in.fail()
in.clear()

skip(" regexp) fscanf(in, " % [regex@") | in.ignore(n, c)
out.print(String) fprintf(out, " %" , i) out<< T

fprintf(out, "% ", f)

fprintf(out, " %", c)

fprintf(out, " %" , s)

Formatted 1/0 occurs to/fromstream filén both Java and C+. Java has three implicit stream filesagsslystem:
in, out anderr, which are automatically declared and opened; similary,l&s equivalent stream filesin, cout and
cerr, which are automatically declared and opened. (C s&#s, stdout andstderr.) As in previous examples, the
system include-filéostream provides all necessary declarations to use streantfilesout andcerr. Like Java streams
in andout, C+ streantin normally reads input from the keyboard (unless redirectethb shell), andout writes to
the terminal screen (unless redirected by the shell). litiadd streamcerr writes to the terminal screen even when
cout outputis being redirected from the shetkror and debugging messages should always be writteartdecause
it is normally not redirected by the shell, but more impottgrit is unbuffered so output appears immediately.

To use stream files other than the 3 implicit ones requireladeg each fileobject

#include <fstream> // required for explicit stream-file declarations

ifstream infile("nyi nfile"); /I input file

ofstream outfile(" nyout file"); /I output file
The include filefstream is necessary for declaring stream files. Like Java, eachsfiteeclared and the declaration
opensthe file making it accessible through the variable name, @fije andoutfile are used for file access. After
declaration, it is possible to check for successful opeoirayfile using the stream routirial, e.g.,infile.fail(), which
returnstrue if the open failed andalse otherwise (see Figurg p. 35). Like Java, the type of the filéfstream or
ofstream, indicates whether the file can be read or written. The caiorebetween the file name in the program and
the actual operating-system file-name is done at the déiclaraHence,infile reads from filenyi nfi | e andoutfile
writes to filenyout fi | e, where both files are located in the directory where the @ogs run.

The C+ 1/O library uses overloading (see Sectiénp. 44) with operators<< and>> to perform 1/O (also used
for bit shift, see pagé®6). C I/O library usegscanf(outfile,. . .) andfprintf(infile,. . .), which have short formscanf(...)
andprintf(. . .) for stdin andstdout. Parameters in C are always passed by value (see Séetifyp. 30), so arguments
to fscanf must be preceded with (except arrays) so they can be changed. Both I/O librariesaacade multiple I/O
operations, i.e., input or output multiple values in a stngkpression.

12.1 Input

Java formatted input requiregplicit specification of character conversion for all basic typésgiaScanner attached

to an input file. C/C+ formatted input hasplicit character conversion for all basic types and is extensiblesér-
defined types. Valid input values for a stream file are C/CHstants3, 3.5e-1, etc., separated by whitespace, except
for characters and character strings, which are not in gudiefortunately, this exception precludes reading sfing
containing white spaces (see Sectidh p. 31 for reading entire lines). As mentioned, the operator is overloaded

to work with different types of operands. The type of the @perindicates the kind of constant expected in the stream
file, e.g., an integer operand means an integer constanpected. Streamin starts reading where the lagh left

C+ Tutorial 25

off. When all the input values on the current line are readproceeds to the next line. Hence, the placement of input
values on lines of a file is often arbitrary.

Unlike Java, C/C+ must attempt to rebeforeend-of-file is set and can be tested for. End of file can be thetec
in two ways: cin andfscanf return0 andEOF when eof is reached, respectively; C+ memébefrand the C routine
feof return true when eof is reached.

Java I C | C+ |

import java.io.x; #include <stdio.h> #include <fstream>
import java.util.Scanner; FILE «in = fopen("f", "r"); ifstream in("f");
Scanner in = new Scanner(new File("f")); || FILE »out = fopen("g", "w'); ofstream out("g");
PrintStream out = new PrintStream("g"); ||int i, j; int i, j;
int i, J; for (5){ for () {
while (in.hasNext()) { fscanf(in, " %l%l" , &i, &); in >>i>>j;

i = in.nextInt(); j = in.nextInt(); if (feof(in)) break; if (in.eof()) break;

outprintin("i:" +i+" j:" +j); fprintf(out, "i: %l j: o\ n",iQ,j);| out<<"i:" <<i
} } <<"j:" << j<<end
in.close(); close(in); }
out.close(); close(out); /I infout closed implicitly

Note, there is no end-of-file character; end-of-file is theedigon of the physical end of a file. When reading from the
keyboard, a special indicator is required to cause the ghelbse the current input file marking its physical end. The
indicator, normally<ctrl>-d (press thectrl> andd keys simultaneously), is a signal to the shell awadread bycin.

= Editfile hello.C
=- Enter the following program:

#include <iostream> /I Ex18
using namespace std;
int main() {
int n;
for ()4
cout << "Enter a nunber: ";
cin >> n;
if (cin.eof()) break; /I eof ?
if (! cin.fail()) { /Il number ?
cout<< "n =" << n << endl;
} else {
cout << "Not a nunber. ";
cin.clear(); /I reset stream failure

cin.ignore(numeric_limits<int>::max(), '\ n’); // skip until newline
}
}

cout << endl;
}
=- Compile and run the program, entering some integer and mi@geér values.
= End the input and the program by enterkagri>-d

After reading, it is possible to check for a successful residgithe stream routintail, e.g.,cin.fail(), which returns
true if the read failed andhilse otherwise. After an unsuccessful read, a callitar() is necessary to reset the stream.
Theignore member skips either characters, e.gcin.ignore(5) or until a specified character, as above.

12.2 Output

Java output style converts values to strings, concatetiaes strings, and prints the final long string:
System.out.printin(i + " " +j); /I build a string and print it

Whereas, C/C+ output style supplies a list of formats atideg and the output operation generates the strings:
cout << i<<" " << j<<end] /I print each string as it is formed

As such, there is no implicit conversion from the basic tyjoestring in C+ (but one can be constructed). While it is

possible to use the Java string-concatenation style initdstan incorrect style.

26 C+ Tutorial

Many examples of output have already been presented, ststhesdion here is on how to control the format of out-
put (and input). The main mechanism to control input/outprmat is viamanipulatorswhich appear in a cascaded
input/output expression and apply to all constants/véemafter it (except fosetw). The following manipulators are
available by includingomanip:

oct print values in octal

dec print values in decimal

hex print values in hexadecimal

left / right (default) print values with padding after / before values

boolapha / noboolapha (default) | print bool values as false/true instead of 0/1
showbase / noshowbase (default) | print values with / without prefix O for octal & Ox for hex

fixed (default) /scientific print float-point values without / with exponent

setprecision(N) print fraction of float-point values in maximum of N columns
setw(N) print NEXT VALUE ONLY in minimum of N columns

setfill’ ch') padding character before/after value within a fixed widefédlt blank)
endl flush current output buffer and start a new line (output only)

skipws (default) /noskipws skip whitespace characters (input only)

Note,endl is not the same &4 n’ ; only the former is guaranteed to flush the buffer for intévamoutput.

= Editfile hello.C
=- Enter the following program:
#include <iostream> /I Ex19
#include <iomanip> /I manipulators
using namespace std;
int main() {
bool b = true;
int i = 27;
double d = 3.5;
char c="a’;
char s[] = "abc";
cout << showbase << right << boolalpha << setprecision(2)
<<" b:" <<b

<< " " << setw(3) << i

<< " d:" << fixed << setw(7) << d
<< " " <<

<" c:" << ¢

<" d:" << d

<<" 5:" <<'s

<<oct<< " i:" << setw(b) << i
<< " " <<

<< endl;

}
=- Compile and run the program.
=- Try some of the other manipulators to vary the format of thgpou e.g., changeght to left andfixed to scientific,
add some other manipulators in different places, etc.

Notice manipulatosetw only applies to the next value in the 1/O expression whiledtieer manipulators apply to all
values after it and even to the next I/O expression for a fipetiream file.

13 = Dynamic Storage Management

C+ operatonew is like Javanew; both take a type operand and return a pointer to new storfatattype allocated
in an area called theeap Unlike Java, C/C+ allovall types to be dynamically allocated not just object types, e.g
new int . However, C/C+ do not havgarbage collectiorof dynamically allocated storage after the variables uging
no longer need it; therefore, there is an additional dynataicage-management operatiorfiree storage. C+ provides
one kind of dynamic storage-management operatiovg/delete and C provides anothenalloc/free (see a textbook
for the C form).Do not mix the two forms in a C+ program.

C+ Tutorial

27
| Java I CIC+ |
class foo { struct foo {
char a, b, c; char a, b, c;
} %
class test {

public static void main(String[] args) { || int main() {
foo f = new foo(); foo «f = new foo(); // optional parenthesis
fc="R; f>c="R:
} delete f; /I explicitly free storage
} }
In C+, the parenthesis after the type name inridwe operation are optional. As well, once storage is no longedad
it must be explicitly deleted as there is no implicit garbagkection. After storage is deleted, it should not be used:

delete f;
f>c='S"; /I result of dereference is undefined
Unlike Java, aggregate types can be allocated on the stackptal variables of a block:
| Java I CH |
{ Il basic & reference types only stack heap { /1 all types stack heap
int i; i int i i
double d; d double d; d
ObjType obj = new ObjType(); ObjType obj; .
oD obj
} /I obj garbage collected } /1 obj implicitly deleted :

Because stack allocation is more efficient than heap allwtand does not require explicit storage management, use

it whenever possible; henciere is significantly less dynamic allocation in CHin general, dynamic allocation in
C+ should be used only when:

e avariable’s storage must outlive the block in which it iDalited:

ObjType #rtn(...) {
ObjType *0bj = new ObjType();
... Il use obj

return obj; // storage outlives block
} /I obj deleted later

The storage for variablebj is passedutsideof the block associated with a call tm, and hence, its storage
must outlive the block in which it is created.

e when each element of an array of objects needs initializgtee Sectioi7.3 p. 37):
ObjType =v[10]; // array of object pointers
for (int i=0;i<10;i+=1){
V[i] = new ObjType(i); /| each element has different initialization
}

Declaration of a pointer to an array is complex in C/Q3ay special attentionBecause C/C+ do not maintain
array-size information, the dimension value for an arraiyn{sv is often unspecified:

int «arr = new int [10]; // think arr[], pointer to an array with 10 elements
The Java notation:
int arr[] = new int [10];

cannot be used because arr[] is actually rewritten adnt arr[N], whereN is the size of the initializer value (see
Section8.7, p. 14). Note, the lack of dimension information for an array metirese is no subscript checking.
As well, no dimension information results in the followinghbiguity:

no size

int xarr = new int [10]; // think arr[] arr sizeini 40|5|7|3|5|9|8/8|0|4|6
bytes"—-

int »var = new int; var

28 C+ Tutorial

Here, variablesar andarr have the same type but one is an array, which poses a problemaeheting a dynamically
allocated array. To solve the problem, special syntax id is€elistinguish these cases:

delete var; /I single element

delete [] arr; // multiple elements

The second syntax indicates the variable has multiple eiesr{put unknown number and size of dimensions) and the
total array-size is stored with the array for deletion psgs

=- What do you think happens if you forget to gliivhen deleting an array?

Never do this:
delete [] arr, var; /| => (delete [] arr), var;

which is an incorrect use of a comma expressia@njs not deleted.

= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /I Ex20

int i, size;

cin >> size; /I read array dimension

int vals[size]; Il g++ only

for (1=0;i<size;i+=1){ /I read values
cin >> valsi];

}

for (i=size-1;,0<=i;i-=1){ /I print values in reverse
cout << vals[i] <<" ";

}

cout << endl;
}
which reads a set of data values of the f&® 1 2 3 4, where the first value 5 indicates the number of values
inthe set 0, 1, 2, 3, 4. The program then prints the valuestngvierse order from thatread in: 43210
=- Compile and test the program.
= Change the program to dynamically allocate and free thg amstead of using thg++ variable dimension size.

Declaration of a pointer to a matrix is equally complex in 8/CThe matrix declaratioimt *x[5] could mean:

X

(W N [P [0 [©]
e e B B

On the left is an array of 5 pointers to an array of unknown nemab integers, and the right is a pointer to a matrix
of unknown number of rows with 5 columns of integers. The tjoass whether the or [] is applied first. In fact,
dimension has higher priority (as for subscript, see Se@j@. 15), so the declaration is interpretedias («(x[5]))
(left example), where parenthesis indicate the orderingetype qualifiers. In general, to read a C/C+ declaration,
parenthesize all the type qualifiers, and read from insidg@#renthesis outwards, starting with the variable name and
ending with the type name on the left:

int *(m1[5]); /| array of 5 pointers to array of unknown number of integers

int (xm2)[5]; /I pointer to a matrix of unknown number of rows and 5 columns

= Write out in words the meaning of this declaratidnmt: («(x[5]))[10].
Answeslabajul 0T Jo Aeire 01 sia1ulod G Jo Aele

Unfortunately, only the left example (above) of declaringairix can be generalized to allow a dynamically-sized
matrix; the right example cannot be generalized becaussettend dimension must be a constant.

= Editfile hello.C
=- Make the following modification to routin®@ain:

C+ Tutorial 29

int main() { /I Ex21
int «m[5]; /I'5 rows
for (int r=0;r<5;r+=1){
m[r] = new int [4]; /I 4 columns per row
for (int c=0;c<4;c+=1){ /I initialize matrix
mr][c] =r + c;
}
}
for (int r=0;r<5;r+=1){ /I print matrix
for (int c=0;c<4;c+=1){
cout << mr]c] << ", ";
}
cout << endl;
}
for (int r=0;r<5;r+=1){
delete [] m[r]; /I delete each row
}
} /I implicitly delete array “m”

=- Compile and test the program.

14 < Routine

As mentioned in SectioB.6.3 p.13, C+ provides aggregation and routines separately (vemubined in an object),
e.g., routinemain is not defined in a type. The general form of a routine is:

L€ [CH |
void p(or T f(// parameters | void p(or T f(// parameters
Tl a /I pass by value T1 a, /I pass by value
T2 &b, /I pass by reference
T3c=3 /I optional, default value
))
{ /I routine body { /I routine body
/I intermixed decls/stmts /I intermixed decls/stmts
} }

Like Java, C/C+ divides routines intgpagocedureor afunctionbased on the existence of a return type at the beginning
of the routine. A procedure is a routine not returning a valo@icated with a return type abid :
void r(...){...}

A routine with no parameters is specified with parameté in C and an empty parameter listin C+:

..r(vod) {...} /I C: no parameters
1) {0} /I C++: no parameters

Like Java, routines in C/C+ cannot be nested in other restiso all routine names are at the same scope level in
a source file. Therefore, the only routine scope is betweeglibbal scope of the source file and a routine body:

int i =1; /I global scope
int main() {

int i=2; /I local scope, hides previous variable i
}

= Editfile hello.C
=- Make the following modification to routin®@ain:
int i=3; /I Ex22
int main() {
cout << i << endl;
int i = 4;
cout << i << endl;

}
=- Compile the program, run it, check the output, and make sowenderstand it.

30 C+ Tutorial

Like Java, a C/C+ procedure terminates when either contred off the end of the routine body orreturn
statement is executed; a function terminates whertuan statement is executed.

return ; /I procedure, no value returned
return a + b; /I function, value returned is the expression a+b

A return statement can appear anywhere in a routine body, and neutéplrn statements are possible.
= Editfile hello.C
=- Make the following modification to routin®@ain:

int main() { /I Ex23
return 7; /I return value to the shell

}
=- Compile the program and run it.
= Print the return value with the commaacho $status from thecsh/tcsh shell orecho $? from thesh/bash shell.
=- Try returning a different return value and check that thdlsheeives it.

While it is possible to return the address of a local variable

int «rtn() {
int n;
return &n;
}

the use of the returned pointer is undefined because thedtmralge fon is implicitly freed when the routine returns.

14.1 Argument/Parameter Passing

The two most common forms gfarameter passingre value and reference. iralue passingthe parameter is
initialized by the argument (often by a bit-wise copy). reference passinghe parameter is a reference to the
argument and is initialized to the argument’s address.

pass by value pass by reference

argument
copy address-of (&)
parameter

In Java and C, parameter passing is by value, i.e., basic tgpe@ object references are copied. In CH, parameter
passing is by value or reference depending on the type ofdteneter. For C/C+, when a routine is called, all the
expressions in the argument list are evaluatedny order(see Sectior®, p. 15), then the routine’s local variables,
including parameters, are allocated on the stack. For vaduameters, each argument-expression result is used to
initialize the corresponding parametevhich may involve an implicit conversior-or reference parameters, each
argument-expression result is referenced (address ofhésmdddress is assigned to the corresponding parameter.

= Editfile hello.C
=- Enter the following program:
#include <iostream> /I Ex24
using namespace std;
struct complex { double r, i; };
void r(int i, int &ri, complex c, complex &rc) {
n=i=3;
rc = ¢ = (complex){ 3.0, 3.0 };

}
int main() {

intil=1,1i2=2;

complex c1 ={1.0,10}, c2={20, 20}

r(i1, i2, c1, c2);

cout << il <<" " <<i2 << " " << endl

<<clr<<" " <<cli<<" " << c2r<<" " << c2.i << endl;

}

=- Compile the program and run it.
=- Explain why the arguments passed by value are not changéié arvpuments passed by reference are changed.

C+ Tutorial 31

= Change the routine call t§ i1, i1+i2, c1, c2).
=- Compile the program and explain the error message (see088&d.2 p.10).

Value passing is most efficient for basic and small strustbexause the values are accessed directly in the routine
(versus indirectly through a reference). Reference pgssimost efficient for large structures and arrays becauwse th
values are not duplicated in the routine.

Type qualifiers can be used to create read-only refereneaneters so the corresponding argument is guaranteed
not to be changed by the routine, which provides the effigieipass by reference for large variables, the security of
pass by value because the argument cannot change, and @ioperary variables and constants as arguments:

void r(const int &i, const complex &c, const int v[5]) {
i=3; /I assignments disallowed, read only!
c.r = 3.0;
v[0] = 3;
}
r(i+ j, (complex){ 1.0, 7.0 }, (int [5]{ 3, 2, 7, 9, 0 }); // allow temporary variables and constants
The reasotv is not declared a reference parameter is discussed in 8éetia

Unlike Java, a C+ parameter can havaedault value which is passed as the argument value if no argument is
specified at the call site. In a routine, once a parameter dagaalt value, all parameters to the right of it must have
default values. In a call, once an argument is omitted forrarpater with a default value, no more arguments can be
specified to the right of it.

void r(int i, double g, char ¢ =’'+’, double h=35){...}

r(1,2.0,'b",93); /I maximum arguments
r(1,2.0,'b") /I h defaults to 3.5
r(1, 2.0); /I ¢ defaults to '+, h defaults to 3.5

14.2 Array Parameter

Like Java, array copy is unsupported (see Sedfi@np. 9) so arrays cannot be passed by value only by reference.
Therefore, all array parameters are implicitly referenammeters, and hence, the reason why parameieove does

not have a reference symbol. Interestingly, a parametdadion can specify the first dimension with a dimension
value,[10] (where the dimension is ignored), an empty dimension[ljsor a pointery; the declarations within each
row are equivalent:

double sum(double v[5]); double sum(double v[]); double sum(double v);
double sum(double «m[5]); double sum(double +m[]); double sum(double *m);

Good programming practice uses the middle form becauseadtlglindicates the variable is going to be subscripted.
Note, only a formal (parameter) declaration can use theediptension; an actual declaration must wse
double sum(double v[]) { // formal declaration
double =xcv; /I actual declaration, think cv[]
cVv =V, /I address assignment
Given the above declarations, it is possible to write a r@ito add up the elements of an arbitrary-sized array or
matrix by passing the dimensions explicitly:

double sum(int cols, double Vv[]) { double sum(int rows, int cols, double «m[]) {
int total = 0.0; int total = 0.0;
for (int c=0;c<cols;c+=1) for (int r=0;r<rows;r+=1)

total += v[c]; for (int c=0;c<cols;c+=1)

return total; total += mlr][c];

} return total;

}
15 String

Strings are supported in C by a combination of language &mdrif facilities. The language facility ensures all string
constants are terminated with a character valie. For example, the string constdribc” is actually an array of
the 4 characters:a’, 'b’, 'c¢’, and’\ 0’, which occupies 4 bytes of storage. The zero value at the Eadstying
constant is a sentinel value used by the C string routinescité the end of a character string by searching through

32 C+ Tutorial

the individual characters fok 0’ . Unfortunately, this approach suffers from three drawkadkrst, a string cannot
contain a character with the valueo’ as that character immediately marks the end of the stringor8k string
operations needing the length of a string must perform atisearch for the charactero’, which is expensive for
long strings. Third, the management of variable-sizethggiis the programmer’s responsibility, making complex
string operations a storage management problem.

Like Java, C+ solves these problems by providirgriag type using a length member at the beginning of each
string and managing all of the storage for the variableess&tengs. Unlike Java, instances of the Gtring type are
not constant; values can change so a companion typ8stiikeBuffer in Java is unnecessary. While C+ can use both C
and C+ strings, only C+ strings are discussed (see a Caekfior C strings). The most important point to remember
about astring value is that it can vary in length dynamically, and powedpérations are available to manipulate the
characters of the string and search through thEmerefore, it is seldom necessary to iterate through theastiars of
a string variable.

JavaString methods|| C char [] routines| C+ string members |

strcpy, strncpy =
+, concat strcat, strncat +
compareTo strcmp, strncmp ==, 1=, <, <=, >, >=
length strlen length
charAt [1 [1
substring substr
replace replace
indexOf, lastindexOf || strstr find, rfind
strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of

All of the C+ string find members returstring::npos if a search is unsuccessful.

string a, b, c; /I declare string variables

cin >> c; /I read white-space delimited sequence of characters

getline(cin, ¢, '\ n"); /I read remaining characters until newline (newline is default)

cout << ¢ << endl; /I print string

a="abc"; /| set value, a is “abc”

b = a; /I copy value, b is “abc”

c=a+b; /I concatenate strings, c is “abcabc”

if (a==b) /I compare strings, lexigraphical ordering

string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; /I subscript, ch is 'b’, zero origin

c[4] ='x’; /I subscript, ¢ is “abcaxc”, must be character constant

string d = c.substr(2, 3); /I extract starting at position 2 (zero origin) for length 3, d is “cax”
c.replace(2, 1, d); /I replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is 3

p = c.rfind(" ax"); /I search for last occurrence of string “ax”, p is 5

p = c.find_first_of("aei ou"); // search for first vowel, p is O
p = c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is 1
p = c.find_last_of("aei ou"); /I search for last vowel, p is 5
p = c.find_last_not_of(" aei ou"); // search for last consonant (not vowel), p is 7

= Editfile hello.C
=- Enter the following program:

C+ Tutorial 33

#include <iostream> Il Ex25
#include <string>
using namespace std;
int main() {
string line, word;
string::size_type p, words = 0;

for (;;){ /I scan lines from a file
getline(cin, line); /I read entire line, but not newline
if (cin.eof()) break; /I end-of-file ?
line +='\n’; /I add newline character as sentinel character
for (;;){ /I scan words off line
p =line.find_first_not_of(" \t\n"); // find position of 1st non-whitespace character
if (p == string::npos) break; /I any characters left ?
line = line.substr(p); /I remove leading whitespace
p = line.find_first_of(" \t\n"); /I find position of 1st whitespace character
word = line.substr(0, p); /I extract word from start of line
words += 1; /I count word
line = line.substr(p); /I delete word from line
} 1l for
} 1l for
cout << "words: " << words << endl;

}

=- Examine the program to determine what it does.
= Compile the program and run it with the commané:out < hello.C
=- Check the results with the commangk -w hello.C

16 Shell Argument

Up to now, routinemain has been written without parameters. However, it actuadly twwo parameters, which are
passed as arguments when the executable file is invoked freshell. The shell takes the command line tokens and
transforms them into C/C+ arguments. The prototyperfain in this case is:

int main(int argc, char xargv[])

argc is the number of tokens in the shell command, including theenaf executable file. Because the executable
file-name is includedthe count is one greater than in Javargv is an array of pointers to the character strings that
make up the arguments. For example, if the executable isctallthe following way:

Ja.out -option infile.C outfile.C

the arguments tmain have the values:

argc =4

argv[0] ="./a.out\0" /I not included in Java

argv[l] = "-option\ 0"

argv2] ="infile. Q0"

argv[3] = "outfile.C 0"

argv[4] =0 /Il mark end of variable length list

Notice, the call ofmain by the shell is inconsistent with a normal routine call in 8/@ecause the arguments are
passed as strings not values of or references to variabksced;la shell argument 682" may have to converted to
an integer.

Like Java, routinenain usually begins by checkirgrgc for shell arguments. But unlike Java, the C/C+ arguments
are processed in the rangev[1] throughargv[argc-1], i.e., starting one greater than Java.

34 C+ Tutorial

| Java I C/C+ |
class prog {
public static void main(String[] args) { || int main(int argc, char »=argv[]) {
switch (args.length) { switch (argc) {
case O: ... /I no args case 1: ... /I no args
break; break;
case 1: ... args[0] ... // 1 arg case 2:...args[l] .../ 1 arg
break; break;
case ... /I others args case ... /I others args
break; break;
default: ... // usage message default: ... // usage message
System.exit(-1); exit(-1);
} }

= Editfile hello.C
=- Enter the program in Figurg(b) but modify it so the input file is optional and defaultscio if unspecified.
=- Test your program to ensure it is correct.

17 Object

Object-oriented programming is not a new programming nathagy; it was developed in the mid-1960s by Dahl
and Nygaard and first implemented in a programming langualiedcSIMULA. The following is a short review of
the notion of an object.

Objects are based on the notion of a structure, used for iziggnogically related data (see Sectir6.3 p. 13):

| unorganized

| organized

int people_age[30];
bool people_sex[30];
char people_name[30][50];

struct person {
int age;
bool sex;
char name[50];

} people[30];

Notice, both code fragments create an identical amountfofrimtion; the difference is solely in the way the infor-
mation is organized (and laid out in memory). In essencefugtsire is irrelevant from the computer’s perspective
because the information and its manipulation is largelysdmme. Nevertheless, a structure is an important adminis-
trative tool for helping programmers organize informationeasier understanding and convenient manipulation in a

programming language.

The organizational capabilities of the structure are edtenby allowing routine members; instances of such a
structure areobjects Hence, the idea of associating routines with structurgbésbasis of objects. The power
behind objects is that each object provides both data andpitions necessary to manipulate that data in one self-
contained package. Note, a routine member is a constanheara#, cannot be assigned (e.g., likmast member).

The following compares the structure and object form for ptax numbers, containing a real and imaginary value.

| structure form

| object form

struct complex {
double re, im;

struct complex {
double re, im;

h double abs() {

double abs(complex xThis) { // name “This” is arbitrary return sqrt(re x re + im = im);
return sqrt(This->re » This->re + This->im % This->im); }

} %

complex x; // structure complex x; /I object

abs(x); /I call abs x.abs(); /I call abs

Structurecomplex, on the right, now generates objects because

absolute value of a complex number (distance from the oyigin
What is the scope of a routine defined in a structure, i.e.t wdr@ables can a routine member access? A normal
C/C+ routine’s scope is the global scope of the source féde Section8.3, p. 7 and 14, p. 29). Interestingly, a

it has a romeéngber,abs, which calculates the

C+ Tutorial 35

/******************* /*******************
Read/Write integers Read/Write integers
java test input-file [output-file] Ja.out input-file [output-file]
Example usage: Example usage:
java test inputfile Ja.out inputfile
java test inputfile outputfile Ja.out inputfile outputfile
*******************/ *******************/
import java.io.x; #include <iostream> Il Ex26
import java.util.Scanner; #include <fstream>

using namespace std;
public class test {

public static void main(String [] args) { int main(int argc, char xargv[]) {
Scanner infile = null; istream «infile;
PrintStream outfile = new PrintStream(System.out); ostream xoutfile = &cout;
int i; int i;
switch (args.length) { switch (argc) {
case 2: case 3:
try {
outfile = new PrintStream(args[1]); outfile = new ofstream(argv[2]);
} catch (FileNotFoundException e) { if (outfile->fail()) {
System.out.printin(" Qpen failure \"" cerr << "Qpen failure \""
+ args[1] + "\""); << argv[2] << "\"" << end];
System.exit(-1); /I TERMINATE! exit(-1); /I TERMINATE!
} Yo
/I FALL THROUGH /I FALL THROUGH
case 1: case 2:
try {
infile = new Scanner(new File(args[0])); infile = new ifstream(argv[1]);
} catch (FileNotFoundException e) { if (infile->fail()) {
System.out.printin(" Qpen failure \"" cerr << "Qpen failure \""
+ args[0] + "\""); << argv[l] << "\"" << end];
System.exit(-1); /I TERMINATE! exit(-1); /I TERMINATE!
} Yo
break; break;
default : default :
System.out.println(cerr << "Usage: " << argv[0] <<
"Usage: input-file[output-file]") " input-file [output-file]" << end
System.exit(-1); /I TERMINATE! exit(-1); /I TERMINATE!
} }
while (infile.hasNext()) { for (5;){
i = infile.nextInt(); xinfile >> i;
if (infile->eof()) break;
outfile.printin(i); xoutfile << i;
}
infile.close(); delete infile;
outfile.close(); if (outfile != &cout) delete ouffile;
} }
}
(a) Java (b) C+

Figure 1: Processing Shell Arguments

36 C+ Tutorial

structure also creates a scope, and therefore, a routindenezan access the structure members. In other words,
scope rules allow the body abs, in the right example, to refer to membetsandim, plus any other members in
the global scope. A simple model for understanding scopsrthat each routine member is implicitly pulled out of
the structure and rewritten as a routine that takes thetseias an explicit parameter, as in the left example above.
As well, all implicit references to members of the structare rewritten to explicit references to members of the
parameter, as in the body albs on the left. In fact, C+ provides this implicit parameterabgh the keywordhis ,
which is available in each routine member. So except for yinésstic differences, the two forms are identical.

How isabs called? Normally a routine is invoked likibs(x). However, becauseabs is a member in a structure,
it must be accessed like other members, using member selextabs(). This form of routine call is one of the first
peculiarities of objects, and has been used already wittoffijects, e.g.cin.eof(). The next question is why does
abs have no arguments in the call; where daés get a parameter to calculate a result? The answer is thedimpli
parameterabs can make references to variablesandim by virtue of the fact that it is nested in structuwmmplex.
Hence, the calk.abs() is invoked in the context of objegt so memberse andim of x are accessed #bs. This form
of supplying parameters to a routine is the second peciyliafiobjects. Once these two peculiarities are mastered,
objects are straightforward to use and understand.

=- Editfile complex.C (Note the name change for the source file.)
=- Enter the following program:
#include <iostream> Il Ex27
#include <cmath> /I needed to use routine sqrt (square root)
using namespace std;
struct complex {
double re, im; /I real and imaginary Cartesian coordinates
double abs() { return sqrt(re = re +im «im); }

%

int main() {
complex x ={3.0,5.2} y={-91,74}
cout << "x:" << x.ore << "+" << x.im <<"i" << endl;
cout << "y:" <<yre <<"+" <<yim<<"i" << endl
cout << "xd:" << x.abs() << endl;
cout << "yd:" << y.abs() << endl;

}

=- Compile and run the program.
=- Change routinabs to be:

double abs() { return sqrt(this ->re * this ->re + this->im « this ->im); }
=- Compile and run the program.

The change tabs illustrates the hidden parameter to all routine membersthadact that the type of the implicit
parametethis is a pointer to the structure instance, requiring operatéo access member values. Like Java, use of
the implicit parametethis is seldom necessary in C+.
The typecomplex needs additional arithmetic operations, like addition:
struct complex {
double re, im;
double abs() { return sqrt(re = re + im = im); }
complex add(complex ¢) {
complex sum = { re + c.re, im + c.im };
return sum,;

%
To sumx andy, write x.add(y). Because addition is a binary operatiadd needs a parameter as well as the implicit
context in which it executes. ladd, the members of the implicit operanx, are added to the explicit ones of the
parametery, and a new complex value is returned.
17.1 < Operator Members

The previous syntax for addingmplex values does not look like adding integer or floating-pointiea, where the
built-in operator is used. In C+, itis possible to use operator symbols fotinetnames:

C+ Tutorial 37

struct complex {

complex operator +(complex ¢) {
complex sum = { re + c.re, im + c.im };
return sum;

%
The addition routine is now called, andx andy can be added by.operator +(y) or y.operator +(x), which is only
slightly better. In fact, C+ also allows a call to an operaiember to be written using infix notation, and rewrites this
notation back to member selection notation; thus,y is allowed and implicitly rewritten as.operator +(y).

= Edit file complex.C
=- Make the following modifications toomplex andmain:
struct complex { /I Ex28
double re, im;
double abs() { return sqrt(re = re + im = im); }
complex operator +(complex ¢) {
complex sum = { re + c.re, im + c.im };

return sum;

}
I3
int main() {

complex x ={3.0,5.2} y={-91,74}

cout << "x:" << x.ore << "+" << x.im <<"i" << endl;

cout << "y:" <<yre <<"+" <<y.im<<"i" << end|

complex sum = x +vy;

cout << "sum " << sum.re << "+" << sum.im << "i" << endl;
}

=- Compile and run the program.

17.2 Nesting

C+ supports syntactic nesting of object types, but unlévathe nesting does not imply scoping
struct foo {

int g;
intr..){...}
struct bar { /I nested object type
int s(...){g=3;r(..);} /I references to g and r fall
%

%
In effect, C+ flattens structure scoping. As a result, tiieremces in routine to membersgy andr in foo fail because
there is no scope relationship between typpsandfoo. Because nested syntax is allowed but there is no scoping, it
is discouraged except for controlling visibility for typésee Sectio23, p.55), such as:

struct foo {
enum Colour { R, G, B }; /I nested type

%

foo::Colour colour = foo::R;
The enumeratioColour is nested irfoo to control visibility, and references to it outside the abjeust be qualified
with “foo::”. Note, the new type operator:* for the qualification. Unlike Java, the C+ selection operd.”, e.g.,
foo.Colour, is inappropriate because it requires an object instanta type.

17.3 Constructor

A constructoris a special member used to perfomnitialization after object allocation to ensure the object is in a
valid state before use. Constructors are called implicitljocal declaration of a variable, dynamic allocation of a
variable, and creation of a parameter variable for a rowitie Unlike Java, C+ does not initialize all object mensber

38 C+ Tutorial

to default values. When a C+ constructor executes, thetreantsr is responsible for all necessary initializing of it
members not already initialized via other constructorsaBse a constructor is a routine, arbitrary execution can be
performed (e.g., loops, routine calls, etc.) to perforniafization.

Like Java, the name of a constructor is unusual because itedoaded with the type name of the structure
in which it is defined. A constructor may have parameters lmaischot have a return type (not evesid). The
constructor without parameters is called trefault constructar

| Java I C+ |
class complex { struct complex {
double re, im; double re, im;
complex() {re = 0.; im =0.; } complex() { re = 0.; im = 0.; } // default constructor
. Il other fields and methods ... Il other members
g g
When present, the default constructor is implicitly calédtbr storage is allocated for a variable:
complex x;) o) complex x; x.complex();
complex »y = new complex; implicitly rewrittenas complex sy = new complex; y->complex();

When declaring a local object in C+, never put parenthesigi/oke the default constructor
complex x(); /I x is a routine taking no parameters and returning a complex

Once a constructor is specified, the old style structur&lization is disallowed:

complex x = { 3.2 }; /I disallowed
complex y = {3.2, 45 }; /I disallowed

Like Java, this form of initialization is replaced using deaded constructors with parameters:

struct complex {
double re, im;
complex() {re = 0.;im=0.; }
complex(double r) {re =r; im=0.}

complex(double r, double i){re=r,im=1i}
%
Unlike Java, constructor argument(s) can be specéitat a variable for local declarations:
complex x, y(1.0), z(6.1, 7.2); complex x; x.complex();

complex y; y.complex(1.0);

implicitly rewritten as
complex z; z.complex(6.1, 7.2);

This syntax is used in Sectial?, p. 23 for declaring stream files, e.dfstream infile(" nyinfile"). The more
familiar Java dynamic allocation is:

complex «x = new complex(); // parenthesis optional
complex xy = new complex(1.0);
complex xz = new complex(6.1, 7.2);
Unlike Java, a C+ constructor cannot be called explicitiyha start of another constructor, so constructor reusé mus
be done through a separate member:

| Java I C+ |
class foo { struct foo {
int i, j; int i, J;
void common(int p){i=p;j=1;}
foo() { this (2); } // explicit constructor call foo() { common(2); }
foo(int p){i=p;j=1;} foo(int p) { common(p); }
} %

17.3.1 Constant

Constructors can also be used to create object constdag:+l type-constructor constants in Sectigd, p.17:

C+ Tutorial 39

complex x, v, z;

x = complex(3.2); /I create complex constant with value 3.2+0.0i
y = x + complex(1.3, 7.2); /I create complex constant with value 1.3+7.2i
z = complex(2); /I 2 widened to 2.0, create complex constant with value 2.0+0.0i

In fact, the previous operaterfor complex (see pagé7) has to be changed because type-constructor constants are
disallowed for a type with constructors; the change is toausenplex constructor to create the return value:

complex operator +(complex ¢) {
return complex(re + c.re, im + c.im); // use constructor to create new complex value

}

17.3.2 Conversion

By default, constructors are used to perform implicit cosians (see Sectiohl, p. 17):

int i;

double d;

complex X, y;

X = 3.2; x = complex(3.2);

y =x + 1.3; y = x.operator +(complex(1.3));

y =X+ i implicitly rewritten as y = x.operator +(complex((double)i);
y =X +d; y = x.operator +(complex(d);

which is a powerful feature allowing built-in constants dpples to interact seamlessly with user-defined types. Note,
two implicit conversions are performed on variabie x + i: int to double and thendouble to complex. Implicit
conversion via a constructor is turned off by qualifying itexplicit :

struct complex {

explicit complex(double r) {re =r; im =0.;} // turn off implicit conversions
explicit complex(double r, double i) {re =r;im=1i;}

%

While implicit conversion allows built-in constants anghs to be used directly with user defined types, it fails for
commutative binary operators. For exam@e, + x, fails because it is conceptually rewritten(@%).operator +(x),
and there is no membebuble operator +(complex) in the built-in typedouble . To solve this problem, the operator
is moved out of the object type and made into a routine, whichatso be called in infixed form:

struct complex { ... }; // same as before, except operator + removed
complex operator +(complex a, complex b) { // 2 parameters
return complex(a.re + b.re, a.im + b.im);

}

X+ +(X, Y)

3.0 +x; T . +(complex(3.0), x)
X + 3.0 implicitly rewritten as +(x, complex(3.0))

The compiler first checks for an appropriate operator defindtie object, and if found, applies conversions only
on the second operand. If there is no appropriate operatbeinbject type, the compiler checks for an appropriate
routine (it is ambiguous to have both), and if found, apphgplicable conversions tooth operands. In general,
communicative binary operators should be written as regtto allow implicit conversion on both operands.

17.3.3 Copy

The constructor with aonst reference parameter to the object type, e.g.:

complex(const complex &c) { ...}
is called thecopy constructarand has special meaning for two important initializatiomtexts: declarations and
parameters. A declaration initialization:

complex y = x implicitly rewrittenas complex y; y.complex(x); // copy constructor

The use of operator=" in the declaration is misleading because it does not calb§signment operator but rather the
copy constructor. The value on the right-hand side of thigasgent is the argument to the copy constructor.
Similarly, each parameter of a routine is initialized usiing copy constructor. For example, given the declarations:

40 C+ Tutorial

complex foo(complex a, complex b);
complex X, y;

the callfoo(x, y) results in the following implicit action ifoo:

complex foo(complex a, complex b) {
a.complex(x); b.complex(y); // initialize parameters with arguments

If a copy constructor is not specified, an implicit one is gated that copies all the values from its parameter into the
object, i.e., bit-wise copy.

Why does C+ differentiate between copy and assignment2hiéocopy situation (and constructors in general),
after allocation, an object’s members contain undefinedes(unless a member has a constructor) and a constructor
initializes appropriate members. For assignmidists= rhs, the left-hand variable may contain values and assignment
only needs to copy a subset of values from the right-handbbai For example, if an object type has a member variable
to count the number of assignments, the counter is set tazergtialization and incremented on assignment. In most
languages, assignment means copy all the “bits” from onialviarto another, which is also the default behaviour in
C+; however, assignment in C+ can be redefined to seléctivedify the “bits” (see Sectio4, p. 56).

17.3.4 const Member

Unlike Java, a C/C+onst member of a structure must be initialized at the declaration
struct foo {
const int i;
Ix={3} /I const member must be initialized because it is write-once/read-only

As mentioned, this form of initialization is disallowed fobjects, and must be replaced with a constructor:
struct foo {
const int i;
foo() { i = 3; } // attempt to initialize const member
%
However, this fails because it is assignment not initialorg and aconst variable can only be initialized to ensure a
read does not occur before the initial write. Therefore, ecid syntax is used for initializingpnst members of an
objectbeforethe constructor is executed:

| Java I C+ |
class bar {} class bar {};
class foo { class foo {
final int i; const int i;
bar » const p; // explicit const pointer
final bar rp; bar &rp; /I implicit const reference
foo (bar b) { foo (bar b) : // syntax for initializing const members
i=3; i(3),
p(&b), /I explicit referencing
rp = b; rp(b)) { /I implicit referencing
} }
} %

In the example, membeis initialized to 3, anch andr are initialized to point at argumeht for the object’s lifetime.
In fact, this syntax can also be used to initialize monst members.

17.4 Destructor

A destructor(finalize in Java) is a special member used to perform uamligttion at object deallocatiowhich is only
necessary if an object changes its environmery., closing communication channels or files, freeingadyically
allocated storage, etc. A self-contained object, likm@aplex object, requires no destructor. (See Secfidnp. 56
for a version ofcomplex requiring a destructor.) There is only one destructor foobject type, and its name is the
character ~” followed by the type name (like a constructor), versus thgvkordfinalize in Java; a destructor has no
parameters nor return type (not ewerd):

C+ Tutorial 41

Java I C+
class foo { struct foo {
%i.n.alize() {...} :f(.)o() { ...}/l destructor
} %

A destructor is invoked immediatelyeforean object is deallocated, either implicitly at the end of ackl or
explicitly by adelete :

{ {
complex x, v; complex x; x.complex();
complex y; y.complex();
complex xz = new complex; complex xz = new complex; z->complex();
e implicitly rewritten as e
delete z; z->~complex(); delete z;

y.~complex(); x.~complex();
} /I deallocate local storage }

For local variables in a block, destructors are callegtirerseorder to constructors (independent of explitete).
A destructor is more common in C+ than a finalize in Java dtlegdack of garbage collection in C+-. If an object
type performs dynamic allocation of storage, it needs adestr to free the storage:
struct foo {
int «i; // think int i[]
foo(int size) { i = new int [size]; } // allocate dynamic sized array
~foo() { delete []i; } /I must free storage

%
Also, a destructor in C+ is invoked at a deterministic tirnk€k termination odelete), ensuring prompt cleanup of
the execution environment. In Javafiralize is invoked at a non-deterministic time during garbage ctib® ornot
at all, so cleanup of the execution environment is unknown.

18 < Forward Declaration

Most programming languages have the notiorbetlaration Before Us¢DBU), e.g., a variable declaration must
appear before its usage in a block:

{ i+=1; /I no prior declaration of i
int i; /I declaration after usage
}
While it is conceivable for a compiler to handle this sitoatiit makes other cases ambiguous:
int i;
{
i+=1; /I now which i should be used?
int i; /I declaration after usage
}

However, there are some cases where DBU can be allowed withaging ambiguity. C always requires DBU. C+
requires DBU in a block and among types but not within a typavaJnly requires DBU in a block, but not for
declarations in or among classes.

A language with DBU has a fundamental problem specifymgually recursiveeferencing:

void f() { // fcallsg
90); /I g is not defined and being used

}
void g() { // gcallsf

f0); /I f is defined and can be used

}

42 C+ Tutorial

The problem is that the compiler cannot type-check the aalin f to ensure the correct number and type of arguments
and that the return value is used correctly because thelatfinition of g, specifying the necessary type-checking
information, occurs after the call. Clearly, intercharggihe two routines does not solve the problem. The solution is
aforward declaratiorto introduce a routine’s type before its actual declaration

int f(int i, double); /l routine prototype: parameter names optional and no routine body

int f(int i, double d) { /I type repeated and checked with the prototype

}

The prototype parameter names in C/C+ are optional (bwtllysspecified for documentation reasons), and the actual
routine declaration repeats the routine type and the regeégpe must match the prototype.

= Editfile hello.C
=- Enter the following program:

#include <iostream> Il Ex29
using namespace std;
void g(int i); /I forward declaration with parameter name
void f(int i) {
cout << "f (" <<i<<")" << end|
if (1i>0)g(i-1); /I recursion
cout << "f (" <<i<<")" << endl
}
void g(int i) { /I check for match with prototype
cout << "g(" <<i<<")" << endl
if (1>0)f(i-21); /I recursion
cout << "g(" <<i<<")" << endl
}
int main () {
f(5)
cout << endl;
a(4);
}

=- Compile the program, runit, and check the output.
= Remove the forward declaration for
= Compile the program and read the message from the compiler.

Routine prototypes are also useful for organizing routin@ssource file, e.g., allowing theain routine to appear
first, and for separate compilation (see Sectidnp. 56):

void g(int); /I forward declarations without parameter names
void f(int);
int main() { /I appears first rather than last
f(5); /I actual declarations later
9(4);
void g(int i) {...} /I actual declarations

void f(int i){...}

Like Java, C+ does not require DBU for mutually-recursivetines within a type:

struct T {
void f(int i){...g(...); ...} /l gis not defined but it works!

void g(int i) {...f(...); ...}

= Editfile hello.C
=- Enter the following program:

C+ Tutorial 43

#include <iostream> /I Ex30
using namespace std;
struct T {
void f(int i) {
cout << "f (" <<i<<")" << endl
if(i>0)g(i-1); /I no forward declaration needed

cout << "f (" <<i<<")" << endl

}

void g(int i) {
cout << "g(" <<i<<")" << end|
if (i>0)f(i-1);
cout << "g(" <<i<<")" << end|

}
I3
int main() {

T x;

xf(5);

cout << endl;
} x.g(4);

=- Compile the program, runit, and check the output.
Unlike Java, C+ requires a forward declaration for mutuadicursive declarations among types:

| Java I C+ |
struct T2; /I forward declaration, no body
class T1 { struct T1 { /I T1 referencing T2
final T2 t2; T2 &t2; /I know about T2 from forward
T1(final T2 t2) { this .t2 = t2; } T1(T2 &t2) : t2(t2) {} // constructor initialize
void g(int i) {...t2f(...) ...} void g(int i) {...t2.f(...); ...}/ FAILSI
} %
class T2 { struct T2 { /I T2 referencing T1
final T1 t1 T1 &t1;
= new T1(this); T2() : t1(«this) {} // constructor initialize
void f(inti){...t1g(..) ...} void f(int i) {...t1g(..); ...}
} h

The forward declaration of2 allows the declaration of variabfetl::t2. Note, a forward declaration only introduces
the name of a type. Given just a type name, the only declarmfiossible are pointers/references to the type, which
only allocate storage for an address rather than an actjedtol®\n actual object declaration and usage requires the
object’s size and members so storage can be allocatedlizeti, and usages type-checked. As a result, the C+ usage
t2.f in T1::g fails because the information about typEs members is defined later.

= Itis possible to change the declaratioritaf:tl from T1 &t1 to T1 t1, i.e., from a reference to an actual object?

Java’s solution to this problemis to find the definitiorTafto obtain needed information (not DBU). C+'s solution
involves forward declarations and a syntactic trick (DBBixst, a member containing the non-DBU reference is
replaced by a forward declaration:

struct T1 { /I T1 referencing T2
/I as above
void g(int i); /I forward

%

and second, a syntactic trick allows the actual member tiefinio be placedfter both types are defined
void T1l:g(int i) {...t2.f(...); ...}

Now the compiler knows all the information about the typesedfy usage inT1:g. Note, the trick use of qualified
namesT1:g to specify this is actually a member logically declaredrinbut physically located after the types (also
see SectioR24, p.56).

= Editfile hello.C

44 C+ Tutorial

=- Enter the following program:

#include <iostream> /I Ex31
using namespace std;
struct T2; /I forward declaration, no body
struct T1 { /I T1 referencing T2
T2 &t2; /I know about T2 from forward
TL(T2 &2) 1 t2(t2) {¢ /I constructor initialize
void g(int i); /I forward declaration
h
struct T2 { /I T2 referencing T1
T1 t1;
T2() : t1(«this) {3 /I constructor initialize
void f(int i) {

cout << "T2::f(" <<i<<")" << endl
if (I>0)tlg(i-1);
cout << "T2::f(" <<i<<")" << endl

}
%
void T1:g(int i) { /I placed after both structure declarations
cout << "Tl::g(" <<i<<")" << endl
if (i>0)t2f(i-1)
cout << "TLl::g(" <<i<<")" << end
}
int main() {
T2 12;
t2.f(5);
cout << endl;
T1t1(t2);
tl.g(4);
}

=- Compile the program, run it, and check the output.

19 = Overloading

All programming languages have some form of overloadingneta name has multiple meanings in the same context.
Overloading is possible if the compiler can disambiguateragridentical names based on some criteria; the criterion

normally used is type information. In general, overloadsdone on operations not variables, so each variable name
is distinct in a block but a routine name may have multiple mmegs.

int i; /I variable overloading disallowed
double i;
void r(int) {} /I routine overloading allowed

void r(double) {}

For example, most built-in operators are overloaded to wathk both integral and floating-point operands, i.e., the
operator is different fot + 2 than for1.0 + 2.0. The power of overloading occurs when the type of a variahémges:
operations on the variable are implicitly reselected to/éréable’s new type, e.g., after changing a variable’s fype
int to double , all operations implicitly change from integral to floatipgint.

Like Java, C+ overloads the built-in operators for the bagies and allows users to overload members in a type.
As well, C+ allows routines to be overloaded including @pers, e.g.pperator +in Sectionl7.3.2 p.39. The criteria
used to select among a name’s different meanings are theerant types of the parametédmst not the return type

int r(int i,int j) {...} /I overload name r three different ways
int r(double x, double y){...}
int r(int k) {...}

r(1,2); /I invoke 1st r based on integer arguments
r(1.0, 2.0); /I invoke 2nd r based on double arguments
r(3); /I invoke 3rd r based on number of arguments

= Editfile hello.C

C+ Tutorial 45

=- Enter the following program:
#include <iostream> Il Ex32
using namespace std;
int abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }

int main () {
cout << abs(1)<<" " << abs(-1) << end
cout << abs(1.1)<<" " << abs(-1.1) << end];
}

=- Compile the program, runit, and check the output.

Implicit conversions between arguments and parametersaisse problems with overloaded routines, e.g., given
the above overloaded declarations,ahis call is ambiguous:

r(1, 2.0); /I ambiguous, could be either 1st or 2nd r

because either argument can be converted to integer oreloubk an explicit cast to provide sufficient information
to disambiguate, e.gr 1, (int)2.0) or r((double)1, 2.0).

Notice there is overlap between overloading and defaultraemnts when the parameters have the same type.

| Overloading | Default Argument |
int rCint i,int j){...} intrCinti,intj=2){...}
intr(inti){intj=2;...}
r(3); /I 2nd overloaded declaration of r | r(3); /I default argument of 2

If the overloaded routine bodies are essentially the saseeawdefault argument, otherwise use overloaded routines.

= Editfile hello.C
=- Enter the following program:
int rCint i) {} /I Ex33
int rCint i,int j=2){}
int main() {
r(3)
}

=- Compile the program and explain the error message.

Another example of overloaded routines are the 1/0 opesatoand>> for user types:

ostream &operator <<(ostream &os, complex ¢) { return os << c.re << "+" <<c.im <<"i";}
cout << "x:" << x; /I implicitly rewritten as: <<(cout.operator<<(“x:"), x)

In this case, the compiler uses #heoperator in objeatout to first print a string value, but used the overloaded routine
<< to print the complex variable. There is a standard convention for all /O operators to take return a stream
reference to allow cascading with other stream operators.

= Edit file complex.C
= Make the following modifications:
#include <iostream> /I Ex34
#include <cmath>
using namespace std;
struct complex {
double re, im;
double abs() { return sqrt(re = re + im = im); }
complex() { re = 0.; im = 0.; } // overloaded constructors
complex(double r) {re =r;im=0.}
complex(double r, double i){re=r,im=1i;}

46 C+ Tutorial

/I overloaded routines
complex operator +(complex a, complex b) { return complex(a.re + b.re, a.im + b.im); }
ostream &operator <<(ostream &os, complex ¢) { return os << c.re << "+" <<cim <<"i";}
int main() {

complex x, vy, z;

X = 3.2;

y = x + complex(1.3, 7.2);

Z=y+X

cout << "x:" << x<<"y:" <<y<<" z:" <<z << end|;

}
=- Compile the program, run it, and check the output.
20 Inheritance

The “oriented” part of object-oriented refers to an additibnotion callednheritance which is useful for writing
general, reusable program components.
| Java I C+ |

class base { ...} struct base { ...}
class derived extends base { ...} || struct derived : public base { ... };

Inheritance has two orthogonal sharing concepts: impléatiem and type; each is discussed separately.

20.1 Implementation Inheritance

Implementation inheritance allows one object to reusetiexjsdeclarations to build another object. One way to
understand this technique is to model it via explicit inahus e.g.:

| Inheritance | Inclusion |
struct base { struct base {
int i int i;
int r(...){...} intr...){...}
base() { ...} base() { ...}
2 2
struct derived : public base { // implicit inclusion struct derived {
base b; // explicit inclusion
int s(...){i=3;r(.); ...} int s(...){bi=3;br(..); ...}
derived() { ... } derived() { ... }
}d; }d;
d.i = 3; /I reference member in included member d.b.i = 3;
d.r(...); /I reference member in included member d.b.r(...);
d.s(...); /l's can access i and r in included member | d.s(...)

In the example, object typierived states it is inheriting from base object, via the public base” clause. Inheritance
implicitly creates an anonymous object member and “opdmsstope of the anonymous member so that its members
are accessible without qualification, both inside and dette inheriting object type. The inclusion analogy ineslv
explicit creation of an object membér, to aid in the implementation.

For implementation inheritance to workdarived declaration first implicitly creates an invisibbase object in a
derived object, like the explicitly created member in the inclusinadel, otherwise the implicit referencestdase::i
andbase::r in derived::s would fail. As well, constructors and destructors must hked for all implicitly declared
objects in the inheritance hierarchy as would be done foxphicd member in the inclusion model.

derived d; base b; /I implicit, hidden declaration
derived d; b.base(); d.derived();
implicitly rewritten as
d.~derived();b.~base(); // reverse order of construction

In the case where the included object type has members vdthdime name as the including type, it works like
nested blocks: a name in the inner scope hides (overridemna at the outer scope (see Sectd p. 7). However,
it is still possible to access these members by usirigjualification (see Sectiofh7, p. 34) to specify the particular
nesting level that contains the member.

C+ Tutorial

| Java I C+
class basel { struct basel {
int i int i
} %
class base2 extends basel { struct base?2 : public basel {
int i int i /I hides basel::i
} %
class derived extends base2 { struct derived : public base2 {
int i int i /I hides base2::i
void s() { void r() {
int i =3; int i =3; /I hides derived::i
this.i = 3; derived::i = 3; // this.i
((basel)this).i = 3; // super.i base2:i = 3;
((base2)this).i = 3; base2:basel:i = 3;
} }
} %
= Editfile hello.C
=- Enter the following program:
#include <iostream> /I Ex35
using namespace std;
struct basel {
void r() { cout << "basel::r" << endl }
h
struct base2 : public basel {
void r() { cout << "base2::r" << endl; }
h
struct derived : public base2 {
void r() {
cout << "derived::r" << endl
base2::r();
base2::basel::r();
}
I3
int main() {
derived d;
d.rQ);
}

=- Compile the program, run it, check the output, and make sowenderstand it.

Implementation inheritance is used to write reusable @wgcomponents by composing a new object’s imple-
mentation from an existing object, making it possible toetadvantage of previously written and tested code to
substantially reduce the time in composing and debuggirgnaabject type. Unfortunately, having to inherit all of
the members is not always desirable; some members may berapaate for the new type. As a result, both the
inherited and inheriting object must be very similar to hagemuch common code. (In general, routines provide

smaller units for reuse than entire objects.)

20.2 Type Inheritance

Type inheritance extends name equivalence (see Segttpp. 9) to allow routines to handle multiple types, called

polymorphisme.g.:

struct foo {

struct bar {

int i; int i;

double d;

HE

double d;
}m;

void r(foo f) {...}

r(f);

r(m);

/I valid call
/I should also work

47

48 C+ Tutorial

Since typedoo andbar are identical, instances of either type can work as argusrientoutiner. Even if typebar
has more members at the end, routimaly accesses the common ones at the beginning as its paramgtpefoo.
However, Java and C+ both use name equivalence to compags tyr equality; hence, the ca{lm) fails even
thoughm is structurally identical td. Type inheritance relaxes name equivalence by aliasindehiged name with
all of its base-type names:

struct foo { struct bar : public foo { // inheritance
int i; /I no members
double d;

Ja s }m;

void r(foo f) {...}
r(f); // valid call, derived name matches
r(m); // valid call because of inheritance, base hame matches

For example, create a new typgcomplex that counts the number of timess is called for eachmycomplex
object. Use both implementation and type inheritance t@kfynbuilding typemycomplex.
struct mycomplex : public complex {

int cntCalls; /I add
mycomplex() : cntCalls(0) {} /I add
double abs() { cntCalls += 1; return complex::abs(); } // override, reuse complex’s abs routine
int calls() { return cntCalls; } /I add

%
Derived typemycomplex uses all the implementation of the base typeplex, adds new members, and overrides
abs to count each call. The power of type inheritance is the rafsmmplex’'s addition and output operation for

mycomplex values, which can be used because of the relaxed hame esngdegirovided by type inheritance between
argument and parameter.

= Explain why the qualificatiomomplex:: is necessary imycomplex::abs.

Now variables of typeomplex are redeclared tmycomplex, and membetalls returns the current number of calls to
abs for any mycomplex object.

= Edit file complex.C
= Make the following modifications:
... Il same as before until the end of the complex output operator
struct mycomplex : public complex { // Ex36
int cntCalls;
mycomplex() : cntCalls(0) {}
double abs() { cntCalls += 1; return complex::abs(); }
int calls() { return cntCalls; }

%
int main() {
mycomplex X, y, z;
cout << "x:" << xabs() <<" y:" <<y.abs() <<" z:" << z.abs() << end;
cout << "x:" << x.calls() << " y:" << y.calls() <<" z:" << z.calls() << end];
}

=- Compile the program and run it.

While implementation inheritance provides reussidethe object type, type inheritance provides reastsidethe
object type by taking advantage of existing code that mdaips the base type. In other words, any routine that
manipulates the base type also manipulates the derived type

However, the previous example can be used to illustrate tgvoficant problems with type inheritance. The first
problem is illustrated by:

= Edit file complex.C
=- Make the following modification to routin®@ain:
int main() { Il Ex37
mycomplex Xx;
X=X+ X

C+ Tutorial 49

=- Compile the program and read the message from the compiler.

Like the previous example, tlhemplex routineoperator +is used to add theycomplex values because of the relaxed
name equivalence provided by type inheritance. Howevergbult type fronoperator + is complex, notmycomplex.
Now, it is impossible to assign eomplex (base type) tanycomplex (derived type) because tlwmplex value is
missing thentCalls member! In other words, @mycomplex can mimic acomplex but not vice versa. This fundamental
problem of type inheritance is calledntra-variance C+ provides various solutions, all of which have problend
are beyond the level of this tutorial.

The second problem is illustrated by:

= Edit file complex.C

= Make the following modifications:
... Il same as before until the end of the declaration of mycomplex
void r(complex &c) { c.abs(); } /I Ex38

int main() {
mycomplex Xx;
x.abs(); /I direct call of abs
r(x); /I indirect call of abs

cout << "x:" << x.calls() << endl;
}

=- Compile the program, runit, and check the output.

While there are two calls tabs on objectx, only one is counted. This peculiarity is resolved next.

20.3 1 Virtual Routine

In general, when a member is called, it is obvious which omevisked even with overriding, e.g.:
struct base {

void r) { ...}
%
struct derived : public base {
void r) { ...} /I override base::r
%
base b;
b.r(); // call base:r
derived d;

d.r(); // call derived:r

However, it is not obvious for arguments/parameters andtpos/references:
void s(base &b) { b.r(); }

s(d); /I call allowed because of inheritance; does s call base::r or derived::r ?
base &bp = d; // assignment allowed because of inheritance
bp.r(); /I call base::r or derived::r ?

In essence, inheritance masks the actual type of the objetchoth calls should invokeerived::r because argument
b and referencép currently pointing at an object of typkerived; likewise, if variabled is replaced wittb, the calls
should invokebase::r. However, there are situations where a programmer may waatddess members brase even

if the actual object is of typderived. Notice, this is never a problem becautggived containsa base.

To handle both cases, C+ provides a facility to specify #fault form for a member routine call, and to override
the default at the call site. To set the call default to invtike routine defined in the referenced object, qualify the
member routine witlvirtual . To set the call default to invoke the routine defined by theetyf the pointer/reference,
do not qualify the member routine witlirtual . C+ uses non-virtual as the default because it is more &ficiJava
sets the call default to virtual for all calls to objects, alwks not suppose the second form of object call. Finallygonc
a base type qualifies a member as virtitag virtual in all derived types regardless of the derivgge’s qualification
for that member The following example shows how to acced$ routine members in the base and derived type
regardless of how the routines are qualified:

50 C+ Tutorial

| Java I C+ |

class base { struct base {

public void f() {4 // virtual void f() {} /I non-virtual

public void g() {4 // virtual void g() {3 /I non-virtual

public void h() { // virtual virtual void h() {} // virtual

%

class derived extends base { struct derived : public base {

public void g() {4 // virtual void g() {}; /I non-virtual

public void h() {} // virtual void h() {}; /I virtual
} I3
final base bp = new derived(); base &bp = xnew derived(); // polymorphic assignment
bp.f(); /| base.f bp.f(); /I base::f, use pointer type
((base)bp).g(); // derived.g bp.g(); /| base::g, use pointer type
bp.g(); /I derived.g ((derived &)bp).g(); // derived::g, use pointer type
((base)bp).h(); /I derived.h bp.base::h(); /I base::h, explicit selection
bp.h(); /I derived.h bp.h(); /I derived::h, use object type

Notice, casting in Java does not provide access to the jpsé&stmember routines.|t is important to understand that
virtual members arenly necessary to access derived members through a base typeoef@r pointerTherefore,

if a type is never involved in inheritancén@l class in Java), it never needs virtual members, and hencetale
advantage of more efficient calls to its members.

When a type is involved in inheritance, one problem withuaitmembers in C+ is that the qualification is made
in the base type as opposed to the derived type. Hence, GQtireedhe base-type definer to look into the future and
guess how derived definers might want the call default to wdtierefore, like Java, good programming practice is
to make all routine members virtual for types involved inentance. Finally, any type with virtual members and
a destructor should make the destructor virtual, to endwartost derived destructor is called through a base-type
pointer/reference.

= Edit file complex.C.
=- Modify the program sall calls to membeabs are counted.

20.4 Down Cast

Type inheritance can mask the actual type of an object thr@ugointer/reference (see Sectidd.2 p.47). Like
Java, C+ provides a mechanism to dynamically determin@cheal type of a pointer/reference. The Java operator
instanceof and the C+ operatalynamic_cast performa dynamic check of the object addressed by a poieterénce:

| Java I C+ |
base bp = new derived(); base xbp = new derived();
if (bp instanceof derived) || if (dynamic_cast <derived «>(bp) != 0)
((derived)bp).rtn(); ((derived «)bp)->rtn();

To usedynamic_cast on a typethe type must have at least one virtual member

20.5 Constructor/Destructor

Like Java, C+ constructors aimplicitly executed top-down, from base to most derived type. Thisrasdaandated

by the scope rules, which allow a derived-type construatiarde a base type’s variables so the base type must be
initialized first. Unlike Java, C+ destructors draplicitly executed bottom-up, from most derived to base type.
Again, this order is mandated by the scope rules, which alalsrived-type constructor to use a base type’s variables
so the base type must be uninitialized last. Jasdize must beexplicitly called from derived to base type.

Unlike Java, C+ disallows calls to other constructors atdtart of a constructor (see Sectibn3.4 p. 40). To
pass arguments to other constructors, use the same syritairdasalizing const members (see Sectidin.3.4 p.40).

C+ Tutorial 51

| Java I C+ |

class base { struct base {
base(int i){...} base(int i){...} /I requires argument

% g

class derived extends base { struct derived : public base {
derived() { super(3); ...} derived() : base(3){...} /I argument for base type
derived(int i) { super(i); ...} derived(int i) : base(i) { ...}/ argument for base type

g g

= Edit file Hello.C.
=- Enter the following program:
#include <iostream> /I Ex39
using namespace std;
struct base {
int i
base(int i) { cout << "base, i:" <<i<<end]}
~base() { cout << " ~base" << endl; }
%
struct derived : public base {
derived() : base(3) { cout << "derived" << endl; }
derived(int i) : base(i) { cout << "derived, i:" <<i<<endl}
~derived() { cout << "~derived" << endl; }

I3

int main() {
base b(2); cout << "=====" << endl;
derived d1; cout << "=====" << endl;
derived d2(7); cout << "=====" << endl;

}

=- Compile the program, run it, check the output, and make sowemnderstand it.

20.6 Abstract Interface
Like Java, C+ supports a mechanism to create an abstradfzioe from which actual types can be defined:

| Java I C+ |
interface shape { struct shape {
void move(int X, int y); virtual void move(int x, int y) = 0; // strange initialization
% g
class circle implements shape { struct circle : public shape {
public void move(int x, int y) {} void move(int x, int y) {} // must define this member
g g

In the C+ example, note the strange initialization of memdape::move to 0, which actually means this member
mustbe defined by any derived typegfape. Unlike Java, C+ allows the abstract interface to conteina members,
which results in a combination of implementation inhergiaand abstract description.

21 > Template

Inheritance handles reuse where types are organized inrardhy to extend name equivalence. There is another
kind of reuse for situations where there is no type hieraesitytypes are not equivalent. For example, the overloaded
abs routines defined in Sectidl®, p. 44 both have identical code but different types.

int abs(int val) { return val >= 0 ? val : -val; }

double abs(double val) { return val >=0 ? val : -val; }
Instead of duplicating the code, a different form of reusgsisd. A template routine allows types to become compile-
time parameters (Java does not support template routangs),

template <typename T> T abs(T val) { return val >= 0 ? val : -val; }

The keywordemplate introduces the type parameterwhich is subsequently used to declare the return and péeame
types forabs. Whenabs is used, e.g.abs(-1.1), the compiler infers the type from the argument1.1, to bedouble ,

52 C+ Tutorial

and constructs a specifibs routine withT replaced bydouble .

= Editfile hello.C
=- Enter the following program:
#include <iostream> /I Ex40
using namespace std;
template <typename T> T abs(T val) { return val >= 0 ? val : -val; }

int main() {
cout << abs(1)<<" " << abs(-1) << end
cout << abs(1.1)<<" " << abs(-1.1) << end];
}

=- Compile and run the program.

A template type is also possible, when a type has identick bot manipulates different types (Java does support
template types but using a different technique). For examgpbktack data-structure, implemented using an array, has
common code to manipulate the array, but the type of the @leayents varies.

template <typename T, int N = 10> struct Stack {
T elems[N]; // maximum N elements
int size;
Stack() { size = 0; }
void push(T e) { elems[size] = e; size += 1; } // use N to check for overflow
T pop() { size -= 1; return elems[size]; }
%
The type parameteT, is used to declare the element type of the asiags, as well as return and parameter types of
the member routines. The integer parameter denotes themaaxstack size. For template types, the compiler cannot
infer the type parameter, so it is explicitly specified.

Stack<int, 20> si; /I stack of int
Stack<double > sd; /I stack of double
Stack< Stack<int> > ssi; /I stack of stack of int
si.push(3);

sd.push(3.0);

ssi.push(si);

int i = si.pop();

double d = sd.pop();

si = ssi.pop();
Beware the syntax problem for nested template declaratign Stack< Stack<int> >; there must be a space between
the two ending chevrons or is parsed asperator >>.

Container types are a common use of templates. A containgla¢e forms a specific container type storing
programmer defined nodes. The C+ Standard Template Lif&ary) provides different kinds of containeng¢tor,
stack, queue, list, deque, set, map). Figure2 shows the STlvector container as an alternative to C/C+ arrays (see
Section4, p. 13). Like a Java arrayector can be dynamically sized, has a member routine to obtainitlee lsas
subscript checking, and also supports assignment. Thepdgam Figure2(a) is a conversion of the program to
read values and print them in reverse order on E)€elrhe declaration of a vector may specify an initial size,,e.g
vector<int> vals(size), like a dimension. While the size of a vector may increaseléarease) dynamically, it is more
efficient to dimension, when the size is known. At any timés fiossible to query a vector’s size, exgls.size(). The
subscript operatof)], and memberat” both perform subscripting of array elements; the diffeeisonly member
“ at” performs subscript checkingAs well, one vector can be assigned to another, copying daoteat. The example
in Figure2(b) is a conversion of the program to initialize and print a matm page?29. The declaration of a matrix
is a vector of vectors, e.gvector< vector<int> > m(5), which specifies 5 rows. Before values can be assigned into a
row, each row is dimensioned to the specific siafg].resize(4). All loop bounds are controlled by using the dynamic
size of the row or column.

Figure3 shows a list-container example. In general, list libradges divided into two kinds: those that copy the
user nodes into the list and those that link the nodes dyrétib the list. The implication of copying is that the node
type must have a default and/or copy constructor so inssacae be created without having to know arguments to
constructors. The CH STL uses copying and requires a nquettyhave a default constructor. The implication of
linking is that the node type must inherit from a particulat type to ensure it has appropriate link members. Like the

C+ Tutorial

#include <iostream>
#include <vector>
using namespace std;
int main() {
int i, size;
cin >> size;
vector<int> vals(size); // think int vals[size]
for (i=0;i<valssize(); i +=1) {
cin >> vals.at(i); /I think valsi]

}
vector<int> v; /I think: int v[]
v = vals; /| array assignment

for (i=vsize()-1;,0<=ii-=1){
cout << v.at(i) << " ";

}

cout << endl;

(a) Array (with subscript checking using memhbér

53

#include <iostream>
#include <vector>
using namespace std;
int main() {
vector< vector<int> > m(5); // 5 rows
for (int r=0;r<msize);r+=1){
m[r].resize(4); /I 4 columns per row
for (int ¢ =0;c<mfrsize(); c +=1){
m[r][c] = r+c; /I or m.at(r).at(c)
}
}
for (int r=0;r<msize(); r+=1){
for (int ¢ =0;c<mfrsize(); c +=1){
cout << m[r]c] << ", ";
}

cout << endl;

}

(b) Matrix (with no subscript checking using operafipr

Figure 2: STL Vector Container

#include <iostream>
#include <list>
using namespace std;
struct node {
char c;
int i;
double d;
node() {}
node(char c, int i, double d) : c(c), i(i), d(d) {
I3
int main() {
list<node> top;
for (inti=0;i<10;i+=1){
node n(’a’+i, i, i+0.5);
top.push_back(n);
}
list<node>::iterator ni;
for (ni = top.begin(); ni != top.end(); ++ni) {
cout << "c:" <<ni->c << "
}
cout << endl;
while (0 < top.size()) {
node n = top.front();
top.erase(top.begin());
cout << "c:" <<nc<<"i:"
}
if (top.empty()) {

}

cout << endl << "list is enpty"” << end

< ni->i<<" d: "

<ni<<" d:"

/I must have a basic constructor to copy

/I doubly linked list

/I create list nodes

/I node to be added

/I copy node at end of list

/I iterator for doubly linked list
/I traverse list nodes
<< ni->d << endl;

/I destroy list nodes

/I copy node at front of list
/I remove first node

<< n.d << endl;

/I verify list nodes destroyed

Figure 3: STL Doubly Linked-List Container

54 C+ Tutorial

Stack container-type, éist must specify the type of the list nodes, eligtgnode>.

An additional concept introduced by containers isiteeator, which is used to traverse a container without know-
ing how the container is implemented. The capabilities oftarator depend on the kind of container, e.g., a singly
linked list only allows traversing the list unidirectiohaivhile a doubly linked list allows bidirectional travets&ach
container in the CH STL provides an appropriate iteratoa agsted object type (see the end of Secliégnp. 34);
hence the declaration type of the iteratorifstknode> is list<node>::iterator.

In Figure 3, the first loop initializes a node with values and callsh_back, which copies the node to the end
(back) of the list. push_back can also be used witkector to incrementally extend a vector’s size.) The second loop
traverses the list using an iterator indek,starting at the beginning of the list and stepping throdghlist one node
at a time untilni is past the end of the lisefd() is not the last node but past the end node). Note, iteratisrlike
a pointer to a node stored in the list so the node is accessbdoperator>. As well, the operator++" is used to
advance to the next node in the list. The final loop destrogdish by repeatedly erasing the first node from the list
until the number of nodes is zero.

= The iterator operator-+" moves in the reverse direction te+”, and the last node in a listis defined to+end()
(one back from past the end). Write a loop to print the nodesvarse order. (Stopping the loop is tricky.)

An alternate mechanism to iterate through a container isgusie STL template-routinfer_each, which uses a
container’s iterator to traverse a data structure, apglgimaction to each node:

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) {cout<<i<<™" ";} /I print node
int main() {
list< int > int_list;
vector< int > int_vec;
for (inti=0;i<10;i+=1){ /I create lists
int_list.push_back(i);
int_vec.push_back(i);
}
for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

The action routine téor_each is called for each node in the container, passing the nodeetmoutine for processing.
In general, the type of the action routinevisd rtn(T), whereT is the type of the container node. In this example,
print must have aint parameter matching the type of the node in each container.

If a more complex action is necessary, it can be construggea ‘hunction object”, called dunctor, using the
routine-call operator. For example, to have an action nauthat prints values on a specified stream, a type is created
to store the stream, angerator () is defined to allow the object to behave like a function:

struct print {

ostream &stream; /| stream used for output
print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream <<i<<" ";}
I3
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), print(cout)); // print on different streams
for_each(int_vec.begin(), int_vec.end(), print(cerr));
}

The expressioprint(cout) creates a constaptint object, andor_each callsoperator ()(node) in the object.

C+ Tutorial 55

22 Namespace

Like Java, CH has a mechanism to organize complex prograthktaaries composed of multiple types and declara-
tions. For example, this tutorial relies on namespsidecontaining all the 1/0O declarations and container typdse T
names in a namespace form a declaration region, like thesafdgock. Unlike Java, C+ allows multiple namespaces
to be defined in a file; types and declarations do not have tadedaconsecutively.

| Java source file I C+ source file |
package foo; // one package / file || namespace foo {
/I types / declarations /I types / declarations
%

namespace bar {
/I types / declarations
h
namespace foo {
/I more types / declarations

%

Like Java, the contents of a namespace can be accessed wlkiqgglified names:
| Java I C+ |
‘ f00.T t = new foo.T(); H foo: T «t = new foo::T(); ‘

or by importing individual items or all of the namespace et
| Java I C+ |

import foo.T; || using foo::T; /I import individual
import foo.x; using namespace foo; // import all

23 Encapsulation

Abstraction is the separation of interface and implemamatwhich allows an object’s implementation to change
without affecting usage. Abstraction is essential for esaisd maintenance. For example, thenplex type provides
an interface that does not require a user to directly actessriplementation to perform operations, e.g.:
struct complex {
double re, im; // implementation data
... Il interface routine members

%

so the implementation can change from Cartesian to poladouates, while the user interface remains constant.
Developing good interfaces for objects is the skill of aastion.

Encapsulations hiding the implementation for security or financial reasocalledaccess controlEncapsulation
is neither essential nor required to develop software,raggy users follow a convention of not directly accessing
the implementation; however, relying on users to followaartions is dangerous. Encapsulation is provided by a
combination of C and C+ features. C features work largelgragnsource files, and are indirectly tied into separate
compilation (see Sectiapd). C+ features work both within and among source files.

Like Java, C+ provides 3 levels of visibility control forjebt types:

| Java I C+ |
class foo { struct foo {
private ... private : /I visible within and to friends
/I private members
protected ... protected : /I visible within, to friends and inherited types
/I protected members
public ... public : /I visible within, to friends, inherited types and users
/I public members
% g

Java requires encapsulation specification for each memibdie C+ groups members with the same encapsulation,
i.e., allmembers after a labelivate , protected or public , have that visibility. Visibility labels can occur in anydsr

56 C+ Tutorial

and multiple times in an object type. Only the object type aaoess the private members, so the implementation
members are normally private. Inherited object types caeszand modify public and protected members, which
may allow access to some of an object’s implementation. THeipgmembers define an object type’s interface, i.e.,
what a user can access. A user can still see private and f@otearts but cannot access them, and therefore, cannot
write code that depends on or violates the abstraction. Fruet, the labelpublic is implicitly inserted at the
beginning of the structure, i.e., the default is that all hers are public. C+ provides another kind of structurescall
aclass, which is the same asgruct , except the default is that all members are private.

= Editfile hello.C
=- Enter the following program:
class base { /I Ex41
private :
int x;
protected :
int y;
public :
int z;
%
class derived : public base {
public :
derived() { x; y; z; };
%
int main() {
derived d;
d.x; d.y; d.z;
}

=- Compile the program, removing invalid references, ungtéhis successful compilation.

Encapsulation introduces a new problem for routines usechpéement binary operations for an object: a rou-
tine may need to access an object’s implementation, buttieaed the same as a user routine so it cannot access
private members. To solve this problem, C+ provides a m@shato state that a routine is allowed access to its
implementation, calleétriendship(similar to package visibility in Java).

class complex {
friend complex operator +(complex a, complex b); // prototype of friend routine

%
complex operator +(complex a, complex b) { ...}
Thefriend prototype indicates the routine with the specified name gpd may access this object’s implementation,
i.e., the routine is in the set of private members for the dbjéhus, an encapsulatedmplex type looks like:
class complex {
friend complex operator +(complex a, complex b);
friend ostream &operator <<(ostream &o0s, complex c);
double re, im;
public :
double abs() { return sqrt(re = re + im = im); }
complex() {re = 0.; im=0.; }
complex(double r) {re =r; im =0, }

complex(double r, double i) {re =r;im=1i;}
%
complex operator +(complex a, complex b) { return complex(a.re + b.re, a.im + b.im); }
ostream &operator <<(ostream &os, complex ¢) { return os << c.re << "+" <<cim <<"i";}

24 1 Separate Compilation

Like Java’s package access, a C/€atirce fileprovides another mechanism for encapsulation. By defalliigjobal
variables and routines in a source file are exported outkeléle (package). To encapsulate declarations in a source
file, the declaration must be qualified witatic .

C+ Tutorial 57

/I file.C

int i /I public (exported)
void f(...) {} /I public (exported)
static int J; /I private

static void g(...) { /I private

Like Java, a type is encapsulated in a source file, unlesgekptienoted as public.

Unlike Java, which has automatic access to the public ctsiteina source file, C/C+ require the use of the
preprocessor (see Sectibfh p.21) and forward declarations (see Sectid) p. 41) to access public contents, which
is accomplished by dividing declarations into two partsl ario two (or more) files. Each declaration is divided into
its interface and implementation. The interface is usuadiypposed of the prototype declaration(s) (but possiblyesom
implementation), and the implementation is composed ofitiieal declarations and code. Second, the interface is
entered into one or more include files files), and the implementation is entered into one or morecsofiles (C
files). Encapsulation is provided by giving a user accesaty the include file(s) and the compiled source file(s),
which is sufficient to use an abstraction, but not the implaatgon in the source file(s). Most software supplied from
software vendors comes this way. Prototypes in the inclle fior exported variables and routines (not types) must
be qualified withextern to indicate the implementation appears elsewhere:

/I file.h
extern int i; /I public, implementation elsewhere
extern void f(...); // public, implementation elsewhere (extern optional for routines)

For example, theomplex type can be divided into fileomplex.h, which users include in their programs, and file
complex.C (see Figuret). The.C file normally includes theh file so that there is only one copy of the constants,
declarations, and prototype information. The variatpleObjCnt is qualified withstatic to make it a private variable
to this source file, i.e., no user can access it, but eachremhst in the source file can increment the counter when a
complex object is createdAll static variables, whether in a class or file, must be eifllj initialized in the.C file. For
example, variableplxObjCnt is set to0. The exported routineomplexStats can be called by users at any time to print
the number otomplex objects created so far in a program. Notice, all the membéies ofcomplex are separated
into a forward declaration and an implementation after thiea type, allowing the implementation to be placed in
the.C file (see Sectiod8, p.41).

However, by reading thén, it may be possible to determine the implementation teakaigsed, so there is only
a partial level of encapsulation. It is possible to providenplete encapsulation in C/CH, using more expensive
references rather than values in the implementation (sgeré®, p. 59). Essentially, how much information goes
into .h file depends on the amount of encapsulation; but the amowmazpsulation may affect the implementation.
Note, because the compiler requires a template definitioadoh usage, both the interface and implementation of a
template must be in & file, which precludes certain forms of encapsulation.

Notice the use of a copy constructor and assignment operateigure5, p. 59 because complex objects now
contain a reference pointer to the implementation, andeaeate pointer cannot be copied on initialization or assign
ment without generating storage management problems xgarme, copying the reference pointer can result in two
complex objects pointing at the same complex value and baghaventually attempt to delete it. As well, overwriting
a reference pointer may lose the only pointer to the storagfecan never be freed.

An encapsulated object is compiled using tbeeompilation flag and subsequently linked with other contpile
source files to form a program:

g++ -c complex.C

which creates a file callecbmplex.o containing a compiled version of the source code.

= Edit file complex.h

=- Enter the program in Figu(a)

= Edit file complex.C

=- Enter the program in Figu(b).

=- Compile the program to create the executalol@plex.o.

To use an encapsulated object, a program specifies the agcesdude file(s) to access the object’s interface, and
then links with any necessary executables.

= Editfile hello.C
=- Enter the following program:

58 C+ Tutorial

#ifndef __COMPLEX_H_ _ /I Ex42
#define _ COMPLEX H_ /I protect against multiple inclusion
#include <iostream> /I access: ostream

using std::ostream;
extern void complexStats();
class complex {
friend complex operator +(complex a, complex b);
friend ostream &operator <<(ostream &os, complex c);
double re, im; /I exposed implementation
public :
complex();
complex(double r);
complex(double r, double i);
double abs();
%
extern complex operator +(complex a, complex b);
extern ostream &operator <<(ostream &os, complex ¢);
#endif // __COMPLEX_H__

(a)complex.h

#include "conpl ex. h" /I Ex43

#include <cmath> /| access: sqrt

using namespace std;

/I private declarations

static int cplxObjCnt = 0; /I must be initialized

/I interface declarations

void complexStats() { cout << cplxObjCnt << endl; }

complex::complex() { re = 0.; im = 0.; cplxObjCnt += 1; }

complex::complex(double r) {re =r; im = 0.; cpIxObjCnt += 1; }

complex::complex(double r, double i) {re =r; im = i; cplxObjCnt += 1; }

double complex::abs() { return sqrt(re « re + im » im); }

complex operator +(complex a, complex b) { return complex(a.re + b.re, a.im + b.im); }
ostream &operator <<(ostream &os, complex ¢) { return os << c.re << "+" << c.im<<"i";}

(b) complex.C

Figure 4: Partially Encapsulated Abstract Type

#include " conpl ex. h"
#include <iostream>
using namespace std;
int main() {
complex x, v, z;
x = complex(3.2);
y = x + complex(1.3, 7.2);
z = complex(2);
cout << "x:" << x<<"y:

<<y<<" z:" <<z << end|

}
Notice,iostream is included twice, once in this program and oncedmplex.h, which is why each include file
needs to prevent multiple inclusions.
=- Compile the program with command:
g++ hello.C complex.o

= Redo the last two work sections replacing the codeninplex.h andcomplex.C with the code from Figuré(a)
and Figures(b), respectively.

C+ Tutorial 59

#ifndef __COMPLEX_H_ _ Il Ex44
#define = COMPLEX H_ /I protect against multiple inclusion
#include <iostream> /I access: ostream

using std::ostream;

extern void complexStats();

class complex {
friend complex operator +(complex a, complex b);
friend ostream &operator <<(ostream &os, complex c);

struct compleximpl; /I hidden implementation, nested class
compleximpl &impl; /I indirection to implementation

public :
complex();

complex(double r);
complex(double r, double i);
~complex();
complex(const complex &c); // copy constructor
complex &operator =(const complex &c); // assignment operator
double abs();
%
extern complex operator +(complex a, complex b);
extern ostream &operator <<(ostream &os, complex ¢);
#endif // __COMPLEX_H__

(a)complex.h

#include "conpl ex. h" /I Ex45
#include <cmath> /I access: sqrt
using namespace std;
/I private declarations
static int cplxObjCnt = 0;
struct complex::compleximpl { /I actual implementation, nested class
double re, im;
I8
/I interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
complex::complex() : impl(xnew compleximpl) { impl.re = 0.; impl.im = 0.; cplxObjCnt += 1; }
complex::complex(double r) : impl(xnew compleximpl) { impl.re = r; impl.im = 0.; cpIxObjCnt +=1; }
complex::complex(double r, double i) : impl(xnew compleximpl) { impl.re = r; impl.im = i; cpIxObjCnt += 1; }
complex::~complex() { delete &impl; }
complex::complex(const complex &c) : impl(xnew compleximpl) {
impl.re = c.impl.re; impl.im = c.impl.im; cpIxObjCnt += 1;
}
complex &complex::operator =(const complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return «this ;
}
double complex::abs() { return sqrt(impl.re = impl.re + implim % impl.im); }
complex operator +(complex a, complex b) { return complex(a.impl.re + b.impl.re, a.implim + b.impl.im); }
ostream &operator <<(ostream &os, complex c) { return os << c.impl.re << "+" << c.implim << "i";}

(b) complex.C

Figure 5: Fully Encapsulated Abstract Type

60 C+ Tutorial

25 Acknowledgments

The following people made suggestions to improve the tato@len Ditchfield, Rob Holte, Caroline Kierstead, Steve
Mann, Richard Bilson and John-Paul Pretti.

A Pulling It All Together

/*******************
Words are read in and written out in reverse order. A word contains only alphabetic characters.
Command line syntax is:

Ja.out [input-file [output-file]]

input-file is the optional name of the input file (defaults to cin). If output-file is specified,
the input file must also be specified. The output file defaults to cout if not specified.

Examples:
Ja.out
Ja.out inputfile
Ja.out inputfile outputfile

*******************/

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <list>

using namespace std;

int main(int argc, char xargv[]) {
istream =xinfile = &cin; /I pointer to input stream; default to cin
ostream xoutfile = &cout; /I pointer to output stream; default to cout

switch (‘argc) {
case 3:
outfile = new ofstream(argv[2]); /I open the outfile file
if (‘outfile->bad()) {
cerr << "Error! Coul d not open output file\"" << argv[2] << "\"" << endl;

exit(-1); /I TERMINATE!
Y
/I fall through to handle input file
case 2:
infile = new ifstream(argv[1]); /I open the first input file

if (infile->bad()) {
cerr << "Error! Could not openinput file\"" << argv[l] << "\"" << endl;

exit(-1); /I TERMINATE!
Y
break;
case 1:
/I use cin and cout
break;
default : /I too many arguments
cerr << "Usage: " << argv[0] << " [input-file [output-file]]" << end
exit(-1); /I TERMINATE!
}
string line, alpha = "abcdef ghi j kl mopqgr st uvwxyz ABCDEFGH J KLMNOPQRSTUWKYZ";
list<string> words; /I list of words in document
for () { /I scan lines from a file
getline(«infile, line); /I read entire line, but not newline
if (infile->eof()) break; /I end-of-file ?
line += "\ n"; /I add newline character as sentinel character
for (5;) { /I scan words off line
int posn = line.find_first_of(alpha); /I find position of 1st alphabetic character

if (posn == -1) break; /I any characters left ?

C+ Tutorial

line = line.substr(posn);
posn = line.find_first_not_ of(alpha);
string word = line.substr(0, posn);
words.push_ back(word);
line = line.substr(posn);
} 11 for
} 11 for

xoutfile << " The words i n reverse order:"

while (0 < words.size()) {
»outfile << x(--words.end()) << endl;
words.erase(--words.end());

} /I whille

if (infile = &cin) delete infile;
if (outfile != &cout) delete ouftfile;
} /I main

/I Local Variables: //
/I tab-width: 4 //
/I End: /I

/I remove leading whitespace

/I find position of 1st non-alphabetic character
/I extract word from start of line

/I add word to end of list

/I delete word from line

<< endl;

/I traverse list in reverse order
/I print last node
/I remove last node

/I do not delete cin
/I do not delete cout

61

62

Index
1,15
1=, 15, 32
", 22
#, 6,21
#define, 21
#elif, 23
#else, 23
#endif , 23
#if, 23
#ifdef , 23
#ifndef , 23
#include , 22
=,4
>, 4
&, 11, 15,19 21
&&, 15,19, 21
&=,15
% 11,15
)
+»=, 15
+, 15,32
++,17, 54
+=, 15,17
., 15,16, 18, 20, 21
-, 15
-, 17,54
-=,15
-> 15, 36
.15
1,5
.C, 4,57
c, 4
c++, 4
.cc, 4
.cp, 4
.cpp, 4
.cxx, 4
.h, 22,57
/,15
\,9
/%, 5
1,5
/=, 15
, 37,43,46,55
;,, 6
<, 15 32
<<, 15,16, 24,45
<<=, 15
<=, 15, 32
<> 22
=, 15,32

C+ Tutorial

==, 15,32

> 15,32

>= 15, 32
>> 15, 16, 24, 45
>>=, 15

?:, 15,19, 20
[1, 28,32 52
%, 15

%=, 15

&, 11,15

{}, 18

A 15

n=, 15

I, 15, 19
=, 15
~, 15

a.out, 4,5, 33
abstraction55
access controh5
aggregation13, 29
alias,10, 14, 48
allocation

array,27
dynamic,26
array,27
heap,27
array,27
matrix, 28
stack,27

argc, 33

argument30

argv, 33

array,10, 13, 14, 17, 21, 24, 27, 28, 31, 33,52

2-D, 28
deallocation28
parameter31

assignment]4-16, 40

address]l1
array,13, 52
cascadel6
initializing, 7
operatorp7
pointer,12

basic types?, 9

bool, 7
char, 7
double , 7
float, 7
int,7

C+ Tutorial

wchar_t,7
block, 6, 7,14, 18
{}18
bool, 7,9
boolalpha, 26
boolean expressioi8
false, 18
true, 18
break, 19, 21

cascadel6, 24, 26
case, 19
case-sensitive]
lower-casey
mixed casey
upper-case/
cast,15, 17, 45,50
cerr, 24
char, 7-9
chevron g, 15, 24, 45
cin, 24
class, 13, 56
clear, 25
comma expression,6, 18, 20, 21, 28
command-line optiord
commentj, 6
%/, 5
/%, 5
1,5
nesting,5
out,5, 23
compilation options4
compiler,5
a.out, 4
debugging4
g++,4
options
-D, 22
-E, 4,21
-0,4,7
-Wall, 4, 7
-c, 4,57
-g, 4
-0, 4
-v, 22
separate compilatio23, 42
symbol table4
compiling,4
conditional,18
conditional expression evaluatiatf
&&, 19
2,19
partial evaluation19
short-circuit,19

63

conditional inclusion23
const, 8,12 22,31, 34
constant8, 9, 12, 14, 31, 34, 57
bool, 9
char, 9
designated?
double, 9
escape sequence,
initialization, 14, 22
int,9
parameter31
pointer,12
string,9, 31
type constructor] 4
undesignated)
variable,8
construction46
constructor]0, 37, 46, 50
const member40
constant38
copy,39
implicit conversion 39
passing arguments to other constructés,
type,9
continue , 21
contra-variance49
control structurel8
block, 18
{},18
conditional 18
conditional expression evaluatialf
&&, 19
?2:,19
partial evaluation19
short-circuit,19
looping,18, 20
do, 20
for, 20
while , 20
selection18
break, 19
case, 19
dangling elsel9
default, 19
else, 18
if, 18
switch , 19, 34
short-circuit expression evaluatiol®
transfer,18
conversion,17, 39
cast,15
explicit, 17, 24, 45, 50
implicit, 17, 18, 24, 30, 39, 45

narrowing,17

widening,17
conversion of typesl 7, 50
copy constructor39, 57
cout, 24

dangling elsel9
dbx, 4
debugger4
dbx, 4
gdb, 4
dec, 26
declarationy
basic types?
const, 22
type constructor
type qualifier,8
variable,7
Declaration Before Useéll, 42
default
parameter45
default , 19
default constructo88
default value31, 38
parameter31
default variable initialization/
delete, 26
[1, 28
deque, 52
dereferencel 1, 15
dereferencingl1
destruction46
explicit, 41
implicit, 41
order,41
destructor40, 46, 50
do, 20
documentation5
double, 7,9
down cast50
dynamic storage managemefg, 41
dynamic_cast , 50

eager evaluatiori,9
else, 18
encapsulatiorf5
end of file,25
end of line,6, 26
endl, 6, 26
enum, 10
enumeration]0, 13
nested37
enumerator]0
equivalence

name,10, 13 14
escape sequence,
evaluation

eager,19

lazy, 19

partial,19

short-circuit,19, 21
executableb
executionb

1,5

a.out, 5
exit, 6
explicit conversionl7, 45
explicit inclusion 46
expressionl5
extern, 57

fail, 24, 25
false, 18
file

.h, 22

opening24
file inclusion,22
file suffix

.C, 4,57

c 4

c++,4

.cc, 4

.cp, 4

.cpp, 4

.cxx, 4

.h, 57

.0, 57
find, 32
find_first_not_of, 32
find_first_of, 32
find_last_not_of, 32
find_last_of, 32
fixed, 26
float, 7
for, 20
for_each, 54
formatted 1/0,24
forward declaratior42
free, 26
friend , 56
friendship,56
fstream, 24
function,29, 30
functor,54

g++, 4,17, 22
garbage collectior26
gdb, 4

C+ Tutorial

C+ Tutorial

goto, 21

heap,26
heap allocation?27
hex, 26

/0
cerr, 24
cin, 24
clear, 25
cout, 24
fail, 24, 25
formatted 24
fstream, 24
ignore, 25
iomanip, 26
jostream, 24
manipulators26
boolalpha, 26
dec, 26
endl, 26
fixed, 26
hex, 26
left, 26
noboolalpha, 26
noshowbase, 26
noskipws, 26
oct, 26
right, 26
scientific, 26
seffill, 26
setprecision, 26
setw, 26
showbase, 26
skipws, 26
identifier,7
if, 18
2,19
dangling else19
else, 18
ignore, 25
implementation57
implementation inheritancé6
implicit conversion,17, 18, 30, 39, 45
implicit parameter36
inclusion
explicit, 46
indirection,11
inheritance46
implementation46
type,46, 47
initialization, 14, 3740, 46, 50, 57
array,14
forward declaratiory}3

65

string,14
structure 14
inline , 22
input,6, 23, 24
>> 45
end of file,25
eof, 25
formatted 24
manipulators
iomanip, 26
noskipws, 26
skipws, 26
standard input
cin, 24
int, 7-9
interface 51, 56, 57
iomanip, 26
jostream, 6, 24
iteration statement
break, 21
continue , 21
goto, 21
iterator,52, 54
++,54
-, 54
for_each, 54

keyword,7

language
preprocessoB
programming6
template 6
lazy evaluation19
left, 26
list, 52, 54
iterator,54
push_back, 54
long, 8
looping statemenf0
do, 20
for, 20
while , 20

macros22

main, 6, 33, 42

malloc, 26

manipulators26

map, 52

matrix, 14, 16, 28, 31, 52

member,13
anonymous46
const, 40
destruction40, 46, 50

66

initialization, 37, 46, 50

operator36

overloading44

pure virtual,51

virtual, 49, 50
mutually recursive41-43

name equivalencd0, 13, 14, 47-49, 51

namespacey
std, 6

narrowing conversior 7

nesting,7, 46
blocks,18
commentsp
initialization, 14
preprocessoR3
routines,29
types,37

new, 26

noboolalpha, 26

noshowbase, 26

noskipws, 26

npos, 32

NULL, 14, 16, 23

null character31

null pointer,11

object,34
anonymous membe#,6
const member40
constants38
constructor37, 46, 50
copy constructor39
default constructo;8
destructor40, 46, 50
initialization, 38, 50
pure virtual membe51
type
nesting37, 54
virtual member49, 50
object-oriented4, 46
oct, 26
opening a file24
operators
<<, 6
% 11,15
<<, 24,45
>> 24, 45
&, 11,15
arithmetic,15
assignment]5
bit shift, 15
bit-wise, 15
cast,15

C+ Tutorial

comma expressions
control structuresl5
logical,15
overloading24, 36, 44
pointer,11, 15
priority, 15
relational, 15
selection37, 46, 55
string,32
struct , 15
selection43
output,6, 23, 25
<<, 6
<<, 45
endl, 6
formatted 24
manipulators
boolalpha, 26
dec, 26
endl, 26
fixed, 26
hex, 26
iomanip, 26
left, 26
noboolalpha, 26
noshowbase, 26
oct, 26
right, 26
scientific, 26
seffill, 26
setprecision, 26
setw, 26
showbase, 26
standard error
cerr, 24
standard output
cout, 6, 24
overloading,16, 24, 36, 44
constructor38
override,7, 46, 48, 49

parameter30
array,31
constant31
default value31
implicit, 36
this , 36
pass by referenc&0
pass by value30
prototype 42
parameter passing0
array,31
pass by referenc&0
pass by value30

C+ Tutorial

pointer,10, 14
0,14
array,27
matrix, 28
NULL, 14, 16, 23
polymorphism47
preprocessos, 6, 21, 57
#define, 21
#elif, 23
#else, 23
#endif , 23
#if, 23
#ifdef , 23
#ifndef , 23
#include , 22
comment-outb
file inclusion,22
macros22
variable,22
priority, 15
private , 55
procedure29, 30
program
compiling,4
executionb
source file4
structures
program structurey
block, 6
main, 6
programming style4
protected , 55
prototypeAl, 42,57
public , 13, 55
pure virtual membes1

queue, 52

rand, 16

random number generatd

reference]l0, 11, 15
initialization,12

reference passing0

referencing11

replace, 32

reserved identifiers,

return, 6, 30

return type29

reuse48

rfind, 32

right, 26

routine,29

argument/parameter passig,

array parametef31

function,30
member34
parameter29
pass by referenc&0
pass by value30
procedure30
prototype4l
return, 30
return type29
routine overloading44
routine prototype
forward declaratior42
scope34
routine prototype4?2

scientific, 26
scope34, 43,55
segment fault21
selection operatoB7
selection statement8
break, 19
case, 19
default, 19
else, 18
if, 18
switch , 19, 34
semicolon6
separate compilatio23, 56
-c, 57
set, 52
seffill, 26
setprecision, 26
setw, 26
shell,5
shell arguments33
argc, 33
argv, 33
main, 33
short , 8

short-circuit expression evaluation

&&, 19
showbase, 26
side-effect,16
signed , 8
sizeof, 16
skipws, 26
software development
.C, 57
.h, 57
.0, 57
separate compilatio®6
-c,57
source file4, 29, 42, 55, 56
stack, 52

67

68

stack allocation27
standard outpuf
Standard Template Librarg2
standard template library2
statementf
static , 56
std, 6
stderr, 24
stdin, 24
stdout, 24
STL, 52
strcat, 32
strcpy, 32
strcspn, 32
stream
cerr, 24
cin, 24
clear, 25
cout, 24
fail, 24, 25
formatted 24
fstream, 24
ignore, 25
input,6
cin, 24
end of file,25
eof, 25
ifstream, 24
manipulators
boolalpha, 26
dec, 26
endl, 26
fixed, 26
hex, 26
iomanip, 26
left, 26
noboolalpha, 26
noshowbase, 26
noskipws, 26
oct, 26
right, 26
scientific, 26
seffill, 26
setprecision, 26
setw, 26
showbase, 26
skipws, 26
output,6
<<, 6
cout, 6
endl, 6
ofstream, 24
stream file24

C+ Tutorial

string,9, 31
C operations32
[1, 32
strcat, 32
strcpy, 32
strcspn, 32
strlen, 32
strncat, 32
strncpy, 32
strspn, 32
strstr, 32
C++ operations32
1=, 32
+,32
<, 32
<=, 32
=, 32
==, 32
> 32
>=, 32
[1,32
find, 32
find_first_not_of, 32
find_first_of, 32
find_last_not_of, 32
find_last_of, 32
npos, 32
replace, 32
rfind, 32
substr, 32
constant9
null termination 31
strlen, 32
strncat, 32
strncpy, 32
strspn, 32
strstr, 32
struct , 13
structure 10, 13, 14, 17, 34
member13, 34
initialization,13
visibility
default,13
public , 13
struct , 15
substr, 32
switch , 19, 34
break, 19
case, 19
default, 19
symbol table4

template, 51
routine,51

C+ Tutorial

type,52
this , 36
token,6
true, 18
type aliasing;10, 14
type constructor
aggregation13
array,13
class,13
constantl4
enumeration10, 13
pointer,10
reference L0
structure 13
type aliasing 14
type conversionl7, 39, 45, 50
type equivalence} 749
type inheritance46, 47
type qualifier8, 12
const, 8,12
extern, 57
long, 8
short, 8
signed , 8
static , 56
unsigned , 8
type-constructor constant
array,14
pointer,14
structure 14
typedef , 14

uninitialization 40
unsigned , 8

value passing30
variable declarations
type qualifier,8
variables
address]1
constant
default initialization,?
dereferencel l, 15
reference]ll, 15
vector, 13, 52
(1,52
at, 52
iterator,52
push_back, 54
size, 52
virtual , 49, 50
virtual members49-51
visibility
default,13

private , 55
protected , 55
public , 13, 55
void , 29
wchar_t,7
while , 20

whitespaceb, 6, 24
widening conversionl7

69

	Title
	Contents
	Introduction
	Brief History of C/C++
	C/C++ Source File
	Compilation
	Execution
	Program Structure
	Comment
	Statement

	First Program
	Declaration
	Identifier
	Basic Types
	Variable Declaration
	Type Qualifier
	Constants
	Type Constructor
	Enumeration
	Pointer/Reference
	Aggregation (structure/array)
	Type Aliasing

	Type-Constructor Constant

	Expression
	Conversion

	Control Structure
	Block
	Conditional
	Selection
	Conditional Expression Evaluation
	Looping

	Preprocessor
	Substitution
	File Inclusion
	Conditional Inclusion

	Input/Output
	Input
	Output

	Dynamic Storage Management
	Routine
	Argument/Parameter Passing
	Array Parameter

	String
	Shell Argument
	Object
	Operator Members
	Nesting
	Constructor
	Constant
	Conversion
	Copy
	const Member

	Destructor

	Forward Declaration
	Overloading
	Inheritance
	Implementation Inheritance
	Type Inheritance
	Virtual Routine
	Down Cast
	Constructor/Destructor
	Abstract Interface

	Template
	Namespace
	Encapsulation
	Separate Compilation
	Acknowledgments
	Pulling It All Together
	Index

