INTERMEDIATE C PROGRAMMING

UMBC

Training Centers

6996 Columbia Gateway Drive
Suite 100

Columbia, MD 21046

Tel: 443-692-6600
http://www.umbctraining.com

INTERMEDIATE C
PROGRAMMING

Course # TCPGR3001
Rev. 10/27/2016

©2016 UMBC Training Centers
1

INTERMEDIATE C PROGRAMMING

©2016 UMBC Training Centers

2

INTERMEDIATE C PROGRAMMING

Course Objectives

® At the conclusion of this course, students will be able to:

4
4

Master the use of pointers in a wide variety of problems.

Use sophisticated pointer techniques to solve problems involving
advanced data structures such as lists, stacks, queues and trees.

Choose from a wide variety of data structures to implement the most
efficient solution to a problem.

Apply the proper optimization technique to your C code.
Apply many portability techniques to your C code.
Use bit manipulation techniques for efficient solutions to problems.

Write programs which emphasize modern program design techniques
which emphasize code reuse.

Write powerful C programs which make "calls" directly into the UNIX
operating system through the use of system calls.

Decrease development time in writing applications through a more
thorough understanding of sophisticated concepts in C.

©2016 UMBC Training Centers

3

INTERMEDIATE C PROGRAMMING

©2016 UMBC Training Centers
4

INTERMEDIATE C PROGRAMMING

Table of Contents

Chapter 1: Review of C and Aggregate Data Types......cccccucremmrriirsmmrmnsisnmssnsssssnnnnnnnns 9
D=V Y o= T PP P PP PPPPPPP 10
(O oT=T =1 (o] £~ TSRO 12
(@ 01T - (o] =R 13
CoNntrol FIOW CONSIIUCES......ueiiiiiiiiie ettt e e e e e e e e e e e e e 14
Aggregate Data TYPeS. ... 18
N1 = £ T PO PPUPPPPPTPPPPPPPPIN 19
R (0 [0 (0= 22
1177 0= 0 L= SO 25
STTUCTUIES - EXAMPIE......eeeiiiieeee e 27
8T 1 SRR 30
T =] [PP 32
a1 1= =V (o] P PPPUPPPRRRRR 34
Chapter 2: Building Larger Programs........ccoceuusmssssmsmssssssmssssssssssssssssssssssssssssssssssnnes 37
Compiling Over Several FIles..... .o e 38
FUNCHION SCOPE......eeeeeeie e 39
] [S I TeTo] o L= T PSSP PPR PP 40
T o= T (S Tt o 1= TSRS 41
(o Tor= L IR = L1 [PPSR 43
=To IS (T =g o I=) (=] o FO PSP 45
(@] o] 1= oz B 11 3SR 47
ez 11 0]][T PRSP 48
I o] 7= 1 1= TR 49
I ST O o = T =T PR 50
L= =T L= gl o o 51
Chapter 3: FUNCHIONS.......oii s s s 55
U e (o] I Ul gl F= 10 0 =T 1 ¢= 1< TSP 56
FUNCHON PrototyPes.oeiiieeee e 58
Function Invocation and Definition............oee oo 59
FUNCHION ProtOtYPeS. ... 60
SUbProgram EXamPIES.o 62
Functions Returning @ ValUe.........ooo it 63
Return Value Considerations...........ccueieiiiiiiiie e et 64
Return Value Considerations..........ccuuuiiiiieeee i eseee e 65
RECUISIVE FUNCHIONS......ciiiieeeeeeeeeeeeeeee ettt e e e 66
RECUISIVE FUNCHIONS....cci it e e e e e e e e e e e e e e 72
Evaluation of FUNCHON ArgumeENntS..........ooo i 73
Variable Number of ArgumeNntS...........ouuiiiiiiiiie e 75
T (=11 = (o] o 1SR 77
Chapter 4: Bit Manipulation..........cccvimiiniirn s 81

©2016 UMBC Training Centers

5

INTERMEDIATE C PROGRAMMING

Characteristics of Bitwise Problems............ooii i 82
Defining the Problem SPpace......... .o 83
BitWiSE OPEIatOrS. ... ettt 84
R T=T=To F= Lo 11 Y AN [£ TSR 86
ASSIgNING Bit VAIUES.....ceiiiiieee e 87
ASSIGNING Bit VAIUES......eeeiiiieeeee e 88
Writing BitWiSE FUNCLIONS......ciiiiiiieieee et 89
CIFCUIAN SRTES.... e e e e e e e e e e e e e e e e 90
Character INformation ArTaYeeeii e 92
D71l o] (U] o PP PPPPPPPPPPPP 93
Mapping WIth BitS.........cooiiiiiiiieee e 94
T Lo)G To] PSPPSR 96
Lo [GRS To] o PSPPSR 97
Chapter 5: Pointers (Part 1).....ccccccceciiriiccerirs e resssscersesssssssssssssmsese e sssssssssssssmsmmnes 102
Common Pointer CONSIIUCES.coiiiiiiiii e 103
Pointer AfTNMETIC. ... 105
BINAry SEAICH..... .o s 107
Changing a Pointer through a Function Call............cooooiiiii e 109
Processing Arrays With POINters...........eooiiiiiiii e 111
Simulating Higher DImensional Arrays. ... 112
TWO DImMenSioNal ArraysS......oooo et 114
ComPlex DECIAratioNS........cuuiiie et 116
Sorting with Large ReCOIdS......c.ouiiiiiie e 118
Chapter 6: Pointers (Part 2)........cccccrrmmmmmmmimninssesmssnnnissnes 123
Dynamic Memory AllOCAtION...........eeieieeeee e 124
Initialization Of POINTEIS. ... 127
Functions Returning @ POINTEr ... 128
Arrays of CharacCter POINTEIS.cuuiiiiiiieiee e 129
Command LiNe ArgUMENTS.ooiiiiiiieeeie ettt 132
Practice With POINTEIS. ..o 138
Accessing Environment Variables.............ooii 139
FUNCLION POINTEIS.....ceeeiie et 141
Chapter 7: Binary /O and Random ACCESS.......ccucemrrirmmmmssmsrsssmsmsssssssssssssssssssssssnnas 156
A Database APPlICALION.ueiiieiieiee e 157
The MeNU FUNCHION......ooo e 160
The create _db FUNCHON........uueiiiiiiiee e e e e e e esba e e eeeeessanas 162
L1 == o 1R 163
The print_db FUNCHON.......ooi e 164
LS5 = S 165
The retrieve _db FUNCHON..........e e e e e e e e e eeaaaas 167
The Utility FUNCHIONS.....ceeee e 168
Chapter 8: Designing Data Types........cccccurririmiiinismsrnssssss s sssssssnnns 170
Steps in Creating Data TYPES. . .uuiiuiieeieeeeieeeriieeesee e seee e see e eeeee e e e e eenereeeee e e e nnnnes 171
Rationale for a New Data TYpe........eooi i 172

©2016 UMBC Training Centers

6

INTERMEDIATE C PROGRAMMING

B TSI 1 L= U1 0] 1 T o 173
Operations on the Fraction Data TYPeS......ccuueiiieiiiiiie e 174
Implementation of the FUNCLIONS.........ooiiii i 175
Example Program Using FractionS..........cooocuiiiiiiiiie e 178
JAYe] o] oz (o) o SN 1 o I = T 1 1= T 179
Set Notation EXamMPIES.......ceeiei ittt e e e e e e e e e eeennnnes 180
Creating the Set TYPe. . e e e e e e e e e 181
Set Representation EXampPle...........ouvvieiiiiiiiiii e 182
Set REPreSentation........ooi oo e e e 183
Set Function ImplementationsS...........ooieiiii e 184
A Program That Uses the Set Data Type......coovieiiiiiiiiie e 186
Chapter 9: Linked ListS......cccccuiimmmmniimerrinnsms s s ssssnns 188
A= L= T =T IR E] (AR 189
LISES @S AITAYS. . iiitteie ettt e e et e e e e e e e e e e e e e nr e e e e e e e e e e nnne 191
Benefits Of LINKEA LiSTS.....uuiiiiiie it e e e e e e e e e e e eaeas 193
A List of LINKEd EIEMENTS.......ueiiieeeee et e et e e e 194
Defining the List Data TYPe.......uueiiiieee e 195
THe LiSt DAta TYPe. .. ueeeeeeiiiiiieeie et 196
Implementations of List FUNCLONS...........oooiiii e 197
A Simple Program With @ List........oeeiiioie e 200
Other TyPes Of LISTS.t a e e 201
(@ (o LT = To I I 1= =T 203
B T3 =T (o B 0T (o £ o 205
(@ o1 | F= Tl) (= 206
TWO WAy LISES ...t 211
[Ty (T 0 I = £ 216
Appendix A: Software TOOIS.......cccruiimmrriinrns s 220
The CC COMMEANG......coueiiieii e e e e e e e e e e e e e s eaa e e eaaeseaneeennaes 221
Different C COMPIIEIS.cooi e 222
(O70T00] o] 1 L=Y @@ o] (o] o[- 223
(@70] 00 11 (=T G @] o] (o] o 1= T PR 224
Conditional ComPIlatioN..........oeeiiii e 225
B gL Y] A1V = o o 227
] o) =T == 229
Header File SUPPOI.. ... e 233
] o] =T == 234
The Make COMMANG...... oot e e e e e e et e e e e e e e e e raaaeeeaneenas 235
AN EXample MaKefile.......oou s 237
The Make COMMEANG.......ouuueiieeiieeeeee e e e e e e e e e e e e s e e e e e e e e e e eananas 238
The make DependencCy Tree...... .. e 239
The Make COMMEANG...... it e et e e e e e e e e e eae e e e e esaa s aeraaaeseeneenns 240
Source Code Control SYSTEM.......cooi i 241
After @ ReVISION CYCIE....cooo it e e e 243
Source Code Control SYSTEM.......coii i 244

©2016 UMBC Training Centers
7

INTERMEDIATE C PROGRAMMING

Appendix B: Library FUNCHIONS..........cooiiimeiririnssisessse s ssssscssssss s s 246
Building Command StHNGS.ooeiiiiiiiie e 247
S V£51 (=7 0 o PP 248
EXIT AN ATEXIT. ... e e e e e e 249
][0 | = PP PPPRR 251
] L1 (0] O OO PPPRPP 253
MEMCPY ANA MEMSEL......eeiiiieiiiiie et e e e e e r e e e e e e e e e e aeaaanns 255
o <o o PR 257
DSEANCI. ... e e e e e e 259
5] £ 1 PP 261
SITCNE @NA SIITCNT ... e e e e e e e e e e e e e e e eeeeenees 263
Data Validation EXample..... ..o 265
(=] o] = T o IR 1< o o VOSSR 266

APPENdiX C: File ACCESS.....ciiiiimmririirnmnirssiemns s s ssss s sssms s s ssms s s s mms s s e s s s s sses 268
I/0O From Applications Programs.cououeeeee oot e e 269
System Calls vs. Library CallS.........ooiiiiiiii e 270
The fOPEeN FUNCLION.......oi e 271
ACCESS MOAES....... ittt e e e et e e e e e e e e e e as 273
Errors in Opening Fles.o e 275
Example: Copying @ File..... e 277
[/O LIDrAry CGallS......ooo oot e e 278
Character Input vS. LiNe INPUL.......coeiiiieieiee e 279
INTErPreting INPUL. ..o e 281
The sCaNf FUNCHON......coee e 282
SCANT VaATANTS ... e e 285
PHNEE VAITANTS ..o e e e e e e e e e e e e 289
The fCloSE FUNCHION.eii e e e e 291
SEIVICING EFTOIS...ciiiiieie et e e e e e e e as 293
Application for BiNary 1/O..........ooo e 296
T F= Y L T RSP 297
The Main FUNCHON - COOE......cuiii et e e e 298
create_db FUNCHON - fWIItE......oooiiiiiee e 300
L1 PP 301
print_db FUNCLION - fre@d....... ..o 302
L= Lo P PRSP RPRTPRPP 303
retrieve _db FUNCHON. ... e ees 304
LT 1= SO RSSO OPPPPT PP 305
FIIUSH @NA FLEILL....eeeee e e e e e e e e 306

©2016 UMBC Training Centers

8

Chapter 1:

Review of C and Aggregate
Data Types

©2016 UMBC Training Centers

9

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Data Types
@ int
10 256 -3245
24564561 32457U
lal l?l |\OO7I
@ float

23.45F 345.31f

® double
25.67 45.324E+05

@® derived data types

enum weekend { sat, sun};

struct point { union hash {
int x; long int index;
int y; char name[4];
Yiooobs
@ typedefs

typedef enum weekend WKEND;
typedef struct point POINT;
typedef union hash HASH;

©2016 UMBC Training Centers

10

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Data Types
® For integers

int normally 2 or 4 bytes

long normally 4 or 8 bytes
short normally 2 or 4 bytes
unsigned sizeof (int) bit manipulation
unsigned long sizeof(long)
unsigned short sizeof(short)

® For small integers or characters

char sizeof(char)
unsigned char sizeof(char)
signed char for small ints
® For decimal numbers
float numbers with fractional parts
or very large or small
double twice the precision of float
long double more precision/magnitude
® For aggregate data
struct create your own types
union alternative interpretation
enum symbolic constants

® Synonyms for all data types

typedef create new name

©2016 UMBC Training Centers
11

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Operators
® Logical
if (! (¢ >= 'a' && c <= 'z"))
code;
® Relational
if(a==Db || c !=d)
code;

® Assignment
X *= a + b;
@ Bitwise

unsigned a, b, c;
a = ~b | c;

® Structure Member

struct point a, *p;
p = &a;
printf ("%d, $d\n", p —> x, a.vy);

® Conditional

X =a >b ? a: b;

©2016 UMBC Training Centers

12

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Operators

® Arithmetic

+ - * / %
® Logical

! s& ||
@ Relational

— = > >= < <=
® Assignment

= += —-= *= \= etc
@ Bitwise

~ & | ~ >> <<

® Structure Member Pointer

-> & *

® Miscellaneous

++ = 2 , sizeof (type) [1 ()

©2016 UMBC Training Centers

13

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Control Flow Constructs
o if
if (condition) {

code for true

}

® if...else

if (condition) {
code for true
}
else {
code for false

}
® if...else if...else

if (condition_1) {

code for condition_1 true
}
else if (condition_2) {

code for condition_2 true

else if (condition_n) {
code for condition_n true
}
else {
code for all conditions false

©2016 UMBC Training Centers
14

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Control Flow Constructs

@ for

for(initial_expr ; test_expr ; modify_expr) {

code for the body of the loop

® while

while (test_expr) {

code for the body of the loop

® do while

do {
code for the body of the loop

} while (test_expr);

©2016 UMBC Training Centers
15

INTERMEDIATE C PROGRAMMING

CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

® switch

Control Flow Constructs

int c;

c = getchar();
switch (c) {
case 'a':
case 'A':
case '1l':
add ();
break;

'd':
'D':
'2':
delete (
break;

case
case
case

) ;

default:

printf ("Choose 'add' or

'"delete'\n");

©2016 UMBC Training Centers

16

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Control Flow Constructs

@® switch - general syntax

switch (integer_test_expression) {
case integer_constant_expr_1:
case 1integer_constant_expr_2:

body of statements to be executed when
test_expression = any case expression.
break;

case integer_constant_expr_la:

case integer_constant_expr_2a:

body of statements to be executed when
test_expression = any case expression.
break;

default:
code to be executed when no
cases match test_expression

}
® Note that break is optional and, if omitted, program will slide

through to code for next case.

® Conditional expression for a switch must evaluate to an int or
be a parameter of type int, short or char.

©2016 UMBC Training Centers
17

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Aggregate Data Types

® Arrays

int numbers [MAX_NUMBERS];
char one_line[STRING_SIZE];

® Array of arrays

Each strings]i] is an array of STRING_SIZE many characters.

char strings[NUM_STRINGS] [STRING_SIZE];
® Array of pointers
char *pointers[NUM_STRINGS];

® Pointer initialization

char 1line[STRING_SIZE];
char *p = line, *q, *r;

q = ps
r = malloc (STRING_SIZE);

fun (p) ;

fun (char *v)

{

©2016 UMBC Training Centers

18

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Arrays

® Arrays - collections of single elements traversed with subscripts
or pointers

® Array of arrays
® Pointer arrays
® Uses of pointers
» traversing arrays
» altering arguments through function calls
» efficiency
» creating high level data structures such as lists, queues, stacks, trees
@ Initialization of pointers
» with definition
» explicitly through assignment
» relationship between arguments and parameters

» returned value frommalloc

©2016 UMBC Training Centers

19

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Arrays

® Observe the following analogy.

int x; /I x is an integer variable
x = 5; //'5 is an integer constant
char *pc; // pc is a pointer variable
char line[MAX_CHARS]; //'line is a pointer constant
pc = line; //'legal

® You cannot change a constant.

5 = x; //is illegal
line = pc; /lis illegal

® You can change a variable.

pct+; //'is legal
x++; //'is legal

® In order to change a variable through a function call, the
function must be sent the address of the variable.

fun (line); // line is an address by definition
fun (&x) ; // 'you must explicitly send address of x

©2016 UMBC Training Centers

20

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Arrays

® An array is:
» the name of a contiguous portion of memory, say x
» the address in memory of the beginning of x

» an address constant

® A pointer variable is a variable, which can hold the address of
another variable.

® The connection between an array and a pointer is that both of
them represent an address. However, an array is a pointer
constant while a pointer variable can be modified.

©2016 UMBC Training Centers
21

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Structures

® A structure

struct point {
int x;

int y;

}i

® A structure within a structure

struct window {
struct point upper_left;
struct point lower_right;
b

® Referencing structures

main()

{
struct point apoint;
struct window awindow;

apoint.x = 5;
apoint.y = 10;

awindow.upper_left.x = 5;
awindow.upper_left.y = 10;

awindow.upper_left = apoint;

}

©2016 UMBC Training Centers

22

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Structures

@ Structures
» aggregate data type
» usually has many elements called members
» programmer created type
@® Structures should model aggregate data from problem space.
» a payroll record
» a window
» ajob in an operating system
@® Using structures in a program
» provide a description of the structure (header file)
» allocate storage for one - by definition or by malloc

» fill in the defined storage

® Used heavily in dynamic data structures such as lists, trees,
stacks, queues

©2016 UMBC Training Centers

23

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Structures
@ Structures may be assigned to one another if they have the
same data type.

struct date a,b, *ps;
struct payroll person, manager;

a = b; // ok
person = manager // ok

a = manager; // illegal
a = manager.birthday; // ok

ps = &a;

b = *ps; // ok

©2016 UMBC Training Centers

24

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

typedef

® In programs using structures, the keyword st ruct must be
repeated often.

® There is a facility called typedef, which allows you to create a
new name for an existing type. A typedef can:

» Simplify programs
» Aid in documenting programs
» Give the appearance of new types

® Conventionally, a typedef is named using upper case.

® The lines below give new names for existing types.

/* LENGTH and WIDTH are additional
names for int

*/

typedef int LENGTH, WIDTH;

/* STRING is a new name for char **/
typedef char * STRING;

/* ARRAY is a new name for array
of 10 integers

*/

typedef int ARRAY[10];

® A typedef is usually placed in a header file.

©2016 UMBC Training Centers

25

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

typedef

® With these typedef's in place, you could code:

int main ()

{

/* a, b, x, and y are of the same type */
int a, b;
WIDTH x;
LENGTH v;

/* p, pc are of the same type */

char *p;
STRING pc;

/* x, r are of the same type */

int x[10];
ARRAY r;

® A typedef is often used as new name for a structure type.
For example:

typedef struct employee WORKER, *PWKR;

WORKER company[107]; // Array of structures
PWKR answer; // Pointer to structure

©2016 UMBC Training Centers

26

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Structures - Example

® Assume the following is contained in payroll.h.
#define NAMESIZE 30

struct date {
int year;
int month;
int day;
i

struct payroll {
char name [NAMESIZE];
float pay;
struct date birthday;
struct date promotion;
char dept[10];

}i

typedef struct payroll RECORD;

©2016 UMBC Training Centers

27

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Structures - Example

® Assume the following is contained in your driver program.

#include "payroll.h"
#include <stdlib.h>

main()

{

RECORD person; // a struct payroll variable
RECORD bank[100] // array of 100 struct payroll
RECORD *pts; // a pointer to a struct payroll
RECORD fill_1(); // function returning RECORD

RECORD *fill 2(); // function returning RECORD *

pts = (RECORD *) malloc(sizeof (RECORD)) ;
if(pts == NULL)

error ();

person = fill_1();

pts = £i1ll1l_2();

}

©2016 UMBC Training Centers

28

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Structures - Example

® Structure members are referenced with the syntax:
» structure_name.member_name

struct date febli4;
struct payroll person;

febld.year = 1992;
febld .month = 2;
febld.day = 14;

person.pay = 42500.00;
strcpy (person.name, "tom smith");
person.birthday = febl4;

® Pointers to structures need to use pointer qualification:
» pointer -> structure_member

struct date *pts;
struct payroll *pp;

pts = &febl4;

pts —-> year = 1992
pts -> month = 2;
pts —> day = 14;

PP = &person;
pp —> pay = 42500.00;
pp —> birthday = febl4;

©2016 UMBC Training Centers

29

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Unions

® A driver program that instantiates a union

#include "hash.h"

#include <stdio.h>

main()

{

int probe;

char table[NUM_STRINGS] [MAX_CHARS];
union hash string;

fgets (string.name, MAX_CHARS, stdin);
probe = string.index % NUM_STRINGS;

if (strcmp(table[probe], string.name) ==)
printf ("found %s\n", string.name);
else

}
® The header file hash.h

#define MAX_ CHARS 4
#define NUM_STRINGS 100
union hash {

char name [MAX_CHARS];
long int index;

i

©2016 UMBC Training Centers

30

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Unions

® Unions
» use structure syntax
» have different interpretations of the same storage

» sizeof (union) >= sizeof (largest interpretation)

v

have specialized uses such as:

e variant records

e non homogeneous arrays
» create possible portability problems

@® Using unions in a program
» provide a description of the union - (header file)
» allocate storage for one

» refer to storage by any of the collection of types in the union

©2016 UMBC Training Centers

31

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Bitfields

® Assume the bitfield structure is defined in info.h.

struct information {
unsigned int is_male: 1;
unsigned int is_married: 1;
unsigned int how_many_kids: 5;
unsigned int 1s_manager: 1;
}i
® A driver program which instantiates and uses a bitfield
structure.
#include "info.h"

main()

{

struct information person;
/* code to fill up the person would go here */
if (person.is_male && person.is_married)

function();
person.how_many_kids++;

©2016 UMBC Training Centers

32

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Bitfields
@ Bitfields

» allow easy access to portions of the wordsize
» provide an alternative to bit manipulation operators
» use structure syntax for easier access than bit manipulation operators
» may create portability problems

® Using bitfields in a program
» provide a description of the bit field type (usually kept in a header file)
» allocate storage for one

» refer to storage by structure syntax

©2016 UMBC Training Centers

33

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Enumerations

® Assume enumeration is defined in sports.h.

enum sports

{ baseball, football, basketball, hockey };

/* Dbaseball = 0; */

enum products { shoes = 10, rackets, shirts };
/* rackets = 11; */

® A driver program which instantiates and uses an enumeration

#include "sports.h"
main()

{

enum sports activity;

enum sports next_sport();
activity = next_sport (baseball);
if (activity == basketball)
function();

©2016 UMBC Training Centers

34

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Enumerations

® Enumerations

»

are modeled after pascal although not as strongly implemented (no
succ or pred functions)

makes programs easier to read
slightly stronger than #define mechanism
are implemented as small integers

are symbolic constants whose values start with 0 unless otherwise
specified and are incremented by 1.

® Using the enum type in a program

»

»

provide a description of the type together with possible values
(usually kept in a header file)

allocate storage for one

©2016 UMBC Training Centers

35

INTERMEDIATE C PROGRAMMING CHAPTER 1: REVIEW OF C AND AGGREGATE DATA TYPES

Exercises

1. Write a small program, which prints the sizes of various
integers on your machine.

2. For the following definitions and code, give the value of each
expression below:

char *pc;
char lines[10][20];

strcpy(lines[0], "mike");
pc = lines|[0];

lines)
sizeof (lines[1])

sizeof (
()
sizeof (lines[1][3])
(
(p

SR

SN— N

strlen(lines[0])

c)

sizeof

D

3. Write the declarations for a structure which contains a union (of
a character array and a long integer), a structure of bit fields
(containing a day, month and year), and an ordinary structure
(containing a first name, last name, and initial). (Hint: First,
write the declarations for each of the contained items.)

4. How do you access:

a) the char array portion of the union inside the structure?
b) the day portion of the bit field in the structure?
c) the middle initial portion of the initial portion of the structure?

©2016 UMBC Training Centers

36

Chapter 2:

Building Larger Programs

©2016 UMBC Training Centers

37

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Compiling Over Several Files

® The source for one executable can be spread out over several
files.

» How is a variable, which is defined in one file, known to another file?
» How is a variable, which is defined in one file, kept private to that file?
» Over what part of the program can a variable be accessed?

® There are advantages in keeping a function in a file by itself.
» The function can be compiled once.
» It can be linked whenever needed.

» It can be placed in a library.

® The scope of a variable refers to that portion of a program
where the variable may be accessed.

» Block scope
» Function scope

» File scope

v

Program scope

©2016 UMBC Training Centers

38

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Function Scope

® Variables have function scope if they are either:
» Non-static variables defined inside of a function

» Parameters.

@ Storage for these variables is reserved when the function in
which they are defined is executed.

» Storage is deallocated when the function terminates.

» The keyword auto can be used for local variables that are not
parameters.

» Local variables can only be referenced inside the function in which
they are defined.

® Parameters begin life with the value of the argument that
they represent.

» Other local variables have unknown beginning values.

® a2, Db, and c have function scope. They are referred to as
local variables.

double hypot (double a, double b)
{

double c;

c = sgrt(a * a + b * b);
return (c) ;

©2016 UMBC Training Centers

39

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

File Scope
® A variable has file scope if it is defined in a file before a
function.
» This is a less likely place to define a variable.
» It is the source of many bugs.
» Yet, there are some good uses for file scoped variables.

® Functions, which do not call one another but need to share
data, should use file-scoped variables.

int v; /* file scope */
int x[1007; /* file scope */
int s; /* file scope */

void push (int wvalue)

{
// body of push

}

int pop/()
{
int s; // file scope 's' not visible here

}

void clear ()

{
// body of clear

}

® v and x can be referenced from any function in this file. sis
known to the entire file exceptin pop. Inside pop, another
variable (also named s) has local scope.

©2016 UMBC Training Centers

40

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Program Scope
® Program scope means that a variable is known to all files of a
program.

» Program scope differs from file scope when there is more than one
file being linked.

® This is usually not desirable because a change to a variable in
one file can have an effect on the same variable in another file.

® Often, the programmer wants privacy for a file scoped variable.

® The keyword static makes a file scoped variable private to
that file.

©2016 UMBC Training Centers
41

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Program Scope

® x has program scope.

main.cC one.c two.c
extern int x; extern int x; Int x;
main () fun2 () funid ()
{ { {
funl () ; funl () ; funb5 () ;
fun2 () ; fund () ; fun3 () ;
} } }
funl () fun3 () funb ()
{ { {
fun3 () ;
funb5 () ;

} } }

@ If the three files above are compiled and linked together, there
will be one storage location named x.

» Among all these files, exactly one of them must have a definition for
x. The others need an extern declaration for x.

® Any of the variables above can be made private to a particular
file by using the static keyword.

static int x; static int x; static int x;
main () fun2 () funid ()
{ { {
funl () ; funl () ; funb () ;
fun2 () ; fund () ; fun3 () ;
} } }
funl () fun3 () funb ()
{ { {
fun3 () ;
funb5 () ;

©2016 UMBC Training Centers

42

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Local static

® Whether they are static or not:

» file-scoped variables have initial values of 0; and

» only one initialization for a file scoped variable is permitted.
® The static keyword has another important use.

» Local static variables retain values across function invocations. They
are variables that are initialized once, regardless of how many times
the function is invoked.

® Alocal static variable is initialized when the program is
loaded.

©2016 UMBC Training Centers

43

INTERMEDIATE C PROGRAMMING

CHAPTER 2: BUILDING LARGER PROGRAMS

Local static

starter.c

=
N B

=
SIS

=
o

NN
N =

NN
[Ga e

N
~J

N
(e¢]

w W
N =

OW 0 J o U1 b W N -

= = =
o w o

N -
[@ N

N N
o w

w N
[@ 2N

w W
W

#include <stdio.h>
#define HOWMANY 5
void starter();
main ()
{

int i;

for (i = 0; i < HOWMANY;
starter () ;

. void starter ()

{

Static storage is initialized with O
Here we do it explicitly

i++)

/*
by default.
*/
static int first = 0;
if (first == 0)
{
first = 1;
printf ("Only once\n");
}
else

printf ("All but the first time\n");

printf ("Every time\n");

©2016 UMBC Training Centers
44

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

register and extern

® There are four keywords associated with storage classes.
» auto Local variables

» static Either for privacy or to remember values
across function invocations

» extern Link to variable defined elsewhere

» register Attempt to speed up the program

® An extern declaration is used to link a variable to a definition
in another file.

® The register keyword is used to try to increase the speed of
a function.

» A machine register will be used if available.
» Index variables are good candidates for register variables.

» Only int, char, or pointer types can be register variables.

©2016 UMBC Training Centers
45

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

register and extern

® A register variable is an attempt to speed up a function.

void fun ()

{

register int 1i;

for (i = 0; 1 < 1000; i++)

(
x[i] yv[i] + z[i];

@® cxtern is used in order to access a file-scoped variable
defined in another file.

filel.c file2.c
int r;
main ()
{ void fun2 ()
{
} }
funl () int fun3 ()

{ {

extern int r;

} }

® A more common use for extern is to access a system
variable.

©2016 UMBC Training Centers

46

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Obiject Files

® If each function is placed in a separate file, the functions can
be compiled separately and then linked into any application
that needs them.

® Every compiler has an option that directs the compiler to build
an object file rather than to build an executable file. The
resultant object file is named with the suffix .o on UNIX
machines and .obj on Windows machines.

® On UNIX for example, one might proceed as follows:

$ gcc #c funl.c
$ gcc #c fun2.c
$ gcc prog.c funl.o fun2.o

©2016 UMBC Training Centers
47

INTERMEDIATE C PROGRAMMING

CHAPTER 2: BUILDING LARGER PROGRAMS

Example
prog.c
1. #include <stdio.h>
2.
3. void funl ();
4. void fun2();
5.
6. int x;
7.
8. main ()
9. {
10. printf ("MAIN: x = %d\n", x);
11. funl () ;
12. printf ("MAIN: x = %d\n", x);
13. fun2 () ;
14. printf ("MAIN: x = %d\n", x);
15. }
funl.c
1. #include <stdio.h>
2.
3. int x;
4,
5. void funl ()
6. {
7. X++;
8. printf ("FUN1l: x = %d\n", x);
9. }
fun2.c
1. #include <stdio.h>
2.
3. int x;
4.
5. void fun2 ()
6. {
7. X++;
8. printf ("FUN2: x = %d\n", x);
9. }

©2016 UMBC

Training Centers

48

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Libraries

® The previous strategy is cumbersome with a large number of
files. A better strategy is to use libraries.

® Each operating system has a utility (the librarian).
» Compile each function as before.

» Place the object files in the library.

® Place library name on the command line when building an
executable.

® When your C compiler was installed, many support tools were
also installed including:

» The librarian utility
» The actual libraries

@® To build a library, one might proceed as follows.
» For example, on UNIX:

$ gcc #c funl.c
$ gcc #c fun2.c
$ ar r mylib.a funl.o fun2.o

@® Building executables:

S gcc main.c mylib.a
S gcc othermain.c mylib.a

©2016 UMBC Training Centers

49

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

The C Loader

® When you execute the C compiler, several steps occur.
» Preprocessor
» Compiler

» Loader
® Loader looks for functions referenced but not supplied.

® In order to resolve external references, the loader looks various
places in the following order.

» In the source file being compiled
» In any files being linked
» In the Standard C Library

» In libraries named on the command line

® For any function not resolved by the above search, an error is
printed.

® A program with a misspelled function name would produce the
following error.

int main ()

{
printf ("Hello\n");
print ("Loader\n") ; /* oops */

}

® Loader will see print as a referenced function whose code
was not supplied and will report an error.

unresolved external: _print

©2016 UMBC Training Centers

50

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Header Files

® Header files support applications and libraries. Header files
contain information needed by many programs.

® Header files save you typing. You can use the #include
feature of the preprocessor to import header files. Header files
should not contain executable statements.

® There is a relationship between header files and libraries.

® When you use a function from a library, you should include the
header file, which supports that library.

» The header file will contain the prototype(s) for the function(s) from
that library that you are using.

» This reduces the likelihood of errors, which could result if you
provided your own prototypes.

©2016 UMBC Training Centers

51

INTERMEDIATE C PROGRAMMING

CHAPTER 2: BUILDING LARGER PROGRAMS

Header Files

® Information typically found in header files

4
4
>
>
4
4

#include statements
#define statements

Other preprocessor directives
Function prototypes
Structure descriptions

typedef's

® Each library on your system will have at least one header file
that supports it. Examples:

LIBRARY HEADER FILE
Standard C stdio.h
stdlib.h
string.h
Math math.h

©2016 UMBC Training Centers

52

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

Exercises

1. Take any program that you have written and spread it out so
there is one function per file. Compile and execute the

program.
2. Simulate an array by providing two functions, get and put.

Place these functions in the same file and define an array
externally to these two functions. Compile this file separately.

int array[10007];
void put (int value, int position)

{

}

int get (int position)

{

}

» Programs wishing to use an array can do so by making calls to get
and put in the following way rather than by using subscripts.

main ()

{
int x;
put (10, 5) ; // array[5] = 10;

x = get(5); // x = arrayl[5];

3. Test your program by reading some numbers typed at the
keyboard and printing them in reverse order.

» Note also that you could put in array bounds checking in get and
put.

©2016 UMBC Training Centers

53

INTERMEDIATE C PROGRAMMING CHAPTER 2: BUILDING LARGER PROGRAMS

©2016 UMBC Training Centers
54

C PROGRAMMING

Chapter 3:

Functions

©2016 UMBC Training Centers

55

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Function Fundamentals

® Function Example

/* function prototype */
double average (int *table, int num_elements);

#define ARRAY_SIZE 100
int main ()
{
double avg;
int numbers[ARRAY_SIZE];
/%
fill up array numbers
*/
/* function invocation */
avg = average (numbers, ARRAY_STIZE);

/* function definition */
double average (int *array, int 1limit)
{

double total = 0.0;

int i;

for(i = 0; 1 < limit; 1i++)

total += arrayl[il];
return(total / limit);

}

® Note that the parentheses for the return statement are optional
when a value is being returned. The following are equivalent!

return(total / limit);
return total / limit;

©2016 UMBC Training Centers

56

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Function Fundamentals

® Functions are the basic building blocks of C programs.
» Generality
» Modularity
» Reuse
» Readability
® Three pieces of information must associate correctly.
» Function prototype
» Function invocation

» Function definition

©2016 UMBC Training Centers
57

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Function Prototypes

@® Function prototypes are usually kept in a header file.

» Prototypes for I/O functions in the standard library are kept in
stdio.h.

» Prototypes for the math functions in the standard library are kept in
math.h.

» Prototypes for the string functions in the standard library are kept in
string.h.

® Prototype example

void initialize (int *table, int num_elements);

©2016 UMBC Training Centers

58

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Function Invocation and Definition

® Invocations must originate from within any function.
® The definition for a function can be:

» in the same file from which it is invoked;

» in a different file from where it is invoked; or

» compiled into a library and linked with the invoking function.
® The definition for a function consists of two parts.

» the function header

» the function body

® The function body consists of all of the declarations for
variables followed by all of the executable statements.

® Example of function invocation and definition

#define ARRAY SIZE 100
int main ()
{
int numbers[ARRAY_SIZE];
/* function invocation */
initialize (numbers, ARRAY SIZE);
}

/* function definition */
void initialize (int *array, int limit)

{

int 1i;
for(i = 0; i < limit; i++)
array[i] = 0;

©2016 UMBC Training Centers

59

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Function Prototypes

® A prototype tells the compiler the types of the arguments and
the return type of the function.

double average (int *table, int num_of_elements);
® Prototype arguments do not need names, just types, thus the
following two are equivalent.

double average (int *table, int num_of_elements);
double average (int *, int);

® A function declaration merely tells the compiler the return type
of the function (K & R Compiler Style).

double average();

® In the absence of either a prototype or a declaration, the
following is a difficult bug to find!

demo.c

1. #define STRING_SIZE 100

2

3. int main ()

4. {

5. char string[STRING_SIZE];

6 double x;

7

8 gets (string);

9. x = atof (string);
10. printf ("$f\n", x);
11. }

©2016 UMBC Training Centers

60

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Function Prototypes

@® Function prototypes convey two pieces of information.
» the returned type of the function

» the types of the parameters

® Note that the names of the parameters are not required in the
prototypes. If they are provided, it is purely for documentation
(readability) purposes.

® Before ANSI C, there were no prototypes. There were only
function declarations. A function declaration simply tells the
compiler the return type of the function.

@® Function prototypes are not required by ANSI C, but you are
encouraged to use them! They allow the compiler to do type
checking. They provide documentation for the interface to
functions.

® In the absence of a prototype or a declaration, the compiler
assumes the function returns int.

©2016 UMBC Training Centers

61

INTERMEDIATE C PROGRAMMING

CHAPTER 3: FUNCTIONS

Subprogram Examples

® Examples of functions from other languages

X = SQRT (Y) ;
J = SORT(SQUARE (X) + SQUARE (Y));
7 = SQUARE (X) * CUBE(Y) * 100;

® Examples of subroutines from other languages

CALL SORT (ARRAY, AMOUNT) ;

CALL DISPLAY (VALUES) ;

® A C function returning a value

avg = average (numbers, howmany) ;

® C functions not returning a value
/* sorting an array */

sort (numbers, amount);

/* printing a structure */
print (person);

©2016 UMBC Training Centers

62

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Functions Returning a Value

® Some programming languages offer two subprogram types.
» a function
e arguments and parameters are related
e must have a return statement
e One expression (value) is returned
» the function name represents the value returned

e can be used as an expression in a computation

» a subroutine
e arguments and parameters are related
e subroutine name does not represent a value

e there is no return statement
® C only has one subprogram type - the function.

® Generally, if a function is to compute a value, it will be given a
return type.

® If the function is to behave like a subroutine from other
languages, it will be given the return type of void.

©2016 UMBC Training Centers

63

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Return Value Considerations

® We wish to write a function to compute the sum, the average,
and the variance.

/* INVOCATION */
stats (numbers, howmany, &sum, &mean, &variance);

/* PROTOTYPE */
void stats(int*, int, int*, double*, double¥*);

® Premature return from a void function

void fun(int a)
{
if(a < 0) {
report () ;

return;

}

if(a ==) |
display () ;
return;

}

/* rest of function */

©2016 UMBC Training Centers

64

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Return Value Considerations

® If a function is to "return"” more than one item, it can be done in
a number of ways. The simplest way is to provide an out
argument for each value that you want the function to compute.

@® void functions need not supply a return statement.

@ If a function returning void can return from more than one
place, then a return statement provides a simple solution.

» Note: In this situation, it is the flow of control, which is returned and
not a value.

return,
@® For functions which actually return a value, the return is coded

as:

/* parenthesis not necessary */
return (expression) ;

® Expression is converted to the return type of the function.

©2016 UMBC Training Centers

65

INTERMEDIATE C PROGRAMMING

CHAPTER 3: FUNCTIONS

Recursive Functions

@ lterative solution for computing factorial of an integer

int fact (int p)
{
int res = 1;
if(p <=1)
return (1) ;
for (; p > 1; p—)
res *= p;
return (res);

}

® Recursive solution for computing factorial of an integer

int fact (int p)
{
if(p <=1)
return(l);

’

return(p * fact(p - 1));

©2016 UMBC Training Centers

66

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Recursive Functions

® A recursive function is one that invokes itself.
® Compare the two functions, each of which computes a factorial.
® The iterative solution
» takes more local space
» is faster
® The recursive solution
» takes more stack space
» is easier to read

» runs more slowly

©2016 UMBC Training Centers

67

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Recursive Functions

® Fibonacci Sequence

int fib(int p)
{
if (p <=1)
return (p) ;
return(fib(p — 1) + fib(p - 2));
}

@® Notice that fib(0) and fib(1) require one iteration but:

FIB INVOCATIONS
2 3
3 5
4 9
5 15

©2016 UMBC Training Centers

68

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Recursive Functions

® To see why recursion is usually slower than iterative versions
of the same function, notice the recursive version of the
Fibonacci sequence.

0,1,1,2,3,5,8,13,21
0,1,2,3,4,5,6,7, 8

fib(n) = n forn<?2
fib(n) =fib(n-1) +fib(n-2) forn>=2

® A more efficient solution to this problem is shown in the
efficiency chapter.

©2016 UMBC Training Centers

69

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Recursive Functions

® Quicksort - strategy

»

For the following data elements:
10 20 25 55 35 42 11 5 29 2 30

Choose (10) as the pivotal element.

Start a pointer from the left and find an element larger than (10). 20
is the element.

Start a pointer from the right and find an element smaller than (10). 2
is the element.

Swap these two elements.
10 (2) 25 55 35 42 11 5 29 (20) 30

Repeat this process until they cross.
10 (2) (5) 55 35 42 11 (25) 29 (20) 30

Swap the pivot element.
(5) (2) (10) 55 35 42 11 (25) 29 (20) 30

LOWER PIVOT HIGHER

The data is now partitioned about the pivotal element.

Call the quicksort function recursively on each of the two partitions.

©2016 UMBC Training Centers

70

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Recursive Functions

® Quicksort is the most studied sorting algorithm. For many
kinds of data, quicksort is the fastest sort.

» Many embellishments
» Difficult to code
@® Divide and conquer strategy
» Select a partitioning element (say the first element). Call this P.
» Partition the data so that
o all elements to the left of P are lower than P

 all elements to the right are greater than P

® Recursively apply the same algorithm to each of the two
partitions!

©2016 UMBC Training Centers
71

INTERMEDIATE C PROGRAMMING

CHAPTER 3: FUNCTIONS

Recursive Functions

® Code for quicksort

quicksort.c

=
[

©O© 00 J o U b W N

[
(@)

#define SIZE 20

void quick (int *, int, int);

int main ()

{
int a[SIZE];
fill (a, SIZE);
print (a, SIZE) ;
quick(a, 0, SIZE - 1);
print (a, SIZE) ;

}

. void guick (int *p, int low, int high)
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

{
if (low < high) {
int lo = low;
int hi = high + 1;
int elem = pl[low];
for (; ;) |
while(p[++1lo] < elem && lo < hi)
while(p[—-—hi]l>elem && high>=10)
if (lo < hi)
swap (&p[lo], &pl[hi]);
else
break;
}
swap (&p[low], &plhil);
quick (p, low, hi - 1);
quick(p, hi + 1, high);

14

©2016 UMBC Training Centers
72

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Evaluation of Function Arguments

® Example Program 1

progl.c
1. int add(int a, int b)
2. {
3. return a + b;
4.}
5.
6. int main ()
7. {
8 int 1 =5, jJ =05, x, vy;
9.
10. x = add(i, i++)
11. y = add (j++, J);
12. printf ("%d %d\n", x, Vy);
13. }

® Example Program 2

prog2.c
1. int main ()
2. A
3. int 1 = 5, j = 5;
4,
5. printf ("%$d %d\n", i++, 1);
6. printf ("%d %d\n", J, J++);
7.}

©2016 UMBC Training Centers

73

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Evaluation of Function Arguments

® The order in which C compilers evaluate function arguments is
undefined. If you are not aware of this, difficult bugs can creep
into your program. It is sometimes difficult to see the effects of
this.

® Avoid the following.

power (i, 1++);
printf ("$d %d\n", i, 1i++)

x = £(1) + g(itt);

©2016 UMBC Training Centers
74

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Variable Number of Arguments

® printf has a variable number of arguments.

printf ("hello");
printf ("$s is a string\n", line);
printf ("$s has length %d\n",line,strlen(line));

® A portable way of handling varying number of arguments

varargs.c

1. #include <stdarg.h>

2

3. /* Prototype for sum: Note the ... and no
4 type info after first arg */

5.

6. int sum(int, ...);

;

8. main ()

9. {

10. printf ("$d\n", sum(3, 7, -2, 4));

11. printf ("$d\n", sum(5,1,2,3,4,5));

12. }

13.

14. int sum(int n, ...) /* args have no names */
15. {

1e6. va_list arg; /* arg refers to each

17. arg in turn */

18. int i, s;

19.

20. va_start (arg, n); /* arg points to first arg */
21.

22. for (i = s = 0; i < n ; i++) {

23. s += va_arg(arg, int); /*return next arg*/
24. }

25.

26. va_end (argqg) ; /* cleanup */
27. return(s) ;

28. '}

©2016 UMBC Training Centers
75

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Variable Number of Arguments

® Most functions are invoked with a consistent number of
arguments although the need may arise to write a function
whose argument count may vary across invocations.

® Different systems handle argument passing in different ways,
and therefore the previous solution does not work! In the
function definition, code more parameters than the number of
the actual arguments.

® However, ANSI has provided a standard interface. The details
are kept in the file stdarg.h. The details in the header file
pertain to the specific system on which you are working.

©2016 UMBC Training Centers

76

INTERMEDIATE C PROGRAMMING

CHAPTER 3: FUNCTIONS

Initialization

® Local static initialization example

static.c
1. #define MAX 10
2. #define LOOPS 100
3.
4. void fun (void);
5.
6. int main ()
7. {
8. int 1i;
9.
10. for(i = 0; 1 < LOOPS; 1i++) {
11. fun();
12. }
13. }
14.
15. void fun ()
16. {
17. static int x 0;
18.
19. 1f((x % MAX) (MAX - 1)) |
20. printf ("$d\n", x);
21. }
22. X++;
23. '}
24.

©2016 UMBC Training Centers
77

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Initialization

® Local variables are auto by default. They have unknown initial
values.

® External variables are extern by default. They have 0 as their
initial value.

@ All static variables are initially 0 by default.

® Local static variables remember values between function
invocations.

® In pre ANSI C, aggregates (arrays and structures) cannot be
initialized, unless they are external or static. This is sensible
from an efficiency point of view. The ANSI standard has
relaxed this condition.

©2016 UMBC Training Centers

78

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

Exercises

1. Write a recursive version of the function add, which returns the
sum of two positive integer arguments.

2. Write a function record () which takes two integer
parameters. The function tracks jockey's wins (first place),
places (second place), and shows (third place). Use
#defines (or enums) liberally. Be careful of your choice of
values for the constants. Use a static int array local to the
record () function.

The call record (1, WIN) records a WIN for player 1.
The call record (2, sHOwW) records a SHOW for player 2.

record (ALL, PRINT)
record (ALL, CLEAR)
record (ALL, POINTS

; // prints all records

; // clears all records

); // show points for all
// records

WIN = 4 points, PLACE = 2 points, SHOW = 1 point
There is a starter file for this exercise in the starters directory.

3. Suppose a function power is invoked as shown below. What
is the value of x? Try it!

int 1 = 2, y, X;

y = power (2,3); // y = 8
y = power(2,5); // y = 32
x = power (i, i++); // x = 2?27

4. Give a good example of the use of an external static variable.

©2016 UMBC Training Centers

79

INTERMEDIATE C PROGRAMMING CHAPTER 3: FUNCTIONS

©2016 UMBC Training Centers

80

C PROGRAMMING

Chapter 4:

Bit Manipulation

©2016 UMBC Training Centers

81

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Characteristics of Bitwise Problems

® We wish to track many binary characteristics.
» An Employee Profile
e male or female
e supervisor or not
e veteran or not
e college educated or not
e married or single
e minor or not

e efc...

©2016 UMBC Training Centers

82

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Defining the Problem Space

® There is a class of problems whose solutions are best
accomplished by manipulating the bits of a variable.

® Usually typified by tracking many on/off values for these
problems, a solution is provided by the data type unsigned
int. A variable of this type occupies the same amount of
storage as an int.

sizeof (unsigned int) == sizeof (int)

® unsigned int has no sign bit. You can use the unsigned
type to store numbers although they must be positive or zero.
Each piece (bit) of information could be stored in a single int,
but this would be wasteful.

® A more economical approach is to pack the information into an
unsigned int a bit atatime. The solution becomes a
matter of accessing single bits.

©2016 UMBC Training Centers

83

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Bitwise Operators

® The following truth table summarizes the rules for the bitwise
logical operators.

0)% 0)% | & ~
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

® Other bit operators

a and b in memory (Assume 16 bit wordsize.)

unsigned int a,b,c;

a = 055; // OCTAL CONSTANT
b = 0x44; // HEX CONSTANT

a = 0 000 000 000 101 101

b = 0 000 000 001 000 100

a | b 0 000 000 001 101 101
a &b 0 000 000 000 000 100
a ™~ b 0 000 000 001 101 001

~a 1 111 111 111 010 010
000 000 000 000 101
000 001 000 100 000

o o
NV
NV
w W
o o

©2016 UMBC Training Centers

84

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Bitwise Operators

® To access and manipulate single bits, C provides six bitwise
operators.

» bitwise or |
» bitwise and &
» bitwise exclusive or A
» right shift >>
» left shift <<
» one's complement ~
® The bitwise logical or (|), obeys the following rule.
» Bits are compared one at a time.

» Each resultant bit is a 1 bit if either or both operand bits have the
value 1.

® The bitwise logical and (&), obeys the following rule.
» Bits are compared one at a time.

» Each resultant bit is a 1 bit if both operand bits have the value 1.

® The bitwise logical exclusive or (A), obeys the following
rule.

» Bits are compared one at a time.

» Each resultant bit is a 1 bit if either but not both operand bits have
the value 1.

©2016 UMBC Training Centers

85

INTERMEDIATE C PROGRAMMING

CHAPTER 4: BIT MANIPULATION

Readability Aids

® Define the following constants for readability.

#define IS _MALE 01
#define IS_MAN 02
#define IS_VET 04
#define HAS_DEG 010
#define IS_MAR 020
#define IS_MIN 040

® To assign the characteristic of being married:

unsigned int profile = 0;
profile = IS_MAR;

® To add the characteristic of being male:

profile = profilel|IS_MALE;

® To assign the characteristics of a degreed, married, male vet:

profile = (HAS_DEG|IS_MAR|IS_MALE|IS_VET);
HAS_DEG = 0 O 001 00O = 010
IS MAR = 0 0 010 00O 020
IS_MALE = 0 O 000 0O01 001
IS VET = 00 000 100 = 004
profile = 0 O 011 101

©2016 UMBC Training Centers

86

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Assigning Bit Values

® We often need to assign a value to a specific bit position.

» Using octal or hexadecimal values makes this easier

» Octal constants must have a leading 0 (zero)

» Hex constants must have a leading 0x or 0X

® The bitwise logical or (|) is a simple way of adding in a bit
value without disrupting other bits.

® Examples

#define IS_MALE 01 #define IS_MAN 02
#define IS_VET 04 #define HAS_DEG 010
#define IS_MAR 020 #define IS_MIN 040
main ()
{

unsigned int profile = 0;

profile |= (HAS_DEG|IS_MAR|IS_MALE|IS_VET);

if(profile&HAS_DEG)
printf ("HAS DEGREE\n") ;

if(profile&IS_VET)
printf ("IS VET\n");

if(profile& (IS_MAN|HAS_DEG))
printf ("IS MAN OR HAS DEGREE\n");

if((profile& (IS_MAN|HAS_DEG))==(IS_MAN|AS_DEG))
printf ("IS MAN AND HAS DEGREE\n");

if((profile& (IS_MAR|HAS_DEG))==(IS_MAR|AS_DEG))
printf ("IS MAR AND HAS DEGREE\n");

©2016 UMBC Training Centers

87

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Assigning Bit Values

® A bitwise function

» The wordlength function computes the number of bits for an int
regardless of the machine

int wordlength (void)

{

unsigned int x = ~0; // x GETS ALL one BITS

int count = 0;

while(x !'= 0) { // ANY one BITS REMAINING-?
count++; // YES
x >>= 1; // SHIFT 1 TO THE RIGHT

}

return (count) ; // NO

©2016 UMBC Training Centers

88

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Writing Bitwise Functions

® Other kinds of problems use bit manipulation features.

® The size of an int varies from machine to machine.
Therefore, it may be convenient to write a function that
computes the number of bits in a word.

® The >> operator shifts bits to the right.
» Right shifting an int is machine dependent.
® The << operator shifts bits to the left.

» Bit positions fill with zeros when you shift an unsigned.

©2016 UMBC Training Centers

89

INTERMEDIATE C PROGRAMMING

CHAPTER 4: BIT MANIPULATION

Circular Shifts

® Example
cshift.c

1. unsigned int rcshift (unsigned int, int);

2. unsigned int lcshift (unsigned int, int);

3. int wordlength (void) ;

4. main ()

5. {

6. unsigned int n = Oxffff;

7. int num = 4;

8. printf ("$d\n", wordlength());

9. // %x is for hexadecimal

10. printf ("BEFORE: %x\n",n);

11. n = rcshift (n, num) ;

12. printf ("AFTER RIGHT: 3%x\n",n);

13. n = lcshift (n,num * num);

14. printf ("AFTER LEFT: $x\n",n) ;

15. }

16. unsigned int rcshift

17. (unsigned int number, int howmany)

18. {

19. int i;

20. unsigned mask = ~0;

21. mask = ~(mask >> 1);

22. for(i = 0; i1 < howmany; i++) {

23. if (number & 01)

24. number = (number >> 1) | mask;
25. else

26. number >>= 1;

27. }

28. return (number) ;

29. }

30. unsigned int lcshift

31. (unsigned int number, int howmany)

32. {

33. unsigned int r;

34, r = rcshift (number, wordlength () # howmany);
35. return(r) ;

36. }

©2016 UMBC Training Centers

90

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Circular Shifts

® A circular shift fills the original with the shifted off bit.

ABCDEFGH // original
BCDEFGHO // original LEFT SHIFT 1 BIT
BCDEFGHA // original LEFT CIRCULAR SHIFT 1

® C has no circular shift operators.
® You must implement them with your own functions.

» We show rcshift (n, num) which right circular shifts the variable n,
num bits.

» We also show 1cshift (n, num) which left circular shifts n, num
bits.

» Notice the use of the wordlength function in the Icshift function.

©2016 UMBC Training Centers

91

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Character Information Array

® Provide symbolic names for each character type.

#define A 001 // ALPHABETIC
#define D 002 // DIGIT
#define L 004 // LOWER CASE
#define U 010 // UPPER CASE
#define H 020 // HEX DIGIT
#define O 040 // OCTAL DIGIT
#define P 0100 // PUNCTUATION
#define SPACE 0200 // SPACE
#define CT 0400 // CONTROL CHAR
unsigned int chars[] = {

/* 0 */

cr,cr,cr,cr,cr,Ccr,cTr,Ct,CT, SPACE, SPACE,CT,CT,CT,CT,CT
/* 16 */

cr,cr,CT,CT,CT,CT,CT,CT,CT,CT,CT,CT,CT,CT,CT,CT,

/* 32 */ cT,CT,CT,CT,CT,CT,CT,CT,SPACE,CT,CT,CT,P,CT,CT,CT,
/* 48 */

D|/H|O, D|H|O, D|H|O, D|H|O, D|H|O, D|H|O, D|H|O, D|H|O, D|H,
D/, P, P, P, P, P, P, P,

/* 65 */

U|A|H, U|A|H, U|A|H, U|A|H, U|A|H, U|A|H,

/* 71 %/

U|A, U|A, U|A, U|A, U|A, U|A, U|A, U|A, U|A, U|A, U|A, U|A,
U|A, U|A, U|A, U|A, U|A, U|A, U|A, U|A, P, P, P, P, P, P,

/* 97 */

L|A|H, L|A|H, L|A|H, L|A|H, L|A|H, LI|A|H,

/*103 */

L|A, L|A, L|A, L|A, L|A, L|A, L|A, L|A, L|A, L|A, LA, LJ|A,
L|A, L|A, L|A, L|A, L|A, L|A, L|A, LIA

}i

® Finally, define macros in terms of the array chars.

#define IS_ALPHA(C) chars[C] & A
#define IS_DIGIT(C) chars[C] & D
#define IS_SPACE(C) chars[C] & SPACE

©2016 UMBC Training Centers

92

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Direct Lookup

® The Standard C Library consists of many functions that do
character testing.

» Some implement these as functions.
» Others are implemented as macros.

® One look up technique can be provided by the following
scheme:

» Each character has a unique 7 bit configuration that can be
considered a number.

» For example, the character 'a' has the configuration.
> 1 000 001 = 65 DECIMAL

® Provide an unsigned int array large enough to hold
information about every character.

» At position 65, place symbolic information about the character 'a'.
U | A | H // UPPER, ALPHA, HEX

» Do the same for each character in the set.

©2016 UMBC Training Centers

93

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Mapping With Bits

® Checkerboard example

» The occupied array is mapped as follows.

=D
o

7 6 5 4 3 2 1 0

15 (14 13 |12 |11 |10 9 |8
23 22 |21 20 (19 |18 |17 |16
31 |30 |29 28 27 |26 |25 24
39 |38 37 |36 35 34 33 32
47 |46 |45 44 43 42 |41 |40
55 |54 53 |52 |51 |50 |49 |48
63 62 61 60 59 58 |57 |56

N O o A WO N =+ O

® Many bit problems require more than the number of bits in an
unsigned int.

» the status of the squares of a checkerboard

» use an array of unsigned char

® We also provide a print_binary routine to see the actual
board.

©2016 UMBC Training Centers

94

INTERMEDIATE C PROGRAMMING

Mapping With Bits

® Example of mapping with bits

checkers.c

=
N

e
(SIS

DD DN
g s w N

w W
N =

w W
(G TN

©O© 00 J o U b W N

= =
w o

N OB e
O O W I o

w NN NN
O W O J o

(O8]
W

w W
~J O

#define HOW_MANY RANDOMS 10
#define N 64

#define BPW 8 //BITS PER WORD
#define ELEMENTS (N/BPW) //ARRAY ELEMENTS
void binary_print (unsigned char);

main()

{

}

unsigned char occupied[ELEMENTS];

int i, number, row, bit;

for (i = 0; i < ELEMENTS; 1i++)
occupied[i] = O0;

// generate a few random numbers

for (1 = 0; i < HOW_MANY RANDOMS; i++) {

number = rand() % Nj;

row = number / BPW; //ROW NUMBER
bit = number % BPW; //BIT NUMBER
occupied[row] |= 1 << bit;

}
for (i = 0; i1 < ELEMENTS; i++)
binary_print (occupied[i]) ;

//print an unsigned char as binary digits

{

. void binary_print (unsigned char element)

int 1i;
char output [BPW + 17];
unsigned mask = 1;

for (1 = 0; 1 < BPW; i++){
if (element & mask)
output [BPW — 1 # 1i]
else
output [BPW — 1 # 1i]
mask <<= 1;

lll;

IOI;

}
output [i] = "\0';
printf ("$s\n", output);

©2016 UMBC Training Centers

95

CHAPTER 4: BIT MANIPULATION

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Radix Sort

® Consider the following data and binary equivalences:

13 12 10 4 11 7 9 2

1101 1100 1010 0100 1101 0111 1001 0010
@ Separate (s) according to right most bit and collect (c).

(S) (C) (S) (C) (S) (C) (S) (C)

B 1100 1100 | 1100 1100 [1001 1001 [0010 =2
I 1010 1010 | 0100 0100 | 1010 1010 | 0100 =4
0100 0100 | 1101 1101 | 0010 0010 | O111 =7

0 0010 0010 | 1001 1001 [1011 1011 [====

==== 1101 | ==== 1010 | ==== 1100 | 1001 =
B 1101 1011 | 1010 0010 | 1100 0100 | 1010 =10
I 1011 0111 | 0010 1011 | 0100 1101 | 1011 =11
N o111 1001 | 1011 O111 | 1101 O111 | 1100 =12
1 1001 0111 0111 1101 =13

® Note that the final collection is in sorted order.

©2016 UMBC Training Centers

96

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Radix Sort

® Radix sorting differs widely from most sorts.

® It is more difficult to code.

>
»

Look at the right most bit, bit 0, of each key
Place all those whose value is zero in bin zero
Place all those whose value is one in bin one
Collect the two bins with one on the bottom
Repeat the process looking at bit number 1

Repeat the process looking at bit number 2 etc

©2016 UMBC Training Centers

97

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Radix Sort

radixsort.c

=
N B

=
DS

OW 0 J o U1 b W N -

Y
(@)

. printf ("SORTED:\n");
. print (data, SIZE);

—
w

. void radix (int *v, int size)
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

#define SIZE 15

int wordlength (void);

void radix (int *v, int size);

void print (int * array, int size);

main ()

{

int datall={46,30,82,90,56,17,95,15,48,26,4,58,71,79,92};
printf ("ORIGINAL:\n");

print (data, SIZE);

radix (data, SIZE);

}

{
int temp[SIZE], t_index, v_index, i, k = 0;
unsigned mask;
int wordsize = wordlength() - 1;
// LOOP (WORDSIZE -1) TIMES
while (k < wordsize)
{
t_index = v_index = 0;
// mask for bit manipulation
mask = 1 << k;
// separate into v and temp
for (1 = 0; i < size; 1i++){
if ((v[i] & mask) == 0)
v v_index++] = v[i];
else
temp[t_index++] = v[i];
}
//combine
for(i = 0; i < t_index; i ++)
viv_index++] = temp[i];
// Jjust for aid in displaying the output
//print (v, SIZE);
k++;

©2016 UMBC Training Centers

98

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Radix Sort

® The three lines below show the data before and after the
program. The middle line shows the data after one pass
through the radix sort.

@® Notice that all the even numbers are followed by all the odd
numbers.

ORIGINAL: 4630829056 1795154826 4 58 71 79 92
ONE PASS: 4630829056 4826 4 5892 1795157179

SORTED: 41517 26 30 46 48 56 58 71 79 82 90 92 95

©2016 UMBC Training Centers

99

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

Exercises

1. Write a program which queries the user for the action on or off.
Then ask for a bit number b. The program should perform the
specified action on bit number b.

S prog

action—> on

bit number 2
0000000000000010
action—-> on

bit number 4
0000000000001010
action—-> off

bit number 2
0000000000001000
action—-> quit

S

2. Write a function which determines if an unsigned integer is a bit
palindrome.

10101 YES
11010 NO
11011 YES

There is a starter file for this exercise in the starters directory.

©2016 UMBC Training Centers

100

INTERMEDIATE C PROGRAMMING CHAPTER 4: BIT MANIPULATION

©2016 UMBC Training Centers
101

C PROGRAMMING

Chapter 5:

Pointers (Part 1)

©2016 UMBC Training Centers

102

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Common Pointer Constructs

® Pointer post-incrementation

*p++

» Fetch what is pointed to.
» Increment the pointer.

® Pointer pre-incrementation

*++p

» Increment the pointer.

» Fetch what it points to.

® Incrementing or decrementing a pointer is only sensible when
pointing inside an array.

©2016 UMBC Training Centers

103

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Common Pointer Constructs

® Pointers are used to:
» modify arguments sent to functions;
» traverse arrays;
» create sophisticated data structures; and
» make programs efficient.
® Fundamental pointer axiom

For any type,
if
type *p, var;
p = &var;
then
*p == var
® The pointer construct p++

» sensible when p points at an array element
» advances p to point at next array element
» has a counterpart p--
» is an example of pointer arithmetic

® The pointer construct *p++:
» represents the value that p points to

» increments p after *p is used

©2016 UMBC Training Centers
104

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Pointer Arithmetic

® Examples of pointer arithmetic:

#define MAX 10

int *end, *begin, numbers[MAX], sum = 0;
begin = numbers;
end = numbers + MAX; // pointer arithmetic
while (begin < end) { // pointer comparison

if (*begin < 0) {

break;

}

sum += *begin+t++; // pointer arithmetic
}
if (begin == numbers + MAX) // ptr arithmetic

printf ("no negatives\n");

@® To see relationship between end and numbers + MAX

int *end, numbers[MAX];

// assume numbers is at 2000 in memory
// assume sizeof (int) ==

(1) end == numbers + MAX

(2) end == 2000 + 10 * sizeof (int)
(3) end == 2000 + 10 * 4

(4) end == 2000 + 40

(5) end == 2040

©2016 UMBC Training Centers

105

INTERMEDIATE C PROGRAMMING

CHAPTER 5: POINTERS (PART 1)

Pointer Arithmetic

® Pointer arithmetic has several forms.

» pointer + integer => pointer result
» pointer - integer => pointer result
» pointer - pointer => integer result

® C supports specific pointer types rather than generic pointers.

» automatic scaling for pointer arithmetic
» used exclusively for array processing
® Example using pointers

pointer.c

1. #include <stdio.h>

2. #include <malloc.h>

3.

4. int main ()

5. {

6. int *iPtr;

7. void *ptr = malloc(10);

8.

9. iPtr = ptr;

10. *iPtr = 10;

11.

12. printf ("%$d %p\n", *iPtr, 1iPtr);

13. printf ("$d %$p\n", *ptr, ptr);

14. printf ("Sizeof *iPtr is %d\n", sizeof (*iPtr));
15. printf ("Sizeof *ptr is %d\n", sizeof (*ptr));
16. }

©2016 UMBC Training Centers

106

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Binary Search

® Another example of using pointers

binary.c
1. #define SIZE 5
2.
3. int * binary(int * table, int size, int wvalue);
4.
5. int main ()
6. {
7. // array must be sorted for a binary search
8.
9. int datal] = {10, 12, 34, 45, 65};

10. int lookup = 21;

11. int * found = binary(data, SIZE, lookup);
12.

13. if (found) {

14. printf ("$d was found\n", *found); {
15. } else {

16. printf ("$d was not found\n", lookup);
17. }

18. }

19.

20. int * binary(int * table, int size, int wvalue)
21. |

22. int *begin = table;

23. int *end = begin + size -1, *mid;

24.

25. while (begin <= end) {

26. mid = begin + (end - begin) / 2;

27. if (*mid > value) {

28. end = mid - 1;

29. } else if (*mid < value) {

30. begin = mid + 1;

31. } else {

32. return mid;

33. }

34. }

35. return NULL;

36. }

©2016 UMBC Training Centers
107

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Binary Search

® There are various methods for searching tables.
» Linear Search
» Binary Search
» Hashing

@ If a data structure has too many elements, then linear search is
too costly.

® You can lower the time it takes to find a value by using a
technique known as binary search.

® With binary search, the data must be kept in sorted order.

» By probing at the middle element, you can determine which half to
search.

» Use the same strategy on the remaining half.

©2016 UMBC Training Centers

108

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Changing a Pointer through a Function Call

® Recall the first important use of pointers to swap two integers.
» Must send the addresses of the integers

void swap(int *first, int *second)

int main()

{

int a, b;

// MUST PASS ADDRESSES
swap (&a, &b);

® How do you change a pointer argument?
» Send the address of the pointer.

» Parameter must be pointer to pointer.

©2016 UMBC Training Centers

109

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Changing a Pointer through a Function Call

® In the main function:

numbers
5 10 15 c e e e
1000 1004 1008 e e 1036
pi pi
Before (1000 After (1004
2000 2000

void change (int **p);
int main ()
{
int numbers[10] = { 5, 10, 15 };

int *pi;

// SET pi TO POINT TO numbers
Pl = numbers;

change (&pi) ; // pass address of pointer

void change (int **p)

= *p + 1; // change pi in main

©2016 UMBC Training Centers

110

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Processing Arrays With Pointers

@ Traditional way of stepping through an array
int numbers[MAX], i, sum = 0O;

for (1 = 0; i < MAX; i++) {
sum += numbers[i];

}
® Using a pointer can be more efficient.
int numbers[MAX], *p, sum = 0;

for (p = numbers; p < numbers + MAX; pt+) {

sum += *p;

int numbers[MAX];
int *p = numbers, *end = numbers + MAX;

while (p < end) {
printf ("$d ", *p++);

}

® A two dimensional array
int values[ROWS] [COLS],

*p = &values[0] [0];
*end = &values[ROWS - 1] [COLS - 1];

while(p <= end) {
printf ("sd ", *p++);

}

©2016 UMBC Training Centers
111

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Simulating Higher Dimensional Arrays

® Arrays and pointers are both addresses.
» Arrays can use pointer notation.
» Pointers can be subscripted.
» Each of the above requires the same address calculation.
® Simulating a two dimensional integer array with malloc
» Define a pointer to an integer pointer.

int **p;

» If the array is to be x rows, then allocate x many integer pointers.

p = malloc(x * sizeof (int *));

» Allocate the space for each row (say y elements per row).

pl[i] = malloc(y * sizeof(int));

® p is a pointer to the first of x integer pointers.
» *p isoftype int *
» p[0] isalso oftype int *
» p[0][7] isthe jthinteger in the "row" pointed to by p[0]

©2016 UMBC Training Centers
112

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Simulating Higher Dimensional Arrays

® Arrays can use pointer notation.

int number[MAX], i, sum = 0;
for(i = 0; 1 < MAX; i++)
* (numbers + 1) = 0;

® Pointers can be subscripted.

int numbers[MAX], *pi = numbers;
for(i = 0; 1 < MAX; i++)
pilil = 0;
for(i = 0; 1 < MAX; i++)
numbers[i] = 0;

twodim.c

. #include <stdlib.h>
. #include <stdio.h>

1
2
3.
4. #define ROWS 3
5. #define COLS 5
6
7
8
9

. int main ()
-

int **pl il j;

10.

11. p = malloc (ROWS * sizeof (int *));

12. if (p == NULL) {

13. printf ("Memory allocation error\n");
14. exit (1) ;

15. }

16. for(i = 0; 1 < ROWS; i++) {

17. pli] = malloc(COLS * sizeof (int));
18. if (pl[i] == NULL) {

19. printf ("Memory allocation error\n");
20. exit (2);

21. }

22. }

23. for (1 = 0; i < ROWS; i++)

24. for (j = 0; 3 < COLS ; J++)

25. plil 3] = 10 * i + 3;

26. }

©2016 UMBC Training Centers
113

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Two Dimensional Arrays

® The following is a fundamental notion for arrays.

vector[i] == *(vector + 1)

vector[3] = 10;

* (vector + 3) = 10

0 1 2
______________________________ >
1000 1002 1004 1006 1008

® Apply the notion twice for two dimensional arrays.

int numbers[4][3];

numbers[2] [1] = 20;

Then numbers[2] [1] is resolved in the following way:

(numbers + 2)[1] // ONCE
(* (numbers + 2) + 1) // TWICE

*
*

® Assuming numbers starts at address 5000, then:

Expression Value Type
numbers 5000 ptrto array of 3 int's
numbers + 2 5012 ptrto array of 3 int's
* (numbers + 2) 5012 ptrto int
* (numbers + 2) + 1 5014 ptrto int
((numbers + 2) + 1) 20 int

©2016 UMBC Training Centers

114

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Two Dimensional Arrays

® Declaring a two dimensional array:

#define ROWS 5
#define COLS 10
#define NO_STRINGS 10
#define LENGTH 50

int numbers[ROWS] [COLS];
char 1lines[NO_STRINGS] [LENGTH];

@ Arrays of arrays

» numbers and lines are actually single dimensioned arrays whose
members are also arrays.

® The following are correct:

void fun (int *p);

int vector[COLS];
int *p, (*pv) [COLS];

fun (vector) ;
fun (numbers[i]) ;

p = vector;
pv = numbers;

® The following are incorrect:

fun (numbers) ;
P = numbers;

©2016 UMBC Training Centers
115

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Complex Declarations

® Simple

int pi; // int

int *pi; // pointer to an int

int wvals[MAX] // array of ints

int £(); // function returning int
® Combined

int (*pt) [MAX]; // one pointer to MAX ints

int *ptrs[MAX]; // array of pointers to int

int *fun(); // function returning pointer to int

int (*fun) (); // pointer to function returning int

® Harder

int (*£[M]) (); // M pointers to functions returning
// int

int *(*£f) (); // pointer to function returning

// pointer to int

int *(*£[M])(); // array of M pointers to functions
// returning pointer to int

©2016 UMBC Training Centers

116

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Complex Declarations

® Use the hierarchy of C operators.

() Comes before
[] Comes before

int (*pt) [MAX]; // one pointerto MAX ints
int *ptrs[MAX]; // array of pointers to int

® This often results in reading a declaration in the order left-right-
left-right etc.

int *(*£[M]) (); // array of M pointers to
// functions returning
// pointer to int

£ [M] Array of M
*f [M] pointers to
(*£[M]) () function returning

int *(*£[M]) () pointer to int

©2016 UMBC Training Centers
117

INTERMEDIATE C PROGRAMMING

® All the sorting methods shown earlier exchanged data when
out of order.

® A better technique is to compare records but exchange
pointers.

® The actual sorting method is unimportant. We use selection
sort.

Sorting with Large Records

» Expensive for large records

» Impossible for varying length records

surrogate.h

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.

. #define NAMESIZE 20

. struct records {

char name [NAMESIZE];
int age;

N

. typedef struct records R, *PR;

void print (PR *, int);

void sort (PR *, int);

int input_rec (PR);

int get_the_data (PR *, int);

©2016 UMBC Training Centers

118

CHAPTER 5: POINTERS (PART 1)

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Sorting with Large Records

surrogate.c

1. #include <stdio.h>

2

3. #include "surrogate.h"
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
1e.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

void sort (PR *pts, int size) {
PR temp;
int i, Jj, min;

for (i = 0; i < size; i++) {
min = 1i;
for(j =1 + 1; J < size; j++) {
if(pts[J] #> age < pts[min] #> age) {
min = 7J;
temp = pts[min];
pts[min] = pts[i];
pts[i] = temp;

int get_the_data (PR *pts, int amount) {
R temp;
int 1 = 0;

while (input_rec (&temp) != EOF) {
if(i > amount)
return (#1) ;
pts[i] = (PR) malloc(sizeof (R));
if(pts[i] == NULL)
return (#1) ;
*(pts[i]) = temp;
i++;
}

return(i);

©2016 UMBC Training Centers
119

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Sorting with Large Records

surrogate.c (continued)

37. int input_rec (PR temp) {

38. char 1ine[1007;

39.

40. printf ("Enter name and age: ");

41. if (gets(line) == NULL)

42. return (EOF) ;

43.

44, sscanf (line, "%s %d", temp #> name, &temp #> age);
45, return (! EOF);

46. '}

47,

48. void print (PR *p, int howmany) {

49, int 1i;

50.

51. for(i= 0; i < howmany; i++)

52. printf (" %s %d\n", pli] #> name, pl[i] #> age);
53. }

surrogatemain.c

1. #include "surrogate.h"

2.

3. #define NUM 100

4.

5. int main() {

6. PR record_pointers[NUM];

7. int number;

8.

9. number = get_the_data (record_pointers, NUM);
10. if (number > 0) {

11. sort (record_pointers, number);
12. print (record_pointers, number);
13. }

14. }

©2016 UMBC Training Centers

120

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

Exercises

1. Write a program which performs a frequency count of the
words in a file. Use the following "parallel" arrays to solve the
problem.

char words [NUMBER_OF_WORDS] [WORD_LENGTH + 1];
int counts [NUMBER_OF_WORDS] ;

» Note: A simple way to get words from an input file is to use the
function scanf as shown below:

#include <stdio.h>
#define MAXLINE 100

int main ()

{
char line[MAXLINE];

// scanf returns EOF at end of file

while (scanf ("%$s", line) != EOF {
printf ("$s\n", line); // Print word

2. Write a function called sort 3 that takes three integer points as
arguments and sorts (in ascending order) the three integers
pointed to. Here is some code to get you started:

void sort3 (int *ptrl, int *ptr2, int *ptr3);

int main ()
{
int a =7, b =2, ¢c = 4;

sort3(&a, &b, &c
printf ("After: a

) ;

// a =2, b=4, ¢c =7

©2016 UMBC Training Centers
121

INTERMEDIATE C PROGRAMMING CHAPTER 5: POINTERS (PART 1)

©2016 UMBC Training Centers
122

C PROGRAMMING

Chapter 6:

Pointers (Part 2)

©2016 UMBC Training Centers

123

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Dynamic Memory Allocation

@® Arrays cause storage to be allocated before execution (static
storage allocation).

» The size of an array is a worst-case scenario.

» The size of an array cannot be altered.

@® Storage can be allocated during program execution (dynamic
storage allocation).

» It usually results from program conditions or user requests.

® Dynamic storage is obtained by invoking the standard C library
function named malloc.

® malloc manages a huge pool of storage and hands out pieces
of memory to satisfy program requests. A pointer to the
requested space is returned unless the request cannot be
satisfied, in which case the value NULL, defined in stdio.h,is
returned.

® Therefore, malloc returns a pointer. The prototype for this
functionisinmalloc.h, so you must include the header file or
code the following:

void *malloc (int);

® The type void * is a generic pointer which can be assigned to
any other pointer.

©2016 UMBC Training Centers
124

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Dynamic Memory Allocation

malloc—-demo.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. #include <malloc.h>

4.

5. #define MAX 100

6.

7. int main ()

8. {

9. int len, nj;

10. char input [MAX], *pc;

11.

12. printf ("How many input chars? ");

13. fgets (input, MAX, stdin); /* get input */
14.

15. n = atoi(input); /* convert to number */

16. pc = malloc(n + 1); /* ask for space */
17.

18. if (pc == NULL) { /* 1s there any? */
19. printf("malloc: no room\n"); /* No */
20. exit (1) ;

21. }

22.

23. printf ("Input up to %d chars: ", n); /* Yes */
24. fgets(pc, n + 1, stdin); /* input the string */
25. len = strlen(pc);

26.

27. printf ("You input %d chars\n", len);

28.

29. free (pc); /* free the space */
30.

31. return O;

32. '}

33.

©2016 UMBC Training Centers
125

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Dynamic Memory Allocation

® malloc returns a pointer to the first of the requested bytes.

® Therefore, you can use this space in the same way that you
can use an array. Infact, malloc gives you a dynamic array.

char *pc;
int len;

pc = malloc (100);
fgets(pc, 100, stdin);

len = strlen(pc)
printf ("$s\n", pc);

if (strcmp(pc, "quit") == 0) {
printf ("You entered 'quit'");

® The only difference between storage pointed to by pc and the
storage defined by a char array is the time at which the
storage becomes available to your program.

©2016 UMBC Training Centers

126

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Initialization of Pointers

® A pointer must be given a value before it can be used properly.
This happens either explicitly or through a function call, which
returns a pointer, or by assignment from another pointer.

® The following sequence would cause a run time error, since the
pointer has an uninitialized value.

char *pc;
gets (pc);
® A pointer can be used in the same context as an array,
provided that the pointer has a meaningful value.

® Here are some legitimate pointer initializations.
» Explicitly

char line[MAX];
char *pc, *p;
pc = line;

» Through a function call

pc = malloc (100);

» By assignment from another pointer
p = pc;
® Through the argument and parameter relationship

char 1ine[100]; int strlen (char *s)
len = strlen(line) {

©2016 UMBC Training Centers
127

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Functions Returning a Pointer

® Another function that returns a pointer is the library function
fgets, which can be used to get a line of input from the
keyboard (stdin) or a file.

char * fgets(char * buffer, int size, FILE * stream);

® fgets returns a pointer to the character array that it is filling
(or NULL on end of file or read error). NULL is typically used by
functions returning a pointer when some problem or special
condition needs to be indicated.

#define MAX 100

// Read line-by-line and print lines with line
numbers

int main ()

{
char line[MAX];

int number = 1;

while (fgets(line, MAX, stdin) != NULL) {
printf ("$4d%s\n", number++, line);
}

® Since the value NULL is usually defined as zero,the while-loop
could be coded simply as:

while (fgets(line, MAX, stdin))

® This code also uses the fact that fget s returns a pointer:

printf ("Enter a number: ");
number = atoi (fgets(line, MAX, stdin));

©2016 UMBC Training Centers

128

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Arrays of Character Pointers

® Character pointers often point to the first of many characters
terminating with the '\ 0' character. Therefore, you can use
an array of character pointers to handle a set of strings.

char *pc; // a char pointer
char line[MAX]; // a char array
char *ptrs[MAX]; // an array of char pointers

® An array of character pointers is similar to a two-dimensional
array, although more flexible. An array of character pointers
occupies storage for the pointers, and ultimately these pointers
will point to the strings.

® A two-dimensional character array occupies storage for the
strings themselves. Two-dimensional arrays must be
rectangular, so space is often wasted.

® An array of character pointers can point to strings of varying
sizes ("ragged" array), and therefore, can be used more
efficiently than a two-dimensional array.

©2016 UMBC Training Centers

129

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Arrays of Character Pointers

® Consider the following definitions. The first can store ROWS
many strings, each of maximum length corLs - 1. The
second two stores pointers to ROWS many strings, each of
which could be any length.

char lines[ROWS] [COLS];
char *ptrs[ROWS];

printf ("$s\n", lines[0]);
printf ("$s\n", ptrs[0]);

» Ineach printf above, the first string of the data structure is printed.
® However, the amount of memory used by each array is
different.

sizeof (lines) = ROWS * COLS
sizeof (ptrs) = ROWS * sizeof (char *)

® The next page shows an example of using an array of
character pointers to store a set of strings.

©2016 UMBC Training Centers

130

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Arrays of Character Pointers

pointer-array.c

1. #include <stdio.h>

2. #include <malloc.h>

3.

4. #define MAX 100 // number of lines

5. #define LENGTH 80 // line length

6.

7. int main ()

8. {

9. char 1line[LENGTH + 17];

10. char *ptrs[MAX];

11. int len, 1 = 0, 7j;

12.

13. while (fgets(line, LENGTH, stdin) != NULL) {
14. if (1 == MAX) {

15. fprintf (stderr, "Sorry, array full\n");
16. break;

17. }

18.

19. len = strlen(line); // strip off
20. line[len — 1] = "\0'; // newline
21. len——;

22.

23. ptrs[i] = malloc(len + 1);

24, if (ptrs[i] == NULL) {

25. fprintf (stderr, "Out of memory\n");
26. exit (1) ;

27. }

28.

29. strcpy (ptrs[i++],1line);

30. }

31.

32. for (3 = 0; 3 < 1i; ++3) |

33. printf ("$s\n", ptrsljl);

34. }

35.

36 for (3 = 0; 3 < 1i; ++3) |

37. free ptrs([j]); // deallocate memory
38. }

39. }

©2016 UMBC Training Centers
131

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Command Line Arguments

® When a C program is executed from the command line, it is
passed two parameters.
» The first parameter is an integer representing the number of

command line arguments provided to the program (including the
command name).

» The second parameter is a pointer to an array of pointers, each of
which points to one of the command line arguments.

® If you wish to access the command line arguments, your main
function must declare these parameters:

int main(int argc, char **argv)

» Of course you can name the two parameters any way you like, but
argc (argument count) and argv (argument vector) are typically
used for historical reasons.

® Be aware that all command line arguments come into your
program as strings. If you want to treat them as numbers, they
must be converted (with functions like atoi and atof).

©2016 UMBC Training Centers

132

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Command Line Arguments

® The argv parameter is a pointer to the first of an array of
pointers. If you dereference this pointer, you get a pointer (the
first one in the array of pointers). If you use double indirection
you get a character (the first character of the string pointed to
by the first pointer).

® Suppose a C program is executed as follows:
sum 41 63 -24

® Below is the layout of memory for this command line:

argv argc
500 4
500 1000 1000 [|sum\0
502 2000 2000 HK1\0
504 3000 3000 [63\0
506 4000 4000 [24\0
508 NULL
*argv = the address of "sum" (char *)
**argv = the 's' in "sum" (char)

©2016 UMBC Training Centers

133

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Command Line Arguments

® This program sums the command line arguments.

int main(int argc, char **argv)
{

int i, sum = 0;

for(i = 1; i < argc; 1i++) { // Skip program
name
sum += atoi (argv[i]);

}

printf ("sum is %d\n", sum);

@® As in the code above, double indirection is not necessary but it
is an idiom worth knowing, particularly if you need to access
the individual characters of a command line argument.

argv[n] = the address of n" argument
argv[n] [k] = the k" character of the n" argument

® You can increment argv to advance it to the next pointer in the
array to which it points. Therefore, another way of writing the
code above is:

int main(int argc, char **argv)

{

int i, sum = 0;
++argv; // Skip program name
for(i = 1; i < argc; i++) {

sum += atoi (*argv++);

}

printf ("sum is %d\n", sum);

©2016 UMBC Training Centers
134

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Command Line Arguments

® This program includes a function that prints the command line
arguments. The function relies on the fact that the array of
pointers ends with the value NULL.

print-args.c

. #include <stdio.h>

. void printArgs (char **a);

1

2

3

4

5. int main(int argc, char **argv)

6.
7. print (argv) ;

8. }

9

10. void printArgs (char **a)

11. {

12. ++a; // Skip program name
13.

14. while(*a) {

15. printf ("$s\n", *a++) ;

16. }

17. }

©2016 UMBC Training Centers

135

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Command Line Arguments

® If you do need to access each character from each string on

the command line, you could code as in either of the following
two examples.

int main(int argc, char **argv)
{

char *s;

while (##argc > 0) {
s = *++argv;
while (*s) {

/* process the character */

s++; /* advance to next char */

int main(int argc, char **argv)
{

char *s;

int 1i;

for (1 = 1; i < argc; i++) {
s = argv[i];
while (*s) {

/* process the character */

S++; /* advance to next char */

©2016 UMBC Training Centers

136

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Command Line Arguments

® Many programs require a specific number of arguments on the
command line. If the user does not comply, you can issue as
error message. Here is an example to illustrate.

raise 2 10

@® Here is a code snippet to process the command line shown
above. Remember that argc is a count of the
arguments and includes the command name.

int base, expo;

if (argc !'= 3) {
fprintf (stderr, "Usage: message\n");
exit (1) ;

base = atoi(argv[1l]);
expo = atoi(argv[2]);

©2016 UMBC Training Centers
137

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Practice with Pointers

® The following expressions pertain to the running of the
hypothetical program mcopy.

mcopy input output

Expression Value Type
argv 500 char **
*argv 1000 char *
argv [0] 1000 char *
*argv [0] m char
argv([0] [0] m char
argv([0] [1] o} char
argv([1][0] i char
++argv 502 char **
*argv 2000 char *
**argv i char
*argv [0] 1 char
argv([0] [0] i char
argv([0] [1] n char

® Note that argv can be treated as a two dimensional array.
Recall that argv[i] [j] is the j" character of the string
pointed to by the ith pointer in the array to which argv points.

©2016 UMBC Training Centers

138

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Accessing Environment Variables

® The program below prints the value of an environment variable
given as an argument on the command line.

envptr.c

1. #include <stdio.h>

2

3. int main(int argc, char** argv, char** envp)

4. |

5. if (argc !'= 2) {

6 fprintf (stderr,

7 "usage: envptr <env_variable>\n");

38 exit (1) ;

9. }

10.

11. while (*envp != NULL) {

12. if (strstr(*envp, argv([1l])) {
13. printf ("$s\n", *envp);

14. exit (0);

15. }

16. else

17. envp++;

18. }

19.

20. printf ("%$s not found\n", argv[1l]);
21. 1}

® Sample execution:

$ envptr
usage: envptr <env_variable>

$ envptr PATH
PATH=/bin/usr:/user/bin:/user/michael/bin

$ envptr XYZ
XYZ not found

©2016 UMBC Training Centers

139

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Accessing Environment Variables

® cnvp and argv are similar.
» Both are of type char **.
» The pointers being pointed to are NULL terminated.
® However, there is no analog to argec.
® Environment pointer is an important application tool.

® Programs can read the value of an environment variable for
location of important items. Only exported environment
variables are provided.

©2016 UMBC Training Centers

140

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Function Pointers
® With the exception of the array type, the name of any variable
is a reference to its value.
® The name of an array is a reference to its address.

® There is another type in C, which automatically generates an
address. A function name without the function invocation
operator is a reference to the address of the function.

@® A function name can appear in argument lists.

int numbers[MAX], x = 25.0;
/* the two calls below are very different

*/

/* The sqgrt function is invoked and it's wvalue is
sent to the stats function

*/

stats (numbers, MAX, sqgrt(x));

/* The address of the sqgrt function
is sent to the stats function

*/

stats (numbers, MAX, sqgrt);

® In the latter case above, the third parameter must be capable
of holding the address of a function. This gives rise to the
concept of a pointer to a function.

©2016 UMBC Training Centers
141

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Function Pointers

® Study the following.

/* int pointer */
int *px;

/* function returning int and taking
no parameters
*/

int fun(void);

/* function returning int pointer and
taking no parameters
*/

int * morefun (void);

/* pointer to a function taking no
parameters and returning an int

*/
int (*pf) (void);
pf = fun; /* see below */

® The last line above defines pf to be a pointer to a function.

» A pointer such as this could be assigned the address of a function,
which returns an int and takes no arguments.

int fun (void)

{
int wval;
val = random(); /*random value */
return val;

©2016 UMBC Training Centers

142

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Function Pointers

® Suppose you have the following.

int square(int p) { return p * p; }
int cube (int p) { return p * p * p; }

® The following code can be used to square each of the elements
of an array.

void square_them(int *x, int howmany)
{
int 1i;
for (i = 0; i < howmany; i++)
x[1] = square(x[i]);

}

® The following code can be used to cube each of the elements
of an array.

void cube_them(int *x, int howmany)
{
int 1i;
for (1 = 0; i < howmany; i++)
x[1] = cube(x[1]);

}
® There would likely be more of these functions.

©2016 UMBC Training Centers
143

INTERMEDIATE C PROGRAMMING

CHAPTER 6: POINTERS (PART 2)

Function Pointers

® However, there is an easier way. square_them and
cube_them are exactly the same except for the function called

within them.

@ If we could parameterize these functions, we could have one
function take the place of each of these two (or however many

there are).

® We will call this new function calc. It would be invoked as
follows.

int x[5] = { 12, 23, 14, 25, 1l06};
calc(x, 5, square);
calc(x, 5, cube);

® In other words, we pass either the square or cube function as
an argument to the calc function. For this to work correctly,
the third parameter of calc must be a pointer to a function.

void calc(int *x,int amt, int (*ptf) (int))
{

int 1i;

for (i = 0; 1 < amount; i++)

x[1] (*ptf) (x[1]);

» The expression (*ptf) (x[1]) is an indirect invocation of the
function being passed to calc.

©2016 UMBC Training Centers
144

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Function Pointers

® This example uses an array of function pointers.

funs.c

. #define MAX 3
. #define SIZE 100

1

2

3

4. int cube (int);
5. int square (int);
6. int times2 (int);
.
8
9

. int getwvalues (int * data, int size);

. void print (int * data, int size);
10. void compute (int * data, int size, int (*ptf) (int));
11.

12. main() {

13. int Jj, numValues;

14. int (*p[MAX]) ();

15. int x[SIZE];

16.

17. pl[0] = cube;

18. pll] = square;

19. pl2] = times2

20.

21. for (3 = 0; j < MAX; J++) {

22. numValues = getvalues (x,SIZE); // FILL x

23. print (x, numValues) ; // PRINT x
24. compute (x, numValues, pl[i]); // COMPUTE
25. print (x, numValues) ; // PRINT x
26. }

27. '}

28.

29. int cube (int x) {

30. return x * x * Xx;

31. }

32.

33. int square (int x) {

34. return x * x;

35. }

36.

37. int times2 (int x) {

38. return 2 * x;

39. }

©2016 UMBC Training Centers
145

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Function Pointers

funs.c (continued)

40. int getvalues (int * data, int size) {
41. int 1i;

42.

43. for(i = 0; 1 < size; i++)

44, datali] = 1 + 1;

45,

46. return 1ij;

47. '}

48.

49. void print (int * data, int size) {
50. int 1i;

51.

52. for(i = 0; 1 < size; i++)

53. printf("sd ", datalil);
54.

55. printf ("\n");

56. }

57.

58. void compute (int * data, int size, int (*ptf) (int)) {
59. int 1i;

60.

61. for(i = 0; 1 < size; i++)

62. data[i] = ptf(datali]);
63. }

©2016 UMBC Training Centers
146

INTERMEDIATE C PROGRAMMING

CHAPTER 6: POINTERS (PART 2)

Function Pointers

menu.cCc
1. #include <stdio.h>
2. #include <stdlib.h>
3.
4. #define MAX 100
5.
6. double pow (double, double);
7. double atof (char *);
8. double add (double, double);
9. double mult (double, double);
10.
11. struct commands {
12. char *name;
13. double (*pf) ();
4. } c[] = {"add", add, "mult", mult, "power", pow };
15.
16. #define SIZE sizeof(c)/ sizeof (struct commands)
17.
18. main()
19. {
20. char line[MAX];
21. double a,b, ans;
22. int i;
23.
24. while (1) {
25. printf ("enter a command:\n");
26. printf ("add\nmult\npower\nquit\n => ");
27. gets (line);
28.
29. if (strcmp(line, "quit") == 0)
30. break;
31.
32. for (i = 0; i < SIZE; i++) {
33. if (strcmp(c[i] .name, line) == 0) {
34. printf ("input first number ");
35. a = atof (gets(line));
36. printf ("input second number ");
37. b = atof(gets(line));
38. ans = c[i].pf(a, b);
39. printf ("ans is %$f\n", ans);
40. break;
41. }
42. }

©2016 UMBC Training Centers
147

INTERMEDIATE C PROGRAMMING

CHAPTER 6: POINTERS (PART 2)

Function Pointers

menu.c (continued)

43. if(i == SIZE)

44, printf ("%$s not implemented\n",line);
45.

46. printf ("press return to continue\n");
47. gets (line);

48. system("clear") && system("cls");
49. }

50. }

51.

52. double pow (double a, double b)

53. {

54. int i;

55. double temp = a;

56.

57. for(i = 0; i < b - 1; 1 ++)

58. temp *= a;

59.

60. return temp;

ol. }

62.

63. double add (double a, double b)

od. |

65. return a + b;

66. }

67.

68. double mult (double a, double b)

69. |

70. return a * b;

71,0}

©2016 UMBC Training Centers
148

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Function Pointers

sort.h
1. #define NO_LINES 20
2. #define ERROR #1
3. #define LINE_LENGTH 100
4,
5. int numcmp (const char *, const char *);
6. int revcmp (const char *, const char *);
7. int revnum(const char *, const char *);
8.
9. void printlines(char **lines, int howmany);

10. int readlines (char **lines, int maximum) ;
11.

12. void sort (char **, int,

13. int (*) (const char *, const char *));

® Functions used by the sort program

sort.c
1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. #include "sort.h"
6.
7. void printlines (char **ptrs,int lines)
8. {
9. while (##1lines >= 0)
10. printf ("$s\n", *ptrs++);
11. }
12.
13. void sort (char **p,int lines,int (*f) ())
14. {
15. int i, 7J;
l6. char *pc;
17. for(i = 0; 1 < lines # 1; 1i++)
18. for(j = 1 + 1; J < lines; Jj++)
19. if(£(plil,pl[3]) > 0)
20. pc = pli]l, pli]l = plJj], plJ] = pc;
21. }

©2016 UMBC Training Centers
149

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Function Pointers

sort.c (continued)

22. int numcmp (const char *s, const char *t) {
23. return (atof (s) # atof(t));

24. 1}

25.

26. int revnum(const char *s, const char *t) {
27. return (atof (t) # atof(s));

28. }

29.

30. int revcmp (const char *s, const char *t) {
31. return(strcmp(t, s));

32. '}

©2016 UMBC Training Centers

150

INTERMEDIATE C PROGRAMMING

CHAPTER 6: POINTERS (PART 2)

mainsort.c

Function Pointers

=
(SRS

N DN DN DN
g w N

w W W W
a b W N

S W
[@2aNe)

W 0 J oy U b W DN

el
w N P o

[S
O O 0 -1 Oy

W W N DD DN DN
R O W 0 J o

w W W
O ~J O

Y
[N

#include
#include
#include
#include

#include

main (int
char
int

if (a

<stdio.h>

<stdlib.h>
<string.h>
<malloc.h>

"sort.h"

argc,char **argv) {
*ptrs [NO_LINES], reply[l0];

lines;

rgc !'= 2) {
printf ("usage:
printf ("

sort #n numericall\n");
sort #a alphabetical\n");

printf (" sort #r reverse alpha\n");
printf (" sort #rn reverse numeric\n");
exit (3);

}

if((lines = readlines (ptrs,NO_LINES)) == ERROR)
printf ("too many lines or no room\n");
exit (1) ;

}

if (strcmp (argv[1l],"#n") == 0)

sort (ptrs, lines, numcmp) ;

else if(strcmp(argv[l],"#a") == 0)
sort (ptrs, lines, strcmp) ;

else if (strcmp(argv[1l],"#r") == 0)
sort (ptrs, lines, revcmp) ;

else if (strcmp(argv([1l],"#rn") == 0)

else

}

prin

sort (ptrs, lines, revnum) ;

{

printf ("incorrect argument\n");

exit (4);

tlines (ptrs, lines);

©2016 UMBC Training Centers
151

INTERMEDIATE C PROGRAMMING

CHAPTER 6: POINTERS (PART 2)

Function Pointers

mainsort.c (continued)

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
6l.
62.
63.
64.
65.
66.
67.
68.
69.

// deallocate dynamically allocated memory

for (i = 0; i < lines; 1i++) {
free(ptrs[il]);

} // end of main

int readlines (char **p,int limit) {
int n = 0;
char *pc, line[LINE_LENGTH];

while (gets(line) != NULL) {
if(n > limit)
return (ERROR) ;

else if((pc = malloc(strlen(line) + 1))== NULL)
return (ERROR) ;

else {
strcpy (pc, line) ;
pln++] = pc;

}

return(n) ;

©2016 UMBC Training Centers
152

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Exercises

1. Write a program that takes three values from the command
line: a beginning temperature (celsius), an ending temperature
(celsius), and an increment value.

The program should produce a temperature conversion chart. For
example:

myprog 0 30 10

CELSIUS FAHRENHEIT

0 32.0
10 50.0
20 68.0
30 86.0

The program should print appropriate error messages if the correct
number of command line arguments is not supplied.

» The formula for converting Celsius to Fahrenheit is:
f=1.8 *c + 32

2. Revisit the extended. c program in Chapter 3. Rewrite the
main loop of that program so that the user specifies how many
integers are to be input. Your program uses this value to
allocate the right amount of memory using malloc.

3. Write a program which asks the user to input a string. Then,
write a function called 1ookup, which determines if the input
string was also a command line argument. Model your function
after either one of the following:

int lookup(char **argv, int count, char *str);
char **lookup(char **argv,int count, char *str);

» The session below demonstrates how the program should work:

©2016 UMBC Training Centers

153

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

Exercises

Exercise 3 (continued):
$ myprog these are some input strings

Enter a string: some
'some' was argument number 3

$ myprog these are some more strings

Enter a string: michael
'michael' was not an argument

4. Write a program which prints the sum of all the digit characters
(not the number of them) on the command line. For example:

program—name 24a 3b5 -23 c54 83

Output:
39

5. The program envptr behaves incorrectly for any argument
which is a substring of an actual environment variable. Why?
Fix the problem.

6. Write a function which returns a pointer to a function returning
an integer, and then use that function in a program.

©2016 UMBC Training Centers
154

INTERMEDIATE C PROGRAMMING CHAPTER 6: POINTERS (PART 2)

©2016 UMBC Training Centers
155

C PROGRAMMING

Chapter 7:

Binary I/0 and Random
Access

©2016 UMBC Training Centers

156

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

A Database Application

® In this section, we are interested in functions used to read and
write structures. The functions will be demonstrated by
developing a typical financial application dealing with
structures.

® The application uses the following header files:
employee.h

#ifndef EMPLOYEE_H
#define EMPLOYEE_H

fdefine NAMESIZE 20

struct employee

{
char name [NAMESIZE + 1];
double pay;
char dept;

©O© 0O J o U bd W DN -

_oe
[

N

e
w N

. typedef struct employee WORKER, *PWKR;

e
(SIS

. void fill (PWKR p);

. void output (PWKR p);

. void fill_emp (PWKR array, int size);

. void print (PWKR array, int size);

. PWKR lookup(char* name, PWKR array, int size);

NN R e
R O W W -1 o

. #endif

util.h

. #ifndef UTIL_H
. #define UTIL_H

. void stripnewline(char * str);

1
2
3.
4
5
6

. #endif

©2016 UMBC Training Centers
157

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

A Database Application

dbfunc.h

#ifndef DBFUNC_H
#define DBFUNC_H

fdefine FILENAMESIZE 14

void print_db(void);
void create_db (void);
volid retrieve_db (void);

O 0 J o U1 b W N -

[
(@}

#endif

® The main function (shown on next page) drives the rest of the
program. It calls the menu function, which displays the
following menu:

SELECT CHOICE

) CREATE DATABASE
) PRINT DATABASE
) RETRIEVE
)

W N

QUIT
>

® Then main invokes the proper function to handle the user's
selection.

©2016 UMBC Training Centers

158

INTERMEDIATE C PROGRAMMING

CHAPTER 7: BINARY I/O AND RANDOM ACCESS

A Database Application

mainprog.c

=
N

—
o

W 0 J oy U > W N

Y
(@)

I
W

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

#include
#include
#include
#include

#define
#define
#define
#define
#define

<stdio.h>
<stdlib.h>
"employee.h"
"dbfunc.h"

MAXLINE 100
CREATE_DB 1
PRINT_DB 2
RETRIEVE 3
QUIT 4

int menu (void) ;

. main ()
15.
16.

{

char line[MAXLINE];
int selection;

while (1)

{

selection = menul();
switch (selection)
{
case CREATE_DB:
create_db () ;
break;
case PRINT_DB:
print_db () ;
break;
case RETRIEVE:
retrieve_db () ;
break;
case QUIT:
exit (0);
default:
printf ("IMPOSSIBLE\n") ;

printf ("Press RETURN to continue\n");
fgets (line, MAXLINE, stdin);

©2016 UMBC Training Centers

159

INTERMEDIATE C PROGRAMMING

CHAPTER 7: BINARY I/O AND RANDOM ACCESS

The menu Function

® The menu function displays the menu and then gets a response
from the user. After it verifies the response from the user, it
sends the response back to the calling function.

mainprog.c (continued)

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
6l.
62.
63.
64.
65.
66.
67.

int menu (void)

{

int choice;
char line[MAXLINE + 1];

while (1)
{
printf ("\n\n");

(
printf ("SELECT CHOICE\n\n");
printf ("1) CREATE DATABASE\n");
printf ("2) PRINT DATABASE\n");
printf ("3) RETRIEVE\n");
printf ("4) QUIT\n==>");
choice = atoi(fgets(line, MAXLINE,

if (choice < 1 || choice > QUIT)

printf ("ILLEGAL CHOICE\n");

printf ("PRESS RETURN TO CONTINUE\Nn");

fgets (line, MAXLINE, stdin);
}

else
return (choice) ;

stdin));

©2016 UMBC Training Centers

160

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

fwrite

® fwrite writes some data to the disk. The data written to the
disk is in the exact format as it is in memory. This is called a
binary write. The fwrite prototype is:

int fwrite(void *data, int size, int num, FILE *fp);

® fwrite requires four arguments:

argl Address of the data to be written
arg2 Size of each data item to be written
arg3 Number of data items to be written
arg4 FILE pointer

® fwrite returns the number of objects written. Here are some
examples of using fwrite.
int i, n[10];
WORKER x, al[l0];

/* write an int */
fwrite (&i, sizeof (int), 1, fp);

/* write 10 ints */
fwrite(n, sizeof (int), 10, fp);

/* write a struct */
fwrite(&x, sizeof (WORKER), 1, fp);

/* write 10 structs */
fwrite(a, sizeof (WORKER), 10, fp);

/* write second half of array */
fwrite(a + 5, sizeof (WORKER), 5, fp);

©2016 UMBC Training Centers
161

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

The create_db Function
® The create_db method asks the user for a file name, creates
the file, and then asks the user to input some records.

» Notice the "wb" mode. This allows the binary write (and is not
necessary on UNIX / Linux).

dbfunc.c
1. #include <stdio.h>
2. #include <string.h>
3. #include "employee.h"
4. #include "dbfunc.h"
5. #include "util.h"
6.
7. void create_db ()
8. {
9. WORKER person;
10. FILE *fp;
11. char fname[FILENAMESIZE + 1], 1line[1017;
12. int number, i;
13.
14. printf ("Enter filename to write to: ");
15. fgets (fname, FILENAMESIZE, stdin);
16 stripnewline (fname) ;
17. if ((fp = fopen (fname, "wb")) == NULL) {
18. printf ("Can't open %s\n", fname);
19. return;
20. }
21.
22. printf ("How many records to input? ");
23. number = atoi(fgets(line, 100, stdin));
24.
25. for (1 = 0; 1 < number; i++)
26. {
27. fill (&person) ;
28. fwrite (&person, sizeof (WORKER), 1, fp);
29. }
30.
31. fclose (fp);
32. }

©2016 UMBC Training Centers

162

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

fread

® The fread function is the companion to fwrite. It has the
exact same interface. Use this function to read data that has
been written by fwrite. The fread prototype is:

int fread(void *data, int size, int num, FILE *fp);

® fread requires four arguments:

argl Address where data will be stored
arg2 Size of each data item to be read
arg3 Number of data items to be read
argé FILE pointer

® fread returns the number of objects read. When this value is
zero, you have reached the end of the file.

® Here is a code segment which reads SIZE records at a time:

while (num > 0)

{

for (i = 0; 1 < num; i++)

/* process each record */

}
/* read another "chunk" */
num = fread(bank, sizeof (WORKER), SIZE, fp);

©2016 UMBC Training Centers

163

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

The print_db Function

® The print_db function gets a file name from the user and
displays that file on the standard output. If the user gives a bad
file name, the function returns.

dbfunc.c (continued)

33. void print_db ()

34. |

35. WORKER person;

36. FILE *fp;

37. char fname[FILENAMESIZE + 1];

38.

39. printf ("Enter filename: ");

40. fgets (fname, FILENAMESIZE, stdin);

41. stripnewline (fname) ;

42.

43. if((fp = fopen (fname, "rb")) == NULL) {
44, printf ("Can't open %s\n", fname);
45. return;

46. }

47,

48. while (fread(&person, sizeof (WORKER), 1, fp) > 0)
49. output (&person) ;

50.

51. fclose (fp);

52. }

® Both create_db and print_db use the following form of the
return statement.

return; /* premature exit from void function */

©2016 UMBC Training Centers
164

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

fseek

® Files are often read and written sequentially. The operating
system keeps a pointer to the next record to be read or written.
You can control this pointer with the fseek function. The
prototype for fseek is:

int fseek (FILE *fp, long offset, int origin);

® fseek positions the file at of fset many bytes from origin.
The origin is given using a set of values defined in stdio.h:

#define SEEK_SET 0 /* From beginning */
#define SEEK_CUR 1 /* From current pos */
#define SEEK_END 2 /* From end of file */

® Here are some examples of fseek:
long int n = 10;
long int size = sizeof (WORKER) ;

/* seek to beginning of file */
fseek (fp, 0, SEEK_SET);

/* seek to end of file */
fseek (fp, 0, SEEK_END) ;

/* back up 1 record */
fseek (fp, -size, SEEK_CUR);

/* skip the first n records */
fseek (fp, size * n, SEEK_SET);

©2016 UMBC Training Centers

165

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

fseek

® fseek can be used to update a record.

» Note the use of the £f1ush function, which causes immediate output
to the file rather than having the output buffered.

WORKER person;
long int size = sizeof (WORKER) ;

while ((fread(&person, size, 1, fp)) > 0)
{

if (strcmp (pname, person.name) == 0)

{

/* modify 'person' structure */

fseek (fp, -size, 1);
fwrite (&person, sizeof (WORKER), 1, fp);
fflush (fp);

® fseek can be used to determine the number of records in a
file.

long int size, recs;

char filename[] = "somefile";

fp = fopen(filename, "r");

fseek (fp, 0L, 2); // Seek to end of file

size = ftell (fp);
recs = size / sizeof (WORKER) ;

printf ("File %s is %1d bytes\n", filename, size);
printf ("File %$s has %1d records\n", filename, recs);

©2016 UMBC Training Centers

166

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

The retrieve db Function

® retrieve_db is similarto print_db except that only
selected records are printed.

» Notice the fseek back to the beginning of the file to search the file

again for a different name.

dbfunc.c (continued)

53. void retrieve_ db ()

54. {

55. WORKER w;

56. FILE *fp;

57. char fname[FILENAMESIZE + 1],

58. char pname [NAMESIZE + 2];

59.

60. printf ("Enter file name: ");

ol. fgets (fname, FILENAMESIZE, stdin);

62. stripnewline (fname) ;

03. if ((fp = fopen(fname, "r")) == NULL)
64. {

65. printf ("Can't open %s\n", fname) ;
66. return;

67. }

68.

69. while (1)

70. {

71. printf ("Which name? ('quit' to exit) ");
72. fgets (pname, NAMESIZE, stdin);
73. stripnewline (pname) ;

74. if (strcmp (pname, "quit") == 0)
75. break;

76.

7. while((fread(&w, sizeof (WORKER),1, fp)) > 0)
78. {

79. if (strcmp (pname, w.name) == 0)
30. output (&w) ;

81. }

82. fseek (fp, 0L, 0) ;

83. }

34. fclose (fp);

85. }

©2016 UMBC Training Centers
167

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

The Utility Functions

® The source file util. c holds common functions that might be
needed in a variety of applications.

® Currently, there is just one function: stripnewline. This
function behaves like the UNIX chomp utility - i.e., it removes

the last character of a string, but only if that character is the
newline.

® The program is designed to work so that it doesn't matter
whether or not the input line ends in the newline character.
Recall that:

» The gets function discards the newline.

» The fgets function retains the newline.

util.c
1. #include <string.h>
2.
3. void stripnewline (char * str)
4. {
5. int len = strlen(str);
6
7 if (str[len - 1] == '\n")
8 {
9. str[len - 1] = '"\O0';
10. }
11. }

©2016 UMBC Training Centers

168

INTERMEDIATE C PROGRAMMING CHAPTER 7: BINARY I/O AND RANDOM ACCESS

Exercises

1. Extend the database application program by providing a menu
choice, which displays the number of records in the data file.

2. Add another menu choice so that the user can display any
record by specifying the record number.

3. Write a program, which exchanges the first and last records of
a file consisting of records of the WORKER type.

©2016 UMBC Training Centers

169

C PROGRAMMING

Chapter 8:

Designing Data Types

©2016 UMBC Training Centers
170

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Steps in Creating Data Types

® New data types are defined using the st ruct keyword.

® The typedef facility merely gives a new name for an existing
data type.

® Creating new data types is invaluable toward designing
solutions that closely model the problem to be solved.

® To design a new data type:
» Create a description for the data type structure description.

o Typedef

» Create the operations for this data type.

e Function Prototypes

» Write the implementation for the operations.

e Function Definitions

©2016 UMBC Training Centers
171

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Rationale for a New Data Type

® Suppose we wish to create a fraction data type. Our goal is to
use fractions with the same ease as we use the built in types.

® C supports fundamental types such as:
» char
» int
» double

o Easy to write programs using these data types.

® \We would like to use the same constructs for created data
types as we do for the built in types.

® For example, we would like to define, add, and multiply
fractions just as we do ints.

» We can do all of this but we have to trade operators for functions.

» We can simulate the + with a function.

©2016 UMBC Training Centers
172

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

The File fraction.h

® The file fraction.h would consist of the pieces shown here.
® Create it. In other words, decide on a representation.

struct fraction {
int n;
int d;

}i

» Note: Other representations are possible.

® Create new name(s) for the new type.
typedef struct fraction FRACTION, *FPTR;

® Specify the operations for the new type.

FRACTION create(int numerator, int denominator);
FRACTION input (void);

void print (FPTR) ;

int ged(int first_dividend, int second_dividend);
FRACTION add(FPTR, FPTR);

FRACTION mult (FPTR, FPTR);

FRACTION divide (FPTR, FPTR);

FRACTION subtract (FPTR, FPTR);

etc.

©2016 UMBC Training Centers
173

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Operations on the Fraction Data Types

int a,b,c; // DEFINE INTs

FRACTION x,V, Z; // FRACTIONS

int fun() // FUNCTION RETURNS INT
FRACTION fun2(); // RETURNING FRACTION
int *pl; // POINTER TO INT
FRACTION *p2; // TO FRACTION

a=>b + c; // ADD INTEGERS

X =y + z; // ADD FRACTIONS

©2016 UMBC Training Centers
174

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Implementation of the Functions

® Each of the functions should now be implemented.

fraction.c

1. #include <stdio.h>

2. #include <assert.h>

3.

4. #include "fraction.h"

5.

6. FRACTION input ()

7. A

8. FRACTION p;

9. printf ("input num then denom (n/d) ");
10.

11. // "%d/%d" format => allows

12. // input of the form n/d

13.

14. scanf ("%$d/%d", &p.n, &p.d);

15. while (getchar() != '\n'); // flush the
16. // newline
17. return (p);

18. }

19.

20. FRACTION create (int numer, int denom)

21. {

22. FRACTION p;

23. p.n = numer;

24. p.d = denom;

25. return (p) ;

26. }

©2016 UMBC Training Centers
175

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Implementation of the Functions

fraction.c (continued)

27. void print (FPTR p)

28. {

29. int temp;

30.

31. assert(p -> d !'= 0); // div by 0

32. temp = gcd(p->n, p->d); // reduce

33. assert (temp != 0); // sanity check
34.

35. p->n=p ->n/ temp;

36. p->d=p -—>d / temp;

37. if (1 ==p -> d) // easy reading
38. printf ("$d\n", p -> n);

39. else if (0 == -> n) // easy reading
40. printf ("0\n");

41. else

42, printf ("$d/%d\n", p -> n, p —> d);
43. '}

44,

45. FRACTION add(FPTR £, FPTR s)

46. {

47, FRACTION p;

48.

49. p.n=f ->n*s ->d+ f ->d*s ->n ;
50. p.d=f > d * s -> d;

51. return (p) ;

52. '}

©2016 UMBC Training Centers
176

INTERMEDIATE C PROGRAMMING

CHAPTER 8: DESIGNING DATA TYPES

Implementation of the Functions

fraction.c (continued)

53. int gcd(int top,

54. {

55. int quot, rem;
56.

57. quot = top / bot;
58. rem = top % ;
59. while (rem !

60. {

61. top =

62. bot =

63. quot =

64. rem =

65. }

66. return bot;

67. }

int bot)

top / bot;

bot;

©2016 UMBC Training Centers
177

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Example Program Using Fractions

® An entire program using the FRACTION type

» Fill an array with fractions and compute their sum.

mainfrac.c

68. #include <stdio.h>

69. #include "fraction.h"

70.

71. #define MAX 5

72.

73. main ()

74. |

75. int 1i;

76. FRACTION array[MAX];

77. FRACTION s;

78.

79. s = create(0,1);

80.

8l. printf ("Enter %d fractions\n", MAX);
82. for (i = 0; i < MAX; i++) {
83. printf ("input fraction # %4 ", i + 1);
84. array[i] = input ();

385. }

86.

87. for (1 = 0; 1 < MAX; i++)
88. s = add(&s, &arrayl[il]);
89.

90. print (&s);

91. }

©2016 UMBC Training Centers
178

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Applications with Fractions

® Any applications with fractions would include the header file
fraction.h. Fractions could then be:

» defined with:
e FRACTION a,b,c;

» initialized with:
e a=create(2,3);
e b =create(4,5);

» added with:
e C=add(&a, &b);
® Complex calculations could proceed as:
c = (a+ b)) * (a/ b);
FRACTION a, b, c;
¢ = mult (add(&a, &b), divide(&a, &b));

» Note that add must return an fptr rather than a fraction to satisfy
mults arguments.

©2016 UMBC Training Centers
179

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Set Notation Examples

® Mathematicians use the following set notation.
» A={0,3,5,2,4} B={3,4,6,1)}

® Set intersection A
» AAB= {3, 4}

® Set union u
» AuB={0,1,2,3,4,5,6}

® Set difference -
» A-B={0,5,2}

® Compliment of a set

2

® With respect to (say the set of digits)
» ~A =1{1,6,7,8,9}

©2016 UMBC Training Centers

180

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Creating the Set Type

@® Sets are collections of unordered objects.
® Many operations are defined on sets including:
» Intersection: those elementsin A and in B
» Union: those elements in A orin B
» Difference: those elements in A and notin B
» Complement of a set: those not in the set

o Complement of a set must be with respect to a universal set (say
the set of all digits).

©2016 UMBC Training Centers
181

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Set Representation Example

® The following pieces would be placed in set . h.

® Representation

#define SIZE 100
struct set {
int array[SIZE],
int howmany;
}i
® Create the new names for the type.

typedef struct set SET, *SETP;

® Create operations for the new type.

SETP create (void);

void add(int, SETP);

void print (SETP);

SETP setunion (SETP, SETP);

©2016 UMBC Training Centers

182

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Set Representation

® There are many representations of sets.
» Abstract sets have no bound.
» Good candidate for dynamic representation
® Instead, we choose the following.
» An array

» A particular size

® Following the method of the fraction data type, we use
typedef to create some new names.

® Next, we choose the operations to be implemented.

©2016 UMBC Training Centers

183

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Set Function Implementations

set.c
1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <malloc.h>
4,
5. #include "set.h"
6.
7. SETP create ()
8. {
9. SETP temp;
10.
11. temp = (SETP) malloc(sizeof (SET));
12. if (temp == NULL) {
13. printf ("malloc: no more room\n");
14. exit (1) ;
15. }
16. temp #> howmany = 0;
17. return (temp) ;
18. 1}
19.
20. void add(int new, SETP p)
21. {
22. if(p #> howmany == SIZE) {
23. printf ("set overflow\n");
24. exit (2);
25. }
26. p #> array[p #> howmany++] = new;
27. }
28.
29. void print (SETP p)
30. {
31. int 1i;
32.
33. for (1 = 0; i < p #> howmany; i++)
34. printf ("$d\n", p #> arrayl[il);
35. }

©2016 UMBC Training Centers

184

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Set Function Implementations

set.c (continued)

36. SETP setunion(SETP a, SETP Db)

37. {

38. SETP c;

39. int 1, 3J;

40.

41. c = create();

42, for (i = 0; 1 < a #> howmany; i++)

43. add(a #> arrayl[i], c);

44, for (i = 0; 1 < b #> howmany; i++) {
45, for (j = 0; J < a #> howmany; J++)
46. if(b #> array[i] == a #> arrayl[]j])
47. break;

48. if (j == a #> howmany)

49, add (b #> arrayl[i], c);

50. }

51. return(c) ;

52. '}

©2016 UMBC Training Centers

185

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

A Program That Uses the Set Data Type

mainset.c

53. #include "set.h"

54.

55. main ()

56. {

57. SETP ¢, a, b;

58.

59. a = create();

60. b = create();

61. add (10, b); // ADD ELEMENT 10 TO b
62. add (5, b);

63. add (5, a); // ADD ELEMENT 5 TO a
64. add (e, a);

65. print (a);

66. print (b);

67.

68. ¢ = setunion(a,b); // UNION OF a AND b
69. print (c);

70.

71. free(a);

2. free(b);

73. free(c);

74.)

©2016 UMBC Training Centers

186

INTERMEDIATE C PROGRAMMING CHAPTER 8: DESIGNING DATA TYPES

Exercises

1. Implement the fraction add function with the following function
prototype.

FPTR add (FPTR, FPTR);

There is a starter file for this exercise in the starters directory.

2. Create the type COMPLEX (for complex numbers) and provide
operations such as init, add, and print.

3. Implement set intersection. There is a starter file for this
exercise in the starters directory.

©2016 UMBC Training Centers
187

C PROGRAMMING

Chapter 9:

Linked Lists

©2016 UMBC Training Centers

188

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

What are Lists?

® An element of a list is usually defined as a structure.
» A passenger

struct passenger {
char name[20];
int flight_no;
char seat[4];

i

» Ajob in an operating system

struct Jjob {
int owner;
int priority;
char *files[20];
i

» A window

struct window {
int x_upper_left;
int y_upper_left;
int x_lower_right;
int y_lower_right;

i

©2016 UMBC Training Centers

189

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

What are Lists?

® A list is a collection of (usually) like objects.
» passengers on an airline
» jobs in an operating system
» windows on a display
® Lists are usually dynamic.
» The number of elements in the list varies with time.
» There is no upper limit on the size of the list.

® Common list operations include:

v

adding an element

» inserting an element

v

deleting an element

v

printing the list

» combining two lists

©2016 UMBC Training Centers

190

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Lists as Arrays

® A list is a dynamic data structure. An array is fixed.

® This contradiction leads to inefficiencies in:
» Adding to the list

e what about when there is no more room?

» Deleting from a list

e moving too much data

» Combining two lists

e not room enough in either list

©2016 UMBC Training Centers
191

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Lists as Arrays

® An array can be used to represent a list.
» An array is a fixed size data type.
» Size is based on a worst-case scenario.

» The number of elements in the list would be kept in a separate
variable.

@ Array representation could lead to inefficiencies.
» Adding an element

e Since an array is a fixed data structure, there would be no way of
extending it.

» Inserting an element

o All elements below the inserted one would need to be pushed
down one element.

» Deleting an element

o Each element needs to be moved up a position, or, the position of
the deleted one could be marked with a special value.

» Combining two lists

e The sum of the number of elements from the two lists could be
larger than the capacity for either array.

® A better representation than an array is a data structure, which
is allocated only when it is needed.

» The need is usually signaled by a user request to the program.

©2016 UMBC Training Centers

192

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Benefits of Linked Lists

® Linking elements is a dynamic way of building lists.

® The problem of fixed size disappears.

® Deleting an element becomes a matter of pointer manipulation.
® Inserting an element also is a pointer manipulation problem.

® Combining two lists need not worry about size restriction.

©2016 UMBC Training Centers

193

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

A List of Linked Elements

® Create the storage for an element when it is needed.
» Describe a template for any list element.
» Allocate as needed - malloc.
@® Leads to many allocations at various locations
» Provide an extra structure member, a pointer.
» Link each new allocation to previous ones.
e Insert append in order
® Inserting or appending an element
» The problem of extending the array size disappears.
® Deleting an element
» There is no inefficiency involved as with an array.
® Combining two lists
» There is no concern about combined sizes.

» Modify one pointer.

©2016 UMBC Training Centers
194

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Defining the List Data Type

® The header file 1ist .h consists of:

#defines

struct definition
typedefs
prototypes

@ Create the new type.

#define NAMESIZE 20
#include <stdio.h>
struct passenger {
char name [NAMESIZE];
int f_number;
struct passenger *link;

}s
® Give it a name.

typedef struct passenger PASS, *PP;
typedef int BOOLEAN;

® Define the operations.

void initialize (PP *); // INITIALIZE THE LIST
BOOLEAN is_empty (PP) // IS THE LIST EMPTY?
PP insert (PP, PP); // ADD TO FRONT OF LIST
PP append (PP, PP); // ADD TO END OF LIST

PP create(char *, int); // CREATE, FILL ELEMENT

void print (PP); // PRINT THE LIST

©2016 UMBC Training Centers

195

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

The List Data Type

® Think of a list as a new data type.
» Define the representation.
» Define the operations.
» Implement the functions.
® A list will be represented as:
» the data

» a pointer to the rest of the list.

® A minimum set of operations on a list would be:

initialize // INITIALIZE THE LIST
insert // ADD TO FRONT OF LIST
append // ADD TO END OF LIST
create // CREATE AND FILL ELEMENT
print // PRINT THE LIST

® The file 1ist .h should contain all the above information.

©2016 UMBC Training Centers

196

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Implementations of List Functions

® Any functions using the list type must include 1ist .h.

® The initialize function would be:

#include "list.h"
void initialize (PP *p)
{

*p = NULL;
}

® is_empty determines if the list is empty.

BOOLEAN is_empty (PP p)

{
return(p == NULL);

}
® print prints the list.

void print (PP p)
{
while (p != NULL) {
printf ("$s %d\n", p #>name, p #>f_number);
p = p #> link;

©2016 UMBC Training Centers
197

INTERMEDIATE C PROGRAMMING

CHAPTER 9: LINKED LISTS

Implementation of List Functions

® The create function

PP create (char *name, int number)

{

}

PP p;
p = (PP) malloc(sizeof (PASS));
if(p == NULL) {

printf ("malloc: no more room\n");
return (NULL) ;

}

p #> f_number = number;

strcpy (p #> name, name);

p #> link = NULL;

//FOR TWO WAY LINKED LISTS

// p —> blink = NULL; LATER

// IN THE CHAPTER

return (p) ;

® The insert function

PP insert (PP data, PP p)

{

data #> link = p;
return (data) ;

©2016 UMBC Training Centers

198

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Implementation of List Functions

® The append function

PP append (PP data, PP p)

{
PP temp = p;

PP prev;
if (is_empty (p)) {
p = insert (data, p);

return (p) ;
}
while (p != NULL) {
prev = p;
p = p #> link;
}
// prev POINTS TO LAST ELEMENT
prev #> link = data;
return (temp) ;

©2016 UMBC Training Centers

199

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

A Simple Program With a List

listmain.c

1. #include "list.h"

2.

3. main ()

4. {

5. PP list, node;

6.

7. initialize (&1list);

8.

9. node = create("mike",100);
10. list = insert (node, list);
11.

12. node = create("tom",1);
13. list = append(node,list);
14.

15. if (! is_empty(list))

16. print (list);

17. }

©2016 UMBC Training Centers

200

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Other Types of Lists

® The list from the previous section is called a one way linked list.
® One way lists are generally better than arrays.

» Many deletions and additions
» Fairly simple to manage

® In the one way list presented earlier, we had no concern for
order.

» Insert at the beginning
» Append at the end

» An ordered list adds elements in order based on a key field of the
record.

® Other types of lists give other benefits.

©2016 UMBC Training Centers

201

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Other Types of Lists

® A one way list has certain deficiencies.
» Can't visit any element from any other element

» A circular list solves this problem.

» Always start searching from current position

® Some list problems require additional pointers to provide
additional efficiency.

» May have need for doubly-linked list
» An editor with a linked list of lines

print 1,10 // PRINT LINES 1 - 10

print ., -5 // PRINT PREVIOUS FIVE LINES
® May have a list where each element itself contains a head
pointer for another list (a network)
» Linked airline flights with linked passengers
» Linked words in a file with linked line number, (i.e, a cross reference)

©2016 UMBC Training Centers

202

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Ordered Lists

® Below is an example of an ordered list.

#include "ordered.h"

main ()

{

PP list, node;
initialize (&list);

node = create ("mike", 100);
list = order (node, list);
node = create("zeke", 100);
list = order (node, list);
node = create("allen", 100);
list = order (node, list);
node = create ("mikey", 100);
list = order (node, list);

print (list);
}

PP order (PP data, PP p)
{

PP prev;

PP save = p;

if (is_empty (p) ||
(strcmp (data #> name, p #> name) < 0)) {
data #> link = p;
return (data) ;
}
while ((p != NULL) &&
(strcmp (data #> name, p #> name) > 0)) {
prev = p;
p = p #> link;
}
data #> link = prev #> link;
prev #> link data;
return (save) ;

}

©2016 UMBC Training Centers

203

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Ordered Lists

® Same as previous linked list except insertion is a function of a
key field (name for example)

® The function order replaces the combination of insert and
append.

® Elements are now in order.

©2016 UMBC Training Centers

204

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

The rand Function

® Random numbers will be needed in many of the following
examples.
® The rand function yields random numbers in the range:
0 — 32767 (FOR 16 BIT INTEGERS)

® The rand function yields random numbers in the range:

0 — (2 ** WORDSIZE - 1)

#define HOW_MANY 100

main()

{

int 1i;

for (1 = 0; 1 < HOW_MANY; 1i++)

printf ("$d\n", rand());
}

® Use the % operator to scale a random number to the range
0-(n-1).
rand() % n

® To scale a random number to the range BEGIN to END.

(rand() % (1 + END - BEGIN)) + BEGIN

©2016 UMBC Training Centers

205

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Circular Lists

® To demonstrate the circular list, devise the following problem.

>
>
>

Consider a set of integers in the range 0 to n.
Select a random number i in the range (1-n).

Eliminate the ith integer from the beginning, then the 2ith integer etc.,
until only one integer remains.

For example, if i=3, eliminate 2,5,8 etc.
For any integer > |, wrap around.

Which number remains for various values of i?

©2016 UMBC Training Centers

206

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Circular Lists

circular.c

=
N B

=
SIS

o
~J

NN
N =

NN
[Ga e

NN
o J

(O8]
()}

w
~J

OW 0 J o U1 b W N -

Y
(@)

. BOOLEAN is_empty (PP p)

—
w

Y
[©)}

. void print (PP p)

N
oS ©

N
w

. PP create(char *name, int number)

N
o

w W W w w N
S w NN PO w0

w
(&)}

w w
O oo

#include <stdio.h>
#include <string.h>
#include <malloc.h>

#finclude "list.h"

void initialize (PP *p)
{
*p = NULL;

{
return(p == NULL 2 1 : 0);

{
while (p != NULL) ({
printf ("$s %d\n", p —-> name, p —-> f_number);
p = p —> link;

{
PP pj;

p = (PP) malloc(sizeof (PASS));
if(p == NULL) {
printf("malloc: no more room\n");
return (NULL) ;

p —> f_number = number;
strcpy (p —> name, name);
p —> link = NULL;
return (p) ;

©2016 UMBC Training Centers

207

INTERMEDIATE C PROGRAMMING

CHAPTER 9: LINKED LISTS

Circular Lists

circular.c (continued)

40. PP insert (PP data, PP p)
41, {

42. data -> link = p;

43. return (data) ;

44. }

45.

46. PP append (PP data, PP p)
47. |

48.

49. PP temp = p;

50. PP prev;

51. if (is_empty (p)) |

52. p = insert (data, p);
53. return (p) ;

54. }

55. while(p !'= NULL) {
56. prev = p;

57. p = p —> link;
58. }

59. // prev points to last element
60. prev —-> link = data;
61. return (temp) ;

62. }

circularmain.c

#include <stdio.h>
#include <malloc.h>

#finclude "list.h"

#define NUMBER 22

main ()

{

O 0 J o U b W N -

Y
(@)

char map[NUMBER + 17];
int i, count;

PP list, node, p, prev,
initialize (&1list);

B e
w N

save;

©2016 UMBC Training Centers

208

INTERMEDIATE C PROGRAMMING

CHAPTER 9: LINKED LISTS

Circular Lists

circularmain.c (continued)

14. for (1 = 0; i < NUMBER; i++) {
15. node = create("tom",1i);

16. list = append(node,list);
17. map[i] = 'X';

18. }

19. map [NUMBER] = '\0';

20.

21. p = list;

22. for (i = 0; i < NUMBER - 1; i++)
23. p =p —> link;

24.

25. p —> link = list;

26. p = list;

27.

28. for (count = 0; count < NUMBER - 1; count++)
29. for(i = 0; 1 < 2; i++) {

30. prev = p;

31. p = p —> link;

32. }

33. save = p;

34. prev -> link = p —-> link;
35.

36. map[p —> f_number] = '_"';
37. printf ("$s\n",map) ;

38. free(p);

39. p = prev —> link;

40. }

41. '}

{

» map is used to display the results.
» free returns what malloc took.

» Always give free a pointer obtained by malloc

©2016 UMBC Training Centers

209

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Circular Lists
@® There are some basic differences between a circular list and a
one directional list.
» There is no first element.
» There is no end of the list.
® There will be a current element.
» This is the starting point for the next list operation.
® Each element points to the next one.

® Circular lists are used heavily in memory management
schemes.

©2016 UMBC Training Centers

210

INTERMEDIATE C PROGRAMMING

CHAPTER 9: LINKED LISTS

Two Way Lists

® A two_way list structure needs two pointers. The header file
1ist.h needs a slight revision.

twoway.h
1. #define NAMESIZE 20
2
3. struct passenger {
4. char name [NAMESIZE];
5. int f_number;
6 struct passenger *1link;
7. struct passenger *blink;
8. };
9.
10. typedef struct passenger PASS, *PP;
11. typedef int BOOLEAN;
12.
13. BOOLEAN is_empty (PP) ; // IS THE LIST EMPTY?
14. PP order (PP, PP); // ADD IN ORDER
15. PP create(char *, int); // CREATE AND FILL ELEMENT
16.
17. void fprint (PP); // PRINT THE LIST FORWARD
18. void bprint (PP); // PRINT THE LIST BACKWARD

® Two dummy nodes make the code more efficient.

DATA
LINK
BLINK

BEGIN

I\OI

200

NULL

100

END
‘222’
NULL
100
200

©2016 UMBC Training Centers
211

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Two Way Lists

® Two way lists allow processing in either direction.
» Can cut down access time

» Print from jones to smith

» Print smith and preceding 4
» Very often two way lists are also circular.
® The list has two pointers.
» Forward pointer link
» Backward pointer blink
® There are two print routines - forward, backward.

® To make the order function easier and more efficient, two
dummy nodes are established in such a way that any new
nodes necessarily fits between them.

©2016 UMBC Training Centers

212

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Two Way Lists

twoway.c
1. #include <stdio.h>
2. #include <string.h>
3. #include <malloc.h>
4,
5. #include "twoway.h"
6.
7. void fprint (PP p)
8. {
9. printf ("FORWARD\n") ;
10. while (p -> link != NULL) {
11. printf ("%$s %d\n", p -> name, p —-> f_number);
12. p = p —> link;
13. }
14. }
15.
16. void bprint (PP p)
17. {
18. printf ("BACKWARD\Nn") ;
19. while (p -> blink != NULL) {
20. printf ("%$s %d\n", p -> name, p —-> f_number);
21. P = p —> blink;
22. }
23. '}
24.
25. PP create (char *name, int number)
26. {
27. PP p;
28. p = (PP) malloc(sizeof (PASS));
29. if(p == NULL) {
30. printf("malloc: no more room\n");
31. return (NULL) ;
32. }
33. p —> f_number = number;
34. strcpy (p —> name, name);
35 p —> link = NULL;
36 p —> blink = NULL;
37. return (p) ;
38. }

©2016 UMBC Training Centers

213

INTERMEDIATE C PROGRAMMING

CHAPTER 9: LINKED LISTS

Two Way Lists

twoway.c

{

39. PP order (PP data, PP p)
40.
41,
42.
43.
44,
45,
46.
47,
48.
49.
50.
51.
52.

PP prev;

PP save = p;

while (strcmp (data —-> name, p —> name)
prev = py

p = p —> link;
}
data -> link = prev -> link;
prev —-> link = data;
data -> blink = p -> blink;
p —> blink = data;
return (save);

>= ()

twowaymain.c

=
N B

=
SIS

=
o

O 0 J o U b W N -

= = =
o w o

NN
= O

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>

#include "twoway.h"

main ()

{

int i;
PP begin, end, node, list;

begin = (PP) malloc(sizeof (PASS));

end = (PP) malloc(sizeof (PASS));

if (begin == NULL || end == NULL) {
printf("malloc: no room\n");
exit (1) ;

strcpy (begin —> name, "\0");
strcpy (end —-> name, "z");

©2016 UMBC Training Centers
214

INTERMEDIATE C PROGRAMMING

CHAPTER 9: LINKED LISTS

Two Way Lists

twowaymain.c (continued)

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

begin -> link = end;
end —> link = NULL;

begin -> f_number = 100;
end —> f_number = 200;

end —-> blink = begin;
begin -> blink = NULL;

node = create ("mike", 100);
begin = order (node, begin);
node = create ("warren", 100);
begin = order (node, begin);
node = create("allen", 100);
begin = order (node, begin);
node = create("alice", 100);
begin = order (node, begin);
node = create("joe", 100);
begin = order (node, begin);
fprint (begin -> 1link);

(
bprint (end —-> blink);

©2016 UMBC Training Centers
215

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Nested Lists

struct flights {

char departure_city[20];

int flight_number;

char destination city[20];
struct flights *flight_pt;
struct passenger *passenger_pt;

i

struct passenger {
char name[20];

char other[100];
struct passenger *ptr;

i

typedef struct flights FLIGHT, *FPTR;
typedef struct passenger PASS, *PPTR;

©2016 UMBC Training Centers

216

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Nested Lists

® There are many other kinds of linked lists applications.
® Consider a list of flights, each with a log of passengers.

5000 3000 8000
departure_city CHI BOST DAL WAS
flight_number 194 128 214 495
dest_city DEN CHI ATL SEA
flight_pt &5000 &3000 &8000 NULL
passenger_pt &4000 &6000 NULL NULL
count 3 2 0 0

4000 300 500
name mike mary dave
other data data data
ptr &300 &500 NULL

6000 100
name pete jane
other data data
ptr &100 NULL

©2016 UMBC Training Centers
217

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

Exercises

1. Write a function for one-way linked lists which swaps two
elements.

void swap (char * namel, char *name2, PP head);

There is a starter file for this exercise in the starters
directory.

©2016 UMBC Training Centers

218

INTERMEDIATE C PROGRAMMING CHAPTER 9: LINKED LISTS

©2016 UMBC Training Centers

219

C PROGRAMMING

Appendix A:

Software Tools

©2016 UMBC Training Centers

220

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The cc Command

@ Starting the C compiler can be done from:
» the command line

» an integrated environment.

® The C compiler command consists of three phases.

» C preprocessor (CPP)
» C compiler (CC)
» C linker/loader (LD)

©2016 UMBC Training Centers
221

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Different C Compilers

® There are many environments where C code is compiled.

® UNIX systems have a cc command for command line
compiling.

$ cc program.c

® DOS, OS/2 and windows systems have command line
compilers as well.

» Borland (TCC) or (BCC)
» Microsoft (CL)
» Others

® Usually DOS, 0OS/2, and windows systems come with mouse or
menu driven integrated environment packages consisting of:

Compiler Editor Debugger Help

® We cannot describe them all so we give the fundamentals and
the most frequently used options

©2016 UMBC Training Centers

222

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Compiler Options

@® By giving the proper option to the C compiler, you can produce
either

> i Results of the preprocessor
» .C Results of the compile
» .exe (a.out) Results of the loader

® Command line examples

» Just preprocess: producess .i

S cc -P file.c

» Preprocess and compile: prodices a .o(bj)
S cc —-c file.c

» Produce an assembly listing .a

S cc -A file.c

» Pass a define to the program
S cc -DSIZE=20 file.c

©2016 UMBC Training Centers

223

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Compiler Options

® You can inform the compiler to stop whenever you wish:
standard options include

» Preprocessing

v

Compiling

v

Assembly listing

v

Defining constants

v

Producing code for a profiler

©2016 UMBC Training Centers
224

INTERMEDIATE C PROGRAMMING

APPENDIX A: SOFTWARE TOOLS

Conditional Compilation

@ ifdef

#ifdef _ STDC___
void *malloc (int);
#else

char *malloc (int);
#endif

#ifndef NAME
#define NAME
#fendif

® For debugging

#ifdef DEVELOPING
printf ("entering subl: I = %d\n",
fendif

® Setting debugging levels

#1if DEVEL > 1
printf ("PRINT: I = %d\n", 1i);
#endif

#1f DEVEL > 2
printf ("PRINT: I = %d\n", 1i);
#endif

#1if DEVEL > 1
printf ("PRINT: I = %d\n", 1i);
#endif

i);

©2016 UMBC Training Centers

225

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Conditional Compilation
® C code can be conditionally compiled through the use of a few
preprocessor directives

® Debugging can be enabled by placing sequences of #ifdefs at
strategic places in your code

® Debugging levels can be established

» printfs get executed depending upon level of debugging in effect

©2016 UMBC Training Centers

226

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The assert Macro

® Using assertions
#include <stdio.h>
#include <assert.h>

// COPY argv[l] TO argv[2]

main (int argc, char **argv)
{
FILE *fpin, *fpout;

assert (argc == 3);

fpin = fopen(argv[1l],"xr");
assert (fpin != NULL);

fpout = fopen(argv (2], "w");
assert (fpout != NULL);

while((¢ = getc(fpin)) != EOF)

putc(c, fpout);

@ If an assertion is false, the following is displayed on the
stderr.

Assertion failed:, argc == 3: file raise.c line 6
Abnormal program termination

©2016 UMBC Training Centers
227

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The assert Macro

® When errors are detected during program execution
» Print an error message
» If possible, keep the program running

® When errors are detected during development
» Print the error message

» Exit

® The assert macro defined in assert .h can be used to detect
conditions which you deem as errors. if so:

» The program prints an error message

» The program then exits

©2016 UMBC Training Centers

228

INTERMEDIATE C PROGRAMMING

APPENDIX A: SOFTWARE TOOLS

Libraries

® A library is a file maintained by a system utility
» Consists of compiled files
» Same subject matter

® Most C compilers come with several libraries
» Portable I/O library
» Math library
» Graphics library
» Others

©2016 UMBC Training Centers

229

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Libraries
® A library on a computer system is a file. which has the following
format.
» A table of contents (or index)

» A set of modules (or members)

® Systems differ as to exact components of a library file.

® Libraries are usually made up of modules from the same
subject matter area.

Math library Graphics library
String library Windows library

® Some libraries are delivered with your C compiler.
» On Unix systems, they exist in the directories
/1ib /usr/lib

» In DOS Windows, and 0S/2, they can be found under the main
directory for your compiler.

/te/lib /msve/lib

©2016 UMBC Training Centers

230

INTERMEDIATE C PROGRAMMING

APPENDIX A: SOFTWARE TOOLS

Libraries

® To build a library, construct the source file.

// square.c

double square (double a)

{

return(a * a);

$ cc —-c square.c // COMPILE IT

$ ar r mathlib.a square.o // PLACE IN LIBRARY

® Repeat the process for the other functions.

// sum_of_squares.c

double sum_of_squares (double a, double b)

{

return (square (a) + square (b)) ;

// dist.c

#include <math.h>

double dist (int x1, int x2, int y1, int y2)

{
double x = x1 # v1;
double y = x2 # v2;
return (sqgrt (sum_of_squares (x,

v))) i

©2016 UMBC Training Centers

231

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Libraries

® We will use the unix ar command to illustrate basic principles
about libraries.

» Saves compilation time
» Easy to reuse functionality

® Suppose we want to build a library of math functions.
» Build the first function and compile it.

$ cc —-c square.c

» Place it in a library.

S ar r mathlib.a square.o

» Repeat the process for other functions.

S cc —-c sum_of_squares.c

$ ar mathlib.a sum_of_squares.o
S cc —-c dist.c

S ar mathlib.a dist.o

©2016 UMBC Training Centers

232

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Header File Support

® Applications programs need to include the support header file
to gain access to the prototypes.

// mathlib.h

double dist (int, int, int, int);
double sum_of_squares (double, double);
double square (double) ;

® The program below uses the functionality from mathlib.a.

// distance.c
#include "mathlib.h"
main()

{
printf ("$f\n", dist(0,0,5,5));
printf ("$f\n", dist(0,0,3,4));

}

® Note that failure to include the header file will leave strange
results

// A COMMON C BUG IS THE FAILURE TO
// MAKE VISIBLE THE PROTOTYPE FOR atof
//
main()
{
char *s = "12345.65";
printf ("$f\n", atof(s));

©2016 UMBC Training Centers

233

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Libraries
® Create a header file with the function prototypes for the
functions placed in the library.

® When a program needs some of the functionality built into the
library, name the library on the command line:

S cc distance.c mathlib.a

» Failure to name the library on the command line yields undefined
name errors.

® The last phase of the compiler command searches libraries to
find functions, which are referenced, but not supplied.

® The search for libraries consists of looking in:
» standard places

» libraries that you explicitly name on the command line

©2016 UMBC Training Centers

234

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The make Command

® The procedure below is not smart.

S cc prog.c funl.c fun2.c fun3.c
fun2.c:
errors

S edit fun2.c

//

// EVERYTHING IS NEEDLESSLY RECOMPILED
//

S cc prog.c funl.c fun2.c fun3.c

$

® The procedure below is smart.

S cc prog.c funl.c fun2.c fun3.c
fun2.c:
errors

S edit fun2.c

//

// NOTICE THAT fun2.c IS RECOMPILED
//

S cc prog.o funl.o fun2.c fun3.o

$

©2016 UMBC Training Centers

235

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The make Command

® One executable usually is spread out over many source files.

® A change in one source need only effect the recompilation of
that file.

® Other files can be linked to produce the executable.

® The Unix system was the first to automate the smart process
above.

» The program to automate program generation is called make.

» Currently, most software development systems contain a version of
make.

® We will explain the details of the make command

©2016 UMBC Training Centers

236

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

An Example Makefile

® An example makefile to produce the prog executable:

pProg: prog.o funl.o funZ.o fun3.o
cc prog.o funl.o fun2.o fun3.o0 -0 prog

prog.o: proc.c header.h
CC —-C prog.c

funl.o: funl.c
cc —-c funl.c

fun2.o fun2.c
cc —c fun2?.c

fun3.o fun3.c header.h
cc —c fun3.c

©2016 UMBC Training Centers

237

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The make Command

® The make utility needs two pieces of information.
» The dependency relationship between source files of a system

» The most recent modification dates of those files

® make reads a description file (prepared by the user) in order to
build a tree of dependencies existing between header, source,
object, and executable files.

® makefiles consist of two types of lines.
» Dependency lines

target: 1l1list of dependent files

» Rules lines
<-TAB-> SHELL COMMAND

® Make can be executed in several ways.
S make # DEFAULT IS makefile

$ make —-f makefilename # name your own makefile

©2016 UMBC Training Centers

238

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The make Dependency Tree

The make utility builds a tree of dependencies.
The tree for the system above:

prog
prog.o funi.o fun2.0 fun3.0
proc.c header.h funi.c fun2.c fun3.c header.h

©2016 UMBC Training Centers

239

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

The make Command

® make reads the first target in the makefile.

» For each dependent file on the target line, make searches for a line
with this dependent as a target.

» For example, make reads prog and finds that prog depends upon
prog.o, which depends upon prog.c.

® When the search for targets expire, make checks the
modification times for these files.

» If a dependent file is more recent than a target all the rules for this
dependency are executed.

» cc -c prog.c would be executed if prog.c was more recent than
prog.o.

» This is turn would make prog.o more recent than prog.
® make has additional special features and built in rules.
® make can also be used to make documents.

©2016 UMBC Training Centers

240

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Source Code Control System

® To place a file under the SCCS

S admin -1 software.c s.software.c
S rm software.c
-1 initialize

s.software.c THE SCCS FILE

® The process above creates an s. file, which consists of:
» The original file in addition to

» Some control information

s.software.c
CTRL software.c 1.0 CTRL

® Use the get -e command to get a copy of the file for edit.

S get —-e s.software.c

» This leaves a copy of the current version of software. c for you to
edit!

©2016 UMBC Training Centers
241

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Source Code Control System

® Software developers are constantly updating and releasing
different versions of software.

® Some systems automate control over many versions of files by
using file name and version number sequences.

® The Unix source code control system (SCCS) is a method of
automatic revision control.

» Keep the base file.
» Keep each set of changes.

® The SCCS is a set of user level commands.

® When software is first released, place it under automatic
revision control.

» Under SCCS, use the admin command is used to start the revision
control process.

©2016 UMBC Training Centers
242

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

After a Revision Cycle

® Use the delta command to enter the changes into the
s.software.c file.

S delta s.software.c

comments? (end with newline or ctrl -d)

S
@ After a revision, the s.software. c file looks like:

s.software.c
CTRL software.c 1.0 CTRL DELTA 1.1 CTRL

» Note: only the changes are saved.

® After a few revisions:

s.software.c
CTRL |software.c1.0 |CTRL

DELTA 1.1 CTRL |DELTA1.2 CTRL

©2016 UMBC Training Centers

243

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

Source Code Control System

® Once the file is "gotten," you can edit (revise) the file you
cannot modify the s. file.

@ After modifying the software. c file, use the delta command
to update the s. file.

@ After the process is repeated several times, the s. file has
many control sections so that any version can be reconstructed
from the base version.

® Any version may be obtained by:

.$ get -e -rl1.5 s.software.c

® Revision summaries may be obtained with:

$ prs s.software.c

©2016 UMBC Training Centers
244

INTERMEDIATE C PROGRAMMING APPENDIX A: SOFTWARE TOOLS

©2016 UMBC Training Centers
245

C PROGRAMMING

Appendix B:

Library Functions

©2016 UMBC Training Centers

246

INTERMEDIATE C PROGRAMMING

APPENDIX B: LIBRARY FUNCTIONS

Building Command Strings

char command[100], 1line[100];

#ifdef DOS

strcpy (command, "copy ");
telse

strcpy (command, "cp ");
fendif

printf ("name the input file ");
gets(line);

strcat (command, 1ine) ;

strcat (command, "™ ");

printf ("name the output file ");
gets(line);

strcat (command, 1ine) ;

system (command) ;

©2016 UMBC Training Centers

247

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

system

® The system function allows you to execute from your C
program any command executable from the command line.

int system(char *);
system returns -1 on error and 0 otherwise
system ("cls");

system ("dixr");

® Often, a command to be executed is built by using strcpy
and strcat.

©2016 UMBC Training Centers

248

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

exit and atexit

® cxit terminates the program and sends a value back to its
parent.

void exit (int wvalue);
» Used mostly after error checking

® atexit provides a way to schedule events upon termination.

void fun (void) ;
void funl (void) ;

main ()

{
atexit (fun) ;
atexit (fun2);
exit (0);

}

void fun ()

{
printf ("1\n");
}

void fun2 ()

{
printf ("2\n");

©2016 UMBC Training Centers

249

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

exit and atexit

® The exit function is used to terminate your program.
» Send a value to the parent of the exiting program

® Programs may be executed in a batch or script file.

® Programs may be started by another program.

® The atexit function allows you to execute any number of
functions when your program terminates.

® During the running of the program, you must register functions
using the atexit call.

» Registered functions are stacked.

» When the program terminates, the registered functions are executed.

©2016 UMBC Training Centers

250

INTERMEDIATE C PROGRAMMING

APPENDIX B: LIBRARY FUNCTIONS

signal

® The prototype for signalisin signal.h.

void signal (int sig_num, void (*response) (int));

® sig_num is the signal number as found in signal.h.

#define
#define
#define
#define
#define

SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

8 /* Floating point trap
4 /* Illegal instruction
2 /* User interrupt
11 /* Mem access violation
15 /* Software Termination

*/
*/
*/
*/
*/

@ response is the action to be taken upon receipt of this signal.

#define SIG _DFL O /* Default action */
#define SIG_IGN 1 /* Ignore action */
#define SIG_ERR #1 /* Error return */

» The second argument is a pointer to a void function (taking one int

arg).

® Some uses of signal
SIG_IGN) // IGNORE INTERRUPT

signal (SIGINT,

signal (SIGINT,

fun) ; // EXECUTE fun

©2016 UMBC Training Centers
251

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

signal
® A signal is a message (a small integer) sent to an executable
program by the operating system.
@® Signals can be initiated by:
» auser (CTRL-C);
» aprogram (ALARM); or
» the operating system (KILL).
® When a program receives a signal, it can respond by:
» ignoring the signal;
» performing a system action (program termination); or
» executing your own signal handler.

® The signal function is used to set a program response to a
particular signal.

® There is no uniform support of signals among all operating
systems.

® When your program begins, the default response (which is
program termination) is established for all signals

@® At various places in your program, executing the signal function
sets a response to a particular signal.

©2016 UMBC Training Centers

252

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

strtok

® strtok tokenizes a string.

» You specify the delimeters between the tokens.

#include <stdio.h>
#include <string.h>

main ()
{
char *s = "this 1is a string";
char *x, *delim =" ";
x = strtok(s,delim);
while(x != NULL) {

printf ("$s\n", x);
x = strtok (NULL,delim) ;

©2016 UMBC Training Centers

253

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

strtok
® The strtok function tokenizes a string with respect to a set of
delimeters that you supply.
» Useful for breaking a string into words
» Prototype for strtok from string.h

char *strtok (char *string, char *delimeters);

® strtok has an unusual interface.

® For any string which you wish to tokenize:
» use strtok (string, delims) for first call; and

» use strtok (NULL, delim) for subsequent calls.

©2016 UMBC Training Centers
254

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

memcpy and memset

® memcpy

#include <stdio.h>
#include <string.h>

int main(void)

{
char SrC[] = "*****n;
char dest[] = "abcdefghijlkmnopgrstuvwxyz";
char *ptr;

printf ("before memcpy: %$s\n", dest);
ptr = memcpy (dest, src, strlen(src));
if (ptr)

printf ("after memcpy: %s\n", dest);
else

printf ("memcpy failed\n");
return 0;

® memset

#define NAMESIZE 20

struct example {
char name [NAMESIZE];
int age;
char dept;

i

main ()
{
struct example item;
memset (&item, 0, sizeof (struct example));

©2016 UMBC Training Centers

255

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

memcpy and memset

® The memcpy function copies n bytes from source to dest.

void *memcpy (void *dest, void *source, int n);

® memset copies n occurrences of ¢ to dest.

void *memset (void *dest, int c; int n);

» memset could be used to initialize a structure.

©2016 UMBC Training Centers

256

INTERMEDIATE C PROGRAMMING

APPENDIX B: LIBRARY FUNCTIONS

gsort

® A few invocations of the gsort function

#include <stdlib.h>

int strcmp(char *, char *);
int numcmp (int *, int *);

int dump (double *, double *);
int gcomp (char **, char **);

int x[10] = { 0,3,4,2,3,5,6,8,7,1};

main (int argc, char **argv)

{
int 1i;
// AN ARRAY OF INTEGERS
gsort (x,10,sizeof (int) , numcmp) ;

++argv;
##argce;
//
// SORT STRINGS FORM THE COMMAND LINE
//
gsort (argv, argc, sizeof (char *),gcomp);
for(i = 0; 1 < argc ; i++)
printf ("$s\n",argv[i]);

int numcmp (int *a, int *b)

{

return(*a # *b);

int dump (double *a, double *b)
{

return(*a # *b);

int gcomp (char **a, char **Db)

{

return (strcmp (*a, *b)) ;

©2016 UMBC Training Centers
257

INTERMEDIATE C PROGRAMMING

APPENDIX B: LIBRARY FUNCTIONS

qsort

® The gsort function performs a quicksort on the data you

supply.

® You must give gsort four arguments.

» argi
» arg2
» arg3d
» arg4

Address of the data to be sorted
How many items to be sorted
The sizeof each item

A comparison function

©2016 UMBC Training Centers

258

INTERMEDIATE C PROGRAMMING

APPENDIX B: LIBRARY FUNCTIONS

bsearch

#include <stdlib.h>
int numcmp (int *, int *);

int x[10] = { 0,3,4,2,3,5,6,8,7,1};

main (int argc,

{

char **argv)

int i, wval, *ptr

//
// ~SORT TO PUT THEM IN ORDER
//
gsort (x, 10, sizeof(int), numcmp);
for (i =1; 1 < argc; i++) {
val = atoi(argv[i]);
ptr = bsearch(&val, x, 5, sizeof(int),
numcmp) ;
if (ptr)

printf ("$d found at %d\n", wval,

ptr # x);

©2016 UMBC Training Centers

259

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

bsearch

® The bsearch function performs a binary search.
® Elements must be in ascending order.

® The bsearch function requires five arguments.

» argi Address of the key to be found
» arg2 Address of the table to be searched
» arg3 Number of elements in the table
» arg4 sizeof each element
» argb Comparison routine
ptr = bsearch(&val, x, 5, sizeof(int), numcmp);

@® bsearch returns a void * type.

©2016 UMBC Training Centers

260

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

strstr

® A simple version of a grep program

#include <string.h>
#include <stdio.h>
#define MAXLINE 100

main (int argc, char **argv)
{
FILE *fp;
char line[MAXLINE];
int i;
if (argc < 3) {
printf ("usage: grep pattern files..\n");
exit (1);
}
for (i = 2; i < argc; i++)
if((fp = fopen(argv([i],"r")) == NULL)
fprintf (stdout, "can't open %$s\n",argv[i]);
else
while (fgets (line, MAXLINE, fp) != NULL)
if(strstr(line, argv([1l]) != NULL)
printf ("%s", line);

©2016 UMBC Training Centers

261

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

strstr
® The strstr function takes two strings and determines whether
the second is contained in the first.
» If itisn't, null is returned.

» Else, a pointer at the containing string is returned.

char *strstr(char *string, char *substring);

@® Notice the use of strstr in grep utility.

» All lines from argument files which match the pattern given as argv[1]
are displayed.

©2016 UMBC Training Centers

262

INTERMEDIATE C PROGRAMMING

APPENDIX B: LIBRARY FUNCTIONS

strchr and strrchr

#include <stdio.h>
#include <string.h>

main (int argc, char **argv, char **envp)
{

char *pc;

if (argc != 2) {
printf ("Usage: env argument\n");
exit (1);
}
while (*envp != NULL) {
if (strstr(*envp, argv[l])) {
pc = strchr (*envp, '=');
if (strlen(argv[l]) == (pc # *envp)) {

printf ("$s\n", *envp);
exit (1);

}

++envp;

}
printf ("$s NOT FOUND\n", argv[1l]);

©2016 UMBC Training Centers

263

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

strchr and strrchr

® strchr (strrchr) finds the first (last) occurrence of a
character within a string.

® Each function returns a pointer to the character, or null, if there
are no occurrences.

char *strchr (char *string, int character);
char *strrchr(char *string, int character);

® We use strchr to print the value of an environment variable
whose name appears on the command line.

$ printenv PATH
/bin/usr:/bin:

S printenv ME
ME: not in the environment

S set ME=Michael

S printenv ME
michael

® Environment strings are of the form:
» STRING=VALUE

©2016 UMBC Training Centers

264

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

Data Validation Example

#include <stdio.h>
#include <string.h>
#define MAXLINE 100

main ()

{
char line[MAXLINE], digits[11];
int n,d;

strcpy (digits,"0123456789");
while (1) {
printf ("enter string ");
gets(line);
if(strcmp(line, "quit") == 0)
break;
else if ((d=strspn(line, digits))==
strlen(line))
printf ("%$s is all digits\n", line);
else if ((n=strcspn(line, digits))==
strlen(line))
printf ("$s has no digits\n", line);
else {
printf ("$s is mixed\n", line);
printf ("first non digit is %d\n", d + 1);
printf ("first digit is %d\n", n + 1);

©2016 UMBC Training Centers

265

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

strspn and strcspn

® A common programming problem is data validation.
» Is a string all of the same character class?
» Does a string contain any of a class?

® These two problems are handled by the functions.

int strspn(char *string, char *class);
int strcspn(char *string, char *complement);

® strspn (strcspn) returns the length of the prefix of string that
contains only characters in (not in) class.

©2016 UMBC Training Centers

266

INTERMEDIATE C PROGRAMMING APPENDIX B: LIBRARY FUNCTIONS

Exercises

1. Write a function which determines if a string is of the exact
form.

..... ddddd.dd

» (i.e) Any number of leading decimal digits followed by one decimal
point followed by exactly two decimal digits.

2. Write a program that takes its own source and performs a
frequency count on the words. The program should list the
words alphabetically.

©2016 UMBC Training Centers

267

C PROGRAMMING

Appendix C:

File Access

©2016 UMBC Training Centers

268

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

I/0 From Applications Programs

® Applications programs make requests of the operating system
to:

» open files
» close files
» read from files

» write to files
® The OS:

» manages the data structures

» shuttles the data to and from the disk

©2016 UMBC Training Centers

269

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

System Calls vs. Library Calls

® The command line processor has aided us with file 1/0.

C> program < input > output

® What if we needed to process many input or output files?

C> display filel file2 file3
C> print thisfile thatfile otherfile

® There are generally two choices for I/O statements.
» Host operating system (OS) calls
e Bind your program to the host OS

e Non portable

» Standard C library calls
o Portable interface

® |/O is accomplished by using a set of calls, which act as an
agent between your program and the OS.

©2016 UMBC Training Centers

270

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The fopen Function

® The fopen function is given a filename and a mode. It returns
a file pointer to your application.

FILE *fpl, *fp2;
fpl — fopen("input"’ "r") ;
fp2 = fopen("myfile","w");

FILE TABLE
stdin
stdout
stderr
fpl - input

fp 2 - myfile

©2016 UMBC Training Centers
271

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The fopen Function

® The OS limits the number of concurrently opened files.
» A program can process any number of files.

» A file must be opened before it can be processed.

® fopen requests the os to open the named file.

» The prototype for fopen is:

FILE *fopen(char *filename, char *mode);

fopen returns:

FILE" upon success / NULL upon failure

® Thetype FILE~* is atypedefin stdio.h.
» Itis a pointer to an array of structures.

» Each element of the array (the file table) holds information about an
opened file.

» You must provide a FILE* variable to receive the returned value from
fopen.

» This FILE* variable is then presented to all I/O statements.

©2016 UMBC Training Centers
272

INTERM

EDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Access Modes

® Some of the access modes are:

MODE OPEN FILE FOR: COMMENTS

"r" read error if not there

"w" create truncate if already exists
"a" append write at end of file

"r+" read/write error if does not exist
"w+" read/write truncated if exists

"a+" read/write only at end of file

® Open examples

FIL
cha
cha

fp
fp
//

//
//

fp
fp

E *fp; // fp: POINTER TO A FILE
r fname[256]
r mode[20];

fopen (" Jjunk","r"); // junk BURIED INTO PROGRAM

fopen(argv([1l],"w"); // FILE FROM COMMAND LINE

watch out for \\ to get a \ for DOS and 0S/2 files

= fopen ("c:\\c\\cnotes\\chap22","r"); // DRIVE
fopen ("/usr/include/stdio.h","r"); // OR PATH

©2016 UMBC Training Centers

273

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Access Modes
® An access mode specifies the type of I/O to be performed on a
file.
» There are many combinations of access to a file.
® |/O is considered to be textual in mode.

» If binary mode is desired, the character b must be part of the mode
argument.

» This style is used mostly with structures (not necessary on unix).

® The information, required by fopen, can be obtained from the
user with the following sequence.

printf ("enter a filename "); // REQUEST INTERACTIVELY

gets (fname) ; // USER SUPPLIES NAME
printf ("enter the mode ");

gets (mode) ; // AND PERHAPS MODE
fp = fopen (fname, mode);

©2016 UMBC Training Centers
274

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Errors in Opening Files

® The fopen can fail for many reasons.
» No permission for this type of access
» The program wide file table is full
» The file is not there (open for "r")
» Usually results from spelling error

fp = fopen("myfil", "r"); // OOPS: myfile

@® You should always check for error from fopen.

fp = fopen("myfile","r");

if(fp == NULL) {
printf ("couldn't open 'myfile'\n");
exit (1),

}

OR

if ((fp = fopen("myfile", "r")) == NULL)
printf ("couldn't open 'myfile'\n");
exit (1) ;

©2016 UMBC Training Centers

275

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Errors in Opening Files

® The fopen function returns null upon failure.
® When you execute an fopen, always check for error.

® You can perform allowable 1/O operations on a file:
» after you have opened the file; or
» after you have checked for errors.
® |/O is performed by a group of function calls (requests).

» Each I/O function requires a file pointer (the one returned from
fopen) as an argument.

» This is how the function call knows upon which file the I/O is being
performed.

©2016 UMBC Training Centers

276

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Example: Copying a File

#include <stdio.h>

main (int argc, char **argv)
{

FILE *fpin, *fpout;

int c;

// ERROR CHECKING
// 1. Make sure argument count is correct

if (argc !'= 3) {
fprintf (stderr, "usage: mycopy 1in out\n");
exit (1) ;
}
fpin = fopen(argv([1l],"r");

// 2. Make sure input file is opened

if (fpin == NULL) {
fprintf (stderr, "can't open %s\n",argv[1l]);
exit (2);
}
fpout = fopen(argv[2],"w");

// 3. Make sure output file is opened

if (fpout == NULL) {
fprintf (stderr, "can't open %s\n",argv[2]);
exit (3);

}
// END OF ERROR CHECKING

while((¢ = getc(fpin)) != EOF)
putc (c, fpout) ;

exit (0);
}

©2016 UMBC Training Centers
277

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

I/O Library Calls

® Input functions

c = getc (fp); // similar to getchar ()
fgets (line,MAX, fp); // similar to gets(line)
fscanf (fp, "formats", items) ; // similar to scanf

® Output functions

putc (c, fp); // similar to putchar (c)
fputs (line, fp); // similar to puts(line)
fprintf (fp, "formats", items); // similar to printf

» Each function above performs I/O on the file associated with the file
pointer (fp).

» Each has a direct analog with a function dedicated to either the
standard input or standard output.

® stdio.h defines three constants of type FILE *

stdin used with any input function
stdout used with any output function
stderr used with any output function

» These names can be used as file pointer constants. In this way, the
functions above can also read from the standard files.

FILE *fp = stdin;

if (argc ==)
fp = fopen(argv[l],"r");

else {
printf ("usage: prog filename\n");
exit (1),

©2016 UMBC Training Centers

278

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Character Input vs. Line Input

® Character at a time

while((¢ = getc(fpin)) != EOF)
putc (c, fpout) ;

® Line at atime
define MAX 100
char line[MAX];

while (fgets(line, MAX, fpin)) != NULL)
fputs (line, fpout) ;

©2016 UMBC Training Centers

279

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Character Input vs. Line Input

® The last example performed I/O a character at a time.
® We could have processed the data a line at a time.

» This would have required a few changes.
® fgets is somewhat like get s but more capable.

» Will not overwrite the array

» Can read from any file (not just stdin)

» Retains the newline character

» Returns NULL at end of file

® In general, it makes little difference between reading by
character or by line.

® In some problems, the amount of data accessed by each input
statement is obvious from the problem itself.

» Sorting lines
» Reading records

» Counting character types

©2016 UMBC Training Centers

280

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Interpreting Input

® Interpreting a line of input as a number
» Get the line:
char 1ine[100];

printf ("enter a number ");
gets(line);

» Convert it to a number using:

int atoi (char *); // ascii to int
long atol (char *); // ascii to long
double atof (char *); // ascii to float

® Reading several values on the same line is more difficult.
» Get the line.

» Parse the line into the various fields.

©2016 UMBC Training Centers

281

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The scanf Function

® The I/O thus far has been character oriented.
» Aline of characters
» A character
® Suppose we need to interpret a line as a number.
» Get the line using gets
» Convert it using a function
® It is harder to interpret two values on the same line.

printf ("enter your age and weight ");
gets (line);

A name and a number

printf ("enter your name and age ")

Other combinations

® These problems could be solved by asking the user for one
piece of input per line.

» This might be unnatural.

» Itis also awkward when there are many fields.

©2016 UMBC Training Centers

282

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The scanf Function

® Input a name and a number

char name [MAX];
int number;
scanf ("%$s %d", name, &number);

® Input an interest rate and a starting amount

double rate;
double wvalue;
scanf ("$1f %1f", &rate, &value);

® Common error: forgetting address symbol

int number;
char name [NAMESIZE];

printf ("enter a name and a number ");
n = scanf ("$s %d", name, number); // FORGOT &
if(n !'= 2)

fprintf (stderr, "bad data\n");

® Any of the input lines below will cause scanf to return the
value 1

mike Jjane
mike 253ab
mike ab352

® The next input statement would continue from the offending
character.

® The line below may also cause problems
mike 25 234

(Extra item is read by the next input statement)

©2016 UMBC Training Centers

283

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The scanf Function

® scanf is the analog to printf.
» Scans the input using blanks and tabs as data field separators
» Requires a control string
» Governs how much data is to be read

» Specifies the type of the data

@ It returns the number of correctly matched (data to format)
items (or EOF).

» Difficult to do error checking

® A common scanft error is to forget the address symbol.

©2016 UMBC Training Centers

284

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

scanf Variants

® sscanf is very useful for problems such as the one below.

int number;

char line[MAX];

char name [NAMESIZE];

char dum[DUMMYSIZE]; // GOBBLE EXTRA INPUT

printf ("enter a name and a number ");
fgets(line, MAX, stdin);
n = sscanf(line, "%s %d %s", name, &number, dum);

if(n !'= 2)
fprintf (stderr, "incorrectly formatted data\n");

® First, read the entire line into line.

® Next, separate the output using sscanft.

® Finally, error check.

©2016 UMBC Training Centers

285

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

scanf Variants

® The list below summarizes the scanf variations.

char info[100];

char name [NAMESIZE];
int x = 20;

FILE *fp;

// DATA COMES FROM THE STANDARD INPUT

scanf ("%$s %d\n", name, &x);

// DATA COMES FROM THE File ASSOCIATED WITH fp
fscanf (fp, "%s %d\n", name, &x);

// DATA COMES FROM THE STRING info

sscanf (info, "%s %d", name, &x);

® sscanf is like scanf except that the input comes from a
string.

©2016 UMBC Training Centers

286

INTERMEDIATE C PROGRAMMING

APPENDIX C: FILE ACCESS

scanf Variants

® fscanf example

FILE *fp;
char fname[20], 1lname[20];

fp = fopen("inputfile", "r");
if(fp == NULL) {
error ("fopen error\n");

n = fscanf (fp,"%s %$s\n", fname, lname);

if(n !'= 2)
error ("scanf error\n");

® scanf example

#include <stdio.h>
#define WORDSIZE 40

main ()

{
char word[WORDSIZE];

while (scanf ("%s", wd) != EOF)

// PROCESS THE WORD, e.g
// 1) PRINT IT

// 2) REMOVE PUNCTUATION
// 3) etc

printf ("$s\n", wd) ;
}

©2016 UMBC Training Centers

287

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

scanf Variants

® fscanft is like scanf except the input comes from the file
associated with the file pointer.

® While scanf does not provide reliable error checking, it is safe
to use if you need to input string information.

® A nice use of scanf is to read a file a word at a time.

©2016 UMBC Training Centers

288

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

print £ Variants

® sprintf is useful for "gluing" unlike data together.

char string[100];
char templ[10];
char temp2[10];
int number;

strcpy (templ, "hello");
strcpy (temp2, "goodbye") ;

number = 356;
sprintf (string, "%$s%d%s", templ, number, temp2);
n = strlen(string); // n =15

® fprintf is useful for sending data to error files.

fprintf (stderr, "error message #1\n");

©2016 UMBC Training Centers

289

INTERMEDIATE C PROGRAMMING

APPENDIX C: FILE ACCESS

print £ Variants

® printf has analogous variants to scanf.
» printf sends data to the display.
® sprintf datato a string

» useful for concatenating unlike data

int x;
char name [NAMSESIZE], info[SIZE];
sprintf (info, "data %d\n", x);

® fprintf sends data to a file associated with a file pointer.

char info[100];

char name [NAMESIZE];
int x = 20;

FILE *fp;

fp = fopen("file","r+"); // open for read/write

// SEND DATA TO file
fprintf (fp, "data %d\n", x);

// SEND DATA TO THE STANDARD ERROR
fprintf (stderr, "error on filel\n");

©2016 UMBC Training Centers

290

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The fclose Function

#include <stdio.h>

main (int argc, char **argv)
{

FILE *fp;

int ¢, ct = 0;

while (##argc > 0) {
fp = fopen(*++argv,"r"); // OPEN NEXT FILE

if (fp == NULL) {
fprintf (stderr, "can't open %s\n",
*argv) ;

continue;

}

ct = 0;

while ((c
if (¢ == '\n'")
ct++;

getc (fp)) != EOF)

fclose (fp);// CLOSE FILE
printf ("$d %s\n",ct, *argv);

©2016 UMBC Training Centers

291

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The fclose Function

® There is a limit to the number of concurrent open files.
» fopen will fail if you exceed this limit.

@® To the operating system, opening a file means occupying a slot
in a data structure.

» This is why you should always close the file when you are done
processing it (i.e to free the slot).

® The function fclose is provided for this.

int fclose (FILE *);
® Some systems provide a function named fcloseall.

void fcloseall (void);
@® It is common to write code, which loops through a set of files
performing some operation on each file.

» For these programs, it is good programming practice to close the file
when you are through processing it.

©2016 UMBC Training Centers

292

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Servicing Errors

® Some I/O functions return eof both on error and end of file.

® The functions feof and ferror can be used to distinguish
these two conditions.

» feof returns true at end-of-file/false otherwise
» ferror returns true on error/false otherwise

while (! foef (fp)) // NOT EOF
if ((¢ = getc(fp)) == EOF)
// MUST BE ERROR

® fopen returns null upon failure. if you need to know the
reason for the failure, you need to dig more
» The OS maintains a variable called errno.

» errno obtains a value when a system call fails even if the system
call is invoked from a library call.

@® You can access errno by using the extern declaration.

extern int errno;

@® You can also another system variable, which has access to
system wide error messages.

» extern char *sys_errlist[]; is an array of character pointers
each points to an error message. you can index this array with
errno.

©2016 UMBC Training Centers

293

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Servicing Errors

@® Your error processing may look like this.

fp = fopen(filename, mode) ;
if (fp == NULL) {

if (errno == ENOENT)
do one thing

else

do another

}

® An excerpted copy of errno.h

#define ENOENT 2 /* No such file or directory */
#tdefine EMFILE 4 /* Too many open files */

#define EACCES 5 /* Permission denied*/

#define EDOM 33 /* Math argument*/

#define ERANGE 34 /* Result too large*/

©2016 UMBC Training Centers

294

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Servicing Errors
® Exact system error messages and their codes can be found in
the file errno.h in the include directory.
® On Unix systems, this directory is always

/usr/include.

® On DOS systems, the exact directory will depend upon the
installation procedure for the compiler.

» Check the value of the include environment variable.

©2016 UMBC Training Centers

295

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Application for Binary 1/O

® The application begins by displaying the following.
SELECT THE NUMBER OF YOUR CHOICE

QUIT THE PROGRAM
CREATE DATA BASE
PRINT DATA BASE
RETRIEVE

w N = O

==>

® To demonstrate binary I/O, the following structure type will be
used.

//
//employee.h
//

#define NAMESIZE 20

struct employee {
char name [NAMESIZE];
float pay;

char dept;

i

typedef struct employee WORKER, *PWKR;

©2016 UMBC Training Centers

296

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Binary I/O

® There are two methods of writing data to a file.
» Convert from in memory format to character (stream 1/O)

e Human readable

» Copy exactly as it is in memory (binary 1/O)
o Faster

e Machine readable

® Binary |/O is used most often with structures, but is not limited
to structures.

® The functions will be demonstrated by developing a typical
financial application dealing with structures

©2016 UMBC Training Centers

297

INTERMEDIATE C PROGRAMMING

APPENDIX C: FILE ACCESS

The main Function - Code

#include "employee.h"
main()

{

char line[MAXLINE];
int selection;

while (1) {
selection = menul();

switch (selection) {
case QUIT:
exit (0);
case CREATE_DB:
create_db () ;
break;
case PRINT_DB:
print_db();
break;
case RETRIEVE:
retrieve_db();
break;
default:
printf ("SHOULD BE IMPOSSIBLE\nNn");
break;

printf ("RETURN to continue\n");

fgets (line, MAXLINE, stdin) ;

©2016 UMBC Training Centers

298

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

The main Function

® The main function a merely a switch.
» Calls menu to get a user response

® The menu function prints the menu and returns the response.

©2016 UMBC Training Centers

299

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

create db Function - fwrite

void create_db (void)

{

WORKER person;

FILE *fp;
char fname[FILENAMESIZE], 1line[100];
int number, 1i;

printf ("enter filename ");
gets (fname) ;
if((fp = fopen (fname, "wb")) == NULL) {
printf ("can't open %s\n", fname);
return;
}
printf ("how many records to input? ");
number = atoi(gets(line));
for (i = 0; 1 < number; i++) {

fill (&person);
fwrite (&person, sizeof (WORKER),1, fp);

fclose (fp);
}

® Other examples of fwrite

int i, n(10];

WORKER x, al[l0]; // WRITE:
fwrite (&i, sizeof (int), 1, fp); // INT

fwrite (n,sizeof (int), 10, fp); // AN ARRAY
fwrite (n,sizeof (int), 5, fp); // FIRST HALF

fwrite (a, sizeof (WORKER), 10, fp) ; // ARRAY
fwrite (a, sizeof (WORKER), 5, fp) ; // FIRST HALF

(
(
(
fwrite (&%, sizeof (WORKER), 1, fp); // WORKER
(
(
fwrite(a + 5,sizeof (WORKER),5,fp);// LAST HALF

©2016 UMBC Training Centers

300

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

fwrite

® Records are typed by the user and then copied to disk using
fwrite.

int fwrite(void *data, int size, int hmany, FILE
*file);

® fwrite requires four arguments.
argl = ADDRESS OF THE DATA TO BE WRITTEN
arg2 = SIZE OF ONE PIECE OF DATA
arg3 = HOW MANY PIECES

arg4d = FILE POINTER

® fwrite returns the number of objects written.

©2016 UMBC Training Centers

301

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

print_db Function - fread

® Reading one record at a time

void print_db (void)
{
WORKER person;
FILE *fp;
char fname [FILENAMESIZE];

printf ("enter filename ");
gets (fname) ;

if((fp = fopen (fname,"rb")) == NULL) {
printf ("can't open %s\n", fname);
return;

while ((fread(&person, sizeof (WORKER),1,fp)) >0)
output (&person) ;

fclose (fp);

® Reading more than one record at a time

WORKER bank [CHUNK] ;
int num, 1i;

while ((num=fread (bank, sizeof (WORKER) , CHUNK, fp)) >0)
for (i = 0; i1 < num; i++)
process each record!!

©2016 UMBC Training Centers

302

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

fread

® print_db reads the file created by create_db.

int fread(void *data, int size, int hmany, FILE
*file);

® Same argument structure as fwrite

® fread returns the number of objects read.
» Not an error, if different from hmany
» 0 is returned at end of file

® print_db reads one record at a time

» You can read as many as you want if you have arranged for a big
enough buffer

® Note that both create_db and print_db are void functions

» Premature exit from a void function should use return;

©2016 UMBC Training Centers

303

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

retrieve_ db Function

vold retrieve_db (void)
{
WORKER person;

char fname [FILENAMESIZE], pname[NAMESIZE];

printf ("enter file name ");

gets (fname) ;

if ((fp = fopen(fname,"rb")) == NULL) {
printf ("can't open %$s\n", fname) ;
return;

}

while (1) {
printf ("which record? ('quit' to end) ");
gets (pname) ;
if (strcmp (pname, "quit") == 0)

break;

while ((fread(&person, sizeof (WORKER),1,fp))>0)
if (strcmp (pname, person.name) == 0)
output (&person) ;

fseek (fp, 0L, 0);
}
fclose (fp);

}

® Other fseek examples

long int n =5
long int size

” ~e

sizeof (WORKER) ;

fseek (fp, 0L, 0) ; // SEEK TO BEGINNING
fseek (fp, 0L, 2) ; // SEEK TO END

fseek (fp, —size,1); // BACK UP ONE RECORD
fseek (fp, size * n, 0) // SKIP FIRST 5 RECORDS

® Reading the last record of a file

fp = fopen (,) ; // OPEN THE FILE

if (fp == NULL)

error () ;

fseek (fp, -size, 2); // SEEK TO LAST RECORD
fread(’ , ,); // READ IT

©2016 UMBC Training Centers

304

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

fseek

® retrieve_db is similarto print_db except that only
selected records are printed.

® Files are normally read and written sequentially.
» The operating system keeps a pointer to the next record.
» You can control this pointer with the £seek function

int fseek (FILE *file, long offset, int origin);
® fseek positions the file offset many bytes from origin.

» origin can be given as a #define from stdio.h.

#define SEEK_SET 0 // FROM BEGINNING
#define SEEK_CUR 1 // FROM CURRENT POS
#define SEEK_END 2 // FROM END OF FILE

® With fseek every file in effect becomes a random file.

» The next read or write is independent of the previous one.

©2016 UMBC Training Centers

305

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

fflush and ftell

® Updating a record in a file

//
// ~OPEN THE FILE

//
long int size = sizeof (WORKER);

while ((fread(&person, sizeof (WORKER),1,fp)) > 0)
if (strcmp (pname, person.name) == 0) {

// modify record

fseek (fp, -size, 1);

fwrite (&person,sizeof (WORKER, 1, fp);

fflush (fp);
}

® ftell tells the byte position of the file.

long int size, recs;

fp = fopen(file,mode);

fseek (fp, 0L, 2) ;

size = ftell (fp);

recs = size / sizeof (WORKER) ;

printf ("file %s is %1d bytes\n", file, size);
printf ("file %s has %1d records\n", file, recs);

©2016 UMBC Training Centers

306

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

fflush and ftell

® |t is easy to add functionality to this application.
® One addition might be to modify a record.

» Read one record at a time.

» If this is the record to be modified

» Modify in memory

» Backup a record and write it back to disk

® The fflush causes output to immediately be flushed rather
than having the output buffered

® Another addition might be to append to an existing file.
» Open for append and copy from user to disk.
® Another might be to print the number of records in the file.

» The ftell function gives the byte position of the file as a long
integer.

long ftell(FILE *file)

©2016 UMBC Training Centers

307

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

Exercises

1. Write the program compare which displays information about
the two files named on the command line.

C> compare filel file?2

filel and fileZ are the same
C> compare filel file3

filel and file3 are different
C>

2. Write the program glue which glues together files named on
the command line and sends them to the display.

C> type filel

hello there

C> type file?2

how are you

C> glue filel file?2

hello there

how are you
C>

3. Add a variation to (2): If the last named file on the command
line is prefixed with a '+' the output should go there and not to
the display.

C> glue filel file2 +4output
C> type output
hello there

how are you
C>

4. Write a program which exchanges the first and last record of a
file.

5. Write a program which receives a filename and a number and
prints the last number many records from the file.

C> print datafile 3 # print last 3 records

©2016 UMBC Training Centers

308

INTERMEDIATE C PROGRAMMING APPENDIX C: FILE ACCESS

©2016 UMBC Training Centers

309

