
CSC322
C Programming and UNIX

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

Prerequisites: CSC220 or EEN218

http://www.cs.miami.edu/~schulz/CSC322.html

Hackers!

Hacker [originally, someone who makes furniture with an axe] 1. A person who
enjoys exploring the details of programmable systems and how to stretch their
capabilities, as opposed to most users, who prefer to learn only the minimum
necessary. 2. One who programs enthusiastically (even obsessively) or who
enjoys programming rather than just theorizing about programming. 3. A person
capable of appreciating hack value. 4. A person who is good at programming
quickly. 5. An expert at a particular program, or one who frequently does work
using it or on it; as in ‘a Unix hacker’. (Definitions 1 through 5 are correlated, and
people who fit them congregate.) 6. An expert or enthusiast of any kind. One
might be an astronomy hacker, for example. 7. One who enjoys the intellectual
challenge of creatively overcoming or circumventing limitations. 8. [deprecated]
A malicious meddler who tries to discover sensitive information by poking around.
Hence ‘password hacker’, ‘network hacker’. The correct term for this sense is
cracker.

The New Hacker’s Dictionary (aka the Jargon File)

Stephan Schulz 2

UNIX and You

The

Operating System

UNIX

Stephan Schulz 3

UNIX and You

The

Operating System

UNIX

Stephan Schulz 4

UNIX and You

The

Operating System

UNIX
C

Stephan Schulz 5

Our AIM

etc devusrhome

/

joe jackjill

bin

hda mouse mta

ls man cat

PID:

182

PID:

512

I

t
e
r
n
e
t

n

C
Operating System

The

UNIX

Stephan Schulz 6

The Myth

UNIX is a big-iron operating system

UNIX is complicated

UNIX is hard to use

UNIX has been created by SUN, IBM, HP, and other large companies

UNIX is monolithic

Stephan Schulz 7

Counterpoint

UNIX was developed on small machines and became popular on the “killer
micros”. UNIX dialects now run on everything from a PDA to CRAY supercom-
puters

UNIX is based on simple and elegant principles (but has added a some cruft over
the years)

UNIX is not particularly hard to use (compared to the power it gives to the
user), but has a reasonably steep learning curve. It’s not a “show-me” operating
system, but a “tell me” operating system,

UNIX has been created in a research environment, and much of it has been
developed in informal settings by hackers. Much of the impetus for UNIX comes
from free versions (Linux, Net-, Open-, FreeBSD), although many companies
contribute to it’s development

Many UNIX kernels are monolithic, but the UNIX system is extremly modular.

Stephan Schulz 8

UNIX

First portable operating system (NetBSD: 18 processor architecures, ≈ 50 com-
puter architecures)

Written in a “high-level” language (C)

Small (for what it does):

– Recent LINUX kernel: 2.4 million LOC (1.4 million for driver, 0.4 million
architecture-dependent stuff (16 ports)

– Windows 2000: Estimates range from 29 million to 65 million LOC, supports
just 1.5 architecures

Modular (though often on a monolithic kernel)

– Separate windowing system (X) and window managers
– Various Desktop-Solutions (CDE, KDE, Gnome)
– Toolbox-philosphy: Combine (lot’s of) simple tools
– Underneath: Strong and simple abstraction (“Everything is a file”)

Stephan Schulz 9

C

“Pragmatic” high level language:

– Handles characters, numbers, adresses as implemented by most computers
– Small core language, much functionality provided by libraries (mostly in C!)
– Compilers are easy to write
– Compilers are easy to port
– Even naive compilers produce reasonably efficent code

Hacker-friendly

– Straightforward compilation (nothing is hidden)
– Compact source code (fewer keystrokes, fast to read)
– Typed, but no bondage-and-discipline language

Adequate support for building abstractions

– Structures (composing objects), unions, enumerations
– Arrays and pointer
– Support for defining new types

Stephan Schulz 10

UNIX history tree (simplified)

For a fuller tree see http://www.levenez.com/unix/

Stephan Schulz 11

http://www.levenez.com/unix/

A Short History of UNIX and C

1969 Ken Thompson wrote the first UNIX (in assembler) on a PDP7 at AT&T Bell
Labs, allegedly to play Space Travel

1970 Brian Kernighan coins the name UNIX. The UNIX project gets a PDP11 and
a task: Writing a text processing system

1971-72 Creation of C (Dennis Ritchie), UNIX rewritten in C

1972 Pipes arrive, UNIX installed on 10 (!) systems

1975 AT&T UNIX “Version 6” distributed with sources under academic licenses

1976 Ken Thompson in Berkely, leading to BSD UNIX

1977 1BSD release

1978 UNIX “Version 7”, leading to System V (AT&T)

Stephan Schulz 12

A Short History of UNIX and C

1978 3BSD, adding virtual memory

1980 Microsoft XENIX brand of UNIX

1982 4.2BSD, adding TCP/IP

1982 SGI IRIX

1983 Bjarne Stroustrup creates C++ (at AT&T Bell labs)

1983 GNU Project announced (Aim: Free UNIX-like system)

1983-1984 Berkeley Internet Name Demon (BIND) created

1984 SUN introduces NFS (Network File System)

1985 Free Software Foundation (Stallman), GNU manifesto, GNU Emacs

Stephan Schulz 13

A Short History of UNIX and C

1986 HP-UX, SunOS3.2 (from BSD Unix), “attack of the killer micros”

1986 MIT Project Athena creates X11 (Network window system)

1986 POSIX.1 (Portable operating system interface standard)

1988 GNU GPL

1988 System VR4 “One UNIX to rule them all” (AT&T+SUN)

1988 NeXTCUBE with NeXTSTEP operating system

1989 ANSI-C Standard “C89”(adds prototypes, standard library)

1889 SunOS 4.0x

1990 Net/1 Release (free BSD UNIX)

1990 IBM AIX

Stephan Schulz 14

A Short History of UNIX and C

1991 Linux 0.01, “attack of the killer PCs” (continuing till this day)

1991 World Wide Web born

1991–1992 Lawsuits around BSD UNIX Net/1 and Net/2 releases

1992 SunOS 5 aka Solaris-2 (from System VR4)

1993 FreeBSD 1.0

1994 Linux 1.0

1994 NetBSD 1.0, 4.4BSD Lite (unencumbered by AT&T copyrights, becomes new
base for all non-commercial BSD flavours)

1995 “UNIX wars” are over

1996 Tux the Penguin becomes Linux mascot

Stephan Schulz 15

A Short History of UNIX and C

1998 UNIX-98 branding (Single UNIX specification)

2000 New ANSI “C99”

2001 IBM runs prime time TV ads for Linux

2001 UNIX-based MacOS X

2002 Linux is at version 2.4, Emacs is version 21.2, SunOS is at 5.9 (aka Solaris 9),
BIND is version 9.2.1

Stephan Schulz 16

Another Opinion

UNIX is not an operating system. . .

. . . but is the collected folklore of the

hacker community!

Stephan Schulz 17

Spot the Even Ones

Stephan Schulz 18

Upshot

You don’t have to grow a beard

to become a world-class UNIX hacker. . .

. . . but it does seem to help!

Stephan Schulz 19

CSC322
C Programming and UNIX

UNIX from a User’s Perspective

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

UNIX Architecture

Hardware

UNIX Kernel

Libraries

Shell

Application

Stephan Schulz 21

UNIX Architecture

Hardware

UNIX Kernel

Libraries

Shell

Application

Stephan Schulz 22

Some Concepts

UNIX is a multi-user system. Each user has:

– User name (mine is schulz on most machines)
– Numerical user id (e.g. 500)
– Home directory: A place where (most of) his or her files are stored

UNIX is a multi-tasking system, i.e. it can run multiple programs at once. A
running program (with its data) is called a process. Each process has:

– Owner (a user)
– Working directory (a place in the file system)
– Various resources

A shell is a command interpreter, i.e. a process accepting and executing commands
from a user.

– A shell is typically owned by the user using it
– The initial working directory of a shell is typically the users home directory

(but can be changed by commands)

Stephan Schulz 23

More on Users

There are two kinds of users:

– Normal users
– Super users (“root”)

Super-users:

– Have unlimited access to all files and resources
– Always have numerical user id 0
– Normally have user name “root” (but there can be more than one user name

associated with UID 0)
– Can seriously damage the system!

Normal users

– Can only access files if they have the appropriate permissions
– Can belong to one or more groups. Users within a group can share files
– Usually cannot damage the system or other users files!

Stephan Schulz 24

The User Interface

UNIX: Provide Tools, Not Policy

– Most tools operate on all (ASCII) file formats
– Extremely configurable environment – different users have different user expe-

riences
– No restrictions ⇔ Little consistency
– We will assume the default environment on the lab machines for examples

X Window System: Provide Mechanisms, Not Policy

– Windowing system offers (networked) drawing primitives
– Different GUIs built on top of this
– GUI conventions may even differ from one application to the other!
– Modern desktop environments (GNOME/KDE) try to change this, but you are

bound to use many legacy applications anyways!

Stephan Schulz 25

My Graphical Desktop

Stephan Schulz 26

Default KDE Desktop (SuSE Linux)

Stephan Schulz 27

Desktop Discussion

My Desktop

– Uses windowing mostly to provide a better text-based interface (compared to
pure text terminals)

– Text editor and shell (command line) windows
– (Can also run graphical applications)

KDE Desktop

– Graphical, mouse-based user experience
– Mostly a launcher for GUI-based programs
∗ Office prgrams
∗ Graphics programs
∗ Web browser

– Can also run shell windows!

Stephan Schulz 28

KDE Desktop with Terminal Application

Stephan Schulz 29

Exploring the Text Interface

Convention: System output is shown in typewriter font, user input is written in
bold face, and comments (not to be entered) are written in italics.

whoami will print the user name of the current user (more exactly: It will print
the first user name associated with the effective user id)

[schulz@gettysburg ∼]$ whoami
schulz

pwd prints the current working directory (more later):

[schulz@gettysburg ∼]$ pwd
/lee/home/graph/schulz Non-standard setup!

ls lists the files in the current working directory:

[schulz@gettysburg ∼]$ ls
core Desktop Not much there at the moment

Stephan Schulz 30

Text Interface Example (contd.)

Most UNIX programs accept options to modify they behavior. One-letter
(“short”) options start with a single dash, followed by a letter:

[schulz@gettysburg ∼]$ ls -a (Show all files, even hidden ones)

. .gnome

.. .ICEauthority

.bash_logout .kde

.bash_profile .mcop

.bashrc .MCOP-random-seed
core .mcoprc
.DCOPserver_hopewell.cs.miami.edu .screenrc
.DCOPserver_potomac.cs.miami.edu .ssh
.DCOPserver_richmond.cs.miami.edu .tcshrc
Desktop .xauth
.emacs .Xauthority
.first_start_kde .xsession-errors

As you can see, hidden files start with a dot.

Stephan Schulz 31

The UNIX File System

In UNIX, all files are organized in a single directory tree, regardless of where they
are stored physically

There are two main types of files:

– Plain files (containing data)
– Directories (“folders”), containing both plain files (optionally) and other direc-

tories

Each file in a directory is identified by its name and has a number of attributes:

– Name
– Type
– Owner
– Group (each file belongs to one group, even if the owner belongs to multiple

groups)
– Access rights
– Access dates

Stephan Schulz 32

Typical File System Layout

dev tmp usrbin etc home
(Devices) (Configuration) (Home directories) (Temporary files)

/

cp ls ps hda hdb kbd passwd hosts joe jane schulz
(Private files)

local lib bin

lib bincore Desktop

(Vendor) (Vendor)

(Root directory)

(System programs) (User programs)

(Site−installed)

Files in the directory trees are described by pathnames

– Pathnames consist of file names, separated by slashes (/)
– Absolute pathnames start with a /. /bin/cp denotes cp
– Relative pathnames are interpreted relative to the current working directory. If
/home is the current working directory, then schulz/core denotes core

Stephan Schulz 33

Moving Through the File System

We can use the command cd to change our working directory:

[schulz@gettysburg ∼]$ pwd
/lee/home/graph/schulz
cd /
[schulz@gettysburg /]$ pwd
/
[schulz@gettysburg /]$ cd bin
[schulz@gettysburg /bin]$ pwd
/bin
[schulz@gettysburg /bin]$ cd /lee/home/graph/schulz
[schulz@gettysburg ∼]$ pwd
/lee/home/graph/schulz

Each directory contains two special entries: . and ..

– . represents the directory itself. cd . is a NOP
– .. normally represents the parent directory. cd .. moves the working directory

up one level. In /, .. points to / itself

Stephan Schulz 34

More about files

We can use the -l (“long format”) option to ls to show us all all attributes

[schulz@gettysburg ∼]$ ls -l
-rw------- 1 schulz users 1531904 Aug 29 10:55 core
drwxr-xr-x 3 schulz users 4096 Aug 29 10:55 Desktop

The long format of ls shows us more about the files:

– The first letter tells us the file type. d is a directory, - means a plain file
– The next nine letters describe access rights, i.e. who is allowed to read, write,

and execute the file. More on those later!
– The next number is the number of (hard) links to a file. More on that much

later!
– Next is the user that owns the file
– After that, the group that owns the file
– Next comes the file size in bytes
– Then the date the file was changed for the last time
– Finally, the name of the file

Stephan Schulz 35

UNIX Online Documentation 1

The UNIX Programmer’s Manual (“man pages”)

– Traditionally available on every UNIX system, quite terse
– Usage: man [section] <command>
– Sections (may differ by UNIX flavour):

1. User commands
2. System calls
3. C library routines
4. Device drivers and network interfaces
5. File formats
6. Games and demos
7. Misc. (ASCII, macro packages, tables, etc)
8. Commands for system administration
9. Locally installed manual pages. (i.e. X11)

– man -k <term> gives you a list of pages relevant to <term>
– To leave the man program (or rather the pager it uses), hit q

Stephan Schulz 36

UNIX Online Documentation 2

GNU info files

– Available with most Linux systems and most GNU packages
– Usage: info <command>, then browse interactively
– You can also use the info reader build into GNU Emacs
∗ Enter emacs, then type C-h i, then select topic
∗ If you do not use Emacs, you should ;-)
∗ . . . but we will introduce it later on

Stephan Schulz 37

Exercises

Move through the file system using cd. You can inspect most files using
more <file> if they are ASCII text. Try e.g. /etc/passwd and /etc/hosts.

Try man man and info info

Read the man and info documentation for

– ls
– whoami
– cd
– pwd

Don’t worry if you don’t understand everything!
(Do worry if you understand nothing!)

Stephan Schulz 38

CSC322
C Programming and UNIX

UNIX from a User’s Perspective II

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Command Format

Normal UNIX command format: <command> <arg1>. . . <argn>

– The first word is interpreted as a command
– The remaining words (separated by spaces or blanks) are arguments
– The implementation of a command is free in how it treats the arguments
– Convention: Arguments starting with a dash - are options

Many characters have special meaning in most shells, including $, (,), [,
], *, &, |, ;, \, , ’, ", ’ ’ (blank, the argument separator)

– Arguments may be enclosed in single quotes (’ ’) or in double quotes (" ")
to suppress most special meanings
∗ Single quotes suppress (nearly) all special meanings
∗ Double quotes suppress most special meanings
∗ In particular, both suppress the meaning of blank: A string ’a a’ will appear

as a single argument to a command
∗ Quotes are not passed on to the command!

– The backslash \ can be used to suppress the special meaning of individual
characters. \” represents a double quote, \\ a backslash character

Stephan Schulz 40

Command Types

There are different types of commands a shell can execute:

Shell built-in commands are executed directly by the shell

– Examples: cd, pwd, echo, alias

Shell functions are user-defined shell extensions

– Particularly useful in scripting, rare in interactive use

Executable programs (the normal case) are loaded from the disk and executed

– Examples: ls, whoami, man
– If a pathname is given, that file is executed (if possible)
– If just a filename is given, bash searches in all directories specified in the

variable $PATH
– Note that neither . nor ∼ are necessarily in $PATH!

Stephan Schulz 41

UNIX User Commands: echo and touch

echo <arg1>. . . prints its arguments to the screen

– echo is often a shell built-in command. To guarantee the behavior described
in the man-page, use /bin/echo

– Example:
[schulz@gettysburg ∼]$ echo ”Hello World”
Hello World (simplest ”Hello World” program in UNIX)
[schulz@gettysburg ∼]$ echo ’$PATH = ’ $PATH
$PATH = .:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/us
r/java/jdk1.3.1 01/bin:/home/graph/schulz/bin:/usr/X11R6/bin

touch <file1> . . . sets the access and modification time of the given files to
the current time

– If one of the files does not exist, touch will create an empty file of that name
– Important option:
∗ -c: Do not create non-existing files (long form --no-create is supported by

modern implementations (GNU))
∗ Other options: man touch

Stephan Schulz 42

UNIX User Commands: rm, mkdir, rmdir

rm <file1>, . . . will delete the named files

– Important options:
∗ -f: Force removal, never ask the user (even if the user has withdrawn write

permission for that file)
∗ -i: Interactively ask the user about each file to be deleted
∗ -r: If some of the files are directories, recursively delete their contents first,

then delete them

mkdir <file1>. . . will create the directories named (if the user has the permission
to do so)

rmdir <file1>. . . will delete the directories named (if the user has the permission
to do so and if they are empty)

Stephan Schulz 43

Effective Shell Use: History

Modern shells like the bash or the tcsh keep a history of your previous commands

– Type history to see these commands
– Type !<number> re-execute the command with the given number
– Type !<command> to re-execute the most recent command starting with the

(partial) word <command>

Example:

[schulz@gettysburg ∼]$ history
(. . .many entries omitted)
194 more CSC322.tex
195 gv CSC322 1.pdf
196 ls
197 ll CSC322 1.pdf
198 history

– !197 will execute ll CSC322 1.pdf
– !g will execute gv CSC322 1.pdf

Stephan Schulz 44

Effective Shell Use: Editing/Completion

While typing commands, bash offers you many ways to ease your task:

– [Backspace] will delete the character preceding the cursor
– [C-d] (hold down [CTRL], then press [d]) will delete the character under the

cursor (if there is such a character)
– [C-k] will delete all characters under and right of the cursor
– Left arrow and right arrow move the cursor in the command line (alternatively,

try [C-b] and [C-f])
– [C-a] and [C-e] move to the begin and end of the line, respectively
– Up arrow and down arrow will move you through the history (as will [C-p] and

[C-n])!
– In general, default bash key bindings are inspired by emacs editing commands

One of the more intriguing features: Name completion

– At any time, hit [TAB], and bash will complete the current word as far
as possible. Hitting [C-d] at the end of a non-empty line will list possible
completions

– It is quite smart (configurably smart, in fact) about this

Stephan Schulz 45

Effective Shell Use: Globbing

Idea: Use simple patterns to describe sets of filenames

A string is a wildcard pattern if it contains one of ?, * or [

A wildcard pattern expands into all file names matching it

– A normal letter in a pattern matches itself
– A ? in a pattern matches any one letter
– A * in a pattern matches any string
– A pattern [l1. . . ln] matches any one of the enclosed letters (exception: ! as

the first letter)
– A pattern [!l1. . . ln] matches any one of the characters not in the set
– A leading . in a filename is never matched by anything except an explicit

leading dot
– For more: man 7 glob

Important: Globbing is performed by the shell!

Stephan Schulz 46

Example: File Handling and Globbing

$ mkdir TEST DIR
$ cd TEST DIR
$ touch a ba bba bbba bbbba bbbbba LongFilename .LongHiddenFile
$ ls -a
. .. a ba bba bbba bbbba bbbbba LongFilename .LongHiddenFile
$ echo *a* (Everything with an a anywhere)
a ba bba bbba bbbba bbbbba LongFilename
$ echo *Long*
LongFilename (Note: Does not match .LongHiddenFile)
$ echo .* (all hidden files)
. .. .LongHiddenFile
$ echo [ab]*
a ba bba bbba bbbba bbbbba
$ echo *[ae] (everything that ends in a or e)
$ echo ?*[ae] (everything that ends in a or e and has at least one more letter)
ba bba bbba bbbba bbbbba LongFilename

Stephan Schulz 47

Example: File Handling and Globbing (Contd.)

$ cd ..
$ rmdir TEST DIR
rmdir: ‘TEST DIR’: Directory not empty
$ rm TEST DIR/*
rmdir: ‘TEST DIR’: Directory not empty
$ rmdir TEST DIR
$ rm TEST DIR/.L*
$ rmdir TEST DIR

Alternative:

$ mkdir TEST DIR
$ touch TEST DIR/.HiddenFile
$ rmdir TEST DIR
rmdir: ‘TEST DIR’: Directory not empty
$ rm -r TEST DIR

Stephan Schulz 48

UNIX User Commands: cat/more/less

cat <file1> . . . will concatenate the named files and print them to standard
output (by default, your terminal)

– It’s usually just used to display short files ;-)

more and less are pagers

– Each will show you a text (e.g. the contents of a file given on the command
line) by pages, stopping after each page and waiting for a key press (normally
[space])

– Major differences:
∗ more will automatically exit at the end of the data, less requires explicit

termination with [q]
∗ less allows you to scroll backwards (using [p]), more only allows scrolling

forward
– For more (or less): man more, man less

Stephan Schulz 49

Text Editing under UNIX

There are 3 ways to edit text under UNIX:

1. The vi way
2. The emacs way
3. The wrong way

vi (the visual editor) is the text editor written by Bill Joy for BSD UNIX (published
about 1978)

– Screen-oriented WYSIWYG editor (for plain text)
– Available on just about any UNIX system
– About 35% of all serious UNIX hackers still prefer vi (or a derivative)!
– Current version on Lab machines: vim 5.8.7 (Vi Improved)

emacs (editing macros) started in 1976 as a set of TECO macros on ITS

– Currently popular emacs versions (GNU Emacs and XEmacs) go back to 1985
GNU Emacs by Stallman. Both basically are a LISP system with a large text
editing library and an editor-like user interface

– About 35% of all serious UNIX hackers use Emacs. Also widespread use on
other operating systems

– emacs on the lab machines is GNU Emacs 20.7.1

Stephan Schulz 50

vi flyby

Getting into it: vi <file>

Modal interface: Normally letters denote editing commands, only in insert mode
can actual letters be typed into the file

The editor starts in command mode (see next slide)

Insert mode (shows {-- INSERT --} in bottom line):

Key Effect
[ESC] Go back to command mode
Any normal key Insert corresponding letter
[Backspace] Delete last typed letter

Tutorials e.g. at http://www.cfm.brown.edu/Unixhelp/vi_.html.

Stephan Schulz 51

http://www.cfm.brown.edu/Unixhelp/vi_.html

vi flyby II

Command mode (commands marked (*) change into insert mode):

Key(s) Effect
Cursor keys Move around
:r <file> Insert file content at cursor position
:w Write file
:q Leave vi
:wq Write file and leave
:q! Leave vi even if unsafed changes
:h Help!
i Insert text at the cursor position (*)
a Insert text after the cursor position (*)
A Insert text at the end of the current line (*)
o Open a new line and insert text (*)
j Join two lines into one
x Delete character under cursor
dd Delete current line
. Repeat last command
:<no> Goto line number <no>

Stephan Schulz 52

Emacs for Everyone

Getting into it: emacs <file> or just emacs & (remark: Normally, emacs is only
started once, and you visit different files from within the editor. Emacs can work
on many files at once)

Emacs is extremely configurable and extendable:

– Special modes support nearly all programming languages
∗ Indentation
∗ Compilation/Error correcting
∗ Debugging

– You can read email and USENET news in emacs
– Emacs can be used as a web browser

An Emacs window normally has different sub-regions:

– Menu bar (operate with a mouse, many frequently used commands)
– One or more text windows, each displaying a buffer (a text editing area)
– One mode line for each text window, displaying various pieces of information
– Finally, the mini-buffer for typing complex commands and dialogs

Stephan Schulz 53

Emacs for Everyone II

Stephan Schulz 54

Emacs for Everyone III

Emacs is non-modal, normal keys always insert the corresponding letter

Commands are typed by using [CRTL] or [ALT] in combination with normal
keys. We write e.g. [C-a] or [M-a] to denote [a] pressed with[CRTL] or [ALT]
(M for meta). [C-h t] is [C-h] followed by plain [t].

Key(s) What it does
[C-h t] Enter the emacs tutorial
[C-x C-c] Leave emacs
Cursor keys Move around
[C-x C-f] Open a new file (*)
[C-x C-s] Save current file
[C-x s] Save all changed files (*)
[M-x] Call arbitrary LISP function by name (*)
[C-s] Incremental search (try it!) (*)

Entries marked with (*) will ask for additional information in the mini-buffer

Stephan Schulz 55

Exercises

Experiment with bash command line editing and history

Create some files and play with globbing

Write a short text in both vi and emacs

Read the vi and emacs tutorials

Note: You are strongly encuraged to learn basics of both editors, and to become
proficient in at least one of them. I’ll not examinate you about either, but don’t
complain if you have troube with any other editor

Stephan Schulz 56

ed is the standard text editor

When I log into my Xenix system with my 110 baud teletype, both vi
and Emacs are just too damn slow. They print useless messages like,
’C-h for help’ and ’"foo" File is read only’. So I use the editor
that doesn’t waste my VALUABLE time.

Ed, man! !man ed

ED(1) UNIX Programmer’s Manual ED(1)

NAME
ed - text editor

SYNOPSIS
ed [-] [-x] [name]

DESCRIPTION
Ed is the standard text editor.

- ---

Computer Scientists love ed, not just because it comes first
alphabetically, but because it’s the standard. Everyone else loves ed
because it’s ED!

Stephan Schulz 57

"Ed is the standard text editor."

And ed doesn’t waste space on my Timex Sinclair. Just look:

- -rwxr-xr-x 1 root 24 Oct 29 1929 /bin/ed
- -rwxr-xr-t 4 root 1310720 Jan 1 1970 /usr/ucb/vi
- -rwxr-xr-x 1 root 5.89824e37 Oct 22 1990 /usr/bin/emacs

Of course, on the system *I* administrate, vi is symlinked to ed.
Emacs has been replaced by a shell script which 1) Generates a syslog
message at level LOG_EMERG; 2) reduces the user’s disk quota by 100K;
and 3) RUNS ED!!!!!!

"Ed is the standard text editor."

Let’s look at a typical novice’s session with the mighty ed:

golem> ed

?
help
?

Stephan Schulz 58

?
?
quit
?
exit
?
bye
?
hello?
?
eat flaming death
?^C
?
^C
?
^D
?

- ---
Note the consistent user interface and error reportage. Ed is
generous enough to flag errors, yet prudent enough not to overwhelm
the novice with verbosity.

Stephan Schulz 59

"Ed is the standard text editor."

Ed, the greatest WYGIWYG editor of all.

ED IS THE TRUE PATH TO NIRVANA! ED HAS BEEN THE CHOICE OF EDUCATED
AND IGNORANT ALIKE FOR CENTURIES! ED WILL NOT CORRUPT YOUR PRECIOUS
BODILY FLUIDS!! ED IS THE STANDARD TEXT EDITOR! ED MAKES THE SUN
SHINE AND THE BIRDS SING AND THE GRASS GREEN!!

When I use an editor, I don’t want eight extra KILOBYTES of worthless
help screens and cursor positioning code! I just want an EDitor!!
Not a "viitor". Not a "emacsitor". Those aren’t even WORDS!!!! ED!
ED! ED IS THE STANDARD!!!

TEXT EDITOR.

When IBM, in its ever-present omnipotence, needed to base their
"edlin" on a UNIX standard, did they mimic vi? No. Emacs? Surely
you jest. They chose the most karmic editor of all. The standard.

Ed is for those who can *remember* what they are working on. If you
are an idiot, you should use Emacs. If you are an Emacs, you should
not be vi. If you use ED, you are on THE PATH TO REDEMPTION. THE

Stephan Schulz 60

SO-CALLED "VISUAL" EDITORS HAVE BEEN PLACED HERE BY ED TO TEMPT THE
FAITHLESS. DO NOT GIVE IN!!! THE MIGHTY ED HAS SPOKEN!!!

?

Stephan Schulz 61

CSC322
C Programming and UNIX

UNIX from a User’s Perspective
The Goodies

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

UNIX User Commands: grep

Usage: grep <regexp> <file1> . . .

– grep will scan the input file(s) and print all lines containing a string that
matches the regular expression <regexp>

– Important options:
∗ -i: Ignore upper and lower case in the regular expression
∗ -v: Print all lines not matching the regular expression

– The name comes from an old editor command sequence standing for globally
search for regular expression, print matches

– It is one of the most useful UNIX tools!

Regular expressions (much more by man grep):

– A normal character matches itself
– A . matches any normal character
– A * after a pattern matches any number of repetitions
– A range [...] works as for globbing (but use ^ instead of ! for negation)
– Remember that many character are special for the shell – use quotes!
– Example: grep ”Ste.*ulz” <file> will find many versions of my full name in
<file>

Stephan Schulz 63

Input and Output

Each UNIX process normally is created with 3 input/output streams:

– Standard Input or stdin (file descriptor 0) is used for normal input. Many
UNIX programs will read from stdin, if no file names are given

– Standard Output or stdout (file descriptor 1) is used for all normal output
– Standard Error or stderr (file descriptor 2) is used for out of band output like

warnings or error messages

By default, all three are connected to your terminal

It is possible to redirect the output streams into files

It is possible to make stdin read from a file

It is possible to connect one processes stdout to another ones stdin

Stephan Schulz 64

Simple Output Redirection

You can redirect the normal output of a command by appending > <file> to
the command.

– Example 1:
$ man stdin > stdin man page
$ more stdin man page

STDIN(3) System Library Functions Manual STDIN(3)

NAME
stdin, stdout, stderr - standard I/O streams

...

– Example 2: On the lab machines, the global password file is served over the
NIS (or Yellow Pages) protocol, and is shown by the command ypcat passwd.
ypcat passwd > my passwd gives you a private copy for password “quality
checking”

– Example 3: cat > myfile.c can replace a text editor (hit [C-d] on a line of its
own to indicate the end of input)

Stephan Schulz 65

Output Redirection II

By default, stderr is not redirected, so you can still see error messages on the
terminal (and discard the normal output if it is useless)

To redirect stderr, use 2> (redirect file descriptor 2):

– $ man bla will print No manual entry for bla
– $ man bla 2> error will save that error message in the file error

Special case: If you are not interested in any output, you can redirect it to
/dev/null (a UNIX device file that just accepts data and ignores it):

– $ man bla 2> /dev/null will make sure that you do not see the error message
– Alternatively, $ man if bla > /dev/null will give you just the error message

(even though man also prints the man page for the shell-built-in if)

Stephan Schulz 66

Input Redirection

You can also redirect the stdin file descriptor to read from a file

– Append < <file> to the command
– This is e.g. useful if you use an interactive program always for the same task

(i.e. you always type the same data into the file)
– Some UNIX commands only accept input on stdin (e.g. the tr utility)

Example: cat < file is equivalent to cat file! (Why?)

Stephan Schulz 67

Shell Pipes

Pipes are a general tool for inter-process communication (IPC)

The shell allows us to easily set up pipes connecting stdout of one process to
stdin of another

Example: man bash | cat will print the bash man page without using the pager

– This can be chained: man bash| grep -i redir | grep -i input will print just
the lines containing information about input redirection

– ypcat passwd | grep schulz will give you just my entry in the password file

Stephan Schulz 68

Basic Process Control

You can start processes in the foreground or in the background

– Foreground processes are started by just typing a normal command
– Background processes are started by appending an ampersand (&) to the

command. This is particularly useful for graphical applications: emacs &
– While a foreground process is running, the shell is blocked because the process

is using the terminal as its stdin (i.e. you can have at most one non-suspended
foreground process)

– (Most) foreground processes can be terminated by hitting [C-c] (often written
as ^C).

– (Most) foreground processes can be suspended by hitting [C-z]
– A suspended process can be continued by typing fg (to continue it as a

foreground process) or bg (to let it run in the background)
– A background process will be suspended automatically, if it needs to read data

from stdin
– jobs gives a numbered list of all processes started by the shell
– You can use fg %<no> to take a particular process into the foreground (bg

%<no> works on the same principle)
– You can use kill %<no> to terminate the named job

Stephan Schulz 69

UNIX User Commands: Yes

Usage: yes [arg]

If no argument is given, yes will print an infinite sequence of lines containing just
the character y

If an argument is given, yes will print an infinite sequence of lines containing that
argument

Very little more is available by printing man yes

Stephan Schulz 70

Job Control Example

$ emacs & (Start emacs in the background – it opens its own window)
$ yes Hello (Start yes in the foreground)
Hello
Hello
Hello
...
^C (Enough of that)
$ jobs
[1] Running emacs (Just my emacs)
$ yes Hi (I can never get enough)
Hi
Hi
...
^Z (Suspend it)
Suspended (Indeed!)
$ jobs
[1] Running emacs
[2] + Suspended yes
$ kill %1 (Ooops! Emacs window closes)

Stephan Schulz 71

Notice: Lab Hours

At the moment, a TA for CSC322 is in the lab Friday 4-6pm and Sunday 2-6pm.

Stephan Schulz 72

CSC322
C Programming and UNIX

Programming in C - Basics

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

A Bird’s Eye View of C

A C program is a collection of

– Declarations
– Definitons

for

– Functions
– Variables
– Datatypes

A program may be spread over multiples files

A program file may contain preprocessor directives that

– Include other files
– Introduce and expand macro definitions
– Conditionally select certain parts of the source code for compilation

Stephan Schulz 74

A First C Program

Consider the following C program

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
printf("Hello World!\n");
return EXIT SUCCESS;

}

Assume that it is stored in a file called hello.c in the current working directory.
Then:

$ gcc -o hello hello.c
(Note: Compiles without warning or error)
$./hello
Hello World!

Stephan Schulz 75

A Closer Look (1)

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
printf("Hello World!\n");
return EXIT SUCCESS;

}

We are including two header files from the standard library

– stdio.h contains declarations for buffered, stream-based input and output
(we include it for the declaration of printf)

– stdlib.h contains declarations for many odds and ends from the standard
library (it gives us EXIT SUCCESS)

– In general, preprocessor directives start with a hash #

Stephan Schulz 76

A Closer Look (2)

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
printf("Hello World!\n");
return EXIT SUCCESS;

}

The program consist of one function named main()

– main() returns a int (integer value) to its calling environment
– In this case, it takes no arguments (its argument list is void)
– In general, any C program is started by a call to its main() function, and

terminates if main() returns

Stephan Schulz 77

A Closer Look (3)

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
printf("Hello World!\n");
return EXIT SUCCESS;

}

The function body contains two statements:

– A call to the standard library function printf() with the argument ”Hello
World!\n” (a string ending with a newline character)

– A return statement, returning the value of the symbol EXIT SUCCESS to the
caller of main()

Stephan Schulz 78

A Closer Look (4)

gcc is the GNU C compiler, the standard compiler on most free UNIX system
(and often the preferred compiler on many other systems)

– On traditional systems, the compiler is normally called cc

gcc takes care of all stages of compiling:

– Preprocessing
– Compiling
– Linking

It automagically recognizes what to do (by looking at the file name suffix)

Important options:

– -o <name>: Give the name of the output file
– -ansi: Compile strict ANSI-89 C only
– -Wall: Warn about all dubious lines
– -c: Don’t perform linking, just generate a (linkable) object file
– -O – -O6: Use increasing levels of optimization to generate faster executables

Stephan Schulz 79

A More Advanced Example

/* A program that prints a Fahrenheit -> Celsius conversion table */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int fahrenheit, celsius;

printf("Fahrenheit -> Celsius\n\n");

fahrenheit = 0;
while(fahrenheit <= 300)
{

celsius = (fahrenheit-32)*5/9;

printf("%3d %3d\n", fahrenheit, celsius);
fahrenheit = fahrenheit + 10;

}
return EXIT_SUCCESS;

}

Stephan Schulz 80

The Fahrenheit-Celsius Example

Compilation:
$ gcc -ansi -Wall -W -o celsius fahrenheit celsius fahrenheit.c

Running it:
$./celsius fahrenheit | more

Fahrenheit -> Celsius

0 -17
10 -12
20 -6
30 -1
40 4
50 10
60 15
70 21
80 26
90 32

100 37
--More--

Stephan Schulz 81

Comments

Comments in C are enclosed in /* and */

Comments can contain any sequence of characters except for */ (although your
compiler may complain if it hits a second occurence of /* in a comment)

Comments can span multiple lines

In assignments (and in live) use comments wisely

– Do explain important ideas, like i.e. what a function or program does
– Do explain clever tricks (if needed)
– Do not repeat things obvious from the program code anyways

Bad commenting will affect grading!

Stephan Schulz 82

Variables

“int fahrenheit, celsius;” declares two variables of type int that can store
a signed integer value from a finite range

– By intention, int is the fastest datatype available on any given C implemen-
tation

– On most modern UNIX systems, int is a 32 bit type and interpreted in 2s
complement, giving a range from -2 147 483 648 — 2 147 483 647. This is
not part of the C language definition, though!

In general, a variable in a program corresponds to a memory location and can
store a value of a specific type

– All variables must be declared, before they can be used
– Variables can be local to a function (like the variables we have used so far),

local to a single source file, or global to the hole program

A variables value is changed by an assignment, an expression of the form
“var = expression;”

Stephan Schulz 83

(Arithmetic) Expressions

C supports various arithmetic operators, including the usual +, - ,* , /

– Subexpressions can be grouped using parenthenses
– Normal arithmetic operations can be used on both integer and floating point

values, with the type of the arguments determining the type of the result
– Example: (fahrenheit-32)*5/9 is an arithmetic expression in C, implemeting

the well-known formula C = 5
9(F − 32) for converting Fahrenheit to Celsius

∗ Since all arguments are integer, all intermediate results are also integer (as
well as the final result)

∗ Therefore we have to multiply with 5 first, then divide by nine (multiplying
with (5/9) would effectively multiply with 0)

Bit-wise, logical and operator comparison operators also normally also return
numeric values

Possible operands include variables, numerical (and other) constants, and function
calls

Note: In C, any normal statement is an expression and has a value, including the
assignment!

Stephan Schulz 84

Simple Loops

A while-loop has the form

while(<expr>)
<body>

where <body> either can be a single statement, terminated by a semicolon ’;’,
or a statement block, included in curly braces ’{}’

It operates as follows:

– At the beginning of the loop, the controlling expression is evaluated
– If it evaluates to a non-zero value, the loop body is executed once, and control

returns to the while
– If it evaluates to 0, the body is skipped, and the program continues on the

next statement after the loop

Note: The body can also be empty (but this is usually a programming bug)

Stephan Schulz 85

Formatted Output

printf() is a function for formatted output

It has at least one argument (the format string), but may have an arbitrary
number of arguments

– The control string may contain various placeholders, beginning with the
character %, followed by (optional) formatting instructions, and a letter (or
letter combination) indicating the desired output format

– Each placeholder corresponds to exactly one of the additional arguments
(modern compilers will complain, if the arguments and the control string do
not match)

– In particular, %3d requests the output of a normal int in decimal representation,
and with a width of atleast 3 characters

Note: printf() is not part of the C language proper, but of the (standardized)
C library

Stephan Schulz 86

UNIX User Commands: cp and mv

cp will either copy one file to another, or it will copy any number of files into a
directory

– Usage: cp <file1> <file2>
Copy <file1> to <file2>

– Usage: cp <file1>. . . <filen> <dest>
Copy the named files into <dest>

mv will likewise move files

– Usage: mv <file1> <file2>
Move <file1> to <file2>

– Usage: mv <file1>. . . <filen> <dest>
Move the named files into <dest>

Warning: Unless used with option -i, both commands will happily overwrite
existing files!

Again, a more complete description is available by man!

Stephan Schulz 87

Assignment(also see Website)

Write the following two C programs:

– celsius2fahrenheit should print a conversion table from Celsius to Fahren-
heit, from -50 to +150 degrees Celsius, in steps of 5 degrees

– imp metric should print two tables side by side (equivalent to a 4-column)
table, one for the conversion from yards into meters, the other one for the
conversion from km into miles. The output should use int values, but you
can use the floating point conversion factors of 0.9144 (from yards to meters)
and 1.609344 from mile to km. Try to make the program round correctly!
Sample Output:

Yards Meters Km Miles

0 0 1 1
10 9 2 1
20 18 3 2
30 27 4 2
40 37 5 3
...

100 91 11 7

Stephan Schulz 88

CSC322
C Programming and UNIX

Programming in C
Extended Introduction

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Statements, Blocks, and Expressions

C programs are mainly composed of statements

In C, a statement is either:

– An expression, followed by a semicolon ’;’ (as a special case, an empty expres-
sion is also allowed, i.e. a single semicolon represents the empty statement)

– A flow-control statement (if, while, goto,break. . .)
– A block of statements (or compound statement), enclosed in curly braces ’{}’.

A compound statement can also include new variable declarations.

Note: The following is actually legal C (although a good compiler will warn you
that some of your statements have no effect):

{
int a;

10+20;
10*(a=printf("Hello\n"));

}

Stephan Schulz 90

Flow-Control: if

The primary means for conditional execution in C is the if statement:

if(<expr>)
<statement>

– If the expression evalutes to a non-zero (“true”) value, then the statement will
be executed

– <statement> can also be a block of statements – in fact, it quite often is
good style to always use a block, even if it contains only a single statement

An if statement can also have a branch that is taken if the expression is zero
(“false”):

if(<expr>)
<statement>

else
<statement>

Stephan Schulz 91

Flow-Control: while

C supports different structured loop constructs, including a standard while-loop
(see also example from last lesson):

while(<expr>)
<statement>

When control reaches the while at the top of the loop, the expression is tested

– If it evaluates to true (non-zero), the body of the loop is executed and control
returns to the while

– If it evaluates to false (i.e. zero), control directly goes to the statement
following the body of the loop

Note: An empty loop body is possible (and sometimes useful)

Again: In many cases it is recommended to use a block even if it contains only
one statement (or even no statements)

Stephan Schulz 92

Flow-Control: for

The for-loop in C is a construct that combines initialization, test, and update of
loop variables in one place:

for(<expr1>; <expr2>; <expr3>)
<statement>

– Before the loop is entered, <expr1> is evaluated
– Before each loop iteration, <expr2> is evaluated
∗ If it is true, the body is executed, then <expr3> is evaluated and control

returns to the top of the loop
∗ If it is false, control goes to the first statement after the body
∗ In the typical case, both <expr1> and <expr3> are assignments to the same

variable, while <expr2> tests some property depending on that variable

Stephan Schulz 93

Example

Here is the Fahrenheit/Celsius conversation using for:

/* A program that prints a Fahrenheit -> Celsius conversion table */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int fahrenheit, celsius;

printf("Fahrenheit -> Celsius\n\n");
for(fahrenheit=0; fahrenheit<=300; fahrenheit=fahrenheit+10)
{

celsius = (fahrenheit-32)*5/9;
printf("%3d %3d\n", fahrenheit, celsius);

}
return EXIT_SUCCESS;

}

Stephan Schulz 94

for vs. while

Note that for is more general than while:

while(<expr>) and for(;<expr>;)
<statement> <statement>

are equivalent.

Alternatively, you can achieve the functionality of for using just while (how?)

The preference for one or the other often is a matter of personal choice

– If there are clear initialization and update steps, for is often more convenient
– In other cases, while is more natural

Stephan Schulz 95

Variable Declarations

Variable names:

– A valid variable name starts with a letter or underscore (), and may contain
any sequence of letters, underscores, and digits

– Capitalization is significant – a variable is different from A Variable
– In addition to the language keywords, certain other names are reserved (by the

standard library or by the implementation). In particular, avoid using names
that start with an underscore!

Variable declarations:

– A (simple) variable declaration has the form <type> <varlist>;, where
<type> is a type identifier (e.g. int), and <varlist> is a coma-separated list
of variable names

– In ANSI-89 C, variables can only be declared outside any blocks or directly
after an open curly brace. The new standard relaxes this requirement

– A variable declared in a block is (normally) visible just inside that block

Stephan Schulz 96

Types: Integers and Characters

C has a large number of integer data types:

– It offers char, short, int, long and (since the last language revision) long
long types, all of which may represent integers from different ranges

– Note that in particular char is an integer data type, i.e. characters are
represented by their numerical encoding in the character set (normally ASCII)

– Any of those can be signed or unsigned, i.e. capable of representing positive
numbers only or both negative and positive numbers

– All types can be freely mixed in expressions
– Unsigned types always follow the rules of arithmetic modulo 2n, where n is

the width (in bits) of their representation (i.e. values greater than 2n − 1 are
reduced by subtracting 2n until the result is in the range 0− 2n − 1)

Integer constants are normally type int if they can be represented by that data
type

– 123 is int
– 316L is long
– 922U is unsigned int

Stephan Schulz 97

Integer Type Table

Type Alias Signed/Unsigned? Width(*)
char Implementation 8 bit
signed char Signed 8 bit
unsigned char Unsigned 8 bit
short int short Signed 16 bit
signed short int short Signed 16 bit
unsigned short int unsigned short Unsigned 16 bit
int Signed 32 bit
signed int int Signed 32 bit
unsigned int unsigned Unsigned 32 bit
long int long Signed 32 bit
signed long int long Signed 32 bit
unsigned long int unsigned long Unsigned 32 bit
long long int long long Signed 64 bit
signed long long int long long Signed 64 bit
unsigned long long int unsigned long long Unsigned 64 bit

Note (*): Width is not defined by the language standard but reflects currently
common implementation choices!

Stephan Schulz 98

Simple Character I/O

The C library defines the three I/O streams stdin, stdout, and stderr, and
guarantees that they are open for reading or writing, respectively

Reading characters from stdin: int getchar(void)

– getchar() returns the numerical (ASCII) value of the next character in the
stdin input stream

– If there are no more characters available, getchar() returns the special value
EOF that is guaranteed different from any normal character (that is why it
returns int rather than char

Printing characters to stdout: int putchar(int)

– putchar(c) prints the character c on the stdout steam
– (It returns that character, or EOF on failure)

getchar(), putchar(), and EOF are declared in <stdio.h>

Stephan Schulz 99

Example: File Copying

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int c;

c=getchar();
while(c!=EOF)
{

putchar(c);
c=getchar();

}
return EXIT_SUCCESS;

}

Copies stdin to stdout – to make a a file copy, use
cat file | ourcopy > newfile

Introduces != (“not equal”) relational operator

Stephan Schulz 100

Example: File Copying (idiomatic)

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int c;

while((c=getchar())!=EOF)
{

putchar(c);
}
return EXIT_SUCCESS;

}

Remember: Variable assignments have a value!

Improvement: No duplication of call to getchar()

Stephan Schulz 101

Example: Character Counting

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int c;
long count = 0;

while((c=getchar())!=EOF)
{

count++;
}
printf("Number of characters: %ld\n", count);
return EXIT_SUCCESS;

}

New idiom: ++ operator (increases value of variable by 1)

Test: $ man cat | charcount
1091

Stephan Schulz 102

Exercises

Write a programm that continually increases the value of a short and a
unsigned short variable and prints both (you can use printf("%6d %6u",
var1, var2); to print them). What happens if you run the programm for some
time? You can pipe the output into less and search for interesting things (man
less to learn how!). Remember that [C-c] will terminate most programs under
UNIX!

Write a program that counts lines in the input. Hint: The standard library makes
sure that any line in the input ends with a newline (’\n’)

Write a program that computes the factorial of a number (given as a constant in
the program). Test it for values of 3, 18, and 55. Any observations?

Stephan Schulz 103

CSC322
C Programming and UNIX

Programming in C
More on Expressions

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Nomination: Most Useless Use of cat Award

If ourcopy is a program that just copies stdin to stdout, then

– cat file | ourcopy > newfile will indeed copy file to newfile
– So will ourcopy < file > newfile
– (So will cat < file > newfile)

Stephan Schulz 105

UNIX User Commands: wc

Usage: wc <file1>...

wc counts the bytes, words and lines in each file specified (or in stdin if none is
given) and print the results, including the total for all input files.

Important options:

– -c: Print just the byte count
– -w: Print just the word count
– -l: Print just the line count

Example:
$ wc < wordcount.c
24 53 369
Notice: The program does not print unnecessary headers or footers. The output
can easily be interpreted by other programs!

More: man wc

Stephan Schulz 106

Example: Word Counting
/* Count words */
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

int c, in_word=0;
long words = 0;
while((c=getchar())!=EOF)
{

if(c == ’ ’ || c == ’\n’ || c == ’\t’)
{

in_word = 0;
}
else if(!in_word)
{

in_word = 1;
words++;

}
}
printf("%ld words counted\n", words);
return EXIT_SUCCESS;

}

Stephan Schulz 107

Character Constants

In C, characters are just small integers

We can write character constants symbolically, by enclosing them in single quotes:

– ’a’ is the numerical value of a lower case a in the character encoding (97 for
ASCII)

– ’A’ is upper case A (65 for ASCII)
– These values can be assigned to any integer variable!

You can use escape sequences (starting with \) for non-printable characters:

– \t is the tabulator character (HT), ASCII 9
– \n is the newline character (LF), ASCII 10 (and used by C to mark the end of

the current line)
– \a is the BEL character, printing it will normally make the terminal beep
– \0 is the NUL character, ASCII 0, and used by C to mark the end of a string
– \\ is the backslash itself, ASCII 92

You can get all C escape sequences (and more) via man ASCII

Stephan Schulz 108

Another View at Expressions

Expressions are build from operators and operands, with parentheses for grouping

– Most operators are unary (taking one operand) or binary (taking two)
– Operands can be
∗ (Sub-)Expressions
∗ Constants
∗ Function calls

– In C, binary operators are written in infix, i.e. between the operands: 10+15
– Unary operators are written either in prefix or postfix (some can even be

written either way, with slightly different effects)

All operators have a precedence, defining how to interprete operations with
multiple operators

– In the absence of parentheses, operators with a higher precedence bind tighter
than those with a lower precedence: 10+3*4 == 22 is true, 10+4*3==42 is
false

– In doubt, we can always fully parenthesize expressions: 10+3*4 == 10+(3*4),
but (10+4)*3==42

Stephan Schulz 109

Expressions: Associativity of Binary Operators

Binary operators have an additional property: Associativity

– Example: 25+12+11 can be interpreted as (25+12)+11 or as 25+(12+11)

Stephan Schulz 110

Expressions: Associativity of Binary Operators

Binary operators have an additional property: Associativity

– Example: 25+12+11 can be interpreted as (25+12)+11 or as 25+(12+11)
– Worse: What about 25-12-11?

By convention, standard arithmetic operators are left-associative, i.e. the bind to
the left

– Thus: 25-12-11 == (25-12)-11 has the value 2

We will note associativity for many operators specifically, but unless otherwise
noted, it’s probably left-associative!

Stephan Schulz 111

Expressions: Relational Operators

Relational operators take two arguments and return a truth value (0 or 1)

We already have seen the equational operators. They apply to all basic data
types and pointers:

– a == b (equal) evaluates to 1 if the two arguments have the same value,
otherwise it evaluates to 0

– a != b evaluates to 1 if the two arguments have different values
– Note: a == b == c is evaluated as (a == b) == c, i.e. it compares c to

either 0 or 1!

We can also compare the same types using the greater/lesser relations:

– > evaluates to 1, if the first argument is greater than the second one
– < evaluates to 1, if the second argument is greater than the first one
– a >= b evaluates to 1, if either a > b == 1 or (a == b) ==1
– a <= b evaluates to 1, if either a < b == 1 or (a == b) == 1

Precedence rule: The relational operators have lower precedence than the arith-
metic ones (a+1 < 2*b makes sense)

Stephan Schulz 112

Expressions: Logical Operators

Logical operators operate on truth values, i.e. all non-zero values are treated the
same way (representing true)

The binary logical operators are || and &&

– a||b evaluates to 1, if at least one of a or b is non-zero (otherwise it evaluates
to 0)

– a&&b evaluates to 1, if both a and b are non-zero
– Both || and && are evaluated left-to-right, and the evaluation stops as soon

as we can be sure of the result (short-circuit evaluation)
∗ Example: If a!=b, then (a==b)&&c will not evaluate c
∗ Similarly: (a==0 || 10/a >= 1) will never divide by zero!

! is the (unary) logical negation operator, !a evaluates to 1, if a has the value
0, it evaluates to 0 in all other cases

Precedence rules:

– The binary logical operators have lower precedence than the relational ones
– || has lower precedence than &&
– ! has a higher precedence than even arithmetic operators

Stephan Schulz 113

Expressions: Assignments

The assignment operator is = (a single equal sign)

– a = b is an expression with the value of b
– As a side effect, it will change the value of a to that same value

The expression on the left hand side of an assignment (a) has to be an lvalue,
i.e. something we can assing to. Legal lvalues are

– Variables
– Dereferenced pointers (“memory locations”)
– Elements in a struct, union, or array

The assignment operator is right-associative (so you can write
a = b = c = d = 0; to set all for variables to zero)

The assignment operator has extremely low precedence (lower than all other
operators we have covered up to now)

Stephan Schulz 114

Floating Point Numbers

C supports three types of floating point numbers, float, double, and long
double

– float is the most memory-efficient representation (typically 32 bits), but has
limited range and precision

– double is the most commonly used floating point type. In particular, most
numerical library functions accept and return double arguments. Doubles
normally take up 64 bits

– long double offers extended range and precision (sometimes using 128 bits)
and is a recent addition

Floating point constants are written using a decimal point, or exponential notation
(or both):

– 1.0 is a floating point constant
– 1 is an integer constant. . .
– . . . but 1e0 and 1.0E0 are both floating point constants

If we mix integer and floating point numbers in an expression, a value of a
“smaller” type is converted to that of the bigger one transparently:

– 9/2 == 4, but 9/2.0 == 4.5 and 9.0/2 == 4.5

Stephan Schulz 115

Fahrenheit to Celsius – More Exactly

/* A program that prints a Fahrenheit -> Celsius conversion table */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int fahrenheit;
double celsius;

printf("Fahrenheit -> Celsius\n\n");
for(fahrenheit=0; fahrenheit<=300; fahrenheit=fahrenheit+10)
{

celsius = (fahrenheit-32.0)*5.0/9.0;
printf("%3d %7.3f\n", fahrenheit, celsius);

}
return EXIT_SUCCESS;

}

Remark: The %7.3f conversion specification prints a float or double with a
total width of 7 characters and 3 fractional digits

Stephan Schulz 116

Administrative Notes

Please ssh to lee.cs.miami.edu to use the lab machines over the net.

To change your password on the lab machines, use yppasswd. Also check
http://www.cs.miami.edu/~irina/password.html for the password policy

To submit programming assignments, create a subdirectoy with the name
ASSIGNMENT <no> (where <no> is the number of the current assigment) and
copy the relevant files to it

Example: To submit the current assignment, do e.g.

$ cd ∼ (go home)
$ mkdir ASSIGNMENT 2
$ cp mystuff/celsius2fahrenheit* ASSIGNMENT 2
$ cp mystuff/imp metric* ASSIGNMENT 2

Stephan Schulz 117

http://www.cs.miami.edu/~irina/password.html

Excercises

Expand the word count program to count characters, words, and lines (of stdin)
as wc does

Write a program that prints useful imperial to metric (and back) conversion
tables to a reasobale precision

Stephan Schulz 118

CSC322
C Programming and UNIX

Programming in C
Simple Arrays and Functions

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Arrays

A array is a data structure that holds elements of one type so that each element
can be (efficiently) accessed using an index

In C, arrays are always indexed by integer values

Indices always run from 0 to some fixed, predetermined value

<type> <var> [<elements>]; defines a variable of an array type:

– <type> can be any valid C type, including user-defined types
– <var> is the name of the variable defined
– <elements> is the number of elements in the array (Note: Indices run from 0

to <elements>-1)

Example: char x[10]; defines the variable x to hold 10 elements of type char,
x[5] accesses the 5th element of that array

Stephan Schulz 120

Example: Counting Character Frequencies

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(void)
{

int freq_count[128];
int i, c;

for(i=0; i<128; i++)
{

freq_count[i] = 0;
}
while((c=getchar())!=EOF)
{

if(c <= 127) /* Ignore non-ASCII */
{

freq_count[c]++;
}

}

Stephan Schulz 121

Example: Counting Character Frequencies (Contd.)

for(i=0; i<128; i++)
{

if(isprint(i))
{

printf("%c: %d\n", i, freq_count[i]);
}

}
return EXIT_SUCCESS;

}

Remark: isprint(i) is true, if i is a printable character. It is defined in
ctype.h

Stephan Schulz 122

Initializing Arrays

In the example, we used an explicit loop to initialize the array

For short arrays we can also list the initial values in the definition of the array:

– int days per month[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
– The number of values has to be smaller than or equal to the number of

elements in the array
– Unspecified elements are initialized to all bits zero, (i.e. 0 for all basic data

types)

If we give an explicit intializer, we can omit the size of the array:

– int days per month[] = {31,28,31,30,31,30,31,31,30,31,30,31};
– The compiler will automatically allocate an array of sufficient size to hold all

the values in the initializer

Stephan Schulz 123

Array Layout

C arrays are implemented as a sequence of consequtive memory locations of the
right size to hold the element

Example:
Address Array Element Content

0

. . .

112 Other data

120 days per month[0] 31

124 days per month[1] 28

128 days per month[2] 31

132 days per month[3] 30

136 days per month[4] 31

140 days per month[5] 30

144 days per month[6] 31

148 days per month[7] 31

152 days per month[8] 30

156 days per month[9] 31

160 days per month[10] 30

164 days per month[11] 31

168 Other data

. . .

Stephan Schulz 124

No Safety Belts and No Air Bag!

C does not check if the index is in the valid range!

– If you access days per month[13] you might change some critical other data
– The operating system may catch some of these wrong accesses, but do not

rely on it!)

This is source of many of the buffer-overflow errors exploited by crackers and
viruses to hack into systems!

Stephan Schulz 125

Character Arrays

Character arrays are the most frequent kind of arrays used in C

– They are used for I/O operations
– They are used for implementing string operations in C

To make the use of character arrays easier, we can use string constants to
initialize them. The following definitions are equivalent:

– char hello[] = {’H’,’e’,’l’,’l’,’o’,’\0’};
– char hello[] = "Hello";
– char hello[6] = "Hello";

Notice that the string constant is automatically terminated by a NUL character!

Stephan Schulz 126

Functions

Functions are the primary means of structuring programs in C

A function is a named subroutine

– It accepts a number of arguments, processes them, and (optionally) returns a
result

– Functions also may have side effects, like I/O or changes to global data
structures

– In C, any subroutine is called a function, wether it actually returns a result or
is only called for its side effect

Note: A function hides its implementation

– To use a function, we only need to know its interface, i.e. its name, parameters,
and return type

– We can improve the implementation of a function without affecting the rest of
the program

Function can be reused in the same program or even different programs, allowing
people to build on existing code

Stephan Schulz 127

Function Definitions

A function definition consists of the following elements:

– Return type (or void) if the function does not return a value
– Name of the function
– Parameter list
– Function body

The name follows the same rules as variable names

The parameter list is a list of coma-separated pairs of the form <type> <name>

The body is a sequence of statements included in curly braces

Example:

int timesX(int number, int x)
{

return x*number;
}

Stephan Schulz 128

Function Calling

A function is called from another part of the program by writing its name,
followed by a parenthesized list of arguments (where each argument has to have
a type matching that of the corresponding parameter of the function)

If a function is called, control passes from the call of the function to the function
itself

– The parameters are treated as local variables with the values of the arguments
to the call

– The function is executed normally
– If control reaches the end of the function body, or a return statement is

executed, control returns to the caller
– A return statement may have a single argument of the same type as the

return type of the function. If the statement is executed, the argument of
return becomes the value returned to the caller

We can only call functions that have already been declared or defined at that
point in the program!

Stephan Schulz 129

Example: Printing Character Frequencies

int print_freq(char c, int freq)
{

int i;

printf("%c :", c);
if(freq < 75)
{

for(i=0; i<freq; i++)
{

putchar(’#’);
}

}
else
{

printf("#....(%d)...#",freq);
freq = -1;

};
printf("\n", c);
return freq;

}

Stephan Schulz 130

Example: Printing Character Frequencies (contd.)

Assume that the previous function definition is inserted into the frequency
counting program just in front of the int main(void) line

We can then modify main as follows:

...
for(i=0; i<128; i++)
{

if(isprint(i))
{

print_freq(i, freq_count[i]);
}

}
return EXIT_SUCCESS;

}

The program will then print frequency histograms instead of just numbers

Stephan Schulz 131

Exercises

Rewrite the Fahrenheit→Celsius Program to use a function for the actual con-
version

Stephan Schulz 132

Assignment

A prime number is a (positive integer) number that is evenly divisible only by 1
and itself

1. Write a function isprime() that determines if an integer number is prime.
You can use the % modulus operator (division rest on integers) or work with
plain division. Use your function to implement a program primes simple
that prints all primes between 0 and 10000.

2. The Sieve of Erathostenes is a more efficient (and ancient) algorithm for
finding all primes up to a given number. It starts with a list of all numbers
from 2 to the desired limit. It traverses this list, starting at two. Whenever
it encounteres a new number, it strikes all multiples of it from the list. What
remains at the end is a list of prime numbers.
Example:

Initial list: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Striking multiples of 2: 2 3 5 7 9 11 13 15
Striking multiples of 3: 2 3 5 7 11 13
(There are no multiples of any remainig number, so we skip the rest)

Use the Sieve algorithm in a second program, primes sieve, that prints all
primes between 0 and 10000. Hint: Use an array!

Stephan Schulz 133

CSC322
C Programming and UNIX

Programming in C
More on Functions

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Review of Function Properties

A function is a named subroutine

It accepts a number of arguments of a predetermined type and returns a value of
a given type

It can have its own local variables

A function can be called from other places in the program, including other
functions

Functions have to be known (either defined or declared) before they can be called

Stephan Schulz 135

Example: Reading Integers

We want to write a function that reads a positive integer number from stdin,
using only getchar()

A number is defined as a sequence of decimal digits (characters from the range
’0’ to ’9’

– We can use the function isdigit(c) from ctype.h to test if a character is a
(decimal) digit

– The C standard guarantees that ’0’ to ’9’ have consecutive numerical values.
We can thus get the value of a single character c that represents a digit by
the expression c-’0’

Idea: We read the most significant digits first. So whenever we read a new digit,
the value of what we have read so far increases 10-fold:

Read Value
1 1
13 10*1+3 = 13
137 10*13+7 = 137
1375 10*137+5 = 1375

Stephan Schulz 136

Example: int read int10(void)

/* We assume that stdio and ctype have been included */

/* A function that reads a positive integer number in base 10 from
* stdin. Return number or -1 on failure. Will read one character
* ahead! */

int read_int10(void)
{

int res = 0, c, count=0;

while(isdigit(c=getchar()))
{

res = (res*10)+c-’0’;
count++;

}
if(count > 0) /* We read something */
{

return res;
}
return -1;

}

Stephan Schulz 137

Improving the Function

read int10(void) works fine, but can only read number in decimal notation

We want to have a function that can read numbers in any base between 2 and
10 now

Examples:

– 142 in base 8 has the value 1 ∗ 82 + 4 ∗ 81 + 2 ∗ 80 = 1 ∗ 64 + 4 ∗ 8 + 2 = 98
– 101010 in base two has the value 1∗25+0∗24+1∗23+0∗22+1∗21+0∗20 =

32 + 8 + 2 = 42
– 1873 is not a valid number in base 6! All digits have to be smaller than the

base

The principle is the same, we just use a parameter base instead of the hardwired
value 10!

Stephan Schulz 138

Do we have a Valid Digit?

/* Is a character a valid digit in base b? */

int is_base_digit(int c, int base)
{

if(c - ’0’ < 0)
{

return 0;
}
if(c - ’0’ >= base)
{

return 0;
}
return 1;

}

Stephan Schulz 139

Reading a Number in any Base (<=10)

/* A function that reads a positive integer number in any base from stdin */

int read_int_b(int base)
{

int res = 0, c, count = 0;

res = 0;
while(is_base_digit((c=getchar()),base))
{

res = (res*base)+c-’0’;
count++;

}
if(count > 0) /* We read something */
{

return res;
}
return -1;

}

Stephan Schulz 140

Build General Functions!

Good programs are build by breaking the task into many functions that are:

– Small – at most one screen page (in your favourite editor)
– Simple – they only do one thing, and they do that well
– General – so that they can be reused at other parts in the program

Going from general to specific is (generally) easy:

/* Alternative to read_int10 */

int read_int10b(void)
{

return read_int_b(10);
}

Stephan Schulz 141

Recursive Functions

As we stated above, functions can call other functions. They can also call
themselves recursively

A recursive function always has to handle at least two cases:

– The base case handles a simple situation without further calls to the same
function

– The recursive cases may do some work, and in between make recursive calls to
the function for smaller (in some sense) subtasks

Recursion is one of the most important programming principles!

Stephan Schulz 142

Example: Printing Integers

We now want to print positive integer numbers to stdout, using only putchar()

Consider a number in base 10: 421 = 42 ∗ 10 + 1
We can split the task into two subtasks:

– Print everything but the last digit (recursively)
– Print the last digit

Base case: There are no digits to print any more

Basic operations:

– To get the last digit, we use the modulus operator %
– To get rid of the last digit, we divide the number by the desired base (remember,

integer division truncates)

Stephan Schulz 143

Example: Decimal Representation of 421

Let’s do an example: We want to print the number 421 in base 10

– Step 1: 421%10 = 1 and 421/10 = 42. Hence the last number to print is 1
and the rest we still have to print is 42

– Step 2: 42%10 = 2 and 42/10 = 4. The second last digit is 2, the rest is 4
– Step 3: 4%10 = 4 and 4/10 = 0. The next digit is 4
– Step 4: Our rest is 0, hence there is nothing to do but printing the digits in

the right order

The same principle applies for other bases (just replace 10 by your base)

Stephan Schulz 144

Writing a Number in any Base (<=10)

/* Write non-zero positive integer in any base to stdout */

void write_int_b_rekursive(int value, int base)
{

int digit;

digit = value % base;
value = value/base;

if(value!=0)
{

write_int_b_rekursive(value, base);
}
putchar(digit + ’0’);

}

Problem: What happens if the input is 0?

(Answer: It works fine, but by accident, not by design!)

Stephan Schulz 145

Writing Integers (Contd.)

We can wrap the simple recursive function to handle the abnormal case (but, as
we saw on the last slide, we don’t need to):

/* Write positive integer in any base to stdout */

void write_int_b(int value, int base)
{

if(value == 0)
{

putchar(’0’);
}
write_int_b_rekursive(value, base);

}

Stephan Schulz 146

Putting Things Together: A Base Converter

We now use the defined function to write a program that reads pairs number
base and prints them back in the new base:

– number is considered to be a decimal number
– base should be a decimal number between 2 and 10 (inclusive)
– Numbers and pairs are separated by a single, arbitrary character (including

space and newline)
– The program terminates, if one of the numbers is invalid

Stephan Schulz 147

The Base Converter

int main(void)
{

int num, base;
while(1)
{

printf("Input decimal value and desired base!\n");
num = read_int10();
if(num == -1)
{

return EXIT_SUCCESS;
}
base = read_int10();
if(base == -1 || base < 2 || base > 10)
{

printf("Error: No valid base!\n");return EXIT_FAILURE;
}
write_int_b(num, base);
putchar(’\n’);

}
}

Stephan Schulz 148

Usage Example

$./base converter
Input decimal value and desired base!
123123 3
20020220010
Input decimal value and desired base!
42 10
42
Input decimal value and desired base!
42 Hallo!
Error: No valid base!
$

Stephan Schulz 149

Exercise

Extend the base converter to work with base 16, using 0-9 and A-F as digits
(allow both upper and lower case!)

Extend the base converter to accept tripplets input-base,value,outputbase,
where value is interpreted in input-base (and input-base is a single hexadecimal
digit >=2). Add reasonably robust error handling!

The complete base converter code from the lecture is available from the CSC322
web page or directly at http://www.cs.miami.edu/~schulz/CSC322/base_
converter.c

Stephan Schulz 150

http://www.cs.miami.edu/~schulz/CSC322/base_converter.c
http://www.cs.miami.edu/~schulz/CSC322/base_converter.c

CSC322
C Programming and UNIX

Programming in C
Program Structure and the C Preprocessor

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Simple Program Structure

Headers
(Declarations)

Executable

C Preprocessor

Sources
(Definitions)

Is combibed into

Compiler

Stephan Schulz 152

Program Structure In Detail

Files Library

RTE
(Shared libs)

Object

Headers
(Declarations)

System System
Library

Executable

C Preprocessor

Sources
(Definitions)

Includes

Translates into

Is combibed into

Compiler

Linker

Stephan Schulz 153

Program Structure for Multi-File Programs

Files
Object
Files

Object
FilesFilesFiles Library

RTE
(Shared libs)

Headers Headers Headers
(Declarations) (Declarations) (Declarations)

ObjectObjectObject

Headers
(Declarations)

System System
Library

Executable

C Preprocessor

Compiler

Linker

Sources
(Definitions)

Sources
(Definitions)

Sources
(Definitions)

Includes

Translates into

Is combibed into

Stephan Schulz 154

The C Preprocessor

The C preprocessor performs a textual rewriting of the program text before it is
ever seen by the compiler proper

– It includes the contents of other files
– It expands macro definitions
– It conditionally processes or removes segments of the program text

Preprocessor directives start with a hash # and traditionally are written starting
in the very first column of the program text

After preprocessing, the program text is free of all preprocessor directives

Normally, gcc will transparently run the preprocessor. Run gcc -E <file> if you
want to see the preprocessor output

Stephan Schulz 155

Including Other Files: #include

The #include directive is used to include other files (the contents of the named
file replaces the #include directive)

Form 1: #include "file"

– The preprocessor will search for file in the current directory
– What happens if file is not found in the current directory, is implementation-

defined
∗ UNIX compilers will typically treat file as a pathname (that may be either

absolute or relative)
∗ If the file is not found, the compiler prints an error message and aborts

Form 2: #include <file>

– file will be searched for in an implementation-defined way
– UNIX compilers will typically treat file as a file name relative to the system

include directory, /usr/include on the lab machines
– You can add to the list of directories that will be searched using

gcc -I<includedir>

Stephan Schulz 156

Example: Include

myfile.c:

A Poem

#include "mary"

mary:

Mary had a little lamb,
Its fleece was white as snow;
And everywhere that Mary went
The lamb was sure to go.

$ gcc -E myfile.c

1 "myfile.c"
A Poem

1 "mary" 1
Mary had a little lamb,
Its fleece was white as snow;
And everywhere that Mary went
The lamb was sure to go.
4 "myfile.c" 2

Stephan Schulz 157

Include Discussion

Include directives are typically used for sharing common declarations between
different program parts

Libraries (including the standard library) come with header files that define their
interface by

– Defining data types and constants
– Declaring functions (and defining macros)
– Declaring variables

Note that included files can contain further #include statements (that will be
automatically expanded by the preprocessor)

– This is frequent in system files, where the standard-prescribed include files
often include system-specific files actually describing the features

Stephan Schulz 158

Simple Macro Definitions: #define

The #define directive is used to define macros

Simple Form: #define <name> <replacement text>

– This will define a macro for <name>, which has to follow the common rules for
C identifiers (alphanumeric characters and underscore, should not start with a
digit)

– Any normal occurence of <name> after the definition will be replaced by
<replacement text>

– Replacement will not take place in strings!
– The macro definition normally ends at the end of the line, however, it can be

extended to the next line by appending \ as the very last character of the line

Note that macro expansion even takes place within further macro definitions!

Most common use: Symbolic constants (e.g. EOF)

Stephan Schulz 159

Simple #define Example

reality.c:

#define true 1
#define false 0
void reality_check(void)
{

if(true == false)
{

printf("Reality is broken!\n");
}

}

$ gcc -E reality.c

4 "reality.c"
void reality_check(void)
{

if(1 == 0)
{

printf("Reality is broken!\n");
}

}

Stephan Schulz 160

Macros with Arguments

Macro definitions can also contain formal arguments

#define <name>(arg1,...,arg1) <replacement text>

If a macro with arguments is expanded, any occurence of a formal argument in
the replacement text is replaced with the actual value of the arguments in the
macro call

This allows a more efficient way of implementing small “functions”

– But: Macros cannot do recursion
– Macro calls have slightly different semantics from function calls
– Therefore macros are usually only used for very simple tasks

By convention, preprocessor defined constants and many macros are written in
ALL CAPS (using underscores for structure)

Stephan Schulz 161

#define Examples

macrotest.c:

#define XOR(x,y) ((!(x)&&(y))||((x)&&!(y))) /* Exclusive or */
#define EQUIV(x,y) (!XOR(x,y))

void test_macro(void)
{

printf("XOR(1,1) : %d\n", XOR(1,0));
printf("EQUIV(1,0): %d\n", EQUIV(1,0));

}

$ gcc -E reality.c

4 "macrotest.c"
void test_macro(void)
{

printf("XOR(1,1) : %d\n", ((!(1)&&(0))||((1)&&!(0))));
printf("EQUIV(1,0): %d\n", (!((!(1)&&(0))||((1)&&!(0)))));

}

Stephan Schulz 162

#define Caveats

Since macros work by textual replacement, there are some unexpected effects:

– Consider #define FUN(x,y) x*y + 2*x
∗ Looks innocent enough, but: FUN(2+3,4) expands into 2+3*4+2*2+3 (not
(2+3)*4+2*(2+3))

∗ To avoid this, always enclose each formal parameter in parentheses (unless
you know what you are doing)

– Now consider FUN(var++,1)
∗ It expands into x++*1 + 2*x++
∗ Macro arguments may be evaluated more than once!
∗ Thus, avoid using macros with expressions that have side effects

Other frequent problems:

– Semicolons at the end of a macro definition (wrong!)
– “Invisible” syntax errors (run gcc -E and check the output if you cannot locate

an error)

Stephan Schulz 163

Conditional Compilation: #if/#else/#endif

We can use preprocessor directives to conditionally include or exclude parts of
the program:

– Program parts may be enclosed in #if <expr>/#endif pairs
– <expr> has to be a constant integer expression
– If it evaluates to 0, the text in the #if <expr>/#endif bracket is ignored,

otherwise it is included
– There also is an optional #else “branch”

Most frequent use: Test for the definition of macros

– defined(<macro>) evaluates to 1 if <macro> is defined (even as the empty
string), 0 otherwise

– Short form: #if defined(<macro>) is equivalent to #ifdef <macro>,
#if !defined(<macro>) is equivalent to #ifndef <macro>,

– E.g.: #ifndef EOF
#define EOF -1
#endif

Stephan Schulz 164

Example: #ifdef

cond preproc.c:

#define hallo
#define fred barney
#define test 2+2
#if defined(hallo)
"Hallo"
#else
#ifdef fred
"Fred"
#endif
#endif
#if test
"test"
#endif

$ gcc -E cond preproc.c

5 "cond_preproc.c"
"Hallo"

"test"

Stephan Schulz 165

Exercises

Search the /usr/include directory (use grep for faster progress) and find out
where the following functions/macros are defined, and, for the macros, what
their value is

– LONG MAX
– ULONG MAX
– getchar()
– getc()
– EOF
– EXIT FAILURE
– EXIT SUCCESS
– NULL

Stephan Schulz 166

CSC322
C Programming and UNIX

Programming in C
C Preprocessor/Declarations and Scoping

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Conditional Compilation: #if/#else/#endif

We can use preprocessor directives to conditionally include or exclude parts of
the program:

– Program parts may be enclosed in #if <expr>/#endif pairs
– <expr> has to be a constant integer expression
– If it evaluates to 0, the text in the #if <expr>/#endif bracket is ignored,

otherwise it is included
– There also is an optional #else “branch”

Most frequent use: Test for the definition of macros

– defined(<macro>) evaluates to 1 if <macro> is defined (even as the empty
string), 0 otherwise

– Short form: #if defined(<macro>) is equivalent to #ifdef <macro>,
#if !defined(<macro>) is equivalent to #ifndef <macro>,

– E.g.: #ifndef EOF
#define EOF -1
#endif

Stephan Schulz 168

Example: #ifdef

cond preproc.c:

#define hallo
#define fred barney
#define test 2+2
#if defined(hallo)
"Hallo"
#else
#ifdef fred
"Fred"
#endif
#endif
#if test
"test"
#endif

$ gcc -E cond preproc.c

5 "cond_preproc.c"
"Hallo"

"test"

Stephan Schulz 169

More on Preprocessor Definitions

You can use #undef <name> to get rid of a definition

– This is most often used to start from a clean slate:
#undef true
#undef false
#define true 1
#define false 0

– It is, however, forbidden to undefine implementation-defined names

You can use the -D option to gcc to cause certain names to be defined throughout
the process

– This is often used to select one of many alternatives for compilation
∗ With or without internal consistency checkes
∗ With or without certain features (e.g. Demo version vs. commercial version)
∗ . . .

Certain names may be predefined by the implementation (most starting with two
underscores: __FILE__, __STDC__ . . .)

Stephan Schulz 170

Combinations of #ifdef and #include

#ifdef/endif also can be used to conditionally include or exclude files

Usage: Compile for different operating systems:

#ifdef __LINUX__
#include "linux.h"
#elif defined(__BSD__)
#include "bsd.h"
#else
#include "default.h"
#endif

Usage: Guarding against multiple inclusions

#ifndef THIS_HEADER
#define THIS_HEADER
<lots of stuff>
#endif

Stephan Schulz 171

Separate Compilation

C supports the separate compliation of multiple source files

– Each source file is translated into an object file
– A linker combines different object files into the final executable

gcc by default tries to create an executable program by performing operations as
follows:

1. Preprocessing
2. Compilation (and assembly)
3. Linking

For multi-file programs, we have to perform separate compilation:

– gcc -c file.c -o file.o will compile file.c into file.o without linking
– gcc -o progname file1.o file2.o file3.o will link the three precomiled object

files into an executable

Stephan Schulz 172

Definitions and Declarations

Definitions cause the defined objects to be created

– Variable definitions allocate an appropriate amount of memory (and associate
it with the variable name)

– Function definitions cause code to be generated

Declarations only state information about an object

– For variables, they state the type
– For functions, the state return type and argument types

There can be any number of compatible declarations for an object

There can be only one definition for the object

A function or variable can only be used inside the scope of a matching declaration

Any definition also implicitly declares an object

Stephan Schulz 173

Explicit Declarations

Variables can be declared by adding the extern keyword to the syntax of a
definition:

– extern int counter;
– extern char filename[MAXPATHLEN];

Function declarations just consist of the function header, terminated by a semi-
colon:

– int isdigit(int c);
– int putchar(int c);
– bool TermComputeRWSequence(PStack p stack,Term p from,Term p to);

Alternatively, the names of the formal parameters can be omitted

– int isdigit(int);
– int putchar(int);
– bool TermComputeRWSequence(PStack p,Term p,Term p);
– However, the first form is often preferred because the paramter names may

document the purpose of the parameter

Stephan Schulz 174

Scoping Rules

There are two kinds of declarations in C

– Declarations written inside a block are called local declarations
– Declarations outside any block are global declarations

The scope of a local declaration begins at the declaration and ends at the end of
the innermost enclosing block

The scope of a global declaration begins at the declaration and continues to the
end of the source file

– Note that this refers to files after preprocessing, i.e. a declaration in a header file
also is visible in the including file (from the point of the #include statement)

Stephan Schulz 175

Scope Example

| extern int global_count;
|
| | | int abs_val (double number)
| | | {
| | | | double help = number;
| | | |
| | | | if(number < 0)
| | | | {
| | | | help = -1 * help;
| | | | global_count++;
| | | | }
| | | | }
| |
| | | int main()
| | | {
| | | printf("\%7f\n", abs_val(-1.0));
| | | }
| | |
| | | int global_count;

Stephan Schulz 176

Limiting Potential Scope

By default, all declared variables and functions are accessible from any source file
in the program

– Of course, they may have to be declared to be visible

Problems: We have no control over the use of these objects in other source files

– Reuse of libraries may fail because of namespace polution
– Unintentional or malicious misuse of internal functions may lead to program

misbehaviour

The static keyword, applied to a global definition (or declaration), limits the
accessibility of the declared object to the source file it is defined in

– static int internal help fun(int a1, int a2);

In general, it is a good idea to declare everything not expected to be used by
other program part static

Stephan Schulz 177

Lifetime and Initialization of Variables

Global variables have unlimited lifetime

– They are created and initialized when the program starts
– The expression used in the initialzation has to be constant, i.e. it has to be

fully evaluable at compile time
– If not explicitly initialized, they are guaranteed to be initialized to 0
– They keep their values until the program terminates (unless explicitely changed,

of course)

Most local variables (and function parameters) only have limited lifetime

– They are also called automatic variables and are typically allocated on the
stack

– They are created when the variable comes into scope and are destroyed when
the variable goes out of scope – in particular, each recursive call gets a fresh
copy of the variable

– The initializing expression can use all variables and functions currently in scope
– They are reinitialized every time they come into scope, if not initialized

explicitly, they contain undefined values (“junk”)

Stephan Schulz 178

Persistent Local Variables: static again

static local variables have unlimited lifetime

– They are initalized the very first time they come into scope
– They are shared between different calls to the same function
– They keep their values in between calls
– However, they can only be accessed from inside their corresponing block

Stephan Schulz 179

Example: Static and Automatic Variables
#include <stdio.h>
#include <stdlib.h>
static int global_count = 0;
void counter_fun(void)
{

static int static_count = 0;
int auto_count = 0;
int pseudo_count = global_count;

global_count++; auto_count++; static_count++; pseudo_count++;
printf("Global: %3d Auto: %3d Static: %d Pseudo: %d\n",

global_count,auto_count, static_count, pseudo_count);
}
int main(void)
{

counter_fun();
counter_fun();
global_count = 0;
counter_fun();
counter_fun();
return EXIT_SUCCESS;

}

Stephan Schulz 180

Example: Static and Automatic Variables(Contd.)

$ gcc -o vartest vartest.c
$./vartest
Global: 1 Auto: 1 Static: 1 Pseudo: 1
Global: 2 Auto: 1 Static: 2 Pseudo: 2
Global: 1 Auto: 1 Static: 3 Pseudo: 1
Global: 2 Auto: 1 Static: 4 Pseudo: 2
$

Stephan Schulz 181

Assignment

Write a data safe library offering the following functionality:

– Calling data safe(ds register, 0, 0) will return a unique random key (a
positive integer). Use rand() to generate random numbers (and man rand
to find out how).

– Calling data safe(ds store, key, value) will store the value (a positive
integer) in the data safe (under the key). It should return the value if everything
worked, -1 otherwise (e.g. if there is no space left)

– Calling data safe(ds retrieve, key, n) will retrieve the nth value stored
under the key, or -1 if less then n values have been stored under the key

– Calling data safe(ds delete, key, 0) will delete all entries stored under
key (you may then reuse key for future register calls, as long as you still
generate a random key)

– Make sure that at least 100 keys can be in use in parallel, and that at least
10000 data items can be stored in total

Make sure that the data is not accessible in any other way (using legal C)

Stephan Schulz 182

Implement the libray in its own source file, with a header file data safe.h that
contains all necessary declarations

Write a main program ds test.c that uses the library, storing 10 values under 3
different keys, retrieving them and delete them. Use a reasonably varied sequence
of storage, retrieval, and registration

Hints:

– Use static local variables to store the necessary data in the data safe()
function

– Use preprocessor #define statements to define the symbolic constants
ds register, ds store,. . .

– Be careful to avoid handing a key already in use out on registration. Carefully
design your data structures first, the operations will be simple to implement

Stephan Schulz 183

CSC322
C Programming and UNIX

Programming in C
rpn calc: An Extended Example

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Project: An RPN Calculator

Aim: A calculator program that can do simple arithmentic

– Conversion between different bases
– Addition, subtraction, multiplication...

We’ll use reverse polish notation

– Operator is written after arguments: 7 5 + = 7+5
– More complicated: 12 2 5 2 * + - = (12-(2+(5*2)))

Advantages of RPN

– Easy to understand
– Easy to implement
– No hassle with recursive parsing of parentheses and precedences
– Can easily and consistently handle operators of any arity (number of arguments)

Stephan Schulz 185

Some Sugested Operators

Arithmetic operators (others may be added):

+ Pop two numbers , add them
- Pop two numbers, subtract first from second
* Pop two numbers , multiply them
/ Pop two numbers, divide second by first
% Pop two numbers, divide second by first, giving the division rest

Non-Arithmetic operators (non-exclusive):

p Print the topmost number on the stack
o Pop topmost number on the stack, use it as new output base
i Pop topmost number on the stack, use it as new input base
S Print the whole stack (mainly for debugging)
P Print input and output bases (in decimal)

Stephan Schulz 186

Usage Example

$./rpn calc

10 8 +
S
18
3 / p
6
3 / p
2
o
p
Stack underflow error
P
Input base (decimal): 10 Output Base (decimal): 2
255
p
11111111
16 p
10000
10 o
S
255 16

Stephan Schulz 187

Implementation

Basic idea:

– Input is a sequence of numbers and operators
– If a number is read, it is pushed onto a stack
– If an operator is read, the necessary number or arguments is popped of the

stack, the operation is performed, and the result is placed in the stack

Input and output can happen in any representation from base 2-16

– There is a strong convention for representing these numbers:
∗ Digits are 0-9 with nominal value, A-F (or a-f) with values 10-15

– Input and output use independent bases (base conversion made easy)

Recognizing numbers and operators

– Any string of valid digits in the current input base is a number
– Any string starting with - and directly followed by valid digits in the current

input base is a number
– Everything else is treated as an operator

Stephan Schulz 188

Subtasks

From the above, we can identify a number of subtasks:

– Reading numbers and operators
– Printing numbers
– Handling the stack
– Executing the actual operations

Input handling is the hardest task!

– We need to read up to 2 characters to decide if we read a number or an
operator (’-+’ represents two operators, ’-1’ a number)

– Rather than handling explicit lookahead variables throughout the program, we
can build a general character I/O-library that allows us to read ahead, but to
maintain (or restore) the status of the input queue

Stephan Schulz 189

Program Organization

ctype.h stdlib.h

chario.h

integerio.h

chario.o integerio.o rpn_calc.o (libc)

rpn_calc

integerio.cchario.c

stdio.h

Link (gcc)

Compile (gcc −c)

#include

rpn_calc.c

Stephan Schulz 190

The Character I/O Library: Ideas

Main interface similar to getchar()

Read character can be “pushed back” into the input queue

Implementation:

– Internal buffer of character
– Pushed characters go into the buffer
– Reading first tries the buffer, and only reads stdio if the buffer is empty

Additional help-functions

– Look at a character, but don’t read it
– Skip while space

Stephan Schulz 191

The Character I/O Library: chario.h
#ifndef UNGETCHAR
#define UNGETCHAR
#include <stdio.h>
#include <ctype.h>
/* Maximal number of characters the can be pushed back */
#define MAX_BUFFERED_CHARS 1024

/* As getchar(), but with unget cabability (provided by PushChar() */
int GetChar(void);

/* Push back a character into the read queue. Return c or EOF if the
queue is full. */

int PushChar(int c);

/* Return the next character, but do _not_ read it */
int LookChar(void);

/* Skip over white space characters. Return the first non-white
character (but it is not removed from the queue), or EOF if the
pushback queue is full. */

int SkipSpace(void);
#endif

Stephan Schulz 192

The Character I/O Library: Global Variables and Includes

#include "chario.h"

static int char_buff[MAX_BUFFERED_CHARS];
static int buff_pos = 0;

Stephan Schulz 193

The Character I/O Library: Reading and Unreading

int GetChar(void)
{

if(buff_pos)
{

buff_pos--;
return char_buff[buff_pos];

}
return getchar();

}

int PushChar(int c)
{

if(buff_pos < MAX_BUFFERED_CHARS)
{

char_buff[buff_pos] = c;
buff_pos++;
return c;

}
return EOF;

}

Stephan Schulz 194

The Character I/O Library: Help Functions

int LookChar(void)
{

int c = GetChar();

PushChar(c);
return c;

}

int SkipSpace(void)
{

int c;

while(isspace((c=GetChar())))
{ /* Empty body */ }
return PushChar(c);

}

Stephan Schulz 195

The Integer I/O Library: Ideas

We use the same algorithms as discussed before

However, because we allow bases up to 16, we add some additional helper
functions for

– Recognizing valid digits
– Converting numerical values to character representation of digits
– Giving the numerical value of digits

Second difference: We allow negative numbers

– We cannot use -1 to signal failure
– Instead: We write a separate function that predicts the presence (or absence)

of a number in the input stream
– The calling functions have to make sure that the integer reading function is

only called if there is valid input (i.e. success is guaranteed)

Stephan Schulz 196

The Integer I/O Library: integerio.h

#include "chario.h"

/* Read an integer in base base. */
int read_int_base(int base);

/* Check if there is a integer to be read, i.e. a digit or ’-’
directly followed by a digit */

int int_available(int base);

/* Write integer in any base to stdout */
void write_int_base(int value, int base);

Stephan Schulz 197

The Integer I/O Library: Includes

#include "integerio.h"

Stephan Schulz 198

The Integer I/O Library: Helper functions 1

/* Consider c as a hexadecimal digit (0..9, a..f, A..F) and return its
numerical value. If not a valid digit, return -1 */

static int hex_digit_value(int c)
{

if(c >= ’0’ && c <= ’9’)
{

return c - ’0’;
}
if(c >= ’a’ && c <= ’f’)
{

return c - ’a’ + 10;
}
if(c >= ’A’ && c <= ’F’)
{

return c - ’A’ +10;
}
return -1;

}

Stephan Schulz 199

The Integer I/O Library: Helper functions 2

/* Check if a character c is a valid digit in base. */
static int is_base_digit(int c, int base)
{

int value = hex_digit_value(c);

if(value < 0 || value >= base)
{

return 0;
}
return 1;

}

Stephan Schulz 200

The Integer I/O Library: Helper functions 3

/* Given an int 0<= value < 16, return the Hexadecimal digit with that
value */

static int int_to_hexdigit(int value)
{

if(value<=9)
{

return value + ’0’;
}
else
{

return value - 10 + ’A’;
}

}

Stephan Schulz 201

The Integer I/O Library: Reading Integers

/* Read an integer in base base. */
int read_int_base(int base)
{

int res = 0, c, sign = 1;

if((c=GetChar())==’-’)
{

sign = -1;
}
else
{

PushChar(c); /* Unread Character */
}
while(is_base_digit((c=GetChar()),base))
{

res = (res*base)+hex_digit_value(c);
}
PushChar(c);
return res*sign;

}

Stephan Schulz 202

The Integer I/O Library: Checking for Integer Presence

/* Check if there is a integer to be read, i.e. a digit or ’-’
directly followed by a digit */

int int_available(int base)
{

int save_char , res = 0;

if(is_base_digit(LookChar(), base))
{

res = 1;
}
else if(LookChar() == ’-’)
{

save_char = GetChar();
if(is_base_digit(LookChar(), base))
{

res = 1;
}
PushChar(save_char);

}
return res;

}

Stephan Schulz 203

The Integer I/O Library: Writing Integers

/* Write integer in any base (2<= base <=16) to stdout */
void write_int_base(int value, int base)
{

int digit;

if(value < 0)
{

putchar(’-’);
value = -1*value;

}
digit = value % base;
value = value/base;

if(value!=0)
{

write_int_base(value, base);
}
putchar(int_to_hexdigit(digit));

}

Stephan Schulz 204

Exercises

Download the program from http://www.cs.miami.edu/~schulz/CSC322.
html, compile it, and read the source code. You may want to add more
operators (e.g. t to duplicate the top of the stack, s to switch the two topmost
numbers,. . .

Stephan Schulz 205

http://www.cs.miami.edu/~schulz/CSC322.html
http://www.cs.miami.edu/~schulz/CSC322.html

CSC322
C Programming and UNIX

Programming in C
rpn calc: An Extended Example (Part 2)

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Recapitulation: Some of our Library Functions

The integerio library offers functios for reading and printing integers. All
functions have a parameter base for selecting the number system (2–16, or
binary to hexadecimal)

int read int base(int base);

– Reads an integer from the standard input (using our GetChar()/PushChar()
interface), returning its value

– If no valid integer can be found, behavior is undefined!

int int available(int base);

– Returns 1 (true), if a valid integer can be read from standard input, 0 otherwise
– Does not consume any characters from the input stream!

void write int base(int value, int base);

– Prints an integer number to stdout, using the number system selected by
base

Additional function from chario.c: int SkipSpace(void)

Stephan Schulz 207

The Main Calculator Program

Aim: RPN (Postfix) calculator program

– Input: Operators and Numbers (operands)
– Numbers are pushed on a stack
– Operators pop operands and push the result of the operation
while(there is input)
{

if(input is a number)
{

num = read_number();
push(num);

}
else if(input is a valid operator)
{

pop operands, apply operator, push result;
}
else
{

print error mesage;
}

}

Stephan Schulz 208

Case Distinctions

Note: The operator determines which actions we have to perform

– This is a case distinction: Based on a single (integer) value, we have to select
one alternative

– Possible implementation:
if(value == val1)
{

action1;
}
else if((value == val2)
{

action2;
}
...
else
{

default_action;
}

Stephan Schulz 209

C Alternative: switch

switch(E)
{
case val1: action1;

break; /* Otherwise we fall through! */
case val2: action2;
... break;

default: default_action;
break;

}

E has to be an integer-valued expression

val1, val2,. . . have to be constant integer expressions

E is evaluated and the result is compared to each of the constants after the case
labels. Execution starts with the first statement after the matching case. If no
case matches, execution starts with the (optional) default case.

Note: Execution does not stop at the next case label! Use break; to break out
of the switch

Stephan Schulz 210

The Stack Abstract Datatype

A stack is a last-in first-out (LIFO) data structure

– It can store values of a given type
– Values can be pushed onto a stack
– The topmost element can be retrieved by poping it off the stack
– Typically, only the top element is accessed (enforced either by convention or

by design)
– Stacks can have a predetermined size (maximal number of elements) or grow

as needed

Stack impementation in C:

– Values are stored in an array of the correct type
– A stack pointer contains the index of the next unused cell

Stephan Schulz 211

Stack Implementation in rpn calc.c

We use a fixed maximal stack size:

#define STACKSIZE 1024

– Using a symbolic constant avoids mistyping and misreading, and allows us to
eaily change the stack size later!

Our stack data structure is realized by two variables:

– int stack[STACKSIZE]; stores the values
– int sp = 0; is the stack pointer, and initially points to the first element of
stack

Stack operations are implemented as specialized macros

Stephan Schulz 212

Pushing things onto the stack: PUSH()

/* If stack is full, print an error message,
otherwise push the value onto the stack */

#define PUSH(value) \
if(sp < STACKSIZE) \
{ \

stack[sp] = (value);\
sp++;\

}\
else\
{\

printf("Stack overflow error\n");\
}

Stephan Schulz 213

Poping values: POP OR FAIL()

/* If stack is empty, print an error message and "break;",
otherwise pop the top value into varname */

#define POP_OR_FAIL(varname) \
if(sp > 0)\
{\

sp--;\
(varname) = stack[sp];\

}\
else\
{\

printf("Stack underflow error\n");\
break;\

}

Note that the macro contains a break; statement in the error case

– Limits general usability but. . .
– . . . exits the case it is used in early!

Stephan Schulz 214

The Main Program: Prelimaries and Declarations

int main(void)
{

int num, arg1, arg2, i;
int stack[STACKSIZE];
int sp = 0, in_base = 10, out_base = 10;

SkipSpace();

The number systems to be used for input and output is determined by in base
and out base

– Both are initialized to 10 (decimal)

Note that the next character to be read is meaningful (not white space) now

– This will be a loop invariant of the main loop)

Stephan Schulz 215

The Main Loop: Overall Structure
while(LookChar()!=EOF)
{

if(int_available(in_base))
{

num = read_int_base(in_base);
PUSH(num);

}
else
{ /* Operator! */

switch(GetChar())
{
case ’o’:
... /* Handle different cases */
default:

printf("Unknown operand\n");
break;

}
}
SkipSpace();

}
return EXIT_SUCCESS;

}

Stephan Schulz 216

The Main Loop: Arithmetic operators

switch(GetChar())
{
...
case ’+’:

POP_OR_FAIL(arg2);
POP_OR_FAIL(arg1);
num = arg1+arg2;
PUSH(num);
break;

case ’-’:
POP_OR_FAIL(arg2);
POP_OR_FAIL(arg1);
num = arg1-arg2;
PUSH(num);
break;

case ’*’:
POP_OR_FAIL(arg2);
POP_OR_FAIL(arg1);
num = arg1*arg2;
PUSH(num);
break;

Stephan Schulz 217

case ’/’:
POP_OR_FAIL(arg2);
POP_OR_FAIL(arg1);
num = arg1/arg2;
PUSH(num);
break;

case ’%’:
POP_OR_FAIL(arg2);
POP_OR_FAIL(arg1);
num = arg1%arg2;
PUSH(num);
break;

...
}

Stephan Schulz 218

The Main Loop: I/O operators

switch(GetChar())
{
...
case ’p’:

POP_OR_FAIL(num);
write_int_base(num,out_base);
putchar(’\n’);
PUSH(num);
break;

case ’o’:
POP_OR_FAIL(num);
if(num < 2 || num >16)
{

printf("Only bases 2-16 (decimal) supported\n");
}
else
{

out_base = num;
}
break;

Stephan Schulz 219

case ’i’:
POP_OR_FAIL(num);
if(num < 2 || num >16)
{

printf("Only bases 2-16 (decimal) supported\n");
}
else
{

in_base = num;
}
break;

Stephan Schulz 220

case ’S’:
for(i=0; i<sp; i++)
{

write_int_base(stack[i],out_base);
putchar(’ ’);

}
putchar(’\n’);
break;

case ’P’:
printf("Input base (decimal): %d Output Base (decimal): %d\n",

in_base,out_base);
break;

...
}

Stephan Schulz 221

Manual Compilation

First, we comile all of the source files individually:

$ gcc -ansi -Wall -c -o chario.o chario.c
$ gcc -ansi -Wall -c -o integerio.o integerio.c
$ gcc -ansi -Wall -c -o rpn calc.o rpn calc.c

Then we perform the linking step:

$ gcc -ansi -Wall -o rpn calc chario.o integerio.o rpn calc.o

Now the program is ready to run:

$./rpn calc
2 o 10 p
1010

Stephan Schulz 222

UNIX User Commands: dc

dc is an arbitrary precision RPN calculator

– It handles floating point numbers (to any preselected precision)
– It handles bignums, i.e. integers tgat do not fit into any standard data type
– It has a lot of build-in functionality and can be extended by user-defined macros

Usage is quite similar to our rpn calc

For more: man dc or (particularly) info dc (or read info in emacs: [C-h i])

Stephan Schulz 223

Exercises

Read the man and info pages for dc

Play with the program

Enjoy the weekend and be merry

Note: I’ve updated the rpn calc sources on the web page to the latest version
(changes only comments and style)

Stephan Schulz 224

CSC322
C Programming and UNIX

Programming in C
More on Operators and Expressions

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Increment and Decrement Operators

C supports the unary operators ++ and -- for incrementing and decrementing
variables

– ++ increments a variable by 1
– -- decrements a variable by 1

Both can be used as prefix and postfix operators: x++ or ++x

– In both cases, x is incremented by 1
– The difference is in the value of the expression:
∗ The expression x++ has the value of x before incrementing
∗ ++x has the value of x after incrementing, i.e. it is equivalent to the

assignment x=x+1

Both forms are used, but the postfix form is more common

Stephan Schulz 226

Example

#include <stdio.h>
#include <stdlib.h>
int main(void)
{

int x,y;

x=5; y=5;
printf("x = %d y = %d\n", x, y);
printf("x++ = %d ++y = %d\n", x++, ++y);
printf("x = %d y = %d\n", x, y);
printf("x-- = %d --y = %d\n", x--, --y);
printf("x = %d y = %d\n", x, y);
return EXIT_SUCCESS;

}

Output:

x = 5 y = 5
x++ = 5 ++y = 6
x = 6 y = 6
x-- = 6 --y = 5
x = 5 y = 5

Stephan Schulz 227

Binary Number Representation

C guarantees a base 2 representation for all unsigned integer types:

– Example: 16 bit representation (short on many implementations) of 42
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

42 = 25 + 23 + 21 = 32 + 8 + 2
– If a result of an arithmetic operation results in a value not representable by the

result type, it is reduced modulo 2n, where n is the width of the result type

An unsigned number of a narrower type is converted to a wider type by adding
an appropiate number of leading zeroes:

– The 8 bit representation (char on many implementations) of 42 is:
0 0 1 0 1 0 1 0
27 26 25 24 23 22 21 20

The exact representation for signed integers is not fixed, however, positive signed
integers are guaranteed to have the same representation in signed and unsigned
types

Stephan Schulz 228

Bitwise Operators

Bitwise operators operate on the binary representation of numbers

The binary bitwise operators include

– Bitwise and (&) sets a bit in the result, if it is set in both operands:
6 & 3 == 2

– | is the bitwise or, i.e. the result bit is set, if at least one of the corresponding
bits in the input is set:
6 | 3 == 7

– ^ is the bitwise exclusive or (or xor) (the result bit is set if and only if the two
operands differ at that position):
6 ^ 3 == 5

The bitwise not (or one’s complement) toggles all bits

– The result value depends on the number format
– For 16 bit unsigned short, ~42 == 65493

Stephan Schulz 229

Bitwise Shifting

C also supports the shifting of binary numbers

The binary operator << shifts an integer value left, filling up vacant spaces with
zero: 1 << 3 == 8

– Left-shifting by n bits is equivalent to multiplication with 2n (but may be
faster on ancient compilers)

The binary operator >> shifts an integer value right

– For unsigned value, the new bits become zero
– For signed values, either zeroes are shifted in (logical shift), or the first (sign)

bit is replicated (arithmetic shift, equivalent to division by 2n)

Note: The shift operators are used seldomly

– C++ has even recycled them for I/O operations
– Binary and, or, and not, on the other hand, are used frequently to manipulate

binary flags packed into a single integer value

Stephan Schulz 230

Example

These macros can be used to set and query properties in a variable, where each
property is encoded in a single bit

#define SetProp(var, prop) ((var) = (var) | (prop))
#define DelProp(var, prop) ((var) = (var) & ~(prop))
#define FlipProp(var, prop) ((var) = (var) ^ (prop))

/* Absolutely assign properties masked by sel */
#define AssignProp(var, sel, prop) DelProp((var),(sel));\

SetProp((var),(sel)&(prop))

/* Are _all_ properties in prop set in var? */
#define QueryProp(var, prop) (((var) & (prop)) == (prop))

/* Are any properties in prop set in var? */
#define IsAnyPropSet(var, prop) ((var) & (prop))

Stephan Schulz 231

Assignment Operators

Very frequently, programming tasks require the updating of a varible, based on
it’s old value

– Frequent example: i=i+1;

In addition to the general assignment operator, C offers operators combining
update and assignment

– If <op> is a binary operator, then <op>= is the corresponding assignment
operator

– x <op>= <expr> is equivalent to x = x <op> <expr>
– This is supported for <op> ∈ { +, -, *, /, %, <<, >>, &, ^, | }

Most frequently used

– += (as in fahrenheit += 10)
– -= (e.g. in the update part of a for loop)

Stephan Schulz 232

Conditional Expressions

Similarly to conditional statements (if/else), C has conditional expressions:

– If <test>, <e1>, <e2> are expressions, then <test> ? <e1> : <e2> is
a conditional expression
∗ If <test> evaluates to true (non-zero), then <e1> is evaluated and its value

returned
∗ Otherwise, <e2> is evaluated and returned

Example 1:

#define MAX(a,b) ((a>b)?a:b)

Example 2:

printf("There %s %d item%s left\n",
(count==1)?"is":"are",
count,
(count==1)?"":"s");

Stephan Schulz 233

Expression Sequences

The coma operator separates two expressions: <expr1>, <expr2>

– Expressions are evaluated left to right
– The value of a coma-separated sequence is the value of the last expression in

it
– Don’t confuse it with the coma separating function call arguments!

Nearly only legitimate use: Initialize and update in for loops:

for(cels=0, fahr=-32; cels <= 100; cels+=5,fahr+=9)
{

printf("%3d %3d\n", cels, fahr);
}

Stephan Schulz 234

Type Conversion (Casting)

As already stated, C performs type conversion in many situations automatically

– If different numeric types are used in an expression, all values are promoted to
the “largest” type

– If a value of an unsigned integer type is assigned to a “smaller” variable of
smaller type, excess bits are dropped

– For signed types, conversion is only partially specified

In addition, values can be coerced to a different type

– A cast expression has the syntax (<type>) <value>

Example:

printf("Int: %d Float: %d\n",
(1/2)*2,
(int) (((float)1/2)*2));

Int: 0 Float: 1

Stephan Schulz 235

Exercises

Write a function that counts the number of bits that are one in an unsigned
long number (Footnote: Allegedly the NSA sponsors the inclusion of hardware to
make this operation fast in many chips because they need it for speeding up the
cracking of encrypted documents)

Rewrite imp metric to use comma-separated expressions to build the tables

Stephan Schulz 236

CSC322
C Programming and UNIX

Programming in C
Expressions and the Type System

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Getting the Size of Objects and Types

A final operator is sizeof

– sizeof can be applied to an expression or to a parenthesized type name
– Applying it to an expression is equivalent to applying it to the type of the

expression

sizeof returns the number of character-sized memory units necessary to store
an object of the type

– By definition, sizeof (char) == 1

Example:

printf("sizeof 1: %d sizeof (short)1: %d\n", sizeof 1, sizeof ((short)1));

sizeof 1: 4 sizeof (short)1: 2

Note: sizeof will be useful for dynamic memory handling

Stephan Schulz 238

Order Of Execution

In general, the order of execution of subexpressions is not defined!

Exceptions:

– &&, ||, ?:, and ,

If you need a particular order of execution, you must force it

– Since statements are executed sequentially, compute subexpression in separate
statments (assigning them to different variables)

– Other sequence points are set by the operators listed above

The example on the next page may print One Two One Two or Two One One
Two

Stephan Schulz 239

Example

#include <stdio.h>
#include <stdlib.h>

int one(void)
{

printf("One ");
return 1;

}
int two(void)
{

printf("Two ");
return 1;

}
int main(void)
{

one()+two();
one()&&two();
printf("\n");
return EXIT_SUCCESS;

}

Stephan Schulz 240

Types in C

C offers a set of basic types built into the language

We can define new, quasi-basic types as enumerations

We can construct new types using type contruction:

– Arrays over a base type
– Structures, combining different base types in one object
– Unions (can store different type values alternatively)
– Pointer to a base type

This generates a recursive type hierarchy!

– We can use new types to build further on them
– E.g. Arrays of Pointers, Structures combining unions and enumerations, . . .

Stephan Schulz 241

Basic Types

Basic types in C:

– char (typically used to represent characters)
– short
– int
– long
– long long
– float
– double

All integer types come in and unsigned variety

Stephan Schulz 242

Defining New Types with typedef

The typedef keyword is used to define new names for types in C

General syntax: If we add typedef to a variable definition, it turns into a type
definition

Examples:

unsigned long ulong; /* Define variable */
typedef long ulong_t; /* Define a new type ulong_t */
ulong_t ulong1; /* Define variable of new type */

char string[80]; /* Defining an array variable *
typedef char string_t[80]; /* Define a string type */
string_t string1; /* Define a variable of that type -- we can use

string1[32] now */

Stephan Schulz 243

Symbolic Names in the Data Safe Assignement

The data safe assignement calls for a function data safe() with three arguments

– The first argument is a symbolic method: ds register, ds store,
ds retrieve, ds delete

– We can implement this using a int argument and #define:
#define ds_register 1
#define ds_store 2
#define ds_retrieve 3
#define ds_delete 4

int data_safe(int method, int key, int value_or_index);

Problems:

– Nothing in the declaration of data safe() tells us that the int is anything
but a number

– The #define statements are independent

Wouldn’t it be nice to create a new type to reflect the intended use?

Stephan Schulz 244

Enumerations in C

Enumeration data types can represent values from a finite domain using symbolic
names

– The possible values are explictly listed in the definition of the data type
– Typically, each value can be used in only one enumeration

In C, enumerations are created using the enum keyword

In C, enumeration types are integer types

– A definition of an enumeration type just assigns numerical values to the
symbolic name

– Unless explicitely chosen otherwise, the symbolic names are numbered starting
at 0, and increasing by one for each name

– Jowever, any int value can be assigned to a variable of an enumeration type
– Likewise, we can assing any enumeration constant to any integer type variable

C enumerations have only mnemonic value, they do not enable the compiler to
catch bugs resulting from mixing up different types

Stephan Schulz 245

Enumeration Syntax

An enumeration type is defined by the enum keyword, followed by a list of
identifiers (enumeration constants) in curly brackets

The following code describes an enumeration data type for the data safe methods:

enum{ds_register, ds_store, ds_retrieve, ds_delete}

It can be used like any other type specifier:

int data_safe(enum{ds_register, ds_store, ds_retrieve, ds_delete}method,
int key, int value_or_index);

...
key = data_safe(ds_register, 0, 0);

Stephan Schulz 246

enum and typedef

Typically, enumeration data type are used to define new types

– The enum keyword describes the new type
– The typedef keyword assigns a name to the type
– The new type can then be used consistently throughout the program

Example:

typedef enum{ds_register, ds_store, ds_retrieve, ds_delete}DS_operation;

int data_safe(DS_operation method, int key, int value_or_index);

...
key = data_safe(ds_register, 0, 0);

Typically, enumerations (and other new data types) are declared in header files
(.h files), and form part of the interface of a module

Stephan Schulz 247

More on Enumerations

Since enumeration are actually integer types, we can assign specific values to the
constants

– We can even assign the same value to different constants!

Example (also note preferred form of formatting for enums):

typedef enum
{

ds_register = 1,
ds_store = 2,
ds_retrieve = 3,
ds_delete = 4,
ds_forget = 4

}DS_operation;

Stephan Schulz 248

Aggregating Data Types

Let’s again look at the data safe assignment

– We somehow have to associate a key and a value (or multiple values)
– Simple approach: Use two arrays, one for keys, one for values
– If keys[i] = key, then values[i] holds a value associated with key

However, the association between those two elements is not reflected by this
construction

– The two arrays are independent
– They can be manipulated independently
– There is not even a guaranty that both arrays have the same size!
– If we pass key and value to a function, we have to pass them as individual

elements (what if we have 132 different elements?)

Solution: Creating structures that combine different elements into one

Stephan Schulz 249

struct

A structure is a datatype that may have any number of members

– Members can have different types
– Members can have any other type (including arrays or other structures)
– Members are referred to by their name in the structure

Java analogy: A structure type is a class, but:

– No member functions
– All members are public

Structures are defined using the struct keyword, followed by an optional name
and a list of member definitions in curly braces

– Each member definition is a normal variable definition, giving type and name
of the member

Stephan Schulz 250

Structure Example

Consider the following definition:

struct key_assoc {int key; int value;} key_pair;

– It creates a variable key pair with two members
– They can be referred to by name:

key_pair.value = 10;
...
if(key_pair.key == user_key)
{

count++;
}

Stephan Schulz 251

stuct and typedef

As with enumerations, structures are usually used with typedef:

typedef struct key_assoc
{

int key;
int value;

} key_pair_t;

static key_pair_t key_value_array[10000];

– The first definition defines a new type, key pair t
– The second one creates an array of 10000 of these pairs

Using the name (struct key assoc), we can refer to the array even before we
have seen the full definition

– Important for self-referential data types using pointers

Stephan Schulz 252

Exercises

Create a function that has two primary colours (red, blue, yellow) as input, and
returns the colour that results from mixing them

– Use an enumeration type for the colours
– Use an struct to hold triples (colour1, colour2, mix) and an array to store all

associations
– You can use linear search to find matching patterns for your input

Stephan Schulz 253

CSC322
C Programming and UNIX

Programming in C
Data Structures and Pointers

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Representing Related Objects

Assume the following problem:

– In a drawing program, we need to represent geometrical shapes (circles, squares,
rectangles, triangles...)

– There is some common information for all shapes:
∗ Border colour
∗ Line width
∗ Fill colour (if any)

– However, the coordinates are different for each shape:
∗ For a circle, we need center point and radius
∗ For a square or rectangle we need two corners
∗ For a triangle we need three corners

Object-oriented languages allow a base class shape, and derived classes for the
different shapes

– In C, we have to program this explicitely, using unions!

Stephan Schulz 255

Unions

Unions of base types allow the new type to store one value of any of its base
types (but only one at a time)

The syntax is analogous to that of structures:

– The keyword union is followed by a list of member definitions in curly braces

Example

– union {int i; float f; char *str;} numval
– numval can store either an integer or a floating point number, or a pointer to

a character (normally a string)
– Access is as for structures: numval.i is the integer value

Note: Unions weaken the type system:

– numval.f=1.0; printf("%d\n",numval.i);
– Situations like that are, in general, impossible to detect at compile time

Stephan Schulz 256

Shape Example Continued (1)
typedef enum
{

circle,
square,
rectangle,
triangle

}ShapeType;

typedef enum
{

red,
green,
blue,
black, white

}ColourType

typedef struct
{

int center_x;
int center_y;
int radius;

}CircleCoord;

Stephan Schulz 257

Shape Example Continued (2)

typedef struct
{

int lower_left_x;
int lower_left_y;
int upper_right_x;
int upper_right_y;

}RectangleCoord;

typedef RectangleCoord SquareCoord;

typedef struct
{

int point1_x;
int point1_y;
int point2_x;
int point2_y;
int point3_x;
int point4_y;

}TriangleCoord;

Stephan Schulz 258

Shape Example Continued (3)

typedef union
{

CircleCoord circle_coord;
RectangleCoord rect_coord;
SquareCoord square_coord;
TriangleCoord tria_coord;

}ShapeCoord;

typedef struct
{

ShapeType type;
int border_width;
ColourType border_colour;
ColourType fill_colour;
ShapeCoord coords;

}Shape;

Stephan Schulz 259

Shape Example Continued (4)
void draw_shape(Shape draw_obj)
{

switch(draw_obj.type)
{
case circle:

draw_circle(draw_obj.coords.circle_coord.center_x,
draw_obj.coords.circle_coord.center_y,
draw_obj.coords.circle_coord.radius,
draw_obj.border_width,
draw_obj.border_colour,
draw_obj.fill_colour);

break;
case square:

draw_square(draw_obj.coords.square_coord.lower_left_x,
draw_obj.coords.square_coord.lower_left_y,
draw_obj.coords.square_coord.upper_right_x,
draw_obj.coords.square_coord.upper_right_y,
draw_obj.border_width,
draw_obj.border_colour,
draw_obj.fill_colour);

break;
...

Stephan Schulz 260

Pointers

Pointers are derived types of a base type

– A pointer is the memory address of an object of the base type
– Given a pointer, we can manipulate the object pointed to

Notice that there are two parts to a pointer:

– The actual memory address (a dynamic feature in the running program)
– The type of the pointer (pointer to int, pointer to Shape. . .) telling us how

to interprete the data at that address (a static feature that can be determined
at compile time)

C uses the unary * to define variables of pointer types:

– int *count; defines the variable count as a pointer to int
– Notice that this pointer does not contain a valid address - there is no object

of type int created along with the pointer!
– Pointers can be defined for any valid type in C: struct{double real;double
imag;} *complex defines complex as a pointer to the struct

Stephan Schulz 261

Basic Pointer Operations in C

The most basic operations on pointers are:

– Given an object, return a pointer to it
– Given a pointer, give the object it points to (dereference the pointer)

C uses the unary * operator for both pointer definition and pointer dereferencing,
and & for getting the adress of an existing object

– int var;int *p; defines var to be a variable of type int and p to be a
variable of type pointer to int

– p = &var makes p point to var (i.e. p now stores the address of var)
– *p = 17; assigns 17 to the int object that p points to (in our example, it

would set var to 17)
– Note that &(*p) == p always is true for a pointer variable pointing to a valid

object, as is *(&var)==var for an arbitrary variable!

Stephan Schulz 262

Pointers - A simple Example

#include <stdio.h>
#include <stdlib.h>

void swap(int *x, int *y)
{

int z;

z =*x;
*x =*y;
*y = z;

}

int main(void)
{

int var1=7, var2=42;

printf("var1: %d var2: %d\n", var1, var2);
swap(&var1, &var2);
printf("var1: %d var2: %d\n", var1, var2);
return EXIT_SUCCESS;

}

Stephan Schulz 263

Example Continued

Output of the program:

var1: 7 var2: 42
var1: 42 var2: 7

Note that this technique is an example of a frequent way to simulate call by
reference in C

– Instead of passing an object, we pass a reference to it
– Allows changes to the object inside the function
– Often cheaper (especially for big objects)

Stephan Schulz 264

Why Pointers?

The are two main reasons for using pointers:

– Efficiency
– Dynamically growing data structures

Efficiency Aspects

– Pointers are typically represented by one machine word
– Storing pointers instead of copies of large objects safes memories
– Passing pointers instead of large objects is much more efficient

Dynamically growing data structures

– Each data type has a fixed size and memory layout
– Pointers allow us to build dynamically growing data structures by adding and

removing fixed size cells

Stephan Schulz 265

Pointing at Nothing and Pointing Nowhere

Pointers of type void* are a special case:

– A void* pointer is a generic pointer, without associated base type
– void* pointers can be assigned to variables of any other pointer type (and

vice versa)
– Such pointers are used for primarily for dynamic memory handling

C has a special, reserved NULL pointer of type void*

– The NULL pointer is guranteed to be different from all pointers pointing to
legitimate objects

– It can be written as plain 0 (in a pointer context)
– stdlib.h defines a symbolic namen, NULL, for the NULL pointer
– Dereferencing NULL is illegal!
– Notice that NULL is considered to be false if used in logical expressions
– Note: For most current machines, the NULL pointer actually is address 0.

However, this is not guaranteed (and is false for some machines with strange
memory models)

Stephan Schulz 266

Exercises

Write a program that prints the sizes of various build-in and self-defined data
types (e.g. the Shape type and its subtypes). Do you see a relation between
them?

Write a program that uses swap() to sort an array of integers and print it. If
you feel adventurous, use read int base() from the rpn calc example (or a
similar function) to read integers to fill the array

Notes

Please email the TA, Raghu, at his UMiami address,raghu@lee.cs.miami.edu
from now on

Your grades for the assignments will be placed into your home directories

Solutions to the prime number assignment will be available shortly after noon

Stephan Schulz 267

raghu@lee.cs.miami.edu

CSC322
C Programming and UNIX

Programming in C
Dynamic Data Structures

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Refresher: Pointers

A pointer type is a derived type of a base type

– A pointer is the address of an object of the base type
– Given a pointer p, *p gives us the object it points to
– Given an object o, &o gives us a pointer to that object in memory

An object of type void* is a generic pointer (i.e. a plain address without
associated base type)

– A pointer of type void* can be assigned to a variable of any other pointer
type

– Similarly, a value of any pointer type can be assigned to a void* variable

The special value NULL is a pointer of type void*

– It is guaranteed different from all pointers to valid object
– Its logical value is false, while that of all other pointers is true

Stephan Schulz 269

Dynamic Memory Handling

The C library offers functions for dynamic memory handling

– We can request a block of memory of a certain size
– If such a block is available, we will get a void* pointer to it
– This block can be used to store any object that fits into it
– If we do not need that object anymore, we can return it to the library

Such blocks can be used to build arbitray sized data structures

– . . . e.g. by allocating bigger and bigger arrays if the need arrises
– . . . or by using pointers within a structure to point to additional structures

(which may contain further pointers)

Stephan Schulz 270

The malloc() function

We request a block of memory using malloc() (declared in <stdlib.h>)

– It’s declared as void *malloc(size t size);, i.e. it returns a generic
pointer

– size t is a new data type from the standard library. It’s guaranteed to be an
unsigned integer data type (often unsigned int)

– malloc() allocates a region big enough to hold the requested number of bytes
on the heap (a reserved memory region) and returns the address of the first
byte (a pointer to that region)

– The sizeof operator is used to get the necessary size for the object datatype
- p = malloc(sizeof(int)); allocates a memory region big enough to store

an integer and makes p point to it
- The void* pointer is silently converted to a pointer to int

– If no memory is available on the heap, malloc() will return the NULL pointer
(also written as plain 0)

Stephan Schulz 271

Freeing Allocated Memory

The counterpart to malloc() is free()

– It is declared in <stdlib.h> as
void free(void* ptr);

– free() takes a pointer allocated with malloc() and returns the memory to
the heap

Note that it is a bug to call free() with a pointer not obtained by calling
malloc() (i.e. a pointer generated by applying & to a variable)

It also is a bug to call free() with the same pointer more than once

Stephan Schulz 272

More on Dynamic Memory Allocation

Good programming practice always checks if malloc() succeeded (i.e. returns
not NULL)

– In multi-tasking systems, even small allocations may fail, because other pro-
cesses consume resources

– The OS may limit memory usage to small values
– Failing to implement that chack can lead to erratic and non-reproducable

failure!

Similarly, each call to malloc() should (eventually) be followed by a call to
free() for the pointer obtained

– If you do not know if you still need a piece of memory, or if a pointer still
points somewhere, you are in deep trouble, anyways!

– By consequently freeing all allocated memory, you can easily check if you
return the same number of block you allocate!

Stephan Schulz 273

Pointers are a Mixed Blessing!

Dangling pointers

– A dangling pointer is a pointer not pointing to a valid object
– A call to free() leaves the pointer dangling (the pointer variable still holds

the adress of a block of memory, but we are no longer allowed to use it)
– Copying a pointer may also lead to additional dangling pointer if we call
free() on one of the copies

– Trying to access a dangling pointer typcially causes hard to find errors, including
crashes

Memory leaks

– A memory leak is a situation where we lose the reference to an allocated piece
of memory:

p = malloc(100000 * sizeof(int));
p = NULL; /* We just lost a huge gob of memory! */

– Memory leaks can cause programs to eventually run out of memory
– Periodically occurring leaks are catastophic for server programs!

Stephan Schulz 274

Example: SecureMalloc()

Note: In my programs, there is typically at most a single call to malloc():

void* SecureMalloc(size_t size)
{

void* res = malloc(size);

if(!res)
{

printf("malloc() failure -- out of memory?");
exit(EXIT_FAILURE);

}
return res;

}

Stephan Schulz 275

Pointers and Structures/Unions

Most interesting data strucures use pointers to structures

– Examples: Linear lists (see below), binary trees, terms,. . .

Most frequent operation: Given a pointer, access one of the elements of the
structure (or union) pointed to

– (*list).value = 0;
– Note that that requires parentheses in C

More intuitive alternative:

– The -> operator combines dereferencing and selection
– list->value = 0;
– This is the preferred form (and seen nearly exclusively in many programs)

Stephan Schulz 276

Example: Linear Lists (of Integers)

A list over a can be recursively defined as follows:

– The empty list is a list
– If l is a list and e is an element of the base type, then e . l is a list

We can represent that in C as follows:

– The empty list is represented by the NULL pointer
– A non-empty list is represented by a pointer to a struct containing the

element and a pointer to the rest of a list

Some list operations:

– Insert an element as the first element
– Insert an element as the last element
– Print the list elements in order
– Free the memory taken up by a list

Stephan Schulz 277

Example Continued

Graphical representation of the list structure for (7,9,13):

NULL7 9 13

Notice the anchor of the list

Stephan Schulz 278

Example – Declarations

#ifndef INT_LISTS
#define INT_LISTS
#include <stdlib.h>
#include <stdio.h>

typedef struct int_list_cell
{

int value;
struct int_list_cell *next;

}IntListCell;

typedef IntListCell *IntList_p;

void* SecureMalloc(size_t size);

void IntListInsertFirst(IntList_p *list, int new_val);
void IntListInsertLast(IntList_p *list, int new_val);
void IntListFree(IntList_p list);
void IntListPrint(IntList_p list);

#endif

Stephan Schulz 279

Example – Inserting At the Front

/* Insert a new integer as the first element of an integer list */

void IntListInsertFirst(IntList_p *list, int new_val)
{

IntList_p handle;

handle = SecureMalloc(sizeof (IntListCell));
handle->value = new_val;
handle->next = *list;
*list = handle;

}

Stephan Schulz 280

Example – Inserting At the End

/* Insert a new integer as the last element of an integer list */

void IntListInsertLast(IntList_p *list, int new_val)
{

IntList_p handle, last;

handle = SecureMalloc(sizeof (IntListCell));
handle->value = new_val;
handle->next = NULL;

if(!*list)
{

*list = handle;
}
else
{

last = find_last_element(*list);
last->next = handle;

}
}

Stephan Schulz 281

Example – Helper Function

//* Helper function: Given a non-empty list, return last element */

IntList_p find_last_element(IntList_p list)
{

if(list->next)
{

return find_last_element(list->next);
}
return list;

}

Stephan Schulz 282

Example – Freeing Lists

/* Free the memory taken up by a list */

void IntListFree(IntList_p list)
{

if(list)
{

IntListFree(list->next); /* Free rest */
free(list); /* Free this cell */

}
}

Stephan Schulz 283

Example – Printing Lists

/* Print a list as a sequence of numbers */

void IntListPrint(IntList_p list)
{

IntList_p handle;

for(handle = list; handle; handle = handle->next)
{

printf("%d ", handle->value);
}
putchar(’\n’);

}

Stephan Schulz 284

Example – Main Function
int main(void)
{

int value;
IntList_p list1 = NULL, list2 = NULL;

SkipSpace();
while(int_available(10))
{

value = read_int_base(10);
IntListInsertFirst(&list1, value);
IntListInsertLast(&list2, value);
SkipSpace();

}
printf("List1: ");
IntListPrint(list1);
printf("List2: ");
IntListPrint(list2);

IntListFree(list1);
IntListFree(list2);
return EXIT_SUCCESS;

}

Stephan Schulz 285

Assignment

A binary search tree is either empty, or it consist of a node storing a key (the root
of the tree), and a left and right subtree, such that all keys in the left subtree
are smaller than the key in the node, and all keys in the right subtree are bigger

– To print a tree in (left-to-right) preorder, you first print the root, then the left
subtree, then the right subtree

– To print a tree in (left-to-right) postorder, you first print the left subtree, then
the right subtree, then the root

– To print a tree in natural order, you first print the left tree, then the root, then
the right tree

Design a data structure for binary search trees with int keys, using dynamic
memory handling

Implement functions to:

– Insert keys into the tree (ignoring keys already in the tree)
– Print a tree in preorder, natural order, and postorder
– Free the memory taken up by the tree

Stephan Schulz 286

Use this datatype and the functions from integerio to write a program that
reads a list of integers from stdin into a tree, and prints that tree in the three
different orders

You can use the code from the linear list example as a base. The complete code
will be available from the course homepage

Stephan Schulz 287

CSC322
C Programming and UNIX

Programming in C
Pointers and Arrays

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Midterm Examn

Monday, Oct. 14th, 11:00 – 11:50

Topics: Everything we did so far

– UNIX file system layout
– Simple UNIX utilities
– Job Control
– Basic C
– Compilation and the preprocessor
– C flow control and functions
– Data structures in C
– Pointers

Friday we will refresh some of that stuff (but do reread the lecture notes yourself,
and check the example solutions on the web)

Stephan Schulz 289

Refresher: Pointers

A pointer type is a derived type of a base type

– A pointer is the address of an object of the base type
– Given a pointer p, *p gives us the object it points to
– Given an object o, &o gives us a pointer to that object in memory

An object of type void* is a generic pointer (i.e. a plain address without
associated base type)

– A pointer of type void* can be assigned to a variable of any other pointer
type

– Similarly, a value of any pointer type can be assigned to a void* variable

The special value NULL is a pointer of type void*

– It is guaranteed different from all pointers to valid object
– Its logical value is false, while that of all other pointers is true

Stephan Schulz 290

Refresher: Dynamic Memory Handling

void* malloc(size t size); is a function from <stdlib.h>

– It will return a pointer to an otherwise unused block of memory with at least
size bytes (or NULL if no memory is available)

– Typical use: int *p = malloc(sizeof(int));

void free(void* ptr); is the counterpart to malloc()

– It takes a pointer to a block allocated with malloc() and returns the block
to the heap

– It is a (usually fatal) bug to call free() more than once for the same block,
or with a pointer not obtained from malloc()

Very frequent case: Allocation of memory for structs

– Accessing elements in a struct: (*list).value = 0;
– More readable alternative: list->value = 0;

Stephan Schulz 291

Pointers and Arrays in C

In C, arrays and pointers are strongly related:

– Everwhere except in a definition and the left hand side of an assignment, an
array is equivalent to a pointer to its first element

– In particular, arrays are passed to functions by passing their address!
– More exactly: An array degenerates to a pointer if passed or used in pointer

contexts

Not only can we treat arrays as pointers, we can also apply array operations to
pointers:

– If p is a pointer to the first element of an array, we can use p[3] to access
the third element of that array

– In general, if p points to some memory address corresponding to an array
element a[j], p[i] points to a[j+i]

Stephan Schulz 292

Graphic Example

array[0]

array[9]

...

...

...

a
b

10
11

10

 int array[10];
 int *a, *b;

 a = array;
 b = &(array[0]);

 array[0] = 10;
 a[1] = 11;
 b[3] = *a;

Stephan Schulz 293

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char a[] = "CSC322\n";
char *b;
int i;

b=a;

printf(b);
for(i=0;b[i];i++)
{

printf("Character %d: %c\n", i, b[i]);
}
return EXIT_SUCCESS;

}

Stephan Schulz 294

Example Output

Compiling: gcc -o csc322 csc322.c

Running:

CSC322
Character 0: C
Character 1: S
Character 2: C
Character 3: 3
Character 4: 2
Character 5: 2
Character 6:

Stephan Schulz 295

Parameter Passing in C

In C, parameters to functions are always passed by value

– The formal parameter (in the function) is a local variable
– It is initialized to the value of the actual parameter (the expression we used in

the function call)
– Changing the local variable in the function does not change the formal

parameter

Arrays degenerate into pointers to the first element, however!

– That pointer is still passed by value, however, in effect the array is passed by
reference

– We can thus change the array elements from inside the function!

This is frequently used for efficient array manipulation!

– Sorting arrays
– Reading elements into an array from stdin
– Applying a transformation to all elements

Stephan Schulz 296

Example

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
void upcase(char *string)
{

int i;

for(i=0; string[i]; i++)
{

string[i] = toupper(string[i]);
}

}
int main(void)
{

char str[] = "A test string.";

printf("%s\n", str);
upcase(str);
printf("%s\n", str);
return EXIT_SUCCESS;

}

Stephan Schulz 297

Example Output

A test string.
A TEST STRING.

Stephan Schulz 298

CSC322
C Programming and UNIX

Midterm Review

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

UNIX Concepts

UNIX is a multi-user system

– Users hava a user name, a numerical user id (e.g. 500), and a home directory
– The privileged user root with UID 0 has (essentially) unlimited access

UNIX is a multi-tasking system, i.e. it can run multiple programs at once. A
running program (with its data) is called a process. Each process has:

– Owner (a user)
– Working directory (a place in the file system)
– Various resources

A shell is a command interpreter, i.e. a process accepting and executing commands
from a user.

– A shell is typically owned by the user using it
– The initial working directory of a shell is typically the users home directory

(but can be changed by commands)

Stephan Schulz 300

The File System

dev tmp usrbin etc home
(Devices) (Configuration) (Home directories) (Temporary files)

/

cp ls ps hda hdb kbd passwd hosts joe jane schulz
(Private files)

local lib bin

lib bincore Desktop

(Vendor) (Vendor)

(Root directory)

(System programs) (User programs)

(Site−installed)

In UNIX, all files are organized in a single directory tree

There are two main types of files:

– Plain files (containing data)
– Directories, containing both plain files (optionally) and other directories

Stephan Schulz 301

Globbing

Glob patterns describe sets of file names

A string is a wildcard pattern if it contains one of ?, * or [

A wildcard pattern expands into all file names matching it

– A normal letter in a pattern matches itself
– A ? in a pattern matches any one letter
– A * in a pattern matches any string
– A pattern [l1. . . ln] matches any one of the enclosed letters (exception: ! as

the first letter)
– A pattern [!l1. . . ln] matches any one of the characters not in the set
– A leading . in a filename is never matched by anything except an explicit

leading dot

Important: Globbing is performed by the shell, not an application program!

Stephan Schulz 302

Some Important UNIX Commands (1)

Orientation and moving around

– whoami
– pwd – print working directory
– cd – change directory
– ls – list files (Important options: -a, -l)

Operating on files

– cat – concatenate and print files
– less and more – print files page by page
– touch – change access dates (or create empty files)
– mv – move files
– cp – copy files
– rm – remove files
– wc – count words (and lines and characters)

Stephan Schulz 303

Some Important UNIX Commands (2)

Working on Directories:

– mkdir – make a new directory
– rmdir – remove an empty directory

Miscellanous

– man – read the manual (-k: Search for keywords in the manual)
– info – read info format documentation (also available through emacs
– echo – Print arguments
– grep – Search lines matching a regular expression

Stephan Schulz 304

Input and Output Redirection, Piping

The three standard UNIX IO channels are

– stdin (Standard Input)
– stdout (Standard Output)
– stderr (Errors)

Normal output redirection redirects stdout into a file:

Input redirection makes stdin read from a file

Piping connects one processes stdout to the stdin of another process

cat > newfile # Read stdin, write to newfile
cat < newfile # Read newfile, write to terminal
cat > newfile < oldfile # Poor man’s copy
cat newfile | wc # Count words in newfile

Stephan Schulz 305

Process Control

Processes started from the shell can be

– Running or Suspended
– In the foreground (accepting keyboard input) or in the background

Simple process control:

– Running a command followed by & starts it in the background (normally
commands are executed in the foreground)

– ^Z (Control-Z) will suspend a foreground process
– ^C (Control-C) will terminate it
– fg wakes a suspended process and puts it into the foreground
– bg puts it into the background
– kill can be used to terminate it
– jobs prints a list of active processes started from a shell

Stephan Schulz 306

C Compiling with gcc

Programs consisting of a single .c file can be compiled in one step

– gcc -o file file.c will compile file.c into an executable program file

Multiple C files must be compiled and linked separately!

– gcc -c -o file1.o file1.c compiles the file into an object (.o) file
– gcc -o file file1.o file2.o... links the different object files together to form an

executable

Important gcc options:

– -o <name>: Give the name of the output file
– -ansi: Compile strict ANSI-89 C only
– -Wall: Warn about all dubious lines
– -c: Don’t perform linking, just generate a (linkable) object file
– -O – -O6: Use increasing levels of optimization to generate faster executables

Stephan Schulz 307

C Datatypes

The language offers a set of basic types built into the language

– char, short, int, long, long long
– float, double
– Integer data types come in signed and unsigned variety!

We can define new, quasi-basic types as enumerations (enum)

We can derive new types as follows:

– Arrays over a base type ([])
– Structures combining base types (struct)
– Unions (able to store alternative types) (union)
– Pointer to a base type (*)

typedef is used to define named new types

Stephan Schulz 308

Flow Control

if...else

– Conditional execution

switch

– Select between many alternatives, based on a single integer type variable
– Remember fall through property and break;!

while

– Loop as long as a condition is true

for

– As while, but included initialization and update in a single statement

Stephan Schulz 309

Functions

Any C program is a collection of functions

– There has to be exactly one function called main() in the program
– Execution starts by a call to main() (executed by the OS)
– A function definition consists of a header and a body

The header consists of:

– The return type of the function
– The name of the function
– A parenthesized list of formal arguments

The body of the function is a sequence of declarations and statements

– Execution of the function ends when a return statement is encountered or
the end of the body is reaches

– The argument of the return statement is the value returned from the function
call

Stephan Schulz 310

C Preprocessor

The #include directive is used to include other files (the contents of the named
file replaces the #include directive)

The #define directive is used to define macros

– Macros can simply define a textual constant
– Macros can have formal arguments, which will be instanciated in the replace-

ment text

#if/#else/#endif is used for conditional compilaton

– The controlling expression of the #if has to be a constant integer expression
– Special case: #ifdef tests if a macro is defined
– Special case: #ifndef tests if a macro is not defined

Stephan Schulz 311

Exercises

Reread the lecture notes

Download the C examples from the Web

– Read the code
– Compile them by hand
– Run them

Stephan Schulz 312

CSC322
C Programming and UNIX

Programming in C
Dynamic Arrays and Pointer Arithmetic

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Dynamically Allocated Arrays

Since pointers and arrays can be used interchangably in many contexts, we can
use malloc() to allocate arrays of whatever size we need!

– The size of an array of n elements of type t is just n*sizeof(t)

Applications:

– We can allocate arrays in a function and return pointers to them (remember
that local variables are destroyed when control leaves a function)

– We can determine array size at run time
– We can dynamically increase array size by:
∗ Allocating a bigger array
∗ Copying the old array into the initial part of the new array
∗ Freeing the old array

Stephan Schulz 314

Example
#include <stdio.h>
#include <stdlib.h>
#define BUF_SIZE 1024
int main(void)
{

int c, count=0;
char* buffer;

buffer = malloc(sizeof(char)*BUF_SIZE);/* Missing check! */
while((c=getchar())!=EOF)
{

if(count == BUF_SIZE-1)
{

printf("Buffer full\n"); exit(EXIT_FAILURE);
}
buffer[count++] = c;

}
buffer[count] = ’\0’;
printf("%s\n", buffer);
free(buffer);
return EXIT_SUCCESS;

}

Stephan Schulz 315

Changing Allocated Block Size: realloc()

void* realloc(void* ptr, size t size); is defined in <stdlib.h>

– It’s first argument is a pointer to a block of memory on the heap (obtained
with malloc(), realloc(), or an equivalent function)

– The second argument is a desired new size of the block
– realloc() returns a pointer to a new block of memory, of the desired size (if

available, otherwise NULL)
– If realloc() is successfull, the initial part of the new block (up to the smaller

of the two sizes) will be identical to the old block

Special cases:

– if ptr is NULL, realloc() is equivalent to malloc()
– If size is NULL, realloc() is equivalent to free
– As with malloc(), we always have to check the return value!

Most common use: Increase the size of some array

Stephan Schulz 316

Example: Growing the Buffer as Needed
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

int c, count=0, size = 2;
char* buffer;

buffer = malloc(sizeof(char)*size); /* Missing check! */
while((c=getchar())!=EOF)
{

if(count == size - 1)
{

size = size * 2;
buffer = realloc(buffer, size); /* Missing check! */

}
buffer[count++] = c;

}
buffer[count] = ’\0’;
printf("%s\n", buffer);
free(buffer);
return EXIT_SUCCESS;

}

Stephan Schulz 317

Additional Pointer Properties

Pointers of the same type can be compared using <, >, <=, >=

– The result is only defined, when both pointers point at elements in the
same array or struct, or if both pointers point to addresses within the same
malloc()ed block

– Pointers to elements with a smaller index are smaller than pointers to elements
with a larger index

Pointer arithmetic allows addition of integers to (non-void) pointers

– If p points to element n in an array, p+k points to element n+k
– As a special case, p[n] and *(p+n) can again be used interchangably (and

often are in practice)
– Most frequent case: Use p++ to advance a pointer to the next element in an

array
– Note that pointer arithmetic only works on non-void pointers

Stephan Schulz 318

Pointer Arithmetic
char arr1[28]

a

b
c
d
e
f
g
h
i

j
k

l
m

n
o

p
q
r

s
t

u
v

w
x
y
z
0

cp

\0

cp+1
cp+2

cq=cp+12

int arr2[7]

17

42

−13

−1

ip

2147483647

1024

2

p+1

iq

iq+2

&ip[2]

=ip+3

char *cp, *cq;

int *ip, *iq;

Stephan Schulz 319

Pointer Arithmetic Example

#include <stdlib.h>
#include <stdio.h>
int print_str(char *string)
{

int i = 0;
while(*string)
{

putchar(*string);
string++;
i++;

}
return i;

}
int main(int argc, char* argv[])
{

char message[] = "Hello World!\n";
int count;
count = print_str(message);
printf("Printed %d characters!\n", count);
return EXIT_SUCCESS;

}

Stephan Schulz 320

Reading the Command Line: argc and argv

The C standard defines a standardized way for a program to access its (command
line) arguments: main() can be defined with two additional arguments

– int argc gives the number of arguments (including the program name)
– char *argv[] is an array of pointers to character strings each corresponding

to a command line argument

Since the name under which the program was called is included among its
arguments, argc is always at least one

– argv[0] is the program name
– argv[argc-1] is the last argument
– argv[argc] is guranteed to be NULL

Stephan Schulz 321

Example: Echoing Arguments

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argv[])
{

int i;

for(i=1; i<argc; i++)
{

printf("%s ", argv[i]);
}
putchar(’\n’);

return EXIT_SUCCESS;
}

Stephan Schulz 322

Example: Echoing Arguments – Idiomatic

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argv[])
{

char **p;

for(p=argv+1; *p; p++)
{

printf("%s ", *p);
}
putchar(’\n’);

return EXIT_SUCCESS;
}

Stephan Schulz 323

Exercises

Write a function that reads a line (terminated by ’\n’) into an array, and a
program that reads files line by line and prints it back. You can assume a
reasonable fixed length (e.g. 1024 characters) per line

Write a library that implements a dynamic array type for char arrays.

– Implement functions that can assign and retrieve values from arbitrary positions,
e.g. void darrayassign(darray p array, int index, char newval)
and char darrayvalue(darray p array, int index)

– Write a function darrayalloc() that returns a pointer to a freshly allocated
dynamic array

– Write a function darrayfree() that frees such an array
– Hint: Use a struct that contains at least a pointer to the dynamically

allocated proper array and the currently allocated array size. If an index
greater than the size occurs, use realloc() to increase the size

Put the two together: Write a function that can read a line of any length and
returns (a pointer to) it

Stephan Schulz 324

CSC322
C Programming and UNIX

Making Programming Easier

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

The rpn calc Example

ctype.h stdlib.h

chario.h

integerio.h

chario.o integerio.o rpn_calc.o (libc)

rpn_calc

integerio.cchario.c

stdio.h

Link (gcc)

Compile (gcc −c)

#include

rpn_calc.c

Stephan Schulz 326

The rpn calc Example (Simplified)

chario.h

integerio.h

chario.o integerio.o rpn_calc.o

rpn_calc

integerio.cchario.c rpn_calc.c

Stephan Schulz 327

Program Dependencies

In the example, changing one file may make many steps necessary to propagate
the change

– If any .h file has been changed, all .c files that include it may have to be
recompiled

– If any .c file has changed, it has to be recompiled
– If any .o file has changed, we need to relink the program
– In more complex programs, even more such situations exist!

Recompiling all files and relinking (in the right order) solves the problem. . .

– Very expensive for large programs
∗ Mozilla, Windows NT: Many hours
∗ Linux kernel (on modern machine): Many minutes
∗ E theorem prover: 1-2 minutes

– We still need to know the right order!

Recompiling by hand is error-prone (and inconvenient)

Stephan Schulz 328

UNIX User Utilities: make

make is a UNIX utility that can automatically update large projects with complex
dependencies

– Dependencies and build instructions are described in a file called Makefile
(preferred form) or makefile

A makefile contains a number of rules for rebuilding the project

A rule consist of a target, a list of prerequisites, and commands for rebuilding

– The target normally is a file that needs rebuilding
– The prerequisites are all files that are needed to rebuild the target
– Finally, the commands describe how to rebuild the target

Semantics:

– Execution begins with the first target (or a target given on the command line)
– First, rules for all prerequisites are activated (if any)
– Then, if the target does not exist, or if any of the prerequisites is younger than

the target, the commands are executed

Stephan Schulz 329

Example: rpn calc makefile

Relink rpn_calc if one of the object files changed
rpn_calc: chario.o integerio.o rpn_calc.o

gcc -ansi -Wall -o rpn_calc chario.o integerio.o rpn_calc.o

Recompile chario if either the .h or the .h changed
chario.o: chario.h chario.c

gcc -ansi -Wall -c -o chario.o chario.c

#...
integerio.o: chario.h integerio.h integerio.c

gcc -ansi -Wall -c -o integerio.o integerio.c

#...
rpn_calc.o: integerio.h chario.h rpn_calc.c

gcc -Wall -ansi -c -o rpn_calc.o rpn_calc.c

General format:
#
TARGET: PREREQUISITES
[TAB] command1
[TAB] command2 ...

Stephan Schulz 330

Built-In Rules and Makefile Variables

make knows how to remake many types of files!

– In particular, make knows how to run the C compiler to build object (.o) files
from .c files

We could have omitted the comiler command e.g. from the rule for chario.o:

chario.o: chario.h chario.c

make allows the use of variables, both for custimization and for more compact
makefiles

– Variables are set using the assignment operator:
RPN=chario.o integerio.o rpn_calc.o

– Variables are referenced using a $: $(RPN)

Important predefined variables:

– CC: Name of the C compiler
– CFLAGS: Additional flags for the C compiler

Stephan Schulz 331

Example: rpn calc makefile revisited

CC=gcc
CFLAGS=-Wall -ansi -O6

RPN=chario.o integerio.o rpn_calc.o
Relink rpn_calc if one of the object files changed
rpn_calc: chario.o integerio.o rpn_calc.o

gcc -ansi -Wall -o rpn_calc $(RPN)
chario.o: chario.h chario.c
integerio.o: chario.h integerio.h integerio.c
rpn_calc.o: integerio.h chario.h rpn_calc.c

Rebuilding from scratch:

$ rm *.o
$ make
gcc -Wall -ansi -O6 -c -o chario.o chario.c
gcc -Wall -ansi -O6 -c -o integerio.o integerio.c
gcc -Wall -ansi -O6 -c -o rpn calc.o rpn calc.c
gcc -ansi -Wall -o rpn calc chario.o integerio.o rpn calc.o

Stephan Schulz 332

Phony Targets

Not all targets need to correspond to files

– Targets not corresponding to a file are called phony
– Since no corresponding file exists, commands in rules with phony targets are

always executed

Frequent use: Cleanup commands

clean:
rm *.o
rm rpn_calc

Stephan Schulz 333

Assignment

Write a program sort csc322 that reads an arbitray length file line by line
(allowing for arbitrary line length), sort the lines in ASCIIbetical order, and prints
it back

– Order: A letter that has a smaller numerical value is smaller than a letter that
has a bigger numerical value. To compare strings, find the first character that
differs (including the terminating ’\0’)

– Hints:
∗ If you are lazy, reuse the binary tree code for sorting!
∗ Define a data type for the lines, using struct and char*

Include a Makefile for building your final program from the sources!

– More hint: If you are lazy, read man makedepend

Stephan Schulz 334

CSC322
C Programming and UNIX

Odds And Ends

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Errors, Bugs, and Other Unpleasant Animals

Most hard-to-handle errors are not syntax errors

– Most syntax errors go away with experience
– Even if not, they are usually easy to find and fix!

Most serious problems are runtime errors, resulting from faulty program logic

– Finding logic errors is hard
– Not finding them is worse!

Examples:

– Spacecraft may crash (Mars Climate Orbiter) or explode (Ariane-5)
– Medical devices may actually kill patients (Therac-25 cancer treatment device)
– The IRS may decide you are a tax evader, and have you arrested!

Ways to (more) correct software:

– Formal methods and a controlled development process
– Testing
– Internal consistency checks

Stephan Schulz 336

Assertions

Internal consistency check are used to verify that assumptions about the state of
the program are true

– Very frequent use: Check if parameters to functions have valid values
– Check loop invariants
– Check array boundaries

Problems

– Checks are inconvenient to program
– The checks may cause unacceptable slowdowns (E theorem prover: Factor of

2–3, depending on input data)

C solution: The <assert.h> header file and macros

– Convenient way to add simple consistency checks
– Checks can be disabled at compile time (now slow-down for final product)

Stephan Schulz 337

<assert.h> and assert()

The assert() macro is defined in assert.h

It is used with a single argument

If that argument has the truth value “true”, nothing happens

Otherwise, assert() prints an error message and aborts the program

– Error message contains text of the assertion, name of source file, line in file

If the preprocessor macro NDEBUG is defined, assert() is ignored (defined as the
empty macro)

Careful use of assert() while testing makes your programs much more robust
and helps you weed out errors earlier!

Stephan Schulz 338

Example
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int gcd(int a, int b)
{

assert(a>0);assert(b>0);
if(a==b)
{

return a;
}
if(a > b)
{

return gcd(a-b,b);
}
return gcd(b-a,a);

}
int main(void)
{

printf("Result: %d\n", gcd(15,3));
printf("Result: %d\n", gcd(0,2));
return EXIT_SUCCESS;

}

Stephan Schulz 339

Example (Continued)

$ gcc -ansi -Wall -o gcd assert gcd assert.c
$./gcd assert
Result: 3
gcd assert: gcd assert.c:7: gcd: Assertion ‘a>0’ failed.
Abort
$ gcc -ansi -Wall -o gcd assert gcd assert.c -DNDEBUG
$./gcd assert
Result: 3
Segmentation fault

Stephan Schulz 340

Search in Loops

A frequent use of loops is to search for something in a sequence (list or array) of
elements

First attempt: Search for an element with property P in array

for(i=0; (i< array_size) && !P(array[i]); i=i+1)
{ /* Empty Body */ }
if(i!=array_size)
{

do_something(array[i]);
}

– Combines property test and loop traversal test (unrelated tests!) in one
expression

– Property test is negated
– We still have to check if we found something at the end (in a not very intuitive

test)

Is there a better way?

Stephan Schulz 341

Early Exit: break

C offers a way to handle early loop exits

The break; statement will always exit the innermost (structured) loop (or
switch) statement

Example revisited:

for(i=0; i< array_size; i=i+1)
{

if(P(array[i])
{

do_something(array[i]);
break;

}
}

– I find this easier to read
– Note that the loop is still single entry/single exit, although control flow in the

loop is more complex

Stephan Schulz 342

Selective Operations and Special Cases

Assume we have a sequence of elements, and have to handle them differently,
depending on properties:

for(i=0; i< array_size; i=i+1)
{

if(P1(array[i])
{

/* Nothing to do */
}
else if(P2(array[i]))
{

do_something(array[i]);
}
else
{

do_something_really_complex(array[i]);
}

}

Because of the special cases, all the main stuff is hidden away in an else

Wouldn’t it be nice to just goto the top of the loop?

Stephan Schulz 343

Early Continuation: continue

A continue; statement will immediately start a new iteration of the current loop

– For C for loops, the update expression will be evaluated!

Example with continue:

for(i=0; i< array_size; i=i+1)
{

if(P1(array[i])
{

continue;
}
if(P2(array[i]))
{

do_something2(array[i]);
continue;

}
do_something_really_complex(array[i]);

}

Stephan Schulz 344

do/while Loops

Both while and for loops in C are controlled at the top

– If the controlling expression is false, the loop is not entered at all

Occasionally, we can express some algorithms more conveniently, if we have a
controlling expression at the end of the loop

– Loop body is always executed at least once!

C language construct: do/while() loop

do
{

loop body
}while(E);

– If E evaluates to true at the end of the loop, control is transferred back to the
do

Stephan Schulz 345

Example

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char* argv[])
{

int c;

do
{

printf("Please choose 1 for half of a bad joke or 2 for a cool number!\n");
c=getchar();

}while(!(c==’1’ || c==’2’));
if(c==’1’)
{

printf("Why did the chicken cross the road? ...\n");
}
else
{

printf("42\n");
}
return EXIT_SUCCESS;

}

Stephan Schulz 346

Some Loop Statistics

E theorem prover

– State of the art automated theorem prover
– About 100000 lines of C code (20000 statements, the rest is comments, white

space, definitions....)
– Total of 942 structured loop statements in code base

521 for() loops

– Most iterate over integer values (for i=0; i<limit; i++)

421 while loops

– Many iterate over linked structures:
while(handle is not NULL)
{

do something with *handle;
make handle point to "next" element;

}

0 do loops, but plenty of recursion

Stephan Schulz 347

Exercises

Go back over your excercises ans assignments, and think about good places to
insert assert() statements

Write a non-recursive function that searches for a value in a binary search tree.
Use break to leave the lopp if you found it!

Think about uses for do/while ;-)

Stephan Schulz 348

CSC322
C Programming and UNIX

Function Pointers
C Standard Library (1)

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Functions as Arguments

Occasionally, you want to be able to pass around functions just like data

Example:

– Configure an event handler (“call this function if the UPS signals power-down”)
– Simulate some object-oriented techniques (virtual functions), e.g. to implement

destructors
– Most importantly: Parameterize algorithms

Functional languages have functions as first class objects

C is less flexible, but gives us function pointers to pass as arguments and store in
variables

– Idea: Pointers are addresses in memory
– Functions are pieces of code in memory

Stephan Schulz 350

Function Pointers

We can use the address of a function to call it!

– As with normal pointers, we need know the type of the function (in this case,
the return type and the type of the arguments it takes)

Syntax: Same principle as for other type!

– To declare a function pointer, use a function declaration, but add parentheses
and add a * to denote that it is a pointer:

int (*add)(int x1, int x2);
– This declares add to be a pointer to a function accepting two integer arguments

and returning a third integer

To use a function pointer: Just dereference the pointer

a = (*add)(10,20);

To assign a value to the pointer, just get the address of a function:

add = &some_function_name;

Stephan Schulz 351

Function Pointers (2)

To confuse students (and for convenience), it is possible to omit both the
dereferencing in calling and the ampersand in assigning:

add = somefunction
a = add(10,20);

– Since there is nothing else you can do with functions in C, these simplifications
do not create am ambiguity

– They tend to make code easier to read, though, especially with functions that
return pointers

Note: Since declarations quickly become hard to read, it is wise to always use
typedef to define a suitble function pointer type!

Stephan Schulz 352

Example

#include <stdlib.h>
#include <stdio.h>
int add(int x1, int x2)
{ return x1+x2; }
int subtract(int x1, int x2)
{ return x1-x2; }
void use_fun(int limit, int (*fun)(int x1, int x2))
{

int i;
for(i=0; i<limit; i++)
{

printf("Result: %d\n",fun(20,i));
}

}
int main(int argc, char* argv[])
{

use_fun(5, &add); /* Can drop & here */
printf("--------\n");
use_fun(5, subtract); /* Can add & here! */
return EXIT_SUCCESS;

}

Stephan Schulz 353

Example Output

Result: 20
Result: 21
Result: 22
Result: 23
Result: 24

Result: 20
Result: 19
Result: 18
Result: 17
Result: 16

Stephan Schulz 354

C Library Functions: qsort()

qsort() is a very useful C library function (declared in <stdlib.c> that is able
to sort any kind of array (and normally does so very efficiently)!

qsort is defined as follows:

void qsort(void *base, size_t nmemb, size_t size,
int(*compar)(const void *, const void *));

– The first argument points to the array to be sorted (i.e. to its first argument)
– The second argument is the number of elements in the array
– The third argument gives the size if a single element
– Finally, the last element is a function pointer of a function taking two pointer

arguments, and returning an integer value

Stephan Schulz 355

C Library Functions: qsort() (2)

qsort definition (repeated):

void qsort(void *base, size_t nmemb, size_t size,
int(*compar)(const void *, const void *));

Purpose of compar: Let the caller define an order on elements

– (*compar)() is called by qsort() to compare two arguments
– It gets pointers to two array elements as arguments
– It should compare these elements and return
∗ 0, if the two elements are equal (under the order)
∗ A negative integer, if the first element is smaller
∗ A positive integer, if the first element is greater

Stephan Schulz 356

Example

#include <stdlib.h>
#include <stdio.h>

typedef int (*CompareFun)(const void* arg1, const void* arg2);

int compare_ints(int *arg1, int* arg2)
{

if(*arg1 < *arg2)
{

return -1;
}
if(*arg1 > *arg2)
{

return 1;
}
return 0;

}

Stephan Schulz 357

Example (continued)

int main(int argc, char* argv[])
{

int array[10], i;

for(i=0; i<10; i++)
{

array[i] = rand()%128;
}
printf("Unsorted: \n");
for(i=0; i<10; i++)
{

printf("%d\n", array[i]);
}
qsort(array, 10, sizeof(int), (CompareFun)compare_ints);
printf("Sorted: \n");
for(i=0; i<10; i++)
{

printf("%d\n", array[i]);
}
return EXIT_SUCCESS;

}

Stephan Schulz 358

Example (Output)
Unsorted:
103
70
105
115
81
127
74
108
41
77
Sorted:
41
70
74
77
81
103
105
108
115
127

Stephan Schulz 359

The C Standard Library

The C Standard Library contains a large number of functions, some data types
and system dependend constants

– Covers many things that other languages handle in the main language
– Also contains primitives for extending some parts of the language
– Notably missing: Any functionality for graphics (only stream-based I/O)

Most parts of the library are automatically linked with the C programs (exception:
Floating point math functions)

The standard library is part of the C standard, and has to be supported on any
standards-compliant full C implementation

– Code written using only the standard library should be highly portable

The library has 15 parts with corresponding header files

– Some declarations are repeated in different headers

Stephan Schulz 360

C Standard Library Organisation

– assert.h: Assertions (*)
– ctype.h: Character classes (+)
– errno.h: Error reporting for library functions
– float.h: Implementation limits for floating point numbers
– limits.h: Limits for other things
– locale.h: Localization support
– math.h: Mathematical functions
– setjmp.h: Non-local function exits
– signal.h: Signal handling
– stdarg.h: Support for functions with a variable number of arguments (as

e.g. printf())
– stddef.h: Standard macros and typedefs
– stdio.h: Input and output (+)
– stdlib.h: Miscellaneous library functions (+)
– string.h: String (character array) handling
– time.h: Functions about time and date

Stephan Schulz 361

Error Handling: errno.h

Library functions typically signal an error by returning an out of range value, i.e.
a value that cannot possibly be correct

– For many functions that is -1 or NULL

They communicate the cause of the error by setting the global int variable
errno to a specific value

– At the program start, errno is guaranteed to have the value 0
– No library function will ever set errno to 0, but failed library functions will set

it to an implemetation-defined value encoding the cause of the error

Error codes have symbolic names (with #define):

– EDOM: (Required by the standard) Domain error for some math functions
– ERANGE: (Required by the standard) Range error for some math functions
– EAGAIN: (UNIX) Temporary problem, try again
– ENOMEM: (UNIX) Out of memory
– EBUSY: (UNIX) Some necessary resource is already in use
– EINVAL: (UNIX) Invalid argument to some function

Stephan Schulz 362

Example

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
int main(int argc, char* argv[])
{

char *res;

printf("errno: %d\n", errno);
res = strdup("Hallo"); /* Allocate space, copy the string to it */
if(!res)
{

printf("Could not copy string, errno: %d = %d\n", errno, ENOMEM);
}
else
{

printf("All is fine, errno: %d\n", errno);
free(res);

}
return EXIT_SUCCESS;

}

Stephan Schulz 363

Exercises

Write a program that sorts an arbitrary sized array of double values

Think about a program that sorts pointers to char, based on the characters (or
character arrays) the pointers point to (yes, this is a hint for your assignement)

Check out /usr/include/errno.h and /usr/include/asm/errno.h

Stephan Schulz 364

CSC322
C Programming and UNIX

C Standard Library
Characters and Strings

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Character Classes and <ctype.h>

Th C standard defines several character classes in a portable way

– We can use these functions regardless of the underlying character set of the
implementation

– Most of these functions can be (and are) implemented in a very efficient
manner for ASCII characters

C characters are integer values, typically 8 bits wide

– On most implementations, char is an 8 bit extension to ASCII (in recent time,
isolatin-1 or variants have become popular)

– There is limited support for bigger character sets using wchar t

Character handling functions are defined in <ctype.h>

Stephan Schulz 366

Some C Character Classes

All character class functions accept and return int values

– Behaviour is only defined if the input is from the range of unsigned char or
EOF

– Each function returns true (non-0) if the character is in the range, 0 otherwise

Character class test functions

– isdigit(c): Digits, i.e. {0-9}
– isalpha(c): Upper and lower case characters ({a-z,A-Z}, in some locales

additional characters, e.g. umlauts like ä, Ö,. . .
– isalnum(c): Equivalent to (isdigit(c)||isalpha(c))
– iscntrl(c): Control characters, i.e. non-printable characters (in ASCII, those

are characters with codes 0 to 31 and 127)
– isxdigit(c): Hexadecimal digits, {0-9,a-z,A-Z}
– islower(c): Lower case letters
– isupper(c): Upper case letters
– ispunct(c): Printing characters that are neither letters, digits, nor space
– isprint(c): Normal, printable characters

Stephan Schulz 367

Character Class Conversion Functions

There are two functions for converting characters from one class to another:

– tolower(c) converts upper case characters to lower case characters
– toupper(c) converts lower case characters to upper case characters

Both functions return the character unchanged, if it is not a upper or lower case
character, respectively

Stephan Schulz 368

Example

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(void)
{

int c;

while((c=getchar())!=EOF)
{

if(iscntrl(c))
{

printf("<control-character %d\n", c);
}
else
{

putchar(toupper(c));
}

}
return EXIT_SUCCESS;

}

Stephan Schulz 369

Example Output

$ man man | ctypedemo

MAN(1) MANUAL PAGER UTILS MAN(1)<control-charac
ter 10>
<control-character 10>
<control-character 10>
<control-character 10>
N<control-character 8>
NA<control-character 8>
AM<control-character 8>
ME<control-character 8>
E<control-character 10>

MAN - AN INTERFACE TO THE ON-LINE REFERENCE MANUALS<control-character 10>
<control-character 10>
S<control-character 8>
SY<control-character 8>
YN<control-character 8>
NO<control-character 8>
OP<control-character 8>
PS<control-character 8>
SI<control-character 8>

Stephan Schulz 370

Strings

Strings are not part of the C language proper

– String literals are supported
– Limited support by functions the C standard library

String-handling functions are operating on char* (pointer to char) values

– It is the responsibility of the program to make sure that there is sufficient
space for the operations available!

Convention for strings:

– Strings are \0 terminated arrays of character
– Important: Size of the array is not taken into account!

char excess[10000] = "a"; /* String length 1, takes up two
characters, a and \0 */

char tooshort[2];
tooshort[0] = ’a’;
tooshort[1] = ’b’; /* tooshort is not a valid string, if treated

as one, behaviour is undefined */

Stephan Schulz 371

String Functions from <string.h> (1)

char *strcpy(char* s, const char *ct)

– Copy a ’\0’-terminated string from ct to s
– Returns s
– s must point to a sufficiently large area of memory!
– Note: For all string functions that copy strings, source and target areas may

not overlap (otherwise, behaviour is undefined)

char *strncpy(char* s, const char *ct, size t n)

– As strcpy(), but copies at most n characters
– Note: If ct is longer than n, s will not be ’\0’-terminated
– If ct is shorter than n, then the result will be padded with additional ’\0’

characters (i.e. s must always have space for n characters, even if ct is shorter
than n characters)

size t strlen(const char *cs)

– Return the length of the string at cs
– Does not count the trailing ’\0’

Stephan Schulz 372

Example: Duplicating Strings

Several UNIX standards define a function strdup() that allocates enough
memory for a string, and then copies it, returning the pointer to the newly
allocated memory

Our version also makes sure that there is memory available:

char* SecureStrdup(char* str)
{

char *newstr = SecureMalloc(strlen(str)+1);

return strcpy(newstr,str);
}

Stephan Schulz 373

String Functions from <string.h> (2)

char *strcat(char *s, const char *ct)

– Concatenates ct at the end of s
– Returns s
– Result is always ’\0’ terminated

char *strncat(char *s, const char *ct, size t n)

– As strcat(), but copies at most n characters from ct
– Result is always ’\0’ (even if ct is longer than n

Examples:

char *t="World";
char s[10] = "Hello";
strncat(s,t,3); /* Ok, t now points to "HelloWor" */
strcat(s,t); /* Error: "HelloWorld" requires 11 character (’\0’!) */

Stephan Schulz 374

String Functions from <string.h> (3)

int strcmp(const char* cs, const char* ct)

– Compare two strings in the lexical extension of the natural order on characters
– First differing character decides which string is bigger (including terminating
’\0’, i.e. a substring is always smaller than a superstring)

– Return value: Integer <0, if cs is smaller, >0, if ct is smaller, or 0 if both are
equal

int strncmp(const char* cs, const char* ct, size t n)

– As strcmp(), but compare at most n characters

char *strchr(const char *s, int c)

– Return pointer to the first occurrence of c in cs (or NULL, if c is not present
in cs)

char *strrchr(const char *s, int c)

– Return pointer to the last occurrence of c in cs (or NULL)

Stephan Schulz 375

String Functions from <string.h> (4)

char *strpbrk(const char *cs, const char *ct)

– Returns pointer to first character from ct in cs (or NULL), i.e. ct is treated as
a set of characters

– Example:
strpbrk("Hello", "eul"); /* Returns pointer to the "e" in "Hello" */

char* strstr(const char *cs, const char *ct)

– Return pointer to first occurrence of ct in cs, or NULL if ct is not a substring
of cs

char *strerror(int n)

– Return a pointer to a string description of the library error with error code n
(as defined in <errno.h>)

– If n is not a known error code, a pointer to a generic “unknown error code”
message is returned

Stephan Schulz 376

Generic Memory Access Functions

The original C standard used char* as a generic pointer, hence generic memory
handling functions are lumped in with strings

– Character is just another name for Byte in C, anyways
– However, ANSI C has the generic void* pointer type

The following functions are generally very similar to the string functions, but do
not use a delimiter like ’\0’

– All operations specify a lenght parameter n, and handle exactly n characters

These functions basically treat the virtual memory as one big character array!

– Used to implement many basic operations
– Typically implemented very efficiently (often by processor specific assembler

subroutines)

Stephan Schulz 377

Memory Functions from <string.h> (1)

void *memcpy(void *s, const void *ct, size t n)

– Copy a sequence of n bytes from ct to s
– The regions may not overlap!

void *memmove(void *s, const void *ct, size t n)

– Copy a sequence of n bytes from ct to s
– There are no additional constraints (i.e. memmove() has to handle cases where

the regions overlap)

int memcmp(const void *cs, const void *ct, size t n)

– Compare the first n characters found at cs and ct
– Return value: As strcmp() (<, >, = 0)

Stephan Schulz 378

Memory Functions from <string.h> (2)

void *memchr(const char *s, int c, size t n)

– Search for character c in the first n bytes at cs, return pointer to it (or NULL)

void *memset(void *s, int c, size t n)

– Place character c into the first n characters at s, returning s

Stephan Schulz 379

Exercises

Write a simple version of grep (looking for plain strings in stdin only)

Write a version of memmove() (the hard part is handling overlapping arrays –
remember that you can compare pointers with <, > and ==)!

Stephan Schulz 380

CSC322
C Programming and UNIX

C Standard Library
Memory Handling and IO

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Generic Memory Access Functions

The original C standard used char* as a generic pointer, hence generic memory
handling functions are lumped in with strings

– Character is just another name for Byte in C, anyways
– However, ANSI C has the generic void* pointer type

The following functions are generally very similar to the string functions, but do
not use a delimiter like ’\0’

– All operations specify a lenght parameter n, and handle exactly n characters

These functions basically treat the virtual memory as one big character array!

– Used to implement many basic operations
– Typically implemented very efficiently (often by processor specific assembler

subroutines)

Stephan Schulz 382

Memory Functions from <string.h> (1)

void *memcpy(void *s, const void *ct, size t n)

– Copy a sequence of n bytes from ct to s
– The regions may not overlap!

void *memmove(void *s, const void *ct, size t n)

– Copy a sequence of n bytes from ct to s
– There are no additional constraints (i.e. memmove() has to handle cases where

the regions overlap)

int memcmp(const void *cs, const void *ct, size t n)

– Compare the first n characters found at cs and ct
– Return value: As strcmp() (<, >, = 0)

Stephan Schulz 383

Memory Functions from <string.h> (2)

void *memchr(const char *s, int c, size t n)

– Search for character c in the first n bytes at cs, return pointer to it (or NULL)

void *memset(void *s, int c, size t n)

– Place character c into the first n characters at s, returning s

Stephan Schulz 384

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int main(int argc, char* argv[])
{

char carray[10];
int iarray[10], i;
memset(&carray[0], ’a’, 10*sizeof(char));
memset(&iarray[0], ’a’, 10*sizeof(int));
for(i=0; i<10; i++)
{

printf("%c : %d\n", carray[i], iarray[i]);
}
memset(&carray[0], ’b’, 10*sizeof(char));
memmove(&iarray[0], &carray[0], 10*sizeof(char));
for(i=0; i<10; i++)
{

printf("%c : %d\n", carray[i], iarray[i]);
}
return EXIT_SUCCESS;

}

Stephan Schulz 385

Example Output

a : 1633771873
a : 1633771873
a : 1633771873
a : 1633771873
a : 1633771873
a : 1633771873
a : 1633771873
a : 1633771873
a : 1633771873
a : 1633771873
b : 1650614882
b : 1650614882
b : 1633772130
b : 1633771873
b : 1633771873
b : 1633771873
b : 1633771873
b : 1633771873
b : 1633771873
b : 1633771873

Stephan Schulz 386

Input and Output in the Standard Library

Input and output in C is based on the concept of streams of bytes

– Binary streams are raw, unprocessed bytes (only guarantee: If you write data
to a binary stream, and then read it back, it is unchanged)

– Text streams are composed of (possibly empty) lines, separated by a single new-
line (’\n’) character (the library has to make sure other text representations
are converted properly)

– In UNIX, text and binary streams are identical
– In Windows, the library has to convert the newline/linefeed sequence used to

separate lines to a single newline for text streams (but, of course, may not
mangle binary streams)

Streams are represented by FILE* objects in C (“file pointers”)

– The FILE type is defined in <stdio.h>
– A stream normally has to be explicitely opened (connected to an input and

output device) and should be closed (made available for resuse)

Stephan Schulz 387

Standard Streams

By default, each program has three text streams open on startup:

– stdin is the standard input (normally reading from keyboard)
– stdout is the standard output (normally conected to the terminal)
– stderr is the standard error channel (also connected to the terminal)

The I/O-functions we have used so far implicitely use the default streams:

– printf() and putchar() write to stdout
– getchar() reads from stdin

Stephan Schulz 388

Opening File Streams

In addition to the standard streams, we can create additional streams, normally
associated with a file. The most general function is:

FILE* fopen(const char *filename, const char *mode)

– The first argument hat to be a valid filename
– The second argument describes the mode in which the file should be opened

The mode is a string of characters

– "r" opens a file for reading in text mode
– "w" opens a file for writing in text mode (will create new file, overwriting an

existing file)
– "a" opens a file for writing in text mode (but will append new output to the

end of an existing file)
– Adding a "b" will open the file as a binary file (e.g. "rb": Read binary)

fopen() returns a valid file pointer, if successful, or NULL if it fails

– In the case of failure, it sets errno to an appropriate value!

Stephan Schulz 389

Closing and Reopening File Streams

Once we are done with a certain file, we have to close it

– The number of simultaneously open files is limited for most operating systems.
Closing a stream makes it available for other purposes

– Streams may be buffered. Closing a straem flushes the buffer (i.e. prints all
remaining characters)

int fclose(FILE *stream) closes the file associated with stream

– It returns 0 if no errors occurred, EOF otherwise

FILE* freopen(const char *filenam, const char *mode, FILE *stream)

– This function closes stream and reopens it with a new associated file
– It is useful to e.g. redirect stdin into a file (from within the program)

Stephan Schulz 390

Simple Stream Based I/O Functions (Characters)

int fgetc(FILE *stream)

– Return the next character from the named stream (or EOF if no character is
available or an error occurs)

– Note: getchar() is equivalent to fgetc(stdin)

int fputc(int c, FILE *stream)

– Print the character c to the stream, returning c or EOF in case of error
– putchar(c) is equivalent to fputc(c, stdout)

int getc(FILE *stream) is equivalent to fgetc(), except that it may be
implemented as a macro (and may hence evaluate stream more than once)

Similarly, int putc(int c, FILE *stream) is equivalent to fputc, but may
be a macro

Stephan Schulz 391

Simple Stream Based I/O Functions (Strings)

int fputs(const char *s, FILE *stream)

– Writes the string pointed to by the first argument to the denoted stream
– Returns EOF on failure, a non-negative value otherwise

char *fgets(char *s, int n, FILE *stream)

– Read at most n-1 characters into the array pointed to by s, stops early if a
newline is encountered

– *s is always ’\0’ terminated
– Returns s, or NULL on error

Note: There also is a function char *gets(char *s) that attempts to read a
line of input from stdin

– Never use gets()!
– Since there is no way to specify a maximal number of characters to read, we

cannot ensure that gets() will not result in a buffer overflow error!

Stephan Schulz 392

Example: Simple cat Implementation

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <assert.h>

void print_file(FILE *stream)
{

int c;

while((c=fgetc(stream))!=EOF)
{

fputc(c, stdout);
}

}

Stephan Schulz 393

Example Continued

int main(int argc, char *argv[])
{

int i;
FILE *file;

if(argc == 1)
{

print_file(stdin);
}
else
{

Stephan Schulz 394

Example Continued

for(i=1; i<argc; i++)
{

file = fopen(argv[i], "rb");
if(!file)
{

int errno_safe = errno;

assert(errno);
fputs(argv[0],stderr); /* Print program name */
fputs(": ", stderr);
fputs(strerror(errno_safe), stderr);
fputc(’\n’, stderr);
return EXIT_FAILURE;

}
print_file(file);
fclose(file); /* Assuming it works... */

}
}
return EXIT_SUCCESS;

}

Stephan Schulz 395

Example Output

$ man man | ./mycat1

man(1) man(1)

NAME
man - format and display the on-line manual pages
manpath - determine user’s search path for man pages

...

$./mycat1 does not exist

./mycat1: No such file or directory

$./mycat1 mycat1.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <assert.h>

void print_file(FILE *stream)

Stephan Schulz 396

Exercises

Write a version of memmove() using pointer assignment (the hard part is handling
overlapping arrays – remember that you can compare pointers with <, > and ==)!
You may need to cast void* to char* to access individual bytes.

Write a version of wc that more closely mimics the behaviour of the UNIX
version, i.e. that gives separate accounts and a total if called with more than one
argument (if called with a single arguments, it just gives an account for that file,
if called with none, it reads from stdin)

Stephan Schulz 397

CSC322
C Programming and UNIX

C Standard Library
Input and Output

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Remark about fgets()

char *fgets(char *s, int n, FILE *stream)

– Read at most n-1 characters into the array pointed to by s, stops early if a
newline is encountered

– *s is always ’\0’ terminated
– Returns s, or NULL on error

Note:

– It is the responsibility of the caller (i.e. your program) to provide enough
memory!

– s already has to point to an array (or malloc()ed area of sufficient size

This holds for most standard library functions!

– . . . including gets() (never use gets()!)

Stephan Schulz 399

Example: Simple cat Implementation

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <assert.h>

void print_file(FILE *stream)
{

int c;

while((c=fgetc(stream))!=EOF)
{

fputc(c, stdout);
}

}

Stephan Schulz 400

Example Continued

int main(int argc, char *argv[])
{

int i;
FILE *file;

if(argc == 1)
{

print_file(stdin);
}
else
{

Stephan Schulz 401

Example Continued

for(i=1; i<argc; i++)
{

file = fopen(argv[i], "rb");
if(!file)
{

int errno_safe = errno;

assert(errno);
fputs(argv[0],stderr); /* Print program name */
fputs(": ", stderr);
fputs(strerror(errno_safe), stderr);
fputc(’\n’, stderr);
return EXIT_FAILURE;

}
print_file(file);
fclose(file); /* Assuming it works... */

}
}
return EXIT_SUCCESS;

}

Stephan Schulz 402

Example Output

$ man man | ./mycat1

man(1) man(1)

NAME
man - format and display the on-line manual pages
manpath - determine user’s search path for man pages

...

$./mycat1 does not exist

./mycat1: No such file or directory

$./mycat1 mycat1.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <assert.h>

void print_file(FILE *stream)

Stephan Schulz 403

Reminder: Using stdin

You can redirect files into stdin:

– mycat1 < mycat.c

You can type into stdin from your terminal

– Type [C-d] (^d), ”Control-D” to indicate end of input
– Depending on your version of UNIX and your terminal, you may have to type
[C-d] on a line of it’s own

Stephan Schulz 404

Buffering and Flushing

Both input and output streams can be buffered

– Unbuffered streams will pass on each individual character as soon as possible
– Fully buffered streams will wait until the (arbitrary sized) buffer is full until

they pass on the collected data as one chunk
– Text streams can also be line buffered. A line buffered stream will collect at

most one line of data

int fflush(FILE* stream) will flush all buffers associated with an output
stream

– Causes data to be actually written (if the writing process dies, the data is
safe), although the OS may still have another layer of buffers

– Return value: 0 on success, EOF on failure
– Calling fflush(NULL) flushes all open streams
– Calling fflush(NULL) on an input stream invokes undefined behaviour

Stephan Schulz 405

Buffering

By default, the standard streams are buffered as follows:

– stdin is line buffered
– stdout is line buffered
– stderr is unbuffered

You can change the buffering state with the funcion
int setvbuff(FILE *stream, char* buff, int mode, size t size)

– buff points to a buffer of at least size byte (or it is NULL, in which case a
buffer will be malloc()ed)

– Mode can be one of three predefined values:
∗ IOFBF for full buffering
∗ IONBF to disable buffering
∗ IOLBF to enable line buffering

void setbuf(FILE *stream, char *buff) is a simpler interface:

– If buff is zero, buffering is switched of
– Otherwise, full buffering wit a buffer size BUFSIZ is enabled (and buff has to

point to a large enough buffer!)

Stephan Schulz 406

Example

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argv[])
{

char name[80];
char buffer[BUFSIZ];

setbuf(stdout, buffer);
printf("Please enter name: ");
fgets(name,80,stdin);
printf("Your name is: %s\n", name);

setbuf(stdout, NULL);
printf("Please enter name: ");
fgets(name,80,stdin);
printf("Your name is: %s\n", name);

return EXIT_SUCCESS;
}

Stephan Schulz 407

Example Behaviour

$./bufftest

Stephan
Please enter name: Your name is: Stephan

Please enter name: Schulz
Your name is: Schulz

Stephan Schulz 408

More Operations on Files

int remove(const char *filename)

– Removes a file (as in rm)
– Return 0 on success, something else on failure

in rename(const char *oldname, const char *newname)

– Rename a file (as in mv)
– Return 0 on success, something else on failure

FILE *tmpfile(void)

– Creates a temporary file with mode wb+ (reading and writing in binary)
– The file will vanish if the program terminates normally
– On failure, NULL will be returned

Stephan Schulz 409

Even More File Operations

char *tmpnam(char *s)

– Creates a file name that is different from any existing name
– If called with argument NULL, will return a pointer to a static buffer containing

the name
– Otherwise, s has to point to an array of at least L tmpnam bytes
– Note: Using tmpnam() in security-critical applications is discouraged, as it

creates a race condition (what if another process creates a file with the name
in between the call to tmpnam() and fopen()?)

Stephan Schulz 410

Error Functions

Each FILE data structure stores two pieces of information:

– If end-of-file has been reached during reading
– If an error occurred

int feof(FILE *stream) returns true if the end-of-file indicator has been set

int ferror(FILE *stream) returns true if the error indicator is set

void clearerr(FILE *stream) clears both indicators

void perror(const char *s prints an error message to stderr as follows:

– First, the supplied string is printed, followed by a colon
– Then the error message for the current value of errno is printed, followed by

a newline

Stephan Schulz 411

Exercises

Write a simple database that keeps given name, family name, and date of birth
for a person. Subtasks:

– Create a dialog where people can enter data
– Create an interface for searching for data, based on any criterium
– Create an interface where you can print lists of people, possibly sorted by any

of the data fields

You need to think about the data base structure (a flat text file should work, see
e.g. /etc/passwd for ideas)

You need an architecture for your overall program

– The conventional way is to use one monolithic program with a a menue
structure (use text menues...)

– The UNIX way would be to write one program for each task

Stephan Schulz 412

CSC322
C Programming and UNIX

C Standard Library
Formated Output

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Formatted Output

The formatted output functions offer a very convenient way of printing data in a
controlled manner

– They are able to print all basic C datatypes (and strings)
– They can print any number of arguments with one command
– For most datatypes, there are multiple useful formats
– Argument output and descriptive strings can be interspersed easily

Output format is determined by a format string argument

– The format string contains ordinary text that is copied directly to the output
– It also contains conversion specifiers that describe how to format additional

arguments

Formatted output functions are variadic, i.e. they take a variable number of
arguments

– Number of arguments is determined by the number of conversion specifiers
– Modern compilers check this property if the format string is constant

Stephan Schulz 414

A first Example

printf("%d divided by %d = %f\n",22,7,22/7.0);

– The first argument to printf is the format string
– It contains 3 conversion specifiers:
∗ The first %d specifies an int argument that should be printed in decimal

notation and corresponds to the first extra argument, 22
∗ The second %d corresponds to the third argument, 7
∗ Finally, the %f specifies a double (floating point) argument that should be

printed in pure decomal notation (with fractional part after the decimal dot)

The format string also contains additional text

– Text is printed
– Note that normal conventions hold, i.e. \n in a string literal is the newline

character

Output printed:

22 divided by 7 = 3.142857

Stephan Schulz 415

The printf() Family of Functions

All functions are declared in <stdio.h>

int printf(char *format, ...);

– Print the additional arguments under control of the argument string to stdout
– Returns number of characters printed, or any negative number on error

int fprintf(FILE *stream, char *format, ...);

– As printf(), but print to the designated output stream

int sprintf(char *s, char *format, ...);

– Instead of actually printing anything, sprintf() will store the output charac-
ters in the character array s points to

– The string will be \0 terminated
– It is the responsibility of the programmer to make sure *s is big enough
– The returned count of characters does not include the terminating nul char-

acter (i.e. it is the same value that printf() would return)

Stephan Schulz 416

Format Specifiers

Format specifiers always start with a % character, and end in a conversion letter

– The conversion letter describes the basic output format
– It normally also decribes which kind of argument has to follow

Optional parts of a format specifier include (in order)

– Flags (affect how the result will be printed)
– Minimum field width (if fewer characters are necessary, padding will be used)
– Precision (number of significant digits/characters)
– Size modifier (e.g. require short or long instead of int)

Stephan Schulz 417

Some Conversion Letters (1)

d: Convert an int argument and print it in decimal representation

i: Alias for d

u: Convert an unsigned int argument and print it in decimal representation

o: Convert an unsigned int argument and print it in octal representation

x: Convert an unsigned int argument and print it in hexadecimal representa-
tion, using {a, b, c, d, e, f} for the extra hexadecimal digits

X: As x, but use upper case hex digits ({A, B, C, D, E, F})

p: Convert a void* pointer and print it in an implementation-defined manner
(for our system, and for many other systems, the argument is printed as a
hexadecimal number representig the address)

Stephan Schulz 418

Some Conversion Letters (2)

f: Print a double argument (float is converted automatically) as a sequence
of digits with a decimal point

– Unless otherwise specified via the precision modifier, 6 digits are printed after
the decimal point

e: Print a double argument in normalized exponential form, with 1 digit before
the decimal dot (and by default 6 digits after the dot). Example: 3.141593e+01
(= 3.141593 ∗ 101)

E: As e, but print upper case E before exponent

g: “Human-friendly floating point output”. Print a double number either as
with e (for very small numbers) or with f letters, cutting of unneccessary training
zeros

G: As g, but use E instead of e

Stephan Schulz 419

Some Conversion Letters (3)

c: Print a single int argument by converting it to char and printing the
corresponding character (use %i to print the numeric value of a character)

s: Print a C style string, converting a char* argument pointing to a \0-terminated
string

%: Convert no arguments, just print a single % character (i.e. %% in the format
string generates a single % in the output)

Remarks:

– We have not covered some of the more esoteric conversions
– The 1995 addendum to C89 and the C99 standard add additional conversion

characters
– For more details, check man 3 printf

Stephan Schulz 420

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *p = "This is a string";

printf("12 with... %%d: %d, %%u: %u, %%o: %o, %%x: %x, %%X: %X\n",
12, 12, 12, 12, 12);

printf("12.5 with... %%f: %f, %%e: %e, %%E: %E, \n%%g: %g, %%G: %G\n",
12.5,12.5,12.5,12.5,12.5);

printf("Printing a character with %%c: %c and %%d: %d\n",
’a’, ’a’);

printf("This is a string \"%s\" and its address: %p\n", p,p);

return EXIT_SUCCESS;
}

Stephan Schulz 421

Example Output

12 with... %d: 12, %u: 12, %o: 14, %x: c, %X: C
12.5 with... %f: 12.500000, %e: 1.250000e+01, %E: 1.250000E+01,
%g: 12.5, %G: 12.5
Printing a character with %c: a and %d: 97
This is a string "This is a string" and its address: 0x80485a0

Stephan Schulz 422

Size Modifiers

Size modifiers are used to change the default argument size:

– The l modifier changes integer arguments to their long variants
– It changes h modifier indicates that the argument is of type short or unsigned
short instead of the default int

The C99 standard introduces additional size modifiers:

– z indicates argument of type size t (for integer arguments)
– ll indicates long long versions of the integers
– hh indicates char arguments instead of int types

For us, the %ld version (long integer) is probably the most important one

Stephan Schulz 423

Specifying Minimum Field Width

The minimum field width is an integer literal between the % and the conversion
letter (with optional size modifier)

– It may be preceded by any flags
– The precision, if any, follows it

By default, any value is printed right-justified in its field

– Padding is done with spaces:
printf("|%7d|\n",12);
| 12|

If the natural value representation is bigger than the minimum field width, the
specification has no effect

printf("|%7s|\n", "A long string");
|A long string|

Stephan Schulz 424

The Flags

-: Left-justify output (only useful in connection with a width specification)

0: Use 0 for padding to requested field width (by default, ’ ’ (space) is used

+: For numerical values: Always print a sign, either + or -

’ ’ (space): Always print a character for the sign, - for negative numbers, ’ ’
for positive ones

#: Use a variant of the conversion operation

– For %o, print a leading 0
– For %x, print a leading 0x
– For %X, print a leading 0X
– For floating point numbers, trailing digits and decimal dot are always printed

with the # flag

Stephan Schulz 425

The Precision

The precision field is used for a number of different things:

– For any integer conversion character, it gives a minimum number of digits to
print (by adding leading zeros)

– For %e, %E and %f, it gives the number of digits in the fractional part
– For %g and %G, it is the number of significant digits to be printed
– Finally, for strings (%s), it gives the maximal number of characters to be

printed from the string

Stephan Schulz 426

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("Floating point example: |%+8.2f|\n", 3.0/7.0);
printf("Floating point example: |% 8.2f|\n", 3.0/7.0);
printf("String: %-7.7s\n", "Longish String");
printf("String: %-7.7s\n", "short");
printf("String: %7.7s\n", "short");

return EXIT_SUCCESS;
}

Output:

Floating point example: | +0.43|
Floating point example: | 0.43|
String: Longish
String: short
String: short

Stephan Schulz 427

Assignment

Write an archiver program arch322. Your program should accept any number of
arguments (to be treated as filenames). It should write (to stdout) an archive,
i.e. a file that contains enough information to recreate the original files with their
names. For simplicity, allow only files in the current directory to be archived
(check, if the arguments contain a / and print an error message if yes). Also
print useful error messages if one of the named files does not exist, etc.

Write a dearchiver dearch322 that accepts an archive file (in your format) on
stdin and recreates the original files in the current directory. Print an error
message if the file is not a valid archive.

You are free to design your own archive format, but you may get some ideas from
reading the documentation (man/info) on tar/gtar. Please document your
format in one or two paragraphs. You may assume UNIX I/O, i.e. no difference
between text and binary I/O.

Example:

Stephan Schulz 428

$ arch322 Makefile sort_csc322.c utilities.c > myarch.arch
$ mkdir NEW
$ cd NEW
$ dearch322 < ../myarch.arch
Recreating Makefile
Recreating sort_csc322.c
Recreating utilities.c
$ ls
$
Makefile sort_csc322.c utilities.c

Stephan Schulz 429

CSC322
C Programming and UNIX

Asynchronous Events and Signals

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Processes

A UNIX process is an instance of a program in execution. It can be described by

– The executable code (stored in the text segment of the virtual memory image
of the process

– The program data (stored in the data segement)
– The state, including stack pointer and stack, program counter, etc. (usually

collected in a process control block, or PCB)

A process uses certain resources:

– Processor time on a CPU
– Memory, both virtual or real
– File descriptors
– . . .

Some of its important properties are

– Owner
– Process id (pid), a unique non-negative integer
– Parent (exception: init)

Stephan Schulz 431

UNIX User Commands: ps

Usage: ps <complicated options>

– ps shows information about currently executing processes
– It is one of the least standardized UNIX tools

Our Linux ps can assume many different personalities

– Different personalities show different behaviour
– . . . and accept different options.

Default behaviour (ps without options):

– Show information about all existing processes of the current user controlled by
the same terminal ps was run on

– For each process, list:
∗ Process Id (PID)
∗ Controlling terminal (TTY)
∗ CPU time used by the process
∗ Name of the executable program file

Stephan Schulz 432

Vanilla ps Example

$ ps

PID TTY TIME CMD
1125 pts/3 00:00:01 tcsh
7157 pts/3 00:00:00 xevil
7189 pts/3 00:00:00 gv
7193 pts/3 00:00:00 gs
7194 pts/3 00:00:00 ps

Stephan Schulz 433

Some ps Options

Some simple BSD style options for the default personality (note: BDS style
options for ps are not preceeded by a dash!)

– a: Print information about all processes that are connected to any terminal
– x: Print information about processes not connected to a terminal
– U <username>: Print information about processes owned by the named user
– u: User oriented output with more interesting information:
∗ Owner of a process (USER)
∗ Process Id (PID)
∗ Percentage of available CPU used by the process (%CPU)
∗ Percentage of memory used (%MEM) (note that this measures virtual

memory usage, real memory usage may be lower because of shared pages)
∗ Virtual memory size of the process in KByte (VSZ)
∗ Size of the resident set, i.e. the recently referenced pages not swapped out

(RSS)
∗ Controlling terminal (TTY)
∗ Time or date when the process was started (START)
∗ Seconds of CPU time used (TIME)
∗ Full command used to start the process (COMMAND)

Stephan Schulz 434

Interesting ps Example

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 1368 432 ? S Oct30 0:04 init
root 2 0.0 0.0 0 0 ? SW Oct30 0:03 [keventd]
root 3 0.0 0.0 0 0 ? SW Oct30 0:00 [kapmd]
...
root 486 0.0 0.1 1372 408 ? S Oct30 0:00 /sbin/dhcpcd -n -h wombat eth0
root 551 0.0 0.2 1644 668 ? S Oct30 0:00 syslogd -m 0
...
schulz 1095 0.0 4.8 16112 12268 ? S Oct30 4:40 emacs -geometry 96x77+0+0 /home/schulz/.todo
schulz 1096 0.0 0.8 4944 2216 ? S Oct30 0:05 xterm -geometry 80x40-0-170 -sb -sl 360 -s -T Compile -n Compile
schulz 1997 0.0 0.5 3072 1476 ? S Oct31 0:12 ssh sherman emacs
root 4073 0.0 1.0 7480 2768 pts/3 S Oct31 0:03 /usr/local/lib/xmcd/bin-Linux-i686/xmcd
schulz 22637 0.0 0.5 2940 1444 pts/5 S Nov05 0:03 ssh -X sunbroy2.informatik.tu-muenchen.de
schulz 22645 4.0 18.7 82248 47832 ? S Nov05 31:04 /usr/local/mozilla/mozilla-bin
schulz 6722 0.0 0.0 0 0 ? Z Nov05 0:00 [plugger <defunct>]
schulz 7189 0.0 0.8 3948 2220 pts/3 S 00:15 0:00 gv CSC322_1.pdf
schulz 7235 0.4 2.2 10060 5668 pts/3 S 00:41 0:00 gs -dNOPLATFONTS -sDEVICE=x11alpha -dNOPAUSE -dQUIET -dSAFER -
schulz 7236 76.8 38.0 98072 96896 pts/0 R 00:43 0:33 eprover /home/schulz/SOURCES/E/PROVER/SET103-6+rm_eq_rstfp.lop
news 7237 0.5 1.0 3704 2796 ? S 00:43 0:00 leafnode
schulz 7258 0.0 0.2 2624 708 pts/3 R 00:43 0:00 ps aux

Stephan Schulz 435

CSC322
C Programming and UNIX

Signals and Signal Handlers

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Signals

Signals are a way to signal unusal events to a process

– Run time errors
– User requests
– Pending communication

In general, signals can arrive assynchronously, i.e. at any time

Signals can have many different values, depending on the value, the process can

– Ignore a signal
– Perform a default action (defined by the implementation)
– Invoke an explicit signal handler

Stephan Schulz 437

Standard C Signals

Standard C defines a small number of signals, UNIX defines many more

Signal Meaning Default Action (UNIX)
SIGABRT Abort the process Terminate
SIGFPE Floating point exception Terminate with core
SIGILL Illegal instruction Terminate with core
SIGINT Interactive interrupt Terminate
SIGSEGV Illegal memory access Terminate with core
SIGTERM Termination request Terminate

Note: SIGINT is generated when you press [CTRL-C]!

– The signal is delivered to the process
– The default action is to terminate the process

Stephan Schulz 438

Some UNIX Signals

UNIX defines about 60 different signals, including all Standard C signals

Some important UNIX signals:

Signal Meaning Default Action (UNIX)
SIGHUP Terminal connection lost (or control-

ling process dies)
Terminate

SIGKILL Kill process, cannot be caught or
ignored

Terminate

SIGBUS Bus error Terminate with core
SIGSTOP Stop a process (does not terminate,

cannot be caught or ignored)
Suspends process

SIGCONT Continue suspended process Ignored (*)
SIGURG Out of band data arrived on a socket Ignore
SIGXCPU CPU time limit reached Terminate with core

(*) OS will still wake process up

[CTRL-Z] generates SIGSTOP!

Stephan Schulz 439

UNIX User Command: kill

Note: kill is often implemented as a shell built-in

– Syntax may differ slightly from the kill program
– Allows use of kill in job control

Usage for our kill: kill [-<SIG>] <pid> ...

– If no signal is specified, SIGTERM is sent
– Signals can be specified symbolically (for a list of names run kill -l) or

numerically (man 7 signal gives a list of signals and their numeric values)

kill accepts a list of <pid> arguments

– Most common case: <pid> is a normal process id (a positive integer). The
signal is sent to the corresponding process

– If <pid> is -1, the signal is sent to all processes of the user (kill -KILL
-1 is a surefire way to log yourself out)

– Finally, if <pid> is any other negative number, the signal is sent to the
corresponding process group

Stephan Schulz 440

UNIX User Commands: top

top is an interactive version of ps

– It shows various information about the top processed currently running
– Also shows general system information
– All information is periodically updates
– top seems to be more consistent between different UNIX dialects, and is often

preferred for interactive use (or even for scripting)

top also can be used to send signals to processes

– Press [k] and then specify process and signal

Non-interactive use of top (“better ps”):

– top -b -n1 will print a single page in a ps-like manner

For more information: man top or run top and hit [h] for help

Stephan Schulz 441

top Example
11:09pm up 8 days, 1:15, 7 users, load average: 0.59, 0.21, 0.07

78 processes: 71 sleeping, 4 running, 3 zombie, 0 stopped
CPU states: 95.2% user, 4.7% system, 0.0% nice, 0.0% idle
Mem: 254576K av, 249892K used, 4684K free, 0K shrd, 7428K buff
Swap: 522072K av, 30888K used, 491184K free 68440K cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
12692 schulz 25 0 25548 24M 664 R 89.3 10.0 0:08 eprover
1040 root 15 0 89416 15M 5424 S 5.5 6.4 919:35 X
1097 schulz 15 0 2324 2124 1676 S 3.7 0.8 0:15 xterm

12693 schulz 16 0 924 924 728 R 1.1 0.3 0:00 top
1096 schulz 15 0 2512 2252 1708 R 0.1 0.8 0:07 xterm

1 root 15 0 472 432 416 S 0.0 0.1 0:04 init
2 root 15 0 0 0 0 SW 0.0 0.0 0:04 keventd
3 root 15 0 0 0 0 SW 0.0 0.0 0:00 kapmd
4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 ksoftirqd_CPU0
5 root 15 0 0 0 0 SW 0.0 0.0 0:09 kswapd
6 root 15 0 0 0 0 SW 0.0 0.0 0:00 bdflush
7 root 15 0 0 0 0 SW 0.0 0.0 0:00 kupdated
8 root 25 0 0 0 0 SW 0.0 0.0 0:00 mdrecoveryd

12 root 15 0 0 0 0 SW 0.0 0.0 0:01 kjournald
...

Stephan Schulz 442

Catching Signals

User programs can set up a signal handler to catch signals

– A signal handler is a normal function
– It has to be explicitely set up for each signal type
– It will be called asynchronously when a signal of the correct type has been

caught
– When the signal handler returns, the program will resume execution at the old

spot

UNIX implements several different ways of handling signals, we will concentrate
on the ANSI C signal handling

– All use the same signal: Signals are small integers
– However, for all existing signals, we use the #defined name showed above

(SIGHUP. . .)

Signal handling stuff is defined in <signal.h>

Stephan Schulz 443

ANSI C Signal Handling with signal.h

signal.h defines the signal() function for establishing signal handlers as
follows:

void (*signal(int sig, void (*handler)(int)))(int)

Huh?

Stephan Schulz 444

ANSI C Signal Handling with signal.h

signal.h defines the signal() function for establishing signal handlers as
follows:

void (*signal(int ig, void (*handler)(int)))(int)

We can break this definition up as follows:

typedef void (*SigHandler)(int);

SigHandler signal(int sig, SigHandler handler);

– The first argument to signal() is the signal to be caught
– The second argument is a pointer to the new signal handler
– Return value is a pointer to the old signal handler for that signal (or SIG ERR

if no signal handler could be established)

Predefined (pseudo) signal handlers (possible arguments to signal():

– SIG DFL: Revert to the default behaviour for that signal
– SIG IGN: Ignore the signal from now on

Stephan Schulz 445

ANSI C Signal Handling (Continued)

Additional definitions in signal.h:

sig atomic t is an integer type

– We are guartanteed that an assignment to a variable of this type is atomic,
i.e. will not be interrupted by e.g. another signal

– That means that it’s value will always be well-defined

int raise(int sig) raises a signal to the program

– Return value: 0 on success, something else otherwise

Stephan Schulz 446

ANSI C Signal Handers

A signal handler is a function that returns nothing and gets the signal that was
caught as an argument

There are several limitations on signal handler:

– Since signals can arrive asynchronously, the state of the program is not
well-defined!

– Signals may be handled even within a single C statement
– Therefore a signal handler cannot make many assumptions about the state of

the program
– For maximum portability, a signal handler should only
∗ Reestablish itself by calling signal()
∗ Assing a value to a variable of type volatile sig atomic t
∗ Return or terminate the program (e.g. calling exit())

Once a signal has been caught, the signal handler for that signal is reset to
default behaviour

– If you want to catch multiple signals, the signal handler has to reestablish itself

Stephan Schulz 447

Common UNIX functions: sleep()

Often, a program only has to perform task only occasionally, or it has to wait for
a certain event to happen. ANSI C has no way of delaying a program

– Old-style home computer programmers use busy delay loop
– However, those are unacceptable on multi-user systems
– Moreover, they can usually be optimized away by a good compiler

All UNIX versions address this problem with the sleep() function (normally
defined in <unistd.h>):

unsigned int sleep(unsigned int seconds);

sleep() makes the current process sleep (do nothing ;-) until either

– (At least) seconds seconds have elapsed or
– A non-ignored signal arrives

Return value:

– 0 if sleep terminated because of elapsed time
– Number of seconds left when the process was awakened by a signal

Stephan Schulz 448

Example: Counting Signals (Fluff)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <assert.h>

typedef void (*SigHandler)(int);
volatile sig_atomic_t sig_int_flag = 0;
volatile sig_atomic_t sig_term_flag = 0;

void EstablishSignal(int sig, SigHandler handler)
{

SigHandler res;

res = signal(sig, handler);
if(res == SIG_ERR)
{

perror("Could not establish signal handler");
exit(EXIT_FAILURE);

}
}

Stephan Schulz 449

Example: Counting Signals (The Signal Handlers)

void sig_int_handler(int sig)
{

EstablishSignal(SIGINT, sig_int_handler);

assert(sig == SIGINT);
printf("Caught SIGINT!\n"); /* Risky */
sig_int_flag = 1;

}

void sig_term_handler(int sig)
{

EstablishSignal(SIGTERM, sig_term_handler);
assert(sig == SIGTERM);
printf("Caught SIGTERM!\n"); /* Risky! */
sig_term_flag = 1;

}

Stephan Schulz 450

Example: Counting Signals (Main)

int main(int argc, char* argv[])
{

int i;
int int_counter = 0;

EstablishSignal(SIGTERM, sig_term_handler);
EstablishSignal(SIGINT, sig_int_handler);

for(i=0; i<1000 && !sig_term_flag; i++)
{

printf("Going to sleep!\n");
sleep(30);
if(sig_int_flag)
{

sig_int_flag = 0;
int_counter++;

}
}
printf("SIGINTs: %d Iterations:%d\n", int_counter, i);
return EXIT_SUCCESS;

}

Stephan Schulz 451

Example Session: Live

(Change to Terminal!)

Stephan Schulz 452

Exercises

Start a long running process (e.g. top) in one xterm

Send it various signals and see how it behaves

Read man 7 signal, man kill and man 2 kill

Download the source to the signal handler example and play with it

– Send different signals to it
– Add your own signal handler
– Write a generic signal handler function that catches more than one signal (and

works correctly for multiple signals)

Stephan Schulz 453

CSC322
C Programming and UNIX

The UNIX File System

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

UNIX File System

UNIX philosophy: Everything is a file

– Plain files
– Hardware devices (Keyboard, mouse, hard drives)
– Network connections

Consequently, UNIX specifies a lot more properties and has more ways of
manipulating a file then ANSI C

– Low-level IO
– File access rights
– Different file types

Note: These are not ANSI C features

– We have to call gcc without the -ansi option to use most of these features
(otherwise, most UNIX extensions are disabled)

Stephan Schulz 455

UNIX File Types (1)

Regular files

– Boring old data file (most common type of file)
– UNIX does not care what is inside that file

Directories

– Stores names and pointers to more information
– Write access is limited to kernel file system functions to assure the integrity of

the file system

Character special files

– Represent hardware devices that generate individual characters (/dev/kbd,
/dev/mouse)

Block special files

– Represent hardware where data is available in fixed-size blocks (e.g. hard
drives, /dev/hda in Linux)

Stephan Schulz 456

UNIX File Types (2)

FIFOs (named pipes)

– Special files used for interprocess communication

Sockets

– Special files used for network communication (or local interprocess communi-
cation)

– Not available in all UNIX versions (some don’t represent network connections
as files in the file system)

Symbolic links

– A symbolic link is a file containing just a file name
– The kernel normally automatically redirects any access to the link to the named

file

Stephan Schulz 457

The stat() Functions

The three functions in the stat family all allow us to extract information about
a file

– Who owns it
– How big is it
– What kind of file is it
– . . .

They are specified as follows:

#include <sys/types.h>
#include <sys/stat.h>

int stat(const char *pathname, struct stat *buf);
int fstat(int filedes, struct stat *buf);
int lstat(const char *pathname, struct stat *buf);

Stephan Schulz 458

The stat() Functions (2)

All three functions perform the same basic function:

– Write information about a file into the structure buf points to (and which we
have to provide)

– Return 0 if the operation was possible, -1 otherwise (in which case they also
set errno)

Differences:

– fstat() accepts a low level file descriptor referring to an open file
– lstat() will not follow symbolic links, but give information about the link

itself (stat() given information about the file pointed to)

How exactly struct stat is defined may differ

– It always constains certain standard members

Stephan Schulz 459

The stat() Functions (3)

struct stat {
dev_t st_dev; /* device number*/
dev_t st_rdev; /* device type (if inode device) */
ino_t st_ino; /* inode number */
mode_t st_mode; /* access rights and file type */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};

Interpretation of some fields is supported by predefine macros

– E.g. st mode

Stephan Schulz 460

Example: Simple ls -l Version

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

void stat_file(char *fname)
{

struct stat buff;
char* type = "Unknown";

if(lstat(fname, &buff) < 0)
{

err_sys("lstat");
}

Stephan Schulz 461

Example Continued

if(S_ISREG(buff.st_mode))
{

type = "Regular file";
}
else if(S_ISDIR(buff.st_mode))
{

type = "Directory";
}
else if(S_ISCHR(buff.st_mode))
{

type = "Character special file";
}
else if(S_ISBLK(buff.st_mode))
{

type = "Block special file";
}
else if(S_ISFIFO(buff.st_mode))
{

type = "Pipe or FIFO";
}

Stephan Schulz 462

Example Continued

else if(S_ISLNK(buff.st_mode))
{

type = "Symbolic link";
}
else if(S_ISSOCK(buff.st_mode))
{

type = "Socket";
}
printf("%-30s %10ld Bytes %s\n", fname, buff.st_size,type);

}

int main(int argc, char *argv[])
{

int i;

for(i=1; i<argc; i++)
{

stat_file(argv[i]);
}
return EXIT_SUCCESS;

}

Stephan Schulz 463

Example Output

$ /SOURCES/CSC 322/myls *

BINTREE 533 Bytes Directory
LIST_DEMO 549 Bytes Directory
Makefile 1322 Bytes Regular file
Makefile~ 1277 Bytes Regular file
RPN_CALC 630 Bytes Directory
RPN_CALC.tgz 10197 Bytes Regular file
SORT 373 Bytes Directory
a.out 13756 Bytes Regular file
base_converter 14634 Bytes Regular file
base_converter.c 1918 Bytes Regular file
base_converter.c~ 430 Bytes Regular file
celsius2fahrenheit 13633 Bytes Regular file
celsius2fahrenheit.c 395 Bytes Regular file
charcount 13639 Bytes Regular file
charcount.c 216 Bytes Regular file
charcount.c~ 114 Bytes Regular file
charuniq 13643 Bytes Regular file
charuniq.c 571 Bytes Regular file
...

Stephan Schulz 464

Example Output (of device directory /dev/)

$ /SOURCES/CSC 322/myls *

...
cdrom 8 Bytes Symbolic link
cdu535 0 Bytes Block special file
cfs0 0 Bytes Character special file
cm205cd 0 Bytes Block special file
cm206cd 0 Bytes Block special file
console 0 Bytes Character special file
core 11 Bytes Symbolic link
cpu 196 Bytes Directory
cua0 0 Bytes Character special file
cua1 0 Bytes Character special file
...
ham 0 Bytes Character special file
hda 0 Bytes Block special file
hda1 0 Bytes Block special file
hda10 0 Bytes Block special file
hda11 0 Bytes Block special file
hda12 0 Bytes Block special file
...

Stephan Schulz 465

Links

Links form a connection between a file name and the actual file

There are two kinds of links:

– Hard links
– Symbolic (or soft) links

A hard link links a name and a file

– Each file can have multiple hard links
– All are equivalent (no concept of “original link”), access is equally efficient for

all hard links
– rm actually only removes a link, if the number of links becomes 0, the file is

finally removed)
– Typically, it is only possible to have hard links to a file on the same physical

partition or medium

Stephan Schulz 466

Links (2)

Soft links create indirect aliases for a file

– They are just files that contain another file name
– Following a soft link incurrs a small performance penalty
– Symbolic links point anywhere in the file system (no limitations as to physical

medium, networked file system, . . .)
– Symbolic links do not influence the file pointed to at all!
– If the file does not exist any more, the link still exists, but is broken

Most user-created links are soft links nowadays

– Used to share files
– Used to hide file system reorganization

Stephan Schulz 467

UNIX User Commands: ln

ln is used to create both hard and symbolic links

Usage is similar to mv and cp:

– ln <target>: Create a link to <target> in the current directory (under the
same file name)

– ln <target> <name>: Make <name> a link to <target>
– ln <target1>...<targetn> <dir>: Create links to all targets in the current

directories

Important option: -s (create symbolic links)

More: man ln

Stephan Schulz 468

Exercises

Read man stat and extend the ls example to show more information (e.g.
everything ls -l shows)

Explain the difference between mv filea fileb, cp filea fileb and ln
filea fileb

Stephan Schulz 469

CSC322
C Programming and UNIX

The UNIX File System
File modes

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

File Ownership

All files have an owner (a user)

– ls -l displays the user name (if available) or the numerical user id (e.g. for
files of a user that no longer exists)

Similarly, each file has a group associated with it

– This will be similarly displayed by ls -l

Owner and group of a file determine who has what kind of access to that file.
Access types are

– Read access (open a file for reading, reading data)
– Write access (change a file)
– Execute access (run a file as a program, or, for directories, access file names in

that directory

Stephan Schulz 471

ls -l Output Explained
−rw−r−−r−− 1 schulz schulz 1283190 Nov 11 10:35 CSC322.pdf

File size in Bytes (st_size)

Group that owns the file (st_gid)

User that owns the file (st_uid)

File access rights (encoded in st_mode)

File type (encoded in st_mode)

Number of hard links (st_nlink)

Filename

Modification time (st_mtime)

Note: All information (except for the file name) are available by calling one of
the stat() functions!

Stephan Schulz 472

User Groups

Groups are used in UNIX to give a group of users the ability to access a common
resource

– Most obvious use: Share files on the disk
– In practice more important: Allow access to a hardware device (Note: A

modem is a file, e.g. /dev/modem!)

Every user belongs to a primary group

– The primary group for a user is listed in the passwd file (as a numerical group
id or gid):
schulz:x:500:500:Stephan Schulz:/home/schulz:/bin/tcsh

∗ For normal UNIX systems, /etc/passwd
∗ For systems running NIS, see the file with ypcat passwd

– After logging in, the users primary group is active (the gid of the shell has the
value for the primary group)
∗ Processes started by another process (including the shell) inherit the gid

Stephan Schulz 473

Groups (Continued)

Additional group information is in /etc/group:

– For each group, a symbolic name (displayed by ls -l) and a list of users
belonging to that group:
daemon:x:2:root,bin,daemon
schulz:x:500:

Secondary groups are additional groups which list the user as a member

– A user can explicitely change to such a group using the newgrp command
(man newgrp)

Stephan Schulz 474

UNIX User Utilities: chown and chgrp

chown is used to change the owner of a file

– Usage: chown <newuser> <file1> ...
– On most systems, only root is allowed to use chown (there are security issues

even with giving away files!)

chgrp changes the group of a file

– Usage: chgrp <newuser> <file1> ...
– On most systems, you can only change the group of a file to a group in which

you are a member (see above)

Important option for both: -R

– Recursively apply the operation to subdirectories and files in them

Stephan Schulz 475

File Mode Bits

The status word of a file (the st mode field in struct stat also contains 9 bits
describing file access rights

– Note: These rights exist for all files, includding special files and directories!

There are three different groups with potentiallty different access rights:

– The user who owns the file
– Members of the group associated with the file
– Other users

There are also three different types of access:

– Read access
– Write access
– Execute access

There are three more bits describing special properties

– The setuid bit: If true, the file will run under the effective user id of the
program owner (not the one who started it)

– The setgid bit: Same thing for the group id
– The sticky bit with complex semantics and interesting history

Stephan Schulz 476

Symbolic Encoding

ls -l prints a string of 9 letters to represent the 9 12 file mode bits

Normal case: The setuid, setgid and sticky bit are all cleared (0):

– The mode has the form uuugggooo to encode user, group, and other access
rights

– Each letter may be - to denote that that bit is clear
– Or it may have the mnemonic value of that right:
∗ r for read (first letter)
∗ w for write (second letter)
∗ x for execute (third letter)

If one of the special bits is set, this is denoted by changing the last letter of each
group (x) to another letter. Common cases (more: info ls):

– s in the user executable position: The file is user executable and the setuid
bit is set

– s in the group executable position: The file is group executable, and the
setgid bit is set

Stephan Schulz 477

Numerical Encoding

The 12 permission bits are normally represented by 4 octal digits (each digit
represents 3 bits):

– 0001 represents execute access for others
– 0002 represents write access for others
– 0004 represents read access for others
– 0010 represents execute access for group
– 0020 represents write access for group
– 0040 represents read access for group
– 0100 represents execute access for user
– 0200 represents write access for user
– 0400 represents read access for user
– 1000 is the sticky bit
– 2000 is the setgid bit
– 4000 is the setuid bit

To generate a composite mode, just add up the individual modes

Leading zeroes (especially the first one) are often omitted

Stephan Schulz 478

Examples

rw-r--r-- is the most common mode for a regular file on a conventional UNIX
system:

– The user is allowed to read and write the file
– Everyone else is allowed to read the file (no secrets ;-)
– Corresponding numerical value:
0004 Other read
0040 Group read
0400 User read
0200 User write

0644

Numeric mode 666 (the number of the beast) gives full read and write access for
everyone (rw-rw-rw-)

– Some people claim that this is not coincidence. . .

Stephan Schulz 479

UNIX User Utilities: chmod

chmod is used to change the file access bits

Usage 1: chmod <numeric-mode> files

– Sets the file mode of the named files to the octal mode absolutely

Usage 2: chmod <symbolic-mode-command> files

– The symbolic mode command can add or remove privileges for the different
groups

– Format: <who><what><right>
∗ <who> can be any sequence of letters from ugo or a (equivalent to ugo)
∗ <what> can be
· + to add rights
· - to remove rights
· = to absolutely assign rights

∗ <right> can be any combination of letters from rwx

Important option: -R

– Recursively modify files and subdirectories

Stephan Schulz 480

chmod Examples

chmod ugo+rwx myfile # Grant full access rights to everybody
chmod 777 myfile # Grant full access rights to everybody
chmod -R go-rwx . # Paranoid: Remove read, write, and exute

rights for all other people on the current
directory and all files and subdirectory

chmod -R 644 . # Trying to fix things, but removed all
execute rights from programs _and_
directories (makes things hard to fix ;-)

Stephan Schulz 481

File Mode Creation Mask

Each process maintains a file mode creation mask

– This mask determines, which access rights are granted for newly created files
and directories

– The colloquial name is umask
– The umask is inherited by new processes started (i.e. your files will be created

with rights based on the umask of your shell)

The umask contains 9 bits, corresponding to the rwxrwxrwx access rights

– Bits set in the mask are always cleared
– All other rights are granted by default (with the x bits only set for executables

and directories)

The shell maintains a umask that can be set with the umask command (which
is normally in a user configuration file)

– Example: umask 022
– Removes write permissions for everybody but the owner

Stephan Schulz 482

Exercises

Read the man and info pages on chmod, chown and chgrp

The UNIX commands chmod and chown correspond to system calls of the same
name. To find out how they work, read:

– man 2 chmod
– man 2 chown

Use this information to implement a rudimentary version of chmod

Stephan Schulz 483

CSC322
C Programming and UNIX

The UNIX File System
File Descriptors

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

File Decriptors

Files are identified for the kernel as file descriptors

– A file descriptor is a small, non-negative integer
– It’s used as an index into the file descriptor table of a process to obtain more

information

For many purposes, file descriptors are quite similar to file pointers (FILE*) from
the C standard I/O library

Hower, file descriptor I/O is much more lowlevel

– No formatted I/O
– No buffering – each I/O operation directly causes a system call to actually

perform the data transfer

Notes:

– UNIX’s standard I/O library is implemented using file descriptors
– Network communication also works via file descriptors

Stephan Schulz 485

Opening Files: open()

The open() system call opens a named file and returns a file descriptor (or -1
on failure)

It is defined as follows:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int oflag, mode_t mode);

Arguments:

– pathname is a standard UNIX file name as for fopen()
– oflag contains the options. The value is created by bitwise ORing of one of

the following values with a number of option flags:
∗ O RDONLY: Open the file for reading
∗ O WRONLY: Open the file for writing
∗ O RDWR: Open for reading and writing

– The third argument is only interpreted if open() is used for file creation (and
can be omitted otherwise)

Stephan Schulz 486

Option flags for open()

Note: All of the following flags have to be ORed (using the bitwise or operator |
with the main access mode (O RDONLY, O WRONLY,O RDWR)

Options:

– O APPEND: All output on this file descriptor is appended at the end of the file
– O CREAT: If the file does not exist, create it
– O EXCL: Only used with O CREAT – give an error, if the named file already

exists
– O TRUNC: If the file exists and is opened for writing or r/w, truncate it to

lenght 0
– O SYNC: Only return from writes to that file when the physical output is

complete

There are some more flags that we only discuss when necessary

Example: fd = open("/tmp/testfile", O WDONLY|O APPEND|O SYNC)

Stephan Schulz 487

Using open() to create files

If the option O CREAT is given, open() will create a file if no file with the given
name exists

This also requires the third argument to open() (which otherwise is ignored or
can be omitted)

– This argument describes the access rights set for the new file
– It is created by binary ORing of the following constants:

S IRUSR Read Permission for the user
S IWUSR Write permission for the user
S IXUSR Execute permission for the user
S IRGRP Read Permission for the group
S IWGRP Write permission for the group
S IXGRP Execute permission for the group
S IROTH Read Permission for the others
S IWOTH Write permission for the others
S IXOTH Execute permission for the others

– Note: These are the same values used byst mode in struct stat

Stephan Schulz 488

Notes on open() and close()

The mode given to open() is modified by the umask of the process

The file mode is only set if the file is actually created (not even if it exists but is
truncated with O TRUNC)

A file is closed using the close() function:

#include <unistd.h>
int close(int fd);

– Return value: 0 on success, -1 on failure

There are three predefined file descriptors that are open by default, corresponding
to the 3 standard I/O channels:

– STDIN FILENO (traditionally 0)
– STDOUT FILENO (traditionally 1)
– STDERR FILENO (traditionally 2)

Stephan Schulz 489

File Descriptor I/O: read() and write()

The functions read() and write() perform unbuffered input and output:
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

– ssize t is an integer type defined in <unistd.h>
– fd is the file descriptor for input or output
– buf is a pointer to an area of memory
∗ write() reads the data to write from this buffer
∗ read() stores the read data in the buffer

– count is the number of bytes to transfer (and should not be bigger than the
size of *buf!)

Both functions return the number of bytes transmitted
– For write(), a smaller number than requested signals an error
– For read():
∗ 0 indicates end of file
∗ -1 signals error
∗ Everything else is normal (there may be fewer characters than requested

currently available)

Stephan Schulz 490

Example: Simple cat

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

Stephan Schulz 491

Example Continued

#define BUF_SIZE 1024

int main(int argc, char* argv[])
{

int fd;
char buf[BUF_SIZE];
ssize_t count, check;

if(argc!=2)
{

fprintf(stderr, "USAGE: mycat2 file");
exit(EXIT_FAILURE);

}
fd = open(argv[1], O_RDONLY);
if(fd == -1)
{

err_sys("open");
}

Stephan Schulz 492

Example Continued

while((count = read(fd,&buf,BUF_SIZE)))
{

if(count==-1)
{

err_sys("read");
}
check = write(STDOUT_FILENO, &buf, count);
if(check!=count)
{

err_sys("write");
}

}
if(close(fd) == -1)
{

err_sys("close");
}
return EXIT_SUCCESS;

}

Stephan Schulz 493

The Standard I/O Library and File Descriptors

Remember that a file pointer is actually of type FILE*

It typically points to a structure in an array

– stdin points to element number 0
– stdout points to element number 1
– stderr points to element number 2
– More elements are filled in for each use of fopen()

Each of the structures contains:

– A buffer
– Some counters and positions to manage the buffer
– A file descriptor
– Flags for the access mode (read or write)

Consider the case of writing:

– All write commands just write into the buffer space
– If the buffer is full or a fflush() command is issued (or the stream is closed),

all of the buffer is written using a single write() command

Reading similarly reads a large block and hands it out piecewise

Stephan Schulz 494

Cheating with fdopen()

Formatted, buffered output is very convenient and quite efficient for many small
I/O operations (getchar(), fprintf(), . . .)

– Normally much better than read() and write()
– But some I/O methods only give us file descriptors (dammit!)

Solution: The function fdopen() will generate an entry in the FILE array from
a file descriptor and return the pointer to it

#include <stdio.h>
FILE *fdopen(int fildes, const char *mode);

filedes has to be an open file descriptor

mode is a string as for fopen() ("r", "w". . .) and must be compatible with
the flags of the file descriptior

Stephan Schulz 495

Exercises

Write simple version of cp using open(), read() and write(). Use a default
buffer size, but support an option -b that allows you to set the buffer size from
the command line. Measure the speed of copying a large file for different sizes

Examples:

– mycp file1 file2 copies file1 to file2, using the default buffer size
– mycp -b3 file2 file2 copies the file using a buffer of 3 bytes

Use the fstat() command on both files to get the native block size of the file
systems for both files (the st blksize field in struct stat). What do you
notice? Can you write a better cp now?

Stephan Schulz 496

CSC322
C Programming and UNIX

More on File Descriptors

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

More on the UNIX I/O System

The file descriptor typically is an index into a table that contains information
about all open files of the process

– That table contains just the flags (read/write) for that file descriptor and a
pointer to the kernels global file table

The file table is global and shared by all processes. It has one entry per opened
file , containing:

– File status flags (read, write, append,sync. . . , the things we passed to open()
– Current offset into the file: The position where the next read or write will start
– A pointer to the vnode of the file
∗ The vnode contains the file type and information about how to actually

access the file, as well as the current real file size
∗ It also gives us a way to access the inode that contains all the information

we get with stat()
∗ There is only one vnode per file, i.e. the vnode is the same for all file

descriptors and all processes that access the same file

Stephan Schulz 498

The UNIX File I/O System

FILE* myfile

FILE array entry

Buffer

File descriptor

fd n: flags :

Process table File table entry

Status flags

Offset

Standard IO Library

Per−Process Data Structures Global, Shared Data Structures

vnode table entry

current
filesize
...

Actual

Stephan Schulz 499

Blocking vs. Nonblocking I/O

All I/O we have seen so far is blocking

– read() waits (blocks) until some input becomes available
– It then returns the read data
– Similarly, if write() temporarily cannot write the data, it blocks until it can

Non-blocking I/O always returns immediately from the I/O function

– If the I/O failed temporarily, the functions return -1
– errno is set to EWOULDBLOCK

Question: How do we achieve non-blocking I/O?

Answer: By manipulating the file descriptor

– Each file descriptor has a number of associated flags
– One of these selects blocking vs. non-blocking behaviour

Stephan Schulz 500

Manipulating File Descriptors: fcntl()

fcntl() is a catch-all function for manipulating file descriptors

#include <unistd.h>
#include <fcntl.h>
int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, long arg);
int fcntl(int fd, int cmd, struct flock *lock);

We are only interested in the use of fcntl() for getting and changing the file
status flags:

– O RDONLY, O WRONLY, O RDWR
– O APPEND
– O NONBLOCK
– O SYNC
– . . . (depending on UNIX version)

fcntl() may return various values, depending on cmd

– On error, it always returns -1 and sets errno

Stephan Schulz 501

fcntl() Continued

Using fcntl() to get the file status flags:

flags = fcntl(fd, F_GETFL);

– To interprete the result, we need to logically AND it with the flag we are
interested in (see example)

– To get the read/write status, AND the result with O ACCMODE

To set the file status flags:

fcntl(fd, F_SETFL, newflags);

– If we only want to change a single flag, we have to get the old value and use
binary operations to change just that flag!

– Example:
int flags = fcntl(STDIN_FILENO, F_GETFL);
flags = flags | O_NONBLOCK;
fcntl(STDIN_FILENO, F_SETFL, flags);

Stephan Schulz 502

Example: Printing Flags for a File Descriptor

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

Stephan Schulz 503

Example (2)
void print_fd_file_status(int fd)
{

int flags = fcntl(fd, F_GETFL);
if(flags == -1)
{

err_sys("fcntl");
}
printf("Flags for file descriptor %d\n", fd);
switch(flags & O_ACCMODE)
{
case O_RDONLY:

printf("Read only\n");
break;

case O_WRONLY:
printf("Write only\n");
break;

case O_RDWR:
printf("Read/Write\n");
break;

default:
printf("Strange\n");

}

Stephan Schulz 504

Example (3)

if(flags & O_APPEND)
{

printf("Append is set\n");
}
if(flags & O_NONBLOCK)
{

printf("Non-blocking\n");
}
if(flags & O_SYNC)
{

printf("Synchronous writes\n");
}

}
int main(int argc, char* argv[])
{

print_fd_file_status(STDIN_FILENO);
print_fd_file_status(STDOUT_FILENO);
print_fd_file_status(STDERR_FILENO);
print_fd_file_status(42);
return EXIT_SUCCESS;

}

Stephan Schulz 505

Example Output

$./fcntl_example
Flags for file descriptor 0
Read/Write
Flags for file descriptor 1
Read/Write
Flags for file descriptor 2
Read/Write
fcntl: Bad file descriptor

$./fcntl_example < signal_test.c
Flags for file descriptor 0
Read only
Flags for file descriptor 1
Read/Write
Flags for file descriptor 2
Read/Write
fcntl: Bad file descriptor

Stephan Schulz 506

Multiplexing I/O

Often, a program has to be able to read data from multiple sources

– Data from the user
– Data from the network
– Data from a file that is in the process of being written

Bad solution: Polling

– Switch all file descriptors to non-blocking
– Test them one after the other, until one of them has data
– Uses to much system resources!

Minimally better: Polling with a short waiting time between I/O attempts

– But: Lousy reaction time

Right solution: Use the right tool (select())

Stephan Schulz 507

Multiplexing I/O: select()

select() is used to watch a set of file descriptors for one of three conditions:

– A file descriptor is ready for reading
– A file descriptor is ready for writing
– Is there an exceptional condition for a file descriptor?

We can tell the function to either

– Return immediately, telling us the current status
– Wait until at least one of the conditions becomes true
– Wait until at least one of the conditions becomes true, but at most a fixed

amount of time

Specification:

#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
int select(int max_fdp1, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,

struct timeval *tvptr);

Stephan Schulz 508

select() Arguments

fd set is defined in sys/types.h
– It is a data type that can store a set of file descriptors
– We only know how to manipulate it:
∗ FD ZERO(fd set *set) removes all file descriptors from the set
∗ FD SET(int fd, fd set *set) inserts fd into the set
∗ FD CLR(int fd, fd set *set) removes fd from the set
∗ FD ISSET(int fd, fd set *set) returns true, if fd is contained in *set

The three fd set* arguments are used for input and output of select()
– The fd set structures the arguments point to describe which file descriptors

we are interested in
– If the pointer is NULL, we are not interested in any file descriptor for the

corresponding property
– If select() returns, the set have been modified to contain just the descriptors

for which the property is true

int max fdp1 has to be at least one bigger than the biggest file descriptor in
any one of the three sets

– It is used to speed up things in the UNIX kernel

Stephan Schulz 509

select() Arguments and Return Value

The last argument to select() is a pointer to a struct timeval

This struct has two fields:

– long tv_sec; /* Seconds */
– long tv_usec; /* Microseconds */

There are two possible cases:

– tvptr is NULL: In this case, select() waits until one of the file descriptors is
ready (or a signal is caught)

– tvptr points to a valid struct timeval: In this case, select() waits at
most the specified time

Return value:

– -1 on error or if select() returned because of a signal (errno will be set!)
– Otherwise, the number of file descriptors for which the specified condition is

true is returned

Stephan Schulz 510

Example

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

fd_set readfds;
fd_set writefds;
int res;

FD_ZERO(&readfds);
FD_ZERO(&writefds);

FD_SET(STDIN_FILENO, &readfds);
FD_SET(STDOUT_FILENO, &writefds);
FD_SET(STDERR_FILENO, &writefds);

res = select(3, &readfds, &writefds, NULL, NULL);
printf("%d file descriptors are ready\n", res);

Stephan Schulz 511

Example (2)

if(FD_ISSET(STDIN_FILENO, &readfds))
{

printf("STDIN is ready for reading\n");
}
if(FD_ISSET(STDOUT_FILENO, &writefds))
{

printf("STDOUT is ready for writing\n");
}
if(FD_ISSET(STDERR_FILENO, &writefds))
{

printf("STDERR is ready for writing\n");
}

return EXIT_SUCCESS;
}

Stephan Schulz 512

Example Output

$./select_example
2 file descriptors are ready
STDOUT is ready for writing
STDERR is ready for writing
$./select_example < select_example.c
3 file descriptors are ready
STDIN is ready for reading
STDOUT is ready for writing
STDERR is ready for writing

Stephan Schulz 513

Internet Assignment (I)

On the assignment home page you will find links to two binary programs, a chat
server and a chat client. In the end, you should turn in a program that has the
same functionality as the client

Step 1:

– Download the programs and understand what they do
– To start the server, type ./chat server <port>, where <port> is an integer

greater than 1024
– To connect to the sever, type ./chat client <ip-addr> <port> <nick>
∗ <ip-addr> is the IP-Address of the server host (use 127.0.0.1 if the server

runs on the same host, use nslookup <name> for other hosts)
∗ <port> is the same number as used for the server
∗ <nick> is the nickname under which you will chat

Caveats:

– Due to firewalling, do not expect to be able to reach a server from outside the
lab

– The binaries only run under Linux

I will try to keep a server running on lee on port 6666 for all of you to share

Stephan Schulz 514

CSC322
C Programming and UNIX

Basic UNIX Network Programming
Introduction

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

http://www.cs.miami.edu/~schulz/CSC322.html

Networking

Stephan Schulz 516

Networking

Stephan Schulz 517

Networking

Stephan Schulz 518

Networking

Stephan Schulz 519

Networking

Stephan Schulz 520

Networking

Stephan Schulz 521

Networking

The Internet

Stephan Schulz 522

Networking Concepts

Is communication occuring between two partners, or is it a broadcast communi-
cation?

– How are partners identified (addressed)?

Is traffic stream oriented or packet oriented?

– Stream-oriented: Messages arrive as stream of bytes (similar to reading from
a file)

– Packet oriented: Traffic arrives in the form of distinct pakets of a fixed (or
fixed maximal) size

Is the communication reliable or unreliable?

– Can messages disappear?
– Can the order of messages change?
– Can messages be duplicated?

Stephan Schulz 523

Network Layers

Level 0: Physical or Hardware layer

– Copper wires or optical fiber
– Radio waves or laser beams for wireless protocols

Level 1: Data Link Layer

– How is data transported?
– Examples: Ethernet, Token ring, ATM, ISDN

Level 2: Network layer

– How are individual hosts or networks assembles into a network?
– Examples: Internet protocol (IP)

Level 3: Transport layer

– Converts from standard user pakets to network layer pakets
– May include error checking and correcting
– Examples: TCP and UDP

Higher layers. . .

– Take care of data representation at various levels

Stephan Schulz 524

The Internet Protocol (IP)

Level 2 protocol (Hardware-Agnostic)

Prevalent protocol today: IPv4

– Unreliable (“best effort”)
– Packet-oriented (IP-Datagrams)
– Can be addressed to individual hosts or broadcast adresses
– Addresses are 32 bit numbers (“4 binary octets”), normally written as dotted

decimal numbers: 127.0.0.1
– Addresses denote individual hosts!

Currently being deployed: IPv6

– Shares many properties
– But: 128 bit addresses (8 4-digit hex numbers, written in Hex and separated

by colons: 21DA:00D3:0000:2A3B:02AA:00BF:FE28:9C5A)

Stephan Schulz 525

The User Datagram Protocol (UDP)

Based on IP

Still. . .

– paket-oriented
– unreliable

Adds: Service multiplexing

– The same host can have many different communications
– Each communication uses a different port

Supported by UNIX with sockets with socket type SOCK DGRAM

Used for:

– DNS (Domain name service)
– NFS (Network file system)

Stephan Schulz 526

The Transmission Control Protocol (TCP)

Based on IP, but. . .

– Connection-based
– Stream-oriented
– Reliable
– Service multiplexing (with ports)

Supported by UNIX with sockets with socket type SOCK STREAM

Addresses for TCP (and UDP) have two parts:

– The IP number for specifying the host
– The port number for specifying the port

Most services are associated with a fixed port number:

– HTTP (WWW): Port 80
– SMTP (Email transport): Port 25
– FTP (File Transfer): Port 21
– For a semi-complete list: more /etc/services
– Server port numbers up to 1024 are normally reserved for root

Stephan Schulz 527

UNIX Sockets

Sockets are special file descriptors used for many different kind of inter-process
communication

– Local
– Networked

We can create sockets for different communication styles

– Stream oriented
– Datagram

Sockets are used on both sides of a communictation

– The receiver creates a socket and associates it with a port
– The sender creates a socket and connects it to the receiver

Stephan Schulz 528

Client/Server Model

A server offers a certain service

– It is ready to accept connections on a certain port

A client initiates communication by trying to connect to that port

Stephan Schulz 529

CSC322
C Programming and UNIX

Basic UNIX Network Programming
Simple Connections

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

Prerequisites: CSC220 or EEN218

http://www.cs.miami.edu/~schulz/CSC322.html

The Client Side for TCP Connections

The client has to perform the following steps:

– Create a socket for stream-oriented communication over IP
– Create an address structure for the server address
– Connect the socket to the server port
– Use the connection

Stephan Schulz 531

Creating Sockets with socket() (1)

To create a socket, we call socket()

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);

On success, socket() returns a valid file descriptor just like open()

– After enough black magic, we can use it with read() and write()

On failure, the function returns -1 and sets errno

Stephan Schulz 532

Creating Sockets with socket() (2)

int socket(int domain, int type, int protocol);

The domain argument describes the protocol family that will be used. Interesting
values:

– PF INET: Internet with IPv4
– PF INET6: Internet with IPv6
– PF LOCAL: Local communication

The type describes the communication style:

– SOCK STREAM for connection based streams
– SOCK DGRAM for datagrams

The last argument specifies the protocol

– There normally is only a single protocol for each domain/type pair, use 0 to
select this (the default)

– PF INET/SOCK STREAM gives us TCP/IPv4
– PF INET/SOCK DGRAM gives us UDP/IPv4

Stephan Schulz 533

Socket Adresses

This is a reasonably ugly topic!

Because sockets are used for so many things, there is no single data type for
socket addresses

– Instead, each address family has its own format
– We have to pass this by address (casted to a bogus type struct sock addr*)
– Additionally, we have to tell the system the size of our address format

Because different computer models use different data formats (Big Endian vs.
Little Endian), we have to convert values to network order using:

#include <netinet/in.h>
uint32_t htonl(uint32_t hostlong); /* Host to Network conversion for long */
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort); /* Network to host conversion for short */

Stephan Schulz 534

Socket Adresses for IPv4

For IPv4 addresses, we use the data type struct sock addr in

It contains the following fields we have to fill:

u_char sin_family; /*----Internet address family */
u_short sin_port; /*----Port number */
struct in_addr sin_addr; /*----Holds the IP address */

For sin family, we use a predefined constant AF INET

For the port, we use the port number, converted with htons()

sin addr is filled in by the function inet pton():

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
int inet_pton(int af, const char *src, void *dst);

Stephan Schulz 535

inet pton()

int inet_pton(int af, const char *src, void *dst);

inet pton() converts an internet address in string form to a network address
structure

First argument: Address family

– AF INET for IPv4 adresses
– AF INET6 for IPv6 adresses

Second argument: Pointer to string containing address

– For IPv4: IP-Numbers (4 numbers with dots)
– IPv6: Hex representation (8 4-digit hex numbers separated by colons)

Third argument: Pointer to the destination

– Normaly a pointer to the sin addr field in a struct sock addr in

Stephan Schulz 536

Connecting to a Remote Port: connect()

After we have prepared an address in a struct sock adr in, we can connect
an existing socket to a remote port:

#include <sys/types.h>
#include <sys/socket.h>
int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

– sockfd: Socket you want to connect
– serv addr: Pointer to the carefully prepared address you want to connect to,

casted to struct sockaddr*
– addrlen: Size of your actual structure, i.e. sizeof(struct sockadr in)
∗ Remember that by casting the second argument, we actually lie to the about

the data structure we are pointing to
∗ That’s ok – the socket library knows that we are probably lying
∗ Passing the length helps the library to straighten things out

Return value: 0 on success, -1 on failure

Stephan Schulz 537

Example: Getting an Insult

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

int main(int argc, char* argv[])
{

int sock;
struct sockaddr_in server_addr;
char buf[80];
int msg_len,res;

Stephan Schulz 538

Example (2)

sock = socket(PF_INET, SOCK_STREAM, 0); /* Check against -1 omitted! */

memset(&server_addr, 0, sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(1695);
res = inet_pton(AF_INET, "128.138.196.16", &server_addr.sin_addr);
if(res < 0)
{

err_sys("inet_pton (no valid address family)");
}
if(res == 0)
{

fprintf(stderr, "Not a valid IP address");
exit(EXIT_FAILURE);

}
res = connect(sock, (struct sockaddr *) &server_addr,

sizeof(server_addr));
if(res == -1)
{

err_sys("connect");
}

Stephan Schulz 539

Example (3)

while(1)
{

msg_len = read(sock, buf, 80);
if(msg_len == 0)
{

break;
}
write(STDOUT_FILENO, buf,msg_len);

}
close(sock);

return EXIT_SUCCESS;
}

Stephan Schulz 540

The Server Side

A server has a more complex task than a client

General steps:

– Create a socket (we now how to do this)
– Create an address (on its own machine)
– Bind the socket to the address
– Listen for incomming connections on that socket

For each client:

– Accept the connection (on a new socket)
– Use the connection
– Close the connection

Stephan Schulz 541

Server Side Addresses

We need to specify a local address for the listening port

– It contains the address family, IP address, and port

Instead of actually digging out the servers IP address (which may be complex),
we use the special address 0.0.0.0 or INADDR ANY

Given this address, the server will accept connections on any IP address which
refers to it

Example:

struct sockaddr_in sock_name;
int sock;
short port;
...Get socket, set port to some value...
memset(&sock_name, 0, sizeof(sock_name)); /* Clear address */
sock_name.sin_family = AF_INET; /* Set address family */
sock_name.sin_port = htons(port); /* Set port */
sock_name.sin_addr.s_addr = htonl(INADDR_ANY);/* Set address */

Stephan Schulz 542

Naming a Socket (Binding a Socket to an Address)

Once we have created a socket and a local address, we need to bind the socket
to an address

– All future operations will make use of that address

#include <sys/types.h>
#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

– sock fd: Socket we want to bind
– my addr: Pointer to the address
– addrlen: Lenght of that address
– See remarks for connect()!

Return value:

– 0 on success
– -1 on failure

Stephan Schulz 543

Listening for Incoming Connections

We use the listen() function call to make a socket listen for incoming connec-
tions:

#include <sys/socket.h>
int listen(int sock, int backlog);

– sock is the file descriptor we want to set to listening state
– backlock is the number of pending connections allowed at any one time
∗ If more unanswered connection request are received, they will be refused or

ignores
∗ If we accept a connection, that slot becomes available again
∗ A good value is 5 ;-)

Return value: 0 on success, -1 on failure

Stephan Schulz 544

Accepting Connections

To finally establish a connection, we have to accept it:

#include <sys/types.h>
#include <sys/socket.h>
int accept(int sock, struct sockaddr *addr, socklen_t *addrlen);

– sock: The socket we expect connection on
– addr: A pointer to an address structure (or NULL)
– addrlen: A pointer to an integer variable of type socklen t that initialy has

to contain the size of *addr

If accept() returns. . .

– The return value is the file descriptor of a new socket (or -1)
– If addr is not NULL, the address of the remote socket is written into it
– *addrlen is changed to the actual size of the new variable

By default, accept() blocks until a connection request is received

– If we set the socket to non-blocking (using fcntl()), it will return with -1
and set errno to EWOULDBLOCK if there are no pending requests

Stephan Schulz 545

Example: Greeting the World

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <ctype.h>
#include <unistd.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

int main(int argc, char* argv[])
{

int sock, con_sock;
struct sockaddr_in sock_name;

Stephan Schulz 546

Example (2)

if(argc!=2)
{

fprintf(stderr, "Usage: simple_server <port>\n");
exit(EXIT_FAILURE);

}
sock = socket(PF_INET, SOCK_STREAM, 0);
if(sock == -1)
{

err_sys("socket");
}
sock_name.sin_family = AF_INET;
sock_name.sin_port = htons(atoi(argv[1]));
sock_name.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(sock, (struct sockaddr *) &sock_name, sizeof(sock_name)) < 0)
{

err_sys("bind");
}
if(listen(sock, 1) == -1)
{

err_sys("listen");
}

Stephan Schulz 547

Example (3)

while(1)
{

con_sock = accept(sock, NULL, NULL);
if(con_sock == -1)
{

err_sys("accept");
}
write(con_sock, "Hiho and welcome!\n", strlen("Hiho and welcome!\n"));

if(close(con_sock) == -1)
{

err_sys("close(con_sock)");
}

}
/* sock closed automatically when we exit via ^C */

}

Stephan Schulz 548

More Information

man pages:

– man socket
– man 2 bind
– man accept

The GNU C library documentation on sockets

– Available by doing info libc
– In emacs: [C-h i]
– On the internet, e.g. at:
∗ http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_16.html
∗ http://www.gnuenterprise.org/doc/glibc-doc/html/chapters_16.html

Stephan Schulz 549

http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_16.html
http://www.gnuenterprise.org/doc/glibc-doc/html/chapters_16.html

Internet Assignment (II)

Step 2: Write a simple client that

– reads IP adress, port and nickname from the command line
– Connects to the specified server
– Uses select() or non-blocking read() to read everything the server transmits
– Closes the connection

Step 3: Modify the client to keep on reading. Be sure to use select() now!

Step 4: Write a second client that connects, reads input from the terminal, and
sends it to the server (prepended with the nickname and a colon).

– You should be able to see what you send if you simultaneously connect with
the client from step 3.

– If the user types [C-D] to signal end of input, close the connection to the
server and terminate

Step 5: Put everything together, using select() on the network connection and
standard input.

– Send input from the terminal to the server
– Set input from the network to standard output

Stephan Schulz 550

CSC322
C Programming and UNIX

Process Creation and Termination (I)

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

Prerequisites: CSC220 or EEN218

http://www.cs.miami.edu/~schulz/CSC322.html

Subprocesses

UNIX is a multi-process operating systems

– Many processes run at the same time
– Processes can be created and can terminated

Processes form a hierarchy

– All processes have a unique parent
– In the end, all (real) processes descent from the init process

Parent and child share a special relationship

– The parent has to retrieve the termination status of a process
– The child can get his parents process id
– If a parent dies, its special role is taken over by the init process

Stephan Schulz 552

Process Properties

For each process, we can get various identifiers:

– The process id
– The process id of the parent
– The real user id of the process (i.e. the user id of the owner)
– The effective user id of the process (i.e. the user id that is used to check acces

rights). It can differ e.g. for programs with the setuid bit set
– The real group id
– The effective group id

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void); /* Get process id */
pid_t getppid(void); /* Get parent process id */
uid_t getuid(void); /* Get real user id */
uid_t geteuid(void); /* Get effective user id */
gid_t getgid(void); /* Get real group id id */
gid_t getggid(void); /* Get effective group id */

Stephan Schulz 553

Standard Execution of a UNIX Program

Creation of the process

– Can only happen via the fork() process

Executution of a program

– Via the kernel system call exec()
– Comes in various handy library variants

Running

– Process runs in its own process space (virtual memory)

Termination

– Normal exit
– Call to abort()
– Catching a signal for which the default action is aborting

Stephan Schulz 554

Exiting

There are three normal ways of terminating a program

Calling return st; from main() (ANSI C)

– In that case the exit status of the program is st
– Interpretation of the exit status is implementation-defined for ANSI C (but

defined for UNIX)

Calling exit(st); from anywhere in the program (ANSI C)

– Exit status is st
– In main(), exit() and return are equivalent
– In both cases, some cleanup actions are performed
∗ Exit handlers are called
∗ All open files are flushed and closed

Calling exit(st) (UNIX) or Exit(st) (new in ANSI-C 99, may not be widely
supported)

– Program is immediately terminated
– Exit status is st

Stephan Schulz 555

Exit Formalities

#include <stdlib.h>

void exit(int status);
void _Exit(int status); /* New in C99 */

#include <unistd.h>

void _exit(int status);

ANSI C defines three different exit statuses:

– EXIT SUCCESS (in stdlib.h)
– EXIT FAILURE (in stdlib.h)
– 0 (equivalent to EXIT SUCCESS

In practice, EXIT SUCCESS is nearly always just #defined as 0

Stephan Schulz 556

Cleaning up: atexit()

ANSI C allows us to register up to 32 functions that will be called whenever the
program terminates normally:

#include <stdlib.h>

int atexit(void (*func)(void));

– Argument is a pointer to a function that neither takes an argument nor returns
a value

– Return value for atexit() is 0 on success, -1 on error

Each call to atexit() results in a single call to the registered function

– Registered functions are called in reverse order of registration
– We can register the same function more than once

Note: Exit handlers should only access global variables

Stephan Schulz 557

Example

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

int handler_counter=0;

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}
void handler1(void)
{

printf("Handler1, counter = %d\n", handler_counter);
handler_counter++;

}
void handler2(void)
{

printf("Handler2, counter = %d\n", handler_counter);
handler_counter++;

}

Stephan Schulz 558

Example (2)

int main(void)
{

if(atexit(handler1) != 0)
{

err_sys("atexit");
}
if(atexit(handler2) != 0)
{

err_sys("atexit");
}
if(atexit(handler1) != 0)
{

err_sys("atexit");
}
if(atexit(handler1) != 0)
{

err_sys("atexit");
}
printf("My PID is %d and my parents PID is %d\n", getpid(), getppid());
return EXIT_SUCCESS;

}

Stephan Schulz 559

Example Output

My PID is 2019 and my parents PID is 746
Handler1, counter = 0
Handler1, counter = 1
Handler2, counter = 2
Handler1, counter = 3

Stephan Schulz 560

Running other Programs: system()

The system() function is defined by ANSI C

#include <stdlib.h>
int system(const char *command);

system() hands the string pointed to by command to the systems command
processor for execution

– system() returns, when the command returns
– Return value of system() in this case is implementation-defined

If command is NULL, system() checks if the implementation has a command
processor

– It returns 0, if not
– Anything else, otherwise

Stephan Schulz 561

system() in UNIX

On UNIX, there always is a command processor

– The command is handed to the standard shell, /bin/sh
– It can make use of all shell facilities, including I/O redirection

The return value of the system() command normally is an encoding of the exit
status of the executed command

– If for some reason no new process for the shell can be created, -1 is returned
(and errno is set to specify what went wrong)

– If the shell cannot be executed, it is treated as if the shell returned 127
– Otherwise, the return value is an encoding of the exit status of the shell (which

always returns the exit status of the command, if it could be executed)

Stephan Schulz 562

Termination Status Interpretation

Termination status can come from multiple sources

– system() (which nicely packs up all the work for us)
– Functions that retrieve the exit status of a child process: wait() and
waitpid() (more later)

Interpretation depends on the cause of the termination of the child process.
Assume that status is the termination status

– If WIFEXITED(status) is true, the process terminated normally (i.e. via
exit(), exit() or return from main)
∗ WEXITSTATUS(status) returns the (lower 8 bit of) the value that was

passed to exit()
– If WIFSIGNALED(status) is true, the process was terminated because of an

uncaught signal with default action abort
∗ WTERMSIG(status) gives the number of the signal

If WIFSTOPPED(staus) is true, the process is currently stopped (via SIGSTOP or
SIGSTP)
– WSTOPSIG(status) returns the number of the stop signal

Stephan Schulz 563

Example: Executing Commands

#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>

int handler_counter=0;

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

Stephan Schulz 564

Example: Executing Commands

int main(int argc, char* argv[])
{

int i, status;
for(i=1; i<argc; i++)
{

status = system(argv[i]);
if(status == -1)
{

err_sys("system");
}
if(WIFEXITED(status))
{

printf("Exited normally, returning %d\n", WEXITSTATUS(status));
}
else
{

printf("Handle this in your assignment\n");
}

}
return EXIT_SUCCESS;

}

Stephan Schulz 565

Example Output

$./system example ”date” ”man does not exist” ”whoami -q”
Tue Nov 26 04:59:29 CET 2002
Exited normally, returning 0
No manual entry for does_not_exist
Exited normally, returning 16
whoami: invalid option -- q
Try ‘whoami --help’ for more information.
Exited normally, returning 1

Stephan Schulz 566

Exercises

Write a program that prints it parents PID and modify the last example to print
its PID. Run the program via the example code. What do you notice? Why?

Extend the example to a shell that reads commands from the user and executes
them

– Handle all cases of why a process can terminate, and print a useful message
for all cases

Stephan Schulz 567

CSC322
C Programming and UNIX

Process Creation and Termination (II)

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

Prerequisites: CSC220 or EEN218

http://www.cs.miami.edu/~schulz/CSC322.html

Creating new Processes: fork()

The only way of creating a new process under UNIX is via the fork() function
#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

fork() creates a new child process that is in nearly all ways an exact copy of the
parent

Execution continues in both parent and child

Only (major) differences:

– New PID and new parent PID
– Return value of fork

Return value of fork()

– On failure: -1, errno will be set
– On success:
∗ In the child, 0 will be returned
∗ In the parent, the PID of the child (a value >0) will be returned

Stephan Schulz 569

Example
#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}
int main(int argc, char* argv[])
{

pid_t pid, ppid, child_pid;
int some_var = 42;

pid = getpid();
printf("Parent. My PID is %d and I am about to procreate\n", pid);
child_pid = fork();
if(child_pid<0)
{

err_sys("fork");
}

Stephan Schulz 570

Example

if(child_pid == 0)
{

pid = getpid();
ppid = getppid();
printf("Child. My PID is %d, my parent is %d\n", pid, ppid);
printf("Child: some_var=%d - Changing it now!\n", some_var);
some_var=7;
printf("Child: some_var=%d\n", some_var);

}
else
{

printf("Parent. My PID is %d, my child is %d\n", pid, child_pid);
printf("Parent: some_var=%d\n", some_var);
printf("Going to sleep now, waiting for my child to die...\n");
sleep(5);
printf("I’m awake again. some_var is still %d\n", some_var);

}
return EXIT_SUCCESS;

}

Stephan Schulz 571

Example Output

Parent. My PID is 12625 and I am about to procreate
Parent. My PID is 12625, my child is 12626
Parent: some_var=42
Going to sleep now, waiting for my child to die...
Child. My PID is 12626, my parent is 12625
Child: some_var=42 - Changing it now!
Child: some_var=7
I’m awake again. some_var is still 42

Notice that I took a snapshot of the processes with top:

PID USER PRI ... SHARE STAT %CPU %MEM TIME COMMAND
12625 schulz 16 ... 280 S 0.0 0.1 0:00 fork_example
12626 schulz 16 ... 0 Z 0.0 0.0 0:00 fork_example <defunct>

- As long as the parent lives, the child remains around as a zombie

- As the parent dies, the init process gets the termination status and is delivered
from its undead state

Stephan Schulz 572

Comments on fork()

Order of execution for parent and child is unpredictable!

Forked processes behave as if an actual copy has been made

– All of the processes memory is accessible in both parent and child
– Changing them in one does not affect the other

On modern UNIX versions, fork() is implemented with copy on write

– Both processes actually share the same pages in memory
– Only when a process actually tries to change a value in memory is a private

copy created
– Consequence: Forking is very cheap – it only has to copy basic process

structures

UNIX programmers use forking a lot!

– Servers may fork one process for each connection!
– Shells fork for executing commands

Stephan Schulz 573

Don’t Do This!

#include <unistd.h>

int main(int argc, char* argv[])
{
while(1)
{
fork();
}

}

Stephan Schulz 574

Don’t Do This!

#include <unistd.h>

int main(int argc, char* argv[])
{
while(1)
{
fork();
}

}

It is the simplest version of a fork bomb

– Will create an exponentially growing number of processes
– Quickly consumes all system resources
– Makes system essentially unusable

Stephan Schulz 575

Forking and I/O

As the example showed, both parent and child were able to write to stdout

– In general, parent and child share file descriptors open at the time of fork()
– This can be problematic, as the order in which output is written is undefined
– Even worse for input or output to files or sockets (on the screen, we can usually

figure things out)

If responsibility for file descriptors is clear, parent can delegate communication to
child

– Eample: Parent just accepts() connections
– Child actually performs communication on the file descriptor
– Both parent and child need to close an open file descriptor!

Parent and child share file descriptor, but not standard I/O library buffers

– Can have unexpected effects!

Stephan Schulz 576

I/O Setup before Forking

FILE* myfile

FILE array entry

Buffer

File descriptor

fd n: flags :

Process table File table entry

Status flags

Offset

Standard IO Library

Per−Process Data Structures Global, Shared Data Structures

vnode table entry

current
filesize
...

Actual

Stephan Schulz 577

I/O Setup after Forking

FILE* myfile

FILE array entry

Buffer

File descriptor

fd n: flags :

Process table

Standard IO Library

Per−Process Data Structures

FILE* myfile

FILE array entry

Buffer

File descriptor

fd n: flags :

Process table

Standard IO Library

Per−Process Data Structures

File table entry

Status flags

Offset

Global, Shared Data Structures

vnode table entry

current
filesize
...

Actual

Stephan Schulz 578

Example: Bufferd I/O and Forking
/* Usual includes and stuff omitted */
int main(int argc, char* argv[])
{

pid_t child_pid;

printf("Hiho "); /* <--- Note: No Newline! */
child_pid = fork();
if(child_pid<0)
{

err_sys("fork");
}
if(child_pid == 0)
{

printf("from the child!\n");
}
else
{

printf("from the parent!\n");
sleep(1);

}
return EXIT_SUCCESS;

}

Stephan Schulz 579

Example Output

$fork example2
Hiho from the parent!
Hiho from the child!

stdout is line buffered

– Since we did not print a full line (and did not call flush(), the string was not
printed

– Calling fork() duplicated the buffer contents
– Then, both parent and child caused a flush

Stephan Schulz 580

Waiting for Children to Die

As stated above, parents need to get the termination status of their children
(otherwise those children become zombies)

They can do so by calling wait()

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);

– wait() waits until a child terminates
– It returns the PID of the terminated child
– If status is not equal to NULL, it writes the termination status of the child

into the variable it points to
– Note: If some children have already terminated, wait() picks one of those

and returns its data
– If there are no children, wait() returns -1 and sets errno

Stephan Schulz 581

Example

#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

int main(int argc, char* argv[])
{

pid_t pid, ppid, child_pid;
int i, status;

pid = getpid();
printf("Parent. My PID is %d and I am about to procreate\n", pid);
fflush(stdout);

Stephan Schulz 582

Example (2)

for(i=0; i<3; i++)
{

child_pid = fork();
if(child_pid<0)
{

err_sys("fork");
}
if(child_pid == 0)
{

break; /* Only the parent forks! */
}

}
if(child_pid == 0)
{

pid = getpid();
ppid = getppid();
printf("Child. My PID is %d, my parent is %d\n", pid, ppid);
sleep(1);
exit(i);

}

Stephan Schulz 583

Example (3)

printf("Parent: Waiting for my children\n");
while((child_pid = wait(&status))!=-1)
{

printf("Child %d terminated with termination status %d\n", child_pid, status);
if(WIFEXITED(status))
{

printf("Termination normal, exit status %d\n", WEXITSTATUS(status));
}

}
return EXIT_SUCCESS;

}

Stephan Schulz 584

Example Output

Output:

Parent. My PID is 13565 and I am about to procreate
Child. My PID is 13567, my parent is 13565
Child. My PID is 13568, my parent is 13565
Child. My PID is 13569, my parent is 13565
Parent: Waiting for my children
Child 13569 terminated with termination status 512
Termination normal, exit status 2
Child 13568 terminated with termination status 256
Termination normal, exit status 1
Child 13567 terminated with termination status 0
Termination normal, exit status 0

Stephan Schulz 585

Exercises

Here is a function that computes the rollercoaster numbers

long rollercoaster(long i)
{

printf("%ld\n", i);
if(i==1)
{

return 0;
}
if(i%2==0)
{

return 1+rollercoaster(i/2);
}
return 1+rollercoaster(3*i+1);

}

Write a program that forks of 10 processes, each of which computes the
rollercoaster numbers for one of the numbers from 11 to 20 and prints it

Make the parent wait for all children and print the PID’s and the exit status of
each in the order in which the children terminate, then terminate the parent

Stephan Schulz 586

CSC322
C Programming and UNIX

Process Control (System Calls)

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

Prerequisites: CSC220 or EEN218

http://www.cs.miami.edu/~schulz/CSC322.html

Process Groups

UNIX processes are organized in process groups

– A process group has a group leader
– All processes in the group have the same process group id (which is the process

id of the group leader)

Some operations can be done not just for single processes, but for a whole group:

– Delivering signals with kill
– Waiting for process termination with waitpid() (later)

By default, a process inherits the process group id from its parent

– Processes can change their own process group id
∗ . . . to become process group leaders in a new process group, or
∗ . . . to join an existing process group

– Parents can change the process group id of their children (unless the children
already called exec())

Note: Don’t confuse the pgid (process group) with the gid (user/owner group)

Stephan Schulz 588

Getting and Changing Process Groups

#include <sys/types.h>
#include <unistd.h>
pid_t getpgrp(void);
int setpgid(pid_t pid, pid_t pgrp);

getpgrp() always returns the process group id of the current process

– No error condition!

setpgid(pid t pid, pid t pgrp) sets the process group id of the process
with the PID pid to pgrp

– Return value: 0 on success, -1 on error (errno set)
– Special values:
∗ If pid is 0, the PID of the calling process is assumed
∗ If pgrp is 0, the process id denoted by the first argument is assumed (i.e.

that process is made into a process group leader of a new process group)
– Note that this means that setpgid(0,0) makes the current process into a

process group leader

Stephan Schulz 589

Example

#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

int main(int argc, char* argv[])
{

pid_t pid, pgid, child_pid;
int i, res;

pid = getpid();
pgid = getpgrp();
printf("Parent. My PID is %d and my process group is %d\n",pid,pgid);

Stephan Schulz 590

Example (2)

res = setpgid(0,0);
if(res==-1)
{

err_sys("setpgid");
}
printf("Parent. I’m now the process group leader.\n");

for(i=0; i<3; i++)
{

child_pid = fork();
if(child_pid<0)
{

err_sys("fork");
}
if(child_pid == 0)
{

break; /* Only the parent forks! */
}

}

Stephan Schulz 591

Example (3)
if(child_pid == 0)
{

pid = getpid();
pgid = getpgrp();
printf("Child %d. My PID is %d, my process group is %d.\n", i, pid, pgid);
sleep(1);
res = setpgid(0,0);
if(res==-1)
{

err_sys("setpgid");
}
pid = getpid();
pgid = getpgrp();
printf("Child %d. I’m now independent, pid %d and pgid %d\n",i, pid,pgid);
printf("Child %d exiting\n", i);
exit(EXIT_SUCCESS);

}
printf("Parent, sleeping.\n");
sleep(3);
printf("Parent, exiting.\n");
return EXIT_SUCCESS;

}

Stephan Schulz 592

Example Output

$./pg example
Parent. My PID is 1946 and my process group is 1946
Parent. I’m now the process group leader.
Parent, sleeping.
Child 0. My PID is 1947, my process group is 1946.
Child 1. My PID is 1948, my process group is 1946.
Child 2. My PID is 1949, my process group is 1946.
Child 0. I’m now independent, pid 1947 and pgid 1947
Child 0 exiting
Child 1. I’m now independent, pid 1948 and pgid 1948
Child 1 exiting
Child 2. I’m now independent, pid 1949 and pgid 1949
Child 2 exiting
Parent, exiting.

Note that the parent starts out as a process group leader!

– Most shells with build-in job control will always execute commands in their
own process group

Stephan Schulz 593

UNIX System Call: kill

#include <signal.h>

int kill(pid_t pid, int sig);

kill() sends the signal sig to the process or processes specified by pid

– pid > 0: Signal is send to process with PID pid
– pid == 0: Signal is sent to all processes in the same process group (if process

has permission to send it)
– pid < 0: Signal is sent to all processes with process group id |pid|
– Special case: pid == -1: Most UNIX versions send signal to all processes

with the same user id (real or effective) as the caller

Possible signals: As for the kill command (defined in <signal.h>

– Also see man signal

Note: kill() is the function used to implement the kill command

Stephan Schulz 594

Is this good for Something?

There are amany possible situations where an application consists of a set of
processes:

– Server may have one process that accepts() connections, multiple workers
that serve individual connections

– Competitive theorem prover runs many search strategies in parallel

If we make the top level control program into a process group leader, termination
becomes a lot easier

– We can kill whole process group with one command
– The leader can be made to automatically kill all processes

Stephan Schulz 595

Example

#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <signal.h>
#include <unistd.h>

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}
int main(int argc, char* argv[])
{

pid_t pid, pgid, child_pid;
int i, res;

res = setpgid(0,0);
if(res==-1)
{

err_sys("setpgid");
}

Stephan Schulz 596

Example (2)

pid = getpid();
pgid = getpgrp();
printf("Queen bee:PID is %d process group is %d\n",pid,pgid);

for(i=0; i<3; i++)
{

child_pid = fork();
if(child_pid<0)
{

err_sys("fork");
}
if(child_pid == 0)
{

break; /* Only the parent forks! */
}

}

Stephan Schulz 597

Example (3)

if(child_pid == 0)
{

while(1)
{

printf("Worker bee %d gathering honey\n", i);
sleep(1);

}
}
for(i=0; i<3; i++)
{

printf("Queen bee sleeping\n");
sleep(1);

}
printf("Queen bee terminates\n");
kill(-getpgrp(), SIGTERM); /* Commented out for version 2 */
return EXIT_SUCCESS;

}

Stephan Schulz 598

Example Output with kill

Queen bee:PID is 2412 process group is 2412
Queen bee sleeping
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Queen bee sleeping
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Queen bee sleeping
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Queen bee terminates

Stephan Schulz 599

Example Output without kill
schulz@leonardo 4:31am [CSC_322] ./pgkill_example
Queen bee:PID is 2460 process group is 2460
Queen bee sleeping
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Queen bee sleeping
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Queen bee sleeping
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Queen bee terminates
schulz@leonardo 4:32am [CSC_322] Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Worker bee 0 gathering honey
Worker bee 1 gathering honey
Worker bee 2 gathering honey
Worker bee 0 gathering honey
...

Stephan Schulz 600

Waiting for Termination: waitpid()

The wait() function waits for termination of any child of a process

– It blocks until a child terminates
– It cannot check the status of a specific child

POSIX introduced waitpid() as a more general interface solving this problem:

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t wpid, int *status, int options);

Stephan Schulz 601

waitpid() continued

Return value: PID of terminated child (or 0 if no child terminated, or -1 on error)

wpid: Process id describing processes we are waiting for

– wpid == -1: Wait for all processes
– wpid > 0: Wait for process with PID wpid
– wpid < -1: Wait for all processes in process group with PDID |wpid|
– wpid == 0: Wait for all children with PGID of the caller

status: As for wait(), if !=NULL, termination status is written into it

options: (Can be combined with |)

– 0: Normal blocking wait
– WNOHANG: Return immediately with 0 if no child is available
– WUNTRACED: Used for job control and stopped processes

Stephan Schulz 602

Exercises

Write a program that keeps a network server alive (or reaninmates it):

– The server accepts connections
– For each connection, it forks a child that reads input from the net and appends

it to a log file
– All those processes should be in the same process group

The monitor program just starts the main server process, makes it the group
leader, and waits for the server to terminate

– In that case, it kills all of the server processes and restarts the server

Stephan Schulz 603

CSC322
C Programming and UNIX

Program Execution

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

Prerequisites: CSC220 or EEN218

http://www.cs.miami.edu/~schulz/CSC322.html

Process Environment

Each UNIX process has an environment

– the Environment consists of a list of strings
– Normally, those strings have the form name=value (and most functions for

manipulating the environment assume this form)
– The name is called an environment variable
– Since most environment variables are created and maintained by the shell, they

are often also called shell variables

Children inherit the environment of their parents

– Note that children get a copy of the environment
– Each process can change its own environment, but not that of its parent

Environment variables are used for a large number of things

– Where to look for executable programs
– Which editor to use (in well-written applications)
– What is the users username?
– Some mandated by standards (POSIX, SUSv2), others just customary

Stephan Schulz 605

Environment and the Shell

You can print the environment using the printenv program

– Just printenv prints all environment variables (and their values)
– printenv <name> prints the value of the variable with name <name>

Since no process can modify its parents environment, you need to use a build-in
command to change a shells environment

– tcsh: setenv VAR VALUE and unsetenv VAR
– bash: export VAR=VALUE and unset VAR

Stephan Schulz 606

Example: Part of my Environment
$ printenv

PWD=/home/schulz/SOURCES/CSC_322
VENDOR=intel
HOSTNAME=wombat
QTDIR=/usr/lib/qt3-gcc2.96
LESSOPEN=|/usr/bin/lesspipe.sh %s
USER=schulz
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:*.cmd=01;32:*.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:*.sh=01;32:*.csh=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:*.bz=01;31:*.tz=01;31:*.rpm=01;31:*.cpio=01;31:*.jpg=01;35:*.gif=01;35:*.bmp=01;35:*.xbm=01;35:*.xpm=01;35:*.png=01;35:*.tif=01;35:
MACHTYPE=i386
XDM_MANAGED=/var/run/xdmctl/xdmctl-:0,maysd,mayfn,sched
XMODIFIERS=@im=none
EDITOR=emacsclient
LANG=C
HOST=wombat
DISPLAY=:0.0
FROM=Stephan Schulz <schulz@cs.miami.edu>
LOGNAME=schulz
SHLVL=3
GROUP=schulz
TEXINPUTS=:~/TEXT/TEXLIB/
SUPPORTED=en_US.iso885915:en_US:en:de_DE@euro:de_DE:de
SHELL=/bin/tcsh
HOSTTYPE=i386-linux
CVSROOT=stephan@gw.safelogic.se:/CVS
OSTYPE=linux
HOME=/home/schulz
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
PATH=/home/schulz/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin:/usr/X11R6/bin:.
_=/usr/X11R6/bin/xterm
TERM=xterm
WINDOWID=18874382

Stephan Schulz 607

Some Important Environment Variables

PATH (POSIX) determines where the shell looks for executable programs

– List of directory names, separated by colon
– Can contain . to include working directory (Dangerous on multi-user systems)

EDITOR (traditional) is used by good UNIX program to determine which editor
to run if you have to edit text

LOGNAME (POSIX) is your user name

TERM (POSIX) is your (text) terminal type

– If you have trouble with remote logins, set it to vt100

HOME (POSIX) is your home directory

DISPLAY (X11 Window System) is the name of your display

– UNIX can run programs on one host, and display them on another
– DISPLAY tells it where to show output for X programs

Stephan Schulz 608

Accessing the Environment from a Program

There are two ways to access the environment of a process:

– Via the environ variable
– Via getenv() and putenv()

If we want to go through all of the environment, we need to declare the environ
variable:

extern char **environ;

– It points to a NULL-terminated array of pointers
– Each array element points to \0-terminated C string of the form
<name>=<value>

Stephan Schulz 609

Example

#include <stdlib.h>
#include <stdio.h>

extern char **environ;

int main(int argc, char* argv[])
{

char **handle;

for(handle=environ; *handle; handle++)
{

printf("%s\n", *handle);
}
return EXIT_SUCCESS;

}

Stephan Schulz 610

The POSIX Interface to the Environment

#include <stdlib.h>
char *getenv(const char *name);
int putenv(char *string);

getenv() takes a pointer to an environment variable name and returns its value
(or NULL if the variable does not exist)

– It’s even part of ANSI C (but ANSI C says nothing about the enviroment)

putenv() takes a single string of the form <name>=<value>

– Adds the string (i.e. the <name>=<value> pair) to the environment
– If <name> exists, the old definition is changed
– Note that some versions of UNIX include just the pointer in the environment,

while others create a copy of the string

Additional functions of interest:

– clearenv(): Clears environment (POSIX, but not traditional)
– unsetenv(): Remove a single variable (traditional)
– setenv(): More flexible version of putenv() (traditional)

Stephan Schulz 611

Executing New Programs

A process can cause the execution of a new program via one of the exec functions

– Causes this same process to replace its own program, data, and stack with
new data

– Program code is loaded from disk
– Heap and stack are reinitialized
– New program starts running at its main() function

There are 6 different exec functions that differ in:

– How they look for the program to run (via path or via absolute filename)
– How they accept arguments for the new program (as additional arguments to

the exec function or via an array of pointers)
– How they handle the environment (inheritance of completely new environment)

Stephan Schulz 612

The 6 exec Functions

#include <unistd.h>
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg , ..., char *const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *filename, char *const argv [], char *const envp[]);

All return -1 on error, and not at all on success

execlp() and execvp() take a filename and search the PATH directories for the
program

execl(), execlp() and execle() take arguments for the new program as
additional arguments

– The list has to end with an additional NULL argument
– The others take a pre-created argv vector

Finally, execle() and execve() take an explicit environment pointer

Stephan Schulz 613

The execvp() function

execvp(const char *file, char *const argv[]) is reaonably easy to use:

– First argument is a file name (not containing any /)
– The program to be executed is found as by the shell, by looking through all

the directories in PATH

Second argument is a pointer to an array of argument pointers

– Same format and conventions as argv in main
– First argument should be program name
– Array should be NULL terminated

Upon execution, the new program runs

– Keeps old PID, GID, PGID, working directory, . . .
– Normal file descriptors stay open (unless the the flag FD CLOEXEC is set using
fcntl())

Stephan Schulz 614

Example: A mini-Shell

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <sys/wait.h>
#include <unistd.h>

#define MAX_LINE 1024

void err_sys(char* message)
{

perror(message);
exit(EXIT_FAILURE);

}

Stephan Schulz 615

Example (2)

void* secure_malloc(int size)
{

void* res = malloc(size);

if(!res)
{

fprintf(stderr, "malloc() failure -- out of memory?");
exit(EXIT_FAILURE);

}
return res;

}

char* secure_strdup(char* source)
{

void* res = secure_malloc(strlen(source)+1);

strcpy(res, source);
return res;

}

Stephan Schulz 616

Example (3)

int count_words(char* line)
{

int words=0, in_word=0;
while(*line)
{

if(isspace(*line))
{

in_word = 0;
}
else
{

if(in_word == 0)
{

words++;
in_word = 1;

}
}
line++;

}
return words;

}

Stephan Schulz 617

Example (4)

char **build_argv(char* line)
{

int argc = count_words(line);
int i;
char *new;
char **argv;

if(argc == 0)
{

return NULL;
}
argv = secure_malloc(sizeof(char*)*(argc+1));

Stephan Schulz 618

Example (5)

for(i=0; i<argc; i++)
{

while(isspace(*line))
{

line++;
}
for(new=line; *new && !isspace(*new); new++);
/* Empty body */
*new = ’\0’;
argv[i] = secure_strdup(line);
line = new+1;

}
argv[i] = NULL;
return argv;

}

Stephan Schulz 619

Example (6)

void print_argv(char **argv)
{

int i;

printf("Command: %s\n", argv[0]);
printf("Arguments:\n");
for(i=0; argv[i]; i++)
{

printf("%s\n", argv[i]);
}
printf("=======\n");

}

Stephan Schulz 620

Example (7)

int main(void)
{

pid_t child_pid;
char line[MAX_LINE];
char *line_res;
char **argv;

while(1)
{

printf("# ");fflush(NULL);
line_res = fgets(line, MAX_LINE, stdin);
if(!line_res)
{

break;
}
argv = build_argv(line);
if(!argv)
{

continue;
}
print_argv(argv);

Stephan Schulz 621

Example (8)

child_pid = fork();
if(child_pid == -1)
{

err_sys("fork");
}
if(child_pid == 0) /* Child! */
{

setpgid(0,0);
if(execvp(argv[0], argv) == -1)
{

err_sys("execvp");
}

}
else

Stephan Schulz 622

Example (9)

{ /* Parent */
setpgid(child_pid, child_pid);
if(wait(NULL) == -1)
{

err_sys("wait");
}
free(argv);

}
}
return EXIT_SUCCESS;

}

Stephan Schulz 623

Example Usage

schulz@wombat 2:01am [CSC_322] ./shell_example
echo Hallo
Command: echo
Arguments:
echo
Hallo
=======
Hallo
ls -l macrotest.c wordcount env_example.c
Command: ls
Arguments:
ls
-l
macrotest.c
wordcount
env_example.c
=======
-rw-rw-r-- 1 schulz schulz 233 Dec 3 21:31 env_example.c
-rw-rw-r-- 1 schulz schulz 206 Nov 26 23:41 macrotest.c
-rwxrwxr-x 1 schulz schulz 13715 Nov 26 23:47 wordcount

Stephan Schulz 624

Example Usage (2)

ls *
Command: ls
Arguments:
ls
*
=======
ls: *: No such file or directory
hallo
Command: hallo
Arguments:
hallo
=======
execvp: No such file or directory

Stephan Schulz 625

Exercises

Extend the shell example (code is on the web page) to

– Have better error handling
– Do background processing (with &)
– Support job control
– Offer I/O redirection with > and <

Read the man pages on popen() and pipe() to see how we could achive piping

If you are adventurous, implement:

– Piping
– Globbing (read man glob)

Stephan Schulz 626

CSC322
C Programming and UNIX

Final Review

Stephan Schulz

Department of Computer Science

University of Miami

schulz@cs.miami.edu

http://www.cs.miami.edu/~schulz/CSC322.html

Prerequisites: CSC220 or EEN218

http://www.cs.miami.edu/~schulz/CSC322.html

Final Examn

Place and Time:

– Room LC 192 (the normal room)
– Monday, Dec. 16th, 11:00 a.m. – 13:30 p.m.

Topics:

– Everything we covered in this class
– Emphasis will be on second half

You may bring:

– Lecture notes, your own notes, books, printouts of your (or my solutions)to
the exercises. . .

– . . . but no computers, PDAs, mobile phones (switch them off and stow them
away) or similar items

Note: I’ll only review material from the second half of the semester today

– Check lecture notes, pages 299–312 for overview of first half

Stephan Schulz 628

Pointers and Dynamic Arrays

Arrays are passed as pointers to the first element

– Arrays and pointers (to an allocated memory region) can be used in the same
way (i.e. we can index a pointer: p[5])

– We can use realloc() to dynamically enlarge dynamically allocated arrays

Pointer arithmetic: We can add and subtract integers to pointers to step through
an array

– p[5] is equivalent to *(p+5)

The following two program snippets are equivalent:

int a[SIZE], i; int a[SIZE], *handle;

/* Assume some initialization in both versions */

for(i=0; a[i]; i++) for(handle = a; *handle; handle++)
{ {

printf("%d\n", a[i]) printf("%d\n", *handle)
} }

Stephan Schulz 629

Make

Make is a tool for automating multi-program builds

– Rule-based (rules are stored in Makefile)
– Performs just the necessary operations to update all program parts
– You specify dependencies and actions

Example:

PROGS=hello fahrenheit2celsius fahrenheit2celsius2 fahrenheit2celsius3 \
charcount ourcopy wordcount escape base_converter inc_example

all: $(PROGS)

clean:
rm $(PROGS)

hello: hello.c
gcc -ansi -Wall -o hello hello.c

fahrenheit2celsius: fahrenheit2celsius.c
gcc -ansi -Wall -o fahrenheit2celsius fahrenheit2celsius.c

...

Stephan Schulz 630

New Flow Control Constructs

break is used to break out of loops (and switch statments

– Immediately transfers control to the first statement after the loop

continue allows early continuation of a loop

– Transfers control back to the beginning of the loop
– In case of for loops, update expression will be evaluated

do/while loops test the condition at the end of the loop

– Loop body always gets executed once
– Otherwise similar to plain while loop

Stephan Schulz 631

Function Pointers and qsort()

We can use pointers to functions (of a specific type) to

– Implement generic functions and data types
– Emulate object-oriented constructs (virtual functions)
– Implement call back and signal handlers

Using function pointer:

– Just use the function name or use the address operator (&fun
– Calling the function: Either use pointer as is, or dereference: (*fun)(arg1)

Example for function pointer usage: qsort() from stdlib

void qsort(void *base, size_t nmemb, size_t size,
int(*compar)(const void *, const void *));

Stephan Schulz 632

Standard Library: Characters and Strings

ctype.h contains character classification functions:

– isspace(c)
– isprint(c)
– isdigit(c)
– isalpha(c)
– isalnum(c) . . .
– Also: toupper(c), tolower(c)

String (\0 terminated sequence of characters) functions are defined in string.h

– strcpy(to,from) copies a \0-terminated string to exiting memory
– strcat(to,from) appends a string at the end of an existing string
– strcmp(s1,s2) compares two strings, returns value <0, 0, >0
– strncopy(), strncat(), strncmp() limit operation to a given number of

characters
– strpbrk() searches for characters in a string
– strstr() seraches for a substring

Stephan Schulz 633

Standard Library: Memory Accesses

Memory access functions treat memory as a large array of characters

– Important difference to string functions: Not \0-terminated, you always have
to give a lenght

Functions:

– memcpy(to, from, n) copies n bytes
– memmove(to, from, n) does the same even for overlapping regions of memory
– memcmp(s1,s2,n) compares two memory regions
– memchr(s, c, n) searches for character c in memory region starting at s
– memset(s,c,n) writes n copies of character c into memory (used e.g. to zero

out socket address data structures)

Stephan Schulz 634

Standard Library: Buffered I/O

Standard library supports buffered IO via streams

– Stream creation: fopen(filename, mode)
– Stream destruction: fclose(stream)
– Predefined streams: stdin, stdout, stderr
– Text streams: Lines separated by \n
– Binary streams: Raw data (under UNIX, no difference)

Basic I/O functions:

– fgetc(stream) reads a single character and returns it as an int (and EOF on
end of file)

– fputc(c, stream) writes a single character to a stream
– fgets(s,n,stream) reads a single line or n characters (whichever is less) into

the preallocated memory at s
– fputs(s, stream) writes a \0-terminated string to the stream

Streams can be fflush()ed, and we can change buffering with setvbuff() and
setbuf()

Stephan Schulz 635

Standard Library: Formatted Output

printf(format,...) and fprintf(stream, format, ...) write an arbi-
trary number of arguments under the control of a format string

– Format string contains plain characters and conversion specifiers starting with
a %

– Each conversion specifier must have a matching argument
– Conversion specifiers specify in which form argument is printed

Conversion specifier format:

– %, followed by optional flags, field width, precision, size modifier
– Ends in a conversion letter

Example: printf("%-5ld\n", i)

– Prints integer, at least 5 characters, left-justified (fills up with spaces), followed
by a newline

Important conversion letters: d (int), s (string), c (character), g (floating point
number)

Stephan Schulz 636

Processes and Signals

Processes are running programs and have a number of properties

– Owner, PID, GID, PGID, Parent
– Each process has its own virtual memory and cannot (directly) access other

processes data
– Multiple processes can run “at the same time”

We can use a number of tools to work with running processes:

– ps lists running processes
– top gives an interactive view of running processes

kill <pid> can be used to send signals to process <pid>

– By default sends SIGTERM
– You can also send other signals, e.g. kill -HUP <pid>

Signals can also be generated by other events, e.g.

– Floating point exception
– Illegal memory access

Stephan Schulz 637

Signal Handling

Each signal has a default action (either abort, abort with core dump, or ignore)

– Action can be changed!

The signal(sig, handler) function can be used to change the behaviour of a
process to a signal

– sig is the signal to respond to
– handler is a pointer to a function that returns void and takes an int (the

signal) as an argument
– Predefined pseudo-handlers: SIG DFL (re-establish default behaviour),
SIG IGN (ignore signal)

Established signal handlers catch a single signal!

– Must reestablish handler from within the handler

Signals can occur at any time, state of the program may be undefined

– It’s dangerous to do much beyond exiting, manipulating variables of type
volatile sig atomic t, and calling signal() again

Stephan Schulz 638

UNIX File System (I)

UNIX: Everything is a file

File types:

– Regular file
– Directory
– Character special file
– Block special file
– Socket
– Symbolic link

stat() functions give us information about files

– Owner
– Mode
– Size
– Access and modification times

Stephan Schulz 639

UNIX File System (II)

Importsant concepts:

– File ownership and group ownership
– Access rights (read, write, execute for user/group/others)
– Links: Connect a name to a file
∗ Hard links: Directory entries
∗ Soft links: Files with names of another file as data

Important utilities:

– ln: Creates links (both symbolic and hard)
– ls: Shows files and file information
– chmod: Allows us to change the mode of a file
– chgrp: Changes group
– chown: Changes owner

Stephan Schulz 640

File Descriptors and select()

File descriptors are used by the UNIX kernel to represent open files

– File descriptors are small integers (indices into the process file table)
– Can be associated with a number of flags we can manipulate with fcntl() or

set when we open the file: O NONBLOCK, O APPEND, . . .
– Predefined: STDIN FILENO, STDOUT FILENO, STDERR FILENO
– Opening files: open()
– Using files: read(fd, buf, n) and write(fd, buf, n)
– Closing: close()

select(maxfd, readfds, writefds, exceptfds, time) waits for certain
things to become true for sets of file descriptors

– Any of the file descriptors in readfds() is ready for reading
– Any of the file descriptors in writefds() is ready for writing
– An exceptional circumstance happens for one of the file descriptors in
exceptfds()

– Return value: Number of file descriptors for which condition is true
– Also removes all file descriptors from sets for which condition is not true

Stephan Schulz 641

Networking Concepts

Communication can be

– Broadcast vs. dedicated partners
– Stream-oriented vs. packet-oriented
– Reliable vs. unreliable

Communication partners need to be uniquely identified

– For IP: IP addresses (denote hosts) (4 8 bit numbers, e.g. 127.0.0.1)
– For TCP/IP: IP address and port (16-bit integer)

UNIX uses sockets (a special kind of file descriptors) for communication

– Bi-directional streams
– Use with read() and write()

Stephan Schulz 642

TCP/IP (v4) Connections

Reliable, stream-oriented, between two partners

Client:

– Create a socket: socket(PF INET, SOCK STREAM, 0)
– Fill in struct sockaddr in address structure
∗ sin family = AF INET
∗ sin port = htons(port)
∗ sin addr filled in with inet ptons()

– Connect socket to address: connect(sock, addr, addr len)
– Use socker and close() it

Server:

– Create socket
– Create its own address (normally with INADDDR ANY)
– bind()ing the socket to the address
– listen()ing on the socket
– accepting() the connection (giving a new socket)
– Use and close the socket

Stephan Schulz 643

Creating and Ending Processes

fork() creates new process

– Both parent and child execute the same program

Parent has to wait() or waitpid() to pick up the childs termination status

– Otherwise child becomes zombie
– But orphans are inherited by init

Process termination

– exit()
– return from main()
– Abort (from a signal)

Stephan Schulz 644

Process Environment and Program Execution

Processes have access to environment variables

– Inherited from (or set up by) parent
– Can be modified

To start a new program:

– fork() to create a new process
– Call one of the exec functions with:
∗ Executable name (filename or path name)
∗ Arguments (individual or as array)
∗ For some functions, environment pointer

Stephan Schulz 645

Exercises

Learn hard ;-)

Stephan Schulz 646

