C++

INDEX

Introduction:
Instructions for use

Basics of C++:
Structure of a program
Variables. Data Types.
Constants
Operators
Basic Input/Output

Control Structures:
Control Structures
Functions (I)
Functions (11)

Compound Data Types:
Arrays
Character Sequences
Pointers
Dynamic Memory
Data Structures
Other Data Types

Object Oriented Programming:
Classes (1)
Classes (1)
Friendship and inheritance
Polymorphism

Advanced Concepts:
Templates
Namespaces
Exceptions
Type Casting
Preprocessor directives

C++ Standard Library:
Input/Output with files

VIJAYA COLLEGE

Page 1

http://www.cplusplus.com/doc/tutorial/introduction/
http://www.cplusplus.com/doc/tutorial/program_structure/
http://www.cplusplus.com/doc/tutorial/variables/
http://www.cplusplus.com/doc/tutorial/constants/
http://www.cplusplus.com/doc/tutorial/operators/
http://www.cplusplus.com/doc/tutorial/basic_io/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/functions/
http://www.cplusplus.com/doc/tutorial/functions2/
http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/ntcs/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/dynamic/
http://www.cplusplus.com/doc/tutorial/structures/
http://www.cplusplus.com/doc/tutorial/other_data_types/
http://www.cplusplus.com/doc/tutorial/classes/
http://www.cplusplus.com/doc/tutorial/classes2/
http://www.cplusplus.com/doc/tutorial/inheritance/
http://www.cplusplus.com/doc/tutorial/polymorphism/
http://www.cplusplus.com/doc/tutorial/templates/
http://www.cplusplus.com/doc/tutorial/namespaces/
http://www.cplusplus.com/doc/tutorial/exceptions/
http://www.cplusplus.com/doc/tutorial/typecasting/
http://www.cplusplus.com/doc/tutorial/preprocessor/
http://www.cplusplus.com/doc/tutorial/files/

C++

What is C, What is C++, and What is the Difference?

C is a programming language originally developed for developing the
Unix operating system. It is a low-level and powerful language, but it
lacks many modern and useful constructs. C++ is a newer language,
based on C, that adds many more modern programming language
features that make it easier to program than C.

Basically, C++ maintains all aspects of the C language, while providing
new features to programmers that make it easier to write useful and
sophisticated programs.

For example, C++ makes it easier to manage memory and adds
several features to allow "object-oriented"” programming and "generic"
programming. Basically, it makes it easier for programmers to stop
thinking about the nitty-gritty details of how the machine works and
think about the problems they are trying to solve.

So, what is C++ used for?

C++ is a powerful general-purpose programming language. It can be
used to create small programs or large applications. It can be used to
make CGI scripts or console-only DOS programs. C++ allows you to
create programs to do almost anything you need to do. The creator of
C++, Bjarne Stroustrup, has put together a partial list of applications
written in C++.

How do you learn C++?

No special knowledge is needed to learn C++, and if you are an
independent learner, you can probably learn C++ from online tutorials
or from books. There are plenty of free tutorials online, including
Cprogramming.com's C++ tutorial - one which requires no prior
programming experience. You can also pick out programming books
from our recommendations.

While reading a tutorial or a book, it is often helpful to type - not copy
and paste (even if you can!) - the code into the compiler and run it.
Typing it yourself will help you to get used to the typical typing errors
that cause problems and it will force you to pay attention to the details
of programming syntax. Typing your program will also familiarize you
with the general structure of programs and with the use of common
commands. After running an example program - and after making
certain that you understand how it works - you should experiment with

VIJAYA COLLEGE Page 2

http://www.research.att.com/~bs/bio.html
http://www.research.att.com/~bs/applications.html
http://www.cprogramming.com/tutorial.html#c++tutorial
http://www.cprogramming.com/books.html

C++

it: play with the program and test your own ideas. By seeing which
modifications cause problems and which sections of the code are most
important to the function of the program, you should learn quite a bit
about programming.

Try our C++ Beginner to C++ Expert recommended book series, a six-
book set designed to get you maximal information and help take you
from beginner to C++ master.

You may also want to read about The 5 Most Common Problems New
Programmers Face--And How You Can Solve Them.

What do you need to program in C or C++7?

In order to make usable programs in C or C++, you will need a
compiler. A compiler converts source code - the actual instructions
typed by the programmer - into an executable file. Numerous
compilers are available for C and C++. Listed on the sidebar are
several pages with information on specific compilers. For beginners,
Code::Blocks is our recommended free and easy-to-use compiler.

Do I need to know C to learn C++7?

No. C++ is a superset of C; (almost) anything you can do in C, you
can do in C++. If you already know C, you will easily adapt to the
object-oriented features of C++. If you don't know C, you will have to
learn the syntax of C-style languages while learning C++, but you
shouldn't have any conceptual difficulties.

BASICSOF C++

1. Structure of a program

2.
Probably the best way to start learning a programming language is by
writing a program. Therefore, here is our first program:

/1 nmy first programin C++ Hel l o Worl d!

#i ncl ude <i ostreanp
usi ng nanespace std;

VIJAYA COLLEGE Page 3

http://www.cprogramming.com/books.html
http://cprogramming.com/beginner_programming_mistakes.html
http://cprogramming.com/beginner_programming_mistakes.html
http://cprogramming.com/beginner_programming_mistakes.html
http://www.cprogramming.com/code_blocks/

C++

int main ()

{
cout << "Hello World!l'";
return O;

}

The first panel shows the source code for our first program. The
second one shows the result of the program once compiled and
executed. The way to edit and compile a program depends on the
compiler you are using. Depending on whether it has a Development
Interface or not and on its version. Consult the compilers section and
the manual or help included with your compiler if you have doubts on
how to compile a C++ console program.

The previous program is the typical program that programmer
apprentices write for the first time, and its result is the printing on
screen of the "Hello World!" sentence. It is one of the simplest
programs that can be written in C++, but it already contains the
fundamental components that every C++ program has. We are going
to look line by line at the code we have just written:

/[l my first programin C++
This is a comment line. All lines beginning with two slash signs
(/1) are considered comments and do not have any effect on the
behavior of the program. The programmer can use them to
include short explanations or observations within the source
code itself. In this case, the line is a brief description of what our
program is.

#i ncl ude <i ostreanr
Lines beginning with a hash sign (#) are directives for the
preprocessor. They are not regular code lines with expressions
but indications for the compiler's preprocessor. In this case the
directive #i ncl ude <i ostrean® tells the preprocessor to include
the iostream standard file. This specific file (iostream) includes
the declarations of the basic standard input-output library in
C++, and it is included because its functionality is going to be
used later in the program.

usi ng nanespace std;
All the elements of the standard C++ library are declared within
what is called a namespace, the namespace with the name std.

VIJAYA COLLEGE Page 4

C++

i nt

cout

So in order to access its functionality we declare with this
expression that we will be using these entities. This line is very
frequent in C++ programs that use the standard library, and in
fact it will be included in most of the source codes included in
these tutorials.

main ()

This line corresponds to the beginning of the definition of the
main function. The main function is the point by where all C++
programs start their execution, independently of its location
within the source code. It does not matter whether there are
other functions with other names defined before or after it - the
instructions contained within this function's definition will always
be the first ones to be executed in any C++ program. For that
same reason, it is essential that all C++ programs have a nai n
function.

The word mai n is followed in the code by a pair of parentheses
(()). That is because it is a function declaration: In C++, what
differentiates a function declaration from other types of
expressions are these parentheses that follow its name.
Optionally, these parentheses may enclose a list of parameters
within them.

Right after these parentheses we can find the body of the main
function enclosed in braces ({}). What is contained within these
braces is what the function does when it is executed.

<< "Hello World!'";

This line is a C++ statement. A statement is a simple or
compound expression that can actually produce some effect. In
fact, this statement performs the only action that generates a
visible effect in our first program.

cout represents the standard output stream in C++, and the
meaning of the entire statement is to insert a sequence of
characters (in this case the Hel | o Wr | d sequence of
characters) into the standard output stream (which usually is the
screen).

cout is declared in the i ost r eamstandard file within the std
namespace, so that's why we needed to include that specific file
and to declare that we were going to use this specific namespace
earlier in our code.

VIJAYA COLLEGE Page 5

C++

Notice that the statement ends with a semicolon character (;).
This character is used to mark the end of the statement and in
fact it must be included at the end of all expression statements
in all C++ programs (one of the most common syntax errors is
indeed to forget to include some semicolon after a statement).

return O;
The return statement causes the main function to finish. return
may be followed by a return code (in our example is followed by
the return code 0). A return code of O for the main function is
generally interpreted as the program worked as expected
without any errors during its execution. This is the most usual
way to end a C++ console program.

You may have noticed that not all the lines of this program perform
actions when the code is executed. There were lines containing only
comments (those beginning by / /). There were lines with directives
for the compiler's preprocessor (those beginning by #). Then there
were lines that began the declaration of a function (in this case, the
main function) and, finally lines with statements (like the insertion into
cout), which were all included within the block delimited by the braces
({}) of the main function.

The program has been structured in different lines in order to be more
readable, but in C++, we do not have strict rules on how to separate
instructions in different lines. For example, instead of

int main ()

{
cout << " Hello World!l'";

return O;

}

We could have written:

int main () { cout << "Hello World!"; return O; }

All in just one line and this would have had exactly the same meaning
as the previous code.

VIJAYA COLLEGE Page 6

C++

In C++, the separation between statements is specified with an ending
semicolon (;) at the end of each one, so the separation in different
code lines does not matter at all for this purpose. We can write many
statements per line or write a single statement that takes many code
lines. The division of code in different lines serves only to make it
more legible and schematic for the humans that may read it.

Let us add an additional instruction to our first program:

/1l my second programin C++ Hello World! I'ma C++
program

#i ncl ude <i ostreanp

usi ng nanespace std;

int main ()

{
cout << "Hello World! ":
cout << "I'"'ma C++
progran';
return O;
}

In this case, we performed two insertions into cout in two different
statements. Once again, the separation in different lines of code has
been done just to give greater readability to the program, since nmai n
could have been perfectly valid defined this way:

int main () { cout << " Hello World! "; cout << " I'ma
C++ program"; return O; }

We were also free to divide the code into more lines if we considered it
more convenient:

int main ()

{

VIJAYA COLLEGE Page 7

C++

cout <<

"Hello Worl d!'";
cout

<< "|'ma C++ progrant,;
return O;

And the result would again have been exactly the same as in the
previous examples.

Preprocessor directives (those that begin by #) are out of this general
rule since they are not statements. They are lines read and processed
by the preprocessor and do not produce any code by themselves.
Preprocessor directives must be specified in their own line and do not
have to end with a semicolon (;).

Comments

Comments are parts of the source code disregarded by the compiler.
They simply do nothing. Their purpose is only to allow the programmer
to insert notes or descriptions embedded within the source code.

C++ supports two ways to insert comments:

/! 1ine comrent
/* bl ock comment */

The first of them, known as line comment, discards everything from
where the pair of slash signs (/ /) is found up to the end of that same
line. The second one, known as block comment, discards everything
between the / * characters and the first appearance of the */
characters, with the possibility of including more than one line.

We are going to add comments to our second program:

/* my second programin C++ Hello World! I'ma C++
with nore comments */ program

#i ncl ude <i ostreanp
usi ng nanespace std;

int main ()

VIJAYA COLLEGE Page 8

C++

{
cout << "Hello World! ";

/[l prints Hello World!

cout << "I'ma C++
programi'; // prints |'ma C++
program

return O;

}

If you include comments within the source code of your programs
without using the comment characters combinations //, /* or */, the
compiler will take them as if they were C++ expressions, most likely
causing one or several error messages when you compile it.

2. Variables. Data Types.

The usefulness of the "Hello World™ programs shown in the previous
section is quite questionable. We had to write several lines of code,
compile them, and then execute the resulting program just to obtain a
simple sentence written on the screen as result. It certainly would
have been much faster to type the output sentence by ourselves.
However, programming is not limited only to printing simple texts on
the screen. In order to go a little further on and to become able to
write programs that perform useful tasks that really save us work we
need to introduce the concept of variable.

Let us think that | ask you to retain the number 5 in your mental
memory, and then | ask you to memorize also the number 2 at the
same time. You have just stored two different values in your memory.
Now, if I ask you to add 1 to the first number | said, you should be
retaining the numbers 6 (that is 5+1) and 2 in your memory. Values
that we could now for example subtract and obtain 4 as result.

The whole process that you have just done with your mental memory
is a simile of what a computer can do with two variables. The same
process can be expressed in C++ with the following instruction set:

a = b5;

VIJAYA COLLEGE Page 9

C++

Obviously, this is a very simple example since we have only used two
small integer values, but consider that your computer can store
millions of numbers like these at the same time and conduct
sophisticated mathematical operations with them.

Therefore, we can define a variable as a portion of memory to store a
determined value.

Each variable needs an identifier that distinguishes it from the others,
for example, in the previous code the variable identifiers were a, b and
resul t, but we could have called the variables any nhames we wanted
to invent, as long as they were valid identifiers.

Identifiers

A valid identifier is a sequence of one or more letters, digits or
underscore characters (_). Neither spaces nor punctuation marks or
symbols can be part of an identifier. Only letters, digits and single
underscore characters are valid. In addition, variable identifiers always
have to begin with a letter. They can also begin with an underline
character (_), but in some cases these may be reserved for compiler
specific keywords or external identifiers, as well as identifiers
containing two successive underscore characters anywhere. In no case
they can begin with a digit.

Another rule that you have to consider when inventing your own
identifiers is that they cannot match any keyword of the C++ language
nor your compiler's specific ones, which are reserved keywords. The
standard reserved keywords are:

asm auto, bool, break, case, catch, char, class, const,
const _cast, continue, default, delete, do, double,

dynam c_cast, else, enum explicit, export, extern, false,
float, for, friend, goto, if, inline, int, |ong, nutable,
nanmespace, new, operator, private, protected, public,

regi ster, reinterpret_cast, return, short, signed, sizeof,
static, static_cast, struct, switch, tenplate, this, throw
true, try, typedef, typeid, typenane, union, unsigned,
using, virtual, void, volatile, wchar_t, while

VIJAYA COLLEGE Page 10

C++

Additionally, alternative representations for some operators cannot be
used as identifiers since they are reserved words under some
circumstances:

and, and_eq, bitand, bitor, conpl, not, not_eq, or, or_eq,
Xor, Xxor_eq

Your compiler may also include some additional specific reserved
keywords.

Very important: The C++ language is a "case sensitive" language.
That means that an identifier written in capital letters is not equivalent
to another one with the same name but written in small letters. Thus,
for example, the RESULT variable is not the same as the resul t
variable or the Resul t variable. These are three different variable
identifiers.

Fundamental data types

When programming, we store the variables in our computer's memory,
but the computer has to know what kind of data we want to store in
them, since it is not going to occupy the same amount of memory to
store a simple number than to store a single letter or a large number,
and they are not going to be interpreted the same way.

The memory in our computers is organized in bytes. A byte is the
minimum amount of memory that we can manage in C++. A byte can
store a relatively small amount of data: one single character or a small
integer (generally an integer between 0 and 255). In addition, the
computer can manipulate more complex data types that come from
grouping several bytes, such as long numbers or non-integer numbers.

Next you have a summary of the basic fundamental data types in
C++, as well as the range of values that can be represented with each
one:

Name Description Size™ Range™

signed: -128 to 127

char i
Character or small integer. |lbyte unsigned: O to 255

signed: -32768 to

short int 32767
(short) Short Integer. 2bytes unsigned: 0 to

65535

VIJAYA COLLEGE Page 11

C++

signed: -
2147483648 to
i nt Integer. Abytes |2147483647
unsigned: O to
4294967295
signed: -
| ong i nt 2147483648 to
Long integer. dbytes |2147483647
(I ong) .
unsigned: O to
4294967295
Boolean value. It can take
bool one of two values: true or |lbyte [true or false
false.
. . +/- 3.4e +/- 38 (—7
f | oat Floating point number. 4dbytes digits)
Double precision floating +/- 1.7e +/- 308
doubl e point number. 8bytes (—15 digits)
| ong Long double precision Sbvt +/- 1.7e +/- 308
doubl e floating point number. yres (—15 digits)
wchar _t Wide character. 20r4 1 wide character
bytes

* The values of the columns Size and Range depend on the system
the program is compiled for. The values shown above are those found
on most 32-bit systems. But for other systems, the general
specification is that i nt has the natural size suggested by the system
architecture (one "word") and the four integer types char, short, i nt
and | ong must each one be at least as large as the one preceding it,
with char being always 1 byte in size. The same applies to the floating
point types f | oat , doubl e and | ong doubl e, where each one must
provide at least as much precision as the preceding one.

Declaration of variables

In order to use a variable in C++, we must first declare it specifying
which data type we want it to be. The syntax to declare a new variable
is to write the specifier of the desired data type (like int, bool, float...)
followed by a valid variable identifier. For example:

int a;
fl oat mynunber;

VIJAYA COLLEGE Page 12

C++

These are two valid declarations of variables. The first one declares a
variable of type i nt with the identifier a. The second one declares a
variable of type f| oat with the identifier mynunber . Once declared, the
variables a and mynunber can be used within the rest of their scope in
the program.

If you are going to declare more than one variable of the same type,
you can declare all of them in a single statement by separating their
identifiers with commas. For example:

int a, b, c;

This declares three variables (a, b and c), all of them of type i nt, and
has exactly the same meaning as:

int a;
int b;
int c;

The integer data types char, short, | ong and i nt can be either signed
or unsigned depending on the range of numbers needed to be
represented. Signed types can represent both positive and negative
values, whereas unsigned types can only represent positive values
(and zero). This can be specified by using either the specifier si gned
or the specifier unsi gned before the type name. For example:

unsi gned short int NunmberO Sisters;
signed int MyAccount Bal ance;

By default, if we do not specify either si gned or unsi gned most
compiler settings will assume the type to be signed, therefore instead
of the second declaration above we could have written:

i nt MyAccount Bal ance;

with exactly the same meaning (with or without the keyword si gned)

VIJAYA COLLEGE Page 13

C++

An exception to this general rule is the char type, which exists by
itself and is considered a different fundamental data type from si gned
char and unsi gned char, thought to store characters. You should use
either si gned or unsi gned if you intend to store numerical values in a
char -sized variable.

short and | ong can be used alone as type specifiers. In this case, they
refer to their respective integer fundamental types: short is
equivalent to short int and |l ong is equivalentto |l ong i nt. The
following two variable declarations are equivalent:

short Year;
short int Year;

Finally, si gned and unsi gned may also be used as standalone type
specifiers, meaning the same as si gned i nt and unsi gned i nt
respectively. The following two declarations are equivalent:

unsi gned Next Year;
unsi gned i nt Next Year;

To see what variable declarations look like in action within a program,
we are going to see the C++ code of the example about your mental
memory proposed at the beginning of this section:

/| operating with variables 4

#i ncl ude <i ostreanr
usi ng nanespace std;

int main ()
{
/'l declaring vari abl es:
int a, b;
int result;
/'l process:
a = b5;
b = 2;
a=a+ 1;
result = a - b;

VIJAYA COLLEGE Page 14

C++

/1l print out the result:
cout << result;

/1l term nate the program
return O;

Do not worry if something else than the variable declarations
themselves looks a bit strange to you. You will see the rest in detail in
coming sections.

Scope of variables

All the variables that we intend to use in a program must have been
declared with its type specifier in an earlier point in the code, like we
did in the previous code at the beginning of the body of the function
main when we declared that a, b, and resul t were of type i nt.

A variable can be either of global or local scope. A global variable is a
variable declared in the main body of the source code, outside all
functions, while a local variable is one declared within the body of a
function or a block.

#include <iostream:-
using namespace std;

int Integer;

char aCharactex:;

char string [20];
unsigned int Humber0fSons;

Global variahles

int main ()

{
unsigned short Ruge:

float AHumber, Anotherine; Local variahles

cout <= "Enter your age:";

cin > Age; Instructions

Global variables can be referred from anywhere in the code, even
inside functions, whenever it is after its declaration.

The scope of local variables is limited to the block enclosed in braces
({}) where they are declared. For example, if they are declared at the

VIJAYA COLLEGE Page 15

C++

beginning of the body of a function (like in function mai n) their scope
is between its declaration point and the end of that function. In the
example above, this means that if another function existed in addition
to mai n, the local variables declared in mai n could not be accessed
from the other function and vice versa.

Initialization of variables

When declaring a regular local variable, its value is by default
undetermined. But you may want a variable to store a concrete value
at the same moment that it is declared. In order to do that, you can
initialize the variable. There are two ways to do this in C++:

The first one, known as c-like, is done by appending an equal sign
followed by the value to which the variable will be initialized:

type identifier = initial_value ;

For example, if we want to declare an int variable called a initialized
with a value of O at the moment in which it is declared, we could write:

int a = 0;

The other way to initialize variables, known as constructor
initialization, is done by enclosing the initial value between
parentheses (()):

type identifier (initial_value) ;
For example:

int a (0);

Both ways of initializing variables are valid and equivalent in C++.

/] initialization of 6
vari abl es

#i ncl ude <i ostreanp
usi ng nanespace std;

int main ()

{

VIJAYA COLLEGE Page 16

C++

int a=5; /1]
initial value =5

int b(2); /]
initial value = 2

int result; [/

initial val ue undetern ned

a=a + 3;
result = a - b;
cout << result;

return O;

Introduction to strings

Variables that can store non-numerical values that are longer than one
single character are known as strings.

The C++ language library provides support for strings through the
standard st ri ng class. This is not a fundamental type, but it behaves
in a similar way as fundamental types do in its most basic usage.

A first difference with fundamental data types is that in order to
declare and use objects (variables) of this type we need to include an
additional header file in our source code: <stri ng> and have access to
the st d namespace (which we already had in all our previous
programs thanks to the usi hg nanespace statement).

/1l my first string This is a string
#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng nanespace std;

int main ()

{

string nystring = "This is
a string”;

cout << nystring;

return O;
}

As you may see in the previous example, strings can be initialized with
any valid string literal just like numerical type variables can be

VIJAYA COLLEGE Page 17

C++

initialized to any valid numerical literal. Both initialization formats are
valid with strings:

string nystring = "This is a string";
string nystring ("This is a string");

Strings can also perform all the other basic operations that
fundamental data types can, like being declared without an initial
value and being assigned values during execution:

/1 my first string This is the initial string
#i ncl ude <i ostreanp cont ent

#1 ncl ude <string> This is a different string
usi ng nanespace std; cont ent

int main ()

{

string nystring;
mystring = "This is the

initial string content”;
cout << nystring << endl;
nmystring = "This is a

different string content”;
cout << nystring << endl;
return O;

}

For more details on C++ strings, you can have a look at the string
class reference.

3. Constants

VIJAYA COLLEGE Page 18

http://www.cplusplus.com/string
http://www.cplusplus.com/string
http://www.cplusplus.com/string

C++

Constants are expressions with a fixed value.

Literals

Literals are used to express particular values within the source code of
a program. We have already used these previously to give concrete
values to variables or to express messages we wanted our programs to
print out, for example, when we wrote:

a = b5;

the 5 in this piece of code was a literal constant.

Literal constants can be divided in Integer Numerals, Floating-Point
Numerals, Characters, Strings and Boolean Values.

Integer Numerals

1776
707
=273

They are numerical constants that identify integer decimal values.
Notice that to express a numerical constant we do not have to write
quotes (") nor any special character. There is no doubt that it is a
constant: whenever we write 1776 in a program, we will be referring to
the value 1776.

In addition to decimal numbers (those that all of us are used to use
every day) C++ allows the use as literal constants of octal numbers
(base 8) and hexadecimal numbers (base 16). If we want to express
an octal number we have to precede it with a 0 (zero character). And
in order to express a hexadecimal number we have to precede it with
the characters 0x (zero, x). For example, the following literal constants
are all equivalent to each other:

75 /! deci nal
0113 /] octal
Ox4b [/ hexadeci nmal

VIJAYA COLLEGE Page 19

C++

All of these represent the same number: 75 (seventy-five) expressed
as a base-10 numeral, octal numeral and hexadecimal numeral,
respectively.

Literal constants, like variables, are considered to have a specific data
type. By default, integer literals are of type i nt . However, we can
force them to either be unsigned by appending the u character to it, or
long by appending | :

75 /1 int

75u /1 unsigned int
75I /'l 1ong

75ul /'l unsigned | ong

In both cases, the suffix can be specified using either upper or
lowercase letters.

Floating Point Numbers

They express numbers with decimals and/or exponents. They can
include either a decimal point, an e character (that expresses "by ten
at the Xth height"”, where X is an integer value that follows the e
character), or both a decimal point and an e character:

3. 14159 /1 3.14159

6. 02e23 /1 6.02 x 10723
1. 6e-19 /1 1.6 x 10"-19
3.0 /1 3.0

These are four valid numbers with decimals expressed in C++. The
first number is PI, the second one is the number of Avogadro, the third
is the electric charge of an electron (an extremely small number) -all
of them approximated- and the last one is the number three expressed
as a floating-point numeric literal.

The default type for floating point literals is doubl e. If you explicitly
want to express a fl oat or | ong doubl e numerical literal, you can use
the f or | suffixes respectively:

3.14159L /1 1 ong double
6. 02e23f /1 float

VIJAYA COLLEGE Page 20

C++

Any of the letters that can be part of a floating-point numerical
constant (e, f, |) can be written using either lower or uppercase
letters without any difference in their meanings.

Character and string literals
There also exist non-numerical constants, like:

1 pl
"Hell o worl d"
"How do you do?"

The first two expressions represent single character constants, and the
following two represent string literals composed of several characters.
Notice that to represent a single character we enclose it between
single quotes (') and to express a string (which generally consists of
more than one character) we enclose it between double quotes ().

When writing both single character and string literals, it is necessary to
put the quotation marks surrounding them to distinguish them from
possible variable identifiers or reserved keywords. Notice the
difference between these two expressions:

X

X

x alone would refer to a variable whose identifier is x, whereas ' x'
(enclosed within single quotation marks) would refer to the character
constant ' x' .

Character and string literals have certain peculiarities, like the escape
codes. These are special characters that are difficult or impossible to
express otherwise in the source code of a program, like newline (\ n)
or tab (\t). All of them are preceded by a backslash (\). Here you
have a list of some of such escape codes:

\ njnewline
\ r lcarriage return
\ t [tab

VIJAYA COLLEGE Page 21

C++

\ Vlvertical tab

\ blbackspace

\ f form feed (page feed)
\ alalert (beep)

\ ' |single quote (')

\ " |double quote (")

\ ?|question mark (?)

\ \ |backslash (\)

For example:

1 \nl

1 \tl

"Left \'t Right"
"one\ nt wo\ nt hr ee"

Additionally, you can express any character by its numerical ASCII
code by writing a backslash character (\) followed by the ASCII code
expressed as an octal (base-8) or hexadecimal (base-16) number. In
the first case (octal) the digits must immediately follow the backslash
(for example \ 23 or \ 40), in the second case (hexadecimal), an x
character must be written before the digits themselves (for example
\ x20 or \ x4A).

String literals can extend to more than a single line of code by putting
a backslash sign (\) at the end of each unfinished line.

"string expressed in \
two |ines"”

You can also concatenate several string constants separating them by
one or several blank spaces, tabulators, newline or any other valid
blank character:

"this forns" "a single" "string" "of characters”

Finally, if we want the string literal to be explicitly made of wide

VIJAYA COLLEGE Page 22

C++

characters (wchar _t), instead of narrow characters (char), we can
precede the constant with the L prefix:

L"This is a wide character string"

Wide characters are used mainly to represent non-English or exotic
character sets.

Boolean literals

There are only two valid Boolean values: true and false. These can be
expressed in C++ as values of type bool by using the Boolean literals
true and f al se.

Defined constants (#define)

You can define your own names for constants that you use very often
without having to resort to memory-consuming variables, simply by
using the #def i ne preprocessor directive. Its format is:

#define identifier val ue

For example:

#define Pl 3.14159
#defi ne NEWLI NE '\ n'

This defines two new constants: PI and NEWLI NE. Once they are
defined, you can use them in the rest of the code as if they were any
other regular constant, for example:

/] defined constants: 31. 4159
cal cul ate circunference

#i ncl ude <i ostreanp
usi ng nanespace std;

#define Pl 3.14159
#defi ne NEWLI NE '\ n'

int main ()

{
doubl e r=5.0;
/1 radius

VIJAYA COLLEGE Page 23

C++

doubl e circl e;

circle =2 * Pl * r;
cout << circle;
cout << NEWL.I NE;

return O;

In fact the only thing that the compiler preprocessor does when it
encounters #def i ne directives is to literally replace any occurrence of
their identifier (in the previous example, these were Pl and NEWL.I NE)
by the code to which they have been defined (3. 14159 and ' \ n’
respectively).

The #def i ne directive is not a C++ statement but a directive for the
preprocessor; therefore it assumes the entire line as the directive and
does not require a semicolon (;) at its end. If you append a semicolon
character (;) at the end, it will also be appended in all occurrences
within the body of the program that the preprocessor replaces.

Declared constants (const)

With the const prefix you can declare constants with a specific type in
the same way as you would do with a variable:

const int pathw dth = 100;
const char tabulator = "\t';

Here, pat hwi dt h and t abul at or are two typed constants. They are
treated just like regular variables except that their values cannot be
modified after their definition.

4. Operators

Once we know of the existence of variables and constants, we can
begin to operate with them. For that purpose, C++ integrates
operators. Unlike other languages whose operators are mainly
keywords, operators in C++ are mostly made of signs that are not
part of the alphabet but are available in all keyboards. This makes
C++ code shorter and more international, since it relies less on English
words, but requires a little of learning effort in the beginning.

VIJAYA COLLEGE Page 24

C++

You do not have to memorize all the content of this page. Most details
are only provided to serve as a later reference in case you need it.

Assignment (=)
The assignment operator assigns a value to a variable.

a = b5;

This statement assigns the integer value 5 to the variable a. The part
at the left of the assignment operator (=) is known as the Ivalue (left
value) and the right one as the rvalue (right value). The lvalue has to
be a variable whereas the rvalue can be either a constant, a variable,
the result of an operation or any combination of these.

The most important rule when assigning is the right-to-left rule: The

assignment operation always takes place from right to left, and never
the other way:

a = b;

This statement assigns to variable a (the lvalue) the value contained in
variable b (the rvalue). The value that was stored until this moment in
a is not considered at all in this operation, and in fact that value is
lost.

Consider also that we are only assigning the value of b to a at the
moment of the assignment operation. Therefore a later change of b
will not affect the new value of a.

For example, let us have a look at the following code - | have included
the evolution of the content stored in the variables as comments:

/'l assignnment operator a:4 b:7

#i ncl ude <i ostreanp
usi ng nanespace std;

int main ()

{

int a, b; /] a:?,
b: ?
a

= 10; /1 a: 10,

VIJAYA COLLEGE Page 25

C++

b: ?

b = 4; /] a:10,
b: 4

a = b; /1 a:4,
b: 4

b =7, /] a:4,
b: 7

cout << "a:";

cout << a;

cout << " b:":

cout << b;

return O,
}

This code will give us as result that the value contained in a is 4 and
the one contained in b is 7. Notice how a was not affected by the final
modification of b, even though we declared a = b earlier (that is
because of the right-to-left rule).

A property that C++ has over other programming languages is that
the assignment operation can be used as the rvalue (or part of an
rvalue) for another assignment operation. For example:

a=2+(b=25);

IS equivalent to:

b
a

5;
2 + b;

that means: first assign 5 to variable b and then assign to a the value
2 plus the result of the previous assignment of b (i.e. 5), leaving a
with a final value of 7.

The following expression is also valid in C++:

a=Db=c¢c=25;

VIJAYA COLLEGE Page 26

C++

It assigns 5 to the all the three variables: a, b and c.

Arithmetic operators (+, -, *, /, %)
The five arithmetical operations supported by the C++ language are:

+ |addition

- [subtraction
* Imultiplication
/ |division
%|modulo

Operations of addition, subtraction, multiplication and division literally

correspond with their respective mathematical operators. The only one
that you might not be so used to see is modulo; whose operator is the
percentage sign (%9. Modulo is the operation that gives the remainder

of a division of two values. For example, if we write:

a =11 % 3;

the variable a will contain the value 2, since 2 is the remainder from
dividing 11 between 3.

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=,

=019

When we want to modify the value of a variable by performing an
operation on the value currently stored in that variable we can use
compound assignment operators:

expression Is equivalent to
val ue += increase; |value = value + increase;
a -= b; a=a- 5
al/=b; a=a/ b;
price *= units + 1;[price = price * (units + 1);

and the same for all other operators. For example:

VIJAYA COLLEGE Page 27

C++

/| conpound assi gnment 5
operators

#i ncl ude <i ostreanp
usi ng nanespace std;

int main ()
{
int a, b=3;
a = b;
a+=2; /1
equi val ent to a=a+2
cout << a;
return O,

}

Increase and decrease (++, --)

Shortening even more some expressions, the increase operator (++)
and the decrease operator (- -) increase or reduce by one the value
stored in a variable. They are equivalent to +=1 and to - =1,
respectively. Thus:

Cc++;
c+=1,
c=c+1;

are all equivalent in its functionality: the three of them increase by one
the value of c.

In the early C compilers, the three previous expressions probably
produced different executable code depending on which one was used.
Nowadays, this type of code optimization is generally done
automatically by the compiler, thus the three expressions should
produce exactly the same executable code.

A characteristic of this operator is that it can be used both as a prefix
and as a suffix. That means that it can be written either before the
variable identifier (++a) or after it (a++). Although in simple
expressions like a++ or ++a both have exactly the same meaning, in
other expressions in which the result of the increase or decrease
operation is evaluated as a value in an outer expression they may
have an important difference in their meaning: In the case that the

VIJAYA COLLEGE Page 28

C++

increase operator is used as a prefix (++a) the value is increased
before the result of the expression is evaluated and therefore the
increased value is considered in the outer expression; in case that it is
used as a suffix (a++) the value stored in a is increased after being
evaluated and therefore the value stored before the increase operation
is evaluated in the outer expression. Notice the difference:

Example 1 Example 2
B=3; B=3;
A=++B; A=B++;
// A contains 4, B contains 4f// A contains 3, B contains 4

In Example 1, B is increased before its value is copied to A. While in
Example 2, the value of B is copied to A and then B is increased.

Relational and equality operators (==, 1=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can
use the relational and equality operators. The result of a relational
operation is a Boolean value that can only be true or false, according
to its Boolean result.

We may want to compare two expressions, for example, to know if
they are equal or if one is greater than the other is. Here is a list of
the relational and equality operators that can be used in C++:

==|Equal to

I= [Not equal to

> |Greater than

< |Less than

>=|Greater than or equal to
<=|Less than or equal to

Here there are some examples:

(7 == 5) /'l evaluates to false.
(5 > 4) /'l evaluates to true.
(31=2) /| evaluates to true.
(6 >= 6) /'l evaluates to true.
(5 < 5) /'l evaluates to fal se.

VIJAYA COLLEGE Page 29

C++

Of course, instead of using only numeric constants, we can use any
valid expression, including variables. Suppose that a=2, b=3 and c=6,

(a == 5) /'l evaluates to false since a is not equal
to 5.

(a*b >= ¢) /'l evaluates to true since (2*3 >=6) is
true.

(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is
fal se.

((b=2) == a) // evaluates to true.

Be careful! The operator = (one equal sign) is not the same as the
operator == (two equal signs), the first one is an assignment operator
(assigns the value at its right to the variable at its left) and the other
one (==) is the equality operator that compares whether both
expressions in the two sides of it are equal to each other. Thus, in the
last expression ((b=2) == a), we first assigned the value 2 to b and
then we compared it to a, that also stores the value 2, so the result of
the operation is true.

Logical operators (!, &&, ||)

The Operator ! is the C++ operator to perform the Boolean operation
NOT, it has only one operand, located at its right, and the only thing
that it does is to inverse the value of it, producing false if its operand
is true and true if its operand is false. Basically, it returns the opposite
Boolean value of evaluating its operand. For example:

(5 == b5) /'l evaluates to fal se because the expression
at its right (5 ==05) is true.

(6 <= 4) /'l evaluates to true because (6 <= 4) would
be fal se.

I'true /'l evaluates to false

I'fal se /'l evaluates to true.

The logical operators & and | | are used when evaluating two
expressions to obtain a single relational result. The operator &&
corresponds with Boolean logical operation AND. This operation results
true if both its two operands are true, and false otherwise. The

VIJAYA COLLEGE Page 30

C++

following panel shows the result of operator && evaluating the
expression a && b:

&& OPERATOR
a b a&&b
true [true [true
true [falseffalse
falseltrue [false
falselfalseffalse

The operator | | corresponds with Boolean logical operation OR. This
operation results true if either one of its two operands is true, thus
being false only when both operands are false themselves. Here are
the possible results ofa || b:

|| OPERATOR
a b lajlb
true [true [true
true [falseftrue
falsejtrue [true
falselfalseffalse

For example:

((5==05) & (3 >6)) [// evaluates to false (true &&
fal se).
((5=05)|] (3 >6)) [// evaluates to true (true ||
fal se).

Conditional operator (?)

The conditional operator evaluates an expression returning a value if
that expression is true and a different one if the expression is
evaluated as false. Its format is:

condition ? resultl : result2

VIJAYA COLLEGE Page 31

C++

If condi ti on is true the expression will return resul t 1, if it is not it
will return resul t 2.

7==5 ? 4 : 3 /'l returns 3, since 7 is not equal to 5.

7==5+2 ? 4 : 3 /'l returns 4, since 7 is equal to 5+2.

5>3 ? a: b /1l returns the value of a, since 5 is

greater than 3.

a>b ? a: b /'l returns whichever is greater, a or b.
/1 conditional operator 7

#1 ncl ude <i ostreanp
usi ng nanespace std;

int main ()

{

int a,b,c;

return O;

In this example a was 2 and b was 7, so the expression being
evaluated (a>b) was not true, thus the first value specified after the
question mark was discarded in favor of the second value (the one
after the colon) which was b, with a value of 7.

Comma operator (,)

The comma operator (,) is used to separate two or more expressions
that are included where only one expression is expected. When the set
of expressions has to be evaluated for a value, only the rightmost
expression is considered.

For example, the following code:

a = (b=3, b+2);

VIJAYA COLLEGE Page 32

C++

Would first assign the value 3 to b, and then assign b+2 to variable a.
So, at the end, variable a would contain the value 5 while variable b
would contain value 3.

Bitwise Operators (&, |, ™, —, <<, >>)

Bitwise operators modify variables considering the bit patterns that
represent the values they store.

operatorlfasm equivalent| description

& AND Bitwise AND

| OR Bitwise Inclusive OR

N XOR Bitwise Exclusive OR

~ NOT Unary complement (bit inversion)
<< SHL Shift Left

>> SHR Shift Right

Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to
another. There are several ways to do this in C++. The simplest one,
which has been inherited from the C language, is to precede the
expression to be converted by the new type enclosed between
parentheses (()):

int i;
float f = 3.14;
i = (int) f;

The previous code converts the float number 3. 14 to an integer value
(3), the remainder is lost. Here, the typecasting operator was (i nt) .
Another way to do the same thing in C++ is using the functional
notation: preceding the expression to be converted by the type and
enclosing the expression between parentheses:

i =int (f);

VIJAYA COLLEGE Page 33

C++

Both ways of type casting are valid in C++.

sizeof()

This operator accepts one parameter, which can be either a type or a
variable itself and returns the size in bytes of that type or object:

a = sizeof (char);

This will assign the value 1 to a because char is a one-byte long type.
The value returned by si zeof is a constant, so it is always determined
before program execution.

Other operators

Later in these tutorials, we will see a few more operators, like the ones
referring to pointers or the specifics for object-oriented programming.
Each one is treated in its respective section.

Precedence of operators

When writing complex expressions with several operands, we may
have some doubts about which operand is evaluated first and which
later. For example, in this expression:

a=5+7%2

we may doubt if it really means:

a
a

5+ (7 %2) [l with a result of 6, or
(5+7) %2 [l with a result of O

The correct answer is the first of the two expressions, with a result of
6. There is an established order with the priority of each operator, and
not only the arithmetic ones (those whose preference come from
mathematics) but for all the operators which can appear in C++. From
greatest to lowest priority, the priority order is as follows:

Level Operator Description |Grouping
1 .. scope Left-to-
B P right

VIJAYA COLLEGE Page 34

C++

O [1 -> ++ -- dynam c_cast
2 static_cast reinterpret_cast |postfix L_eft—to—
const _cast typeid right
++ -- ~ | sjzeof new delete unary (prefix)
indirection and
3 & reference Right-to-
(pointers) left
+ - unary sign
operator
4 (type) type casting Right-to-
left
* * pointer-to- Left-to-
5 -> :
member right
6 [/ % multiplicative hegfrt];to'
7 - additive hzfrt];to'
8 << >> shift ::Iegf:]:;to—
9 < > <= >= relational I;izfﬁ;to—
10 == | = equality ::iegfﬁ;to_
11 & bitwise AND hzfrt];to'
122 P bitwise XOR hzfrt];to'
13 | bitwise OR hzfrt];to'
14 [8& logical AND hzfﬁ;to'
15 || logical OR I;izfﬁ;to—
16 |7 conditional Right-to-
left
= *= [= U += -= >>= <<= &= . R|ght_to_
17 |a_ | = assignment left
18 | comma Left-to-
right
VIJAYA COLLEGE Page 35

C++

Grouping defines the precedence order in which operators are
evaluated in the case that there are several operators of the same
level in an expression.

All these precedence levels for operators can be manipulated or
become more legible by removing possible ambiguities using
parentheses signs (and), as in this example:

a=5+7 %2,

might be written either as:

a

or
a

5+ (7 %2);

(5 +7) %2;

depending on the operation that we want to perform.

So if you want to write complicated expressions and you are not
completely sure of the precedence levels, always include parentheses.
It will also become a code easier to read.

Basic Input/Output

until now, the example programs of previous sections provided very
little interaction with the user, if any at all. Using the standard input
and output library, we will be able to interact with the user by printing
messages on the screen and getting the user's input from the
keyboard.

C++ uses a convenient abstraction called streams to perform input

VIJAYA COLLEGE Page 36

C++

and output operations in sequential media such as the screen or the
keyboard. A stream is an object where a program can either insert or
extract characters to/from it. We do not really need to care about
many specifications about the physical media associated with the
stream - we only need to know it will accept or provide characters
sequentially.

The standard C++ library includes the header file i ost r eam where the
standard input and output stream objects are declared.

Standard Output (cout)

By default, the standard output of a program is the screen, and the
C++ stream object defined to access it is cout .

cout is used in conjunction with the insertion operator, which is
written as << (two "less than" signs).

cout << "Qutput sentence"; // prints Qutput sentence on
screen

cout << 120; [l prints nunber 120 on screen
cout << Xx; /1l prints the content of x on
screen

The << operator inserts the data that follows it into the stream
preceding it. In the examples above it inserted the constant string

Qut put sent ence, the numerical constant 120 and variable x into the
standard output stream cout . Notice that the sentence in the first
instruction is enclosed between double quotes (") because it is a
constant string of characters. Whenever we want to use constant
strings of characters we must enclose them between double quotes (")
so that they can be clearly distinguished from variable names. For
example, these two sentences have very different results:

cout << "Hello"; [/ prints Hello
cout << Hell o; /'l prints the content of Hello variable

The insertion operator (<<) may be used more than once in a single
statement:

cout << "Hello, " << "l am" << "a C++ statenent";

VIJAYA COLLEGE Page 37

C++

This last statement would print the message Hel | o, | am a C++
st at ement on the screen. The utility of repeating the insertion
operator (<<) is demonstrated when we want to print out a
combination of variables and constants or more than one variable:

cout << "Hello, | am" << age << " years old and ny
zi pcode is " << zipcode;

If we assume the age variable to contain the value 24 and the zi pcode
variable to contain 90064 the output of the previous statement would
be:

Hello, I am 24 years old and ny zipcode is 90064

It is important to notice that cout does not add a line break after its
output unless we explicitly indicate it, therefore, the following
statements:

cout << "This is a sentence.";
cout << "This is another sentence.";

will be shown on the screen one following the other without any line
break between them:

This is a sentence. This is another sentence.

even though we had written them in two different insertions into cout .
In order to perform a line break on the output we must explicitly insert
a new-line character into cout . In C++ a new-line character can be
specified as \ n (backslash, n):

cout << "First sentence.\n ";
cout << "Second sentence.\nThird sentence.";

This produces the following output:

VIJAYA COLLEGE Page 38

C++

Fi rst sentence.
Second sent ence.
Thi rd sent ence.

Additionally, to add a new-line, you may also use the endl
manipulator. For example:

cout << "First sentence." << endl:
cout << "Second sentence." << endl;

would print out:

Fi rst sentence.
Second sent ence.

The endl manipulator produces a newline character, exactly as the
insertion of ' \ n' does, but it also has an additional behavior when it is
used with buffered streams: the buffer is flushed. Anyway, cout will be
an unbuffered stream in most cases, so you can generally use both the
\ n escape character and the endl manipulator in order to specify a
new line without any difference in its behavior.

Standard Input (cin).

The standard input device is usually the keyboard. Handling the
standard input in C++ is done by applying the overloaded operator of
extraction (>>) on the ci n stream. The operator must be followed by
the variable that will store the data that is going to be extracted from
the stream. For example:

i nt age;
cin >> age;

The first statement declares a variable of type i nt called age, and the
second one waits for an input from ci n (the keyboard) in order to
store it in this integer variable.

ci n can only process the input from the keyboard once the RETURN key
has been pressed. Therefore, even if you request a single character,
the extraction from ci n will not process the input until the user

VIJAYA COLLEGE Page 39

C++

presses RETURN after the character has been introduced.

You must always consider the type of the variable that you are using
as a container with ci n extractions. If you request an integer you will
get an integer, if you request a character you will get a character and
if you request a string of characters you will get a string of characters.

/1 i/o exanple Pl ease enter an integer
val ue: 702
#i ncl ude <i ostreanp The val ue you entered is 702
usi ng nanespace std; and its double is 1404.
int main ()
L
int i;

cout << "Please enter an
i nt eger val ue: ";

cin >> i;

cout << "The val ue you
entered is " << i;

cout << " and its double is
mn << i*2 << ll.\nll;
return O;

}

The user of a program may be one of the factors that generate errors
even in the simplest programs that use ci n (like the one we have just
seen). Since if you request an integer value and the user introduces a
name (which generally is a string of characters), the result may cause
your program to misoperate since it is not what we were expecting
from the user. So when you use the data input provided by ci n
extractions you will have to trust that the user of your program will be
cooperative and that he/she will not introduce his/her name or
something similar when an integer value is requested. A little ahead,
when we see the stringstreamclass we will see a possible solution
for the errors that can be caused by this type of user input.

You can also use cin to request more than one datum input from the
user:

cin >> a >> b;

VIJAYA COLLEGE Page 40

C++

is equivalent to:

cin >> a;
cin >> b;

In both cases the user must give two data, one for variable a and
another one for variable b that may be separated by any valid blank
separator: a space, a tab character or a newline.

cin and strings

We can use ci n to get strings with the extraction operator (>>) as we
do with fundamental data type variables:

cin >> nystring;

However, as it has been said, ci n extraction stops reading as soon as
if finds any blank space character, so in this case we will be able to get
just one word for each extraction. This behavior may or may not be
what we want; for example if we want to get a sentence from the
user, this extraction operation would not be useful.

In order to get entire lines, we can use the function get | i ne, which is
the more recommendable way to get user input with ci n:

/1 cin with strings What's your nanme? Juan

#i ncl ude <i ostrean Soul i A" A¢Avs

#i ncl ude <string> Hel | o Juan Soul i A" A¢Avz

usi ng nanespace std; What is your favorite teanf
The | sot opes

int main () | I'i ke The | sotopes too!

{

string nystr;
cout << "What's your nane?

getline (cin, nystr);

cout << "Hello " << nystr
<< ".\n";

cout << "What is your
favorite tean ";

getline (cin, nystr);

VIJAYA COLLEGE Page 41

C++

cout << "Il like " << nystr
<< " tool!\n";
return O;

}

Notice how in both calls to get | i ne we used the same string identifier
(nystr). What the program does in the second call is simply to replace
the previous content by the new one that is introduced.

stringstream

The standard header file <sst r ean® defines a class called
stringstreamthat allows a string-based object to be treated as a
stream. This way we can perform extraction or insertion operations
from/to strings, which is especially useful to convert strings to
numerical values and vice versa. For example, if we want to extract an
integer from a string we can write:

string nystr ("1204");
int nyint;
stringstrean(nystr) >> nyint;

This declares a stri ng object with a value of "1204", and an i nt
object. Then we use stri ngst reanis constructor to construct an object
of this type from the string object. Because we can use stri ngstream
objects as if they were streams, we can extract an integer from it as
we would have done on ci n by applying the extractor operator (>>) on
it followed by a variable of type i nt .

After this piece of code, the variable nyi nt will contain the numerical
value 1204.

/| stringstreans Enter price: 22.25
#i ncl ude <i ostreanp Enter quantity: 7
#i ncl ude <string> Total price: 155.75

#i ncl ude <sstreanr
usi ng nanespace std;

int main ()

{
string nystr;
float price=0;
i nt quantity=0;

VIJAYA COLLEGE Page 42

C++

cout << "Enter price: ";

getline (cin,nystr);

stringstrean(nystr) >>
price;

cout << "Enter quantity: ";

getline (cin,nystr);

stringstreanm(nystr) >>

quantity;
cout << "Total price: " <<
price*quantity << endl;
return O;
}

In this example, we acquire numeric values from the standard input
indirectly. Instead of extracting numeric values directly from the
standard input, we get lines from the standard input (ci n) into a string
object (nystr), and then we extract the integer values from this string
into a variable of type int (quantity).

Using this method, instead of direct extractions of integer values, we
have more control over what happens with the input of numeric values
from the user, since we are separating the process of obtaining input
from the user (we now simply ask for lines) with the interpretation of
that input. Therefore, this method is usually preferred to get numerical
values from the user in all programs that are intensive in user input.

Control Structures

A program is usually not limited to a linear sequence of instructions.
During its process it may bifurcate, repeat code or take decisions. For
that purpose, C++ provides control structures that serve to specify
what has to be done by our program, when and under which
circumstances.

VIJAYA COLLEGE Page 43

C++

With the introduction of control structures we are going to have to
introduce a new concept: the compound-statement or block. A block is
a group of statements which are separated by semicolons (;) like all
C++ statements, but grouped together in a block enclosed in braces: {

}:

{ statenentl; statenent2; statenent3; }

Most of the control structures that we will see in this section require a
generic statement as part of its syntax. A statement can be either a
simple statement (a simple instruction ending with a semicolon) or a
compound statement (several instructions grouped in a block), like the
one just described. In the case that we want the statement to be a
simple statement, we do not need to enclose it in braces ({}). But in
the case that we want the statement to be a compound statement it
must be enclosed between braces ({}), forming a block.

Conditional structure: if and else

The i f keyword is used to execute a statement or block only if a
condition is fulfilled. Its form is:

if (condition) statenent

Where condi ti on is the expression that is being evaluated. If this
condition is true, st at enent is executed. If it is false, st at enent is
ignored (not executed) and the program continues right after this
conditional structure.

For example, the following code fragment prints x i s 100 only if the
value stored in the x variable is indeed 100:

if (x == 100)
cout << "x is 100";

If we want more than a single statement to be executed in case that
the condition is true we can specify a block using braces { }:

if (x == 100)
{

cout << "x is ";

VIJAYA COLLEGE Page 44

C++

cout << Xx;

We can additionally specify what we want to happen if the condition is
not fulfilled by using the keyword el se. Its form used in conjunction
with i f is:

if (condition) statenentl el se statenent?2

For example:

if (x == 100)
cout << "x is 100";
el se

cout << "x is not 100";

prints on the screen x i s 100 if indeed x has a value of 100, but if it
has not -and only if not- it prints out x i s not 100.

The if + el se structures can be concatenated with the intention of
verifying a range of values. The following example shows its use telling
if the value currently stored in x is positive, negative or none of them
(i.e. zero):

if (x >0

cout << "x is positive";
else if (x < 0)

cout << "x is negative";
el se

cout <<

X is 0";

Remember that in case that we want more than a single statement to
be executed, we must group them in a block by enclosing them in
braces{ }.

Iteration structures (loops)

VIJAYA COLLEGE Page 45

C++

Loops have as purpose to repeat a statement a certain number of
times or while a condition is fulfilled.

The while loop
Its format is:

whi | e (expression) statenent

and its functionality is simply to repeat statement while the condition
set in expression is true.

For example, we are going to make a program to countdown using a
while-loop:

/| custom count down usi ng Enter the starting nunber > 8
whi | e 8, 7, 6, 5 4, 3, 2, 1, FIRE

#i ncl ude <i ostreanp
usi ng nanespace std;

int main ()
L

int n;

cout << "Enter the starting
nunber > ";

cin >> n;

while (n>0) {
cout << n << ", ";
__n;

}

cout << "FIREI'\n";
return O;

When the program starts the user is prompted to insert a starting
number for the countdown. Then the whi | e loop begins, if the value
entered by the user fulfills the condition n>0 (that n is greater than
zero) the block that follows the condition will be executed and
repeated while the condition (n>0) remains being true.

The whole process of the previous program can be interpreted
according to the following script (beginning in main):

VIJAYA COLLEGE Page 46

C++

1. User assigns a value to n

2. The while condition is checked (n>0). At this point there are two
posibilities:
* condition is true: statement is executed (to step 3)
* condition is false: ignore statement and continue after it (to
step 5)
3. Execute statement:
cout << n << ", ";
- - n;
(prints the value of n on the screen and decreases n by 1)
4. End of block. Return automatically to step 2

5. Continue the program right after the block: print FIRE! and end
program.

When creating a while-loop, we must always consider that it has to
end at some point, therefore we must provide within the block some
method to force the condition to become false at some point,
otherwise the loop will continue looping forever. In this case we have
included - - n; that decreases the value of the variable that is being
evaluated in the condition (n) by one - this will eventually make the
condition (n>0) to become false after a certain number of loop
iterations: to be more specific, when n becomes 0, that is where our
while-loop and our countdown end.

Of course this is such a simple action for our computer that the whole
countdown is performed instantly without any practical delay between
numbers.

The do-while loop

Its format is:

do statenment while (condition);

Its functionality is exactly the same as the while loop, except that
condi ti on in the do-while loop is evaluated after the execution of
statement instead of before, granting at least one execution of

st at enent even if condi ti on is never fulfilled. For example, the

VIJAYA COLLEGE Page 47

C++

following example program echoes any number you enter until you
enter 0.

/'l nunber echoer Enter nunber (0 to end):
12345
#i ncl ude <i ostreanp You entered: 12345
usi ng nanespace std; Enter nunber (0 to end):
160277
int main () You entered: 160277
{ Enter nunber (0 to end): O
unsi gned | ong n; You entered: O
do {
cout << "Enter nunber (O
to end): ";
cin >> n;

cout << "You entered: "
<< n << "\'n";
} while (n != 0);
return O;

}

The do-while loop is usually used when the condition that has to
determine the end of the loop is determined within the loop statement
itself, like in the previous case, where the user input within the block is
what is used to determine if the loop has to end. In fact if you never
enter the value 0 in the previous example you can be prompted for
more numbers forever.

The for loop

Its format is:

for (initialization; condition; increase) statenent;

and its main function is to repeat st at enment while condi ti on remains
true, like the while loop. But in addition, the f or loop provides specific
locations to contain aninitializati on statement and an i ncrease
statement. So this loop is specially designed to perform a repetitive
action with a counter which is initialized and increased on each
iteration.

It works in the following way:

VIJAYA COLLEGE Page 48

C++

1. initializationis executed. Generally it is an initial value
setting for a counter variable. This is executed only once.

2. condi tion is checked. If it is true the loop continues, otherwise
the loop ends and st at enent is skipped (not executed).

3. statenent is executed. As usual, it can be either a single
statement or a block enclosed in braces{ }.

4. finally, whatever is specified in the i ncr ease field is executed
and the loop gets back to step 2.

Here is an example of countdown using a for loop:

/! countdown using a for loop 10, 9, 8, 7, 6, 5, 4, 3, 2,
#i ncl ude <i ostreanp 1, FIRE!
usi ng nanespace std;
int main ()
{
for (int n=10; n>0; n--) {
cout << n << ", ";

}

cout << "FIREI\Nn";
return O;

Theinitializationandincrease fields are optional. They can
remain empty, but in all cases the semicolon signs between them must
be written. For example we could write: for (; n<10;) if we wanted to
specify no initialization and no increase; or for (; n<10; n++) if we
wanted to include an increase field but no initialization (maybe
because the variable was already initialized before).

Optionally, using the comma operator (,) we can specify more than
one expression in any of the fields included in a f or loop, like in
initialization, for example. The comma operator (,) is an
expression separator, it serves to separate more than one expression
where only one is generally expected. For example, suppose that we
wanted to initialize more than one variable in our loop:

for (n=0, i=100 ; n!'=i ; n++, i--)

/! what ever here...

VIJAYA COLLEGE Page 49

C++

This loop will execute for 50 times if neither n or i are modified within
the loop:

v Ipitialization

| + Condition
for (|n=0, i=100|;|n'=i|;[n++, i--]}
Tncredse
n starts with a value of 0, and i with 100, the condition is n! =i (that n

is not equal to i). Because n is increased by one and i decreased by
one, the loop's condition will become false after the 50th loop, when
both n and i will be equal to 50.

Jump statements.

The break statement

Using br eak we can leave a loop even if the condition for its end is not
fulfilled. It can be used to end an infinite loop, or to force it to end
before its natural end. For example, we are going to stop the count
down before its natural end (maybe because of an engine check
failure?):

/'l break | oop exanple 10, 9, 8, 7, 6, 5, 4, 3,
count down abort ed!

#i ncl ude <i ostreanp

usi ng nanespace std;

int main ()
L
int n;
for (n=10; n>0; n--)
{
cout << n << ", ";
if (n==3)

{
cout << "count down
aborted!";
br eak;
}

}

return O;

VIJAYA COLLEGE Page 50

C++

The continue statement

The cont i nue statement causes the program to skip the rest of the
loop in the current iteration as if the end of the statement block had
been reached, causing it to jJump to the start of the following iteration.
For example, we are going to skip the number 5 in our countdown:

/1l continue | oop exanpl e 10, 9, 8, 7, 6, 4, 3, 2, 1,
#i ncl ude <i ostreanp FI RE!
usi ng nanespace std;

int main ()
{
for (int n=10; n>0; n--) {
if (n==5) continue;
cout << n << ", "y

}

cout << "FIREI\Nn";
return O;

The goto statement

got o allows to make an absolute jump to another point in the
program. You should use this feature with caution since its execution
causes an unconditional jJump ignoring any type of nesting limitations.
The destination point is identified by a label, which is then used as an
argument for the goto statement. A label is made of a valid identifier
followed by a colon (:).

Generally speaking, this instruction has no concrete use in structured
or object oriented programming aside from those that low-level
programming fans may find for it. For example, here is our countdown
loop using got o:

/'l goto | oop exanple 10, 9, 8, 7, 6, 5, 4, 3, 2,
1, FIRE!

#i ncl ude <i ostreanp

usi ng nanespace std;

VIJAYA COLLEGE Page 51

C++

int main ()

{
int n=10;
| oop:
cout << n << ", ",
n--;
if (n>0) goto | oop;
cout << "FIRE!'\n";
return O;

The exit function

exi t is a function defined in the cstdl i b library.

The purpose of exi t is to terminate the current program with a
specific exit code. Its prototype is:

void exit (int exitcode);

The exi t code is used by some operating systems and may be used by
calling programs. By convention, an exit code of 0 means that the
program finished normally and any other value means that some error
or unexpected results happened.

The selective structure: switch.

The syntax of the switch statement is a bit peculiar. Its objective is to
check several possible constant values for an expression. Something
similar to what we did at the beginning of this section with the
concatenation of several i f and el se if instructions. Its form is the
following:

switch (expression)
{
case constant1:
group of statenents 1;
br eak;
case constant 2:
group of statenents 2;
br eak;

VIJAYA COLLEGE Page 52

C++

defaul t:
default group of statenents

It works in the following way: switch evaluates expr essi on and checks
if it is equivalent to const ant 1, if it is, it executes gr oup of
statenents 1 until it finds the br eak statement. When it finds this

br eak statement the program jumps to the end of the swi t ch selective
structure.

If expression was not equal to const ant 1 it will be checked against
const ant 2. If it is equal to this, it will execute group of statenents
2 until a break keyword is found, and then will jump to the end of the
sSwi t ch selective structure.

Finally, if the value of expr essi on did not match any of the previously
specified constants (you can include as many case labels as values
you want to check), the program will execute the statements included
after the def aul t: label, if it exists (since it is optional).

Both of the following code fragments have the same behavior:

switch example if-else equivalent
swi tch (5) { ' o(x == 1) {
case 1 _
cout - << "X is 1": cout << "x 1s 1";
. ’ }
break, else if (x == 2) {
case & cout << "X is 2":
cout << "x is 2"; ;
br eak; }
: el se {
defaul t: “val f
cout << "value of x cout << "value of X
e unknown" ;
unknown" ;
} }

The swi t ch statement is a bit peculiar within the C++ language
because it uses labels instead of blocks. This forces us to put br eak
statements after the group of statements that we want to be executed
for a specific condition. Otherwise the remainder statements -including
those corresponding to other labels- will also be executed until the end
of the swi t ch selective block or a br eak statement is reached.

VIJAYA COLLEGE Page 53

C++

For example, if we did not include a br eak statement after the first
group for case one, the program will not automatically jump to the end
of the swi t ch selective block and it would continue executing the rest
of statements until it reaches either a br eak instruction or the end of
the swi t ch selective block. This makes unnecessary to include braces
{ } surrounding the statements for each of the cases, and it can also
be useful to execute the same block of instructions for different
possible values for the expression being evaluated. For example:

swtch (x) {
case 1:
case 2:
case 3:
cout << "x is 1, 2 or 3";
br eak;
def aul t:
cout << "x is not 1, 2 nor 3";
}

Notice that switch can only be used to compare an expression against
constants. Therefore we cannot put variables as labels (for example
case n: where n is a variable) or ranges (case (1..3):) because
they are not valid C++ constants.

If you need to check ranges or values that are not constants, use a
concatenation of i f and el se i f statements.

Using functions we can structure our programs in a more modular
way, accessing all the potential that structured programming can offer
to us in C++.

Functions (1)
A function is a group of statements that is executed when it is called
from some point of the program. The following is its format:

type nane (paraneterl, paraneter2, ...) { statenents }

where:

o type is the data type specifier of the data returned by the
function.

e nane is the identifier by which it will be possible to call the
function.

VIJAYA COLLEGE Page 54

C++

e« paraneters (as many as needed): Each parameter consists of a
data type specifier followed by an identifier, like any regular
variable declaration (for example: i nt x) and which acts within
the function as a regular local variable. They allow to pass
arguments to the function when it is called. The different
parameters are separated by commas.

e statenents is the function's body. It is a block of statements
surrounded by braces { }.

Here you have the first function example:

/1l function exanple The result is 8
#1 ncl ude <i ostreanp
usi ng nanespace std;

int addition (int a, int b)
L

int r;

r =a+b;

return (r);

}

int main ()
{

int z;

z = addition (5, 3);

cout << "The result is " <<
Z,

return O,

}

In order to examine this code, first of all remember something said at
the beginning of this tutorial: a C++ program always begins its
execution by the mai n function. So we will begin there.

We can see how the mai n function begins by declaring the variable z of
type i nt . Right after that, we see a call to a function called addi ti on.
Paying attention we will be able to see the similarity between the
structure of the call to the function and the declaration of the function
itself some code lines above:

VIJAYA COLLEGE Page 55

C++

int addition (int a, int b}

T 1

z = addition {(5 , 3 ¥

The parameters and arguments have a clear correspondence. Within
the mai n function we called to addi ti on passing two values: 5 and 3,
that correspond to the i nt a and i nt b parameters declared for
function addition.

At the point at which the function is called from within mai n, the
control is lost by mai n and passed to function addi ti on. The value of
both arguments passed in the call (56 and 3) are copied to the local
variables i nt a and i nt b within the function.

Function addi ti on declares another local variable (i nt r), and by
means of the expression r =a+b, it assigns to r the result of a plus b.
Because the actual parameters passed for a and b are 5 and 3
respectively, the result is 8.

The following line of code:

return (r);

finalizes function addi ti on, and returns the control back to the
function that called it in the first place (in this case, nai n). At this
moment the program follows it regular course from the same point at
which it was interrupted by the call to addi ti on. But additionally,
because the r et ur n statement in function addi t i on specified a value:
the content of variabler (return (r);), which at that moment had a
value of 8. This value becomes the value of evaluating the function
call.

int addition (int a, int h)

lS

z = addition (5 , 3 ¥

So being the value returned by a function the value given to the
function call itself when it is evaluated, the variable z will be set to the
value returned by addi ti on (5, 3), thatis 8. To explain it another
way, you can imagine that the call to a function (addition (5,3)) is
literally replaced by the value it returns (8).

VIJAYA COLLEGE Page 56

C++

The following line of code in main is:

cout << "The result is " << z;

That, as you may already expect, produces the printing of the result
on the screen.

VIJAYA COLLEGE Page 57

C++

Scope of variables

The scope of variables declared within a function or any other inner
block is only their own function or their own block and cannot be used
outside of them. For example, in the previous example it would have
been impossible to use the variables a, b or r directly in function mai n
since they were variables local to function addi ti on. Also, it would
have been impossible to use the variable z directly within function
addi ti on, since this was a variable local to the function nai n.

#include <iostream:-
using namespace std;

int Integer:

char aCharacter;

char =string [20]:
unsigned int Humber0fSons:

Global variables

int main ()

{
un=igned short Auge:
float AMumber, AnotherOne: Local variables

cout == "Enter your age:";

cin => Age; Instructions

Therefore, the scope of local variables is limited to the same block
level in which they are declared. Nevertheless, we also have the
possibility to declare global variables; These are visible from any point
of the code, inside and outside all functions. In order to declare global
variables you simply have to declare the variable outside any function
or block; that means, directly in the body of the program.

And here is another example about functions:

/1l function exanple The first result is 5
#i ncl ude <i ostreanp The second result is 5
usi ng nanespace std; The third result is 2

The fourth result is 6
int subtraction (int a, int

VIJAYA COLLEGE Page 58

C++

b)

L
int r;
r =a- b;
return (r);

}

int main ()
{

int x=5, y=3, z;

z = subtraction (7, 2);

cout << "The first result
is " <<z << '"\'n";

cout << "The second result
Is " << subtraction (7,2) <<
I\nl;

cout << "The third result
s " << subtraction (x,y) <<
I\nl;

z= 4 + subtraction (Xx,Y);

cout << "The fourth result
is " << z << '\'n";

return O;

}

In this case we have created a function called subtracti on. The only
thing that this function does is to subtract both passed parameters and
to return the result.

Nevertheless, if we examine function mai n we will see that we have
made several calls to function subtracti on. We have used some
different calling methods so that you see other ways or moments when
a function can be called.

In order to fully understand these examples you must consider once
again that a call to a function could be replaced by the value that the
function call itself is going to return. For example, the first case (that
you should already know because it is the same pattern that we have
used in previous examples):

z = subtraction (7,2);

cout << "The first result is " << z;

VIJAYA COLLEGE Page 59

C++

If we replace the function call by the value it returns (i.e., 5), we
would have:

Zz = 5;
cout << "The first result is " << z;

As well as

cout << "The second result is " << subtraction (7,2);

has the same result as the previous call, but in this case we made the
call to subtracti on directly as an insertion parameter for cout .
Simply consider that the result is the same as if we had written:

cout << "The second result is " << b;

since 5 is the value returned by subtraction (7, 2).

In the case of:

cout << "The third result is " << subtraction (X,Yy);

The only new thing that we introduced is that the parameters of

subt racti on are variables instead of constants. That is perfectly valid.
In this case the values passed to function subtracti on are the values
of x and y, that are 5 and 3 respectively, giving 2 as result.

The fourth case is more of the same. Simply note that instead of:

z = 4 + subtraction (x,Y);

we could have written:

z = subtraction (x,y) + 4,

with exactly the same result. | have switched places so you can see

VIJAYA COLLEGE Page 60

C++

that the semicolon sign (;) goes at the end of the whole statement. It
does not necessarily have to go right after the function call. The
explanation might be once again that you imagine that a function can
be replaced by its returned value:

z
z

2
4;

4 +
2 +
Functions with no type. The use of void.

If you remember the syntax of a function declaration:

type nane (argunentl, argunent2 ...) statenent

you will see that the declaration begins with a t ype, that is the type of
the function itself (i.e., the type of the datum that will be returned by

the function with the return statement). But what if we want to return
no value?

Imagine that we want to make a function just to show a message on
the screen. We do not need it to return any value. In this case we
should use the voi d type specifier for the function. This is a special
specifier that indicates absence of type.

/1 void function exanple I"ma function!
#i ncl ude <i ostreanp
usi ng nanespace std;

voi d printmessage ()

{
cout << "I'ma function!";
}
int main ()
{
print message ();
return O;
}

voi d can also be used in the function's parameter list to explicitly

VIJAYA COLLEGE Page 61

C++

specify that we want the function to take no actual parameters when it
is called. For example, function pri nt nessage could have been
declared as:

voi d printnmessage (void)

{
}

cout << "I'"'ma function!";

Although it is optional to specify voi d in the parameter list. In C++, a
parameter list can simply be left blank if we want a function with no
parameters.

What you must always remember is that the format for calling a
function includes specifying its name and enclosing its parameters
between parentheses. The non-existence of parameters does not
exempt us from the obligation to write the parentheses. For that
reason the call to pri nt nessage is:

print nessage ();

The parentheses clearly indicate that this is a call to a function and not
the name of a variable or some other C++ statement. The following
call would have been incorrect:

pri nt nessage;

Functions (11)

Arguments passed by value and by reference.

until now, in all the functions we have seen, the arguments passed to
the functions have been passed by value. This means that when calling
a function with parameters, what we have passed to the function were
copies of their values but never the variables themselves. For
example, suppose that we called our first function addi t i on using the
following code:

VIJAYA COLLEGE Page 62

C++

int x=5, y=3, z;
z = addition (x , Yy);

What we did in this case was to call to function addition passing the
values of x and y, i.e. 5 and 3 respectively, but not the variables x and
y themselves.

int addition {(int a, int b}

T 1

z = addition { 5 , 3)

This way, when the function addition is called, the value of its local
variables a and b become 5 and 3 respectively, but any modification to
either a or b within the function addition will not have any effect in the
values of x and y outside it, because variables x and y were not
themselves passed to the function, but only copies of their values at
the moment the function was called.

But there might be some cases where you need to manipulate from
inside a function the value of an external variable. For that purpose we
can use arguments passed by reference, as in the function duplicate of
the following example:

/| passing paraneters by x=2, y=6, z=14
ref erence

#i ncl ude <i ostreanp

usi ng nanespace std;

void duplicate (int& a, int&

b, int& c)
{
a*=2;
b*=2;
c*=2;
}
int main ()
{

int x=1, y=3, z=7,
duplicate (x, y, z);

cout << "x=" << x << ", y="
<y << ", z=" << z;
return O;

VIJAYA COLLEGE Page 63

C++

The first thing that should call your attention is that in the declaration
of dupl i cat e the type of each parameter was followed by an
ampersand sign (&). This ampersand is what specifies that their
corresponding arguments are to be passed by reference instead of by
value.

When a variable is passed by reference we are not passing a copy of
its value, but we are somehow passing the variable itself to the
function and any modification that we do to the local variables will
have an effect in their counterpart variables passed as arguments in
the call to the function.

void duplicate {(int& a,int& b,int& c)

I

duplicate { = , ¥ , £ J:

To explain it in another way, we associate a, b and ¢ with the
arguments passed on the function call (x, y and z) and any change
that we do on a within the function will affect the value of x outside it.
Any change that we do on b will affect y, and the same with c and z.

That is why our program's output, that shows the values stored in x, y
and z after the call to dupl i cat e, shows the values of all the three
variables of mai n doubled.

If when declaring the following function:

void duplicate (int& a, int& b, int& c)

we had declared it this way:

voi d duplicate (int a, int b, int c)

i.e., without the ampersand signs (&), we would have not passed the
variables by reference, but a copy of their values instead, and
therefore, the output on screen of our program would have been the
values of x, y and z without having been modified.

VIJAYA COLLEGE Page 64

C++

Passing by reference is also an effective way to allow a function to
return more than one value. For example, here is a function that
returns the previous and next numbers of the first parameter passed.

/'l nore than one returning Previ ous=99, Next=101
val ue

#i ncl ude <i ostreanp

usi ng nanespace std;

void prevnext (int x, int&
prev, int& next)

{
prev = x-1,
next = x+1;
}
int main ()
{

int x=100, vy, z;

prevnext (X, vy, 2);

cout << "Previous=" <<y <<
", Next=" << z;

return O;

}

Default values in parameters.

When declaring a function we can specify a default value for each of
the last parameters. This value will be used if the corresponding
argument is left blank when calling to the function. To do that, we
simply have to use the assignment operator and a value for the
arguments in the function declaration. If a value for that parameter is
not passed when the function is called, the default value is used, but if
a value is specified this default value is ignored and the passed value
is used instead. For example:

/] default values in 6
functions 5
#1 ncl ude <i ostreanr
usi ng nanespace std;

int divide (int a, int b=2)
{

int r;

r =al b;

VIJAYA COLLEGE Page 65

C++

return (r);

}

int main ()

{
cout << divide (12);

cout << endl;
cout << divide (20,4);
return O;

As we can see in the body of the program there are two calls to
function di vi de. In the first one:

di vi de (12)

we have only specified one argument, but the function di vi de allows
up to two. So the function di vi de has assumed that the second
parameter is 2 since that is what we have specified to happen if this
parameter was not passed (notice the function declaration, which
finishes with i nt b=2, not justi nt b). Therefore the result of this
function call is 6 (12/ 2).

In the second call:

di vi de (20, 4)

there are two parameters, so the default value for b (i nt b=2) is
ignored and b takes the value passed as argument, that is 4, making
the result returned equal to 5 (20/ 4).

Overloaded functions.

In C++ two different functions can have the same name if their
parameter types or number are different. That means that you can
give the same name to more than one function if they have either a
different number of parameters or different types in their parameters.
For example:

/1 overl oaded function 10
#i ncl ude <i ostreanp 2.5

VIJAYA COLLEGE Page 66

C++

usi ng nanespace std;

int operate (int a, int b)

{
return (a*b);
}
fl oat operate (float a, float
b)
{
return (a/b);
}
int main ()
{

i nt x=5,y=2;

fl oat n=5.0, nr2. O;
cout << operate (Xx,Y);
cout << "\n";

cout << operate (n,m;
cout << "\n";

return O,

In this case we have defined two functions with the same name,

oper at e, but one of them accepts two parameters of type i nt and the
other one accepts them of type f | oat . The compiler knows which one
to call in each case by examining the types passed as arguments when
the function is called. If it is called with two ints as its arguments it
calls to the function that has two i nt parameters in its prototype and
if it is called with two floats it will call to the one which has two f | oat
parameters in its prototype.

In the first call to oper at e the two arguments passed are of type i nt,
therefore, the function with the first prototype is called; This function
returns the result of multiplying both parameters. While the second
call passes two arguments of type f | oat, so the function with the
second prototype is called. This one has a different behavior: it divides
one parameter by the other. So the behavior of a call to oper at e
depends on the type of the arguments passed because the function
has been overloaded.

Notice that a function cannot be overloaded only by its return type. At
least one of its parameters must have a different type.

VIJAYA COLLEGE Page 67

C++

inline functions.

The i nl i ne specifier indicates the compiler that inline substitution is
preferred to the usual function call mechanism for a specific function.
This does not change the behavior of a function itself, but is used to
suggest to the compiler that the code generated by the function body
is inserted at each point the function is called, instead of being
inserted only once and perform a regular call to it, which generally
involves some additional overhead in running time.

The format for its declaration is:

inline type nane (arguments ...) { instructions ... }

and the call is just like the call to any other function. You do not have
to include the i nl i ne keyword when calling the function, only in its
declaration.

Most compilers already optimize code to generate inline functions
when it is more convenient. This specifier only indicates the compiler
that inline is preferred for this function.

Recursivity.

Recursivity is the property that functions have to be called by
themselves. It is useful for many tasks, like sorting or calculate the
factorial of numbers. For example, to obtain the factorial of a number
(n!) the mathematical formula would be:

nt =n* (n-1) * (n-2) * (n-3) ... * 1

more concretely, 5! (factorial of 5) would be:

5 =5* 4 * 3 * 2* 1 =120

and a recursive function to calculate this in C++ could be:

/| factorial calculator Pl ease type a nunber: 9
#i ncl ude <i ostreanp 9! = 362880
usi ng nanespace std;

|l ong factorial (long a)

{

VIJAYA COLLEGE Page 68

C++

if (a>1)

return (a * factorial (a-
1))

el se

return (1);
}

int main ()
{

| ong nunber;

cout << "Please type a
nunber: ";

ci n >> nunber

cout << nunber << "l =" <<
factorial (nunber);

return O;

}

Notice how in function f act ori al we included a call to itself, but only
if the argument passed was greater than 1, since otherwise the
function would perform an infinite recursive loop in which once it
arrived to 0 it would continue multiplying by all the negative numbers
(probably provoking a stack overflow error on runtime).

This function has a limitation because of the data type we used in its
design (I ong) for more simplicity. The results given will not be valid
for values much greater than 10! or 15!, depending on the system you
compile it.

Declaring functions.

Until now, we have defined all of the functions before the first
appearance of calls to them in the source code. These calls were
generally in function mai n which we have always left at the end of the
source code. If you try to repeat some of the examples of functions
described so far, but placing the function mai n before any of the other
functions that were called from within it, you will most likely obtain
compiling errors. The reason is that to be able to call a function it must
have been declared in some earlier point of the code, like we have
done in all our examples.

But there is an alternative way to avoid writing the whole code of a
function before it can be used in main or in some other function. This
can be achieved by declaring just a prototype of the function before it

VIJAYA COLLEGE Page 69

C++

is used, instead of the entire definition. This declaration is shorter than
the entire definition, but significant enough for the compiler to
determine its return type and the types of its parameters.

Its form is:

type nane (argunent _typel, argunent_type2, ...);

It is identical to a function definition, except that it does not include
the body of the function itself (i.e., the function statements that in
normal definitions are enclosed in braces { }) and instead of that we
end the prototype declaration with a mandatory semicolon (;).

The parameter enumeration does not need to include the identifiers,
but only the type specifiers. The inclusion of a name for each
parameter as in the function definition is optional in the prototype
declaration. For example, we can declare a function called

pr ot of uncti on with two i nt parameters with any of the following
declarations:

int protofunction (int first, int second);
int protofunction (int, int);

Anyway, including a name for each variable makes the prototype more
legible.

/| declaring functions Type a nunber (0 to exit): 9
pr ot ot ypes Nunber is odd.
#i ncl ude <i ostreanp Type a nunber (0 to exit): 6
usi ng nanespace std; Nunber is even
Type a nunber (0 to exit):
void odd (int a); 1030
void even (int a); Nunmber is even.
Type a nunber (0 to exit): O
int main () Nunber is even.
L
int i;
do {
cout << "Type a nunber (O
to exit): ";
cin >> i;
odd (i);

} while (i!=0);

VIJAYA COLLEGE Page 70

C++

return O;

}
void odd (int a)

if ((a%)!=0) cout <<
"Nunber is odd.\n";

el se even (a);
}

void even (int a)

{

if ((a%)==0) cout <<
"Nunber is even.\n";

el se odd (a);
}

This example is indeed not an example of efficiency. I am sure that at
this point you can already make a program with the same result, but
using only half of the code lines that have been used in this example.
Anyway this example illustrates how prototyping works. Moreover, in
this concrete example the prototyping of at least one of the two
functions is necessary in order to compile the code without errors.

The first things that we see are the declaration of functions odd and
even:

void odd (int a);
void even (int a);

This allows these functions to be used before they are defined, for
example, in mai n, which now is located where some people find it to
be a more logical place for the start of a program: the beginning of the
source code.

Anyway, the reason why this program needs at least one of the
functions to be declared before it is defined is because in odd there is a
call to even and in even there is a call to odd. If none of the two
functions had been previously declared, a compilation error would
happen, since either odd would not be visible from even (because it
has still not been declared), or even would not be visible from odd (for
the same reason).

VIJAYA COLLEGE Page 71

C++

Having the prototype of all functions together in the same place within
the source code is found practical by some programmers, and this can
be easily achieved by declaring all functions prototypes at the
beginning of a program.

Arrays

An array is a series of elements of the same type placed in contiguous
memory locations that can be individually referenced by adding an
index to a unique identifier.

That means that, for example, we can store 5 values of type i nt in an
array without having to declare 5 different variables, each one with a
different identifier. Instead of that, using an array we can store 5
different values of the same type, i nt for example, with a unique
identifier.

For example, an array to contain 5 integer values of type i nt called
bi I | y could be represented like this:

1] 1 2 3 : |
billy | | | | | |

L ———
rnt

where each blank panel represents an element of the array, that in
this case are integer values of type i nt . These elements are numbered
from 0 to 4 since in arrays the first index is always 0, independently of
its length.

Like a regular variable, an array must be declared before it is used. A
typical declaration for an array in C++ is:

type nane [el enents];

where t ype is a valid type (like i nt, fl oat ...), nane is a valid identifier
and the el enent s field (which is always enclosed in square brackets
[1), specifies how many of these elements the array has to contain.

Therefore, in order to declare an array called bi | | y as the one shown
in the above diagram it is as simple as:

VIJAYA COLLEGE Page 72

C++

int billy [5];

NOTE: The el enent s field within brackets [] which represents the
number of elements the array is going to hold, must be a constant
value, since arrays are blocks of non-dynamic memory whose size
must be determined before execution. In order to create arrays with a
variable length dynamic memory is needed, which is explained later in
these tutorials.

Initializing arrays.

When declaring a regular array of local scope (within a function, for
example), if we do not specify otherwise, its elements will not be
initialized to any value by default, so their content will be
undetermined until we store some value in them. The elements of
global and static arrays, on the other hand, are automatically
initialized with their default values, which for all fundamental types
this means they are filled with zeros.

In both cases, local and global, when we declare an array, we have the
possibility to assign initial values to each one of its elements by
enclosing the values in braces { }. For example:

int billy [5] ={ 16, 2, 77, 40, 12071 };

This declaration would have created an array like this:

0 1 2 3 1
billy | 16 | z | 77 | a0 12071]

The amount of values between braces { } must not be larger than the
number of elements that we declare for the array between square
brackets []. For example, in the example of array bi | | y we have
declared that it has 5 elements and in the list of initial values within
braces { } we have specified 5 values, one for each element.

When an initialization of values is provided for an array, C++ allows
the possibility of leaving the square brackets empty [] . In this case,
the compiler will assume a size for the array that matches the number
of values included between braces { }:

int billy [] ={ 16, 2, 77, 40, 12071 };

VIJAYA COLLEGE Page 73

C++

After this declaration, array bi | | y would be 5 ints long, since we have
provided 5 initialization values.

Accessing the values of an array.

In any point of a program in which an array is visible, we can access
the value of any of its elements individually as if it was a normal
variable, thus being able to both read and modify its value. The format
is as simple as:

name[i ndex]

Following the previous examples in which bi | | y had 5 elements and
each of those elements was of type i nt , the name which we can use
to refer to each element is the following:

billy[0] hilly[1l] billvw[2] billvw[3] billvw[4]
billy | | | | | |

For example, to store the value 75 in the third element of bi | | y, we
could write the following statement:

billy[2] = 75;

and, for example, to pass the value of the third element of billy to a
variable called a, we could write:

a = billy[2];

Therefore, the expression bi | | y[2] is for all purposes like a variable
of type i nt.

Notice that the third element of bi | | y is specified bi | | y[2] , since the
first one is bi | 1 y[0], the second one is bi | | y[1] , and therefore, the
third one is bi | | y[2] . By this same reason, its last element is

bi Il y[4] . Therefore, if we write billy[5], we would be accessing the
sixth element of bi | | y and therefore exceeding the size of the array.

VIJAYA COLLEGE Page 74

C++

In C++ it is syntactically correct to exceed the valid range of indices
for an array. This can create problems, since accessing out-of-range
elements do not cause compilation errors but can cause runtime
errors. The reason why this is allowed will be seen further ahead when
we begin to use pointers.

At this point it is important to be able to clearly distinguish between
the two uses that brackets [] have related to arrays. They perform
two different tasks: one is to specify the size of arrays when they are
declared; and the second one is to specify indices for concrete array
elements. Do not confuse these two possible uses of brackets [] with
arrays.

int billy[5]; /'l declaration of a new array
billy[2] = 75; /'l access to an el enent of the
array.

If you read carefully, you will see that a type specifier always precedes
a variable or array declaration, while it never precedes an access.

Some other valid operations with arrays:

billy[O] a;
billy[a] 75;
b =nbilly [a+2];

billy[billy[a]] = billy[2] + 5;

/| arrays exanpl e 12206
#i ncl ude <i ostreanp
usi ng nanespace std;

int billy [] = {16, 2, 77,
40, 12071};
int n, result=0;

int main ()

{ for (n=0 ; n<5 ; n++)
{ result += billy[n];
}cout << result;
return O;

VIJAYA COLLEGE Page 75

C++

Multidimensional arrays

Multidimensional arrays can be described as "arrays of arrays". For
example, a bidimensional array can be imagined as a bidimensional
table made of elements, all of them of a same uniform data type.

0 1 2 3 4

jimmy

j 1 My represents a bidimensional array of 3 per 5 elements of type
i nt . The way to declare this array in C++ would be:

int jimy [3][5];
and, for example, the way to reference the second element vertically
and fourth horizontally in an expression would be:

jimy[1][3]

jimmy

L J

Jimmy [1] [3]

(remember that array indices always begin by zero).

Multidimensional arrays are not limited to two indices (i.e., two
dimensions). They can contain as many indices as needed. But be
careful! The amount of memory needed for an array rapidly increases
with each dimension. For example:

char century [100][365][24][60][60];

VIJAYA COLLEGE Page 76

C++

declares an array with a char element for each second in a century,
that is more than 3 billion chars. So this declaration would consume
more than 3 gigabytes of memory!

Multidimensional arrays are just an abstraction for programmers, since
we can obtain the same results with a simple array just by putting a

factor between its indices:

int jimy [3][5]; [/
int jimmy [15];

is equivalent to
[l (3 * 5 =

15)

With the only difference that with multidimensional arrays the compiler
remembers the depth of each imaginary dimension for us. Take as

example these two pieces of code, with both exactly the same result.
One uses a bidimensional array and the other one uses a simple array:

multidimensional array

pseudo-multidimensional array

#defi ne WDTH 5
tHdef i ne HElI GHT 3

int jimy [HE GHT] [WDTH];
int n,m
int main ()

for
for

{

jin’rri/[n][njz(nﬂ)*(m’rl);

(n=0; n<HEIl GHT; n++)
(meO; NnxW DTH; mt++)

return O;

}

#defi ne WDTH 5
#defi ne HEl GHT 3

int jimry [HEIGHT * WDTH];
int n,m

int main ()

f or
for

{

j i mry[n*W DTH+nj =(n+1) * (m+1) ;
}

return O;

(n=0; n<HEIl GHT; n++)
(me0; kW DTH;, mt++)

}

None of the two source codes above produce any output on the
screen, but both assign values to the memory block called jimmy in

the following way:

VIJAYA COLLEGE

Page 77

C++

0 1 2 3 4

. 0 1 2 3 5
jimmy 1 2 4 G g 10
2 3 B o 12 15

We have used "defined constants" (#def i ne) to simplify possible
future modifications of the program. For example, in case that we
decided to enlarge the array to a height of 4 instead of 3 it could be
done simply by changing the line:

#def i ne HElI GHT 3

to:
#def i ne HElI GHT 4

with no need to make any other modifications to the program.

Arrays as parameters

At some moment we may need to pass an array to a function as a
parameter. In C++ it is not possible to pass a complete block of
memory by value as a parameter to a function, but we are allowed to
pass its address. In practice this has almost the same effect and it is a
much faster and more efficient operation.

In order to accept arrays as parameters the only thing that we have to
do when declaring the function is to specify in its parameters the
element type of the array, an identifier and a pair of void brackets [] .
For example, the following function:

voi d procedure (int arg[])

accepts a parameter of type "array of i nt " called ar g. In order to pass
to this function an array declared as:

int nyarray [40];

it would be enough to write a call like this:

procedure (nyarray);

VIJAYA COLLEGE Page 78

C++

Here you have a complete example:

/'l arrays as paraneters 5 10 15

#i ncl ude <i ostreanp 246 8 10
usi ng nanespace std;

void printarray (int arg[],

int length) {
for (int n=0; n<length;
n++)

cout << arg[n] << :
cout << "\n";

}
int main ()
{
int firstarray[] = {5, 10,
15} ;
int secondarray[] = {2, 4,
6, 8, 10};
printarray (firstarray, 3);
printarray (secondarray,5);
return O;
}

As you can see, the first parameter (i nt ar g[]) accepts any array
whose elements are of type i nt, whatever its length. For that reason
we have included a second parameter that tells the function the length
of each array that we pass to it as its first parameter. This allows the

f or loop that prints out the array to know the range to iterate in the
passed array without going out of range.

In a function declaration it is also possible to include multidimensional
arrays. The format for a tridimensional array parameter is:

base_type[][dept h] [dept h]

for example, a function with a multidimensional array as argument
could be:

voi d procedure (int nyarray[][3][4])

VIJAYA COLLEGE Page 79

C++

Notice that the first brackets [] are left blank while the following ones
are not. This is so because the compiler must be able to determine
within the function which is the depth of each additional dimension.

Arrays, both simple or multidimensional, passed as function
parameters are a quite common source of errors for novice
programmers. | recommend the reading of the chapter about Pointers
for a better understanding on how arrays operate.

Character Sequences

As you may already know, the C++ Standard Library implements a
powerful string class, which is very useful to handle and manipulate
strings of characters. However, because strings are in fact sequences
of characters, we can represent them also as plain arrays of char
elements.

For example, the following array:

char jenny [20];

is an array that can store up to 20 elements of type char . It can be
represented as:

jenny

Therefore, in this array, in theory, we can store sequences of
characters up to 20 characters long. But we can also store shorter
sequences. For example, j enny could store at some point in a program
either the sequence "Hel | 0" or the sequence "Merry chri st mas",
since both are shorter than 20 characters.

Therefore, since the array of characters can store shorter sequences
than its total length, a special character is used to signal the end of
the valid sequence: the null character, whose literal constant can be
written as '\ 0' (backslash, zero).

VIJAYA COLLEGE Page 80

http://www.cplusplus.com/string

C++

Our array of 20 elements of type char, called j enny, can be
represented storing the characters sequences "Hel | 0" and "Merry
Chri st mas" as:

jenny

Hie|1l|1l|o|\0

M|e|r|r |V Clh|r|i|s|t|m|a]|s |\

Notice how after the valid content a null character (' \ 0') has been
included in order to indicate the end of the sequence. The panels in
gray color represent char elements with undetermined values.

Initialization of null-terminated character sequences

Because arrays of characters are ordinary arrays they follow all their
same rules. For example, if we want to initialize an array of characters
with some predetermined sequence of characters we can do it just like
any other array:

char nyword[] = { '"H, "e, "I', "I'", "o, "\0 };

In this case we would have declared an array of 6 elements of type
char initialized with the characters that form the word " Hel | 0" plus a
null character '\ 0' at the end.

But arrays of char elements have an additional method to initialize
their values: using string literals.

In the expressions we have used in some examples in previous
chapters, constants that represent entire strings of characters have
already showed up several times. These are specified enclosing the
text to become a string literal between double quotes (). For
example:

"the result is: "

is a constant string literal that we have probably used already.

Double quoted strings (") are literal constants whose type is in fact a
null-terminated array of characters. So string literals enclosed between
double quotes always have a null character (' \ 0') automatically

VIJAYA COLLEGE Page 81

C++

appended at the end.

Therefore we can initialize the array of char elements called nywor d
with a null-terminated sequence of characters by either one of these
two methods:

char nmyword []
char nmyword []

{'H, e, "I", "', "o, "\O0 };
"Hel | o";

In both cases the array of characters nmywor d is declared with a size of
6 elements of type char : the 5 characters that compose the word
"Hel | 0" plus a final null character (' \ 0') which specifies the end of
the sequence and that, in the second case, when using double quotes
(") it is appended automatically.

Please notice that we are talking about initializing an array of
characters in the moment it is being declared, and not about assigning
values to them once they have already been declared. In fact because
this type of null-terminated arrays of characters are regular arrays we
have the same restrictions that we have with any other array, so we
are not able to copy blocks of data with an assignment operation.

Assuming nyst ext is a char[] variable, expressions within a source
code like:

mystext = "Hello";
nystext[] = "Hello";

would not be valid, like neither would be:

nmystext = { 'H, e, "I', '"I', "o, "\0" },;

The reason for this may become more comprehensible once you know
a bit more about pointers, since then it will be clarified that an array is
in fact a constant pointer pointing to a block of memory.

Using null-terminated sequences of characters

Null-terminated sequences of characters are the natural way of

VIJAYA COLLEGE Page 82

C++

treating strings in C++, so they can be used as such in many
procedures. In fact, regular string literals have this type (char[]) and
can also be used in most cases.

For example, ci n and cout support null-terminated sequences as valid
containers for sequences of characters, so they can be used directly to
extract strings of characters from ci n or to insert them into cout . For

example:

/1 null-term nated sequences Please, enter your first
of characters nane: John

#i ncl ude <i ostreant Hel | o, John!

usi ng nanespace std;

int main ()
{
char question[] = "Pl ease,
enter your first nanme: ";
char greeting[] = "Hello,

char yournane [80];
cout << question;
ci n >> your nane;
cout << greeting <<

your nane << "I*"
return O;

}

As you can see, we have declared three arrays of char elements. The
first two were initialized with string literal constants, while the third
one was left uninitialized. In any case, we have to speficify the size of
the array: in the first two (questi on and gr eeti ng) the size was
implicitly defined by the length of the literal constant they were
initialized to. While for your nane we have explicitly specified that it
has a size of 80 chars.

Finally, sequences of characters stored in char arrays can easily be
converted into stri ng objects just by using the assignment operator:

string nystring;
char nyntcs[]="sonme text";
nystring = nyntcs;

VIJAYA COLLEGE Page 83

C++

Pointers

We have already seen how variables are seen as memory cells that
can be accessed using their identifiers. This way we did not have to
care about the physical location of our data within memory, we simply
used its identifier whenever we wanted to refer to our variable.

The memory of your computer can be imagined as a succession of
memory cells, each one of the minimal size that computers manage
(one byte). These single-byte memory cells are numbered in a
consecutive way, so as, within any block of memory, every cell has the
same number as the previous one plus one.

This way, each cell can be easily located in the memory because it has
a uniqgue address and all the memory cells follow a successive pattern.
For example, if we are looking for cell 1776 we know that it is going to
be right between cells 1775 and 1777, exactly one thousand cells after
776 and exactly one thousand cells before cell 2776.

Reference operator (&)

As soon as we declare a variable, the amount of memory needed is
assigned for it at a specific location in memory (its memory address).
We generally do not actively decide the exact location of the variable
within the panel of cells that we have imagined the memory to be -
Fortunately, that is a task automatically performed by the operating
system during runtime. However, in some cases we may be interested
in knowing the address where our variable is being stored during
runtime in order to operate with relative positions to it.

The address that locates a variable within memory is what we call a
reference to that variable. This reference to a variable can be obtained
by preceding the identifier of a variable with an ampersand sign (&),
known as reference operator, and which can be literally translated as
"address of". For example:

ted = &andy;

This would assign to t ed the address of variable andy, since when
preceding the name of the variable andy with the reference operator
(&) we are no longer talking about the content of the variable itself,
but about its reference (i.e., its address in memory).

From now on we are going to assume that andy is placed during

VIJAYA COLLEGE Page 84

C++

runtime in the memory address 1776. This number (1776) is just an
arbitrary assumption we are inventing right now in order to help clarify
some concepts in this tutorial, but in reality, we cannot know before
runtime the real value the address of a variable will have in memory.

Consider the following code fragment:

andy = 25;
fred = andy;
ted = &andy;

The values contained in each variable after the execution of this, are
shown in the following diagram:

andy

25
1775 1776 17977

'4 £\

fred ted

25 1776

First, we have assigned the value 25 to andy (a variable whose
address in memory we have assumed to be 1776).

The second statement copied to fr ed the content of variable andy
(which is 25). This is a standard assignment operation, as we have
done so many times before.

Finally, the third statement copies to t ed not the value contained in
andy but a reference to it (i.e., its address, which we have assumed to
be 1776). The reason is that in this third assignment operation we
have preceded the identifier andy with the reference operator (&), so
we were no longer referring to the value of andy but to its reference
(its address in memory).

The variable that stores the reference to another variable (like t ed in
the previous example) is what we call a pointer. Pointers are a very
powerful feature of the C++ language that has many uses in advanced
programming. Farther ahead, we will see how this type of variable is
used and declared.

VIJAYA COLLEGE Page 85

C++

Dereference operator (*)

We have just seen that a variable which stores a reference to another
variable is called a pointer. Pointers are said to "point to" the variable
whose reference they store.

Using a pointer we can directly access the value stored in the variable
which it points to. To do this, we simply have to precede the pointer's
identifier with an asterisk (*), which acts as dereference operator and
that can be literally translated to "value pointed by".

Therefore, following with the values of the previous example, if we
write:

beth = *ted;

(that we could read as: "bet h equal to value pointed by t ed™) bet h
would take the value 25, since ted is 1776, and the value pointed by
1776 is 25.

ted

1776
{

1773 1776 1777
25

[rmemwory)

+
25
heth

You must clearly differentiate that the expression t ed refers to the
value 1776, while *t ed (with an asterisk * preceding the identifier)
refers to the value stored at address 1776, which in this case is 25.
Notice the difference of including or not including the dereference
operator (I have included an explanatory commentary of how each of
these two expressions could be read):

bet
bet

)

t ed; /'l beth equal to ted (1776)

h
h *ted; // beth equal to value pointed by ted (25

VIJAYA COLLEGE Page 86

C++

Notice the difference between the reference and dereference
operators:

e & is the reference operator and can be read as "address of"
e« *is the dereference operator and can be read as "value pointed
by"
Thus, they have complementary (or opposite) meanings. A variable
referenced with & can be dereferenced with *.

Earlier we performed the following two assignment operations:

andy = 25;
ted = &andy;

Right after these two statements, all of the following expressions
would give true as result:

andy == 25
&andy == 1776
ted == 1776
*ted == 25

The first expression is quite clear considering that the assignment
operation performed on andy was andy=25. The second one uses the
reference operator (&), which returns the address of variable andy,
which we assumed it to have a value of 1776. The third one is
somewhat obvious since the second expression was true and the
assignment operation performed on t ed was t ed=&andy. The fourth
expression uses the dereference operator (*) that, as we have just
seen, can be read as "value pointed by", and the value pointed by t ed
is indeed 25.

So, after all that, you may also infer that for as long as the address
pointed by t ed remains unchanged the following expression will also
be true:

*ted == andy

VIJAYA COLLEGE Page 87

C++

Declaring variables of pointer types

Due to the ability of a pointer to directly refer to the value that it
points to, it becomes necessary to specify in its declaration which data
type a pointer is going to point to. It is not the same thing to point to
a char as to pointtoanint orafloat.

The declaration of pointers follows this format:

type * nane;

where t ype is the data type of the value that the pointer is intended to
point to. This type is not the type of the pointer itself! but the type of
the data the pointer points to. For example:

int * nunber;
char * character;
fl oat * greatnunber;

These are three declarations of pointers. Each one is intended to point
to a different data type, but in fact all of them are pointers and all of
them will occupy the same amount of space in memory (the size in
memory of a pointer depends on the platform where the code is going
to run). Nevertheless, the data to which they point to do not occupy
the same amount of space nor are of the same type: the first one
points to an i nt, the second one to a char and the last one to a

f | oat . Therefore, although these three example variables are all of
them pointers which occupy the same size in memory, they are said to
have different types: i nt*, char* and f| oat * respectively, depending
on the type they point to.

I want to emphasize that the asterisk sign (*) that we use when
declaring a pointer only means that it is a pointer (it is part of its type
compound specifier), and should not be confused with the dereference
operator that we have seen a bit earlier, but which is also written with
an asterisk (*). They are simply two different things represented with
the same sign.

Now have a look at this code:

/1 nmy first pointer firstvalue is 10
#i ncl ude <i ostreanp secondval ue is 20

VIJAYA COLLEGE Page 88

C++

usi ng nanespace std;

int main ()
{

int firstval ue,
secondval ue;

int * nypointer;

nmypoi nter = &firstval ue;

*mypoi nter = 10;

nmypoi nter = &secondval ue;

*nypoi nter = 20;

cout << "firstvalue is " <<
firstval ue << endl

cout << "secondvalue is "
<< secondval ue << endl;

return O,

}

Notice that even though we have never directly set a value to either
firstval ue or secondval ue, both end up with a value set indirectly
through the use of nypoi nt er . This is the procedure:

First, we have assigned as value of nypoi nt er a reference to
firstval ue using the reference operator (&). And then we have
assigned the value 10 to the memory location pointed by nypoi nt er,
that because at this moment is pointing to the memory location of
firstval ue, this in fact modifies the value of fi rstval ue.

In order to demonstrate that a pointer may take several different
values during the same program | have repeated the process with
secondval ue and that same pointer, nypoi nt er.

Here is an example a little bit more elaborated:

/'l nore pointers firstvalue is 10
#i ncl ude <i ostreanp secondval ue is 20
usi ng nanespace std;

int main ()
{

int firstvalue = 5,
secondval ue = 15;

int * pl, * p2;

VIJAYA COLLEGE Page 89

C++

pl = & irstvalue; // pl
address of firstval ue

p2 = &secondval ue; // p2
address of secondval ue

*pl = 10; /'l val ue
poi nted by pl = 10

*p2 = *pl; /'l val ue
poi nted by p2 = val ue poi nted
by pl

pl = p2; /Il pl =
p2 (value of pointer is
copi ed)

*pl = 20; /'l val ue

poi nted by pl = 20

cout << "firstvalue is " <<
firstval ue << endl;

cout << "secondvalue is "
<< secondval ue << endl ;

return O;
}

I have included as a comment on each line how the code can be read:
ampersand (&) as "address of" and asterisk (*) as "value pointed by".

Notice that there are expressions with pointers pl and p2, both with
and without dereference operator (*). The meaning of an expression
using the dereference operator (*) is very different from one that does
not: When this operator precedes the pointer name, the expression
refers to the value being pointed, while when a pointer name appears
without this operator, it refers to the value of the pointer itself (i.e. the
address of what the pointer is pointing to).

Another thing that may call your attention is the line:

int * pl, * p2;
This declares the two pointers used in the previous example. But
notice that there is an asterisk (*) for each pointer, in order for both to

have type i nt * (pointer to i nt).

Otherwise, the type for the second variable declared in that line would

VIJAYA COLLEGE Page 90

C++

have been i nt (and not i nt *) because of precedence relationships. If
we had written:

int * pl, p2;

pl would indeed have i nt * type, but p2 would have type i nt (spaces
do not matter at all for this purpose). This is due to operator
precedence rules. But anyway, simply remembering that you have to
put one asterisk per pointer is enough for most pointer users.

Pointers and arrays

The concept of array is very much bound to the one of pointer. In fact,
the identifier of an array is equivalent to the address of its first
element, as a pointer is equivalent to the address of the first element
that it points to, so in fact they are the same concept. For example,
supposing these two declarations:

i nt nunbers [20];
int * p;

The following assignment operation would be valid:

p = nunbers;

After that, p and nunber s would be equivalent and would have the
same properties. The only difference is that we could change the value
of pointer p by another one, whereas nunber s will always point to the
first of the 20 elements of type i nt with which it was defined.
Therefore, unlike p, which is an ordinary pointer, nunber s is an array,
and an array can be considered a constant pointer. Therefore, the
following allocation would not be valid:

nunbers = p;

Because nunber s is an array, so it operates as a constant pointer, and
we cannot assign values to constants.

Due to the characteristics of variables, all expressions that include
pointers in the following example are perfectly valid:

VIJAYA COLLEGE Page 91

C++

/'l nmore pointers 10, 20, 30, 40, 50,
#i ncl ude <i ostreanp
usi ng nanespace std;

int main ()
{
i nt nunbers[5];
int * p;
p = nunbers; *p = 10;
p++; *p = 20;

p = &unbers[2]; *p = 30;
p = nunbers + 3; *p = 40;
p = nunbers; *(p+4) = 50;

for (int n=0; n<5; n++)
cout << nunbers[n] << ",

}

return O;

In the chapter about arrays we used brackets ([]) several times in
order to specify the index of an element of the array to which we
wanted to refer. Well, these bracket sign operators [] are also a
dereference operator known as offset operator. They dereference the
variable they follow just as * does, but they also add the number
between brackets to the address being dereferenced. For example:

a[5] = 0O; /Il a [offset of 5] =0
*(a+h5) = 0; /'l pointed by (a+5) =0

These two expressions are equivalent and valid both if a is a pointer or
if a is an array.

Pointer initialization

When declaring pointers we may want to explicitly specify which
variable we want them to point to:

i nt nunber;
int *tomy = &nunber;

The behavior of this code is equivalent to:

VIJAYA COLLEGE Page 92

C++

i nt nunber;
int *tommy;
tomy = &nunber;

When a pointer initialization takes place we are always assigning the
reference value to where the pointer points (t oomy), never the value
being pointed (*t onmy). You must consider that at the moment of
declaring a pointer, the asterisk (*) indicates only that it is a pointer, it
is not the dereference operator (although both use the same sign: *).
Remember, they are two different functions of one sign. Thus, we
must take care not to confuse the previous code with:

i nt nunber;
int *tommy;
*tommy = &nunber;

that is incorrect, and anyway would not have much sense in this case
if you think about it.

As in the case of arrays, the compiler allows the special case that we
want to initialize the content at which the pointer points with constants
at the same moment the pointer is declared:

char * terry = "hell o";

In this case, memory space is reserved to contain "hel | 0" and then a
pointer to the first character of this memory block is assigned to
terry. If we imagine that "hel | 0" is stored at the memory locations
that start at addresses 1702, we can represent the previous
declaration as:

| TR | Ia! | NN | R | Ig! | I\EI]I |
1702 1703 1704 1705 1706 1707

terry | 1702

It is important to indicate that t erry contains the value 1702, and not

VIJAYA COLLEGE Page 93

C++

"h'" nor "hel | 0", although 1702 indeed is the address of both of
these.

The pointer t er ry points to a sequence of characters and can be read
as if it was an array (remember that an array is just like a constant
pointer). For example, we can access the fifth element of the array
with any of these two expression:

*(terry+4)
terry[4]

Both expressions have a value of ' o' (the fifth element of the array).

Pointer arithmetics

To conduct arithmetical operations on pointers is a little different than
to conduct them on regular integer data types. To begin with, only
addition and subtraction operations are allowed to be conducted with
them, the others make no sense in the world of pointers. But both
addition and subtraction have a different behavior with pointers
according to the size of the data type to which they point.

When we saw the different fundamental data types, we saw that some
occupy more or less space than others in the memory. For example,
let's assume that in a given compiler for a specific machine, char
takes 1 byte, short takes 2 bytes and | ong takes 4.

Suppose that we define three pointers in this compiler:
char *nychar;

short *nyshort;
| ong *nyl ong;

and that we know that they point to memory locations 1000, 2000 and
3000 respectively.

So if we write:

mychar ++;
nmyshort ++;

VIJAYA COLLEGE Page 94

C++

nyl ong++;

mychar , as you may expect, would contain the value 1001. But not so
obviously, myshort would contain the value 2002, and nyl ong would
contain 3004, even though they have each been increased only once.
The reason is that when adding one to a pointer we are making it to
point to the following element of the same type with which it has been
defined, and therefore the size in bytes of the type pointed is added to
the pointer.

1000 100l

P—
m_fc]mr—T++

2000 2001 2002 2003

F—
m_'.'shurt,gT ++

3000 3001 3002 3003 3004 3005 3006 3007

mrllung f ++

This is applicable both when adding and subtracting any number to a
pointer. It would happen exactly the same if we write:

mychar = mychar + 1;
myshort = nyshort + 1;
nyl ong = nylong + 1;

Both the increase (++) and decrease (- -) operators have greater
operator precedence than the dereference operator (*), but both have
a special behavior when used as suffix (the expression is evaluated
with the value it had before being increased). Therefore, the following
expression may lead to confusion:

*p++

Because ++ has greater precedence than *, this expression is
equivalent to *(p++) . Therefore, what it does is to increase the value

VIJAYA COLLEGE Page 95

C++

of p (so it now points to the next element), but because ++ is used as
postfix the whole expression is evaluated as the value pointed by the
original reference (the address the pointer pointed to before being
increased).

Notice the difference with:
(*p) ++

Here, the expression would have been evaluated as the value pointed
by p increased by one. The value of p (the pointer itself) would not be
modified (what is being modified is what it is being pointed to by this
pointer).

If we write:

*p++ = *qt

Because ++ has a higher precedence than *, both p and q are
increased, but because both increase operators (++) are used as
postfix and not prefix, the value assigned to *p is *q before both p and
g are increased. And then both are increased. It would be roughly
equivalent to:

*p = *q;
++p;
++(Q;

Like always, | recommend you to use parentheses () in order to avoid
unexpected results and to give more legibility to the code.

Pointers to pointers

C++ allows the use of pointers that point to pointers, that these, in its
turn, point to data (or even to other pointers). In order to do that, we
only need to add an asterisk (*) for each level of reference in their
declarations:

char a;
char * b;
char ** c;

a="'2z";

VIJAYA COLLEGE Page 96

C++

&a,;
&b;

(o
Il

This, supposing the randomly chosen memory locations for each
variable of 7230, 8092 and 10502, could be represented as:

a b C

'z' | 7230 |4+—* 8092
7230 a09z2 10502

The value of each variable is written inside each cell; under the cells
are their respective addresses in memory.

The new thing in this example is variable ¢, which can be used in three
different levels of indirection, each one of them would correspond to a
different value:

e ¢ has type char** and a value of 8092
e *c has type char* and a value of 7230
e **c has type char and a value of ' z'

void pointers

The voi d type of pointer is a special type of pointer. In C++, voi d
represents the absence of type, so void pointers are pointers that point
to a value that has no type (and thus also an undetermined length and
undetermined dereference properties).

This allows void pointers to point to any data type, from an integer
value or a float to a string of characters. But in exchange they have a
great limitation: the data pointed by them cannot be directly
dereferenced (which is logical, since we have no type to dereference
to), and for that reason we will always have to cast the address in the
void pointer to some other pointer type that points to a concrete data
type before dereferencing it.

One of its uses may be to pass generic parameters to a function:

/'l increaser y, 1603
#i ncl ude <i ostreanp

VIJAYA COLLEGE Page 97

C++

usi ng nanespace std;

voi d increase (voi d* data,
i nt psize)

{

)

{ char* pchar;
pchar =(char *) dat a;
++(*pchar); }

else if (psize ==
si zeof (int))

if (psize == sizeof(char)

{ int* pint;
pint=(int*)data; ++(*pint); }
}
int main ()

{

char a = 'x';

int b = 1602;

i ncrease (&a, sizeof(a));

i ncrease (&b, sizeof (b));

cout << a << ", " << b <<
endl ;

return O;

}

si zeof is an operator integrated in the C++ language that returns the
size in bytes of its parameter. For non-dynamic data types this value is
a constant. Therefore, for example, si zeof (char) is 1, because char
type is one byte long.

Null pointer

A null pointer is a regular pointer of any pointer type which has a
special value that indicates that it is not pointing to any valid reference
or memory address. This value is the result of type-casting the integer
value zero to any pointer type.

p = 0; /1l p has a null pointer value

Do not confuse null pointers with void pointers. A null pointer is a
value that any pointer may take to represent that it is pointing to
"nowhere”, while a void pointer is a special type of pointer that can

VIJAYA COLLEGE Page 98

C++

point to somewhere without a specific type. One refers to the value
stored in the pointer itself and the other to the type of data it points
to.

Pointers to functions

C++ allows operations with pointers to functions. The typical use of
this is for passing a function as an argument to another function, since
these cannot be passed dereferenced. In order to declare a pointer to
a function we have to declare it like the prototype of the function
except that the name of the function is enclosed between parentheses
() and an asterisk (*) is inserted before the name:

/1l pointer to functions 8
#i ncl ude <i ostreanp
usi ng nanespace std;

int addition (int a, int b)
{ return (atb); }

int subtraction (int a, int
b)
{ return (a-b); }

int operation (int x, int vy,
int (*functocall)(int,int))
{

int g;

g = (*functocal l)(x,Y);

return (g);

}
int main ()

int mn;
int (*mnus)(int,int) =
subtracti on;

m = operation (7, 5,
addi tion);

n = operation (20, m
m nus) ;

cout <<n;

return O;

}

In the example, m nus is a pointer to a function that has two

VIJAYA COLLEGE Page 99

C++

parameters of type i nt . It is immediately assigned to point to the
function subtraction, all in a single line:

Dynamic Memory

until now, in all our programs, we have only had as much memory
available as we declared for our variables, having the size of all of
them to be determined in the source code, before the execution of the
program. But, what if we need a variable amount of memory that can
only be determined during runtime? For example, in the case that we
need some user input to determine the necessary amount of memory
space.

The answer is dynamic memory, for which C++ integrates the
operators new and del et e.

Operators new and newl|]

In order to request dynamic memory we use the operator new. new is
followed by a data type specifier and -if a sequence of more than one
element is required- the number of these within brackets [] . It returns
a pointer to the beginning of the new block of memory allocated. Its
form is:

poi nter
poi nt er

new type
new type [nunber _of el enent s]

The first expression is used to allocate memory to contain one single
element of type t ype. The second one is used to assign a block (an
array) of elements of type t ype, where nunber _of el enents is an
integer value representing the amount of these. For example:

int * bobby;
bobby = new int [5];

In this case, the system dynamically assigns space for five elements of
type i nt and returns a pointer to the first element of the sequence,
which is assigned to bobby. Therefore, now, bobby points to a valid
block of memory with space for five elements of type i nt.

VIJAYA COLLEGE Page 100

C++

int

4

bobby

The first element pointed by bobby can be accessed either with the
expression bobby[0] or the expression *bobby. Both are equivalent as
has been explained in the section about pointers. The second element
can be accessed either with bobby[1] or *(bobby+1) and so on...

You could be wondering the difference between declaring a normal
array and assigning dynamic memory to a pointer, as we have just
done. The most important difference is that the size of an array has to
be a constant value, which limits its size to what we decide at the
moment of designing the program, before its execution, whereas the
dynamic memory allocation allows us to assign memory during the
execution of the program (runtime) using any variable or constant
value as its size.

The dynamic memory requested by our program is allocated by the
system from the memory heap. However, computer memory is a
limited resource, and it can be exhausted. Therefore, it is important to
have some mechanism to check if our request to allocate memory was
successful or not.

C++ provides two standard methods to check if the allocation was
successful:

One is by handling exceptions. Using this method an exception of type
bad_al | oc is thrown when the allocation fails. Exceptions are a
powerful C++ feature explained later in these tutorials. But for now
you should know that if this exception is thrown and it is not handled
by a specific handler, the program execution is terminated.

This exception method is the default method used by new, and is the
one used in a declaration like:

bobby = newint [5]; // if it fails an exception is
t hr own

The other method is known as not hr ow, and what happens when it is
used is that when a memory allocation fails, instead of throwing a

VIJAYA COLLEGE Page 101

C++

bad_al | oc exception or terminating the program, the pointer returned
by newis a null pointer, and the program continues its execution.

This method can be specified by using a special object called not hr ow,
declared in header <new>, as argument for new:

bobby = new (nothrow) int [5];

In this case, if the allocation of this block of memory failed, the failure
could be detected by checking if bobby took a null pointer value:

int * bobby;
bobby = new (nothrow) int [5];
i f (bobby == 0) {
/1l error assigning nmenory. Take neasures.

s

This not hr ow method requires more work than the exception method,
since the value returned has to be checked after each and every
memory allocation, but I will use it in our examples due to its
simplicity. Anyway this method can become tedious for larger projects,
where the exception method is generally preferred. The exception
method will be explained in detail later in this tutorial.

Operators delete and delete[]

Since the necessity of dynamic memory is usually limited to specific
moments within a program, once it is no longer needed it should be
freed so that the memory becomes available again for other requests
of dynamic memory. This is the purpose of the operator del et e,
whose format is:

del et e pointer;
delete [] pointer;

The first expression should be used to delete memory allocated for a
single element, and the second one for memory allocated for arrays of
elements.

The value passed as argument to delete must be either a pointer to a

VIJAYA COLLEGE Page 102

C++

memory block previously allocated with new, or a null pointer (in the
case of a null pointer, del et e produces no effect).

/1l remenb-o-matic How many nunbers woul d you
#i ncl ude <i ostreanp like to type? 5
#i ncl ude <new> Enter nunber : 75
usi ng nanespace std; Enter nunber : 436
Enter nunber : 1067
int main () Enter nunber : 8
{ Ent er nunber : 32
int i,n; You have entered: 75, 436,
int * p; 1067, 8, 32,

cout << "How nmany nunbers
woul d you |like to type? ";

cin >> i;
p= new (nothrow) int[i];
if (p == 0)

cout << "Error: nenory
coul d not be all ocated”;
el se

for (n=0; n<i; n++)

{

cout << "Enter nunber:
cin >> p[n];

cout << "You have

entered: ";
for (n=0; n<i; n++)
cout << p[n] << ", ";
delete[] p;
}

return O;

}

Notice how the value within brackets in the new statement is a variable
value entered by the user (i), not a constant value:

p= new (nothrow) int[i];

But the user could have entered a value for i so big that our system
could not handle it. For example, when | tried to give a value of 1
billion to the "How many numbers" question, my system could not

VIJAYA COLLEGE Page 103

C++

allocate that much memory for the program and | got the text
message we prepared for this case (Error: nmenory could not be
al | ocat ed). Remember that in the case that we tried to allocate the
memory without specifying the nothrow parameter in the new
expression, an exception would be thrown, which if it's not handled
terminates the program.

It is a good practice to always check if a dynamic memory block was
successfully allocated. Therefore, if you use the not hr ow method, you
should always check the value of the pointer returned. Otherwise, use
the exception method, even if you do not handle the exception. This
way, the program will terminate at that point without causing the
unexpected results of continuing executing a code that assumes a
block of memory to have been allocated when in fact it has not.

Dynamic memory in ANSI-C

Operators new and del et e are exclusive of C++. They are not
available in the C language. But using pure C language and its library,
dynamic memory can also be used through the functions malloc,
calloc, realloc and free, which are also available in C++ including the
<cstdl i b> header file (see cstdlib for more info).

The memory blocks allocated by these functions are not necessarily
compatible with those returned by new, so each one should be
manipulated with its own set of functions or operators.

Data Structures

We have already learned how groups of sequential data can be used in
C++. But this is somewhat restrictive, since in many occasions what
we want to store are not mere sequences of elements all of the same
data type, but sets of different elements with different data types.

Data structures

A data structure is a group of data elements grouped together under
one name. These data elements, known as members, can have
different types and different lengths. Data structures are declared in
C++ using the following syntax:

struct structure_name {
member_typel member_namel;

VIJAYA COLLEGE Page 104

http://www.cplusplus.com/malloc
http://www.cplusplus.com/calloc
http://www.cplusplus.com/realloc
http://www.cplusplus.com/free
http://www.cplusplus.com/cstdlib

C++

member_type2 member_name2;
member_type3 member_name3;

} object_names;

where st ruct ur e_nane is a name for the structure type, obj ect _nane
can be a set of valid identifiers for objects that have the type of this
structure. Within braces { } there is a list with the data members,
each one is specified with a type and a valid identifier as its name.

The first thing we have to know is that a data structure creates a new
type: Once a data structure is declared, a new type with the identifier
specified as st ruct ure_nane is created and can be used in the rest of
the program as if it was any other type. For example:

struct product {
i nt weight;
float price;

|

product appl e;
product banana, nel on;

We have first declared a structure type called pr oduct with two
members: wei ght and pri ce, each of a different fundamental type.
We have then used this name of the structure type (pr oduct) to
declare three objects of that type: appl e, banana and nel on as we
would have done with any fundamental data type.

Once declared, pr oduct has become a new valid type name like the
fundamental ones i nt, char or short and from that point on we are
able to declare objects (variables) of this compound new type, like we
have done with appl e, banana and nel on.

Right at the end of the st ruct declaration, and before the ending
semicolon, we can use the optional field obj ect _nane to directly
declare objects of the structure type. For example, we can also declare
the structure objects appl e, banana and nel on at the moment we
define the data structure type this way:

struct product {

VIJAYA COLLEGE Page 105

C++

i nt weight;
float price;
} appl e, banana, nelon;

It is important to clearly differentiate between what is the structure
type name, and what is an object (variable) that has this structure
type. We can instantiate many objects (i.e. variables, like appl e,
banana and nel on) from a single structure type (product).

Once we have declared our three objects of a determined structure
type (appl e, banana and nel on) we can operate directly with their
members. To do that we use a dot (.) inserted between the object
name and the member name. For example, we could operate with any
of these elements as if they were standard variables of their respective
types:

appl e. wei ght
appl e. price
banana. wei ght
banana. pri ce
mel on. wei ght
mel on. price

Each one of these has the data type corresponding to the member
they refer to: appl e. wei ght , banana. wei ght and nel on. wei ght are of
type i nt, while appl e. pri ce, banana. pri ce and nel on. pri ce are of
type fl oat .

Let's see a real example where you can see how a structure type can
be used in the same way as fundamental types:

/| exanpl e about structures Enter title: Alien

#i ncl ude <i ostreanp Enter year: 1979
#i ncl ude <string>
#i ncl ude <sstreane My favorite novie is:
usi ng nanespace std; 2001 A Space Odyssey (1968)
And yours is:
struct novies_t { Alien (1979)
string title;
int year;

} mne, yours;

VIJAYA COLLEGE Page 106

C++

void printnovie (novies_t
novi e) ;

int main ()

{
string nystr;

mne.title = "2001 A Space
Qdyssey”;
m ne. year = 1968;

cout << "Enter title: ";

getline (cin,yours.title);

cout << "Enter year: ";

getline (cin,nystr);

stringstrean(mystr) >>
yours. year;

cout << "My favorite novie
is:\n ";

printnovie (mne);

cout << "And yours is:\n ";

printnovie (yours);

return O;
}
void printnmovie (novies_t
novi e)
{

cout << novie.title;
cout << " (" << novie.year
<< ll)\nll;

}

The example shows how we can use the members of an object as
regular variables. For example, the member your s. year is a valid
variable of type int, and mne. titl e is a valid variable of type
string.

The objects m ne and your s can also be treated as valid variables of
type novi es_t, for example we have passed them to the function

pri nt novi e as we would have done with regular variables. Therefore,
one of the most important advantages of data structures is that we
can either refer to their members individually or to the entire structure

VIJAYA COLLEGE Page 107

C++

as a block with only one identifier.

Data structures are a feature that can be used to represent databases,
especially if we consider the possibility of building arrays of them:

/| array of structures Enter title: Blade Runner
#i ncl ude <i ostreanp Enter year: 1982

#i ncl ude <string> Enter title: Matrix

#i ncl ude <sstreanp Enter year: 1999

usi ng nanespace std; Enter title: Taxi Driver

Enter year: 1976
#define N MOVIES 3
You have entered these

struct novies_t { novi es:
string title; Bl ade Runner (1982)
i nt year; Matri x (1999)

} films [N_MOVI ES]; Taxi Driver (1976)

voi d printnovie (novies_t
novi e) ;

int main ()

{
string nystr;
int n;

for (n=0; n<N_MOVIES; n++)
{
cout << "Enter title: ";
getline
(cin,films[n].title);
cout << "Enter year: ";
getline (cin,nystr);
stringstrean(nmystr) >>
films[n].year;

cout << "\ nYou have entered
t hese novies:\n";
for (n=0; n<N_MWIES;, n++)
printrmovie (filnms[n]);

return O;
}
voi d printnovie (novies_t
novi e)
{

VIJAYA COLLEGE Page 108

C++

cout << novie.title;
cout << " (" << novie.year
<< ll)\nll;

}

Pointers to structures

Like any other type, structures can be pointed by its own type of
pointers:

struct novies_t {
string title;
int year;

b

novi es_t anovi e;
novies_t * pnovi e;

Here anovi e is an object of structure type novi es_t, and pnovi e is a
pointer to point to objects of structure type novi es_t . So, the
following code would also be valid:

pnovi e = &anovi e;
The value of the pointer pnovi e would be assigned to a reference to

the object anpvi e (its memory address).

We will now go with another example that includes pointers, which will
serve to introduce a new operator: the arrow operator (- >):

/1l pointers to structures Enter title: Invasion of the
#i ncl ude <i ostreanp body snatchers
#i ncl ude <string> Enter year: 1978
#i ncl ude <sstreanp
usi ng nanespace std; You have entered:
| nvasi on of the body

struct novies_t { snat chers (1978)

string title;

i nt year;
1

int main ()

VIJAYA COLLEGE Page 109

C++

string nystr;

novi es_t anovi e;
nmovi es_t * pnovi e;
pnovi e = &anovi e;

cout << "Enter title: ";

getline (cin, pnovie-
>title);

cout << "Enter year: ";

getline (cin, nystr);

(stringstrean) nystr >>
pnovi e- >year ;

cout << "\nYou have
entered:\ n";

cout << pnovie->title;

cout << " (" << pnovi e-
>year << ")\n";

return O;

}

The previous code includes an important introduction: the arrow
operator (- >). This is a dereference operator that is used exclusively
with pointers to objects with members. This operator serves to access
a member of an object to which we have a reference. In the example
we used:

provie->title

Which is for all purposes equivalent to:

(*provie).title

Both expressions pnovie->title and (*pnovie).titl e are valid and
both mean that we are evaluating the member titl e of the data
structure pointed by a pointer called pnovi e. It must be clearly
differentiated from:

VIJAYA COLLEGE Page 110

C++

*prnovie.title

which is equivalent to:

*(pnovie.title)

And that would access the value pointed by a hypothetical pointer
member called ti t| e of the structure object pnovi e (which in this
case would not be a pointer). The following panel summarizes possible

combinations of pointers and structure members:

Expression What is evaluated Equivalent
a.b Member b of object a

a->b Member b of object pointed by a (*a).b

a.b Value pointed by member b of object aj(a.b)

Nesting structures

Structures can also be nested so that a valid element of a structure

can also be in its turn another structure.

struct novies_t {
string title;
int year;

b

struct friends_t {
string nane;
string email;
nmovi es_t favorite_novie;
} charlie, maria;

friends_t * pfriends = &charlie;

After the previous declaration we could use any of the following

expressions:

charli e. nane

VIJAYA COLLEGE

C++

maria.favorite novie.title
charlie.favorite_novie.year
pfriends->favorite_novie.year
(where, by the way, the last two expressions refer to the same
member).

Other Data Types

Defined data types (typedef)

C++ allows the definition of our own types based on other existing
data types. We can do this using the keyword t ypedef , whose format
is:

t ypedef existing_type new type nane ;

where exi sti ng_type is a C++ fundamental or compound type and
new_t ype_nane is the name for the new type we are defining. For
example:

t ypedef char C

t ypedef unsigned int WORD;
t ypedef char * pChar;
typedef char field [50];

In this case we have defined four data types: C, WORD, pChar and
fieldaschar, unsigned int, char* and char[50] respectively, that
we could perfectly use in declarations later as any other valid type:

C nychar, anotherchar, *ptcl;
WORD nywor d;
pChar ptc2;
field nane;

VIJAYA COLLEGE Page 112

C++

t ypedef does not create different types. It only creates synonyms of
existing types. That means that the type of nywor d can be considered
to be either WORD or unsi gned i nt, since both are in fact the same

type.

t ypedef can be useful to define an alias for a type that is frequently
used within a program. It is also useful to define types when it is
possible that we will need to change the type in later versions of our
program, or if a type you want to use has a name that is too long or
confusing.

Unions

Unions allow one same portion of memory to be accessed as different
data types, since all of them are in fact the same location in memory.
Its declaration and use is similar to the one of structures but its
functionality is totally different:

uni on uni on_nane {
nmenber _typel nenber nanel;
menber _type2 nenber _nane2;
menber type3 nenber nane3;

} 6bj ect _nanes;

All the elements of the uni on declaration occupy the same physical
space in memory. Its size is the one of the greatest element of the
declaration. For example:

uni on nytypes_t {
char c;
int i;
float f;
} nytypes;

defines three elements:

nytypes. c
nytypes. i
nmyt ypes. f

VIJAYA COLLEGE Page 113

C++

each one with a different data type. Since all of them are referring to
the same location in memory, the modification of one of the elements
will affect the value of all of them. We cannot store different values in
them independent of each other.

One of the uses a union may have is to unite an elementary type with
an array or structures of smaller elements. For example:

union mx_t {
long |;
struct {
short hi;
short | o;
Fos
char c[4];
}omx;

defines three names that allow us to access the same group of 4
bytes: m x. |, m x. s and m x. ¢ and which we can use according to
how we want to access these bytes, as if they were a single | ong-type
data, as if they were two short elements or as an array of char
elements, respectively. | have mixed types, arrays and structures in
the union so that you can see the different ways that we can access
the data. For a little-endian system (most PC platforms), this union
could be represented as:

mix

mix.1l

mix.s.hi " mix.=s.1lo

Mmx.crol T mx.cil o~ mx.clal T mx.ci3l

The exact alignment and order of the members of a union in memory
is platform dependant. Therefore be aware of possible portability
issues with this type of use.

Anonymous unions

In C++ we have the option to declare anonymous unions. If we
declare a union without any name, the union will be anonymous and
we will be able to access its members directly by their member names.
For example, look at the difference between these two structure
declarations:

VIJAYA COLLEGE Page 114

C++

structure with regular unionjstructure with anonymous union
struct { struct {
char title[50]; char title[50];
char aut hor[50]; char aut hor[50];
uni on { uni on {
float dollars; float dollars;
i nt yens; i nt yens;
} price; }i
} book; } book;

The only difference between the two pieces of code is that in the first
one we have given a name to the union (pri ce) and in the second one
we have not. The difference is seen when we access the members

dol | ars and yens of an object of this type. For an object of the first
type, it would be:

book. price. dol |l ars
book. pri ce. yens

whereas for an object of the second type, it would be:

book. dol | ars
book. yens

Once again | remind you that because it is a union and not a struct,
the members dol | ar s and yens occupy the same physical space in the
memory so they cannot be used to store two different values
simultaneously. You can set a value for pri ce in dollars or in yens, but
not in both.

Enumerations (enum)

Enumerations create new data types to contain something different
that is not limited to the values fundamental data types may take. Its
form is the following:

enum enuner ati on_nane {
val uel,
val ue2,
val ue3,

VIJAYA COLLEGE Page 115

C++

} obj ect nanes;

For example, we could create a new type of variable called col ors_t
to store colors with the following declaration:

enum col ors_t {black, blue, green, cyan, red, purple,
yel l ow, white};

Notice that we do not include any fundamental data type in the
declaration. To say it somehow, we have created a whole new data
type from scratch without basing it on any other existing type. The
possible values that variables of this new type col or _t may take are
the new constant values included within braces. For example, once the
col ors_t enumeration is declared the following expressions will be
valid:

colors_t nycol or;

mycol or = bl ue;
if (mycolor == green) nycolor = red,;

Enumerations are type compatible with numeric variables, so their
constants are always assigned an integer numerical value internally. If
it is not specified, the integer value equivalent to the first possible
value is equivalent to 0 and the following ones follow a +1
progression. Thus, in our data type col ors_t that we have defined
above, bl ack would be equivalent to 0, bl ue would be equivalent to 1,
green to 2, and so on.

We can explicitly specify an integer value for any of the constant
values that our enumerated type can take. If the constant value that
follows it is not given an integer value, it is automatically assumed the
same value as the previous one plus one. For example:

enum nonths_t { january=1, february, march, april,

may, june, july, august,

sept enber, october, novenber, decenber}
y2k;

VIJAYA COLLEGE Page 116

C++

In this case, variable y2k of enumerated type nont hs_t can contain
any of the 12 possible values that go from j anuary to decenber and
that are equivalent to values between 1 and 12 (not between 0 and 11,
since we have made j anuary equal to 1).

Classes (1)

A class is an expanded concept of a data structure: instead of holding
only data, it can hold both data and functions.

An object is an instantiation of a class. In terms of variables, a class
would be the type, and an object would be the variable.

Classes are generally declared using the keyword cl ass, with the
following format:

cl ass class_nane {
access_specifier_1:
menber 1;
access_specifier_2:
nmenber 2;

jl. bbj ect _nanes;

Where cl ass_nane is a valid identifier for the class, obj ect _nanes is
an optional list of names for objects of this class. The body of the
declaration can contain members, that can be either data or function
declarations, and optionally access specifiers.

All is very similar to the declaration on data structures, except that we
can now include also functions and members, but also this new thing
called access specifier. An access specifier is one of the following three
keywords: privat e, public or prot ect ed. These specifiers modify the
access rights that the members following them acquire:

e private members of a class are accessible only from within
other members of the same class or from their friends.

VIJAYA COLLEGE Page 117

C++

e« protected members are accessible from members of their same
class and from their friends, but also from members of their
derived classes.

e Finally, publ i c members are accessible from anywhere where
the object is visible.

By default, all members of a class declared with the cl ass keyword
have private access for all its members. Therefore, any member that is
declared before one other class specifier automatically has private
access. For example:

cl ass CRectangl e {
int X, y;
publ i c:
void set_values (int,int);
int area (void);
} rect;

Declares a class (i.e., a type) called CRect angl e and an object (i.e., a
variable) of this class called r ect . This class contains four members:
two data members of type i nt (member x and member y) with private
access (because private is the default access level) and two member
functions with public access: set _val ues() and ar ea(), of which for
now we have only included their declaration, not their definition.

Notice the difference between the class name and the object name: In
the previous example, CRect angl e was the class name (i.e., the type),
whereas rect was an object of type CRect angl e. It is the same
relationship i nt and a have in the following declaration:

int a;

where i nt is the type name (the class) and a is the variable name (the
object).

After the previous declarations of CRect angl e and r ect , we can refer
within the body of the program to any of the public members of the

object r ect as if they were normal functions or normal variables, just
by putting the object’'s name followed by a dot (.) and then the name

VIJAYA COLLEGE Page 118

C++

of the member. All very similar to what we did with plain data
structures before. For example:

rect.set _values (3,4);
nyarea = rect.area();

The only members of rect that we cannot access from the body of our
program outside the class are x and y, since they have private access
and they can only be referred from within other members of that same
class.

Here is the complete example of class CRectangle:

/'l classes exanpl e area: 12
#i ncl ude <i ostreanp
usi ng nanespace std;

cl ass CRectangl e {

int x, y;

publ i c:

voi d set val ues
(int,int);

int area () {return
(x*y);}
1

voi d CRect angl e: : set _val ues
(int a, int b) {
X
y
}

int main () {
CRect angl e rect;
rect.set _values (3,4);
cout << "area: " <<
rect.area();
return O;

}

a;
b;

The most important new thing in this code is the operator of scope
(: :, two colons) included in the definition of set _val ues() . It is used
to define a member of a class from outside the class definition itself.

VIJAYA COLLEGE Page 119

C++

You may notice that the definition of the member function area() has
been included directly within the definition of the CRect angl e class
given its extreme simplicity, whereas set _val ues() has only its
prototype declared within the class, but its definition is outside it. In
this outside declaration, we must use the operator of scope (::) to
specify that we are defining a function that is a member of the class
CRect angl e and not a regular global function.

The scope operator (: :) specifies the class to which the member being
declared belongs, granting exactly the same scope properties as if this
function definition was directly included within the class definition. For
example, in the function set _val ues() of the previous code, we have
been able to use the variables x and y, which are private members of
class CRect angl e, which means they are only accessible from other
members of their class.

The only difference between defining a class member function
completely within its class or to include only the prototype and later its
definition, is that in the first case the function will automatically be
considered an inline member function by the compiler, while in the
second it will be a normal (not-inline) class member function, which in
fact supposes no difference in behavior.

Members x and y have private access (remember that if nothing else is
said, all members of a class defined with keyword class have private
access). By declaring them private we deny access to them from
anywhere outside the class. This makes sense, since we have already
defined a member function to set values for those members within the
object: the member function set _val ues() . Therefore, the rest of the
program does not need to have direct access to them. Perhaps in a so
simple example as this, it is difficult to see an utility in protecting
those two variables, but in greater projects it may be very important
that values cannot be modified in an unexpected way (unexpected
from the point of view of the object).

One of the greater advantages of a class is that, as any other type, we
can declare several objects of it. For example, following with the
previous example of class CRect angl e, we could have declared the
object r ect b in addition to the object r ect :

/'l exanpl e: one class, two rect area: 12
obj ects rectb area: 30

VIJAYA COLLEGE Page 120

C++

#i ncl ude <i ostreanp
usi ng nanespace std;

cl ass CRectangl e {

int X, y;

publ i c:

voi d set val ues
(int,int);

int area () {return
(x*y);}
1

voi d CRect angl e: : set _val ues
(int a, int b) {

X a;

y = b;
}

int main () {
CRectangl e rect, rectb;
rect.set _values (3,4);
rectb. set _val ues (5, 6);

cout << "rect area: " <<
rect.area() << endl;

cout << "rectb area: " <<
rectb.area() << endl;

return O;

}

In this concrete case, the class (type of the objects) to which we are
talking about is CRect angl e, of which there are two instances or
objects: rect and rect b. Each one of them has its own member
variables and member functions.

Notice that the call to rect. area() does not give the same result as
the call to rect b. area() . This is because each object of class
CRectangle has its own variables x and y, as they, in some way, have
also their own function members set _val ue() and area() that each
uses its object's own variables to operate.

That is the basic concept of object-oriented programming: Data and
functions are both members of the object. We no longer use sets of
global variables that we pass from one function to another as

parameters, but instead we handle objects that have their own data

VIJAYA COLLEGE Page 121

C++

and functions embedded as members. Notice that we have not had to
give any parameters in any of the calls torect. area or rectb. ar ea.
Those member functions directly used the data members of their
respective objects rect and rectb.

Constructors and destructors

Objects generally need to initialize variables or assign dynamic
memory during their process of creation to become operative and to
avoid returning unexpected values during their execution. For
example, what would happen if in the previous example we called the
member function ar ea() before having called function set _val ues() ?
Probably we would have gotten an undetermined result since the
members x and y would have never been assigned a value.

In order to avoid that, a class can include a special function called
construct or, which is automatically called whenever a new object of
this class is created. This constructor function must have the same
name as the class, and cannot have any return type; not even voi d.

We are going to implement CRect angl e including a constructor:

/| exanple: class constructor rect area: 12
#i ncl ude <i ostreanp rectb area: 30
usi ng nanespace std;

cl ass CRectangl e {
int width, height;
publ i c:
CRectangle (int,int);
int area () {return
(wi dt h*hei ght);}

1
CRect angl e: : CRectangl e (int
a, int b) {
width = a;
hei ght = b;
}

int min () {
CRectangl e rect (3,4);
CRectangl e rectb (5,6);
cout << "rect area: " <<
rect.area() << endl;

cout << "rectb area: " <<

VIJAYA COLLEGE Page 122

C++

rectb.area() << endl;
return O;

}

As you can see, the result of this example is identical to the previous
one. But now we have removed the member function set _val ues(),
and have included instead a constructor that performs a similar action:
it initializes the values of wi dt h and hei ght with the parameters that
are passed to it.

Notice how these arguments are passed to the constructor at the
moment at which the objects of this class are created:

CRectangle rect (3,4);
CRectangl e rectb (5,6);

Constructors cannot be called explicitly as if they were regular member
functions. They are only executed when a new object of that class is
created.

You can also see how neither the constructor prototype declaration
(within the class) nor the latter constructor definition include a return
value; not even voi d.

The destructor fulfills the opposite functionality. It is automatically
called when an object is destroyed, either because its scope of
existence has finished (for example, if it was defined as a local object
within a function and the function ends) or because it is an object
dynamically assigned and it is released using the operator delete.

The destructor must have the same name as the class, but preceded
with a tilde sign (~) and it must also return no value.

The use of destructors is especially suitable when an object assigns
dynamic memory during its lifetime and at the moment of being
destroyed we want to release the memory that the object was
allocated.

/| exanpl e on constructors rect area: 12
and destructors rectb area: 30
#i ncl ude <i ostreanp
usi ng nanespace std;

VIJAYA COLLEGE Page 123

C++

cl ass CRectangle {
int *width, *height;
publ i c:
CRectangle (int,int);
~CRectangle ();
int area () {return
(*width * *height);}
1

CRect angl e: : CRectangl e (i nt
a, int b) {

wi dth = new int;

hei ght new int;

*Wi dt h a

*hei ght =
}

CRect angl e: : ~CRectangle () {
del ete wi dt h;
del et e hei ght;

}

int min () {
CRectangl e rect (3,4),
rectb (5,6);

cout << "rect area: " <<
rect.area() << endl;

cout << "rectb area: " <<
rectb.area() << endl;

return O;
}

Overloading Constructors

Like any other function, a constructor can also be overloaded with
more than one function that have the same name but different types
or number of parameters. Remember that for overloaded functions the
compiler will call the one whose parameters match the arguments
used in the function call. In the case of constructors, which are
automatically called when an object is created, the one executed is the
one that matches the arguments passed on the object declaration:

/'l overl oadi ng cl ass rect area: 12
constructors rectb area: 25
#i ncl ude <i ostreanp

VIJAYA COLLEGE Page 124

usi ng nanespace std;

cl ass CRectangl e {
int width, height;
publ i c:
CRectangle ();
CRectangle (int,int);
int area (void) {return
(wi dt h*hei ght);}
3
CRect angl e: : CRectangl e () {

width = 5;
hei ght = 5;

}
CRect angl e: : CRectangl e (i nt
a, int b) {
width = a;
hei ght = b;
}

int main () {
CRectangl e rect (3,4);
CRect angl e rectb;

cout << "rect area: " <<
rect.area() << endl;

cout << "rectb area: " <<
rectb.area() << endl;

return O;

}

C++

In this case, r ect b was declared without any arguments, so it has
been initialized with the constructor that has no parameters, which

initializes both wi dt h and hei ght with a value of 5.

Important: Notice how if we declare a new object and we want to use
its default constructor (the one without parameters), we do not include

parentheses () :

CRect angl e rectb; /'l right
CRectangl e rectb(); // wong!

VIJAYA COLLEGE

Page 125

C++

Default constructor

If you do not declare any constructors in a class definition, the
compiler assumes the class to have a default constructor with no
arguments. Therefore, after declaring a class like this one:

cl ass Cexanpl e {
publ i c:
int a,b,c;
void multiply (int n, int m { a=n; b=m c=a*b; };
1

The compiler assumes that CExanpl e has a default constructor, so you
can declare objects of this class by simply declaring them without any
arguments:

CExanpl e ex;

But as soon as you declare your own constructor for a class, the
compiler no longer provides an implicit default constructor. So you
have to declare all objects of that class according to the constructor
prototypes you defined for the class:

cl ass Ckxanpl e {
publ i c:
int a,b,c;
CeExanple (int n, int m { a=n; b=m };
void multiply () { c=a*b; };
1

Here we have declared a constructor that takes two parameters of
type int. Therefore the following object declaration would be correct:

CExanpl e ex (2,3);
But,
CExanpl e ex;

Would not be correct, since we have declared the class to have an
explicit constructor, thus replacing the default constructor.

VIJAYA COLLEGE Page 126

C++

But the compiler not only creates a default constructor for you if you
do not specify your own. It provides three special member functions in
total that are implicitly declared if you do not declare your own. These
are the copy constructor, the copy assignment operator, and the
default destructor.

The copy constructor and the copy assignment operator copy all the
data contained in another object to the data members of the current
object. For CExanpl e, the copy constructor implicitly declared by the
compiler would be something similar to:

CExanpl e: : CExanpl e (const CkExanpl e& rv) {
a=rv.a; b=rv.b; c=rv.c;

}

Therefore, the two following object declarations would be correct:

CExanpl e ex (2, 3);
CExanpl e ex2 (ex); /'l copy constructor (data copied
from ex)

Pointers to classes

It is perfectly valid to create pointers that point to classes. We simply
have to consider that once declared, a class becomes a valid type, so
we can use the class name as the type for the pointer. For example:

CRectangle * prect;

is a pointer to an object of class CRect angl e.

As it happened with data structures, in order to refer directly to a
member of an object pointed by a pointer we can use the arrow
operator (- >) of indirection. Here is an example with some possible
combinations:

/'l pointer to classes exanple a area: 2

#i ncl ude <i ostreanp *b area: 12
usi ng nanespace std; *c area: 2
d[0] area: 30
cl ass CRectangl e { d[1] area: 56
int width, height;
publ i c:

VIJAYA COLLEGE Page 127

C++

voi d set_val ues (int,
int);

int area (void) {return
(width * height);}
b

voi d CRect angl e: : set _val ues
(int a, int b) {

width = a;

hei ght = b;
}

int main () {
CRectangle a, *b, *c;
CRectangle * d = new
CRect angl e[2] ;
b= new CRect angl €;
c= &a,
a.set _values (1, 2);
b- >set _val ues (3, 4);
d- >set _val ues (5, 6);
d[1] . set _val ues (7, 8);
cout << "a area: " <<
a.area() << endl;

cout << "*p area: " << b-
>area() << endl;

cout << "*c area: " << c-
>area() << endl;

cout << "d[0] area: " <<
d[0] .area() << endl;

cout << "d[1] area: " <<
d[1] . area() << endl;

delete[] d;

del ete b;

return O;
}

Next you have a summary on how can you read some pointer and
class operators (*, &, ., ->, []) that appear in the previous example:

expression

can be read as

*X pointed by x

&X address of x

X.y member y of object x

VIJAYA COLLEGE

Page 128

C++

X->Yy member y of object pointed by x

*).y member y of object pointed by x (equivalent to the
previous one)

X[O] first object pointed by x

X[1] second object pointed by x

x[n] (n+1)th object pointed by x

Be sure that you understand the logic under all of these expressions
before proceeding with the next sections. If you have doubts, read
again this section and/or consult the previous sections about pointers
and data structures.

Classes defined with struct and union

Classes can be defined not only with keyword cl ass, but also with
keywords st ruct and uni on.

The concepts of class and data structure are so similar that both
keywords (st ruct and cl ass) can be used in C++ to declare classes
(i.e. struct s can also have function members in C++, not only data
members). The only difference between both is that members of
classes declared with the keyword st ruct have public access by
default, while members of classes declared with the keyword cl ass
have private access. For all other purposes both keywords are
equivalent.

The concept of unions is different from that of classes declared with
struct and cl ass, since unions only store one data member at a time,
but nevertheless they are also classes and can thus also hold function
members. The default access in union classes is public.

Classes (1)

Overloading operators

C++ incorporates the option to use standard operators to perform
operations with classes in addition to with fundamental types. For
example:

int a, b, c;

VIJAYA COLLEGE Page 129

C++

a=>b + c;

This is obviously valid code in C++, since the different variables of the
addition are all fundamental types. Nevertheless, it is not so obvious
that we could perform an operation similar to the following one:

struct {
string product;
float price;
} a, b, c;
a=»>b+ c;

In fact, this will cause a compilation error, since we have not defined
the behavior our class should have with addition operations. However,
thanks to the C++ feature to overload operators, we can design
classes able to perform operations using standard operators. Here is a
list of all the operators that can be overloaded:

Overloadable operators
+ _ * / - < > += .= * = /| = <<
>>
<<= >>= == (= <= >= ++ -- % & N !
|
~ & "= = & || % [(O . - -3
new
del et e new | del et e[]

To overload an operator in order to use it with classes we declare
operator functions, which are regular functions whose names are the
oper at or keyword followed by the operator sign that we want to
overload. The format is:

type operator sign (paraneters) { /*...*/ }

Here you have an example that overloads the addition operator (+).
We are going to create a class to store bidimensional vectors and then
we are going to add two of them: a(3, 1) and b(1, 2). The addition of
two bidimensional vectors is an operation as simple as adding the two
x coordinates to obtain the resulting x coordinate and adding the two y

VIJAYA COLLEGE Page 130

C++

coordinates to obtain the resulting y. In this case the result will be
(3+1,1+2) = (4,3).

/| vectors: overl oadi ng 4,3
operators exanpl e

#i ncl ude <i ostreanp

usi ng nanespace std;

cl ass CVector {
publ i c:
int Xx,vy;
Cvector () {};
CVector (int,int);
CVect or operator +
(CVector);

1
CVector::CVector (int a, int
b) {

X

y
}

CVector CVector::operator+
(CVvector param {
CVect or tenp;

a;
b;

temp.x = x + param Xx;
tenp.y =y + paramy;
return (tenp);

}

int main () {
CVector a (3,1);
CVvector b (1, 2);
CVect or c;
c = a + b;
cout << c.x << "," << c.Y,;
return O;

It may be a little confusing to see so many times the CVect or
identifier. But, consider that some of them refer to the class name
(type) CVect or and some others are functions with that name
(constructors must have the same name as the class). Do not confuse
them:

VIJAYA COLLEGE Page 131

C++

CVector (int, int); /1l function nanme CVect or
(constructor)

CVector operator+ (CVector); /1l function returns a
CVect or

The function oper at or + of class CVect or is the one that is in charge of
overloading the addition operator (+). This function can be called
either implicitly using the operator, or explicitly using the function
name:

c
c

a + b;
a.operator+ (b);

Both expressions are equivalent.

Notice also that we have included the empty constructor (without
parameters) and we have defined it with an empty block:

CVvector () { };

This is necessary, since we have explicitly declared another
constructor:

CVector (int, int);

And when we explicitly declare any constructor, with any number of
parameters, the default constructor with no parameters that the
compiler can declare automatically is not declared, so we need to
declare it ourselves in order to be able to construct objects of this type
without parameters. Otherwise, the declaration:

CVector c;

included in mai n() would not have been valid.

Anyway, | have to warn you that an empty block is a bad
implementation for a constructor, since it does not fulfill the minimum
functionality that is generally expected from a constructor, which is the

VIJAYA COLLEGE Page 132

C++

initialization of all the member variables in its class. In our case this
constructor leaves the variables x and y undefined. Therefore, a more
advisable definition would have been something similar to this:

Cvector () { x=0; y=0; };

which in order to simplify and show only the point of the code I have
not included in the example.

As well as a class includes a default constructor and a copy constructor
even if they are not declared, it also includes a default definition for
the assignment operator (=) with the class itself as parameter. The
behavior which is defined by default is to copy the whole content of
the data members of the object passed as argument (the one at the
right side of the sign) to the one at the left side:

CVector d (2,3);
CVector e;
e = d; /| copy assignnent operator

The copy assignment operator function is the only operator member
function implemented by default. Of course, you can redefine it to any
other functionality that you want, like for example, copy only certain
class members or perform additional initialization procedures.

The overload of operators does not force its operation to bear a
relation to the mathematical or usual meaning of the operator,
although it is recommended. For example, the code may not be very
intuitive if you use oper at or + to subtract two classes or oper at or ==
to fill with zeros a class, although it is perfectly possible to do so.

Although the prototype of a function oper at or + can seem obvious
since it takes what is at the right side of the operator as the parameter
for the operator member function of the object at its left side, other
operators may not be so obvious. Here you have a table with a
summary on how the different operator functions have to be declared
(replace @ by the operator in each case):

Expression Operator Member function|Global function
@a +-*&! ~ ++ - A::operator@() operator@(A)
a@ ++ -- A::operator@(int) |operator@(A,int)

VIJAYA COLLEGE Page 133

C++

+-*/%N&| <>

a@b == = <= >= << >>|A::operator@ (B) |operator@(A,B)
&& |1,
= 4= -= *= /= Op=

a@b N= &= |= <<= >>= |A::operator@ (B) |-
[1

a(b, c...) 0 é:...c))perator() (B,

a->x -> A::operator-=>() -

Where a is an object of class A, b is an object of class B and c is an
object of class C.

You can see in this panel that there are two ways to overload some
class operators: as a member function and as a global function. Its use
is indistinct, nevertheless | remind you that functions that are not
members of a class cannot access the private or protected members of
that class unless the global function is its friend (friendship is
explained later).

The keyword this

The keyword t hi s represents a pointer to the object whose member
function is being executed. It is a pointer to the object itself.

One of its uses can be to check if a parameter passed to a member
function is the object itself. For example,

/1l this yes, & is b
#i ncl ude <i ostreanp
usi ng nanespace std;

cl ass CDummy {

publ i c:
int isitnme (CDumyé&

paran ;
}i
int COumy::isitnme (CDummy&
par am
{

if (&aram == this) return
true;

el se return fal se;
}

VIJAYA COLLEGE Page 134

C++

int min () {
CDummy a;
CDummy* b = &a;
if (b->sitnme(a))
cout << "yes, & is b";
return O;

}

It is also frequently used in oper at or = member functions that return
objects by reference (avoiding the use of temporary objects).
Following with the vector's examples seen before we could have
written an oper at or = function similar to this one:

CVect or & CVector::operator= (const CVector& paran)
{

X=par am X;
y=paramys;
return *this;

}

In fact this function is very similar to the code that the compiler
generates implicitly for this class if we do not include an oper at or =
member function to copy objects of this class.

Static members
A class can contain static members, either data or functions.

Static data members of a class are also known as "class variables”,
because there is only one unique value for all the objects of that same
class. Their content is not different from one object of this class to
another.

For example, it may be used for a variable within a class that can
contain a counter with the number of objects of that class that are
currently allocated, as in the following example:

/] static nenbers in classes |7
#i ncl ude <i ostreanp 6
usi ng nanespace std;

cl ass CDunmy {
publ i c:

VIJAYA COLLEGE Page 135

C++

static int n;
Coummy () { n++; };
[Ty O (s

i nt CDummy: : n=0;

int main () {
CDumy a;
CDummy b[5] ;
CDummy * ¢ = new CDummy;
cout << a.n << endl;
del ete c;
cout << CDummy::n << endl;
return O;

In fact, static members have the same properties as global variables
but they enjoy class scope. For that reason, and to avoid them to be
declared several times, we can only include the prototype (its
declaration) in the class declaration but not its definition (its
initialization). In order to initialize a static data-member we must
include a formal definition outside the class, in the global scope, as in
the previous example:

int CDummy: : n=0;

Because it is a unique variable value for all the objects of the same
class, it can be referred to as a member of any object of that class or
even directly by the class name (of course this is only valid for static
members):

cout << a.n;
cout << CDummy: :n;

These two calls included in the previous example are referring to the
same variable: the static variable n within class CDunmy shared by all
objects of this class.

Once again, | remind you that in fact it is a global variable. The only
difference is its name and possible access restrictions outside its class.

VIJAYA COLLEGE Page 136

C++

Just as we may include static data within a class, we can also include
static functions. They represent the same: they are global functions
that are called as if they were object members of a given class. They
can only refer to static data, in no case to non-static members of the
class, as well as they do not allow the use of the keyword t hi s, since
it makes reference to an object pointer and these functions in fact are
not members of any object but direct members of the class.

Friendship and inheritance

Friend functions

In principle, private and protected members of a class cannot be
accessed from outside the same class in which they are declared.
However, this rule does not affect friends.

Friends are functions or classes declared as such.

If we want to declare an external function as friend of a class, thus
allowing this function to have access to the private and protected
members of this class, we do it by declaring a prototype of this
external function within the class, and preceding it with the keyword
friend:

/1l friend functions 24
#i ncl ude <i ostreanp
usi ng nanespace std;

cl ass CRectangl e {

int width, height;

publ i c:

voi d set _val ues (int,
int);

int area () {return
(width * height);}

friend CRectangle
duplicate (CRectangle);

}

voi d CRect angl e: : set _val ues
(int a, int b) {

width = a;

hei ght = b;

VIJAYA COLLEGE Page 137

C++

}

CRect angl e duplicate
(CRect angl e rect param

{

CRect angl e rectres;
rectres.width =
rect param w dt h*2;
rectres. hei ght =
rect param hei ght *2;
return (rectres);

}

int main () {
CRectangl e rect, recthb;
rect.set val ues (2, 3);
rectb = duplicate (rect);
cout << rectb.area();
return O;

The dupl i cat e function is a friend of CRect angl e. From within that
function we have been able to access the members wi dt h and hei ght
of different objects of type CRect angl e, which are private members.
Notice that neither in the declaration of dupl i cat e() nor in its later
use in mai n() have we considered dupl i cat e a member of class
CRect angl e. It isn't! It simply has access to its private and protected
members without being a member.

The friend functions can serve, for example, to conduct operations
between two different classes. Generally, the use of friend functions is
out of an object-oriented programming methodology, so whenever
possible it is better to use members of the same class to perform
operations with them. Such as in the previous example, it would have
been shorter to integrate dupl i cat e() within the class CRect angl e.

Friend classes

Just as we have the possibility to define a friend function, we can also
define a class as friend of another one, granting that first class access
to the protected and private members of the second one.

/1 friend class 16
#i ncl ude <i ostreanr
usi ng nanespace std;

VIJAYA COLLEGE Page 138

C++

cl ass CSquar e;

cl ass CRectangl e {
int width, height;

publ i c:
int area ()
{return (width *
hei ght) ; }
voi d convert (CSquare a);
1
cl ass CSquare {
private:
i nt side;
publ i c:
void set_side (int a)
{side=a;}
friend class CRectangl e;
1

voi d CRect angl e: : convert
(CSquare a) {

wi dt h = a. si de;

hei ght = a. si de;
}

int min () {
CSquar e sqr;
CRect angl e rect;
sqr.set_side(4);
rect.convert(sqr);
cout << rect.area();
return O;

In this example, we have declared CRect angl e as a friend of CSquar e
so that CRect angl e member functions could have access to the
protected and private members of CSquar e, more concretely to
CSquar e: : si de, which describes the side width of the square.

You may also see something new at the beginning of the program: an
empty declaration of class CSquar e. This is necessary because within
the declaration of CRect angl e we refer to CSquare (as a parameter in

VIJAYA COLLEGE Page 139

C++

convert ()). The definition of CSquar e is included later, so if we did
not include a previous empty declaration for CSquar e this class would
not be visible from within the definition of CRect angl e.

Consider that friendships are not corresponded if we do not explicitly
specify so. In our example, CRect angl e is considered as a friend class
by CSquar e, but CRect angl e does not consider CSquar e to be a friend,
so CRect angl e can access the protected and private members of
CSquar e but not the reverse way. Of course, we could have declared
also CSquar e as friend of CRect angl e if we wanted to.

Another property of friendships is that they are not transitive: The
friend of a friend is not considered to be a friend unless explicitly
specified.

Inheritance between classes

A key feature of C++ classes is inheritance. Inheritance allows to
create classes which are derived from other classes, so that they
automatically include some of its "parent's” members, plus its own. For
example, we are going to suppose that we want to declare a series of
classes that describe polygons like our CRect angl e, or like CTri angl e.
They have certain common properties, such as both can be described
by means of only two sides: height and base.

This could be represented in the world of classes with a class CPol ygon
from which we would derive the two other ones: CRect angl e and
CTri angl e.

Femmmmm———— =
' CPolygon
[L L L -l
CRectangle
CTriangle

The class CPol ygon would contain members that are common for both
types of polygon. In our case: wi dt h and hei ght . And CRect angl e and
CTri angl e would be its derived classes, with specific features that are
different from one type of polygon to the other.

Classes that are derived from others inherit all the accessible members

VIJAYA COLLEGE Page 140

C++

of the base class. That means that if a base class includes a member A
and we derive it to another class with another member called B, the
derived class will contain both members A and B.

In order to derive a class from another, we use a colon (:) in the
declaration of the derived class using the following format:

cl ass derived_class_nane: public base cl ass_nane
{ I*...%] };

Where deri ved_cl ass_nane is the name of the derived class and
base_ cl ass_nane is the name of the class on which it is based. The
publ i ¢ access specifier may be replaced by any one of the other
access specifiers prot ect ed and pri vat e. This access specifier limits
the most accessible level for the members inherited from the base
class: The members with a more accessible level are inherited with
this level instead, while the members with an equal or more restrictive
access level keep their restrictive level in the derived class.

[/l derived cl asses 20
#i ncl ude <i ostreanp 10
usi ng nanespace std;

cl ass CPol ygon {

pr ot ect ed:
int width, height;
publ i c:
voi d set _values (int a,
i nt b)
{ wi dt h=a; height=Db;}
b
cl ass CRectangl e: public
CPol ygon {
publ i c:
int area ()
{ return (wdth *
hei ght); }
)i
class CIriangle: public
CPol ygon {
publ i c:

int area ()

VIJAYA COLLEGE Page 141

C++

{ return (wdth *
height / 2); }
1

int main () {
CRect angl e rect;
Clriangle trgl;
rect.set _val ues (4,5);
trgl.set _values (4,5);
cout << rect.area() <<
endl ;
cout << trgl.area() <<
endl ;
return O;

}

The objects of the classes CRect angl e and CTri angl e each contain
members inherited from CPol ygon. These are: wi dt h, hei ght and
set _val ues().

The pr ot ect ed access specifier is similar to pri vat e. Its only
difference occurs in fact with inheritance. When a class inherits from
another one, the members of the derived class can access the
protected members inherited from the base class, but not its private
members.

Since we wanted wi dt h and hei ght to be accessible from members of
the derived classes CRect angl e and CTri angl e and not only by
members of CPol ygon, we have used pr ot ect ed access instead of
private.

We can summarize the different access types according to who can
access them in the following way:

Access public|protected|private
members of the same class|yes |yes yves
members of derived classes|yes ves no
not members yes [no no

Where "not members" represent any access from outside the class,
such as from mai n() , from another class or from a function.

VIJAYA COLLEGE Page 142

C++

In our example, the members inherited by CRect angl e and CTri angl e
have the same access permissions as they had in their base class
CPol ygon:

CPol ygon: : wi dth /'l protected access
CRect angl e: : wi dt h /'l protected access
CPol ygon: : set _val ues() /'l public access

CRect angl e: : set _values() // public access

This is because we have used the publ i ¢ keyword to define the
inheritance relationship on each of the derived classes:

cl ass CRectangle: public CPolygon { ... }

This publ i ¢ keyword after the colon (:) denotes the most accessible
level the members inherited from the class that follows it (in this case
CPol ygon) will have. Since publ i c is the most accessible level, by
specifying this keyword the derived class will inherit all the members
with the same levels they had in the base class.

If we specify a more restrictive access level like pr ot ect ed, all public
members of the base class are inherited as protected in the derived
class. Whereas if we specify the most restricting of all access levels:
privat e, all the base class members are inherited as private.

For example, if daught er was a class derived from not her that we
defined as:

cl ass daughter: protected nother;

This would set pr ot ect ed as the maximum access level for the
members of daught er that it inherited from not her . That is, all
members that were public in not her would become protected in
daught er . Of course, this would not restrict daught er to declare its
own public members. That maximum access level is only set for the
members inherited from not her .

If we do not explicitly specify any access level for the inheritance, the

VIJAYA COLLEGE Page 143

C++

compiler assumes private for classes declared with cl ass keyword and
public for those declared with struct .

What is inherited from the base class?

In principle, a derived class inherits every member of a base class
except:

e its constructor and its destructor
e its operator=() members
e its friends

Although the constructors and destructors of the base class are not
inherited themselves, its default constructor (i.e., its constructor with
no parameters) and its destructor are always called when a new object
of a derived class is created or destroyed.

If the base class has no default constructor or you want that an
overloaded constructor is called when a new derived object is created,
you can specify it in each constructor definition of the derived class:

derived _constructor_nane (paraneters)
base_constructor_name (paraneters) {...}

For example:

/'l constructors and derived not her: no paraneters

cl asses daughter: int paraneter
#i ncl ude <i ostreanp
usi ng nanespace std; not her: int paraneter

son: int paraneter
cl ass not her {
publ i c:
not her ()
{ cout << "nother: no
paranmeters\n”; }
not her (int a)
{ cout << "nother: int
paraneter\n"; }

1
cl ass daughter : public
not her {

VIJAYA COLLEGE Page 144

C++

publ i c:
daughter (int a)
{ cout << "daughter:
I nt paraneter\n\n"; }

i

cl ass son : public nother {
publ i c:
son (int a) : nother (a)
{ cout << "son: int
paranmeter\n\n"; }

H

int main () {
daughter cynthia (0);
son dani el (0);

return O;

}

Notice the difference between which not her 's constructor is called
when a new daught er object is created and which when it is a son
object. The difference is because the constructor declaration of
daught er and son:

daughter (int a) /'l nothing specified: call

def aul t

son (int a) : nother (a) // constructor specified: call
this

Multiple inheritance

In C++ it is perfectly possible that a class inherits members from more
than one class. This is done by simply separating the different base
classes with commas in the derived class declaration. For example, if
we had a specific class to print on screen (CQut put) and we wanted
our classes CRect angl e and CTri angl e to also inherit its members in
addition to those of CPol ygon we could write:

cl ass CRectangl e: public CPol ygon, public CQutput;
class CIriangl e: public CPolygon, public CQutput;

VIJAYA COLLEGE Page 145

C++

here is the complete example:

/1 multiple inheritance 20
#i ncl ude <i ostreanp 10
usi ng nanespace std;

cl ass CPol ygon {
pr ot ect ed:
int width, height;
publ i c:
voi d set _values (int a,
i nt b)
{ w dth=a; height=Db;}
b

cl ass CQut put {
publ i c:
void output (int i);

};

void CQutput::output (int i)
{

cout << i << endl;

}

cl ass CRectangle: public
CPol ygon, public CQutput {
publ i c:
int area ()
{ return (width *
hei ght); }
b

cl ass CTriangle: public
CPol ygon, public CQutput {
publ i c:
int area ()
{ return (width *
height / 2); }

int min () {
CRectangl e rect;
Clriangle trgl;
rect.set values (4,5);

VIJAYA COLLEGE Page 146

C++

trgl.set _values (4,5);
rect.output (rect.area());
trgl.output (trgl.area());
return O;

Polymorphism

Before getting into this section, it is recommended that you have a
proper understanding of pointers and class inheritance. If any of the
following statements seem strange to you, you should review the
indicated sections:

Statement: Explained in:
inta::b(intc) { } Classes
a->b Data Structures
class a: public b { };[Friendship and inheritance

Pointers to base class

One of the key features of derived classes is that a pointer to a derived
class is type-compatible with a pointer to its base class. Polymorphism
is the art of taking advantage of this simple but powerful and versatile
feature, that brings Object Oriented Methodologies to its full potential.

We are going to start by rewriting our program about the rectangle
and the triangle of the previous section taking into consideration this
pointer compatibility property:

/1l pointers to base class 20

#i ncl ude <i ostreanp 10

usi ng nanespace std;

cl ass CPol ygon {

pr ot ect ed:
int width, height;
publ i c:
voi d set _values (int a,
i nt b)

{ w dth=a; height=b; }
b

cl ass CRectangl e: public

VIJAYA COLLEGE Page 147

C++

CPol ygon {
publ i c:
int area ()
{ return (wdth *
hei ght); }
b

class CIriangle: public
CPol ygon {
publ i c:
int area ()
{ return (wdth *
hei ght / 2); }

int main () {
CRect angl e rect;
Clriangle trgl;
CPol ygon * ppol yl ▭
CPol ygon * ppol y2 &trqgl
ppol y1- >set _val ues (4,5);
ppol y2- >set _val ues (4,5);
cout << rect.area() <<
endl ;
cout << trgl.area() <<
endl ;
return O;

}

In function nmai n, we create two pointers that point to objects of class
CPol ygon (ppol y1 and ppol y2). Then we assign references to r ect
and tr gl to these pointers, and because both are objects of classes
derived from CPol ygon, both are valid assignment operations.

The only limitation in using *ppol y1 and * ppol y2 instead of rect and
trgl is that both *ppol y1 and * ppol y2 are of type CPol ygon* and
therefore we can only use these pointers to refer to the members that
CRect angl e and CTri angl e inherit from CPol ygon. For that reason
when we call the ar ea() members at the end of the program we have
had to use directly the objects rect and tr gl instead of the pointers
*ppol y1 and * ppol y2.

In order to use ar ea() with the pointers to class CPol ygon, this
member should also have been declared in the class CPol ygon, and

VIJAYA COLLEGE Page 148

C++

not only in its derived classes, but the problem is that CRect angl e and
CTri angl e implement different versions of ar ea, therefore we cannot
implement it in the base class. This is when virtual members become
handy:

Virtual members

A member of a class that can be redefined in its derived classes is
known as a virtual member. In order to declare a member of a class as
virtual, we must precede its declaration with the keyword vi rt ual :

/1 virtual menbers 20
#i ncl ude <i ostreanp 10
usi ng nanespace std; 0

cl ass CPol ygon {

pr ot ect ed:
int width, height;
publ i c:
voi d set _values (int a,
i nt b)

{ w dth=a; height=b; }
virtual int area ()
{ return (0); }
)i

cl ass CRectangl e: public
CPol ygon {
publ i c:
int area ()
{ return (wdth *
hei ght); }
)i

class CTriangle: public
CPol ygon {
publ i c:
int area ()
{ return (wdth *
hei ght / 2); }
Jit

int min () {
CRect angl e rect;
Clriangle trgl;
CPol ygon pol vy;
CPol ygon * ppolyl = ▭

VIJAYA COLLEGE Page 149

C++

CPol ygon * ppol y2 &t rgl
CPol ygon * ppol y3 &pol y;
ppol y1- >set _val ues (4,5);
ppol y2->set _val ues (4,5);
ppol y3->set val ues (4,5);
cout << ppolyl->area() <<
endl ;
cout << ppoly2->area() <<
endl ;
cout << ppol y3->area() <<
endl ;
return O;
}

Now the three classes (CPol ygon, CRect angl e and CTri angl e) have
all the same members: wi dt h, hei ght, set _val ues() and area() .

The member function ar ea() has been declared as virtual in the base
class because it is later redefined in each derived class. You can verify
if you want that if you remove this vi rt ual keyword from the
declaration of ar ea() within CPol ygon, and then you run the program
the result will be 0 for the three polygons instead of 20, 10 and 0. That
iIs because instead of calling the corresponding ar ea() function for
each object (CRect angl e: : area(), CTri angl e: : area() and

CPol ygon: : area() , respectively), CPol ygon: : area() will be called in
all cases since the calls are via a pointer whose type is CPol ygon*.

Therefore, what the vi rt ual keyword does is to allow a member of a
derived class with the same name as one in the base class to be
appropriately called from a pointer, and more precisely when the type
of the pointer is a pointer to the base class but is pointing to an object
of the derived class, as in the above example.

A class that declares or inherits a virtual function is called a
polymorphic class.

Note that despite of its virtuality, we have also been able to declare an
object of type CPol ygon and to call its own ar ea() function, which
always returns 0.

Abstract base classes

Abstract base classes are something very similar to our CPol ygon class
of our previous example. The only difference is that in our previous

VIJAYA COLLEGE Page 150

C++

example we have defined a valid ar ea() function with a minimal
functionality for objects that were of class CPol ygon (like the object
pol y), whereas in an abstract base classes we could leave that ar ea()
member function without implementation at all. This is done by
appending =0 (equal to zero) to the function declaration.

An abstract base CPolygon class could look like this:

/|l abstract class CPol ygon
cl ass CPol ygon {
pr ot ect ed:
int width, height;
publ i c:
void set _values (int a, int b)
{ width=a; height=b; }
virtual int area () =0;

H

Notice how we appended =0 tovirtual int area () instead of
specifying an implementation for the function. This type of function is
called a pure virtual function, and all classes that contain at least one
pure virtual function are abstract base classes.

The main difference between an abstract base class and a regular
polymorphic class is that because in abstract base classes at least one
of its members lacks implementation we cannot create instances
(objects) of it.

But a class that cannot instantiate objects is not totally useless. We
can create pointers to it and take advantage of all its polymorphic
abilities. Therefore a declaration like:

CPol ygon pol y;

would not be valid for the abstract base class we have just declared,
because tries to instantiate an object. Nevertheless, the following
pointers:

CPol ygon * ppol y1;
CPol ygon * ppol y2;

VIJAYA COLLEGE Page 151

C++

would be perfectly valid.

This is so for as long as CPol ygon includes a pure virtual function and
therefore it's an abstract base class. However, pointers to this abstract
base class can be used to point to objects of derived classes.

Here you have the complete example:
/| abstract base cl ass 20
#i ncl ude <i ostreanp 10
usi ng nanespace std;

cl ass CPol ygon {

pr ot ect ed:
int width, height;
publ i c:
voi d set_values (int a,
int b)

{ width=a; height=b; }
virtual int area (void)

:0’

1
cl ass CRectangl e: public
CPol ygon {

publ i c:

int area (void)
{ return (wdth *

hei ght); }

b
class CTriangle: public
CPol ygon {

publ i c:

int area (void)
{ return (wdth *
hei ght / 2); }

int main () {
CRect angl e rect;
Clriangle trgl;
CPol ygon * ppol yl ▭
CPol ygon * ppol y2 &rgl;
ppol y1->set val ues (4,5);
ppol y2- >set _val ues (4,5);

VIJAYA COLLEGE Page 152

C++

cout << ppolyl->area() <<
endl ;

cout << ppoly2->area() <<
endl ;

return O;
}

If you review the program you will notice that we refer to objects of
different but related classes using a unique type of pointer

(CPol ygon*). This can be tremendously useful. For example, now we
can create a function member of the abstract base class CPol ygon that
is able to print on screen the result of the ar ea() function even though
CPol ygon itself has no implementation for this function:

/1l pure virtual nenbers can
be cal |l ed

/1 fromthe abstract base
cl ass

#i ncl ude <i ostreanp

usi ng nanespace std;

cl ass CPol ygon {
pr ot ect ed:
int width, height;
publ i c:
voi d set _values (int a,
i nt b)
{ width=a; height=b; }
virtual int area (void)
:O’
void printarea (void)
{ cout << this->area()
<< endl; }

b

cl ass CRectangl e: public
CPol ygon {
publ i c:
int area (void)
{ return (width *
hei ght); }
Jit

cl ass CTriangle: public
CPol ygon {

20
10

VIJAYA COLLEGE

Page 153

C++

publ i c:
int area (void)
{ return (width *
hei ght / 2); }
Jit

int min () {
CRect angl e rect;
Clriangle trgl;
CPol ygon * ppol yl ▭
CPol ygon * ppol y2 &rgl;
ppol y1->set val ues (4,5);
ppol y2- >set _val ues (4,5);
ppol y1->printarea();
ppol y2->pri ntarea();
return O;

Virtual members and abstract classes grant C++ the polymorphic
characteristics that make object-oriented programming such a useful
instrument in big projects. Of course, we have seen very simple uses
of these features, but these features can be applied to arrays of
objects or dynamically allocated objects.

Let's end with the same example again, but this time with objects that
are dynamically allocated:

/'l dynam c all ocation and 20
pol ynor phi sm 10
#i ncl ude <i ostreanp
usi ng nanespace std;

cl ass CPol ygon {

pr ot ect ed:
int width, height;
publ i c:
voi d set _values (int a,
int b)

{ width=a; height=b; }
virtual int area (void)
:O,
void printarea (void)
{ cout << this->area()
<< endl; }

s

VIJAYA COLLEGE Page 154

C++

cl ass CRectangl e: public
CPol ygon {
publ i c:
int area (void)
{ return (wdth *
hei ght); }
3

cl ass CTriangle: public
CPol ygon {
publ i c:
int area (void)
{ return (wdth *
hei ght / 2); }
1

int main () {

CPol ygon * ppolyl = new
CRect angl e;

CPol ygon * ppoly2 = new
CTri angl e;

ppol y1->set val ues (4,5);
ppol y2- >set _val ues (4,5);
ppol y1->printarea();

ppol y2->printarea();

del ete ppol y1;

del ete ppol y2;

return O;

Notice that the ppol y pointers:

CPol ygon * ppolyl = new CRectangl e
CPol ygon * ppoly2 = new CTri angl e;

are declared being of type pointer to CPol ygon but the objects
dynamically allocated have been declared having the derived class
type directly.

VIJAYA COLLEGE Page 155

C++

Templates

Function templates

Function templates are special functions that can operate with generic
types. This allows us to create a function template whose functionality
can be adapted to more than one type or class without repeating the
entire code for each type.

In C++ this can be achieved using template parameters. A template
parameter is a special kind of parameter that can be used to pass a
type as argument: just like regular function parameters can be used to
pass values to a function, template parameters allow to pass also
types to a function. These function templates can use these
parameters as if they were any other regular type.

The format for declaring function templates with type parameters is:

tenplate <class identifier> function_decl arati on;
tenpl ate <typenane identifier> function_declaration;

The only difference between both prototypes is the use of either the
keyword cl ass or the keyword t ypenane. Its use is indistinct, since
both expressions have exactly the same meaning and behave exactly
the same way.

For example, to create a template function that returns the greater
one of two objects we could use:

tenpl ate <cl ass nyType>

nyType Get Max (nyType a, myType b) {
return (a>b?a:b);

}

Here we have created a template function with nyType as its template
parameter. This template parameter represents a type that has not yet
been specified, but that can be used in the template function as if it
were a regular type. As you can see, the function template Get Max
returns the greater of two parameters of this still-undefined type.

To use this function template we use the following format for the
function call:

VIJAYA COLLEGE Page 156

C++

functi on_nane <type> (paraneters);

For example, to call Get Max to compare two integer values of type i nt
we can write:

int Xx,vy;
Get Max <int> (Xx,Yy);

When the compiler encounters this call to a template function, it uses
the template to automatically generate a function replacing each
appearance of nyType by the type passed as the actual template
parameter (i nt in this case) and then calls it. This process is
automatically performed by the compiler and is invisible to the
programmer.

Here is the entire example:

/1l function tenplate 6
#i ncl ude <i ostreanp 10
usi ng nanespace std;

tenpl ate <class T>

T GetMax (T a, T b) {
T result;
result = (a>b)? a : b;
return (result);

}

int min () {
int i=5 j=6, k;
l ong | =10, m=5, n;
k=Get Max<i nt>(i,]);
n=Cet Max<l ong>(l, m;
cout << k << endl;
cout << n << endl;
return O;

In this case, we have used T as the template parameter name instead
of nyType because it is shorter and in fact is a very common template
parameter name. But you can use any identifier you like.

VIJAYA COLLEGE Page 157

C++

In the example above we used the function template Get Max() twice.
The first time with arguments of type i nt and the second one with
arguments of type | ong. The compiler has instantiated and then called
each time the appropriate version of the function.

As you can see, the type T is used within the Get Max() template
function even to declare new objects of that type:

T resul t;

Therefore, resul t will be an object of the same type as the
parameters a and b when the function template is instantiated with a
specific type.

In this specific case where the generic type T is used as a parameter
for Get Max the compiler can find out automatically which data type has
to instantiate without having to explicitly specify it within angle
brackets (like we have done before specifying <i nt > and <l ong>). So
we could have written instead:

int i,j;
Get Max (i,]);

Since both i and | are of type i nt, and the compiler can automatically
find out that the template parameter can only be i nt . This implicit
method produces exactly the same result:

/1l function tenplate I 6
#i ncl ude <i ostreanp 10
usi ng nanespace std;

tenpl ate <class T>

T GetMax (T a, T b) {
return (a>b?a:b);

}

int main () {
int i=5 j=6, k;
l ong | =10, n¥5, n;
k=Get Max(i,j);
n=Get Max(1, m;
cout << k << endl;

VIJAYA COLLEGE Page 158

C++

cout << n << endl;
return O;

}

Notice how in this case, we called our function template Get Max()
without explicitly specifying the type between angle-brackets <>. The
compiler automatically determines what type is needed on each call.

Because our template function includes only one template parameter
(cl ass T) and the function template itself accepts two parameters,
both of this T type, we cannot call our function template with two
objects of different types as arguments:

int i;
| ong | ;
k = GetMax (i,l);

This would not be correct, since our Get Max function template expects
two arguments of the same type, and in this call to it we use objects of
two different types.

We can also define function templates that accept more than one type
parameter, simply by specifying more template parameters between
the angle brackets. For example:

tenplate <class T, class U>

T GtMn (T a, Ub) {
return (a<b?a:b);

}

In this case, our function template Get M n() accepts two parameters
of different types and returns an object of the same type as the first
parameter (T) that is passed. For example, after that declaration we
could call Get M n() with:

int i,j;
| ong | ;
i = GetMn<int,long> (j,!);

VIJAYA COLLEGE Page 159

C++

or simply:

i =GtMn (j,l);

even though j and | have different types, since the compiler can
determine the appropriate instantiation anyway.

Class templates

We also have the possibility to write class templates, so that a class
can have members that use template parameters as types. For
example:

tenpl ate <class T>
class nypair {
T val ues [2];
publ i c:
nmypair (T first, T second)

val ues[0] =first; val ues[1] =second;
}
ik

The class that we have just defined serves to store two elements of
any valid type. For example, if we wanted to declare an object of this
class to store two integer values of type i nt with the values 115 and
36 we would write:

nypai r <i nt > myobj ect (115, 36);

this same class would also be used to create an object to store any
other type:

nypai r <doubl e> nyfloats (3.0, 2.18);

The only member function in the previous class template has been
defined inline within the class declaration itself. In case that we define
a function member outside the declaration of the class template, we
must always precede that definition with the tenpl ate <... > prefix:

VIJAYA COLLEGE Page 160

C++

/1 class tenplates 100
#i ncl ude <i ostreanp
usi ng nanespace std;

tenpl ate <cl ass T>
class nypair {

T a, b;
publ i c:
nmypair (T first, T
second)
{a=first; b=second;}
T getmax ();

H

tenpl ate <class T>
T nypair<T>::getmax ()

{
T retval ;
retval = a>b? a : b;
return retval;

}

int min () {
nypair <int> nyobject (100,
75);
cout << nyobj ect. get max();
return O;

}

Notice the syntax of the definition of member function getmax:

tenpl ate <class T>
T nypair<T>::getmax ()

Confused by so many T's? There are three T's in this declaration: The
first one is the template parameter. The second T refers to the type
returned by the function. And the third T (the one between angle
brackets) is also a requirement: It specifies that this function's
template parameter is also the class template parameter.

Template specialization

If we want to define a different implementation for a template when a
specific type is passed as template parameter, we can declare a

VIJAYA COLLEGE Page 161

C++

specialization of that template.

For example, let's suppose that we have a very simple class called
mycont ai ner that can store one element of any type and that it has
just one member function called i ncr ease, which increases its value.
But we find that when it stores an element of type char it would be
more convenient to have a completely different implementation with a
function member upper case, so we decide to declare a class template
specialization for that type:

/| tenpl ate specialization 8
#i ncl ude <i ostreanr J
usi ng nanespace std;

/1l class tenpl ate:
tenpl ate <class T>
cl ass mycont ai ner {

T el enent;

publ i c:

mycont ai ner (T arg)
{el enent =ar g; }

T increase () {return
++el enent ; }

H

/'l class tenplate
speci al i zat i on:
tenplate <>
cl ass nycont ai ner <char> {
char el enment;
publ i c:
mycont ai ner (char arg)
{el enent =ar g; }
char uppercase ()

{
i f

((element>="a") &&(el enent<="2"))
el enent+="A -'a';
return el enent;
}
};

int min () {
nmycont ai ner<int> nyint (7);
nmycont ai ner <char > mychar

(i)

VIJAYA COLLEGE Page 162

C++

cout << nyint.increase() <<
endl ;

cout << nychar. uppercase() <<
endl ;

return O;

}

This is the syntax used in the class template specialization:

tenpl ate <> class nycontainer <char> { ... };

First of all, notice that we precede the class template name with an
emptyt enpl at e<> parameter list. This is to explicitly declare it as a
template specialization.

But more important than this prefix, is the <char > specialization
parameter after the class template name. This specialization
parameter itself identifies the type for which we are going to declare a
template class specialization (char). Notice the differences between
the generic class template and the specialization:

tenpl ate <class T> class nycontainer { ... };
tenpl ate <> class nycontainer <char> { ... };

The first line is the generic template, and the second one is the
specialization.

When we declare specializations for a template class, we must also
define all its members, even those exactly equal to the generic
template class, because there is no "inheritance"” of members from the
generic template to the specialization.

Non-type parameters for templates

Besides the template arguments that are preceded by the cl ass or

t ypenanme keywords , which represent types, templates can also have
regular typed parameters, similar to those found in functions. As an
example, have a look at this class template that is used to contain
sequences of elements:

/'l sequence tenplate 100

VIJAYA COLLEGE Page 163

C++

#i ncl ude <i ostreanp 3.1416
usi ng nanespace std;

tenplate <class T, int N>
cl ass nysequence {
T menbl ock [N];

publ i c:
voi d setnmenber (int x, T
val ue) ;
T getnenber (int x);
1
tenplate <class T, int N>
voi d

nmysequence<T, N>: : set nenber

(int x, T value) {
menbl ock[x] =val ue;

}

tenplate <class T, int N>
T mysequence<T, N>: : get menber
(int x) {

return menbl ock[x] ;
}

int min () {
mysequence <int, 5> nyints;
nmysequence <doubl e, 5>
nyfl oats;
nyi nts. set nenber (0, 100);
nyf | oats. set nenber
(3,3.1416);
cout << nyints. get nenber (0)
<< '\n';
cout <<
myf | oat s. get nenber (3) <<
"\n';
return O;
}

It is also possible to set default values or types for class template
parameters. For example, if the previous class template definition had
been:

tenpl ate <cl ass T=char, int N=10> cl ass nysequence {..};

VIJAYA COLLEGE Page 164

C++

We could create objects using the default template parameters by
declaring:

mysequence<> nyseq;

Which would be equivalent to:

mysequence<char, 10> nyseq;

Templates and multiple-file projects

From the point of view of the compiler, templates are not normal
functions or classes. They are compiled on demand, meaning that the
code of a template function is not compiled until an instantiation with
specific template arguments is required. At that moment, when an
instantiation is required, the compiler generates a function specifically
for those arguments from the template.

When projects grow it is usual to split the code of a program in
different source code files. In these cases, the interface and
implementation are generally separated. Taking a library of functions
as example, the interface generally consists of declarations of the
prototypes of all the functions that can be called. These are generally
declared in a "header file” with a .h extension, and the implementation
(the definition of these functions) is in an independent file with c++
code.

Because templates are compiled when required, this forces a
restriction for multi-file projects: the implementation (definition) of a
template class or function must be in the same file as its declaration.
That means that we cannot separate the interface in a separate header
file, and that we must include both interface and implementation in
any file that uses the templates.

Since no code is generated until a template is instantiated when
required, compilers are prepared to allow the inclusion more than once
of the same template file with both declarations and definitions in a
project without generating linkage errors.

VIJAYA COLLEGE Page 165

C++

Namespaces

Namespaces allow to group entities like classes, objects and functions
under a name. This way the global scope can be divided in "sub-
scopes”, each one with its own name.

The format of namespaces is:

namespace identifier

{

entities

}

Where i denti fi er is any valid identifier and entiti es is the set of
classes, objects and functions that are included within the namespace.
For example:

namespace nyNanespace

{
}

int a, b;

In this case, the variables a and b are normal variables declared within
a namespace called nyNanespace. In order to access these variables
from outside the myNamespace namespace we have to use the scope
operator : : . For example, to access the previous variables from
outside nyNanespace we can write:

nyNanmespace: : a
nmyNanmespace: : b

VIJAYA COLLEGE Page 166

C++

The functionality of namespaces is especially useful in the case that
there is a possibility that a global object or function uses the same
identifier as another one, causing redefinition errors. For example:

/| namespaces 5
#i ncl ude <i ostreanp 3.1416
usi ng nanespace std;

nanmespace first

{
int var = 5;
}
nanmespace second
{
doubl e var = 3. 1416;
}

int min () {
cout << first::var << endl;
cout << second::var <<

endl ;
return O,

}

In this case, there are two global variables with the same name: var.
One is defined within the namespace fi r st and the other one in
second. No redefinition errors happen thanks to namespaces.

using
The keyword usi ng is used to introduce a name from a namespace
into the current declarative region. For example:

/| using 5
#i ncl ude <i ostreanp 2.7183
usi ng nanespace std; 10
3.1416

nanmespace first
{

int x = 5;

int y = 10;
}

VIJAYA COLLEGE Page 167

C++

namespace second

{

3. 1416;
2.7183;

doubl e x
doubl e y

}

int main () {
using first::x;
usi ng second: :y;
cout << x << endl;
cout << y << endl;
cout << first::y << endl;
cout << second::x << endl;
return O;

Notice how in this code, x (without any name qualifier) refers to
first::x whereas y refers to second: : y, exactly as our usi ng
declarations have specified. We still have accesstofirst::y and
second: : x using their fully qualified names.

The keyword using can also be used as a directive to introduce an
entire namespace:

/| using 5
#i ncl ude <i ostreanp 10
usi ng nanespace std; 3.1416
2.7183
nanmespace first
{
int x = 5;
int y = 10;
}
nanespace second
doubl e x = 3. 1416;
double y = 2.7183;

}

int main () {
usi ng nanespace first;
cout << x << endl;
cout << y << endl;

VIJAYA COLLEGE Page 168

C++

cout << second::x << endl;
cout << second::y << endl;
return O;

}

In this case, since we have declared that we were usi ng nanespace
first, all direct uses of x and y without name qualifiers were referring
to their declarations in nanespace first.

usi ng and usi ng nanespace have validity only in the same block in
which they are stated or in the entire code if they are used directly in
the global scope. For example, if we had the intention to first use the
objects of one namespace and then those of another one, we could do
something like:

/| using nanmespace exanpl e 5
#i ncl ude <i ostreanp 3.1416
usi ng nanespace std;

namespace first

{

int x = 5;

}

nanespace second

doubl e x = 3. 1416;
}

int main () {

usi ng nanespace first;
cout << x << endl;

usi ng nanespace second;
cout << X << endl;

}

return O;

}

VIJAYA COLLEGE Page 169

C++

Namespace alias

We can declare alternate names for existing namespaces according to
the following format:

namespace new_nane = current_nane;

Namespace std

All the files in the C++ standard library declare all of its entities within
the st d namespace. That is why we have generally included the usi ng
nanmespace std; statement in all programs that used any entity
defined in i ost ream

Exceptions

Exceptions provide a way to react to exceptional circumstances (like
runtime errors) in our program by transferring control to special
functions called handlers.

To catch exceptions we must place a portion of code under exception
inspection. This is done by enclosing that portion of code in a try block.
When an exceptional circumstance arises within that block, an
exception is thrown that transfers the control to the exception handler.
If no exception is thrown, the code continues normally and all handlers
are ignored.

A exception is thrown by using the throw keyword from inside the try
block. Exception handlers are declared with the keyword cat ch, which
must be placed immediately after the try block:

/| exceptions An exception occurred.
#i ncl ude <i ostreanp Exception Nr. 20
usi ng nanespace std;

int main () {
try

VIJAYA COLLEGE Page 170

C++

t hrow 20;
} |
catch (int e)
{
cout << "An exception
occurred. Exception Nr. " <<
e << endl;
}
return O;

}

The code under exception handling is enclosed in atry block. In this
example this code simply throws an exception:

t hr ow 20;

A throw expression accepts one parameter (in this case the integer
value 20), which is passed as an argument to the exception handler.

The exception handler is declared with the cat ch keyword. As you can
see, it follows immediately the closing brace of the try block. The
catch format is similar to a regular function that always has at least
one parameter. The type of this parameter is very important, since the
type of the argument passed by the throw expression is checked
against it, and only in the case they match, the exception is caught.

We can chain multiple handlers (catch expressions), each one with a
different parameter type. Only the handler that matches its type with
the argument specified in the throw statement is executed.

If we use an ellipsis (. . .) as the parameter of cat ch, that handler will
catch any exception no matter what the type of the t hr ow exception
is. This can be used as a default handler that catches all exceptions
not caught by other handlers if it is specified at last:

try {
[/ code here

}

catch (int param { cout << "int exception"; }

VIJAYA COLLEGE Page 171

C++

catch (char paranm) { cout << "char exception"; }
catch (...) { cout << "default exception"; }

In this case the last handler would catch any exception thrown with
any parameter that is neither an i nt nor a char.

After an exception has been handled the program execution resumes
after the try- cat ch block, not after the t hr ow statement!.

It is also possible to nest try-cat ch blocks within more external try
blocks. In these cases, we have the possibility that an internal cat ch
block forwards the exception to its external level. This is done with the
expression t hr ow; with no arguments. For example:

try {
try {
[/ code here

catch (int n) {
t hr ow;
}

}
catch (...) {

cout << "Exception occurred";
}

Exception specifications

When declaring a function we can limit the exception type it might
directly or indirectly throw by appending a t hr ow suffix to the function
declaration:

fl oat myfunction (char paran) throw (int);

This declares a function called nyf uncti on which takes one agument
of type char and returns an element of type f| oat . The only exception
that this function might throw is an exception of type i nt . If it throws
an exception with a different type, either directly or indirectly, it
cannot be caught by a regular i nt -type handler.

VIJAYA COLLEGE Page 172

C++

If this t hr ow specifier is left empty with no type, this means the
function is not allowed to throw exceptions. Functions with no t hr ow
specifier (regular functions) are allowed to throw exceptions with any
type:

int nyfunction (int paranm) throw(); // no exceptions
al | oned

int myfunction (int param; /1 all exceptions
al | owed

Standard exceptions

The C++ Standard library provides a base class specifically designed
to declare objects to be thrown as exceptions. It is called excepti on
and is defined in the <except i on> header file under the nanespace

st d. This class has the usual default and copy constructors, operators
and destructors, plus an additional virtual member function called what
that returns a null-terminated character sequence (char *) and that
can be overwritten in derived classes to contain some sort of
description of the exception.

/'l standard exceptions My excepti on happened.
#i ncl ude <i ostreanp
#i ncl ude <exception>
usi ng nanespace std;

cl ass nyexception: public
exception
{

virtual const char* what ()
const throw()

{
return "My exception
happened”;
}
} nyex;
int main () {
try
{
t hr ow nyex;
}
catch (exception& e)
{
cout << e.what() << endl;
}

VIJAYA COLLEGE Page 173

C++

return O;

}

We have placed a handler that catches exception objects by reference
(notice the ampersand & after the type), therefore this catches also
classes derived from excepti on, like our nyex object of class
myexcepti on.

All exceptions thrown by components of the C++ Standard library
throw exceptions derived from this st d: : excepti on class. These are:

exception description
bad_alloc thrown by new on allocation failure
bad_cast thrown by dynamic_cast when fails with a referenced
type
bad_exception thrown when an exception type doesn't match any
catch
bad_typeid thrown by typeid

ios_base::failurejthrown by functions in the iostream library

For example, if we use the operator new and the memory cannot be
allocated, an exception of type bad_al | oc is thrown:

try

{
int * nyarray= new i nt[1000];

catch (bad_all oc&)
{

}

cout << "Error allocating nenory." << endl;

It is recommended to include all dynamic memory allocations within a
try block that catches this type of exception to perform a clean action
instead of an abnormal program termination, which is what happens
when this type of exception is thrown and not caught. If you want to
force a bad_al | oc exception to see it in action, you can try to allocate
a huge array; On my system, trying to allocate 1 billion i nt s threw a
bad_al | oc exception.

Because bad_al | oc is derived from the standard base class

VIJAYA COLLEGE Page 174

C++

excepti on, we can handle that same exception by catching references
to the excepti on class:

/'l bad_all oc standard
exception

#i ncl ude <i ostreanp
#i ncl ude <exception>
usi ng nanespace std;

int main () {
try
{
int* myarray= new
i nt[1000];
}

catch (exception& e)

{

cout << "Standard
exception: " << e.what() <<
endl ;

}

return O;

}

Type Casting

Converting an expression of a given type into another type is known
as type-casting. We have already seen some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are
automatically performed when a value is copied to a compatible type.
For example:

short a=2000;
int b;
b=a;

Here, the value of a has been promoted from short to i nt and we
have not had to specify any type-casting operator. This is known as a
standard conversion. Standard conversions affect fundamental data
types, and allow conversions such as the conversions between

VIJAYA COLLEGE Page 175

C++

numerical types (short toint,int tofloat, double toint...), toor
from bool , and some pointer conversions. Some of these conversions
may imply a loss of precision, which the compiler can signal with a
warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions,
which affect classes that include specific constructors or operator
functions to perform conversions. For example:

class A {};
class B{ public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of cl ass A and
cl ass B, because B has a constructor that takes an object of class A
as parameter. Therefore implicit conversions from A to B are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those
that imply a different interpretation of the value, require an explicit
conversion. We have already seen two notations for explicit type
conversion: functional and c-like casting:

short a=2000;

int b;

b (int) a; /'l c-like cast notation
b int (a); /'l functional notation

The functionality of these explicit conversion operators is enough for
most needs with fundamental data types. However, these operators
can be applied indiscriminately on classes and pointers to classes,
which can lead to code that while being syntactically correct can cause
runtime errors. For example, the following code is syntactically
correct:

/1l class type-casting
#i ncl ude <i ostreanr
usi ng nanespace std,

cl ass CDummy {

VIJAYA COLLEGE Page 176

C++

float i,j;
1
cl ass CAddition {
int X,vy;
publ i c:

CAddition (int a, int
b) { x=a; y=b; }

int result() { return
X+y; }
1

int main () {
CDunmy d;
CAddi tion * padd;
padd = (CAddition*) &d;
cout << padd->result();
return O;

The program declares a pointer to CAddi ti on, but then it assigns to it
a reference to an object of another incompatible type using explicit
type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any
other pointer type, independently of the types they point to. The
subsequent call to member resul t will produce either a run-time error
or a unexpected result.

In order to control these types of conversions between classes, we
have four specific casting operators: dynam c_cast,
reinterpret_cast, static_cast and const _cast. Their format is to
follow the new type enclosed between angle-brackets (<>) and
immediately after, the expression to be converted between
parentheses.

dynam c_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const _cast <new_type> (expression)

VIJAYA COLLEGE Page 177

C++

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new type (expression)

but each one with its own special characteristics:

dynamic_cast
dynam c_cast can be used only with pointers and references to

objects. Its purpose is to ensure that the result of the type conversion
is a valid complete object of the requested class.

Therefore, dynam c_cast is always successful when we cast a class to
one of its base classes:

cl ass CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynam c_cast <CBase*>(&d) ; /'l ok: derived-to-base
pd = dynam c_cast <CDerived*>(&b); // wong: base-to-
deri ved

The second conversion in this piece of code would produce a
compilation error since base-to-derived conversions are not allowed
with dynam c¢_cast unless the base class is polymorphic.

When a class is polymorphic, dynam c_cast performs a special
checking during runtime to ensure that the expression yields a valid
complete object of the requested class:

/1 dynam c_cast Nul I poi nter on second type-
#i ncl ude <i ostreanp cast

#i ncl ude <exception>

usi ng nanespace std;

cl ass CBase { virtual void

dumy() {} };
cl ass CDerived: public CBase

{ int a; };

VIJAYA COLLEGE Page 178

C++

int main () {

try {
CBase * pba = new
CDer i ved;
CBase * pbb = new CBase;

CDerived * pd;

pd =
dynam c_cast <CDer i ved* >(pba) ;
if (pd==0) cout << "Null
pointer on first type-cast”
<< endl;

pd =
dynam c_cast <CDer i ved* >(pbb) ;
if (pd==0) cout << "Null
poi nter on second type-cast”
<< endl;

} catch (exception& e)
{cout << "Exception: " <<
e.what ();}

return O;

}

Compatibility note: dynam c_cast requires the Run-Time Type
Information (RTTI) to keep track of dynamic types. Some compilers
support this feature as an option which is disabled by default. This
must be enabled for runtime type checking using dynam c_cast to
work properly.

The code tries to perform two dynamic casts from pointer objects of
type CBase* (pba and pbb) to a pointer object of type CDeri ved*, but
only the first one is successful. Notice their respective initializations:

new CDeri ved;
new CBase;

CBase * pba
CBase * pbb

Even though both are pointers of type CBase*, pba points to an object
of type CDeri ved, while pbb points to an object of type CBase. Thus,
when their respective type-castings are performed using

VIJAYA COLLEGE Page 179

C++

dynam c_cast, pba is pointing to a full object of class CDeri ved,
whereas pbb is pointing to an object of class CBase, which is an
incomplete object of class CDeri ved.

When dynam c_cast cannot cast a pointer because it is not a complete
object of the required class -as in the second conversion in the
previous example- it returns a null pointer to indicate the failure. If
dynam c_cast is used to convert to a reference type and the
conversion is not possible, an exception of type bad_cast is thrown
instead.

dynam c_cast can also cast null pointers even between pointers to
unrelated classes, and can also cast pointers of any type to void
pointers (voi d*).

static_cast

stati c_cast can perform conversions between pointers to related
classes, not only from the derived class to its base, but also from a
base class to its derived. This ensures that at least the classes are
compatible if the proper object is converted, but no safety check is
performed during runtime to check if the object being converted is in
fact a full object of the destination type. Therefore, it is up to the
programmer to ensure that the conversion is safe. On the other side,
the overhead of the type-safety checks of dynam c_cast is avoided.

cl ass CBase {};

cl ass CDerived: public CBase {};

CBase * a = new CBase;

CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an incomplete object of
the class and could lead to runtime errors if dereferenced.

stati c_cast can also be used to perform any other non-pointer
conversion that could also be performed implicitly, like for example
standard conversion between fundamental types:

doubl e d=3.14159265;
int i = static_cast<int>(d);

VIJAYA COLLEGE Page 180

C++

Or any conversion between classes with explicit constructors or
operator functions as described in "implicit conversions™ above.

reinterpret_cast

rei nterpret_cast converts any pointer type to any other pointer
type, even of unrelated classes. The operation result is a simple binary
copy of the value from one pointer to the other. All pointer conversions
are allowed: neither the content pointed nor the pointer type itself is
checked.

It can also cast pointers to or from integer types. The format in which
this integer value represents a pointer is platform-specific. The only
guarantee is that a pointer cast to an integer type large enough to
fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by r ei nt er pret _cast but not
by st ati c_cast have no specific uses in C++ are low-level operations,
whose interpretation results in code which is generally system-specific,
and thus non-portable. For example:

class A {};

class B {};

A* a new A,

B* b reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since
now we have a pointer that points to an object of an incompatible
class, and thus dereferencing it is unsafe.

const_cast

This type of casting manipulates the constness of an object, either to
be set or to be removed. For example, in order to pass a const
argument to a function that expects a non-constant parameter:

/| const_cast sanpl e text
#i ncl ude <i ostreanp
usi ng nanespace std;

void print (char * str)

{

cout << str << endl;

}

VIJAYA COLLEGE Page 181

C++

int min () {

const char * ¢ = "sanple
text";

print (const_cast<char *>

(c))

return O;

}

typeid
t ypei d allows to check the type of an expression:

typei d (expression)

This operator returns a reference to a constant object of type

t ype_i nf o that is defined in the standard header file <t ypei nf o>. This
returned value can be compared with another one using operators ==
and ! = or can serve to obtain a null-terminated character sequence
representing the data type or class name by using its nane() member.

/1 typeid a and b are of different
#i ncl ude <i ostreanp t ypes:

#i ncl ude <typei nfo> ais: int *

usi ng nanespace std; b is: int

int main () {
int * a,b;
a=0; b=0;
if (typeid(a) !'= typeid(b))
{

cout << "a and b are of
different types:\n";

cout << "a is: " <<
typeid(a).nanme() << '\n';

cout << "b is: " <<
typei d(b).name() << '\n';

return O;

}

When t ypei d is applied to classes t ypei d uses the RTTI to keep track
of the type of dynamic objects. When typeid is applied to an

VIJAYA COLLEGE Page 182

C++

expression whose type is a polymorphic class, the result is the type of
the most derived complete object:

/] typeid, polynorphic class a is: class CBase *

#i ncl ude <i ostreanp b is: class CBase *
#1 ncl ude <typei nfo> *a is: class CBase
#i ncl ude <exception> *b is: class CDerived

usi ng nanespace std;

cl ass CBase { virtual void

fFO{} 1}
class CDerived : public CBase
{};
int main () {
try {

CBase* a = new CBase;
CBase* b = new CDeri ved;
cout << "a is: " <<
typeid(a).name() << '\n';
cout << "b is: " <<
typei d(b).name() << '\n';

cout << "*a is: " <<
typeid(*a).name() << "\n';
cout << "*b is: " <<

typeid(*b).name() << "\n';
} catch (exception& e) {
cout << "Exception: " <<
e.what () << endl; }
return O;

}

Notice how the type that t ypei d considers for pointers is the pointer
type itself (both a and b are of type cl ass CBase *). However, when
t ypei d is applied to objects (like *a and *b) t ypei d yields their
dynamic type (i.e. the type of their most derived complete object).

If the type t ypei d evaluates is a pointer preceded by the dereference
operator (*), and this pointer has a null value, t ypei d throws a
bad_t ypei d exception.

Preprocessor directives

VIJAYA COLLEGE Page 183

C++

Preprocessor directives are lines included in the code of our programs
that are not program statements but directives for the preprocessor.
These lines are always preceded by a hash sign (#). The preprocessor
is executed before the actual compilation of code begins, therefore the
preprocessor digests all these directives before any code is generated
by the statements.

These preprocessor directives extend only across a single line of code.
As soon as a newline character is found, the preprocessor directive is
considered to end. No semicolon (;) is expected at the end of a
preprocessor directive. The only way a preprocessor directive can
extend through more than one line is by preceding the newline
character at the end of the line by a backslash (\).

macro definitions (#define, #undef)
To define preprocessor macros we can use #defi ne. Its format is:

#define identifier replacenent

When the preprocessor encounters this directive, it replaces any
occurrence of i denti fi er in the rest of the code by r epl acenent . This
repl acenent can be an expression, a statement, a block or simply
anything. The preprocessor does not understand C++, it simply
replaces any occurrence of i denti fi er by repl acenent.

#defi ne TABLE SI ZE 100
int tabl el[TABLE_SI ZE] ;
int tabl e2[TABLE_SI ZE] ;

After the preprocessor has replaced TABLE S| ZE, the code becomes
equivalent to:

int tabl el[100];
int tabl e2[100];

This use of #define as constant definer is already known by us from
previous tutorials, but #def i ne can work also with parameters to
define function macros:

#defi ne get max(a, b) a>b?a: b

VIJAYA COLLEGE Page 184

C++

This would replace any occurrence of get max followed by two
arguments by the replacement expression, but also replacing each
argument by its identifier, exactly as you would expect if it was a
function:

/! function nacro 5
#i ncl ude <i ostreane 7
usi ng nanespace std;

#def i ne get max(a, b)

((a)>(b)?(a): (b))
int main()

{
I nt x=5, v,
y= get max(Xx, 2);
cout << y << endl;
cout << getmax(7,x) <<
endl ;
return O;
}

Defined macros are not affected by block structure. A macro lasts until
it is undefined with the #undef preprocessor directive:

#defi ne TABLE SI ZE 100
int tabl el TABLE SI ZE];
#undef TABLE_SI ZE

#defi ne TABLE SI ZE 200
i nt tabl e2[TABLE SI ZE] ;

This would generate the same code as:

int tabl el[100];
i nt tabl e2[200];

Function macro definitions accept two special operators (# and ##) in
the replacement sequence:
If the operator # is used before a parameter is used in the replacement

VIJAYA COLLEGE Page 185

C++

sequence, that parameter is replaced by a string literal (as if it were
enclosed between double quotes)

#define str(x) #x
cout << str(test);

This would be translated into:

cout << "test";

The operator ## concatenates two arguments leaving no blank spaces
between them:

#define glue(a,b) a ## b
gl ue(c,out) << "test";

This would also be translated into:

cout << "test";

Because preprocessor replacements happen before any C++ syntax
check, macro definitions can be a tricky feature, but be careful: code
that relies heavily on complicated macros may result obscure to other
programmers, since the syntax they expect is on many occasions
different from the regular expressions programmers expect in C++.

Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else and
#elif)

These directives allow to include or discard part of the code of a
program if a certain condition is met.

#i f def allows a section of a program to be compiled only if the macro
that is specified as the parameter has been defined, no matter which
its value is. For example:

VIJAYA COLLEGE Page 186

C++

#i f def TABLE_SI ZE
i nt tabl e[TABLE_SI ZE] ;
#endi f

In this case, the line of code i nt tabl e[TABLE_SI ZE] ; is only
compiled if TABLE_SI ZE was previously defined with #def i ne,
independently of its value. If it was not defined, that line will not be
included in the program compilation.

#i f ndef serves for the exact opposite: the code between #i f ndef and
#endi f directives is only compiled if the specified identifier has not
been previously defined. For example:

#i f ndef TABLE_SI ZE
#define TABLE_SI ZE 100
#endi f

i nt tabl e[TABLE_SI ZE] ;

In this case, if when arriving at this piece of code, the TABLE_SI ZE
macro has not been defined yet, it would be defined to a value of 100.
If it already existed it would keep its previous value since the #defi ne
directive would not be executed.

The #i f, #el se and #el i f (i.e., "else if'") directives serve to specify
some condition to be met in order for the portion of code they
surround to be compiled. The condition that follows #i f or #el i f can
only evaluate constant expressions, including macro expressions. For
example:

#i f TABLE_SI ZE>200
#undef TABLE_SI ZE
#define TABLE_SI ZE 200

#el i f TABLE_SI ZE<50
#undef TABLE_SI ZE
#defi ne TABLE_SI ZE 50

#el se

#undef TABLE_SI ZE
#defi ne TABLE _SI ZE 100
#endi f

VIJAYA COLLEGE Page 187

C++

i nt tabl e[TABLE_SI ZE] ;

Notice how the whole structure of #i f , #el i f and #el se chained
directives ends with #endi f .

The behavior of #i f def and #i f ndef can also be achieved by using the
special operators defi ned and ! def i ned respectively in any #i f or
#el i f directive:

#i f !defined TABLE SI ZE

#defi ne TABLE SI ZE 100

#elif defined ARRAY_SIZE
#defi ne TABLE_SI ZE ARRAY_SI ZE
i nt tabl e[TABLE_SI ZE] ;

Line control (#line)

When we compile a program and some error happen during the
compiling process, the compiler shows an error message with
references to the name of the file where the error happened and a line
number, so it is easier to find the code generating the error.

The #l i ne directive allows us to control both things, the line numbers
within the code files as well as the file name that we want that appears
when an error takes place. Its format is:

#l i ne nunber "fil ename"

Where nunber is the new line number that will be assigned to the next
code line. The line numbers of successive lines will be increased one by
one from this point on.

"filenane" is an optional parameter that allows to redefine the file
name that will be shown. For example:

#l i ne 20 "assigning vari abl e"
int a?;

This code will generate an error that will be shown as error in file
"assi gning vari abl e", line 20.

VIJAYA COLLEGE Page 188

C++

Error directive (#error)

This directive aborts the compilation process when it is found,
generating a compilation the error that can be specified as its
parameter:

#1 fndef __ cpl uspl us
#error A C++ conpiler is required!
#endi f

This example aborts the compilation process if the macro name
__cpl uspl us is not defined (this macro name is defined by default in
all C++ compilers).

Source file inclusion (#include)

This directive has also been used assiduously in other sections of this
tutorial. When the preprocessor finds an #i ncl ude directive it replaces
it by the entire content of the specified file. There are two ways to
specify a file to be included:

#i ncl ude "fil e"
#i ncl ude <fil e>

The only difference between both expressions is the places
(directories) where the compiler is going to look for the file. In the first
case where the file name is specified between double-quotes, the file is
searched first in the same directory that includes the file containing
the directive. In case that it is not there, the compiler searches the file
in the default directories where it is configured to look for the standard
header files.

If the file name is enclosed between angle-brackets <> the file is
searched directly where the compiler is configured to look for the
standard header files. Therefore, standard header files are usually
included in angle-brackets, while other specific header files are
included using quotes.

Pragma directive (#pragma)

This directive is used to specify diverse options to the compiler. These
options are specific for the platform and the compiler you use. Consult
the manual or the reference of your compiler for more information on

the possible parameters that you can define with #pr agna.

VIJAYA COLLEGE Page 189

C++

If the compiler does not support a specific argument for #pr agma, it is
ignored - no error is generated.

Predefined macro names
The following macro names are defined at any time:

macro value
Integer value representing the current line in the source
LINE . .)
— — |code file being compiled.
FILE A string literal containing the presumed name of the
— — |source file being compiled.
A string literal in the form "Mmm dd yyyy" containing the
DATE .) o
— — |date in which the compilation process began.
TIME A string literal in the form "hh:mm:ss" containing the time

at which the compilation process began.

An integer value. All C++ compilers have this constant
defined to some value. If the compiler is fully compliant
| cplusplusjwith the C++ standard its value is equal or greater than
199711L depending on the version of the standard they
comply.

For example:

/| standard nmacro nanes This is the |ine nunber 7 of
#i ncl ude <i ostreanp file
usi ng nanespace std; / home/ j ay/ st dmacr onanes. cpp
Its conpilation began Nov 1
int main() 2005 at 10: 12: 29.
{ The conpiler gives a
cout << "This is the line __cplusplus value of 1

nunber " << _LINE_;

cout << " of file " <<
__FILE__ << ".\n";

cout << "Its conpilation
began " << __ DATE _;

cout << " at " << __TIME _
<< ".\n";

cout << "The conpiler gives
a __ cplusplus value of " <<
__cpluspl us;

return O;
}

VIJAYA COLLEGE Page 190

C++

Input/Output with files

C++ provides the following classes to perform output and input of
characters to/from files:

e oOfstream: Stream class to write on files
e ifstream: Stream class to read from files
¢ Tfstream: Stream class to both read and write from/to files.

These classes are derived directly or indirectly from the classes

i stream and ostream We have already used objects whose types
were these classes: ci n is an object of class i st reamand cout is an
object of class ost r eam Therfore, we have already been using classes
that are related to our file streams. And in fact, we can use our file
streams the same way we are already used to use ci n and cout , with
the only difference that we have to associate these streams with
physical files. Let's see an example:

/1l basic file operations [file exanple.txt]

#i ncl ude <i ostreanp Witing this to a file
#i ncl ude <fstreanp

usi ng nanespace std;

int main () {

of stream nyfil e;

myfil e. open
("exanmple.txt");

nyfile << "Witing this to
a file.\n";

nmyfile.close();

return O;

}

This code creates a file called exanpl e. t xt and inserts a sentence into
it in the same way we are used to do with cout , but using the file
stream nyfil e instead.

But let's go step by step:

VIJAYA COLLEGE Page 191

C++

Open a file

The first operation generally performed on an object of one of these
classes is to associate it to a real file. This procedure is known as to
open a file. An open file is represented within a program by a stream
object (an instantiation of one of these classes, in the previous
example this was nyfi | e) and any input or output operation
performed on this stream object will be applied to the physical file
associated to it.

In order to open a file with a stream object we use its member
function open() :

open (filenane, node);

Where fil enane is a null-terminated character sequence of type const
char * (the same type that string literals have) representing the name
of the file to be opened, and node is an optional parameter with a
combination of the following flags:

ios::in Open for input operations.

ios::out |Open for output operations.
i0s::binary|Open in binary mode.

Set the initial position at the end of the file.

ios::ate If this flag is not set to any value, the initial position is the
beginning of the file.

All output operations are performed at the end of the file,
appending the content to the current content of the file.
This flag can only be used in streams open for output-only
operations.

If the file opened for output operations already existed
ios::trunc |before, its previous content is deleted and replaced by the
new one.

ios::app

All these flags can be combined using the bitwise operator OR (]). For
example, if we want to open the file exanpl e. bi n in binary mode to
add data we could do it by the following call to member function

open() :

VIJAYA COLLEGE Page 192

C++

of stream nyfil e;
nyfile.open ("exanple.bin", ios::out | io0s::app
i 0s:: binary);

Each one of the open() member functions of the classes of st ream
i fstreamand f st r eamhas a default mode that is used if the file is
opened without a second argument:

class |default mode parameter
ofstreamlfios::out
ifstream |ios::in
fstream |ios::in | ios::out

For i fstreamand of streamclasses, i 0s::in andi os::out are
automatically and respectively assumed, even if a mode that does not
include them is passed as second argument to the open() member
function.

The default value is only applied if the function is called without
specifying any value for the mode parameter. If the function is called
with any value in that parameter the default mode is overridden, not
combined.

File streams opened in binary mode perform input and output
operations independently of any format considerations. Non-binary
files are known as text files, and some translations may occur due to
formatting of some special characters (like newline and carriage return
characters).

Since the first task that is performed on a file stream object is
generally to open a file, these three classes include a constructor that
automatically calls the open() member function and has the exact
same parameters as this member. Therefore, we could also have
declared the previous nyfi | e object and conducted the same opening
operation in our previous example by writing:

of streamnyfile ("exanple.bin", ios::out | ios::app
i 0S:: binary);

Combining object construction and stream opening in a single

VIJAYA COLLEGE Page 193

C++

statement. Both forms to open a file are valid and equivalent.

To check if a file stream was successful opening a file, you can do it by
calling to member i s_open() with no arguments. This member
function returns a bool value of true in the case that indeed the stream
object is associated with an open file, or false otherwise:

if (nyfile.is_open()) { /* ok, proceed with output */ }

Closing a file

When we are finished with our input and output operations on a file we
shall close it so that its resources become available again. In order to
do that we have to call the stream's member function cl ose() . This
member function takes no parameters, and what it does is to flush the
associated buffers and close the file:

myfile.close();

Once this member function is called, the stream object can be used to
open another file, and the file is available again to be opened by other
processes.

In case that an object is destructed while still associated with an open
file, the destructor automatically calls the member function cl ose() .

Text files

Text file streams are those where we do not include the i os: : bi nary
flag in their opening mode. These files are designed to store text and
thus all values that we input or output from/to them can suffer some
formatting transformations, which do not necessarily correspond to
their literal binary value.

Data output operations on text files are performed in the same way we
operated with cout :

/] witing on a text file [file exanple.txt]
#i ncl ude <i ostreanp This is a |ine.
#i ncl ude <fstreanr This is anot her |ine.

usi ng nanespace std;

int main () {
of stream nyfile

VIJAYA COLLEGE Page 194

C++

("exanple.txt");
if (myfile.is_open())

{
nyfile << "This is a
line. \n";
nyfile << "This is
anot her line.\n";
nyfile.close();
}

el se cout << "Unable to
open file";
return O;

}

Data input from a file can also be performed in the same way that we
did with ci n:

/1l reading a text file This is a line.

#i ncl ude <i ostreanp This is another |ine.
#i ncl ude <fstreanr

#i ncl ude <string>

usi ng nanespace std;

int main () {
string line;
ifstreamnyfile

("exanmple.txt");

if (nmyfile.is_open())

{
while (! nyfile.eof())
{
getline (nyfile,line);
cout << line << endl;
}
nyfile.close();
}
el se cout << "Unable to
open file";
return O;

}

This last example reads a text file and prints out its content on the

VIJAYA COLLEGE Page 195

C++

screen. Notice how we have used a new member function, called
eof () that returns true in the case that the end of the file has been
reached. We have created a while loop that finishes when indeed
nmyfil e. eof () becomes true (i.e., the end of the file has been
reached).

Checking state flags

In addition to eof (), which checks if the end of file has been reached,
other member functions exist to check the state of a stream (all of
them return a bool value):

bad()
Returns true if a reading or writing operation fails. For example
in the case that we try to write to a file that is not open for
writing or if the device where we try to write has no space left.

failQ)
Returns true in the same cases as bad(), but also in the case
that a format error happens, like when an alphabetical character
is extracted when we are trying to read an integer number.

eof()
Returns true if a file open for reading has reached the end.

good()
It is the most generic state flag: it returns false in the same

cases in which calling any of the previous functions would return
true.

In order to reset the state flags checked by any of these member
functions we have just seen we can use the member function cl ear (),
which takes no parameters.

get and put stream pointers
All i/o streams objects have, at least, one internal stream pointer:

i fstream like i st ream has a pointer known as the get pointer that
points to the element to be read in the next input operation.

of st ream like ost r eam has a pointer known as the put pointer that
points to the location where the next element has to be written.

Finally, f st r eam inherits both, the get and the put pointers, from

VIJAYA COLLEGE Page 196

C++

i ost ream (which is itself derived from both i st reamand ost r eam).

These internal stream pointers that point to the reading or writing
locations within a stream can be manipulated using the following
member functions:

tellg() and tellp()

These two member functions have no parameters and return a value
of the member type pos_t ype, which is an integer data type
representing the current position of the get stream pointer (in the case
of tel | g) or the put stream pointer (in the case of tel | p).

seekg() and seekp()

These functions allow us to change the position of the get and put
stream pointers. Both functions are overloaded with two different
prototypes. The first prototype is:

seekg (position);
seekp (position);

Using this prototype the stream pointer is changed to the absolute
position posi ti on (counting from the beginning of the file). The type
for this parameter is the same as the one returned by functionstel |l g
and tel |l p: the member type pos_t ype, which is an integer value.

The other prototype for these functions is:

seekg (offset, direction);
seekp (offset, direction);

Using this prototype, the position of the get or put pointer is set to an
offset value relative to some specific point determined by the
parameter di recti on. of f set is of the member type of f _t ype, which
is also an integer type. And di recti on is of type seekdi r, which is an
enumerated type (enum) that determines the point from where offset is
counted from, and that can take any of the following values:

ios::begl|offset counted from the beginning of the stream
ios: :cur [offset counted from the current position of the stream pointer
ios::end|offset counted from the end of the stream

VIJAYA COLLEGE Page 197

C++

The following example uses the member functions we have just seen
to obtain the size of a file:

/1 obtaining file size size is: 40 bytes.
#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng nanespace std;

int main () {
| ong begi n, end;
ifstreamnyfile
("exanmple.txt");
begin = nyfile.tellg();
nyfile.seekg (0, ios::end);
end = nyfile.tellg();
nmyfile.close();

cout << "size is: " <<
(end-begin) << " bytes.\n";
return O;

}

Binary files

In binary files, to input and output data with the extraction and
insertion operators (<< and >>) and functions like get | i ne is not
efficient, since we do not need to format any data, and data may not
use the separation codes used by text files to separate elements (like
space, newline, etc...).

File streams include two member functions specifically designed to
input and output binary data sequentially: wite and read. The first
one (wite)is a member function of ost r eaminherited by of st ream
And r ead is a member function of i st reamthat is inherited by

i fstream Objects of class f st r eamhave both members. Their
prototypes are:

wite (nenory_bl ock, size);
read (menory_bl ock, size);

Where nmenory_bl ock is of type "pointer to char" (char *), and
represents the address of an array of bytes where the read data
elements are stored or from where the data elements to be written are

VIJAYA COLLEGE Page 198

C++

taken. The si ze parameter is an integer value that specifies the
number of characters to be read or written from/to the memory block.

/1l reading a conplete binary the conplete file content is
file i n menory

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng nanespace std;

i fstream : pos_type size;
char * nmenbl ock;

int main () {
ifstreamfile
("exanpl e. bi n",
ios::injlios::binary|ios::ate);
if (file.is_open())
{
size = file.tellg();
menbl ock = new char
[size];
file.seekg (0, io0s::beg);
file.read (nmenbl ock,
si ze);
file.close();

cout << "the conplete file
content is in nenory";

del ete[] nenbl ock;
}

el se cout << "Unable to open
file";

return O;
}

In this example the entire file is read and stored in a memory block.
Let's examine how this is done:

First, the file is open with the i os: : at e flag, which means that the get
pointer will be positioned at the end of the file. This way, when we call
to member tell g(), we will directly obtain the size of the file. Notice
the type we have used to declare variable si ze:

i fstream : pos_type size;

VIJAYA COLLEGE Page 199

C++

i fstream : pos_type is a specific type used for buffer and file
positioning and is the type returned by file.tell g(). This type is
defined as an integer type, therefore we can conduct on it the same
operations we conduct on any other integer value, and can safely be
converted to another integer type large enough to contain the size of
the file. For a file with a size under 2GB we could use i nt :

int size;
size = (int) file.tellg();

Once we have obtained the size of the file, we request the allocation of
a memory block large enough to hold the entire file:

menbl ock = new char[si ze];

Right after that, we proceed to set the get pointer at the beginning of
the file (remember that we opened the file with this pointer at the
end), then read the entire file, and finally close it:

file.seekg (0, io0s::beg);
file.read (menbl ock, size);
file.close();

At this point we could operate with the data obtained from the file. Our
program simply announces that the content of the file is in memory
and then terminates.

Buffers and Synchronization

When we operate with file streams, these are associated to an internal
buffer of type st reanbuf . This buffer is a memory block that acts as
an intermediary between the stream and the physical file. For
example, with an of st r eam each time the member function put
(which writes a single character) is called, the character is not written
directly to the physical file with which the stream is associated.
Instead of that, the character is inserted in that stream’'s intermediate
buffer.

VIJAYA COLLEGE Page 200

C++

When the buffer is flushed, all the data contained in it is written to the
physical medium (if it is an output stream) or simply freed (if it is an
input stream). This process is called synchronization and takes place
under any of the following circumstances:

« When the file is closed: before closing a file all buffers that
have not yet been flushed are synchronized and all pending data
is written or read to the physical medium.

« When the buffer is full: Buffers have a certain size. When the
buffer is full it is automatically synchronized.

o Explicitly, with manipulators: When certain manipulators are
used on streams, an explicit synchronization takes place. These
manipulators are: f | ush and endl .

o« Explicitly, with member function sync(): Calling stream's
member function sync(), which takes no parameters, causes an
immediate synchronization. This function returns an i nt value
equal to - 1 if the stream has no associated buffer or in case of
failure. Otherwise (if the stream buffer was successfully
synchronized) it returns 0.

VIJAYA COLLEGE Page 201

	What is C, What is C++, and What is the Difference?
	So, what is C++ used for?
	How do you learn C++?
	What do you need to program in C or C++?
	Do I need to know C to learn C++?
	Comments
	Identifiers
	Fundamental data types
	Declaration of variables
	Scope of variables
	Initialization of variables
	Introduction to strings
	Literals
	Integer Numerals
	Floating Point Numbers
	Character and string literals
	Boolean literals

	Defined constants (#define)
	Declared constants (const)
	Assignment (=)
	Arithmetic operators (+, -, *, /, %)
	Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)
	Increase and decrease (++, --)
	Relational and equality operators (==, !=, >, <, >=, <=)
	Logical operators (!, &&, ||)
	Conditional operator (?)
	Comma operator (,)
	Bitwise Operators (&, |, ^, ~, <<, >>)
	Explicit type casting operator
	sizeof()
	Other operators
	Precedence of operators
	Standard Output (cout)
	Standard Input (cin).
	cin and strings
	stringstream
	Conditional structure: if and else
	Iteration structures (loops)
	The while loop
	The do-while loop
	The for loop

	Jump statements.
	The break statement
	The continue statement
	The goto statement
	The exit function

	The selective structure: switch.
	Functions with no type. The use of void.
	Arguments passed by value and by reference.
	Default values in parameters.
	Overloaded functions.
	inline functions.
	Recursivity.
	Declaring functions.
	Initializing arrays.
	Accessing the values of an array.
	Multidimensional arrays
	Arrays as parameters
	Initialization of null-terminated character sequences
	Using null-terminated sequences of characters
	Reference operator (&)
	Dereference operator (*)
	Declaring variables of pointer types
	Pointers and arrays
	Pointer initialization
	Pointer arithmetics
	Pointers to pointers
	void pointers
	Null pointer
	Pointers to functions
	Operators new and new[]
	Operators delete and delete[]
	Dynamic memory in ANSI-C
	Data structures
	Pointers to structures
	Nesting structures
	Other Data Types
	Defined data types (typedef)
	Unions
	Anonymous unions
	Enumerations (enum)
	Constructors and destructors
	Overloading Constructors
	Default constructor
	Pointers to classes
	Classes defined with struct and union
	Classes (II)
	Overloading operators
	The keyword this
	Static members
	Friendship and inheritance
	Friend functions
	Friend classes
	Inheritance between classes
	What is inherited from the base class?
	Multiple inheritance
	Pointers to base class
	Virtual members
	Abstract base classes
	Templates
	Function templates
	Class templates
	Template specialization
	Non-type parameters for templates
	Templates and multiple-file projects
	using
	Namespace alias
	Namespace std
	Exception specifications
	Standard exceptions
	Implicit conversion
	Explicit conversion
	dynamic_cast
	static_cast
	reinterpret_cast
	const_cast
	typeid
	macro definitions (#define, #undef)
	Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else and #elif)
	Line control (#line)
	Error directive (#error)
	Source file inclusion (#include)
	Pragma directive (#pragma)
	Predefined macro names
	Open a file
	Closing a file
	Text files
	Checking state flags
	get and put stream pointers
	tellg() and tellp()
	seekg() and seekp()

	Binary files
	Buffers and Synchronization

