
ENTER

Introduction to Fortran and UNIX

Torunn Lilleeng

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

You may think that using a programming
language developed in the early fifties is a
waste of time,when considering how
quickly things evolve in the computing?
business.

But; Fortran is the dominant programming
language used in engineering
applications. It is therefore important for
engineering graduates to be able to read
and modify the Fortran code.

From time to time so-called experts
predict that Fortran will rapidly fade in
popularity, and soon become extinct.
These predictions have always failed.

Fortran is the most enduring computer
programming language in history.

Fortran is a general purpose programming
language, mainly intended for
mathematical computations in e.g.
engineering.

What about FORTRAN

Fortran is an acronym for FORmula
TRANslation.

Fortran was the first ever high-level
programming languages.

The work on Fortran started in the 1950's
at IBM, and there has been made many
versions since.

We will be using Fortran 77.

Last semester I assume you learned
programming in JAVA. The greatest
difference between Fortran and JAVA is
that JAVA is object related, whilst Fortran
is linear related. But still there are
similarities between the two languages, so
learning JAVA was not a waste of time ;)
Neither was JSP.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Can we compare Fortran with JAVA?

public class Equation{
public static void main(final String[]args){

double sol1;
double sol2;
int A=2;
int B=8;
int C=2;
double D=B*B-4*A*C;

if(D<0){
System.out.println("Complex

sulution");
}
else{
sol1=(-B*B+Math.sqrt(D))/(2*A);
sol2=(-B*B-Math.sqrt(D))/(2*A);
System.out.println(sol1);
System.out.println(sol2);
}

}
}

Sure we can. Lets take a look….
On the left hand we have the program ”Equation” in Fortran, on the right hand we have the same

program in JAVA.

PROGRAM EQUATION

REAL SOL1,SOL2,D
INTEGER A,B,C
A=2
B=8
C=2
D=B**2-4*A*C

IF(D .LT. 0)THEN
WRITE(*,*)'COMPLEX SOLUTION‘

ELSE
SOL1=(-B+SQRT(D))/(2*A)
SOL2=(-B-SQRT(D))/(2*A)

WRITE(*,*)SOL1
WRITE(*,*)SOL2

END IF

END

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Introduction to UNIX

During the exercises you’ll have
to manage both UNIX and
Fortran.

Unix is a very powerful and
stable operative system,it is fit
to run heavy applications.

Operating system

Every computer requires an
operating system

An operating system is the
program that controls all the other
parts of a computer system, both
the hardware and the software. It
allocates the computer's
resources and schedules tasks.

UNIX is a multi-user, multitasking
operating system. Multiple users
can have multiple tasks running
simultaneously. This is very
different from PC operating
systems. (e.g. Windows)

LINUX
Most of the common Unix tools
and programs have been ported
to Linux, including almost all GNU
software and many X clients from
various sources. So if you know
Linux, then Unix will be easy to
learn.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

emacs - open file
cd - change directory
pwd - displays present working directory
ls - list contents of directory
mkdir - make directory
rmdir - remove (empty) directory
rm - remove files
cp - copy files
mv - move or rename files
cat - display file
man - help on a command
clear - clear screen
xlf-o prog filename.f - compiles and links the program
prog - run the program
xlf –g –o prog exercise1.f-compilation for the debugger
idebug prog -start debugger

Examples
mkdir exercise.f - creates a new directory with name exercise.f
emacs exercise.f - opens the Fortran-file with name exercise.f
cd exercise.f -enters the directory of exercise.f
cd .. -changes directory to the directory above in the hierarchy
cp../exercise.f . -copies the file exercise.f from the directory above, to the one you are in.
mv exercise.f exercise2.f -changes file name form exercise.f to exercise2.f
enscript exercise2.f -prints the file exercise2.f on the standard printer
xlf-o prog exercise2.f -compiles and links exercise2.f

UNIX Commands.
Next slide will explain how to get started with UNIX, here are some of the commands that
will be useful to know

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

How to get started?

By entering the start menu you’ll find a
program with the name WebTerm X
Administrator.

When you open this program your
screen will look like the illustration.

To the left you can see the Connection
List. We will use the server with the
name Petrus, so highlight Petrus and hit
Connect.

Log on as you would in
Windows, the login name
and the password
are the same.
Then choose; Go!

In some occasions
you might need the
server name,
petra1.petrus.unit.no,
but usually there is no
need for applying that.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

How to get started?

Now I assume you have entered the program. In the upper left
corner you will find an icon named xterm. Enter this icon and you’ll
be in the terminal window. The window will show a line of
command command;”bash-2.05a$” , this means you are in your
home directory.

Since UNIX has an hierarchic directory system it might be useful to
create the system at once….

Making the catalogue structure:
•bash-2.05a$ mkdir Fag
•bash-2.05a$ cd Fag
•bash-2.05a$ mkdir AnvendtData
•bash-2.05a$ cd AnvendtData
•bash-2.05a$ mkdir Exercise1
•bash-2.05a$ mkdir Exercise2
….
….
•bash-2.05a$ mkdir ExerciseN

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

If you have followed this recipe your catalogue
structure should be as illustrated. To make sure that
you have a correct structure, type,

•bash-2.05a$pwd

which explains that you are now in the directory
AnvendtData, a sub directory of Fag etc.
/home/petra1b/<students name>/Fag/AnvendtData

To make sure that you have made the directories
for exercises, which are sub directories of
AnvendtData, type;

•bash-2.05a$ ls

and the different exercises that you have created
will show like this:

Exercies1 Exercies2

Go into your exercise directory with cd Exercise1, then
open the directory with emacs Exercise1 to start
programming.

The next time you enter the program you don’t have
to make directories, instead you can use the cd and
emacs commands to enter the directory in the
order of the catalogue structure:

Since you already have entered home, petra1b and
<student name>, you start by changing directory form
<student name> to Fag.

E
x
a
m
p
l
e
2
I
r
a
s
c
e
r
i
s
e
t
t
r
a
n
q
u
i
l
l
u
s

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

•bash-2.05a$ cd Fag
•bash-2.05a$ cd AnvendtData
•bash-2.05a$ emacs ExerciseN

In the emacs editor you may use the toolbar like in Windows, or
you can use the ctrl-commands you learned it in JAVA. If you take
a look at the toolbar, you’ll see that the ctrl-commands are defined
for every option. The first time you save a file you must save it as
Fortran file. You can either hit file in the tool bar, choose Save
Buffer as and write the name of the file like this name.f on the
bottom of the page(the marker will be there). To enter the file after
closing it, you’ll have to enter the directory above and then type
emacs name.f

Useful to know

When using UNIX, things will go much
faster if you learn, and use, the following:
To switch between previously used commands,
use the up and down arrows

If you, for example, are changing to a directory named documents,
type cd do, and hit TAB-then UNIX will fill out the
rest of the name itself. If you have several
directories that begins with do, UNIX lists all of
them if you hit TAB one more time.

Do not include special symbols or characters in
file-and directory names. Such can be #, å, !, @.

Do not type file- and directory names with
a space (instead of test file, use testfile or test_file)

E
x
a
m
p
l
e
2
I
r
a
s
c
e
r
i
s
e
t
t
r
a
n
q
u
i
l
l
u
s

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Fortran

Now that you have entered the program, and made the directory
structure, you can start programming.

Fortran usually has a
 structure like this;

•Program name
•Declarations
•Opening/reading files
•Statements
•End

As I explain the
structure, piece by
piece, I will build up
a complete program
sequence.

E
x
a
m
p
l
e
2
I
r
a
s
c
e
r
i
s
e
t
t
r
a
n
q
u
i
l
l
u
s

PROGRAM EQUATION

INTEGER A,B,C
REAL D,SOL(1:2)

OPEN (UNIT=11, FILE='SOLUTIONS',STATUS='UNKNOW)
WRITE(*,*)'TYPE THE VALUES FOR A,B,C'
READ(*,*)A,B,C

D=B**2-4*A*C

IF (D.LT.0) THEN
WRITE(*,*)'THE EQUATION HAS A COMPLEX

SOLUTION'

ELSE
SOL(1) = (-B + SQRT(D))/(2*A)
SOL(2) = (-B + SQRT(D))/(2*A)

ENDIF

WRITE(11,*)'THE SOLUTIONS ARE; ‘(SOL(I),I=1,2)

CLOSE(11)

END

Declarations

Open/read
file

Statements

End

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Arithmetic operators

The arithmetic operators are:

+ addition
- Subtraction
/ division
* Multiplication
** exponentiation

The priority rule is: ** has highest
priority followed by / and * followed
by + and -

Within any priority level, evaluation is
carried out from left to right

In general, any expression enclosed
in parentheses is evaluated first.

The use of parenthesis is highly
recommended

Fortran77 programs are typed in lines of up
to 72 characters, with the first six columns of
each line reserved for special purposes.

As a result, Fortran77 statements always
begin before, or after, , COLUMN 7COLUMN 7. . In
emacs, the TAB key will bring you to column
7.

If the firstfirst columncolumn contains ”c” or a ”*”, the
entire line would be treated as a comment.

A line can only contain 72 characters, but
you will often be in need of more space.

A ”*” in the 6th6th columncolumn specifies that this
line is a continuation of the previous.

Both Fortran and UNIX are very sensible
about spellings. If you name the directory
AnvendtData, then you have to type the
name exactly like that when you want to
enter the directory. If you type anvendtdata
without the capital letters, the program will
not find the directory.

Fortran statement

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Declarations

A Fortran program always start with declaring the variables you will be using. A variable
consists of 1-6 characters chosen from the letters a-z and the digits 0-9.

List of Fortran data types:
•Integer
•Real
•Character
•Logic
•Complex

REAL (known as double in JAVA)
The real data type stores numbers using a
floating-point representation. It handles numbers
with a fractional part as well as round numbers.

Example:
REAL SALARY, OVTIME
Declares the variables SALARY and OVTIME as
floating-point numbers. These may be of the
form:1.75E+5, 12345.678, 2000.0 If you need
double precision, you should declare the
variable as;
REAL*8 (REAL is by default REAL*4)

INTEGER
An Integer data type is an exact number.
Often used as a numerator in loops.

Example:
INTEGER MONTHS
Declares the variable MONTHS as an
Integer. In this example we wish to use the
variable MONTHS as an exact number eg.
1, 5 or 8 months, not 1.5 or 6.4 months

PROGRAM EQUATION

INTEGER A,B,C
REAL D
REAL SOL (1:2)

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

CHARACTER
The character data type stores a character
or a text string. If you wish to have input from
the user of a program, for e.g.. if he wishes
to continue or not, you may use the data
type character.

Example:
CHARACTER ANSWER, INPUT*5
Declares the variables ANSWER and
INPUT. ANSWER may contain one or many
characters, while INPUT has a maximum of
five characters. If both variables declared as
CHARACTER should have a maximum of
five letters, you simply write:

CHARACTER*5 ANSWER, INPUT

LOGIC (works like boolean in JAVA)
The logical data type is mainly used in
conjunction with IF statements which select a
course of action according to whether some
condition is true or false. A logical variable (or
array element) may be used to store such a
condition value for future use.

Logical variables and arrays are also useful
when dealing with two-valued data such as
whether a person is male or female, a file open
or closed, power on or off, etc.

PARAMETER
The parameter statement is used to
assign names to constants. A parameter
will not be changed during the
programming.

PARAMETER (name1=expression,
name2=expression,…)

Example:
PARAMETER (PI = 3,1415, N=20)
Declares the variable PI to the value 3,1415
and N to value 20.

COMPLEX
The complex data type stores two real
values as a single entity. Complex numbers
arise naturally when extracting the roots of
negative numbers, and they are used in
many branches of mathematics, physics,
and engineering.

A complex number is often represented as
(A +iB), where A and B are the real and
imaginary parts respectively, and i2=-1.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Opening Files
Very often you need a large amount of input data and you wish to use your output
data to make a chart or a graph etc. It is then very useful to have external output and
input files. Syntax used can be viewed in example under. It is customary to open the
output file at the same time as you open the input file, even though you may not need
it in the beginning.

OPEN (UNIT=<integer expression>, FILE=”<filename>",STATUS=”literal")

UNIT assigns a unique number to this file which will have to be
used every time this file is referred to.

FILE is a character string denoting the file.

STATUS is by default ”NEW”, ”OLD” or ”UNKNOWN”.
For an output file, STATUS should be ”NEW” or ”UNKNOWN”
(because it has not been created yet), whereas an input file should either read ”OLD”
or ”UNKNOWN” (because this file must be created before you run the program).

PROGRAM EQUATION

INTEGER A,B,C
REAL D
REAL SOL(1:2)

OPEN (UNIT=10, FILE=‘IN.DAT’, STATUS=‘OLD’)
OPEN (UNIT=11, FILE='SOLUTION’,STATUS='UNKNOWN')

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Reading data

From screen

Read data from screen

In order to read data from screen, you
must first make the program ask for
input data. Such a command may be:

PRINT(*,*) ’<request for input>’

The PRINT command prints to screen, *
is still free format followed by a
statement

When this has been done, the program
must read the input

READ (*,*)list of variables
The READ command allocates the input
data to the pre-declared variable.

As in JAVA we have the opportunity to
operate with different files, but we’ll
concentrate on using one file for the
programming part, a second file which will
contain input data and a third file which
will contain results from the program.

Two ways of reading input data:
•From file
•From screen

From file
Reading input data from file:
First, input file must be open. Then,
the command is:

READ(<unit number>, <format>)
list of variables. Unit number is the
same one that was assigned to the
file when opening. Format is also
discussed later in his module, but it is
common to use *, which means free
format.

After the bracket, the variables listed
in the input file should be listed, in the
proper order.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

The IF statement

The conditional statements are an important part of any programming language. The most
common statement in Fortran is the IF statement, which has several forms.

The simplest one is the logical IF statement:

IF (logical expression) executable statement

It says that if something is true, do something. If you wish to include several statements, the
general form is:

PROGRAM EQUATION

INTEGER A,B,C
REAL D
REAL SOL(1:2)

OPEN (UNIT=10, FILE=‘IN.DAT’, STATUS=‘OLD’)
OPEN (UNIT=11, FILE='SOLUTION’,STATUS='UNKNOWN')

WRITE(*,*)'TYPE AN INTEGER FOR EACH OF THE VALUES A AND B'

READ(*,*)A, B
READ(10,*)C

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

IF (logical expression) THEN
 statements

 ELSEIF (logical expression) THEN
 statements
 :
 :
 ELSE statements
ENDIF

EXAMPLE OF IF SATEMENT

PRINT *,’TYPE IN THE TIME, IN MILITARY TIME E.G. 1000:’
READ *, TIME

IF (TIME .LT. 1130) THEN
PRINT *,’NOT LUNCH YET’

ELSE IF (TIME .EQ. 1130) THEN
PRINT*,’GO AND HAVE LUNCH’

ELSE IF (TIME .GT. 1200) THENPRINT*,’SORRY, YOUR
LUNCH HOUR HAS PASSED’

ENDIF

This is a simple example that says if it’s not 11.30 it is not lunch, if it is 11.30 you can
have lunch and if it’s more than 12.00 it is too late.

This is not a complete program, declarations have not been made

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

PROGRAM EQUATION

INTEGER A,B,C
REAL D
REAL SOL(1:2)

OPEN (UNIT=10, FILE=‘IN.DAT’, STATUS=‘OLD’)
OPEN (UNIT=11, FILE='SOLUTION’,STATUS='UNKNOWN')

WRITE(*,*)'TYPE AN INTEGER FOR EACH OF THE VALUES A AND B'

DO 15 I=1,5
READ(*,*)A, B
READ(10,*)C
D=B**2-4*A*C

IF (D.LT.0) THEN
WRITE(*,*)'THE EQUATION HAS A COMPLEX SOLUTION‘

ELSE
SOL(1) = (-B + SQRT(D))/(2*A)
SOL(2) = (-B - SQRT(D))/(2*A)

WRITE(11,*)'THE SOLUTIONS ARE; ‘(SOL(I),I=1,2)
END IF
15 CONTINUE

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Logical Expression

=Equal.EQ.
≠Not Equal.NE.

≤Less or Equal.LE.

≥Greater or Equal.GE.

<Less Than.LT.
>Greater Than.GT.

AnalogueAnalogue
SymbolSymbolMeaningMeaningFortranFortran

StatementStatement

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Array

An array is a group of storage locations that have the same name. Individual
members of an array are called elements, and they’re distinguishing feature
is the common name followed by a subscript or an index in parentheses.

REAL POPULATION (2000:2004)

Whose elements are;
POPULATION(2000), POPULATION(2001), POPULATION(2002),
POPULATION(2003), POPULATION(2004)

If you want to refer to the population for 2003, the reference is
POPULATION(2003)

Values are assigned to array elements in the same way that the values are
assigned to regular variables.

Example;

POPULATION(2000)= 1500
POPULATION(2001)=POPULATION(2000)*1.2

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Array

It is also helpful to use variables and expressions
as subscripts. Take a look at this;

(3,3)(3,2)(3,1)2

(2,3)(2,2)(2,1)2

(1,3)(1,2)(1,1)1

321

POP
(155)

POP
(154)

POP
(153)

POP
(152)

POP
(151)

POP
(150)

155154153152151150

It is clever to store values in arrays
when you are doing many similar
calculations repeatedly. That way your
program will look better organized.

Two-dimensional arrays are divided
into rows and columns, just like

matrixes.
To specify a two dimensional array with
the name DATA of type integer, you
should write;
INTEGER DATA(3,3)
This array will look like this;

DO 15 I=1500,1505
 POPULATION(I)=I
15 CONTINUE

This will give an array like this;

To fill the array with values you may use a
Do-loop, but you can still write down the
values like you’ve done before.
Example;

INTEGER DATA(3.3)
…
DO 10 I=1,3
DATA(I,1)=1
DATA(I,2)=4
DATA(I,3)=3
10 CONTINUE

3413

3412

3411

321

The result of this will be;

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

The repetition of a number of statements for a predetermined number of times, is so
important that Fortran contains a special construction which allows this to be done.

In general, a ”DO loop" may contain any Fortran statement, including another do
statement, known as a "nested DO loops".

The syntax is:

DO 100 INDEX= initial, limit, increment
'statements'

100 CONTINUE

The number 100 is a statement label

The INDEX is a variable, but it may be either real or integer. It starts at the initial,
ends at the limit and increases with the increment. Increments are normally not
included, as you most of the time wish to run the loop for every step in the interval.

The CONTINUE statement closes the DO loop

For example, DO 100 MONTHS=1,N,6 would go through all N months in steps of six.

Typically, there will be many loops and other statements in a single program that
requires a statement label. The programmer is responsible for assigning a unique
number to each label in each program (or subprogram).

Recall that column positions 2-5 are reserved for statement labels. The numerical
value of statement labels have no significance, so any integer numbers can be used.

The Do loop

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Example:

This example will sum all the numbers from 1 to 10, while it counts how
many steps it takes to sum up the numbers.

The Do loop

SUM=0
COUNT=1
DO 10 = NUMBER,1,10

SUM=SUM+NUMBER
COUNT= COUNT + 1

10 CONTINUE

Nested DO loops
DO loops can be nested within other DO loops, just as you can use IF structures
within other IF structures. A nested DO loop cannot use the same index as an
outer DO loop. A nested DO loop and its CONTINUE statement must be
completely within the outer DO loop.
Example;

DO 5 I=1,5
 DO 10 J=1,10
 DO 15 K=1,25,5
 PRINT(*,*)I,J,K
 15 CONTINUE
 10 CONTINUE
5 CONTINUE

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

INTRODUCTION

MODELLING

EXAMPLES

SUMMARY

PROGRAM EQUATION

INTEGER A,B,C
REAL D
REAL SOL(1:2)

OPEN (UNIT=10, FILE=‘IN.DAT’, STATUS=‘OLD’)
OPEN (UNIT=11, FILE='SOLUTION’,STATUS='UNKNOWN')

WRITE(*,*)'TYPE AN INTEGER FOR EACH OF THE VALUES A AND B'

DO 15 I=1,5
READ(*,*)A, B
READ(10,*)C

D=B**2-4*A*C

IF (D.LT.0) THEN
WRITE(*,*)'THE EQUATION HAS A COMPLEX SOLUTION‘

ELSE
SOL(1) = (-B + SQRT(D))/(2*A)
SOL(2) = (-B - SQRT(D))/(2*A)

WRITE(11,12)'THE SOLUTIONS ARE: ‘(SOL(I),I=1,2)
END IF
15 CONTINUE

The do-loop
contains the
if statement

THE
SOLUTIONS ARE
STORED IN AN

ARRAY

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

When you run the program the screen will look like this. The
program asks if I can type values for A and B, I have typed 2 for
A and 8 for B.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Format

When the program has calculated whatever it was supposed to calculate, it
would be of no use if you don't get the results in a readable and
understandable manner, and preferably in a external file so you can use your
calculations in a graphical presentation etc

For this we will use the WRITE and FORMAT statements

Syntax:
WRITE(*, label) list-of-variables

FORMAT(format-code)

The wildcard * writes the result to screen, whereas a unit number would write
to an external file assigned to this number.

A wide variety of format combinations exist.

A - text string
D - double precision numbers, exponent notation
E - real numbers, exponent notation
F - real numbers, fixed point format
I - integer
X- horizontal skip (space)
/ - vertical skip (new line)

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Format examples

The format code F11.3 would make 1 million look like:

1000000.000 -a total of 11 spaces where 3 has been assigned to the
decimal part. Notice that period, plus and minus will take up one space
each.

For large numbers it is better to use the exponent notation:

E7.2 would produce 1.00E+6 out of 1million

If your declaration is REAL your format should be E, but if you have an
double precision you’d better use D.

SUM= 1 2 5 .5

PRINT(*,5) ’THE NUMBER IS;’SUM’

5 FORMAT(A1 5 ,X,F5 .2)

THE NUMBER IS; 125.50

should look something like this:
P T Z
303.4058 451.6251 0.98654

WRITE(*,100) P,T,Z
100 FORMAT(2F8.4,F7.6)

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

PROGRAM EQUATION

INTEGER A,B,C
REAL D,SOL(1,2)

OPEN (UNIT=10, FILE=‘IN.DAT’, STATUS=‘OLD’)
OPEN (UNIT=11, FILE='SOLUTION’,STATUS='UNKNOWN')

WRITE(*,*)'TYPE AN INTEGER FOR EACH OF THE VALUES A AND B'

DO 15 I=1,5
READ(*,*)A, B
READ(10,*)C

D=B**2-4*A*C

IF (D.LT.0) THEN
WRITE(*,*)'THE EQUATION HAS A COMPLEX SOLUTION‘

ELSE
SOL(1) = (-B + SQRT(D))/(2*A)
SOL(2) = (-B + SQRT(D))/(2*A)

WRITE(11,12)'THE SOLUTIONS ARE; ‘ (SOL(I),I=1,2)

END IF
12 FORMAT(A30,F10.2)

15 CONTINUE

CLOSE(10)
CLOSE(11)

END

The Format
sentece

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Subprograms

As the program becomes lager and more complicated, it is harder to keep the
program well arranged. Some times we need to perform the same set of
operations at more than one location in the program. In these situations it will be
useful to use a subprogram. Subprograms are statements that are defined
separately, and referred to when needed.

We have two types of subprograms; function and subroutine.

Function
We also have different types of functions. Fortran has some library functions like
square root, cosine and so on.

Examples
SQRT(X) = square root of X
ABS(X) = absolute value of X
MAX(A,B,C…) = finds max of A,B,C…
SIN(X) = sinus of X

You can also use statement functions; a computation written in one single
assignment statement. Define the statement function at the beginning of your
program.
function name (argument list)=expression

example:
FAHRENHEIT(TEMP)=1.8*TEMP + 32

In this example we use the variable TEMP and calculates the degrees in
Fahrenheit.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

If the computation cannot be written in one statement, you must use the function subprogram,
which is a program itself. The function sub program is separate from the main program. It begins
with a nonexecutable statement;

FUNCTION name (argument list)
because the function is separate from the main program, it must end with END. The function is
called implicitly by setting the variable parameter equal to the function name. The function must
also contain RETURN, if not the main program will loose its control.

Example;

PROGRAM TEST
REAL TEST1,TEST2,AVE
READ(*,*)TEST1,TEST2,AVE
B=AVE(TEST1,TEST2)
PRINT B
END

REAL FUNCTION AVE(X,Y)
REAL X,Y
AVE=(X+Y)/2
RETURN
END

Main
program

Function

Subroutine
Whereas a function is restricted to represent a single value, subroutines can compute many. If
several values need to be returned from a module, the subroutine takes in different variables,
does the calculations and sends the results back to the main program.

Example (the same program as earlier, but here with subroutine)

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

PROGRAM EQUATION
INTEGER A,B,C
REAL SOL(1:2)

OPEN (UNIT=10, FILE=‘IN.DAT’, STATUS=‘OLD’)
OPEN (UNIT=11, FILE='SOLUTION’,STATUS='UNKNOWN')
WRITE(*,*)'TYPE AN INTEGER FOR EACH OF THE VALUES A AND B'

DO 15 I=1,5
READ(*,*)A, B
READ(10,*)C
CALL CALCULATION(A,B,C, SOL)
WRITE(11,12)'THE SOLUTIONS ARE:‘(SOL(I), I=1,2)

12 FORMAT(A30,F10.2)
15 CONTINUE

END

SUBROUTINE CALCULATION (A,B,C, SOL)

INTEGER A,B,C
REAL D, SOL(1:2)
D=B**2-4*A*C

IF (D.LT.0) THEN
WRITE(*,*)'THE EQUATION HAS A COMPLEX SOLUTION‘

ELSE
SOL(1) = (-B + SQRT(D))/(2*A)
SOL(2) = (-B - SQRT(D))/(2*A)

END IF
RETURN
END

Subroutine

Main
program

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Subroutine
A subroutine is referenced with an
executable statement whose general
form is;

CALL subroutine name (argument list)

The first line in a subroutine identifies
it as a subroutine;

SUBROUTINE name (argument list)

A subroutine uses the argument list
not only for inputs to the subroutine,
but also for all the values that has
returned to the calling program. The
arguments in the CALL statement
must match in type, number, and order
with those used in the subroutine
definition.

The subroutine is a separate program,
the arguments are the only link
between the main program and the
subroutine. The values used in the
subroutine whom are not subroutine
arguments, are local variables (like D
in the square root example). Their
values are not accessible from the
main program.

The subroutine, like the function, requires a
return statement to return control to the main
program. It also requires an END statement
because it is a complete program module.

A subroutine may referre to other functions or
call other subroutines, but it cannot call itself.

NAG-routine
The Petrus-server includes a NAG-library of
scientific subroutines. Note that all real
variables should be declared as REAL*8
(double precision) since the NAG-routines
require this. The NAG-routine may be linked in by
the command ;
xlf –o prog fil.f –L/localiptibm3/lib –l nag
You can take a look at the different routines at
www.nag.com . Edit ‘explore how nag can help
you engineering’ ,under Numerical Software you
can edit NAG’s libraries. NAG offers libraries in
both Fortran77 and Fortran90, here you’ll find
callable routines for many mathematical and
statistical areas.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Compiling run and linking

When you are done writing your program,
it’s time to compile your program.

We will use the following compiler

xlf -o prog fort.f

Simply write this in the UNIX terminal
window. Fort.f is the name of the Fortran
file. If your file is called Exercise1.f, you
should write xlf –o prog Exercise1.f

Hopefully the program will compile
successfully, but most likely a list of errors
is going to show. No programmer gets
everything right the first time.

The compiler will, when it detects an error,
let you know in which line the program the
error occurred. The most frequent errors are
the simplest ones; the programmer forgot a
parenthesis, a comma, used too many
columns (remember that you are only
allowed to use 72 columns) or just wrote the
same word in two different ways.
Debug your errors and compile over again.

Run Program

When the compilation is complete it is time
to run your program. Type ”prog” in your
terminal window, and the program should
run.

If your program writes the results to
an output file, you may open the file and
view the results. Sometimes the output files
give no result or show strange numbers.
If this happens, you can use the debug
operator.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

Locals will
show the
results

Your main
program

If you press
Debug, your
opportunities

will show

If your program is
large, a breakpoint

would be helpful

Debug
To run the debug operator the program must have compiled perfectly. Do like this to enter;
bash-2.05a$ xlf –g –o prog Exercise1.f
followed by; bash-2.05a$ idebug prog

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

The debugger doesn’t help you find errors like a missing comma, typing error etc, but it is very
useful in finding sequential errors in the program.

For instance, here you can see that I have an error in my equation program. I have opened it in the
debugger, and I want help to find the error. You will step into the current source line in the
program, and by each step you can se how the variable values changes. This is done by choosing
Locals, as shown in previous slide. By the time you have reached the source line which causes the
error, changes will arise. Until you reach line 17 sol1 and sol2 would be cero, but when you pass
line 17 the solutions change. That means that these lines have an error. As you see, the reason
for the error is that A=0 and you cannot divide anything with cero. You should probably write a
comment in your program, so that the variable A is not allowed to be equal to cero.

sol1 and
sol2 have

odd results

the lines that
 contains

errors

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

The text written in capital, bold letters is the program. The regular text is the
comments.

PROGRAM EQUATION

INTEGER A,B,C
REAL D,SOL(1:2)

*(The first thing to do is to declare the different variables that will be
included in the program. In this program we will try to find the
solutions of a second degree equation, the in-variables can then be
chosen to be integers, while the other variables must be of the
category REAL. A REAL variable may contain a floating number. I
choose to store the solutions in one array, but you may also store
them as two different variables.)

OPEN (UNIT=11, FILE='SOLUTIONS', STATUS='UNKNOWN')
OPEN (UNIT=10, FILE=‘INDATA’, STATUS=‘OLD’)

*(The next step will be to open the files that we are getting the
information from, or writing to. The solutions we get from calculating
this equation will be written in the file SOLUTIONS. Just to show
different ways of reading I have stored the values for C in the file
INDATA. The files unit has to be a unique number, and the status is
set to be UNKNOWN, NEW is also a possibility since this is a new file
that will be made now.)

EXAMPLE- STEP BY STEP

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

WRITE(*,*)'TYPE THE VALUES FOR A and B‘
*(We are going to make a program that can dissolve
the equation for the different numbers you type
currently, and not for some numbers from an already
existing file. Therefore we don't need to open a file
that consist any data, instead we make the program ask
for the numbers; A and on the screen.)

READ(*,*)A, B
*(Now the program will have to reed the values for the
variables; A and B from the screen)

READ(10,*)C
*(Reads the C-value from the file, INDATA, with the unit 10)

D=B**2-4*A*C
*(We all know the equation of second degree
(x = (-b +/- sqrt(b**2-4*a*c))/2*a)
We also agree to that if the square root are less than
cero, it will fail. If the square root fails, the whole
equation will fail. Instead of trying to dissolve the
whole equation at once, we first take a look at the
square root. We now declare a new variable D, who
includes the values in the parenthesis of the square root.

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

IF (D.LT.0) THEN
WRITE(*,*)'THE EQUATION HAS A COMPLEX SOLUTION'

ELSE
SOL(1) = (-B + SQRT(D))/(2*A)
SOL(2) = (-B - SQRT(D))/(2*A)

ENDIF

*(This IF-statement decides whether the variable D is less than cero. If
that's true, the program will write THE EQUATION HAS A COMPLEX
SOLUTION to the screen. If the if-statement fails, then we know that the
equation will not fail because of the square root statement, and the program
will calculate the different solutions of the whole equation, storing the values
in the array SOL.)

WRITE(11,12)'THE SOLUTION ARE:’ (SOL(I),I=1,2)

*(After discovering the solutions, we write them to the file SOLUTIONS with
UNIT=11 and the format 12. The solutions are written to an array SOL. To
store the values in the array we use an implicit DO-loop, SOL(I),I=1,2,
which distribute the values in the array. If we had N possible solutions, we
should have N units in our array and the DO-loop would look like this;
SOL(I),I=1,N)

12 FORMAT(A,F10.2)
*(The format stores space for a sting text and variable real values with ten
numbers whereas two of them are decimals.)

CLOSE(11)
*(This sentence closes the file that stores the solutions)

END
*(Brings the program to close)

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

References

Etter, D.M. 1993. Structured FORTRAN 77 For Enginiers and Scientists – 4th edition. The
Benjamin/Cummings Publishings Company, Inc.,
Redwood City, California

Preuss, H. 1992. Numerical Recipes in Fortran - 2nd edition. Cambridge University Press

Page, Clive G. 2001 Professional Programmer's Guide to Fortran77.
University of Leicester, UK

http://www.library.cornell.edu/nr/bookfpdf.html

http://www.itea.ntnu.no/~kandal/unixkurs/

http://obelix.dawsoncollege.qc.ca/~dhackett/442/commands.html

Introduction to Fortran Programming

Introduction to Anvendt Datateknikk, TPG 4155

REFERENCES ABOUT

EXIT
HELP

ON OFF

FAQ BACK

INTRODUCTION

UNIX COMMANDS

HOW TO GET
STARTED?

FORTRAN
STRUCTURE

DECLARATIONS

OPENING FILES

READING DATA

IF STATEMENT

ARRAY

DO LOOP

FORMAT

SUBPROGRAMS

NAG-ROUTINE

COMPILING RUN
AND LINKING

DEBUGING

EXAMPLE-
STEP BY STEP

About this module

Title: Introduction to Fortran

Author: Jon Kleppe

Assistant producer: Torunn Lilleeng

Size: 1.3 mb

Publication date: 1. August 2004

Abstract: An introductory module for Anvendt Datateknikk

Software required: PowerPoint XP/XP Viewer

