PH25520

Experimental Physics
Introduction to Fortran 90

Daniel Brown
UNIVERSITY OF WALES ABERYSTWYTH

1 Introduction

1.1 Resources

While this document is self-contained, those interestatlfiortran 90 textbook should consult:
T.M. Ellis, I.R. Philips and T.M. Lahey, Fortran 90 Prograimm Addison-Wesley.

There are copies in the library, although it is a text well thgrurchasing if you envisage using Fortran
90 a lot in the future (e.g., for a numerical project or a fagbmputational PhD).

In addition, you may want to download a Fortran 90 compileryfour own computer/laptop. Free and
commercial Fortran compilers for windows and Linux can hanfibat the following websites

http://www.fortran.com/
http://lwww.g95.org/

The F compiler is a cutdown version that should work fine, G95 is p@nesource Fortran 95 compiler
that should be okay as well. Fortran 95 compilers are baadsveompatible with Fortran 90.

Note, if you do download a compiler and write course matenmjour own computer, you should also
test them on the course server - particularly programs tieatioebe assessed.

1.2 Telling a computer what to do

To get a computer to perform a specific task it must be givergaesee of unambiguous instructions or
a program.

An everyday example is instructions on how to assemble aidedsbinet. The instructions must be
followed precisely and in the correct order:

insert the spigot into hole ‘A,
apply glue along the edge of side panel,

1.

2.

3. press together side and top panels
4. attach toggle pin ‘B’ to gromit ‘C’
5.

...and soon

A programming language is a way to give a list of instructitms computer so that the computer can
carry out a task.

Programming languages must be:

e totally unambiguous (unlike natural languages such asigng|
e expressive — it must be fairly easy to program common tasks,
e practical — it must be an easy language for the compiler tstate,

e simple to use.

All programming languages have a very precise syntax (amgrar). This ensures all syntactically
correct programs have a single meaning.

1.3 High-level programming languages
In the early days of computing, all programs were written acirine code. These were just long strings
of Os and 1s in a binary form, such as,

010100011 010 000 010111

This had the disadvantage that it was specific to a partieyfs of computer and was almost totally
incomprehensible to a human being.

The binary code became octal code (base 8) such as
243 2 0 27

This in turn evolved into assembler code which is mnemommfof the machine code instructions, such
as

LDA 2 X

which meangoad CPU register 2 with the contents of memory location X. These principals of machine
code have survived more of less unchanged to this day.

This kind of programming was for the specialist programnnatiser than the every day users.

In 1953, IBM decided that it would be beneficial if a more e#fit and economical method for program
ming a computer existed, and by mid-1954 an initial spedificahad been written for a programming
language. This language was call&M Mathematical FORmula TRANSlation System of FORTRAN.

FORTRAN introduced many important concepts, the main onggltbat the program was formulated in
the users terms, and not those of the computer. This idedraf akgebraic terms and a ’pidgin English’
for other (non-mathematical) terms became known as a leigtl-language as the user did not need to
know much about the specifics of the computer itself.

A computer can only understand its own machine code, so defdfFORTRAN (or other high-level
language) program can be run, it must be translated (or ded)pnto the specific machine code for that
computer. A special program (called a compiler) must be tsddnslate a FORTRAN program from
the high-level code to the low-level machine code.

Nowadays, there are many high-level languages such asafr@@, FORTRAN 77, C, C++, COBOL,
BASIC and JAVA. FORTRAN itself has changed dramatically e years from Fortran | and Il, to the
first standardised version Fortran IV in 1966. And more rdgdfORTRAN 77 (in 1977), Fortran 90 (in
1990) and even Fortran 95.

1.4 An example problem and program

Consider the problem of how to convert fréfR (Fahrenheit) t6C (Celsius). We can use the following

formula; .

To convert fromPC to K (Kelvin) we add 273.

The program would accept a Fahrenheit temperature as ingytraduce the Celsius and Kelvin equiv-
alent as output.

In Fortran 90, we might code this up as

PROGRAM temp_conversion
I this program take an input in Fahrenheit and converts it to

I both Celsius and Kelvin - outputting both results to the
I screen

| variable declarations
IMPLICIT NONE
INTEGER :: deg_F, deg C, K

I read in Fahrenheit data
PRINT*, "Please type in the temp in F"
READ, deg F

I convert to Celsius and output
deg_C = 5+(deg_F-32)/9
PRINT=*, "This is equal to", deg_C, "C"

I convert to Kelvin and output
K = deg C + 273
PRINT*, "and", K, "K"
END PROGRAM temp_conversion

This program, calledemp.f90 , can be compiled an run in an X-terminal (on a UNIX system) as
follows:

fo0 temp.fo0
a.out

1.5 Analysis of program

The code is delimited by tirtRROGRARhdEND PROGRAdtatements which indicate the main program
code (there are other delimiters suchFANCTION SUBROUTINEandMODULREhese will be looked
at later in the course). Between these there are two distieets of the program.

1. The specification part

e specifies the named memory locations (variables) for udeeiptogram
e specifies the type of the variable
e there are other specifications that will be described laténé course.

2. The execution part

e reads in the data
e calculates the temperatured@ and K
e outputs (in this case print to screen) the results.

The PROGRAINtatement has a program name attached to it. There a ceutam governing legal
program names. These rules apply to all Fortran 90 user defiames (such as variable names and so
on). These rules are

e It must begin with a letter - either upper or lower case

e It may only contain the letters A-Z and a-z, the digits 0-9 #ra&lunderscore character

e It has a maximum length of 31 characters

The lines that begin with the characterare comment lines. Anything after theis ignored when the
program is compiled and is purely for the benefit of the progreer (or someone else who later reads
through the program).

You should write comment lines to document your code anda@éxpihat is going on. Use as many
comment lines as you need (possibly extra if you plan on pgssiur code on to someone else), but try
to avoid needless comments where the code says it all, e.g.,

| set a equal to 1
a=1

In this case, the comment doesn't tell you anything extra tha code itself.
A more useful comment might be

I a is the radius of the circle
a=1

as it tells you what represents. Comments can appear on the same line as some.gode
a=1 I the radius of the circle
Though this should be used sparingly and only on short lihesde.

Documentation might be achieved more efficiently with sileumenting code using an appropriately
named variable, e.g.,

rad_circ=1

It is also a good idea to put a brief description of what thegpaim is supposed to do at the beginning of
the code.

1.5.1 The specification part

The first statement in this part is
IMPLICIT NONE

This statement is used to inhibit an undesirable featungechover from previous versions of Fortran.
Using this statement means that you must declare all of thablas you use at the beginning of the
program. You should always use this statement, and it ieglaefore all variable declarations.

INTEGER :: deg_F, deg C, K

This statement is used to declare variables that you wiskdaruyour program and to tell the computer
what type of variables they are.

In this case we are declaring three variallled _F, deg _C andK) that take integer values (whole num-
bers) only.

Some other variable types are

e REAL- real numbers such &s1415 and5.213 x 104
e LOGICAL- takes the valueSRUE. or .FALSE.

e CHARACTER contains a single alphanumeric character, e.g., 'a’

e CHARACTER(LEN=12)- contains a string of 12 alphanumeric characters

1.5.2 The execution part

This is the part of the program that does the actual work. Hydikes are as follows:
PRINT=*, "Please type in the temp in F"

This writes the string (message) to the screen
READ, deg F

This reads a value from the keyboard and assigns it to thehladeg _F.
deg C = 5*(deg_F-32)/9

The expression on the right hand side is evaluated usingipheted value ofleg _F and is assigned to
the variabledeg _C. The expression performs the conversion from Fahrenhé&etsius. The following
operators are used

+ The addition operator

- The subtraction operator

* The multiplication operator
/ The division operator

= The assignment operator

The brackets() , may be used to help specify the order that the calculatiperormed.
PRINT+, "This is equal to", deg_C, "C"

This displays a sequence of outputs on the screen. Firstrihg 8This is equal to” followed by the
value of the variableleg _C. This is then followed by the final string “C”.

1.6 Programming conventions

Fortran is not case sensitive, Is@s the same as andinteger is the same atNTEGER This document
will use the convention that everything that is part of thetfem languagelNTEGER PRINT+, etc)
will be typed in capitals letter. Everything that is definedthe user (such as variables and program
names) will be typed in lower-case letters with the occadioapitol letter if it makes sense (such as the
Cindeg_C).

1.7 How to write a computer program

There are four main steps to writing a computer program. & hes:

1. Specify the problem — decide (write down) what it is thegpamn is supposed to achieve

2. Analyse the problem and break it down to a series of stepartts the solution

3. Write the Fortran 90 code

4. Compile and run the program (i.e., testing)

The first two steps may be best done using pen and paper. Bpédar longer programs, it is useful
(necessary) to have some kind of plan and a good idea of wdz ate required before starting to code.

It may be necessary to repeat steps 3 and 4 many times beéopedtpram runs correctly. It is very rare
that a code works first time.

The testing phase is very important. In larger projects itsigally possible to break the project up into
many smaller chunks that can be coded and tested separately.

1.8 Compiling and running a program

The program can be created using a text editor such as notegadacs. Suppose you have created a
Fortran 90 program calleahyprog.fo0 , this can be compiled at the UNIX prompt by typing

f90 myprog.fo0

This will create an executable file (a machine code file) dadl®ut which can be run by typing

Ja.out

When you create your executable, you can specify a differamte by typing

f90 -0 myprog.out myprog.fo0

Which can be run with

./myprog.out

1.9 Free- and fixed-format Fortran

The original Fortran language used a so-called fixed forntadres the first 5 columns were used for
labels, column 6 for a continuation character and columig ¥r code. This has much to do with early
programming being performed on punch-cards where the fitimgaof the code was important.

Fortran 90 introduced a free-format as it had little needtl@r strict format that existed in previous
versions of Fortran. Fixed-format code is still acceptadote files with fixed-format Fortran will end
with the extensionf .

This course will only look at free-format code. The accemrtEnsion for this isf90 , and all of your
Fortran files should use this extension. Some compilershiseénformation to anticipate what type of
Fortran is about to be compiled.

Free-format Fortran has only a few formatting rules, these a

e Blank characters (spaces) are important and must be usegatase names, constants or statement
labels from other names, constants, statement labels teRdeywords

e Comment lines are identified by having an exclamation majkaé the first non-blank character

e Any characters following an exclamation mark (unless thigdrt of a character string) forms the
trailing comment

A line may contain more than one statement, in which case gatément must be separated by a
semi-colon {)

A line may contain a maximum on 132 characters

A trailing ampersand&) indicates that a statement is continued on the next ling.okfcurs in a
string context then the first non-blank character of the fingt must also be an ampersand, and
the string continues immediately after the ampersand

A statement may have a maximum of 39 continuation lines

A statement label, if required, consists of up to five congeeudigits representing a number in
the range 0-99999. This precedes the statement and is pfan it by at least one space.

Statement labels are rarely needed in Fortran 90 and aredaatimore for historical reasons. We will
barely touch upon statement labels, if at all.

The rules above discuss a maximum length of a line and cattonulines. If you have a line that is
longer than the maximum, then you need some mechanism tatspler two lines, this is where the
continuation characteg&, comes in. When a line ends with the continuation charabtem the Fortran
compiler knows that the Fortran statement is not yet finisiked example, the following two statements
do the same thing;

mysum =1 +2 +3 +4+5+6+7+8+9
mysum 1+2+3+4+54&
+6+7+8+9

In the second statement, the sum is continued on the nexdise, note the use of spaces to aid visual
formatting).

You need to be slightly careful if you want to split a textstyj for example;

print =, "The rain in Spain falls mainly on the plain."
print =, "The rain in Spain &
&falls mainly on the plain.”

In this case an additional continuation character is reguat the beginning of the continuation line. The
program will try and print valid spaces, so the continuasgmbol indicates where the string resumes.

This additional continuation character at the beginninthefcontinuation line works for normal lines as
well. So for our sum example, the following statements dcstimae thing

1+2+3+4+5+6+7+8+9
1+2+3+4+5&
+6+7+8+9
mysum = 1 + 2 + 3 +4 +5 &

& +6+7+8+9

mysum
mysum

The use of continuation characters at the beginning of dragation line gives more legible code (when
combined with sensible spacing), this option is recommendeen using continuation lines.

Note, the one place where continuation lines do not work sbimments, so

I This is going to be a long comment &
& which is spread on two lines

will cause a compiler error. The correct way to do this is

I This is going to be a long comment

I which is spread on two lines

Additional note, although the maximum length of a statenli@etis 132 characters, most printers and
text editors default to around 80 characters per line. Itesd&r more legible code if you keep your lines
below this limit. Furthermore, When splitting lines, yourttchave to split them at character 80, if there
is a natural break in the statement, use that instead. For@ga

mycalc = (x-a)/SQRT((x-a) ¥ 2 + (y-b) =+ 2) + (y-b)/SQRT((X- &
& a)** 2 + (y-b) = 2)

gives an ugly break, where

mycalc = (x-a)/SQRT((x-a) *»* 2 + (y-b) = 2) &
& + (y-b)/SQRT((x-a) ** 2 + (y-b) ** 2)

is a more natural split and makes the equation easier to read.

10

2 Introduction to UNIX

2.1 Whatis UNIX

UNIX is a command-line operating system (rather than thatpand-click Microsoft operating systems)
that is intended for a more ‘expert’ user. There are manguifit flavours of UNIX such as Linux, DEC
UNIX, SUN UNIX and many more.

UNIX is used extensively for serious applications. Scl@mprogramming is often done under UNIX.
Other applications are central file servers, web serversapdrcomputers. Much of the cgi animation
that you see in TV and films is done on supercomputers runmngesype of UNIX.

In computational physics, the aim is to program and perfaommex simulations of some physical sys-
tem (such as fluid flow or plasma dynamics). These simulafomsften designed to to be run on parallel
computers where there may be 100s of computers (nodes) edcinmping a bit of the simulation and
passing on the necessary information from it's own bit fdveotnodes to continue with the simulation.
Almost all parallel computers run some flavour of UNIX.

If we are interested in doing computational physics (whitwhy we are learning Fortran), then we are
interested in learning how to use UNIX.

2.2 Logging on
For this course, we will be usinfprtran.dph , a UNIX server set up especially for this course. To
log in from one of the workstations in the honours laboratdwoythe following;

First, we must start the X-server on the windows machinehé#tl Programs list find theCygwin
menu, from this select thetart X-Server option.

After a few moments, a terminal window running on the locadkdep will appear. This is actually a
UNIX shell emulator. You will now need to log in to the fortraerver from this terminal window. To do
this type

ssh -X -Y fortran.dph

This command is the secure shell command for connectingpitier machines. TheX flag tells it that
you want to enable X-forwarding (which you do in this caskg-tY flag enables trusted X-forwarding,
and the following argument tells it which server to connect t

If you want extra/new terminal windows after you have stitee X-server, from théll Programs
list find theCygwin-X menu, and from this select tlxéerm option.

When you are logged in, the prompt in your terminal windowmsti@ehange to something involving your
username and the server name, for example

dob@fortran:™

In this document, the prompt will be written with any commamigenever you are asked to type some-
thing in under UNIX. You should not rewrite the prompt, jusétcommand that follows it.

For example, make a new directory for the Fortran 90 sourde bg typing:
dob@fortran:™> mkdir Fort90

It is suggested that when you name new directories, the dittstrishould be capitalised to differentiate
directories from regular files in directory lists.

11

You can change to the new directory by typing

dob@fortran:™> cd Fort90

2.3 Creating and editing files
The commanaat (‘catalogue’) displays the contents of a file on the screaru &an use this to create
a new file (callechyf i | e) as follows:

dob@fortran:™> cat > nmyfile
Type first line
Type second line

The final line means hold down the control key (labelled ‘Tahd then press ‘d’.
You can then display the contents of this file by typing:

dob@fortran:™> cat myfile

Where the> symbol is missing.

By using a text editor, this file can be edited and changedreléw® many text editors in UNIX, most of
which are rather difficult to use. The most widely availaldieple to use editor under UNIX is called
emacs. To use this type:

dob@fortran:™> emacs nmyfile
and use the intuitive interface. If you supply a new file naeeew file with that name will be created.

You will notice that when you do this, you are unable to entsr mew commands in the UNIX terminal.
If you type

dob@fortran:™> emacs nyfile &

then emacs will be run as a background process and you wilblgeta enter commands at the UNIX
terminal.

Important note: the files on Fortran.dph are not backed up. When working omitapt files, you will
have to back them up yourselves. You can transfer files to woukstation by using the WinSCP tool.
There should be a shortcut on the desktop with the WinSCPacdnFortran written underneath. This
will connect you to the Fortran server and you can then copy fib your m: drive.

Similarly, you can copy files you have created elsewheredd-tirtran server using this tool.

2.4 Other UNIX commands
2.4.1 Displaying a file on screen

We have already seen that tt@t command will display the content of a file on the screen. Haxal/
the file is long, the beginning scrolls of the top of the terahin
A more useful command isiore . This will display the file one page at a time.

dob@fortran:™> more myfile

Pressing the space bar or a carriage return will advancexh&y one page. typing00f will advance

12

by 100 lines and typind.00b will go back 100 lines. Typing st ri ng will move forward to the next
occurrence of that string.

2.4.2 Deleting files and directories

The command for deleting files imn. To remove a specific file type
dob@fortran:™ rm myfile

Typing

dob@fortran:™ rm *

will remove every file in the current directory, is a wild card and will match any string. This can be
dangerous, as you may delete files you want to keep (thereuadheete or recovery from a trashcan in
UNIX), a safer way to do this is

dob@fortran:™ rm -i *

This sends a y/n query to the screen for every file that it negtch

Another wild card is? which matches exactly one single character, so typing

dob@fortran:™> rm file??

will delete files that have names likéeO1 |, file02 | fileab ,,filef , etc.

To remove a subdirectory, you must first delete all the filegaioed within the directory, then you type

dob@fortran:™> rmdir subdi r

2.4.3 Directory listings

To obtain a listing of which files are contained withing a dimey, type

dob@fortran:™ Is

This will give a list of all the user files and subdirectoriemtained in the current working directory.
To see the contents of a subdirectory, type

dob@fortran:™ Is subdi r

You may use wild card characters &nd?) to list a selection of files, for example

dob@fortran:™ Is * .fo0

will list all the Fortran 90 (or at least all the files endirf§0) in the current directory.

To get more details about the files (such as last date modsfiseland ownership of file) you can use the
-l (long) option,

dob@fortran:™> Is -l

dob@fortran:™> Is -l subdi r
dob@fortran:™ Is - % .f90
dob@fortran:™> Is -l subdi r/ *.f90

The last example displays more detail of all Fortran 90 fitest@ined within the subdirectoubdi r .
The/ is a divided between the subdirectory and the file selectfon.may have many such dividers (as
long as those subdirectories exist,Fsurt90/Sect2/Ex4/ x .f90 would refer to all Fortran 90 files

13

within the subdirectorfex4 which is contained within the subdirectoBect2 which in turn is in the
directoryFort90 .

Other useful options to tHe are

dob@fortran:™ Is -a
dob@fortran:™ Is -R

The-a (all) option lists all files including hidden system filesdaihe-R (Recurse) lists all files in the
current directory and all of its subdirectories.

You may usually be able to use multiple option, e.g.,

dob@fortran:™ Is -la
dob@fortran:™ Is -l -a

will both list all the files and system files within a directagd supply the file details.

2.4.4 Copying and renaming files

Often you may wish to make a copy of a file (perhaps you want ¢camsexisting Fortran program as a
template for another). Copying can be done as follows

dob@fortran:™> cp filel file2
You may wish to copy a file from one subdirectory to anothay,, e.
dob@fortran:™ cp subdirl/filel subdir2/file2

You may wish to copy a file from one directory to another, withchanging the name, the following two
commands both do this

dob@fortran:™ cp subdirl/filel subdir2/filel
dob@fortran:™ cp subdirl/fil el subdir?2/

The second example uses a shorthand, if you supply a diyatéone as a destination without a filename,
UNIX will use the existing filename.

You can use this to copy many files to a new directory using ealdls. E.g.,
dob@fortran:™ cp subdi r 1/ *=.f90 subdir 2/
will copy all Fortran 90 files irsubdi r 1 to subdi r 2.

Sometimes you will want to rename or move a file without makimg extra copy. This can be done
using

dob@fortran:™> mv filel file2
which renames$i | eltofi | e2. All of the things above that worked fap will also work formy, e.g.,
dob@fortran:™> mv subdir1/=.f90 subdir 2/

will move all of the Fortran 90 files isubdi r 1 to subdi r 2 (leavingsubdi r 1 empty of Fortran 90
files).

14

2.4.5 Working within directories

Once you have a directory structure, you need to be able t@rabgut within that structure. You can
change the current working directory by

dob@fortran:™ cd subdi r
This moves into a subdirectory of the current directorylecbkd ubdi r .
dob@fortran:™ cd ..

Moves you back up a directory, so if you'resmubdi r and enter this command, you will be moved out
of subdi r and into the directory that contains it.

The.. can be used in conjunction with other subdirectories, so
dob@fortran:™ cd ../ otherdir/sonmedir/

Will move you up a directory then down tlog her di r / sonmedi r / branch.
If you just type

dob@fortran:™> cd

by itself, you will be taken back to your home directory.

If you're not sure where you are in your directory tree, type
dob@fortran:™> pwd

This will display the complete directory branch that you iareE.qg.,

dob@fortran:™> pwd
/mntce/staff2/base/d/dob/Fort90/Sect2/Ex2

You will notice that your home directory is several dire@srdown the directory tree.

2.4.6 Printing a file

Most printers attached to a UNIX machine expect postscrdjges (postscript is a computer language
that tells printers how to print things). The basic commarrdprinting a postscript file is

dob@fortran:™ lpr file.ps

However, this will send your output to the default printerigihmay, in general, be somewhere that
you will not be able to find. For the Fortran server though,dbault printer is the one in the honours
laboratory.

Otherwise, you need to find out the name of the printer queua fointer which you know the location
of and include that information as follows

dob@fortran:™ lpr -P | ocal printer file.ps

wherel ocal pri nt er is the name of the local print queue. A list of suitable pristehould be
available in each terminal room.

This command often works for text-files as well, however, fersaay to send your text-files (such as
your.f90 programs) to the printer is as follows

dob@fortran:™> a2ps -P | ocal printer file.txt

15

Many applications, such as emacs, will have a print optiopagocan print directly from that.

If you wish to query the local printer (see what jobs have mdmmitted and where you are in the queue),
type

dob@fortran:™ Ipqg -P | ocal printer
To remove a job (only one sent by you) type
dob@fortran:™> lprm -P | ocal printer jobno

wherej obno can be obtained using thygg command.

2.5 Further information

There is a large amount of information about UNIX availablgou are after detailed information about
a specific command, you can usually consult the man page mgtyp

dob@fortran:™> man conmmand

So to find information on this command you would type

dob@fortran:™> man Is

If you are after information about something but are unsudréhe specific command, you can do a
keyword search

dob@fortran:™> man -k keywor d

Note that man pages are usually intended as a quick lookhprrétan a tutorial and are not always
written in a way suitable for a UNIX novice.

There are other sources online. Two useful places to s&irt ar

College help page
http://www.inf.aber.ac.uk/publications/documentatidl.asp

Departmental web page (information for current students)
http://www.aber.ac.uk/physics/uniomds.shtml

Ex 2.1 Log onto central and create yourself a new directory (pesttaiedFort90).

Change into this directory and create a new subdirectoryéwtran programs from this
section (perhaps calléslect2). Change into this new subdirectory.

Ex 2.2 Using a text editor, type out the Fortran program from sectidincluded below). Save it
as Fortran 90 file (something likemp _fk.f90) in the new subdirectory created above.

PROGRAM temp_conversion

I this program take an input in Fahrenheit and converts it to
I both Celsius and Kelvin - outputting both results to the

I screen

I variable declarations
IMPLICIT NONE
INTEGER :: deg_F, deg_C, K

I read in Fahrenheit data
PRINT+, "Please type in the temp in F"

16

READB, deg_F

I convert to Celsius and output
deg_C = 5=*(deg_F-32)/9
PRINT=*, "This is equal to", deg_C, "C"

I convert to Kelvin and output
K = deg C + 273
PRINT*, "and", K, "K"

END PROGRAM temp_conversion

Compile and run this program as follows

dob@fortran:™> f90 -o temp_fk temp_fk.fo0
dob@fortran:™> ./temp_fk

Try running this program several times for different inpatues fordeg _F. Do the answers
agree with conversions worked out by hand/on a calculator.

Ex 2.3 In this question you will write the reverse program that takgut in Kelvin and converts
to Celsius and Fahrenheit.

First write down (on a piece of paper) the equation to conkeiltiin to Celsius and the
equation to convert Celsius to Fahrenheit.

Now make a plan (again on paper) of the steps you need to peifothe program (put in
as much detail as you need to).

Now write the Fortran program (pick a new filename that beamsesrelation to what the
code does), compiling, testing and modifying as required.

Try using your original prograntemp _fk to convert from Farenheit to Kelvin, then using
that result in your new program to convert back to Farenlmmtyou always get exactly the
same result you started with? If not, why not?

17

18

3 Data Types and Handling

3.1 Data Types

There are four basic types of data in Fortran (though thege sabtypes). Two of these are the fun-
damental number types of integers (whole numbers) and ¢eafsbers with a fractional component).
There is also character data and logical type data. We vaiK ki logical data types later in the course.

3.1.1 Integer Type
Integers are whole numbers without any decimal/fractiamathponent. When you store an integer in
computer memory, there are limits on it's size.

As an example, consider a milometer (or odometer) on a cah#isaeight dials that each go from 0 to 9.
Initially, the odometer has the reading;

[0]oJofofo0]0]O]O]

After driving two miles the odometer reads

[0]oJofofofo]0]2]

And after driving a lot more miles, the odometer reads

[9]9]9[9[9]9]9]9]

If the car drives another mile, then the odometer is goingito bver and all the dials will be back to the
beginning again

[0]ojofofof0]0]O]

So we're limited to the maximum reading on the odometer byntlmaber of dials.

A computers memory works in a similar way (except computemany is usually binary rather than
decimal) and the maximum number that can be stored depertie amount of memory that is allocated
to the storage. If one byte (which is eight bits) is allocateeh the maximum number 2 — 1 = 255.

This is fine, but it does not take into account negative nusmb€onsider the odometer once more, but
use the convention that 1 to 49 999 999 are considered to litvpasumbers and that 50 000 000 to
99 999 999 translate to the negative numbers -50 000 000 fo-the following values on our odometer
would translate as follows;

|5/0]0|0]0]0|0]|O] Represents -50 000 000
|5]/0]0]0[0]0]0]1] Represents -49 999 999
19/9]9]9[9]9]9]9] Represents -1
|0J]o]o]O0[0]0]0O]O|] Represents 0
|0[o]0JO0]O]O|O]1] Represents +1
[479]9]9[9]9[9[9] Represents +49 999 999

In Fortran 90, when you specify that you want a number to bentager, it will store the number using
this notation (though with binary arithmetic rather thacid®al). So the range of numbers that you can

19

have depends on the amount of memory allocated to storingtiwgger.

3.1.2 Real Type

Real numbers are those with a whole humber (integer) paradnakctional (or decimal) part. Again,
when you store a real number there are limits on its size.

One could use a similar method to store real number as wasfaisstbring integers, but with some of
the positions/dials being after the decimal point (for egenon a milometer the final dial may be 10ths
of a mile). For general storage of real numbers, this is itral as you would need a lot of memory
to store large numbers, but lots of this would be wasted. Atadatiplying small numbers would cause
errors.

Instead, it makes more sense to use scientific notation suth & 10° or 0.72 x 103 and so on. So let
us consider the odometer again. This time take the first tas thh be the exponent and the remaining 6
dials to be the fractional part after the decimal point. So

(0][6]3[6][2]0]9]4] Represents.362 094 x 10°

In order to get negative real numbers and negative expomentse the same method as before. So for
the exponents, 0 to 49 is positive and 50 to 99 are negativenaipdo -50 to -1. Similarly, the fractional
part can be mapped so that 0.5 to 0.999999 becomes -0.5 @GDEAD (this works a lot better in binary
than decimal).

So the following readings translate as follows;

(0[3]2]7][6]0][3]1] Represents.276 031 x 10° = 276.031
[0]4]7]4]0]1]9]3] Represents-0.259 807 x 10* = 2 598.07
(9]7]2]7][6]0]3]1] Represent§.276 031 x 103 = 0.000 276 031
[9[6]7]4]0]1]9[3] Represents-0.259 807 x 104 = 0.000 025 980 7

So with this notation, you can have real numbers betweess x 10* to —0.499999 x 10*° and the
smallest number you can haveli®00001 x 107°° = 10,

Of course, a real computer will store this using binary diateer than decimal ones.

3.2 INTEGER and REAL Variables

Suppose we have an odometer that has the reading
[0[4]3[6]4]0[7]9]

This could be interpreted as the integes64 079 or as the real numbe).364 079 x 10*. In order to
interpret the reading we must also label the odometer atgyd We would probably want to label the
odometer so we knew what it referred to (e.g., no of peopleesiavelled, speed, etc). Something like
the following may be appropriate;

n Integer
0/[0]1]|5]4][2]|3]8

which represents = 154 238

20

X Real
0\6\4 7\2\2\6\3

So we now know how to interpret the odometer reading and td iwvhefers.

which represents = 0.472 263 x 106

This is similar to what occurs when we define variables infgor0. When a variable is initialised as an
integer or real number (or one of the other types), the coengaserves the amount of memory required
to store the value as well as memory to store the type of Variaks and what its label is (and perhaps
other properties of the variable).

So to define an integer we would write
INTEGER :: i

This would allocate memory for an integer variable with thledli . We can define many variable with
the same command, e.g.,

INTEGER :: i, j, k
Similarly, to define a real variable we would write

REAL :: x
REAL @ X, vy, z

3.2.1 What are the minimum and maximum values | can store?

We have seen above that integer and real variables have ormiamd maximum values that can be
stored, which depends on the amount of memory that the ca@nplibcates for storage. Unfortunately,
there is no standard value for all computers, and differesthimes may allocate different amounts of
memory.

However, many machines are 32 bit machines and these usilaltate 32 bits (or 4 bytes) to integer or
real variables. For an integer variable this gives a range2f47 483 647 to 2 147 483 647. For real
variable, this gives a range of aboul 038 to 103® with 7-8 significant figures.

With the advent of 64 bit computers, this may well be différ&hough the range will likely be larger
with better accuracy). Much older computers may give smedleges.

3.3 Arithmetic and Assignment
3.3.1 Assignment

Once we have defined our variables, we want to be able to agaligaes to them and use these values
in arithmetic expressions. There are two ways to do thisfitheis by the assignment operater) @nd
the second is by thREADstatement. We met both of these in our temperature convepsigram in
section 1.4.

The assignment operator works as follow. Fortran 90 evedutite expression on the right hand side of
the= operator and assigns it to the variable who'’s label appeaatheleft hand side. For example

INTEGER :: i, |, k

i =4 I assign the value 4 to i

j =i+ 2 I add 2 to the value of i and assign to |

kK =j - I subtract the value of i from j and assign to k

21

=i+ 1 I add 1 to the current value of i and assign it
I back to i

In the last example, the variableappears on both sides of the operator. So the old valueitised to
evaluate the right hand side and this new value is then stordedr the variablé . This does not go back
and change the values jofor k.

3.3.2 Arithmetic

In the previous example we saw that thend- operators were used to represent addition and subtrac-
tion. The basic arithmetic operators are as follows;

Operator Meaning

+ addition

- subtraction

* multiplication

/ division

*x exponentiation (or “raise to the power of”)

Using these operators we can construct arbitrary complpsesgions. For example
a=b+c xd/e-f *x g/h+i *j+k

For statements like this it is important to know in what or&ertran will evaluate the expression. For
this situation, Fortran has an operator priority (whichasibally the same as in mathematics) which is
outlined in the following table.

Operator Priority

ok high
* and/ medium
+ and- low

So Fortran will carry out all the high-priority operationssfi followed by all the medium-priority oper-
ations and finally all the low-priority operations. If theaee several operations of the same priority, then
Fortran works from left to right.

So for the above expression, the order in which operatiomsl@ne can be written as follows

templ = f » g

temp2 = c *d

temp3 = temp2/e

temp4 = templ/h

temps = i *j

temp6 = b + temp3
temp7 = temp6 - temp4
temp8 = temp7 + temp5
a = temp8 + k

In practise, Fortran doesn't actually assigriemp? variables, instead it uses special high-speed mem-
ory locations (called registers) to speed up the calculatio

Ex 3.1 Consider the calculation

a=b=*c+d/e ** f-g+h *i x]j

22

Write a piece of Fortran 90 code that calculates this in (ahgles line; and (b) a series of
lines with one operation per line in the order that Fortramldaarry them out. UsREAL
variables only in this code.

Put in some test values ftr-j and output the result of your calculations for both cases to
check that they both give the same answer.

3.3.3 Parentheses

There will be times when you want your calculation (or at {gests of it) to be carried out in a different
order than described above. For example, if you were cdioglahe mean of two values you would

calculate
a+b

2
where the addition is performed before the division. Youldaplit this calculation into two parts, so

templ=a+b
mean=temp1/2.0

However, it is more convenient to write this on one line ugdagentheses to indicate the order in which
the calculation should be executed. E.g.,

mean=(a+b)/2.0

Parentheses change the order of the calculation in the sayné¢hat they do in mathematics. When in
doubt about the order in which a calculation is being exetuaed appropriate parentheses in order to
clarify things (at the very least, this may make it clearerdioyone reading your code).

Ex 3.2 Modify the code that you wrote in exercise 3.1 to calculate

a=bxc+dle = f-g+h i]

Try adding parentheses around different parts of the egu&ti change/not change the final
result.
3.3.4 Mixed Modes and Integer Division

Ex 3.3 Consider the following Fortran code;
PROGRAM mixedmodes

IMPLICIT NONE

INTEGER :: i,]
REAL :: x, yi1, y2

yl=x *ifj
y2=ilf *X

PRINT*, 'y1="yl
PRINT=*, 'y2="y2

23

END PROGRAM mixedmodes

According to the rule governing the order of execution, the formulae should give the
same result. What happens when you type this in and run it?

Modify the code so that it also calculatéds and output the result. Is this what you ex-
pected?

From exercise 3.3, you may have guessed that there is sometbi quite right about integer division.
For the other operators+(-, * and+*), if they operate on two integers then they return an integer
as an answer (so adding two integers returns another ifteGesm a programming perspective, you
would want division to behave the same way. Clearly thoughditig one integer by another does not
necessarily return another integer. In order to make imtdiyésion return an integer, Fortran truncates
the result. S@/3 = 0.6666 which Fortran truncates @

When bothNTEGERandREALvariables are used in a single calculation then Fortranartsbetween
the two as it deems necessary for each individual operaBorfor our two calculations above

I first calculation

y1=x *ilj
I performs calculation as follows
templ=x i I converts i to a REAL and multiplies by x
| stores as REAL variable templ
yl=templ/j I converts | to a REAL and divides templ by it

| stores as a REAL variable

I second calculation

y2=ilj *Xx
temp2=i/j I performs integer division and stores as an
I INTEGER variable temp2
y2=temp2 * X I converts temp2 to a REAL and multiplies by x

| stores as a REAL variable

So for each individual part of the calculation, if both vates ardNTEGERs, then Fortran will perform
integer arithmetic. If one is alNTEGERand the other iREALthen the integer will be converted to a
real number before the calculation in done.

When the final result is stored, Fortran will convert the fimaswer to the type of the variable that it is
being stored in. So if you try and store an integer result ira variable, then it will be converted to
a real number first. If you try to store a real result in an istegariable, then the real number will be
truncated to an integer first.

Clearly this kind of mixed mode calculation and integer siivh should generally be avoided unless you
are specifically after this kind of effect.

3.3.5 Converting Betweend NTEGER and REAL Variables

It is all very well saying that you should avoid mixed modeccdditions, but there are often times when
you need to use something stored asNMIREGERIn a real calculation. In these cases, it is usually most
sensible to use a conversion function. So to convelNariE GERto aREALyou would use the following
function;

x=REAL())

24

This converts the integer into a real number and stores it in the real variable

There are four functions that Convert frdRiEALto INTEGER each doing so in a slightly different way.
These are;

Function Effect

AINT(x) Truncates the real leaving the whole part
CEILING(X) Rounds the real number down to the next integer
FLOOR(x) Rounds the real number up to the next integer
NINT(x) Rounds the real number to the nearest integer

These functions can be included within a larger line of dakbon, e.g.,

a = REAL(i+j)/x + FLOOR(y)/CEILING(y)

Ex 3.4 Modify the code in exercise 3.3 so that the integeend]j are converted to real variables
within the calculations foyl andy2. Do the results for each calculation now agree?

Ex 3.5 Write a Fortran code to calculate and display the resultAIdIT(x) , CEILING(X) |,
FLOOR(x) andNINT(x) for each of the following cases;

(a) x=2.34
(b) x=4.61
(c) x=1.5

(d) x=-1.13
(e) x=-3.72
(f) x=-0.5

Test with some different values until you appreciate théediihce between the four func-
tions.

3.3.6 Unary Operators

As can be seen in exercise 3.5, theperator can be used as a unary operator (i.e., it acts ordysomyle
value). Thet operator can also be used as a unary operator (althougts tféisely needed for obvious
reasons).

In both cases, the operator acts as you would expect. Formeam

x=-3.1
i=+2

3.3.7 Spacing Things Out

Fortran will ignore any spaces in arithmetic expressiortss eans that you can add spaces into such
expressions without any effect. While this will not changsvithe code runs, it can make expressions
(particularly longer ones with several terms) easier tolr&mr example;

a=b=*c+d/e =+ f-g+th =i]
a = bxc + dl(e »f) - g+ h =*ixj

In this case, the expression has not been changed, but titeadidf spaces to separate the different
terms and the addition of a pair of brackets makes the expresasier for the programmer to read.

25

It is up to you as a programmer exactly how to format expressibut it is recommended that some
visual formatting of your code is done as this will aid you wh@u debug your code or look back at it
later. It will also assist other people who look at your code.

3.4 Literal Constants

Literal constants are just numbers. However, in Fortraerettare different ways of writing numbers
depending on what you want.

If you want to write an integer, you just type the number witha decimal point. So the following are
INTEGERCconstants;

= 246
20000
=7
=0

Real numbers are indicated by a decimal point (even if thetiiaal part is0). The following areREAL
constants;

= 3.12
= 4000.0
= -14.769
= 0.0

X X X X

There is another way to writREAL numbers which is particularly useful for very large or vemadl
numbers, this is callegxponential form. This takes the form

mEe

Wherem is called the mantissa ar&lis the exponent. The mantissa may be written with or without a
decimal point, and the exponent must take the form of an émte®p the number 000 000 = 1° can be
written as

x = 1.0E6 I with a decimal point
x = 1E6 I without a decimal point, but is still a REAL

The following are more examples BEALconstants in exponential form;

2.64E27
= 0.75E-5
-3E-12
256E6

X X X X

3.5 Input and Output of Numerical Data

We have come across input and output in the form oRIR&NT andREADstatements in the temperature
conversion program in section 1.4. We shall now look at thgairain more detail with the knowledge
we now know about real and integer variables.

In the form we shall currently be using them, they have alndesttical syntax;

READ x, varl, var2, ...
PRINT =, iteml, item2, ...

The main difference is that the list followingREADstatement may only contain variables, where the

26

list following a PRINT statement may also contain literal constants and expressithe list following
the READandPRINT statements are often referred to asith@it list andoutput list respectively. The
asterisk following th&(READandPRINT statements indicates thédt-directed formatting is to take place.
There are other types of input and output formatting, bug #re beyond the scope of this course.

The list-directedREADstatement will take it's input from a processor defined infiar most computers
this will be the keyboard. Similarly, the list-direct®RINT statement will send it's output to a processor
defined input, which is usually a terminal on the computeeasar We will see how to read from and
print to files later on in the course.

3.5.1 TheREAD Statement

The statement
READ *, real varl, real var2, int_var

will read a list of three values from the input device (e.geylkoard). it will then store these value
in the variablegeal _varl ,real _var2 andint _var which are two real variables and an integer
respectively. If a number to be stored in a real variable do¢fave a decimal point (i.e., is an integer),
then it will be converted to a real. If a number to be storedraseger contains a decimal point, then
this will cause an error.

As the term list-directed implies, the inputs are read in staThis means that we need some way to
separate different terms in the list when we type them in. thisrwe use avalue separator between
values of the list. A value separator can be a comma, a spatasta(/) or an end of line. Any of these
can be preceded by any number of additional spaces.

If there are two consecutive commas, then this is intergrageanull value. This results in the value of
the variable being unchanged. A common error is to assunie thall value will set a variable to 0.

Finally, if the terminating character is a slash, then noerdata items are read and any remaining items
in the input list are give null values (i.e., are unchanged).

Ex 3.6 Type in the following program.
PROGRAM input_example

IMPLICIT NONE
INTEGER :: intl, int2, int3
REAL :: reall, real2, real3

I initialise all variables

intL = 0
int2 = 0
int3 =0
reall = 0.0
real2 = 0.0
real3 = 0.0

I read in data
READ x, intl, reall, int2, real2, int3, real3

I print new values
PRINT =, intl, reall, int2, real2, int3, real3

27

END PROGRAM input_example

Compile and run the program and enter the following values;

(a) 1,2.0,3,4.0,5,6.0
(b) 1 2.0 3 40 5 6.0

) 1 2.0
3 4.0
5 6.0

) 1,,4.0,6.0

(1, ,, 40, , 6.0

H 120 3/

9/
Now change the initial values of the variables in the coderatrg the above tests.

Try more test values until you are happy that you understamat v8 going on.

3.5.2 ThePRI NT Statement

We have seen theRINT statement in action several times so far. The statement
PRINT =, varl, var2, var3

will display the valuesvarl , var2 andvar3 to the default output (usually the screen). The format
of the output is entirely computer dependent, but is noyredlequate for simple programs and testing.
More advanced formatting is possible, but beyond the scbgi@socourse.

As has been mentioned already, the output list of RRINT statement can contain variables, literal
constants and expressions. So the statement

PRINT x, 'The area of the circle of radius ', r, " is ', 3.14 * [%k 2

has a list containing four items. These are

1. The character string (literal constanihhe area of the circle of radius
2. The variabler
3. The character strings

4. The expressior3.14 *r*x 2

When this is run, Fortran will substitute the value rofand the value of the evaluated expression
3.14 *r** 2 into the output list.

Ex 3.7 Write a program that reads in the value of the radius of aeifdbn’t forget to prompt the
user for input) and prints out (a) the radius, (b) the diamét the circumference, and (d)
the area of the circle. You may only use a single variableHerradius, all other quantities
must be calculated as expressions onRRENT line. You may user to two decimal places
(m = 3.14).

28

3.6 Intrinsic Functions

Intrinsic functions are mathematical (or other) functions that are built int® Fortran 90 language. We
have seen some implicit functions in section 3.3.5 for cdinvg between variable types, such as the
REALfunction. There are many intrinsic functions in Fortrangkestion of the more useful mathemati-
cal ones can be found in table 1.

Function Input Output Purpose
ABS(A) integer or real as input returns the absolute valu& of
ACOS(x) real,|z| <1 0 <reak 7 returns the inverse cosine (or arcco-
sine) ofx
ASIN(x) real,|z| <1 —7/2 <reaK m/2 returns the inverse sine (or arcsine)
of x
ATAN(X) real —7/2 <reaK w/2 returns the inverse tangent (or arct-
angent) ofx
ATAN2(y,x) both real —m <reaK returns the inverse tangent (or arct-
angent) ofy/x , bothx andy cannot
be0
COS(x) real real returns the cosine »f
COSH(x) real real returns the hyperbolic cosinexof
EXP(x) real real returng raised to the powex
FRACTION(x) real real returns the fractional partof
LOG(X) real real returns the natural logarithmyof
LOG10(x) real real returns the logarithm wfto base 10
MAX(A1,A2,...) all integer or as input returns the maximum value Afl,
all real A2, ...
MIN(AL,A2,...) all integer or as input returns the minimum value éfl,
all real A2, ...
MOD(A,P) both integer or as input returng\ moduloP calculated byA
both real - P+AINT(A/P)
MODULO(A,P) both integer or as input returng\ moduloP calculated byA
both real - P+FLOOR(A/P)
SIGN(A,B) both integer or as input returns the absolute valuefoget to
both real the same sign &8
SIN(x) real real returns the sine &f
SINH(x) real real returns the hyperbolic sineof
SQRT(x) real real returns the square rootof
TAN(X) real real returns the tangent:of
TANH(X) real real returns the hyperbolic tangenxof

Table 1: Table of selected mathematical intrinsic function

These functions can be included directly into expressiarassigned to variables in the same way that
the REALfunction can. The following are all examples of how intrmfinctions may be used.

y
y
V4
=)

SQRT(x)

SQRT(2.0)
(@l *COS(k1*x) + a2 *SIN(k1 *x)) *EXP(k2*t)
RINT =, The logarithm of ', x, ' is ', LOG(X)

Ex 3.8 Modify the code that you wrote in exercise 3.7 to calculat phoperties of a circle to

29

calculate and use a more accurate approximation tdse the fact that
. T
sin— =1
2

and work out the expression (using the appropriate intrifgiction) to calculater. Store
this in a new variable (perhaps callpd) and use this variable in your calculations of the
circle. Don't forget to output the value @i as a check.

Ex 3.9 Write a code that reads in the position of a point in Cartes@rdinates and converts the
data to polar coordinates. Output the result in both degaedsradians (you will need to
calculater again in order to do this).

3.7 UsingCHARACTER Data

We will not cover any more than the most baSIEIARACTERandling as it will rarely crop up in the
kind of computational modelling that is performed in phgsic

We have seen somEBHARACTERata in ourPRINT statements (more specifically, we have seen literal
constants of character type). Now we will look at declarfig ARACTERariables and manipulating
CHARACTERata in our programs.

Previously, we looked at hoREALand INTEGERvariable were stored in what we will catimeric
storage units. Characters on the other hand are storedheracter storage units. A single character
storage unit will hold exactly one character. G-ARACTERariable consists of one or more character
storage units.

Characters are taken from the FORTRAN character set whidiides all the letters (in both upper

and lower case), the numbers 0-9 and some additional spd@shcters. These are shown in table 2.
This gives a total of 83 characters. Other characters willost certainly be available in any particular

implementation on Fortran, and these may be us€cHARACTERariables and comments. However,

such a program may not work on a different computer underferdiit implementation of Fortran.

A B C D EF G H I J K L M
N O P Q RS T UV W X Y Z
a b ¢ d e f g h i | k | m
n o p q r s t uv w X y z
0O 1 2 3 4 5 6 7 8 9

= + - x|/ ()Y , . oo
% & ; i ¢ ? $ space

Table 2: The 83 characters that appear in the Fortran clearset

3.7.1 DeclaringCHARACTER Variables

DeclaringCHARACTERariables is similar to declaringN\TEGERandREALvariables with one impor-
tant difference. Itis necessary to declare how many chensthe variable is storing (or more precisely,
how many character storage units are required). This is dsffiellows

CHARACTER(LENEengt h) :: varl, var2, ...

This declares the variablesrl, var2, ... to haveCHARACTER/pe and will have a length of
| engt h characters.

There are a couple of variations or short cuts for this, tlaese

30

CHARACTER(engt h) :: varl, var2, ...
CHARACTER engt h :: varl, var2, ...

While these are slightly shorter, it is recommended foritgldhat the full form of the statement is used.

Not all CHARACTERariable in your programs are required to have the sameHendtu can define
CHARACTERariables with different length using multip@HARACTERtatements. E.g.,

CHARACTER(LENFenl) :: varl, var2
CHARACTER(LENEen2) :: var3, vard

It is possible to define variables of different length on aykrine, e.g.,
CHARACTER(LENEenl) :: varl, var2, var3 *| en2

Where the first two variablessérl andvar2) have lengthl enl and the third Yar3) has length
| en2. Again, it is recommended that, for clarity, the longer famused.

3.7.2 CHARACTERAssignment

CHARACTERariables are assigned in a similar waylif EGERandREALvariables, except that the
string of characters to be assigned is surrounded by a psingle quote marks ('...") or a pair of double
qguote marks ("..."). For example

strl = 'Hello world!’
str2 = "Hello world!"

Ex 3.10 Consider the following program.
PROGRAM character_example

IMPLICIT NONE
CHARACTER(LEN=4) :: stringl, string2
CHARACTER(LEN=5) :: string3, string4

string1="Stop’
string2="Start’
string3="Stop’
string4="Start’

PRINT =, '--, stringl, '--'
PRINT =, ’--’, string2, ’--’
PRINT =, '--, string3, '--'
PRINT =, ’--’, string4, ’--’

END PROGRAM character_example

What do you think the output will be from this program? Type firogram in and run it,
does it produce what you thought it would?

This brings up the issue of what happens when the stringraeigp the variable is of a different length
to the variable that it is being assigned to. You will havenseeexercise 3.10 that this is fairly straight-
forward. If the variable is longer than the string being @ssd, then the rest of the variable is filled with
blanks (or spaces). If the variable is shorter than thegstthren the string is truncated from the right to
the correct length.

31

3.7.3 Reading in Character Data

Character data can also be assigned by usindRtB&Dstatement. This is done in the same way that
integer and real data is read in, except that the string teae must be surrounded by single or double
guotation marks. There are some common situations whemulgsvould be annoying, so there are
some exceptions to this. The quoting of character data bejng into aREADstatement is not required

if all of the following are true:

1. the character data does not contain any value separatgrsklanks, commas or slashes);
2. the character data is contained within a single recorther |
3. the first non-blank character is not a single or doubleatiat mark

4. the leading characters are not a number followed by amisisigor reasons that will not be ex-
plored in this course).

If the inputted string is too long or short for the variabkeyill be truncated or padded with spaces as it
would for assignment.

Ex 3.11 Consider the following program.
PROGRAM character_example2

IMPLICIT NONE
CHARACTER(LEN=6) :: stringl, string2, string3

I set some initial values
stringl "
string2 = "
string3 "

I prompt and read in values for the three strings
PRINT =*, 'Please enter three strings’
READ =, stringl, string2, string3

I output the three strings

PRINT =, '--, stringl, '--'
PRINT =*, '--’, string2, '--'
PRINT =, -, string3, '--'

END PROGRAM character_example2

Compile and run the program and enter the following values;
(a) 'One’, "Twao’, 'Three’

(b) 'One’ 'Two’ 'Three’

(c) One Two Three

(d) One Two
Three

(e) 'One Twao’, 'Three’, 'Four’
123

32

(g) 'One’, , three
(h) One /

Try more test values until you are happy that you understamat v8 going on.

3.7.4 PRI NTing CHARACTER Data

We have seen in the last couple of examples thaPRENT statement works exactly as you might expect.
The value ofCHARACTERariables is printed without the quotation marks, but witly &ailing blanks
that may have been added.

3.7.5 CHARACTEREXxpressions

We have seen that with numerical variables, we can congtrrogerical expressions in order to perform
calculations. In order to do anything useful with charagtaiables, we would like to be able to construct
character expressions.

One of the first things we can do is to concatenate two strifigss is done with the concatenation
operator// . So for example,

CHARACTER(LEN=6) :: strl, str2
CHARACTER(LEN=12) :: str3

strl = 'Hello ’
str2 = 'World!
str3 = strl//str2

In this example, the values aftrl andstr2 are concatenated to form the new strititello
World” which is stored instr3 . The usual rules for truncating/padding if the lengthsof3 is
different apply again.

This is the only operator provided by Fortran for characeadHowever, another feature is the identifi-
cation of substrings. A substring is a portion of anothegdaistring and is identified in Fortran by a pair
of integers separated by a colon, contained in parentheBewihg a character variable, so

PRINT =, str3(2:5)

would print’ello’ to the screen (i.e., the substring is from the second pasditidghe fifth position of
the main string). If the first integer is missing, then thesdribg is taken from the first character position.
If the second integer is missing then the substring extemtisetfinal character position.

Ex 3.12 Consider the following program
PROGRAM substring_example

IMPLICIT NONE

CHARACTER(LEN=16) :: strl
CHARACTER(LEN=8) :: substrl, substr2, substr3
strl = 'Physics is fun!V

PRINT =, strl

substrl = str1(3:10)

33

PRINT =, substrl
substr2 =
substr3 =
PRINT =,
PRINT =,
PRINT =,

str1(:8)
str1(9:)
substr2
substr3

substr2 =
PRINT =,

strl(:7) =
PRINT =, strl

substr2//substr3

'Spanish’
substr2//substr3

'Archery’

substr3(4:7) = ’hard’
PRINT =, substr2//substr3

END PROGRAM substring_example

What do you think will be outputted to the screen? Type in amctihe program, does it agree
with what you thought? Try creating and concatenating yeur strings and substrings until
you understand what is going on.

In addition to the concatenation operator and substrirfysretare a range of intrinsic functions for
character data. A selection of these are listed in table 3.

Function Input Output Purpose
ACHAR(i) integer character*1 Returns the character inittiepo-
sition of the ASCII set
ADJUSTL(str) character*n character*n Removes all leading blanks and
adds them to the end of the string
ADJUSTR(str) character*n character*n Removes all trailing blanks and
adds them to the beginning of the
string
IACHAR(C) character*1 integer Returns the position in the ASCII
set of the character
INDEX(str, substr) character*n, integer Returns the starting position of the
character*m string substr within the string
str
LEN(str) character*n integer Returns the length of the ststrg
LEN.TRIM(str) character*n integer Returns the length of the steirg
with all trailing blanks removed
REPEAT(str, i) character*n, character*(n*i) Returns a string which is made up
integer of the stringstr concatenated
times
SCAN(str, set) character*n, integer Scans the strirgjr for one of the
character*m characters irset and returns the
position of the first instance
TRIM(str) character*n character*(n-i) Returns a string with all ltray

blanks removed

Table 3: Table of selected character intrinsic functions.

34

Ex 3.13 Consider the following program.

PROGRAM character_example3

IMPLICIT NONE

CHARACTER(LEN=12) :: str

INTEGER :: a_upper, a_lower, excl, spc

INTEGER :: pl, p2, p3, p4, p5, p6, p7, p8, p9, pl0, pll, pl2

a_upper = IACHAR(A) - 1
a_lower = IACHAR(a) - 1
excl = IACHAR(")
spc = IACHAR(")

pl = a upper + 8

p2 = a lower + 5

p3 = a lower + 12
p4 = a lower + 12
p5 = a lower + 15
p6 = spc

p7 = a_upper + 23
p8 = a lower + 15
p9 = a lower + 18
pl0 = a_lower + 12
pll = a_lower + 4

pl2 = excl

str = ACHAR(p1) // ACHAR(p2) // ACHAR(p3) // ACHAR(p4) /I &
& ACHAR(p5) // ACHAR(p6) // ACHAR(p7) // ACHAR(p8) /I &
& ACHAR(p9) // ACHAR(p10) // ACHAR(p1l) // ACHAR(p12)

PRINT =, pl, p2, p3, p4, p5, p6, p7, p8, p9, pl0, pll, pl2
PRINT =*, str

END PROGRAM character_example3

Can you work out what the outputted message storestrin is? Type in and run this
program. Did the message agree with what you thought? MdHd#yprogram so that it
outputs a message of your choosing (altering the lengstrofif necessary).

Ex 3.14 Write a program that will read in a single word of arbitrarydgh, remove any leading
and trailing blanks and return the number of letters in thedwdest your program with a
selection of different words with different numbers of lesgand trailing blanks.

Ex 3.15 Write a program that reads in the users first, middle and lastes into three differ-
ent variables, removes any unnecessary leading or trdilangks and outputs the welcome
'Hello first mddle last. (include the full stop atthe end). Does your program
still get the spacing correct if you omit the middle (or anytled other) names?

35

3.8 Initial Values and Constants

There is one additional method of assigning a value to abariand that is to provide an initial value
as part of the declaration. To do this, append an equals sigra aalue on the declaration line after a
variable. For example

REAL :: a=0.0, b=1.0, c, d, e=1E-6
INTEGER :: nmin=10, nmax=100
CHARACTER(LEN=10) :: name="undefined’

The initial values supplied must be either a literal constanaconstant expression (i.e., an expression
where all the component parts are constant).

A related issue is that afamed constants. You may want to use some form of physical constant which
will not change during the program (such as the value of exercise 3.8). Alternatively, you may want
to define some constant for the program such as a variabégloadix cases which wont change during

a single run of your code, but you may want to change as theprobtem changes (it is easier to change
a single value at the top of your program rather than evemgircg within your code).

To define a named constant, you include theR&gRAMETERIfter the variable type. For example

REAL, PARAMETER :: pi=3.1415, pi_by 2=pi/2.0
INTEGER, PARAMETER :: max_cases=100
CHARACTER, PARAMETER :: filename="output.dat’

Notice that we use the value pf to definepi _by _2, this is okay as we have already defim@dto be
a constant.

36

4 Decision Making in Fortran

4.1 Blockl F Constructs

So far all of our programs have been linear. That is, we'vdesiaat the beginning of the program and
executed every statement until we've reached the end. Hawievpractise we may want to do something
only under certain conditions, or may not do something umdieer conditions (for example, you may

not want to take the square root of a negative number). Pgith&pe is an either or situation (such as a
step function {d (x) which isO whenz < 0 and1 otherwise). You may even have problems when you
must perform one of many actions depending on some criteria.

This is done using what is known ablock IF construct , an example of this is

IF (x>0) THEN
rootx = SQRT(X)
END IF

This is the most minimal blockF . In the parentheses after thie statement but before thEHEN
statement, we have a condition that must be satisfied (ic#sis must be greater thai), if this is true
then the action within the block will be taken (the square root will be calculated) and thenhkiock
ends with arEND IF statement.

If you have an either or situation, you may want to includee&i$E statement, an example of this would
be

IF (x>0) THEN

stepx = 1.0
ELSE

stepx = 0.0
END IF

If the condition after théF statement is true, then the commands afteMH&Nstatement are followed,
if the condition is false, then the commands afterEheéSE statement are followed.

If you have multiple conditions and actions, then this captogrammed as follows

IF (i == 1) THEN
PRINT =, 'First case’
ELSE IF (i == ncases-1) THEN
PRINT *, 'Penultimate case’
ELSE IF (i == ncases) THEN
PRINT =*, ’Last case’
ELSE
PRINT =, 'Case number i
END IF

If the first condition is true (note= meanss equal to), then Fortran will perform the associated action,
if it is false then Fortran will examine the next conditiontiliit finds one that is true or encounters the
generalELSE statement. If Fortran finds a condition that is true and perfothe associated actions, it
will then jump to the end of the blocl without evaluating any of the other conditions (even if some
of them are also true). The geneElSE statement is optional, if it is not present and none of thezvabo
conditions are true, then the blotik will perform no action.

37

4.1.1 Indentation

You may have noticed that the action statements have beentidifrom théF andELSE statements.
This is not necessary for Fortran itself, however it is a \mapular programming convention that makes
the code easier to read. There are a variety of differentrproming blocks (like théF block and
the PROGRAMIock) that may be nested within one another. Using sengildentation allows the
programmer (and other programmers) to easily see WhichELSEs andENDs are associated with one
another.

Consider the following bit of code, first without indentatio

IF (i == 1) THEN

IF (j == 1) THEN

PRINT =, 'This is the top-left corner’
ELSE IF (j == jmax) THEN

PRINT =, 'This is the bottom-left corner’

ELSE

PRINT =, 'This is the left edge’
END IF

ELSE IF (i == imax) THEN

IF (§ == 1) THEN

PRINT =*, 'This is the top-right corner’
ELSE IF (j == jmax) THEN

PRINT =, 'This is the bottom-right corner’
ELSE

PRINT =, 'This is the right edge’
END IF

ELSE

IF (§ == 1) THEN

PRINT =, 'This is the top edge’
ELSE IF (j == jmax) THEN

PRINT =, 'This is the bottom edge’
ELSE

PRINT *, 'This is in the middle’

END IF

END IF

And now with the indentation

IF (i == 1) THEN
IF (§ == 1) THEN
PRINT =*, 'This is the top-left corner
ELSE IF (j == jmax) THEN
PRINT =%, 'This is the bottom-left corner’

ELSE
PRINT =*, 'This is the left edge’
END IF
ELSE IF (i == imax) THEN

IF (j == 1) THEN

PRINT *, 'This is the top-right corner’
ELSE IF (j == jmax) THEN

PRINT =*, 'This is the bottom-right corner’
ELSE

38

PRINT =*, 'This is the right edge’
END IF
ELSE
IF (j == 1) THEN
PRINT =*, 'This is the top edge’
ELSE IF (j == jmax) THEN
PRINT =*, 'This is the bottom edge’
ELSE
PRINT *, 'This is in the middle’
END IF
END IF

In the first code, it is not immediately clear whitth s, ELSEs, ENBs and actions belong with each block
and what the flow of choices and actions are. In the second toelflow of the code is much easier to
see.

It is up to you to use as much or little visual formatting as yadsh, but indentations of 2-3 spaces (but
be consistent) are strongly encouraged.

Ex 4.1 Write a program using the blodk construct to read in an integer, and output whether the
number is positive or negative. Compile and run for sevesst values. What happens if
you type in0? If necessary, modify you blodk to handle this case as well.

Ex 4.2 Write a program using nested bloldk constructs to read in two real numbers and evaluate
the following function.

ey =93 .4y if 2. <0,y>0

Don't forget to output your result. Can you also write thisaaBortran expression without
using a blockF construct?

4.2 Logical Variables

Clearly, an important part of the blodk is the condition. So far we have seen testseqral to (==),
greater than (>) andlessthan (<). To fully understand these conditions, we must first look@GICAL
type variables.

In Fortran,LOGICAL variables are (unsurprisingly) declared by the statement
LOGICAL :: varl, var2, ...
They are basically yes-no, or true-false variables and aeadne of two values which are

varl = .TRUE.
varl = .FALSE.

Note, the full stops are part of the expression.

The real power o OGICAL variables is Fortran’s ability to perfortnOGICAL expressions. We have
already seen threeOGICAL expressions<=, < and>), these are known a®lational operators and
there are six of these in total, although each can be writtemé of two ways. The complete list is:

39

Operator Alternate Form Result
a<hb a .LT. b .TRUE. if aislesstharb

a<=bh a .LE. b .TRUE. if aisless than or equal to
a>bhb a .GT. b .TRUE. if ais greater that

a>=ob a .GE. b .TRUE. if ais greater than or equal to
a == a .EQ. b .TRUE. if aisequaltdb

al=b a .NE. b .TRUE. if aisnotequal t

Either form of the operator is fine to use in logical expressjalthough it is good practise to be consis-
tent with whichever form you choose.

These operators can be used with literal constants, vasaid other expressions, for example

varl = 2.0 >= 1.0 I varl is .TRUE.

var2 = 3 == I var2 is .FALSE.

var3 = x .LT. O I TRUE. if x is less than 0
vard = i [= |

var5 = x *y .LT. O
var6 = b » 20 .GE. 4.0 =xaxc

You may notice that each of these are effectively one exjorgsand the order in which the operators
are carried out may be important. This rule is simple, athanetic operators have a higher priority than
the relational operators, and so are performed first. If inbtlahen add some brackets, this may also
improve the legibility of your code.

In addition to the relational operators, there are alsolfigizal operators. Where the relational operators
acted on real or integer (or even character) variables othied| operators act on logical variables. The
operators are

Operator Priority
.NOT. highest
AND.

.OR.

.EQV., .NEQV. lowest

The order of priority is shown, and they all have lower ptipthan the relational operators. The results
given by these operators are

L1 L2 L1. AND. L2 L1.0OR L2 L1.EQV.L2 L1.NEQV.L2
.TRUE. .TRUE. .TRUE. .TRUE. .TRUE. .FALSE.
.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.
.FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE.
.FALSE. .FALSE. .FALSE. .FALSE. .TRUE. .FALSE.

L1 . NOT. L1
.TRUE. .FALSE.

.FALSE. .TRUE.

These operators may be used in a similar way to operatorewaérgady covered. For example

varl = L1.AND.L2 .OR. L3.AND.L4
var2 = x<0 .OR. x>1
var3 = .NOT. (i==1 .OR. i==4)

vard = b »» 2.0 .GE. 40 =*a*c .AND axc .GT 0.0

Again, if you're not sure about the priority, or if you wish itmprove the clarity of the code, feel free to
add brackets. Sear4 might be better written

40

vard = (b = 2.0 .GE. 4.0 =*a*c) .AND (a *c .GT 0.0)

Ex 4.3 For each of the cases below, work out (by hand) what the eskatput will be.

@ x=10
i =4
varl = x>0.0 .AND. i<5
PRINT =, varl
(b) x = -25
y = 31
i =2
j=5
varl = x *y > 0 .NEQV. ij I= 0
PRINT =, varl
(c) x=15
y =16
=2
] = -2

varl = .NOT. x+ty > 3.0 .OR. i-j > 3
var2 = .NOT. (x+ty > 3.0 .OR. i-j > 3)
PRINT =x, varl, var2

x = 3.2
y = -4.7
i=1
j=5

varl = x>0 .OR. y>0 .AND. i==1 .OR. j==1
var2 = (x>0 .OR. y>0) .AND. (i==1 .OR. j==1)
PRINT =, varl, var2

(d)

Type in and run each case (all in a single program if you pyeéfecheck your answers.

4.3 Return to the Blockl F Construct

In section 4.1 we took an informal look at the blolfk construct. Now we know abowtOGICAL
expressions, we will look at it a bit more formally. The firistd of the blocklF construct is

IF (condition) THEN

wherecondi t i onisaLOGICALentity. This could be &OGICALlIiteral constant (though this usually
a bit pointless), 4 OGICALvariable or (more usually) BOGICAL expression. If th& OGICAL entity
evaluates toTRUE. then the statements following tAéHENstatement will be performed. These state-
ment (there may be more than one line) are terminated lBL8E IF, ELSEor END IF statement.

If the LOGICALentity is.FALSE. then Fortran will proceed sequentially through #lSE |F state-
ments until aTRUE. result is found or afELSE statement is reached (Fortran will perform all state-
ments under theLSEstatement) or aEND IF statement is found. Theondi t i on under anyELSE

IF statements follow the same rules as for a stantfardtatement.

41

The END IF statement must always be present somewhere aftdf sstatement. There may be any
number ofELSE IF statements and a maximum of dBESE statement. AELSE IF statement may
not follow anELSEwithin a single level of a block= construct.

Ex 4.4 Write a code to evaluate the function in exercise 4.2 usinongles block IF construct
(rather than nested ones).

Ex 4.5 Consider the code in section 4.1.1. Modify this code so thaseés a single level block
IF construct rather than nested ones. Put this in a programs#tsimax andjmax as
parameters and asks for inputiofandj . Add options to the if statement to check that
andj are in the specified range (i.4.<i <imax andl<j <jmax).

4.4 TheCASE Construct

Fortran 90 offers another decision making construct caledCASE construct. This is used when there
is only one basic test, but there may be many different optiém example of this might be offering the
user a menu with several different options and asking thetosselect the one they want, the program
will then do different things depending on the option seddct

The basic syntax is
SELECT CASE ¢ase_expression)
CASE (case_sel ector1l)
CASE (case_sel ector?2)

CASE (case_sel ector3)

CASE DEFAULT

END SELECT

Thecase_expr essi on is a integer, character or logical variable or expressieal (expressions are
prohibited for this construct) which is evaluated and treulieused for comparison with the different
case sel ectors.

Thecase_sel ect or s determine which statements are executed depending orhlegvetaluate with
thecase_expr essi on. Thecase_sel ect or may take one of four forms

case_val ue

| ow val ue:

: hi gh_val ue

| ow _val ue: hi gh_val ue

or acomma-separated list of any combination of these. Ttamimeg of the four alternatives is as follows:

e Ifthecase sel ect or takes the form o€ase _val ue then the associated block of code is exe-
cutedifcase_expressi on == case_val ueorcase_expressi on .EQV. case_al ue
for logical expressions;

e If the case_sel ect or takes the form of ow.val ue: then the associated block of code is
executed if ow.val ue <= case_expressi on;

42

e If the case_sel ect or takes the form of hi gh_val ue then the associated block of code is
executed itase_expr essi on <= hi gh_val ue;

e Ifthecase_sel ect or takes the form of hi gh_val ue then the associated block of code is ex-
ecuted iff ow.val ue <= case_expressi on .AND. case_expressi on <= hi gh_val ue.

Note that only theease_val ue makes sense for logical expressions.

The CASE DEFAULTBtatement is an optional catch all that can contain a blododé to be run if no
other statement is matched. This is similar to BieSE statement in the bloclE construct.

As an example, consider the following code.

| read in the date
PRINT =, 'Enter the month as a number’
READ *, month

! print season
SELECT CASE (month)
CASE (11, 12, 1:3)
PRINT =*, 'It is the winter

CASE (4:5)

PRINT =, It is the spring’
CASE (6:8)

PRINT =*, ’lt is the summer’
CASE (9, 10)

PRINT =, ’lt is the autumn’
CASE DEFAULT

PRINT *, 'You have not entered a valid month’
END SELECT

This shows how th€ ASEconstruct might work in practise.

Ex 4.6 Write a program to read in the month as a number and WSASEconstruct to print out
the name of the month.

Ex 4.7 Write a program to read in two real numbers, print out a lishmtions of what to do with
the two numbers (add them together, subtract the secondffi@first, multiply them, divide
the first by the second or raise the first to the power of thersBcand read in the answer,
then use £ ASEconstruct to perform (and output) the selected option.

43

44

5 Repeating Parts of your Program

Often it is necessary to repeat steps of your program. In fiaahy techniques in computational mathe-
matics/physics rely on being able to iterate through theesset of instructions. For example, suppose
you wanted to output a times table, you could probably writetbe first dozen or so lines of the table,
but what if you wanted to output 100 lines or 1000. Typing elivod out individually would be very
time consuming and tedious. Much better to write the catmrdn a generic way and iterate through as
many times as required.

5.1 BlockDOConstructs

Fortran 90 has a very powerful, yet simple facility for loogithrough parts of your code, this is called
theblock DOconstruct. The syntax for this block is

DOcount = initial, final, incr
bl ock of statenents

END DO

wherecount is an integer variablg, ni ti al is an integer literal constant, variable or expression that
indicates the first value thatount takes,f i nal is an integer literal constant, variable or expression
that indicates the maximum (or minimum) value thatunt takes, and ncr which is the amount that
count increases (or decreases) by in each step.

The DOstatement may also take the following forms

DOcount = initial, final
bl ock of statenents

END DO
wherecount is increased by 1 each time, and

DO
bl ock of statenents

END DO

where the loop will continue indefinitely. This last case niratially seem like a strange thing to want
to do, after all, we want our program to finish at some pointwkher, as we shall see later there are
alternative ways to break out of a bloBXOconstruct.

Ex 5.1 Consider the following program.
PROGRAM timestable

IMPLICIT NONE
INTEGER :: tableno, i

45

I choose to do seven times table
tableno=7

I output times table
DO i=1,12
PRINT =*, i, ' times ’, tableno, " is ’, i *tableno
END DO

END PROGRAM timestable

Type in and run this program. Modify the program so that ifpoitg more or less than 12
lines and does different table numbers. Can you modify tlognam so that the user can
input the table number and number of lines that it outputs?

Note that in the program in exercise 5.1 we indented the bbdatatements within the blodROin the
same way that we did for blocks of code in the bldEk construct. Again, this is good practise and
makes the code easier to read and it is suggested that yow fihle same convention within your own
codes.

Ex 5.2 The Fibonacci sequence is calculated as follows.

1. The first and second Fibonacci numbers are both equal to 1.

2. Theith Fibonacci number is calculated by adding the previousRisonacci numbers,
ie.,
Fi=F,_o+F;4

So the first eight numbers in the Fibonacci sequence are 131528, 13, 21.

Write a program that calculates the first 20 numbers in theri&bci sequence using a block
DOconstruct.

Both of these exercises have used the most simple counitiedtloop, where theount is incre-
mented by 1 each time. What happens when we use the more adveognt-controlled loop which
includes the ncr increment?

Consider the following code

DO i=1,9,2
PRINT =, i
END DO

When this is run, it simple outputs the values thatkes in each iteration of the loop. In this case it
outputs the integers, 3, 5, 7, 9. So what happens if we modify the code as follows

DO i=1,10,2
PRINT =, i
END DO

In this case, the maximum is 10, buican not take that value with increments of 2. In this casetr&or
90 stops iterating at the highest value it can without exicgethe maximum. So the output would be
the integerd, 3, 5, 7, 9 again.

Ex 5.3 Write a program that performs the following loops and prioig the values that may
take in each iteration.

46

(a) DO i=1,10

(b) DO i=1,10,1

(c) DO i=25,60,5

(d) DO i=8,24,3

(e) DO i=1,2,3

() DO i=3,2,1

(9) DO i=-21,21,7

(h) DO i=10,1,-1

(i) DO i=21,-21,-7
Are they what you expected? What is the value ahmediately after the blockOconstruct

has ended? Try some different loops of your own devising yati understand what it going
on.

5.2 More Advanced Loops
5.2.1 TheEXI T Statement

The count-controlled loops that we have seen so far wilateea fixed number of times depending on
the count range in thBOstatement. Sometimes the number of times that we want &iétermethod is
undetermined at the start of a loop. An example of this mayabeutating the position of a projectile,
we want to calculate the position until the projectile hits ground (i.e.y = 0).

To do this, we use thEXIT statement. When used within a bloDikOconstruct, this will immediately
transfer control of the program to the first statement afieEND DGtatement. Th&XIT statement
is almost always used with 4R or CASEstatement.

Consider the following example, we want to calculate Filmmhaumbers again, but this time instead of
stopping at the 20th Fibonacci number, we want to displathelFFibonacci numbers under 1000 (so we
want to stop before the first Fibonacci number greater th@@ i9Doutputted).

We can do this with the following program

PROGRAM fibonacci2

IMPLICIT NONE
INTEGER :: f old1=0, f _old2=0, f_new, i

I method to calculate the Fibonacci numbers under 1000
I do the initial stuff first
fodl =1
fold2 =1
PRINT =*, 'The ’, 1, 'st Fibonacci number is ’, f oldl
PRINT =, 'The ’, 2, 'nd Fibonacci number is ', f old2
i =3

! now perform the DO loop until f new>1000
DO
f new = f oldl + f old2
IF (f_new > 1000) EXIT
PRINT =, 'The ’, i, 'th Fibonacci number is ', f new

a7

f oldl = f_old2

f old2 = f new

i=i+1
END DO

END PROGRAM fibonacci2

In this case we have an indefiniBloop which contains afF statement to check our criteria. If the
criteria is met, then thEXIT statement immediately causes Fortran to exitRi@doop.

Note, in this case we have used a simple form ofhestatement. In cases where we just want to execute
a single command if some condition is true, and we do not wanEASE |IF or ELSEstatements, then
we can drop th@HENand replace it with the statement we wish to execute.

5.2.2 When Indefinite Loops Go Bad

There is one thing to be cautious of here, when we perforniRhgtatement, we want to be sure that the
condition will be met at some point. For example, if we hadteri the statement

IF (f_new == 1000) EXIT

we would have been in trouble. 1000 itself is not a Fibonaooniber, so the condition would never be
met and the loop would go on infinitely (or at least until weddlthe program externally). So if possible,
we always want a condition that we know will be fulfilled at sepoint.

If we don’'t know that our condition will be fulfilled, then isia good idea to program ourselves some
kind of get out clause. One way to do this is to decide thatthél be a maximum number of iterations
that we will try before we give up. For example

DO count=1, max_iterations

IF (condition) EXIT

END DO

In this case we set the variabieax.iterations to be much higher than we would expect to be
needed, ifcondi ti on is met then Fortran exits from the loop, if it is never met,nthertran will
eventually exit from the loop anyway (though not necesgavith the desired result).

Ex 5.4 The Secant algorithm is a method of finding the roots of antmué.e., wheref (x) = 0).
The theory behind the algorithm is beyond the scope of thisssg but the basic algorithm
is as follows.

1. Setx; andzs equal to two different (but close) values, preferably néarroot you
want to find.
2. Calculate further values afusing the following formula

Tp—1 — Tp—2

f(xn—l) - f(l'n—2)

Tp = Tp—1 — f(l'n—l)

48

3. lterate until one of the following conditions is true

‘f(wn)’ < ZL/Oll
|Ty — zp_1| < tols

Consider the following equation
23 — 5.122% — 74.0763z + 106.87383

which has three real roots. Write a program to perform the®emethod on this equation.
Use the following tolerancesol; = 0.0001, tolos = 0.0001 and for the initial guesses try
x1 = 0.0 andze = 0.5. Output the iterate number, the valuezohnd the value of (z) for
each iteration.

Do you know that the exit condition for the loop iterationdlweventually be met? If not
program in a get out clause.

Try different initial guesses to find all three roots of theiatipn (hint, all three lie between
—20 and20).

5.2.3 TheCYCLE Statement

The CYCLEstatement is similar in usage to tBXIT command, but instead of exiting from the block
DOconstruct, it halts execution of the block of code and retuwantrol to the top of the blodROloop to
begin the next iteration. This causes any counter attachiagDOstatement to be increased accordingly.

For example, consider the following bit of code.

DO i=-5,5,2

IF (i<0) CYCLE

PRINT =, 'The square root of ', i, " is ', SQRT(REAL())
END DO

In this case we want to take square root$ pbut not ifi is negative, so for those instances we use the
CYCLEstatement to go to the next iteration.

This is a trivial example and we could just as easily havelpePRINT statement in a block construct
for wheni > 0. However, in more complex programs, there may be a lot matersients in the block
DOconstruct and using theY CLEstatement may be more appropriate.

Ex 5.5 Modify the program that you wrote in exercise 3.8 where yoguated different prop-
erties of a circle. Enclose the code where you read in a raahidsoutput the different
properties in a blocloOloop so that you are prompted to do this five times. Put in alchec
after reading in the the radius to see if it is negative. I&ibutput an error message and
CYCLEback to the top of the blockQ

5.2.4 TheSTOP Statement

Strictly speaking, th&sTOPis not specific to blockDOconstructs and may appear anywhere in your
program. This statement has the effect that it stops exatofiyour program immediately. This has the
same effect as transferring control of your program diyeittitheEND PROGRAdvatement.

There are a variety of cases where you may want to us8Ti@Pstatement. If your program was going
badly wrong, you may have a check in there to stop executigowf program.

49

For example, in the Secant method, you monitored the valyf&:0fto see if it was close to (i.e., was
|f(x)| < toly), you could also monitor it to see if it becomes too big (i|¢(x)| > tols wheretols =

10 000 say) and stop execution if it does (this might indicate tihat tnethod has been programmed
incorrectly). You may want to keep an eye onif it goes out of the rangé—1000, 1000] you may
decide that it is going out of range and stop execution (thghtindicate a bad choice of starting points,
or the function has no roots).

If you are trying to debug code, you may want to scrutinisertiqadar part of the code and stop execution
directly afterwards, rather than finish running a code tlwgsdnot work (and may take some time to
finish).

For example, consider the timestable program again. We gaim gome checks that the user types in
sensible information and exit with an error message if ttenat.

PROGRAM timestable

IMPLICIT NONE
INTEGER :: tableno, nlines, i

! inputs the table no and number of lines to display
PRINT =*, 'Enter which number timestable you would like’
READ =, tableno

PRINT =, 'Enter the number of lines you would like to display’
READ *, nlines

I check that the number of lines is positive
IF (nlines <= 0) THEN
PRINT %, 'The number of lines must be positive’
STOP
ENDIF

! output times table
DO i=1,nlines
PRINT =*, i, ' times ’, tableno, ' is ', i * tableno
END DO

END PROGRAM timestable

5.3 Nested BlockDO Constructs
5.4 Using Nested BlockDO Constructs

It is perfectly acceptable to nest one blde®within another, in fact you could have multiple nestings of
block DGs. For example

PROGRAM nested_do_example
IMPLICIT NONE

INTEGER, PARAMETER :: imax=5, jmax=5
INTEGER :: i,]

50

DO j=1, jmax

DO i=1,imax
IF (i == 1 .AND. j == 1) THEN
PRINT =*, 'The top-left corner is at ¢, i, 400
ELSE IF (i == 1 .AND. j == jmax) THEN
PRINT =*, 'The bottom-left corner is at (, i, j, ")
ELSE IF (i == imax .AND. j == 1) THEN
PRINT =*, 'The top-right corner is at ¢, i, 4y
ELSE IF (i == imax .AND. j == jmax) THEN
PRINT =, 'The bottom-right corner is at (, i, j, ")’
END IF
END DO
END DO

END PROGRAM nested_do_example

One thing to keep an eye on with nested bl@RIoops is the number of times your program is doing
a block of statements. If you have a single loop, then you aeeiding the nested block of statements
imax times. In the case above with a nested loop, then the numitienes the nested block of statements
is executed ismax xjmax . Similarly, if there were two nested loops the number of 8rifee nested
block of statements is executedrisax xjmax xkmax.

The problem with this is the length of time it takes to perfatme whole blockDOconstruct, this is
equal to the time it takes to do the block of statements onaaukiplied by the number of times
the block is executed. So if you have a block of statementstiie@s0.5 seconds to perform and
imax =jmax =kmax= 100. For a single loop the blocROwould be completed in aboimax x0.5 =
50 seconds. For a nested loop it takes abm#x xjmax x0.5 = 5 000 seconds oi.4 hours. For two
nested loop it takes aboimax xjmax xkmaxx0.5 = 500 000 seconds 0b5.8 days.

Clearly, if you are using nested loops then it is importaat the block of code within the nested loops
is efficient.

5.4.1 EXI T and CYCLE Statements in a Nested BlocloO

Consider the following bit of code.

DO j=1, jmax

DO i=1, imax

IF (condition) EXIT

END DO

51

END DO

In this code, which blocldOdoes theEXIT statement break out of? Is it the inner bldek(i.e., DO
i=1, imax) or the outer blockDO(i.e., DO j=1, jmax). In practise, when you're writing a code,
you may want to choose which bloékOyou wish to break out of (there will be times when you only
want to exit the inner block and times when you want to exitahter block).

To solve this problem, you can give your blocks names, theenwlou wish toEXIT or CYCLE you
can specify by name which block you are referring to. For eplam

outer: DO j=1, jmax

inner: DO i=1, imax

IF (conditionl) EXIT inner
IF (condition2) EXIT outer
IF (condition3) CYCLE inner
IF (conditiond4) CYCLE outer

END DO inner

END DO outer

In this piece of code, the blodROconstructs are labelledter andinner respectively), and when
theEXIT andCYCLEstatements are called, they are followed by the name of takBlOto which they
refer. Note that th&ND DGtatements are also followed by the block name to which tegy.r

Note, in the absence of a label following tB&XIT or CYCLEstatement, then the statement refers to
the innermost blocloOconstruct which contains the statement. However, in thigsations you should
always label your loop€EXIT andCYCLEstatements to improve the readability of your code.

Ex 5.6 In this exercise we will modify the Secant method from exa&xd.4. Instead of manually
trying different initial values ofz; andx,, we want to loop through a progression of values
fromz; = —20, 29 = —19.5 to 1 = 19.5, x5 = 20, incrementing each initial value ky5
each time.

This will require a nested blocROwhere the initial values are varied in the outer loop and
the Secant method is performed in the inner loop.

The Secant method can iterate until either

|f($n)| < toly
|ty — Tp_1| < tols

52

when you want t&EXIT from the Secant method and output the result. Or

|f($n)| > t0l3
|z — xp_1| > toly

when the method is deemed not to be converging and you wa&Y @L_Eto the next set of

initial values. Output a message to say that the method &glivg and it is cycling to the
next value.

Use the following tolerancesol; = 0.0001, toly = 0.0001, tols = 1000.0, tol, = 1000.0.
Do you find the three roots that you found in exercise 5.47?

5.4.2 Naming Blockl F Constructs

You can also assign names to bldEk constructs (nested or otherwise) aD8SEstatements as follows,

namel: IF (conditionl) THEN

END IF namel

and

name2: SELECT (case_expression)
CASE (case_range_1)

CASE (case_range_2)

END SELECT name2

The naming of blockF constructs has no useful purpose from a coding point of vieivit may make
your code more readable. You may use this as you see fit.

53

54

6 Introduction to Arrays

6.1 The Concept of Arrays

So far in this course we have restricted ourselves to maatipgl single values (e.gINTEGERs and
REALs. In scientific computing we often want to manipulate setdatd, such as a set of readings from
an experiment, vectors and matrices, or a set of values geaeirom a numerical code (e.g., positions
of a projectile at different times in flight).

Fortran 90 has powerful processing features to manipuletie sets of data (known as arrays) and this is
where the real strength of Fortran 90 as a programming layglies.

When we have used variables in the previous chapters we tsmc them to store a single number,
but it would also be useful if we could store a set of valueseuradsingle variable name and refer to
individual elements by index (in mathematics we can writeeterx and refer to individual elements as

L1, L9,y ey Tny).

In Fortran we can do this by declaring a variable as an array fofed length. This reserves space in
memory to store all the elements of the array as well as someesjp describe the data (for example,
whether it'sREALor INTEGER what the variable name is, and so on). So going back to ounmetiy
example, a single value might be stored as follows,

X Real
0\6\4 7\2\2\6\3

Where an array containing five numbers might be stored lilsg th

X n=5 Real
0|6|4|7]2|0|2]|3
0|12|7]211|9|5]|8
9|18|13/9/3|6|0]|5
0|1|2|5|7|4|2]|8
919|844 |8|4|1

So there is one line that tells you about the data, and five etk below to store the data. If we want
to know what the value of3, we can look at the third odometer and see that 0.393605 x 10~2.

6.2 Using Arrays
6.2.1 Array Declaration
Arrays can be declared by using DEMIENSIONstatement within a variable declaration. This statement

allows you to specify the number of elements in your arrag,iarused as follows

INTEGER, DIMENSION(10) :: a, b, ¢
REAL, DIMENSION(15) :: X, y, z

The first line declareINTEGERarrays with 10 elements and the second line decRREesLarrays with
15 elements.

There are shorthands in array declaration that you will $ones see such as,

INTEGER :: a(10), b(20), c(30)
REAL, DIMENSION(50) :: x, y, z(60)

55

Itis recommended for clarity that you do not use these shadb and that you declare arrays of different
sizes on different lines, e.g.,

REAL, DIMENSION(50) :: X, y
REAL, DIMENSION(60) :: z

By default, the array subscripts will begin at 1 and end atrttmber specified in thOIMENSION
statement (i.e., indexing will be from 1 to 50 ferabove). Sometimes it is useful to have a non standard
range of subscripts, you can do this by the declaration

DIMENSION(I ower _bound: upper _bound)
the index will then start dtower _bound and end atipper _bound. For example

INTEGER, DIMENSION(6:25) :: a
REAL, DIMENSION(0:49) :: X
REAL, DIMENSION(-30:30) :: y

The first case declares dANTEGER array with 20 elements indexed from 6 to 25; the second case
declares &EALarray with 50 elements indexed from O to 49; and the third dastares &REALarray
with 61 elements indexed from -30 to 30.

6.2.2 Array Constants and Initial Values

Arrays may be assigned and addressed as a whole or indivétRraknts can be addressed using array
subscripts. To address individual elements of an array,fgibaw the variable name with the subscript
in brackets, e.ga(i) . So you might create and initialise an array as follows,

INTEGER, DIMENSION(5) :: arr

arr(1) = 1
arr(2) = 2
arr(3) = 3
arr(4) = 4
arr(6) = 5

Or (in this case) more conveniently with
INTEGER, DIMENSION(5) :: arr
INTEGER :: i

DO i=1,5
arr(i) = i
END DO

For smaller arrays, it would be more convenient to have a wayitialise them in one line. This can be
done using am@rray constant construct. This takes the form

arr = (/ valuel, value2, values, .. /)
For example

INTEGER, DIMENSION(5) :: arr
arr = (/1 1, 2, 3, 4, 5/

The values in the array are contained within the delimiférsand/) . The array constant must have
the same number of values as required to fill the variable enetit-hand side of the sign. The array

56

constant may also be used in declaration lines,
INTEGER, DIMENSION() :: arr = (/ 1, 2, 3, 4, 5 /)

There is an additional shorthand that can be used in arragtanats for defining array constants. This is
a compact form of th®Oloop and takes the form

(val ue_expression, inplied _do _control)
For example
arr = (/ (i, i=1,5) /)

This loops through the valuésl toi=5 and creates an array of all these values. You may use differen
expression as theal ue_expr essi on, such as

arr = (/ (0, i=1,5) /) I gives (/ 0, 0, 0, 0, 0
arr = (/ (i *2,i=15) /) I gives (/ 2, 4, 6, 8, 10)
arr = (/ (i *»* 2 + 4, i=15) /) ! gives (/ 5, 8, 13, 20, 29 /)

The more advanced form of thepl i ed_do_cont r ol that was seen in section 5.1 where there was
an increment option is also allowed in this context, e.g.,

arr (/ G, i=2,10,2) /) | gives (/ 2, 4, 6, 8, 10 /)
arr = (/ (i, i=5,1,-1) /) I gives (/ 5, 4, 3, 2, 1)

The usual behaviour discussed in section 5.1 also applies he

You may use the implie®Oconstruct as only part of the array, e.g.,

arr = (/ -1, (0, i=2,4), 1)) | gives (/ -1, 0, 0, 0, 1 /)
arr = (/ -1, (0, i=1,3), 1 /) | gives (/ -1, 0, 0, 0, 1 /)
arr = (/ (0, i=1,2), (i, i=1,3) /) ! gives (/ 0, 0, 1, 2, 3))

Finally, one impliedDOconstruct may be contained within another to create a ndstgd(or many
nested loops if desired). For example,

arr = (/ ((i, i=1,5), j=1,5) /)

arr = (I ((i+, i=1,5), j=1,5) /)

arr = (/ ((MIN(,)), i=1,5), j=1,5) /)
arr = (/ (-1, (0, i=1,3), 1, j=1,5) /)

Ex 6.1 Write a program that declares, initialises and outputs @anuoutput an entire array using
PRINT =*, arr) the following arrays:

(@) A 21 element array containing the numbers from -10 to 10.
(b) An 11 element array containing the only the even numbrers £10 to 10.

(c) A 37 element array containing an equally spaced sequainaal numbers from 0 to
2.

(d) Two 50 element arrays, the first contains the sequenceepeated 5 times, the second
has 10 elements with value 0, 10 elements with value 10, T0egies with value 20,
10 elements with value 30 and 10 elements with value 40. Algpuh the sum of the
two arrays érrl+arr2).

Hint, you may need to use nested implieds. The sum of the two matrices should
give the numbers 0-49.

57

6.2.3 Input and Output with Arrays

Before we start to use arrays, it would be useful to know hoimpat an array of data and output arrays
of data. There are three possible ways of inputting or otitmuidata depending on whether we are
interested in individual elements of an array, a range ohelds from the array, or a complete array.

e Array elements (e.garr(1)) are just scalar variables (single numbers) and can be used i
expressions as such.

e Part of an array may be used in input and output lists by usirigralied DOconstruct in a similar
way as in array initialisation.

e Whole arrays may appear in input and output lists and refdrda@omplete array. We saw this in
exercise 6.1.

So for example,

PRINT =*, arr(1), arr(5)

READ *, (arr(i), i=1,9,2)

READ =, arr

PRINT =, arr(1), (arr(i), i=2,8,2), arr(9) !

The first case outputs the 2 valuesaim(1) andarr(5) ;the second case inputs 5 values and stores
them inarr(1) ,arr(3) ,arr(5) ,arr(7) andarr(9) ;case 3 inputs enough values to éfr ;
and case 4 outputs 6 valuesr(1) ,arr(2) ,arr(4) ,arr(6) ,arr(8) andarr(9)

The usual rules for thREADstatement apply, i.e., blank values leave the array eleomgstianged, if
too many values are entered then the extra ones are ignoigtdpaon.

One other useful thing is that the control values for an isgOstatement may themselves be inputted
in the same statement, e.g.,

READ , nitems, (arr(i), i=1,nitems)

Though doing so should be done with care. In the above exawpleould type in a value fanitems
that is larger than the size of the array (this will cause your program to crash). It may be better to
put in a check such as

READ *, nitems

IF ((nitems >= 1) .AND. (nitems<=maxitems)) THEN
READ *, (arr(i), i=1,nitems)

ELSE
I handl e error

END IF

6.2.4 Arrays in Expressions

In order to make use of arrays, we want to be able to use themitlmetic expressions. There are two
ways in which we can do this. The first is to address each elenfahe array individually, perhaps
within a blockDOconstruct as follows

REAL, DIMENSION(20) :: a, b, c

58

DO i=1,20
a() = b(i) + c()
END DO

You can also perform operations on arrays as a whole, for pkeam

REAL, DIMENSION(20) :: a, b, c

a=>b+c
This is allowed so long as all of the arrays aoaformable. The rules for conformability are as follows:
e Two arrays are conformable if they have the same size ana&shap

e A scalar (either variable or literal constant) is conformhealith any array;

e Allintrinsic operations are defined between two conforreaiijects.

So examples of other operations are as follows.

REAL, DIMENSION(20) :: a, b, ¢

REAL :: x

a=b-c '= (/ Db(1)-c(1), b(2)-c(2), ...

a = bxc = (¢ bl =*c@), b2) =*c(2), ... /)
a = blc '= (/ b@Q)c(1), b(2)c(2), ... /)
a=20+*b '=(20 =xb(1), 20 =*b(2), ... /)

a = ¢/5.0 ' = (/ c¢(1)/5.0, c(2)/5.0, ...)

a = x*b '=(x =b(1), x *b(2), ... /)

a = b+ 20 = (/ b(1) x»* 2.0, b(2) =20, .../
a=c+ 25 ' = (I c(1)+2.5, c(2)+2.5, ... /)

a = 0.0 I'=(¢ 0.0, 00, ... /)

When an operation acts on two arrays, then it acts on eachdlearent by element basis (as if in a block
DQ. When an operation acts on an array and a scalar, then tlee Bcreated as an array of same size
with every element taking the value of the scalar.

Note that this gives us an easy way of initialising arrays imwhge want all elements to take the same
value, e.g.,

REAL, DIMENSION(10) :: a=0.0, b=1.0, ¢
c =50

Ex 6.2 Write a program to calculate
y=22—2c+1
using array operations. First define an arrayifarhich takes values from 0 to 5 with 0.25
intervals, then calculatg using array operations an
Output your results as a list of (X, y) pairs.
Ex 6.3 Consider a projectile fired from a launcher situated at thgirorat an initial velocity of

25 m s~! at an angle of0°. Using array operations, calculate the position of thequtilp
(neglecting any resistance) for a time interval of 0 to 3¢opsels with a 0.1 second interval.

Output your results as a list of (t, X, y) triplets.

59

Can you write the program so it is easy to change parametelsasithe time-range, the
interval, the initial velocity and the initial angle?

Ex 6.4 Write a program to read in a set of real numbers (the numbeleafents to be specified
by the user, but with a maximum of 20) and output the averagleeo¥alues. Hint, you will
probably need to address each element in the array indiyduihin a block DOloop.

6.3 Intrinsic Functions for Arrays
6.3.1 Previously Encountered Intrinsic Functions

Most of the intrinsic functions that we saw for scalar valiresection 3.6 also work for arrays. As with
the intrinsic operators, they act on the array element byeile as if the function was in a blo€kOloop.
For example

REAL, DIMENSION(30) :: a, b, ¢

a = SIN(b) I = (/ SIN(b(1)), SIN(b(2), ... /)
a = EXP(c) I = (/ EXP(c(1)), EXP(c(2)), ... /)
a = MAX(b,c) ! = (/ MAX(b(1),c(1)), MAX(b(2),c(2)), ... /)

Ex 6.5 Consider the projectile in exercise 6.3 again. Rearrang@duations that you derived to
calculate the time (wheh> 0) that the projectile lands (i.ey,= 0), and the distance that it
has travelled in the-direction.

Using array operations, calculate the distance travetigtie z-direction for initial angles
in the range 0fH° to 90° at 1° intervals.

Output your results as a list of (t, X) triplets.

At what angle does the projectile travel the furthest? Is wiiat you would have expected?

6.3.2 Array Specific Intrinsic Functions

As well as these functions, Fortran 90 has a set of intrinsictions designed especially for arrays.
These functions might perform array calculations (suclhasum of the elements), they might provide
information about the data (such as the location of the mamirmgalue) or they might give information
about the array itself (such as the number of elements inrthg)a We will look at these functions in a
bit more detail than we looked at scalar intrinsic functiomsection 3.6.

First of all we need to look at the idea of@ask. This is an array (which is conformable with any other
array argument of the function) of logical data (i.dRUE. or .FALSE.). The value of the function
will depend somehow on this mask. For example Ahé function will return true if all values ofmnask
are true, so

LOGICAL, DIMENSION(3) :: maskl, mask2
LOGICAL :: I1, 12

maskl = (/ .TRUE., .TRUE., .TRUE. /)
mask2 = (/ .TRUE., .FALSE., .TRUE. /)
I1 = ALL(maskl) | = .TRUE.
12 = ALL(mask2) | = .FALSE.

60

This becomes more useful when we use relational operattinsawiys, for example,

INTEGER, DIMENSION(3) :: a
LOGICAL, DIMENSION(3) :: maskl, mask2
LOGICAL :: 11, I2

a=(1,3 4
maskl = a > 0 !
mask2 = a > 2 !

(.TRUE., .TRUE., .TRUE. /)
(' .FALSE., .TRUE., .TRUE. /)

.TRUE.
.FALSE.

11
12

ALL(mask1) !
ALL(mask2) !

I or perhaps more conveniently written as

.TRUE.
.FALSE.

11
12

ALL(a>0) !
ALL(a>2) !

I likely to be useful in a block IF construct
IF (ALL(2>0)) THEN
END IF
The mask array may also be used optionally in some functitiis Will be denoted in italics, e.g.,

nmask). In this context it will be used with an arragrr , which it conforms with and the function will
operate only on the elementsaff where the corresponding elementawafsk are true.

For example, thdMINVAL function returns the minimum value of an array, when it isduaéth amask
it returns the minimum value of the array when the correspandalues ofrask are true, e.qg.,

REAL, DIMENSION(3) :: a
LOGICAL, DIMENSION(3) :: mask
REAL :: minl, min2, min3

a=(32 14, 27 /)
mask = (/ .TRUE., .FALSE., .TRUE. /)

minl = MINVAL(a) I = 14
min2 = MINVAL(a, mask) I =27
min3 = MINVAL(a, a>2.0) I = 27

A list of some of the more useful functions can be found indabl

Ex 6.6 Modify your program from exercise 6.4 where you calculatezldverage of a set of values
so that it uses th&UMfunction instead of a bloclbQ Add a section that calculates the
average of the positive data only usingnask in the SUMfunction (you may also need to
use theCOUNTunction).

61

Function Purpose

ALL(mask) Returns. TRUE. if all elements of mask ard RUE.

ANY (mask) Returns. TRUE. if any elements of mask ar@ RUE.
COUNT(mask) Returns the number (integer) of elements of mask thaffdR&JE.
MAXLOC(arr, mask) Returns the array index (integer) of the maximum valuarof
MAXVAL(arr, mask) Returns the maximum value of the elementain
MERGE(arrl, arr2, mask) Returns an array where elements take their value &iorh if the

corresponding element afiask is . TRUE. , otherwise it takes the
element fromarr2

MINLOC(arr, mask) Returns the array index (integer) of the minimum valuawf
MINVAL(arr, mask) Returns the minimum value of the elementaim
PRODUCT(arr, nask) Returns the product of all the elements in the array
SIZE(arr) Returns the number (integer) of elements in the array
SUM(arr, mask) Returns the sum of all the elements in the array

Table 4: Table of some array intrinsic functions.

6.4 Multi-Dimensional Arrays

6.4.1 Defining Multi-Dimensional Arrays

So far we have used only one-dimensional arrays, Fortrafs®thas facilities for defining and working
with multi-dimensional arrays (e.qg., 2D, 3D, etc). The nmaxin allowed is a seven-dimensional array.

You can declare a higher-dimensional array as follows,

INTEGER, DIMENSION(5,3) :: a ! 2D arrays
REAL, DIMENSION(10,4) :: b

INTEGER, DIMENSION(6,3,5) :: ¢ ! 3D arrays
REAL, DIMENSION(3,10,30) :: d

REAL, DIMENSION(3,4,6,2,10,10) ! 6D array

This form of theDIMENSIONSstatement declares the number of elements in each dire@orn two
dimensions, the statemeDtMENSION(m n) declares an array which hagelements in the first direc-
tion andn elements in the second, as illustrated below.

arr(1,1) arr(2,1) ... | arr(ml)
arr(1,2) arr(2,2) ... | arr(m2)
arr(l,l n) arr(2,' n) arr('m n)

This means that the array has a totafrofn elements.

This brings up an important point about memory allocation.&Qypical 32 bit machine (which is what
you will generally be using), the computer allocates 32 (mits} bytes) to store alNTEGERor aREAL
variable. To store an array, the program will need to allecaemory for the number of elements times
4 bytes. Consider the following cases;

62

Case No of elements Memory Required

1D 100 400 B
2D 100 x 100 39 KB
500 x 500 0.95 MB
3D 100 x 100 x 100 3.8 MB
250 x 250 x 250 60 MB
4D 100 x 100 x 100 x 100 381 MB
5D 100 x 100 x 100 x 100 x 100 37 GB

6D 100 x 100 x 100 x 100 x 100 x 100 3.6 TB

As you can see, as you increase the dimension of the arrayeontmber of elements in a multi-

dimensional array, the amount of memory required incredsasatically. To run a code with a large
array you will need this amount of memory available (plus telaar other memory resources you re-
quire) otherwise your program will crash (it will likely cagsile okay, but will crash when you try to run

it - probably with a segmentation error). Most computerdatrhoment are unlikely to have more than
1-2 GB, many computers in the University may only have 64-W#of total memory. To create larger

arrays, people often need to use supercomputers.

When using large or multi-dimensional arrays, always dateuthe amount of memory required and
check that it is within the amount of memory available on thenputer. If not, you may need to use
smaller arrays, or come up with a more clever way of doinggin

As with one-dimensional arrays, you may specify the lowet apper bounds for each (or any) dimen-
sion, for example;

INTEGER, DIMENSION(-10:10, -8:4) :: a
REAL, DIMENSION(3, 0:11, 0:100) :: X

6.4.2 The Rank and Shape of an Array

There are five technical terms that relate to multi-dimemai@rrays, these are;

e Fortran arrays can have up to seven subscripts, each of wdatls to oneimension of the array.

e The total number of dimensions of an array is known ag#m& of an array (e.g., a 3D array has
rank equal to 3).

e The extent of a dimension is the number of elements in that dimensiormefarray (e.g., a 2D
array of50 x 100 has an extent of 50 in the first dimension and 100 in the secionengion).

e Thesize of an array is the total number of elements which make up ttay.ar

e The shape of an array is determined by it's rank and the extent of eaadhedsion. It can be
characterised by a rank 1 array with each element corresmpmal the extent of each dimension
(e.g., a 3D array of x 20 x 50 has a shape ¢f 3, 20, 50 /)).

6.4.3 Multi-Dimensional Array Constants and Initial Values

Multi-dimensional arrays may be referred to in a similar wagne-dimensional arrays. To address array
elements independently you can type;

INTEGER, DIMENSION(5,5) :: arr

63

arr(1,1) = 1
arr(2,1) = 2
arr(4,5) = 9
arr(5,5) = 10

or perhaps more conveniently as

INTEGER, DIMENSION(5,5) :: arr

INTEGER :: i, |
DO j=1,5
DO i=1,5
arr(i,j) = i+
END DO
END DO

You can also write array constants for multi-dimensionahys. To do this you write the array as a
one-dimensional array and change its shape usingEfHAPtatement, e.g.,

REAL, DIMENSION(3,2) :: X

x = RESHAPE((/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /), (/ 3, 2 /))

which gives the array

1.0 2.0 3.0
4.0 5.0 6.0

So theRESHAPEtatement takes the form
RESHAPE(arr_1d, newshape)

wherear r _1d is a 1D array with enough elements to form the new arrayregshape is the shape
of the new array.

For larger arrays, it may make clearer code if you use coation lines. For example;

REAL, DIMENSION(5,4) :: x

x = RESHAPE((/ 1.0, 2.0, 3.0, 4.0, 5.0, &

& 2.0, 3.0, 40, 5.0, 6.0 &
& 3.0, 40, 5.0, 6.0, 7.0 &
& 40, 5.0, 6.0, 7.0, 8.0 /), &
& (5 410)

You may also use the impliddOconstruct in the multi-dimensional case when you createray ¢0 be
reshaped, e.g.,

REAL, DIMENSION(10,10) :: x

x = RESHAPE((/ ((i+j, i=1,10), j=1,10) /), (/ 10, 10 /))

64

6.4.4 Using Multi-Dimensional Arrays

Using arrays in expressions is exactly the same as in thaliomensional array case. Array operations
may only be carried out on arrays that conform, and while éndhe-dimensional case that meant that
they were of the same size, in the multi-dimensional casernhest also be of the same shape.

So for example, a0 x 20 array conforms with either anoth&d x 20 array or a scalar. So

REAL, DIMENSION(4,30) :: a, b, ¢
INTEGER :: i,j

a = bxc

I or
DO j=1,30
DO i=1,4
a(ij) = b(ij) *C(i.j)
END DO
END DO

This means we can initialise multi-dimensional arrays wlih short cut

REAL, DIMENSION(5,20) :: a=1.0, b=0.0

and—

P
ol

<y<

[NIE]

Ex 6.7 Write a program to calculaté(z,y) = sinx x cosy for -5 <z <
with increments offj; in each direction.

Definex andy to bell x 11 arrays with values correctly set for the correspondingtfmosi
on the grid, i.e.,

r_om _ 4w Ar w
5 e E 5
_rm _d4r dr w
2 5 B 2
e O
_r _d4r Ar w
i _dx i 7
L~ 2 5 5 2
and
r_m _x B
_& _427r _& an
5 5 5 5
Y= : :
4r 4n 4m 4m
5 5 5 5
T T s T
L 2 2 2 2

and use array operations to calculgte;, y).

Output your results.

6.4.5 Intrinsic Functions for Multi-Dimensional Arrays
All the mathematical and intrinsic functions that we havevipusly met for arrays also work for multi-

dimensional arrays, however, there are a few additionattions that are specific to multi-dimensional
arrays.

65

There is another option that can be used with array speciictifans and that is to specify which dimen-
sion we wish to act in. For example, suppose we had a two-diioeal array ofREALnumbers and
wanted to find the sum of each row (or perhaps each column).odld do this as follows;

REAL, DIMENSION(5,4) :: arr
REAL, DIMENSION(4) :: tot_rows
REAL, DIMENSION(5) :: tot_cols
REAL :: tot_all

arr = RESHAPE((/ 4.2, 7.4, 1.8, 5.6, 3.7, &
& 9.3, 2.2, 6.4, 7.1, 8.3, &
& 1.7, 5.4, 8.6, 0.4, 6.9, &
& 6.2, 95, 2.4, 49, 1.3 /), (/ 5, 4 /))

tot_rows = SUM(arr, 1)
! = (/ 22.7, 33.3, 23.0, 24.3))

tot_cols = SUM(arr, 2)
! = (/ 21.4, 245, 19.2, 18.0, 20.2 /)

tol_all = SUM(arr) ! = 103.3

In this case we have used tB&JMcommand with an optional dimension argument. When we specifi
SUM(arr, 1) , Fortran summed the elements in the direction of the firsedision giving us an array
of totals of each row. When we specifisdM(arr, 2) , Fortran summed the elements in the direction
of the second dimension giving us an array of totals of eadhnme. When we omitted the optional
dimension argument then Fortran summed all the elementedrtay giving us a grand total.

Similarly, you could find the minimum value in each row/colunthe number of elements greater than 5
in each column and so on, e.g.,

min_rows = MINVAL(arr, 1)

! = (/ 1.8, 2.2, 04, 1.3))
gt5_cols = COUNT(arr > 5.0, 2)

! =(2, 3,2 2,21

Table 5 shows some useful functions for multi-dimensiomadyss. Where the dimension can be selected,
the optionaldi margument will be shown, e.gSUM(arr, rmask, di n) . Note that the optional
mask argument works as before and must conform \aith .

Ex 6.8 Write a program (or modify your program from exercise 6.4 &) &o read in five sets of
real numbers (the number of elements in each set to be spebifithe user, but to have a
maximum of 20) and output the average and standard deviefitiee each set. Store the
data in a 2D array and use tB&JMunction with the optionatli margument.

Note, the standard deviation of a set of datgwith meanz is given by;

66

Function

Purpose

ALL(mask, dim
ANY(mask, dim
COUNT(mask, di m)
MAXLOC(arr, mask, dim
MAXVAL(arr, mask, dim
MERGE(arrl, arr2, mask)

Returns TRUE. if all elements of mask ar& RUE.

Returns. TRUE. if any elements of mask at&@ RUE.

Returns the number (integer) of elements of mask thafldReJE.
Returns the array index (integer) of the maximum valuarof
Returns the maximum value of the elementain

Returns an array where elements take their value fioth if the

corresponding element afiask is . TRUE. , otherwise it takes the
element fromarr2

Returns the array index (integer) of the minimum valuawf
Returns the minimum value of the elementsam

Returns the product of all the elements in the array

Returns an array which is made up of the elementwiof but has
a new shape as defined by the rank 1 astagpe

Returns the number (integer) of elements in the array

Returns a 1D array containing the shapeaaf , the number of
elements in the new array is equal to the rankmof

Creates a new array which is 1 rank higher than by copying
ncopies of arr in the dimension specified kgim . Like mak-
ing a book from copies of a single page

Returns the sum of all the elements in the array

Transposes a rank 2 array so that (hp component of the
new array is equal tarr(j,i)

MINLOC(arr, mask, dim
MINVAL(arr, mask, dim
PRODUCT(arr, nask, dim
RESHAPE(arr, shape)

SIZE(arr, di m
SHAPE(arr)

SPREAD(arr, dim, ncopies)

SUM(arr, mask, dim
TRANSPOSE(arr)

Table 5: Table of some multi-dimensional array intrinsindtions.

6.5 Flexible Array Processing

There are a couple of additional useful array features itr&oithat will be covered in this course. The
firstis theWHEREonstruct which allows us to perform array operations oectetl elements of an array
and perhaps a different operation on other elements.

The second is the ability to act on subsections of an arrdnerahan the whole array or individual
elements.

6.5.1 Masked Array Assignment
The WHERIEoNstruct allows us to perform array expressions on onltareelements of an array ac-
cording to amask or amask_expression . In its simplest form it can be used as follows;

WHERE ifask_expressi on) array_assi gnnent _expressi on

where therask_expr essi on conforms with the arrays in ther r ay _assi gnnment _.expr essi on.
For example

REAL, DIMENSION(20) :: a, b

WHERE (a > 0) b = SQRT(a)

In this case, the square root of elements @ire assigned to the corresponding elementsaily where
a > 0 (as square roots of negative numbers are complex). You raigiieve the same effect with a

67

block DOloop and a blockF construct as follows;

REAL, DIMENSION(20) :: a, b
INTEGER :: i

DO i=1,20
IF (a(i) > 0) THEN
b(i) = SQRT(a(i))

END IF

END DO

In this case you might also want to set the other elemertd@something as well, and for this the block
WHEREonstruct comes in useful. The syntax is,

WHERE ifmsk_expr essi on)
array_assi gnment _st atenents
ELSEWHERE
array_assi gnment _st at enents
END WHERE

or just

WHERE ifmsk_expr essi on)
array_assi gnment _statenents
END WHERE

And so in the previous example we might have

REAL, DIMENSION(20) :: a, b

WHERE (a > 0)
b = SQRT(a)
ELSEWHERE
b = -SQRT(-a)
END WHERE

Ex 6.9 Write a program to calculate the following function usingladk WHEREonstruct.

f(:n):{ —x2, if x <0

Calculate an array of x-values frominx=-1.0 to maxx=1.5 with the number of ele-
ments in the array beingpoints=26 . Make all of these valueBARAMETE®R Then use
the WHEREonstruct to calculate the function. Output the resultSrag (z)) pairs.

Vary the values ominx , maxx andnpoints

z2, ifx>0

6.5.2 Sub-Arrays and Array Sections

We have seen how to use whole arrays in expressions, hovgeveetimes we may only want to use a
subsection of an array, perhaps the middle section of tlag arrjust a line of a 2D array.

The simple form of addressing an array subsection is

68

arr(initial:final)
Wherei ni ti al isthe subscript of the first element of the subarrayfandal is the last element.
So if we have a 6 elements arrays we can set the middle 4 elsneehtoy

INTEGER, DIMENSION(6) :: arr=0

arr(25) = (/ 1, 1, 1, 1))
l'soar=(01,1, 1,1, 0/

The subsectiomarr(2:5) conforms with a rank 1 array with 4 elements.
The more general form of addressing an array subsection is
arr(initial:final:incr)

wherei ni ti al andfi nal are as before andncr is the step between element indices. All of these
guantities must bENTEGERs.

So to set every other element and every third element in ay &rl you might do something like

INTEGER, DIMENSION(8) :: arrl=0, arr2

)

arrl(2:8:2) = (/ 1, 1
1 0, 1,0, 1)

= 1, 1
l'so arrl = (/ 0, 1, O, 1,

arr2(1:7:3) = (/ 1, 1, 1))
l'so arr2 =(1,0,0,1,0, 0,1, 0))

There are some simpler forms of addressing subsectionsdhydixg one or more of the arguments. If
you omiti ni ti al then Fortran takes the subsection from the first elementarathay. If you omit
fi nal then Fortran takes the subsection till the last elementdrathay. If you omii ncr then Fortran
assumes an step of 1.

So all of the following are shortcuts

arr(initial:final)
arr(initial:)

arr(initial: incr)
arr¢: final)

arr(: final:incr)
arr(:c: incr)

arr(:)

Ex 6.10 Consider the following array declarations and subarraigasgents. In each case work
out what values the final array will have.

(@ INTEGER, DIMENSION(10) :: arrl=0
arrl(:5:2) = (/ 1, 2, 3 /)

(b) INTEGER, DIMENSION(10) :: arr2=0

arr2(::3) = 1
arr2(2::3) = 2
arr2(3::3) = 3

(c) INTEGER, DIMENSION(10) :: arr3=0

69

arr3(1:3) = (/ 3, 2, 1))
arr3(4:) = arrl(4:) + arr2(4))

(d) INTEGER, DIMENSION(-4:4) :: arr4=0
arrd(:-1) = -1
arr4(1:)) = 1

(e) INTEGER, DIMENSION(-4:4) :: arr5=0

arr5(-4:4:2) = (/ 4, 2, 0, 2, 4))

() INTEGER, DIMENSION(3,3) ::
arr6(;, 1) = 1
arr6(1:3:2, 2:3) = 2
arr6(2, 2:3) = (/ 3, 4 /)

arr6=0

Program in each case to check your results.

As can be seen in exercise 6.10, we can mix and match subamaysubscripts in multi-dimensional
arrays. When doing this, we must take extra care that oursysaconform. Consider the following;

REAL, DIMENSION(8,6) :: arr=0

arr(2:6, 3:5) = ...

Then in order to complete the expression, we need to usesaoragrray subsections that conform and
so we need to know the shape of the subsection. With multedsional arrays the subscripts denote
a section of the array in that dimension, so subsections D arfay will denote a rectangle within the
main array, and in a 3D array it denotes a cuboid.

Soarr(2:6, 3:5) hasashapedf 5, 3 /)
REAL, DIMENSION(8,6) :

, and to complete our example
arr=0
arr(2:6, 3:5) = RESHAPE((/ 1.0, 1.0, 1.0, 1.0, 1.0, &

& 2.0, 2.0, 2.0, 2.0, 2.0, &
& 3.0, 3.0, 3.0, 3.0, 3.0 /), (! 5, 3 /))

Which gives

[0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 1.0 1.0
0.0 2.0 2.0 2.0 20
0.0 3.0 3.0 3.0 3.0

. 0.0 0.0 0.0 0.0 0.0

arr =

Of (x4) _

0.0 0.0 0.0]
0.0 0.0 0.0
1.0 0.0 0.0
2.0 0.0 0.0
3.0 0.0 0.0
0.0 0.0 0.0 |

Ex 6.11 A function can be differentiated numerically using the foten

f(@iv1) — f(x0)

ox Tit+1 — T4
Consider the function
f(z) =€
Generate an array of x values from 0 to 1 with 11 points. Cateuthe function above for

each of these points using an array expression. Now catctilatnumerical derivatives for
each point using array subsections.

70

Differentiate the above function and in your program calteithe analytical derivatives for
each point in your x array. Calculate the difference betwiennumerical and analytical

derivatives.
Output your results as (x, f(x), df(x), analytdf(x), difference) lines.

What happens to the the difference (and hence the numedcatacy) when you vary the
number of points in x?

71

72

7 Functions and Subroutines

7.1 Programming Units

So far in this course, we have only come across the notionedPBROGRANMNit. This is the block of
commands that occur between ARROGRANMNAEND PROGRAdthtements. In each program there
must be exactly one program units. As we have seen, thesaofulows:

PROGRAMIr ognane
I specification statements
I execution statements

END PROGRANr ognanme

When writing programs, it would be useful to separate outspair code that we wish to use over again
(or perhaps in other programs). Consider a real life exangplppose we have a recipe for apple pie. It
would be useful (and most recipe books do this) to have a apegcipe for pastry as this crops up in
many recipes. Then in the apple pie recipe we can just sayhageaistry recipe rather than include the
extra instructions. This would also save space if we had mecipes that required pastry.

So, in Fortran 90 it would be useful to have a similar mechanis define more general computer
procedures. There are two types of procedures in Fortrafu@@fions and subroutines. We can use
these to split our programs up so that key parts of our programbe written as smaller self-contained
subprograms.

7.2 Functions

We have seen already how intrinsic functions (suclBié(x) , EXP(x) andSQRT(x)) can be used
to perform different calculations. When the program enteisnone of these functions then it calculates
the result and substitutes the answer into the main expressi

We can define our own functions. Instead of enclosing theifspaiion statements IPROGRAMND
PROGRAREIlimiters, we instead use tR&JNCTIONEND FUNCTIONMelimiters as follows:

FUNCTION nyfunc(d1, d2, ..)
I specification statements
I execution statements

END FUNCTION myfunc

Here,nyf unc is the name of the function and the dummy varialilésd?2, etc are used to denote any
input to the function. There may be none, one or many of thepentling on your requirements. The
specification and execution statements are largely the aameu use ilPROGRAMhits.

We can best describe how to write functions by an examplénisretxample we will calculate cube roots
by using logarithms. So

FUNCTION cube_root(x)

I again, always incude one of these

73

IMPLICIT NONE

I you need to declare what type of output the
I function returns
REAL :: cube_root

I now define the input variables
REAL, INTENT(IN) = x

I other internal variables
REAL :: log_x

I do calculation
log_x = LOG(X)
cube_root = EXP(log_x/3.0)

END FUNCTION cube_root

7.2.1 TheFUNCTI ONUnit

The FUNCTIONunit acts in a similar way to thEROGRAMnit in that it contains the instructions for
the computer to perform some tasklUNCTIONunits differ in that they are not the main body of the
program (which is executed when you run the program froménencand line), instead they define some
sub-code that can be accessed and run by the main progratméoifunctions or subroutines).

The name of the function obeys all the usual naming rulesdhpply to program names and variable
names. However, you should not give functions the same naraes/ariable in th€ ROGRAKbr other)
unit that calls it.

Directly after the name of the function comes a pair of pdresg¢s containing the names of dummy
variables that are passed to the function. There may be noegyr many dummy variables. In the case
that there are none, then the brackets must still be present.

In the above example, we have named the funatioibe root (which is descriptive of what the func-
tion will do) and we have indicated that it will accept oneubhpvhich we will store in the local variable
X.

7.2.2 Specification Statements

As always, you should begin your specification statements wi
IMPLICIT NONE

You must declare the function as a variable, this tells Bartwhat type of output the function will
produce. For the example, we wish to outpiREBALvalue (the cube root). The function take any of the
variable types already discussed in this course and mayalsoray valued.

There is a shortcut here, you can declare the function lirffellasvs

REAL FUNCTION cube_root(x)

74

END FUNCTION cube_root

This is okay in small programs, but in longer programs it eadlto code which is difficult to read. It is
suggested that you do not use this shortcut.

The next step is to declare the dummy variables that are wsaeddut. This introduces thtNTENT
statement. For functions, all dummy variable should HBMEENT(IN) . This allows values to be passed
from the main program to the function, but if the value of tliable is changed in the function, that
change will not be passed back to the main program.

For our example, we have set tREALvariablex to havelNTENT(IN) .

While these variables are used to pass information intouhetion, they are dummy variables local to
the function and do not need to share the same variable nasedsainen the function is called from the
main program. Similarly, the main program may use variabliis the same name as used in functions,
Fortran will distinguish between the two and there will becoaflict.

Finally, we can declare other variables to be used in thetifiomc These are local to the function, so
variables with the same name can safely be used in the magugonoor other functions without any
conflict. These are declared in the same way as you wouldréedgaiables in the main program block.

7.2.3 Execution Statements

The execution statements may include almost anything thatwould put inside the main program.
Expressions, block= statements and blodROloops are all fine.

The special variable which has the same name of the functinie used to assign the final output of the
function. So in the example, the special variableude _root and we assign the value that we want
returned to the main program to this variable.

7.2.4 Calling the Function in a Program

Now we have written our function, we now want to know how to itse our program. The general
usage is similar to using intrinsic functions, except we tdeslare an external function first. This is
done in the specification part of the program and is similateicaring a variable, e.g.,

REAL, EXTERNAL :: cube_root
So for our example, in the same file we would write
! main program

PROGRAM cube_root_test

IMPLICIT NONE
! declare user functions

REAL, EXTERNAL :: cube_root
| declare variables

REAL : x, vy, crl, cr2, cr3, crd

I set some initial values
x = 8.0
y = 26.0

| calculate some cube roots

75

crl = cube_root(125.0)

cr2 = cube_root(x)
cr3 = cube_root(y)
crd = 3.0 *cube_root(2.0 *x)/2.0

PRINT =*, crl, cr2, cr3, cr4d

END PROGRAM cube_root_test

I cube root function
FUNCTION cube_root(x)

I again, always include one of these
IMPLICIT NONE

! you need to declare what type of output the
I function returns
REAL :: cube_root

I now define the input variables
REAL, INTENT(IN) :: X

I other internal variables
REAL :: log_x

I do calculation

log_ x = LOG(x)

cube_root = EXP(log_x/3.0)
END FUNCTION cube_root

In this example, we can see that the functimrbe _root can be used as you would use an implicit
function. It may form part of a larger expression.

There are a couple of fine points to notice. When we @alle _root in the main program, we can use
numbers, variables and expressions as the argument. Titeeiyression/variable will be first evaluated
and then passed on the the function. Within the functiondtimamy variablex will assume the value of
the input. The dummy variable does not have to have the same aa the variable used as input in the
main program.

Ex 7.1 Program in thecube _root program given above. Try changing the input values in the
main program. Write a second function that calculates thetficoot.

Can you write a third function that calculates the nth roat(hyou will need to supply n as
in input to the function as well)?

Test your new functions with some different values and ouiipel results.

Ex 7.2 Write a function to calculate the factorial of an integet € n x (n — 1) x ... x 2 x 1).
You may wish to use blockOloops.

Write a program to test you factorial function with diffeteralues. Output the results.

Ex 7.3 Combinations are used in probability to calculate the numberays of combining things

76

are. For example, if you toss a coin twice, the is one way tawetheads (HH), two ways
to get one head and one tails (HT and TH), and one way to getdilggTT). Combinations
are denoted”’)” wheren is the number of trials and is the number of successes € n).

They can be calculated by
n!
nC -
"ol =)
Write a function to calculate combinations. You may use #tdrial function that you
wrote in exercise 7.2. Note, if bothh andr are integers* 0 andr < n then the result of

the combination is also an integer.
Write a main program to test your combination function antpatithe results.

Ex 7.4 Write a program to output the following

OC(]
¢y 1y
200 201 202

600 601 602 603 604 605 606
You may use your combination and factorial functions from pinevious exercises.
Can you name this structure of values?

In the previous three exercises we have also demonstragedoticept of modular development. In
exercise 7.4 we want to print out the structure of combimation order to do this we need a function
that calculates combinations which in turn needs a fundtancalculated factorials.

We first develop and test the factorial function in exercise Dnce that works we develop and test the
combinations function in exercise 7.3. Finally we write thain program to solve our problem.

When you are developing programs, first break the problemndote meaningful pieces which you can
develop and test separately. This makes it easier to degeligand track down bugs in your code.

It also makes things simpler when developing code in a teaane¥ample, one person could write the

factorial function while another is writing the combinat®function. The author of the combinations

function does not need to know the details of the factoriatfion, they just need to agree on an interface
in advance.

7.3 Subroutines

Subroutines work slightly differently to functions. Therpase of functions is to calculate some result
and return that value to the main program. The purpose of eostibe is to execute some code that
doesn't necessarily produce a numerical result at the eadeXample, you might use a subroutine to
print something to the screen in a standard way, or write fungeto a file. You may also use subroutines
to evaluate several different quantities and pass thetsebatk to the main program using arguments
which havelNTENT(OUT) or INTENT(INOUT) .

Like the FUNCTIONblock, the subroutine block takes the following layout.
SUBROUTINE mysub(dl, d2, ..)

I specifications statements

I execution statements

7

END SUBROUTINE mysub
Consider the following example to calculate and outputvialdial lines of a multiplication table.

SUBROUTINE mtable_line(a,b)
IMPLICIT NONE

I we dont have to declare a type for the subroutine
! so just the dummy variable declarations
INTEGER, INTENT(IN) :: a, b

I local variable declarations
INTEGER :: ab

| execution statements
ab=ax*b
PRINT =, a,” times ', b, ' ="', ab

END SUBROUTINE mtable_line

7.3.1 TheSUBROUTI NE Unit

The SUBROUTINHRinIt is very similar to thé&=UNCTIONunit. You have the parentheses for the subrou-
tines arguments and the subroutine name obeys all the ugesl r

In the above example, our subroutine was caltgdble _line and itis called with two arguments,
andb.

A subroutine may have no arguments, in which case you shdilllthslude a pair of empty brackets
after the subroutine name.

7.3.2 Specification Statements

The difference from thé&=UNCTIONunit is that you don't have to specify what type of variable th
function returns to the main program (or other procedurec§@BROUTINES$Io not full fill this role.

You do need to declare what you dummy variables are thoughreTére more choices here than there
are forFUNCTIONSTheINTENT statement can take the valudTENT(IN) , INTENT(OUT) and
INTENT(INOUT) . The description of the three options are

1. INTENT(IN) , this means that the variable is used for input only. You dzamnge the value of
this variable without effecting it’s value in the main pragr.

2. INTENT(OUT), this means that the variable is used for output only. Wherfuhction is used in
the main program, it will pass additional information outaigh this variable. The initial value
of this variable may not be set from the main program.

3. INTENT(INOUT) , this means that the variable can be used for both input atplibul he vari-
able will be passed into the function and if it is modified dgrihe function then the new value
will be passed back.

78

For our example, we have set tidTEGERVvariablesa andb to haveINTENT(IN) . However, we
could modify our example so that it also outputs the prodéiet andb, e.g.,

SUBROUTINE mtable_line_mod(a, b, ab)
IMPLICIT NONE

I we dont have to declare a type for the subroutine
I so just the dummy variable declarations

INTEGER, INTENT(IN) :: a, b

INTEGER, INTENT(OUT) :: ab

| execution statements
ab=ax*b
PRINT =, a,’ times ', b, ' = ', ab

END SUBROUTINE mtable_line_mod

7.3.3 Execution Statements

As before, pretty much most of the execution statementstragppear iIPROGRANAFUNCTIONS
can appear iIsUBROUTINES

7.3.4 Calling Subroutines in a Program
Subroutines are not used like functions and they do notmetwalue in that way. Instead they have to
be explicitly called using th€ALL statement, e.g.,

CALL mysub(dl, d2, ..)

As subroutines do not have a variable type, then they do reat ttebe declares as external either. Fortran
will assume this when it sees tBALL statement.

So for our example,

PROGRAM mtables

IMPLICIT NONE
INTEGER :: i, n

I select multiplication table
n=7
! loop through to print each line
DO i=1,12
CALL mtable_line(i,n)
END DO

END PROGRAM mtables

! subroutine to print a multiplication table line

79

SUBROUTINE mtable_line(a,b)
IMPLICIT NONE

I we dont have to declare a type for the subroutine
I so just the dummy variable declarations
INTEGER, INTENT(IN) :: a, b

| local variable declarations
INTEGER :: ab

| execution statements
ab=ax*b
PRINT =, a,’ times ’, b, ' = ', ab

END SUBROUTINE mtable_line

Ex 7.5 Write a subroutine that takes as an argument the radius afck @nd calculates and
outputs the radius, diameter, circumference and area d@iittle.

Test this subroutine for different radii.

Ex 7.6 Write a subroutine that will accept an array of 10 real numslzard calculate their mean
and standard deviation

f:%zw

o? = ﬁ Z (x —)2

7

Return the mean and standard deviation to the main progreng apair of dummy variables
in the interface which havlNTENT(OUT) .

Write a main program which has some values to test your foncti

Ex 7.7 A simple way to sort an array of numerical values is to statiwie first element then look
at all the following elements in turn, if an element is smatlean the current first element,
then swap the two numbers, otherwise move on to the next eterfieen repeat this for the
2nd, 3rd, 4th, and so on elements.

So in pseudo code this would look something as follows:

XX = array of values to sort
loop though i=1,n-1
loop through j=i+1,n
if xx(j)<xx(i) then swap xx(j) and xx(i)
end loop
end loop

Write this as a Fortran subroutine for areal array of 10 ef@mesSex to havelNTENT(INOUT)

S0 you can pass the result back via it's original variable.

Write a program to test you subroutine.

80

TheINTENT(INOUT) option is often used for passing arrays to and from subrestiis large arrays
take up valuable memory, it is usually more convenient tseeexisting arrays rather than creating
copies.

7.4 Arrays and Procedures

In exercises 7.6 and 7.7 we have seen how arrays can be inat@ga@s input and output variables in
procedures. However, in both cases we fixed the size of thg o110 elements in both the subroutine
and the procedure. Ideally, the program and the subroutiog!@ not need to know details of each others
code. Also, it would be more convenient if we could write arsuitine (or a function) that can accept
an array of arbitrary size. For example, it would be bettawtibe a subroutine that would calculate the
mean and standard deviation for an array with any amouneofiehts.

This can be done by also passing the number of elements imrdyeas an argument and specifying the
array withDIMENSION(n) in the specification. For example,

SUBROUTINE print_sum_squares(n, Xx)

IMPLICIT NONE
INTEGER, INTENT(IN) = n
REAL, DIMENSION(n), INTENT(IN) :: xx

INTEGER :: i
REAL :: ssq

ssq = 0.0
DO i=1,n

ssq = ssq + xx(i) ** 2.0
END DO

PRINT =*, 'Sum of squares = ’, ssq

END SUBROUTINE print_sum_squares

Ex 7.8 Modify your mean and standard deviation subroutine fromm@ge 7.6 so that it will accept
an array of arbitrary size.
Write a program to test it with different size arrays.

Ex 7.9 Modify your sorting subroutine from exercise 7.7 so thatilt accept an array of arbitrary
size.
Write a program to test it with different size arrays.

You can do this for higher dimensional arrays. For exampl@aiss a two-dimensional array you would
type something like

SUBROUTINE mysub(nx, ny, arr)
INTEGER, INTENT(IN) :: nx, ny
INTEGER, DIMENSION(nx,ny), INTENT(INOUT) :: arr

and so on for higher dimensional arrays.

There are a variety of other ways of using arrays of varyizg & subroutines and functions. This
include using arrays with different lower and upper bounad passing the lower and upper bounds as

81

extra arguments in the procedure. These are beyond the stdips course and are covered in more
detail in Ellis, Philips and Lahey.

7.5 Array Valued Functions

As well asREALand INTEGERVvalued functions, you may also have array valued functiofisese
might be declared as follows

FUNCTION myfunc(...)

IMPLICIT NONE
REAL, DIMENSION(10) :: myfunc

END FUNCTION myfunc

You may not want the size of the returned array to have a fixag] sather one specified on input, e.g.,

FUNCTION myfunc(n)
IMPLICIT NONE

REAL, INTENT(IN) :: n
REAL, DIMENSION(n) :: myfunc

END FUNCTION myfunc

There are some other technical specifics with array valuectifons which are not covered in detail here,
for further details, please refer to Ellis, Philips and Lahe

82

8 File Handling

So far we have restricted ourselves to reading data from ¢lgpdard and writing to the screen. For
larger amounts of data, this becomes impractical and we todo# able to input data from a file (perhaps
generated by an experiment or another computer programyatedit out to another file (perhaps so we
can read it into MathCAD and plot it).

In Fortran, we can read and write files in a variety of formaid eompressions, however, for this course,
we will restrict ourselves to plain text files that we can veade using a text editor.

8.1 Opening and Closing a File

A file can be opened using t@PENstatement. The open statement takes a list of argumentg gbm
which are mandatory, others are optional. As a minimum, ymukl use the following arguments:

OPEN(UNIT=n, FILE= fil enane)

Wheren is a unique integer constant or variable to identify thatsedito reference the file within your
program and i | enane is a character constant or variable which refers to the ndipew file. So for
example

OPEN(UNIT=10, FILE="myfile.dat")
The file should be located in, or will be written to, the digtin which you run your program.

For the purpose of this course, you should also include thiersgpFORM="FORMATTEDThe options
here ardcFORMATTEDr UNFORMATTEBIowever, in this course we will only deal wiFORMATTED
files. So for example

OPEN(UNIT=10, FILE="myfile.dat", FORM="FORMATTED")

The next option is to tell Fortran what your intention for fiile is, will you be reading it or writing to
it? This is theACTIONoption. This may take the valugsCTION="READ" andACTION="WRITE".
This will restrict what you can do to a file. There is alsRBADWRIT®ption that allows you to read
and write to the same file, however, this is dangerous and Weetiuse this option in this course.

The final option that we will look at (though there are otheti@mps available) is th&TATUSoption.
This may take the valueSLD NEWREPLACESCRATCHNdUNKNOWN

If the file status iOLD then the file must already exist, whereas if the stati¢E%\then the file must
not already exist and Fortran will create a new file with thete (and change its status@b.Dso that
subsequent attempts to open the fileN&Mvill fail).

If the file status IREPLACEthen Fortran will delete that file (if it already exists) andte a new file
with the same name. If the file does not already exist, theiilitat as if NEVWvere specified.

If the file status iISSCRATCHhen a temporary file will be created for the use of the prograihis file
will be deleted at the completion of the program. You do neicsy a filename with this option.

The UNKNOWNABIption is implementation specific, and different Fortraimpders may do different
things. The most common implementation is that if the filestxit acts a®OLDand if it doesn't ex-
ist it acts alNEW

A file may be closed using theLOSE(n) statement, where is the file reference. For example

OPEN(UNIT=20, FILE="myfile.dat", FORM="FORMATTED", &
& ACTION="READ", STATUS="OLD")

83

CLOSE(20)

8.2 Reading from a File

You can read data from an existing file using RIEADstatement in a similar way as you read data from
the keyboard. The usage is slightly different from the formu yrave previously seen. Itis

READ(UNIT=n, FMT=%) X, y, z

This will read in three quantities (of the type definedxayy andz) from the file referenced bg. The
usual rules for reading apply and you are not able to read e mhata than exists in the file (the program
will throw and end of file error).

Note, theREAD *, X, y, z thatyou have seen so far is a special shortcut and fiRBA® (UNIT=+,
FMT=) x, y, z . The=* unitisaspecial unit that means the standard way that irdtiam is inputted
or outputted (depending on context).

Ex 8.1 Create a file calletkest8.1.dat in emacs (or whatever) and type in the following:

1.0 20 3.0
456

Now type in and run the following program
PROGRAM iotestl

IMPLICIT NONE
INTEGER :: a, b, c
REAL @ x, vy, z

I open file
OPEN(UNIT=10, FILE="test8.1.dat", FORM="FORMATTED", &
& ACTION="READ", STATUS="0OLD")

I read in data
READ(UNIT=10, FMT==*) X, vy, z
READ(UNIT=10, FMT=+*) a, b, ¢

I close file
CLOSE(10)

I print out data
PRINT =*, 'x="X
PRINT *, 'y="y
PRINT *, 'z="z
PRINT *, 'a=",a
PRINT *, 'b="\b
PRINT =*, 'c=',c

END PROGRAM iotestl

84

Try changing the numbers in the datafile and how much datatsireuntil you are happy
you understand reading data from a file. Try creating a diffedata file with a different
name and read data from that as well (you will want a diffeidantifying number if you
have more than one file open).

You can read in whole arrays in one go, for example, if you hddta file containing 100 numbers, you
could read them all in as follows:

REAL, DIMENSION(100) :: arr

READ(UNIT=5, FMT=+) arr

Ex 8.2 Create a data file containing the following numbers.

2541 09 83 1.7
6.5 35 7.9 3.1 0.2

Modify your sorting program from exercise 7.9 so that it ieadthe data from the file and
sorts those numbers.

Try changing the size of the array and the number of pieceatafid the data file.

8.3 Writing to a File

The method of writing files is very similar to this, except weed to change the value of some of the
options in theOPENstatement and use ttWRITE statement. The usage of tNéRITE statement is
similar to that of theREADstatement, for example

WRITE(UNIT=n, FMT=+*) X, v, z

This will write out three quantities (of the type and valudinked byx, y andz) to the file referenced by
n.

Ex 8.3 Type in and run the following program
PROGRAM iotest2

IMPLICIT NONE
INTEGER :: a, b, c
REAL @ X, y, z

I initialise some data
a=9
b=8
c=7
x=0.1
y=0.2
z=0.3

I open file
OPEN(UNIT=10, FILE="test8.3.dat", FORM="FORMATTED", &

85

& ACTION="WRITE", STATUS="NEW")

| read in data
WRITE(UNIT=10, FMT=+%) X, y, z
WRITE(UNIT=10, FMT=+*) a, b, ¢

I close file
CLOSE(10)

END PROGRAM iotest2

The program should have created the tidst8.3.dat at the command line, look at the
contents of this file by typing

dob@fortran:™> cat test8.3.dat

Run this program again. Did it crash? Do you know why it crai$he

Try replacingSTATUS="NEW'with STATUS="REPLACE"and compile and run the pro-
gram. Does it crash this time?

Try changing the values of the data written and the amountatd evritten. Instead of
variables, try writing numerical and character constast&ell. Do this until you are happy
about writing files.

As with theREADstatement, you caWRITEan array of data out to file in one go as follows

REAL, DIMENSION(100) :: arr

WRITE(UNIT=7, FMT=+*) arr
Ex 8.4 Modify your sorting code in exercise 8.2 so that it writes sleeted numbers out to a new
file.
Play with the code so that it works with different sizes ofadats.
Ex 8.5 Look back over some of the codes that you have written in thieeahapters of this
course. Modify them so that they input their data from a fild antput the results to file.

Do this with as many programs as you wish until you are hapyk véading and writing
files.

86

