
PH25520
Experimental Physics

Introduction to Fortran 90

Daniel Brown

UNIVERSITY OF WALES ABERYSTWYTH

1

2

1 Introduction

1.1 Resources

While this document is self-contained, those interested ina Fortran 90 textbook should consult:

T.M. Ellis, I.R. Philips and T.M. Lahey, Fortran 90 Programming, Addison-Wesley.

There are copies in the library, although it is a text well worth purchasing if you envisage using Fortran
90 a lot in the future (e.g., for a numerical project or a fairly computational PhD).

In addition, you may want to download a Fortran 90 compiler for your own computer/laptop. Free and
commercial Fortran compilers for windows and Linux can be found at the following websites

http://www.fortran.com/
http://www.g95.org/

TheF compiler is a cutdown version that should work fine, G95 is an open-source Fortran 95 compiler
that should be okay as well. Fortran 95 compilers are backwards compatible with Fortran 90.

Note, if you do download a compiler and write course materialon your own computer, you should also
test them on the course server - particularly programs that are to be assessed.

1.2 Telling a computer what to do

To get a computer to perform a specific task it must be given a sequence of unambiguous instructions or
a program.

An everyday example is instructions on how to assemble a bedside cabinet. The instructions must be
followed precisely and in the correct order:

1. insert the spigot into hole ‘A’,

2. apply glue along the edge of side panel,

3. press together side and top panels

4. attach toggle pin ‘B’ to gromit ‘C’

5. ... and so on

A programming language is a way to give a list of instructionsto a computer so that the computer can
carry out a task.

Programming languages must be:

• totally unambiguous (unlike natural languages such as English),

• expressive – it must be fairly easy to program common tasks,

• practical – it must be an easy language for the compiler to translate,

• simple to use.

All programming languages have a very precise syntax (or grammar). This ensures all syntactically
correct programs have a single meaning.

3

1.3 High-level programming languages

In the early days of computing, all programs were written in machine code. These were just long strings
of 0s and 1s in a binary form, such as,

010100011 010 000 010111

This had the disadvantage that it was specific to a particulartype of computer and was almost totally
incomprehensible to a human being.

The binary code became octal code (base 8) such as

243 2 0 27

This in turn evolved into assembler code which is mnemonic form of the machine code instructions, such
as

LDA 2 X

which meansload CPU register 2 with the contents of memory location X. These principals of machine
code have survived more of less unchanged to this day.

This kind of programming was for the specialist programmersrather than the every day users.

In 1953, IBM decided that it would be beneficial if a more efficient and economical method for program-
ming a computer existed, and by mid-1954 an initial specification had been written for a programming
language. This language was calledIBM Mathematical FORmula TRANslation System of FORTRAN.

FORTRAN introduced many important concepts, the main one being that the program was formulated in
the users terms, and not those of the computer. This idea of using algebraic terms and a ’pidgin English’
for other (non-mathematical) terms became known as a high-level language as the user did not need to
know much about the specifics of the computer itself.

A computer can only understand its own machine code, so before a FORTRAN (or other high-level
language) program can be run, it must be translated (or compiled) into the specific machine code for that
computer. A special program (called a compiler) must be usedto translate a FORTRAN program from
the high-level code to the low-level machine code.

Nowadays, there are many high-level languages such as Fortran 90, FORTRAN 77, C, C++, COBOL,
BASIC and JAVA. FORTRAN itself has changed dramatically over the years from Fortran I and II, to the
first standardised version Fortran IV in 1966. And more recently FORTRAN 77 (in 1977), Fortran 90 (in
1990) and even Fortran 95.

1.4 An example problem and program

Consider the problem of how to convert from◦F (Fahrenheit) to◦C (Celsius). We can use the following
formula:

C =
5

9
(F − 32)

To convert from◦C to K (Kelvin) we add 273.

The program would accept a Fahrenheit temperature as input and produce the Celsius and Kelvin equiv-
alent as output.

In Fortran 90, we might code this up as

PROGRAM temp_conversion
! this program take an input in Fahrenheit and converts it to

4

! both Celsius and Kelvin - outputting both results to the
! screen

! variable declarations
IMPLICIT NONE
INTEGER :: deg_F, deg_C, K

! read in Fahrenheit data
PRINT* , "Please type in the temp in F"
READ* , deg_F

! convert to Celsius and output
deg_C = 5* (deg_F-32)/9
PRINT* , "This is equal to", deg_C, "C"

! convert to Kelvin and output
K = deg_C + 273
PRINT* , "and", K, "K"

END PROGRAM temp_conversion

This program, calledtemp.f90 , can be compiled an run in an X-terminal (on a UNIX system) as
follows:

f90 temp.f90
a.out

1.5 Analysis of program

The code is delimited by thePROGRAMandEND PROGRAMstatements which indicate the main program
code (there are other delimiters such asFUNCTION, SUBROUTINEandMODULE, these will be looked
at later in the course). Between these there are two distinctareas of the program.

1. The specification part

• specifies the named memory locations (variables) for use in the program

• specifies the type of the variable

• there are other specifications that will be described later in the course.

2. The execution part

• reads in the data

• calculates the temperature in◦C and K

• outputs (in this case print to screen) the results.

The PROGRAMstatement has a program name attached to it. There a certain rules governing legal
program names. These rules apply to all Fortran 90 user defined names (such as variable names and so
on). These rules are

• It must begin with a letter - either upper or lower case

• It may only contain the letters A-Z and a-z, the digits 0-9 andthe underscore character

5

• It has a maximum length of 31 characters

The lines that begin with the character! are comment lines. Anything after the! is ignored when the
program is compiled and is purely for the benefit of the programmer (or someone else who later reads
through the program).

You should write comment lines to document your code and explain what is going on. Use as many
comment lines as you need (possibly extra if you plan on passing your code on to someone else), but try
to avoid needless comments where the code says it all, e.g.,

! set a equal to 1
a=1

In this case, the comment doesn’t tell you anything extra than the code itself.

A more useful comment might be

! a is the radius of the circle
a=1

as it tells you whata represents. Comments can appear on the same line as some code, e.g.,

a=1 ! the radius of the circle

Though this should be used sparingly and only on short lines of code.

Documentation might be achieved more efficiently with self-documenting code using an appropriately
named variable, e.g.,

rad_circ=1

It is also a good idea to put a brief description of what the program is supposed to do at the beginning of
the code.

1.5.1 The specification part

The first statement in this part is

IMPLICIT NONE

This statement is used to inhibit an undesirable feature carried over from previous versions of Fortran.
Using this statement means that you must declare all of the variables you use at the beginning of the
program. You should always use this statement, and it is placed before all variable declarations.

INTEGER :: deg_F, deg_C, K

This statement is used to declare variables that you wish to use in your program and to tell the computer
what type of variables they are.

In this case we are declaring three variable (deg F, deg C andK) that take integer values (whole num-
bers) only.

Some other variable types are

• REAL– real numbers such as3.1415 and5.213 × 10−4

• LOGICAL– takes the values.TRUE. or .FALSE.

• CHARACTER– contains a single alphanumeric character, e.g., ’a’

6

• CHARACTER(LEN=12)– contains a string of 12 alphanumeric characters

1.5.2 The execution part

This is the part of the program that does the actual work. The key lines are as follows:

PRINT* , "Please type in the temp in F"

This writes the string (message) to the screen

READ* , deg_F

This reads a value from the keyboard and assigns it to the variabledeg F.

deg_C = 5* (deg_F-32)/9

The expression on the right hand side is evaluated using the inputted value ofdeg F and is assigned to
the variabledeg C. The expression performs the conversion from Fahrenheit toCelsius. The following
operators are used

+ The addition operator

- The subtraction operator

* The multiplication operator

/ The division operator

= The assignment operator

The brackets,() , may be used to help specify the order that the calculation isperformed.

PRINT* , "This is equal to", deg_C, "C"

This displays a sequence of outputs on the screen. First the string “This is equal to” followed by the
value of the variabledeg C. This is then followed by the final string “C”.

1.6 Programming conventions

Fortran is not case sensitive, soK is the same ask andinteger is the same asINTEGER. This document
will use the convention that everything that is part of the Fortran language (INTEGER, PRINT* , etc)
will be typed in capitals letter. Everything that is defined by the user (such as variables and program
names) will be typed in lower-case letters with the occasional capitol letter if it makes sense (such as the
C in deg C).

1.7 How to write a computer program

There are four main steps to writing a computer program. These are:

1. Specify the problem – decide (write down) what it is the program is supposed to achieve

2. Analyse the problem and break it down to a series of steps towards the solution

7

3. Write the Fortran 90 code

4. Compile and run the program (i.e., testing)

The first two steps may be best done using pen and paper. Especially for longer programs, it is useful
(necessary) to have some kind of plan and a good idea of what steps are required before starting to code.

It may be necessary to repeat steps 3 and 4 many times before the program runs correctly. It is very rare
that a code works first time.

The testing phase is very important. In larger projects it isusually possible to break the project up into
many smaller chunks that can be coded and tested separately.

1.8 Compiling and running a program

The program can be created using a text editor such as notepador emacs. Suppose you have created a
Fortran 90 program calledmyprog.f90 , this can be compiled at the UNIX prompt by typing

f90 myprog.f90

This will create an executable file (a machine code file) called a.out which can be run by typing

./a.out

When you create your executable, you can specify a differentname by typing

f90 -o myprog.out myprog.f90

Which can be run with

./myprog.out

1.9 Free- and fixed-format Fortran

The original Fortran language used a so-called fixed format where the first 5 columns were used for
labels, column 6 for a continuation character and columns 7-72 for code. This has much to do with early
programming being performed on punch-cards where the formatting of the code was important.

Fortran 90 introduced a free-format as it had little need forthe strict format that existed in previous
versions of Fortran. Fixed-format code is still acceptableand files with fixed-format Fortran will end
with the extension.f .

This course will only look at free-format code. The acceptedextension for this is.f90 , and all of your
Fortran files should use this extension. Some compilers use this information to anticipate what type of
Fortran is about to be compiled.

Free-format Fortran has only a few formatting rules, these are:

• Blank characters (spaces) are important and must be used to separate names, constants or statement
labels from other names, constants, statement labels or Fortran keywords

• Comment lines are identified by having an exclamation mark (!) as the first non-blank character

• Any characters following an exclamation mark (unless this is part of a character string) forms the
trailing comment

8

• A line may contain more than one statement, in which case eachstatement must be separated by a
semi-colon (;)

• A line may contain a maximum on 132 characters

• A trailing ampersand (&) indicates that a statement is continued on the next line. Ifit occurs in a
string context then the first non-blank character of the nextline must also be an ampersand, and
the string continues immediately after the ampersand

• A statement may have a maximum of 39 continuation lines

• A statement label, if required, consists of up to five consecutive digits representing a number in
the range 0-99999. This precedes the statement and is separated from it by at least one space.

Statement labels are rarely needed in Fortran 90 and are included more for historical reasons. We will
barely touch upon statement labels, if at all.

The rules above discuss a maximum length of a line and continuation lines. If you have a line that is
longer than the maximum, then you need some mechanism to split it over two lines, this is where the
continuation character,&, comes in. When a line ends with the continuation character then the Fortran
compiler knows that the Fortran statement is not yet finished. For example, the following two statements
do the same thing;

mysum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
mysum = 1 + 2 + 3 + 4 + 5 &

+ 6 + 7 + 8 + 9

In the second statement, the sum is continued on the next line(also, note the use of spaces to aid visual
formatting).

You need to be slightly careful if you want to split a text string, for example;

print * , "The rain in Spain falls mainly on the plain."
print * , "The rain in Spain &

&falls mainly on the plain."

In this case an additional continuation character is required at the beginning of the continuation line. The
program will try and print valid spaces, so the continuationsymbol indicates where the string resumes.

This additional continuation character at the beginning ofthe continuation line works for normal lines as
well. So for our sum example, the following statements do thesame thing

mysum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
mysum = 1 + 2 + 3 + 4 + 5 &

+ 6 + 7 + 8 + 9
mysum = 1 + 2 + 3 + 4 + 5 &

& + 6 + 7 + 8 + 9

The use of continuation characters at the beginning of a continuation line gives more legible code (when
combined with sensible spacing), this option is recommended when using continuation lines.

Note, the one place where continuation lines do not work is incomments, so

! This is going to be a long comment &
& which is spread on two lines

will cause a compiler error. The correct way to do this is

! This is going to be a long comment

9

! which is spread on two lines

Additional note, although the maximum length of a statementline is 132 characters, most printers and
text editors default to around 80 characters per line. It makes for more legible code if you keep your lines
below this limit. Furthermore, When splitting lines, you don’t have to split them at character 80, if there
is a natural break in the statement, use that instead. For example,

mycalc = (x-a)/SQRT((x-a) ** 2 + (y-b) ** 2) + (y-b)/SQRT((x- &
& a) ** 2 + (y-b) ** 2)

gives an ugly break, where

mycalc = (x-a)/SQRT((x-a) ** 2 + (y-b) ** 2) &
& + (y-b)/SQRT((x-a) ** 2 + (y-b) ** 2)

is a more natural split and makes the equation easier to read.

10

2 Introduction to UNIX

2.1 What is UNIX

UNIX is a command-line operating system (rather than the point-and-click Microsoft operating systems)
that is intended for a more ‘expert’ user. There are many different flavours of UNIX such as Linux, DEC
UNIX, SUN UNIX and many more.

UNIX is used extensively for serious applications. Scientific programming is often done under UNIX.
Other applications are central file servers, web servers andsupercomputers. Much of the cgi animation
that you see in TV and films is done on supercomputers running some type of UNIX.

In computational physics, the aim is to program and perform complex simulations of some physical sys-
tem (such as fluid flow or plasma dynamics). These simulationsare often designed to to be run on parallel
computers where there may be 100s of computers (nodes) each performing a bit of the simulation and
passing on the necessary information from it’s own bit for other nodes to continue with the simulation.
Almost all parallel computers run some flavour of UNIX.

If we are interested in doing computational physics (which is why we are learning Fortran), then we are
interested in learning how to use UNIX.

2.2 Logging on

For this course, we will be usingfortran.dph , a UNIX server set up especially for this course. To
log in from one of the workstations in the honours laboratorydo the following;

First, we must start the X-server on the windows machine, in theAll Programs list find theCygwin
menu, from this select theStart X-Server option.

After a few moments, a terminal window running on the local desktop will appear. This is actually a
UNIX shell emulator. You will now need to log in to the fortranserver from this terminal window. To do
this type

ssh -X -Y fortran.dph

This command is the secure shell command for connecting intoother machines. The-X flag tells it that
you want to enable X-forwarding (which you do in this case), the-Y flag enables trusted X-forwarding,
and the following argument tells it which server to connect to.

If you want extra/new terminal windows after you have started the X-server, from theAll Programs
list find theCygwin-X menu, and from this select thexterm option.

When you are logged in, the prompt in your terminal window should change to something involving your
username and the server name, for example

dob@fortran:˜>

In this document, the prompt will be written with any commandwhenever you are asked to type some-
thing in under UNIX. You should not rewrite the prompt, just the command that follows it.

For example, make a new directory for the Fortran 90 source code by typing:

dob@fortran:˜> mkdir Fort90

It is suggested that when you name new directories, the first letter should be capitalised to differentiate
directories from regular files in directory lists.

11

You can change to the new directory by typing

dob@fortran:˜> cd Fort90

2.3 Creating and editing files

The commandcat (‘catalogue’) displays the contents of a file on the screen. You can use this to create
a new file (calledmyfile) as follows:

dob@fortran:˜> cat > myfile
Type first line
Type second line
.........
Ctrl-d

The final line means hold down the control key (labelled ‘Ctrl’) and then press ‘d’.

You can then display the contents of this file by typing:

dob@fortran:˜> cat myfile

Where the> symbol is missing.

By using a text editor, this file can be edited and changed. There are many text editors in UNIX, most of
which are rather difficult to use. The most widely available,simple to use editor under UNIX is called
emacs. To use this type:

dob@fortran:˜> emacs myfile

and use the intuitive interface. If you supply a new file name,a new file with that name will be created.

You will notice that when you do this, you are unable to enter any new commands in the UNIX terminal.
If you type

dob@fortran:˜> emacs myfile &

then emacs will be run as a background process and you will be able to enter commands at the UNIX
terminal.

Important note: the files on Fortran.dph are not backed up. When working on important files, you will
have to back them up yourselves. You can transfer files to yourworkstation by using the WinSCP tool.
There should be a shortcut on the desktop with the WinSCP iconand Fortran written underneath. This
will connect you to the Fortran server and you can then copy files to your m: drive.

Similarly, you can copy files you have created elsewhere to the Fortran server using this tool.

2.4 Other UNIX commands

2.4.1 Displaying a file on screen

We have already seen that thecat command will display the content of a file on the screen. However, if
the file is long, the beginning scrolls of the top of the terminal.

A more useful command ismore . This will display the file one page at a time.

dob@fortran:˜> more myfile

Pressing the space bar or a carriage return will advance the text by one page. typing100f will advance

12

by 100 lines and typing100b will go back 100 lines. Typing/ string will move forward to the next
occurrence of that string.

2.4.2 Deleting files and directories

The command for deleting files isrm. To remove a specific file type

dob@fortran:˜> rm myfile

Typing

dob@fortran:˜> rm *

will remove every file in the current directory,* is a wild card and will match any string. This can be
dangerous, as you may delete files you want to keep (there is noundelete or recovery from a trashcan in
UNIX), a safer way to do this is

dob@fortran:˜> rm -i *

This sends a y/n query to the screen for every file that it matches.

Another wild card is? which matches exactly one single character, so typing

dob@fortran:˜> rm file??

will delete files that have names likefile01 , file02 , fileab , , file.f , etc.

To remove a subdirectory, you must first delete all the files contained within the directory, then you type

dob@fortran:˜> rmdir subdir

2.4.3 Directory listings

To obtain a listing of which files are contained withing a directory, type

dob@fortran:˜> ls

This will give a list of all the user files and subdirectories contained in the current working directory.

To see the contents of a subdirectory, type

dob@fortran:˜> ls subdir

You may use wild card characters (* and?) to list a selection of files, for example

dob@fortran:˜> ls * .f90

will list all the Fortran 90 (or at least all the files ending.f90) in the current directory.

To get more details about the files (such as last date modified,size and ownership of file) you can use the
-l (long) option,

dob@fortran:˜> ls -l
dob@fortran:˜> ls -l subdir
dob@fortran:˜> ls -l * .f90
dob@fortran:˜> ls -l subdir/ * .f90

The last example displays more detail of all Fortran 90 files contained within the subdirectorysubdir.
The/ is a divided between the subdirectory and the file selection.You may have many such dividers (as
long as those subdirectories exist, soFort90/Sect2/Ex4/ * .f90 would refer to all Fortran 90 files

13

within the subdirectoryEx4 which is contained within the subdirectorySect2 which in turn is in the
directoryFort90 .

Other useful options to thels are

dob@fortran:˜> ls -a
dob@fortran:˜> ls -R

The -a (all) option lists all files including hidden system files, and the-R (Recurse) lists all files in the
current directory and all of its subdirectories.

You may usually be able to use multiple option, e.g.,

dob@fortran:˜> ls -la
dob@fortran:˜> ls -l -a

will both list all the files and system files within a directoryand supply the file details.

2.4.4 Copying and renaming files

Often you may wish to make a copy of a file (perhaps you want to use an existing Fortran program as a
template for another). Copying can be done as follows

dob@fortran:˜> cp file1 file2

You may wish to copy a file from one subdirectory to another, e.g.,

dob@fortran:˜> cp subdir1/file1 subdir2/file2

You may wish to copy a file from one directory to another, without changing the name, the following two
commands both do this

dob@fortran:˜> cp subdir1/file1 subdir2/file1
dob@fortran:˜> cp subdir1/file1 subdir2/

The second example uses a shorthand, if you supply a directory name as a destination without a filename,
UNIX will use the existing filename.

You can use this to copy many files to a new directory using wildcards. E.g.,

dob@fortran:˜> cp subdir1/ * .f90 subdir2/

will copy all Fortran 90 files insubdir1 to subdir2.

Sometimes you will want to rename or move a file without makingthe extra copy. This can be done
using

dob@fortran:˜> mv file1 file2

which renamesfile1 tofile2. All of the things above that worked forcp will also work formv, e.g.,

dob@fortran:˜> mv subdir1/ * .f90 subdir2/

will move all of the Fortran 90 files insubdir1 to subdir2 (leavingsubdir1 empty of Fortran 90
files).

14

2.4.5 Working within directories

Once you have a directory structure, you need to be able to move about within that structure. You can
change the current working directory by

dob@fortran:˜> cd subdir

This moves into a subdirectory of the current directory, calledsubdir.

dob@fortran:˜> cd ..

Moves you back up a directory, so if you’re insubdir and enter this command, you will be moved out
of subdir and into the directory that contains it.

The.. can be used in conjunction with other subdirectories, so

dob@fortran:˜> cd ../ otherdir/ somedir/

Will move you up a directory then down theotherdir/ somedir/ branch.

If you just type

dob@fortran:˜> cd

by itself, you will be taken back to your home directory.

If you’re not sure where you are in your directory tree, type

dob@fortran:˜> pwd

This will display the complete directory branch that you arein. E.g.,

dob@fortran:˜> pwd
/mntce/staff2/base/d/dob/Fort90/Sect2/Ex2

You will notice that your home directory is several directories down the directory tree.

2.4.6 Printing a file

Most printers attached to a UNIX machine expect postscript pages (postscript is a computer language
that tells printers how to print things). The basic command for printing a postscript file is

dob@fortran:˜> lpr file.ps

However, this will send your output to the default printer which may, in general, be somewhere that
you will not be able to find. For the Fortran server though, thedefault printer is the one in the honours
laboratory.

Otherwise, you need to find out the name of the printer queue for a printer which you know the location
of and include that information as follows

dob@fortran:˜> lpr -P localprinter file.ps

wherelocalprinter is the name of the local print queue. A list of suitable printers should be
available in each terminal room.

This command often works for text-files as well, however, a safer way to send your text-files (such as
your .f90 programs) to the printer is as follows

dob@fortran:˜> a2ps -P localprinter file.txt

15

Many applications, such as emacs, will have a print option soyou can print directly from that.

If you wish to query the local printer (see what jobs have beensubmitted and where you are in the queue),
type

dob@fortran:˜> lpq -P localprinter

To remove a job (only one sent by you) type

dob@fortran:˜> lprm -P localprinter jobno

wherejobno can be obtained using thelpq command.

2.5 Further information

There is a large amount of information about UNIX available.If you are after detailed information about
a specific command, you can usually consult the man page by typing

dob@fortran:˜> man command

So to find information on thels command you would type

dob@fortran:˜> man ls

If you are after information about something but are unsure of the specific command, you can do a
keyword search

dob@fortran:˜> man -k keyword

Note that man pages are usually intended as a quick lookup rather than a tutorial and are not always
written in a way suitable for a UNIX novice.

There are other sources online. Two useful places to start are:

College help page
http://www.inf.aber.ac.uk/publications/documentation/h1.asp

Departmental web page (information for current students)
http://www.aber.ac.uk/physics/unixcmds.shtml

Ex 2.1 Log onto central and create yourself a new directory (perhaps calledFort90).

Change into this directory and create a new subdirectory forFortran programs from this
section (perhaps calledSect2). Change into this new subdirectory.

Ex 2.2 Using a text editor, type out the Fortran program from section 1 (included below). Save it
as Fortran 90 file (something liketemp fk.f90) in the new subdirectory created above.

PROGRAM temp_conversion
! this program take an input in Fahrenheit and converts it to
! both Celsius and Kelvin - outputting both results to the
! screen

! variable declarations
IMPLICIT NONE
INTEGER :: deg_F, deg_C, K

! read in Fahrenheit data
PRINT* , "Please type in the temp in F"

16

READ* , deg_F

! convert to Celsius and output
deg_C = 5* (deg_F-32)/9
PRINT* , "This is equal to", deg_C, "C"

! convert to Kelvin and output
K = deg_C + 273
PRINT* , "and", K, "K"

END PROGRAM temp_conversion

Compile and run this program as follows

dob@fortran:˜> f90 -o temp_fk temp_fk.f90
dob@fortran:˜> ./temp_fk

Try running this program several times for different input values fordeg F. Do the answers
agree with conversions worked out by hand/on a calculator.

Ex 2.3 In this question you will write the reverse program that takes input in Kelvin and converts
to Celsius and Fahrenheit.

First write down (on a piece of paper) the equation to convertKelvin to Celsius and the
equation to convert Celsius to Fahrenheit.

Now make a plan (again on paper) of the steps you need to perform in the program (put in
as much detail as you need to).

Now write the Fortran program (pick a new filename that bears some relation to what the
code does), compiling, testing and modifying as required.

Try using your original programtemp fk to convert from Farenheit to Kelvin, then using
that result in your new program to convert back to Farenheit.Do you always get exactly the
same result you started with? If not, why not?

17

18

3 Data Types and Handling

3.1 Data Types

There are four basic types of data in Fortran (though these have subtypes). Two of these are the fun-
damental number types of integers (whole numbers) and reals(numbers with a fractional component).
There is also character data and logical type data. We will look at logical data types later in the course.

3.1.1 Integer Type

Integers are whole numbers without any decimal/fractionalcomponent. When you store an integer in
computer memory, there are limits on it’s size.

As an example, consider a milometer (or odometer) on a car that has eight dials that each go from 0 to 9.
Initially, the odometer has the reading;

0 0 0 0 0 0 0 0

After driving two miles the odometer reads

0 0 0 0 0 0 0 2

And after driving a lot more miles, the odometer reads

9 9 9 9 9 9 9 9

If the car drives another mile, then the odometer is going to turn over and all the dials will be back to the
beginning again

0 0 0 0 0 0 0 0

So we’re limited to the maximum reading on the odometer by thenumber of dials.

A computers memory works in a similar way (except computer memory is usually binary rather than
decimal) and the maximum number that can be stored depends onthe amount of memory that is allocated
to the storage. If one byte (which is eight bits) is allocatedthen the maximum number is28 − 1 = 255.

This is fine, but it does not take into account negative numbers. Consider the odometer once more, but
use the convention that 1 to 49 999 999 are considered to be positive numbers and that 50 000 000 to
99 999 999 translate to the negative numbers -50 000 000 to -1.So the following values on our odometer
would translate as follows;

5 0 0 0 0 0 0 0 Represents -50 000 000

5 0 0 0 0 0 0 1 Represents -49 999 999

9 9 9 9 9 9 9 9 Represents -1

0 0 0 0 0 0 0 0 Represents 0

0 0 0 0 0 0 0 1 Represents +1

4 9 9 9 9 9 9 9 Represents +49 999 999

In Fortran 90, when you specify that you want a number to be an integer, it will store the number using
this notation (though with binary arithmetic rather than decimal). So the range of numbers that you can

19

have depends on the amount of memory allocated to storing theinteger.

3.1.2 Real Type

Real numbers are those with a whole number (integer) part anda fractional (or decimal) part. Again,
when you store a real number there are limits on its size.

One could use a similar method to store real number as was usedfor storing integers, but with some of
the positions/dials being after the decimal point (for example, on a milometer the final dial may be 10ths
of a mile). For general storage of real numbers, this is impractical as you would need a lot of memory
to store large numbers, but lots of this would be wasted. Also, multiplying small numbers would cause
errors.

Instead, it makes more sense to use scientific notation such as0.5× 106 or 0.72× 10−3 and so on. So let
us consider the odometer again. This time take the first two dials to be the exponent and the remaining 6
dials to be the fractional part after the decimal point. So

0 6 3 6 2 0 9 4 Represents0.362 094 × 106

In order to get negative real numbers and negative exponentswe use the same method as before. So for
the exponents, 0 to 49 is positive and 50 to 99 are negative andmap to -50 to -1. Similarly, the fractional
part can be mapped so that 0.5 to 0.999999 becomes -0.5 to -0.000001 (this works a lot better in binary
than decimal).

So the following readings translate as follows;

0 3 2 7 6 0 3 1 Represents0.276 031 × 103 = 276.031

0 4 7 4 0 1 9 3 Represents−0.259 807 × 104 = 2 598.07

9 7 2 7 6 0 3 1 Represents0.276 031 × 10−3 = 0.000 276 031

9 6 7 4 0 1 9 3 Represents−0.259 807 × 10−4 = 0.000 025 980 7

So with this notation, you can have real numbers between−0.5 × 1049 to −0.499999 × 1049 and the
smallest number you can have is0.000001 × 10−50 = 10−56.

Of course, a real computer will store this using binary dialsrather than decimal ones.

3.2 INTEGER and REAL Variables

Suppose we have an odometer that has the reading

0 4 3 6 4 0 7 9

This could be interpreted as the integer4 364 079 or as the real number0.364 079 × 104. In order to
interpret the reading we must also label the odometer accordingly. We would probably want to label the
odometer so we knew what it referred to (e.g., no of people, miles travelled, speed, etc). Something like
the following may be appropriate;

n Integer
0 0 1 5 4 2 3 8

which representsn = 154 238

20

x Real
0 6 4 7 2 2 6 3

which representsx = 0.472 263 × 106

So we now know how to interpret the odometer reading and to what it refers.

This is similar to what occurs when we define variables in Fortran 90. When a variable is initialised as an
integer or real number (or one of the other types), the computer reserves the amount of memory required
to store the value as well as memory to store the type of variable it is and what its label is (and perhaps
other properties of the variable).

So to define an integer we would write

INTEGER :: i

This would allocate memory for an integer variable with the labeli . We can define many variable with
the same command, e.g.,

INTEGER :: i, j, k

Similarly, to define a real variable we would write

REAL :: x
REAL :: x, y, z

3.2.1 What are the minimum and maximum values I can store?

We have seen above that integer and real variables have minimum and maximum values that can be
stored, which depends on the amount of memory that the computer allocates for storage. Unfortunately,
there is no standard value for all computers, and different machines may allocate different amounts of
memory.

However, many machines are 32 bit machines and these usuallyallocate 32 bits (or 4 bytes) to integer or
real variables. For an integer variable this gives a range of−2 147 483 647 to 2 147 483 647. For real
variable, this gives a range of about−1038 to 1038 with 7-8 significant figures.

With the advent of 64 bit computers, this may well be different (though the range will likely be larger
with better accuracy). Much older computers may give smaller ranges.

3.3 Arithmetic and Assignment

3.3.1 Assignment

Once we have defined our variables, we want to be able to assignvalues to them and use these values
in arithmetic expressions. There are two ways to do this, thefirst is by the assignment operator (=) and
the second is by theREADstatement. We met both of these in our temperature conversion program in
section 1.4.

The assignment operator works as follow. Fortran 90 evaluates the expression on the right hand side of
the= operator and assigns it to the variable who’s label appears on the left hand side. For example

INTEGER :: i, j, k

i = 4 ! assign the value 4 to i
j = i + 2 ! add 2 to the value of i and assign to j
k = j - i ! subtract the value of i from j and assign to k

21

i = i + 1 ! add 1 to the current value of i and assign it
! back to i

In the last example, the variablei appears on both sides of the operator. So the old value ofi is used to
evaluate the right hand side and this new value is then storedunder the variablei . This does not go back
and change the values ofj or k .

3.3.2 Arithmetic

In the previous example we saw that the+ and- operators were used to represent addition and subtrac-
tion. The basic arithmetic operators are as follows;

Operator Meaning
+ addition
- subtraction

* multiplication
/ division

** exponentiation (or “raise to the power of”)

Using these operators we can construct arbitrary complex expressions. For example

a=b+c * d/e-f ** g/h+i * j+k

For statements like this it is important to know in what orderFortran will evaluate the expression. For
this situation, Fortran has an operator priority (which is basically the same as in mathematics) which is
outlined in the following table.

Operator Priority

** high

* and/ medium
+ and- low

So Fortran will carry out all the high-priority operations first, followed by all the medium-priority oper-
ations and finally all the low-priority operations. If thereare several operations of the same priority, then
Fortran works from left to right.

So for the above expression, the order in which operations are done can be written as follows

temp1 = f ** g
temp2 = c * d
temp3 = temp2/e
temp4 = temp1/h
temp5 = i * j
temp6 = b + temp3
temp7 = temp6 - temp4
temp8 = temp7 + temp5
a = temp8 + k

In practise, Fortran doesn’t actually assign totemp? variables, instead it uses special high-speed mem-
ory locations (called registers) to speed up the calculation.

Ex 3.1 Consider the calculation

a=b* c+d/e ** f-g+h * i * j

22

Write a piece of Fortran 90 code that calculates this in (a) a single line; and (b) a series of
lines with one operation per line in the order that Fortran would carry them out. UseREAL
variables only in this code.

Put in some test values forb-j and output the result of your calculations for both cases to
check that they both give the same answer.

3.3.3 Parentheses

There will be times when you want your calculation (or at least parts of it) to be carried out in a different
order than described above. For example, if you were calculating the mean of two values you would
calculate

a + b

2

where the addition is performed before the division. You could split this calculation into two parts, so

temp1=a+b
mean=temp1/2.0

However, it is more convenient to write this on one line usingparentheses to indicate the order in which
the calculation should be executed. E.g.,

mean=(a+b)/2.0

Parentheses change the order of the calculation in the same way that they do in mathematics. When in
doubt about the order in which a calculation is being executed, add appropriate parentheses in order to
clarify things (at the very least, this may make it clearer for anyone reading your code).

Ex 3.2 Modify the code that you wrote in exercise 3.1 to calculate

a=b* c+d/e ** f-g+h * i * j

Try adding parentheses around different parts of the equation to change/not change the final
result.

3.3.4 Mixed Modes and Integer Division

Ex 3.3 Consider the following Fortran code;

PROGRAM mixedmodes

IMPLICIT NONE
INTEGER :: i, j
REAL :: x, y1, y2

i=2
j=3
x=5.0

y1=x * i/j
y2=i/j * x

PRINT* , ’y1=’,y1
PRINT* , ’y2=’,y2

23

END PROGRAM mixedmodes

According to the rule governing the order of execution, the two formulae should give the
same result. What happens when you type this in and run it?

Modify the code so that it also calculatesi/j and output the result. Is this what you ex-
pected?

From exercise 3.3, you may have guessed that there is something not quite right about integer division.
For the other operators (+, - , * and **), if they operate on two integers then they return an integer
as an answer (so adding two integers returns another integer). From a programming perspective, you
would want division to behave the same way. Clearly though, dividing one integer by another does not
necessarily return another integer. In order to make integer division return an integer, Fortran truncates
the result. So2/3 = 0.6666 which Fortran truncates to0.

When bothINTEGERandREALvariables are used in a single calculation then Fortran converts between
the two as it deems necessary for each individual operation.So for our two calculations above

! first calculation
y1=x * i/j

! performs calculation as follows
temp1=x * i ! converts i to a REAL and multiplies by x

! stores as REAL variable temp1
y1=temp1/j ! converts j to a REAL and divides temp1 by it

! stores as a REAL variable

! second calculation
y2=i/j * x
temp2=i/j ! performs integer division and stores as an

! INTEGER variable temp2
y2=temp2 * x ! converts temp2 to a REAL and multiplies by x

! stores as a REAL variable

So for each individual part of the calculation, if both variables areINTEGERs, then Fortran will perform
integer arithmetic. If one is anINTEGERand the other isREALthen the integer will be converted to a
real number before the calculation in done.

When the final result is stored, Fortran will convert the finalanswer to the type of the variable that it is
being stored in. So if you try and store an integer result in a real variable, then it will be converted to
a real number first. If you try to store a real result in an integer variable, then the real number will be
truncated to an integer first.

Clearly this kind of mixed mode calculation and integer division should generally be avoided unless you
are specifically after this kind of effect.

3.3.5 Converting BetweenINTEGER and REAL Variables

It is all very well saying that you should avoid mixed mode calculations, but there are often times when
you need to use something stored as anINTEGERin a real calculation. In these cases, it is usually most
sensible to use a conversion function. So to convert anINTEGERto aREALyou would use the following
function;

x=REAL(i)

24

This converts the integeri into a real number and stores it in the real variablex .

There are four functions that Convert fromREALto INTEGER, each doing so in a slightly different way.
These are;

Function Effect
AINT(x) Truncates the real leaving the whole part
CEILING(x) Rounds the real number down to the next integer
FLOOR(x) Rounds the real number up to the next integer
NINT(x) Rounds the real number to the nearest integer

These functions can be included within a larger line of calculation, e.g.,

a = REAL(i+j)/x + FLOOR(y)/CEILING(y)

Ex 3.4 Modify the code in exercise 3.3 so that the integersi andj are converted to real variables
within the calculations fory1 andy2 . Do the results for each calculation now agree?

Ex 3.5 Write a Fortran code to calculate and display the results ofAINT(x) , CEILING(x) ,
FLOOR(x) andNINT(x) for each of the following cases;

(a) x=2.34

(b) x=4.61

(c) x=1.5

(d) x=-1.13

(e) x=-3.72

(f) x=-0.5

Test with some different values until you appreciate the difference between the four func-
tions.

3.3.6 Unary Operators

As can be seen in exercise 3.5, the- operator can be used as a unary operator (i.e., it acts only ona single
value). The+ operator can also be used as a unary operator (although this is rarely needed for obvious
reasons).

In both cases, the operator acts as you would expect. For example;

x=-3.1
i=+2

3.3.7 Spacing Things Out

Fortran will ignore any spaces in arithmetic expressions. This means that you can add spaces into such
expressions without any effect. While this will not change how the code runs, it can make expressions
(particularly longer ones with several terms) easier to read. For example;

a=b* c+d/e ** f-g+h * i * j
a = b* c + d/(e ** f) - g + h * i * j

In this case, the expression has not been changed, but the addition of spaces to separate the different
terms and the addition of a pair of brackets makes the expression easier for the programmer to read.

25

It is up to you as a programmer exactly how to format expressions, but it is recommended that some
visual formatting of your code is done as this will aid you when you debug your code or look back at it
later. It will also assist other people who look at your code.

3.4 Literal Constants

Literal constants are just numbers. However, in Fortran, there are different ways of writing numbers
depending on what you want.

If you want to write an integer, you just type the number without a decimal point. So the following are
INTEGERconstants;

i = 246
i = 20000
i = -7
i = 0

Real numbers are indicated by a decimal point (even if the fractional part is0). The following areREAL
constants;

x = 3.12
x = 4000.0
x = -14.769
x = 0.0

There is another way to writeREALnumbers which is particularly useful for very large or very small
numbers, this is calledexponential form. This takes the form

mEe

Wherem is called the mantissa ande is the exponent. The mantissa may be written with or without a
decimal point, and the exponent must take the form of an integer. So the number1 000 000 = 16 can be
written as

x = 1.0E6 ! with a decimal point
x = 1E6 ! without a decimal point, but is still a REAL

The following are more examples ofREALconstants in exponential form;

x = 2.64E27
x = 0.75E-5
x = -3E-12
x = 256E6

3.5 Input and Output of Numerical Data

We have come across input and output in the form of thePRINT andREADstatements in the temperature
conversion program in section 1.4. We shall now look at them again in more detail with the knowledge
we now know about real and integer variables.

In the form we shall currently be using them, they have almostidentical syntax;

READ * , var1, var2, ...
PRINT * , item1, item2, ...

The main difference is that the list following aREADstatement may only contain variables, where the

26

list following a PRINT statement may also contain literal constants and expressions. The list following
theREADandPRINT statements are often referred to as theinput list andoutput list respectively. The
asterisk following theREADandPRINT statements indicates thatlist-directed formatting is to take place.
There are other types of input and output formatting, but they are beyond the scope of this course.

The list-directedREADstatement will take it’s input from a processor defined input. For most computers
this will be the keyboard. Similarly, the list-directedPRINT statement will send it’s output to a processor
defined input, which is usually a terminal on the computer screen. We will see how to read from and
print to files later on in the course.

3.5.1 TheREAD Statement

The statement

READ * , real_var1, real_var2, int_var

will read a list of three values from the input device (e.g., keyboard). it will then store these value
in the variablesreal var1 , real var2 and int var which are two real variables and an integer
respectively. If a number to be stored in a real variable doesnot have a decimal point (i.e., is an integer),
then it will be converted to a real. If a number to be stored as an integer contains a decimal point, then
this will cause an error.

As the term list-directed implies, the inputs are read in as alist. This means that we need some way to
separate different terms in the list when we type them in. Forthis we use avalue separator between
values of the list. A value separator can be a comma, a space, aslash (/) or an end of line. Any of these
can be preceded by any number of additional spaces.

If there are two consecutive commas, then this is interpreted as anull value. This results in the value of
the variable being unchanged. A common error is to assume that a null value will set a variable to 0.

Finally, if the terminating character is a slash, then no more data items are read and any remaining items
in the input list are give null values (i.e., are unchanged).

Ex 3.6 Type in the following program.

PROGRAM input_example

IMPLICIT NONE
INTEGER :: int1, int2, int3
REAL :: real1, real2, real3

! initialise all variables
int1 = 0
int2 = 0
int3 = 0
real1 = 0.0
real2 = 0.0
real3 = 0.0

! read in data
READ * , int1, real1, int2, real2, int3, real3

! print new values
PRINT * , int1, real1, int2, real2, int3, real3

27

END PROGRAM input_example

Compile and run the program and enter the following values;

(a) 1,2.0,3,4.0,5,6.0

(b) 1 2.0 3 4.0 5 6.0

(c) 1 2.0
3 4.0
5 6.0

(d) 1,,,4.0,,6.0

(e) 1, , , 4.0, , 6.0

(f) 1 2.0, 3 /

(g) /

Now change the initial values of the variables in the code andretry the above tests.

Try more test values until you are happy that you understand what is going on.

3.5.2 ThePRINT Statement

We have seen thePRINT statement in action several times so far. The statement

PRINT * , var1, var2, var3

will display the valuesvar1 , var2 andvar3 to the default output (usually the screen). The format
of the output is entirely computer dependent, but is normally adequate for simple programs and testing.
More advanced formatting is possible, but beyond the scope of this course.

As has been mentioned already, the output list of thePRINT statement can contain variables, literal
constants and expressions. So the statement

PRINT * , ’The area of the circle of radius ’, r, ’ is ’, 3.14 * r ** 2

has a list containing four items. These are

1. The character string (literal constant):The area of the circle of radius

2. The variable:r

3. The character string:is

4. The expression:3.14 * r ** 2

When this is run, Fortran will substitute the value ofr and the value of the evaluated expression
3.14 * r ** 2 into the output list.

Ex 3.7 Write a program that reads in the value of the radius of a circle (don’t forget to prompt the
user for input) and prints out (a) the radius, (b) the diameter, (c) the circumference, and (d)
the area of the circle. You may only use a single variable for the radius, all other quantities
must be calculated as expressions on thePRINT line. You may useπ to two decimal places
(π = 3.14).

28

3.6 Intrinsic Functions

Intrinsic functions are mathematical (or other) functions that are built into the Fortran 90 language. We
have seen some implicit functions in section 3.3.5 for converting between variable types, such as the
REALfunction. There are many intrinsic functions in Fortran, a selection of the more useful mathemati-
cal ones can be found in table 1.

Function Input Output Purpose
ABS(A) integer or real as input returns the absolute value ofA
ACOS(x) real,|x| ≤ 1 0 ≤real≤ π returns the inverse cosine (or arcco-

sine) ofx
ASIN(x) real,|x| ≤ 1 −π/2 ≤real≤ π/2 returns the inverse sine (or arcsine)

of x
ATAN(x) real −π/2 ≤real≤ π/2 returns the inverse tangent (or arct-

angent) ofx
ATAN2(y,x) both real −π ≤real≤ π returns the inverse tangent (or arct-

angent) ofy/x , bothx andy cannot
be0

COS(x) real real returns the cosine ofx
COSH(x) real real returns the hyperbolic cosine ofx
EXP(x) real real returnse raised to the powerx
FRACTION(x) real real returns the fractional part ofx
LOG(x) real real returns the natural logarithm ofx
LOG10(x) real real returns the logarithm ofx to base 10
MAX(A1,A2,...) all integer or

all real
as input returns the maximum value ofA1,

A2, ...
MIN(A1,A2,...) all integer or

all real
as input returns the minimum value ofA1,

A2, ...
MOD(A,P) both integer or

both real
as input returnsA moduloP calculated byA

- P * AINT(A/P)
MODULO(A,P) both integer or

both real
as input returnsA moduloP calculated byA

- P * FLOOR(A/P)
SIGN(A,B) both integer or

both real
as input returns the absolute value ofA set to

the same sign asB
SIN(x) real real returns the sine ofx
SINH(x) real real returns the hyperbolic sine ofx
SQRT(x) real real returns the square root ofx
TAN(x) real real returns the tangent ofx
TANH(x) real real returns the hyperbolic tangent ofx

Table 1: Table of selected mathematical intrinsic functions.

These functions can be included directly into expressions or assigned to variables in the same way that
theREALfunction can. The following are all examples of how intrinsic functions may be used.

y = SQRT(x)
y = SQRT(2.0)
z = (a1 * COS(k1* x) + a2 * SIN(k1 * x)) * EXP(k2 * t)
PRINT * ,’The logarithm of ’, x, ’ is ’, LOG(x)

Ex 3.8 Modify the code that you wrote in exercise 3.7 to calculate the properties of a circle to

29

calculate and use a more accurate approximation toπ. Use the fact that

sin
π

2
= 1

and work out the expression (using the appropriate intrinsic function) to calculateπ. Store
this in a new variable (perhaps calledpi) and use this variable in your calculations of the
circle. Don’t forget to output the value ofpi as a check.

Ex 3.9 Write a code that reads in the position of a point in Cartesiancoordinates and converts the
data to polar coordinates. Output the result in both degreesand radians (you will need to
calculateπ again in order to do this).

3.7 UsingCHARACTER Data

We will not cover any more than the most basicCHARACTERhandling as it will rarely crop up in the
kind of computational modelling that is performed in physics.

We have seen someCHARACTERdata in ourPRINT statements (more specifically, we have seen literal
constants of character type). Now we will look at declaringCHARACTERvariables and manipulating
CHARACTERdata in our programs.

Previously, we looked at howREALand INTEGERvariable were stored in what we will callnumeric
storage units. Characters on the other hand are stored incharacter storage units. A single character
storage unit will hold exactly one character. ACHARACTERvariable consists of one or more character
storage units.

Characters are taken from the FORTRAN character set which includes all the letters (in both upper
and lower case), the numbers 0-9 and some additional specialcharacters. These are shown in table 2.
This gives a total of 83 characters. Other characters will almost certainly be available in any particular
implementation on Fortran, and these may be used inCHARACTERvariables and comments. However,
such a program may not work on a different computer under a different implementation of Fortran.

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m
n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
= + - * / () , . ’ : ! “
% & ; ¡ ¿ ? $ space

Table 2: The 83 characters that appear in the Fortran character set

3.7.1 DeclaringCHARACTER Variables

DeclaringCHARACTERvariables is similar to declaringINTEGERandREALvariables with one impor-
tant difference. It is necessary to declare how many characters the variable is storing (or more precisely,
how many character storage units are required). This is doneas follows

CHARACTER(LEN=length) :: var1, var2, ...

This declares the variablesvar1, var2, ... to haveCHARACTERtype and will have a length of
length characters.

There are a couple of variations or short cuts for this, theseare

30

CHARACTER(length) :: var1, var2, ...
CHARACTER* length :: var1, var2, ...

While these are slightly shorter, it is recommended for clarity that the full form of the statement is used.

Not all CHARACTERvariable in your programs are required to have the same length. You can define
CHARACTERvariables with different length using multipleCHARACTERstatements. E.g.,

CHARACTER(LEN=len1) :: var1, var2
CHARACTER(LEN=len2) :: var3, var4

It is possible to define variables of different length on a single line, e.g.,

CHARACTER(LEN=len1) :: var1, var2, var3 * len2

Where the first two variables (var1 and var2) have lengthlen1 and the third (var3) has length
len2. Again, it is recommended that, for clarity, the longer formis used.

3.7.2 CHARACTER Assignment

CHARACTERvariables are assigned in a similar way toINTEGERandREALvariables, except that the
string of characters to be assigned is surrounded by a pair ofsingle quote marks (’...’) or a pair of double
quote marks (”...”). For example

str1 = ’Hello world!’
str2 = "Hello world!"

Ex 3.10 Consider the following program.

PROGRAM character_example

IMPLICIT NONE
CHARACTER(LEN=4) :: string1, string2
CHARACTER(LEN=5) :: string3, string4

string1=’Stop’
string2=’Start’
string3=’Stop’
string4=’Start’

PRINT * , ’--’, string1, ’--’
PRINT * , ’--’, string2, ’--’
PRINT * , ’--’, string3, ’--’
PRINT * , ’--’, string4, ’--’

END PROGRAM character_example

What do you think the output will be from this program? Type the program in and run it,
does it produce what you thought it would?

This brings up the issue of what happens when the string assigned to the variable is of a different length
to the variable that it is being assigned to. You will have seen in exercise 3.10 that this is fairly straight-
forward. If the variable is longer than the string being assigned, then the rest of the variable is filled with
blanks (or spaces). If the variable is shorter than the string, then the string is truncated from the right to
the correct length.

31

3.7.3 Reading in Character Data

Character data can also be assigned by using theREADstatement. This is done in the same way that
integer and real data is read in, except that the string to be read must be surrounded by single or double
quotation marks. There are some common situations when thisrule would be annoying, so there are
some exceptions to this. The quoting of character data beinginput into aREADstatement is not required
if all of the following are true:

1. the character data does not contain any value separators (e.g., blanks, commas or slashes);

2. the character data is contained within a single record or line;

3. the first non-blank character is not a single or double quotation mark

4. the leading characters are not a number followed by an asterisk (for reasons that will not be ex-
plored in this course).

If the inputted string is too long or short for the variable, it will be truncated or padded with spaces as it
would for assignment.

Ex 3.11 Consider the following program.

PROGRAM character_example2

IMPLICIT NONE
CHARACTER(LEN=6) :: string1, string2, string3

! set some initial values
string1 = ’’
string2 = ’’
string3 = ’’

! prompt and read in values for the three strings
PRINT * , ’Please enter three strings’
READ * , string1, string2, string3

! output the three strings
PRINT * , ’--’, string1, ’--’
PRINT * , ’--’, string2, ’--’
PRINT * , ’--’, string3, ’--’

END PROGRAM character_example2

Compile and run the program and enter the following values;

(a) ’One’, ’Two’, ’Three’

(b) ’One’ ’Two’ ’Three’

(c) One Two Three

(d) One Two
Three

(e) ’One Two’, ’Three’, ’Four’

(f) 1 2 3

32

(g) ’One’, , three

(h) One /

Try more test values until you are happy that you understand what is going on.

3.7.4 PRINTing CHARACTERData

We have seen in the last couple of examples that thePRINT statement works exactly as you might expect.
The value ofCHARACTERvariables is printed without the quotation marks, but with any trailing blanks
that may have been added.

3.7.5 CHARACTER Expressions

We have seen that with numerical variables, we can constructnumerical expressions in order to perform
calculations. In order to do anything useful with charactervariables, we would like to be able to construct
character expressions.

One of the first things we can do is to concatenate two strings.This is done with the concatenation
operator,// . So for example,

CHARACTER(LEN=6) :: str1, str2
CHARACTER(LEN=12) :: str3

str1 = ’Hello ’
str2 = ’World!’
str3 = str1//str2

In this example, the values ofstr1 and str2 are concatenated to form the new string’Hello
World’ which is stored instr3 . The usual rules for truncating/padding if the length ofstr3 is
different apply again.

This is the only operator provided by Fortran for character data. However, another feature is the identifi-
cation of substrings. A substring is a portion of another larger string and is identified in Fortran by a pair
of integers separated by a colon, contained in parentheses following a character variable, so

PRINT * , str3(2:5)

would print ’ello’ to the screen (i.e., the substring is from the second position to the fifth position of
the main string). If the first integer is missing, then the substring is taken from the first character position.
If the second integer is missing then the substring extends to the final character position.

Ex 3.12 Consider the following program

PROGRAM substring_example

IMPLICIT NONE
CHARACTER(LEN=16) :: str1
CHARACTER(LEN=8) :: substr1, substr2, substr3

str1 = ’Physics is fun!!’

PRINT * , str1

substr1 = str1(3:10)

33

PRINT * , substr1

substr2 = str1(:8)
substr3 = str1(9:)
PRINT * , substr2
PRINT * , substr3
PRINT * , substr2//substr3

substr2 = ’Spanish’
PRINT * , substr2//substr3

str1(:7) = ’Archery’
PRINT * , str1

substr3(4:7) = ’hard’
PRINT * , substr2//substr3

END PROGRAM substring_example

What do you think will be outputted to the screen? Type in and run the program, does it agree
with what you thought? Try creating and concatenating your own strings and substrings until
you understand what is going on.

In addition to the concatenation operator and substrings, there are a range of intrinsic functions for
character data. A selection of these are listed in table 3.

Function Input Output Purpose
ACHAR(i) integer character*1 Returns the character in thei th po-

sition of the ASCII set
ADJUSTL(str) character*n character*n Removes all leading blanks and

adds them to the end of the string
ADJUSTR(str) character*n character*n Removes all trailing blanks and

adds them to the beginning of the
string

IACHAR(c) character*1 integer Returns the position in the ASCII
set of the characterc

INDEX(str, substr) character*n,
character*m

integer Returns the starting position of the
string substr within the string
str

LEN(str) character*n integer Returns the length of the stringstr
LEN TRIM(str) character*n integer Returns the length of the stringstr

with all trailing blanks removed
REPEAT(str, i) character*n,

integer
character*(n*i) Returns a string which is made up

of the stringstr concatenatedi
times

SCAN(str, set) character*n,
character*m

integer Scans the stringstr for one of the
characters inset and returns the
position of the first instance

TRIM(str) character*n character*(n-i) Returns a string with all trailing
blanks removed

Table 3: Table of selected character intrinsic functions.

34

Ex 3.13 Consider the following program.

PROGRAM character_example3

IMPLICIT NONE
CHARACTER(LEN=12) :: str
INTEGER :: a_upper, a_lower, excl, spc
INTEGER :: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12

a_upper = IACHAR(’A’) - 1
a_lower = IACHAR(’a’) - 1
excl = IACHAR(’!’)
spc = IACHAR(’ ’)

p1 = a_upper + 8
p2 = a_lower + 5
p3 = a_lower + 12
p4 = a_lower + 12
p5 = a_lower + 15
p6 = spc
p7 = a_upper + 23
p8 = a_lower + 15
p9 = a_lower + 18
p10 = a_lower + 12
p11 = a_lower + 4
p12 = excl

str = ACHAR(p1) // ACHAR(p2) // ACHAR(p3) // ACHAR(p4) // &
& ACHAR(p5) // ACHAR(p6) // ACHAR(p7) // ACHAR(p8) // &
& ACHAR(p9) // ACHAR(p10) // ACHAR(p11) // ACHAR(p12)

PRINT * , p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12
PRINT * , str

END PROGRAM character_example3

Can you work out what the outputted message stored instr is? Type in and run this
program. Did the message agree with what you thought? Modifythe program so that it
outputs a message of your choosing (altering the length ofstr if necessary).

Ex 3.14 Write a program that will read in a single word of arbitrary length, remove any leading
and trailing blanks and return the number of letters in the word. Test your program with a
selection of different words with different numbers of leading and trailing blanks.

Ex 3.15 Write a program that reads in the users first, middle and last names into three differ-
ent variables, removes any unnecessary leading or trailingblanks and outputs the welcome
’Hello first middle last.’ (include the full stop at the end). Does your program
still get the spacing correct if you omit the middle (or any ofthe other) names?

35

3.8 Initial Values and Constants

There is one additional method of assigning a value to a variable and that is to provide an initial value
as part of the declaration. To do this, append an equals sign and a value on the declaration line after a
variable. For example

REAL :: a=0.0, b=1.0, c, d, e=1E-6
INTEGER :: nmin=10, nmax=100
CHARACTER(LEN=10) :: name=’undefined’

The initial values supplied must be either a literal constant, or aconstant expression (i.e., an expression
where all the component parts are constant).

A related issue is that ofnamed constants. You may want to use some form of physical constant which
will not change during the program (such as the value ofπ in exercise 3.8). Alternatively, you may want
to define some constant for the program such as a variable calledmax cases which wont change during
a single run of your code, but you may want to change as the yourproblem changes (it is easier to change
a single value at the top of your program rather than every instance within your code).

To define a named constant, you include the tagPARAMETERafter the variable type. For example

REAL, PARAMETER :: pi=3.1415, pi_by_2=pi/2.0
INTEGER, PARAMETER :: max_cases=100
CHARACTER, PARAMETER :: filename=’output.dat’

Notice that we use the value ofpi to definepi by 2, this is okay as we have already definedpi to be
a constant.

36

4 Decision Making in Fortran

4.1 BlockIF Constructs

So far all of our programs have been linear. That is, we’ve started at the beginning of the program and
executed every statement until we’ve reached the end. However, in practise we may want to do something
only under certain conditions, or may not do something underother conditions (for example, you may
not want to take the square root of a negative number). Perhaps there is an either or situation (such as a
step function (H(x) which is0 whenx < 0 and1 otherwise). You may even have problems when you
must perform one of many actions depending on some criteria.

This is done using what is known as ablock IF construct , an example of this is

IF (x>0) THEN
rootx = SQRT(x)

END IF

This is the most minimal blockIF . In the parentheses after theIF statement but before theTHEN
statement, we have a condition that must be satisfied (in thiscase,x must be greater than0), if this is true
then the action within the blockIF will be taken (the square root will be calculated) and then the block
ends with anEND IF statement.

If you have an either or situation, you may want to include anELSEstatement, an example of this would
be

IF (x>0) THEN
stepx = 1.0

ELSE
stepx = 0.0

END IF

If the condition after theIF statement is true, then the commands after theTHENstatement are followed,
if the condition is false, then the commands after theELSEstatement are followed.

If you have multiple conditions and actions, then this can beprogrammed as follows

IF (i == 1) THEN
PRINT * , ’First case’

ELSE IF (i == ncases-1) THEN
PRINT * , ’Penultimate case’

ELSE IF (i == ncases) THEN
PRINT * , ’Last case’

ELSE
PRINT * , ’Case number ’,i

END IF

If the first condition is true (note== meansis equal to), then Fortran will perform the associated action,
if it is false then Fortran will examine the next condition until it finds one that is true or encounters the
generalELSEstatement. If Fortran finds a condition that is true and performs the associated actions, it
will then jump to the end of the blockIF without evaluating any of the other conditions (even if some
of them are also true). The generalELSEstatement is optional, if it is not present and none of the above
conditions are true, then the blockIF will perform no action.

37

4.1.1 Indentation

You may have noticed that the action statements have been indented from theIF andELSEstatements.
This is not necessary for Fortran itself, however it is a verypopular programming convention that makes
the code easier to read. There are a variety of different programming blocks (like theIF block and
the PROGRAMblock) that may be nested within one another. Using sensibleindentation allows the
programmer (and other programmers) to easily see whichIF s,ELSEs andENDs are associated with one
another.

Consider the following bit of code, first without indentation

IF (i == 1) THEN
IF (j == 1) THEN
PRINT * , ’This is the top-left corner’
ELSE IF (j == jmax) THEN
PRINT * , ’This is the bottom-left corner’
ELSE
PRINT * , ’This is the left edge’
END IF
ELSE IF (i == imax) THEN
IF (j == 1) THEN
PRINT * , ’This is the top-right corner’
ELSE IF (j == jmax) THEN
PRINT * , ’This is the bottom-right corner’
ELSE
PRINT * , ’This is the right edge’
END IF
ELSE
IF (j == 1) THEN
PRINT * , ’This is the top edge’
ELSE IF (j == jmax) THEN
PRINT * , ’This is the bottom edge’
ELSE
PRINT * , ’This is in the middle’
END IF
END IF

And now with the indentation

IF (i == 1) THEN
IF (j == 1) THEN

PRINT * , ’This is the top-left corner’
ELSE IF (j == jmax) THEN

PRINT * , ’This is the bottom-left corner’
ELSE

PRINT * , ’This is the left edge’
END IF

ELSE IF (i == imax) THEN
IF (j == 1) THEN

PRINT * , ’This is the top-right corner’
ELSE IF (j == jmax) THEN

PRINT * , ’This is the bottom-right corner’
ELSE

38

PRINT * , ’This is the right edge’
END IF

ELSE
IF (j == 1) THEN

PRINT * , ’This is the top edge’
ELSE IF (j == jmax) THEN

PRINT * , ’This is the bottom edge’
ELSE

PRINT * , ’This is in the middle’
END IF

END IF

In the first code, it is not immediately clear whichIF s,ELSEs,ENDs and actions belong with each block
and what the flow of choices and actions are. In the second code, the flow of the code is much easier to
see.

It is up to you to use as much or little visual formatting as youwish, but indentations of 2-3 spaces (but
be consistent) are strongly encouraged.

Ex 4.1 Write a program using the blockIF construct to read in an integer, and output whether the
number is positive or negative. Compile and run for several test values. What happens if
you type in0? If necessary, modify you blockIF to handle this case as well.

Ex 4.2 Write a program using nested blockIF constructs to read in two real numbers and evaluate
the following function.

f(x, y) =















x + y if x ≥ 0, y ≥ 0
x − y if x ≥ 0, y < 0

−x + y if x < 0, y ≥ 0
−x − y if x < 0, y < 0

Don’t forget to output your result. Can you also write this asa Fortran expression without
using a blockIF construct?

4.2 Logical Variables

Clearly, an important part of the blockIF is the condition. So far we have seen tests forequal to (==),
greater than (>) andless than (<). To fully understand these conditions, we must first look atLOGICAL
type variables.

In Fortran,LOGICALvariables are (unsurprisingly) declared by the statement

LOGICAL :: var1, var2, ...

They are basically yes-no, or true-false variables and can take one of two values which are

var1 = .TRUE.
var1 = .FALSE.

Note, the full stops are part of the expression.

The real power ofLOGICALvariables is Fortran’s ability to performLOGICALexpressions. We have
already seen threeLOGICAL expressions (==, < and>), these are known asrelational operators and
there are six of these in total, although each can be written in one of two ways. The complete list is:

39

Operator Alternate Form Result
a < b a .LT. b .TRUE. if a is less thanb

a <= b a .LE. b .TRUE. if a is less than or equal tob
a > b a .GT. b .TRUE. if a is greater thanb

a >= b a .GE. b .TRUE. if a is greater than or equal tob
a == b a .EQ. b .TRUE. if a is equal tob
a /= b a .NE. b .TRUE. if a is not equal tob

Either form of the operator is fine to use in logical expressions, although it is good practise to be consis-
tent with whichever form you choose.

These operators can be used with literal constants, variables and other expressions, for example

var1 = 2.0 >= 1.0 ! var1 is .TRUE.
var2 = 3 == 4 ! var2 is .FALSE.
var3 = x .LT. 0 ! .TRUE. if x is less than 0
var4 = i /= j
var5 = x * y .LT. 0
var6 = b ** 2.0 .GE. 4.0 * a* c

You may notice that each of these are effectively one expression, and the order in which the operators
are carried out may be important. This rule is simple, all arithmetic operators have a higher priority than
the relational operators, and so are performed first. If in doubt then add some brackets, this may also
improve the legibility of your code.

In addition to the relational operators, there are also fivelogical operators. Where the relational operators
acted on real or integer (or even character) variables, the logical operators act on logical variables. The
operators are

Operator Priority
.NOT. highest
.AND.
.OR.
.EQV., .NEQV. lowest

The order of priority is shown, and they all have lower priority than the relational operators. The results
given by these operators are

L1 L2 L1.AND.L2 L1.OR.L2 L1.EQV.L2 L1.NEQV.L2
.TRUE. .TRUE. .TRUE. .TRUE. .TRUE. .FALSE.
.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.

.FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE.

.FALSE. .FALSE. .FALSE. .FALSE. .TRUE. .FALSE.
L1 .NOT.L1

.TRUE. .FALSE.
.FALSE. .TRUE.

These operators may be used in a similar way to operators we’ve already covered. For example

var1 = L1.AND.L2 .OR. L3.AND.L4
var2 = x<0 .OR. x>1
var3 = .NOT. (i==1 .OR. i==4)
var4 = b ** 2.0 .GE. 4.0 * a* c .AND a * c .GT 0.0

Again, if you’re not sure about the priority, or if you wish toimprove the clarity of the code, feel free to
add brackets. Sovar4 might be better written

40

var4 = (b ** 2.0 .GE. 4.0 * a* c) .AND (a * c .GT 0.0)

Ex 4.3 For each of the cases below, work out (by hand) what the eventual output will be.

(a) x = 1.0
i = 4
var1 = x>0.0 .AND. i<5
PRINT * , var1

(b) x = -2.5
y = 3.1
i = 2
j = 5
var1 = x * y > 0 .NEQV. i/j /= 0
PRINT * , var1

(c) x = 1.5
y = 1.6
i = 2
j = -2
var1 = .NOT. x+y > 3.0 .OR. i-j > 3
var2 = .NOT. (x+y > 3.0 .OR. i-j > 3)
PRINT * , var1, var2

(d) x = 3.2
y = -4.7
i = 1
j = 5
var1 = x>0 .OR. y>0 .AND. i==1 .OR. j==1
var2 = (x>0 .OR. y>0) .AND. (i==1 .OR. j==1)
PRINT * , var1, var2

Type in and run each case (all in a single program if you prefer) to check your answers.

4.3 Return to the BlockIF Construct

In section 4.1 we took an informal look at the blockIF construct. Now we know aboutLOGICAL
expressions, we will look at it a bit more formally. The first line of the blockIF construct is

IF (condition) THEN

wherecondition is aLOGICALentity. This could be aLOGICALliteral constant (though this usually
a bit pointless), aLOGICALvariable or (more usually) aLOGICALexpression. If theLOGICALentity
evaluates to.TRUE. then the statements following theTHENstatement will be performed. These state-
ment (there may be more than one line) are terminated by anELSE IF , ELSEor END IF statement.

If the LOGICALentity is.FALSE. then Fortran will proceed sequentially through anyELSE IF state-
ments until a.TRUE. result is found or anELSEstatement is reached (Fortran will perform all state-
ments under theELSEstatement) or anEND IF statement is found. Thecondition under anyELSE
IF statements follow the same rules as for a standardIF statement.

41

The END IF statement must always be present somewhere after anIF statement. There may be any
number ofELSE IF statements and a maximum of oneELSEstatement. AnELSE IF statement may
not follow anELSEwithin a single level of a blockIF construct.

Ex 4.4 Write a code to evaluate the function in exercise 4.2 using a single block IF construct
(rather than nested ones).

Ex 4.5 Consider the code in section 4.1.1. Modify this code so that it uses a single level block
IF construct rather than nested ones. Put this in a program thatsetsimax and jmax as
parameters and asks for input ofi and j . Add options to the if statement to check thati
andj are in the specified range (i.e.,1<i <imax and1<j <jmax).

4.4 TheCASE Construct

Fortran 90 offers another decision making construct calledtheCASE construct. This is used when there
is only one basic test, but there may be many different options. An example of this might be offering the
user a menu with several different options and asking the user to select the one they want, the program
will then do different things depending on the option selected.

The basic syntax is

SELECT CASE (case_expression)
CASE (case_selector1)

...
CASE (case_selector2)

...
CASE (case_selector3)

...
.
.
.
CASE DEFAULT

...
END SELECT

Thecase expression is a integer, character or logical variable or expression (real expressions are
prohibited for this construct) which is evaluated and the result used for comparison with the different
case selectors.

Thecase selectors determine which statements are executed depending on how they evaluate with
thecase expression. Thecase selector may take one of four forms

case_value
low_value:
: high_value
low_value: high_value

or a comma-separated list of any combination of these. The meaning of the four alternatives is as follows:

• If the case selector takes the form ofcase value then the associated block of code is exe-
cuted ifcase expression == case value orcase expression .EQV. case value
for logical expressions;

• If the case selector takes the form oflow value: then the associated block of code is
executed iflow value <= case expression;

42

• If the case selector takes the form of: high value then the associated block of code is
executed ifcase expression <= high value;

• If thecase selector takes the form of: high value then the associated block of code is ex-
ecuted iflow value <= case expression .AND. case expression <= high value.

Note that only thecase value makes sense for logical expressions.

TheCASE DEFAULTstatement is an optional catch all that can contain a block ofcode to be run if no
other statement is matched. This is similar to theELSEstatement in the blockIF construct.

As an example, consider the following code.

! read in the date
PRINT * , ’Enter the month as a number’
READ * , month

! print season
SELECT CASE (month)
CASE (11, 12, 1:3)

PRINT * , ’It is the winter’
CASE (4:5)

PRINT * , ’It is the spring’
CASE (6:8)

PRINT * , ’It is the summer’
CASE (9, 10)

PRINT * , ’It is the autumn’
CASE DEFAULT

PRINT * , ’You have not entered a valid month’
END SELECT

This shows how theCASEconstruct might work in practise.

Ex 4.6 Write a program to read in the month as a number and use aCASEconstruct to print out
the name of the month.

Ex 4.7 Write a program to read in two real numbers, print out a list ofoptions of what to do with
the two numbers (add them together, subtract the second fromthe first, multiply them, divide
the first by the second or raise the first to the power of the second) and read in the answer,
then use aCASEconstruct to perform (and output) the selected option.

43

44

5 Repeating Parts of your Program

Often it is necessary to repeat steps of your program. In fact, many techniques in computational mathe-
matics/physics rely on being able to iterate through the same set of instructions. For example, suppose
you wanted to output a times table, you could probably write out the first dozen or so lines of the table,
but what if you wanted to output 100 lines or 1000. Typing eachline out individually would be very
time consuming and tedious. Much better to write the calculation in a generic way and iterate through as
many times as required.

5.1 BlockDO Constructs

Fortran 90 has a very powerful, yet simple facility for looping through parts of your code, this is called
theblock DO construct. The syntax for this block is

DO count = initial, final, incr
block of statements
.
.
.

END DO

wherecount is an integer variable,initial is an integer literal constant, variable or expression that
indicates the first value thatcount takes,final is an integer literal constant, variable or expression
that indicates the maximum (or minimum) value thatcount takes, andincr which is the amount that
count increases (or decreases) by in each step.

TheDOstatement may also take the following forms

DO count = initial, final
block of statements
.
.
.

END DO

wherecount is increased by 1 each time, and

DO
block of statements
.
.
.

END DO

where the loop will continue indefinitely. This last case mayinitially seem like a strange thing to want
to do, after all, we want our program to finish at some point. However, as we shall see later there are
alternative ways to break out of a blockDOconstruct.

Ex 5.1 Consider the following program.

PROGRAM timestable

IMPLICIT NONE
INTEGER :: tableno, i

45

! choose to do seven times table
tableno=7

! output times table
DO i=1,12

PRINT * , i, ’ times ’, tableno, ’ is ’, i * tableno
END DO

END PROGRAM timestable

Type in and run this program. Modify the program so that it outputs more or less than 12
lines and does different table numbers. Can you modify the program so that the user can
input the table number and number of lines that it outputs?

Note that in the program in exercise 5.1 we indented the blockof statements within the blockDOin the
same way that we did for blocks of code in the blockIF construct. Again, this is good practise and
makes the code easier to read and it is suggested that you follow the same convention within your own
codes.

Ex 5.2 The Fibonacci sequence is calculated as follows.

1. The first and second Fibonacci numbers are both equal to 1.

2. Theith Fibonacci number is calculated by adding the previous twoFibonacci numbers,
i.e.,

Fi = Fi−2 + Fi−1

So the first eight numbers in the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21.

Write a program that calculates the first 20 numbers in the Fibonacci sequence using a block
DOconstruct.

Both of these exercises have used the most simple count-controlled loop, where thecount is incre-
mented by 1 each time. What happens when we use the more advanced count-controlled loop which
includes theincr increment?

Consider the following code

DO i=1,9,2
PRINT * , i

END DO

When this is run, it simple outputs the values thati takes in each iteration of the loop. In this case it
outputs the integers1, 3, 5, 7, 9. So what happens if we modify the code as follows

DO i=1,10,2
PRINT * , i

END DO

In this case, the maximum is 10, buti can not take that value with increments of 2. In this case, Fortran
90 stops iterating at the highest value it can without exceeding the maximum. So the output would be
the integers1, 3, 5, 7, 9 again.

Ex 5.3 Write a program that performs the following loops and printsout the values thati may
take in each iteration.

46

(a) DO i=1,10

(b) DO i=1,10,1

(c) DO i=25,60,5

(d) DO i=8,24,3

(e) DO i=1,2,3

(f) DO i=3,2,1

(g) DO i=-21,21,7

(h) DO i=10,1,-1

(i) DO i=21,-21,-7

Are they what you expected? What is the value ofi immediately after the blockDOconstruct
has ended? Try some different loops of your own devising until you understand what it going
on.

5.2 More Advanced Loops

5.2.1 TheEXIT Statement

The count-controlled loops that we have seen so far will iterate a fixed number of times depending on
the count range in theDOstatement. Sometimes the number of times that we want to iterate a method is
undetermined at the start of a loop. An example of this may be calculating the position of a projectile,
we want to calculate the position until the projectile hits the ground (i.e.,y = 0).

To do this, we use theEXIT statement. When used within a blockDOconstruct, this will immediately
transfer control of the program to the first statement after theEND DOstatement. TheEXIT statement
is almost always used with anIF or CASEstatement.

Consider the following example, we want to calculate Fibonacci numbers again, but this time instead of
stopping at the 20th Fibonacci number, we want to display allthe Fibonacci numbers under 1000 (so we
want to stop before the first Fibonacci number greater than 1000 is outputted).

We can do this with the following program

PROGRAM fibonacci2

IMPLICIT NONE
INTEGER :: f_old1=0, f_old2=0, f_new, i

! method to calculate the Fibonacci numbers under 1000
! do the initial stuff first

f_old1 = 1
f_old2 = 1
PRINT * , ’The ’, 1, ’st Fibonacci number is ’, f_old1
PRINT * , ’The ’, 2, ’nd Fibonacci number is ’, f_old2
i = 3

! now perform the DO loop until f_new>1000
DO

f_new = f_old1 + f_old2
IF (f_new > 1000) EXIT
PRINT * , ’The ’, i, ’th Fibonacci number is ’, f_new

47

f_old1 = f_old2
f_old2 = f_new
i = i + 1

END DO

END PROGRAM fibonacci2

In this case we have an indefiniteDOloop which contains anIF statement to check our criteria. If the
criteria is met, then theEXIT statement immediately causes Fortran to exit theDOloop.

Note, in this case we have used a simple form of theIF statement. In cases where we just want to execute
a single command if some condition is true, and we do not want any ELSE IF or ELSEstatements, then
we can drop theTHENand replace it with the statement we wish to execute.

5.2.2 When Indefinite Loops Go Bad

There is one thing to be cautious of here, when we perform theIF statement, we want to be sure that the
condition will be met at some point. For example, if we had written the statement

IF (f_new == 1000) EXIT

we would have been in trouble. 1000 itself is not a Fibonacci number, so the condition would never be
met and the loop would go on infinitely (or at least until we killed the program externally). So if possible,
we always want a condition that we know will be fulfilled at some point.

If we don’t know that our condition will be fulfilled, then it is a good idea to program ourselves some
kind of get out clause. One way to do this is to decide that there will be a maximum number of iterations
that we will try before we give up. For example

DO count=1, max_iterations
.
.
.
IF (condition) EXIT
.
.
.

END DO

In this case we set the variablemax iterations to be much higher than we would expect to be
needed, ifcondition is met then Fortran exits from the loop, if it is never met, then Fortran will
eventually exit from the loop anyway (though not necessarily with the desired result).

Ex 5.4 The Secant algorithm is a method of finding the roots of an equation (i.e., wheref(x) = 0).
The theory behind the algorithm is beyond the scope of this course, but the basic algorithm
is as follows.

1. Setx1 andx2 equal to two different (but close) values, preferably near the root you
want to find.

2. Calculate further values ofx using the following formula

xn = xn−1 − f(xn−1)

[

xn−1 − xn−2

f(xn−1) − f(xn−2)

]

48

3. Iterate until one of the following conditions is true

|f(xn)| < tol1

|xn − xn−1| < tol2

Consider the following equation

x3 − 5.12x2 − 74.0763x + 106.87383

which has three real roots. Write a program to perform the Secant method on this equation.
Use the following tolerances,tol1 = 0.0001, tol2 = 0.0001 and for the initial guesses try
x1 = 0.0 andx2 = 0.5. Output the iterate number, the value ofx and the value off(x) for
each iteration.

Do you know that the exit condition for the loop iterations will eventually be met? If not
program in a get out clause.

Try different initial guesses to find all three roots of the equation (hint, all three lie between
−20 and20).

5.2.3 TheCYCLE Statement

TheCYCLEstatement is similar in usage to theEXIT command, but instead of exiting from the block
DOconstruct, it halts execution of the block of code and returns control to the top of the blockDOloop to
begin the next iteration. This causes any counter attached to theDOstatement to be increased accordingly.

For example, consider the following bit of code.

DO i=-5,5,2
IF (i<0) CYCLE
PRINT * , ’The square root of ’, i, ’ is ’, SQRT(REAL(i))

END DO

In this case we want to take square roots ofi , but not if i is negative, so for those instances we use the
CYCLEstatement to go to the next iteration.

This is a trivial example and we could just as easily have put thePRINT statement in a blockIF construct
for wheni ≥ 0. However, in more complex programs, there may be a lot more statements in the block
DOconstruct and using theCYCLEstatement may be more appropriate.

Ex 5.5 Modify the program that you wrote in exercise 3.8 where you calculated different prop-
erties of a circle. Enclose the code where you read in a radiusand output the different
properties in a blockDOloop so that you are prompted to do this five times. Put in a check
after reading in the the radius to see if it is negative. If it is output an error message and
CYCLEback to the top of the blockDO.

5.2.4 TheSTOP Statement

Strictly speaking, theSTOPis not specific to blockDOconstructs and may appear anywhere in your
program. This statement has the effect that it stops execution of your program immediately. This has the
same effect as transferring control of your program directly to theEND PROGRAMstatement.

There are a variety of cases where you may want to use theSTOPstatement. If your program was going
badly wrong, you may have a check in there to stop execution ofyour program.

49

For example, in the Secant method, you monitored the value off(x) to see if it was close to0 (i.e., was
|f(x)| < tol1), you could also monitor it to see if it becomes too big (i.e.,|f(x)| > tol3 wheretol3 =
10 000 say) and stop execution if it does (this might indicate that the method has been programmed
incorrectly). You may want to keep an eye onx, if it goes out of the range[−1000, 1000] you may
decide that it is going out of range and stop execution (this might indicate a bad choice of starting points,
or the function has no roots).

If you are trying to debug code, you may want to scrutinise a particular part of the code and stop execution
directly afterwards, rather than finish running a code that does not work (and may take some time to
finish).

For example, consider the timestable program again. We can put in some checks that the user types in
sensible information and exit with an error message if they do not.

PROGRAM timestable

IMPLICIT NONE
INTEGER :: tableno, nlines, i

! inputs the table no and number of lines to display
PRINT * , ’Enter which number timestable you would like’
READ * , tableno

PRINT * , ’Enter the number of lines you would like to display’
READ * , nlines

! check that the number of lines is positive
IF (nlines <= 0) THEN

PRINT * , ’The number of lines must be positive’
STOP

ENDIF

! output times table
DO i=1,nlines

PRINT * , i, ’ times ’, tableno, ’ is ’, i * tableno
END DO

END PROGRAM timestable

5.3 Nested BlockDO Constructs

5.4 Using Nested BlockDO Constructs

It is perfectly acceptable to nest one blockDOwithin another, in fact you could have multiple nestings of
block DOs. For example

PROGRAM nested_do_example

IMPLICIT NONE
INTEGER, PARAMETER :: imax=5, jmax=5
INTEGER :: i, j

50

DO j=1, jmax
DO i=1,imax

IF (i == 1 .AND. j == 1) THEN
PRINT * , ’The top-left corner is at (’, i, j, ’)’

ELSE IF (i == 1 .AND. j == jmax) THEN
PRINT * , ’The bottom-left corner is at (’, i, j, ’)’

ELSE IF (i == imax .AND. j == 1) THEN
PRINT * , ’The top-right corner is at (’, i, j, ’)’

ELSE IF (i == imax .AND. j == jmax) THEN
PRINT * , ’The bottom-right corner is at (’, i, j, ’)’

END IF

END DO
END DO

END PROGRAM nested_do_example

One thing to keep an eye on with nested blockDOloops is the number of times your program is doing
a block of statements. If you have a single loop, then you are executing the nested block of statements
imax times. In the case above with a nested loop, then the number oftimes the nested block of statements
is executed isimax ×jmax . Similarly, if there were two nested loops the number of times the nested
block of statements is executed isimax ×jmax ×kmax.

The problem with this is the length of time it takes to performthe whole blockDOconstruct, this is
equal to the time it takes to do the block of statements once ismultiplied by the number of times
the block is executed. So if you have a block of statements that takes0.5 seconds to perform and
imax =jmax =kmax= 100. For a single loop the blockDOwould be completed in aboutimax ×0.5 =
50 seconds. For a nested loop it takes aboutimax ×jmax ×0.5 = 5 000 seconds or1.4 hours. For two
nested loop it takes aboutimax ×jmax ×kmax×0.5 = 500 000 seconds or5.8 days.

Clearly, if you are using nested loops then it is important that the block of code within the nested loops
is efficient.

5.4.1 EXIT and CYCLE Statements in a Nested BlockDO

Consider the following bit of code.

DO j=1, jmax
.
.
.
DO i=1, imax

.

.

.
IF (condition) EXIT
.
.
.

END DO
.

51

.

.
END DO

In this code, which blockDOdoes theEXIT statement break out of? Is it the inner blockDO(i.e., DO
i=1, imax) or the outer blockDO(i.e., DO j=1, jmax). In practise, when you’re writing a code,
you may want to choose which blockDOyou wish to break out of (there will be times when you only
want to exit the inner block and times when you want to exit theouter block).

To solve this problem, you can give your blocks names, then when you wish toEXIT or CYCLE, you
can specify by name which block you are referring to. For example,

outer: DO j=1, jmax
.
.
.
inner: DO i=1, imax

.

.

.
IF (condition1) EXIT inner
IF (condition2) EXIT outer
IF (condition3) CYCLE inner
IF (condition4) CYCLE outer
.
.
.

END DO inner
.
.
.

END DO outer

In this piece of code, the blockDOconstructs are labelled (outer andinner respectively), and when
theEXIT andCYCLEstatements are called, they are followed by the name of the blockDOto which they
refer. Note that theEND DOstatements are also followed by the block name to which they refer.

Note, in the absence of a label following theEXIT or CYCLEstatement, then the statement refers to
the innermost blockDOconstruct which contains the statement. However, in these situations you should
always label your loops,EXIT andCYCLEstatements to improve the readability of your code.

Ex 5.6 In this exercise we will modify the Secant method from exercise 5.4. Instead of manually
trying different initial values ofx1 andx2, we want to loop through a progression of values
from x1 = −20, x2 = −19.5 to x1 = 19.5, x2 = 20, incrementing each initial value by0.5
each time.

This will require a nested blockDOwhere the initial values are varied in the outer loop and
the Secant method is performed in the inner loop.

The Secant method can iterate until either

|f(xn)| < tol1

|xn − xn−1| < tol2

52

when you want toEXIT from the Secant method and output the result. Or

|f(xn)| > tol3

|xn − xn−1| > tol4

when the method is deemed not to be converging and you want toCYCLEto the next set of
initial values. Output a message to say that the method is diverging and it is cycling to the
next value.

Use the following tolerances,tol1 = 0.0001, tol2 = 0.0001, tol3 = 1000.0, tol4 = 1000.0.

Do you find the three roots that you found in exercise 5.4?

5.4.2 Naming BlockIF Constructs

You can also assign names to blockIF constructs (nested or otherwise) andCASEstatements as follows,

name1: IF (condition1) THEN
.
.
.

END IF name1

and

name2: SELECT (case_expression)
CASE (case_range_1)

.

.

.
CASE (case_range_2)

.

.

.
END SELECT name2

The naming of blockIF constructs has no useful purpose from a coding point of view,but it may make
your code more readable. You may use this as you see fit.

53

54

6 Introduction to Arrays

6.1 The Concept of Arrays

So far in this course we have restricted ourselves to manipulating single values (e.g.,INTEGERs and
REALs. In scientific computing we often want to manipulate sets ofdata, such as a set of readings from
an experiment, vectors and matrices, or a set of values generated from a numerical code (e.g., positions
of a projectile at different times in flight).

Fortran 90 has powerful processing features to manipulate such sets of data (known as arrays) and this is
where the real strength of Fortran 90 as a programming language lies.

When we have used variables in the previous chapters we have used them to store a single number,
but it would also be useful if we could store a set of values under a single variable name and refer to
individual elements by index (in mathematics we can write a vectorx and refer to individual elements as
x1, x2, ..., xn).

In Fortran we can do this by declaring a variable as an array ofa fixed length. This reserves space in
memory to store all the elements of the array as well as some space to describe the data (for example,
whether it’sREALor INTEGER, what the variable name is, and so on). So going back to our odometer
example, a single value might be stored as follows,

x Real
0 6 4 7 2 2 6 3

Where an array containing five numbers might be stored like this,

x n=5 Real
0 6 4 7 2 0 2 3
0 2 7 2 1 9 5 8
9 8 3 9 3 6 0 5
0 1 2 5 7 4 2 8
9 9 8 4 4 8 4 1

So there is one line that tells you about the data, and five odometers below to store the data. If we want
to know what the value ofx3, we can look at the third odometer and see thatx3 = 0.393605 × 10−2.

6.2 Using Arrays

6.2.1 Array Declaration

Arrays can be declared by using theDIMENSIONstatement within a variable declaration. This statement
allows you to specify the number of elements in your array, and is used as follows

INTEGER, DIMENSION(10) :: a, b, c
REAL, DIMENSION(15) :: x, y, z

The first line declaresINTEGERarrays with 10 elements and the second line declaresREALarrays with
15 elements.

There are shorthands in array declaration that you will sometimes see such as,

INTEGER :: a(10), b(20), c(30)
REAL, DIMENSION(50) :: x, y, z(60)

55

It is recommended for clarity that you do not use these shorthands and that you declare arrays of different
sizes on different lines, e.g.,

REAL, DIMENSION(50) :: x, y
REAL, DIMENSION(60) :: z

By default, the array subscripts will begin at 1 and end at thenumber specified in theDIMENSION
statement (i.e., indexing will be from 1 to 50 forx above). Sometimes it is useful to have a non standard
range of subscripts, you can do this by the declaration

DIMENSION(lower_bound: upper_bound)

the index will then start atlower bound and end atupper bound. For example

INTEGER, DIMENSION(6:25) :: a
REAL, DIMENSION(0:49) :: x
REAL, DIMENSION(-30:30) :: y

The first case declares anINTEGERarray with 20 elements indexed from 6 to 25; the second case
declares aREALarray with 50 elements indexed from 0 to 49; and the third casedeclares aREALarray
with 61 elements indexed from -30 to 30.

6.2.2 Array Constants and Initial Values

Arrays may be assigned and addressed as a whole or individualelements can be addressed using array
subscripts. To address individual elements of an array, youfollow the variable name with the subscript
in brackets, e.g.,a(i) . So you might create and initialise an array as follows,

INTEGER, DIMENSION(5) :: arr

arr(1) = 1
arr(2) = 2
arr(3) = 3
arr(4) = 4
arr(5) = 5

Or (in this case) more conveniently with

INTEGER, DIMENSION(5) :: arr
INTEGER :: i

DO i=1,5
arr(i) = i

END DO

For smaller arrays, it would be more convenient to have a way to initialise them in one line. This can be
done using anarray constant construct. This takes the form

arr = (/ value1, value2, value3, ... /)

For example

INTEGER, DIMENSION(5) :: arr
arr = (/ 1, 2, 3, 4, 5 /)

The values in the array are contained within the delimiters(/ and /) . The array constant must have
the same number of values as required to fill the variable on the left-hand side of the= sign. The array

56

constant may also be used in declaration lines,

INTEGER, DIMENSION(5) :: arr = (/ 1, 2, 3, 4, 5 /)

There is an additional shorthand that can be used in array constants for defining array constants. This is
a compact form of theDOloop and takes the form

(value_expression, implied_do_control)

For example

arr = (/ (i, i=1,5) /)

This loops through the valuesi=1 to i=5 and creates an array of all these values. You may use different
expression as thevalue expression, such as

arr = (/ (0, i=1,5) /) ! gives (/ 0, 0, 0, 0, 0 /)
arr = (/ (i * 2, i=1,5) /) ! gives (/ 2, 4, 6, 8, 10 /)
arr = (/ (i ** 2 + 4, i=1,5) /) ! gives (/ 5, 8, 13, 20, 29 /)

The more advanced form of theimplied do control that was seen in section 5.1 where there was
an increment option is also allowed in this context, e.g.,

arr = (/ (i, i=2,10,2) /) ! gives (/ 2, 4, 6, 8, 10 /)
arr = (/ (i, i=5,1,-1) /) ! gives (/ 5, 4, 3, 2, 1 /)

The usual behaviour discussed in section 5.1 also applies here.

You may use the impliedDOconstruct as only part of the array, e.g.,

arr = (/ -1, (0, i=2,4), 1 /) ! gives (/ -1, 0, 0, 0, 1 /)
arr = (/ -1, (0, i=1,3), 1 /) ! gives (/ -1, 0, 0, 0, 1 /)
arr = (/ (0, i=1,2), (i, i=1,3) /) ! gives (/ 0, 0, 1, 2, 3 /)

Finally, one impliedDOconstruct may be contained within another to create a nestedloop (or many
nested loops if desired). For example,

arr = (/ ((i, i=1,5), j=1,5) /)
arr = (/ ((i+j, i=1,5), j=1,5) /)
arr = (/ ((MIN(i,j), i=1,5), j=1,5) /)
arr = (/ (-1, (0, i=1,3), 1, j=1,5) /)

Ex 6.1 Write a program that declares, initialises and outputs (youcan output an entire array using
PRINT * , arr) the following arrays:

(a) A 21 element array containing the numbers from -10 to 10.

(b) An 11 element array containing the only the even numbers from -10 to 10.

(c) A 37 element array containing an equally spaced sequenceof real numbers from 0 to
2π.

(d) Two 50 element arrays, the first contains the sequence 0-9repeated 5 times, the second
has 10 elements with value 0, 10 elements with value 10, 10 elements with value 20,
10 elements with value 30 and 10 elements with value 40. Also output the sum of the
two arrays (arr1+arr2).

Hint, you may need to use nested impliedDOs. The sum of the two matrices should
give the numbers 0-49.

57

6.2.3 Input and Output with Arrays

Before we start to use arrays, it would be useful to know how toinput an array of data and output arrays
of data. There are three possible ways of inputting or outputting data depending on whether we are
interested in individual elements of an array, a range of elements from the array, or a complete array.

• Array elements (e.g.,arr(1)) are just scalar variables (single numbers) and can be used in
expressions as such.

• Part of an array may be used in input and output lists by using an impliedDOconstruct in a similar
way as in array initialisation.

• Whole arrays may appear in input and output lists and refer tothe complete array. We saw this in
exercise 6.1.

So for example,

PRINT * , arr(1), arr(5)
READ * , (arr(i), i=1,9,2)
READ * , arr
PRINT * , arr(1), (arr(i), i=2,8,2), arr(9) !

The first case outputs the 2 values inarr(1) andarr(5) ; the second case inputs 5 values and stores
them inarr(1) , arr(3) , arr(5) , arr(7) andarr(9) ; case 3 inputs enough values to fillarr ;
and case 4 outputs 6 values,arr(1) , arr(2) , arr(4) , arr(6) , arr(8) andarr(9) .

The usual rules for theREADstatement apply, i.e., blank values leave the array elementunchanged, if
too many values are entered then the extra ones are ignored, and so on.

One other useful thing is that the control values for an impliedDOstatement may themselves be inputted
in the same statement, e.g.,

READ * , nitems, (arr(i), i=1,nitems)

Though doing so should be done with care. In the above examplewe could type in a value fornitems
that is larger than the size of the arrayarr (this will cause your program to crash). It may be better to
put in a check such as

READ * , nitems
IF ((nitems >= 1) .AND. (nitems<=maxitems)) THEN

READ * , (arr(i), i=1,nitems)
ELSE

! handle error
END IF

6.2.4 Arrays in Expressions

In order to make use of arrays, we want to be able to use them in arithmetic expressions. There are two
ways in which we can do this. The first is to address each element of the array individually, perhaps
within a blockDOconstruct as follows

REAL, DIMENSION(20) :: a, b, c
.
.
.

58

DO i=1,20
a(i) = b(i) + c(i)

END DO

You can also perform operations on arrays as a whole, for example

REAL, DIMENSION(20) :: a, b, c
.
.
.
a = b + c

This is allowed so long as all of the arrays areconformable. The rules for conformability are as follows:

• Two arrays are conformable if they have the same size and shape;

• A scalar (either variable or literal constant) is conformable with any array;

• All intrinsic operations are defined between two conformable objects.

So examples of other operations are as follows.

REAL, DIMENSION(20) :: a, b, c
REAL :: x

a = b - c ! = (/ b(1)-c(1), b(2)-c(2), ... /)
a = b* c ! = (/ b(1) * c(1), b(2) * c(2), ... /)
a = b/c ! = (/ b(1)/c(1), b(2)/c(2), ... /)
a = 2.0 * b ! = (/ 2.0 * b(1), 2.0 * b(2), ... /)
a = c/5.0 ! = (/ c(1)/5.0, c(2)/5.0, ... /)
a = x * b ! = (/ x * b(1), x * b(2), ... /)
a = b** 2.0 ! = (/ b(1) ** 2.0, b(2) ** 2.0, ... /)
a = c + 2.5 ! = (/ c(1)+2.5, c(2)+2.5, ... /)
a = 0.0 ! = (/ 0.0, 0.0, ... /)

When an operation acts on two arrays, then it acts on each in anelement by element basis (as if in a block
DO). When an operation acts on an array and a scalar, then the scalar is treated as an array of same size
with every element taking the value of the scalar.

Note that this gives us an easy way of initialising arrays where we want all elements to take the same
value, e.g.,

REAL, DIMENSION(10) :: a=0.0, b=1.0, c
c = 5.0

Ex 6.2 Write a program to calculate
y = x2 − 2x + 1

using array operations. First define an array forx which takes values from 0 to 5 with 0.25
intervals, then calculatey using array operations onx.

Output your results as a list of (x, y) pairs.

Ex 6.3 Consider a projectile fired from a launcher situated at the origin at an initial velocity of
25 m s−1 at an angle of40◦. Using array operations, calculate the position of the projectile
(neglecting any resistance) for a time interval of 0 to 3.5 seconds with a 0.1 second interval.

Output your results as a list of (t, x, y) triplets.

59

Can you write the program so it is easy to change parameters such as the time-range, the
interval, the initial velocity and the initial angle?

Ex 6.4 Write a program to read in a set of real numbers (the number of elements to be specified
by the user, but with a maximum of 20) and output the average ofthe values. Hint, you will
probably need to address each element in the array individually within a block DOloop.

6.3 Intrinsic Functions for Arrays

6.3.1 Previously Encountered Intrinsic Functions

Most of the intrinsic functions that we saw for scalar valuesin section 3.6 also work for arrays. As with
the intrinsic operators, they act on the array element by element as if the function was in a blockDOloop.
For example

REAL, DIMENSION(30) :: a, b, c

a = SIN(b) ! = (/ SIN(b(1)), SIN(b(2)), ... /)
a = EXP(c) ! = (/ EXP(c(1)), EXP(c(2)), ... /)
a = MAX(b,c) ! = (/ MAX(b(1),c(1)), MAX(b(2),c(2)), ... /)

Ex 6.5 Consider the projectile in exercise 6.3 again. Rearrange the equations that you derived to
calculate the time (whent > 0) that the projectile lands (i.e.,y = 0), and the distance that it
has travelled in thex-direction.

Using array operations, calculate the distance travelled in thex-direction for initial angles
in the range of0◦ to 90◦ at1◦ intervals.

Output your results as a list of (θ, t, x) triplets.

At what angle does the projectile travel the furthest? Is this what you would have expected?

6.3.2 Array Specific Intrinsic Functions

As well as these functions, Fortran 90 has a set of intrinsic functions designed especially for arrays.
These functions might perform array calculations (such as the sum of the elements), they might provide
information about the data (such as the location of the maximum value) or they might give information
about the array itself (such as the number of elements in the array). We will look at these functions in a
bit more detail than we looked at scalar intrinsic functionsin section 3.6.

First of all we need to look at the idea of amask. This is an array (which is conformable with any other
array argument of the function) of logical data (i.e.,.TRUE. or .FALSE.). The value of the function
will depend somehow on this mask. For example, theALL function will return true if all values ofmask
are true, so

LOGICAL, DIMENSION(3) :: mask1, mask2
LOGICAL :: l1, l2

mask1 = (/ .TRUE., .TRUE., .TRUE. /)
mask2 = (/ .TRUE., .FALSE., .TRUE. /)

l1 = ALL(mask1) ! = .TRUE.
l2 = ALL(mask2) ! = .FALSE.

60

This becomes more useful when we use relational operators with arrays, for example,

INTEGER, DIMENSION(3) :: a
LOGICAL, DIMENSION(3) :: mask1, mask2
LOGICAL :: l1, l2

a = (/ 1, 3, 4 /)
mask1 = a > 0 ! = (/ .TRUE., .TRUE., .TRUE. /)
mask2 = a > 2 ! = (/ .FALSE., .TRUE., .TRUE. /)

l1 = ALL(mask1) ! = .TRUE.
l2 = ALL(mask2) ! = .FALSE.

! or perhaps more conveniently written as

l1 = ALL(a>0) ! = .TRUE.
l2 = ALL(a>2) ! = .FALSE.

! likely to be useful in a block IF construct

IF (ALL(a>0)) THEN
...

END IF

The mask array may also be used optionally in some functions (this will be denoted in italics, e.g.,
mask). In this context it will be used with an array,arr , which it conforms with and the function will
operate only on the elements ofarr where the corresponding elements ofmask are true.

For example, theMINVAL function returns the minimum value of an array, when it is used with amask
it returns the minimum value of the array when the corresponding values ofmask are true, e.g.,

REAL, DIMENSION(3) :: a
LOGICAL, DIMENSION(3) :: mask
REAL :: min1, min2, min3

a = (/ 3.2, 1.4, 2.7 /)
mask = (/ .TRUE., .FALSE., .TRUE. /)

min1 = MINVAL(a) ! = 1.4
min2 = MINVAL(a, mask) ! = 2.7
min3 = MINVAL(a, a>2.0) ! = 2.7

A list of some of the more useful functions can be found in table 4

Ex 6.6 Modify your program from exercise 6.4 where you calculated the average of a set of values
so that it uses theSUMfunction instead of a blockDO. Add a section that calculates the
average of the positive data only using amask in theSUMfunction (you may also need to
use theCOUNTfunction).

61

Function Purpose
ALL(mask) Returns.TRUE. if all elements of mask are.TRUE.
ANY(mask) Returns.TRUE. if any elements of mask are.TRUE.
COUNT(mask) Returns the number (integer) of elements of mask that are.TRUE.
MAXLOC(arr, mask) Returns the array index (integer) of the maximum value ofarr
MAXVAL(arr, mask) Returns the maximum value of the elements inarr
MERGE(arr1, arr2, mask) Returns an array where elements take their value fromarr1 if the

corresponding element ofmask is .TRUE. , otherwise it takes the
element fromarr2

MINLOC(arr, mask) Returns the array index (integer) of the minimum value ofarr
MINVAL(arr, mask) Returns the minimum value of the elements inarr
PRODUCT(arr, mask) Returns the product of all the elements in the array
SIZE(arr) Returns the number (integer) of elements in the array
SUM(arr, mask) Returns the sum of all the elements in the array

Table 4: Table of some array intrinsic functions.

6.4 Multi-Dimensional Arrays

6.4.1 Defining Multi-Dimensional Arrays

So far we have used only one-dimensional arrays, Fortran 90 also has facilities for defining and working
with multi-dimensional arrays (e.g., 2D, 3D, etc). The maximum allowed is a seven-dimensional array.

You can declare a higher-dimensional array as follows,

INTEGER, DIMENSION(5,3) :: a ! 2D arrays
REAL, DIMENSION(10,4) :: b
INTEGER, DIMENSION(6,3,5) :: c ! 3D arrays
REAL, DIMENSION(3,10,30) :: d
REAL, DIMENSION(3,4,6,2,10,10) ! 6D array

This form of theDIMENSIONstatement declares the number of elements in each direction. So in two
dimensions, the statementDIMENSION(m, n) declares an array which hasm elements in the first direc-
tion andn elements in the second, as illustrated below.

arr(1,1) arr(2,1) . . . arr(m,1)
arr(1,2) arr(2,2) . . . arr(m,2)

...
...

. . .
...

arr(1, n) arr(2, n) . . . arr(m, n)

This means that the array has a total ofm×n elements.

This brings up an important point about memory allocation. On a typical 32 bit machine (which is what
you will generally be using), the computer allocates 32 bits(or 4 bytes) to store anINTEGERor aREAL
variable. To store an array, the program will need to allocate memory for the number of elements times
4 bytes. Consider the following cases;

62

Case No of elements Memory Required
1D 100 400 B
2D 100 × 100 39 KB

500 × 500 0.95 MB
3D 100 × 100 × 100 3.8 MB

250 × 250 × 250 60 MB
4D 100 × 100 × 100 × 100 381 MB
5D 100 × 100 × 100 × 100 × 100 37 GB
6D 100 × 100 × 100 × 100 × 100 × 100 3.6 TB

As you can see, as you increase the dimension of the array or the number of elements in a multi-
dimensional array, the amount of memory required increasesdramatically. To run a code with a large
array you will need this amount of memory available (plus whatever other memory resources you re-
quire) otherwise your program will crash (it will likely compile okay, but will crash when you try to run
it - probably with a segmentation error). Most computers at the moment are unlikely to have more than
1-2 GB, many computers in the University may only have 64-128MB of total memory. To create larger
arrays, people often need to use supercomputers.

When using large or multi-dimensional arrays, always calculate the amount of memory required and
check that it is within the amount of memory available on the computer. If not, you may need to use
smaller arrays, or come up with a more clever way of doing things.

As with one-dimensional arrays, you may specify the lower and upper bounds for each (or any) dimen-
sion, for example;

INTEGER, DIMENSION(-10:10, -8:4) :: a
REAL, DIMENSION(3, 0:11, 0:100) :: x

6.4.2 The Rank and Shape of an Array

There are five technical terms that relate to multi-dimensional arrays, these are;

• Fortran arrays can have up to seven subscripts, each of whichrelates to onedimension of the array.

• The total number of dimensions of an array is known as therank of an array (e.g., a 3D array has
rank equal to 3).

• The extent of a dimension is the number of elements in that dimension of the array (e.g., a 2D
array of50 × 100 has an extent of 50 in the first dimension and 100 in the second dimension).

• Thesize of an array is the total number of elements which make up the array.

• The shape of an array is determined by it’s rank and the extent of each dimension. It can be
characterised by a rank 1 array with each element corresponding to the extent of each dimension
(e.g., a 3D array of3 × 20 × 50 has a shape of(/ 3, 20, 50 /)).

6.4.3 Multi-Dimensional Array Constants and Initial Values

Multi-dimensional arrays may be referred to in a similar wayto one-dimensional arrays. To address array
elements independently you can type;

INTEGER, DIMENSION(5,5) :: arr

63

arr(1,1) = 1
arr(2,1) = 2
.
.
.
arr(4,5) = 9
arr(5,5) = 10

or perhaps more conveniently as

INTEGER, DIMENSION(5,5) :: arr
INTEGER :: i, j

DO j=1,5
DO i=1,5

arr(i,j) = i+j
END DO

END DO

You can also write array constants for multi-dimensional arrays. To do this you write the array as a
one-dimensional array and change its shape using theRESHAPEstatement, e.g.,

REAL, DIMENSION(3,2) :: x

x = RESHAPE((/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /), (/ 3, 2 /))

which gives the array

[

1.0 2.0 3.0
4.0 5.0 6.0

]

So theRESHAPEstatement takes the form

RESHAPE(arr_1d, newshape)

wherearr 1d is a 1D array with enough elements to form the new array andnewshape is the shape
of the new array.

For larger arrays, it may make clearer code if you use continuation lines. For example;

REAL, DIMENSION(5,4) :: x

x = RESHAPE((/ 1.0, 2.0, 3.0, 4.0, 5.0, &
& 2.0, 3.0, 4.0, 5.0, 6.0 &
& 3.0, 4.0, 5.0, 6.0, 7.0 &
& 4.0, 5.0, 6.0, 7.0, 8.0 /), &
& (/ 5, 4 /))

You may also use the impliedDOconstruct in the multi-dimensional case when you create an array to be
reshaped, e.g.,

REAL, DIMENSION(10,10) :: x

x = RESHAPE((/ ((i+j, i=1,10), j=1,10) /), (/ 10, 10 /))

64

6.4.4 Using Multi-Dimensional Arrays

Using arrays in expressions is exactly the same as in the one-dimensional array case. Array operations
may only be carried out on arrays that conform, and while in the one-dimensional case that meant that
they were of the same size, in the multi-dimensional case they must also be of the same shape.

So for example, a10 × 20 array conforms with either another10 × 20 array or a scalar. So

REAL, DIMENSION(4,30) :: a, b, c
INTEGER :: i,j
.
.
.
a = b* c

! or
DO j=1,30

DO i=1,4
a(i,j) = b(i,j) * c(i,j)

END DO
END DO

This means we can initialise multi-dimensional arrays withthe short cut

REAL, DIMENSION(5,20) :: a=1.0, b=0.0

Ex 6.7 Write a program to calculatef(x, y) = sin x × cos y for −π

2
≤ x ≤ π

2
and−π

2
≤ y ≤ π

2

with increments ofπ
10

in each direction.

Definex andy to be11× 11 arrays with values correctly set for the corresponding position
on the grid, i.e.,

x =















−π

2
−4π

5
. . . 4π

5

π

2

−π

2
−4π

5
. . . 4π

5

π

2
...

...
. . .

...
...

−π

2
−4π

5
. . . 4π

5

π

2

−π

2
−4π

5
. . . 4π

5

π

2















and

y =















−π

2
−π

2
. . . −π

2
−π

2

−4π

5
−4π

5
. . . −4π

5
−4π

5
...

...
. . .

...
...

4π

5

4π

5
. . . 4π

5

4π

5
π

2

π

2
. . . π

2

π

2















and use array operations to calculatef(x, y).

Output your results.

6.4.5 Intrinsic Functions for Multi-Dimensional Arrays

All the mathematical and intrinsic functions that we have previously met for arrays also work for multi-
dimensional arrays, however, there are a few additional functions that are specific to multi-dimensional
arrays.

65

There is another option that can be used with array specific functions and that is to specify which dimen-
sion we wish to act in. For example, suppose we had a two-dimensional array ofREALnumbers and
wanted to find the sum of each row (or perhaps each column). We could do this as follows;

REAL, DIMENSION(5,4) :: arr
REAL, DIMENSION(4) :: tot_rows
REAL, DIMENSION(5) :: tot_cols
REAL :: tot_all

arr = RESHAPE((/ 4.2, 7.4, 1.8, 5.6, 3.7, &
& 9.3, 2.2, 6.4, 7.1, 8.3, &
& 1.7, 5.4, 8.6, 0.4, 6.9, &
& 6.2, 9.5, 2.4, 4.9, 1.3 /), (/ 5, 4 /))

tot_rows = SUM(arr, 1)
! = (/ 22.7, 33.3, 23.0, 24.3 /)

tot_cols = SUM(arr, 2)
! = (/ 21.4, 24.5, 19.2, 18.0, 20.2 /)

tol_all = SUM(arr) ! = 103.3

In this case we have used theSUMcommand with an optional dimension argument. When we specified
SUM(arr, 1) , Fortran summed the elements in the direction of the first dimension giving us an array
of totals of each row. When we specifiedSUM(arr, 2) , Fortran summed the elements in the direction
of the second dimension giving us an array of totals of each column. When we omitted the optional
dimension argument then Fortran summed all the elements of the array giving us a grand total.

Similarly, you could find the minimum value in each row/column, the number of elements greater than 5
in each column and so on, e.g.,

min_rows = MINVAL(arr, 1)
! = (/ 1.8, 2.2, 0.4, 1.3 /)

gt5_cols = COUNT(arr > 5.0, 2)
! = (/ 2, 3, 2, 2, 2 /)

Table 5 shows some useful functions for multi-dimensional arrays. Where the dimension can be selected,
the optionaldim argument will be shown, e.g.,SUM(arr, mask, dim) . Note that the optional
mask argument works as before and must conform witharr .

Ex 6.8 Write a program (or modify your program from exercise 6.4 or 6.6) to read in five sets of
real numbers (the number of elements in each set to be specified by the user, but to have a
maximum of 20) and output the average and standard deviationof the each set. Store the
data in a 2D array and use theSUMfunction with the optionaldim argument.

Note, the standard deviation of a set of data,xi, with mean,̄x is given by;

σ =

√

√

√

√

(

∑

i

x2
i

)

− x̄2

66

Function Purpose
ALL(mask, dim) Returns.TRUE. if all elements of mask are.TRUE.
ANY(mask, dim) Returns.TRUE. if any elements of mask are.TRUE.
COUNT(mask, dim) Returns the number (integer) of elements of mask that are.TRUE.
MAXLOC(arr, mask, dim) Returns the array index (integer) of the maximum value ofarr
MAXVAL(arr, mask, dim) Returns the maximum value of the elements inarr
MERGE(arr1, arr2, mask) Returns an array where elements take their value fromarr1 if the

corresponding element ofmask is .TRUE. , otherwise it takes the
element fromarr2

MINLOC(arr, mask, dim) Returns the array index (integer) of the minimum value ofarr
MINVAL(arr, mask, dim) Returns the minimum value of the elements inarr
PRODUCT(arr, mask, dim) Returns the product of all the elements in the array
RESHAPE(arr, shape) Returns an array which is made up of the elements ofarr but has

a new shape as defined by the rank 1 arrayshape
SIZE(arr, dim) Returns the number (integer) of elements in the array
SHAPE(arr) Returns a 1D array containing the shape ofarr , the number of

elements in the new array is equal to the rank ofarr
SPREAD(arr, dim, ncopies) Creates a new array which is 1 rank higher thanarr by copying

ncopies of arr in the dimension specified bydim . Like mak-
ing a book from copies of a single page

SUM(arr, mask, dim) Returns the sum of all the elements in the array
TRANSPOSE(arr) Transposes a rank 2 array so that the(i,j) component of the

new array is equal toarr(j,i)

Table 5: Table of some multi-dimensional array intrinsic functions.

6.5 Flexible Array Processing

There are a couple of additional useful array features in Fortran that will be covered in this course. The
first is theWHEREconstruct which allows us to perform array operations on selected elements of an array
and perhaps a different operation on other elements.

The second is the ability to act on subsections of an array rather than the whole array or individual
elements.

6.5.1 Masked Array Assignment

The WHEREconstruct allows us to perform array expressions on only certain elements of an array ac-
cording to amask or amask expression . In its simplest form it can be used as follows;

WHERE (mask_expression) array_assignment_expression

where themask expression conforms with the arrays in thearray assignment expression.
For example

REAL, DIMENSION(20) :: a, b
.
.
.
WHERE (a > 0) b = SQRT(a)

In this case, the square root of elements ofa are assigned to the corresponding elements ofb only where
a > 0 (as square roots of negative numbers are complex). You mightachieve the same effect with a

67

block DOloop and a blockIF construct as follows;

REAL, DIMENSION(20) :: a, b
INTEGER :: i
.
.
.
DO i=1,20

IF (a(i) > 0) THEN
b(i) = SQRT(a(i))

END IF
END DO

In this case you might also want to set the other elements ofb to something as well, and for this the block
WHEREconstruct comes in useful. The syntax is,

WHERE (mask_expression)
array_assignment_statements

ELSEWHERE
array_assignment_statements

END WHERE

or just

WHERE (mask_expression)
array_assignment_statements

END WHERE

And so in the previous example we might have

REAL, DIMENSION(20) :: a, b
.
.
.
WHERE (a > 0)

b = SQRT(a)
ELSEWHERE

b = -SQRT(-a)
END WHERE

Ex 6.9 Write a program to calculate the following function using a block WHEREconstruct.

f(x) =

{

−x2, if x < 0
x2, if x ≥ 0

Calculate an array of x-values fromminx=-1.0 to maxx=1.5 with the number of ele-
ments in the array beingnpoints=26 . Make all of these valuesPARAMETERs. Then use
theWHEREconstruct to calculate the function. Output the results as(x, f(x)) pairs.

Vary the values ofminx , maxx andnpoints .

6.5.2 Sub-Arrays and Array Sections

We have seen how to use whole arrays in expressions, however,sometimes we may only want to use a
subsection of an array, perhaps the middle section of the array or just a line of a 2D array.

The simple form of addressing an array subsection is

68

arr(initial: final)

Whereinitial is the subscript of the first element of the subarray andfinal is the last element.

So if we have a 6 elements arrays we can set the middle 4 elements to 1 by

INTEGER, DIMENSION(6) :: arr=0

arr(2:5) = (/ 1, 1, 1, 1 /)
! so arr = (/ 0, 1, 1, 1, 1, 0 /)

The subsectionarr(2:5) conforms with a rank 1 array with 4 elements.

The more general form of addressing an array subsection is

arr(initial: final: incr)

whereinitial andfinal are as before andincr is the step between element indices. All of these
quantities must beINTEGERs.

So to set every other element and every third element in an array to 1 you might do something like

INTEGER, DIMENSION(8) :: arr1=0, arr2

arr1(2:8:2) = (/ 1, 1, 1, 1 /)
! so arr1 = (/ 0, 1, 0, 1, 0, 1, 0, 1 /)

arr2(1:7:3) = (/ 1, 1, 1 /)
! so arr2 = (/ 1, 0, 0, 1, 0, 0, 1, 0 /)

There are some simpler forms of addressing subsections by excluding one or more of the arguments. If
you omitinitial then Fortran takes the subsection from the first element in the array. If you omit
final then Fortran takes the subsection till the last element in the array. If you omitincr then Fortran
assumes an step of 1.

So all of the following are shortcuts

arr(initial: final)
arr(initial:)
arr(initial:: incr)
arr(: final)
arr(: final: incr)
arr(:: incr)
arr(:)

Ex 6.10 Consider the following array declarations and subarray assignments. In each case work
out what values the final array will have.

(a) INTEGER, DIMENSION(10) :: arr1=0
arr1(:5:2) = (/ 1, 2, 3 /)

(b) INTEGER, DIMENSION(10) :: arr2=0
arr2(::3) = 1
arr2(2::3) = 2
arr2(3::3) = 3

(c) INTEGER, DIMENSION(10) :: arr3=0

69

arr3(1:3) = (/ 3, 2, 1 /)
arr3(4:) = arr1(4:) + arr2(4:)

(d) INTEGER, DIMENSION(-4:4) :: arr4=0
arr4(:-1) = -1
arr4(1:) = 1

(e) INTEGER, DIMENSION(-4:4) :: arr5=0
arr5(-4:4:2) = (/ 4, 2, 0, 2, 4 /)

(f) INTEGER, DIMENSION(3,3) :: arr6=0
arr6(:, 1) = 1
arr6(1:3:2, 2:3) = 2
arr6(2, 2:3) = (/ 3, 4 /)

Program in each case to check your results.

As can be seen in exercise 6.10, we can mix and match subarraysand subscripts in multi-dimensional
arrays. When doing this, we must take extra care that our subarrays conform. Consider the following;

REAL, DIMENSION(8,6) :: arr=0

arr(2:6, 3:5) = ...

Then in order to complete the expression, we need to use arrays or array subsections that conform and
so we need to know the shape of the subsection. With multi-dimensional arrays the subscripts denote
a section of the array in that dimension, so subsections in a 2D array will denote a rectangle within the
main array, and in a 3D array it denotes a cuboid.

Soarr(2:6, 3:5) has a shape of(/ 5, 3 /) , and to complete our example

REAL, DIMENSION(8,6) :: arr=0

arr(2:6, 3:5) = RESHAPE((/ 1.0, 1.0, 1.0, 1.0, 1.0, &
& 2.0, 2.0, 2.0, 2.0, 2.0, &
& 3.0, 3.0, 3.0, 3.0, 3.0 /), (/ 5, 3 /))

Which gives

arr =

















0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
0.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0
0.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

















Ex 6.11 A function can be differentiated numerically using the formula

δf(xi)

δx
=

f(xi+1) − f(xi)

xi+1 − xi

Consider the function
f(x) = xe−x

Generate an array of x values from 0 to 1 with 11 points. Calculate the function above for
each of these points using an array expression. Now calculate the numerical derivatives for
each point using array subsections.

70

Differentiate the above function and in your program calculate the analytical derivatives for
each point in your x array. Calculate the difference betweenthe numerical and analytical
derivatives.

Output your results as (x, f(x), df(x), analyticdf(x), difference) lines.

What happens to the the difference (and hence the numerical accuracy) when you vary the
number of points in x?

71

72

7 Functions and Subroutines

7.1 Programming Units

So far in this course, we have only come across the notion of the PROGRAMunit. This is the block of
commands that occur between thePROGRAMandEND PROGRAMstatements. In each program there
must be exactly one program units. As we have seen, these lookas follows:

PROGRAMprogname

! specification statements

! execution statements

END PROGRAMprogname

When writing programs, it would be useful to separate out parts of code that we wish to use over again
(or perhaps in other programs). Consider a real life example, suppose we have a recipe for apple pie. It
would be useful (and most recipe books do this) to have a separate recipe for pastry as this crops up in
many recipes. Then in the apple pie recipe we can just say use the pastry recipe rather than include the
extra instructions. This would also save space if we had manyrecipes that required pastry.

So, in Fortran 90 it would be useful to have a similar mechanism to define more general computer
procedures. There are two types of procedures in Fortran 90,functions and subroutines. We can use
these to split our programs up so that key parts of our programcan be written as smaller self-contained
subprograms.

7.2 Functions

We have seen already how intrinsic functions (such asSIN(x) , EXP(x) andSQRT(x)) can be used
to perform different calculations. When the program encounters one of these functions then it calculates
the result and substitutes the answer into the main expression.

We can define our own functions. Instead of enclosing the specification statements inPROGRAM-END
PROGRAMdelimiters, we instead use theFUNCTION-END FUNCTIONdelimiters as follows:

FUNCTION myfunc(d1, d2, ...)

! specification statements

! execution statements

END FUNCTION myfunc

Here,myfunc is the name of the function and the dummy variablesd1, d2, etc are used to denote any
input to the function. There may be none, one or many of these depending on your requirements. The
specification and execution statements are largely the sameas you use inPROGRAMunits.

We can best describe how to write functions by an example. In this example we will calculate cube roots
by using logarithms. So

FUNCTION cube_root(x)

! again, always incude one of these

73

IMPLICIT NONE

! you need to declare what type of output the
! function returns

REAL :: cube_root

! now define the input variables
REAL, INTENT(IN) :: x

! other internal variables
REAL :: log_x

! do calculation
log_x = LOG(x)
cube_root = EXP(log_x/3.0)

END FUNCTION cube_root

7.2.1 TheFUNCTIONUnit

TheFUNCTIONunit acts in a similar way to thePROGRAMunit in that it contains the instructions for
the computer to perform some task.FUNCTIONunits differ in that they are not the main body of the
program (which is executed when you run the program from the command line), instead they define some
sub-code that can be accessed and run by the main program (or other functions or subroutines).

The name of the function obeys all the usual naming rules thatapply to program names and variable
names. However, you should not give functions the same name as a variable in thePROGRAM(or other)
unit that calls it.

Directly after the name of the function comes a pair of parentheses containing the names of dummy
variables that are passed to the function. There may be none,one or many dummy variables. In the case
that there are none, then the brackets must still be present.

In the above example, we have named the functioncube root (which is descriptive of what the func-
tion will do) and we have indicated that it will accept one input which we will store in the local variable
x .

7.2.2 Specification Statements

As always, you should begin your specification statements with

IMPLICIT NONE

You must declare the function as a variable, this tells Fortran what type of output the function will
produce. For the example, we wish to output aREALvalue (the cube root). The function take any of the
variable types already discussed in this course and may alsobe array valued.

There is a shortcut here, you can declare the function line asfollows

REAL FUNCTION cube_root(x)
.
.
.

74

END FUNCTION cube_root

This is okay in small programs, but in longer programs it can lead to code which is difficult to read. It is
suggested that you do not use this shortcut.

The next step is to declare the dummy variables that are used for input. This introduces theINTENT
statement. For functions, all dummy variable should haveINTENT(IN) . This allows values to be passed
from the main program to the function, but if the value of the variable is changed in the function, that
change will not be passed back to the main program.

For our example, we have set theREALvariablex to haveINTENT(IN) .

While these variables are used to pass information into the function, they are dummy variables local to
the function and do not need to share the same variable names used when the function is called from the
main program. Similarly, the main program may use variableswith the same name as used in functions,
Fortran will distinguish between the two and there will be noconflict.

Finally, we can declare other variables to be used in the function. These are local to the function, so
variables with the same name can safely be used in the main program or other functions without any
conflict. These are declared in the same way as you would declare variables in the main program block.

7.2.3 Execution Statements

The execution statements may include almost anything that you would put inside the main program.
Expressions, blockIF statements and blockDOloops are all fine.

The special variable which has the same name of the function can be used to assign the final output of the
function. So in the example, the special variable iscube root and we assign the value that we want
returned to the main program to this variable.

7.2.4 Calling the Function in a Program

Now we have written our function, we now want to know how to useit in our program. The general
usage is similar to using intrinsic functions, except we must declare an external function first. This is
done in the specification part of the program and is similar todeclaring a variable, e.g.,

REAL, EXTERNAL :: cube_root

So for our example, in the same file we would write

! main program
PROGRAM cube_root_test

IMPLICIT NONE
! declare user functions

REAL, EXTERNAL :: cube_root
! declare variables

REAL :: x, y, cr1, cr2, cr3, cr4

! set some initial values
x = 8.0
y = 26.0

! calculate some cube roots

75

cr1 = cube_root(125.0)
cr2 = cube_root(x)
cr3 = cube_root(y)
cr4 = 3.0 * cube_root(2.0 * x)/2.0

PRINT * , cr1, cr2, cr3, cr4

END PROGRAM cube_root_test

! cube root function
FUNCTION cube_root(x)

! again, always include one of these
IMPLICIT NONE

! you need to declare what type of output the
! function returns

REAL :: cube_root

! now define the input variables
REAL, INTENT(IN) :: x

! other internal variables
REAL :: log_x

! do calculation
log_x = LOG(x)
cube_root = EXP(log_x/3.0)

END FUNCTION cube_root

In this example, we can see that the functioncube root can be used as you would use an implicit
function. It may form part of a larger expression.

There are a couple of fine points to notice. When we callcube root in the main program, we can use
numbers, variables and expressions as the argument. The input expression/variable will be first evaluated
and then passed on the the function. Within the function, thedummy variablex will assume the value of
the input. The dummy variable does not have to have the same name as the variable used as input in the
main program.

Ex 7.1 Program in thecube root program given above. Try changing the input values in the
main program. Write a second function that calculates the fourth root.

Can you write a third function that calculates the nth root (hint, you will need to supply n as
in input to the function as well)?

Test your new functions with some different values and output the results.

Ex 7.2 Write a function to calculate the factorial of an integer (n! = n × (n − 1) × ... × 2 × 1).
You may wish to use blockDOloops.

Write a program to test you factorial function with different values. Output the results.

Ex 7.3 Combinations are used in probability to calculate the number of ways of combining things

76

are. For example, if you toss a coin twice, the is one way to gettwo heads (HH), two ways
to get one head and one tails (HT and TH), and one way to get two tails (TT). Combinations
are denotedCn

r
wheren is the number of trials andr is the number of successes (r ≤ n).

They can be calculated by
nCr =

n!

r!(n − r)!

Write a function to calculate combinations. You may use the factorial function that you
wrote in exercise 7.2. Note, if bothn andr are integers (≥ 0 andr ≤ n then the result of
the combination is also an integer.

Write a main program to test your combination function and output the results.

Ex 7.4 Write a program to output the following

0C0

1C0
1C1

2C0
2C1

2C2

... · · · · · ·
. ..

6C0
6C1

6C2
6C3

6C4
6C5

6C6

You may use your combination and factorial functions from the previous exercises.

Can you name this structure of values?

In the previous three exercises we have also demonstrated the concept of modular development. In
exercise 7.4 we want to print out the structure of combinations. In order to do this we need a function
that calculates combinations which in turn needs a functionthat calculated factorials.

We first develop and test the factorial function in exercise 7.2. Once that works we develop and test the
combinations function in exercise 7.3. Finally we write themain program to solve our problem.

When you are developing programs, first break the problem down into meaningful pieces which you can
develop and test separately. This makes it easier to developcode and track down bugs in your code.

It also makes things simpler when developing code in a team. For example, one person could write the
factorial function while another is writing the combinations function. The author of the combinations
function does not need to know the details of the factorial function, they just need to agree on an interface
in advance.

7.3 Subroutines

Subroutines work slightly differently to functions. The purpose of functions is to calculate some result
and return that value to the main program. The purpose of a subroutine is to execute some code that
doesn’t necessarily produce a numerical result at the end. For example, you might use a subroutine to
print something to the screen in a standard way, or write something to a file. You may also use subroutines
to evaluate several different quantities and pass the results back to the main program using arguments
which haveINTENT(OUT) or INTENT(INOUT) .

Like theFUNCTIONblock, the subroutine block takes the following layout.

SUBROUTINE mysub(d1, d2, ...)

! specifications statements

! execution statements

77

END SUBROUTINE mysub

Consider the following example to calculate and output individual lines of a multiplication table.

SUBROUTINE mtable_line(a,b)

IMPLICIT NONE

! we dont have to declare a type for the subroutine
! so just the dummy variable declarations

INTEGER, INTENT(IN) :: a, b

! local variable declarations
INTEGER :: ab

! execution statements
ab=a * b
PRINT * , a,’ times ’, b, ’ = ’, ab

END SUBROUTINE mtable_line

7.3.1 TheSUBROUTINEUnit

TheSUBROUTINEunit is very similar to theFUNCTIONunit. You have the parentheses for the subrou-
tines arguments and the subroutine name obeys all the usual rules.

In the above example, our subroutine was calledmtable line and it is called with two arguments,a
andb.

A subroutine may have no arguments, in which case you should still include a pair of empty brackets
after the subroutine name.

7.3.2 Specification Statements

The difference from theFUNCTIONunit is that you don’t have to specify what type of variable the
function returns to the main program (or other procedure) asSUBROUTINESdo not full fill this role.

You do need to declare what you dummy variables are though. There are more choices here than there
are forFUNCTIONS. The INTENT statement can take the valuesINTENT(IN) , INTENT(OUT) and
INTENT(INOUT) . The description of the three options are

1. INTENT(IN) , this means that the variable is used for input only. You can change the value of
this variable without effecting it’s value in the main program.

2. INTENT(OUT) , this means that the variable is used for output only. When the function is used in
the main program, it will pass additional information out through this variable. The initial value
of this variable may not be set from the main program.

3. INTENT(INOUT) , this means that the variable can be used for both input and output. The vari-
able will be passed into the function and if it is modified during the function then the new value
will be passed back.

78

For our example, we have set theINTEGERvariablesa andb to haveINTENT(IN) . However, we
could modify our example so that it also outputs the product of a andb, e.g.,

SUBROUTINE mtable_line_mod(a, b, ab)

IMPLICIT NONE

! we dont have to declare a type for the subroutine
! so just the dummy variable declarations

INTEGER, INTENT(IN) :: a, b
INTEGER, INTENT(OUT) :: ab

! execution statements
ab=a * b
PRINT * , a,’ times ’, b, ’ = ’, ab

END SUBROUTINE mtable_line_mod

7.3.3 Execution Statements

As before, pretty much most of the execution statements thatcan appear inPROGRAMs andFUNCTIONS
can appear inSUBROUTINES.

7.3.4 Calling Subroutines in a Program

Subroutines are not used like functions and they do not return a value in that way. Instead they have to
be explicitly called using theCALLstatement, e.g.,

CALL mysub(d1, d2, ...)

As subroutines do not have a variable type, then they do not need to be declares as external either. Fortran
will assume this when it sees theCALLstatement.

So for our example,

PROGRAM mtables

IMPLICIT NONE
INTEGER :: i, n

! select multiplication table
n=7

! loop through to print each line
DO i=1,12

CALL mtable_line(i,n)
END DO

END PROGRAM mtables

! subroutine to print a multiplication table line

79

SUBROUTINE mtable_line(a,b)

IMPLICIT NONE

! we dont have to declare a type for the subroutine
! so just the dummy variable declarations

INTEGER, INTENT(IN) :: a, b

! local variable declarations
INTEGER :: ab

! execution statements
ab=a * b
PRINT * , a,’ times ’, b, ’ = ’, ab

END SUBROUTINE mtable_line

Ex 7.5 Write a subroutine that takes as an argument the radius of a circle and calculates and
outputs the radius, diameter, circumference and area of thecircle.

Test this subroutine for different radii.

Ex 7.6 Write a subroutine that will accept an array of 10 real numbers and calculate their mean
and standard deviation

x̄ =
1

N

∑

i

x

σ2 =
1

N − 1

∑

i

(x − x̄)2

Return the mean and standard deviation to the main program using a pair of dummy variables
in the interface which haveINTENT(OUT) .

Write a main program which has some values to test your function.

Ex 7.7 A simple way to sort an array of numerical values is to start with the first element then look
at all the following elements in turn, if an element is smaller than the current first element,
then swap the two numbers, otherwise move on to the next element. Then repeat this for the
2nd, 3rd, 4th, and so on elements.

So in pseudo code this would look something as follows:

xx = array of values to sort
loop though i=1,n-1

loop through j=i+1,n
if xx(j)<xx(i) then swap xx(j) and xx(i)

end loop
end loop

Write this as a Fortran subroutine for a real array of 10 elements. Setxx to haveINTENT(INOUT)
so you can pass the result back via it’s original variable.

Write a program to test you subroutine.

80

The INTENT(INOUT) option is often used for passing arrays to and from subroutines. As large arrays
take up valuable memory, it is usually more convenient to reuse existing arrays rather than creating
copies.

7.4 Arrays and Procedures

In exercises 7.6 and 7.7 we have seen how arrays can be incorporated as input and output variables in
procedures. However, in both cases we fixed the size of the array to 10 elements in both the subroutine
and the procedure. Ideally, the program and the subroutine should not need to know details of each others
code. Also, it would be more convenient if we could write a subroutine (or a function) that can accept
an array of arbitrary size. For example, it would be better towrite a subroutine that would calculate the
mean and standard deviation for an array with any amount of elements.

This can be done by also passing the number of elements in the array as an argument and specifying the
array withDIMENSION(n) in the specification. For example,

SUBROUTINE print_sum_squares(n, xx)

IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, DIMENSION(n), INTENT(IN) :: xx

INTEGER :: i
REAL :: ssq

ssq = 0.0
DO i=1,n

ssq = ssq + xx(i) ** 2.0
END DO

PRINT * , ’Sum of squares = ’, ssq

END SUBROUTINE print_sum_squares

Ex 7.8 Modify your mean and standard deviation subroutine from exercise 7.6 so that it will accept
an array of arbitrary size.

Write a program to test it with different size arrays.

Ex 7.9 Modify your sorting subroutine from exercise 7.7 so that it will accept an array of arbitrary
size.

Write a program to test it with different size arrays.

You can do this for higher dimensional arrays. For example, to pass a two-dimensional array you would
type something like

SUBROUTINE mysub(nx, ny, arr)
INTEGER, INTENT(IN) :: nx, ny
INTEGER, DIMENSION(nx,ny), INTENT(INOUT) :: arr

and so on for higher dimensional arrays.

There are a variety of other ways of using arrays of varying size in subroutines and functions. This
include using arrays with different lower and upper bounds and passing the lower and upper bounds as

81

extra arguments in the procedure. These are beyond the scopeof this course and are covered in more
detail in Ellis, Philips and Lahey.

7.5 Array Valued Functions

As well asREALand INTEGERvalued functions, you may also have array valued functions.These
might be declared as follows

FUNCTION myfunc(...)

IMPLICIT NONE
REAL, DIMENSION(10) :: myfunc
.
.
.

END FUNCTION myfunc

You may not want the size of the returned array to have a fixed size, rather one specified on input, e.g.,

FUNCTION myfunc(n)

IMPLICIT NONE
REAL, INTENT(IN) :: n
REAL, DIMENSION(n) :: myfunc
.
.
.

END FUNCTION myfunc

There are some other technical specifics with array valued functions which are not covered in detail here,
for further details, please refer to Ellis, Philips and Lahey.

82

8 File Handling

So far we have restricted ourselves to reading data from the keyboard and writing to the screen. For
larger amounts of data, this becomes impractical and we wantto be able to input data from a file (perhaps
generated by an experiment or another computer program) andwrite it out to another file (perhaps so we
can read it into MathCAD and plot it).

In Fortran, we can read and write files in a variety of formats and compressions, however, for this course,
we will restrict ourselves to plain text files that we can read/write using a text editor.

8.1 Opening and Closing a File

A file can be opened using theOPENstatement. The open statement takes a list of arguments, some of
which are mandatory, others are optional. As a minimum, you should use the following arguments:

OPEN(UNIT=n, FILE= filename)

Wheren is a unique integer constant or variable to identify that is used to reference the file within your
program andfilename is a character constant or variable which refers to the name of your file. So for
example

OPEN(UNIT=10, FILE="myfile.dat")

The file should be located in, or will be written to, the directory in which you run your program.

For the purpose of this course, you should also include the optionsFORM="FORMATTED". The options
here areFORMATTEDor UNFORMATTED. However, in this course we will only deal withFORMATTED
files. So for example

OPEN(UNIT=10, FILE="myfile.dat", FORM="FORMATTED")

The next option is to tell Fortran what your intention for thefile is, will you be reading it or writing to
it? This is theACTIONoption. This may take the valuesACTION="READ" andACTION="WRITE" .
This will restrict what you can do to a file. There is also aREADWRITEoption that allows you to read
and write to the same file, however, this is dangerous and we will not use this option in this course.

The final option that we will look at (though there are other options available) is theSTATUSoption.
This may take the valuesOLD, NEW, REPLACE, SCRATCHandUNKNOWN.

If the file status isOLD, then the file must already exist, whereas if the status isNEWthen the file must
not already exist and Fortran will create a new file with that name (and change its status toOLDso that
subsequent attempts to open the file asNEWwill fail).

If the file status isREPLACE, then Fortran will delete that file (if it already exists) andwrite a new file
with the same name. If the file does not already exist, then it will act as ifNEWwere specified.

If the file status isSCRATCHthen a temporary file will be created for the use of the program. This file
will be deleted at the completion of the program. You do not specify a filename with this option.

The UNKNOWNoption is implementation specific, and different Fortran compilers may do different
things. The most common implementation is that if the file exists it acts asOLDand if it doesn’t ex-
ist it acts asNEW.

A file may be closed using theCLOSE(n) statement, wheren is the file reference. For example

OPEN(UNIT=20, FILE="myfile.dat", FORM="FORMATTED", &
& ACTION="READ", STATUS="OLD")

83

.

.

.
CLOSE(20)

8.2 Reading from a File

You can read data from an existing file using theREADstatement in a similar way as you read data from
the keyboard. The usage is slightly different from the form you have previously seen. It is

READ(UNIT=n, FMT=*) x, y, z

This will read in three quantities (of the type defined byx , y andz) from the file referenced byn. The
usual rules for reading apply and you are not able to read in more data than exists in the file (the program
will throw and end of file error).

Note, theREAD * , x, y, z that you have seen so far is a special shortcut and meansREAD(UNIT=* ,
FMT=*) x, y, z . The* unit is a special unit that means the standard way that information is inputted
or outputted (depending on context).

Ex 8.1 Create a file calledtest8.1.dat in emacs (or whatever) and type in the following:

1.0 2.0 3.0
4 5 6

Now type in and run the following program

PROGRAM iotest1

IMPLICIT NONE
INTEGER :: a, b, c
REAL :: x, y, z

! open file
OPEN(UNIT=10, FILE="test8.1.dat", FORM="FORMATTED", &

& ACTION="READ", STATUS="OLD")

! read in data
READ(UNIT=10, FMT= *) x, y, z
READ(UNIT=10, FMT= *) a, b, c

! close file
CLOSE(10)

! print out data
PRINT * , ’x=’,x
PRINT * , ’y=’,y
PRINT * , ’z=’,z
PRINT * , ’a=’,a
PRINT * , ’b=’,b
PRINT * , ’c=’,c

END PROGRAM iotest1

84

Try changing the numbers in the datafile and how much data is read in until you are happy
you understand reading data from a file. Try creating a different data file with a different
name and read data from that as well (you will want a differentidentifying number if you
have more than one file open).

You can read in whole arrays in one go, for example, if you had adata file containing 100 numbers, you
could read them all in as follows:

REAL, DIMENSION(100) :: arr
.
.
.
READ(UNIT=5, FMT=*) arr

Ex 8.2 Create a data file containing the following numbers.

2.5 4.1 0.9 8.3 1.7
6.5 3.5 7.9 3.1 0.2

Modify your sorting program from exercise 7.9 so that it reads in the data from the file and
sorts those numbers.

Try changing the size of the array and the number of pieces of data in the data file.

8.3 Writing to a File

The method of writing files is very similar to this, except we need to change the value of some of the
options in theOPENstatement and use theWRITEstatement. The usage of theWRITEstatement is
similar to that of theREADstatement, for example

WRITE(UNIT=n, FMT=*) x, y, z

This will write out three quantities (of the type and value defined byx , y andz) to the file referenced by
n.

Ex 8.3 Type in and run the following program

PROGRAM iotest2

IMPLICIT NONE
INTEGER :: a, b, c
REAL :: x, y, z

! initialise some data
a=9
b=8
c=7
x=0.1
y=0.2
z=0.3

! open file
OPEN(UNIT=10, FILE="test8.3.dat", FORM="FORMATTED", &

85

& ACTION="WRITE", STATUS="NEW")

! read in data
WRITE(UNIT=10, FMT= *) x, y, z
WRITE(UNIT=10, FMT= *) a, b, c

! close file
CLOSE(10)

END PROGRAM iotest2

The program should have created the filetest8.3.dat at the command line, look at the
contents of this file by typing

dob@fortran:˜> cat test8.3.dat

Run this program again. Did it crash? Do you know why it crashed?

Try replacingSTATUS="NEW"with STATUS="REPLACE"and compile and run the pro-
gram. Does it crash this time?

Try changing the values of the data written and the amount of data written. Instead of
variables, try writing numerical and character constants as well. Do this until you are happy
about writing files.

As with theREADstatement, you canWRITEan array of data out to file in one go as follows

REAL, DIMENSION(100) :: arr
.
.
.
WRITE(UNIT=7, FMT= *) arr

Ex 8.4 Modify your sorting code in exercise 8.2 so that it writes thesorted numbers out to a new
file.

Play with the code so that it works with different sizes of datasets.

Ex 8.5 Look back over some of the codes that you have written in the earlier chapters of this
course. Modify them so that they input their data from a file and output the results to file.

Do this with as many programs as you wish until you are happy with reading and writing
files.

86

