
Object-Oriented Development
and

The Unified Modeling Language
UML

Department of Computer Science
Kent State University

J. Maletic Kent State University 2

UML Part I

•  Introduction to UML
•  Overview and Background

J. Maletic Kent State University 3

Objectives of UML

•  UML is a general purpose notation that is
used to

•  visualize,
•  specify,
•  construct, and
•  document

the artifacts of a software systems.

J. Maletic Kent State University 4

Background

•  UML is the result of an effort to simplify
and consolidate the large number of OO
development methods and notations

•  Main groups: Booch [91], Rumbaugh [91],
Jacobson [92]

•  Object Management Group – www.omg.org

J. Maletic Kent State University 5

Types of Diagrams

•  Structural Diagrams – focus on static
aspects of the software system
– Class, Object, Component, Deployment

•  Behavioral Diagrams – focus on dynamic
aspects of the software system
– Use-case, Interaction, State Chart, Activity

J. Maletic Kent State University 6

Structural Diagrams

•  Class Diagram – set of classes and their
relationships. Describes interface to the class (set
of operations describing services)

•  Object Diagram – set of objects (class instances)
and their relationships

•  Component Diagram – logical groupings of
elements and their relationships

•  Deployment Diagram - set of computational
resources (nodes) that host each component.

J. Maletic Kent State University 7

Behavioral Diagram

•  Use Case Diagram – high-level behaviors of the
system, user goals, external entities: actors

•  Sequence Diagram – focus on time ordering of
messages

•  Collaboration Diagram – focus on structural
organization of objects and messages

•  State Chart Diagram – event driven state
changes of system

•  Activity Diagram – flow of control between
activities

J. Maletic Kent State University 8

Analysis & Design Process
•  Requirements elicitation – High level capture of user/

system requirements
–  Use Case Diagram

•  Identify major objects and relationships
–  Object and class diagrams

•  Create scenarios of usage
–  Class, Sequence and Collaboration diagrams

•  Generalize scenarios to describe behavior
–  Class, State and Activity Diagrams

•  Refine and add implementation details
–  Component and Deployment Diagrams

J. Maletic Kent State University 9

UML Driven Process

Requirements Elicitation Analysis Specification Design Implementation

Object Diagram Sequence
Diagram

Use Case
Diagram State Chart Deployment

Diagram

Collaboration
Diagram

Activity
Diagram

Class Diagram

J. Maletic Kent State University 10

Requirements
Elicitation

Use Case
Diagrams

Validate

Analysis

Object Diagram

Sequence
Diagrams

Validate

Design

Class
Diagram

State Chart
Diagrams

Validate

UML Driven
Process Model

J. Maletic Kent State University 11

Work Products

•  Functional Model – Use Case diagrams
•  Analysis Object Model – simple object/

class diagram
•  Dynamic Model – State and Sequence

diagrams
•  Object Design Model – Class diagrams
•  Implementation Model – Deployment, and

Activity diagrams

J. Maletic Kent State University 12

Architecture (4+1 View)

Design View

Process View Deployment
 View

Implementation
 View

Scenarios Behavior

Vocabulary
Functionality
Logic

Performance
Scalability
Throughput

System assembly
Configuration management

System topology
Distribution
Delivery
Installation

4+1 and UML

•  Scenarios – Use cases
•  Design View – Class and sequence diagrams
•  Process View – Activity diagrams
•  Implementation View – Component diagrams
•  Development View – Deployment diagrams

•  Kruchten, IEEE Software 12(6), pp. 42-50, 1995

J. Maletic Kent State University 13

J. Maletic Kent State University 14

Models of OO Analysis and
Design

Class structure
Object structure

Module architecture
Process architecture

Dynamic Model

Static Model

Logical Model

Physical Model

J. Maletic Kent State University 15

UML Part II

•  Modeling Requirements
•  Use Cases
•  Scenarios

J. Maletic Kent State University 16

Use Case Diagrams

•  Describes a set of sequences.
•  Each sequence represents the interactions of

things outside the system (actors) with the
system itself (and key abstractions)

•  Use cases represent the functional
requirements of the system (non-functional
requirements must be given elsewhere)

J. Maletic Kent State University 17

Use case

•  Each use case has a descriptive name
•  Describes what a system does but not how it

does it.
•  Use case names must be unique within a

given package
•  Examples: withdraw money, process loan

A Use Case

J. Maletic Kent State University 18

Actor

•  Actors have a name
•  An actor is a set of roles that users of use

cases play when interacting with the system
•  They are external entities
•  They may be external an system or DB
•  Examples: Customer, Loan officer

An Actor

J. Maletic Kent State University 19

What is a Use Case

•  Use case captures some user-visible
functionality

•  Granularity of functionality depends on the
level of detail in your model

•  Each use case achieves a discrete goal for
the user

•  Use Cases are generated through
requirements elicitation

J. Maletic Kent State University 20

Goals vs. Interaction

•  Goals – something the user wants to achieve
– Format a document
– Ensure consistent formatting of two documents

•  Interaction – things the user does to achieve
the goal
– Define a style
– Change a style
– Copy a style from one doc to the next

J. Maletic Kent State University 21

Developing Use Cases

•  Understand what the system must do –
capture the goals

•  Understand how the user must interact to
achieve the goals – capture user interactions

•  Identify sequences of user interactions
•  Start with goals and refine into interactions

J. Maletic Kent State University 22

Example

Buy Item

Log in

Refund a Purchase

CustomerCashier

Point of Sale Terminal

J. Maletic Kent State University 23

Refining Use Cases

•  Separate internal and external issues
•  Describe flow of events in text, clearly

enough for customer to understand
– Main flow of events
– Exceptional flow of events

•  Show common behaviors with includes
•  Describe extensions and exceptions with

extends

J. Maletic Kent State University 24

Extend and Include

User

Select an Option

Change Time or Date

Display Hightest
and Lowest

Clock

«include»

«include»

Invalid Date
«extends»

J. Maletic Kent State University 25

System Boundary

Buy Item

Refund a Purchase

Customer

Store

*

*

*

*

J. Maletic Kent State University 26

Use Case – Buy Item

•  Actors: Customer (initiator), Cashier
•  Type: Primary
•  Description: The costumer arrives at the

checkout with items to purchase. Cashier
records purchases and collects payment.
Customer leaves with items

J. Maletic Kent State University 27

Example (generalization)

Perform Card
Transaction

Manage Customer
Account

Reconcile
Transaction

Process Customer
Bills

Credit Card Validation

Retail Institution

Finacial Institution

Customer

Corporate Custumer

Individual Custumer

«inherits»

«inherits»

J. Maletic Kent State University 28

Example: Weather Monitoring
Station

•  This system shall provide automatic monitoring of various
weather conditions. Specifically, it must measure:
–  wind speed and direction
–  temperature
–  barometric pressure
–  humidity

•  The system shall also proved the following derived
measurements:
–  wind chill
–  dew point temperature
–  temperature trend
–  barometric pressure trend

J. Maletic Kent State University 29

Weather Monitoring System
Requirements

•  The system shall have the means of determining the
current time and date so that it can report the highest and
lowest values for any of the four primary measurements
during the previous 24 hour period.

•  The system shall have a display that continuously indicates
all eight primary and derived measurements, as well as
current time and date.

•  Through he use of a keypad the user may direct the system
to display the 24 hour low or high of any one primary
measurement, with the time of the reported value.

•  The system shall allow the user to calibrate its sensors
against known values, and set the current time and date.

J. Maletic Kent State University 30

Hardware Requirements
•  Use a single board computer (486?)
•  Time and date are supplied by an on-board clock accessible via

memory mapped I/O
•  Temperature, barometric pressure, and humidity are measured by on

board circuits with remote sensors.
•  Wind direction and speed are measure from a boom encompassing a

wind vane (16 directions) and cups (which advance a counter every
revolution)

•  User input is provided through an off the shelf keypad, managed by
onboard circuit supplying audible feed back for each key press.

•  Display is off the self LCD with a simple set of graphics primitives.
•  An onboard timer interrupts the computer every 1/60 second.

J. Maletic Kent State University 31

Display and Keypad
•  LCDDisplay – Values and current system state (Running, Calibrating,

Selecting, Mode)
–  Operations: drawtext, drawline, drawcircle, settextsize, settextstyle,

setpensize
•  Keypad allows user input and interaction

–  Operations: last key pressed
–  Attributes: key

Date:
Time:
Temp:
Pressure:
Humidity:

N

S

E W

Temp Hum Press

Wind Time Date
Select Cal Mode

J. Maletic Kent State University 32

Use Diagrams

User

Clock

Sensor

Turn System on/off

Calibrate Sensor

Set Time/Date

Set Temperature
Units

Display Highest
and Lowest

Weather Station

J. Maletic Kent State University 33

Scenario: Powering Up

1.  Power is turned on
2.  Each sensor is constructed
3.  User input buffer is initialized
4.  Static elements of display are drawn
5.  Sampling of sensors is initialized

The past high/low values of each primary measurement is set to the value

and time of their first sample.
The temperature and Pressure trends are flat.
The input manager is in the Running state

J. Maletic Kent State University 34

Scenario: Setting Time and Date

1.  User presses Select key
2.  System displays selecting
3.  User presses any one of the keys Time or Date. Any other key is

ignored except Run
4.  System flashes the corresponding label
5.  Users presses Up or Down to change date or time.
6.  Control passes back to step 3 or 5

User may press Run to abandon the operation.

J. Maletic Kent State University 35

Scenario: Display highest and lowest

1.  User presses Select key
2.  System displays selecting
3.  User presses any one of the keys (Wind, Temp, Humidity, Pressure).

Any other key is ignored except Run
4.  System flashes the corresponding label
5.  Users presses Up or Down to select display of highest or lowest in

24 hour period. Any other key press is ignored except for Run
6.  System displays value with time of occurrence
7.  Control passes back to step 3 or 5

User may press Run to abandon the operation.

J. Maletic Kent State University 36

Use Diagrams

User

Select an Option

Change Time or Date

Display Hightest
and Lowest

Clock

«include»

«include»

J. Maletic Kent State University 37

Summary

•  A well structured use case:
– Names a single identifiable and reasonably

atomic behavior of the system
– Factors common behavior by pulling such

behavior from other use cases that include it
– Factors variants by pushing such behavior into

other uses cases that extend it
– Describes events clearly
– Described in a minimal set of scenarios

J. Maletic Kent State University 38

UML Part III

•  Object Oriented Analysis
•  Classes & Objects
•  Class Diagrams

J. Maletic Kent State University 39

From Requirements to Analysis

•  From the Use Case diagrams an initial set of
objects and classes can be identified

•  This is the first step of analysis
•  The second step is to refine the use cases

through interaction diagrams
•  Class diagrams and the object oriented

paradigm will be covered first

J. Maletic Kent State University 40

Objects

•  An object has a state, behavior and identity.
•  The structure and behavior of similar objects are

defined in their class.
•  Terms instance and object are interchangeable.
•  State – the properties of an object and the current

values of these properties
•  Behavior – how an object acts and reacts in terms

of its state change and message passing

J. Maletic Kent State University 41

Objects and Classes

•  Class – a generalization of a set of entities
with common structure, behavior, and
relationships to other classes. An abstract
data type.
– A person, an employee

•  Object – an instance of a class. It has a
state, value, and scope of existence
–  Joe Smith, Jane Doe

J. Maletic Kent State University 42

What is a good Class?

•  Should provide a crisp abstraction of something
from the problem (or solution) domain

•  Embody a small well defined set of
responsibilities and carry them out well

•  Provides clear separation of abstraction,
specification, and implementation

•  Is understandable and simple yet extendable and
adaptable.

J. Maletic Kent State University 43

Object Oriented Decomposition

•  Identifying objects which derived from the
vocabulary of the problem (and solution)
domain.

•  Algorithmic view highlights the ordering of
events

•  OO view emphasizes the agents that either
cause action or are the subject upon which
the actions operate.

J. Maletic Kent State University 44

Object Oriented Paradigm

•  OO Analysis – A method of analysis which
examines requirements from the perspective of
classes and objects found in the vocabulary of the
problem domain

•  OO Design – A method of design encompassing
the process of object oriented decomposition.

•  OO programming – A method of implementation
in which programs are organized as cooperative
collections of objects, each an instance of a class
whose members are part of a inheritance hierarchy

J. Maletic Kent State University 45

Object Model

•  Abstraction – separate behavior from implementation
•  Encapsulation – separate interface from implementation
•  Modularity – high cohesion and low coupling
•  Hierarchy – Inheritance
•  Polymorphism – dynamic variable binding
•  Typing – strong enforcement
•  Concurrency – active vs. inactive
•  Persistence – existence transcends runtime

J. Maletic Kent State University 46

Types of Objects

•  Boundary – represent the interactions
between the system and actors

•  Control – represent the tasks that are
performed by the user and supported by the
system

•  Entity – represent the persistent information
tracked by the system

•  See [Jacobson ’99]

J. Maletic Kent State University 47

A Class in UML

+print()

-name : string(idl)
-age : int

PersonClass name

Attributes

Operators

J. Maletic Kent State University 48

An Object in UML

object name
and class joe : Person

J. Maletic Kent State University 49

Class Relationships in UML

•  Generalization
•  Dependency
•  Association

•  These can represent inheritance, using,
aggregation, etc.

-Role1

*

-Role2

0..1

J. Maletic Kent State University 50

Example class diagram

+open()
+close()
+display()

-name : string(idl)
window

dialogboxconsolewindow

event

control

J. Maletic Kent State University 51

Association

•  Structural relationship between peer classes
(or objects).

•  Association can have a name and direction,
or be bi-directional

•  Role names for each end of the association
•  Multiplicity of the relationship

J. Maletic Kent State University 52

Examples of Association

person company

person company

Works For

-employee

1..*

-employer

*

J. Maletic Kent State University 53

Aggregation

•  Special type of association
•  Part of relationship
•  Can use roles and multiplicity

university department

1 *

J. Maletic Kent State University 54

Link Attributes

•  Associations may have properties in the
same manner as objects/classes.

•  Salary and job title can be represented as

person company

-salary
-title

1..*

-employee

*

-employer

J. Maletic Kent State University 55

Dependency

•  Represents a using relationship
•  If a change in specification in one class

effects another class (but not the other way
around) there is a dependency

windchill

windspeedSensor

tempatureSensor

J. Maletic Kent State University 56

Generalization
Sensor

+currentValue()
+calibrate()

CalibratingSensor

+currentDirection()

WindDirectionSensor

+resetHighest()
+resetLowest()

-highestValue
-lowestVale

HistoricalSensor

-trend
TrendSensor

+currentHumidity()
-humidity
HumiditySensor

+currentSpeed()
-speed
WindspeedSensor

+currentTemp()
-temp
TemperatureSensor

+currentPressure()
-pressure

Barometer

• An is-a relationship
• Abstract class

J. Maletic Kent State University 57

Which Relation is Right?

•  Aggregation – aka is-part-of, is-made-of,
contains

•  Use association when specific (persistent)
objects have multiple relationships (e.g.,
there is only one Bill Gates at MS)

•  Use dependency when working with static
objects, or if there is only one instance

•  Do not confuse part-of with is-a

J. Maletic Kent State University 58

Object Modeling

•  Given the high-level requirements (use cases)
•  Define the object model

–  Identify objects
–  Compile a data dictionary
–  Identify association and aggregations
–  Identify attributes of objects
–  Generalize objects into classes
–  Organized and abstract using inheritance
–  Iterate and refine model
–  Group classes into modules/components

J. Maletic Kent State University 59

Example: Weather Monitoring
Station

•  This system shall provide automatic monitoring of various
weather conditions. Specifically, it must measure:
–  wind speed and direction
–  temperature
–  barometric pressure
–  humidity

•  The system shall also proved the following derived
measurements:
–  wind chill
–  dew point temperature
–  temperature trend
–  barometric pressure trend

J. Maletic Kent State University 60

Weather Monitoring System
Requirements

•  The system shall have the means of determining the
current time and date so that it can report the highest and
lowest values for any of the four primary measurements
during the previous 24 hour period.

•  The system shall have a display that continuously indicates
all eight primary and derived measurements, as well as
current time and date.

•  Through he use of a keypad the user may direct the system
to display the 24 hour low or high of any one primary
measurement, with the time of the reported value.

•  The system shall allow the user to calibrate its sensors
against known values, and set the current time and date.

J. Maletic Kent State University 61

Use Diagrams

User

Clock

Sensor

Turn System on/off

Calibrate Sensor

Set Time/Date

Set Temperature
Units

Display Highest
and Lowest

Weather Station

J. Maletic Kent State University 62

Identify Objects

•  From the vocabulary of the domain
•  User, clock, sensor, temperature, LCDDisplay,

Keypad, time, date, wind speed, humidity,
barometer, calibrator, metric units, English units,
input manager, sensor sampler, wind direction,
display manager, trend, pressure, current time,
current date, current temp, high temp, low temp,
change temp, change time, power up, power
down, input buffer, trend, key, running, selecting

J. Maletic Kent State University 63

Eliminate Terms

•  Refine the model by eliminating
•  Redundancy – classes that represent same concept
•  Irrelevant classes – things you don’t care about
•  Vague classes – ill defined boundaries
•  Attributes – describe parts of objects
•  Operators – sequence of actions are often

mistaken for classes
•  Roles – what it is not the role it plays
•  Implementation details – save it for later

J. Maletic Kent State University 64

New Data Dictionary

•  Time & Date
•  Sensors: Temperature, Pressure, Humidity, Wind Speed,

Wind Direction
•  Keypad
•  Input Manager
•  Display (LCD Device)
•  Display Manager
•  Timer (clock)
•  Sensor Sampler

J. Maletic Kent State University 65

Relationships

LCDDevice

displayManager

sampler

+currentTemp()
-temp
Top Package::TemperatureSensor

+currentDirection()

Top Package::WindDirectionSensor

+currentSpeed()
-speed
Top Package::WindspeedSensor

+currentHumidity()
-humidity
Top Package::HumiditySensor

+currentPressure()
-pressure
Top Package::Barometer

1

1

1

1

1
11

1

1

1

J. Maletic Kent State University 66

Relationships

sensors

samplerinputManager

displayManager

«interface»
keypad

«interface»
LCDDevice «interface»

timer

-time
-date

timeDate

windChill

1

1

1

1

1

1

1
1

1

1

dewPoint

windDirection

sensor1

1

1

1

1

1..*

1

1

J. Maletic Kent State University 67

UML Part IV

•  Modeling Behavior
•  Interaction Diagrams
•  State Chart Diagrams
•  Activity Diagrams

J. Maletic Kent State University 68

Refining the Object Model

•  Typically, only very simplistic object models can be
directly derived from use cases.

•  A better understanding of the behavior of each use case is
necessary (i.e., analysis)

•  Use interaction diagrams to specify and detail the behavior
of use cases

•  This helps to identify and refine key abstractions and
relationships

•  Operations, attributes, and messages are also identified
during this process

J. Maletic Kent State University 69

Interaction Diagrams
•  There is one (or more) Interaction diagram per use case

–  Represent a sequence of interactions
–  Made up of objects, links, and messages

•  Sequence diagrams
–  Models flow of control by time ordering
–  Emphasizes passing messages wrt time
–  Shows simple iteration and branching

•  Collaboration diagrams
–  Models flow of control by organization
–  Structural relationships among instances in the interaction
–  Shows complex iteration and branching

J. Maletic Kent State University 70

Sequence Diagrams

•  X-axis is objects
–  Object that initiates interaction is left most
–  Object to the right are increasingly more subordinate

•  Y-axis is time
–  Messages sent and received are ordered by time

•  Object life lines represent the existence over a
period of time

•  Activation (double line) is the execution of the
procedure.

J. Maletic Kent State University 71

Message Passing

•  Send – sends a signal (message) to an object
•  Return – returns a value to a caller
•  Call – invoke an operation
•  Stereotypes

– <<create>>
– <<destroy>>

call

send

Return

J. Maletic Kent State University 72

Example UML Sequence
Diagram

c:client p:planningAssistant

:TicketAgent
<<create>>

setItinerary(i)

calculateRoute()

route

<<destroy>>

notify()

J. Maletic Kent State University 73

Example
S : sampler WD : sensors WS : sensors Temp : sensors Hum : sensors

Every 1/60 sec.

Every 0.5 sec.

Every 5 min.

J. Maletic Kent State University 74

S:Caller :swtich R:Caller

c:converse

liftReceiver

setDialtone

dialDigit(d)

routeCall(S,R)

<<CREATE>>

ring

liftReceiver

connect

connectconnect

J. Maletic Kent State University 75

Mail System

owner

Administrator

access mailbox

retrieve a message

change greeting

set password

delete a message

add a mailbox

remove a mailbox

set a user's
password

«extends»

Leave a message
caller

J. Maletic Kent State University 76

Mail System (2)

owner

retrieve a message

delete a message

«uses»

caller

Leave a message

Reach an extension

«uses»

J. Maletic Kent State University 77

Mail System Objects

•  Caller, owner, administrator
•  Mailbox, extension, password, greeting
•  Message, message list
•  Mail system
•  Input reader/device

J. Maletic Kent State University 78

Access Mailbox

 : owner

 : mailboxrecorder : inputReader

ext : extension

sys

ext:=getExtension()

verifyExtension

lookup(ext:extension)

checkForInput

dial(dddd)

promptForExtension

Notify

dial(8888)

create()

J. Maletic Kent State University 79

Leave a
message

 : caller

 : mailbox

mes : message

recorder : inputReader

ext : extension

sys

ext:=getExtension()

verifyExtension

getMessage

lookup(ext)

saveMessage(mes)

dial(dddd)

hangup

create

talk()

create()

promptForMessage

J. Maletic Kent State University 80

+verifyExtension()
-promptForExtension()
-promptForMessage()
-notifyDone()

MailSystem

adminMailbox

+lookup(in mailbox : extension)
+saveMessage(in mess : message)

mailbox

+getExtension() : extension
+getMessage() : message
+dial()
+hangup()
+checkForInput()
+talk()

inputReader

messageList

+create()

message

1

2

1

*

1

-Administrator1

1
-Users*

+create()

extension

1 1

J. Maletic Kent State University 81

Properties of Sequence Diagrams

•  Initiator is leftmost object (boundary object)
•  Next is typically a control object
•  Then comes entity objects

J. Maletic Kent State University 82

Collaboration Diagrams

•  Emphasizes the organization of the objects
that participate in an interaction

•  Classifier roles
•  Association
•  Messages, flow, and sequencing

J. Maletic Kent State University 83

Example Collaboration Diagram

orderTaker TicketDB

CreditBureau

Request(order, customer) 2: cost:=researce(order)

1: checkCredit(customer)

3: debit(customercost)

J. Maletic Kent State University 84

Leave a Message

inputReader

mailbox

MailSystem

1: dial
3: dial
6: talk

2: checkforInput()
4: ext:=getExtension()

7: mess:=getMessage()

5: Lookup(ext)

8: save(mess)

J. Maletic Kent State University 85

Collaboration vs Sequence

•  The two diagrams really show the same
information

•  Collaboration diagrams show more static
structure (however, class diagrams are
better at this)

•  Sequence diagrams clearly highlight the
orderings and very useful for multi-tasking

J. Maletic Kent State University 86

Summary (Interaction Diagrams)

•  Well structured interaction diagrams:
–  Is focused on communicating one aspect of a system’s

dynamics
–  Contains only those elements that are essential to

understanding
–  Is not so minimalistic that it misinforms the reader

about the semantics that are important
•  Diagrams should have meaningful names
•  Layout diagram to minimize line crossings
•  Use branching sparingly (leave for activity dia)

J. Maletic Kent State University 87

State Diagrams

•  Finite state machines (i.e., automata, Mealy/
Moore, state transition)

•  Used to describe the behavior of one object (or
sometimes an operator) for a number of scenarios
that affect the object

•  They are not good for showing interaction
between objects (use interaction diagrams)

•  Only use when the behavior of a object is complex
and more detail is needed

J. Maletic Kent State University 88

State Diagram Features

•  Event – something that happens at a specific point
–  Alarm goes off

•  Condition – something that has a duration
–  Alarm is on
–  Fuel level is low

•  State – an abstraction of the attributes and
relationships of an object (or system)
–  The fuel tank is in a too low level when the fuel level is

below level x for n seconds

J. Maletic Kent State University 89

Example: on/off Switch

on off

/ FlipSwitch

/ FlipSwitch

J. Maletic Kent State University 90

Using guards and actions

Waiting

Confirm
credit Cancel

order

Process
order

recieveOrder [amount<25]

recieveOrder [amount>25]
approve / debitAccount()

reject

trigger event guard

action

J. Maletic Kent State University 91

Activity Diagrams

•  Special form of a state machine (flow chart)
– intended to model computations and
workflows

•  States of the executing the computation not
the states of an object

•  Flow between activity states is caused by
the end of a computation rather then an
event

J. Maletic Kent State University 92

Why Activity Diagrams

•  Flowcharts (abet a bit glorified) are not very
amiable to OO

•  Not part of any previous notations
•  Suitable for modeling the business activities
•  OO and UML is becoming very prevalent in

business applications
•  Introduced to help sell products?

J. Maletic Kent State University 93

Example (from Mail System)
Get Extension

Access Mailbox

Retrieve messages Change Greeeting Change password

Enter new greeting enter new passwordDisplay current message

J. Maletic Kent State University 94

UML Part V

•  Implementation Diagrams
•  Component diagrams
•  Deployment diagrams

J. Maletic Kent State University 95

Component Diagrams

•  A component is a physical thing that conforms to
and realizes a set of interfaces

•  Bridge between logical and physical models
•  Can represent object libraries, COM components,

Java Beans, etc.
•  Classes represent logical abstractions, components

represent physical things that reside on a node
(machine).

•  Components are reachable only through interface

J. Maletic Kent State University 96

Examples

Transactions

«table»
AccountATM-GUI

Update

spell-check
synonymsDictionary
add-new-word

J. Maletic Kent State University 97

Mail System

Mail System
InputReader

Mailbox AdminMailbox

J. Maletic Kent State University 98

Deployment Diagrams

•  Nodes are physical elements that represent a
computational resource (machine)

•  Association between nodes
•  Components are allocated to nodes (one or more)
•  Components represent the physical packaging of

logical elements
•  Nodes represent the physical deployment of

components

J. Maletic Kent State University 99

Example

BankServer

ATMKiosk

-Server*

-Client*

J. Maletic Kent State University 100

With Components
BankServer

ATMKiosk

-server1

-client*

ATM-GUI

Transactions
«table»
Account

Update

J. Maletic Kent State University 101

Weather Station
Clock

Computer

LCD
Display

Keypad

Wind
Direction
Sensor

Wind
Speed
Sensor

Tempature
Sensor Humidity

Sensor Barometer

J. Maletic Kent State University 102

Modeling Source Code

Mailbox.cpp

Mailbox.h

Mailsystem.cpp

Inputreader.h

