(pasinay) uonnjonay TINX dUL :ydeqzuemyds % J9|I8IN- 8-T0-SN SOldd

BRICS

Basic Research in Computer Science

The XML Revolution

Revised

Anders Mgller
Michael I. Schwartzbach

BRICS Notes Series NS-01-8
ISSN 0909-3206 December 2001

Copyright (© 2001, Anders Mgller & Michael I. Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/01/8/

The XML Revolution

Technologies for the future Web

Anders Mgller & Michael I. Schwartzbach

BRICS, University of Aarhus

http://ww. brics. dk/ ~anoel | er/ XM/

Revised: December 2001

This slide collection provides an introduction and overview of
XML, Namespaces, Xinclude, XML Base, XLink, XPointer, XPath,
DTD, XML Schema, DSD, XSLT, XQuery, DOM, SAX, and JDOM
including selected links to more information about each topic.

http://www.brics.dk/~amoeller/
http://www.brics.dk/~mis/

About this tutorial...

This slide collection about XML and related technologies is created by

Anders Mgller
http://ww. brics. dk/ ~anoel | er

and

Michael I. Schwartzbach
http://ww. brics. dk/~m s

at the BRICS research center at University of Aarhus, Denmark.
Copyright © 2000-2001 Anders Mgller & Michael I. Schwartzbach

Reproduction of this slide collection is permitted on condition that it is
distributed in whole, unmodified, and for free, and that the authors are
notified.

The slide collection is aimed at computer scientists, software engineers, and
others who want to know what this XML thing is all about. It covers both the basic
XML concepts and the related technologies for document linking, describing
classes of documents, stylesheet transformation, and database-like querying,
from a technical but high-level point of view. Based on the essential XML-related
specifications, the slides are designed with concrete motivation and technical
contents in focus, for the reader who wishes to understand and actually use these
technologies.

A PDF version suitable for printing and off-line browsing is available upon request.

Feedback is appreciated! Please send comments and suggestions to
anoel | er @ri cs. dk.

mailto:amoeller@brics.dk
http://www.brics.dk/~amoeller
mailto:mis@brics.dk
http://www.brics.dk/~mis
mailto:amoeller@brics.dk?Subject=XML%20tutorial%20/%20PDF
mailto:amoeller@brics.dk

Contents

. HTML and XML - structuring information for the future (21 pp.) 4

. Namespaces, XInclude, and XML Base - common extension
to the XML specification (8 pp.) 32

. DTD, XML Schema, and DSD - defining language syntax with
schemas (27 pp.) 42

. XLink, XPointer, and XPath - linking and addressing (24 pp.) 87

. XSL and XSLT - stylesheets and document transformation (19 pp.) 115

. XQuery - document querying (15 pp.) 142
. DOM, SAX, and JDOM - programming for XML (15 pp.) 160

. W3C - some background on the World Wide Web Consortium (5 pp.) 181

Markup Languages: HTML
and XML

HTML - original motivation, development, and inherent limitations:

. Hyper-Text Markup Language - the Web today
« Original motivation for HTML - some history
Compact and human readable - alternative document formats
. From logical to physical structure - requirements from users
. Stylesheets - separating logical structure and layout
Different versions of HTML - a decade of development
. Syntax and validation - HTML as a formal language
. Browsers are forgiving - the real world
. Structuring general information - not everything is hypertext
. Problems with HTML - why HTML is not the solution

XML as the universal format for structuring information:

. What is XML? - the universal data format

. HTML vs. XML - the key differences

. A conceptual view of XML - XML documents as labeled trees
.« A concrete view of XML - XML documents as text with markup
. Applications of XML - an XML language for every domain

. The recipe example - designing a small XML language

. From SGML to SML - a word on doc-heads and development
. SGML relics - things to avoid

. XML technologies - generic languages and tools for free

Selected links:

. Basic XML tools
. Links to more information

Hyper-Text Markup Language

HTML: Hyper-Text Markup Language
What is hyper-text?

. adocument that contains links to other documents (and text, sound, images...)
. links may be actuated automatically or on request

. linked documents may replace, be inlined, or create a new window

« Mmost combinations are supported by HTML

What is a markup language?

. a notation for writing text with markup tags
. the tags indicate the structure of the text
. tags have names and attributes

. tags may enclose a part of the text

The start of the HTML for this page, witht ext ,t ags,and attri but es:

<t abl e wi dt h="99% >

<tr>
<td align=left>

<inmg src="../hone.qgif" border=0>
</ a>

<inmg src="../info.qgif" border=0>
</ a>

<td align=right>

<inmg src="../left.gif" border=0>
</ a>

</ a>

<inmg src="../right.gif" border=0>
</ a>
</td>
</[tr>
</t abl e>

<p>
<hl>Hyper - Text Markup Language</hl>
What is hyper-text?

<l i >a docunent that contains links to other docunents
(and text, sound, inmages...)
links may be actuated automatically or on request
l'i nked docunments may repl ace, be inlined,
or create a new w ndow
<l i >nbst conbi nati ons are supported by HTM
</ ul >

Original motivation for HTML

Exchange data on the Internet:

. documents are published by servers
. documents are presented by clients (browsers)

HTML was created by Tim Berners-Lee and Robert Caillau at CERN in 1991:

. the motivation was to keep track of experimental data

HTML describes only the logical structure of documents:

. browsers are free to interpret markup tags as they please
. the document even makes sense if the tags are ignored

HTML combined well-known ideas:

. hyper-text was known since 1945
markup languages date back to 1970

http://www.w3.org/History/1989/proposal.html
http://www.isg.sfu.ca/~duchier/misc/vbush/vbush-all.shtml
http://www.sgmlsource.com/history/jasis.htm

Compact and human
readable

Many document formats are very bulky:

. the author controls the precise layout
. all details, including many font tables, must be stored with the contents

In comparison, HTML is slim:

. the author sacrifices control for compactness
. only the actual contents and its logical structure is represented

Sizes of documents containing just the text "Hel | o Wor | d! ™

PostScript hel | 0. ps 11,274 bytes
PDF hel | 0. pdf | 4,915 bytes
MS Word hel | 0. doc |19,456 bytes
HTML hello. htm 44 bytes

Compactness is good for:

. saving space on your server
lowering network traffic

(Don't worry about voluminous markup - specialized compression techniques are
emerging.)

Furthermore, HTML documents can be written and modified with any raw-text
editor.

http://www.research.att.com/sw/tools/xmill/

From logical to physical
structure

Originally, HTML tags described logical structure:

. h2:"this is a header at level 2"
. em "this text should be emphasized"
. ul :"thisis a list of items"

Quickly, (non-physicist) users wanted more control:

. "this header is centered and written in Times-Roman in size 28pt"
. "this text is italicized"
. "these list items are indented 7mm and use pink elephants for bullets"

The early hack for commercial pages was to make everything a huge image:

HTML hel | 0. ht m 44 bytes
GIF |hello.gif 32,700 bytes

The HTML developers responded with more and more physical layout tags.

http://www.brics.dk/~amoeller/XML/print/xml/elephants.html

Stylesheets

Cascading Style Sheets (CSS):

. specify physical properties (layout) of HTML tags
. are (usually) written in separate files
. can be shared for many HTML documents

There are many advantages:

logical and physical properties may be separated
. document groups can have consistent looks
. the look can easily be changed

A CSS stylesheet works by:

. allowing more than 50 properties to be defined for each kind of tag;
. the definitions for a tag may depend on its context

. undefined properties are inherited from enclosing tags

. normal HTML corresponds to default values of properties

Using stylesheets, all tags become logical - however, CSS stylesheets only
address superficial properties of documents.

A CSS stylesheet is a collection of selectors and properties:

B {color:red;}

B B {col or: bl ue;}

B.foo {color:green;}

B B.foo {color:yellow}
B. bar {col or: maroon; }

In the HTML document, the most specific properties are chosen, so:

10

http://www.w3.org/Style/CSS/
http://www.zvon.org/xxl/css1Reference/Output/index.html

<b cl ass=f oo>Hey! </ b>
Wow! !
Amazi ng!!! </ b>
<b cl ass=f oo>l npressive! !l </ b>
<b cl ass=bar>k00I!!!!I</Db>
<i >Fantastic!!!!!lI</i>
</ b>

gives the result:

Hey! Wow!! Amazing!!! kOOI!!!!! Fantastic!!!!!!

When properly used, the physical layout (a CSS file) is separated from logical
structure and the actual contents (a HTML file).

With CSS stylesheets, any tag can be made to look like any other tag.

The default layout in a browser corresponds to a default stylesheet.

11

Different versions of HTML

HTML has been developed extensively over the years:

1992
HTML is first defined
1993
HTML+ (some physical layout, fill-out forms, tables, math)
1994
HTML 2.0 (standard for core features)
HTML 3.0 (an extension of HTML+ submitted as a draft standard)
1995
Netscape-specific non-standard HTML appears
1996
Competing Netscape and Explorer versions of HTML
HTML 3.2 (standard based on current practices)
1997
HTML 4.0 (separates structure and presentation with stylesheets)
1999
HTML 4.01 (slight modifications only)
2000
XHTML 1.0 (XML version of HTML 4.01)

12

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html
http://www.w3.org/MarkUp/htmlplus_paper/htmlplus.html
http://www.w3.org/MarkUp/html-spec/
http://www.w3.org/MarkUp/html3/CoverPage.html
http://www.w3.org/TR/REC-html32.html
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/html4
http://www.w3.org/TR/xhtml1/

Syntax and validation

HTML 4.01 has a precise and formal syntax definition.

. every HTML document should satisfy this definition

. this can be automatically validated

r HTML
. valid documents get an official seal of approval:

. invalid documents get a list of error messages

13

http://www.w3.org/TR/html4/sgml/dtd.html
http://validator.w3.org/
http://www.brics.dk/~amoeller/XML/print/xml/errors.html

Browsers are forgiving

Most HTML documents are in fact not valid:

. authors are careless
. documents are "validated" by showing them with a browser
. autogenerated HTML is often invalid

Even so, most HTML pages look fine:

. the browsers do their best
. N0 syntax errors are ever reported

Lousy

<h2>Lousy HTM.</ h1> HTML
<a>This is not very good.

<i>n fact, it is quite <g>bad</g></enr

But the browser does something.

. This is not very
good.

. Infact, it is quite
bad But the browser
does something.

A different approach is HTML Tidy, which corrects (some) errors in HTML
documents.

This is problematic:

. it promotes bad HTML

. different browsers do different "clever" things

. itis very hard to use invalid documents for other things than
browsing, e.g. for automatic processing by other tools!

14

http://www.w3.org/People/Raggett/tidy/

Structuring general information

Consider the following recipe collection published in HTML:

<h1>Rhubar b Cobbl er </ h1>
<h2>Maggi e. Herri ck@bs. mhv. net </ h2>
<h3>Wed, 14 Jun 95</ h3>

Rhubar b Cobbl er made wi th bananas as the mai n sweet ener.
It was delicious. Basicly it was

<t abl e>

<tr><td> 2 1/2 cups <td> diced rhubarb (blanched with boiling water, drain)
<tr><td> 2 tabl espoons <td> sugar

<tr><td> 2 <td> fairly ripe bananas sliced 1/4" round

<tr><td> 1/4 teaspoon <td> ci nnanon

<tr><td> dash of <td> nutneg

</t abl e>

Combi ne all and use as cobbler, pie, or crisp.

Rel ated reci pes: Garden Qui che

There are many problems with this approach of using HTML:

. the semantics is encoded into text formatting tags
. there is no means of checking that a recipe is encoded correctly
. itis difficult to change the layout of recipes (CSS is not enough)

It would be much better to invent a special "recipe markup language"...

15

Problems with HTML

. The language is by design hardwired to describe hypertext:
o there is a fixed collection of tags with a fixed semantics
o but much information just is not hypertext!

. Syntax and semantics is mixed together:
o the structuring of data dictates its presentation in browsers
1 stylesheets only provide a weak solution
o different views are not supported

. The standards have been undermined:
o most HTML documents are invalid
o the browsers define sloppy ad-hoc standards

16

What i1s XML?

XML: eXtensible Markup Language
XML is a framework for defining markup languages:

. thereis no fixed collection of markup tags - we may define our own tags,
tailored for our kind of information

. each XML language is targeted at its own application domain, but the
languages will share many features

. there is a common set of generic tools for processing documents

XML is not a replacement for HTML:

HTML should ideally be just another XML language
in fact, XHTML is just that

. XHTML is a (very popular) XML language for hypertext markup

XML is designed to:

. Separate syntax from semantics to provide a common framework for

structuring information (browser rendering semantics is completely defined
by stylesheets);

. allow tailor-made markup for any imaginable application domain
. support internationalization (Unicode) and platform independence

be the future of structured information, including databases

17

http://www.w3.org/TR/xhtml1/
http://www.unicode.org/

HTML vs. XML

Consider the HTML recipe collection again:

<h1>Rhubar b Cobbl er </ hl1>
<h2>Maggi e. Herri ck@bs. mhv. net </ h2>
<h3>Wed, 14 Jun 95</ h3>

Rhubar b Cobbl er nade with bananas as the nmin sweet ener.
It was delicious. Basicly it was

<t abl e>

<tr><td> 2 1/2 cups <td> diced rhubarb
<tr><td> 2 tabl espoons <td> sugar
<tr><td> 2 <td> fairly ripe bananas
<tr><td> 1/4 teaspoon <td> ci nnanon
<tr><td> dash of <td> nutneg

</t abl e>

Conmbi ne all and use as cobbler, pie, or crisp.

Rel ated reci pes: Garden Qui che

With XML, we can instead define our own "recipe markup language" where the markup tags
directly correspond to concepts in the world of recipes:

<reci pe id="117" category="dessert">
<titl e>Rhubarb Cobbler</title>
<aut hor ><emmi | >Maggi e. Herri ck@bs. mhv. net </ emai | ></ aut hor >
<dat e>Wed, 14 Jun 95</dat e>

<descri pti on>
Rhubar b Cobbl er made with bananas as the nain sweet ener.
It was delicious.

</ descri pti on>

<i ngr edi ent s>
<i tenmp<anount >2 1/ 2 cups</anpbunt ><t ype>di ced rhubarb</type></iten>
<i t enp<anount >2 t abl espoons</ anount ><t ype>sugar </ type></itenp
<i t enp<anount >2</ anount ><type>fairly ripe bananas</type></itenr
<i t enrp<anount >1/ 4 teaspoon</ anount ><t ype>ci nnanon</type></itenp
<i t emp<anount >dash of </ anbunt ><t ype>nut neg</type></itenp
</ingredi ent s>

<pr epar ati on>
Conmbi ne all and use as cobbler, pie, or crisp.
</ preparation>

<rel ated url ="#Gar denQui che">Garden Qui che</rel at ed>

18

</recipe>

This example illustrates:

the markup tags are chosen purely for logical structure

this is just one choice of markup detail level

we need to define which XML documents we regard as "recipe collections”
we need a stylesheet to define browser presentation semantics

we need to express queries in a general way

XML Schema will later be used to define our class of recipe documents

XSLT will be used to transform the XML document into XHTML (or HTML), including
automatic construction of index, references, etc.

XLink, XPointer, and XPath could be used to create cross-references

XQuery will be used to express queries

19

A conceptual view of XML

An XML document is an ordered, labeled tree:

. Character data leaf nodes contain the actual data (text strings)
o usually, character data nodes must be non-empty and non-adjacent
to other character data nodes

. elements nodes, are each labeled with
o aname (often called the element type), and
o aset of attributes, each consisting of a name and a value,
and these nodes can have child nodes

A tree view of the XML recipe collection:

recipe
1d LL7
category dessert

title authar date

Rhubarb Cobblec email

Maggie. Herrick @bbs. mhv.net

The tree structure of a document can be examined in the Explorer browser.

In addition, XML trees may contain other kinds of leaf nodes:

. processing instructions - annotations for various processors
. comments - as in programming languages
. document type declaration - described later...

Unfortunately, XML is not as simple as it could be, and there is still no agreement on
XML tree terminology :-(

20

http://www.brics.dk/~amoeller/XML/print/xml/rhubarb.xml
http://www.xmlhack.com/read.php?item=241

A concrete view of XML

An XML document is a (Unicode) text with markup tags and other meta-
information.

Markup tags denote elements:

...<foo attr="val" ...> ..</foo>. ..
| | | |
| | | a matching element end tag
| | the contents of the element
| an attribute with name at t r and value val , values enclosed by '
or"
an element start tag with name f 0o

There is a short-hand notation for empty elements:
...<foo attr="val".../>. ..

An XML document must be well-formed:

. start and end tags must match
. element tags must be properly nested
. + some more subtle syntactical requirements

Note: XML is case sensitive!
Special characters can be escaped using Unicode character references:

< and &I t ; both yield <
. &and &anp; both yield &

CDATA Sections are an alternative to escaping many characters:
. <I[CDATA[<greeting>Hell o, world!</greeting>]]>
The strange syntax is a legacy from SGML...

White-space (blanks, newlines, etc.) is used both for indentation and actual
contents. (xm : space attribute provides some control.)

21

Other meta-information:

<?target data...?>
an instruction for a processor, t ar get identifies the processor for which it
Is directed, dat a is a string containing the instruction
<!-- comment -->
a comment, will be ignored by all processors
<! DCCTYPE ...>
document type declaration (described later...)

22

Applications of XML

There are already hundreds of serious applications of XML.

XHTML

W3C's XMLization of HTML 4.0. Example XHTML document:

<?xm version="1.0" encodi ng="UTF-8"?>

<htm xm ns="http://ww.w3.org/ 1999/ xhtm " xm : | ang="en">
<head><title>Hell o world!</title></head>
<body><p>f oobar </ p></ body>

</htm >

CML

Chemical Markup Language. Example CML document snippet:

<nmol ecul e i d="METHANOL" >
<at omArr ay>
<stringArray builtin="el ement Type">C O HH H H</stringArray>
<floatArray builtin="x3" units="pn>
-0.748 0.558 -1.293 -1.263 -0.699 0.716
</float Array>
</ at omArr ay>
</ nol ecul e>

WML
Wireless Markup Language for WAP services:
<?xm version="1.0"?>
<wnl >
<card id="Cardl" title="Wap- UK coni>
<p>
Hello World
</ p>
</ card>
</ wm >

ThML

Theological Markup Language:

23

http://www.w3.org/TR/xhtml1/
http://www.xml-cml.org/
http://www.wapforum.org/
http://www.ccel.org/ThML/

<h3 cl ass="s05" id="0One. 2. p0.2">Havi ng a Hunbl e Qpi ni on of Sel f</h3>
<p class="First" id="One. 2. p0.3">EVERY man naturally desires know edge
<note place="foot" id="0One. 2. p0.4">

<p cl ass="Footnote" id="0One. 2. p0.5"><added i d="0ne. 2. p0. 6">

<nane id="0One. 2.p0. 7">Ari stotl e</ name>, Metaphysics, i. 1.
</ added></ p>
</ not e>;

but what good is know edge w thout fear of God? |Indeed a hunble
rusti c who serves God is better than a proud intellectual who
negl ects his soul to study the course of the stars.
<added i d="0One. 2. p0. 8"><note pl ace="foot" id="0One. 2. p0.9">
<p cl ass="Footnote" id="0One.2.p0.10">
August i ne, Confessions V. 4.
</ p>
</ not e></ added>
</ p>

There is a long list of many other XML applications.

24

http://www.oasis-open.org/cover/xml.html#applications

The recipe example

Consider again recipes, such as in this example (raw text file).

We design an XML version of a recipe collection:

. recipes consist of ingredients, steps for preparation, possibly some comments, and a specification

of its nutrition

. an ingredient can be simple or composite

. asimple ingredient has a name, an amount (possibly unspecified), an a unit (unless amount is
dimensionless)

. acomposite ingredient is recursively a recipe

This example (formatted XML file) contains five recipes. Abbreviated version:

<?xm version="1.0" encodi ng="UTF-8"?>
<col | ecti on>
<descri pti on>
Sone recipes used for the XM. tutorial.
</ descri pti on>
<reci pe>
<titl e>Beef Parnesan with Garlic Angel Hair Pasta</title>
<i ngredi ent name="beef cube steak" anpbunt="1.5" unit="pound"/>

<pr epar ati on>
<step>
Preheat oven to 350 degrees F (175 degrees Q).
</ st ep>

</ preparation>
<comment >

Make the neat ahead of time, and refrigerate over night, the acid in the
tomat o sauce will tenderize the neat even nore. If you do this, save the

nozzarella till the last mnute.
</ comment >
<nutrition calories="1167" fat="23" carbohydrates="45" protein="32"/>
</recipe>

</ col | ecti on>

XML documents (usually) begin with an XML declaration (<?xm ... ?>).

25

http://www.brics.dk/~amoeller/XML/print/xml/beefparmesan.txt
http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

From SGML to SML

- DocHeads vs. Simpletons, a process of simplification

SGML (Standard Generalized Markup Language)
5 1SO standard, 1985
o huge amount of "document archive" applications in government,
military, industry, academia, ...
o a successfull well-known application: HTML is designed as a simple
application of SGML.

I
Y

XML
o W3C Recommendation 1998
o a simple subset of SGML, targeted for Web applications
o now de facto standard

I
Y

MinML (Minimal XML, previously known as SML - Simple Markup Language)
1 Web community discussions and collaborations, started 1999

o simplifies the XML spec: no DTDs, processing instructions, or
comments, UTF-8 and UTF-16 only, considerations on element
attributes, white-space,...

Canonical XML
s W3C Recommendation, March 2001
o intended as simplification of general XML documents, not as a
simplified XML spec
o "canonical" representation
o removes document type declarations, imposes ordering on attributes,
etc.

Occam's razor: "one should not increase, beyond what is necessary, the number of entities
required to explain anything”

26

http://www.docuverse.com/smldev/minxmlspec.html
http://www.xmlhack.com/list.php?cat=31
http://www.xmlhack.com/read.php?item=205
http://www.xml.com/pub/a/2001/08/01/simpler.html
http://www.w3.org/TR/xml-c14n
http://pespmc1.vub.ac.be/OCCAMRAZ.html

SGML relics

- only a fool does not fear "external general parsed entities"

As an unfortunate heritage from SGML, the header of an XML document may
contain a document type declaration:

<?xm version="1.0"7?>

<I DOCTYPE greeting |
<! ELEMENT greeti ng (#PCDATA) >
<I' ATTLI ST greeting style (big|/small) "small">
<IENTITY hi "Hello">

]>

<greeting> &hi; world! </greeting>

This part can contain:

. DTD (Document Type Definition) information:
o element type declarations (ELEMENT)
o attribute-list declarations (ATTLI ST)
(described later...)

. entity declarations (ENTI TY) - a simple macro mechanism
notation declarations (NOTATI ON) - data format specifications

Avoid all these features whenever possible!

Unfortunately, they cannot always be ignored - all XML processors (even non-
validating ones) are required to:

. normalize attribute values (prune white-space etc.)
. handle internal entity references (e.g. expand &hi ; in greeti ng)
insert default attribute values (e.g. insert st yl e="snal | " ingreeti ng)

according to the document type declaration, if a such is present.

27

XML technologies

XML is:

. hot ($$%)
. the standard for representation of Web information
. by itself, just a notation for hierarchically structured text

But a notation for tree structures is not enough:

. the real force of XML is generic languages and tools!
. by building on XML, you get a massive infrastructure for free

The XML vision offers:

common extensions to the core XML specification
a namespace mechanism, document inclusion, etc.
schemas
grammars to define classes of documents
linking between documents
a generalization of HTML anchors and links
addressing parts of read-only documents
flexible and robust pointers into documents

. transformation
conversion from one document class to another
guerying
extraction of information, generalizing relational databases

To "use XML"

=

define your XML language (use e.g. XML Schema to define its syntax)

2. exploit the generic XML tools (e.g. XSLT and XQuery processors), the
generic protocols, and the generic programming frameworks (e.g. DOM or
SAX) to build application tools

These technologies are described in the following sections.

Other related technologies (not covered here):

28

XML Information Set

attempt to define common terminology for XML document concepts
("information set"=tree, "information item"=node, ...)
XML-Signature

digital signatures of Web resources

XML Encryption

encryption of Web resources

XML Fragment Interchange

for dealing with fragments of XML documents

XML Protocol and SOAP (Simple Object Access Protocol)
information exchange protocol

XForms

a common sublanguage for input forms (with XHTML forms as a special
case)

. RDF (Resource Description Framework)

a framework for metadata (statements about properties and relationships)

29

http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xml-fragment
http://www.w3.org/TR/xmlp-am/
http://www.w3.org/TR/soap12/
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/RDF/

Basic XML tools

Parsers

. XML4J / Xerces (ww. al phawor ks. i bm coml t ech/ xm 4])
From alphaWorks, in Java, supports DOM and SAX

. Expat (expat . sour cef orge. net)
Written in C (ported to other languages), used by LIBWWW, Apache,
Netscape, ...

. +1000 others...

Editors

. Xeena (Wwwv. al phaWbrks. i bm comi' t ech/ xeena)

From alphaWorks, in Java, with tree-view syntax directed editing
« XMLSpy (Wwwv. xnml spy. com

Popular, but not free :-(

+ 1000 others...

Servers and Browsers

. Apache XML (xm . apache. or g)
built in Xerces XML parser, Xalan XSLT processor, ...
. Netscape Navigator 6 and Internet Explorer 5
XML parsing and validation, rendering with XSL and CSS, script access via
DOM, ...
. Amaya (ww. W3. or g/ Anaya)
W3C's editor/browser

More info: www. gar shol . pri v. no/ downl oad/ xnl t ool s and
www, xm sof t war e. comhave comprehensive lists of XML tools.

30

http://www.alphaworks.ibm.com/tech/xml4j
http://expat.sourceforge.net/
http://www.alphaworks.ibm.com/tech/xeena
http://www.xmlspy.com/
http://xml.apache.org/
http://www.w3.org/Amaya/
http://www.garshol.priv.no/download/xmltools/
http://www.xmlsoftware.com/

Links to more information

www. W3. or g/ TR/ REGC- xmi . ht m
the XML 1.0 specification
www. W3. or g/ XML

W3C's XML homepage
WWw. X . com

XML information by O'Reilly: articles, software, tutorials
WWW. 0asi S- open. or g/ cover

The XML Cover Pages: comprehensive online reference
www. X hack. com

<?xmlhack?>: concise XML news
news: conp. t ext. xm

XML newsgroup
WWW. ucc. i e/ xni

XML FAQ
www., Xl . cont axm /testaxm . ht m

the Annotated XML Specification, by Tim Bray
net al ab. unc. edu/ xm

Cafe con Leche XML News and Resources
inf2.pira.co.uk/top0Olla. ht m

El.pub's markup language section
wdvl . i nternet.conm Aut hori ng/ Languages/ XM

links to XML information
www. w3school s. cont xni

XML School: an XML tutorial
www. gar shol . pri v. no/ downl oad/ xm t ool s

a list of free XML tools

31

http://www.w3.org/TR/REC-xml.html
http://www.w3.org/XML
http://www.xml.com/
http://www.oasis-open.org/cover/
http://www.xmlhack.com/
news:comp.text.xml
http://www.ucc.ie/xml/
http://www.xml.com/axml/testaxml.htm
http://metalab.unc.edu/xml/
http://inf2.pira.co.uk/top011a.htm
http://wdvl.internet.com/Authoring/Languages/XML/
http://www.w3schools.com/xml/
http://www.garshol.priv.no/download/xmltools/

Namespaces, Xinclude,

XML Base

- common extensions to the core XML specification

Namespaces - mixing XML languages

Mixing XML languages - name clashes
. Qualifying names - solving the problem with URIs
. Namespace declarations - declarations and prefixes

XInclude - combining XML documents

. Combining XML documents - reuse and modularity
. An Xinclude example - an example
XInclude details - more details

XML Base - resolving relative URIs
. XML Base - another common XML extension
Selected links:

. Links to more information

32

and

Mixing XML languages

Consider an XML language WidgetML which uses XHTML as a sublanguage for
help messages:

<wi dget type="gadget">
<head si ze="nedi um'/ >
<bi g><subw dget ref="gi zno"/ ></bi g>
<i nf 0>
<head>
<title>Description of gadget</title>
</ head>
<body>
<hl>Gadget </ h1>
A gadget contains a big gizno
</ body>
</i nf o>
</ w dget >

A problem: the meaning of head and bi g depends on the context!
This complicates things for processors and might even cause ambiguities.

The root of the problem is: one common name space.

33

Qualifying names

Simple solution: qualify names with URIs (Universal Resource Identifiers)

<{http://ww.w3. org/ TR/ xht m 1} head>
\ I\
qual i fying URI | ocal nane

Do not be confused by the use of URIs for namespaces:

. they are not supposed to point to anything
. itis simply the cheapest way of getting unique names
. we rely on existing organizations that control domain names

(just like Java package names!)

This is the idea - the actual solution is less verbose but slightly more
complicated...

34

http://www.w3.org/Addressing/

Namespace declarations

Namespaces are declared by special attributes and associated prefixes:

<... xmns:foo="http://ww. w3. org/ TR/ xht m 1" >
<f 00: head>. .. </ f oo: head>

</:::>

xm ns: prefi x="URI" declares a namespace with a prefix and a URI:

. the scope of declaration is lexical, the element containing the declaration
and all descendants can be overridden by nested declaration

. both element and attribute names can be qualified with namespaces

. the name of the prefix is irrelevant - applications should use only the URI

For backward compatibility and simplicity, unprefixed element names are
assigned a default namespace:

. declaration: xm ns="URI "

. default value: "' (means: treat as unqualified name)

. does not affect unprefixed attribute names (they belong to the containing
elements)

WidgetML with namespaces:

<wi dget xm ns="http://ww. w dget. org"
xm ns: xhtm ="http://ww. w3. org/ TR/ xht i 1"
t ype="gadget " >
<head si ze="nedi um'/ >
<bi g><subw dget ref="gi zno"/ ></bi g>
<i nf 0>
<xht m : head>
<xhtm :title>Description of gadget</xhtm:title>
</ xht m : head>
<xht m : body>
<xht ml : h1>Gadget </ xht m : h1>
A gadget contains a big gizno
</ xht m : body>
</i nf o>

35

</w dget >

How should a relative URI be interpreted?

. relative to the base URI?

. relative to the document URI?
. justas a string?

This innocent question spawned a controversy that resulted in leaving the matter
undefined (by deprecating such namespaces).

Other controversies:

. does the choice of prefix matter, or is
<a:w dget xm ns:a="www. wi dget. org"/ > the same as
<b: wi dget xm ns: b="wwwv. wi dget. org"/>?

. iIs<a:w dget size="bi g"/>the same as
<a: W dget a:size="big"/>?

36

http://www.w3.org/2000/09/xppa

Combining XML documents

To enhance reuse and modularity, a technique for constructing new XML
documents from existing ones is desirable.

XInclude provides a simple inclusion mechanism.
Why yet another specification?

. many XML documents and languages can benefit from modularity
. as for the namespace solution, a generic approach can be implemented in
generic tools

Application conformance: Think of XML as if Namespaces, XInclude, and XML
Base were parts of the basic XML specification. (Caveat: these extensions are
quite new and not widely implemented yet.)

37

An Xinclude example

A document containing:

<foo xm ns: xi ="http://ww.w3. org/ 2001/ Xl ncl ude" >
<xi :include href="somewhere.xm"/>

</ foo>

where sonewher e. xnl contains:

<bar>...</ bar>

IS equivalent to:

<foo xm ns:xi="http://ww.w3. org/ 2001/ Xl ncl ude" >
<bar>...</bar>
</ foo>

http://ww. w3. or g/ 2001/ XI ncl ude is the official XInclude
namespace

. thei ncl ude element name in that namespace is an inclusion directive

. right after parsing and before other processing, an Xinclude processor
performs the inclusion (tree substitution)

. the original and the resulting document should be considered equivalent

. itis an error to have cyclic includes

38

Xlnclude detalls

How is the included resource denoted?

. with XPointer (described later...) - an extension of URLs that can address
document nodes, node sets, or character data ranges

Other issues:

. with parse="t ext" and encodi ng="..." attributes, a resource can be
transformed into a character data node before inclusion

. Xinclude processors may need to create namespace declaration attributes
to ensure equivalence

Many Xlinclude processors support only whole-document URIs, not full XPointer.

39

XML Base

A URI identifies a resource:

. http://somewhere/sonefile.xnl isanabsolute URI
. sonefile.xnl isarelative URI

Inspired by the <base href="...">mechanismin HTML, XML Base provides
a uniform way of resolving relative URIs.

In the following example:

<... Xm:base="http://ww.dai m.au. dk/">
<... href="~-ms/m/index. htm" .../>
</[...>

the value of hr ef attribute can be interpreted as the absolute URI
http://ww. dai m . au. dk/ ~m s/ m/i ndex. ht i .

. the xm namespace prefix is hardwired by the Namespace specification
. Xl : base has lexical scope (as namespace declarations)
. the URI used to access the document is used as default URI base

Examples of applications:

. XLink (requires XML Base support)

« XHTML (will use XML Base)

. Namespaces (does not conform to XML Base, but it ought to...)
. your future XML language

Future XML parsers will support Namespaces, Xinclude, and XML Base.

40

http://www.w3.org/Addressing/

Links to more information

Namespaces:

www. W3. or g/ TR/ REC- xnl - nanes

the W3C XML Namespace Recommendation
www. | cl ark. comli xm / xm ns. ht m

an explanation of the recommendation by James Clark
www. xm . comt xmi / pub/ 1999/ 01/ nanespaces. ht m

an XML.com article on Namespaces

XlInclude:

www. W3. or g/ TR/ xi ncl ude

XInclude, W3C Working Draft
www. i bi blio.org/xm /Xl nclude

a Java Xlnclude processor

XML Base:

www. W3. or g/ TR/ xnl base
the W3C XML Base Recommendation

41

http://www.w3.org/TR/REC-xml-names
http://www.jclark.com/xml/xmlns.htm
http://www.xml.com/xml/pub/1999/01/namespaces.html
http://www.w3.org/TR/xinclude/
http://www.ibiblio.org/xml/XInclude/
http://www.w3.org/TR/xmlbase/

DTD, XML Schema, and DSD

- defining language syntax with schemas

Overview:

. Schemas and schema languages - defining the syntax of your own XML
language
. Choosing a schema language - lots of alternatives

DTD - the insufficient schema language defined in the XML 1.0 spec:

. DTD - Document Type Definition - an overview
. Example DTD - the recipe example
. Problems with DTD - top 15 reasons for not using DTD

XML Schema - W3C's recent proposal:

. Design requirements - how to design a schema language in W3C

. XML Schema - the design

. A small example - the business-card example

. Overview - the central constructs and ideas

. Constructing complex types - requirements for attribute and content

presence
. Constructing simple types - requirements for attribute values and character

data
. Local definitions - inlined declarations, anonymous types, and overloading

. Inheritance and substitution groups - the type system

. Annotations - self-documentation

. Schema inclusion and redefinition - modularity and reuse

. Namespaces - constraining the use of namespaces

. Attribute and element defaults - side-effects of validation

. ldentity constraints - uniqueness and keys

. A larger example - the recipe example

. Problems with XML Schema - 15 reasons why we haven't seen the last
schema language

42

http://www.brics.dk/~amoeller/XML/print/schemas/dtd-problems

DSD - the next generation of schema languages:

. Document Structure Description 2.0 - central aspects
. Example - the recipe example

. Constraints - describing elements

. Stringtypes - describing attribute values and chardata
. EXxpressions - expressing element properties

. Inclusion and extension - modular descriptions

Selected links:

. Links to more information

43

Schemas and schema
languages

A schema is a definition of the syntax of an XML-based language (i.e. a class of
XML documents).

A schema language is a formal language for expressing schemas.

Schema processing: Given an XML document and a schema, a schema
processor

. checks for validity, i.e. that the document conforms to the schema
requirements

if the document is valid, a normalized version is output: default attributes
and elements are inserted, parsing information may be added, etc.

The document being validated is called an instance document or application
document.

XML document schema j

\ /

schema
processor
valid irmvafic
normalized
XML document €Iror message

Why bother formalizing the syntax with a schema?

. a formal definition provides a precise but human-readable reference

. schema processing can be done with existing implementations

. your own tools for your language can benefit: by piping input
documents through a schema processor, you can assume that the input is
valid and defaults have been inserted

Schemas are similar to grammars for programming languages, however, context-
free grammars are not expressive enough for XML.

The term "schema" comes from the database community.

45

Choosing a schema language

There have been many schema language proposals.
W3C proposals:

. DTD
. XML-Data, January 1998

. DCD (Document Content Description), July 1998

. DDML (Document Definition Markup Language), January 1999
. SOX (Schema for Object-oriented XML), July 1999

. XML Schema

Non-W3C proposals:

. Assertion Grammars by Dave Raggett

. Schematron by Rick Jellife

. TREX (Tree Regular Expressions for XML) by James Clark

. Examplotron by Eric van der Vlist

. RELAX by Makoto Murara / RELAX NG by Murata and Clark
DSD (Document Structure Description)

Unlike for many other XML technologies, it has proved difficult to reach a
consensus - probably because:

it is an inherently difficult problem
people have different needs from a schema language
. the official (W3C) proposals are not very good
however, most schema languages have many similarities.

We shall look at W3C's DTD and XML Schema proposals and at the DSD
proposal developed by BRICS and AT&T.

46

http://www.w3.org/TR/1998/NOTE-XML-data/
http://www.w3.org/TR/NOTE-dcd
http://www.w3.org/TR/NOTE-ddml
http://www.w3.org/TR/NOTE-SOX
http://www.w3.org/People/Raggett/dtdgen/Docs/
http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.thaiopensource.com/trex/
http://examplotron.org/
http://www.xml.gr.jp/relax/
http://www.oasis-open.org/committees/relax-ng/

DTD - Document Type
Definition

Recall from earlier that XML 1.0 contains a built-in schema language: Document
Type Definition

<! DOCTYPE root-el enent [doctype-declaration...]>
determines the name of the root element and contains the document type
declarations

<! ELEMENT el enent - nane cont ent - nodel >
associates a content model to all elements of the given name

content models:

» EMPTY: no content is allowed

o ANY: any content is allowed

o (#PCDATA| el enent - nane| . . .) : "mixed content", arbitrary
sequence of character data and listed elements

o deterministic regular expression over element names: sequence of
elements matching the expression

« Choice: (...]...]...)

= sequence: (..., ..., u)
« optional:...?

= zeroormore:...*

= Oneormore: ...+

. <IATTLI ST el enent-nane attr-nanme attr-type attr-default
>

declares which attributes are allowed or required in which elements

attribute types:

O

CDATA: any value is allowed (the default)

(val ue| .. .): enumeration of allowed values

| D, | DREF, | DREFS: ID attribute values must be unique (contain
"element identity"), IDREF attribute values must match some ID
(reference to an element)

o ENTI TY, ENTI TI ES, NMTOKEN, NMITCKENS, NOTATI ON: just forget

O

O

47

these... (consider them deprecated)
attribute defaults:

#REQUI RED: the attribute must be explicitly provided

#1 MPLI ED: attribute is optional, no default provided

"val ue": if not explicitly provided, this value inserted by default
#FI XED "val ue": as above, but only this value is allowed

O O O O

This is a simple subset of SGML DTD.

Validity can be checked by a simple top-down traversal of the XML document
(followed by a check of IDREF requirements).

48

Example DTD

A DTD for our recipe collections, r eci pes. dt d:

<! ELEMENT

<! ELEMENT

<I' ELEMENT

<! ELEMENT

<I' ELEMENT
<I'ATTLI ST

<! ELEMENT

<I' ELEMENT

<! ELEMENT

<! ELEMENT
<I'ATTLI ST

col l ection (description,recipe*)>

descri pti on ANY>

recipe (title,ingredient*, preparation,conment?, nutrition)>
title (#PCDATA) >

i ngredi ent (ingredient*, preparation)?>
i ngredi ent nane CDATA #REQUI RED

amount CDATA #l| MPLI ED

uni t CDATA #l WPLI ED>

preparation (step*)>
step (#PCDATA) >
comment (#PCDATA) >

nutrition EMPTY>
nutrition protein CDATA #REQUI RED
car bohydr at es CDATA #REQUI RED
fat CDATA #REQUI RED
cal ori es CDATA #REQUI RED
al cohol CDATA #I MPLI ED>

By inserting:

<! DOCTYPE col | ecti on SYSTEM "reci pes. dtd">

in the headers of recipe collection documents, we state that they are intended to conform to
reci pes. dtd.

Alternatively, the DTD can be given locally with <! DOCTYPE col | ection [...]>.

This grammatical description has some obvious shortcomings:

« uni t should only be allowed when anount is present
. the comment element should be allowed to appear anywhere
. nested i ngr edi ent elements should only be allowed when anount is absent

49

Problems with DTD

Top 15 reasons for avoiding DTD:

1. not itself using XML syntax (the SGML heritage can be very unintuitive +
if using XML, DTDs could potentially themselves be syntax checked with a
"meta DTD")

2. mixed into the XML 1.0 spec (would be much less confusing if specified
separately + even non-validating processors must look at the DTD)

3. no constraints on character data (if character data is allowed, any
character data is allowed)

4. too simple attribute value models (enumerations are clearly insufficient)

5. cannot mix character data and regexp content models (and the content
models are generally hard to use for complex requirements)

6. no support for Namespaces (of course, XML 1.0 was defined before
Namespaces)

7. very limited support for modularity and reuse (the entity mechanism is
too low-level)

8. no support for schema evolution, extension, or inheritance of
declarations (difficult to write, maintain, and read large DTDs, and to
define families of related schemas)

9. limited white-space control (xml : space is rarely used)

10. no embedded, structured self-documentation (<! -- conments -->
are not enough)

11. content and attribute declarations cannot depend on attributes or
element context (many XML languages use that, but their DTDs have to
"allow too much")

12. too simple ID attribute mechanism (no points-to requirements,
uniqueness scope, etc.)

50

13.

14.

15.

only defaults for attributes, not for elements (but that would often be
convenient)

cannot specify "any element" or "any attribute" (useful for partial
specifications and during schema development)

defaults cannot be specified separate from the declarations (would be
convenient to have defaults in separate modules)

51

Design requirements

Quotes from the W3C Note "XML Schema Requirements" (Feb. 1999):

Design principles:

The XML schema language shall be

NogahkhwnhE

8.

more expressive than XML DTDs

expressed in XML

self-describing

usable by a wide variety of applications that employ XML
straightforwardly usable on the Internet

optimized for interoperability

simple enough to be implemented with modest design and runtime
resources

coordinated with relevant W3C specs

The XML schema language specification shall

1.
2.

be prepared quickly
be precise, concise, human-readable, and illustrated with examples

Structural requirements:

The XML schema language must define

1.

2.

w

No ok

mechanisms for constraining document structure (namespaces,
elements, attributes) and content (datatypes, entities, notations)
mechanisms to enable inheritance for element, attribute, and datatype
definitions

mechanism for URI reference to standard semantic understanding of a
construct

mechanism for embedded documentation

mechanism for application-specific constraints and descriptions
mechanisms for addressing the evolution of schemata

mechanisms to enable integration of structural schemas with primitive

52

http://www.w3.org/TR/NOTE-xml-schema-req

data types

Unfortunately, their own XML Schema Recommendation does not fulfil all
requirements (self-describing, simple, concise, human-readable, ...)

53

XML Schema

W3C Recommendation, May 2001.
Consists of two parts:

1. Structures
2. Datatypes

Main features:

XML syntax (there is a Schema for Schemas)
uses and supports Namespaces
object-oriented-like type system for declarations (with inheritance,
subsumption, abstract types, and finals)
global (=top-level) and local (=inlined) type definitions
modularization (schema inclusion and redefinitions)
structured self-documentation
cardinality constraints for sub-elements
nil values (missing content)
attribute and element defaults
. any-element, any-attribute
uniqueness constraints and ID/IDREF attribute scope
regular expressions for specifying valid chardata and attribute values
lots of built-in data types for chardata and attribute values

Yes, it is big and complicated! (Part 1 of the spec alone is around 200 pages...)

24

A small example

Assume we want to create an XML-based language for business cards.

An example document j ohn_doe. xmn :

<card xm ns="http://businesscard. org">
<nane>John Doe</ nane>
<title>CEQ, Wdget Inc.</title>
<emai | >j ohn. doe@u dget . conx/ emai | >
<phone>(202) 456-1414</ phone>
<l ogo url="widget.gif"/>

</ card>

To describe the syntax of our new language, we write a schema
busi ness_card. xsd:

<schema xm ns="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: b="http://busi nesscard. org"
t ar get Nanespace="htt p:// busi nesscard. org">

<el enent nane="card" type="b:card type"/>
<el enment nane="nane" type="string"/>
<el enent nane="title" type="string"/>
<el enment nane="email" type="string"/>
<el enment nane="phone" type="string"/>
<el enent nane="| ogo" type="b:|ogo type"/>

<conpl exType nane="card type">
<sequence>
<el ement ref="b: nane"/>
<elenment ref="b:title"/>
<elenment ref="b:emil"/>
<el ement ref="b: phone” m nCccurs="0"/>
<el enent ref="b:lo0go" mnCccurs="0"/>
</ sequence>
</ conpl exType>

<conpl exType nane="| ogo_t ype">
<attribute name="url" type="anyURl"/>
</ conpl exType>

55

</ schema>

The XML Schema language is recognized by the namespace
http://ww. w3. org/ 2001/ XM_Schenma.

A document may refer to a schema with the schemaLocat i on (or the
noNanmespaceSchenalLocat i on) attribute:

<card xm ns="http://businesscard. org"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schenmalLocati on="http://busi nesscard. org
busi ness_card. xsd" >

</ card>

By inserting this, the author claims that the document is intended to be valid with
respect to the schema (not that it necessarily is valid).

56

Overview of XML Schema

The most central top-level constructs:
. a (global) element declaration associates an element name with a type

. acomplex type definition defines requirements for attributes, sub-
elements, and character data in elements of that type

o attribute declarations: describe which attributes that may or must
appear

o element references: describe which sub-elements that may or must
appear, how many, and in which order

. asimple type definition defines a set of strings to be used as attribute
values or character data

An element in an XML document is valid according to a given schema if the
associated element type rules are satisfied.

If all elements are valid, the whole document is called valid. (Unlike DTD, there is
no way to require a specific root element.)

Naming conflicts: two types or two elements cannot be defined with the same
name, but an element declaration and a type definition may use the same name.

57

Constructing complex types

A conpl exType can contain:
. attribute declarations:
<attri bute nanme="..." type=".." use=".."/>

where t ype refers to a simple type definition and use is either r equi r ed,
optional , or prohi bited

. one of the following content model kinds:
1 empty content (the default)

o simple content: <si npl eContent> ... </sinpl eContent>
(only character data is allowed)

1 regexp content: a (restricted) combination of

« <seguence> ... </sequence>
« <choice> ... </choice>
«» <all> ... </all>

containing element references of the form
<element ref="..." mnCccurs=".." maxCccurs=".."/>

where r ef refers to an element definition, and m nOccur s and
maxQccur s constrain the number of occurences

(if conpl exType has the attribute m xed="t rue", arbitrary
character data is also allowed)

Example:

58

<conpl exType nanme="order _type" m xed="true">
<attribute nane="id" type="unsignedlnt" use="required"/>

<choi ce>
<el ement ref="n:address"/>
<seguence>
<element ref="n:email"/>
<el enent ref="n:phone"/>
</ sequence>
</ choi ce>

</ conpl exType>

Grouping of definitions:

Attribute groups: groups of attribute declarations can be defined with
<attributeGoup nane="..."> ... </...>andused with
<attributeGoup use="..."/>,

Element groups: similarly, groups of regexp content model descriptions can be
defined and used with the gr oup construct.

59

Constructing simple types

Simple types can be:
« primitive (hardwired meaning)

. derived from existing simple types:
o by ali st: white-space separated sequence of other simple types
o by a uni on: union of other simple types
o byarestriction:
« | engt h, m nLengt h, maxLengt h (list lengths)
« enuner at i on (intersection with list of values)
« pattern (intersection with Perl-like regexp)
« Whi t eSpace (preservel/replace/collapse white-space)
= M nl ncl usi ve, maxl ncl usi ve (bounds on numbers)

A lot of often-used simple types (all the primitive and some derived) are
predefined:

. i nteger

. date

. anyURI

. unsi gnedLong
. |l anguage

Example definition of a derived simple type:

<si npl eType nane="nay_ date">
<restriction base="date">
<pattern value="\d{4}-05-\d{2}"/>
</restriction>
</ si npl eType>

All this is specified in Part 2 of the spec.

60

Local definitions

Instead of writing all element declarations and type definitions at top-level
(globally), they may be inlined (locally):

Example:

<el ement nanme="card" type="b:card_type"/>
<el ement nanme="nane" type="string"/>

<conpl exType nanme="card_type">
<sequence>

<el enent ref nane"/ >
<el enent ref title"/>
<el enent ref cemal " maxQOccur s="unbounded"/ >

<el enent ref

<el enent ref
</ sequence>
</ conpl exType>

: phone" m nQccurs="0"/>
: background” m nQccurs="0"/>

UUUUU

means the same as

<el enent nane="card">
<conpl exType>
<sequence>
<el enment nane="nane" type="string"/>
<elenent ref="b:title"/>
<el enent ref="b:email" maxCccurs="unbounded"/ >
<el enent ref="b: phone" m nCccurs="0"/>
<el enent ref="b: background" m nQccurs="0"/>
</ sequence>
</ conpl exType>
</ el enent >

(where the complex type car d_t ype and the description of nane have been
inlined)

except that:

61

. inlined type definitions are anonymous, so they cannot be referred to for
reuse

. inlined element declarations can be overloaded, i.e. they need not have
unique names

- otherwise, it is just a matter of authoring style.

62

Inheritance and substitution
groups
XML Schema contains an incredibly complicated type system.

As in many programming languages, XML Schema allows (complex) types to be declared as sub-
types of existing types.

. inheritance by extension:

<conpl exType nane="car">
<conpl exCont ent >
<ext ensi on base="n:vehicle">
<el enent nanme="wheel " m nCccurs="3" maxQccurs="4"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

creates a car type from a vehi cl e type by extending it with 3 or 4 wheel sub-elements

. inheritance by restriction:

<conpl exType nane="smal | _car">
<conpl exCont ent >
<restriction base="n:car">
<el enent nane="wheel " maxCccurs="3"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

creates asmal | _car type from the car type by restricting it to 3 wheel sub-elements

Subsumption:

Assume that we declare an element:

<el enment name="mnyVehi cl e" type="n:vehicle"/>

meaning that myVehi cl e elements are valid if they match the vehi cl e type.

Since car is a sub-type of vehi cl e, nyVehi cl e elements are also valid if they match
car - provided that we add xsi : t ype="n: car" to the elements.

(xsi referstohttp://ww. w3. org/ 2001/ XM_Schena- i nst ance)

63

Substitution groups: - another (simpler and better) way of achieving basically the same

If we declare another element as follows:

<el enent nane="nyCar" type="n:car" substitutionG oup="n:vehicle"/>

then we may always use nyCar elements whenever nyVehi cl e elements are required
(without using xsi : t ype).

This is independent of the extension/restriction inheritance hierarchy! - car is not required
to be declared as a sub-type of vehi cl e.

Abstract and final:
In addition to all this,
o inheritance of types can be forbidden (by declaring them as fi nal)
o use of elements and types can be forbidden (declared abst r act)

64

Annotations

Schemas can be annotated with human or machine readable documentation and other
information:

<xsd: el enent nane="aut hor">
<xsd: annot at i on>
<xsd: docunentation xm ns: xhtm ="http://ww. w3. org/ 1999/ xht m ">
t he aut hor of the recipe,
see <xhtm :a href="authors.xm ">this |ist</xhtm:a> of authors
</ xsd: docunent ati on>
<xsd: appi nfo xm ns: fp="http://foodprocessor. org">
<f p: process type="117"/>
</ xsd: appi nf 0>
</ xsd: annot at i on>

</ xsd: el enent >

Note that annotations can be structured, as opposed to simple <! -- ... --> XML
comments.

65

Schema inclusion and redefinition

No less that 3 mechanisms are available:

. <include schenaLocation="..."/>-compose with schema having same target namespace

. <inport nanmespace="..." schemalLocation="..."/>-compose with schema having
different target namespace

. <redefine schemaLocation="..."> ... </redefine>-compose with schema having same

target namespace, allowing redefinitions

It ought to also be possible to use Xinclude, but that is not mentioned in the XML Schema spec.

Example:

<schema xm ns="htt p://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: b="http://busi nesscard. org"
t ar get Namespace="http:// busi nesscard. org" >

<i nport namespace="http://ww. w3. org/ 1999/ xhtm " schenalLocati on="xhtm . xsd"/>

<redefi ne schemaLocati on="phone. xsd" >
<el enent nane="phone"/ >

</ el enent >
</ redefine>

</ schema>

Here, a schema for XHTML is imported together with phone. xsd (which is assumed to contain a description
of phone numbers) and its description of phone is redefined.

66

Namespaces

When defining a new XML-based language, we usually want to assign it a unique
namespace.

XML Schema

uses nhamespaces itself - to distinguish schema instructions from the
language we are describing

supports namespace assigning - by associating a target namespace to the
language we are describing

Example:

<schema xm ns="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: b="http://busi nesscard. org"
t ar get Nanespace="htt p:// busi nesscard. org">

<el ement nane="card" type="b:card_type"/>
<conpl exType nane="card type">
<sequence>
<el enent ref="b:nane"/>
</ sequence>

</ conpl exType>

</ schenma>

. the default namespace is that of XML Schema (such that e.g.
conpl exType is considered an XML Schema element)

. the target namespace is our business card namespace

. the b prefix also denotes our business card namespace (such that we can
refer to target language constructs from within the schema)

Unfortunately, XML Schema has a rather unconventional use of namespaces:

67

http://www.xml.com/pub/a/2001/08/08/oldwounds.html

. prefixes in attribute values (e.g. r ef =" b: nane") - the namespace spec

does not tell how to resolve this
. a notion of "unqualified locals" (which is even a default) - allowing prefixes

to be omitted from locally declared elements in instance documents

This precludes the use of standard nhamespace-compliant XML parsers for
reading XML Schema documents :-(

68

Attribute and element defaults

Side-effect of validation: insertion of default values
Each attribute and element declarations can contain adef aul t =". . . " attribute.

. attribute defaults: are inserted (before validation) if the attribute is absent (in
elements of the type containing the declaration)

. element defaults: are inserted as character data in empty elements (of the type
of the declaration)

For some strange design reason, element defaults cannot contain markup.

Example:

With a schema containing:

<el ement nanme="w dget" defaul t="no content explicitly provided">
<conpl exType>
<si npl eCont ent >
<ext ensi on base="string">
<attribute nane="size" defaul t="big"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>
</ el ement >

a schema processor will validate and transform:

<wi dget/ >

into:

<wi dget size="bi g">no content explicitly provi ded</w dget >

69

ldentity constraints

XPath can be used to specify uniqueness requirements.

Example:

<uni que nane="uni queness-requi renent-87">
<sel ector xpath=".//personlist"/>
<field xpat h="person/ @sn"/>

</ uni que>

occuring in an element declaration, means that: within each per sonl i st, every
ssn attribute of a per son element must have a unique value.

Similarly, we can define keys (with key) and references (with keyr ef) which
generalizes the ID/IDREF mechanism from DTD in a straightforward way.

Only a simple subset of XPath is allowed:

. only the child axis and the attribute axis
. only node set expressions

70

A larger example

A XML Schema description of our recipe collections, r eci pes. xsd:

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns:r="http://recipes.org"
t ar get Nanespace="http://reci pes.org”
el ement For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed">

<el enent nane="col | ecti on">
<comnpl exType>
<sequence>
<el enent nanme="description" type="r:anycontent"/>
<el enent ref="r:recipe” mnCccurs="0" maxCccurs="unbounded"/>
</ sequence>
</ conpl exType>
</ el ement >

<conpl exType nane="anycontent" m xed="true">
<sequence>
<any m nCccurs="0" maxCccur s="unbounded"
processCont ent s="ski p" namespace="##ot her"/>
</ sequence>
</ conpl exType>

<el ement nane="reci pe" >
<conpl exType>
<sequence>
<el enent nane="title" type="string"/>
<elenment ref="r:ingredient" m nCccurs="0" maxCccur s="unbounded"/ >
<el enent ref="r:preparation"/>
<el ement nanme="coment"” m nCccurs="0" type="string"/>
<el ement name="nutrition">
<conpl exType>
<attribute nane="protein" type="r:nonNegativeDeciml" use="required"/>
<attribute nane="carbohydrates” type="r:nonNegativeDeci mal"
use="required"/ >
<attribute nane="fat" type="r:nonNegativeDecimal" use="required"/>
<attribute nane="cal ories" type="r:nonNegativeDeci mal" use="required"/>
<attribute nane="al cohol” type="r:nonNegativeDecimal" use="optional"/>
</ conpl exType>
</ el enent >
</ sequence>
</ conmpl exType>
</ el ement >

<el ement nane="preparation">
<conpl exType>
<sequence>
<el enent nanme="step" type="string" m nCccurs="0" maxCccurs="unbounded"/>
</ sequence>
</ conpl exType>
</ el emrent >

<el enent nane="ingredi ent">

<compl exType>
<sequence>

71

<el enent ref="r:ingredient" mnCccurs="0" maxCccurs="unbounded"/ >
<el enent ref="r:preparation” m nQccurs="0"/>
</ sequence>
<attribute nane="nane" use="required"/>
<attribute nane="anmount" use="optional ">
<si npl eType>
<uni on>
<si npl eType>
<restriction base="string">
<enurner ation val ue="*"/>
</restriction>
</ si npl eType>
<si npl eType>
<restriction base="r:nonNegativeDeci mal "/>
</ si npl eType>
</ uni on>
</ si npl eType>
</attribute>
<attribute nane="unit" use="optional"/>
</ conpl exType>
</ el ement >

<si npl eType name="nonNegat i veDeci mal ">
<restriction base="deci mal ">
<ni nl ncl usi ve val ue="0"/>
</restriction>
</ si npl eType>

</ schema>

Note that:

. we need to set el enent For nDef aul t =" qual i fi ed" to use the standard Namespace semantics

. the nonNegat i veDeci mal and anycont ent definitions were not possible with DTD
. we choose to use a mix of global and local definitions
. as with the DTD version, we still cannot express that:

o unit should only be allowed when anmount is present

o the commrent element should be allowed to appear anywhere

o nested i ngredi ent elements should only be allowed when armount is absent

By inserting the following:

<col l ection xm ns="http://recipes.org"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://reci pes.org reci pes. xsd">

</col |l ecti on>

into our recipe collection r eci pes. xm , we state that the document is intended to be valid according to

reci pes. xsd.

72

Problems with XML Schema

The general problem:

. itis generally too complicated (the spec is several hundred pages in a very
technical language), so it is hard to use by non-experts - but many non-
experts need schemas to describe intermediate data formats

also, the complicated design necessitates an incomprehensible
specification style (example from Part 1, Section 3.3.1: "{value constraint}
establishes a default or fixed value for an element. If default is specified,
and if the element being -validated- is empty, then the canonical form of the
supplied constraint value becomes the [schema normalized value] of the
-validated- element in the post-schema-validation infoset. If fixed is
specified, then the element's content must either be empty, in which case
fixed behaves as default, or its value must match the supplied constraint
value.", or from Section 3.3.4: "If the item cannot be -strictly assessed-,
because neither clause 1.1 nor clause 1.2 above are satisfied, [Definition:]
an element information item's schema validity may be laxly assessed if its
-context-determined declaration- is not skip by -validating- with respect to
the -ur-type definition- as per Element Locally Valid (Type) (83.3.4).")

Practical limitations of expressibility:

. cannot require specific root element (so extra information is required to
validate even the simplest documents)

. when describing mixed content, the character data cannot be constrained
in any way (not even a set of valid characters can be specified)

. content and attribute declarations cannot depend on attributes or
element context (this was also listed as central a problem of DTD)

o atypical example that cannot be expressed (actually from the XML
Schema spec which is packed with examples): "default’ and ‘fixed'
may not both be present, and [...] if 'ref' is present, then all of
<simpleType>, 'form" and 'type' must be absent"

1 a solution to this would also eliminate the need for "nil values”

. itis not 100% self-describing (as a trivial example, see the previous point),
even though that was an initial design requirement

73

. defaults cannot be specified separate from the declarations (this makes it
hard to make families of schemas that only differ in the default values)

. element defaults can only be character data (not containing markup)

Technical problems:

. although it technically is namespace conformant, it does not seem to follow
the namespace spirit (because of prefixes in attribute values + "unqualified
locals")

The major source of complexity:

. the notion of "type" adds an extra layer of confusing complexity:
o in instance documents, we have "elements" which have "element
names"
o in schemas, elements are described by "element definitions" which
associate "element names" with "type names",
1 type definitions associate "type names" with "element descriptions"
which describe the elements in the instance documents
(and to cause further confusion, the XML 1.0 spec uses the term "element
type" for the name of an element)

. XSi :type attributes are required in instance documents when derived
types are being used in place of base types (then one might as well have
defined a new element and used a substitution group)

. Substitution groups and local declarations (with non-unigue names) make it
difficult to look up the description of a given element

Non-minimalistic design:

. Substitution groups and type derivation seem to be different attempts to
solve the same problems

. incorporation of XPath to express uniqueness and keys (neither uniqueness
or keys are fundamental concepts for schemas, so dragging in a big
language as XPath is overkill)

. the set of built-in data types is not minimalistic (a minimalistic set + some

data type libraries would lower the learning burden)

74

. the use of Perl-style regular expressions violates the principle of using
XML syntax to describe XML syntax

For other comments about the design of XML Schema, see for instance
www.xml.com/pub/a/2000/07/05/specs/lastword.html| and

www.ibiblio.org/xgl/tally.html.

75

http://www.xml.com/pub/a/2000/07/05/specs/lastword.html
http://www.ibiblio.org/xql/tally.html

Document Structure
Description 2.0

- a successor to DSD 1.0, a schema language developed in cooperation by
BRICS and AT&T Labs Research.

DSD is designed to:

. contain few and simple language constructs

. be easy to understand, also by non-XML-experts

. have more expressive power than other schema languages for most
practical purposes

The central ideas in DSD 2.0:

. aschema consists of a list of constraints

. for every element in the instance document, all constraints are processed

. constraints can conditionally depend on the name, attributes, and context of
the current element, and can contain sub-constraints

. constraints contain allow and require sections

. allow sections specify which content (sub-elements and character data)
and attributes that are allowed for the current element

. require sections specify restrictions on content and attributes, such as
order and number of occurences

. character data and attribute values are described by regular expressions

Main benefits, compared to XML Schema:

. Nno notion of type, constraints are directly tied to element names

. easy to figure out the description of a given element (no subtyping,
substitution groups, or local definitions)

. constraints can be hierarchical by depending on attribute values and
element context

. DSD is 100% self-describing (so there is a complete "DSD for DSDs")

. lots of non-essential features are removed or reduced to more basic and
general constructs

A draft spec for DSD 2.0 will be published within a few months. (DSD 1.0 was
announced in November 1999.)

76

http://www.brics.dk/DSD/
http://www.brics.dk/
http://www.research.att.com/

Example

A DSD 2.0 description of our recipe collections:

<dsd xm ns="http://ww. brics. dk/DSD 2. 0"
root ="col | ecti on" nanmespace="http://recipes.org">

<i f ><el enent nane="col |l ection"/>
<al | ow>
<el enment nane="descri ption"/>
<el ement nane="reci pe"/>
</ al | ow>
<requi re>
<count nunber="1"><el enent nane="descri ption"/></count >
</require>
<[if>

<i f ><el enent nane="description"/>
<constraint ref="anycontent"/>
</[if>

<i f ><el enent nane="recipe"/>
<al | ow>
<el ement nane="title"/>
<el enment nane="ingredient"/>
<el ement nane="preparation"/>
<el enment nane="coment"/>
<el ement nane="nutrition"/>
</ al |l ow>
<requi r e>
<count nunber="1">
<el enrent nane="title"/>
<el enment nanme="preparation"/>
<el enment nane="nutrition"/>
</ count >
<count nmax="1">
<el emrent nane="comment"/>
</ count >
<or der >
<el enrent nane="title"/>
<el enent nane="ingredi ents"/>
<el enent nane="preparation"/>

7

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

<el enment nane="nutrition"/>
</ or der >
</require>
</[if>

<i f ><el enent nanme="i ngredient"/>
<al | ow>
<attri bute nane="nane"/>
<attri bute nane="anount">
<uni on>
<string val ue="*"/>
<stringtype ref="nunber"/>
</ uni on>
</attribute>
<attri bute nanme="unit"/>
</ al | ow>
<requi re>
<attri bute nane="nane"/>
</require>
<i f ><not ><attri bute name="anount"/ ></ not >
<require>
<not ><attri bute name="unit"/></not >
</require>
<al | ow>
<el enent nane="ingredient"/>
<el enment name="preparation"/>
</ al | ow>
<requi re>
<count m n="1">
<el enment nanme="ingredient"/>
<el ement nane="preparation"/>
</ count >
</require>
</[if>
<[if>

<i f ><el ement nane="preparation"/>
<al | ow>
<el enent nane="step"/>
</ al | ow>
<[if>

<i f>

<or >
<el enent nane="step"/>

78

<el enment nane="coment"/>
<el enment nane="title"/>
</ or>
<al | ow>
<char dat a/ >
</ al | ow>
</[if>

<i f><el enent nanme="nutrition"/>
<al | ow>
<attribute name="protein">
<stringtype ref="nunber"/>
</[attribute>
<attribute name="carbohydrates">
<stringtype ref="nunber"/>
</attribute>
<attribute name="fat">
<stringtype ref="nunber"/>
</[attribute>
<attri bute nane="cal ories">
<stringtype ref="nunber"/>
</attribute>
<attribute name="al cohol ">
<stringtype ref="nunber"/>
</attribute>
</ al | ow>
<requi re>
<attri bute name="protein"/>
<attri bute nanme="car bohydrates"/>
<attribute name="fat"/>
<attri bute nane="cal ories"/>
</require>
</[if>

<stringtype id="digits">
<repeat mn="1">
<char from="0" to="9"/>
</repeat >
</stringtype>

<stringtype id="nunber">
<sequence>
<stringtype ref="digits"/>
<opti onal >
<sequence>

79

<string val ue="."/>
<stringtype ref="digits"/>
</ sequence>
</ opti onal >
</ sequence>
</stringtype>

<constraint id="anycontent">
<al | ow>
<anyel enent/ >
<char dat a/ >
</ al | ow>
</ constraint >

</ dsd>

Notice in particular:

. the hierarchical constraint in the description of i ngr edi ent

. it seems verbose, but the constraint model makes it easy to add new
constraints, e.g. to allow a new attribute and require restrictions on its use

. modular definitions of two stringtypes and a constraint

. asimple use of namespaces

. itis intuitive and human-readable (if you are used to looking at XML
documents :-)

This DSD is more precise than the DTD and the XML Schema descriptions.

One can check that this is indeed a DSD by validating it with the meta-DSD.

80

http://www.brics.dk/DSD/dsd2.dsd

Constraints

- a closer look at the central DSD 2.0 construct

Example:

<i f ><el enrent nanme="col | ection"/>
<al | ow>
<el ement nane="description"/>
<el ement nane="reci pe"/>
</ al |l ow>
<require>
<count nunber="1"><el enent nanme="descri ption"/></count >
</require>
</[if>

Constraints can be:

. 1 f constraints, constraints guarded by expressions over element properties

. al | owsections, declaring which attributes and content an element may
have

. requir e sections, containing boolean expressions over element properties
that are required to hold

. opti on sections, containing optional al | ows and r equi r es

. defaul t attributes and content

. Whi t espace specifications

(opti on, defaul t, and whi t espace are not shown in the example.)

Constraints can be defined (given an ID for reference) to support modularity, as
e.g. anycont ent in the full example.

81

Stringtypes

Attributes and character data is described by stringtypes which are regular
expressions over the Unicode alphabet.

Stringtypes can be built from:

. constant strings
. Character sets
. sequencing

« union

. iteration

As with constraints, stringtypes can be defined for modularity.

Example:

<uni on>
<string value="*"/>
<stringtype ref="nunber"/>
</ uni on>

<stringtype id="digits">
<repeat mn="1">
<char from="0" to="9"/>
</ repeat >
</stringtype>

<stringtype id="nunber">
<seguence>
<stringtype ref="digits"/>
<opti onal >
<seguence>
<string val ue="."/>
<stringtype ref="digits"/>
</ sequence>
</ optional >
</ sequence>

82

</stringtype>

Libraries of common stringtypes can be made with the import feature described
later...

83

Expressions

Boolean logic for expressing properties of elements:

. attribute presence and values
. Sub-element occurences and order
. chardata values

combined with and, or, not , i npl , etc.

Example:

<Oor >
<and>
<attri bute name="foo"/>
<el ement name="bar"/>
<not ><char dat a/ ></ not >
</ and>
<char dat a>
<stringtype ref="nunber"/>
</ char dat a>
</ or>

means: "either there is a f oo attribute, a bar sub-element, and no chardata, or
there is chardata and it contains a number."

Expressions are used both as conditions in conditional constraints and as
requirements (inrequi re).

As with the other syntactic categories, expressions can be defined for modularity.

84

Inclusion and extension

To enhances reusability, maintainability, and readability, DSD descriptions can
consist of several XML documents.

DSD 2.0 simply relies on Xinclude for composing DSD fragments into complete

specifications. (However, full XPointer is not used - only simple URLs that denote
whole documents.)

This, combined with the constraint model, makes it easy to write modular
specifications, reuse and extend existing schemas, and create families of
related schemas.

85

Links to more information

www. W3. or g/ TR/ xnml schema-0
XML Schema Part O0: Primer (a non-normative introduction)
www. W3. or g/ TR/ xnml schema- 1
XML Schema Part 1: Structures
www. W3. or g/ TR/ xnml schema- 2
XML Schema Part 2: Datatypes
www. bri cs. dk/ DSD
the DSD 1.0 homepage
WWW. oasi S- open. or g/ cover/schemas. ht ni
Robin Cover's XML schema information
www, Xl . cont pub/1999/12/dtd
XML.com article on schema languages
www, Xl . cont pub/a/ 2000/ 11/ 29/ schenas/ part 1. ht ni
XML.com introduction to XML Schema
www, Xfront. cont Best Practi cesHonepage. ht ni
"best practices" of XML Schema
www. i bi bl i o.org/ xnl/books/ bi bl e2/ chapt ers/ ch24. ht n
chapter from "XML Bible" on XML Schema
www, Xxnl hack. coni r ead. php?i t enr1097

"W3C XML Schema still has big problems", article on <?xmlhack?>
WWwW. cobase. c¢s. ucl a. edu/ t ech-docs/ dongwon/ ucl a- 200008. ht m

"Comparative Analysis of Six XML Schema Languages"
www. redri ce. com schenaval i d/ fag/ xnl - schenma. ht ni

XML Schema FAQ
Xxm . apache. org

Apache's Xerces parser and validator

86

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.brics.dk/DSD/
http://www.oasis-open.org/cover/schemas.html
http://www.xml.com/pub/1999/12/dtd/
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html
http://www.xfront.com/BestPracticesHomepage.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch24.html
http://www.xmlhack.com/read.php?item=1097
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html
http://www.redrice.com/schemavalid/faq/xml-schema.html
http://xml.apache.org/

XLink, XPointer, and XPath

- linking and addressing

Overview:

XLink, XPointer, and XPath - three layers of languages

XLink:

. Problems with HTML links - why do we need something new?
. The XLink linking model - a generalization of HTML links

. An example - a link between two remote resources

. Linking elements - defining links

. Behavior - showand act uat e

. Simple vs. Extended links - compatibility issues

XPointer, Part | - using XPointer in XLink:

XPointer: Why, what, and how? - introduction
. XPointer vs. XPath - what is the difference
. XPointer fragment identifiers - the structure of an XPointer

XPath:

. Location paths - the central construct
. Location steps - expressing node-sets
o AXxes - selecting candidates
o Node tests - initial filtration
o Predicates - fine-grained filtration
Expressions - a little expression language
. Core function library - the built-in functions
. Abbreviations - convenient notation
XPath visualization - a useful tool
. XPath examples - continuing the recipe example

XPointer, Part Il - how XPointer uses XPath:

87

. Context initialization - filling out the gap between XPath and XLink
Extra XPointer features - generalizing XPath

Selected links:

. Tools
Links to more information

88

XLink, XPointer, and XPath

- imagine a Web without links...
Three layers:
. XLink

o ageneralization of the HTML link concept
o higher abstraction level (intended for general XML - not just

hypertext)
o more expressive power (multiple destinations, special behaviors,
linkbases, ...)

o uses XPointer to locate resources

. XPointer
o an extension of XPath suited for linking
1 specifies connection between XPath expressions and URIs

XPath
o a declarative language for locating nodes and fragments in XML
trees
o used in both XPointer (for addressing), XSL (for pattern matching),
XML Schema (for uniqueness and scope descriptions), and
XQuery (for selection and iteration)

These technologies are standardized but not all widely implemented yet.

XQuery vs. XPointer/XPath? Reminiscent, but very different goals:

. XQuery: SQL-like database queries
. XPointer/XPath: robust addressing into known information

89

Problems with HTML links

The HTML link model:

href name
fsourca: _] D—Eestinatinﬂ

Construction of a hyperlink:

. is placed at the destination
. is placed at the source

Problems when using the HTML model for general XML:
Link recognition:

o in HTML, links are recognized by element names (a, i ng, ..)
- we want a generic XML solution
o the "semantics" of a link is defined in the HTML specification
- we want to identify abstract semantic features, e.g. link actuation

Limitations:

s an anchor must be placed at every link destination (problem with
read-only documents)
- we want to express relative locations (XPointer!)

o the link definition must be at the same location as the link source
(outbound)
- we want inbound and third-party links

5 only individual nodes can be linked to
- we want links to whole tree fragments

o a link always has one source and one destination
- we want links with multiple sources and destinations

The usual point: generic solutions allow generic tools!

90

The XLink linking model

Basic XLink terminology:

Link: explicit relationship between two or more resources.

Linking element: an XML element that asserts the existence and describes the
characteristics of a link.

Locator: an identification of a remote resource that is participating in the link.

remote
FESOULNCE

|
|
|
|
|
! local
resource

remote
resource

remote
resource

One linking element defines a set of traversable arcs between some resources.

A local resource comes from the linking element's own content.

Outbound: the source is a local resource
Inbound: the destination is a local resource
Third-party: none of the resources are local

Third-party links can be used to construct shared link bases for browsers.

91

An example

A linking element defining a third-party "extended" link involving two remote resources:

<nylink xm ns: xlink="http://ww.w3.org/ 1999/ xl i nk" xlink:type="extended">
<nyresource xlink:type="I|ocator"
xIink: href ="students. xm #Fred" xlink:| abel ="student"/>
<nyresource xlink:type="I|ocator"
xl'i nk: href ="t eachers. xm #Joe" xlink:| abel ="teacher"/>
<nyarc xlink:type="arc"
xl'ink: from"student" xlink:to="teacher"/>
</ nyl i nk>

. the namespace htt p: // www. w3. or g/ 1999/ xl i nk is used to recognize XLink information in
general XML documents
o the namespace often (but not necessarily) uses namespace prefix x| i nk
o host language: elements and attributes not belonging to this namespace are ignored by
XLink processors
o all XLink information is defined in attributes (in host language elements)
. xli nk:type="ext ended" indicates a linking element
. xlink:type="Iocator" locates a remote resource
. xlink:type="arc" defines traversal rules

A powerful example application of general XLinks:
Using third-party links and a smart browser, a group of people can annotate Web pages with
"post-it notes" for discussion - without having write access to the pages. They simply need to
agree on a set of URIs to XLink link bases defining the annotations. The smart XLink-aware
browser lets them select parts of the Web pages (as XPointer ranges), comment the parts by
creating XLinks to a small XHTML documents, view each other's comments, place comments on
comments, and perhaps also aid in structuring the comments.

92

Linking elements

- defining links

All elements with XLink information contain an x| i nk: t ype attribute.

. ageneral linking element is defined using an x| i nk: t ype="ext ended
attribute; this element can contain the following:
. alocal resource is defined with x| i nk: t ype="resource"
. aremote resource is defined with x| i nk: t ype="1 ocat or" and with an
xI'i nk: hr ef attribute (an XPointer expression locating the resource)
. arcs (traversal rules) are defined with x| i nk: t ype="arc":
o both"resource" and"| ocat or" elements can have
xI'i nk: 1 abel attributes
s an arc element has an xI i nk: fromand an x| i nk: t o attribute
o the "arc" element defines a set of arcs: from each resource having
the f r omlabel to each resource having the t o label

(Note the confusing terminology: a resource is defined either by a " r esour ce"
elementor by a"l ocat or" element.)

XPointer is described later - just think of XPointer expression as URIs for now...

93

Behavior

- link semantics

Arcs can be annotated with abstract behavior information using the following
attributes:

xl'i nk: show- what happens when the link is activated?

Possible values:

enbed
insert the presentation of the target resource (the one at the end of
the arc) in place of the source resource (the one at the beginning of
the arc, where traversal was initiated) (example: as images in HTML)

new
display the target resource some other place without affecting the
presentation of the source resource (example: as
target =" _bl ank" in an HTML link)

repl ace
replace the presentation of the resource containing the source with a
presentation of the destination (example: as normal HTML links)

ot her
behavior specified elsewhere

none
no behavior is specified

xI'i nk: act uat e - when is the link activated?
Possible values:
onLoad
traverse the link immediately when recognized (example: as HTML
images)
onRequest
traverse when explicitly requested (example: as normal HTML links)
ot her
behavior specified elsewhere
none
no behavior is specified

Note: these notions of link behavior are rather abstract and do not make sense for
all applications.

94

Semantic attributes: describe the meaning of link resources and arcs

xlink:title
provide human readable descriptions (also available as
xI'ink:type="title" toallow markup)

xl'i nk: rol eandxlink:arcrole
URI references to descriptions

95

Simple vs. Extended links

- for compatibility and simplicity
Two kinds of links:

. extended - the general ones we have seen so far
. simple - arestricted version of extended links: only for two-ended outbound links
(enough for HTML-style links)

Convenient shorthand notation for simple links:

<nylink xlink:type="sinmple" xlink:href="..." xlink:show="..." .../>

is equivalent to:

<nylink xlink:type="extended">
<nyresource xlink:type="resource"
xl'ink:rol e="|ocal "/ >
<nyresource xlink:type="I|ocator"

xlink:role="remote" xlink:href="..."/>
<nyarc xlink:type="arc"
xlink:from="local" xlink:to="renote" xlink:show="..." .../>

</ nyl i nk>

Many XLink properties (e.g. x| i nk: t ype and xI i nk: show) can conveniently be specified as
defaults in the schema definition!

96

XPointer: Why, what, and how?

. an extension of XPath which is used by XLink to locate remote link resources
. relative addressing: allows links to places with no anchors
. flexible and robust: XPointer/XPath expressions often survive changes in the target

document
. can point to substrings in character data and to whole tree fragments

Example of an XPointer:

URI
/ \
http://ww. foo. org/ bar.xm #xpoi nter(article/section[position()<=5])
| \ A
| emeeesesemmemeccaacconne |
\ XPoi nt er expression /
\ /

XPoi nter fragnent identifier

(points to the first five section elements in the article root element.)

In HTML, fragment identifiers may denote anchor IDs - XPointer generalizes that.

97

XPointer vs. XPath

XPointer is based upon XPath:

. an XPointer expression is basically the same as an XPath expression

. XPath says nothing about URIs; XPointer specifies that connection

. an XPath expression is evaluated wrt. a context; XPointer specifies this
context

. XPointer adds some features not available in XPath

98

XPointer fragment identifiers

An XPointer fragment identifier (the substring to the right of # in the URI) is either

. the value of some ID attribute in the document (ID attributes are specified
by the schema),

. aseqguence of element numbers denoting the path from the root to an
element (e.g./ 1/ 27/ 3), or

. asequence of the form
xpointer(...) xpointer(...)
containing a list (typically of length 1) of XPointer expressions.

Each expression is evaluated in turn, and the first where evaluation
succeeds is used. (This allows alternative pointers to be specified thereby
increasing robustness.)

Next: We will now look into XPath and then later describe what additional
features XPointer adds to XPath...

99

XPath: Location paths

XPath is a declarative language for:

. addressing (used in XLink/XPointer and in XSLT)
. pattern matching (used in XSLT and in XQuery)

The central construct is the location path, which is a sequence of location steps separated
by/,e.q.

child::section[position()<6] / descendant::cite / attribute:: href
selects all hr ef attributes in ci t e elements in the first 5 sect i ons of an article document.

. alocation step is evaluated wrt. some context resulting in a set of nodes

. alocation path is evaluated compositionally, left-to-right, starting with some initial

context
o location paths resemble operating system directory paths
o each node resulting from evaluation of one step is used as context for
evaluation of the next, and the results are unioned together

A context consists of:

. acontext node
. acontext position and size (two integers)
. Vvariable bindings, a function library, and a set of namespace declarations

Initial context: defined externally (e.g. by XPointer, XSLT, or XQuery).
Location paths can be prefixed with / to use the document root as initial context node!

Note: in the XPath data model, the XML document tree has a special root node above the
root element.

There is a strong analogy to directory paths (in UNIX). As an example, the directory path

/*/d/ *.txt selects a set of files, and the location path / */ d/ *[@xt ="t xt"] selecta
set of XML elements.

100

Location steps

A single location step has the form
axis : : node-test[predicate]

. The axis selects a rough set of candidate nodes (e.g. the child nodes of the context
node).

. The node-test performs an initial filtration of the candidates based on their
o types (chardata node, processing instruction, etc.), or
o names (e.g. element name).

. The predicates (zero or more) cause a further, potentially more complex, filtration.
Only candidates for which the predicates evaluate to true are kept.

The candidates that survive the filtration constitute the result.

This structure of location steps makes implementation rather easy and efficient, since the
complex predicates are only evaluated on relatively few nodes.

The example from before:

child::section[position()<6] / descendant::cite / attribute:: href

selects all hr ef attributes in ci t e elements in the first 5 sect i ons of an article document.

101

Available axes:

child

descendant

par ent

ancest or

fol |l ow ng-sibling
pr ecedi ng-si bl i ng
foll om ng

pr ecedi ng

attribute
nanespace

sel f
descendant - or - sel f
ancestor-or-self

AXes

the children of the context node

all descendants (children, childrens children, ...)
the parent (empty if at the root)

all ancestors from the parent to the root
siblings to the right

siblings to the left

all following nodes in the document, excluding
descendants

all preceding nodes in the document, excluding
ancestors

the attributes of the context node
namespace declarations in the context node
the context node itself

the union of descendant and sel f

the union of ancest or and sel f

Note that attributes and namespace declarations are considered a special kind

of nodes here.

102

descendant

Some of these axes assume a document ordering of the tree nodes. The
ordering is the left-to-right preorder traversal of the document tree - which is the
same as the order in the textual representation.

The resulting sets are ordered intuitively, either forward (in document order) or
reverse (reverse document order).
For instance, f ol | ow ng is a forward axis, and ancest or is a reverse axis.

(Frustratingly, each technology uses a slightly different tree model...)

103

Node tests

Testing by node type:

text () chardata nodes

comment () comment nodes

processi ng-instruction() processing instruction nodes

node() all nodes (not including attributes and

namespace declarations)

Testing by node name:

nane nodes with that name
* any node

Warning: There is a bug in the XPath spec! Default namespaces are required to
be handled incorrectly, so, if using Namespaces together with XPath (or XSLT),
all elements must have an explicit prefix.

104

Predicates

- expressions coerced to type boolean
A predicate filters a node-set by evaluating the predicate expression on each node in the set with

. that node as the context node,
. the size of the node-set as the context size, and
. the position of the node in the node-set wrt. the axis ordering as the context position.

Example:

child::section[position()<6] / descendant::cite[attribute::href="there"]

selects all ci t e elements with hr ef ="t her e" attributes in the first 5 sect i ons of an article
document.

(Compare with the earlier example.)

105

Expressions

Available types:

. node-set (set of nodes)
. boolean (true or false)
. number (floating point)
. string (Unicode text)

An expression can be:
. aconstant,e.g.”..."
. avariable: $vari abl e
. afunctioncall: function (argunents)
. aboolean expression: or, and, =, ! =, <, >, <=, >= (standard precedence,
all left associative)
. anumerical expression: +,-,*,di v, nod
. anode-set expression (using location paths!): | (set union)

Coercion may occur at function arguments and when expressions are used as
predicates.

Variables and functions are evaluated using the context.

106

Core function library

Node-set functions:
last() returns the context size

position() returns the context position
count(node-set) number of nodes in node-set
name(node-set) string representation of first node in node-set

String functions:

string(value) type cast to string
concat(string, string, ...) string concatenation

Boolean functions:

boolean(value) type cast to boolean
not(boolean) boolean negation
Number functions:

number(value) type cast to number
sum(node-set) sum of number value of each node in node-set

- see the XPath specification for the complete list.

107

Abbreviations

Syntactic sugar: convenient notation for common situations

Normal syntax Abbreviation
child:: nothing (so chi | d is the default axis)
attribute:: @

/ descendant - or-sel f::node()/ //

(useful because location paths
sel f::node() starting with / begin evaluation at the
root)

par ent : : node()

Example:

. @r ef

selects all hr ef attributes in descendants of the context node.

Furthermore, the coercion rules often allow compact notation, e.g.

f oo[3]

refers to the third f oo child element of the context node (because 3 is coerced to
posi tion() =3).

108

XPath visualization

Using Explorer 6 or an updated version of Explorer 5 it is easy to experiment with
XPath expressions.

The XPath Visualizer provides an interactive XPath evaluator that additionally
visualizes the resulting node set (online installation).

This tool is implemented as an ordinary HTML page that makes heavy use of
XSLT and JavaScript.

109

http://www.netcrucible.com/xslt/msxml-faq.htm#Q3
http://www.vbxml.com/xpathvisualizer/
http://www.brics.dk/~mis/xpathvisualizer/

XPath examples

The following XPath expressions point to sets of nodes in the recipe collection:

"The amounts of flour being used":

[1ingredi ent[@ane="fl our"]/ @nount

4
0.5
3

0. 25

"The ingredients of which half a cup are used™:

/1ingredient[@nount="0.5" and @nit=" cup']/ @ane

grated Parnesan cheese
shredded nozzarel | a cheese
short eni ng

fl our

orange j uice

"The second step in preparing stock for Cailles en Sarcophages":

/1ingredi ent[@ane="stock"]/preparation/step[position()=3]/text()

When the liquidis relatively clear, add the carrots, celery, whole onion,
bay | eaf, parsley, peppercorns and salt. Reduce the heat, cover and | et
simrer at least 2 hours to nake a hearty stock.

110

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

XPointer: Context
Initialization
An XPointer is basically an XPath expression occuring in a URI.

When evaluated, the initial context is defined as follows:

. the context node is the root node of the document

. the context position and size are both 1 (because the root has no
siblings)

. the variable bindings are empty (variables are not used by XPointer)

. the function library consists of the core XPath functions + a few extra
functions

. the namespace declarations are set as follows:

xm ns(nyprefix=http://mnamespace.org) xpointer(...)

Warning: several levels of character escaping occur when using XPointer in
XML documents

in XPointer, unbalanced parentheses must be escaped, e.g. ")
in URIs, many characters must be escaped, e.g. %20

. in XML attribute values, quotes, ampersand, etc. must be escaped, e.g.
<

111

Extra XPointer features

XPointer provides a more fine-grained addressing than XPath.

. Instead of just nodes, XPointers address locations, which can be nodes,
points, or ranges.

. A point can represent the location preceding or following any individual
character in e.g. chardata nodes.
The special node test
poi nt ()
selects the set of points of a node.

. Arange consists of two points in the same document, and is specified
using a special r ange- t o location step construct.

. XPointer provides some extra functions:

here() get location of element containing
current XPointer
origin() get location where user initiated link
traversal
start-point (|l ocation-set) getstart point of location set
string-range(...) find matching substrings
Example:

/ descendant : : text ()/ point()][position()=0]

selects the locations right before the first character of all character data nodes in
the document.

Example:

/section[1l] / range-to(/section[3])

selects everything from the beginning of the first sect i on to the end of the third.

112

Tools

Kinds of tools supporting XLink/XPointer:

. browsers
. parsers
. link bases

but XLink is still not widely implemented yet.

www. | abs. fujitsu.com free/ HyBri ck/ en

the HyBrick browser
www. St epuk. com product s/ prod X2X. asp

the X2X link base
pages. woost er . edu/ | udw qj / xni

the Link browser

XPath is primarily implemented as part of XSLT processors.

ww. 246. ne. | p/ ~kam ya/ pub/ XPat h4XT. ht ni
XPath processor for Java

113

http://www.labs.fujitsu.com/free/HyBrick/en/
http://www.stepuk.com/products/prod_X2X.asp
http://pages.wooster.edu/ludwigj/xml/index.html
http://www.brics.dk/~amoeller/XML/print/transformation/
http://www.246.ne.jp/~kamiya/pub/XPath4XT.html

Links to more information

wwv. W3. org/ TR/ xl i nk
W3C's XLink Recommendation

www. W3. or g/ TR/ xptr
W3C's XPointer Working Draft

www. W3. or g/ TR/ xpat h
W3C's XPath Recommendation

www. st g. brown. edu/ ~sj d/ xl i nki ntro. ht ni
a brief introduction to XML linking

www. i bi blio.org/ xnm /books/bible2/ chapters/chl9. htni
a chapter from "The XML Bible" on XLink

www, i bi bl i o.org/ xm /books/ bi bl e2/ chapt ers/ ch20. ht n
a chapter from "The XML Bible" on XPointer (and XPath)

114

http://www.w3.org/TR/xlink
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xpath
http://www.stg.brown.edu/~sjd/xlinkintro.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch19.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch20.html

XSL and XSLT

- stylesheets and document transformation

. XSLT - XSL Transformations - an overview
. Processing model - the basic ideas
. Structure of a stylesheet - how does it look
. Atiny example - from business-card-markup-language to XHTML
. A CSS example - trying to make do with CSS
. Patterns - using XPath for pattern matching
. Templates - constructing result tree fragments
o Literal result fragments
o Recursive processing
o Computed result fragments
o Conditional processing

o Sorting
o Numbering
o Variables and parameters
o Keys
. Other issues - things not covered here
. XSL Formatting Objects - fine-grained layout control
. Examples - continuing the recipe example
. Different views - producing different views of the same data
« Links to more information

115

XSLT - XSL Transformations

XSL (eXtensible Stylesheet Language) consists of two parts:

1. XSL Transformations (XSLT), and
2. XSL Formatting Objects (XSL-FO).

. astylesheet separates contents and logical structure from presentation (as with CSS)

. an XSLT stylesheet is an XML document defining a transformation from one class of XML documents
into another

. XSLT is not intended as a completely general-purpose XML transformation language - it is designed for
XSL Formatting Objects as transformation target language - nevertheless: XSLT is generally useful

. XSL-FO is an XML language for specifying formatting in a more low-level and detailed way than possible
with HTML+CSS

The basic idea of XSLT:

XSLT st}f]ﬁshaeﬁ

~

XSLT processor| —=

v

XML{fHTML/text) document
(“result tree™)

XML document
("source tree")

An XSLT stylesheet:

. is declarative and uses pattern matching and templates to specify the transformation
is vastly more expressive than a CSS stylesheet
. may perform arbitrary computations (it is Turing complete!)

Tools:

. XSLT transformation can be done either on the client (e.g. Explorer 5), or on the server (e.g. Apache
Xalan) - either as pre-processing or on-the-fly

. inthe future, Web browsers only need to understand XSLT and XSL-FO (rendering HTML/XHTML can
be done using a standard stylesheet)

. today, the target language is typically XHTML which is understood by current browsers

. XSLT is widely implemented - XSL-FO is not yet...

116

http://xml.apache.org/
http://xml.apache.org/

Processing model

An XSLT stylesheet consists of a number of template rules:

template rule = pattern + template|

For a given input XML document, the output is obtained as follows:
. the source tree is processed by processing the root node

. asingle node is processed by:
1. finding the template rule with the best matching pattern
2. instantiating its template (creates result fragment + continues
processing recursively)

. anode list is processed by processing each node in order and
concatenating the results

117

Structure of a stylesheet

An XSLT stylesheet is itself an XML document:

<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transf orm' versi on="1. 0"
xm ns="...">

<xsl:tenplate match="pattern"> \

tenpl at e > atemplate rule
</ xsl:tenpl at e> /

<- other top-level elements

</ xsl : styl esheet >

The namespace ht t p: / / www. wW3. or g/ 1999/ XSL/ Tr ansf or mis used to recognize the XSLT elements;
elements from other namespaces constitute literal result fragments.

A document may refer to a stylesheet using the processing instruction:

<?xm -styl esheet type="text/xsl" href="foo0.xsl"?>

Newer browsers contain an XSLT processor. (Older versions of Explorer 5 require an update.)

118

http://www.netcrucible.com/xslt/msxml-faq.htm#Q3

A tiny example

The following XSLT stylesheet transforms XML business cards into XHTML.:

<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transf orm' versi on="1. 0"
xm ns="http://ww. w3.org/ 1999/ xhtm ">
<xsl :tenpl ate mat ch="card">
<htm >
<head>
<title><xsl:value-of select="name/text()"/></title>
</ head>
<body bgcol or="#ffffff">
<t abl e border="3">
<tr>
<t d>
<xsl : appl y-tenpl at es sel ect =" nane"/ ><br/ >
<xsl :apply-tenpl ates select="title"/><p/>
<tt><xsl:apply-tenplates select="emunil"/></tt>

<xsl:if test="phone">
Phone: <xsl:apply-tenpl ates sel ect ="phone"/>

</xsl:if>
</td>
<td>
<xsl:if test="1o0go">
<inmg src="{logo/@rl}"/>
</xsl:if>
</td>
</[tr>
</tabl e>
</ body>
</htm >
</ xsl:tenpl at e>

<xsl:tenpl ate mat ch="nane">
<xsl : val ue-of select="text()"/>
</ xsl:tenpl at e>

<xsl:tenplate match="title">
<xsl : val ue-of select="text()"/>
</ xsl:tenpl at e>

<xsl :tenplate match="ennil ">
<xsl :val ue-of select="text()"/>
</ xsl:tenpl at e>

<xsl : tenpl at e mat ch="phone" >
<xsl : val ue-of select="text()"/>
</ xsl : tenpl at e>
</ xsl : styl esheet >

The transformation applied to the business card:

119

<car d>
<nane>John Doe</ nane>
<title>CEOQO, Wadget Inc.</title>
<enmi | >j ohn. doe@\ dget . conx/ emai | >
<phone>(202) 555-1414</ phone>
<l ogo url="wi dget.gif"/>

</ card>

looks like:

John Doe
CEO, Widget Inc.

j ohn. doe@\ dget. com
Phone: (202) 555-1414

120

A CSS example

The following CSS stylesheet also makes business cards visible in the browser:

card { background-col or: #cccccc; border: none; w dth: 300;}

name { display: block; font-size: 20pt; margin-left: 0; }

title { display: block; margin-left: 20pt;}

emai | { display: block; font-famly: nonospace; margin-left: 20pt;}
phone { display: block; margin-left: 20pt;}

The transformation applied to the business card:

<car d>
<nanme>John Doe</ nane>
<title>CEQ, Wdget Inc.</title>
<emai | >j ohn. doe@w dget . conx/ emai | >
<phone>(202) 555-1414</ phone>
<l ogo url="wi dget.gif"/>

</ card>

looks like:

John Doe

CEO, Widget Inc.
j ohn. doe@wu dget . com
(202) 555-1414

CSS is very limited compared to XSLT:

. attributes are invisible (like the URL attribute in | 0ogo)
. information cannot be rearranged

. no real computation is possible

. the target cannot be another XML language

The CSS2 language has some XML extensions, but is not supported by existing browsers.

121

http://www.w3.org/TR/REC-CSS2/

Patterns

Patterns are simple XPath expressions evaluating to node-sets.

A node matches a pattern if:

the node is member of the result of evaluating the pattern with respect to
some context.

Operationally, a pattern matching is probably best evaluated backwards (from
right to left).

Recall the structure of XPath node-set expressions:

pattern: location path | ... | location path
location path: /step/ ...// .../ step
step: axis nodetest predicate

. a pattern is a set of XPath location paths separated by | (union)

. restrictions: only the chi | d (default) and att ri but e (@ axes are allowed
here

. extensions: the location paths may start withi d(..) orkey(..)

A simple example is:

mat ch="secti on/ subsection | appendi x//subsecti on"

which matches subsect i on elements occuring either as child elements of
sect i on elements or as descendants of appendi x elements.

122

Templates

There are many different kinds of template constructs:

. literal result fragments

. recursive processing

. computed result fragments
. conditional processing

. sorting

. numbering

. variables and parameters
. keys

123

Literal result fragments

A literal result fragment is:
. atext constant (character data)
. an element not belonging to the XSL namespace

« <Xxsl:text ...> ... </...> (asraw text, but with white-space and
character escaping control)

o <xsl:coment> ... </...> (insertsacomment<!--...-->)

Since literal fragments are part of the stylesheet XML document, only well-formed
XML will be generated.

Example:

<xsl:tenplate match="...">
this text is witten directly to out put
</ xsl :tenpl at e>

124

Recursive processing

Recursive processing instructions:

. <xsl:apply-tenpl ates sel ect ="node-set expression"
apply pattern matching and template instantiation on selected nodes
(default: all children)

. <xsl:call-tenplate nanme="..."/>
invoke template by name (where xsl : t enpl at e has nane="..."
attribute)

. <xsl:for-each sel ect ="node-set expression"> tenplate

<[...>

>

instantiate inlined template for each node in node-set (document order by

default)

. <xsl:copy> tenplate </...>
copy current node to output and apply template

. <xsl:copy-of select="..."/>
copy selected nodes to output

The value of a sel ect attribute is an XPath expression evaluated in the current

context.

Example:

<xsl:tenplate match="article">
<hl><xsl :apply-tenpl ates select="title"/></hl>
</ xsl :tenpl at e>

Processing modes: node="..." onxsl:tenpl at e and xsl : appl y-

t enpl at es allows an element to be processed multiple times in different ways.

125

Computed result fragments

Result fragments can be computed using XPath expressions:

. <xsl:elenment nane="..." nanespace="..."> </[...>
construct an element with the given name, attrlbutes and contents

. <xsl:attribute nane="..." nanespace="..."> ... </...>
construct an attribute (inside xsl : el enent)

. <xsl:val ue-of select="..."/>
construct character data or attribute value (expression converted to string)

. <xsl:processing-instruction nane="..."> ... </[...>
construct a processing instruction

The attributes may contain { expr essi on} : XPath expressions which are
evaluated (and coerced to string) on instantiation.

Example:

<xsl:tenplate match="secti on">
<xsl : el ement nane="sec{@evel }">
<xsl:attribute nanme="kind">
<xsl :val ue-of sel ect="kind"/>
</xsl:attribute>
</ xsl : el enent >
</ xsl : tenpl at e>

This template rule converts
<section | evel =" 3" ><ki nd>i ntro</ ki nd></ secti on> into
<sec3 kind="intro"/>.

126

Conditional processing

Processing can be conditional:

o <xsl:if test="expression"> ... </...>
apply template if expression (coerced to boolean) evaluates to true

. <xsl:choose>
<xsl:when test="expression"> ... </...>

<xsl:otherwse> ... </...>
<[...>

test conditions in turn, apply template for the first that is true

Example:

<xsl:tenplate match="nutrition">
<xsl:1f test="@l cohol ">
<td align="right"><xsl:val ue-of select="@l cohol"/>%/td>
</xsl:if>
</ xsl :tenpl at e>

127

Sorting

Sorting chooses an order for xsl : appl y-t enpl at es and xsl : f or- each
(default: document order):

. <xsl:sort select="expression" .../>;
a sequence of xsl : sort elements placed in xsl : appl y-t enpl at es or
xsl : f or - each defines a lexicographic order

Some extra attributes:

. order="ascendi ng/ descendi ng"

. lang="..."

. data-type="text/nunber"”

. case-order="upper-first/lower-first"

Example:

<xsl:tenplate mat ch="personlist">
<xsl : apply-tenpl ates sel ect ="person">
<xsl:sort select="nane/famly"/>
<xsl:sort sel ect="nane/given"/>
</ xsl : appl y-tenpl at es>
</ xsl :tenpl at e>

This template rule processes a list of persons, sorted with family name as primary
key and given name as secondary key.

128

Numbering

- for automatic numbering of sections, item lists, footnotes, etc.

<xsl : nunber val ue="expr essi on" converted to number
format="..." default: 1.
| evel ="..." any/single/nultiple
count="..." select what to count
from"..." select where to start counting
l ang="..."

letter-value="..."
gr oupi ng- separator="..."
groupi ng-si ze="..."/>

. Ifval ue is specified, that value is used.
. Otherwise, the action is determined by | evel :
o |l evel ="any": number of preceding count nodes occuring after f r om
(example use: numbering footnotes)
o | evel ="si ngl e" (the default): as any but only considers ancestors and their
siblings
(example use: numbering ordered list items)
o | evel ="mul ti pl e": generates whole list of numbers
(example use: numbering sections and subsections at the same time)

Example:

<xsl :tenpl ate mat ch="f oot note">
(<xsl :nunber |evel ="any" count="footnote" from="chapter" format="1"/>)
</ xsl : tenpl at e>

129

Variables and parameters

- for reusing results of computations and parameterizing templates and whole
stylesheets

. static scope rules

. can hold any XPath value (string, number, boolean, node-set) + result-tree
fragment

. purely declarative: variables cannot be updated

. can be global or local to a template rule

Declaration:

. <xsl:variable nane="..." sel ect="expression"/>
variable declaration, value given by XPath expression

. <xsl:variable nane="..."> tenplate </..>
variable declaration, template is instantiated as result tree fragment to give
value

- similarly for xs| : par amparameter default-value declarations.
Use:

. $nane
returns XPath value in expressions, e.g. attribute value templates
« Xsl:w th-param
passes parameters in xsl : cal | -t enpl at e and xsl : appl y-
tenpl at es

Example:

130

<xsl:tenplate match="fo0">

<xsl :vari abl e name="X" sel ect="42"/>
<xsl :vari abl e name="Y">

<sonet ag><xsl : val ue- of sel ect =" @ar"/ ></sonet ag>
</ xsl :vari abl e>

<first>
<xsl : val ue-of sel ect="$X"/>
<xsl : copy-of select="$Y"/>
</[first>
<second>
<xsl : val ue-of sel ect="$X"/>
<xsl : copy-of select="$Y"/>
</ second>

</ xsl :tenpl at e>

Note: unfortunately, result tree fragments in variables cannot be used as source
for pattern matching and template instantiation - so general composition of
transformations is not possible :-(

131

- advanced node IDs for automatic construction of links

A key is a triple (node, name, value) associating a name-value pair to a tree node.
<xsl:key match="pattern" nane="..." use="node set expression"/>
declares set of keys - one for each node matching the pattern and for each node in the
node set

Comparison to DTD (or DSD) IDs:

. keys are declared in the stylesheet (not in the DTD)

. keys allow different "name spaces"

. key values can be placed anywhere (not just as attributes)
. one node may have several keys

. keys need not be unique

Extra XPath key function:

key(nanme expression, value expression)
returns nodes with given key name and value

This is often used together with:

gener ate-i d(singl eton node-set expression)
returns unique string identifying the given node

Example:

<xsl : key nane="nykeys" nmatch="section[@d]" use="@d"/>

<xsl :tenpl ate mat ch="secti on">
<hl>

<xsl :nunber format="1. "/>
<xsl :apply-tenpl ates select="title"/>
</ a>
</ h1>
<xsl : appl y-tenpl ates sel ect ="body"/>
</ xsl :tenpl at e>

<xsl :tenplate match="ref[@ection]">

<xsl:for-each sel ect="key(' nykeys', @ection)">
Section <xsl:nunber |evel ="single" count="section" format="1"/>
</ xsl : for-each>

132

</ a>
</ xsl :tenpl at e>

. akey is declared for each sect i on element with an i d attribute

. at each section title, a link anchor with a unique name is inserted

. ateachref element with a sect i on attribute, a link to the appropriate section is
inserted using the key to locate the destination node

. at the same time, both the section titles and the references are numbered

133

Other iIssues

Things not covered here:

. conflict resolution (pri ori ty) - choosing a template rule when multiple
patterns match

. output modes (xm , ht m , t ext) - constructing HTML or non-formatted
text instead of XML

. White-space handling (st ri p- space, pr eser ve- space) and output
escaping (di sabl e- out put - escapi ng)

attri but e- set - grouping attribute declarations

. additional XPath functions (docunent , f or mat - nunber, current, ...) -
allow multiple input documents, etc.

. stylesheet i nport /i ncl ude - modularity

. built-in template rules - convenient, but confusing for beginners

134

XSL Formatting Objects

« XSL-FO provides exact and detailed layout control

. itresembles e.g. LaTeX, but is XML based

. recall that HTML/XHTML has different goals: the exact look is decided by the
browser - not by the author

A small example:

<?xm version="1.0"7?>
<fo:root xmns:fo="http://ww.w3.org/ 1999/ XSL/ For mat " >

<f o: | ayout - mast er - set >
<f 0: si npl e- page- nast er mast er - name="ny- page" >
<f o: regi on- body margi n="1in"/>
</ fo:si npl e- page- mast er >
</fo:layout - nast er - set >

<f 0: page- sequence nast er - nane="ny- page" >
<fo:flow fl ow nane="xsl -r egi on- body" >
<fo:block font-fam|y="Ti mes" font-size="14pt">
<fo:inline font-weight="bold" >Hello</fo:inline> world!
</ f o: bl ock>
</fo:flow
</ f o: page- sequence>

</ fo:root>

. layout masters define the page layout

. pages are grouped into page sequences

. flow objects bind contents to page regions

. the actual contents is grouped in blocks

. inside blocks, content fragments can be assigned inline properties

- XSL-FO documents are almost always created using XSLT!

XSL-FO is not supported by existing browsers, but can be tried out using FOP that
translates into PDF.

135

http://xml.apache.org/fop/

Examples

The following XSLT stylesheet produces an XHTML version of the recipe XML example and illustrates
many XSLT features:

<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transf orm' versi on="1. 0"
xm ns="http://ww. w3. org/ 1999/ xhtm ">

<xsl:tenpl ate match="col | ection">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">

<head>
<title><xsl:apply-tenplates sel ect="description"/></title>
<link href="../style.css" rel ="styl esheet" type="text/css"/>
</ head>
<body>

<tabl e border="1">
<xsl : appl y-tenpl at es sel ect ="reci pe"/>
</t abl e>
</ body>
</htm >
</ xsl:tenpl at e>

<xsl:tenpl ate mat ch="descri pti on">
<xsl :val ue-of select="text()"/>
</ xsl:tenpl at e>

<xsl:tenpl ate match="reci pe">

<tr>
<t d>
<hl>
<xsl :apply-tenpl ates select="title"/>
</ hl>

<xsl : appl y-tenpl at es sel ect ="i ngredi ent"/ >

<xsl : appl y-tenpl ates sel ect ="preparation"/>
<xsl : appl y-tenpl ates sel ect="coment"/>
<xsl :apply-tenpl ates select="nutrition"/>
</td>
</[tr>
</ xsl:tenpl at e>

<xsl:tenpl ate match="i ngredi ent">
<xsl : choose>
<xsl : when test="@nmount">
<|li>
<xsl:if test="@nmount!="*"">
<xsl : val ue- of sel ect="@nount"/>
<xsl :text> </ xsl:text>
<xsl:if test="@nit">
<xsl : val ue-of select="@nit"/>
<xsl:if test="nunber (@nount)>nunber(1)">
<xsl| :text>s</xsl:text>
</xsl:if>
<xsl:text> of </xsl:text>

136

http://www.brics.dk/~amoeller/XML/print/transformation/recipes.html
http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

</ xsl:if>
<xsl:text> </ xsl:text>

</ xsl:if>
<xsl : val ue- of sel ect =" @ane"/ >
</[li>

</ xsl : when>
<xsl : ot herw se>
<I i ><xsl : val ue-of sel ect="@ane"/></11i>

<xsl :apply-tenpl ates sel ect="ingredient"/>
</ ul >
<xsl : appl y-tenpl at es sel ect ="preparati on"/>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl:tenpl at e>

<xsl :tenpl at e mat ch="preparati on">
<xsl : appl y-tenpl ates sel ect ="step"/>
</ xsl:tenpl at e>

<xsl:tenpl ate match="step">
<l i ><xsl : val ue-of select="text()|node()"/></1i>
</ xsl:tenpl at e>

<xsl:tenpl ate mat ch="coment ">

<li type="square"><xsl:val ue-of select="text()|node()"/></1i>
</ ul >
</ xsl:tenpl at e>

<xsl:tenplate match="nutrition">
<t abl e border="2">
<tr>
<t h>Cal ori es</t h><t h>Fat </ t h><t h>Car bohydr at es</t h><t h>Pr ot ei n</ t h>
<xsl:if test="@l cohol ">
<t h>Al cohol </t h>
</xsl:if>
</[tr>
<tr>
<td align="right"><xsl:val ue-of select="@alories"/></td>
<td align="right"><xsl:val ue-of select="@at"/>%/td>
<td align="right"><xsl:val ue-of sel ect="@arbohydrates"/>%/td>
<td align="right"><xsl:val ue-of select="@rotein"/>%/td>
<xsl:if test="@al cohol ">
<td align="right"><xsl:val ue-of select="@l cohol"/>%/td>
</xsl:if>
</[tr>
</t abl e>
</ xsl:tenpl at e>

</ xsl : styl esheet >

137

Different views

The following XSLT stylesheet:

<xsl :styl esheet xm ns: xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf ornf versi on="1.0">
<xsl:tenplate match="col |l ecti on">
<nutrition>
<xsl : appl y-tenpl at es sel ect ="reci pe"/>
</nutrition>
</ xsl : tenpl at e>

<xsl:tenpl ate match="reci pe">
<di sh name="{title/text()}"

calories="{nutrition/ @al ories}"
fat="{nutrition/ @at}"
car bohydrates="{nutrition/ @arbohydrates}"
protein="{nutrition/ @rotein}"
al cohol =" { nunber (concat (0, nutrition/ @l cohol))}"/>

</ xsl : tenpl at e>

</ xsl : styl esheet >

produces a different view of the recipes:

<nutrition>
<di sh al cohol =
pr ot ei n="32"
car bohydr at es=" 45"
fat="23" cal ories="1167"
nane="Beef Parnesan with Garlic Angel Hair Pasta"/>
<di sh al cohol =" 0"

prot ei n="18"
car bohydr at es=" 64"
fat="18"

cal ori es="349"
nane="Ri cotta Pie"/>
<di sh al cohol =" 0"

pr ot ei n="29"
car bohydr at es="59"
fat="12"

cal ori es="532"

nane="Li ngui ne Pescadoro"/>
<di sh al cohol =" 2"

prot ei n="4"

car bohydr at es=" 45"

fat="49"

cal ori es="612"

nane="Zuppa | ngl ese"/ >
<di sh al cohol =" 0"

pr ot ei n="39"
car bohydr at es="28"
fat="33"

cal ori es="8892"
nane="Cail |l es en Sarcophages"/ >
</nutrition>

138

which validates according to the DSD2 schema

<dsd root="nutrition">

<i f ><el ement name="nutrition"/>
<al | ow><el enent nane="di sh"/></al | ow>
</lif>

<i f ><el enent nane="di sh"/>
<al | ow>
<attribute nane="nane"/>
<attri bute nanme="cal ories"/>
<attri bute nane="carbohydrates"/>
<attribute name="protein"/>
<attribute nane="al cohol "/ >

</ al | ow>
<require><attribute name="nanme"/></require>
</[if>
</ dsd>

and using the XSLT stylesheet:

xm ns="http://ww. w3. org/ 1999/ xht m ">

<xsl:tenplate match="nutrition">
<htm xm ns="http://ww. w3. org/ 1999/ xht m " >
<head>

</ head>
<body>
<t abl e border="1">
<tr>
<t h>Di sh</t h>
<t h>Cal ori es</t h>
<t h>Fat </t h>
<t h>Car bohydr at es</ t h>
<t h>Pr ot ei n</t h>
</[tr>
<xsl : appl y-tenpl ates sel ect="di sh"/>
</tabl e>
</ body>
</htm >
</ xsl : tenpl at e>

<xsl :tenpl ate mat ch="di sh">
<tr>
<t d><xsl : val ue- of sel ect =" @ane"/ ></td>
<t d><xsl :val ue-of sel ect="@al ories"/></td>
<t d><xsl : val ue-of select="@at"/>%/td>

<t d><xsl : val ue-of sel ect="@rotein"/>%/td>
</[tr>
</ xsl : tenpl at e>

139

<xsl:styl esheet xm ns: xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf ornt' versi on="1. 0"

<link href="../style.css" rel ="styl esheet" type="text/css"/>

<t d><xsl : val ue- of sel ect =" @ar bohydrates"/>%/td>

</ xsl : styl esheet >

produces the following XHTML table:

Dish Calories [Fat |Carbohydrates |Protein
Beef Parmesan with Garlic Angel Hair Pasta 1167 23% 45% 32%
Ricotta Pie 349 18% 64% 18%
Linguine Pescadoro 532 12% 59% 29%
Zuppa Inglese 612 |49% 45% 4%
Cailles en Sarcophages 8892 |33% |28% 39%

140

Links to more information

www. W3. or g/ Styl e/ XSL/

W3C's XSL homepage, contains lots of links
www. W3. or g/ TR/ xsl t

the XSLT 1.0 specification
www. W3. org/ TR/ xslt11

working draft for XSLT 1.1 (support for XML Base, multiple output
documents, ...)
www. W3. or g/ TR/ xsl

the XSL 1.0 (defines the Formatting Objects XML language)
www. mul berrytech. com xsl/xsl-list/

XSL-List - mailing list
www. i bi blio.orqg/xm /books/ bi bl e2/ chapters/chl7. htm

a chapter from "The XML Bible" on XSL Transformations
www. i bi blio.org/xm /books/ bi bl e2/ chapters/chl8. htm

a chapter from "The XML Bible" on XSL Formatting Objects
nwal sh. coni’ docs/tutorial s/ xsl/

an XSL tutorial by Paul Grosso and Norman Walsh
www. dpawson. co. uk/ xsl / sect 2/ nono. ht n

"Things XSLT can't do", collected by Dave Pawson
www. al phawor ks. i bm conf t ech/ Lot us XSL

LotusXSL, a Java XSLT implementation from IBM alphaWorks
saxon. sour cef or ge. net

SAXON, another Java implementation
www. | cl ark. coni xm / xt. htm

XT, an early Java implementation by the editor of the XSLT spec
xm . apache. org/ fop

an XSL Formatting Objects to PDF converter

141

http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt11
http://www.w3.org/TR/xsl
http://www.mulberrytech.com/xsl/xsl-list/
http://www.ibiblio.org/xml/books/bible2/chapters/ch17.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch18.html
http://nwalsh.com/docs/tutorials/xsl/
http://www.dpawson.co.uk/xsl/sect2/nono.html
http://www.alphaworks.ibm.com/tech/LotusXSL
http://saxon.sourceforge.net/
http://www.jclark.com/xml/xt.html
http://xml.apache.org/fop/

XQuery

- information extraction and transformation

. Queries on XML documents - generalizing relational data

. Usage scenarios - why do we need it?

. Query languages requirements - the W3C specification

. The XQuery language

. XQuery concepts - writing queries

O

0

O

O

0

O

O

Path expressions

Element constructors

FLWR expressions

List expressions

Conditional expressions

Quantified expressions

Datatype expressions

. Other issues - things not covered here
. Examples - continuing the recipe example
« Links to more information

142

Queries on XML documents

XML documents generalize relational data in a very straightforward manner:

T 5
L RN

Here, we see:
relations (tables)

tuples (records)

A relation is a tree of height two with:

. unbounded fanout at the first level
. fixed fanout at the second level

In contrast, an XML document is an arbitrary tree.
How should query languages like SQL be similarly generalized?

The database community has been looking for a richer data model than relations.
Hierarchical, object-oriented, or multi-dimensional databases have emerged, but neither
has reached consensus.

143

Usage scenarios

XML querying is relevant for:

. human-readable documents
to retrieve individual documents, to provide dynamic indexes, to perform
context-sensitive searching, and to generate new documents

. data-oriented documents
to query (virtual) XML representations of databases, to transform data into
new XML representations, and to integrate data from multiple
heterogeneous data sources

. mixed-model documents
to perform queries on documents with embedded data, such as catalogs,
patient health records, employment records, or business analysis
documents

- In short, information retrieval.

144

Query language
regquirements

The W3C Query Working Group has identified many technical requirements:

. atleast one XML syntax (at least one human-readable syntax)

. must be declarative

. must be protocol independent

. Mmust respect XML data model

. must be namespace aware

. must coordinate with XML Schema

. must work even if schemas are unavailable

« must support simple and complex datatypes

. must support universal and existential quantifiers

. Mmust support operations on hierarchy and sequence of document
structures

« must combine information from multiple documents

. Mmust support aggregation

. must be able to transform and to create XML structures

. must be able to traverse ID references

In short, it must be SQL generalized to XML!

145

http://www.w3.org/TR/xmlquery-req

The XQuery language

The query language developed by W3C is called XQuery and is currently at the
level of a Working Draft.

It is derived from several previous proposals:

. XML-OL
. YATL
. Lorel

- Quilt

which all agree on the fundamental principles.

XQuery relies on XPath and XML Schema datatypes.

Only a prototype implementation is yet supported, and many details about the
language may still change.

XQuery is not an XML language - a version in XML syntax is called XQueryX.

146

http://www.w3.org/TR/xquery
http://www.research.att.com/~mff/files/final.html
http://www-rocq.inria.fr/~simeon/YAT/
ftp://db.stanford.edu/pub/papers/lorel96.ps
http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html
http://www.softwareag.com/developer/quip/
http://www.w3.org/TR/xqueryx

XQuery concepts

A query in XQuery is an expression that:

. reads a number of XML documents or fragments
. returns a sequence of well-formed XML fragments

The principal forms of XQuery expressions are:

. path expressions

. element constructors

. FLWR ("flower") expressions
. list expressions

. conditional expressions

. quantified expressions

. datatype expressions

147

Path expressions

The simplest kind of query is just an XPath expression.
As usual, some specific extensions are allowed...

A simple path expression looks like:

docunent (" zoo. xm ")/ /chapter[2]//figure[caption = "Tree Frogs"]

. the resultis all figures with caption Tr ee Fr ogs in the second chapter of the document
zoo. xm
. the result is given as a list of XML fragments, each rooted with a capt i on element
. the order of the fragments respects the document order (order matters! - as opposed to SQL)

The initial context for the path expression is given by docunent (" zoo. xm ") (similarly to
XPointer).

An XQuery specific extension of XPath allows location steps to follow a new IDREF axis:

docunent ("zoo.xm ")/ /chapter[title = "Frogs"]//figref/ @efid=>fig/caption

. the resultis all captions in figures referenced in the chapter with title Fr ogs
. the => operator follows an IDREF attribute to its unique destination

As a further generalization, XQuery allows an arbitrary XQuery expression to be used as a location
step!

148

Element constructors

An XQuery expression may construct new XML elements:

<enpl oyee enpi d="12345">
<nanme>John Doe</ nanme>
<j ob>XM. speci al i st </ ob>
</ enpl oyee>

This expression just evaluates to itself.
In the XQuery syntax this is unambiguous - XQueryX must use namespaces!

More interestingly, an expression may use values bound to variables:

<enpl oyee enpi d={$i d} >
<nane>{ $nane} </ nanme>
{$ ob}

</ enpl oyee>

Here the variables $i d, $nane, and $j ob must be bound to appropriate
fragments.

In general, {. ..} may contain full XQuery expressions.

149

FLWR expressions

The main engine of XQuery is the FLWR expression:

. FOR-LET-WHERE-RETURN
. pronounced "flower"
. generalizes SELECT-FROM-HAVING-WHERE from SQL

A complete example is:

FOR $p I N docunent ("bi b.xm ")/ / publisher

LET $b : = docunent ("bi b. xm)//book[publisher = $p]
WHERE count ($b) > 100

RETURN $p

. FORgenerates an ordered list of bindings of publ i sher names to $p
. LET associates to each binding a further binding of the list of book
elements with that publisher to $b
. atthis stage, we have an ordered list of tuples of bindings: ($p, $b)
. VHERE filters that list to retain only the desired tuples
RETURN constructs for each tuple a resulting value

The combined result is in this case and ordered list of publishers that publish
more than 100 books.

We probably only want each publisher once, so the di sti nct operator
eliminates duplicates in a list:

FOR $p I N di stinct(document ("bib.xm")//publisher)
LET $b : = docunent ("bi b. xm)/ /book[publisher = $p]
VWHERE count ($b) > 100

RETURN $p

Note the difference between FOR and LET:

FOR $x in /library/book

generates a list of bindings of $x to each book element in the | i br ary, but:

150

LET $x := /library/ book

generates a single binding of $x to the list of book elementsinthel i brary.

This is also sufficient to compute joins of documents:

FOR $p I N docunent ("www. irs. gov/taxpayers. xm ")//person
FOR $n I N docunent (" nei ghbors. xm ")/ / nei ghbor[ssn = $p/ssn]
RETURN
<per son>
<ssn> { $p/ssn } </ssn>
{ $n/nane }
<i ncome> { $p/income } </incone>
</ per son>

151

List expressions

XQuery expressions manipulate lists of values, for which many operators are
supported.

For example, the avg(.. .) function computes the average of a list of integers.

The following query lists each publisher and the average price of their books:

FOR $p I N distinct(docunment ("bib.xm")//publisher)
LET $a : = avg(docunent ("bi b.xm ")//book[publisher = $p]/price)
RETURN
<publ i sher >
<name>{ $p/text() }</name>
<avgprice>{ $a }</avgprice>
</ publ i sher >

Compare this with the verbose XQueryX syntax.

Lists can be sorted, as in the following where books costing more than 100$ are listed
in sorted order:

. first by primary the author
. second by the title

docunent ("bi b. xm ")/ / book[price > 100] SORTBY (author[1],title)

Other list operators compute unions, intersections, differences, and subranges of
lists.

152

http://www.brics.dk/~amoeller/XML/print/querying/average.xml

Conditional expressions

XQuery supports a general | F- THEN- EL SE construction.

The example query:

FOR $h I N docunent ("library.xm ")//hol di ng
RETURN
<hol di ng>
{ $h/title,
|F ($h/ @ype = "Journal ")
THEN $h/ edi t or
ELSE $h/ aut hor

}
</ hol di ng>

extracts from the holdings of a library the titles and either editors or authors.

Notice the , (comma) operator, which concatenates two (singleton) lists.

153

Quantified expressions

XQuery allows quantified expressions, which decide properties for all elements in
a list:

. SOME-| N- SATI SFI ES
. EVERY-1 N- SATI SFI ES

The following example finds the titles of all books which mention both sailing and
windsurfing in the same paragraph:

FOR $b I N docunent ("bi b. xm ") // book
VWHERE SOVE $p I N $b// paragraph SATI SFI ES

(cont ai ns($p, "sailing") AND contains($p,"w ndsurfing"))
RETURN $b/title

The next example finds the titles of all books which mention sailing in every
paragraph:

FOR $b I N docunent ("bi b. xm ") // book

VWHERE EVERY $p | N $b// paragraph SATI SFI ES
cont ai ns($p, "sai ling")

RETURN $b/title

154

Datatype expressions

XQuery supports all datatypes from XML Schema, both primitive and complex
types.

Constant values can be written:

. as literals (like stri ng, i nteger,fl oat)
. as constructor functions (t rue(), dat e("2001- 06-07"))
. as explicit casts (CAST AS xsd: positivel nteger(47))

Arbitrary XML Schema documents can be imported into a query.
An | NSTANCEOF operator allows runtime validation of any value.

A TYPESW TCH operator allows branching based on types.

155

Other iIssues

Things not covered here:

. hundreds of built-in operators and functions - contains anything you might
think of

. computed element and attribute names - allow more flexible queries
. user-defined functions - allow general-purpose computations

. the XQuery language definition has 102 outstanding issues - stay tuned for
changes

156

http://www.w3.org/TR/2001/WD-xquery-20010607#section-XQuery-Issues

Examples

The following XQuery expressions extract information from the recipe collection:

"The titles of all recipes™:

FOR $t I N docunent ("recipes.xm")//title
RETURN $t

<?xm version="1.0"?>
<xgl :result xm ns:xql ="http://nmetal ab. unc. edu/ xql /">
<titl e>Beef Parnesan with Garlic Angel Hair Pasta</title>
<title>Ricotta Pie</title>
<title>Li ngui ne Pescadoro</title>
<title>Zuppa Inglese</title>
<title>Cailles en Sarcophages</title>
</xql :result>

"The dishes that contain flour":

<fl oury>
{ FOR $r IN docunent ("recipes.xm")//recipe[.//ingredient[@anme="flour"]]
RETURN <di sh>{$r/title/text()}</dish>
}

</floury>

<?xm version="1.0"7?>

<floury xm ns: xql ="http://netal ab. unc. edu/ xql /">
<di sh>Ri cotta Pi e</di sh>
<di sh>Zuppa | ngl ese</ di sh>
<di sh>Cai | | es en Sar cophages</di sh>

</floury>

"For each ingredient, the recipes that it is used in":

FOR $i IN distinct(docunment("recipes.xm ")/ /ingredi ent/ @ane)
RETURN <i ngr edi ent nanme={$i }>
{ FOR $r I N docunent("recipes.xm")//recipe
VWHERE $r/ /i ngredi ent[@Ghame=3%$i]
RETURN $r/title
}

</ingredient>

157

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

<?xm version="1.0"?>
<xqgl :result xm ns:xqgl ="http:// metal ab. unc. edu/ xql /">
<i ngredi ent name="beef cube steak">
<title>Beef Parnmesan with Garlic Angel Hair Pasta</title>
</ingredient>
<i ngredi ent name="onion, sliced into thin rings">
<title>Beef Parnmesan with Garlic Angel Hair Pasta</title>
</i ngredi ent >

</xql :resul t>

158

Links to more information

www. W3. or g/ TR/ xquery

XQuery 1.0 Working Draft
www. W3. or g/ TR/ xm query-req

W3C XML Query Requirements
www. W3. or g/ TR/ xnml quer y- use- cases

XML Query Use Cases
www. W3. or g/ TR/ quer y- semanti cs

XQuery 1.0 Formal Semantics
www. sof t war eag. com devel oper/ qui p

XQuery prototype implementation

159

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/query-semantics/
http://www.softwareag.com/developer/quip/

DOM, SAX, and JDOM

- XML support in programming languages

. XML and programming - beyond specialized tools
. The DOM API - official W3C proposal
. A simple DOM example - manipulating the recipe collection
. The SAX API - events and callbacks
. A simple SAX example - another go at the recipes
. SAX events - tracing parsing events
. The JDOM API - a simpler solution
. A simple JDOM example - recipes again
. The JDOM packages - the basic constituents
. The JDOM tree model - how XML trees are viewed
. JDOM input and output - reading an writing XML
. JAXP - the Sun solution
. A Business Card editor - a larger example
. Problems with JDOM - not yet perfect
Links to more information

160

XML and programming

XSLT, XPath and XQuery provide tools for specialized tasks.
But many applications are not covered:

. domain-specific tools for concrete XML languages
. general tools that nobody has thought of yet

To work with XML in general-purpose programming languages we need to:

parse XML documents into XML trees
. navigate through XML trees
. construct XML trees
. output XML trees as XML documents

DOM and SAX are corresponding APIs that are language independent and
supported by numerous languages.

JDOM is an API that is tailored to Java.

Typical examples: domain-specific editors and browsers.

161

http://www.w3.org/DOM/
http://sax.sourceforge.net/
http://www.jdom.org/

The DOM API

DOM is the official W3C proposal.

It views an XML tree as a data structure, similar to the DOM from Javascript.
It is quite large and complex...

Level 1 Core: W3C Recommendation, October 1998
o primitive navigation and manipulation of XML trees
o other parts: HTML
. Level 2 Core: W3C Recommendation, November 2000
o adds Namespace support and minor new features
o other parts: Events, Views, Style, Traversal and Range
. Level 3 Core: W3C Working Draft, September 2001
o adds ordering and whitespace
o other parts: Schemas, XPath

The DOM API is specified in OMG IDL (Interface Definition Language).

162

http://www.w3.org/DOM/
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-3-Core/core.html

A simple DOM example

The following Java program uses DOM to read the recipe collection and cut it down
to the first recipe:

i nport java.io.*;
i mport org.apache. xer ces. par sers. DOVWPar ser ;
i mport org.w3c.dom *;

public class FirstReci peDOM {

public static void main(String[] args) {
try {
DOVPar ser p = new DOMPar ser () ;
p. parse(args[0]);
Docunent doc = p.get Docunent ();
Node n = doc. get Docunent El enment (). getFirstChil d();
while (n!'=null && ! n.get NodeNane(). equal s("recipe"))
n = n.getNextSibling();
PrintStream out = System out;
out.println("<?xm version=\"1.0\"?>");
out.println("<collection>");
I f (n!'=null)
print(n, out);
out.println("</collection>");
} catch (Exception e) {e.printStackTrace();}

}

static void print(Node node, PrintStream out) {
int type = node. get NodeType();
swtch (type) {
case Node. ELEMENT NODE:
out.print("<" + node. get NodeNane());
NamedNodeMap attrs = node.getAttributes();
int len = attrs. getLength();
for (int i=0; i<len; i++) {
Attr attr = (Attr)attrs.iten(i);
out.print(" " + attr.get NodeNane() + "=\"" +
escapeXM.(attr. get NodevVal ue()) + "\"");
}
out.print('>");
NodeLi st children = node. get Chi | dNodes() ;

163

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

l en = children. getlLength();
for (int i=0; i<len; i++)
print(children.iten(i), out);

out.print("</" + node. get NodeNane() + ">");
br eak;

case Node. ENTI TY REFERENCE NODE:
out.print("&" + node.get NodeNane() + ";");
br eak;

case Node. CDATA_ SECTI ON_NODE
out.print("<!/[CDATA[" + node. get NodeVal ue() + "]]>");
br eak;

case Node. TEXT NODE:
out. print (escapeXM.(node. get NodeVal ue()));
br eak;

case Node. PROCESSI NG _| NSTRUCTI ON_NCDE
out.print("<?" + node. get NodeNane());
String data = node. get NodeVal ue();
if (data!=null && data.l ength()>0)

out.print(" " + data);
out.println("?>");
br eak;
}
}

static String escapeXM.(String s) {
StringBuffer str = new StringBuffer();
int len = (s !'=null) ? s.length() : O;
for (int 1i=0; i<len; i++) {
char ch = s.charAt(i);
switch (ch) {
case '<': str.append("&t;"); break;
case '>': str.append(">"); break;
case '& : str.append("&anp;"); break;
case '"': str.append("""); break;
case '\'': str.append("'"); break;
default: str.append(ch);
}
}
return str.toString();
}
}

Note that:

164

. we need to make our own pri nt method
. when using DOM in Java, one actually uses the Java language binding

165

http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

The SAX API

SAX (Simple API for XML) started as a grassroots movement, but has gained an
official standing.

An XML tree is not viewed as a data structure, but as a stream of events
generated by the parser.

The kinds of events are:

. the start of the document is encountered

. the end of the document is encountered

. the start tag of an element is encountered
. the end tag of an element is encountered
. Character data is encountered

. aprocessing instruction is encountered

Scanning the XML file from start to end, each event invokes a corresponding
callback method that the programmer writes.

An XML tree can be built in response, but it is not required to construct a data
structure.

This is sometimes much more efficient, if the document can be piped through the
application.

166

http://sax.sourceforge.net/

A simple SAX example

The following Java programs reads the recipe collection and outputs the total amount of flour being used (assuming
the unit is always cup):

i mport java.io.*;

i mport org.xm.sax.*;

i mport org.xm . sax. hel pers. *;

i mport org. apache. xer ces. par sers. SAXPar ser ;

public class Flour extends DefaultHandler {
fl oat amount = O;

public void startEl enment (String nanespaceURI, String |ocal Nane,
String gName, Attributes atts) {
i f (namespaceURIl . equal s("http://recipes.org") && |ocal Nane. equal s("ingredient"))

{
String n = atts. getValue("", "nane");
if (n.equals("flour")) {
String a = atts.getValue("","amunt"); // assunme 'anobunt' exists
amount = anount + Fl oat.val ueO(a).fl oat Val ue();
}
}
}
public static void main(String[] args) {
Fl our f = new Flour();
SAXPar ser p = new SAXParser();
p. set Cont ent Handl er () ;
try { p.parse(args[0]); }
catch (Exception e) {e.printStackTrace();}
System out. println(f.anmount);
}
}

The output for our recipe collection is:

7.75

Only a tiny amount of the XML document is stored at any time.

167

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

SAX events

The following Java program traces all SAX events generated by parsing the recipe collection:

| nport java.io.*;

| nport org.xm . sax. *;

i mport org.xmnl . sax. hel pers. *;

i mport org.apache. xerces. parsers. SAXPar ser ;

public class Trace extends Defaul t Handl er {
i nt indent;

void printlndent() {

for (int i=0; i<indent; i++) Systemout.print("-");

}

public void startDocunent () {
Systemout. println("start docunment”);

}

public void endDocunent () {
System out . println("end docunent");

}

public void startElement(String uri, String |ocal Nane,
String gName, Attributes attributes) {

printlndent();

Systemout.println("starting elenment: " + gNane);

i ndent ++;

}

public void endEl enent (String uri, String |ocal Nane,

String gName) ({
i ndent - -;
printlndent();
Systemout.println("end elenment: " + gNane);

}

public void ignorabl eWitespace(char[] ch, int start, int length) {

printlndent();

System out. println("whitespace, length " + | ength);

}

public void processinglnstruction(String target,
printlndent();
System out. println("processing instruction:

}

168

String data) {

+ target);

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

public void characters(char[] ch

printlndent();

System out. println("character data, |ength "

}

int start,

public static void main(String[] args) {

Trace t = new Trace();

SAXPar ser p = new SAXPar ser ();

p. set Cont ent Handl er (t);
try { p.parse(args[0]); }

catch (Exception e) {e.printStackTrace();}

int |ength){

+ length);

The output is (abbreviated with . . .):

start docunent

processing instruction: dsd
starting elenent: collection
-character data, length 3
-starting elenment: description
--character data, length 47
-end el ement: description
-character data, length 3
-starting el enent: recipe
--character data, length 5

-end el ement: recipe
-character data, length 1
end el enent: collection
end docunent

169

The JDOM API

DOM is too complicated to suit many programmers.
Since itis a general API, it does not use special Java features:

. text contentis notjustj ava. |l ang. Stri ng
. method overloading is not allowed
. existing collection classes are ignored

JDOM is designed to be simple and Java-specific.

JDOM is a small (100K) library, since it is used on top of either DOM or SAX.
- a full XML parser is complex, dealing with encodings, namespaces, and entities

It shares the simple view of XML trees presented in these slides.

170

http://www.jdom.org/

A simple JDOM example

The following Java program uses JDOM to read the recipe collection and cut it down to the first recipe:

i mport java.io.*;

i mport org.jdom *;

i nport org.jdominput.*;
i mport org.jdom out put.*;

public class FirstReci peJDOM {
public static void main(String[] args) {

try {
Docunent d = new SAXBui |l der (). buil d(new File(args[0]));
Nanmespace ns = Nanmespace. get Nanespace("http://recipes.org");
El ement r = d. get Root El enent ().get Child("recipe", ns).detach();
Docunent n = new Docunent ((new El enment ("col | ection")).addContent(r));
new XMLQut putter().output(n, Systemout);

} catch (Exception e) {e.printStackTrace();}

}
}

Compare this with the DOM version.

171

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

The JDOM packages

JDOM contains five Java packages:

. 0rg. | dom- defines the basic model of an XML tree
. 0rg.|dom adapt er s - defines wrappers for various DOM

implementations
. 0org.jdom.i nput -defines means for reading XML documents

. 0rg.jdom out put - defines means for writing XML documents
. 0org.|domtransform- defines an interface to JAXP XSLT

172

http://www.jdom.org/docs/apidocs/org/jdom/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/adapters/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/input/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/output/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/transform/package-summary.html

The JDOM tree model

JDOM has a class for every kind of XML tree node (in the general sense):

. Document
. El ement
. Attribute
. CDATA
. Comment
. DocType
EntityRef
Nanespace
Processi ngl nstruction
+j ava. | ang. St ri ng (for character data)

Each node has a parent pointer. There are no sibling pointers but several
methods for accessing the child nodes.

Contentis givenas aj ava. util . Li st - modifications are reflected in the tree.

Surprisingly, the common behavior of nodes is not modelled by interfaces or
abstract superclasses.

173

http://www.jdom.org/docs/apidocs/org/jdom/Document.html
http://www.jdom.org/docs/apidocs/org/jdom/Element.html
http://www.jdom.org/docs/apidocs/org/jdom/Attribute.html
http://www.jdom.org/docs/apidocs/org/jdom/CDATA.html
http://www.jdom.org/docs/apidocs/org/jdom/Comment.html
http://www.jdom.org/docs/apidocs/org/jdom/DocType.html
http://www.jdom.org/docs/apidocs/org/jdom/EntityRef.html
http://www.jdom.org/docs/apidocs/org/jdom/Namespace.html
http://www.jdom.org/docs/apidocs/org/jdom/ProcessingInstruction.html

JDOM input and output

Parsing XML documents into JDOM:

. this can be done with basically any DOM or SAX parser
. SAX s preferable, since it avoids the construction of a DOM tree
. parsing errors are reported as exceptions

Output from JDOM can be generated in different ways:

. as the corresponding sequence of SAX events

. as a standard DOM tree

. as an (indented) XML document represented as a stream of characters
(to a file or another application)

174

http://www.jdom.org/docs/apidocs/org/jdom/input/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/output/package-summary.html

JAXP

JAXP is the official API for XML processing from Sun.

It supports DOM, SAX, and XSLT (which may be run inside Java applications).

JDOM is rumored to become integrated into a future version.

175

http://java.sun.com/xml/jaxp/index.html

A Business Card editor

A typical Java application is a domain-specific XML editor:

. nobody wants to write the markup by hand
. general-purpose XML editors are too clunky

We generalize the business card language to allow collections of business cards:

<cards>

<car d>
<nane>John Doe</ nane>
<title>CEOQO Wdget Inc.</title>
<emai | >j ohn. doe@w dget . conx/ emai | >
<phone>(202) 456-1414</phone>
<l ogo url="widget.gif" />

</ card>

<card>
<nanme>M chael Schwart zbach</ nanme>
<title>Associ ate Professor</title>
<emai | >m s@ri cs. dk</ emai | >
<phone>+45 8610 8790</ phone>

<logo url="http://ww.brics.dk/~m s/portrait.gif" />

</ car d>

<car d>
<nanme>Anders Mal | er </ name>
<title>Ph.D. Student</title>
<enmi | >anoel | er @ri cs. dk</ emai | >
<phone>+45 8942 3475</ phone>

<l ogo url="http://ww. brics. dk/~anoel | er/am j pg"/>

</ car d>
</ car ds>

We then write a Java program to edit such collections.

First, we need a high-level representation of a business card:

class Card {
public String name, title, email, phone, | ogo;
public Card(String name, String title, String emnail,
t hi s. name = nane;
this.title = title;
this.emni|l = email;
t hi s. phone = phone;
this.logo = | ogo;

String phone,

String | ogo) {

An XML document must then be translated into a vector of such objects:

176

http://www.brics.dk/~amoeller/XML/print/programming/BCedit.java

Vect or doc2vect or (Docunent d) {
Vector v = new Vector();
Iterator i = d.getRootEl enment().getChildren().iterator();
while (i.hasNext()) {
El ement e = (Elenent)i.next();
String phone = e. get Chil dText (" phone");
i f (phone==null) phone="";
El ement 1 ogo = e.getChild("l ogo");
String url;
if (logo==null) url =""; else url = lo0go.getAttributeValue("url");
Card ¢ = new Card(e. getChildText("nane"), [/ exploit schems,
e.getChildText("title"), // assune validity
e.getChil dText ("email "),
phone,
url);
v. add(c);
}

return v;

}

And back into an XML document:

Docunent vector2doc() {
El enrent cards = new El enent ("cards");
for (int i=0; i<cardvector.size(); i++) {
Card ¢ = (Card)cardvector.elenent At (i);
if (cl=null) {
El ement card = new El enent ("card");
El ement name new El ement (" nane");
nane. addCont ent (c. nane) ;
card. addCont ent (nane) ;
Elenment title = new Elenent("title");
title.addContent(c.title);
card. addContent (title);
El ement email = new El enent("enmail");
emai | . addContent (c. emai |) ;
card. addContent (emai |) ;
if (!c.phone.equals("")) {
El ement phone = new El enent (" phone");
phone. addCont ent (¢c. phone) ;
car d. addCont ent (phone) ;

}

if (!'c.logo.equals("")) {
El ement | ogo = new El enent ("l ogo");
| ogo. set Attribute("url",c.lo0go);
card. addCont ent (| ogo) ;

}

cards. addCont ent (card) ;

}
}

return new Docunent (cards);

}

A little logic and some GUI then completes the editor:

177

» BCedit - 0O X

Name |lohn Doe
lohn Doe

Title ICED, Widget Inc

Michael Schwartz bach Email |iichn doe@widget.com

Phone |¥202) 456-1414

gnders Mgller

Logo Twidget.qif

ok| delete| clear| SEL'-.-'El |:|uit|

Compile with: j avac -cl asspath xerces.jar:jdomjar BCedit.java
This example contains some general observations:

. XML documents are parsed via JDOM into domain-specific data structures

. if the input is known to validate according to some schema, then many runtime errors can be assumed
never to occur

. how do we ensure that the output of vect or 2doc is valid according to the schema? (well-formedness is for
free)

178

Problems with JDOM

JDOM is not (yet) perfect:
. itis still a beta version under development

. shared functionality is not collected in an interface or common superclass
(so many casts are necessary)

. the design contains many non-orthogonal features (for instance, there is a
r enoveCont ent (CDATA) method but not a r enoveCont ent (Stri ng))

. the documentation is insufficient (for instance, El enent . get Cont ent
returns a Li st , but it is not specified which of the optional methods that are
implemented, so none of them can be used)

179

Links to more information

www. W3. or g/ DOM

DOM homepage
ww. W3. or g/ TR/ REC- DOMt Level -1

DOM level 1

www. W3. or g/ TR/ DOMt Level - 2- Cor e
DOM level 2

www. W3. or g/ TR/ DOVt Level - 3- Cor e
DOM level 3

sax. sour cef or ge. net

SAX project website
[ava. sun.com xm /

SUN's Java/XML page
java. sun. conl xm /| axp/

JAXP, Sun's Java APIs for XML Processing
xm soft. org

libxml, Ghome project's XML C library
xm . apache. org

Apache's XML page
xm . apache. org/ xerces2-j/

Apache's XML parser

180

http://www.w3.org/DOM/
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://sax.sourceforge.net/
http://java.sun.com/xml/
http://java.sun.com/xml/jaxp/
http://xmlsoft.org/
http://xml.apache.org/
http://xml.apache.org/xerces2-j/

Background: W3C

- a look at the organization behind most of the XML-related specifications

W3C - The World Wide Web Consortium
Organization

Activities

Policies

Technical Reports

a bk owbdPE

181

W3C - The World Wide Web
Consortium (Www. W3. or g)

- the de facto leader in defining Web standards

Consists of more than 500 companies and organizations, led by Tim Berners-Lee,
creator of the World Wide Web.

W3C's Mission Statement:

"To lead the World Wide Web to its full potential by developing common
protocols that promote its evolution and ensure its interoperability."

Competitors: 1ISO, OASIS, ECMA

Coming up: an overview of the W3C Process Document...

182

http://www.w3.org/
http://www.w3.org/Consortium/Process/

Organization

W3C's organizational structure:

. the Members (who pay $50,000 a year!) - companies and organizations
(carry out activities)

. the Team - Chairman, Director, Staff, Fellows (technical leadership,
coordinates activities, hosted by MIT, INRIA, and Keio)

. the Advisory Board (elected) - provides guidance of strategy

(Compare this with 1ISO!)

183

Activities
Activities carried out by groups:

. Working Groups - produce specifications and prototypes

. Interest Groups - explore and evaluate technologies

. Coordination Groups - ensure consistency and integrety between other
groups

Current XML groups:

. query
. schema

. linking

. core

. coordination

Other (current or former) W3C activities: HTML, HTTP, PNG, Amaya, ...
Organization of events:
. workshops - short expert meeting

symposia - education
conferences - the International World Wide Web Conference

184

http://www.www10.org/

Policies

. consensus - reach "substantial agreement”
. dissemination - limit intellectual property rights, ensure availability

+ the unofficial:

. better too soon than too late - otherwise someone else will take over
. greatest common denominator - every interested member is allowed one
favourite feature in each spec

185

Technical Reports

- the central activity of W3C
Member submissions and Working Group publications:

. Notes - acknowledged submissions by Members (members only!), Working
Group notes, etc.;

Recommendation track:

. Working Drafts - Working Group reports (work in progress)
. Candidate Recommendations - stable Working Drafts
Proposed Recommendations - being reviewed by the Advisory Committee

Recommendations - standards recommended by W3C (although they don't
call them "standards")

186

http://www.w3.org/TR/#Notes
http://www.w3.org/TR/#WD
http://www.w3.org/TR/#CR
http://www.w3.org/TR/#PR
http://www.w3.org/TR/#Recommendations

Recent BRICS Notes Series Publications

NS-01-8

NS-01-7

NS-01-6

NS-01-5

NS-01-4

NS-01-3

NS-01-2

NS-01-1

NS-00-8

NS-00-7

Anders Mgller and Michael I. Schwartzbach. The XML Rev-
olution (Revised) December 2001. 186 pp. This revised and
extended report superseeds the earlier BRICS Report NS-00-
8.

Patrick Cousot, Lisbeth Fajstrup, Eric Goubault, Jeremy Gu-
nawardena, Maurice Herlihy, Martin Raussen, and Vladimiro
Sassone, editorsPreliminary Proceedings of the Workshop on
Geometry and Topology in Concurrency Theory, GETCO '01,
(Aalborg, Denmark, August 25, 2001), August 2001. vi+97 pp.

Luca Aceto and Prakash Panangaden, editorsPreliminary
Proceedings of the 8th International Workshop on Expressive-
ness in Concurrency, EXPRESS ’'0XAalborg, Denmark, Au-
gust 20, 2001), August 2001. vi+139 pp.

Flavio Corradini and Walter Vogler, editors. Preliminary Pro-
ceedings of the 2nd International Workshop on Models for Time-
Critical Systems, MTCS '01(Aalborg, Denmark, August 25,
2001), August 2001. vi+ 127pp.

Ed Brinksma and Jan Tretmans, editors. Proceedings of
the Workshop on Formal Approaches to Testing of Software,
FATES '01, (Aalborg, Denmark, August 25, 2001), August
2001. viii+156 pp.

Martin Hofmann, editor. Proceedings of the 3rd International
Workshop on Implicit Computational Complexity, ICC '01,
(Aarhus, Denmark, May 20-21, 2001), May 2001. vi+144 pp.

Stephen Brookes and Michael Mislove, editorsPreliminary
Proceedings of the 17th Annual Conference on Mathematical
Foundations of Programming Semantics, MFPS '01Aarhus,
Denmark, May 24-27, 2001), May 2001. viii+279 pp.

Nils Klarlund and Anders Mgller. MONA Version 1.4 — User
Manual. January 2001. 83 pp.

Anders Mgller and Michael |. Schwartzbach.The XML Revo-
lution. December 2000. 149 pp.

Nils Klarlund, Anders Mgller, and Michael I. Schwartzbach.
Document Structure Description 1.0December 2000. 40 pp.

	XML tutorial
	XML tutorial: The XML Revolution
	XML tutorial: About
	XML tutorial: Overview
	XML tutorial: HTML and XML
	XML tutorial: Hyper-Text Markup Language
	XML tutorial: Original motivation for HTML
	XML tutorial: Compact and human readable
	XML tutorial: From logical to physical structure
	XML tutorial: Stylesheets
	XML tutorial: Different versions of HTML
	XML tutorial: Syntax and validation
	XML tutorial: Browsers are forgiving
	XML tutorial: Structuring general information
	XML tutorial: Problems with HTML
	XML tutorial: What is XML
	XML tutorial: HTML vs. XML
	XML tutorial: A conceptual view of XML
	XML tutorial: A concrete view of XML
	XML tutorial: Applications of XML
	XML tutorial: The recipe example
	XML tutorial: From SGML to SML
	XML tutorial: SGML relics
	XML tutorial: XML technologies
	XML tutorial: Basic XML tools
	XML tutorial: Links to more information

	XML tutorial: Namespaces, XInclude, and XML Base
	XML tutorial: Mixing XML Languages
	XML tutorial: Qualifying names
	XML tutorial: Namespace declarations
	XML tutorial: Combining XML documents
	XML tutorial: An XInclude example
	XML tutorial: XInclude details
	XML tutorial: XBase
	XML tutorial: Links to more information

	XML tutorial: DTD, XML Schema, and DSD
	XML tutorial: Schemas and schema languages
	XML tutorial: Choosing a schema language
	XML tutorial: DTD - Document Type Definition
	XML tutorial: Example DTD
	XML tutorial: Problems with DTD
	XML tutorial: Design requirements
	XML tutorial: XML Schema
	XML tutorial: A small example
	XML tutorial: Overview of XML Schema
	XML tutorial: Constructing complex types
	XML tutorial: Constructing simple types
	XML tutorial: Local definitions
	XML tutorial: Inheritance and substitution groups
	XML tutorial: Annotations
	XML tutorial: Schema inclusion and redefinition
	XML tutorial: Namespaces
	XML tutorial: Attribute and element defaults
	XML tutorial: Identity constraints
	XML tutorial: A larger example
	XML tutorial: Problems with XML Schema
	XML tutorial: Document Structure Description 2.0
	XML tutorial: Example
	XML tutorial: Constraints
	XML tutorial: Stringtypes
	XML tutorial: Expressions
	XML tutorial: Inclusion and extension
	XML tutorial: Links to more information

	XML tutorial: XLink, XPointer, and XPath
	XML tutorial: XLink, XPointer, and XPath
	XML tutorial: Problems with HTML links
	XML tutorial: The XLink linking model
	XML tutorial: An example
	XML tutorial: Linking elements
	XML tutorial: Behavior
	XML tutorial: Simple vs. Extended links
	XML tutorial: XPointer: Why, what, and how
	XML tutorial: XPointer vs. XPath
	XML tutorial: XPointer fragment identifiers
	XML tutorial: Location paths
	XML tutorial: Location steps
	XML tutorial: Axes
	XML tutorial: Node tests
	XML tutorial: Predicates
	XML tutorial: Expressions
	XML tutorial: Core function library
	XML tutorial: Abbreviations
	XML tutorial: XPath visualization
	XML tutorial: XPath examples
	XML tutorial: Context initialization
	XML tutorial: Extra XPointer features
	XML tutorial: Tools
	XML tutorial: Links to more information

	XML tutorial: XSLT
	XML tutorial: XSLT - XSL Transformations
	XML tutorial: Processing model
	XML tutorial: Structure of a stylesheet
	XML tutorial: A tiny example
	XML tutorial: A CSS example
	XML tutorial: Patterns
	XML tutorial: Templates
	XML tutorial: Literal result fragments
	XML tutorial: Recursive processing
	XML tutorial: Computed result fragments
	XML tutorial: Conditional processing
	XML tutorial: Sorting
	XML tutorial: Numbering
	XML tutorial: Variables and parameters
	XML tutorial: Keys
	XML tutorial: Other issues
	XML tutorial: XSL Formatting Objects
	XML tutorial: Examples
	XML tutorial: Different views
	XML tutorial: Links to more information

	XML tutorial: XQuery
	XML tutorial: Queries on XML documents
	XML tutorial: Usage scenarios
	XML tutorial: Query language requirements
	XML tutorial: The XQuery language
	XML tutorial: XQuery concepts
	XML tutorial: Path expressions
	XML tutorial: Element constructors
	XML tutorial: FLWR expressions
	XML tutorial: List expressions
	XML tutorial: Conditional expressions
	XML tutorial: Quantified expressions
	XML tutorial: Datatype expressions
	XML tutorial: Other issues
	XML tutorial: Examples
	XML tutorial: Links to more information

	XML tutorial: DOM, SAX, and JDOM
	XML tutorial: XML and programming
	XML tutorial: The DOM API
	XML tutorial: A simple DOM example
	XML tutorial: The SAX API
	XML tutorial: A simple SAX example
	XML tutorial: SAX events
	XML tutorial: The JDOM API
	XML tutorial: A simple JDOM example
	XML tutorial: The JDOM packages
	XML tutorial: The JDOM tree model
	XML tutorial: JDOM input and output
	XML tutorial: JAXP
	XML tutorial: A Business Card editor
	XML tutorial: Problems with JDOM
	XML tutorial: Links to more information

	XML tutorial: W3C
	XML tutorial: W3C - The World Wide Web Consortium
	XML tutorial: Organization
	XML tutorial: Activities
	XML tutorial: Policies
	XML tutorial: Technical reports

