
1

UML / UML 2.0 tutorial

Ileana Ober

IRIT – UPS, Toulouse, France

http://www.irit.fr/~Ileana.Ober

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

2

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Modeling in the ’80 – ’90s

� Lots of (slightly different) languages and

design techniques

� OMT

� Coad & Yourdon

� BON

� SDL

� ROOM

� Shlaer Mellor

… Quite a mess

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

3

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r

In use with permission from PIB Copenhagen A/S, obtained august 2005

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

4

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
UML

� Sought as a solution to the OOA&D mess

� Aims at

� Unifying design languages

� Being a general purpose modeling language

Lingua franca of modeling

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

5

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

6

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

7

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
UML (Unified Modeling Language)

� Goal: lingua franca in modeling

� Definition driven by consensus rather than innovation

� Standardized by the OMG

� Definition style:

� Described by a meta-model (abstract syntax)

� Well formedness rules in OCL

� Textual description

� static and dynamic semantics
(in part already described by WFRs)

� notation description

� usage notes

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

8

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview of the 13 diagrams of UML

Structure diagrams

1. Class diagram

2. Composite structure diagram (*)

3. Component diagram

4. Deployment diagram

5. Object diagram

6. Package diagram

Behavior diagrams

7. Use-case diagram

8. State machine diagram

9. Activity diagram
Interaction diagrams

10. Sequence diagram

11. Communication diagram

12. Interaction overview diagram (*)

13. Timing diagram (*)

(*) not existing in UML 1.x, added in UML 2.0

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

9

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
UML principle: diagram vs. model

� Different diagrams describe various facets of the
model

� Several diagrams of the same kind may coexist

� Each diagram shows a projection of the model

� Incoherence between diagrams (of the same or of
different kind(s)) correspond to an ill-formed model

� The coherence rules between different kinds of
diagrams is not fully stated

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

10

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
This tutorial looks closer at …

� Use case diagram

� Class diagram

� Composite structure diagram

� Component/deployment diagram

� State machine diagram

� Activity diagram

� Interaction diagrams

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

11

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Use case diagram

� Class diagram

� Composite structure diagram

� Communication principles in UML

� System initialization

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

12

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Use case diagram

� Displays the relationship among actors and

use cases, in a given system

� Main concepts:

� System – the system under modeling

� Actor – external “user” of the system

� Use case – execution scenario, observable by

an actor

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

13

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Use case diagram example

UMLModelingProject1

CheckProgramParticipant

Lecturer

OrganizerUpdateProgram

UpdateInfo

<<include>>

ARTIST Summer School Website

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

14

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Use case diagram – final remarks

� Widely used in real-life projects
� Used at:

� Exposing requirements

� Communicate with clients

� Planning the project

� Additional textual notes are often used/required

� User-centric, non formal notation

� Few constraints in the standard

Further reading:

D. Rosenberg, K.Scott Use Case Driven Object Modeling with UML : A Practical Approach,
Addison-Wesley Object Technology Series, 1999

I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-
Wesley Professional, 1999

Writing Effective Use Cases Alistair Cockburn Addison-Wesley Object Technology Series, 2001

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

15

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Use case diagram

� Class diagram

� Composite structure diagram

� Communication principles in UML

� System initialization

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

16

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Class diagram

� The most known and the most used UML

diagram

� Gives information on model’s structural
elements

� Main concepts involved

� Class - Object

� Inheritance

� Association (various kinds of)

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

17

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Let’s start with … object orientation

� Why OO?

� In the first versions, UML was described as addressing the
needs of modeling systems in a OO manner

� Statement not any longer maintained, however the OO
inspiration for some key concepts is still there

� Main concepts:

� Object – individual unit capable of receiving/sending
messages, processing data

� Class – pattern giving an abstraction for a set of objects

� Inheritance – technique for reusability and extendibility

Further reading:
Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall,

2000

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

18

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
UML Class

� Gives the type of a set of objects existing at run-time

� Declares a collection of methods and attributes that

describe the structure and behavior of its objects

� Basic notation:

Automobile

wheelsNO : integer

fillTank()

serialNo : integer

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

19

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Properties of UML classes

� May own features

� Structural (data related) : attributes

� Behavioral : operations

� May own behavior (state machines, interactions, …)

� May be instantiated

� except for abstract classes that can NOT be directly
instantiated and exist only for the inheritance hierarchy

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

20

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Class features – characterized by

� Signature

� Visibility (public, private, protected, package)

� Changeability (changeable, frozen, addOnly)

� Owner scope (class, instance) – equivalent to static clause in

programming languages

� Invariant constraint

� Additionally, operations are characterized by

� concurrency kind: sequential, guarded, concurrent

� pre or post conditions

� body (state machine or action description)

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

21

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Decode class symbol adornments

Class name in

italics:

abstract class

Underlined

attribute = class

attribute

Simple class box:

passive class

Vehicle

Automobile

+wheelsNO : integer

-serialNo : integer

+fillTank(In volume:real):real

Door

+wheelsNO : integer

-serialNo : integer

door
0..1 *

+fillTank(In volume:real):real
Feature visibility

+, -, #,~

Attributes

area

Operations

area

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

22

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Active / passive classes

� specifies the concurrency model for classes

� specifies whether an Object of the Class maintains

its own thread of control and runs concurrently with

other active Objects (active)

GSMOperator

Subscriber

n

*

MobilePhone

*

*

n

1

+network

* +phone

*

+provider n

+client

*

+phone n

+owner

1
Thick box:

active class

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

23

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Object

� Instance of a class

� Can be shown in a class diagram

� Notation

ford : Automobile

wheelsNO=4

serialNo=123ABC567D

wheelsNO=4

serialNo=123ABC567D

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

24

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Inheritance

� A.k.a. generalization (specialization)

� Applies mainly on classes

� Other UML model elements can be subject to
inheritance (e.g. interface)
(if you want the exact list go check the UML metamodel for kinds
of GeneralizableElements)

� Allows for polymorphism

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

25

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Inheritance/polymorphism example

Animal a;
Cow cw;
Cat ct;
…..
if (<condition>)

a:= cw
else

a:= ct
endif

a.cry()
--- should be a mooo or a meow

depending on the <condition>

Animal

cry()

Cat

cry(){meow }

Cow

cry(){mooo}

cry()

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

26

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Association

� Concept with no direct equivalent in common
programming languages

� Is defined as a semantic relationship between classes,
that can materialize at runtime

� The instance of an association is a set of tuples
relating instances of the classes

� It’s actual nature may vary, in terms of code, they may
correspond to

� Attributes, pointers

� Operations

� Nothing (i.e. graphical comments)

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

27

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example

Automobile

+wheelsNO : integer

serialNo : integer

+fillTank(In volume:real):real

Person
+wheelsNO : integer

serialNo : integer

+fillTank(In volume:real):real

driver car

0..1 0..1

vehicle1

UsesVehicle ►

* passenger

Association

symbol

Association

end

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

28

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example – at instance level

Link symbol

mary : Person

john : Person

tom : Person

9999 :Automobile

1111 :Automobile

car

driver

vehicle

passenger

car

vehicle

driver

passenger

vehicle

passenger

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

29

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example – at instance level

mary : Person

john : Person

tom : Person

9999 :Automobile

1111 :Automobile

car

driver

vehicle

passenger

car

vehicle

driver

passenger

vehicle

passenger

Note on style in UML diagrams:

Instance level names: lower case

Type level names: upper case

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

30

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Association end

� Endpoint of an association

� Characterized by a set of properties

contributing to the association definition

� Multiplicity (ex: 1, 2..7, *, 4..*)

� Ordering ordered/unordered

� Visibility +,-,#, ~

� Aggregation…

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

31

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Various kinds of associations (1/2)

� Regular association

� Composition: one class is owned (composed in) the
associated class
Composition implies lifetime responsibility (based on
association end multiplicities)

Vehicle

Automobile

+wheelsNO : integer
-serialNo : integer

+fillTank(In volume:real):real

Door

+wheelsNO : integer
-serialNo : integer

door0..1 *

+fillTank(In volume:real):real

Composition

symbol

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

32

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Various kinds of associations (2/2)

� Aggregation

“light” composition, semantics left
open, to be accommodated to
user needs

As it is, it has no particular
meaning…

Further reading:
F.Barbier, B.Henderson-Sellers, A.Le Parc-Lacayrelle, J.-M.Bruel:
Formalization of the Whole-Part Relationship in the Unified Modeling
Language, IEEE Transactions on Software Engineering, 29(5), IEEE
Computer Society Press, pp. 459-470, 2003

Person

Dog

owner

parent

child

2
*

*

*pet

aggregation

symbol

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

33

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
More on associations…

� Associations may be n-ary (n>2)

� Qualifiers – partition the set of objects that may
participate in an association

Person BankAccount

owner
* * account

accountNoowner
0..1

same

relationship

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

34

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Association class

� An association that is also a class.

� It defines a set of features that belong to the

relationship itself and not any of the classifiers.

association

class symbol

Automobile

wheelsNO : integer

fillTank()

serialNo : integer

Person

CarPapers

registry: Date

licenseNo : integer

driver

fillTank()

ownedCar

*

owner

1

car0..10..1

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

35

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Other elements of class diagrams

� Interface (definition and use)

� Templates

� Comments

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

36

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Interface

� Declares set of public features and obligations
� Specifies a contract, to be fulfilled by classes implementing the

interface

� Not instantiable, required or provided by a class

� Its specification can be realized by 0, 1 or several classes

� the class presents a public facade that conforms to the
interface specification
(e.g. interface having an attribute does not imply
attribute present in the instance)

� a class may implement several interfaces

� Interfaces hierarchies can be defined through inheritance
relationships

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

37

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Interface definition and use examples

<<interface>>

InteractionPrimitives

tokenExchange()

<<interface>>

SecureInteraction

checkConsistency()

retrieveLast()

checkConsistency()

tokenExchange()

retrieveLast()

Satellite
SecureInteraction

The class Satellite

implements the 3

operations

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

38

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Means to specify the interface contract

� Invariant conditions

� Pre and post conditions (e.g. on operations)

� Protocol specifications
which may impose ordering restrictions on interactions

through the interface

for this one may use protocol state machines

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

39

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Templates

� Mechanism for defining patterns whose
parameters represent types

� It applies to classifiers, packages, operations

� A template class is a template definition

� Cannot be instantiated directly, since it is not a
real type

� Can be bound to an actual class by specifying
its parameters

� A bound class is a real type, which can be
instantiated

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

40

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Template example

TList

element : T[k]

insert(p:T)

remove(p:T)

LectureList

element : Lecture[14]

T, k:Integer

<<bind>> <Lecture, 14>

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

41

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Class diagram summary

� The most used diagrams

� Describes the static structure of the system in

terms of classes and their relationships
(associations, inheritance)

� Offers connection points with the UML

behavior description means

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

42

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Use case diagram

� Class diagram

� Components

� Communication principles in UML

� System initialization

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

43

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Component

� Its definition evolves from UML 1.x to UML 2.0

� In UML 1.x - deployment artifacts

� In UML 2.0 – structured classes

compiler.jar

<<component>>

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

44

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Component in UML 2.0

� Modular part of a system encapsulating its content

� Defines its behavior in terms of provided and required

interfaces, and associated contracts

� Defines a type. Type conformance is defined on the

basis of conformance to provided / required interfaces

� Main property: substitutability = ability to transparently

replace the content (implementation) of a component,

provided its interfaces and interface contracts are not

modified

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

45

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Component examples (1/2)

� Algorithmic calculus component

� Interface:

� Offered: provided mathematical calculus functions

� Required : logarithm value calculus

� Contract

� Expected behavior

� Constraints on unauthorized values

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

46

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Component examples (2/2) :

mobile phone logical network

Sample component: virtual cell manager

� Interface:

� Manage reachable mobile phones

� Forward message calls

� …

� Contracts:

� Functional

� Fulfill expected behavior

� Protocol describing authorized message exchange:
(e.g. first identify)

� Non-functional

� Net load capacity, reactivity time, electromagnetic
interference…

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

47

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Component related concepts

� Class

� Package

� (Library)

The exact relationship between all these concepts is not

completely clear (neither in UML, nor in the literature)

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

48

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
UML offers a unifying concept… classifier

� Generalization of the class concept

� Gives a type for a collection of instances sharing

common properties

� Interfaces, classes, data types, components

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

49

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Composite structure diagram

(a.k.a. architecture diagram)

� Added in UML 2.0

� Depicts

� The internal structure of a classifier

� Interaction points to other parts of the system

� Configuration of parts that perform together the behavior
of the containing classifier

� Concepts involved:

� Classifier

� Interface

� Connection

� Port

� Part

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

50

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Part

� Element representing a (set of) instance

owned by a classifier

� Semantics close to the one of attributes or

composed classes

� May specify a multiplicity

� At parent creation time, parts may need to be

created also

� When the parent is destroyed, parts may need

to be destroyed also

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

51

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example

Car

part WFL : Wheel

part WFR : Wheel

part WBL : Wheel

part WBR : Wheel

part frontAxle : Axle

part backAxle : Axle

Wheel

Engine

Axle

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

52

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Abstraction level for part

� Somewhere between instance and type…

� WFL characterizes the wheels front left, owned

by Car instances

� Given a Car class instance, the part WFL is an

instance of its front right wheel

� If no Car class instance is fixed, the part WFL

is an instance abstraction generically
characterizing front right wheels of Cars

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

53

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Port

� feature of a classifier specifying a distinct interaction point

� between that classifier and its environment (service port)

� between the behavior of the classifier and its internal parts
(behavior port)

� characterized by a list of required and provided interfaces

� Required interfaces describe services the owning classifiers
expect from environment and may access via this interaction
point

� Provided interfaces describe services the owning classifiers
offer to its environment via this interaction point

� an instance may differentiate between invocations of a same
operation received through different ports

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

54

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Connector

� Link enabling communication btw instances

� It’s actual realization is not specified

(simple pointer, network connection, …)

� It has two connector ends, each playing a distinct role

� The communication realized over a connector may be

constrained

(type constraint, logical constraint in OCL, etc)

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

55

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Communication architecture

� complex multiplicity → need for initialization
rules

:A
4

:B
22 1

⇒

a3:A

b1:B

a4:A b2:B

a1:A

a2:A

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

56

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example: composite structure diagram

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

57

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Port vs. interface

� Interface – signature

� Port – interaction point

� Interfaces describe what happens at a port

� The same interface may be attached to

several ports of a component

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

58

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Port constraints vs. interface constraints

� Constraints may be attached to both ports and

interfaces

� For both, constraints can take the form of
pre and post conditions, invariants, protocol constraints

� Nothing is stated on how constraints at various levels

should be composed

� By default, constraint conjunction

� More elaborated constraint handling schemes may be

imposed by the methodology

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

59

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Connector vs. link

� Link = association instance

� Data oriented

� May be attached to any instance of the

corresponding classifier

� Connector

� Behavior (communication) oriented

� Can only be connected to particular instances

� Instance to which it applies are depicted in the

composite structure diagram

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

60

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Use case diagram

� Class diagram

� Components

� Communication principles in UML

� System initialization

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

61

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Communication

� Communication primitives

� Communication schema

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

62

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Communication primitives

� Signal

� One way
� Asynchronous communication primitive

� May carry data
� It is defined independently of the classifiers handling it

� Operation call
� Two-way communication primitive (call-reply)
� The caller is blocked

� May carry data
� Typically, it has a target object

� Queue
� Communication buffer

� May be attached to instances
� Management policy not constrained

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

63

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Signal definition and use examples

<<signal>>

InitiateCall

calledNo : string

<<interface>>

PhoneConnection

<<signal>> InitiateCallcalledNo : string

MobilePhone
PhoneConnection

NetworkCell

<<signal>> InitiateCall

signal

definition

signal integrated

in an interface

definition

Class

implementing

the interface

Class able to

receive a signal

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

64

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Communication schema in UML

� If the model says noting on communication
(i.e. no connectors exist)

� Point to point: between objects knowing their ID (due to
existing associations, passed as parameter in some
operation, etc)

� Broadcast: to listening and accessible objects

� If a communication structure is stated (architecture
diagram) - the communication obeys its constraints

communication paths, connectors chain, conveyed
messages, port constraints etc…

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

65

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Use case diagram

� Class diagram

� Components

� Communication principles in UML

� System initialization

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

66

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
System initialization

� What it is?

� The mechanism that gives the initial status of
the system

� How it can be done?

� Using a God object that creates the whole
system

� Using an initialization script

� Based on a particular object diagram giving the
snapshot of the system at initialization time

� How it is in the standard?

� No standard mechanism exists

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

67

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Going forward in

component based modeling …

� The actual “wiring” of components is designed using
component and deployment diagrams

� Component diagrams
� Models business and technical software architecture
� Uses components defined in the composite structure

diagrams, in particular their ports and interfaces

� Deployment diagrams
� Models the physical software architecture, including

issues such as the hardware, the software installed on it
and the middleware

� Gives a static view of the run-time configuration of
processing nodes and the components that run on those
nodes

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

68

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Deployment diagram example

SummerSchoolWebServer

Services

SubscribeApplication

Services

TerminalPC

RegistrationInterface

SubscribeApplication

RegistrationInterface

RegisteredStudentsDB

<<http>>

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

69

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Behavior description

� State machine diagrams

� Protocol state machine

� Activity diagrams

� Sequence diagrams

� Timing diagrams

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

70

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Specifying behavior in UML

 specification description

System Use case

Sequence diagram

Invariants

State machine

Class Sequence diagram

Invariants

Protocol state machine

State machine

Operation Pre-condition

Post-condition

Invariants

Protocol state machine

State machine

Actions

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

71

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
State machine

� UML finite state automaton

� Behavior description mechanism

� Describes the behavior for:

� System

� Class

� Operation

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

72

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Main concepts

� State – stores information of the system (encodes the
past)
Particular states

� Initial state (?)

� Final state

� Transition – describes a state change

� Can be triggered by an event

� Can be guarded by a condition

� Actions – behavior performed at a given moment

� Transition action : action performed at transition time

� Entry action : action performed when entering a state

� Exit Action : action performed when exiting a state

� Do Action : action performed while staying in a state

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

73

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Simple state machine example

Off On

switch/nb=nb+1

[nb>250000]

switch

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

74

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Simple state machine example

Entry

state

Exit state

Off On

switch/nb=nb+1

[nb>250000]

switch

Simple

state

Triggered

transition with

action

Guarded

transition

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

75

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Event

� “Specification of some occurrence that may
potentially trigger effects by an object”

Typically used in StateMachines as triggers on
transitions

� Examples (as defined in the standard):
SignalEvent, CallEvent, ChangeEvent,
TimeEvent, etc.

� Notion refined in the SPT profile

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

76

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Hierarchical states

� All states are at the same level => the design

does not capture the commonality that exists

among states

� Solution: Hierarchical states – described by

sub-state machine(s)

� Two kinds of hierarchical states:

� And-states (the contained sub-states execute in

parallel)

� Or-states (the contained sub-states execute

sequentially)

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

77

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Hierarchical OR-state machine example

Off

On

Radio CD

cd

radio

switch/nb=nb+1

[nb>250000]

switch Radio CD

cd

radio

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

78

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Hierarchical AND-state machine example

Off

On

Radio CD

VolumeManager

cd

radio

inc/if v<max then v++

dec/if dec >0 then dec - -

switch/nb=nb+1

[nb>250000]

switch

Radio CD

VolumeManager

cd

radio

inc/if v<max then v++

dec/if dec >0 then dec - -

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

79

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
History sub-states

Off

On

Radio CD

cd

radio

switch/nb=nb+1

[nb>250000]

switch Radio CD

cd

radio

H

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

80

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Semantic nuances in state machine diagrams

vs.

/* no trigger here */

ev1

ev1

ev1
ev1

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

81

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
When to use state machines?

� For reactive systems

� Why use them?
If properly used

� easy to read
� nice verification results
� the tools can generate code more efficient than if hand-written

� Open questions:

� state machine inheritance…

� consensual semantics

Further reading:
Harel, David and Eran Gery, "Executable Object Modeling with Statecharts", IEEE Computer, July

1997, pp. 31-42.
Harel, David, "Statecharts: A Visual Formalism for Complex Systems", Science of Computer

Programming, 8, 1987, pp. 231-274.

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

82

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Behavior description

� State machine diagrams

� Protocol state machine

� Activity diagrams

� Sequence diagrams

� Timing diagrams

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

83

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Protocol state machines

� Particular state machines used to impose sequencing constraints
� Can be attached to interfaces, components, ports, classes

� Express

� Usage protocols
� Lifecycles for objects
� Constrain the order of invocation for its operations

� Do not preclude any specific behavior description

� Protocol conformance must apply between the protocol state
machine and the actual implementation

� A classifier may own several state machines (ex. due to
inheritance)

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

84

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Syntactic constraints on protocol state

machines

� No entry, exit, do action on states

� No action on its transitions

� If a transition is triggered by an operation call, then

that operation should apply to the context classifier

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

85

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Protocol state machine interpretations

� Declarative

� Specifies legal transitions for each operation

� The actual legal transitions for operations are not
specified

� Defines the contract for the user of the context classifier

� Executable

� Specifies all events that an object may receive and
handle, plus the implied transitions

� Legal transitions for operations are the triggered
transitions

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

86

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Protocol state machine example

� Notation: {protocol} mark should be placed

close to the state machine name

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

87

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Behavior description

� State machine diagrams

� Protocol state machine

� Activity diagrams

� Sequence diagrams

� Timing diagrams

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

88

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Activity diagrams

� Related to state machine diagrams

� State diagrams – focus on the execution of a
single object

� Activity diagram – focus on the behavior of a
set of objects

� Purpose

� Models high-level business processes,
including data flow,

� Models the logic of complex logic within a
system

� Concurrency model based on Petri Nets

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

89

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Activity diagram example

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

90

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Sequence diagram

� Shows a concrete execution scenario, involving:
objects, actors, generic system

� Highlights the lifelines of the participating instances

� Focuses on interaction, exchanged messages and
their ordering

� Give instances of (cooperating) state machine
executions

� Can address various levels of abstraction:

� System level

� Object sets level

� Object level

� Method level

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

91

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example

john :User :System

login(john, climb5)

invalidID

login(john, climb)

:Session

welcome

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

92

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Timing diagram

� used to explore the behaviors of one or more

objects throughout a given time interval

� relevant for systems with time sensitive
behavior

w:Walkman

Off

CD

Radio

switch

CD

switch
t1

t1+3

t1+7

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

93

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Although universal,

UML can’t contain everything…

� Extension mechanisms

� Stereotype

� mechanism allowing to specialize particular UML concepts

� allows to use platform or domain specific terminology

e.g. Class stereotyped reactive if it has a state machine

� Tagged values – allows to attach information to UML model
elements

� Profile - a stereotyped package containing model elements that have
been customized (e.g. for a specific domain) using stereotypes, tagged
definitions and constraints

e.g. SPT, UML profile for EDOC, …

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

94

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Behavior description

� State machine diagrams

� Protocol state machine

� Activity diagrams

� Sequence diagrams

� Timing diagrams

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

95

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
OCL – Object Constraint Language

� Constraint language integrated in the UML

standard

� Aims to fill the gap between mathematical rigor
and business modeling

� Recommended for:

� Constraints: pre and post conditions, invariants

� Boolean expressions: guards, query body

specification

� Defining initial and derived values of features

� UML meta-model WFRs written in OCL

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

96

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example 1 – (all kinds of) invariants

No grandchild may not have

more than 2 pet dogs:

contex Person

inv: self.child.child.pet -> size()<2

Person

Dog

owner

parent

child

2
*

*

*pet

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

97

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Example 2 – pre and post conditions

contex Automobile::fillTank (in volume:real):real

pre: volume>0

pre: tankLoad + volume < maxLoad

post: tankLoad = tankLoad@pre + volume

Vehicle

Automobile

+tankLoad : integer
-maxLoad: integer

+fillTank(In volume:real):real

Door

door0..1 *

+fillTank(In volume:real):real

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

98

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Overview

� What is UML?

� Structure description

� Behavior description

� OCL

� UML and tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

99

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Tool support for UML

� UML can only live if tool builders support it
Just think of a programming language with no compiler…

� Tool builders are de facto deciders of live and

dead parts of the languages

� There is no UML tool that offers all the
functionalities one can think of

� This part is not a presentation of tools, rather a

list a functionalities offered by various tools

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

100

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Functionalities

� Editing support

� Documentation generation

� Syntax check

� Static semantic check

� Code generation
� Symbolic execution / simulation

� Formal verification

� Support for tests on model

� Test case generation

� Reverse engineering

� Model transformation and translations to other formalisms

� …

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

101

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Model interchange

� The need
� A single tool does not offer all the functionalities
� Avoid user kidnapping

� The solution
� XMI: standardized model interchange format
� Offers an XML DTD schema of the metamodel, to be

used by tools

� The reality
� Commercial tools offer limited support (why?)
� The complexity of the UML metamodel often leaves

place to interpretations => incompatibilities
� Until UML 2.0 no diagram interchange

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

102

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Conclusions – UML summary

� UML – modeling language to be used throughout the
entire software lifecycle

� Capture requirements
� Use cases
� Sequence diagrams

� Structure aspects
� OO inspired definition
� Component support

� Behavior aspects
� State machines – for reactive behavior
� Actions – in general

� Deployment aspects
� Component/deployment diagrams

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

103

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
UML summary (2/2)

� To be as flexible as possible

� UML offers extension mechanisms, profiles

� Using profile UML can be transformed in a DSL

� Tool support

� Lots of commercial/non-commercial tools exist

� Various functionalities offered

� Tool interchange exists, but lots are still to be

done

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

104

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
Impact on research activity

Researchers attitude evolved:

� Hostility: received with skepticism, and (violent) critics

� Resign: very used in research papers, projects, books

� Pragmatism: taken as it is, used as a bridge with the

industrial world

� Often the main focus of conferences, workshops, basic

research, more as a means than as a goal

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

105

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
The bad news is that …

� The various notations within UML are not

perfectly coordinated

� Often, different tools interpret the UML

standard differently

� The unique modeling language is in fact a set

of dialects

ARTIST2 Summer School on Component & Modelling,

Testing & Verification, and Statical Analysis of Embedded Systems

Sept 29 - Oct 2, 2005

106

U
M

L
 t

u
to

ri
a

l
–

Il
e

a
n

a
 O

b
e

r
The good news is that …

� We have a language allowing to design and

model various aspects of systems

� This language is standardized and supported
by various tools

� The tool support and interoperability improves

in time, as UML, OCL, and XMI are still
relatively young standards

