March 19, 2012

29

@ Pointers

Pointers are variables, which contain the address of some other

variables.
Declaration: datatype *pointername;
e.g. long * ptra;

The type of a pointer depends on the type of the variable it points
to. Every pointer points to some data type.

Sizes of basic data types

All data is stored in memory. But different data types occupy
different amount of memory.

The sizeof () operator in C can be used to determine the number
of bytes occupied by each data type.

Sizes of basic data types

All data is stored in memory. But different data types occupy
different amount of memory.

The sizeof () operator in C can be used to determine the number
of bytes occupied by each data type.

For example, on some machine you may have
sizeof (int) = 4

sizeof (float) = 4
sizeof (double) = 8

Sizes of basic data types

All data is stored in memory. But different data types occupy
different amount of memory.

The sizeof () operator in C can be used to determine the number
of bytes occupied by each data type.

For example, on some machine you may have
sizeof (int) = 4

sizeof (float) = 4
sizeof (double) = 8

These numbers are NOT the same for all machines. You should
use the sizeof () operator instead of assuming the value.

A Sample Program

4)
0 |
1 \
2 |
3|
4 |X C
E—
_ J

Memory Layout (Bytes)

#include <stdio.h>

int main()

{

int n;
char c;
int *ptrn;

n=15;
ptrn=&n;

return O;

A W N R O

20

21

22

23 |15

#include <stdio.h>

int main()

{

char c;
int n;
int *ptrn;
C=’X7;

ptrn=&n;

return O;

20

21

22

23 |15

8003

8003

8003

8003 (20

n-<

ptrn-

#include <stdio.h>

int main()
int n;
char c;
int *ptrn;

c="X";
n=15;

//address of n
//sizeof(ptrn) = 4

return O;

}

sizeof (ptrn) = 4 bytes = 32 bits,
since we have 232 byte addresses.

Address Operations

There are two unary operations to consider.

@ The * operator: If ptra is a pointer variable, then xptra
gives you the content of the location pointed to by ptr.

Address Operations

There are two unary operations to consider.

@ The * operator: If ptra is a pointer variable, then xptra
gives you the content of the location pointed to by ptr.

@ The & operator: If v is a variable, then &v is the address of
the variable.

Address Operations

There are two unary operations to consider.

@ The * operator: If ptra is a pointer variable, then xptra
gives you the content of the location pointed to by ptr.

@ The & operator: If v is a variable, then &v is the address of
the variable.

*pointer

& data

Address Operations

There are two unary operations to consider.

@ The * operator: If ptra is a pointer variable, then xptra
gives you the content of the location pointed to by ptr.

@ The & operator: If v is a variable, then &v is the address of
the variable.

*pointer

& data

In the previous code, what is *ptrn?

Address Operations

There are two unary operations to consider.

@ The * operator: If ptra is a pointer variable, then xptra
gives you the content of the location pointed to by ptr.

@ The & operator: If v is a variable, then &v is the address of
the variable.

*pointer

& data

In the previous code, what is *ptrn?

Caution: Declaration of a pointer also uses "*'.

© Pointer Arithmetic

Pointer Arithmetic

Problem: How do we do relative addressing? (for example, "next
element” in an integer array)

10/ 2

Pointer Arithmetic

Problem: How do we do relative addressing? (for example, "next
element” in an integer array)

C allows you to perform some arithmetic operations on pointers.
(Not every operation is allowed.) Consider

<datatype> *ptrn; //datatype can be int, long, etc.

10/ 2

Pointer Arithmetic

Problem: How do we do relative addressing? (for example, "next
element” in an integer array)

C allows you to perform some arithmetic operations on pointers.
(Not every operation is allowed.) Consider

<datatype> *ptrn; //datatype can be int, long, etc.

10/ 2

Pointer Arithmetic

Problem: How do we do relative addressing? (for example, "next
element” in an integer array)

C allows you to perform some arithmetic operations on pointers.
(Not every operation is allowed.) Consider

<datatype> *ptrn; //datatype can be int, long, etc.

Unary Pointer Arithmetic Operators

10/ D

Pointer Arithmetic

Problem: How do we do relative addressing? (for example, "next
element” in an integer array)

C allows you to perform some arithmetic operations on pointers.
(Not every operation is allowed.) Consider

<datatype> *ptrn; //datatype can be int, long, etc.

Unary Pointer Arithmetic Operators

@ Operator ++: Adds sizeof (datatype) number of bytes to
pointer, so that it points to the next entry of the datatype.

10/ D

Pointer Arithmetic

Problem: How do we do relative addressing? (for example, "next
element” in an integer array)

C allows you to perform some arithmetic operations on pointers.
(Not every operation is allowed.) Consider

<datatype> *ptrn; //datatype can be int, long, etc.

Unary Pointer Arithmetic Operators

@ Operator ++: Adds sizeof (datatype) number of bytes to
pointer, so that it points to the next entry of the datatype.

@ Operator ——: Subtracts sizeof (datatype) number of bytes
to pointer, so that it points to the next entry of the datatype.

10/ D

Pointer Arithmetic - Example 1

#include <stdio.h>

int main()

{
int *ptrn;
long *ptrlng;

ptro++; //increments by sizeof(int) (4 bytes)
ptrlng++; //increments by sizeof(long) (8 bytes)
return O;

117/

Pointer Arithmetic - 1l

Pointers and integers are not interchangeable. (except for 0.) We
will have to treat arithmetic between a pointer and an integer, and
arithmetic between two pointers, separately.

179 /29

Pointer Arithmetic - 1l

Pointers and integers are not interchangeable. (except for 0.) We
will have to treat arithmetic between a pointer and an integer, and
arithmetic between two pointers, separately.

Suppose you have a pointer to a long.

long *ptrlng;

179 /29

Pointer Arithmetic - 1l

Pointers and integers are not interchangeable. (except for 0.) We
will have to treat arithmetic between a pointer and an integer, and
arithmetic between two pointers, separately.

Suppose you have a pointer to a long.
long *ptrlng;

Binary Operations between a pointer and an integer

A\ |

Pointer Arithmetic - 1l

Pointers and integers are not interchangeable. (except for 0.) We
will have to treat arithmetic between a pointer and an integer, and
arithmetic between two pointers, separately.

Suppose you have a pointer to a long.

long *ptrlng;

Binary Operations between a pointer and an integer

@ ptring+n is valid, if n is an integer. The result is the following
byte address
ptrlng + nxsizeof (long)
and not ptrlng + n.
It advances the pointer by n number of longs.

Pointer Arithmetic - 1l

Pointers and integers are not interchangeable. (except for 0.) We
will have to treat arithmetic between a pointer and an integer, and
arithmetic between two pointers, separately.

Suppose you have a pointer to a long.

long *ptrlng;

Binary Operations between a pointer and an integer
@ ptring+n is valid, if n is an integer. The result is the following
byte address
ptrlng + nxsizeof (long)
and not ptrlng + n.
It advances the pointer by n number of longs.

© ptrlng-n is similar.

Pointer Arithmetic - Il

Consider two pointers ptrl and ptr2 which point to the same type
of data.

<datatype> *ptrl, *ptr2;

17/ 25

Pointer Arithmetic - Il

Consider two pointers ptrl and ptr2 which point to the same type
of data.

<datatype> *ptrl, *ptr2;

17/ 25

Pointer Arithmetic - Il

Consider two pointers ptrl and ptr2 which point to the same type
of data.

<datatype> *ptrl, *ptr2;

Binary operations between two Pointers

Pointer Arithmetic - Il

Consider two pointers ptrl and ptr2 which point to the same type
of data.

<datatype> *ptrl, *ptr2;

Binary operations between two Pointers

© Surprise: Adding two pointers together is not allowed!

Pointer Arithmetic - Il

Consider two pointers ptrl and ptr2 which point to the same type
of data.

<datatype> *ptrl, *ptr2;

Binary operations between two Pointers

© Surprise: Adding two pointers together is not allowed!
© ptrl - ptr 2 is allowed, as long as they are pointing to
elements of the same array. The result is

ptrl - ptr2
sizeof (datatype)

In other settings, this operation is undefined (may or may not
give the correct answer).

Pointer Arithmetic - Il

Consider two pointers ptrl and ptr2 which point to the same type
of data.

<datatype> *ptrl, *ptr2;

Binary operations between two Pointers

© Surprise: Adding two pointers together is not allowed!
© ptrl - ptr 2 is allowed, as long as they are pointing to
elements of the same array. The result is

ptrl - ptr2

sizeof (datatype)

In other settings, this operation is undefined (may or may not
give the correct answer).

Why all these special cases? These rules for pointer arithmetic are
intended to handle addressing inside arrays correctly.

Pointer Arithmetic - IV

If we can subtract a pointer from another, all the relational
operations can be supported!

Logical Operations on Pointers

\4

© ptrl > ptr2is the same as ptrl - ptr2 > 0,

©Q ptrl = ptr2 is the same as ptrl - ptr2 = 0,

A

© ptrl < ptr2is the same as ptrl - ptr2 < 0,

@ and so on.

© Arrays and Pointers

17 /25

Arrays and Pointers

Array names essentially are pointers. Array elements are stored in
contiguous (consecutive) locations in memory.

For example, consider int arr[10];

@ arr is a pointer to the first element of the array.

16 / 2D

Arrays and Pointers

Array names essentially are pointers. Array elements are stored in
contiguous (consecutive) locations in memory.

For example, consider int arr[10];

@ arr is a pointer to the first element of the array.

@ That is, *arr is the same as arr[0].

16 / 2D

Arrays and Pointers

Array names essentially are pointers. Array elements are stored in
contiguous (consecutive) locations in memory.

For example, consider int arr[10];

@ arr is a pointer to the first element of the array.
@ That is, *arr is the same as arr[0].

© arr+iis a pointer to arr[i]. (arr+i is equivalent to
arr+i*sizeof (int).)

16 / 2D

Arrays and Pointers

Array names essentially are pointers. Array elements are stored in
contiguous (consecutive) locations in memory.

For example, consider int arr[10];

@ arr is a pointer to the first element of the array.
@ That is, *arr is the same as arr[0].

© arr+iis a pointer to arr[i]. (arr+i is equivalent to
arr+i*sizeof (int).)

Q@ x(arr+i), is equal to arr[i].

16 / 2D

Arrays and Pointers

Array names essentially are pointers. Array elements are stored in
contiguous (consecutive) locations in memory.

For example, consider int arr[10];

@ arr is a pointer to the first element of the array.
@ That is, *arr is the same as arr[0].

© arr+iis a pointer to arr[i]. (arr+i is equivalent to
arr+i*sizeof (int).)

Q@ x(arr+i), is equal to arr[i].
© Question: What is &arr[i] equivalent to?

16 / 2D

Arrays and Pointers - Figure

40 |:|<arr[0] = *arr = *(arr+-0)

41

42

43

44

45

46

47

48

49

50

~—arr[1] = *(arr+1)

~——arr[2] = *(arr+2)

o

int arr[3]; -

17 /2D

@ Passing Pointers to Functions

19 /29

Passing Pointers to Functions

Since pointers are also variables, they can be passed

@ As input parameters to functions

@ As return values from functions

10/ 2

Passing Pointers - Reason 1

Why do we pass pointer variables to functions?

Recall the swap function which took input integers. This function
was unable to swap the variables inside main ().

2 / 2D

Passing Pointers - Reason 1

Why do we pass pointer variables to functions?

Recall the swap function which took input integers. This function
was unable to swap the variables inside main ().

Suppose we want a swap function which is able to swap arguments
inside the caller.

Main idea: Pass pointers!!

295 / D

A Swap Program

#include <stdio.h>

wap the contents of locations pointed to by the
input pointers
void swap(int *pa, int *pb)

{
int temp;
temp = *pb;
*pb = *pa;
*pa = temp;
return;

}

int main()

{
int a =1, b = 2;
int *ptra = &a;
int *ptrb = &b;

printf(‘‘a=/d b=4d’’, a, b);
swap (ptra, ptrb); //equivalently, swap(&a, &b);

//a and b would now be swapped
printf(‘‘a=/d b=4d’’, a, b);
return 0;

}

When swap(pa, pb) is called, the value of the pointers is copied
to the function. The value of the pointers is the address of a and

b tively.
, respectively. INPJENG

\ #include <stdio.h>

(0 1 2 3
‘I:H:H:I pa void swap(int *pa, int *pb)

4 5 6 7
{
'I:H:H:I pb int temp;

i

*pa = temp;
20 21 22 23 }
(I |
: int main()
30 31 32 33 { 1nt a = 1 b _ 2
DI:H:I b int *ptra’= &a; ,
int *ptrb = &b;

LI [20] ptra
I:I I:I I:I ptrb swap (ptra, ptrb);

NG /

b

//V 0 1 2 3 ‘\\
A L[J[20] pa

LI I[30] wb
LT][2] temp

20 21 22 23
I | I

OO0 s
] 20] o
I o [E

NG /

#include <stdio.h>

void swap(int *pa, int *pb)

{
int temp;
temp=*pb;
7o = "par
Pa = temp;
}
int main()
{
int a =1, b = 2;
int *ptra = &a;
int *ptrb = &b;

swap (ptra, ptrb);

#include <stdio.h>

/ 0 1 2 3 \
—I:H:”:I pa \{/oid swap(int *pa, int *pb)
4 5 6 7
DDD pb int temp;
8 9 10 11 temp=*pb;
|:||:||:|temp *pb = *pa;
: |*pa = temp;l
22 23

o

int main()

30 31 32 33 { . t 1 b 2
1 b nt a = N = 5
e e 1b
= &b;

. ; b
][] pre e
3] e suap (pa, pb);

N J

scanf and printf

If we want to modify data in the caller, then we pass address of
the variables. We can see this in the difference between printf
and scanf.

29 /2D

scanf and printf

If we want to modify data in the caller, then we pass address of
the variables. We can see this in the difference between printf
and scanf.

29 /2D

scanf and printf

If we want to modify data in the caller, then we pass address of
the variables. We can see this in the difference between printf
and scanf.

scanf(‘‘%d’’, &n);
scanf needs to change the content of n. This can be done by
passing the address of n.

A SRS

scanf and printf

If we want to modify data in the caller, then we pass address of
the variables. We can see this in the difference between printf
and scanf.

scanf(‘‘%d’’, &n);
scanf needs to change the content of n. This can be done by
passing the address of n.

A SRS

scanf and printf

If we want to modify data in the caller, then we pass address of
the variables. We can see this in the difference between printf
and scanf.

scanf (¢ ‘%d’’, &n);
scanf needs to change the content of n. This can be done by
passing the address of n.

printf(¢“%d’’,n);
printf does not need to change the content of n.

Y9N /W

Passing arrays to functions

We have already seen that we can pass arrays as input to
functions. We also have seen that arrays are essentially pointers.

We can pass pointers, where arrays are expected, and vice versal

2% / 2D

Passing arrays to functions

#include <stdio.h>

//Count number of elements in an integer array,
//until the first -1
int num_elts(int *a)

{
int *p;
P =23

while(*p != -1){
pH+;
}

return p-a;

}

int main()

{
int arr[] = {1, 2, 3, -1};
printf ("%d", num_elts(arr)); //Passing array as pointer
return O;

7 /29

Schematic Diagram of num_elts

o 1] [2)[3][1
p

bl lE-11

Schematic Diagram of num_elts

P

bl lE-11

Schematic Diagram of num_elts

P

bl lE-11

Schematic Diagram of num_elts

are-{1][2][3][-1
]

p-arr =

bl lE-11

Schematic Diagram of num_elts

P

If we changed the call to the following line,

num_elts(arr+1);

the result is 2, since the num_elts will search in the subarray
{2,3,-1}.

bl lE-11

Passing Pointers to Functions - Another Reason

Passing a pointer to data, instead of passing the value of the data
can be much faster.

This is used to reduce the slowdown due to function calling.

The decision to do this must be taken with care.

290 /2D

Common Mistakes in Pointer Programs

Programming with pointers has to be done with care. Common
mistakes include

© Crossing array boundaries - Suppose an array has 10 elements,
and arr is pointing to the first element. If you do *(arr-1), or
*(arr+11), you might get unpredictable behaviour.

© “Dangling Pointers” - pointers that point to data that is not
meaningful - for example, using a pointer without initializing
it.

200/

Debugging Pointer Programs

If there is an error in a program using pointers, when executing,
you will most probably get “Segmentation Fault”.

There are several ways to find the error.

© Go through the code carefully and see if you can locate the
bug. (perfect!)

1Some material in these slides has been taken from course notes by Arnab
Bhattacharya.

217/ 25

Debugging Pointer Programs

If there is an error in a program using pointers, when executing,
you will most probably get “Segmentation Fault”.

There are several ways to find the error.

© Go through the code carefully and see if you can locate the
bug. (perfect!)

© Use a debugger like gdb to debug the code and step through
the execution to locate the error. Examine the memory
contents when you debug.

1Some material in these slides has been taken from course notes by Arnab
Bhattacharya.

217/ 25

Debugging Pointer Programs

If there is an error in a program using pointers, when executing,
you will most probably get “Segmentation Fault”.

There are several ways to find the error.

© Go through the code carefully and see if you can locate the
bug. (perfect!)

© Use a debugger like gdb to debug the code and step through
the execution to locate the error. Examine the memory
contents when you debug.

© Insert printf statements to pinpoint where the code crashes.
(When doing so, make sure to put “\n" at the end of the
message - it might not print otherwise!)

1Some material in these slides has been taken from course notes by Arnab
Bhattacharya.

217/ 25

Debugging using printf statements - Example

void merge_p(int *s, int *t, int *result, int size_s, int size_t)
int *p = s;
int *q = t;

|printf("Reached Point 0\n");|

while(p-s<size_s && q-t<size_t){

} /-

|printf("Reached Point l\n");l

if (p-s < size_s){
while(p-s < size_s) {

telse if(q-t < size_t){
while(g-t < size_t) {

}
}

|printf("Reached Point 2\n");|

return;

27 /2D

	Pointers
	Pointer Arithmetic
	Arrays and Pointers
	Passing Pointers to Functions

